metadat/0000755000176200001440000000000014223277405011677 5ustar liggesusersmetadat/NAMESPACE0000644000176200001440000000010714167070054013112 0ustar liggesusersexportPattern("^[^\\.]") import(utils) import(tools) import(mathjaxr) metadat/README.md0000644000176200001440000001263514223072333013156 0ustar liggesusersmetadat: Meta-Analysis Datasets for R ===================================== [![License: GPL (>=2)](https://img.shields.io/badge/license-GPL-blue)](https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html) [![R build status](https://github.com/wviechtb/metadat/workflows/R-CMD-check/badge.svg)](https://github.com/wviechtb/metadat/actions) [![CRAN Version](https://www.r-pkg.org/badges/version/metadat)](https://cran.r-project.org/package=metadat) [![devel Version](https://img.shields.io/badge/devel-1.3--0-brightgreen.svg)](https://github.com/wviechtb/metadat) [![Downloads](https://cranlogs.r-pkg.org/badges/grand-total/metadat)](https://cran.r-project.org/package=metadat) ## Description The `metadat` package contains a large collection of meta-analysis datasets. These datasets are useful for teaching purposes, illustrating/testing meta-analytic methods, and validating published analyses. ## Installation The current official (i.e., [CRAN](https://cran.r-project.org/package=metadat)) release can be installed within R with: ```r install.packages("metadat") ``` The development version of the package can be installed with: ```r install.packages("remotes") remotes::install_github("wviechtb/metadat") ``` This builds the package from source based on the current version on [GitHub](https://github.com/wviechtb/metadat). ## Browsing and Searching for Datasets A listing of all datasets in the package can be obtained with `help(package=metadat)`. Each dataset is also tagged with one or multiple concept terms. These concept terms refer to various aspects of a dataset, such as the field/topic of research, the outcome measure used for the analysis, the model(s) used for analyzing the data, and the methods/concepts that can be illustrated with the dataset. The [`datsearch()`](https://wviechtb.github.io/metadat/reference/datsearch.html) function can be used to search among the existing datasets in the package based on their concept terms or based on a full-text search of their corresponding help files. You can also read the documentation online at [https://wviechtb.github.io/metadat/](https://wviechtb.github.io/metadat/) (where the output from the example analyses corresponding to each dataset is provided). ## Contributing New Datasets We welcome contributions of new datasets to the package. For each dataset, there must be a citable reference, ideally in a peer-reviewed journal or publication. The general workflow for contributing a new dataset is as follows: - Install the `metadat` package in R in the usual manner (i.e., `install.packages("metadat")`). - If you are familiar with Git/GitHub and making pull requests, fork the [package repository](https://github.com/wviechtb/metadat). Otherwise, [download](https://github.com/wviechtb/metadat/archive/master.zip) the source version of the package from GitHub and unzip the file to some directory on your computer. - Place the raw data (in a non-binary format) in the `data-raw` directory. The file should be named `dat..`, where `` is the last name of the first author of the publication from which the data come, `` is the publication year, and `` is the file extension (e.g., `.txt`, `.csv`). - Place a corresponding R script in the `data-raw` directory named `dat..r` that reads in the data, possibly does some data cleaning/processing, and then saves the dataset to the `data` directory (using `save()`), with name `dat..rda`. - Start R, load the `metadat` package (i.e., `library(metadat)`), and then run the `prep_dat()` function (either set the working directory to the location of the source package beforehand or use the `pkgdir` argument of the `prep_dat()` function to specify the source package location). - For a new dataset, this should create a boilerplate template for a corresponding help file in the `man` directory, named `dat..Rd`. Edit the help file, adding the title and a short description of the dataset in general, a description of each variable in the dataset, further details on the dataset (e.g., the field of research, how the data was collected, the purpose of the dataset or what it was used for, the effect size or outcome measure used in the analysis, the types of analyses/models that can be illustrated with the dataset), a reference for the source of the dataset, one or multiple concept terms, the name and email address of the contributor of the dataset, and (optionally) example code to illustrate the analysis of the dataset. - Either make a pull request (if you are familiar with this workflow) or zip up the `dat..`, `dat..r`, `dat..rda`, and `dat..Rd` files and open up a new [issue at GitHub](https://github.com/wviechtb/metadat/issues), attaching the zip file. - If the above makes no sense to you, you can also open an issue or email one of the package authors and attach a zip file including a cleaned, raw data file in `.txt` or `.csv` format, along with a meta-data file (format doesn't matter) that includes the information described above. ## Citing the Package If you use these data, please cite both the `metadat` package (see `citation("metadat")` for the reference) and the original source of the data as given under the help file of a dataset. ## Bug/Error Reports If you think you have found an error in an existing dataset or a bug in the package in general, please go to https://github.com/wviechtb/metadat/issues and open up a new issue. metadat/data/0000755000176200001440000000000014223077056012610 5ustar liggesusersmetadat/data/dat.raudenbush1985.rda0000644000176200001440000000177014167070054016541 0ustar liggesusers]lEww /})b(NiS|$1nlwgQl$FIAhB!`, _#?3{&?3e`{r0iZX!-ݾ-XEBZDK\VNa2/~c D"RuoM AHĀ8$"`[,QIjKz攰&N9(k1tk:k7$E2 j {ZZ6T00U%9Jڔ51[6zpR㗫PIsU%*Ȓe I5CM2GrmSR2-o|t/6|#lY$ÔbDY)]lcKp8%dJ2RNzCŃr~ayI]T/>Rz<ѢmGo,_K lWMMX-ww~YG(<i`&Lm1])eN}+}"4ޫ06^_VSd<q'gYy}ڌnuO,5~1oTu%lQkG-:s~Fp@HU'!$8ӆlXe':EQU"rU u$j\]1xotX9i(TKq5ь|u߇xV)ԷA@i metadat/data/dat.hackshaw1998.rda0000644000176200001440000000350314167070054016172 0ustar liggesusersWP_~!RVkI@VR55FX*r*qٻVna@ɘ8SCgӨȘ9bk$4JRQ%i u̴dg>v9K%.IdXXb#Sƶha"22jw)>lʌDnJMż[}Z P#xE@=a1-Ti0D3 }9y+?2rD/<ٚd*eJRLIj7x,}R4?[zo;.^E$('@&E7MNs%Z 2iq`散\~8l%̖"Qk,Y;}b@0S4͑GT\tP6@E>E{LJelNYRPEu4~)/ pfVWMB#xfu@=  hDBF|D1@&,rf :r`\\=[_ (w kLwIM[O wɏ ED!,R4=_SHD-$Yn!&,})M'XO`A:$Q@0)q $s@?"L'X>oAH2Kd$& Xta1/ׯ]6 z :1k..qVDA6…yǐ_2ޝi߷k}[V8?`+] n=݉WhpވϱXK_7K׃rfc]?GVjx' ?p'Y%)w ೰,3ޙ4 bJ8Q:i?speЭG+1{0SߨW18Gt=.yqq%[:sCwӈ%f Άy0Ơ_뿁c$ʓqoyqqc 7F<.%`ЏzX7iX_>xhm  55;IV}B^;8'/6~ۃ _+zij3.T4o\)nÎ 3 ݰre ؒ]3= U?z\pɔ+:mhw/L\{J1 ^K`U-majz$,LҵP]}.gKbk ALEO]2s>3NJR:gR~u_7 0ujcgʓpl~j Ÿ ɏMr jŏ/]aw|;aӾrQ6i"]^hp<^~tO2H;$wR3lO@j}GZ/{{{?^+*bnmetadat/data/dat.hine1989.rda0000644000176200001440000000043614167070054015326 0ustar liggesusers]N0 ݴ/@eB ڰFLh7#ʁh{ߎUH (`Bps1DF͹MWRdaH#DQ(C#c-8 2βi crkNΆͨ *d֕;@߀x%d<߶ʹWQ$Tq~v!,.Ԙ1z~ ] o;`׿oM)ap;]~#P!z;TPV cIkl@N½^Kz`HYVrw#`y%j CUkP4ΖuW0-uнb(> Z#h'rj,q9 {@-P~ t,j5H"^ZCRbj{m])UM`nܨ;>GkI܇t?o gz'{a ߬r6 ad(88h 4zT)HhG9f߅@[>"OXX#]!H?*=-CJ[=?FJ7l#vT~O_ag#je#l0 Zb!|Wyz0{\Dmnl495>kAՋ @uq@}xt:߽u@Hʖ:;М2JZ Ԯ8hY̝nK/\b^,0i:xq@q l| <"eڇcP{ҍt _Flm (MF$ή$[Z6/4sN-BgAWu Ҧz/]/ꬰ'}{@Kٰ/pQBm]t) Kw-DCWr8Gf BW@MY42>AB?\x,u>/Z 9J|ka,,_o@V3- INf-OkNja;g&=gffD2Z+ՌV۔i4Jdo%+m]Yƙ:aւFaZ0iH l’cI{j-G7vߘ݈$/2'zz]xs^DFhT|2YeY3yjSN8sOgsx5UvA?k?XDIkjɝ֎gF}"~L:9iտ|O/ Wv;=OeE:_|}Xb,]FAţ/ty?z`I 84s.q w񔝓=  O4sL| 9kZF>2|^O 1web>l#$"2r'߄F!gBBv?$y*O3;}Lx73#metadat/data/dat.pritz1997.rda0000644000176200001440000000057214167070054015553 0ustar liggesusers]O0ChFAA$Qcp}"5k'ɿ?@|ݺ]ٽ+oB-8X-)z7 %U\Pψes-6#!N):t]݊k$kZȀsT o!x:g>0.L%x(BO % C;8L kwKr8~$`g|U2lMC(N?hu<r(=ӯ9[4iF~5ԭR4~cgƦ`Qz)% *M3n9!VsIstY,lM z=Nνe;/gl~fmetadat/data/dat.bourassa1996.rda0000644000176200001440000000362114167070054016217 0ustar liggesusersoUl]Z< ҕ5J[ %Cݽά3՘+ F(1"!1#~71xNܙ۲N.mMM~=g=scϊ8c vк`Y M)n'-/[v5 F?BD@Qz`G;0 @Septf`Т00Up0_f` ( ,KVKd f*Kd ^"s/9,RX^z2 +V*RX_ ueYp_E. R̭0I n))9^_4c)kiq#]ۖ2>GڹedE6+}o}” lvZa>[ 5%L[k9wf|{-0x`,k5|դX{1}+"T1:syi-cKu}gf<94!)Gjy%9nSf)!'ʹ>1# ue^ߊ ћܴV; O̱=Ge l3 fSbRtz{~+:+tuw:5+!0q8 ^>N'ϯ)NL Q8s>8=qAb~ݐoƢVzM-;*LU۪e}Ug e88ٰT*7ѬћaxHמl%m@jD_]| F):B7ቂ30{ 3PU^5wy#y?뱐{cL=#{ ƕå3v}bY" ( <9TXrtj3C-gseUUnJ*yy൧Vk]*T!ەh*ҎB o6439q btׅ>6*Zʠ6<4+MlPDBmF1 Q,?lBm@ıX7E\^\`(p 1j(uB9ΜFze #9H4 gkf+6`Bҵ}@;׿[ k+Cy3]/si+&xF6~xo.sdSOgS3)փ#igho:΀4T3 lC?XV۹md y}z's1fU38&Ѿds>N'`_Ɯ?`=<Z@5sN>^g@wN-X7|=`~0sTNx !k 94g`γqyo41O4i3H9=B*XY31hV}nF́!EFB=x.Y;m EY,IS)&d>W/i%,iE1PQJl:U/k!Sc*w,q`6YpA۔xGcO!ϧ/:Ʃ̟H-Lt?L\k^j\G$/-Ʃ;II I2N<%-_=ƩyU\j{:I@+s<89<>'>i>>) R;$L}D  })'5X=~gz'5 Fwd8"zWQ;vο`|m~v~/[k_tkW;cŪøT'q:|uc'ພc~CeX=>C^{{|0oO;{9Mh}suS]WVn/*ַ}yPo+.sj/^Ct}No=^hjԾ֏W^C~..pz??Tξh6GbŬ i0<S`QrWA(}Qywc wSm!y腨nATCt@v` Na+g➠Q;{eo89 &v= yvc5_S!Dpy=' U: (1T_W`(. E-ծ.z!feWFmX,S]%?"~7}Rmetadat/data/dat.landenberger2005.rda0000644000176200001440000000521114167070054017003 0ustar liggesusersMoIgc8g:&xCb9&Ykgdaf2qOPm+Bi@ܐ@  ~@N\BⰇx>ǎWWU=t60.;6z`h\9w0@nchR^E;s+(;tͣss3oI JKĮ0g%sd$eV;"{yN2~Y2טw\jjQq*,ebhݳ,۽$nmN\׏*`Y.G^_ ED3Mj睢Y*V6]ע d\bdKLH8:eMLU&.7s[F抔WWJjE˥R9UUjۦ]Zf;y,\D5ٚ Ah-qĠX`!WɎ}w6Eo_WktCC'Z-S'W$xq9ytɳboZ5XBeMg;T3Y$fd@"#A*&5'zy&|shZej簕7sSj0W={.D,;9;8,gj7Ju 6UbY8S# 0årfnWtpFgStM˾ :X$4[6YmSnCaMd]H-|Hө\S>뙭[κEhB1Q ^_.6 +6BRם nVew۶@ -kЁlb b^?ștuDɮAv鐳<7dJMRa^h2٠FsDxsP•PwX t\3G暥3֍J7h-Ptx TjR9V*y>b4+߬]N48u;fo5ǦL,GdqaVsu U^4hAM[kƋa'_X.Q % cq `[0 6AnF,`6Q],SGE&u'Qg f|?vz? 1Q>>>o;(+ƛ'9 8}7̥}0ğI~o@P/Fзc}<&qYz~`+9kXX[<1,c`+ g| tc0NyvgPr2jc|c(?\.]!f/a} F|k '~EA79.b|ݿ+\A-~xߨms OQ* v2Üg}21 'b)`g{F;2A^%X^`LxWo@WӕЇ>{x9N<,xw1^35_ :k_UG^⺼2?+_A<yamOhr"(5Yēr'q+x_B6?KZ?K͟F޸ƟhĆ~#ʄ v$zrRv5fo<&w~G[RhqKoHߙ9K,v$&[g_>BzGh q4 O ɬ9݄E[˥^mf6xD[kw#t9m$Ad16L)kȽ+I"'yVob[xFmn.Ύb 7,A k5֞zc\-ﻪOYM;^^}qo EO%g}~h>/ÑĦ5jWU59}>u+ε>8)|Ic4'$q|Ae'eV_y-y[rV$Ii<˂LVriiNsǮAFUߴ]ʷի=μ̙ki%bJx%WP1- _Jdv\rl%FɩrOZaC2:pX.d$v; 6sY2Ke V,xYeilX>);i(Z,K+9 -RS"lZwGTlgZv`;Oϟ ՂImetadat/data/dat.bornmann2007.rda0000644000176200001440000000317214167070054016173 0ustar liggesusersZ]lE޳4qچPiM߶qZ&9|ݝI]@@%$"xE$$(BTB  x H /}B  ۳}v\%җ]w9:x|GVBH 6% & ` i ˢ{J7i` ȗ9 Ej۴$+hS԰_=S1 Ui&q޽3+a+n?fi͟Zij5-6:l(ԤwGtU6S5VL>beS YA1#4ms'ZBWvaVľ;P e(&ncBUiƻ~1{dmIѐNRULiӗ$`D4⎤4ez pҶ^WKO1&$`_ٕ4Me Ete~+f\gb1k}d 4Se)jXkgXǨ+Q1[*vծz/lS 7#o^e $0LZ2^OtQc >Yӛ9fNN9çw#ʤ"tϏ_o\n9t1N5rzз]ƵGKׯ<12=:ಱn7'o=4MViHN\ \8Y|XZx}*]%#Z`|4{Ugq(mDEUEcbQ9r_e=Ut&,Ѣd@DY,cTpyAᕇZX T_ayצ.VPiϙl$ .K$+5 JgtT$Q$$jRĚ.)yHLU}*Sj1e_WO"+̪{TTZtJUZ%2QkEߠ5ORSXOJV^Q>E Dx8/ܗag/VrY9n(v\lmty۸S404!I{`OgۉNpx t| OK$}_C~?GS0=O< Yqu9BA'ű@r95hN~:x||! 6*d#]8e5ZEn{-8wvo{{^d? <; BG{/=q5Xл 9x &KIj{k?rkv.}B^&t>.fc`OkW8^9_{aogH?b΢7Faˡ:97<!#DBfT|o!Wݏf!c4u"7P8l no `gWPQ8MLٗJNVZv~ʽd]2STsu3T4k)w5+2o}ks5kqN 9;tKTQ3r|Ttw#d݈;i`>Cu$~ÿi'metadat/data/dat.curtis1998.rda0000644000176200001440000000752514167070054015722 0ustar liggesusers\ xT~dHa+Öd!22 Ā !1 .Vm?\,J",.hVR z޻͖7a& }?;s=da,O(O8NiUjN,vg 8&MϞP[?.jRa4 0 p%`0&n-i -_| 8'T'? P T{~&`-jkl x.=F{qlR'$_ 5ا_55YoGOv'/_3qs^GƠKu pqqA V@+E ۃpq"J8!q\\۩$hy@>v[p|Jy8tVGYg0ޙO#cfy VV̛#NmnS4m2HLfQ6k c_AW$ B(iSZ' caE$6YۻfC Jݥ /XV?B-(H Ga;r?s/$Gn<[̓ !B)5R[]%}[0頢p9x%A' cowYo N On ^}ɻe=;V4;/:xwy-.v; <̂lCQ`(1[}HObz~X;ty nu_|2_wYlVse+rbr/1$ۡNʉI"Jx?ZEu{/vw4K3`ɇy 8Z`*80xTp @92& nGVXV:w߼pk g,0cli/t y<^8(4yrEhQRkOZ3-Dwы6ickcBh\.] X5ig^|͛š^{ 3 4 |Ⱦ#Eftg{>o\N6DP̯ BBzH[E8ŏ_.:7Er]*Jx. >S]hu$O~'_Ql#}dRemĊZE>2;*^ь$~:JE??~.?t*@X(wqAК\!HV@ވ> 0bqjB` BleQH?p[Je ՚V#BP i5TCB2J* ؘۄϟ)kt_5q0yXE"CxK"fW`~1aC"B4l65Pz,7;oϐW S`+dPJ"CR`/^K"p?K]8 rvN^}cx7g#J6Z[~߶"#AXpx*D#]"쉱 !\wYQsVJ | 6x+1DtA4^SgkΆHؐ9*Bߖi-jWbwjT٭a0%Z[({u2znÏClH}%\BFeMx+2ot3Ω}BooI}~1_?JU P#27~conkZN?"~{^z&lE4c)7n^~F宧vQB[>+ΞT04i9TBs1CPhfW/q'ɞ7~b%w qkhj{=)>?I2oU10P ~M|c҆h%k P4_&&.L~c꙾hGMۏ!c5b6Щ%lz|߱l{LʴiN{Xdtܯ%3n%{DK Ai ԉUtΣ$24ñŤ %ǹzf]9THБhg#{}DE'g%abluYn/'BNKch$u+eńr }?%}XR>r??3e_|݁iv|93Wz?3fm1xǦ6=v\gdQh fGt3} <q߭Hey=ŲYHx}US$R|d/#-9¬Ff_GkѶA;q=_eHUcpx]qzX~O}O~Uu'03nd}t8dܐ]||qL^iFrCs'9.ʯ(iճo _ev F3q=^yt^?RiܗŇvb9@N_>~ťdcIr)}yQYWW#|#NbgH^s;]AC{+.o /y˫{n;p](6GiϹi&#bPzPLD~}GьRFss$]GG g|g{f/`?@N咹tMރN`'Bžl-bϑոoZQ]eFZ.d{r?&cXo>wAbT$HXHcVyYxB@ĀęK1eɇ7 Z'wKܹ.As!Jmetadat/data/dat.egger2001.rda0000644000176200001440000000073414167070054015445 0ustar liggesusersujAu؏RzUEoc r,RZwKg }>FH? jč39s3{*K,e,e^`,gȰ+b}q]áZm kp:xzȘuD) (Sc̋;qDVp0 | n49 /"O': LҮZ |*BţC#c\ѢUzr+o\+ ~M\GFFcFf>kpP7 ^g ^98D7cѹCu͓ȒBgi$_*oS:~4H{~3#/i;P$ G8K7|ȃ-M׺Z?ZړBB"c 栋/)ްܙ]zCST>i~_R?metadat/data/dat.mccurdy2020.rda0000644000176200001440000005602214167070054016024 0ustar liggesusers\TK;[T,D (%b|b?]]`b ߂Yŷ͝{N9s̲bծW 5b*jK w7TTUyb**ya V1A m^Ȼ]Gix^XJƔ2LjP_Di%" Ā@!crIB5!/!pPK#8*c 8Nᤌ9%"8W;yT.좝Rj;!-_ȮOBv0FŤ*@{)](ZHKҺ`Tm/UPWRkt_ZhWTZ#F񭎢](|M>B\??+|(U|u}9ϧ,iR7E¬0oVE_.$j}%=JcYm*PZmTl_ȫᮄ0R49C,xuQ\3.H^<{hWE}l! OZ/,'C;Z6Wu3¬0~$EgjmE RMҟe J_ȫGB^HJAEaZخ? /QsaGѼaOa. A e8ަ":| n/uׁ"\mFFmeq)b_w* Eߐ.TE"Oo0¬Oa?R̊ ն.B]jf# i IJMZsI(~$H”];iĵ/_(?_Z(=I嗿q5Dla.d&qʗvH$ˆirX/+ꛠ~kغfCQ J/('wQm^T>k Y߅DY셸[UqmAVsIǫ {+2E)K~ 7IƎ0cKX}+>O\}}~>Kj sNT WQˣHwB!$ D`~@-4,,} G"($ X<`@$ F臿"]ÐDd82B"!wMF Sitd2A"BdY,E!ˑJdYE! FdB?يlC#;@ndۇG Car9GN",rIF#H \B.#W5:@n".rIG2H&e# gOs2yE!G|E!ߑ?))"j:h"jHqR)A! HERTE!ՑHMR2C# H#0~14A"͐Dd82BF#c_8od<2LB&#S4d:2Bf#sY,B#K2d9YBV#k:9iBZ#zH-G#H'3bG6 Mfd نlGv ;]nd'jH) i d r9A"ǐ $r 9A"dHwD^?"AHOT#-hF6H|ˇ~>#H'3btA H7BCqBqCB;@z"~H/ @ $ ABH鋄#H$b!GX>#<GT>/1h"qG#H2 A"C!pd2F cqxd2LF Sitd2F sy|dY,F KerdYF kuzdلlF [m*QNdكE}~B?*z9A"ǐ $r 9A"d"Q/W:P+"j:h"Z6R)DJ!eH9cp>c?U+H &R ƭE!HC4IoO2 S2~{|9x/ãjOs}lKOan-1;k,>8^69Xn4( b>=ÐgSɽ.A>6b!GBƸ'W m$=^1[ 'BFj ,r[e,\8W \Ot-.QOmWxC:yzõFy (Fw Ukȩ躜nv^~DW 3ss̓so/򒕀Ǔ};:^49oU̽,~<$u~ @e{gyRic{xV=|Svc䊳A*\O,F9>љ' &ug؏a?\udp8Ox O ^΅Yx䟃B07w^?U&r|G=!9er=yV)W#Cc6׃cԛO1SH?Dx8OzA7:F6 _ZxҌs;j \S^pM= pc{.aюd~ 'q% OP2W W9BV_+h2>q|_Mrq ޿KEKvM?#4I_h|>XOTtS*7jCzϩ<יhn7O<͝\?s/C^䙋u' ۹MF5h]>FMvGmԃ{k o>4/ >-w+gΎ<@r$^{WBnczz@zDvT:֓0>/4Bq(V4~4^\P)$y\C~!#dHihϨ>}{} = !{Fz]Q> I?ޒi4r!{jǐ;~$?7+O In$V4^?|2&dsrP.{$' /ɝKr D9./l!';דWei_lU `SM!?9do.Sy3\z}JiK^pq/d)_ZѼE-w`~4pާiSƮ7H.jI3|ASUK ~*cG>Iދ~ѸqFh`?>~4ŐqGɎ}yId71MJzLqJ;OQn3VʇⷙqNdKvgPݙ(IzBE琉[)Lj(ܥs%o~|c7[Q!'6,YP{(6Rp10]2McL:XZ\Ϳ8gQ?8`i/Rzndw/E- \><3RsNv[D{APd/N?N0]h]O6ʛ񲱼J 55Ɵ;wf~#<ݧ7_&u˙ ?5Kf ?I/$=t!G`$ oʗ Tɗ34}7diиf9a_Bv݌_֛3䟑Q=NR;HO1zJ~$/?g?8d9îh~Eq~KzNKvֿ8}tn甞'8&į~zDSn'ySH&>g~` c=Io}nN3և9qSa=֟%9SɗP|'LSx(08i {+ RDZ/wGBA̾:;՟/ݧkp>ɓ#>ܺ cO972/>v]N{ƞ0dgIQֽER'y]b~0bnߧt}#}t>{v̝737ɓAH~bST>k9H˜Q9g$οAY,υ>\7t>˭oo_nFq^scKI1vۿg[|K4 돒~ 1$H%{͟=Af~g[ZOR?Sޱ`F|IreEvA_g}$߱2r3y﴿e#;[ovCd9Ρ;fZ0캈D_o74~ gwi+q}iC>ovJD'=iF8'g/isڷv>)|mq^ZC,J~֧ԟԏEq'M~ɛ#{Eҹq^*OM.R}~T.oϙ;ΨOAϩ90:43[񔅟?U9GcܷD<l/@ɉ\Γi߄ߤ$Osd?Nb9On=&yޏr9{p~^!}%{BKԏ?WIh7GJO8NR~4ߓH$WT.ygdi@2A;u9 <_}]kWi a:_@9R< 'e=eU˄[dϕss #Q|ҦZ@aڻn+8OnB{}OU&Nn M'w2}!{AMBkyh?YѸqL>/i=ry>3Hqg|o`} i H^_vx<Gr>σOQOqlg|ڙXN6~~' ?g9o`1ڱl_/4rȏjTTVDl|LKw[<4"mҿTUǏ#kޫ;ހo](r`ބuOW> :y4.]V> tPepjf1t˅`?Eg>Lpj^M&CKtuMui@@vſ'uOP5lSst'+<2xv&)X ~ 3zӃO?\j#Xw u pr}|KGKuv~`<ǒKزbz므? Ny 1ر t;~A ̊C9N`~riP}x\nwC*$"khe{7ρ`5*hn<@ih:*MF{ӏ'cŲkM  ]n:5I<<l7|hmw,duIPCmtƴ呞ͨ75l9fnOe{q&2>Qi~c 4T[}#UjYϷ"W0dl-yTsrUcM݃KO+Yި}?|:R˴%>uDR5j=vnX~^0,6ۧD⹸MͫGͫ1B~nJ-+>:1m\}yb6XF?,}<.eXۨ_`ݪ3`0{|0!pfӽTm~wuuZp2߽x_/V,fWHqlgsn{C\`۞ cwv+;ˉpqNl *gy 8Tl6cSI37|y<~.5+aywM{k.wxxvxf!p޾gґ tZm"KNb}U>هϤ >|cY ^}&n:\4Kū{N <=zਯ3؝oFC1}A9e.s=3ШDk{чg @S;gzΨ ǡ/T6+ 3> Jvr]&]o\?~m,jm3YgmE`XcV^>Oۍk*< )':+e:؂߀wOZ][Fk]VZ4{<퓻 nuLW+\.H 7~(Ң>t.ɻ[Yp(ާrW]0[w`{pb7$2gMHAu*CïVz -6*}]/OuƓQ.AoX@y*_-]|ז8uT'8ُ;6(?gMT6$z8nzbظ~8<LVmt`:姀K) ǛϮvՇQ.x'$~8H0iXCpkpl1:fZ$grvrʀǝe~= z>.z7n۴h p_{^ުN| >qRR0=ޣzlZluB>ʡ8 ͵6sA[ǵj:CՈ; jƭW/r(tz_wㄇU&U^K9^mk\z,z~얫M\_|}5ܻ6#y=L?M+h^}5,\R}?XXwK:ϏyCNwpOSlI7p˚b7pS%Oi>wK͉{NCWWS?W_lyaX*g.ۯ{_FqO\-vyoߺ,NOB=O;+je*X+ٚ[7ǴZ1ceTyevjޱ_J,Z_G}nͳnz,zI ]";?WMœ.u6ŝ.4rgk`^AOWΚ绶׵~Եy;Umz[pwI3c+8m^q0Bַ Lշ78VoRQu\v`Kxp-٧Ve~6u?Fu.W~Nv낇_돖q̤n\3=aū=ReSg.~yuuSs2H9 #-,y.Y:wgPyW"|tw9|/I= znT2Nvmf.>cl/)6muGhX̤n/n|g8}{+ګ$s'ۘغ<\UgSSnq8nlpghV,Lj'm]}6 Lno;%t8>b2qV?Ѧм[/f@VlV3ZMlFT7,t0d:h΂5-uuʝO;_]?28emm2֛r`spɣ~I8H7q70m\|F6L[5kByp;|`~xޠ3YYusYށ31(u_/ 0GCzq#Mif+uM6ۚz +C~Zr{F}qfˎYCժQ{~-蟘^9?S_645]~pzSZ7g w!8ucl]m=VȏzTzGt?[.l-? 5gʓǃ7449YpqJOqc9 mzA\S es3a/5[-{ ~ &c͍gj#U%nku{Dw|j&XkOpWzM>[b `s1& 6ZVōFo(}18ux#.8_&lԼv_\l4 h~]0cnp]q5^xT\pp5~;x6af\:s;][֞Xdv8X9F_S,\5L4XcjlM^v<7| \6O]>f׷ڹ*~0vKVR4 }ԫ Ԭd =`9F3yG~; ~1 ;q}cXYs(P;x#okUCۮ붖Y _\ZGm<^ur{8վLAQoOT=_פ^x. ^v 7 V?s W  !cLB#+jC5ϛv\Pw42n)Hp~`[9L#GCfzmqNuR||cuGKg~χFWԼus=}vI!ށkZ+۟V۪ʿ{w'sl6+b{m-ť3^goˬ]uNCsĘCv${LǺ^nY6,B&8;puaԻx&"^o?Aaqʮ_}:aL&gƥ;جrT(Kuh(jb`?v: oмWݷFB&+/m˂vM<9--nN ޔۑkOT;nOX>1apo;=2:Xdw45]}AFEpNJ%'UxlIh487Z9q=8rNlX#72^K\b06tOvM:ռ7o:Ry޽gc-\dUk5CzGO_%@ˡo<3믭:z*6Ff/xf^׊7_~ p)idpirƔtb#-o=kJsNvr 0ye{`p_V#V6:y7pjwNw~׹Ow뉎fGSoY-N7iݮ4;8h< 8hhx[-80L/rjRŐD0[q`>-3Nj`%#mTk|ByVx-޸-GCǎsXD}p0=InvݼuFzMJ <߁csO`tv/с5ʀ 6_q3(FĤk!==%\+h=fޫjej&C{bp8MSzWhan0=i Y9Q9+ 1) :yǃz *9j-v{Idhf_hWnvz8P544RuZǺOi=}Q?.xnO:jRZ|VCveQmUq˴t̅n1wY! I\ÖG_Sꙁǎ~K?5/ї;V%nE;qk@˪_ Ig4r^ny hnuW݆ ?3}l|ց{Nqݛ~X..V|d׾s2{7dO\Hrm9 މm7{=scgKeѨY{eLBߎ=>K=ݜ{E_w`^Ѣ%iutgpr#{]KksϽuT|mf j`If׀ Юռ[d~ ,odAw }yР 1k.g/a>WrZ\.>şwbK{nd=UؗR#Y~ uV:-1dvy=UcCBC56q+ڙN5P[ŅhwPܺ 湚};ρfڙRGR5Gف&C/D߄m[윺z'BOq}olFݞ(|=`^5}`scmŶƯi[וmji1D-k}[Zeż&$=yv3텺Uǩu]쪨zjˆF`l^bE-}cZwA.{J֍N&|c\\~Y fwnpN{}z}=E^pdΊmv(Wؙ/o|N\po \~f}Jk5osUuW*^]jGvUMvu10\Z~`C%`zk]|u.8d C_%(f: ̏ޛ\;v8\w2T/vzuaԋer/۞|XίBȹ:_Ԃ.THl RF\Fvr |ro]Xm<8ʲo&]<&<T;5b}מ\dЪ`1]Na[<|ǿ[[^pN l=07s S<0}p<06"<?7WE0pXpV`pݥѣm3ɼyc!u5`W욷Tu?\h#tsdpr*`ekoϕ`[qd՘?`|X#:X~`;_g|EWIxq]ya%ø vTJlKi3Ǝ7 lM_ʳX3_tlΏ]8RZV/mj/!¦̾52E^[9iji>1=l R}Yq=ZpHm#n;YZF#(O)%ʷNjq=O5xq'0|ǣN ?Db;(e!'sِ7Q>TK( gpbl1ڡc/yeo/扣Rc-c}?L+sD\ZDzq4e}L?$<hupqm!(%"@{O4:wzɅ.5{Z'D_41.hD8?*t8w6o7ީ+){2/J 3t)/>7.ǝLm³[_^ w<k4S92x^-U̮Yǀxg[1^еIHNn`vO-VflD԰YS|w- .;,kdԨ+\[tdu$p1#(90J9f<wX#=;x>M:w32ySCYs N =lUӧ^ku оx}uÁ%Gm>]MYO X_洺u캻;~ &5k  6!^8yF?q8 3ʱ̆>xNOno-uU7 Jk-> vLQJV~{v~n v6___I /o L}[7&؟hp1o~vSwconUb7ȞQ7GtɚGOY:O]!-iJ:tK9Aξq@jIzATC85xj+ᭃR:.`<,&rw|I{<},9sϷz0eǀst Tg׬3ʤ`nmm|]+/kx;{{j^We_wmlA#h0[j><~+^sRs>]v._/ ʷXz8vpQ30ovU樭ǰ1vflIv />fo %;MPoC_!hgc *%=DMqzN Sv<=oGkE"J;mך OmIJ- ^zi nk9³ϥzZ޶2ϩ{i I֧;oió&WMDFgZj0`ɆFs ef\{ٵvc34:S3*򱋺_^rScVO[Uϩ~IKcd|AӟYeo؄9Sf/_7sj腚W4g 4j4X_c~U}RAW3: }%痷Ŏí ,3nrӋ+o?8|z0luچ{ ?m&IXB,#s0ZTɍ`gtZV$`pmgєN&>BKϿPs:f-࿷ڳk [yĺo[g{ͅfF 1UG^~sܧNW>X7bGZ+F^=!X^f%dJVNn,^,l>W- 32ix`4T~ߧxUI4Sv]`S;F=Om wWvs 5;C*N]/%m-ZѝN_I+\ܣʭQz8ClRʂ硃*N?JPWn`7p,r?U`Ãq`?N\~{yӔz'GWݜ './Noݻ>E}O0}NґNJ^ӉaKIqJ CsfT +i_ }>: ӶUS]@ߧ|0ly GVP#J]">ׁ}`PK ^b30cu6d_iXȴe8׎]tSN˻ep+ڶiS 0S=2-pb\-,~OGvw=T7_Sw-b=е>]CbKSFH__.:$eD0HD1RV X 7GJo~?[oAʺJXɃF]!ַ1su0]#הG}$_=(ǒST@}꧊(k'P4o|zHVN-T~"~Ϳ~@~#@5BTӯ*?v|mKB{#D꧆ =Ah`Wdg`'~QP1(,ȇկ>C9ARP}Yʛ_T: 4'otub`)֯e/9?sV=Կ]9)!o6+ 7A?NzSukXET.( ;~Q5Η"s͖¶ C)w[=v?ґ= lOukߨ/ɩaԏ^ee*A6fQm,356]\g oɇl:BP+A6"鞛V/CHT r ]KWe`ڬDU "h/^?E醨Et#mv}o 炐t%h%Il=VT[ZoQǑT~o!h!mH^|v~jA dv .ram7Ǎ])W4vs~=)ʇ}n$"^u=vGTs|v6 /hfi?1QǢ` j\"[ Dݛf'{a蹨*oA 1zDC# 9Z`֞?&T 8^W @uFQwi'q";]O`W'O R)طf/s~ly{O+삤Xڰ:҈윴zIɟVCLX*!m :( Τt.W3V,4 GXfocScToیAc}4q%?+_!lQdE"-[,* [Fg;*?ã \W4Q*C茰+Ce PQƻWP*Ce 2TPܴ ϊp-MTP*Z(k^!?C3;*?OTzL^kG3ojҋ\v!qQ1tȋ(wH"{ҎRJ(Q" * n)z} *yM(Ȼ>J _#\đʚoTd;_&He)[N)**uBYDž,=a!țj$@n ._42(Hʿ£ R?iR`*_%JeiQ[&EEraEWyqQ'B}q]zRr/l=ջ?u+/EǧCQR8\T[mE{D9B,+(jJK–W䍴&v(R!怰a ) QDV֢ʾv +^YKZrWXI{._޶[V* YWz;"ߡrS"ɻ>J I緢fw-/iZ[nguR[.!vJ.O(z"C <*҈LC,14AH[ (Z=(QDɟۧ򮏒?~~+BK% J}SH*Q"/XUX]oYE aG\=׸u8uo,=1 HȨȖohEG*ё rDE_ACTu"/LP;eE9?SLƒcOXy%m㗿DU$2i雨K_`Oʏ}^@zav-_q$+/~U`:~P:?cAqQ# kD*|*i=/qGRK_$jWP&W?4~g_qlɻ(,=JSPZqǪ.DkE_Թ^ZEmIDKSXHj IǗH+6W' JFFŅE7ҕ ǻNBb<4JW} 򮇤2w}D.HQ 5/?aW44y׃< AV?J;HjDž’%6AqQ7?~v=^*ZX9h @Pz9eb s-􄞋D'/9+?/q_O\O\!oOT얒_S=gMPzAq~z"uRu'%W/ jȯGaO}I/7 'Ie:+@(HKII;./(Ⱦ!|tFھBU!㢆g6 [oi2E ψZ!<'lBEbBBa )-m OFZP"yڼCAHK{Pͯ|UՇBqǫ|qCynXgaCc?kR @AAat8;,hGF’[QQ)NEFE4!FQgiWƾO/E)I_򶓲SE{s"CTō+o!o;'W/y ¤$gWGyC*%7a!*GQUQE6IKn*sdJ}]Xd//޷QtBFi~stHx"al՟}. j3[qQU-ZRH&e1k!#o@~^(~Y!Hjr?TD=A$~6?6o&ioT~ioPX[ v~q__XYQra#Q5|#I#~ҋڎߤ|!v)0]8+'?H/+ D Uϓ} >v="kBEFOH*1t-!-wil /QB&H^gX`roIIOE>AV&hnW4y(J{ ݯ-Y铨HMz%G ⻲c[F ہQqzE]f@LX/:.!:('JDDҢ Ef4 -3Q*qժJ.W^z!yɻ]"yOٸO+_Yu~ՏIۋv?KWJaS!SNZXEaǭe y˱a턴""d y(8?hoҚM?miz&(W~E?RSkQ }GIu\TujJRX_}ϤEX_@\=~fɺ~+ tV&/o~Rsu1_-U  It. ÛcsF/0^8'}qy@p|iEE't8%%J(QD>s]*DIGD?Q_E9*Q?@?ڤ?,(8!"TS"/" T\ڧ J$sY鎢WR]w(QDѐ]rU_D9#EG>iECQFSںTzRI^z((DlpxHh@H#.,BQR1HK G^)o+*_󕷞 #q"n-+=v?Zo~qEEV㫨QXOA|uFuVߦ" O"!~nIQ~TnSQT %jdHGDJ%j.4X9 ;MI%J6=Rq%J#rNҮ_&~S(%5:/l%/' ⹄c ^( hj|+J~ON֍j?+Qw{"`QϞ.Y8U]EMo!)QGm"׭0wmvyD=yC\ݫ:j*=K{<*}O񰈈0`:+GX*̹j'IąS1%FDŽEGRYs0&"¢"FHLdX_\B4_::&8W7ظN%D`I co[^q .kY~1*EDTPpxl_j\JC?4/4&ec1 ^ LЊtUrK=R386?<$*$fPXhX/W2VE`XE*N;O?ƒ,ztpJHzߟ;K 'F/+`,h'?~3)IS|U(metadat/data/dat.kalaian1996.rda0000644000176200001440000000334114167070054015777 0ustar liggesusersݙ PG (Zcd..D$KLe-$*DuhRQJhJR)4g^0#h*Swޞ%%)w7q.kMmxCsA yLmQ3xoѱ`Jk07zi(X0ahu浠hи~?h @ `  tB0 x݀@ zh7N?A` x @<$^H*o)]f,5;8"3Q˩r&i9h9 ZΡZdÛ8CѮk$=5C*dhbI6:wLV`u tNv'ih dm0mpmmHm(mhCdǫv7$ڭ3(#iӌf=$>ǘaysl3aQ'fm&i[oZiJX $=$V3d#P9BqƢ^0CE\O 81?G @XpUĻNl'o8'Xp-@ $ c@\'۳6kվ "=a9_mt-d2dn+ЗΈW2rozN=Lޖ %ˈԃI4P`sXBixLONj=A\Pև(|A"'}uЎqD㉟ẎPu^sP9OV'xuؿNc9]2 r> ;,"{ ZH6/-zF %]֬]AF/=:,BgS4?e~1$?hLΔS$䛮u %wfNMo9ΌmWI*ng_I"i7Ed{+.уݔJ4)!s#/Zg%)˰~|4ƕ8mj—qD KKϬ!x/Yy-{*)LK[(VF6MNA6~{C>Xh.RgIɡ M[ۗMIwtYK{~2KOJ Et57O]~kt5\5yc:̞i_?N=7]>_Q uQ!X䠘E SPPQ d=1E:@T[Q*}Q1* xBUUk+U?I=?_5L̓LzWwdnCih.x>\nh4^`퍷2p6opi|g ٜ|/6CΘ6{z{UΫ9mTYbMd_ty̡QFgXP.5=3`V:e R(V.\uϽ{4DČ鼍fлK_metadat/data/dat.graves2010.rda0000644000176200001440000000073114167070054015640 0ustar liggesusersmOaǟ{& 5`($4WF` bڻ-)a N08vp/Ѕ w-wO_ۻ&k "PTb+o F(ű>ܔWV-oBOHPQ]K%==f8u9nI;NsԔ>^h%+Ҷef|9SQya![:]WX[=G{d;e[fIhwɂ k^/K0x `u0fA/Hk N/߉6wzI 1 c +?x+0wA*I6\~26Lы0u>D;F&6f˒hWl|;͏lˉݚfQz\e_Lmhw'<:)CSh\cmmetadat/data/dat.konstantopoulos2011.rda0000644000176200001440000000161314167070054017634 0ustar liggesuserskHQهԞfWͬ{!iw̩uw7$zY~()pŠ "Qufiu9s=w0 r\.,5,6xlKp%rN>AqdE(P'degCho]0$1aaj'ҿ<{_MaO Q^6.->;- ݁@O͔;8Z܍Uާ\^+ѽ|ikBEB+}f ̣}yb Obq|K22\'i[1=Jͻ q.rf) Q`Jzbaeΰ˒H\er8c,¢0İbw`,AEY wzP}} Ԩs 4v׮}8ג9-W \I-d0/Bi5X]ͧKtdռPX90ypΤWΌm4Mr[2x\q>e.H<% (#[])M#m R Ыq_pߎP_.ٶ;Uݔ#gq{56b+Ź?'Gs= CxK;HMeW3+9.j[kbk͚?%>#>' %|S|[k%LD(#f "YFhHqatl`+qq1q q)q^Dq%q5ĵeJ1K6QR&ϊi}YP<t?jHG9T;FP(=On-k8@t#'FٲҦ;h0:b!;t WGYgmy=bEpwæ~&eY^syݫRD?]4n=@yQgcNuѡ v8<apL8Pi56x ~qw[^:zz;s Vjw 4O]8= ^kItFNW)b#lk*˿W ~<< :]}s61msQ|3,i E7 [/t!7G՗{s->u{܇Q̲Ċ<~Q!П٭η15.ǐ?@_7Ga :/xQؔ&ON)HE퇍Q;Ea9^30z;fem/'9AT4oQrcYZ:;/;ME{~metadat/data/dat.hart1999.rda0000644000176200001440000000066314167070054015344 0ustar liggesusersS=KP}MOZսM[lAF-ixn7G_888(XO{}! 88{ݛz>YOBD )$AH"53S"DU BD% pI]m27W.Q?4BwO猨aUc+Z1LFm ZY^Βa9p \p}[y=qcCk[8?c=gW ;#gMn3Y?Oo'(bN6/ѵ]mXP6YX%3t)hYȢ9ѵ9ײ--Il شcؔHEÉݦTX8ϵDhЕa_2t!^CfqY{|k,pM{baL?ý{> p Smetadat/data/dat.besson2016.rda0000644000176200001440000006170314167070054015656 0ustar liggesusers tu(:wIIZHbzEI jYLhafz=Cډc'K◼$I?߱8~~^rşD'QIşD'Q2şL'S2şL'S2_/EKQ(R)_/EKS)i ex^){SO+WT]o.=Qexq!".F㩈x:xx}m ';1#R xj#\bx^'ۄ qdɈ8p >#4q!".e>xw)g!pWݒ <CB_>>x:"i .dx\q)".77^wMnBtֵl`DMd\DQ"/!RsDsDڗȴHm%b B%~#p脘 G zu::Ru<]#pم$"rD<_: '#..L4\'c1.r xy|鈴 <η -bk^.Ȯ>ʮveW=kdWk\R:SBp1fx1'C.ҟό݌LxxKQF t1>&pR8BGp[sr[-yyx@xɗ}TDڗpGpGpG} } ɗ}/E.nE7IJu-{E0VG$|8B%D_B!wHupSyU={d9B!)_=r{Rn܂OI#pD*GdBdSjS̪sjSCq~8+'XeaY:f^+ wE//h)ŢjpǓL&95ܔ>cV VV|i^ҋJ%H:0t85Iu!ucf^WČ;xnXAnW tGrnWnnXR{oi8[WL<0?Z\Yt/,)j)`hs5&dd̒WAy(+j]H+¤jf(' ixZƔC)<m_PO^.jTCqfVcO+kaZa,3,+蔲83WkEeA+*ƂsI1|`i4]R*yRYj9s.JKN+ΨVK|J/=M^\Pm%WwJf,qu&R5 cܸ>3G=vZ,Z3|XTGVJyNX=YV`XV`Vk5"H]7(D Js?X zY)'/M0{QddwΤbM`i([Ӓ%Euow]y #(m4U+,.xCJM]1d[Gg)1jbw{ , ²,Ruc+{ϛ5umi8JI˝IyY.v!eZ5M*ŒkcÂ_g>yMUι ٗ}ЯyV&l/b"%}ᖻ'N+2ؼ~<2ZcxߴV!|S)Z1nRVU &gJu#>sp2c j2 g8kU\<:p3 gxp2 =G<}Xw'ό7>U`ԊvNW eWv[>/bVj96E̝ͪjX"i{fфR1ojųIxZ)ΜG OW/^X?6~2~RqT֦+cTfl(FQTl#3&_cR)&(qyj/\iIt]3=%yn6׋7KJdvvсAM]8I]㦊WUHFD2uCS] #iչ)FDȘ1lIȘ}1˺nL֣FƐdJLDI`cHXݚ aH[ۄĭg#1畊cC.a&! -IUtYbv cNi>tQw8upX1"ބ7M/iݐrd/8X$F:Rq_ h˓pሶ> _Bh3Z!֊Ƕveozus :2ɔrЅݘZ8z>:% N`I];.jʢY4mn=k*W>MبʂJGYYrp v32NztE& LgIf,:1dufTS,zG3%e,EN]NǜF2Exxl.hRC~W^iM)EdhWеea c `WK06;w`žL`f⥈qt+]hJ_|+1_1[P2 e(CЎg(CPګ;'dhcHvF=YwCW5eգrlN0ju {lVdZ9>!O=js jzOJir@Z* -idP"(%ARP JL%I$!>HB| A$I$!!HBB A$$IH%tPT 9J1Kcj厧ZY, e&w9?4<Roz1&kVVrEyz;N; ZY|Kk-KC^S*F~>g̍'yQ>bS7V Ŭ>ŢȱDxy(+jb" yڝI0TP𚰌8:͕tEkVesӪqM˫9~}efYfe2p)#R]I&u7JzT=}a 57ZJV^0YnfqN1~wZMkZ=UbQ1L_P 3gVbܝEkՄ!DZ ,Ё NZs4[]k.LtcJi su,32,32MdՀR_3uQ@>tQ&ӊQvy)MC!N9OM=(&eCSUzVUjywUM;8zRJf(;GU2%g!67zPCՎFՒR<3 J;m[R]Ӈtc~SjQ1_7iae֎Y%' 'WH|95yONkk:|Z1~kyZpS3ĸs w9Ɗ{L(Ne i߄VryZZ;uB)%I)-?_6ix6Mh߿s*z38` 7k꼟u.u谘TkS9ΫEv`l^1aҮBsA5}[ӹISayXOdtv,q<'gT:.jŢăVbFter2ќmOg'aڛv(ry#g5s>kfx?}z|%=?f-PC7YKbIO:zQ_n|L^fxqp83GY^eyWq=O5Փy8f*+Š"H%x|/}Ke,6zvAQް,/,/:ۀ\Gj61/S$7|LNEI GM=kt1MWɩ-t4yT<)54ѩ{#c֏'Y:KCOS/w'G^oW|ܰt{|^ޮeX6iJzz~\-UI\C>>0x\z<9./w'~Z&O)X<, KWۙډEyάU*܄6L!WR-ڌYժWR1V#_H8YALۣav0l6Fx\gn3⯑1m+"\Q%+Qps0 kq#ke98 _u'a8{$l׈gߟF~fنnba|QmѼhR8W_T~8s-hHa~*Voqn$a3[k[ۭ ߰[vYF%`D? #pS-75g}o O7 kHqO$|X_X_T2f+AͲ,[C.*A[i7xu||UtN5JU;J\enwY\wZd}8q+qk5[t[vTIkŎZz1!7cqî7>fٺ)v^7aw-ڴ6K|W[ o7`v6oXWQ}>Cq)mv: _H01OBDBxG][~ $FV$o}2°{P> `qQPa0d`M]'NgSP{~p* qy`"@w"XB:q ad ;b!n}WؐYmvSm/=dmqB_HD-etlZvlYk;(@v^k7M登^ٶN*d0aڻe0k2!Zniv%wfhgѵeamz=Bq&=$hVNnee(q0+߶|ax\hnړ%0:hj幢ʨ> s^%Zm[[_Q4x7 ]v߯,loXz;o۶Dh[,3qd!lhN'-.>7{'rx^DH!CTA8$U7ǺQhBQC~ 24B|[a_%^ゾNՆ:|eI˥Q%2 e(Cۂv[lQ64 e(CG*- %Aԝw[:1W\~Jڷl 1a cX?cq0ayŰut sb-wgb+#2$"REx@UmGMoVԥFb$vdܮRХ,8[IxQԧZY1-n3"1z2$xRG2qoSh?ĈQשov{~LގRN+r9dW|d:. _!YDgt*6WHK%Ljg]A)E]L[ޜe&3ĬW^O~ O~;΍)A/L%Ur_@Ǭw7 o~7~_]e?~ Yxa Ow FxR ȧw 0l"1/H#o0;r~ ~넳~0~2ȏ^};Wnqp<T>tCs `h@v6B8!n77'@~ /p=mlo9ȏfבB2upM?v0,z2W>欇#_?k3osŽW¸?>/6"omF6H_Gvv@5tno!ybs$4Q> /s+ o _~?ʇcH~&g{fh04@?3,7@zjC,W6mH۝{G4_Emdwi/><E1| OCqdwZAqW۾h?( ߮sEy~8aX\6;/bxu`yan@C^{Maذ|;0ma84z|4Z~Z_B0|9 o '0zއ˷ƒH¹H?X^iQ9Hƒ T'y/|·F}t%ax*t SMus<v~_4| ??aV[|*6M^_:?W+|ؗ`x:w!{O ` ^?.0 a8| ѩ ֆ0Ym{` 󜆃`h_S/+aOa-$q9G  ~1>lw̢qp<;yMqmCOE `c{ګ߁SEe|Jhpo'!~fNA9 ~гQh7*=Ѝ}l? c{:|֟ς^ 7/s׈??&=*|/p?-_PC>uli6G ۣfxnwHPg#!l=LfЁ+D8|v6+F ;xȔ_t@9b{s5kޏBd;і0eV3=6Bkn}B#{ +]_=ri*A׈W!\6i/riߢ{l ^GbZ媡Y Ka)-lb$#HF2d$#E7:=/#HFƇdd$#W;V'U m=>6bc(CPX+[IP8P2tY}ϩڜjZ榞R@ HKe mGZr8(1% AbP(%AA$I$!>HB| A$IH$!!HBB A$$` Ryznܬ}pK䌐J箨 Efgw\ҋJ9G>aɚ\Q-3zഡ zP*U_]lY^'| qM\ͧC1zOig(8vrPb*(1^u;5 b`RYjLS:e\PMuъWU܃6f4Wk+vfPsedIbYnn{9Řψ%r=_P 3gV͎bv7W:{iCU Zy鷥f ]+t)=Y֮Y&N^~-,/,/q}$b8nzi(&>祣ÍusjldnF10.?}aQ)ﮪb;}#8}JM׷HߺƢgcfDŽ^.og3R1'R]ktc~|L1b17iSܘn%7}-il-@Y \g-eE|rZ+^<22n7U륒eqŒ_p1V׬^G 195H5v$+J1/:#Q&]+ ;RJrSZ~dm%qlN[Egn}=Utg,q%8oy?֝}bnR)efjQ/+-WeSQg)WĿ+Q_!w#пv_$pC[e|+_rW?Z~ѕ+]%^ջF~૕ys 45"6`}d ^cc(CP e(CRxb(CRQfq,Ν][ oëY a/J^',|t© &BD8̭WHx) 74Q(oJ{+>x}q^§$^i ~$> L%HӉ`觟 {z@{`#i?]4Ö~! ɍ^wh$ZG,@z?!I ʦK\8s~"yfr /GD+rؕ O]AaF2Kdu |/é ]I;7Gnь^tӏьft!V.TfQ 1qٶ]GUDKګnwSLS5M{Kш⧓}jmݜP,#MT΃9IM tl4RoFhg[=.lqQljd0clY)2N[^&wd6MȊL<\D{tyv_ VYE/?0G.`nBkNɨ)rWr%jT`|J^k݈|ۂb,&1zUϫb~וŷ7>nbVgLg,~R ^UjI%5̩=wa:*مF,m81qY {BAXI3 hTR3qӆ|5Z;6!`Nq[ΝDbCp:*lm6R!j:0a0rV^@M7ӡ.n#B'a{Pd+C9y,K,qlWy][|B]a @9GaYVƂ[mp?~%Wj_S ]1J9\5XFQj%Hȑ{,nTUdɤӺQPkGj %:9D ےTm)m[STj9J%}F+jս,~級F.oYUTs@nb >7k72Wg˝j:u\V&lrwXEpzg[: jl^)J- .gZ9'dgvOm [GK3 y9CKKiB/,[RϻC%|cE4Du-)ƜU_]sA+ tA=8>tM=.仗V Rx,74jj)y(A˼ru/ἆU%1I" !qnP>H=k/՜Lum.' x'aGfյ=^1WGY?PglqX;PeNѓJTE<̦AvAiW<ەvf-;ߏ˻l̑2)(vmi -߀P۽d(pS|ivm[ ޥm֪.˶iV.ȧ"ɫ*ɣٟ&5[SafHͣ*gYʽ7;lߍ2ݢ)צSSOa)BD;\E7g,nʼ[wʫ,W^Ë aJ}w߉D|xe9LeY*C_}t67kk8@)ſ%A>xQnBۦvNI$h6iopvTۈ*1Mm"<^DPZ(C;Խעq)MhE"-֏㋮-X̋7InF55fՠ9[cDWt5ڪt&++7EKq+mq]3ahg erDӿrA/e02VTkAD :{6oq&E5ʆuy02 e A{'>i 58튏*b}L1kTv. n^މeFE w(v/%?7W'sJTop]/no6"8EmUJ:ZըvԬft؆mu-2qv<7m+ #"+Xϵ!b Gl2x9Rl*>\6 $6]]4rǥ܄JJظpڭvZYK7HYN+řSmo71|$xF,+#=m<]+T k]9K6aM6m.{qj&2K陸}%sRgYdp7uc'Q\T>&:!ϹOsyc{s٬lMܸ+r+Wd8ҥܥPԥpTCb#/G7T ;FɎ.M&ՁְH6]M\:aj,76bxnj<'\_0Hl<|#6 v;j,awrz{`=Q丹H!KmύO@lqWOw7*WO; z7ەZ{Yܶ;mhtht,w1=6_?iMlh+}W"߫ãʹ>oǿ?ޝyuهoP7>ROnt6;v#_faWwOv/P՗/N<`3ENv=es~'Q緡g9W?Ww]<ՑoA}7{=^seo-|?+7ݍ1Neb&|ozȷA~_x Hn?@r#(Qc;+[n3P~ Hc|WQ6 yyHv(JO|u|vq"ADkQnB's?|~c̎gӗQܟ8p}_GpOP} >4^]?A9,w /BA:z=.yG~G ? P*?먾 ʭEr2ؑ"wAAv);B<39#mHA{4>"sP0n`wv.<"?׈>+jHs~$({9%GѲQGrB<}I@0w@~u=oʥ@BQ/'!W{{]|A8gxO#~ɣH 7}('\_<ƥ14~)Dz~hћކyt"}*W?\wɭ KO-??+(8_7r Axu?8 _B(k`*S^~?[0?8_F8j Z{A?"'wy2/ȶ7:Ou}dca~C=x^`s|@v W`~HBzڹ>?埁y/P: }Qp7#kޅ!s 4W`} ?_N7F9H{Q)Qru 4> "˽`h3g.;ð~`r?H?,_Iz}~0>|+;R=;,ӐX?8'``O<`Y?|o y8 84syDr~gg t"'~< /3Q߅Q&#磸0_~ } 1%1 %#z?_u4fH_F~8G '9&`?;e c? y B!3L|9 zu̿2"H`?a_>qОɡFr:G>'Ay~'|S~pOAM}_s0/!~I?<߷ا|~lAmӰ󷡾+>'sȇ~hox߽;p`vo9 !;L>wz5-?`ovp_@c}z~rq9T_]OǑAv: ?%A~2Uhg(wz27̛__wa#H._zpGϽ?ߧCzk?;gUٷ{;d_O|QTO@;O剗() q8Eʽ4Oq  M}qoNLg30~ aۅ4/`sW~Wc`a}nzؑ{Aם0OX~/#2ϿF~LJW>o_P}u-S#߀v?2ԋ>;?}.n-|nu7*7 CcBCXЏ9x?ka'ͷ |˯j@? q| x]>'_`~Wa]?${+aak+G~=دq9L>O <ct AϾ l>nl;K6B+(_DhQ0@>rz4<p:ƣVB_@Xߏ0xy!|޴d= ?_z^C/i.{"9ac;a65['"Dac !DG=WٌG F>b ۬6ssx Cኣ=zjW6b resX@? \_J=VG/楷\a+mzͧee§O( f_9447s W h8~{*C=>0|| F 3%g.T! l-θ<8g8.;nx6 b@=[`9y gWe?=7JgtF4 0=޼ ;1x.;+™Ա[ =< {gxOx+ ΜAdaހowx8 #_=[|pѼw^gC=ރ7E0`]w7Q$%g^e|翡G\7p0;>p43h|/#Q=w3qm4<~`#~/^w,Gz,wx 3?E: V^zc{z9Q h޾Sи>}7?4߈Yϫ7Go|7ԇ @Pώ? ]K?]Gl/$CLLE`0h; ?p ɕ0.4|C  /3=cH^j%K+."_4}oav^ߋϨ9rz}?7~1OA~|nVB~<|fi8?khΰE|Qn agoCן? B';3Ȏ3#08X|VaA||KwJKpѳ9N Ls7/튿+G`/|i${wE'HwhyoXfDA|~߅! E o;V4O4{zx Ez]1+{ @N؞~!;jF 4z-;, 7F>B=$эOH~@A&MC04Bﺬqk1-Ϝ {\C|.T՛]03Exw߅;M ݅|:?a M?nw}"wyjwVPGz `=wy ֟}^߄Ga=W33߅:~15~ 7 οqD_w\wݢg;J?4S;F]V) a8kW0ȉ;;sS|gN/z-,pw ox-{-*C5$B;C~5ޏB]e~m__5>>fL;4 hP ~p|]@];8pW/-Gore @](|KV;}/7yכAׁ>}_OCCl$U?sH.x%pW(8}?9 / ~0>G~yWG'՚U?+PwP7ؑ;N}ϮPf'E}BCS|{#](|q 8<&.T;󴝡u߳u.܅:@K~s-.T#yc]0nۭ[ohm6 M)!4%ДJҡLX*9JqHNL2KrI}OK} >y'x ^x'x ^xE x^E x^E x ^DE$x ^DE$xm)GA" }>HD$1t$N# }>ý,'2 Ʉ\dB.2wL"/)Tqg)K%E"xI^R/i4K%M&xI ^/i4K&d^2/ K%C!xd0/7w$$I$IR"I$S$&I$U*Ir$J\%I$WI$U'Ix+'Ix+'I+J H+J RLWȴ-U$e%IYDRV"#HH$I$+J"Ɔ/9FɕDr%\I$Wɕ<2'LL,23W2W̤z1JIII\HR$W)U*Mr&J\I$Wi4U*Mr&ʐ\eH2$W U*Cr!ʐ\O:r<#:FQH) )G!SQt2$Fd2 I(K̓.1O<K̤+Γ8O<+Γ8O+!rOn.xrs \'<-O<ϓnԯ$c= 6;e҄T DMHJJș6ӕi$d$U$,,Ad$<H&7S@G$9rmy: 9Gvk$|qC<)X IsQN:3N>FOٛ^DZ*~+x\|0ر0놣6'AeotyoIY"F}NEwa(&ECDb˷?@$zS zQ-pZ:7=tf6>i gy0R.UnFb+ZKij9YR;XUʙJbiTZ3ʥN&057|]gA稹S$lZ]ugxʼ+NᒒBɪjV9^9碦*WW92TE;sjX3RRUEsjI59\kWOp3T^QU{-ZMKq+`J`=OXٽO% k%s%ܑnB}ֱ{%-rU 7*-bkFµ=h~B&W ETC)Uը3Ȋ"̌k.Tt+J3/C=ިuCjzٹ5h`η!>Zl`+CWeve0?,_c`[ʰOr'^dC!41]2 δhE>,hj~o?ke.sJiPzj?<,ұ<+ʳ<+ SFY5TFVRJڊg7*rU)D=z!ZChRvڷoepEU1qY5_ܨpCzS&V֪RZy{yYO7U!Z8B5럂5JIELǜ*Q7g >XVj r틥pV᥺2NZ )zE0}gV JUqJ\;o6XqD*5@m{ T lYf 5jf z_vU\Y)O Yk{Ӧ |[~RVA/9-eX!VbX8z̍|Vpo&&.:qaTƴsʡQVkMe*1PgkEuNk=SYU+rdPX۱bj(̀YJ5ˣTREk0pCW5Fnd;Ty:`גfy嚆aub) 5.Y'=h^32p~̬^V/׿=Rg5ôV>w,/˻^ym_rv֬Χ yYu9fEt][rGMPߓYTQ~yVtR㜷?dn/(3zI2goW Uڵڇuit*'#RO[7;'yE5krE7"1{=qϸg3{=qϸg3H?akm:sQ#eZ8{D)(+%Ӽ^ҫ/\x}!Ba:Ok%MX%̢x5كUR!}z|plBwg3?g3?g3?g3?g'.sޯ_>qI0o_1X'ZUU%V tW&g78*ԁ C-#X3h<4K Cܤ}C g3%`+¨-;yjI)~՞x,\su놁^vVjlgLո|!tޅVo+,ڿ`[#kϦ[Sfe-AI kͭǪw/V>á+oϪj: -Zypג-<*.ZEl9.VmVkɕM8kO?sJ:Cggggg=;3LsLys-:[]v լXj6叚;i%!FڸU>rU 8?r**()x|%;>IY* !_l+᠗A3\HFW+WykJ-.ij~hD)xR= ˛ PƳt'W.[e/7[iQV`oo.kg)}_Z[G= x9hoڭ(ގ? ^/gjI5qRM\_tF*j:%or857yHIUʜ~Miwj݃O?yD)heݰ*1+j^سJu}=}6jrb;MVti`)pCgzZUsYheK,J9ڿ@_ƯW#.JvE>w~Uv'*Vg] {c0>=<` 0c1` k t_'%divM+'Kq.!6pjbҾk65e&ѐا;_=u,c# Xb<0C2c`' IbVT(?bx r8puyeF֐o+Cb`ZpjϑJQַs .U[*-C$mG`r!Ҙ%j=Dh"'*6nK}4WJWO85aKZgs5/wYYl^j8؏xoc{TeE.T߄1YJVe %e]sowxgb;uIBT .9#(uѡxQ.V9`:,?|qߊ/N;_ld> VN8GB˽* *zo[^WUYhRnragg{\"~eCY) Xa "7R%wafVX\7}1:3.nZje:bg߅b .B^ʡkJ"YYbY qWǁZO˩/L._o"jlKܕK{ly8qfU1$@=E-\[2b.ZK5(M"6];'jbnݤ1jVUK(UkO*zUJ/(9Uh$VSpj0xY.w3%NR]jg}99]HGk<@M',JpW8);| Ꮴ }.;A6ʾs /صVpmj4 e]pP \&eo&Mճڂvg饬6E$mVK%k%gZҨ۟5%G+Ujպn9(+$ʾЯaú koYo=`oЎ,_metadat/data/dat.nakagawa2007.rda0000644000176200001440000000066414167070054016136 0ustar liggesusers r0b```f`adb`f2XCCt-XFN -XXhd``# g1?TgpAbQQ~!1 )9%K ]jRCtKjnbQ!* 3ã4/=/</fy0,l#$1H|gȶ`u.[ `Dh|=ieŕ_/WvnzSdp?ifNs ewY@y ѠDsC Ē@,b@,YsS ҔJOT(9(5'$3?*[YnzrNb1t 0%-FS LCz0|$Ha8 Ametadat/data/dat.lehmann2018.rda0000644000176200001440000003041614167070054016006 0ustar liggesusers= |U}_Aۤ--Զ8M$f&=PkeuYoY<QaUA]窫*~^ȵr!7d&i\tGfJ]arENN֦]{k?|>[Kk mtiH2>hlzrRmh)_ Hx kTA2'P >XJ[DDU(?iB#JE\ '#kL`䮏SX3r&UE6 żR$0NaW6G)!RI`n+hb b+DzW{< %)S%vx8~S |#2b>/JǢ]ŌB<%E*ssO {q,khbVr^AL,<ځ9|+U*C2GQB`o, XjEi#. Ɩ-t~O<&T19ݵ0vT&3[u<2KRP]9+"Xh|z}(N Kڹ>@ #o jjveL&e@%?6+s^2 &Ñe:5dvhC\?N"3 .yNX>:He'qΙ`0@eh@oHl%;Dƀ3X &#'0*^!bL"ĬdUd\5$x//Q!A'@ | < 'jD,VYfjD^cH{Wfw`HA|DQ4u= Pa<R*_J@`28~wwc}n^VTxΔ!6 8?Шt@$fRfdXfNu5l@lB #` ZC";H]e?z2b<\&q<փ 35Ib8Sw${D;T@E B+ojL!1~, aEdXǠ)Yo6"=k%7Aj5FcU먚Cy2gz-F9Ioeܸ26uh`6b*قg"A!NU"7Wb <qR-ϻd'X|'uދ(8Na z>h}Ȧ Yzh1 Zt %3PL~ڔ|f7['nebxƅA0ӛlIM' ,Ⱦ Y!l*D9 KA/ B,xX$HpFF\C˚ ol|8$ a:f #x/2$rI2Ɔ̤GÖ ]j@nKWb0nsA8H P`9 Nɘ!Kغz``Wa5zY.hy#q`D"vic-"A;(P#M)ё;r1,VT0k r@a6k,5 3i绬ZM`5$\SkC INJ8l=e22fIoGq%,8o2[mVFnYYJw}rdiWՅLJ`|ՙ2e~ʩOʺUJ"fˮ+ %ՙ.ze#.SV\/C15b3䀡 qќrlP㲄9͂Uk,UY@dN99zY,,h4سsFyȕFc2Ϡ3[h lP FXGKjl9 2ZRyl֛ih0VSҪg~ޫ=Xө**uӽJ*'+2H&&V)c_`JV`}(0>u}7Vsp@TN8 kH[=E0U %Qb AR>j#[omq[69h[=L䔲Ulh kҦ8[T$꣝gZq_)#+q@ ˤt9(@"'F!›]:ClsH4!㭯r1FH s*Ö́/1pw\5VY#U/Bd!̡ VRxHTl*JTlWsY3`W2PF\&J|N&N,8I6BM2h 5% Fùw2+C/gsJ"teG /Wd&9P_Wi&x4P=8!YD$f8"mfD9r4nwXV4Īoʿ *Μ֩sԹes'CɳY0\U/OR{j`$]Nk8-Y"5n-w/к6Q x]$lЍe?@nk<i;zel'9Qu%OA@;J2͉^'PfQYtrKC{!bt=OJ{t^בzV~/%J.~wz^/JZ /~MHaw%AX;Wq]a[YV|o=B_n^c)|$~JIi6RQ3iR* tK_ 3T:"r2d}E\mSY%˂zf$Tʩ,),"r428:#JFf<}KqиFDF-U/qi &$3b|E;0J<)!0ĦDXƅ>TŸ;h1>Py>ZbEil #72-OD{ =ޞI͸\k*3k%1:/tEkib>[|L\jB ;#<,^@ Ӥ^8D݁~hgyKRuj651fVSɏLJ TNCXCoB(d|pEdsꇊ@ k ZT;0llњ(_0`OI>#(fS1 ywHwW~a1cZ< 'rl-o^Eѭ [';hu` 4ϱ:aw+ Fۑvziauڅ]mh^MMi/m_t&dΤw4~V;^cN&+4YTnlyl$8I)s hlZƆ7Keru$WKL.6^sow6\.rO'WSkhK9^-F=esݴLji1 ]b.Pp/QWqn@QF&BDy~&)Y'Wɩl|LJdNeN^JDH͔P'Ǩ<-sq N30!G/$j%:ƑB$Hn* Iy533YXF3*i"4ɂR:z33;NUZ_T=JTSưDȖr $$R 7~;_&\CgIC+ή xN嚇ir˩wv&q5^Z.vr:9& J?+`x~`BMY \*syz FRSIyzwr铆rbb"p ȉ* TAdiF?&GZ[[[[[[4?'7&?/C8tkZpE9߲@'hX8U$9+)Q"Ey:3 _Sxtr^GP= 8M+FD3ô1P:9D༌y)W@r)}I 'aFc *0R}5LbܴS >YT+)& yAӬ# `2٤N1Z{ 3qşVGJDQ֬qɉ4J+Y 8N͈c5R rK‰Y ˪U +F9QEY3%JD@lDrT<I7EhdFǬY– MJhqg`ZdԦ`|}BӶ:| m!pxyAr}ֽWey{˥'st=v-+ۢ>%c) Gs~<|Zn~,h -8L Li>Y:"-~\> 4mW  .J2hP\?wjl[6I[z^**p η)A>#1m=!FM%X輾xNZmQ{yrH4M_կGǽ͔G<,gM#fAmA4EvMՎ^TdX% ffYEo=!cQ@C;ș X!g1B0+,4y$Z454EA-qa$,`LDn0cbYB ee2e 1a-2m[͐e#XYGCBn5 "m[&FݙõEjAk1S,2Rn20x6!R>яz 2e[2L1.&^ʢ9Vh]F =-N1F52 ጉ "YAl =ٮ:żQɩGln/.)h CAYâo7L*g)>v=; mʆ.8'@)6 jvJLC6sHD$m0C֚R`Aŧ=QG fVE`\bαCHdID(; ,M 6+mO${h4!e;m63dQ-OPvN;D4 l]^z_.x?=mP2pB!4N]E遇?P5r/=}_{q}= i0Ig8 E 98=X&w?zc7L#z/#|ʡ}<2[{4m椟lRl3]0k f7~}!Wp ~Joq}_yvtɵ< bxAA0'-,8 [1 ,GkMFp,sσ#d<^Z{+Ib9+OcB`''B7IZ#W|{_'  |MEN0t+XIBW߷.3I ;vロr-@ `P ~~L&(8 ~!S7B57-n1صdހ%7;:OuteUW} ]*?;$/LX$#D@(yot{Q=!~ʎCO?K?!Oh[ ۻD` ݲfd#l1MlĮ1t"y W߀lx(I/7zҷpە/ 0"Gid$_.#+5ܙ:#z߻?g~_yH~yMwн͠?}@F3E"X> gNtgB|Eǿitwbڃ 2:M+j~KGGl{?Z'w-[  %xmxOOlD:7}J?fӉHۭ,'㤓YOi:@<7Ga"=pVm?[C$7zk꯽/DNx챓#=;Ho߳s9cl&劏!GÔ G!U> =蹶ݠcW}L*?^Y3FxK6*RL +0U+weHeb*x(#1*tǭc&Ny Iw/P}Kxm2et$XBPib IXn%X{8<좠O Nr^^dGDV"J#`UԨJ?+X|pՋ)`%. t@2ATC'r8UbnXe*"r'/QQ҂u24~Dg82Uճ_*$Jee(0 1NX;Dʸ,[eZՃz|0ϋũeIݡJųoD?.Dyv$5fsyS| =.9ɠJCKP!Nl b\I=J~@dk|E}^7|9,*i99K-BDȯ RmHNnZҠ;#EIL5{)0t zEd*Xh=fSNϥ +AEwN FMMe( B-S s6N &Mdy "<˥,tF@{⌛p  cP}DhVTGƔ FǙK{ h1uxO=Exe (:<ǣH?iShl*uxsE_ރA{h?d!}Kxh/RMnT։<ux3Oi9G/:uyGOo?pkOްupk|[Qn6? $k=7~2N絊Grsׁl'f,p_=k4=Wow";v^X9?{jg uܴқ3ӧ걻caeWniX ~u+&x{)}鷹3]{bFOMU[^b`ࣲs<.cczzs;_Wаvc+oV.x:XYZWW]1E I}7|0zo: _=h'qc%75WۍF#صd"o:!S^nr+`7vt}GAgJf/n4[wѦ^^vW,zo7 w>>vѐ>/ w?u׀m3zaɫªEY :z_^uӝ{ᮉ+cOlxsvw?w~8]]̬Go/ֻu||Tp1 .N*7|:[p,Zʵa9wNԁi9=0w{^5|}Ů늆W? 0䰆ۨ_8gFڽ gL>ܽ?# 랹paϜgVÛ:T? ?w9r'mc6t֕?si7U ]naz,g]L^nx߳I*o|O~{:0oe.?x9 掸j ({npoKs4mW=kG+<;r\[j?;oKDoEJ&oF 7|vެ]~Ƣo_]6tCoU_g>0,}.U`G;V=zǯڞ`CFN3k!XwD_ߝ'pNX}|}Y]}7D}<_לpNԧ+?}rg%= V.8ΖqYow~S ,W!Ͳk|poM?v:<5gNd_+6\MOO;kyl|g7/YOT O(9v$xƭR<o 鯖E`{^l >~qn5`ANZ_W{ ы6/z<؟u4\rx&ٵ rN(oX>>$yMd̈́bBIiI9.~۬D`fAawbŒ |dwD"[̊:!3IGr<ɈJ.8w<41т q^v7][LN K.s2*Iz(<^3e%WTćP3>n%xFU :cEJ[]5xJ |˧**8θXk6lH)\2G~* ujgv~PDH~'֓z\ arl\O!%U&&nwy,݁@޴k}7__j?3@xo{jEJy3/u`þ źX[+B9 | OgT-m ^rh6xm=?j6Q~|x;׹=3McLUݦ')1#89=xJ+r .=2v,LіBVVRS4mIUQGÖRkvʆRʕmGBX6glIQ 4-inR9EJzM 5AU2<@5[ /(D.uQOҶQO(p5ԅ9Yv[ks8&y>FwnOuQO;T7D7k9? QvߟG_ЏԱ !zqn__/r?de0D}?ͣ. kAB]oy!?i?D}}PVF܍﹝x~m}K~O!-Ĺ|~ hk'iɑ=ėa'B.n y>BC~~wZ}S!"5Gs]"_g ـ"g&o0y;?;r9 VmLr!Y#x~1~PHM]> X 池2U1K_oy)SQ metadat/data/dat.laopaiboon2015.rda0000644000176200001440000000102414167070054016475 0ustar liggesusers͔jA'&EAB/CRFPkZzwvw̆ɦm._PQ}_x9'; e̙fg#zMxb=!E| *sU0E֐ 49=99큒tm0JjH{,m 䇏2]r,sy]TJ4:H2 2>A&wG_|=/VB\F &]gxE_mScy8ΐ 5 Wk--rөBq`mXQja`W+͏{|oo>GOΒ=metadat/data/dat.woods2010.rda0000644000176200001440000000044114167070232015500 0ustar liggesusersN@X1z6hLI#l#&˶Moo:v.SnR`;<<ܞk?~03vf/r띕n-wBo>O8,mX>4}mϯL\,-nƦ>Zo?/5\| s(ُHNē#77qZ$G(Y%9 Y {n^,M@ zPDsM9.7VL0)8gs^4<>nx #D`pʂ {-QMg 1$1 %>&0R1$1wx _fkgw&eFI~3Zmetadat/data/dat.hasselblad1998.rda0000644000176200001440000000164314167070054016506 0ustar liggesusers͗KOQSʥ@*`EI%nȡ=c3d:FҘrʅ;5Ļ??0q=|Pb 䡝޶o#'ƘhS|R %U>p7y3|0Rj@lƴr]ejNrUZ:ur% 6` 6;.!4}`?8C08c8hapVGn?z>Wz&9yA~' yCGyE~gFz%"ˆfxuI]?M5{H%DxҰk;E4)bJMlE~? 2VCq/ ZGpұ{Lfi[X6L㪧1U{4NxOcV^\9p|URfuDa {[zcha˴W)V+Q3ٟv3uQ3nv(ەN_>ס6m35GFb?xxF<+{*Lv?>p metadat/data/dat.aloe2013.rda0000644000176200001440000000054114167070054015273 0ustar liggesusers r0b```f`adb`f2XCCt-XFN ͓Xjd`h T/ R`F1T)1%HA@*.䜟Z1H'$&g()@uESˀHzar懙enGVw@ y ``Č {?os]x Z(%kqIiJ%Øe%TC9LAFhrL9H790a\MK+0-umetadat/data/dat.crede2010.rda0000644000176200001440000000261314167070054015434 0ustar liggesusersՙ{lUn[ڮwy/bD Iw%n*b4h5  !ĠmJK)-vʂ +F3gaSR{s!#=s#`6;G)0iG"Y,ڻ/5G)S`` ƈ@RUKIs b.Gu@0 &`Fx021Ƃq`< a"<&I `2@Tb"fLYQb6xDCp8 '@n MTzh4VM4U4~m%iJɆN))G1At/4zL&|C_[hW D5$`+)ї'ze'\7E(n)7|(ͺ^nh^ǷFV`n{Ǟ^v߫ǧO7Bz>7|ߋw"Nl3MG g@v77j"9:}Ǻa0껵ق0XMj͹)x;]n}ߜ\q`+,8ҽֵ2VMDww5́;aoA8]Kŗ֏m'ַfG﹬uF ^*і]cU EPTV@UT賉2j'*ς`-CCTm*{gjP/ɴ&UmN^3*;^m:6=1Z ~;iob堊xUK>WP)61B v W3`6Z 68aU|%޾bxti*sߚ[~ xَvB"[ n,,ٙy!^Nj୾ⵯGxW̫:+H<2`ť~wxyg_ݚnjE{I jyӸSKnSZMp~*$u{ko"}pؖ${<6 r?On_6۹_S+ Sy7?G﷨˥:=3Փ{N6UeOԊW5E#^sWi1[=.B3|6Nr?OCO96}^7Q<(Xn fq^GZ3_KXB8FܺN{KAd{y3sf#MM6>~69wL=W|*</('{c>X` 5;Yߢ6#,e0/u.rmh;Տw(,?C)0ؤ,k++0^든~6F+ YGY_8EyPǧ<<տۉ-=9^{uXE`0P ԛ}DM&Qssk_Vii,Qt ׀짗4րj@Oc5'}H}S(P-$K5V0.̷ Ƕ ǶK%|$eu|jQhǰ.K5bv`㖚WZg^Z3t,^UOGu c{m~.O % Fեj~R i嵓+)Z%:^/Y CYkBgU앋f`@-[Zm>q;_IثOJ҈SlB]3D M)Ļ3_1=vfO%2qz^B>u(,BT{)="$U瑉~O#L&US4Bd ,l] ZEϣ:?\dyƏTըhw8:El݋$:Tw.p?;Ƨ;$Dоm=}N|I.A_?ch>Am=Z ׏y1_rNNV t `Ng8atrf JDǓS9|{SoOsd*}8=prxɜ>c$)c?Qg(48 ]/J+Y98 1s:B)-}9]$wa128%nk3-q@}\I0+ɞCZ6$?#[1q%oFާ(V5 iQ:s14Oc0Frب\szOm>É-SSR#eQ *)a_ aY7BeK!'Y$?#eoDޠԗ=a_*ݕ/s9(+>Oē8Yq{j(l. ycK'cNL,ɂǛ._*ZAd$Hy M 8lap؀6 8la;p؁v8a;p؁p8p8p8'p8 Np8\p.p 8\<<A*)metadat/data/dat.senn2013.rda0000644000176200001440000000240514167070054015317 0ustar liggesusersW{lE^][\L !s VR- an]=w65H4"AEcg$mۣذ'׷áµ{D/B1dJI]d'ղa> |XbqeF'!"@j:8ޟ^ef%$s>2\' |XخY+Ŀv(WvMy?z&/V}ojɃ>Qvl؃e1ȣ?_cwVO|̏)@kwJ׿x=װs_g軯MoڏTzs5ß:LycQהƴE4TD?~j"/݇vz'VW/頑 0l^fi܎bv~ߩCĬ\/4Z]}dM׍+@>gڼkPDhp?܂&Rx~]h7G^هm?.GCϴK{Y ~'oAͮI4BQW88[lk_APYMGc.G[3񫷢 Z:otXt֨':4r~Wkt]C&#&ڈ}B@PHMP{3V24~_$iG.GgTM2:$;NC:>} gQ\|Y^(&)+a7Xμ` +(}Zfx,L qe@ %MԶ< ?_BsQPM|*dmetadat/data/dat.lim2014.rda0000644000176200001440000012601014167070054015135 0ustar liggesusers}`u**dDR%$Axnpi C8'NOwIqWIMbN?ͼٝ;ޡI{33o^oN }%w_d˜߱*st==g2篢3%Nu]7g2" QZJ\*'p! ٫ >2 l Ȁl"L`vK^p%A7&%˄8Na%a'.-6mw A%N>!a} cN -`.&^"na"x`( J2Cp`eGs-<|??~^M?I&Y_^KFI[M A!1N x+__͂!x;; dx=û >|"%$g @|+tlpɅ W[p Ɇ;;;v2vfxxDhga _ǨăSOKKG/K@<*╎Prc:H*c1Ww_o\Wz;'zzwtqyG8Uw_=&"~ mȎ\!Spm_|{:#KbfGXoz ZK/=4; 'ѽ4L #!ˀfqw^ }Yb_+ q3b0~% Ým~׏g@VeBCR`*R4QU`~ߍ<9ۍ>{`?M[}Oz‹"(aXQ }5&{L{ͻfOҝwS"&1I8AI8!0wp`ީ:^8$DNxDo߹V=do?SInpy ~hQɷrk]+)‹P[b E ;'KݸR͏Ր?'"%9|G Es + +#CS(^I1f!Btoִ.TrEI 3y_*K-Y!#t~^9F]b/JNq)!kE"s k4A{Fe:e 3*jj rOH`6j-|"b2Jۿp_BVV}zr0ꦁ!9Z@[!dGQ{{q1$(X. 2By  |rC!=K^:=Qd9ȲUivf|(| H8$P*5\U˞3cgKeD>!{\ET JL&7+,.KE zR(Wq'*$,i{H\!~ވ~$f^> RoO|DYu$}-NY3%?VK(0W1Qtj=0`[5- <ÆsW =Q#3K9؛+lc_gDq=G]AWViHz*PX !/8r@Gy$-an9<.$t|_#FZcLXZ;DO%¾a,Š hj$QDȣ;~ 4.4⎮zjSqg }Gh:­#N_j ZBP|wmz0MP{Xq9Zc~ J':EZ OkJu4F$aaA78 %6;Yaϐu\YP2s8ۮHeH*ELs?ԾdS^@h1t~Yh+٭QeyZPIP*GY#NqIC;C(PN{aÜNnh0mAJ/"$(,$̱^H‰z-n|jn%Σ\fQsH{S_GV";.<7:%԰P.Vb%8GGs!:FŮ6r:hN!wB[9 @ uWjYLDJ N(Uu_ oؘ H"3pz pz%қBM^3 }LjHL4;ԓ26#9՚a *ª`&L^L/Vv-NADJB9Qu T"YS#ZܑBrjN-ȢPLRڃPџQ>,^eSejm{vdɠ1;n#GiT 㢑{c >%|beݶ燢g\(S[N;D*ݔе{x RsN1E8)g,n:[H~5CuQVQM"{Gӽ}Q((i@“.@P;pe _cGHr$s74;EYtCH(Ggj73ޠ+E,iH%%8aYNiCĜTu~Y'XT tE{ɶ*>Uk96 _^WO:x`ͣ[9Zz늦Q~Z'&p/m5*~,6R@ Ϲ"P49 ^5 )=֫ntC}e%-٬V7> SOb{SWl#[MTR{ϒv.;!E#Ya=>^2sNq1QڔKnWD2 Ɗ9_b8Z'J~’* xۂˆb%R :I)έɚ3v LZf%UWgWS9V嘐p0нTƶI,{R"$ CF?^Xz{ =0-M-;βOt6DrYwčLO;Q%ܑ.us$qiVe2RSt9n@%=36[=kldTS`^B^Mb'v9oѾ}˲F (σl\ULp|+竱NXDBF(C#.alU2^R/5%'z?`n皜h#!Z8rZ{ٔ8;(C^ XѼDzWMXTOIs&9hcRqU"(9d%k׌>=Rψ5560Ƅ\Ejx NU GԶPM7:|93Z{ػikZrBNq Ŭ{X:EaN"Ȍжq,6}Eۆ\z 6VFF4v Z֌4⌴|e+qmN;Vd=sD997"-ƼJ(y˰ ?'l3;FJ y\>C2?)_^Q9̀y6!mW&N=c𐸊NmzKW/qXqS]6 lZK'vNІQ*ns4ʴ=uX*umu#9ӞQ-~]j/3/ޏêAʌjEݺYDZ֝cymd~S:GT{m/w$z-'oND C*'tcE%0s(rݞsizbL Qu`Qq4T}' GQ1O1@xd~_L* MbpX.&|?$zEUD [F#NX;CE{F>mYM|uy r:$yYer#Q[7YOrN3~mBeUUv*?gh6i~&1$U_׳:7"KQmdx_׷e͓Ď3&$eDzE򚖕zS!m/tJ(4|97c~^Ӧd\4[D? #Gn-7/OXa bW@*ݝWQ:a\[~U;{H$~.j~^]8gR6 ٬ Μzmf+''dВRV%R\셅ʬK{6))L:nwo>p\ݨ8˳!i`+\Nw zm@{ǖPi6'*[faZsb C ed]##WICJ)T5k`vЄWuxR%eȯ 0{"bP1 .l֊Lt 3@CD"-V隈 FQ05(ָ+n\:x3UG ~H<,f =msL&z.B={C /a3ޫhŚAvyfG(~U|k'x}%HʱgZ־ p Byb՗ǡ; @*A(v%^5F2uUn~Y4bV`wX(yXo]A:sv$JE?޺|$kdG6ZgoA;H8Z.eAϠc7׻uuu<ؒ_ֱַwqm練ӵ=%҄mwZrxĞ#6iwRh_[[ڴi9Ǧa;R4ɮFyE[/mhq޴6Z 1j+o?vֳ\[\[Ϻ2M? mP4iv\~k+l-QwKIXrnXZᧉ wO{+1n~I ę{;)rۍVxkHv-[^[v<^4xY|2ؒY6t0Zoa]vo;jWv;e^lٸҎ_Zv׋h-]-/֮Y!p=eoli[[WK=8[W G<<=]tԬEKWuSaTwif[oC Vصs)W%7Wa \JV[BD /Z B2Q`eJuǣA\.'Y*.ݙ9WS"9lSRa$сgks^'q ~9B gksg*#̢w:ЄB1 ۔O5 SZD!c{8[|LiG,4#xs o D1hp>SJu`liո/ixE 8~UG (GQR?#_,\$k|C)WMjN)%1r2f8cEVDċLlL"HĢY?rjMJB|YϻtRK_Q)!͔AH.pH?(;"a}^9uDIo"^: jU`6k=?JY(1tØS j/-UF(SWkŊ+MVfyQR8K%+*1*Ah˖aAs%$헥HfWPI@H33_9s <In5QUUF͵QT8{x=&vHzn2l9)*dW" cFeTskRW$,P%8=Y"3>ɖD]CS"JƻqDvBlJh)6t :eχfid$Y;B/&XXUQR'A*f|I8pZ|̈ų>W ꡬI9TK.^O-u`VutWPY=1fANү!|YY' ,ܗp;r&Z7*8ֶd5[s2O,G\˫^}Pô$jqeN6"i^G:^aEjB^]I:P-zT t'hL,)vfMBYv 8i{E{4X"颧 L6CRBB˝\6KCN7> KKn2',8*ߕ5W {Wk]NzsJ.FC] 6A& 343DH4aJ(ʉؘc'N&kN6Xc&r'7"쪴Q:USCi|Qh/-E89u,6jqgIr)/! |WZ%XD6*NYn6qm_hONf7Eb"o XbT["rq'dmT۫% @B-rw 6+Lp(DbON*QVk{K߯!SdH7>5Aڢxرdn ed1ٕ,F6Hlv4֮ y\[G- ׌GuAi + Fy$Fo Fu׀l8C)nOM  3: \A, v?oaZ7I;YpwDu\G}5K j:!d8$&{ sNOmVh][Lrr><q)NF#dҺ8CRq$|6PAM$*~XZseq2K0HVUR t8<ɦa~IYUkWF 7qd}+q"!! ~r{yFi3 ?7R)?Ɯ㖖~AQ"gv[$>Ln~1O'SLOϿt|Ns:qS;9CV"q3J3GDL`.<5OĞO`jԝI0t{׹_~u׹_'81ug<_1v~u׹_~u׹_~ufd_{ >Co4pxEzUO涑G-We䕵?%/6zg߆S{d AU}77o_}C!ww_G//q./xYnw~#U?/mZ}эޯg/ԿG9 [7]+Og?~yu K@+hfG/e?r $<'ݟʏd?C_~RM ok6+B~՗^ .<a:zC+}ހ'eq|-ݛ"?>? rd?GTq/[ԂevEٯmT }u qG.Ofy<"K󠦽LK] ϽWfV8~YVhޚ}~V# (}j/2=s:f|zPB=M?|w Z5Z ۹1Q7>ͨ 3>t`Ƨ߯^-Pͼ`|18?1ǧAU>266=#O~7 eE _y ,W _r'L'|I^7Ӟwy g_1䋓u5nY_,O?qaGkCf?,? }mz/y/|kHOg}槅oޤU~J\]aaoxޟdyL< ӷQ7en_?^6'^I8sMNGY/,dwxF~}$?vs#>g,g^zЁbW>cye>[x33 g{qǚ#f>{T>r9#W?n,~.?tqkZggyizf {<1F|Z>8ϗ>y|>^D0uq1e~io_0}}^Q>,/1e9*GWl2gޖ2߇XN4Dޥ[Vg2<8A n{E6":`5o溭?a+#xw% mMt}zWsK e@5bϯd~u}9C }A_qc匋m<5t|'?wvny?D$dV}ŷ^Уoߠ}2 T_elo\~!a u;"*Cs&x wihM70a|g\_Ͽ'{@۷.|`/xX^UM{W=Zc|}qpXt rý:oE@tGj :=Y[ۡ"|ύ7_֏0^c\q!oe%$A^L*~qF?0Ȱ& ţ  `6*(3Z}oF Yd@ ѥ,3.A;EçFpAFSfbu(gB?d0ܠ' (h3,hk3`kMȀ&xn2 (?!x}F 7LohV$+&x[ o EwϰQ2( }$ P36|26q DF+O1|3 %sg!#Kr2WpaG%q'"xk_' $'CJoN ?3z|U_*;^@@:tB;46; ]mrdtױ{emE n, bm%@z $;n|6V73u $; 9Jmwd&dyG?m<:HwAxuL ArcԂ$; dz$;hA򺃌{ Hnw1AeW Q\\ƴc Ύ | ~vtm_t}8=T}mB=l(ܶGe.Qdšh(-fw2%{tJ %Iz=sCNE&"(>iZrżE <+l]x'S/ \~T{G˸cR+Qy7YFF~_7AFS⃗ćE Jޞ߯ZBi=!(X˘^/;wӹt]c`CmOWj5دte(ž>'8+hGBaDFKNfjwjQ׾h~|O݁a !I8 @$j7po8EQc| j ;Veь "Щ`q1'NA]5? G鈶 RGH[i-w-O-Ep=TM"%#")[3:TZ* #S &oR2(RPݔE S1?{d`ePOy9tDϸ P6ǐɡeݾGn=qPxn RXd^{~wn:6~b+/.z5tzra/"ͨsε;=A݃V{0FfCgDo̐dyjLڝ6cff;ьhVۘ6 (h2cI-ooԧ1z`}iaϽS*1\+:M%W z. K@s]aT~ͤ֗'lH?aLŎލteӸ2je [O|\ΌnreSHK{49> 8EG{+OT.<Τ96O9fyn~, ~I@(#dttqOuk%]KCmDI+5i@ۡ mG{զN36=:ۡd w1p'pKC9# Џ" |1⼱aԫiiLVl%:ޮڱz%g[1!iᨗU)#O #3>|vu̍]G7m _[U>k+p6|znƹaZ2l- ꍦi<ew}ڕ;ˊNbN3:NT Ws*ҭ0d~t02tm^u[FcuةzFz[qv\oZm(?P1(c0v~6[lȚ}Ő۩,WjɿϤRђצ5-#bμ?J7"q%EJ\Հ0"m!j<$ÈgRפ:wđ:@FI+أ1Wd2xb؅CϲbarE7 cn\EmD^T~j}nmX}4g*%7b[FqJFg{o=P̺ <3b`>zڈp<~YV "E8qG>(FB[Fcfi3{MKgkFcZ⌴drVt%8ԫ5@I"xV m6x>qG`*!`uJ)畈-u[;<#.xQ?WB( o^zVh~,͉v]_LOy!Wdw<=Hqwh3T W8-d9bMJڑI Τ1=sD9e3r*=QȀ$oiREZo~׃#Bz/ZVj1vEfeOl޷a :FjnLB wC澴[垍n̆.D,Ƒ'jAe(G(פ#۹̀9P0_:-;zu6Azɘp]u&;E_>LY12= c; ׼TS =g>vCU$GT9!,Xp1q$y!\VchT'25;c9>=x55 z{}ȽG~` c tNa#*G%fN@MNlNQ 0 _%_j-f܍;~3fmYp2:2G Ї@Ldm ϑ93 !e*ݯ?BvW%P}Ƣ+NA*ŎԤt ZtX %nb8 81]?H.q15#N/Oǣk9[?('T4 D(r+8Sli}g^ ?Ebr.+k!Q[cogpZ0Yn< a,,kS%Az;+XPt"[/8R{D](=w[&ԡ7/1nXL,߄_$jGsHvkFBL\?^ET-.K@J4!Aҥ k}_6SdWR" 7AE9+KT?muqNȄd͋aT r݇9ik5_WGw)DۭOL3uhnKO6]>B$:ՋPeN':F@`Yc:)C]Fے}ͨkE ?LTkg;lFY/avASd1X'IBΘLˬDZ"1#oe(::oq81xomܴX&碇 ]mn/*R"­M~fA#qԾjDeQ{6=Zͱjr=~Xqq)!.6xqXtRFL1mjX}3D9ro⁀uRJn7jj!E+آ]R!~sQZ@ mTVIuUcyۆ0sk SՖ/VHQ*Htu42>6Dv?beX8ʦK&v +w,%AeɂaئBI<̽/25:E>8GJ@U[VQe'3Ak gcmDl.F+kxaY]" r~>Ưm v:aKbZ߳_ ק#<1gۡ{[; 9P:&=ǖԯnG꤄vޒ}rŔVh9.]SXZdc Reh%/ps" {6DZ# wbFU|sL뽽M.\;,zw;]ކËX{%e/j GW"F[KdSn\,JU+SHc~n-)?m{sgǤ5{*tv< 52l#g:~m_[St9"%W$ r{! p(<{M>'V}yagX2>\%i#e>#f]ѳ%2M _jTnVwi}L˚߶ڴ0^Cmq;^؞~ξ09hԼ,];pU{eɼ7ukoh|Xׄc|v{iPeJtVq@w3:I8٨@낺NEavV-G%i5=1c_9_X.mטckHI(c}p d{&F|Ierl8,p3NJ4W 0 ~pzT͠d˄ElW4V.LfK\>:;<'[[E0Ѧ`g]qMuQSA Oט ѨZ[賙G\d}>X싵Fc+Z!hcd|}OMB"j려u))>%wa])?]2J'v[mycwqwijuMmڔz߱vZNsGMzgܛ[67γ6׷ZhoW+6zn ?iݦvn筭mܶ<ےךWtmM;y9$}k{M۵uZxlzպ[&~۹cp\-flz3麉Oe\a˃v&og'K/gQhMa'GZ5i薖"Vr(u;+mkim,]-)&n Q)^Ƶ5Ε]7C; ]5i߬ Vn-{UYÈA{GlNc_Dr4-mo#OO^6qO;aiشv-iojE$]N Mҷbopg< W=ش;[ Y4vsܽ*M-Ƕ=Ԧ/vS4;5u=WSy;mI9v׻[8,vl6w2yv_kkiݭo-K]7y;^%?Ӧe`my0$|;^K"tR76lS.Z\8?isW+-bszMw ]tԬEKWuSaTwiaz:TAXs8޺ %ʵ@eAu*?.< R'B"3W9SŔlSRCJ-:aoՋ4,=n/Q$"3ie!Եm{Zԭ#X͝NʢAJ:S>MG̃Li9E~i{ǔ~TqL4Flxsf o d]1M8{]fyIf7yaZ5K-(#)6r/ZsJ6 z4G %+李f*cf"bs-E-,~]_T?qsyBL-U5YD DMpxI?mP+p:e'mIy Med OњpKq8]|~t8N)uCZX\bƜ"9IOE~藖Xn՟p^*hEX*ITF~r]<®E¹Ig[З6KKB?.i)'~$fX3[%縌&J<}|bsQHIrDӗSq2#ujD˨Lh1J"-_;$-?I <90ɸ B)+SMqx(_se=O0S"JLBPesCr+HuD0⢅$B 1,tTybz/t:BmsdIa~`ICYypR7N34#Q hCYdU"YDdNxføjB aֹ 'Nl53^dO+VbW0tͦ'ZUf[CMu@J$n+Ԇ e2k+0}|3ICEUA&c9**-ƤQLB#iDlȲ2PX''U9JD 1PM}(AȐ[;]-ϾOe&ڊ|C.,!x591 MHbw)edtR2\; jTTE9)LlBXC v!AP:?Ub%0L8 |Xv ͦ~?${AL|.;%J JMfE˴/qe-vk:'jDf HQ*vRdMk4%/".k].iJɪh[_.NhsDwPS{i͋M SIx',ǁh'VEb ADPwn ^iLE/\~+ آSe|q -vo9Q *&i$ Jɬ'idOOՠa-DvC f.b+m9~vX))1t'D8H$Z"@'f "jP]#X1DvSάS%K&yDtQs&M·Y:X 99*bc`J!IRq"l~Qgt Ex6˩"h5H kB y؟u,vMR^FSfxH/ݲX fbZ1 Uo^+|G%N5 5Pܳ0Li2&: >4872CKb 0" 27 emz../'&Ƥn2ڒA$^r(dž$|d XlK` d+O~=ЩC8κŰ⬪,rW9&cyǹV,p͕-ՖH Y]7>oj>fq]ѩ9rĹW2's[(԰w_\ ~ѷ7'Lex%e% ՘(u*%UֽĠ֛@q9N7>؄ R^E6}ߓSӴB T,oӕkGX/VpadMHtl5N*Ġj7ڹV~ʝt6+Wg8T['HW^pa:%1L 2=>g C;ྸe`A͈dnڕ)d|ZdT]'Jh XSa-- ׌GpC, ˶ H@$ 0^ $hA/߻Ȑ gRR)l[ qEQ$*~0+hv."N[TԭEsp?5Yc6D5H}+H.׵75Y i?*+s1J=Pm *Ԇd7hODDK,f/VnT$k1kAl 5KDM=fKT!jx(ޒ{q C!a:&5b㢬UH\^wHZmЇ RUN6FȲd^7hKfCO_c58hv66E#S%K 4/i?iWqj?Psf.Ƴ$1b*2JD\%J[㥫:nwV)LAyIzZYCʋy1HW.AUv@F$'p#zDfp>d*"l5 X$`q3 š6""I;qڼT-k78O%E椢D_R4:-Ŗ ޔdc5}~&"|mzf֋m6$[F;^fX@!&L;[8({SriIZ<YW>>OjXbd+٩4) dQɤԳO$O g΄96^L=Sg|rg}RΉ93g9y{RZ>O?Sp:3dg4;::L>q;fqJU4N3U z< s꬈3Nr&l_f~<)팲Osigi g>=)h|saxȹ_gۯ34s:빒 VΜ3 ~v:=8Y.~ܯs:ܯs_g?znYg:ܯs:ܯW&oOf7oxo;ٯ5|(W_^7egz}_at3}ow~nuoYw٧tѮk/<_o*uvѮOV\5~'TE__}y;}"*{w\O~G.&(3/|;ye2.y} Ÿe?_y<~~w$Y/ߘ= \Y54m_y0K/'?9]>f;l3jX~O)>egS"5d=?>jAOg 2>_DC>sZh?S~KWв=C.1<'jfo4q~ 5RY=-awx٧D9~BO?q>~~hfy<3}_>{=qE>7de|[$գShD/0:#Lφ ?rޕ}-?~4#ta Yy] ޿F Ǚn0|4‡c<|TF>0|6_{nq>RlxOs?15&)774ӷ6Wx\a'x= }P}ع'$|gӪd=zS 3,gw83ُ?,|5|eCO)OL3 >zqQ:=*A}+,zcf9oA>{X}BO=~?/ OstӬr]gy_d2g=z~ o_#.7|mGx y/\cy$>xU^^v}|7O ;c<}^O]ӥj'7)^}2v/]}'ӟ[>qcj:Zx뚏\ӟ,t,_vf^\|= ?2G_oɴTfa;aGߓ2e}Cv,ͺ޿xz,` kU$q&Y2.#f_"ϸm/bXOp9\g Se2kvA/-/BpAzj.)y-_/~~i{'mrz;//pMp%vu~-g߇{KW/vs_w ZsK}1d2q{}z-Me2~.xT;X8ǰq "g>~U{c+Emۏ1iSNs%2벏ǻM\;y?c:yFR7 .z 3ή9{;s34U#$Tߍ+ݹ4DTG>bkyf-5 S}ŀ_1=yԏ9ŊdV:= LU4g 2s.5X#ԅg:s\#P;dld(PwQA {4Ah?}Qb{.KVcHz~\B Ur9eOAoY ~sҴX;a oa(\ۘ?Re6>+r%U^yT͌~C-lF0TK8vrSS{o_PÞ!|RG1X잜W\1$B DFy^Dj3jUd&W ;2=| US`)"kjBm.3%ýqt0Ij#bnŎ}n!Jd1Kb&dbd=Z w¾{g ^*CIϐ%—τ69դmʃɨNՋ2ZYʺ&bcn+q%WbƟK•ݡ+gB\3V[\;,zw *OAW\G̫AF8=$UyΊaYzG\ȕ6 l{*ͅH*RXj{ lM`Yy3x"r{]gDs?/@L'/@|*s=dT-+LG.;FZTXw [!$ouAIhE".G6|x\FR z*_ܥzwmDw? qHP+ ג;Vx}޽szm-ֽ=&[վswnӾզ[[7^ڽ jumhroZz xZzEA }7YwtS? Zz fM}Té@13b0X =ʉhQL!ab)BQ'+ʈ!kvN)1@[e\Sѳ Ay2ybuKgMNңQ4rS9툢L'rc˒=@F4Z7hIbIY$bvuNӦܸ4nQW'֩XE,H.ڨj^ 8{ɑUS&۲_O.^ЛL 9~^( -Rfاŝ`4ԛG:0`˜VC$6MhqhӔX^Υ%?P9]t>TM-mK(H)}CܚSLƿ~?M+󗠏{1vӸ)֋X =/aQ+gCuIk¥p罾EAo֩ߐsewTdJ~ !4(HWjCR:4X8aHz |se|׀#JZb0բ iZ/AxvWN0>/~nU|Y0AO^RVn qVzBU'xU:U3:=$6SWZDIxճi<ժ_ *D[v LJHN۰r*U7Iʾ( U7EͣHVNk:JQ$i*E% W슰$o=K}y*csR)IZ[bTVTY$TwGdmE"*Е'Dp P&Ŀ@UUgTyw싮H ZLN 8+ Wkեkڒv]d"),WZMݙnx7 dIQLX,3`ahKߞY4+PZX BOzU ܎WK-"v?j SџQ.'ԻIe0!$s׸7uU9x8)w)Uki SlgU!@ & Tu*A6KA:a29S)ۀ7Pťr͗PLMV1XvۊyZH)ikVz8+J ,8,ݝ椢$k I\Z2RԩsL15Ү6%eV2}~ǰ <^T$oKӶMis, D9i{qxaI J|`q^=pjYۗ||'3dS?3yȧ'&W~ȣ"O.{ޓStY!#Χΐ@] q&_1rVˢ΃F{:{U t\ 98:^8sI.ͨ&9r)ΙssKA[rs _oܺsus.pnuK3:'e[ 5'9Gsnڿ朕\:xs.cir9sLp\or|,XxT;d̷\&wgoo7ߺo|]˝sQgk&׬<;ky06^p1 1 gf7*{$\rf*^D&ûy~Wfɼ&!5?Ș .IIw-eswdMwx># kLpiۖ [J&f!!LP D0LcRXMLL&Bs FzѤ_,~Bt`2B$uE GoDbfeH݈4}c=iMF$&0)xi-OL 7Z-xSF']ND@g vS%( Wsʒ߾midLqoEGe[bdW;U g>+emjy:yymMNcl)3{hpQ%8R& i: Wˁ!H4$>DoZuH\D'H)CÑ9Rt}$9yǝi ]Ζ1Q 5V\{՘q9c k&[ d[]b2:?,j#ZD5Ho:ʼݫE]F(Ȥ9sy=+j+ȉ8GּsLNDJO>(#YB$/cWsP'ALƝJ4vswsEweYVOSSBuKOJ^n›Vfgɩ8'ߔCݴƾ\ٹT)JY%dkU Mm-r$o"[VEh,&m C%Z7g?`)TW9嘐p͖v;2':U3A}A=~B#G-3%̝"-F\&Kݾ4uZտT@TƆ/DB>+qra2C1j; )DZ^!Wє0匝amkJy)A7JT+SDd^6(P'͉H'weSF!V $,/J mNu䕮0k5-+Y(#ed\ ?"!5V Oӵx+giMiW& =7־ p B؏ޜXu_ka&JS褀9)i {jS ꄗt-Πs6i|rM)>kdi~nso+n)Xۗ\KD;Wrto;Z=uyWVxh &sguӺKxi_LT~S6R"chְ-'ml&rRLؔRMeklw.Us{noU{i(ۥ[Xοsx;3vLxح+r&(FI޻VeN: e-Bz#,@+CGv&6+`u`g7xbΛHU)FU3U5MrCE3ܭqVu +kR N.2WAն^QգX1r~q!AW՘ZL I3Q]n6v"[$&+n)4[)'&4D;kce~#BM٩J6-K2O4Z_y5yV}L$J(9 s,.p](p|c~pORo|[G8G݇w!,|sڽHڶ}A\umcH+?Ε987_cs-|Aw(=/f)ɕ{s/~s=J)q#r፜C39)<9“㳜  ϛs*&IGS6IN 9GigrM>οWyig>ش&ǥrEܠ 0?"҂.|syͨ _\}!˹!=s`rWzSn[㜙s_" 5 xɺ?|S\YJy ܊ _9E|_"O>H'ttӿҹY|is9ܒsUʋ<29B?L[ Mk:GHEo[xZirf||D7>{7lYΩ*^g9&ygΤsRy(! ŌNSt&%{2i|)1!!rE4z}C'nntr$O1\?0 ~~fǏ2WgTg? { ~gP?ǀ'_d%2W~doo07~p~w~^c?$#?f3)ڼM (3739[ /p6o@c; ] (;g@w3 cx?>F܇|#e>u*KW]z֓|FW^ܤ+/a= 6Г@t&KWnÅA= #QI+mt% MIeBc3 ݃1C`=+ 1si+aCO*#ㆾa] xQ1+a8CO*#z JͺR孆a]irXCO(DbsI $iDjI䪆Dj Y1+TJepr^kIV )0ҡo0^0~g,]654  ̺2C:9T ocƝwɁa]r\Cﰮ4'zR%te:ƍГ|:?t =CcWy[,]a]!݃Гȣm t6]L+Mm 6;9T֕ =Sz9I ѕ*9> g̐nf zRαt%CO Г =o[ۺ2Cz? d;WmHkXWfH Gѕ=iCOb=M+3=ps27+3'M^FI֕s.']a]ir]Mr@G`/+Mr+39`B簮̐AsI!ǘsh*o9t t }C@`ܤkz怏,غ2qC` }!teIdohsㅞ1gshHdt >F=F]!]qg>Qb̧2JOf>iЕdT?ds'3(' d'3_$2@FI|Pz2PF̗3|6$R9u(=y,d֓O<.j[yۦ:NuekXq/"á:$@+stmu$_};N9#agR{oNE|LOe]GJX14V$\vDvu0 {S)/CSF2L!lSg* u)Я_V\,RWvisүAt)@8 p0u2ߑp 5䔃)'"q4(7sԒ 1!@]d̴Co&ꒈxF)_FSv$~~c%#+;8 oxDRjVѤ:ɎD6V rC GJ˻<$c)ȯ}|ː1/Abopl̗$<bGɄ*Z\\}#mHQFZ.~phū-)K7@MD &TOH6Xu8Eeqܕ8H⾈\qIp )?pO/rsB(xDӇQ呬ֈSyԩz~aA̢^ml*؇֍:$iR Hs)=9N) |['1bSDW@K4N ?+d--/,rB1QAU7rU-,]Z^"Ԕ 9B\gO T4 GUj MG2YOb̒_$2,$;s X~ TdP^ousӀ A8UIJY짴d Z/="GF=W9 4̚c덆ŎvΙV,Mdڐ[E294X0 =E#EAhSF2n{͡E2=%PFuޕ M!ƀO16EWEjƎQS$߬L=Uq}{w V7+1Т>/ɖQLZͱw$) &=c~TA.A');6նX&9Gh_{ n`QHH2:mvǩ`ӒGP&M(P^"SqC`A,(|a.W!#=qy!ag0Y'IN%4\ 2`+IxjjZN^iwMU֡q2v{Rՙi`X oqr{R_BI ivR:jeZ[Fs\RlriHW n\75.1pg;Hƒ}$s*eˌؐS;zi>Q`H9k҆*]y28INSđ)dod66U޶{1?~VӮ|BKVh["b" &qCgxtөfiB[%\iӟ>|IkxȚe&VLYAb)7!-V<?j:}dTiONb't9d<&\׀#Ju-&EdͻuEz@ޙynY̢zIb Z3< 6 b!h5IqkJ8$OMixn6-Rl.Ox3?.&;mvARw&?4l#9&"G2:ǎ#}pmG:id@#}fK;ev6>ߎeƨ<ώ1Q?(k]yU1m\ۑ?xZ4Fa@7͑?&&D}3Y.COs|1m\#9eM^̀k2?a)"}p*|L;ϴ~pv\m#^* m7vOȟ0Dh\1`~p3:mk;|'>ŀVob?Kp?& /2Kx b[د0 Gf@2<ƀ2}Ip43 h5gpuo0|eȀ9!gaWc@g ?3[hVu0zŪ'B0"!Ŵ k2#XπN w#A&m&°e3\ʀ.' (*1eW3\Cp-u (Ϻ% /ep㨗F\$Ec 71f[nee32rի^ (2- 9A= C {} # c 030Hﯺd :p7= 2|ڒ=eëF0 Pb d08 (;̀>fXUeP3c4$QhgM1)"~ ^(In*RͶ!i7DI34[)I"8Jo$9ёDC!M4D1Dh8hCT$yH|i7%H4DIZ(ID(ICD# Q%f"%iHID!hD$џdMEJ" Ql%ё0eH4>e7I[#U$֘l7!H4DF7h&B7%I"$i$Bi~SG`# k57DIvSGM:;Daa# k4d!RREI" k9D# 6:NF'-d Q7DKI%IQh~K$hhX[ **7DEh4"`HDF$Daa# kź" k5eMEF"uED8"ҰHMh4Hf"~Cd$"UD֕l$"ҲTd$oIt$B`IDF"*TFa=d!2Q~K#~Ct$Bl7DH *BQt͏ft$nI$o*Bl7DHHi7DIHTt$"Md$oTl!:"$Ud?fTd7DGvC$l7%t+qDGT:v8o*:7ht?)p>I7DF"*톨Hc!*oDd$l7udѶ! i7DH":#ac~C$l7DG"2oHDE ё!H~C$l7DI"B"$a!ofNv cl7s9g72p}ogiZOn8e`72fNvNvR━ml7sN͜ȃSpNv)n8e `l7sNvn8a `dl7,p9 ' fN `l72톓i<~S'U&9 pNv cl7u"o)51ܒrW И697./i6:S:xonJkqPřm> >&,%S(duجK襩,:* }yX̓²ta g$?'3 μZ+â{5hv_9h- x˃D5dXLWc])1եVY~Y7r|^$JmL^cxfHţWM|]1|(Tb {Y:SqzYHhĠ`_'s@ c@h,/6.+'7H Ɍu_OS m߷Jوhmp{c=LT]:^〈 Gll[Ts,Vo+vuS^˾І`N*4GǷiJ,[Au ((5/B|hyaSdľ.ԇyͣ..յAJKNXm:_#NCu2ƌ(LCDW6l ߖ9״ӥ=2D!6^R6 ݛ&cL2l̵}U]iN5V'f//TgƋ'ei7ҊUno<@lCFxv# M+"2pjN,16zSސZKGƁL(ICܾĮ{s36(6ڧ(D;VM%e6c ԴfSO?4 8yG4}8}[8Z,H\uD6foFmJ6I=[WO9U|%ɍv bs83Ol+P(%٧{$Cy-[NT^"z'c[ϑ,rjY񗭃Kxa>Aqnҩ1ޟIL@ K_?Ȁ KR~ˎf`8hh& C0\?I6$9|5PsK,?uat h1qp:NcC҄l^xuT0 AdI. r>\YRW_'4_iib (3_h_/s~LC~׿΀Mm3_?bng_&y?'OϹ L}IƯoˤ>;27 Ư ˴{w&gls?@fx@ioh_6NZ|o3)pEs_; _6?m_3J#Y#seLG:rW{qP1 aId[q>'ZøW+V.ۣ';sGJ ܩ _v:B_<ػ\2%x.= &^4@oI );c+twǷK,Tó/FU|B| >EB1MO>ƞ( tB[&톞uIwvSi+?hmetadat/data/dat.gurusamy2011.rda0000644000176200001440000000100714167070232016221 0ustar liggesuserso06Ejh< !PyB 6tennU  iza׷PWNAs0I8wL5Tp1gvR#|\.>7E^+-\&,2 metadat/data/dat.dong2013.rda0000644000176200001440000000130414167070232015276 0ustar liggesusersKhAg鮍Fc}?[kT/*D\h" (j "xě |MēG/EhO?fY)]1oήfBtaXٱ;QSGGp^9 G׮ij}c&$Id' S4$IAfYd6Cyd>Y@B,&K",,+"*BbLsud2)֖ eUiiRS3j:ih8>Q_hFKؿÖj!R:U˫Z-0΀["|ʩOV)YUTO^VVm`/2yB}*76\QƂ~C~J\C[֩bBk _ş_<~D| Lb/mBKxDϱ]8F . C#50;]ۂi  p@7 |?8K΁1)؝J.=Dg^ClG d9ApqiA"|\ 2^2DNlNy?c6= Nd~*5{.GU>[(+{c%󹁬 jkK0c)j%l*mno metadat/data/dat.vanhowe1999.rda0000644000176200001440000000136014167070054016050 0ustar liggesusers핿o1ǝk6P(*BЁ!PmU4T i ԋZe!X!0`d`A, 5g_ H0|{vl_],. !$HG$77;V:EHւȐ,)84,/S^+hhl;6=:sd2?!Ze=IM`6\ kzFIO ^Cw0nrMKbXQ #=2i*uARI E50W̤V|&;%6sg|ctVaɨ$bsYdXמym3LJf>Ve1 Oɴ^ZK lWTI;#W84E3^H.yskrlqd>U;l`< ; p\{/aêwIpS 8s72U 08vjJ jgy{?[r`w$q`%,br}8hǂV}@%6܃}97uμgX?Y`Cbaaf@m ܥԓ~G*WsF@iHI!- &JY*g(󄃹<:[,^)@VPa cߔj{'ME] {9IuZo:aI9{5+⍈5\MhSsZDR*.E>lB1&l>R\ƫTrvO͡M` |೘:\kCa^?>7O_:.a8qa7a+Ind,q ߰ n4?U 'w& Y.z}aX`kCPe3NS\;-Bw(MZwt2Գ=ޔw9|<ѐ!ښP&E0yAJxMO=V_1F]metadat/data/dat.dogliotti2014.rda0000644000176200001440000000135014167070232016347 0ustar liggesusers=oPӤ&"u B@#t&RhE"Ǵ& "m> $$0 (MIZ%i\A'v{9W>eUau`!%==1X0 2Ni9Wg4(f>0N#<|q"Ss 2<ϹPxs%'+L92զ+9Ӻ3mjJ.mKεJۙDs}L/OTltdl:?Zx^o)vu\tSbFyl/ls&. aZ6Uk՗R_NiZ6WWx>] aV}Y#@t:BDg]D7! &z%z:b"EywL,{wHd׬Uvm L/u'q!e(b,YL<]XG]T߂fnmchO|}f6l뮱f4ͷvYp+e#q2upo:c\'hL"0u8? .F+!Z poO*0YC떲 W}k|x#DD8>Gឃg!y߃(W¸)j?7l}G KƎ=]|ǫ$T66m|ȓ{M?f]jŲK=}Ek_/ߓ ^k6J.֝IoIb𵳳#dv metadat/data/dat.pagliaro1992.rda0000644000176200001440000000065514167070054016176 0ustar liggesusersKO@>DZE@э Q!q+%uڍ%3ʘޞ69luF`LK)LiiEi,Cw#gfsr8h(1T́4`, d"A,<("X%P"޽C {ǃt/F<$h~|fWs)p+0ұkLw@ R#~*FGt=Lqk%%]oU@ ηG;D Α/-"X#@&@nDzJ8ql=#N0Y6Qx#Bm[Er /P0zFQ3߂e:QKȟ(=%S鸹▄ؠON: :K? ?wP|" (R Ӱ~0΁yl`mEprǀW`roe< ;&@Q˱S߂vt.~\E}X9׫,8Wp5L5FL} I i!%)֟lޟZ>qp&.Q {U<=)qxExl Eϯ7dzAp}-0LX$ NO8LZ^b +؊O%=2Vޢܹ}dp|GO?,a metadat/data/dat.assink2016.rda0000644000176200001440000000351414167070054015651 0ustar liggesusers TMiOE\ӸNJ5Fe'|[H"w:' 1_15cLCt!K%]iHK_)<{P͚5g_~i8]E"HKC,ԦK {""-Y#Ti)U(x,F3]]qo֏MD hU: Ƣǣ_ Ǩԡo]Pu{wU_j_:?³{ٷPkB\ VDF|5i(7֗ߚwg aBt%LnDwѓ0#z>D_џ@ $`‚$V5aCM %!\tz%F#Qh=#cqĿ{}b<1HL"&b*1p$N ™I"\b.1O, )J`k+Cqf\gd}هޑ^?|~eop >rCO}P-}?f"wQ EƉfgfWH4ZT^>}ᄪK_wB`ϧټ5q4|>5Lx^[cJ̻.m]QhhJ3z!zWǸ*XesIvwy0v9HךAQQ<+3Tm~q/GY;AAY"sG/Ie>nO|qP_),:J st=ݲ̹IDAtID+6otz7T.9>&**.o凂|-sDn17*'?ՠ,=ˠvۏǭWiߝүG\(1pn;@1Ş(w!FiG$nIg't$g 2{bNytI>}"m/Q71KG{}p"dnW.;mykUnbԺEbfv8ӇsDte8x;㖏,>nN:sB6Zp06_^k0Qsgy=MHAFI܆bӥaH:ı4Pc!v黗ʪB\̦_x'ت!$-Xbw&%AV}%8ĹVk=<89vlpOUg`{5X5;@!K)[.b H: G\|ODz G*spXP~(v_ BÚ/(v*V51XIى奷A~pƜʽVbsѽȟ+5MչpXPS- fخ/ƞwm&ZY!Wib=^ MET5&o%Zmx+RƐu=R C+-_.l-FtkfTuZ:zM e}!].W𧺮pS-bp܋["\<}\JG!LK2S7wB/ԗIR)^^k)~o?555Ads/metadat/data/dat.craft2003.rda0000644000176200001440000000105214167070054015447 0ustar liggesusers r0b```f`adb`f2XCCt-XFN ͛X\Vbd`` dI X!v̌\8 ,K28 ݇808p`C'!d1Bz I6Y|*!oO:7A,e[hoAσ@K` 1H=T 쟢aP󏂨O@?rMcVCwB ~u>tsc {9g_i?Կ0;l`k_?2.PG D~  4郙{ @ V$&0vr~^V58ԏ3j΀ Rqك5gԜ5AϚZ Ml0ҔJ()/.\_T. %"ЭHI,Yv$Ҋ),/׃ Լfj?0@H) metadat/data/dat.hartmannboyce2018.rda0000644000176200001440000000441414223077551017217 0ustar liggesusersY[o$G;3&$$!!v{֛CBx}ve{ӕ{%q.H !!/(@ qyߐ$sNT;< vS~Nx7._=WZaـWd,Y٭ c ۛ< N:5QG.j!@EY"_ U!v%] m*_Y!az1Ĺi"VC'RV!xW!s]he[-DJO!!\eZjkx=qlP2:q* ؕU^aνpaΦ`bkؗa. Bk+lyvMƬؖ?k"N֫6gYeەV]e$XD\^a(rfIPɈl[ᡯ4S!+~C ȊRȭ2ǵۼ3*bG%bZf^O2E$rEHCu(74&.z/n VȆt)oD1ыc%4MsxwS"m@:7ٛqFT ,} ]a["nq&0Zic$m@.E'_ֹbyeC2.}x^86]hNGFqN|/d x%\/E2Gd3O:\%-H*'6`Bpteuр9\= vcɵtL#$.k`ƂK^o%nfֿ+JG29LݟBS- 2΅1Q]߂s33SYj%BqC$I*0ZNhx2Y75§,eȵ}67 f]tv&& kl箭V7zɸΈuZ EPi2Q ^2~XͰct%#f[FɅmqhin{X_2} ] =x '(l-\GϐIO_`?N@ YAp5sX#931*b4׌~K3u ϒ<|by(Mm P i{- X/RY~mxb ?g;O0vQ=a-)ƃ5Z'l_qfjrO}%"U Jt~h9ɶQҳJy6dKi΢·I퍓2h=L:MS_IyylC$C~""z?EvykIS6'IF_ {Q]"pΛ%Wn֟wXb00 $o`UӏVBus,1iMPf Yh#o0 Q')o`ߞL̼3_?cfadd:. `c)]ф(鋚ڭujMq*h'[5m7CX) R_N oD^Ft}2I ^ڷ}+'Z#B?Uh&O[ڟ6M"s Q! k3metadat/data/dat.linde2015.rda0000644000176200001440000000473514167107142015460 0ustar liggesusersZo\Gq8&i\'i]{7iHDۭ:$x}=z:hhG$^@DJA( \ _͞zMK?|s//+"* HL*vq~|)aTTI۵hNaN ]2cB$`t v z}=}@p@pH!a#GCa %H uR ƪS3QtNp^0.L <#dz䤛ϯT]K֪]cjj9s Lls z0ĄU*-%k10ӭR})Z f\6B6Y^UJtk#9'v[NXexU/;Ǯ޲/ۋZHR+ID4BGa]qI׭BĪ]rF r킣-MN[ֲF53KU7oek׫srP ̛9wU'PDfjpvt.ujI-SX̜8XWNZdg-,uN4'fm8sl&oQ焙/ۓsBHs:*U.%U? UG{-?෿ "xפ>r,yoS@yo >4i!o9>{ҾKov3(5522n>F3 +B:Fom]6V%WWMlJGC}kj ƮihmlxhO5̅*ibVʲ6OK{3nDkZ| ]6!67lz֏M֢}`kߊ *Sُ\ذ=kMofoC[<)Aܰ paww_: igM?VUXT?\'7/+_q=kM;9wi/E۷h36M{_&xʸ\/+q*?88,1cqZI׾=Fbk+G8W>jc|Vw#3Nj^#=)˨8_$9 j8Og8_PX*\m$@u=E'-g[+E?chD3?֟/A'}B.:"[nH_NtF ?~Kk!7=c#ASeoS?bi/i8nģCH {D68JC^}65d$kz+.ygal#1~k#GSWrCcX{ u]Y>_pH~BVAv1X_Xg_΢ տ[!w.:?kdoзWWOS-: ԌuIqfudu{=W'eԯ&e%ZoRΏ]5ۭr56kQV[+ dk:њG@WcnQV&e6:_n.{/tfߺMY{~'ÎsZ-տ=*؅ȆԆ\1.SRI YGn2eLY)SVFV*JҦ)+]#+J׆6J:z}*[CW=z yҫQcܹ4Fs$metadat/data/dat.damico2009.rda0000644000176200001440000000076214167070054015621 0ustar liggesusers}KkAk&3 _'(Q܋$Fz$Czg$^^xů'pnl5k76[D4CQL 'DQ'X'$Jp _DNg{JCc3ԖMxEԺE׼g䮲.w5}$9ZWٗ m¹;µ. ^+S=^ARNrC۴*xPyvY1)ص xǡ~C'~LtFkreype=tn=vhk`̃7XA9 .+`sOYH9psy:9>ʞn3!0^C<&oT4W/Ո3W9 7\0/;сgUU־bΪKI%)TeE*` 7Ut,JoZq͖_5a]`=metadat/data/dat.normand1999.rda0000644000176200001440000000061714167070054016043 0ustar liggesusers]N@(Wb\o\&JoAHlNɴHܹ=|4w?x_߿g9qc%D!Kv;3Ƭ861f,55+Kl6 ȃX| < ӞlOxu`>ȯ9>":?+[1b7ڤf YwLC+l,}l#pMymP֒=I͔1Njometadat/data/dat.lau1992.rda0000644000176200001440000000131014167070054015146 0ustar liggesusers}IkAkzz2A20[N=MX8E:ݡ'7<œ@3MV<꽪z\O~./H ;ad S"mH[0dTdۍJd=UjʐT+PJ6O7UzQ5reHzZd4<8a#jD@~N8S\Kc)xiSNJynq 8]v\Z#ydqD-qf5mvܾ n{q][L]€+KT%ʹQz{fy2~C~-8,b)22 OҘ}fqP6]+!2s+5xC%{?|p-CQړ\}gip^%!DjbQWD;p+xyc\A솿na~bEoǩv:{ , t?xnC-6"K.9,'it9Ei=As:):˵)S5uohsYOOI6懩X%k4k|7x)_.P4߸4;cU7Kj%2Oʺ[o_Q|vR 9X3>~־cmetadat/data/dat.dorn2007.rda0000644000176200001440000000137614167070054015327 0ustar liggesusersU[O@.voQQD\Ć M\Y /fhGҝӖ cb1_a@s?tfZʚѕtT\Y~xcBӌ]@8,_ёqS>/@27" L`G߉C[JEޘv;-14{(@Oic®3銭:t3bMʶ]U"T2ü& }mP b(c:D Iuc"ILp[:m0BT=t_'b DV=vnߏz?f ؘj mK쯂 ٟC/ҢThÄ?hgj_vb+?9foT{YqBy{췱HL.ٓNs[dl0h‘9ڵxܞD:׿WN\ob7o}΀2+I&7,n'NwUW6^qceCg&LhϚZ z6`qIiJ%,Ŗ@,EŰ̄)(N12,/׃JL @odgCA PTqTf!5h*pp"krNb1L9ɉ9PLK+M$,oܚs?ah!VWQշKyr _7HӢb8`uPU hd4Hx;Z0TXNViĸK=JGPzthCzCz[-=ud =⬇q,z5E|=ѡuiZM5µD0Ti/Ռ!zVD'A=zqep %K.\A np 7A npC7! npC07 a npÀ0F7np#F7Qnp(F7 Qn pc71n pc87qnp8&7 Mnp&a2)oN@= z(1."W_+|E"W_+|;.L"W_+8Rp"W_+|E"W_ |EmW_+|E"W_+|E"W_+|E"WPܿWTMv}wY]jR}腥آcc wG|-U}a ZZ>^ZG}]o˒!23 nLePآ c^5MC1E]29%-.:ǂ,efgy{z! C5Z^.i1g(1Jag]y/sby2էkS3=]gݘV|-w'|^֕x(864X)by5TZ[lV5YoK|Mkh쌦>rꌤd;[vζYY펵ج;D9o[ŔD(, WҲuFA;kѹRBۦ3wıM+4w/6aLНSLN s^fECɵͳvA5)9Zo yg-dB^wn7iUˈ\[KKl?ʒ3' )uRNhORfflegX;*Mj4lSjN)#lƓ]I+uoOIIBV.4Qp٧^$.xT2ZA'>cdiEXi ^T%mꗌcLr,)̔O{|lL"eDuHxuO=zPnr  IJ^m׳gIBde&)%O=^!)ҭ;h^?*Kd1]^"^,ͥNkZU; Pck Vۚv[tuVwm4/ iur)Vm*RECgѱpt:`F Y/oI;::/Z87ut%F]˒^.v; #Rpum@ ZKp2(b(juǀ&b^1dl)wv)Ӆ\wU뗴18n:tԺ Kff[IA27wF# tBh3DedTS۴b*N˼JnKzAQ dRzY$]d>ꎧ>|]o_ys}~L`Vx{0kg__[(.n,C7]=b_n>?be;KV7)<[޶e,̾=l>N#yd7[ɯg%1WxO0,JO|=W4hxjs{|0a?xukiGycαa0yǽgVJD_O^+x{~ ޟz4[^y}X>T5/,?M3~uW#鋎cL|"7~1Oܰznw_];ro|}?zK͇V}nz e{?غ?&Cq_|6/J[ڕ>&v4ɉQI*` O~ySRs*)+jJΕ8ɒb&?/~AKr(7MnÖIc+ fc&9M7A.O̭zإ͝Ci7M4"UnY X[,?5ֳmetadat/data/dat.frank2008.rda0000644000176200001440000000043114216153110015444 0ustar liggesusers r0b```f`adf`f2XCCt-XFN ͛XVmd`d @99C9,6#2Q H@n.BIe8 w7r_4PK-/9 @ МH@0:O\54%C},.)Mr2AM$%5ICI.AAUӅb`\INn*r΢r=G@fj0LEmetadat/data/dat.knapp2017.rda0000644000176200001440000000343014167070054015470 0ustar liggesusersY PTUT"ؘ(RMaD"esI/܋wKM44Ә9=9hIaV|~1H`MseeELɜjf8.3s!=y|3c&3p1 jrė2o臅Q("ZdKI&dIW;*HwUQih)VDYUixf-%OmA)GMPAeòD*2ddeE>Yt/e0tHsxR)TK,ȊȆMhT/͂4KnBfv4]2IVA 1&`L8r{lxHPlJΖ%]&-QJvyMSm;,b(&P.Xe;t (s=a`a~@l88рqѷvcԿzEq ݌! aAOrP!ه| CD$<1zx?`@00@<`λif$$f7҇eY97=tDj2YTɺUŝsB;0HCMyI;ˌ5biR"l>% Nu7w$&$%*KC=JOj0-+)+(M\OZ/Q@csQ]_ÏnʳP._2r~3Y-λ70?=O>Nםu^̦佉9YGG\HVF{87y;݃Rzbٻo|%gמL7'-,#g64= nZ@_3i`Mt|65e7 ofV7úw%v@tYsg8j}j?b _zD65c.Ok@/KO#Ѷ<{uiWoF\PvB.ڃNEse={my!Wa |}M.^?`-ꥵۿ| 4?\ymWʰFС'G BZV}$z=;` swiDTv駭fi֫T}Dxџޏޅ|Mi-⾋3p>WHI&<'y80G9׻ ڍu3  `@l6ʀ6DĘ r1#=㑏!Gā]q! sga@1dvA[x1A<τ5@?ɇn@uǹYj\JZAǠnӺjvyx%#M+eU+jff qR r|mE,m&p2AL629\LL$#9W}uarpa*!:[QsYWùh\kORK- DXBKŒc䪖AC:!KlKu[XɱkkgIO|]ҿEjC)`26VSjA!cA,#LH07#4xZB02ׯ! 0\[ ȓ0Vq]Cߛ:DG{vHw%~9oh.ٗ\=l՚Gvi݇Gk_^MP㴶']op3I~msoQNm[i-]|͋OoZS/˰wM,uFRat^%ږㅣhTH?mӫ[E%[Zm5xv$&mMguci9yjmN7֖a˝:@[G%} ݍJ]@7lu 4p_ғH@:7q ):pA+>}[7bрֽv/}koڲ0f^ˆ4i5j;v湗\횆S ig ݇2ZgYeN_(#^.ОZvjpgz(2ݶ誝UdDOunuAOVp <UH?]ҟu X Z^}-t%C=:0dY|֑d + 6 ^_&sc# Flţ]}\Rgx(kh S{؞3= =~pZ&v)]^'"UT͗ l[pTs0U)_[l^VWSp, gͮ5Uҿ{I/vI$0Ah_0<+AGϚ@@MYS g<+@ZACҗ*I}6bc98s ,U(z謚"I`C08x4)U O+?Bg$H "хA͗Bqt0TI'U ]ׅ<mQɸ`{gZt 4168BR U;O[A  2%Jq2ݣ[Po󝆙XCgk^pba|l N906|tа}@23#`dnSʼF0IR\E슩% A ͗{|23F[<-?6eu?7|IgkSڪw:hI_#fr$ח$.4}l-VX1+$x&hEB96DsW ca]fs;1&NdE>(D̗z9>#) }Q˰?u54F+8Ucaل@Z⤞dNC& Jqq/j]x6Ls6pRF%\ha Q|T->H=Z/'%O>*ąc6e1cw3}jRssL -FvMYz3{Zmóh_֟~\s%cڢYَ[Xu_HZiU9uT2]~Gٕ521N_LC)IoZ)yn̅Zo۔21_hw]>߇(ZjٶF5s$]huf}|Y3yTUo%.|1ŏՌgY$ΔZד<2q1죄_Xb-=vT% UWo:yɁu k[X%*jrX6Vmʙ2F@)Xx)z2?떼k/h}.q0%jfqK>|"[ Ry{*+ /N-7~IKĸݬ F8ʲ4ln˱%G\8N[/G)]rDQC5E#.^Q ɩ|<)wu|ԟEGQL9j ZJޠ-9n` h-Ե3 aK +ql: Bݎ m(l> :3jbkս.<@$?8!e8 )ow(2@`Pp\ R;jnhm#ч7кBC3?EסH!*}RʖNù+0/)qR9m%HH J9- hWݼt*#Uy+'yݴX7+Y:W`M rYԻ97mqyWbi3'STT{Nh,4Sy&vZi'gIݜĕt>+J"&zTO,kDMA4; r0bR鿊9n"(SJ)F |!/XcSJbb(.;_ t96 &dVu̹Jz•iNYHIi>ks{J$W@iik tA1) p.{upVrz783Ӵ(y@r,jHeout{-XƉ9PpqMIiDm$BQ22^k#81@ @]+JC$rSuI\DX_E劫:Y`e?V)Via0];.W3G`jpB38Wj)Q<=hWm⟬"_#PD+qJXх+:Еt"I]#LtwbpUߥܩRx _83p7S[3rW QATԓة J2pE Ye#<ўeOII˰Xih >YFvZXW lҲ-k%MvD9S*P>%8(+VvWtFԨXP>uO]]6Ml6Mlۍ6k΋mfYւ\ E+;71Õ(Gy|!/nS lEEg@ ;.P6IC4۫en β.V'~oj>ʔ*e_{:D5QMTD5QMTDڮ-Algb,llX"OW.1ELSuo*?SASԤ+06?m:[C2;[䗩eTsyN aU&@L h76ejȉ{z֗oMiAEbzaCyҥ\G+;7:Yb89E,k/dl%gN9N9C>,aRVokuθiQU8sh_ +Si8AsŎL^^w>)؃bNS@W=toEVJWo>|e^f䅥,&'wZ[.P>K.MBhMJgCJ򙜟Z\VߍV?]ࢅ$؟Ee@{ExvV?ED]y,ɛjs."e QJD)QJD)QJD)QJAi9†:rOHOxq:~h^Yr0X1._?Jab^'.fU ݁U#')`?".8U#2ܥҊ~|Fkj:Ǒk so-v\e[> g$ڬJ2wt:tby+"TrNdyxu-Q͈Vףa\vXl-ȳdY޴5#mΤylJS\K^,svtAvF9OgdZҹyԌ|kk5@mVA9ߒJS|/O7RdZ9b+D;u*PY5vvchy٦f +AաTbmsA#.^XVjDBnTǜY*yʺO\s5 n9kU8m[ *ΕwG4yƸ,T`6Rh6/8-6FZR[&ƺE0Aܠ1$bzCɨכL$>WtQF1 qs{;]xѐgONHH64WɦX!FbbgKJL2Ƙ`EIU/?STG( I㒍F '&!>..\8.\7Ŋc7ц;4Fb3F 7\@. ZO0yré،>i2 cƾYx_Z}7 FSbb\p^jcE.GB=RQB1LOI d eTܼ8)ɔq r\W\1qX6JdpL4l=Bu) P'el`<@aG>>6Ozo\M rA# !Icx86#l9/%=E9;bs͹ncTLћbƄH ĸ9r 8 rZIEZ1"Nmڡq}H2%'.op>,R81ٔK3="fno#5R +5P(5byGIqQ 5R_9{ZDEmN2_%8c}WMQt8)$ )k*y KpJH' ;7hՏ)|G<}"t/䩶[ٷ[cըMN4*Ey˘*H BI%c7^*֨"1THHHHHLU$IU$ɡC4P%Z#\~6UZn4+ EESIR{bkh!Au| @(.(U3zD$@0UCPqCuj"/ eee1vŸ8g#VbNbXکIzS^t&Qkt%1fL4A$o$ ִ'%$kU l+6%kR QITDmgX%TG10Mq0kN5_&ǑXg-/$ڿ8IwΒ ֕'1ey\4Jo\.7!!:iٮ׻gXFm@F  9BpI # s>T ccti+.=vmP WANdPmuS=y6A zq$G@ Y5D *.AzyGyjAU%ĵp)"@ t[/'5$&> A`]d4+u? P3OJS| .#Op %idyQȴxI 7o7]A繙xq`ϗx؃=gtw>{kځKCmvw3W]fM;8_ >Ns>ω1ZNWO{/`{tjj=yC[?rX?<޶~.80WNwl;&=bK&z]];m-넷&z;]>xUS|wU cm^k&koǝ}:`oƬMǷ>S>w^}v؃<8^ݒGt{h_xuΝx%Νiaxܩ7Kٻ{15VA ={w;jbxs[KZZU⸖?Vg{Rx}Nmq+8Vًh֮WOcNtuGiW|# Ykb}nו)xoëgnmxsN6Y;/J2#=S.{+- zs5\כo>x<:㤽KRmxݵ\2-_BvCxdnAWh|S|K^ꈮOϷ8>M}ϼ[>շ%W+;雵"~J9__kU?>a3h4B3m"_o:^*͹e^:.׿UWo1˴=&yM~c:޾D~S~.JzZ?rԚ]as܌#:w-x>:գ7#f/_fum|yϕ;6Jw bp~AMu o>y`AbS~K}:~e}tAWj>S ;YyH iK-޿=؂R^gK3wusj9[zk{6\m_XMNҫ]-/?x O_X_@9<}^6zE/v*Uf_գjzhcߨ!_2Zc_yG+Wʲ/WLz lLLx×;=G=F}1xS|aŗoZQv/8ŷZr'myOwN]w?x#sdia;5=~|l[OL7&]2|;Om?rVFwG_jy1z|%Gt|+ݞ^`v>^yޏ7[x]fk><}>}eqw=>ɸ?[[>#34^gݶAq=U|x׻7$~}ѯnu.xuW}3Xw:Zx?$^]2wA<o72 xo٣5#PnN]y駦ܺ <7r/G{~W_䛟3էF'ރxxf| m}Ioo~ϡS7,j7t_γG.Ik:YZŠn6x~y:\8fL^2˾ ;7p[⹧/z"5wn-Ѽی7mSqxGa`:|h5N#.7qJ{/F}t収;w\>9xKv~?b<`C^v3?/G´=[ǷN;ύulߤw&meSh-m;5s~ZwZy7j9O|S߷ g5__][Qvy6{yQx镟ri,+VS6j~RJI|V/{>0^1m|\+x{M?uvb]p~U˧k[$hi@˿˧;:$hw>'PԆUm?5Jkw~2?sb;h >_ ǦfOК#߿ø)Krܬw{M\7,O_K~}>hG;SC1ڭܾFxnW2׺O{wuշ nrsks~u~AO|FGO/K.ƛ:F^<[o@[5qw>OG]Ӵ'mO\lq:g,ڱͶ$\O%Owu[kv-Yzݏ:}ro#_;w݉O/2}^9mȨoY˃]Ƀq坣s7{&#-.ۧ7ëx5T>M n^{!g0SܻߔD>Vo]J_,2n>|:UZ^{+ηڹx2)>w/EVΊ1tZ۷WRfLJyzxӆ^[-=>}{?}]ޝ5t^䇃MwoJhݰNċf6_x!q˛ ,B^Qi{oX|3㍏M_n]]Ӿ%7;0O>/>p-^/m{?>}ߤ7⭯>>ָqΗe Vv<޷.lbOwl1g^ۿ6w__Y=UO4W|ޯ>Gת_jV?M{߯wjyУyjzVNT\mk׷y,ֽk&MoMML\3oz+7N-,{;oiMkq߂ӒN}3oؿ^[la{L#yg_to&>#AO]e/]z⽶OzfNK-L^;s|s7_ :ƓܮAط`Wb'^^oμ*{7ڮE풮w:xk>xgl+?*[]m[>y]Q7;?uZ{>po̼}ԫ1K RG7mxT%w: ExKk}{=}(ayxѪk-cnK_OVۤ}QiǓ}첤qCܷAo]ݨ6{+~\cد{q'_Vrgqނû&F3T>4iKwZjg:QNj=ǧ#P ioNWοgy^OMa_ÐݯL_vW}7J89&W;|ב rp ?fux#]2J.3;8B~pzn?1b[N+WOw}"?HǞF>2'ՀO~fXn1ٱEm]uSpҴ?.鳧~f(-jUOyIX%WӆO"~sܫo 4W%Tۅ<}fë'㑯qs|. # G٭K˫i89`Om?-θf|jBjT7 >>ϡ4XX]\ C۱oT0ۭ$HhZ%q\J"SDr^ ~\D,ŗ>:H\'[T:/$-VgQ>^wqP:͠Mdx]0d2q2!nij@YL.Zè,ΩK A:/.<^0Vٜu{FU%9LH$-s܌3M\mjo_wUxADB$DB$ "iNjlP5RcmX?KCXm(UZ3N>](Vj-Nv7)gom[}aP럫\CY^ P&f:-ure-0ԭ:[K_//o!o$//o_pοU{W['\//o /%/o%#oq"opοMMyX^_^nG#^_>Q$IڣοUm `R@o@οR/ S%[%[ > O0p'.`:C P`Eb 9.<{@H/Po0p/>< x0(`1'O< xFzYs1q/^Lx Ukɀ)o͐;wۗL|00ckYOf> K_VVVV6666ll| 8[w?~p $WoN'/߀G#?#?#?#?#?#?#?#?#?#?#?#?#?#?#GGGGGGGGz#?#?#?#?#?#?#?\ GGGGGGGG9?jSS O)?SJS O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)63' ܌p^k;2ږdMRs2^'. [1.#{(dcDn*$%FU3\]i[#dwW.6΢,F;ٵ߉lNFT*leg$&H`dJǜ߷^metadat/data/dat.lopez2019.rda0000644000176200001440000001237114167070054015516 0ustar liggesusers] tSOW(m*TZE,miI S}CE* \6QPEɦ"XVˢ?޹sM9g|3m^!7DհOZi%ene04M[bT0:ZԒ*:`$mIÅQSKށ(R`Eb6x&CSx )cBu]9}S—Q1t:o!?*KLO#)}{QPOn?XS,1ܞpǏ= =gѫ]+ĻIq*Of(1;sLNA5;Atx}>>M Bє {o;VVEQ])c]PaaV)ôj쮈m7ho2GV_1J+Z(_yaY&^馞 ǹiY?ʫ%wISbP}㢕0F މGTdp,AU?|&*O7\Գ8WoT1J*][ؔ[smr?W_AqA%rȎ.8TC6v Kdn ?)/nIaWIp׷FC*T[kKTzkZebTOnoPm[cݍ*?vǘyz#擅sZeheɕ1;9NŨAu?k4q ~:uEZ,3׿Ψn@u i$ʠzWb^=0/-XxPo 0QM{ ?Zyؖ=jvR xx뱹s3.<>6Tl{l‹\4-'#ϟ>vw:<2{_fϽnܧ7lӌm=izoXf< 1 El|z6n$MFÆEmf↑eSHf67ΒU{sG_vk74gώqvjdxU~$#t6{{ܻNֳs.xjij = ᙮WI OsfwI׵qS?\9Yp)gl}c]:Ilܿ@[]Y5pͮS8p7؁wGp(&`zC ?\>6 /0<>3:mf</y81<+b>lrKm:V7s;?:3-ˇz7 _#[/C>½ m-ls/`O.}M|'|0o6_V? _E M>3bc~bۜEX @jؤC/}լ|~$<{`؄CWle<)?qco~Mݓ>xӕ64g6+_{:e+xGc\y~k`tᏻ:}㽽q]yppfևo1iy_|6LB\px pC~?(1x;Xʥ&l[`38.xhw($ < o{hqX/([,|dX8u7|@r0u'` |@EB7 {s29r7X7cZPϛ=FN@'w9$x$#]i L|@H 0+ ^xY3c}&!%9kqv<-r|0uF^'z.fτ<7P}pO\< q,Qsi=`-/N0OxyO;=] ŝ~|'KX97Gf]=h0f%O[y֯8c8 .o{v޿OK|?~}e1[dfPs_+n. k9>ᯟL ! G|Lo%|wn/bѥZ&0Qi!_=V"!u`p<|w뿐c3x5 ~Tz q{u^q4nޱ`ƚu_%<sW,| c˧\"B l=gJWSl½Vpم,O[ CG5;ؿ1j;ztO`vb %[`ouB`<_y W'95s%[F^Eiq3 FWX~5N\G دW6m+ B蛂k@lhYFC!{ bKwk7jd5O)Ar |oT^/e ц7__6pj j>A<~S~ j_a, K5' Z?_x#G>օ;ѳ|1x S庐 m__-?S^O'ZF^.ZOO[B =~T\PΔ>WRS@ZM`RN:)>7CEۙ/=8' qɺ#c0t{kznWi Uq.uDAj_p])2 #ybNw.zNf8ʼn k.iS XdEbr{t3;zc;)řĎY?$g;oHOGzz3Lg&= YI` ` `_ = = 0 0 0 0 0 #0 #0 #0 #0 #0 0 0 0 0 0 30 30 30 30 30      + + + + +     I]K]5J]5K]ԵJ] M'$4tNBIhҏtNBKhz M/%4^BKhz $4f AB3Hh $4fЌQB3JhF (%4fLIB3Ih& $$4fLIB3Khf ,%4fYB3Khf "Y$404?pjmetadat/data/dat.bonett2010.rda0000644000176200001440000000063614167070054015650 0ustar liggesusersS;OPDc`SJĨ τJ؇- 0κ 7񴴵&_9#WBq1(΂؃ 1@)*v#$#KY 2pLR!+n)* kFmLf {9;!-ddI|eY .zp3%L .bێ2aɒ둒-8y("f4mݾWkπ<*ۃқWy+]\(Gy NzGcA 0s'T~Y'JSS~?bL-pU0%UN=ܧX<0bLAYT(` LSAp̀Yp}cwfd *I%1yn˨/Pˋ, ^Ny#rD* ݐbvt>;]=_f$$G諺 tU%uz5irTtՄ\RU+xx%iB_].0geH|">_J| ~%-m i oFiߔUdwA p (c>}= x =\Di\;EZw%;vc_ty3:Sς2;`lc8 `Sz[GB d+:Y( WԹ_Tz{lIjXÚZ.E'`kpmetadat/data/dat.collins1985a.rda0000644000176200001440000000151114167070054016176 0ustar liggesusersVYOA]U>P4jA7@GB|kgiw=O<'-gbNNKWSgwMlU7BWx%G>L6;:!) OT`5dVu$}lb\[B8-g`=P #;DS;8 88Dj1͟DD zx(fޒT_-)Mj4[E:-MEImgu9̜Ua92ȯ#5T)OT^ ٖ2( $Ay/ɦb`^C6MzfNڮ_;d Vô;mLEU]А R&Qib&@mNgA' >4Vt.8Y@wA vXӭt_i?җNc?ͤpTD] c+1`9.5Rލ,LzUj% l0xCnFQ9f>j 5/ >dz?1nh$w˔$C{ѡX(WlSwI|O~..wC4w-"?$6\{4~~Z~.|?=* #dX3k]Հez_#(9&V4)VOkk{o<4oS.Xkk ;c/ͳK(%'r.޼~fۍ$ߛ6y5̰d࿪(I"nm@:cr,/o(Cw~ pp% ) metadat/data/dat.bcg.rda0000644000176200001440000000110514167070054014575 0ustar liggesusersn@ǩbhHR"AJp *6^7Βh*'x8yހH.qRO3ݙ⅕KDcd[+bIf4]bMxzµ U,P΁J:1z ĔIݐ"NDlr:to[ "HxVYqИ\bRiuep)HtTmA!CAKzo <pɇՖ:ŔWw8G\ޟ?/D 7ddYo.e?c[F <sMct΂b$䴾N4q*c>Uz+##h-;arkG.5 +d 4}St..|*N\&:t8yasG.nbu`.gV1w132%q?k ʘ)s&"b*21OjpP'5*dSYbxI"D{ln$[Ǽm/vTQ$&5հMBG)6t z~j~wmetadat/data/dat.michael2013.rda0000644000176200001440000000201214167070054015750 0ustar liggesusersV_hE^n3%J3 Km,=kڇKI}s{cnuwl,i|iQ[|(ASj>BU|j}(bvgv]s;}o|#O˦EiSbJ :̓L+ṲLx F/ !k Cz("fé(df`ڬJM[(g3T>#1^`_1/:?:4:EB"Sx,:tkt`t1eyDd Nxv<$1σ=ђYh럿-y幡ZvRj- X4hmy ZF4U؃<yR9^pS8Jg.(փźOz?xu>rAYl<<R!!΄Wkɓ]8+{o*R".A/_ހYZ;tU6+W‹"2;z=VQowԞ[zcej5Jbi0VklpEŵhKYP۴̸4&F7fL+Lgު3ꖫW"pK;g V&םƲzsa٤lQN8Ec&Sa|fs<~f2hkOsf1 9nEsT,CB{;-Ux9zn$Ba]&-Tp&eZ1DMj G5]2&p(^ph*3;fe]iZE>)|p~ɡ|v+\K`}]B=ovzLJ'?~g5|>rcf{ҿ7}C cGaw'S 3--`BZmT]ny*:Q" :rVFMpf*3Ոɋ'*6ɂ:kY7SgH/@G|mhxW5xV y metadat/data/dat.lee2004.rda0000644000176200001440000000065514167070054015126 0ustar liggesusers}KO@Ǘ/51M5C4o6&[ɛ7Q Y3σV$ BHD5pvs]Ξ*DJ`m\Ɗ)pd+XF2y&OHa*& ӦKat gI< Rg>{AS RǶ ,Ƥ8gf/GyW}YQRZ)U= zҿ-w6]1w^whx>Zq.H[cE <XlGsP ~{|+:U3h9#zk\J|wޱtwj4a>!0Ĝx(H DMl4H#jb2Cr;;4nBq|}7~7.܈im`4e9͙ٱscBS2wgb"cXcLN)92:潰88Zd,TKPg Fq tp^!p 8B::6:O nlr%.cwUQ[mk8호58:T-딐#5'6:|a9:,\3y;Ȃ+JoG99^[i_Ѹ# |CN8RYN~L1k7[kijnj,L`zh>nj054$5/LC^Ocfg%iU)OZ \!yNtFsa7h/HqK*bc|A3@|mĀ`Xz~=/Y`jr m-=^Ô߰찭W➠bچǂ`V2+:1bqyҏD| *hbDZ4I4&]3&T8GNH@⫔?G7›n!FiyfxvV.dEXt`4Ylc}ƢC,Fqo2횘d0(S 3|O0Ry@5(p Ǎ$:('Si 0LuS7>^mJaFZxin̈́Mj%n&(K\J!{M_u=!¬=kB۶n7V i*7ars.]qM!6,sCq`d^T4=OLp[2{wvJ#5Ll6M{OXuS[vXfʭmgjseJKseQmS_Ww܃p=ݿ M||| |||ׇ=' *n3Oh⒐J\j4hen ic4X٨,mW$ʾ ;t9d9`ۤ[`>.}Z|*Ct:@{wBr/Ź_yP&(> g?R@..`=@|?XyCr} @RrH l)MM=XJFºA ɓ{E$Kp+=܃jÁKд0G]7.f;+/2Z/ǁvZWϡzV Jgك^}t&E?ʝCOa?& ʰT֥$qC@aA&vx u}]`A66ߓ,ޔ);i.c{@_k. .]Y56_uP0TQKmqj *+Z/1.~}'3Z|b|Ux|D5] gOySRu|MJb׮=Di۞K[FmtαjgN EϾgQScvPR%ؽ[Atm&܊`nn]aYW !;.-/:jNP.q+Zȏ8zOaXԖMUrcT絮؞z6e_hvf1DΉ jkP;P(+jփ];{~Awtx[6@* ]a ]Povu$jugdcu:t]kVknyy=Le#tkEn/=}AwNWC T,*e\T&*XŒJvʓ!auH):x O^0M FbTf#T2Q%``4"J6p%xQ_"\#?y6jfs#d[-`ޞh W.a vqҿ~tmvSӻlhk{V{Eg`NC`Ȣel}i4PIZ7L0YxЍ ZIhtV( }'2SrC & eS)cgTGezRku,bw713jk4LCAjv07njg*eo\3≢' U}~Iuڅnv`˷:|S ^juX|Odx3-nXuY֝r{zA/Y|cE8Jծa!(z C7띾5s մ MW-wpn`ʮ9ٜzN N!ߖ{53XvlRn{ r\aX.-񃗴ܖdXv}g#Jh=pVMwh֝v% cF!jq]I{P  dThH'TWk Zn O}o.o*vj}(e93hv}Q-Mohk|#A;@a?rʈ#O8^7ym[yv)xIa8봷Mvo]o[3M8TM͏Iy" uдDX?:V]Q-*l~l{T >[J3"'u(V&LoS۟gX4<.;]{6bvʞ]"&|QjkFNKm4;zNne{KEX:VHNR:mo-q4e~磞v#)K9 tbT!17 +^VHeղݾUwR޾(H4YLe lwX)4g^rhYǓ8g&S88^Q\gW]jkR#ՎRbiT_6mG)x۵o!w0:T6wYCtV&| Ϡbn}˺GawXUeA8:eݭӖq䲡xdnz0ȹ2 }]e/DR- [kwپAKvA yP[Xgwm4NPYHmM0.F}ۥ",-s ndcOYuCahADQe?cT^4OuD/z432ӪM@9|8e>Z ]7o]}O{QF=m7U:be}?-q2:_]Һ)OD@ 93^nnM^ _ כ3,CTr}ӮiMTkq{j03tr 0?3gI^^ʀ2yFmJʰ}P vY,;k Yѿd@غ4P43uz]e3VåئiN { ڋ[uuTlcY'qT~uNv;}ב})RpEuk>ݯ6uh 29Dx]GDƢj@lPMl<}Y8W!L}'NW]A,}5;FFh"BWiR(=Mo7'x)]1,]ݛނ9cN[[¼WT"mPqs\uYGg[\)5LH;pս޴jS{봛LؠgVƟ6H1hb`d<:MiV * jr2sA5+m(Ȃtryd_U`dI)q:k2oSi:, .X-˰lBvăhk?o# SoAhp:agO,]>atm,+ufʧÓ-,tdAݷ`m`l%ybX|[UgZ ;:}B~w6rNg{y<$iQկ{; b@ U\L*sY^-ַ+lQEՂAwUw&Zӷ`"?DZp'm9{ik@Jx`Qk|=[+<,T-=`$yO5?;52GaIJ vm]A䇒y-;ָː0MX4"Sq8N:>=`}޻2y:R{)hulṿ,Z{s& ËSW?-S#b>ʺ6=!Ң;5< δC"͵n4:MeEY[uxꝾ)3<C5eDQF1#p)[bX3b5AE@Nͯ`-ix&a &ʧ;]ˮdr~B(m7]t)LrCnghVt+t)5yo*_Skӹ&uo-oPfpU^35U>vMu:פֿ;j0v%Rkl;^Bb`kE3@3hJU9%uYY+(Om3/ދlǢPL`iȰAGwnM5Q%M'_0iq`̱kJs v4ט_sz/A2YEs,qUβjNx޶-mvO_] L+풴C/8I=/:1-;Ay |*|Qk.͠;`Bc/8z')dDفlB_T $r~BX[EjtEb84,ȋ4iu k {ًÿh4 cfi_4̚\^iG}ff(yG^몣v0vC.8ml]߾MoW ߡ[FG=2^Q;@h:y'=`^ܦS"lʋ`ɀ^ OHח*WJѬ{^WIOCjӷ3;:kVKZ @Y,U@qP@i2 dNKK-A!JI%ACttC̀=zDy9QcAzA:z%APAԮ"***} OAó.AA@O]=z *Ysз-^z"ՠП-H@Aˠ 2@/LP dlPZꀺ  n0#>8O>43ς~;ρ>苠/ ]W@_A_AG?'7/ A_? ~ ̀WWWWWWW%_______o WWWWWWWWWWWWWWWW ________K ________A =㸈q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ=?'~$O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'_$ I? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? 'R O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?Oi? 4FFOi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4{{=4o{={={=|~ϖ>ZvfڮS2ԙeq܆aꦲѷcfuծ;,v˞mCJۿzs:iJ{3-a5|ۤN̵ꮩZdh82}Nq?6{d:d m˶cwe[kՙVrmЙ2jkN1U Rבzj5<;v YraL-!x?mLWC<ѮVn, 2gɦs]g^p5h48״;j[{i4d✁Q}_2`kDHm7!,q|vjMLYyU}wJڑKV"MfL!-4M[SJIk;;iuuc۶S/V#vPWyr4ӶHo ;"IqfL[A*U6mkqk[W,kQmԧO8`Ps?:+:h6~ޖKmM+r,uU(cr ƟQOiC$35T5-C{Ө;=uÁ̖51vLok4Z&b,t۩M~EpB\Wnvh %؞v9(ۦnpVet4(uv)žuWKkخY7hP9˦;6XH>v_^w-TIqd^h,u |Um!^IXKN4#}pVǴUK c[Ƹ?.&;=94l]ә6Lþ.]cO^2vӱM%uf嶔;0O3bvn93sД9MM34 MMV =i$o4 -yGmSm۴G'DVjc됂 +t?7"$)ɺQevneYGZ:,aɆՐ% ֯ff܃OYCy׆!c2gt7TY[3s3if8I+M̚NDg ܨDT*q†,1؞l1oUVBЊQkgz"˕p0[ǣ\1ZmW cA՚= N1꾥>,Ȏzr׼ϛnיPr|5nW?0onF.㊜[ڶĽsziЂ}OX[;nMSTt ?С喙u~H p lruՁ8óγh̨ͨ.`1w|qo}g3lYaDּUL[x64S5'cJvjMkj'7|uJ#g6fl"vxm}ft)SΆ$ haZlZ8ߐDvQq SZ0'Uܜ9 dF]]0uɇ=pЛ0S|+znۆ0r{lBc5~71nGƩ5~KgiGowF Y϶w-uTɥϹ @tkshvIhlӳvALC-- <$B!q gBpub,NTh k-67_C8Czŀy^ؤD;FͱsY>`F׮/o뤆Uǃy6ܾ ָ6(Uk]} EBL]yڴ "[Q~G@ca˓I0v-eWO,i_pPv ѱ[=L;W7{v(}[vI{6Mc':4mBҷhm@:MʰzE`o6!lc?rS;*Iymm55|/LH*}8#N@~ڿmzxngdajF'87uMWs\ޘ4FmEDbסc,NU=^䜽T[u1.5л~RalZvIu]}Jē <8.\gĻ| x*XTZf~T9b# }(sd}EiQZEiQZ8mhv֐I?mכo> 4 wǸ5Z$f͙n굝ҢHuFШij˴ݜMz?G_!wYyZB>}VKﭝ^t<nh1~S[le97( 5pܢomQ!ui܄80x4ﴜ7FWI6OHЁDNNڒC݆N6f;gº'eg9tN۽}&{x诛헆Mk>߼}Xǯ9}m}\ݾrO5qRNW?8HY"8(^ҶڬzKUh4QQ7k 0$ytc7R5M4ئ,ح~KnfhYq胋a?.jlMx>%d벩ؖA9(Iږau}w6}K<֍p&z^wl(zC ^٧JwوM]Ǯ2bsnmmWa b= ,1+llEl&WdKiGm.௳T\) 9׌/5T$/V٨ȚE,qa[űrO-¸To.i=`KR8^R\@w*Rʙ,zC}iE4TTȔ2yQ"# Lu};d\"+ @-FRۨwa5Q[ךB/:}wIj/BɈ\VK]L.[-d*Oi-9zhxO{JŲP=5*`Mʔ 3_(.1(/MѴߎ\H}˘zʾ]UgEg?Kfłl],%, VlZeN-@K=ݼn*ْoDE"G:oz-JsOHGhδ֡WOkZP\ly马X 'R*t6Pe;w /[.qJ.)pc8MVTZlXUj:f}9Z]3i)EifOPUry9y\3ق͓:Z*6yZ)MfْrbL ~b CN7G"rPN\pu 5_P)T22ܺJsMjX+bh/UJS,_k;S/Lq"U}v+..dRy;*Xmat0b9o*Cs6VrŜ\vcڪK>ؖ)au)Gt S{ \)oKީŌ_2>BwigQ)sy1Nŭ+d^QRI_S@8NO要D5ar1_Ni9| *Ene}kRN~|Ls҆W֒c—d\~ةa[Cן]9N&c&<4hLp7:?{]7͖m$kMm;F[0:~$W\4CCV S-RqOqIh診4Z*D1:pɛVmX&Ȗf.BjxH SO/iphS/ C=W~QTtEa[jX:/ 좲Qٍ=*JJ5WpIl?φl׷Rf˓qxt GZj=ͣb*C\;Ǔ1I)eg@8t*ɰI;(H j:?]R(ʩR[j%K?KuzTo\iV2rNt\l7u g}1G# nŴ l )}GX֝n(3YV㑋\{k9W*mCvݟNGn*QP䌿5ai@y9S!o_Su" ^J vž Fs/JN6L~I;ʕ9y.56m ͭ+lXKpF͗e T:;'xo_:<.Y̴.fk.Vls6[Y-DrycO'G}etI~e]l:(L}Nhjc뺣TNɅQb>LN_c]ŝW mXT4ɛW)H# ]6{XSB5pE}QttPg(s1Β:nSoLFs\Gop4?KK8xNќjİuQ19pbWSuLaG)CF><^G2J#BWz-6Pwj,_)*2ua7r.lN*f*pWkٖ7A"8֜?7d;KUD P)an ud3j^O.v]j⚴pӫԂ?; Ͱw$K-ԕRAJ1?1-{Cwpo䪘V{^Boxߠ+YQuݔ@tf >TJEȓo.dsUVvF+Q.w;k6-PrEݴ-Ea4}Kv1I#Wmk,4UC7:|ZJo=eO>[sj5#]bĦu3<>ڕ?-W WE5uOkoDF93gaAwx5gCzOVhjK+ŊVQ^ G3 ,o/Cy yƱk>k/-R|1T<Ӥ~WCA^rNƿ^,Y:|Wo![sԆ+5w.fs .Hx+QxT|U%|-3QѨhT4*MEO$%ML%y88jc~L`^bv}kT`+Yg3O^g4ٹo򤆲**t:wmϔ>~z!U#+nGWVeKyXxN^U5: :6lCZȔ'սe}\L弌%,,!xMP)*t*P g"b6/'Q%SiYU4rg٣ j;Kuw=5UU{\*X4=g.9ze2(+gyӋjzk@]F]BG (s**۠ψ؎#NY٪\2Sb۾&rW`q c_bml︧fJ6' 쳆 r^@7*e/޼R|NZMCՌ\3FWS7&VaySbP%ѣe8tH7RTOڴWaSO(kC$[`N ]PR6?wUo]-)B%.a:j}؂ot166EMzBE.=34l5Ц i5DRwQ৒?%1g3U Nș䫹nܧLms#ˎ # b5#ϛXɷ7U#|j4{ִÿlotڢK!]uT [k͖ajj&ͽRA;tnrXNȎWP6{7f›J{2` 9s›h Cعl><~EOPL.W̼kw*a%-yPL&S;@wtʖ(7ʍr(7ʍr(7ʍrܭ=e4<7┥%v,|$7ݰzvyb50* ilM-/套:s]k:+tSjxFQV Ng;sCNh>ws6uNhK|hJoAiK&n򃘅JQli:]ۼR-ӞR.ԍ]pN̫m-c|u"k,㡚*ߡ|gx)W=+)}Y7uV=y ~PT֮ŌܟaX0jB䪕\Q.hSʝT.mN+e Q;ԂklAhKօB}0FiQn'&dK]ZO =]#/pz]^fGUX.%oiЪnncwҖ2+{6M1lF τ cbIn>w}F{؂e{M^䙨;RJ_qd ϻUoQHXvl LPkcQ[S6V)ra2maܸg뵦aw *EU}Įj6ZQ~iʞl۶KO7FW]7SI,vIVbV$Z6MQSv NIqyöqZ5;Ņϙ9]//f\7m)s}n4,{*+#)"wzJ_-r#Vw-H򪒓ыjޑ)kl?rQfO~ΰc&n>CurO5LouuPtU|B/3,+xd%̜m. 9(3LC_`d,WWJ$dl>% ֥C9QO)ٷz]{r5F(w+rl srcNdYhLnuc7:z MgزŶo^6}*̧Ykv6yb7l6ͬkɩE >.<ʅ>g{hi;0јN_6hC\Ζ\3UWj"O)檵 ɗՒ]VV:߸EzQ)lߪպqCZYx񲏳ukٜJլf/^2?]Pq~i oh)_;Q:pZ\X qPuױyEH]^$n&V|ѬP(O.Xl,^yTK_^vF4f )kݱ\9n{)逗ДQMέ~QqRVȂ;ٶ_տ>^*&d͎S箔fG6JOTGZFԃz3Ooq4pFFsRbU:)9Ʊ9 .Ib;햑چu0;-; FF{uՖF7a;Rdc)ӊ14w{7^/>ʠ҄mO mcsZ4ֆ'moqxǔݕ0ߦ%vK杞$1姎'l继Dm$V%L:NӿXsuV m 5`Nfd@n> iiޚ`ufOӖ2( 6-F6mjo2z+3zNgЬ7OdiHcq2{05M4(H۷jߔԬf#D['<6Л?[77JMK”tj3wrf}W2eXfZ,꒩X=hD훶ݑ-1G ##ۍ lw42`sp7{hݽ>#;-78W\V~LXy'nWiY1M #aսm|1jkRBv2A{R5QqBkF4}ω[u[7#nfݯ[ wZGs|'=S֝ȓD&`2xw4찡sGYo;tUCS^6ߤw7{O\Wv{hMv[D)Ӆa3ؙ~oV?a;f$Uݙ6ӟ#~GwɭnÓItg%&N$V;Mm'3?8CGwi"w-xyxy{gE"ξ{RvZE[; i=mr(ݝ-[vGqTˆH*> wj@"FFۉ{;;#2sh,(%JRAN;aCGXɣ3GiUy{v%E)рT=]w3;;]$W?e;ct;>e{{|M^Q;~G;6'wszN%X;mdp4mgwCiU:u:Njiˤ}WS&OڧV5?yLam_8}C7tcnnuתM]yǯuUWut:08"J9Ǟcw=Sߖ;eƗIn3 vU'T/_ կYՅFelEC^ewUO->9j]j@YM66(!8zǨ莎qK_+q@fFwzaOi+o/3&O0a5B:Jk-!y3u=ZN᲻꽁CzP`)^+V‛7T5lj]>uN9`;z1鎐eqk5Uaq &; =l^)Z5]TƊ[ۥ'Y{MjLW5`u]may;f[5ZO Gשjj]7Sӻ7tݚްי:oYݲ~tha~1nδtTtM&rcC5l'j{W][e`X?CG ;lEe<ǔ߰bl$1ί$ga9rc[0$l7![[*DH7xzc#m\~$V6eu4j;U.)7.VLjvZ-ꆕ↭I暴j@([q~Sy6cXuo,7~&L5D~ ԏQ *(#ʈ2Id˲{hd^f?2I]ՁfM }Sݿ)wN&ۈF1c<@#4M^Qbk*/@7ٓe>w416mG~j|HdcyErtzƘY#22JFm p aMb=zunL`\9֬ЌR]`\ajՍH(sCAiw$77~AeX߲mYeSLÍԁz| ھ8-d Q|}=gZ5)|mAc3k2A9uCsNwUTgI#Wf8Zt} %YcCMXb:D{L[jͱԏPmk3@Dl4i` ;}o`]|h8jװE~/2hG["8@\˂j*׷bHy!-Af1 AAyxeHZ]{[צ jp[Ȥa{ g!R7q) ͩ#ʎ {U C2qkTwUFDn6Gm@ԍx9^ ŇBGiN:7iCN4 eM8g*-gAXLR؎\:u#KUYb ֠һ#Ԋo5 7Rc{Wh{BV#'tI I A+6 hmr3U7\j[6ȩq 4Zz ȓ] M&244;-v:XsavQƤGۤ3zQFݦ]Ng/c?\'z|dl\íFxBr6Kxi@0q2ZnG )"y!ӠXhUvҀ!Bބ\-kj{_ ok;56vGr#P1Z[mQjF/u{z0(5/N;86:E_.cfL#un@FN^l)YOrth)of,j#8 n$x0W|H' pE;}?2l3qnH-9N}cu?ci&©o8i#ؼ VO= *ֱ$N^dAJYޒ!5\L$cFԆlVg |3Wo'e}߂pet z4|&)qpaAUלUptkuDaKkvn  P^}ZX֚@ڎ!mc GtH=ǻkPٖ];(LJb3&-ˑU9 ~FB磎>XsḟbA+6K`WcDj]{F5~l8jVxu_ m@WЃ ~Xcy(ʢcO7  k191ҐNXf>u-q`AƆgجӫvy2>/wv`%1ߺ>h@;uɰAC7#s9k rfx5Һ@4hЈ'!r> o4cΐLu +59F{p~c!tqCkoӏ?EI#{@7v6PiZvk64{>ȣ'rPq s Qρ@ .uFb1C'@~ud1DX?ߌ 1#H<qmQ! ׇ FDoP0B VIf ` OA˺H O|D_7~;xu'Bwl_&2b}||4D?l:ǯq 1˨ ¶ ۡ S{<13d {:igc@V>0&7ݱ~.dN">" KQ?az=cm>)ވ\V A^=n/Eq X?h[y:Ha2=$7wnzp>&"^|S_C>ѽAd_DY2m'H` i/cE1AD0MO̠~G '~fW\ V~&I>AOABxb:w%> 1}Bm_wHjl{4[IϾ36<2Sa|HXg7BcE#c[!KȧLl.  9h!hLdPLt0mA*s0Jc'(~!t|pn3gb}pVcTSq,uut5ηt+mm;j"jB칩Lِ3 k&Tq:!N55FZKukzz8<*1Y9A=W*WO[OS0|Gw6~j=]!7i+o?1+.;o%1vFQ3JvjSHloZ|mwUtGy-aخ:Rɗ;i N Rwjdn.>dqJ3};tI:?ԟ˭U{Cm}7.ΐʑ˝7.-%T4]~X`;5 r"*vڜqv&\Lĩijԍp|xUt]Ww8avt+ZNMyM0l׻w6I/]EWwfB v vG&w~\&g@v2]C?;{;S%+v[˭`wn%-^6F]E"/ZUt]m,یsuw4wΏ4]EsW_ڕvxXLc|vդz;62ۆ۝$ۯ669q]U':|EWwF,utE]E]]Ej.ww@nDfvѴ_M|#&ۭW$nOPY|tNt5WbM=fR(r}q w'Xiz0nHl Qt]톫tzz}5캻.%F -$nDlKN.Em;w7U6;vAcUNcgc-i"s#j+i;?[ٻFnJ=p'_< 1Wf&SMjɻR vv[+׉S$ٻR-n&'7dOn'ك-i&܁j+.w!^0b&hsLFcwޜ`˶׈6ė[;߾i:f'P1Ӡ˩b 7}_DDz!o<_^r/%P_kN˲~M8z?c }?Hϲ9.ͼ~/.}|K($p&8ohKۨM9~]oyB,%0?x/DropY>n܏߂<xx h/|]|.-x~3/e?̆;;UfC,6fO8~rP rEU𷐧q>-C}rU_!x;? yv?O'8> ~G^#!'C8x >Đ+p9?ע_qKb~Ew]ov \&__ 됞rT_#?"7߾ʟ`57$? <~ 8kND}B[B儼%M'!?зBD? H(nvD hS_]]?ۯg߷W_KB"g19ORG_/ueG!>,}"[؉_D~!~rü>]T0"o/~n򢞢CvM&ϗo~O/=!1qsC}Wx;?n2ho ;?Gg8ߋTobVn/!/>+bEx;~| _Ec1¿࿥!G'޼#.헯p"},ۿ? dD?~-o9'DygG!ׄ";.^><^枽\Aga%/䛐b>{a?;"[Q/}`/xn'a._I.i*uguWv۹?/^ BN >_D7~B(Q.D?φpKLmfXf?\^|˅ M[|_ cayI&./J =OxR.{rϼ'8~UٯpIȻ/Uܞ/a{<$S }<3c {Oa2 Bse4L7?:̾gU޾ ÷_b}7޷ 7?p| B#O >z]|8G9Nx=~H;_?ag_HدF1žxOB.}τ'flX}O8Xϳg_H9,|9޾K⫼RBva|>^ך Vgq}+ǿ72lxkPg?>EOB -COK{L \^KT!>|GH  [_wx9!юЗB_}h__|>Ap/x Kq.D={Rh!Bׇp'S)pvkܾ1&!L1B {ts\2BNqv叟dWꃏp= P:{}=G9DC<#?#?'rw!ĸ?\+w-5^=[ϼCh>_9./>q/cn~L?~0Կ࿰ p.pyo9~? ;cǟ|+}a?\ص۪D9>Q^xO1B >?B$}gI\ /~=No!W?NN׈q^}\}뿷]ħ=^_,?$/v!Dž+/q$p)r~ _^qQQo?#ÿ. we'8\}5?vg=s9~h;3wrm_m!F{ r+s?'y=~Iwo~xAv1ώFcܿ  {d_+%/Ir^)|}!yg!'HNE|RzA'o!'~_~<%YN1o/?ݟzO3Ɵ~|ǁWo1яb?/Ǥ3?p;{}s͞pM\s68P >E??~-CV >zLQB|)d؏ 9g<[ۄ~vq8vEXKW ﰽ'/' @ )_+BrBq11BX L9x=qs{ܿO)'zG-︜G8_?*⤢_>ԛx|![c1%EȽ_'uBM^_y|8|d|0l "# q_0R>v~~>$ODDZd|FxjOaUėd~~/ 9fG? GM1ax@8>Nwy8[r ҏxEx< ~E1 wf~Gx?~ǽ12.$_οv}1$DH&kxK-/'\x7p/_"! !y)n!D?{VaCo8n! \bD=|;J/T0@3# g!;m}x/>r}~X?#OGG̗#OD{~ožHhG7V4g84_-T>I>'2^Z/$ 㻰w\|*zGykv˄.p )Ta -qOτ=&'ܮ/p>};]? ;B"~! H·?"#G9Q/o 1΢Bc' _D/.D W%aW= "^.'qX${xWox?מ}[G k\/ḗGbGP 3ǵv}^/*Gmo+4?b]xTț}B>\p۟G71ok<~AW󟨯~x+󸑰WE%;/tOcttt3ñX3~끞 }'@o=bAA:N:3k-Jς΁~Q7@;&jY^@M/Ag<͟w߷Bm!z==yN/= Zeqކ6>qޟG=3ԇKz#r8Q~M:Ymy0e@T {/oPN}| :_[COu8A8 1x9WA:uɘ󼿩 /_}^_?< h|,ᴏ7rz>v4^'x࿟(Y'p!A^}_^΃5;f̓A$? W^y('X,^;11/QmAo_ˣ+1_-xqN [@xP_=ǐKv\̓՟^;1/d=uL+g࿏c/</%T G6H|'y8!^[yz_yX&kj̓G^g Gb>ߡ+O^Gm s%1O&?5ɻs@Oe7~ ytpļ&L6+Q?h3 SN /ٖ/ys:+$=x;q" >oD! 1֦w9Nmr1~`$#UIv/٧Am1DKؚY^ǣxj̷a|fI~\}m=T'lO#=/pNh!-Ay{X>4gA~FbF1cns?Cc{?Wа Ӽ^ȶ$+R $Ļjyz1_F8$Dӳ{D>/%I}uk>);:c_Mׂ/D$'qq$I?qf1Vw,<2Q"D"c{ƀd5}3KH/ OI&+|C|K$b\t&]sfD@XoM)] 鋧9ɞFm~_?+O<-XMADrU̖K$$L}e=Z ă#~ ߇0Nq a z [c^Gא+qqv~wA!OyqC#ɀoH yz婍 ^FQܔt>xm0/wӼ/2t?(ۉx<_/xo?a?yUG1dW9l-L̏"[5>{"/{cuy_'o#7K 1NsMCac_Hמ}HDu\q2`/qys^,ɓ>$ٺ\_xH &]S;11a%uWu{kWv[5C{/͞xB~ӱnK:+r:m_6tJ6MT"LCS)=]ux}m6+jWE;mSMJ/ꭶΈ;<wfDW.;P{+EoiIbq%߉`*(jR;(8QڟDe &[ʟQEU!3@Ph%&V(/OUڠׂNte= "vqj: 'JnN:o j/D9%N9Q@(P `UNZ]uN"{9QD)PQ utAN%k8}>ƯÜhAL.P'JR~]O%T)E(_ȍD ^XOr9L l̛9Nt~~/pgNTsEN? 2Bo*@ 9O5^ ۜoD|3-79(ﯷHVf(wqwsz/6~{@D0)Ɂ>à>cjI8Op$S>͉>É?ˉۜ~'@ρ>/r:} eNˉȥ*8s @_C #N OJoOo_П wC8)8'ceg +qiN{8x8Q{<:a*t'{9ω”]?7%Ȉr:?ft2@xScнDYILЃ0q0 yzy?QNg?mqh0}0y܃8\8L8\88xSSSrKg9pr:܎ 'Sz~+z.th|taLDs\ , V Г/sĉ)NO{DõÕ_Drz.@ze qqqqqq7q55y <;8Qy9q=< 'z6t`0~/wCơoP]뜨GlɈ8';1(tG6sTa ׏¶ A~(,KH ¶t +Ssd17-ܚ319Gvsɥ^bn#15&r[Bd17Bx4XȖ{,2d17X%;L.a/"C94(@v¶s)|I.da ;M/cS6(JNSB<%l1 \;ŘkG&Ǵؔec}Ø kb1]hFL_Yv MҔM#w0 p. Ox8F$#X G.bć{d7i'\c11nާPXya1!`1#!Ť-#>a,T@m1ZJDv[B +a1-+ne*!"blڋBuKؔǘ_Qx6cRaF75 hZ2¶X FvX <QȖ0nO?OX DvX h1l16%;-R be4HS3n[,^bb#ҳdCӲ1ZޠxC++1 $ֆW0 ٴSh /1ii0[Maҝ^Ƹ*+1 I!MiC3SIwD+#M3Rl1 Ap%Iҏw4HB3 !҉X-n>%]C ]o'M+OXB}>cӚWa ~[LA)/k޳j%SVJv}CtY.>=ʋUy|^__b nCF<_?\~ {:CyC3}C/?vD oeCz9CCCCUP}S(?}+,6:CϪq"'VAlHWo/w:7gc>yp >=y5TeGl(w[,WSaaҎ}(g =o GCG'ϛ 3;i Ypq>RaC'߯=S!lBCa|=J>O ccT?Ć IXk(}D}rtb wegBC2׍w p {a0!7:!Yrp1J_ۈo|Og=CG1Þ?LkWayZOo̟|̋)^H ߣܮnvk%f bwmURN,kY32b5޵2X/؎nnWfB\ Hݿ`>W<ݰnS; J4{ZQݶa*x'щmײJZ ;2:uW7 ˫q%W)U#t CgU\nԽgUKxؘ?8xMmB4vXKJVȥN1̺hI>S*7)[M/s"LE<ЂlXqK[FGִP-eeF絮R=!\o;~fY .؇2jyؐBhMhV[=y]]rXVszx=Ue΃OYarFAvI@)F/+8k}xR.%0/j:OL ï;왦݂|xT(G~l[Mvm{Q)Vd/hʙ|nξŶ[ ?gml%rԀݲvSr\ .8@r5]UQsj;i Lr=1ohMS%@R =pe([c8qsF^cNjjϵMue eꪶ:Z,+jFsmʛQFD3NUb\Wɒy]6W*dG46aKIZC\RG=Yhhq9SŎl!rK\Qeݶ5 ȥ[/fo5_抁 KJ>/pt:e7W9LnӱeerjiP]bUJtU-,q]F LvKJ&,܎_H gV尿G!ol[6j.cRkfÔ*,5m{¹CtiBRnlae3Epo-ئJ{P.+z -../椼;]U9`= [(U'BR<+c2_* 7v<$긚RfLE0ܡk4Z岴GΣZONtnXG[zDF_Dʪ"J+ oc<뼓ЁahzZYvh9I"_Zs2.Y]%*Оɕb. J jXH_ nZ b cOT% Y,4MY7|KRBj6_c].<@(5퓺,Aʒ-$x9rŋOUYBWՆa$֭2ü3J|V"|P1A(^yRMUJ,}؃uMzY̸rgydutыy2ԥN>bs{_%*72/`FUHs ^[61$0^U_(25G٪p=x[*PS[>byt8:X+gdyȒ=ZtWSl.+g3}&nR@<.LVʼn9EP[XL=Gޓʒ<Ց6$ !+ V͔   ~h|PU_47IA]Rg}Qx m' )2%T)PoI$t_"@y 9 WHw6[W"a0f]n)xjd;U|9/[eժ.谑D0FMÍԁ,Oj9%c/@Z>p]>#ڃ"ů4Zy[P&a?ho %bؚМλM1uR>fg`?JNHesᢲpsR6rEEx-R;Uq[A͑+n v4;JREײ9V RGm>}RP\,{EURV>[A܎\b!汅ځW ;$ W v)](8yU`㱦`6y EV$S![2gdpţS,#F 2&"ʥL^NP M:x9wCbpTf>Wƫcx>wuٜ-a\NUJG:-hnY0 ")blI;L7VtKU5Sz $TuIJCaJY5ݵ aV :6Y0=r6MPWyj2N%'fL2ϐ|W{!  Ȫ͖Sy^|Ƿ#~45UjV^-Iԥ68ԩLȗ XՖL `S&R9_3]oB{+:ß A9+|֏d&UtjNd zР":-%wH|2Lx?,#%gWT56egg2](RFJcC46:lwk4mCud9.ttHjXKM,jrQZ\s' nC4syBz]ԁZMRzKm bXl@|UQrIO\Կ{Y3}K ZN`嫲@9nu>gӚ$Pc424L<4# !_wļE6'gN|I)$&?+#)p;@:HFoC2/I8& :7u_M"q'*eib|C\Rf;vrQ`e,/А uz/\+pe_Ǟd8jv[LiVmvT``ՇhPpv1e_!5(Ӯt~!Ewh/#MX)]8Ck}o9!m+f.9zeE `EɭmS!1`<#{Q]^m>-I9vi<#[ĜTVrNkI39_;V: ӓ C!{^V;dLhxkn.nt^Z$d*{!$fN^ z9g ],’*Ud`) 6\ hHC+AYL3*T33i /)o L2e>DT(~!2b.V+E&P-ّ{pAtﲨJ,1h^weİhщ-]BWU"2f idW<ijm҈ &Ԇh>ݗZh[SXK%mނ:~eKN\tzvw %|&+S 1Q#geղ_^Sh{A#GO5+*O$_6lTK\13ʓjPFV2 =Qb- K,Od隲f]m-]riRSԚ.0'}'X-atP(Ru0:6yPOUpY]sWMr% /jIYilݸT6T=.uqL"U~)6FNYoIm`4 W 2.P҂+d #lSM.h?MlgӉz- JJU2IoۊkZrG>_,2W6 }V@ښ'er*,D\~@ R~ 8'ϰ8;Xm/*i.uc7H {5ϭ=dDvtmVsCr6[.DՖʃ\"|oz0=(*-ŅivǛwZrvfɯ8k]m:/ɖrDNPxE+P1o3TV ހ6Z@`MHWv ٱ2Px"_4챦 N{ & xIRQJF&\ۺR8r5ahUG1ӒŻn/-*C4sw}.Wy WI*r^Xh'(rOE=|R!.DePBs*c>KX I$7\\雈0Mx,!s3%?%y2ru#(*Ռ8/E *!k]> 0DP$qt*ݎeBe]Ȅ.y*t`Ūv:b7 b߳45ZnzI3mg e/T[k@.+Ob 6KSe4oe!VW | K2¶wl>}"-`(úg-& o=-^nw;0(Z .W*XSs,-t*+]&\ZO w 3DFVWu p Ǐ ,Jef RA Oy ǯ-Ф`Tri;.=iL$u@ 6).PHCD39O5 -N&VWkENNy,(/y=휠ڐ&@!MZC"!NIϟKrM@Lh&M;Qa[}K$3engZǿߑ7%zC+!$&OJ= ;PKׯ4՚n{F''|v,};@ juU|/ut^45dmetadat/data/dat.hannum2020.rda0000644000176200001440000000570414167070054015645 0ustar liggesusersklGI8iϿ{I|I`GJs64}ءݻϼ33_< mc_:~EfKk_JssO;r񥛿}P9c^+/{E+>}׈v|u맴SGOۉ1 9Mp; ^[:cN8Z-a{ZH'6DX\i1nBk$z;i8:mo.A w &[&:*9MZ64b8@؞J&u $C-QA⡂ 2ABmߦ:E#qF*||g !.?hWDb4:-g 7&; lC/6 44̆nG:#H~LEL-%>@E@Pv55eE/Qc zK5μBO1^(;nMCs֢Ŗ4:x:Ѝ]UA x=uc@.tG+SNOT5 -R >1`0{⺆PSmp~wk3Aэ63QK;\ Z]*tɴ['>Kd :J~2:6mqmy X;{<blNMfZT*qmdp"E]-ܸ粹0q0=o%*̫yn:EO J{檹i Qբ V.Z3g[cfmcN` 0[%rl*!up6QW ]a#:Lm[IYh/|6V'mf^M!HǺU97H\AmߪPkXOKC"Pno]pCpl["y)E0v-f1/C=I2[*y>JEކtKr:dM^j @ts t .v al1עn.Ьof跰Ixkw' YS0@6L:i?Dt94L;YpvԸ! E7Ҋ HcG;#v-gCo6}իWԻn`w@ [J'?`"metadat/data/dat.tannersmith2016.rda0000644000176200001440000000233014205657033016711 0ustar liggesusers}lE]9.4` +^!`6jkqb55h QBji,^  10~ D3o6שwnyf&/-t$IJlRJ'={$mD'٥ |ވ; peE si6+8?rDW{OsN^70a`]Ddu7OmLVkl`ԛVEEp?f܄3v<~ӬT^Y(YF:&)(~[%SE{m;ķX#?Of<1~FGY髮`UWU.-g3'Q)@ &v!"%rou]>o. qB+VYkmzKTt= metadat/data/dat.gibson2002.rda0000644000176200001440000000134214167070054015632 0ustar liggesusersTMhA$)id b[Ц";Z1Wd,$u7!T"xz֣z^DmIEf}yYB|~f.̎Gf#QAR%kG҄(AD!@,mFGSm`/Ij fJ[B#˻/-3 sr&Cme2JWX)oXn͖vœZѳmEÑr,kpLy5Uےa2\6 J[w>u>{u[OKkW數1̎<`0 7 @ Gc~1AӛWf(Yi24,CÅ鄰B9έRϺen<ƿ$Mqq Xw#|/Q73< x O y8pA=sQwEd 9+_k^J5!럚-ht_3~9|7EA},c!^ zgnu |hŠ?G˧]td1tG }tnK!b}k>}C_E]mSW VlEXȇ1BU|KmZ){\Ouqh/7Wf,W*#Y@'m李]O|߁D{Umetadat/data/dat.riley2003.rda0000644000176200001440000000274014167070054015501 0ustar liggesusersWkPTe>{ca4Bh%DxP@Z3:a lB5O9 ?619! w7nrz9{m4<{|߾Ull$$(,Ԕ,o8s$1Hf)avwt3Q3 PV*B F X`    xƒ!L$L"iLq1㷅z q'6INJ:s eOCgg7kD3EEú~gj _T't{ڕ󾐴xޟ/oO 9 ޵QoL 3Ϟxoz1/q;-u~1/21T)󆩄|jshQdqR=mzFu=X+K>ndެo>͡ }'c Xu֫AQ3FuK]zl| =b=i\ԯL.79ylGߐܜwٷظ>K e]L +ۣ͞3r\;]VAuN QCdI{[bFVr3-{dԼ!ߞ+ ȷ2lht%oXT!@5`绔ɑ6^Y^K؈e0:7RR (l4ߛ`L:s#7qЦ~}SeC#QpK&m$Q!guhv׶zc M(-Qtv],KE?p:y>.8<^v@W}*|_*|e.o3?*-R6)nQ?ݠk5%x^| 6{< VM\"ۈk y6 ^W WAp 82]{ķZ:i$Y^te6c HzxqLf$,69RC!.=jI[N7. 'metadat/data/dat.axfors2021.rda0000644000176200001440000000210414167070054015651 0ustar liggesusersX[oG^/`$mcbVU/dLm (~f%.}cAUR xwW<3ߜ99^Z;ϵ $($RR %AH0XB!񆪬*yڨkifR-KբV2ucy> J^ z%-D6{ͱ|!2"y/Y9s{~ʋf`/oy~ r"e;lcoxP.~[{Cד43/ kZYZf<-S.>'q!c D{v̆wٻvghSGuɩ )o`nd:+ܝ~Gni8;S9wܡOڧuK=2$ȠzS}A8G~LOh:%metadat/data/dat.ishak2007.rda0000644000176200001440000000317114167070054015457 0ustar liggesusersXrGd1^0 K1͋Bț\8jԱ4ľ @?s-/*.R3R=n4]LOKfe i3!}05iᐻ8~UV$b9W ĎL^aV퍤S'm0!9Ǭ)iDtZODosȶaF6T#nT}1*ewp;@tFMWn5DzezPSj5.5nʎ.w)_ibqދk&kDk6 Ǣ}Hu|-4d'.ź!{1Xe'FKشlwdvUjťgMv &Jj b7[Hk ؾni6Ik3WЦѤM7rnpڨKMO\V[tR&tEg<2m::S5ZMLmkiX6h~^7^Ԓe;y}[Ѩä '0E][m:n[տe4vD^Y.O|5_n' M}~_޷p|x> IG,ٕ!+ .8"q_vawd>{+c'܎r֟ol9&.P)*hHhE<FA >Ç~HҏR7{&=\/=o;zۯ?r=4r\fÂ,Le{,-ׅr;64颼7ˍIr>~M=߻.b>oQ'POBw^i{'LJ#t.pG>,w ^a8Ӝ{bob3ϔ2vlA) ЛSK)qg?>4QLڽ*l |h,?"l4!o@_ZUGp᣻@otb/w½i~TJ@{N×RaϺq{NmWN/]f_6}Zn8-EрG7;!vypOQ>Qd*ޥ"(wCCAǁNN'FN(M p} yR|PO iS_?CgJ\G[EK~"O_/^NO+ uF2N)2GUr_%;"/ ~_܀U?t {b-6rrB_)/CEy/{ G+|;&4~$ j,T _>|{ 7) 6_a(poZPi`K*QՅ*qtt)窴Fm .{^&";D>qes 2ahxw7GOReѷM`_ZjF;KRuTUvE^TwEo?lkGmetadat/data/dat.obrien2003.rda0000644000176200001440000000201714167070054015630 0ustar liggesusersXMlF~]o+!z*! Jξ;,oi4;>bMY<*,2=([3A:hwۂݶ-&n~enO`-;@Ar\o / +햿l5l,݈٧>Gݹ棻a˺Aw.Ǿ\Gvүe}nGםtoF{nP֮kWJ)㌈QюvRuQa+s^sݔ~Z_u>RwltUkAJ]+'|%ZuTD;)y+5W?!#թZ''㺨_ ~''S#Qюz&E|ƯRp,[(uK釗i{G >gwDq!>:j3]y7:ӖDNļsL]Esl!? M܏0<7j>o`# c֭9X.7ʦ!G|~:@^sO}Ѹ7!wkh&yXϟ~ݵZ@g2m{AE6<_XnI|4$[dAVo9zjK+_op} 蕧^h5gV ΒmଏsR|o~09Wy҆%1$aHRdT$crCĆ12QbbaAiaAiaA4i0`H# F4iaIf~ n+metadat/data/dat.colditz1994.rda0000644000176200001440000000111414167070054016041 0ustar liggesusersnA c#BaK XH(CnKrm 7"$@x j$ qv?|_\:.D4BY'C#9,)wլ!fq(KEȱ65_vgfp@m>8  &ȃgmMQvd?EdnKMVֱˣyP2q1aՇ.3^Jm?n+ۺ:'jilA$J}+>`9V,.4+!.p:.FZm9Ny|9\a\vx7%ضxW9xjT64/Mr~@NomS9&/,^k }@cR6IpBVAܷM|¦ h ё{8i[y[DG#/X;Lj.m|M㠞Uz~+ۻ̼8?L!|/rMEO{΅tJ.cn)Zh>&ND&Iq,yFP&""pЮ(H~4 9yr,J_{&qe$ғHrH|fD+̓Q"F;ᑶwq1>n w7Umetadat/data/dat.nielweise2008.rda0000644000176200001440000000057114167070054016346 0ustar liggesusersR=OACYQxAl,CƏv%@_ǘ,𫰲Uf{vqde 2md_^nY YC,5v_vҏdR\B(Ș Xb2kk ,uYt\ HE.*E <=-Ie U+şT: g` O# u"%BTED!W_55wqCa^ }h4X3;w$+ULonySYLd}Fy犌(g9I6tАfg%y-v5efK՚uQ7 ~'Fʖm\+)yN.]d4^+"Fv̆+a73ckz Scj%SnjFzxFWY^9=.I3k۶Ј햳Tcej[PCiN+C淹P+5Ep\=RԳR^RT~!F/(f ~*Cҋ$}4hFK D}4G0Z4<xi3g?Z:2uI^̖> eN:aY{po݁ߺ/wwֺ{?cWD뽻lV`ڍ{]գ޽0z׻ mzws[_8~\OG{?w҇od.xu7FXK?Id'";'I8^$}Ǩ ɬ,WOҾ$+`.p)>g c$_mq$cuw ߣ  \N (>RZ[k'GO,= wL_o,\ai[y˖Ye{?e:$<(Σ -+O7V o{^IJJasYD~,c4F?'X\:/d2BD, :G?,0葅Y,A, 7M %"U[k(/ϗQB,#s1޻C}%Nݭ%?!/c'n]8njNG% M~+| Ef@ȝ '7  Fn>0ohk)x&NpyҶNO+lll܀?l7metadat/data/dat.bangertdrowns2004.rda0000644000176200001440000000361714167070054017241 0ustar liggesusersX{l_w<@Hy5 %RJ`nb`CBv;{\T(x@+*(Q.% i %hJ_/onٝ[WW7}fffvw朦iI-ՒВij髯kZ*Bڠ<Š^( Ǟ܋'Cg`fi#06@+ ڑg $]*8pt3,8p]wV pp!Q+nqv" s\Z{(w1'K %G} ziWEM6,V }dzu[/|OalHRien`|8THٮgQØSScj(-E.Zmth-SܾѶ2ꙗ V ]wlQh:(d.A6Ўdb"8mg O6 QDbgb1d(CQVR9uy2p:ei2\deacԑ3W>xq^'=k.h2\1۷ )D/v IC( DZ0Q> 86 Ux" K%t~Ê mh+هدlP)ܠXo2e7BbԢ/RʧnoJCl9lXoDz Yl[_l'cq /6S#/\oWPCr gi] ?Ϊ‡bs.EW]۱Lc?fДRk>\q8w+WhQ;ƹf\#l>9bޤ<1Fy4Սo4q͞fZ<{+|.|hwLiuן}w}Тnf*z8R:g.!A3f:AWnQzpa[{Rnأw=˖6gv2a,:jK٥L0"++Ҙ &'db]Fl4iAڸ]pdS RXYlp+zQ%|CHC̵}Gfzf٘'zn[sF43WMU9-z?ɏ7 NN0w݀i}R/h1/\ E^1pFjuZ-nׂc s}Zp7` K|BۺȋsRT۶tXIQ$9Rܥדo=rn]b^ eY_19hɓ_dY݇~~(\n<ǖa`JU?WT_"r,׾A\_;FFL~׊^r7+}Wo]>疓 R2!jRavLU׏jȎ *K[{`0rq^і6RFe=]p~n1U|/Y\[3F.5 U>WxʓIĢ9?z=Z%Xm=)Sb ~N81Sl5x{.Ԗ˲ lw֢EsFiݤTKpFԣ[t4metadat/data/dat.yusuf1985.rda0000644000176200001440000000332614167070054015553 0ustar liggesusersYoU~Za4޵S/4q(N {o-i*ćrU!NHHHABB B26Ɂ^Jki77ogO{ DT<|t(DW1%z{[McVlnXyb eU;LQZ"gL]=$LcRMZPR(T~]b\snhyM/hY UJ0T *P%Tnr3iR(ԐS#H05LS#H05LEEMZ^Ckhy -VW CyPAAA7+ QjQ![A㭠Vx+h4 0w#`GztKԌ#-}UoXM^MūgfW|Xql.bjr&i^+Yx\ZamWe=o*9׾-H_ \ :zfqi.3r[*E΋E3TZsT (2˲X^C-8:/RS[m[LWecJ'TGT%-EAY\-*7=#VY N҂S.MK\skZa֭f+lRTS.S+ґ~ӐM%ke9vغ4Z`1:lCjTǙi fGl;mݗ.-?PfBgшۗAȆvy-ռt,7srv5a?vpK;nM+kҪG^*T4#(m=JdC/R;c9^+]$M!3fG&kyavme3"%ojQ-H7 -d6vo\>#׀w͖rUo5>ߘMmBnȼ{>llc ,-":t "MwF;sb۰.f7 |#h"gAS{5bTW/ [ag)CkqjdAZs?)g $3.[94&8{0!AA@c<0 }taZ s߂O`1anBKUПJKNS/=:U q' | vo OG?=!s? 8I;oe3}>8Evq>Aklx~x)Ws@P?D{dHÀ6~Zyx55pblM9#k Cq\|LO:rj_{/S(7o=I8ď,A$0{;2UљG`F?q|p1Ϧ7?IW6,<iӗ+~Ӗ[7.mͱMޘޚ&``_~T1metadat/man/0000755000176200001440000000000014223103754012445 5ustar liggesusersmetadat/man/dat.raudenbush1985.Rd0000644000176200001440000001136314223103754016176 0ustar liggesusers\name{dat.raudenbush1985} \docType{data} \alias{dat.raudenbush1985} \title{Studies on Assessing the Effects of Teacher Expectations on Pupil IQ} \description{Results from 19 studies examining how teachers' expectations about their pupils can influence actual IQ levels.} \usage{ dat.raudenbush1985 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{weeks} \tab \code{numeric} \tab weeks of contact prior to expectancy induction \cr \bold{setting} \tab \code{character} \tab whether tests were group or individually administered \cr \bold{tester} \tab \code{character} \tab whether test administrator was aware or blind \cr \bold{n1i} \tab \code{numeric} \tab sample size of experimental group \cr \bold{n2i} \tab \code{numeric} \tab sample size of control group \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance } } \details{ In the so-called \sQuote{Pygmalion study} (Rosenthal & Jacobson, 1968), \dQuote{all of the predominantly poor children in the so-called Oak elementary school were administered a test pretentiously labeled the \sQuote{Harvard Test of Inflected Acquisition.} After explaining that this newly designed instrument had identified those children most likely to show dramatic intellectual growth during the coming year, the experimenters gave the names of these \sQuote{bloomers} to the teachers. In truth, the test was a traditional IQ test and the \sQuote{bloomers} were a randomly selected 20\% of the student population. After retesting the children 8 months later, the experimenters reported that those predicted to bloom had in fact gained significantly more in total IQ (nearly 4 points) and reasoning IQ (7 points) than the control group children. Further, at the end of the study, the teachers rated the experimental children as intellectually more curious, happier, better adjusted, and less in need of approval than their control group peers} (Raudenbush, 1984). In the following years, a series of studies were conducted attempting to replicate this rather controversial finding. However, the great majority of those studies were unable to demonstrate a statistically significant difference between the two experimental groups in terms of IQ scores. Raudenbush (1984) conducted a meta-analysis based on 19 such studies to further examine the evidence for the existence of the \sQuote{Pygmalion effect}. The dataset includes the results from these studies. The outcome measure used for the meta-analysis was the standardized mean difference (\code{yi}), with positive values indicating that the supposed \sQuote{bloomers} had, on average, higher IQ scores than those in the control group. The \code{weeks} variable indicates the number of weeks of prior contact between teachers and students before the expectancy induction. Testing was done either in a group setting or individually, which is indicated by the \code{setting} variable. Finally, the \code{tester} variable indicates whether the test administrators were either aware or blind to the researcher-provided designations of the children's intellectual potential. The data in this dataset were obtained from Raudenbush and Bryk (1985) with information on the \code{setting} and \code{tester} variables extracted from Raudenbush (1984). } \source{ Raudenbush, S. W. (1984). Magnitude of teacher expectancy effects on pupil IQ as a function of the credibility of expectancy induction: A synthesis of findings from 18 experiments. \emph{Journal of Educational Psychology}, \bold{76}(1), 85--97. \verb{https://doi.org/10.1037/0022-0663.76.1.85} Raudenbush, S. W., & Bryk, A. S. (1985). Empirical Bayes meta-analysis. \emph{Journal of Educational Statistics}, \bold{10}(2), 75--98. \verb{https://doi.org/10.3102/10769986010002075} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.raudenbush1985 dat \dontrun{ ### load metafor package library(metafor) ### random-effects model res <- rma(yi, vi, data = dat) res ### create weeks variable where values larger than 3 are set to 3 dat$weeks.c <- ifelse(dat$weeks > 3, 3, dat$weeks) ### mixed-effects model with weeks.c variable as moderator res <- rma(yi, vi, mods = ~ weeks.c, data = dat, digits = 3) res } } \keyword{datasets} \concept{education} \concept{standardized mean differences} \concept{meta-regression} \section{Concepts}{ education, standardized mean differences, meta-regression } metadat/man/dat.vanhowe1999.Rd0000644000176200001440000001032214223103754015504 0ustar liggesusers\name{dat.vanhowe1999} \docType{data} \alias{dat.vanhowe1999} \title{Studies on the Association between Circumcision and HIV Infection} \description{Results from 33 studies examining the association between male circumcision and HIV infection. \loadmathjax} \usage{ dat.vanhowe1999 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study author \cr \bold{category} \tab \code{character} \tab study type (high-risk group, partner study, or population survey) \cr \bold{non.pos} \tab \code{numeric} \tab number of non-circumcised HIV positive cases \cr \bold{non.neg} \tab \code{numeric} \tab number of non-circumcised HIV negative cases \cr \bold{cir.pos} \tab \code{numeric} \tab number of circumcised HIV positive cases \cr \bold{cir.neg} \tab \code{numeric} \tab number of circumcised HIV negative cases } } \details{ The 33 studies provide data in terms of \mjeqn{2 \times 2}{2x2} tables in the form: \tabular{lcc}{ \tab HIV positive \tab HIV negative \cr non-circumcised \tab \code{non.pos} \tab \code{non.neg} \cr circumcised \tab \code{cir.pos} \tab \code{cir.neg} } The goal of the meta-analysis was to examine if the risk of an HIV infection differs between non-circumcised versus circumcised men. The dataset is interesting because it can be used to illustrate the difference between naively pooling results by summing up the counts across studies and then computing the odds ratio based on the aggregated table (as was done by Van Howe, 1999) and conducting a proper meta-analysis (as illustrated by O'Farrell & Egger, 2000). In fact, a proper meta-analysis shows that the HIV infection risk is on average higher in non-circumcised men, which is the opposite of what the naive pooling approach yields (which makes this an illustration of Simpson's paradox). } \source{ Van Howe, R. S. (1999). Circumcision and HIV infection: Review of the literature and meta-analysis. \emph{International Journal of STD & AIDS}, \bold{10}(1), 8--16. \verb{https://doi.org/10.1258/0956462991913015} } \references{ O'Farrell, N., & Egger, M. (2000). Circumcision in men and the prevention of HIV infection: A 'meta-analysis' revisited. \emph{International Journal of STD & AIDS}, \bold{11}(3), 137--142. \verb{https://doi.org/10.1258/0956462001915480} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.vanhowe1999 dat \dontrun{ ### load metafor package library(metafor) ### naive pooling by summing up the counts within categories and then ### computing the odds ratios and corresponding confidence intervals cat1 <- with(dat[dat$category=="high-risk group",], escalc(measure="OR", ai=sum(non.pos), bi=sum(non.neg), ci=sum(cir.pos), di=sum(cir.neg))) cat2 <- with(dat[dat$category=="partner study",], escalc(measure="OR", ai=sum(non.pos), bi=sum(non.neg), ci=sum(cir.pos), di=sum(cir.neg))) cat3 <- with(dat[dat$category=="population survey",], escalc(measure="OR", ai=sum(non.pos), bi=sum(non.neg), ci=sum(cir.pos), di=sum(cir.neg))) summary(cat1, transf=exp, digits=2) summary(cat2, transf=exp, digits=2) summary(cat3, transf=exp, digits=2) ### naive pooling across all studies all <- escalc(measure="OR", ai=sum(dat$non.pos), bi=sum(dat$non.neg), ci=sum(dat$cir.pos), di=sum(dat$cir.neg)) summary(all, transf=exp, digits=2) ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=non.pos, bi=non.neg, ci=cir.pos, di=cir.neg, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat, method="DL") res predict(res, transf=exp, digits=2) ### random-effects model within subgroups res <- rma(yi, vi, data=dat, method="DL", subset=category=="high-risk group") predict(res, transf=exp, digits=2) res <- rma(yi, vi, data=dat, method="DL", subset=category=="partner study") predict(res, transf=exp, digits=2) res <- rma(yi, vi, data=dat, method="DL", subset=category=="population survey") predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{epidemiology} \concept{odds ratios} \section{Concepts}{ medicine, epidemiology, odds ratios } metadat/man/dat.gibson2002.Rd0000644000176200001440000001376014223103754015277 0ustar liggesusers\name{dat.gibson2002} \docType{data} \alias{dat.gibson2002} \title{Studies on the Effectiveness of Self-Management Education and Regular Medical Review for Adults with Asthma} \description{Results from 15 trials examining the effectiveness of self-management education and regular medical review for adults with asthma.} \usage{ dat.gibson2002 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab first author of study \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{n1i} \tab \code{numeric} \tab number of participants in the intervention group \cr \bold{m1i} \tab \code{numeric} \tab mean number of days off work/school in the intervention group \cr \bold{sd1i} \tab \code{numeric} \tab standard deviation of the number of days off work/school in the intervention group \cr \bold{n2i} \tab \code{numeric} \tab number of participants in the control/comparison group \cr \bold{m2i} \tab \code{numeric} \tab mean number of days off work/school in the control/comparison group \cr \bold{sd2i} \tab \code{numeric} \tab standard deviation of the number of days off work/school in the control/comparison group \cr \bold{ai} \tab \code{numeric} \tab number of participants who had one or more days off work/school in the intervention group \cr \bold{bi} \tab \code{numeric} \tab number of participants who no days off work/school in the intervention group \cr \bold{ci} \tab \code{numeric} \tab number of participants who had one or more days off work/school in the control/comparison group \cr \bold{di} \tab \code{numeric} \tab number of participants who no days off work/school in the control/comparison group \cr \bold{type} \tab \code{numeric} \tab numeric code for the intervention type (see \sQuote{Details}) } } \details{ Asthma management guidelines typically recommend for patients to receive education and regular medical review. While self-management programs have been shown to increase patient knowledge, it is less clear to what extent they actually impact health outcomes. The systematic review by Gibson et al. (2002) examined the effectiveness of self-management education and regular medical review for adults with asthma. In each study, participants receiving a certain management intervention were compared against those in a control/comparison group with respect to a variety of health outcomes. One of the outcomes examined in a number of studies was the number of days off work/school. The majority of studies reporting this outcome provided means and standard deviations allowing a meta-analysis of standardized mean differences. Seven studies also reported the number of participants who had one or more days off work/school in each group. These studies could be meta-analyzed using, for example, (log) risk ratios. Finally, one could also consider a combined analysis based on standardized mean differences computed from the means and standard deviations where available and using probit transformed risk differences (which also provide estimates of the standardized mean difference) for the remaining studies. Some degree of patient education was provided in all studies. In addition, the \code{type} variable indicates what additional intervention components were included in each study: \enumerate{ \item optimal self-management (writing action plan, self-monitoring, regular medical review), \item self-monitoring and regular medical review, \item self-monitoring only, \item regular medical review only, \item written action plan only. } } \source{ Gibson, P. G., Powell, H., Wilson, A., Abramson, M. J., Haywood, P., Bauman, A., Hensley, M. J., Walters, E. H., & Roberts, J. J. L. (2002). Self-management education and regular practitioner review for adults with asthma. \emph{Cochrane Database of Systematic Reviews}, \bold{3}, CD001117. \verb{https://doi.org/10.1002/14651858.CD001117} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.gibson2002 dat \dontrun{ ### load metafor package library(metafor) ### compute standardized mean differences and corresponding sampling variances dat <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat) dat ### fit an equal-effects model to the standardized mean differences (as in Gibson et al., 2002) res <- rma(yi, vi, data=dat, method="EE") print(res, digits=2) ### compute log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=ai, bi=bi, ci=ci, di=di, data=dat) dat ### fit an equal-effects model to the log risk ratios res <- rma(yi, vi, data=dat, method="EE") print(res, digits=2) predict(res, transf=exp, digits=2) ### note: Gibson et al. (2002) used the Mantel-Haenszel method for their analysis rma.mh(measure="RR", ai=ai, bi=bi, ci=ci, di=di, data=dat, digits=2) ### compute standardized mean differences where possible and otherwise probit transformed ### risk differences (which also provide estimates of the standardized mean differences) dat <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, add.measure=TRUE) dat <- escalc(measure="PBIT", ai=ai, bi=bi, ci=ci, di=di, data=dat, replace=FALSE, add.measure=TRUE) dat ### fit a random-effects model to these estimates res <- rma(yi, vi, data=dat) print(res, digits=2) ### meta-regression model examining if there are systematic differences based on the ### type of measure used (there are only 2 studies where measure="PBIT", so this isn't ### very conclusive here, but shown for illustration purposes) res <- rma(yi, vi, mods = ~ measure, data=dat) print(res, digits=2) predict(res, newmods=1, digits=2) } } \keyword{datasets} \concept{medicine} \concept{primary care} \concept{risk ratios} \concept{standardized mean differences} \section{Concepts}{ medicine, primary care, risk ratios, standardized mean differences } metadat/man/dat.debruin2009.Rd0000644000176200001440000000725714223103754015461 0ustar liggesusers\name{dat.debruin2009} \docType{data} \alias{dat.debruin2009} \title{Studies on Standard Care Quality and HAART-Adherence} \description{Results from 13 trials providing information about standard care quality and HAART-adherence in control groups.} \usage{ dat.debruin2009 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab (first) author of study \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{scq} \tab \code{numeric} \tab standard care quality \cr \bold{ni} \tab \code{numeric} \tab number of patients in the standard care group \cr \bold{xi} \tab \code{numeric} \tab number of patients with an undetectable viral load in standard care group \cr \bold{mi} \tab \code{numeric} \tab number of patients with a detectable viral load in standard care group \cr \bold{ethnicity} \tab \code{character} \tab dominant ethnicity of the patients in the standard care group \cr \bold{patients} \tab \code{character} \tab inclusion of patients continuing or starting (a new) treatment \cr \bold{select} \tab \code{character} \tab baseline selection of patients with adherence problems or no selection \cr \bold{sens} \tab \code{character} \tab sensitivity of viral load assessments (<400 vs. >=400 copies/ml) } } \details{ Highly active antiretroviral therapy (HAART) refers to a combination of multiple antiretroviral drugs that can effectively suppress the HIV virus. However, achieving viral suppression (to the point that the virus becomes essentially undetectable in a blood sample) requires high levels of adherence to an often complicated medication regimen. A number of trials have examined various interventions that aim to increase adherence levels. In each trial, patients receiving the intervention are compared to patients in a control group receiving standard care (often referred to as \sQuote{care as usual}). However, the quality of standard care can vary substantially between these studies. de Bruin et al. (2009) assessed the quality of standard care provided (based on a quantification of the number of behavior change techniques applied) and examined to what extent the quality of standard care was related to the proportion of patients achieving effective viral suppression in the control groups. } \source{ de Bruin, M., Viechtbauer, W., Hospers, H. J., Schaalma, H. P., & Kok, G. (2009). Standard care quality determines treatment outcomes in control groups of HAART-adherence intervention studies: Implications for the interpretation and comparison of intervention effects. \emph{Health Psychology}, \bold{28}(6), 668--674. \verb{https://doi.org/10.1037/a0015989} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.debruin2009 dat \dontrun{ ### load metafor package library(metafor) ### calculate proportions and corresponding sampling variances dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) print(res, digits=2) ### mixed-effects meta-regression model with all predictors/covariates res <- rma(yi, vi, mods = ~ scq + ethnicity + patients + select + sens, data=dat) print(res, digits=3) ### mixed-effects meta-regression model with scq and ethnicity as predictors/covariates res <- rma(yi, vi, mods = ~ scq + ethnicity, data=dat) print(res, digits=3) } } \keyword{datasets} \concept{psychology} \concept{medicine} \concept{proportions} \concept{single-arm studies} \concept{meta-regression} \section{Concepts}{ psychology, medicine, proportions, single-arm studies, meta-regression } metadat/man/dat.hannum2020.Rd0000644000176200001440000000675014223103754015305 0ustar liggesusers\name{dat.hannum2020} \docType{data} \alias{dat.hannum2020} \title{Studies Comparing Objective and Subjective Olfactory Loss in COVID-19 Patients} \description{Results from 35 studies measuring olfactory loss in COVID-19 patients using either objective or subjective measures.} \usage{ dat.hannum2020 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{authorName} \tab \code{character} \tab (first) author of study \cr \bold{DOI} \tab \code{character} \tab article DOI number \cr \bold{ni} \tab \code{numeric} \tab number of Covid-19 positive patients in the study \cr \bold{xi} \tab \code{numeric} \tab number of Covid-19 positive patients in the study with olfactory loss \cr \bold{percentOlfactoryLoss} \tab \code{numeric} \tab percent of the sample with olfactory loss \cr \bold{objectivity} \tab \code{character} \tab objective or subjective measure used \cr \bold{measured} \tab \code{character} \tab outcome measure \cr \bold{testType} \tab \code{character} \tab type of test used \cr \bold{country} \tab \code{character} \tab country where patients were treated \cr \bold{patientType} \tab \code{character} \tab type of patient information and location where being treated } } \details{ One of the symptoms of COVID-19 infection is olfactory loss (loss of smell) either recently acquired anosmia (complete loss of smell) or hyposmia (partial loss of smell). One challenge to reaching this symptom is the wide range of reported prevalence for this symptom ranging from 5 percent to 98 percent. In this dataset studies were grouped into one of two groups based on the type of method used to measure smell loss (either subjective measures, such as self-reported smell loss, or objective measures using rated stimuli). } \source{ Ramirez VA , Hannum ME, Lipson SJ, Herriman RD, Toskala AK, Lin C, Joseph PV, Reed DR. 2020. COVID-19 Smell Loss Prevalence Tracker. Available from: \verb{https://vicente-ramirez.shinyapps.io/COVID19_Olfactory_Dashboard/} and \verb{https://github.com/vramirez4/OlfactoryLoss} (accessed August 11, 2021) } \references{ Hannum, M. E., Ramirez, V. A., Lipson, S. J., Herriman, R. D., Toskala, A. K., Lin, C., Joseph, P. V., & Reed, D. R. (2020). Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19 positive patients compared to subjective methods: A systematic review and meta-analysis. \emph{Chemical Senses}, \bold{45}(9), 865--874. \verb{https://doi.org/10.1093/chemse/bjaa064} } \author{ W. Kyle Hamilton \email{whamilton@ucmerced.edu} \url{https://kylehamilton.com} } \examples{ # copy data into 'dat' and examine data dat <- dat.hannum2020 dat \dontrun{ # load metafor package library(metafor) # compute effect size dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat) # split data into objective and subjective datasets dat_split <- split(dat, dat$objectivity) dat_objective <- dat_split[["Objective"]] dat_subjective <- dat_split[["Subjective"]] # random-effects model all studies res_all <- rma(yi, vi, data=dat) print(res_all, digits=2) # random-effects model objective res_objective <- rma(yi, vi, data=dat_objective) print(res_objective, digits=2) # random-effects model subjective res_subjective <- rma(yi, vi, data=dat_subjective) print(res_subjective, digits=2) } } \keyword{datasets} \concept{medicine} \concept{covid-19} \concept{proportions} \section{Concepts}{ medicine, covid-19, proportions } metadat/man/dat.curtis1998.Rd0000644000176200001440000001311314223103754015346 0ustar liggesusers\name{dat.curtis1998} \docType{data} \alias{dat.curtis1998} \title{Studies on the Effects of Elevated CO2 Levels on Woody Plant Mass} \description{Results from studies examining the effects of elevated CO2 levels on woody plant mass.} \usage{ dat.curtis1998 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab observation number \cr \bold{paper} \tab \code{numeric} \tab paper number \cr \bold{genus} \tab \code{character} \tab genus name \cr \bold{species} \tab \code{character} \tab species name \cr \bold{fungrp} \tab \code{character} \tab plant functional group \cr \bold{co2.ambi} \tab \code{numeric} \tab ambient CO2 level (control group) \cr \bold{co2.elev} \tab \code{numeric} \tab elevated CO2 level (treatment group) \cr \bold{units} \tab \code{character} \tab units for CO2 exposure levels \cr \bold{time} \tab \code{numeric} \tab maximum length of time (days) of CO2 exposure \cr \bold{pot} \tab \code{character} \tab growing method (see \sQuote{Details}) \cr \bold{method} \tab \code{character} \tab CO2 exposure facility (see \sQuote{Details}) \cr \bold{stock} \tab \code{character} \tab planting stock code \cr \bold{xtrt} \tab \code{character} \tab interacting treatment code (see \sQuote{Details}) \cr \bold{level} \tab \code{character} \tab interacting treatment level codes (see \sQuote{Details}) \cr \bold{m1i} \tab \code{numeric} \tab mean plant mass under elevated CO2 level (treatment group) \cr \bold{sd1i} \tab \code{numeric} \tab standard deviation of plant mass underelevated CO2 level (treatment group) \cr \bold{n1i} \tab \code{numeric} \tab number of observations under elevated CO2 level (treatment group) \cr \bold{m2i} \tab \code{numeric} \tab mean plant mass under ambient CO2 level (control group) \cr \bold{sd2i} \tab \code{numeric} \tab standard deviation of plant mass under ambient CO2 level (control group) \cr \bold{n2i} \tab \code{numeric} \tab number of observations under ambient CO2 level (control group) } } \details{ The studies included in this dataset compared the total above- plus below-ground biomass (in grams) for plants that were either exposed to ambient (around 35 Pa) and elevated CO2 levels (around twice the ambient level). The \code{co2.ambi} and \code{co2.elev} variables indicate the CO2 levels in the control and treatment groups, respectively (with the \code{units} variable specifying the units for the CO2 exposure levels). Many of the studies also varied one or more additional environmental variables (defined by the \code{xtrt} and \code{level} variables): \itemize{ \item NONE = no additional treatment factor \item FERT = soil fertility (either a \code{CONTROL}, \code{HIGH}, or \code{LOW} level) \item LIGHT = light treatment (always a \code{LOW} light level) \item FERT+L = soil fertility and light (a \code{LOW} light and soil fertility level) \item H2O = well watered vs drought (either a \code{WW} or \code{DRT} level) \item TEMP = temperature treatment (either a \code{HIGH} or \code{LOW} level) \item OZONE = ozone exposure (either a \code{HIGH} or \code{LOW} level) \item UVB = ultraviolet-B radiation exposure (either a \code{HIGH} or \code{LOW} level) } In addition, the studies differed with respect to various design variables, including CO2 exposure duration (\code{time}), growing method (\code{pot}: number = pot size in liters; \code{GRND} = plants rooted in ground; \code{HYDRO} = solution or aeroponic culture), CO2 exposure facility (\code{method}: \code{GC} = growth chamber; \code{GH} = greenhouse; \code{OTC} = field-based open-top chamber), and planting stock (\code{stock}: \code{SEED} = plants started from seeds; \code{SAP} = plants started from cuttings). The goal of the meta-analysis was to examine the effects of elevated CO2 levels on plant physiology and growth and the interacting effects of the environmental (and design) variables. } \source{ Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. \emph{Ecology}, \bold{80}(4), 1150--1156. \verb{https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2} (data obtained from \emph{Ecological Archives}, E080-008-S1, at: \url{https://esapubs.org/archive/ecol/E080/008/}) } \references{ Curtis, P. S., & Wang, X. (1998). A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. \emph{Oecologia}, \bold{113}(3), 299--313. \verb{https://doi.org/10.1007/s004420050381} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.curtis1998 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate (log transformed) ratios of means and corresponding sampling variances dat <- escalc(measure="ROM", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat) head(dat) ### meta-analysis using a random-effects model res <- rma(yi, vi, method="DL", data=dat) res ### average ratio of means with 95\% CI predict(res, transf=exp, digits=2) ### meta-analysis for plants grown under nutrient stress res <- rma(yi, vi, method="DL", data=dat, subset=(xtrt=="FERT" & level=="LOW")) predict(res, transf=exp, digits=2) ### meta-analysis for plants grown under low light conditions res <- rma(yi, vi, method="DL", data=dat, subset=(xtrt=="LIGHT" & level=="LOW")) predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{ecology} \concept{ratios of means} \section{Concepts}{ ecology, ratios of means } metadat/man/dat.crede2010.Rd0000644000176200001440000001004014223103754015063 0ustar liggesusers\name{dat.crede2010} \docType{data} \alias{dat.crede2010} \title{Studies on the Relationship between Class Attendance and Grades in College Students} \description{Results from 68 studies on the relationship between class attendence and class performance and/or grade point average in college students.} \usage{ dat.crede2010 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{studyid} \tab \code{numeric} \tab study number \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{source} \tab \code{character} \tab study source (journal, dissertation, other) \cr \bold{sampleid} \tab \code{numeric} \tab sample within study number \cr \bold{criterion} \tab \code{character} \tab criterion variable (grade, gpa) \cr \bold{class} \tab \code{character} \tab class type (science, nonscience) \cr \bold{ni} \tab \code{numeric} \tab sample size \cr \bold{ri} \tab \code{numeric} \tab observed correlation } } \details{ The 68 studies included in this dataset provide information about the relationship between class attendance of college students and their performance (i.e., grade) in the class and/or their overall grade point average. Some studies included multiple samples and hence the dataset actually contains 97 correlation coefficients. The dataset was obtained via personal communication. Note that this dataset differs just slightly from the one used by Credé et al. (2010). } \source{ Personal communication. } \references{ Credé, M., Roch, S. G., & Kieszczynka, U. M. (2010). Class attendance in college: A meta-analytic review of the relationship of class attendance with grades and student characteristics. \emph{Review of Educational Research}, \bold{80}(2), 272--295. \verb{https://doi.org/10.3102/0034654310362998} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.crede2010 head(dat, 18) \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) ############################################################################ ### meta-analysis for the relationship between attendance and grades res <- rma(yi, vi, data=dat, subset=criterion=="grade") res ### estimated average correlation with 95\% CI/PI predict(res, transf=transf.ztor, digits=2) ### examine if relationship between attendance and grades differs for nonscience/science classes res <- rma(yi, vi, mods = ~ class, data=dat, subset=criterion=="grade") res ### estimated average correlations for nonscience and science classes predict(res, newmods=c(0,1), transf=transf.ztor, digits=2) ### examine if relationship between attendance and grades has changed over time res <- rma(yi, vi, mods = ~ year, data=dat, subset=criterion=="grade") res ############################################################################ ### meta-analysis for the relationship between attendance and GPA res <- rma(yi, vi, data=dat, subset=criterion=="gpa") res ### estimated average correlation with 95\% CI/PI predict(res, transf=transf.ztor, digits=2) ### examine if relationship between attendance and GPA has changed over time res <- rma(yi, vi, mods = ~ year, data=dat, subset=criterion=="gpa") res ############################################################################ ### use a multilevel model to examine the relationship between attendance and grades res <- rma.mv(yi, vi, random = ~ 1 | studyid/sampleid, data=dat, subset=criterion=="grade") res predict(res, transf=transf.ztor, digits=2) ### use a multilevel model to examine the relationship between attendance and gpa res <- rma.mv(yi, vi, random = ~ 1 | studyid/sampleid, data=dat, subset=criterion=="gpa") res predict(res, transf=transf.ztor, digits=2) } } \keyword{datasets} \concept{education} \concept{correlation coefficients} \concept{multilevel models} \section{Concepts}{ education, correlation coefficients, multilevel models } metadat/man/dat.landenberger2005.Rd0000644000176200001440000001277414223103754016455 0ustar liggesusers\name{dat.landenberger2005} \docType{data} \alias{dat.landenberger2005} \title{Studies on the Effectiveness of CBT for Reducing Recidivism} \description{Results from 58 studies on the effectiveness of cognitive-behavioral therapy (CBT) for reducing recidivism in juvenile and adult offenders.} \usage{ dat.landenberger2005 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab (first) author and year \cr \bold{pubtype} \tab \code{character} \tab publication type (book chapter, journal article, report, or thesis) \cr \bold{country} \tab \code{character} \tab country where study was carried out (Canada, New Zealand, UK, or USA) \cr \bold{design} \tab \code{character} \tab study design (matched groups, nonequivalent groups, or randomized trial) \cr \bold{program} \tab \code{character} \tab purpose of setting up the CBT program (for demonstration, practice, or research purposes) \cr \bold{setting} \tab \code{character} \tab treatment setting (community or prison) \cr \bold{designprob} \tab \code{character} \tab indication of study design problems (no, favors the control group, or favors the treatment group) \cr \bold{n.ctrl.rec} \tab \code{numeric} \tab number of recidivists in the control group \cr \bold{n.ctrl.non} \tab \code{numeric} \tab number of non-recidivists in the control group \cr \bold{n.cbt.rec} \tab \code{numeric} \tab number of recidivists in the CBT group \cr \bold{n.cbt.non} \tab \code{numeric} \tab number of non-recidivists in the CBT group \cr \bold{interval} \tab \code{numeric} \tab recidivism interval (in months) \cr \bold{group} \tab \code{numeric} \tab study group (adults or juveniles) \cr \bold{age} \tab \code{numeric} \tab mean age of the study group \cr \bold{male} \tab \code{numeric} \tab percentage of males in the study group \cr \bold{minority} \tab \code{numeric} \tab percentage of minorities in the study group \cr \bold{length} \tab \code{numeric} \tab treatment length (in weeks) \cr \bold{sessions} \tab \code{numeric} \tab number of CBT sessions per week \cr \bold{hrs_week} \tab \code{numeric} \tab treatment hours per week \cr \bold{hrs_total} \tab \code{numeric} \tab total hours of treatment \cr \bold{cbt.cogskills} \tab \code{character} \tab CBT component: cognitive skills (yes, no) \cr \bold{cbt.cogrestruct} \tab \code{character} \tab CBT component: cognitive restructuring (yes, no) \cr \bold{cbt.intpprbsolv} \tab \code{character} \tab CBT component: interpersonal problem solving (yes, no) \cr \bold{cbt.socskills} \tab \code{character} \tab CBT component: social skills (yes, no) \cr \bold{cbt.angerctrl} \tab \code{character} \tab CBT component: anger control (yes, no) \cr \bold{cbt.victimimpact} \tab \code{character} \tab CBT component: victim impact (yes, no) \cr \bold{cbt.subabuse} \tab \code{character} \tab CBT component: substance abuse (yes, no) \cr \bold{cbt.behavmod} \tab \code{character} \tab CBT component: behavior modification (yes, no) \cr \bold{cbt.relapseprev} \tab \code{character} \tab CBT component: relapse prevention (yes, no) \cr \bold{cbt.moralrsng} \tab \code{character} \tab CBT component: moral reasoning (yes, no) \cr \bold{cbt.roletaking} \tab \code{character} \tab CBT component: role taking (yes, no) \cr \bold{cbt.other} \tab \code{character} \tab CBT component: other (yes, no) } } \details{ Landenberger and Lipsey (2005) conducted a meta-analysis of 58 experimental and quasi-experimental studies of the effects of cognitive-behavioral therapy (CBT) on the recidivism rates of adult and juvenile offenders (see also Lipsey et al., 2007). The present dataset includes the results of these studies and a range of potential moderator variables to identify factors associated with variation in treatment effects. } \source{ Personal communication. } \references{ Landenberger, N. A., & Lipsey, M. W. (2005). The positive effects of cognitive-behavioral programs for offenders: A meta-analysis of factors associated with effective treatment. \emph{Journal of Experimental Criminology}, \bold{1}, 451--476. \verb{https://doi.org/10.1007/s11292-005-3541-7} Lipsey, M. W., Landenberger, N. A., & Wilson, S. J. (2007). Effects of cognitive-behavioral programs for criminal offenders. \emph{Campbell Systematic Reviews}, \bold{3}(1), 1--27. \verb{https://doi.org/10.4073/csr.2007.6} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.landenberger2005 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate log odds ratios (for non-recidivism in CBT vs. control groups) and sampling variances dat <- escalc(measure="OR", ai=n.cbt.non, bi=n.cbt.rec, ci=n.ctrl.non, di=n.ctrl.rec, data=dat) ### fit random-effects model res <- rma(yi, vi, data=dat) res ### estimated average OR and corresponding 95\% CI/PI predict(res, transf=exp, digits=2) ### examine if number of treatment sessions per week is a potential moderator res <- rma(yi, vi, mods = ~ sessions, data=dat) res ### predicted ORs for 1, 2, 5, or 10 sessions per week predict(res, newmods=c(1,2,5,10), transf=exp, digits=2) } } \keyword{datasets} \concept{psychology} \concept{criminology} \concept{odds ratios} \concept{meta-regression} \section{Concepts}{ psychology, criminology, odds ratios, meta-regression } metadat/man/dat.nielweise2008.Rd0000644000176200001440000000634314223103754016007 0ustar liggesusers\name{dat.nielweise2008} \docType{data} \alias{dat.nielweise2008} \title{Studies on Anti-Infective-Treated Central Venous Catheters for Prevention of Catheter-Related Bloodstream Infections} \description{Results from 18 studies comparing the risk of catheter-related bloodstream infection when using anti-infective-treated versus standard catheters for total parenteral nutrition or chemotherapy.} \usage{ dat.nielweise2008 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{authors} \tab \code{character} \tab study authors \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{x1i} \tab \code{numeric} \tab number of CRBSIs in patients receiving an anti-infective catheter \cr \bold{t1i} \tab \code{numeric} \tab total number of catheter days for patients receiving an anti-infective catheter \cr \bold{x2i} \tab \code{numeric} \tab number of CRBSIs in patients receiving a standard catheter \cr \bold{t2i} \tab \code{numeric} \tab total number of catheter days for patients receiving a standard catheter } } \details{ The use of a central venous catheter may lead to a catheter-related bloodstream infection (CRBSI), which in turn increases the risk of morbidity and mortality. Anti-infective-treated catheters have been developed that are meant to reduce the risk of CRBSIs. Niel-Weise et al. (2008) conducted a meta-analysis of studies comparing infection risk when using anti-infective-treated versus standard catheters for total parenteral nutrition or chemotherapy. The results from 9 such studies are included in this dataset. The dataset was used in the article by Stijnen et al. (2010) to illustrate various generalized linear mixed-effects models for the meta-analysis of incidence rates and incidence rate ratios (see \sQuote{References}). } \source{ Niel-Weise, B. S., Stijnen, T., & van den Broek, P. J. (2008). Anti-infective-treated central venous catheters for total parenteral nutrition or chemotherapy: A systematic review. \emph{Journal of Hospital Infection}, \bold{69}(2), 114--123. \verb{https://doi.org/10.1016/j.jhin.2008.02.020} } \references{ Stijnen, T., Hamza, T. H., & Ozdemir, P. (2010). Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. \emph{Statistics in Medicine}, \bold{29}(29), 3046--3067. \verb{https://doi.org/10.1002/sim.4040} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.nielweise2008 dat \dontrun{ ### load metafor package library(metafor) ### standard (inverse-variance) random-effects model res <- rma(measure="IRR", x1i=x1i, t1i=t1i, x2i=x2i, t2i=t2i, data=dat) print(res, digits=3) predict(res, transf=exp, digits=2) ### random-effects conditional Poisson model res <- rma.glmm(measure="IRR", x1i=x1i, t1i=t1i, x2i=x2i, t2i=t2i, data=dat, model="CM.EL") print(res, digits=3) predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{incidence rates} \concept{generalized linear models} \section{Concepts}{ medicine, incidence rates, generalized linear models } metadat/man/dat.graves2010.Rd0000644000176200001440000000424314223103754015300 0ustar liggesusers\name{dat.graves2010} \docType{data} \alias{dat.graves2010} \title{Studies on the Effectiveness of Injected Cholera Vaccines} \description{Results from 17 studies on the effectiveness of injected vaccines against cholera.} \usage{ dat.graves2010 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab author/study name and publication year \cr \bold{ai} \tab \code{numeric} \tab number of cholera cases in the vaccinated group \cr \bold{n1i} \tab \code{numeric} \tab number of individuals in the vaccinated group \cr \bold{ci} \tab \code{numeric} \tab number of cholera cases in the placebo group \cr \bold{n2i} \tab \code{numeric} \tab number of individuals in the placebo group } } \details{ Cholera is an infection caused by certain strains of the bacterium \emph{Vibrio cholerae}. When untreated, mortality rates can be as high as 50-60\%. Proper sanitation practices are usually effective in preventing outbreaks, but a number of oral and injectable vaccines have also been developed. The Cochrane review by Graves et al. (2010) examined the effectiveness of injectable vaccines for preventing cholera cases and death. The present dataset includes results from 17 studies that reported the number of cholera cases in vaccinated and placebo/comparison groups up to 7 months after the treatment. } \source{ Graves, P. M., Deeks, J. J., Demicheli, V., & Jefferson, T. (2010). Vaccines for preventing cholera: Killed whole cell or other subunit vaccines (injected). \emph{Cochrane Database of Systematic Reviews}, \bold{8}, CD000974. \verb{https://doi.org/10.1002/14651858.CD000974.pub2} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.graves2010 dat \dontrun{ ### load metafor package library(metafor) ### analysis using the Mantel-Haenszel method rma.mh(measure="RR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, digits=2) } } \keyword{datasets} \concept{medicine} \concept{risk ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, risk ratios, Mantel-Haenszel method } metadat/man/dat.viechtbauer2021.Rd0000644000176200001440000002213414223103754016313 0ustar liggesusers\name{dat.viechtbauer2021} \docType{data} \alias{dat.viechtbauer2021} \title{Studies to Illustrate Model Checking Methods} \description{Results from 20 hypothetical randomized clinical trials examining the effectiveness of a medication for treating some disease.} \usage{ dat.viechtbauer2021 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{nTi} \tab \code{numeric} \tab number of patients in the treatment group \cr \bold{nCi} \tab \code{numeric} \tab number of patients in the control group \cr \bold{xTi} \tab \code{numeric} \tab number of patients in the treatment group with remission \cr \bold{xCi} \tab \code{numeric} \tab number of patients in the control group with remission \cr \bold{dose} \tab \code{numeric} \tab dosage of the medication provided to patients in the treatment group (in milligrams per day) } } \details{ The dataset was constructed for the purposes of illustrating the model checking and diagnostic methods described in Viechtbauer (2021). The code below provides the results for many of the analyses and plots discussed in the book chapter. } \source{ Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219-254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.viechtbauer2021 dat \dontrun{ ### load metafor package library(metafor) ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=xTi, n1i=nTi, ci=xCi, n2i=nCi, add=1/2, to="all", data=dat) dat ### number of studies k <- nrow(dat) ### fit models res.CE <- rma(yi, vi, data=dat, method="CE") # same as method="EE" res.CE res.RE <- rma(yi, vi, data=dat, method="DL") res.RE res.MR <- rma(yi, vi, mods = ~ dose, data=dat, method="FE") res.MR res.ME <- rma(yi, vi, mods = ~ dose, data=dat, method="DL") res.ME ### forest and bubble plot par(mar=c(5,4,1,2)) forest(dat$yi, dat$vi, psize=0.8, efac=0, xlim=c(-4,6), ylim=c(-3,23), cex=1, width=c(5,5,5), xlab="Log Odds Ratio (LnOR)") addpoly(res.CE, row=-1.5, mlab="CE Model") addpoly(res.RE, row=-2.5, mlab="RE Model") text(-4, 22, "Trial", pos=4, font=2) text( 6, 22, "LnOR [95\% CI]", pos=2, font=2) abline(h=0) tmp <- regplot(res.ME, xlim=c(0,250), ylim=c(-1,1.5), predlim=c(0,250), shade=FALSE, digits=1, xlab="Dosage (mg per day)", psize="seinv", plim=c(NA,5), bty="l", las=1, lty=c("solid", "dashed"), label=TRUE, labsize=0.8, offset=c(1,0.7)) res.sub <- rma(yi, vi, mods = ~ dose, data=dat, method="DL", subset=-6) abline(res.sub, lty="dotted") points(tmp$xi, tmp$yi, pch=21, cex=tmp$psize, col="black", bg="darkgray") par(mar=c(5,4,4,2)) ### number of standardized deleted residuals larger than +-1.96 in each model sum(abs(rstudent(res.CE)$z) >= qnorm(.975)) sum(abs(rstudent(res.MR)$z) >= qnorm(.975)) sum(abs(rstudent(res.RE)$z) >= qnorm(.975)) sum(abs(rstudent(res.ME)$z) >= qnorm(.975)) ### plot of the standardized deleted residuals for the RE and ME models plot(NA, NA, xlim=c(1,20), ylim=c(-4,4), xlab="Study", ylab="Standardized (Deleted) Residual", xaxt="n", main="Random-Effects Model", las=1) axis(side=1, at=1:20) abline(h=c(-1.96,1.96), lty="dotted") abline(h=0) points(1:20, rstandard(res.RE)$z, type="o", pch=19, col="gray70") points(1:20, rstudent(res.RE)$z, type="o", pch=19) legend("top", pch=19, col=c("gray70","black"), lty="solid", legend=c("Standardized Residuals","Standardized Deleted Residuals"), bty="n") plot(NA, NA, xlim=c(1,20), ylim=c(-4,4), xlab="Study", ylab="Standardized (Deleted) Residual", xaxt="n", main="Mixed-Effects Model", las=1) axis(side=1, at=1:20) abline(h=c(-1.96,1.96), lty="dotted") abline(h=0) points(1:20, rstandard(res.ME)$z, type="o", pch=19, col="gray70") points(1:20, rstudent(res.ME)$z, type="o", pch=19) legend("top", pch=19, col=c("gray70","black"), lty="solid", legend=c("Standardized Residuals","Standardized Deleted Residuals"), bty="n") ### Baujat plots baujat(res.CE, main="Common-Effects Model", xlab="Squared Pearson Residual", ylim=c(0,5), las=1) baujat(res.ME, main="Mixed-Effects Model", ylim=c(0,2), las=1) ### GOSH plots (skipped because this takes quite some time to run) if (FALSE) { res.GOSH.CE <- gosh(res.CE, subsets=10^7) plot(res.GOSH.CE, cex=0.2, out=6, xlim=c(-0.25,1.25), breaks=c(200,100)) res.GOSH.ME <- gosh(res.ME, subsets=10^7) plot(res.GOSH.ME, het="tau2", out=6, breaks=50, adjust=0.6, las=1) } ### plot of treatment dosage against the standardized residuals plot(dat$dose, rstandard(res.ME)$z, pch=19, xlab="Dosage (mg per day)", ylab="Standardized Residual", xlim=c(0,250), ylim=c(-2.5,2.5), las=1) abline(h=c(-1.96,1.96), lty="dotted", lwd=2) abline(h=0) title("Standardized Residual Plot") text(dat$dose[6], rstandard(res.ME)$z[6], "6", pos=4, offset=0.4) ### quadratic polynomial model rma(yi, vi, mods = ~ dose + I(dose^2), data=dat, method="DL") ### lack-of-fit model resLOF <- rma(yi, vi, mods = ~ dose + factor(dose), data=dat, method="DL", btt=3:9) resLOF ### scatter plot to illustrate the lack-of-fit model regplot(res.ME, xlim=c(0,250), ylim=c(-1.0,1.5), xlab="Dosage (mg per day)", ci=FALSE, predlim=c(0,250), psize=1, pch=19, col="gray60", digits=1, lwd=1, bty="l", las=1) dosages <- sort(unique(dat$dose)) lines(dosages, fitted(resLOF)[match(dosages, dat$dose)], type="o", pch=19, cex=2, lwd=2) points(dat$dose, dat$yi, pch=19, col="gray60") legend("bottomright", legend=c("Linear Model", "Lack-of-Fit Model"), pch=c(NA,19), col="black", lty="solid", lwd=c(1,2), pt.cex=c(1,2), seg.len=4, bty="n") ### checking normality of the standardized deleted residuals qqnorm(res.ME, type="rstudent", main="Standardized Deleted Residuals", pch=19, label="out", lwd=2, pos=24, ylim=c(-4,3), lty=c("solid", "dotted"), las=1) ### checking normality of the random effects sav <- qqnorm(ranef(res.ME)$pred, main="BLUPs of the Random Effects", cex=1, pch=19, xlim=c(-2.2,2.2), ylim=c(-0.6,0.6), las=1) abline(a=0, b=sd(ranef(res.ME)$pred), lwd=2) text(sav$x[6], sav$y[6], "6", pos=4, offset=0.4) ### hat values for the CE and RE models plot(NA, NA, xlim=c(1,20), ylim=c(0,0.21), xaxt="n", las=1, xlab="Study", ylab="Hat Value") axis(1, 1:20, cex.axis=1) points(hatvalues(res.CE), type="o", pch=19, col="gray70") points(hatvalues(res.RE), type="o", pch=19) abline(h=1/20, lty="dotted", lwd=2) title("Hat Values for the CE/RE Models") legend("topright", pch=19, col=c("gray70","black"), lty="solid", legend=c("Common-Effects Model", "Random-Effects Model"), bty="n") ### heatmap of the hat matrix for the ME model cols <- colorRampPalette(c("blue", "white", "red"))(101) h <- hatvalues(res.ME, type="matrix") image(1:nrow(h), 1:ncol(h), t(h[nrow(h):1,]), axes=FALSE, xlab="Influence of the Observed Effect of Study ...", ylab="On the Fitted Value of Study ...", col=cols, zlim=c(-max(abs(h)),max(abs(h)))) axis(1, 1:20, tick=FALSE) axis(2, 1:20, labels=20:1, las=1, tick=FALSE) abline(h=seq(0.5,20.5,by=1), col="white") abline(v=seq(0.5,20.5,by=1), col="white") points(1:20, 20:1, pch=19, cex=0.4) title("Heatmap for the Mixed-Effects Model") ### plot of leverages versus standardized residuals for the ME model plot(hatvalues(res.ME), rstudent(res.ME)$z, pch=19, cex=0.2+3*sqrt(cooks.distance(res.ME)), las=1, xlab="Leverage (Hat Value)", ylab="Standardized Deleted Residual", xlim=c(0,0.35), ylim=c(-3.5,2.5)) abline(h=c(-1.96,1.96), lty="dotted", lwd=2) abline(h=0, lwd=2) ids <- c(3,6,9) text(hatvalues(res.ME)[ids] + c(0,0.013,0.010), rstudent(res.ME)$z[ids] - c(0.18,0,0), ids) title("Leverage vs. Standardized Deleted Residuals") ### plot of the Cook's distances for the ME model plot(1:20, cooks.distance(res.ME), ylim=c(0,1.6), type="o", pch=19, las=1, xaxt="n", yaxt="n", xlab="Study", ylab="Cook's Distance") axis(1, 1:20, cex.axis=1) axis(2, seq(0,1.6,by=0.4), las=1) title("Cook's Distances") ### plot of the leave-one-out estimates of tau^2 for the ME model x <- influence(res.ME) plot(1:20, x$inf$tau2.del, ylim=c(0,0.15), type="o", pch=19, las=1, xaxt="n", xlab="Study", ylab=expression(paste("Estimate of ", tau^2, " without the ", italic(i), "th study"))) abline(h=res.ME$tau2, lty="dashed") axis(1, 1:20) title("Residual Heterogeneity Estimates") ### plot of the covariance ratios for the ME model plot(1:20, x$inf$cov.r, ylim=c(0,2.0), type="o", pch=19, las=1, xaxt="n", xlab="Study", ylab="Covariance Ratio") abline(h=1, lty="dashed") axis(1, 1:20) title("Covariance Ratios") ### fit mixed-effects model without studies 3 and/or 6 rma(yi, vi, mods = ~ dose, data=dat, method="DL", subset=-3) rma(yi, vi, mods = ~ dose, data=dat, method="DL", subset=-6) rma(yi, vi, mods = ~ dose, data=dat, method="DL", subset=-c(3,6)) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{outliers} \concept{model checks} \section{Concepts}{ medicine, odds ratios, outliers, model checks } metadat/man/dat.knapp2017.Rd0000644000176200001440000001461214223103754015132 0ustar liggesusers\name{dat.knapp2017} \docType{data} \alias{dat.knapp2017} \title{Studies on Differences in Planning Performance in Schizophrenia Patients versus Healthy Controls} \description{Results from 31 studies examining differences in planning performance in schizophrenia patients versus healthy controls.} \usage{ dat.knapp2017 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{study} \tab \code{numeric} \tab study id number \cr \bold{task} \tab \code{character} \tab type of task \cr \bold{difficulty} \tab \code{numeric} \tab task difficulty \cr \bold{group1} \tab \code{character} \tab identifier for patient group within studies \cr \bold{group2} \tab \code{character} \tab identifier for control group within studies \cr \bold{comp} \tab \code{numeric} \tab identifier for comparisons within studies \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference for planning performance \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{n_sz} \tab \code{numeric} \tab number of schizophrenic patients \cr \bold{n_hc} \tab \code{numeric} \tab number of healthy controls \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference for IQ \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance } } \details{ The studies included in this dataset examined differences between schizophrenia patients and healthy controls with respect to their performance on the tower of London test (\url{https://en.wikipedia.org/wiki/Tower_of_London_test}) or a similar cognitive tasks measuring planning ability. The outcome measure for this meta-analysis was the standardized mean difference (with positive values indicating better performance in the healthy controls compared to the schizophrenia patients). The dataset has a more complex structure for several reasons: \enumerate{ \item Studies 2, 3, 9, and 20 included more than one schizophrenia patient group and the standardized mean differences were computed by comparing these groups against a single healthy control group. \item Studies 6, 12, 14, 15, 18, 19, 22, and 26 had the patients and controls complete different tasks of varying complexity (essentially the average number of moves required to complete a task). Study 6 also included two different task types. \item Study 24 provides two standardized mean differences, one for men and the other for women. \item Study 29 provides three standardized mean differences, corresponding to the three different COMT Val158Met genotypes (val/val, val/met, and met/met). } All 4 issues described above lead to a multilevel structure in the dataset, with multiple standardized mean differences nested within some of the studies. Issues 1. and 2. also lead to correlated sampling errors. } \source{ Knapp, F., Viechtbauer, W., Leonhart, R., Nitschke, K., & Kaller, C. P. (2017). Planning performance in schizophrenia patients: A meta-analysis of the influence of task difficulty and clinical and sociodemographic variables. \emph{Psychological Medicine}, \bold{47}(11), 2002--2016. \verb{https://doi.org/10.1017/S0033291717000459} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.knapp2017 dat[-c(1:2)] \dontrun{ ### load metafor package library(metafor) ### fit a standard random-effects model ignoring the issues described above res <- rma(yi, vi, data=dat) res ### fit a multilevel model with random effects for studies and comparisons within studies ### (but this ignored the correlation in the sampling errors) res <- rma.mv(yi, vi, random = ~ 1 | study/comp, data=dat) res ### create variable that indicates the task and difficulty combination as increasing integers dat$task.diff <- unlist(lapply(split(dat, dat$study), function(x) { task.int <- as.integer(factor(x$task)) diff.int <- as.integer(factor(x$difficulty)) diff.int[is.na(diff.int)] <- 1 paste0(task.int, ".", diff.int)})) ### construct correlation matrix for two tasks with four different difficulties where the ### correlation is 0.4 for different difficulties of the same task, 0.7 for the same ### difficulty of different tasks, and 0.28 for different difficulties of different tasks R <- matrix(0.4, nrow=8, ncol=8) R[5:8,1:4] <- R[1:4,5:8] <- 0.28 diag(R[1:4,5:8]) <- 0.7 diag(R[5:8,1:4]) <- 0.7 diag(R) <- 1 rownames(R) <- colnames(R) <- paste0(rep(1:2, each=4), ".", 1:4) R ### construct an approximate V matrix accounting for the use of shared groups and ### for correlations among tasks/difficulties as specified in the R matrix above V <- vcalc(vi, cluster=study, grp1=group1, grp2=group2, w1=n_sz, w2=n_hc, obs=task.diff, rho=R, data=dat) ### correlation matrix for study 3 with four patient groups and a single control group round(cov2cor(V[dat$study == 3, dat$study == 3]), 2) ### correlation matrix for study 6 with two tasks with four difficulties cov2cor(V[dat$study == 6, dat$study == 6]) ### correlation matrix for study 24 with two independent groups cov2cor(V[dat$study == 24, dat$study == 24]) ### correlation matrix for study 29 with three independent groups cov2cor(V[dat$study == 29, dat$study == 29]) ### fit multilevel model as above, but now use this V matrix in the model res <- rma.mv(yi, V, random = ~ 1 | study/comp, data=dat) res predict(res, digits=2) ### use cluster-robust inference methods based on this model robust(res, cluster=study) ### use methods from clubSandwich package robust(res, cluster=study, clubSandwich=TRUE) ### examine if task difficulty is a potential moderator of the effect res <- rma.mv(yi, V, mods = ~ difficulty, random = ~ 1 | study/comp, data=dat) res sav <- robust(res, cluster=study) sav sav <- robust(res, cluster=study, clubSandwich=TRUE) sav ### draw bubble plot regplot(sav, xlab="Task Difficulty", ylab="Standardized Mean Difference", las=1, digits=1, bty="l") } } \keyword{datasets} \concept{psychology} \concept{standardized mean differences} \concept{multilevel models} \concept{multivariate models} \concept{cluster-robust inference} \concept{meta-regression} \section{Concepts}{ psychology, standardized mean differences, multilevel models, multivariate models, cluster-robust inference, meta-regression } metadat/man/metadat-package.Rd0000644000176200001440000001164714223103754015755 0ustar liggesusers\name{metadat-package} \alias{metadat-package} \alias{metadat} \docType{package} \title{Meta-Analysis Datasets for R} \description{ The \pkg{metadat} package contains a large collection of meta-analysis datasets. These datasets are useful for teaching purposes, illustrating/testing meta-analytic methods, and validating published analyses. } \section{Browsing and Searching for Datasets}{ A listing of all datasets in the package can be obtained with \code{help(package=metadat)}. Each datasets is also tagged with one or multiple concept terms. These concept terms refer to various aspects of a dataset, such as the field/topic of research, the outcome measure used for the analysis, the model(s) used for analyzing the data, and the methods/concepts that can be illustrated with the dataset. The \code{\link{datsearch}} function can be used to search among the existing datasets in the package based on their concept terms or based on a full-text search of their corresponding help files. You can also read the documentation online at \url{https://wviechtb.github.io/metadat/} (where the output from the example analyses corresponding to each dataset is provided). } \section{Contributing New Datasets}{ We welcome contributions of new datasets to the package. For each dataset, there must be a citable reference, ideally in a peer-reviewed journal or publication. The general workflow for contributing a new dataset is as follows: \itemize{ \item Install the \code{metadat} package in R in the usual manner (i.e., \code{install.packages("metadat")}). \item If you are familiar with Git/GitHub and making pull requests, fork the \href{https://github.com/wviechtb/metadat}{package repository}. Otherwise, \href{https://github.com/wviechtb/metadat/archive/master.zip}{download} the source version of the package from GitHub and unzip the file to some directory on your computer. \item Place the raw data (in a non-binary format) in the \code{data-raw} directory. The file should be named \code{dat..}, where \code{} is the last name of the first author of the publication from which the data come, \code{} is the publication year, and \code{} is the file extension (e.g., \code{.txt}, \code{.csv}). \item Place a corresponding R script in the \code{data-raw} directory named \code{dat..r} that reads in the data, possibly does some data cleaning/processing, and then saves the dataset to the \code{data} directory (using \code{\link{save}}), with name \code{dat..rda}. \item Start R, load the \code{metadat} package (i.e., \code{library(metadat)}), and then run the \code{\link{prep_dat}} function (either set the working directory to the location of the source package beforehand or use the \code{pkgdir} argument of the \code{\link{prep_dat}} function to specify the source package location). \item For a new dataset, this should create a boilerplate template for a corresponding help file in the \code{man} directory, named \code{dat..Rd}. Edit the help file, adding the title and a short description of the dataset in general, a description of each variable in the dataset, further details on the dataset (e.g., the field of research, how the data was collected, the purpose of the dataset / what it was used for, the effect size or outcome measure used in the analysis, the types of analyses/models that can be illustrated with the dataset), a reference for the source of the dataset, one or multiple concept terms, the name and email address of the contributor of the dataset, and (optionally) example code to illustrate the analysis of the dataset. \item Either make a pull request (if you are familiar with this workflow) or zip up the \code{dat..}, \code{dat..r}, \code{dat..rda}, and \code{dat..Rd} files and open up a new \href{https://github.com/wviechtb/metadat/issues}{issue at GitHub}, attaching the zip file. \item If the above makes no sense to you, you can also email one of the package authors with a cleaned, raw data file in \code{.txt} or \code{.csv} format, along with a meta-data file (format doesn't matter) that includes the information described above. } } \section{Citing the Package}{ If you use these data, please cite both the \pkg{metadat} package (see \code{citation("metadat")} for the reference) and the original source of the data as given under the help file of a dataset. } \section{Bug/Error Reports}{ If you think you have found an error in an existing dataset or a bug in the package in general, please go to \url{https://github.com/wviechtb/metadat/issues} and open up a new issue. } \author{ Thomas White, \email{thomas.white@sydney.edu.au} \cr Daniel Noble, \email{daniel.noble@anu.edu.au} \cr Alistair Senior, \email{alistair.senior@sydney.edu.au} \cr W. Kyle Hamilton, \email{whamilton@ucmerced.edu} \cr Wolfgang Viechtbauer, \email{wvb@metafor-project.org} } \keyword{package} metadat/man/dat.linde2005.Rd0000644000176200001440000001112514223103754015105 0ustar liggesusers\name{dat.linde2005} \docType{data} \alias{dat.linde2005} \title{Studies on the Effectiveness of St. John's Wort for Treating Depression} \description{Results from 26 studies on the effectiveness of Hypericum perforatum extracts (St. John's wort) for treating depression.} \usage{ dat.linde2005 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study number \cr \bold{study} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{country} \tab \code{character} \tab study location \cr \bold{ni} \tab \code{numeric} \tab total sample size \cr \bold{major} \tab \code{numeric} \tab sample restricted to patients who met criteria for major depression \cr \bold{baseline} \tab \code{numeric} \tab HRSD baseline score \cr \bold{version} \tab \code{numeric} \tab HRSD version (17 or 21 items) \cr \bold{duration} \tab \code{numeric} \tab study duration (in weeks) \cr \bold{prep} \tab \code{character} \tab Hypericum extract preparation \cr \bold{dosage} \tab \code{numeric} \tab dosage (in mg) \cr \bold{response} \tab \code{numeric} \tab definition of response (see \sQuote{Details}) \cr \bold{ai} \tab \code{numeric} \tab number of responses in treatment group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in treatment group \cr \bold{ci} \tab \code{numeric} \tab number of responses in placebo group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in placebo group \cr \bold{group} \tab \code{numeric} \tab stratification variable used by the authors (see \sQuote{Details}) } } \details{ The dataset includes the results from 26 double-blind placebo-controlled trials on the effectiveness of Hypericum perforatum extracts (St. John's wort) for treating depression (note that 2 studies did not provide sufficient response information). Data were extracted from Table 1 and Figure 3 from Linde et al. (2005). For study duration, the assessment week (instead of the total study duration) was coded for Philipp et al. (1999) and Montgomery et al. (2000). For dosage, the midpoint was coded when a range of values was given. The definition of what constitutes a \code{response} differed across studies and is coded as follows: \enumerate{ \item HRSD score reduction of at least 50\% or HRSD score after therapy <10, \item HRSD reduction of at least 50\%, \item based on HRSD scale but exact definition not reported, \item global patient assessment of efficacy, \item at least \sQuote{much improved} on the Clinical Global Impression sub-scale for global improvement. } The \code{group} variable corresponds to the variable used by Linde et al. (2005) to stratify their analyses and is coded as follows: \enumerate{ \item smaller trials restricted to major depression, \item larger trials restricted to major depression, \item smaller trials not restricted to major depression, \item larger trials not restricted to major depression. } } \source{ Linde, K., Berner, M., Egger, M., & Mulrow, C. (2005). St John's wort for depression: Meta-analysis of randomised controlled trials. \emph{British Journal of Psychiatry}, \bold{186}(2), 99--107. \verb{https://doi.org/10.1192/bjp.186.2.99} } \references{ Viechtbauer, W. (2007). Accounting for heterogeneity via random-effects models and moderator analyses in meta-analysis. \emph{Zeitschrift \enc{für}{fuer} Psychologie / Journal of Psychology}, \bold{215}(2), 104--121. \verb{https://doi.org/10.1027/0044-3409.215.2.104} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.linde2005 head(dat) \dontrun{ ### load metafor package library(metafor) ### remove studies with no response information and study with no responses in either group dat <- dat[-c(5,6,26),] ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=ai, ci=ci, n1i=n1i, n2i=n2i, data=dat) head(dat) ### meta-analysis of the log risk ratios using a random-effects model res <- rma(yi, vi, data=dat, method="DL") res ### mixed-effects meta-regression model with stratification variable res <- rma(yi, vi, mods = ~ factor(group) - 1, data=dat, method="DL") res ### predicted average risk ratio for each level of the stratification variable predict(res, newmods=diag(4), transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{psychiatry} \concept{risk ratios} \section{Concepts}{ medicine, psychiatry, risk ratios } metadat/man/dat.stowe2010.Rd0000644000176200001440000001111314223103754015144 0ustar liggesusers\name{dat.stowe2010} \docType{data} \alias{dat.stowe2010} \title{Studies on Adjuvant Treatments to Levodopa Therapy for Parkinson disease} \description{Results from 29 trials assessing efficacy of three drug classes as adjuvant treatment to levodopa therapy in patients with Parkinson disease and motor complications.} \usage{ dat.stowe2010 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{id} \tab \code{integer} \tab study id \cr \bold{t1} \tab \code{character} \tab treatment 1 \cr \bold{y1} \tab \code{numeric} \tab treatment effect arm 1 \cr \bold{sd1} \tab \code{numeric} \tab standard deviation arm 1 \cr \bold{n1} \tab \code{integer} \tab sample size arm 1 \cr \bold{t2} \tab \code{character} \tab treatment 2 \cr \bold{y2} \tab \code{numeric} \tab treatment effect arm 2 \cr \bold{sd2} \tab \code{numeric} \tab standard deviation arm 2 \cr \bold{n2} \tab \code{integer} \tab sample size arm 2 \cr \bold{t3} \tab \code{character} \tab treatment 3 \cr \bold{y3} \tab \code{numeric} \tab treatment effect arm 3 \cr \bold{sd3} \tab \code{numeric} \tab standard deviation arm 3 \cr \bold{n3} \tab \code{integer} \tab sample size arm 3 } } \details{ This data set contains data from a Cochrane review assessing efficacy and safety of three drug classes as adjuvant treatment to levodopa therapy in patients with Parkinson disease and motor complications (Stowe et al., 2010). The authors conducted three pairwise meta-analyses comparing dopamine agonists, catechol-O-methyl transferase inhibitors (COMTI), and monoamine oxidase type B inhibitors (MAOBI) with placebo. The primary outcome was the mean reduction of the time spent in a relatively immobile \sQuote{off} phase (mean off-time), calculated in hours per day. Relative treatment effects were expressed as mean difference. Data on this outcome were available for 5,331 patients from 28 studies comparing an active treatment with placebo and one three-arm study comparing two active treatments with placebo. } \source{ Stowe, R., Ives, N., Clarke, C. E., Deane, K., Hilten, V., Wheatley, K., Gray, R., Handley, K., & Furmston, A. (2010). Evaluation of the efficacy and safety of adjuvant treatment to levodopa therapy in Parkinson's disease patients with motor complications. \emph{Cochrane Database of Systematic Reviews}, \bold{7}, CD007166. \verb{https://doi.org/10.1002/14651858.CD007166.pub2} } \author{ Guido Schwarzer, \email{sc@imbi.uni-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show results from three studies (including three-arm study LARGO) dat.stowe2010[18:20, ] \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library(netmeta)) ### Print mean differences with two digits and standard errors with 3 ### digits settings.meta(digits = 2, digits.se = 3) ### Transform data from wide arm-based format to contrast-based ### format. Argument 'sm' must not be provided as the mean difference ### is the default in R function metacont() called internally. pw <- pairwise(treat = list(t1, t2, t3), n = list(n1, n2, n3), mean = list(y1, y2, y3), sd = list(sd1, sd2, sd3), studlab = study, data = dat.stowe2010, sm = "MD") ### Show calculated mean differences (TE) for three studies selstudy <- c("COMTI(E) INT-OZ", "LARGO", "COMTI(E) Nomecomt") subset(pw, studlab \%in\% selstudy)[, c(3:7, 10, 1)] ### Conduct random effects network meta-analysis (NMA) ### with placebo as reference net <- netmeta(pw, fixed = FALSE, ref = "plac") ### Show network graph netgraph(net, number = TRUE, multiarm = TRUE, cex = 1.25, offset = 0.025, cex.number = 1, pos.number.of.studies = 0.3) ### Print NMA results net ### Forest plot with NMA results forest(net) ### Forest plot showing all network estimates of active treatments ### compared with other treatments forest(net, ref = c("C", "D", "M"), baseline = FALSE, drop = TRUE) ### Treatment ranking using P-scores netrank(net) ### Rankogram with all ranking probabilities set.seed(1909) ran <- rankogram(net) ran plot(ran) ### Treatment ranking using SUCRAs netrank(ran) ### League table showing network and direct estimates netleague(net, seq = netrank(net), ci = FALSE) } } \seealso{ \code{\link[netmeta]{pairwise}}, \code{\link[meta]{metacont}}, \code{\link[netmeta]{netmeta}}, \code{\link[netmeta]{netrank}}, \code{\link[netmeta]{rankogram}}, \code{\link[netmeta]{netleague}} } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{network meta-analysis} \section{Concepts}{ medicine, raw mean differences, network meta-analysis } metadat/man/dat.bangertdrowns2004.Rd0000644000176200001440000000717214223103754016677 0ustar liggesusers\name{dat.bangertdrowns2004} \docType{data} \alias{dat.bangertdrowns2004} \title{Studies on the Effectiveness of Writing-to-Learn Interventions} \description{Results from 48 studies on the effectiveness of school-based writing-to-learn interventions on academic achievement. \loadmathjax} \usage{ dat.bangertdrowns2004 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{grade} \tab \code{numeric} \tab grade level (1 = elementary; 2 = middle; 3 = high-school; 4 = college) \cr \bold{length} \tab \code{numeric} \tab treatment length (in weeks) \cr \bold{minutes} \tab \code{numeric} \tab minutes per assignment \cr \bold{wic} \tab \code{numeric} \tab writing tasks were completed in class (0 = no; 1 = yes) \cr \bold{feedback} \tab \code{numeric} \tab feedback on writing was provided (0 = no; 1 = yes) \cr \bold{info} \tab \code{numeric} \tab writing contained informational components (0 = no; 1 = yes) \cr \bold{pers} \tab \code{numeric} \tab writing contained personal components (0 = no; 1 = yes) \cr \bold{imag} \tab \code{numeric} \tab writing contained imaginative components (0 = no; 1 = yes) \cr \bold{meta} \tab \code{numeric} \tab prompts for metacognitive reflection (0 = no; 1 = yes) \cr \bold{subject} \tab \code{character} \tab subject matter \cr \bold{ni} \tab \code{numeric} \tab total sample size of the study \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance } } \details{ In each of the studies included in this meta-analysis, an experimental group (i.e., a group of students that received instruction with increased emphasis on writing tasks) was compared against a control group (i.e., a group of students that received conventional instruction) with respect to some content-related measure of academic achievement (e.g., final grade, an exam/quiz/test score). The outcome measure for this meta-analysis was the standardized mean difference (with positive values indicating a higher mean level of academic achievement in the intervention group). The standardized mean differences given here are bias-corrected and therefore differ slightly from the values reported in the article. Also, since only the total sample size is given in the article, the sampling variances were computed under the assumption that \mjeqn{n_{i1} = n_{i2} = n_i / 2}{n_i1 = n_i2 = n_i / 2}. } \source{ Bangert-Drowns, R. L., Hurley, M. M., & Wilkinson, B. (2004). The effects of school-based writing-to-learn interventions on academic achievement: A meta-analysis. \emph{Review of Educational Research}, \bold{74}(1), 29--58. \verb{https://doi.org/10.3102/00346543074001029} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bangertdrowns2004 dat[1:10,-13] \dontrun{ ### load metafor package library(metafor) ### fit random-effects model res <- rma(yi, vi, data=dat) res ### some examples of mixed-effects meta-regression models res <- rma(yi, vi, mods = ~ factor(grade), data=dat) res res <- rma(yi, vi, mods = ~ length, data=dat) res res <- rma(yi, vi, mods = ~ info + pers + imag + meta, data=dat) res } } \keyword{datasets} \concept{education} \concept{standardized mean differences} \concept{meta-regression} \section{Concepts}{ education, standardized mean differences, meta-regression } metadat/man/dat.baskerville2012.Rd0000644000176200001440000001020314223103754016307 0ustar liggesusers\name{dat.baskerville2012} \docType{data} \alias{dat.baskerville2012} \title{Studies on the Effectiveness of Practice Facilitation Interventions} \description{Results from 23 studies on the effectiveness of practice facilitation interventions within the primary care practice setting.} \usage{ dat.baskerville2012 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{score} \tab \code{numeric} \tab quality score (0 to 12 scale) \cr \bold{design} \tab \code{character} \tab study design (cct = controlled clinical trial, rct = randomized clinical trial, crct = cluster randomized clinical trial) \cr \bold{alloconc} \tab \code{numeric} \tab allocation concealed (0 = no, 1 = yes) \cr \bold{blind} \tab \code{numeric} \tab single- or double-blind study (0 = no, 1 = yes) \cr \bold{itt} \tab \code{numeric} \tab intention to treat analysis (0 = no, 1 = yes) \cr \bold{fumonths} \tab \code{numeric} \tab follow-up months \cr \bold{retention} \tab \code{numeric} \tab retention (in percent) \cr \bold{country} \tab \code{character} \tab country where study was conducted \cr \bold{outcomes} \tab \code{numeric} \tab number of outcomes assessed \cr \bold{duration} \tab \code{numeric} \tab duration of intervention \cr \bold{pperf} \tab \code{numeric} \tab practices per facilitator \cr \bold{meetings} \tab \code{numeric} \tab (average) number of meetings \cr \bold{hours} \tab \code{numeric} \tab (average) hours per meeting \cr \bold{tailor} \tab \code{numeric} \tab intervention tailored to the context and needs of the practice (0 = no, 1 = yes) \cr \bold{smd} \tab \code{numeric} \tab standardized mean difference \cr \bold{se} \tab \code{numeric} \tab corresponding standard error } } \details{ Baskerville et al. (2012) describe outreach or practice facilitation as a "multifaceted approach that involves skilled individuals who enable others, through a range of intervention components and approaches, to address the challenges in implementing evidence-based care guidelines within the primary care setting". The studies included in this dataset examined the effectiveness of practice facilitation interventions for improving some relevant evidence-based practice behavior. The effect was quantified in terms of a standardized mean difference, comparing the change (from pre- to post-intervention) in the intervention versus the comparison group (or the difference from baseline in prospective cohort studies). } \source{ Baskerville, N. B., Liddy, C., & Hogg, W. (2012). Systematic review and meta-analysis of practice facilitation within primary care settings. \emph{Annals of Family Medicine}, \bold{10}(1), 63--74. \verb{https://doi.org/10.1370/afm.1312} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.baskerville2012 dat \dontrun{ ### load metafor package library(metafor) ### random-effects model res <- rma(smd, sei=se, data=dat, method="DL") print(res, digits=2) ### funnel plot funnel(res, xlab="Standardized Mean Difference", ylim=c(0,0.6)) ### rank and regression tests for funnel plot asymmetry ranktest(res) regtest(res) ### meta-regression analyses examining various potential moderators rma(smd, sei=se, mods = ~ score, data=dat, method="DL") rma(smd, sei=se, mods = ~ alloconc, data=dat, method="DL") rma(smd, sei=se, mods = ~ blind, data=dat, method="DL") rma(smd, sei=se, mods = ~ itt, data=dat, method="DL") rma(smd, sei=se, mods = ~ duration, data=dat, method="DL") rma(smd, sei=se, mods = ~ tailor, data=dat, method="DL") rma(smd, sei=se, mods = ~ pperf, data=dat, method="DL") rma(smd, sei=se, mods = ~ I(meetings * hours), data=dat, method="DL") } } \keyword{datasets} \concept{medicine} \concept{primary care} \concept{standardized mean differences} \concept{publication bias} \concept{meta-regression} \section{Concepts}{ medicine, primary care, standardized mean differences, publication bias, meta-regression } metadat/man/dat.frank2008.Rd0000644000176200001440000001125414223103754015121 0ustar liggesusers\name{dat.frank2008} \docType{data} \alias{dat.frank2008} \title{Studies on the Association Between the CASP8 -652 6N del Promoter Polymorphism and Breast Cancer Risk} \description{Results from 4 case-control studies examining the association between the CASP8 -652 6N del promoter polymorphism and breast cancer risk.} \usage{ dat.frank2008 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study identifier \cr \bold{bc.ins.ins} \tab \code{numeric} \tab number of cases who have a homozygous insertion polymorphism \cr \bold{bc.ins.del} \tab \code{numeric} \tab number of cases who have a heterozygous insertion/deletion polymorphism \cr \bold{bc.del.del} \tab \code{numeric} \tab number of cases who have a homozygous deletion polymorphism \cr \bold{ct.ins.ins} \tab \code{numeric} \tab number of controls who have a homozygous insertion polymorphism \cr \bold{ct.ins.del} \tab \code{numeric} \tab number of controls who are heterozygous insertion/deletion polymorphism \cr \bold{ct.del.del} \tab \code{numeric} \tab number of controls who have a homozygous deletion polymorphism } } \details{ The 4 studies included in this dataset are case-control studies that have examined the association between the CASP8 -652 6N del promoter polymorphism and breast cancer risk. Breast cancer cases and controls were genotyped and either had a homozygous insertion, a heterozygous insertion/deletion, or a homozygous deletion polymorphism. Ziegler et al. (2011) used the same dataset to illustrate the use of meta-analytic methods to examine deviations from Hardy-Weinberg equilibrium across multiple studies. The relative excess heterozygosity (REH) is the proposed measure for such a meta-analysis, which can be computed by setting \code{measure="REH"}. } \source{ Frank, B., Rigas, S. H., Bermejo, J. L., Wiestler, M., Wagner, K., Hemminki, K., Reed, M. W., Sutter, C., Wappenschmidt, B., Balasubramanian, S. P., Meindl, A., Kiechle, M., Bugert, P., Schmutzler, R. K., Bartram, C. R., Justenhoven, C., Ko, Y.-D., Brüning, T., Brauch, H., Hamann, U., Pharoah, P. P. D., Dunning, A. M., Pooley, K. A., Easton, D. F., Cox, A. & Burwinkel, B. (2008). The CASP8 -652 6N del promoter polymorphism and breast cancer risk: A multicenter study. \emph{Breast Cancer Research and Treatment}, \bold{111}(1), 139-144. \verb{https://doi.org/10.1007/s10549-007-9752-z} } \references{ Ziegler, A., Steen, K. V. & Wellek, S. (2011). Investigating Hardy-Weinberg equilibrium in case-control or cohort studies or meta-analysis. \emph{Breast Cancer Research and Treatment}, \bold{128}(1), 197--201. \verb{https://doi.org/10.1007/s10549-010-1295-z} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.frank2008 dat \dontrun{ ### load metafor package library(metafor) ### calculate log odds ratios comparing ins/del versus ins/ins dat <- escalc(measure="OR", ai=bc.ins.del, bi=bc.ins.ins, ci=ct.ins.del, di=ct.ins.ins, data=dat) ### fit random-effects model and get the pooled odds ratio (with 95\% CI) res <- rma(yi, vi, data=dat) res predict(res, transf=exp, digits=2) ### calculate log odds ratios comparing del/del versus ins/ins dat <- escalc(measure="OR", ai=bc.del.del, bi=bc.ins.ins, ci=ct.del.del, di=ct.ins.ins, data=dat) ### fit random-effects model and get the pooled odds ratio (with 95\% CI) res <- rma(yi, vi, data=dat) res predict(res, transf=exp, digits=2) ### calculate log odds ratios comparing ins/del+del/del versus ins/ins dat <- escalc(measure="OR", ai=bc.ins.del+bc.del.del, bi=bc.ins.ins, ci=ct.ins.del+ct.del.del, di=ct.ins.ins, data=dat) ### fit random-effects model and get the pooled odds ratio (with 95\% CI) res <- rma(yi, vi, data=dat) res predict(res, transf=exp, digits=2) ############################################################################ ### compute the relative excess heterozygosity in the controls dat <- escalc(measure="REH", ai=ct.ins.ins, bi=ct.ins.del, ci=ct.del.del, slab=study, data=dat) ### fit random-effects model and get the pooled REH value (with 90\% CI) res <- rma(yi, vi, data=dat, level=90) res predict(res, transf=exp, digits=2) ### draw forest plot forest(res, atransf=exp, header=TRUE, xlim=c(-1.5,1.5), at=log(c(0.5,5/7,1,7/5,2))) segments(log(5/7), -2, log(5/7), res$k+1, lty="dotted") segments(log(7/5), -2, log(7/5), res$k+1, lty="dotted") } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{genetics} \concept{odds ratios} \section{Concepts}{ medicine, oncology, genetics, odds ratios } metadat/man/dat.anand1999.Rd0000644000176200001440000000662014223103754015124 0ustar liggesusers\name{dat.anand1999} \docType{data} \alias{dat.anand1999} \title{Studies on the Effectiveness of Oral Anticoagulants in Patients with Coronary Artery Disease} \description{Results from 34 trials examining the effectiveness of oral anticoagulants in patients with coronary artery disease.} \usage{ dat.anand1999 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab author(s) or trial name \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{intensity} \tab \code{character} \tab intensity of anticoagulation (low, medium, or high) \cr \bold{asp.t} \tab \code{numeric} \tab concomitant use of aspirin in the treatment group (0 = no, 1 = yes) \cr \bold{asp.c} \tab \code{numeric} \tab concomitant use of aspirin in the control group (0 = no, 1 = yes) \cr \bold{ai} \tab \code{numeric} \tab number of deaths in the treatment group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the treatment group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the control group } } \details{ The dataset includes the results from 34 randomized clinical trials that examined the effectiveness of oral anticoagulants in patients with coronary artery disease. The results given here are focused on the total mortality in the treatment versus control groups. } \note{ Strictly speaking, there are only 31 trials, since Breddin et al. (1980) and ATACS (1990) are multiarm trials. According to a correction, \code{dat.anand1999$ci[29]} should be 1. But then \code{dat.anand1999$ci[21]} would also have to be 1 (if these data indeed refer to the same control group). This appears contradictory, so this correction was not made. } \source{ Anand, S. S., & Yusuf, S. (1999). Oral anticoagulant therapy in patients with coronary artery disease: A meta-analysis. \emph{Journal of the American Medical Association}, \bold{282}(21), 2058--2067. \verb{https://doi.org/10.1001/jama.282.21.2058} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.anand1999 dat \dontrun{ ### load metafor package library(metafor) ### High-Intensity OA vs Control rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity=="high" & asp.t==0 & asp.c==0), digits=2) ### High- or Moderate-Intensity OA vs Aspirin rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity \%in\% c("high","moderate") & asp.t==0 & asp.c==1), digits=2) ### Moderate-Intensity OA vs Control rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity=="moderate" & asp.t==0 & asp.c==0), digits=2) ### High- or Moderate-Intensity OA and Aspirin vs Aspirin rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity \%in\% c("high","moderate") & asp.t==1 & asp.c==1), digits=2) ### Low-Intensity OA and Aspirin vs Aspirin rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity=="low" & asp.t==1 & asp.c==1), digits=2) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, cardiology, odds ratios, Mantel-Haenszel method } metadat/man/dat.hasselblad1998.Rd0000644000176200001440000001551314223103754016145 0ustar liggesusers\name{dat.hasselblad1998} \docType{data} \alias{dat.hasselblad1998} \title{Studies on the Effectiveness of Counseling for Smoking Cessation} \description{Results from 24 studies on the effectiveness of various counseling types for smoking cessation.} \usage{ dat.hasselblad1998 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab id number for each treatment arm \cr \bold{study} \tab \code{numeric} \tab study id number \cr \bold{authors} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{trt} \tab \code{character} \tab intervention group \cr \bold{xi} \tab \code{numeric} \tab number of individuals abstinent \cr \bold{ni} \tab \code{numeric} \tab number of individuals in group } } \details{ The dataset includes the results from 24 studies on the effectiveness of various counseling types for smoking cessation (i.e., self-help, individual counseling, group counseling, and no contact). The dataset indicates the total number of individuals within each study arm and the number that were abstinent from 6 to 12 months. The majority of the studies compared two interventions types against each other, while 2 studies compared three types against each other simultaneously. The data can be used for a \sQuote{network meta-analysis} (also called a \sQuote{mixed treatment comparison}). The code below shows how such an analysis can be conducted using an arm-based and a contrast-based model (see Salanti et al., 2008, for more details). } \source{ Hasselblad, V. (1998). Meta-analysis of multitreatment studies. \emph{Medical Decision Making}, \bold{18}(1), 37--43. \verb{https://doi.org/10.1177/0272989X9801800110} } \references{ Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (2nd ed., pp. 357--376). New York: Russell Sage Foundation. Law, M., Jackson, D., Turner, R., Rhodes, K., & Viechtbauer, W. (2016). Two new methods to fit models for network meta-analysis with random inconsistency effects. \emph{BMC Medical Research Methodology}, \bold{16}, 87. \verb{https://doi.org/10.1186/s12874-016-0184-5} Salanti, G., Higgins, J. P. T., Ades, A. E., & Ioannidis, J. P. A. (2008). Evaluation of networks of randomized trials. \emph{Statistical Methods in Medical Research}, \bold{17}(3), 279--301. \verb{https://doi.org/10.1177/0962280207080643} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hasselblad1998 dat \dontrun{ ### load metafor package library(metafor) ### create network graph ('igraph' package must be installed) library(igraph, warn.conflicts=FALSE) pairs <- data.frame(do.call(rbind, sapply(split(dat$trt, dat$study), function(x) t(combn(x,2)))), stringsAsFactors=FALSE) lvls <- c("no_contact", "self_help", "ind_counseling", "grp_counseling") pairs$X1 <- factor(pairs$X1, levels=lvls) pairs$X2 <- factor(pairs$X2, levels=lvls) tab <- table(pairs[,1], pairs[,2]) tab # adjacency matrix g <- graph_from_adjacency_matrix(tab, mode = "plus", weighted=TRUE, diag=FALSE) vertex_attr(g, "name") <- c("No Contact", "Self-Help", "Individual\nCounseling", "Group\nCounseling") plot(g, edge.curved=FALSE, edge.width=E(g)$weight, layout=layout_on_grid, vertex.size=45, vertex.color="lightgray", vertex.label.color="black", vertex.label.font=2) ### calculate log odds for each study arm dat <- escalc(measure="PLO", xi=xi, ni=ni, add=1/2, to="all", data=dat) dat ### convert trt variable to factor with desired ordering of levels dat$trt <- factor(dat$trt, levels=c("no_contact", "self_help", "ind_counseling", "grp_counseling")) ### add a space before each level (this makes the output a bit more legible) levels(dat$trt) <- paste0(" ", levels(dat$trt)) ### network meta-analysis using an arm-based model with fixed study effects ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons res <- rma.mv(yi, vi, mods = ~ factor(study) + trt - 1, random = ~ trt | study, rho=1/2, data=dat, btt="trt") res ### all pairwise odds ratios of interventions versus no contact predict(res, newmods=cbind(matrix(0, nrow=3, ncol=24), diag(3)), intercept=FALSE, transf=exp, digits=2) ### all pairwise odds ratios comparing interventions (ic vs sh, gc vs sh, and gc vs ic) predict(res, newmods=cbind(matrix(0, nrow=3, ncol=24), rbind(c(-1,1,0), c(-1,0,1), c(0,-1,1))), intercept=FALSE, transf=exp, digits=2) ### forest plot of ORs of interventions versus no contact dev.new(width=7, height=4) par(mar=c(5,4,1,2)) forest(c(0,res$beta[25:27]), sei=c(0,res$se[25:27]), psize=1, xlim=c(-3,4), digits=c(2,1), efac=2, slab=c("No Contact", "Self-Help", "Individual Counseling", "Group Counseling"), atransf=exp, at=log(c(.5, 1, 2, 4, 8)), xlab="Odds Ratio for Intervention vs. No Contact", header=c("Intervention", "Odds Ratio [95\% CI]")) ############################################################################ ### restructure dataset to a contrast-based format dat <- to.wide(dat.hasselblad1998, study="study", grp="trt", ref="no_contact", grpvars=6:7) ### calculate log odds ratios for each treatment comparison dat <- escalc(measure="OR", ai=xi.1, n1i=ni.1, ci=xi.2, n2i=ni.2, add=1/2, to="all", data=dat) dat ### calculate the variance-covariance matrix of the log odds ratios for multitreatment studies ### see Gleser & Olkin (2009), equation (19.11), for the covariance equation calc.v <- function(x) { v <- matrix(1/(x$xi.2[1] + 1/2) + 1/(x$ni.2[1] - x$xi.2[1] + 1/2), nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) ### add contrast matrix to dataset dat <- contrmat(dat, grp1="trt.1", grp2="trt.2") dat ### network meta-analysis using a contrast-based random-effects model ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons res <- rma.mv(yi, V, mods = ~ self_help + ind_counseling + grp_counseling - 1, random = ~ comp | study, rho=1/2, data=dat) res ### predicted odds ratios of interventions versus no contact predict(res, newmods=diag(3), transf=exp, digits=2) ### fit random inconsistency effects model (see Law et al., 2016) res <- rma.mv(yi, V, mods = ~ self_help + ind_counseling + grp_counseling - 1, random = list(~ comp | study, ~ comp | design), rho=1/2, phi=1/2, data=dat) res } } \keyword{datasets} \concept{medicine} \concept{psychology} \concept{smoking} \concept{odds ratios} \concept{network meta-analysis} \section{Concepts}{ medicine, psychology, smoking, odds ratios, network meta-analysis } metadat/man/dat.colditz1994.Rd0000644000176200001440000001010714223103754015501 0ustar liggesusers\name{dat.colditz1994} \docType{data} \alias{dat.colditz1994} \title{Studies on the Effectiveness of the BCG Vaccine Against Tuberculosis} \description{Results from 13 studies examining the effectiveness of the Bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. \loadmathjax} \usage{ dat.colditz1994 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{author} \tab \code{character} \tab author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{tpos} \tab \code{numeric} \tab number of TB positive cases in the treated (vaccinated) group \cr \bold{tneg} \tab \code{numeric} \tab number of TB negative cases in the treated (vaccinated) group \cr \bold{cpos} \tab \code{numeric} \tab number of TB positive cases in the control (non-vaccinated) group \cr \bold{cneg} \tab \code{numeric} \tab number of TB negative cases in the control (non-vaccinated) group \cr \bold{ablat} \tab \code{numeric} \tab absolute latitude of the study location (in degrees) \cr \bold{alloc} \tab \code{character} \tab method of treatment allocation (random, alternate, or systematic assignment) } } \details{ The 13 studies provide data in terms of \mjeqn{2 \times 2}{2x2} tables in the form: \tabular{lcc}{ \tab TB positive \tab TB negative \cr vaccinated group \tab \code{tpos} \tab \code{tneg} \cr control group \tab \code{cpos} \tab \code{cneg} } The goal of the meta-analysis was to examine the overall effectiveness of the BCG vaccine for preventing tuberculosis and to examine moderators that may potentially influence the size of the effect. The dataset has been used in several publications to illustrate meta-analytic methods (see \sQuote{References}). } \source{ Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E., Fineberg, H. V., & Mosteller, F. (1994). Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature. \emph{Journal of the American Medical Association}, \bold{271}(9), 698--702. \verb{https://doi.org/10.1001/jama.1994.03510330076038} } \references{ Berkey, C. S., Hoaglin, D. C., Mosteller, F., & Colditz, G. A. (1995). A random-effects regression model for meta-analysis. \emph{Statistics in Medicine}, \bold{14}(4), 395--411. \verb{https://doi.org/10.1002/sim.4780140406} van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. \emph{Statistics in Medicine}, \bold{21}(4), 589--624. \verb{https://doi.org/10.1002/sim.1040} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.colditz1994 dat \dontrun{ ### load metafor package library(metafor) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) res ### average risk ratio with 95\% CI predict(res, transf=exp) ### mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) res ### predicted average risk ratios for 10-60 degrees absolute latitude ### holding the publication year constant at 1970 predict(res, newmods=cbind(seq(from=10, to=60, by=10), 1970), transf=exp) ### note: the interpretation of the results is difficult because absolute ### latitude and publication year are strongly correlated (the more recent ### studies were conducted closer to the equator) plot(ablat ~ year, data=dat, pch=19, xlab="Publication Year", ylab="Absolute Lattitude") cor(dat$ablat, dat$year) } } \keyword{datasets} \concept{medicine} \concept{risk ratios} \concept{meta-regression} \section{Concepts}{ medicine, risk ratios, meta-regression } metadat/man/dat.yusuf1985.Rd0000644000176200001440000000545414223103754015215 0ustar liggesusers\name{dat.yusuf1985} \docType{data} \alias{dat.yusuf1985} \title{Studies of Beta Blockers During and After Myocardial Infarction} \description{Results from studies examining the effectiveness of beta blockers for reducing mortality and reinfarction. \loadmathjax} \usage{ dat.yusuf1985 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{table} \tab \code{character} \tab table number \cr \bold{id} \tab \code{character} \tab trial id number \cr \bold{trial} \tab \code{character} \tab trial name or first author \cr \bold{ai} \tab \code{numeric} \tab number of deaths/reinfarctions in treatment group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in treatment group \cr \bold{ci} \tab \code{numeric} \tab number of deaths/reinfarctions in control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in control group } } \details{ The dataset contains table 6 (total mortality from short-term trials of oral beta blockers), 9 (total mortality at one week from trials with an initial IV dose of a beta blocker), 10 (total mortality from long-term trials with treatment starting late and mortality from day 8 onwards in long-term trials that began early and continued after discharge), 11 (nonfatal reinfarction from long-term trials of beta blockers), 12a (sudden death in long-term beta blocker trials), and 12b (nonsudden death in long-term beta blocker trials) from the meta-analysis by Yusuf et al. (1985) on the effectiveness of of beta blockers for reducing mortality and reinfarction. The article also describes what is sometimes called Peto's one-step method for meta-analyzing \mjeqn{2 \times 2}{2x2} table data. This method is implemented in the \code{\link[metafor]{rma.peto}} function. } \source{ Yusuf, S., Peto, R., Lewis, J., Collins, R., & Sleight, P. (1985). Beta blockade during and after myocardial infarction: An overview of the randomized trials. \emph{Progress in Cardiovascular Disease}, \bold{27}(5), 335--371. \verb{https://doi.org/10.1016/s0033-0620(85)80003-7} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' dat <- dat.yusuf1985 dat[dat$table == 6,] \dontrun{ ### load metafor package library(metafor) ### to select a table for the analysis tab <- "6" # either: 6, 9, 10, 11, 12a, 12b ### to double-check total counts as reported in article apply(dat[dat$table==tab,4:7], 2, sum, na.rm=TRUE) ### meta-analysis using Peto's one-step method res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(table==tab)) res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{Peto's method} \section{Concepts}{ medicine, cardiology, odds ratios, Peto's method } metadat/man/dat.begg1989.Rd0000644000176200001440000000761414223103754014752 0ustar liggesusers\name{dat.begg1989} \docType{data} \alias{dat.begg1989} \title{Studies on Bone-Marrow Transplantation versus Chemotherapy for the Treatment of Leukemia} \description{Results from controlled and uncontrolled studies on the effectiveness of allogeneic bone-marrow transplantation (BMT) and conventional chemotherapy (CMO) in the treatment of acute nonlymphocytic leukemia.} \usage{ dat.begg1989 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{trt} \tab \code{character} \tab treatment (BMT or CMO) \cr \bold{arms} \tab \code{numeric} \tab number of arms in the study (1 = uncontrolled studies; 2 = controlled studies) \cr \bold{yi} \tab \code{numeric} \tab 2-year disease-free survival rates \cr \bold{sei} \tab \code{numeric} \tab corresponding standard errors \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variances } } \details{ The dataset includes the results from controlled and uncontrolled studies on the 2-year disease-free survival rate in patients with acute nonlymphocytic leukemia receiving either allogeneic bone-marrow transplantation (BMT) or conventional chemotherapy (CMO). In the controlled (two-arm) studies (studies 1-4), a cohort of patients in complete remission and potentially eligible for BMT was assembled, and those who consented and for whom a donor could be found received BMT, with the remaining patients used as controls (receiving CMO). In the uncontrolled (one-arm) studies (studies 5-16), only a single group was studied, receiving either BMT or CMO. The data in this dataset were obtained from Table 1 in Begg and Pilote (1991, p. 902). } \source{ Begg, C. B., & Pilote, L. (1991). A model for incorporating historical controls into a meta-analysis. \emph{Biometrics}, \bold{47}(3), 899--906. \verb{https://doi.org/10.2307/2532647} } \references{ Begg, C. B., Pilote, L., & McGlave, P. B. (1989). Bone marrow transplantation versus chemotherapy in acute non-lymphocytic leukemia: A meta-analytic review. \emph{European Journal of Cancer and Clinical Oncology}, \bold{25}(11), 1519--1523. \verb{https://doi.org/10.1016/0277-5379(89)90291-5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.begg1989 dat \dontrun{ ### load metafor package library(metafor) ### turn trt and arms into factors and set reference levels dat$trt <- relevel(factor(dat$trt), ref="CMO") dat$arms <- relevel(factor(dat$arms), ref="2") ### create data frame with the treatment differences for the controlled studies dat2 <- data.frame(yi = dat$yi[c(1,3,5,7)] - dat$yi[c(2,4,6,8)], vi = dat$vi[c(1,3,5,7)] + dat$vi[c(2,4,6,8)]) dat2 ### DerSimonian and Laird method using the treatment differences res <- rma(yi, vi, data=dat2, method="DL", digits=2) res ### Begg & Pilote (1991) model incorporating the uncontrolled studies res <- rma.mv(yi, vi, mods = ~ trt, random = ~ 1 | study, data=dat, method="ML", digits=2) res ### model involving bias terms for the uncontrolled studies res <- rma.mv(yi, vi, mods = ~ trt + trt:arms, random = ~ 1 | study, data=dat, method="ML", digits=2) res ### model with a random treatment effect res <- rma.mv(yi, vi, mods = ~ trt, random = list(~ 1 | study, ~ trt | study), struct="UN", tau2=c(0,NA), rho=0, data=dat, method="ML", digits=2) res ### model with a random treatment effect, but with equal variances in both arms res <- rma.mv(yi, vi, mods = ~ trt, random = list(~ 1 | study, ~ trt | study), struct="CS", rho=0, data=dat, method="ML", digits=2) res } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{single-arm studies} \concept{multilevel models} \section{Concepts}{ medicine, oncology, single-arm studies, multilevel models } metadat/man/dat.aloe2013.Rd0000644000176200001440000000766114223103754014743 0ustar liggesusers\name{dat.aloe2013} \docType{data} \alias{dat.aloe2013} \title{Studies on the Association Between Supervision Quality and Various Outcomes in Social, Mental Health, and Child Welfare Workers} \description{Results from 5 studies examining the association between various measures of supervision quality and various work-related outcomes in social, mental health, and child welfare workers.} \usage{ dat.aloe2013 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study author(s) and year \cr \bold{n} \tab \code{integer} \tab sample size \cr \bold{tval} \tab \code{numeric} \tab t-statistic for the test of the association/predictor \cr \bold{preds} \tab \code{integer} \tab number of predictors included in the regression model \cr \bold{R2} \tab \code{numeric} \tab the coefficient of determination (i.e., R-squared value) of the regression model \cr } } \details{ The dataset is based on studies that used regression models to examine the association between some measure of perceived supervision quality (e.g., the quality of the relationship with one's supervisor) and some work-related outcome (e.g., job satisfaction) in social, mental health, and child welfare workers. The dataset was extracted from Aloe and Thompson (2013), which in turn is a subset of the studies included in the meta-analysis by Mor Barak et al. (2009). The dataset can be used to illustrate the meta-analysis of regression models, using measures such as the (semi-)partial correlation coefficient. For this, the t-statistic from the regression model for the association (i.e., predictor) of interest was extracted from each regression model (\code{tval}), as well as the sample size (\code{n}), the number of predictors included in the regression model (\code{preds}), and the coefficient of determination (i.e., R-squared value) of the regression model (\code{R2}). Based on this information, the (semi-)partial correlation coefficient can be computed for each study, as well as its corresponding sampling variance. These values can then be meta-analyzed using standard methods. } \source{ Aloe, A. M., & Thompson, C. G. (2013). The synthesis of partial effect sizes. \emph{Journal of the Society for Social Work and Research}, \bold{4}(4), 390--405. \verb{https://doi.org/10.5243/jsswr.2013.24} } \references{ Mor Barak, M. E., Travis, D. J., Pyun, H., & Xie, B. (2009). The impact of supervision on worker outcomes: A meta-analysis. \emph{Social Service Review}, \bold{83}(1), 3--32. \verb{https://doi.org/10.1086/599028} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.aloe2013 dat \dontrun{ ### load metafor package suppressPackageStartupMessages(library(metafor)) ### compute the partial correlation coefficients and corresponding sampling variances dat <- escalc(measure="PCOR", ti=tval, ni=n, mi=preds, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) res ### mixed-effects meta-regression model examining the relationship between the partial ### correlation coefficients and the number of predictors included in the models res <- rma(yi, vi, mods = ~ preds, data=dat) res ### compute the r-to-z transformed partial correlation coefficients and their variances dat <- escalc(measure="ZPCOR", ti=tval, ni=n, mi=preds, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) res ### back-transformation to the partial correlation scale predict(res, transf=transf.ztor) ### compute the semi-partial correlation coefficients and their variances dat <- escalc(measure="SPCOR", ti=tval, ni=n, mi=preds, r2i=R2, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) res } } \keyword{datasets} \concept{social work} \concept{(semi-)partial correlations} \concept{meta-regression} \section{Concepts}{ social work, (semi-)partial correlations, meta-regression } metadat/man/dat.molloy2014.Rd0000644000176200001440000001004514223103754015325 0ustar liggesusers\name{dat.molloy2014} \docType{data} \alias{dat.molloy2014} \title{Studies on the Relationship between Conscientiousness and Medication Adherence} \description{Results from 16 studies on the correlation between conscientiousness and medication adherence.} \usage{ dat.molloy2014 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{authors} \tab \code{character} \tab study authors \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ni} \tab \code{numeric} \tab sample size of the study \cr \bold{ri} \tab \code{numeric} \tab observed correlation \cr \bold{controls} \tab \code{character} \tab number of variables controlled for \cr \bold{design} \tab \code{character} \tab whether a cross-sectional or prospective design was used \cr \bold{a_measure} \tab \code{character} \tab type of adherence measure (self-report or other) \cr \bold{c_measure} \tab \code{character} \tab type of conscientiousness measure (NEO or other) \cr \bold{meanage} \tab \code{numeric} \tab mean age of the sample \cr \bold{quality} \tab \code{numeric} \tab methodological quality } } \details{ Conscientiousness, one of the big-5 personality traits, can be defined as \dQuote{socially prescribed impulse control that facilitates task- and goal-directed behaviour, such as thinking before acting, delaying gratification, following norms and rules and planning, organising and prioritising tasks} (John & Srivastava, 1999). Conscientiousness has been shown to be related to a number of health-related behaviors (e.g., tobacco/alcohol/drug use, diet and activity patterns, risky behaviors). A recent meta-analysis by Molloy et al. (2014) examined to what extent conscientiousness is related to medication adherence, that is, the extent to which (typically chronically ill) patients follow a prescribed medication regimen (e.g., taking a daily dose of a cholesterol lowering drug in patients with high LDL serum cholesterol levels). The results from the 16 studies included in this meta-analysis are provided in this dataset. Variable \code{a_measure} indicates whether adherence was measured based on self-reports or a more \sQuote{objective} measure (e.g., electronic monitoring of pill bottle openings, pill counts). Variable \code{c_measure} indicates whether conscientiousness was measured with some version of the NEO personality inventory or some other scale. Methodological quality was scored by the authors on a 1 to 4 scale with higher scores indicating higher quality (see article for details on how this score was derived). } \source{ Molloy, G. J., O'Carroll, R. E., & Ferguson, E. (2014). Conscientiousness and medication adherence: A meta-analysis. \emph{Annals of Behavioral Medicine}, \bold{47}(1), 92--101. \verb{https://doi.org/10.1007/s12160-013-9524-4} } \references{ John, O. P., & Srivastava, S. (1999). The Big Five Trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), \emph{Handbook of personality: Theory and research} (2nd ed., pp. 102-138). New York: Guilford Press. } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.molloy2014 dat[-c(5:6)] \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat, slab=paste(authors, year, sep=", ")) dat[-c(5:6)] ### meta-analysis of the transformed correlations using a random-effects model res <- rma(yi, vi, data=dat) res ### average correlation with 95\% CI predict(res, digits=3, transf=transf.ztor) ### forest plot forest(res, addpred=TRUE, xlim=c(-1.6,1.6), atransf=transf.ztor, at=transf.rtoz(c(-.4,-.2,0,.2,.4,.6)), digits=c(2,1), cex=.8, header="Author(s), Year") ### funnel plot funnel(res) } } \keyword{datasets} \concept{psychology} \concept{medicine} \concept{correlation coefficients} \section{Concepts}{ psychology, medicine, correlation coefficients } metadat/man/datsearch.Rd0000644000176200001440000001132214223103754014671 0ustar liggesusers\name{datsearch} \alias{datsearch} \title{Search Function for the Datasets} \description{Function to search among the existing datasets.} \usage{ datsearch(pattern, concept=TRUE, matchall=TRUE, fixed=TRUE, pkgdown=FALSE) } \arguments{ \item{pattern}{character string or vector of strings specifying the terms to search for within the datasets. Can also be left unspecified to start the function in an interactive mode.} \item{concept}{logical indicating whether the search should be confined to the concept terms (\code{TRUE} by default) or whether a full-text search should be conducted.} \item{matchall}{logical indicating whether only the datasets matching all terms (if multiple are specified) are returned (\code{TRUE} by default) or whether datasets matching any one of the terms are returned.} \item{fixed}{logical indicating whether a term is a string to be matched as is (\code{TRUE} by default). If \code{FALSE}, a search term is a regular expression that \code{\link{grep}} will search for. Only relevant when \code{concept=FALSE} (i.e., when doing a full-text search).} \item{pkgdown}{logical indicating whether the standard help file or the pkgdown docs (at \url{https://wviechtb.github.io/metadat/}) should be shown for a chosen dataset (\code{FALSE} by default).} } \details{ The function can be used to search all existing datasets in the \pkg{metadat} package based on their concept terms (see below) or based on a full-text search of their corresponding help files. When running \code{datsearch()} without the \code{pattern} argument specified, the function starts in an interactive mode and prompts for one or multiple search terms. Alternatively, one can specify a single search term via the \code{pattern} argument or multiple search terms by using a string vector as the \code{pattern} or by separating multiple search terms in a single string with \sQuote{,}, \sQuote{;}, or \sQuote{and}. If \code{matchall=TRUE} (the default), only datasets matching all search terms (if multiple are specified) are returned. If \code{matchall=FALSE}, datasets matching any one of the search terms are returned. If a single match is found, the corresponding help file is directly shown. If multiple matches are found, the user is prompted to choose one of the matching datasets of interest. \bold{Concept Terms} Each dataset is tagged with one or multiple concept terms that refer to various aspects of a dataset, such as the field/topic of research, the outcome measure used for the analysis, the model(s) used for analyzing the data, and the methods/concepts that can be illustrated with the dataset. \itemize{ \item In terms of \sQuote{fields/topics}, the following terms have been used at least once: alternative medicine, attraction, cardiology, climate change, covid-19, criminology, dentistry, ecology, education, engineering, epidemiology, evolution, genetics, human factors, medicine, memory, obstetrics, oncology, persuasion, primary care, psychiatry, psychology, smoking, social work, sociology. \item In terms of \sQuote{outcome measures}, the following terms have been used at least once: correlation coefficients, Cronbach's alpha, hazard ratios, incidence rates, raw mean differences, odds ratios, proportions, ratios of means, raw means, risk differences, risk ratios, (semi-)partial correlations, standardized mean changes, standardized mean differences. \item In terms of \sQuote{models/methods/concepts}, the following terms have been used at least once: cluster-robust inference, component network meta-analysis, cumulative meta-analysis, diagnostic accuracy studies, dose response models, generalized linear models, longitudinal models, Mantel-Haenszel method, meta-regression, model checks, multilevel models, multivariate models, network meta-analysis, outliers, Peto's method, phylogeny, publication bias, reliability generalization, single-arm studies, spatial correlation. } } \author{ Daniel Noble, \email{daniel.noble@anu.edu.au} \cr Wolfgang Viechtbauer, \email{wvb@metafor-project.org} } \examples{ # note: the examples below are not run since they require interactivity if (FALSE) { # start the function in the interactive mode datsearch() # find all datasets tagged with the concept term 'standardized mean differences' datsearch("standardized mean differences") # find all datasets tagged with the concept terms 'odds ratio' and 'multilevel' datsearch("odds ratio, multilevel") # do a full-text search for the term 'infarct' datsearch("infarct", concept=FALSE) # do a full-text search for 'rma.mv(' (essentially finds all datasets where # the rma.mv() function was used in the examples section of a help file) datsearch("rma.mv(", concept=FALSE) } } \keyword{file} metadat/man/dat.tannersmith2016.Rd0000644000176200001440000001103714223103754016352 0ustar liggesusers\name{dat.tannersmith2016} \docType{data} \alias{dat.tannersmith2016} \title{Studies on the Relationship between School Motivation and Criminal Behavior} \description{Results from 17 studies on the correlation between school motivation/attitudes and subsequent delinquent/criminal behavior.} \usage{ dat.tannersmith2016 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{studyid} \tab \code{numeric} \tab study identifier \cr \bold{yi} \tab \code{numeric} \tab r-to-z transformed correlation coefficient \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{sei} \tab \code{numeric} \tab corresponding standard error \cr \bold{aget1} \tab \code{numeric} \tab age at which the school motivation/attitudes were assessed \cr \bold{aget2} \tab \code{numeric} \tab age at which the delinquent/criminal behavior was assessed \cr \bold{propmale} \tab \code{numeric} \tab proportion of male participants in the sample \cr \bold{sexmix} \tab \code{character} \tab whether the sample consisted only of males, only of females, or a mix } } \details{ The dataset includes 113 r-to-z transformed correlation coefficients from 17 prospective longitudinal studies that examined the relationship between school motivation/attitudes and subsequent delinquent/criminal behavior. Multiple coefficients could be extracted from the studies \dQuote{given the numerous ways in which school motivation/attitudes variables could be operationalized (e.g., academic aspirations, academic self-efficacy) as well as the numerous ways in which crime/delinquency could be operationalized (e.g., property crime, violent crime)} (Tanner-Smith et al., 2016). Since information to compute the covariance between multiple coefficients within studies is not available, Tanner-Smith et al. (2016) illustrate the use of cluster-robust inference methods for the analysis of this dataset. Note that this dataset is only meant to be used for pedagogical and demonstration purposes and does not constitute a proper review or synthesis of the complete and current research evidence on the given topic. } \source{ Tanner-Smith, E. E., Tipton, E. & Polanin, J. R. (2016). Handling complex meta-analytic data structures using robust variance estimates: A tutorial in R. \emph{Journal of Developmental and Life-Course Criminology}, \bold{2}(1), 85--112. \verb{https://doi.org/10.1007/s40865-016-0026-5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.tannersmith2016 head(dat) \dontrun{ ### load metafor package library(metafor) ### compute mean age variables within studies dat$aget1 <- ave(dat$aget1, dat$studyid) dat$aget2 <- ave(dat$aget2, dat$studyid) ### construct an effect size identifier variable dat$esid <- 1:nrow(dat) ### construct an approximate var-cov matrix assuming a correlation of 0.8 ### for multiple coefficients arising from the same study V <- vcalc(vi, cluster=studyid, obs=esid, rho=0.8, data=dat) ### fit a multivariate random-effects model using the approximate var-cov matrix V res <- rma.mv(yi, V, random = ~ esid | studyid, data=dat) res ### use cluster-robust inference methods robust(res, cluster=studyid, clubSandwich=TRUE) ### note: the results obtained above and below are slightly different compared ### to those given by Tanner-Smith et al. (2016) since the approach illustrated ### here makes use a multivariate random-effects model for the 'working model' ### before applying the cluster-robust inference methods, while the results given ### in the paper are based on a somewhat simpler working model ### examine the main effects of the age variables res <- rma.mv(yi, V, mods = ~ aget1 + aget2, random = ~ 1 | studyid/esid, data=dat) robust(res, cluster=studyid, clubSandwich=TRUE) ### also examine their interaction res <- rma.mv(yi, V, mods = ~ aget1 * aget2, random = ~ 1 | studyid/esid, data=dat) robust(res, cluster=studyid, clubSandwich=TRUE) ### add the sexmix factor to the model res <- rma.mv(yi, V, mods = ~ aget1 * aget2 + sexmix, random = ~ 1 | studyid/esid, data=dat) robust(res, cluster=studyid, clubSandwich=TRUE) } } \keyword{datasets} \concept{psychology} \concept{criminology} \concept{correlation coefficients} \concept{multilevel models} \concept{cluster-robust inference} \concept{meta-regression} \section{Concepts}{ psychology, criminology, correlation coefficients, multilevel models, cluster-robust inference, meta-regression } metadat/man/dat.damico2009.Rd0000644000176200001440000000445514223103754015262 0ustar liggesusers\name{dat.damico2009} \docType{data} \alias{dat.damico2009} \title{Studies on Topical plus Systemic Antibiotics to Prevent Respiratory Tract Infections} \description{Results from 16 studies examining the effectiveness of topical plus systemic antibiotics to prevent respiratory tract infections (RTIs).} \usage{ dat.damico2009 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab first author \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{xt} \tab \code{numeric} \tab number of RTIs in the treatment group \cr \bold{nt} \tab \code{numeric} \tab number of patients in the treatment group \cr \bold{xc} \tab \code{numeric} \tab number of RTIs in the control group \cr \bold{nc} \tab \code{numeric} \tab number of patients in the control group \cr \bold{conceal} \tab \code{numeric} \tab allocation concealment (0 = not adequate, 1 = adequate) \cr \bold{blind} \tab \code{numeric} \tab blinding (0 = open, 1 = double-blind) } } \details{ The dataset includes the results from 16 studies that examined the effectiveness of topical plus systemic antibiotics versus no prophylaxis to prevent respiratory tract infections (RTIs). } \source{ D'Amico, R., Pifferi, S., Torri, V., Brazzi, L., Parmelli, E., & Liberati, A. (2009). Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care. \emph{Cochrane Database of Systematic Reviews}, \bold{4}, CD000022. \verb{https://doi.org/10.1002/14651858.CD000022.pub3} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.damico2009 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of the (log) odds ratios using the Mantel-Haenszel method rma.mh(measure="OR", ai=xt, n1i=nt, ci=xc, n2i=nc, data=dat, digits=2) ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=xt, n1i=nt, ci=xc, n2i=nc, data=dat) ### meta-analysis using a random-effects model res <- rma(yi, vi, data=dat, method="DL") res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \section{Concepts}{ medicine, odds ratios } metadat/man/dat.cohen1981.Rd0000644000176200001440000000514714223103754015131 0ustar liggesusers\name{dat.cohen1981} \docType{data} \alias{dat.cohen1981} \title{Studies on the Relationship between Course Instructor Ratings and Student Achievement} \description{Results from 20 studies on the correlation between course instructor ratings and student achievement.} \usage{ dat.cohen1981 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study author(s) and year \cr \bold{sample} \tab \code{character} \tab course type \cr \bold{control} \tab \code{character} \tab ability control \cr \bold{ni} \tab \code{numeric} \tab sample size of the study (number of sections) \cr \bold{ri} \tab \code{numeric} \tab observed correlation } } \details{ The studies included in this dataset examined to what extent students' ratings of a course instructor correlated with their achievement in the course. Instead of correlating individual ratings and achievement scores, the studies were carried out in multisection courses, in which the sections had different instructors but all sections used a common achievement measure (e.g., a final exam). The correlation coefficients reflect the correlation between the mean instructor rating and the mean achievement score of each section. Hence, the unit of analysis are the sections, not the individuals. Note that this dataset (extracted from Table A.3 in Cooper & Hedges, 1994) only contains studies with at least 10 sections. } \source{ Cooper, H., & Hedges, L. V. (1994). Appendix A: Data Sets. In H. Cooper & L. V. Hedges (Eds.), \emph{The handbook of research synthesis} (pp. 543-547). New York: Russell Sage Foundation. } \references{ Cohen, P. A. (1981). Student ratings of instruction and student achievement: A meta-analysis of multisection validity studies. \emph{Review of Educational Research}, \bold{51}(3), 281--309. \verb{https://doi.org/10.3102/00346543051003281} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.cohen1981 dat[c(1,4,5)] \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat[c(1,4,5)]) dat ### meta-analysis of the transformed correlations using a random-effects model res <- rma(yi, vi, data=dat, digits=2) res ### predicted average correlation with 95\% CI predict(res, transf=transf.ztor) } } \keyword{datasets} \concept{education} \concept{correlation coefficients} \section{Concepts}{ education, correlation coefficients } metadat/man/dat.michael2013.Rd0000644000176200001440000001147114223103754015417 0ustar liggesusers\name{dat.michael2013} \docType{data} \alias{dat.michael2013} \title{The Non-Persuasive Power of a Brain Image} \description{Results from studies exploring how a superfluous fMRI brain image influences the persuasiveness of a scientific claim.} \usage{ dat.michael2013 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{Study} \tab \code{character} \tab name of the study: Citation - Experiment - Subgroup \cr \bold{No_brain_n} \tab \code{numeric} \tab sample size for no-brain-image condition \cr \bold{No_brain_m} \tab \code{numeric} \tab mean agreement rating for no-brain-image condition \cr \bold{No_brain_s} \tab \code{numeric} \tab standard deviation for no-brain-image condition \cr \bold{Brain_n} \tab \code{numeric} \tab sample size for brain-image condition \cr \bold{Brain_m} \tab \code{numeric} \tab mean agreement rating for brain-image condition \cr \bold{Brain_s} \tab \code{numeric} \tab standard deviation for brain-image condition \cr \bold{Included_Critique} \tab \code{character} \tab \sQuote{Critique} if article included critical commentary on conclusions, otherwise \sQuote{No_critique} \cr \bold{Medium} \tab \code{character} \tab \sQuote{Paper} if conducted in person; \sQuote{Online} if conducted online \cr \bold{Compensation} \tab \code{character} \tab notes on compensation provided to participants \cr \bold{Participant_Pool} \tab \code{character} \tab notes on where participants were recruited \cr \bold{yi} \tab \code{numeric} \tab raw mean difference, calculated as \code{Brain_m - No_brain_m} \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr } } \details{ The dataset contains the data from the meta-analysis by Michael et al. (2013) of experiments on the persuasive power of a brain image. The meta-analysis analyzed an original study by McCabe and Castel (2008) as well as 10 replication attempts conducted by the authors of the meta-analysis. In each study, participants read an article about using brain imaging as a lie detector. The article either included a superfluous fMRI image of a brain (brain) or not (no_brain). After reading the article, all participants responded to the statement \dQuote{Do you agree or disagree with the conclusion that brain imaging can be used as a lie detector?} on a scale from 1 (strongly disagree) to 4 (strongly agree). The original study by McCabe and Castel (2008) reported a relatively large increase in agreement due to the presence of brain images. Meta-analysis of the original study with the 10 replications suggests, however, a small, possibly null effect: an estimated average raw mean difference of 0.07 points, 95\% CI [-0.00, 0.14], under a random-effects model. In some studies, the article included a passage critiquing the primary claims made in the article; this is coded in the \code{Included_Critique} column for analysis as a possible moderator. Note that Experiment 3 by McCabe and Castel (2008) was a 2x2 between subjects design: brain image presence was manipulated as well as the inclusion of a critique. The two different critique conditions are recorded as separate rows in this dataset. Analysis of this dataset with metafor yields the same results (given rounding) reported in the manuscript. } \source{ Michael, R. B., Newman, E. J., Vuorre, M., Cumming, G., & Garry, M. (2013). On the (non)persuasive power of a brain image. \emph{Psychonomic Bulletin & Review}, \bold{20}(4), 720–-725. \verb{https://doi.org/10.3758/s13423-013-0391-6} } \references{ McCabe, D. P., & Castel, A. D. (2008). Seeing is believing: The effect of brain images on judgments of scientific reasoning. \emph{Cognition}, \bold{107}(1), 343--352. \verb{https://doi.org/10.1016/j.cognition.2007.07.017} } \author{ Robert Calin-Jageman, \email{rcalinjageman@dom.edu}, \url{https://calin-jageman.net} } \examples{ ### copy data into 'dat' and examine data dat <- dat.michael2013 dat \dontrun{ ### load metafor package library(metafor) ### Data prep # yi and vi are already provided, but here's how you would use escalc() to obtain # a raw-mean difference and its variance. # Note the measure parameter is "MD" for 'raw mean difference' dat <- metafor::escalc( measure = "MD", m1i = Brain_m, m2i = No_brain_m, sd1i = Brain_s, sd2i = No_brain_s, n1i = Brain_n, n2i = No_brain_n, data = dat ) ### meta-analysis using a random-effects model of the raw mean differences res <- rma(yi, vi, data=dat) print(res, digits=2) ### examine if Included_Critique is a potential moderator res <- rma(yi, vi, mods = ~ Included_Critique, data=dat) print(res, digits=2) } } \keyword{datasets} \concept{psychology} \concept{persuasion} \concept{raw mean differences} \section{Concepts}{ psychology, persuasion, raw mean differences } metadat/man/dat.li2007.Rd0000644000176200001440000000465014223103754014425 0ustar liggesusers\name{dat.li2007} \docType{data} \alias{dat.li2007} \title{Studies on the Effectiveness of Intravenous Magnesium in Acute Myocardial Infarction} \description{Results from 22 trials examining the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction.} \usage{ dat.li2007 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab trial id number \cr \bold{study} \tab \code{character} \tab first author or trial name \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of deaths in the magnesium group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the magnesium group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the control group } } \details{ The dataset includes the results from 22 randomized clinical trials that examined the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction. It is similar to the dataset \code{\link{dat.egger2001}}, with some slight differences in the included trials and data used. } \source{ Li, J., Zhang, Q., Zhang, M., & Egger, M. (2007). Intravenous magnesium for acute myocardial infarction. \emph{Cochrane Database of Systematic Reviews}, \bold{2}, CD002755. \verb{https://doi.org/10.1002/14651858.CD002755.pub2} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \seealso{ \code{\link{dat.egger2001}} } \examples{ ### copy data into 'dat' and examine data dat <- dat.li2007 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of all trials except ISIS-4 res <- rma(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, method="EE", subset=-14) print(res, digits=2) predict(res, transf=exp, digits=2) ### meta-analysis of all trials including ISIS-4 res <- rma(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, method="EE") print(res, digits=2) predict(res, transf=exp, digits=2) ### contour-enhanced funnel plot centered at 0 funnel(res, refline=0, level=c(90, 95, 99), shade=c("white", "gray", "darkgray")) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{publication bias} \section{Concepts}{ medicine, cardiology, odds ratios, publication bias } metadat/man/dat.nakagawa2007.Rd0000644000176200001440000000321314223103754015565 0ustar liggesusers\name{dat.nakagawa2007} \docType{data} \alias{dat.nakagawa2007} \title{Assessing the Function of House Sparrows' Bib Size Using a Flexible Meta-Analysis Method} \description{A meta-analysis on the association between the size of a male's bib and their social status in house sparrows (\emph{Passer domesticus}).} \usage{ dat.nakagawa2007 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{StudyID} \tab \code{character} \tab identity of primary study \cr \bold{Place} \tab \code{character} \tab location of study population \cr \bold{Correlation} \tab \code{numeric} \tab correlation coefficient \cr \bold{SampleSize} \tab \code{integer} \tab sample size of population \cr } } \details{ Each study measures the association between a sparrows bib size and its social status. Effects are quantified as correlation coefficients. } \source{ Nakagawa, S., Ockendon, N., Gillespie, D. O. S, Hatchwell, B. J., & Burke, T. (2007). Assessing the function of house sparrows' bib size using a flexible meta-analysis method. \emph{Behavioral Ecology}, \bold{18}(5), 831--840. \verb{https://doi.org/10.1093/beheco/arm050} } \author{ Daniel Noble, \email{daniel.noble@anu.edu.au} } \examples{ ### copy data into 'dat' and examine data dat <- dat.nakagawa2007 dat \dontrun{ ### load metafor package library(metafor) ### calculate Zr dat <- escalc(measure="ZCOR", ri=Correlation, ni=SampleSize, data=dat) ### fit meta-analytic model res <- rma.mv(yi, vi, random = list(~ 1 | StudyID), data=dat) res } } \keyword{datasets} \concept{ecology} \concept{correlation coefficients} \section{Concepts}{ ecology, correlation coefficients } metadat/man/dat.hackshaw1998.Rd0000644000176200001440000000651014223103754015631 0ustar liggesusers\name{dat.hackshaw1998} \docType{data} \alias{dat.hackshaw1998} \title{Studies on the Risk of Lung Cancer in Women Exposed to Environmental Tobacco Smoke} \description{Results from 37 studies on the risk of lung cancer in women exposed to environmental tobacco smoke (ETS) from their smoking spouse.} \usage{ dat.hackshaw1998 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab first author of study \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{country} \tab \code{character} \tab country where study was conducted \cr \bold{design} \tab \code{character} \tab study design (either cohort or case-control) \cr \bold{cases} \tab \code{numeric} \tab number of lung cancer cases \cr \bold{or} \tab \code{numeric} \tab odds ratio \cr \bold{or.lb} \tab \code{numeric} \tab lower bound of 95\% CI for the odds ratio \cr \bold{or.ub} \tab \code{numeric} \tab upper bound of 95\% CI for the odds ratio \cr \bold{yi} \tab \code{numeric} \tab log odds ratio \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance } } \details{ The dataset includes the results from 37 studies (4 cohort, 33 case-control) examining if women (who are lifelong nonsmokers) have an elevated risk for lung cancer due to exposure to environmental tobacco smoke (ETS) from their smoking spouse. Values of the log odds ratio greater than 0 indicate an increased risk of cancer in exposed women compared to women not exposed to ETS from their spouse. Note that the log odds ratios and corresponding sampling variances were back-calculated from the reported odds ratios and confidence interval (CI) bounds (see \sQuote{Examples}). Since the reported values were rounded to some extent, this introduces some minor inaccuracies into the back-calculations. The overall estimate reported in Hackshaw et al. (1997) and Hackshaw (1998) can be fully reproduced though. } \source{ Hackshaw, A. K., Law, M. R., & Wald, N. J. (1997). The accumulated evidence on lung cancer and environmental tobacco smoke. \emph{British Medical Journal}, \bold{315}(7114), 980--988. \verb{https://doi.org/10.1136/bmj.315.7114.980} Hackshaw, A. K. (1998). Lung cancer and passive smoking. \emph{Statistical Methods in Medical Research}, \bold{7}(2), 119--136. \verb{https://doi.org/10.1177/096228029800700203} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hackshaw1998 head(dat, 10) \dontrun{ ### load metafor package library(metafor) ### random-effects model using the log odds ratios res <- rma(yi, vi, data=dat, method="DL") res ### estimated average odds ratio with CI (and prediction interval) predict(res, transf=exp, digits=2) ### illustrate how the log odds ratios and corresponding sampling variances ### were back-calculated based on the reported odds ratios and CI bounds dat$yi <- log(dat$or) dat$vi <- ((log(dat$or.ub) - log(dat$or.lb)) / (2*qnorm(.975)))^2 } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{epidemiology} \concept{smoking} \concept{odds ratios} \section{Concepts}{ medicine, oncology, epidemiology, smoking, odds ratios } metadat/man/dat.maire2019.Rd0000644000176200001440000001043414223103754015116 0ustar liggesusers\name{dat.maire2019} \docType{data} \alias{dat.maire2019} \title{Studies on Temporal Trends in Fish Community Structures in French Rivers} \description{Results from studies examining changes in the abundance of fish species in French rivers.} \usage{ dat.maire2019 } \format{The object is a list containing a data frame called \code{dat} that contains the following columns and distance matrix called \code{dmat}: \tabular{lll}{ \bold{site} \tab \code{character} \tab study site \cr \bold{station} \tab \code{character} \tab sampling station at site \cr \bold{site_station} \tab \code{character} \tab site and station combined \cr \bold{s1} \tab \code{numeric} \tab Mann-Kendal trend statistic for relative abundance of non-local species \cr \bold{vars1} \tab \code{numeric} \tab corresponding sampling variance (corrected for temporal autocorrelation) \cr \bold{s2} \tab \code{numeric} \tab Mann-Kendal trend statistic for relative abundance of northern species \cr \bold{vars2} \tab \code{numeric} \tab corresponding sampling variance (corrected for temporal autocorrelation) \cr \bold{s3} \tab \code{numeric} \tab Mann-Kendal trend statistic for relative abundance of non-native species \cr \bold{vars3} \tab \code{numeric} \tab corresponding sampling variance (corrected for temporal autocorrelation) \cr \bold{const} \tab \code{numeric} \tab constant value of 1 } } \details{ The dataset includes the results from 35 sampling stations (at 11 sites along various French rivers) examining the abundance of various fish species over time (i.e., over 19-37 years, all until 2015). The temporal trend in these abundance data was quantified in terms of Mann-Kendal trend statistics, with positive values indicating monotonically increasing trends. The corresponding sampling variances were corrected for the temporal autocorrelation in the data (Hamed & Rao, 1998). The distance matrix \code{dmat} indicates the distance of the sampling stations (1-423 river-km). For stations not connected through the river network, a high distance value of 10,000 river-km was set (effectively forcing the spatial correlation to be 0 for such stations). The dataset can be used to illustrate a meta-analysis allowing for spatial correlation in the outcomes. } \source{ Maire, A., Thierry, E., Viechtbauer, W., & Daufresne, M. (2019). Poleward shift in large-river fish communities detected with a novel meta-analysis framework. \emph{Freshwater Biology}, \bold{64}(6), 1143--1156. \verb{https://doi.org/10.1111/fwb.13291} } \references{ Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. \emph{Journal of Hydrology}, \bold{204}(1-4), 182--196. \verb{https://doi.org/10.1016/S0022-1694(97)00125-X} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.maire2019$dat dat[-10] ### copy distance matrix into 'dmat' and examine first 5 rows/columns dmat <- dat.maire2019$dmat dmat[1:5,1:5] \dontrun{ ### load metafor package library(metafor) ### fit a standard random-effects model ignoring spatial correlation res1 <- rma.mv(s1, vars1, random = ~ 1 | site_station, data=dat) res1 ### fit model allowing for spatial correlation res2 <- rma.mv(s1, vars1, random = ~ site_station | const, struct="SPGAU", data=dat, dist=list(dmat), control=list(rho.init=10)) res2 ### add random effects for sites and stations within sites res3 <- rma.mv(s1, vars1, random = list(~ 1 | site/station, ~ site_station | const), struct="SPGAU", data=dat, dist=list(dmat), control=list(rho.init=10)) res3 ### likelihood ratio tests comparing the models anova(res1, res2) anova(res2, res3) ### profile likelihood plots for model res2 profile(res2, cline=TRUE) ### effective range (river-km for which the spatial correlation is >= .05) sqrt(3) * res2$rho ### note: it was necessary to adjust the starting value for rho in models ### res2 and res3 so that the optimizer does not get stuck in a local maximum profile(res2, rho=1, xlim=c(0,200), steps=100) } } \keyword{datasets} \concept{ecology} \concept{climate change} \concept{spatial correlation} \section{Concepts}{ ecology, climate change, spatial correlation } metadat/man/dat.mccurdy2020.Rd0000644000176200001440000001656414223103754015471 0ustar liggesusers\name{dat.mccurdy2020} \docType{data} \alias{dat.mccurdy2020} \title{Studies on the Generation Effect} \description{Results from 126 articles that examined the so-called \sQuote{generation effect}.} \usage{ dat.mccurdy2020 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{article} \tab \code{numeric} \tab article identifier \cr \bold{experiment} \tab \code{character} \tab experiment (within article) identifier \cr \bold{sample} \tab \code{numeric} \tab sample (within experiment) identifier \cr \bold{id} \tab \code{numeric} \tab row identifier \cr \bold{pairing} \tab \code{numeric} \tab identifier to indicate paired conditions within experiments \cr \bold{yi} \tab \code{numeric} \tab mean recall rate for the condition \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{ni} \tab \code{numeric} \tab number of participants for the condition \cr \bold{stimuli} \tab \code{numeric} \tab number of stimuli for the condition \cr \bold{condition} \tab \code{factor} \tab condition (\sQuote{read} or \sQuote{generate}) \cr \bold{gen_difficulty} \tab \code{factor} \tab generation difficulty (\sQuote{low} or \sQuote{high}) \cr \bold{manip_type} \tab \code{factor} \tab manipulation type of the generate versus read condition (using a \sQuote{within} or \sQuote{between} subjects design) \cr \bold{present_style} \tab \code{factor} \tab presentation style (\sQuote{mixed} or \sQuote{pure} list presentation) \cr \bold{word_status} \tab \code{factor} \tab word status (\sQuote{words}, \sQuote{non-words}, or \sQuote{numbers}) \cr \bold{memory_test} \tab \code{factor} \tab memory test (\sQuote{recognition}, \sQuote{cued recall}, or \sQuote{free recall}) \cr \bold{memory_type} \tab \code{factor} \tab memory type (\sQuote{item}, \sQuote{source}, \sQuote{font color}, \sQuote{font type}, \sQuote{order}, \sQuote{cue word}, \sQuote{background color}, or \sQuote{location}) \cr \bold{gen_constraint} \tab \code{factor} \tab generation constraint (\sQuote{low}, \sQuote{medium}, or \sQuote{high}) \cr \bold{learning_type} \tab \code{factor} \tab learning type (\sQuote{incidental} or \sQuote{intentional}) \cr \bold{stimuli_relation} \tab \code{factor} \tab stimuli relation (\sQuote{semantic}, \sQuote{category}, \sQuote{antonym}, \sQuote{synonym}, \sQuote{rhyme}, \sQuote{compound words}, \sQuote{definitions}, or \sQuote{unrelated}) \cr \bold{gen_mode} \tab \code{factor} \tab generation mode (\sQuote{verbal/speaking}, \sQuote{covert/thinking}, or \sQuote{writing/typing}) \cr \bold{gen_task} \tab \code{factor} \tab generation task (\sQuote{anagram}, \sQuote{letter transposition}, \sQuote{word fragment}, \sQuote{sentence completion}, \sQuote{word stem}, \sQuote{calculation}, or \sQuote{cue only}) \cr \bold{attention} \tab \code{factor} \tab attention (\sQuote{divided} or \sQuote{full}) \cr \bold{pacing} \tab \code{factor} \tab pacing (\sQuote{self-paced} or \sQuote{timed}) \cr \bold{filler_task} \tab \code{factor} \tab filler task (\sQuote{yes} or \sQuote{no}) \cr \bold{age_grp} \tab \code{factor} \tab age group (\sQuote{younger} or \sQuote{older} adults) \cr \bold{retention_delay} \tab \code{factor} \tab retention delay (\sQuote{immediate}, \sQuote{short}, or \sQuote{long}) \cr } } \details{ The generation effect is the memory benefit for self-generated compared with read or experimenter-provided information (Jacoby, 1978; Slamecka & Graf, 1978). In a typical study, participants are presented with a list of stimuli (usually words or word pairs). For half of the stimuli, participants self-generate a target word (e.g., open–cl____), while for the other half, participants simply read an intact target word (e.g., above–below). On a later memory test for the target words, the common finding is that self-generated words are better remembered than read words (i.e., the generation effect). Although several theories have been proposed to explain the generation effect, there is still some debate on the underlying memory mechanism(s) contributing to this phenomenon. The meta-analysis by McCurdy et al. (2020) translated various theories on the generation effect into hypotheses that could then be tested in moderator analyses based on a dataset containing 126 articles, 310 experiments, and 1653 mean recall estimates collected under various conditions. Detailed explanations of the various variables coded (and how these can be used to test various hypotheses regarding the generation effect) can be found in the article. The most important variable is \code{condition}, which denotes whether a particular row of the dataset corresponds to the results of a \sQuote{read} or a \sQuote{generate} condition. The data structure is quite complex. Articles may have reported the findings from multiple experiments involving one or multiple samples that were examined under various conditions. The \code{pairing} variable indicates which rows of the dataset represent a pairing of a read condition with one or multiple corresponding generate conditions within an experiment. A pairing may involve the same sample of subjects (when using a within-subjects design for comparing the conditions) or different samples (when using a between-subjects design). } \source{ McCurdy, M. P., Viechtbauer, W., Sklenar, A. M., Frankenstein, A. N., & Leshikar, E. D. (2020). Theories of the generation effect and the impact of generation constraint: A meta-analytic review. \emph{Psychonomic Bulletin & Review}, \bold{27}(6), 1139--1165. \verb{https://doi.org/10.3758/s13423-020-01762-3} } \references{ Slamecka, N. J., & Graf, P. (1978). The generation effect: Delineation of a phenomenon. \emph{Journal of Experimental Psychology: Human Learning and Memory}, \bold{4}(6), 592--604. \verb{https://doi.org/10.1037/0278-7393.4.6.592} Jacoby, L. L. (1978). On interpreting the effects of repetition: Solving a problem versus remembering a solution. \emph{Journal of Verbal Learning and Verbal Behavior}, \bold{17}(6), 649--668. \verb{https://doi.org/10.1016/S0022-5371(78)90393-6} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.mccurdy2020 head(dat) \dontrun{ ### load metafor package library(metafor) ### fit multilevel mixed-effects meta-regression model res <- rma.mv(yi, vi, mods = ~ condition, random = list(~ 1 | article/experiment/sample/id, ~ 1 | pairing), data=dat, sparse=TRUE, digits=3) res ### proportion of total amount of heterogeneity due to each component data.frame(source=res$s.names, sigma2=round(res$sigma2, 3), prop=round(res$sigma2 / sum(res$sigma2), 2)) ### apply cluster-robust inference sav <- robust(res, cluster=article) sav ### estimated average recall rate in read and generate conditions predict(sav, newmods = c(0,1), digits=3) ### use methods from clubSandwich package sav <- robust(res, cluster=article, clubSandwich=TRUE) sav } } \keyword{datasets} \concept{psychology} \concept{memory} \concept{proportions} \concept{raw means} \concept{multilevel models} \concept{cluster-robust inference} \section{Concepts}{ psychology, memory, proportions, raw means, multilevel models, cluster-robust inference } metadat/man/dat.lau1992.Rd0000644000176200001440000000526414223103754014620 0ustar liggesusers\name{dat.lau1992} \docType{data} \alias{dat.lau1992} \title{Studies on Intravenous Streptokinase for Acute Myocardial Infarction} \description{Results from 33 trials comparing intravenous streptokinase versus placebo or no therapy in patients who had been hospitalized for acute myocardial infarction.} \usage{ dat.lau1992 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{character} \tab trial name \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of deaths in the streptokinase group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the streptokinase group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the control group } } \details{ In the paper by Lau et al. (1992), the data are used to illustrate the idea of a cumulative meta-analysis, where the results are updated as each trial is added to the dataset. See \sQuote{Examples} for code that replicates the results and shows corresponding forest plots. } \source{ Lau, J., Antman, E. M., Jimenez-Silva, J., Kupelnick, B., Mosteller, F., & Chalmers, T. C. (1992). Cumulative meta-analysis of therapeutic trials for myocardial infarction. \emph{New England Journal of Medicine}, \bold{327}(4), 248--254. \verb{https://doi.org/10.1056/NEJM199207233270406} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lau1992 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of log odds ratios using the MH method res <- rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, slab=trial) print(res, digits=2) ### forest plot forest(res, xlim=c(-10,9), atransf=exp, at=log(c(.01, 0.1, 1, 10, 100)), header=TRUE, top=2, ilab=dat$year, ilab.xpos=-6) text(-6, 35, "Year", font=2) ### cumulative meta-analysis sav <- cumul(res) ### forest plot of the cumulative results forest(sav, xlim=c(-5,4), atransf=exp, at=log(c(0.1, 0.5, 1, 2, 10)), header=TRUE, top=2, ilab=dat$year, ilab.xpos=-3) text(-3, 35, "Year", font=2) id <- c(4, 8, 15, 33) # rows for which the z/p-values should be shown (as in Lau et al., 1992) text(1.1, (res$k:1)[id], paste0("z = ", formatC(sav$zval[id], format="f", digits=2), ", p = ", formatC(sav$pval[id], format="f", digits=4))) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{cumulative meta-analysis} \section{Concepts}{ medicine, cardiology, odds ratios, cumulative meta-analysis } metadat/man/dat.kalaian1996.Rd0000644000176200001440000001176514223103754015446 0ustar liggesusers\name{dat.kalaian1996} \docType{data} \alias{dat.kalaian1996} \title{Studies on the Effectiveness of Coaching for the SAT} \description{Results from studies examining the effectiveness of coaching on the performance on the Scholastic Aptitude Test (SAT).} \usage{ dat.kalaian1996 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab row (effect) id \cr \bold{study} \tab \code{character} \tab study identifier \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{n1i} \tab \code{numeric} \tab number of participants in the coached group \cr \bold{n2i} \tab \code{numeric} \tab number of participants in the uncoached group \cr \bold{outcome} \tab \code{character} \tab subtest (verbal or math) \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{hrs} \tab \code{numeric} \tab hours of coaching \cr \bold{ets} \tab \code{numeric} \tab study conducted by the Educational Testing Service (ETS) (0 = no, 1 = yes) \cr \bold{homework} \tab \code{numeric} \tab assignment of homework outside of the coaching course (0 = no, 1 = yes) \cr \bold{type} \tab \code{numeric} \tab study type (1 = randomized study, 2 = matched study, 3 = nonequivalent comparison study) } } \details{ The effectiveness of coaching for the Scholastic Aptitude Test (SAT) has been examined in numerous studies. This dataset contains standardized mean differences comparing the performance of a coached versus uncoached group on the verbal and/or math subtest of the SAT. Studies may report a standardized mean difference for the verbal subtest, the math subtest, or both. In the latter case, the two standardized mean differences are not independent (since they were measured in the same group of subjects). The number of hours of coaching (variable \code{hrs}), whether the study was conducted by the Educational Testing Service (variable \code{ets}), whether homework was assigned outside of the coaching course (variable \code{homework}), and the study type (variable \code{type}) may be potential moderators of the treatment effect. } \note{ The dataset was obtained from Table 1 in Kalaian and Raudenbush (1996). However, there appear to be some inconsistencies between the data in the table and those that were actually used for the analyses (see \sQuote{Examples}). } \source{ Kalaian, H. A., & Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. \emph{Psychological Methods}, \bold{1}(3), 227--235. \verb{https://doi.org/10.1037/1082-989X.1.3.227} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.kalaian1996 head(dat, 12) \dontrun{ ### load metafor package library(metafor) ### check ranges range(dat$yi[dat$outcome == "verbal"]) # -0.35 to 0.74 according to page 230 range(dat$yi[dat$outcome == "math"]) # -0.53 to 0.60 according to page 231 ### comparing this with Figure 1 in the paper reveals some discrepancies par(mfrow=c(1,2), mar=c(5,4,1,1)) plot(log(dat$hrs[dat$outcome == "verbal"]), dat$yi[dat$outcome == "verbal"], pch=19, xlab="Log(Coaching Hours)", ylab="Effect Size (verbal)", xlim=c(1,6), ylim=c(-0.5,1), xaxs="i", yaxs="i") abline(h=c(-0.5,0,0.5), lty="dotted") abline(v=log(c(5,18)), lty="dotted") plot(log(dat$hrs[dat$outcome == "math"]), dat$yi[dat$outcome == "math"], pch=19, xlab="Log(Coaching Hours)", ylab="Effect Size (math)", xlim=c(1,6), ylim=c(-1.0,1), xaxs="i", yaxs="i") abline(h=c(-0.5,0,0.5), lty="dotted") abline(v=log(c(5,18)), lty="dotted") ### construct variance-covariance matrix assuming rho = 0.66 for effect sizes ### corresponding to the 'verbal' and 'math' outcome types V <- vcalc(vi, cluster=study, type=outcome, data=dat, rho=0.66) ### fit multivariate random-effects model res <- rma.mv(yi, V, mods = ~ outcome - 1, random = ~ outcome | study, struct="UN", data=dat, digits=3) res ### test whether the effect differs for the math and verbal subtest anova(res, X=c(1,-1)) ### log-transform and mean center the hours of coaching variable dat$loghrs <- log(dat$hrs) - mean(log(dat$hrs), na.rm=TRUE) ### fit multivariate model with log(hrs) as moderator res <- rma.mv(yi, V, mods = ~ outcome + outcome:loghrs - 1, random = ~ outcome | study, struct="UN", data=dat, digits=3) res ### fit model with tau2 = 0 for outcome verbal (which also constrains rho = 0) res <- rma.mv(yi, V, mods = ~ outcome + outcome:loghrs - 1, random = ~ outcome | study, struct="UN", tau2=c(NA,0), data=dat, digits=3) res } } \keyword{datasets} \concept{education} \concept{standardized mean differences} \concept{multivariate models} \concept{meta-regression} \section{Concepts}{ education, standardized mean differences, multivariate models, meta-regression } metadat/man/dat.linde2015.Rd0000644000176200001440000001352514223103754015114 0ustar liggesusers\name{dat.linde2015} \docType{data} \alias{dat.linde2015} \title{Studies on Classes of Antidepressants for the Primary Care Setting} \description{Results from 66 trials examining eight classes of antidepressants and placebo for the primary care setting.} \usage{ dat.linde2015 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{integer} \tab study ID \cr \bold{author} \tab \code{character} \tab first author \cr \bold{year} \tab \code{integer} \tab year of publication \cr \bold{treatment1} \tab \code{character} \tab treatment 1 \cr \bold{treatment2} \tab \code{character} \tab treatment 2 \cr \bold{treatment3} \tab \code{character} \tab treatment 3 \cr \bold{n1} \tab \code{integer} \tab number of patients (arm 1) \cr \bold{resp1} \tab \code{integer} \tab number of early responder (arm 1) \cr \bold{remi1} \tab \code{integer} \tab number of early remissions (arm 1) \cr \bold{loss1} \tab \code{integer} \tab number of patients loss to follow-up (arm 1) \cr \bold{loss.ae1} \tab \code{integer} \tab number of patients loss to follow-up due to adverse events (arm 1) \cr \bold{ae1} \tab \code{integer} \tab number of patients with adverse events (arm 1) \cr \bold{n2} \tab \code{integer} \tab number of patients (arm 2) \cr \bold{resp2} \tab \code{integer} \tab number of early responder (arm 2) \cr \bold{remi2} \tab \code{integer} \tab number of early remissions (arm 2) \cr \bold{loss2} \tab \code{integer} \tab number of patients loss to follow-up (arm 2) \cr \bold{loss.ae2} \tab \code{integer} \tab number of patients loss to follow-up due to adverse events (arm 2) \cr \bold{ae2} \tab \code{integer} \tab number of patients with adverse events (arm 2) \cr \bold{n3} \tab \code{integer} \tab number of patients (arm 3) \cr \bold{resp3} \tab \code{integer} \tab number of early responder (arm 3) \cr \bold{remi3} \tab \code{integer} \tab number of early remissions (arm 3) \cr \bold{loss3} \tab \code{integer} \tab number of patients loss to follow-up (arm 3) \cr \bold{loss.ae3} \tab \code{integer} \tab number of patients loss to follow-up due to adverse events (arm 3) \cr \bold{ae3} \tab \code{integer} \tab number of patients with adverse events (arm 3) } } \details{ This data set comes from a systematic review of 8 pharmacological treatments of depression and placebo in primary care with 66 studies (8 of which were 3-arm studies) including 14,785 patients. The primary outcome is early response, defined as at least a 50\% score reduction on a depression scale after completion of treatment. Secondary outcomes (also measured as dichotomous) were early remission (defined as having a symptom score below a fixed threshold after completion of treatment), lost to follow-up, lost to follow-up due to adverse events, and any adverse event. The odds ratio was used as effect measure. This data set was used as an example in Rücker and Schwarzer (2017) who introduced methods to resolve conflicting rankings of outcomes in network meta-analysis. } \source{ Linde, K., Kriston, L., Rücker, G., Jamil, S., Schumann, I., Meissner, K., Sigterman, K., & Schneider, A. (2015). Efficacy and acceptability of pharmacological treatments for depressive disorders in primary care: Systematic review and network meta-analysis. \emph{Annals of Family Medicine}, \bold{13}(1), 69--79. \verb{https://doi.org/10.1370/afm.1687} } \references{ Rücker, G., & Schwarzer, G. (2017). Resolve conflicting rankings of outcomes in network meta-analysis: Partial ordering of treatments. \emph{Research Synthesis Methods}, \bold{8}(4), 526--536. \verb{https://doi.org/10.1002/jrsm.1270} } \author{ Guido Schwarzer, \email{sc@imbi.uni-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show results from first three studies (including three-arm study ### Lecrubier 1997) head(dat.linde2015, 3) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library(netmeta)) ### Print odds ratios and confidence limits with two digits settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Define order of treatments in printouts trts <- c("TCA", "SSRI", "SNRI", "NRI", "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum", "Placebo") ### Transform data from wide arm-based format to contrast-based format ### (outcome: early response). Argument 'sm' has to be used for odds ### ratio as summary measure; by default the risk ratio is used in the ### metabin function called internally. pw1 <- pairwise(list(treatment1, treatment2, treatment3), event = list(resp1, resp2, resp3), n = list(n1, n2, n3), studlab = id, data = dat.linde2015, sm = "OR") ### Conduct random effects network meta-analysis for primary outcome ### (early response); small number of early responses is bad (argument ### small.values) net1 <- netmeta(pw1, fixed = FALSE, reference = "Placebo", seq = trts, small.values = "bad") net1 ### Random effects NMA for early remission pw2 <- pairwise(treat = list(treatment1, treatment2, treatment3), event = list(remi1, remi2, remi3), n = list(n1, n2, n3), studlab = id, data = dat.linde2015, sm = "OR") net2 <- netmeta(pw2, fixed = FALSE, seq = trts, ref = "Placebo", small.values = "bad") net2 ### Ranking of treatments nr1 <- netrank(net1) nr2 <- netrank(net2) nr1 nr2 ### Partial order of treatment rankings (two outcomes) outcomes <- c("Early response", "Early remission") po12 <- netposet(nr1, nr2, outcomes = outcomes) plot(po12) } } \seealso{ \code{\link[netmeta]{pairwise}}, \code{\link[meta]{metabin}}, \code{\link[netmeta]{netmeta}}, \code{\link[netmeta]{netrank}} } \keyword{datasets} \concept{medicine} \concept{psychiatry} \concept{odds ratios} \concept{network meta-analysis} \section{Concepts}{ medicine, psychiatry, odds ratios, network meta-analysis } metadat/man/dat.pritz1997.Rd0000644000176200001440000000640414223103754015211 0ustar liggesusers\name{dat.pritz1997} \docType{data} \alias{dat.pritz1997} \title{Studies on the Effectiveness of Hyperdynamic Therapy for Treating Cerebral Vasospasm} \description{Results from 14 studies on the effectiveness of hyperdynamic therapy for treating cerebral vasospasm.} \usage{ dat.pritz1997 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{authors} \tab \code{character} \tab study authors \cr \bold{xi} \tab \code{numeric} \tab number of patients that improved with hyperdynamic therapy \cr \bold{ni} \tab \code{numeric} \tab total number of patients treated } } \details{ As described in Zhou et al. (1999), "hyperdynamic therapy refers to induced hypertension and hypervolaemia (volume expansion) to treat ischaemic symptoms due to vasospasm, and the success of this therapy is defined as clinical improvement in terms of neurologic deficits." For each study that was included in the meta-analysis, the dataset includes information on the number of patients that improved under this form of therapy and the total number of patients that were treated. The goal of the meta-analysis is to estimate the true (average) success rate of hyperdynamic therapy. } \source{ Zhou, X.-H., Brizendine, E. J., & Pritz, M. B. (1999). Methods for combining rates from several studies. \emph{Statistics in Medicine}, \bold{18}(5), 557--566. \verb{https://doi.org/10.1002/(SICI)1097-0258(19990315)18:5<557::AID-SIM53>3.0.CO;2-F} } \references{ Pritz M. B., Zhou, X.-H., & Brizendine, E. J. (1996). Hyperdynamic therapy for cerebral vasospasm: A meta-analysis of 14 studies. \emph{Journal of Neurovascular Disease}, \bold{1}, 6--8. Pritz, M. B. (1997). Treatment of cerebral vasospasm due to aneurysmal subarachnoid hemorrhage: Past, present, and future of hyperdynamic therapy. \emph{Neurosurgery Quarterly}, \bold{7}(4), 273--285. } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.pritz1997 dat \dontrun{ ### load metafor package library(metafor) ### computation of "weighted average" in Zhou et al. (1999), Table IV dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat, add=0) theta.hat <- sum(dat$ni * dat$yi) / sum(dat$ni) se.theta.hat <- sqrt(sum(dat$ni^2 * dat$vi) / sum(dat$ni)^2) ci.lb <- theta.hat - 1.96 * se.theta.hat ci.ub <- theta.hat + 1.96 * se.theta.hat round(c(estimate = theta.hat, se = se.theta.hat, ci.lb = ci.lb, ci.ub = ci.ub), 4) ### this is identical to an equal-effects model with sample size weights rma(yi, vi, weights=ni, method="EE", data=dat) ### random-effects model with raw proportions dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat) res <- rma(yi, vi, data=dat) predict(res) ### random-effects model with logit transformed proportions dat <- escalc(measure="PLO", xi=xi, ni=ni, data=dat) res <- rma(yi, vi, data=dat) predict(res, transf=transf.ilogit) ### mixed-effects logistic regression model res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat) predict(res, transf=transf.ilogit) } } \keyword{datasets} \concept{medicine} \concept{single-arm studies} \concept{proportions} \section{Concepts}{ medicine, single-arm studies, proportions } metadat/man/dat.ishak2007.Rd0000644000176200001440000001116114223103754015113 0ustar liggesusers\name{dat.ishak2007} \docType{data} \alias{dat.ishak2007} \title{Studies on Deep-Brain Stimulation in Patients with Parkinson's disease} \description{Results from 46 studies examining the effects of deep-brain stimulation on motor skills of patients with Parkinson's disease.} \usage{ dat.ishak2007 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab (first) author and year \cr \bold{y1i} \tab \code{numeric} \tab observed mean difference at 3 months \cr \bold{v1i} \tab \code{numeric} \tab sampling variance of the mean difference at 3 months \cr \bold{y2i} \tab \code{numeric} \tab observed mean difference at 6 months \cr \bold{v2i} \tab \code{numeric} \tab sampling variance of the mean difference at 6 months \cr \bold{y3i} \tab \code{numeric} \tab observed mean difference at 12 months \cr \bold{v3i} \tab \code{numeric} \tab sampling variance of the mean difference at 12 months \cr \bold{y4i} \tab \code{numeric} \tab observed mean difference at the long-term follow-up \cr \bold{v4i} \tab \code{numeric} \tab sampling variance of the mean difference at the long-term follow-up \cr \bold{mdur} \tab \code{numeric} \tab mean disease duration (in years) \cr \bold{mbase} \tab \code{numeric} \tab mean baseline UPDRS score } } \details{ Deep-brain stimulation (DBS), which is delivered through thin surgically implanted wires in specific areas of the brain and controlled by the patient, is meant to provide relief of the debilitating symptoms of Parkinson's disease. The dataset includes the results from 46 studies examining the effects of DBS of the subthalamic nucleus on motor functioning, measured with the Unified Parkinson's Disease Rating Scale (UPDRS). The effect size measure for this meta-analysis was the mean difference of the scores while the stimulator is active and the baseline scores (before implantation of the stimulator). Since lower scores on the UPDRS indicate better functioning, negative numbers indicate improvements in motor skills. Effects were generally measured at 3, 6, and 12 months after implantation of the stimulator, with some studies also including a further long-term follow-up. However, the number of measurements differed between studies - hence the missing data on some of the measurement occasions. Since the same patients were followed over time within a study, effect size estimates from multiple measurement occasions are likely to be correlated. A multivariate model accounting for the correlation in the effects can be used to meta-analyze these data. A difficulty with this approach is the lack of information about the correlation of the measurements over time in the individual studies. The approach taken by Ishak et al. (2007) was to assume an autoregressive (AR1) structure for the estimates within the individual studies. In addition, the correlation in the true effects was modeled, again using an autoregressive structure. } \source{ Ishak, K. J., Platt, R. W., Joseph, L., Hanley, J. A., & Caro, J. J. (2007). Meta-analysis of longitudinal studies. \emph{Clinical Trials}, \bold{4}(5), 525--539. \verb{https://doi.org/10.1177/1740774507083567} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.ishak2007 head(dat, 5) \dontrun{ ### load metafor package library(metafor) ### create long format dataset dat <- reshape(dat, direction="long", idvar="study", v.names=c("yi","vi"), varying=list(c(2,4,6,8), c(3,5,7,9))) dat <- dat[order(study, time),] ### remove missing measurement occasions from dat.long dat <- dat[!is.na(yi),] rownames(dat) <- NULL head(dat, 8) ### construct the full (block diagonal) V matrix with an AR(1) structure ### assuming an autocorrelation of 0.97 as estimated by Ishak et al. (2007) V <- vcalc(vi, cluster=study, time1=time, phi=0.97, data=dat) ### plot data with(dat, interaction.plot(time, study, yi, type="b", pch=19, lty="solid", xaxt="n", legend=FALSE, xlab="Time Point", ylab="Mean Difference", bty="l")) axis(side=1, at=1:4, lab=c("1 (3 months)", "2 (6 months)", "3 (12 months)", "4 (12+ months)")) ### multivariate model with heteroscedastic AR(1) structure for the true effects res <- rma.mv(yi, V, mods = ~ factor(time) - 1, random = ~ time | study, struct = "HAR", data = dat) print(res, digits=2) } } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{longitudinal models} \section{Concepts}{ medicine, raw mean differences, longitudinal models } metadat/man/dat.gurusamy2011.Rd0000644000176200001440000001106414223103754015665 0ustar liggesusers\name{dat.gurusamy2011} \docType{data} \alias{dat.gurusamy2011} \title{Studies on Interventions to Reduce Mortality after Liver Transplantation} \description{Results from 14 trials examining the mortality risk of interventions for decreasing blood loss and blood transfusion requirements during liver transplantation.} \usage{ dat.gurusamy2011 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study information \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{death} \tab \code{integer} \tab mortality at 60 days post-transplantation \cr \bold{n} \tab \code{integer} \tab number of individuals } } \details{ This network meta-analysis compared the effectiveness of seven interventions for decreasing blood loss and blood transfusion requirements during liver transplantation (Gurusamy et al., 2011). Fourteen studies reported mortality at 60 days, in 1,002 patients. Forty-five deaths were reported across all studies (4.5\%). Six studies observed deaths in all treatment arms while three studies did not observe any deaths. This data set was used in Efthimiou et al. (2019) to introduce the Mantel-Haenszel method for network meta-analysis. One of the treatments (solvent detergent plasma) was only included in one study with zero events in both treatment arms; this study was excluded from all network meta-analyses. In addition, no death was observed in the antithrombin III arm of the only study evaluating this treatment which was excluded from the Mantel-Haenszel network meta-analysis. } \source{ Gurusamy, K. S., Pissanou, T., Pikhart, H., Vaughan, J., Burroughs, A. K., & Davidson, B. R. (2011). Methods to decrease blood loss and transfusion requirements for liver transplantation. \emph{Cochrane Database of Systematic Reviews}, \bold{12}, CD009052. \verb{https://doi.org/10.1002/14651858.CD009052.pub2} } \references{ Efthimiou, O., Rücker, G., Schwarzer, G., Higgins, J., Egger, M., & Salanti, G. (2019). A Mantel-Haenszel model for network meta-analysis of rare events. \emph{Statistics in Medicine}, \bold{38}(16), 2992--3012. \verb{https://doi.org/10.1002/sim.8158} } \author{ Guido Schwarzer, \email{sc@imbi.uni-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first 6 rows of the dataset head(dat.gurusamy2011) ### Only study evaluating solvent detergent plasma subset(dat.gurusamy2011, study == "Williamson 1999") ### Only study evaluating antithrombin III subset(dat.gurusamy2011, study == "Baudo 1992") \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library(netmeta)) ### Print odds ratios and confidence limits with two digits settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treatment, death, n, studlab = study, data = dat.gurusamy2011, sm = "OR") ### Conduct Mantel-Haenszel network meta-analysis (NMA) net.MH <- netmetabin(pw, ref = "cont") ### Conduct inverse variance (IV) network meta-analysis net.IV <- netmeta(pw, ref = "cont") ### Network graph (Mantel-Haenszel NMA) netgraph(net.MH, seq = "optimal", col = "black", plastic = FALSE, points = TRUE, pch = 21, cex.points = 3, col.points = "black", bg.points = "gray", thickness = "se.fixed", number.of.studies = TRUE) ### Full network graph (based on inverse variance method, including ### study comparing Antithrombin III with Control/Placebo) netgraph(net.IV, seq = "optimal", col = "black", plastic = FALSE, points = TRUE, pch = 21, cex.points = 3, col.points = "black", bg.points = "gray", thickness = "se.fixed", number.of.studies = TRUE) ### Compare results for Mantel-Haenszel and IV NMA forest(netbind(net.MH, net.IV, random = FALSE, name = c("MH NMA", "IV NMA"))) ### Show results for Mantel-Haenszel NMA net.MH forest(net.MH) ### League table with network estimates in lower triangle and direct ### estimates in upper triangle netleague(net.MH) ### Assess inconsistency print(netsplit(net.MH), show = "both", ci = TRUE, overall = FALSE, nchar.trts = 6) } } \seealso{ \code{\link[netmeta]{pairwise}}, \code{\link[meta]{metabin}}, \code{\link[netmeta]{netmetabin}} } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, odds ratios, network meta-analysis, Mantel-Haenszel method } metadat/man/dat.hart1999.Rd0000644000176200001440000000670214223103754015002 0ustar liggesusers\name{dat.hart1999} \docType{data} \alias{dat.hart1999} \title{Studies on the Effectiveness of Warfarin for Preventing Strokes} \description{Results from 6 clinical trials examining the effectiveness of adjusted-dose warfarin for preventing strokes in patients with atrial fibrillation.} \usage{ dat.hart1999 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{study} \tab \code{character} \tab study name (abbreviated) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{x1i} \tab \code{numeric} \tab number of strokes in the warfarin group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the warfarin group \cr \bold{t1i} \tab \code{numeric} \tab total person-time (in years) in the warfarin group \cr \bold{x2i} \tab \code{numeric} \tab number of strokes in the placebo/control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the placebo/control group \cr \bold{t2i} \tab \code{numeric} \tab total person-time (in years) in the placebo/control group \cr \bold{compgrp} \tab \code{character} \tab type of comparison group (placebo or control) \cr \bold{prevtype} \tab \code{character} \tab type of prevention (primary or secondary) \cr \bold{trinr} \tab \code{character} \tab target range for the international normalized ratio (INR) } } \details{ The 6 studies provide data with respect to the number of strokes in the warfarin and the comparison (placebo or control) group. In addition, the number of patients and the total person-time (in years) is provided for the two groups. The goal of the meta-analysis was to examine the effectiveness of adjusted-dose warfarin for preventing strokes in patients with atrial fibrillation. } \source{ Hart, R. G., Benavente, O., McBride, R., & Pearce, L. A. (1999). Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: A meta-analysis. \emph{Annals of Internal Medicine}, \bold{131}(7), 492--501. \verb{https://doi.org/10.7326/0003-4819-131-7-199910050-00003} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hart1999 dat \dontrun{ ### load metafor package library(metafor) ### calculate log incidence rate ratios and corresponding sampling variances dat <- escalc(measure="IRR", x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat) dat ### meta-analysis of log incidence rate ratios using a random-effects model res <- rma(yi, vi, data=dat) res ### average incidence rate ratio with 95\% CI predict(res, transf=exp) ### forest plot with extra annotations par(mar=c(5,4,1,2)) forest(res, xlim=c(-11, 5), at=log(c(.05, .25, 1, 4)), atransf=exp, slab=paste0(study, " (", year, ")"), ilab=cbind(paste(x1i, "/", t1i, sep=" "), paste(x2i, "/", t2i, sep=" ")), ilab.xpos=c(-6.5,-4), cex=.85, header="Study (Year)") op <- par(cex=.85, font=2) text(c(-6.5,-4), 8.5, c("Warfarin", "Control")) text(c(-6.5,-4), 7.5, c("Strokes / PT", "Strokes / PT")) segments(x0=-8, y0=8, x1=-2.75, y1=8) par(op) ### meta-analysis of incidence rate differences using a random-effects model res <- rma(measure="IRD", x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat) res } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{incidence rates} \section{Concepts}{ medicine, cardiology, incidence rates } metadat/man/dat.riley2003.Rd0000644000176200001440000000731614223103754015143 0ustar liggesusers\name{dat.riley2003} \docType{data} \alias{dat.riley2003} \title{Studies on MYC-N as a Prognostic Marker for Neuroblastoma} \description{Results from 81 studies examining overall and disease-free survival in neuroblastoma patients with amplified versus normal MYC-N protein levels.} \usage{ dat.riley2003 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{yi} \tab \code{numeric} \tab log hazard ratio of the outcome in those with amplified versus normal MYC-N protein levels \cr \bold{vi} \tab \code{numeric} \tab sampling variance of the log hazard ratio \cr \bold{sei} \tab \code{numeric} \tab standard error of the log hazard ratio \cr \bold{outcome} \tab \code{character} \tab outcome (OS = overall survival; DFS = disease-free survival) } } \details{ The meta-analysis by Riley et al. (2003) examined a variety of prognostic markers for overall and disease-free survival in patients with neuroblastoma. One of the markers examined was amplified levels of the MYC-N protein, with is associated with poorer outcomes. The dataset given here was extracted from Riley (2011) and has been used in several other publications (e.g., Riley et al., 2004, 2007). The dataset provides the (log) hazard ratios (and corresponding standard errors) with respect to these two outcomes in 81 studies, with positive values indicating a greater risk of death (for OS) or disease recurrence/death (for DFS) for patients with high MYC-N levels compared to those with normal/low levels. Note that information on both outcomes could only be extracted from 17 studies (39 studies only provided sufficient information to extract the OS estimate, while 25 studies only allowed for extraction of the DFS estimate). } \source{ Riley, R. D., Sutton, A. J., Abrams, K. R., & Lambert, P. C. (2004). Sensitivity analyses allowed more appropriate and reliable meta-analysis conclusions for multiple outcomes when missing data was present. \emph{Journal of Clinical Epidemiology}, \bold{57}(9), 911--924. \verb{https://doi.org/10.1016/j.jclinepi.2004.01.018} Riley, R. D., Abrams, K. R., Lambert, P. C., Sutton, A. J., & Thompson, J. R. (2007). An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes. \emph{Statistics in Medicine}, \bold{26}(1), 78--97. \verb{https://doi.org/10.1002/sim.2524} Riley, R. D. (2011). Erratum: An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes. \emph{Statistics in Medicine}, \bold{30}(4), 400. \verb{https://doi.org/10.1002/sim.4100} } \references{ Riley, R. D., Burchill, S. A., Abrams, K. R., Heney, D., Lambert, P. C., Jones, D. R., Sutton, A. J., Young, B., Wailoo, A. J., & Lewis, I. J. (2003). A systematic review and evaluation of the use of tumour markers in paediatric oncology: Ewing's sarcoma and neuroblastoma. \emph{Health Technology Assessment}, \bold{7}(5), 1--162. \verb{https://doi.org/10.3310/hta7050} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.riley2003 dat \dontrun{ ### load metafor package library(metafor) ### random-effects model analysis for outcome DFS res <- rma(yi, sei=sei, data=dat, subset=(outcome == "DFS"), method="DL") res predict(res, transf=exp, digits=2) ### random-effects model analysis for outcome OS res <- rma(yi, sei=sei, data=dat, subset=(outcome == "OS"), method="DL") res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{hazard ratios} \section{Concepts}{ medicine, oncology, hazard ratios } metadat/man/dat.assink2016.Rd0000644000176200001440000001036114223103754015305 0ustar liggesusers\name{dat.assink2016} \docType{data} \alias{dat.assink2016} \title{Studies on the Association between Recidivism and Mental Health} \description{Results from 17 studies on the association between recidivism and mental health in delinquent juveniles.} \usage{ dat.assink2016 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study id number \cr \bold{esid} \tab \code{numeric} \tab effect size within study id number \cr \bold{id} \tab \code{numeric} \tab row id number \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{pubstatus} \tab \code{numeric} \tab published study (0 = no; 1 = yes) \cr \bold{year} \tab \code{numeric} \tab publication year of the study (approximately mean centered) \cr \bold{deltype} \tab \code{character} \tab type of delinquent behavior in which juveniles could have recidivated (either general, overt, or covert) } } \details{ The studies included in this dataset (which is a subset of the data used in Assink et al., 2015) compared the difference in recidivism between delinquent juveniles with a mental health disorder and a comparison group of juveniles without a mental health disorder. Since studies differed in the way recidivism was defined and assessed, results are given in terms of standardized mean differences, with positive values indicating a higher prevalence of recidivism in the group of juveniles with a mental health disorder. Multiple effect size estimates could be extracted from most studies (e.g., for different delinquent behaviors in which juveniles could have recidivated), necessitating the use of appropriate models/methods for the analysis. Assink and Wibbelink (2016) illustrate the use of multilevel meta-analysis models for this purpose. } \note{ The \code{year} variable is not constant within study 3, as this study refers to two different publications using the same data. } \source{ Assink, M., & Wibbelink, C. J. M. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial. \emph{The Quantitative Methods for Psychology}, \bold{12}(3), 154--174. \verb{https://doi.org/10.20982/tqmp.12.3.p154} } \references{ Assink, M., van der Put, C. E., Hoeve, M., de Vries, S. L. A., Stams, G. J. J. M., & Oort, F. J. (2015). Risk factors for persistent delinquent behavior among juveniles: A meta-analytic review. \emph{Clinical Psychology Review}, \bold{42}, 47--61. \verb{https://doi.org/10.1016/j.cpr.2015.08.002} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.assink2016 head(dat, 9) \dontrun{ ### load metafor package library(metafor) ### fit multilevel model res <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat) res ### use cluster-robust inference methods robust(res, cluster=study) ### LRTs for the variance components res0 <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat, sigma2=c(0,NA)) anova(res0, res) res0 <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat, sigma2=c(NA,0)) anova(res0, res) ### examine some potential moderators via meta-regression rma.mv(yi, vi, mods = ~ pubstatus, random = ~ 1 | study/esid, data=dat) rma.mv(yi, vi, mods = ~ year, random = ~ 1 | study/esid, data=dat) dat$deltype <- relevel(factor(dat$deltype), ref="general") rma.mv(yi, vi, mods = ~ deltype, random = ~ 1 | study/esid, data=dat) rma.mv(yi, vi, mods = ~ year + deltype, random = ~ 1 | study/esid, data=dat) ### assume that the effect sizes within studies are correlated with rho=0.6 V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) round(V[dat$study \%in\% c(1,2), dat$study \%in\% c(1,2)], 4) ### fit multilevel model using this approximate V matrix res <- rma.mv(yi, V, random = ~ 1 | study/esid, data=dat) res ### use cluster-robust inference methods robust(res, cluster=study) } } \keyword{datasets} \concept{psychology} \concept{criminology} \concept{standardized mean differences} \concept{multilevel models} \concept{cluster-robust inference} \section{Concepts}{ psychology, criminology, standardized mean differences, multilevel models, cluster-robust inference } metadat/man/dat.axfors2021.Rd0000644000176200001440000000663514223103754015324 0ustar liggesusers\name{dat.axfors2021} \docType{data} \alias{dat.axfors2021} \title{Mortality Outcomes with Hydroxychloroquine and Chloroquine in COVID-19 from an International Collaborative Meta-Analysis of Randomized Trials} \description{Results from 33 trials examining the effectiveness of hydroxychloroquine or chloroquine in patients with COVID-19.} \usage{ dat.axfors2021 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{character} \tab registry number \cr \bold{acronym} \tab \code{character} \tab shortened registry number \cr \bold{patient_setting} \tab \code{character} \tab patient setting \cr \bold{blinding_exact} \tab \code{character} \tab study blinding \cr \bold{high_dose} \tab \code{character} \tab high or low dose of medication \cr \bold{Published} \tab \code{character} \tab publication status \cr \bold{hcq_cq} \tab \code{character} \tab medication type (hcq = hydroxychloroquine or cq = chloroquine) \cr \bold{hcq_arm_event} \tab \code{numeric} \tab number of deaths in the treatment group \cr \bold{hcq_arm_total} \tab \code{numeric} \tab number of patients in the treatment group \cr \bold{control_arm_event} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{control_arm_total} \tab \code{numeric} \tab number of patients in the control group \cr \bold{Control} \tab \code{character} \tab control group type (Standard of Care or Placebo) } } \details{ The dataset includes the results from 33 published and unpublished randomized clinical trials that examined the effectiveness of hydroxychloroquine or chloroquine in patients with COVID-19. The results given here are focused on the total mortality in the treatment versus control groups. } \references{ Axfors, C., Schmitt, A. M., Janiaud, P., van’t Hooft, J., Abd-Elsalam, S., Abdo, E. F., Abella, B. S., Akram, J., Amaravadi, R. K., Angus, D. C., Arabi, Y. M., Azhar, S., Baden, L. R., Baker, A. W., Belkhir, L., Benfield, T., Berrevoets, M. A. H., Chen, C.-P., Chen, T.-C., … Hemkens, L. G. (2021). Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nature Communications, 12(1), 2349. \verb{https://doi.org/10.1038/s41467-021-22446-z} } \source{ Axfors, C., Schmitt, A., Janiaud, P., van ’t Hooft, J., Moher, D., Goodman, S., … Hemkens, L. G. (2021, March 9). Hydroxychloroquine and chloroquine for survival in COVID-19: An international collaborative meta-analysis of randomized trials. \verb{https://doi.org/10.17605/OSF.IO/QESV4} } \author{ W. Kyle Hamilton \email{whamilton@ucmerced.edu} \url{https://kylehamilton.com} } \examples{ # copy data into 'dat' and examine data dat <- dat.axfors2021 dat \dontrun{ # load metafor package library(metafor) # calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=hcq_arm_event, n1i=hcq_arm_total, ci=control_arm_event, n2i=control_arm_total, data=dat) # meta-analysis Hydroxychloroquine res_hcq <- rma(yi, vi, subset=(hcq_cq=="hcq"), slab = id, data=dat) print(res_hcq, digits=2) # meta-analysis Chloroquine res_cq <- rma(yi, vi, subset=(hcq_cq=="cq"), slab = id, data=dat) print(res_cq, digits=2) } } \keyword{datasets} \concept{medicine} \concept{covid-19} \concept{odds ratios} \section{Concepts}{ medicine, covid-19, odds ratios } metadat/man/dat.besson2016.Rd0000644000176200001440000002273514223103754015316 0ustar liggesusers\name{dat.besson2016} \docType{data} \alias{dat.besson2016} \title{Dataset on How Maternal Diet Impacts Copying Styles in Rodents} \description{Results from 46 studies synthesising maternal nutritional effects on coping styles in rodents.} \usage{ dat.besson2016 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{comp_ID} \tab \code{character} \tab effect-size unique identifier \cr \bold{study_ID} \tab \code{character} \tab study unique identifier \cr \bold{dam_ID} \tab \code{character} \tab dam unique identifier (group of dams subjected to the same treatment) \cr \bold{animal_ID} \tab \code{character} \tab offspring unique identifier (group of offspring from the same dam group subjected to the same treatment) \cr \bold{Reference} \tab \code{character} \tab author’s names and date \cr \bold{species} \tab \code{character} \tab species [rats or mice] \cr \bold{strain} \tab \code{character} \tab strain \cr \bold{manip_type} \tab \code{character} \tab maternal nutritional manipulation type [protein or calorie] \cr \bold{manip_direction} \tab \code{character} \tab direction of maternal nutritional manipulation [- = restriction, + = overfeeding] \cr \bold{nom_manip_val} \tab \code{character} \tab degree of maternal nutritional manipulation as described in the original publications [\% = percentage of caloric or protein restriction, # = increase in caloric intake] \cr \bold{exp} \tab \code{character} \tab percentage of caloric or protein maternal restriction or increase in caloric intake of the experimental group \cr \bold{control} \tab \code{character} \tab percentage of caloric or protein maternal restriction or increase in caloric intake for the control group \cr \bold{manip_parameter} \tab \code{character} \tab protein content, percentage fat or intake \cr \bold{vitmin_eql} \tab \code{character} \tab were vitamins equalized across maternal diets? [yes or no] \cr \bold{adlib_con} \tab \code{character} \tab were maternal control groups fed ad libitum? [yes or no] \cr \bold{adlib_exp} \tab \code{character} \tab were maternal experimental groups fed ad libitum? [yes or no] \cr \bold{diet_con} \tab \code{character} \tab name of maternal control diet? \cr \bold{diet_exp} \tab \code{character} \tab name of maternal experimental diet? \cr \bold{dam_diet_start_dPC} \tab \code{numeric} \tab start of the dam diet [in days post-conception] \cr \bold{dam_diet_end_dPC} \tab \code{numeric} \tab end of the dam diet [in days post-conception] \cr \bold{diet_label} \tab \code{character} \tab period of maternal diet manipulation [pregestation = pre-gestation, pre = pregnancy, lact = lactation, or pre+lact = pregnancy and lactation] \cr \bold{age_mating} \tab \code{numeric} \tab dam age at mating if known \cr \bold{n_con_dam} \tab \code{integer} \tab sample size of the control dam groups \cr \bold{n_exp_dam} \tab \code{integer} \tab sample size of the experimental dam groups \cr \bold{multi_use_con} \tab \code{character} \tab were control groups used multiple time? [yes or no] \cr \bold{dam_housing} \tab \code{character} \tab how were dams housed? [pair, group, or single] \cr \bold{temperature} \tab \code{numeric} \tab temperature during the experiment [°C] \cr \bold{photoperiod} \tab \code{integer} \tab photoperiod during the experiment [number of hours of light] \cr \bold{litter_size} \tab \code{integer} \tab size of the litter [number of pups per dam] \cr \bold{litter_size_equalized} \tab \code{character} \tab has litter size been equalized? [yes or no] \cr \bold{crossfostered} \tab \code{character} \tab have pups been cross-fostered? [yes or no] \cr \bold{sex} \tab \code{character} \tab sex of the offspring that were tested [m = male, f = female, both = mixed sex] \cr \bold{housing} \tab \code{character} \tab offspring housing during the test period [dam, pair, single, or group] \cr \bold{bodymass_mean_contr} \tab \code{numeric} \tab mean body mass of control offspring close to or during the testing period [g] \cr \bold{bodymass_SE_contr} \tab \code{numeric} \tab S.E. for body mass of control offspring close to or during the testing period \cr \bold{bodymass_mean_exp} \tab \code{numeric} \tab mean body mass of experimental offspring close to or during the testing period [g] \cr \bold{bodymass_SE_exp} \tab \code{numeric} \tab S.E. for body mass of experimental offspring close to or during the testing period \cr \bold{bm_N_contr} \tab \code{integer} \tab sample size for body mass of control offspring close to or during the testing period \cr \bold{bm_N_exp} \tab \code{integer} \tab sample size for body mass of experimental offspring close to or during the testing period \cr \bold{bm_dPP} \tab \code{integer} \tab age of offspring when body mass was measured [in days post-parturition] \cr \bold{offspring_diet} \tab \code{character} \tab offspring diet after weaning [type of control diet] \cr \bold{offspring_con_adlib} \tab \code{character} \tab were control offspring fed ad libitum after weaning? [yes or no] \cr \bold{offspring_diet_level} \tab \code{character} \tab name of offspring diet after weaning \cr \bold{offspring_diet_end_dPP} \tab \code{integer} \tab end of the offspring diet [in days post-parturition] \cr \bold{post_diet_adlib} \tab \code{character} \tab were experimental offspring fed ad libitum after weaning? [yes or no] \cr \bold{response_age_dPP} \tab \code{numeric} \tab offspring age when behavioural testing started [in days post-parturition] \cr \bold{authors_behaviour_classification} \tab \code{character} \tab author's classification of offspring behaviour [anxiety, exploration, or activity] \cr \bold{our_behaviour_classification} \tab \code{character} \tab our classification of offspring behaviour [anxiety, exploration, or activity] \cr \bold{response_test} \tab \code{character} \tab type of test used [elevated T-maze (ETM), open field, etc.] to measure offspring behaviour \cr \bold{time_trial} \tab \code{integer} \tab duration of the testing [min] \cr \bold{measure} \tab \code{character} \tab measures taken during testing [total distance moved, time spent in open arm, etc.] \cr \bold{unit} \tab \code{character} \tab unit of the behavioural measure taken [min, s, m, number (#), etc.] \cr \bold{high_better} \tab \code{character} \tab for activity and exploration, a higher number is assumed to be better (i.e., animals were more active), but the opposite was assumed for anxiety (i.e., they were more anxious) [yes or no] \cr \bold{night.day} \tab \code{character} \tab time of day when behaviours were measured [night or day] \cr \bold{comparison} \tab \code{character} \tab for a given control-treatment group comparison, animal group codes as used in the original article [e.g., LP, HP]. This field allows identification of exactly which data (i.e., comparison of which pairs of groups) were extracted from the original paper, and is not used in our analyses. For our analyses the groups were re-coded as control/experimental. \cr \bold{exp_mean} \tab \code{numeric} \tab mean of the offspring behaviour measured for the experimental group \cr \bold{exp_se} \tab \code{numeric} \tab S.E. of the offspring behaviour measured for the experimental group \cr \bold{exp_n} \tab \code{integer} \tab sample size for the offspring experimental group \cr \bold{con_mean} \tab \code{numeric} \tab mean of offspring behaviour measured for the control group \cr \bold{con_se} \tab \code{numeric} \tab S.E. of the offspring behaviour measured for the control group \cr \bold{con_n} \tab \code{integer} \tab sample size for the offspring control group \cr \bold{con_ID} \tab \code{character} \tab identifier for shared control groups within experiment \cr \bold{percentage} \tab \code{character} \tab is the offspring behaviour measure a percentage? [yes or no] \cr \bold{Data_source} \tab \code{character} \tab figure or table number in the original paper from which the data were extracted \cr \bold{measure_comments} \tab \code{character} \tab any comments on the offspring behaviour measures \cr \bold{SE_imputed} \tab \code{character} \tab was S.E. imputed for the offspring behaviour measure? [yes or no] \cr \bold{Comments} \tab \code{character} \tab any comments on the data \cr } } \details{ Data from experiments where dams were subject to caloric or protein restriction or were overfed around gestation were included. Offspring activity, exploration, or anxiety were measured outcomes variables from maternal experimental treatments. Multilevel meta-analysis and meta-regression models were used to analyze the meta-analytic data. } \source{ Besson, A. A., Lagisz, M., Senior, A. M., Hector, K. L., & Nakagawa, S. (2016). Effect of maternal diet on offspring coping styles in rodents: A systematic review and meta-analysis. \emph{Biological Reviews}, \bold{91}(4), 1065--1080. \verb{https://doi.org/10.1111/brv.12210} } \author{ Daniel Noble, \email{daniel.noble@anu.edu.au} } \examples{ ### copy data into 'dat' and examine data dat <- dat.besson2016 head(dat) \dontrun{ ### load metafor library(metafor) ### compute SD from SE dat$sd_c <- with(dat, con_se * sqrt(con_n)) dat$sd_e <- with(dat, exp_se * sqrt(exp_n)) ### compute standardized mean differences and corresponding sampling variances dat <- escalc(measure="SMD", m1i=exp_mean, m2i=con_mean, sd1i=sd_e, sd2i=sd_c, n1i=exp_n, n2i=con_n, data=dat, add.measure=TRUE) ### fit model mod1 <- rma.mv(yi ~ 1, V = vi, random = list(~ 1 | study_ID, ~ 1 | comp_ID), data = dat) mod1 } } \keyword{datasets} \concept{ecology} \concept{evolution} \concept{standardized mean differences} \section{Concepts}{ ecology, evolution, standardized mean differences } metadat/man/dat.moura2021.Rd0000644000176200001440000001107014223103754015132 0ustar liggesusers\name{dat.moura2021} \docType{data} \alias{dat.moura2021} \title{Studies on Assortative Mating} \description{Results from 457 studies on assortative mating in various species.} \usage{ dat.moura2021 } \format{The object is a list containing a data frame called \code{dat} that contains the following columns and a phylogenetic tree called \code{tree}: \tabular{lll}{ \bold{study.id} \tab \code{character} \tab study id \cr \bold{effect.size.id} \tab \code{numeric} \tab effect size id \cr \bold{species} \tab \code{character} \tab species \cr \bold{species.id} \tab \code{character} \tab species id (as in the Open Tree of Life reference taxonomy) \cr \bold{subphylum} \tab \code{character} \tab the subphyla of the species \cr \bold{phylum} \tab \code{character} \tab the phyla of the species \cr \bold{assortment.trait} \tab \code{character} \tab the measure of body size \cr \bold{trait.dimensions} \tab \code{character} \tab dimensionality of the measure \cr \bold{field.collection} \tab \code{character} \tab whether data were collected in the field \cr \bold{publication.year} \tab \code{numeric} \tab publication year of the study \cr \bold{pooled.data} \tab \code{character} \tab whether data were pooled either spatially and/or temporally \cr \bold{spatially.pooled} \tab \code{character} \tab whether data were pooled spatially \cr \bold{temporally.pooled} \tab \code{character} \tab whether data were pooled temporally \cr \bold{ri} \tab \code{numeric} \tab correlation coefficient \cr \bold{ni} \tab \code{numeric} \tab sample size } } \details{ The 457 studies included in this dataset provide 1828 correlation coefficients describing the similarity in some measure of body size in mating couples in 341 different species. } \source{ Rios Moura, R., Oliveira Gonzaga, M., Silva Pinto, N., Vasconcellos-Neto, J., & Requena, G. S. (2021). Assortative mating in space and time: Patterns and biases. \emph{Ecology Letters}, \bold{24}(5), 1089--1102. \verb{https://doi.org/10.1111/ele.13690} } \references{ Cinar, O., Nakagawa, S., & Viechtbauer, W. (in press). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. \emph{Methods in Ecology and Evolution}. \verb{https://doi.org/10.1111/2041-210X.13760} Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. \emph{Journal of Evolutionary Biology}, \bold{23}(3), 494--508. \verb{https://doi.org/10.1111/j.1420-9101.2009.01915.x} Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. \emph{Evolutionary Ecology}, \bold{26}(5), 1253--1274. \verb{https://doi.org/10.1007/s10682-012-9555-5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.moura2021$dat head(dat) \dontrun{ ### load metafor package library(metafor) ### load ape package library(ape, warn.conflicts=FALSE) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) ### copy tree to 'tree' tree <- dat.moura2021$tree ### turn tree into an ultrametric one tree <- compute.brlen(tree) ### compute phylogenetic correlation matrix A <- vcv(tree, corr=TRUE) ### make copy of the species.id variable dat$species.id.phy <- dat$species.id ### fit multilevel phylogenetic meta-analytic model res <- rma.mv(yi, vi, random = list(~ 1 | study.id, ~ 1 | effect.size.id, ~ 1 | species.id, ~ 1 | species.id.phy), R=list(species.id.phy=A), data=dat) res ### examine if spatial and/or temporal pooling of data tends to yield larger correlations res <- rma.mv(yi, vi, mods = ~ spatially.pooled * temporally.pooled, random = list(~ 1 | study.id, ~ 1 | effect.size.id, ~ 1 | species.id, ~ 1 | species.id.phy), R=list(species.id.phy=A), data=dat) res ### estimated average correlation without pooling, when pooling spatially, ### when pooling temporally, and when pooling spatially and temporally predict(res, newmods = rbind(c(0,0,0),c(1,0,0),c(0,1,0),c(1,1,1)), transf=transf.ztor, digits=2) } } \keyword{datasets} \concept{ecology} \concept{evolution} \concept{correlation coefficients} \concept{multivariate models} \concept{phylogeny} \concept{meta-regression} \section{Concepts}{ ecology, evolution, correlation coefficients, multivariate models, phylogeny, meta-regression } metadat/man/dat.normand1999.Rd0000644000176200001440000000577314223103754015511 0ustar liggesusers\name{dat.normand1999} \docType{data} \alias{dat.normand1999} \title{Studies on the Length of Hospital Stay of Stroke Patients} \description{Results from 9 studies on the length of the hospital stay of stroke patients under specialized care and under conventional/routine (non-specialist) care.} \usage{ dat.normand1999 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{source} \tab \code{character} \tab source of data \cr \bold{n1i} \tab \code{numeric} \tab number of patients under specialized care \cr \bold{m1i} \tab \code{numeric} \tab mean length of stay (in days) under specialized care \cr \bold{sd1i} \tab \code{numeric} \tab standard deviation of the length of stay under specialized care \cr \bold{n2i} \tab \code{numeric} \tab number of patients under routine care \cr \bold{m2i} \tab \code{numeric} \tab mean length of stay (in days) under routine care \cr \bold{sd2i} \tab \code{numeric} \tab standard deviation of the length of stay under routine care } } \details{ The 9 studies provide data in terms of the mean length of the hospital stay (in days) of stroke patients under specialized care and under conventional/routine (non-specialist) care. The goal of the meta-analysis was to examine the hypothesis whether specialist stroke unit care will result in a shorter length of hospitalization compared to routine management. } \source{ Normand, S. T. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. \emph{Statistics in Medicine}, \bold{18}(3), 321--359. \verb{https://doi.org/10.1002/(sici)1097-0258(19990215)18:3<321::aid-sim28>3.0.co;2-p} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.normand1999 dat \dontrun{ ### load metafor package library(metafor) ### calculate mean differences and corresponding sampling variances dat <- escalc(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat) dat ### meta-analysis of mean differences using a random-effects model res <- rma(yi, vi, data=dat) res ### meta-analysis of standardized mean differences using a random-effects model res <- rma(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, slab=source) res ### draw forest plot forest(res, xlim=c(-7,5), alim=c(-3,1), header="Study/Source") ### calculate (log transformed) ratios of means and corresponding sampling variances dat <- escalc(measure="ROM", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat) dat ### meta-analysis of the (log transformed) ratios of means using a random-effects model res <- rma(yi, vi, data=dat) res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{standardized mean differences} \section{Concepts}{ medicine, raw mean differences, standardized mean differences } metadat/man/dat.bakdash2021.Rd0000644000176200001440000003003314223103754015404 0ustar liggesusers\name{dat.bakdash2021} \docType{data} \alias{dat.bakdash2021} \title{Dataset on Situation Awareness and Task Performance Associations} \description{Results from 77 papers with 678 effects evaluating associations among measures of situation awareness and task performance.} \usage{ dat.bakdash2021 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{Author} \tab \code{character} \tab paper author(s) \cr \bold{Year} \tab \code{integer} \tab year of paper publication \cr \bold{Title} \tab \code{character} \tab title of paper \cr \bold{DOI} \tab \code{character} \tab digital object identifier (DOI) \cr \bold{DTIC.link} \tab \code{character} \tab permanent link for Defense Technical Information Collection (DITC) reports; see: \verb{https://www.dtic.mil} \cr \bold{SA.measure.type} \tab \code{character} \tab type of SA measure \cr \bold{Sample.size} \tab \code{integer} \tab reported sample size \cr \bold{Sample.size.stats} \tab \code{integer} \tab reported sample size based on reported statistics (this reflects excluded participants) \cr \bold{es.z} \tab \code{numeric} \tab z-transformed correlation coefficient; includes ghost results (disclosed and undisclosed non-significant effects not reported in detail) imputed using the draw method described in Bakdash et al. (2021a) \cr \bold{vi.z} \tab \code{numeric} \tab variance for z-transformed correlation (calculated using \code{Sample.size.stats}, \emph{not} \code{Sample.size}) \cr \bold{SampleID} \tab \code{character} \tab unique identifier for each experiment/study \cr \bold{Outcome} \tab \code{integer} \tab unique value for each effect size } } \details{ The dataset contains behavioral experiments from 77 papers/79 studies with a total of 678 effects, evaluating associations among measures of situation awareness (\dQuote{knowing what is going on}) and task performance. Examples of situation awareness include knowledge of current vehicle speed in a simulated driving task and location and heading of aircraft in a simulated air traffic control task. Corresponding examples of task performance include \dQuote{the number of collisions in a simulated driving task} and \dQuote{subject matter expert rating of conflict management in a simulated air control task} (Bakdash et al. 2021a, p. 2). This dataset and the \sQuote{Examples} are a highly simplified version of the data and code in Bakdash et al. (2021b; 2021c). The journal article by Bakdash et al. (2021a) describes the systematic review and meta-analysis in detail. This dataset is used to illustrate multilevel multivariate meta-analytic models for the overall pooled effect and pooled effects by situation awareness measure. We also adjust meta-analytic models using cluster-robust variance estimation / cluster-robust inference with the \code{\link[metafor]{robust}} function in \emph{metafor}. Results are shown graphically in a customized forest plot with a prediction interval (estimated plausible range of individual effects). Last, we create a table summarizing the estimated meta-analytic heterogeneity parameters. The meta-analytic results show most pooled effect sizes in the positive medium range or less. There was also substantial meta-analytic heterogeneity (estimated systematic variance in true effects), nearing the magnitude of the overall pooled effect. We interpret the meta-analytic results as situation awareness typically having limited validity for task performance (i.e., good situation awareness does not tend to have strong probabilistic links with good performance and vice-versa). More formally, measures of situation awareness do not generally and meaningfully capture cognitive processes and other relevant factors underlying task performance. \subsection{Run-Time}{ The code run-time can be greatly sped-up using a linear algebra library with \emph{R} that makes use of multiple CPU cores. See: \url{https://www.metafor-project.org/doku.php/tips:speeding_up_model_fitting}. To measure the run-time, uncomment these three lines: \code{start.time <- Sys.time()}, \code{end.time <- Sys.time()}, and \code{end.time - start.time}. Run-times on Windows 10 x64 with the Intel Math Kernel Library are: \tabular{rll}{ \tab \emph{CPU} \tab \emph{Run-Time (Minutes)} \cr \tab i7-11850H \tab 2.49 \cr \tab i7-4770 \tab 5.38 \cr } } } \source{ Bakdash, J. Z., Marusich, L. R., Cox, K. R., Geuss, M. N., Zaroukian, E. G., & Morris, K. M. (2021b). The validity of situation awareness for performance: A meta-analysis (Code Ocean Capsule). \verb{https://doi.org/10.24433/CO.1682542.v4} Bakdash, J. Z., Marusich, L. R., Cox, K. R., Geuss, M. N., Zaroukian, E. G., & Morris, K. M. (2021c). The validity of situation awareness for performance: A meta-analysis (Systematic Review, Data, and Code). \verb{https://doi.org/10.17605/OSF.IO/4K7ZV} } \references{ Bakdash, J. Z., Marusich, L. R., Cox, K. R., Geuss, M. N., Zaroukian, E. G., & Morris, K. M. (2021a). The validity of situation awareness for performance: A meta-analysis. \emph{Theoretical Issues in Ergonomics Science}, 1--24. \verb{https://doi.org/10.1080/1463922X.2021.1921310} Supplemental materials: \verb{https://www.tandfonline.com/doi/suppl/10.1080/1463922X.2021.1921310/suppl_file/ttie_a_1921310_sm5524.docx} } \author{ Jonathan Bakdash, \email{jonathan.z.bakdash.civ@army.mil}, \email{jbakdash@gmail.com} \cr Laura Marusich, \email{laura.m.cooper20.civ@army.mil}, \email{lmarusich@gmail.com} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bakdash2021 head(dat[c(1,2,6,8:12)]) \dontrun{ #start.time <- Sys.time() ### load metafor library(metafor) ### multilevel meta-analytic model to get the overall pooled effect res.overall <- rma.mv(es.z, vi.z, mods = ~ 1, random = ~ 1 | SampleID / Outcome, data = dat, test = "t") res.overall ### get prediction interval predict(res.overall) ### cluster-robust variance estimation (CRVE) / cluster-robust inference res.overall.crve <- robust(res.overall, cluster = SampleID) res.overall.crve ### get prediction interval res.overall.crve.pred <- predict(res.overall.crve) res.overall.crve.pred ### multilevel meta-analytic model for SA measures res.sa <- rma.mv(es.z, vi.z, mods = ~ SA.measure.type - 1, random = ~ 1 | SampleID / Outcome, data = dat, test = "t") res.sa ### cluster-robust variance estimation (CRVE) / cluster-robust inference res.sa.crve <- robust(res.sa, cluster = SampleID) res.sa.crve ### profile likelihood plots par(mfrow=c(2,1)) profile(res.sa.crve, progbar = FALSE) ### format and combine output of meta-analytic models for the forest plot all.z <- c(res.sa.crve$beta, # SA measures res.overall.crve$beta, # pooled effect for confidence interval (CI) res.overall.crve$beta) # pooled effect for prediction interval (PI) all.ci.lower <- c(res.sa.crve$ci.lb, # SA measures res.overall.crve.pred$ci.lb, # pooled effect, lower CI res.overall.crve.pred$pi.lb) # pooled effect, lower PI all.ci.upper <- c(res.sa.crve$ci.ub, # SA measures res.overall.crve.pred$ci.ub, # pooled effect, upper CI res.overall.crve.pred$pi.ub) # pooled effect, upper PI ### note: there is no p-value for the PI all.pvals <- c(res.sa.crve$pval, res.overall.crve$pval) all.labels <- c(sort(unique(dat$SA.measure.type)), "Overall", "95\% Prediction Interval") ### function to round p-values for the forest plot pvals.round <- function(input) { input <- ifelse(input < 0.001, "< 0.001", ifelse(input < 0.01, "< 0.01", ifelse(input < 0.05 & input >= 0.045, "< 0.05", ifelse(round(input, 2) == 1.00, "0.99", sprintf("\%.2f", round(input, 2))))))} all.pvals.rounded <- pvals.round(all.pvals) ### forest plot plot.vals <- data.frame(all.labels, all.z, all.ci.lower, all.ci.upper) par(mfrow=c(1,1), cex = 1.05) forest(plot.vals$all.z, ci.lb = plot.vals$all.ci.lower, ci.ub = plot.vals$all.ci.upper, slab = plot.vals$all.labels, psize = 1, efac = 0, xlim = c(-1.8, 2.5), clim = c(-1, 1), transf = transf.ztor, # transform z to r at = seq(-0.5, 1, by = 0.25), xlab = expression("Correlation Coefficient"~"("*italic('r')*")"), main = "\n\n\nSA Measures", ilab = c(all.pvals.rounded, ""), ilab.xpos = 2.45, ilab.pos = 2.5, digits = 2, refline = 0, annotate = FALSE) ### keep trailing zero using sprintf output <- cbind(sprintf("\%.2f", round(transf.ztor(plot.vals$all.z), 2)), sprintf("\%.2f", round(transf.ztor(plot.vals$all.ci.lower), 2)), sprintf("\%.2f", round(transf.ztor(plot.vals$all.ci.upper), 2))) ### alignment kludge annotext <- apply(output, 1, function(x) {paste0(" ", x[1], " [", x[2],", ", x[3], "]")}) text( 1.05, 12:1, annotext, pos = 4, cex = 1.05) text(-1.475, 14.00, "SA Measure", cex = 1.05) text( 2.30, 14.00, substitute(paste(italic('p-value'))), cex = 1.05) text( 1.55, 14.00, "Correlation [95\% CI]", cex = 1.05) abline(h = 1.5) ### black polygon for overall mean CIs addpoly(all.z[11], ci.lb = all.ci.lower[11], ci.ub = all.ci.upper[11], rows = 2, annotate = FALSE, efac = 1.5, transf = transf.ztor) ### white polygon for PI addpoly(all.z[12], ci.lb = all.ci.lower[12], ci.ub = all.ci.upper[12], rows = 1, col = "white", border = "black", annotate = FALSE, efac = 1.5, transf = transf.ztor) par(mfrow=c(1,1), cex = 1) # reset graph parameters to default ### confidence intervals for the variance components re.CI.variances <- confint(res.overall) re.CI.variances sigma1.z <- data.frame(re.CI.variances[[1]]["random"]) sigma2.z <- data.frame(re.CI.variances[[2]]["random"]) ### fit model using alternative multivariate parameterization res.overall.alt <- rma.mv(es.z, vi.z, mods = ~ 1, random = ~ factor(Outcome) | factor(SampleID), data = dat, test = "t") ### confidence intervals for the total amount of heterogeneity variance component res.overall.alt.tau <- confint(res.overall.alt, tau2=1)$random ### I^2: http://www.metafor-project.org/doku.php/tips:i2_multilevel_multivariate W <- diag(1/dat$vi.z) X <- model.matrix(res.overall) P <- W - W \%*\% X \%*\% solve(t(X) \%*\% W \%*\% X) \%*\% t(X) \%*\% W ### I^2 (variance due to heterogeneity): 61\% I2 <- 100 * res.overall.alt$tau2 / (res.overall.alt$tau2 + (res.overall$k-res.overall$p)/sum(diag(P))) I2 ### 95\% CI for I^2 using uncertainty around tau^2 I2.CI.lb <- 100 * res.overall.alt.tau[1,2] / (res.overall.alt.tau[1,2] + (res.overall$k-res.overall$p)/sum(diag(P))) I2.CI.lb I2.CI.ub <- 100 * res.overall.alt.tau[1,3] / (res.overall.alt.tau[1,3] + (res.overall$k-res.overall$p)/sum(diag(P))) I2.CI.ub ### total amount of heterogeneity (tau) sqrt(res.overall.alt$tau2) ### heterogeneity table table.heterogeneity <- data.frame(matrix(ncol = 3, nrow = 4)) colnames(table.heterogeneity) <- c("Parameter Value", "Lower 95\% CI", "Upper 95\% CI") rownames(table.heterogeneity) <- c("Tau (Total)", "Tau1 (Between paper)", "Tau2 (Within paper)", "I2 (\%)") table.heterogeneity[1,] <- res.overall.alt.tau[2,] table.heterogeneity[2,] <- sigma1.z[2,] table.heterogeneity[3,] <- sigma2.z[2,] table.heterogeneity[4,] <- c(I2, I2.CI.lb, I2.CI.ub) round(table.heterogeneity, 2) #end.time <- Sys.time() #end.time - start.time } } \keyword{datasets} \concept{psychology} \concept{human factors} \concept{engineering} \concept{correlation coefficients} \concept{multilevel models} \concept{multivariate models} \concept{cluster-robust inference} \section{Concepts}{ psychology, human factors, engineering, correlation coefficients, multilevel models, multivariate models, cluster-robust inference } metadat/man/dat.obrien2003.Rd0000644000176200001440000001245714223103754015277 0ustar liggesusers\name{dat.obrien2003} \docType{data} \alias{dat.obrien2003} \title{Studies on the Relationship Between BMI and Risk of Preeclampsia} \description{Results from 13 studies on the relationship between maternal body mass index (BMI) and the risk of preeclampsia.} \usage{ dat.obrien2003 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study id \cr \bold{author} \tab \code{character} \tab (first) author of the study \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ref} \tab \code{numeric} \tab reference number \cr \bold{ch} \tab \code{character} \tab exclusion due to chronic hypertension (yes/no) \cr \bold{dm} \tab \code{character} \tab exclusion due to diabetes mellitus (yes/no) \cr \bold{mg} \tab \code{character} \tab exclusion due to multiple gestation (yes/no) \cr \bold{bmi.lb} \tab \code{numeric} \tab lower bound of the BMI interval \cr \bold{bmi.ub} \tab \code{numeric} \tab upper bound of the BMI interval \cr \bold{bmi} \tab \code{numeric} \tab midpoint of the BMI interval \cr \bold{cases} \tab \code{numeric} \tab number of preeclampsia cases in the BMI group \cr \bold{total} \tab \code{numeric} \tab number of individuals in the BMI group } } \details{ The dataset includes the results from 13 studies examining the relationship between maternal body mass index (BMI) and the risk of preeclampsia. For each study, results are given in terms of the number of preeclampsia cases within two or more groups defined by the lower and upper BMI bounds as shown in the dataset (\code{NA} means that the interval is either open to the left or right). The \code{bmi} variable is the interval midpoint as defined by O'Brien et al. (2003). } \source{ O'Brien, T. E., Ray, J. G., & Chan, W.-S. (2003). Maternal body mass index and the risk of preeclampsia: A systematic overview. \emph{Epidemiology}, \bold{14}(3), 368--374. \verb{https://doi.org/10.1097/00001648-200305000-00020} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.obrien2003 dat \dontrun{ ### load metafor package library(metafor) ### restructure the data into a wide format dat2 <- to.wide(dat, study="study", grp="grp", ref=1, grpvars=c("bmi","cases","total"), addid=FALSE, adddesign=FALSE, postfix=c(1,2)) dat2[1:10, -c(2:3)] ### calculate log risk ratios and corresponding sampling variances dat2 <- escalc(measure="RR", ai=cases1, n1i=total1, ci=cases2, n2i=total2, data=dat2) dat2[1:10, -c(2:7)] ### forest plot of the risk ratios dd <- c(0,diff(dat2$study)) dd[dd > 0] <- 1 rows <- (1:nrow(dat2)) + cumsum(dd) rows <- 1 + max(rows) - rows slabs <- mapply(function(x,y,z) as.expression(bquote(.(x)^.(y)~.(z))), dat2$author, dat2$ref, dat2$year) with(dat2, forest(yi, vi, header=TRUE, slab=slabs, xlim=c(-7,5.5), fonts="mono", cex=0.8, psize=1, pch=19, efac=0, rows=rows, ylim=c(0,max(rows)+3), yaxs="i", atransf=exp, at=log(c(.05,0.1,0.2,0.5,1,2,5,10,20)), ilab=comp, ilab.xpos=-4, ilab.pos=4)) text(-4.4, max(rows)+2, "Comparison", font=2, cex=0.8, pos=4) ### within-study mean center the BMI variable dat$bmicent <- with(dat, bmi - ave(bmi, study)) ### compute the proportion of preeclampsia cases and corresponding sampling variances dat <- escalc(measure="PR", xi=cases, ni=total, data=dat) ### convert the proportions to percentages (and convert the variances accordingly) dat$yi <- dat$yi*100 dat$vi <- dat$vi*100^2 dat[1:10, -c(2:3)] ### fit multilevel meta-regression model to examine the relationship between the ### (centered) BMI variable and the risk of preeclampsia res <- rma.mv(yi, vi, mods = ~ bmicent, random = ~ 1 | study/grp, data=dat) res ### draw scatterplot with regression line res$slab <- dat$ref regplot(res, xlab=expression("Within-Study Mean Centered BMI"~(kg/m^2)), ylab="Preeclampsia Prevalence (\%)", las=1, bty="l", at=seq(0,18,by=2), olim=c(0,100), psize=2, bg="gray90", label=TRUE, offset=0, labsize=0.6) ### fit model using a random slope for bmicent res <- rma.mv(yi, vi, mods = ~ bmicent, random = ~ bmicent | study, struct="GEN", data=dat) res ### load rms package library(rms) ### fit restricted cubic spline model res <- rma.mv(yi, vi, mods = ~ rcs(bmicent, 4), random = ~ 1 | study/grp, data=dat) res ### get knot positions knots <- attr(rcs(model.matrix(res)[,2], 4), "parms") ### computed predicted values based on the model xs <- seq(-10, 10, length=1000) sav <- predict(res, newmods=rcspline.eval(xs, knots, inclx=TRUE)) ### draw scatterplot with regression line based on the model tmp <- regplot(res, mod=2, pred=sav, xvals=xs, xlab=expression("Within-Study Mean Centered BMI"~(kg/m^2)), ylab="Preeclampsia Prevalence (\%)", las=1, bty="l", at=seq(0,18,by=2), olim=c(0,100), psize=2, bg="gray90", label=TRUE, offset=0, labsize=0.6) abline(v=knots, lty="dotted") points(tmp) } } \keyword{datasets} \concept{medicine} \concept{obstetrics} \concept{risk ratios} \concept{proportions} \concept{multilevel models} \concept{dose-response models} \section{Concepts}{ medicine, obstetrics, risk ratios, proportions, multilevel models, dose-response models } metadat/man/dat.egger2001.Rd0000644000176200001440000001154114223103754015101 0ustar liggesusers\name{dat.egger2001} \docType{data} \alias{dat.egger2001} \title{Studies on the Effectiveness of Intravenous Magnesium in Acute Myocardial Infarction} \description{Results from 16 trials examining the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction.} \usage{ dat.egger2001 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab trial id number \cr \bold{study} \tab \code{character} \tab first author or trial name \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of deaths in the magnesium group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the magnesium group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the control group } } \details{ The dataset includes the results from 16 randomized clinical trials that examined the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction. Studies 1-7 were included in the meta-analyses by Teo et al. (1991) and Horner (1992) and were combined with the results from the LIMIT-2 trial (Woods et al., 1992) in Yusuf et al. (1993), suggesting that magnesium is an effective treatment for reducing mortality. However, the results from the ISIS-4 mega trial (ISIS-4 Collaborative Group, 1995) indicated no reduction in mortality with magnesium treatment. Publication bias has been suggested as one possible explanation for the conflicting findings (Egger & Davey Smith, 1995). The present dataset includes some additional trials and are based on Table 18.2 from Egger, Davey Smith, and Altman (2001). } \source{ Egger, M., Davey Smith, G., & Altman, D. G. (Eds.) (2001). \emph{Systematic reviews in health care: Meta-analysis in context} (2nd ed.). London: BMJ Books. } \references{ Egger, M., & Davey Smith, G. (1995). Misleading meta-analysis: Lessons from \dQuote{an effective, safe, simple} intervention that wasn't. \emph{British Medical Journal}, \bold{310}(6982), 752--754. \verb{https://doi.org/10.1136/bmj.310.6982.752} Horner, S. M. (1992). Efficacy of intravenous magnesium in acute myocardial infarction in reducing arrhythmias and mortality: Meta-analysis of magnesium in acute myocardial infarction. \emph{Circulation}, \bold{86}(3), 774--779. \verb{https://doi.org/10.1161/01.cir.86.3.774} ISIS-4 Collaborative Group (1995). ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. \emph{Lancet}, \bold{345}(8951), 669--685. \verb{https://doi.org/10.1016/S0140-6736(95)90865-X} Teo, K. K., Yusuf, S., Collins, R., Held, P. H., & Peto, R. (1991). Effects of intravenous magnesium in suspected acute myocardial infarction: Overview of randomised trials. \emph{British Medical Journal}, \bold{303}(6816), 1499--1503. \verb{https://doi.org/10.1136/bmj.303.6816.1499} Woods, K. L., Fletcher, S., Roffe, C., & Haider, Y. (1992). Intravenous magnesium sulphate in suspected acute myocardial infarction: Results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). \emph{Lancet}, \bold{339}(8809), 1553--1558. \verb{https://doi.org/10.1016/0140-6736(92)91828-v} Yusuf, S., Teo, K., & Woods, K. (1993). Intravenous magnesium in acute myocardial infarction: An effective, safe, simple, and inexpensive treatment. \emph{Circulation}, \bold{87}(6), 2043--2046. \verb{https://doi.org/10.1161/01.cir.87.6.2043} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \seealso{ \code{\link{dat.li2007}} } \examples{ ### copy data into 'dat' and examine data dat <- dat.egger2001 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of trials 1-7 using Peto's method (as in Teo et al., 1991) res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=1:7) print(res, digits=2) ### meta-analysis of trials 1-7 and LIMIT-2 (as in Yusuf et al., 1993) res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=c(1:7,14)) print(res, digits=2) ### meta-analysis of all trials except ISIS-4 res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=-16) print(res, digits=2) predict(res, transf=exp, digits=2) ### meta-analysis of all trials including ISIS-4 res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) print(res, digits=2) predict(res, transf=exp, digits=2) ### contour-enhanced funnel plot centered at 0 funnel(res, refline=0, level=c(90, 95, 99), shade=c("white", "gray", "darkgray")) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{Peto's method} \concept{publication bias} \section{Concepts}{ medicine, cardiology, Peto's method, publication bias } metadat/man/dat.berkey1998.Rd0000644000176200001440000001046314223103754015323 0ustar liggesusers\name{dat.berkey1998} \docType{data} \alias{dat.berkey1998} \title{Studies on Treatments for Periodontal Disease} \description{Results from 5 trials comparing surgical and non-surgical treatments for medium-severity periodontal disease one year after treatment. \loadmathjax} \usage{ dat.berkey1998 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ni} \tab \code{numeric} \tab number of patients \cr \bold{outcome} \tab \code{character} \tab outcome (PD = probing depth; AL = attachment level) \cr \bold{yi} \tab \code{numeric} \tab observed mean difference in outcome (surgical versus non-surgical) \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{v1i} \tab \code{numeric} \tab variances and covariances of the observed effects \cr \bold{v2i} \tab \code{numeric} \tab variances and covariances of the observed effects } } \details{ The dataset includes the results from 5 trials that compared surgical and non-surgical methods for the treatment of medium-severity periodontal disease. Reported outcomes include the change in probing depth (PD) and attachment level (AL) one year after the treatment. The outcome measure used for this meta-analysis was the (raw) mean difference, calculated in such a way that positive values indicate that surgery was more effective than non-surgical treatment in decreasing the probing depth and increasing the attachment level (so, the results from the various trials indicate that surgery is preferable for reducing the probing depth, while non-surgical treatment is preferable for increasing the attachment level). Since each trial provides effect size estimates for both outcomes, the estimates are correlated. A multivariate model can be used to meta-analyze the two outcomes simultaneously. The \code{v1i} and \code{v2i} values are the variances and covariances of the observed effects. In particular, for each study, variables \code{v1i} and \code{v2i} form a \mjeqn{2 \times 2}{2x2} variance-covariance matrix of the observed effects, with the diagonal elements corresponding to the sampling variances of the mean differences (the first for probing depth, the second for attachment level) and the off-diagonal value corresponding to the covariance of the two mean differences. Below, the full (block diagonal) variance-covariance for all studies is constructed from these two variables. } \source{ Berkey, C. S., Antczak-Bouckoms, A., Hoaglin, D. C., Mosteller, F., & Pihlstrom, B. L. (1995). Multiple-outcomes meta-analysis of treatments for periodontal disease. \emph{Journal of Dental Research}, \bold{74}(4), 1030--1039. \verb{https://doi.org/10.1177/00220345950740040201} Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F., & Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. \emph{Statistics in Medicine}, \bold{17}(22), 2537--2550. \verb{https://doi.org/10.1002/(sici)1097-0258(19981130)17:22<2537::aid-sim953>3.0.co;2-c} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.berkey1998 dat \dontrun{ ### load metafor package library(metafor) ### construct block diagonal var-cov matrix of the observed outcomes based on variables v1i and v2i V <- vcalc(vi=1, cluster=author, rvars=c(v1i, v2i), data=dat) ### fit multiple outcomes (meta-regression) model (with REML estimation) res <- rma.mv(yi, V, mods = ~ outcome - 1, random = ~ outcome | trial, struct="UN", data=dat) print(res, digits=3) ### test/estimate difference between the two outcomes anova(res, X=c(1,-1)) ### fit model including publication year as moderator for both outcomes (with ML estimation) res <- rma.mv(yi, V, mods = ~ outcome + outcome:I(year - 1983) - 1, random = ~ outcome | trial, struct="UN", data=dat, method="ML") print(res, digits=3) } } \keyword{datasets} \concept{medicine} \concept{dentistry} \concept{raw mean differences} \concept{multivariate models} \section{Concepts}{ medicine, dentistry, raw mean differences, multivariate models } metadat/man/dat.lopez2019.Rd0000644000176200001440000001505014223103754015151 0ustar liggesusers\name{dat.lopez2019} \docType{data} \alias{dat.lopez2019} \title{Studies on the Effectiveness of CBT for Depression} \description{Results from 76 studies examining the effectiveness of cognitive behavioral therapy (CBT) for depression in adults.} \usage{ dat.lopez2019 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab (first) author and year of study \cr \bold{treatment} \tab \code{character} \tab treatment provided (see \sQuote{Details}) \cr \bold{scale} \tab \code{character} \tab scale used to measure depression symptoms \cr \bold{n} \tab \code{numeric} \tab group size \cr \bold{diff} \tab \code{numeric} \tab standardized mean change \cr \bold{se} \tab \code{numeric} \tab corresponding standard error \cr \bold{group} \tab \code{numeric} \tab type of therapy (0 = individual, 1 = group therapy) \cr \bold{tailored} \tab \code{numeric} \tab whether the intervention was tailored to each patient (0 = no, 1 = yes) \cr \bold{sessions} \tab \code{numeric} \tab number of sessions \cr \bold{length} \tab \code{numeric} \tab average session length (in minutes) \cr \bold{intensity} \tab \code{numeric} \tab product of sessions and length \cr \bold{multi} \tab \code{numeric} \tab intervention included multimedia elements (0 = no, 1 = yes) \cr \bold{cog} \tab \code{numeric} \tab intervention included cognitive techniques (0 = no, 1 = yes) \cr \bold{ba} \tab \code{numeric} \tab intervention included behavioral activation (0 = no, 1 = yes) \cr \bold{psed} \tab \code{numeric} \tab intervention included psychoeducation (0 = no, 1 = yes) \cr \bold{home} \tab \code{numeric} \tab intervention included homework (0 = no, 1 = yes) \cr \bold{prob} \tab \code{numeric} \tab intervention included problem solving (0 = no, 1 = yes) \cr \bold{soc} \tab \code{numeric} \tab intervention included social skills training (0 = no, 1 = yes) \cr \bold{relax} \tab \code{numeric} \tab intervention included relaxation (0 = no, 1 = yes) \cr \bold{goal} \tab \code{numeric} \tab intervention included goal setting (0 = no, 1 = yes) \cr \bold{final} \tab \code{numeric} \tab intervention included a final session (0 = no, 1 = yes) \cr \bold{mind} \tab \code{numeric} \tab intervention included mindfulness (0 = no, 1 = yes) \cr \bold{act} \tab \code{numeric} \tab intervention included acceptance and commitment therapy (0 = no, 1 = yes) } } \details{ The dataset includes the results from 76 studies examining the effectiveness of cognitive behavioral therapy (CBT) for treating depression in adults. Studies included two or more of the following treatments/conditions: \enumerate{ \item treatment as usual (TAU), \item no treatment, \item wait list, \item psychological or attention placebo, \item face-to-face CBT, \item multimedia CBT, \item hybrid CBT (i.e., multimedia CBT with one or more face-to-face sessions). } Multimedia CBT was defined as CBT delivered via self-help books, audio/video recordings, telephone, computer programs, apps, e-mail, or text messages. Variable \code{diff} is the standardized mean change within each group, with negative values indicating a decrease in depression symptoms. } \source{ Personal communication. } \references{ López-López, J. A., Davies, S. R., Caldwell, D. M., Churchill, R., Peters, T. J., Tallon, D., Dawson, S., Wu, Q., Li, J., Taylor, A., Lewis, G., Kessler, D. S., Wiles, N., & Welton, N. J. (2019). The process and delivery of CBT for depression in adults: A systematic review and network meta-analysis. \emph{Psychological Medicine}, \bold{49}(12), 1937--1947. \verb{https://doi.org/10.1017/S003329171900120X} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lopez2019 dat[1:10,1:6] \dontrun{ ### load metafor package library(metafor) ### create network graph ('igraph' package must be installed) library(igraph, warn.conflicts=FALSE) pairs <- data.frame(do.call(rbind, sapply(split(dat$treatment, dat$study), function(x) t(combn(x,2)))), stringsAsFactors=FALSE) pairs$X1 <- factor(pairs$X1, levels=sort(unique(dat$treatment))) pairs$X2 <- factor(pairs$X2, levels=sort(unique(dat$treatment))) tab <- table(pairs[,1], pairs[,2]) tab # adjacency matrix g <- graph_from_adjacency_matrix(tab, mode = "plus", weighted=TRUE, diag=FALSE) plot(g, edge.curved=FALSE, edge.width=E(g)$weight/2, layout=layout_in_circle(g, order=c("Wait list", "No treatment", "TAU", "Multimedia CBT", "Hybrid CBT", "F2F CBT", "Placebo")), vertex.size=45, vertex.color="lightgray", vertex.label.color="black", vertex.label.font=2) ### restructure data into wide format dat <- to.wide(dat, study="study", grp="treatment", ref="TAU", grpvars=c("diff","se","n"), postfix=c("1","2")) ### compute contrasts between treatment pairs and corresponding sampling variances dat$yi <- with(dat, diff1 - diff2) dat$vi <- with(dat, se1^2 + se2^2) ### calculate the variance-covariance matrix for multitreatment studies calc.v <- function(x) { v <- matrix(x$se2[1]^2, nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) ### add contrast matrix to the dataset dat <- contrmat(dat, grp1="treatment1", grp2="treatment2") ### network meta-analysis using a contrast-based random-effects model ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons ### the treatment left out (TAU) becomes the reference level for the treatment comparisons res <- rma.mv(yi, V, data=dat, mods = ~ No.treatment + Wait.list + Placebo + F2F.CBT + Hybrid.CBT + Multimedia.CBT - 1, random = ~ comp | study, rho=1/2) res ### forest plot of the contrast estimates (treatments versus TAU) forest(coef(res), diag(vcov(res)), slab=sub(".", " ", names(coef(res)), fixed=TRUE), xlim=c(-5,5), alim=c(-3,3), psize=1, header="Treatment", xlab="Difference in Standardized Mean Change (compared to TAU)") ### fit random inconsistency effects model res <- rma.mv(yi, V, data=dat, mods = ~ No.treatment + Wait.list + Placebo + F2F.CBT + Hybrid.CBT + Multimedia.CBT - 1, random = list(~ comp | study, ~ comp | design), rho=1/2, phi=1/2) res } } \keyword{datasets} \concept{psychiatry} \concept{standardized mean changes} \concept{network meta-analysis} \section{Concepts}{ psychiatry, standardized mean changes, network meta-analysis } metadat/man/dat.bourassa1996.Rd0000644000176200001440000000776214223103754015667 0ustar liggesusers\name{dat.bourassa1996} \docType{data} \alias{dat.bourassa1996} \title{Studies on the Association between Handedness and Eye-Dominance} \description{Results from 47 studies on the association between handedness and eye-dominance. \loadmathjax} \usage{ dat.bourassa1996 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{sample} \tab \code{numeric} \tab sample number \cr \bold{author} \tab \code{character} \tab (first) author \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{selection} \tab \code{character} \tab selection of subjects on the basis of eyedness or handedness \cr \bold{investigator} \tab \code{character} \tab investigator (psychologist, educationalist, or other) \cr \bold{hand_assess} \tab \code{character} \tab method to assess handedness (questionnaire or performance based) \cr \bold{eye_assess} \tab \code{character} \tab method to assess eyedness (see \sQuote{Details}) \cr \bold{mage} \tab \code{numeric} \tab mean age of sample \cr \bold{lh.le} \tab \code{numeric} \tab number of left-handed left-eyed individuals \cr \bold{lh.re} \tab \code{numeric} \tab number of left-handed right-eyed individuals \cr \bold{rh.le} \tab \code{numeric} \tab number of right-handed left-eyed individuals \cr \bold{rh.re} \tab \code{numeric} \tab number of right-handed right-eyed individuals \cr \bold{sex} \tab \code{character} \tab sex of the sample (combined, male, or female) } } \details{ The 47 studies included in this meta-analysis examined the association between handedness and eye-dominance (ocular dominance or eyedness). Results are given in terms of \mjeqn{2 \times 2}{2x2} tables, indicating the number of left-handed left-eyed, left-handed right-eyed, right-handed left-eyed, and right-handed right-eyed individuals. Note that some studies included multiple (independent) samples, so that the meta-analysis included 54 samples in total. Also, for some studies, the combined data of the males and females are further broken down into the two subgroups. In some studies, there was indication that the selection of subjects was not random with respect to handedness and/or eyedness. While this should not influence the size of the association as measured with the odds ratio, this invalidates those studies for assessing the overall percentage of left-eyed and left-handed individuals. Handedness was assessed in the individual studies either based on a questionnaire or inventory or based on task performance. Eyedness was assessed based on various methods: \code{E.1} methods are based on task performance, while \code{E.2.a} denotes assessment based on a questionnaire. The performance based methods could be further broken down into: \code{E.1.a.i} (monocular procedure with object/instrument held in one hand), \code{E.1.a.ii} (monocular procedure with object/instrument held in both hands), \code{E.1.b} (binocular procedure), \code{E.1.c} (a combination of the previous methods), and \code{E.1.d} (some other method). } \source{ Bourassa, D. C., McManus, I. C., & Bryden, M. P. (1996). Handedness and eye-dominance: A meta-analysis of their relationship. \emph{Laterality}, \bold{1}(1), 5--34. \verb{https://doi.org/10.1080/713754206} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bourassa1996 head(dat, 10) \dontrun{ ### load metafor package library(metafor) ### calculate log(OR) and corresponding sampling variance with 1/2 correction dat <- escalc(measure="OR", ai=lh.le, bi=lh.re, ci=rh.le, di=rh.re, data=dat, add=1/2, to="all") head(dat, 10) ### overall association between handedness and eyedness res <- rma(yi, vi, data=dat, subset=sex=="combined") res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{psychology} \concept{odds ratios} \section{Concepts}{ psychology, odds ratios } metadat/man/dat.fine1993.Rd0000644000176200001440000001421014223103754014750 0ustar liggesusers\name{dat.fine1993} \docType{data} \alias{dat.fine1993} \title{Studies on Radiation Therapy with or without Adjuvant Chemotherapy in Patients with Malignant Gliomas} \description{Results from 17 trials comparing post-operative radiation therapy with and without adjuvant chemotherapy in patients with malignant gliomas.} \usage{ dat.fine1993 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{nei} \tab \code{numeric} \tab sample size in the experimental group receiving radiotherapy plus adjuvant chemotherapy \cr \bold{nci} \tab \code{numeric} \tab sample size in the control group receiving radiotherapy alone \cr \bold{e1i} \tab \code{numeric} \tab number of survivors at 6 months in the experimental group \cr \bold{c1i} \tab \code{numeric} \tab number of survivors at 6 months in the control group \cr \bold{e2i} \tab \code{numeric} \tab number of survivors at 12 months in the experimental group \cr \bold{c2i} \tab \code{numeric} \tab number of survivors at 12 months in the control group \cr \bold{e3i} \tab \code{numeric} \tab number of survivors at 18 months in the experimental group \cr \bold{c3i} \tab \code{numeric} \tab number of survivors at 18 months in the control group \cr \bold{e4i} \tab \code{numeric} \tab number of survivors at 24 months in the experimental group \cr \bold{c4i} \tab \code{numeric} \tab number of survivors at 24 months in the control group } } \details{ The 17 trials report the post-operative survival of patients with malignant gliomas receiving either radiation therapy with adjuvant chemotherapy or radiation therapy alone. Survival was assessed at 6, 12, 18, and 24 months in all but one study (which assessed survival only at 12 and at 24 months). The data were reconstructed by Trikalinos and Olkin (2012) based on Table 2 in Fine et al. (1993) and Table 3 in Dear (1994). The data can be used to illustrate how a meta-analysis can be conducted of effect sizes reported at multiple time points using a multivariate model. } \source{ Dear, K. B. G. (1994). Iterative generalized least squares for meta-analysis of survival data at multiple times. \emph{Biometrics}, \bold{50}(4), 989--1002. \verb{https://doi.org/10.2307/2533438} Trikalinos, T. A., & Olkin, I. (2012). Meta-analysis of effect sizes reported at multiple time points: A multivariate approach. \emph{Clinical Trials}, \bold{9}(5), 610--620. \verb{https://doi.org/10.1177/1740774512453218} } \references{ Fine, H. A., Dear, K. B., Loeffler, J. S., Black, P. M., & Canellos, G. P. (1993). Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. \emph{Cancer}, \bold{71}(8), 2585--2597. \verb{https://doi.org/10.1002/1097-0142(19930415)71:8<2585::aid-cncr2820710825>3.0.co;2-s} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.fine1993 dat \dontrun{ ### load metafor package library(metafor) ### calculate log(ORs) and sampling variances for each time point dat <- escalc(measure="OR", ai=e1i, n1i=nei, ci=c1i, n2i=nci, data=dat, var.names=c("y1i","v1i")) dat <- escalc(measure="OR", ai=e2i, n1i=nei, ci=c2i, n2i=nci, data=dat, var.names=c("y2i","v2i")) dat <- escalc(measure="OR", ai=e3i, n1i=nei, ci=c3i, n2i=nci, data=dat, var.names=c("y3i","v3i")) dat <- escalc(measure="OR", ai=e4i, n1i=nei, ci=c4i, n2i=nci, data=dat, var.names=c("y4i","v4i")) ### calculate the covariances (equations in Appendix of Trikalinos & Olkin, 2012) dat$v12i <- with(dat, nei / (e1i * (nei - e2i)) + nci / (c1i * (nci - c2i))) dat$v13i <- with(dat, nei / (e1i * (nei - e3i)) + nci / (c1i * (nci - c3i))) dat$v14i <- with(dat, nei / (e1i * (nei - e4i)) + nci / (c1i * (nci - c4i))) dat$v23i <- with(dat, nei / (e2i * (nei - e3i)) + nci / (c2i * (nci - c3i))) dat$v24i <- with(dat, nei / (e2i * (nei - e4i)) + nci / (c2i * (nci - c4i))) dat$v34i <- with(dat, nei / (e3i * (nei - e4i)) + nci / (c3i * (nci - c4i))) ### create dataset in long format dat.long <- data.frame(study=rep(1:nrow(dat), each=4), time=1:4, yi=c(t(dat[c("y1i","y2i","y3i","y4i")])), vi=c(t(dat[c("v1i","v2i","v3i","v4i")]))) ### var-cov matrices of the sudies V <- lapply(split(dat, dat$study), function(x) matrix(c( x$v1i, x$v12i, x$v13i, x$v14i, x$v12i, x$v2i, x$v23i, x$v24i, x$v13i, x$v23i, x$v3i, x$v34i, x$v14i, x$v24i, x$v34i, x$v4i), nrow=4, ncol=4, byrow=TRUE)) ### remove rows for the missing time points in study 17 dat.long <- na.omit(dat.long) ### remove corresponding rows/columns from var-cov matrix V[[17]] <- V[[17]][c(2,4),c(2,4)] ### make a copy of V Vc <- V ### replace any (near) singular var-cov matrices with ridge corrected versions repl.Vi <- function(Vi) { res <- eigen(Vi) if (any(res$values <= .08)) { round(res$vectors \%*\% diag(res$values + .08) \%*\% t(res$vectors), 12) } else { Vi } } Vc <- lapply(Vc, repl.Vi) ### do not correct var-cov matrix of study 17 Vc[[17]] <- V[[17]] ### construct block diagonal matrix Vc <- bldiag(Vc) ### multivariate fixed-effects model res <- rma.mv(yi, Vc, mods = ~ factor(time) - 1, method="FE", data=dat.long) print(res, digits=3) ### multivariate random-effects model with heteroscedastic AR(1) structure for the true effects res <- rma.mv(yi, Vc, mods = ~ factor(time) - 1, random = ~ time | study, struct="HAR", data=dat.long, control=list(optimizer="hjk")) print(res, digits=3) ### profile the variance components par(mfrow=c(2,2)) profile(res, tau2=1, xlim=c( 0,.2)) profile(res, tau2=2, xlim=c( 0,.2)) profile(res, tau2=3, xlim=c( 0,.2)) profile(res, tau2=4, xlim=c(.1,.3)) ### profile the autocorrelation coefficient par(mfrow=c(1,1)) profile(res, rho=1) } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{odds ratios} \concept{longitudinal models} \section{Concepts}{ medicine, oncology, odds ratios, longitudinal models } metadat/man/dat.konstantopoulos2011.Rd0000644000176200001440000000755614223103754017306 0ustar liggesusers\name{dat.konstantopoulos2011} \docType{data} \alias{dat.konstantopoulos2011} \title{Studies on the Effects of Modified School Calendars on Student Achievement} \description{Results from 56 studies on the effects of modified school calendars on student achievement.} \usage{ dat.konstantopoulos2011 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{district} \tab \code{numeric} \tab district id number \cr \bold{school} \tab \code{numeric} \tab school id number (within district) \cr \bold{study} \tab \code{numeric} \tab study id number \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{year} \tab \code{numeric} \tab year of the study } } \details{ Instead of following the more traditional school calendar with a long summer break (in addition to a short winter and spring break), some schools have switched to a modified school calendar comprising more frequent but shorter intermittent breaks (e.g., 9 weeks of school followed by 3 weeks off), while keeping the total number of days at school approximately the same. The effects of using such a modified calendar on student achievement have been examined in a number of studies and were meta-analyzed by Cooper et al. (2003). The dataset (taken from Konstantopoulos, 2011) contains the results from 56 studies, each comparing the level of academic achievement in a group of students following a modified school calendar with that of a group of students following a more traditional school calendar. The difference between the two groups was quantified in terms of a standardized mean difference (with positive values indicating a higher mean level of achievement in the group following the modified school calendar). The studies were conducted at various schools that were clustered within districts. The data therefore have a multilevel structure, with schools nested within districts. A multilevel meta-analysis of these data can be used to estimate and account for the amount of heterogeneity between districts and between schools within districts. } \source{ Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. \emph{Research Synthesis Methods}, \bold{2}(1), 61--76. \verb{https://doi.org/10.1002/jrsm.35} } \references{ Cooper, H., Valentine, J. C., Charlton, K., & Melson, A. (2003). The effects of modified school calendars on student achievement and on school and community attitudes. \emph{Review of Educational Research}, \bold{73}(1), 1--52. \verb{https://doi.org/10.3102/00346543073001001} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.konstantopoulos2011 dat \dontrun{ ### load metafor package library(metafor) ### regular random-effects model res <- rma(yi, vi, data=dat) print(res, digits=3) ### regular random-effects model using rma.mv() res <- rma.mv(yi, vi, random = ~ 1 | study, data=dat) print(res, digits=3) ### multilevel random-effects model res.ml <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat) print(res.ml, digits=3) ### profile variance components profile(res.ml, progbar=FALSE) ### multivariate parameterization of the model res.mv <- rma.mv(yi, vi, random = ~ school | district, data=dat) print(res.mv, digits=3) ### tau^2 from multivariate model = sum of the two variance components from the multilevel model round(sum(res.ml$sigma2), 3) ### rho from multivariate model = intraclass correlation coefficient based on the multilevel model round(res.ml$sigma2[1] / sum(res.ml$sigma2), 3) } } \keyword{datasets} \concept{education} \concept{standardized mean differences} \concept{multilevel models} \section{Concepts}{ education, standardized mean differences, multilevel models } metadat/man/dat.hine1989.Rd0000644000176200001440000000521314223103754014762 0ustar liggesusers\name{dat.hine1989} \docType{data} \alias{dat.hine1989} \title{Studies on Prophylactic Use of Lidocaine After a Heart Attack} \description{Results from 6 studies evaluating mortality from prophylactic use of lidocaine in acute myocardial infarction.} \usage{ dat.hine1989 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{source} \tab \code{character} \tab source of data \cr \bold{n1i} \tab \code{numeric} \tab number of patients in lidocaine group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in control group \cr \bold{ai} \tab \code{numeric} \tab number of deaths in lidocaine group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in control group } } \details{ Hine et al. (1989) conducted a meta-analysis of death rates in randomized controlled trials in which prophylactic lidocaine was administered to patients with confirmed or suspected acute myocardial infarction. The dataset describes the mortality at the end of the assigned treatment period for control and intravenous lidocaine treatment groups for six studies. The question of interest is whether there is a detrimental effect of lidocaine. Because the studies were conducted to compare rates of arrhythmias following a heart attack, the studies, taken individually, are too small to detect important differences in mortality rates. The data in this dataset were obtained from Table I in Normand (1999, p. 322). } \source{ Normand, S. T. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. \emph{Statistics in Medicine}, \bold{18}(3), 321--359. \verb{https://doi.org/10.1002/(sici)1097-0258(19990215)18:3<321::aid-sim28>3.0.co;2-p} } \references{ Hine, L. K., Laird, N., Hewitt, P., & Chalmers, T. C. (1989). Meta-analytic evidence against prophylactic use of lidocaine in acute myocardial infarction. \emph{Archives of Internal Medicine}, \bold{149}(12), 2694--2698. \verb{https://doi.org/10.1001/archinte.1989.00390120056011} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hine1989 dat \dontrun{ ### load metafor package library(metafor) ### calculate risk differences and corresponding sampling variances dat <- escalc(measure="RD", n1i=n1i, n2i=n2i, ai=ai, ci=ci, data=dat) dat ### meta-analysis of risk differences using a random-effects model res <- rma(yi, vi, data=dat) res } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{risk differences} \section{Concepts}{ medicine, cardiology, risk differences } metadat/man/prep_dat.Rd0000644000176200001440000000165614223103754014542 0ustar liggesusers\name{prep_dat} \alias{prep_dat} \title{Data preparation function} \description{Function to run data processing scripts.} \usage{ prep_dat(rebuild=FALSE, overwrite, pkgdir) } \arguments{ \item{rebuild}{logical indicating whether the entire database should be rebuild (default is \code{FALSE}).} \item{overwrite}{character vector with one or more \code{.Rd} filenames to overwrite (if they already exist). The default is to never overwrite any existing \code{.Rd} files.} \item{pkgdir}{character string specifying the root directory of the source package (if unspecified, the current working directory is assumed to be the package root directory).} } \details{ The function is only for used for processing new datasets for inclusion in the package. It should be used as described on the \pkg{\link{metadat-package}} help page. } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org} } \keyword{file} \keyword{internal} metadat/man/dat.bcg.Rd0000644000176200001440000001004714223103754014240 0ustar liggesusers\name{dat.bcg} \docType{data} \alias{dat.bcg} \title{Studies on the Effectiveness of the BCG Vaccine Against Tuberculosis} \description{Results from 13 studies examining the effectiveness of the Bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. \loadmathjax} \usage{ dat.bcg } \format{The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{author} \tab \code{character} \tab author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{tpos} \tab \code{numeric} \tab number of TB positive cases in the treated (vaccinated) group \cr \bold{tneg} \tab \code{numeric} \tab number of TB negative cases in the treated (vaccinated) group \cr \bold{cpos} \tab \code{numeric} \tab number of TB positive cases in the control (non-vaccinated) group \cr \bold{cneg} \tab \code{numeric} \tab number of TB negative cases in the control (non-vaccinated) group \cr \bold{ablat} \tab \code{numeric} \tab absolute latitude of the study location (in degrees) \cr \bold{alloc} \tab \code{character} \tab method of treatment allocation (random, alternate, or systematic assignment) } } \details{ The 13 studies provide data in terms of \mjeqn{2 \times 2}{2x2} tables in the form: \tabular{lcc}{ \tab TB positive \tab TB negative \cr vaccinated group \tab \code{tpos} \tab \code{tneg} \cr control group \tab \code{cpos} \tab \code{cneg} } The goal of the meta-analysis was to examine the overall effectiveness of the BCG vaccine for preventing tuberculosis and to examine moderators that may potentially influence the size of the effect. The dataset has been used in several publications to illustrate meta-analytic methods (see \sQuote{References}). } \source{ Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E., Fineberg, H. V., & Mosteller, F. (1994). Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature. \emph{Journal of the American Medical Association}, \bold{271}(9), 698--702. \verb{https://doi.org/10.1001/jama.1994.03510330076038} } \references{ Berkey, C. S., Hoaglin, D. C., Mosteller, F., & Colditz, G. A. (1995). A random-effects regression model for meta-analysis. \emph{Statistics in Medicine}, \bold{14}(4), 395--411. \verb{https://doi.org/10.1002/sim.4780140406} van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. \emph{Statistics in Medicine}, \bold{21}(4), 589--624. \verb{https://doi.org/10.1002/sim.1040} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bcg dat \dontrun{ ### load metafor package library(metafor) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) res ### average risk ratio with 95\% CI predict(res, transf=exp) ### mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) res ### predicted average risk ratios for 10-60 degrees absolute latitude ### holding the publication year constant at 1970 predict(res, newmods=cbind(seq(from=10, to=60, by=10), 1970), transf=exp) ### note: the interpretation of the results is difficult because absolute ### latitude and publication year are strongly correlated (the more recent ### studies were conducted closer to the equator) plot(ablat ~ year, data=dat, pch=19, xlab="Publication Year", ylab="Absolute Lattitude") cor(dat$ablat, dat$year) } } \keyword{datasets} \concept{medicine} \concept{risk ratios} \concept{meta-regression} \section{Concepts}{ medicine, risk ratios, meta-regression } metadat/man/dat.hartmannboyce2018.Rd0000644000176200001440000000521514223103754016653 0ustar liggesusers\name{dat.hartmannboyce2018} \docType{data} \alias{dat.hartmannboyce2018} \title{Studies on the Effectiveness of Nicotine Replacement Therapy for Smoking Cessation} \description{Results from 133 studies examining the effectiveness of nicotine replacement therapy (NRT) for smoking cessation at 6+ months of follow-up.} \usage{ dat.hartmannboyce2018 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study identifier \cr \bold{x.nrt} \tab \code{numeric} \tab number of participants in the NRT group who were abstinent at the follow-up \cr \bold{n.nrt} \tab \code{numeric} \tab number of participants in the NRT group \cr \bold{x.ctrl} \tab \code{numeric} \tab number of participants in the control group who were abstinent at the follow-up \cr \bold{n.ctrl} \tab \code{numeric} \tab number of participants in the control group \cr \bold{treatment} \tab \code{character} \tab type of NRT provided in the treatment group } } \details{ The dataset includes the results from 133 studies examining the effectiveness of nicotine replacement therapy (NRT) for smoking cessation. The results given in this dataset pertain to abstinence at 6+ months of follow-up. NRT was provided to participants in the treatment groups in various forms as indicated by the \code{treatment} variable (e.g., gum, patch, inhalator). Note that the dataset includes 136 rows, since a few studies included multiple treatments. } \source{ Hartmann‐Boyce, J., Chepkin, S. C., Ye, W., Bullen, C. & Lancaster, T. (2018). Nicotine replacement therapy versus control for smoking cessation. \emph{Cochrane Database of Systematic Reviews}, \bold{5}, CD000146. \verb{https://doi.org//10.1002/14651858.CD000146.pub5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hartmannboyce2018 head(dat, 10) \dontrun{ ### load metafor package library(metafor) ### turn treatment into a factor with the desired ordering dat$treatment <- factor(dat$treatment, levels=unique(dat$treatment)) ### meta-analysis per treatment using the M-H method lapply(split(dat, dat$treatment), function(x) rma.mh(measure="RR", ai=x.nrt, n1i=n.nrt, ci=x.ctrl, n2i=n.ctrl, data=x, digits=2)) ### all combined rma.mh(measure="RR", ai=x.nrt, n1i=n.nrt, ci=x.ctrl, n2i=n.ctrl, data=dat, digits=2) } } \keyword{datasets} \concept{medicine} \concept{smoking} \concept{risk ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, smoking, risk ratios, Mantel-Haenszel method } metadat/man/dat.mcdaniel1994.Rd0000644000176200001440000001062414223103754015611 0ustar liggesusers\name{dat.mcdaniel1994} \docType{data} \alias{dat.mcdaniel1994} \title{Studies on the Validity of Employment Interviews} \description{Results from 160 studies on the correlation between employment interview assessments and job performance.} \usage{ dat.mcdaniel1994 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{ni} \tab \code{numeric} \tab sample size of the study \cr \bold{ri} \tab \code{numeric} \tab observed correlation \cr \bold{type} \tab \code{character} \tab interview type (j = job-related, s = situational, p = psychological) \cr \bold{struct} \tab \code{character} \tab interview structure (u = unstructured, s = structured) } } \details{ The 160 studies provide data in terms of the correlation between employment interview performance and actual job performance. In addition, the interview type and the interview structure are indicated. McDaniel et al. (1994) describe the interview type and structure variables as follows. "Questions in situational interviews [...] focus on the individual's ability to project what his or her behavior would be in a given situation. [...] Job-related interviews are those in which the interviewer is a personnel officer or hiring authority and the questions attempt to assess past behaviors and job-related information, but most questions are not considered situational. Psychological interviews are conducted by a psychologist, and the questions are intended to assess personal traits, such as dependability." In structured interviews, "the questions and acceptable responses were specified in advance and the responses were rated for appropriateness of content. [...] Unstructured interviews gather applicant information in a less systematic manner than do structured interviews. Although the questions may be specified in advance, they usually are not, and there is seldom a formalized scoring guide. Also, all persons being interviewed are not typically asked the same questions." The goal of the meta-analysis was to examine the overall criterion-related validity of employment interviews and to examine whether the validity depends on the type and structure of the interview. The data in this dataset were obtained from Table A.2 in Rothstein, Sutton, and Borenstein (2005, p. 325-329). Note that the \code{type} and \code{struct} variables contain some \code{NA}s. } \source{ Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.). (2005). \emph{Publication bias in meta-analysis: Prevention, assessment, and adjustments}. Chichester, England: Wiley. } \references{ McDaniel, M. A., Whetzel, D. L., Schmidt, F. L., & Maurer, S. D. (1994). The validity of employment interviews: A comprehensive review and meta-analysis. \emph{Journal of Applied Psychology}, \bold{79}(4), 599--616. \verb{https://doi.org/10.1037/0021-9010.79.4.599} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.mcdaniel1994 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) head(dat) ### meta-analysis of the transformed correlations using a random-effects model res <- rma(yi, vi, data=dat) res ### average correlation with 95\% CI predict(res, transf=transf.ztor) ### mixed-effects model with interview type as factor ### note: job-related interviews is the reference level rma(yi, vi, mods = ~ factor(type), data=dat) ### mixed-effects model with interview structure as factor ### note: structured interviews is the reference level rma(yi, vi, mods = ~ factor(struct), data=dat) ### note: the interpretation of the results is difficult since all ### situational interviews were structured, almost all psychological ### interviews were unstructured, and actually for the majority of ### the psychological interviews it was unknown whether the interview ### was structured or unstructured table(dat$type, dat$struct, useNA="always") ### meta-analysis of raw correlations using a random-effects model res <- rma(measure="COR", ri=ri, ni=ni, data=dat.mcdaniel1994) res } } \keyword{datasets} \concept{psychology} \concept{correlation coefficients} \concept{meta-regression} \section{Concepts}{ psychology, correlation coefficients, meta-regression } metadat/man/dat.dogliotti2014.Rd0000644000176200001440000000631514223103754016015 0ustar liggesusers\name{dat.dogliotti2014} \docType{data} \alias{dat.dogliotti2014} \title{Studies on Antithrombotic Treatments to Prevent Strokes} \description{Results from 20 trials examining the effectiveness of antithrombotic treatments to prevent strokes in patients with non-valvular atrial fibrillation.} \usage{ dat.dogliotti2014 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{id} \tab \code{numeric} \tab study ID \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{stroke} \tab \code{numeric} \tab number of strokes \cr \bold{total} \tab \code{numeric} \tab number of individuals } } \details{ This data set comes from a systematic review aiming to estimate the effects of eight antithrombotic treatments including placebo in reducing the incidence of major thrombotic events in patients with non-valvular atrial fibrillation (Dogliotti et al., 2014). The review included 20 studies with 79,808 participants, four studies are three-arm studies. The primary outcome is stroke reduction (yes / no). } \source{ Dogliotti, A., Paolasso, E., & Giugliano, R. P. (2014). Current and new oral antithrombotics in non-valvular atrial fibrillation: A network meta-analysis of 79808 patients. \emph{Heart}, \bold{100}(5), 396--405. \verb{https://doi.org/10.1136/heartjnl-2013-304347} } \author{ Guido Schwarzer, \email{sc@imbi.uni-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first 7 rows / 3 studies of the dataset head(dat.dogliotti2014, 7) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library(netmeta)) ### Print odds ratios and confidence limits with two digits settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treat = treatment, n = total, event = stroke, studlab = study, data = dat.dogliotti2014, sm = "OR") ### Print log odds ratios (TE) and standard errors (seTE) head(pw, 5)[, 1:5] ### Conduct network meta-analysis (NMA) with placebo as reference net <- netmeta(pw, ref = "plac") ### Details on excluded study selvars <- c("studlab", "event1", "n1", "event2", "n2") subset(pw, studlab == "WASPO, 2007")[, selvars] ### Show network graph netgraph(net, seq = "optimal", number = TRUE) ### Conduct Mantel-Haenszel NMA net.mh <- netmetabin(pw, ref = "plac") ### Compare results of inverse variance and Mantel-Haenszel NMA nb <- netbind(net, net.mh, random = FALSE, name = c("Inverse variance", "Mantel-Haenszel")) forest(nb, xlim = c(0.15, 2), at = c(0.2, 0.5, 1, 2)) ### Print and plot results for inverse variance NMA net forest(net) } } \seealso{ \code{\link[netmeta]{pairwise}}, \code{\link[meta]{metabin}}, \code{\link[netmeta]{netmeta}}, \code{\link[netmeta]{netmetabin}} } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, odds ratios, network meta-analysis, Mantel-Haenszel method } metadat/man/dat.lehmann2018.Rd0000644000176200001440000002410614223103754015443 0ustar liggesusers\name{dat.lehmann2018} \docType{data} \alias{dat.lehmann2018} \title{The Effect of Red on Perceived Attractiveness} \description{Results from studies in which participants rated the attractiveness of photos that featured red or a control color. See OSF project at \verb{https://osf.io/xy47p/}.} \usage{ dat.lehmann2018 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{Short_Title} \tab \code{character} \tab Shortened citation formatted Author name(s), year of publication - Experiment number. All cells in the column are unique for use as labels in the meta-analysis. \cr \bold{Full_Citation} \tab \code{character} \tab Full citation in APA format. \cr \bold{Short_Citation} \tab \code{character} \tab Shortened citation of different format, exactly as it would appear in an in-text citation. \cr \bold{Year} \tab \code{numeric} \tab Year study published (whether in journal or published online). \cr \bold{Study} \tab \code{character} \tab Experiment number. If only one experiment presented in a paper, then \sQuote{Exp 1}, otherwise numbered according to numbering within paper. \cr \bold{Peer_Reviewed} \tab \code{character} \tab Whether the experiment was published in a peer-reviewed journal or not. \sQuote{Yes} = peer-reviewed journal, \sQuote{No} can mean in press, online publication, or other. Column for moderator analysis. \cr \bold{Source_Type} \tab \code{character} \tab Location where experiment is available, including journal articles, conference proceedings, online-only, and other options. More specific than whether peer-reviewed or not. \cr \bold{Preregistered} \tab \code{character} \tab Whether experiment was pre-registered or not. \cr \bold{Moderator_Group} \tab \code{character} \tab In some studies, a moderator was intentionally investigated that was meant to reduce the red-romance effect. Data for studies where the red-romance effect is expected to be moderated are marked \sQuote{Yes} in this column. All others are blank. \cr \bold{Gender} \tab \code{character} \tab Gender of rater (male or female). In all cases, gender of stimuli will be opposite. \cr \bold{Color_Contrast} \tab \code{character} \tab The color used as the contrast against red. In some cases, not every contrast color was listed. We chose to examine only contrasts that were present in the original studies, when possible. This column contains only the contrasts we examined in this meta-analysis. \cr \bold{Color_Form} \tab \code{character} \tab Location of color in photo. Background = background or border color manipulated; Face = facial redness manipulated; Shirt, Dress, Item = color of specified object manipulated; Dot = a dot of color on shirt manipulated. \cr \bold{Photo_Type} \tab \code{character} \tab Amount of body visible in photo. Head Shot = head only; Bust = head, shoulders, sometimes torso; Full Body = entire body visible. \cr \bold{DV_Type} \tab \code{character} \tab Scale used for DV. \sQuote{Perceived attractiveness} = the perceived attractiveness scale used in the original studies; alternate scales are differentiated. \cr \bold{DV_Items} \tab \code{numeric} \tab Number of items in DV scale. \cr \bold{DV_Scale} \tab \code{character} \tab Full length of DV scale, if clear. \cr \bold{DV_ScaleBottom} \tab \code{numeric} \tab Lower anchor of DV scale. \cr \bold{DV_ScaleTop} \tab \code{numeric} \tab Upper anchor of DV scale. \cr \bold{Location} \tab \code{character} \tab Country where study took place, if clear. \sQuote{Worldwide} in some cases of online participation without IP filtering of participants. \cr \bold{Continent} \tab \code{character} \tab Continent where study took place, for the sake of creating larger categories for analysis. \cr \bold{Participants} \tab \code{character} \tab Basic notes about participants. Students = high school, undergraduate, or graduate students; online = participants were gathered online; adult = no other common identifying factor given. Put into fewer categories for ease of analysis. \cr \bold{Participant_Notes} \tab \code{character} \tab A finer grained description of participant characteristics. \cr \bold{Design} \tab \code{character} \tab Whether study was a between- or within-subjects design. \cr \bold{Eth_Majority} \tab \code{character} \tab Basic notes about participant ethnicity for ease of analysis. This represents the ethnic majority within the sample. \cr \bold{Eth_Majority_Detail} \tab \code{character} \tab A finer grained description of participant characteristics, including in some cases participant counts when the ethnic majority was close to another category. \cr \bold{Eth_Stim} \tab \code{character} \tab Ethnicity of the people pictured in the stimulus materials. \cr \bold{Eth_Match} \tab \code{character} \tab Whether the ethnic majority of the participant pool matched the ethnicity of stimulus photos. \cr \bold{Red_Age} \tab \code{numeric} \tab Mean age of participants in red group. If not given for specific group, then mean age overall. \cr \bold{Control_Age} \tab \code{numeric} \tab Mean age of participants in control group. If not given for specific group, then mean age overall. \cr \bold{Color_Red} \tab \code{character} \tab Specific values of red color, if given. \sQuote{No data} if not given or unclear. \cr \bold{Color_Control} \tab \code{character} \tab Specific values of control color, if given. \sQuote{No data} if not given or unclear. \cr \bold{Red_Original} \tab \code{character} \tab Whether the red color used in the study is within 5 units of the LCh values for red used in the original study. \cr \bold{Color_Match} \tab \code{character} \tab Whether the control color used in the study is within 5 units of the red color on the L and C parameters. In cases where the control color used was white, it was not possible for the L and C parameters to match. \cr \bold{Presentation_Control} \tab \code{character} \tab Whether the color of the stimulus viewed by each participant was consistent, as in participants viewing everything on paper or the same computer, versus uncontrolled presentation of the stimulus, as in viewing stimulus on different computers. \cr \bold{Stimuli_Presentation} \tab \code{character} \tab Method for presenting stimuli. \sQuote{Paper} = stimuli printed on paper, shown in-person; \sQuote{Screen} = stimuli shown on-screen, not carefully controlled; \sQuote{Screen Control} = stimuli shown on-screen, but screen carefully color-matched. \cr \bold{Red_N} \tab \code{numeric} \tab Number of participants in red group. \cr \bold{Red_M} \tab \code{numeric} \tab Mean rating of DV in red group. \cr \bold{Red_SD} \tab \code{numeric} \tab Standard deviation of DV in red group. \cr \bold{Control_N} \tab \code{numeric} \tab Number of participants in control group. \cr \bold{Control_M} \tab \code{numeric} \tab Mean rating of DV in control group. \cr \bold{Control_SD} \tab \code{numeric} \tab Standard deviation of DV in control group. \cr \bold{SD_diff} \tab \code{numeric} \tab Calculated for within-subjects studies, standard deviation of difference scores. \cr \bold{RM_r} \tab \code{numeric} \tab Calculated for within-subjects studies, correlation between participant ratings of red and control attractiveness. \cr \bold{Control_Attractiveness} \tab \code{numeric} \tab Attractiveness of stimuli in control condition, calculated as \code{(Control_M - DV_ScaleBottom) / DV_ScaleTop}, in order to compare attractiveness ratings across different scales. \cr \bold{Notes} \tab \code{character} \tab Any additional notes on the study. \cr \bold{Total.SampleSize} \tab \code{numeric} \tab Total unique participants in the study. \cr \bold{pooled} \tab \code{numeric} \tab Pooled standard deviation for within-subjects studies. \cr \bold{yi} \tab \code{numeric} \tab Standardized mean difference. \cr \bold{vi} \tab \code{numeric} \tab Corresponding sampling variance. \cr } } \details{ This is data from a meta-analysis of studies that test the red-romance hypothesis, which is that the color red enhances heterosexual attraction in romantic contexts. Analyzing male participants only, the meta-analysis should show a small, statistically significant effect (d = 0.26 [0.12, 0.40], p = .0004, N = 2,961). Analyzing female participants only should show a very small effect (d = 0.13 [0.01, 0.25], p = .03, N = 2,739). The analyses in the published meta-analysis found clear evidence of upward bias in the estimate for female participants and equivocal evidence for male participants. Moderator analyses suggest effect sizes may have declined over time (both genders), may be largest when an original shade of red is used (men only), and may be smaller in pre-registered studies (women only). } \source{ Lehmann, G. K., Elliot, A. J., & Calin-Jageman, R. J. (2018). Meta-analysis of the effect of red on perceived attractiveness. \emph{Evolutionary Psychology}, \bold{16}(4). \verb{https://doi.org/10.1177/1474704918802412} \verb{https://osf.io/xy47p/} } \author{ Robert Calin-Jageman, \email{rcalinjageman@dom.edu}, \url{https://calin-jageman.net} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lehmann2018 head(dat) \dontrun{ ### load metafor package library(metafor) ### meta-analyses for male and female participants red_romance_malep <- dat[dat$Gender == "Males", ] red_romance_femalep <- dat[dat$Gender == "Females", ] res_malep <- rma(yi, vi, data=red_romance_malep, test="knha") res_malep res_femalep <- rma(yi, vi, data=red_romance_femalep, test="knha") res_femalep } } \keyword{datasets} \concept{psychology} \concept{attraction} \concept{standardized mean differences} \section{Concepts}{ psychology, attraction, standardized mean differences } metadat/man/dat.baker2009.Rd0000644000176200001440000000660014223103754015104 0ustar liggesusers\name{dat.baker2009} \docType{data} \alias{dat.baker2009} \title{Studies on Pharmacologic Treatments for Chronic Obstructive Pulmonary Disease} \description{Results from 39 trials examining pharmacologic treatments for chronic obstructive pulmonary disease (COPD).} \usage{ dat.baker2009 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{year} \tab \code{numeric} \tab year of publication \cr \bold{id} \tab \code{numeric} \tab study ID \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{exac} \tab \code{numeric} \tab number of individuals with one or more COPD exacerbations \cr \bold{total} \tab \code{numeric} \tab number of individuals } } \details{ This data set comes from a systematic review of randomized controlled trials on pharmacologic treatments for chronic obstructive pulmonary disease (COPD) (Baker et al., 2009). The primary outcome, occurrence of one or more episodes of COPD exacerbation, is binary (yes / no). For this outcome, five drug treatments (fluticasone, budesonide, salmeterol, formoterol, tiotropium) and two combinations (fluticasone + salmeterol, budesonide + formoterol) were compared to placebo. The authors considered the two combinations as separate treatments instead of evaluating the individual components. } \source{ Baker, W. L., Baker, E. L., & Coleman, C. I. (2009). Pharmacologic treatments for chronic obstructive pulmonary disease: A mixed-treatment comparison meta-analysis. \emph{Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy}, \bold{29}(8), 891--905. \verb{https://doi.org/10.1592/phco.29.8.891} } \author{ Guido Schwarzer, \email{sc@imbi.uni-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first 6 rows of the dataset head(dat.baker2009) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library(netmeta)) ### Print odds ratios and confidence limits with two digits settings.meta(digits = 2) ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treatment, exac, total, studlab = paste(study, year), data = dat.baker2009, sm = "OR") ### Conduct random effects network meta-analysis (NMA) ### with placebo as reference net <- netmeta(pw, fixed = FALSE, ref = "plac") ### Show network graph netgraph(net, seq = "optimal", start = "prcomp", labels = gsub("+", " +\n", trts, fixed = TRUE), plastic = TRUE, thickness = "se.fixed", number = TRUE, points = TRUE, cex.points = 5, col.points = "red", offset = 0.025) ### Print and plot results for network meta-analysis net forest(net) ### Conduct component network meta-analysis (CNMA) cnet <- netcomb(net) cnet ### Compare results of NMA and additive CNMA nb <- netbind(net, cnet, name = c("Standard NMA", "Additive CNMA")) forest(nb) } } \seealso{ \code{\link[netmeta]{pairwise}}, \code{\link[meta]{metabin}}, \code{\link[netmeta]{netmeta}}, \code{\link[netmeta]{netcomb}}, \code{\link[netmeta]{netmetabin}} } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \concept{component network meta-analysis} \section{Concepts}{ medicine, odds ratios, network meta-analysis, component network meta-analysis } metadat/man/dat.hahn2001.Rd0000644000176200001440000000475614223103754014740 0ustar liggesusers\name{dat.hahn2001} \docType{data} \alias{dat.hahn2001} \title{Studies on the Effectiveness of Different Rehydration Solutions for the Prevention of Unscheduled Intravenous Infusion in Children with Diarrhoea} \description{Results from 12 trials examining the effectiveness of a reduced versus standard rehydration solution for the prevention of unscheduled intravenous infusion in children with diarrhoea.} \usage{ dat.hahn2001 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab trial name and year \cr \bold{ai} \tab \code{numeric} \tab number of children requiring unscheduled intravenous infusion in the reduced rehydration solution group \cr \bold{n1i} \tab \code{numeric} \tab number of children in the reduced rehydration solution group \cr \bold{ci} \tab \code{numeric} \tab number of children requiring unscheduled intravenous infusion in the standard rehydration solution group \cr \bold{n2i} \tab \code{numeric} \tab number of children in the standard rehydration solution group } } \details{ The dataset includes the results from 12 randomized clinical trials that examined the effectiveness of a reduced osmolarity oral rehydration solution (total osmolarity <250 mmol/l with reduced sodium) with a standard WHO oral rehydration solution (sodium 90 mmol/l, glucose 111mmol/l, total osmolarity 311 mmol/l) for the prevention of unscheduled intravenous infusion in children with diarrhoea. } \source{ Hahn, S., Kim, Y., & Garner, P. (2001). Reduced osmolarity oral rehydration solution for treating dehydration due to diarrhoea in children: Systematic review. \emph{British Medical Journal}, \bold{323}(7304), 81--85. \verb{https://doi.org/10.1136/bmj.323.7304.81} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hahn2001 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of (log) odds rations using the Mantel-Haenszel method res <- rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, digits=2, slab=study) res ### forest plot (also show studies that were excluded from the analysis) options(na.action="na.pass") forest(res, atransf=exp, at=log(c(.01, .1, 1, 10, 100)), header=TRUE) options(na.action="na.omit") } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, odds ratios, Mantel-Haenszel method } metadat/man/dat.lim2014.Rd0000644000176200001440000001033514223103754014575 0ustar liggesusers\name{dat.lim2014} \docType{data} \alias{dat.lim2014} \title{Studies on the Association Between Maternal Size, Offspring Size, and Number of Offsprings} \description{Results from studies examining the association between maternal size, offspring size, and number of offsprings.} \usage{ dat.lim2014 } \format{The object is a list containing data frames \code{m_o_size}, \code{m_o_fecundity}, \code{o_o_unadj}, and \code{o_o_adj} that contain the following columns and the corresponding phylogenetic trees called \code{m_o_size_tree}, \code{m_o_fecundity_tree}, \code{o_o_unadj_tree}, and \code{o_o_adj_tree}: \tabular{lll}{ \bold{article} \tab \code{numeric} \tab article id \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{species} \tab \code{character} \tab species \cr \bold{amniotes} \tab \code{character} \tab whether the species was amniotic \cr \bold{environment} \tab \code{character} \tab whether the species were wild or captive \cr \bold{reprounit} \tab \code{character} \tab whether the data were based on lifetime reproductive output or a single reproductive event (only in \code{m_o_size} and \code{m_o_fecundity}) \cr \bold{ri} \tab \code{numeric} \tab correlation coefficient \cr \bold{ni} \tab \code{numeric} \tab sample size } } \details{ The object \code{dat.lim2014} includes 4 datasets: \tabular{ll}{ \code{m_o_size} \tab on the correlation between maternal size and offspring size \cr \code{m_o_fecundity} \tab on the correlation between maternal size and number of offsprings \cr \code{o_o_unadj} \tab on the correlation between offspring size and number of offsprings \cr \code{o_o_adj} \tab on the correlation between offspring size and number of offsprings adjusted for maternal size } Objects \code{m_o_size_tree}, \code{m_o_fecundity_tree}, \code{o_o_unadj_tree}, and \code{o_o_adj_tree} are the corresponding phylogenetic trees for the species included in each of these datasets. } \source{ Lim, J. N., Senior, A. M., & Nakagawa, S. (2014). Heterogeneity in individual quality and reproductive trade-offs within species. \emph{Evolution}, \bold{68}(8), 2306--2318. \verb{https://doi.org/10.1111/evo.12446} } \references{ Cinar, O., Nakagawa, S., & Viechtbauer, W. (in press). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. \emph{Methods in Ecology and Evolution}. \verb{https://doi.org/10.1111/2041-210X.13760} Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. \emph{Journal of Evolutionary Biology}, \bold{23}(3), 494--508. \verb{https://doi.org/10.1111/j.1420-9101.2009.01915.x} Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. \emph{Evolutionary Ecology}, \bold{26}(5), 1253--1274. \verb{https://doi.org/10.1007/s10682-012-9555-5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lim2014$o_o_unadj dat[1:14, -c(2:3)] \dontrun{ ### load metafor package library(metafor) ### load ape package library(ape, warn.conflicts=FALSE) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) ### copy tree to 'tree' tree <- dat.lim2014$o_o_unadj_tree ### compute branch lengths tree <- compute.brlen(tree) ### compute phylogenetic correlation matrix A <- vcv(tree, corr=TRUE) ### make copy of the species variable dat$species.phy <- dat$species ### create effect size id variable dat$esid <- 1:nrow(dat) ### fit multilevel phylogenetic meta-analytic model res <- rma.mv(yi, vi, random = list(~ 1 | article, ~ 1 | esid, ~ 1 | species, ~ 1 | species.phy), R=list(species.phy=A), data=dat) res } } \keyword{datasets} \concept{ecology} \concept{evolution} \concept{correlation coefficients} \concept{multilevel models} \concept{phylogeny} \section{Concepts}{ ecology, evolution, correlation coefficients, multilevel models, phylogeny } metadat/man/dat.pagliaro1992.Rd0000644000176200001440000000705314223103754015633 0ustar liggesusers\name{dat.pagliaro1992} \docType{data} \alias{dat.pagliaro1992} \title{Studies on the Effectiveness of Nonsurgical Treatments in Cirrhosis} \description{Results from 26 trials examining the effectiveness of beta-blockers and sclerotherapy for the prevention of first bleeding in patients with cirrhosis} \usage{ dat.pagliaro1992 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study id \cr \bold{trt} \tab \code{character} \tab either beta-blockers, sclerotherapy, or control \cr \bold{xi} \tab \code{numeric} \tab number of patients with first bleeding \cr \bold{ni} \tab \code{numeric} \tab number of patients treated } } \details{ The dataset includes the results from 26 randomized controlled trials examining the effectiveness of nonsurgical treatments for the prevention of first bleeding in patients with cirrhosis. Patients were either treated with beta-blockers, endoscopic sclerotherapy, or with a nonactive treatment (control). Two trials included all three treatment conditions, 7 trials compared beta-blockers against control, and 17 trials compared sclerotherapy against control. The dataset has been used in various papers to illustrate methods for conducting a network meta-analysis / mixed treatment comparison. } \source{ Pagliaro, L., D'Amico, G., \enc{Sörensen}{Soerensen}, T. I. A., Lebrec, D., Burroughs, A. K., Morabito, A., \enc{Tiné}{Tine}, F., Politi, F., & Traina, M. (1992). Prevention of first bleeding in cirrhosis: A meta-analysis of randomized trials of nonsurgical treatment. \emph{Annals of Internal Medicine}, \bold{117}(1), 59--70. \verb{https://doi.org/10.7326/0003-4819-117-1-59} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.pagliaro1992 dat \dontrun{ ### load metafor package library(metafor) ### restructure dataset to a contrast-based format dat.c <- to.wide(dat, study="study", grp="trt", grpvars=3:4) dat.c ### Mantel-Haenszel results for beta-blockers and sclerotherapy versus control, respectively rma.mh(measure="OR", ai=xi.1, n1i=ni.1, ci=xi.2, n2i=ni.2, data=dat.c, subset=(trt.1=="beta-blockers"), digits=2) rma.mh(measure="OR", ai=xi.1, n1i=ni.1, ci=xi.2, n2i=ni.2, data=dat.c, subset=(trt.1=="sclerotherapy"), digits=2) ### calculate log odds for each study arm dat <- escalc(measure="PLO", xi=xi, ni=ni, data=dat) dat ### turn treatment variable into factor and set reference level dat$trt <- relevel(factor(dat$trt), ref="control") ### add a space before each level (this makes the output a bit more legible) levels(dat$trt) <- paste0(" ", levels(dat$trt)) ### network meta-analysis using an arm-based random-effects model with fixed study effects ### (by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons) res <- rma.mv(yi, vi, mods = ~ factor(study) + trt - 1, random = ~ trt | study, rho=1/2, data=dat) res ### average odds ratio comparing beta-blockers and sclerotherapy versus control, respectively predict(res, newmods=c(rep(0,26), 1, 0), transf=exp, digits=2) predict(res, newmods=c(rep(0,26), 0, 1), transf=exp, digits=2) ### average odds ratio comparing beta-blockers versus sclerotherapy predict(res, newmods=c(rep(0,26), 1, -1), transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{Mantel-Haenszel method} \concept{network meta-analysis} \section{Concepts}{ medicine, odds ratios, Mantel-Haenszel method, network meta-analysis } metadat/man/dat.pignon2000.Rd0000644000176200001440000000603614223103754015304 0ustar liggesusers\name{dat.pignon2000} \docType{data} \alias{dat.pignon2000} \title{Studies on the Effectiveness of Locoregional Treatment plus Chemotherapy for Head and Neck Squamous-Cell Carcinoma} \description{Results from studies examining mortality risk in patients with nonmetastatic head and neck squamous-cell carcinoma receiving either locoregional treatment plus chemotherapy versus locoregional treatment alone.} \usage{ dat.pignon2000 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study id number \cr \bold{trial} \tab \code{character} \tab trial abbreviation \cr \bold{OmE} \tab \code{numeric} \tab observed minus expected number of deaths in the locoregional treatment plus chemotherapy group \cr \bold{V} \tab \code{numeric} \tab corresponding variance \cr \bold{grp} \tab \code{numeric} \tab timing of chemotherapy: 1 = adjuvant, 2 = neoadjuvant, 3 = concomitant } } \details{ The purpose of this meta-analysis was to examine the mortality risk in patients with nonmetastatic head and neck squamous-cell carcinoma receiving either locoregional treatment plus chemotherapy versus locoregional treatment alone. For 65 trials, the dataset provides the observed minus expected number of deaths and corresponding variances in the locoregional treatment plus chemotherapy group. Based on these values, we can estimate the log hazard ratios with \code{OmE/V} and the corresponding sampling variance with \code{1/V}. The trials were also divided according to the timing of the chomotherapy: (1) adjuvant, after the locoregional treatment, (2) neoadjuvant, before the locoregional treatment, and (3) concomitant, chemotherapy given concomitantly or alternating with radiotherapy. } \source{ Pignon, J. P., Bourhis, J., Domenge, C., & Designe, L. (2000). Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: Three meta-analyses of updated individual data. \emph{Lancet}, \bold{355}(9208), 949--955. \verb{https://doi.org/10.1016/S0140-6736(00)90011-4} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.pignon2000 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate log hazard ratios and sampling variances dat$yi <- with(dat, OmE/V) dat$vi <- with(dat, 1/V) head(dat) ### meta-analysis based on all 65 trials res <- rma(yi, vi, data=dat, method="EE", digits=2) res predict(res, transf=exp) ### only adjuvant trials res <- rma(yi, vi, data=dat, method="EE", subset=grp==1, digits=2) res predict(res, transf=exp) ### only neoadjuvant trials res <- rma(yi, vi, data=dat, method="EE", subset=grp==2, digits=2) res predict(res, transf=exp) ### only concomitant trials res <- rma(yi, vi, data=dat, method="EE", subset=grp==3, digits=2) res predict(res, transf=exp) } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{hazard ratios} \section{Concepts}{ medicine, oncology, hazard ratios } metadat/man/dat.craft2003.Rd0000644000176200001440000000622414223103754015113 0ustar liggesusers\name{dat.craft2003} \docType{data} \alias{dat.craft2003} \title{Studies on the Relationship between the Competitive State Anxiety Inventory-2 and Sport Performance} \description{Results from 10 studies on the relationship between the Competitive State Anxiety Inventory-2 (CSAI-2) and sport performance.} \usage{ dat.craft2003 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{ni} \tab \code{numeric} \tab sample size \cr \bold{sport} \tab \code{character} \tab type of sport (T = team sport, I = individual sport) \cr \bold{ri} \tab \code{numeric} \tab correlation coefficient \cr \bold{var1} \tab \code{character} \tab variable 1 of the correlation coefficient (see \sQuote{Details}) \cr \bold{var2} \tab \code{character} \tab variable 2 of the correlation coefficient (see \sQuote{Details}) } } \details{ The 10 studies included in this dataset are a subset of the studies included in the meta-analysis by Craft et al. (2003) on the relationship between the Competitive State Anxiety Inventory-2 (CSAI-2) and sport performance. The CSAI-2 has three subscales: cognitive anxiety (\code{acog}), somatic anxiety (\code{asom}), and self-confidence (\code{conf}). The studies included in this dataset administered the CSAI-2 prior to some sport competition and then measured sport performance based on the competition. Most studies provided all 6 correlations (3 for the correlations among the 3 subscales and 3 for the correlations between the subscales and sport performance), but 2 studies (with study numbers 6 and 17) only provided a subset. } \source{ Becker, B. J., & Aloe, A. M. (2019). Model-based meta-analysis and related approaches. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (3nd ed., pp. 339--363). New York: Russell Sage Foundation. } \references{ Craft, L. L., Magyar, T. M., Becker, B. J., & Feltz, D. L. (2003). The relationship between the Competitive State Anxiety Inventory-2 and sport performance: A meta-analysis. \emph{Journal of Sport and Exercise Psychology}, \bold{25}(1), 44--65. \verb{https://doi.org/10.1123/jsep.25.1.44} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.craft2003 head(dat, 18) \dontrun{ ### load metafor package library(metafor) ### construct dataset and var-cov matrix of the correlations tmp <- rcalc(ri ~ var1 + var2 | study, ni=ni, data=dat) V <- tmp$V dat <- tmp$dat ### examine data for study 1 dat[dat$study == 1,] V[dat$study == 1, dat$study == 1] ### examine data for study 6 dat[dat$study == 6,] V[dat$study == 6, dat$study == 6] ### examine data for study 17 dat[dat$study == 17,] V[dat$study == 17, dat$study == 17] ### multivariate random-effects model res <- rma.mv(yi, V, mods = ~ var1.var2 - 1, random = ~ var1.var2 | study, struct="UN", data=dat) res } } \keyword{datasets} \concept{psychology} \concept{correlation coefficients} \concept{multivariate models} \section{Concepts}{ psychology, correlation coefficients, multivariate models } metadat/man/dat.bornmann2007.Rd0000644000176200001440000000623614223103754015635 0ustar liggesusers\name{dat.bornmann2007} \docType{data} \alias{dat.bornmann2007} \title{Studies on Gender Differences in Grant and Fellowship Awards} \description{Results from 21 studies on gender differences in grant and fellowship awards.} \usage{ dat.bornmann2007 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study reference \cr \bold{obs} \tab \code{numeric} \tab observation within study \cr \bold{doctype} \tab \code{character} \tab document type \cr \bold{gender} \tab \code{character} \tab gender of the study authors \cr \bold{year} \tab \code{numeric} \tab (average) cohort year \cr \bold{org} \tab \code{character} \tab funding organization / program \cr \bold{country} \tab \code{character} \tab country of the funding organization / program \cr \bold{type} \tab \code{character} \tab fellowship or grant application \cr \bold{discipline} \tab \code{character} \tab discipline / field \cr \bold{waward} \tab \code{numeric} \tab number of women who received a grant/fellowship award \cr \bold{wtotal} \tab \code{numeric} \tab number of women who applied for an award \cr \bold{maward} \tab \code{numeric} \tab number of men who received a grant/fellowship award \cr \bold{mtotal} \tab \code{numeric} \tab number of men who applied for an award } } \details{ The studies in this dataset examine whether the chances of receiving a grant or fellowship award differs for men and women. Note that many studies provide multiple comparisons (e.g., for different years / cohorts / disciplines). A multilevel meta-analysis model can be used to account for the multilevel structure in these data. } \source{ Bornmann, L., Mutz, R., & Daniel, H. (2007). Gender differences in grant peer review: A meta-analysis. \emph{Journal of Informetrics}, \bold{1}(3), 226--238. \verb{https://doi.org/10.1016/j.joi.2007.03.001} } \references{ Marsh, H. W., Bornmann, L., Mutz, R., Daniel, H.-D., & O'Mara, A. (2009). Gender effects in the peer reviews of grant proposals: A comprehensive meta-analysis comparing traditional and multilevel approaches. \emph{Review of Educational Research}, \bold{79}(3), 1290--1326. \verb{https://doi.org/10.3102/0034654309334143} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bornmann2007 head(dat, 16) \dontrun{ ### load metafor package library(metafor) ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=waward, n1i=wtotal, ci=maward, n2i=mtotal, data=dat) ### fit multilevel meta-analysis model res <- rma.mv(yi, vi, random = ~ 1 | study/obs, data=dat) res ### estimated average odds ratio (with 95\% CI/PI) predict(res, transf=exp, digits=2) ### test for a difference between fellowship and grant applications res <- rma.mv(yi, vi, mods = ~ type, random = ~ 1 | study/obs, data=dat) res predict(res, newmods=0:1, transf=exp, digits=2) } } \keyword{datasets} \concept{sociology} \concept{odds ratios} \concept{multilevel models} \section{Concepts}{ sociology, odds ratios, multilevel models } metadat/man/dat.lee2004.Rd0000644000176200001440000000407614223103754014565 0ustar liggesusers\name{dat.lee2004} \docType{data} \alias{dat.lee2004} \title{Studies on Acupoint P6 Stimulation for Preventing Nausea} \description{Results from studies examining the effectiveness of wrist acupuncture point P6 stimulation for preventing postoperative nausea.} \usage{ dat.lee2004 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab trial id number \cr \bold{study} \tab \code{character} \tab first author \cr \bold{year} \tab \code{numeric} \tab study year \cr \bold{ai} \tab \code{numeric} \tab number of patients experiencing nausea in the treatment group \cr \bold{n1i} \tab \code{numeric} \tab total number of patients in treatment group \cr \bold{ci} \tab \code{numeric} \tab number of patients experiencing nausea in the sham group \cr \bold{n2i} \tab \code{numeric} \tab total number of patients in the sham group } } \details{ Postoperative nausea and vomiting are common complications following surgery and anaesthesia. As an alternative to drug therapy, acupuncture has been studied as a potential treatment in several trials. The dataset contains the results from 16 clinical trials examining the effectiveness of wrist acupuncture point P6 stimulation for preventing postoperative nausea. } \source{ Lee, A., & Done, M. L. (2004). Stimulation of the wrist acupuncture point P6 for preventing postoperative nausea and vomiting. \emph{Cochrane Database of Systematic Reviews}, \bold{3}, CD003281. \verb{https://doi.org/10.1002/14651858.CD003281.pub2} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lee2004 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis based on log risk ratios res <- rma(measure="RR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{alternative medicine} \concept{risk ratios} \section{Concepts}{ medicine, alternative medicine, risk ratios } metadat/man/dat.laopaiboon2015.Rd0000644000176200001440000000576314223103754016151 0ustar liggesusers\name{dat.laopaiboon2015} \docType{data} \alias{dat.laopaiboon2015} \title{Studies on the Effectiveness of Azithromycin for Treating Lower Respiratory Tract Infections} \description{Results from 15 studies on the effectiveness of azithromycin versus amoxycillin or amoxycillin/clavulanic acid (amoxyclav) in the treatment of acute lower respiratory tract infections.} \usage{ dat.laopaiboon2015 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of clinical failures in the group treated with azithromycin \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the group treated with azithromycin \cr \bold{ci} \tab \code{numeric} \tab number of clinical failures in the group treated with amoxycillin or amoxyclav \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the group treated with amoxycillin or amoxyclav \cr \bold{age} \tab \code{character} \tab whether the trial included adults or children \cr \bold{diag.ab} \tab \code{numeric} \tab trial included patients with a diagnosis of acute bacterial bronchitis \cr \bold{diag.cb} \tab \code{numeric} \tab trial included patients with a diagnosis of chronic bronchitis with acute exacerbation \cr \bold{diag.pn} \tab \code{numeric} \tab trial included patients with a diagnosis of pneumonia \cr \bold{ctrl} \tab \code{character} \tab antibiotic in control group (amoxycillin or amoxyclav) } } \details{ Azithromycin is an antibiotic useful for the treatment of a number of bacterial infections. Laopaiboon et al. (2015) conducted a meta-analysis of trials comparing the effectiveness of azithromycin versus amoxycillin or amoxycillin/clavulanic acid (amoxyclav) in the treatment of acute lower respiratory tract infections, including acute bacterial bronchitis, acute exacerbations of chronic bronchitis, and pneumonia. The results from 15 trials are included in this dataset. } \source{ Laopaiboon, M., Panpanich, R., & Swa Mya, K. (2015). Azithromycin for acute lower respiratory tract infections. \emph{Cochrane Database of Systematic Reviews}, \bold{3}, CD001954. \verb{https://doi.org/10.1002/14651858.CD001954.pub4} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.laopaiboon2015 dat \dontrun{ ### load metafor package library(metafor) ### analysis using the Mantel-Haenszel method rma.mh(measure="RR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, digits=3) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) ### random-effects model res <- rma(yi, vi, data=dat) res ### average risk ratio with 95\% CI predict(res, transf=exp) } } \keyword{datasets} \concept{medicine} \concept{risk ratios} \section{Concepts}{ medicine, risk ratios } metadat/man/dat.senn2013.Rd0000644000176200001440000002333514223103754014762 0ustar liggesusers\name{dat.senn2013} \docType{data} \alias{dat.senn2013} \title{Studies on the Effectiveness of Glucose-Lowering Agents} \description{Results from 26 trials examining the effectiveness of glucose-lowering agents in patients with type 2 diabetes} \usage{ dat.senn2013 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab (first) author and year of study \cr \bold{ni} \tab \code{numeric} \tab sample size of the study arm \cr \bold{treatment} \tab \code{character} \tab treatment given \cr \bold{comment} \tab \code{character} \tab whether figures given are based on raw values at outcome or on change from baseline \cr \bold{mi} \tab \code{numeric} \tab raw mean or mean change \cr \bold{sdi} \tab \code{numeric} \tab standard deviation } } \details{ The dataset includes the results from 26 randomized controlled trials examining the effectiveness of adding various oral glucose-lowering agents to a baseline sulfonylurea therapy in patients with type 2 diabetes. The outcome measured in the studies was either the mean HbA1c level at follow-up or the mean change in HbA1c level from baseline to follow-up. A total of 10 different treatment types were examined in these studies: acarbose, benfluorex, metformin, miglitol, pioglitazone, placebo, rosiglitazone, sitagliptin, sulfonylurea alone, and vildagliptin. One study included three treatment arms (Willms, 1999), while the rest of the studies included two treatment arms (hence, the dataset includes the results from 53 treatment arms). The data can be used for a network meta-analysis, either using an arm-based or a contrast-based model. See \sQuote{Examples} below. } \source{ Senn, S., Gavini, F., Magrez, D., & Scheen, A. (2013). Issues in performing a network meta-analysis. \emph{Statistical Methods in Medical Research}, \bold{22}(2), 169--189. \verb{https://doi.org/10.1177/0962280211432220} } \references{ Law, M., Jackson, D., Turner, R., Rhodes, K., & Viechtbauer, W. (2016). Two new methods to fit models for network meta-analysis with random inconsistency effects. \emph{BMC Medical Research Methodology}, \bold{16}, 87. \verb{https://doi.org/10.1186/s12874-016-0184-5} Rücker, G., & Schwarzer, G. (2015). Ranking treatments in frequentist network meta-analysis works without resampling methods. \emph{BMC Medical Research Methodology}, \bold{15}, 58. \verb{https://doi.org/10.1186/s12874-015-0060-8} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.senn2013 dat \dontrun{ ### load metafor package library(metafor) ### create network graph ('igraph' package must be installed) library(igraph, warn.conflicts=FALSE) pairs <- data.frame(do.call(rbind, sapply(split(dat$treatment, dat$study), function(x) t(combn(x,2)))), stringsAsFactors=FALSE) pairs$X1 <- factor(pairs$X1, levels=sort(unique(dat$treatment))) pairs$X2 <- factor(pairs$X2, levels=sort(unique(dat$treatment))) tab <- table(pairs[,1], pairs[,2]) tab # adjacency matrix g <- graph_from_adjacency_matrix(tab, mode = "plus", weighted=TRUE, diag=FALSE) plot(g, edge.curved=FALSE, edge.width=E(g)$weight, layout=layout_as_star(g, center="placebo"), vertex.size=45, vertex.color="lightgray", vertex.label.color="black", vertex.label.font=2) ### table of studies versus treatments examined print(addmargins(table(dat$study, dat$treatment)), zero.print="") ### table of frequencies with which treatment pairs were studied print(as.table(crossprod(table(dat$study, dat$treatment))), zero.print="") ### add means and sampling variances of the means to the dataset dat <- escalc(measure="MN", mi=mi, sdi=sdi, ni=ni, data=dat) ### turn treatment variable into factor and set reference level dat$treatment <- relevel(factor(dat$treatment), ref="placebo") ### add a space before each level (this makes the output a bit more legible) levels(dat$treatment) <- paste0(" ", levels(dat$treatment)) ### network meta-analysis using an arm-based fixed-effects model with fixed study effects res.fe <- rma.mv(yi, vi, mods = ~ study + treatment - 1, data=dat, slab=paste0(study, treatment)) res.fe ### test if treatment factor as a whole is significant anova(res.fe, btt="treatment") ### forest plot of the contrast estimates (treatments versus placebos) forest(tail(coef(res.fe), 9), tail(diag(vcov(res.fe)), 9), slab=levels(dat$treatment)[-1], xlim=c(-2.5, 2.0), alim=c(-1.5, 0.5), psize=1, xlab="Estimate", header="Treatment") ### weight matrix for the estimation of the fixed effects (leaving out the study effects) w <- t(tail(vcov(res.fe) \%*\% t(model.matrix(res.fe)) \%*\% weights(res.fe, type="matrix"), 9)) rownames(w) <- res.fe$slab ### create shade plot for the diabetes network with placebo as the reference treatment ### negative values in blue shades, positive values in red shades cols <- colorRampPalette(c("blue", "gray95", "red"))(9) heatmap(w, Rowv=NA, Colv=NA, scale="none", margins=c(6,11), col=cols, cexRow=.7, cexCol=1, labCol=levels(dat$treatment)[-1]) ### network meta-analysis using an arm-based random-effects model with fixed study effects ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons res.re <- rma.mv(yi, vi, mods = ~ study + treatment - 1, random = ~ treatment | study, rho=1/2, data=dat, slab=paste0(study, treatment)) res.re ### test if treatment factor as a whole is significant anova(res.re, btt="treatment") ### forest plot of the contrast estimates (treatments versus placebos) forest(tail(coef(res.re), 9), tail(diag(vcov(res.re)), 9), slab=levels(dat$treatment)[-1], xlim=c(-3.0, 2.5), alim=c(-1.5, 0.5), psize=1, xlab="Estimate", header="Treatment") ### compute the contribution of each study to the overall Q-test value qi <- sort(by((resid(res.fe) / sqrt(dat$vi))^2, dat$study, sum)) ### check that the values add up sum(qi) res.fe$QE ### plot the values s <- length(qi) par(mar=c(5,10,2,1)) plot(qi, 1:s, pch=19, xaxt="n", yaxt="n", xlim=c(0,40), xlab="Chi-Square Contribution", ylab="") axis(side=1) axis(side=2, at=1:s, labels=names(qi), las=1, tcl=0) segments(rep(0,s), 1:s, qi, 1:s) ############################################################################ ### restructure dataset to a contrast-based format dat <- dat.senn2013[c(1,4:2,5:6)] # reorder variables first dat <- to.wide(dat, study="study", grp="treatment", ref="placebo", grpvars=4:6) dat ### calculate mean difference and corresponding sampling variance for each treatment comparison dat <- escalc(measure="MD", m1i=mi.1, sd1i=sdi.1, n1i=ni.1, m2i=mi.2, sd2i=sdi.2, n2i=ni.2, data=dat) dat ### calculate the variance-covariance matrix of the mean differences for the multitreatment studies calc.v <- function(x) { v <- matrix(x$sdi.2[1]^2 / x$ni.2[1], nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) ### add contrast matrix to dataset dat <- contrmat(dat, grp1="treatment.1", grp2="treatment.2") dat ### network meta-analysis using a contrast-based random-effects model ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons ### the treatment left out (placebo) becomes the reference level for the treatment comparisons res <- rma.mv(yi, V, mods = ~ acarbose + benfluorex + metformin + miglitol + pioglitazone + rosiglitazone + sitagliptin + sulfonylurea + vildagliptin - 1, random = ~ comp | study, rho=1/2, data=dat) res ### forest plot of the contrast estimates (treatments versus placebos) forest(coef(res), diag(vcov(res)), slab=names(coef(res)), order="obs", xlim=c(-3.0, 2.5), alim=c(-1.5, 0.5), psize=1, xlab="Estimate", header="Treatment") ### estimate all pairwise differences between treatments contr <- data.frame(t(combn(names(coef(res)), 2))) contr <- contrmat(contr, "X1", "X2", last="vildagliptin") rownames(contr) <- paste(contr$X1, "-", contr$X2) contr <- as.matrix(contr[-c(1:2)]) sav <- predict(res, newmods=contr) sav[["slab"]] <- rownames(contr) sav ### fit random inconsistency effects model (see Law et al., 2016) inc <- rma.mv(yi, V, mods = ~ acarbose + benfluorex + metformin + miglitol + pioglitazone + rosiglitazone + sitagliptin + sulfonylurea + vildagliptin - 1, random = list(~ comp | study, ~ comp | design), rho=1/2, phi=1/2, data=dat) inc ############################################################################ ### compute P-scores (see Rücker & Schwarzer, 2015) contr <- data.frame(t(combn(c(names(coef(res)),"placebo"), 2))) # add 'placebo' to contrast matrix contr <- contrmat(contr, "X1", "X2", last="placebo", append=FALSE) b <- c(coef(res),0) # add 0 for 'placebo' (the reference treatment) vb <- bldiag(vcov(res),0) # add 0 row/column for 'placebo' (the reference treatment) pvals <- apply(contr, 1, function(x) pnorm((x\%*\%b) / sqrt(t(x)\%*\%vb\%*\%x))) tab <- vec2mat(pvals, corr=FALSE) tab[upper.tri(tab)] <- t((1 - tab)[upper.tri(tab)]) rownames(tab) <- colnames(tab) <- colnames(contr) round(tab, 2) # like Table 2 in the article cbind(pscore=round(sort(apply(tab, 1, mean, na.rm=TRUE), decreasing=TRUE), 3)) # note: the values are slightly different from the ones given in Table 3 of Rücker and # Schwarzer (2015) since model 'res' above is fitted using REML estimation while the # results shown in the article are based on the 'netmeta' package, which uses a DL-type # estimator for the amount of heterogeneity by default ############################################################################ } } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{network meta-analysis} \section{Concepts}{ medicine, raw mean differences, network meta-analysis } metadat/man/dat.nielweise2007.Rd0000644000176200001440000000613714223103754016007 0ustar liggesusers\name{dat.nielweise2007} \docType{data} \alias{dat.nielweise2007} \title{Studies on Anti-Infective-Treated Central Venous Catheters for Prevention of Catheter-Related Bloodstream Infections} \description{Results from 18 studies comparing the risk of catheter-related bloodstream infection when using anti-infective-treated versus standard catheters in the acute care setting.} \usage{ dat.nielweise2007 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab (first) author \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of CRBSIs in patients receiving an anti-infective catheter \cr \bold{n1i} \tab \code{numeric} \tab number of patients receiving an anti-infective catheter \cr \bold{ci} \tab \code{numeric} \tab number of CRBSIs in patients receiving a standard catheter \cr \bold{n2i} \tab \code{numeric} \tab number of patients receiving a standard catheter } } \details{ The use of a central venous catheter may lead to a catheter-related bloodstream infection (CRBSI), which in turn increases the risk of morbidity and mortality. Anti-infective-treated catheters have been developed that are meant to reduce the risk of CRBSIs. Niel-Weise et al. (2007) conducted a meta-analysis of studies comparing infection risk when using anti-infective-treated versus standard catheters in the acute care setting. The results from 18 such studies are included in this dataset. The dataset was used in the article by Stijnen et al. (2010) to illustrate various generalized linear mixed-effects models for the meta-analysis of proportions and odds ratios (see \sQuote{References}). } \source{ Niel-Weise, B. S., Stijnen, T., & van den Broek, P. J. (2007). Anti-infective-treated central venous catheters: A systematic review of randomized controlled trials. \emph{Intensive Care Medicine}, \bold{33}(12), 2058--2068. \verb{https://doi.org/10.1007/s00134-007-0897-3} } \references{ Stijnen, T., Hamza, T. H., & Ozdemir, P. (2010). Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. \emph{Statistics in Medicine}, \bold{29}(29), 3046--3067. \verb{https://doi.org/10.1002/sim.4040} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.nielweise2007 dat \dontrun{ ### load metafor package library(metafor) ### standard (inverse-variance) random-effects model res <- rma(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, drop00=TRUE) print(res, digits=3) predict(res, transf=exp, digits=2) ### random-effects conditional logistic model res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL") print(res, digits=3) predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{generalized linear models} \section{Concepts}{ medicine, odds ratios, generalized linear models } metadat/man/dat.dong2013.Rd0000644000176200001440000000704414223103754014745 0ustar liggesusers\name{dat.dong2013} \docType{data} \alias{dat.dong2013} \title{Studies on Safety of Inhaled Medications for Chronic Obstructive Pulmonary Disease} \description{Results from 41 trials examining the safety of inhaled medications in patients with chronic obstructive pulmonary disease.} \usage{ dat.dong2013 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{integer} \tab study ID \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{death} \tab \code{integer} \tab mortality \cr \bold{randomized} \tab \code{integer} \tab number of individuals } } \details{ This network meta-analysis compared the safety of inhaled medications in patients with chronic obstructive pulmonary disease (Dong et al., 2013). Mortality was reported in 41 randomized trials, with a total of 52 462 patients. Mortality was low, with 2 408 deaths (4.6\%) reported across all studies. There were nine studies that reported zero events in at least one of the treatment arms and three additional studies had zero events in all treatment arms. This data set was used in Efthimiou et al. (2019) to illustrate the Mantel-Haenszel method for network meta-analysis. } \source{ Dong, Y.-H., Lin, H.-H., Shau, W.-Y., Wu, Y.-C., Chang, C.-H., & Lai, M.-S. (2013). Comparative safety of inhaled medications in patients with chronic obstructive pulmonary disease: Systematic review and mixed treatment comparison meta-analysis of randomised controlled trials. \emph{Thorax}, \bold{68}(1), 48--56. \verb{https://doi.org/10.1136/thoraxjnl-2012-201926} } \references{ Efthimiou, O., Rücker, G., Schwarzer, G., Higgins, J., Egger, M., & Salanti, G. (2019). A Mantel-Haenszel model for network meta-analysis of rare events. \emph{Statistics in Medicine}, \bold{38}(16), 2992--3012. \verb{https://doi.org/10.1002/sim.8158} } \author{ Guido Schwarzer, \email{sc@imbi.uni-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first 6 rows / 3 studies of the dataset head(dat.dong2013) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library(netmeta)) ### Print odds ratios and confidence limits with two digits settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treatment, death, randomized, studlab = id, data = dat.dong2013, sm = "OR") ### Calculated log odds ratios (TE) and standard errors (seTE) pw[1:3, 1:9] ### Conduct Mantel-Haenszel network meta-analysis (NMA) net <- netmetabin(pw, ref = "plac") ### Network graph netgraph(net, seq = "optimal", col = "black", plastic = FALSE, points = TRUE, pch = 21, cex.points = 3, col.points = "black", bg.points = "gray", thickness = "se.fixed", number.of.studies = TRUE) ### Show results for Mantel-Haenszel NMA net forest(net) ### League table with network estimates in lower triangle and direct ### estimates in upper triangle netleague(net) ### Assess inconsistency print(netsplit(net), show = "both", ci = TRUE, overall = FALSE, nchar.trts = 6) } } \seealso{ \code{\link[netmeta]{pairwise}}, \code{\link[meta]{metabin}}, \code{\link[netmeta]{netmetabin}} } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, odds ratios, network meta-analysis, Mantel-Haenszel method } metadat/man/dat.dorn2007.Rd0000644000176200001440000000666114223103754014767 0ustar liggesusers\name{dat.dorn2007} \docType{data} \alias{dat.dorn2007} \title{Studies on Complementary and Alternative Medicine for Irritable Bowel Syndrome} \description{Results from 19 trials examining complementary and alternative medicine (CAM) for irritable bowel syndrome (IBS).} \usage{ dat.dorn2007 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab trial id number \cr \bold{study} \tab \code{character} \tab (first) author \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{country} \tab \code{character} \tab country where trial was conducted \cr \bold{ibs.crit} \tab \code{character} \tab IBS diagnostic criteria (Manning, Rome I, Rome II, or Other) \cr \bold{days} \tab \code{numeric} \tab number of treatment days \cr \bold{visits} \tab \code{numeric} \tab number of practitioner visits \cr \bold{jada} \tab \code{numeric} \tab Jadad score \cr \bold{x.a} \tab \code{numeric} \tab number of responders in the active treatment group \cr \bold{n.a} \tab \code{numeric} \tab number of participants in the active treatment group \cr \bold{x.p} \tab \code{numeric} \tab number of responders in the placebo group \cr \bold{n.p} \tab \code{numeric} \tab number of participants in the placebo group } } \details{ The dataset includes the results from 19 randomized clinical trials that examined the effectiveness of complementary and alternative medicine (CAM) for irritable bowel syndrome (IBS). } \note{ The data were extracted from Table I in Dorn et al. (2009). Comparing the funnel plot in Figure 1 with the one obtained below indicates that the data for study 5 (Davis et al., 2006) in the table were not the ones that were used in the actual analyses. } \source{ Dorn, S. D., Kaptchuk, T. J., Park, J. B., Nguyen, L. T., Canenguez, K., Nam, B. H., Woods, K. B., Conboy, L. A., Stason, W. B., & Lembo, A. J. (2007). A meta-analysis of the placebo response in complementary and alternative medicine trials of irritable bowel syndrome. \emph{Neurogastroenterology & Motility}, \bold{19}(8), 630--637. \verb{https://doi.org/10.1111/j.1365-2982.2007.00937.x} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.dorn2007 dat \dontrun{ ### load metafor package library(metafor) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=x.a, n1i=n.a, ci=x.p, n2i=n.p, data=dat) ### random-effects model res <- rma(yi, vi, data=dat, digits=2, method="DL") res ### estimated average risk ratio predict(res, transf=exp) ### funnel plot with study 5 highlighted in red funnel(res, atransf=exp, at=log(c(.1, .2, .5, 1, 2, 5, 10)), ylim=c(0,1), steps=6, las=1, col=ifelse(id == 5, "red", "black")) ### change log risk ratio for study 5 dat$yi[5] <- -0.44 ### results are now more in line with what is reported in the paper ### (although the CI in the paper is not wide enough) res <- rma(yi, vi, data=dat, digits=2, method="DL") predict(res, transf=exp) ### funnel plot with study 5 highlighted in red funnel(res, atransf=exp, at=log(c(.1, .2, .5, 1, 2, 5, 10)), ylim=c(0,1), steps=6, las=1, col=ifelse(id == 5, "red", "black")) } } \keyword{datasets} \concept{medicine} \concept{alternative medicine} \concept{risk ratios} \section{Concepts}{ medicine, alternative medicine, risk ratios } metadat/man/dat.dagostino1998.Rd0000644000176200001440000001226314223103754016031 0ustar liggesusers\name{dat.dagostino1998} \docType{data} \alias{dat.dagostino1998} \title{Studies on the Effectiveness of Antihistamines in Reducing Symptoms of the Common Cold} \description{Results from 9 studies on the effectiveness of antihistamines in reducing the severity of runny nose and sneezing in the common cold.} \usage{ dat.dagostino1998 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study id \cr \bold{cold} \tab \code{character} \tab natural or induced cold study \cr \bold{scale.rn} \tab \code{character} \tab scale for measuring runny nose severity \cr \bold{scale.sn} \tab \code{character} \tab scale for measuring sneezing severity \cr \bold{drug} \tab \code{character} \tab type of antihistamine studied \cr \bold{tnt} \tab \code{numeric} \tab total sample size of the treatment group \cr \bold{tnc} \tab \code{numeric} \tab total sample size of the control (placebo) group \cr \bold{outcome} \tab \code{character} \tab outcome variable (see \sQuote{Details})\cr \bold{mt} \tab \code{numeric} \tab mean in the treatment group \cr \bold{sdt} \tab \code{numeric} \tab SD in the treatment group \cr \bold{mc} \tab \code{numeric} \tab mean in the control group \cr \bold{sdc} \tab \code{numeric} \tab SD in the control group \cr \bold{xt} \tab \code{numeric} \tab number of patients reaching the therapy goal in the treatment group \cr \bold{xc} \tab \code{numeric} \tab number of patients reaching the therapy goal in the control (placebo) group \cr \bold{nt} \tab \code{numeric} \tab sample size of the treatment group for measuring the outcome \cr \bold{nc} \tab \code{numeric} \tab sample size of the control group for measuring the outcome } } \details{ The studies for this meta-analysis were assembled to examine the effectiveness of antihistamines in reducing the severity of runny nose and sneezing in the common cold. Effectiveness was measured after one and two days of treatment in terms of 4 different outcome variables: \enumerate{ \item \code{rnic1} and \code{rnic2} (continuous): incremental change (improvement) in runny nose severity at day 1 and day 2, \item \code{rngoal1} and \code{rngoal2} (dichotomous): reaching the goal of therapy (of at least a 50\% reduction in runny nose severity) at day 1 and day 2, \item \code{snic1} and \code{snic2} (continuous): incremental change (improvement) in sneezing severity at day 1 and day 2, and \item \code{rngoal1} and \code{rngoal2} (dichotomous): reaching the goal of therapy (of at least a 50\% reduction in sneezing severity) at day 1 and day 2. } For the continuous outcomes, standardized mean differences can be computed to quantify the difference between the treatment and control groups. For the dichotomous outcomes, one can compute (log) odds ratios to quantify the difference between the treatment and control groups. } \source{ D'Agostino, R. B., Sr., Weintraub, M., Russell, H. K., Stepanians, M., D'Agostino, R. B., Jr., Cantilena, L. R., Jr., Graumlich, J. F., Maldonado, S., Honig, P., & Anello, C. (1998). The effectiveness of antihistamines in reducing the severity of runny nose and sneezing: A meta-analysis. \emph{Clinical Pharmacology & Therapeutics}, \bold{64}(6), 579--596. \verb{https://doi.org/10.1016/S0009-9236(98)90049-2} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.dagostino1998 head(dat, 16) \dontrun{ ### load metafor package library(metafor) ### compute standardized mean differences and corresponding sampling variances dat <- escalc(measure="SMD", m1i=mt, m2i=mc, sd1i=sdt, sd2i=sdc, n1i=nt, n2i=nc, data=dat, add.measure=TRUE) ### compute log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=xt, ci=xc, n1i=nt, n2i=nc, data=dat, replace=FALSE, add.measure=TRUE, add=1/2, to="all") ### inspect data for the first study head(dat, 8) ### fit a random-effects model for incremental change in runny nose severity at day 1 res <- rma(yi, vi, data=dat, subset=outcome=="rnic1") res ### fit a random-effects model for reaching the goal of therapy for runny nose severity at day 1 res <- rma(yi, vi, data=dat, subset=outcome=="rngoal1") res predict(res, transf=exp) ### construct approximate V matrix assuming a correlation of 0.7 for sampling errors within studies dat$esid <- ave(dat$study, dat$study, FUN=seq) V <- vcalc(vi, cluster=study, obs=esid, rho=0.7, data=dat) ### fit a model for incremental change in runny nose severity at day 1 and at day 2, allowing for ### correlated sampling errors (no random effects added, since there does not appear to be any ### noteworthy heterogeneity in these data) res <- rma.mv(yi, V, mods = ~ outcome - 1, data=dat, subset=outcome \%in\% c("rnic1","rnic2")) res ### test if there is a difference in effects at day 1 and day 2 anova(res, X=c(1,-1)) } } \keyword{datasets} \concept{medicine} \concept{standardized mean differences} \concept{odds ratios} \concept{multivariate models} \section{Concepts}{ medicine, standardized mean differences, odds ratios, multivariate models } metadat/man/dat.bonett2010.Rd0000644000176200001440000000630114223103754015301 0ustar liggesusers\name{dat.bonett2010} \docType{data} \alias{dat.bonett2010} \title{Studies on the Reliability of the CES-D Scale} \description{Results from 9 studies on the reliability of the Center for Epidemiologic Studies Depression (CES-D) Scale administered to children providing care to an elderly parent.} \usage{ dat.bonett2010 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{source} \tab \code{character} \tab source of data \cr \bold{ni} \tab \code{numeric} \tab sample size \cr \bold{mi} \tab \code{numeric} \tab number of items in the scale \cr \bold{ai} \tab \code{numeric} \tab observed value of Cronbach's alpha \cr \bold{caregivers} \tab \code{character} \tab gender of the children in the sample } } \details{ The Center for Epidemiologic Studies Depression (CES-D) Scale is a 20-item questionnaire assessing various symptoms of depression, with each item scored on a 4-point scale. The scale has been used in several studies to examine depressive symptoms in children providing care to an elderly parent. The dataset includes information on the reliability of the scale as measured with Cronbach's alpha in 9 such studies. Also, the gender composition of the children in each sample is indicated. } \source{ Bonett, D. G. (2010). Varying coefficient meta-analytic methods for alpha reliability. \emph{Psychological Methods}, \bold{15}(4), 368--385. \verb{https://doi.org/10.1037/a0020142} } \references{ Bonett, D. G. (2002). Sample size requirements for testing and estimating coefficient alpha. \emph{Journal of Educational and Behavioral Statistics}, \bold{27}(4), 335--340. \verb{https://doi.org/10.3102/10769986027004335} Hakstian, A. R., & Whalen, T. E. (1976). A k-sample significance test for independent alpha coefficients. \emph{Psychometrika}, \bold{41}(2), 219--231. \verb{https://doi.org/10.1007/BF02291840} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bonett2010 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis using the raw alpha values res <- rma(measure="ARAW", ai=ai, mi=mi, ni=ni, data=dat) res ### meta-analysis using transformed alpha values (using the ### transformation suggested by Hakstian & Whalen, 1976) res <- rma(measure="AHW", ai=ai, mi=mi, ni=ni, data=dat) res predict(res, transf=transf.iahw) ### meta-analysis using transformed alpha values (using the ### transformation suggested by Bonett, 2002) res <- rma(measure="ABT", ai=ai, mi=mi, ni=ni, data=dat) res predict(res, transf=transf.iabt) ### forest plot forest(res, slab=source, header=TRUE, atransf=transf.iabt, refline=coef(res)) ### examine whether female/mixed samples yield different alphas (with raw alphas) res <- rma(measure="ARAW", ai=ai, mi=mi, ni=ni, mods = ~ caregivers, data=dat) res predict(res, newmods=c(0,1), digits=2) } } \keyword{datasets} \concept{psychology} \concept{Cronbach's alpha} \concept{reliability generalization} \concept{meta-regression} \section{Concepts}{ psychology, Cronbach's alpha, reliability generalization, meta-regression } metadat/man/dat.collins1985b.Rd0000644000176200001440000000701114223103754015636 0ustar liggesusers\name{dat.collins1985b} \docType{data} \alias{dat.collins1985b} \title{Studies on the Effects of Diuretics in Pregnancy} \description{Results from 9 studies examining the effects of diuretics in pregnancy on various outcomes.} \usage{ dat.collins1985b } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{pre.nti} \tab \code{numeric} \tab number of women in treatment group followed up for pre-eclampsia outcome \cr \bold{pre.nci} \tab \code{numeric} \tab number of women in control/placebo group followed up for pre-eclampsia outcome \cr \bold{pre.xti} \tab \code{numeric} \tab number of women in treatment group with any form of pre-eclampsia \cr \bold{pre.xci} \tab \code{numeric} \tab number of women in control/placebo group with any form of pre-eclampsia \cr \bold{oedema} \tab \code{numeric} \tab dummy variable indicating whether oedema was a diagnostic criterion \cr \bold{fup.nti} \tab \code{numeric} \tab number of women in treatment group followed up for mortality outcomes \cr \bold{fup.nci} \tab \code{numeric} \tab number of women in control/placebo group followed up for mortality outcomes \cr \bold{ped.xti} \tab \code{numeric} \tab number of perinatal deaths in treatment group \cr \bold{ped.xci} \tab \code{numeric} \tab number of perinatal deaths in control/placebo group \cr \bold{stb.xti} \tab \code{numeric} \tab number of stillbirths in treatment group \cr \bold{stb.xci} \tab \code{numeric} \tab number of stillbirths in control/placebo group \cr \bold{ned.xti} \tab \code{numeric} \tab number of neonatal deaths in treatment group \cr \bold{ned.xci} \tab \code{numeric} \tab number of neonatal deaths in control/placebo group } } \details{ The 9 studies in this dataset examined the effects of diuretics in pregnancy on various outcomes, including the presence of any form of pre-eclampsia, perinatal death, stillbirth, and neonatal death. } \source{ Collins, R., Yusuf, S., & Peto, R. (1985). Overview of randomised trials of diuretics in pregnancy. \emph{British Medical Journal}, \bold{290}(6461), 17--23. \verb{https://doi.org/10.1136/bmj.290.6461.17} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.collins1985b dat \dontrun{ ### load metafor package library(metafor) ### calculate (log) odds ratio and sampling variance dat <- escalc(measure="OR", n1i=pre.nti, n2i=pre.nci, ai=pre.xti, ci=pre.xci, data=dat) summary(dat, digits=2, transf=exp) ### meta-analysis using Peto's method for any form of pre-eclampsia rma.peto(n1i=pre.nti, n2i=pre.nci, ai=pre.xti, ci=pre.xci, data=dat, digits=2) ### meta-analysis including only studies where oedema was not a diagnostic criterion rma.peto(n1i=pre.nti, n2i=pre.nci, ai=pre.xti, ci=pre.xci, data=dat, digits=2, subset=(oedema==0)) ### meta-analyses of mortality outcomes (perinatal deaths, stillbirths, and neonatal deaths) rma.peto(n1i=fup.nti, n2i=fup.nci, ai=ped.xti, ci=ped.xci, data=dat, digits=2) rma.peto(n1i=fup.nti, n2i=fup.nci, ai=stb.xti, ci=stb.xci, data=dat, digits=2) rma.peto(n1i=fup.nti, n2i=fup.nci, ai=ned.xti, ci=ned.xci, data=dat, digits=2) } } \keyword{datasets} \concept{medicine} \concept{obstetrics} \concept{odds ratios} \concept{Peto's method} \section{Concepts}{ medicine, obstetrics, odds ratios, Peto's method } metadat/man/dat.franchini2012.Rd0000644000176200001440000000715614223103754015762 0ustar liggesusers\name{dat.franchini2012} \docType{data} \alias{dat.franchini2012} \title{Studies on Dopamine Agonists to Reduce \dQuote{Off-Time} in Patients with Advanced Parkinson Disease} \description{Results from 7 trials examining the effectiveness of four dopamine agonists and placebo to reduce \dQuote{off-time} in patients with advanced Parkinson disease.} \usage{ dat.franchini2012 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{Study} \tab \code{character} \tab study label \cr \bold{Treatment1} \tab \code{character} \tab treatment 1 \cr \bold{y1} \tab \code{numeric} \tab treatment effect arm 1 \cr \bold{sd1} \tab \code{numeric} \tab standard deviation arm 2 \cr \bold{n1} \tab \code{integer} \tab sample size arm 1 \cr \bold{Treatment2} \tab \code{character} \tab treatment 2 \cr \bold{y2} \tab \code{numeric} \tab treatment effect arm 2 \cr \bold{sd2} \tab \code{numeric} \tab standard deviation arm 2 \cr \bold{n2} \tab \code{integer} \tab sample size arm 1 \cr \bold{Treatment3} \tab \code{character} \tab treatment 3 \cr \bold{y3} \tab \code{numeric} \tab treatment effect arm 3 \cr \bold{sd3} \tab \code{numeric} \tab standard deviation arm 2 \cr \bold{n3} \tab \code{integer} \tab sample size arm 1 } } \details{ This network meta-analysis compared the effectiveness of four active treatments and placebo in patients with advanced Parkinson disease (Franchini et al., 2012). The outcome is mean lost work-time reduction in patients given dopamine agonists as adjunct therapy. The data are given as sample size, mean, and standard deviation in each trial arm. This data set was used as an example in the supplemental material of Dias et al. (2013) where placebo is coded as 1 and the four active drugs as 2 to 5. } \source{ Dias, S., Sutton, A. J., Ades, A. E., & Welton, N. J. (2013). Evidence synthesis for decision making 2: A generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. \emph{Medical Decision Making}, \bold{33}(5), 607--617. \verb{https://doi.org/10.1177/0272989X12458724} Franchini, A. J., Dias, S., Ades, A. E., Jansen, J. P., & Welton, N. J. (2012). Accounting for correlation in network meta-analysis with multi-arm trials. \emph{Research Synthesis Methods}, \bold{3}(2), 142--160. \verb{https://doi.org/10.1002/jrsm.1049} } \author{ Guido Schwarzer, \email{sc@imbi.uni-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show results from first three studies; third study is a three-arm ### study head(dat.franchini2012, 3) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library(netmeta)) ### Print mean differences with two digits settings.meta(digits = 2) ### Transform data from wide arm-based format to contrast-based ### format. Argument 'sm' must not be provided as the mean difference ### is the default in R function metacont() called internally. pw <- pairwise(list(Treatment1, Treatment2, Treatment3), n = list(n1, n2, n3), mean = list(y1, y2, y3), sd = list(sd1, sd2, sd3), data = dat.franchini2012, studlab = Study, sm = "MD") ### Show calculated mean differences (TE) for first three studies pw[1:5, c(3:7, 10, 1)] ### Conduct network meta-analysis net <- netmeta(pw) net ### Draw network graph netgraph(net, points = TRUE, cex.points = 3, cex = 1.5, plastic = TRUE, thickness = "se.fixed", iterate = TRUE, start = "eigen") } } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{network meta-analysis} \section{Concepts}{ medicine, raw mean differences, network meta-analysis } metadat/man/dat.collins1985a.Rd0000644000176200001440000001026614223103754015643 0ustar liggesusers\name{dat.collins1985a} \docType{data} \alias{dat.collins1985a} \title{Studies on the Treatment of Upper Gastrointestinal Bleeding by a Histamine H2 Antagonist} \description{Results from studies examining the effectiveness of histamine H2 antagonists (cimetidine or ranitidine) in treating patients with acute upper gastrointestinal hemorrhage.} \usage{ dat.collins1985a } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study number \cr \bold{trial} \tab \code{character} \tab first author of trial \cr \bold{year} \tab \code{numeric} \tab year of publication \cr \bold{ref} \tab \code{numeric} \tab reference number \cr \bold{trt} \tab \code{character} \tab C = cimetidine, R = ranitidine \cr \bold{ctrl} \tab \code{character} \tab P = placebo, AA = antacids, UT = usual treatment \cr \bold{nti} \tab \code{numeric} \tab number of patients in treatment group \cr \bold{b.xti} \tab \code{numeric} \tab number of patients in treatment group with persistent or recurrent bleedings \cr \bold{o.xti} \tab \code{numeric} \tab number of patients in treatment group in need of operation \cr \bold{d.xti} \tab \code{numeric} \tab number of patients in treatment group that died \cr \bold{nci} \tab \code{numeric} \tab number of patients in control group \cr \bold{b.xci} \tab \code{numeric} \tab number of patients in control group with persistent or recurrent bleedings \cr \bold{o.xci} \tab \code{numeric} \tab number of patients in control group in need of operation \cr \bold{d.xci} \tab \code{numeric} \tab number of patients in control group that died } } \details{ The data were obtained from Tables 1 and 2 in Collins and Langman (1985). The authors used Peto's (one-step) method for meta-analyzing the 27 trials. This approach is implemented in the \code{\link[metafor]{rma.peto}} function. Using the same dataset, van Houwelingen, Zwinderman, and Stijnen (1993) describe some alternative approaches for analyzing these data, including fixed- and random-effects conditional logistic models. Those are implemented in the \code{\link[metafor]{rma.glmm}} function. } \source{ Collins, R., & Langman, M. (1985). Treatment with histamine H2 antagonists in acute upper gastrointestinal hemorrhage. \emph{New England Journal of Medicine}, \bold{313}(11), 660--666. \verb{https://doi.org/10.1056/NEJM198509123131104} } \references{ van Houwelingen, H. C., Zwinderman, K. H., & Stijnen, T. (1993). A bivariate approach to meta-analysis. \emph{Statistics in Medicine}, \bold{12}(24), 2273--2284. \verb{https://doi.org/10.1002/sim.4780122405} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.collins1985a dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of log ORs using Peto's method (outcome: persistent or recurrent bleedings) res <- rma.peto(ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat) print(res, digits=2) ### meta-analysis of log ORs using a conditional logistic regression model (FE model) res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat, model="CM.EL", method="FE") summary(res) predict(res, transf=exp, digits=2) ### plot the likelihoods of the odds ratios llplot(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat, lwd=1, refline=NA, xlim=c(-4,4), drop00=FALSE) ### meta-analysis of log odds ratios using a conditional logistic regression model (RE model) res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat, model="CM.EL", method="ML") summary(res) predict(res, transf=exp, digits=2) ### meta-analysis of log ORs using Peto's method (outcome: need for surgery) res <- rma.peto(ai=o.xti, n1i=nti, ci=o.xci, n2i=nci, data=dat) print(res, digits=2) ### meta-analysis of log ORs using Peto's method (outcome: death) res <- rma.peto(ai=d.xti, n1i=nti, ci=d.xci, n2i=nci, data=dat) print(res, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{Peto's method} \concept{generalized linear models} \section{Concepts}{ medicine, odds ratios, Peto's method, generalized linear models } metadat/man/dat.white2020.Rd0000644000176200001440000000605114223103754015131 0ustar liggesusers\name{dat.white2020} \docType{data} \alias{dat.white2020} \title{Studies on the Relationship between Sexual Signal Expression and Individual Quality} \description{Results from 41 studies examining the relationship between measures of individual quality and the expression of structurally coloured sexual signals.} \usage{ dat.white2020 } \format{ The object is a data frame which contains the following columns: \tabular{lll}{ \bold{study_id} \tab \code{character} \tab study-level ID \cr \bold{obs} \tab \code{character} \tab observation-level ID \cr \bold{exp_obs} \tab \code{character} \tab whether the study is observational or experimental \cr \bold{control} \tab \code{numeric} \tab whether the study did (1) or did not (0) include a non-sexual control trait \cr \bold{class} \tab \code{character} \tab class of the study organisms \cr \bold{genus} \tab \code{character} \tab class of the study organisms \cr \bold{species} \tab \code{character} \tab species of the study organisms \cr \bold{sex} \tab \code{character} \tab sex of the study organisms \cr \bold{iridescent} \tab \code{numeric} \tab whether the colour signals were iridescent (1) or not (0) \cr \bold{col_var} \tab \code{character} \tab the colour variable quantified \cr \bold{col_component} \tab \code{character} \tab whether the colour variable is chromatic or achromatic \cr \bold{quality_measure} \tab \code{character} \tab the measure of individual quality used \cr \bold{region} \tab \code{character} \tab the body region from which colour was sampled \cr \bold{n} \tab \code{numeric} \tab study sample size \cr \bold{r} \tab \code{numeric} \tab Pearson's correlation coefficient \cr } } \details{ The 186 rows in this dataset come from 41 experimental and observational studies reporting on the correlation between measures of individual quality (age, body condition, immune function, parasite resistance) and the expression of structurally coloured sexual signals across 28 species. The purpose of this meta-analysis was to test whether structural colour signals show heightened condition-dependent expression, as predicted by evolutionary models of 'honest' signalling. } \source{ White, T. E. (2020). Structural colours reflect individual quality: A meta-analysis. \emph{Biology Letters}, \bold{16}(4), 20200001. \verb{https://doi.org/10.1098/rsbl.2020.0001} } \author{ Thomas E. White, \email{thomas.white@sydney.edu.au} } \examples{ ### copy data into 'dat' and examine data dat <- dat.white2020 head(dat, 10) \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=r, ni=n, data=dat) ### fit multilevel meta-analytic model res <- rma.mv(yi, vi, random = list(~ 1 | study_id, ~ 1 | obs), data=dat) res } } \keyword{datasets} \concept{ecology} \concept{evolution} \concept{correlation coefficients} \section{Concepts}{ ecology, evolution, correlation coefficients } metadat/man/dat.woods2010.Rd0000644000176200001440000000413614223103754015145 0ustar liggesusers\name{dat.woods2010} \docType{data} \alias{dat.woods2010} \title{Studies on Treatments for Chronic Obstructive Pulmonary Disease} \description{Results from 3 trials examining the mortality risk of three treatments and placebo in patients with chronic obstructive pulmonary disease.} \usage{ dat.woods2010 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab first author / study name \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{r} \tab \code{integer} \tab number of deaths \cr \bold{N} \tab \code{integer} \tab number of patients } } \details{ Count mortality statistics in randomised controlled trials of treatments for chronic obstructive pulmonary disease (Woods et al., 2010, Table 1). } \source{ Woods, B. S., Hawkins, N., & Scott, D. A. (2010). Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: A tutorial. \emph{BMC Medical Research Methodology}, \bold{10}, 54. \verb{https://doi.org/10.1186/1471-2288-10-54} } \author{ Guido Schwarzer, \email{sc@imbi.uni-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show full data set dat.woods2010 \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library(netmeta)) ### Print odds ratios and confidence limits with two digits settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treatment, event = r, n = N, studlab = author, data = dat.woods2010, sm = "OR") pw ### Conduct network meta-analysis net <- netmeta(pw) net ### Show forest plot forest(net, ref = "Placebo", drop = TRUE, leftlabs = "Contrast to Placebo") } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \section{Concepts}{ medicine, odds ratios, network meta-analysis } metadat/man/dat.kearon1998.Rd0000644000176200001440000001255214223103754015322 0ustar liggesusers\name{dat.kearon1998} \docType{data} \alias{dat.kearon1998} \title{Studies on the Accuracy of Venous Ultrasonography for the Diagnosis of Deep Venous Thrombosis} \description{Results from diagnostic accuracy studies examining the accuracy of venous ultrasonography for the diagnosis of deep venous thrombosis.} \usage{ dat.kearon1998 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study id \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{patients} \tab \code{character} \tab patient group (either symptomatic or asymptomatic patients) \cr \bold{tp} \tab \code{numeric} \tab number of true positives \cr \bold{np} \tab \code{numeric} \tab number of positive patients (cases) \cr \bold{tn} \tab \code{numeric} \tab number of true negatives \cr \bold{nn} \tab \code{numeric} \tab number of negative patients (non-cases) } } \details{ The studies included in the dataset examined the accuracy of venous ultrasonography for the diagnossis of a first deep venous thrombosis in symptomatic and asymptomatic patients. Cases and non-cases were determined based on contrast venography. Venous ultrasonography was then used to make a diagnosis, leading to a given number of true positives and negatives. A subset of this dataset (using only the studies with asymptomatic patients) was used by Deeks et al. (2005) to illustrate methods for detecting publication bias (or small-study effects) in meta-analyses of diagnostic accuracy studies. } \source{ Kearon, C., Julian, J. A., Math, M., Newman, T. E., & Ginsberg, J. S. (1998). Noninvasive diagnosis of deep venous thrombosis. \emph{Annals of Internal Medicine}, \bold{128}(8), 663--677. \verb{https://doi.org/10.7326/0003-4819-128-8-199804150-00011} } \references{ Deeks, J. J., Macaskill, P., & Irwig, L. (2005). The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. \emph{Journal of Clinical Epidemiology}, \bold{58}(9), 882--893. \verb{https://doi.org/10.1016/j.jclinepi.2005.01.016} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.kearon1998 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate diagnostic log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=tp, n1i=np, ci=nn-tn, n2i=nn, data=dat, add=1/2, to="all") head(dat) ### fit random-effects model for the symptomatic patients res <- rma(yi, vi, data=dat, subset=patients=="symptomatic") res ### fit random-effects model for the asymptomatic patients res <- rma(yi, vi, data=dat, subset=patients=="asymptomatic") res ### estimated average diagnostic odds ratio (with 95\% CI) predict(res, transf=exp, digits=2) ### regression test for funnel plot asymmetry using SE as predictor reg <- regtest(res, model="lm") reg ### corresponding funnel plot funnel(res, atransf=exp, xlim=c(0,7), at=log(c(1,10,100,1000)), ylim=c(0,1.5), steps=4) ys <- seq(0, 2, length=100) lines(coef(reg$fit)[1] + coef(reg$fit)[2]*ys, ys, lwd=2, lty=3) ### regression test for funnel plot asymmetry using total sample size as predictor reg <- regtest(res, model="lm", predictor="ni") reg ### corresponding funnel plot funnel(res, yaxis="ni", atransf=exp, xlim=c(0,7), at=log(c(1,10,100,1000)), ylim=c(0,300), steps=4) ys <- seq(0, 300, length=100) lines(coef(reg$fit)[1] + coef(reg$fit)[2]*ys, ys, lwd=2, lty=3) ### regression test for funnel plot asymmetry using 1/sqrt(ESS) as predictor (Deeks et al., 2005) dat$invessi <- 1/(4*dat$np) + 1/(4*dat$nn) tmp <- rma(yi, invessi, data=dat, subset=patients=="asymptomatic") reg <- regtest(tmp, model="lm") reg ### corresponding funnel plot funnel(tmp, atransf=exp, xlim=c(0,7), at=log(c(1,10,100,1000)), ylim=c(0,.15), steps=4, refline=coef(res), level=0, ylab="1/root(ess)") ys <- seq(0, .20, length=100) lines(coef(reg$fit)[1] + coef(reg$fit)[2]*ys, ys, lwd=2, lty=3) ### convert data to long format dat <- to.long(measure="OR", ai=tp, n1i=np, ci=tn, n2i=nn, data=dat.kearon1998, subset=patients=="asymptomatic") dat <- dat[9:12] levels(dat$group) <- c("sensitivity", "specificity") dat ### calculate logit-transformed sensitivities dat <- escalc(measure="PLO", xi=out1, mi=out2, data=dat, add=1/2, to="all", include=group=="sensitivity") dat ### calculate logit-transformed specificities dat <- escalc(measure="PLO", xi=out1, mi=out2, data=dat, add=1/2, to="all", include=group=="specificity") dat ### bivariate random-effects model for logit sensitivity and specificity res <- rma.mv(yi, vi, mods = ~ group - 1, random = ~ group | study, struct="UN", data=dat) res ### estimated average sensitivity and specificity based on the model predict(res, newmods = rbind(c(1,0),c(0,1)), transf=transf.ilogit, tau2.levels=c(1,2), digits=2) ### estimated average diagnostic odds ratio based on the model predict(res, newmods = c(1,1), transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{diagnostic accuracy studies} \concept{multivariate models} \concept{publication bias} \section{Concepts}{ medicine, odds ratios, diagnostic accuracy studies, multivariate models, publication bias } metadat/man/dat.cannon2006.Rd0000644000176200001440000001002214223103754015262 0ustar liggesusers\name{dat.cannon2006} \docType{data} \alias{dat.cannon2006} \title{Studies on the Effectiveness of Intensive Versus Moderate Statin Therapy for Preventing Coronary Death or Myocardial Infarction} \description{Results from 4 trials examining the effectiveness of intensive (high dose) versus moderate (standard dose) statin therapy for preventing coronary death or myocardial infarction.} \usage{ dat.cannon2006 } \format{The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{character} \tab trial name \cr \bold{pop} \tab \code{character} \tab study population (post-ACS: post acute coronary syndrome; stable CAD: stable coronary artery disease) \cr \bold{nt} \tab \code{numeric} \tab number of patients in the high dose group \cr \bold{nc} \tab \code{numeric} \tab number of patients in the standard dose group \cr \bold{ep1t} \tab \code{numeric} \tab number of events in the high dose group for end point 1: coronary death or non-fatal myocardial infarction \cr \bold{ep1c} \tab \code{numeric} \tab number of events in the standard dose group for end point 1: coronary death or non-fatal myocardial infarction \cr \bold{ep2t} \tab \code{numeric} \tab number of events in the high dose group for end point 2: coronary death or any cardiovascular event (MI, stroke, hospitalization for unstable angina, or revascularization) \cr \bold{ep2c} \tab \code{numeric} \tab number of events in the standard dose group for end point 2: coronary death or any cardiovascular event (MI, stroke, hospitalization for unstable angina, or revascularization) \cr \bold{ep3t} \tab \code{numeric} \tab number of events in the high dose group for end point 3: cardiovascular death \cr \bold{ep3c} \tab \code{numeric} \tab number of events in the standard dose group for end point 3: cardiovascular death \cr \bold{ep4t} \tab \code{numeric} \tab number of events in the high dose group for end point 4: non-cardiovascular death \cr \bold{ep4c} \tab \code{numeric} \tab number of events in the standard dose group for end point 4: non-cardiovascular death \cr \bold{ep5t} \tab \code{numeric} \tab number of events in the high dose group for end point 5: deaths (all-cause mortality) \cr \bold{ep5c} \tab \code{numeric} \tab number of events in the standard dose group for end point 5: deaths (all-cause mortality) \cr \bold{ep6t} \tab \code{numeric} \tab number of events in the high dose group for end point 6: stroke \cr \bold{ep6c} \tab \code{numeric} \tab number of events in the standard dose group for end point 6: stroke } } \details{ The data were obtained from Figures 2, 3, 4, and 5 in Cannon et al. (2006). The authors used the Mantel-Haenszel method for combining the results from the 4 trials. This approach is implemented in the \code{\link[metafor]{rma.mh}} function. } \source{ Cannon, C. P., Steinberg, B. A., Murphy, S. A., Mega, J. L., & Braunwald, E. (2006). Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. \emph{Journal of the American College of Cardiology}, \bold{48}(3), 438--445. \verb{https://doi.org/10.1016/j.jacc.2006.04.070} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.cannon2006 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of log odds ratios using the MH method for endpoint 1 res <- rma.mh(measure="OR", ai=ep1t, n1i=nt, ci=ep1c, n2i=nc, data=dat, slab=trial) print(res, digits=2) ### forest plot forest(res, xlim=c(-.8,.8), atransf=exp, at=log(c(2/3, 1, 3/2)), header=TRUE, top=2, cex=1.2, xlab="Odds Ratio") mtext("(high dose better)", side=1, line=par("mgp")[1]-0.5, at=log(2/3), cex=1.2, font=3) mtext("(standard dose better)", side=1, line=par("mgp")[1]-0.5, at=log(3/2), cex=1.2, font=3) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, cardiology, odds ratios, Mantel-Haenszel method } metadat/man/dat.linde2016.Rd0000644000176200001440000001061614223103754015113 0ustar liggesusers\name{dat.linde2016} \docType{data} \alias{dat.linde2016} \title{Studies on Antidepressants for the Primary Care Setting} \description{Results from 93 trials examining 22 interventions (including placebo and usual care) for the primary care of depression.} \usage{ dat.linde2016 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{integer} \tab study ID \cr \bold{lnOR} \tab \code{numeric} \tab response after treatment (log odds ratio) \cr \bold{selnOR} \tab \code{numeric} \tab standard error of log odds ratio \cr \bold{treat1} \tab \code{character} \tab first treatment \cr \bold{treat2} \tab \code{character} \tab second treatment } } \details{ This data set comes from a network meta-analysis of 22 treatments of depression in primary care (Linde et al., 2016), based on 93 trials (79 two-arm trials, 13 three-arm trials, and one four-arm trial). The primary outcome was response after treatment (yes/no), defined as a reduction from baseline by at least 50\% on a depression scale. The data set contains log odds ratios with standard errors for all pairwise comparisons. The interventions comprised both medical and psychological treatments, also in combination, including placebo and usual care (UC) (Linde et al., 2016). Pharmacological interventions were tricyclic antidepressants (TCA), selective serotonin reuptake inhibitors (SSRI), serotonin-noradrenaline reuptake inhibitors (SNRI), noradrenaline reuptake inhibitors (NRI), low- dose serotonin (5-HT2) antagonists and reuptake inhibitors (low-dose SARI), noradrenergic and specific serotonergic agents (NaSSa), reversible inhibitors of monoaminoxidase A (rMAO-A), hypericum extracts, and an individualized drug. Psychological interventions were cognitive behavioral therapy (CBT; four forms: face-to-face CBT, remote therapist-led CBT, guided self-help CBT, and no or minimal contact CBT), face-to-face problem-solving therapy (PST), face-to-face interpersonal psychotherapy, face-to-face psychodynamic therapy, and \dQuote{other face-to-face therapy}. Combination therapies were face-to-face CBT + SSRI, face-to-face PST + SSRI, and face-to-face interpersonal psychotherapy + SSRI. The data set was used as an example in Rücker et al. (2020) to illustrate component network meta-analysis using frequentist methods. } \source{ Linde, K., Rücker, G., Schneider, A., & Kriston, L. (2016). Questionable assumptions hampered interpretation of a network meta-analysis of primary care depression treatments. \emph{Journal of Clinical Epidemiology}, \bold{71}, 86--96. \verb{https://doi.org/10.1016/j.jclinepi.2015.10.010} } \references{ Rücker, G., Petropoulou, M., & Schwarzer, G. (2020). Network meta-analysis of multicomponent interventions. \emph{Biometrical Journal}, \bold{62}(3), 808--821. \verb{https://doi.org/10.1002/bimj.201800167} } \author{ Guido Schwarzer, \email{sc@imbi.uni-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show results of first three studies (first study has three treatment ### arms) head(dat.linde2016, 5) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library(netmeta)) ### Print odds ratios and confidence limits with two digits settings.meta(digits = 2) ### Define order of treatments in printouts and forest plots trts <- c("SSRI", "Face-to-face CBT", "Face-to-face interpsy", "Face-to-face PST", "Face-to-face CBT + SSRI", "Face-to-face interpsy + SSRI", "Face-to-face PST + SSRI", "Face-to-face psychodyn", "Other face-to-face", "TCA", "SNRI", "NRI", "Low-dose SARI", "NaSSa", "rMAO-A", "Ind drug", "Hypericum", "Remote CBT", "Self-help CBT", "No contact CBT", "UC", "Placebo") ### Conduct random effects network meta-analysis net <- netmeta(lnOR, selnOR, treat1, treat2, id, data = dat.linde2016, reference.group = "placebo", seq = trts, sm = "OR", fixed = FALSE) ### Network graph netgraph(net, seq = "o", number = TRUE) ### Show results net forest(net, xlim = c(0.2, 50)) ### Additive component network meta-analysis with placebo as inactive ### treatment nc <- netcomb(net, inactive = "placebo") nc forest(nc, xlim = c(0.2, 50)) } } \seealso{ \code{\link[netmeta]{netmeta}} } \keyword{datasets} \concept{medicine} \concept{psychiatry} \concept{odds ratios} \concept{network meta-analysis} \concept{component network meta-analysis} \section{Concepts}{ medicine, psychiatry, odds ratios, network meta-analysis, component network meta-analysis } metadat/DESCRIPTION0000644000176200001440000000410414223277405013404 0ustar liggesusersPackage: metadat Version: 1.2-0 Date: 2022-04-05 Title: Meta-Analysis Datasets Authors@R: c( person(given = "Thomas", family="White", role="aut", email = "thomas.white@sydney.edu.au", comment = c(ORCID = "0000-0002-3976-1734")), person(given = "Daniel", family="Noble", role="aut", email = "daniel.noble@anu.edu.au", comment = c(ORCID = "0000-0001-9460-8743")), person(given = "Alistair", family="Senior", role="aut", email = "alistair.senior@sydney.edu.au", comment = c(ORCID = "0000-0001-9805-7280")), person(given = "W. Kyle", family="Hamilton", role="aut", email = "whamilton@ucmerced.edu", comment = c(ORCID = "0000-0002-8642-7990")), person(given = "Wolfgang", family = "Viechtbauer", role = c("aut","cre"), email = "wvb@metafor-project.org", comment = c(ORCID = "0000-0003-3463-4063")), person(given = "Guido", family = "Schwarzer", role = "dtc", email = "sc@imbi.uni-freiburg.de", comment = c(ORCID = "0000-0001-6214-9087"))) Depends: R (>= 4.0.0) Imports: utils, tools, mathjaxr Suggests: metafor, numDeriv, BiasedUrn, dfoptim, igraph, ape, testthat, digest, lme4, clubSandwich, meta, netmeta, mvtnorm, gridExtra, rms Description: A collection of meta-analysis datasets for teaching purposes, illustrating/testing meta-analytic methods, and validating published analyses. License: GPL (>= 2) ByteCompile: TRUE LazyData: TRUE Encoding: UTF-8 RdMacros: mathjaxr URL: https://github.com/wviechtb/metadat BugReports: https://github.com/wviechtb/metadat/issues NeedsCompilation: no Packaged: 2022-04-05 18:20:44 UTC; wviechtb Author: Thomas White [aut] (), Daniel Noble [aut] (), Alistair Senior [aut] (), W. Kyle Hamilton [aut] (), Wolfgang Viechtbauer [aut, cre] (), Guido Schwarzer [dtc] () Maintainer: Wolfgang Viechtbauer Repository: CRAN Date/Publication: 2022-04-06 11:52:37 UTC metadat/build/0000755000176200001440000000000014223104174012766 5ustar liggesusersmetadat/build/metadat.pdf0000644000176200001440000172450114223104174015112 0ustar liggesusers%PDF-1.5 % 2 0 obj << /Type /ObjStm /N 100 /First 809 /Length 1050 /Filter /FlateDecode >> stream xڍn8zlM/ (`yVl Hr;Ϲn$LEt!X>wxLY KƓ#!),. &aH)\ғj[)EeIH[VHCԂX c` ]J4 Σ@ WO#~5 "00Dp )j87#HY3: k++etBzGlsc87I ]W +nD_%-"x, B: P2N! fFq1W"srp6\$tLJLvFӔH_6ekV|6 hr*ʥEPT8]8{7pKgϛ1u =CO}_9k؟ñ}k}[C?F/Vb4IE,p3]jy'%LU&w;ȶ_bv#"[,L{$K1³K}JxnyrZ"i<9vHU-c| Nٛ^/#5i7}ß3 {S pj#ڐ*?IU.}'l`Cѻ zWF`Z|,V]ƹ!iBC~K?7ǾCYHJ|z>żVb-RnQK8YL[a79,|w}8|J:yѶ8?UΡ]kN.myS d (d*!Ns:\a7^=Ŷ^~/(_{s endstream endobj 366 0 obj << /Length 1121 /Filter /FlateDecode >> stream xY]o6}ϯl`IJi! K7`\v]Jc5b55D{Ͻ3bu3b9R8,P9:<'x&[ʹKK-<!3Fq";UΖ=)Ԙi#40n\z(64äs'gnTY|kX{a.]Pr $bl Vs͔^C L{^QMG(+aEҌ1/tmaEnUYQt#ʽ}U"eoBoNzNe݇*u:8~RGM\+s|i2Q/髫ҚP/+5.Jbxv}9fM+J`ktȏIPde1(9]>8=X&D\Q/E˚zy5lةkK ;N^S7ZWͻ"Uz]w;%^/^?x;.R>d 1.TlιC|A{b'݄Z&X91=i:iGcpF“s-T:Ks+@^xBa7w*.zcֱ'8r&w6KS#*o"M 7B{I CWP.Wg: endstream endobj 437 0 obj << /Length 992 /Filter /FlateDecode >> stream xK8,"_LYV. F̨sL TMOv d=c’Oo*1QB%3Kxvco/8.B|WF}}cϤOxE^%Z{?^,Ѥ2:C9n'ؗxwC{ۇC܈R\t޵S\PDBFWP;n`=ysàeyyj*N@ ̳mmc4EKӝ ŔC]W4P HEs5oB5mv҂,'dўZ_;w]va+"%dهMjk̦GFsVv!LeN큱=BEe+ʊ4L2MR易ǧ0Bf ROxޱs¾`3~? : W"EuD|}S endstream endobj 203 0 obj << /Type /ObjStm /N 100 /First 861 /Length 1711 /Filter /FlateDecode >> stream xڵXo6~_E"y9 l@t")_ƶԊ+ !8ǻ#uZHxJ % JX#ecB~k_hMBgZa ֡ L`- mHX^8a#[ubU1/ڴm>"]hG"XDf%t`O\+yشذdF0<5b1a0qD$xqd:"̡F-瀙X,e/Hـe"l!8CSG#'yf͐^O9fF $Jy0{fFTИ\xax|#2JȘH!g*@PWljŀˆZ5D|,gSF؛[@r%eY K(/(q,@5q%o `erx4Q!+5T!] v5.=8_ŰBr7][^{},op Ų-Sau_!!UZ[aEgp"5EpVeݜִVt5xn{c|xY\X2,"9{)u.h(j `2G % ]ԙ0< j_y ps#Oy J_CЅ}ҀBe%xYwce. l(< >5hy~ fl&;D}` ŁίAIHrq׀.dž8\F7iǟ tzMa~еdpd: аƢ]t*PoFQZZ2ͭKKTH-SH-SL-SL-SL-XLp1`1`1`1G>#e*Y,%kɺd}!ħJ|*ħJ|*ħJ|:ħN|:ħN|:G%>Lk sx-AY^2'd3Fג>(o%r%$;+:+i5>'Pi2 endstream endobj 518 0 obj << /Length 1705 /Filter /FlateDecode >> stream xZˎ6+KUIl$ ڢmI|Hg<<ӥ6_"=<}VoV 2 *]@0F % wy)<^媏Gu=4:q,P*(tj i-ĀDALS0a􈎪h5$bEqe8/F2hM%x?ŌPG1 vhS)oBMϑUUd @}#l>AE1#tё!&w]uDpJB" gbz|C@Ig-x? o>[+[( UDސiS(ˍliE\ioۣrG u:-tfK|AfSQPm ܦr W9/Ggr;lڢĆ̒"g4[5DCw L/"(slRw09e$7;]U"-/D]̎]_GN_.|@*vǢ?"i"IWoU#w (nD6fRۺUQu.# KFD6ev6_Ӽ0V2SFNjt8JP$nCwC w>c, {""aw6uWM(ˡ[~<]av*:@0*w8P:Y7æ,xHu&6)W7T{)侳.ڗGPYu;3o'k"BB7+Te'\Qf=L1\b}o"ɖñ!r)8[213NW_("W8L0G,; # q/sF:*?U.ի ڤmOyʾhJ[%M{Ѱ=|b;?n㒭iiH]X3 &R4T4) d[mKQnh}gRNP!1Yjb*MŵJqxs]wٶ2bR|27ӶK/@7V0ڔIl$NÎzxe~">X AOwO(wy8E<{7T^Hdp7˔5Vڂi~6*:-S_T sg`WxFAfq&ش2l[ben~\ѻZwSW$Ft\ʬK@x;"Fh)QpVܥ.P!z@]]E]FaO>f F~eN:lPQfF 8"b+7z L&e@f`8AhE3Xon.3nܚ6]-r@W[ endstream endobj 560 0 obj << /Length 2848 /Filter /FlateDecode >> stream xڭYK050)R`ndi -VZ=קEQM"Y$_=W_t Z,Dzܯ|ΙJ,1[|yc `"rҭT>ݓ:hp*D8E DI Xmo6/krRjtL!֜OqpO@z/U'!dͪlhLwEج߀j+>ZV~-yx^Uv 5-]ުma ']åaH;"VEV:k])׵9sN'vsUWf8N\TGsX:R{ä/˪0v]8[$VZ7VVk`bKpCl%QBܿN9R6- 8Js)FX R 4n93.a*}r5[8K/<9¦P2߭)]ٝ~v} z8M%1 I@~`ۂ#B|ׄFѡNyqT5_H~ <ԣʌ:N$;#?n /!D8CW5l6. Zչj_g V >҈N7ؗX+Ymx-k@v3 ]7rD@K4=5Nr"!$B voy6Tv:ذMl:Okj!=w-6 9zz񽍝_ eL6#V( щTVz wdIDžSo\i] $SA4} :.aXuEF-qq˩KuShcUU}_OK, ݎQc8?s.ő/$cr*1KW(Ȁ"qA(GK$!O$DX b9Zp h_4qȢd8쒍ّ}!{05({Imaql˯ݦrii#0n*J!F}l P4;,:Wr`-8O&kq o9"_,ScW׺9WeFA%`z1%amEs]Khe Lԋp&XE?q>mM`g!][ުE&&1+I|sb\DV&,.,m 'ؕĻq [>ZӔԪrr"L(;Cx/{k@RprZ#[ȣI 0`( ~6L\"ft rVwVH6nQ"qhc!GRr%{q"9A^OL@3O;t']ڼvͿ@e~]AD?c|G,Y:)r}5H^.Ə .6r;ʖqL9[l (.U25hK'.HTS%+ Jga1k)~P`D }J6 Xc_`O-c;Ʈ* @+B$VzUmQ@ l[?bfBadcO{qilɠݵ 'sتR ^&v \lNU 9ªi]3/ik0#-RjEJAWC]ɓQq)cK;z?dcυ*XsBSc:8woڇ3' 0Uvs'5RJc F_,S%dH;.gB.|x'j@osc ~jJ-[*mfJm⣩<"chlUva;D>OK@$Ogewi:5@0rq!8i6bQ{qv,@g9ou6@;3(dYåM+ 7muV1UmGWN= xH5qTJe_mZMY5{ihDYѻec'blo͵a\4vTo€1>FLK2 euSF go5}AD.d%$ yU/Xo R_#wv /QLhȈ=yغY[]6:^n+L73(%- : =-13bhl%1g;4J'%rfJWQWS=y}`'c/~b/W+DPss^,|si59>(+8JU燜~rE>zc޴gmݔ sX;l>&b O{%DB&˧8VR׾4wDumܒ\ *HG@NIqaʊ)Fr7){/DʅxO  c۞7Xn ؼ> stream xڭXY6~ׯRULVvo*[TI" o7mSyFݍ>>^^I$eƲ("q9$~k oz"$QF;E]Do=xˁ-iDiYL@ sr?08짳3l{f yDHwS=KIXͦд qA'C:dɻC"֕WTJ}':$ 7eI4w[2c=`OĊϞS#kFݖ*yNTy<;ޗcՊ5yC}sߧ!YJQ⽗R&e+4?2J~7쾺CE#-rEP ` |4my7vrvF$Kh9EN9鱖"p[|2ga +ɵ4+@x-nnA*}?B'ʻ~SJC>~T^9QW}+\bE- n>oEKo-!8,74'q~߃BwU^~Vl:f$BU VxQy~w%NĞ :ibHƫ8K"轊W-ChWONH9Óg=n9 Z8~3"2"ED7##AhPՔݳ8E#~P^l:։t];q,{w- i#V=\=k{ꛦGͪoƶST!`3@a1r16 k\( ku4mMO (&N{uUÖ%#qvRݖ)I̋QpJ)~0a|TnG@o ΗÕwPڥjiQ^\QJϾ T"n>aTf}bh0u+TX:Z4ϵ-|sN0~"VI(dkkh aK"qo VUŜ7@*CʠV4Ee 26UH m'RᗅG Ֆw2\gv9H3=04^5<~a!^9g5B#K7.d^50 Xʣg܉Soj%}/,Qn5[&4Ќ4i+UnvE0ӫ>NW3x:];Ƀ `6' LH.Ipx[Z c%LQ3+qN !-ZC >6- /8iN5gyCܺѴnftR Z"򲹩}K&ϖRyqp@,IMo6l``DoaSqJ(]FgMi^7HZi UtU=}ߴ_ endstream endobj 446 0 obj << /Type /ObjStm /N 100 /First 908 /Length 2306 /Filter /FlateDecode >> stream xڵQoS1~r!Yna@|:A:i?}^x(̽Y3.X(cM(: ٩]q]uK!8 8 GT&Π$HLfJ*8Ȏj1ȌcN08f9ql08ghk0ch`&E͔]AWmK%& f)l8]2;O\%M%E$J8]Aϥ; )oVaNzɌʼnTт:brCIRãJN7UD6 #]x Ke6ٰEzVkqY\jRгԌfXsW݂qEKՕb0p*i#vU l1ViJzTXXk D!`r~foBc9x}">ҁAjA{ i}g/U: >_ràg1Ryvw dh 4KlQz 4GmbL=YSmMmcM5JE 9ɔkL2dF{ $cj೨diC]av2@ɗh!C0y$:C[4}ˀ>*#7 Y; e}U=Ið}- 24cXG!)hǰ6 }1 x/(( +4cXO JEak+v\7zRd-^sÐ34cXOZІݱ(btP)w ()yn Q="8 t#ڃU!į=>Up9 Bi@A}/#4^\ziT@}a{^JkC!K103"A%ڣ^}"B&K1k/w)' YSplA]fd5_>]J"ftSPĜbugW[ٓnze^w3`mQbz:^ϋlߞ~]Ķ>;½{O cUݹa)i)y)R.UR2/eYOٞħ2.eZJYJ]ʼe)hhh>z]5ia߬-i%)4֌ ֶpn)24z7xUæBÖ.ŀ[zn\ᆮ2BCԥ(2YD/@L#d9 %fZ<0<%=^ u,.ŀ5q!7Q}^G S6)eBkb@B]fvן]DW>LzoH,Voa s *%8N[$$l>¿=_oO݋gG'$-GXeߌ*G,6-͙[3=>90=>۟.?`߼/2Mx={>߿ywӇӣrom 1h_daL@[s=Șغ=-͢o^Laaf]`W-hB/\o Y4dYАeACYH$w8X)2#RR}wx^lv|+G_QA0bKnj>?Ea=]kg܂ׄOA?yo~s=֌>F$]gBvT<@X8mLtweV+!ٷo}qֲGšO)Z#=̘/tdLA =3Ow?54-nm?g,%{ܴ">xNWrA endstream endobj 581 0 obj << /Length 1282 /Filter /FlateDecode >> stream xVo6~_a@'MRzX t+ci% }߾Hri׷XwGj'/O.'Q2Qd2_N(IJJ|2_L8( FqVe6SLB}?]@SRV}d9p0$CIfM, pjp5/E R3ToX#dr([)5e>oN =m= 13YcO'xnnٖ+?ީEҁ$PsGnB\Jf#Nc,&$B8+<$ލRnewFK,qѮ\#Ca%81E$>bGV֛/s4a<3qӧf~[ܮ̮DH *Yȡ~F,#N!Shg!vQv6B6aW~8U{Gφ MI֥Ț*?F2QvEy*7 m$37=ވ[,Sô CI?+kYov[$*RJBiC~wǔ`KQE.ئ11U|oON^1k*1ܲ3HBx0a6UX$2u!r7c TL{܉GR,*G>G=jkQ[-ovW_ mϗq-osuA EHqSl v\aVTgNeo942@8 \v~s?{S?ncpЗiP f,|}y13~ 8 endstream endobj 591 0 obj << /Length 1241 /Filter /FlateDecode >> stream xWMs6Wp8$HSn'3mR[=9 $(a$T.mږ3nӋ\-o.8N JuAGqa'QKӲ$'-i0s%6A yM}e lXzQJA-ggg`Yf)j 6;!hMU F[%n0 "!LcgV* R8h(W~z:f+uCjԲUkņv> VW>[ ~m FjKZ9TNC EsN%E~іoR(vX/Z3p±0{E9pJQ9iPi\;׋NJU EvTŀ*QLv#?¡UW2cӥ.7dyQaԹ`7rA!^OoZjat5UŬnlk-S1#P\opc ػPt1 5KI@Y='=1.,Q`1'GA\df]cGZV7FbKRߤa-k7Fr6y6nt~:7ZT0H̘InL'-dI9JFiۻAO#I6t9>xȏaJI)Gߕ7R0rc?Ex6iiwi\tT SNQw%w&( wJK; 0fijK݁mu¼63[$0toz]OzSZ;4No0> stream xW[o6~ϯ0ܵ!{Qs[@cl>02mEPuvCC\?~0=?MQʌfrD0F1䄠,.GMPϟɞb((U ֲvAʲgǀ]4F4ؙXYW"RpfF47aDS gDNd A9&^K hoE[yNJ/u nQLh;aByX &8xrIo2d#"[?eZ[D;8q: R]&#7 [™[u([ohYU6XZv….:hY;Ӫy{""Ci~wxr*<8N!*sې'BNYHqpBVr} Wsh{/:t6NlJF-VJv{D4 > PW=v `T7a W${=.8aylvP}gBL-GF%,r*b{ן Wb ro9h{}*(jER;S4ӉKY_x o/LPY캢6fo[4D#(`/'GM`B9`}^N/|3&KoDG~y\k!k$[u Hn˄$a6J7nώF0#xk[m4-S^)Aާt6PZsC̀mE9Ih=M8H(ݑyxCr3-iٚS|/8tҠ;ZVsCE8ttʳhAOyB%ɠcĢ/xKiFq"F8;l )szt?ڬ`7`RS*ލ+y!0! # gz#hm tE{x?c?j\\ݡt7~-)꒿H~+Fn31EE~V^ yɼ]Q endstream endobj 612 0 obj << /Length 1666 /Filter /FlateDecode >> stream xڭXY6~У ĊEz$-@-䁖hn_)K^mIXp8q.u$v HԹ98{Q:YxiT87έ1Dwͫ/A+S/KCЩ 7OL,?sfT|ȝ;-81kIv" NƁ&<ä HCaW]npQl /E%nj蛵-^v`5Nڢu܋KҐʽAe~BU)ErfqA`{7\Dydp(DD7$9nșpCԸm%P@c`ahx-O#HS)v$.oE͕gby S/ ͎?;U| %^Y~rJ;^"lscCe:HbUW|SD{شUCC0:bs,^d`$Wd6ڱR+$BOrL!L=@ևij@l\&Rs9r [v'0I F{B%7sOf 8cKÙ^ے?ںۧj~Śn@&qnz2;Ac-B8 ~u=-mໜɧ53j&{JWge(*CUT hù\ybÔ;-%3(6(O\t+[\Q%2k:T#"YGrgFTAz`iҞ7g> +Q"&A;^@գ{Wa޼&9TcE..)" v:" mdq$%Iro1swT *` =iz5gRs&,3zBe؂ȉ1r`M Sbc)\aQtp[]+l@k=nq@c`)8mH58Yk8ܷ`KhQ#QsҎ;ysos#}?lQ7~\ 8U (yhSA$= e1.%Ri3-|1HA;xav<1NԣC,B.@ Okzpf05+h=چ+]SQFGkC!Qף{6]NЕh`?C[F3tpʾp,%(Ayy;H~ګsyxަn)E#kU<2'Ic"&a vSdE{05L|\A{7;0İ2y O2Ca&,?G"OHq槺 L_HS̐ 6~8r 0G5=}.?U_l u\ endstream endobj 623 0 obj << /Length 1454 /Filter /FlateDecode >> stream xWݓ6"D 0@qs}DIed9G:]Yrzm_[<;d|ƃ13!A:z/ϣDpz9ӈU(>RLb0uGN`3g~Zz#\SQo2ʼn`OfyX# Z{Vzj{CP@;hkjT*4jw( VthGF(ۑ=!Jʭ.G5j-#c6!@Ĉ&j}#kěYS!R%rCXHɆLg;'ȜEst)J\h-^)Gi}5b1b6Z,o.<,- ^+=+x̄EIҶ䚹T^czu6ķ ){wN%sGJ: 6TK0U YLIVޑ5<0dƽ:=~'9kGGqրk3jɐvx;7tѶ:MwY*Yg2J|՝wʑ˓?6d8 endstream endobj 632 0 obj << /Length 1250 /Filter /FlateDecode >> stream xWo6_!/2P1$Ҁ>liu@?z{銀h[D%$wl9Jd'~>~wc譽yrvvA/Gyr0Dqz Q޲%UޭZ!0_.fǕ-2ҐcC2 82MMYaDyY/^~'u'h`b*b‘4LmRja (!ʉrP0rt+r Gg#-^K}D,7 ga$"'^̾| rwkH/.yѠ>ClK ,Be$G(pϻV(ZWj;ć |!v<8Xp0JNaOC&՜}(E$rKfqv9Y%q=Պg4SA.,Zhť]vjACYw ?L*JmE(qb<'( N*hI8QI 5|S QJ*Ǻ$9ci ÷͔RdHtK0vA{)Rlu]ꊗ@~@)}HQ/H6zsYP}U]ʎ +?v`ܰ;[EU'cqsYܜP=Zv^ӍWvxapGwJGIEsiשՐLTţ6 FɨڸzZ񃺪6C6E]Y zKT տj~~ml)OclKw&L3Q>+h(ǖSqP>ִ`WO9uGMt_k4NnEWߌ^F 1,\wP|k' xN\dѶs1xH]Ea_*YGՖOwZ 4S%? endstream endobj 642 0 obj << /Length 1504 /Filter /FlateDecode >> stream xڵW[O8~_M瞪ZR(-ePWLb$'N2hWվ9>x֥Yu[b?.,y(N1:+6gGQ!Ht\]a FaSO(N}dy-l8%Z.Pk7;o#[ǏUEeձFN^jJyyԪyMyN DOJ@ϳ8dӃYXvub:Yd7@w}"U svNSBϡ8H|Y]W}D^}p0ƶ݊F,Hth2va<c =[_cEMa.ah/}H+{6mLD/~f3"U1pB=&<_ ҳ31B6UUg7}وV("ڞߖ▍l +wQސd XmI=gUEG՚v%`jV؅3P뎗j`%br.C8hzx7'ӏO:a^P69mkC,9!$F'}4c=bJaҌcd8 {^UK*Rk¸Ӽ}Zf05Ϸmڞt|l V[N$[ZT[˾WZ8g84~,9rBka{IBuĴ*DFSa8֢*4I CΩ>B0ȴkXQPY|9r/k΍$b86eK=oEG\2ޑVJ:+\7F$ėH"H8\ @3z RX@W Pal']ϩY]M˰rick0 ByA:mCƉ L_菉` p*Qz(xEAJ'6<$1qdφZ#Dal<8 )'J& Lq(؃lYt}D$8ܶ{&nb$ݥL{}bY1ךXWn \*mbI騉xVQ fMQ6ڢ4n smkϨy ltZΖ7o6f7x:@؏P,gMYЋ?iO\ghkoi佇`my;m6CCAnJʭ!LElĎB@>cۗkgU9ڙQҁ#g'|&~SS=|Mn&X~Xęד_=!8GAZwR1P_e-&e!:$PXB>_ƌFP,1_A%ݨESK;xN h3"Z}EjE۲TW}N! endstream endobj 651 0 obj << /Length 2475 /Filter /FlateDecode >> stream xڽko  Ċ޲6EKQ%^e}g8CYrKr!5~ VyݻOi,VwU~d< ,ޭտR/B '@:oKϷpcDy-Np7rŴFWQm3;9cz_ími/RMޡok9׉Nz̉fY<;  :Ts%u[(t2[XK^B{۵20װ zAf {M#5FSfɡkgĒ2?kq"},8zZ6|uF[>VTzw0\,hvEmP 8C[U-zO P7"D _a {sj{06 sV^D/ #H3aZcڳ?i߲Ohn\hb]#/ 4YCM)ݰT!;>u$\rƞ@KvS2b_ d\1sDNbUJW$ XuD=})h:y؀ ˀ۲z{j!?ӗzC;,Ҩ¯Ub &}нq3c_NJZ}o$TAx>^:|mv!8$) veNJ;\35|KLPaDc^a9|IVP^ϊ8{YMܨhQ(PvX~1KtQ@jah.Vhull* %(tFA9we;`dEOyC*~SoX {E}ΑEor ѺM~܎+Hg;#~D . ']pRK n)s9`p?3m#Wh5|ٺ\[I=_{yPmom|!jFV fUZ|G%[7 :ӴT&l$]-5Y=Ůmr!&*$ԉ6D9V smMo4Ms3Uh|D{ @AGo7g`1 nQdCLtLDT;Ux#=dg=QFw/`Ws}F-{yϺ'l=, "?=/NxhUJZ%57ߗ "%K$rh\~:)"fF?kX\ c+1Lv~iqזBWhY ׆;AhT2T;_Pl XT]0/c̏e7d '@ԚՀaZUU b fjT5YN ?g!#@{BN IsLDUkj٥gB9;7`V0my!;d1+v/ˠß 3YhD](s6Pelv=5:B$4?D5 1J Dz> stream xYOH_ iבdf~YiA@c C+WZ;oySnPy RC54![eAI# A#C{ޚFh%AϱXV5 o2yL݊Is_pWA:F6<޳~[]C}D`k%}owշnΡWE+eG}.?ns^~b'4VtYRL"7g]2"W{S\.i}c$B`Y,/,.|^b%Υ=BO3a G|i!Bt sT3e,fG@2X37_ 1±/,vK.%J`ٳ3r]iw_O5fqד8 ћ{GzÙFf"r$N3yԕ(N27pc'ևv6`qbD\D{HA 6^Xol/;ـee]en0NN>S#щ<#, RJEھQUi2"`p*Nq:+R 1"X =b6q/݅,[$-/A4V >bH+Gk_?Ia Z@}R(Iv.20$"$@,|YuPiH}(kak=~LfpV/tv']19ArH/Po0qgFCx p;nesI8]a4{ endstream endobj 674 0 obj << /Length 927 /Filter /FlateDecode >> stream xW[o0~ϯ@I'R @i}f4eۃCLk03&Ui}q U'\sgcjw}}XFڮ 54jS2ܱ-k@xX6mhƄciSքLee4ۚd]co̅u{HVČ!!&l*,1mI`pOLmGEp# EZbb9A $ Rb)\9 C4h{ˑ7< &<TNC]0{ tKRqyHp 4k$8î XVAC-[0 >>w/e2R('% Q䚝DyƔ" $*&Ap۵P]GKJBH ׵^l`hV<ÆE!7*mSж`͠$ޫ(Yάr&UL_޷eЧT_og|w>KN&K>RCV#B0B>J#L; 3Dܒ!Ce Mx6,}[f|/[|:myϺHY*pBIq4͕whjvf+e rL"|;f-A+޳̂v`LmO3Sll96W8^rpx9Oh- S|+DϏF솓||^dD芝sweP4n~ūYMTDsżIiz ly`ˏ≰'VmLỒ"ʜj9d1);K~gbrޮBX sk= zJi?YU><=%'u X_D endstream endobj 678 0 obj << /Length 1265 /Filter /FlateDecode >> stream xX[o6~ϯ0uK aMa4oihrȒK~xIrb9߹_doxO'ݞ\\d&z Bm2;aQAB/8&-X7C1xRŵ&sQY]4pހ =W|]YY|B/+P\}eb8lB,B13a Axv3g%)x8 (O?J+v$^4A/-HqWb%9RCOv+Ί6ex;RGK}n> i~@Rq@2I멹=R_TWYFf; ͔IskDxI+d[9@^><ꪊcZV]y./cQ#&>V! e9?H?da/ &"t1#-YéhX*~p: lRոIgV.ŭyy~bmT}bgTJ5eJwM(G͑e xHҪ5J8q̇oF:.c6E ^kZ2y \!J ă WU[8ʷ Z%7ܝ#7w^>:nw==/occ[U?`UD?C(:;KN0E.6h5[m!3p>tuIMlڬZP@knra, + oۓxݣ endstream endobj 682 0 obj << /Length 1004 /Filter /FlateDecode >> stream xڽW[o6~ϯh)۱2x([mkDM5w(R(I {0xw!iY;ٛ{;8 FdLW<F5h4tf/B*Ђ>-b1ZB!'U6 _y;CۑO3ls Вi_.Bu\gs.bf=d?oqJs3> $w샖t*O]2RҸd=h!ijpLY__n*l6 o eZr5D'yĎ~2-ޡhjMeGKq Wc8EoUBNS2*;!+3X^\{ rL!QL>|)]mӳͿ endstream endobj 577 0 obj << /Type /ObjStm /N 100 /First 878 /Length 1560 /Filter /FlateDecode >> stream xYn7}W1y(dap m #pl%qckYFU.l#~䞝!g/31E15IT3ĄlBL 2qh$Qbh=xIu,E!^<PpQSDiE{3AВ:{koBI+vrWB<Ү" 9!pHBB3 ^sWq#"k t!DRh!i J8`2&.'E<$$(0RBHA[< ȃdFh$68 I+4HN-0$6CڂrT VvNU {eF dFP`̂BDfAY!N3N60, q&F >-2eW u쒥Dd +dMe(C5F7тF.iZ$ :+uLW0|F;;9p̾i_6hHNɓK\6c(+v27;;ًlOm  |hh`<7Gy|4s/NގG3OWFe쏯Ӌ9RTnNf݈ dQPڗ5Q󴝝g-w޼h9Vv`oiLy.;%E]\f}yhvO9hGկM{9igLgbRR\%b"eJVMu`mJfL*0&2o5dlt|+fMf:fBG:R ʀh}ZBxX*NsLLu`lktfv-pKv $~]®oн(b!"{Z=ɞj G n\̕lγ ̺:L5T2Wm5m kgSJR8n2q+9ׁq"!6Qx`GGk^xyi,\ߋѣ! :!JobH)K¦腭E/ r?`*$ցh.2,G/Vg~seXӥ7n[)[Jgvؤ/J{2żrMxD`?@zm9~#ͮBH{h| qI EnVb^.3LG~*#r0Vg5āp]L[{*Yc{CC*vb%\Ou'-dսlRon"6.wh;6gk;}7m]Ml||%8Ƭƚj}1Ē.5RgDi*ҷ̱ &9ցY2``hR%88W&q)\3V87- N h^A uzlyslбݜ޻Nbܴf7t9 endstream endobj 688 0 obj << /Length 1390 /Filter /FlateDecode >> stream xڽWK6WEBc M6&ͺ4ZD$%l_CZ+t $3o>g(Z=߮6iTʓ<1ƈc*60.6YzI 0N(! ƕ1Ya$A yjlׄx $7HE pN ۚ$, oi웿pڭ: ^nWbA<'q{4'8G*;)pPmpc Ѳcqc*1N6;8AULEkRPn|sha|k'FYʈ!cfBɋ ܌wJˡ#v=2 TY`t W\1͊u-baI`\1UK~8y>Ero5$yJѹܨ%Eq~ywD%Ym}ͤ>HGY(1v Ws}X-&_~semNr%Ttz<=66 K9m>^ؖ٭֢הʭ{+Z;1]-j9A)5vr3*\,f;EYΟki3ve%,C?tLB=dY ֍a"XnΨbZFq9G\~P-~x#?z;qՂ7I zuBz)nKXhiƷ,5uOӿ@Op P1D׵38<)͠ٮ "bÝ6QҾ̚u%&&S6eu>c]3AK<r>iSp x1gqxp&mx$CQ׃ό= \j;r%{P/dwXb㉩n)h…. YY@),sn#=?B6@v :5L"+E N&Z#H+ ȇpUn! H CRXq L=;&ٴH5@fc ǻ<1ϲ r q xܽ1\#M񳈍zTvgGg a~h;dz \2շQ\=^uhQat$ӷAz;n&!Ϳ3D endstream endobj 704 0 obj << /Length 1424 /Filter /FlateDecode >> stream xڽW_6OqfZ<9ty\/m3IsMdm@߾+$fYxW`$r=0F ,<Ed&:QhEfv1Nf-?\`=Ak#5,׵̮絘yҞ葊csH{1Hkݛعw%'Gdo5Z&μYWX'%$)/&O 2% ! .8+WG $ MTR:Uo3/tة䌈~]8Y.)6(`I_/5ؐm攰?zc}ŢҲC0@! C:օ,wQCm䛫78\yya_U۔#?A pduO~Bю yj;'sLT$;˰={WC PwrW5xo0D`zg4hGxGRV'3D U[,tW^Pعֹʐyݬ0 KQ`ɖLw+fj}̭iQ7=ơ9 byH@6t!YWR~1,UWޤvW&Ri+_Dά^KگF_NG˳[U] (cLshcF{ѽ㌶~o4{:֨:sw_ Ie{'Ynta-YHI{I;ˈ:g~tx;QU*|WS endstream endobj 717 0 obj << /Length 1723 /Filter /FlateDecode >> stream xڽXK6W*9HQhEi\n7C)K޽9~pfiMz90nv ȖRFwSzap՛$HF4#4A)"xʾۄaz*^B/iul !zj'An˿$S-SfiEAgt+Wwo$/qϵnۈP'Ѐ10![/lp2$Ϩ#J`ݵwwP⎷\: %W g]Uq%VU4" 0X`I䔢M?rY1qddpC$ˡVLF?89/0D`t݆&kGߡ,]WLgT֖JJTt坝f`Th ވG( !xf<0%I?$"{_99Ѡa0li׳]hIﺺƴpд%) 0$lg$:#C{p*dmKnyYBʭ-qlP_.{ֳBςuJ.aC5WQKaE7FgzVaAmE=9j5i(>?^cp M7,kn^T{sg6ym#D)m#he|Z588 R5v6([ lrbttcj5Wt㳨+К`mg#fiq^޲Ŭ:y0% D6[EkyS!7zIlz ^Ɖhٴ{aW6Yh~2OEUNg3TFlsF4)+rD2痯oVrPbm.6u|)MmFww9tE\±+j4@ h(K{-Ͼ$v[ .t3D#$'axQUμ ;ϡ >H!2M?n4k\Qp@ӇNܺbCH&oM"gp >&,U? 6 @c4IgX1& sǦ 6N${퐓kUK8)7Q`ֆTp#7F l l6ox#WF<`bm*/Y>Q ֿ 6~-愓ph?vYa >_AmH8nB6~g/gP6i7)! A1:9^ztpNFġ'%O`n7n>̰=)srKc^:pGM(Ɣy4vO;X4K`5C{sI$B9Ű>(|Oj`Nf>-%^xU#pi1:L3I9 -I|V$o_GݠPh; IFG%&lID,4 M/ %\}>(35^S<}br}] endstream endobj 731 0 obj << /Length 1274 /Filter /FlateDecode >> stream xW[o6~P`!)5밥恑(,z7{oE:] ؋E;s1][޿m+(&4 QbX[t{@K7fgScdI‰z[A$i~]u-ܩMDӰZd>XR]>ƙ.sgdJW8=OpeTP2JC-GEV- 18:QU2D|LW&Fx/\ I28Ǒх ~qf j6nC(&ߋo9'a%>!O!B3U:sˌ%'.%w[K4\=3܁l_ˮH3O=~13R^dJol[jܳVJ1„b(2M];--AŭB PigPkj%1 rfSeo{#tSTrK;i;oq ykÉGYU6j!(Xf4#- #:JY<bƗ;-_Q\Ump$nyJLO1 c BV"VsM+w VŒ#SS8ޝ3sw@(T':C>CاQBG= uKbxj@E؄e{a 5u/#yM$7#b̚&;;9[} ^8D+o5`^diKc`Z TIz/Ox0~?SG׫8\}3en]oDn|G!:<WK Η{/߉urX^ȮQǮ |9#x<yWo_ί,(~פ,AIT jQRr#gK/6PζgK>.;ógdм4Wdf `97frwJ|{͸ \D!Vvl:vh>&w6G5*#EL{t߶-ЄVks!Mg^ltæPL'1OE T䰒sF?U\52`3!~E|' o endstream endobj 742 0 obj << /Length 1840 /Filter /FlateDecode >> stream xڽYo6_a&"r kfða ևuD\%#x_;%K$; )x}PfY0'Wq:[4Lgכ ?%c~fw/ \xy($ZKS_s~OY" $pYɀâcyxJWɛ,ӌ6_|&iѼr.kCOMGQeԃeVyNzf!;Ni"qX(qF8ʑ"I/ޚi[x ?6)QY#WIBn#PQu[ -{EڷR漑&n{&u`ylR6F9 8+16,^?ɭw/s7) \_:մNBUw[5C<Ƙ φpGd.xovrzxT`Aٔ0rJ I| ĂN"Ms6d݈.-yykL:i+9bRh$LYιbdo4t9{ rB=c8Z;%XChsPUs4ЭD6n!#"guzp$$b~;[;Sns 7C%D|0Ro13sZ?KG}J50Hҕ&͹=%‘Bf~W[MuƊ߀b\ƪܙ,.H WS!Xscm96gB3:fҦ]ǎc)Pi-s]FDE{Pщq -o7.h>.DInhu >̯;*CJ0 .@)e/ZxAHw7[刬`D1NR'ƩBkBU 8)8T36ZUt^e)4Sdn>م;V]7#B\irZٟ F a 21DzS9J?3 E«_B E' d+Ÿ,_FMZ]jm,o1}q>>X3 #)t"5kB_bίbҮ~uY@.XkJo,$[ ^ iMEGgPYo4{p8ɐ]-?8.dž}=-ޔ)+y4B$ }^n ?֑Cu=&@yonM#*VN$ڥS;h͵6\[Y *K!Py8s5ϸMFK?HE]ۮL8^ͱϩds QAQ'= &OCCKwa.ctaPҧK%Tp*Ue:kЛL'Ȁc\3̢[/8H48ſCHq ~o"4;뿠"$Q"A @)~/ - endstream endobj 753 0 obj << /Length 1026 /Filter /FlateDecode >> stream xڽWKo6Wً\D I=m^{%!KQM;)rI_"!gjvu-"9!#? g9܌)N7ϫ`q0Aq\2ÖΧN(XO| h s@=B=l˝( N1="ܻOS$1_jK+@,jQki~lY6|t!֒?qioɪ.=EIkmi+2]؉2x(I٧`ȑH/thq<~Jk$4 ZPq8hEBA/ CU n9I\]TŎWdZ\~po !.KSQ٥6LT2?V0t5s?vӶќ֏.B5u:DELͩoxJwr^QU# m7mKő˺ԣ%iIaI ^7|NC4WpȽf)le H^ŽCa :A!]^vfo& ay cl?z %]u'5&#GPoݪOYQ.Yi'*Qz5Gm b,ڲjO:LkQkVI3tؑ (-!a} [li‹E GnᵓS~`$K{C=[x~`A endstream endobj 762 0 obj << /Length 1845 /Filter /FlateDecode >> stream xXKo8WԕCb$}\=lXFfldT%WiE9oFՌ^>:zt"Ng9SήnfR"`E2FRϮ?#z}""$9q2KeuBG4BȘp.f .aQwsF#Z1%R,$%2m,-z $<-MHMfs"xp̨ ZΨe##iO^a␙m0eHiݘ}p$# ^ ۦ$, %wqc$7^ nv5)%`sg,^b~ڌ szVG8> .h4p`kCxM)tXJ%-)qAHHU',ԐZZUw4~iS /.MY# .-[bZsg/!a`Gaܶzؖ /4j[_f ۦ5Ap D7/ma DB{Q SXr^:}zʅC~;#q2m4ZhZ3sҿa Ӻ౪ꌅ h/yc@lk>kNŤ# &M=!H,y[`TaY"tismÀء;|ɰЕOp <Ơ<FnI!lѤ(Qk{:eL'SCB_w׿3P# JMm!I"T[NY 7h;H8[[5OONvo/|CwcM{teQ%M,'-M:B.SqWaU8vxEHU @q\`0YǾ`s3ؿ Ux@q܋#E $p܆ǬcUC} g`Nj8l»]}$C4D|jd¸[;ԥtֺjN Oqz8;~_:'?o '0@L K 2H?_ч9N2RpxBh6܊P*)7OFYLca _xxf &r4$}]q_wx8mum9p"zCc~iuБw)!we0C}|_|q&N0{j =OSc\MBDï+D,G09< " %|$| gz))WY)S؁paƗr5m)7+o/ U0lUQ& p)|uɎG40ieF>.S\h*>iٞHDzO0!y<ز_1cId3x~_ endstream endobj 773 0 obj << /Length 1256 /Filter /FlateDecode >> stream xڭWKs6 WhԞ %aԇ&M:lȺvDۜHBIq|o/ 앓l>LEFWYn`-זC=+t;E2>Z+6qfDhy-HuzqpFG׀ߓjL<ӬHYyxj d2EW3p+HܷcVI\@ZJ83<}F334O$&6A׈](V^śF|)]ǎ%͎UhS jTP4c]  ]r7V%1M:3wn4:^>(ռ.RysQb&'*9cY- :Y8nZ֒-.|Qԫrѫ/,Uw!]O78'"ŕ&  K.Ɍ?{<7’g0W[5o硫 #j|]x5y2̒!`U)Һ1@Z ;J^;Uqp]Ch}k[~ҹI7*q sgO!gkD3˃0I?N6cM ]Nϱ\/TȮ5s~pQ׉}4ID+rcSˉ%vPE /h7q jmz2iKD)|Lp}_ahb2fK~[X Ի3;tï6ƀMZ?B"yx=FM 8;3s x =Mp<8㣶qؐ'O> stream xڵXo6_a@g"RY7bE]={e*%%;iKf]ǻwJ0̂٫Q2M7dϚ~fU6'Qxh bC^[ վj~^ UJJo{voK-QdX[[-ֲݩfuȵJhKҏ6LԻ#R4@_!y%TR&)ep_#dUgkj"'h:,X5'ƌ=c&x(w|w)?|'jLKԻJ=yj_ﶪ ԥe!R5>+*t ~F-#cʠUGWsx]A4YoLQ_p"B40Ǔ#vhR~j콦x˨twCyP\9}19x6D,VXUCbTqBvH 4DmspKHCYաĂͫjO4YrYY5 ]&a)(V BVw[ҲxF`ڞJ5P}e" D2 h~>z}Aj #URv}k +a)fp@ʓFԃy`d'bȴ⦲m`-VnѪc]Y8q0BXP3S^QR[Qux*Yd`=^:⿔`s箝y)nS'tahCp/*\,tf~> a4L ? Zɪ}8oAj$W;~0jY`Wm@(d햢@>g?]PCKFЉ>LvyƜܶvݝn^xp|cz`ټ_N[rX>83>87ږ0csb@A" w m A*v F4%y2s Y6"ZcoK<|I*v"Q$٣E鄎|a> stream xW[o6~b1!0?MS`hnq<(Ĕ\G,r؞xDw.<΂ֻ:$!B!zɭ;;Ox 6Y>$W/%b)#ŲF嵇XuSr E+Cq ZSLS4Κl 'UFgAu2AGW_%7~ԊeX%^z/KwNXH8F ATO l~рH:坒Tn `-gEA:ESrTuO;LNk@S-Z?ejcijF(D[Z$cߧ$i!'Ӭ+Sɮ}Gج Ў;*5>hl&;wzH el$ApmI|8ţ^spr?4_}kJSs<Ƈ?tDap8-?Gޝ3~#@`>x*HߧNk@=*Lj [qzɤ‰,L|l.h^:M&O7"mйi>5W3/S sqyXMU=on_%qvABVuScSuo7 $oB S2b=ry(//-kir|O҅uk;y0KCY؇ x'>pt$F0~khJU|EIZsv|E|\2G9e*QIZg`1aXZ`O%1RW8}Tz0DVgdu!9,ہZoe|EuT7|b{GNlb{zܷNY<(INҕޫ) 8h'ۗlEA &8-[ v<86>z8U'8?*o endstream endobj 684 0 obj << /Type /ObjStm /N 100 /First 876 /Length 1592 /Filter /FlateDecode >> stream xX]o[7 }cP]"Ei -؀"mAMv8H{xn#ΰGIG%r uOqB.Ղɑ:$$щ;D\ixSxfW [\ XkDJ.&%@@1/fئA\TX!X`L/=k4ńAX=; %ƒ(*|xfhR N!$0ymʌF@$A6TQ׊@K~kb,4s`39I1().%* $vg/^qsxU=s-t&i+ttoxA0;Q` 4Q=+w~4n{k_>&n}}N~꺓?|NG&/κ0ʺ~7m7cA\=8l,9,j%5jf>K6!rTU|VDNR^);2W!p]H O ԎՎA-ޯz鶝K,|U]0Z_K-F8Op#"%QV /fv=Fp&0Y'^$4jqTvѢoIJߏMi]5m5-iMW5e`2Yl.m'hNqYV9 іMVF[TUV JVVi֖n2[|Fͩ6ʍv3(wJa"o endstream endobj 802 0 obj << /Length 2303 /Filter /FlateDecode >> stream xYKs8W4%UY4|zf֎73;TM%dYP U~v>d:v|ً F_wCŻ0>˂,3HI8bn\t.ERF,Y|,&oj,9[%GevN LJn)ny;;17=[4S|S˕Jh{7YWi4PwkOfA tgMWD(ň.rSw{Քc8BIx:f-98 `,hg޵;v_&/ڞӒIbEH18Zgȟ9t,5 v왿@AuZr8X@,U-43⠱~ߜ^Qv#O͋.CߕǘVx|5Q !*wN)(V5.KH'k<]܁0#.Ժ^vB72]oz|{tp~iDWp|S]^o<~Rg(|ذYXafD29MFa$ DEQu+4,0@^j }o'&lRw- yc4'6Fm+H*uK n6QF-A 7Nզ+3BlDt`ίzS(勏ꠛŷ ( Q:EIP\)O1'$a"]"`@8Z"WVDkqٶ ɨk +S<`5wXnDih :}Ig0>tڍ؍)väL"EWdA`Ħ+v4yGcA-Eݎl0`e9yzV͑k^7n- `VL ao$ X0NX@'[MݒJ8y.q\gB1 8uHnsFr8]#Tx$!iU:1@( ?4 &_WV- y).$uS[Ֆb1aWVf@@^D) +P%b/>Tʋpj`w$p(L30m Nmc=Zy,<EMdF^> S\li Ƃn[#™V;>=|u4;?H{PkYqz(2-c}iUӌa$= 8H#N[pj+=FO$߰C%<)! -cjwj.KEA$ yN mx۸~ǽ2xIHs,>c:8``L8L|/ ׉2Z2*ۮhJ_WBjt|v憔 \Qƫ4Ӟih}zɌʆKgD`'v,!Vcب@MKݖ |lonGD2L%׹Z㗽Kh.t[-`-Uky\Zx Yz_;|@7w?A3ˑ9  /vրnş> Yڃm!'Cwh|!OIS I;o1e-_V׺+7~;VuXiUUy ٹwhPOn]n1z::ϲJ֙0zjm$N!Rq,|-`#eo$-@y7BԴs8Fyn#2hݜIw>l2pj! ge2XZtqΙdt}Lfbnt i[ ΓLQ$d,dqJtʤ44n[#%OsiӐTW&qG]Ra]hF^l_#4V#wz\уm+ٴ&qRhg5f#MfwE !0AgAAEάv;p ? Ȗ,Y1V Br)O2/7+hH,G1kb@q>0 endstream endobj 812 0 obj << /Length 1348 /Filter /FlateDecode >> stream xڵWYo6~MXuY 6Ib@٠@L;l$KRκXoT$G3ÙooO.GI~wPQz4ʽ˹w7ҟ!X(ݿxRqI*5{+Q`/ޤ;pȈ|ժ$'zx^iM]h⧙յ?N``فh-q ::Gr3[b? %('tcܘDwZ .k'@-;Dߑ L 9eA2 >070,WD^K:o~=zIEZHg%+vNո45キ͡’/fff5S# VAXV1ųq5-M iWU?.r|McI7qKpVD-PHlSb ?OƲjJIi:h9Yrij9)|Tޚ{BR܉ kLV^aZ+"]u.S|3de8ĂUJ}5 .IΧ;֎!l84 e98ATil8$@uhrM I]{Bjk=܀efkܷ7G`qO[l%rv5Kòjf%-t |b+̱dϘJE]I,M05 c<5˷]vt5i^,և#hПI|669վ?h-Ow{6.i&spRϕ`Up"z#sBBfEWTGPGykʋa,_}0egyQ0x<6t$퉇~}ՏNA0 tWlΡH~_:Ƴ ^8)G(tmGS h4.UD~sLDJ`dSSS  ͂V85bSCTPT=Zd&{ Ї !Nߎ1R9~&ƃOŽ!/EbpfA;KfF58jimawʒ[[ V6U- I2 Xs-gڱ/0vESbOԟ0O6cA65=U&[m=+ (U/2Ux UuRꍭئ)M/9kV.*WOpu9$$`Y> stream xZ[o6~ϯ0P Xi+6@%&**I5~x(ˎ2ɺ*}#(qݧ*ZΗv4 `\frq5ZxNnW]4\Da.".G>l x,ԫ%Ƌ,t~o. b(WfdH$QGh\4O6% A pWQAʘ=Ч9O LQ8.*FCސVk] 1Qd x;Wd~ G\`q͇su;̢w$[STSRRS &gw]K$̒CK't9aX~wh=|й~@1 $SeAF?L fH3U}VZ󭅬\)Ī#DyY.M?ok_r'jZX#җl핯+}j|5XB \&{HZBh r2sRCQ_ 6*b e ?P1:{ Ёs61H{+C=-fqe8KǓZF_i~~l @q\fԄR#@Xr^RE&nEl^m2TmܓNRO(:VtpKfNw`&sEA͘6~`w_CZ-Tkٟg(\U'Q> stream xXYs6~L:-ձ`)1iN6I3ߒ&a -EE\BӆH*( ֦ c{%p)٥\+1v֭N~j)fp4$ y**.7v&ĮFlvƄѨMqWlS4K2[4k&TR"CY` .T%00YT@ ɲ6xz ɡ[G;xn2O]xQH3j3B=#`kWQQ)赌VZ& +ɿFy  sV?|o+ҵvF\mlf>^Y%6%\R&fV -`A)/Vv#X3 F\UBT8kUFfs9'b]= 3'*S&kVUVbCQGxB6uŦg* dlPҾtީYL韡)ϥk89Ls͓T!9󚈴&nHY};3}NSLv%_xeV#\R57}ܾPazZkcH+ij9uwnޙ /V1$`mc2֥R(lvɔg)+ZJDR?n Id6n'ߜ`$zh!\k 'g8TvvGҦ$n!lĐN1B6; ~ڛeU''Di.N% ~'W > stream xڭWK6Wɡ2R$Jԣ})uzI+6RHi _8bp7t}f6ͼ2,3yGQ$0KJoS{lxqәfQh C0(*MW,U$I !Bf"~ȁ𚈚}pU +*T !;^3H7FF| (,q9Eb~ HeEGp|v P.r̉:>dNsՅv!Cav&';%u:6wnXqee6ڶis XAZfľhI>*@Yd(cfxdV,v09(C=?3a޾!3TTfA2;+Ʃج8WӰ( J+QaB? ";*f +TV"<ƒ\/ Ϥ+*Fxӳkhv 1kISpc-PPΌ՞55p[V .L&Bj|M;X\QFYu$;zf>e/oəqFIRB 0.a5M}@kƖ˟Oxs.QBMc5牫[>T@0pԍ5ly\<pB/KvXDž_S|Djl0Z%htto:s60`] 6炽l)v9Pg xTDQe8iƣ 5ƾ4Q9GwlS pGy} ?d̩PޱPiQC#e$sR>@x>`>`}>`ѵ*@ŵ Xev1S*Hj0aՉ`d+26;Fi퇮3;'Pe{D!̗uFǼ?e! AlS =~T@68*y d6fD5@/>xU<(>{T<3_|8~"*G}V #S+e:! endstream endobj 846 0 obj << /Length 1354 /Filter /FlateDecode >> stream xWnF}W1H ,jv- [>5E*$eE}wBhp`/rxvf-Ghrz6Q F#R/GwkwVicir ,a7S*!g:lTO}dm>#||bpcD#dbi+Cov,Ӭ lYcJzb~خaÊ7lQVκ*ic>ԱܕШFsY&v붑m $ăX1PޖƑz>"ql'>'d d)k Vbi6H*xr+XkD`y_`uƴ`3fgR) ]ZJw}++Zri= Is)%>_֒P!$scRD hrm0/T^p9ň$H Bn+HyB Zj!S NuVĪ_\+e#*ڢ ׍ XY1i\TK ! n-\E]רraڑu5ߤhePi%؃U>c>6t!`cX?>z 0C!UG" 8DB: `%3OuA£ 6mju KlrqYVL'Mœ77woƣH0HVIюe/8ST>ʊ5r G ܪDr - 43ۥm~tU et|-u" }p˶*XݍHrˬ9&viP^6C40TYR+ƒq6U2]i>K94DƯl6=7 tW&+lmB<7XY]4:M6EWo%9YŗW+H[7Ih–?A endstream endobj 855 0 obj << /Length 1301 /Filter /FlateDecode >> stream xXK6WEִ(E& M@KB]Z>d^m-I|Boϋ>N9'Q-VCD`$%d- Oƃ$(5Sh)dS0;&;gvO"/IN i ^ 4 wM%Bپc#b %fs/'^o۪Y-^ei9k" -3~*݈>|h,H~m*)X]4k5Gg+溽ļ$CQzk#A9Gphpa..C`č躯sVgwYY([]Q͍<ڤn=˃fCF2b_4!qv[CX؇%3jÔmAmRSev,zLhz]$pFwŤGԘNhDXbF8+ J.3!*74e 7A0~+wvXa@j#J/͝m~fvǴc:媓aR3QJb{/\p%^+RTb߹/ ̑nSԢU{ Pxagje !W$"7j:8u'@xczHl??i+NBBI8%yg$5?>zÿ lۡd?? endstream endobj 866 0 obj << /Length 1395 /Filter /FlateDecode >> stream xڽWo6_!4*1MR.i]$>0m%MzN9t;4uu^^ތIHй;R1FB/qn2磛ܖZh-X7o@^ϧD1mEFAOvb'<gTn*T{&1f1˲.V(N3i _7Z=!Sʀ}-Lf;S1ܹeJm0EcJvD;.30}[FL0XpND# o9E$.o,$P5PTT+:Y9$wl}̛I;5s~?ŘXFeTl:JEʶ΋)QN/ŴJـ;ċ8`&ps아R1S潨9j1mpXfX[`!yv2&f#F p?<aOK,<.m1hÍf)cabɪ.R\8"8KYhfm{iQba>ZdQ%0DYuި}\ޟZ,9.`'Dx%QÅec1Z\/u*:wq%؋ŗf0Xo}'%Cm`P2Plh >r{4RzC3BQ &Vp֩kљWF 2q4eC)kwKWmo9Qu+4 endstream endobj 876 0 obj << /Length 1963 /Filter /FlateDecode >> stream xڽYKR CoWe;ٍCl$$Ύ}NE2Fu&؜6o}|>J69l,sk&?>fa$#ciJٳ:iynO ώٽHa3$w"ꮑBlK2:xVCmez=Q׵FOU{дK2xu΂ENHC1#MbÆsM;4 rnD4K=qj֔"`BqNR5EBE!vIBGПu?5)βE?2~]89DgzXrRj.&xk%Xu1q.8Z*ӿuNӦ?3M[-D7z.5 t.Iu(F[3tʪSK.;"wUf׊7e>F9K~dF^! jgvGwȽPV~O3>-+,r϶ق:eB"}4.!H|!xײJ}\0yRPtU*GbM4”e@ $5+ov2YE='v?WvY^B{6;Bސ IDʵ4'yt)/5rƩ.z$~Y9ԣn|2C- :QvV垐#8eE,E60dԁ%4WLX zyl [!<_:%$*{ 07QZ_ꨖzWZܯ !_$@x#o{E3~vetƌ'>EoȊoN?r{k:_("O@r̼Y WZ8'aH^N6;Z8Cd'vv:QG8qW AuKt]"{^vw~QNz5N.XmR?\؛ qKue* `Ҍٕg4}z'ML[xt8Uv\ײgс`ʣ1 h\DxƜP&8bM8(չK^XX Oaog=5CV-r`uY{8sAb9hˑUFE4SH]=iۼHc坬kڄljّ ӊUcʿ_ J~7/u_h2@s79^TE vȞ]rE#/yTPQ,xx>bz7YH9Gs.!JuE3 4c|zBHT,D&]D}A>間nI0ڜm`^̗:8eqN: &W)@t@(-K܆pۦ'5g F1Ї~w})a,#?BpC$a<2ɪ !BN`tP%l(@ P,nU].VZ \YfF$XW@1khlh_^2#d<IBkbkdM9e+4v@s1G;^s 9Mr$vY|R%C/C HQ#>g^ZYs}u}|_ץ]We5d4n0]o j˳эsuT_̭i~zY?4hf/RŹ?i5o"=Ca;}VDsoIsM叨Bfd]Νb|xxzzb^nOů:?=/: endstream endobj 885 0 obj << /Length 1499 /Filter /FlateDecode >> stream xWKs6Wp`o!6Ic$$L) ;]I"/VτWTJH+K8tQ5{ /|\>- EXT>J$e.b ;"d8+QTh+Hq"iQpuNb9Tއ&<:6CQT+Ϊz{<8p%qCk0Qv.%'ok*'=Q1{dz$3iv'vŸjUi0Б'y8 &aV6ӁRڵuWVE/֮\4{4(t.AԞNk'rqJָā{AШ ђ/Sl-8jܑǭ2IB;wa,!l^1,S7D0]ejr427)Ȥ@Yo<ڧovz}nǪo N&i8|nׇ= ' WiPX#A;uV1k'sxcM;eFd#$4T2P|Tմ{Hx>g]wbR)NUyM+a];/rlj;3 o W_?`rk*I-*UvewhhӡV4/Oo\-os0OĸS^uȆaK~ C[ƫb|glx0Qe{ endstream endobj 898 0 obj << /Length 1715 /Filter /FlateDecode >> stream xX_o6ϧ0R`E-am+uH-ӶZI$IwGRER bx;ȓ7YOɯfσh4jB=0Ĕ͔%λa0dABXBAYrE2^U=/Bj`L?q5͌P|WRuhr7;Hh\_CéTkhye~FAx̖u# W ee^)3QoFVrWk ~rWpr C*d~WT.+{#P/4 {?&_oևm}+®kI$|DyuolHo;z#?%ld[׾UE!z+yŏƦ5V+ ;܆d}(ۻ ۹%s%x}C-5=GLhݢ:/ pS׋+e\]ݭ8C=Odo_m۝?H'y$ cc/BhG-۠uu&$FPo='v܌.Dcirr+4U#K3zFfK+ L ͏ӌ2 Dgv|MwNmdcBX88vRp_pQ6d,D>X1"jm&' m;okXE`ln7n$6e]@1z)L#ɤXts? oSrRnwC00@_uN>!J8U&ju7OX h"r}D/6||3X)MtJ,y%5MYΧ=iO$xI` ױr^Z{YûB)v^Q~`]^Qb />`0Ev JU4eŬKpc@;ɐ͸i;K)dWvRX^pE9t=f?Չ'zD} nD8Fl{+>շ.XЦC7e,ꒀPBt p:}ꯖ0,yQ\},e)a8Ehx/wn鯚*)GC0#%KQ۬/E3Z]p /RS[i8uCw9o7?|uvxdy>5UvV|^L/eK>v|1n諡Q5?&u|vpo|ͽpxׅT"/\V}j]e!VȬw3f-l-5BlN" %{~~׉ݦd={9%> stream xYMo7W]9,NZ S(m"oVc[r˕- =;};3yWj胔 J͡؇ 5HOs,JȽ!+O!W+b>U0N)>!%m!`I T qXRc))r{W$@d j.Or;y3I@p `<}Y0 %r3x+@thΈɞ Z`8>g^db%0N Mn7eT1A>0dfB@u-NpW=󘃺B7zkhc2/VQ r3ۛtOqw_렏,<f߽;dy LVC ItL5Ebs՘7`3X õ }eFɌ4m̽F44=b%ޖii# GCM`4lm`5Vm`Dhf \F ˏ*'Wm9e*2"1պ Ĺ,@E8D+Xl8VI Dc_1v7:d~1?J}s(iWmX#:`Z{t{rJy[) RoGKTtl:c7M` ͩ6SmhΥ L&j)rm:}s:u#GԽ> stream xڭW_6 Oa%/vú]koCVIrۧ)ɉ}b/D#EQ o.^IP2cYp h8ɂRepSošRɽiYջ_^Y(( hY."Ջf "F5ˁ;ΈmFG\իua-p0F(ࠏ.E7~6>petouDRu+w_13Jwrs(Ǹ.o+j/mt Xcl^,'"ccbgS;WQ:R$C 5iUՍ:ڹ$eۊ2p0z%,rasʓ+Tc1 o#.;貍^ĺ.HElc8_Β{ćiX7[b &ɤjdzY(uz+4h5rWɮCp,dpro9f22+u>61X 3SX`v#%;Nܣ:|:%c͊ݑ{hjR5c'u/E_;v3n(Gc5a?}INa(HAV" ΅ mwv%2ܬ`+|Jba Iy h8KQsaeҲLGood$XbCB %;b1 _NV3 : *&O$t2º0XVPƑUY#BDB.BS~C=t+0jB,!irۯ%嫏fd͸7栟\]G2ތO~םWE endstream endobj 921 0 obj << /Length 1384 /Filter /FlateDecode >> stream xڝWo6 hbE!MCmɭAuwB}ͲHINI4EQvbl8''y$r0JI1,wnD_Nh$Ɣ0=Z)gXP{ NQ?HMz,s 19;13s|$3/f'Z/I$Z({M ǂc.|`'K]y u+:EY.ͳ[ \'6c)xHF^jVfm0u\bwcvCm1 o0ˆIȨGG ^FV~<37R-_[kђ7a %5܈8u!F0V9H]Yg:̽RԝozWY 0 PF`ݡb qa>y/ӾN*aod9WR(2"`H@{^it ׫/txe7pl/۪?IoDbٌM!'4pHPMiHhO3FSJn8ptnA<Gp%@aq"ӧ&Jݢ=5)Yw1*#YLXƆd$&D$QQB_ӡA@M໬R!0 ]pߋC7iw~i'Iy}?r 134&Qp[) cNjX{fL䇖h=[3dWE_l[Qn[Q gav 4zmX C 4B]V?כ''JyJKhLL>Q8k9*aR^`)/V+({Vj۔jvѿcO:p?;(Vhu;0e1T`WsXACB>wStUpdq\ZC<'i;v=uJ$3^nRa G=lB7!J9A GM, <ޚvgڬ0]' t䝨R9i/!.ȹXscűUc'G☂a=q4y<3Qm"9> stream xXKs6WR3 NL}=ɡLa P:H28Ec zFg/]=:yGd OfWQ2$fWٟR0XE^ñ2"Ri#$h"bR>[p;cBsȇCyϹj) 1#ת'Frd<-@,AٚMLA{F627=%q Әjavh%yEvuYurs4fW&w^388Pn5Zi7,fLQK7A3iEvo Wj(\)s=W?2M]j]qR寮u/5p.LTccJiػPKgFOY[(BGnpYl12QƦ@+Z-kN~v cU`c[/AtS7n}-V޺]m/$Dت*Wԩ;䗬R`#o p=S[+E:Vܨs0M i\MXYڀ ||`'bi*({ݠ4T vaaݍb){xm B V /?I)hDLᅗ{ ^Ww~i+q 7/tu._> KRiܹDJL Y0JE& kQaF{+Ra-B7v/no/bKYf_Y*iYl/2Պχ6]R[Es/΄:a{0Ca2#%;#~RLć[-> ~W9,MxAG0ز1@w?JrE^faϙMy;j0cUf7C%gχтkKȷ(ZkQljToܧ4+,- =$ggTyE[avN&4X<w1ULo1Ɍʌŷ RwRWbUZ,7;orkޜ&m̠)53.#M7MNvϼ(Q9S7hCAgY)Le>&ԭ[W`jP?{Ti920g1S-Ze2 AEXَ:'d55#d޿@ endstream endobj 953 0 obj << /Length 1710 /Filter /FlateDecode >> stream xX[o6~ϯ0PX!{ ˲dAEn=mDCꤿ~琔ljG!y.߹dɯG?ϏN.I|9N"JK&lq妲(I?'[F1l{ {3 H߅ғ1)I0–;J1h=􋀖h {~d{aПJ.F#C=,|C5曚^e`Ņg2p;V%G,/udƘT`P4PVbM(t8k3^nqLH`'۠h,r{ ljӵ2Rs>)SlnH!ұ/;?0u)ۭ'De{P&@"39%{]hx跙pXDBBYZVA() n]4{ir k7zI;6d^ELx֛gnfA,E1A4g9+ D C2;EX,z{0LU#XVEY n&@Gg.2SB Jw eMw}?)uI#"ҙ _G3h> stream xWKs6WpC <ԙ󨭞`1! $kwA)KnL:EXowbg`O%:!#f"BP%&w>}i:G;=?@!vN'-DY!I*6~.֞ĠJuQ1 =mի2xNZ]}̀KPBb,͵TB?;}[fU FI`NR[I8FD2qxכ^Қ o(X_ᵙZa $ PZ~;&ȏ=Uk3QK=cbkYݚ%:)ےk3/I Ih \"*vp=\/Մ/aхdMgNZ-boUM>!0HRS$$[-$)Dju[.̜m!֍73QŻ^O(۲t.Ҧ,={}f8aDE?azuOcMWULɄTl%"e7:wWڦ1CJ~'D~@CvIR 9JesEV)9U@dfUбva__ݬ4YOJKFofF0cԉ7:]:Mz5Nm%}V= p ii-yn{I<⻺K>rFۻ>[C(+rUJq*f猀&vuasjvrXKbZ9><#_[:7߆?ѳNqS~ѓ9ˉXbo.7_|JX  vG7 /3hfzau R^|hpyŁ! k2wꆙe4Fad5]i\HQi)C3ƌ-H0NJ/@=\YaS㔖5*9]~ ;e[H~o̧l|d='>l'}]z6ÍSVf^-X/ B@]U7GC endstream endobj 976 0 obj << /Length 1437 /Filter /FlateDecode >> stream xXmo6_aj6-R [@Cl}%f'HߝH)$N.:=w$V#wMD^4:_?FsJI'l8c2Eh w7u5/p)`re@7ѝIHbM9}3GdƬ횝7;eSZˇ>n3B,xmg쁠؏PD.YR> ]?hL[cFulxfi!Kl[?NU;4sRj`lZ0rit[bk4Hy]ղp 7<3/vU)OsVTJ0\SX~*K]|V, !Ɓk[mCط&LW^Ϛ/lmQʺz݇ Sm[RiaV uuTe+dY.vn;g{ߵ5}V̒LKUHZ[>d&OQz <_pyۋA\>d- y>DB0QL^~ᚉ\ݩvV)L1b3| g:"#/鵰1ŵsNZ~BY~(e$Հ~ Iok+|6l6[ٙDꗿ/$}|M{Hgg;gr(F5K+}QdDV3 "?/~x}!x{2mBH@?#nplK&u_a^({K+w"Y:s{? &WwE+ "E=/|s;dR30ūu ~4[B}x,'W9ש\"ְcwO"{qf{RK*rwl!WqzWF@47`cAr[of7T! q7rQ{1կٲ`{@:wq2&~fݔχf.lۄyX/[sYER)]q~Lx\i-^̰B(]L7+\@e '/Нij0#UR+50p(l@$VBSϾjOjy/;C!2h[%l{=h*^rW- Ckێ{frK %5:u endstream endobj 986 0 obj << /Length 1551 /Filter /FlateDecode >> stream xڽX_o6Ї@R$Kе&{j 阀Dy4(u}y nHჄ>ݖm{X^sΘ =o5!0HtT7V`L7VI*)iwW\HfC֫P/=O⬣LmN O@kc:wT"`aC1Wxٛ_$Y5)"dq'l.EwkPVu\~koW, `I,zMKFU3aE^ ;U)-y{GY+{)߫?iopeKY+H$_$q5ous%O\\! EPp=Ok,DcS 9]_R{攁Y{ޫPZ`ȶ+\E9J_q^]$4#/ ˆ‚'E逼8&܄ۥ˓ڣG `]"&< N5 Cp 0A?p. >ŕ+J׈7ڋĭXJmZw[euqʴ?Nh,0GsPqF1rxG`0,>͡TНC34\e+njp| FO,OAVi\\}Mb'Y޲{IPc_Tjܭߎxٸ,ԛv۷/Ia|;Uڢㅆ?|M EEdGC4vGEg;U$ktpc3j&fFq—TZ'/Z+!};QN9Nݱl*I7u#ut ''W>E K27cgGs.dyn3ա)K$\5JQuH" ¡6ߥ羷JBI)A҉:T;T]Bǔ(J3$BhP,!*,u,̎,a> եRÍTj@#\Cެ+(\H,0.d>nglS +|ѸUd{pA`@(|JD>Wt)75-xs|㯔e9N+L+pÐ׌ nrxT%?n'n?⛰dH+#@N/gp1 Bqxtn$VwvT hT1c '|!>Z endstream endobj 996 0 obj << /Length 1392 /Filter /FlateDecode >> stream xڭWmo6_aE'aC]E3,uR ahi[, C߾;%ۉE?ĤNw9*|4ѯ{{'Q8Xh< YƣDh<}p&RSs'Y/ `I  :L6{~\5Z`s3kEm6*e=[q컞q'VRu##~^JwX7#BjeUv6ݭf>G.z^y;ߒ_nʝ\Qn̝Bs})uC9W?7ח?/ӺG'EA/ݧ֞!Rѯkt/nnnXA? ?%bguE[ JWN_6/21s29bd:#E ()ûsd%UWt;C(窳~9B^h/^u?K18b?s5"08!YJ3;t 36+s =\9vYW䥞u! )i&+"gNnUiTT~쇂m|h:H^Q3j¬ A !Bo(ȯzA//N%<3N0zYMLsaCȶ^MaNM}56`ˠO[}!=v٦f)D(8;.y#wg3!N50yC>+[h_ pդ01 |=}/כ@f]W? BEv8Laf=9 wtH Ocjh"Koo}l+9>-i XH(]mwiՋ-`re-mZFWwSlW]p41Vn^WSa(lH4G∽ź>]E]6e>[ 8|}ʖ*b!lvѳ]{t@O73m/VحQ|}2N"O$nk$T`㇒\<LJF? z>;O]q| 8(Mv'|HgPĈ֑( i}ɟX˗>pmܿ endstream endobj 906 0 obj << /Type /ObjStm /N 100 /First 881 /Length 1533 /Filter /FlateDecode >> stream xYQo7~_Gx؞*B H%TjxHAimt9f|;R`{પbxBxFS39|v]=Y&)w8%rÏLgk`)aI0 *hT멎"k4G\ɥL*#AFXQ3Y,gW,:$`tQ0\\aXw"arb,X'9b99gYOAC"l&. =XQ5 |%E\- բ!FZGvFcj(^0KxH0W3Sĕ ^b"kL^V削CEhHփ+Qh&AZ2Q ec@ NJ)rƓSaACN((P*F!? AhXƪ cN H2_ wFe$L`:K'2[`Zᡂ٪֤E¤%S+  ` Uvy9cʘvrBɨE`ҽr٬_Lt* E /;/+NZ|᩶P}?~wwxp0xYwr=s>}/y~' W u;d,1yA\f?|x}k7&4AOX&o)ms͞Pwm`ʾ+~p;24 ;Bq%0%ܼ 5 xl wt ^N?/,9>{7t0lql5)Byd%W4gsh5n l\rcb([bOe_ĴM+,l`mkMڰP/l,5P&0)Z)PY.gʶ-HkCQ,vb-D\~ᖊL`6&c-m`5,05F ,,@^a vרa[>;fJeoJ^ ػaKH#8F+Z\T-GX HV tpO(Y c['^m6v"-cc(#8 ~> stream xڵWKo6dizES7Cn{sJ]zlI w,gm'1pfmϋ_gIh\o1aeE"aG߮]D2NS 2Өl9iù,1q1,Rꎿ{-SOmuS{\-̉UzςNhP7T%"V *a\W?F\ :!`%$hV$E"'AWWђqصw LU;w[k{)ּX[r7gmT|ICV 6DkЁ%P4 㼫k%8FFG-6j ͘4-^³ Hp+(u~㪔bo.?cype;}U_ks7k(ܭtXH)9'HIIIfItre\n:ٰY'gNwJp~߉V!(d[/Z-`oPgȽKPJ?Qxާtϟ']>." ^],sd i5r3=nX=v;r7ppJ,)EjBI۾R^iVj8(o8CE>Q&APy~~b?Tdz;Fh-[V1 R[~ˡ<<5wu лṾ 7 ߈ѝyL 'tۤim|CCZ}T0Yl!wm%'co[pujQ@+cMClZS4%8)lٍ}۲kE[PaD}nȝ01U[w9<"fqFt ǥMکoqYI1[m3 B0GL Dk@ +5ޫ7Xpi-HAւqk L`k0#0@%l[AM, uFf FZ+i1ycj޼|%ЦOb&TRܤ[6 5}zfe4}%4\v}?6X v:mv#N^ {+9tb7'3CY#8._>̈́w8F p^*/yI`_tگw)?F- wfAuzǿ /wzz\H.cFp ` )햗ur\Nh8wUIOzd{z>4X6?8- endstream endobj 1018 0 obj << /Length 1078 /Filter /FlateDecode >> stream xVKo6W ʀ%z+ l^ҦFmbm Ρ}ɒ5&9>Cj8!pssl>ϓ qfs#QI;íH㗂V4@b?f5?1tP0bgՊHiHP^7cYVtcwA/&3ִ!v +Uc vG^n=Wc6Kj]im*[ߔv75K#-42QͶfDISD,qcp߸﷊kU^W[Ò:S*)0uKecyY1nWY+\jԎAA1:]6F^N&UZt1PVvQOxHzٟ? ,&QGRcbHfg$H7q*A=Y=H?!eF` Zj4˔KBg< 8 A}ϨuFkcII2 cg*n,pFSmO[~9P> stream xWo6_!4a~֤@nI&RN<w)YnaythXjzvs-'֩mbwiݵo߯_^O}d4: (+^.#?Wn\NJ`੃ 'EW/|۾$g KXьHVpe^R'DJcsD |-Zo.vҒd9UN loB9xm޳/| yՕ2*Y?3rWL [^lJ\1FKvM7S]pI:ZQ#\-<27IAÒ%: W5Q,r-U}Ѓugɍ yQ=ՙ1_.+X*Ad_E[]& b??%$2yaØ0v2VzIX/~гr1׮YuPvXDYGf_3 'm wu BDwm+M0ed=4A)=z;+c Rx|3 ?%A-/%ܦs]4Fj62:p}TU[|͎6_:EMFDF%`tPώlyI[.r.AE= pmMiD29–sÖSFmw sl0.10  uX p3!<}NU@ɑƺUՕŸ0.(H,+W:z"s.uAgYHppwxCE~~(l (!{x 9cCC#yΥicaP^s|egyG9/³%Б室5Tryӻ`>VIC2=TE]\\8lQhxKY}z4%2> stream xYY۸~SJX{w<-r{(P<; T^'/"oL62~KOb/X0Y'$ xAJ&Ngn*u<P$ a@X+d5WjYYfcMLS5d;OT3Y /iԋ85 M(bP26 .r |rY eZ2F\Kl]Բ1өlب&)0Y)؈=7š6+Y(Dn*WƆp3br]"V?k3n ꁒY3's`ׯ{U(u/Cbij0oD3d>*)`b)i"tfD $)c /T1s[݇><ZbxY*OVʓY`FNL F"fu{U0Z>"Ž$(2W?F؂i%L|@lC=݁[ ao'̛T%aH]RBMOL/1| f:>TJ6^Uk9Dא`}V-0$ĘB=~WOxUe',1bwY|9R%*>6B5d!lI. ^tFkS5.0ϧIΓ潿Ağ"d@J11q.Y2y&!~T;g˒NE 'ȾdUn%Eț Iv%(\ ߋ.t}8Ra6W.I_->N =#2HD?7ƩRB V}""q%WO,#ap%yd-SJ-{k!eG鋼!(S [jȪ>[fF ty?8':@vySNTcvP˫oGH5rUt^q;idxp"nS؜er'TNX_ Af0vÒ|h"焆p0H?9MܮVI6lr 3(?Y x\TTbt$Bx""_|'MS(|u:':ߔE]Y.nѕ,TG5^vZit#/@j_~:n{f ÎL 517WFv?l/`)]O틾D dXۉGBܒ"^rM*?k F_Kv&*҆x[%+̄5[j%G uѶ-ew'b?LN8hyciVe*7@)~93uZڷ͟8gZ1ڴ1&u1m]N~tt4 L&"3hP[M{MV#з ='S9 |sbrAe8gxΓk?1]<].2{A!WIԪICLx!{]?fFcP(w|_QO endstream endobj 1045 0 obj << /Length 1261 /Filter /FlateDecode >> stream xWo6~_!8X'LR?,C&]lhD"w)YNayyKy( KHF(afq7/~LF?N⨧i 4:AARi.$βԘ v{xL0ZlN}&r{~M1N$.6|4q2w}f7T,N~1LEI0+دc*hS\YeKd#[E5+ q `n]aKYBͨ, y &u!_z5}Jr%1l*f Alja(Nj;~ KIqx sb .|eIB!k|2)$dÂ8( "G$ ǎZ')B1:bMXuvv6\O -mT HZ] J:TьZ&$sz6HLj8mԾwAޜ74왬-LAAӔU!TYg?KވGȖY[aM? jZL$t4mhoJ8V4plk*9ahذRٱ96>P\5Sk) .?eI[Zsk3LHmfTmj64TrQlC nW'{{b;Y(:ɐg/ϢپLmTmlnP<@_]Qͮb`,f×S ӽ鱗[Vr-\(Y׬ }~ú/V35ϗyv䲖Di9JCD*BKX?Zfë.>s۲Vo e)݀/W:ڈׯ~RX kHt:=|&.Es{_dp9|wyOIiyy5xy,shrRQ42k ~=7M0M"R;]{o6?wzSpSHFMG+f'.12aN[XBWy:ݮZkYcc /+ .dU54xkhФE|NТKxj6vMiee09(gʹmq؃^}=qZǾYÚ]!6figTX^ tnnWDhw6ƿ)P}^W|OD _y endstream endobj 1054 0 obj << /Length 1526 /Filter /FlateDecode >> stream xYKo6WR4bFRP}@me$V!.Iš87ELQٛg쇳n.p4jF=a<[RJ sIB4M7?^^Y0(Y&={6.x/a/G~t.d: iB<#*dnf֬}Ҏv%R[wEveS  M}>U,mh#:cMeM- KGgr^HQdO!w ,\>+Ct#Yi&yg"\ ?$geDit^Nޖs'[qT6umnEBߙwpɭ*}P5ʞf}:+j]l YUԼѺIxlJi]0+VmUiO(hə8>h/<$7UN <yےeVHLXL@ =Y8,w&~,حS͈8>C.՗ڿ:Y@ծ2BT~29w0(T_j ݟ̽@w8׷LW2lu.vN=U ?#t]- f莎j1eDʽ]3f $4 %f'z:`n~nAnr Z EfG(;7<7?NY?*ՇZ3P׆s t[:,5ωʄELK@:Y W ?6=.v[gn Y=I,S0g`whCJ1AXNC [MZ 6SuJnHkV㱡^oE "pb&H p_+{ "ɎbV]5Ù4j_۱Is oF@R' fZMa2loYx6/& \ MvwߘF4L!_O<Ч:4q͛I?=*!XKcV]]^v;n/_?i endstream endobj 1067 0 obj << /Length 1579 /Filter /FlateDecode >> stream xڵW[o6~0vHuULiڮHnFmb2鑴a}7Yr4<7 x4ţ׏^\=:9ϊQERf#Q BQfGg?ޞYO2MQ`4XE s(,ZQSndԚk1FӠ&ݞQ(.~ԝ~<<."͂#\1]6L vZJҶnY 3*mϋG%ٙTm-k4kkKb0k>#}>tZ(bۭ2r/ЭRFkܚBq׼cN}l&xE֊Ҟ8,$P1';~GeQ9M@0bV^Bй;NKyYd VIiMWOP'qa e(8+g!ʋ9Hnryow~`ȺΟBgǏaAW[i [gcGh<Ϭ,ʦio0BdžYySw%rc)(֡P9\#s؉zZ >j$&PJ|$d˱ D lV !Zz-j-o&R\kh7ҝfDV롡 5gƐ.nFxM! 4ȧ䵍˵ WGVjhT~vK6fd2`2ǀ-w`q (`^h,Wn ڭ;ƃ~Y&3\p=] n1Ե |}yΙQgt/C2K7sZ%a ;NlN<̍X{ݿ.vG@"]}E#RJ=l}-ZA:p>,54h}4͡e5ZFza$bα4X_KCu^ v8cG8jd>$|rVս媣9JkJʁ+Aoe=v`@ztahnp T-MIgOy!W>؟PI]09nRQmkYiV,xa%pSet8?$a]cP앗- |/dSG\ qH-N}W;;xwo"_P 7Lrw~64%Ÿ>r M|lETݹai r:99cERrMi~l@e SCEKL.q

> stream xXKo6/MJA[ԉ"AMI]Њ Ee+GI4A|Y716~_<]-NQZ{cʼn(VƯ b[<8ޭ^>îfRSDrZ_b"S.޼^/=X3oE^ &qƻZ9/Ǘ %1!; d;DyFmPլQ5 }eѨ\{u.f+DBf]-\!++%SjYF]!vJYך;Q%[әHp2@\tRԝ:I $3C#0Z$fwI -ۍY7 :qPJ[;I3}3UL *N#r=B{xO;GOO-2HzØ ˬcȗ 0A46 OI1~''fsuw. ?pnaFkQld[Yd׼i:ug%aOf c&lQlOU7,b O˛B9FHl[C[wb9I62,|@bΜxH;lX/cẁ`G_2ѭf5mD_.xV Vȭ{s#`w1+ |[K[Y_@J:&ձb~Z2Fd'Lܢz T 76O/;^qEl~H*eë~?AIEuV/JT)zpe0eVe ft(8Xe6 PoDވ35QAV0at~]8Y7mqmZUd":0wFfUu @Ue-l}? @\?CǛ-^+,jVbcdwyo[5Kp?1b  /4c9Juq.p;)nC`id} T> stream xWo6_!$/60)ԷUYQMD$R%$_Hɖ$`d/&y;gl2i9'$HB%a, 4Nf_nOAOS`d%2-0A0p DZ y+)^̍ujy>8ۋXr{?7Kwn50,9.̮" 0 + ?n^.wJCk-1V( +IH7)07);s@Tث~,A^`0]<*g>]Ç tC\/%eޔX.̦)BYsV􁐸t,') FeHw`\^\Yⱴ9t Qk=ϘAݯf!ׂ4"X- X?0i:,Кk_NM|Dw(|>r/CZ9Ks7mЪ!8D>hH(NiuIީ:CA gfS`,fa:- gs"%U;sh+@o>\_.gi4u-1gb/'<#C^ƫwP>Pl}LO3 nlJ$ͪK|aSD w2[i[S1o]@6M,X G>qsΔIF𦖞y)AsAŁSWI$^'C7'N,mC[ I;n-pe:2nyYr}M,7 "{-n5 <G췎ʷX\9p$Ye*|A(ҴhSYSkJݨPL a7)cFRTDE;fUҼ7z'#og䰔P_J/mcl&ߊ嫆X,);S^{r\_Ӈ]7k `ҚOM Οٶw!F}zہ)2ҍ=*X/9% ]O~+(kkP=Ui F'd߮ XU~HJ@=]aPIYV ~@p@zxWrƏuh% > stream xڥkܶ" ~N䒢aur%.(ݗpHI'n N_ 7Mŷ/nMTyo( $7EyRm߽ Awj]n- (A $yZ-@-hxK|`| X2KcoX=?μ?B]V@W`  jPt->Dމ7x4!CQAxA.\XVxd~Nō#쑝DG*rk@2" ʦ&NKEIBViNe$2ӏ]r&+ xEpݚh lN63 !IM%Un2<[X:hʖp%ǞW6!JkI+6>q¬xfY3ȥceگvMz}61y`|VYbTNX@;v|8snA06kkc{,bcqKM)&5W_Hc_x"݈mHNb$VZ{݂pCS"~aŭOHc]57uN0̭c'>8z#kj^A'(9{P0jaO\WA*SlɖP ۦ[q/}[kIuiwV_0rOLR^=1pG=^v!P\4y[?Ia[^?GÓg؇qҔ$m1-S'{/;q8JeM=P.(03KvltX QUDY־o?+{AXY8 $qev[3 2r|a뛛82vSs"& lNZ!ůb/;{9-]s''= ֞H[?I? Bn9 ;;7e$Qyv8[/( G Ne3ϻȂ/纰*/+*+ȱ,dCyu\#4& (LQV՚=޲Ͼ{4~u0JSu)z%="~2 GlÅ2 y|=ͷ"0Oy+B$G?#@_X Ɋ] !io"f;_7c1?*]HߤaqV2ktY+;5խ)X),{[rzĥ _OBLQ%l׺]c D{ZП E Fd)ӣ_}+|ɺK(YӖt oׄ_KՉOΚ/5WȪaXA 6~"8G\YL˴,0Y@3k[V\M-M<}ӠВ߶(&z6; -xyw/[9Z endstream endobj 1003 0 obj << /Type /ObjStm /N 100 /First 968 /Length 1484 /Filter /FlateDecode >> stream xY[o\5~ϯ#KRsGrXOAcU=+n֕i.U70P=c(5\O4@,s b"nK -@F> IJv!YQMnC Q1 $uإ I+D4AܝsmP kqKDKq`/), ͭàײɎ$d6 gH f>kA6^õh <x Fp(7d:ARR]x{k J=ȯn*X5DB¥cPonˆMQ߰AGs&CKT 1H5R & T$"LCH1f^ 0zpxx0 S*2H%ڢB٫/ܸG˳u8< ӑˎ'NzI݌yjjy`tQ.ެ{|t>,idqi}[7[4. n-Ѧ{;ӭbՕӷ6n[OQXb9hQՓ5tNߝ6<<'`]zizu}>ej+ٗpקּH^ZO^!ArߥڄbV =~MQc`9 Q4ch͈BgD=˨,7|.ҥ*x-](k)׫mc6tsقy4QXZ\R.:Zt-As(%q hJ<梑sEs!CSnϭ8y %.tP7}>}Eo[5'AZLΑ.Ώ_zr^Mǫ, ΐn\bhX[Č}$^MJ<&ԴD2M-B{:\ӢWkZx/E.?΢2&f~Ju+g޾Uj(5//6[0"ӌEQGuؤ Hƣh\=hND pDgD0٨'YkNs̗ݛms6ۆLgݣL*=UGm~ [*2up)-lڢ0: ΢y-e4& Oj'TGCG m&?I~Cw:vU{1 u<}hy`%Q4(,C&JuQAY> mfl{o\PE1.yom9rY`d$#l{;kX endstream endobj 1107 0 obj << /Length 1326 /Filter /FlateDecode >> stream xڵWKs6WpjjB H;M8mgic$ۻ @YTδa>[88x=~9[\YP2#Y\1(N(K`YoCZ/^\@2Ip R3ji4FVc=fUBnDr%yD1[_yegq"7k-d癲#:JWl;Q sȝ⵨TzQ[3\[81*<4GnU-{)v$r_'9Av ~x Nnb20*9TI*l4{VWi<Uf4qN% v=j؄QR )F&@7O!8E P"gLPYcݘ?ƅ]_tASv%94T$93-3ҭyL[u0q e5lE[ ~wbD84[sBCVwn[ʜvwW<{n <886C*Đ ԽFxtoNvѭ=5}Ôᕎ~1Y)4vZdLhᓦx?vd5j /mqZ3+&1 FٵlioI6}g fRHZ iydA3}˨LpO͎%"%yOLO¥B"ޣ+'`zXoH?3 ȭO3[zJDW%ޖ d$) t,$N> stream xڭWKs6Wh1))*mj$ĉV$H$ wAIr;Ec~X@hɻ_Vgq4Yx$H&G d2}/ U6dXy1ʕo vTSZk -r;v9FWbΆT;&|S/Mw1u`,z:S?v0gXJn.'t qxfT}߱/(F:t"y] A eqAdrY iia/\5DBqlצ03;X MQ P1(/^ND>wF8' ARidl)JR $ ݔM, '`%io#F[DQ#SC}yK$k7 S/*,5v3y&g\h o8k(X%|~N&o o8PIgpᥱsL[=͂5KOzONFb2 8 ռD!@`1ujS/^9{~0-R|?H3Oh>RU%vKJU{b|$m(n28ӇQ~i85E(*]a\8̨)m=)8Y R^[G*`fRft-xCkT}r-haa,iq݊`Ë-Hd4 L4X$IςDVV{e>_qPpYB-C*Px4= -fpI|bg] mb5PEu]uLbWo:L_8Qۋ~4cyQ2QN Gu&.*ρ~ċ+^`Y u`Abj w|R9Ĩ=Gb_ cjQm0cGs@Bx:oLgi :ӌT4D^\-\afw=)R ~G껢|pL2TŐڅ)yrzSMJ'guY[7-`!HbN\Q?>ۉ2z="6ذvl|ZiA-u[ :^`B(67ހʚՒ|۰*#Y"m& Mh-چ[so ;S.^}F7d%:[Чk}| ?Qzխ%ᥢ9fME艬n~|2 9Ǥf.W'`z~K^ĢDB> stream xڭWmo6 ~@1t߯uMu@>uغ0d9YGsn4-IMI$x/^~Zm۱]A"d4yWO߶I|b% 60CW;c{^mhgm"P!~zV֐(ڒc9P&N{Ih 7{sG6<`Jeo `Q9KsZn,0bNzWhTڃ\a5-0w5afJU"&QkqO) FL1, ] ً\癝W<uAc n*8*Hk8eѵF(vvuֲp 4-՞*p4aЩW`LymxBg]}z}/c)y/i|An|)*Eaѳ=I zl46VO=_Í5N\KM؎N:+T9 3,aBƂ4Y *쿹.^kIъcO6 ps) lл e M'rN HN8ޓ!rBHN tԍ7X&x]ucfOIB+M'&Ї.GS($zhy6%gYf|utGe̱kW1l>?oH׹ endstream endobj 1145 0 obj << /Length 1584 /Filter /FlateDecode >> stream xڝWmo6_a&wK!Eahh$j$U;H%-9`:pe hm"GjW*'t]* Bc2g-運|3ݟl3A VR97 n4 G>իlpՁ_^sC^Ṯ vNC,^?tʌ" Ej&I-ʍ g5ͭ˥(u[Vn]PA S7 gT?̉vFYZNE.`YLPjM$vq˝¨ %uZrV{Ƈ %AGņq?;H!z31t(A:,Ӥ#|EMQωAĉb9)qq~^0Ώ!s u4f."ܓH3)wZQsd:t3=|"S盭ZۘBª릯.KRgK\K{36.ȹ4+wMJw]{q7)A?ʜ[BM>V鈣09 #ǜ RrA /M:~% .uVxҝd_ ͒;(X ,P,Ձ4 h!0;\ ~V퐱sBL\փ_>xh i0[ՠPd(ADleio{iI ^zPңp| <-"IG6оzjƞzjH+ʅ4bbζHf d[PbTQnWHlY\(+n,qYP/-ÅlG&cxD4Ѩ@>s6w0_B!- N֩GNk j$[xWP|PU2ҵZ; k,HϪjf~' 7 1d8*_!X+SsfNYzg*gvYrXZ̰zc!~kc%_ҥ0+ͺh R/BQkQPҋ.)lji=<(lhJ5ŪFeovÝm)ZÇ'{RqQ=.u(ǦI|CKݮ(E1oϺca9뎠;o8׾/iE {`Suu.}fx2oK,lRQg]\k$$/9&XhEǘ9[iqдux]>̇׼nen!oJ?DٌQ k.7ܒ5Va =tO7g0ZU_ם|3|yD#rvNQ Ѯ;Wjxu*}$Ÿߺ#Bv}>鍮'->i endstream endobj 1154 0 obj << /Length 1105 /Filter /FlateDecode >> stream xWMs6Wp47ٙjө В V_ҒLՌ=9o-!l>Z.A(YcJ(Sg;Ǒ7|9K?LP৵ɉBy%qGq9='cQM^ 9}qq1jgfʦPXWLn WA(ia?p( -lN2R}!sQ'>Pi+*tɮDQ q3Վ`o:7f3AA='|7u0ES''ͤ+dRQ퇼ׂRY޷Ƈ3ެ*}cw3vtmw{*HQmgʊOBͶD %ⱇ>={(kk+e˰ݹrHWG4N5^Bf$:Hc2 ~޹~ s˭n%f:"KKu( smeє\2{(ܘ( {A򦤂eaa$2k;t!0>HE(A!;"DY {^?RsT$p|?;=Zxi endstream endobj 1163 0 obj << /Length 1579 /Filter /FlateDecode >> stream xڝn8=_a@WlFibӦ,cZm6hHrw*Vsߜ(yl~r2G90W#,Q9K|4_eK]Wadg/'8˦ !9 H&G""dPe;?ŁO6HNCchdU~);l O<'z>%ދRUq(;4I'ޝتquo%VÍl' W^RneՊ e+JCV.Uc#`kzL[xwɜTj4* dL[7I)bOX!k#5 v8 5K0,acFYsC3 )y)w,[),i> stream xXKs6WpHNuh8u'鴵:NDRaGŃev:`c,>q6q^~XΞ_EYrPBVJ8̜esN8C|0x GٔM@#3b.z~N g0QA ⛃x>xsF\sG Hh={9ޔ&v]RfNt[CmygZ+v_7]Yv[stecqQg,;0«n[*uC֝[RLOGac6;XRo-& gb#v囋{W]MYCp95\Eizlu^ʲ2WGEWڮ/dz؊Ͷ{$S cpXYTrS[[vn ſK#~c,JriX]fVvawZuY%Fb|~aU.,en&>J(gkrqFġCn`A4p V,uΉ }$Qt~#0%O ,6)@| !an-ZHbڣ.Nܖl-Zײk0[|mf-(q7-^R>pC(B39o0g!F^ AG) crDn#beן{>Rljl 17 uiWT5:|;!h6 [{Ӯ@Y 2@'.!%ʧN*eS?p+9tк)иĵХGw rs4`,01{7{bP'c_V5Tsnn[nK5|gZv\V:;aKHoNNf!3́ѯfZށyߕȍSX'ibTdz+]mApdlue p-ox bi;c=TFvWVy V=.qaW>#`Yw% cHðh؂ 6:zR~hpU3hJh:sze;̎)GxRx\u]%R{֕`ӣ}ۯ1khPRCv a7j >Ɉ6 NOX(|f^Jt/f.ܤ$t/". ifQv6Jm3;_\̣I,meNœ/]USڥxF{iZJu[06PSX5`_tr[ x.[KRj_#Zm+VUE霶=Z(&ǘ En #|2W?փf endstream endobj 1184 0 obj << /Length 2123 /Filter /FlateDecode >> stream xڭXmoܸ_@D4I&8Clꪕ6}g8VZ˱q'Qp8y̐|Yŧn^jHY/,Rf L.nVc6:ll#9oDf"/_g2 զ RwTNsJ|Å}+Ej,.K-aB%fkQ* mmOdh-ΒPZ]QWYI#]Sdʪj[Pf]M -Hֺw$B+/f'Rɧ-]VC4 I]z_Ww$`$8\Ib?wgWE^Tgͪzs_lW|w+??ܖEVSmϱmԠ-zgTMa;7d?BFamw9"9ҕ*&t#o߲u,M;V7̜!QO=# ͯhdMD]oߜݱ~pz\~)*XLw>4H :dp\CH(IpL{Xu~b4Qƪe.ങC*f*Iݻo;夸 LV]K+ lmVv[jҝwFQ,3/<,nJPW튑`.jUWoyWi> 5Oծ"hנK)R)G*%r VEgx\miU'8m[W- xEmRFap. l5~6[۳9mݾFKb;ԊH {mQ.@dmC@3f_!b/h%EA1q=a`bs@:Qj3& |7V0U]s9`:GCie:̟:"sȡ0i|psgy"uiF8CKlSٶ8z9Cgkw_= ű}br}$!G,bȭiHʈ46vueedUdNEЕH(oqCF;}#j"@ a̖^`r`G8UGzűr؋SOvbψs(>sp fK@}KE'}]mdcV ԇ=IͰ)f4zWP1( yW7-&IJm<?eMyO#`ϳ}W/i%DЋGAgՈQxo{(@gaN` o{Q={`W< TgNĩO7H OMHjωJ?T'".MD.5/MDJyb?q"L4^f}F7\;=g(a%o ‹_ m}^~n}K"44ɵ%0f`g (F& S᱄swZ̻#QghV;lBy'9g 9U>5KN-J:rKމ0#*uH(O ZeTTpF.X.^AxıNJ"%b5$D(R`HsHC#߁#)9 82?*jXOJ mB5_j>phBBxPF@W7aw|auyquq2XJB)(r53ǫLϣ܄X#BNFtzzyD&o0rR 掏J;C Em2p)Y% DN(!o926L''/Vum={'_N6[p3s~{m1&$̨%P;]/_|S Y@M{dHTOx;x=<%S87DDLp^!M;h)qkN~Z̎:1n^< endstream endobj 1195 0 obj << /Length 1169 /Filter /FlateDecode >> stream xWs6 _kfUH}}4xL\)R$_?P$+wmA (QjjvvdAʌdj(B1prQjg꧳493HTAfM;.d,c#?-g1 8%`'p2$90c{EFYBܨ!ątBѵjэv2GL_k4rGēKJ*-o-KmӜ anrk_Y,nYt>. D @;S_u|.wŔ%Ï Wxt4%AyO̩6t5p_RtI̗V_VWt ܲ[-y~3)^]T<2HT: |} iT~/Ƨy"@+P}cKevWauyuy&''#1ak^=8i*͒5_Y.+ѯ_;XVJv!;*+{KbcPǍYiLl#dȭaVbyeҘrGJ>=s϶ŚaIy6/;lj (cgeeT(X&(GqYh$t \~0>@:,AD(`Ïd廙d7 \I}Cלv/W;8fo۹0 wJaj H |Q\;師zMJW5t!JF줖H2w#k+͛CN{8[U¸KjK~[dJ [djP5LB o Zo, 2{˰8j˞5lcH4EmÇ9z F xU5Od>9yY P4S[ji%\::/QB(st+)ZG &("&0b7BAqD ? _SzF6G!(hcFT AF8Z7&3pkH@*\i7ԬbpFtM٨I 9,ziY eO|* ՓbLG@Sds`G{}=xrq3>/Ȑc}+ endstream endobj 1204 0 obj << /Length 1776 /Filter /FlateDecode >> stream xXێ6}WJ@EmP46-M,ڇLjdѕl_eKn@D ùg=puYr'2]fsd Ϯ_kemDo/qUK30ԓUp ݹSB25(ɮ]%Y*nߚ,OX&4\<+zm8xJ6-uGτ[[w?U6L6uc;(4gqA8& yL(5uf>ltTď {1E>ht2y"f*rKjG=fk $]mRzvM+0Acv鼼Wٶ[(|P?7BBe>GV@ې|r]ﴮJ-40d$2B#,7zY: nIහ^'ݮ )6fkV؆dYW6,$^'Fmҿu`|QG02 ~qU*> U h@@;Z^[1ٔ/A<-_KS0ն%yb dޘ{c4Sge'LGtŏ3gD#viHv/nH F98\~k-ԞBzU︱Xf@$s]-[9"K-=__[e<8W]<v@4ْ8 V ՙhbS (օubϭYoua+ 8Ee7G@`Y9'!Hjy9L1b-H6y#&C||vBgeCٙm֟OtR!#DK mYOhψmn^^\ܰ~px9nO.\*ƙ}e1ys36 CFȲ?ɁNe|ӝuS\% *ێ{—)atkθD"8C'*f#,Kun*QS)D pRQc>a#w^SOW寥L]bҡxY5^_Τ> stream xY[oSG~ϯGx`n!-R+JmQBb-qfNbu `{9\vvn{cP\U:n@D < KNaZv@Sn`qZq9B '{]-Ob.I]'U3 FHOTjOtr[R*ʎ<$P|qD@5j Hx R3A&*fg- lTppT=訊cr)T[+\L gPla}w%p=P,``R1eЀL-Hyj0*ƀŧZmJaj8PqɬSSjM06Mo`izŹvq!c6*~ g"hcTռ ӕ+(nBTMWT.Bhz2^P$st!3p;x~ ܛLzQ.p<~v'h֤١p]h"7;AbKE\uI,^e q-E']lIMK*BڽTߊM /f^~:˃h<<>=tPV=/ A6 8O҅혌f=їbGM^[KZ6mPV穧(0b/ \}fD+{%/;zrOqMۧ8]LaZ_s).P0$9G_W6 N%$^4Y(Wo,3S_&E2ò5r<'h=2g;s.{D*[4sKM&K%$o ļAmYܞ֢-ߢh_]w39(YA۷ pq>Q qkIB NHmk/o_5mp|bt;C5go|s+oGf?Og7Ɉk){F/zts/v"RZ޾Q-oy~fM>iEgw_kEt)Y-,k:cr>x/EQ#lo՗EQpᘷQel8űVbCkWgē0l2d5W1ǭYzE ct/;ф~^tw^#`MuCuc\^K_νXՋZBw?W/UWhP&YmɽEQЦ5|} ZD#j3:#u endstream endobj 1216 0 obj << /Length 1155 /Filter /FlateDecode >> stream xڵXKo6WnZC\_>0DWE{I˲pfdox]?w1f<ɑ Y8xOF =_kB?<& >R/|Krǩ/;o JlʘϪԘ!=)J u]'/W7a`Zompd)j2u0DyV(:Sl 'þl;pzg ewy AϜ:-vD}9 DdN9=GJRy}oX$$:F:fzo(Q/V[8-[.yO"dQ%~]۾ endstream endobj 1220 0 obj << /Length 1161 /Filter /FlateDecode >> stream xVKs6Wp 5#@RT:cQ{Ir@HPBC*qCJ-{L{rbq U34H,1IL1F2xLJXVgW`sLb9D̘b%AYbl#Sc)sQGiGnU Cͻ8ĩ~/[-+TGÊއwW\]x 9k.,yX+jnRnN]F3;qD) )4wHh)W/tdk' rҊkdWuZNy~m`wD + z5K-{\0nN-˻4!1ίulQa#WO -ѡ}[pd%j,KlElֲ=n63ӦRv^Lz[k֓Oh\(O3#H_Hx!׬-wl{-5/[#RqVbX$h8WưyC sKJc>Au!::e,Eӧp`s )}8i,tB4="wk 3ǟ&!oc$NBCO>i ڥ7$ F1wd _:ơwu AS*>O as Hx;ˍc#Ƹ XC Y.ȿL^IRֱ%?HCjHЗi7ze"ag²i$x rƶu-ͮ:e7m$;g:HGFQ}+ՁjskiG>P/ƦLL7P*(h>{:*|P ?W(ھ Oİ"u>Sܶ9_8> stream xڭXm6_a @+kZp˦@Avh+6K2H){ί鵼ʦ-Crf8yEEn_bU.f%SpZ6_"^~f:K83^4r`#z;-b.PY/[3ٕHKE D 8&tM"XsΒ tcobx(9+ő,EmTҴDq^2^H*Hm9 FlhIA݅}O}< j͓a? MJbLd9)zv3DLpWsJV)]:5/y#lqԂ֕hOݷiTC NCصsgꔵomӏ(9]::8ez^6 bJ^;d lQEo, mY:mD]iMz~C~-1Jѫ کikVka=9m5AS$&}m`c\ Du\YC͑^ʨ/ܚ4{XA~EFxU_%Qrv4@bHpq|@Dgg+nh348D9Aq(W:F&8T-Wy:f29o7ʻNPAvP&Lt7N5 ߙzY>%0تFa#ѾxK?#E endstream endobj 1238 0 obj << /Length 1269 /Filter /FlateDecode >> stream xn6 z:hW]́hK.)IC%Gbv3ypfgU8 h,WAĄ_8̹s3֢`#8/?' ㎉baʧNQx=?PB|ǣ1 }}Gfs/UB_peF>hh@<(h e#A4/b iYF{jD:H)tzʙ'hAɛRVےܸVqVՊ ^\jruy)ΫF` pwcfwGNCD9l^t㼩mjT׼5Ѻ2լ|pk_(NA&Y _єV盦[9JB<"40T)l5Mm^5cEGUij.Z.^)[&ڱ<^yp}8ּuB1"Ķf_3`"DI=v2 _$ήcfH~"~)Cb0( ND)41a4M"!vݚvhMdkG)`ma)gP_ךjuq^R>iLK tT)r M\5bj4p&~rz^ap)WLj[E='fcX|e*Ma=иIPdmɏ"w%JAhD$ҦnESjmI> Fw֨. Ӧ(6mj"6)J¨M$i#Lo^O׃ا*J@y&Tph5Y5(cyZqjNLE7tDk P^J'+jO]5e(.V<4"L)MQw>kQ0B'`1ݞL߁#akJl9Δ"u[|"LRnߔMo5ۊ x "{EԬlaIn lNj^*u578.h;osO&N;zw{ B~2~/ǔgO{>=eעz'HѾ3(Qd.Dv!o}| 8uZn3gMuCWTm|j̡6gRvc־r3WK!WUnb*~NF1vˍ"FvQ z"0%˄f$6I4(#q؅+M3Kմa)tUm~=ʊ7e/?.o,n4Y -[7 endstream endobj 1248 0 obj << /Length 1807 /Filter /FlateDecode >> stream xڽWm۸_a$U"-wEכx=M?2mV]Rf;䐲(m-r8oy8nA?OPn+$oqAisŝ=섪G`0W76@,qAL .mā=1bj\2a_#WUjD{z4yk$"uDَWOa+O}, p-Gz "2,Zt?j I96uқO]%{Գ8 Q9"s9x:d7j*O=Ћ.^5 ǿD4]hN>@#«>r( 8vP" J?eAܾC,ly5J.t[1[_PүuՄ&j_eĻĩw֗\a?uj%Ð߅V$['}[(hNQӤXdei8MۡGp[xnSվ7/Ò5pFגY|SJG3tn;rԷ ߍܨg݂cC   K&6i.lxb6[! aCNӨ_~󤃲f w~AR2(vu)sInqIVL'/ˡs^. ј[ŕ,M|kr^1Ջi55\bⓝ\YrJeX%pn)BW8БB̍w}ua Bgyl> stream xWY6~v[F,D@Û@RCn"m_j@戜3xף KB:˵ t"OeLzb% D&?$ E1쑯XFĉ7 Kh k{Ɋ4^KL'.Eh뽢d)|(VFQa/v{{kׅ4D꼩\^L W5`ːpj r k&EO!*衐[Я Oy lUkUL)9C񜷝iy))Vuw}x7)9W>Čپdl6ѰtT;e ̯>Vʼn!?@q87,n?HW%VF2AfփNidy@C|C3.lض\iD!gM-ۦX_<Wе{O2/ uQU*>?>N48jQ=4 m_K~e ᖱe6 ڕṴͮo9y.v,T£.+H٫Ć΢)F3:tЕTBZ5 }%W[)MH0}GQ+;smDFI~"9Y5z99rObAVNW@~z 櫳 b!4h3^/q7CS(T%ڬh1_Op> stream xm0Ew0P--DL*$&-Hڛs޽ 2PBP0iJ+@Up ,KRlC2KJOi5|K1^͘.d/#C;zڹT!^(ڿAKfҭoZv[?iV{f> stream xYY6~_ZVPMKf<$JK\,";ʒW9pI<9l;g?]}w{u,ga:Eq:[F춘x[M~g@s:ZKKJK6.,~8[+XLٴ: GUrR"7"IAHjXqsG_mlFx~͖`,Iqs)^ru+޾T*F55s칿_:P64{RRp"H>)mnZ.N aJBu&s^>S͍˦;MuqAUu!ڂUн ikI$emÏἩMT7yjUE8> JkjV=qF|4ͧ/FEl`{yI+X:`An+_K4BU+X KB/BځA[0T"XK9jS\&V@Lm YZj#M[ ꂦ9" x驥5ʢs muPd;Y @־isXiotT$-H=XܷͶ;MR,B$l8`Ԫ_UYmD%`T@dDӷGy=M=ɭa2"K怴 9mrpə2%΀SV\Gm4i~f\a?VuJ7i`Cqi-!v.(= R[ M9@Чxv DC-'4l.2EUE֘yz`@5PYDStz<Yb咭Rw . TmX(ǜ~v8(ZbZ2wl/ 0P8Hs}Np Z?畫;F3 ^B=4 }Ne(\k_7B 㷗'7NMx 5rwaJ8(~@+fk`n`Y5U`ݡĶQ8[Y6I2.8`LTeK9bj_N)1,ZPQL,p\Ct;AA#9VAux]rlܓ@li$EJ^jrZ7"}J3U7SX_ '#y. W$6 3ՂTOc){;h3UmvPY-|䚺p]vS`!\Gh "t?M Rv6Xa<j!ءT"ޚ/,yuDaL-(\>y+6>ѭ-MuL;М24(&B/2SP( <+DpK0i {$QP^gO49(~VgDQyjdw y "Q*i2[ OUI^.aƒ=8ii/pS+aƕܒ 1y= ng7ux (CNIF>\v]œ %#nK&oCYO{wޛjj-N#< !4} m%P;du)PO6Op/f}?OX;[;Eɼ4k Db/H.>o2rk(ս~3΂0Oz yo(D/[\i^?9y鯟4x{Qy endstream endobj 1283 0 obj << /Length 1493 /Filter /FlateDecode >> stream xWK60vVVZQ/A}HMAR.zh{%&".);Çlrv@6Լ͐ A8x{jzq&`E`:0 bXdx0-xl͛490Hh6ϔ0"VDz ;I?blFI#{f>8HՖ~!! `faz[VUv}} ^//gz}:߹wtڶWt'ZX*6$fwC>|& 41!8 jTvֲ8Ōqk w FKYy/]=Vn pQ1Z:Ŧ,%-P `fm.GZnFz˛]UrE q@agQSKfF5m*;s3>TVYa: 2ƺEAHƮ-! F!ё6_WOgg)y Ӻ"u;CL0a+#?6 ̗ |I+tCCD*CBMqɬwknTuR jinhm;_}_hø\QsKu ˥('t%?*#N _FMh_f%,$W,TFBdO6e|R$YCy11'cH"|2OTtEXɋ#FZ'[U0+P*0%ɬlm^?кaGZeߤn ¥CZ=\vVRtx2$ ٗ_DG ?T=!v Sm-t"D-WKbiBPOj{b}XmX)=R1y%3L5N8]E(dX!wM~xsMå=t:84\ݹH!gߟuZ=zA2p.Mm#{-=ꗩ;^vxE՜p'Jh&o^u*y vnXbTB1z|Û/Dw *snG>o6Hud+> stream xWێ6}W(Z%Q)&iHf!-]\Zw^d[^@<əam{6y5[^Qx8P'^1J[ m;g2 p0^^qu`fYZeÖWQeZweV^)"d'x H /H%r% z?k|XJ^-jپJ`(DYM]Nٱar5gaeNID^޼ &as噷7iAnf8oeD'~&1HF2np0IFCgx՗"$ߵUg߲Aoc_ۿavj&t(P+x5(8,}?Z$s2d"D (bS& wc*J2%}5S"6XtǾZuHvJeDž"NXhЅn٤qG!\;J;҉0s>mZ9{uOv;h}Ge oj yKLIAnki._׼&>Q1o#ĀsS>enR|0&xQcAo >"EP9D$?cC oE>q/ oKyQ|%iC.".0cDH:=PC-9OƩϵiqԍ[&Bs2&4+uR P0c}c%0TxW4ZΝ1˲[H Qa=/ _W̙޷J0ށj'DatK՝^𼵲5*j,!" 4_nA+Hr(O+4uT{ 1R;&}P x22i!"j UaZWғr:CM5*5-egL_U P[&N+*A[^r_4{-lXܳQ}n瘲s%mub75U({ه=lW69$laU?4$-426ʧʝE7j0KMGa{IPC\۩okwB:s*V/~ V)4'C]C^pgy)ޘ|5_HeԚj4&v#O-,vOubchXza G u_ޫ^N>Z.=N֟Z01c`o^b瘣M'|sO{7h\dË܍澝Mt x4Nq,\/hYN0@U wԛ׵yYﵞml[x+{ uZf7i(/١<> stream xڵWKo6[A}i-u$ZcCJq3$%kmu`k83#z{zoV?nW8 RamwD#iTx{ge4(#yѩxO4oN!e wN b0#k99 '&E.^0O(E5ءfSutjraA ӄIN=:t~" C)S+ogGy軹B/il{HAB_vǓ cR;TJg6|JVKLe g3)K~r=vgCs=N!†geGTV@0"Eй~H,gao'DpN@V5GDeWvF;z'~0n9^|-fR+ZJdDb7GEw C(-oYpmk^l!SC3 13~_J1(_:/68*c(NJ `#Dgq:Ǫ?Pe:U6bqh$^* uD|{bb|gSD9ɯVv]#*kg x49' vshqsp:%BL\> stream xڭWs7_ifnV3Mrsm4M=4}jqݿ+Kx< ? &|٫g?٤fu!r"8giVLJ!X֓f[Ҩ7x\; VVhP(ky6YZ8=%h$t6~:KWH=n'w!fٯ؁ؤU$eY39XZ_Tozgaiد5_ҝK46$f:ɋNVLg2稣fS7T &xI*;Sibd2zU]i:y\jtTTjڶo9z]ئ[CD>ƒ5M~hnwc5QigiZOeXX8ɓEmȡ 둣#;;xkh,ąږ4NgN@ rzMSMczc3eSgڀ́{(h0C0P#ېR@cA[Z&CK4umSܡ!?)r(HwCRL/X]EK^n]vGuEŪ1 mtcgm葃X#p/Gxr Hp?õ{CoXjCrpݦOȎT)e:_PƆ̖NV?HBf,Owgd-+'%|g^Qo[|la7+aW A(`YZF!A6~R$M|eH =-E'yr=ɻ/k8zǢBD ܇Qe_r72AWx;*vNX ˢL. =jP2k[ zO"ީ/N1cAY,jnSxx9r]k_eEbѫy0Gu{4  EɲBes'C[b&?q^\2s|fО st\L5 X /J<,k|2M>@3kȘBQDHwf2FjO^&@]Ur"fq0~A 31{WV'یd);BySNuع$pJWy،KZXN*YY<͂Ii-lbE;!Z~k ev q*7VzLұ%xz{X88B:r 2x}\2Ñ֬QzfE Ce*'n$G=u`.YQQ~lۿ3QE mɪ,>?24DsRl?~Hc a䀯xjk{pP| &14HI S l9ݐ86=Myʪ{;i[6 #2 Y8| '$_{h|f{sX_Jv`uO$980®fIɸ({ȔOΌN]~p tc -MŔ-> 6@&1+rExE#yO~ c\ESvtPi=;6\7jO74ג endstream endobj 1213 0 obj << /Type /ObjStm /N 100 /First 969 /Length 1494 /Filter /FlateDecode >> stream xYn7+lᐼ  Am /Gu&R H=ɚlYؾ3sxyqLb ձo &]bpUЌ84 ;lFu DI'1%<_O_N ϟS<89N'a:[^ /JڽoO?#rXǘdla-C 9 Tj]V~վ67$=e/:9DC|t e+Kbw.M.`܊ ãloGWsk 7Eg\@َ-Sn&=%l{F%\? Glx9|vp0/^{DڬT`*3v>2Ùd։z#}RLeK- )q.YsIh)uc1F %~5i.m,w6D@(8Dn/m?~˓??1/noxRQ{8z`U܉f۝sDW_C ݻIdH'C5n^iTt?-ԉ>kf41-:#Sx JN#/Zƪj`m_ͼ7m5ډSrDCoZ?*hWF)zXGޒD&o_ *qw9)i &*'_FbM>:"QUI}IDa+Y&Qe*cp ڎu%w7\zƁK.hq}.Co mNt(haouX6֞}Uz77cN42~1xMܑnt,-Z;ѱ*7_δ|O@$U<0ⵑ 9 endstream endobj 1328 0 obj << /Length 1203 /Filter /FlateDecode >> stream xWOs6S0C@` !8]$iad+uOll 齧~dk6~]xZbe ۶\X"dnh,by`?/>^L=J ,1 I'x&A4Q7c{5:vn:SXs(V/{bk.Ķߙ'0AVsvv&i |EY.?A!,g+FZFaKIH 9T-\(:u4pb*'ѡg!o!ARt`,/4d4S": ]DվrBX3,REymL|kNh+F~Tn? W8Qj?iˉK>p XZC l(.G%?? X``nBCi¡yލabB.P†) oA;5Jb]rt6Fh.4mJcB7oF Pͫu~wȆl:RtgtC8k-p2,dC5+یzH v@2K{ zk*:Ǫ ,zU?FױMT3CT]XUhl12B`m&8Om#M@r4;p0όs?6/Ix$.߃\Xgqy" 295!lx[]]ݒIT19s y9{)iuTΊ6eco'DD/0xؙKET.> stream xڽXMs6WҖht:MҤM䐸L) w R͸vbX,.-6 oٳ˳Q,Ղy"a̍lqY.tʼuyqEΞeYK<چs&6F)C3.HweW~L~Pb LlGsc`R7N]*BJ[$$mW namv芾UlUM k_2ϑ5]qJ;,CϹJ6]W󢐸K EmC's>z=| hg煢& tvܵ'4:̏ȷ c?BkdrGTu~a_nm|`L^[a!!ԢC*XF?q8\XUCRD#L8b=J3ŀףٌ`E $ )FJ5Hxp*/a/|[rnژ Sǝ=ڃp>4Tn]"7sf@ 5:0^Ɨ+>I1Yv0s`KŦ9#C}RD[ (rWSJV=8`O$\R&'J{)OSY1.dJׇd -ˢoU_խtO{gs'<tR)T)!wлAJ`^:.KC 3[G Lq҃ 4W-v \EՕ=_XbC1كa,q!ɩ[ffThLD/W4t$3 Wo SWf"5hvM1𰲵qЙeԲVh~V egkca#c]~ 4tSܘYjqرuascQdM &l5(pxr䳇p +]༩gbN0lT OcilKz(IJl1md0Y90@fɾ^ ^hvnJp)$06*$k'UWEWqn';cTgY`V BroKHD * Z"b\189Y~7w X3&|ƕvhcp5 Բ$!> stream xڽWێ6}WMEL=>6mZS\^!%;/-WMТ/Όwaŏu{b{`IAqyO/(< %i zL:T- VAs+f`OdKeϖ 45c&YH`+ Uۏ9kr.5=eJ%LvZ7_U~=rV£EAGO}_|sS#u6fw^d;.^txiG uVx.wz:SP eX @۶)*%ՎIchϥ8ěwL c#Rɷ%;be@1%8ýͧwp~pwvPҿFbT~ie(KAN4I14g ,n:bB(׋WGP,FB)lwZ`ZH'- x.GۍI=It}!tnajGC=SAncKᾛ Λn塐3Hi7mSap@R+$WQcE_i͗Mg#m d0c(EU8M:zv)Vseg#D)~37i8^rK5n{V]TS\.*dF5(Hjw:1jnAZ̒Aѐ?:Rggv 9M``ae21ARaDeert N4@LE8cl92%2%C% qG,[̇-feܰcJk#kuL [o{0O{o ٖ+s;vzvytL4,Z}HV}ݨ糀@ShA_0vѥdPg~HI J37MO_ 4C򀘃EQB˚R䏂;.\rM򏽐-Y=@Y˶~z?3'#q endstream endobj 1355 0 obj << /Length 1461 /Filter /FlateDecode >> stream xڽ]o6=HMbFԷzغ-:tRoŰh,yT7Q8EW`{yw;7)o]xgOgϢp,zǂ0^$8bS}뗗π(z%)(Y<{Fe,| $+Rg OuZ'b8}w##i6楪 -k´SZ[B,JDPu{{G Ψ0ZR`ZQB)9(b;b[t{,Di"/\,!YY3Dod= (/d+Tefe3)#<$F4F:BRrZj !rKIyjV+QY0UATMR#g#V!@D?yz"}JH8P JhZ^۝$#΋iIྪ'5vqi-v4vל[Ń k=G!\[ߺ)XXmPYb]`sqbf!8.| (^7B?Fo91h  5?;3dYmp`2Š-p}'|7M]:f8 7"G\g@ 4r ]Q?Ж]L/(0@ y\g#*iнiܓi}"!PSH' h\cwYY5O7;ГӶ _n99i0e|U$ yj {5]3?ܝzXC* 0y07I0Bg| ipzcZ^rqė7?P-K猂+V<=/S S[5p|ۓ>{P$L>j>A}dU#vJ_b+gG[[+u"À[ ([ T͖~zܭx _ܻYkAWlW#tZ___ЦP+,\srv$o@Vf[Tfeڮ쮅8&wfv_ 9FUf`!8JI3m(r(mOY=do3Ԃ9{aCR zaOWUm6+a?RVT^0eqF3iRB|H3S-My]JN endstream endobj 1365 0 obj << /Length 1359 /Filter /FlateDecode >> stream xXIs6WHD0Hqt:mI3u -UmƲ:"[> ލGV7Q$O[mRJ$Yj]Y4z&v.x |5Sd˚CR?V,!A@$WԳ[{魵i*rW[ (IKQAH,p]~]r9_$q⟷uD4/*oYe .WmXZqg?+D-JA[Q3/oƂ\fFjK,FfM[U-JiΪrR0CAiWV1$I(-Lpa#g Q͈2vcw&#yunRˈYvL,[Ưuj*K.BV#\yke0H3 ۑ'pI3$tT;P6%9 } (Vw)*m3BHV7^q[l7'ܡg2WE[S+.jF]ǟS)ƞNA*X}ij޼ci|dT|X0j6c3f&|(ڙ(E(tJ>k}р YT[  5yG4ŝg$GX3^ּLǩkq,82bŗ] kZYF$$D Hőp$Un18j^|VeEO XUś;U=[sHݖr5wT@ؕknH@ !w@W|MgQaNawo͚a4Y8rl&2X˳)KV@'R]3UreÛWlhXo3#Ʈ;ϮCk&qlL\X#?˦uN:ZohKL/0sD!zTqs/3"Vl$6=jhk%=&9< I0#F7MeW> stream xڭWr6}WpNKX;3k;Mv-Ox<YHx+A9Q Rn}.r`1ף0R7Ⱥ^X1"+܍Ժ[7\4R OԹ>V'`܍0؂@FlÎ ı7(V9ʿ;U@yz~ od]\)a٥$2oI" AK-%ʗrWbC08<1{)O.=@1{,C]5Jt~4"v }r8e턡M8 }F _\6M_M&j&Fk̮*8U]UN6>"[Ĭ)ݩRN) HnWzPruvge>yɎU}`!ZJ7(s~awHȑB 49Z@c v3:4҂0."!eJ睅4Ev4rL *MtZVzt8 5c<%4gH:D1>I]!͘3<0pg{#Wי {BH&{IUjY)_CT}TrhLע^2JoxZZ5X@_W/lH 2^'/BlR~x]eS+qG\ࢃkj@*kNĚXUeFHj`j6Η:&M뮲ϕF~U5ҨNM]Hy/0pǞ Vq_wڠz>V?IgozȜ⛯1n#knn5I0ib}nȬ菽gYD* F,7; w.{~J> stream xXYo6~ϯ0@+MQw(m*mCDʢ@븿C(Yo`$j4PxgWa$@ Y%GBFV3OQWVu=g)Ƭbȫ.sZ7)JZYVsC7^kf-]9KKwJYZ/͓dWn޹>vXGY[˸0F@QϢxJVRaGˁgCe ,uWʵYQYǘ,DYUTHb﷖dog# wg w + .6T> :_0hftc9%-k).yUqug9n/& &Dᕠj5֬HDEAЕD0QVЉ(FIt|Q1JIv m#N~٠mg,G.%6{a*>ij Z7 mᾗ~Bn,Fv;˶DwJms{11O|D$] 5Ld9o9@Jt~ݐ/ 9[jW/ض#^oPo} RzZ>c#-u`iLbO9=冊أO?'8kP*AU?ʈ#5OjX퇯tu{afY0Sa-d5nK#AYX&;a7MQ#~>;}N1@E B]=.*bbZEsX+ pJѢ(U5lz4AT; >隕b5+ ևf5Nħ0+(T AvZpffp`YqmGSj2:@<\ؑU=hpvWĭqiAd;^笑) +xn5E+ڻqwlP ֞b֥ [BgZʍ6¿1\-C5 mw*pA=bDI8Ñjx&nu Q@R6|P4tz!d_Vw= oJB j^fs.! ~G}Q OKDA@ )˜K(|F.%,hjgobGvhQ.Aթ7Su{Wu::Ww HK>jK.aI ?1sYzV;[|S#DG؈2?%JA⯥ͼ PD!9{BbH:  ^Z1 S?@x*>5VNi/7kO͔8졝?gϞRcg7+32LAが4B F뾇B ?@at ,bD Ғk^?w{>%Y endstream endobj 1398 0 obj << /Length 1149 /Filter /FlateDecode >> stream xڵWKo6WZQVQ]E(URNKrC!g83 5v˵~]Y\݄4"kSZuDV1֗eA%lhHw+.9\n>]݀Ab']Lbapu߳a//5 &aD-{rB]~%]Ӊal eݑBI H15IHي]uu;톮"FIj2PA UWmsF +:ck8iz=VI5R.R |hfJUf3tè@7:C27<:%W? 1ڶ%mtOb XAzbvY'p4%>WVIi3ZTH̅$u @m5kڔ1<݃3CҶD,z$$ukOdp 64}]5ʁ^ -!4BG)g$cLӜxM?vA M (aF+"*Y+7Bp?>֞83{^yR}Лq]rxtyI}q}# N04 %-%e}'@;P`'kNvi5jB(vȼK#56Aƍ4$58;j%Ҿ#>qCs6c m.Y2drYrɛF{xپČ|'6y}%qtڗ\ 'zgakEfkOY6VMX :eդ̅s/6.m&-ܤ? /Jl9Qߕ ]aKp]pY=іriK*ƷINfK KԂ--PtJ^F"L/2,ф-68<XՏ//rpbO7 jA|O%%aW7` ISbI.u Bx36_cZd]Er#y<]|z)x)r*zS1F?v˕,rcu'vv=?*EG\k'5$o 37b endstream endobj 1405 0 obj << /Length 1652 /Filter /FlateDecode >> stream xXIs6WhNKM-Li$dM3$4 _H,'N./L' vt~v"J&9ɓ WRI$ |9˲W/h@1h%SdäX]/O]k3jx ĉC#4FVLx2Fg$3 ΂A̬VUhjDݙr,ԺQ}Uwc Y;C8!!]RVf2Ki) iB٬eӷf4v%eN[uo~f QHhBk;-#+1viFPǙ04ew]~ñw)%Ur+'4)ȨJ ""! 5Hw\&_|RF/UghV̱f`)GoY%jȲWX{+^($5,+kQ4XN{[MpmX0@zꙃ46 `& `So&|;fs$j\X}8QI%:KӘ_עafcO5Ƚ ~eQC:9*B-/㞃c+O8'luyޠ%LyN-J >x-޻ݙ0}Q;fOݻӝ+bWBu[h +O`z7}zڗ%wW1~0`r$iyV> l'G4g <`dl3d!/KWhf ,36c^rx4'@5,hNPvC U_sg۝*'%O]LpdO-d07'A|vW(~ B\.ed?~?}4ݭe 5jzѣGMxlwfe5 OmPB240 |!9,($#?(tOf{ .нql է|6 i&eì7̦e#{'XH&wheDåfSI^ٰjc6.ȼ[7O>e$#].Fƶ7.Z;Do#o1*3VrT˓g/rhֶ@זB| R`,^VT`_~w}ĥ l9W6(GtȂX+epsy6b-Tw c}H) endstream endobj 1325 0 obj << /Type /ObjStm /N 100 /First 975 /Length 1600 /Filter /FlateDecode >> stream xYn9}#zg{9L(F4pF6EbDLrY oG5IL`DL&m)%pEb'_5|SE!.j!1 #\IӏRDDNU/h|uЈEDBR㢧ոD&xrdBPOV #Uo [%ꍝ zNqڂ!F/Τf19- :$rUbPG'VV \EXY[ZN$զ0^%ѨH6f5VXf/Z?!V!-?ʊ :*I. z!|.JNpBuz\udz7OκONs'Mu=Wz,[#z %^֖Mk7 hܞcD$XR~ˤ0lD Ve*fh֏O@"H̞UK,󓓃`\E#:ӆf ZoŔiE Eftd/kw vs&ZR.)t/vLjiinfx:#t<3k{eY8].ӷg'S JCvh@]ǚN:aSaUQ%QHQ=k*&؝F?S F9Ԁ&*yYEJE׆xɾ_<9]"Ǐo C #pM [ԊmnES<(QCh,ܐ҈Ĩ4u(*gC|w~P`u7@GPцbct[V 3-Fk5Dx%Z=`ƍ)-?a%hfok҈&d"8Z=?nFQ<@zz- }x~|2}qvzMMCMfbM6hnDxԌbc,hl\PЈHوȠ+#^{%;5΢lҘSk1A4|A !b燠GK]$3q}]2zkȫe=PhnnYc3WЫP!t,࿋hm+6jahEyZm:x2pS2ZyI9 !/Ѳe]%*KaJ_Iz+QP'L*0[}!Ift֗V87/t) : endstream endobj 1417 0 obj << /Length 1391 /Filter /FlateDecode >> stream xWK6W!6fDU`/Mz((-tI*$ @/֐|o_V/o,Q]$Etp4+cTutF-Ѩ#J~דup{b Z6,_&M xn*5Eu8ϟoyI;ÎqUfcT&94ty]Gg _} ř}ǖQ&y}uGfzO>QNUۻ+1r[t >N@hʿ Z^2,6YyR#38~ E*`l\r{K18*W};$68_/` PUs|/=Gek\J 'OEtϱ9slXZoqcP<]dtx2Ѐׄqu {zǁ_ .L`s2+kYp$@%kjk^@,ʋ7=PݒaZ(i]5!yZ7CN^qa7MF iQI=i~MN)*'t`i8]WeIRD|._l :H1liC=<[WY;',) #OVoYcCef1ˆBeSK4M5/lSԔ3~lm[#W`[N v}mۯ`_YX{ޯ@__maнRP5u/4E0YmG]gbD=~~ o FMA0⥙|Ҹv@G҂, 1eh^;)ytgȻ&`v}3iƛk6xߣ; rы4&q}0lN2I`4!> #뎳Y.8I[sopZ%BI6][&Wn}߱°6 φ]洲2p П6EF5Tlu&b;4*kPn$³ͩM~t2-?)^8.9S"/؃źuJc0% (MεQ?^Jewv6Zۯs+ ۻގZ+2sr 6A,1)В(]r&3NH;Np%=(K⸺!Ôl(JB=թD/6$4h[Ҕ_C3E̛X endstream endobj 1428 0 obj << /Length 2034 /Filter /FlateDecode >> stream xڝWs6BdzԌ;Sݜy4N;&HHbM>,Ń&e[bwd5q'_t' IBNJD) drMpwy8=/ œy]bQ&I2\s\gVz" zZ4pY5%=eɌ&yV4vY,Wj:c_uroE5]X{属'4S?؈/e5VO6DVkɡ'Ycm9A]$Vn4n# ]ld(,bBXkm5)x:\ ,qD6 1 :5\M[4yS lDhZݴY.jbP7 FBdy -H:]ۼ\% KAb xDG@j8RXbFIy7B߃xҚ2XPPE'.X'_إRꎘ8ä_PDm%l"3fO~?ZChx0uuMFPl؊2әiYq?NyQ}-u&a yG)uxF4,Ib[d̷^5/qVS\WtJgO}٬. ؂ 1s}2-:"S bgPBl@d={M`:LNwC|Voe_+zunɶ5H$`&9a)Ĺ f񉧷,.v~8mUvyG=\ sd~THR ^1>M4lu>Hn>kF7֛FplX7X 3 ܚXFn װ="i7krUe*Ki1{PE=3Ȼ;-5O\SaŊB@XG0GsgZlDe*'5eq @FħWP nVyYOc2(@7*z9@D5̞%/<-߈aNeس;2/ZU` ; UkE3)` zmLT9/FR,jnе%fc:CALn@2=ݻ!aQ**/_Pb~.LaUg|-g1b, <ִׯ_+uR4VWyytǿu{(teP M໚(eE\@^pbqֱ|*(2J+"֪-ト{Zo0p\]䋊W{D"O^քSzܬ*]%v,\|$Nr}дBX D>A'-;;^ײaNO?_ױyU? 'ˊoj$G%.E^f ZPUͷBYSoQ¼yT L~pM@ڲ-Sl}r(TnQψOU}Zա1;/9* EG&GP(˛("\m 'pqG^U>Q^|v7 ~6o4ዡ2 1~lXURٟ<iٻ\ -PYVrsөh\c,G^MbE[,DZ7"__в;Q57 ʦщwu}ЀRux >Y~g-/Q/=JGn Ǐ7CߧY?}CgAmF7*}^, ιYb oj~Tvhx\(,va QƊi[t#l2L[ mWƛ$u[o)Ykeszb˵#hV;=hTft7)BLO$e|AW uYeۯ--fevvig endstream endobj 1436 0 obj << /Length 1525 /Filter /FlateDecode >> stream xXn6}W &n e֠zhuQ$@buę!L-)yReA_ vI]?M'dbrEd"ZOYGa( /\sr%U[ց9CQ8Y Lʺ*nsQS^nEg߹ݢկ܇eGS`DLSR\Nay*t~cZ3$OT]Uy/aୃVŋ/ݹ4nX-*cuOiRa'L2tyYs=P5LN lK8zBbj;=1G.}`5­rh SsԠtO8@%x>-N8RHv[9Wj_y-H !;(>YluWp0:S 'T I"GTFY8t6VR_UEQ,BoAyZdcigPWXx*vO[OrGӱGq_Rf&5Tb%X#A$M\y[H"c*+DF/4tK[F$!^F* L`0"h'#b$[- .y|/8(g,;aQEp0AUޅ$0̱=; m\$#{ {JC ,{,`vNe3;pw1aad 8KZp;޽1ߓ%(dPS>wfpXf[ZnD m 'c?plFJ2Í7Rh\`tVQrc(~ SҐF%rYuh6l ˳T1-v-L}A|כSIB$1W=3 t-vH-d?E]@ ٽYϿnmNs b{zI'׆") db}2*AI+h4u'x+zSJ,.Nˌ-Txz,aNMj2\&=6+DMEO0  }o<@ZZhoփJahx8m xrL1j>IQYx))ᐵ9m4NS泞{dTցO&NZQehȋʟ^0B=NKˇ~׹{v^yH?Yg$kif7'X/ endstream endobj 1441 0 obj << /Length 1588 /Filter /FlateDecode >> stream xWK6 ϯ0$m6$A!> stream xڝWs6 ~_kVbH5knk{]>0lsE@R9Y[ Dgtm"f)R.3F)E:#i\.砒=QR^sJ/'oAeHPF,Z"F#dyg ݒu[[810݌Z4wKWuJˆ'4(nbIFunTyȓ`^vYC<%"n!KmЄvf1#i"L.;) T].+M((l}V!K7W?^εFY=f@d$a39A[tfq?9Hns$Y8 ~%V28Yܪ3BX0Llͪ6S` N8 pZ9eE]!/tV%mYz["tD4ҥDY1Ų^j[feT; =Dc҄qxKu!s綯M;Gڇ,SBcQ(vBLϸcKL#&O 9 {() Tp0%B5iRƾousn(9K -c,pY֍nNjPJ'6}tv# a1ٕC6hP]얏6,qBhThT'| qgs.3l ҽey-~i4[_2nRʦ{c{L5{++1um@QTnQr(ó6>{r372uޤ:øTg0xDXHM7bzՠX^k9 @/lS|Rd^G RnW9^'lA^77ҍܜ+QOܢj܌~XYl+X-|{E}4&8y eڞym<=O`n Gi R'QX#Z|,*[2 uʶ$JXP]cg=.jF ?F-I0jA. endstream endobj 1462 0 obj << /Length 1892 /Filter /FlateDecode >> stream xˎ66JrQMSlC-6z e٫ Er=E:fg=}duD6΢0 b(쮜>_'?~}͂HpJ? pHGR7Vűw}o_b,p>[Fy;,HEJ^.D:oM-IvWHCd+i5f`6ԍ_ݶU"ףnv~9!8Eq]_IYR쥑E X+G0eD"ɾ۷MIfʨ43LS)" \Şq_l7VE R+ٰmUF5[|1#r?|DS-9UhjħwG!;Z#ć#AzOAϪmvKuX)1խ|4}[%񽑝ny nmѺDi7H㋋dQ,_^zMK[FMNC0yCY5/-}<$@?ˍh8`Tu_0uf{k4 Ӧ*A !Yno~Ǹ~NNL "V6?yF1m͂؃ZՅo PH2rA ZF<! '>Dp>` tH߈c̖M?bHRmt; Y:=Շ- =m")2Y4:\O)/QSUЭikZ%Bn\}t&TP\H ,i!D2hXܱ Ez!ܜPYC"vreP_xӸx!I'kdgECy+x `Lɘ2mӵgoy')ahKr|)Yfi e1G2ʣʞy·% y+U| ' |2D!g][;mԶ5JXȨ ߕt- 511 {ްE=C) iJ(TolTq}i\zRWB6)ߜyȱĝ`A[p 08piuUY6qЖT 4I1ֹU6KuG4bGk"֗st"js!+2 W(pn{X?/`J9>F XFZ;dO!dm%A rJ5XgyJjm-i4bťɠ&T<{6*Hל[CքI'ZS]΁~E1gۚb$KӫjV eNդU.f@֔_{, Ź.P9Lϟ1ᑻ~laD"$YmpTWEyfbZ_:^]5\)$8[<ҙsWyro8R B(yk-Pd'6Q=!= Mw iŧG&KdpH"reN]M r{H{l͒©M1zX〬05C|=غl-[מgC{ﰇbf/'_Egʶ3}#|, ؗ->2$ YxsEҷHͫ`ץ*o&kV/h5f:]8+}BY=ttQ08c#Q|_hQSd~@2pi~ȡT[gpo_fZn#{m߲I[KHAkv_Oܻ#x>zCH+K<]w_s^,SwWw  endstream endobj 1472 0 obj << /Length 1553 /Filter /FlateDecode >> stream xڕWIs6WLKM%LypidR[MI0IsQ Jf:}(Rl@\ɯ0RF^d-Vv]c"?K냳$-z aiM?-^_Б,p1)i( WKl5xp+zLqt@c'( E;ߐt%kmV{z9nu9HU)4 WG9iY?n +#? 7%sRWz֢֬ͅ9! C$ ]%P}߄!blB` bNHGb(i{%2;fX m=oE[ʡA /͋Jw HY.^(7@?B(і6r~{qoBui˫X !; C endstream endobj 1480 0 obj << /Length 1908 /Filter /FlateDecode >> stream xXm~ŸZ Xk%=h^ۻ-Y')+PZm5_)YZoηؠė! g*\7Zd2(3-VEA #yY\.Vſ24"12ykF%-xcb-]c;wb]B.˨Y q˂R?7^Kx0VVUNv5Mv$Ъ/fAfAv3"-Z'm쎗:Yp|Plq`+* y3dQB ^S~s.XS=B~gQV >G'$[ vM]q]w-:WCrkm{RU}䭶qW:^ņ:;ѳ;} z]uٯPz>~zBycU*Bٛ usྞM3ApkMmm%nFzNJ]c3 ?^WCzjފGhr"ԘMj>Ϯ;5!*=XAǺc[=Bj>mwGh2|{?aR=@z 2g^+)SiײMO|F}SRCw3-Rj&Ґ;g6iN92}\5=k)$>%4#<@rƼX[=m8I@$ (j5SEom!,Er7y{n\ Zl#?-:e}zK7ܪ,Ak\xMUBHOqJ7)8hO˄]ch2dh"|m5aOP.zeRM|(nC#T񍰉07)0A 0ƚ K qs H ugI}M)| 3)*+bHʕ(f{"@޺{ kUw"QLGВus-׳'p,fӒL'1+^vXm%W\Ki CdIAdEhLi LiE_ E09iAq\(T#d 79:ͬOXB±,ܠkT/Gz ThA2(ҹm9L "#l0k{5\[xCd{ư6ip\wsZ=/-#uO#si_B;Mn};)7U n10Kir? 'jrtZ@gyuk8݁Z+!ӍH+Nۨcr@J4fgYf6ƐObd`OB'sS=/˓X[mAZU+ ΩrbdxҒwfьh9씛sM ryӜ+aQq_oY 5Ru%lG| [ ǿ%U̸5۝CYբ5˞2 t(e;=AfXe5 K4m.$o1k}T_ߟNuܻ8V$ |[ QU/Q eyo;Oo{?%l{~nfIB8S47mC> stream xX[6~_2+uW aUjUUC]UNpdLR6&H/!|;Wgm-CXG~d6 w`1@Go>~{BZw|"7"dÞ!͕ܷB9 +pPc޾qB{QPpʼnr zK`JI n7/0U(!;Pд|ύ.JFtr߽RxFn,BC$C@p1qAvDnU/;>-S5()ilL"s>iBڪ26hG_ 5OIC$9#cc8CuU<=wLSB3\m;fsx cZw5 % L1ok##ɧh`QXgYJV)ΠTņ$G`7분T}6?k ¥hA&9eW6ud7 | @4r)kCg{ӼLic#{٠Tm_+Zc"&Qϧc]V,ᖁ~m#L9ׅ]/zۃ.1esN2vOttdZ:]]]d_~Q}iRR1NkŽtb '%hF '*cuz&ԩP/OLir(Q؎TC[ӉB-&j2LKɢLKй@&0Pʀʠq#r a7} XdZԌ#0^gGMa-MR(8j}?$CހZBKWƕv UY=0@͌wQx~>RO5Y2{8=Fs̻2IP?H$̰xlԹhSZHWcSD&EfsLVxgW9bQ"7U\:E3_WKSI+a;BޘݖtN/įKd˻4j&mh^'QEnnzm?F[N7,M^.o+ F6;s [$4QVs[S6ϒ͟ endstream endobj 1499 0 obj << /Length 1329 /Filter /FlateDecode >> stream xڽWM6W".)T 4@$ZB$ʕ~ɒW]H/H  gF888evuw G9XcLJbql:6_d"SH#Srm^ ޵VgNwqdF,GqG hMH1^աR D B $ԁDoqRf_F>onv׊&xrs8(8(a8ςF  'MbC^ p %$9@ uh3TCY(׭wA؉E1tB׼8٥voWBBT++ٷN?v_mc8RoDYp?]t'1^'t Ug紥أ8a/pY endstream endobj 1509 0 obj << /Length 1526 /Filter /FlateDecode >> stream xVmo6_a{6[&fu]Z4[ m?-EMz~7Gv - p"{H4'hOW/xy#Dq:Y`Q>&*ȣ-pu1r1"Z%ϕ#dd ;³pkQy'5ߣ l l `A2cO?CoVxYfS1Zlițp`+,\ Ow77Tg]?RqDSe Mzp(Όk[XEgU+ifvI+Vq lS'ҡp8VNFRK}bCV4sc!4j3-,x1g8lb(aXeˣ5pDžpI'{&XLCIdAcu ތ6'fZɍW)Ȓ^I[8C{#FpC6 .Q]u[O5K0BC@W{:;GO]P5%,H z8sco'V:ool3HyMj:FÖ=rǛiHSn"25>fJXU%{*:Vf7gS5qh՗ 嗉mOޜMfVnj[̊MJ3ٺPDFUxMɋ34gC>;spfFWD6VS-b$dZ2Qce\ܳ SKAel{oGMɗ}Z>p1@mګ2Cɵf}uz)"pF'v*EjQJמ`F跃Tm5})ošߞ; c<s' 8>͠<8GԝFcg?5lSv {ZכxRb<:QwO Bп3 m-6_-WNW&+k%0fwh ?|wͮ*.}\fp)~2΋?[m endstream endobj 1517 0 obj << /Length 1148 /Filter /FlateDecode >> stream xWKo6W[[%M ,}4)Ah/TDʉ×,v6@ÙofH*^:z2L^h]o<A B2N»9E2PQJE&{uRveyk[&nlj6E+Ƽ!۷E43-$p6DL)_V )h.y}F}PFjiXv ]{p+P7FYAuc2FJHqw+d1䩶V8Wft\5qɷJ'Rv!I-prNYaJ¶ FTI[N6 UC7>Tnu.}|,ppة $/(gf6Kױ4tl:3lꢹxht]\]ip9gJB,qe`CP5o(۩  7yXm:feU?+*Svۥ2 PwH\g&ƾIbdp蠒_[X;3Q%9VFU5sz`T ^ϷQՅe#%uaLv}4o8C<ٱrwuhF3$ OU OeZ;S͆R .dP<:9v@pwxU-:A_%ڹ8aiV\3b$Y C/6o%.xa"pS8\ep g[-PeAΜ/d#٧ ȣS }%QV md3zTg(0%P*p% mQ寤е>A]jg=3Oc{p?Ԍޅ!մ{urq=y ={"T(y5 &<ӵU+/UC&OMeh endstream endobj 1425 0 obj << /Type /ObjStm /N 100 /First 970 /Length 1421 /Filter /FlateDecode >> stream xYMo7W%!0F@$@[ÇQӴ( ‰l,=H 7Cr7(.\b\D?Vu jFt5ȥBHnHeI b(Ѐ(G]Ulӓnz )[ & ͦ,0=_jvfBXL h`pCY/6-͢ 55&iی(JZbf2r48&d-A++T6ݎeȕ,X d;oI.fd)U! V`}"THq m%MdE[ĉn%QSfc%Y<T*VtVtDs^}hRbUE pcuM;x߯"pZw*:::DMo-QSCNM^K?J~~kP{KRsJ»{QGT'T:'Nu*i7t4T{-Ɋ}ʶ#2LCJM5y^`^ "4{=i;W9ء>t'wit.݋flkR|c<>^e+9<% endstream endobj 1523 0 obj << /Length 1637 /Filter /FlateDecode >> stream xXK6 W(Z91=4Ydv2msWD)[ Yz'vڋEP vZ?-~X/nnʜ,ckBA!G\YdHg7 ߯ۈnRޙ ^蝉+Q⠇G OXr(hFO̡KOPQAc ?6@79"`(=d'Ð OkA;#qL;g|"oS֭L0qݱ9 ]yj !L8&O˭nҘv} gg9ÐZKKAsya_eUJ^@fF/" endstream endobj 1537 0 obj << /Length 1763 /Filter /FlateDecode >> stream xڭWY6~ϯ0a[AR4 Mɢy䁖i, NiK^o}1poh5bxqy>I9I'3d@rLrt]F_Οy5+drK>6mSƧ~y-a=R5"@81#1y2;Eob %1/+(>N4 a\e#ECZi-M%PiTicmuP͊;׵/CGM'kl_/ 40W%R- %)c,/SM(ͳdfSn_y߮(g($WNϬnZtS IΪ ɘݾQ8$e!9n\I|,u Ik L12J{f<0ΎIVTJVs#MW{sڴ{#jqO/8zi뫓p!n6ة3:_ 1];tyQǸ ʋ!FQW=SRC l8;)kS\5RiLl-vNwt+ACLM,:jh1] !r$w@遃οtMv!獃ϑQpCM(g)Fg1+2;@%R/MZ@I gOkavC243{冄茺o i]k5 mC7?׉ZlgR>ysSH=У xz$xWwtF'qrЛr:zvq_> endstream endobj 1546 0 obj << /Length 1057 /Filter /FlateDecode >> stream xWo6~_=RB0TeZ;iҮ4/d1I{5o1$!z||s}2e2i5O]3=3V,tܙ1GȜ9utkJYi[lVNf`Y4Ԛ{60{cg9(hy3ZͰ]_NRj@Y7Ubnͩt#-^(JzŎuS mEܢ-%)/@^.p)%9)dnmdwR ͡kL)NWWW Btqڢ¾FxjN*46F2J%is5򖳪(Qe:d i4˧r8a JՖ iL5w.{8lG=.i(wkGՎiRTHS._Fh&Q~=zI8!)mJʈ'_*JfX{m|σBͩDOd؂\v#(wB)iQpI wv6`hpC(z7G'>>EY7BbώrN'}:E4HAɊo$gA;pBA 9ytR%Q+cuZ2]j.Z^ΪjN=.dŅ{:xYF2 [9$c8sSLnmf3,<_߈|Kkk>R**);G!q<>1UTxkjef2"-}=53\2wSa{è;_ endstream endobj 1552 0 obj << /Length 1663 /Filter /FlateDecode >> stream xڭ˒6ў˽ivzh=%9p%z$:"R| 0"8Y6Hy&xy9]r6y˾>D^r'lgVJ>)BFWoPlշ<޲ >;,UgDiz{O mZ8B@f&^Z. Q_%@žVtC+qdaxVܾ ,6e "qTiı(N9.pS`{痒z0$UVJ.{ٕ{E{x)JRUWqE{lJ'ZtgR/$Y]1m'2(:'t>^,}o oPǤq[1p n"n}vմf/Fl$ywͼU軡SX1GE] dnI[fEBGGn OgEII6^K7zlqnjVȡO[{ׁKh7˒u3cCG6RF-4{s$3W񚑋Mq_"T|bkuǕf !lT#En/]uU _u 4v7iJF  K'=dN0N6 \/:j:$m t.IWGdPX" BAGÙ)iwT,s %h\iL`bKajd 9'dWQ}w7 G&+b646s`܍# f)'F|=þjGWKϲxVĦ- UL |E)Lт7.Y'5(6WbCi{C˯Mk&jI%PXs10h}; i :;aԖ|ā|!t+AԽdmYuǶ7^pqKO?'acbVA~ͳp ,:~YiwcѵE>iv?Ig4 endstream endobj 1562 0 obj << /Length 1287 /Filter /FlateDecode >> stream xڭW[o6~ϯ0a)QIvClm02mDzw(R(i<"bO~ITv@5Y~Pm":B $u\׼Б|y&vaAS7 1lB*h[}ar lzV2Uiٸ ?ZWjb=uƖaHq%k 6#jDf-J)9&S9͈Vw+N#.Džc3gFaZ >0B!Ɏd5w9_uEwM,l'ݢ J/ft`Q{FSr?a,qB(L09n'9>muoN @r8#Gs4n\JNJT02D?FP!}4(2!q6(Ҟ Mj!x['A};冭&@0 ղHHӬ$sk~lYmJ\)Wdx@DMW1Vo՜3iT͌8߻A0>q0= f- =Wص<\'=gr;CgvU%]EwC_XTW?h^e>WF%ѸJ,{l^Y~{[a~sߜY#zW1؜\܋̚ʌ_ҝp ϴA} K(4&V\+g6)T:]}-pl?-s:5YWC+65#67eƅ*C+VTm#. ѿkXyO~tT_Q,M1%|~y? endstream endobj 1570 0 obj << /Length 1457 /Filter /FlateDecode >> stream xY[6}Wfcl oMۙt3Ͳ/M2! -9t.Ke#;|]xx /ooIx˵?'0[a$ˏooi$I4L)?G,%lE(3" Y Bh^Jf3_/??zb=78ڹw7jM60i%܏' L;5;U8!g66n֚`EY[KXsaHZaʲӔn, ӂMP'H놨q -Ɩvquri<)иݰ`ҷYqXk%~9eFzOޭE#!L!AƬysm`ID3#kgv$'>Ԯ:o T';jGl%"!Jmm\#H9 iuéVjWS@'~sW+ߴ4N *`/bEqN_\(wSSwI*uyŔȷ z$wdmا:둋1Wj/P? ?{A:o_pDpNOAA!I75L=|\لNY Pz0%(]E { xQrIs$J5*K3¢ijI%L"{"ɡ0DBdȳhGM`uJ.fU(K;h_rR=GƝ֦pӐy+|z1ΒX72*Y^|wa.bɋ8{U0R?[u #ҠLWPNȼ76`͍RSAm+-5`jiv[ H/ zN4q륥eLoHK"0#S}>r'qAzB~u 3F?JGB]nI p5Li/F ke=@Uَv J?3@\Lm KTL'ap|.hxG;KتTXP>\b%y33CaZl稔Ğ]LR5[W8#B{S')CݳDz2PS%k'kෆ #r* endstream endobj 1579 0 obj << /Length 1647 /Filter /FlateDecode >> stream xڥWKs6WhiJΘ4;M\LdOshz(HBB,ѥXPeqb.h4E~t2KGeXq>XI <)G_ޔT4lEGQ}%p2VE2=܁q={@LH7a@pOql< X$f&od2oCOQ02T*#a FKM$51h~mE'1>82Wĺ2rAT 8%N { f!h"f~y3QJi$LĂq䭥"0/)V_spb'*9%R/C tU7Eqy A:ԚVDCt^03Y3q]/BN 3׽lz5 BK]8ޤ'8$f.bc X#mZ`T:7#5ƃwO^Q4)6a&yZJr_t#͂v:)F]1WL'YXYЕv# T5?RT U3ίVdsHUөYiGuY!]}}],l1|1V>EyIQ-̄`MJ=Ue泛Weg~/G-0K^ QW4n7Bga9f˜V?=; ;Fp_lje;q%~ Ɩ@-FVB╘= ߇Gvmb$y콅$| *LDDg V址I"9tÛ%TN <zWA}G8*<614NÓ<5ᛋfnj*tJ%H!#JX谳>$FYj,#t-B,زF{"=SL* d>6RV3U8w.K-Dk9xAK֜͑xU m =pF0fH`Ѩ&}N;·&kTc:UbީUKo1‰F7m& 0Y8 ΐ\:qSwq}j9 #Z) endstream endobj 1590 0 obj << /Length 1397 /Filter /FlateDecode >> stream xX_o6 ϧ0h\˶{@n[;l8l]tVRl9kO?R;MtIDJ$$E:^0v5MR/4J#aİ$$H['ꧫ[H8 eiuAŚ릑QH(B{my0 2/bhE؜xLH,_\\4 (:^_>fiK3FvvC3mE#-{ο8H{HCў)}ݔu2$SLk ؊ݢm:5 ݍ,ȟ|^:jnjg,-,N}z%lAg޽&\&1+Q{ 50D. $?l:q*yF|Rҋ(F8͜d%d6f|<~S?B&Sy9ܚ=x B,ԜPuzJpҏR˅s$ )} & 0dmX{oi(ga6@$QMmf[ ~ (8jPp7Ppb32 W j{Kv pWE8+Di H1IAz)j.-ڥ`dEYA';' /'.Qo-=qSGۭnQFլrmbȎ L[oDZ8 ( ɬ@xIqn)'Pl4Ǵ.>/㩷= ;*J 1uȾx쳂u% #Yq8 qx5An݅C!UGԝW=V[Qq l¹jJC.*SK7l=Jo85RYq!o[dx^$aE +aJc}i bki,mW[Iٛj [0ɪG]-vhS-.{?B:sTb8Td-E49|nIӹ(9Q͉o^:mdHEJE:O)MoBb39+朐,d/s/<P] ꩡR6v8Îzx.SXW'.atK>HXﺗawܪDxOY̜Z endstream endobj 1600 0 obj << /Length 1338 /Filter /FlateDecode >> stream xڵWs4`J?@H<>lYԶ\Y׳d) Wj?sZ?Y +EiE® bQMns"QI:pM5:;pæ/=uBdnτLMUZE򗓸6/w{'IwHӉ\Ѭ[Q}𽉨4@8'nUTFh&o^BiÑZ623@i{M{q~~8РY e1"DQi׼N~A<!!ly}c77fYaïdzvmGbNFmhš5lqd?lB꘱Z߄8hdn/Ԝ6LQy ij7 t8;%ut&éQ<$ϔоR-9dKZ;>VDLtϡ]BM 3(a/PN֞Ϟ.N@E PsRH؟cA{8B 46X0"shxO" (- 뮝)h:DS\[I|k `詁Թ6LAbTP!WNS=YMR%05q2J /f񝈖MWыdoɞ..VqTj 5F IylYW]TU,L.I-iк@ѢK6&tљ6lfM6xp + ld?YFʬ+C4co e!c1*quK#ug)3V? pWkSxY28vCACg?fpT(.B& MWxjIU#h2e Z}fnC7S }%q<uN r_^ܬޭpqRhAje#?MCZY<_qZWi]~hWH('(mҔgϟ^Zv9S USU-{xKkޙkc6eu8mrԼ@^yFzr[@sh`Z >ޘtEۮT;^ؾw$z꽌W ~?l8ԅQkEx5h$r}G6k+H毣>)8h@h-ۥ9PpBRj^p$).9e{,[ (̢Br:UњW鿍M,}JJ~n 㿞YR͌גԊ,(ˆ*/n/M1yw endstream endobj 1612 0 obj << /Length 1493 /Filter /FlateDecode >> stream xW[o6~ϯ0a!uWQt[t@m%*)~/-W +<9l=óξY]=g4u`VzAHm4 H\AL9pJ待]hz@2ZTI[e9 b/ )Q8^2=ݴ5SVH+dc*Ȯa TL#Цt] H'AMɛL9m-:&y+(J%w)zGqpJ^;LT\bs,d5NPA* >`wJc% ۵,2@V0N7;nǼoVtHWp0=ȑg;? o vU׵vECdipIϞ3R'WI(}Y]#'> stream xn6_!}!uWQf0]n>02mkm$'^$˱ۤ]߈f?,gq(OY1 I AI;˕s鮨DcƑ~ 쟄y<f8'$R~fRѺLw8Ƃ^=?ؽzQ(#XF!(TрQlw$XQ4TA\'$(B'{l@LQ> ?T5imn~hg3{X\#)|H\y>x}5v3xnnC#>2 ow\ h--3;V=Bl۾,v))E-s I YHk.U'h]B2V|@֢1yMsf?JvqW妔X B%!<; PGًf8l9^^,g;d8QN2gﱳK= iډQy3uL軫.""I"Q0&'Ȥ>ٯJvAݶ1볢ڲ*1Y}Ee9 Sy$vY#fc/i/e8#icD܆L촬ScrPbQ>Pb_fJmfRH=g_m d`! KlƞP52NRF; 3L$(,nI0hm|NM Y'WszSjc hllwVUF m׍xrB`@ sll aR}M_3^'~ =?K{hoD 5csuAvzIQ>жԲb1;3f,AtT-];_1Qif@ʁd~B9T(#E8-R?N'Q|>Gp<%}UPT(+MS :CMi Chb ~idd{6WeOV%'6d<0Sϊ9D躟yĆ^[7^ c@1bV^JVGc{n; ZD$A0΍(_ r4~RvnCgs'?;_oU endstream endobj 1519 0 obj << /Type /ObjStm /N 100 /First 974 /Length 1515 /Filter /FlateDecode >> stream xYMo7 W( #@>`4@ I 5u6tXoQۤwh=<]p1XE*fG9HqjIlFv" q%4pq%'3+{0UnãjDNSrZIEm ,H,*l@=`86mq' f(s E* Qi1"E.8,rrϊⵜ儊"1B6,żHv)yJq)`.ȥMl)+qPȥ=LbvIZ) bInI V1sW| + jc˸İ$e\V˸OJU1XX^U (˜1V` :vXmلAOkVOA)"ZZ]FZVbMe=BIHPT:I.:IXoQWX,LhBbrBF\UIJҒT&L,x1FGr fnox!gǟ~ƂOVH>`M߽;ڻwTj(Ϩ%]`t1<-ݡ>:pËK?fxpf7<|ynZO6~ox6;/Nf+{^?p7j-JGthhK݀WiɌkrox0.^m8q8LN0A(H3Uv]{%|ONo-pdy:·W.gl/Nߞٜx3b-^_>|52.iG\X+LY1/s?4m뚼\"ߧ86qe}܂_ }-zz]}rPj/6N{ B)U}$D'e/. f/ pٳJ[x+~Wwe e5^t`vq2i7:|][ R/Av S':KFTz3һփ{P;pԺT_mDN7Uj/M&ׇfos7Кnt:M]^S pd҉ft7ۉFw+T*u)8Ѵhg-ÛNчιhdъЇ&dRYwFge ƌ%&m$p]-I~[Π*Gd%J-FZ?]k3:dCDQ9wïQz]Ի L60#?l3[s q·{ F endstream endobj 1635 0 obj << /Length 1741 /Filter /FlateDecode >> stream xڵXo6BhUlYo!KaCeIah阝,"DR5b{(um֯_.G0xV> C,T jxji.8ayڲC-[-1R!u=⪺x=̨9sN*IjR_rMUEf>߻$9 N00YX'*Zi&1EEEaՆ(bxq~bv[c o[d;yh-kP,S.phY"X-mik& 'I?o%J}!]k[NNV}ZKN0OmúBH$D{SkNiCгHp/NafG` K͊fRc9£Y(lBJU ng * qj@{* Yʦ=SQ*QQ ܮYFsJR.$U7Ή>j r% "M7F} Y\&90GÂTSEFiD\g0)g΃FYO4d֏]}P@ !Ȇ7B7ixW<9޺A8t|D@yq+ɜymYxwbѥ PY1'B::J)\5 Ƣ'Mڎ_`Y֑8?RQohG&sQVxVQҋuխ>+DWn :N(AƁC1Ϗ  Ql Q7fOZaG BlU eT3…Ac s} )?T*yӽ<oxQix@$ΠFi&Nq vM}I@vl5x9QcuhTx4[ E@蟇1N%=]{f({79uLP$xl7|t-k1:[J )h@:t2hO7?k[=͂K/Y?z endstream endobj 1645 0 obj << /Length 2766 /Filter /FlateDecode >> stream x[[s۸~ϯ[K!udINz*;&!`\E٢nOA8\zg3ËW陸p9֛3lxy~D cH<uWr6/0zYVx|6al߹!͈퇬/zHBQ>F\(HFA@bO~L|G?QR/>KM ='^[ߟh.ض?AC}SDD4L$1ߌE@-j鏦 İ?ÌWD7Ha,ѬŬ%2L7qˏ:ڑdo|\e ~,%qG9Нb|;g?\NZh"@QS1r%~ގĆZ̆1& HnmX+bft5TOS3AO%.y"2.%Fr -R($AVfDVqUf ]@6lߴB*4c OJVXObf4Ja[nQQA9w1ǖJZ$y ~tr3d@}{/ij]"}k:#i7 mƋXVm5TYZ## zZ3F!.`^wBe P8(ΙB/7B߬?\ Cn& :T{: n6nOix㡱oLqhQOdoI22(çQH9Bc#爜L(s 댜 ˕\,"_6Nߦ(z?Z&AY@Y1N!Wܐґubi9< H JLI͵3 $iJX~>zrJZӭ!Ji?S'.qq<;T/GvGҴkg!j.eLRI[\ƏG/*7Y޳ʚZrJ"MS 317XOx#gXu'$Un(g"I[ qsZ֑Q &Kyt޷Qv JJv) abŝUWH&cjYylZQ '#ar9wW.#g~}7cx ͆^)1L6{f,ۆ̶ȍln [Gaqk}??J]&7Hhʲ: id,=~* r, . Z0yEs7 _;dYL B6z:cDt{M~|uG%0 0=ZQ^YXn+B<ûM ⿆`O{=)e{4 >h4,KOdR9+6;(JMSR";Zefa R7$ZgN'Pu-ATFw{(ՠh!v_S-=ʗ=[Z։ gέrNtIKvTHP5j?))v/.SocN-2UwM9D nv$m  !.c?*ؠ{v_cJ:Y5Ϛ"LGǧ˨Y[֘-I:-s Stm I'L̳_6e%]lڊQ'5-Ykd1x(nr^Prhs v$LHnVIT'/NpwԢa%mTKn]Yd,Ỵ"+3GfjȮ)6Ku?ˍ]!^SINKzdvAq%Zqe$fdc`Q/w9fQؤRwy7' ~T 2JVMA^HF7E[PqW2NB}wP`h4R""]ByNpNM$Q[dy̓ H{u+Ad#kQ]2QtJ0]a? Đ1-Mw\8jjOB5FX+\f?@xF f H~q~`eLa¹|yJg|aSv!"E!D(R"Ț\zl\9-yY=ʽ r9MǸʹE62'u:+@ I>7*L${܄ś V}DxRE+Gmҵ:h!v(/cϰ#)OeFw>ɵ0 b7f.ow)=}Jd3G{;h#GIOl02Sj3wf|̱x^s9H*;=FsZ) pa`Ǩ~Q@*waV 0MN;GOSc0Ʌr}ɶܹ' eҟ*xύ}I$B͖*ix୔ZusـRqv&•hS.߱=oc媯yGj\?Mt?]r)|bVxh } WR73> stream xڥW[o6~a&uW 늤h[,(hʢKZeGe{0Ds1uu^~-Hsr$J̹)[p~wzq# "Tҧ4A&N{Ah)O[J(;{~ѝ]I !47cydш0l9/wh ~Yv# sl J=KCs?re!\]+"sB>9MaK[2Pwzlc+ey\ּ^Yc/5O]Ғ8AZ2ukUwZ>]ۯ׀l Dn13 GsP Asl c,'.U1XqǬ𓃑(!b,u5‰}Cp)U\ v @I f~v PU" 2D ".ڀHxU"t脵l;7v}!wA:۔Gt qJF$vaeu7Tۨo?@ {PsZclmݳ&G /Q?[G6YH 'I@`[D{d1$Yt]>],YodkT;G{uu]lm$M߈%\T<:\ OY:t'mt)NaqԉF = TSET&bfrpPee$*{,쌦?TP +|%QI@!h00xJ~[7փ>2P(! 2%ɂI0ciJ)<$Lco jT"R->¤^|K^~ۺӽaBI,y&'OzgV0pU tai_n %K:j`BpwxFH ūQovٞy{vRÚgHf#x֡%"aYmoUiFY*n㈤g<;> stream xXYo6~ϯ05CRŢ6GC"6 I4(*;Yx7RmFzpd)i1)rr{NRِmp%ʉBaY:٬q5#g L[sURo>mgϯ^rYOdd#/ԋuWpdlBovp9-|6B)lLya j/\v8alo&ۛJlM]-+S-mxܞgYC~ $WdxhNAi茶sם,3U/W|Vr x*_ʠTُpN1Agp?5f`[Xƥk@J=)"K83F1qi`~( .M9['&mb\}e492H9bx#!2niUmz6I<\ƒ2E [Pwndl:`i׶ y&IQ9)$֮ {d> stream xX_6 ϧ0/>ZbyXbS[-'jm9^O?ʒ;s.C7졵(#E29s~][< "'EiD"p!vbQ]w1.?& F~$AQϔ"3w<񉓀T(ؒİkg.oV/d'^(5bI0Jqb gY\*Ң 0+=Ƌ%^X%%oI- oV]/-Kh%9d23}u }wZ꯬6d. +Z`*NKA 3$Ut놵%-I.Zez͊a9ώZIESطZfs]Q+~i,~|qghN.R1Nfޕ]fLLZjv9+%ld_YSj.Re!-͙漸(]l$DN~C= JxZmE􍋎Y\-\`H춗/ % l7RH~RO O1<0 )I`\46E1p"iO Ao<ËL g1tsrFZT00|nVM7QGׯj*atwGCNYӆYwL"^ &yM<])F=<6ѣu-JԹk&i_H Pk2_0O NR?DX[s9*=YHY6Φq65وpc!  endstream endobj 1685 0 obj << /Length 1756 /Filter /FlateDecode >> stream xXYo6~X E"HQFZIA"6Im3ݕ:⸿K+Z@ D͐s|h|O?"Cbqr #EJ,[QwhdcتL4`C+LHj?H:1Ma9G(6G"& 4O.2GGUt>FG I$})Y]T; q oU Bs%CQ3ǥʝi*txsK:TS+dOwyU-)MԌ)Pc?8}*uw5gjGn:~-?*/?hv;·p Ǿ:7Hqֿu<FOE2ՇQs%rJ1o7}מ2CB$_瀼6f(e#6 ͍)Aη !iL= 8]X4$lj75#@bsժ>WtǷ2=ݨBמJ*/.VMy']th Sgú*Ԧ"UE ~]-)0v\2!W){; wSpZ/W^} #]jF152W_na[G7Ki;; ?r4< zuok߀xԦzQݜ:KBFf/hp29EmڃKN^&oAhMJ|d r\͒ȨPPⴟj&g2^"p*]hڅC/"H_MA-ɹ]La)$zYmY6mlyIR[겷 Aб;4 BOg8}^8п[Ek_r$n,A"8蓯R4ζDNP!14G(A&1h8X$sJ@LiѾVgn*bDD;0cDt1L Yf42Ȥhl jBF_FnIdg_Am9tVü'p2lZ Ziv}i e\[MC 9`2 &L9 [n3kt +ys AGFGqB{?aC<{> stream xڵW[o6~)Qb~dC6,q1`]0Dw(/J ݋E;7:qb" e1E @!HQfޢO1Ng.hA` U[pTOEHőa6lIļA0Y5SܼJ_ Y+ڮRrЭD kw?u+U{gDkVmdڜw+q2mc͓w κ^ٙEYeem5o9F2Z6] z찗Ĉ`Hi4PNavla?K!%ݱNjzC7oYy}ͪw!Ky{19vn[ tl T^-7-WU~SF0%cYk|q'?Qõ"w8tE!> stream xXYF~WKGbzݾ( UDi-lߧc,ʓگՋO=U$HV}F*%a:/WzYR>y.y<89z[.p:ބiR6A !]ڊNI`r!ʙ,z8V b Es?yl bD̺B\,, Cp1Q'N+HcG,>Oi[/Zߧ]?$H{[n'gӮyrъm|٠FÑdhzL M+1ΗSwbj]qeK ٮktݣl/juzaoXrwN=PUV/ԽI 網]Ad[);[=4_,rͿ %v"Jrd]q78޸E@,&PqĞhV6N6YpvK Aݝ3!Kg,3,?Ug@"cIF7I k H=MT]TCI^:3ɼ]4 KBf% g[]UҮ`R'e'.rɢW8\\Ψ*^׸M LaJn>3l UOԇ:=yՅn{feg> LzORBlj{iDO>LJU4rTQꏪt`,cOx3~UG(<9, mI ( Q<5>n|ƳVEm>W$^HGNw])*0{ Aҕ${r-k+k-̸N:bcC#J]/EI 8 _kY{ZIKii'냪TDZaQR1 rAW6{ dC'7B;ր4yt|lr3*Y?Hl:]Y0\~Ow |ʚ !#<1 Σ$_3RYihug97j{B]S}XExʠpbmgľ?G7^u;9+URtvEzb׻ Ҋw40R;ܷ,ЇwLZ q?m:Ɩ dYlhQ}(9 V'txNbfċ}/ @Cutńf<0 O!¨Nrd=wv Sʕ0O\&lr% ,fLi`Cyd;u* [5C) JF36AeX"TYZqgiC҆EueH3Wڱ; 6^Ɯ(Ls0ì)UfG~6c1t.F%LZӛpjOnݤ`Kq a. ?u!.QP+18(ѷHf}p`ld$'Lsz[J֭Ϧd"YؑO{lbpl ]`=t'L/0lU rގ<KC7㳳 8787 "Βtn׷z0^V;`I: ~hJkDi&fv){F,aqNic,-wOZ(-z #Ԙ^C`fVE2C> stream xڵWo6 _asFp 8[m>ؙQv4i{(U~t= c/CYLc(IB̻.P<<# J)2JP-SL">8"g4a`_)I}\s, cc_|ݳ 1A,ӌx8(QZ4h*e+w\ovV*Ij)睲 ൲:$2p(~;X%C/zM*_JQv. 忪]nvJ_ n|ց GZA[ظrͅS=BܥD3, {*''84&<A|^9@E0M!P4$BGghhL~|du}(i@P`+ s:],,'xd#IIVci0j#FH lW0]hS=!a䳧sڏAp4hǒBgu{HpF/kݞbzl2!coܨŽdr=q[y3>$H_U ƾ60 [Zij6[hum^5#b)4KRv>ޱrnt_݋75xq!7阔[i=/EJeRq6OLm$_]^]Cł b|C~/^T }@!ڻH_BބF ~=31'^}д>a˶X}r 8S"y[)' kDQ(Eb@8KJwͱiYpZBw¶0ThU8WUm{31珆\ﻄ?h`^ 3lNT?{Dǂ (J+cczi|[&'O=2̠F$μ|5^`Y=Օӟ髽o'_e3sw0?ģA"ΰEӛ|?44\3ai{4 noX9f͘Lj+x1fد+ޙy4t//@2B\RMq}~զ6!/e\[AnLR4"Q-;a52uq< O`וer]mcINeO 4= endstream endobj 1632 0 obj << /Type /ObjStm /N 100 /First 965 /Length 1555 /Filter /FlateDecode >> stream xYo7~_{<*B H*# ;t9,7p+彬 eQ$WݲIlP\dqDH%)TI.ǸWMOqh%W ك$7MpR'Buq͈]"B"ajhfbm[̌Y 1mR@ ,.\Vᥰefڬ˜jkb\eSflb Ŧ@eVC $GMH"m$B5 FcBh:fPMMD@6'6ub٥\=`ζ\Wn 6onX #r}yxr'nx /fWloxr+hvx<]]˳NjĔ8T:%f0Qr'ļ҉QՇ΁_@ud|NjٲI Ïó nPǸsRƄyjTfcvD?]|u/Gݟջkgk}w8Lu[ه"^ h{;ѹqk ٣=9ʿ]\#ˈ+s+Kʕa:9g'_}Bׂ+:/a!y!{/ѫy򳋋ْBܭCO}0,j[=1M>٫57,LBog%Eng)ԂF'N'z%LF uXz\Q 3pNt,ۇN+Cvq\Ezep Nt;HZRNZ%u'x:suQ0!-J&$z8}jtKt]+vS2ߎC< )͵N:Ӎ U{es޾uw,~C(8N$$!,XG`" )Y%1/AlLhxsM{-^R29gE _gE`y׬h`#+0T?g(笻ʊ ۣ7Kj':cƉ: zъv{N8_k~CD;hBlih Dg4ww"&F3:;*wN7;U?. endstream endobj 1732 0 obj << /Length 1366 /Filter /FlateDecode >> stream xYKs6WiƢ LGL{L|kzHH„$4XG@tTVlG b|@Al3g/~z&2*3ͮ3KYNHrv]FjAc.-bee [:uB *]NGA}Is2Ղs[n'kG{O$lI(+X,i#R{k TgAwF7 MvEq:"Y iSee$ŭ+dgF>KE>{ᏗN'$"NT_{Uǣr+{wqLxρsα>fZvׯYq+Uw^pVt<zl4DCĎFԑGKoW~"A4 q9:iB!441V>#Vk{y _~(D\Iu/:gAҹ&L\e_TOÍ>v]F%!% ݪf8,ׁ&nlJv \ 9r0q8r dRGc ĔX^ÙW6dHā-5T'> N"ָZT)/$'JUZVYEw4A;?hL˓{lamWo0iL@0tUÎV+B+V T|d"Pci޽]!iVV˗Hs]_p2bS]%vPCsjVr 䑥 , &ŀ12uP^)<  ,*)A~4ϲ]ɨr\z_/&Qn^z~3 `C bDeAu[kw~AV\mІbA' ( endstream endobj 1746 0 obj << /Length 1663 /Filter /FlateDecode >> stream xڭWKs6Wh1i$EҩjIc @2t^D`/~ ĝ;&M'q5\y3c6& z~9Ġehq\mL=9$U#^ll 1p XIߢዩMB (RoxGA4\iZ}5qa)hYj~Ǹ@Nk&@8d~txa !OPGȚ;<^z@ z\t^2hmM<>VP.jS+Z0ZbZUBdl+}EKL1d\Vc%\uX[ *>\+]p[YAk*>Z{{<,YôUI VS4K.>NH8sKJoQha~2)mG;. w (IZkLluAiD lY`]kS[yuyUܩښY_z{IWh3kĠ^W[V)*'$ĹF6oTuħ5#똀s;OZr5/׊$hv-iU0MEw$CĮu>PQs/A ևvRCՌ cOhcTL}j(}YoXV;VoL܍^Dan$&} 6q.g F4?A!A$n~\VsuZ> }xo'Nz3cN\d(pȢٙ%!,g'R-񼗀1h]b'<իWS;t 6N`49!ܬDUVz#MuqѼLs av6̻+?9㖥YrhXK?l t>ƐbTˈg4U4S+v]1dmgbYȚP`'/e\j3#Wj,Q0+ng6.ox#Fs^p7:;J-2㱻[tfmŮՇv͆k n 5c.UR=щ?Ͽ/l/ eБSL93°dn=w-OM}[쬒ڿż=B'XNT?{03Ӧ(9Mٲ:JGY uF2* {I%D1jEeZG^j GRuVdX7>5gns?yQ :$QҮ^RnmFac+6-ʜ(ND-yv]6z`T655c+ 4f[{zcMK2cZ])X꠸ɗ1u۝7,&PSuթwqT*9k+3mڴKee=GޗJ4Z*pPt9PijB&,,zU0ޫ2kR3aZgKM×}7Ia \H(jFS,zi&:ڢvq֭IQ/Cꛩm,{xG$98s}߇Z!AJc̷gn endstream endobj 1755 0 obj << /Length 1075 /Filter /FlateDecode >> stream xڭVKs6Wp4S :mN;m)&ASTJ}/E(ۙɉ v 8szrJQѺp#L c"ZWчY4jQqti TEVj&r$A;]rI;tqq1_$qh&l?ʨ ;X7kr>ɝ=1jKC"X#&<$Uʟ|x#$;` yuW˫]er2R=MJ~OEr5TgA0#^m0VQ*EDH|36\=ss9 Om]Oluw\Jccz}j CZ2?lz|JߦW7 :el4u(AykQ7}p+‘zed^bnSU y`-)nn?Fq}p#@ÐOP>I *r;;$p+of33avЛF6qw\kqgY9E,#M(ʲ5Wl6_?']R w-WֆgZ鬠nGK6'k-FL5Bshz3Ԉ݉JNA'n4+%I0|BÔXQ}MbmA_t. $E I=QOIԱ'˓Ws8-)\t7]:YBFZםKlPNR:zm*7aBx }f{Y3U q8 Ŷ)ƸCjCP̯Ui >WWzR:rsxj,3/8&RcŔa"?2A?v=3 endstream endobj 1765 0 obj << /Length 2115 /Filter /FlateDecode >> stream xڝX۶B3dɑv:=_y~H$E볋)Rdz>X`aw!s7/^_쾉Min(YxiTlN}ijQya bWoO#;2aĈ{&j` XAe)qOBoȏPѼ'R)nWlh6~"B:eYБg}jZ \)0u0@0ཟߣ`[;FwڻQ KaS`yE{y-"JZf.S|'3{X;i|چcf%daG&SؑCA%Ӵd{蹢)v޵rQB@~? ɌLj({Vjb:0 ie=~sLDJ/ha,d5Ќa6ؚen啲jhW%)kz(1U• 9ktLGcJh7J=?L+A b96HXnӃDqJ hBAI~8UÐF9Ѣ+ZGe=TE/լ@ahnه VfwMLw6,B sޞb%rt= ړ8g|_ VJ*!Y R~X a'e)ՐdWr(HK1D]UR[Ι F>4_̎_SQDJ  z;^yA)Й&ɱ鎗3]idǂ ;bgL(- P왃l%kD+v-}6I9s;D94Dx/bHiVw@ǯu,q*51…zL0vlJyl O G2R(\#~Mhݫ=ZiG_`_^_8(+)ޮCFn>p%0=[hVk~!PkTk9 @n tJW#d҅ ]I4 A2!yTRR1զe!OK$eΊ`$> #s4M{)xbsO] 1>,D?kH p9&+瘨|*0(i`ίLÞ?0uS`z>,HlS kzm|>{h(mpWZ)u=hH`㶧m''z!ؐ ?L FO0ľd[cϬxMvHzuZؠˆTK2_n.Mc9 RG~T ~lyE.7…؉à^f-X 9 &ˀo(kPřWwN]0<lлO>0([z4%s%c΀Jg[f()M0O`8]5x_œez"Ѿ0`x+NNy>a[S JTgAlu~nGh$x +,+2 g$\<— ݈J OR |/h>xJ;At z~< i V3[+ɡ0.}_=ZWt?.`O`l&m$=̋x+!HefhOch94|'I45?Ga9 e%#Bv r8A&'Ӝ|]G E`>}KkP3Z\AXOgp~L^|I> Fq?*ӂ2ۆkg~znĤ,b,ZgNUx?K/~ endstream endobj 1776 0 obj << /Length 1095 /Filter /FlateDecode >> stream xڝVs8~_/\! 7wi~\{&9>5Do$.NrhvWծY[ YL>l&gׁoEN&\V,I 'gCn4TYEl]/Jw9^xVK_jۋUت yݻ 4eB )nNFQk0*$ IxK(ЦuSUR梩>c~v +sZj,Mk},(2.5ԄMI5iAVSS3%t+g1֎jkW_ )Z4N0PF.c@&8ro&E}k!/jh5 3lVYWx7DoL A}m1m^3OɎx'v&YOygNڗoNYj8q7guIy="&Mqb}M &FALޑyu)(p" c;|,s`Mtͩ V!7Xde$1w˞j"s%5suByyHkқ'dAǃ~ZjRs.k嬩J~jhZ`C?wkFH:X>ƣ:m-.CSf M`I/n_^ um)Et~))*VpS-z(to$=r@ЌtÐng_:L'焫հ*Siqj31qYn׆y+=+)&_!+Ep,ڷC V<뺎Ƕ׃FExXzm\X{NER1J5›l3Y D%4\Z/ScJW%|*o' rC  A-~0 s5.IpZ 1G=0!em/hqHiTcm2w.h f]^£T eɠ-i_E~ ;<2sO6hvP?䕄7Q(r#힩.#NIQ h- endstream endobj 1781 0 obj << /Length 1377 /Filter /FlateDecode >> stream xڽYQ6~_I*v+USsOwLms{_1Yȱ{*e10}cx L&䳗I~OSTƗfm ųNck%*1fVLסgrGFɡ98 zIg=TB76Ja:lVuUfVU X-~;=1H :l?ܵ^o*ٳ'(24j1ٜhpyzi5JE+VSTU%Z3s$Qal((B%}0m SeQZqۺ! jHS*9kJ/wʢ endstream endobj 1797 0 obj << /Length 1778 /Filter /FlateDecode >> stream xڭXk_HԂ2Ru(M,m*%̘ϱ=eXDy _xrq&"((,VAd UX(D <0EE" 9rM$tZ8iSl#FXPdJciP̐Z( TODx‘ZXH*TXToR٣ =+׸Q]\-E-xNnn(yC(tGhߝ­#T,Ȋh0ij@`I웱춂HI{MF.Q0hfB"+9oJ*ˆRY0Kr}X8KGNXpJGp'O7%f{j \Zs!LC _[x7,p2,cgaRwD<|\E4nIb )UE㙲DQqY'@  w˷Jb^x 4Qm^UNlTo"$4ͦkLkJ-Y@i~Sag1`/tųы@?U6~(mɸ:9fՎ0 Nb'#S,taxs`N a n ]R@w_GVӞqW@O4 _ozc>pV;}H!sLY? >u걡bAg8*TCq&0Ȏ@}>yaɠAN6)cJ^!ac^*.-011;1lp6q8U;kA5tWm@) zprh7"Of)tZP8E*ɣO)n Q~qq(GE?~c?Lzp}7-L?̒,u>}PP+`֨,<1KP" A!(aVԎ6:;BQjB+%az L]9ޣKNeDPx(Ѳ^s'ZtepvVƱ 9#] ,۟U/=D7i,R ܮR;iu2XPWӻoI%u$Hu|Rφ5;,͊R h1Q`%h]^%Ewғzm1F*Ë3!8ҟIU{zo5Xj ,ĀDZK%v, .Ok~'{2Z?wedKK.Mp__GyxlZ/ֳ JR˾>,Խߔ=EQp.柠VVo", 86r-1a:9eNhV/~*/<& UM[dwRY#3*NyqGvEEļ[w*˨TCG1|] 4NW֯&B70݀KY%A\6~)cKkz<| 3K>|h6D$oP>n> stream xr6(9H&8Q;I3 J򡒠,o.,;ɽ.}?ro˅Z3gZ&q]̄'f2FN_.S6L:%.k\.rbcQa,gFՕվ 0Η,I#i8"9nF O) $''L\_p]$ne9P}FE.zhZO&]~ħ;(_RK^ *ɰ݃0%6WhL'/ j? $o4 餢cMYWE *Edơ[8N$@s 4mvLPL1X=K#țM ZMm$Sv xYfݔٙ"Q@T!wq01աvvT)[ͫzԡ̚I2x#'{ϗ׷5MٶOE6P\%x^_|m8y9. /fn ši?d7J16CgvamkI;e"dw6@Y0`T7 [G02JN ȍQzؔ>ʏ(뼑7x9 Zx[縓ݽk@7ZjkfpSfr~ Փ'XĢ~m?=(ufSҼnZ\xFG<©Ghvz Q9&#džCF迫"\{#:f01&\/*3@Mv Ƀw]3/.2 /Z;^E⥾6W> KS~+hp0_J\5 =D`x3t 5BuNႭ0De?.d(%[S! fC)4;>/^Hl3V 8> stream xXY6~_QO h%E Y X].'UeW;=C6~"ŏ)y/>{q2K7roF)I|S0F6?F;aH'-9ewܾIQUҒ3n^P Pg38Ǽ-zYt'b|GVnbVtr'ydm\_ைfho[U;sgpZ2M;'1INs1 h~j[pdU;vPV88^4K ̋ ^<n~uU&ݺH=¢3RhQJR-:4FsU +gwN3 1XNʊ-4_FDtZ z A &JO{Ӵ $ -yjNʭ$.`D{OOCvg/##|# N/}.q+^B/ Q>!ξ28"E -zߩ^7?%f-0XRU?P]FryVDǡIj GyE\rMƙ)DWPGyn|ਪrP)YQ=_Ԭ2.<_TxXgf}G9|>* ]ts42a*:$ ZH>4q+ocrc qnЄz_8B֌PJؚnfrS`^'#=(4c>N[ups |IS |rhxPԢw h90bӶ`0~pX}u,J~qPdTNdF5s |46-VzxY}nNj*A޼TW֌4dGhmKs/F@nJAqJ ڇON?EVD~ګ OI$a鍓`rE77(bϔT% ooO ;ocP`mo xSI@:r’}p0sH-繻0 -G{Z b@N5Zk[u |=&4{iyH|mj[XF,OV*Ĺ{O L2 q3M(/֍zߥ?4V7R.0}Fubn^=`@%s4eP!]ܧD46+9bUep> stream xWKo6W6)lRPh$@EҠe%fC^JbޡHJ#;YlRԐ7 w=a>: c/Ei|Q+SBP53^IHB9Ďw 0 27KC ;$#M(No#G-,а;H;HjZfPAkG '^1LCK\U JnLMQV8Btn-;9giWbGp !5`5]He4K6B?UO-0%GM *X,&l`Y]Y02g²KuMkN#Y!U"4AC,=P 3 /`V3WR\bMbRX/EK@KCyޗ;E܏õ .ذ5k!_DcNƞ'?~|p<M6g 5/mW<[|domCVU=FTG *e.R[oj/Yƪ >mt⯍wTm=Pa{,h$y-Zt]n)J+Fk^UKWJ,Yo]`usPAy)R`eǣ,xcܫU;;7?wۗ2]2>t="a:bt{^(Hoۈ^i[>݌~=7W{W?AY(y%$ڹ@ovMɹJ36ԓkVItjC].HrQP;Y4p'k ?*S| N.HfGVmDm](3f(z4(U?]lqG ] b mh endstream endobj 1728 0 obj << /Type /ObjStm /N 100 /First 971 /Length 1598 /Filter /FlateDecode >> stream xYn[7 }Wq}$4 l@t i^[;pq{,}BGERS O!(M &P01 LH %o5Űg!#FI^$d)uy6y)1ANE }sRP &Ex..#:0b5;19T"TjGO BH@*$)=/*eH{q1!zSj tGOU/ \D 9 8$HIJ6C][ P G!ru q@Zb:qG$)C‡R(u@^Ltճ"u/WH5p^ ?6\LTSXb,\Paz :\a s"Cj]^؈&0'e`GWaEuJJ0e+s{A/JČqF!@𥳐 R1PAZ BK*UaD=RXç!&H:7u/1#M_#%$^}t2zt64mpQ.X-`6]=Af?q*!n>QjBHȻYȈ{=t_|Ϳc|pz>u/`xjUj~6\V:9 -'t ,Kt:eU{l[lnx4V,>}=DneiY>[j p=l` ;iWxlu ϛZ=kW->[i\#dM 964eo7 jvVIo3q#kz|_*n}i=KqZ6JU)M;(hϢUbPAvĠ~8{x [s}M^lhB+Mي8O9ې[)X $/iH]\KO$6!O3n{G~6z1]l~~ "f-PIh8f0=ՐdƥG%٭ST݈=?ͱ!=ڃS+:G9-_[}E%FD)A0cg}0::[4ZDOcmMn6$kE뽩 ԝ9?sKTw 0u"ۢ endstream endobj 1832 0 obj << /Length 2045 /Filter /FlateDecode >> stream xڵYK۸WKU"M[!uj TYtD;RL"l4k W*\/ݪ,V/UAV( XTA[.q DöȂ}QS!J"$zs:Qo=6bb7HM'۾c6ʃ,qGi-ϛ8] ={ث^Nt&vtu0L{ڣh1^{ʦkˬq1<YPK>QHvckḓp y~FVQه0(ɂ0GEDA:5?pR ;gAFD$)ubMFa1}bΝ}Y}NEWݬSP(7YZa΄I4$a}H8xJ\Z>W1̈́/k^o\Rℑ$M=WѢt5|^NRHIEʘv?6C$#w ȗ8ћv&xNjiUivܟW;""wgǶDXSNѪߛvbGke)4ppek<'VFK8;˙.p}bA n J)|utЩ޽]MFk~/Zzb5rk 6*}iSY#Yí;>w)W=m! ݩy=?;T\jF&붴ҋٻa*= 9T\GICl2M,i?= _ C :2ᎩkF'R~x5üWb#Jcv4JK nҊu |CĠ!Z.jȘ!0xib\*AvUǫ .,eRH:N^ՠZshve~&O_vϟ3bn~%AFWq4w07=B+eL7e#Mw0P`>.ct#ϰ#3+q#m˹yn_I)MAIbxWCZZ~"vϒ ilHZv_p ۣ]%< WM\#jÃE7wU\_kXbѲKgԤ%M''Z w4b S3APqʚj;I $)L8~({vbk/ŠC\ A޽XBg('.A C!1$0ˁ_hr";3{hӓ6KXH1zd+(!I7ah;RWd J±:|p qk># #؟Fk枆HfI -}]ZSԔ$\5.'$N#%+JA(ϸ0E03IƑ4*R:Zk`JaEgC|OhXb1 0բ֕@49Qt4r>QA{.Κln.͆ovb=5ʅWhލ30yKVWGOo@ ;2=oL)c.ŭRgX&U=˴UN¦WY%GqfwJ ^,heO/ >9u endstream endobj 1841 0 obj << /Length 2144 /Filter /FlateDecode >> stream xڝXm6_a @b+Y$4KMA+އe֭^\RZ3J_Lj8g8Xgo߅"Nj݂/0"[mZ2W{~#Vrg!L[Uwz{pósu'xhz< [sx,e #AJɚfZ,iL[TU>,U*JaţE h6> zz,򳈓6ߩV% QT+-KYKd& rS*Gʛm/s( V@q2s6N6Й~۸ /R1]갊ccx īWm[{^J;ӂ ;1(ψj"]YJy|7˻\5x,c[Y0J]0MG|q0S8-t(Mn\CӊhӕR 1"j7Z+sck˱s֌18Ehj_ۗ^szy)](Z8 ̴NkWXRw(Z!_;Jir+ NVs kj?Nr.fPoG X0>81 T>X#hGHdK*j Mg^%><^bk ,4*(@< 2SAWZ }t d #Q-1IZM~ANE3@ ={޼a5K!\ ϶9 ̬` wKM_4|I2tmZ鳓)n׮}Z ) ".fq>Jl 6!cnpQw5՞uHYs~hf^Av뇪cQ7u"%t7@!X\摒 gδO7;W֚՝߬ЪhhcFbJ;y2*?ف雹3437_+cX 7z\ĠVse Grfh^קO N돿0'6!ԯ SJP}ȿH ˟V勉& #>ݗ2P8qzwZ+بjVQ_9;;&6r8:}KzSJ݃hZ ¥o*/;b$Fk)EݾSTb* |I?rMe%v)Kb/hhoS2xxy2#ztIpY1}—An`6_3hӒ(]m^{b6gp8>*HI( ҟJJx{#{; ^˝H!:ޜeIJ`|f !m+ =+8CNIGxx]{sdޣpHA'oۡn@v# ZB[WaŁ> stream xڵWKo6WM@ĈE})6)v؍4ZmRw-%r C z83f#x[/~]đ< op %^1JHJn^EI*~Nv$OPX`B,p]ݐ@;Ǫa Bb$S gV|qq rbchie]ӎweRlYxdEezSeU!h8q 6 d 5 TևۚK ZhS ŗLPS\:)ck{uiZ|w$t(E)@ʗb +͆Il EOZKBኊZjyM[V[WD ZӇިq 'B4%]KV$1vE쏥sUK!ڶoµz5k2n8A$̽^ <F"`4"#<NpDD؋H"]A vv%XvxN+^1:x5(#g t%CLLKf'yS{éCN@XJ\}aZDVsVz 5@iA!d|ksjLcxWxYU)U3Cwع0sqɍ5NCšܘmw3wىщ`wg7\v RިgͻͶ׬Q?N s9DQ=P'9&Da?@MW3ɋg@ef5Sgcjp'ri?0Ѿmgҡߏ؉Jl9<k-iVvE&n n}UΤ>#i0ݕz/mg$8Hm푗NͲ.- jeEzLw:|8q~2 Lx>}aE)7剽@&yl#~ƪ> &$ܠykaN=yZBH6Gigwc$`n둵UeHLKtQ)Ef^d,b(֦ue^AZU٭\(}}e pƭ`0!Aa8T8njiɵ(Eϕݡk^Gi!t+Z㰣n-lGu=r!' p[ endstream endobj 1861 0 obj << /Length 2088 /Filter /FlateDecode >> stream xڝk6{~'36Wo[yifhʢ+J(K6E M̟}GWt, v F춘Q<ի$F$u G>˹."bp?|OwU1tm~Ci/+a̓S5Qd[Z̗I~BJzlT%[\˺U]ɽa j(GG}VMP K_$tjkUM~0Ǔ eS;ZjD$.NNaUcKԭf10Qn^C߻+uN;fS81I[Yu-jc¶E \Y8go ޙSוޕ'%A]Nvs/SyǞi"Q†cZԅl-,{oFFa1&/P#0HOVh$C=f+n?6E?6+D G+b92txC !53D0[Q } $cU~5&crMU0L|oAu@hmhA)fhQq. 3XtIJW7lCFx՛鞊0fo ƴǕTuP\J( '6Bm~7XIk?y(k5z1cXTB5ݹ!|[m&CaTeDSθJXSȊzŴуsԅ>WH][6%I+{I`qF +i%ܳݶ~ZCƁw=TVwm݆Ӎ5'~brԈ hխ3^g3A. G3_* rh4#Be'biUPD̑QP@uq `M%Gч)H$1y{=!'åF0E2D,k?hD\h}` 5lyT ۳>Exy,! StA4xbBmj5z"(;ֶAWH*߷AJǾG,d_xKޟT 9 EZy ?ls=WWIWtG8bxq,]31R9w#pfk>Q6(zo0-eaK|?6d%>suq86Aڦ}V6cܯ*d&ZGܵ m@]Gb0r.Oic"# s|Avhwp}J$SV<.e(nVY+(}dߠqehz/,:~ xe2+H y# :أ@8F6>bVu| 4~bdѹ><o!K$8&7],52,,d@/ػ]1W|DXP*Q$8Uˠ@I86*}ad0LSh|J | D|خ22&{20˸ 5\1'O`=u<ъ'\ܥIX'"8}Lx=iI Wxp4*)7!U.Zo=fٌ+Y[5\$ !.tl2bV3N2e%=6G&wjJ49&|amew>`^~uLbآ_W [ñΕ^6W{H>,5%Yg>nzre &0{-ԙpK$T]jJc fdx, Nw~ysM endstream endobj 1870 0 obj << /Length 1202 /Filter /FlateDecode >> stream xW[o6~pJŒb~XdȀ[=uEHN"]>&[]vy(\w4ί㉓yY&μtILK̙ΛqW|pAtv5Ԣ,YFBRh?Q LMS%S،ǍT7 ,H1G _r9 K |/M2+ ?/6L?q™SG\,q. \C|MxڮL h(Cv(^g9bbip\bin^+ IP` H؜_K(_ ~0LF6-[@vFG8꘾ɽĺUF@w&<ʪi+qsAʒo"]֨|GCDܡj eॵ]FŪKVQdm?贈Ǿ);`߂)O3NĶ:~2n,}['e{-1CU}TC$C%潐c i60;Am/;PE@mcf`XV:7]ƨf'NL≯VJfWWAM=thKEAۺtLyK|a(ף7o}`܋(ڙN"XWn>ռQ7!d8QzNA'=i[F_R -j|Sl#-_%(cD~4? bߋk RPLO^0~MJ@݃nza=\4zՈ lc㪂SF\n-Y7vaFQZkz1XZݑԒ*y9:HlH?kh PeqS8OLaw 3w}<] Fxqh:F61}Q6Y\Dt*vǀ^f3gT~VdU˨˪$ͫCC:&P=d{pdǶ3 [y tj%ii$%ՏG` aYh2Uc-{Mw!h[i5^U6ߜ/ʣkC .c0F [[Si4axa:1SwlWy:'G endstream endobj 1879 0 obj << /Length 2349 /Filter /FlateDecode >> stream xڵ]6=/w'%4Hm^"%@} g(ˮl`p|b['/\}/0]ݯ! YiT^_^}3(N4 Tor/U B'K&2?&/zYw 3BIRU}]Av&LWuxj9Ժ#нiś7u+w"%g̊h"*.{ӕXuWITUF~ug^W(.~r`cmU7Hk'` iΰWCm_FU~K['i#*';Ǯ;eJmqn3d"߄N\hv1kƧzRyD}` -~xvz3S iWe?֨]ŏ^% L"=<+ Z96r'ƂXA)޵Dm<8Woq^nG2=4r.Z*I?&8R nYB%/HhaE5|N 9{7# 73 -5כHD{Li0-775W~qx>i LGH/ ˜ZMma9)q_kvlf7 ᦼ[刪%Y8dMs skr0"6o9k.{wbLԏjkyJ{w$SO7 BOn8) NYi8EMpiMhRAT%I⡂ 7)nYm)"‡)< +H=A 0A3 dh}$d=`XЊ\G| z,nCd:$.\pV8h,qleޞIT|VS nǠ6BD"B('l`R[ };(@ w5Y՛vtm񪹇*ÂD$-!*VzyJIC=(fI *𾨛_Mu8"r6S\% wOxAe^[Af~tFzס3>}lٜi?BnE+ge#g5`]$3}$\ Wb9!LVrn>SS(Vrp8 2֌3n81-~M 8b>X2 b >VveoGjjYj}8ն H0Wn%E>Su?ẕF\]>`.^>G6y5d,maE'}8K\7o@nO؏)~/# 򀯪 Q,b?Gc-V=ܳc'0̳+{—rS?EmCXz7A!>~Ãb,Fs=-9^;_ײ'#d>іuik,Ջe#=% |q]6}˭Hk;pl;% $5[EŷUəU]NLWb~Og Naf!„,ҵN eI~e(#J:`o/\`>ob BmJ$Kk% ~g,,|*/Q,F̌,#0j/Y _j~:|٢u{?t endstream endobj 1888 0 obj << /Length 1018 /Filter /FlateDecode >> stream xڭVKo8Wam bHl&Yth랺E@KtB$/w(I؋IS3gypwa6 e1# ,o󂵨e)wp}-5,FInCD Ͱ i߉4(ͪMɛ6^ q[z> Buvv#`f'Vb|FĹ0 M`;'˜wQKA\"aFY~qTd#[1%(#c |Ru崠,%Wek̟ b|RS?q lɳ\(;aցGw,T;&EswYSLSD X4l+]c M\џAV\L62$tߒ֯8m6s~čhL шt aΚaA8o>\1;S(%1pm?SqBi}jʦ>N=[(#^E]>A)JPS7&~[HdĦhj<_H1V3oRwZHl8{&JY_}7U^i*{imx@&c ^=BD7= endstream endobj 1895 0 obj << /Length 188 /Filter /FlateDecode >> stream xm 0>thLz,BϹBVPj)}?PmwofJ@'XZr HWRƨL EzȒxcȴLh#G&$8Z鈧^sFFxÎd*RͰy=I*:,õ~[L}jY?p6oK endstream endobj 1901 0 obj << /Length 2308 /Filter /FlateDecode >> stream xڽ]۸=O9E7w\%HWMbW]Q=w3-v.$r8 ExI(" B"Obq]-UiR! Dwu{DT ҋ{bfh,Q4EZvU7Glـi}uX$2#D~"IhUa&,#Vu|~Rڴa87~6>E,X4DcϬ"TETC{"?in)r4QΞnM & [';-׍p: ySv5e}FkW(6K#5FOAt?YB-YM _:ؘlOsd"(!}MZo9q>PnoixvpA^˹f8ZPپN̖6úH b<ݖ;rfli#fsܝYC}΁>TZ)e)0P>SDǢ`(CLY>ĂSXip,qrRb( ӯhsV,S0UaNC?_*;(=q498d[w!cĽh݁}xu0`#R fF٣гqF&'MΆ<[4=| Gla.;K\ @5@@1sŌN;fРhAӵ2#&@ʥlHg* Zh\/93 be }Ĝ{Н^"+F-ҜeLWv.uZq!\0$kfFJu'NT{h/ծgz5tq&z0@ P 6/ءm;=9旹,sP %)ʺ_˽2/хpD}b6q~~Qq#`'ݹ8,hBн\U';yhsjS?kcn+,S|Ej^h үW%o(t=&㩡-ܪ9v-KJD9_4B~Vc ft}M>A@b_ # endstream endobj 1912 0 obj << /Length 1147 /Filter /FlateDecode >> stream xڝVn6}W ڀ%{P=lImѬMHtV/I%qCDfh,9sx޽g߯fP[=1 MB[͜xqUA,@=dm'Ŕ ,"OxX'Vo+e[|v-y5ExC˚vF~ecPTx.|Y}(ZY5>4f+y) CƁZr,[nYa\Z=-83+K(_]t*Q>]Ÿ>_s[ߎjezI>6, >K`$NL/QvYe~?UqWNk5 i-]6qZW'(MK) r|7.4} HpxE=^ !8 {졵BMBP*DF=C=?otᡫdNQw0gFp|T+5n_64~Ev&fe(HܢwN//S5W]]uk jz6TaAS*pv.B"'Î(2? OuʷM<'|'GʰkN1_)t`w omB̓G%Pf@Pjjf (`J^M_/h"^7영#k35܊qP J235n|WZv hݎ9YP*ODA`x1Y1!fW #1۶0 (FAurr/P%R endstream endobj 1922 0 obj << /Length 1880 /Filter /FlateDecode >> stream xYn6}W,"MJ.APIAn@]3J]l3$l^N$r8sՌ^<==8|YB gA8#NN&.JxcN_&? I$R@ P{ Hnj^$K6V$Q9aԝQkYtĽ\=q~3N< '%FJַJn5kq ݍ¡(+̷91{vtsv\k3\J_ˢ\oA;v93lv}~Pc~elh.f-4P͏0y-EV`(:\m$X\+jķe_{?Q<#iP@=Z|q&XڂBv욻l"W@7vΨ#EuoezXEi>{]̈}sK7s1Qd]jzSVzmQ3;[;wR*🖆-^4{[UܟUXoryK)I2Ad6!zlpx"AGLBT_$tnh ̪"L'Me͙0T%sY,b#78,] =0uZ*VfcWrCjt)sQ=uCCm]pr@ ĕ%eH dbibi+kMC[pZ+(t >ʹmPS yX% h7Mh\ѿwQH8 {WCqo:;=8;LiaԦߏBځۚ/(uJc݇1~DHW..!M 4!hG/C!t^,:&̄fi/E[tuvL.B)p7K [oQmSCTKƂTg^)-E 6r#g cJBY8j͠osy Ta5> stream xWK6WI؅UԇMۢu.MsJMD"UR׋"C%[MBrșE SF*'Dc2x7ޘ7#Ϟyuġ8iԸ lCIycayzF7UTf"kmq2Z\ Z(I VV{(9{D%V5g}jwDr YZ7/Ը}Xuf]=@/3/kBm#OTcݱj#j{XƆI~C:XqAIq'GECff"pCl 9v %oɦ5hH')§I@4T 3JH5RYg1t[Vdt5]C; tbd Q̝]Z8!tP7's?oM=K燘!< Q(J5cmSIMKϏV$RNBwYzT?&V1ܾ7~d'&k*^ڈ와KPۇ endstream endobj 1829 0 obj << /Type /ObjStm /N 100 /First 974 /Length 1497 /Filter /FlateDecode >> stream xY]o[7 }ϯP](q  lv YuZp\;֎oQ]>")H .Vb9(`GHlťT.)HZNO"WNc$&8 fFh,Dskg(uERh,.gn![W+-'Bb5tI EJZƔD Bђ+FD$*ڈ+PI%XN--Z|rzz2sهogdxfՍ-dx:Y[^nҞ<{q}p \b4M6BOuPme(|+ʰ-h/:9v|DQϴoc\nR#MiM x;wm|mbbldxXR}KBr(^IasO-juφ_>^0 ߿of˿{oW˗#&0[ێf$}h蚧½lEN4tdْ-VnHǖMv)j'EWՑSzcoQA}L8cntho&dK0N4-ONW-"mqgU{sGF-4l[>q5'yKɛL7¡D}A؉fɐ^߄-?1}+#&_o2EdL'6vp2uT8LP;_X5*ˆRW,(J8zv.^nsnz{07s?jU U8!N4p' Wԛ QhJ':Nwk\<2/_ДՇttD&1H/:‡ήy7[ӄfklEo54AwXsz4Mvhecu^whv3d J&E|r}q-ͩ o_QmϤrm܋&q 45xe($\vxDao-wBk4}Bl==SIOR;)czcqt:,M|T#A:W('tW(i[&_\ endstream endobj 1937 0 obj << /Length 1271 /Filter /FlateDecode >> stream xڝW[S6~Wdb$d[0K\¶;M$+%; Hy!ѹ;W`9/'W-  JB/1pB?̲N*TGt\B'`yG_[ةEIa[MG-ȋRl*!=%&I<tG5؈,*4)t@]sU!0d*XcZQ_+ ̥QV\̭"LjѦrs*VVHXs+Y+ oAJ̓Ԇt=@`O^B͍~!/P&\U"/ǴYpC! Ŗ7P/{K4]vhdn5,\2323E֖ʢbW-B (-g^ upDPC:lۍa># IWdi{. U-xQjk19M)֬D xaxqr>!;˴+'9k mmeY$v"}:mtBc/0Nzy'/@R5*-~-M=(dIk!sut$Sۦ',]dɄ@e.2j|ifiUs4WPþHITk'"w3iiw͠~t|yfd{ɠЫm*V%kM!9ܺ!uG{uS.Jz(? +ύ#wraOS(Y9kdPaExV#Vv6Oe?mF#}dѐ"箽"򜫍͋#NWV'mdՑѳLd\\HWJT6!" Tc4b;3\68L9e9s 1-] R|!w_,ʦADdUb匟Q(Ks`8jL $ \9_AYg׬<4tu0f0SwDn9F`HTt]]u`qXգ0OќZk8]|S2vQ c+6LȒ=H0w,⼟rYu/ džvL[\Kؽt>Yj$ey{ړp@iŧڧݰB\6 N( endstream endobj 1951 0 obj << /Length 1461 /Filter /FlateDecode >> stream xWK4ϯpUxb)r !T5;?Ye(N[ڛGT4V9p.f|:9S4LaAG@Өp6eq~4gQTio,pEsi:9ȧ1{QF^0$5Og1(,>tS5Vfۊd)+Iy:ez>p*8~T81$.#)1Y4fNXf&a_VKbB4w{nW۬U(sע"j$1i(|Nh i)ySN$!@Dk$p-0p3Q!xƾ`?ߵ=S?Kcr,eKїJG/ٸʲs@9I~5F,ܭe9Q)i=W$ѕy r\C#h`#)X3Fl&P'+sj3Ҥt7z5X[à8ev۝bP:uaccÌv[\xm8qnj@pđ CTΝH 2<fQYuEr/nKp P(PunyئN4a={~VWT҆D)R]ͅe?ϖ~c:fm~l},L4@ о0\Sr`j iv#B<_$Z ^Iw[O;=xqG^,wXDAt THE lB lB M.d%Ȑ]i@=f8naL(7*n? z3 nN;ZRX A,#;Go/x?sx5dodkÄy@~̫o^b7@35~8 ;{r S6=/xEfF@(,[T7?m;u+s+r>Uf?SjU %R_wj/:Od yzDC^ &H>Iɶ endstream endobj 1961 0 obj << /Length 1585 /Filter /FlateDecode >> stream xWYo7~ 4=h:MI%C室83$W#;H} 3pt4o'ϓxT"r:b1bt9}&'VUhRSd.(xNf ڪѲNpR0Urr҄" 쵚R7j :ƞA}:l:z؋$0rcS:*h",k=@d1G{Ji4a Y>yv;[N Ëi}i ~}B REas +bÊ%mwVK8}*VuOJsꢝ%h֭ ZAt*9IնՎuXr=1)ke 4eWՕF)~sE9-[2!xrGQ tYлh|8"mntwFᇥrۃf r\yZ!AskոE;퉙bhC||S-p~ոE "|TJPf7 xlAKתnAsm&ſ2 endstream endobj 1972 0 obj << /Length 1694 /Filter /FlateDecode >> stream xXo6_NbԷaX-k I=HLL ;GJ&) l{"y<xfFg?^"U$@)#yR.KoNβ5I*)rL 73m"ǎ(WeA".x1j~#FOΒPr`%˱:#Uj`9:Yԫ7}K1_Ws?V|ĺ +xvXu1q J$-Wzуa4 醕PFfd9)"yiN8r%Ԥ`H,{4IIpCf'Q?BAm.᪕57F۝G/ )_kĖDנ R@{hBvע6cβ(TP`7aqdN71~Іw W:7?9&WlH2BS̮ Hۭ~l=)$jTh8^$A!Auqhŷh+xI#hDˍ@ƫm+/3Yu ;u#Ho^Ρ`38;AVh-4nXDIY-WWf?:`,"Eыɐ\X+a\0o^rk;+!y5b/lPaVE\ OZ QfE8!o%9IY>/&Ig-2Y?NźoAwj][--t«~Jĺ_C +{% {$xc"teds{z8/f!i ̆*(:;z)V=S|m~@Q\ZRʓ+OЃ힌0fvhĤ!O Cv) '$4 L~zs clx5M8ĕu+</Ti rz^- V=-%!{#:CP=PwoڊXqb-1} |׹49eEdH)rd<@T!rY{Z~` n_Ss`w{X^+6Q/uSO UJXk޼ֺ@X CzuDds+N,:S7N?0LIJxniZ??9l6$ rO~)|l ~LZ|{kxQE6A^G(CH#goɩ(9c,Bop<:j=]Q@/+>ta}K0A_ zowh>Z*/ݰU8F2&߸_U\.U*l-\S#C_j2ew5i^MȨop~@ҷq xbPmys(>?%KwB?:?$ \ x&+G+g~F$&G6l<[,:zj>l 9W@5hĽ@^?}^1o߁+~˥{?H3^ڟ h-؞c2Yua@0҈uܞl{~"6״ >  _`:܂>yi|劤4 endstream endobj 1984 0 obj << /Length 1106 /Filter /FlateDecode >> stream xVIs6WpC&EdtLj4dLHP /}X9㤞iz>0a")I6a8 V4ʃMT#Țyxz(O*UB_,FNED ؆KBim.I΋fFu#.trHÁ,A8m 9 @0#>bÎZԅ w. RЄ0AI-Dy~ى#Yu˸b$ 3~ F9qr64ި<ӂ^jfn&{Z|;6$IU`u4 Cwd4aR Y.bm%nY)Y5{LK u~~a=Lw3s|kf9c/Lw\ut\x!s] ,S(捠[xpq |hEP@Ѯ)T~ڽUסjf-~jZ:}M V:4Vev53t1UPԳwàM0< nh "bCCUp5(CZnp;$:GG}@I:'(JJn$\ ^3~s뾿4jϵ`fvxJE̛ .pN5gBE?&_g,uƒ ,b|o*cazڇ(i_2uLE8oeSQn>1МGЬ"hGnnG,+ PPihB;;IÞVoVʞƁ=dVfe3}ˌ֍rĨ=0 %fj\iL1Ӯ} ߴz3JZ> stream xW[o6~ϯ0I@$=k]z`{XHUJË,'nذ[ws-֋h짛$[alqZ( c䄄Y\.nI ϛ_d'$ ia'U˺e"{vnk@sK>2 GgPaT&f͆A\^ |0^IޝY,HFZ-WVLYwqz1`{#;f0*'up745l-mWseC+FP1B@DRXTr;Bgx-Vk;4- [K-554+'`;tI9Z J/8#?{ 2fqƪ^v®44FmF#hrjH53hJc4@|fHV̴ [BZ;x(Z?ˮMZTpGX4V\q8jʐ]Tm_Ə>ێ@*f)ow45$ o~yWm!dSLg$$i+j ZIƱzah+Z(nљIXیc?\..t'CEG)nkU>) L#ǠCҧ9'cc@V׹-Kes m(nm r̓;c`܊;x :98+BL.&QA!h&N9aϣ|/є8aל@b S,NKcKp7ӥITAD#$ e^^2Q[",, DKqה+h}Owiy_,Ҭ4+stlތ#AԀhfHCr(力>h$aRijגFHBzʆ9iB%\<+%;wҚTH>dm(fҳ#\2nĭbjd^C*TXܝT;@ &*eW (0S=AǚR|1l*~gf% ~v60?;`M.=RԝLia9?>mK;kų]#kF@ 0a4쫛^' endstream endobj 2004 0 obj << /Length 1486 /Filter /FlateDecode >> stream xڽX_s6 ]&Ŋ([٭w{j@K͛$j"~I9I.ACoo&^izG0 Ҹ֕ޯ0^~\[H('IB-syG^iҫ8ˍ*ʀ[/^,W4 kb-J(˒[{n! ksܞj+W'3-zAВSgB[fŷ[^j'Ȋ "aPP;VNaA\O#c/xv3(Q+i/n4.vBxy9rZLFjЎ*W GO,+WG0EKB$->n 4! `rgMʇ3((r2;=T#ӭ}BA-Z\q}ùwK;uW3fM'k:zLLrziT}2mfHr(> stream xڭWێ6}߯0KR7kMMРiͶy%VcK(ofK.` g x0Wׯx4~2 $ !(}1^ŽjJ#T8Wl{DCZ4a_vVn> "='gG(;|2u#USקO7NY;f+޸!v<}v|!"Qbl-ԍlx'lϵe? (#G4{{(k7kۥl6p! ,#}j\2rr_KT v$ti"%L;s1*od?7MpIs%Qc-o*6 т GeUpDVOYUA;zДyp8N#˲RUGFC©)N>QIR8YQ(I54Gp+|J)"4#'s{`Ç3E]n9gxH(8=#4JGɚN^/wzQY'C=A#D(3NH|UP!q8zYN YB(dM*g^*1V$xlVMOyLɒ_ٔz^$݌mڧјM.fࡪL 6PBz[,=kk$ etihW.Me6/;o$#5kDK7zÜ .෭[6:%%Ŋ,/~yk<࢜V=}G=9 ƃL*yCFja<ҷER%r]O2&&&"e(P@HBer.)UD&GxD6k@RQQA`('C]XѵG'=kWS`nV?5AbP*C1:Xt =S-sՃ&*+9z;-o¬^խ HK/jpG ٳ_q"^Fgޔ̢.I$6cV_66'/_ U endstream endobj 2021 0 obj << /Length 1278 /Filter /FlateDecode >> stream xW[o6~[]Rl@4hRPRcE~/-U.S\ȃ@Ȋ'06a#d^`m ؤ<ŭUQ+;[:ɹQ`J ۷ iC׷cx{Cɾrְ*GhVŎ=a7i񊓜U7Vj%\ВGMpp b#Ζτ'>]ȊhG䣄-$V=otl6O2֜n( T?[^qKm#EiݥZ2Oz۱^K9~֚5tigX&B8mUvxlZ p t 19ڤhrA^q#X{F"dOG"Ҽ[a }8 s!`g)rʲ*Spۚ޶drꐸI.Qc/_$v: yl#4mNAXyM8ƨv+!+se!S#X:5u!} jVVA_,#7duTFn2T *Vˋb8ԠyRړŴhK|{sgꭋN@V8yd0e-͹ͯGh9Mڮݖ&:5뛭 x"6"QQg@Zq ĹC4/9IUԻ>ҳBuQۮMv1Ƈёt?fO@:yCma/ɳHPYhn*XZӴLAva5~k};mQde \b@K`m9^8 `ćpץKo*>di)ꡮh)r:V ]))uwe'2>lDݿXI1@F AF,Y Ã`@3m?^Px`, /g 8 hwӅR*:,-Ad ;g$i鞔/S_yNfsIp[@k!?BCo.#ha%R?1~ٞk9F'$2tk0""+|%40FW ͝@Adas9;,`߲+X^N+ضbD۲*yZ.Z$ r\ =hO;8ڰDc؏9i8c ) *w/oa endstream endobj 2028 0 obj << /Length 1588 /Filter /FlateDecode >> stream xڽn6=_a*-ꮠM׭=msE_Û,'JaO$F,9{<[\&٬Deez1FY\Ζ/eP$Ai!Td0"8.K},K:A06~Ȇ\{h]\XbeÒ@]2FsGŎIZrK JCřZV9IMk7wmw>!pQ %6l;׷qp~i4ZʋjZVO(e DFZI!PՖRI**e`adXQIUë>=*wUCWxdYo\-.xX%>X#ifh+]a$:im(U 1:\ $aW6> 6qou>m{87g~309,qSa>!3Ww'"8{WNh!m8MwR@`-;(e!\xT|n`7>GuͺSWfcoу#CbmEb-uvʂ w6Ogڌm3_v>ꁤPөTś*? |K\ HzU&pA~uq~8vWFrZ[8 vodLP crߝ/9~Y^(O7忢bOS cCvŎU\xoueBCfVwwt%hH:"/{!xv|a +&ݒ[q %:NtBͧ{@ݜ`55ՉX+%NtW3PtKTT2vlpL@% Ck<7u€Q3[SE  Z"[xғЀʏ﬋G- :jWL% 1-NN0ِQȞ$q8%UaueyUsy_ye0 ccCH<5%> stream xX[o[7 ~0"u X (zyRŅݿGqmq)p*.818IM(L$EaRL`'QLNq:NjlBv)5r4i$W ʮfv? d,̅(*$샃yQ4Pj~>b4G I[WM-EnNIZt \KliG )dHDB5,*hXYʂ"+b6^xj>fVr`.d>JjxVib [E!i1H6kR+Jׅ-RlZ-Hj$ DaQP0{0++,VZV|I@~8Z+C(+>(&1$AWŬ Q)HBivv6 _~EIQݛ7{|qrggn8Œ5sԏ_6R`оd~6_ 7Xh+ejinЪ YO6hIEt)yҋ&?zC]-ˉ1E+G]{[mQGA[FGKR7:ڦIͽ$>Oy@#La{x[WҼuJ!h BT;+vU+ݡ,;Är0$O$k:n 8Mf'ZnS'G;N52)Sy8VT;5lΟ endstream endobj 2041 0 obj << /Length 1388 /Filter /FlateDecode >> stream xWK6WN6i46(ҤMSDJ"Ro ^k#M=iHp<(=}7f;Nol(I0⍷-w{ъ|xM6SiL3b\]Ǒ,An?^5f'O,8?PXLXm6{&ZI;Yߪiw4[5Xo맧;V(~#f! 6@Р9BR0*o %* ^cMkc +"d*GݪWAs8qJJni HLp}66ZCM3˺-Ki(6H0Z=j(B7_VXQ~|څ#qHPc'SC/,3&YtW[PukBˬT*3Q`1H f}@#3͏!0Zg|nl~vpAZZ5κc͚t0KBV$T7tyBy #Q>rvJ͆ˋIُrzB…`o̢G&$Z 9~QJYUA{w\f- $D4N I$Lko: y ʞY6 {-r[G@,wn>XCNɯ#ftfY ԍ'm8ާS~^,;tooZ1MvE6j@V0~(;k7KZV9.28#>Ud?3_=1r KG 1?8 ֫ 0|E:^nH ‰̞ogf!H/<=Rh$a{pfiKJbkӓWzeI$K쑛f#(جC$~ ̱鬱ބ·j) ,^x`˄,!`84]#q Ɗg#ɶX)Nm[s=m&Gʅ4+x[zg0Ԝդ Pv> endstream endobj 2049 0 obj << /Length 1717 /Filter /FlateDecode >> stream xڭXo6_a&B[E3lmEk={e*%9Hr4+ǻŰzf>x%ϓ ]8c~s? jhqt F)(2B+MU0PY3`#>ظЏ|R`\08L,h<(M0bk\+M5] PPy ~"LԖ ,MޚY*6pAHtbK{gb&u; 3Ot&譥8-Bc)`~@QMn$P7tiΧПRZVe`D>!]pٺrj?gA'_9t_rUB"pHSc۲d5M>sﻍ8+1Tu[}'Pe関w>ysn6ў?a߄Y@ǩ "?C8lBngsauMwشgwJ#(;a<?ߙ957Pwsι[ 0c c{ Ҳ_:I+قf((1<^!.Vt38~*OÉ d@(m'H7x0 uRҾ9ό mA *G`}*l:ǣ<-6D($c/pazlQ%@bxJW t9xr-4LP]shDd`VNW $B;ж>}Ʌշ# ]NTYC\L ;Б0􇡆"?ƒ0L0h4AD= 4gi m%ۿV@^ yF~UVgӂVR¢~4$r"ʥ-ѸUWfz$k"\2HЈІv= ]9)6bsaﱊU 'GMd-iFGgt gH vn0e;ܕZ]>zuٵu}IL8 endstream endobj 2059 0 obj << /Length 1211 /Filter /FlateDecode >> stream xVKs4ϯp%jG6x$P{ v[eF nI$f7KŖZO z߭ޮn+IEm<$N2/dqmk_3M%, <eFF)*B&q^u0Fhk2ukQwaƫ`clQRš]^^Z^;bozv!X{xLĨ|1 .<X>nqf͆Fb'N3?gAPE˪NEAG y-k4wWMV+ G$)sVo߇^ keK7$qYx䀧<@ '%QA4 9!4;HYЙX|Vp^iq%g? \q:QY4pjM`o 8Bӗ6oG~k}:JCR곱6v=LH tH},ȱ('  60+*rP; K%rU ;n2FN"`okCF 5r3=6}ޠj5۩ ӘrH)8X3(0;VNWP篋E>Yo& 0ZB-Mj\Fsjr9sdz㥈8L4Zq1# FV[{;zl(tg|Va_Ky)B<% {+4rh%C%N_#sm%%:^%^BhqFrJ+Wsz(z ͺfx'$褓!89`T1 Gح=<2Ahg͆BYnJTUx1,l\!^ ld"(ջ0 W#f;64 ssl'շ7̼`joGGj|+ױEF0UdN\HHl$kaT&H#׳qd<0k̭bN .O={M{K/?Q endstream endobj 2069 0 obj << /Length 1649 /Filter /FlateDecode >> stream xڭio6{~E YSG&@1a m$⺿~ɑ 'Gzbrp F1&1ţI:!~0grq:̏PSR^o$CE~.ftiHf.,wՏH )R! X/@R*g흐|5&/ʚ/ X4%Y:E]\Yk![RZhor[ԅžoJ `ujMQKsrPYBԛ I>"jDTV܊i Y}g2<ϒmA&Mt΂(4>,D Tlɺ%11H$+đ59+KrOnLT bU:+vEF14*LLcAЖ9ċscʇqɢjΑюCx3ERRΟYozVPGrd-^L|^U'`u,[] *`񫲑c9xH@Z͑o_(RS qŰ\OwjXԥa K2 'VR@  CRӬT>^Genf co[kb u1aqU@vN@ v s^(* & `% р *8'L?RA`L[-iAa Ϗ F b:y CS?jÍтIt?''_:`.asg Bo?S}{1(AFW6L>cJmU*!ŸY dl$[x:ozU L9TkUwZ(UYx0v7I p;.rhbws)y4K.ի*bDUXd@F@UnL1#JBTXh6fLf+b81sXJ;Ni'9 kc`P '/ V*7<VK,2K B䥔 X'Ci~enjfMȇ^PUMv' brcpY Q|w%\k!S?:a02<عq垡q{>@bmHCĦѣGjbX! Pڪwdƣ/ y<}OZ]$$sc˄OpbF&{ny];M|I-@'ÄrYrk}?+ =2zAOʍ*Ҿ*j". PMõZX~J956+D>; j§K==U—CۉwEvZJ)ؿISX]Ow X(g?=P,W Ph:jE, EHcnn[ʹSޝe>ug +K-PLK×#re*,:=- o0{۵ `U6m\i\4-ww%L2 ok )K> stream xڽXY6~h#()m>%•h$: J'um_Lr4ph:E;Wa7N^N^κr޺ <=O )mU[O׋OvN0CN,޾ >`/*r`'lfj$4Rmk4Jҙ+`H7]_ H.'Zc(--2] aCzY.g2HWzi&e5MorqY)QqxaNF y5e:K\5z ,llpAA=x=ro"N.=Sv)P4ݣ-GZ" @-IB٭Xs OlpS/ 4ܓs=y_<=]/m(Vf,4(Xb)ێ#7)lcRVtD* 2!ޙG lƶo]U|$[.!gNcz^SQIlz(t ߕ:9I Rfm, IJ^ ie'iS]V}9TSy!Z/ևq=ll^5-LzJ%Qézhi\7źbYsF(=ٞ64͚}mo>܀)%諧:URDU쫘@4ԖJlfO),W\)4{ 5Fƥ cJ/Ĺ%/ǦnZ|Vg蘢2H]T˛mjǰ6wCuZjq/Y)/lql waĊЉ8Htmʝ+$pXh$IX`iknrIUށ !{mTR.x"jrD3e\1>H;ZKb 6pp -&pvY>`4Z6HtLhq<ָv8zN"ZX53fvP1$4%pk Z{u]5R+y7v8)-@W@$,F >:>fZ{"o*;m"Zh@- }Zʆ^ 擼}xExU& YAGٔ@f㥆 v(*ia 8Z!02iI̴5e!1NX41nŢAhJ1}G`XL eH sU; 9/(s3#hمW? =* endstream endobj 2089 0 obj << /Length 2303 /Filter /FlateDecode >> stream xڝX[۸~ϯ8@FuD-vhMef"K(Cʖ}p83CEϯ~.ʰd{QƠBY\>jEåAWtWk:SY#hp)k %YfQpleaޕ̂GS59:ȹ67ڴq5Tb(3 o-|f#*7|h8/Howܔ !>V@mE3ӵL4 W9qp(m:vp/ܠ[I ///]R⾅'Yye.wM4ݜX6] Y8^)s8X7/$wmy(PKp ,[׵]ny;eG aNLR[mpǀI}%|$8py9mhƘ헣Ҡ %B$]P^&vrE2 $}рg^Y"rk\0q~ Ń=T}"w}#WSWI4h5)O}%i"EXyK N"efES581~( 3g$E4ك [A@N\tf};YN#_UiTP4/J'i ꚝ}{ X?uu6j}$o_>oHvt5?]BL4#k衇n3?;3 B}a8o^^^BjMrWSe",sϾF"лb,ezTۥ xuR$_!T[w0O O=q[?'mA$Xƶ4N J_oF7Fb#dsnx-ezX::wb~?,2.0<ӀL\{o's?/̔oFȝ<mw$| -=p< '"'P,CG K׮h9xc:Oc)I]ȤIh-Y)g0F"eFa9m50ǀjSD'%// _+>,IYYY$"D2ӥr!r ~j:vƐW!$˒)3Ľj_~M%<&/+EW2|f$Ln~M]V~4uNu@(/Zo}ifm,+89sRnq6rJœ>tt7τ)ŗ۰Lw\;Wqݶn'G7ag~p'µ.R߂ endstream endobj 2097 0 obj << /Length 1651 /Filter /FlateDecode >> stream xڭˎ6d Ҋjd hf"Ɂh[R=;䐲dk(bgy{/~]|Nf#QI億Y\x֯XJQ5I#x5" &ZEzMƐ1)E'O4Rrs<=mk8p%sZ*/{+*^[Eũ5w Iwr4L U@%}g,d3*8؋~."\- iG ߋJl:IW8#y^6#$b}4@I ڻY1 dX@,!^ I%t^,cLj f4,6UM?TBߵ_Wxd\'߭INL~@]W|@mT53Ni|ӌst$$Ϲ*8uEB60 ZgM2'FrCFӬ>F#Ӡ{eQ P)$V Śja5BE-KcSԪKq(4E+XsWwQDy*F]υM uꌩUhvB&b{(| ڦbl0&%k,ڞ:w;}G U/*LfP@iku.v4 !]ͶC%T8LanrG0CrQ( ('Q,(03U8AtΜ }9G E%=~FAʘkj[~Q{[?=Q .kˍ/^de?ϒM7x~f`[p[ҰEɂ%P_Abv+%3%IeTPj"9s}ý@D䶨c (}54IQ!ˉ_!mIxumgɂFmQ+{U@gfj&݌݌{r:^}S$RJPZ*Wlfd{d!Έ/O `N7tkXQ0$dLZK60,h1- :c1P#ޠO\  '> stream xXn60RX&)QE=,MviIaXi$"]{],۵yxI{HV#4zud2GY$.G Iqv11Q4Y" jA%rc Bq9An$v|Ǎ$ m YFg'B/t4Y_(?&yIrc9њͪmWL S`kYG)*=7ʗ+z\,~c >_ʏZN, 0Mu~8-e5Tu n6,H0l\l恉F$&ޘQ֮ިn 1L3&)neSFn+ޜ˂^7Ps;b]E{8VkYι^5Y :o>=2-+fN1`# E4nx>G6+YW\Y/w|asCe:<ˊ[XM%nAqr'6;3ceEs(|,vos-6{rh楳JЁgC| 9/ "_tw' [_ _){RF,x!(P q@  Pd Hj,̆ff7 s e'$ΠN R W8ws߈"@ "q$;$UqF): Nz&2h7۵,65jjA:pyiMxux'r RZ8+@,|iK e" hhsԶ%[fT]#V\VPF0RBp3))-ҹ(gw ,A&ǡ-I5P Ta$ GD" Dp'!>MB RZL`0ػ|OJkCH궅ƃ`~`@0 `@K>-4L 40EAӅq50cX=C4.4E_/ZCw#pt͗MWP Z4jy7N[IbGF! }`OkӄhldUx/zKF{Z7P*WcQ=)ȵ"2Ku,v$ mm]I;O:RW͹W& hev ^k [[ M,R`Sa2%%3AaPLW6Dz;<񡢕WZdإz%Vr3A7T!NyVkrAn Ü7qޕ,γw+Ω[a}5JzpC8Շ5K{E7Op1^pH!`ŝBq'6֣GSfo[En9KT:1ćy?iD(Ұ bԭƠI A2#&2SCaٸ5.25b0iFV鰡%sl[.\AV{"> stream xڭXYo6~_V2IAQmA<$ʕlulIwxH+Jy3ߜv^~Y_%WEJRfa(N 0 UdmK7/ϯt&*0+ pkr\ެ]a , yezyl`ȽamDڻ^>w4JDdFac/M0q %aAkW`Mw՞Yr߲R[29mNݑ .gFexC,2`< =g8(3̶88ܞ~d_+&-R$n8?ІN| I,nլ#~/w\' s ~Tꑫ{0+B9*N7L1{ ZkO0!^!søP練J߉'fVxZj+hˮUgoڡ>m}gB0vJ;;"Fc(TR1W붎J; Hlewme;F<'ܓ[g KbGa:aھo,(͡vJѶY-DeA[(̏ZN#nF욯,q1gZ ^ y.CҡU .<ɭ>J~:^ }-{4JN \ӊ"+ƃ(YbhVBW3 brѪ7E .t֖D|H0z[0 uWC9;{)1)0s%XL N:̌J[lH F &G-q5`ògc4ϛ \ŚlP] i=\'XRɾT+7 yUXrpJOѨ̿[Sb w&ljܓL`'9Up-BL٘VJ001!J*6gZ߰wwufoB[]UW~CMKΖ : }#Zr@)D[^Wi@oa'v/9aE3+xur;OxaA>;??r&{1xfs\|( p^g*X8Ƒ/h@~\i̇Wt'G endstream endobj 2129 0 obj << /Length 1750 /Filter /FlateDecode >> stream xڭX[o6~? ve4bDUnR!M/@A@KF$}aod+I}>Ό,֋`o>\^@EfEpaҨXՋ?^ggQi>uÏWߣrG j. b7-%:;N rc0, ?8 )ˉj!$kf=[Muy@>0i/aR_ }ԒthaOi?͑!6d3K}{7h[5p[_vؚ4HkS˯HuZ0*!.M6zX7^ +(&{Õo[wN~^}/M endstream endobj 2135 0 obj << /Length 1493 /Filter /FlateDecode >> stream xXY6~_a( ഖVmyTm(ТI-MZl"%)E^Yhv,58pw7ܾ].&i&q2/'QE2YEQ}18- 4O?ܾU'y4U5wh};'w;Y?_iv?^͹BЯ2X%a8]Kyc$kLGZ(H;#3_2%.ͺ]<EΨ1* R#!Τa.Z;A2>h-T.OG9u|>M{k\.gAQuVGy>}O3h<*Rg9qT*Q2XD):DK,{, ,Ɔճ[ 3q:}٣.w=&4kY@+,l& @:pay_ pF;B7fr$*d[ `oo/Y5L/zYq $LxĠwc3(ƵswXkcPpxϡa9&*Թ5bg!Dng$F*8.14dڹJFUP: zG&uAv;F*1 aQ@?,PZUz ϭ&6b" uG4AF: xZcڑXwnBe={V"X~}AI9M#{gPyVIGTL˫Q;0t2@PRk)Ic2r`aeb$9:w?uZ+w+/Wj|W&[uӺzCn4O3Fmk96g*fx]ߔ@7`\y}_+R'`Fr#.c[gY|8⎇os'4rq27Wyc't#׽PWB7eE,EGhmv,J-q@9ԳqH%-^%/-rw^v5wOt U!z+$3s(;(@ȺaD{)FU^#F\4 ڭ+]@@`k-55!m+{(:5?>ڈfWl*8|2\c+tMGE嚳$\<ͤd^eBɬvnκ̳XS#`HgJW ݇h920ZtP_UGurxh|8b|)S U,wDDEhQ6&Lr77N endstream endobj 2140 0 obj << /Length 1585 /Filter /FlateDecode >> stream xn6=_anaz؀Їa iDM;fMnOCHvw g˫ Z*f:.:[\Q˫0-WH!e9/K!#61}uhRP=fsdd=f8(au*\u"CG0E+wOl]EiWAcsFdv7/mVg*cixySU?)jZ%@X,/2j`n⸺W<@ҕz|}Tؚݤ.{AZ^@>cS19ltCqŖ =|G;Z_?U(g|o49J.)B1 x$ )g?X"7c,^$e\ci=:78}K>nt7>kxA ;3/ acrդmfv-SFq?1(tcsU[7 \1 _3*o ???4Լ+*moS$tIqO Pi!j-RÍ*ZV3(ji0:of endstream endobj 2038 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1437 /Filter /FlateDecode >> stream xY]o[7 }0]%j  l@t Yuݺp];4ANc uuH<:$%Ij\Bc|gLm!dws"sAxX jg,%X7)3JKe;U D|1R7ĩ/- pK0/- #XSU*}e*}yL+<(YMxhWx^%Hr+u+Lgb9 H n(|Ta@fA|Ö}zbG2-u^2j`@.gDS yE=Rz JjuQq Tƒm=b nL1*GL a6@\ Y( ܞ2c'D(#,L{rj1A)hvvAdb߅jk ^|EhX+vk)FOBr3V!Ix0P֙ƨG4u$"J(9w`^Bʳ(!apR,\}lvp$ rt4#(&8 lEp,> xg0>=Y..Np'l~>7_gC0\qI̦7ˋϭM?͟<xNݣ6>%V>塵9*vҮR5CXPA4KC,#Zoz\k,yyvysݯ@gn;`6=X,ϗZ:~Oqƙp%SL8b]n56gg`r`zN>o\^~޽{X,{\'q|-(CJۮniQ4Ո  MQ4K` -Q˒J']V+Ag7W+݇YGH([̣E= F5!,;SBVI> f².iSS#RVDk(:XﴸUۦh-5Z(vѿ*]j h']<+NM0h3RTF3u4lӲ -$9K:65ñkFSr^։YzW0a}dvZ-Eǘm# uNXIV%xOrx?۟ endstream endobj 2145 0 obj << /Length 1224 /Filter /FlateDecode >> stream xVKo7W,C% >"v"-R[99P\-}\ʂ;|Z[eqt!5!`8 r'$ U( RQB`Q%ShP-'!g_]A'(spk$FE:$:16=$MW^ql[+qí`Ʃ YjϤA*(GKa>K%[8dYԎ!پ[\~:י͒AtPor)rٔvo}-k6|6Fj\PQU\Ne%.VwcФμQqå ߕ#<_ɯX.Nۗ\Jv` zүdDE>a4oKK8*/tpj|PeJm-<s ei6 4E~=Bql(=$cxFޠD195+n؊S=xavkIB(fV-43~;.떥^1(v|O !m vݻbr7p2 ~8ǔ0AN> Y5mN#]&7'Co0dt<ÞWjS ]j冤ZVeFzTh: hxc>/5sj0;axLȍTҴ"F9EY=]" hD@gPH6;,GW*S#C㥟4nkV*)Xc%S6@ى╾Ðаns[whn2]:̖τeJV`Єlpl=á·vi  U[)4 }3̀jѷFfJ=\+50ŞYG^A|3c慆0ݞE@jd-(tlvm7}Xfv# %R&pWؠn <cDf0<cx5f{KѰQrјI<A)޻⫧~'?YSA=DiSS[3>1|}ΤkaK/Ƶ 禤ȏ9R)EN$?R'Cבע))(EO}uJӧ 2E)zc~ endstream endobj 2160 0 obj << /Length 1963 /Filter /FlateDecode >> stream xڵXm۸_a @#k-ע]r v%f#Iq}g8rt6}Ґ -vh٫gobQU"0uEZ-/A\_r6X< Aa&F.<8$#,r@M~w75L$57LzLr˰JszJ`DinHZ adG^6љ~Qkw4[\{%5q[8ؖɓ[3{ŹE ;t\\AīܹSV2Š}Q덓Jf:>HmeFf;,NQ=>1 'k#4g;8褑jZQ|+}~Y^q8 -$Y ^Sn>v`B:ȲY{*p`:{%; m4E ]}X Kȃܨ@:-Db#:*~@gFNYCE4 s:pjNri%YyᕕNpg ?YL!N48(1uA@iZ1㬧)8i۹>FR ̋i!y(!y{eur# g|4/G: 12+#:(z՘O&^6(+"vZyK*xE!!ǖ ;r89rP4|= QbT#8U *p[ǓF!`ƈmZ7Wid A)PII nt E`B̦.߷v4A%(=4+n60LWʾ9F{عpcdu|-#}s)?F>O3MhTȫV/-nc. =8mipvXũ0G,ʱ#݌ a}o\J~x0팢E1KA 2d޹ @*` {m\=srp_J*(vdjL24{new.:mtN^\nfw!G7 Z endstream endobj 2173 0 obj << /Length 1137 /Filter /FlateDecode >> stream xڕVMs8+\IMTŎdco2slˆ"3~[_d/ KOFޓ/ϳM< Kě-=P /8H̛-@.\'ٷظ3$H k#jSX7Q`w2T(ɂLa 1fQe33$Ւo)BvS]NE1Vh<_!H!(2<2AOOOo('E) ]RRـlV9Fk@/0@!@QŖۚf㟾\ޏg_h׻ω=}epKR8pͼRYg;M>ꓝX=lզGK^-64T nG\Z~+*\ty')~lūeѶ\3Z$sn>u#MkL((-Җ엓UVB;l$zu^S`lWrNE+lA+7dD*1QralvlU ܁ذ]2p:,*KI '%p0NN\J#1ڇMԻBXya((?jqGӍs>g;Z7ǣ ڟwLJP7o#MԪ6a5 67q ¸~`9Ajk47[Ws?C!Lq?S endstream endobj 2179 0 obj << /Length 1798 /Filter /FlateDecode >> stream xڽXY6~_"Ye9(IEEMhYHJR83<|6 D g99l'䇛V7ۼ,efB$΀ $.dLz=-3,KbBP*Sf&D_g‘2wonمCmk]M"ReQ]U@pbJQ3õ.\,J/nQZ Cލl[v~>pWY:q^w6CsIQics;2^Tgs %IԨe\%,H,|L4^UQ4FFFzaMpRKlDk?Y/JR4ǘjUSQ'+!KCw,SJ>=P|1PzwU7Iٺu' G:b2̩1r3Ԛyܶd[0HyxَbIqSmqՌTSwe_^^SIʍ^bW=T9zxP諸9Fw tQZ<\DRgnžɷ-W$&;g\NW JڮRhIv֯lif_*Eݺ-B28b|bbȍ?|D!ctPĤzZ)PZ]qeXj\,,-\1<=LUn31kf 7>/ U֚I](0<#M ahDzƦrA@~@:z_=b` P߸gІg;o^.OrRqm왲| 1TYF)i:0Iuϝj_v3yg~5z*Kܳ8uxruR`q-XēFAfxxyPdl1Oh'dFHxjV8g[|xö mcxhr8 EY#CWZv`'XK.F*p*g`ꎵDF D=gI;ujj[SP@rY,+,ʋ:38ȱ4a%l Sl/g%?El`NAښl|mlGYt\_v.p>}@߸E@Y~ G$^5I\u ]-/'=kVnym,PPF\BAR3}i鐦 lK.p0b"q;{ ΗH޸iiSeE4UaQeqeM-*.lqxsܞCy^#/%\ӛϚ3z}o0C0HSQχbr]tN&(t P* }͝s֋&*ªֶ?o zv?~!zgtdld]14n-5A V,9y\d 9cͽ`xY ~ͳ tGJs Xr_,5yw!yO,n),+lso<9Gi2rcg<_p<j3(a7hl:=qܺj@abZ~ I`km|㡡8jq^.C_%0BʚwZ a0WoQ8̗6e $h܊y~WIzLGHa"*`) IcC7C6c^n-YuTeAD\eT&a endstream endobj 2190 0 obj << /Length 1050 /Filter /FlateDecode >> stream xWMFϯ@v7Yz0F%Lr:sIrh1j{ShW){{]8rn~=++Fq6\A*֮B? $p]TT|hwrø3q^`mmn{kxK\KL<=}ϊ9\GQx2{;pw)۟ rEkd 3ȍ\][i1eV LGPB~ pɔNk2<$CNW` D`9`_Ap8`Wx.= S[𶾟7T%ê3.qwdr-i1?u(}+rm/StlfTJ M| %.؉f|zWT yN~RhЌԂ):R& ͦ5grrxVX ,);(EY6M ߩ_:*Ă2hNV&-~Z4 Ҙ]s*hpE{vHqv"9-FQD,i6'/t7=bX_oOFC{a-eXFJlMѯgiϠWU8;JF0x!tpmC&؜%г!'ԩ6`l^]i"6iZlp,Ś rF  7ZBüP04z$dGt- QHV1tYj5TY1:GRE[7z(T3OSdAt~֊4q1r{V_?' D.ŴU<'EB ty_ -ɒ8"^+7Zz(Vc뮍{֫`r2TNFl3A> stream xXK6 W31W[NiMr4٦$Dj$Qu V~#i3=A^{{.~\\/'y$ƣOB$̽teXX)r %Bwy.|IU$Sh>^ o<3ogX[/k(u[>;Ζ[ Orluf-r= k#G;ٲp;kN)|$$bDd?yv3)v5#|js43:GNG~ވRbPfl; A:HaOr6[5Ŗ P|B8bL>.#9:ΏIǰ`Wb8gLoQ޺ۺڮZ~FR5 SWI{я,8\j0% ;^{Qwcˇ3]9c=U?/^Z'ŀi$HnPtQt no2rl `04EAVJh;JѫHDij;ִpC`wH2f$?ezt\7pG=;N+^( rE`>Ow( `9ZH5XĽT Bo&{>d% F"4~ 2 :>X7ꠘτ;QR-HJH~0DX9+KHg' HO%\ hvqcD@1ӂfj)9Ԥvϻ;1ٱY6{hMg<3!8 ^c`ıGA 1vxVc6hps~TVL(K{hc5h&IfkNe)v LsSD?Jq\~E)5I&(K=yl"B8j94^b5 c\80pEU*݀Z-%# 6|,C3T;.m I>ȭL&%VR'X.)V**R?h Qƪ4өPOFm]lU BM0ƇscgAփ Mc_73<?kQSK74h]RtV1T4R|ZIdogE>PT[^tp*= m-Q<J wezvnҾ%@1W [uFW7gOޏ뫟uPLPtADpb$5h `]=y{GhJn#NjSD endstream endobj 2209 0 obj << /Length 1257 /Filter /FlateDecode >> stream xWKs6WhNM͈3!ԙ65$9$$aBRLCӃ X0FxsG|9? A賕 &ԳXj|$5;(A%t=:v#n}Nn vtt-pdOBщݸ;.q[{XE#;oXB:(JOz"%+x3Z\Yىzx2rj$/X-wv+fP!<`^.DMK ӯu-PX˘ +oǪ ;0VP.KS }o/^Ţ8:̹>&DHAΊ*㆒eM# mt7a uMQbjnbr9s9햘jqYŅ,b >X1Z*'[kl3Xp]nYV#x;OFxCvf[yp?z&𦧭^ZK`ivy.g$ P|@gbGyBȍ͗ilȄCʊ6b N5mkǗO9Z # D*< S VzHL[;%Or^;'h?r40W endstream endobj 2217 0 obj << /Length 1362 /Filter /FlateDecode >> stream xWo6~_! 1-Ruؚ5mmo}HV5;k'Qc8x={-.)•~7Q Bo5m$p5nyyUKN[g?'򆹵UDpjֈ)*VK3>HV@2JH@@gE%QŐ= "$Gq|C5; {xy. OHrJRB-zMyeWmuCI  JMNI$ "yZ?vL#QIR/gM ( 8P!eːrR>DH@0k"؁]K1vuC Jq[7v$YǕr5Aq}u yrDg!1S*B9WmR˛ػmYәx-_CsfuC|r P8/IQ -ND꡵{7)˩*On#T(c fůE8r$9#qہBg<4&wpM[u/)=<;׻̓, ˲)f(2;i7E$X);arh^G^X`@QND,DVxzA'PJy~!>ӷX{:k6Q9{vS8wMƅӣn9ܑNWGȸ4Sf\OZCH}p̒4N*E8+|v{{=pB"!ߝ(?(Kzf=GAKp /& q*IiW`+bS=P=+ 'Iv|<$I.|Mӻtd\כ7neT~k?w+XKxNǷnOUܑYYѵ'CoS$>S!)rol9 ]+h33/EM+ /~~n'ϯ7Kx4IL / 089Ix F)u endstream endobj 2229 0 obj << /Length 1070 /Filter /FlateDecode >> stream xڽVKo6WJB=ma- zO=Pm EAvl9r`€5$7Ñ6, ؉#/2+EȘ̍r:O6mJvvGS?IȝB XhZ&KdOv{>_B".AJRQ\qNg18 oĉ; >:I+2(^)Xz\ RWWxf=׉1Ŕ+e89qPoiKVddMB"I} H莣u#,1Rs-Iڂ+1uMyQ*FtUz"uALvyZwS(K#pHܤ ӒJe[_ept-Iѝ>"y[OZM˜v)*7PV)U+ˋ|UIT hUesFلB8w0D%"AѕC :s ϱyn/ cMq?ޛʥ܏0/N7UX>QxC_6K^.2Osl6O^?JOwiToTޕ}&5.vhkyʳWŒ͸9MCSZ0R=+2X|y"ëfJFX~/v߉=#)6|B L) a!̎UǢ¼8fG* lNE}.\ \zg.or}ꞧs AW'`e\J_ORyo DRx=Qjѥn+xE|5kĹ Q{ Y^Tcfs-QU]!9ųy.^&}&EзVdQ99t-8DfCq}0=`i5Fz<^l8+rm`<)ŗqvjVs-LsBT٥> stream xWn6SJ/R(ʒ*6Na wPmDGZ}HJ#{I(GC`,`ݜ\\CkCZ|fyn菭yb?F^\C.)AŚŨ%B'@ٺuɥáv|I_*٠OB` '= 2zػ"NYQ1.%Mr  *3NL3GiT(3CJk`kTH[ %9kIk5~*JpjSDsUe$;{|6?t ̾y_f66a`k%%$l"GEӉQ-pWsfi.+@ R f0#ng7rʌK +̩Bwmڢ-BBi3d 3k ѨO1ڦsp)9"﹌S3*w( ʇ@@SY]d'PCgj6$-XpJi/ucAG6љ,֑7V EDj|.jmF6qw~)DgK}6]xzebe5|EKG!nnqp{np\sF[Bk7Ru9)+MP .`uq:y4M})a|n6zb@ź;ICwXUtCr͙6Qu_\JWN>~*=R‘ugkb3D: >x/R(Tt{;!G z.1 >S6Gb~ULk =a)}^CEAxߧqzdBJZqP}uJ3WywNPy\ՏɕbO턎#o}nQTF`aS?Sj[u C endstream endobj 2238 0 obj << /Length 1402 /Filter /FlateDecode >> stream xڭXKs8WPNZpd ևylM*%-br߾z,Z_w-tzb:w83<7 Ɲp@>clר}xb8t1W,7yÁ:iwF\: ^0I?䓁.`rXE~ H _7ń[˄2b[^ju.uÝa=h o~q6Jn=+>lmZh|'teN[^AN4b"{n`TTD˾u*EbԜCp2F]4W,G‘TXY{77ι=zNwQy-{wjdӏ#taG;Ȫj!Tq ֊S[n۟I2"eR$n{ ᪅z嗨o5}|0_@ a.xbV#@kqusW)kM <(ɋa r>iJ>Jv6\zGKnz`ł_HqnzzNQl*CvE%e뺻u]4MM##w> stream xWKs6WhhiDS̔8=$^t! TPro/ 8,9 X|.G#8z{&JFȒ ͖#!LHl4+F/Q4&0 I'*0[J+>-i t^W7a0$~ Q'!c/ћ!wB@f}Ag}rdyߠ %4"@>I=clQxǭm_bmmjZqڷ;',V9ʬ=D<㔗1`Ԋ;ڑŸ.d R ȐܸS\ ْcG|֌U~%iEKvг~;CHT$1% :a0lo RWU~hPK4uJoCo" mxu H=hƇG]p@荇(Еt/'Ǣw%?|=2*Bñ\]5>ڣEItZD8gstO0I P= |r&ca˱ m,[DFI}*HDJ?ɀ6D 8yFYPg 'ӈ$Y ɽ6wϽ3~6Y\\ͱEG̒f:ЉEr9Gvb$Ù>C`0ޏCfOz:Kį+k a1ݫWׯ`ZO<' ! NL&Iң@ygt N8u%`uܧKa06b + u(%Ugxr)Wm_sdm (@{= iͲ`˵ֹuIE() @=7TfzaN߻JI(=`NpZۻ5O^;zxB^R嵺#їﶠ%W659.T_F_3bD_H ™"lX;g~xd^\{I8`ԁҿoʪtvҧ0 endstream endobj 2247 0 obj << /Length 1383 /Filter /FlateDecode >> stream xXKs6WjbMINM&! `0xe&Ћ.v?WoW/+"RoB8I, 4.m}RwH"} ,6EdEGaE+z ap@̫ȫaSEݙ,ax׫yOEk MB/yĸ(HgAkה&Jϙ~&:+@RQvVrK!̾\ulkgvXǙOܭ/YmoFc`)AڞFT=eI ӧlLK( ryEd%hUq9q:0= DҜ QgˑruYa db^ZR^ =#OLfǤyFpY0Eԉp` {8袯T/ʦy7@nnM(CE1MZ8r[{c0g)? o4]\ [oHJ,N[!S%enN۝s v2ۢZQTāӞpCk|FZpLաeX~_ +͉Ӷ&o_-b As07K #ӈXYlw7ww `Qqb[YNB.,-wiVI{XϛT-|uj2'Q?\qq5-DBʪ,4{Q|bR^Y\c:gʎTgr$k9P@FxضVwnBğʚMĂ") OB\c:@I wL5K9Օ7.L.Н:׹d]indXXI=8θ,ۮ9G+ŒQ L/yǗB)cpj.vipi ɂ<GAj6Po!>baځoJՁJ;ҽ$ʾ@p_-kԒGfNG-{M} 4f [j3|٩S:(4(l JP|h֛$]\؏N)7Cu=sXv=QBKTU^=ZfYJq?jrQ&WK&}e%v"[K$ҼJ ~f_ ј"==d'~`Na6ӱFԤ#o9W~q Bt ðǴmd7.,LkҜ}/pJ iOC(,?8xGk5su:7#-x]}+tN endstream endobj 2142 0 obj << /Type /ObjStm /N 100 /First 974 /Length 1607 /Filter /FlateDecode >> stream xY]o[7 }cP]1 l@t nY[qPvٱ!|DR)]8C !DC {QH)>PL8# 0F$H11U 2޹:+R*3'$XTgfВ"BKIL4Fć9*wgɫ5zMmt"DԖUzZՏR9V[!%@MY U9"11Bj7k,7,^hJΆSVZWVgvA|UW\U,'p"(fW iȱ V fUrbBpa)BXZ`,j &$1 I%R-zKXP[ 8R@>/ S a,c%MUJ "H9,tdskZI")V˾΀Rciy%R&W}XRILd])ba+ W-ReQ$Hib[`!3.]rxdR(;l9 sL94eJ 5ד˗|Џfotlց*ߨ8#gpHoݻIz4cӽ{s`SC.Fbx6tai4^j?GtTx6U; D$J*tC fkJxc:59FhapH7}Z"МfF4, -? s=-1[N %F?v<9ʧB 2\VU?8T{۽҉>(6I%*-Շ)Tvt{{@:=Q[{y:Χ>[wvuq=Un4z5W_\OFnAapg_t?{zvil/s5"l7LgCm~ɷtx!|etGGS%E"!l5 _H$Gm0 6Lj(l2=* * hxvu/ckF XĢ7٢܎=cQ>ڲn9; ^Ʃ"rT1gڔwCJ RO[o੬XyOi8xtzgz %قvd=OŤVl?9{PTR^'u:Ee%Z GW2WVո[WZU*gH#wCQ 8ˊ#kn=^:y~[QKex8Nۨ%-ǩzq[JNep vVJ\cy,o\ MђZьέC,h,k%&nDBQ+<߰<Ԕ\I72n()ʓ$NK{RmZ_sr?VqNAђ͋竵v7K 7/t+E2t[$*=Bp]%-!qqҗAm<^+lfiD3 Э$)oE;$Fjh;*o>ZQ Ր֩/'9'ļ*6//G-a= ?5QXQ> stream xڵVo6Bh?Lbԓ akvk< X[ DpI*aɀ%u{nZ<_/Vi)u?'.]܅Í[uZս@ ͊`DpIWR]5##0g x.<ۆp~H? Jt+ӧ29 ʊ9JtwrA &b14rVlϖ{vWhVKl8M4ĉ<C^::q-rN=g3o$;\/[V}d7|O#$;ɋ܏f #ka{H.uZNcȥ+N'|wLn\q{<ϕ`jo/޼},řd'κCt6_ ];4Z47?E=,[[y'<ۑO}3] RONwQ{YJ&r돓Ѣ8&49|0IZ8A.}A A9JJY6H-)&\|oDZh@6$'}Mm~s ܏۾sue"L2C(̀$9xs44mAחBA/x (c1d3OL)~ "c&zS-WP䩡P#ںi w^j;ݫ꣣kh#9uNﶍb۰_N!tЛ}\`c.aPmVIj4]~Q>l޻A}_m؍Gr7mKê4O~=^ Jp띋lS3)21Lq]g,G ޯՆIV- 8 Z&K+ӑ1oίx]v87Aݧȯy^q[}&g f_s !P endstream endobj 2270 0 obj << /Length 1379 /Filter /FlateDecode >> stream xڝVn6}WYf[MH\-6JH*n;)YrԴ{8!rbޯVh< z=QH}%aXߝ+tXy)Z}c'(sضs\y$Gno)(C(L86g Pkj ENҌg +*-Y \f]Z XVb:UEjera״0 J v~iq!ypc),befnTDЅt>ֶxì>D_G/H}4k"_&/{ΥUDFQA]\c,/ժ=:*R_Mm)ji ba s. 0!ʃ귲Vښ[A;Tg"ARPx `x1OΌP^F^V;Zܥ wW,|4K?s -3YŏXW$vOhΕ> 6q܍KGLKs(߹{rdYWI}iH@B؍:eWF0/:a+ T-SŢ2K,4LU\mfMA_o;\-1_ou;bf*e:Nho tQQ=ϖn =)-]فI-Hw+C%+?J},s}ύYrsCoU Z[؆ tLoitKKsŬF2#q;jϋ{J" ҳ;~=w nh <@}2\'fag*0^Y:-VǸ * aJ` hJZ1=x#h> stream xX_6OS RևUUJJinJ٥am/3a#ԨI3xfk,yZkw]'✅d[Ǯ~F!l ef7m| pg?/8a$p#+=\}ZL`j[N``C@/~ {] ED 2`=yؕnB6r},ubRڲFi[ՎʈxkȟoTԎY{QJuea<I}*.9󀉭YײiKđ@T3`paK3;s #qY[?-oﵪZfm:8Z'eohHI =VZxqפQO[^Ȅg$;m :V~RqH #T>$'頇&:9f*h,j= =T+cѪm)ItWo)>/ m:vC@Q/IuTa;G̋)ْ. VE.XC|L?\׫mTn;M%ŝF.;M4Mk&o.jo¢2XAVƃ]]1X/Z tP>{g/@'IB+fT#fFjLS&_!;WZi+R)E^?] Qu J %*tP:1|V$I2xY=zoV _SfoFs#NCS1rܥȞ6RUOwk 'psq]QhITU 19>w8>ӏNt2CtѬ{<s ۥ#:}2$Ӏ@,Vf$PC3Y`iqxld#:([)(Ra>o'Ѭ'EG=ܒ#iRl+V `iFum᩻%H(@vqeҤ,Z Jj#m ٭-4{e$7bv&(`*ۻVij=&h1ygyn,aL}aNhg_ERbғ٬cUﬞ|GAo2> stream xڝWKoFWIRFuH@QmVJ"B,E:`pvvv{{~_mnPػ{cKA1˼\wqp/X$@%)QB+loh"$M!,(U G8rh}ƢO,!h0mMnMR!LM1c)VjR' ܽ3eMQZ oD?us˨8Ԑ^@RIJz:0= *kb<ёFuhh$f(LG@߂x` ((Ӷ֢{R:͉K|$Uœn_=GczYJV / u!g~KVUY=K zE%rk ķry^ܗpp!쥢=ݵˬ] vq#yM `{EH^j[7ډ(\Ny5oJ=˄:ySR5Gi{oF0֬/!uDh"ud6z)cSh0„ͽD?pw"yK-ٯT{׮r]pUxM1{nDQR \v[ԺC)-*gIc}ؒ;x`0D-_1u{j$\.WpR HP,slE^0VN9sCɺTl>Scvx,J>P;u)IJ T #)p/aX {K2tf^ZBUida10(N\C oY0:17X?zM"J?6CUNؠ+p& H&<8y#O kG;($ڝm7{U|!t]stUwR i+|W p CG0E llV?Gyţ,Cu6l@7_HR*Je[YMKT;Z9t:G`gJ#h',E4~ؼ`L`,UZ'Q6{t$9TNuG=U"h endstream endobj 2303 0 obj << /Length 2670 /Filter /FlateDecode >> stream xڥYY6~_ᷱZ"uf $BwYi-Kd',h(u~Uao߅*Xū*}OH^Cyj?߿ NB/PlDD;ko|9}i5YQL*A[_l1[~]{Y܉Us(sSmAe]@/?ږ;?j$dB w'G`;ɭG>f& 3/bÏfҨKÑh[v v<\j W-%"^pr|_xre~6[+ԅXaBqp Zʴ<@_έebMUF7.;)?uLZ{+(e:peUi7Q60QN2[[ٍVE>Q(h<=oܞ^Swx*%C)=MNVѐbg?Tնg C,d4Jӡhb*Hf!1T-v ;̭*iZʢC?aNӃLmwÄ_Q'5}8/D}]e TUpq/5Ew/ܴUZU Η0;>u w HpwRќmXX)DGM0鄉`Ja6GQX[ښf (MTmhH7#8d\ O]S@߲X_`UB# E @>oei 婬(N;j}l1xS:][n\4㗆)&lm{0tÉ| NX)ɉ{jVv][Ixo|U϶ ; gA֍w/,Z-!o'tM^s ԴO@VW1uN3OEVXAq PlhЦ:66pl`K.(A\pl讘+}- vBӀ%[wm{\Ħ: B dX6naY8g;Y'@=\戛8sӢ8n%쒐%&&I^$ns Tn1E%Go\`[LX%Gwq U%8CyٗJlHSkߞow0"Rƾ _7  @m@ FQ B>AʗRhtz@xP0 n 9~i%B_|$*~(JejRzAT5xV?TL4F5Zj4>Z\R)T%?,nPOnO<ݫ==iȶ#ߖX,%`ֵ%*m}3[OqaR2L ,gJ /ͮ[r-7zrm p;c#6#{P$l/%oxԥ6*{k !7/ ZH _/=ҙ~ڤXG*oCr+Y~7Po!{.-^^ToM endstream endobj 2311 0 obj << /Length 640 /Filter /FlateDecode >> stream xڽUK0+"]ic8J=Tz+m. ծ,' ۻ𶍻7AWmS:~g X!n 8l?ԹlǼP1LwHCcQQƨds>;ibd+%RO Ja$Bd5"4_G?Oj ԉ]TJE˱X1XzUCq$25Ui.*PL%k.6=PYܚN̚A酐f4.]cQ)l2I,Z TbX%{.a3BNPˎx-r]Pı^ KB8 UCJnɳ]d {HrEuqHkY {.|K͸Z˚W-ޢQQr10fI VQ8#<ȡ.{ܙwjW Pxs(3A 56 >/S*ȕċzl/o5z{5%L.!h!DwNZ>u\IG [K ]/G~33 endstream endobj 2380 0 obj << /Length 1310 /Filter /FlateDecode >> stream xZMo6WV$E}][t-P(r큖hDYwd;e.P@̼y3 yЋ޽G'17FhE$c{q埏~{LO.Bc_ hا1KkBZ 1 V-W$DLiɂWJ6Yħ!VI7gã[ԏgO<Ã#w9D.Gה\nċwUiZI޶+5pAbk@fMR?1j3y[$i:)$nxpj0w!cR*I+ z{W!UQ նNGp$ԏb,aJ,B{W >U8G``*-JVv]#!V(k(:d�tB&̇d ͎A02ϲc Hbsv}IЂ cJI\8KUX;Aoqv((VQ^q7Mw.0w掣cUA ks0@Jw$; v$Tq4C8: Zh?ֶe5(NjijyB>21 U3Z] o/s!Bj!l?9zOp`T0F,5kLjŚ U'̃IrҠW`)Fcﵐ/Jdf> stream xڽZMoW>?€l0$H"@Qk%U^r4fuwuuի5bTrt5v0v%;blwRprɮD? >rhdRWBMH6< jQvD XrMܔedh+lKɑ%=aJ= BMw#5%]*zc h =^m ,9.nO`>h eG 3/Y+K,6gZmC6 kuL1VmBtt|ln5pW(6W5Q :1'$Gb`"0jO`cRݜ~JqP*#RlɸB-"٥&&@:s!CTƻť* %`1G3F,F)s26r[K6`  ~*?*( ߊ()DWJh#6k6/nr@1ʷdd,fNGGOș =g+\~GiΔl,h42 X=I` 5~@/~^Xm+7Ӊ^~߸T/w#]]nn,A{hxY>[݌I]+Ĉk|N6#^k[9bkgԻNOLs5xK󤵲$=O0/yM}=e>iS(sAbN/Q>Io7EԲޗt>ISyIgkKi꺡_)pՑ=r&2|(gmAT!Û ^\gxv|&m.֗Ëom6W7ͻop[hvs>" >JsLihΔXAi+ҳЧ#=[0O$seiKˎ!zE>9 `@Y3 7yrozߟf%c#FETaT-5 PNCǏjs1__1lJxDBVC:t,>UZ3vսd4lѵkVO5e[2Og_(~((1|l}WxG]Li6diTB' i4l#-YC{z*5Q}5֐JRGxb"}@])»`Ϭ>`rE,&׫/($"Vlv'SC> =buno{`en H%!Z M>vcrCii#).%ضϔ&EAx, j? IafǽXyʧ{)ɉNBr>6]}БcG9vؑcG;2wdܑ#sGY:tdґ#KG,Y:tdڑ#kG֎Y;vdڑSGN9uԑSGN9uԑSGN9wܑsG9wܑsZQUMYО*ze]! >XCUFoNڡJ*p\PR}i$F"Q``0t3P5!lR%MEz.9:(B{hcSF0ԲpM2e"[B ^LƂKb3߶_S)OҒew Z=|4҂Cwb*~"xQʗ@퉀0,GKv"Э7>{"<B endstream endobj 2473 0 obj << /Length 1463 /Filter /FlateDecode >> stream xZMo8Wp66ڙaV kƤ]$Qͣի/7wqјDJ8IT FußߏlxqFI\Pj:^J<]ţ}ҳoeEia>T!(ɇ!MPpB"++.#=?_n)N>d*[ƨ8ǠeϤLX@QO%Eb>Ũ1 QJ,AR-h B@!;A@Z ?3%gO d.uBkB"OAxD fV%,%rr=%!𚻄B ca}AщHt֬QfR9`yLJ뼜ϻыJYJ St L"Qjef%J6Rxbkx 봜ϻfqG^o- yz۸ 1ƒfj $BN0e_FḻJC(T]PgQhPuQ(!RBښiEP!ZTاIeaD`@Xaj6PMe'Pb%2z<nӱUTј y:1}ABA6D44uL0=:Uݖ3d:Աl(Эf`rP;5v82Byf]阬p}j+%^PˬK(jFM!%%D2:6Z.8غb/5x[N :ОiW2J l4.Qu;P BN#W,TBkƀ`HМ'(vjX 4  3y8 O 3L1i D~F]Xdr_L ޹۾2H7ԋesLMzuP.Z V2:By ɶa{j |g5rυ $1B:QA8E藽$/A6ZpZxIN!AcM'lc7 Dv9H P v ӝaPzlѴz0H HEփS1 ?6AF jlE[\^ Vrnb>"D3ZRh}j bz7G^oG$V 5&Ker앪M00W.(w=>c? ̠ 6i{B b&~N3.ljXu8f\ȿxL摕#*?pSӳǣlY=h+թƋ#EA^7KAe{xggtTrͺ`NWK+i#bP#lj8kƤ뛽h*| w{iƸ(!9B6>1iBOЍ\`;Q^\UNW{O7ȑ  endstream endobj 2381 0 obj << /Type /ObjStm /N 100 /First 1016 /Length 2610 /Filter /FlateDecode >> stream xڽ[M ϯ1ER$X`w 'X,< f}E51^Q$E-$D.U$h.Ԥ<\d&.Xj\hipw'*=?;+kqRM'0M4`@2>aR MGl JZMB}I6ɒԊ#MK`Zdvh*ˆj>tN gTg횔654{R#iㆷ%i(WcuBygXٰXֺqdc{1R+ըF&L.qju[Zjj蒦uݷq-uRO9H#usPIxAݪ#N⒤>RMT 4ldilR?jUz0F @Q c4GRd*"Ca-Z7mXnl`nEX0L`L.b6cVQTlek nU0yfc>#`67cNXm6b6nnoM<Ӂyf8@$r焈`߮a2{ߧ><|;w>rdžN?,l&j,XEh;3|vZ}=KWs\Ui-Ӹ]V.HMLё(vUY0Bٮj,^"s{AREq,!!{{(p 74j(Ab碞bMHrks 8+2 i26!0Ex8.iǻ^7{h.o%OU XքQHXGUX$zD s,j> J!g%W߄ J etԎ GGH۱/>|@Qg3C/P7d/[6ȗ/ˏ_E{;?|M9w}z;:?ҦUîֆw4Rc糝\ !XS=qF B#G @<y\k)!PPC,B!))))))))))9999999999%%%%%%%%%%k @\r 5k @@@@@@@@@@@@@@@@@@@@35BbvB( 6l4=G@xҚzJ@lJTdr1Wڠ̅p'a͐:0VoO $@LJ6;L,CH2BEXf$ KD1$u3uIhGU#l zDW$Ч9`TE)uAQ.K8gpEvg$Efx&H&t}P\w~2!a&Wj5P:#,{Ebk&6)@»N5DEjeFG o;=JTShܢ]5PIih&\<&Q3吖7@c9j&G7ǪtͪPv䮓#&p ĦrӜphs T0Os ԕpؙ"zH2mg{LHB4dv3ldaOӃ"H,ǙKaZv/ɛ3+}~9׀?3 ?j؞w.![ɾHԎ}8Ev5t@1m GpP}j_qh :.@NMg\46ex{e1(*~ D,)n]KqyRYiw#?fG=Qz'Q U\I vM{DÄwH\9 .5vZ!%/5!eo"db[tV-2-ROt-bi9wHLM -ҦWYC=r 9%!غWM1%tIĭ&)q_ Yݛ."^Z{7k"Ǯ[_j8jMCnz X{3 {ï)[ȭ&l0r,nu9{G9?Ql{%:ۦ7:|eζyAz-ht울 B1vry 7;̶:Vr:vUjupE{7{dO.On:tDovHm?+X{s6aӻ2b]\.dnoFc7 owLz endstream endobj 2563 0 obj << /Length 1478 /Filter /FlateDecode >> stream xZo61DkÐÀnJbdPR<mch >0=>~ATG p48P=>E81,ɣ*x ivoqzhBALpn_yxL'$1Mg2V>~arvy> Ic,Ӵ4҇Ɵ|># n!g8)<GŐR ƧK)AWw߾ApJ/шLNE,x)f$A?/ywybQ+I9V !+`HF#n#zn@ Y4j<&ΞfA _^g蓦!}(\h O%׬xuw\`M,1w0ͱ~tNѢM.H /2NOE ssapEH~NЋa4[ZGk Ԛ޳!("(@ '~E諪Ƈ8Ovr6[kB_<;aN:QGy? nE?TB/v(Xg01y3 9T,Ƙa#Y<1ImBh90N.K69fRE^Zp{s$h%cpMי0%OiF8ʎYEժTt>kEldz7q7ONHFP 1ɕA&5>Y)--;cR2Tt/7B KY ڌZ/@!HeοSm8&06L}JnR]@RzCڽAC2B}Bن[SN,~(6mmL7G#WSj_9{.Ag: lyVgY ]8Ɠ0P~*r Uk3:qxd0@A &6l 4΄^#T1AW#cD1.BaEa:Y9 q07.zř<\,o$2.TP193O+W}_d- endstream endobj 2475 0 obj << /Type /ObjStm /N 100 /First 1019 /Length 2522 /Filter /FlateDecode >> stream xڽ[] }_EWH}F$ƶZ,n^f8wl`dyw9#yeR`Q 3rȽ!A3,J˥rJ˵za) jC/H݇TyX ꭙ F@7l%{FW+Y nIw)Rh-!7U IUA8d6 x )x)rC[𴼐T "ô@Uo^/w=?7{|o!}i|p)X="@1߸U ?={|]1| #A92z#9Vn;$ZIƌH˭Vxc Yv $FJjLNHHlC'!AO`A%"Cβ r HCBgzfBxX+!bwڙ*Ӄk#SHLFi6"{$d|p\FVX6E] <$cfs׽=3Y)E^XPbBe'\FsFnd7 uÑ#7Gn;rwݑ#wGȚ7ԍFuّ#gGΎ9;rvّ####################aNbAS!aa1,R^2J-SjLLAb JŊXI xBs%sZqXPqsNFNQkyjdZ^/1Ǣ<l-%N+:M ES#8!>ɚ=Zbذ)yBm,P!ie)+r*R,aV!+a@uZ´P h?WBv ^UVT'8媗oNyk?&8֩8̵ϔƂH0/5ԯb^xny-yB4V}6j?e+W޽DF{$ Ŏtdˆvd#bQ4uqP]Xr=a!u eB)SO8!]n˩b&j~Pl|C,Gea.8.gJ{Ié۞{-ǡfuTr|І](+R!p~BtcPzb]B(|XMm9)Q^}En, ,Vyca220 L13j Emd?؉Tyf K[.=TO8$ ٢ռK\! ] KyNcIu[?$ОbU7GTQ m wH':vnd K]k]`H+\^hHC~haۚ,_EnX]. O%'ѧnz^b}Ǣ>T*7:\T|tP_xߧHK\^VV} v}-6%*o~>!4\&@̲qD|&+It>P <F endstream endobj 2651 0 obj << /Length 1385 /Filter /FlateDecode >> stream xZn6+LZ!%QE'vEEiXe חIYdF@,HԹ A@ׇ8io 4 eǟ?=:<40Ky=՟_Ya,?J҄%VUʇr;_?ac?|ENlVErC8ĨKF}(LiN]n%"i$OSn!ƹ͏2/$ykLEJa\\$#gB_wobU᪒Cwxug [SO.j5[;le b En}EChmS3*-flvڶ"YБCS7;yexШaaެ(&-["6] {[[kW+4}{FkVDn+D>ڜ%אַ :#8:H {CسwZFt.[ @8EC\ە y} P endstream endobj 2736 0 obj << /Length 1456 /Filter /FlateDecode >> stream xZMo6WkA^,CE{$&$%oRiIC@͛rf_~{{| HG !B/Bd;C?G" 8$Ccw= GQfMhrv`q}+bh; D VU ?r;.gA[9D*6ЃhJe,Q[^ ht@ #X4(0(s=đ tSƿTHZ2S23f5:4 vdqNӭv LQY3p)d銲B91E8( hPtT2Uy)Du]-DJ0 ISZq)I8-e^$]\<[6t]PcL)T9J a/PpmCdņ`uSuMEfTX&܊ a]b{no_,z$S9۹O BIj3arENs& PTZrԅ(A<CҫJFìx/Oш>5&;)6t糂ӄ57]2~h_]1޷vC52H0q8dJmpI <*5yg@Y3 L0ˤ=ڹѩsO#GzZ*-yR"b4N>hY`ԎI VTU L Lla0o6h En(OdΑT Fn Y]v-hgxsxCboXp r{,7}}xIZӿAE?S%J]HU|~'Ց|~OFI;ݛvP6kJN endstream endobj 2565 0 obj << /Type /ObjStm /N 100 /First 1019 /Length 2756 /Filter /FlateDecode >> stream xڽ[]%}_EW* e@$>8L̎p}NuŸeGJURLiJk5ZܐPThuCC+ 3=F04CyWKFH(>UR(D}OVePSrZ`IAPY UY'n_k i e ulAD ct roAlA6,>F庠 2#V9`ey95 x߹4-<| h]Acũ]N;V :0$,H,˛Z 4X+- XX]W5ٟ)$s|r fE|,Rj[Z>w1Շ/q]:hEhQJ C0̰Z$Ui@b0@)̶$!/xuq@]uo>`O"{=85A.QB+{pT-H$Z_UIryG+҆5$5]0i3RՃefq(^^ZffvN[Y/g ZH1?: )["m BFI H rHO3؃hbG$Z'TвgҪgUwl ~wxi]G]AonDW4EbYuv4/)0!9yrӏąxy~sSn7t }v8SKޭKvni[7WXڈ\)ph#f4YJ*,U;v /ؽAJ49.4g4$aPkTNӆ̓I1x$ Vu3R֖~v>*m-MgKn{pg1;6p{ ~K~j]ⴟg "{s9og<1QRc*}TM*JQIJQΛS({27w8mf RdlYH.AtX[tŎ:7t|ZpYK}j;({R(vtYMu/?mOmP:Ǟ:3iO=L@ URߛ}%]jfXߝէn+ڑQ{?:^z[gӶvNz͞XK<[-UgzW]Fyj)U|Uwctus;V-m@uwY7^@a1O۸S{4[Wpse%DɨG6 0.n+YY۸.egJ|-Dଉ:o8s&Κ].  B;U?_U6 Vq?&Z:FqQP^ eBYPV"+W*{^W*{^W*{^W*{^W*{^W*{^W*{^W*{^W*{ި7*{ި7*{ި7*{ި7*{ި7*{ި7*{ި7*{ި7*mSܿޤ5Jݯ6DlZ\.H}pt| endstream endobj 2851 0 obj << /Length 1696 /Filter /FlateDecode >> stream xZˎ6WxIMvE1iQ2G",3|})[֓:)"|y|>(I7` ްEayx@M a!ym>巟?_hÈEA̘1u| R>t:?aluJu 9$bAg؝`tS>n>$ gQtaTW* AoEhJ^U2yAA\P$D%K< cpjaǐd|&hn<2 !pD(^P8%GRGSAĔPYCnlZX0#; pOuUK'`PDego6`^\A\!e#[ HtK]0{uVA0.,D rcgDHSQ^Vt _2\4h>ܜAGq?1\XrdR};bN00&t*.+촎-$aN WW3 =㎮']!ȉlR;ܷEHݼp`-AD~@8\@\0\KB\} 6V[JܽLz- B v\IOmmG.кL2.e33t :` ĊQhJnXT+yʟ/\"0|@%+j,ܔt~7 4mnb6dޖR#L)S<ͥ&z[{$^nwoT9U? !NQ򦝾*k6<$^7\#x۴ssrG%e?u5Z?ްZ9"EDY&Qf[ <1:> stream xڽ[M1pX*l J$`DAcאV5+ɡ{i~|/ڴjӞߑxt ZIZ(GNg$Q&Q0jP 2%A>D6h 6cF j3/p?F/:PV%YM,'󷒸W_ibSq'0KRu$lGDׁJSn$ݜ3 iQbe5ZRғ[K6QF] Qҁ`TS#qjU\ER));'>棑QI\(uG8#N]2$u'n̘$hΔz2)m'Hn\e5 X G*Fq;pS|PcӐ:, HÕR< >/&C&N2٭wZAT` )bR#`M9BTKq*MY)Kw[T)5l9@WQ_pi4 ")4 Lc3+fc_,6>}|qOoN?~ןswOD_N߿lBnd5؋f3+cyxE:Nz|N/~} 1}ȡ̮}I QzȲ%ݑ`̍Xb;ɥ-X=9X8ScI%pQ+I Y m##~|ȡp38 h"[fh"D9H;"*R"3u# <`@U6JȂ!YYF%5g8 ; $qMH̞l!&p}ƢɅEp . ${ #C*]d=1x-X!+tɢ, dӂ!~>g,,d܊=tu?g,*쇘@z$olt2+.ۑ"biH *Lylc? Z@+]p{vyнL.jvGn~\F06H)kSYXj_hH3=ðpuP2eŢ1=\/ A+G裴P!7Jk"N\h,7:A\ f!]bIgP^|q'% Qxj˫)Xr: eYDQB݃AjِӁ Dj:!/ l%K;FKA&C=5F iFmO8lTTrP@hG5*;vX7x!M4xhO{ICGQaA Gƞ XgEs-T*-I;*Q*ݦh6a^Z]uWAG{a1뚃ڰ{Ҋp U^+]xGD}TYG䘣zB߁2]ąUo,W=Hor!_nfRnI hg~8_]yLX;HgNF_|=_%tSKK*J(Cai#ӾH$`B4sN%00jezLڊĮ)3UO/rqb/%w7V U#pbb@QilukzCΝ`uQ*2 xGJDkdnG^ lV{?z& ņߔ3>"@1!ۦ7 Y^ (`ꁰ)8|V߮|c3j_Nm6 k3~;+ZwMkO 2[euQCPM*[Z_S=GFNYEЉy./"M! ܓi.Sv tz!qtez[ݨK!yRǡAϿ.~4A_ t~z-dl=~'KSlޒQxo'L<9l<ĀbPc#nAA 5555555555[ @nr -[ @r={ @y#G @<yؐP j 8AA ))))))))))k @\r 5k @@@@2ddddA A A A A|ݮIzKtekeHm mxLXQ $"BM4Vٞ a@ٺɼiT&~lf]сt+Vl/q] 0DiH?W$d^ ﵧUϮAbkl/wE}8f{=࿀Tϭ?W{ ^ G&[qD4GiEԾƵf{,識 :nV [*tmgKD o/Ķ(qپH_ЇĽ*+U =F endstream endobj 2853 0 obj << /Type /ObjStm /N 100 /First 1012 /Length 2232 /Filter /FlateDecode >> stream xڽZM1pX_d 8tp"855t G|S|SIܬ'S1$c$jhj}csAMT Z"pD9FňLMS5ML1-| 59.T9Z<~|W ƈd$Bqk^$"c|7񍞔Ɠ1TƼYjsWT][~ZՖ:adDd#V^J2zd#V^#V^$YHzT*/@奦*T;8jdj5r :qjt**V,N5+*j 1l̈h8BcK򱂎3'7WfcdjM\;`O]W{jXU? >VЅSw  vﱾ. acK]$1DASb6l ~`ld>l(&HU7]&"{{ cIG@"YJZhpvQO,iGbaDb~yLo?~z~_](.Ǐ4><\9}:Jq)֒MO?=}xJwߏߧoy *@DFJcٜrAU= BM3-5SdM&d= m!,厄Rl4 !'Av{𲒖(#G2b9PB[6)!2SB!_yAOq"3-Z2JrɎ,PZg V&GQ=Ï@.K|ϰ ՠ)J߾\3o^ Q68X*eSWtu [{HPrM02vBdB‰tʰY 02SMba 8i(B:&o5U$jApB PmZ@DPTT$*깞F7V O.JXVSkfzV[:y$4Okbm b.hiFܴF N|lLK  JnR+RzHHa' # Ԍ=C%I[`E< DPA>QJ JN0zLmK N@ u8o9֫+T4#,XrB,8scQCfh|/ïP6 iۻ7wZL (W  vtȳt4qWIqk:G800KWj8Bq 09emae~TlC%*o*Um歬 "mٱ؊] + rz>@l}DZ4Dlׅ[i$qƄ fF*b8VfusS6O7[&%Pt|{A _W1[(8C1w;1G rD"hG;+*iHoJY] v^ɁawA,-[=@lwA,ZYY^+Gw}}kj)P4ݲ'b/=k8 aϼam@(@|!0x.SnE2d]Ow%Eyzz~F !ًo[G^D`BOG AbwAݳڗU1͢xe@1+K}>[L}𷿧qM k0HO>?g@ةw }ׇ<廷x:~oӉ endstream endobj 2870 0 obj << /Length1 3102 /Length2 22573 /Length3 0 /Length 24118 /Filter /FlateDecode >> stream xڜP]%sw,[p'hpM$}{7.sMsU:)P `hgfct3qX9()5[.@7E (xX9|l\|6V8:ͬLvu+' G-(P3q(=vqus02ٙ biobmdhO%de+?zف<+W(#_h] nj4wehpw0e}e9@SoMrsscfgkՂL X\06s-qd-Š&n.^=&V˯ @R;:yvW `VUWנog11G//  a3Iupk4==BAuosuۙ?`r1~==R&v[ (=9n& Vv]*nfV ;W_v_Y;U](AG4l/$% `b:l_V5( 8tAu8̢L!.o `x/Yo`XҿY7b0Fz o)x@T~#P=TO7S8wohF .:#^g7bř;^Q&o;+׿ܬ́9~݀.֮7W9AL#P+ZHS33ڿeßo2q(9ځ&8~Y RR A kzf?rZwv:v&HRwi-;Ybhׇ OP;hdtdAc .0vAnd]-J t#ԨeP '?>;hA/?\ev ahdq#YA hoic?8AI\A_:S1#]nV.?C_nn tZ& OA[DZxA|~t?n 3wV; t[X, hhj^Гqw_c-?@{%.$tֶޑOm)Go}vuR*&O #L0tZ*^cO_bsG>TꫂDWP% 0bkz6N/aҽ,21cR0-,{,r tg`bRq$46DI]!Ep'=BvD|oȳ3*%&7]YC;FzTo(vPnD?e#˘$vB ӱU)L(ŻX#S?}hF)y GMi뱁/ly^6N Y)cpTweUJJ*ꟴ\״J3/rVTa F.gU*ҕOf/.d='sRΦsD"oz]\Ľ AlhZۉrqЎ#V }23Ur2rh^vܥp8 iMsom'Ș~BdTd Bj;x )A(0qP|=x(~np^WgJuBОA7/xyۑ%RPIL" ?)E-m֐)Sn##׋C>`GKR24nM(J5#Li]7(`<6j& Q"G~Y61iIsWY*M%d= nd 2EHr~G2 \\>Ant(pa6^:6OI D/wQ' &$9SG3IC1Kz ,܏(~3s>u?m2S#IPELH}η.HXq/Jt櫫^=%eSI9@+Jg z` -"3Dߺ,KI练Q $v\v`kr~BA/sGhzLоa\7JJ%>UQ5Z^N|!t,+QMN~ Lh_x&ᦎLޚGǔCJLg|jDw&yBb)!8~T7<1q[ wL_=uvJ!R Nm+2WY=W|{U]<,1-`GpkU՝H\uڮ} W[Lp\ |Kn8*0sHd88hr";o]`)G6 "ZY eGt;/%"&[f-KKzS(alXByۆoƂOc~t8tK6*Y[V*"__\clYs*bcLjРl<6AWR D*e~X "k/M&)! qOB0a:j^wm_\DZJ:= :4bd[](A/F,K6 wmK3wArNAlhsAw !dy{(ž=xr`΋Ͷgb:bJO7"6bdTEͧ]Btg)s˿9쏯K;.(V".:Ki Q#g>ݶsUrVȗy'ZxEj j5Lw94BYt`8D`Ka ~+/i`g8XXs {2dH|c*F !>XX8`@M8Y:}/RfН~)~MR(ٕfLuќgWd=%jh&h4R`e)`dzm'>;7rgJ .Ƴ5H>󌦚)GvIDp7ߞH|쁲;Gz]"mzm-O;("9/<y40Wjsu'vշ7>F[ּI#(x>)}b6 kޅLxӦ9:%(:J2pߊ!"IK'^In2%L2y'wv.wBorN#NM#L51^D7"eDvnKcu`,e˪+#b<bsV)Ju1JGöë/zxT}ThT򶌸~'~I0 ^fFyhTokB7*~X>#\>D4Ra_ǝΔ IA;*b7HFY'ȯ"4!⾦̺ _w'mM%X(+{'2nk+Zof'D4j٭| ]ӈ *x]' ijKWGKu PAVPLϰ{hb]SSA8f@7~\5?`^vrd:]U(K ѱ3k{J/1mu]f fg\. Ϻjn\)`I(*֪+w^1Tcqa\x ZQBwujşݝgm+-fJ=UWZE?9P"351Pdqƥl~c(j"  aIL3(Y @aacCFsvN 46,0$v(k =̈޲`lΗgW5wROPbl)d{I@50Q "N-o|V˴-lfG AABma!s~UxTC/EV״mB?,,9fr<뷥~RAѶҴ1l0VmK.OXR"lA Aa`6R{,й Iĉ@r^y3- KtR="> N:}`JRw0ld]Z6 Q"n 5#C\eO!n0e@>SnMWv.ۍDFoBG\ܘhH~_.%T5SK.Q;*(B/PQ}QL"&v!B]VoH! T fl-BteWv׽ QsWB,}TWSKp` ` KC#f.Ǭ#Xn.ER-7 J﯆rEG;VJV5>xX1 W{GZ4~ ŝt#Lex޹iA?VM8>3Dޖ@U'3TG2([0hm0|q;Sمi18tC6rEb|?/``㇘EoQ]5Wɪ DZ{D ? DM6>2L;_hG!q'{ĺ%A&Qa}l]gwkf{kg`\rAjP+iSa.j@\W.)BpurkIj)Zv竄k/]Y f|{7ה$a^tV.Ym1wUvMe<_AyYA0,'V&n#yKRI#b[ LN0 Vf] >"%3,c]>g\Cv\_ f>e(iIJf5/MuRyz߰ 0Z0zܹkz ^p^-^_7WJ baPP.q5!x߳@&ɜX/u,cP+YHbpU/YsyaThI fW ~2EHow˴P^ି6LL*zm,f*kD@8l\TO ?B""},݆^ޤg1lL*noO$]*z:H*8+IU3r6<2@nZMhO}j#_83cjⴑ/kvK wD΂=;$Szs2X9 Az`ēhȕ9Q짜cmכH)/3#W^bb $]F8&')(f3 ҶIη`d9w2fmI?2p޺V͞W;~E ]pc8Jי.9`k^4|S"(£+W[腐 GN,w{ԳR9mrfh1VE|p%:!qE6-@Fĥ>ENUuUrqwZRu5:6(>a;plTvbmŘ9V--->4TkCT6r}{2SoOy8zHLk澩SԼ_F#":M?dT/JP^JI"~C˧R#cEx n$JB A3fޕ3m=~-gW7$'Iie̊qMSPVK3*F+)(Hkej1;7?TAXh.C7Li`y0z@Vf/ⶂWJ5ܘl^GA= >Wţw:1P6]b dcK:<&ͶrwuT><\rdYat+EGD(Fٻ ^0!mBD??ڇt,[YYA"0+/(H7_*i4d9a3Iø3s&O  +7,ImLSZ5e޻9K@4>fŔ8(ǧz*-A,)!Bof:vtJzwvzpb91?. 0Tw6 AKa#d9fÅ + f$3F%6D:j"y?z̋n][ +/q˔pnp܉&(RХ6/fҐ}풔[4HmrYl3F٪$6y6s[8K%V1zS9ijh ;"%rWk8l?(@ύ%0(zt4WDQksf褯g_ Іs8 Rd67I}L@/^2Et,,3e99\ IW9ѵ[ kb()5>%FɎIIh=p(l}b ) Z/[mhz/=N5u; lM<َR cm-eEj$†&B`1k/E>ŤXZ,AYoxndw軦Q_d8#!B@){^݋N '_s $=Ƅv)[3IOp$}@۽o-1YwR)q"۠"PXU.L ?gW(K4}ޑ-.~;֒l9li!Ont %O/^_EwH@cma\=qzDGʬWlY2}N!.&͋K Pe/؅3MQ TzDi5U||`ڠ6o~8x02 gxyp9j: l(u=8#HVj߾[I$ ^'ҲZuhzѼT7>> rQ~D9*u`=? C7|p:}]7,A:dm-nen(-X= ▬EfggVL?|| 3= hCmBC;PwH@ER镚v@'T2' "enC$9߷yXi@kk cKsGF!CnU_nH{;#67--~]Ssۑ_4`OcTlVє5_A*'N[,~[engY6}`ju%sxz&|jHZD9a 8^GlՊ8^3h=NIYZS-Ė'ɻ2##g3Diri`t*U.goGd*$mx$ݖC%ڮwOOyltkXFxF1y譨Yk *HeoWrp8< ZdoXƑXVEv-2+>F K5D%NpqYlh#@66*#3iwh|X` h1hE1:},c΂̳Y( o8:3Ʈ Icr$tV߼z.S%.)$NmC]_?u4zRmCiQU47JBoB5!c[jNzߙ6J[)zu;z"a;Zpr1̅ZzdCX4SqqhՎ~vTTխP }F-jM0,tu ͏C_> 笽%Mn(ɉ+ȱ>WYd=[uY?.`AnrF"_;Yuļ*M ~*"T89ԪCҙDM4eD|;ޙ#!/qCn,r-s'ڗKLV/@L0J7 ö1Ç.쁣BPu'@ |N~17'X{zbc1Scc/xƍ!TYx8t1v]S*\T$r/#GP4 `p*0ϨygTwު^hq dn:G)_~&ڲa>\Flz.goNt`_#pS+g[{S:?kTUYu]{-O3#Vi'o`;5aƩYM{!-'8j,м,9]+XU\6U߈,[@z`,OaI0dѬ82BoXnX6ᆱP3CXD*k[_ H{ ŗ788k^H:n[);|v qP F撓Do+hm|;F!WM%5N;d}gFwŰn굩AtSe}V:Lꦓq"᳿5T(+_]A_$ΨȨKLk6^jTӞa-BfH3JB-B.M~@'}ӓE1ꈩR$T%ׅ(|L- |V*'Db9dCK\8&7V7a(UrbƃXvv9 '?"w縢5mhq%vtJ~ f,p;w\#ܶT>SĪ"1:yIBS`-Z<u~ySQX_sk@wӈMx|`{8"~%-!jMOR;&;&sӰj;`Nя9FD<(2_R\|ķ3~;Ke%kwV[݆'7ުŇO,CVzLF~E%) 9quPToDT()c3B|f_|e 9D2ĩؾ1:Wo4{@-;;X{u4E\3UCL6ej&Ǫc))K{>W&y\:='c,f١:qBi"_b\ΔdGmAFM[GMcɪFyBS_{*ٮwggC#!Qs_c79? 1RGI m~d0"a#J"+] HCV^9doi oOM":든:u'1/)- s M4FA=uSܼc=)m ˍiƟ#KJR  ,L$Ne8xQZB<L>?v=g`SӳOP e .A\E74E1Xo|lpWKoru+T7jjE G|ݰL}8G#)1։_VpƼ݃b]yaDڏChE;)P<Jkʊ##K4k'Y#à[cfX0nD˳~F#!Saiٌ[(Y:6^J唰[7+);? ?ǃeN)giѴYO7= ~] k>h 7)Gy1 lXҗhU1*+']<'e(BaT_tnaƣMأnRSYhb^t`BǾkKtlJ67­!C{Ϧqkej#dGOL%$KAa,w !s^+QS)DÈ7i* ݖKˏY*2<"Q' JOЋK'䟍l|Xa#4fj+@Oy#ukdf?dGb(f=ߔ:syw1cVэ.ـ)H';ϭ\pKIJ˗ 6"m.0\Pr?df]i ATN%zߴ"m?œuB8uzz{h 9-v3U+S`ʡoI?R,A=0y:q+g#GǨ>s-ʱFH CC { B$tll'^ ǣ9fN քJMo펯N*FAQ£"~]D36%y#Q+W$t_T|-:VL}wE4PԑG.]w"U-&`cI2#XpB]f4J)ȷ-#DTY42__e۝[3"(j#vx }2@i~Yohv*ǕsdHH-Q ÂTSb%QӅla:ZFt^t>,l fvU6J,'*(XD>ѡfL|ϓA!l̚=GQQ t|K#qVJkIߴyBA%4B?Mh tT}!|iLR%;e @GQ&lԅz<-shsJ? ̸]S+V[{ ^# 0Lt8+Iz\^t=V1Az5>[ I>krXb-vɲc~s_ yKYDqήTxVN[Tw}'5-ۿTJc5w/p Zwg7m{K#ą:;1/ឤ!.K. '.R^S-2Xooڠ7kzx X)`sclr_ }4&yXqJċ6m8oݟ'=x-ĜvN 4@ivGc<‡B$!M2:Y5ArgAgk"ũݶs43_na.ߵgQ L0Gʋ3~C 9k ZEk KQj $.!񛤠0b:A/1LzU(lviH\ia 3ǽ&Evswe=4Z'&H-Ăh~Dzl]6ͨ(l<ŕU6#yFB.p"7V@`ŷ+NjDfx֏ٯ/2 nB&LXL.=FGdI">QkJU,_fC |z|`Kb]j0,QFNB1֕Cw>w"4AD;', 57(CKe`@-# F &@o>rEM:X!ch0jB\ܹ'MJFiGYFNqTo'~'rc KZOT7Z? ~lڣ+dt3/= )XLNIvpM}5W?_rfك"YFGo;M@P<L`]@է4r2t}|,=z:6@lr4IMKI S2.pJ.z̕cŤ+Ch+3O%#$ 5'F\.u|ی (e[NRMh-g6Em\ woz]3Z֫iz˔.= FS߿u邝VpMp lj0k?tis5RQT&6 *o&Ve*y ִ <^rp2}n3v%qlшoi˶x|λo[̉pvV^FA|DuEQ:aHqT1in>tNu@}!ų]oWΛQQS]UR@±Y/Ps0(`q0.þRo\hǕ oJ寲  <$G%f4 tF0ƍmKluTqlC /ϖ# ;Sס&7r>,o0;z*2uRAQLcT7 <¯ {N#9YZF_pof鈱-h+JЉ ` fp$DkRK?+ DzX lhi$sU,?  V(R7e=g@226#bY>v;X?y[We?IDZ:Xh )#&3^t@T M*#~ g`gzlĊޞ_@;W iM$ՙ:Kl{uЃ$dFg7ې{.Q/ڹB<I84jI T@IQ:MhʙK*|{ д @SeM>̣֪7& U:#F&H)e&^n"pϓ)]6]9"cCп˥j+G}#'4^c!/l~ rWf(EY@Ufz;J(3KetmE"?N1R*\B:i%377ҥR6Y=k 5#&m lۦ1V3lEa&ʚ6parN{BoʢDn $:\jEif ̛`62|T{(n9R,hx15!D^ܶ>FTkD4pMq`GozLbΪ(G_? 'T]jXwZ?KfPC3P y5+*^hYԺ{=?'8Q>]D׼ 4p~:y9REiØ ԴKşhlڎʉrZ2D<% P qY/a-MQj)$?ǩܑG叇~[!=!U-hWy] X! ]H+#]ml&[xs(EFg-UhgRkp5z:y#m`yJ> )n^zxq}/}. $&LAڑ2_5[w&Þvnl`ӯD<QbexyqE&x?%3L5copyrDfQfFbE&b[ܯ񟩴:ʻOL(sF GYQT{ hGCz]*{Mjq~̘xΈ:_ ZD͋!+r^w]e7iCK5L;?ųMygmu= 6%wϺ%ޔȸZ)c`t WݾZ~{1Sad?)f|ݻwPb{l%I8\|ǫ0, |H}ta)}JL4o[!61$2QS4ҭWFE..#wQ7lw}/D9*˭ 2327'gr~_*OKTRb&&"ki'kN5eOq%6un`/PPLS Ò Gf4d8#Hr90SgV*Td*c?Gs b^b"^tE, ѧ`a6^V)dad0oUܮFWuNގ~އBR,JzT](a]>vl8GR/ Lv%{ X5[Lx$ږ8Zb .􇽵aԋY4Ո!LN:΄Vly/XޘD7l6޼ X-kc@dq,f@ݡKD{:>ONh./~%7YE~P?Dʒz7Kֈ7^SLeϟ K`*R93A\܈K_2T/Fs( ;pU"K +-ydԄr2|4H,PE*m(.3|7^&Ų,˥Y|ۓiL4t񄼀PZ,sMez(Y4Y>GK. FQ5Q2R 7؈YP  6KIvt> F2=$Ǝu44ʮ"6ol7 젟QYO:qIݎNOQ%#,q_.9%/0xŧfB*W +I׈/ npƘ6zjr*%.ݜ*Ѭ޿]θ ב`jw5.0j߾ϔWvqZ40ѧ5UTWZPɈޛ8׆ wʷj;GτJ_ F٨͇S),ȅ 1iG4J %T煝[7v֣ Q0~>r2"e=QvW`gW?PzQ˷Ҡhn0ue%HԔT34 5-kz}>i֋gv5#$i!/=[YImU5jµzq&0y *ځEE[ 8_h|Hh5;c8l~}tq8LA~F(3ƙxҒՁ3[J6L8C 7 Lzʦ9]g/)R|)}v[L 8FUk?DZ䗚z1ƛi"gT35P"qΔn%h׮FT%zLAt49;` f@h-ߋ5Ѕe"7ț]ҢWp5IpMя//aCNr,?U4JH<{o_ (tmj< !S_|Cܿ@[rV Pь`cD7^#QL'ض<Xsd)>v}Rpz<6O8;'C\MDgaz,D-P-B4U*YL!=x$?sY)lmg$nXB{a^xId\-Ucv(X[6$"L6~ϑ?mDI`'n~q͆yʟZ#HMD(<?HWn[]r[_7d:ۄ^ m #@|w=vZQmA^;c+  U =A3ك֔& 7QP5z}JfjW"2ld-<4/߄\qxzKбeH"`F5YD9 !ⴝ-55p$l0Ax|1^Ğ6:V$[m(b8`6ձ 0˜=gJew=]'^+4aT*gM=u]08z멳peHKɁm=oIohR|G_ze$9rʡM,QMw+m~1a4]w#v~$hFx]ۻݰ:DEjP6?y k`2F3Nɍ4߰T5plx溜#s%+J)wp{gYd@^"]U/rAĨʭIl s%k)?(3%zp-ſ{v'oV4XJy-H͐=ka&%Y+0ux'Cڑ1U'+SĮZ[^pY(/jCP?|Op;:Gv:CCO1!o ŬZ)dQs;~{_A" wkVts SiJF{&Fk˯!qF=Uz/x">ܾ{5E=am^CtDzjד݁Hϖp ɡ7MBK_M/'bkt/Ьg)k^b(~6^DTEc韓JĄ8:_A |Ce}  >Zjb _ɟF0è5AV+b9"/.h+@&-3OtaCߙ\q>;MX(N0Px;}uFC s#1.}2$6V4J~1,[B13_@߭¬3CQlߒb!VU eWuK@W?Z=(Jɼ*T(lB9%>/^ۤ@كAdM@@#Hv|&Hfz4Br kUy ‡W:|)3bFo GVR(A o;+-O&ӔS~f:Ym5M,!xDgml5=7K2xoz_#N< cGA>1?˗%|j,{%C :ll>WN#O\$LטCѸRfrrQdzBr;.ܪ< >W}!5Z%b46S=ޚB8ZS 0lc6ϕɜc#} _=l%؟š/%JVecƮ6$/l"EcTh ReD6d4^3@@Fꄌ5 C1UXLQ(ʁmfM愸Ń@6_=vK0+f׾bQup\DY*b{M|tltOK'#a[\brKhj4Re9{<ǯ0laX_ǗQ`m|Si6 5Ɵη Xgb51ȜCD!@3ŃGqq86RAo=j=nEDXPҽo`"Oxt؉AYι1n@sjTힺe2P'h@TE$|XU z/N^4|TUV_Һ.B]cͥYdT,z(S< ˜v;V %ӌ|3z|Ţ okȺHIiĀ}0(dB%\kƒ܀C`*kz^XW#qvz )C| A q[IV e}"[%M=fE;?}`)àڙ9GEƉ,FVȯ2go0C*\k=rs;,[As l![lHBpd1 N"$_b.-%3|F+1Sx0Fdj>[APchzlx 2 HQia`2B ;,uY^IXL_@tY. cnXypXRajΙY2Gek c6x= qLtG q٢̖,07L΁XC2>a==*N}|e׏9Vɵ;Ԇ h )sv ]Gk>\1QzW{DLQ^C )7@[fknulJH t* Y=xvdbPa68 톂!;"^_{ՐVE?1HPLR4Ib py6>12iɴ fwzJ6`Iūd#?撆E)!j|GXR,;a$qw<zs-!>v Ht*yt' 6Eɬu8%j4U;ۓQ#RV]>3*L",m5\q\tR\G@J .rnVfEs(W>lpą 7)d"iק{C>{Md|˩2=_Lri>-BU vh\ D,/0擈UTZYE\)ˇ23ygBZj"R'o0x5^2w$fy"1ikX!l &X5uK qw)c}A E>VUm@28֧{m2]y "zu#J  kRXS]kLBQ9OMKndH]  QxZ a /}LZn_:sz.瀴?YYfYwvu~ [<&3L:F%pÄ[wMH^{İȂ /.:g|n?YP9J}an,+{Z51!vΏ%4y:ݑ3!1ecٝ@ϡslJ6-K$.H q.wq0;2Ҵ.]OǮ:xCUHyYtd3\l{\&{_pQm䖤8[q9XU|<YC6v\6L*K7Xm}z*&!XYi7ɊuP0cg2b5d>wpw b_G^`'w3Q%R|m2` #*,LJ&j*Tv(weizD!H4hHFP0+ K&O̐]DóS KʥFU4;UڻӢ/\[&a8ztkŌɱ"3{eAWGъnO b\ "}y:=3ʱNB^>(Gm!?D^1?4 yi*|/~3Х endstream endobj 2872 0 obj << /Length1 1412 /Length2 6144 /Length3 0 /Length 7106 /Filter /FlateDecode >> stream xڍwT6ҋHQzT@zޫ@ @(IH"w*]zoRn@"J)RT^n,uZ73;d% `*H,(jkAHH$NF04DHB bq>%(F"O`!XT|_@h nh 0 9"偆cqJ;pk( Üq'ZCHk8 \RX,Jtss:ch;n>kЇa`hW 3h=;`źA0!0';`EZ|? UOBpįd5Exv[ %u@ˇBNP+WP|k4`N?g,fe"bGìq\G e G h<+\}!1s<⁂ q3x(-n  @]a, ?`  sl۸~`_Of8 NZ11DWP *( ^B~A =(OE~/ (b:Hua3$ƽ|*+#'NN\O wQ 'm$N ~kWfQu,'y`ao?wxq2b7(@bq)>[$?}LQ0qbyq4/%zfM>= r j;gr_"I=~(?Z`NSX7ʜ,U;t(g/Zc>gSٰc<2u|gqD1K$u]ڞ nt%*5t:K2ō>ǶX BDoe~GS<ޭzi`hp;_5`{FYrYIh.ڏbtZ/+r6}eǵ:f[&F?{РRѹ6١lM2 G4ګ,3=cK?hӎ(_jz:fU>{60)k+xXD,վ "S4'FHZix iѡE^GKU$"6sn;WuZMwր3Ч³Y{gQH [Έ[w*fWzXcmJtrN_#]KN=Ϸ:zO7$;D(e.˴i;˃FZx:x[WiiOh'Q_zF@7&ߒ=Q4j[?OBvL{L:,..7)0, 4a€ژj |эJ,رmqyY1&sst6+Qҵ/5`Ǖv%׈;V-PobnwM8Aj8#j`Iԇu?e;eMY19 {mm :Y,arUu~ɭ  "z%2TtzaQFj=$ [IJy(keK޺}K5Pü;v]AK>]c!bQ7m>y DF)}\%؂m/u6Ȓ…$kZY`ggW ThZo[9&]|S黨i"Z,=By/ D,wñ6~~:!fpޥktKW*{sn5oݮ70jo 4Fݬι# m{K BG3¨~eXw8U-~GG}VU3dXjtTӷJ \t(hrXa8 >I_tɰ+%*$9_Gix-'yܣ'T1$|{R$;z+%b2fVx-JINɓQ\#0J_%' >/j=2z\jYaɈc_}]Z S3VڡN5AGF/̰&Xp.3,6m2K[]glשLbLT}gkK_z^gOVe)̃ͧ&@M Xq:kPQmCZTSnMlFb^A&Ghp ܈mjm{[uy[i|mZz n/*\J+u:Mߎb`!WfF6?ܲʌ8~u$疧{q^G]&|yZdn(VhCIF(lw!w{6"w'wo7D,D4_0nh%HZ<%KPgolMy4| [S|euoZO'|/_0ɂcdI)'=Ve#1yYn,B';܂_hk?<EUZu FzԳ5p|5H+  $ixkz{ﭤ|iĒ8(lIWzN tA4|Mj;. Y^@ëFƥ?nnVW zfTJ.e 78[J_iSߦcz7iVf,4ZqY.2'B=஥S>5yN[}RVL~uA%DnT,|.؋( et[tSi5랲 ~6K=ۓbЕDT[K ZO ~L' 3?y~wzkW pb17s~Ƕ-Ɏg/5Y+#, ﭿz:EKǮ#sT2!FNAp.A\YsS&M4[c%ŶÔ EtT?]h|_<\pR{\wyaXs*daQa}9a&NjhkA;¯ӭ /YWhNf7 lqVR!I sg5EͱDdh+ T9hQmm7iH:Eb6f] J8#|;wUl⮘էw/0,9[veO6{HF[%}q={/=kI=IDAZ- &ѸA{4@26X5q># r(^x0^aTr5n,z ɮ@犛iFlBCIHpuHWΫbI%^%nu{eBx34CU=KwO=Z bqH™^wy=|0kǵ0G˓3=ݚO)f1B8%Q\HRrpxK-y_5\sgQY;D p}O6SH${NN1t,ygv! u "'G ̯\Q!w9rNz;fKR%h6ߙcHձ|-GSG^AcMZsRVd])#w/<m.Hn> >yK Qe.H"P˃\e>T.KݷȚFq*6VJ ~3աʽvZ% K/^[G9CbO27j\W|-DgsSes*>iw2C1]EuICfVde>)Ƌc6y8Il\dq7*zMnDUBv~,Р纇\@b`d$0;HNw;BsqGű-+Fׯ%rnHCiڳ@Gc5qew }L0o||Nܯz l4UblzTXC V(}ozXl̩H d(Lf>Q;".,_Yt*E,|q=dh KZr&A6`9i7E75a~=&竧 ~%)c U]9 Q5[ͤ<#ebOCc年/w:%cVlqTԝ˜}iC/퍍bOv_cZGxbTwSKzfNhz"E l & q| /.8~" 2c`x/ ^@_,eUHBakƫc]oh?;~̐[>l'JgTw Ydmd.1@lƻKYc B%Ra J0~ۖX+-hв $ɠ;zg@GBy>=;͢ERCI}+dT_L(J/w*nCLeS^EwDܣم^GCؐm%S-;|gnQЯ WԒQK#kl[NUz%Z^Ql $QIOBp>8pB+T -ϩDhG;VaE6fBWl̰:3-q旤Mr20dDƅ"C%a~?!1S_}=d´E  ([OJ:agnq?gQghȡc7{G ܅ YW9< <'ꥐ A7nߝEPdVdp7 u%7ZOi@1ϖ+”#?pݠ\sE@e#(ˍJ 71'qR)`}MceAhEry(fR>|^.W˹}R^N;ت7WًwȽ3IP&!'\-с:WwLHRm7\%):ǒ@3u_,f:ur ]RuV1`,3|Bz_-<("M$˚'멷ER#ЮA1wr =\ rFxur.u~Gv-RMK>N;h9Y|J5ivXa9,`e;jdyS0sڮtIշəl: \+tZۀ=6XBöXmޘ!)!^;ZVމWMr$޴zs+Ț endstream endobj 2874 0 obj << /Length1 1385 /Length2 6140 /Length3 0 /Length 7097 /Filter /FlateDecode >> stream xڍxuT6)HC ] ݩ CC4 H7ݍ4ҠR";9[֬5콯}]d㑵BZ”$P@ ?G9 0W8!.0 S8 $ `q t(@V ^*s%#\6(1zC9`11YG  A4 ([#D(a(`E<< k8VnN|LE/"DED0gjwˍ F[?>w߁Z`0 E,a6p0?6z.pO{`OOB"_>ǚzF\&wLN x@0X A?6 RUH[5c`+?i"ѬCrSSwῪH )98a#/MZ7ZH  5 Q-Y <`A^?U ҆(oKjpL nAg@C j~y'qE {lZNCEZ0"@m |hZ<3Nj@)̾k 5AB>/?B\\ٿ y sHD]MPi,ڨ$^1?h>Wq|9V/#}^Didfס)|ygKA e dO:i&lD.ݖ?c鞍`%/RQ nlWUNI'fj_:fZq~ixf*dAG/}$=k,!(E~:AJˬBTRGdrO&8bzqB+_Jtm\~ &vJ~(`Qf;VktL惝CV]CO)`9,~z{ۀ?lf`m3Dxquט*InOUgI6ۏ|9.?几 ( w]ӻT&/+T#ɟ.r:Ȳ ?ӔK> MМwhZic_rXy3^>>a@AÊu>NwzgǏsA'0_;1<"):BbƔC`4YEU˂sv+ks3#0 XTjC7'zՏrs䉇7eF٘nF0Qc.1~?$b`z qXh.\H>p]}X˗FGJDvq-554 6WZ_¼xy[_riKgK|6;{Htq#ẁEb WœٌHZY%mra W߈cY9_o?)O4zʔcHj^F\yg-a\H64?V/<Ů3xAN 3ϑw03 99v2]vSn_VrѤ#mI.Bo߇nWM収K f ]_ Sa=펩k{F m]w)o>+/L]UZ3NTXY$d),r@GEEB-OLIac װӜg1g)ɴw>Uy}k)&⏊կ緱 [;Lj3Dq_]8tTnlM=l}AM(e g3^.U$H0`e8N~w9g!BF9/FfS} ¤z&ˀϿJ{Z "G*;tg5odPV߭|E ) Iz{b1BYmi(FO/P+cm\S/=DV >kb'TDh,_VKJ:7c!f`طn;&$4]{%shHaj'5Pɨ¨GD_ rS%21'#~;˳pV\2 54R S4j\:$鷴j5Bxo*VV" ',/9W)Y%-^,ˆp9F+ 65l:3Ӝ{<'b۔iŘ}:́a@Jek G wݾ\GÓ$*S ȰNw-ZQcϳt 93{E!v c]Nڵ:yU.^J50n mx kւ BԾq R,!mJ〈Ma ȆV[82h7JvOG#cD#5\~ fG~xi)mg +2g% mk{nR}w7<qkFO<Z0NO̯k_U V}NߙrwvCLqٻOs]\֌dD9ћԍy5~wݗ3c7m B/GJ>4JafヘQ{<1+O8Nk6?}Q`JAnr޺$/ʱ9XYy*f49.ruxgeJS} I%;$3Wzh_d_cHyޗGŏ1W ?Ek|?p(0눩pgÃ34G=4Wk@s}̤絁Ā׻|JVqcڈR l5"W1ntb (XE9/ U_]&Dk?D:1/U[(E_6;>ٯy2'iv) Q%y3Qޣ*7)ʨ / #9ʯU+5*$J##oXyj`,oT5{)wO؄D֊E*/Ί>τL=W[?'ؒ:t6[= 8 YVmq$pӹy8ɾ .^`x޵=k'qVeFiV9gV--oiWH}Jx/8"̔}UyO? z/̓*`Ptի@EqKGUѽqR//K韵,5yXUfi/[{y,h{'wt9yߐxubAAI+ʟt`vf4J~a i!?`"\V8tF s~X IAGr .N> d43+y n3"]p#ap7ǚ݂ykmdr&8 Zjp';S!wusg󦍳j 먘K-wQҮ=֠ݍ(Nĺ}rI VTZ?SX%Kxr~R1BJUtrvi$f%Ki0=zb6K»-'Exy+h"&O}X Z_צxGBFX8ӯrHWQi*|YΊ&3zش;ǒSoϏmoӒ:k'qGq*LY!2!uV|^iprLB.;ITBgi3ᢘ:%gT6i$Y,TOD[8BWXWg)PM)j$RG~~v#?+FЍ8! ҁI]w򎱬,{.FmWʩQCG:w7*|q=d? 2yZ,)\ɡ2ѕ&fk r }FT>NaLXQ@N^R:,:׭+;z՘Z* ~HGD}(N`yPkvssbfl1L~DFsPjXsr|)"PCe~+V&|GEO?p\i+ܖgrk nh˓yY]ϊH gf׌2d.9Bܼk~ECH`(D^Mw g|N ?77 9ݘ5mτW/ hɅ{?HY[8OTG6JЋUh޹^\Gm 8w!kF'ǶBun!()8ϛN" :ī vyaNo1ƕ\]W> P$rƹ||S{ߩܒG9eP]5h`>7sᣊYACfnG=M‹ܟ# 4aFוЄkj g%Avu?>/U2$'QNtqP)z"S "ֆD(3'g 풕~Y}S'剤q> MžZz:gesz&E(Ӏ G~ȦD>-Ad.ūi<z0LQsh&3SnL>CPq<>bfs_:sxWBjLB Gd7%n}J?cjkO wҁ:5] n7u@%:zvY4, ) hm9e!aD)xwoE(ߝ}Ypx:R!w{~z&Kdb#>Mqh,M1r<189 6w~[U'-~ۮEOF>hV.M%Vx  :%[1՝!  :54z.1gm42n'UD`?^J07ߊu'4 [wt;^B-E14U}˧ovٝˈM~!?YHR ;ߓJ yLx1QIޛIs0{V2c2I}'`C$]#yO3KBrQTܕ@-7@画1F)> gi,d33ƭ>k1^?ٵonɐ&L0.| &a[VU]g W87`bC_zů|٪'G7ȡ&3Sqqk\/ߌݿ9&q>z0lZP0"7sjy a1jvע.Ν}rx}ڴe"쾫UroݭZD -3 l[©n[VI=v/"PPX+/aGw xB!(V@!IE8 Ռb/g^V~&NW^xY@X#CnoUWq~ҹ 'a;;S[I*euf,w6G&x"[1=Qa_tfME8A=GMyl`H!e"9(N endstream endobj 2876 0 obj << /Length1 1383 /Length2 6587 /Length3 0 /Length 7534 /Filter /FlateDecode >> stream xڍtT 7H;$H.F$ 7%($DA!!)]Nys]2QsC@pHT\adKKxy-ho5DAp堁8&3B0 HQ*%@*5~P7(P@$+W $//{w8P @#0Ⅻ -P:) C+6/E'ן g>C=j^:yY[yQ]YYȹSJ=`|sڇvvR6KՐ ys||(M_cu>czbFWVe 1_E# ys]F"$B{T?h__q' B$ K$͔XJYxX2 V_Og .*<PTijury¯g 3rjEq5ۄ)]!y¾>ph~9ۤWa [J"G1뎻ZBm UU=f_r"c3dnPFIqz-]`~1a0hjŠ,S'5Pg*Eml3̳W_trooeY>J1UeT&}!:M ޒ?}'iL%rD*hi/(E&5<`Y$ 끶͑QݑqbݔcOxR~0S[{NF6RH8$J~kd6W2 ]47ITScI {ͷVul2V?чg39Z<xR J Kڪ.ΠAj,ro~Q;)'6OݲCdwl۶6T>2=Ʒzup7d uEr.8W*~*懄p o ?qɱ{Ҧ1{Op]ˮhڪZ8<Zz >QJʙ%~^!NCcpom+t8Fm%HO/s#>oJc%d/Pb;=~0ݢD+ە-k"8ydz BXb6bOrlKέL^K/Vt&v/?z}"+tΦ& [x'fyN-\UZ/4sDt–8-2|:| fL$bHO{B4=AR gwEfd ؏-Ӝ5Of1o_ 6|:*KPnOXSaM_qO}Z:݊}u Sf>;޷˦VVJ_@ 5@w@^1ׂ币 p3[)뚅D/[4g0CU<$u.1/ociY| Hl`,8V7tnPoUvZۏ"bz+ ח4g[NHmW^hlqeVsnA :<31؊<|` KLmuG9 lUSfXǙdYm]^B1 LVE['Fs?/ao*M|It\pVy犧j˗tEԐCEdi?d_HKո gr=t7kA=Tr.-c˛%n45~w#a;6VU5تG1{\Mq&W$]N'K^ԯ˥|0}3qC5ů!e|^]wR,җpt0ؘ H` 16ޔd{s,"lkČ%X ߱AwyXm7qP -92QO 7\(yJ~1Ȑd;tiLWu:)½?~f ?/QZ^V X9'l*kr۟J۽6?J;d\?9B]',;i*z c<=yOTwN*J%ج'\CI=,7n}ERok//m0i?phI$㿓R(JGjZF̞3=jmP\Zy!=Pơ*{q]Iɠ߻|3 z&u j%=zxnUy/XAgXa͂iǞ}: 2P Z%GV1+A臡yXÑJ pẅWCa= 2 mQn9J]&OB?g!/cʚ.YzZopWF?MJ80UjFprJUwt۸~ZBZ>8~&mcrafѥئxJ0ޟx]!6>u)ڑޘ YfTTDŽ|榧qYqD(@_& l"6@U7@elƦb4L eN2}ڣ+1>k*Tαml%^sO"$qPʬMQaf˼U Ce4l}pSa%hE_0N WV`j/IDZLB}}+#Hj~8B󔔊y-訡L>k%Ң#,bP-QS=X(jK&[!_{o-gTɥڣ]dtҸ,iqКɽZSY3bffMlK~Y]0sH|CS!LFeA9/Y9'°?|yĕB .,6р~挱y çC˩޲$ae満R)O=b !@/ IUFT>&u7,Էœ5J3u _5iLV%/c|WNlKi6x-6.}Wjk2I3Vmfޯ" *YԄ+W]!> u-1lǺvuq⋰{5C;U電)?&<+@vVYxA}[UCil]l͆+;sF% }\QbIh,UVK?LK-!ynChY#PG{x MWi kR2 Er<*|-wl؀I> stream xڍvTl7%1:I(nI 1 ch$$QA@$$.%E@RywW_}~uc3QUg\ ŠB@uCS ,!XO_Z8F/:uP,z!@.X(+<08rc@3]m/8/gD_ "w'BCa04 D\.O8𶖁6+;B=}x u;i R5B= <Oɚ(gu4 Ga}@`0G: P.GpY޾p]=*tp,P ȁpo << B{]#C.p_x) 3:](pd1]0x ';<(Y.HZ[B68Qqef1"X] (W[W~o_obG,(ۂ0BoGUBxb7DoWK_t5;#|mBPEz>Z1 s *-~}( /U0ODο%.% b0@~xI i ` H CB.h >% [Gab0x8 aI4=Wr)Zf 1-4d/s"1Gt5Uf/pobRMςRLGWS#mpQp_x߉ n$l1.d<驘=jRZhEmD8 VR(^C%^0 d+Qg t2幹O; +!Ç8 =O⹢q[ߒ8vڡK2 W}\nQ6 Dcf2]TUyIvp\ uyΟɨy|uI:.\:4=̃?nn jnj-7=. 5\<~UO9s}e}6aHB@: G!ZX1"-(q;E}Z5eРrz-i,l%mղݚr1SB sZmB8$)UrI1՝2v/GJފc{vmf |[˃(~)ҦPݯt/}5$Lȏ2l\}%6r:JGN~%@8>.X-z˰f7*sonή?,ʧ?tXFԐ!uxNMg@ϖFy=iK3n3CHxN~MsL`xm6agA8!ZЅ@q.ȧv!@+LkFm2~ϊe- ; , O}]F64]a4M:՛ @G+&IsFROr!_q*;0Z]ǹmUJM3 ΊMQc_SNF%ED"ߎ5+L㖷24jO+9kD 4w| $o"Dž8a#Ӌ؛zg]1<>^|HNTQ|ƽjHp8~D/g;oI*oސ^|bHC)پˡ3+~_: )Ip^ߓ{(Ux4ei zV[b[hwe9&Ӳ_>9.X4VwO&S ؜*> g}YsrN%XA{]c*cYJŏ4_^? AxBCy޷g{(rGBtY!NvV컘WCJ+ܒ7ȵ{1Ŷe4 %)Ԅ1jɰ|~̅o˃qlk]#fCpj7~`d.&sC'-M7-*2tS]mepWץ>D,OWniLT@FFD{kqOm.pf&P4J_M|EtjqAyM⊒UMTj~#.'1HcH,.[(vKl4i$1&DϘ)6< n˛][$g.7̓?>n~`Go*q/͎;*w5We`GuX5Zv("]zN|Hsu8nmrF^ɯs:Μ]~G[qU+ҟy ޥl]5jkܟ5ѻL&ܤҪ2#ygWxyAԶ._W}`2[hV%!Ҥׅx0;m lew|CwVs k1md!2U*f[GyYa;݌:# gD^`V gOl}wX`[^jo L6Zaumu}x_p$t\1x`Wcؓ`ܫ[l<{ySPen~ƀ(=4{ޕnһ6gצ,e9Ijl,_n Onkw^ޥ>Ǔt%G^w~_8?_֢[לT>͒@)5;J?v~ jcSۏ$SLʁJ5@+联Z=]Hxt50ꨢ\_|J>kdsۇEW*e'M}eRt8ݖ)"%W#_G|يVWlW;Q)zcK_ pu ;- D? gKB([;}r mEJ4>sYo0 ݼjl3r m#^lS4)JlٞPxy@c:xFf̽$K *!j eȀIe^+qzo3i);\bG?ӓ o*(>s?@2*1u>M NI6tB:S PBq3EKx_K^抠-/WCI\Ow8׼NK\AV EwMSG'gP;bەQ{m=X~y кDP˲B'XꝮVKZ&=߽'[vody_=0֛i27KUΝٵx/~MUCgiKyD%,, Wk;{ME^${3t\{͌TfKI{4'-Ʒ1Ē!ܳTŎFm`JHfj Ki Sh1z/>ɉ BJ{2 j~: 3WD m{1 ӷ1$桳! cR%0:߯:|^4ĵX: ;hFJMh(f7ɬE_6 鐤=!B(ټ nER 9N6 2_q|=9k^LuЉ#nf&/W6$~ ̣#̢{u=Gb# >=\/. ~esmZ ә[{wZ ~ p[<7?as:YgAh' {!Y/̻|,6nFdjxߨjK)q.יn9o gLvt옇麵j#ҫ3^4"rli ԣ3ˀkbgӃRk-ρu_2)K3&C)!1J66΁~ۅefR%|*\-ռJ՗ #^8UVWsJ`u T>&gb^pj娑dK{ugke"Kmi{ҷP_) EbVY-F] :qto/guxB3hFP%G`t0kˠ -䍝hFWeYOMTq:&[ovt% gu۬!'?gBCՊ.`)(p.iG:I4.#dŽdٖحbԝXpaAybFP,r%[L-x\^-eV吔UfޟIyM>ЪWgC?)$K|FTop\NSܳE}8 > ȅ9J*~|"UMcu%F%\A ]Uo*$Hh$ve{E6UY$erXIX!|?Fyj5`eBEd}Xܭr3Rl[5xZ=J?g^ 1JұI4B.c?3{ʽgìKmϝw#zQ.l[]\Rt|ҍKɭuB!,e>ʒ_%g>2>p |mS |^K-/kUj_[vd~Q36[Id<@ )=)5Vxv׫S(ȪpEHs\`~wdpu-.F>CY~MUq*kw ӚӖdZ,#9 wҎkz o~F_vzP܏X lzh׋LsNsig#:0{~D^ΌUP] Y,gu7]DhUrzb;@}M墄. _sO=yQ$% ewj:ԑ6#ٴ1+˥W|p{7UV^0k'لZNTC.#AlDu,"Gn,p|ωM0fy&)+n㽝pa+`Bե,S}w۷'[э/z!slUj944! JnX*ӝ}IP-GU):=@?[|;bL#Ykv/3|kWDtY h՗NZ!3k&5c:$j &.k@ǽVPfH)~ S#^ݭ*y}G$D B*^t7J5kǪ/q9:F1=P.O`$D,X-\:~⥙_mK BCL1+4:JJ9l7"P~g)8{n2ɞ N⑝4'B6RMT.XJVs09L,ųhnW'qG.Y,Dݟo;B=! &meE4E1RTmw$u[3xtGB<vMS㐟߹R.ѱ$CDE%~zKg?1P endstream endobj 2880 0 obj << /Length1 1406 /Length2 6209 /Length3 0 /Length 7173 /Filter /FlateDecode >> stream xڍxTT6 ̀ttww00 ")H4()]R %%Z߷f=繮=6+ "x$J:Fa>!\VVc0ێj aP@(yH ԁA^0@PTRPLR@ $ 7) P;t0(˪s;9#up9b< n O0 бC8ܐv !Cps`3yzFڹƇ 0vr>v AP82  4z _`8쎀_3Jf Eq p]0h+G0^&PHCi H@/ЙWc?woo3rw;9(B~A((?\ @;; rk<O/RI?AϿ sA!~>b~e-GZJFSQ J Ebb"ѷ?b50_"p@8̥ C27 3X+JH  ?$sHZ7 tu@`/j jP:!+O_v0\ r#//AP> AF )2+)GR ?@0_byz""UMf?@3aVoG "]Aݑu~QTov ;{[ /JE4Ft]+nO`&Y ƈ 8kcz(:Re/UF,r]O>~^@QT<-v qˌ$>N6'DdO5[yH($bʠE酢>}t:T_MekjsTnۮѾ=lhyw~+ wĦ\*EX gbA\aa~g#yiDSa"cEc,] H9"RףJkDǟ˄ɤl%aA7 ${~!lkžGζ욈Iփ]EB&6O:>u\)$6w6x8}_w|[n.OHG$#J!խ"JcM,촻.ڰ=[/ Z^I= um=v^塨 !d_ެ a@Nj1 V*No7&Cqvl݂i(>dyGt~rO_sxV*[_'~s=ѷ~ ކ';Vfa:1ϣڈ-NjUN6m׶Wp)}gF{;aח7f9*iges6 ?)k: dP-?- ⎆+][JW8#a܎STy:MAW9: j Quag*-w*&swA̙Ief {s@x>TR~vE}E f ͫɥݹǰ0EWlgVĭWv7I֜9L!v5GMFER^(F "g٢2+ЕlMĆ.șJR+~ ࠀ¹ t9`{w@Iwfܧ*|0cgVJn Ev^]y<3{D$5˙H4^wM9xDM MUUҦGC[K x~ -)~R4#TCijJr̬a>L J wY>js;An{Mv/-o{+[!~AiBPr/mJ<ȺG4S/[`d˨5q:>\pf}(^\ZNt%o 1żețjDU:}l0'G'r5kx}$Ԕڴҏfx~~ZhHU[D'J$$-6KCjڈ"|ތ$OJ TZ Rtk/)Khꠜe}=oݣf5 /GXV-E IӸw9MO*j baZfd62՘ثE8z?4.j?lU0ۺʡ{k#s옦Km [ioI"KP_N1}~,Ws2̱}4õ vE"tqҏ~S9p/ I``oO?g-nß3ש=ǝFϓ^wܓ6QZ @2ۤJt4[/F)"~|ht/9O?]:jVWǹ| .Ʀ SV_g}x`Wif1Gؾd^BS'y> v2A }wa)u\_V=&b%ijh\u_%wHrMj;N<#HaKq ~_ŵjՇb|\='r~ӼqWqvҊٞ2βD.Ml$&0%7ӈ}Р@93}"zrT.\zn'wz72.B"J#ab_R3Z2舂U+hiG3yq|t> u6"WGNsMwr(TTw{4N2^y؂]4}$RߑN9ς`fsϒrom?u4|Fy{6t/}xګ S=i07Lƺ0w|0b ;8䗗ۺu42 >5gz:Pd5UR߽J9!wo_Z=W6tm.5*hXEsR\i m {8Ve@?~ G!ܠe{5(69Xy0CsXOs; HP*]ď \:d/Tɦܠ-2\u,Y.V$sasY"e{P|g\O{F&\+aq(!}>V%!xݴITRGK.Sg󱐛8 .]Y\]Yԑۊn:2ο _f3B ꞧ|ΎE_ w?r8գGuFǼqJ/b76)PMKEAދSv.;{34|?\5gؔE{aF:[UDL] yl5 jyϧ*kǖNzZt ^ܰ4ʐ| [̓wrY WdͣrdH)9Xt瑩$s+T%!FjWJ3:9k9/10s6s䖶mifkRZEi~o1 HwuL_<ͯ,2y٠ZSk2*k֢$F*'P͑~ vnrrŒxCa}Hv|4d-m>Æ391_uH g"u60 } ]!Wbsp~0~~E֊Y@ܪbJ3ofRdތIDYR)8椉|RrL%1_.M^̘":.3D!'Sŵj1HPao,K=jpN; H?M DRrz|+/N&F}c'_4jw2 `^p2f9=4}nE>=-AnU6q}}K/dyP9䷳=:e\$ra9@$2ΒX$Z֒xA>~Q %<|s :U ==̵4@7[Jq#P{chC9ӕvy{@`-k F“:%Pbed& Z1N蕃%};y5iyvKf!@[Oo7ϼRc B%;wi*rx#"e1l v}iꎤ\"m) Do8D"fYZOL6Ƶu̼=񈾌"OڤqQwE\_$&~@Ks1`7Ow Vk8v:wk珦?tJTй@^@M5 "̝b/)[e@?_LUF55O(qV˜)U1.?~rpY(BJ Q2U[/}p/h'˫5!6zpX^نJn4B ַc ⼅fWfҋs׹_m/$=s=1čNAWUo9CYROU'Y#luQֲ5~sLT|T@$ƶcFP+@0"gGKUTY sy狣K98B &%+ڏX)Qxj|'/upRiU-ͭ%CD"QxVgx$MjRࣻdeYߊ鷙UcZcޞCBQeCʝYǨ#p/U ~84vd=%+mBCR)CN ߧ>ߍ è;f/ϓ(||p>Gb?aRI lE'ziuBcV4qyVwr0HzgChZž{^٦yQh\'y+2>' kp7rgZylތ ,$p{2o*e$X:/`Ŗc0R> IL$fK&nOv߯ե'~b&6Ď wؼE+^[Q&P?3g_{3ɮh~Fze|6o+z!"ÊfB߷،1>N]wFw̋U\K, *oc=+\u^c^?Nς">҇r_.bjR\s,`5ccHsqRo!)t$QcySl`۹ 0ڂvi}14 '< "Q5ոtG]"x@Hd]`P?.RI8n[ޖ{Mmj8W2ӫ-EuvF*xٸgPθU5|HXSHEL`G}SK!|&CG~x8"i5y?D"lJx#`VunL|s0i;e;Y 'XQZoex8_w(x4sޣ$eC4{yq"̮rLoji8)D$Z`6K,F:liy˽☂LB%g qC&RI_s0*{Vһ#??cݻw6w`8f*~WĶt[ht=n\9YR1M,_4s<'䞳eK_Z-d]jFl2d6 A KTt"ֶoɥRX4 i^1y+)߸ s<> stream xuSyQa"AXHx\dDg"B+1+|&WY#]AĆ#t rt&TA>Z4s:¢gBvP#X4L,SB ]3i̜!>@͝[q?,fδ6Ptw'alPXp+c62@gH4Lx`Ѹp;џb B;E`B !@5|SGa5 V ku^(o>H0fn_T06x)"o1WB;Blľ  îWALd3Ep?5wO-47˝dq\xӽsiiWsYw! 10uL 2)5,fμ87 `px.1"`P @7C0sN0aB0 Q̯4xf.=eςAp+P/AIg'ϐc0nYXm,Zn+t^fD6r)m`9o9L{c" j湥i0=gCT~Ф5EkcϝWFWO;T&#񺓛Qz|%1͏(u#%[҅S.x^Ѡ[ꨂJvU}E*&6޼d(۴dzt̬]ӣ뫻5S^ّX}Dkm60dx0t~zli^Kɚv󶞆{k'֩#%ILf=?x$6wjVurhu(237k<]iu4Mтָ'" ^&?S^PZo#fn=q-ޞ'IS 6Ɖg'v5+:+E-%F#/7삯O$1w_H\W8PAݓҨ@BT9>2hZJ?U7[qf*L&\꺪#oXl-Aih\Fѹw)}ʭDءx5{b 2+: M%w:~uxe[ؤ=j*/ާ z:V]q[e"Y)sa@&YDtd[~Lwp[:eMY1uX|ƹڪ~9qluL,a$+o[{$mr>[4|x~p7>Qi\XZT< 0\8e@<2}llDUޭ\Q=D-)p#1ve9k|U\3)J)}AؾގWuЉ<گ4kli3[}!FW7=81&A[%E R9etI犓%?Hd)g֍{}:drވ>~s@ҞhReQ? {#nq69WxKKԇn7r겜p=*VmI.xu$ #c|?M>ՙe:Y`{Yt2C eͺiۍ{6i8U捞5 K֭^]%+ ڍ#VE\~E"Pk~%lLs+ęyoj UVHF`iͶ8QO 6kKZ$M sSC] ąhv~B1Ja:`:>LcKRa-4&w([nR(UK}5*a㧬'R4>o R:`4V̷(2語rnxjo \s͓T҅ اPPhy`#qRãvEjA fR[SiNuC%eNy՝թsG9޷h{cdE>!Gm,)hi|-M7Q21dՈDZêhEm 쩒\h endstream endobj 2884 0 obj << /Length1 1626 /Length2 15016 /Length3 0 /Length 15856 /Filter /FlateDecode >> stream xڭct]%vFŶm;8w\mUl'۶]o>=ߟڋscS(29K8Xy v&.*v r fրr8 Qgsc1Мin37X(֖V@& J1x毧==okGUss`amkUTҖVPK*$͝mJ&֦9kSs{s3?0%08Zu305wGEp4wvqvX:7u5_ÿ9:;Lblͪ$&o@+c?]-L])_aj.\&3kG[cϿst Wk{D@p64v65wqoum=/bnk7)onKk{8fEo̝ f/c3{[OoJˌ}$7PB oWKzkh W[[cd @ϢqYz9WkMq5:iߖ[Bk ks3%ko%W73w7Z ``af/:5+kogP?,*_lyu' H@,y7:[{t'F쟱Qۛ%Gm]U_3onan `l>XڠVT_]i^8xq C{8ҋeKՓb'ua A)bfՂ6'A;T3?[?#ij}f'J#Zm9e#` d>]N,1oO}'7GQWGUQ yMZL~*-Ś;;d@h1eך:I'EB rWާ& D#7fZH_ e^Eu& &Q]}<"ܗ^+#&PkZ|071ˮ8T~ai9 FwS|_V@Cr^kS2U)hy2Kf:L>xcH=ߛ|򊎗㌦8ב_8~]dUP]?W9I#}Ek`:`tK1@c:qװ0C=u=mٹ)i1絬oznzˁ+ڙڿ( >r8ZHLngZ4z?e~AgȬ w` 5LͶ2Tw;]2Ӥ.l&[N .ȡ酖z&m͆y[K4MrbO"|m8F~@޺:*3U>J$N&|Ԥtagʱ]o\~LuN`8/14Lg1-E3p[jɱ/*?RG5w./iPBv7H|#2bPݢ DbjG"ӋB8:@UnǓIL~o֫" ۦ- DoxEXs1ɶqԹ`gͬQ$E2,AHP%G]zI]>_%ycI-,2|iX 2S>Rvz u;,z7_7^YX\ lTOy?["[!M!"Y}m>VvTM# }#726MU X7RL^9 !NDkR0nrESQ>Z_yclPQ+yN TF$hx07UK+l Apu+eJtq%xĂd/NFbb9[ʫ[ii % \#mM"]»?cR>9Cc wzx=\A9lkH4K妙XUbFo_:}du HzzU)BYh~;p?_&87tтoQ@H6pu(L]cd*NENJI I m_8ƍu5[WիHxlR/S/y#-ٮumxjK szcFH+@̃3s|f3)ƕ#v\W:ъ\+rϖEEqҪ25p2naȂXu<&p>UBS=&"|힠Rd#?]H$1p%4Us?Bw13%Q1@&K(ْ8L > 1{W; u-@|[a,8 $64=HB2_܏ f/m&>,\[qA@`7̞hi} VdT#ˢc+O /"_ @u2LH:a;_El!@hEx[ܩJUeD,X5j'\r=NqK.Rf(_8[nB_2-Gt HOa c"R&|eœhV0I&X?4'<yreBeam86';uh0su߿{oS 9-W}`0 'P,/q]vwRPTfΟeMlݝ4ByuyO"QKֵݞ20QQ_ޞ9~$-DP@&҄pQQvKƁ~0$6r_-4S=VFЕg@yYB&h8Mď`-Uт%, .^YQׅԏ?QaIGoVОֿH ,%3 INUo29>ϏI Vլ) 1:U'|ׁtͿ8 _BGqpMXhJ,R]czre>#;As~vٚDZzai٧z{; &B9J(7&{?k_Jyusҏ+. b8Yn^[[$G'V6!58ݴ4~,n"Z*(ƕ؏Z1N58<i8=gaDXlW?OnIPۣn H_Ӽm :@RD:\X&C,:I_ 3?ozbѺ*5:-vG2ܐw~S$/ >'r2᧌7@oĮWP 7h䓮ԬCgUOv6a/n,%Z& c5CT\ yV_0 fvfmLI!m_:E]vydQ hf%qEV cgoj6}2?0ZZ|erU$Dln0[Αջ͟՚8?2Yva=7Xj9:l̑_&nQpcyr=V>cfj u 6K:GϘ FLٓ[z'-DGc1T)lbp}R lvz]F-ߓ fK lhZsxU%At̶ =(䕬v+! o@>" .w-M,.Q. A-!8Tm1iWwO͓m-P/bG&JSTn~Ť iSB⠶SR@kO.fYyr|<׃2#{d޷p?@C\AFi!'v fCv)38b{!f*.pAhUReLZЎΈ: ǵ{r!.ƌC&]P G]XEo}XUoDP B.Pjҝ47տF8 rɜYՙZ~邌H>yBjMn5[C:w:zy('5Se3L9TO#, ipD vX=|%H;JO')b%2LՔn5t.I.Am^^3{6P:$(H׷h>AD8: 5ϟ<aȗ"t\L: 6j"T>| 3$KHJ+뮿[5J€[C"[&;iO )U 뾓%GYL[ #QꊍpޜZ3Ngߴ22cϡ KIY Kt?5'ڽ,J)WrJu"ӿWP;RU}Q*]kg0ԝ )iC4t EKa/^Ma\fCV݌p |Ǔo4 bb̡TvYbUXWOrFO.Y9ӂζr5i[`ĒCm?1!ܚnT=ëgϺBmQJYXVdG+si"^%fxuIzwj;pt)-Roq!eW#H殷i2*< -)kĄ띏/5vs4O3kPAH0n)YnE0>| X<1_K52M7b2xʸeKFn[xLַZ ӿ/呓2,_aO g qpk5VOZ Μ eNyȸq_X{ݳ1V?KlKDϧx'4"f3x2  MqOj z-c9~ueo%qT2)8 &yQϤaiF2m0#Us:$ ՇGã<굖O[gGFdDQN|F4702,Ac}wvu3=X1Wy|cNØ5;#GW& 'c̫5~iSU7swOLNDXw+ +m-&ƛwj?P~R5b'@HG*7 cJuF=0`WuP(Mc:#d%;^(hɔ;!ɋ؂j,Ii 4-_?і,lӢ蠓6 a'86e8Vv}Vy/͌eRNGͱ$Q7!z zЉOsCCW;^,k xF㼩]L2ʱV{I:91 kYέ(%M~,E^ Hts9hхC֖I;#9̺Lazkf&x&vI?__VC㻷rqUz ṉ"AQfTNJѠ][aNwQTBjgYpin/Te**u :/7ٳ7L3CV !f)\\;;ϓ]y;Hqx֭ wq/2gǜԱ'r0Ƴ@Lz_™űK7dQX=jK,=t'23E7R-4%h+ aռһ,,2.4i{8_Pz3(‹!Pxq[%bcHjVˡ>$}m!1r {LI,Lbdneܺf-I3gIG G^Y氽ɸG/|(?Ѫ`낸VxWxuA>iwWpH &h_/}AUnju ;{?Rt:3_}rYN11=20JItqf(ݷǦe)myh;C^>`@64]j{' 5I {`,r]飕OA]A;:V^Wp}UF3]>bGN쏾Ijb ;lq͓zz驿Rh Tp̙4SO& Ϭ;Y-Llx 3/^2<ϛLgl = 9ԋ?uwwO~g,6\ѝ[݋KlG-fm' ɫ6GMFU(ܖf(ыAo{kU H+74(MLխ$G8sGjhD|I9` mnd*Y@%HGF;+ W\<N雷/tER)8&we;^4ԁ`T7I]zw PҪ7EF}N&QD:fgDRW!\[[pjW;kt+] 2|L*ϭ:ɭ: [Dkn;Ίlb.5vrT1k!|G~ %*CaH$i>ҩ-Ƞ+nl.( y}|$QZA}Itd SnpX,!rb2> 3&ccWo2lmݣ͘yB_ac?}7GhIGfzߞ6gX5F^FLU2.ƒ>f5]B1>"F2sb1u|q7|kicSSQސ Eg#IGƶmVFe6UT@iQ|/PfCocoB O>E(qR#-(0#& &^wxc}n$s9}d&gm_ɝpp _+<~(qɺi(:od9F L|6#6&~7Ĵ%VļȷCԆ w\;{p !F/lAU䩇6 1^\~H+e"2AޣZ|^ݡHV T -BhC RIwқޜK:7]<8ጣ1B|lĜERAqF8{Ʌ5ѨbѸޢ8q\St^'~ %MXp(KK7H"\\ ^ ŵ6Q+7IHn,,,oߦW|NLW*nAa8ܣK~:OdḨ|U~q>t+b9+*K/;K!pE$3:4+5;4iFy)@Fm&34Ck|Eā{Xb*&$u8kWfU̵͙yϰRĤM-<3.:]? /$fK7^7ƑWrDWuf`݄5Yo3ə0P[#IX8',defL3#o1]Z{ <9<ͨ;&uN`@Jr)|"\ YVqR$\~L<<U+9w@Fogu~LoN<AaKQ򣝡Wȓq ]fYuϪ>*㌲+eg75T{{K$ky<2wf*R7ISL)^.~2ꓷ%X\]ЙzDYJe)S!e]L{w7n,*;9ޛ f}7pEӫV{,zےNTgT"$ aE/]\jJb(ܴPwd`)|?f^o*D&R :Ik$$G@>\h Y-iㅆA)\DX =įYn P RXw5 7mݒʀSNhżUhzr|k/fS!8uMW(fZTom`gyIJ]rM"ԄKOѢ^o_^4 Y_D#~4T T<6}6 \P0iW'FA r "6 %Y*Y0Ōyh8כEˣlӠp祖|_6J[J/E .:)-0&{$7r찷'(zf0P I) l?b~D%)7pDsDM e;E*+0:Cbb7;`td9!>.;Y3ܲ=;B wȀ1h5u6AUy:e;&}@;  \Xi8,%wRjn0A/J ѱq̈́LOF*=0dW4I}Pއ`yG޽nkw:佩*6Pd{OSZ{-1Ayl zWrUG](`2Y'';q1| k~m}\ aѳv?F}&UMXȪ wk7pߒ@fo 0bRtq-H]E(M7jzxܓ(XȆ+QRl`7Jy1s٧prP|Aȕ';m e*Ozbv DJI?ƺb`o@NX{ؙʍ{hk$(FsN,f ,%jfwP[9vBzFGo;䇝-XMcr,S*-٭mIO cls "DdˑLUӾov>JcQ̿H0jBy\lzC937f$C6J!ݠgȕ}믽uV#YjU{նěެőb1mЙ1+MRRv7*RyD5FaKWM΅dT?rUo0pC< w{DرDoYN4}4 ^cLy2'}9%K e>Q7C嶩F2vGLe5(O/g=f^T[iTi>5)jPbϴGWlx1="'+ب-.4,A`;?=ˍuyCiBUF:pn|4UL0Q# )W|Rjϕ-݇ag4oW5TGU\UK(=l_R/e/y͓ Z. =Lp3}tt>YϞv1eg /Κ:@ 0ƌє˱ e:$&%P[}BH{r=;Ì" vtO-!zL~f}Nl63!A&hB ÕLp7nzA~`q/^+0^T]kRF.ëнQK…ڬIⷘC6x:LwDH2.]IoE#B7>C~6eUc3 e8S p FI\fu/%IJJz !'2G,4"AЧaJ{b<ֆaXQ'cB¾wL.ڹ^(p8lؙ aWC{qzc3'xQ|ӏc;uWݬ}g {&Q+ϴK, ";8!4l; 3lIXZafX?{}'kk B|VJ\kt4Hfv 3J bCYy#tr mF:G5O\'Nrk> + bLRL1bFKb %&i|m5[ec<i]wxa*f(~+?]J=$$$e5(HWf5Ι^?S^iܳwiZra)Yi'D%+9Or 29jrs/æ t`q]Z_n֌5?"p@۲ysf:e1wGȀaBb_T9*"hE2ޥEc@Y6ZLmC3.bZt&(q >n`Ð'`[FqsVϥ#Ðl>'CB {P>["6!"DrILïo?qEo>NJ\jNf݄>G^hBO=|NGEK!e>6!$ZѢybc69\Yi^רs:H/ip xEk ť$aM0]O|3Ŭ'd$L  PD Vξ&Λ8; d?l/7gh}V5pUM[tw(ZL ;tf_z4O=aR*i7iℷ&gEy QG OV0SE`tt͕ OlmSVpl$x'E"voBhQ h62`Y [ϐzj_JXq|gHO zY+n=oޓ!p,)L"^ByeDqkG\i;|?͇}i?yZiM!HnCpK*, D`d]aļq9n l?$̣VKt?v$ &֧bfE˪ kwpM 2mʘCqT&2 ^~NzM{oTڬŔ6 ;-VKڻ5O̽ j^hZƠwv(a-Yֺ? 3݃GgE]ښab>)O >NAWAK)?j 7~ /(B\7ԆT `p5zHvd DqC{w; Dk(jW&*蠃teZOdDD*Ҥa;^Ul˳8mb1jNuqr"56q+Ud<(-%س?ј [}͙BwҘiS'QLsMJXnbC7=HB(#߮vD Rڹ3֢:pm_%k&#& @{9G}2W*Nb|)Ud1_D(P!&Aty8E7;RQ#Ku 8O;Bn vWjy0ss.818C&VjcL/v$y(!ٲ~<\ L' d<_c]/qRt3̅INGv0פ8?"TӁx: W8p!R7ր.[M< &i6A endstream endobj 2886 0 obj << /Length1 1630 /Length2 20231 /Length3 0 /Length 21070 /Filter /FlateDecode >> stream xڬce&\i۶m۶m۪mU}ۻOst3b3+$#RT2u06wwcg[(;;p)Y`D͌\E\͸fQ333 lea TS֠O?&ct}q7up3w bfp4[ٚD%j 3{3g#[ @Ō ` ``ojOi.\FG3nf&fhfvV..V. g#{׿=puXٛغ_ÿrtvkaWL7t4r'_5?%KjO,c3f@ p60r65sq gz#GG[y;`bfkN7V0 ̊rS7й9A $Lmf0 C(X#[#r\_lmw 13Y?cdgefN&j-BagET`ndgٛ9Zٛ_m112?$[efo_+K׿g֐V,*WU/ǿjLaaO;'3&俀,gl [7#ӿ ?jdow_Vͽ ƪ OufNkfشXcyjIQ`C@f>WG}},Wʹoi꣉ [tBd\5Ng.I%SoYXgϝio{*IR¶N)(9d*ȉ7ڈ#@&Ə#*`i~_Pjpcޅ"(]ӱG/u8Er%k/HN pՌu8@fk|/r!v] !wT>ٽ}~{No_[0PL/(1-ɾK hx4OeіZSj.hT5+Za$|g RhOG F3:M&Ov yKaHُmHwjNr2Ch_wĂZt^PV4`LR],9wܭDc :|t0`T^ViJ|wOU'\)3Y2X_Z SjɦR/KQ#dH7ޗب呓^Ht\&qY!{z$ρm:YfS-C" wikܯI6g5<6z | mJ`t/3ݥNI.WBt}Aѧꫠ#7dCF%'Qp%BD4~tWt k>ߖGsyWп2A0 i'|6+.6YA~q+ѻ?;47C[-[% )$b|p.R3V*Z-,3_ú =Ћ-c'&ݪp6&\!2+}pi;Z,$ ?}G 9Lw,| Q$q?SF<' [D_NkcA9.kYݻ[;3SgW]7^|!svNXwvt܃E#WSYGu&lq>c]_3>&| ڋԫf8Kp\Vܵeo9&#?![9PuWx֝`f=էӦKpU!4#"sדvysHzL_aaA%{#SioX?_j/h4Va%!M'YfxmL㹤y|]{b%ϳ %O2Ь{D-"'83f( {cڌ,^7F&'5-s31,%O'-2GZÆOdjW.Bh2LKǂ'vTu4=e&g-=z*X-gBv!/ }bګz:R&v~jJȵaF⫆/Y;`?=d-.jUںBO͞[O/;-$>8m3b"׸ a4p 1ZK N{pEU{ 0f.ZV 1-UFX li: (`yQ_ ˵8XDTgD@ʒ`1Wم_%0){>̉ ·Έ2Ȭ`+wj2rBP"97s` [fF Plp{=*S7;ūh_}IRax? dNaЄgNzdh%CQPuf~_?-X= mE#㔋ьu0bJęIq6u-RӣM,Rr潖3  dT#Lj( IrgDWU;Ǧ:6;Uv.rMV=k%hOo:H38n%_=y@A*C= QgV6ǐƏ֊tK%0iq@ep?O.yqI6mF17|Ds+X557؋ѷV0\BI˂&O!(zoG N`2gKӆdF>1RG3U7)19^&M4khxe>[MH;]8]jsekhzR7e+ 1.:* gx}AleEhE0Ӆ6j#uJOIbm?5bFCW@%NHERF-/E# T7hESkPX|N&[9?o>s-Ro)I>-9vV!ULȯlBPJ?04"An@l3K:fY+F[D| sTX@lSӟ%,8l/Հ@0so^ȁ{ 4jiaX 7`Gsqz,{̦dBbZ duq/.Mȼ prbs " who±Pp񼟴'[ >Vz1Y}]by<$i)<^.C_hF,5+T %^q}neLDaGRKpA.ɮY[$Z%ыYzqēI&ojdKɖg KCSVQU^f8  $"T9͡ہ9kٖZz#W8%Z,8Uf:qN٭R9 ׸ yG6|9=hdDVU~ et[ mnw IjלqoR?ƕ“e $%8Ź7sAa1i\=鸬vePKy fIepipgw\@IuNkȔ&OpYxc:xڮ -ݙܱؗ5YJןO7UU@ ރ>d#aD:͍II⚈5#xN&.؈.5B";|xxd³IKDݛү`e$Hq%CCjP!=Ƴ =/wmۆUag TV&׵sjao˰m>:D([6=cm_8ёU˭4eiAL@bM pHIt0׳E[$$ ( Ie@uф"Y%%e[-=*S7ˎoF܍G"r VAW!f\rR T1*53Q8pi.Y^ή{zm_s#vxY5vڨ>V8}MkF?8'OE& ¼84Ixwl9wV?y>x<{jSOHMԧ`CS4'nzsLDβLjduFXFCSmN 2G ex@kXېTlhbښt7T( >N2m?}Nx<5E GV F +Z]L\P -|۴qQ4A}<݄6σ~#8EȂd#>1xN.h /@qPaK@_@22`<*Έ2[P#חAs_*D;6K,s۝G,24tH.4ST1B'w]6O Crǖ kC5AIwv^l_QS:e  M3 YhBZ:eE,__sy"?iY+S}wuBcvm"Ib:Gmv(.IJ"<1>&:d 9uJ:sP*AQ_D%e:P;AD> qI5V?\4qzQN.+B|$E7# ˚ FZGyq o5" /iяtWKm }7\uTGIj '(ڳgi<_43Zn49Q0WiTcNLsAӦ7&l.ǔ~\7iMuJzBdQ;园iYPhT zO%I?$Tk$\XNG3NitN"2+- -hWZ(@v̙ pՙV! '2yw2eK3a>~-pE[|Tipt-:Lֻ5J|2yV[lc9Ϳy@B}Wyqq|j*AcPQ_{yeZ]A։O~zAa4\Aox!c}%,esH]:%@)GQ5 "hpx;91fXjr&#x`+Eh݃~HR06, %Ctءn~c8 '46 Э'z^ 􎹚YCK 9a/|rϒ-C&k4#7ڧ9]S7BSC| ^R\܀4N$ BgCn-eXF~m6ŝÛHfwIkc;<739$C\(mGw:*|AascrL,hk1Jl~;TlRH3~=x rKO~SӰ+[խ|@n9hl#eP/!!LDy1nmQKőG褨FeHaKl֚g6#D J6z482wBhstFm[X/NUkF7x%5z\F@+‘6m~!MZbMPtcgi{@!0?dCA #>m[VIh =9q@M= LBZ2 MsnYf&'BAbR4M#Wljd肰:Y PQ P *R++MAy4jae#n*2G^[lįI=*A%`kf#8RsDoHF4i D(4q`R:VAUI*s^VK^<{uޱT-? ̻Eʠ%n%A o \P ICl, R Ẃs]q?Zz!)}b׽3%˻zjΈOxQ0di{F4E8n~pA+YZ$ Q Hi֮)ej?x9 nAJnF|B" maGwW?9ĄTm$0kQOK\?B-_A&ҤR4H\ UwF"}'hhP 6u'ph Tv27u@CL: /˜R<Ձ[ng)D /D0 e/x06t67I:,h>k&Fi"2ۺRU"ffd֯ڦԈӡFo%a7v##]GKTL-JR\yC:;cX욣61yѾ17Lud:IwUܼv#0NnظʴT.&Jˋd5czEʕh#31ȌY℗{QoN62TѾ\g]84+0Y]׿i6uI3,aHƶ`-cQƮrԀGB?%#1yv3GL Ѥ  s׌GZI+AT؆R~uRqz9w\L.4C-K/dN}jޱ}\hYM6LcL@[2 F̊_Y8翕ޕo!:$ f F5=U˂AӐ {sm#/Äjq8e- 4EC? "ob1=Z귤\{ځע2v0Gݾ*?PR<$4޻81y>'nTj$z;e Z`krjc=7N\XTaf9xiF &q.a(˚Pn%v.~A9Jy~Ӝ۵!hJvui35J&j|T7uǒWd+ 6ԸTΑ\U=bM/|xcCa}GiS|Ii@ySBL"dI-"_.9HπjGZ& #ixWVT_,U*%fM9B(xnrk][IJ\8 T&tHx2c`L\-qz[)DNw$dэMo}Q϶K0iglr'[4Duxaln?I8v$T'O_!~PqrE#v/#S$6" )@n7[ߩNuҸ?h*OF(lյNU+d h:X Ucmʌ9pGqY˰\ Dɨ62^;8Guٶ(w߯g?<0SDNǯߏc9hBFeZ>5f"JqyGK }/*Oڵ˨佧pMtzXϱE|s%:]̿?<}scE>B媛G{@6#S)%-Yvm L~L׎6IR>K&!8r_7 *~,hS- b9%1G@tH#DX&>B6r;hYė<ǀ4wHYi\EK2JRP:JtQ8Q<9:`{5H T S"ePLUD֟[c$6 [4 RHЃrm`Cy|q>^'ԴpCSj(XuVӄGLŊuv6^3WP"(~ tBWmA/f(FB8&T Pas 8HMÈAQǮtl.2k/;2tr2KFFL\Uh_v#/ʇB'eݒmb|٨;flDu)#X0jsG8P@ {]uH<4rkkCf $p4;2#l=4MZ gOI\ .\Wɞլ' n6/SQ1w6)PNa3%"aܜĩ_D0b{xHA CUR Gw!w Xm*clԆ 'AV +-B*/o;Ihd{?[r p@ΊI:|L否mƆvmuk:. ?r72$y~`.ukBaY3? ~2Oj<,X9J; ށ{a*h-$,`'}!e3#@9-9n?!갚k7)XuH>ѕk%,B> ~/+z̐}'=;n.#N=qLOsS>(M^杬!uux+Taz$7Q$(pb/Ѹgt !1@(M M&a\X)7FwB.x[x֌DlHl4)o.{w71fB4֟_ۜN۝;|e6K]x~awBXa&q`V]l[."%-1 zCc!dҥ7ae7jFĺ{}hO\Ұ{*E59!y<*zOWB6^g,[#ĭsɶ!xMD#>JY"eQiT/vہ9+XՄP[sA|P,j;r mwKݞ6rGcxg~:ϗ#d;0L$ AGubL  7XGŽisWfg3?nYńZc)l*H8`ҥ;=%XNX;cR)b/˅赤}?5mpB(S k7~Y}`% #\,e-0/TGB2?xSCC4縛Q_LHRc܏0E[!d{j ˞tYK5~͝2wh؁W!+Y@㑱 x̆ l缷}gPz]xlic#<<erH3)$NaFH]oG硐9 :G;eC1 yB41}@"PqB< # (E{uPJR . j]ב7 ][Ţ9x"1Bw 9x ziI Z˿Z.8tt!`KFEâ8ͅN$S2D~@<̓Ьoy0daeVV-.n>n}Oɫ?xgg^`\#z9dA"WYIrgvLy&Y.k eN#!F Kv hT.D6M/k :9`CvǐXԗ 9zK0PT~FE)aO'kVNۥ%{KIWb~5U܁&Qb\eWP /EAzJ4~eȖX{vpJ㊋ 8YTG¥KS#Kn}a=:ᐥ\of YN~w,G*g엇my4' r2),sBDaYʟ(Hm镤Qi>ev DUKm> aMu#y56Z7nf}'BX\!\9]hUXΊya)B~m|4")NX[*BӾ:ӧLՇWJ*=2N{/I:^J vʭrrg9YaP:-rゆb.0׳Q1jaS 0N7'򋥓/a~CJ)yM,Y{Ke0'gh)C_4n4OnL"^oF^ )iSSVI҅-W+ o4ҧ\} e,hwEIyrZ=)]DQ(LZ zmYZ%Re$9:ؓrV hkZp v@},gyF?}7;ŋ+nNL._cpxwz 6unFS:u뜟vڭ9n`n7LHi .Yj?Y#{UNoc QGgW J9_)rAJ'uф(>Kc >0_dxO8nSTr:b_ <( SɎHIP6P{3Ys_ojoFZ wp[b;ͼo)GQc&Zs}ګ|Gl1Ci709 юr b w=[gGJ#w."$@AI?0v_YLG7fpZ*c\ĭq{͏%G=1@QêJ)0SU,R\m"Z`B+vޫV~K\!2[u̿eac!%т$)ƆrAQ9ksVI88E:<9)Vlڿ_HW J펾):pZ:x_cyLA}Q% N 7Dj_+lK &e8;#p)4<ݛ=J9{5koʧ͙#k?8۹9ׯy@~6B̡zS'Da"oˁej)PѠS0: `%@Bw$B"=OopLx py%c8U-93{c>~>S!>Lx̀&偾YLve1m3Cf韪5V_E&ԷaAQH`@w %s!Rr3x޸y =w+- +k0*`"7p0jx+*9UJ!E8* bq,CGM"B5 y$ms175%P.@!$Ct ͪJ`40=Y&\c+ڮDW HjI rl—NWVOT,O*a}nn`SilI}>b`-:V\ȺW+"$u|i jUJ8\#Qk3,2ƣ7D1].0w>QHnc7*-R0E_g`_W9:Btt(L|O3vd ٜ[Ѩ5y|X>Źk9B8S.|qHwQݛxEQ/,6b!Mre~ڗa| G"N_!`d%)iL,(!ֆh0gS=PHgI%ѥ1͋A/QG ~kAsB~d pSlUYl$ecXH_0$/WfԪ$wKVMjBpaE|uD3X uURd}#Zf5 sR5.ꜣ5 mь5#u~NHX~0_&vwHt'}ju:eG$ϝ-fL"\o}F>RJ|]]ѮtUէ AEQ4 03)_sl= 7`=/h9 %5U&%-)b1)BN],S|}i ]<הa@ҡGs~| Ϟ f'5+Y>㯓VEoAf/4NVe(zDH_Qb4ͧ(Lnz4@IAg$ϴ:.UC]NojS {YK[9\gc;3qK&$\"E^|dlZ]Jg#@"R7DGU%X_Tr>C }{KpmyT/!2 Na˿$Hӎ; Eks^;U#2~|i :.P ^!;Vc˹^:*VNaKHMUGNj޺} rb&2喍@(nJÚ˦k==˥( BZF 3(;}i$ϋa/0:[ $_8`HQ`W ߭Jq{+(> qҦ"YFuhQ[03MTKS66&FפTJhYRÏF Cv#fh΢F1zvWUs>W+<{䮅 䩌nє]ag1 j#ELނ(Rp>tc"-S[Bsm[96{fJFci 2]a?MRD!Tqm*_ٟѦnXzwRD% Ppm",#`E?6t4tm̌*)O:pދ%CҩM3( >f(,hN\Sn͕QrBI`f0C'$‡o411ϸJK?I !m9_}'-;A*c|}_v(hq4rJ|Fl-|4،&Ж@@[i16:Th6iP}PsV$i6 ,8G|74ş3 J jlh$CJ6}PfL]̕@N[f/;LsBj-!tj\CnPo2z%!lx ?y:K\d6 |(}ølG/|uBFVׅ%cz{عv ndդDiv ȣa2C`'efi{=mc*;^ʛZlL@U(.m'[ޱ˚/uhZұ tŒ>XV';cNUR)=É0YiC6s%4ѹZGau0/)9 j@'y5߃Btjg(A\/r`j[d2=â g1@ih2EOZ.ںq)x׆1~7訃,8skl#P'W"Q/w~yQ֠MsV$]T lxH׮cD#c4Q99ByxZ45UoG;(!l:0&URfqY%8Ki>'%$=[k.ES9衍s@R~:QPd{LsTPiGb endstream endobj 2888 0 obj << /Length1 1644 /Length2 12434 /Length3 0 /Length 13298 /Filter /FlateDecode >> stream xڭweT]%Nnݭq5 ]K~s̟S.ujPQg7ZHA,%S75X@E nAlt$m s! Dvrvki3011 .6V =NnapX[>)*I襕4 g=@ `cfr`X: ssG 3w7 O3 ǿ3`r\{ ؀&n3;Nvqu1sqtGUW@׿]la9oI`4+pt`nhzNlOn.6 ʀlat6pqyy۝Tttϭޒ={l+YY9nO {@s0 `naĦv} SO[oOyߩ핀x_2@}=:{߼ſɺ"zE]_5h޷ s g{Żo<,@^Żd)/Yua3Xjx9ZgHr2qi0{}tsjѮL&~Zp#H?"ze[08 C,LL>iZCΨsAxw`]@ ~cԂtU!+\^X;?FV4w((ڀmW_2n*cah}/7Nbbawjeܱ;DP)x'm+ /‹5vaxȟp=cʬ;4 F\N6jN B)j2QxaXWTCRw ڜiPc#~ԁVqVǔ̞/;IBsnZwQ10/vh?cjF!o٬uBzQ_$L'?=AiC%Ux9F8"~vwϜ[KE6 ;[dؐ6պnĬT;[cCjqgƝB8BF;ZH3SO9UΐL}BDC`XqgƝg#7.q@iC%6.Hs5㐜U18(<?֚ӻe?θA\. O?]C4 bҟ4Y nY8C+(. finPp驕BXg>|4L.h9~! ;^q&RX1X䴑c1$ HЩ: 3 wH+wB[B՟liSg'LUPI}u ALeZg_)Yb g%~܉.]av▌[I´IS|xx])+d z m tiq;+ 8X\^lZ#^X {H`puUU@*܌yP^mWLűCHqMց;ͫݬ"8th`ٚ2?Oy„EGQ?@͢J47  S& [V)zܛ]uEȁޡXdq?kҍ *]|XhMQJ䋾-+3'fƶHMw⇽ AX7}')j~Kup^޾BZC >g)Iɖ]D{$adN߸X2>HydWͼ6K/8Ǎpx>s-p-O)Mw/J. ==:L ^o=%ʔ/v(-~5umC?xr%^g6K =j( X# [ɴku0b!Qa)47Te p*?MּD*E`a? :kMjH1}Z<CЦDt LOmK%3`lޫ70k$]>_\R1]UKAtGoE~!KsT'muc? UQl9Է>by^VȷG8?hƜ)fkrccX~6CDtpim웠6y] [.';SĄOHY蟳:)X( ~Niv=}dyC~۲4;vKϏw(f:rQS *-W*['`.*@%tTזl͕w?y_iucMTB /Ο`(?X8)$\8vM4ɾ'јTY}mFi4G M*!" 0]ᡔ@F$7&j P?u%.HN͡`P17`[/\ *Ĭ5Cn"OH8"_ӧ ?J$^ DZV!4od ~MWb Ĭz3#RU%h" {cx+6ʣC[b{`#Ipr:Bdc蘷j t2 &V e/:kKo2e_o۸WѽW7)+ǧ-&<-ڟx:wPDCm6aU+ݬ̯Dcx dǛf-vnQNg#C{a Mp֊)Y3S2 T{q2Ʂ)9֒p.W{Ndzz2iq c=$J;P:!G2[oO97V)S*\ɋ&{)訞$YBA6\+9ӿ G9"]˾,sG=%t"|%.!b (,R:/,7 TX.hcuyJWȔ+W'Sn"=]I%KVBv8`7鵢ygUN FLWv]=9iLdYoc HA[R & rgdW(ډM0c:PkP<pU̱R={\b sqԫqP_z l><V⨦jgRxtH\ #eUY-]J('ƌsRh/^]O4CtCH>aQvGʜᛓƾmT _:ɿ7 |ɦXB9Kj} ^կ #Kd#p}6yYDnnMG"Lf}+ZTXHkI/P\yـ`N؊ܠ\%1#ja_)ӊLhKoJ]vMR0r$uQhLoj|QP8pS yFD 8gN-^H+bެ,mE#{) /t0L(#]z7v Jb5ӳ{]ʥCyϞ}~b50{N{|܂3΄p"oi@tGķh,qiJk|]|j4 0MKOz>6IqN\VύUţof-nbSΩgڦP/0^OAu;;'Mjbϖ^Vk{t\ HJ!ŗ%AK _$ѽc9+N#y`l}\}L߯C{\qBUk=N=1aW1^ W\mQ$Ɨ27?ϻ/w2x4S0sY˭5x_G/"iK$ \KefKǭBg1[xzV-1t HmX+W;z8 _ }[ >ڬQvA'{]w$c{(|vc#)H(H8_^ZL,W+M[oһ7ufg k.of656ąe _=g/A0uh#[4U PrՅڤ3|޽oG]KW"`Tro6/~i&ӆ4p R$҈Rh\xfP 7zu:T%U1 n|H4"jX;ѱ_zճ篲5u9J'Ҧ ݮhd>uJ)-6i؛aşS=9/W;rָ_9blߖ&T׆ 0Ƀ0N[f"x`Z<̦<*C DŽNI8Hk;#\NG!>ZmQ1tWV~'jI!hwKsZS,i{_ʇ-?W[EmzQӋ44bDʟ*~m|[_u7RUǹcʂ;&9skl,㏥*.PRv_G9DH3㝻J@jSiCb&MawDޗ5& r':Qa 85d%b7[$x #GTGs%O643)J)5ҡ)L/塭/B/ I>Gm͖o@p4猻ň#8~[[^T\`5|Mpc.k.ε_T5¸˫p}l%ꯟP WrG٩~yW[3 5cp[$Q07#.=QG:$ߥePbW`J+t9-;%ΨQ'cB?7g i <5!|Roʜh]PzJ'F5ι>(Ge{8d`0Gp} ".?H2\ǁow0vӘ}JFeՃ0'9s#7lP!#0"(2}"1Yzw/P)Wʁ{P)\-s;ɾhIq@t)$T! &Dbzc쒓w40/DpYl\:T , )yWl??.i0ēXLTFꄓӳf΍TbUK $7F(^[Qbk0=K! ]pKzBm|j0vԧs{d~,0tNw "8hTG"#`RNnLkd bF=rߤXa/\=y 1.Vrc-9˜zt^XaNSjv(Dg VC_^#̫37b ہxuC^(wJd YM`˖~gBǠ l͒'@-t 2"R}2Ϗ;H?jyX%Bw9)454-[4_Z$4AmeD}g~+-qo?)Hl,~$ۨ\Kŕ,#,^Χ{^=rĜ#;8HNl_ГxtHgzIJr h$z K[d܃M[T<G7 iNH[s?b(%{ObU9L^2%vτr%I˃0sbϋDM:uPy5Cheo>_:᱅Qi٢é5\Ǡ򉣠ۛEߣoru\\[:;eVKrt_jOie)?ViQGXD%|]$R=oXG}ݧ䖱, 1StlLT/W$)AI;(rSR҇a[0!=^ȋڟ0N07+m#}Qq3`R? gUSkõwSjTo%85hƮ"_JWi]KIbF*e}Ym[4S;e^lf ek!j-`Fܹot3.O$&#U/[˜ѩ>C~"P@ҷ6pQgZ<2Tl]i@#vܔmfQ5 'FϲO )ק(Rڬhwb!p9W(,єQǰQ7fғDžr{9ԽxaTW8 7Ji,s7&DDS"rKoCMD$P\U*(TwRS/xDYt1QVXSpB֑zxۣPHk{谺gSFDq XU!:CKz-ʋgZJ`]kYU_nR~&-Aq {){1(@gg-Hb~pn ]Hwr z,gMVgr_qe$Fao%0)[|Pf @xG$t@CP s lvCƂ\ҷ(?p6uZKmw_Z"dU.@e<'<# 9:IY?X (?ō#}ʼn𪪒kb MUˎ0wV 7d贝>Ҥ2AwVR53C6|@)Sw!T%J(nQT!Y$`INudl!iIAtU(+ѐvaaoI1?B$ Hpm2̴C惆'd~|l%aQ:1:!u2< LnMc4{2S&ֹ_e3vC<ẰdvՑ&V h.f6=~Ȧ_%muf{ƋO%p~.;V#ɕi`9'hR72ײg0S̴/GUȻ?bkTmC}\9<{ȁTG~OvF1h:qe2mꞒ KXhI%7[f߀$bYiJ7-rT%CYHjY˾eRWt-گ.@$[yvd=g;X׭ `q41)6P02Ӭ0*'8Å+,"8@L]:;kB𰇖}x³8E@)}sYOt|않]^Z,U"]q;=h-ni\;BF2$9W;-e*]{u net(i a =aڊxeC-9{3E2_Ōh? nrndBL'6kUyǖ"sc$sMҺ\?%Ŋm2}T[~i_>s/z6Eݻ}1~@>Tq2ln ^LDtA3fy료MM֭ƹǩqrX~A̶t6=P Ax%۲^-M9&ٖW$(=_\j tG[euXo$YI_oNB%6_\}&":8 )^dt ¿AG%3Œ8lܦOcI# F{p&KKXZp#A<" 6:-uӇ |SE B.)T'zrZzi [#r[L&jJap]wU:,7)>TncT[}&-/ VJ;u>kC59׮_(b dִ 2~HpiTCkPڬN[0G{'F˗;Q6nv"= [""5wDNmm;sf Яʟ;4KY.T]8+Oj́"KN\n7*FBGV|ӎ/.(i f 7eRM4Efif GO+Ԧ쿰тL pYE., 3w\H-]~1g%(6^:Hm !*}7,5yKjaΟ␸^딍Y KJݰppş(N~L_yظ YJZRpק3:_JSG Z_ʐ۟~ ǡ%e zŽ<Ä!r=])@37)-vx޿ Cqd *8~gfs9Ä2"OkJn:v*ͦ$T^'$E-o&X*^GEy<䟓-c,X 5kM#901O`[i cKl)^S|4"fqt@11ۛ a,%+ Q>r{GxsXE?bHf̜L)QOJ'/e:JXPZ\ǭ`P#?s0 h֝>b_qv52#]>=/~?WmqgoOS:Ii\֦ Z?9̀KhkU5MGz?^h Oŝw.7ɀLo\eƳc$JUy 芲SvWRfMOuY D3) һ=Is܊S#M+;6s L:,JRHi|\UH(vFbo<{\ׂeEpW}EX^{C"W,m%Q;h+oգmɯ yҫLnT#+~ϲi%[l2wYՏBz~>odзj4ľd1Ǣi476eMMAcI{aˉ;6̘!a FY@w30ھVZGn:I{h|ɫzc.-ˆaۡRt7)3ʈ^@M"s3PwQrݼp'B&/͟H0ٓK>o/fOQ0y5i.ocJ=K2yh.$`l̶G2#^\r;IPHcJblA%Tt+}nhBqPT26Q^9|Xшe37ari[ ư^E>l&yL(> stream xڬcx%\&wlv;VǶm;m۶mN:Iv:L?;g\WUwUV]P^FXƉ knmhk-k!Mhl,X`IIN6@'cN@`%ڹ;9(T( #Mmd[Y8T268ḼBrb 1Y& 6Ɣ[տC[#Zs% ;X;: 0w:mށ-MlU__2y[G'GCs;'߬¢ OnG0䯧?- Ku8ݜe` 02w_e8;ۘg?Ʀ@#+cGǿ4urWW NV& s:mjnKϼHؘm7r_DP-hdkc026u@2 "UJ-le% ;3hkҀ17ͭO[UO ;_hXhYm6w5w367w24^޿*6FV6E /?j21=_Щh* )QN1fR5_m4 F6s`dI/"<Z ϓ15g6FG *m8®.rYe;aL k 1ە6*pT6Ms~/}:ô"M1&/@$d>-EH?SZކdW=؝TP-yŸdrz#v)C'yC1LmBnA+<=#K<~z$K CI>%Lrrwo4|uassEDKp&!J{a, Lul\5k7!gy^#z@KޢTvQ{h\IA`8pՙZD(3Z}'g/;MFmo,!?~K*t=/UfB "E}=!z/0qҡ)]y@PjIpSъa-E5؅6 2Z:i{?jSzϥ֓RC Vo J®(񶌌/7e?@fpQH[GC(:GRJM*urT:`MEё%aGoGwe‘Ӭu"2x(6d٨mT*Rdcg`gl.ɨM{4o(=٠f, I( {VѣJ )n1fsVccP%+rM+aEM6̅_ج;qMԹӽrjb(bXqF@*Q08"*J"LE3ƾxBa/Q5Wz^>hc9n`<:'C(OzBPht:D TsJýYN:Vx<{˼0XJZڴpFf ׺0 7v1ajhs*#j2მұ*Tg(*x C?^/sֵ(יk3ɔ;\!y2ڴkʂr6̔nh&.\ "6s%bOa麱_ic4P@C673DT'+a@tL9Öv&\NvƇB2=,CZ2`3y,YzjrQ<O,Y8-IR4 Cru>C]9θ3nWIn85SX N+Q65PU!B%Jc\8n Fkqcj ^D7-%ډS{E.Ȗ>&mAKd_#f!ׯLeH,۩Fζb-1^Ϧ 2dO! >9Sk6`#r(Df(]zx:1-̥00Ӊ`8Mp9%k/:i>}H4,cʡ@{?R |hWbj`Co ?u[jkB Kx>;ƭ˺+m76[nrTĬ%#s3\ƪ'i-8/çW?]0QGܘ+D[ Nz_gHらipPj=3.hT}MHZĦ㋼^nX@5c9V@5mh=b^1&P8 ߵ"+YAc*BV^5.M On~,ԭ~%Ǘ^>m ÝʏEo$ v(NDA]Ұ/2+v]w(^;;`f%:A%^o ^EO'0㝇jCAEx.@_ڮ"B2:Պ_{$G1]| ֥%fE8ͥ(S}90J:0 8C.N"G `։j#F:剫|2^tz3Ø:,0|[ qakt֩N!24϶$F|4ILL^W%0p3P>)\v+<툿d.v^AT=Kr Yyc{<$s]gwTu;͞2_Lv!Ȗ;yD)2WݶxH=;O͑5hy<F7\jF=]N&FV~!Xq9-.~gE}0` }5+pLu \,FZJʆZ^Joyuߎj4#iW(tsi\^$!c4c>v\4 ,{d9aGpYW%Otq heߑaԪ5yr)SWIIɲpL1hq?[OX[ zhL18m0 l>!fie9}﷣υԌ-Gŧ&:ݼu*jqwݓg<{.8Sped_,qPg8gB"bJ0\LdJQE{R{v4af֪L%iVJ̿(LH2dM&v ;? h!Wyҧ{O]wW!v$pӛ1f)?~@ο+o> ԃLbcG8@i?o0jJ>DQp? @w"G_Gyf?c 3$䢚a#YEu lcWŸ~#JtfrH:d< v=as,N'`M"eY7D: !jp7 a힛C5|/rBc] Pi$PJ+| bYp"m^RkEk@;]T Q2ޯ=k (/爬Ŋk&K (=VTesu'-ոd=2XR6^aې~>KWc2p?_M8fd1उSUH_ c0%H_3f@s4##"  !^abVzbYDE|EB:8ٳՏGPAE{m)|4oOoxZ] Uj]teЪ )K0C.cbys{=2G P|…Lgj&TMuuU*{_: -+˪౎ڲêx̜}s RljXc?^vM5rcZ~aqE<9ȒտݽLVDi~"ϛ9kVE}tO,^2?FAej]9Һiԑ kzG):y쐛 eJpGG ~ 2 o ='4Iy4U* ^=3<⿟=lwpQQLjez vY38Y͢lqw}_VJwfK;D2Y`mY[yƢjvgy:#>|ߡO^cӹ`<<ר-r=4=Kya_vCHr G6}R?f f$) tRp7&R[(c!(A]OAD6e%?xlm= ~ ~]ӅF\\o{۲eQ›׆}p.`?w:G~yn G9==7 Y||8n0HPvO-<~ W59OXJG]!-4v`M}Q& spB8[wq Ι׬.x*Qm(O/*ib!nӆ{Bi = 떱IK^(cի?`*PP)d8Ff팡0%AijS=6,uu츈k)dP֚Hf" B㭒KCqd5qoε.5 biaBSK ^x64姕C[ugs-~T9@ٞOq"Zse^/i8rٷh?|5A"DGt-MltƊ- 攪|]ygaz#)}O)gx[HC{8̸8j+ˢ܄B \&@]h2BNMJƦa\,>\`*n^vP I>agnV!rQ]7 =LY7nHKCOǍX(t(P2EXbeٱRDx4e*/k;Z ;XLrB9';F1'v n+i?uAŢ:sl[4L!5nG"V=D=tg#3,m]N.HVWB2!Vp"u~q@&O-js)FkGn]f)A%*G6$SAlЧpi>:J|ꮤW@ ,-̡5I~UVC{쭭RkN6_3~hJ`mc >J!x5zC:V^b'F:[m:.H'y0ik/sɱxD4MFsR|ō|pV0 k0xD zCUYۧgOyptJ0'Hp+TgtֆsGæVSV0C #[sZMG`"uiFg ;œ=Q{$4fĦΩd*|AQkͻ&>^~BP :(J :^逐$ZxMerp GZt+WLwyOsۮn _.N#螁U(_!)^V2G.&,0΁&52|]HRH"RM̓~v*icC f0 {O")'lI%W VU._)D-li&([8s`W"):E'E;\ˉ D}EPSAE#![.xC$[w×!ZA`7`B562'ɭNEK]xh| Qτ~:M6ƥٞ_Q.uD-F0vHz֪uW;VgTq?:S1|#*k.;"/G ^i9lliBrJAE(Aml;CX\&4s4ҴlB7f7E[~hnC<Mcx8wEax“GspШf?'f7ʿo%]M `ЎW`}P֙F?Py78g*7* |SLs(Zh 6C#d pLFMlTQ'{TgotPN|TtuR$V2T{v˜-U)j0(u(ЂU<>6ިT8.1dWs䁷s2y, k*Ctx >sNK^D](L}$u /׮4TDp73pJ%s}0KA{L.nڴ?劶 SO%Ы]`Xx#BjUe>+E+BIJM }H!JxwR8E303{w2ҩWWHZn0\3XyMk>ſ=NV[曳 |)<#lY>x@֝$kFߎPscxOTu6i OZ&Y s.W5rWjGCHۚ&6"M_g$S.X\.*Fۯ XHM*۟ 0:!P,3uĒeSzS9-\E"sdg #U-?'ڊ gB"88^ih,wgLw4.4|W罍F]9c,qU,Z{CQ1 Dy|zcOAj՗A %#4 䀘^^.IdOXHUT2tw,9u5~:cS!?* 4_C'+Q Z Qir`ߖRe_cf%J$6(=s/8$ uAzG "GV@3?$U[WЉ=9`jiߕMqX2 {j,`Pz%zhܠËYwg8[AOI#6' O#ijYוG~%&a4Q1`XRsPpϼK`%W9ā_XH(;nm:H`56}&w)~M6X`Կf(r㹔DǛQ*,gr2ˋF/l|$z) qeqI$oLL,{êp{9G yJM1ln݅/ag$lK h?H?R*ފpp`GAKxQ T gJH0bihr(T]wh&B9MsW_QdBs "I]{QK-,{Nݯ$nLX[,UP "&ͰJ/FMkzKP)S\:ז|"5] rS?O{CK rڪ XFQA%PwYePWЈN5HP2b?Zmf١7c#%? Y@9c;njş.vR? ס !B:__(#;U\h!_Kk9CI}xMu0#QE,4FBr. _씑[dVP(=a[쵵*P_5 3G+D:6.u9r8z (\љĪHe=K([A[a u63ٯoVAW*: Rp11H3b="wø{ NB%{Br͡9@ʟݻ@Q nn A¿k8ۄoJ_kxN*cJZknx#Sұ B{g-&V>ك#180 M͕&+*)=}i .oz4gM:Uq̲W9zysi6VFF VUOkrM6x;}Adp_Ddd^Ϋ;P.Yɻ,é:C]bUҔu)pUÍ4#hWk:if!;lҰ^瞧6t=bϭݸ :K9vrK&l*TsC0m?4a"׎ Wz8iƘ,MK:iOGENFU_(u!5#;I5?׭-{4{҂_f /b"UaM/B ."FYika@=?X=֥·L2Ng UYw-₩^ǧi8]YS(?|%Es.Y`٭-yHÇB: m=s\3ǹoeto0ET5uz 1!Ǯ$y;6>LfsOvC- l鿚(K}C~AfIP\YR%$_-׌]NY]^_Z1l x#zSH*?sٛfEY~T3kMZȾ~K悙 ({>#+s'{Kn9r2"T&*]}  ImC< Q'{T $ypčG X'`14}D.;$CW>ID$}6>c5TZCV\O/:y?M|mlw >k,縁 tM>{2HX >Vk<?ILa31AxeHҥVoC3Kii/e጖}P+oSZ7XiHefʿQ7;ϔ1:+rq%̶"0e#DKlN-S j'V G5Yi 23f}!nu;6YœGh/ D{PЉeWatB!C{bB2?ȓ8=+LwܩxY*S^31*ؓDD9ߏ'yTT{13ά'9 7(C83p/yke{|qn'O+%E&2AAp%ѶYIPdKCp%O;hYToNٶu " ZYf8}G1q˩<{{6Q($\H,$I#!oק~NrvѤ{Doý2h,! f6Hѝ9JǺ<2;' *Hz;?(Uޞ9|@)ޞv)V<̫^CڀHg3˺d sQ ⣭~YpziU ^μ6_@ x͏No q25cCGսJ֍3A E0=:? I)rsSh Ħlm7/7)9py).0u1 #)C&M@\un,&0t8,yfNAq'KpwYl9i &et%\~;䰇`څHoZT=-?",5 L'776ɋ3|rdCQXv}bD݈8|{4FXbipE.  .Ĕh(֫H1 JU,@PvL"y Lu Ucj>r6`!VR>l2TqLnllG\7.Nq*r" LmD몂}.G@{brو>61n!>w&ğ%Ρ_,L(ڷ(n!Js"YT % Edž)=ὃ HGigiTnb)UJS7^aHrhnvc,ے8Xg;xbjӏjrXK.T,4ݻX@ 786N&;U5Dbs'R%XàUQ ]fNMOv!eCk/GpN6be6RuF,#:mnx8yNжJK`ʵ,i2B[ Sa˂;l⚹waQG! gW/2$UT/_Ge}Pa?n@#1E%-bݞFzΫ)0$ [PA0 Z螨kCˉԸ3hbd605@8*Zq4bw?un-"•)*13k*劙x%!ێXvRңB˳K 6H߯A~ dTʿy@,((BOo̠Tix9x8EdPӥIZ 4[L:ygu`~g|q2^t?V`["%9|8A}2CXZ B9PإR:߫6Nh0yD­ VCF K0^[ؾQZک,4*{Jni`Ch-F[u6oLy2 cI圶So"\uj)OGO^?gii֚bwqv2+A1^uo?_S0uaPIBX9{/* lmi }c&2D Euy뾘{~q.7 Bm7R_=yPXu,JFwcBm*Pw3Q> stream xgoG~|C Mo@X@IkY;ޛM"iÇ@XzeyipLH1#Ȣ`9&uI% mq>` )KN2+qifD) 2 `wi| Vx ̚TPu "yΣ!24dNgb!cAUX ,JqϢr,A6{Pp< P5H" 4) B 5mD`"H@CP{^ 8KЀEj6RP< H5`L"R/AFx0~Oj\*:{HJ(TH @C|H;pZ0む B#3kƸOjh90pwؠa> 9 B>ڟD0` ϨxQ 95弃 Fʲ3 ,q%ҧXpMCR#VufبƊ ?фy@o #uX0i0^?c:ʇ=тu}8o]7C|HmƋ}9ۑu^x% Mw Yqu\4옰 j@ho] Y[SXi.po[qJNeƛ8_ yB%>Шlc6R"ӵG܅[lD,uhY\KrЅzۄ7.R6tk O*pթ9S֡d)ZC_[f\=totz)tMޞ83%bhm=uh8WMhO{W/:Ѡ77/٠ 3ݻ/w%> {NㇽU2 ^?;ËAÓiuovc=O)C~GW ʟ7{wu]'9Mlvip^87wdЛ\4Y5>N34FG5 gl4 hOӬ7՗A+q4 ~1z_/!?Ʉ_!ήNAŐ&uo\ + ʌĨ`Gz0Ol4OQ1IuOg=Lr\U|_φh\O'`SR:x/r/'OXdZ}z)Li.%.m_eY s2Mdz7I&\$Y$^~#\)QN,=x)by 󈸋0u6pq(91Drt_H+<S7ȯzQ<=x9yF*P" =ojo;3bL`zK~5L׃] FIG?=_&'TVH!Y%TmYӰUIz6Zےj4q"ՋQ|:X]#FLɎ mm;u<+N[sua=+,&(2xݮdR7_mCT )ӲYqHw 4)~ט!At9 Ւ@}_l6[sF5̷[N1ةʄFucEcTM}!и 25:Q9{ѳ7oɠ7 ޾c[x&1x-RMM]ͯUF5/O(JPtHΫ[zq*zں-yS䯊Ũڭ3{T@𬚰UtiBvu.ix匓ZWTB,%E''ٓ1)PI2'XJ n*ThYɍ9q>&/iS͍uP ՐTQ.E)@הj\íG%~@ rϯ6O`K`[@ Ih]i\E/_kf+cS>d4 qޤ• Ǔ)fc}^H<>-9{@ӗ¶Q@؜7 yQ y98OuѾߜ< yݦn7w/ m>pP3PXnn5O uZ^&{H[`ϯcNMػg1 X߄=W,2n`jM 9cAZV_y  r%}E5' @`fAq( je2mݔ-sqk"C$d1ZsxȒD'Σ+D2,rߞ M1n'RAI@)؁$%.!ZfRĎT BtX͢tI٢%刦#RAPf;$Vu-CH.< ¢%1IvQ!6FS>@܅T$48$$%g@ʖ'-4 TK*|T$;t#(kKR8G(y|ғ&=w>"(YbJN0 *&yC oÆ9K*B![DE"p-\ )N#X %YۑRs| ͔R K@(%B |QF%%jR)f,͔ N#aTɁJ0T#һ؊*RF@,-yE] p_(Ru7z5)j/KGwxǢ(⽾4䅠TJ~!ZZ˺ԖIv~MZ]Sy4aZ7=ߜdN,Ҋ@KoSKPi}"$~ʚ8{cB@ʃW}I]({t"􆀕_Q\}?T\!o$,o7帪.!pEC̮G;ȖqMLEbː2jT֫\62!k @v @6 ;P ez2bDbDm@Ŏdv=Dm+V endstream endobj 2900 0 obj << /Type /ObjStm /N 100 /First 892 /Length 2762 /Filter /FlateDecode >> stream xڅM6+t2X`/ , EnGn}IJ&i,V/%YޑiR'oqbw6l'OInvI)˟pvF e'hG qA5.4"rQ*َ2 A&sBX]Z 3UfEdB:5<gfn!DHj E r2r0YBY-" RzbK2D #:Df hg8q4)dR4Km@qQ} qki[ Qh3 0 `,!t\ IR5lyPe:<4$j$qH't\: O(Er4ap+ WP,x' cgݪpUﮐ[L=tV,a.2L+i$[Dg[{"=W3yCf@S-3>l*RVĹP *w)FtU宗5ci 嗧OOO.tw]W6o#[0d}%,ۂi uLL$-tJ6%*Pm*JT d@@*l Y # @D @$D xO6%<m,KxX+`m V@#@F $h HIFH k0jM+;E|0ƒ``̘]54تJh-HR0v=5,XJB06͒`%:m*KTT@@*Pl U # @F @$d DH6%"m< Jxx@/`k` ^"E &X hM6%$ m$@KHaglD,PQ/-o߶&[(mMQv۪nIs7ܒFmm"%RVDhK:eȖ46Jl[a-k׶&Z(meMQV۪jIS5ԒF9mi"%-RVDHK:e44Jh[A-g϶z&Y(oOg[]| hBI;Z4,Q;dr,۳\|-J/íO?_X ~Fӿ>;Nt?D1?CX>}xٽ xvFI~% *7C%9?lM+J&j_F|D~HR!+>_C ٱ8o7F$a(oF1(}|f{ UzQ~d7Gm3~d5GMۈyz9<+ҕ~:Rkqwv柭<6Nj5wyQ9]yqkTݦ_Vy2B.elu]Ejѯtu6!Ids\2n|vjAd6p~_("s?N^<-rf}ugN[Y3z|5 _6Ncq{ee 3p"@m\],Z-4z$>yh ϒ;]m+XDwǭ|=nw"j[mx8ˊYަeڂ̍q9Ե+UvPoT 36:?L t s\Lx ~%ϑ;*R!}og0G x_6>!u\.~p2Uw7/&_q>yZ/I5$U>_Û`Oqo^ Ǩ0-~ڔ3^ 'A@g|NH/: 6*fj-y,ތaToOYn{ 9~PT=z?w _[%I? /KiC:*QVWd³V-uM٨6L*[{7CVwنr밸W^|9]}^vAOpo災Ź[UI!z8_9sPkQٌ5N{˃mo{{P%}1cp5 endstream endobj 2929 0 obj << /Type /ObjStm /N 100 /First 1038 /Length 4550 /Filter /FlateDecode >> stream xڅ[r=)긚H{sh=bl!ɟw% .EQb $YG˺!!-%W0ôoȦ;)+a,Nz2mx;[!l lC\K<>8=|fw {/wFLJ&WL ƙqyYGS=J#_][v{;zeM=~}9?|毠mF bJo~rG!ܶ)ݦoym%Y}9=<ͅo&S1@ө6L=dC<=|3s^ӌ|5ޟ?{tu~Gk Da< ˭k?¹r! ~pVvZkGaXp;מm6[x=n:|fo/秿p r+"ՎoaDjv"ȕn\0AiFh9 "aڬՍ1pMթW-Qg!Ĵ N”1Bv 6 j]XwsAP<FEVgcdɵ ʺB4qdMv`b eEYFb~20kulzFzr8 [VB{u]厧Mw;uSR0VYCdZӇ!SYm#"x`b\[ FvaVYXkX;XM@ &Db8ط1?J"8뀘ƯX.b2%%Aoõ MiQk!+/rG6V!?*sU:9#b | Yz]"x`bdTW@|U2#YUr[V`vDfSb^R`=L}o݈n=9 M}FW/9uK̲DZ)\6?׭i$`rf9:C3vI+K~;0{gʯmCYjiUrꈜv% ,ZZS[ȭsTb1B[2$qqeJjR*[ p}m٥t83@T =; Bw? uuB z|{^jA_@PQ |nEv-xܴݬy8,P˜( pkA]7ִ anO 8ʵV$cn{3P l( J=.aPӁ|uy!DXG `f?w6Pq;s۷A웒-C7V@ !;įvRìkˍ2"['ع~$0%f{$[HYzcf{OH)0rFN.p b>4xV*ƍ,|r͕7ZkE:]3rۡˮ9fd]90gohG㗻h?T0sӉ΋OO,Dm/5gI8K+o[$VB5X Vd:]OGK|/Rʽ@KH0({&/?sH׀4+FQkpg*=-u20O)- MfЂ[{&fcM^~!L zH"BI^~b?I(vk"ib&/?s``Y=dT#7FL #&qw%?e)xH S`8@bT P{E`.#&+З!aaŒxL3DFFt0p|_BL0X҈d԰F 4hx0MK3ԈTeg#!'hӧ%P*aF T#f1&h%DG>$ =I< w#"5uૈ1"@ҺcR4D)Ufmy<"cҚ<_ PQB+'"(Y.@c2Xu+'"pO1ְg~JqNiZ;D?b/#s N$bXGNԉ~.Ҭi; ئ4?Xvb^ļE7^ baʙNCc $!g7a w8A֐r&d~hv%#,o~cF|\d { bJ!%d~7H ," *$M'ѩfje'$9!́ b[)P bN\!{C!=ZYu_,s!Q|ݥ=1O, eSH/sx2W%B(Dez(F7ۣ_DD/%|ƏOB8' WQH/%饄}_H/%B(a# l2MK!1׈"1[/\ D%lB(: ((uAz)>YH/%Bz)aE (J2YbQB~)q#'pX/j`~B(|2E 廐)J9@. h,1B5LQZtk7LSu."JC.dw!SP L_4QH0%0L9SQ)j8}lQQ׍X}5|2#$ ]5B)&&9v§靣_jUB1(j&UE'>c?^j8җ}Wl%5Kv'H/D5<5 ַCܐ'k'xuMLo"RcR> GBz1['ZiA'"ez).R{4OUDQ#Ey\4h?>)ӻH!Ԙ/5d |!5*b BtO.E.R_(a{ Yx8)[ٞC;=I"uz%))f U6 *x%Y,>Դv ?ӻH%,@(9f B1K JXBRPNIdSwvq endstream endobj 3030 0 obj << /Type /ObjStm /N 100 /First 1041 /Length 4048 /Filter /FlateDecode >> stream x}\ˎ$WqK椛BLLݳX$-A77gn$˙q,H͢4吖Qs)yxI]#gttd|bo-GKѪG6)l$QvC8%5ZI='rVgCR |ݑ? l݇AEסiʁE%GZԢUʡ-E=&g vvF?NY9"V]GKw$SNdh1?:-'0xOy"!{3+7Z{S t h?.,cH=Ik$dzn'1]rpѺ,謇X]q]ҟfVz~?Lojd5)dhvojқRުe4N:h$&C{KݛdR&#M HM)ܚݛ[{SWob >`SכD޴fPIԀuo^,rk͖~o_o|Dhڧ?rdN{#{{xV{]㧟?}c\ wA8Ȯaj79ly}_6aps';]\(/@yc1ZP-(ow71`\D>[|,NqNnتnQ]A&vo{mG/A9" /M By gv3!< %༜dyei]0\p^.8/RR .{Y^XB߅'p7\( \vas^+6pks@n5 Q ]y3pn  @y~^ar_؅ΝX2 Fd88oD"u\~ppkF:8oFpn'3IAzs䤝pBA;тsDF+w*cNE.MG[ay^nltQ_0UU;OUD*=Ȏ,IvdAّJ2U.dA- Yx5O |Üb' + + + i24~. PNj@(w%;(oLmP47ED?&6A@^:yTx 䥟 +8ADt͈eya;{fXQ\ /me2Z /tbˌg͒gsaѶ@^vPN;* Љy(ЉnYǓoV 85xNlO"ЉM6Ko&  \ŇNl tbS"f6A@^6^ //Uƫb3F hq}hEC_#&erTl~حwm= :Pvt uMۓv _؅D4Dh^CԑXv~>þ bEՁwGAgbX{"p vin^,l~aFh( i^38/\{yn@ݞEjw4si +iy#0"u{*tpN+pNE 8H ȓ:P=ʕFBQrg (WF IF1k0"V0NjG+'ӺӺjQf,RgZAs.(oL-('! keT,RSy !re mgi͈"u{SrU!xU/Ů9=UIN$4VΜv|۳HE!'N'9- IOsS oYn"U9/V qn9a8S5W7"u{y>5ps9ϳzM5E,R ٽgSLg:yYHݞEsW\;8 9i!s9-bo֋,Rg1KИ 씹dNdX̙g~s*ghv6$f<5PSZ4XhM5;EfVNd!Y)NdDhYNm"D$NdA;@ȂpikE61i-vybTeנ3Mi5l߃g=4l ư@р HBʠ@H۞Eey /3evi?Ġ3tbnol>YA^p9! :1aЉeoYm" րA^y1RQmF-bTQE%~ 9 Ҷkts#{: HCGatzMʽ(XXGT|#j߷zz9]%ѬтڵBl& JE_p**1(b7&0:3HLG]a4DUa6qIo?}nd~)\yy|n,kmgwc dLMVcg~p7v&[[(嘓G _#8}[c[\9ƅs\ָq&m@%hܞI+d+0i%`n Ve>|D5`52q%iZv\x) RdPT$]KиSla \J[j%jKظRC\nz!LJa՗OZ\qeqE~RdYgէez4n:nH+hc&\o?tX'rLJa/PWV\f\X*Nb~u`y|ޮ.6 v?\)ay|6,߮I]JYJV3 O~5)ۊ,qco\*_1om'qnb&tP |s,~@YBWmkT%ao<e4hh4_|{{?ׯ>3N?'mt)1@qqw?kVz[\xϟ9:_Azrrrܥxӧ"]]ԗ_>+ˈ He@*vmyw嗿oPuTu 0o˿^:ׁuPZq}}>dZjA<4PNF>B ۆ9=IUQEQjx6[%y8Iڈ}[d|_z#&vd|GFCGFGzl($a_iDFiDF7K'FiDFi|=6|ɾ"("VF֔QEd  luwoIO endstream endobj 3153 0 obj << /Producer (pdfTeX-1.40.20) /Author(Thomas White; Daniel Noble; Alistair Senior; W. Kyle Hamilton; Wolfgang Viechtbauer)/Title(metadat: Meta-Analysis Datasets)/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20220405202043+02'00') /ModDate (D:20220405202043+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) kpathsea version 6.3.1) >> endobj 3131 0 obj << /Type /ObjStm /N 22 /First 208 /Length 680 /Filter /FlateDecode >> stream xڍOk0:6jь!P[aabo_ɻرlvHf֓Oo"x=!&Ta)" \D2Q\lMTeAzέI(oҊdҋO} }[VChHH` % #qVJಊ:=7mmͅB "B2jisr6Ɠli}`aY4 4c"X n*Yz@@@ 5 O^G^f@!P*#쥣S/B@! ._ qS+B". qBjD|5DGǥv+"""byPF^30Ԅ8ifh96+_@@@@1 ɭlԇ,  d'O 3>TePf*#܁K ?9߼Տ]v[=njC%В@(PznSZfx(O!Cx;dqaW^;3^ p p pG zW6AY6ȎGXyG>& ٱ+ؿp% [XxG^q3.Muȅx{1uWow[}״÷^>u*^}Km6y.|hv{p_ҍ7 endstream endobj 3154 0 obj << /Type /XRef /Index [0 3155] /Size 3155 /W [1 3 1] /Root 3152 0 R /Info 3153 0 R /ID [<238260D27CFCE937D2DF4B7972495F78> <238260D27CFCE937D2DF4B7972495F78>] /Length 7450 /Filter /FlateDecode >> stream x%yc{^<}}zMv?v}^nwht2e0# #h@EA fFD)<5 #1N-1}s~9sR( ^,T(,/~T,T殨%(VYrP]S۩|XvBBXvYfOjyj4R-j`~5WJsj5Wjj4b4jjvΨjNinmjNjnZ} ͝KmڻUT;]R;Q{vTsLIi P[vX RQ;oQ I}&?Z5@V;-{jwΩ=V?+M=!Z I!fCjq8#W.ͫ0Q65L-T|նм7Վ[p[6;pW-UDMj͒ڴ}xA-U۬E"zOŤ6*El_+^5Q '}_/x#U3E{jL`O{UT[i` j+5 "վ_rM?zq~`ڴRJj-jk_V-KyrHWר-tuBMj! ToyRߡB-wEʚٯEKvڇjEM#cD'Cm8{AhP3kHRۧF`Q;&}LV{i'})5j|^hjL {jWԞisjoo'}X{i/mS3{G{rجf !޿v:`oۿ l _T(@ў ;z%M4 _wfq; j܂0*Q{kW KP)a,EPŰ2X+`%հ:X`#lͰa+lv.B v 3~ r)[ w+_u/2xcteS p|<{b!lp֗4sp\`p b4 p[SZ?D|AԎQ8]8'3spއY|e`*\HqSu^qת'&1}-Mp.sN^8L% GCxeӰɫ `xv*lLE1< `ckb [ A1{Q4l9N~S8vg !΁x= pn; ήjlpEߍ`V [`f`lK+b ` {`/Ga[k[|0Kcw$pLxg O' -6 fY'5=pT}<x /as-f7*>騽6qGަwZ{r_ g&QߋŢ-mhEqAGq# a,>}7' M88-D擶wThK[T"Nj.jA{W*؋ŧ->miK][ڒӖգŬ} |K%}ħ->mhIRn>׎Ui M["ڗR_2vS)u WmAj R[,7S?kP{K;?HO[|Ե䴥wYI'|MPJiEs,To|X aT`1,d79z@\M!46ߝ9w+evlZvi9sz?v5oiW g]8 Q=pNWOƧ=8 <`Lr0!\+p>p $m w.5rP/ә8R;uB RZsQԅ FE.U@c}MJ[~/A]h@<׉]m)lt QǂSz,cX Nh}_JޏnE.4uLDMqDLN| _g~#4AGNr}6bW2TwNXԯ)N"QM0ԅ 4/0BA]rPa}ҕuC"ꦂ p"6a1& Cr04 "0Ეvt `h٫IN"&0 `(CPB34Sz8zPr0 fN{RKccjT!N雿>66 c5J61, Ca P04R44 /yË)}DR24 a!C"sjwSԮK\z7"0 dVTPo\$X |^~V)avy*)b㥰 X KRGJXa .mͰa+lP0R?쁽˸S^⁔~!8GXmDDJb}l;%3 g!5L?q>+.ugW߳p>J WM܅s%G99X+]F7JDW"эeYe d VekA\K%>6Dt%+]JDwdX>J/Dt%+ ]龄k gg3X)AŻoSqƻey0BXнaq*k4J +Rq7VjXkJz16A ⑯E߭ ,]P=`Ydfw*J >3p{p(q8 ]2sNi8l*^jD>Wؿ26 W*- n܀=`g&n Xɟa +3[x16y g`&"`1A!}d~&M Sv6+?MYM@"+T+jbWTփ4oߔF46wL4E)/ Mt7 mOF7<rдdy kC"49o2<<45/4?ahdts2?V"мĞNM¹?[BX'A!nC$?:rЌ@8#BG&SxW"F32dcdRIH"FďjgD# |02GR~l'#a HF3Q|KH"F&X$g$#G$ͦ=nb1D$b$#iF\WFSd$#GܯIȺM +H#9HFq{/r7 oR J n͇0Nnl&Sp2XnZnkSiu6NؘJ˿'ӰAj®TZ{/z쁽0 zҦ?] '3p.T<nÕTڻ:]pbM܅p'쏍AއcxO<^YVoR8T*}_7qٛJ/܂U݇񽥎?G|/ߋ{ay*]{^PǮ{r۔J7AOz";@zc7gC6z0' =a CޡTzvAzq' =a COhzgA,zrГ~ޥT?aP g[5ݻJ7XlDGmo.yal"=IDO"zѓD_ҷgt#JJ@1>.%pg:`>,0X K`)]S]TW?Xk no"-~wus*}Eu0nɫ;aݱnp7wu]=T}UnkWpNR'bSpރpΧώcaܣ^sx72\p " [[I$݂p܇G/| x ^}zJm*v`~$ K04! ahMc!ECr@DT؋04V{| 9hahCƆT# ah`KzרTGhijrЈ' ! yixڡAhc2|oE_h@4N t7N8Ӑ4DqD! 7`3"ЈO~@^6nrqY qoߠq?|26yNzK~-6a~#K5շznR?XRyh?&~L1c.ǕT6ۉ,06 2:^ʻуY`,9cSƘ1cDŽ#06fl Ø<ޓGWl8x!~_5Ɯa|$O}>#-r0`|Nw/c?1cVǗRGC|,c D`,c7o"0fX@8?6 1&F?{*_ ]e֮9n>Of[Y,x}>eX a1, X ao*X k`-u*f/T_lTww.B v A؟<@<+W,J9xMg cR37-O+$%?؏.U=Y mwS{3p!8 G(.p Nx98,\p >2\p >pn- w.܃9!<3x%,JSk?zrFG:rБt#9,Ģ~;wa~;wa~;wa~;wa~;wa~;wa~;wa~;wa~NHy6q#M#9AG:rБt#9AG:/@:@,:w!PTzPPPPP:R84T4T4T4T4T4TTXO+UUUq`}bR}DBBBBBBKHj2>2*32*32*32*32*32*s`33~3 ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ ̰ʈψψψψψψψψψψψψψψψψψψψψψψψψψψ'%O/>3ݸY|&AJP)a,EPŰ2X+`%հ&'w?) endstream endobj startxref 494370 %%EOF metadat/tests/0000755000176200001440000000000014223077101013030 5ustar liggesusersmetadat/tests/testthat/0000755000176200001440000000000014223277405014701 5ustar liggesusersmetadat/tests/testthat/test_dat.assink2016.r0000644000176200001440000000030714167070054020471 0ustar liggesuserscontext("Checking: dat.assink2016") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.assink2016, algo="md5"), "0ada4722449316ff2aec3621648d02b3") }) metadat/tests/testthat/test_dat.damico2009.r0000644000176200001440000000030714167070054020437 0ustar liggesuserscontext("Checking: dat.damico2009") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.damico2009, algo="md5"), "4b1d4adde9227dee3b31b0e109adb938") }) metadat/tests/testthat/test_dat.pritz1997.r0000644000176200001440000000030514167070054020370 0ustar liggesuserscontext("Checking: dat.pritz1997") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.pritz1997, algo="md5"), "d404c9d72e033e67105c0f1bee3a20fc") }) metadat/tests/testthat/test_dat.berkey1998.r0000644000176200001440000000030714167070054020504 0ustar liggesuserscontext("Checking: dat.berkey1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.berkey1998, algo="md5"), "c94bd13f07a693a3c81b44903afad980") }) metadat/tests/testthat/test_dat.hine1989.r0000644000176200001440000000030314167070054020142 0ustar liggesuserscontext("Checking: dat.hine1989") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hine1989, algo="md5"), "237ad8966750f5a26cfb917b3365fcfc") }) metadat/tests/testthat/test_dat.senn2013.r0000644000176200001440000000030314167070054020135 0ustar liggesuserscontext("Checking: dat.senn2013") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.senn2013, algo="md5"), "b845a2bc3436efff179e8c34cb99602a") }) metadat/tests/testthat/test_dat.white2020.r0000644000176200001440000000030514167070054020312 0ustar liggesuserscontext("Checking: dat.white2020") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.white2020, algo="md5"), "290a7ba0476ec60c726604ec04c8d437") }) metadat/tests/testthat/test_dat.curtis1998.r0000644000176200001440000000030714167070054020534 0ustar liggesuserscontext("Checking: dat.curtis1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.curtis1998, algo="md5"), "a6007ef1e665877559ca0d0e0315aa4c") }) metadat/tests/testthat/test_dat.hackshaw1998.r0000644000176200001440000000031314167070054021011 0ustar liggesuserscontext("Checking: dat.hackshaw1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hackshaw1998, algo="md5"), "40bf072f51b31ce8cfb0ca4272eddb84") }) metadat/tests/testthat/test_dat.linde2016.r0000644000176200001440000000030514167107602020272 0ustar liggesuserscontext("Checking: dat.linde2016") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.linde2016, algo="md5"), "33020cfa2aed4478bac3364b0dd3a9dd") }) metadat/tests/testthat/test_dat.normand1999.r0000644000176200001440000000031114167070054020655 0ustar liggesuserscontext("Checking: dat.normand1999") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.normand1999, algo="md5"), "35ddafb737cfa2d73816e9d4c5c8dd76") }) metadat/tests/testthat/test_dat.maire2019.r0000644000176200001440000000055214167070054020303 0ustar liggesuserscontext("Checking: dat.maire2019") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.maire2019$dat, algo="md5"), "a1bea482e3f89fad844e08b7b3d3d987") }) test_that("md5 hash matches for the distance matrix", { expect_match(digest(metadat::dat.maire2019$dmat, algo="md5"), "bc75d00397a71dc2c7a7e1c5f88f7e79") }) metadat/tests/testthat/test_dat.ishak2007.r0000644000176200001440000000030514167070054020276 0ustar liggesuserscontext("Checking: dat.ishak2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.ishak2007, algo="md5"), "59501e470f16259537abc9ed864cd6f1") }) metadat/tests/testthat/test_dat.cohen1981.r0000644000176200001440000000030514167070054020305 0ustar liggesuserscontext("Checking: dat.cohen1981") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.cohen1981, algo="md5"), "c74ba5b65fb0347e4842ec32276d887a") }) metadat/tests/testthat/test_dat.bourassa1996.r0000644000176200001440000000031314167070054021035 0ustar liggesuserscontext("Checking: dat.bourassa1996") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bourassa1996, algo="md5"), "ee1fd46dc621922f30596af07ab12e31") }) metadat/tests/testthat/test_dat.franchini2012.r0000644000176200001440000000031514167107436021142 0ustar liggesuserscontext("Checking: dat.franchini2012") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.franchini2012, algo="md5"), "032fe3c5d34b4479f354fffc0dafe72f") }) metadat/tests/testthat/test_dat.lau1992.r0000644000176200001440000000030114167070054017770 0ustar liggesuserscontext("Checking: dat.lau1992") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.lau1992, algo="md5"), "724e40152d092b1ba8793b20862fbb6a") }) metadat/tests/testthat/test_dat.hannum2020.r0000644000176200001440000000030714167070054020462 0ustar liggesuserscontext("Checking: dat.hannum2020") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hannum2020, algo="md5"), "e935f7ffa13d303a2b955700f07600ad") }) metadat/tests/testthat/test_dat.crede2010.r0000644000176200001440000000030514167070054020253 0ustar liggesuserscontext("Checking: dat.crede2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.crede2010, algo="md5"), "e41ba72533831f037300d67c501a09eb") }) metadat/tests/testthat/test_dat.craft2003.r0000644000176200001440000000030514167070054020272 0ustar liggesuserscontext("Checking: dat.craft2003") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.craft2003, algo="md5"), "0e314716e890ef8c3366d01c447e8992") }) metadat/tests/testthat/test_dat.bornmann2007.r0000644000176200001440000000031314167070054021010 0ustar liggesuserscontext("Checking: dat.bornmann2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bornmann2007, algo="md5"), "cd3be7c49eed994719c0f4b224e48f24") }) metadat/tests/testthat/test_dat.debruin2009.r0000644000176200001440000000031114167070054020626 0ustar liggesuserscontext("Checking: dat.debruin2009") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.debruin2009, algo="md5"), "d290a731fc4232fbf2bfd54fabcf8732") }) metadat/tests/testthat/test_dat.bakdash2021.r0000644000176200001440000000031114167070054020565 0ustar liggesuserscontext("Checking: dat.bakdash2021") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bakdash2021, algo="md5"), "cb2b2109505430e49ded3586a3ba31a1") }) metadat/tests/testthat/test_dat.colditz1994.r0000644000176200001440000000031114167070054020662 0ustar liggesuserscontext("Checking: dat.colditz1994") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.colditz1994, algo="md5"), "a8df61024006ae1ce670b7ede5b29a9d") }) metadat/tests/testthat/test_dat.hahn2001.r0000644000176200001440000000030314167070054020105 0ustar liggesuserscontext("Checking: dat.hahn2001") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hahn2001, algo="md5"), "53da7f29fb9d9d3c73af596862c5a9a9") }) metadat/tests/testthat/test_dat.viechtbauer2021.r0000644000176200001440000000032114167070054021472 0ustar liggesuserscontext("Checking: dat.viechtbauer2021") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.viechtbauer2021, algo="md5"), "2dd6203150534b3bd62dba7a329ffdf4") }) metadat/tests/testthat/test_dat.gibson2002.r0000644000176200001440000000030714167070054020455 0ustar liggesuserscontext("Checking: dat.gibson2002") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.gibson2002, algo="md5"), "5629cee5d47e75d3add44dc91ac5e4ac") }) metadat/tests/testthat/test_dat.begg1989.r0000644000176200001440000000030314167070054020123 0ustar liggesuserscontext("Checking: dat.begg1989") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.begg1989, algo="md5"), "56f50ca9aa6581fd843bd1083725ccea") }) metadat/tests/testthat/test_dat.cannon2006.r0000644000176200001440000000030714167070054020454 0ustar liggesuserscontext("Checking: dat.cannon2006") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.cannon2006, algo="md5"), "63a03f32e5f26afa8e0290b74d47655d") }) metadat/tests/testthat/test_dat.linde2005.r0000644000176200001440000000030514167070054020270 0ustar liggesuserscontext("Checking: dat.linde2005") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.linde2005, algo="md5"), "819177a7eb640f4f89b23ba11f892a5d") }) metadat/tests/testthat/test_dat.laopaiboon2015.r0000644000176200001440000000031714167070054021324 0ustar liggesuserscontext("Checking: dat.laopaiboon2015") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.laopaiboon2015, algo="md5"), "1260edb7d5c69d8bc0b507f16eaacd0c") }) metadat/tests/testthat/test_dat.kalaian1996.r0000644000176200001440000000031114167070054020614 0ustar liggesuserscontext("Checking: dat.kalaian1996") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.kalaian1996, algo="md5"), "343b709bc03b99685b8a43c2d7824bc8") }) metadat/tests/testthat/test_dat.moura2021.r0000644000176200001440000000053714215673340020326 0ustar liggesuserscontext("Checking: dat.moura2021") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.moura2021$dat, algo="md5"), "313e588a5e1d08ee541260392beb9ae3") }) test_that("md5 hash matches for the tree", { expect_match(digest(metadat::dat.moura2021$tree, algo="md5"), "78b3738727e054b2212cd16ebf1d5c6a") }) metadat/tests/testthat/test_dat.raudenbush1985.r0000644000176200001440000000031714167070054021360 0ustar liggesuserscontext("Checking: dat.raudenbush1985") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.raudenbush1985, algo="md5"), "61c451c67c7fc82375305c017c6f524a") }) metadat/tests/testthat/test_dat.stowe2010.r0000644000176200001440000000030514167107631020334 0ustar liggesuserscontext("Checking: dat.stowe2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.stowe2010, algo="md5"), "2191ce23321ec455c23daf088e09bea0") }) metadat/tests/testthat/test_dat.baker2009.r0000644000176200001440000000030514167070054020265 0ustar liggesuserscontext("Checking: dat.baker2009") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.baker2009, algo="md5"), "80fe19afb3dca58ca7be09b65cb2de4f") }) metadat/tests/testthat/test_dat.woods2010.r0000644000176200001440000000030514167107655020334 0ustar liggesuserscontext("Checking: dat.woods2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.woods2010, algo="md5"), "7159dcbf42d9bc82d53959b6fd2d8b9a") }) metadat/tests/testthat/test_dat.fine1993.r0000644000176200001440000000030314167070054020133 0ustar liggesuserscontext("Checking: dat.fine1993") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.fine1993, algo="md5"), "34a037b6745cf6b6e9afd6bb2aed7007") }) metadat/tests/testthat/test_dat.yusuf1985.r0000644000176200001440000000030514167070054020370 0ustar liggesuserscontext("Checking: dat.yusuf1985") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.yusuf1985, algo="md5"), "1204e1dd2a90ae553308cfcbe0dfb5fd") }) metadat/tests/testthat/test_dat.linde2015.r0000644000176200001440000000030514167107540020272 0ustar liggesuserscontext("Checking: dat.linde2015") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.linde2015, algo="md5"), "003effb9075e234e4c1b7e641c85ace9") }) metadat/tests/testthat/test_dat.aloe2013.r0000644000176200001440000000030314167070054020112 0ustar liggesuserscontext("Checking: dat.aloe2013") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.aloe2013, algo="md5"), "bbb5d1a536e791eba68780bb8822125a") }) metadat/tests/testthat/test_dat.hartmannboyce2018.r0000644000176200001440000000032514223077651022040 0ustar liggesuserscontext("Checking: dat.hartmannboyce2018") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hartmannboyce2018, algo="md5"), "5f8bbde96e75d8e8da450575a6b72f86") }) metadat/tests/testthat/test_dat.lopez2019.r0000644000176200001440000000030514167070054020333 0ustar liggesuserscontext("Checking: dat.lopez2019") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.lopez2019, algo="md5"), "7c4e427c79baa8549fb3c46a1aff7265") }) metadat/tests/testthat/test_dat.dong2013.r0000644000176200001440000000030314167107403020120 0ustar liggesuserscontext("Checking: dat.dong2013") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.dong2013, algo="md5"), "e94d834a5af363dfb336bf642f790957") }) metadat/tests/testthat/test_dat.anand1999.r0000644000176200001440000000030514167070054020303 0ustar liggesuserscontext("Checking: dat.anand1999") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.anand1999, algo="md5"), "83ef370cdbe1d5db37f1a3fd98676a80") }) metadat/tests/testthat/test_dat.mccurdy2020.r0000644000176200001440000000031114167070054020635 0ustar liggesuserscontext("Checking: dat.mccurdy2020") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.mccurdy2020, algo="md5"), "f3590f669053d881ac7b32fbc378229a") }) metadat/tests/testthat/test_dat.lehmann2018.r0000644000176200001440000000031114167070054020620 0ustar liggesuserscontext("Checking: dat.lehmann2018") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.lehmann2018, algo="md5"), "bfa52ac1cf59ef847c6badf23394298f") }) metadat/tests/testthat/test_dat.dorn2007.r0000644000176200001440000000030314167070054020137 0ustar liggesuserscontext("Checking: dat.dorn2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.dorn2007, algo="md5"), "1cd82454da033a25ba5d831b1626dff5") }) metadat/tests/testthat/test_dat.lee2004.r0000644000176200001440000000030114167070054017735 0ustar liggesuserscontext("Checking: dat.lee2004") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.lee2004, algo="md5"), "3d79eee16145524fe53554e9c43109e4") }) metadat/tests/testthat/test_dat.bcg.r0000644000176200001440000000027114167070054017423 0ustar liggesuserscontext("Checking: dat.bcg") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bcg, algo="md5"), "a8df61024006ae1ce670b7ede5b29a9d") }) metadat/tests/testthat/test_dat.lim2014.r0000644000176200001440000000256614167070054017771 0ustar liggesuserscontext("Checking: dat.lim2014") library(digest) test_that("md5 hash matches for the data m_o_size", { expect_match(digest(metadat::dat.lim2014$m_o_size, algo="md5"), "47c9b90b4d399147238b3d001e8cc09b") }) test_that("md5 hash matches for the data m_o_fecundity", { expect_match(digest(metadat::dat.lim2014$m_o_fecundity, algo="md5"), "5cd73c511ca7a5993d74ea3a0b01e7a4") }) test_that("md5 hash matches for the data o_o_unadj", { expect_match(digest(metadat::dat.lim2014$o_o_unadj, algo="md5"), "281630552862a8351684c375ca2f237c") }) test_that("md5 hash matches for the data o_o_adj", { expect_match(digest(metadat::dat.lim2014$o_o_adj, algo="md5"), "86870c289d85e1d914ae009bf9635529") }) test_that("md5 hash matches for the tree m_o_size_tree", { expect_match(digest(metadat::dat.lim2014$m_o_size_tree, algo="md5"), "a0d9c3c1381669abb23710059752cd18") }) test_that("md5 hash matches for the tree m_o_fecundity_tree", { expect_match(digest(metadat::dat.lim2014$m_o_fecundity_tree, algo="md5"), "553fb55660b195c5f319c147585e816e") }) test_that("md5 hash matches for the tree o_o_unadj_tree", { expect_match(digest(metadat::dat.lim2014$o_o_unadj_tree, algo="md5"), "d4006f261ce75e7cb397b1fdefe7f7c6") }) test_that("md5 hash matches for the tree o_o_adj_tree", { expect_match(digest(metadat::dat.lim2014$o_o_adj_tree, algo="md5"), "ea8b3394bef1ea32001e903b987ded89") }) metadat/tests/testthat/test_dat.collins1985a.r0000644000176200001440000000031314167070054021020 0ustar liggesuserscontext("Checking: dat.collins1985a") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.collins1985a, algo="md5"), "273f562fb6389816a296afd7fa89ab9c") }) metadat/tests/testthat/test_dat.hasselblad1998.r0000644000176200001440000000031714167070054021326 0ustar liggesuserscontext("Checking: dat.hasselblad1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hasselblad1998, algo="md5"), "40a55e4cef50d2bd0430de5163d19eb0") }) metadat/tests/testthat/test_dat.riley2003.r0000644000176200001440000000030514167070054020317 0ustar liggesuserscontext("Checking: dat.riley2003") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.riley2003, algo="md5"), "606d5e3307678b0b8b57b0a833f4d184") }) metadat/tests/testthat/test_dat.axfors2021.r0000644000176200001440000000030714167070054020477 0ustar liggesuserscontext("Checking: dat.axfors2021") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.axfors2021, algo="md5"), "d7f19500e14f2b8a383cefac7791f43f") }) metadat/tests/testthat/test_dat.nakagawa2007.r0000644000176200001440000000031314167070054020750 0ustar liggesuserscontext("Checking: dat.nakagawa2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.nakagawa2007, algo="md5"), "aef00ca12dac2cd7c27d7a8f7692ba62") }) metadat/tests/testthat/test_dat.dagostino1998.r0000644000176200001440000000031514167070054021211 0ustar liggesuserscontext("Checking: dat.dagostino1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.dagostino1998, algo="md5"), "fa0804ed25a8d0d93f91d840a315162a") }) metadat/tests/testthat/test_dat.nielweise2008.r0000644000176200001440000000031514167070054021165 0ustar liggesuserscontext("Checking: dat.nielweise2008") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.nielweise2008, algo="md5"), "f7e4d793597dadf2d314545af7555d73") }) metadat/tests/testthat/test_dat.hart1999.r0000644000176200001440000000030314167070054020156 0ustar liggesuserscontext("Checking: dat.hart1999") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hart1999, algo="md5"), "df7f6e390eede443380bb656e9262958") }) metadat/tests/testthat/test_dat.gurusamy2011.r0000644000176200001440000000031314167107476021056 0ustar liggesuserscontext("Checking: dat.gurusamy2011") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.gurusamy2011, algo="md5"), "fafe3c72ffac20364548bca7a0cbe866") }) metadat/tests/testthat/test_dat.mcdaniel1994.r0000644000176200001440000000031314167070054020770 0ustar liggesuserscontext("Checking: dat.mcdaniel1994") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.mcdaniel1994, algo="md5"), "6d9c49bc2437cd8f5cc63c38d0bc917d") }) metadat/tests/testthat/test_dat.collins1985b.r0000644000176200001440000000031314167070054021021 0ustar liggesuserscontext("Checking: dat.collins1985b") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.collins1985b, algo="md5"), "a1c5ab9525f7ad9354793073bb106164") }) metadat/tests/testthat/test_dat.nielweise2007.r0000644000176200001440000000031514167070054021164 0ustar liggesuserscontext("Checking: dat.nielweise2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.nielweise2007, algo="md5"), "05e2f281b42f16fb6be456f62b625f82") }) metadat/tests/testthat/test_dat.frank2008.r0000644000176200001440000000030514216157151020300 0ustar liggesuserscontext("Checking: dat.frank2008") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.frank2008, algo="md5"), "e0ac95d1768ec2fbd61dd7907434cb7e") }) metadat/tests/testthat/test_dat.besson2016.r0000644000176200001440000000030714167070054020472 0ustar liggesuserscontext("Checking: dat.besson2016") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.besson2016, algo="md5"), "37e9119b7f262598c930291ae0fac9af") }) metadat/tests/testthat/test_dat.baskerville2012.r0000644000176200001440000000032114167070054021474 0ustar liggesuserscontext("Checking: dat.baskerville2012") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.baskerville2012, algo="md5"), "fe6765cbaa93d7096aced942cdb5b32e") }) metadat/tests/testthat/test_dat.knapp2017.r0000644000176200001440000000030514167070054020311 0ustar liggesuserscontext("Checking: dat.knapp2017") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.knapp2017, algo="md5"), "0d866a1328248f8c6458c5127c443e02") }) metadat/tests/testthat/test_dat.bonett2010.r0000644000176200001440000000030714167070054020466 0ustar liggesuserscontext("Checking: dat.bonett2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bonett2010, algo="md5"), "ddf3b996a39cc24f594d6c2419275c99") }) metadat/tests/testthat/test_dat.bangertdrowns2004.r0000644000176200001440000000032514167070054022055 0ustar liggesuserscontext("Checking: dat.bangertdrowns2004") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bangertdrowns2004, algo="md5"), "716b3c863ecc3fd61d6a9c076732f28c") }) metadat/tests/testthat/test_dat.dogliotti2014.r0000644000176200001440000000031514167107353021177 0ustar liggesuserscontext("Checking: dat.dogliotti2014") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.dogliotti2014, algo="md5"), "8dde5871843a3ed7c62c54ae84474234") }) metadat/tests/testthat/test_dat.michael2013.r0000644000176200001440000000031114167070054020573 0ustar liggesuserscontext("Checking: dat.michael2013") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.michael2013, algo="md5"), "ff2a9079b413579d2246e0543c7f0541") }) metadat/tests/testthat/test_dat.kearon1998.r0000644000176200001440000000030714167070054020502 0ustar liggesuserscontext("Checking: dat.kearon1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.kearon1998, algo="md5"), "46bb5ea53ba8d6bb22d3cceb2f8429ac") }) metadat/tests/testthat/test_dat.pignon2000.r0000644000176200001440000000030714167070054020464 0ustar liggesuserscontext("Checking: dat.pignon2000") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.pignon2000, algo="md5"), "50b607c84d1ac4cdf03ce4cbcc7a7e20") }) metadat/tests/testthat/test_dat.vanhowe1999.r0000644000176200001440000000031114167070054020666 0ustar liggesuserscontext("Checking: dat.vanhowe1999") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.vanhowe1999, algo="md5"), "3300d41b67fb79766dbb1e8fff7e50b0") }) metadat/tests/testthat/test_dat.landenberger2005.r0000644000176200001440000000032314167070054021625 0ustar liggesuserscontext("Checking: dat.landenberger2005") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.landenberger2005, algo="md5"), "787f5762af4701c33cf1ca7548e54fea") }) metadat/tests/testthat/test_dat.tannersmith2016.r0000644000176200001440000000032114205661725021535 0ustar liggesuserscontext("Checking: dat.tannersmith2016") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.tannersmith2016, algo="md5"), "bda45667a6c6b6e7c24c5abfc91590de") }) metadat/tests/testthat/test_dat.pagliaro1992.r0000644000176200001440000000031314167070054021010 0ustar liggesuserscontext("Checking: dat.pagliaro1992") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.pagliaro1992, algo="md5"), "7560844add63d1c6c7b44847b05da7aa") }) metadat/tests/testthat/test_dat.molloy2014.r0000644000176200001440000000030714167070054020512 0ustar liggesuserscontext("Checking: dat.molloy2014") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.molloy2014, algo="md5"), "289c001827c4d4104b2c02bd71334469") }) metadat/tests/testthat/test_dat.li2007.r0000644000176200001440000000027714167070054017613 0ustar liggesuserscontext("Checking: dat.li2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.li2007, algo="md5"), "48172cc79e9a18e841fa23cb35d5b756") }) metadat/tests/testthat/test_dat.egger2001.r0000644000176200001440000000030514167070054020262 0ustar liggesuserscontext("Checking: dat.egger2001") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.egger2001, algo="md5"), "390720b458d2f33ffa043578d6b30654") }) metadat/tests/testthat/test_dat.konstantopoulos2011.r0000644000176200001440000000033114167070054022453 0ustar liggesuserscontext("Checking: dat.konstantopoulos2011") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.konstantopoulos2011, algo="md5"), "ccc4a7cee29012013552e2dca1c634a4") }) metadat/tests/testthat/test_dat.graves2010.r0000644000176200001440000000030714167070054020462 0ustar liggesuserscontext("Checking: dat.graves2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.graves2010, algo="md5"), "3bff074ad3ea13da4c5e67f33265709d") }) metadat/tests/testthat/test_dat.obrien2003.r0000644000176200001440000000030714167070054020453 0ustar liggesuserscontext("Checking: dat.obrien2003") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.obrien2003, algo="md5"), "f46831024c5e7c0ca64607327fa1987e") }) metadat/tests/testthat.R0000644000176200001440000000023214223075431015014 0ustar liggesusers# to also run skip_on_cran() tests, uncomment: #Sys.setenv(NOT_CRAN="true") library(testthat) library(metadat) test_check("metadat", reporter="summary") metadat/R/0000755000176200001440000000000014206422210012063 5ustar liggesusersmetadat/R/prep_dat.r0000644000176200001440000001246314167070054014065 0ustar liggesusersprep_dat <- function(rebuild=FALSE, overwrite, pkgdir) { cat("\n") # if 'pkgdir' argument is unspecified, assume it is the current working directory if (missing(pkgdir)) { pkgdir <- normalizePath(".") cat("Package root directory:", pkgdir, "\n\n") } # check if package root directory actually exists and that it has # a DESCRIPTION file with "Package: metadat" in the first line if (dir.exists(pkgdir)) { if (!file.exists(paste0(pkgdir, "/DESCRIPTION"))) stop("No DESCRIPTION file in the package root directory.") if (readLines(paste0(pkgdir, "/DESCRIPTION"), n=1) != "Package: metadat") stop("DESCRIPTION file in the package root directory is not for the 'metadat' package.") } else { stop("Specified 'pkgdir' directory does not exist.") } data_raw.dir <- paste0(pkgdir, "/data-raw/") data.dir <- paste0(pkgdir, "/data/") man.dir <- paste0(pkgdir, "/man/") # check that directories actually exist if (!dir.exists(data_raw.dir)) stop("Cannot find 'data-raw' directory.") if (!dir.exists(data.dir)) stop("Cannot find 'data' directory.") if (!dir.exists(man.dir)) stop("Cannot find 'man' directory.") # load .rfiles.txt (if it exists) if (file.exists(paste0(data_raw.dir, ".rfiles.txt"))) { .rfiles <- read.table(paste0(data_raw.dir, ".rfiles.txt"), header=FALSE, as.is=TRUE)[[1]] } else { .rfiles <- NULL } # try running Rscript tmp <- try(suppressWarnings(system2("Rscript", args="-e 1", stdout=TRUE, stderr=TRUE)), silent=TRUE) if (inherits(tmp, "try-error")) stop("Cannot run 'Rscript'. Make sure that Rscript/Rscript.exe is on the system path.") # get names of all data preparation scripts (.r/.R files) in the 'data-raw' directory rfiles <- list.files(path=data_raw.dir, pattern=".[rR]$") # paste header for output cat("File", paste0(rep(" ", max(nchar(rfiles))-4), collapse=""), "new ", "rda ", "build ", "Rd ", "create", "\n") cat(paste0(rep("-", max(nchar(rfiles))+29), collapse=""), "\n") # process all data preparation scripts for (i in seq_along(rfiles)) { # paste name of the data preparation script (and enough space to align everything) cat(rfiles[i], paste0(rep(" ", max(nchar(rfiles))-nchar(rfiles[i])+1), collapse="")) # check if the data preparation file is already in .rfiles.txt rfile.exists <- rfiles[i] %in% .rfiles # [new]: paste T/F if it is a new script or not cat(ifelse(!rfile.exists, "T ", "F ")) # get 'root' name of the data preparation script (remove .r/.R extension) root <- substr(rfiles[i], 1, nchar(rfiles[i])-2) # get names of all .rda files in the 'data' directory rda.files <- list.files(path=data.dir, pattern=".rda$") # grep names of all ..rda files (could be one or multiple) rda.files <- grep(paste0("^", root, ".*.rda"), rda.files, value=TRUE) # check if ..rda files already exist rda.files.exist <- ifelse(length(rda.files) > 0, TRUE, FALSE) # [rda]: paste T/F if the rda files already exist or not cat(ifelse(rda.files.exist, "T ", "F ")) # if rebuild=TRUE or if the rda files do not exist, try running the data preparation script # [build]: paste T/F if the data processing script was run (without error) if (rebuild || !rda.files.exist) { #rfilerun <- try(source(paste0(data_raw.dir, rfiles[i])), silent=TRUE) #if (inherits(rfilerun, "try-error")) { # run each script in its own independent process cmd <- paste0(data_raw.dir, rfiles[i]) out <- suppressWarnings(system2("Rscript", cmd, stdout=TRUE, stderr=TRUE)) if (isTRUE(attributes(out)$status == 1)) { warning("Error while running ", rfiles[i], ".", call.=FALSE) cat("F ") } else { cat("T ") } } else { cat("F ") } # list all files in the 'data' directory (possibly includes non-.rda files) data.files <- list.files(path=data.dir) # check if there are now any non-.rda files in 'data'; if so, throw an error if (any(tools::file_ext(data.files) != "rda")) stop("\n\nThere are non-.rda files in the 'data' directory.\nData preparation scripts must create only .rda files.") # check if .Rd file exists in 'man' directory rd.exists <- file.exists(paste0(man.dir, root, ".Rd")) # [Rd]: paste T/F if .Rd file exists or not if (rd.exists) { cat("T ") } else { cat("F ") } # if it doesn't exist or if it is in 'overwrite' vector, create template .Rd file # [create]: paste T/F if template .Rd file is created if (!rd.exists || !missing(overwrite) && paste0(root, ".Rd") %in% overwrite) { cat("T ") .rd_generator(root, pkgdir, overwrite) } else { cat("F ") } cat("\n") } # make sure every .rda file in 'data' is lower case for (data.file in data.files) { file.rename(paste0(data.dir, data.file), paste0(data.dir, tolower(data.file))) } # write updated .rfiles.txt file to 'data-raw' directory write.table(rfiles, file=paste0(data_raw.dir, ".rfiles.txt"), row.names=FALSE, col.names=FALSE) cat("\n") } metadat/R/datsearch.r0000644000176200001440000002341014216155671014223 0ustar liggesusersdatsearch <- function(pattern, concept=TRUE, matchall=TRUE, fixed=TRUE, pkgdown=FALSE) { # immediately show warnings when they arise opwarn <- options(warn=1) on.exit(options(warn=opwarn$warn)) # load rdtxt object (list with the plain-text help files) tmpenv <- new.env(parent=emptyenv()) load(paste0(find.package("metadat"), "/help.rdata"), envir=tmpenv) if (missing(pattern)) { interactive <- TRUE cat("\n") } else { interactive <- FALSE } while (TRUE) { if (interactive || is.null(pattern)) pattern <- readline(prompt = "Enter your search term(s) (? for help; to exit): ") if (!is.character(pattern)) { warning("Argument 'pattern' must be a string (vector).") pattern <- NULL next } if (interactive && identical(pattern, "q")) { cat("\n") break } if (interactive && identical(pattern, "?")) { cat("\n") cat("Enter one or multiple search terms at the prompt. Multiple search terms can be\n") cat("separated using a comma, semi-colon, or 'and'. The search either pertains to the\n") cat("concept terms or the full text of the help files. Datasets matching all or any of\n") cat("search terms are returned. For a full-text search, one can specify fixed strings\n") cat("or use regular expressions. Either the standard help file for a chosen dataset will\n") cat("be shown or the corresponding pkgdown docs at https://wviechtb.github.io/metadat/.\n") cat("\n") cat(" key description setting\n") cat(" --------------------------------------------------------------------------------\n") cat(" a list all datasets contained in the metadat package\n") cat(" l list the concept terms that have been used at least once\n") cat(" c toggle between a concept term search or a full-text search ", ifelse(concept, "concept", "full-text"), "\n") cat(" m toggle between matching of all search terms or any of them ", ifelse(matchall, "all", "any"), "\n") cat(" f toggle between fixed string matching or use of regular expressions ", ifelse(fixed, "fixed", "regexp"), "\n") cat(" p toggle between showing the standard help files or the pkgdown docs ", ifelse(pkgdown, "pkgdown", "standard"), "\n") cat("\n") pattern <- NULL next } if (interactive && identical(pattern, "")) { cat("\n") return(invisible()) } if (interactive && identical(pattern, "a")) pattern <- "" if (interactive && identical(pattern, "l")) { cat(" In terms of fields/topics, the following terms have been used at least once: alternative medicine, attraction, cardiology, climate change, covid-19, criminology, dentistry, ecology, education, engineering, epidemiology, evolution, genetics, human factors, medicine, memory, obstetrics, oncology, persuasion, primary care, psychiatry, psychology, smoking, social work, sociology. In terms of outcome measures, the following terms have been used at least once: correlation coefficients, Cronbach's alpha, hazard ratios, incidence rates, raw mean differences, odds ratios, proportions, ratios of means, raw means, risk differences, risk ratios, (semi-)partial correlations, standardized mean changes, standardized mean differences. In terms of models/methods/concepts, the following terms have been used at least once: cluster-robust inference, component network meta-analysis, cumulative meta-analysis, diagnostic accuracy studies, dose response models, generalized linear models, longitudinal models, Mantel-Haenszel method, meta-regression, model checks, multilevel models, multivariate models, network meta-analysis, outliers, Peto's method, phylogeny, publication bias, reliability generalization, single-arm studies, spatial correlation.") cat("\n\n") pattern <- NULL next } if (interactive && identical(pattern, "c")) { concept <- !concept message("Switching to a ", ifelse(concept, "concept term search.", "full-text search.")) pattern <- NULL next } if (interactive && identical(pattern, "m")) { matchall <- !matchall message("Switching to matching of ", ifelse(matchall, "all search terms.", "any search term.")) pattern <- NULL next } if (interactive && identical(pattern, "f")) { fixed <- !fixed message("Switching to ", ifelse(fixed, "fixed string matching.", "use of regular expressions.")) pattern <- NULL next } if (interactive && identical(pattern, "p")) { pkgdown <- !pkgdown message("Switching to showing the ", ifelse(pkgdown, "pkgdown docs.", "standard help files.")) pattern <- NULL next } ######################################################################## # for a concept term search or fixed-term full-text search, can specify a # single pattern separated by "," or ";" or "and" or "AND" which will # automatically be split into separate patterns if (pattern != "" && (concept || fixed)) { pattern <- strsplit(pattern, ",", fixed=TRUE) pattern <- unlist(pattern) pattern <- strsplit(pattern, ";", fixed=TRUE) pattern <- unlist(pattern) pattern <- strsplit(pattern, " and ", fixed=TRUE) pattern <- unlist(pattern) pattern <- strsplit(pattern, " AND ", fixed=TRUE) pattern <- unlist(pattern) pattern <- trimws(pattern) } # number of patterns specified n <- length(pattern) # search for relevant datasets matches <- list() if (concept) { for (i in 1:n) { matches[[i]] <- utils::help.search(pattern[i], package="metadat", fields="concept")$matches } } else { for (i in 1:n) { hits <- try(grep(ifelse(fixed, tolower(pattern[i]), pattern[i]), tmpenv$rdtxt, fixed=fixed), silent=TRUE) # grep for pattern in rdtxt if (inherits(hits, "try-error")) { warning(paste0("Search pattern '", pattern[i], "' is not a valid regular expression that can be searched for."), call.=FALSE) hits <- "none" } else { hits <- names(tmpenv$rdtxt)[hits] # get names of datasets that match if (length(hits) == 0) hits <- "none" } matches[[i]] <- do.call(rbind, lapply(hits, function(x) utils::help.search(x, package="metadat", fields="name")$matches)) } } all.matches <- do.call(rbind, matches) if (matchall) { matches <- all.matches[all.matches$Name %in% Reduce(intersect, lapply(matches, function(x) x$Name)),] } else { matches <- all.matches } # if nothing is found if (is.null(matches) || nrow(matches) == 0) { cat('No results found.\n') if (!interactive) { cat("\n") return(invisible()) } pattern <- NULL next } # keep unique matches matches$Entry <- NULL matches <- unique(matches) # get names and titles of matching datasets names <- matches$Name titles <- matches$Title if (length(names) == 1L) { message("Single match found - showing the help file for this dataset.") # if there is only one match, automatically select this match if (pkgdown) { url <- paste0("https://wviechtb.github.io/metadat/reference/", names[1], ".html") browseURL(url) } else { print(help(names[1], package="metadat")) } } else { # otherwise prompt the user to select one of the matches # shorten titles to avoid line wrapping width <- options("width")$width width.names <- nchar(names) width.titles <- nchar(titles) max.width.titles <- width - max(width.names) - 10 titles <- ifelse(width.titles > max.width.titles, paste0(substr(titles, 1, max.width.titles), "..."), titles) # print names and titles of matches cat("\n") print(data.frame(Name = names, Title = titles), right=FALSE) cat("\n") while (TRUE) { if (interactive) { sel <- readline(prompt = "Choose the number of the dataset you would like to see (or to do a new search): ") } else { sel <- readline(prompt = "Choose the number of the dataset you would like to see (or to exit): ") } if (identical(sel, "p")) { pkgdown <- !pkgdown message("Switching to showing the ", ifelse(pkgdown, "pkgdown docs.", "standard help files.")) next } if (identical(sel, "") || identical(sel, "0")) { cat("\n") if (!interactive) return(invisible()) break } sel <- suppressWarnings(round(as.numeric(sel))) if (is.na(sel)) { message("Must enter a dataset number.") next } if (sel < 1 || sel > length(titles)) { message(paste0("Dataset number must be between 1 and ", length(titles), ".")) next } # show the help file if (pkgdown) { url <- paste0("https://wviechtb.github.io/metadat/reference/", names[sel], ".html") browseURL(url) } else { print(help(names[sel], package="metadat")) } } } pattern <- NULL } } metadat/R/rd_generator.r0000644000176200001440000000613514167070054014741 0ustar liggesusers# Main function for generating docs .rd_generator <- function(study_name, dir, overwrite) { # Add any studies whose documentation is to be overwritten if (!missing(overwrite)) { study_name <- c(study_name, overwrite) study_name <- gsub(".Rd", "", study_name) # remove file ext if need be } # Loop through datasets and create template documentation # Will only be > 1 if overwrite is specified for (i in seq_along(study_name)) { # Open new file connection con <- try(file(file.path(paste0(dir, "/man/"), paste0(study_name[i], ".Rd")), "w")) # Write the single preamble write.table(.preamble_table(study_name[i]), con, row.names = FALSE, col.names = FALSE, quote = FALSE) # Write the meta-data table header write.table(.tabular(study_name[i]), con, row.names = FALSE, col.names = FALSE, quote = FALSE) # Load dataset data <- get(load(paste0(dir, "/data/", as.character(study_name[[i]]), ".rda"))) # Write main metadata write.table(.meta_dat_table(data), con, row.names = FALSE, col.names = FALSE, quote = FALSE, na = "") # Write the postamble write.table(.postamble_table(study_name[i]), con, row.names = FALSE, col.names = FALSE, quote = FALSE) # Close the file connection close(con) } } # Generate preamble .preamble_table <- function(study.name) { name <- paste0("\\name{", study.name, "}") docType <- "\\docType{data}" alias <- paste0("\\alias{", study.name, "}") title <- "\\title{ADD_TITLE}" descrp <- "\\description{ADD_DESCRIPTION}" use <- paste0("\\usage{\n", study.name, "\n}") format <- paste0("\\format{") out <- rbind(name, docType, alias, title, descrp, use, format) return(data.frame(out, stringsAsFactors = FALSE, row.names = 1:nrow(out))) } # Generate table start .tabular <- function(study.name) { info <- paste0("The data frame contains the following columns:") tabular <- "\\tabular{lll}{" out <- rbind(info, tabular) } # Generate metadata table .meta_dat_table <- function(data) { variables <- paste0("\\bold{", colnames(data), "}") type <- paste0("\\tab", " ", "\\code{", as.vector(sapply(data, class)), "}") descrp <- rep(paste0("\\tab", " ADD_DESCRIPTION ", "\\cr"), length = length(variables)) closer <- c("}", NA, NA) meta_dat_table <- cbind(variables, type, descrp, deparse.level = 0) meta_dat_table <- rbind(meta_dat_table, closer) return(data.frame(meta_dat_table, stringsAsFactors = FALSE, row.names = 1:nrow(meta_dat_table))) } # Generate postamble .postamble_table <- function(study.name) { closer <- "}" details <- "\\details{ADD_DETAILS}" source <- "\\source{ADD_REFERENCE}" author <- "\\author{ADD_CONTRIBUTOR_NAME, \\email{ADD_EMAIL}}" eg1 <- "\\examples{" eg2 <- "### copy data into 'dat' and examine data" eg3 <- paste0("dat <- ", study.name) eg4 <- "dat\n" eg5 <- "\\dontrun{\n" eg6 <- "ADD_DETAILED_EXAMPLE\n" keyword <- "\\keyword{datasets}" concept <- "\\concept{ADD_CONCEPT}" out <- rbind(closer, details, source, author, eg1, eg2, eg3, eg4, eg5, eg6, closer, closer, keyword, concept) return(data.frame(out, stringsAsFactors = FALSE, row.names = 1:nrow(out))) } metadat/NEWS.md0000644000176200001440000000170014223072310012757 0ustar liggesusers# metadat 1.2-0 (2022-04-05) - added some more info to `dat.knapp2017` - added `dat.bakdash2021`, `dat.baker2009`, `dat.dogliotti2014`, `dat.dong2013`, `dat.franchini2012`, `dat.frank2008`, `dat.gurusamy2011`, `dat.hartmannboyce2018`, `dat.lehmann2018`, `dat.linde2015`, `dat.linde2016`, `dat.mccurdy2020`, `dat.michael2013`, `dat.stowe2010`, `dat.tannersmith2016`, `dat.woods2010` - changed concept term 'mean differences' to 'raw mean differences' (to better distinguish it from the concept 'standardized mean differences') - help files now include a 'Concepts' section listing the concept terms - improved `datsearch()` function (added an interactive mode, single match opens directly, enter exits, can include commas to split up multiple patterns, continue prompting until exit) # metadat 1.0-0 (2021-08-20) - first CRAN release # metadat 0.2-0 (2021-08-07) - overhaul and preparations for first release # metadat 0.1-0 (2019-04-08) - initial setup metadat/MD50000644000176200001440000003735114223277405012220 0ustar liggesusersd4cc6898b4f440836044d39e84c6d30d *DESCRIPTION faf9a8357bbb8ba7eb8b12b21fbf1702 *NAMESPACE 2021e19d53e6de07290b0f797a56a8d6 *NEWS.md 637d55a857d8bb270f8f17638afad4b7 *R/datsearch.r 8858bc066441139934e3250cf6a1d8bb *R/prep_dat.r cea7ace0cb3b94b3332627d9071cbd3a *R/rd_generator.r d24a215093f3ee42ab689a081e87cbf1 *README.md 807025479c037b617a2066bcc4c67c85 *build/metadat.pdf b25cd840961fe0bb9b03bee6caa3e257 *data/dat.aloe2013.rda fc5f94daf3362d2b1e154354f841e9e7 *data/dat.anand1999.rda d196b2bd78739f92dfdec8dffd3f37a4 *data/dat.assink2016.rda 5832ff057c37e39e5de3f841eb1c1b94 *data/dat.axfors2021.rda 1d53859fed5869efff8f704afabd0a85 *data/dat.bakdash2021.rda db179c8f4902b7b491eb33d7471069ff *data/dat.baker2009.rda 37889fdbde6df5f8d7ed448b3e2e8e68 *data/dat.bangertdrowns2004.rda d8154ab22478d2c8d902a8a4425ab902 *data/dat.baskerville2012.rda 3ec26e60ec2de37793d06a9bfa05b73f *data/dat.bcg.rda ce0131936cfb180e7fc71029c21c2b09 *data/dat.begg1989.rda b80c4e0007460a198bcc37132333ae7b *data/dat.berkey1998.rda 7aaf10fdbdd41aa5e2832fcdfa559985 *data/dat.besson2016.rda 3764e051cc3476292ccac59646c654fb *data/dat.bonett2010.rda 5c2e38c73ea1c36d1476fff4154e1be6 *data/dat.bornmann2007.rda ee5c3a590333ba1a58ac96509979fced *data/dat.bourassa1996.rda c3392284eef638200c031a5fbc686463 *data/dat.cannon2006.rda 9ae12121dac07f42f4a5857c925d03a8 *data/dat.cohen1981.rda 314a3003a5cd3ecfd016c2c7f04163ec *data/dat.colditz1994.rda ed7820425a8d716da2f4c6741a010e53 *data/dat.collins1985a.rda 9f9feab52b7227c6e119eb7032e7f337 *data/dat.collins1985b.rda 12c72409e80e51a515190a9b135b9e6e *data/dat.craft2003.rda 89541fe7c8956c973c328eeebe79a607 *data/dat.crede2010.rda ac13c3f8cd813d6fb4a0cd2e72ab1b41 *data/dat.curtis1998.rda 57418118aeb7d5cd30d391aec0df4d54 *data/dat.dagostino1998.rda 93eec04820c0831ca7fc1c9c66a236d9 *data/dat.damico2009.rda 6411e291d3e56ad45a19fd17873c8f81 *data/dat.debruin2009.rda 4139df5f20150514bdd078b50d9d0208 *data/dat.dogliotti2014.rda d625b9c740df7d7f503d9bf7ef1ae978 *data/dat.dong2013.rda 6603aae7df999ed48edebe99378ca6c8 *data/dat.dorn2007.rda 0b7457c75b6595af51a3864b7e9a5d84 *data/dat.egger2001.rda 4b32bc610b772234decb00cfc0743f35 *data/dat.fine1993.rda 7b177760320d8b8bddcf16a78be84436 *data/dat.franchini2012.rda 62eca59780eb36dd343bcef615a14acc *data/dat.frank2008.rda e5f6398a505ffc847c8c87a214b55307 *data/dat.gibson2002.rda 7ea364a88c0c92f47b882ef5e1f18c50 *data/dat.graves2010.rda f376c31d195f93241ba1414259b203e4 *data/dat.gurusamy2011.rda a3956f2bcd860d9ff22b396023aa18e5 *data/dat.hackshaw1998.rda 18ed6f4f9b2ac9681e4203f90964f4ea *data/dat.hahn2001.rda 8f4eeb051ee2e903a04e04940252534c *data/dat.hannum2020.rda f0572410aa69a94c6a5654ab7fbd45b0 *data/dat.hart1999.rda 15d38ee3f74e9d99a674e5be5a573c86 *data/dat.hartmannboyce2018.rda 6c763bb035afeddfad51ee394960e0c4 *data/dat.hasselblad1998.rda 799dbb6bf6880cf494f113e6cda6601f *data/dat.hine1989.rda 3b53084d40d64b9dbf0e9492e3bf11ab *data/dat.ishak2007.rda 8b88112c01600abde9569e5c16e90fa8 *data/dat.kalaian1996.rda 081c715da3f46c11ee6f29e4bf79789b *data/dat.kearon1998.rda 020bce9e0557339a605be972f8abdc07 *data/dat.knapp2017.rda 2b4a3edf628b3ca0a0bde4f208d98df8 *data/dat.konstantopoulos2011.rda 22a6fe4e9acb840192446250d20f5a7c *data/dat.landenberger2005.rda 76f3f944cac9a78f9c31bdb420a0ab28 *data/dat.laopaiboon2015.rda 4a13c550bf520fda687c08c9ecdb03a4 *data/dat.lau1992.rda f4d6f921fb1a997ad752a1e7ee790710 *data/dat.lee2004.rda 173b7f273ca800e361653c35ea0448e2 *data/dat.lehmann2018.rda 64f926a97e91ae3455ea29575af4517c *data/dat.li2007.rda 6b9c51bb78d61f10127412f859107005 *data/dat.lim2014.rda f23b6daa1bdf516735d0a4bc1d724fa8 *data/dat.linde2005.rda 7d171d8241fa9faaa87f0e96cbc5853b *data/dat.linde2015.rda 17215921c8b86085d1702281c4024d03 *data/dat.linde2016.rda e72c85c8a68d5a8a3296ae4a4105eb9f *data/dat.lopez2019.rda 670cd887d0869c100fdeea416401c869 *data/dat.maire2019.rda 69652edc29db9dbd840a8da3a660cc10 *data/dat.mccurdy2020.rda 32834748ac81624938df3bed62e794f8 *data/dat.mcdaniel1994.rda 299442b58bd586be3b498b0e8c3e5ec9 *data/dat.michael2013.rda 85d2235e377ece9de592f7aeb0e389c5 *data/dat.molloy2014.rda 31777daa30c17271603a4f11bf8097fe *data/dat.moura2021.rda 8f6a1d16e1005443305a6dad26ee2afd *data/dat.nakagawa2007.rda 9a9775aa509890991d6362f5bc17f57a *data/dat.nielweise2007.rda cc711b309a289dab5401564a514f3eb8 *data/dat.nielweise2008.rda 0c2bfb4beaa4eb90fe8dfaebafc1f550 *data/dat.normand1999.rda a4fb8bf06e332863e671bf1af2480a8b *data/dat.obrien2003.rda c45cbde114b43382ec3430ebf7a4b9ca *data/dat.pagliaro1992.rda 1c6cf0ca3ddfde297b3c7a2b44fca35f *data/dat.pignon2000.rda e8895304ce4b84fe83d7b3906c28e213 *data/dat.pritz1997.rda 94daab31e35508163c2c982745bf3760 *data/dat.raudenbush1985.rda cb5fcd4e17fd6afc72970698b93280e1 *data/dat.riley2003.rda 40ea52573d2514f52449c481188b3770 *data/dat.senn2013.rda 154f413d1721bd490ded93dc1f662b93 *data/dat.stowe2010.rda 7036ab51c2170c2bb65e4b640c39b8cb *data/dat.tannersmith2016.rda f0e32ad2d83ea23abbf87dd41659d99a *data/dat.vanhowe1999.rda 77225c8fd8cae353efb9bae5fee658ce *data/dat.viechtbauer2021.rda a96c2a52c4cca9babff5691674f42649 *data/dat.white2020.rda 1438a6fe8bc4c99fb5a055cf57ac9307 *data/dat.woods2010.rda aa5fe6da8580bed7bf8112379614ee25 *data/dat.yusuf1985.rda da11bf564ac39f9255f69afe72e1c31c *inst/help.rdata 8b0414d7cbc33687f969f2112020ba57 *man/dat.aloe2013.Rd 9f31374e6203ad717cdb8285ee57d2c9 *man/dat.anand1999.Rd d76cef312f7e8d2caa9a596c370eb2c3 *man/dat.assink2016.Rd 171aab191e8ac5114a97a245dfb94fee *man/dat.axfors2021.Rd c3b36bcfbb49af6b64869b97690a729e *man/dat.bakdash2021.Rd 409d58440114d5d6c9c28b47fecedc0e *man/dat.baker2009.Rd ee8ba421452db7e77ebfc9cf483df569 *man/dat.bangertdrowns2004.Rd d16fea62e4aba39c361d44c9cfa57399 *man/dat.baskerville2012.Rd a1399fae676e19b432bb4b34e36f7a31 *man/dat.bcg.Rd 861532e565066d6547b227728b309c31 *man/dat.begg1989.Rd 05c6cae077ed1292f49a227b3a87ddb9 *man/dat.berkey1998.Rd 84dcc2136f318bc435b6ad2552420da6 *man/dat.besson2016.Rd 7573eaaed06c5b1b192ba0ec1097eafd *man/dat.bonett2010.Rd 4ebfe1a998503913562dfc393bf5baa6 *man/dat.bornmann2007.Rd 0409b0043b6cf251f0e576c423e86f7b *man/dat.bourassa1996.Rd f16773ba291c4c4ef81a5e130890ff00 *man/dat.cannon2006.Rd a7f2eb25112fb4746abba8e2d82719a4 *man/dat.cohen1981.Rd b0e0f30fd10a39fb553fca36e4385603 *man/dat.colditz1994.Rd ade7beedf238c603cc5284342baff844 *man/dat.collins1985a.Rd 4aaed7dae847c7be54786983818a5fe6 *man/dat.collins1985b.Rd 9d71756ba6e2b183be5402178ac1a7ae *man/dat.craft2003.Rd 795a4b6f7080a89782fe5375a8f1114c *man/dat.crede2010.Rd 64c67670c951cc81bdf18b534942d3cb *man/dat.curtis1998.Rd fb399a4208b5e21da373b19e2cdfa438 *man/dat.dagostino1998.Rd 9428454abfbbd83e434178d322c13406 *man/dat.damico2009.Rd ff0bbc539fa9eda98319075027837390 *man/dat.debruin2009.Rd e457e12bcd22c9658819d7420dd1a7b9 *man/dat.dogliotti2014.Rd be755b62e843718659a2020bdde4bdb7 *man/dat.dong2013.Rd 107b6eaa0ed2c8e8fe93e9b3c86f46dd *man/dat.dorn2007.Rd d8d13ff9e3b5b77988db5ae03aabc8d3 *man/dat.egger2001.Rd 70d4c84edbd723c24127297db0610f23 *man/dat.fine1993.Rd cc430d0c0c6b00e2a46d48934a9b28ff *man/dat.franchini2012.Rd 030423d96045c19199597a44476015ed *man/dat.frank2008.Rd 63711b3f6bc77937d671ef1e348af681 *man/dat.gibson2002.Rd 85ebbc070c42f6e6f3134b4d7a5fec29 *man/dat.graves2010.Rd 2fa02db25f2f3998505ad6517022e757 *man/dat.gurusamy2011.Rd b689bbe2ab5bb4e29f83d6639fb09a90 *man/dat.hackshaw1998.Rd 0fd1a8976f7930d125b6fb5bb6a30f32 *man/dat.hahn2001.Rd f0f7ad02eebe94c4d4bffa7816898b97 *man/dat.hannum2020.Rd 23591097f070725933ac1f68fad87155 *man/dat.hart1999.Rd 8ff3c5ffe7767ed3ae40a776e1ecd9a4 *man/dat.hartmannboyce2018.Rd 9c3b9391c037d5162a683578d53e551a *man/dat.hasselblad1998.Rd c60c4cee029f8dee29edc3de576af146 *man/dat.hine1989.Rd c6f5786d404088604dc7173c1bf882a8 *man/dat.ishak2007.Rd 597751c04670707829f5d7934308e568 *man/dat.kalaian1996.Rd 1be986fe58c3c7c668075da4592cabb5 *man/dat.kearon1998.Rd 10801556b6ab20d8032ba90ad4d8338b *man/dat.knapp2017.Rd 8088a3ddf805df14ffbedf7273cf3dff *man/dat.konstantopoulos2011.Rd 621deb733eb8326d9a7641931c9a1f4c *man/dat.landenberger2005.Rd 7b8c0494ab52d02382b4af6b7030c440 *man/dat.laopaiboon2015.Rd 5c0de5364b74dfc3bb9a281adec9b942 *man/dat.lau1992.Rd bfc9c5d7612d8023104415d188eb1049 *man/dat.lee2004.Rd 1f17b0bb230edd678a3bdadffd045062 *man/dat.lehmann2018.Rd b76c59d9da35e4205dd3e7bee92385ca *man/dat.li2007.Rd 0a80eb30b7909de031d4c120534950b6 *man/dat.lim2014.Rd 897f22b3ba3704a82c6a727c1088830d *man/dat.linde2005.Rd 5d32f29b26a19ca8bab4de77818a8fc1 *man/dat.linde2015.Rd cdd126e190fe31f53e4edbbfebd6bcfb *man/dat.linde2016.Rd 8b9ba8366696dfdcc4a1066baaf8eb59 *man/dat.lopez2019.Rd 40aea299fc391f09e51e7a5988620346 *man/dat.maire2019.Rd affda188ff5804dde2cc099cf8e10046 *man/dat.mccurdy2020.Rd 4dbd8594f654999fac5955172b7e61a9 *man/dat.mcdaniel1994.Rd 537bb8e296a2d6f9375ceecfefe3db1a *man/dat.michael2013.Rd 9bc9570b108d571aaddf00c417832e16 *man/dat.molloy2014.Rd daa25d6a71a747d5b092fa5edff89a87 *man/dat.moura2021.Rd 2b0da7ae823c0f7362ccfa1574eaa977 *man/dat.nakagawa2007.Rd 0a7fee83f43d492840b096c5bb1d5009 *man/dat.nielweise2007.Rd 313a8b4c85d69750c7f77293340f33ba *man/dat.nielweise2008.Rd c3dfa5c89d6ecce24031762eeba5e6c0 *man/dat.normand1999.Rd 7134e975ca85cfac7b9b078f71340920 *man/dat.obrien2003.Rd 66ee941e23803ee2db257f6736056d75 *man/dat.pagliaro1992.Rd 9d1981f482a59c9fbb4b6dd488d959a2 *man/dat.pignon2000.Rd 31da0b634d50fc0acee56676b2fed267 *man/dat.pritz1997.Rd bc35acdc93c0c3442356ac51ea553f48 *man/dat.raudenbush1985.Rd a3f2e496f8dc741563d53c5b603c3969 *man/dat.riley2003.Rd ed2499847591fe4f51d7ea5a926b8261 *man/dat.senn2013.Rd 65d185da4d034377b8bccfd8deed9100 *man/dat.stowe2010.Rd 4b33d46f229a04c54c39d0448cd866b7 *man/dat.tannersmith2016.Rd 62dc750acb3d552c92c76e01a7d6167e *man/dat.vanhowe1999.Rd a3572432a379fa55113d1748964aa431 *man/dat.viechtbauer2021.Rd b8c269fc0deb277a358fa135b6f50d78 *man/dat.white2020.Rd 5d1294c4badff30639d5f949bb5ca8e6 *man/dat.woods2010.Rd ae72380c3b9d17e9109c065f1fe63b9d *man/dat.yusuf1985.Rd 5f0e33b52727658fdf28042dcb9686dc *man/datsearch.Rd 4a0e646392dfb08d49bd1ff64970f7e8 *man/metadat-package.Rd a82999515b5b86862cdc7f3a33a9a0b8 *man/prep_dat.Rd 57742c983762b254bf5cdeaf906f3fad *tests/testthat.R 96b528539cd2f595155f5e91b5d8df52 *tests/testthat/test_dat.aloe2013.r e95e67d6a24af18fd843e54b09ed7ae1 *tests/testthat/test_dat.anand1999.r 270cd4110d836b2e4c27ee669a0e4b99 *tests/testthat/test_dat.assink2016.r 2e680fcf594510456a93a1e39a61a36d *tests/testthat/test_dat.axfors2021.r 3e8ade4620bd5f01434b6975bd6a3998 *tests/testthat/test_dat.bakdash2021.r 0e92a54dcbea361e7f2099975ddc01aa *tests/testthat/test_dat.baker2009.r 1f934ab301be581e546850ce25e195bd *tests/testthat/test_dat.bangertdrowns2004.r ab5bff8bd904b7af08ede806738981da *tests/testthat/test_dat.baskerville2012.r a0debfb5229099974cd615b56b2acf2a *tests/testthat/test_dat.bcg.r 1ae091600c363088ffd181e361c90767 *tests/testthat/test_dat.begg1989.r c65b374075755e2dca3d76a1d718691e *tests/testthat/test_dat.berkey1998.r e1f1a434856eaab41433d3bf0281e693 *tests/testthat/test_dat.besson2016.r 55617898c29409f201afcc3c2fa9e571 *tests/testthat/test_dat.bonett2010.r 6754d82332107b7a019a5a7efd028458 *tests/testthat/test_dat.bornmann2007.r 379a0eed680b320fd6dc1151f3efb4f9 *tests/testthat/test_dat.bourassa1996.r c223a8ba8403aec4706b970f91a44268 *tests/testthat/test_dat.cannon2006.r 538d6b597e43f977b4fd2bdad8037d7a *tests/testthat/test_dat.cohen1981.r b4c018f9bf2397546c9c72d23241e806 *tests/testthat/test_dat.colditz1994.r 6629f8dafbe5b211f9a2859cdcc08262 *tests/testthat/test_dat.collins1985a.r aa27334e9d3a02ad27d0157807e656e0 *tests/testthat/test_dat.collins1985b.r 3927ae252c69ecec40fca816db2deacd *tests/testthat/test_dat.craft2003.r 16d55946347ce6c32191c5cd5a1e189f *tests/testthat/test_dat.crede2010.r 32522f582b77cacd90a5006b3b554fb5 *tests/testthat/test_dat.curtis1998.r 5997e68617f3a8ef533d8a077d9c4e08 *tests/testthat/test_dat.dagostino1998.r 2e856252dbfec592b1fcd8951f31dd0b *tests/testthat/test_dat.damico2009.r d96be0480b47770fe55b46d1e49f8816 *tests/testthat/test_dat.debruin2009.r cb95a6efbd3ec47505e50fc3d84c3a77 *tests/testthat/test_dat.dogliotti2014.r c1113e21119b1c2e76a250a14913a255 *tests/testthat/test_dat.dong2013.r 65449872bc3764152d4cc7f6b7f52572 *tests/testthat/test_dat.dorn2007.r 720c4c09ab71425488cf2eed18b26f76 *tests/testthat/test_dat.egger2001.r 743001ddada7edcbbed79a09ac5024aa *tests/testthat/test_dat.fine1993.r cc2354b3c7a90d3b7390b0bdceb111bc *tests/testthat/test_dat.franchini2012.r 52a756755dfc0567f5b20c24f6cf3e17 *tests/testthat/test_dat.frank2008.r bf9fd3c703c1b0b6e619b52dd367cbd6 *tests/testthat/test_dat.gibson2002.r c102616f2f92dc3c08668eb0f0613054 *tests/testthat/test_dat.graves2010.r 4b8f0167e4cd1c26c72bcbbb861814d5 *tests/testthat/test_dat.gurusamy2011.r 32c45a00036ba84e76c6f33d2b3f5f92 *tests/testthat/test_dat.hackshaw1998.r 6fc7eec7c43d37f7b4d891eda64d854e *tests/testthat/test_dat.hahn2001.r 400d83f4ce48093ec0d8fad26866084d *tests/testthat/test_dat.hannum2020.r d8230e329bca05faa46b6962b870afb8 *tests/testthat/test_dat.hart1999.r bcd8194f1bf216228b8c4e61f7c7e5da *tests/testthat/test_dat.hartmannboyce2018.r 3b02a8b299a836d6e97b9e01bd823362 *tests/testthat/test_dat.hasselblad1998.r 65c892240c87bb89494e28f421b8bf0e *tests/testthat/test_dat.hine1989.r 27ae055aa6fc73770e72c7801fa8f568 *tests/testthat/test_dat.ishak2007.r efdde4922aa8b81f3d0be014777ed67a *tests/testthat/test_dat.kalaian1996.r e491bbe3e436bf457e8434186321cc2b *tests/testthat/test_dat.kearon1998.r 516e8fb23755800e82efd72069d2a628 *tests/testthat/test_dat.knapp2017.r c64c5566a237e3dc5639021984f418cc *tests/testthat/test_dat.konstantopoulos2011.r 57705446278d79bd44de850ef7b98af9 *tests/testthat/test_dat.landenberger2005.r 814fb2bd1ab6bcac74a4456883f7d37b *tests/testthat/test_dat.laopaiboon2015.r 1b90dc3624ea281ed83a65ae055333ed *tests/testthat/test_dat.lau1992.r 385602426d5b4f2166f392b301c715c4 *tests/testthat/test_dat.lee2004.r f4d1ccc2582c5ee6116ac751a4e8b8fb *tests/testthat/test_dat.lehmann2018.r 93064243b9086579223d3c6376cc5f3f *tests/testthat/test_dat.li2007.r 0ef57d38cc251f0f36da2a06acfc87a5 *tests/testthat/test_dat.lim2014.r 7f5766614d2993ae4d97862cb9b482e2 *tests/testthat/test_dat.linde2005.r 0b59fbb93f9647c9d0b0cb927ff6bcb8 *tests/testthat/test_dat.linde2015.r f79820bb0fa60288d2fdcc0bb40b844a *tests/testthat/test_dat.linde2016.r d2e9cc3748e42b782577169f717ada7c *tests/testthat/test_dat.lopez2019.r 1f2873f74841ac2a17932c5a9364cb31 *tests/testthat/test_dat.maire2019.r 4edd12339be0f3abcfe7e7e143205098 *tests/testthat/test_dat.mccurdy2020.r 794d9abe902dc29bd764f12327b61c8a *tests/testthat/test_dat.mcdaniel1994.r 89f5e7e0b77ba0bf665746b4bc7dc5b8 *tests/testthat/test_dat.michael2013.r 04d391ed0bcb60a1df0ab28fc82e4d3a *tests/testthat/test_dat.molloy2014.r 345048117bc64c45521c447da23fff7a *tests/testthat/test_dat.moura2021.r e73e4c3b919d3806492a5ee6b2565ddf *tests/testthat/test_dat.nakagawa2007.r afb627baa7fb8896bc6ded54db6a7b66 *tests/testthat/test_dat.nielweise2007.r af5907a5ab03bbfbf591b09beb1200e8 *tests/testthat/test_dat.nielweise2008.r b8f1fc998f3e07cab93b02ceeb2564fa *tests/testthat/test_dat.normand1999.r 6d408f197c8ae35b096a69018464a925 *tests/testthat/test_dat.obrien2003.r 99007709e5adc9868a2fdbbfe9705926 *tests/testthat/test_dat.pagliaro1992.r 1ebb6bbc67ebfd34e695755274f1d8a1 *tests/testthat/test_dat.pignon2000.r 0325cbe097129375bc46771f3cee16da *tests/testthat/test_dat.pritz1997.r 102c77c4d3c6127c59f018c31a0ad1b8 *tests/testthat/test_dat.raudenbush1985.r 4fdf130fd3b8565032d1560a28527185 *tests/testthat/test_dat.riley2003.r edb805b072e92214ca0017b46b4b7b50 *tests/testthat/test_dat.senn2013.r 507560f3d110ec5dd6f29a4075c291f0 *tests/testthat/test_dat.stowe2010.r 174eb9db675d87b0ede3241c6868dce6 *tests/testthat/test_dat.tannersmith2016.r f82f360d54006c5927df2c38145d8c48 *tests/testthat/test_dat.vanhowe1999.r 41dcdfa4ed076ee7f14adb1ee81f5e2b *tests/testthat/test_dat.viechtbauer2021.r 7d1ac25d0aca6c4b29b62d5d2ce4d12e *tests/testthat/test_dat.white2020.r 3b9a012d251f7bcb299e8bf790f67bb1 *tests/testthat/test_dat.woods2010.r c4d2b9f6ab1ff83775c19b93c71c8c30 *tests/testthat/test_dat.yusuf1985.r metadat/inst/0000755000176200001440000000000014205375047012655 5ustar liggesusersmetadat/inst/help.rdata0000644000176200001440000030271614223102166014621 0ustar liggesusersy+['WճtwuwU׾uEzd$#Hf&{z]]K-}[`$7|dfΞnf3=iɖw`0Aˀ2`ˀ3CŲ!C`l27қyݯ^8wηʏ_xϽg/s/s/<~7כ^xo|{( ܁3?yovkՓ~^V_z 7QN ,˲Mg*b+ۮ2𻷷fgyܺ0«ۍŷ Y6=/hn]ѹU^i&=k4ȶ&de-9[q/j* lGO󧚋-'gl3o#>ϤE}p+o#qj0yXmO0hI%WH?8ͶEэl+fI4%XO;K=[zev.Mqx) ` M^fϓNű3hx8ˮRi a-%O¤gf[i \ic0RD8tB?tH NǓ=+>`D*0𗛙 .w.goXa4y ˊ࠶i+ (}饗`˯w,Jh'ȋR;mٷ*wy>7|6~ǰ(`a ekd k8GfCQ4D,]Gy{DfDo E~G\*ӣ56"SYq8 3{D)O`Dƒ|3O]#lfS5RUxuxJ7)@ַ_ע^d̚ZoѴ<B$'_ wôXn3lv'hS_wXpvt@=A)~MoWn7khy%.\Rwif޼cWԏj¹|Anx0SzpKW+zl2hO Dv&Iæʼ[ A֓0`/=mg -GZL(v`g@?7 Gp&EΝ0K9wىܡE9LpPh{ DH% ͡[kC(k;>*U>h,RO+ P<ܮz8eXv2Dd%TNP:LaIo H ஋wAfvڿqIԢCH[S[fu3X~pS?O.oѻO7\7G8EWU\8L^d@pxتBsyo똠u J X+Al|4vV ydUHbaz@Kњ]9~_L h`S t%Z(^/Q``֤<=3 .ǜ =큵W vm pc.rm+l;E# ~ ?8O LJGn4V$^I6K췡s~gЋ=~/N.=瀮v{ޮrV)uHL-\^;녱)y T^\t~YDӀm9]9 YHպw&f~6"~(/n"=4uPltL2.fӁ'PfٴErpSy>Rerzn^!%nDjS֥Ik+.{:-]Rti'M/K A{wAz IvnAvYoqG{]XK7oya_W;&o7s6מVC SނQ0"IJ|$I 27o~) ۱œ_?Bɫ!PX(/#` xŪTS`}d'+HAGt724Z4((!0\LQ)mZ)pͽl_W K Upe޻Dq &#TEMkͧp·%ЕVQNኴ\+:9C)*J)FEEsEh͚`IqSp)-0b,ZC3%@;HqՁL*Eз'N pL.grDg{/Y72I,qy Aް WFg-}@J)R(hϮ(:TR6Z]*TW FYK"1 /kL0/Iv/jOflM Zg\,1vB-X̏Ls,\İ)}  #l)4.ޕ[3gNx7dT!PNu ՠl4}bQ".&~}9婟zb=xVl.J"$PoȚFC#-|KW\$y7$t`p1)dũ9S"P\$75xxoȾl]lN6$$1 Yui '29X9lW$p@l+eDY(ZDc3fUPL# $Ƹ duzQdd 87Uu.}o]ϭS"?wСmPι/t776f&;ع8l\aT^lxЊ0; d]~Q#hꅙbE)kVe"/m磙jDyoNѰ.!_HڙUO1JUX@3 gߧUZFv̓=6*ia@,$E$M'[)? ڠh /![ Jb-6a8 WYbR<2g&ykI,A&Tt;mvgCy"x79KFʼ=Ƌ1~ *^9 %_Q$e.JT@jwܞ9^/v:Y<9܎A#yhQvn8޲.dX=Do|"yyeRN_ [?K9e"h;6tQiYEEЎ+%/3$U3۳s?<5׭kont۪r線j^iٴafu_Q&&;֗QY̚pPK[m%þJY*0ng֎+U{a QQj([GN[4=1F:a ܤkIquˢo&tgk`Vu$9X+ ½ƠOh,[r D/,kMÄwdt73 9=xva! m?EuWB@_t K5ۦgSDGG*Pnw$R;y9= k2VK<܏UA(b]j15ʧi"`8Ui1mw?R͉!8|V: Q;}>E8q%]x=Ky't #Pɂ; {p;V]HwAcZavj\G9~玺G#(1Vb?SMyFg}/y/[􋤓ЦOxz#:ș[%T2 )8v n܇[LAi +2cͧkoH4ˆʆg9tZ|JM@.2pb{T\iㅑ^^(uGl8R<~[Te~^$.|oΦK^nm+ԆF) ]7, {!AD{wG[y+MH;{Kn 퍷^3oNL0PIF}^̥+m8Ǩ0J5HfxC5>ue^k,.AB= 0+̸/flu[B-@u=UW!#7Тt+}‹Ց#[lx)4o0΃We#Q|a;?d8Nw{z7P{|T;!˿UChSP{*G^ )4rW.U-+DU9g+x&WRSOQAw <(Ln jkXUT =fb)kP@KUg:e:&1|~n}F+.Pk@|_c3Zϻ YfqH$N [CUVZe>! Y?lr -i,@(R=\tfT]eۧH5l8/GbtXW+/O,#lhdX|HLTFݜIq4(&q ]#^i&cJ|N=a^:̒9GVGպCNg[qՕu8y]sG[ La^wg^D[ *C@u]D80qlG?FU`9*!Z3{(rnsW6G-F*G~mr"+Q;S^E.o[.;>ue̟UTKzA`cl2;Ey&7n:8n3륟>፽wXbc "r\y5 am mӅ= `]RKEd!(i%:|劊w+qTƈ.{Cx՚;W7Y$B\`>#D L@n]>/2EGB_ps)> %+AlI&=5ž<7*G'>|G0QrF6ߑ65C7A4|FXOc]ѸZXgh3"KMm梢5ŧLE?^f YtNyk-+'_!^X:=AFy!R5Y"S$wqs؆{`|apI ̂IaÕ)gFQޫpX?_kA¸BъpR[n.yPDp-6CYl `@$٤7,><qhȦXC+‹@}xY4wU~`U QܢilQ_Uf^+GvӗyV˿b"BS,BV`S9ӥ=V9~;`N#2P40DhMѺfg6]:ʜ-jPѱ\AcMH_j@]QH[ te*}YBf#Mn1CQ[ SJ)"UUؘW%<Ҵ:ћ|MEX#Kl_c+!@2g PYYED.ND"&؄!ˡStc03*{DW3Tx hvtfVwG 29?BroϮ^;NJaEBMFrFev6ڳgl0& w#fFkAjL1{ttœ~|`:x0Nƣt4&T.KZ@}3Q|vŮ>%CF֗[,x)]PFC喈ۚ]lW, TE!nxMͰX[M`iN0ϊrZ0XynYㆵ#GUTR/>a `Q!h]q- Y*_vK;%=?/D]ٍn6-Td{IK:|%Z@-~bFX TBXSLWVȳˊu<]jc Fcؤ|#] mDMaAܞ6 lS5( r6a'e:.Ao'm4TѦx!fˌj++ "` q̕^%M'BQ[G1*fHW 馅iCq5d)'i5HRd%B)a|y]/nČ-+ "M2KA^ i,a#ߠ e SBką^# *D%er/9Ah$J`G@z҆2v *{(bE`\lba9 l*5mړB" !nՅqWI#VTD&>*HDzq@ \$K ٬آtgŶ5{V1'{2Y,(<ρ v)eH~R/)^]Ny2uN~cqgx:8W󮬋ɠJ?8ϝn0؆ S%sz4R_˾@M 8ӣ}ԳvQX˩C 2g2nQqUwyY`Ƥ2.RUZDsl̞5WTns4-H1`c v?@T%F ߬7U9T1uW}()T}[A:0nXZAaR#!%c4Fo -œ\ xuknδXd=hu3.D˂|[2RXc+07{1;t+wO^d{a4z=2X$-iP] [y~kX0D)#l]1K=OሩC)gc'$g %vڽt }(X / vpJ⃊4Hac:0(=]-;-RhK/mZ#0GT(//3 Y@0eV,.o/*'=a5qgi@r. Hզ·WQ]Ƴ̶ =pdA_֥9Sw3{=Qƛ@++* Z<.UaUH~bB^,*Gf*tt&O@}l=p8 gm_'hSyx 8TEҙhD1+E{+D¸ž1錀"ɸ9N3E,\٣ӳ3'ELډXz)j)ruZ3<,`/X3¾!h*OaN(B!V@T,=x7G/\ J U3ߛbBH8>N> X2 |fopONjN,jYG\6oC^{+ETtDBT ^7X]Q*uN"Ozѥ.'*F cpBO0Q , V'.\UAx|E( inhe2jݞ֝RC&K 0[Q9GZwt wx"XPpؼW^NO֣B"K2tB9E̔AZ XPM {lD/d c/^ NA$:a 1&LZYMr,L# jRXGM&DsTp88=vC^ja}yȀ/"ؔ7LuEW|\T iF7Rel36[o:F8ca99tҁ8Q祖VQM8:NjIWsG6|oX"~xR/lR-'[ћK_ZN2\5EoA[nv2b˻ {i_V%**!|;/U; S[89_%1> )k کJ (Yݿc]tadž%;^Aݕ}9crZt@ 0,GQ ƒ&Td2 Ny[er){Њ`9|1M񱮄 'Ohj{tPv¿vX3hqLWh|Kt;l/ڗFXĩ*@.y$ ޓ?g{V ߢey#󑜡θ")ňh zXb0kPQ jUܽU1eK9GZ r#C5H_,5bTJkNC|WHmm9J,ᔈ;Z/tֈq cp(X_g@e`s'e_w~vPq]^uGVa_4촳:[͠p;YKP)}F]6MqۙWIRϙҜ݂OBeӉi'/ni6MwT~ȪAIhh2I'2A8[ wvLEB)g&2|4[TT(e.G 8" Ma #1 IOR̆O+EAlJM;f ] b2DTIیi'}d*U @BZo'Vt;h{~$%bHj#2 ap`f f0uKL1!R  X?j z<WaI7dG8tY iZ + {Q9P/ =k=W㚿#3&-F8* B67BͿ[IF"< Ҝe]wroǭRo'ElWM :\F$_ OAWguWJ3(W%:pN,`຃h<h} U$I5۝!Dt0@~hk$7A ;sG,H׏74_yݭ̇MXAThLvans&|轣Gl1| LC\nM߄7Y=1]i4an(paK Yn.WЈ˨X0|Fa!)J<7wDg,^7NnԜXڤS1V^6HH>BA)mUl)F#{Ͻ :7 h()Aq],3{B)$t>"2y A3y9ԣj7G-ʱḵ߾ﯼv*F{Hf-o\2Z7Rɔ>׷15Oe~5ƞ%(K[V,GkIp"L |O_ĭzw Q}G=̙k-LDM J}F\\^샜y-pG+ i<S`Mxn]U\I1nGF=LYk6nLGՏdӰo:K_ֈzʣm!A&we:@#tIު˄;C}:$4VrqOQ  c"caG!(YoNC^eIx7T]ڱpnfE=M 3fOdCB{XH ?"_p+IqF?~XnZcC.tհF.[Rf+߆Ŀ/-c:qqy-λmm#2ma## #K k'T}/:JRH d,;s$ {|kC7Dz$HfOdF<`ܶ5yDsƷr@,>Uy G"` &㽿 s[$: dfbe\ib*F$E[-ot%^]a3OeIAķR;/u˽'B6f.an%UKf\E-3"Ȫ/`(R6OoMQtheSl~![ÛB Z t)k.4WXK͚$Y{XgQwBҳլnXoO}W%Ek,gްL]rt[u2J{ġ|0\Htye:A~¬G ,l䱃f10F< ~P44ĴJ(2͒8~WlRouxn7A"n7/F^2Q̭4-M UiԠmaV*^!B/q2hjRr"\Af~V3 3aG3 1rZs{օ- b[xW<ɨ' TMYu a7D ga0ߓ15ư?dzv\ IvA3CcE/m-/|k{gcZAe;/F0؎ -c{6HnP߽tӡQ1W+,WH)>~77~0[͏8TJ RC1q*K2 X4oŢ\o>eϰ|Aq꿔:41g]ZSJYMRQ'rEe<U?EXTc'6jv^"Xkv6DN#VuP NEdʊKީJ%+xgRE .ʗ"jTe@ 3U΃:}mEW2@9pER*̓C7Q@ &"Juo~1=f5=,)#J!+3C5Lr ;4Ӥޟ&KKsڿ)PhHk%QzPrƓ'@,wGYooıi)v&ax~ݢ~,L "H!vc+:k,Oٸ1kxz 0=mT.VF&Iou4_h*C tVd""A\") h|1!Q?t.d29;*¡o`KzXa%C|(P.,T!)5>9aY~} e(sP⤹=dzN~sŻyfT9kp-̩utk]Ctp4nPF8x+4X5NǙgł#f;u@;__9mf%s;&+An}|^g;򬤙s$*]+n%CoG !aU)2%X Y/O2 TP!;c|y"$TBk'BjqVw=+yr!]lOJ?Յ|egH=b gOu`z|Գ uGM6W^á9mVo?Soo} AδӄX C@~e+Zݯw]z<ҷ= Y7mM-qVrՊiݠЗ6h(ߒk?JFMrgsnouy1]0(Uڲebqcԩ`í*⎓m{ə{"FО@tBkA-: Ji*WtJ;H1v+n|\M eMQAK&mBv>YuLuI̒=| r93O6N)q+/.9xhWU19Z^d⽉Ɠd#{*3=m΢w2$m^߈Rgv-Bc$烺V̕ύWZ +YybӖ֛2>Ԡ-M)zI1}E7[槪CgftU ݐ-ֹj +gDv"M"gз;D*;/ y~$ lo0 BP1HPpT.f_L!p _Ͻ ث1bM3Bȃ%*;Bvoh,4OIPn 2PToOdvYb{bÔ?ߦd] !(PO /K(h-r\ m#|p+09vBD@-6іsԀ07q)bߕTf.jN\O0)**^Gy-˜,:Vm5$YObzV b`A/̋X+!ȓ{sXp{ { eBPb K.WR5Y%`Y4APIE6qH4%ڠ1c,h|kl 8, Z\l- \SO\>mERu{;9A~L>$:c.}2)}X-g*}7 d.MQ$D;.-Mah.AfgѣK?ų3<ɻURLKY~dCm,\||cDr{^$dJ9B?PIv3@;y>כĴH^G \whi|$o8_V]);1& .m8Ɇ|QaHaHo{1L )p`ǔϽ7; 6 Y6i˂niUY4k?IWS=7$zQ\hں~.bo 1)D Abs x MTjS򃅓;oxnW:elnZv@[vkO1ݹWQ4йɔ[ݿFntUC9Bϭ⠒K/cIA7$}~I7*\b_"Y/Vē=NNqLVpx83=*љ3?Txf8p gB=1 v f͆'ss5gF9y&T9'vel?.(P f(I,Z=kjQA.x&9􈌄 5F@fYPi Ś~R, ?2fPEC6^1=zwq_!Ycx ώ*hA`UT3emrGx1X~,@WWi JEv*R"lZ{<JPee-{=ل-Pn AKNv5$ a<0i-<:/<.(쵝"8Bd[!S .M'tyXV[dz y-9+/bV(c _ (S:t)0{MNWyucn SsJِ_]YL,4σa_:{i2U1E߼X-oryg2ye"Jut$M3nKc`NQ [ dfb8%fG[p:DE:B@<~.br+Vbr=Eo LIUf{HK5'@H_.3zI-0n*K-{ 85Ľjf@]d9^[=fxS쥭p 0yfw{B'uVc$Ymk<#LĈ+kten3*߄t^T ] gB6[8rPDES& @7J\3-ݤ|n 9^7>|^jo]i NuPjO|yp35[}R5hq2s^m%u S wM }mr6RGwR|ˑ\EߢּhX$xA&oAM 暙D{%M0&=L)[|mBQH8  ֯# (7e=F*Yӷ6{>\Lz zsM5V:``JpW! |f[eFך{z7دlDfxW65få*ĀN5]V팺欄ij *Y}ѲUqS>Vcc>+dmDݭ;0!4yFPg0R|tf +@=t&'k㲮`}y=Բ˿ڐU~xʁt nzD̀Tèp8ܤp]h P*@jFE ފ?Mu4Z|90̚lGi6(Ցv$Y>ݖ}볽xd`?D=qX嗊9EHv_91a~l6nBW.bUu._yy8'UF<܈}*+15-i!hʊVVuY&1HsI)isB8mwf>}EnJy\ qw{r:e0N|9PzbM{3q_.4ǤzQPc`J2UicSH&6 LhC ݁ς-t ,RXw/I?<ŋ/֌fCu?%yD4ǧ+Ц**gxZ!s݃Ѩ?iDt,XvQ9]2  S*>^| ;;UN759-I/OC]zb%d 9_ė/&Ȅߕ2qK1}rz䳗_"TIS'vxR᧛f(K~%`=S!QJZ mDJ*pnY#-*R,v#X* %/-W?9eZ~׭<U*eQL+"z6'֮/dDzE402(À (z\zHͺM>oT4 E/U#%yC(pg"Xa& :O~ fঃﻓ&( 'dRx)AOF zve#d`UpSh+eנ6UrJOmjũ[w:=Q86k b=Wx~=I?e&ziս+_pUt={F3xFK WEېYŠNZGpfTz[b7e(Rk;a߯9s#4Xi=H߿cgBr?wO]Xn%SeҦm 3[V-ͽ9XJ,! @H骹~S}_[*rwl*Se<lOf?Tl2=^tr Mk{Ys 3>@J9V'k`~K;:kpXaCv bP KxLnᮼp]A#fo˺lG2})JK{'"Wc24wǸ/Isq_#;m;RUi )"] Ɩbc8E'#^p?F\oF|!]( ©涰Og<"%rWp*ZXX'@<<+֔>]I2wE惺*n3F"q=ce$. )B6 >{3З@-F AP A_3%O7MRR0.$gB Y+*u= "]d05_jҕɬ@D- QolLd Йh'=F$ho8s(L(DzQPbFs>@_iBIϵ3[0dv$خz+nf>Qb-CPP#$ 覆΃U$oq⩅g=%Rrru#T؀.z@/_mC~QyD/v*#cY\_ 4~bW&^f! 4渄f Z xn VMj7y+Uf^.u2L`ӟ==YlIbg˫h8Ȟd.HBs9u; 1JbiW W(I?E|{v@ J={Ch N%GMD@R1-wWnhF[€HASr0H,Y-Hr+B'E/ג x t Ɇ^:h.8u7Z6!"y r :U%7E[=o7T$L\7د^B #LhD2YΔSz S+n M981dDJ^,04!?Y(f*cΡ73𿍨ag`58ǗmV^]{` kg n @Sଟ9X^ޡ2x9`Pg*2o5ɋEϺfR:Yй-6Fٮӣ@qjNO= ^mTnANc`pz ;wg \!Gybq5}]y;̟<'YAx&'¿= ) ?D_m b.6J!=]KYjQ[xS]hk/0Q\u8NYNLx3B4Z%e¶ԉ(Oi-!$^N#{D' W!|ֳp:H>]$~. XNh 'E[n8٨|'-+pG mVMt?U B]5(m rLЭpA+.GV @RGrZ6774ѡ#|E6F[dh.-`6CjjJtn=;um jb/5dlniRbaTdhh^84ʀ[`4{$w4WB{fJ|CZn[=no8:X5=RVi1 +Kdbp ]ny! A\B $̯bmm/~`gp-hBXyߝ~Z [\%:V?›#ixC ѷ&D@Z5@ y8ӆ_+6C]Yp9-T]^B?J5]H+[2q;;=PAPGhȪW=n88"ҫ|W#(Vh y}HjuHt{} .ge}{}0\VQ-~dA c@x[g >+A3H7nפN! v[* I5;W^4OboD8\b:Ljm1- <ah-f(s0O'x\9A`ҟÓLn2&}ha̤߫f.OOb385l5>&|e(/q%8x3y7۲ S -sE &&>'4u)|1?4 ){7SإG^$_IOApOZ?,#MZ: n+e(QpScV+.=hUl,#bW3=ܭ҂qP5Ir$sM) {t2Lo`2ނA"z!وdg]`.0soˁ#ȋK: HkT<̲) 2xs*0F@G&+b,^pJB$FI&+/N.=SN nP_S4W; 8bc {j} "Sā;*lɚE< vQ$T„aB%TxGI/7@5izg:P6fh:=e+7ze~`kebCb7`<;z; ܭ]x ]" efKy|rDsL܀#JMqd $Xx =x(nv GHo[)G d z`>z% `51xh 'P< {ypEpF@ Y0IO8~B42/j |/U_!qG4 G?}:s6> F )&(ta /= O0DIr6x+5ߢ[|Sh_n EiB%B ecVMղ(%jQ60/~Ԕe/YfU 84%8祛7_P.۸iVA1-AT6#W }B7 )tH2JєJ5TqujUTnAJ h-|GEi!޾Q6p)2LΦG!uE4{1>ekU^Wa_ˤl~i&Zd^I8ԨH!$"{5t b?B(kEC/WXxceqVuJ1L( -l,,d+F``]f)BU^#xTh8s `l{URb]IEjEP}] jzak-lq^T0erfDem(_A[V]M 5jgrpЯDJ87s)%Hfi|קV\VK2Ъ,THYyx "c+z<*-L93kNHDT.@h&TcL@wx D3^2`툪#=Hf+;n<\W9S.6p<_v+NPkRI\A͂%斥 {[ta`ཡ|UXkb#pigASQexQueyN"xȌpԠ E+`ErѳZm׼ZUV*bHfk3Y8 ~LS7ז x}{ONQ=<=g<95쏘vI6~*>HiuZ595jPM)5R`A5Tŗ(^ٱ`@޷^7d5z]?Gʰ84 L5/ks GqOig({*gH€p&輶6!l^q&Cc$E&MQQ"Rf 7DY2)g>д[&܁x洏8^tˣsa +&i`H{Z2(ZG ι֤Ί`&L/EhperƼ(Ac/ԌnHcjM)\l K`bze* sYJk@uXBGxBB{Lj-vQ[h= yPx셿%ab ՕרIlp~"V_gXduC,BEL#и6ab=\bzPKM7E=f"oTb5#RcP͒80x 1:,3y89GMÓczqa&p0Sj **W^3p5 m mHEvfSK츅<@%WZir <ԹV =q@6y E5ζkxGd)]KBo`$T8Tex$"KyKxVq+Ϙd/zWi{4 y/i CΕ7IEa(Uc.j;\<Cs%@hok12M39z5Fjn1"mn=Dž!ء\+P[,D"ǽcY+J #A=|Grbq?~&շtFX2cn2@:?}[cAJ4uxSw+y0^zQ "`xAD1h^oUL< +&{JȩVGPRZ Ns~I4OJ(%`:^I=T-e{Zu+0oH웦N}oKm>-*(zi9,j/"&;rlxM*{ϐ0kN\C7LρVF2>yJWiްo ';*1uKKd{S{Wn2 MiӢrpdk!tɹafL*MռTmzJ:A%--;l3>f. ^"mv?caf޾^~^9)`ț7 Tpg'wSTD5~M ?*JĽOaYԮkS vkJk~\Elty~<¡O*?ʜ(򖗴\Q/VC H/7 W3_gnrn݄on/;ܫ.ӞqKj8_Rm7m=[G޷YdRTOz3x1ʼ3|~cb^GhybQ5L$AG4i?ՏCjQ dY+lwKA^;sKj'SՆbp^ohSE[c($}C HX Mm$04g!h{1UB "p ?75ȪDKlZLYY£boRZ:C -3gs{E;{)bȿ񃲽69w=4/"Or44#.'Zs e[u:>a}&!Yd&|b]H 2[8= /snР*dmA5[JCo[Ӑ'LA^ "39oqn"ȉScb|5e˚"|:.M;Һ JDA% cAdf5 L|9Ħ1Ch'']$,d*U0-ߢ_!XcB5/_n/@r!!^[0(a  }}f_STLeZ!}rv **Pd/q-+|>PvhaH~Y_kj_? 2 %#7&K9Z=9,_Yڂp%hPB͜i}ĿpKZ:`+{+q!fFPӃqk'O=>N|I\i=x +Raz7.Cq^MY" ~A>Ǿ+L'rs06۞bml@O(7oc[#9(Jx"CEK A돀 OT|(f DwBV- Q M//Mrg*W\dkׁ SҶQPSDOt:i$Ӊs;6SJG~"(bC*|ю|oIi*84>+sD;Pj|lK淗tp4ML\-S0Ng'u7ДG 4"u) A4Ҩ 6Wm#nVG^f uGCf9#ET E_+M2I 'Q|d t\'"-=PS (TyiI$#W `͘.Gn y6 !!r|o[N3Y z]HwYҩ[3Og_ cQdF4$VvP#`m4٩}b[?sR$'G!9C?Ocw!AYC퀡-񽖩JPJ% ґm;^8jh)*zJ9m<0 \p _m~w`=g=dIpLwF꾮*4!HsSvJfVM%^'Y@%&axAGt Ey"Fq3%1j7ɓ3g Mppz쎇hyGbSğGZb""թH/KSDN:whe9==vNGqGS++/~pNro,4(( 4BcS%B&PvR\y6#Z*Jo)rNR]5t&q'Tf09KSqԹw&p~;8ugC{`n?3gqbA/;pR"m!WO48Ҩ# ~P٨]fwt TŎ6ԑ{HGbG6 !t4FaٚC%$Zݭ8pi`K q:v-:fO0Y7v-| m۴9lhsXnsԦQCRn8݆qt6m簮aCú6,m,q:: [dǯz6,:$N84±-,g2 sodWC#Gk2Υ#`q qՇsU} gE|ouvNxYYz2sU;~ǺM  w( ,c\?}CvCPVt}!l^*pῳ~A9ŕ9hUf<ě<}L/J4@ܸg'+^0Pr-C >t{p?\ǚHO^.^z2~/7A–1 i8_YptxeV?-ڗd^ `>haur=!6 <<:0 Z xsjكn⻼;@`@փW>J4^?n_&o,VY gDW.Ʉg|,AJ<0zA^j}/mB/+ϢĿ "PXn_:F~e Ju7GSQ379Ǫ˕e9:_;@m XYy6+`΀^q s$@!LD7i4<Swr6F٩[[@YmxEJMQ{qxe=2x>!lijLTਝQB`wN-J?ZTK`Y^u-%ջP~h1I,"Pȝf26+bQ.nQbPf:yi .`~]*cJ +x{Xij ̕=eGaD%CN,Rve[=.IsH]"X($h`ytS4TX2{/tbႵd> )h3n"q)g/"O JX41^@*P:W|=<涠58%q fTbv]Cv󄆔rZ DQ2}o}\cH "qҿw\xC@Km0QpA{M@_x(얬5K^Ph!TvrEgr N[J9NzD9Ey~қ+(›Bw:UdOP@ dۉI0Hc~(:ܳY91KB m$)5gAR"9[IƒW}9, R$G+zF-z&ud JD4sc=%'iÑ-2f -(LUKYMg,UC'9dG^Eb) ,Xr̮LnpW1ݤEH[A9vLzk$[, LHc*bR:A-sLᷟL.m'k5-9^.E`g;eDދM 3#4J%P&Ġoc ^UN0%C%cp:5O^)CQ8OZ-).t1XNrQ_M d^d|&K*eiFXGasـEԓ 2Z3|ϸ\/izzMjvs:~E56v5΃P)gldjN%$wÌ%K43| ,D@; iO+^/tIo; ֈ"+PbLQɕP Ðpdp΀{0zl>-'(SBIl23}-' qv;^z#!TnRK$e93j$8#{Uxk9{2 !y27G) BO)PW` NF qs3rs:問Y\kO^K⃡#-dÁbYϜq OL\M!Jf2%(bՇ7G\[CO4ZGWB⫓RR{/2!q^Aԥ`0Tf8prTqHW/^PQK s!dW,hW0vv9`U~vpWLKpWK C %Qt7Ю$(I[VEf%"s5c뚋F>P]%Q\Fc wi6^r0Qq~6 KMJ[d1dAexfƃ(/ yܠlh< ]Q[C+4[b݁9i@emm_-R@w=ӖZVҥ53ڢ1N`_% 7`qD 0MbIf} ArVo[U%ku`t5id["[gf׋9uvi_*6!2හGѐ;D06"H o.si! U&~45zu1Xm570ZKIZi<.5jp$Y6O8:Or&tm߆uia;JHtٲ=q-/e DjV׳1HL(<H_Af@NeG9xc\8(8G'a|OA-Q Lo ˲\u@p !k/;Z;5 @RVGVv7`}0`C"cm^ EZVfanhH.,*e7䛈 ߶87u1qdOZJwA?vXw ,'EwnJ%8)]= X&yCO ;xT1uB?`d+F{i |3ɮ:p=gy 7aTiHa ic3:ƚÓ /j?-\.Ma :-H9N,a><[Uarg?8 Q#B2%iF[koB|eйm)p99VHY "L-xny*۝0!V[":T!^tocn+÷Idf\|3(D#Wz^ +,h|ͺ]~m`ޫ=9wݟkWV5&"ݦ ֤h޷pLE+b ', xoV)<]X+HIHHgl<;X+xIn/Kv@6tYhZD[QOǑ_F1t|p=ʋ@2a aQCYx)ឯ9Kr"7MjƼO^ r$Nku:3:sgVʌ;%y7;yC|E u}R{`{am !($)( Cޭ\ (<9wubfzRdZ 0Pӳln7C&g]`3ꆬ$WLY"5,}l7L lŵգ2FSoSRڱhFawrX"U}b]z(\cuE'@ٟ~]xgy \=PU`֗\3ʚ71}c@@'պWPl. R_ `:Ċ.#ͽl9K@=o X@vr1f"" R9Ԣ#L&9&.UF":A`*s-eԤr6@8<t8`b~4UMpnGSOXҪRY_b9$!3Ad dɂcjX> l%,WJ⭭B1&9Z-tn]?9Jk,6YYYD|֙,FIu5xݎrʿlgU I^˿+/=G@#ۤɅvo'%3>؜ CsB!(L":G(jLI!3a2U}cX&f)Gs3򎊘@(11֐EoY"%6Ui<{BքYwoG2$*i .Y'u'־^d6پHcjH7TRG"yQR) ڨՑH~h 0>}GwX\u ۾ŋhD”]A٪R20i_Iu_vؑmdKri :1Unv\yZڧN ]N }Gk9bڈ >jR#ѫĽ5Rxl9l1VCW, <^j<1B2흡s2v#L7='ǃ`9>?㌜`<w3'nd߮֏Mlո¢DfUYTay֥kx$N>D;p5Mθ79XtReWV:=+W{_;vn]G 9AGT9*Y5=٬ >ҋ GG 0w{=={N!d\k^|=1XXdiGpP+X]q8+v*^ʱFg+`?gx}>vL>gpIic}h}8@Ʃԗh>.o?~Ӣ^% Ɂ N,;p$~`|&+$"HH;F&.= á?[= 6{]BBCA1 |^BV_#Q<sfQ~\UZΖ мjlc̲_tNߤ{)zj)·Q"dK|F"̒Z9Cdu?vEx) Zjc9>d+W 5*P:!"7,IeFn~Eо%^ KnB:eΐz"8P~ (b l= 9??"&m2X_D"ɏ-T+/,N! }6 c =gTFb~ѮS`z hs-;N>6=oWo Zq'6TK|H{6T F_jl/ 7Ow2qw 7_概j!5Vc~9ĸތY$Fk pc';?[V'1(BAs1E0A$fPX;* jP5P US!GM)pB;E>-u^* WIHVP%4w+!AGd]X 3*1WDaz M$ ,S  y7]Yg1f-Y(5?x40,WC"ͺg\ ¿I)A>JNҗU%j=d2OFO,EB5"pRfmUN Ԟbu|xk0P!xH8"]ߨhe׎a_)Y|-Vp&={6<Ԅiޔ9R9,Jp+K[st>MC/AQ*&uCɇq2:??N[t ,P(O/ytIm1.N 0swEI1J 6LL#UOGЪi/wӇ(fT5]xsK L]I"QUӭi^Vōh~ ypP(,(@]( B*/o.32(::+h{XͲBی ˚n K; f 7{vA,/J#4iQiibͦ'N+kUW؏5F*h5!_7S8[_'~fkD7!6T ,^Ty̋-PlfaZ#P;4nOŝc6?c4QpPs2.CT۾U|Bp]h[^Ia躹$Ks8ҠfRƔOt$%O\U#GClvw.UOWN*؆ %!}BB2$%jY"/˚ӤVp4HN қ/Q2 `/a!$v77Ӣ)8m<S$̥Ƃa땹pubOF۲:L+))5l}grvHm፯Eb棓%=~R8Sr!Znk"ꚾLsǘcjPp2Ȇa|Y1v{Iީ7,ɷjG]Ǯ|"EWY\;"nvu]~+/{h2r&]ÿ}y\8ULVD<T*&zsiF$jQtE6, n\inrs12!rn5]T*sK)L7-̰ntT͒JGzbPvE,=d>'8~P<}_Λ(B~Byq X! ` R^K}IyjJtbcE}ДfKiaCa(ݲ0u6$pDq7&(?YwPa/_WF':B|F=%.ˆN5*R it9aUPj,C2!/6vyC[?Z^8Mor.~.-[?d.̹BCb2-?d2U݉φ-|U׸sk!s߹гWmpqq ޑ B{oxjPٮifepZ ڪᢝ,Ήts`gQD3  a0e=udT=Jsg.TsE6='a0Ia lfBЁتdW筮Im0!rS~l3}H/ 4Zmc̋WL8) l`uhiEp~qpP.cǭoVQy# Ңƿ5L&bUe!UΊwET?XUtlȘZ,<j_)4b}jT9N/.=5M< UԔ["ySzMQIl G.)4)%35G\A)KŒdjPFW~pjX{J6(M)1Ǯ tjt-8 vmKX"OhًD<6 a t4 ha)KI疣kF 8C[pK/ؙKo^D1|d9!rinM᜻wtꀤQޥ"N\!5(lN{ H&} 3U7" K}TsZƸ48Qg مiB6+zV$7D@-rրMĿDZ2̂0,c,3I)b[jlS49K2m:A:5LٳףE`q~"*)|} -1ӣl"2\Dے($*z3=U$wmT8ǶN[D5 FBO0d cct:Fh=HUn91?~p=wRÊBhzA"~EAbtl2=^*'>p5iwUVO9Nka<ə!zY-m(D$drlax)֋>mVȖhAu:HYZ&pa[g~´&:V)_p C({vb˲nJGKV`x8,) Dֹ,w8h&rql6CndP٦S+L U#[SN,iU :q鳔xI@~n"1_E@]!x'epOTݎ4B hȈ&˚apSG|B!:T%<{HEfF.80Bџ\IJ\*M0Ô!{Qju9N8k}un7CP%: }{6kE8obNFSw&yEC{+Xh͆|ž`Stzd4wո*yLɢF0:fYP[]>(-f<2=('6݉8 #1}3 Gp.6V(Quz̉/ t4gt/!@s;5:=gO _8:}њfۈHHb/ [:~(/&2V+v0F7O]ې+JJ7DO0=ç^\/ROJJέ<ɻ:9ts+duLHϡUD-gwF]nc,f69xxxgqx٧cޢ`b>K Ӂt8iUo*zæ vL H+Ft {wS CiIoO9PHdYnv1*rc$AKn]TڝAGS'ۍ[pEbjP4C7=lUDgnm =kVoi #D{V om- 'R-h5VAp|&<`L$ut5R!J^09"$֎zT3j-&| cI )j-,3? 0OG__!^+ <ܒw_O =m0ᒠFN+rz_Щpm<4b(=[E-_l[)o\I8|/ha O$F°nCׄF[mL?HΕ> ]_J}(yM3 UeڧQ Eh۲PEd4wKrAɻo5_r/_&W ,%9Z@"+L6vswr ‹p GptL/>Jś.`bω(9ed-q(PYxM *RSטLdFJt|@:nx\[Bh1T 6@&Щ {ք݁Q,=:~);B[*1 qGċDY~N[ Bÿ#c&+x$X< Փ *X*@ Ry0OjUãNLQ4? fҲK(۟ң@X-"+8U^ibDETU$o]025rgpz&ڬ[OaP!p#+2<w&9SNדg+e `qK^ ,0[HxPͻ敗cP1 4I_.̛un6 Gm6'Z8ySr#6.DX{UX r Uzz &Bt%KApî8#\#|tzӡ `XoO{z á;qN`0Oލ.Z̤!q" 3s~[zu6_,\ĉ5>֢[X` Fĭa,QSFtfaE8!T@T8r{-ϑvcQ?4et@<+ss5.c[ (UQ%A*;2Z9lcilSUS~%2[tHԓj?FC=􂞓zkHF~>$W:z*)8aA,,pr0|T ,=$ɭY{ġUMvs dU`nٞ ԨDe%czνHz]>Jm]l箹o)!e~! Q{Tk5h_@*2-l7f"r55PdKϖ}H:KsK\MB?έ gaבlN*Rl;EB3EN& }+3+,*?i=f{8J,Sf+ݣX(z?t}ũ0lhp.h%37DdxԜ|>V59)aq$_;P*PvhW3wT;* 0/>Iq K,2}Tq,JH1 ޠIefpG#\i`]t?+ xE\rR`^ʼ/''eٰ=P \y&SmL7{l7Kƒ{JF3`1frflQ,(^Sjy&E%{B-hpk6?;0;yqpJ5g.RJf]^juCޛ]ůRH2֫pY 0RH(#i=#_z5~$])C)PpR"q[3USf#LXg:X µ \b5,:^O rc,+t󬨆[K |i܌izi/8WOZm8o_+;_TQhBGK|{q\kŰE9=k.Cotˑ S-j2_VЫ1>Éë18g C`Q>Yk@t捱u_ė}ӳD'k z"}Aq˼@LXebq6%vRn3R&bPd8V]dbxq˽頋O#qUFGȧRwac(1'`N%V 'O8i0V|-mu=(Ѡf b?&:I :@1d<NV|7:~t(JϳV%KP"~zץ̃} a@Xۍ%E\_U8*j`^>5s*\|^̼aው%uC@8>ɗ/1}F?22PXpaZ@ᖓWO}MIDb\+`G7m[q&-]\ Bvڝ(QH{褷V^BO**N-4>W<6!Y)؎T->})3PS#SGeѴ@,8A+Z_yzN3q'nGN_AH3?B*dNT|x64Mi5zDQ׸.#5zx\!ܮ-".X6pp^;X2Q?2*~ӄx TMq=b(]$3<\&RomTamNPvU5'lJAjP`9xL_>a̠q'?&Wcd== \Smgtg,Dqg~4Y4QWna"zf䂼>pH OHBq;aX=햋x遠D~O>i5N h`FQ4hKx֙i#5]fXu_Ci`@z\(гN(T?*<ua4XQ<=Nл*usYaZ}(tlȻ~)[Q6ht'$`5R.Ѭjց=bq{\zZmO]HH63p0Debe=,x]C>$G 1V#][/U.)UDyo,T\VLq6KFhlEI iGg`x|rŏ`GchQT|K4]>O8y'X""{*=v5xW~$)U~%3Kz?>4&J(^h | K`&wQW'U|juO:07]gIo>*pM*i{Ӣz)VZ&L@;xŽ;G[狦 sɋ!$|z5lw)g,9g :ܑ(eA?>\v%(:EhvPκ\CICY~~~L(쭃(!o5{1Ł$8>Uk_6~Ԯ`=!6jdal{FQ84Z 9HxB q YH_JF_E"`~tcRSxIlE#!b 8+>5K<!e|.[[qƾ4*W]Lahv}VNV /U/uӑw5<hQi箃q_Yp }H\X*hF [ fz#싕b=SzsLH̱}!̪!D@3S߳̍XDxqgnRw  M4tpN9, ,{^ r)}*cOGٖ&tϖSφ=&CJYs8Uy)c/ *g\ۧRX87C8,֝ZC2wx71BsƫhdmTvbʚ\0q.3!dr:k"#:.Y1k]~x9:]>}؛*N3fcdBI tTiaZQxfk_0 =01DF+BqW̒wlRXsNe_ck/iPuv8X,bƇpVHi77YpYt0YW0WpǠ -8+[e]ݽWmYZ:fiJn) W 0k¿-} lP뵄<(X5R;):)U2Q „/EYz_h8.2OS?{7S#S*:qɘ6._eѢS:yvdsI>4?=u.8@J@N)KCq6\ AU:*D!0$@e8@'quqGKq 83"qgSO vg n/⮩JhPtB E'qԄ9O@̫ECdRU&!_SL<$"*W{r1EHF(fI-^|"ҍk5ƄX>#.B@WQUyrfBJXW&p{օjȅNf5s:>mO&ޚ[#R X©@|`.gj>mAXt$OBQSb.Oy*S&”}k$Ui11N))ٲ 2>+W8*}nth؀њ#44 q-_tDOVQ܌p8(~(יǢGR! ʕ?2oyo׹e○f ٻ_(裒أ7j7P7@e|YT\Ñ) 8_E-ipE, «}^.wx ! :`+;3S"^'Ko5S+sI">R .[5 R#CT#E $DGDq381kd~OqTYLI<`J)0# oYM;u/jGހn;̡7K̘= & fH9zlX1w_W)Mf}S4 4X(kT' t; kо"E`1[+nmC5#[% 3y2wp9iq@C +͡'Aȱ3΋fK.aq !*?Floޮ}CD$̾ qY8Ʉuoړ5QA=ū|*U["NB3ekI"=0U!r3ӀNY{"1,~)VHb*#Tjwo"O+ݼcܾϠRM?&> ONЕU"~^9j2;O{Mlr]ۡAӏQGqEt2WܲMO{6'z>;x~JjFQ yFz\/% k\=/Zwqf{^R>K,Qu7kS=Dd-ciJgpJ/҄îO}ر<Tͪtҗ.sϤyhcRK1QKEDyQ}yRXf7`qu]t`ibGtun% QܪDW.6zDz0|zlLCo*Otژ6JhnC'/W1lo*v/S4oUZ mmgoksC!L:/\hn.=sNe-֖olvĦƼ\}=BWAewy̝jvFHvfTJ-5n*a`+rPr X 7 |U j I7EYV-U0XFcn1v3SBˀeXs;Ķڶve  ;n~:nBƷ[xζj[wk"_ԅ+3DVeqGIÓgs Ee|̙fD7C҃Q>5G;[M劏&)Q p}A $x A8͞~YAY=c{Yo^G.E $G uC$616uw .ȐCp^^'BgЦ?w([9ln mpȰvcI1"?yt1Yjj.Go1^t̒4Vwš'FX6ǥZjs]tOQro儊4WE0#)P,l]ca45Qse:FQ<@&0<:=:ggQ8xcQ?1Zcy4_ux<{.Z2C.7t%Rc]mͿeUMHx杹wz|7G-D_?f{:߿'ҝ tf8YH v`ϸ ݱVvRC((=ئםئ;6}qk7 (,gOȰ [G+Cvzu(-$ 2oAo/3[62;ʄA4UR(>銞w]]hD4ãNНmܴ@e=Pez]Di}g/XT S^XRɨ@%L2?9mkEwWgB `29PsN7.>{]Cmf""UȞwyRa _y&2b*(ځՕ )Q۔v@iЫXI\2fx?+:{P.;Դ~?i^)㱼.z*"j \eޯ8'UgEpo*k)ҫF%Z$kQY<ݍv4۰F;0AᎹ);D3wc_Ѧ'lE[6E>ڼ"Ӽ]z|V,7۔b$wxEdgζ7&: AK ~o%s}io6_rDb~Ç幓Kn Q(fPn0+$vZ: BV0pIZj2q2M,H(tQGCwUUc"-4:gϋr/[ݪŗnuU|STC B.$~fSX9X4-w cR. F16?-fvt@ rWe2L$K]<*DGZ:ϼ\'wKHx߇u>x-~ ޾j^Mjܺ.R͎IaeoDN`ciHVe%0-7}NE ]r5L$_PVڍ߇0r*q+];B ]V= (c a0q zmRr9Ods~,,_՟i'SF5U62J-z\\5lM %WQ#HTo"l<1V>%#B"0#O#qb}]LB `v^*%]@YƨGPg *\ 8Ujfi>tLY썃:+d5F|,P`Ґ+'/i?U]5n=T}`՞'dO h JUl5 H/gNlP![. 3IjOtqAU׷5a*onC1pe1mȯ;mH?_2_u22QqI8v!N"duɓ&:?vi|p8~Aޠw~YhŻA<CvWIT[Pՠ r2/n/O~~FNU;'qpX+O\#T6Nރ0ea=_|JJ/PKtoZӒ1Б[ ?m;iwN:vc5OmEPߺ$_u$ |]Ԑx NӃWCM<5M`xn_jRܗ5,Ц6 ~!_-ZvYWfqᩡQսnSWu hK#R̄ u cPp:VO{N lWBxU*aӍܾYErg.[m$ZZD!OGwi48| o`q;@kHw];QiTie; z; l;ntwm4xiPz; pv>vnNwN-VUNiz; o7!·ӾaTbgE4d-9S m-b3V# )؇]n[\QXτEǨZ+rvt ,8)[%GҋF(Qm 5~FTy.QZZjc]k%~Σ+Eb 8N G>tsc@xlG{# 7sN"h©>@,i^*.e(nh/䒰Q>H?mIigușyzE=yTHy2AYӱmW/vxL,FN];akI0e{ NTLfr^y8bT*?/hp`m+B$%y_C GvD c"kEpTӿ'y{zޤ_E/<9;GV™WN!-ŅM5潙d5@Mƈ[jo8{BzI{<<(aFjl4'A4d1Nz,^q2^453qjUvtZXhEBe-C酾cIUO8SJgD orC"z@eR:Z)]}ehQBM: r"QW;3QqI}GIjCxɜ촜MXM!Q\TIFꭃwj=X&Dg peU*9jaeY$o?xLʽjG0K?i'E؋JoվF`cuZ s> {45){E.vnYmA4V ar0TaR= ^K.gJLYԽuqAQB Zj:}%@?%Gbo?}u?Ý; -ixD^ ,UjZ:-@[h/J[^$"s &"/}hס_4B'Za0%S\pjcLջN5v#9Fӯccޜ}7;WHt)%8;6Z֧9v"?} 32pO|Q֌x˱cFf(VUͻN_rGxli0:-phއzFO2U@a \&\W:4l²:?^sqJ _C{*3:ՠb~YKM6@cV~dur{..v7aN5UtƭK [pT#{N^5Z`%),/<%﹪=ĵN^ueߑ0o(8[SR9KD j6g&T}Fсk^uQ9 &$N-iM=$ 70/ڽZyM\fyY9dY Q97n)$[\jH"֯E,P7$ݍ8Ɋr508$P{3EzҮ]^E+4*ɤBi[ !T7T< l;GW]8܈LFe?D!2`)Rwuܝfςj)j9.f4SIZ73VFfBU8/&">_XBbpqZg=o,$'1Ǩ61^2&tzyЃ90.6(Ip9EZYV{Kz8 dznY/>="HeCQaUI[?j%H2_ZyTW:rk!{: !3bS rq?vvd}և*iT߬RQv^o`}pە'J/B{̄SR5QKzdy 83*'jokbMMBVKaMXF..lzE߀JިBUcTr>]}\2MOK~ J'MmUw( I':rGAvR8)庫DOgԿj,3>xHT&[{|ħSZ+{|\8PդT+9ynN/r`KK [D 9**gϴj$=R`fWAs׶>WkU[O-.1["@FjS㕴#NN10%V,:eIŬP[M\Ǚ=2ڱx{jKxt7>4@݀EJ;`9!v$3f/{[Px&CKE<2ܑrՍVFP8Û&8!S!+v-[2 M(B2S2s 4u(˹#m/7V_}v5(G@#0 wE#JǺ1^♔&LEvf[ÃRY8 Ncfۛf;U9=`84uO攄ͅB|ԷiQrWQI<,u[7?w7't ߵ9,Kw>*J@)p;oO2I11M!M {\P&9Xgp떰2gt[B_bB6V* ^SbZdu]"`Ub0\jv6׽w}r9YcMݘIktͺP79̡Ξ6 P#m5Zhw>rzq!| HW9JZdKU泺L¡l 늳_oEB6{q`Y9'OӦu8˼0'l\ͰZȓ<=l(mט/)aQ#G4s눜8gpLgqol:fztLWQܚ_jE&CF${8I ua,Ś#whT.Ƒƨ滓\(njtq.}]=蓝^qy: |/ߠ Ǡ4A\w^׀ZT$KKו%}UJz9'|0Qy ֫bk72 < j9Xzs ](}#dqj^,|Enr_P7<}(]HԴTtWIL:`k[Iyraax),(Lyq=hq+ `Si"Dh 4gy뜫B/TWViaappg4 V)OhZ9'm+mV4TkIᛇ}ߴ5ӐGͅ(NjE~sʕ=Q~~?f DSNK$s*aQv80(N@mVPE":HRov:2;{d:G|MGAYsFBSVb0(48Nҥz14NvPcraa wʔEROFEЛCe&RjH+| F- ƱQEvz}}F>Z)6_뷱n3HFf+rC(u(wUk@zk["W a`0#fWŊA{H!@Ewj#SV+sNk9APi351$߂EEt, u)$u]GQAO;0^aO5oHɢ(R+38錩nUrRM&b0fܧm\P>3M]NTݒ7\ScyWĿ65ۇkyp{R9 T#n؟lBFgXMR_8t6ZVV 2^yb/Yi|ggWl2I1,է`\X)[gr7zQklXoWEW8BKgw4QX=tL@m^Eou+W e%*AD Xĸ{&*cKkxj,<_q\&(C"E=[68Ӌ.<"'5t wqahCct:vDbY=U&pK4iN1Z-Ak"ux|yئ8- w}y^|F+ YgAP/kV,4~Od/ VA5~CtG$oPuz:|-ecJqg-xECA:*y^dTk8 (+0>$_!iwPe!Hdž'p०h #qBYLb3^l:Rm=mjf7˜ ֥r5Z!#*[kk,_ðo 8sN03i/LIwaxzuOQ47[1xp=f#n=m8|_WDB+ܘly&XBݑ3orbɞ89-qrr4l0ݓƧlhk2q]s\k**O _.CsFbF. s52Qm}151M.tb#%%y @Ie[|KWP^E4EoRCK+vQpip`r(`v ?G+9HL]˗ˈB5"#eSzPDbt,6,%ɦu2%VeՂ60ZZvu _!:Q"]0q ^'e8/)xXv nyni"&C:>97>? ȝرf RtvmQ>C `LAjz+(5Tp1fapғyPpjm5\W=eУ| B-"< ^1F F OZ8.4u֦oP2X eZGl0[yEɾM!י~:FԿ#rE5X! pnjZE _Q϶jfqJ&NF$*)<;퀏8֞i(dR*CEY+oA{L֚Lp{P$CUꁫDU^o\qQEh&4ۓ-i' .S-2| h(QHH&(`uZ3hXY,)o%S7 z7mՖ=SutR$ҹ5Vv -%  T1=B]=vJq(oeK%j8R)$gd㤤/=JIQPvA|ͧzc+/ ޖǽ-Q(g!LJV$h tG`'70oFM]jȗTol5))%w?Cև7o*+y!:0tI3w 8Ƿ0eơhÉaS\ѓBS9*ݓ3 ӲqZB$.bxX$O"fb0b`Z0}NcˍPI rE2/W ®((nn~}B.YLr V f霈VJ1+͹?GS"j QKvK+ $dv[A$PcE}txB-d d%հ]I?05[ ^0FQzm Wj 채 3Q <4_#e3|Dq:f5&T-w:O#ᅫ;Yc"2S><0Hׄΰ(Z5qh|jt?`i(c$EsPky~/+Wj}P®*E?V\!Zg&]!,R.F]8#>P; +߻G3r)p<{6'q\,n"?w]M}T?UƤR;"6B:i7eqrat|;otE@k@[ Tr8]8=Ϩn,et&' },Փ !XH'{1.f2-6vǰ>\yd֮ITڴxRGu-1PlbG@󹠜6-2x[x޳C{oiPTۮ#VXLTT< d(bh,4rAY!߰5Z#UK$iZ}u.ʏYцh̍oH|E l+9J1agMf!9C e6sbyg WLUFil5{v+g|BX pLėG/Oc[lZҍn2MY/b[l"i85h]'~%-Q=^^d l*z#jT02/1;fуYwQ%_ؓ~ $狢"xЅ /kHDŽԸhwmeDI?鴑F4|_g=v-SΚYc6h2C&1xk6nklp3S#K荂t-EXV@Qzdٞ~&IU1vWg 3RqR4%YfIOe,sٮ/WkEyآFj!( h" [n#Y{+V>}Vn?vO{ԆwxxOֹdG%7!Y9븏eK8Τ-S:l=Eu׿g-ծUExYQXgIE@M{5=ϔ"sptP^4uBx&Pxt+'bPV+ZeJ-TZdVj'sWZ TLM)3X?>s& $8'7S9 bVdqH)3JT5*JmwRZn1߫{ڳ'5MtRf->ifQcSfRGZ?OB?T@TN0J%tMΙf6-q{yc H;YjPFcZMڂy:ίO}܃~ rM@.sɡM\l"!']9Ŝ#.St"=v#sZhD9=+9o轫/23ˍw`rvHym;_WK4]e[%ﮣ4%UkÈmɔB{+~ <w87Nfc:H=(Z +җptCBN1oڅ,l^D9d ꨼rFi"r.wdH,Dp > 9$e9z:O \Ψ<,>E2?k=(ErHt7Uw<*9ʽ5;eZtvV0dx8-3)PPo-"BO!P|4fL!NLQ$8h7P)&j. $%_3fjJ`𴿄l3\kz)$K-tZMRS%`ђ)JCync eBDd%3 q rp¼LFPjHhH1 kn%z1"*b` ko )ek訵 Y-[_ּp U1\_FAȹa4c H˒k;_OQkBGC8M~,ŤGy:u$lFg[@Kt*V.jvZQ`r'2'}GއI\(MKU{ .q H *0:)W-&[8R{FPi*>"u#9Ԅɥzk(_`T's~K.`Y>y+5WލV>@ v~~?$È%C&\0מm_Y/8*0w{) h:%r[%! {'8J-VuA߁P )a  GH~,z/8lRB,Z՝ɎLzoZ}=({*)Vx&YaZ @Nm_^jltG5 m Ȍ O ۉ\;^zkde5QP%"㨌OɫwwPkVٖ[sʳVVce)\~p-c'8luN$SnTau'hK:eD!whu\^IC+^j7P='M6M du뺉P;UT:U*[$`#={g[/iѮ%h?,[`[q ? BXM.a+\Sw" fy8EQ&\f(t" LbT+pc,wqt^2pZKD]6ת=J#֒$= ޸4GOZ;Z]i '}>i%)&-԰h]qP#\zτGa#uj*|&HGIW+d׼ Gawo`vNO(߻ȋGS"&Ҵ L R]τ H^2CcG3Qg4vY5R;%r 9o+UgZ?:?vHj8zѠ=GϠ?wKKRWZ+,2O+]/jV8U"=9BcLm88m#UlЅvϏx^'ߟ(|/>|l1xQ]wEKO+˃O>Oqp"Z( [P ǟS"eZ޸H㬅Oksg.|N(E>aW+o-RME1π+M J{DAu#sc=WOj>Y >h "*$AWUOMwOpXUl_ O<&=cƉQU,8ˮsV 3 76߮&UR!3Lho=)K_d3Il/ TɥO[zkw&P 5g✶5A4|ݭu&!|"%C&4-iNYD(,14F*W1Hfk!* }G,+3р2nb/Da .) g.Q, i| !>t~nPĚ$ /`}_btgQyry#\'FC{ #K]ԉM`}W*JW|W?){}T*N܁U-s-f>2D^XtWE{(FhATςr&wbOi KD[NUD|)ԑZcye19czW9tZ1x.$@Ip/g, n(}E%~Ș!zaek E TCX^dG\6yMK9ۅi}+/>"&g¯<+6ϰ }{u3_Wkl@Ln2]8OUQqDm y;'bM@j .gZK&@ ÓTOxNP> -m|G+0uǿfҺHr;7LTIu'-hWiU,LvْwkKL&n}k5'YS؝ڷ^kynU>(<'SqC29S(@!n%|hS2Kο"CO$v-^/@%`9pe?T hFN-<VFj ExýCG r٣ {B:]cޡZ&/(0mx֐H mWQۅox;ls5=|nPO?d{pưM{1܋dMoJp["h*^#eQB:Z _+S2(L.AdS>|J``{h=LgFKmSӼa(@FېdV 1Qf(l̎zk+϶lW`~V4#|/K8!~umv/BXeHg;W|+9,f[ڙ&5i`XTM#6c#׆8 '?lz6{ PƘECYpj+^Qzܳ.dJv*-{2KF@ŕ[3[O[5H ԯYzF71֕U˞EbY~ϚҒiΑ"*eG &qY*5ֶ ^&ќ7'm@Ġ2jZNal @C/1`X. BY/|%MJ6{#=lCp7/%@PE!NT%Cn+ݾM+NB Z0#O@4r~z؇?Y;?ߺnm "Eo@aIe`ל^ Bz_=|b HR ̊l('p,A瀎7K@ O4&S$!QN,ru܌0~a\?}|;i +h_q:yh独s !ԄT8ܤ,hCvH#9ii~pMUwPBKgꍠ6~ 1_\x g3m0Z^SUOCxnZ{;R9(G 4oZ*utc.HSF׺ikmڿmCb"_`Oȭ/JG&P˪`P[VI`}B5 p0"ƤPo d> ;A|MF8#O'pאtn:` j5iw;p:~gG^wf=#FfЁ8-yv ̈ۛ WxWG|giSf#j:qA3ht|fIFq9KGz{.)Xy$C08~JouLQ`ӍmI+޽3PzxL5CϖQg m@+9)GQ1Gvl8ݴ+H<^Qox 5@~J`qjQmgF>Ѻ."EE6XՁ;.xjv%):Y.}}vhŤlaҧߟ®@ @Ro`-l3fA? U(+E)+ÔgM0T D ]sr]wu`M#1pOCЈ' _o+Œ>·NCgB"Ы)(}&M7~HV2nNsXzɭ[ Lj`1xu)d՗^~΅ݒ03 LeBsm5G4pt;бYNPM'k7T|GXZh&QJQ Ss=9duc98:IQ́YW+'*͍3T0YNҸPnkݍ"}}O<c7WuxZ,}; R~UUjs&l'_LLV|IMh1]kSt]#V9ɗ*UVq鮂\CFEuF#[0h.ݣSUB{Kyzf&j){zZ\*F,#̊˸}|srF8fCkGKdrj4uv$-`~^&ȞcT bU#6.I ׳yIY/{8AH _ ؋U?JY2ž'4޵-F$odj7guP2wMk jćݣ a jn pu9U}G)Ed/8qF>uf#;ÖJ85=/v.iL5}.Uȁ'j~#QYgW2foiȸ`p4:p:zЮzn8S GAo Jm4gv]%\1,ⱺ.g'nRIAܹӨvJoZ\%ol9-RRM9UaZ5#_@cإbV9[옡:Pt_])vvS0rR3!/ƤhUi 0~g3RmܺTb%V!z,뺃\n:|5Y{h|޶ +>З7j1uw$o7;Q vb*:{ o^J`y7#ڳV;&|Sh0h`w{y&E)Ҝeg &D::Y< wH0.C |nWR+y|u>w~t4gR~xOZ0~? GEX_|V\ q|8$*6.6м:V5"K="5 !VaGq|P5,ID^i3L$WdPgйYoggҿ3߳9sL` KߖVe;9 +ES6x&CHz"81{Ee^.r(0g6|C˼ \ftVb!I:+;fT21e9n?&lf|<: :AmĬH48Bq'PzpQH`^I kcf\RE]<{LdHzL7g 9jȐQChԐA %F8vzǝWEsWi|'5Pt<0k;Ri`1J_5?tg> 迣c/$fY0p*S=f7Wt=Fr=H ~E1=yD7YjbTFGCB~\l0Ab&^I Vnwpv\%OؒwH;׌:1Ҥ~=v!z%Qcu8v jC @˒ CǪ˸g cwU|@*+xGVJP vw~UX^k(Cb[&#SD .vވ_z&٭|pLr,1k䝠-+ZMWfSj-V%Y~Kݸ'27tCاX-8F: 8䋭 ]|6 ɊQv{9}7HGߩ Z"<l.qXYK,/5y,jEW 2X 0:45y~.﹵GcL LI`5̀`:]q=&:/B4~.1˷CViÌ<;x}:;!q2'hJ ]-w6ٰDU%xڅ"A-И1 27_a7,1vsJsЯ3Z;H+|cުj{֍t>UEDڳVU(ޅE!P]mѩ^Xnf .Szj(a ޚr1􋴎X{p˜PtZY< |2a$iш7Խ"u uSUأWbɭ<Ȫ:1T^J#D@ *e5T.<ԝg-Is7@a nCirCi8ڈ݂1x >)dͻآZ'&B:d2fjy?H$Y!ДfԘ "e GS^1UCK.>ę;^^Rt0i Eqf'VhՔeh|GVZU970Z"LF^($,ӄ!s\ Brxqp][\Awz& e5B7Q)qpASo/=13;F ` 4$, 671[pTYHcǁS/cTzI d* G;׆xf-FB(ICJ.],W[K7l:ឡz]$Dz'ڌ'rFE(/kf:#bgwBYXFkN[SvJG3 D~=$ؐ]GJC/ zJrqu^1iQJ6w/K"!#: עZIPh@+6C $ZYKtt,Y/GdpLN0Ij%N}3Zm1='c=vc{"8Hp b$1DQ"]+nt_b> MӅ4CT( 2h=~Oۮ섔`~ݪAct6kV[i*O5gC[w +BP&(h3`v(8낮C#m72,k*l']H SC 0#R蠃+0s礆:݋DZ᩾`ZC;X/}LKdVژ$Ya`qn|_HQK Cj-"m*[= )׫r ;E.ŭFx(9= t%:%ºshP=%m EBZ-R^¹Fg"1RPEfO񴉳RУk!O< A4Chs]ĻG~?Ae^t2],K )xO)ŋ>N$ˮd̫v="ltG3MĀskrg]Ovʿhwp<8̛0!=$Gjulٛ߄2c 3+{g GHAJڀ@Ӛ}HD]ט="sk5z&:6פfYmI\+Q_t<"DGbd`9̹yIqY^贈eu7!zyOMZa?{vE[9TpIoy<0#k;*Ux4 QkSTٰF?AǢm]JݱC) K)Ҟ1Ht=ATNʊB NrKU t-}?,ZHȓI v8ATD{/v s9§ӓ }ȳM WgN Xk1GD.dsws^F~=L0R+kwYTiV!=|sŌcty.(aY$4Y!v2qd~Fxc2,0{q5q*I+ ~ $G-=hagd%ԁlY+@$ƨnMs۷DU+{`t[ [F;j`Q)Q1|kB7Ai^I& hVďYy★ P~uBzV Պ)*#EytFtad08h8ª> 5`u$u7 TVILpkk=8<*=C):> :vyVo/&ּtb'Y  gG]ˆM/PnI:*:گD"~wNp 9I)eo?cgE/RjY6i fp΃ֽ~j kD\uUeWp sYE bSLDK =ۚ=k$vU-9X _L[`[5hcr-̈(Q^ޤrbR=R2/Vuqn nSPt  88x[})M6I%{3V!ލw% '= bՁK;]P\YܛHK尣Gt5ŭY e !#aT> T`CC1i%8:QhB)V 8rVP}BHQn9eԢ;Sv%lU ET\xMj-r'蠂P!ѓD瞅2FGFطce;4ί6z&E|bDGbޔĖؾ&-Z$#ʊ6|ۃ1TlVS%`zzz`ï;hª#zaV\G|7s׬U#8`Kcy}dhe2 y#p,r>M.l<5r=9-/5cНK%J*ЦBf,b"E6$pDanB3 H[WJ4a WjA *uCHOy!uGtrSK6 2r2N\eཤ6Y+#xGw~vMW%O=![[7~f/-y+AzQDДv>[hӺn3e,P)c{> R"OzjՍv` ?pse; Z*:K0, [.GZrvc4Tֹͱ_ѲuM?FDfyaj?g*N)'~R,i~?'bpw!zSUf](p(pA \<%H=C$AQScvi(]$)fiؓ&"0!w E ws5%59@App3TB!Ԃ.3%t݃N jUn9*MtҾ?hkA)5\⃷ߦ#NmD[)9yNĽjeJOx;\-'[ +y%,O+)FQJPct&f'|3ߓNii+8~!Φ&4Ha_OMk IUëŝhZjW]nY,1;Qbzdk[bHuCZW]C@bWdHtvi>X=X4wfa+ Ȩ_WI>ؖy(ɜ6ID1 QTINZҾqyyڨC|1ƨW, `Eԓ<qsߑHD&3D2NH ={g:? rb 9Ye0~ɘ܃tHTk,Ej~c㗵C%e^{Ȟj;XSpL0MJ)x^h^o9Fȧ:g;{8{~xgO\֞y`E>:ݵ# \)'5h&?1O|O3dg2ɀRnp;>W~72ƨh"D/7-ֳ`' SJIװW 4эzה{n˧ewVqD1XΔWaC֠FVWq3]WooP9!_33JffP73̠ff*53?3Úkfu33uTzkf* [_Y" M5DmdbICުԓM._&!!-,}//`/cŠq>fbgg0nyyͻ]I% DxedJ2+4ko)~Ic"I۱E^hwzF|+xZc[d)J0cq Y,8DO@8"⢋NtJں`vt=1J)7 !Y^%op-7v 3 צ q7VQQs<-'B ~Q\R> 01JB+ LEs>4s=s~*.J_dYW:Gܑ5FQ\ dٙ)qxv|``ufd qM.'o&q[g r$u1Mc5y^{0C[LJ|B D)p8{rnp³~'xۓ_pUsU#r#\y>mdW˖r2 $-:X~+IKl%y4ΫףC[율X7Z$m;mUGԌч{ >fk N8㔒pIv kU|R\Q vtfHVIrO*Ye ̸ؐU_%>b>R@Mƚ\9itwF+ 6mUF`67hp(45hm!r$Z*@R-"êH9d4]vz1 mUC[-pxm4" ;LV_ S;R(R_sU8EAa/ D븎6x76޸&e\:Af4$9* PZO*RL˦ !LdbWGKu 1%cԾt5mS~ŐM2QpՓ4YI%Xp%:)vZbRW[YuO0`$QH@Rgx0Uu$: KBI La´]JuAi;[كֹg)I3KF ffݪwZżLvc[DϞ 7c(LAsWHyq?Q\}k(~7`7'ldӪL<jGT:Λz2q2{hTY,4_R iϝu3dS}Ů?ajսgX@'ȣԄ]W^&oTǵi&tڏq;JZYH~q'2A!M&\e.CO5PBg|h0|0fIBJMH͊MLmKƳЮ-ɛYjo덶ѬDTٷ{:Qkߺ4ͻ$wF`d3"VtC7j`; 5w#_r XAWsE4gePeɆh~0,aS؉hT=H$dgA'^^]ڹʗClֻ',?*wf7:J%V&,V?'OQ$s7ϲovB4e#>A)\kka>pv ELΰq~T4&xq!Q@/#d`qiCuJf*:95@k~mQgʅFѭ '4iy~ fT/`՚<3AoI PD-NWɣ *b*Т xZODGIǿ%Emqr|aˡ?O;w3GqHMk88ׯEפmSJV"v+^Wb ǟwf=F5IˏHGx(FB7<`7K\h2kQ礍ו #d=4A+1v2O7-^wª11f/QSKtV  G+qܼ3]*HtÙ|b-[Zs&bi fFKmR41.A4r*HCǞ"W@byedW+7EtV@WKOIӄQ94-g8s(ީޟ.GK] Rkz 0gz[|k+7" #|F9tƢ KJn䯵wjw|a0$5֍k#5MLQz L0)=rگ 㞟t?^C, $BƬʷ [nӾ{W~EV¤YM[|EȹSC$\E&"H=4oEʑ~1$'jj_mxFd&!h(bLifsdYee'Q~ @+iӍ7vqFҵ Z)hs[e\~c|]\L:šy2$Ac_fC@[7=ΩR|u1&5<1l(Ky4;a_rLGnG[:#<Ƭ8A/qCxK zzed`kP둄Ëf\UGw[zBW[gULJuߦVCMEޝCi#2ixO}L'o =?8AHޑKxZ.Y@Mp6I xj HEW G?A8oh[eX߶5I5\ ֮T@g]ѾrT/T(4ID5{UI*IhK Nd%VueK>Rs`&sVJ8JOdCfn|CuCx(YQr-bZ.[R3' kXpP28~*-(MVd ﲸv Oj40"z&LtG69JmR:SbRye(y!ȣL2!Mij=N˲ʃR3_s Hm ƣrZӽDaPAǟ6 (,Z)w%tJ>b`0ч! GN]3$L ymD'fCQ̿V[AQWb\ص{'VMK>P.B·*B^z.8ܐRrr.l\dR}ڟcaw RTHp$w1jamKSp@?:Sc1Hl^wxlKb#2c!TMvcrB5tTt郁@ CӯRx#SoF*,_j/;B4wǾ-2QHd5r_j 3V"!Ů]t߅zU;k/PI_i=ĪH|OM*U烖&&z͌;M}%!i&]FfY7N|[IGtuU|6p~8k瘿Ś3x.e *{;X6 }-c"7`aśbkoݙ!KjZPi rV_kj<ff*se.1v3^Po~7&jB޲VgN`+~s̲Fq n8IHfO}Tyk>9* }iaŵqcYnYu/Z?OX.>[A K|㹹uoF{p{ 9,e!_Ղ@2j QwkP¿j׸Wao#}5NxƏA;.Mv uGKz_ro^R5[ 1%_ &m^VJ>q_& 3Y'NSzWE95'Dg:[O4qER`p ۠SO[3=LoV؜d5{ 5m W=jU^炀;=*<$Զ%5debA<#xIN`yNcD ט*Pݔ|ʹgg(O}%|j= N`pv _d&:Mu6&bTuid*Yj{[@-Gٌ}acDbn$IM^ZhVT[bd5 ,@VH @"5}kuU B 7]1`d節9 _Q=G.0 OY& 'ޣ* ~j߿f|M)>VIyjOdR)@'Yr@*V>ŖK{'Bqy`\Z*ϸYxR3^ i>D@P!z.6 Ƕf 0:^Jފ5`3^Pt&2.'19*p_@Ziol쨯xQvQ5ս#nRvh +cV$Qg]0}߆{Ի7>p1֥uV|9 "fNw"F@8\'D0dE; Ʈ][z<1iT+_ީ`m3 0SJ>:g$*ҍbuHt1.;"wc6;bK}U UCr{f.!+ە5B\x:ŶD*δٻK)lKJYVJkEpzKN-U~[),q=ƾ4.i2V((2QzŽ6Ede> +J[Z53>ipxOaɠ߂ooS@} ̒htnjW%L !VS E0 NРr!%wHT 3:kK\Y+-9R|@cZTFOLhFEm p6eεCJ}e㇭(E &LQh8/L_5 ,?86IExxmhcZK Yy<^Q mnV .cfFJ4%zݥ5PQ%QoK`̪jྀN>M/yӼ^/ܱ4ʗQ2阩7oyֱ0?8Fe>ȏ2CðsV|? WTCb'j#xeIZ?O@؉S0Ђ,P@bO9S#kH`k1M/PfeP6ke2cZ׷{,0pd.#GIoi1CU~m4[#5+