metafor/0000755000176200001440000000000014746154602011720 5ustar liggesusersmetafor/tests/0000755000176200001440000000000013150625652013056 5ustar liggesusersmetafor/tests/testthat/0000755000176200001440000000000014746154602014722 5ustar liggesusersmetafor/tests/testthat/test_plots_baujat_plot.r0000644000176200001440000000225514712730576021700 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:baujat_plot source("settings.r") context("Checking plots example: Baujat plot") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() doplot <- function() { par(mar=c(5,4,2,2)) dat <- dat.pignon2000 dat$yi <- with(dat, OmE/V) dat$vi <- with(dat, 1/V) res <- rma(yi, vi, data=dat, method="EE", slab=id) baujat(res, xlim=c(0,20), ylim=c(0,0.2), bty="l", las=1) } png("images/test_plots_baujat_plot_light_test.png", res=200, width=1800, height=1800, type="cairo") doplot() dev.off() expect_true(.vistest("images/test_plots_baujat_plot_light_test.png", "images/test_plots_baujat_plot_light.png")) png("images/test_plots_baujat_plot_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") doplot() setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_baujat_plot_dark_test.png", "images/test_plots_baujat_plot_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_vanhouwelingen2002.r0000644000176200001440000002464314712730524025124 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:vanhouwelingen2002 context("Checking analysis example: vanhouwelingen2002") source("settings.r") ### load data dat <- dat.colditz1994 ### calculate log(OR)s and corresponding sampling variances dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) ### 'center' year variable dat$year <- dat$year - 1900 test_that("results for the equal-effects model are correct.", { res <- rma(yi, vi, data=dat, method="EE") tmp <- predict(res, transf=exp, digits=3) ### compare with results on page 596 (in text) expect_equivalent(tmp$pred, .6465, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, .5951, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, .7024, tolerance=.tol[["ci"]]) ### .703 in paper }) test_that("results for the random-effects model are correct.", { res <- rma(yi, vi, data=dat, method="ML") tmp <- predict(res, transf=exp, digits=3) ### compare with results on page 597 (in text) expect_equivalent(tmp$pred, .4762, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, .3360, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, .6749, tolerance=.tol[["ci"]]) expect_equivalent(res$tau2, .3025, tolerance=.tol[["var"]]) ### CI for tau^2 (profile likelihood method) tmp <- confint(res, type="PL") expect_equivalent(tmp$random[1,2], 0.1151, tolerance=.tol[["var"]]) expect_equivalent(tmp$random[1,3], 0.8937, tolerance=.tol[["var"]]) ### CI for tau^2 (Q-profile method) tmp <- confint(res) expect_equivalent(tmp$random[1,2], 0.1302, tolerance=.tol[["var"]]) ### 0.1350 based on a Satterthwaite approximation (page 597) expect_equivalent(tmp$random[1,3], 1.1812, tolerance=.tol[["var"]]) ### 1.1810 based on a Satterthwaite approximation (page 597) ### CI for mu with Knapp & Hartung method res <- rma(yi, vi, data=dat, method="ML", test="knha") tmp <- predict(res, transf=exp, digits=3) ### (results for this not given in paper) expect_equivalent(tmp$ci.lb, .3175, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, .7141, tolerance=.tol[["ci"]]) }) test_that("profile plot for tau^2 can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() res <- rma(yi, vi, data=dat, method="ML") png(filename="images/test_analysis_example_vanhouwelingen2002_profile_test.png", res=200, width=1800, height=1600, type="cairo") profile(res, xlim=c(0.01,2), steps=200, log="x", cex=0, lwd=2, cline=TRUE, progbar=FALSE) abline(v=c(0.1151, 0.8937), lty="dotted") dev.off() expect_true(.vistest("images/test_analysis_example_vanhouwelingen2002_profile_test.png", "images/test_analysis_example_vanhouwelingen2002_profile.png")) }) test_that("forest plot of observed log(OR)s and corresponding BLUPs can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() res <- rma(yi, vi, data=dat, method="ML") sav <- blup(res) png(filename="images/test_analysis_example_vanhouwelingen2002_forest_light_test.png", res=200, width=1800, height=1400, family="mono") par(mar=c(5,5,2,2)) forest(res, refline=res$b, addcred=TRUE, xlim=c(-7,7), alim=c(-3,3), slab=1:13, psize=0.8, ilab=paste0("(n = ", formatC(apply(dat[,c(4:7)], 1, sum), width=7, big.mark=","), ")"), ilab.xpos=-3.5, ilab.pos=2, rows=13:1+0.15, header="Trial (total n)", lty="dashed") arrows(sav$pi.lb, 13:1 - 0.15, sav$pi.ub, 13:1 - 0.15, length=0.035, angle=90, code=3) points(sav$pred, 13:1 - 0.15, pch=15, cex=0.8) dev.off() expect_true(.vistest("images/test_analysis_example_vanhouwelingen2002_forest_light_test.png", "images/test_analysis_example_vanhouwelingen2002_forest_light.png")) png(filename="images/test_analysis_example_vanhouwelingen2002_forest_dark_test.png", res=200, width=1800, height=1400, family="mono") setmfopt(theme="dark") par(mar=c(5,5,2,2)) forest(res, refline=res$b, addcred=TRUE, xlim=c(-7,7), alim=c(-3,3), slab=1:13, psize=0.8, ilab=paste0("(n = ", formatC(apply(dat[,c(4:7)], 1, sum), width=7, big.mark=","), ")"), ilab.xpos=-3.5, ilab.pos=2, rows=13:1+0.15, header="Trial (total n)", lty="dashed") arrows(sav$pi.lb, 13:1 - 0.15, sav$pi.ub, 13:1 - 0.15, length=0.035, angle=90, code=3) points(sav$pred, 13:1 - 0.15, pch=15, cex=0.8) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_analysis_example_vanhouwelingen2002_forest_dark_test.png", "images/test_analysis_example_vanhouwelingen2002_forest_dark.png")) }) test_that("the prediction interval is correct.", { res <- rma(yi, vi, data=dat, method="ML") ### computation as done in the paper tmp <- c(res$beta) + c(-1,+1) * qnorm(.975) * sqrt(res$tau2) ### compare with results on page 599 (in text) expect_equivalent(tmp, c(-1.8199, 0.3359), tolerance=.tol[["ci"]]) ### computation done with metafor tmp <- predict(res, digits=3) ### (results for this not given in paper) expect_equivalent(tmp$pi.lb, -1.875, tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.ub, 0.391, tolerance=.tol[["ci"]]) }) test_that("L'Abbe plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() res <- rma(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, method="EE") png(filename="images/test_analysis_example_vanhouwelingen2002_labbe_light_test.png", res=200, width=1800, height=1400, type="cairo") par(mar=c(5,5,1,2)) labbe(res, xlim=c(-7,-1), ylim=c(-7,-1), xlab="ln(odds) not-vaccinated group", ylab="ln(odds) vaccinated group") dev.off() expect_true(.vistest("images/test_analysis_example_vanhouwelingen2002_labbe_light_test.png", "images/test_analysis_example_vanhouwelingen2002_labbe_light.png")) png(filename="images/test_analysis_example_vanhouwelingen2002_labbe_dark_test.png", res=200, width=1800, height=1400, type="cairo") setmfopt(theme="dark") par(mar=c(5,5,1,2)) labbe(res, xlim=c(-7,-1), ylim=c(-7,-1), xlab="ln(odds) not-vaccinated group", ylab="ln(odds) vaccinated group") setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_analysis_example_vanhouwelingen2002_labbe_dark_test.png", "images/test_analysis_example_vanhouwelingen2002_labbe_dark.png")) }) ############################################################################ ### create dataset in long format dat.long <- to.long(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.colditz1994) dat.long <- escalc(measure="PLO", xi=out1, mi=out2, data=dat.long) dat.long$tpos <- dat.long$tneg <- dat.long$cpos <- dat.long$cneg <- NULL levels(dat.long$group) <- c("CON", "EXP") test_that("results for the bivariate model are correct.", { res <- rma.mv(yi, vi, mods = ~ 0 + group, random = ~ group | trial, struct="UN", data=dat.long, method="ML", sparse=.sparse) ### compare with results on pages 604-605 (in text) expect_equivalent(coef(res), c(-4.0960, -4.8337), tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, c(2.4073, 1.4314), tolerance=.tol[["var"]]) expect_equivalent(res$rho, .9467, tolerance=.tol[["cor"]]) res <- rma.mv(yi, vi, mods = ~ group, random = ~ group | trial, struct="UN", data=dat.long, method="ML", sparse=.sparse) ### compare with results on pages 604-605 (in text) expect_equivalent(coef(res), c(-4.0960, -0.7378), tolerance=.tol[["coef"]]) expect_equivalent(se(res), c(0.4347, 0.1797), tolerance=.tol[["se"]]) ### estimated odds ratio tmp <- predict(res, newmods=1, intercept=FALSE, transf=exp, digits=3) expect_equivalent(tmp$pred, 0.4782, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.3362, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.6801, tolerance=.tol[["ci"]]) ### amount of heterogeneity in log odds ratios tmp <- res$tau2[1] + res$tau2[2] - 2*res$rho*sqrt(res$tau2[1]*res$tau2[2]) expect_equivalent(tmp, 0.3241, tolerance=.tol[["var"]]) ### regression of log(odds)_EXP on log(odds)_CON res <- rma.mv(yi, vi, mods = ~ 0 + group, random = ~ group | trial, struct="UN", data=dat.long, method="ML", sparse=.sparse) reg <- matreg(y=2, x=1, R=res$G, cov=TRUE, means=coef(res), n=res$g.levels.comb.k) expect_equivalent(reg$tab$beta, c(-1.8437, 0.7300), tolerance=.tol[["coef"]]) expect_equivalent(reg$tab$se, c( 0.3265, 0.0749), tolerance=.tol[["se"]]) ### same idea but now use var-cov matrix of tau^2_1, tau_12, tau^2_2 for this res <- rma.mv(yi, vi, mods = ~ 0 + group, random = ~ group | trial, struct="UN", data=dat.long, method="ML", cvvc="varcov", control=list(nearpd=TRUE), sparse=.sparse) reg <- matreg(y=2, x=1, R=res$G, cov=TRUE, means=coef(res), V=res$vvc) expect_equivalent(reg$tab$beta, c(-1.8437, 0.7300), tolerance=.tol[["coef"]]) expect_equivalent(reg$tab$se, c( 0.3548, 0.0866), tolerance=.tol[["se"]]) }) ############################################################################ test_that("results for the meta-regression analyses are correct.", { res <- rma(yi, vi, mods = ~ ablat, data=dat, method="ML") ### compare with results on pages 608-609 (in text) expect_equivalent(coef(res), c(0.3710, -0.0327), tolerance=.tol[["coef"]]) expect_equivalent(se(res), c(0.1061, 0.0034), tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.0040, tolerance=.tol[["var"]]) expect_equivalent(res$R2, 98.6691, tolerance=.tol[["r2"]]) res <- rma.mv(yi, vi, mods = ~ 0 + group + group:I(ablat-33), random = ~ group | trial, struct="UN", data=dat.long, method="ML", sparse=.sparse) ### compare with results on pages 612-613 (in text) expect_equivalent(coef(res), c(-4.1174, -4.8257, 0.0725, 0.0391), tolerance=.tol[["coef"]]) expect_equivalent(se(res), c(0.3061, 0.3129, 0.0219, 0.0224), tolerance=.tol[["se"]]) expect_equivalent(res$tau2, c(1.1819, 1.2262), tolerance=.tol[["var"]]) expect_equivalent(res$rho, 1.0000, tolerance=.tol[["cor"]]) res <- rma.mv(yi, vi, mods = ~ group*I(ablat-33), random = ~ group | trial, struct="UN", data=dat.long, method="ML", sparse=.sparse) ### compare with results on pages 612-613 (in text) expect_equivalent(coef(res), c(-4.1174, -0.7083, 0.0725, -0.0333), tolerance=.tol[["coef"]]) expect_equivalent(se(res), c(0.3061, 0.0481, 0.0219, 0.0028), tolerance=.tol[["se"]]) expect_equivalent(res$tau2, c(1.1819, 1.2262), tolerance=.tol[["var"]]) expect_equivalent(res$rho, 1.0000, tolerance=.tol[["cor"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_to_long_table_wide.r0000644000176200001440000002014714712730603022775 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: to.long() function") source("settings.r") test_that("to.long() works correctly for measure='MD'", { dat <- dat.normand1999 sav <- to.long(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4) sav <- sav[,c(1,10:13)] expected <- structure(list(study = c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L), group = structure(c(2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L), .Label = c("2", "1"), class = "factor"), mean = c(55L, 75L, 27L, 29L, 64L, 119L, 66L, 137L), sd = c(47L, 64L, 7L, 4L, 17L, 29L, 20L, 48L), n = c(155L, 156L, 31L, 32L, 75L, 71L, 18L, 18L)), class = "data.frame", row.names = c(NA, 8L)) expect_equivalent(sav, expected) }) test_that("to.table() works correctly for measure='MD'", { dat <- dat.normand1999 sav <- to.table(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4) expected <- structure(c(55L, 75L, 47L, 64L, 155L, 156L, 27L, 29L, 7L, 4L, 31L, 32L, 64L, 119L, 17L, 29L, 75L, 71L, 66L, 137L, 20L, 48L, 18L, 18L), .Dim = 2:4, .Dimnames = list(c("Grp1", "Grp2"), c("Mean", "SD", "n"), c("1", "2", "3", "4"))) expect_equivalent(sav, expected) }) test_that("to.long() works correctly for measure='COR'", { dat <- dat.molloy2014 sav <- to.long(measure="COR", ri=ri, ni=ni, data=dat, subset=1:4) sav <- sav[,c(11:13)] expected <- structure(list(study = structure(1:4, .Label = c("1", "2", "3", "4"), class = "factor"), r = c(0.187, 0.162, 0.34, 0.32), n = c(109L, 749L, 55L, 107L)), class = "data.frame", row.names = c(NA, 4L )) expect_equivalent(sav, expected) }) test_that("to.table() works correctly for measure='COR'", { dat <- dat.molloy2014 sav <- to.table(measure="COR", ri=ri, ni=ni, data=dat, subset=1:4) expected <- structure(c(0.187, 109, 0.162, 749, 0.34, 55, 0.32, 107), .Dim = c(1L, 2L, 4L), .Dimnames = list("Grp", c("r", "n"), c("1", "2", "3", "4"))) expect_equivalent(sav, expected) }) test_that("to.long() works correctly for measure='PR'", { dat <- dat.debruin2009 sav <- to.long(measure="PR", xi=xi, ni=ni, data=dat, subset=1:4) sav <- sav[,c(11:13)] expected <- structure(list(study = structure(1:4, .Label = c("1", "2", "3", "4"), class = "factor"), out1 = c(11L, 24L, 179L, 82L), out2 = c(18L, 9L, 147L, 158L)), class = "data.frame", row.names = c(NA, 4L)) expect_equivalent(sav, expected) }) test_that("to.table() works correctly for measure='PR'", { dat <- dat.debruin2009 sav <- to.table(measure="PR", xi=xi, ni=ni, data=dat, subset=1:4) expected <- structure(c(11, 18, 24, 9, 179, 147, 82, 158), .Dim = c(1, 2, 4), .Dimnames = list("Grp", c("Out1", "Out2"), c("1", "2", "3", "4"))) expect_equivalent(sav, expected) }) test_that("to.long() works correctly for measure='IR'", { dat <- dat.hart1999 sav <- to.long(measure="IR", xi=x1i, ti=t1i, data=dat, subset=1:4) sav <- sav[,c(1,14:15)] expected <- structure(list(trial = 1:4, events = c(9L, 8L, 3L, 6L), ptime = c(413L, 263L, 487L, 237L)), class = "data.frame", row.names = c(NA, 4L)) expect_equivalent(sav, expected) }) test_that("to.table() works correctly for measure='IR'", { dat <- dat.hart1999 sav <- to.table(measure="IR", xi=x1i, ti=t1i, data=dat, subset=1:4) expected <- structure(c(9, 413, 8, 263, 3, 487, 6, 237), .Dim = c(1, 2, 4), .Dimnames = list("Grp", c("Events", "Person-Time"), c("1", "2", "3", "4"))) expect_equivalent(sav, expected) }) test_that("to.long() works correctly for measure='MN'", { dat <- dat.normand1999 sav <- to.long(measure="MN", mi=m1i, sdi=sd1i, ni=n1i, data=dat, subset=1:4) sav <- sav[,c(1,10:12)] expected <- structure(list(study = 1:4, mean = c(55L, 27L, 64L, 66L), sd = c(47L, 7L, 17L, 20L), n = c(155L, 31L, 75L, 18L)), class = "data.frame", row.names = c(NA, 4L)) expect_equivalent(sav, expected) }) test_that("to.table() works correctly for measure='MN'", { dat <- dat.normand1999 sav <- to.table(measure="MN", mi=m1i, sdi=sd1i, ni=n1i, data=dat, subset=1:4) expected <- structure(c(55, 47, 155, 27, 7, 31, 64, 17, 75, 66, 20, 18), .Dim = c(1, 3, 4), .Dimnames = list("Grp", c("Mean", "SD", "n"), c("1", "2", "3", "4"))) expect_equivalent(sav, expected) }) ### create dataset (from Morris, 2008) datT <- data.frame( m_pre = c(30.6, 23.5, 0.5, 53.4, 35.6), m_post = c(38.5, 26.8, 0.7, 75.9, 36.0), sd_pre = c(15.0, 3.1, 0.1, 14.5, 4.7), sd_post = c(11.6, 4.1, 0.1, 4.4, 4.6), ni = c(20, 50, 9, 10, 14), ri = c(.47, .64, .77, .89, .44)) test_that("to.long() works correctly for measure='SMCR'", { sav <- to.long(measure="SMCR", m1i=m_post, m2i=m_pre, sd1i=sd_pre, ni=ni, ri=ri, data=datT, subset=2:4) sav <- sav[,c(7:12)] expected <- structure(list(study = structure(1:3, .Label = c("2", "3", "4"), class = "factor"), mean1 = c(26.8, 0.7, 75.9), mean2 = c(23.5, 0.5, 53.4), sd1 = c(3.1, 0.1, 14.5), n = c(50, 9, 10), r = c(0.64, 0.77, 0.89)), class = "data.frame", row.names = c(NA, 3L)) expect_equivalent(sav, expected) }) test_that("to.table() works correctly for measure='SMCR'", { sav <- to.table(measure="SMCR", m1i=m_post, m2i=m_pre, sd1i=sd_pre, ni=ni, ri=ri, data=datT, subset=2:4) expected <- structure(c(26.8, 23.5, 3.1, 50, 0.64, 0.7, 0.5, 0.1, 9, 0.77, 75.9, 53.4, 14.5, 10, 0.89), .Dim = c(1, 5, 3), .Dimnames = list("Grp", c("Mean1", "Mean2", "SD1", "n", "r"), c("2", "3", "4"))) expect_equivalent(sav, expected) }) test_that("to.long() works correctly for measure='ARAW'", { dat <- dat.bonett2010 sav <- to.long(measure="AHW", ai=ai, mi=mi, ni=ni, data=dat, subset=1:4) sav <- sav[,c(1,8:10)] expected <- structure(list(study = 1:4, alpha = c(0.93, 0.91, 0.94, 0.89), m = c(20L, 20L, 20L, 20L), n = c(103L, 64L, 118L, 401L)), class = "data.frame", row.names = c(NA, 4L)) expect_equivalent(sav, expected) }) test_that("to.table() works correctly for measure='ARAW'", { dat <- dat.bonett2010 sav <- to.table(measure="AHW", ai=ai, mi=mi, ni=ni, data=dat, subset=1:4) expected <- structure(c(0.93, 20, 103, 0.91, 20, 64, 0.94, 20, 118, 0.89, 20, 401), .Dim = c(1, 3, 4), .Dimnames = list("Grp", c("alpha", "m", "n"), c("1", "2", "3", "4"))) expect_equivalent(sav, expected) }) test_that("to.wide() works correctly.", { dat.l <- dat.hasselblad1998 dat.c <- to.wide(dat.l, study="study", grp="trt", ref="no_contact", grpvars=6:7) expect_equivalent(dat.c$xi.1, c(363, 10, 23, 9, 237, 9, 16, 31, 26, 29, 12, 17, 77, 21, 107, 20, 3, 32, 8, 34, 9, 19, 143, 36, 73, 54)) expect_equivalent(dat.c$xi.2, c(75, 9, 9, 2, 58, 0, 20, 3, 1, 11, 11, 6, 79, 18, 64, 12, 9, 7, 5, 20, 0, 8, 95, 15, 78, 69)) expect_equivalent(dat.c$comp, c("in-no", "gr-no", "in-no", "in-no", "in-no", "in-no", "in-se", "in-no", "in-no", "gr-se", "in-se", "in-no", "se-no", "se-no", "in-no", "gr-in", "gr-in", "gr-se", "in-no", "in-no", "gr-no", "se-no", "in-no", "in-no", "in-no", "in-no")) expect_equivalent(dat.c$design, c("in-no", "gr-in-no", "gr-in-no", "in-no", "in-no", "in-no", "in-se", "in-no", "in-no", "gr-in-se", "gr-in-se", "in-no", "se-no", "se-no", "in-no", "gr-in", "gr-in", "gr-se", "in-no", "in-no", "gr-no", "se-no", "in-no", "in-no", "in-no", "in-no")) dat.l$trt <- factor(dat.l$trt, levels=c("no_contact", "ind_counseling", "grp_counseling", "self_help")) dat.c <- to.wide(dat.l, study="study", grp="trt", grpvars=5:7, postfix=c(".T",".C"), minlen=1) expect_equivalent(dat.c$xi.T, c(363, 23, 10, 9, 237, 9, 16, 31, 26, 12, 29, 17, 77, 21, 107, 12, 9, 32, 8, 34, 9, 19, 143, 36, 73, 54)) expect_equivalent(dat.c$xi.C, c(75, 9, 9, 2, 58, 0, 20, 3, 1, 11, 11, 6, 79, 18, 64, 20, 3, 7, 5, 20, 0, 8, 95, 15, 78, 69)) expect_equivalent(dat.c$comp, c("i-n", "i-n", "g-n", "i-n", "i-n", "i-n", "i-s", "i-n", "i-n", "i-s", "g-s", "i-n", "s-n", "s-n", "i-n", "i-g", "i-g", "g-s", "i-n", "i-n", "g-n", "s-n", "i-n", "i-n", "i-n", "i-n")) expect_equivalent(dat.c$design, c("i-n", "i-g-n", "i-g-n", "i-n", "i-n", "i-n", "i-s", "i-n", "i-n", "i-g-s", "i-g-s", "i-n", "s-n", "s-n", "i-n", "i-g", "i-g", "g-s", "i-n", "i-n", "g-n", "s-n", "i-n", "i-n", "i-n", "i-n")) }) rm(list=ls()) metafor/tests/testthat/test_misc_metan_vs_rma.peto_with_dat.bcg.r0000644000176200001440000000205714712730631025214 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: rma.peto() against metan with 'dat.bcg'") source("settings.r") test_that("results match (EE model, measure='OR').", { ### compare results with: metan tpos tneg cpos cneg, peto nograph or log res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) expect_equivalent(res$beta, -0.4744, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.5541, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.3948, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -11.6689, tolerance=.tol[["test"]]) ### 11.67 in Stata expect_equivalent(res$QE, 167.7302, tolerance=.tol[["test"]]) ### compare results with: metan tpos tneg cpos cneg, peto nograph or sav <- predict(res, transf=exp) expect_equivalent(sav$pred, 0.6222, tolerance=.tol[["pred"]]) expect_equivalent(sav$ci.lb, 0.5746, tolerance=.tol[["ci"]]) expect_equivalent(sav$ci.ub, 0.6738, tolerance=.tol[["ci"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_rma_vs_lm.r0000644000176200001440000000302714712730606021135 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking tip: rma() results match up with those from lm()") source("settings.r") test_that("results for rma() and lm() match.", { dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat.molloy2014) res1 <- rma(yi, 0, data=dat) res2 <- lm(yi ~ 1, data=dat) ### coefficients should be the same expect_equivalent(coef(res1), coef(res2)) ### standard errors should be the same expect_equivalent(se(res1), se(res2)) }) test_that("results for rma.mv() and lm() match.", { dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat.molloy2014) dat$id <- 1:nrow(dat) res1 <- rma.mv(yi, 0, random = ~ 1 | id, data=dat, sparse=.sparse) res2 <- lm(yi ~ 1, data=dat) ### coefficients should be the same expect_equivalent(coef(res1), coef(res2)) ### standard errors should be the same expect_equivalent(se(res1), se(res2)) ### get profile likelihood CI for sigma^2 sav <- confint(res1) expect_equivalent(sav$random[1,2:3], c(.0111, .0474), tolerance=.tol[["var"]]) ### fit with sparse=TRUE res1 <- rma.mv(yi, 0, random = ~ 1 | id, data=dat, sparse=TRUE) ### coefficients should be the same expect_equivalent(coef(res1), coef(res2)) ### standard errors should be the same expect_equivalent(se(res1), se(res2)) ### get profile likelihood CI for sigma^2 sav <- confint(res1) expect_equivalent(sav$random[1,2:3], c(.0111, .0474), tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_permutest.r0000644000176200001440000000660514712730627021216 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: permutest() function") source("settings.r") ### load data dat <- dat.hine1989 ### calculate risk differences and corresponding sampling variances dat <- escalc(measure="RD", n1i=n1i, n2i=n2i, ai=ai, ci=ci, data=dat) test_that("permutest() gives correct results for a random-effects model.", { skip_on_cran() ### fit random-effects model res <- rma(yi, vi, data=dat) ### exact permutation test sav <- permutest(res, progbar=FALSE) expect_equivalent(sav$pval, 0.0625) out <- capture.output(print(sav)) # so that print.permutest.rma.uni() is run (at least once) tmp <- coef(sav) expected <- structure(list(estimate = 0.029444, se = 0.013068, zval = 2.253107, pval = 0.0625, ci.lb = 0.003831, ci.ub = 0.055058), .Names = c("estimate", "se", "zval", "pval", "ci.lb", "ci.ub"), row.names = "intrcpt", class = "data.frame") expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) ### approximate permutation test set.seed(1234) sav <- permutest(res, iter=50, progbar=FALSE, control=list(p2defn="px2")) expect_equivalent(sav$pval, 0.08) set.seed(1234) sav <- permutest(res, iter=50, progbar=FALSE, control=list(p2defn="px2", stat="coef")) expect_equivalent(sav$pval, 0.08) }) test_that("permutest() gives correct results for a mixed-effects model.", { skip_on_cran() ### add a fake moderator dat$mod <- c(3,1,2,2,4,5) ### fit mixed-effects model res <- rma(yi, vi, mods = ~ mod, data=dat) ### exact permutation test sav <- permutest(res, progbar=FALSE) expect_equivalent(sav$pval, c(1, 0.0028), tolerance=.tol[["pval"]]) ### approximate permutation test set.seed(1234) sav <- permutest(res, iter=50, progbar=FALSE, control=list(p2defn="px2")) expect_equivalent(sav$pval, c(.04, .04)) sav <- permutest(res, iter=50, progbar=FALSE, control=list(p2defn="px2", stat="coef")) expect_equivalent(sav$pval, c(.04, .04)) }) test_that("permutest() gives correct results for example in Follmann & Proschan (1999).", { skip_on_cran() ### data in Table 1 dat <- read.table(header=TRUE, text = " ai n1i ci n2i 173 5331 210 5296 157 1906 193 1900 131 4541 121 4516 56 2051 84 2030 52 424 65 422 36 1149 42 1129 62 6582 20 1663 2 88 2 30") dat <- escalc(measure="PETO", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) res <- rma(yi, vi, data=dat, method="DL") sav <- permutest(res, permci=TRUE, progbar=FALSE, control=list(stat="coef")) expect_equivalent(sav$pval, 10/256) expect_equivalent(sav$ci.lb, -0.3677, tolerance=.tol[["ci"]]) expect_equivalent(sav$ci.ub, -0.0020, tolerance=.tol[["ci"]]) }) test_that("permutest() works correctly when specifying the 'btt' argument.", { skip_on_cran() dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) set.seed(1234) res1 <- rma(yi, vi, mods = ~ alloc + ablat, data=dat) sav1 <- permutest(res1, iter=99, btt=2:3, progbar=FALSE) set.seed(1234) res2 <- rma(yi, vi, mods = ~ alloc + ablat, data=dat, btt=2:3) sav2 <- permutest(res2, iter=99, progbar=FALSE) expect_equivalent(sav1$QM, sav2$QM) expect_equivalent(sav1$QM.perm, sav2$QM.perm) expect_equivalent(sav1$b.perm, sav2$b.perm) expect_equivalent(sav1$zval.perm, sav2$zval.perm) }) rm(list=ls()) metafor/tests/testthat/test_misc_rma_ls.r0000644000176200001440000003721014712730615020434 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: location-scale models") source("settings.r") dat <- dat.bangertdrowns2004 test_that("location-scale model works correctly for an intercept-only model", { res1 <- rma(yi, vi, data=dat) res2 <- rma.mv(yi, vi, random = ~ 1 | id, data=dat, sparse=.sparse) res3 <- rma(yi, vi, data=dat, scale = ~ 1) res4 <- rma(yi, vi, data=dat, scale = res3$Z) expect_equivalent(res1$tau2, res2$sigma2, tolerance=.tol[["var"]]) expect_equivalent(res1$tau2, exp(res3$alpha[1]), tolerance=.tol[["var"]]) expect_equivalent(res1$tau2, exp(res4$alpha[1]), tolerance=.tol[["var"]]) }) test_that("location-scale model works correctly for two subgroups with different tau^2 values", { res1 <- rma.mv(yi, vi, data=dat, random = ~ factor(meta) | id, struct="DIAG", subset=!is.na(meta), cvvc="transf", sparse=.sparse) expect_warning(res2 <- rma(yi, vi, data=dat, scale = ~ meta)) expect_warning(res3 <- rma(yi, vi, data=dat, scale = res2$Z.f)) expect_equivalent(res1$tau2, c(exp(res2$alpha[1]), exp(res2$alpha[1] + res2$alpha[2])), tolerance=.tol[["var"]]) expect_equivalent(res1$tau2, c(exp(res3$alpha[1]), exp(res3$alpha[1] + res3$alpha[2])), tolerance=.tol[["var"]]) expect_warning(res4 <- rma(yi, vi, data=dat, scale = ~ 0 + factor(meta))) expect_equivalent(unname(sqrt(diag(res1$vvc))), res4$se.alpha, tolerance=.tol[["se"]]) expect_warning(res5 <- rma(yi, vi, data=dat, scale = ~ 0 + factor(meta), link="identity")) expect_equivalent(res1$tau2, res5$alpha, tolerance=.tol[["var"]]) skip_on_cran() conf1 <- confint(res1) conf5 <- confint(res5, control=list(vc.min=0, vc.max=.5)) expect_equivalent(conf1[[1]]$random[1,], conf5[[1]]$random, tolerance=.tol[["var"]]) expect_equivalent(conf1[[2]]$random[1,], conf5[[2]]$random, tolerance=.tol[["var"]]) }) test_that("profile() and confint() work correctly for location-scale models", { skip_on_cran() png(filename="images/test_misc_rma_ls_profile_1_test.png", res=200, width=1800, height=1600, type="cairo") par(mfrow=c(2,2)) res1 <- rma(yi, vi, data=dat) prof1 <- profile(res1, progbar=FALSE, cline=TRUE, xlim=c(.01,.15)) conf1 <- confint(res1, type="PL") abline(v=conf1$random[1,2:3], lty="dotted") res2 <- rma.mv(yi, vi, random = ~ 1 | id, data=dat, sparse=.sparse) prof2 <- profile(res2, progbar=FALSE, cline=TRUE, xlim=c(.01,.15)) conf2 <- confint(res2) abline(v=conf2$random[1,2:3], lty="dotted") res3 <- rma(yi, vi, data=dat, scale = ~ 1) prof3 <- profile(res3, progbar=FALSE, cline=TRUE, xlim=log(c(.01,.15))) conf3 <- confint(res3) abline(v=conf3$random[1,2:3], lty="dotted") expect_equivalent(prof1$ll[c(1,20)], prof3$ll[c(1,20)], tolerance=.tol[["fit"]]) expect_equivalent(conf1$random[1,], exp(conf3$random), tolerance=.tol[["var"]]) res4 <- rma(yi, vi, data=dat, scale = ~ 1, link="identity") prof4 <- profile(res4, progbar=FALSE, cline=TRUE, xlim=c(.01,.15)) conf4 <- confint(res4, control=list(vc.max=.2)) abline(v=conf4$random[1,2:3], lty="dotted") dev.off() expect_true(.vistest("images/test_misc_rma_ls_profile_1_test.png", "images/test_misc_rma_ls_profile_1.png")) expect_equivalent(prof1$ll, prof2$ll, tolerance=.tol[["fit"]]) expect_equivalent(conf1$random[1,], conf2$random[1,], tolerance=.tol[["var"]]) expect_equivalent(prof1$ll, prof4$ll, tolerance=.tol[["fit"]]) expect_equivalent(conf1$random[1,], conf4$random, tolerance=.tol[["var"]]) }) test_that("location-scale model works correctly for a continuous predictor", { skip_on_cran() res1 <- rma(yi, vi, data=dat, scale = ~ grade) expect_equivalent(res1$beta, 0.2220791, tolerance=.tol[["coef"]]) expect_equivalent(res1$alpha, c(-3.10513013522415, 0.041361925354706), tolerance=.tol[["coef"]]) res2 <- rma(yi, vi, data=dat, scale = ~ grade, link="identity") expect_equivalent(res2$alpha, c(0.042926535, 0.002729234), tolerance=.tol[["coef"]]) #expect_equivalent(res1$tau2, res2$tau2, tolerance=.tol[["var"]]) # not true res3 <- rma.mv(yi, vi, data=dat, random = ~ sqrt(grade) | id, rho=0, struct="GEN", cvvc=TRUE, sparse=.sparse) expect_equivalent(c(res2$alpha), diag(res3$G), tolerance=.tol[["coef"]]) expect_equivalent(diag(res2$M), diag(res3$M), tolerance=.tol[["var"]]) expect_equivalent(unname(sqrt(diag(res3$vvc))), res2$se.alpha, tolerance=.tol[["se"]]) conf11 <- confint(res1, alpha=1) expect_equivalent(conf11$random, c(-3.10513, -5.25032, -1.21713), tolerance=.tol[["var"]]) conf12 <- confint(res1, alpha=2, xlim=c(-1,1)) expect_equivalent(conf12$random, c( 0.04136, -0.65819, 0.69562), tolerance=.tol[["var"]]) conf21 <- confint(res2, alpha=1, control=list(vc.min=-0.4, vc.max=0.3)) conf22 <- confint(res2, alpha=2, control=list(vc.min=-0.1, vc.max=0.05)) conf2 <- list(conf21, conf22) class(conf2) <- "list.confint.rma" expect_equivalent(conf2[[1]]$random, c(0.04293, -0.00137, 0.23145), tolerance=.tol[["var"]]) expect_equivalent(conf2[[2]]$random, c(0.00273, -0.04972, 0.04411), tolerance=.tol[["var"]]) conf3 <- confint(res3) expect_equivalent(conf3[[1]]$random[1,], c(0.04291, 0.00000, 0.11333), tolerance=.tol[["var"]]) expect_equivalent(conf3[[2]]$random[1,], c(0.00273, 0.00000, 0.04062), tolerance=.tol[["var"]]) # conf2 and conf3 are not the same because in res3 the two components must # be >= 0 while this restriction does not apply to res2 (and when profiling # or getting the CIs, fixing a particular component can lead to the other # component becoming negative) png(filename="images/test_misc_rma_ls_profile_2_test.png", res=200, width=1800, height=2200, type="cairo") par(mfrow=c(3,2)) profile(res1, alpha=1, progbar=FALSE, cline=TRUE) abline(v=conf11$random[2:3], lty="dotted") profile(res1, alpha=2, progbar=FALSE, cline=TRUE) abline(v=conf12$random[2:3], lty="dotted") profile(res2, alpha=1, progbar=FALSE, cline=TRUE, xlim=c(0,0.3)) abline(v=conf2[[1]]$random[2:3], lty="dotted") profile(res2, alpha=2, progbar=FALSE, cline=TRUE, xlim=c(-0.1,0.05)) abline(v=conf2[[2]]$random[2:3], lty="dotted") profile(res3, tau2=1, progbar=FALSE, cline=TRUE, xlim=c(0,.3)) abline(v=conf3[[1]]$random[1,2:3], lty="dotted") profile(res3, tau2=2, progbar=FALSE, cline=TRUE, xlim=c(0,.05)) abline(v=conf3[[2]]$random[1,2:3], lty="dotted") dev.off() expect_true(.vistest("images/test_misc_rma_ls_profile_2_test.png", "images/test_misc_rma_ls_profile_2.png")) }) test_that("location-scale model works correctly for multiple predictors", { skip_on_cran() expect_warning(res1 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni))) expect_equivalent(res1$beta, 0.1110317, tolerance=.tol[["coef"]]) expect_equivalent(res1$alpha, c(-1.08826059, -0.03429344, 2.09197456, -0.28439165), tolerance=.tol[["coef"]]) expect_warning(res2 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(scaleZ=FALSE))) expect_equivalent(res2$beta, 0.1110317, tolerance=.tol[["coef"]]) expect_equivalent(res2$alpha, c(-1.08826210, -0.03429332, 2.09197501, -0.28439156), tolerance=.tol[["coef"]]) out <- capture.output(print(res1)) expect_warning(res2 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="Nelder-Mead"))) expect_warning(res3 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="BFGS"))) expect_warning(res4 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="bobyqa"))) expect_warning(res5 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="nloptr"))) expect_warning(res6 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="hjk"))) expect_warning(res7 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="nmk"))) expect_warning(res8 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="mads"))) expect_warning(res9 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="ucminf"))) expect_warning(res10 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="lbfgsb3c"))) expect_warning(res11 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="subplex"))) expect_warning(res12 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="BBoptim"))) expect_warning(res13 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="Rcgmin"))) expect_warning(res14 <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni), control=list(optimizer="Rvmmin"))) expect_equivalent(res1$alpha, c(-1.08826059, -0.03429344, 2.09197456, -0.28439165), tolerance=.tol[["coef"]]) expect_equivalent(res2$alpha, c(-1.08879415, -0.03426271, 2.09166227, -0.28432946), tolerance=.tol[["coef"]]) expect_equivalent(res3$alpha, c(-1.08791095, -0.03439789, 2.09179476, -0.28438389), tolerance=.tol[["coef"]]) expect_equivalent(res4$alpha, c(-1.08826099, -0.03429340, 2.09197460, -0.28439162), tolerance=.tol[["coef"]]) expect_equivalent(res5$alpha, c(-1.09036615, -0.03393392, 2.09205708, -0.28429889), tolerance=.tol[["coef"]]) expect_equivalent(res6$alpha, c(-1.08825599, -0.03429422, 2.09197166, -0.28439180), tolerance=.tol[["coef"]]) expect_equivalent(res7$alpha, c(-1.08867491, -0.03415188, 2.09213170, -0.28436838), tolerance=.tol[["coef"]]) expect_equivalent(res8$alpha, c(-1.08825988, -0.03429568, 2.09198084, -0.28439174), tolerance=.tol[["coef"]]) expect_equivalent(res9$alpha, c(-1.08826216, -0.03429383, 2.09197932, -0.28439198), tolerance=.tol[["coef"]]) expect_equivalent(res10$alpha, c(-1.08825730, -0.03429256, 2.09197369, -0.28439170), tolerance=.tol[["coef"]]) expect_equivalent(res11$alpha, c(-1.08826074, -0.03429341, 2.09197437, -0.28439162), tolerance=.tol[["coef"]]) expect_equivalent(res12$alpha, c(-1.08823316, -0.03429494, 2.09194049, -0.28439102), tolerance=.tol[["coef"]]) expect_equivalent(res13$alpha, c(-1.08826085, -0.03429338, 2.09197445, -0.28439162), tolerance=.tol[["coef"]]) expect_equivalent(res14$alpha, c(-1.08826091, -0.03429340, 2.09197450, -0.28439161), tolerance=.tol[["coef"]]) }) test_that("permutation tests work correctly for a location-scale model", { skip_on_cran() expect_warning(res <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni))) set.seed(1234) sav <- permutest(res, iter=100, progbar=FALSE) out <- capture.output(print(sav)) expect_equivalent(sav$pval, 0.01, tolerance=.tol[["pval"]]) expect_equivalent(sav$pval.alpha, c(0.81, 0.95, 0.02, 0.04), tolerance=.tol[["coef"]]) png(filename="images/test_misc_rma_ls_permutest_light_test.png", res=200, width=1800, height=1800, type="cairo") plot(sav, QS=TRUE, alpha=1:4) dev.off() expect_true(.vistest("images/test_misc_rma_ls_permutest_light_test.png", "images/test_misc_rma_ls_permutest_light.png")) png(filename="images/test_misc_rma_ls_permutest_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") plot(sav, QS=TRUE, alpha=1:4) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_misc_rma_ls_permutest_dark_test.png", "images/test_misc_rma_ls_permutest_dark.png")) }) test_that("predict() works correctly for location-scale models", { skip_on_cran() expect_warning(res <- rma(yi, vi, data=dat, mods = ~ meta, scale = ~ meta)) res0 <- rma(yi, vi, data=dat, subset=meta==0) res1 <- rma(yi, vi, data=dat, subset=meta==1) pred <- predict(res, addx=TRUE, addz=TRUE) pred0 <- predict(res0) pred1 <- predict(res1) expect_equivalent(pred$pred[1:2], c(pred1$pred, pred0$pred), tolerance=.tol[["pred"]]) expect_equivalent(pred$se[1:2] , c(pred1$se, pred0$se), tolerance=.tol[["pred"]]) expect_equivalent(pred$ci.lb[1:2], c(pred1$ci.lb, pred0$ci.lb), tolerance=.tol[["pred"]]) expect_equivalent(pred$ci.ub[1:2], c(pred1$ci.ub, pred0$ci.ub), tolerance=.tol[["pred"]]) expect_equivalent(pred$pi.lb[1:2], c(pred1$pi.lb, pred0$pi.lb), tolerance=.tol[["pred"]]) expect_equivalent(pred$pi.ub[1:2], c(pred1$pi.ub, pred0$pi.ub), tolerance=.tol[["pred"]]) pred <- predict(res, newmods=0:1) expect_equivalent(pred$pred, c(pred0$pred, pred1$pred), tolerance=.tol[["pred"]]) pred2 <- predict(res, newmods=cbind(1,0:1)) expect_equivalent(pred, pred2) pred <- predict(res, newmods=0:1, newscale=0:1) expect_equivalent(pred$pred, c(pred0$pred, pred1$pred), tolerance=.tol[["pred"]]) expect_equivalent(pred$se , c(pred0$se, pred1$se), tolerance=.tol[["pred"]]) expect_equivalent(pred$ci.lb, c(pred0$ci.lb, pred1$ci.lb), tolerance=.tol[["pred"]]) expect_equivalent(pred$ci.ub, c(pred0$ci.ub, pred1$ci.ub), tolerance=.tol[["pred"]]) expect_equivalent(pred$pi.lb, c(pred0$pi.lb, pred1$pi.lb), tolerance=.tol[["pred"]]) expect_equivalent(pred$pi.ub, c(pred0$pi.ub, pred1$pi.ub), tolerance=.tol[["pred"]]) pred2 <- predict(res, newmods=cbind(1,0:1), newscale=0:1) expect_equivalent(pred, pred2) pred2 <- predict(res, newmods=0:1, newscale=cbind(1,0:1)) expect_equivalent(pred, pred2) pred2 <- predict(res, newmods=cbind(1,0:1), newscale=cbind(1,0:1)) expect_equivalent(pred, pred2) pred <- predict(res, newscale=0:1, transf=exp) expect_equivalent(pred$pred, c(res0$tau2, res1$tau2), tolerance=.tol[["var"]]) expect_warning(res <- rma(yi, vi, data=dat, mods = ~ meta, scale = ~ meta, link="identity")) pred <- predict(res, newscale=0:1) expect_equivalent(pred$pred, c(res0$tau2, res1$tau2), tolerance=.tol[["var"]]) }) test_that("anova() works correctly for location-scale models", { skip_on_cran() expect_warning(res1 <- rma(yi, vi, data=dat, mods = ~ factor(grade) + meta + sqrt(ni), scale = ~ factor(grade) + meta + sqrt(ni))) expect_warning(res0 <- rma(yi, vi, data=dat, mods = ~ factor(grade) + meta + sqrt(ni), scale = ~ 1)) sav <- anova(res1, res0) expect_equivalent(sav$LRT, 3.146726, tolerance=.tol[["test"]]) expect_equivalent(sav$pval, 0.6773767, tolerance=.tol[["pval"]]) sav <- anova(res1, btt=2:4) expect_equivalent(sav$QM, 5.286715, tolerance=.tol[["test"]]) expect_equivalent(sav$QMp, 0.1519668, tolerance=.tol[["pval"]]) sav <- anova(res1, att=2:4) expect_equivalent(sav$QS, 2.030225, tolerance=.tol[["test"]]) expect_equivalent(sav$QSp, 0.5661571, tolerance=.tol[["pval"]]) expect_error(anova(res1, btt=2:4, att=2:4)) sav <- anova(res1, X=c(0,1,-1,0,0,0)) expect_equivalent(sav$QM, 4.463309, tolerance=.tol[["test"]]) expect_equivalent(sav$QMp, 0.03463035, tolerance=.tol[["pval"]]) tmp <- predict(res1, newmods=c(1,-1,0,0,0), intercept=FALSE) expect_equivalent(sav$Xb[1,1], tmp$pred, tolerance=.tol[["test"]]) tmp <- predict(res1, newmods=cbind(0,1,-1,0,0,0)) expect_equivalent(sav$Xb[1,1], tmp$pred, tolerance=.tol[["test"]]) sav <- anova(res1, Z=c(0,1,-1,0,0,0)) expect_equivalent(sav$QS, 0.3679934, tolerance=.tol[["test"]]) expect_equivalent(sav$QSp, 0.5441001, tolerance=.tol[["pval"]]) tmp <- predict(res1, newscale=c(1,-1,0,0,0), intercept=FALSE) expect_equivalent(sav$Za[1,1], tmp$pred, tolerance=.tol[["test"]]) tmp <- predict(res1, newscale=cbind(0,1,-1,0,0,0)) expect_equivalent(sav$Za[1,1], tmp$pred, tolerance=.tol[["test"]]) expect_error(anova(res1, X=c(0,1,-1,0,0,0), Z=c(0,1,-1,0,0,0))) }) test_that("vif() works correctly for location-scale models", { skip_on_cran() expect_warning(res <- rma(yi, vi, data=dat, scale = ~ grade + meta + sqrt(ni))) sav <- round(vif(res)$vifs, 4) expect_equivalent(sav, c(grade = 1.3087, meta = 1.06, `sqrt(ni)` = 1.2847)) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_raudenbush2009.r0000644000176200001440000001426514712730454024243 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:raudenbush2009 context("Checking analysis example: raudenbush2009") source("settings.r") ### load data dat <- dat.raudenbush1985 test_that("results are correct for the equal-effects model.", { ### equal-effects model res.EE <- rma(yi, vi, data=dat, digits=3, method="EE") ### compare with results on page 301 (Table 16.2) and page 302 expect_equivalent(coef(res.EE), 0.0604, tolerance=.tol[["coef"]]) expect_equivalent(res.EE$QE, 35.8295, tolerance=.tol[["test"]]) expect_equivalent(res.EE$zval, 1.6553, tolerance=.tol[["test"]]) ### 1.65 in chapter }) test_that("results are correct for the random-effects model.", { ### random-effects model res.RE <- rma(yi, vi, data=dat, digits=3) ### compare with results on page 301 (Table 16.2) and page 302 expect_equivalent(coef(res.RE), 0.0837, tolerance=.tol[["coef"]]) ### 0.083 in chapter expect_equivalent(res.RE$zval, 1.6208, tolerance=.tol[["test"]]) expect_equivalent(res.RE$tau2, 0.0188, tolerance=.tol[["var"]]) ### prediction interval tmp <- predict(res.RE) ### compare with results on page 301 (Table 16.2) and page 302 expect_equivalent(tmp$pi.lb, -0.2036, tolerance=.tol[["ci"]]) ### -0.19 in chapter but computed in a slightly different way expect_equivalent(tmp$pi.ub, 0.3711, tolerance=.tol[["ci"]]) ### 0.35 in chapter but computed in a slightly different way ### range of BLUPs tmp <- range(blup(res.RE)$pred) ### compare with results on page 301 (Table 16.2) expect_equivalent(tmp, c(-0.0293, 0.2485), tolerance=.tol[["pred"]]) }) test_that("results are correct for the mixed-effects model.", { ### recode weeks variable dat$weeks.c <- ifelse(dat$weeks > 3, 3, dat$weeks) ### mixed-effects model res.ME <- rma(yi, vi, mods = ~ weeks.c, data=dat, digits=3) ### compare with results on page 301 (Table 16.2) expect_equivalent(res.ME$tau2, 0.0000, tolerance=.tol[["var"]]) expect_equivalent(coef(res.ME), c(0.4072, -0.1572), tolerance=.tol[["coef"]]) expect_equivalent(res.ME$QE, 16.5708, tolerance=.tol[["test"]]) expect_equivalent(res.ME$zval, c(4.6782, -4.3884), tolerance=.tol[["test"]]) ### range of BLUPs tmp <- range(blup(res.ME)$pred) ### compare with results on page 301 (Table 16.2) expect_equivalent(tmp, c(-0.0646, 0.4072), tolerance=.tol[["pred"]]) ### -0.07 in chapter }) test_that("results are correct for the random-effects model (conventional approach).", { res.std <- list() res.std$EE <- rma(yi, vi, data=dat, digits=3, method="EE") res.std$ML <- rma(yi, vi, data=dat, digits=3, method="ML") res.std$REML <- rma(yi, vi, data=dat, digits=3, method="REML") res.std$DL <- rma(yi, vi, data=dat, digits=3, method="DL") res.std$HE <- rma(yi, vi, data=dat, digits=3, method="HE") tmp <- t(sapply(res.std, function(x) c(tau2=x$tau2, mu=x$beta, se=x$se, z=x$zval, ci.lb=x$ci.lb, ci.ub=x$ci.ub))) expected <- structure(c(0, 0.0126, 0.0188, 0.0259, 0.0804, 0.0604, 0.0777, 0.0837, 0.0893, 0.1143, 0.0365, 0.0475, 0.0516, 0.0558, 0.0792, 1.6553, 1.6368, 1.6208, 1.6009, 1.4432, -0.0111, -0.0153, -0.0175, -0.02, -0.0409, 0.1318, 0.1708, 0.1849, 0.1987, 0.2696), .Dim = 5:6, .Dimnames = list(c("EE", "ML", "REML", "DL", "HE"), c("tau2", "mu", "se", "z", "ci.lb", "ci.ub"))) ### compare with results on page 309 (Table 16.3) expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) }) test_that("results are correct for the random-effects model (Knapp & Hartung method).", { res.knha <- list() expect_warning(res.knha$EE <- rma(yi, vi, data=dat, digits=3, method="EE", test="knha")) res.knha$ML <- rma(yi, vi, data=dat, digits=3, method="ML", test="knha") res.knha$REML <- rma(yi, vi, data=dat, digits=3, method="REML", test="knha") res.knha$DL <- rma(yi, vi, data=dat, digits=3, method="DL", test="knha") res.knha$HE <- rma(yi, vi, data=dat, digits=3, method="HE", test="knha") tmp <- t(sapply(res.knha, function(x) c(tau2=x$tau2, mu=x$beta, se=x$se, z=x$zval, ci.lb=x$ci.lb, ci.ub=x$ci.ub))) expected <- structure(c(0, 0.0126, 0.0188, 0.0259, 0.0804, 0.0604, 0.0777, 0.0837, 0.0893, 0.1143, 0.0515, 0.0593, 0.0616, 0.0636, 0.0711, 1.1733, 1.311, 1.3593, 1.405, 1.6078, -0.0477, -0.0468, -0.0457, -0.0442, -0.0351, 0.1685, 0.2023, 0.2131, 0.2229, 0.2637), .Dim = 5:6, .Dimnames = list(c("EE", "ML", "REML", "DL", "HE"), c("tau2", "mu", "se", "z", "ci.lb", "ci.ub"))) ### compare with results on page 309 (Table 16.3) expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) }) test_that("results are correct for the random-effects model (Huber-White method).", { res.std <- list() res.std$EE <- rma(yi, vi, data=dat, digits=3, method="EE") res.std$ML <- rma(yi, vi, data=dat, digits=3, method="ML") res.std$REML <- rma(yi, vi, data=dat, digits=3, method="REML") res.std$DL <- rma(yi, vi, data=dat, digits=3, method="DL") res.std$HE <- rma(yi, vi, data=dat, digits=3, method="HE") res.hw <- list() res.hw$EE <- robust(res.std$EE, cluster=study, adjust=FALSE) res.hw$ML <- robust(res.std$ML, cluster=study, adjust=FALSE) res.hw$REML <- robust(res.std$REML, cluster=study, adjust=FALSE) res.hw$DL <- robust(res.std$DL, cluster=study, adjust=FALSE) res.hw$HE <- robust(res.std$HE, cluster=study, adjust=FALSE) out <- capture.output(print(res.hw$REML)) ### so that print.robust.rma() is run (at least once) tmp <- t(sapply(res.hw, function(x) c(tau2=x$tau2, mu=x$beta, se=x$se, t=x$zval, ci.lb=x$ci.lb, ci.ub=x$ci.ub))) expected <- structure(c(0, 0.0126, 0.0188, 0.0259, 0.0804, 0.0604, 0.0777, 0.0837, 0.0893, 0.1143, 0.0398, 0.0475, 0.05, 0.0522, 0.0618, 1.5148, 1.6369, 1.6756, 1.7105, 1.8503, -0.0234, -0.022, -0.0213, -0.0204, -0.0155, 0.1441, 0.1775, 0.1887, 0.199, 0.2441), .Dim = 5:6, .Dimnames = list(c("EE", "ML", "REML", "DL", "HE"), c("tau2", "mu", "se", "t", "ci.lb", "ci.ub"))) ### compare with results on page 309 (Table 16.3) expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) }) rm(list=ls()) metafor/tests/testthat/test_plots_forest_plot_with_predstyle.r0000644000176200001440000003455314712730574025066 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") source("settings.r") context("Checking plots example: forest plot with adjusted predstyle") dat <- dat.bcg dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, slab=paste(author, year, sep=", ")) res <- rma(yi, vi, data=dat) pred <- predict(res) test_that("plot can be drawn with predstyle='l'.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_forest_plot_with_predstyle_l_test.png", res=240, width=1800, height=1800, type="cairo") forest(res, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, addpred=TRUE, predstyle="l") text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_l_test.png", "images/test_plots_forest_plot_with_predstyle_l.png")) png("images/test_plots_forest_plot_with_predstyle_l_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-2,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) with(pred, addpoly(pred, ci.lb=ci.lb, ci.ub=ci.ub, pi.lb=pi.lb, pi.ub=pi.ub, mlab="Random-Effects Model")) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_l_test.png", "images/test_plots_forest_plot_with_predstyle_l.png")) png("images/test_plots_forest_plot_with_predstyle_l_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-2,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) addpoly(res, row=-1, addpred=TRUE) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_l_test.png", "images/test_plots_forest_plot_with_predstyle_l.png")) png("images/test_plots_forest_plot_with_predstyle_l_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-2,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) addpoly(pred, rows=-1, addpred=TRUE, mlab="Random-Effects Model") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_l_test.png", "images/test_plots_forest_plot_with_predstyle_l.png")) }) test_that("plot can be drawn with predstyle='b'.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_forest_plot_with_predstyle_b_test.png", res=240, width=1800, height=1800, type="cairo") forest(res, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, addpred=TRUE, predstyle="b") text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_b_test.png", "images/test_plots_forest_plot_with_predstyle_b.png")) png("images/test_plots_forest_plot_with_predstyle_b_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-3,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) with(pred, addpoly(pred, ci.lb=ci.lb, ci.ub=ci.ub, pi.lb=pi.lb, pi.ub=pi.ub, mlab="Random-Effects Model", predstyle="b")) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_b_test.png", "images/test_plots_forest_plot_with_predstyle_b.png")) png("images/test_plots_forest_plot_with_predstyle_b_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-3,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) addpoly(res, row=-1, predstyle="b") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_b_test.png", "images/test_plots_forest_plot_with_predstyle_b.png")) png("images/test_plots_forest_plot_with_predstyle_b_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-3,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) addpoly(pred, rows=-1, predstyle="b", mlab="Random-Effects Model") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_b_test.png", "images/test_plots_forest_plot_with_predstyle_b.png")) }) test_that("plot can be drawn with predstyle='s'.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_forest_plot_with_predstyle_s_test.png", res=240, width=1800, height=1800, type="cairo") forest(res, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, addpred=TRUE, predstyle="s") text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_s_test.png", "images/test_plots_forest_plot_with_predstyle_s.png")) png("images/test_plots_forest_plot_with_predstyle_s_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-3,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) with(pred, addpoly(pred, ci.lb=ci.lb, ci.ub=ci.ub, pi.lb=pi.lb, pi.ub=pi.ub, mlab="Random-Effects Model", predstyle="s")) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_s_test.png", "images/test_plots_forest_plot_with_predstyle_s.png")) png("images/test_plots_forest_plot_with_predstyle_s_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-3,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) addpoly(res, row=-1, predstyle="s") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_s_test.png", "images/test_plots_forest_plot_with_predstyle_s.png")) png("images/test_plots_forest_plot_with_predstyle_s_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-3,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) addpoly(pred, rows=-1, predstyle="s", mlab="Random-Effects Model") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_s_test.png", "images/test_plots_forest_plot_with_predstyle_s.png")) }) test_that("plot can be drawn with predstyle='d'.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_forest_plot_with_predstyle_d_test.png", res=240, width=1800, height=1800, type="cairo") forest(res, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, addpred=TRUE, predstyle="d") text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_d_test.png", "images/test_plots_forest_plot_with_predstyle_d.png")) png("images/test_plots_forest_plot_with_predstyle_d_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-3,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) with(pred, addpoly(pred, ci.lb=ci.lb, ci.ub=ci.ub, pi.lb=pi.lb, pi.ub=pi.ub, mlab="Random-Effects Model", predstyle="d")) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_d_test.png", "images/test_plots_forest_plot_with_predstyle_d.png")) png("images/test_plots_forest_plot_with_predstyle_d_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-3,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) addpoly(res, row=-1, predstyle="d") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_d_test.png", "images/test_plots_forest_plot_with_predstyle_d.png")) png("images/test_plots_forest_plot_with_predstyle_d_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, header="Author(s) and Year", psize=1, shade=TRUE, ylim=c(-3,16))) text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) abline(h=0) addpoly(pred, rows=-1, predstyle="d", mlab="Random-Effects Model") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_d_test.png", "images/test_plots_forest_plot_with_predstyle_d.png")) }) test_that("plot can be drawn with predstyle='d' and transf=exp.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_forest_plot_with_predstyle_d_transf_test.png", res=240, width=1800, height=1800, type="cairo") forest(res, transf=exp, alim=c(0,3), steps=4, xlim=c(-2,4.2), cex=0.75, header="Author(s) and Year", psize=1, refline=1, shade=TRUE, addpred=TRUE, predstyle="d") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_d_transf_test.png", "images/test_plots_forest_plot_with_predstyle_d_transf.png")) png("images/test_plots_forest_plot_with_predstyle_d_transf_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, transf=exp, alim=c(0,3), steps=4, xlim=c(-2,4.2), cex=0.75, header="Author(s) and Year", psize=1, refline=1, shade=TRUE, ylim=c(-3,16))) abline(h=0) with(pred, addpoly(pred, ci.lb=ci.lb, ci.ub=ci.ub, pi.lb=pi.lb, pi.ub=pi.ub, mlab="Random-Effects Model", predstyle="d")) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_d_transf_test.png", "images/test_plots_forest_plot_with_predstyle_d_transf.png")) png("images/test_plots_forest_plot_with_predstyle_d_transf_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, transf=exp, alim=c(0,3), steps=4, xlim=c(-2,4.2), cex=0.75, header="Author(s) and Year", psize=1, refline=1, shade=TRUE, ylim=c(-3,16))) abline(h=0) addpoly(res, row=-1, predstyle="d") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_d_transf_test.png", "images/test_plots_forest_plot_with_predstyle_d_transf.png")) png("images/test_plots_forest_plot_with_predstyle_d_transf_test.png", res=240, width=1800, height=1800, type="cairo") with(dat, forest(yi, vi, transf=exp, alim=c(0,3), steps=4, xlim=c(-2,4.2), cex=0.75, header="Author(s) and Year", psize=1, refline=1, shade=TRUE, ylim=c(-3,16))) abline(h=0) addpoly(pred, rows=-1, predstyle="d", mlab="Random-Effects Model") dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_predstyle_d_transf_test.png", "images/test_plots_forest_plot_with_predstyle_d_transf.png")) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_berkey1998.r0000644000176200001440000000705214712730406023375 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:berkey1998 source("settings.r") context("Checking analysis example: berkey1998") ### load data dat <- dat.berkey1998 ### construct variance-covariance matrix of the observed outcomes V <- bldiag(lapply(split(dat[,c("v1i", "v2i")], dat$trial), as.matrix)) test_that("results are correct for the multiple outcomes random-effects model.", { ### multiple outcomes random-effects model (with ML estimation) res <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat, method="ML", sparse=.sparse) out <- capture.output(print(res)) ### so that print.rma.mv() is run (at least once) ### (results for this model not given in paper) expect_equivalent(coef(res), c(-0.3379, 0.3448), tolerance=.tol[["coef"]]) expect_equivalent(se(res), c(0.0798, 0.0495), tolerance=.tol[["se"]]) expect_equivalent(res$tau2, c(0.0261, 0.0070), tolerance=.tol[["var"]]) expect_equivalent(res$rho, 0.6992, tolerance=.tol[["cor"]]) }) test_that("results are correct for the multiple outcomes mixed-effects (meta-regression) model.", { ### multiple outcomes mixed-effects (meta-regression) model (with ML estimation) res <- rma.mv(yi, V, mods = ~ 0 + outcome + outcome:I(year - 1983), random = ~ outcome | trial, struct="UN", data=dat, method="ML", sparse=.sparse) ### compare with results on page 2545 (Table II) expect_equivalent(coef(res), c(-0.3351, 0.3479, -0.0108, 0.0010), tolerance=.tol[["coef"]]) expect_equivalent(se(res), c(0.0787, 0.0520, 0.0243, 0.0154), tolerance=.tol[["se"]]) expect_equivalent(res$tau2, c(0.0250, 0.0080), tolerance=.tol[["var"]]) expect_equivalent(res$rho, 0.6587, tolerance=.tol[["cor"]]) ### compute the covariance tmp <- res$rho*sqrt(res$tau2[1]*res$tau2[2]) expect_equivalent(tmp, 0.0093, tolerance=.tol[["cov"]]) ### test the difference in slopes res <- rma.mv(yi, V, mods = ~ 0 + outcome*I(year - 1983), random = ~ outcome | trial, struct="UN", data=dat, method="ML", sparse=.sparse) ### (results for this model not given in paper) expect_equivalent(coef(res), c(-0.3351, 0.3479, -0.0108, 0.0118), tolerance=.tol[["coef"]]) expect_equivalent(se(res), c(0.0787, 0.0520, 0.0243, 0.0199), tolerance=.tol[["se"]]) expect_equivalent(res$pval, c(0.0000, 0.0000, 0.6563, 0.5534), tolerance=.tol[["pval"]]) }) test_that("results are correct when testing var-cov structures against each other with LRTs.", { ### test whether the amount of heterogeneity is the same in the two outcomes res1 <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat, method="ML", sparse=.sparse) res0 <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="CS", data=dat, method="ML", sparse=.sparse) tmp <- anova(res0, res1) out <- capture.output(print(tmp)) ### so that print.anova.rma() is run (at least once) ### (results for this not given in paper) expect_equivalent(tmp$pval, 0.2597, tolerance=.tol[["pval"]]) ### test the correlation among the true effects res1 <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat, method="ML", sparse=.sparse) res0 <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat, method="ML", rho=0, sparse=.sparse) tmp <- anova(res0, res1) ### (results for this not given in paper) expect_equivalent(tmp$pval, 0.2452, tolerance=.tol[["pval"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_selmodel.r0000644000176200001440000002567214712730605020773 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: selmodel() function") source("settings.r") test_that("results are correct for a step function model.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() dat <- dat.hackshaw1998 res <- rma(yi, vi, data=dat) sav <- selmodel(res, type="stepfun", steps=c(0.05, 0.10, 0.50, 1.00)) out <- capture.output(print(sav)) expect_equivalent(coef(sav)$delta, c(1, 2.422079, 0.977543, 0.396713), tolerance=.tol[["coef"]]) expect_equivalent(se(sav)$delta, c(NA, 1.66085, 0.820387, 0.469235), tolerance=.tol[["se"]]) expect_equivalent(sav$LRT, 7.066137, tolerance=.tol[["test"]]) expect_identical(sav$LRTdf, 3L) expect_equivalent(sav$tau2, 0.03071325, tolerance=.tol[["var"]]) png(filename="images/test_misc_selmodel_1_light_test.png", res=200, width=1800, height=1600, type="cairo") plot(sav, ci="wald") dev.off() expect_true(.vistest("images/test_misc_selmodel_1_light_test.png", "images/test_misc_selmodel_1_light.png")) png(filename="images/test_misc_selmodel_1_dark_test.png", res=200, width=1800, height=1600, type="cairo") setmfopt(theme="dark") plot(sav, ci="wald") setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_misc_selmodel_1_dark_test.png", "images/test_misc_selmodel_1_dark.png")) tmp <- confint(sav) expect_equivalent(tmp[[1]]$random[1,], c(0.030713, 0.000224, 0.135284), tolerance=.tol[["var"]]) expect_equivalent(tmp[[2]]$random[1,], c(2.422079, 0.665133, 9.915798), tolerance=.tol[["coef"]]) expect_equivalent(tmp[[3]]$random[1,], c(0.977543, 0.209558, 5.386044), tolerance=.tol[["coef"]]) expect_equivalent(tmp[[4]]$random[1,], c(0.396713, 0.040198, 4.119681), tolerance=.tol[["coef"]]) # with ptable=TRUE sav <- selmodel(res, type="stepfun", steps=c(0.05, 0.10, 0.50, 1.00), ptable=TRUE) expect_equal(sav$k, c(7, 8, 16, 6)) # force delta <= 1 expect_warning(sav <- selmodel(res, type="stepfun", steps=c(0.05, 0.10, 0.50, 1.00), control=list(delta.max=1))) expect_equivalent(coef(sav)$delta, c(1, 0.999950, 0.442783, 0.148181), tolerance=.tol[["coef"]]) # with decreasing=TRUE sav <- selmodel(res, type="stepfun", steps=c(0.05, 0.10, 0.50, 1.00), decreasing=TRUE) expect_equivalent(coef(sav)$delta, c(1, 0.999966, 0.442781, 0.148179), tolerance=.tol[["coef"]]) }) test_that("results are correct for the beta function model.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() # data from Baskerville, N. B., Liddy, C., & Hogg, W. (2012). Systematic # review and meta-analysis of practice facilitation within primary care # settings. Annals of Family Medicine, 10(1), 63-74. yi <- c(1.01, 0.82, 0.59, 0.44, 0.84, 0.73, 1.12, 0.04, 0.24, 0.32, 1.04, 1.31, 0.59, 0.66, 0.62, 0.47, 1.08, 0.98, 0.26, 0.39, 0.60, 0.94, 0.11) sei <- c(0.52, 0.46, 0.23, 0.18, 0.29, 0.29, 0.36, 0.37, 0.15, 0.40, 0.32, 0.57, 0.29, 0.19, 0.31, 0.27, 0.32, 0.32, 0.18, 0.18, 0.31, 0.53, 0.27) xi <- c(1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1) res <- rma(yi, sei^2, method="ML") sav <- selmodel(res, type="beta", delta=c(1,1)) expect_equivalent(logLik(res), logLik(sav), tolerance=.tol[["fit"]]) sav <- selmodel(res, type="beta") out <- capture.output(print(sav)) expect_equivalent(coef(sav)$delta, c(0.4731131, 4.4613162), tolerance=.tol[["coef"]]) expect_equivalent(se(sav)$delta, c(0.2352481, 2.1841983), tolerance=.tol[["se"]]) expect_equivalent(sav$LRT, 7.846907, tolerance=.tol[["test"]]) expect_identical(sav$LRTdf, 2L) expect_equivalent(sav$tau2, 0.00000243, tolerance=.tol[["var"]]) png(filename="images/test_misc_selmodel_2_light_test.png", res=200, width=1800, height=1600, type="cairo") plot(sav, ylim=c(0,50), ci=TRUE, bty="l", seed=1234) dev.off() expect_true(.vistest("images/test_misc_selmodel_2_light_test.png", "images/test_misc_selmodel_2_light.png")) png(filename="images/test_misc_selmodel_2_dark_test.png", res=200, width=1800, height=1600, type="cairo") setmfopt(theme="dark") plot(sav, ylim=c(0,50), ci=TRUE, bty="l", seed=1234) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_misc_selmodel_2_dark_test.png", "images/test_misc_selmodel_2_dark.png")) res <- rma(yi, sei^2, mods = ~ xi, method="ML") sav <- selmodel(res, type="beta") out <- capture.output(print(sav)) expect_equivalent(coef(sav)$delta, c(0.4200973, 5.0959707), tolerance=.tol[["coef"]]) expect_equivalent(se(sav)$delta, c(0.2391269, 2.4108796), tolerance=.tol[["se"]]) expect_equivalent(sav$LRT, 9.044252, tolerance=.tol[["test"]]) expect_identical(sav$LRTdf, 2L) expect_equivalent(sav$tau2, 0.00000193, tolerance=.tol[["var"]]) expect_equivalent(coef(sav)$beta, c(0.1343001, -0.1363559), tolerance=.tol[["coef"]]) expect_equivalent(se(sav)$beta, c(0.1707418, 0.1244394), tolerance=.tol[["se"]]) }) test_that("results are correct for the various exponential function models.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() # data from Preston, C., Ashby, D., & Smyth, R. (2004). Adjusting for # publication bias: Modelling the selection process. Journal of Evaluation # in Clinical Practice, 10(2), 313-322. ai <- c(4,0,34,7,6,1,0,11,2,0,0,33) n1i <- c(19,18,341,71,45,94,22,88,82,33,15,221) ci <- c(5,0,50,16,5,8,0,12,7,0,1,43) n2i <- c(19,18,334,69,44,96,22,82,84,30,20,218) dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, drop00=TRUE) expect_warning(res <- rma(yi, vi, data=dat, method="EE")) alternative <- "less" sav1 <- selmodel(res, type="halfnorm", alternative=alternative) sav2 <- selmodel(res, type="negexp", alternative=alternative) sav3 <- selmodel(res, type="logistic", alternative=alternative) sav4 <- selmodel(res, type="power", alternative=alternative) expect_equivalent(c(sav1$delta, sav2$delta, sav3$delta, sav4$delta), c(3.162948, 2.656714, 3.339338, 1.458923), tolerance=.tol[["coef"]]) expect_equivalent(c(sav1$se.delta, sav2$se.delta, sav3$se.delta, sav4$se.delta), c(2.988922, 2.347468, 2.388776, 1.393725), tolerance=.tol[["se"]]) png(filename="images/test_misc_selmodel_profile_1_test.png", res=200, width=1800, height=1600, type="cairo") tmp <- profile(sav1, progbar=FALSE) dev.off() expect_true(.vistest("images/test_misc_selmodel_profile_1_test.png", "images/test_misc_selmodel_profile_1.png")) expect_equivalent(tmp$ll, c(-6.862544, -6.569986, -6.35659, -6.210436, -6.121035, -6.07939, -6.077928, -6.110356, -6.171488, -6.257068, -6.363607, -6.488238, -6.628599, -6.782733, -6.949015, -7.126075, -7.312763, -7.508097, -7.711241, -7.921472), tolerance=.tol[["fit"]]) sav1 <- selmodel(res, type="halfnorm", prec="sei", alternative=alternative, scaleprec=FALSE) sav2 <- selmodel(res, type="negexp", prec="sei", alternative=alternative, scaleprec=FALSE) sav3 <- selmodel(res, type="logistic", prec="sei", alternative=alternative, scaleprec=FALSE) sav4 <- selmodel(res, type="power", prec="sei", alternative=alternative, scaleprec=FALSE) expect_equivalent(c(sav1$delta, sav2$delta, sav3$delta, sav4$delta), c(3.506329, 2.279336, 3.017851, 1.444174), tolerance=.tol[["coef"]]) expect_equivalent(c(sav1$se.delta, sav2$se.delta, sav3$se.delta, sav4$se.delta), c(3.387300, 2.133013, 2.315789, 1.381633), tolerance=.tol[["se"]]) sav1 <- selmodel(res, type="halfnorm", prec="sei", alternative=alternative, steps=.05) sav2 <- selmodel(res, type="negexp", prec="sei", alternative=alternative, steps=.05) sav3 <- selmodel(res, type="logistic", prec="sei", alternative=alternative, steps=.05) sav4 <- selmodel(res, type="power", prec="sei", alternative=alternative, steps=.05, control=list(hessianCtrl=list(r=8))) expect_equivalent(c(sav1$delta, sav2$delta, sav3$delta, sav4$delta), c(5.832106, 3.819847, 5.041039, 2.399645), tolerance=.tol[["coef"]]) expect_equivalent(c(sav1$se.delta, sav2$se.delta, sav3$se.delta, sav4$se.delta), c(5.644466, 3.627467, 2.306998, 2.134629), tolerance=.tol[["se"]]) sav <- selmodel(res, type="negexppow", alternative=alternative) expect_equivalent(coef(sav)$delta, c(2.673818, 1.153199), tolerance=.tol[["coef"]]) expect_equivalent(se(sav)$delta, c(2.363403, 2.143849), tolerance=.tol[["se"]]) }) test_that("results are correct for a pirori chosen step function models.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() tab <- data.frame( steps = c(0.005, 0.01, 0.05, 0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90, 0.95, 0.99, 0.995, 1), delta.mod.1 = c(1, 0.99, 0.95, 0.80, 0.75, 0.65, 0.60, 0.55, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50), delta.sev.1 = c(1, 0.99, 0.90, 0.75, 0.60, 0.50, 0.40, 0.35, 0.30, 0.25, 0.10, 0.10, 0.10, 0.10), delta.mod.2 = c(1, 0.99, 0.95, 0.90, 0.80, 0.75, 0.60, 0.60, 0.75, 0.80, 0.90, 0.95, 0.99, 1.00), delta.sev.2 = c(1, 0.99, 0.90, 0.75, 0.60, 0.50, 0.25, 0.25, 0.50, 0.60, 0.75, 0.90, 0.99, 1.00)) dat <- dat.cohen1981 dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat[c(1,4,5)]) res <- rma(yi, vi, data=dat, method="ML") sav <- lapply(tab[-1], function(x) selmodel(res, type="stepfun", steps=tab$steps, delta=x, defmap=TRUE)) expect_equivalent(sapply(sav, function(x) x$beta), c(0.351894, 0.321518, 0.362019, 0.33218), tolerance=.tol[["coef"]]) expect_equivalent(sapply(sav, function(x) x$tau2), c(0.0045, 0.009544, 0.002774, 0.005652), tolerance=.tol[["var"]]) }) test_that("results are correct for a truncated distribution model.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() dat <- dat.hackshaw1998 res <- rma(yi, vi, data=dat, method="ML") sav <- selmodel(res, type="trunc") out <- capture.output(print(sav)) expect_equivalent(coef(sav)$delta, 0.3818424, tolerance=.tol[["coef"]]) expect_equivalent(se(sav)$delta, 0.2235527, tolerance=.tol[["se"]]) expect_equivalent(sav$LRT, 3.054457, tolerance=.tol[["test"]]) expect_identical(sav$LRTdf, 1L) expect_equivalent(sav$tau2, 0.02677134, tolerance=.tol[["var"]]) tmp <- confint(sav) expect_equivalent(tmp[[1]]$random[1,], c(0.026771, 0.001693, 0.099835), tolerance=.tol[["var"]]) expect_equivalent(tmp[[2]]$random[1,], c(0.381842, 0.108796, 1.116679), tolerance=.tol[["coef"]]) png(filename="images/test_misc_selmodel_profile_2_test.png", res=200, width=1800, height=1600, type="cairo") tmp <- profile(sav, cline=TRUE, progbar=FALSE) dev.off() expect_true(.vistest("images/test_misc_selmodel_profile_2_test.png", "images/test_misc_selmodel_profile_2.png")) res <- rma(yi, vi, data=dat, method="EE") sav <- selmodel(res, type="truncest") expect_equivalent(coef(sav)$delta, c(0.2336542, 0.4690409), tolerance=.tol[["coef"]]) sav <- selmodel(res, type="truncest", control=list(optimizer="mads")) expect_equivalent(coef(sav)$delta, c(0.1802357, 0.4187099), tolerance=.tol[["coef"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_pdfs.r0000644000176200001440000000160714712730627020117 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: pdfs of various measures") source("settings.r") test_that(".dsmd() works correctly.", { d <- metafor:::.dsmd(0.5, n1=15, n2=15, theta=0.8, correct=TRUE) expect_equivalent(d, 0.8208, tolerance=.tol[["den"]]) d <- metafor:::.dsmd(0.5, n1=15, n2=15, theta=0.8, correct=FALSE) expect_equivalent(d, 0.7757, tolerance=.tol[["den"]]) }) test_that(".dcor() works correctly.", { d <- metafor:::.dcor(0.5, n=15, rho=0.8) expect_equivalent(d, 0.2255, tolerance=.tol[["den"]]) }) test_that(".dzcor() works correctly.", { d <- metafor:::.dzcor(0.5, n=15, rho=0.8) expect_equivalent(d, 0.1183, tolerance=.tol[["den"]]) d <- metafor:::.dzcor(0.5, n=15, zrho=transf.rtoz(0.8)) expect_equivalent(d, 0.1183, tolerance=.tol[["den"]]) }) rm(list=ls()) metafor/tests/testthat/test_plots_cumulative_forest_plot.r0000644000176200001440000000607314712730574024172 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:cumulative_forest_plot source("settings.r") context("Checking plots example: cumulative forest plot") test_that("plot can be drawn for 'rma.uni' object.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_cumulative_forest_plot_1_test.png", res=240, width=1800, height=1400, type="cairo") ### decrease margins so the full space is used par(mar=c(4,4,2,2)) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects models res <- rma(yi, vi, data=dat, slab=paste(author, year, sep=", ")) ### cumulative meta-analysis (in the order of publication year) tmp <- cumul(res, order=year) ### cumulative forest plot forest(tmp, xlim=c(-4,2), at=log(c(0.125, 0.25, 0.5, 1, 2)), atransf=exp, digits=c(2L,3L), cex=0.85, header="Author(s) and Year") dev.off() expect_true(.vistest("images/test_plots_cumulative_forest_plot_1_test.png", "images/test_plots_cumulative_forest_plot_1.png")) }) test_that("plot can be drawn for 'rma.mh' object.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_cumulative_forest_plot_2_test.png", res=240, width=1800, height=1400, type="cairo") ### decrease margins so the full space is used par(mar=c(4,4,2,2)) ### fit equal-effects models using the Mantel-Haenszel method res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### cumulative meta-analysis (in the order of publication year) tmp <- cumul(res, order=dat.bcg$year) ### cumulative forest plot forest(tmp, xlim=c(-4,2), at=log(c(0.125, 0.25, 0.5, 1, 2)), atransf=exp, digits=c(2L,3L), cex=0.85, header="Author(s) and Year") dev.off() expect_true(.vistest("images/test_plots_cumulative_forest_plot_2_test.png", "images/test_plots_cumulative_forest_plot_2.png")) }) test_that("plot can be drawn for 'rma.peto' object.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_cumulative_forest_plot_3_test.png", res=240, width=1800, height=1400, type="cairo") ### decrease margins so the full space is used par(mar=c(4,4,2,2)) ### fit equal-effects models using Peto's method res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### cumulative meta-analysis (in the order of publication year) tmp <- cumul(res, order=dat.bcg$year) ### cumulative forest plot forest(tmp, xlim=c(-4,2), at=log(c(0.125, 0.25, 0.5, 1, 2)), atransf=exp, digits=c(2L,3L), cex=0.85, header="Author(s) and Year") dev.off() expect_true(.vistest("images/test_plots_cumulative_forest_plot_3_test.png", "images/test_plots_cumulative_forest_plot_3.png")) }) rm(list=ls()) metafor/tests/testthat/test_misc_influence.r0000644000176200001440000001672414720347260021135 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: influence() and related functions") source("settings.r") test_that("influence() works for rma().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) sav <- influence(res) sav$inf <- sav$inf[1] sav$dfbs <- sav$dfbs[1] sav$is.infl <- sav$is.infl[1] sav$not.na <- sav$not.na[1] tmp <- structure(list(inf = structure(list(rstudent = -0.218142474344442, dffits = -0.0407075604868486, cook.d = 0.00171654236729195, cov.r = 1.11644891104804, tau2.del = 0.336156745300306, QE.del = 151.582572747109, hat = 0.0505948307931551, weight = 5.05948307931551, inf = "", slab = 1L, digits = c(est = 4, se = 4, test = 4, pval = 4, ci = 4, var = 4, sevar = 4, fit = 4, het = 4)), class = "list.rma"), dfbs = structure(list(intrcpt = -0.0402659025974144, slab = 1L, digits = c(est = 4, se = 4, test = 4, pval = 4, ci = 4, var = 4, sevar = 4, fit = 4, het = 4)), class = "list.rma"), ids = 1:13, not.na = TRUE, is.infl = FALSE, tau2 = 0.313243325980895, QE = 152.233008082373, k = 13L, p = 1L, m = 1L, digits = c(est = 4, se = 4, test = 4, pval = 4, ci = 4, var = 4, sevar = 4, fit = 4, het = 4)), class = "infl.rma.uni") expect_equivalent(sav, tmp, tolerance=.tol[["inf"]]) }) test_that("leave1out() works for rma().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) inf <- leave1out(res) inf <- inf[1] sav <- structure(list(estimate = -0.707083788031436, se = 0.189961024702717, zval = -3.72225717953459, pval = 0.000197449759023198, ci.lb = -1.07940055491509, ci.ub = -0.334767021147788, Q = 151.582572747109, Qp = 7.0778599767807e-27, tau2 = 0.336156745300306, I2 = 93.2259349111223, H2 = 14.762184698253, slab = "-1", digits = c(est = 4, se = 4, test = 4, pval = 4, ci = 4, var = 4, sevar = 4, fit = 4, het = 4), transf = FALSE), class = "list.rma") expect_equivalent(sav, inf, tolerance=.tol[["misc"]]) }) test_that("leave1out() works for rma.mh().", { res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) inf <- leave1out(res) inf <- inf[1] sav <- structure(list(estimate = -0.451379469928476, se = 0.0394350331703394, zval = -11.4461541842439, pval = 2.45810944109134e-30, ci.lb = -0.528670714671484, ci.ub = -0.374088225185468, Q = 151.915260738878, Qp = 6.05181927235005e-27, I2 = 92.7591211399706, H2 = 13.8104782489889, slab = "-1", digits = c(est = 4, se = 4, test = 4, pval = 4, ci = 4, var = 4, sevar = 4, fit = 4, het = 4), transf = FALSE), class = "list.rma") expect_equivalent(sav, inf, tolerance=.tol[["misc"]]) }) test_that("leave1out() works for rma.peto().", { res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) inf <- leave1out(res) inf <- inf[1] sav <- structure(list(estimate = -0.472177269248539, se = 0.0407784291562603, zval = -11.5790941195696, pval = 5.25989306490064e-31, ci.lb = -0.552101521740927, ci.ub = -0.39225301675615, Q = 167.200450619361, Qp = 4.44309617192221e-30, I2 = 93.4210703623987, H2 = 15.2000409653964, slab = "-1", digits = c(est = 4, se = 4, test = 4, pval = 4, ci = 4, var = 4, sevar = 4, fit = 4, het = 4), transf = FALSE), class = "list.rma") expect_equivalent(sav, inf, tolerance=.tol[["misc"]]) }) test_that("model.matrix() works for rma().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat, data=dat) sav <- structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 44, 55, 42, 52, 13, 44, 19, 13, 27, 42, 18, 33, 33), .Dim = c(13L, 2L), .Dimnames = list(c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13"), c("intrcpt", "ablat"))) expect_equivalent(sav, model.matrix(res)) }) test_that("hatvalues() works for rma().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat, data=dat) expect_equivalent(hatvalues(res), c(0.049, 0.1493, 0.0351, 0.3481, 0.2248, 0.2367, 0.064, 0.357, 0.0926, 0.1157, 0.2309, 0.0189, 0.0778), tolerance=.tol[["inf"]]) sav <- structure(c(0.049, 0.067, 0.0458, 0.0994, 0.1493, 0.0904, 0.0374, 0.0498, 0.0351), .Dim = c(3L, 3L), .Dimnames = list(c("1", "2", "3"), c("1", "2", "3"))) expect_equivalent(hatvalues(res, type="matrix")[1:3,1:3], sav, tolerance=.tol[["inf"]]) }) test_that("hatvalues() works for rma.mv().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma.mv(yi, vi, mods = ~ ablat, random = ~ 1 | trial, data=dat, sparse=.sparse) expect_equivalent(hatvalues(res), c(0.049, 0.1493, 0.0351, 0.3481, 0.2248, 0.2367, 0.064, 0.357, 0.0926, 0.1157, 0.2309, 0.0189, 0.0778), tolerance=.tol[["inf"]]) sav <- structure(c(0.049, 0.067, 0.0458, 0.0994, 0.1493, 0.0904, 0.0374, 0.0498, 0.0351), .Dim = c(3L, 3L), .Dimnames = list(c("1", "2", "3"), c("1", "2", "3"))) expect_equivalent(hatvalues(res, type="matrix")[1:3,1:3], sav, tolerance=.tol[["inf"]]) }) test_that("cooks.distance() works for rma().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat, data=dat) expect_equivalent(cooks.distance(res), c(0.0048, 0.0489, 0.0104, 0.2495, 0.0072, 0.2883, 0.3643, 0.2719, 0.02, 0.1645, 0.0009, 0.0403, 0.1433), tolerance=.tol[["inf"]]) }) test_that("cooks.distance() works for rma.mv().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma.mv(yi, vi, mods = ~ ablat, random = ~ 1 | trial, data=dat, sparse=.sparse) expect_equivalent(cooks.distance(res), c(0.0048, 0.0489, 0.0104, 0.2495, 0.0072, 0.2883, 0.3643, 0.2719, 0.02, 0.1645, 0.0009, 0.0404, 0.1434), tolerance=.tol[["inf"]]) expect_equivalent(cooks.distance(res, cluster=alloc), c(0.2591, 2.4372, 0.1533), tolerance=.tol[["inf"]]) expect_equivalent(cooks.distance(res, cluster=alloc, reestimate=FALSE), c(0.3199, 2.2194, 0.2421), tolerance=.tol[["inf"]]) }) test_that("influence() correctly works with 'na.omit' and 'na.pass'.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste0("Trial ", dat.bcg$trial)) dat$yi[2] <- NA dat$vi[3] <- NA dat$ablat[5] <- NA dat$trial12 <- ifelse(dat$trial == 12, 1, 0) options(na.action="na.omit") expect_warning(res <- rma(yi, vi, mods = ~ ablat + trial12, data=dat)) sav <- influence(res) expect_equivalent(length(sav$inf$rstudent), 10) expect_equivalent(sum(is.na(sav$inf$rstudent)), 1) expect_equivalent(sum(is.na(sav$inf$hat)), 0) expect_equivalent(sum(is.na(sav$dfbs$intrcpt)), 1) options(na.action="na.pass") expect_warning(res <- rma(yi, vi, mods = ~ ablat + trial12, data=dat)) sav <- influence(res) expect_equivalent(length(sav$inf$rstudent), 13) expect_equivalent(sum(is.na(sav$inf$rstudent)), 4) expect_equivalent(sum(is.na(sav$inf$hat)), 3) expect_equivalent(sum(is.na(sav$dfbs$intrcpt)), 4) options(na.action="na.omit") }) test_that("'infonly' argument works correctly with influence().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste0("Trial ", dat.bcg$trial)) res <- rma(yi, vi, data=dat, method="EE") inf <- influence(res) tmp <- capture.output(sav <- print(inf)) expect_equivalent(length(sav$rstudent), 13) tmp <- capture.output(sav <- print(inf, infonly=TRUE)) expect_equivalent(length(sav$rstudent), 3) }) rm(list=ls()) metafor/tests/testthat/test_misc_vif.r0000644000176200001440000000175314712730577017755 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: vif() function") source("settings.r") test_that("vif() works correctly for 'rma.uni' objects.", { dat <- dat.bangertdrowns2004 dat <- dat[!apply(dat[,c("length", "wic", "feedback", "info", "pers", "imag", "meta")], 1, anyNA),] res <- rma(yi, vi, mods = ~ length + wic + feedback + info + pers + imag + meta, data=dat) sav <- vif(res) out <- capture.output(print(sav)) vifs <- c(length = 1.53710262575577, wic = 1.38604929927746, feedback = 1.64904565071108, info = 1.83396138431786, pers = 5.67803138275492, imag = 1.1553714953831, meta = 4.53327503733189) expect_equivalent(sav$vifs, vifs) sav <- vif(res, table=TRUE) out <- capture.output(print(sav)) expect_equivalent(sav$vifs, vifs) sav <- vif(res, btt=2:3) out <- capture.output(print(sav)) gvif <- 2.06507966959426 expect_equivalent(sav$vifs, gvif) }) rm(list=ls()) metafor/tests/testthat/test_misc_rma_glmm.r0000644000176200001440000002231014712730616020746 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: rma.glmm() function") source("settings.r") dat <- dat.nielweise2007 test_that("rma.glmm() works correctly for 'UM.FS' model.", { expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="UM.FS", method="EE")) out <- capture.output(print(res)) expect_equivalent(coef(res), -1.2286, tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 0, tolerance=.tol[["var"]]) expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="UM.FS", test="t")) out <- capture.output(print(res)) expect_equivalent(coef(res), -1.2370, tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 0.3198, tolerance=.tol[["var"]]) ### check some (current) stop()'s expect_error(confint(res)) expect_error(plot(res)) expect_error(qqnorm(res)) expect_error(weights(res)) skip_on_cran() ### check GLMMadaptive and glmmTMB results expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="UM.FS", test="t", control=list(package="GLMMadaptive"))) expect_equivalent(coef(res), -1.236772, tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 0.322732, tolerance=.tol[["var"]]) expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="UM.FS", test="t", control=list(package="glmmTMB"))) expect_equivalent(coef(res), -1.2372, tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 0.3312, tolerance=.tol[["var"]]) }) test_that("rma.glmm() works correctly for 'UM.RS' model.", { expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="UM.RS", method="EE")) out <- capture.output(print(res)) expect_equivalent(coef(res), -1.2207, tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 0, tolerance=.tol[["var"]]) expect_equivalent(res$sigma2, 0.6155, tolerance=.tol[["var"]]) expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="UM.RS", test="t")) out <- capture.output(print(res)) expect_equivalent(coef(res), -1.2812, tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 0.7258, tolerance=.tol[["var"]]) expect_equivalent(res$sigma2, 0.5212, tolerance=.tol[["var"]]) ### check some (current) stop()'s expect_error(confint(res)) expect_error(plot(res)) expect_error(qqnorm(res)) expect_error(weights(res)) skip_on_cran() ### check GLMMadaptive and glmmTMB results expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="UM.RS", test="t", control=list(package="GLMMadaptive"))) expect_equivalent(coef(res), -1.2795, tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 0.7301, tolerance=.tol[["var"]]) expect_equivalent(res$sigma2, 0.5364, tolerance=.tol[["var"]]) expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="UM.RS", test="t", control=list(package="glmmTMB"))) expect_equivalent(coef(res), -1.2812, tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 0.7258, tolerance=.tol[["var"]]) expect_equivalent(res$sigma2, 0.5212, tolerance=.tol[["var"]]) }) test_that("rma.glmm() works correctly when using 'clogit' or 'clogistic'.", { skip_on_cran() expect_warning(res1 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", method="EE")) expect_warning(res2 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", method="EE", control=list(optimizer="clogit"))) expect_warning(res3 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", method="EE", control=list(optimizer="clogistic"))) expect_equivalent(coef(res1), -1.2236, tolerance=.tol[["coef"]]) expect_equivalent(coef(res2), -1.2236, tolerance=.tol[["coef"]]) expect_equivalent(coef(res3), -1.2236, tolerance=.tol[["coef"]]) expect_equivalent(c(vcov(res1)), 0.0502, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res2)), 0.0502, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res3)), 0.0502, tolerance=.tol[["var"]]) }) test_that("rma.glmm() works correctly for 'CM.EL' model.", { skip_on_cran() expect_warning(res1 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL")) expect_warning(res2 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="Nelder-Mead", hessianCtrl=list(d=0.00001)))) expect_warning(res3 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="BFGS"))) expect_warning(res4 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="bobyqa"))) expect_warning(res5 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="nloptr"))) expect_warning(res6 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="hjk"))) expect_warning(res7 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="nmk", hessianCtrl=list(r=4)))) expect_warning(res8 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="mads", hessianCtrl=list(r=4)))) expect_warning(res9 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="ucminf", optCtrl=list(xtol=1e-6)))) expect_warning(res10 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="lbfgsb3c"))) expect_warning(res11 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="subplex", hessianCtrl=list(r=4)))) expect_warning(res12 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="BBoptim"))) expect_warning(res13 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="Rcgmin"))) expect_warning(res14 <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL", control=list(optimizer="Rvmmin"))) expect_equivalent(coef(res1), -1.353158, tolerance=.tol[["coef"]]) expect_equivalent(coef(res2), -1.354041, tolerance=.tol[["coef"]]) expect_equivalent(coef(res3), -1.353158, tolerance=.tol[["coef"]]) expect_equivalent(coef(res4), -1.353158, tolerance=.tol[["coef"]]) expect_equivalent(coef(res5), -1.352573, tolerance=.tol[["coef"]]) expect_equivalent(coef(res6), -1.353160, tolerance=.tol[["coef"]]) expect_equivalent(coef(res7), -1.359295, tolerance=.tol[["coef"]]) expect_equivalent(coef(res8), -1.354186, tolerance=.tol[["coef"]]) expect_equivalent(coef(res9), -1.353158, tolerance=.tol[["coef"]]) expect_equivalent(coef(res10), -1.353170, tolerance=.tol[["coef"]]) expect_equivalent(coef(res11), -1.354171, tolerance=.tol[["coef"]]) expect_equivalent(coef(res12), -1.353158, tolerance=.tol[["coef"]]) expect_equivalent(coef(res13), -1.353158, tolerance=.tol[["coef"]]) expect_equivalent(coef(res14), -1.353158, tolerance=.tol[["coef"]]) expect_equivalent(c(vcov(res1)), 0.1232445, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res2)), 0.1227803, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res3)), 0.1231863, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res4)), 0.1231865, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res5)), 0.1230846, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res6)), 0.1231713, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res7)), 0.0412516, tolerance=.tol[["var"]]) # :( expect_equivalent(c(vcov(res8)), 0.0404966, tolerance=.tol[["var"]]) # :( expect_equivalent(c(vcov(res9)), 0.1232442, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res10)), 0.1232348, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res11)), 0.0404973, tolerance=.tol[["var"]]) # :( expect_equivalent(c(vcov(res12)), 0.1233028, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res13)), 0.1232885, tolerance=.tol[["var"]]) expect_equivalent(c(vcov(res14)), 0.1231726, tolerance=.tol[["var"]]) expect_equivalent(res1$tau2, 0.6935, tolerance=.tol[["var"]]) expect_equivalent(res2$tau2, 0.6945, tolerance=.tol[["var"]]) expect_equivalent(res3$tau2, 0.6935, tolerance=.tol[["var"]]) expect_equivalent(res4$tau2, 0.6935, tolerance=.tol[["var"]]) expect_equivalent(res5$tau2, 0.6937, tolerance=.tol[["var"]]) expect_equivalent(res6$tau2, 0.6935, tolerance=.tol[["var"]]) expect_equivalent(res7$tau2, 0.7043, tolerance=.tol[["var"]]) expect_equivalent(res8$tau2, 0.6944, tolerance=.tol[["var"]]) expect_equivalent(res9$tau2, 0.6935, tolerance=.tol[["var"]]) expect_equivalent(res10$tau2, 0.6935, tolerance=.tol[["var"]]) expect_equivalent(res11$tau2, 0.6944, tolerance=.tol[["var"]]) expect_equivalent(res12$tau2, 0.6935, tolerance=.tol[["var"]]) expect_equivalent(res13$tau2, 0.6935, tolerance=.tol[["var"]]) expect_equivalent(res14$tau2, 0.6935, tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_emmprep.r0000644000176200001440000000445314712730641020626 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: emmprep() function") source("settings.r") test_that("emmprep() gives correct results for an intercept-only model.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) sav <- capture.output(emmprep(res, verbose=TRUE)) sav <- emmprep(res) skip_on_cran() tmp <- emmeans::emmeans(sav, specs="1", type="response") tmp <- as.data.frame(tmp) expect_equivalent(tmp$response, 0.4894209, tolerance=.tol[["pred"]]) expect_equivalent(tmp$asymp.LCL, 0.3440743, tolerance=.tol[["ci"]]) expect_equivalent(tmp$asymp.UCL, 0.6961661, tolerance=.tol[["ci"]]) }) test_that("emmprep() gives correct results for a meta-regression model.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat$yi[1] <- NA res <- suppressWarnings(rma(yi, vi, mods = ~ ablat + alloc, data=dat, subset=-2, test="knha")) sav <- emmprep(res) skip_on_cran() tmp <- emmeans::emmeans(sav, specs="1", type="response") tmp <- as.data.frame(tmp) expect_equivalent(tmp$response, 0.5395324, tolerance=.tol[["pred"]]) expect_equivalent(tmp$lower.CL, 0.3564229, tolerance=.tol[["ci"]]) expect_equivalent(tmp$upper.CL, 0.8167130, tolerance=.tol[["ci"]]) sav <- emmprep(res, data=dat[-c(1,2),], df=7, sigma=sqrt(res$tau2), tran="log") tmp <- as.data.frame(tmp) expect_equivalent(tmp$response, 0.5395324, tolerance=.tol[["pred"]]) expect_equivalent(tmp$lower.CL, 0.3564229, tolerance=.tol[["ci"]]) expect_equivalent(tmp$upper.CL, 0.8167130, tolerance=.tol[["ci"]]) }) test_that("emmprep() gives correct results for the r-to-z transformation.", { dat <- dat.mcdaniel1994 dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) res <- suppressWarnings(rma(yi, vi, mods = ~ factor(type), data=dat, test="knha")) sav <- emmprep(res) skip_on_cran() tmp <- emmeans::emmeans(sav, specs="1", type="response") tmp <- as.data.frame(tmp) expect_equivalent(tmp$response, 0.2218468, tolerance=.tol[["pred"]]) expect_equivalent(tmp$lower.CL, 0.1680606, tolerance=.tol[["ci"]]) expect_equivalent(tmp$upper.CL, 0.2743160, tolerance=.tol[["ci"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_dfround.r0000644000176200001440000000122114712730642020611 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: dfround() function") source("settings.r") test_that("dfround() works correctly.", { dat <- as.data.frame(dat.raudenbush1985) dat$yi <- c(dat$yi) dat <- dfround(dat, c(rep(NA,8), 2, 3)) expect_identical(dat$yi, c(0.03, 0.12, -0.14, 1.18, 0.26, -0.06, -0.02, -0.32, 0.27, 0.8, 0.54, 0.18, -0.02, 0.23, -0.18, -0.06, 0.3, 0.07, -0.07)) expect_identical(dat$vi, c(0.016, 0.022, 0.028, 0.139, 0.136, 0.011, 0.011, 0.048, 0.027, 0.063, 0.091, 0.05, 0.084, 0.084, 0.025, 0.028, 0.019, 0.009, 0.03)) }) rm(list=ls()) metafor/tests/testthat/test_misc_residuals.r0000644000176200001440000000760714712730623021160 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: residuals() function") source("settings.r") test_that("residuals are correct for rma().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) res <- rma(yi, vi, data=dat) expect_equivalent(c(residuals(res)), c(dat$yi - coef(res))) expect_equivalent(rstandard(res)$z, c(0.1401, -0.9930, -0.4719, -1.0475, 1.6462, 0.4825), tolerance=.tol[["pred"]]) expect_equivalent(rstudent(res)$z, c(0.1426, -0.9957, -0.4591, -1.1949, 2.0949, 0.4330), tolerance=.tol[["test"]]) res <- rma(yi, vi, data=dat, method="EE") expect_equivalent(sum(residuals(res, type="pearson")^2), res$QE, tolerance=.tol[["test"]]) expect_equivalent(sum(residuals(res, type="cholesky")^2), res$QE, tolerance=.tol[["test"]]) }) test_that("rstudent() yields the same results as a mean shift outlier model for rma().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) dat$trial1 <- ifelse(dat$trial == 1, 1, 0) res <- rma(yi, vi, data=dat) sav <- rstudent(res) res <- rma(yi, vi, mods = ~ trial1, data=dat) expect_equivalent(coef(res)[2], sav$resid[1], tolerance=.tol[["coef"]]) expect_equivalent(se(res)[2], sav$se[1], tolerance=.tol[["se"]]) res <- rma(yi, vi, data=dat, test="knha") sav <- rstudent(res) res <- rma(yi, vi, mods = ~ trial1, data=dat, test="knha") expect_equivalent(coef(res)[2], sav$resid[1], tolerance=.tol[["pred"]]) expect_equivalent(se(res)[2], sav$se[1], tolerance=.tol[["se"]]) }) test_that("residuals are correct for rma.mv().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, sparse=.sparse) expect_equivalent(c(residuals(res)), c(dat$yi - coef(res))) expect_equivalent(rstandard(res)$z, c(0.1401, -0.9930, -0.4719, -1.0476, 1.6462, 0.4825), tolerance=.tol[["test"]]) expect_equivalent(rstandard(res, cluster=alloc)$cluster$X2, c(3.7017, 3.6145), tolerance=.tol[["test"]]) expect_equivalent(rstudent(res)$z, c(0.1426, -0.9957, -0.4591, -1.1949, 2.0949, 0.4330), tolerance=.tol[["test"]]) expect_equivalent(rstudent(res, cluster=alloc)$cluster$X2, c(27.4717, 5.2128), tolerance=.tol[["test"]]) expect_equivalent(rstudent(res, cluster=alloc, reestimate=FALSE)$cluster$X2, c(3.7017, 3.6145), tolerance=.tol[["test"]]) }) test_that("residuals are correct for rma.mh().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) expect_equivalent(c(residuals(res)), c(dat$yi - coef(res))) expect_equivalent(residuals(res, type="rstandard"), c(0.1068, -1.4399, -0.6173, -3.4733, 3.2377, 1.9749), tolerance=.tol[["pred"]]) expect_equivalent(residuals(res, type="rstudent"), c(0.1076, -1.4668, -0.6219, -4.2413, 3.3947, 2.7908), tolerance=.tol[["pred"]]) }) test_that("residuals are correct for rma.peto().", { dat <- escalc(measure="PETO", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) expect_equivalent(c(residuals(res)), c(dat$yi - coef(res))) expect_equivalent(rstandard(res)$z, c(0.2684, -1.1482, -0.4142, -2.3440, 3.4961, 0.8037), tolerance=.tol[["test"]]) expect_equivalent(rstudent(res)$z, c(0.2705, -1.1700, -0.4173, -2.8891, 3.6614, 1.1391), tolerance=.tol[["test"]]) }) test_that("residuals are correct for rma.glmm().", { skip_on_cran() dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) res <- rma.glmm(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) expect_equivalent(c(residuals(res)), c(dat$yi - coef(res))) }) rm(list=ls()) metafor/tests/testthat/test_misc_plot_rma.r0000644000176200001440000000603314712730626020775 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: plot() function") source("settings.r") test_that("plot can be drawn for rma().", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) png(filename="images/test_misc_plot_rma_1_light_test.png", res=200, width=1800, height=1800, type="cairo") plot(res) dev.off() expect_true(.vistest("images/test_misc_plot_rma_1_light_test.png", "images/test_misc_plot_rma_1_light.png")) png(filename="images/test_misc_plot_rma_1_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") plot(res) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_misc_plot_rma_1_dark_test.png", "images/test_misc_plot_rma_1_dark.png")) res <- rma(yi ~ ablat, vi, data=dat) png(filename="images/test_misc_plot_rma_2_light_test.png", res=200, width=1800, height=1800, type="cairo") plot(res) dev.off() expect_true(.vistest("images/test_misc_plot_rma_2_light_test.png", "images/test_misc_plot_rma_2_light.png")) png(filename="images/test_misc_plot_rma_2_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") plot(res) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_misc_plot_rma_2_dark_test.png", "images/test_misc_plot_rma_2_dark.png")) }) test_that("plot can be drawn for rma.mh().", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) png(filename="images/test_misc_plot_rma_3_light_test.png", res=200, width=1800, height=1800, type="cairo") plot(res) dev.off() expect_true(.vistest("images/test_misc_plot_rma_3_light_test.png", "images/test_misc_plot_rma_3_light.png")) png(filename="images/test_misc_plot_rma_3_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") plot(res) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_misc_plot_rma_3_dark_test.png", "images/test_misc_plot_rma_3_dark.png")) }) test_that("plot can be drawn for rma.peto().", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) png(filename="images/test_misc_plot_rma_4_light_test.png", res=200, width=1800, height=1800, type="cairo") plot(res) dev.off() expect_true(.vistest("images/test_misc_plot_rma_4_light_test.png", "images/test_misc_plot_rma_4_light.png")) png(filename="images/test_misc_plot_rma_4_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") plot(res) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_misc_plot_rma_4_dark_test.png", "images/test_misc_plot_rma_4_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_plots_forest_plot_with_subgroups.r0000644000176200001440000000671214712730573025077 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:forest_plot_with_subgroups source("settings.r") context("Checking plots example: forest plot with subgroups") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_forest_plot_with_subgroups_test.png", res=240, width=1800, height=1800, type="cairo") ### decrease the top margin #par(mar=c(4,4,1,2)) par(mar=c(5,4,2,2)) ### copy BCG vaccine meta-analysis data into 'dat' dat <- dat.bcg ### calculate log risk ratios and corresponding sampling variances (and use ### the 'slab' argument to store study labels as part of the data frame) dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, slab=paste(author, year, sep=", ")) ### fit random-effects model res <- rma(yi, vi, data=dat) ### a little helper function to add Q-test, I^2, and tau^2 estimate info mlabfun <- function(text, x) { list(bquote(paste(.(text), " (Q = ", .(fmtx(x$QE, digits=2)), ", df = ", .(x$k - x$p), ", ", .(fmtp(x$QEp, digits=3, pname="p", add0=TRUE, sep=TRUE, equal=TRUE)), "; ", I^2, " = ", .(fmtx(x$I2, digits=1)), "%, ", tau^2, " = ", .(fmtx(x$tau2, digits=2)), ")")))} ### set up forest plot (with 2x2 table counts added; the 'rows' argument is ### used to specify in which rows the outcomes will be plotted) forest(res, xlim=c(-16, 4.6), at=log(c(0.05, 0.25, 1, 4)), atransf=exp, ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, ylim=c(-2, 28), top=4, order=alloc, rows=c(3:4,9:15,20:23), mlab=mlabfun("RE Model for All Studies", res), psize=1, header="Author(s) and Year") ### set font expansion factor (as in forest() above) op <- par(cex=0.75) ### add additional column headings to the plot text(c(-8.75,-5.25), 27, c("Vaccinated", "Control"), font=2) ### add text for the subgroups text(-16, c(24,16,5), pos=4, c("Systematic Allocation", "Random Allocation", "Alternate Allocation"), font=4) ### set par back to the original settings par(op) ### fit random-effects model in the three subgroups res.s <- rma(yi, vi, subset=(alloc=="systematic"), data=dat) res.r <- rma(yi, vi, subset=(alloc=="random"), data=dat) res.a <- rma(yi, vi, subset=(alloc=="alternate"), data=dat) ### add summary polygons for the three subgroups addpoly(res.s, row=18.5, mlab=mlabfun("RE Model for Subgroup", res.s)) addpoly(res.r, row= 7.5, mlab=mlabfun("RE Model for Subgroup", res.r)) addpoly(res.a, row= 1.5, mlab=mlabfun("RE Model for Subgroup", res.a)) ### fit meta-regression model to test for subgroup differences res <- rma(yi, vi, mods = ~ alloc, data=dat) ### add text for the test of subgroup differences text(-16, -1.8, pos=4, cex=0.75, bquote(paste("Test for Subgroup Differences: ", Q[M], " = ", .(fmtx(res$QM, digits=2)), ", df = ", .(res$p - 1), ", ", .(fmtp(res$QMp, digits=2, pname="p", add0=TRUE, sep=TRUE, equal=TRUE))))) dev.off() expect_true(.vistest("images/test_plots_forest_plot_with_subgroups_test.png", "images/test_plots_forest_plot_with_subgroups.png")) }) rm(list=ls()) metafor/tests/testthat/test_plots_meta-analytic_scatterplot.r0000644000176200001440000000316214712730567024546 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:meta_analytic_scatterplot source("settings.r") context("Checking plots example: meta-analytic scatterplot") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat, data=dat) png("images/test_plots_meta_analytic_scatterplot_light_test.png", res=200, width=1800, height=1500, type="cairo") par(mar=c(5,5,1,2)) regplot(res, xlim=c(10,60), predlim=c(10,60), xlab="Absolute Latitude", refline=0, atransf=exp, at=log(seq(0.2,1.6,by=0.2)), digits=1, las=1, bty="l", label=c(4,7,12,13), offset=c(1.6,0.8), labsize=0.9) dev.off() expect_true(.vistest("images/test_plots_meta_analytic_scatterplot_light_test.png", "images/test_plots_meta_analytic_scatterplot_light.png")) png("images/test_plots_meta_analytic_scatterplot_dark_test.png", res=200, width=1800, height=1500, type="cairo") setmfopt(theme="dark") par(mar=c(5,5,1,2)) regplot(res, xlim=c(10,60), predlim=c(10,60), xlab="Absolute Latitude", refline=0, atransf=exp, at=log(seq(0.2,1.6,by=0.2)), digits=1, las=1, bty="l", label=c(4,7,12,13), offset=c(1.6,0.8), labsize=0.9) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_meta_analytic_scatterplot_dark_test.png", "images/test_plots_meta_analytic_scatterplot_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_lipsey2001.r0000644000176200001440000001132014712730437023366 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:lipsey2001 context("Checking analysis example: lipsey2001") source("settings.r") ### create dataset dat <- data.frame( id = c(100, 308, 1596, 2479, 9021, 9028, 161, 172, 537, 7049), yi = c(-0.33, 0.32, 0.39, 0.31, 0.17, 0.64, -0.33, 0.15, -0.02, 0.00), vi = c(0.084, 0.035, 0.017, 0.034, 0.072, 0.117, 0.102, 0.093, 0.012, 0.067), random = c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1), intensity = c(7, 3, 7, 5, 7, 7, 4, 4, 5, 6)) test_that("results are correct for the equal-effects model.", { res <- rma(yi, vi, data=dat, method="EE") ### compare with results on page 133 (Exhibit 7.3) expect_equivalent(c(as.matrix(coef(summary(res)))), c(0.1549, 0.0609, 2.5450, 0.0109, 0.0356, 0.2742), tolerance=.tol[["misc"]]) expect_equivalent(res$QE, 14.7640, tolerance=.tol[["test"]]) expect_equivalent(res$QEp, 0.0976, tolerance=.tol[["pval"]]) }) test_that("results are correct for the random-effects model.", { res <- rma(yi, vi, data=dat, method="DL") ### compare with results on page 133 (Exhibit 7.3) expect_equivalent(c(as.matrix(coef(summary(res)))), c(0.1534, 0.0858, 1.7893, 0.0736, -0.0146, 0.3215), tolerance=.tol[["misc"]]) expect_equivalent(res$tau2, 0.025955, tolerance=.tol[["var"]]) }) test_that("results are correct for the ANOVA-type analysis.", { res <- rma(yi, vi, mods = ~ random, data=dat, method="FE") res0 <- rma(yi, vi, data=dat, method="EE", subset=random==0) res1 <- rma(yi, vi, data=dat, method="EE", subset=random==1) tmp <- predict(res, newmods=c(0,1)) tmp <- do.call(cbind, unclass(tmp)[1:4]) ### compare with results on page 138 (Exhibit 7.4) expect_equivalent(tmp[1,], c( 0.2984, 0.0813, 0.1390, 0.4578), tolerance=.tol[["pred"]]) expect_equivalent(tmp[2,], c(-0.0277, 0.0917, -0.2075, 0.1521), tolerance=.tol[["se"]]) expect_equivalent(res$QM, 7.0739, tolerance=.tol[["test"]]) ### 7.0738 in chapter expect_equivalent(res$QMp, 0.0078, tolerance=.tol[["pval"]]) expect_equivalent(res$QE, 7.6901, tolerance=.tol[["test"]]) ### 7.6902 in chapter expect_equivalent(res$QEp, 0.4643, tolerance=.tol[["pval"]]) expect_equivalent(res0$QE, 6.4382, tolerance=.tol[["test"]]) ### 6.4383 in chapter expect_equivalent(res0$QEp, 0.2659, tolerance=.tol[["pval"]]) expect_equivalent(res1$QE, 1.2519, tolerance=.tol[["test"]]) expect_equivalent(res1$QEp, 0.7406, tolerance=.tol[["pval"]]) }) test_that("results are correct for the meta-regression analysis (fixed-effects with moderators model).", { res <- rma(yi, vi, mods = ~ random + intensity, data=dat, method="FE") expected <- structure(list(estimate = c(0.32233263, -0.32978043, -0.00408559), se = c(0.29977632, 0.13041815, 0.04928185), zval = c(1.0752438, -2.52863907, -0.08290246), pval = c(0.28226559, 0.01145057, 0.9339291), ci.lb = c(-0.26521816, -0.58539531, -0.10067623), ci.ub = c(0.90988342, -0.07416555, 0.09250506)), row.names = c("intrcpt", "random", "intensity"), class = "data.frame") ### compare with results on page 141 (Exhibit 7.6) expect_equivalent(coef(summary(res)), expected, tolerance=.tol[["misc"]]) expect_equivalent(res$QM, 7.0807, tolerance=.tol[["test"]]) expect_equivalent(res$QMp, 0.0290, tolerance=.tol[["pval"]]) expect_equivalent(res$QE, 7.6832, tolerance=.tol[["test"]]) ### 7.6833 in chapter expect_equivalent(res$QEp, 0.3614, tolerance=.tol[["pval"]]) ### 0.3613 in chapter }) test_that("results are correct for the meta-regression analysis (mixed-effects model).", { res <- rma(yi, vi, mods = ~ random + intensity, data=dat, method="DL") expected <- structure(list(estimate = c(0.33106915, -0.32691858, -0.00682302), se = c(0.31983925, 0.1439395, 0.0528008), zval = c(1.03511109, -2.2712222, -0.12922184), pval = c(0.30061703, 0.02313353, 0.89718211), ci.lb = c(-0.29580425, -0.60903481, -0.11031068), ci.ub = c(0.95794255, -0.04480235, 0.09666464)), row.names = c("intrcpt", "random", "intensity"), class = "data.frame") ### compare with results on page 141 (Exhibit 7.7) expect_equivalent(coef(summary(res)), expected, tolerance=.tol[["misc"]]) expect_equivalent(res$QM, 5.5711, tolerance=.tol[["test"]]) ### 5.5709 in chapter expect_equivalent(res$QMp, 0.0617, tolerance=.tol[["pval"]]) expect_equivalent(res$tau2, 0.00488, tolerance=.tol[["var"]]) }) test_that("results are correct for the comutation of R^2 via the anova() function.", { res.ME <- rma(yi, vi, mods = ~ random + intensity, data=dat, method="DL") res.RE <- rma(yi, vi, data=dat, method="DL") expect_warning(tmp <- anova(res.RE, res.ME)) expect_equivalent(tmp$R2, 81.2023, tolerance=.tol[["r2"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_reporter.r0000644000176200001440000000073214712730624021020 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: reporter() function") source("settings.r") test_that("reporter() works correctly for 'rma.uni' objects.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) expect_error(res <- rma(yi, vi, data=dat), NA) # to avoid this being an empty test skip_on_cran() reporter(res, open=FALSE) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_rothman2008.r0000644000176200001440000004376314712730456023561 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:rothman2008 context("Checking analysis example: rothman2008") source("settings.r") ############################################################################ ### create dataset (Table 15-1) dat <- data.frame( age = c("Age <55", "Age 55+"), ai = c(8,22), bi = c(98,76), ci = c(5,16), di = c(115,69), stringsAsFactors=FALSE) test_that("the to.table() function works.", { tmp <- to.table(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", slab=age, rows=c("Tolbutamide", "Placebo"), cols=c("Dead", "Surviving")) expected <- structure(c(8, 5, 98, 115, 22, 16, 76, 69), .Dim = c(2L, 2L, 2L), .Dimnames = list(c("Tolbutamide", "Placebo"), c("Dead", "Surviving"), c("Age <55", "Age 55+"))) ### compare with data in Table 15-1 expect_equivalent(tmp, expected) }) test_that("the to.long() function works.", { tmp <- to.long(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", slab=age) expected <- structure(list(age = c("Age <55", "Age <55", "Age 55+", "Age 55+"), ai = c(8, 8, 22, 22), bi = c(98, 98, 76, 76), ci = c(5, 5, 16, 16), di = c(115, 115, 69, 69), study = structure(c(2L, 2L, 1L, 1L), .Label = c("Age 55+", "Age <55"), class = "factor"), group = structure(c(2L, 1L, 2L, 1L), .Label = c("2", "1"), class = "factor"), out1 = c(8, 5, 22, 16), out2 = c(98, 115, 76, 69)), class = "data.frame", row.names = c(NA, 4L)) expect_equivalent(tmp, expected) }) test_that("the stratum-specific and crude risk differences are computed correctly.", { ### stratum-specific risk differences tmp <- summary(escalc(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="RD", digits=3, append=FALSE)) tmp <- as.matrix(tmp[1:4]) expected <- structure(c(0.0338, 0.0363, 0.001, 0.0036, 0.0315, 0.0598, 1.0738, 0.6064), .Dim = c(2L, 4L), .Dimnames = list(NULL, c("yi", "vi", "sei", "zi"))) ### compare with data in Table 15-1 expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) ### crude risk difference tmp <- summary(escalc(ai=sum(ai), bi=sum(bi), ci=sum(ci), di=sum(di), data=dat, measure="RD", digits=3, append=FALSE)) tmp <- as.matrix(tmp[1:4]) expected <- structure(c(0.0446, 0.0011, 0.0326, 1.3683), .Dim = c(1L, 4L), .Dimnames = list(NULL, c("yi", "vi", "sei", "zi"))) ### compare with data in Table 15-1 expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) }) test_that("the stratum-specific and crude risk ratios are computed correctly.", { ### stratum-specific risk ratios tmp <- summary(escalc(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="RR", digits=2), transf=exp, append=FALSE) tmp <- as.matrix(tmp) expected <- structure(c(1.8113, 1.1926, 0.6112, 0.6713, 5.3679, 2.1188), .Dim = 2:3, .Dimnames = list(NULL, c("yi", "ci.lb", "ci.ub"))) ### compare with data in Table 15-1 expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) ### crude risk ratio tmp <- summary(escalc(ai=sum(ai), bi=sum(bi), ci=sum(ci), di=sum(di), data=dat, measure="RR", digits=2, append=FALSE), transf=exp) tmp <- as.matrix(tmp) expected <- structure(c(1.4356, 0.851, 2.4216), .Dim = c(1L, 3L), .Dimnames = list(NULL, c("yi", "ci.lb", "ci.ub"))) ### compare with data in Table 15-1 expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) }) test_that("results are correct for Mantel-Haenszel method.", { ### Mantel-Haenszel method with risk differences res <- rma.mh(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="RD", digits=3, level=90) out <- capture.output(print(res)) ### so that print.rma.mh() is used expect_equivalent(coef(res), 0.0349, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.0176, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.0874, tolerance=.tol[["ci"]]) ### 0.088 in chapter expect_equivalent(res$QE, 0.0017, tolerance=.tol[["test"]]) ### 0.001 in chapter expect_equivalent(res$QEp, 0.9669, tolerance=.tol[["pval"]]) ### Mantel-Haenszel method with risk ratios res <- rma.mh(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="RR", digits=2, level=90) out <- capture.output(print(res)) ### so that print.rma.mh() is used expect_equivalent(coef(res), 0.2818, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.1442, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.7078, tolerance=.tol[["ci"]]) expect_equivalent(res$QE, 0.4472, tolerance=.tol[["test"]]) expect_equivalent(res$QEp, 0.5037, tolerance=.tol[["pval"]]) tmp <- c(confint(res, transf=exp)$fixed) expect_equivalent(tmp, c(1.3256, 0.8658, 2.0296), tolerance=.tol[["ci"]]) ### Mantel-Haenszel method with odds ratios res <- rma.mh(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", correct=FALSE, digits=2, level=90) out <- capture.output(print(res)) ### so that print.rma.mh() is used expect_equivalent(coef(res), 0.3387, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.1731, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.8505, tolerance=.tol[["ci"]]) expect_equivalent(res$QE, 0.3474, tolerance=.tol[["test"]]) expect_equivalent(res$QEp, 0.5556, tolerance=.tol[["pval"]]) expect_equivalent(res$CO, 1.1976, tolerance=.tol[["test"]]) expect_equivalent(res$COp, 0.2738, tolerance=.tol[["pval"]]) expect_equivalent(res$MH, 1.1914, tolerance=.tol[["test"]]) expect_equivalent(res$MHp, 0.2750, tolerance=.tol[["pval"]]) expect_equivalent(res$TA, 0.3489, tolerance=.tol[["test"]]) expect_equivalent(res$TAp, 0.5547, tolerance=.tol[["pval"]]) tmp <- c(confint(res, transf=exp)$fixed) expect_equivalent(tmp, c(1.4031, 0.8411, 2.3409), tolerance=.tol[["ci"]]) skip_on_cran() ### conditional MLE of the odds ratio res <- rma.glmm(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", model="CM.EL", method="EE") expect_equivalent(coef(res), 0.3381, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.2699, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.9461, tolerance=.tol[["ci"]]) expect_equivalent(res$QE.Wld, 0.3480, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.Wld, 0.5552, tolerance=.tol[["pval"]]) expect_equivalent(res$QE.LRT, 0.3502, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.LRT, 0.5540, tolerance=.tol[["pval"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 1.4022, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.7634, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 2.5756, tolerance=.tol[["ci"]]) }) ############################################################################ ### create dataset (Table 15-2) dat <- data.frame( age = c("35-44", "45-54", "55-64", "65-74", "75-84"), x1i = c(32, 104, 206, 186, 102), t1i = c(52407, 43248, 28612, 12663, 5317) / 10000, x2i = c(2, 12, 28, 28, 31), t2i = c(18790, 10673, 5710, 2585, 1462) / 10000, stringsAsFactors=FALSE) test_that("the to.table() function works.", { tmp <- to.table(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat, measure="IRR", slab=age, rows=c("Smokers", "Nonsmokers"), cols=c("Deaths", "Years")) expected <- structure(c(32, 2, 5.2407, 1.879, 104, 12, 4.3248, 1.0673, 206, 28, 2.8612, 0.571, 186, 28, 1.2663, 0.2585, 102, 31, 0.5317, 0.1462), .Dim = c(2L, 2L, 5L), .Dimnames = list(c("Smokers", "Nonsmokers"), c("Deaths", "Years"), c("35-44", "45-54", "55-64", "65-74", "75-84"))) ### compare with data in Table 15-2 expect_equivalent(tmp, expected) }) test_that("the to.long() function works.", { tmp <- to.long(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat, measure="IRR", slab=age) expected <- structure(list(age = c("35-44", "35-44", "45-54", "45-54", "55-64", "55-64", "65-74", "65-74", "75-84", "75-84"), x1i = c(32, 32, 104, 104, 206, 206, 186, 186, 102, 102), t1i = c(5.2407, 5.2407, 4.3248, 4.3248, 2.8612, 2.8612, 1.2663, 1.2663, 0.5317, 0.5317), x2i = c(2, 2, 12, 12, 28, 28, 28, 28, 31, 31), t2i = c(1.879, 1.879, 1.0673, 1.0673, 0.571, 0.571, 0.2585, 0.2585, 0.1462, 0.1462), study = structure(c(1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L, 5L, 5L), .Label = c("35-44", "45-54", "55-64", "65-74", "75-84"), class = "factor"), group = structure(c(2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L), .Label = c("2", "1"), class = "factor"), events = c(32, 2, 104, 12, 206, 28, 186, 28, 102, 31), ptime = c(5.2407, 1.879, 4.3248, 1.0673, 2.8612, 0.571, 1.2663, 0.2585, 0.5317, 0.1462)), class = "data.frame", row.names = c(NA, 10L)) expect_equivalent(tmp, expected) }) test_that("the stratum-specific and crude rate differences are computed correctly.", { ### stratum-specific rate differences tmp <- summary(escalc(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat, measure="IRD", digits=1, append=FALSE)) tmp <- as.matrix(tmp[1:4]) expected <- structure(c(5.0417, 12.804, 22.961, 38.5674, -20.2008, 1.7316, 16.0947, 111.0423, 535.0172, 1811.1307, 1.3159, 4.0118, 10.5377, 23.1304, 42.5574, 3.8313, 3.1916, 2.1789, 1.6674, -0.4747), .Dim = c(5L, 4L), .Dimnames = list(NULL, c("yi", "vi", "sei", "zi"))) ### compare with data in Table 15-2 expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) ### crude rate difference tmp <- summary(escalc(x1i=sum(x1i), x2i=sum(x2i), t1i=sum(t1i), t2i=sum(t2i), data=dat, measure="IRD", digits=1, append=FALSE)) tmp <- as.matrix(tmp[1:4]) expected <- structure(c(18.537, 9.6796, 3.1112, 5.9581), .Dim = c(1L, 4L), .Dimnames = list(NULL, c("yi", "vi", "sei", "zi"))) ### compare with data in Table 15-2 expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) }) test_that("the stratum-specific and crude rate ratios are computed correctly.", { ### stratum-specific rate ratios tmp <- summary(escalc(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat, measure="IRR", digits=1, append=FALSE), transf=exp) tmp <- as.matrix(tmp) expected <- structure(c(5.7366, 2.1388, 1.4682, 1.3561, 0.9047, 1.3748, 1.1767, 0.9894, 0.9115, 0.6053, 23.9371, 3.8876, 2.1789, 2.0176, 1.3524), .Dim = c(5L, 3L), .Dimnames = list(NULL, c("yi", "ci.lb", "ci.ub"))) ### compare with data in Table 15-2 expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) ### crude rate ratio tmp <- summary(escalc(x1i=sum(x1i), x2i=sum(x2i), t1i=sum(t1i), t2i=sum(t2i), data=dat, measure="IRR", digits=1, append=FALSE), transf=exp) tmp <- as.matrix(tmp) expected <- structure(c(1.7198, 1.394, 2.1219), .Dim = c(1L, 3L), .Dimnames = list(NULL, c("yi", "ci.lb", "ci.ub"))) ### compare with data in Table 15-2 expect_equivalent(tmp, expected, tolerance=.tol[["misc"]]) }) test_that("results are correct for Mantel-Haenszel method.", { ### Mantel-Haenszel method with rate differences res <- rma.mh(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat, measure="IRD", digits=2, level=90) expect_equivalent(coef(res), 11.4392, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 6.3498, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 16.5286, tolerance=.tol[["ci"]]) expect_equivalent(res$QE, 26.8758, tolerance=.tol[["test"]]) expect_equivalent(res$QEp, 0.0000, tolerance=.tol[["pval"]]) ### Mantel-Haenszel method with rate ratios res <- rma.mh(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat, measure="IRR", digits=2, level=90) expect_equivalent(coef(res), 0.3539, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 0.1776, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.5303, tolerance=.tol[["ci"]]) expect_equivalent(res$QE, 10.4117, tolerance=.tol[["test"]]) expect_equivalent(res$QEp, 0.0340, tolerance=.tol[["pval"]]) expect_equivalent(res$MH, 10.7021, tolerance=.tol[["test"]]) expect_equivalent(res$MHp, 0.0011, tolerance=.tol[["pval"]]) tmp <- c(confint(res, transf=exp)$fixed) expect_equivalent(tmp, c(1.4247, 1.1944, 1.6994), tolerance=.tol[["ci"]]) ### Mantel-Haenszel test without continuity correction res <- rma.mh(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat, measure="IRR", level=90, correct=FALSE) expect_equivalent(res$MH, 11.0162, tolerance=.tol[["test"]]) expect_equivalent(res$MHp, 0.0009, tolerance=.tol[["pval"]]) skip_on_cran() ### unconditional MLE of the rate ratio res <- rma.glmm(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat, measure="IRR", digits=2, level=90, model="UM.FS", method="EE") expect_equivalent(coef(res), 0.3545, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 0.1779, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.5312, tolerance=.tol[["ci"]]) expect_equivalent(res$QE.Wld, 10.1991, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.Wld, 0.0372, tolerance=.tol[["pval"]]) expect_equivalent(res$QE.LRT, 12.1324, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.LRT, 0.0164, tolerance=.tol[["pval"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 1.4255, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 1.1947, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 1.7009, tolerance=.tol[["ci"]]) ### conditional MLE of the rate ratio res <- rma.glmm(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat, measure="IRR", digits=2, level=90, model="CM.EL", method="EE") expect_equivalent(coef(res), 0.3545, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 0.1779, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.5312, tolerance=.tol[["ci"]]) expect_equivalent(res$QE.Wld, 10.1991, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.Wld, 0.0372, tolerance=.tol[["pval"]]) expect_equivalent(res$QE.LRT, 12.1324, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.LRT, 0.0164, tolerance=.tol[["pval"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 1.4255, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 1.1947, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 1.7009, tolerance=.tol[["ci"]]) }) ############################################################################ ### create dataset (Table 15-5) dat <- data.frame( age = c("<35", "35+"), ai = c(3,1), bi = c(9,3), ci = c(104,5), di = c(1059,86), stringsAsFactors=FALSE) test_that("the to.table() function works.", { tmp <- to.table(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", slab=age, rows=c("Down Syndrome", "Control"), cols=c("Spermicide Use", "No Spermicide")) expected <- structure(c(3, 104, 9, 1059, 1, 5, 3, 86), .Dim = c(2L, 2L, 2L), .Dimnames = list(c("Down Syndrome", "Control"), c("Spermicide Use", "No Spermicide"), c("<35", "35+"))) ### compare with data in Table 15-5 expect_equivalent(tmp, expected) }) test_that("the to.long() function works.", { tmp <- to.long(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", slab=age) expected <- structure(list(age = c("<35", "<35", "35+", "35+"), ai = c(3, 3, 1, 1), bi = c(9, 9, 3, 3), ci = c(104, 104, 5, 5), di = c(1059, 1059, 86, 86), study = structure(c(2L, 2L, 1L, 1L), .Label = c("35+", "<35"), class = "factor"), group = structure(c(1L, 2L, 1L, 2L), .Label = c("1", "2"), class = "factor"), out1 = c(3, 104, 1, 5), out2 = c(9, 1059, 3, 86)), class = "data.frame", row.names = c(NA, 4L)) expect_equivalent(tmp, expected) }) test_that("results are correct for Mantel-Haenszel method.", { ### Mantel-Haenszel method with odds ratios res <- rma.mh(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", digits=2, level=90, correct=FALSE) expect_equivalent(coef(res), 1.3300, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 0.3579, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 2.3021, tolerance=.tol[["ci"]]) expect_equivalent(res$QE, 0.1378, tolerance=.tol[["test"]]) expect_equivalent(res$QEp, 0.7105, tolerance=.tol[["pval"]]) expect_equivalent(res$CO, 5.8248, tolerance=.tol[["test"]]) expect_equivalent(res$COp, 0.0158, tolerance=.tol[["pval"]]) expect_equivalent(res$MH, 5.8092, tolerance=.tol[["test"]]) expect_equivalent(res$MHp, 0.0159, tolerance=.tol[["pval"]]) expect_equivalent(res$TA, 0.1391, tolerance=.tol[["test"]]) expect_equivalent(res$TAp, 0.7092, tolerance=.tol[["pval"]]) tmp <- c(confint(res, transf=exp)$fixed) expect_equivalent(tmp, c(3.7812, 1.4304, 9.9954), tolerance=.tol[["ci"]]) skip_on_cran() ### unconditional MLE of the odds ratio res <- rma.glmm(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", digits=2, level=90, model="UM.FS", method="EE") expect_equivalent(coef(res), 1.3318, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 0.3582, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 2.3053, tolerance=.tol[["ci"]]) expect_equivalent(res$QE.Wld, 0.1374, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.Wld, 0.7109, tolerance=.tol[["pval"]]) expect_equivalent(res$QE.LRT, 0.1324, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.LRT, 0.7160, tolerance=.tol[["pval"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 3.7878, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 1.4308, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 10.0276, tolerance=.tol[["ci"]]) ### conditional MLE of the odds ratio #res <- rma.glmm(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", digits=2, level=90, model="CM.EL", method="EE", control=list(optimizer="bobyqa")) res <- rma.glmm(ai=ai, bi=bi, ci=ci, di=di, data=dat, measure="OR", digits=2, level=90, model="CM.EL", method="EE") expect_equivalent(coef(res), 1.3257, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 0.3559, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 2.2954, tolerance=.tol[["ci"]]) expect_equivalent(res$QE.Wld, 0.1327, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.Wld, 0.7156, tolerance=.tol[["pval"]]) expect_equivalent(res$QE.LRT, 0.1188, tolerance=.tol[["test"]]) expect_equivalent(res$QEp.LRT, 0.7304, tolerance=.tol[["pval"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 3.7647, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 1.4274, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 9.9287, tolerance=.tol[["ci"]]) }) ############################################################################ rm(list=ls()) metafor/tests/testthat/test_misc_rma_vs_direct_computation.r0000644000176200001440000000160314712730607024420 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: rma.uni() against direct computations") source("settings.r") test_that("results match (FE model).", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat + year, data=dat, method="FE") X <- cbind(1, dat$ablat, dat$year) W <- diag(1/dat$vi) y <- cbind(dat$yi) beta <- solve(t(X) %*% W %*% X) %*% t(X) %*% W %*% y vb <- solve(t(X) %*% W %*% X) expect_equivalent(res$beta, beta) expect_equivalent(res$vb, vb) yhat <- c(X %*% beta) expect_equivalent(fitted(res), yhat) H <- X %*% solve(t(X) %*% W %*% X) %*% t(X) %*% W expect_equivalent(hatvalues(res, type="matrix"), H) ei <- (diag(res$k) - H) %*% y expect_equivalent(resid(res), c(ei)) }) rm(list=ls()) metafor/tests/testthat/test_plots_funnel_plot_with_trim_and_fill.r0000644000176200001440000000242714712730572025634 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:funnel_plot_with_trim_and_fill source("settings.r") context("Checking plots example: funnel plot with trim and fill") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() res <- rma(yi, vi, data=dat.hackshaw1998, measure="OR") taf <- trimfill(res) out <- capture.output(print(taf)) png("images/test_plots_funnel_plot_with_trim_and_fill_light_test.png", res=200, width=1800, height=1500, type="cairo") par(mar=c(5,4,1,2)) funnel(taf, legend=list(show="cis")) dev.off() expect_true(.vistest("images/test_plots_funnel_plot_with_trim_and_fill_light_test.png", "images/test_plots_funnel_plot_with_trim_and_fill_light.png")) png("images/test_plots_funnel_plot_with_trim_and_fill_dark_test.png", res=200, width=1800, height=1500, type="cairo") setmfopt(theme="dark") par(mar=c(5,4,1,2)) funnel(taf, legend=list(show="cis")) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_funnel_plot_with_trim_and_fill_dark_test.png", "images/test_plots_funnel_plot_with_trim_and_fill_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_viechtbauer2007a.r0000644000176200001440000001420214712730520024524 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:viechtbauer2007a context("Checking analysis example: viechtbauer2007a") source("settings.r") ### load data dat <- dat.collins1985b[,1:7] dat <- escalc(measure="OR", ai=pre.xti, n1i=pre.nti, ci=pre.xci, n2i=pre.nci, data=dat) ### fit model with different tau^2 estimators res.DL <- rma(yi, vi, data=dat, method="DL") res.ML <- rma(yi, vi, data=dat, method="ML") res.REML <- rma(yi, vi, data=dat, method="REML") res.SJ <- rma(yi, vi, data=dat, method="SJ") ### note: results are compared with those in Table II on page 44 (but without rounding) test_that("the heterogeneity estimates are correct.", { sav <- c(DL=res.DL$tau2, ML=res.ML$tau2, REML=res.REML$tau2, SJ=res.SJ$tau2) expect_equivalent(sav, c(.2297, .2386, .3008, .4563), tolerance=.tol[["var"]]) }) test_that("CI is correct for the Q-profile method.", { sav <- confint(res.DL) sav <- c(sav$random["tau^2","ci.lb"], sav$random["tau^2","ci.ub"]) expect_equivalent(sav, c(.0723, 2.2027), tolerance=.tol[["var"]]) }) test_that("CI is correct for the Biggerstaff–Tweedie method.", { CI.D.func <- function(tau2val, s1, s2, Q, k, lower.tail) { expQ <- (k-1) + s1*tau2val varQ <- 2*(k-1) + 4*s1*tau2val + 2*s2*tau2val^2 shape <- expQ^2/varQ scale <- varQ/expQ qtry <- Q/scale pgamma(qtry, shape = shape, scale = 1, lower.tail = lower.tail) - .025 } wi <- 1/dat$vi s1 <- sum(wi) - sum(wi^2)/sum(wi) s2 <- sum(wi^2) - 2*sum(wi^3)/sum(wi) + sum(wi^2)^2/sum(wi)^2 ci.lb <- uniroot(CI.D.func, interval=c(0,10), s1=s1, s2=s2, Q=res.DL$QE, k=res.DL$k, lower.tail=FALSE)$root ci.ub <- uniroot(CI.D.func, interval=c(0,10), s1=s1, s2=s2, Q=res.DL$QE, k=res.DL$k, lower.tail=TRUE)$root sav <- c(ci.lb=ci.lb, ci.ub=ci.ub) expect_equivalent(sav, c(.0481, 2.3551), tolerance=.tol[["var"]]) }) test_that("CI is correct for the profile likelihood method.", { sav <- confint(res.ML, type="PL") sav <- c(sav$random["tau^2","ci.lb"], sav$random["tau^2","ci.ub"]) expect_equivalent(sav, c(.0266, 1.1308), tolerance=.tol[["var"]]) sav <- confint(res.REML, type="PL") sav <- c(sav$random["tau^2","ci.lb"], sav$random["tau^2","ci.ub"]) expect_equivalent(sav, c(.0427, 1.4747), tolerance=.tol[["var"]]) res.ML.mv <- rma.mv(yi, vi, random = ~ 1 | id, data=dat, method="ML") res.REML.mv <- rma.mv(yi, vi, random = ~ 1 | id, data=dat, method="REML") sav <- confint(res.ML.mv) sav <- c(sav$random["sigma^2","ci.lb"], sav$random["sigma^2","ci.ub"]) expect_equivalent(sav, c(.0266, 1.1308), tolerance=.tol[["var"]]) sav <- confint(res.REML.mv) sav <- c(sav$random["sigma^2","ci.lb"], sav$random["sigma^2","ci.ub"]) expect_equivalent(sav, c(.0427, 1.4747), tolerance=.tol[["var"]]) skip_on_cran() png(filename="images/test_analysis_example_viechtbauer2007a_profile_ll_ml_test.png", res=200, width=1800, height=1400, type="cairo") profile(res.ML, xlim=c(0,1.2), steps=50, cline=TRUE) tmp <- confint(res.ML, type="PL", digits=2) abline(v=tmp$random[1, 2:3], lty="dotted") dev.off() expect_true(.vistest("images/test_analysis_example_viechtbauer2007a_profile_ll_ml_test.png", "images/test_analysis_example_viechtbauer2007a_profile_ll_ml.png")) png(filename="images/test_analysis_example_viechtbauer2007a_profile_ll_reml_test.png", res=200, width=1800, height=1400, type="cairo") profile(res.REML, xlim=c(0,1.6), steps=50, cline=TRUE) tmp <- confint(res.REML, type="PL", digits=2) abline(v=tmp$random[1, 2:3], lty="dotted") dev.off() expect_true(.vistest("images/test_analysis_example_viechtbauer2007a_profile_ll_reml_test.png", "images/test_analysis_example_viechtbauer2007a_profile_ll_reml.png")) }) test_that("CI is correct for the Wald-type method.", { sav <- confint(res.ML, type="Wald") sav <- c(sav$random["tau^2","ci.lb"], sav$random["tau^2","ci.ub"]) expect_equivalent(sav, c(0, .5782), tolerance=.tol[["var"]]) sav <- confint(res.REML, type="Wald") sav <- c(sav$random["tau^2","ci.lb"], sav$random["tau^2","ci.ub"]) expect_equivalent(sav, c(0, .7322), tolerance=.tol[["var"]]) }) test_that("CI is correct for the Sidik-Jonkman method.", { sav <- c(ci.lb=(res.SJ$k-1) * res.SJ$tau2 / qchisq(.975, df=res.SJ$k-1), ci.ub=(res.SJ$k-1) * res.SJ$tau2 / qchisq(.025, df=res.SJ$k-1)) expect_equivalent(sav, c(.2082, 1.6748), tolerance=.tol[["var"]]) }) test_that("CI is correct for the parametric bootstrap method.", { skip_on_cran() maj <- as.numeric(R.Version()$major) min <- as.numeric(R.Version()$minor) ### run test only on R versions 3.6.x or later (due to change in sampler) if (maj >= 3 && min >= 6) { library(boot) boot.func <- function(data.boot) { res <- rma(yi, vi, data=data.boot, method="DL") c(res$tau2, res$se.tau2^2) } data.gen <- function(dat, mle) { data.frame(yi=rnorm(nrow(dat), mle$mu, sqrt(mle$tau2 + dat$vi)), vi=dat$vi) } res.DL <- rma(yi, vi, data=dat, method="DL") set.seed(12345) sav <- boot(dat, boot.func, R=1000, sim="parametric", ran.gen=data.gen, mle=list(mu=coef(res.DL), tau2=res.DL$tau2)) sav <- boot.ci(sav, type=c("norm", "basic", "stud", "perc")) sav <- sav$percent[4:5] expect_equivalent(sav, c(0, .7171), tolerance=.tol[["var"]]) } else { expect_true(TRUE) } }) test_that("CI is correct for the non-parametric bootstrap method.", { skip_on_cran() maj <- as.numeric(R.Version()$major) min <- as.numeric(R.Version()$minor) ### run test only on R versions 3.6.x or later (due to change in sampler) if (maj >= 3 && min >= 6) { library(boot) boot.func <- function(dat, indices) { res <- rma(yi, vi, data=dat, subset=indices, method="DL") c(res$tau2, res$se.tau2^2) } set.seed(12345) sav <- boot(dat, boot.func, R=1000) sav <- boot.ci(sav) sav <- sav$percent[4:5] expect_equivalent(sav, c(.0218, .5143), tolerance=.tol[["var"]]) } else { expect_true(TRUE) } }) rm(list=ls()) metafor/tests/testthat/test_misc_formula.r0000644000176200001440000000146014712730637020626 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: formula() function") source("settings.r") dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) test_that("formula() works correctly for 'rma.uni' objects.", { res <- rma(yi, vi, data=dat, method="DL") expect_null(formula(res, type="mods")) expect_null(formula(res, type="yi")) res <- rma(yi, vi, mods = ~ ablat, data=dat, method="DL") expect_equal(~ablat, formula(res, type="mods")) expect_null(formula(res, type="yi")) res <- rma(yi ~ ablat, vi, data=dat, method="DL") expect_equal(~ablat, formula(res, type="mods")) expect_equal(yi~ablat, formula(res, type="yi")) expect_error(formula(res, type="scale")) }) rm(list=ls()) metafor/tests/testthat/settings.r0000644000176200001440000000510514744454432016750 0ustar liggesusers############################################################################ .tol <- c(est = .01, # effect size estimates coef = .01, # model coefficients pred = .01, # predicted values, BLUPs, also residuals se = .01, # standard errors test = .01, # test statistics, standardized residuals pval = .01, # p-values ci = .01, # confidence/prediction interval bounds, CI for effects var = .01, # variance components (and CIs thereof), also if sqrt(), var-cov matrices, sampling variances cor = .01, # correlations, ICCs cov = .01, # covariances sevar = .01, # SEs of variance components fit = .01, # fit statistics r2 = .01, # R^2 type values, model importances het = .01, # heterogeneity statistics (and CIs thereof) inf = .01, # influence statistics, hat values den = .01, # density misc = .01) # miscellaneous, mix of values # to quickly set all tolerances to a common value .tol[1:length(.tol)] <- .01 ############################################################################ .sparse <- FALSE #.sparse <- TRUE ############################################################################ .vistest <- function(file1, file2) { if (isFALSE(as.logical(Sys.getenv("RUN_VIS_TESTS", "false")))) { return(TRUE) } else { hash1 <- suppressWarnings(system2("md5sum", file1, stdout=TRUE, stderr=TRUE)) hash2 <- suppressWarnings(system2("md5sum", file2, stdout=TRUE, stderr=TRUE)) if (isTRUE(attributes(hash1)$status == 1) || isTRUE(attributes(hash2)$status == 1)) return(FALSE) hash1 <- strsplit(hash1, " ")[[1]][1] hash2 <- strsplit(hash2, " ")[[1]][1] return(identical(hash1,hash2)) #file1 <- readLines(file1, warn=FALSE) #file2 <- readLines(file2, warn=FALSE) #file1 <- file1[!grepl("CreationDate", file1, fixed=TRUE, useBytes=TRUE)] #file2 <- file2[!grepl("CreationDate", file2, fixed=TRUE, useBytes=TRUE)] #file1 <- file1[!grepl("ModDate", file1, fixed=TRUE, useBytes=TRUE)] #file2 <- file2[!grepl("ModDate", file2, fixed=TRUE, useBytes=TRUE)] #file1 <- file1[!grepl("Producer", file1, fixed=TRUE, useBytes=TRUE)] #file2 <- file2[!grepl("Producer", file2, fixed=TRUE, useBytes=TRUE)] #return(identical(file1,file2)) } } ############################################################################ setmfopt(theme="default") ############################################################################ metafor/tests/testthat/test_misc_replmiss.r0000644000176200001440000000072214712730625021014 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: replmiss() function") source("settings.r") test_that("replmiss() works correctly.", { var1 <- c(1:4,NA,6,NA,8:10) var2 <- as.numeric(1:10) expect_identical(replmiss(var1, 0), c(1, 2, 3, 4, 0, 6, 0, 8, 9, 10)) expect_identical(replmiss(var1, var2), as.numeric(1:10)) expect_error(replmiss(var1, 1:9)) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_yusuf1985.r0000644000176200001440000000546714712730514023273 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:yusuf1985 context("Checking analysis example: yusuf1985") source("settings.r") ### create dataset for example dat <- dat.yusuf1985 dat$grp_ratios <- round(dat$n1i / dat$n2i, 2) test_that("log likelihood plot can be drawn.", { skip_on_cran() png(filename="images/test_analysis_example_yusuf1985_light_test.png", res=200, width=1800, height=800, type="cairo") par(mar=c(5,4,1,2)) par(mfrow=c(1,2)) expect_warning(llplot(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(table=="6"), drop00=FALSE, lwd=1, xlim=c(-5,5))) expect_warning(llplot(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(table=="6"), drop00=FALSE, lwd=1, xlim=c(-5,5), scale=FALSE)) dev.off() expect_true(.vistest("images/test_analysis_example_yusuf1985_light_test.png", "images/test_analysis_example_yusuf1985_light.png")) png(filename="images/test_analysis_example_yusuf1985_dark_test.png", res=200, width=1800, height=800, type="cairo") setmfopt(theme="dark") par(mar=c(5,4,1,2)) par(mfrow=c(1,2)) expect_warning(llplot(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(table=="6"), drop00=FALSE, lwd=1, xlim=c(-5,5))) expect_warning(llplot(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(table=="6"), drop00=FALSE, lwd=1, xlim=c(-5,5), scale=FALSE)) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_analysis_example_yusuf1985_dark_test.png", "images/test_analysis_example_yusuf1985_dark.png")) }) test_that("results are correct for the analysis using Peto's method.", { expect_warning(res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(table=="6"))) out <- capture.output(print(res)) ### so that print.rma.peto() is run (at least once) out <- capture.output(print(summary(res))) ### so that print.rma.peto() is run (at least once) with showfit=TRUE sav <- predict(res, transf=exp) tmp <- c(sav$pred, sav$ci.lb, sav$ci.ub) ### compare with results on page 107 expect_equivalent(tmp, c(.9332, .7385, 1.1792), tolerance=.tol[["pred"]]) }) test_that("results are correct for the analysis using the inverse-variance method.", { expect_warning(dat <- escalc(measure="PETO", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(table=="6"), add=0)) expect_warning(res <- rma(yi, vi, data=dat, method="EE")) sav <- predict(res, transf=exp) tmp <- c(sav$pred, sav$ci.lb, sav$ci.ub) ### compare with results on page 107 expect_equivalent(tmp, c(.9332, .7385, 1.1792), tolerance=.tol[["pred"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_predict.r0000644000176200001440000001471114717353730020616 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: predict() function") source("settings.r") test_that("predict() correctly matches named vectors in 'newmods'", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat$alloc[dat$alloc == "systematic"] <- "system" res <- rma(yi ~ ablat + alloc, vi, data=dat) pred1 <- predict(res, newmods = c(30, 0, 1)) pred2 <- predict(res, newmods = c(abl = 30, ran = 0, sys = 1)) pred3 <- predict(res, newmods = c(abl = 30, sys = 1, ran = 0)) pred4 <- predict(res, newmods = c(ran = 0, abl = 30, sys = 1)) pred5 <- predict(res, newmods = c(sys = 1, abl = 30, ran = 0)) pred6 <- predict(res, newmods = c(ran = 0, sys = 1, abl = 30)) pred7 <- predict(res, newmods = c(sys = 1, ran = 0, abl = 30)) expect_equivalent(pred1, pred2) expect_equivalent(pred1, pred3) expect_equivalent(pred1, pred4) expect_equivalent(pred1, pred5) expect_equivalent(pred1, pred6) expect_equivalent(pred1, pred7) expect_error(predict(res, newmods = c(30, 0))) # not the right length expect_error(predict(res, newmods = c(abl = 30, random = 0))) # not the right length expect_error(predict(res, newmods = c(abl = 30, alloc = 0, sys = 1))) # alloc matches up equally to allocrandom and allocsystem expect_error(predict(res, newmods = c(abl = 30, ran = 0, year = 1970))) # year not in the model expect_error(predict(res, newmods = c(abl = 30, ran = 0, sys = 1, ran = 1))) # ran used twice expect_error(predict(res, newmods = c(abl = 30, ran = 0, sys = 1, rand = 1))) # same issue res <- rma(yi ~ ablat * year, vi, data=dat) pred1 <- predict(res, newmods = c(30, 1970, 30*1970)) pred2 <- predict(res, newmods = c('ablat' = 30, 'year' = 1970, 'ablat:year' = 30*1970)) pred3 <- predict(res, newmods = c('ablat:year' = 30*1970, 'year' = 1970, 'ablat' = 30)) pred4 <- predict(res, newmods = c('ab' = 30, 'ye' = 1970, 'ablat:' = 30*1970)) pred5 <- predict(res, newmods = c('ablat:' = 30*1970, 'ye' = 1970, 'ab' = 30)) expect_equivalent(pred1, pred2) expect_equivalent(pred1, pred3) expect_equivalent(pred1, pred4) expect_equivalent(pred1, pred5) }) test_that("predict() gives correct results when vcov=TRUE", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) sav <- predict(res, vcov=TRUE) expect_equivalent(sav$pred$se, c(sqrt(sav$vcov)), tolerance=.tol[["se"]]) res <- rma(yi, vi, mods = ~ ablat, data=dat) sav <- predict(res, vcov=TRUE) expect_equivalent(sav$pred$se, c(sqrt(diag(sav$vcov))), tolerance=.tol[["se"]]) }) test_that("predict() correctly handles in/exclusion of the intercept term", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ######################################################################### # single quantitative predictor model with intercept included res <- rma(yi ~ ablat, vi, data=dat) # predicted average effect at ablat=0,10,...,60 pred1 <- predict(res, newmods=seq(0,60,by=10)) pred2 <- predict(res, newmods=cbind(1,seq(0,60,by=10))) expect_equivalent(pred1, pred2) # exclude the intercept from the prediction (i.e., assume it is 0) pred1 <- predict(res, newmods=seq(0,60,by=10), intercept=FALSE) pred2 <- predict(res, newmods=cbind(0,seq(0,60,by=10))) expect_equivalent(pred1, pred2) expect_warning(pred2 <- predict(res, newmods=cbind(0,seq(0,60,by=10)), intercept=FALSE)) ######################################################################### # single quantitative predictor model with intercept excluded res <- rma(yi ~ 0 + ablat, vi, data=dat) # predicted average effect at ablat=0,10,...,60 pred1 <- predict(res, newmods=seq(0,60,by=10)) pred2 <- predict(res, newmods=cbind(seq(0,60,by=10))) expect_equivalent(pred1, pred2) ######################################################################### # multiple predictors one of which is categorical with intercept included/excluded res1 <- rma(yi ~ 1 + ablat + alloc, vi, data=dat) res0 <- rma(yi ~ 0 + ablat + alloc, vi, data=dat) # predicted average effect at ablat=20 for alloc='random' pred1 <- predict(res1, newmods=c(20,1,0)) pred0 <- predict(res0, newmods=c(20,0,1,0)) expect_equivalent(pred1, pred0) pred2 <- predict(res1, newmods=cbind(1,20,1,0)) expect_equivalent(pred1, pred2) pred2 <- predict(res0, newmods=cbind(20,0,1,0)) expect_equivalent(pred1, pred2) pred1 <- predict(res1, newmods=cbind(20,1,0)) pred0 <- predict(res0, newmods=cbind(20,0,1,0)) expect_equivalent(pred1, pred0) # predicted average effect at ablat=0,10,...,60 for alloc='random' pred1 <- predict(res1, newmods=cbind(seq(0,60,by=10),1,0)) pred0 <- predict(res0, newmods=cbind(seq(0,60,by=10),0,1,0)) expect_equivalent(pred1, pred0) pred2 <- predict(res1, newmods=cbind(1,seq(0,60,by=10),1,0)) expect_equivalent(pred1, pred2) # contrast between alloc='random' and alloc='systematic' holding ablat constant pred1 <- predict(res1, newmods=c(0,1,-1), intercept=FALSE) pred0 <- predict(res0, newmods=c(0,0,1,-1)) expect_equivalent(pred1, pred0) pred2 <- predict(res1, newmods=cbind(0,0,1,-1)) expect_equivalent(pred1, pred2) pred2 <- predict(res0, newmods=cbind(0,0,1,-1)) expect_equivalent(pred1, pred2) ######################################################################### }) test_that("predict() works correctly with adjusted level", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi ~ ablat, vi, data=dat) pred1 <- predict(res, newmods=seq(0,60,by=10), level=90) res <- rma(yi ~ ablat, vi, data=dat, level=90) pred2 <- predict(res, newmods=seq(0,60,by=10)) expect_equivalent(pred1, pred2) res <- rma(yi ~ ablat, vi, data=dat) res <- robust(res, cluster=trial) pred1 <- predict(res, newmods=seq(0,60,by=10), level=90) res <- rma(yi ~ ablat, vi, data=dat, level=90) res <- robust(res, cluster=trial) pred2 <- predict(res, newmods=seq(0,60,by=10)) expect_equivalent(pred1, pred2) res <- rma(yi ~ ablat, vi, data=dat) res <- robust(res, cluster=trial, clubSandwich=TRUE) pred1 <- predict(res, newmods=seq(0,60,by=10), level=90) res <- rma(yi ~ ablat, vi, data=dat, level=90) res <- robust(res, cluster=trial, clubSandwich=TRUE) pred2 <- predict(res, newmods=seq(0,60,by=10)) expect_equivalent(pred1, pred2) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_jackson2014.r0000644000176200001440000000742014712730427023522 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking analysis example: jackson2014") source("settings.r") test_that("confint() gives correct results for example 1 in Jackson et al. (2014).", { skip_on_cran() ### example 1 ### yi <- c(0.0267, 0.8242, 0.3930, 2.4405, 2.1401, 1.2528, 2.4849, 0.3087, 1.4246, 0.1823, 1.1378, 1.2321, 2.0695, 4.0237, 1.4383, 1.6021) vi <- c(0.1285, 0.0315, 0.0931, 2.0967, 1.0539, 0.1602, 1.0235, 0.0218, 0.5277, 0.0556, 0.3304, 0.1721, 0.4901, 2.0200, 0.3399, 0.1830) xi <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) ### random/mixed-effects meta-regression model (REML estimation by default) res <- rma(yi, vi, mods = ~ xi, digits=3) ### approximate 95% CI for tau^2 based on REML estimate and its SE ci <- exp(log(res$tau2) + c(-1.96,1.96)*(1/res$tau2 * res$se.tau2)) expect_equivalent(ci[1], 0.0110, tolerance=.tol[["var"]]) expect_equivalent(ci[2], 0.6330, tolerance=.tol[["var"]]) ### generalised Cochran heterogeneity estimate and CI (inverse variance weights) res <- rma(yi, vi, mods = ~ xi, method="GENQ", weights=1/vi, digits=3) ci <- confint(res) expect_equivalent(ci$random[1,2], 0.0029, tolerance=.tol[["var"]]) expect_equivalent(ci$random[1,3], 0.6907, tolerance=.tol[["var"]]) ### generalised Cochran heterogeneity estimate and CI (inverse SE weights) res <- rma(yi, vi, mods = ~ xi, method="GENQ", weights=1/sqrt(vi), digits=3) ci <- confint(res) expect_equivalent(ci$random[1,2], 0.0000, tolerance=.tol[["var"]]) expect_equivalent(ci$random[1,3], 1.1245, tolerance=.tol[["var"]]) ### Paule-Mandel estimate and CI res <- rma(yi, vi, mods = ~ xi, method="PM", digits=3) ci <- confint(res) expect_equivalent(ci$random[1,2], 0.0023, tolerance=.tol[["var"]]) expect_equivalent(ci$random[1,3], 1.4871, tolerance=.tol[["var"]]) }) test_that("confint() gives correct results for example 2 in Jackson et al. (2014).", { skip_on_cran() ### example 2 ### yi <- c(0.54, 0.4, 0.64, 0.365, 0.835, 0.02, 0.12, 0.085, 1.18, 0.08, 0.18, 0.325, 0.06, 0.715, 0.065, 0.245, 0.24, 0.06, 0.19) vi <- c(0.0176, 0.019, 0.0906, 0.0861, 0.0063, 0.0126, 0.0126, 0.0041, 0.0759, 0.0126, 0.0104, 0.0242, 0.0026, 0.2629, 0.0169, 0.0156, 0.0481, 0.0084, 0.0044) xi <- c(1986, 1987, 1988, 1988, 1998, 1999, 2000, 2000, 2000, 2001, 2001, 2001, 2002, 2002, 2002, 2002, 2003, 2003, 2003) ### random/mixed-effects meta-regression model (REML estimation by default) res <- rma(yi, vi, mods = ~ xi, digits=3) ### approximate 95% CI for tau^2 based on REML estimate and its SE ci <- exp(log(res$tau2) + c(-1.96,1.96)*(1/res$tau2 * res$se.tau2)) expect_equivalent(ci[1], 0.0163, tolerance=.tol[["var"]]) expect_equivalent(ci[2], 0.1108, tolerance=.tol[["var"]]) ### generalised Cochran heterogeneity estimate and CI (inverse variance weights) res <- rma(yi, vi, mods = ~ xi, method="GENQ", weights=1/vi, digits=3) ci <- confint(res) expect_equivalent(ci$random[1,2], 0.0170, tolerance=.tol[["var"]]) expect_equivalent(ci$random[1,3], 0.1393, tolerance=.tol[["var"]]) ### generalised Cochran heterogeneity estimate and CI (inverse SE weights) res <- rma(yi, vi, mods = ~ xi, method="GENQ", weights=1/sqrt(vi), digits=3) ci <- confint(res) expect_equivalent(ci$random[1,2], 0.0180, tolerance=.tol[["var"]]) expect_equivalent(ci$random[1,3], 0.1375, tolerance=.tol[["var"]]) ### Paule-Mandel estimate and CI res <- rma(yi, vi, mods = ~ xi, method="PM", digits=3) ci <- confint(res) expect_equivalent(ci$random[1,2], 0.0178, tolerance=.tol[["var"]]) expect_equivalent(ci$random[1,3], 0.1564, tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_plots_plot_of_influence_diagnostics.r0000644000176200001440000000376014712730565025455 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:plot_of_influence_diagnostics source("settings.r") context("Checking plots example: plot of influence diagnostics") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() res <- rma(ri=ri, ni=ni, measure="ZCOR", data=dat.mcdaniel1994) inf <- influence(res) out <- capture.output(print(inf)) # so that print.infl.rma.uni() is run (at least once) png("images/test_plots_plot_of_influence_diagnostics_1_light_test.png", res=200, width=1800, height=3600, type="cairo") par(mfrow=c(8,1)) plot(inf) dev.off() expect_true(.vistest("images/test_plots_plot_of_influence_diagnostics_1_light_test.png", "images/test_plots_plot_of_influence_diagnostics_1_light.png")) png("images/test_plots_plot_of_influence_diagnostics_1_dark_test.png", res=200, width=1800, height=3600, type="cairo") setmfopt(theme="dark") par(mfrow=c(8,1)) plot(inf) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_plot_of_influence_diagnostics_1_dark_test.png", "images/test_plots_plot_of_influence_diagnostics_1_dark.png")) png("images/test_plots_plot_of_influence_diagnostics_2_light_test.png", res=200, width=1800, height=1800, type="cairo") plot(inf, plotinf=FALSE, plotdfbs=TRUE) dev.off() expect_true(.vistest("images/test_plots_plot_of_influence_diagnostics_2_light_test.png", "images/test_plots_plot_of_influence_diagnostics_2_light.png")) png("images/test_plots_plot_of_influence_diagnostics_2_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") plot(inf, plotinf=FALSE, plotdfbs=TRUE) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_plot_of_influence_diagnostics_2_dark_test.png", "images/test_plots_plot_of_influence_diagnostics_2_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_misc_handling_of_edge_cases_due_to_zeros.r0000644000176200001440000000310214712730635026345 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: handling of edge cases due to zeros") source("settings.r") test_that("rma.peto(), rma.mh(), and rma.glmm() handle outcome1 never occurring properly.", { ai <- c(0,0,0,0) bi <- c(10,15,20,25) ci <- c(0,0,0,0) di <- c(10,10,30,20) expect_that(suppressWarnings(rma.peto(ai=ai, bi=bi, ci=ci, di=di)), throws_error()) expect_warning(res <- rma.mh(measure="OR", ai=ai, bi=bi, ci=ci, di=di)) expect_true(is.na(res$beta)) expect_warning(res <- rma.mh(measure="RR", ai=ai, bi=bi, ci=ci, di=di)) expect_true(is.na(res$beta)) expect_warning(res <- rma.mh(measure="RD", ai=ai, bi=bi, ci=ci, di=di)) expect_equivalent(res$beta, 0) skip_on_cran() expect_error(suppressWarnings(rma.glmm(measure="OR", ai=ai, bi=bi, ci=ci, di=di))) }) test_that("rma.peto(), rma.mh(), and rma.glmm() handle outcome2 never occurring properly.", { ai <- c(10,15,20,25) bi <- c(0,0,0,0) ci <- c(10,10,30,20) di <- c(0,0,0,0) expect_error(suppressWarnings(rma.peto(ai=ai, bi=bi, ci=ci, di=di))) expect_warning(res <- rma.mh(measure="OR", ai=ai, bi=bi, ci=ci, di=di)) expect_true(is.na(res$beta)) expect_warning(res <- rma.mh(measure="RR", ai=ai, bi=bi, ci=ci, di=di)) expect_equivalent(res$beta, 0) expect_warning(res <- rma.mh(measure="RD", ai=ai, bi=bi, ci=ci, di=di)) expect_equivalent(res$beta, 0) skip_on_cran() expect_error(suppressWarnings(rma.glmm(measure="OR", ai=ai, bi=bi, ci=ci, di=di))) }) rm(list=ls()) metafor/tests/testthat/test_misc_vcov.r0000644000176200001440000000350414712730601020126 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: vcov() function") source("settings.r") test_that("vcov() works correctly for 'rma.uni' objects.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi ~ ablat, vi, data=dat) expect_equivalent(vcov(res), structure(c(0.0621, -0.0016, -0.0016, 1e-04), .Dim = c(2L, 2L), .Dimnames = list(c("intrcpt", "ablat"), c("intrcpt", "ablat"))), tolerance=.tol[["var"]]) expect_equivalent(diag(vcov(res, type="obs")), dat$vi + res$tau2) expect_equivalent(vcov(res, type="fitted")[1,], c(0.0197, 0.0269, 0.0184, 0.025, -0.0007, 0.0197, 0.0033, -0.0007, 0.0085, 0.0184, 0.0026, 0.0125, 0.0125), tolerance=.tol[["var"]]) expect_equivalent(vcov(res, type="resid")[1,], c(0.3822, -0.0269, -0.0184, -0.025, 7e-04, -0.0197, -0.0033, 0.0007, -0.0085, -0.0184, -0.0026, -0.0125, -0.0125), tolerance=.tol[["var"]]) }) test_that("vcov() works correctly for 'rma.mv' objects.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma.mv(yi ~ ablat, vi, random = ~ 1 | trial, data=dat, sparse=.sparse) expect_equivalent(vcov(res), structure(c(0.062, -0.0016, -0.0016, 1e-04), .Dim = c(2L, 2L), .Dimnames = list(c("intrcpt", "ablat"), c("intrcpt", "ablat"))), tolerance=.tol[["var"]]) expect_equivalent(diag(vcov(res, type="obs")), dat$vi + res$sigma2) expect_equivalent(vcov(res, type="fitted")[1,], c(0.0197, 0.0269, 0.0184, 0.025, -0.0007, 0.0197, 0.0033, -0.0007, 0.0085, 0.0184, 0.0026, 0.0125, 0.0125), tolerance=.tol[["var"]]) expect_equivalent(vcov(res, type="resid")[1,], c(0.3822, -0.0269, -0.0184, -0.025, 7e-04, -0.0197, -0.0033, 0.0007, -0.0085, -0.0184, -0.0026, -0.0125, -0.0125), tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_weights.r0000644000176200001440000001265214712730577020643 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: weights() function") source("settings.r") test_that("weights are correct for rma() with method='FE'.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### weighted analysis res <- rma(yi, vi, data=dat, method="FE") ### weights should be the same as 1/vi (scaled to percentages) expect_equivalent(weights(res), (1/dat$vi)/sum(1/dat$vi) * 100) ### weights should be the same as 1/vi expect_equivalent(diag(weights(res, type="matrix")), 1/dat$vi) ### weighted analysis with user defined weights res <- rma(yi, vi, data=dat, method="FE", weights=1:13) ### weights should match (scaled to percentages) expect_equivalent(weights(res), (1:13)/sum(1:13) * 100) ### unweighted analysis res <- rma(yi, vi, data=dat, method="FE", weighted=FALSE) ### weights should be the same as 1/k (scaled to percentages) expect_equivalent(weights(res), rep(1/res$k, res$k) * 100) ### unweighted analysis (but user has specified weights nevertheless) res <- rma(yi, vi, data=dat, method="FE", weighted=FALSE, weights=1:13) ### weights should be the same as 1/k (scaled to percentages) expect_equivalent(weights(res), rep(1/res$k, res$k) * 100) }) test_that("weights are correct for rma() with method='DL'.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### weighted analysis res <- rma(yi, vi, data=dat, method="DL") ### weights should be the same as 1/(vi+tau2) (scaled to percentages) expect_equivalent(weights(res), (1/(dat$vi+res$tau2)/sum(1/(dat$vi+res$tau2)) * 100)) ### weights should be the same as 1/(vi+tau2) expect_equivalent(diag(weights(res, type="matrix")), 1/(dat$vi+res$tau2)) ### weighted analysis with user defined weights res <- rma(yi, vi, data=dat, method="DL", weights=1:13) ### weights should match (scaled to percentages) expect_equivalent(weights(res), (1:13)/sum(1:13) * 100) ### unweighted analysis res <- rma(yi, vi, data=dat, method="DL", weighted=FALSE) ### weights should be the same as 1/k (scaled to percentages) expect_equivalent(weights(res), rep(1/res$k, res$k) * 100) ### unweighted analysis (but user has specified weights nevertheless) res <- rma(yi, vi, data=dat, method="FE", weighted=FALSE, weights=1:13) ### weights should be the same as 1/k (scaled to percentages) expect_equivalent(weights(res), rep(1/res$k, res$k) * 100) }) test_that("weights are correct for rma.mv() with method='REML'.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### weighted analysis res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, sparse=.sparse) ### weights should be the same as 1/(vi+sigma2) (scaled to percentages) expect_equivalent(weights(res), (1/(dat$vi+res$sigma2)/sum(1/(dat$vi+res$sigma2)) * 100)) ### weights should be the same as 1/(vi+sigma2) expect_equivalent(diag(weights(res, type="matrix")), 1/(dat$vi+res$sigma2)) ### weighted analysis with user defined weights res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, W=1:13, sparse=.sparse) ### weights should match (scaled to percentages) expect_equivalent(weights(res), (1:13)/sum(1:13) * 100) ### unweighted analysis res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, W=1, sparse=.sparse) ### weights should be the same as 1/k (scaled to percentages) expect_equivalent(weights(res), rep(1/res$k, res$k) * 100) }) test_that("weights are correct for rma.mh() with measure='RD/RR/OR'.", { dat <- dat.bcg res <- rma.mh(measure="RD", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) sav <- weights(res) expect_equivalent(coef(res), sum(res$yi * sav/100), tolerance=.tol[["coef"]]) tmp <- diag(weights(res, type="matrix")) expect_equivalent(sav, tmp/sum(tmp)*100) res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) sav <- weights(res) expect_equivalent(exp(coef(res)), sum(exp(res$yi) * sav/100), tolerance=.tol[["coef"]]) tmp <- diag(weights(res, type="matrix")) expect_equivalent(sav, tmp/sum(tmp)*100) res <- rma.mh(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) sav <- weights(res) expect_equivalent(exp(coef(res)), sum(exp(res$yi) * sav/100), tolerance=.tol[["coef"]]) tmp <- diag(weights(res, type="matrix")) expect_equivalent(sav, tmp/sum(tmp)*100) }) test_that("weights are correct for rma.mh() with measure='IRD/IRR'.", { dat <- dat.nielweise2008 res <- rma.mh(measure="IRD", x1i=x1i, t1i=t1i, x2i=x2i, t2i=t2i, data=dat) sav <- weights(res) expect_equivalent(coef(res), sum(res$yi * sav/100), tolerance=.tol[["coef"]]) tmp <- diag(weights(res, type="matrix")) expect_equivalent(sav, tmp/sum(tmp)*100) res <- rma.mh(measure="IRR", x1i=x1i, t1i=t1i, x2i=x2i, t2i=t2i, data=dat) sav <- weights(res) expect_equivalent(exp(coef(res)), sum(exp(res$yi) * sav/100), tolerance=.tol[["coef"]]) tmp <- diag(weights(res, type="matrix")) expect_equivalent(sav, tmp/sum(tmp)*100) }) test_that("weights are correct for rma.peto().", { dat <- dat.bcg res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) sav <- weights(res) expect_equivalent(coef(res), sum(res$yi * sav/100), tolerance=.tol[["coef"]]) tmp <- diag(weights(res, type="matrix")) expect_equivalent(sav, tmp/sum(tmp)*100) }) rm(list=ls()) metafor/tests/testthat/test_misc_cumul.r0000644000176200001440000000715214712730643020307 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") source("settings.r") context("Checking misc: cumul() functions") test_that("cumul() works correctly for 'rma.uni' object.", { ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste0(author, ", ", year)) ### fit random-effects model res <- rma(yi, vi, data=dat) ### cumulative meta-analysis (in the order of publication year) out <- cumul(res, order=year) expect_equivalent(out$estimate, c(-0.889311, -1.325003, -0.97208, -1.001094, -1.101424, -0.973464, -0.901251, -0.788566, -0.865607, -0.785211, -0.708206, -0.794768, -0.714532), tolerance=.tol[["est"]]) ### with transformation out <- cumul(res, order=year, transf=exp) expect_equivalent(out$estimate, c(0.410939, 0.265802, 0.378296, 0.367477, 0.332398, 0.377772, 0.406061, 0.454496, 0.420796, 0.456024, 0.492527, 0.451686, 0.489421), tolerance=.tol[["est"]]) ### add studies with the same publication year simultaneously out <- cumul(res, order=year, transf=exp, collapse=TRUE) expect_equivalent(out$estimate, c(0.410939, 0.265802, 0.378296, 0.367477, 0.332398, 0.377772, 0.406061, 0.420796, 0.456024, 0.492527, 0.451686, 0.489421), tolerance=.tol[["est"]]) }) test_that("cumul() works correctly for 'rma.mh' object.", { ### meta-analysis of the (log) risk ratios using the Mantel-Haenszel method res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste0(author, ", ", year)) ### cumulative meta-analysis (in the order of publication year) out <- cumul(res, order=year) expect_equivalent(out$estimate, c(-0.889311, -1.351739, -0.827295, -0.837892, -0.894003, -0.850672, -0.835785, -0.774442, -0.789605, -0.666015, -0.635076, -0.775798, -0.45371), tolerance=.tol[["est"]]) ### with transformation out <- cumul(res, order=year, transf=exp) expect_equivalent(out$estimate, c(0.410939, 0.25879, 0.437231, 0.432621, 0.409015, 0.427128, 0.433534, 0.460961, 0.454024, 0.513752, 0.529895, 0.460336, 0.635267), tolerance=.tol[["est"]]) ### add studies with the same publication year simultaneously out <- cumul(res, order=year, transf=exp, collapse=TRUE) expect_equivalent(out$estimate, c(0.410939, 0.25879, 0.437231, 0.432621, 0.409015, 0.427128, 0.433534, 0.454024, 0.513752, 0.529895, 0.460336, 0.635267), tolerance=.tol[["est"]]) }) test_that("cumul() works correctly for 'rma.peto' object.", { ### meta-analysis of the (log) odds ratios using Peto's method res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste0(author, ", ", year)) ### cumulative meta-analysis (in the order of publication year) out <- cumul(res, order=year) expect_equivalent(out$estimate, c(-0.860383, -1.240086, -0.957016, -0.964222, -1.000315, -0.940979, -0.924632, -0.850145, -0.871198, -0.726791, -0.691247, -0.816134, -0.474446), tolerance=.tol[["est"]]) ### with transformation out <- cumul(res, order=year, transf=exp) expect_equivalent(out$estimate, c(0.423, 0.289359, 0.384037, 0.38128, 0.367764, 0.390246, 0.396677, 0.427353, 0.41845, 0.483458, 0.500951, 0.442138, 0.622229), tolerance=.tol[["est"]]) ### add studies with the same publication year simultaneously out <- cumul(res, order=year, transf=exp, collapse=TRUE) expect_equivalent(out$estimate, c(0.423, 0.289359, 0.384037, 0.38128, 0.367764, 0.390246, 0.396677, 0.41845, 0.483458, 0.500951, 0.442138, 0.622229), tolerance=.tol[["est"]]) }) rm(list=ls()) metafor/tests/testthat/test_plots_caterpillar_plot.r0000644000176200001440000000315714712730576022736 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:caterpillar_plot source("settings.r") context("Checking plots example: caterpillar plot") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() ### simulate some data set.seed(5132) k <- 250 vi <- rchisq(k, df=1) * .03 yi <- rnorm(k, rnorm(k, 0.5, 0.4), sqrt(vi)) ### fit RE model res <- rma(yi, vi) doplot <- function() { par(mar=c(5,1,2,1)) forest(yi, vi, header=FALSE, xlim=c(-2.5,3.5), ylim=c(-8, 254), order=yi, slab=NA, annotate=FALSE, efac=0, pch=19, col="gray40", psize=2, cex.lab=1, cex.axis=1, lty=c("solid","blank")) points(sort(yi), k:1, pch=19, cex=0.5) addpoly(res, mlab="", cex=1) text(-2, -2, "RE Model", pos=4, offset=0, cex=1) } png("images/test_plots_caterpillar_plot_light_test.png", res=200, width=1800, height=1500, type="cairo") doplot() dev.off() expect_true(.vistest("images/test_plots_caterpillar_plot_light_test.png", "images/test_plots_caterpillar_plot_light.png")) png("images/test_plots_caterpillar_plot_dark_test.png", res=200, width=1800, height=1500, type="cairo") setmfopt(theme="dark") doplot() setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_caterpillar_plot_dark_test.png", "images/test_plots_caterpillar_plot_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_misc_vcalc.r0000644000176200001440000002252014712730601020240 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: vcalc() function") source("settings.r") test_that("vcalc() works correctly for 'dat.assink2016' example.", { dat <- dat.assink2016 ### assume that the effect sizes within studies are correlated with rho=0.6 V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) sav <- blsplit(V, dat$study, round, 4)[1:2] expected <- list(`1` = structure(c(0.074, 0.0326, 0.0358, 0.0252, 0.0297, 0.0486, 0.0326, 0.0398, 0.0263, 0.0185, 0.0218, 0.0356, 0.0358, 0.0263, 0.0481, 0.0203, 0.0239, 0.0392, 0.0252, 0.0185, 0.0203, 0.0239, 0.0169, 0.0276, 0.0297, 0.0218, 0.0239, 0.0169, 0.0331, 0.0325, 0.0486, 0.0356, 0.0392, 0.0276, 0.0325, 0.0886), .Dim = c(6L,6L)), `2` = structure(c(0.0115, 0.0056, 0.0052, 0.0056, 0.0076, 0.0042, 0.0052, 0.0042, 0.0065), .Dim = c(3L, 3L))) expect_equivalent(sav, expected, tolerance=.tol[["var"]]) ### use a correlation of 0.7 for effect sizes corresponding to the same type of ### delinquent behavior and a correlation of 0.5 for effect sizes corresponding ### to different types of delinquent behavior V <- vcalc(vi, cluster=study, type=deltype, obs=esid, data=dat, rho=c(0.7, 0.5)) sav <- blsplit(V, dat$study, round, 3)[16] expected <- list(`16` = structure(c(0.091, 0.045, 0.027, 0.044, 0.03, 0.039, 0.076, 0.028, 0.034, 0.03, 0.039, 0.043, 0.039, 0.067, 0.028, 0.032, 0.045, 0.087, 0.027, 0.061, 0.03, 0.039, 0.053, 0.027, 0.047, 0.041, 0.053, 0.059, 0.053, 0.046, 0.038, 0.043, 0.027, 0.027, 0.033, 0.027, 0.025, 0.033, 0.033, 0.023, 0.021, 0.018, 0.023, 0.026, 0.023, 0.029, 0.017, 0.019, 0.044, 0.061, 0.027, 0.086, 0.029, 0.038, 0.053, 0.027, 0.047, 0.041, 0.053, 0.058, 0.053, 0.046, 0.038, 0.043, 0.03, 0.03, 0.025, 0.029, 0.04, 0.037, 0.036, 0.026, 0.023, 0.02, 0.026, 0.028, 0.026, 0.031, 0.018, 0.021, 0.039, 0.039, 0.033, 0.038, 0.037, 0.068, 0.047, 0.033, 0.03, 0.026, 0.034, 0.037, 0.034, 0.041, 0.024, 0.027, 0.076, 0.053, 0.033, 0.053, 0.036, 0.047, 0.129, 0.033, 0.041, 0.035, 0.046, 0.051, 0.046, 0.079, 0.033, 0.037, 0.028, 0.027, 0.023, 0.027, 0.026, 0.033, 0.033, 0.033, 0.021, 0.018, 0.023, 0.026, 0.024, 0.029, 0.017, 0.019, 0.034, 0.047, 0.021, 0.047, 0.023, 0.03, 0.041, 0.021, 0.052, 0.031, 0.041, 0.045, 0.041, 0.036, 0.029, 0.033, 0.03, 0.041, 0.018, 0.041, 0.02, 0.026, 0.035, 0.018, 0.031, 0.039, 0.036, 0.039, 0.036, 0.031, 0.025, 0.029, 0.039, 0.053, 0.023, 0.053, 0.026, 0.034, 0.046, 0.023, 0.041, 0.036, 0.066, 0.051, 0.047, 0.04, 0.033, 0.038, 0.043, 0.059, 0.026, 0.058, 0.028, 0.037, 0.051, 0.026, 0.045, 0.039, 0.051, 0.081, 0.051, 0.045, 0.037, 0.042, 0.039, 0.053, 0.023, 0.053, 0.026, 0.034, 0.046, 0.024, 0.041, 0.036, 0.047, 0.051, 0.067, 0.041, 0.033, 0.038, 0.067, 0.046, 0.029, 0.046, 0.031, 0.041, 0.079, 0.029, 0.036, 0.031, 0.04, 0.045, 0.041, 0.099, 0.029, 0.033, 0.028, 0.038, 0.017, 0.038, 0.018, 0.024, 0.033, 0.017, 0.029, 0.025, 0.033, 0.037, 0.033, 0.029, 0.034, 0.027, 0.032, 0.043, 0.019, 0.043, 0.021, 0.027, 0.037, 0.019, 0.033, 0.029, 0.038, 0.042, 0.038, 0.033, 0.027, 0.044), .Dim = c(16L, 16L))) expect_equivalent(sav, expected, tolerance=.tol[["var"]]) }) test_that("vcalc() works correctly for 'dat.ishak2007' example.", { dat <- dat.ishak2007 ### create long format dataset dat <- reshape(dat, direction="long", idvar="study", v.names=c("yi","vi"), varying=list(c(2,4,6,8), c(3,5,7,9))) dat <- dat[order(study, time),] ### remove missing measurement occasions from dat dat <- dat[!is.na(yi),] rownames(dat) <- NULL ### construct the full (block diagonal) V matrix with an AR(1) structure ### assuming an autocorrelation of 0.97 as estimated by Ishak et al. (2007) V <- vcalc(vi, cluster=study, time1=time, phi=0.97, data=dat) sav <- blsplit(V, dat$study)[1:5] expected <- list(`Alegret (2001)` = structure(14.3, .Dim = c(1L, 1L)), `Barichella (2003)` = structure(c(7.3, 6.0693520102314, 6.0693520102314, 5.7), .Dim = c(2L, 2L)), `Berney (2002)` = structure(7.3, .Dim = c(1L, 1L)), `Burchiel (1999)` = structure(c(8, 7.76, 5.95077410090486, 7.76, 8, 6.13481866072665, 5.95077410090486, 6.13481866072665, 5), .Dim = c(3L, 3L)), `Chen (2003)` = structure(125, .Dim = c(1L, 1L))) expect_equivalent(sav, expected, tolerance=.tol[["var"]]) }) test_that("vcalc() works correctly for 'dat.kalaian1996' example.", { dat <- dat.kalaian1996 ### construct the variance-covariance matrix assuming rho = 0.66 for effect sizes ### corresponding to the 'verbal' and 'math' outcome types V <- vcalc(vi, cluster=study, type=outcome, data=dat, rho=0.66) sav <- round(V[1:12,1:12], 4) expected <- structure(c(0.0817, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0507, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1045, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0442, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0535, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0557, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0561, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1151, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0147, 0.0097, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0097, 0.0147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0218, 0.0143, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0143, 0.0216), .Dim = c(12L, 12L)) expect_equivalent(sav, expected, tolerance=.tol[["var"]]) }) test_that("vcalc() works correctly for 'dat.berkey1998' example.", { dat <- dat.berkey1998 ### variables v1i and v2i correspond to the 2x2 var-cov matrices of the studies; ### so use these variables to construct the V matrix (note: since v1i and v2i are ### var-cov matrices and not correlation matrices, set vi=1 for all rows) V <- vcalc(vi=1, cluster=author, rvars=c(v1i, v2i), data=dat) sav <- blsplit(V, dat$author, function(x) round(cov2cor(x), 2)) expected <- list(`Pihlstrom et al.` = structure(c(1, 0.39, 0.39, 1), .Dim = c(2L, 2L)), `Lindhe et al.` = structure(c(1, 0.42, 0.42, 1), .Dim = c(2L, 2L)), `Knowles et al.` = structure(c(1, 0.41, 0.41, 1), .Dim = c(2L, 2L)), `Ramfjord et al.` = structure(c(1, 0.43, 0.43, 1), .Dim = c(2L, 2L)), `Becker et al.` = structure(c(1, 0.34, 0.34, 1), .Dim = c(2L, 2L))) expect_equivalent(sav, expected, tolerance=.tol[["var"]]) }) test_that("vcalc() works correctly for 'dat.knapp2017' example.", { dat <- dat.knapp2017 ### create variable that indicates the task and difficulty combination as increasing integers dat$task.diff <- unlist(lapply(split(dat, dat$study), function(x) { task.int <- as.integer(factor(x$task)) diff.int <- as.integer(factor(x$difficulty)) diff.int[is.na(diff.int)] <- 1 paste0(task.int, ".", diff.int)})) ### construct correlation matrix for two tasks with four different difficulties where the ### correlation is 0.4 for different difficulties of the same task, 0.7 for the same ### difficulty of different tasks, and 0.28 for different difficulties of different tasks R <- matrix(0.4, nrow=8, ncol=8) R[5:8,1:4] <- R[1:4,5:8] <- 0.28 diag(R[1:4,5:8]) <- 0.7 diag(R[5:8,1:4]) <- 0.7 diag(R) <- 1 rownames(R) <- colnames(R) <- paste0(rep(1:2, each=4), ".", 1:4) ### construct an approximate V matrix accounting for the use of shared groups and ### for correlations among tasks/difficulties as specified in the R matrix above V <- vcalc(vi, cluster=study, grp1=group1, grp2=group2, w1=n_sz, w2=n_hc, obs=task.diff, rho=R, data=dat) Vs <- blsplit(V, dat$study) sav <- Vs[c(3,6,12,24,29)] expected <- list(`3` = structure(c(0.062, 0.0313021866879515, 0.0305960523769429, 0.0306223534669685, 0.0313021866879515, 0.073, 0.0301021398261882, 0.0301280163373072, 0.0305960523769429, 0.0301021398261882, 0.102, 0.029448369695669, 0.0306223534669685, 0.0301280163373072, 0.029448369695669, 0.084), .Dim = c(4L, 4L)), `6` = structure(c(0.17, 0.07485452558129, 0.0675988165576883, 0.0711280535372648, 0.120045408075445, 0.0489799959167005, 0.0511105468567888, 0.0495212277715325, 0.07485452558129, 0.206, 0.0744129021070943, 0.0782978926919493, 0.0528584827629398, 0.134793174901402, 0.0562625843700767, 0.0545130589858981, 0.0675988165576884, 0.0744129021070943, 0.168, 0.0707084153407499, 0.0477348677593224, 0.0486910258671965, 0.127022517688794, 0.0492290645858725, 0.0711280535372648, 0.0782978926919493, 0.0707084153407499, 0.186, 0.0502270365440765, 0.0512331142914424, 0.0534616722521846, 0.129498108094288, 0.120045408075445, 0.0528584827629398, 0.0477348677593224, 0.0502270365440765, 0.173, 0.0705861176152932, 0.0736565000526091, 0.0713660983941255, 0.0489799959167005, 0.134793174901402, 0.0486910258671965, 0.0512331142914424, 0.0705861176152932, 0.18, 0.0751318840439929, 0.0727956042628949, 0.0511105468567888, 0.0562625843700767, 0.127022517688794, 0.0534616722521846, 0.0736565000526091, 0.0751318840439929, 0.196, 0.075962095811003, 0.0495212277715325, 0.0545130589858981, 0.0492290645858725, 0.129498108094288, 0.0713660983941255, 0.0727956042628949, 0.075962095811003, 0.184), .Dim = c(8L, 8L)), `12` = structure(c(0.02, 0.00819756061276768, 0.008, 0.00839047078536121, 0.00819756061276768, 0.021, 0.00819756061276768, 0.00859767410408187, 0.008, 0.00819756061276768, 0.02, 0.00839047078536121, 0.00839047078536121, 0.00859767410408187, 0.00839047078536121, 0.022), .Dim = c(4L, 4L)), `24` = structure(c(0.022, 0, 0, 0.03), .Dim = c(2L, 2L)), `29` = structure(c(0.039, 0, 0, 0, 0.039, 0, 0, 0, 0.121), .Dim = c(3L, 3L))) expect_equivalent(sav, expected, tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_konstantopoulos2011.r0000644000176200001440000003036214712730432025346 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:konstantopoulos2011 context("Checking analysis example: konstantopoulos2011") source("settings.r") dat <- dat.konstantopoulos2011 test_that("results are correct for the two-level random-effects model fitted with rma().", { res <- rma(yi, vi, data=dat) ### compare with results on page 70 (Table 4) expect_equivalent(coef(res), 0.1279, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.0439, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.0884, tolerance=.tol[["var"]]) expect_equivalent(res$se.tau2, 0.0202, tolerance=.tol[["sevar"]]) ### CI for tau^2 based on the Q-profile method (CI in paper is based on a Satterthwaite approximation) tmp <- confint(res, digits=3) out <- capture.output(print(tmp)) ### so that print.confint.rma() is run (at least once) expect_equivalent(tmp$random[1,2], 0.0564, tolerance=.tol[["var"]]) expect_equivalent(tmp$random[1,3], 0.1388, tolerance=.tol[["var"]]) }) test_that("results are correct for the two-level mixed-effects model fitted with rma().", { res <- rma(yi, vi, mods = ~ I(year-mean(year)), data=dat) ### compare with results on page 70 (Table 4) expect_equivalent(coef(res), c(0.1258, 0.0052), tolerance=.tol[["coef"]]) expect_equivalent(se(res), c(0.0440, 0.0044), tolerance=.tol[["se"]]) ### 0.043 in paper expect_equivalent(res$tau2, 0.0889, tolerance=.tol[["var"]]) ### 0.088 in paper expect_equivalent(res$se.tau2, 0.0205, tolerance=.tol[["sevar"]]) ### CI for tau^2 based on the Q-profile method (CI in paper is based on a Satterthwaite approximation) tmp <- confint(res, digits=3) expect_equivalent(tmp$random[1,2], 0.0560, tolerance=.tol[["var"]]) expect_equivalent(tmp$random[1,3], 0.1376, tolerance=.tol[["var"]]) }) test_that("results are correct for the two-level random-effects model fitted with rma.mv().", { res <- rma.mv(yi, vi, random = ~ 1 | study, data=dat, sparse=.sparse) ### compare with results on page 70 (Table 4) expect_equivalent(coef(res), 0.1279, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.0439, tolerance=.tol[["se"]]) expect_equivalent(res$sigma2, 0.0884, tolerance=.tol[["var"]]) }) test_that("results are correct for the three-level random-effects model fitted with rma.mv() using ML estimation.", { ### three-level model (ml = multilevel parameterization) res.ml <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, method="ML", sparse=.sparse) out <- capture.output(print(res.ml)) out <- capture.output(print(summary(res.ml))) ### compare with results on page 71 (Table 5) expect_equivalent(coef(res.ml), 0.1845, tolerance=.tol[["coef"]]) expect_equivalent(se(res.ml), 0.0805, tolerance=.tol[["se"]]) expect_equivalent(res.ml$sigma2, c(0.0577, 0.0329), tolerance=.tol[["var"]]) sav <- predict(res.ml) expect_equivalent(c(sav$pi.lb, sav$pi.ub), c(-0.4262, 0.7951), tolerance=.tol[["pred"]]) }) test_that("results are correct for the three-level mixed-effects model fitted with rma.mv() using ML estimation.", { ### three-level model (multilevel parameterization) res.ml <- rma.mv(yi, vi, mods = ~ I(year-mean(year)), random = ~ 1 | district/study, data=dat, method="ML", sparse=.sparse) out <- capture.output(print(res.ml)) ### compare with results on page 71 (Table 5) expect_equivalent(coef(res.ml), c(0.1780, 0.0051), tolerance=.tol[["coef"]]) ### intercept is given as 0.183 in paper, but this seems to be a misprint expect_equivalent(se(res.ml), c(0.0805, 0.0085), tolerance=.tol[["se"]]) expect_equivalent(res.ml$sigma2, c(0.0565, 0.0329), tolerance=.tol[["var"]]) }) test_that("results are correct for the three-level random-effects model fitted with rma.mv() using REML estimation.", { ### three-level model (ml = multilevel parameterization) res.ml <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, sparse=.sparse) out <- capture.output(print(res.ml)) ### (results for this not given in paper) expect_equivalent(coef(res.ml), 0.1847, tolerance=.tol[["coef"]]) expect_equivalent(se(res.ml), 0.0846, tolerance=.tol[["se"]]) expect_equivalent(res.ml$sigma2, c(0.0651, 0.0327), tolerance=.tol[["var"]]) ### ICC expect_equivalent(res.ml$sigma2[1] / sum(res.ml$sigma2), 0.6653, tolerance=.tol[["cor"]]) ### total amount of heterogeneity expect_equivalent(sum(res.ml$sigma2), 0.0978, tolerance=.tol[["var"]]) ### log likelihood expect_equivalent(c(logLik(res.ml)), -7.9587, tolerance=.tol[["fit"]]) ### CIs for variance components sav <- confint(res.ml) sav <- round(as.data.frame(sav), 4) expected <- structure(c(0.0651, 0.2551, 0.0327, 0.1809, 0.0222, 0.1491, 0.0163, 0.1276, 0.2072, 0.4552, 0.0628, 0.2507), .Dim = 4:3, .Dimnames = list(c("sigma^2.1", "sigma.1", "sigma^2.2", "sigma.2"), c("estimate", "ci.lb", "ci.ub"))) expect_equivalent(sav, expected, tolerance=.tol[["var"]]) }) test_that("profiling works for the three-level random-effects model (multilevel parameterization).", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() ### three-level model (ml = multilevel parameterization) res.ml <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, sparse=.sparse) ### profile variance components png("images/test_analysis_example_konstantopoulos2011_profile_1_light_test.png", res=200, width=1800, height=2000, type="cairo") par(mfrow=c(2,1)) sav <- profile(res.ml, progbar=FALSE) dev.off() expect_true(.vistest("images/test_analysis_example_konstantopoulos2011_profile_1_light_test.png", "images/test_analysis_example_konstantopoulos2011_profile_1_light.png")) ### profile variance components (dark theme) png("images/test_analysis_example_konstantopoulos2011_profile_1_dark_test.png", res=200, width=1800, height=2000, type="cairo") setmfopt(theme="dark") par(mfrow=c(2,1)) sav <- profile(res.ml, progbar=FALSE) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_analysis_example_konstantopoulos2011_profile_1_dark_test.png", "images/test_analysis_example_konstantopoulos2011_profile_1_dark.png")) out <- capture.output(print(sav)) }) test_that("results are correct for the three-level random-effects model when using the multivariate parameterization.", { ### three-level model (mv = multivariate parameterization) res.mv <- rma.mv(yi, vi, random = ~ factor(study) | district, data=dat, sparse=.sparse) ### (results for this not given in paper) expect_equivalent(coef(res.mv), 0.1847, tolerance=.tol[["coef"]]) expect_equivalent(se(res.mv), 0.0846, tolerance=.tol[["se"]]) expect_equivalent(res.mv$tau2, 0.0978, tolerance=.tol[["var"]]) expect_equivalent(res.mv$rho, 0.6653, tolerance=.tol[["cor"]]) ### log likelihood expect_equivalent(c(logLik(res.mv)), -7.9587, tolerance=.tol[["fit"]]) }) test_that("profiling works for the three-level random-effects model (multivariate parameterization).", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() ### three-level model (mv = multivariate parameterization) res.mv <- rma.mv(yi, vi, random = ~ factor(study) | district, data=dat, sparse=.sparse) ### profile variance components png("images/test_analysis_example_konstantopoulos2011_profile_2_light_test.png", res=200, width=1800, height=2000, type="cairo") par(mfrow=c(2,1)) #profile(res.mv, progbar=FALSE) profile(res.mv, progbar=FALSE, parallel="snow") dev.off() expect_true(.vistest("images/test_analysis_example_konstantopoulos2011_profile_2_light_test.png", "images/test_analysis_example_konstantopoulos2011_profile_2_light.png")) ### profile variance components (dark theme) png("images/test_analysis_example_konstantopoulos2011_profile_2_dark_test.png", res=200, width=1800, height=2000, type="cairo") setmfopt(theme="dark") par(mfrow=c(2,1)) #profile(res.mv, progbar=FALSE) profile(res.mv, progbar=FALSE, parallel="snow") setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_analysis_example_konstantopoulos2011_profile_2_dark_test.png", "images/test_analysis_example_konstantopoulos2011_profile_2_dark.png")) }) test_that("BLUPs are calculated correctly for the three-level random-effects model (multilevel parameterization).", { skip_on_cran() ### three-level model (ml = multilevel parameterization) res.ml <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, sparse=.sparse) sav <- ranef(res.ml) expect_equivalent(sav[[1]]$intrcpt, c(-0.18998596, -0.08467077, 0.1407273, 0.24064814, -0.1072942, -0.23650899, 0.5342778, -0.2004695, 0.05711692, -0.14168396, -0.01215679), tolerance=.tol[["pred"]]) expect_equivalent(sav[[1]]$se, c(0.16653966, 0.12407891, 0.13724053, 0.11885896, 0.11895233, 0.10112845, 0.1297891, 0.101322, 0.11104458, 0.12485549, 0.15042221), tolerance=.tol[["se"]]) expect_equivalent(sav[[2]]$intrcpt, c(-0.03794675, -0.04663383, 0.04357906, -0.05459167, 0.02098376, -0.25219111, 0.06169069, 0.12691378, 0.07315932, 0.02358293, -0.02593401, -0.16472466, 0.20017925, -0.05824454, 0.14387428, 0.00163316, -0.03082723, 0.09766431, -0.12245631, -0.07958353, 0.03342001, 0.03277405, -0.13648311, 0.00732233, -0.15120705, 0.10293055, 0.04267145, 0.08386343, -0.02323572, -0.03147411, -0.28733359, 0.19536367, 0.36079672, -0.0526358, -0.03322863, 0.00558571, 0.03469647, -0.01382146, 0.0152893, 0.02499288, -0.08174655, 0.19776024, 0.31299764, -0.03204218, -0.18968221, -0.13730492, -0.12298966, -0.28918454, 0.33743506, -0.03810734, 0.11843554, -0.19986832, -0.01436916, 0.12481101, -0.04350898, -0.07304968), tolerance=.tol[["pred"]]) expect_equivalent(sav[[2]]$se, c(0.16388194, 0.16388194, 0.16603559, 0.16603559, 0.12233812, 0.12233812, 0.12342216, 0.13171712, 0.13653182, 0.14617064, 0.12941105, 0.12588568, 0.10313659, 0.10313659, 0.10868276, 0.12489868, 0.10877088, 0.10517399, 0.10324522, 0.11803445, 0.11512181, 0.11661284, 0.12068892, 0.11803445, 0.11939164, 0.08878259, 0.09186319, 0.09186319, 0.09186319, 0.09186319, 0.12687757, 0.12311091, 0.12210943, 0.06873404, 0.06873404, 0.06873404, 0.06873404, 0.06873404, 0.06873404, 0.06873404, 0.06873404, 0.10744609, 0.10928134, 0.10744609, 0.10550931, 0.11267925, 0.11267925, 0.13697347, 0.13697347, 0.13632667, 0.13632667, 0.13632667, 0.1589217, 0.1581043, 0.15527374, 0.15527374), tolerance=.tol[["se"]]) }) test_that("restarting with 'restart=TRUE' works.", { skip_on_cran() expect_error(res <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, control=list(maxiter=4))) expect_error(res <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, control=list(maxiter=4), restart=TRUE)) res <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, control=list(maxiter=4), restart=TRUE) expect_equivalent(coef(res), 0.1847132, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.08455592, tolerance=.tol[["se"]]) expect_equivalent(res$sigma2, c(0.06506194, 0.03273652), tolerance=.tol[["var"]]) }) test_that("results are correct when allowing for different tau^2 per district.", { skip_on_cran() ### shuffle up dat to make sure that this does not affect things set.seed(1234) dat <- dat[sample(nrow(dat)),] res <- rma.mv(yi, vi, random = list(~ 1 | district, ~ factor(district) | study), struct="DIAG", data=dat, control=list(optimizer="optim"), sparse=.sparse) out <- capture.output(print(res, digits=4)) out <- capture.output(print(summary(res, digits=4))) expect_equivalent(coef(res), 0.1270, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.0588, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, c(0.0000, 0.0402, 0.0000, 0.0582, 0.0082, 0.0000, 0.5380, 0.0008, 0.0606, 0.1803, 0.0000), tolerance=.tol[["var"]]) ### check that output is also correct tau2 <- as.numeric(substr(out[grep("tau", out)], 13, 18)) expect_equivalent(res$tau2, c(0.0000, 0.0402, 0.0000, 0.0582, 0.0082, 0.0000, 0.5380, 0.0008, 0.0606, 0.1803, 0.0000), tolerance=.tol[["var"]]) k.lvl <- as.numeric(substr(out[grep("tau", out)], 32, 33)) expect_equivalent(k.lvl, c(4, 4, 3, 4, 4, 11, 3, 8, 6, 5, 4)) level <- as.numeric(substr(out[grep("tau", out)], 45, 47)) expect_equivalent(level, c(11, 12, 18, 27, 56, 58, 71, 86, 91, 108, 644)) }) rm(list=ls()) metafor/tests/testthat/test_misc_transf.r0000644000176200001440000000372114712730603020451 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: transformation functions") source("settings.r") test_that("transformations work correctly.", { expect_equivalent(transf.rtoz(.5), 0.549306, tolerance=.tol[["est"]]) expect_equivalent(transf.ztor(transf.rtoz(.5)), .5) expect_equivalent(transf.logit(.1), -2.197225, tolerance=.tol[["est"]]) expect_equivalent(transf.ilogit(transf.logit(.1)), .1) expect_equivalent(transf.arcsin(.1), 0.321751, tolerance=.tol[["est"]]) expect_equivalent(transf.iarcsin(transf.arcsin(.1)), .1) expect_equivalent(transf.pft(.1,10), 0.373394, tolerance=.tol[["est"]]) expect_equivalent(transf.ipft(transf.pft(.1,10), 10), .1) expect_equivalent(transf.ipft.hm(transf.pft(.1,10), targs=list(ni=c(10))), .1) expect_equivalent(transf.isqrt(.1), 0.01) expect_equivalent(transf.irft(.1,10), 0.381721, tolerance=.tol[["est"]]) expect_equivalent(transf.iirft(transf.irft(.1,10), 10), .1) expect_equivalent(transf.ahw(.9), 0.535841, tolerance=.tol[["est"]]) expect_equivalent(transf.iahw(transf.ahw(.9)), .9) expect_equivalent(transf.abt(.9), 2.302585, tolerance=.tol[["est"]]) expect_equivalent(transf.iabt(transf.abt(.9)), .9) expect_equivalent(transf.ztor.int(transf.rtoz(.5), targs=list(tau2=0)), .5) expect_equivalent(transf.ztor.int(transf.rtoz(.5), targs=list(tau2=0.1)), 0.46663, tolerance=.tol[["est"]]) expect_equivalent(transf.exp.int(log(.5), targs=list(tau2=0)), .5) expect_equivalent(transf.exp.int(log(.5), targs=list(tau2=0.1)), 0.525635, tolerance=.tol[["est"]]) expect_equivalent(transf.exp.int(log(.5), targs=list(tau2=0.1, lower=-10, upper=10)), exp(log(.5) + 0.1/2), tolerance=.tol[["est"]]) expect_equivalent(transf.ilogit.int(transf.logit(.1), targs=list(tau2=0)), .1) expect_equivalent(transf.ilogit.int(transf.logit(.1), targs=list(tau2=0.1)), 0.103591, tolerance=.tol[["est"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_rma_uni_ls.r0000644000176200001440000000755214712730607021316 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: rma() function with location-scale models") source("settings.r") test_that("location-scale model results are correct for an intercept-only model", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res1 <- rma(yi, vi, data=dat, test="t") res2 <- rma(yi, vi, scale = ~ 1, data=dat, test="t", control=list(optimizer="optim")) res3 <- suppressWarnings(rma(yi, vi, scale = ~ 1, link="identity", data=dat, test="t", control=list(optimizer="Nelder-Mead"))) expect_equivalent(res1$tau2, as.vector(exp(coef(res2)$alpha)), tolerance=.tol[["var"]]) expect_equivalent(res1$tau2, as.vector(coef(res3)$alpha), tolerance=.tol[["var"]]) }) test_that("location-scale model results are correct for a categorical predictor", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res1 <- rma(yi ~ alloc, vi, scale = ~ 0 + alloc, data=dat) res2 <- rma(yi ~ alloc, vi, scale = ~ 0 + alloc, link = "identity", data=dat, control=list(optimizer="solnp")) res3 <- rma.mv(yi ~ alloc, vi, random = ~ alloc | trial, struct="DIAG", data=dat, sparse=.sparse) expect_equivalent(as.vector(exp(coef(res1)$alpha)), as.vector(coef(res2)$alpha), tolerance=.tol[["var"]]) expect_equivalent(as.vector(exp(coef(res1)$alpha)), res3$tau2, tolerance=.tol[["var"]]) }) test_that("location-scale model results are correct for a continuous predictor", { dat <- escalc(measure="RR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat.laopaiboon2015) dat$ni <- dat$n1i + dat$n2i dat$ni[dat$study == "Whitlock"] <- dat$ni[dat$study == "Whitlock"] + 2 res <- suppressWarnings(rma(yi, vi, scale = ~ 0 + I(1/ni), link="identity", data=dat, method="ML")) expect_equivalent(as.vector(coef(res)$alpha), 79.07531, tolerance=.tol[["var"]]) expect_equivalent(exp(c(res$beta, res$ci.lb, res$ci.ub)), c(0.8539, 0.5482, 1.3302), tolerance=.tol[["coef"]]) res <- rma(yi, vi, scale = ~ I(1/ni), link="identity", data=dat, method="ML") expect_equivalent(as.vector(coef(res)$alpha), c(0.274623, 31.523043), tolerance=.tol[["var"]]) expect_equivalent(exp(c(res$beta, res$ci.lb, res$ci.ub)), c(1.0161589, 0.6214663, 1.6615205), tolerance=.tol[["coef"]]) res <- rma(yi, vi, scale = ~ 0 + I(1/ni), data=dat) expect_equivalent(as.vector(coef(res)$alpha), -34.5187, tolerance=.tol[["var"]]) expect_equivalent(exp(c(res$beta, res$ci.lb, res$ci.ub)), c(1.1251, 0.6381, 1.9839), tolerance=.tol[["coef"]]) res <- rma(yi, vi, scale = ~ I(1/ni), data=dat) expect_equivalent(as.vector(coef(res)$alpha), c(-0.8868, 42.4065), tolerance=.tol[["var"]]) expect_equivalent(exp(c(res$beta, res$ci.lb, res$ci.ub)), c(1.0474, 0.6242, 1.7577), tolerance=.tol[["coef"]]) sav <- coef(summary(res)) expected <- list(beta = structure(list(estimate = 0.0463401794422422, se = 0.264116077624852, zval = 0.175453837793485, pval = 0.86072304016451, ci.lb = -0.471317820440453, ci.ub = 0.563998179324937), class = "data.frame", row.names = "intrcpt"), alpha = structure(list(estimate = c(-0.886827277584096, 42.4065282951426 ), se = c(1.23920300372018, 118.69324661881), zval = c(-0.715643260161388, 0.357278358315816), pval = c(0.474211654391012, 0.720883429839682 ), ci.lb = c(-3.31562053440951, -190.227960285855), ci.ub = c(1.54196597924132, 275.04101687614)), class = "data.frame", row.names = c("intrcpt", "I(1/ni)"))) expect_equivalent(sav, expected, tolerance=.tol[["misc"]]) sav <- model.matrix(res)$scale expect_equivalent(sav, cbind(1, 1/dat$ni)) sav <- fitted(res)$scale expect_equivalent(sav, c(-0.4790722, -0.58818975, -0.8305852, -0.71086658, -0.49417424, -0.25389402, -0.66126064, -0.45847851, -0.54205875, -0.03869671, -0.03869671, -0.12956784, -0.40493491, -0.76426506, -0.35674567), tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_plots_plot_of_cumulative_results.r0000644000176200001440000000246714712730566025061 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:plot_of_cumulative_results source("settings.r") context("Checking plots example: plot of cumulative results") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) tmp <- cumul(res, order=year) png("images/test_plots_plot_of_cumulative_results_light_test.png", res=200, width=1800, height=1600, type="cairo") par(mar=c(5,5,2,2)) plot(tmp, transf=exp, xlim=c(0.25,0.5), lwd=3, cex=1.3) dev.off() expect_true(.vistest("images/test_plots_plot_of_cumulative_results_light_test.png", "images/test_plots_plot_of_cumulative_results_light.png")) png("images/test_plots_plot_of_cumulative_results_dark_test.png", res=200, width=1800, height=1600, type="cairo") setmfopt(theme="dark") par(mar=c(5,5,2,2)) plot(tmp, transf=exp, xlim=c(0.25,0.5), lwd=3, cex=1.3) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_plot_of_cumulative_results_dark_test.png", "images/test_plots_plot_of_cumulative_results_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_misc_rma_mv.r0000644000176200001440000002354314712730612020441 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: rma.mv() function") source("settings.r") dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) test_that("rma.mv() correctly handles a formula for the 'yi' argument", { res1 <- rma.mv(yi ~ ablat, vi, random = ~ 1 | trial, data=dat, sparse=.sparse) res2 <- rma.mv(yi, vi, mods = ~ ablat, random = ~ 1 | trial, data=dat, sparse=.sparse) expect_equivalent(coef(res1), coef(res2), tolerance=.tol[["coef"]]) }) test_that("rma.mv() works correctly when using user-defined weights", { res <- rma.mv(yi, vi, W=1, random = ~ 1 | trial, data=dat, sparse=.sparse) expect_equivalent(coef(res), mean(dat$yi), tolerance=.tol[["coef"]]) expect_equivalent(c(vcov(res)), 0.0358, tolerance=.tol[["var"]]) }) test_that("rma.mv() correctly handles negative sampling variances", { dat$vi[1] <- -.01 expect_warning(res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, sparse=.sparse)) expect_equivalent(coef(res), -0.7220, tolerance=.tol[["coef"]]) expect_equivalent(c(vcov(res)), 0.0293, tolerance=.tol[["var"]]) }) test_that("rma.mv() correctly handles a missing value", { dat$vi[1] <- NA expect_warning(res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, sparse=.sparse)) expect_equivalent(coef(res), -0.7071, tolerance=.tol[["coef"]]) expect_equivalent(c(vcov(res)), 0.0361, tolerance=.tol[["var"]]) }) test_that("rma.mv() correctly handles the R argument", { P <- structure(c(1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 0.621, 0.621, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.000, 0.621, 1.000, 0.642, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.000, 0.621, 0.642, 1.000, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.128, 0.000, 0.128, 0.128, 0.128, 1.000, 0.266, 0.266, 0.221, 0.221, 0.221, 0.157, 0.157, 0.157, 0.157, 0.157, 0.000, 0.128, 0.128, 0.128, 0.266, 1.000, 0.467, 0.221, 0.221, 0.221, 0.157, 0.157, 0.157, 0.157, 0.157, 0.000, 0.128, 0.128, 0.128, 0.266, 0.467, 1.000, 0.221, 0.221, 0.221, 0.157, 0.157, 0.157, 0.157, 0.157, 0.000, 0.128, 0.128, 0.128, 0.221, 0.221, 0.221, 1.000, 0.605, 0.296, 0.157, 0.157, 0.157, 0.157, 0.157, 0.000, 0.128, 0.128, 0.128, 0.221, 0.221, 0.221, 0.605, 1.000, 0.296, 0.157, 0.157, 0.157, 0.157, 0.157, 0.000, 0.128, 0.128, 0.128, 0.221, 0.221, 0.221, 0.296, 0.296, 1.000, 0.157, 0.157, 0.157, 0.157, 0.157, 0.000, 0.128, 0.128, 0.128, 0.157, 0.157, 0.157, 0.157, 0.157, 0.157, 1.000, 0.773, 0.390, 0.390, 0.390, 0.000, 0.128, 0.128, 0.128, 0.157, 0.157, 0.157, 0.157, 0.157, 0.157, 0.773, 1.000, 0.390, 0.390, 0.390, 0.000, 0.128, 0.128, 0.128, 0.157, 0.157, 0.157, 0.157, 0.157, 0.157, 0.390, 0.390, 1.000, 0.606, 0.606, 0.000, 0.128, 0.128, 0.128, 0.157, 0.157, 0.157, 0.157, 0.157, 0.157, 0.390, 0.390, 0.606, 1.000, 0.697, 0.000, 0.128, 0.128, 0.128, 0.157, 0.157, 0.157, 0.157, 0.157, 0.157, 0.390, 0.390, 0.606, 0.697, 1.000), .Dim = c(15L, 15L), .Dimnames = list(c("S11", "S15", "S06", "S10", "S08", "S02", "S07", "S14", "S09", "S01", "S12", "S05", "S13", "S04", "S03"), c("S11", "S15", "S06", "S10", "S08", "S02", "S07", "S14", "S09", "S01", "S12", "S05", "S13", "S04", "S03"))) dat <- structure(list(study = 1:44, species = c("S01", "S01", "S02", "S02", "S02", "S02", "S03", "S03", "S03", "S03", "S04", "S04", "S04", "S04", "S05", "S05", "S05", "S06", "S06", "S06", "S06", "S07", "S07", "S08", "S08", "S08", "S09", "S09", "S10", "S10", "S10", "S11", "S11", "S11", "S11", "S12", "S12", "S13", "S13", "S13", "S14", "S14", "S15", "S15"), phylogeny = c("S01", "S01", "S02", "S02", "S02", "S02", "S03", "S03", "S03", "S03", "S04", "S04", "S04", "S04", "S05", "S05", "S05", "S06", "S06", "S06", "S06", "S07", "S07", "S08", "S08", "S08", "S09", "S09", "S10", "S10", "S10", "S11", "S11", "S11", "S11", "S12", "S12", "S13", "S13", "S13", "S14", "S14", "S15", "S15"), yi = c(1.91, 1.67, -0.92, -0.1, -0.58, -1.29, 0.04, -1.33, 0.02, -1, 0.2, 1.75, -0.75, 1.36, 1.24, 0.64, 0.52, 1.93, 1.11, 1.12, 1.17, 0.25, 1.95, -0.06, -0.79, 0.39, 1.61, 1.96, 0.93, 0.5, 0.73, -0.7, 0.11, 0.84, 1.83, -0.59, 0.19, 0.14, 0.74, 0.55, 0.34, -1.16, 1.93, 1.85), vi = c(0.213, 0.387, 0.381, 0.467, 0.132, 0.603, 0.374, 0.2, 0.119, 0.092, 0.139, 0.449, 0.412, 0.398, 0.25, 0.168, 0.303, 0.125, 0.164, 0.229, 0.482, 0.059, 0.421, 0.111, 0.373, 0.032, 0.062, 0.126, 0.066, 0.155, 0.229, 0.276, 0.039, 0.409, 0.312, 0.304, 0.601, 0.096, 0.216, 0.181, 0.537, 0.16, 0.303, 0.281)), .Names = c("study", "species", "phylogeny", "yi", "vi"), row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44"), class = "data.frame") res <- rma.mv(yi, vi, random = list(~ 1 | study, ~ 1 | species, ~ 1 | phylogeny), R = list(phylogeny=P), data=dat, sparse=.sparse) expect_equivalent(coef(res), .5504, tolerance=.tol[["coef"]]) expect_equivalent(res$sigma2, c(0.1763, 0.5125, 0.1062), tolerance=.tol[["var"]]) expect_equivalent(c(logLik(res)), -54.6272, tolerance=.tol[["fit"]]) }) dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) test_that("rma.mv() correctly computes the Hessian", { res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, cvvc=TRUE, sparse=.sparse) expect_equivalent(c(sqrt(res$vvc)), 0.1678, tolerance=.tol[["se"]]) }) test_that("rma.mv() works correctly with test='t'", { res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, test="t", sparse=.sparse) expect_equivalent(res$pval, 0.0018, tolerance=.tol[["pval"]]) }) test_that("rma.mv() works correctly with different optimizers", { res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="BFGS"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="L-BFGS-B"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="Nelder-Mead"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3133, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="nlminb"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="uobyqa"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="newuoa"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="bobyqa"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="nloptr"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="nlm"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="hjk"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="nmk"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3131, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="ucminf"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="Rcgmin"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, control=list(optimizer="Rvmmin"), sparse=.sparse) expect_equivalent(res$sigma2, 0.3132, tolerance=.tol[["var"]]) }) test_that("rma.mv() correctly handles 'beta' argument", { dat <- dat.berkey1998 V <- vcalc(vi=1, cluster=author, rvars=c(v1i, v2i), data=dat) res.un <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat, method="ML") res.01 <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat, method="ML", beta=c(0,0)) res.02 <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat, method="ML", beta=c(NA,0)) res.03 <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat, method="ML", beta=c(0,NA)) fstats <- fitstats(res.01, res.02, res.03, res.un) expect_equivalent(unlist(fstats[1,]), c(-2.464111, -0.691524, 1.010033, 5.840657), tolerance=.tol[["fit"]]) dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, scale = ~ 1, data=dat, optbeta=TRUE, beta=0) ll1 <- logLik(res) res <- rma(yi, vi, scale = ~ 1, data=dat, optbeta=TRUE, beta=0, link="identity") ll2 <- logLik(res) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, beta=0) ll3 <- logLik(res) expect_equivalent(ll1, ll2, tolerance=.tol[["fit"]]) expect_equivalent(ll1, ll3, tolerance=.tol[["fit"]]) }) rm(list=ls()) metafor/tests/testthat/test_plots_gosh.r0000644000176200001440000000646714712730571020340 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:gosh_plot source("settings.r") context("Checking plots example: GOSH plot") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() ### meta-analysis of all trials including ISIS-4 using an equal-effects model res <- rma(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat.egger2001, method="EE") ### fit EE model to all possible subsets sav <- gosh(res, progbar=FALSE) out <- capture.output(print(sav)) # so that print.gosh.rma() is run (at least once) ### create GOSH plot ### red points for subsets that include and blue points ### for subsets that exclude study 16 (the ISIS-4 trial) png("images/test_plots_gosh_1_light_test.png", res=200, width=1800, height=1800, type="cairo") plot(sav, out=16, breaks=100) dev.off() expect_true(.vistest("images/test_plots_gosh_1_light_test.png", "images/test_plots_gosh_1_light.png")) png("images/test_plots_gosh_1_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") plot(sav, out=16, breaks=100) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_gosh_1_dark_test.png", "images/test_plots_gosh_1_dark.png")) ### fit EE model to random subsets (with parallel processing) sav <- gosh(res, progbar=FALSE, parallel="snow", subsets=1000) ### meta-analysis using MH method (using subset to speed things up) res <- rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat.egger2001, subset=c(1:7,16)) sav <- gosh(res, progbar=FALSE) ### create GOSH plot png("images/test_plots_gosh_2_light_test.png", res=200, width=1800, height=1800, type="cairo") plot(sav, out=8, breaks=40) dev.off() expect_true(.vistest("images/test_plots_gosh_2_light_test.png", "images/test_plots_gosh_2_light.png")) png("images/test_plots_gosh_2_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") plot(sav, out=8, breaks=40) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_gosh_2_dark_test.png", "images/test_plots_gosh_2_dark.png")) ### fit EE model to all possible subsets (with parallel processing) sav <- gosh(res, progbar=FALSE, parallel="snow", subsets=1000) ### meta-analysis using Peto's method (using subset to speed things up) res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat.egger2001, subset=c(1:7,16)) sav <- gosh(res, progbar=FALSE) ### create GOSH plot png("images/test_plots_gosh_3_light_test.png", res=200, width=1800, height=1800, type="cairo") plot(sav, out=8, breaks=40) dev.off() expect_true(.vistest("images/test_plots_gosh_3_light_test.png", "images/test_plots_gosh_3_light.png")) png("images/test_plots_gosh_3_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") plot(sav, out=8, breaks=40) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_gosh_3_dark_test.png", "images/test_plots_gosh_3_dark.png")) ### fit EE model to all possible subsets (with parallel processing) sav <- gosh(res, progbar=FALSE, parallel="snow", subsets=1000) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_raudenbush1985.r0000644000176200001440000001702414712730451024250 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:raudenbush1985 context("Checking analysis example: raudenbush1985") source("settings.r") ### load data dat <- dat.raudenbush1985 test_that("results are correct for the random-effects model.", { ### random-effects model res <- rma(yi, vi, data=dat, digits=3) ### compare with results on pages 83, 85, and 86 (in text) expect_equivalent(res$tau2, 0.0188, tolerance=.tol[["var"]]) expect_equivalent(coef(res), 0.0837, tolerance=.tol[["coef"]]) expect_equivalent(res$QE, 35.8295, tolerance=.tol[["test"]]) ### 35.85 in paper expect_equivalent(res$zval, 1.6208, tolerance=.tol[["test"]]) ### empirical Bayes estimates tmp <- blup(res) out <- capture.output(print(tmp)) ### so that print.list.rma() is run (at least once) ### compare with results in Figure 2 expect_equivalent(tmp$pred, c(0.0543, 0.1006, -0.0064, 0.2144, 0.1051, -0.0082, 0.0174, -0.0293, 0.1604, 0.2485, 0.1618, 0.1102, 0.0646, 0.1105, -0.0288, 0.0258, 0.1905, 0.0744, 0.0248), tolerance=.tol[["pred"]]) expect_equivalent(tmp$pi.lb, c(-0.1324, -0.1033, -0.2228, -0.0533, -0.1622, -0.1737, -0.1481, -0.2689, -0.0543, 0, -0.097, -0.1303, -0.192, -0.1463, -0.2405, -0.1906, -0.0076, -0.0808, -0.1954), tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.ub, c(0.2411, 0.3045, 0.21, 0.4821, 0.3724, 0.1572, 0.1828, 0.2102, 0.3751, 0.497, 0.4206, 0.3507, 0.3212, 0.3672, 0.1829, 0.2422, 0.3886, 0.2295, 0.245), tolerance=.tol[["ci"]]) ### empirical Bayes estimates (just the random effects) tmp <- ranef(res) expect_equivalent(tmp$pred, c(-0.0294, 0.0169, -0.0901, 0.1307, 0.0214, -0.0919, -0.0664, -0.1131, 0.0767, 0.1648, 0.0781, 0.0265, -0.0191, 0.0268, -0.1125, -0.0579, 0.1068, -0.0093, -0.0589), tolerance=.tol[["pred"]]) expect_equivalent(tmp$pi.lb, c(-0.2187, -0.1852, -0.3019, -0.122, -0.231, -0.2659, -0.2403, -0.343, -0.1337, -0.0723, -0.1674, -0.2043, -0.2627, -0.217, -0.3207, -0.2697, -0.091, -0.1761, -0.2736), tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.ub, c(0.1599, 0.219, 0.1216, 0.3834, 0.2738, 0.082, 0.1076, 0.1169, 0.2871, 0.4019, 0.3235, 0.2572, 0.2246, 0.2706, 0.0956, 0.1539, 0.3046, 0.1574, 0.1558), tolerance=.tol[["ci"]]) skip_on_cran() ### profile tau^2 png("images/test_analysis_example_raudenbush1985_profile_1_test.png", res=200, width=1800, height=1600, type="cairo") profile(res, xlim=c(0,.20), progbar=FALSE) dev.off() expect_true(.vistest("images/test_analysis_example_raudenbush1985_profile_1_test.png", "images/test_analysis_example_raudenbush1985_profile_1.png")) ### profile tau^2 (without 'xlim' specified) png("images/test_analysis_example_raudenbush1985_profile_2_test.png", res=200, width=1800, height=1600, type="cairo") profile(res, progbar=FALSE) dev.off() expect_true(.vistest("images/test_analysis_example_raudenbush1985_profile_2_test.png", "images/test_analysis_example_raudenbush1985_profile_2.png")) ### profile tau^2 (with parallel processing) png("images/test_analysis_example_raudenbush1985_profile_3_test.png", res=200, width=1800, height=1600, type="cairo") profile(res, xlim=c(0,.20), progbar=FALSE, parallel="snow") dev.off() expect_true(.vistest("images/test_analysis_example_raudenbush1985_profile_3_test.png", "images/test_analysis_example_raudenbush1985_profile_3.png")) }) test_that("results are correct for the mixed-effects model.", { ### recode weeks variable dat$weeks.c <- ifelse(dat$weeks > 3, 3, dat$weeks) ### mixed-effects model res <- rma(yi, vi, mods = ~ weeks.c, data=dat, digits=3) ### compare with results on pages 90 and 92 (in text) expect_equivalent(res$tau2, 0.0000, tolerance=.tol[["var"]]) expect_equivalent(coef(res), c(0.4072, -0.1572), tolerance=.tol[["coef"]]) expect_equivalent(res$QE, 16.5708, tolerance=.tol[["test"]]) ### 16.58 in paper expect_equivalent(res$zval, c(4.6782, -4.3884), tolerance=.tol[["test"]]) ### empirical Bayes estimates tmp <- blup(res) ### (results for this not given in chapter) expect_equivalent(tmp$pred, c(0.0927, -0.0645, -0.0646, 0.4072, 0.4072, -0.0645, -0.0645, -0.0646, 0.4072, 0.2499, 0.4072, 0.4072, 0.2499, 0.0927, -0.0646, -0.0645, 0.2499, 0.0927, -0.0645), tolerance=.tol[["pred"]]) expect_equivalent(tmp$pi.lb, c(0.0198, -0.1552, -0.1552, 0.2366, 0.2366, -0.1552, -0.1552, -0.1552, 0.2366, 0.1391, 0.2366, 0.2366, 0.1391, 0.0198, -0.1552, -0.1552, 0.1391, 0.0198, -0.1552), tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.ub, c(0.1656, 0.0261, 0.0261, 0.5778, 0.5778, 0.0261, 0.0261, 0.0261, 0.5778, 0.3608, 0.5778, 0.5778, 0.3608, 0.1656, 0.0261, 0.0261, 0.3608, 0.1656, 0.0261), tolerance=.tol[["ci"]]) ### empirical Bayes estimates (just the random effects) tmp <- ranef(res) expect_equivalent(tmp$pred, c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), tolerance=.tol[["pred"]]) expect_equivalent(tmp$pi.lb, c(-0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016, -0.0016), tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.ub, c(0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016, 0.0016), tolerance=.tol[["ci"]]) ### predicted/fitted values tmp <- predict(res) ### (results for this not given in chapter) expect_equivalent(tmp$pred, c(0.0927, -0.0645, -0.0645, 0.4072, 0.4072, -0.0645, -0.0645, -0.0645, 0.4072, 0.2499, 0.4072, 0.4072, 0.2499, 0.0927, -0.0645, -0.0645, 0.2499, 0.0927, -0.0645), tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, c(0.0198, -0.1552, -0.1552, 0.2366, 0.2366, -0.1552, -0.1552, -0.1552, 0.2366, 0.1391, 0.2366, 0.2366, 0.1391, 0.0198, -0.1552, -0.1552, 0.1391, 0.0198, -0.1552), tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, c(0.1656, 0.0261, 0.0261, 0.5778, 0.5778, 0.0261, 0.0261, 0.0261, 0.5778, 0.3607, 0.5778, 0.5778, 0.3607, 0.1656, 0.0261, 0.0261, 0.3607, 0.1656, 0.0261), tolerance=.tol[["ci"]]) skip_on_cran() ### profile tau^2 png("images/test_analysis_example_raudenbush1985_profile_4_test.png", res=200, width=1800, height=1600, type="cairo") profile(res, xlim=c(0,.06), progbar=FALSE) dev.off() expect_true(.vistest("images/test_analysis_example_raudenbush1985_profile_4_test.png", "images/test_analysis_example_raudenbush1985_profile_4.png")) ### regplot png(filename="images/test_analysis_example_raudenbush1985_scatterplot_light_test.png", res=200, width=1800, height=1600, type="cairo") par(mar=c(5,5,1,2)) regplot(res, xlab="Weeks of Prior Contact", bty="l", las=1, digits=1, refline=0, xaxt="n") axis(side=1, at=c(0,1,2,3), labels=c("0", "1", "2", ">2")) dev.off() expect_true(.vistest("images/test_analysis_example_raudenbush1985_scatterplot_light_test.png", "images/test_analysis_example_raudenbush1985_scatterplot_light.png")) png(filename="images/test_analysis_example_raudenbush1985_scatterplot_dark_test.png", res=200, width=1800, height=1600, type="cairo") setmfopt(theme="dark") par(mar=c(5,5,1,2)) regplot(res, xlab="Weeks of Prior Contact", bty="l", las=1, digits=1, refline=0, xaxt="n") axis(side=1, at=c(0,1,2,3), labels=c("0", "1", "2", ">2")) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_analysis_example_raudenbush1985_scatterplot_dark_test.png", "images/test_analysis_example_raudenbush1985_scatterplot_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_plots_labbe_plot.r0000644000176200001440000000543714712730571021477 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:labbe_plot source("settings.r") context("Checking plots example: L'Abbe plot") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() dat <- dat.damico2009 res <- rma(measure="OR", ai=xt, n1i=nt, ci=xc, n2i=nc, data=dat) png("images/test_plots_labbe_plot_1_light_test.png", res=200, width=1800, height=1600, type="cairo") par(mar=c(5,4,1,2)) labbe(res) dev.off() expect_true(.vistest("images/test_plots_labbe_plot_1_light_test.png", "images/test_plots_labbe_plot_1_light.png")) png("images/test_plots_labbe_plot_1_dark_test.png", res=200, width=1800, height=1600, type="cairo") setmfopt(theme="dark") par(mar=c(5,4,1,2)) labbe(res) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_labbe_plot_1_dark_test.png", "images/test_plots_labbe_plot_1_dark.png")) png("images/test_plots_labbe_plot_2_light_test.png", res=200, width=1800, height=1600, type="cairo") par(mar=c(5,4,1,2)) labbe(res, ci=TRUE, pi=TRUE, grid=TRUE, legend=TRUE, bty="l", transf=exp, xlab="Odds (Control Group)", ylab="Odds (Treatment Group)") dev.off() expect_true(.vistest("images/test_plots_labbe_plot_2_light_test.png", "images/test_plots_labbe_plot_2_light.png")) png("images/test_plots_labbe_plot_2_dark_test.png", res=200, width=1800, height=1600, type="cairo") setmfopt(theme="dark") par(mar=c(5,4,1,2)) labbe(res, ci=TRUE, pi=TRUE, grid=TRUE, legend=TRUE, bty="l", transf=exp, xlab="Odds (Control Group)", ylab="Odds (Treatment Group)") setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_labbe_plot_2_dark_test.png", "images/test_plots_labbe_plot_2_dark.png")) png("images/test_plots_labbe_plot_3_light_test.png", res=200, width=1800, height=1600, type="cairo") par(mar=c(5,4,1,2)) labbe(res, ci=TRUE, pi=TRUE, grid=TRUE, legend=TRUE, bty="l", transf=plogis, lim=c(0,1), xlab="Risk (Control Group)", ylab="Risk (Treatment Group)") dev.off() expect_true(.vistest("images/test_plots_labbe_plot_3_light_test.png", "images/test_plots_labbe_plot_3_light.png")) png("images/test_plots_labbe_plot_3_dark_test.png", res=200, width=1800, height=1600, type="cairo") setmfopt(theme="dark") par(mar=c(5,4,1,2)) labbe(res, ci=TRUE, pi=TRUE, grid=TRUE, legend=TRUE, bty="l", transf=plogis, lim=c(0,1), xlab="Risk (Control Group)", ylab="Risk (Treatment Group)") setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_labbe_plot_3_dark_test.png", "images/test_plots_labbe_plot_3_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_tips_rma_vs_lm_and_lme.r0000644000176200001440000000527214712730560022643 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/tips:rma_vs_lm_and_lme context("Checking tip: rma() results match up with those from lm() and lme()") source("settings.r") test_that("results for rma() and lm() match for method='FE'.", { dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat.molloy2014) res.ee <- rma(yi, vi, data=dat, method="EE") res.lm <- lm(yi ~ 1, weights = 1/vi, data=dat) ### coefficients should be the same expect_equivalent(coef(res.ee), coef(res.lm), tolerance=.tol[["coef"]]) ### standard errors should be the same after adjusting the 'lm' one for sigma expect_equivalent(se(res.ee), se(res.lm) / sigma(res.lm), tolerance=.tol[["se"]]) ### fit the same model as is fitted by lm() with rma() function res.ee <- rma(yi, vi*sigma(res.lm)^2, data=dat, method="EE") ### coefficients should still be the same expect_equivalent(coef(res.ee), coef(res.lm), tolerance=.tol[["coef"]]) ### standard errors should be the same expect_equivalent(se(res.ee), se(res.lm), tolerance=.tol[["se"]]) }) test_that("results for rma() and lme() match for method='ML'.", { library("nlme") dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat.molloy2014) dat$study <- 1:nrow(dat) res.lme <- lme(yi ~ 1, random = ~ 1 | study, weights = varFixed(~ vi), data=dat, method="ML") res.re <- rma(yi, vi*sigma(res.lme)^2, data=dat, method="ML") ### coefficients should be the same expect_equivalent(coef(res.re), fixef(res.lme), tolerance=.tol[["coef"]]) ### standard errors should be the same after adjusting the 'rma' one by the factor sqrt(k/(k-p)) expect_equivalent(se(res.re) * sqrt(res.re$k / (res.re$k - res.re$p)), summary(res.lme)$tTable[1,2], tolerance=.tol[["se"]]) ### check that BLUPs are the same expect_equivalent(blup(res.re)$pred, coef(res.lme)$"(Intercept)", tolerance=.tol[["pred"]]) }) test_that("results for rma() and lme() match for method='REML'.", { library("nlme") dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat.molloy2014) dat$study <- 1:nrow(dat) res.lme <- lme(yi ~ 1, random = ~ 1 | study, weights = varFixed(~ vi), data=dat, method="REML") res.re <- rma(yi, vi*sigma(res.lme)^2, data=dat, method="REML") ### coefficients should be the same expect_equivalent(coef(res.re), fixef(res.lme), tolerance=.tol[["coef"]]) ### standard errors should be the same expect_equivalent(se(res.re), summary(res.lme)$tTable[1,2], tolerance=.tol[["se"]]) ### check that BLUPs are the same expect_equivalent(blup(res.re)$pred, coef(res.lme)$"(Intercept)", tolerance=.tol[["pred"]]) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_viechtbauer2007b.r0000644000176200001440000001447614712730516024547 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:viechtbauer2007b context("Checking analysis example: viechtbauer2007b") source("settings.r") ### create dataset for example dat <- escalc(measure="RR", ai=ai, ci=ci, n1i=n1i, n2i=n2i, data=dat.linde2005) dat <- dat[c(7:10,13:25), c(13:16,18:19,11,6,7,9)] dat$dosage <- (dat$dosage * 7) / 1000 test_that("results are correct for the CIs.", { sav <- summary(dat, transf=exp)[c(13,17),] ### compare with results on page 106 tmp <- sav$ci.lb expect_equivalent(tmp, c(.7397, 1.0039), tolerance=.tol[["ci"]]) ### 1.01 in article tmp <- sav$ci.ub expect_equivalent(tmp, c(1.2793, 1.5434), tolerance=.tol[["ci"]]) }) test_that("results are correct for the equal-effects model.", { res <- rma(yi, vi, data=dat, method="EE") sav <- predict(res, transf=exp) tmp <- c(sav$pred, sav$ci.lb, sav$ci.ub) ### compare with results on page 107 expect_equivalent(tmp, c(1.3840, 1.2599, 1.5204), tolerance=.tol[["pred"]]) ### 1.39 in article expect_equivalent(res$QE, 51.5454, tolerance=.tol[["test"]]) ### 55.54 in article }) test_that("results are correct for the random-effects model.", { res <- rma(yi, vi, data=dat, method="DL") sav <- predict(res, transf=exp) ### compare with results on page 109 tmp <- c(sav$pred, sav$ci.lb, sav$ci.ub) expect_equivalent(tmp, c(1.5722, 1.3103, 1.8864), tolerance=.tol[["pred"]]) ### 1.90 in article tmp <- c(sav$pi.lb, sav$pi.ub) expect_equivalent(tmp, c(.8488, 2.9120), tolerance=.tol[["ci"]]) ### .87, 2.83 in article (but this was calculated without taking Var[hat(mu)] into consideration) expect_equivalent(res$tau2, .0903, tolerance=.tol[["var"]]) ### .091 in article }) test_that("results are correct for the mixed-effects model.", { dat$dosage <- dat$dosage * dat$duration res <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="DL") ### compare with results on page 112 expect_equivalent(res$tau2, .0475, tolerance=.tol[["var"]]) expect_equivalent(res$R2, 47.3778, tolerance=.tol[["r2"]]) ### 48% in article sav <- structure(list(estimate = c(0.47625885, -0.0058448, -0.06722782, -0.00156996), se = c(0.08764097, 0.00999872, 0.03522283, 0.00344659), zval = c(5.43420301, -0.58455444, -1.9086436, -0.45551255), pval = c(6e-08, 0.55884735, 0.05630808, 0.64874054)), row.names = c("intrcpt", "I(dosage - 34)", "I(baseline - 20)", "I(dosage - 34):I(baseline - 20)"), class = "data.frame") ### compare with results in Table II on page 113 expect_equivalent(coef(summary(res))[,1:4], sav, tolerance=.tol[["misc"]]) ### compare with results on page 113 sav <- predict(res, newmods=c(34-34, 12.5-20, (34-34)*(12.5-20)), transf=exp) tmp <- c(sav$pred, sav$ci.lb, sav$ci.ub) expect_equivalent(tmp, c(2.6657, 1.4560, 4.8806), tolerance=.tol[["pred"]]) ### 2.66, 1.46, 4.90 in article sav <- predict(res, newmods=c(34-34, 23.6-20, (34-34)*(23.6-20)), transf=exp) tmp <- c(sav$pred, sav$ci.lb, sav$ci.ub) expect_equivalent(tmp, c(1.2639, 0.9923, 1.6099), tolerance=.tol[["pred"]]) ### 1.61 in article skip_on_cran() png(filename="images/test_analysis_example_viechtbauer2007b_light_test.png", res=200, width=1800, height=1600, type="cairo") par(mar=c(4,4,1,1)) xvals <- seq(12, 24, by=0.1) - 20 modvals <- cbind(0, cbind(xvals, 0)) preds <- predict(res, modvals) regplot(res, mod=3, pred=preds, xvals=xvals, shade=FALSE, bty="l", las=1, digits=1, transf=exp, xlim=c(12,24)-20, ylim=c(0.5,4), xaxt="n", xlab="Baseline HRSD Score", ylab="Relative Rate") axis(side=1, at=seq(12, 24, by=2) - 20, labels=seq(12, 24, by=2)) dev.off() expect_true(.vistest("images/test_analysis_example_viechtbauer2007b_light_test.png", "images/test_analysis_example_viechtbauer2007b_light.png")) png(filename="images/test_analysis_example_viechtbauer2007b_dark_test.png", res=200, width=1800, height=1600, type="cairo") setmfopt(theme="dark") par(mar=c(4,4,1,1)) xvals <- seq(12, 24, by=0.1) - 20 modvals <- cbind(0, cbind(xvals, 0)) preds <- predict(res, modvals) regplot(res, mod=3, pred=preds, xvals=xvals, shade=FALSE, bty="l", las=1, digits=1, transf=exp, xlim=c(12,24)-20, ylim=c(0.5,4), xaxt="n", xlab="Baseline HRSD Score", ylab="Relative Rate") axis(side=1, at=seq(12, 24, by=2) - 20, labels=seq(12, 24, by=2)) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_analysis_example_viechtbauer2007b_dark_test.png", "images/test_analysis_example_viechtbauer2007b_dark.png")) ### check results for all tau^2 estimators res.HS <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="HS") res.HE <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="HE") res.DL <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="DL") res.GENQ <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="GENQ", weights = n1i + n2i) res.SJ <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="SJ") res.DLIT <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="DLIT", control=list(maxiter=500)) res.SJIT <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="SJIT") res.PM <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="PM") res.ML <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="ML") res.REML <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="REML") res.EB <- rma(yi, vi, mods = ~ I(dosage-34) * I(baseline-20), data=dat, method="EB") res <- list(res.HS, res.HE, res.DL, res.GENQ, res.SJ, res.DLIT, res.SJIT, res.PM, res.ML, res.REML, res.EB) res <- data.frame(method=sapply(res, function(x) x$method), tau2=sapply(res, function(x) x$tau2), se.tau2=sapply(res, function(x) x$se.tau2)) expect_equivalent(res$tau2, c(0.0253, 0.0388, 0.0475, 0.06, 0.0912, 0.0633, 0.0633, 0.0633, 0.024, 0.0558, 0.0633), tolerance=.tol[["var"]]) expect_equivalent(res$se.tau2, c(0.0197, 0.0764, 0.0376, 0.0528, 0.0436, 0.046, 0.046, 0.046, 0.0222, 0.0409, 0.046), tolerance=.tol[["sevar"]]) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_ishak2007.r0000644000176200001440000001250014712730425023164 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking analysis example: ishak2007") source("settings.r") ### load dataset dat <- dat.ishak2007 ### create long format dataset dat.long <- reshape(dat, direction="long", idvar="study", v.names=c("yi","vi"), varying=list(c(2,4,6,8), c(3,5,7,9))) dat.long <- dat.long[order(dat.long$study, dat.long$time),] rownames(dat.long) <- 1:nrow(dat.long) ### remove missing measurement occasions from dat.long is.miss <- is.na(dat.long$yi) dat.long <- dat.long[!is.miss,] ### construct the full (block diagonal) V matrix with an AR(1) structure rho.within <- .97 ### value as estimated by Ishak et al. (2007) V <- lapply(split(with(dat, cbind(v1i, v2i, v3i, v4i)), dat$study), diag) V <- lapply(V, function(v) sqrt(v) %*% toeplitz(ARMAacf(ar=rho.within, lag.max=3)) %*% sqrt(v)) V <- bldiag(V) V <- V[!is.miss,!is.miss] ### remove missing measurement occasions from V test_that("results are correct for diag(V) and struct='DIAG'.", { res <- rma.mv(yi, diag(V), mods = ~ 0 + factor(time), random = ~ factor(time) | study, struct = "DIAG", data = dat.long, sparse=.sparse) ### Table 1, column "Time-specific (Independence)" expect_equivalent(coef(res), c(-24.8686, -27.4728, -28.5239, -24.1415), tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, c(23.0537, 27.8113, 27.6767, 29.9405), tolerance=.tol[["var"]]) }) test_that("results are correct for diag(V) and random study effects.", { res <- rma.mv(yi, diag(V), mods = ~ 0 + factor(time), random = ~ 1 | study, data = dat.long, sparse=.sparse) ### Table 1, column "Random study effects" expect_equivalent(coef(res), c(-26.2127, -27.1916, -28.5464, -25.6339), tolerance=.tol[["coef"]]) expect_equivalent(res$sigma2, 26.6829, tolerance=.tol[["var"]]) }) test_that("results are correct for diag(V) and struct='ID'.", { res <- rma.mv(yi, diag(V), mods = ~ 0 + factor(time), random = ~ factor(time) | study, struct = "ID", data = dat.long, sparse=.sparse) ### not in paper expect_equivalent(coef(res), c(-24.8792, -27.4670, -28.5185, -24.1502), tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 26.6847, tolerance=.tol[["var"]]) }) test_that("results are correct for diag(V) and struct='HAR'.", { res <- rma.mv(yi, diag(V), mods = ~ 0 + factor(time), random = ~ time | study, struct = "HAR", data = dat.long, sparse=.sparse) ### Table 1, column "Correlated random time effects" expect_equivalent(coef(res), c(-25.9578, -27.3100, -28.5543, -25.7923), tolerance=.tol[["coef"]]) # -27.5 in Table vs -27.3 expect_equivalent(res$tau2, c(20.3185, 35.9720, 26.4233, 30.1298), tolerance=.tol[["var"]]) # 20.4 in Table vs 20.3 expect_equivalent(res$rho, 1.0000, tolerance=.tol[["cor"]]) }) test_that("results are correct for struct='HAR'.", { res <- rma.mv(yi, V, mods = ~ 0 + factor(time), random = ~ time | study, struct = "HAR", data = dat.long, sparse=.sparse) ### Table 1, column "Multivariate model" expect_equivalent(coef(res), c(-25.9047, -27.4608, -28.6559, -26.4934), tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, c(22.7258, 33.7295, 26.1426, 31.1803), tolerance=.tol[["var"]]) # 22.6 in Table vs 22.7; 31.1 in Table vs 31.2 expect_equivalent(res$rho, 0.8832, tolerance=.tol[["cor"]]) }) test_that("results are correct for struct='AR'.", { res <- rma.mv(yi, V, mods = ~ 0 + factor(time), random = ~ time | study, struct = "AR", data = dat.long, sparse=.sparse) ### not in paper expect_equivalent(coef(res), c(-25.9418, -27.3937, -28.7054, -26.3970), tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 26.6874, tolerance=.tol[["var"]]) expect_equivalent(res$rho, 0.8656, tolerance=.tol[["cor"]]) }) test_that("results are correct for struct='HCS'.", { res <- rma.mv(yi, V, mods = ~ 0 + factor(time), random = ~ factor(time) | study, struct = "HCS", data = dat.long, sparse=.sparse) ### not in paper expect_equivalent(coef(res), c(-25.8814, -27.3293, -28.6510, -26.6631), tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, c(20.8629, 32.7429, 27.6593, 32.1908), tolerance=.tol[["var"]]) }) test_that("results are correct for struct='CAR'.", { res <- rma.mv(yi, V, mods = ~ 0 + factor(time), random = ~ time | study, struct = "CAR", data = dat.long, sparse=.sparse) ### not in paper expect_equivalent(coef(res), c(-25.9418, -27.3937, -28.7054, -26.3970), tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 26.6875, tolerance=.tol[["var"]]) expect_equivalent(res$rho, 0.8656, tolerance=.tol[["cor"]]) }) test_that("results are correct for struct='CAR' with unequally spaced time points.", { dat.long$time[dat.long$time == 4] <- 24/3 dat.long$time[dat.long$time == 3] <- 12/3 dat.long$time[dat.long$time == 2] <- 6/3 dat.long$time[dat.long$time == 1] <- 3/3 res <- rma.mv(yi, V, mods = ~ 0 + factor(time), random = ~ time | study, struct = "CAR", data = dat.long, sparse=.sparse) ### not in paper expect_equivalent(coef(res), c(-26.0293, -27.3838, -28.7339, -26.0515), tolerance=.tol[["coef"]]) expect_equivalent(res$tau2, 26.9825, tolerance=.tol[["var"]]) expect_equivalent(res$rho, 0.9171, tolerance=.tol[["cor"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_tes.r0000644000176200001440000000246714712730604017756 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: tes() function") source("settings.r") test_that("tes() works correctly for 'dat.dorn2007'.", { dat <- escalc(measure="RR", ai=x.a, n1i=n.a, ci=x.p, n2i=n.p, data=dat.dorn2007) sav <- tes(dat$yi, dat$vi, test="chi2") out <- capture.output(print(sav)) expect_identical(sav$O, 10L) expect_equivalent(sav$E, 4.923333, tolerance=.tol[["misc"]]) expect_equivalent(sav$X2, 7.065648, tolerance=.tol[["test"]]) expect_equivalent(sav$pval, 0.003928794, tolerance=.tol[["pval"]]) sav <- tes(yi, vi, data=dat, test="chi2") expect_equivalent(sav$pval, 0.003928794, tolerance=.tol[["pval"]]) sav <- tes(yi, vi, data=dat, test="binom") expect_equivalent(sav$pval, 0.01159554, tolerance=.tol[["pval"]]) skip_on_cran() sav <- tes(yi, vi, data=dat, test="exact", progbar=FALSE) expect_equivalent(sav$pval, 0.007778529, tolerance=.tol[["pval"]]) res <- rma(yi, vi, data=dat, method="EE") sav <- tes(res, test="chi2") expect_identical(sav$O, 10L) expect_equivalent(sav$E, 4.923333, tolerance=.tol[["misc"]]) expect_equivalent(sav$X2, 7.065648, tolerance=.tol[["test"]]) expect_equivalent(sav$pval, 0.003928794, tolerance=.tol[["pval"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_funnel.r0000644000176200001440000000712414712730636020452 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: funnel() functions") source("settings.r") test_that("funnel() works correctly.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() ### simulate a large meta-analytic dataset (correlations with rho = 0.0) ### with no heterogeneity or publication bias; then try out different ### versions of the funnel plot gencor <- function(rhoi, ni) { x1 <- rnorm(ni, mean=0, sd=1) x2 <- rnorm(ni, mean=0, sd=1) x3 <- rhoi*x1 + sqrt(1-rhoi^2)*x2 cor(x1, x3) } set.seed(78123) k <- 200 ### number of studies to simulate ni <- round(rchisq(k, df=2) * 20 + 20) ### simulate sample sizes (skewed distribution) ri <- mapply(gencor, rep(0.0,k), ni) ### simulate correlations dat <- escalc(measure="ZCOR", ri=ri, ni=ni) ### compute r-to-z transformed correlations res <- rma(yi, vi, data=dat, method="EE") png(filename="images/test_misc_funnel_1_light_test.png", res=200, width=1800, height=2000, type="cairo") par(mfrow=c(5,2), mar=c(5,4,1,1), cex=0.5) funnel(res, yaxis="sei") funnel(res, yaxis="vi") funnel(res, yaxis="seinv") funnel(res, yaxis="vinv") funnel(res, yaxis="ni") funnel(res, yaxis="ninv") funnel(res, yaxis="sqrtni") funnel(res, yaxis="sqrtninv") funnel(res, yaxis="lni") funnel(res, yaxis="wi") dev.off() expect_true(.vistest("images/test_misc_funnel_1_light_test.png", "images/test_misc_funnel_1_light.png")) png(filename="images/test_misc_funnel_1_dark_test.png", res=200, width=1800, height=2000, type="cairo") setmfopt(theme="dark") par(mfrow=c(5,2), mar=c(5,4,1,1), cex=0.5) funnel(res, yaxis="sei") funnel(res, yaxis="vi") funnel(res, yaxis="seinv") funnel(res, yaxis="vinv") funnel(res, yaxis="ni") funnel(res, yaxis="ninv") funnel(res, yaxis="sqrtni") funnel(res, yaxis="sqrtninv") funnel(res, yaxis="lni") funnel(res, yaxis="wi") setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_misc_funnel_1_dark_test.png", "images/test_misc_funnel_1_dark.png")) png(filename="images/test_misc_funnel_2_light_test.png", res=200, width=1800, height=2000, type="cairo") par(mfrow=c(5,2), mar=c(5,4,1,1), cex=0.5) funnel(dat$yi, dat$vi, yaxis="sei") funnel(dat$yi, dat$vi, yaxis="vi") funnel(dat$yi, dat$vi, yaxis="seinv") funnel(dat$yi, dat$vi, yaxis="vinv") funnel(dat$yi, dat$vi, yaxis="ni") funnel(dat$yi, dat$vi, yaxis="ninv") funnel(dat$yi, dat$vi, yaxis="sqrtni") funnel(dat$yi, dat$vi, yaxis="sqrtninv") funnel(dat$yi, dat$vi, yaxis="lni") funnel(dat$yi, dat$vi, yaxis="wi") dev.off() expect_true(.vistest("images/test_misc_funnel_2_light_test.png", "images/test_misc_funnel_2_light.png")) png(filename="images/test_misc_funnel_2_dark_test.png", res=200, width=1800, height=2000, type="cairo") setmfopt(theme="dark") par(mfrow=c(5,2), mar=c(5,4,1,1), cex=0.5) funnel(dat$yi, dat$vi, yaxis="sei") funnel(dat$yi, dat$vi, yaxis="vi") funnel(dat$yi, dat$vi, yaxis="seinv") funnel(dat$yi, dat$vi, yaxis="vinv") funnel(dat$yi, dat$vi, yaxis="ni") funnel(dat$yi, dat$vi, yaxis="ninv") funnel(dat$yi, dat$vi, yaxis="sqrtni") funnel(dat$yi, dat$vi, yaxis="sqrtninv") funnel(dat$yi, dat$vi, yaxis="lni") funnel(dat$yi, dat$vi, yaxis="wi") setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_misc_funnel_2_dark_test.png", "images/test_misc_funnel_2_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_normand1999.r0000644000176200001440000001106414712730447023556 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:normand1999 context("Checking analysis example: normand1999") source("settings.r") test_that("results are correct for the first example (using dat.hine1989).", { ### calculate risk differences and corresponding sampling variances dat <- escalc(measure="RD", n1i=n1i, n2i=n2i, ai=ai, ci=ci, data=dat.hine1989) ### transform into percentage points dat$yi <- dat$yi * 100 dat$vi <- dat$vi * 100^2 out <- capture.output(print(dat)) ### so that print.escalc() is run (at least once) ### compare with results on page 330 (Table III) expect_equivalent(dat$yi, c(2.8026, 0.0000, 1.9711, 1.7961, 3.5334, 4.4031), tolerance=.tol[["est"]]) expect_equivalent(dat$vi, c(17.7575, 37.5657, 8.1323, 10.8998, 8.0114, 6.1320), tolerance=.tol[["var"]]) ### CIs for individual studies tmp <- summary(dat) ### compare with results on page 330 (Table III) expect_equivalent(tmp$ci.lb, c(-5.4566, -12.0128, -3.6182, -4.6747, -2.0141, -0.4503), tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, c(11.0618, 12.0128, 7.5604, 8.2669, 9.0810, 9.2566), tolerance=.tol[["ci"]]) ### fit equal-effects model res <- rma(yi, vi, data=dat, method="EE", digits=2) ### compare with results on page 349 (Table VII) expect_equivalent(coef(res), 2.9444, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 0.3831, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 5.5058, tolerance=.tol[["ci"]]) ### fit random-effects model (REML estimator) res <- rma(yi, vi, data=dat, digits=2) ### compare with results on page 349 (Table VII) expect_equivalent(coef(res), 2.9444, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 0.3831, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 5.5058, tolerance=.tol[["ci"]]) expect_equivalent(res$tau2, 0.0000, tolerance=.tol[["var"]]) ### fit random-effects model (DL estimator) res <- rma(yi, vi, data=dat, method="DL", digits=2) ### compare with results on page 349 (Table VII) expect_equivalent(coef(res), 2.9444, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, 0.3831, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 5.5058, tolerance=.tol[["ci"]]) expect_equivalent(res$tau2, 0.0000, tolerance=.tol[["var"]]) }) test_that("results are correct for the second example (using dat.normand1999).", { ### compute pooled SD dat.normand1999$sdpi <- with(dat.normand1999, sqrt(((n1i-1)*sd1i^2 + (n2i-1)*sd2i^2)/(n1i+n2i-2))) ### calculate mean differences and corresponding sampling variances dat <- escalc(m1i=m1i, sd1i=sdpi, n1i=n1i, m2i=m2i, sd2i=sdpi, n2i=n2i, measure="MD", data=dat.normand1999, digits=2) ### compare with results on page 351 (Table VIII) expect_equivalent(dat$yi, c(-20, -2, -55, -71, -4, 1, 11, -10, 7)) expect_equivalent(dat$vi, c(40.5863, 2.0468, 15.2809, 150.2222, 20.1923, 1.2235, 95.3756, 8.0321, 20.6936), tolerance=.tol[["var"]]) ### CIs for individual studies tmp <- summary(dat) ### (results for this not given in paper) expect_equivalent(tmp$ci.lb, c(-32.4864, -4.8041, -62.6616, -95.0223, -12.8073, -1.168, -8.1411, -15.5547, -1.9159), tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, c(-7.5136, 0.8041, -47.3384, -46.9777, 4.8073, 3.168, 30.1411, -4.4453, 15.9159), tolerance=.tol[["ci"]]) ### fit equal-effects model res <- rma(yi, vi, data=dat, method="EE", digits=2) ### compare with results on page 352 (Table IX) expect_equivalent(coef(res), -3.4939, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -5.0265, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -1.9613, tolerance=.tol[["ci"]]) ### fit random-effects model (DL estimator) res <- rma(yi, vi, data=dat, method="DL", digits=2) ### compare with results on page 352 (Table IX) expect_equivalent(coef(res), -14.0972, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -24.4454, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -3.7490, tolerance=.tol[["ci"]]) expect_equivalent(res$tau2, 218.7216, tolerance=.tol[["var"]]) ### fit random-effects model (REML estimator) res <- rma(yi, vi, data=dat, digits=2) ### compare with results on page 352 (Table IX) expect_equivalent(coef(res), -15.1217, tolerance=.tol[["est"]]) expect_equivalent(res$ci.lb, -32.6716, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 2.4282, tolerance=.tol[["ci"]]) expect_equivalent(res$tau2, 685.1965, tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_rma_handling_nas.r0000644000176200001440000001061214712730616022441 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: proper handling of missing values") source("settings.r") test_that("rma.glmm() handles NAs correctly.", { skip_on_cran() dat <- data.frame(ni = rep(20, 10), xi = c(NA, 4, 0, 0, 2, 2, 3, 8, 9, 2), mod1 = c(0, NA, 0, 0, 0, 0, 0, 1, 1, 1), mod2 = c(0, 0, 0, 1, 0, 0, 0, 0, 0, 0)) ### 1) NA in table data for study 1 ### 2) NA for mod1 in study 2 ### 3) if add=0, then yi/vi pair will be NA/NA for study 3 ### 4) if add=0, then yi/vi pair will be NA/NA for study 4, which causes the X.yi matrix to be rank deficient after row 4 is removed ### note: even for the model fitting itself, study 4 is a problem, because the log(odds) for study 4 is -Inf, so the coefficient for ### mod2 is in essence also -Inf; on x86_64-w64-mingw32/x64 (64-bit) with lme4 version 1.1-7, this just barely converges, but ### may fail in other cases; so checks with both moderators included are skipped on CRAN expect_warning(res <- rma.glmm(measure="PLO", xi=xi, ni=ni, mods = ~ mod1, data=dat)) ### k, length of xi/mi, and number of rows in X must be equal to 8 (studies 1 and 2 removed due to NAs in table data) expect_equivalent(res$k, 8) expect_equivalent(length(res$outdat$xi), 8) expect_equivalent(length(res$outdat$mi), 8) expect_equivalent(nrow(res$X), 8) ### k.yi and length of yi/vi must be equal to 8 (studies 1 and 2 removed due to NAs in table data) expect_equivalent(res$k.yi, 8) expect_equivalent(length(res$yi), 8) expect_equivalent(length(res$vi), 8) ### full data saved in .f elements expect_equivalent(res$k.f, 10) expect_equivalent(length(res$outdat.f$xi), 10) expect_equivalent(length(res$outdat.f$mi), 10) expect_equivalent(nrow(res$X.f), 10) expect_equivalent(length(res$yi.f), 10) expect_equivalent(length(res$vi.f), 10) ### now use add=0, so that studies 3 and 4 have NA/NA for yi/vi expect_warning(res <- rma.glmm(measure="PLO", xi=xi, ni=ni, mods = ~ mod1, data=dat, add=0)) ### k, length of xi/mi, and number of rows in X must be equal to 8 (studies 1 and 2 removed due to NAs in table data, but studies 3 and 4 included in the model fitting) expect_equivalent(res$k, 8) expect_equivalent(length(res$outdat$xi), 8) expect_equivalent(length(res$outdat$mi), 8) expect_equivalent(nrow(res$X), 8) ### k.yi and length of yi/vi must be equal to 6 (studies 1 and 2 removed due to NAs in table data and studies 3 and 4 have NA/NA for yi/vi) expect_equivalent(res$k.yi, 6) expect_equivalent(length(res$yi), 6) expect_equivalent(length(res$vi), 6) ### full data saved in .f elements expect_equivalent(res$k.f, 10) expect_equivalent(length(res$outdat.f$xi), 10) expect_equivalent(length(res$outdat.f$mi), 10) expect_equivalent(nrow(res$X.f), 10) expect_equivalent(length(res$yi.f), 10) expect_equivalent(length(res$vi.f), 10) ### include both mod1 and mod2 in the model and use add=0, so that studies 3 and 4 have NA/NA for yi/vi ### as a result, the model matrix for X.yi is rank deficient, so that in essence mod2 needs to be removed for the I^2/H^2 computation ### also note that the coefficient for mod2 is technically -Inf (since xi=0 for the only study where mod2=1); glmer() therefore issues ### several warnings expect_warning(res <- rma.glmm(measure="PLO", xi=xi, ni=ni, mods = ~ mod1 + mod2, data=dat, add=0)) ### k, length of xi/mi, and number of rows in X must be equal to 8 (studies 1 and 2 removed due to NAs in table data, but studies 3 and 4 included in the model fitting) expect_equivalent(res$k, 8) expect_equivalent(length(res$outdat$xi), 8) expect_equivalent(length(res$outdat$mi), 8) expect_equivalent(nrow(res$X), 8) ### k.yi and length of yi/vi must be equal to 6 (studies 1 and 2 removed due to NAs in table data and studies 3 and 4 have NA/NA for yi/vi) expect_equivalent(res$k.yi, 6) expect_equivalent(length(res$yi), 6) expect_equivalent(length(res$vi), 6) ### full data saved in .f elements expect_equivalent(res$k.f, 10) expect_equivalent(length(res$outdat.f$xi), 10) expect_equivalent(length(res$outdat.f$mi), 10) expect_equivalent(nrow(res$X.f), 10) expect_equivalent(length(res$yi.f), 10) expect_equivalent(length(res$vi.f), 10) }) rm(list=ls()) metafor/tests/testthat/test_plots_llplot.r0000644000176200001440000000211514712730570020667 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") source("settings.r") context("Checking plots example: likelihood plot") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) png("images/test_plots_llplot_light_test.png", res=200, width=1800, height=1600, type="cairo") par(mar=c(5,4,2,2)) llplot(measure="GEN", yi=yi, vi=vi, data=dat, lwd=1, refline=NA, xlim=c(-3,2)) dev.off() expect_true(.vistest("images/test_plots_llplot_light_test.png", "images/test_plots_llplot_light.png")) png("images/test_plots_llplot_dark_test.png", res=200, width=1800, height=1600, type="cairo") setmfopt(theme="dark") par(mar=c(5,4,2,2)) llplot(measure="GEN", yi=yi, vi=vi, data=dat, lwd=1, refline=NA, xlim=c(-3,2)) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_llplot_dark_test.png", "images/test_plots_llplot_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_tips_multiple_imputation_with_mice.r0000644000176200001440000000627214712730561025343 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/tips:multiple_imputation_with_mice_and_metafor source("settings.r") context("Checking tip: multiple imputation with the mice and metafor packages") dat <- dat.bangertdrowns2004 ### keep only variables needed in the analysis dat <- dat[c("yi", "vi", "length", "wic", "feedback", "info", "pers", "imag", "meta")] test_that("results are correct for package mice.", { skip_on_cran() if (!require(mice)) stop("Cannot load 'mice' package.") ### turn dummy variables into proper factors ### (so logistic regression is used for imputing missing values on these moderators) dat$wic <- factor(dat$wic) dat$feedback <- factor(dat$feedback) dat$info <- factor(dat$info) dat$pers <- factor(dat$pers) dat$imag <- factor(dat$imag) dat$meta <- factor(dat$meta) ### create default predictor matrix predMatrix <- make.predictorMatrix(dat) ### adjust predictor matrix predMatrix[,"vi"] <- 0 # don't use vi for imputing predMatrix["yi",] <- 0 # don't impute yi (since yi has no NAs, this is actually irrelevant here) predMatrix["vi",] <- 0 # don't impute vi (since vi has no NAs, this is actually irrelevant here) ### create imputation methods vector impMethod <- make.method(dat) ### generate imputed datasets imp <- mice(dat, print=FALSE, m=20, predictorMatrix=predMatrix, method=impMethod, seed=1234) ### fit model to each completed dataset fit <- with(imp, rma(yi, vi, mods = ~ length + wic + feedback + info + pers + imag + meta)) ### pool results pool <- summary(pool(fit)) expect_equivalent(pool$estimate, c(0.381857, 0.013467, -0.056704, 0.000742, -0.30994, -0.309623, 0.201466, 0.448205), tolerance=.tol[["coef"]]) expect_equivalent(pool$std.error, c(0.241471, 0.008772, 0.12978, 0.122219, 0.227993, 0.197197, 0.21107, 0.17783), tolerance=.tol[["se"]]) expect_equivalent(pool$statistic, c(1.581377, 1.53531, -0.436921, 0.006069, -1.359426, -1.570121, 0.954497, 2.520414), tolerance=.tol[["test"]]) expect_equivalent(pool$p.value, c(0.122388, 0.133287, 0.664798, 0.995194, 0.182211, 0.125322, 0.345947, 0.016331), tolerance=.tol[["pval"]]) }) test_that("results are correct for package Amelia.", { skip_on_cran() if (!require(Amelia)) stop("Cannot load 'Amelia' package.") set.seed(1234) invisible(capture.output(imp <- amelia(dat, m=20, idvars=2, noms=4:9, incheck=TRUE, p2s=0))) fit <- lapply(imp$imputations, function(x) if (length(x)==1L) NULL else rma(yi, vi, mods = ~ length + wic + feedback + info + pers + imag + meta, data=x)) fit <- fit[!sapply(fit, is.null)] b <- sapply(fit, function(x) coef(x)) se <- sapply(fit, function(x) x$se) pool <- mi.meld(b, se, byrow=FALSE) pool <- data.frame(estimate=pool$q.mi[1,], se=pool$se.mi[1,]) expect_equivalent(pool$estimate, c(0.364127, 0.013386, -0.062038, 0.011519, -0.295951, -0.265128, 0.182751, 0.403387), tolerance=.tol[["coef"]]) expect_equivalent(pool$se, c(0.240302, 0.008748, 0.133176, 0.121411, 0.229097, 0.200866, 0.212578, 0.18000), tolerance=.tol[["se"]]) }) rm(list=ls()) metafor/tests/testthat/test_tips_testing_factors_lincoms.r0000644000176200001440000001636314712730557024140 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/tips:testing_factors_lincoms context("Checking tip: testing factors and linear combinations of parameters") source("settings.r") dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat dat$year <- dat$year - 1948 dat$ablat <- dat$ablat - 13 test_that("results are correct when testing factors.", { res <- rma(yi, vi, mods = ~ factor(alloc) + year + ablat, data=dat) sav <- anova(res, btt=2:3) expect_equivalent(sav$QM, 1.366284, tolerance=.tol[["test"]]) ### use linearHypothesis() from 'car' package for the same purpose if (!require(car)) stop("Cannot load 'car' package.") sav2 <- linearHypothesis(res, rbind(c(0,1,0,0,0),c(0,0,1,0,0))) expect_equivalent(sav$QM, sav2$Chisq[2], tolerance=.tol[["test"]]) sav3 <- linearHypothesis(res, c("factor(alloc)random = 0", "factor(alloc)systematic = 0")) expect_equivalent(sav$QM, sav3$Chisq[2], tolerance=.tol[["test"]]) ### use glht() from 'multcomp' package for the same purpose if (!require(multcomp)) stop("Cannot load 'multcomp' package.") sav4 <- summary(glht(res, linfct=rbind(b1=c(0,1,0,0,0), b2=c(0,0,1,0,0))), test=Chisqtest()) expect_equivalent(sav$QM, sav4$test$SSH[1,1], tolerance=.tol[["test"]]) ### show that reference level is not relevant res2 <- rma(yi, vi, mods = ~ relevel(factor(alloc), ref="random") + year + ablat, data=dat) sav5 <- anova(res2, btt=2:3) expect_equivalent(sav$QM, sav5$QM, tolerance=.tol[["test"]]) ### likelihood ratio test res0 <- rma(yi, vi, mods = ~ year + ablat, data=dat, method="ML") res1 <- rma(yi, vi, mods = ~ factor(alloc) + year + ablat, data=dat, method="ML") sav <- anova(res0, res1) expect_equivalent(sav$LRT, 1.451038, tolerance=.tol[["test"]]) ### Knapp & Hartung method res <- rma(yi, vi, mods = ~ factor(alloc) + year + ablat, data=dat, test="knha") sav <- anova(res, btt=2:3) expect_equivalent(sav$QM, 0.6502793, tolerance=.tol[["test"]]) ### use linearHypothesis() from 'car' package for the same purpose sav2 <- linearHypothesis(res, c("factor(alloc)random = 0", "factor(alloc)systematic = 0"), test="F") expect_equivalent(sav$QM, sav2$F[2], tolerance=.tol[["test"]]) ### use glht() from 'multcomp' package for the same purpose sav3 <- summary(glht(res, linfct=rbind(b1=c(0,1,0,0,0), b2=c(0,0,1,0,0))), test=Ftest()) expect_equivalent(sav$QM, sav3$test$fstat[1,1], tolerance=.tol[["test"]]) }) test_that("results are correct when testing linear combinations.", { res <- rma(yi, vi, mods = ~ factor(alloc) + year + ablat, data=dat) sav1 <- anova(res, X=c(0,1,-1,0,0)) sav2 <- linearHypothesis(res, c(0,1,-1,0,0)) expect_equivalent(sav1$QM, sav2$Chisq[2], tolerance=.tol[["test"]]) res <- rma(yi, vi, mods = ~ factor(alloc) + year + ablat, data=dat, test="knha") sav1 <- anova(res, X=c(0,1,-1,0,0)) sav2 <- linearHypothesis(res, c(0,1,-1,0,0), test="F") expect_equivalent(sav1$QM, sav2$F[2], tolerance=.tol[["test"]]) sav1 <- anova(res, X=c(1,1,0,1970-1948,30-13)) sav2 <- linearHypothesis(res, c(1,1,0,1970-1948,30-13), test="F") expect_equivalent(sav1$QM, sav2$F[2], tolerance=.tol[["test"]]) tmp <- predict(res, newmods=c(1,0,1970-1948,30-13)) expect_equivalent(sav1$QM, (tmp$pred/tmp$se)^2, tolerance=.tol[["test"]]) }) test_that("results are correct when testing all pairwise comparisons.", { res <- rma(yi, vi, mods = ~ factor(alloc) + year + ablat, data=dat) sav1 <- anova(res, X=rbind(c(0,1,0,0,0), c(0,0,1,0,0), c(0,-1,1,0,0))) sav2 <- summary(glht(res, linfct=rbind(c(0,1,0,0,0), c(0,0,1,0,0), c(0,-1,1,0,0))), test=adjusted("none")) expect_equivalent(sav1$zval, sav2$test$tstat, tolerance=.tol[["test"]]) sav1 <- confint(glht(res, linfct=rbind(c(0,1,0,0,0), c(0,0,1,0,0), c(0,-1,1,0,0))), calpha=univariate_calpha()) sav2 <- predict(res, newmods=rbind(c(1,0,0,0), c(0,1,0,0), c(-1,1,0,0)), intercept=FALSE) expect_equivalent(sav1$confint[,2], sav2$ci.lb, tolerance=.tol[["ci"]]) ### same results but leaving out the intercept res <- rma(yi, vi, mods = ~ 0 + factor(alloc) + year + ablat, data=dat) sav1 <- anova(res, X=rbind(c(-1,1,0,0,0), c(-1,0,1,0,0), c(0,-1,1,0,0))) sav2 <- anova(res, X=pairmat(btt=1:3)) expect_equivalent(sav1$zval, sav2$zval, tolerance=.tol[["test"]]) sav3 <- anova(res, X=pairmat(btt=1:3), adjust="holm") expect_equivalent(sav3$pval, c(0.882646, 0.981965, 0.882646), tolerance=.tol[["pval"]]) sav4 <- summary(glht(res, linfct=rbind(c(-1,1,0,0,0), c(-1,0,1,0,0), c(0,-1,1,0,0))), test=adjusted("none")) expect_equivalent(sav1$zval, sav4$test$tstat, tolerance=.tol[["test"]]) sav1 <- confint(glht(res, linfct=rbind(c(-1,1,0,0,0), c(-1,0,1,0,0), c(0,-1,1,0,0))), calpha=univariate_calpha()) sav2 <- predict(res, newmods=rbind(c(-1,1,0,0,0), c(-1,0,1,0,0), c(0,-1,1,0,0))) expect_equivalent(sav1$confint[,2], sav2$ci.lb, tolerance=.tol[["ci"]]) sav1 <- anova(res, X=pairmat(btt=1:3)) sav2 <- summary(glht(res, linfct=cbind(contrMat(c("alternate"=1,"random"=1,"systematic"=1), type="Tukey"), 0, 0)), test=adjusted("none")) expect_equivalent(sav1$zval, sav2$test$tstat, tolerance=.tol[["test"]]) ### with Knapp & Hartung adjustment res <- rma(yi, vi, mods = ~ factor(alloc) + year + ablat, data=dat, test="knha") sav1 <- anova(res, X=rbind(c(0,1,0,0,0), c(0,0,1,0,0), c(0,-1,1,0,0))) sav2 <- anova(res, X=pairmat(btt=2:3, btt2=2:3)) expect_equivalent(sav1$zval, sav2$zval, tolerance=.tol[["test"]]) sav3 <- summary(glht(res, linfct=rbind(c(0,1,0,0,0), c(0,0,1,0,0), c(0,-1,1,0,0)), df=df.residual(res)), test=adjusted("none")) expect_equivalent(sav1$zval, sav3$test$tstat, tolerance=.tol[["test"]]) sav1 <- confint(glht(res, linfct=rbind(c(0,1,0,0,0), c(0,0,1,0,0), c(0,-1,1,0,0)), df=df.residual(res)), calpha=univariate_calpha()) sav2 <- predict(res, newmods=rbind(c(1,0,0,0), c(0,1,0,0), c(-1,1,0,0)), intercept=FALSE) expect_equivalent(sav1$confint[,2], sav2$ci.lb, tolerance=.tol[["ci"]]) ### same results but leaving out the intercept res <- rma(yi, vi, mods = ~ 0 + factor(alloc) + year + ablat, data=dat, test="knha") sav1 <- anova(res, X=rbind(c(-1,1,0,0,0), c(-1,0,1,0,0), c(0,-1,1,0,0))) sav2 <- anova(res, X=pairmat(btt=1:3)) expect_equivalent(sav1$zval, sav2$zval, tolerance=.tol[["test"]]) sav3 <- summary(glht(res, linfct=rbind(c(-1,1,0,0,0), c(-1,0,1,0,0), c(0,-1,1,0,0)), df=df.residual(res)), test=adjusted("none")) expect_equivalent(sav1$zval, sav3$test$tstat, tolerance=.tol[["test"]]) sav4 <- summary(glht(res, linfct=cbind(contrMat(c("alternate"=1,"random"=1,"systematic"=1), type="Tukey"), 0, 0), df=df.residual(res)), test=adjusted("none")) expect_equivalent(sav1$zval, sav4$test$tstat, tolerance=.tol[["test"]]) sav1 <- confint(glht(res, linfct=rbind(c(-1,1,0,0,0), c(-1,0,1,0,0), c(0,-1,1,0,0)), df=df.residual(res)), calpha=univariate_calpha()) sav2 <- predict(res, newmods=rbind(c(-1,1,0,0,0), c(-1,0,1,0,0), c(0,-1,1,0,0))) expect_equivalent(sav1$confint[,2], sav2$ci.lb, tolerance=.tol[["ci"]]) sav3 <- predict(res, newmods=pairmat(btt=1:3)) expect_equivalent(sav2$ci.lb, sav3$ci.lb, tolerance=.tol[["ci"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_list_rma.r0000644000176200001440000000444514712730633020775 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: head.list.rma() and tail.list.rma() functions") source("settings.r") test_that("head.list.rma() works correctly.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) res <- head(rstandard(res), 4) sav <- structure(list(resid = c(-0.1748, -0.8709, -0.6335, -0.727), se = c(0.7788, 0.6896, 0.8344, 0.5486), z = c(-0.2244, -1.2629, -0.7592, -1.3253), slab = 1:4, digits = c(est = 4, se = 4, test = 4, pval = 4, ci = 4, var = 4, sevar = 4, fit = 4, het = 4)), class = "list.rma") expect_equivalent(res, sav, tolerance=.tol[["misc"]]) }) test_that("tail.list.rma() works correctly.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) res <- tail(rstandard(res), 4) sav <- structure(list(resid = c(-0.6568, 0.3752, 1.1604, 0.6972), se = c(0.5949, 0.5416, 0.9019, 0.5936), z = c(-1.104, 0.6927, 1.2867, 1.1746 ), slab = 10:13, digits = c(est = 4, se = 4, test = 4, pval = 4, ci = 4, var = 4, sevar = 4, fit = 4, het = 4)), class = "list.rma") expect_equivalent(res, sav, tolerance=.tol[["misc"]]) }) test_that("as.data.frame.list.rma() works correctly.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat, data=dat) res <- predict(res) res <- as.data.frame(res) res <- res[1:3,1:2] sav <- structure(list(pred = c(-1.02900878645837, -1.34912705666653, -0.97080546460234), se = c(0.140375124151501, 0.201103941277043, 0.131456743392091)), row.names = c(NA, 3L), class = "data.frame") expect_equivalent(res, sav, tolerance=.tol[["misc"]]) }) test_that("as.matrix.list.rma() works correctly.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat, data=dat) res <- predict(res) res <- as.matrix(res) res <- res[1:3,1:2] sav <- structure(c(-1.02900878645837, -1.34912705666653, -0.97080546460234, 0.140375124151501, 0.201103941277043, 0.131456743392091), dim = 3:2, dimnames = list(c("1", "2", "3"), c("pred", "se"))) expect_equivalent(res, sav, tolerance=.tol[["misc"]]) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_law2016.r0000644000176200001440000002057514712730435022664 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking analysis example: law2016") source("settings.r") test_that("results are correct for example 1.", { skip_on_cran() ### example 1 EG1 <- read.table(header=TRUE, as.is=TRUE, text=" study y ref trt contr design 1 -0.16561092 C D CD CD 2 -0.13597406 C D CD CD 3 -0.08012604 C E CE CE 4 -0.14746890 C F CF CF 5 0.09316853 E F EF EF 6 -0.15859403 E F EF EF 7 -0.22314355 E F EF EF 8 -0.06744128 F G FG FG 9 -0.11888254 C H CH CH 10 -0.06899287 C H CH CH 11 0.26917860 B C BC BC 12 -0.33160986 A B AB AB 13 -0.26236426 A B AB AB 14 -0.39319502 F G FG FG 15 -0.11557703 A B AB AB 16 0.00000000 E F EF EF 17 -0.40987456 A E AE AE ") S1 <- structure(c(0.0294183340466069, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.147112449467866, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0780588660166125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.140361934247383, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0479709251030665, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0506583523716436, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.235695187165775, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2.04499494438827, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.17968120987923, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.735714285714286, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.184889643463497, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0294022652280727, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.232478632478632, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.857874134296899, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0219285638496459, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.168131868131868, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0826973577700322 ), .Dim = c(17, 17)) ### create contrast matrix X <- contrmat(EG1, grp1="trt", grp2="ref", append=FALSE, last=NA)[,-1] # remove 'A' to make it the reference level ### fit model assuming consistency (tau^2_omega=0) modC <- rma.mv(y, S1, mods=X, intercept=FALSE, random = ~ contr | study, rho=1/2, data=EG1, sparse=.sparse) ci <- confint(modC) expect_equivalent(modC$tau2, 0.0000, tolerance=.tol[["var"]]) expect_equivalent(coef(modC), c(-0.2243, -0.1667, -0.3274, -0.3152, -0.3520, -0.6489, -0.2758), tolerance=.tol[["coef"]]) expect_equivalent(ci$random[1,2:3], c(0.0000, 0.0708), tolerance=.tol[["var"]]) ### fit inconsistency model (switch optimizer so that model converges also under Atlas) #modI <- rma.mv(y, S1, mods=X, intercept=FALSE, random = list(~ contr | study, ~ contr | design), rho=1/2, phi=1/2, data=EG1, sparse=.sparse) modI <- rma.mv(y, S1, mods=X, intercept=FALSE, random = list(~ contr | study, ~ contr | design), rho=1/2, phi=1/2, data=EG1, sparse=.sparse, control=list(optimizer="optim")) ci <- confint(modI) out <- capture.output(print(modI)) out <- capture.output(print(ci)) expect_equivalent(modI$tau2, 0.0000, tolerance=.tol[["var"]]) expect_equivalent(modI$gamma2, 0.0000, tolerance=.tol[["var"]]) expect_equivalent(coef(modI), c(-0.2243, -0.1667, -0.3274, -0.3152, -0.3520, -0.6489, -0.2758), tolerance=.tol[["coef"]]) expect_equivalent(ci[[1]]$random[1,2:3], c(0.0000, 0.0708), tolerance=.tol[["var"]]) expect_equivalent(ci[[2]]$random[1,2:3], c(0.0000, 0.6153), tolerance=.tol[["var"]]) sav <- predict(modI, newmods=c(1,0,0,0,0,0,0), transf=exp) sav <- c(sav[[1]], sav[[3]], sav[[4]], sav[[5]], sav[[6]]) expect_equivalent(sav, c(0.7991, 0.6477, 0.9859, 0.6477, 0.9859), tolerance=.tol[["pred"]]) }) test_that("results are correct for example 2.", { skip_on_cran() ### example 2 EG2 <- read.table(header=TRUE, as.is=TRUE, text=" study y ref trt contr design 1 -3.61988658 A B AB AB 2 0.00000000 B C BC BC 3 0.19342045 B C BC BC 4 2.79320801 B C BC BC 5 0.24512246 B C BC BC 6 0.03748309 B C BC BC 7 0.86020127 B D BD BD 8 0.14310084 B D BD BD 9 0.07598591 C D CD CD 10 -0.99039870 C D CD CD 11 -1.74085310 A B AB ABD 11 0.34830670 A D AD ABD 12 0.40546510 B C BC BCD 12 1.91692260 B D BD BCD 13 -0.32850410 B C BC BCD 13 1.07329450 B D BD BCD ") S2 <- structure(c(0.9672619, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.24987648, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.61904762, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.27958937, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.23845689, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04321419, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.47692308, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18416468, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.61978022, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.12650164, 0.07397504, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.07397504, 0.1583906, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.389881, 0.2857143, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2857143, 0.5151261, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.4361111, 0.2111111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2111111, 0.5380342 ), .Dim = c(16, 16)) ### create contrast matrix X <- contrmat(EG2, grp1="trt", grp2="ref", append=FALSE, last=NA)[,-1] # remove 'A' to make it the reference level ### fit model assuming consistency (tau^2_omega=0) modC <- rma.mv(y, S2, mods=X, intercept=FALSE, random = ~ contr | study, rho=1/2, data=EG2, sparse=.sparse) ci <- confint(modC) expect_equivalent(modC$tau2, 0.5482, tolerance=.tol[["var"]]) expect_equivalent(coef(modC), c(-1.8847, -1.3366, -0.7402), tolerance=.tol[["coef"]]) expect_equivalent(ci$random[1,2:3], c(0.0788, 2.0156), tolerance=.tol[["var"]]) ### fit inconsistency model modI <- rma.mv(y, S2, mods=X, intercept=FALSE, random = list(~ contr | study, ~ contr | design), rho=1/2, phi=1/2, data=EG2, sparse=.sparse) ci <- confint(modI) expect_equivalent(modI$tau2, 0.1036, tolerance=.tol[["var"]]) expect_equivalent(modI$gamma2, 0.5391, tolerance=.tol[["var"]]) expect_equivalent(coef(modI), c(-1.9735, -1.3957, -0.6572), tolerance=.tol[["coef"]]) expect_equivalent(ci[[1]]$random[1,2:3], c(0.0000, 1.6661), tolerance=.tol[["var"]]) expect_equivalent(ci[[2]]$random[1,2:3], c(0.0000, 3.9602), tolerance=.tol[["var"]]) sav <- predict(modI, newmods=c(1,0,0), transf=exp) sav <- c(sav[[1]], sav[[3]], sav[[4]], sav[[5]], sav[[6]]) expect_equivalent(sav, c(0.1390, 0.0369, 0.5230, 0.0178, 1.0856), tolerance=.tol[["pred"]]) sav <- ranef(modI) expect_equivalent(sav[[1]]$intrcpt, c(-0.10597655, -0.09440298, -0.07779308, 0.3347431, -0.05778032, -0.12762821, 0.02644374, -0.12131344, 0.01314657, -0.14752923, 0.02919657, 0.12976825, 0.02697319, 0.08415593, -0.10064816, -0.06422411), tolerance=.tol[["pred"]]) expect_equivalent(sav[[1]]$se, c(0.31440795, 0.29262165, 0.28283046, 0.30063561, 0.28520752, 0.28184516, 0.28589877, 0.29733608, 0.29721077, 0.30375728, 0.3128377, 0.31456144, 0.3010675, 0.30435923, 0.30178776, 0.3045846), tolerance=.tol[["se"]]) expect_equivalent(sav[[2]]$intrcpt, c(-0.55126986, 0.15187503, 0.67502976, -0.11892109, -0.38324316, 0.10368152, -0.49349415, -0.69903298), tolerance=.tol[["pred"]]) expect_equivalent(sav[[2]]$se, c(0.64017885, 0.61901365, 0.64221591, 0.51773958, 0.54266969, 0.53007858, 0.48613683, 0.54031058), tolerance=.tol[["se"]]) out <- capture.output(print(sav)) sav <- predict(modI) expect_equivalent(sav$pi.lb, c(-4.029, -1.2853, -1.2853, -1.2853, -1.2853, -1.2853, -0.4911, -0.4911, -1.137, -1.137, -4.029, -2.7699, -1.2853, -0.4911, -1.2853, -0.4911), tolerance=.tol[["pred"]]) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_miller1978.r0000644000176200001440000001036014712730441023371 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:miller1978 context("Checking analysis example: miller1978") source("settings.r") ### create dataset dat <- data.frame(xi=c(3, 6, 10, 1), ni=c(11, 17, 21, 6)) dat$pi <- with(dat, xi/ni) dat <- escalc(measure="PFT", xi=xi, ni=ni, data=dat) test_that("calculations of escalc() for measure='PFT' are correct.", { ### compare with results on page 138 expect_equivalent(dat$yi*2, c(1.1391, 1.2888, 1.5253, 0.9515), tolerance=.tol[["est"]]) ### need *2 factor due to difference in definition of measure expect_equivalent(dat$vi*4, c(0.0870, 0.0571, 0.0465, 0.1538), tolerance=.tol[["var"]]) }) test_that("results are correct for the equal-effects model using unweighted estimation.", { res <- rma(yi, vi, method="EE", data=dat, weighted=FALSE) pred <- predict(res, transf=function(x) x*2) expect_equivalent(pred$pred, 1.2262, tolerance=.tol[["pred"]]) pred <- predict(res, transf=transf.ipft.hm, targs=list(ni=dat$ni)) expect_equivalent(pred$pred, 0.3164, tolerance=.tol[["pred"]]) }) test_that("results are correct for the equal-effects model using weighted estimation.", { res <- rma(yi, vi, method="EE", data=dat) pred <- predict(res, transf=function(x) x*2) expect_equivalent(pred$pred, 1.3093, tolerance=.tol[["pred"]]) pred <- predict(res, transf=transf.ipft.hm, targs=list(ni=dat$ni)) expect_equivalent(pred$pred, 0.3595, tolerance=.tol[["pred"]]) }) test_that("results are correct when there are proportions of 0 and 1.", { ### create dataset dat <- data.frame(xi=c(0,10), ni=c(10,10)) dat$pi <- with(dat, xi/ni) dat <- escalc(measure="PFT", xi=xi, ni=ni, data=dat, add=0) ### back-transformation of the individual outcomes expect_equivalent(transf.ipft(dat$yi, dat$ni), c(0,1)) }) test_that("back-transformations work as intended for individual studies and the model estimate.", { ### create dataset dat <- data.frame(xi = c( 0, 4, 9, 16, 20), ni = c(10, 10, 15, 20, 20)) dat$pi <- with(dat, xi/ni) dat <- escalc(measure="PFT", xi=xi, ni=ni, data=dat, add=0) ### back-transformation of the individual outcomes expect_equivalent(transf.ipft(dat$yi, dat$ni), c(0.0, 0.4, 0.6, 0.8, 1.0)) ### back-transformation of the estimated average res <- rma(yi, vi, method="EE", data=dat) pred <- predict(res, transf=transf.ipft.hm, targs=list(ni=dat$ni)) expect_equivalent(pred$pred, 0.6886, tolerance=.tol[["pred"]]) expect_equivalent(pred$ci.lb, 0.5734, tolerance=.tol[["ci"]]) expect_equivalent(pred$ci.ub, 0.7943, tolerance=.tol[["ci"]]) ### calculate back-transformed CI bounds dat.back <- summary(dat, transf=transf.ipft, ni=dat$ni) skip_on_cran() ### create forest plot with CI bounds supplied and then add model estimate png("images/test_analysis_example_miller1978_light_test.png", res=200, width=1800, height=800, type="cairo") par(mar=c(5,8,2,8)) forest(dat.back$yi, ci.lb=dat.back$ci.lb, ci.ub=dat.back$ci.ub, psize=1, xlim=c(-.5,1.8), alim=c(0,1), ylim=c(-2,8), refline=NA, digits=3, xlab="Proportion", header=c("Study", "Proportion [95% CI]")) addpoly(pred$pred, ci.lb=pred$ci.lb, ci.ub=pred$ci.ub, rows=-1, mlab="EE Model", efac=1.3) abline(h=0) dev.off() expect_true(.vistest("images/test_analysis_example_miller1978_light_test.png", "images/test_analysis_example_miller1978_light.png")) ### create forest plot with CI bounds supplied and then add model estimate (dark theme) png("images/test_analysis_example_miller1978_dark_test.png", res=200, width=1800, height=800, type="cairo") setmfopt(theme="dark") par(mar=c(5,8,2,8)) forest(dat.back$yi, ci.lb=dat.back$ci.lb, ci.ub=dat.back$ci.ub, psize=1, xlim=c(-.5,1.8), alim=c(0,1), ylim=c(-2,8), refline=NA, digits=3, xlab="Proportion", header=c("Study", "Proportion [95% CI]")) addpoly(pred$pred, ci.lb=pred$ci.lb, ci.ub=pred$ci.ub, rows=-1, mlab="EE Model", efac=1.3) abline(h=0) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_analysis_example_miller1978_dark_test.png", "images/test_analysis_example_miller1978_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_misc_metan_vs_rma.mh_with_dat.bcg.r0000644000176200001440000000540414712730631024650 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: rma.mh() against metan with 'dat.bcg'") source("settings.r") test_that("results match (EE model, measure='RR').", { ### compare results with: metan tpos tneg cpos cneg, fixed nograph rr log res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) expect_equivalent(res$beta, -0.4537, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.5308, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.3766, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -11.5338, tolerance=.tol[["test"]]) ### 11.53 in Stata expect_equivalent(res$QE, 152.5676, tolerance=.tol[["test"]]) ### compare results with: metan tpos tneg cpos cneg, fixed nograph rr sav <- predict(res, transf=exp) expect_equivalent(sav$pred, 0.6353, tolerance=.tol[["est"]]) expect_equivalent(sav$ci.lb, 0.5881, tolerance=.tol[["ci"]]) expect_equivalent(sav$ci.ub, 0.6862, tolerance=.tol[["ci"]]) }) test_that("results match (EE model, measure='OR').", { ### compare results with: metan tpos tneg cpos cneg, fixed nograph or log res <- rma.mh(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) expect_equivalent(res$beta, -0.4734, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.5538, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.3930, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -11.5444, tolerance=.tol[["test"]]) ### 11.54 in Stata expect_equivalent(res$QE, 163.9426, tolerance=.tol[["test"]]) ### compare results with: metan tpos tneg cpos cneg, fixed nograph or sav <- predict(res, transf=exp) expect_equivalent(sav$pred, 0.6229, tolerance=.tol[["pred"]]) expect_equivalent(sav$ci.lb, 0.5748, tolerance=.tol[["ci"]]) expect_equivalent(sav$ci.ub, 0.6750, tolerance=.tol[["ci"]]) }) test_that("results match (EE model, measure='RD').", { ### compare results with: metan tpos tneg cpos cneg, fixed nograph rd res <- rma.mh(measure="RD", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) expect_equivalent(res$beta, -0.0033, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.0039, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.0027, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -11.4708, tolerance=.tol[["test"]]) ### 11.56 in Stata expect_equivalent(res$QE, 386.7759, tolerance=.tol[["test"]]) # zval is slightly different, as metan apparently computes the SE as # described in Greenland & Robins (1985) while metafor uses the equation # given in Sato, Greenland, & Robins (1989) (only the latter is # asymptotically correct in both the sparse-data and large-strata case) }) rm(list=ls()) metafor/tests/testthat/test_tips_model_selection_with_glmulti_and_mumin.r0000644000176200001440000001224414712730562027170 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/tips:model_selection_with_glmulti_and_mumin source("settings.r") context("Checking tip: model selection using the glmulti and MuMIn packages") dat <- dat.bangertdrowns2004 ### remove rows where at least one potential moderator is missing dat <- dat[!apply(dat[,c("length", "wic", "feedback", "info", "pers", "imag", "meta")], 1, anyNA),] test_that("results are correct for package glmulti.", { skip_on_cran() if (!require(glmulti)) stop("Cannot load 'glmulti' package.") ### function for glmulti rma.glmulti <- function(formula, data, ...) { rma(formula, vi, data=data, method="ML", ...) } ### fit all possible models (only main effects) #res <- glmulti(yi ~ length + wic + feedback + info + pers + imag + meta, data=dat, ### DOES NOT WORK # level=1, fitfunction=rma.glmulti, crit="aicc", confsetsize=128) res <- glmulti(y = "yi", xr=c("length", "wic", "feedback", "info", "pers", "imag", "meta"), data=dat, level=1, fitfunction=rma.glmulti, crit="aicc", confsetsize=128, plotty=FALSE, report=FALSE) ### models, IC values, and weights for the models whose IC is not more than 2 points away from the lowest value top <- weightable(res) top <- top[top$aicc <= min(top$aicc) + 2,] expect_equivalent(top$aicc, c(13.502247, 13.504515, 14.003149, 14.130949, 14.434335, 14.748334, 14.986646, 15.058191, 15.210613, 15.410733), tolerance=.tol[["fit"]]) ### register getfit method for 'rma.uni' objects eval(metafor:::.glmulti) ### multimodel inference results mmi <- as.data.frame(coef(res, varweighting="Johnson")) # to use newer method mmi <- data.frame(Estimate=mmi$Est, SE=sqrt(mmi$Uncond), Importance=mmi$Importance, row.names=row.names(mmi)) mmi$z <- mmi$Estimate / mmi$SE mmi$p <- 2*pnorm(abs(mmi$z), lower.tail=FALSE) names(mmi) <- c("Estimate", "Std. Error", "Importance", "z value", "Pr(>|z|)") mmi$ci.lb <- mmi[[1]] - qnorm(.975) * mmi[[2]] mmi$ci.ub <- mmi[[1]] + qnorm(.975) * mmi[[2]] mmi <- mmi[order(mmi$Importance, decreasing=TRUE), c(1,2,4:7,3)] expect_equivalent(mmi$Estimate, c(0.108404, 0.351153, 0.051201, 0.036604, 0.002272, 0.013244, -0.017004, -0.018272), tolerance=.tol[["coef"]]) expect_equivalent(mmi$"Std. Error", c(0.103105, 0.201648, 0.08529, 0.068926, 0.005019, 0.068788, 0.054466, 0.079911), tolerance=.tol[["se"]]) expect_equivalent(mmi$Importance, c(1, 0.847824, 0.424365, 0.367132, 0.325539, 0.291322, 0.264263, 0.241566), tolerance=.tol[["r2"]]) ### multimodel predictions x <- c("length"=15, "wic"=1, "feedback"=1, "info"=0, "pers"=0, "imag"=1, "meta"=1) preds <- list() for (j in 1:res@nbmods) { model <- res@objects[[j]] vars <- names(coef(model))[-1] if (length(vars) == 0) { preds[[j]] <- predict(model) } else { preds[[j]] <- predict(model, newmods=x[vars]) } } ### multimodel prediction weights <- weightable(res)$weights yhat <- sum(weights * sapply(preds, function(x) x$pred)) expect_equivalent(yhat, 0.56444, tolerance=.tol[["pred"]]) ### multimodel SE se <- sqrt(sum(weights * sapply(preds, function(x) x$se^2 + (x$pred - yhat)^2))) expect_equivalent(se, 0.2225354, tolerance=.tol[["se"]]) }) test_that("results are correct for package MuMIn.", { skip_on_cran() expect_equivalent(TRUE, TRUE) return() ### cannot get this to work as the helper functions are somehow not visible ### (even when directly adding them below or above this function) if (!require(MuMIn)) stop("Cannot load 'MuMIn' package.") ### get helper functions eval(metafor:::.MuMIn) ### fit full model full <- rma(yi, vi, mods = ~ length + wic + feedback + info + pers + imag + meta, data=dat, method="ML") ### fit all possible models res <- suppressMessages(dredge(full)) ### models, IC values, and weights for the models whose IC is not more than 2 points away from the lowest value top <- subset(res, delta <= 2, recalc.weights=FALSE) expect_equivalent(top$AICc, c(13.502247, 13.504515, 14.003149, 14.130949, 14.434335, 14.748334, 14.986646, 15.058191, 15.210613, 15.410733), tolerance=.tol[["fit"]]) expect_equivalent(c(top$weight), c(0.067057, 0.066981, 0.0522, 0.048969, 0.042077, 0.035963, 0.031923, 0.030802, 0.028541, 0.025824), tolerance=.tol[["inf"]]) ### importance of each predictor expect_equivalent(c(sw(res)), c(imag = 0.847824, meta = 0.424365, feedback = 0.367132, length = 0.325539, pers = 0.291322, wic = 0.264263, info = 0.241566), tolerance=.tol[["r2"]]) ### model averaging mmi <- summary(model.avg(res)) expect_equivalent(mmi$coefmat.full[,"Estimate"], c(intrcpt = 0.108404, imag = 0.351153, meta = 0.051201, feedback = 0.036604, length = 0.002272, wic = -0.017004, pers = 0.013244, info = -0.018272), tolerance=.tol[["coef"]]) expect_equivalent(mmi$coefmat.full[,"Std. Error"], c(intrcpt = 0.103105, imag = 0.201648, meta = 0.08529, feedback = 0.068926, length = 0.005019, wic = 0.054466, pers = 0.068788, info = 0.079911), tolerance=.tol[["se"]]) }) rm(list=ls()) metafor/tests/testthat/test_plots_funnel_plot_variations.r0000644000176200001440000000304214712730573024150 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:funnel_plot_variations source("settings.r") context("Checking plots example: funnel plot variations") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() ### fit equal-effects model res <- rma(yi, vi, data=dat.hackshaw1998, measure="OR", method="EE") png("images/test_plots_funnel_plot_variations_light_test.png", res=200, width=1800, height=1800, type="cairo") par(mfrow=c(2,2)) funnel(res, main="Standard Error") funnel(res, yaxis="vi", main="Sampling Variance") funnel(res, yaxis="seinv", main="Inverse Standard Error") funnel(res, yaxis="vinv", main="Inverse Sampling Variance") dev.off() expect_true(.vistest("images/test_plots_funnel_plot_variations_light_test.png", "images/test_plots_funnel_plot_variations_light.png")) png("images/test_plots_funnel_plot_variations_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") par(mfrow=c(2,2)) funnel(res, main="Standard Error") funnel(res, yaxis="vi", main="Sampling Variance") funnel(res, yaxis="seinv", main="Inverse Standard Error") funnel(res, yaxis="vinv", main="Inverse Sampling Variance") setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_funnel_plot_variations_dark_test.png", "images/test_plots_funnel_plot_variations_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_misc_calc_q.r0000644000176200001440000000742414712730647020412 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: computation of Q-test") source("settings.r") test_that("computation is correct for 'dat.bcg'.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) expect_equivalent(res$QE, 152.23301, tolerance=.tol[["test"]]) expect_equivalent(res$QEp, 0, tolerance=.tol[["pval"]]) res <- rma(yi, vi, mods = ~ ablat, data=dat) expect_equivalent(res$QE, 30.73309, tolerance=.tol[["test"]]) expect_equivalent(res$QEp, 0.001214, tolerance=.tol[["pval"]]) }) perm <- function(v) { n <- length(v) if (n == 1) { v } else { X <- NULL for (i in 1:n) X <- rbind(X, cbind(v[i], perm(v[-i]))) X } } test_that("the computation is correct for measurements of the Planck constant.", { dat <- read.table(header=TRUE, text=" exp h uh NRC-17 6.62607013300 6.00e-08 NMIJ-17 6.62607005883 1.65e-07 NIST-17 6.62606993400 8.90e-08") perms <- perm(1:nrow(dat)) QE <- rep(NA_real_, nrow(dat)) QEp <- rep(NA_real_, nrow(dat)) for (i in 1:nrow(perms)) { tmp <- dat[perms[i,],] res <- rma(yi=h, sei=uh, data=tmp, method="DL") QE[i] <- res$QE QEp[i] <- res$QEp } expect_equivalent(QE, rep(3.442127, length(QE)), tolerance=.tol[["test"]]) expect_equivalent(QEp, rep(0.1788758, length(QEp)), tolerance=.tol[["pval"]]) }) test_that("the computation is correct for measurements of the Newtonian gravitational constant.", { dat <- read.table(header=TRUE, text=" label G uG NIST-82 6.67248 0.00043 TR&D-96 6.6729 0.00050 LANL-97 6.67398 0.00070 UWash-00 6.674255 0.000092 BIPM-01 6.67559 0.00027 UWup-02 6.67422 0.00098 MSL-03 6.67387 0.00027 HUST-05 6.67222 0.00087 UZur-06 6.67425 0.00012 HUST-09 6.67349 0.00018 BIPM-14 6.67554 0.00016 LENS-14 6.67191 0.00099 UCI-14 6.67435 0.00013 HUSTT-18 6.674184 0.000078 HUSTA-18 6.674484 0.000077 JILA-18 6.67260 0.00025") QE <- rep(NA_real_, 100) QEp <- rep(NA_real_, 100) set.seed(1234) for (i in 1:100) { tmp <- dat[sample(nrow(dat)),] res <- rma(yi=G, sei=uG, data=tmp, method="DL") QE[i] <- res$QE QEp[i] <- res$QEp } expect_equivalent(QE, rep(197.8399, length(QE)), tolerance=.tol[["test"]]) expect_equivalent(QEp, rep(0, length(QEp)), tolerance=.tol[["pval"]]) }) test_that("the computation is correct for measurements Planck constant.", { dat <- read.table(header=TRUE, text=" label h uh NPL-79 6.626073000 6.70e-06 NIST-80 6.626065800 8.80e-06 NMI-89 6.626068400 3.60e-06 NPL-90 6.626068200 1.30e-06 PTB-91 6.626067000 4.20e-06 NIM-95 6.626071000 1.10e-05 NIST-98 6.626068910 5.80e-07 IAC-11 6.626069890 2.00e-07 METAS-11 6.626069100 2.00e-06 NPL-12 6.626071200 1.30e-06 IAC-15 6.626070150 1.30e-07 LNE-15 6.626068800 1.70e-06 NIST-15 6.626069360 3.80e-07 NRC-17 6.626070133 6.00e-08 LNE-17 6.626070410 3.80e-07 NMIJ-17 6.626070059 1.65e-07 NIM-17 6.626069200 1.60e-06 IAC-17 6.626070404 7.92e-08") QE <- rep(NA_real_, 100) QEp <- rep(NA_real_, 100) set.seed(1234) for (i in 1:100) { tmp <- dat[sample(nrow(dat)),] res <- rma(yi=h, sei=uh, data=tmp, method="DL") QE[i] <- res$QE QEp[i] <- res$QEp } expect_equivalent(QE, rep(26.63226, length(QE)), tolerance=.tol[["test"]]) expect_equivalent(QEp, rep(0.06368617, length(QEp)), tolerance=.tol[["pval"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_matreg.r0000644000176200001440000001012014712730632020424 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: matreg() function") source("settings.r") test_that("matreg() works correctly for the 'mtcars' dataset.", { dat <- mtcars res1 <- lm(mpg ~ hp + wt + am, data=dat) S <- cov(dat) res2 <- matreg(y="mpg", x=c("hp","wt","am"), R=S, cov=TRUE, means=colMeans(dat), n=nrow(dat)) expect_equivalent(coef(res1), coef(res2), tolerance=.tol[["coef"]]) expect_equivalent(vcov(res1), vcov(res2), tolerance=.tol[["coef"]]) dat[] <- scale(dat) res1 <- lm(mpg ~ 0 + hp + wt + am, data=dat) R <- cor(dat) res2 <- matreg(y="mpg", x=c("hp","wt","am"), R=R, n=nrow(dat)) expect_equivalent(coef(res1), coef(res2), tolerance=.tol[["coef"]]) expect_equivalent(vcov(res1), vcov(res2), tolerance=.tol[["coef"]]) }) test_that("matreg() works correctly for 'dat.craft2003'.", { dat <- dat.craft2003 ### construct dataset and var-cov matrix of the correlations tmp <- rcalc(ri ~ var1 + var2 | study, ni=ni, data=dat) V <- tmp$V dat <- tmp$dat out <- capture.output(print(tmp)) sav <- structure(list(study = c("1", "1", "1", "1", "1", "1"), var1 = c("acog", "asom", "conf", "acog", "acog", "asom"), var2 = c("perf", "perf", "perf", "asom", "conf", "conf"), var1.var2 = c("acog.perf", "asom.perf", "conf.perf", "acog.asom", "acog.conf", "asom.conf"), yi = c(-0.55, -0.48, 0.66, 0.47, -0.38, -0.46), ni = c(142L, 142L, 142L, 142L, 142L, 142L)), row.names = c(NA, 6L), class = "data.frame") expect_equivalent(dat[1:6,], sav, tolerance=.tol[["coef"]]) sav <- structure(c(0.00345039893617021, 0.00132651489361702, -0.000554579787234042, -0.00139678475177305, 0.00250189539007092, 0.000932237234042553, 0.00132651489361702, 0.00420059687943262, -0.000952140709219857, -0.00194335914893617, 0.00126485617021277, 0.00251607829787234, -0.000554579787234042, -0.000952140709219857, 0.00225920113475177, 0.00057910914893617, -0.00153379787234043, -0.00106924595744681, -0.00139678475177305, -0.00194335914893617, 0.00057910914893617, 0.00430494191489362, -0.00180268914893617, -0.00120505595744681, 0.00250189539007092, 0.00126485617021277, -0.00153379787234043, -0.00180268914893617, 0.00519185361702128, 0.00188440468085106, 0.000932237234042553, 0.00251607829787234, -0.00106924595744681, -0.00120505595744681, 0.00188440468085106, 0.00440833021276596), .Dim = c(6L, 6L), .Dimnames = list(c("acog.perf", "asom.perf", "conf.perf", "acog.asom", "acog.conf", "asom.conf"), c("acog.perf", "asom.perf", "conf.perf", "acog.asom", "acog.conf", "asom.conf"))) expect_equivalent(V[1:6,1:6], sav, tolerance=.tol[["var"]]) ### turn var1.var2 into a factor with the desired order of levels dat$var1.var2 <- factor(dat$var1.var2, levels=c("acog.perf", "asom.perf", "conf.perf", "acog.asom", "acog.conf", "asom.conf")) ### multivariate random-effects model expect_warning(res <- rma.mv(yi, V, mods = ~ 0 + var1.var2, random = ~ var1.var2 | study, struct="UN", data=dat, sparse=.sparse)) ### restructure estimated mean correlations into a 4x4 matrix R <- matrix(NA, nrow=4, ncol=4) R[lower.tri(R)] <- coef(res) rownames(R) <- colnames(R) <- c("perf", "acog", "asom", "conf") ### fit regression model with 'perf' as outcome and 'acog', 'asom', and 'conf' as predictors fit <- matreg(1, 2:4, R=R, V=vcov(res)) out <- capture.output(print(fit)) sav <- structure(list(estimate = c(0.14817903234559, -0.0536342615587582, 0.363679177420187), se = c(0.156551433378687, 0.0768472434859867, 0.0909539697381244), zval = c(0.946519805967891, -0.697933447262015, 3.99849702511387), pval = c(0.343883525131896, 0.485218815885662, 0.0000637459821320369), ci.lb = c(-0.158656138804758, -0.204252091102472, 0.185412672482517), ci.ub = c(0.455014203495939, 0.0969835679849561, 0.541945682357857)), class = "data.frame", row.names = c("acog", "asom", "conf")) expect_equivalent(fit$tab, sav, tolerance=.tol[["misc"]]) ### use variable names fit <- matreg("perf", c("acog","asom","conf"), R=R, V=vcov(res)) expect_equivalent(fit$tab, sav, tolerance=.tol[["misc"]]) }) rm(list=ls()) metafor/tests/testthat/test_plots_regplot.r0000644000176200001440000000324014712730563021037 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:baujat_plot source("settings.r") context("Checking plots example: scatter/bubble plot") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat, data=dat) png("images/test_plots_regplot_light_test.png", res=200, width=1800, height=1500, type="cairo") par(mar=c(5,5,1,2)) sav <- regplot(res, xlim=c(10,60), predlim=c(10,60), xlab="Absolute Latitude", refline=0, atransf=exp, at=log(seq(0.2,1.6,by=0.2)), digits=1, las=1, bty="l", label=c(4,7,12,13), offset=c(1.6,0.8), labsize=0.9, pi=TRUE, legend=TRUE, grid=TRUE) points(sav) dev.off() expect_true(.vistest("images/test_plots_regplot_light_test.png", "images/test_plots_regplot_light.png")) png("images/test_plots_regplot_dark_test.png", res=200, width=1800, height=1500, type="cairo") setmfopt(theme="dark") par(mar=c(5,5,1,2)) sav <- regplot(res, xlim=c(10,60), predlim=c(10,60), xlab="Absolute Latitude", refline=0, atransf=exp, at=log(seq(0.2,1.6,by=0.2)), digits=1, las=1, bty="l", label=c(4,7,12,13), offset=c(1.6,0.8), labsize=0.9, pi=TRUE, legend=TRUE, grid=TRUE) points(sav) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_regplot_dark_test.png", "images/test_plots_regplot_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_misc_setlab.r0000644000176200001440000002132114712730604020423 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: .setlab() function") source("settings.r") yi <- c(-.3, -.1, 0, .2, .2) vi <- rep(.02, length(yi)) test_that(".setlab() works correctly together with forest().", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png(filename="images/test_misc_setlab_test.png", res=300, width=5000, height=8000, type="cairo") par(mfrow=c(14,6), mar=c(5,4,0,4)) xlim <- c(-3,5) cex.lab <- 0.5 dat <- escalc(measure="GEN", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="RR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="OR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="RD", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="AS", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="PHI", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="YUQ", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="YUY", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="IRR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="IRD", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="IRSD", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="MD", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="SMD", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="ROM", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="CVR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="VR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="RPB", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="COR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="ZCOR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=transf.ztor, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=transf.ztor, header=TRUE) dat <- escalc(measure="PR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="PLN", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="PLO", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=transf.ilogit, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=transf.ilogit, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="PAS", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=transf.iarcsin, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=transf.iarcsin, header=TRUE) dat <- escalc(measure="PFT", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=transf.ipft.hm, targs=list(ni=rep(10,length(yi))), header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=transf.ipft.hm, targs=list(ni=rep(10,length(yi))), header=TRUE) dat <- escalc(measure="IR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="IRLN", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="IRS", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=transf.isqrt, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=transf.isqrt, header=TRUE) dat <- escalc(measure="IRFT", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="MN", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="MNLN", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="CVLN", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="SDLN", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="MC", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="SMCC", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="ROMC", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=exp, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=exp, header=TRUE) dat <- escalc(measure="ARAW", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="AHW", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=transf.iahw, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=transf.iahw, header=TRUE) dat <- escalc(measure="ABT", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=transf.iabt, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=transf.iabt, header=TRUE) dat <- escalc(measure="PCOR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dat <- escalc(measure="ZPCOR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, transf=transf.ztor, header=TRUE) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, atransf=transf.ztor, header=TRUE) dat <- escalc(measure="SPCOR", yi=yi, vi=vi) forest(dat$yi, dat$vi, xlim=xlim, cex.lab=cex.lab, header=TRUE) dev.off() expect_true(.vistest("images/test_misc_setlab_test.png", "images/test_misc_setlab.png")) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_dersimonian2007.r0000644000176200001440000000614314712730414024401 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:dersimonian2007 source("settings.r") context("Checking analysis example: dersimonian2007") ### data for the CLASP example n1i <- c(156, 303, 565, 1570, 103, 4659) n2i <- c( 74, 303, 477, 1565, 105, 4650) ai <- c( 5, 5, 12, 69, 9, 313) ci <- c( 8, 17, 9, 94, 11, 352) test_that("results are correct for the CLASP example.", { skip_on_cran() ### calculate log(OR)s and corresponding sampling variances dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i) ### fit RE model with various tau^2 estimators res.PM <- rma(yi, vi, method="PM", data=dat) res.CA <- rma(yi, vi, method="HE", data=dat) res.DL <- rma(yi, vi, method="DL", data=dat) res.CA2 <- rma(yi, vi, method="GENQ", weights=1/(vi + res.CA$tau2), data=dat) res.DL2 <- rma(yi, vi, method="GENQ", weights=1/(vi + res.DL$tau2), data=dat) res.CA2 <- rma(yi, vi, tau2=res.CA2$tau2, data=dat) res.DL2 <- rma(yi, vi, tau2=res.DL2$tau2, data=dat) res.EB <- rma(yi, vi, method="EB", data=dat) res.ML <- rma(yi, vi, method="ML", data=dat) res.REML <- rma(yi, vi, method="REML", data=dat) res.HS <- rma(yi, vi, method="HS", data=dat) res.SJ <- rma(yi, vi, method="SJ", data=dat) res.SJ2 <- rma(yi, vi, method="SJ", data=dat, control=list(tau2.init=res.CA$tau2)) ### some extra ones res.HSk <- rma(yi, vi, method="HSk", data=dat) res.GENQM <- rma(yi, vi, method="GENQM", weights=1/vi, data=dat) res.PMM <- rma(yi, vi, method="PMM", data=dat) ### combine results into one long list of fitted models res.all <- list(res.PM, res.CA, res.DL, res.CA2, res.DL2, res.EB, res.ML, res.REML, res.HS, res.SJ, res.SJ2, res.HSk, res.GENQM, res.PMM) ### create table with estimate of tau, mu, and standard error results <- rbind( tau = sapply(res.all, function(x) sqrt(x$tau2)), mu = sapply(res.all, coef), se = sapply(res.all, se)) colnames(results) <- c("PM", "CA", "DL", "CA2", "DL2", "EB", "ML", "REML", "HS", "SJ", "SJ2", "HSk", "GENQM", "PMM") tmp <- t(results) ### compare with results on page 111-112 (Tables 3 and 4) expected <- structure(c( 0.3681, 0.4410, 0.2323, 0.3831, 0.3254, 0.3681, 0.0023, 0.1843, 0.1330, 0.4572, 0.4084, 0.1644, 0.2929, 0.4341, -0.3811, -0.4035, -0.3240, -0.3861, -0.3655, -0.3811, -0.1974, -0.2980, -0.2666, -0.4079, -0.3941, -0.2863, -0.1973, -0.4016, 0.2060, 0.2327, 0.1540, 0.2115, 0.1901, 0.2060, 0.0694, 0.1343, 0.1125, 0.2386, 0.2208, 0.1259, 0.2342, 0.2302), .Dim = c(14L, 3L), .Dimnames = list(c("PM", "CA", "DL", "CA2", "DL2", "EB", "ML", "REML", "HS", "SJ", "SJ2", "HSk", "GENQM", "PMM"), c("tau", "mu", "se"))) expect_equivalent(tmp[,1], expected[,1], tolerance=.tol[["var"]]) expect_equivalent(tmp[,2], expected[,2], tolerance=.tol[["coef"]]) expect_equivalent(tmp[,3], expected[,3], tolerance=.tol[["se"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_robust.r0000644000176200001440000001613314712730606020476 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: robust() function") source("settings.r") test_that("robust() works correctly for 'rma' objects.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat) sav <- robust(res, cluster=trial) expect_equivalent(c(vcov(sav)), 0.032106, tolerance=.tol[["var"]]) expect_equivalent(sav$dfs, 12, tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, -3.98776, tolerance=.tol[["test"]]) tmp <- predict(sav, transf=exp) expect_equivalent(tmp$pred, 0.4894209, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.3312324, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.7231565, tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.lb, 0.1360214, tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.ub, 1.7609930, tolerance=.tol[["ci"]]) sav <- robust(res, cluster=trial, adjust=FALSE) expect_equivalent(c(vcov(sav)), 0.029636, tolerance=.tol[["var"]]) expect_equivalent(sav$dfs, 12, tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, -4.150592, tolerance=.tol[["test"]]) sav <- robust(res, cluster=trial, clubSandwich=TRUE) expect_equivalent(c(vcov(sav)), 0.03229357, tolerance=.tol[["var"]]) expect_equivalent(sav$dfs, 11.04125, tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, -3.97616, tolerance=.tol[["test"]]) tmp <- predict(sav, transf=exp) expect_equivalent(tmp$pred, 0.4894209, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.3295991, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.7267400, tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.lb, 0.1342926, tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.ub, 1.7836640, tolerance=.tol[["ci"]]) res <- rma(yi, vi, weights=1, data=dat) sav <- robust(res, cluster=trial) expect_equivalent(c(vcov(sav)), 0.037028, tolerance=.tol[["var"]]) expect_equivalent(sav$dfs, 12, tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, -3.848996, tolerance=.tol[["test"]]) }) test_that("robust() works correctly for 'rma' objects with moderators.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat + year, data=dat) sav <- robust(res, cluster=trial) expect_equivalent(se(sav), c(23.910483, 0.007857, 0.012079), tolerance=.tol[["se"]]) expect_equivalent(sav$dfs, 10, tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, c(-0.148282, -3.564978, 0.157928), tolerance=.tol[["test"]]) expect_equivalent(sav$QM, 11.8546, tolerance=.tol[["test"]]) tmp <- predict(sav, newmods=c(30, 1970), transf=exp) expect_equivalent(tmp$pred, 0.5336811, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.4079824, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.6981073, tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.lb, 0.2425081, tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.ub, 1.1744580, tolerance=.tol[["ci"]]) sav <- robust(res, cluster=trial, clubSandwich=TRUE) expect_equivalent(se(sav), c(33.655367, 0.011994, 0.016963), tolerance=.tol[["se"]]) expect_equivalent(sav$dfs, c(2.724625, 2.112895, 2.745919), tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, c(-0.105347, -2.335398, 0.112456), tolerance=.tol[["test"]]) expect_equivalent(sav$QM, 6.708996, tolerance=.tol[["test"]]) expect_equivalent(sav$QMdf, c(2, 2.528214), tolerance=.tol[["misc"]]) expect_equivalent(sav$QMp, 0.097479, tolerance=.tol[["pval"]]) tmp <- anova(sav) expect_equivalent(tmp$QM, 6.708996, tolerance=.tol[["test"]]) expect_equivalent(tmp$QMdf, c(2, 2.528214), tolerance=.tol[["misc"]]) expect_equivalent(tmp$QMp, 0.097479, tolerance=.tol[["pval"]]) tmp <- predict(sav, newmods=c(30, 1970), transf=exp) expect_equivalent(tmp$pred, 0.5336811, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.3938412, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.7231735, tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.lb, 0.2265965, tolerance=.tol[["ci"]]) expect_equivalent(tmp$pi.ub, 1.2569280, tolerance=.tol[["ci"]]) res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat) sav <- robust(res, cluster=trial, clubSandwich=TRUE) tmp <- anova(sav, X=rbind(c(0,10,1,0),c(0,50,1,0))) expect_equivalent(tmp$se, c(0.210162, 0.321173), tolerance=.tol[["se"]]) expect_equivalent(tmp$ddf, c(1.929902, 3.251262), tolerance=.tol[["misc"]]) expect_equivalent(tmp$zval, c(-2.570637, -5.079127), tolerance=.tol[["test"]]) expect_equivalent(tmp$QM, 9.914783, tolerance=.tol[["test"]]) expect_equivalent(tmp$QMdf, c(2, 2.569003), tolerance=.tol[["misc"]]) expect_equivalent(tmp$QMp, 0.06194173, tolerance=.tol[["pval"]]) sav1 <- robust(res, cluster=trial) tmp1 <- anova(sav1, X=rbind(c(0,10,1,0),c(0,50,1,0))) sav2 <- robust(res, cluster=trial, clubSandwich=TRUE, vcov="CR1p", coef_test="naive-tp", wald_test="Naive-Fp") tmp2 <- anova(sav2, X=rbind(c(0,10,1,0),c(0,50,1,0))) expect_equivalent(tmp1$se, tmp2$se, tolerance=.tol[["se"]]) expect_equivalent(tmp1$ddf, tmp2$ddf, tolerance=.tol[["misc"]]) expect_equivalent(tmp1$zval, tmp2$zval, tolerance=.tol[["test"]]) expect_equivalent(tmp1$QM, tmp2$QM, tolerance=.tol[["test"]]) expect_equivalent(tmp1$QMdf, tmp2$QMdf, tolerance=.tol[["misc"]]) expect_equivalent(tmp1$QMp, tmp2$QMp, tolerance=.tol[["pval"]]) tmp1 <- predict(sav1, newmods=c(30,1,0), transf=exp) tmp2 <- predict(sav2, newmods=c(30,1,0), transf=exp) expect_equivalent(tmp1$pred, tmp2$pred, tolerance=.tol[["pred"]]) expect_equivalent(tmp1$ci.lb, tmp2$ci.lb, tolerance=.tol[["ci"]]) expect_equivalent(tmp1$ci.ub, tmp2$ci.ub, tolerance=.tol[["ci"]]) expect_equivalent(tmp1$pi.lb, tmp2$pi.lb, tolerance=.tol[["ci"]]) expect_equivalent(tmp1$pi.ub, tmp2$pi.ub, tolerance=.tol[["ci"]]) }) test_that("robust() works correctly for 'rma.mv' objects.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, sparse=.sparse) sav <- robust(res, cluster=trial) expect_equivalent(c(vcov(sav)), 0.032106, tolerance=.tol[["var"]]) expect_equivalent(sav$dfs, 12, tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, -3.98776, tolerance=.tol[["test"]]) sav <- robust(res, cluster=trial, adjust=FALSE) expect_equivalent(c(vcov(sav)), 0.029636, tolerance=.tol[["var"]]) expect_equivalent(sav$dfs, 12, tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, -4.150592, tolerance=.tol[["test"]]) sav <- robust(res, cluster=trial, clubSandwich=TRUE) expect_equivalent(c(vcov(sav)), 0.03229357, tolerance=.tol[["var"]]) expect_equivalent(sav$dfs, 11.04125, tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, -3.97616, tolerance=.tol[["test"]]) res <- rma.mv(yi, vi, W=1, random = ~ 1 | trial, data=dat, sparse=.sparse) sav <- robust(res, cluster=trial) expect_equivalent(c(vcov(sav)), 0.037028, tolerance=.tol[["var"]]) expect_equivalent(sav$dfs, 12, tolerance=.tol[["misc"]]) expect_equivalent(sav$zval, -3.848996, tolerance=.tol[["test"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_update.r0000644000176200001440000000373214712730602020437 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: update() function") source("settings.r") test_that("update() works for rma().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res1 <- rma(yi, vi, data=dat, method="EE") res2 <- update(res1, method="DL") res3 <- rma(yi, vi, data=dat, method="DL") res4 <- update(res3, ~ ablat) res5 <- rma(yi, vi, mods = ~ ablat, data=dat, method="DL") res2$time <- NULL res3$time <- NULL res4$time <- NULL res5$time <- NULL expect_equivalent(res2, res3) expect_equivalent(res4, res5) }) test_that("update() works for rma.mv().", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res1 <- rma.mv(yi, vi, data=dat, method="EE", sparse=.sparse) res2 <- update(res1, random = ~ 1 | trial, method="REML") res3 <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, method="REML", sparse=.sparse) res4 <- update(res3, ~ ablat) res5 <- rma.mv(yi, vi, random = ~ 1 | trial, mods = ~ ablat, data=dat, method="REML", sparse=.sparse) res2$time <- NULL res3$time <- NULL res4$time <- NULL res5$time <- NULL expect_equivalent(res2, res3) expect_equivalent(res4, res5) }) test_that("update() works for rma.glmm().", { skip_on_cran() dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res1 <- rma.glmm(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, method="EE") res2 <- update(res1, method="ML") res3 <- rma.glmm(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, method="ML") res4 <- update(res3, mods = ~ ablat) res5 <- rma.glmm(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, mods = ~ ablat, data=dat.bcg, method="ML") res2$time <- NULL res3$time <- NULL res4$time <- NULL res5$time <- NULL expect_equivalent(res2, res3) expect_equivalent(res4, res5) }) rm(list=ls()) metafor/tests/testthat/test_misc_fsn.r0000644000176200001440000000643314712730637017754 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: fsn() function") source("settings.r") test_that("confint() gives correct results for the 'expectancy data' in Becker (2005).", { sav <- fsn(yi, vi, data=dat.raudenbush1985) expect_equivalent(sav$fsnum, 26) ### note: Becker uses p-values based on t-tests, which yields N =~ 23 out <- capture.output(print(sav)) # so that print.fsn() is run (at least once) ### use Fisher's test sav <- fsn(yi, vi, data=dat.raudenbush1985, pool="Fisher") expect_equivalent(sav$fsnum, 40) sav <- fsn(yi, data=dat.raudenbush1985, type="Orwin", target=.05) expect_equivalent(sav$fsnum, 44) out <- capture.output(print(sav)) # so that print.fsn() is run (at least once) with type="Orwin" sav <- fsn(yi, vi, data=dat.raudenbush1985, type="Orwin", target=.05) expect_equivalent(sav$fsnum, 4) sav <- fsn(yi, vi, data=dat.raudenbush1985, type="Rosenberg") expect_equivalent(sav$fsnum, 0) out <- capture.output(print(sav)) # so that print.fsn() is run (at least once) with type="Rosenberg" skip_on_cran() sav <- fsn(yi, vi, data=dat.raudenbush1985, type="General") expect_equivalent(sav$fsnum, 0) sav <- fsn(yi, vi, data=dat.raudenbush1985, type="General", exact=TRUE) expect_equivalent(sav$fsnum, 0) out <- capture.output(print(sav)) # so that print.fsn() is run (at least once) with type="General" res <- rma(yi, vi, data=dat.raudenbush1985) sav <- fsn(res, target=.05) expect_equivalent(sav$fsnum, 12) }) test_that("confint() gives correct results for the 'passive smoking data' in Becker (2005).", { sav <- fsn(yi, vi, data=dat.hackshaw1998) expect_equivalent(sav$fsnum, 393) ### note: Becker finds N =~ 398 (due to rounding) sav <- fsn(yi, data=dat.hackshaw1998, type="Orwin", target=.049) expect_equivalent(sav$fsnum, 186) sav <- fsn(yi, vi, data=dat.hackshaw1998, type="Orwin", target=.049) expect_equivalent(sav$fsnum, 104) # not 103 as fsn() always rounds up sav <- fsn(yi, vi, data=dat.hackshaw1998, type="Rosenberg") expect_equivalent(sav$fsnum, 202) skip_on_cran() sav <- fsn(yi, vi, data=dat.hackshaw1998, type="General") expect_equivalent(sav$fsnum, 112) sav <- fsn(yi, vi, data=dat.hackshaw1998, type="General", exact=TRUE) expect_equivalent(sav$fsnum, 119) }) test_that("confint() gives correct results for the 'interview data' in Becker (2005).", { dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat.mcdaniel1994) sav <- fsn(yi, vi, data=dat) expect_equivalent(sav$fsnum, 50364) ### note: Becker uses p-values based on t-tests, which yields N =~ 51226 sav <- fsn(yi, data=dat, type="Orwin", target=.15) expect_equivalent(sav$fsnum, 129) sav <- fsn(yi, vi, data=dat, type="Orwin", target=.15) expect_equivalent(sav$fsnum, 65) # not 64 as fsn() always rounds up sav <- fsn(yi, vi, data=dat, type="Rosenberg") expect_equivalent(sav$fsnum, 45528) skip_on_cran() sav <- fsn(yi, vi, data=dat, type="General") expect_equivalent(sav$fsnum, 6068) sav <- fsn(yi, vi, data=dat, type="General", exact=TRUE) expect_equivalent(sav$fsnum, 6068) res <- rma(yi, vi, data=dat) sav <- fsn(res) expect_equivalent(sav$fsnum, 6068) }) rm(list=ls()) metafor/tests/testthat/test_plots_normal_qq_plots.r0000644000176200001440000000605214713143160022571 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:normal_qq_plots source("settings.r") context("Checking plots example: normal QQ plots") test_that("plot can be drawn for 'rma.uni' object.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_normal_qq_plots_1_test.png", res=200, width=1800, height=1800, type="cairo") ### set up 2x2 array for plotting par(mfrow=c(2,2)) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit equal- and random-effects models res1 <- rma(yi, vi, data=dat, method="EE") res2 <- rma(yi, vi, data=dat) ### fit fixed- and random-effects models with absolute latitude moderator res3 <- rma(yi, vi, mods=~ablat, data=dat, method="FE") res4 <- rma(yi, vi, mods=~ablat, data=dat) ### normal QQ plots for the various models qqnorm(res1, seed=1234, grid=TRUE, main="Equal-Effects Model") qqnorm(res2, seed=1234, grid=TRUE, main="Random-Effects Model") qqnorm(res3, seed=1234, grid=TRUE, main="Fixed-Effects with Moderators Model") qqnorm(res4, seed=1234, grid=TRUE, main="Mixed-Effects Model") dev.off() expect_true(.vistest("images/test_plots_normal_qq_plots_1_test.png", "images/test_plots_normal_qq_plots_1.png")) ### draw plot with studentized residuals and labels png("images/test_plots_normal_qq_plots_2_test.png", res=200, width=1800, height=1800, type="cairo") qqnorm(res2, type="rstudent", grid=TRUE, label=TRUE, seed=1234) dev.off() expect_true(.vistest("images/test_plots_normal_qq_plots_2_test.png", "images/test_plots_normal_qq_plots_2.png")) }) test_that("plot can be drawn for 'rma.mh' object.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_normal_qq_plots_3_test.png", res=200, width=1800, height=1800, type="cairo") res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) qqnorm(res) qqnorm(res, type="rstudent", label=TRUE) dev.off() expect_true(.vistest("images/test_plots_normal_qq_plots_3_test.png", "images/test_plots_normal_qq_plots_3.png")) }) test_that("plot can be drawn for 'rma.peto' object.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() png("images/test_plots_normal_qq_plots_4_test.png", res=200, width=1800, height=1800, type="cairo") res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) qqnorm(res) qqnorm(res, type="rstudent", label=TRUE) dev.off() expect_true(.vistest("images/test_plots_normal_qq_plots_4_test.png", "images/test_plots_normal_qq_plots_4.png")) }) test_that("plot cannot be drawn for 'rma.mv' object.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma.mv(yi, vi, random = ~ 1 | trial, data=dat, sparse=.sparse) expect_error(qqnorm(res)) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_henmi2010.r0000644000176200001440000000265614712730421023166 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:henmi2010 source("settings.r") context("Checking analysis example: henmi2010") ### load dataset dat <- dat.lee2004 ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) test_that("results are correct for the random-effects model.", { ### fit random-effects model with DL estimator res <- rma(yi, vi, data=dat, method="DL") ### compare with results on page 2978 expect_equivalent(res$tau2, 0.3325, tolerance=.tol[["var"]]) expect_equivalent(coef(res), -0.6787, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -1.0664, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.2911, tolerance=.tol[["ci"]]) }) test_that("results are correct for the Henmi & Copas method.", { ### fit random-effects model with DL estimator res <- rma(yi, vi, data=dat, method="DL") ### apply Henmi & Copas method sav <- hc(res) out <- capture.output(print(sav)) ### so that print.hc.rma.uni() is run (at least once) ### compare with results on page 2978 expect_equivalent(sav$beta, -0.5145, tolerance=.tol[["coef"]]) expect_equivalent(sav$ci.lb, -0.9994, tolerance=.tol[["ci"]]) expect_equivalent(sav$ci.ub, -0.0295, tolerance=.tol[["ci"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_rma_error_handling.r0000644000176200001440000000130014712730617023004 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: proper handling of errors in rma()") source("settings.r") test_that("rma() handles NAs correctly.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat$yi[1] <- NA dat$yi[2] <- NA expect_warning(res <- rma(yi, vi, data=dat, digits=3)) expect_equivalent(res$k, 11) expect_equivalent(res$k.f, 13) expect_equivalent(length(res$yi), 11) expect_equivalent(length(res$yi.f), 13) expect_equivalent(res$not.na, rep(c(FALSE,TRUE),times=c(2,11))) dat$ablat[3] <- NA ### TODO: complete this ... }) rm(list=ls()) metafor/tests/testthat/test_misc_pub_bias.r0000644000176200001440000000353414712730625020746 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: regtest() and ranktest() functions") source("settings.r") test_that("regtest() works correctly for 'rma.uni' objects.", { dat <- dat.egger2001 dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) res <- rma(yi, vi, data=dat) sav <- regtest(res) expect_equivalent(sav$zval, -4.6686, tolerance=.tol[["test"]]) out <- capture.output(print(sav)) ### so that print.regtest.rma() is run (at least once) sav <- regtest(yi, vi, data=dat) expect_equivalent(sav$zval, -4.6686, tolerance=.tol[["test"]]) sav <- regtest(yi, vi, data=dat) expect_equivalent(sav$zval, -4.6686, tolerance=.tol[["test"]]) sav <- regtest(res, model="lm", predictor="sqrtninv") expect_equivalent(sav$zval, -5.6083, tolerance=.tol[["test"]]) sav <- regtest(yi, vi, data=dat, model="lm", predictor="sqrtninv") expect_equivalent(sav$zval, -5.6083, tolerance=.tol[["test"]]) sav <- regtest(yi, vi, data=dat, model="lm", predictor="sqrtninv") expect_equivalent(sav$zval, -5.6083, tolerance=.tol[["test"]]) }) test_that("ranktest() works correctly for 'rma.uni' objects.", { dat <- dat.egger2001 dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) res <- rma(yi, vi, data=dat) sav <- ranktest(res) expect_equivalent(sav$tau, 0.15) expect_equivalent(sav$pval, 0.4503, tolerance=.tol[["pval"]]) sav <- ranktest(yi, vi, data=dat) expect_equivalent(sav$tau, 0.15) expect_equivalent(sav$pval, 0.4503, tolerance=.tol[["pval"]]) sav <- ranktest(yi, vi, data=dat) expect_equivalent(sav$tau, 0.15) expect_equivalent(sav$pval, 0.4503, tolerance=.tol[["pval"]]) out <- capture.output(print(sav)) ### so that print.ranktest.rma() is run (at least once) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_stijnen2010.r0000644000176200001440000002141614712730461023537 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:stijnen2010 context("Checking analysis example: stijnen2010") source("settings.r") ### load data dat <- dat.nielweise2007 test_that("results for the normal-normal model are correct (measure=='PLO')", { res <- rma(measure="PLO", xi=ci, ni=n2i, data=dat) ### compare with results on page 3050 (Table II) expect_equivalent(coef(res), -3.3018, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.2378, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.6629, tolerance=.tol[["var"]]) tmp <- predict(res, transf=transf.ilogit) expect_equivalent(tmp$pred, 0.0355, tolerance=.tol[["pred"]]) ### 0.035 in paper expect_equivalent(tmp$ci.lb, 0.0226, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.0554, tolerance=.tol[["ci"]]) ### 0.056 in paper res <- rma(measure="PLO", xi=ai, ni=n1i, data=dat) ### compare with results on page 3050 (Table II) expect_equivalent(coef(res), -4.2604, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.2589, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.3928, tolerance=.tol[["var"]]) tmp <- predict(res, transf=transf.ilogit) expect_equivalent(tmp$pred, 0.0139, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.0084, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.0229, tolerance=.tol[["ci"]]) }) test_that("results for the binomial-normal normal are correct (measure=='PLO')", { skip_on_cran() res <- rma.glmm(measure="PLO", xi=ci, ni=n2i, data=dat) ### compare with results on page 3050 (Table II) expect_equivalent(coef(res), -3.4964, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.2570, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.8124, tolerance=.tol[["var"]]) tmp <- predict(res, transf=transf.ilogit) expect_equivalent(tmp$pred, 0.0294, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.0180, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.0478, tolerance=.tol[["ci"]]) res <- rma.glmm(measure="PLO", xi=ai, ni=n1i, data=dat) ### compare with results on page 3050 (Table II) expect_equivalent(coef(res), -4.8121, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.3555, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.8265, tolerance=.tol[["var"]]) tmp <- predict(res, transf=transf.ilogit) expect_equivalent(tmp$pred, 0.0081, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.0040, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.0161, tolerance=.tol[["ci"]]) }) test_that("results for the normal-normal model are correct (measure=='OR')", { expect_warning(res <- rma(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, drop00=TRUE)) ### compare with results on page 3052 (Table III) expect_equivalent(coef(res), -0.9804, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.2435, tolerance=.tol[["se"]]) ### 0.244 in paper expect_equivalent(sqrt(res$tau2), 0.1886, tolerance=.tol[["var"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 0.3752, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.2328, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.6046, tolerance=.tol[["ci"]]) ### 0.62 in paper }) test_that("results for the conditional logistic model with exact likelihood are correct (measure=='OR')", { skip_on_cran() expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL")) out <- capture.output(print(res)) ### so that print.rma.glmm() is run (at least once) ### compare with results on page 3052 (Table III) expect_equivalent(coef(res), -1.3532, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.3511, tolerance=.tol[["se"]]) expect_equivalent(sqrt(res$tau2), 0.8327, tolerance=.tol[["var"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 0.2584, tolerance=.tol[["pred"]]) ### 0.25 in paper expect_equivalent(tmp$ci.lb, 0.1299, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.5142, tolerance=.tol[["ci"]]) }) test_that("results for the conditional logistic model with approximate likelihood are correct (measure=='OR')", { skip_on_cran() expect_warning(res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.AL")) ### compare with results on page 3052 (Table III) expect_equivalent(coef(res), -1.3027, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.3386, tolerance=.tol[["se"]]) expect_equivalent(sqrt(res$tau2), 0.7750, tolerance=.tol[["var"]]) ### 0.77 in paper tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 0.2718, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.1400, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.5279, tolerance=.tol[["ci"]]) }) ############################################################################ ### load data dat <- dat.nielweise2008 ### incidence rates reflect the expected number of events per 1000 days dat$t1i <- dat$t1i/1000 dat$t2i <- dat$t2i/1000 test_that("results for the normal-normal model are correct (measure=='IRLN')", { res <- rma(measure="IRLN", xi=x2i, ti=t2i, data=dat) ### compare with results on page 3054 (Table VII) expect_equivalent(coef(res), 1.4676, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.2425, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.3699, tolerance=.tol[["var"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 4.3389, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 2.6973, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 6.9795, tolerance=.tol[["ci"]]) ### 6.99 in paper res <- rma(measure="IRLN", xi=x1i, ti=t1i, data=dat) ### compare with results on page 3054 (Table VII) expect_equivalent(coef(res), 0.9808, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.3259, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.6393, tolerance=.tol[["var"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 2.6667, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 1.4078, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 5.0513, tolerance=.tol[["ci"]]) }) test_that("results for the Poisson-normal model are correct (measure=='IRLN')", { skip_on_cran() res <- rma.glmm(measure="IRLN", xi=x2i, ti=t2i, data=dat) ### compare with results on page 3054 (Table VII) expect_equivalent(coef(res), 1.4007, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.2310, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.3165, tolerance=.tol[["var"]]) ### 0.316 in paper tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 4.0580, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 2.5803, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 6.3819, tolerance=.tol[["ci"]]) res <- rma.glmm(measure="IRLN", xi=x1i, ti=t1i, data=dat) ### compare with results on page 3054 (Table VII) expect_equivalent(coef(res), 0.8494, tolerance=.tol[["coef"]]) ### 0.850 in paper expect_equivalent(se(res), 0.3303, tolerance=.tol[["se"]]) expect_equivalent(res$tau2, 0.6543, tolerance=.tol[["var"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 2.3383, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 1.2240, tolerance=.tol[["ci"]]) ### 1.23 in paper expect_equivalent(tmp$ci.ub, 4.4670, tolerance=.tol[["ci"]]) }) test_that("results for the normal-normal model are correct (measure=='IRR')", { res <- rma(measure="IRR", x1i=x1i, t1i=t1i, x2i=x2i, t2i=t2i, data=dat) ### compare with results on page 3055 (Table VIII) expect_equivalent(coef(res), -0.3963, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.2268, tolerance=.tol[["se"]]) ### 0.223 in paper expect_equivalent(sqrt(res$tau2), 0.3060, tolerance=.tol[["var"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 0.6728, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.4314, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 1.0494, tolerance=.tol[["ci"]]) ### 1.04 in paper }) test_that("results for the Poisson-normal model are correct (measure=='IRR')", { skip_on_cran() res <- rma.glmm(measure="IRR", x1i=x1i, t1i=t1i, x2i=x2i, t2i=t2i, data=dat, model="CM.EL") ### compare with results on page 3055 (Table VIII) expect_equivalent(coef(res), -0.4762, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.2377, tolerance=.tol[["se"]]) expect_equivalent(sqrt(res$tau2), 0.3501, tolerance=.tol[["var"]]) tmp <- predict(res, transf=exp) expect_equivalent(tmp$pred, 0.6211, tolerance=.tol[["pred"]]) expect_equivalent(tmp$ci.lb, 0.3898, tolerance=.tol[["ci"]]) expect_equivalent(tmp$ci.ub, 0.9897, tolerance=.tol[["ci"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_handling_nas.r0000644000176200001440000002064114712730635021606 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: handling of NAs") source("settings.r") dat <- data.frame(yi = c(NA, 1, 3, 2, 5, 4, 6), vi = c(1, NA, 1, 1, 1, 1, 1), xi = c(0, 1, NA, 3, 4, 5, 6)) test_that("NAs are correctly handled by various method functions for rma.uni() intercept-only models.", { expect_warning(res <- rma(yi, vi, data=dat)) expect_equivalent(res$k, 5) options(na.action = "na.omit") expect_equivalent(fitted(res), c(4, 4, 4, 4, 4)) expect_equivalent(resid(res), c(-1, -2, 1, 0, 2)) expect_equivalent(predict(res)$pred, 4) expect_equivalent(blup(res)$pred, c(3.4, 2.8, 4.6, 4.0, 5.2)) expect_equivalent(cooks.distance(res), c(0.125, 0.5, 0.125, 0, 0.5)) expect_equivalent(dfbetas(res)[[1]], c(-0.3273, -0.8660, 0.3273, 0, 0.8660), tolerance=.tol[["inf"]]) expect_equivalent(hatvalues(res), c(0.2, 0.2, 0.2, 0.2, 0.2)) expect_equivalent(leave1out(res)$estimate, c(4.25, 4.5, 3.75, 4, 3.5)) expect_equivalent(ranef(res)$pred, c(-0.6, -1.2, 0.6, 0, 1.2)) expect_equivalent(rstandard(res)$resid, c(-1, -2, 1, 0, 2)) expect_equivalent(rstudent(res)$resid, c(-1.25, -2.5, 1.25, 0, 2.5)) expect_equivalent(length(simulate(res, seed=1234)[[1]]), 5) expect_equivalent(weights(res), c(20, 20, 20, 20, 20)) options(na.action = "na.pass") # note: all of these are of the same length as the original data (except for predict(), which gives a single value for intercept-only models) expect_equivalent(fitted(res), c(4, 4, 4, 4, 4, 4, 4)) # note: can compute fitted value even for the study with missing yi and the study with missing vi expect_equivalent(resid(res), c(NA, -3, -1, -2, 1, 0, 2)) # note: can compute residual value even for the study with missing vi expect_equivalent(predict(res)$pred, 4) expect_equivalent(blup(res)$pred, c(NA, NA, 3.4, 2.8, 4.6, 4.0, 5.2)) expect_equivalent(cooks.distance(res), c(NA, NA, 0.125, 0.5, 0.125, 0, 0.5)) expect_equivalent(dfbetas(res)[[1]], c(NA, NA, -0.3273, -0.8660, 0.3273, 0, 0.8660), tolerance=.tol[["inf"]]) expect_equivalent(hatvalues(res), c(NA, NA, 0.2, 0.2, 0.2, 0.2, 0.2)) expect_equivalent(leave1out(res)$estimate, c(NA, NA, 4.25, 4.5, 3.75, 4, 3.5)) expect_equivalent(ranef(res)$pred, c(NA, NA, -0.6, -1.2, 0.6, 0, 1.2)) expect_equivalent(rstandard(res)$resid, c(NA, NA, -1, -2, 1, 0, 2)) expect_equivalent(rstudent(res)$resid, c(NA, NA, -1.25, -2.5, 1.25, 0, 2.5)) expect_equivalent(length(simulate(res, seed=1234)[[1]]), 7) expect_equivalent(weights(res), c(NA, NA, 20, 20, 20, 20, 20)) options(na.action = "na.exclude") # note: all of these are of the same length as the original data, but are NA for studies 1 and 2 expect_equivalent(fitted(res), c(NA, NA, 4, 4, 4, 4, 4)) # note: all of these are of the same length as the original data, but are NA for studies 1 and 2 expect_equivalent(resid(res), c(NA, NA, -1, -2, 1, 0, 2)) expect_equivalent(predict(res)$pred, 4) expect_equivalent(blup(res)$pred, c(NA, NA, 3.4, 2.8, 4.6, 4.0, 5.2)) expect_equivalent(cooks.distance(res), c(NA, NA, 0.125, 0.5, 0.125, 0, 0.5)) expect_equivalent(dfbetas(res)[[1]], c(NA, NA, -0.3273, -0.8660, 0.3273, 0, 0.8660), tolerance=.tol[["inf"]]) expect_equivalent(hatvalues(res), c(NA, NA, 0.2, 0.2, 0.2, 0.2, 0.2)) expect_equivalent(leave1out(res)$estimate, c(NA, NA, 4.25, 4.5, 3.75, 4, 3.5)) expect_equivalent(ranef(res)$pred, c(NA, NA, -0.6, -1.2, 0.6, 0, 1.2)) expect_equivalent(rstandard(res)$resid, c(NA, NA, -1, -2, 1, 0, 2)) expect_equivalent(rstudent(res)$resid, c(NA, NA, -1.25, -2.5, 1.25, 0, 2.5)) expect_equivalent(length(simulate(res, seed=1234)[[1]]), 7) expect_equivalent(weights(res), c(NA, NA, 20, 20, 20, 20, 20)) options(na.action = "na.omit") }) test_that("NAs are correctly handled by various method functions for rma.uni() meta-regression models.", { expect_warning(res <- rma(yi, vi, mods = ~ xi, data=dat)) expect_equivalent(res$k, 4) options(na.action = "na.omit") expect_equivalent(fitted(res), c(2.6, 3.7, 4.8, 5.9)) expect_equivalent(resid(res), c(-0.6, 1.3, -0.8, 0.1)) expect_equivalent(predict(res)$pred, c(2.6, 3.7, 4.8, 5.9)) expect_equivalent(blup(res)$pred, c(2.4444, 4.0370, 4.5926, 5.9259), tolerance=.tol[["pred"]]) expect_equivalent(cooks.distance(res), c(2.0741, 0.7664, 0.2902, 0.0576), tolerance=.tol[["inf"]]) expect_equivalent(dfbetas(res)[[2]], c(1.0954, -0.4153, -0.1912, 0.1369), tolerance=.tol[["inf"]]) expect_equivalent(hatvalues(res), c(0.7, 0.3, 0.3, 0.7)) expect_equivalent(ranef(res)$pred, c(-0.1556, 0.3370, -0.2074, 0.0259), tolerance=.tol[["pred"]]) expect_equivalent(rstandard(res)$resid, c(-0.6, 1.3, -0.8, 0.1)) expect_equivalent(rstudent(res)$resid, c(-2, 1.8571, -1.1429, 0.3333), tolerance=.tol[["pred"]]) expect_equivalent(length(simulate(res, seed=1234)[[1]]), 4) expect_equivalent(weights(res), c(25, 25, 25, 25)) options(na.action = "na.pass") # note: all of these are of the same length as the original data expect_equivalent(fitted(res), c(-0.7, 0.4, NA, 2.6, 3.7, 4.8, 5.9)) # note: can compute fitted value even for the study with missing yi and the study with missing vi expect_equivalent(resid(res), c(NA, 0.6, NA, -0.6, 1.3, -0.8, 0.1)) # note: can compute residual value even for the study with missing vi expect_equivalent(predict(res)$pred, c(-0.7, 0.4, NA, 2.6, 3.7, 4.8, 5.9)) expect_equivalent(blup(res)$pred, c(NA, NA, NA, 2.4444, 4.0370, 4.5926, 5.9259), tolerance=.tol[["pred"]]) expect_equivalent(cooks.distance(res), c(NA, NA, NA, 2.0741, 0.7664, 0.2902, 0.0576), tolerance=.tol[["inf"]]) expect_equivalent(dfbetas(res)[[2]], c(NA, NA, NA, 1.0954, -0.4153, -0.1912, 0.1369), tolerance=.tol[["inf"]]) expect_equivalent(hatvalues(res), c(NA, NA, NA, 0.7, 0.3, 0.3, 0.7)) expect_equivalent(ranef(res)$pred, c(NA, NA, NA, -0.1556, 0.3370, -0.2074, 0.0259), tolerance=.tol[["pred"]]) expect_equivalent(rstandard(res)$resid, c(NA, NA, NA, -0.6, 1.3, -0.8, 0.1)) expect_equivalent(rstudent(res)$resid, c(NA, NA, NA, -2, 1.8571, -1.1429, 0.3333), tolerance=.tol[["pred"]]) expect_equivalent(length(simulate(res, seed=1234)[[1]]), 7) expect_equivalent(weights(res), c(NA, NA, NA, 25, 25, 25, 25)) options(na.action = "na.exclude") # note: all of these are of the same length as the original data, but are NA for studies 1, 2, and 3 expect_equivalent(fitted(res), c(NA, NA, NA, 2.6, 3.7, 4.8, 5.9)) expect_equivalent(resid(res), c(NA, NA, NA, -0.6, 1.3, -0.8, 0.1)) expect_equivalent(predict(res)$pred, c(NA, NA, NA, 2.6, 3.7, 4.8, 5.9)) expect_equivalent(blup(res)$pred, c(NA, NA, NA, 2.4444, 4.0370, 4.5926, 5.9259), tolerance=.tol[["pred"]]) expect_equivalent(cooks.distance(res), c(NA, NA, NA, 2.0741, 0.7664, 0.2902, 0.0576), tolerance=.tol[["inf"]]) expect_equivalent(dfbetas(res)[[2]], c(NA, NA, NA, 1.0954, -0.4153, -0.1912, 0.1369), tolerance=.tol[["inf"]]) expect_equivalent(hatvalues(res), c(NA, NA, NA, 0.7, 0.3, 0.3, 0.7)) expect_equivalent(ranef(res)$pred, c(NA, NA, NA, -0.1556, 0.3370, -0.2074, 0.0259), tolerance=.tol[["pred"]]) expect_equivalent(rstandard(res)$resid, c(NA, NA, NA, -0.6, 1.3, -0.8, 0.1)) expect_equivalent(rstudent(res)$resid, c(NA, NA, NA, -2, 1.8571, -1.1429, 0.3333), tolerance=.tol[["pred"]]) expect_equivalent(length(simulate(res, seed=1234)[[1]]), 7) expect_equivalent(weights(res), c(NA, NA, NA, 25, 25, 25, 25)) options(na.action = "na.omit") }) test_that("NAs are correctly handled by rma.mv() intercept-only models.", { dat <- dat.konstantopoulos2011 res1 <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, sparse=.sparse) res2 <- rma.mv(yi, vi, random = ~ factor(study) | district, data=dat, sparse=.sparse) expect_equivalent(logLik(res1), logLik(res2), tolerance=.tol[["fit"]]) dat$yi[1:2] <- NA expect_warning(res1 <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, sparse=.sparse)) expect_warning(res2 <- rma.mv(yi, vi, random = ~ factor(study) | district, data=dat, sparse=.sparse)) expect_equivalent(logLik(res1), logLik(res2), tolerance=.tol[["fit"]]) dat$yi[1:4] <- NA # entire district 11 is missing expect_warning(res1 <- rma.mv(yi, vi, random = ~ 1 | district/study, data=dat, sparse=.sparse)) expect_warning(res2 <- rma.mv(yi, vi, random = ~ factor(study) | district, data=dat, sparse=.sparse)) expect_equivalent(logLik(res1), logLik(res2), tolerance=.tol[["fit"]]) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_morris2008.r0000644000176200001440000000741414712730445023413 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:morris2008 context("Checking analysis example: morris2008") source("settings.r") ### create datasets datT <- data.frame( m_pre = c(30.6, 23.5, 0.5, 53.4, 35.6), m_post = c(38.5, 26.8, 0.7, 75.9, 36.0), sd_pre = c(15.0, 3.1, 0.1, 14.5, 4.7), sd_post = c(11.6, 4.1, 0.1, 4.4, 4.6), ni = c(20, 50, 9, 10, 14), ri = c(.47, .64, .77, .89, .44)) datC <- data.frame( m_pre = c(23.1, 24.9, 0.6, 55.7, 34.8), m_post = c(19.7, 25.3, 0.6, 60.7, 33.4), sd_pre = c(13.8, 4.1, 0.2, 17.3, 3.1), sd_post = c(14.8, 3.3, 0.2, 17.9, 6.9), ni = c(20, 42, 9, 11, 14), ri = c(.47, .64, .77, .89, .44)) test_that("calculations of escalc() are correct for measure='SMCR'.", { ### compute standardized mean changes using raw-score standardization datT <- escalc(measure="SMCR", m1i=m_post, m2i=m_pre, sd1i=sd_pre, ni=ni, ri=ri, data=datT) datC <- escalc(measure="SMCR", m1i=m_post, m2i=m_pre, sd1i=sd_pre, ni=ni, ri=ri, data=datC) ### (results for this not given in paper) expect_equivalent(datT$yi, c( 0.5056, 1.0481, 1.8054, 1.4181, 0.0801), tolerance=.tol[["est"]]) expect_equivalent(datT$vi, c( 0.0594, 0.0254, 0.2322, 0.1225, 0.0802), tolerance=.tol[["var"]]) expect_equivalent(datC$yi, c(-0.2365, 0.0958, 0.0000, 0.2667, -0.4250), tolerance=.tol[["est"]]) expect_equivalent(datC$vi, c( 0.0544, 0.0173, 0.0511, 0.0232, 0.0864), tolerance=.tol[["var"]]) ### compute difference between treatment and control groups dat <- data.frame(yi = datT$yi - datC$yi, vi = datT$vi + datC$vi) ### compare with results on page 382 (Table 5) expect_equivalent(dat$yi, c(0.7421, 0.9524, 1.8054, 1.1514, 0.5050), tolerance=.tol[["est"]]) ### (results for this not given in paper) expect_equivalent(dat$vi, c(0.1138, 0.0426, 0.2833, 0.1458, 0.1667), tolerance=.tol[["var"]]) ### use pooled pretest SDs sd_pool <- sqrt((with(datT, (ni-1)*sd_pre^2) + with(datC, (ni-1)*sd_pre^2)) / (datT$ni + datC$ni - 2)) dat <- data.frame(yi = metafor:::.cmicalc(datT$ni + datC$ni - 2) * (with(datT, m_post - m_pre) - with(datC, m_post - m_pre)) / sd_pool) dat$vi <- 2*(1-datT$ri) * (1/datT$ni + 1/datC$ni) + dat$yi^2 / (2*(datT$ni + datC$ni)) ### compare with results on page 382 (Table 5) expect_equivalent(dat$yi, c(0.7684, 0.8010, 1.2045, 1.0476, 0.4389), tolerance=.tol[["est"]]) ### (results for this not given in paper) expect_equivalent(dat$vi, c(0.1134, 0.0350, 0.1425, 0.0681, 0.1634), tolerance=.tol[["var"]]) }) test_that("calculations of escalc() are correct for measure='SMCC'.", { ### compute standardized mean changes using change-score standardization datT <- escalc(measure="SMCC", m1i=m_post, m2i=m_pre, sd1i=sd_post, sd2i=sd_pre, ni=ni, ri=ri, data=datT) datC <- escalc(measure="SMCC", m1i=m_post, m2i=m_pre, sd1i=sd_post, sd2i=sd_pre, ni=ni, ri=ri, data=datC) ### (results for this not given in paper) expect_equivalent(datT$yi, c( 0.5417, 1.0198, 2.6619, 1.9088, 0.0765), tolerance=.tol[["est"]]) expect_equivalent(datT$vi, c( 0.0573, 0.0304, 0.5048, 0.2822, 0.0716), tolerance=.tol[["var"]]) expect_equivalent(datC$yi, c(-0.2213, 0.1219, 0.0000, 0.5575, -0.2126), tolerance=.tol[["est"]]) expect_equivalent(datC$vi, c( 0.0512, 0.0240, 0.1111, 0.1050, 0.0730), tolerance=.tol[["var"]]) ### compute difference between treatment and control groups dat <- data.frame(yi = datT$yi - datC$yi, vi = datT$vi + datC$vi) ### (results for this not given in paper) expect_equivalent(dat$yi, c(0.7630, 0.8979, 2.6619, 1.3513, 0.2891), tolerance=.tol[["est"]]) expect_equivalent(dat$vi, c(0.1086, 0.0544, 0.6159, 0.3872, 0.1447), tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_aggregate.r0000644000176200001440000001221514712730651021103 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: aggregate() function") source("settings.r") test_that("aggregate() works correctly for 'dat.konstantopoulos2011'.", { dat <- dat.konstantopoulos2011 agg <- aggregate(dat, cluster=district, struct="ID", addk=TRUE) expect_equivalent(c(agg$yi), c(-0.125687, 0.06654, 0.350303, 0.499691, 0.051008, -0.041842, 0.885529, -0.02875, 0.250475, 0.015033, 0.161917), tolerance=.tol[["est"]]) expect_equivalent(c(agg$vi), c(0.032427, 0.003981, 0.006664, 0.001443, 0.001549, 0.000962, 0.003882, 0.000125, 0.001799, 0.006078, 0.018678), tolerance=.tol[["var"]]) agg <- aggregate(dat, cluster=district, struct="ID", weighted=FALSE, subset=district!=12) expect_equivalent(c(agg$yi), c(-0.1175, 0.373333, 0.4425, 0.0625, -0.077273, 0.823333, -0.02875, 0.246667, 0.016, 0.18), tolerance=.tol[["est"]]) expect_equivalent(c(agg$vi), c(0.03275, 0.008667, 0.002187, 0.002187, 0.001273, 0.004, 0.000125, 0.001833, 0.00608, 0.018938), tolerance=.tol[["var"]]) }) test_that("aggregate() works correctly for 'dat.assink2016'.", { dat <- dat.assink2016 dat <- escalc(yi=yi, vi=vi, data=dat) agg <- aggregate(dat, cluster=study, rho=0.6) expect_equivalent(c(agg$yi), c(0.162877, 0.406036, 1.079003, -0.0447, 1.549, -0.054978, 1.007244, 0.3695, 0.137862, 0.116737, 0.525765, 0.280461, 0.301829, 0.035593, 0.090821, 0.018099, -0.055203), tolerance=.tol[["est"]]) expect_equivalent(c(agg$vi), c(0.019697, 0.005572, 0.083174, 0.0331, 0.1384, 0.02139, 0.054485, 0.0199, 0.027057, 0.010729, 0.011432, 0.002814, 0.011, 0.001435, 0.126887, 0.016863, 0.007215), tolerance=.tol[["var"]]) V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) agg <- aggregate(dat, cluster=study, V=V) expect_equivalent(c(agg$yi), c(0.162877, 0.406036, 1.079003, -0.0447, 1.549, -0.054978, 1.007244, 0.3695, 0.137862, 0.116737, 0.525765, 0.280461, 0.301829, 0.035593, 0.090821, 0.018099, -0.055203), tolerance=.tol[["est"]]) expect_equivalent(c(agg$vi), c(0.019697, 0.005572, 0.083174, 0.0331, 0.1384, 0.02139, 0.054485, 0.0199, 0.027057, 0.010729, 0.011432, 0.002814, 0.011, 0.001435, 0.126887, 0.016863, 0.007215), tolerance=.tol[["var"]]) V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) res <- rma.mv(yi, V, random = ~ 1 | study/esid, data=dat) agg <- aggregate(dat, cluster=study, V=vcov(res, type="obs")) expect_equivalent(c(agg$yi), c(0.286465, 0.445671, 1.25335, -0.0447, 1.549, 0.08437, 0.845211, 0.3695, 0.139644, 0.176455, 1.053596, 0.281093, 0.302574, 0.051816, 0.10101, 0.077539, 0.068278), tolerance=.tol[["est"]]) expect_equivalent(c(agg$vi), c(0.137059, 0.138413, 0.214471, 0.268376, 0.373676, 0.152661, 0.169315, 0.255176, 0.18508, 0.130173, 0.117845, 0.114457, 0.169005, 0.114346, 0.264118, 0.123989, 0.117208), tolerance=.tol[["var"]]) }) test_that("aggregate() works correctly for 'dat.ishak2007'.", { dat <- dat.ishak2007 dat <- reshape(dat.ishak2007, direction="long", idvar="study", v.names=c("yi","vi"), varying=list(c(2,4,6,8), c(3,5,7,9))) dat <- dat[order(study, time),] dat <- dat[!is.na(yi),] rownames(dat) <- NULL agg <- aggregate(dat, cluster=study, struct="CAR", time=time, phi=0.9) expect_equivalent(c(agg$yi), c(-33.4, -28.137183, -21.1, -17.22908, -32.9, -26.342019, -31.37934, -25, -36, -21.275427, -8.6, -28.830656, -28.00566, -35.277625, -28.02381, -24.818713, -36.3, -29.4, -33.552998, -20.6, -33.9, -35.4, -34.9, -32.7, -26.471326, -32.753685, -18.412199, -29.2, -31.7, -32.46738, -31.7, -35.274832, -30.189494, -17.6, -22.9, -36, -22.5, -20.67624, -9.3, -25.52315, -16.7, -29.440786, -31.221009, -20.73355, -37.982183, -22.1), tolerance=.tol[["est"]]) expect_equivalent(c(agg$vi), c(14.3, 5.611511, 7.3, 4.562371, 125, 4.132918, 86.117899, 17, 5, 6.308605, 41, 20.229622, 7.743863, 5.632795, 3.438095, 12.975915, 27.3, 10.7, 1.895013, 25.3, 20.1, 21.2, 18, 16.3, 29.751824, 9.417499, 5.156788, 5.8, 12.4, 24.954806, 19.1, 17.528303, 8.508767, 28.4, 20, 27.7, 20.3, 1.379225, 85.2, 15.281948, 9.8, 179.802277, 3.317364, 15.082821, 20.888464, 40.8), tolerance=.tol[["var"]]) V <- vcalc(vi, cluster=study, time1=time, data=dat, phi=0.9) agg <- aggregate(dat, cluster=study, V=V) expect_equivalent(c(agg$yi), c(-33.4, -28.137183, -21.1, -17.22908, -32.9, -26.342019, -31.37934, -25, -36, -21.275427, -8.6, -28.830656, -28.00566, -35.277625, -28.02381, -24.818713, -36.3, -29.4, -33.552998, -20.6, -33.9, -35.4, -34.9, -32.7, -26.471326, -32.753685, -18.412199, -29.2, -31.7, -32.46738, -31.7, -35.274832, -30.189494, -17.6, -22.9, -36, -22.5, -20.67624, -9.3, -25.52315, -16.7, -29.440786, -31.221009, -20.73355, -37.982183, -22.1), tolerance=.tol[["est"]]) expect_equivalent(c(agg$vi), c(14.3, 5.611511, 7.3, 4.562371, 125, 4.132918, 86.117899, 17, 5, 6.308605, 41, 20.229622, 7.743863, 5.632795, 3.438095, 12.975915, 27.3, 10.7, 1.895013, 25.3, 20.1, 21.2, 18, 16.3, 29.751824, 9.417499, 5.156788, 5.8, 12.4, 24.954806, 19.1, 17.528303, 8.508767, 28.4, 20, 27.7, 20.3, 1.379225, 85.2, 15.281948, 9.8, 179.802277, 3.317364, 15.082821, 20.888464, 40.8), tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_viechtbauer2005.r0000644000176200001440000000652414712730523024374 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:viechtbauer2005 context("Checking analysis example: viechtbauer2005") source("settings.r") ### create dataset for example 1 dat <- data.frame( id=1:10, yi = c(-0.581, 0.530, 0.771, 1.031, 0.553, 0.295, 0.078, 0.573, -0.176, -0.232), vi = c(0.023, 0.052, 0.060, 0.115, 0.095, 0.203, 0.200, 0.211, 0.051, 0.040)) test_that("results are correct for example 1.", { res.HS <- rma(yi, vi, data=dat, method="HS") res.HE <- rma(yi, vi, data=dat, method="HE") res.DL <- rma(yi, vi, data=dat, method="DL") res.ML <- rma(yi, vi, data=dat, method="ML") res.REML <- rma(yi, vi, data=dat, method="REML") res.EB <- rma(yi, vi, data=dat, method="EB") res.SJ <- rma(yi, vi, data=dat, method="SJ") res <- list(res.HS, res.HE, res.DL, res.ML, res.REML, res.EB, res.SJ) res <- data.frame(method=sapply(res, function(x) x$method), tau2=sapply(res, function(x) x$tau2), I2=sapply(res, function(x) x$I2), H2=sapply(res, function(x) x$H2), se.tau2=sapply(res, function(x) x$se.tau2)) ### compare with results on page 271 expect_equivalent(res$tau2, c(0.2282, 0.1484, 0.2768, 0.1967, 0.2232, 0.192, 0.1992), tolerance=.tol[["var"]]) expect_equivalent(res$I2, c(77.2284, 68.7988, 80.4447, 74.5098, 76.8399, 74.0511, 74.7545), tolerance=.tol[["het"]]) expect_equivalent(res$H2, c(4.3914, 3.205, 5.1137, 3.9231, 4.3178, 3.8537, 3.9611), tolerance=.tol[["het"]]) expect_equivalent(res$se.tau2, c(0.1328, 0.1234, 0.1841, 0.1255, 0.1464, 0.133, 0.0979), tolerance=.tol[["sevar"]]) }) ### create dataset for example 2 dat <- data.frame( id=1:18, yi = c(0.100, -0.162, -0.090, -0.049, -0.046, -0.010, -0.431, -0.261, 0.134, 0.019, 0.175, 0.056, 0.045, 0.103, 0.121, -0.482, 0.290, 0.342), vi = c(0.016, 0.015, 0.050, 0.050, 0.032, 0.052, 0.036, 0.024, 0.034, 0.033, 0.031, 0.034, 0.039, 0.167, 0.134, 0.096, 0.016, 0.035)) test_that("results are correct for example 2.", { res.HS <- rma(yi, vi, data=dat, method="HS") res.HE <- rma(yi, vi, data=dat, method="HE") res.DL <- rma(yi, vi, data=dat, method="DL") res.ML <- rma(yi, vi, data=dat, method="ML") res.REML <- rma(yi, vi, data=dat, method="REML") res.EB <- rma(yi, vi, data=dat, method="EB") res.SJ <- rma(yi, vi, data=dat, method="SJ") res <- list(res.HS, res.HE, res.DL, res.ML, res.REML, res.EB, res.SJ) res <- data.frame(method=sapply(res, function(x) x$method), tau2=sapply(res, function(x) x$tau2), I2=sapply(res, function(x) x$I2), H2=sapply(res, function(x) x$H2), se.tau2=sapply(res, function(x) x$se.tau2)) ### compare with results on page 272 expect_equivalent(res$tau2, c(0.0099, 0, 0.0126, 0.0132, 0.0157, 0.0104, 0.0248), tolerance=.tol[["var"]]) expect_equivalent(res$I2, c(22.9266, 0, 27.5275, 28.4505, 32.0203, 23.7198, 42.6734), tolerance=.tol[["het"]]) expect_equivalent(res$H2, c(1.2975, 1, 1.3798, 1.3976, 1.471, 1.311, 1.7444), tolerance=.tol[["het"]]) expect_equivalent(res$se.tau2, c(0.0138, 0.0217, 0.0159, 0.0151, 0.0167, 0.0156, 0.0118), tolerance=.tol[["sevar"]]) }) rm(list=ls()) metafor/tests/testthat/test_plots_radial_plot.r0000644000176200001440000000203314712730564021655 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:radial_plot source("settings.r") context("Checking plots example: radial (Galbraith) plot") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() res <- rma(yi, vi, data=dat.hackshaw1998, method="EE") png("images/test_plots_radial_plot_light_test.png", res=200, width=1800, height=1800, type="cairo") par(mar=c(5,4,0,3)) radial(res) dev.off() expect_true(.vistest("images/test_plots_radial_plot_light_test.png", "images/test_plots_radial_plot_light.png")) png("images/test_plots_radial_plot_dark_test.png", res=200, width=1800, height=1800, type="cairo") setmfopt(theme="dark") par(mar=c(5,4,0,3)) radial(res) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_radial_plot_dark_test.png", "images/test_plots_radial_plot_dark.png")) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_berkey1995.r0000644000176200001440000000552614712730366023403 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:berkey1995 source("settings.r") context("Checking analysis example: berkey1995") ### calculate log ratio ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### calculate "smoothed" sampling variances dat$vi <- with(dat, sum(tneg/tpos)/(13*(tneg+tpos)) + sum(cneg/cpos)/(13*(cneg+cpos))) test_that("results are correct for the random-effects model.", { ### fit random-effects model using empirical Bayes method res.RE <- rma(yi, vi, data=dat, method="EB") out <- capture.output(print(res.RE)) ### so that print.rma.uni() is run (at least once) out <- capture.output(print(summary(res.RE))) ### so that print.summary.rma() is run (at least once) ### compare with results on page 408 expect_equivalent(coef(res.RE), -0.5429, tolerance=.tol[["coef"]]) expect_equivalent(se(res.RE), 0.1842, tolerance=.tol[["se"]]) expect_equivalent(res.RE$tau2, 0.2682, tolerance=.tol[["var"]]) }) test_that("results are correct for the mixed-effects meta-regression model.", { ### fit random-effects model using empirical Bayes method res.RE <- rma(yi, vi, data=dat, method="EB") ### fit mixed-effects model with absolute latitude as moderator res.ME <- rma(yi, vi, mods=~I(ablat-33.46), data=dat, method="EB") out <- capture.output(print(res.ME)) ### compare with results on page 408 expect_equivalent(coef(res.ME), c(-0.6303, -0.0268), tolerance=.tol[["coef"]]) ### -0.6304 in article expect_equivalent(se(res.ME), c(0.1591, 0.0110), tolerance=.tol[["se"]]) expect_equivalent(res.ME$tau2, 0.1572, tolerance=.tol[["var"]]) expect_warning(tmp <- anova(res.RE, res.ME)) expect_equivalent(tmp$R2, 41.3844, tolerance=.tol[["r2"]]) ### predicted average risk ratios tmp <- predict(res.ME, newmods=c(33.46,42)-33.46, transf=exp, digits=2) ### compare with results on page 408 expect_equivalent(tmp$pred, c(0.5324, 0.4236), tolerance=.tol[["pred"]]) }) test_that("results are correct for the fixed-effects meta-regression model.", { ### fit fixed-effects model with absolute latitude as moderator res.FE <- rma(yi, vi, mods=~I(ablat-33.46), data=dat, method="FE") ### compare with results on page 408 expect_equivalent(coef(res.FE), c(-0.5949, -0.0282), tolerance=.tol[["coef"]]) ### -0.5950 in article expect_equivalent(se(res.FE), c(0.0696, 0.0040), tolerance=.tol[["se"]]) ### 0.0039 in article ### predicted risk ratios based on the fixed-effects model tmp <- predict(res.FE, newmods=c(33.46,42)-33.46, transf=exp, digits=2) ### compare with results on page 408 expect_equivalent(tmp$pred, c(0.5516, 0.4336), tolerance=.tol[["pred"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_rma_uni.r0000644000176200001440000000632114712730610020603 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: rma() function") source("settings.r") dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) test_that("rma() correctly handles a formula for the 'yi' argument", { res1 <- rma(yi ~ ablat, vi, data=dat) res2 <- rma(yi, vi, mods = ~ ablat, data=dat) expect_equivalent(coef(res1), coef(res2)) }) test_that("rma() correctly handles an 'escalc' object", { res1 <- rma(yi, vi, data=dat) res2 <- rma(dat) expect_equivalent(coef(res1), coef(res2)) }) test_that("rma() works with method='DLIT' and method='SJIT'", { res <- rma(yi, vi, data=dat, method="DLIT") expect_equivalent(res$tau2, 0.3181, tolerance=.tol[["var"]]) res <- rma(yi, vi, data=dat, method="SJIT") expect_equivalent(res$tau2, 0.3181, tolerance=.tol[["var"]]) }) test_that("rma() works directly with input for measure='SMD'", { dat <- dat.normand1999 dat <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4) res1 <- rma(yi, vi, data=dat) res2 <- rma(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4) expect_equivalent(res1$tau2, 1.0090, tolerance=.tol[["var"]]) expect_equivalent(res2$tau2, 1.0090, tolerance=.tol[["var"]]) }) test_that("rma() works directly with input for measure='PCOR'", { dat <- dat.aloe2013 dat <- escalc(measure="PCOR", ti=tval, ni=n, mi=preds, data=dat) res1 <- rma(yi, vi, data=dat) res2 <- rma(measure="PCOR", ti=tval, ni=n, mi=preds, data=dat) expect_equivalent(res1$tau2, 0.0298, tolerance=.tol[["var"]]) expect_equivalent(res2$tau2, 0.0298, tolerance=.tol[["var"]]) }) test_that("rma() works directly with input for measure='MN'", { dat <- dat.normand1999 dat <- escalc(measure="MN", mi=m1i, sdi=sd1i, ni=n1i, data=dat) res1 <- rma(yi, vi, data=dat) res2 <- rma(measure="MN", mi=m1i, sdi=sd1i, ni=n1i, data=dat) expect_equivalent(res1$tau2, 408.9277, tolerance=.tol[["var"]]) expect_equivalent(res2$tau2, 408.9277, tolerance=.tol[["var"]]) }) test_that("rma() works directly with input for measure='SMCR'", { datT <- data.frame( m_pre = c(30.6, 23.5, 0.5, 53.4, 35.6), m_post = c(38.5, 26.8, 0.7, 75.9, 36.0), sd_pre = c(15.0, 3.1, 0.1, 14.5, 4.7), sd_post = c(11.6, 4.1, 0.1, 4.4, 4.6), ni = c(20, 50, 9, 10, 14), ri = c(.47, .64, .77, .89, .44)) dat <- escalc(measure="SMCR", m1i=m_post, m2i=m_pre, sd1i=sd_pre, ni=ni, ri=ri, data=datT) res1 <- rma(yi, vi, data=dat) res2 <- rma(measure="SMCR", m1i=m_post, m2i=m_pre, sd1i=sd_pre, ni=ni, ri=ri, data=datT) expect_equivalent(res1$tau2, 0.3164, tolerance=.tol[["var"]]) expect_equivalent(res2$tau2, 0.3164, tolerance=.tol[["var"]]) }) test_that("rma() works directly with input for measure='AHW'", { dat <- dat.bonett2010 dat <- escalc(measure="AHW", ai=ai, mi=mi, ni=ni, data=dat) res1 <- rma(yi, vi, data=dat) res2 <- rma(measure="AHW", ai=ai, mi=mi, ni=ni, data=dat) expect_equivalent(res1$tau2, 0.0011, tolerance=.tol[["var"]]) expect_equivalent(res2$tau2, 0.0011, tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_fitstats.r0000644000176200001440000000706514712730640021023 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: computations of fit statistics") source("settings.r") test_that("fit statistics are correct for rma.uni().", { ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random- and mixed-effects models (with ML estimation) res1 <- rma(yi, vi, data=dat, method="ML") res2 <- rma(yi ~ ablat, vi, data=dat, method="ML") tmp <- c(logLik(res1)) expect_equivalent(tmp, -12.6651, tolerance=.tol[["fit"]]) expect_equivalent(tmp, sum(dnorm(dat$yi, coef(res1), sqrt(dat$vi+res1$tau2), log=TRUE)), tolerance=.tol[["fit"]]) tmp <- deviance(res1) expect_equivalent(tmp, 37.1160, tolerance=.tol[["fit"]]) expect_equivalent(tmp, -2 * (sum(dnorm(dat$yi, coef(res1), sqrt(dat$vi+res1$tau2), log=TRUE)) - sum(dnorm(dat$yi, dat$yi, sqrt(dat$vi), log=TRUE))), tolerance=.tol[["fit"]]) tmp <- AIC(res1) expect_equivalent(tmp, 29.3302, tolerance=.tol[["fit"]]) expect_equivalent(tmp, -2 * sum(dnorm(dat$yi, coef(res1), sqrt(dat$vi+res1$tau2), log=TRUE)) + 2*2, tolerance=.tol[["fit"]]) tmp <- AIC(res1, res2) expect_equivalent(tmp, structure(list(df = c(2, 3), AIC = c(29.3302, 21.3713)), .Names = c("df", "AIC"), row.names = c("res1", "res2"), class = "data.frame"), tolerance=.tol[["fit"]]) tmp <- BIC(res1) expect_equivalent(tmp, 30.4601, tolerance=.tol[["fit"]]) expect_equivalent(tmp, -2 * sum(dnorm(dat$yi, coef(res1), sqrt(dat$vi+res1$tau2), log=TRUE)) + 2*log(res1$k), tolerance=.tol[["fit"]]) tmp <- BIC(res1, res2) expect_equivalent(tmp, structure(list(df = c(2, 3), BIC = c(30.4601, 23.0662)), .Names = c("df", "BIC"), row.names = c("res1", "res2"), class = "data.frame"), tolerance=.tol[["fit"]]) tmp <- c(fitstats(res1)) expect_equivalent(tmp, c(-12.6651, 37.1160, 29.3302, 30.4601, 30.5302), tolerance=.tol[["fit"]]) tmp <- fitstats(res1, res2) expect_equivalent(tmp, structure(list(res1 = c(-12.6651, 37.116, 29.3302, 30.4601, 30.5302), res2 = c(-7.6857, 27.1572, 21.3713, 23.0662, 24.038)), .Names = c("res1", "res2"), row.names = c("logLik:", "deviance:", "AIC:", "BIC:", "AICc:"), class = "data.frame"), tolerance=.tol[["fit"]]) tmp <- nobs(res1) expect_equivalent(tmp, 13) tmp <- df.residual(res1) expect_equivalent(tmp, 12) }) test_that("fit statistics are correct for rma.mv().", { ### load data dat <- dat.berkey1998 ### construct variance-covariance matrix of the observed outcomes V <- bldiag(lapply(split(dat[,c("v1i", "v2i")], dat$trial), as.matrix)) ### multiple outcomes random-effects model (with ML estimation) res <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat, method="ML", sparse=.sparse) tmp <- c(logLik(res)) expect_equivalent(tmp, 5.8407, tolerance=.tol[["fit"]]) tmp <- deviance(res) expect_equivalent(tmp, 25.6621, tolerance=.tol[["fit"]]) tmp <- AIC(res) expect_equivalent(tmp, -1.6813, tolerance=.tol[["fit"]]) expect_equivalent(tmp, -2 * c(logLik(res)) + 2*5, tolerance=.tol[["fit"]]) tmp <- BIC(res) expect_equivalent(tmp, -0.1684, tolerance=.tol[["fit"]]) expect_equivalent(tmp, -2 * c(logLik(res)) + 5*log(res$k), tolerance=.tol[["fit"]]) tmp <- c(fitstats(res)) expect_equivalent(tmp, c(5.8407, 25.6621, -1.6813, -0.1684, 13.3187), tolerance=.tol[["fit"]]) tmp <- nobs(res) expect_equivalent(tmp, 10) tmp <- df.residual(res) expect_equivalent(tmp, 8) }) rm(list=ls()) metafor/tests/testthat/test_tips_regression_with_rma.r0000644000176200001440000000405214712730561023253 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/tips:regression_with_rma context("Checking tip: rma() results match up with those from lm()") source("settings.r") test_that("results for rma() and lm() match for method='FE'.", { stackloss$vi <- 0 res.lm <- lm(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc., data=stackloss) res.rma <- rma(stack.loss, vi, mods = ~ Air.Flow + Water.Temp + Acid.Conc., data=stackloss, test="knha", control=list(REMLf=FALSE)) ### log likelihood (REML) should be the same expect_equivalent(logLik(res.lm, REML=TRUE), logLik(res.rma), tolerance=.tol[["fit"]]) ### coefficients should be the same expect_equivalent(coef(res.lm), coef(res.rma), tolerance=.tol[["coef"]]) ### var-cov matrix should be the same expect_equivalent(matrix(vcov(res.lm), nrow=4, ncol=4), matrix(vcov(res.rma), nrow=4, ncol=4), tolerance=.tol[["var"]]) ### fitted values should be the same expect_equivalent(fitted(res.lm), fitted(res.rma), tolerance=.tol[["pred"]]) ### standardized residuals should be the same expect_equivalent(rstandard(res.lm), rstandard(res.rma)$z, tolerance=.tol[["test"]]) ### studentized residuals should be the same expect_equivalent(rstudent(res.lm), rstudent(res.rma)$z, tolerance=.tol[["test"]]) ### hat values should be the same expect_equivalent(hatvalues(res.lm), hatvalues(res.rma), tolerance=.tol[["inf"]]) ### dffits should be the same expect_equivalent(dffits(res.lm), influence(res.rma)$inf$dffits, tolerance=.tol[["inf"]]) ### covratios should be the same expect_equivalent(covratio(res.lm), influence(res.rma)$inf$cov.r, tolerance=.tol[["inf"]]) ### dfbetas should be the same expect_equivalent(as.matrix(dfbetas(res.lm)), as.matrix(dfbetas(res.rma)), tolerance=.tol[["inf"]]) ### Cook's distancs should differ by a factor of p expect_equivalent(cooks.distance(res.lm), cooks.distance(res.rma)/res.rma$p, tolerance=.tol[["inf"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_vec2mat.r0000644000176200001440000000166614712730600020520 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: vec2mat() function") source("settings.r") test_that("vec2mat() works correctly.", { sav <- vec2mat(1:6, corr=FALSE) expect_identical(sav, structure(c(NA, 1, 2, 3, 1, NA, 4, 5, 2, 4, NA, 6, 3, 5, 6, NA), .Dim = c(4L, 4L))) sav <- vec2mat(round(seq(0.2, 0.7, by=0.1), 1), corr=TRUE) expect_identical(sav, structure(c(1, 0.2, 0.3, 0.4, 0.2, 1, 0.5, 0.6, 0.3, 0.5, 1, 0.7, 0.4, 0.6, 0.7, 1), .Dim = c(4L, 4L))) sav <- vec2mat(1:10, diag=TRUE) expect_identical(sav, structure(c(1, 2, 3, 4, 2, 5, 6, 7, 3, 6, 8, 9, 4, 7, 9, 10), .Dim = c(4L, 4L))) sav <- vec2mat(1:6, corr=FALSE, dimnames=c("A","B","C","D")) expect_identical(sav, structure(c(NA, 1, 2, 3, 1, NA, 4, 5, 2, 4, NA, 6, 3, 5, 6, NA), .Dim = c(4L, 4L), .Dimnames = list(c("A", "B", "C", "D"), c("A", "B", "C", "D")))) }) rm(list=ls()) metafor/tests/testthat/test_misc_escalc.r0000644000176200001440000004256714712730640020422 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: escalc() function") source("settings.r") test_that("escalc() works correctly for measure='RR'", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) expect_equivalent(dat$yi[1], -0.8893, tolerance=.tol[["est"]]) expect_equivalent(dat$vi[1], 0.3256, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='PHI/YUQ/YUY/RTET/PBIT/OR2D/OR2DN'", { ### see Table 13.4 (p. 242) in the Handbook of Research Synthesis and Meta-Analysis dat <- escalc(measure="PHI", ai=135, bi=15, ci=40, di=10) sav <- summary(dat) expect_equivalent(sav$yi, 0.1309, tolerance=.tol[["est"]]) expect_equivalent(sav$sei, 0.0789, tolerance=.tol[["var"]]) dat <- escalc(measure="YUQ", ai=135, bi=15, ci=40, di=10) sav <- summary(dat) expect_equivalent(sav$yi, 0.3846, tolerance=.tol[["est"]]) expect_equivalent(sav$sei, 0.1901, tolerance=.tol[["var"]]) dat <- escalc(measure="YUY", ai=135, bi=15, ci=40, di=10) sav <- summary(dat) expect_equivalent(sav$yi, 0.2000, tolerance=.tol[["est"]]) expect_equivalent(sav$sei, 0.1071, tolerance=.tol[["var"]]) dat <- escalc(measure="RTET", ai=135, bi=15, ci=40, di=10) sav <- summary(dat) expect_equivalent(sav$yi, 0.2603, tolerance=.tol[["est"]]) expect_equivalent(sav$sei, 0.1423, tolerance=.tol[["var"]]) dat <- escalc(measure="PBIT", ai=135, bi=15, ci=40, di=10) sav <- summary(dat) expect_equivalent(sav$yi, 0.4399, tolerance=.tol[["est"]]) expect_equivalent(sav$sei, 0.2456, tolerance=.tol[["var"]]) dat <- escalc(measure="OR2D", ai=135, bi=15, ci=40, di=10) sav <- summary(dat) expect_equivalent(sav$yi, 0.4471, tolerance=.tol[["est"]]) expect_equivalent(sav$sei, 0.2460, tolerance=.tol[["var"]]) dat <- escalc(measure="OR2DN", ai=135, bi=15, ci=40, di=10) sav <- summary(dat) expect_equivalent(sav$yi, 0.4915, tolerance=.tol[["est"]]) expect_equivalent(sav$sei, 0.2704, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='SMD/SMDH/ROM'", { dat <- dat.normand1999 sav <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4) expect_equivalent(sav$yi, c(-0.3552, -0.3479, -2.3176, -1.8880), tolerance=.tol[["est"]]) expect_equivalent(sav$vi, c( 0.0131, 0.0645, 0.0458, 0.1606), tolerance=.tol[["var"]]) sav <- escalc(measure="SMDH", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4) expect_equivalent(sav$yi, c(-0.3553, -0.3465, -2.3018, -1.8880), tolerance=.tol[["est"]]) expect_equivalent(sav$vi, c( 0.0132, 0.0674, 0.0515, 0.1961), tolerance=.tol[["var"]]) sav <- escalc(measure="ROM", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4) expect_equivalent(sav$yi, c(-0.3102, -0.0715, -0.6202, -0.7303), tolerance=.tol[["est"]]) expect_equivalent(sav$vi, c( 0.0094, 0.0028, 0.0018, 0.0119), tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='CLES/AUC/CLESN/AUCN'", { # dataset Table 1 from Hanley & McNeil (1982) dat <- data.frame(status = rep(c(0,1), times=c(58,51)), x = c(rep(1:5, times=c(33,6,6,11,2)), rep(1:5, times=c(3,2,2,11,33)))) n1 <- sum(dat$status == 1) n0 <- sum(dat$status == 0) x1 <- dat$x[dat$status == 1] x0 <- dat$x[dat$status == 0] mean1 <- mean(x1) mean0 <- mean(x0) sd1 <- sd(x1) sd0 <- sd(x0) auc <- (mean(rank(c(x1,x0))[1:n1]) - mean(rank(c(x1,x0))[(n1+1):(n1+n0)])) / (n1+n0) + 1/2 sav <- escalc(measure="AUC", ai=auc, n1i=n1, n2i=n0) expect_equivalent(sav$yi, 0.893171, tolerance=.tol[["est"]]) expect_equivalent(sav$vi, 0.001051, tolerance=.tol[["var"]]) sav <- escalc(measure="AUC", ai=auc, n1i=n1, n2i=n0, vtype="LS2") expect_equivalent(sav$yi, 0.893171, tolerance=.tol[["est"]]) expect_equivalent(sav$vi, 0.001096, tolerance=.tol[["var"]]) sav <- escalc(measure="AUCN", m1i=mean1, m2i=mean0, sd1i=sd1, sd2i=sd0, n1i=n1, n2i=n0) expect_equivalent(sav$yi, 0.909651, tolerance=.tol[["est"]]) expect_equivalent(sav$vi, 0.000717, tolerance=.tol[["var"]]) sav <- escalc(measure="AUCN", m1i=mean1, m2i=mean0, sd1i=sd1, sd2i=sd0, n1i=n1, n2i=n0) sav <- escalc(measure="AUCN", ai=sav$yi, sd1i=sd1, sd2i=sd0, n1i=n1, n2i=n0) expect_equivalent(sav$yi, 0.909651, tolerance=.tol[["est"]]) expect_equivalent(sav$vi, 0.000717, tolerance=.tol[["var"]]) sav <- escalc(measure="AUCN", m1i=mean1, m2i=mean0, sd1i=sd1, sd2i=sd0, n1i=n1, n2i=n0) sav <- escalc(measure="AUCN", ai=sav$yi, n1i=n1, n2i=n0) expect_equivalent(sav$yi, 0.909651, tolerance=.tol[["est"]]) expect_equivalent(sav$vi, 0.000707, tolerance=.tol[["var"]]) # uses vtype="HO" sav <- escalc(measure="SMD", m1i=mean1, m2i=mean0, sd1i=sd1, sd2i=sd0, n1i=n1, n2i=n0, correct=FALSE) sav <- escalc(measure="AUCN", di=sav$yi, n1i=n1, n2i=n0) expect_equivalent(sav$yi, 0.908487, tolerance=.tol[["est"]]) # assumes HO expect_equivalent(sav$vi, 0.000717, tolerance=.tol[["var"]]) # uses vtype="HO" }) test_that("escalc() works correctly for measure='CVR/VR'", { dat <- dat.normand1999 dat <- escalc(measure="CVR", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1) expect_equivalent(dat$yi[1], 0.0014, tolerance=.tol[["est"]]) expect_equivalent(dat$vi[1], 0.0159, tolerance=.tol[["var"]]) dat <- dat.normand1999 dat <- escalc(measure="VR", sd1i=sd1i, n1i=n1i, sd2i=sd2i, n2i=n2i, data=dat, subset=1) expect_equivalent(dat$yi[1], -0.3087, tolerance=.tol[["est"]]) expect_equivalent(dat$vi[1], 0.0065, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='RPB/RBIS'", { x <- c(20, 31, 18, 22, 30, 16, 28, 24, 23, 27, 1, 4, 8, 15, 9, 11, 11, 6, 8, 4) y <- c(3, 3, 4, 5, 6, 4, 7, 6, 5, 4, 3, 5, 1, 5, 2, 4, 6, 4, 2, 4) xb <- ifelse(x > median(x), 1, 0) sav <- escalc(measure="RPB", m1i=mean(y[xb==1]), sd1i=sd(y[xb==1]), n1i=sum(xb==1), m2i=mean(y[xb==0]), sd2i=sd(y[xb==0]), n2i=sum(xb==0)) expect_equivalent(sav$yi, 0.3685, tolerance=.tol[["est"]]) expect_equivalent(sav$vi, 0.0384, tolerance=.tol[["var"]]) sav <- escalc(measure="RBIS", m1i=mean(y[xb==1]), sd1i=sd(y[xb==1]), n1i=sum(xb==1), m2i=mean(y[xb==0]), sd2i=sd(y[xb==0]), n2i=sum(xb==0)) expect_equivalent(sav$yi, 0.4619, tolerance=.tol[["est"]]) expect_equivalent(sav$vi, 0.0570, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='D2ORL/D2ORN'", { dat <- dat.gibson2002 sav <- escalc(measure="D2ORL", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4) expect_equivalent(sav$yi, c(-0.4315, -0.9285, 0.5932, -0.1890), tolerance=.tol[["est"]]) expect_equivalent(sav$vi, c( 0.1276, 0.0493, 0.3204, 0.0690), tolerance=.tol[["var"]]) sav <- escalc(measure="D2ORN", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, subset=1:4) expect_equivalent(sav$yi, c(-0.3925, -0.8447, 0.5397, -0.1719), tolerance=.tol[["est"]]) expect_equivalent(sav$vi, c( 0.1056, 0.0408, 0.2651, 0.0571), tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='COR/UCOR/ZCOR'", { dat <- dat.mcdaniel1994 sav <- escalc(measure="COR", ri=ri, ni=ni, data=dat, subset=c(1,13,33,102)) expect_equivalent(sav$yi, c(0.0000, 0.6200, 0.9900, -0.1300), tolerance=.tol[["est"]]) expect_equivalent(sav$vi, c(0.0082, 0.0271, 0.0001, 0.0242), tolerance=.tol[["var"]]) sav <- escalc(measure="UCOR", ri=ri, ni=ni, data=dat, subset=c(1,13,33,102)) expect_equivalent(sav$yi, c(0.0000, 0.6363, 0.9925, -0.1317), tolerance=.tol[["est"]]) expect_equivalent(sav$vi, c(0.0082, 0.0253, 0.0000, 0.0241), tolerance=.tol[["var"]]) sav <- escalc(measure="UCOR", ri=ri, ni=ni, data=dat, vtype="UB", subset=c(1,13,33,102)) expect_equivalent(sav$vi, c(0.0084, 0.0283, 0.0000, 0.0261), tolerance=.tol[["var"]]) sav <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat, subset=c(1,13,33,102)) expect_equivalent(sav$yi, c(0.0000, 0.7250, 2.6467, -0.1307), tolerance=.tol[["est"]]) expect_equivalent(sav$vi, c(0.0083, 0.0833, 0.3333, 0.0263), tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='PCOR/ZPCOR/SPCOR'", { dat <- dat.aloe2013 dat <- escalc(measure="PCOR", ti=tval, ni=n, mi=preds, data=dat) expect_equivalent(dat$yi[1], 0.3012, tolerance=.tol[["est"]]) expect_equivalent(dat$vi[1], 0.0039, tolerance=.tol[["var"]]) dat <- escalc(measure="ZPCOR", ti=tval, ni=n, mi=preds, data=dat) expect_equivalent(dat$yi[1], 0.3108, tolerance=.tol[["est"]]) expect_equivalent(dat$vi[1], 0.0047, tolerance=.tol[["var"]]) dat <- escalc(measure="SPCOR", ti=tval, ni=n, mi=preds, r2i=R2, data=dat) expect_equivalent(dat$yi[1], 0.2754, tolerance=.tol[["est"]]) expect_equivalent(dat$vi[1], 0.0033, tolerance=.tol[["var"]]) dat <- escalc(measure="ZSPCOR", ti=tval, ni=n, mi=preds, r2i=R2, data=dat) expect_equivalent(dat$yi[1], 0.2827, tolerance=.tol[["est"]]) expect_equivalent(dat$vi[1], 0.0038, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='MC/SMCRH'", { dat <- escalc(measure="MC", m1i=26, m2i=22, sd1i=sqrt(30), sd2i=sqrt(20), ni=60, ri=0.7) expect_equivalent(dat$yi, 4.0000, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.2618, tolerance=.tol[["var"]]) dat <- escalc(measure="SMCRH", m1i=26, m2i=22, sd1i=sqrt(30), sd2i=sqrt(20), ni=60, ri=0.7) expect_equivalent(dat$yi, 0.7210, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0133, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='PAS'", { dat <- escalc(measure="PAS", xi=10, ni=20) expect_equivalent(dat$yi, 0.7854, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0125, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='IRS/IRFT'", { dat <- escalc(measure="IRS", xi=10, ti=20) expect_equivalent(dat$yi, 0.7071, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0125, tolerance=.tol[["var"]]) dat <- escalc(measure="IRFT", xi=10, ti=20) expect_equivalent(dat$yi, 0.7244, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0125, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='ROMC'", { dat <- escalc(measure="ROMC", m1i=26, m2i=22, sd1i=sqrt(30), sd2i=sqrt(20), ni=60, ri=0.7) expect_equivalent(dat$yi, 0.1671, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0004, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='MPRD'", { dat <- escalc(measure="MPRD", ai=20, bi=10, ci=5, di=20) expect_equivalent(dat$yi, 0.0909, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0048, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='MPRR'", { dat <- escalc(measure="MPRR", ai=20, bi=10, ci=5, di=20) expect_equivalent(dat$yi, 0.1823, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0200, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='MPOR'", { dat <- escalc(measure="MPOR", ai=20, bi=10, ci=5, di=20) expect_equivalent(dat$yi, 0.3646, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0782, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='MPORC'", { dat <- escalc(measure="MPORC", ai=20, bi=10, ci=5, di=20) expect_equivalent(dat$yi, 0.6931, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.3000, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='MPPETO'", { dat <- escalc(measure="MPPETO", ai=20, bi=10, ci=5, di=20) expect_equivalent(dat$yi, 0.6667, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.2667, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='IRSD'", { dat <- escalc(measure="IRSD", x1i=10, x2i=6, t1i=20, t2i=20) expect_equivalent(dat$yi, 0.1594, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0250, tolerance=.tol[["var"]]) }) test_that("escalc() works correctly for measure='MNLN/CVLN/SDLN'", { dat <- escalc(measure="MNLN", mi=10, sdi=2, ni=20) expect_equivalent(dat$yi, 2.3026, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0020, tolerance=.tol[["var"]]) dat <- escalc(measure="CVLN", mi=10, sdi=2, ni=20) expect_equivalent(dat$yi, -1.5831, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0283, tolerance=.tol[["var"]]) dat <- escalc(measure="SDLN", sdi=2, ni=20) expect_equivalent(dat$yi, 0.7195, tolerance=.tol[["est"]]) expect_equivalent(dat$vi, 0.0263, tolerance=.tol[["var"]]) }) test_that("'var.names' argument works correctly for 'escalc' objects.", { dat <- dat.bcg dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, var.names=c("y1","v1"), slab=paste0(author, ", ", year)) dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, var.names=c("y2","v2"), slab=paste0(author, ", ", year)) expect_identical(tail(names(dat), 4), c("y1","v1","y2","v2")) expect_identical(attributes(dat)$yi.names, c("y2","y1")) expect_identical(attributes(dat)$vi.names, c("v2","v1")) expect_identical(attr(dat$y1, "measure"), "RR") expect_identical(attr(dat$y2, "measure"), "OR") }) test_that("`[`, cbind(), and rbind() work correctly for 'escalc' objects.", { dat <- dat.bcg dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, var.names=c("y1","v1"), slab=paste0(author, ", ", year)) dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, var.names=c("y2","v2"), slab=paste0(author, ", ", year)) dat <- cbind(dat[,1:9], dat[,c(12:13,10:11)]) expect_identical(tail(names(dat), 4), c("y2","v2","y1","v1")) expect_identical(attributes(dat)$yi.names, c("y2","y1")) expect_identical(attributes(dat)$vi.names, c("v2","v1")) expect_identical(attr(dat$y1, "measure"), "RR") expect_identical(attr(dat$y2, "measure"), "OR") dat <- rbind(dat[13,], dat[1:12,]) expect_equivalent(attr(dat$y2, "ni"), rowSums(dat[,c("tpos", "tneg", "cpos", "cneg")])) expect_identical(attr(dat$y2, "slab"), paste0(dat$author, ", ", dat$year)) dat <- dat.bcg dat1 <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, var.names=c("y1","v1"), slab=paste0(author, ", ", year)) dat2 <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, var.names=c("y1","v1"), slab=paste0(author, ", ", year)) dat1 <- dat1[1:4,] dat2 <- dat2[4:1,] dat <- rbind(dat1, dat2) expect_equivalent(attr(dat$y1, "ni"), rowSums(dat[,c("tpos", "tneg", "cpos", "cneg")])) attr(dat1$y1, "ni") <- NULL dat <- rbind(dat1, dat2) expect_null(attr(dat$y1, "ni")) }) test_that("summary() of 'escalc' objects works correctly with the 'out.names' argument.", { dat <- dat.bcg dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, var.names=c("y1","v1"), slab=paste0(author, ", ", year)) dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, var.names=c("y2","v2"), slab=paste0(author, ", ", year)) dat <- summary(dat, var.names=c("y1","v1"), out.names=c("sei1","zi1","pval1","ci.lb1","ci.ub1")) dat <- summary(dat, var.names=c("y2","v2"), out.names=c("sei2","zi2","pval2","ci.lb2","ci.ub2")) expect_equivalent(with(dat, c(zi1[1], sei1[1], ci.lb1[1], ci.ub1[1])), c(-1.5586, 0.5706, -2.0077, 0.2290), tolerance=.tol[["est"]]) expect_equivalent(with(dat, c(zi2[1], sei2[1], ci.lb2[1], ci.ub2[1])), c(-1.5708, 0.5976, -2.1100, 0.2326), tolerance=.tol[["est"]]) dat <- dat[,1:11] expect_identical(attr(dat, "yi.names"), "y1") expect_identical(attr(dat, "vi.names"), "v1") }) test_that("'subset' and 'include' arguments work correctly in 'escalc'.", { all <- dat.bcg all$tpos[1] <- NA dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=all, subset=1:4) expect_equivalent(c(dat$yi), c(NA, -1.5854, -1.3481, -1.4416), tolerance=.tol[["est"]]) dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=all, subset=1:4, include=1:3) expect_equivalent(c(dat$yi), c(NA, -1.5854, -1.3481, NA), tolerance=.tol[["est"]]) expect_identical(attributes(dat$yi)$ni, c(NA, 609L, 451L, NA)) dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=all, subset=1:4, include=1:3, add.measure=TRUE) expect_identical(dat$measure, c("", "RR", "RR", "")) attributes(dat$yi)$ni[3] <- 1L dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, include=3:4, add.measure=TRUE) expect_equivalent(c(dat$yi), c(NA, -1.5854, -1.3863, -1.4564), tolerance=.tol[["est"]]) expect_identical(dat$measure, c("", "RR", "OR", "OR")) expect_identical(attributes(dat$yi)$ni, c(NA, 609L, 451L, 26465L)) dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=all, subset=1:4, include=1:3, add.measure=TRUE) attributes(dat$yi)$ni[3] <- 1L dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, include=3:4, replace=FALSE, add.measure=TRUE) expect_equivalent(c(dat$yi), c(NA, -1.5854, -1.3481, -1.4564), tolerance=.tol[["est"]]) expect_identical(dat$measure, c("", "RR", "RR", "OR")) expect_identical(attributes(dat$yi)$ni, c(NA, 609L, 1L, 26465L)) dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=all, subset=1:4, include=1:3, append=FALSE, add.measure=TRUE) expect_equivalent(c(dat$yi), c(NA, -1.5854, -1.3481, NA), tolerance=.tol[["est"]]) expect_identical(dat$measure, c("", "RR", "RR", "")) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_vanhouwelingen1993.r0000644000176200001440000000776614712730525025156 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:vanhouwelingen1993 context("Checking analysis example: vanhouwelingen1993") source("settings.r") ### load data dat <- dat.collins1985a test_that("the log likelihood plot can be created.", { skip_on_cran() png(filename="images/test_analysis_example_vanhouwelingen1993_llplot_light_test.png", res=200, width=1800, height=1200, type="cairo") par(mar=c(5,5,1,2)) expect_warning(llplot(measure="OR", ai=b.xci, n1i=nci, ci=b.xti, n2i=nti, data=dat, xlim=c(-4,4), lwd=1, col="black", refline=NA, drop00=FALSE)) dev.off() expect_true(.vistest("images/test_analysis_example_vanhouwelingen1993_llplot_light_test.png", "images/test_analysis_example_vanhouwelingen1993_llplot_light.png")) png(filename="images/test_analysis_example_vanhouwelingen1993_llplot_dark_test.png", res=200, width=1800, height=1200, type="cairo") setmfopt(theme="dark") par(mar=c(5,5,1,2)) expect_warning(llplot(measure="OR", ai=b.xci, n1i=nci, ci=b.xti, n2i=nti, data=dat, xlim=c(-4,4), lwd=1, col="white", refline=NA, drop00=FALSE)) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_analysis_example_vanhouwelingen1993_llplot_dark_test.png", "images/test_analysis_example_vanhouwelingen1993_llplot_dark.png")) }) test_that("results of the equal-effects conditional logistic model are correct.", { skip_on_cran() expect_warning(res <- rma.glmm(measure="OR", ai=b.xci, n1i=nci, ci=b.xti, n2i=nti, data=dat, model="CM.EL", method="EE")) ### compare with results on page 2275 (in text) expect_equivalent(coef(res), 0.1216, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.0995, tolerance=.tol[["se"]]) expect_equivalent(res$ci.lb, -0.0734, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.3165, tolerance=.tol[["ci"]]) ### 0.31 in paper (rounded a bit more heavily, so 32-bit and 64-bit versions give same result) expect_equivalent(c(logLik(res)), -53.6789, tolerance=.tol[["fit"]]) ### run with control(dnchgcalc="dnoncenhypergeom") expect_warning(res <- rma.glmm(measure="OR", ai=b.xci, n1i=nci, ci=b.xti, n2i=nti, data=dat, model="CM.EL", method="EE", control=list(dnchgcalc="dnoncenhypergeom"))) ### some very minor discrepancies expect_equivalent(coef(res), 0.1216, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.0996, tolerance=.tol[["se"]]) expect_equivalent(res$ci.lb, -0.0735, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.3167, tolerance=.tol[["ci"]]) expect_equivalent(c(logLik(res)), -53.6789, tolerance=.tol[["fit"]]) }) test_that("results of the random-effects conditional logistic model are correct.", { skip_on_cran() expect_warning(res <- rma.glmm(measure="OR", ai=b.xci, n1i=nci, ci=b.xti, n2i=nti, data=dat, model="CM.EL", method="ML")) ### compare with results on page 2277 (in text) expect_equivalent(coef(res), 0.1744, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.1364, tolerance=.tol[["se"]]) expect_equivalent(res$ci.lb, -0.0929, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.4417, tolerance=.tol[["ci"]]) expect_equivalent(c(logLik(res)), -52.99009, tolerance=.tol[["fit"]]) expect_equivalent(res$tau2, 0.1192, tolerance=.tol[["var"]]) ### run with control(dnchgcalc="dnoncenhypergeom") expect_warning(res <- rma.glmm(measure="OR", ai=b.xci, n1i=nci, ci=b.xti, n2i=nti, data=dat, model="CM.EL", method="ML", control=list(dnchgcalc="dnoncenhypergeom"))) ### no discrepancies expect_equivalent(coef(res), 0.1744, tolerance=.tol[["coef"]]) expect_equivalent(se(res), 0.1364, tolerance=.tol[["se"]]) expect_equivalent(res$ci.lb, -0.0930, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, 0.4418, tolerance=.tol[["ci"]]) expect_equivalent(c(logLik(res)), -52.99009, tolerance=.tol[["fit"]]) expect_equivalent(res$tau2, 0.1192, tolerance=.tol[["var"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_diagnostics_rma.mv.r0000644000176200001440000002730014712730641022744 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: model diagnostic functions for rma.mv()") source("settings.r") dat1 <- dat.konstantopoulos2011 dat1 <- dat1[dat1$district %in% c(11, 12, 18, 71, 108, 644),] rownames(dat1) <- 1:nrow(dat1) dat1$yi[dat1$district %in% 12] <- NA ### all values for district 12 are missing dat1$yi[dat1$district %in% 18 & dat1$school == 2] <- NA ### second value for district 18 is missing dat1$yi[dat1$district %in% 108] <- dat1$yi[dat1$district %in% 108] + 1 ### increase district level variance dat1$district11 <- ifelse(dat1$district == 11, 1, 0) ### dummy for district 11 dat1$study53 <- ifelse(dat1$study == 53, 1, 0) ### dummies for studies in district 644 dat1$study54 <- ifelse(dat1$study == 54, 1, 0) ### dummies for studies in district 644 dat1$study55 <- ifelse(dat1$study == 55, 1, 0) ### dummies for studies in district 644 dat1$study56 <- ifelse(dat1$study == 56, 1, 0) ### dummies for studies in district 644 #set.seed(123214) #dat2 <- dat1[sample(nrow(dat1)),] ### reshuffled dataset dat2 <- dat1[c(23, 2, 6, 3, 19, 14, 20, 12, 21, 9, 13, 7, 11, 8, 10, 22, 18, 1, 5, 4, 17, 15, 16),] res1 <- suppressWarnings(rma.mv(yi, vi, mods = ~ district11 + study53 + study54 + study55 + study56, random = ~ 1 | district/school, data=dat1, slab=study, sparse=.sparse)) res2 <- suppressWarnings(rma.mv(yi, vi, mods = ~ district11 + study53 + study54 + study55 + study56, random = ~ 1 | district/school, data=dat2, slab=study, sparse=.sparse)) test_that("model diagnostic functions work with 'na.omit'.", { skip_on_cran() options(na.action="na.omit") sav1 <- rstandard(res1) sav2 <- rstandard(res2) sav2 <- sav2[match(sav1$slab, sav2$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$resid), rep(FALSE,18)) sav1 <- rstandard(res1, cluster=dat1$district) sav2 <- rstandard(res2, cluster=dat2$district) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), rep(FALSE,18)) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- rstudent(res1) sav2 <- rstudent(res2) sav2 <- sav2[match(sav1$slab, sav2$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$resid), c(rep(FALSE,14), rep(TRUE,4))) sav1 <- rstudent(res1, cluster=dat1$district) sav2 <- rstudent(res2, cluster=dat2$district) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,4), rep(FALSE,10), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, parallel="snow") sav2 <- rstudent(res2, cluster=dat2$district, parallel="snow") sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,4), rep(FALSE,10), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- rstudent(res2, cluster=dat2$district, reestimate=FALSE) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,4), rep(FALSE,10), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- rstudent(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,4), rep(FALSE,10), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1) sav2 <- cooks.distance(res2) sav2 <- sav2[match(names(sav1), names(sav2))] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(FALSE,14), rep(TRUE,4))) sav1 <- cooks.distance(res1, cluster=dat1$district) sav2 <- cooks.distance(res2, cluster=dat2$district) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, parallel="snow") sav2 <- cooks.distance(res2, cluster=dat2$district, parallel="snow") expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- cooks.distance(res2, cluster=dat2$district, reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- cooks.distance(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1) sav2 <- dfbetas(res2) sav2 <- sav2[match(rownames(sav1), rownames(sav2)),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(FALSE,14), rep(TRUE,4))) sav1 <- dfbetas(res1, cluster=dat1$district) sav2 <- dfbetas(res2, cluster=dat2$district) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, parallel="snow") sav2 <- dfbetas(res2, cluster=dat2$district, parallel="snow") expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- dfbetas(res2, cluster=dat2$district, reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- dfbetas(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- ranef(res1) sav2 <- ranef(res2) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$district$intrcpt), rep(FALSE,5)) expect_equivalent(is.na(sav1$`district/school`$intrcpt), rep(FALSE,18)) }) test_that("model diagnostic functions work with 'na.pass'.", { skip_on_cran() options(na.action="na.pass") sav1 <- rstandard(res1) sav2 <- rstandard(res2) sav2 <- sav2[match(sav1$slab, sav2$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$resid), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,13))) sav1 <- rstandard(res1, cluster=dat1$district) sav2 <- rstandard(res2, cluster=dat2$district) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,13))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- rstudent(res1) sav2 <- rstudent(res2) sav2 <- sav2[match(sav1$slab, sav2$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$resid), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) sav1 <- rstudent(res1, cluster=dat1$district) sav2 <- rstudent(res2, cluster=dat2$district) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,8), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, parallel="snow") sav2 <- rstudent(res2, cluster=dat2$district, parallel="snow") sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,8), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- rstudent(res2, cluster=dat2$district, reestimate=FALSE) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,8), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- rstudent(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,8), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1) sav2 <- cooks.distance(res2) sav2 <- sav2[match(names(sav1), names(sav2))] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) sav1 <- cooks.distance(res1, cluster=dat1$district) sav2 <- cooks.distance(res2, cluster=dat2$district) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, parallel="snow") sav2 <- cooks.distance(res2, cluster=dat2$district, parallel="snow") expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- cooks.distance(res2, cluster=dat2$district, reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- cooks.distance(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1) sav2 <- dfbetas(res2) sav2 <- sav2[match(rownames(sav1), rownames(sav2)),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) sav1 <- dfbetas(res1, cluster=dat1$district) sav2 <- dfbetas(res2, cluster=dat2$district) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, parallel="snow") sav2 <- dfbetas(res2, cluster=dat2$district, parallel="snow") expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- dfbetas(res2, cluster=dat2$district, reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- dfbetas(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- ranef(res1) sav2 <- ranef(res2) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$district$intrcpt), c(FALSE, TRUE, rep(FALSE,4))) expect_equivalent(is.na(sav1$`district/school`$intrcpt), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,13))) options(na.action="na.omit") }) rm(list=ls()) metafor/tests/testthat/test_misc_anova.r0000644000176200001440000000757114712730650020271 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: anova() function") source("settings.r") test_that("anova() works correctly for comparing nested models.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res1 <- rma(yi, vi, data=dat, method="ML") res2 <- rma(yi ~ ablat, vi, data=dat, method="ML") sav <- anova(res1, res2) out <- capture.output(print(sav)) expect_equivalent(sav$LRT, 9.9588, tolerance=.tol[["test"]]) expect_equivalent(as.data.frame(sav)$LRT[2], 9.9588, tolerance=.tol[["test"]]) res1 <- rma(yi, vi, data=dat, method="REML") res2 <- rma(yi ~ ablat, vi, data=dat, method="REML") expect_warning(sav <- anova(res1, res2)) expect_equivalent(sav$LRT, 8.2301, tolerance=.tol[["test"]]) expect_equivalent(as.data.frame(sav)$LRT[2], 8.2301, tolerance=.tol[["test"]]) }) test_that("anova() works correctly when using the 'btt' argument.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat) sav <- anova(res, btt=3:4) out <- capture.output(print(sav)) expect_equivalent(sav$QM, 1.2850, tolerance=.tol[["test"]]) expect_equivalent(sav$QMp, 0.5260, tolerance=.tol[["pval"]]) expect_equivalent(as.data.frame(sav)$QM, 1.2850, tolerance=.tol[["test"]]) sav <- anova(res, btt="alloc") out <- capture.output(print(sav)) expect_equivalent(sav$QM, 1.2850, tolerance=.tol[["test"]]) expect_equivalent(sav$QMp, 0.5260, tolerance=.tol[["pval"]]) expect_equivalent(as.data.frame(sav)$QM, 1.2850, tolerance=.tol[["test"]]) res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat, test="knha") sav <- anova(res, btt=3:4) out <- capture.output(print(sav)) expect_equivalent(sav$QM, 0.6007, tolerance=.tol[["test"]]) expect_equivalent(sav$QMp, 0.5690, tolerance=.tol[["pval"]]) expect_equivalent(as.data.frame(sav)$Fval, 0.6007, tolerance=.tol[["test"]]) sav <- anova(res, btt=list(2,3:4)) out <- capture.output(print(sav)) expect_equivalent(sapply(sav, function(x) x$QM), c(8.2194, 0.6007), tolerance=.tol[["test"]]) expect_equivalent(sapply(sav, function(x) x$QMp), c(0.0186, 0.5690), tolerance=.tol[["pval"]]) expect_equivalent(as.data.frame(sav)$Fval, c(8.2194, 0.6007), tolerance=.tol[["test"]]) res <- rma(yi, vi, mods = ~ ablat + alloc + year, data=dat, test="knha") sav <- anova(res, btt=as.list(attr(terms(formula(res)), "term.labels"))) expect_equivalent(as.data.frame(sav)$Fval, c(3.0213, 0.6503, 0.1410), tolerance=.tol[["test"]]) }) test_that("anova() works correctly when using the 'X' argument.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat) sav <- anova(res, X=rbind(c(1, 10, 0, 0), c(1, 30, 0, 0), c(1, 50, 0, 0))) out <- capture.output(print(sav)) expect_equivalent(sav$zval, c(0.0588, -1.7964, -3.1210), tolerance=.tol[["test"]]) expect_equivalent(as.data.frame(sav)$zval, c(0.0588, -1.7964, -3.1210), tolerance=.tol[["test"]]) sav <- anova(res, X=rbind(c(1, 10, 0, 0), c(1, 30, 0, 0), c(1, 50, 0, 0)), rhs=-.10) expect_equivalent(sav$zval, c(0.3463, -1.4543, -2.8295), tolerance=.tol[["test"]]) expect_equivalent(as.data.frame(sav)$zval, c(0.3463, -1.4543, -2.8295), tolerance=.tol[["test"]]) res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat, test="knha") sav <- anova(res, X=rbind(c(1, 10, 0, 0), c(1, 10, 1, 0), c(1, 10, 0, 1))) out <- capture.output(print(sav)) expect_equivalent(sav$zval, c(0.0568, -0.8252, 0.2517), tolerance=.tol[["test"]]) expect_equivalent(as.data.frame(sav)$tval, c(0.0568, -0.8252, 0.2517), tolerance=.tol[["test"]]) expect_equivalent(sav$QM, 0.4230, tolerance=.tol[["test"]]) expect_equivalent(sav$QMp, 0.7412, tolerance=.tol[["pval"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_metan_vs_rma.uni_with_dat.bcg.r0000644000176200001440000001274114712730630025040 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: rma.uni() against metan with 'dat.bcg'") source("settings.r") test_that("results match (EE model, measure='RR').", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### compare results with: metan tpos tneg cpos cneg, fixedi nograph rr log res <- rma(yi, vi, data=dat, method="EE") expect_equivalent(c(res$beta), -0.4303, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.5097, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.3509, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -10.6247, tolerance=.tol[["test"]]) ### -10.62 in Stata expect_equivalent(res$QE, 152.2330, tolerance=.tol[["test"]]) ### compare results with: metan tpos tneg cpos cneg, fixedi nograph rr sav <- predict(res, transf=exp) expect_equivalent(sav$pred, 0.6503, tolerance=.tol[["pred"]]) expect_equivalent(sav$ci.lb, 0.6007, tolerance=.tol[["ci"]]) expect_equivalent(sav$ci.ub, 0.7040, tolerance=.tol[["ci"]]) }) test_that("results match (RE model w/ DL estimator, measure='RR').", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### compare results with: metan tpos tneg cpos cneg, randomi nograph rr log res <- rma(yi, vi, data=dat, method="DL") expect_equivalent(c(res$beta), -0.7141, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -1.0644, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.3638, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -3.9952, tolerance=.tol[["test"]]) ### 4.00 in Stata expect_equivalent(res$tau2, 0.3088, tolerance=.tol[["var"]]) expect_equivalent(res$I2, 92.1173, tolerance=.tol[["het"]]) ### compare results with: metan tpos tneg cpos cneg, randomi nograph rr sav <- predict(res, transf=exp) expect_equivalent(sav$pred, 0.4896, tolerance=.tol[["pred"]]) expect_equivalent(sav$ci.lb, 0.3449, tolerance=.tol[["ci"]]) expect_equivalent(sav$ci.ub, 0.6950, tolerance=.tol[["ci"]]) }) test_that("results match (EE model, measure='OR').", { dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### compare results with: metan tpos tneg cpos cneg, fixedi nograph or log res <- rma(yi, vi, data=dat, method="EE") expect_equivalent(c(res$beta), -0.4361, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.5190, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.3533, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -10.3190, tolerance=.tol[["test"]]) ### -10.32 in Stata expect_equivalent(res$QE, 163.1649, tolerance=.tol[["test"]]) ### compare results with: metan tpos tneg cpos cneg, fixedi nograph or sav <- predict(res, transf=exp) expect_equivalent(sav$pred, 0.6465, tolerance=.tol[["pred"]]) expect_equivalent(sav$ci.lb, 0.5951, tolerance=.tol[["ci"]]) expect_equivalent(sav$ci.ub, 0.7024, tolerance=.tol[["ci"]]) }) test_that("results match (RE model w/ DL estimator, measure='OR').", { dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### compare results with: metan tpos tneg cpos cneg, randomi nograph or log res <- rma(yi, vi, data=dat, method="DL") expect_equivalent(c(res$beta), -0.7474, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -1.1242, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.3706, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -3.8873, tolerance=.tol[["test"]]) ### -3.89 in Stata expect_equivalent(res$tau2, 0.3663, tolerance=.tol[["var"]]) expect_equivalent(res$I2, 92.6455, tolerance=.tol[["het"]]) ### compare results with: metan tpos tneg cpos cneg, randomi nograph or sav <- predict(res, transf=exp) expect_equivalent(sav$pred, 0.4736, tolerance=.tol[["pred"]]) expect_equivalent(sav$ci.lb, 0.3249, tolerance=.tol[["ci"]]) expect_equivalent(sav$ci.ub, 0.6903, tolerance=.tol[["ci"]]) }) test_that("results match (EE model, measure='RD').", { dat <- escalc(measure="RD", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### compare results with: metan tpos tneg cpos cneg, fixedi nograph rd res <- rma(yi, vi, data=dat, method="EE") expect_equivalent(c(res$beta), -0.0009, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.0014, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.0005, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -4.0448, tolerance=.tol[["test"]]) ### -4.04 in Stata expect_equivalent(res$QE, 276.4737, tolerance=.tol[["test"]]) }) test_that("results match (RE model w/ DL estimator, measure='RD').", { dat <- escalc(measure="RD", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### compare results with: metan tpos tneg cpos cneg, randomi nograph rd res <- rma(yi, vi, data=dat, method="DL") expect_equivalent(c(res$beta), -0.0071, tolerance=.tol[["coef"]]) expect_equivalent(res$ci.lb, -0.0101, tolerance=.tol[["ci"]]) expect_equivalent(res$ci.ub, -0.0040, tolerance=.tol[["ci"]]) expect_equivalent(res$zval, -4.5128, tolerance=.tol[["test"]]) ### -4.51 in Stata expect_equivalent(res$tau2, 0.0000, tolerance=.tol[["var"]]) expect_equivalent(res$I2, 95.6596, tolerance=.tol[["het"]]) }) #expect_that(rma(yi ~ ablat, vi, data=dat, subset=1:2), throws_error("Number of parameters to be estimated is larger than the number of observations.")) rm(list=ls()) metafor/tests/testthat/test_misc_confint.r0000644000176200001440000000262414607543122020616 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: confint() function") source("settings.r") test_that("confint() works correctly for 'rma.uni' objects.", { dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) res <- rma(yi, vi, data=dat, method="DL") sav <- confint(res, fixed=TRUE, transf=exp) expect_equivalent(sav$fixed, c(0.4896, 0.3449, 0.6950), tolerance=.tol[["ci"]]) expect_equivalent(sav$random[1,], c(0.3088, 0.1197, 1.1115), tolerance=.tol[["var"]]) expect_equivalent(sav$random[3,], c(92.1173, 81.9177, 97.6781), tolerance=.tol[["het"]]) expect_equivalent(sav$random[4,], c(12.6861, 5.5303, 43.0680), tolerance=.tol[["het"]]) sav <- round(as.data.frame(sav), 4) expect_equivalent(sav[,1], c(0.4896, 0.3088, 0.5557, 92.1173, 12.6861)) }) test_that("confint() works correctly for 'rma.mh' objects.", { res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) sav <- confint(res, transf=exp) expect_equivalent(sav$fixed, c(0.6353, 0.5881, 0.6862), tolerance=.tol[["ci"]]) }) test_that("confint() works correctly for 'rma.peto' objects.", { res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) sav <- confint(res, transf=exp) expect_equivalent(sav$fixed, c(0.6222, 0.5746, 0.6738), tolerance=.tol[["ci"]]) }) rm(list=ls()) metafor/tests/testthat/test_misc_coef_se.r0000644000176200001440000000434614712730646020572 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") context("Checking misc: coef() and se() functions") source("settings.r") test_that("coef() and se() works correctly.", { dat <- dat.baskerville2012 res <- rma(smd, se^2, data=dat, method="ML", digits=3) sel <- selmodel(res, type="beta") tmp <- list(beta = c(intrcpt = 0.114740253923052), delta = c(delta.1 = 0.473113053609697, delta.2 = 4.46131624677985)) expect_equivalent(coef(sel)$beta, tmp$beta, tolerance=.tol[["coef"]]) expect_equivalent(coef(sel)$delta, tmp$delta, tolerance=.tol[["coef"]]) expect_equivalent(coef(sel, type="beta"), tmp$beta, tolerance=.tol[["coef"]]) expect_equivalent(coef(sel, type="delta"), tmp$delta, tolerance=.tol[["coef"]]) tmp <- list(beta = c(intrcpt = 0.166413798184622), delta = c(delta.1 = 0.235248084207613, delta.2 = 2.18419833595518)) expect_equivalent(se(sel)$beta, tmp$beta, tolerance=.tol[["se"]]) expect_equivalent(se(sel)$delta, tmp$delta, tolerance=.tol[["se"]]) expect_equivalent(se(sel, type="beta"), tmp$beta, tolerance=.tol[["se"]]) expect_equivalent(se(sel, type="delta"), tmp$delta, tolerance=.tol[["se"]]) dat <- dat.bangertdrowns2004 dat$ni100 <- dat$ni/100 res <- rma(yi, vi, mods = ~ ni100, scale = ~ ni100, data=dat) tmp <- list(beta = c(intrcpt = 0.301681362709591, ni100 = -0.0552663301809239), alpha = c(intrcpt = -1.92087854601148, ni100 = -0.917428772771085)) expect_equivalent(coef(res)$beta, tmp$beta, tolerance=.tol[["coef"]]) expect_equivalent(coef(res)$alpha, tmp$alpha, tolerance=.tol[["coef"]]) expect_equivalent(coef(res, type="beta"), tmp$beta, tolerance=.tol[["coef"]]) expect_equivalent(coef(res, type="alpha"), tmp$alpha, tolerance=.tol[["coef"]]) tmp <- list(beta = c(intrcpt = 0.0661161560867381, ni100 = 0.0197546220146866), alpha = c(intrcpt = 0.668982417863205, ni100 = 0.514064772257437)) expect_equivalent(se(res)$beta, tmp$beta, tolerance=.tol[["se"]]) expect_equivalent(se(res)$alpha, tmp$alpha, tolerance=.tol[["se"]]) expect_equivalent(se(res, type="beta"), tmp$beta, tolerance=.tol[["se"]]) expect_equivalent(se(res, type="alpha"), tmp$alpha, tolerance=.tol[["se"]]) }) rm(list=ls()) metafor/tests/testthat/test_analysis_example_gleser2009.r0000644000176200001440000002210414712730417023352 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/analyses:gleser2009 source("settings.r") context("Checking analysis example: gleser2009") ############################################################################ ### create dataset dat <- data.frame(study=c(1,1,2,3,3,3), trt=c(1,2,1,1,2,3), ai=c( 40, 40, 10,150,150,150), n1i=c(1000,1000,200,2000,2000,2000), ci=c(100,150, 15, 40, 80, 50), n2i=c(4000,4000,400,1000,1000,1000)) dat$pti <- with(dat, ci / n2i) dat$pci <- with(dat, ai / n1i) test_that("results are correct for the multiple-treatment studies example with risk differences.", { dat <- escalc(measure="RD", ai=ai, ci=ci, n1i=n1i, n2i=n2i, data=dat) ### compare with results on page 360 (Table 19.2) expect_equivalent(dat$yi, c(0.0150, 0.0025, 0.0125, 0.0350, -0.0050, 0.0250), tolerance=.tol[["est"]]) calc.v <- function(x) { v <- matrix(x$pci[1]*(1-x$pci[1])/x$n1i[1], nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) res <- rma.mv(yi, V, mods = ~ 0 + factor(trt), data=dat, sparse=.sparse) ### compare with results on page 361 (eq. 19.6) expect_equivalent(coef(res), c(0.0200, 0.0043, 0.0211), tolerance=.tol[["coef"]]) ### compare with results on page 361 (eq. 19.7) tmp <- vcov(res) * 10^6 expected <- structure(c(24.612, 19.954, 13.323, 19.954, 28.538, 13.255, 13.323, 13.255, 69.806), .Dim = c(3L, 3L), .Dimnames = list(c("factor(trt)1", "factor(trt)2", "factor(trt)3"), c("factor(trt)1", "factor(trt)2", "factor(trt)3"))) expect_equivalent(tmp, expected, tolerance=.tol[["var"]]) ### compare with results on page 362 (eq. 19.8) expect_equivalent(res$QE, 7.1907, tolerance=.tol[["test"]]) }) test_that("results are correct for the multiple-treatment studies example with log odds ratios.", { dat <- escalc(measure="OR", ai=ai, ci=ci, n1i=n1i, n2i=n2i, data=dat) ### compare with results on page 362 expect_equivalent(dat$yi, c(0.4855, 0.0671, 0.3008, 0.6657, -0.0700, 0.4321), tolerance=.tol[["est"]]) calc.v <- function(x) { v <- matrix(1/(x$n1i[1]*x$pci[1]*(1-x$pci[1])), nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) res <- rma.mv(yi, V, mods = ~ 0 + factor(trt), data=dat, sparse=.sparse) ### compare with results on page 363 expect_equivalent(coef(res), c(0.5099, 0.0044, 0.4301), tolerance=.tol[["coef"]]) ### compare with results on page 363 tmp <- vcov(res) expected <- structure(c(0.01412, 0.00712, 0.00425, 0.00712, 0.01178, 0.00455, 0.00425, 0.00455, 0.02703), .Dim = c(3L, 3L), .Dimnames = list(c("factor(trt)1", "factor(trt)2", "factor(trt)3"), c("factor(trt)1", "factor(trt)2", "factor(trt)3"))) expect_equivalent(tmp, expected, tolerance=.tol[["var"]]) ### compare with results on page 363 expect_equivalent(res$QE, 2.0563, tolerance=.tol[["test"]]) ### 2.057 in chapter }) test_that("results are correct for the multiple-treatment studies example with log risk ratios.", { dat <- escalc(measure="RR", ai=ai, ci=ci, n1i=n1i, n2i=n2i, data=dat) ### compare with results on page 364 expect_equivalent(dat$yi, c(0.4700, 0.0645, 0.2877, 0.6286, -0.0645, 0.4055), tolerance=.tol[["est"]]) calc.v <- function(x) { v <- matrix((1-x$pci[1])/(x$n1i[1]*x$pci[1]), nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) res <- rma.mv(yi, V, mods = ~ 0 + factor(trt), data=dat, sparse=.sparse) ### compare with results on page 363 expect_equivalent(coef(res), c(0.4875, 0.0006, 0.4047), tolerance=.tol[["coef"]]) ### (results for this not given in chapter) tmp <- vcov(res) expected <- structure(c(0.01287, 0.00623, 0.00371, 0.00623, 0.01037, 0.00399, 0.00371, 0.00399, 0.02416), .Dim = c(3L, 3L), .Dimnames = list(c("factor(trt)1", "factor(trt)2", "factor(trt)3"), c("factor(trt)1", "factor(trt)2", "factor(trt)3"))) expect_equivalent(tmp, expected, tolerance=.tol[["var"]]) ### (results for this not given in chapter) expect_equivalent(res$QE, 1.8954, tolerance=.tol[["test"]]) }) test_that("results are correct for the multiple-treatment studies example with difference of arcsine transformed risks.", { dat <- escalc(measure="AS", ai=ai, ci=ci, n1i=n1i, n2i=n2i, data=dat) ### compare with results on page 364 expect_equivalent(dat$yi*2, c(0.0852, 0.0130, 0.0613, 0.1521, -0.0187, 0.1038), tolerance=.tol[["est"]]) ### need *2 factor due to difference in definition of measure calc.v <- function(x) { v <- matrix(1/(4*x$n1i[1]), nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) res <- rma.mv(yi, V, mods = ~ 0 + factor(trt), data=dat, sparse=.sparse) ### compare with results on page 365 expect_equivalent(coef(res)*2, c(0.1010, 0.0102, 0.0982), tolerance=.tol[["coef"]]) ### compare with results on page 365 tmp <- vcov(res)*2^2 expected <- structure(c(0.00058, 4e-04, 0.00024, 4e-04, 0.00061, 0.00025, 0.00024, 0.00025, 0.00137), .Dim = c(3L, 3L), .Dimnames = list(c("factor(trt)1", "factor(trt)2", "factor(trt)3"), c("factor(trt)1", "factor(trt)2", "factor(trt)3"))) expect_equivalent(tmp, expected, tolerance=.tol[["var"]]) ### compare with results on page 365 expect_equivalent(res$QE, 4.2634, tolerance=.tol[["test"]]) ### 4.264 in chapter }) ############################################################################ ### create dataset dat <- data.frame(study=c(1,1,2,3,4,4), trt=c(1,2,1,1,1,2), m1i=c(7.87, 4.35, 9.32, 8.08, 7.44, 5.34), m2i=c(-1.36, -1.36, 0.98, 1.17, 0.45, 0.45), sdpi=c(4.2593,4.2593,2.8831,3.1764,2.9344,2.9344), n1i=c(25,22,38,50,30,30), n2i=c(25,25,40,50,30,30)) test_that("results are correct for the multiple-treatment studies example with standardized mean differences.", { dat$Ni <- unlist(lapply(split(dat, dat$study), function(x) rep(sum(x$n1i) + x$n2i[1], each=nrow(x)))) dat$yi <- with(dat, (m1i-m2i)/sdpi) dat$vi <- with(dat, 1/n1i + 1/n2i + yi^2/(2*Ni)) ### compare with results on page 364 expect_equivalent(dat$yi, c(2.1670, 1.3406, 2.8927, 2.1754, 2.3821, 1.6664), tolerance=.tol[["est"]]) calc.v <- function(x) { v <- matrix(1/x$n2i[1] + outer(x$yi, x$yi, "*")/(2*x$Ni[1]), nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) res <- rma.mv(yi, V, mods = ~ 0 + factor(trt), data=dat, sparse=.sparse) ### compare with results on page 367 expect_equivalent(coef(res), c(2.3743, 1.5702), tolerance=.tol[["coef"]]) ### compare with results on page 367 tmp <- vcov(res) expected <- structure(c(0.02257, 0.01244, 0.01244, 0.03554), .Dim = c(2L, 2L), .Dimnames = list(c("factor(trt)1", "factor(trt)2"), c("factor(trt)1", "factor(trt)2"))) expect_equivalent(tmp, expected, tolerance=.tol[["var"]]) ### compare with results on page 367 expect_equivalent(res$QE, 3.9447, tolerance=.tol[["test"]]) }) ############################################################################ ### create dataset dat <- data.frame(school=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7), outcome=rep(c("math", "reading"), times=7), m1i=c(2.3,2.5,2.4,1.3,2.5,2.4,3.3,1.7,1.1,2.0,2.8,2.1,1.7,0.6), m2i=c(10.3,6.6,9.7,3.1,8.7,3.7,7.5,8.5,2.2,2.1,3.8,1.4,1.8,3.9), sdpi=c(8.2,7.3,8.3,8.9,8.5,8.3,7.7,9.8,9.1,10.4,9.6,7.9,9.2,10.2), ri=rep(c(.55,.43,.57,.66,.51,.59,.49), each=2), n1i=rep(c(22,21,26,18,38,42,39), each=2), n2i=rep(c(24,21,23,18,36,42,38), each=2)) test_that("results are correct for the multiple-endpoint studies example with standardized mean differences.", { dat$yi <- round(with(dat, (m2i-m1i)/sdpi), 3) dat$vi <- round(with(dat, 1/n1i + 1/n2i + yi^2/(2*(n1i+n2i))), 4) dat$covi <- round(with(dat, (1/n1i + 1/n2i) * ri + (rep(sapply(split(dat$yi, dat$school), prod), each=2) / (2*(n1i+n2i))) * ri^2), 4) V <- bldiag(lapply(split(dat, dat$school), function(x) matrix(c(x$vi[1], x$covi[1], x$covi[2], x$vi[2]), nrow=2))) ### fit model res <- rma.mv(yi, V, mods = ~ 0 + outcome, data=dat, sparse=.sparse) ### (results for this not given in chapter) expect_equivalent(coef(res), c(0.3617, 0.2051), tolerance=.tol[["coef"]]) ### (results for this not given in chapter) tmp <- vcov(res) expected <- structure(c(0.01008, 0.00537, 0.00537, 0.00989), .Dim = c(2L, 2L), .Dimnames = list(c("outcomemath", "outcomereading"), c("outcomemath", "outcomereading"))) expect_equivalent(tmp, expected, tolerance=.tol[["var"]]) ### compare with results on page 371 expect_equivalent(res$QE, 19.6264, tolerance=.tol[["test"]]) ### 19.62 in chapter }) ############################################################################ rm(list=ls()) metafor/tests/testthat/test_plots_contour-enhanced_funnel_plot.r0000644000176200001440000000251014712730575025226 0ustar liggesusers### library(metafor); library(testthat); Sys.setenv(NOT_CRAN="true"); Sys.setenv(RUN_VIS_TESTS="true") ### see: https://www.metafor-project.org/doku.php/plots:contour_enhanced_funnel_plot source("settings.r") context("Checking plots example: contour-enhanced funnel plot") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) # avoid 'Empty test' message skip_on_cran() res <- rma(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, measure="RR", slab=paste(author, year, sep=", "), method="REML") png("images/test_plots_contour_enhanced_funnel_plot_light_test.png", res=200, width=1800, height=1500, type="cairo") par(mar=c(5,4,1,2)) funnel(res, level=c(90, 95, 99), refline=0, legend=TRUE) dev.off() expect_true(.vistest("images/test_plots_contour_enhanced_funnel_plot_light_test.png", "images/test_plots_contour_enhanced_funnel_plot_light.png")) png("images/test_plots_contour_enhanced_funnel_plot_dark_test.png", res=200, width=1800, height=1500, type="cairo") setmfopt(theme="dark") par(mar=c(5,4,1,2)) funnel(res, level=c(90, 95, 99), refline=0, legend=TRUE) setmfopt(theme="default") dev.off() expect_true(.vistest("images/test_plots_contour_enhanced_funnel_plot_dark_test.png", "images/test_plots_contour_enhanced_funnel_plot_dark.png")) }) rm(list=ls()) metafor/tests/testthat.R0000644000176200001440000000023413150625652015040 0ustar liggesusers### to also run skip_on_cran() tests, uncomment: #Sys.setenv(NOT_CRAN="true") library(testthat) library(metafor) test_check("metafor", reporter="summary") metafor/MD50000644000176200001440000006360414746154602012241 0ustar liggesusers42a8b7d116306b50071eef1f8baf4f8f *DESCRIPTION 9081167e6578716f118534392eb262b3 *NAMESPACE b0ee64e3e1a33fafbbcee165dd79fcd0 *NEWS.md 6d1467b2fe27dbd4404ace18d1074612 *R/AIC.rma.r 556b356dbe1c54655c85dc48ccb07adb *R/BIC.rma.r 9ca006c06809f20f802227c31745dff3 *R/addpoly.default.r 7dd5d92c702cd577890b7db7e8dc49e0 *R/addpoly.predict.rma.r f74a85ebb8b2bc60c9e4fe43b2c182ee *R/addpoly.r 0beb90372681349b807f8ce4c4997445 *R/addpoly.rma.r d0c6d1824fa78ff1d9bb8815b17a1b44 *R/aggregate.escalc.r 54904a4f9b770a04dc8f9628663b0b45 *R/anova.rma.r 9b7c6d4219b7239aeb940a93f9b9f3ff *R/baujat.r f4446b4115234548c27b712759f489f9 *R/baujat.rma.r c0d3f05536177bf10812c98a71fdb259 *R/bldiag.r 44d648d658ca6a82482fe0eef9c0b237 *R/blsplit.r 30b9c7c5d4eaab44326f97bd3d2776af *R/blup.r 35a90bfef62fe758b81ddd3a1a1f6eb2 *R/blup.rma.uni.r 8c0c3b1cfd7a187ba798c9e9ac8c6f83 *R/coef.deltamethod.r e2dc3f1db03c45fcda596d9f0f3e617b *R/coef.matreg.r 154cd0189f5c716a17c24c87e06b1362 *R/coef.permutest.rma.uni.r 4e9eb2e12a5f1c8feed307e705b6b6b9 *R/coef.rma.r af410f040e09d6be41442eefe833ed9c *R/coef.summary.rma.r f01de3f02399102df480b4b15f20bd24 *R/confint.rma.glmm.r 6e921effc74d4fb0c66268bf7cbd1c2b *R/confint.rma.ls.r bd109d09c0b137355876bc724cb7d5a4 *R/confint.rma.mh.r 51ecc5d57e765921809c4b9d2df43b4c *R/confint.rma.mv.r af8711f39d846e3fba5696731bdf6366 *R/confint.rma.peto.r f8540fc41a2d0852a647df786fa2fa09 *R/confint.rma.uni.r 54327f4f824f1141410c0fd859d6d393 *R/confint.rma.uni.selmodel.r 3e741abb899e69d2d2956ee9d3357119 *R/contrmat.r d5c79476b624bc52654abd3289d78dc1 *R/conv.2x2.r 0e5e9efe0eb2451d39e6cd971d0d0b23 *R/conv.delta.r b9b22f50b6c84f6d4f7b3a063ccba511 *R/conv.fivenum.r 8cdbc5dad4f646ee2493920caad24e5e *R/conv.wald.r 5b9d473842f80512ae1816382399a71e *R/cooks.distance.rma.mv.r 3e67396d29e02b21bd712216e6964794 *R/cooks.distance.rma.uni.r eab5a85465f21f2dc9a58055ba597d10 *R/cumul.r bef8b5d7f3b6056c965130ecc500c59e *R/cumul.rma.mh.r b84054996a3056f4e278ad72a5f07266 *R/cumul.rma.peto.r 98c13068c870bdbcfe471b5c4606d945 *R/cumul.rma.uni.r 8b74603ab1de4968cced8ca985dc48a1 *R/deltamethod.r b0ce10ffc14224af12bec12be1dad70e *R/deviance.rma.r 8b6fd5db99a01f06cf5c15bfd109a6a9 *R/df.residual.rma.r 0562fb9b5bd4b553a28a32e9fd01ee7c *R/dfbetas.rma.mv.r be52077ac7b9873d44c4594a0759610d *R/dfbetas.rma.uni.r bdc69bdaf15c11935d7656cef388f620 *R/dfround.r 49214cf103c35b4503dd83c643e91632 *R/emmprep.r ac4eb309b83ae77686f7cdb733e331ca *R/escalc.r 23c9fbb02e78031973d913c70aae0b10 *R/fitstats.r c675816bc319744ac680b5534076a395 *R/fitstats.rma.r 46b64ba738aeb56804bf2260a77847dc *R/fitted.rma.r 958fb7b3f894a148b800e06f5f41914e *R/forest.cumul.rma.r 8973090d4297c2f4442830064d341b67 *R/forest.default.r f5148247e2bb84f6c3cd524c72cd06c6 *R/forest.r 0d9b283cdf12b414d904f636bd05133f *R/forest.rma.r 5d9e284fa9a141d40169856713a9d4ee *R/formatters.r ae58c1ba8b1542133afd1e71bb11103d *R/formula.rma.r 8effac452dd8a14d1ad1cc2f7437b0a1 *R/fsn.r 570ce45445aa9b5dd9d9a94760a8622f *R/funnel.default.r d1cbb7d3ab050ed099679e78af50aaaa *R/funnel.r c312292132bfdd956524d9a20852858a *R/funnel.rma.r 2573a8e03e9331881bef8089ac03af1d *R/gosh.r 1f27d9bae0151bc8008b74431419de81 *R/gosh.rma.r c3290b6cbc88c701166d36a93926e49f *R/hatvalues.rma.mv.r 48db5980aa5e2e2eb3e3e4293ecd1460 *R/hatvalues.rma.uni.r 41d410d818a21e7bbcb798cecc8b57d2 *R/hc.r 7d5b1408473c61901b160c464c312a91 *R/hc.rma.uni.r 81e4900c863cdb84cb16ff5ea51ef9de *R/influence.rma.uni.r 79a9a5487b16c86b53c7c221028ad2f4 *R/labbe.r 60727cffdb031494eb027233502709ed *R/labbe.rma.r e9309f3a06c035f07723140e4e29952e *R/leave1out.r 42c88872bf61c11837efc73c5195afdb *R/leave1out.rma.mh.r ba762bc5c65b36c0dcda7f1c6642e3a1 *R/leave1out.rma.peto.r 0fb86db65b5549840ab0a439800b87b0 *R/leave1out.rma.uni.r e7ed8bf17142f3a5606cc432c7d3728d *R/llplot.r 0cf91bb97814448a7c3e744799c8f7ba *R/logLik.rma.r 10c4e07dad71cec1028ff1573da4e3ed *R/matreg.r 072c5707ff325600d0763dd1d40262b2 *R/metafor.news.r c71bda52ead1738943724a190eb25680 *R/methods.anova.rma.r 1420e92c358ac4c188d703dbcd1fc705 *R/methods.confint.rma.r 0d2ba5ee1eb8538d3f0faa49f1084712 *R/methods.escalc.r 4e7dd5350fc2dc54de82c3683400be66 *R/methods.list.rma.r ea059b12928048bbae8eb19bb62d45c8 *R/methods.vif.rma.r 790adad531049d8bac309cfe3190c497 *R/mfopt.r 6e8f9cd225adf9f654865e8c2fb8e92a *R/misc.func.hidden.escalc.r e27bc28eac3965815f8d055c46df36ef *R/misc.func.hidden.evals.r a50327e286ce130625fabe38b2f9cfbb *R/misc.func.hidden.fsn.r 5976805a5a5ab54e89fef7d21860a4bc *R/misc.func.hidden.funnel.r 2b177f1b5a8bf022363db44b79288e7e *R/misc.func.hidden.glmm.r 6780a482649daaa6f899e2c828d439c1 *R/misc.func.hidden.mv.r 5d7461d5aeaf5be798cf5732643b8a1e *R/misc.func.hidden.profile.r 5b273314a33a711242d9da5662e58b70 *R/misc.func.hidden.r caa1a22ed3accb98029f44e727c1064c *R/misc.func.hidden.selmodel.r 480d42f955c1b6bd896eaee0c2ef89a2 *R/misc.func.hidden.tes.r 4cefd4dda2b87c0130776681ec99d937 *R/misc.func.hidden.uni.r e5e285cd17f50971c0db507ecf38b153 *R/misc.func.hidden.vif.r 38f1d80ad0417cebd7cdbd10707a4530 *R/model.matrix.rma.r 6e5dedff06fb171ceb6150613a04a6a8 *R/nobs.rma.r f79d0da2d47897de0a0cc530f1d06a41 *R/pairmat.r 3376538a20fd1ea72c6cc0c76abff14c *R/permutest.r faa7754351b4804fc7274ddff9315a7f *R/permutest.rma.ls.r 4c70e630a500314d67b3c18829e0a19b *R/permutest.rma.uni.r e5badfb0e5275ea95def29e3dd5e56e1 *R/plot.cumul.rma.r 7d0d47c25fead95ec3c29f28384742d3 *R/plot.gosh.rma.r 7c35e1a15cb4b7e00ef0e955487033ab *R/plot.infl.rma.uni.r af623ee63832474a62f9e5b7ab57bd60 *R/plot.permutest.rma.uni.r 47cd61c4495fc5a537da5c1ffa382939 *R/plot.profile.rma.r cd161749cfa04b1742558c41f30291e9 *R/plot.rma.glmm.r 4f06c964ad0b7d74d70d88080e25802d *R/plot.rma.mh.r c70e04892d587000d5df3ee9dbfdd2d1 *R/plot.rma.mv.r 9335f840e1c50c2dd62a605c2f439002 *R/plot.rma.peto.r 9f79e02f896088098aff98ed40262508 *R/plot.rma.uni.r bd6a66268bbfaada8ea9762ab37517e8 *R/plot.rma.uni.selmodel.r 9ea4c3d28c0655f62c332ad248239a89 *R/plot.vif.rma.r 8c7ad88f5a5faaf22e8388d4c8308694 *R/points.regplot.r 79876ef337a5d096507ef1dfe7c68af0 *R/predict.rma.ls.r 8e89fb0d133edd422801eb6dffea3132 *R/predict.rma.r b5a509e2ebe1cb288b03a26869ec37b3 *R/print.anova.rma.r d43d3c9d2b61fd6f04121303b61bb5fe *R/print.confint.rma.r 620f1a8ef2c0cfbecfb41c6b16f00646 *R/print.deltamethod.r 545ad0ae74a45e3532ad22e6e1c99d48 *R/print.escalc.r d4dbeb6b94b10469ba3d6607b7f82df7 *R/print.fsn.r 11fe44eb14664f886d5c986d61320479 *R/print.gosh.rma.r aa35d08d0e551e39d972dd83ec36ed46 *R/print.hc.rma.uni.r 04d0d5b809982186c6539fdc6405ede2 *R/print.infl.rma.uni.r ecd2e7de26e56e8b57889e4ed6dc7127 *R/print.list.anova.rma.r f4e711961b4e6c72e7d79d57e3c17faa *R/print.list.confint.rma.r 9aee2db9bf73e68e88ab08e8dd856aef *R/print.list.rma.r e0625b1bfbcee80a34f60136e9aeb6fb *R/print.matreg.r e0485cbe691e2047ccaf44e647a3d940 *R/print.permutest.rma.uni.r 5f0447fb5cb4e588f500536be3c5dfdb *R/print.profile.rma.r 75d5649864cec5d19b105e0a2cb03559 *R/print.ranktest.r 89cee8049d9de7b99eefc6ce61211f1f *R/print.regtest.r 650c20f7f983d57b68723dc4ad6f296e *R/print.rma.glmm.r 5b49137e5438c729d8d4cbe501c530a7 *R/print.rma.mh.r ba9d6f3add9d5d78e91e3c11e30b8ec6 *R/print.rma.mv.r 319880191c2f18a5e873f387bc8c1975 *R/print.rma.peto.r dda45afd0ef5eb3d9272ca3679d4a810 *R/print.rma.uni.r b4397bef9d84df65a424c677de46174e *R/print.summary.matreg.r 0dafaa64b7fb53fa34e6d2f03ce4acd1 *R/print.summary.rma.r 79ad86a4804df56ae2076e6fb657c8e4 *R/print.tes.r 64d88373b104a63bd7fc55dcb0bf4009 *R/print.vif.rma.r b1718e6cb13508da101ac48925e6c3a1 *R/profile.rma.ls.r bb57efe74f4afe8c347ad08b24c1d96d *R/profile.rma.mv.r 484072b137306f16885f80cd2aea88f3 *R/profile.rma.uni.r c34a675600fac444394e3e9b667fefe8 *R/profile.rma.uni.selmodel.r 38c10f1945d9881f29a7416462c62998 *R/qqnorm.rma.glmm.r 4e568808a9c2bd641d366f21505323ef *R/qqnorm.rma.mh.r deb8e92cf40f9bd9d92ac72bdee564dd *R/qqnorm.rma.mv.r e9d6e476d3e53339e2a8259557b69c37 *R/qqnorm.rma.peto.r 6a8e90d35383b2d311da4463c03171fc *R/qqnorm.rma.uni.r 708901230afb921438232ae1dae2f5de *R/radial.r 6b7a9594e07cd569e6896bd99126e5b5 *R/radial.rma.r 9b816ade77912e2e4d5c062c21ed66a5 *R/ranef.rma.mv.r 72d6b11edecd937bae397d4170bbda01 *R/ranef.rma.uni.r 1fad7bce9351da0d630b566a685c3bdd *R/ranktest.r 67bbe1aceb311d610a4b67b7cf988e66 *R/rcalc.r 48adb556610afbd0ac47307d9346e443 *R/regplot.r bf039e3e07268446889163c4caf0db9a *R/regplot.rma.r d81baa934f009210945ef49ba907585b *R/regtest.r 72f9c75ca12a25482c6e08c44deb53ca *R/replmiss.r 91777063e31189d96863dc3a8c9de213 *R/reporter.r 47f1f96a1c31c0fb946e443d291b3d9e *R/reporter.rma.uni.r d5f10608a527d0fc87bd2aaa62a6a90b *R/residuals.rma.r e52e6c414df7fa9113e4831df851edf0 *R/rma.glmm.r 3cfc63470b932395bf076cb24a4b0ca8 *R/rma.mh.r 7ff85f6e8c3ea2381d4e9e1aef07509b *R/rma.mv.r dac2844ec02a8e557b63f23459790bf3 *R/rma.peto.r 0679b2850ca210d1500b5c0282610b63 *R/rma.uni.r c7549400ef048f329f3bc18433c9a32a *R/robust.r f7546224dcd2743aeecb191ec3d4a53e *R/robust.rma.mv.r c87f47adffe7b2bf175de46e0c08eeff *R/robust.rma.uni.r be5d9edd8b50e12460e626f36aeb5b77 *R/rstandard.rma.mh.r 29edeb452d4db28f3e0251a171ec18c6 *R/rstandard.rma.mv.r dd0e24a803140cfc587677d3610bb65c *R/rstandard.rma.peto.r cc70072486114028e9c6e89cdb5fda7d *R/rstandard.rma.uni.r 3004852cd068569d17a6397bc48981da *R/rstudent.rma.mh.r a1a19f38319cc56b8977e1ea2751d428 *R/rstudent.rma.mv.r 8091948b160d96a0ab36e5d7a9a415f2 *R/rstudent.rma.peto.r 07a1ef1722a6eab8f6522afd21ff9ac4 *R/rstudent.rma.uni.r 2dd73484f2b00f1d00c9ddf408632b5b *R/se.r d31b9a1f07c093dac4a38e92edb83040 *R/selmodel.r e20b101ce279318412bdba3f0406175c *R/selmodel.rma.uni.r 15a2b84b2e0d8b2056f959ce0a2adbf2 *R/simulate.rma.r e26f1d7a456039f9cce45c0433146cc3 *R/summary.escalc.r 056293a09ecb844eae6e09c6b1fe4cc2 *R/summary.matreg.r 3d4a7a8df885bed6085691d9564f823c *R/summary.rma.r d22513f7976a7241bb001a11f4684b15 *R/tes.r 3f187365bd6e1f8e030396bdf16154da *R/to.long.r 2d2da95acdb2fcaf8c6b2c5f4fdbb1c7 *R/to.table.r 3525c13c281f6873a9344512c7ea531b *R/to.wide.r 70be432b129ac24f1df10e848bdf9658 *R/transf.r 362bf474245dd51425ef3b345f298778 *R/trimfill.r a556bd9662c2bcebecfa97f4ac32bafb *R/trimfill.rma.uni.r f1e6af7f7accf8629e3c931381024229 *R/update.rma.r e27d63acfcdb8bd3c1bc096d27f147ef *R/vcalc.r 5f528c9fa970ac5bd3d55820ed2d87cf *R/vcov.deltamethod.r 89e23354af21025712f577cc65b08c55 *R/vcov.matreg.r 9ee97e97875a3564827dc23a4e86b661 *R/vcov.rma.r 80def66293b45384a31bf95e5d9c0599 *R/vec2mat.r 728fdc925021f89708a4031cb4f0b5d1 *R/vif.r b717205b9ca9657cafd8f517202789c3 *R/vif.rma.r a006f4fbc230b842059fa1099fb55af3 *R/weights.rma.glmm.r 01331eb2513eb9d622da3242674b9dc1 *R/weights.rma.mh.r 2a1221d6fd6502ff90811a8165521074 *R/weights.rma.mv.r e2c7eba07c14d450be34e607a6bee84d *R/weights.rma.peto.r 72ec11e3ff11b4c39db41424eeaf4870 *R/weights.rma.uni.r e8ecc06de51041c5a2a01c589efde598 *R/zzz.r 532cda3b0048fe96fd3ea0abb0842c93 *README.md aa73d8f9fad1f8e395b78db24dcef305 *build/metafor.pdf 90d84c227f20bc943b5fb40ad0fc976b *build/stage23.rdb 1233874de533191732e717939cc912b3 *build/vignette.rds cf049154d8986ccb436dfd244bfb7994 *inst/CITATION 857c2658d74164fedb9dba5a4e3e1c7f *inst/doc/diagram.pdf b438c769739c3d868cfd5766f72f7c2c *inst/doc/diagram.pdf.asis ab15425ad7959e47c27b548d9a427fa3 *inst/doc/metafor.pdf b22e3397f4cea09c48a2c785ff0cae6a *inst/doc/metafor.pdf.asis 674a1e37b84b08e97e1ab7a866d71189 *inst/reporter/apa.csl a465957700e1a9f1922183ed0ea7adba *inst/reporter/references.bib 2d653c0ace403b49e5b90452ca1d9d4f *man/addpoly.Rd 04637f6704894473e29a85311ed84dbf *man/addpoly.default.Rd aa8561818ef30a4b73a2d0a190e46a07 *man/addpoly.predict.rma.Rd db5c5f118b0f69fd3702789061993b6c *man/addpoly.rma.Rd 298c65daf9532ba1e6bc164b4d4f9a24 *man/aggregate.escalc.Rd 7b91d4b35fb385230ce25af749308a1c *man/anova.rma.Rd cc0f86eb3fcc81a065199e153c85f4a0 *man/baujat.Rd 154c50d4ae89c1262f826acdbe5157ff *man/bldiag.Rd 7eb1a91c5486dc9642ebfa19ca79705b *man/blsplit.Rd 032fa2b25397f09cad7eaec2dff57bc1 *man/blup.Rd 4ed8acc0321630b2786e06109d546627 *man/coef.permutest.rma.uni.Rd caa5214e5b87ffb5c4422301caf3638d *man/coef.rma.Rd 42e6f23375318715a3cb4816779034ec *man/confint.rma.Rd 05281f339889ba5984d3884f7457c11e *man/contrmat.Rd 8d80ecd37388c02a37d3c22253fc919f *man/conv.2x2.Rd 09cfd91cb4b3f8c1689f64848d08c427 *man/conv.delta.Rd 141963a081a786728d96403e2f7876a5 *man/conv.fivenum.Rd cac7939fda9507d100aa3daa87105c0d *man/conv.wald.Rd 4498977e943e998358cc9ae5bb7e76ee *man/cumul.Rd e16b094297d73aed609ac8b145e3f79c *man/deltamethod.Rd afccbe451559725c0e95c6336d00351d *man/dfround.Rd 70163f4ac44f64644be35e36254a5935 *man/emmprep.Rd c8dfa226e432dc2632c60fd970fd106f *man/escalc.Rd f4ecbc3e59130a72054fc9d9af4ca276 *man/figures/crayon1.png f1588a41de5489b7ad30492939ce6722 *man/figures/crayon2.png 784322ef13f691bad778e13e8ac2b987 *man/figures/ex_bubble_plot.png fd9ac87610b57072b07053dd2555b047 *man/figures/ex_forest_plot.png 6a68ec868391719656444e3cbfccb3a2 *man/figures/ex_funnel_plot.png 4982e36e6997804db1a21499b1a74d80 *man/figures/forest-arrangement.pdf e46a6146dbd93e3af926bd94f6f54ebc *man/figures/forest-arrangement.png e4e70116302b2b9287df8fcbc36b550a *man/figures/plots-dark.pdf 8271ffc9012c9b2a326e1cfa9a0fe4b5 *man/figures/plots-dark.png 727997a2c28cbac4026adfa7ded6adf8 *man/figures/plots-light.pdf a9bb4b820f5bdfdf5e97c6448ac8a006 *man/figures/plots-light.png 721e846ff389d961e74d5ba09d831398 *man/figures/selmodel-beta.pdf ac3c7430bb215450e7c0ff169b6d1c6c *man/figures/selmodel-beta.png 6420c7e58ff64e5041d64b9ee1cc2c85 *man/figures/selmodel-negexppow.pdf 6c5ba3e80208948dc5027890de3445c1 *man/figures/selmodel-negexppow.png 35162f6b1ade95bd19a6d9b1e41a6198 *man/figures/selmodel-preston-prec.pdf 3c25dc5449669416496b843cddedca4e *man/figures/selmodel-preston-prec.png 21a49438a82db2f862124fce6cbd369f *man/figures/selmodel-preston-step.pdf 7d493ecbf905e007a4f7750d3d652987 *man/figures/selmodel-preston-step.png 1552fb20609bdfb14aed1f360d277d14 *man/figures/selmodel-preston.pdf 9554c4cd81533d40bf269af3533d1ec6 *man/figures/selmodel-preston.png 0db3d2a76003af4269d1b97485f58fbe *man/figures/selmodel-stepfun-fixed.pdf 051bbf978d4b8c4221b8b8f5aa6c7804 *man/figures/selmodel-stepfun-fixed.png 9bfce87bd2afe8cdfe93ffe1a69b0d37 *man/figures/selmodel-stepfun.pdf c1df1cd51ce96c6d59107c7ce80a6d5d *man/figures/selmodel-stepfun.png d8abe26913ef68b92dcfd6067b5495aa *man/fitstats.Rd f7aca92431e0a8d0bb4d1671dccce181 *man/fitted.rma.Rd ca0751043adbf81a4532a7faeca8353d *man/forest.Rd 0a86383dd0c2bc587f3cfc64aab45837 *man/forest.cumul.rma.Rd c22ec1dc94856165c0f257c37bba1c44 *man/forest.default.Rd 390e9c11c2a8ac2e5ac790d7f0b7ed26 *man/forest.rma.Rd c77edef69c8492bccb06cef4c12b217a *man/formatters.Rd be161b700ce6e325fa1571b7d09c3f55 *man/formula.rma.Rd a0af578384ad85c8d7f71df17f5c8d2b *man/fsn.Rd 3c79cd2c8246bfedd3ef54072e731616 *man/funnel.Rd ccda87e6c06f87ac442777f546c49c81 *man/gosh.Rd 12ab201d1cadfaf3d511872f271e54d1 *man/hc.Rd 4983de543fdafb7050da382e4e46631b *man/influence.rma.mv.Rd 747ddc9e24a759115fda35ffb1e1e97f *man/influence.rma.uni.Rd 9eb0f772eb5aab3427c14dda4e0ee61a *man/labbe.Rd 743c46c8084f5a6525c7f476325aaaef *man/leave1out.Rd e45496fa7c24d7a30b202e8eb95d89b0 *man/llplot.Rd 20563d95cbd152a9abe16faca5db037a *man/macros/metafor.Rd 04a753be00f0296b2e205e4c35cf2729 *man/matreg.Rd b5410f45fbb48786df305f642a062132 *man/metafor-package.Rd 347b291270b8a61158080fbeee38be8e *man/metafor.news.Rd 5287285a9e95c5ed1d2074a2c4bf7cc7 *man/methods.anova.rma.Rd ea2067353582066072eb30bbd7e98890 *man/methods.confint.rma.Rd 461093248370968e5c0e3b093cbd344e *man/methods.deltamethod.Rd be8b158d544c5f9163d9eb5b0c97d353 *man/methods.escalc.Rd 6c1929f287c360bfbad1c3aa289a4741 *man/methods.list.rma.Rd b3ba8165347a6da7ff39315e0f76b179 *man/methods.matreg.Rd 5bab3ffbfde3960efc88806c07b5353c *man/methods.vif.rma.Rd c2f536c831eb43cbef59d16e47530091 *man/mfopt.Rd f00c4923ab63f8bd64d220d72b068217 *man/misc-models.Rd 013f9d425418f9843239676f14c015d4 *man/misc-options.Rd 859c6d4c01076bf47daf4c3910d07d42 *man/misc-recs.Rd 32259b0aa1b06fba93fee324586d1e44 *man/model.matrix.rma.Rd 7742776384e6bb564cb74f4b1333ebb7 *man/pairmat.Rd 9362be5e653a569472c95a8ab836d4fd *man/permutest.Rd 4e2881a7cce29c88d5495bcd1885ccaa *man/plot.cumul.rma.Rd 17be8f2c6e18429b95c3145781946a11 *man/plot.gosh.rma.Rd b3a847260d75c5729ef5a7a135cbc197 *man/plot.infl.rma.uni.Rd 514e95d22c2e0e42c1b51444ff4a62e7 *man/plot.permutest.rma.uni.Rd 11c9dd220e6fe470250d7ff1cc8056ea *man/plot.rma.Rd fd25dc148ffa29c608f4096142555344 *man/plot.rma.uni.selmodel.Rd 5f27da5e367078f4e45c579e6927f417 *man/plot.vif.rma.Rd 089c2dad6cc697c7b94339b77333dc02 *man/predict.rma.Rd e2f6006e6d75e276a00cfa06fb07862e *man/print.anova.rma.Rd 8351167793bab102e09bb8533974e99f *man/print.confint.rma.Rd 8f9cb06e36f48712ba7984aa63cfadba *man/print.deltamethod.Rd d68be4f36522850a2708a70dd8ea91cc *man/print.escalc.Rd 718f5d7400a1da412415c95cf70be322 *man/print.fsn.Rd b0aa49dbb2305c32ece0bf5b29e83793 *man/print.gosh.rma.Rd a2e9152fb9678be8a7ce84ed2d8bb230 *man/print.hc.rma.uni.Rd 6a35a7b0e8715e5a8f9f148d1cda4d78 *man/print.list.rma.Rd d6e9c04880ac312fe08965dd263113a2 *man/print.matreg.Rd ae4573d9178eec781af5ff63d37808b4 *man/print.permutest.rma.uni.Rd 918adf46223dc84578ed88ebabe6dec7 *man/print.ranktest.rma.Rd 682d836cd27530db8d5cb6166c878ab0 *man/print.regtest.rma.Rd 3e87de31addbf3c31d13886c2c31c0c5 *man/print.rma.Rd beb044fadde275826cae59cc4f707306 *man/profile.rma.Rd 1bfd76cc2b04025cc8bfb7f92fa4e0b5 *man/qqnorm.rma.Rd 631ebbeeb8ec56f7d22fc206a13ab7cb *man/radial.Rd f6f54f71628a29d6f23631ef35ae862c *man/ranef.Rd 9d9705571f14cadf7cc8e2906f4067dc *man/ranktest.Rd 900576c732b2c85c43ea9c51e5da8425 *man/rcalc.Rd 96651ce4eed3351f9c28f9a245a1e4e0 *man/regplot.Rd 3729ae35e11513efa1908b755cbf8725 *man/regtest.Rd bccd040372d7c979a4c1df16d076430e *man/replmiss.Rd ddceacffde6515efb5466e266a56ee95 *man/reporter.Rd c642ea4ba191ff77909d96439edcd59c *man/residuals.rma.Rd ac4ca9217fb4cd4073a3e28d22f0b585 *man/rma.glmm.Rd 259328075b9441e9b22bdeb9ea1a3b12 *man/rma.mh.Rd 2903b612123455c865e90e892a7907a1 *man/rma.mv.Rd 2146d0e978c09cd16d312c9e6076f2e5 *man/rma.peto.Rd cbe9c3546fe4156cd0eca4b0c9deaefc *man/rma.uni.Rd 55ecdbb896f8ddd2b4f191bb05a807dd *man/robust.Rd 89bcf5aa2479ef6700e096d3f51521e9 *man/se.Rd 03d6e69b6544a36fc279ef71af3caa6e *man/selmodel.Rd 74133339c57f693986ceebf7f880acd0 *man/simulate.rma.Rd ec8101e90a71e938daebf8d91d53f381 *man/tes.Rd 14eb38c63dfbbc89412606650bea79d5 *man/to.long.Rd 1911cda2581f3ce876d01119a9357e6f *man/to.table.Rd 03740272fd733e51421e912809555fcf *man/to.wide.Rd 6056dd8526fa25e5ef9ad1db81771ab3 *man/transf.Rd d64d477bb2c087165403345d1d7a1bf9 *man/trimfill.Rd 82b33ebf6d54dce969a2b4f9aacf4f8d *man/update.rma.Rd 798be00676a26d196498c169be66a4d0 *man/vcalc.Rd bff8351520a43daac0770c55ab20375f *man/vcov.rma.Rd ff1d71695afdd2e4d315d185d72b91bc *man/vec2mat.Rd 63189a8019fd73fd0a660639dad8badf *man/vif.Rd 72bf88348a17379211b31c60f17d9a6d *man/weights.rma.Rd df74e87ff286619152915b3b02417856 *tests/testthat.R 8e0c14762268c9b1e833b2717e81f664 *tests/testthat/settings.r 3f0a0685e1154c3c0061cc7beb135ca4 *tests/testthat/test_analysis_example_berkey1995.r d4d5176766631c62668fa6ee1323e0ab *tests/testthat/test_analysis_example_berkey1998.r 01a7b20af21f5606f9b9ff0baedfe0c6 *tests/testthat/test_analysis_example_dersimonian2007.r d3c8ccfabaafb8676c6f9b0d11f2747c *tests/testthat/test_analysis_example_gleser2009.r 4ee842d79a2169ffe52835240c336a9b *tests/testthat/test_analysis_example_henmi2010.r 96d77c1649bb34dcaadf7f04f6226032 *tests/testthat/test_analysis_example_ishak2007.r 53620d121f2d50520c3e9329ab982986 *tests/testthat/test_analysis_example_jackson2014.r 9605f61133a0cdb35438def1b047c753 *tests/testthat/test_analysis_example_konstantopoulos2011.r 95f6df73552b9074c75caed8daaebd87 *tests/testthat/test_analysis_example_law2016.r a4838f55fa3df144ca7ad89cc67fad20 *tests/testthat/test_analysis_example_lipsey2001.r 1efdab575ba4d78dbfe75a2a0d7cd179 *tests/testthat/test_analysis_example_miller1978.r 6bd67c8d402eb58cac787a1474ce7d18 *tests/testthat/test_analysis_example_morris2008.r e3079c194cd48a161ad7365e655c709c *tests/testthat/test_analysis_example_normand1999.r 507f28d985ea50bab5ea5f4083b08344 *tests/testthat/test_analysis_example_raudenbush1985.r 2f949adf4fa7ee7f24fe7a6deab7274e *tests/testthat/test_analysis_example_raudenbush2009.r 2ae88a78722fdf34c986dbd5769ff439 *tests/testthat/test_analysis_example_rothman2008.r f4c7f6d5860fd0d2c1ca52c5a86e1b2e *tests/testthat/test_analysis_example_stijnen2010.r 42df3f9eb5cf207246fc9f3450920b13 *tests/testthat/test_analysis_example_vanhouwelingen1993.r 76c670296e17697f6bf8587cbf2b16ef *tests/testthat/test_analysis_example_vanhouwelingen2002.r 435f67bb105e2a5513abc44225e4f012 *tests/testthat/test_analysis_example_viechtbauer2005.r dd0a8c1965a219e9cb6dcc3f8de3ba35 *tests/testthat/test_analysis_example_viechtbauer2007a.r 61a93338b98d07e4310eb7925af72427 *tests/testthat/test_analysis_example_viechtbauer2007b.r 2d0364e6a60d15c0277741473ac77c97 *tests/testthat/test_analysis_example_yusuf1985.r f01cd303bb6c65ead0f49cd02f906f6e *tests/testthat/test_misc_aggregate.r d2ea95994e2929958f83ac217de883cc *tests/testthat/test_misc_anova.r 9b0ae16040f9bf6d501196b15d312e6d *tests/testthat/test_misc_calc_q.r 8200012495e8bead7d1f95b5975db338 *tests/testthat/test_misc_coef_se.r 5926a096c3056eb20aa571b6a64b0c69 *tests/testthat/test_misc_confint.r aeda3f039f385a19228c78736065e030 *tests/testthat/test_misc_cumul.r ef42b224ff0dafddede1eef5ca842bb3 *tests/testthat/test_misc_dfround.r c4d1768ee4898ee2ac668da732a311bd *tests/testthat/test_misc_diagnostics_rma.mv.r a0aa810fbc08c795ef294fd96de1d054 *tests/testthat/test_misc_emmprep.r 2640f11c77fa35349f8f2932c53d2f9c *tests/testthat/test_misc_escalc.r 247e48f89ff45ebaf33935d32ce2a9aa *tests/testthat/test_misc_fitstats.r 921a498fac73ca35f6ca4429ec9c4d96 *tests/testthat/test_misc_formula.r 9e488956309c5564b517b326d5bf1794 *tests/testthat/test_misc_fsn.r 52cf61250be508d7e98e6db3fc769b9f *tests/testthat/test_misc_funnel.r 64a078866b748439e5a9f9fa258e79c8 *tests/testthat/test_misc_handling_nas.r 727f6bb7ce40e8d84c784036f8e15ea3 *tests/testthat/test_misc_handling_of_edge_cases_due_to_zeros.r 1d13ee0e31dae8af9672b58127427e05 *tests/testthat/test_misc_influence.r bffa5199c3aab3b494a7475bbad525f9 *tests/testthat/test_misc_list_rma.r e02abac5ccd2b4a98a59578e03feb17f *tests/testthat/test_misc_matreg.r a5e0c655589113899bfe347db5d5831f *tests/testthat/test_misc_metan_vs_rma.mh_with_dat.bcg.r 3a68e7158bf865207285bafcc20c3c2d *tests/testthat/test_misc_metan_vs_rma.peto_with_dat.bcg.r 22dbc953cb8714f56a9f821df5d599c9 *tests/testthat/test_misc_metan_vs_rma.uni_with_dat.bcg.r f5a066655f0e31f2eb3a4913d92b106f *tests/testthat/test_misc_pdfs.r 4c079d648c468bba63cdf864e89399cf *tests/testthat/test_misc_permutest.r dc5b3a3cd0f5c8719b0a36d1f7c00aeb *tests/testthat/test_misc_plot_rma.r 980e1c8b77bd95e9a91b657e8ce7167d *tests/testthat/test_misc_predict.r d2bb802a3040ab3949cf7a89df051dc8 *tests/testthat/test_misc_pub_bias.r c538b9d1c080ecc7d6eaa735ebd91fd6 *tests/testthat/test_misc_replmiss.r 7ad6669c040b93e9c496272f11da25bd *tests/testthat/test_misc_reporter.r 61f9fb26a69f2e1f63f61e094f449f5e *tests/testthat/test_misc_residuals.r 85f2a92f77e8c0271100dea180b70654 *tests/testthat/test_misc_rma_error_handling.r 26131a0625b2b26a5cd8737a1e5f9b39 *tests/testthat/test_misc_rma_glmm.r e93864b1afd02fe6a19f37cf7e8c1e58 *tests/testthat/test_misc_rma_handling_nas.r 7abddd69f9397e83a4d1d42b82aff043 *tests/testthat/test_misc_rma_ls.r 52a7af42514599b1796c4d7bc746ee44 *tests/testthat/test_misc_rma_mv.r a8a3421f7c8bbaee846588c5e2a7886e *tests/testthat/test_misc_rma_uni.r 9c1e0f2871158612ee536c5bbf3c9bac *tests/testthat/test_misc_rma_uni_ls.r fde0335a40f9cd8ed11a06116fa53d22 *tests/testthat/test_misc_rma_vs_direct_computation.r 59d989e747fc46dfce4e7bf670cdae91 *tests/testthat/test_misc_rma_vs_lm.r 300b7e8d2aff650e859e42aff716dc65 *tests/testthat/test_misc_robust.r 82b84ffc35f00560a727222ebacd5c97 *tests/testthat/test_misc_selmodel.r 692029399d0e6b7444c3baba1437edc6 *tests/testthat/test_misc_setlab.r 2ef180c8f91e36a4189c24c3fa631031 *tests/testthat/test_misc_tes.r c1e21c0783b57282f2cf4da825c8b269 *tests/testthat/test_misc_to_long_table_wide.r 4488f41e69550b9601d05b5a3017d41a *tests/testthat/test_misc_transf.r b537a873be06626f01488c9103e990dc *tests/testthat/test_misc_update.r fc4c939fede428bc02070f8194c9a6a1 *tests/testthat/test_misc_vcalc.r 70c15f8a3710de524c5f242c82795c67 *tests/testthat/test_misc_vcov.r 6ae9536eb7123736205e3747c6f89f81 *tests/testthat/test_misc_vec2mat.r d803076ddad6d0576294cc211c4ee8bc *tests/testthat/test_misc_vif.r 757543ec1dafe8167e495bf6ce7733b2 *tests/testthat/test_misc_weights.r 23925fcc9abff0bc38c6793000005bd9 *tests/testthat/test_plots_baujat_plot.r 4205a6469bf55fcda33015132761a7dd *tests/testthat/test_plots_caterpillar_plot.r eddfd6e251811612bf9cd421d528782c *tests/testthat/test_plots_contour-enhanced_funnel_plot.r 1dc7f03d62708945a47284049c439ec6 *tests/testthat/test_plots_cumulative_forest_plot.r ef98dabb08bedeb522a49d1088626851 *tests/testthat/test_plots_forest_plot_with_predstyle.r 047ba83ec86be5f55f3e8201797b7025 *tests/testthat/test_plots_forest_plot_with_subgroups.r cf43d5b5694d48d6661c40fdbbc3ec9f *tests/testthat/test_plots_funnel_plot_variations.r 41f64ba1c8c1b3fcbee5500953f63d7a *tests/testthat/test_plots_funnel_plot_with_trim_and_fill.r d42be4fb1c443a1da12b899217eab5ad *tests/testthat/test_plots_gosh.r 9b9c8c814bbb907d06f718011c8ec179 *tests/testthat/test_plots_labbe_plot.r ca0d4c5ef28025b0a6a8c95342c4988d *tests/testthat/test_plots_llplot.r 1604f07b0b4a9e25a3e87deb0aa068c0 *tests/testthat/test_plots_meta-analytic_scatterplot.r b3d255d1974021f39cebf1f8d3d6e09d *tests/testthat/test_plots_normal_qq_plots.r 933b82f76cc5bde9d102212dd5cc3583 *tests/testthat/test_plots_plot_of_cumulative_results.r 7536047651d00619a5f2bb92ff05d2ae *tests/testthat/test_plots_plot_of_influence_diagnostics.r 8c16be6161a42d92c2be55d5e2699c9a *tests/testthat/test_plots_radial_plot.r a11381157855ec7163ce8b98def95a4a *tests/testthat/test_plots_regplot.r 8ea55eed5c0848862e3d45a4d05dc37f *tests/testthat/test_tips_model_selection_with_glmulti_and_mumin.r a18258207c5a7db01130720e10f4f972 *tests/testthat/test_tips_multiple_imputation_with_mice.r 63d1804b1e3ed7e25cbb353d20240441 *tests/testthat/test_tips_regression_with_rma.r 06c471e142c09f27a2e09b2f0237b2c7 *tests/testthat/test_tips_rma_vs_lm_and_lme.r 7a4619c81a9a4d04b597aa2b431f404b *tests/testthat/test_tips_testing_factors_lincoms.r b438c769739c3d868cfd5766f72f7c2c *vignettes/diagram.pdf.asis b22e3397f4cea09c48a2c785ff0cae6a *vignettes/metafor.pdf.asis metafor/R/0000755000176200001440000000000014737742157012131 5ustar liggesusersmetafor/R/summary.matreg.r0000644000176200001440000000063514515471243015260 0ustar liggesuserssummary.matreg <- function(object, digits, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="matreg") if (missing(digits)) { digits <- .get.digits(xdigits=object$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=object$digits, dmiss=FALSE) } object$digits <- digits class(object) <- c("summary.matreg", class(object)) return(object) } metafor/R/plot.infl.rma.uni.r0000644000176200001440000004751414717401151015564 0ustar liggesusersplot.infl.rma.uni <- function(x, plotinf=TRUE, plotdfbs=FALSE, dfbsnew=FALSE, logcov=TRUE, slab.style=1, las=0, pch=21, bg, bg.infl, col.na, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="infl.rma.uni") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) ddd <- list(...) if (!is.null(ddd$layout)) warning(mstyle$warning("Argument 'layout' has been deprecated."), call.=FALSE) .start.plot() if (missing(bg)) bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) if (missing(bg.infl)) bg.infl <- "red" if (missing(col.na)) col.na <- .coladj(par("bg","fg"), dark=0.2, light=-0.2) ######################################################################### ### check for NAs and stop if there are any when na.act == "na.fail" any.na <- is.na(as.data.frame(x$inf)) if (any(any.na) && na.act == "na.fail") stop(mstyle$stop("Missing values in results.")) ######################################################################### ### process plotinf argument if (is.logical(plotinf)) { if (plotinf) which.inf <- seq_len(8) } else { which.inf <- plotinf which.inf <- which.inf[(which.inf >= 1) & (which.inf <= 8)] which.inf <- unique(round(which.inf)) if (length(which.inf) == 0L) stop(mstyle$stop("Incorrect specification of the 'plotinf' argument.")) plotinf <- TRUE } ### process plotdfbs argument if (is.logical(plotdfbs)) { if (plotdfbs) which.dfbs <- seq_len(x$p) } else { which.dfbs <- plotdfbs which.dfbs <- which.dfbs[(which.dfbs >= 1) & (which.dfbs <= x$p)] which.dfbs <- unique(round(which.dfbs)) if (length(which.dfbs) == 0L) stop(mstyle$stop("Incorrect specification of the 'plotdfbs' argument.")) plotdfbs <- TRUE } ######################################################################### if (!plotinf & !plotdfbs) stop(mstyle$stop("At least one of the arguments 'plotinf' or 'plotdfbs' must be TRUE.")) if (!plotinf & dfbsnew) dfbsnew <- FALSE par.mar <- par("mar") par.mar.adj <- par.mar - c(2,1,2,0) par.mar.adj[par.mar.adj < 1] <- 1 par(mar=par.mar.adj) on.exit(par(mar=par.mar), add=TRUE) ######################################################################### ### filter out potential arguments to abbreviate() (which cause problems with the various plot functions) lplot <- function(..., minlength, strict, layout) plot(...) lpoints <- function(..., minlength, strict, layout) points(...) llines <- function(..., minlength, strict, layout) lines(...) laxis <- function(..., minlength, strict, layout) axis(...) labline <- function(..., minlength, strict, layout) abline(...) ######################################################################### ids <- switch(slab.style, "1" = x$ids, "2" = x$inf$slab, "3" = abbreviate(x$inf$slab, ...)) #print(ids) ######################################################################### ### plot inf values if requested if (plotinf) { np.inf <- length(which.inf) if (np.inf > 1L) { # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < np.inf) { #par(mfrow=n2mfrow(np.inf)) # this behaves slightly differently (see below) if (np.inf == 2L) par(mfrow=c(2,1)) if (np.inf == 3L) par(mfrow=c(3,1)) if (np.inf == 4L) par(mfrow=c(2,2)) if (np.inf == 5L) par(mfrow=c(5,1)) # n2mfrow(5) yields c(3,2) if (np.inf == 6L) par(mfrow=c(3,2)) if (np.inf == 7L) par(mfrow=c(7,1)) # n2mfrow(7) yields c(3,3) if (np.inf == 8L) par(mfrow=c(4,2)) # n2mfrow(8) yields c(3,3) } on.exit(par(mfrow=c(1L,1L)), add=TRUE) } ###################################################################### for (i in seq_along(which.inf)) { if (which.inf[i] == 1) { zi <- x$inf$rstudent not.na <- !is.na(zi) if (na.act == "na.omit") { zi <- zi[not.na] len.ids <- length(x$ids)-sum(!not.na) ids.infl <- x$is.infl[not.na] lab.ids <- ids[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { len.ids <- length(x$ids) ids.infl <- x$is.infl lab.ids <- ids } if (any(!is.na(zi))) { zi.min <- min(min(zi,-2,na.rm=TRUE), qnorm(0.025))*1.05 zi.max <- max(max(zi, 2,na.rm=TRUE), qnorm(0.975))*1.05 lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main="rstudent", xlab="", ylab="", las=las, ...) laxis(side=1, at=seq_len(len.ids), labels=lab.ids, xlab="", las=las, ...) labline(h=0, lty="dashed", ...) labline(h=c(qnorm(0.025),qnorm(0.975)), lty="dotted", ...) if (na.act == "na.exclude" || na.act == "na.pass") llines(seq_len(len.ids)[not.na], zi[not.na], col=col.na, ...) llines(seq_len(len.ids), zi, ...) lpoints(x=seq_len(len.ids), y=zi, bg=bg, pch=pch, ...) lpoints(x=seq_len(len.ids)[ids.infl], y=zi[ids.infl], bg=bg.infl, pch=pch, ...) #if (num.infl) # text(seq_len(len.ids)[ids.infl], zi[ids.infl], seq_len(len.ids)[ids.infl], pos=ifelse(zi[ids.infl] > 0, 3, 1), ...) } else { lplot(NA, NA, xlim=c(0,1), ylim=c(0,1), xaxt="n", yaxt="n", main="rstudent", xlab="", ylab="", ...) } } if (which.inf[i] == 2) { zi <- x$inf$dffits not.na <- !is.na(zi) if (na.act == "na.omit") { zi <- zi[not.na] len.ids <- length(x$ids)-sum(!not.na) ids.infl <- x$is.infl[not.na] lab.ids <- ids[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { len.ids <- length(x$ids) ids.infl <- x$is.infl lab.ids <- ids } if (any(!is.na(zi))) { zi.min <- min(min(zi,na.rm=TRUE), -3*sqrt(x$p/(x$k-x$p)))*1.05 zi.max <- max(max(zi,na.rm=TRUE), 3*sqrt(x$p/(x$k-x$p)))*1.05 lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main="dffits", xlab="", ylab="", las=las, ...) laxis(side=1, at=seq_len(len.ids), labels=lab.ids, xlab="", las=las, ...) labline(h= 0, lty="dashed", ...) labline(h= 3*sqrt(x$p/(x$k-x$p)), lty="dotted", ...) labline(h=-3*sqrt(x$p/(x$k-x$p)), lty="dotted", ...) if (na.act == "na.exclude" || na.act == "na.pass") llines(seq_len(len.ids)[not.na], zi[not.na], col=col.na, ...) llines(seq_len(len.ids), zi, ...) lpoints(x=seq_len(len.ids), y=zi, bg=bg, pch=pch, ...) lpoints(x=seq_len(len.ids)[ids.infl], y=zi[ids.infl], bg=bg.infl, pch=pch, ...) #if (num.infl) # text(seq_len(len.ids)[ids.infl], zi[ids.infl], seq_len(len.ids)[ids.infl], pos=ifelse(zi[ids.infl] > 0, 3, 1), ...) } else { lplot(NA, NA, xlim=c(0,1), ylim=c(0,1), xaxt="n", yaxt="n", main="dffits", xlab="", ylab="", ...) } } if (which.inf[i] == 3) { zi <- x$inf$cook.d not.na <- !is.na(zi) if (na.act == "na.omit") { zi <- zi[not.na] len.ids <- length(x$ids)-sum(!not.na) ids.infl <- x$is.infl[not.na] lab.ids <- ids[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { len.ids <- length(x$ids) ids.infl <- x$is.infl lab.ids <- ids } if (any(!is.na(zi))) { zi.min <- 0 zi.max <- max(zi,na.rm=TRUE)*1.05 lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main="cook.d", xlab="", ylab="", las=las, ...) laxis(side=1, at=seq_len(len.ids), labels=lab.ids, xlab="", las=las, ...) labline(h=qchisq(0.5, df=x$m), lty="dotted", ...) if (na.act == "na.exclude" || na.act == "na.pass") llines(seq_len(len.ids)[not.na], zi[not.na], col=col.na, ...) llines(seq_len(len.ids), zi, ...) lpoints(x=seq_len(len.ids), y=zi, bg=bg, pch=pch, ...) lpoints(x=seq_len(len.ids)[ids.infl], y=zi[ids.infl], bg=bg.infl, pch=pch, ...) #if (num.infl) # text(seq_len(len.ids)[ids.infl], zi[ids.infl], seq_len(len.ids)[ids.infl], pos=3, ...) } else { lplot(NA, NA, xlim=c(0,1), ylim=c(0,1), xaxt="n", yaxt="n", main="cook.d", xlab="", ylab="", ...) } } if (which.inf[i] == 4) { zi <- x$inf$cov.r not.na <- !is.na(zi) if (na.act == "na.omit") { zi <- zi[not.na] len.ids <- length(x$ids)-sum(!not.na) ids.infl <- x$is.infl[not.na] lab.ids <- ids[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { len.ids <- length(x$ids) ids.infl <- x$is.infl lab.ids <- ids } if (any(!is.na(zi))) { zi.min <- min(zi,na.rm=TRUE) zi.max <- max(zi,na.rm=TRUE) if (logcov) { lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main="cov.r", xlab="", ylab="", las=las, log="y", ...) } else { lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main="cov.r", xlab="", ylab="", las=las, ...) } laxis(side=1, at=seq_len(len.ids), labels=lab.ids, xlab="", las=las, ...) labline(h=1, lty="dashed", ...) #labline(h=1+3*x$m/(x$k-x$m), lty="dotted", ...) #labline(h=1-3*x$m/(x$k-x$m), lty="dotted", ...) if (na.act == "na.exclude" || na.act == "na.pass") llines(seq_len(len.ids)[not.na], zi[not.na], col=col.na, ...) llines(seq_len(len.ids), zi, ...) lpoints(x=seq_len(len.ids), y=zi, bg=bg, pch=pch, ...) lpoints(x=seq_len(len.ids)[ids.infl], y=zi[ids.infl], bg=bg.infl, pch=pch, ...) #if (num.infl) # text(seq_len(len.ids)[ids.infl], zi[ids.infl], seq_len(len.ids)[ids.infl], pos=ifelse(zi[ids.infl] > 1, 3, 1), ...) } else { lplot(NA, NA, xlim=c(0,1), ylim=c(0,1), xaxt="n", yaxt="n", main="cov.r", xlab="", ylab="", ...) } } if (which.inf[i] == 5) { zi <- x$inf$tau2.del not.na <- !is.na(zi) if (na.act == "na.omit") { zi <- zi[not.na] len.ids <- length(x$ids)-sum(!not.na) ids.infl <- x$is.infl[not.na] lab.ids <- ids[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { len.ids <- length(x$ids) ids.infl <- x$is.infl lab.ids <- ids } if (any(!is.na(zi))) { zi.min <- min(zi,na.rm=TRUE) zi.max <- max(zi,na.rm=TRUE) lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main="tau2.del", xlab="", ylab="", las=las, ...) laxis(side=1, at=seq_len(len.ids), labels=lab.ids, xlab="", las=las, ...) labline(h=x$tau2, lty="dashed", ...) if (na.act == "na.exclude" || na.act == "na.pass") llines(seq_len(len.ids)[not.na], zi[not.na], col=col.na, ...) llines(seq_len(len.ids), zi, ...) lpoints(x=seq_len(len.ids), y=zi, bg=bg, pch=pch, ...) lpoints(x=seq_len(len.ids)[ids.infl], y=zi[ids.infl], bg=bg.infl, pch=pch, ...) } else { lplot(NA, NA, xlim=c(0,1), ylim=c(0,1), xaxt="n", yaxt="n", main="tau2.del", xlab="", ylab="", ...) } } if (which.inf[i] == 6) { zi <- x$inf$QE.del not.na <- !is.na(zi) if (na.act == "na.omit") { zi <- zi[not.na] len.ids <- length(x$ids)-sum(!not.na) ids.infl <- x$is.infl[not.na] lab.ids <- ids[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { len.ids <- length(x$ids) ids.infl <- x$is.infl lab.ids <- ids } if (any(!is.na(zi))) { zi.min <- min(zi,na.rm=TRUE) zi.max <- max(zi,na.rm=TRUE) lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main="QE.del", xlab="", ylab="", las=las, ...) laxis(side=1, at=seq_len(len.ids), labels=lab.ids, xlab="", las=las, ...) labline(h=x$QE, lty="dashed", ...) #labline(h=qchisq(0.95, df=x$k-x$p), lty="dotted", ...) labline(h=x$k-x$p, lty="dotted", ...) if (na.act == "na.exclude" || na.act == "na.pass") llines(seq_len(len.ids)[not.na], zi[not.na], col=col.na, ...) llines(seq_len(len.ids), zi, ...) lpoints(x=seq_len(len.ids), y=zi, bg=bg, pch=pch, ...) lpoints(x=seq_len(len.ids)[ids.infl], y=zi[ids.infl], bg=bg.infl, pch=pch, ...) } else { lplot(NA, NA, xlim=c(0,1), ylim=c(0,1), xaxt="n", yaxt="n", main="QE.del", xlab="", ylab="", ...) } } if (which.inf[i] == 7) { zi <- x$inf$hat not.na <- !is.na(zi) if (na.act == "na.omit") { zi <- zi[not.na] len.ids <- length(x$ids)-sum(!not.na) ids.infl <- x$is.infl[not.na] lab.ids <- ids[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { len.ids <- length(x$ids) ids.infl <- x$is.infl lab.ids <- ids } if (any(!is.na(zi))) { zi.min <- 0 zi.max <- max(max(zi,na.rm=TRUE), 3*x$p/x$k)*1.05 lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main="hat", xlab="", ylab="", las=las, ...) laxis(side=1, at=seq_len(len.ids), labels=lab.ids, xlab="", las=las, ...) labline(h=x$p/x$k, lty="dashed", ...) labline(h=3*x$p/x$k, lty="dotted", ...) if (na.act == "na.exclude" || na.act == "na.pass") llines(seq_len(len.ids)[not.na], zi[not.na], col=col.na, ...) llines(seq_len(len.ids), zi, ...) lpoints(x=seq_len(len.ids), y=zi, bg=bg, pch=pch, ...) lpoints(x=seq_len(len.ids)[ids.infl], y=zi[ids.infl], bg=bg.infl, pch=pch, ...) } else { lplot(NA, NA, xlim=c(0,1), ylim=c(0,1), xaxt="n", yaxt="n", main="hat", xlab="", ylab="", ...) } } if (which.inf[i] == 8) { zi <- x$inf$weight not.na <- !is.na(zi) if (na.act == "na.omit") { zi <- zi[not.na] len.ids <- length(x$ids)-sum(!not.na) ids.infl <- x$is.infl[not.na] lab.ids <- ids[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { len.ids <- length(x$ids) ids.infl <- x$is.infl lab.ids <- ids } if (any(!is.na(zi))) { zi.min <- 0 zi.max <- max(zi,na.rm=TRUE)*1.05 lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main="weight", xlab="", ylab="", las=las, ...) laxis(side=1, at=seq_len(len.ids), labels=lab.ids, xlab="", las=las, ...) labline(h=100/x$k, lty="dashed", ...) if (na.act == "na.exclude" || na.act == "na.pass") llines(seq_len(len.ids)[not.na], zi[not.na], col=col.na, ...) llines(seq_len(len.ids), zi, ...) lpoints(x=seq_len(len.ids), y=zi, bg=bg, pch=pch, ...) lpoints(x=seq_len(len.ids)[ids.infl], y=zi[ids.infl], bg=bg.infl, pch=pch, ...) } else { lplot(NA, NA, xlim=c(0,1), ylim=c(0,1), xaxt="n", yaxt="n", main="weight", xlab="", ylab="", ...) } } } } ######################################################################### ### plot dfbs values if requested if (plotdfbs) { np.dfbs <- length(which.dfbs) if (plotinf && (np.inf + np.dfbs <= prod(par("mfrow")))) { # if np.inf + np.dfbs is small enough to fit on the same multi-panel # plot, then do so, but reset mfrow to c(1L,1L) for consistency on.exit(par(mfrow=c(1L,1L)), add=TRUE) } else { if (dfbsnew) { # this is always FALSE when plotinf=FALSE dev.new() .start.plot() par(mar=par.mar.adj) } else { if (plotinf) { caps <- dev.capabilities()$events if (any(is.element(c("MouseDown","Keybd"), caps))) { message(mstyle$message("Press any key or click on the plot to show the DFBETAS values ...."), appendLF=FALSE) getGraphicsEvent(prompt="", onMouseDown=function(button,x,y) return(1), onKeybd=function(key) return(1)) } else { par.ask <- par("ask") par(ask=TRUE) on.exit(par(ask=par.ask), add=TRUE) } } } # if no plotting device is open or mfrow is too small, set mfrow appropriately if (plotinf || dev.cur() == 1L || prod(par("mfrow")) < np.dfbs) par(mfrow=n2mfrow(np.dfbs)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) } for (i in seq_along(which.dfbs)) { zi <- x$dfbs[[which.dfbs[i]]] not.na <- !is.na(zi) if (na.act == "na.omit") { zi <- zi[not.na] len.ids <- length(x$ids)-sum(!not.na) ids.infl <- x$is.infl[not.na] lab.ids <- ids[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { len.ids <- length(x$ids) ids.infl <- x$is.infl lab.ids <- ids } zi.min <- min(zi,na.rm=TRUE)*1.05 zi.max <- max(zi,na.rm=TRUE)*1.05 lplot(NA, NA, xlim=c(1,len.ids), ylim=c(zi.min,zi.max), xaxt="n", main=paste("dfbs: ", names(x$dfbs)[which.dfbs[i]]), xlab="", ylab="", las=las, ...) laxis(side=1, at=seq_len(len.ids), labels=lab.ids, xlab="", las=las, ...) labline(h= 0, lty="dashed", ...) labline(h= 1, lty="dotted", ...) labline(h=-1, lty="dotted", ...) if (na.act == "na.exclude" || na.act == "na.pass") llines(seq_len(len.ids)[not.na], zi[not.na], col=col.na, ...) llines(seq_len(len.ids), zi, ...) lpoints(x=seq_len(len.ids), y=zi, bg=bg, pch=pch, ...) lpoints(x=seq_len(len.ids)[ids.infl], y=zi[ids.infl], bg=bg.infl, pch=pch, ...) } } ######################################################################### invisible() } metafor/R/leave1out.rma.peto.r0000644000176200001440000001277614722327574015756 0ustar liggesusersleave1out.rma.peto <- function(x, cluster, digits, transf, targs, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.peto") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (!x$int.only) stop(mstyle$stop("Method only applicable to models without moderators.")) if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) if (is.null(x$outdat.f)) stop(mstyle$stop("Information needed to carry out a leave-one-out analysis is not available in the model object.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL ddd <- list(...) .chkdots(ddd, c("time", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### ### process cluster variable misscluster <- ifelse(missing(cluster), TRUE, FALSE) if (misscluster) { cluster <- seq_len(x$k.all) } else { mf <- match.call() cluster <- .getx("cluster", mf=mf, data=x$data) } ### note: cluster variable must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing ### of NAs as was done during model fitting if (length(cluster) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not match the length of the data (", x$k.all, ")."))) cluster <- .getsubset(cluster, x$subset) cluster.f <- cluster cluster <- cluster[x$not.na] ### checks on cluster variable if (anyNA(cluster.f)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster.f) == 0L) stop(mstyle$stop(paste0("Cannot find 'cluster' variable (or it has zero length)."))) ### cluster ids and number of clusters ids <- unique(cluster) n <- length(ids) if (!misscluster) ids <- sort(ids) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### beta <- rep(NA_real_, n) se <- rep(NA_real_, n) zval <- rep(NA_real_, n) pval <- rep(NA_real_, n) ci.lb <- rep(NA_real_, n) ci.ub <- rep(NA_real_, n) QE <- rep(NA_real_, n) QEp <- rep(NA_real_, n) #tau2 <- rep(NA_real_, n) I2 <- rep(NA_real_, n) H2 <- rep(NA_real_, n) ### elements that need to be returned outlist <- "beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, QE=QE, QEp=QEp, tau2=tau2, I2=I2, H2=H2" if (progbar) pbar <- pbapply::startpb(min=0, max=n) for (i in seq_len(n)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) args <- list(ai=x$outdat$ai, bi=x$outdat$bi, ci=x$outdat$ci, di=x$outdat$di, add=x$add, to=x$to, drop00=x$drop00, level=x$level, subset=ids[i]!=cluster, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.peto, args)), silent=TRUE) if (inherits(res, "try-error")) next beta[i] <- res$beta se[i] <- res$se zval[i] <- res$zval pval[i] <- res$pval ci.lb[i] <- res$ci.lb ci.ub[i] <- res$ci.ub QE[i] <- res$QE QEp[i] <- res$QEp I2[i] <- res$I2 H2[i] <- res$H2 } if (progbar) pbapply::closepb(pbar) ######################################################################### ### if requested, apply transformation function if (.isTRUE(transf)) # if transf=TRUE, apply exp transformation to ORs transf <- exp if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) se <- rep(NA_real_, n) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) se <- rep(NA_real_, n) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } transf <- TRUE } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ######################################################################### out <- list(estimate=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, Q=QE, Qp=QEp, I2=I2, H2=H2) if (na.act == "na.omit") { if (misscluster) { out$slab <- paste0("-", x$slab[x$not.na]) } else { out$slab <- paste0("-", ids) } } if (na.act == "na.exclude" || na.act == "na.pass") { if (misscluster) { out <- .expandna(out, x$not.na) out$slab <- paste0("-", x$slab) } else { out$slab <- paste0("-", ids) } } out$digits <- digits out$transf <- transf if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- "list.rma" return(out) } metafor/R/conv.2x2.r0000644000176200001440000001563114717376503013675 0ustar liggesusersconv.2x2 <- function(ori, ri, x2i, ni, n1i, n2i, correct=TRUE, data, include, var.names=c("ai","bi","ci","di"), append=TRUE, replace="ifna") { mstyle <- .get.mstyle() if (is.logical(replace)) { if (isTRUE(replace)) { replace <- "all" } else { replace <- "ifna" } } replace <- match.arg(replace, c("ifna","all")) ######################################################################### if (missing(data)) data <- NULL has.data <- !is.null(data) if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } ### checks on var.names argument if (length(var.names) != 4L) stop(mstyle$stop("Argument 'var.names' must be of length 4.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\nVariable names adjusted to: var.names = c('", var.names[1], "','", var.names[2], "','", var.names[3], "','", var.names[2], "').")), call.=FALSE) } ######################################################################### mf <- match.call() ori <- .getx("ori", mf=mf, data=data, checknumeric=TRUE) ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) x2i <- .getx("x2i", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) correct <- .getx("correct", mf=mf, data=data, default=TRUE) include <- .getx("include", mf=mf, data=data) if (!.equal.length(ori, ri, x2i, ni, n1i, n2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- max(length(ori), length(ri), length(x2i), length(ni), length(n1i), length(n2i)) if (is.null(ori)) ori <- rep(NA_real_, k) if (is.null(ri)) ri <- rep(NA_real_, k) if (is.null(x2i)) x2i <- rep(NA_real_, k) if (is.null(ni)) ni <- rep(NA_real_, k) if (is.null(n1i)) n1i <- rep(NA_real_, k) if (is.null(n2i)) n2i <- rep(NA_real_, k) ### handle correct argument correct <- .expand1(correct, k) if (length(correct) != k) stop(mstyle$stop(paste0("Length of the 'correct' argument (", length(correct), ") does not match the length of the data (", k, ")."))) correct[is.na(correct)] <- TRUE ### if include is NULL, set to TRUE vector if (is.null(include)) include <- rep(TRUE, k) ### turn numeric include vector into a logical vector include <- .chksubset(include, k, stoponk0=FALSE) ### set inputs to NA for rows not to be included ori[!include] <- NA_real_ ri[!include] <- NA_real_ x2i[!include] <- NA_real_ ni[!include] <- NA_real_ n1i[!include] <- NA_real_ n2i[!include] <- NA_real_ ### round ni, n1i, and n2i ni <- round(ni) n1i <- round(n1i) n2i <- round(n2i) ### checks on values if (any(c(ni < 0, n1i < 0, n2i < 0), na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes or marginal counts are negative.")) if (any(c(n1i > ni, n2i > ni), na.rm=TRUE)) stop(mstyle$stop("One or more marginal counts are larger than the sample sizes.")) if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more phi coefficients are > 1 or < -1.")) ### compute marginal proportions for the two variables p1i <- n1i / ni p2i <- n2i / ni ######################################################################### p11i <- rep(NA_real_, k) for (i in seq_len(k)) { if (is.na(ni[i]) || is.na(n1i[i]) || is.na(n2i[i])) next if (!is.na(ori[i])) { p1. <- p1i[i] p2. <- 1-p1i[i] p.1 <- p2i[i] p.2 <- 1-p2i[i] x <- ori[i] * (p1. + p.1) + p2. - p.1 y <- sqrt(x^2 - 4 * p1. * p.1 * ori[i] * (ori[i]-1)) p11i[i] <- (x - y) / (2 * (ori[i] - 1)) } # note: when x2i=0, then sign(0) = 0 and hence ri is automatically 0, which is correct # (i.e., we do not want to use the continuity correction in this case) if (is.na(ri[i]) && !is.na(x2i[i])) { if (correct[i]) { ri[i] <- sign(x2i[i]) * (sqrt(abs(x2i[i])/ni[i]) + ni[i] / (2*sqrt(n1i[i]*(ni[i]-n1i[i])*n2i[i]*(ni[i]-n2i[i])))) } else { ri[i] <- sign(x2i[i]) * sqrt(abs(x2i[i])/ni[i]) } } if (is.na(p11i[i]) && !is.na(ri[i])) p11i[i] <- p1i[i]*p2i[i] + ri[i] * sqrt(p1i[i]*(1-p1i[i])*p2i[i]*(1-p2i[i])) } ai <- round(ni * p11i) bi <- n1i - ai ci <- n2i - ai di <- ni - ai - bi - ci #print(matrix(c(ai,bi,ci,di), nrow=2, byrow=TRUE)) ### check for negative cell frequencies hasneg <- (ai < 0) | (bi < 0) | (ci < 0) | (di < 0) if (any(hasneg, na.rm=TRUE)) { warning(mstyle$warning(paste0("There are negative cell frequencies in table", ifelse(sum(hasneg, na.rm=TRUE) > 1, "s ", " "), paste0(which(hasneg), collapse=","), ".")), call.=FALSE) ai[hasneg] <- NA_real_ bi[hasneg] <- NA_real_ ci[hasneg] <- NA_real_ di[hasneg] <- NA_real_ } ######################################################################### if (has.data && append) { if (is.element(var.names[1], names(data))) { if (replace=="ifna") { data[[var.names[1]]] <- replmiss(data[[var.names[1]]], ai) } else { data[[var.names[1]]][!is.na(ai)] <- ai[!is.na(ai)] } } else { data <- cbind(data, ai) names(data)[length(names(data))] <- var.names[1] } if (is.element(var.names[2], names(data))) { if (replace=="ifna") { data[[var.names[2]]] <- replmiss(data[[var.names[2]]], bi) } else { data[[var.names[2]]][!is.na(bi)] <- bi[!is.na(bi)] } } else { data <- cbind(data, bi) names(data)[length(names(data))] <- var.names[2] } if (is.element(var.names[3], names(data))) { if (replace=="ifna") { data[[var.names[3]]] <- replmiss(data[[var.names[3]]], ci) } else { data[[var.names[3]]][!is.na(ci)] <- ai[!is.na(ci)] } } else { data <- cbind(data, ci) names(data)[length(names(data))] <- var.names[3] } if (is.element(var.names[4], names(data))) { if (replace=="ifna") { data[[var.names[4]]] <- replmiss(data[[var.names[4]]], di) } else { data[[var.names[4]]][!is.na(di)] <- ai[!is.na(di)] } } else { data <- cbind(data, di) names(data)[length(names(data))] <- var.names[4] } } else { data <- data.frame(ai, bi, ci, di) names(data) <- var.names } return(data) } metafor/R/plot.rma.uni.selmodel.r0000644000176200001440000001471514600537022016433 0ustar liggesusersplot.rma.uni.selmodel <- function(x, xlim, ylim, n=1000, prec="max", scale=FALSE, ci=FALSE, reps=1000, shade=TRUE, rug=TRUE, add=FALSE, lty=c("solid","dotted"), lwd=c(2,1), ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni.selmodel") .start.plot(!add) if (is.element(x$type, c("trunc","truncest"))) stop(mstyle$stop("Cannot draw the selection function for this type of selection model.")) ### shade argument can either be a logical or a color if (is.logical(shade)) { shadecol <- .coladj(par("bg","fg"), dark=0.1, light=-0.1) } if (is.character(shade)) { shadecol <- shade shade <- TRUE } ddd <- list(...) lplot <- function(..., seed) plot(...) llines <- function(..., seed) lines(...) lrug <- function(..., seed) rug(...) lpolygon <- function(..., seed) polygon(...) if (is.logical(ci)) citype <- "boot" if (is.character(ci)) { citype <- tolower(ci) ci <- TRUE } if (!is.element(citype, c("boot", "wald"))) stop(mstyle$stop("Unknown confidence interval type specified.")) if (missing(xlim)) xlim <- c(x$pval.min, 1-x$pval.min) if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' should be a vector of length 2.")) xlim <- sort(xlim) if (xlim[1] < 0 || xlim[2] > 1) stop(mstyle$stop("Values for 'xlim' should be between 0 and 1.")) if (length(prec) != 1L) stop(mstyle$stop("Argument 'prec' should be of length 1.")) if (is.character(prec)) { if (!is.element(prec, c("min", "max", "mean", "median"))) stop(mstyle$stop("Unknown options specified for the 'prec' argument.")) if (prec == "min") prec <- x$precis[["min"]] if (prec == "max") prec <- x$precis[["max"]] if (prec == "mean") prec <- x$precis[["mean"]] if (prec == "median") prec <- x$precis[["median"]] } else { if (is.numeric(prec) && !x$precspec) prec <- 1 } delta <- x$delta steps <- x$steps ps <- seq(xlim[1], xlim[2], length.out=n) if (is.element(x$type, c("stepfun","stepcon"))) { ps <- unique(sort(c(ps, steps))) # make sure that the 'steps' values are part of 'ps' ps <- ps[ps >= xlim[1]] # but only keep ps >= xlim[1] ps <- ps[ps <= xlim[2]] # ps <= xlim[2] plot.type <- "S" } else { plot.type <- "l" } wi.fun <- x$wi.fun ys <- wi.fun(ps, delta=delta, yi=x$yi, vi=x$vi, preci=prec, alternative=x$alternative, steps=x$steps) if (ci && citype == "boot" && all(is.na(x$vd))) ci <- FALSE if (ci && citype == "wald" && all(is.na(x$ci.lb.delta)) && all(is.na(x$ci.ub.delta))) ci <- FALSE if (ci && citype == "wald" && !is.element(x$type, c("stepfun","stepcon")) && sum(!x$delta.fix) >= 2L) stop(mstyle$stop("Cannot compute Wald-type confidence intervals for this selection model.")) if (ci) { if (citype == "boot") { if (!is.null(ddd$seed)) set.seed(ddd$seed) vd <- x$vd vd.na <- is.na(diag(vd)) vd[vd.na,] <- 0 vd[,vd.na] <- 0 dsim <- .mvrnorm(reps, mu=delta, Sigma=vd) for (j in seq_len(ncol(dsim))) { dsim[,j] <- ifelse(dsim[,j] < x$delta.min[j], x$delta.min[j], dsim[,j]) dsim[,j] <- ifelse(dsim[,j] > x$delta.max[j], x$delta.max[j], dsim[,j]) } ys.ci <- lapply(ps, function(p) { ysim <- apply(dsim, 1, function(d) wi.fun(p, delta=d, yi=x$yi, vi=x$vi, preci=prec, alternative=x$alternative, steps=x$steps)) quantile(ysim, probs=c(x$level/2, 1 - x$level/2)) }) ys.ci <- do.call(rbind, ys.ci) ys.lb <- ys.ci[,1] ys.ub <- ys.ci[,2] } if (citype == "wald") { ci.lb.delta <- x$ci.lb.delta ci.ub.delta <- x$ci.ub.delta if (is.element(x$type, c("stepfun","stepcon"))) { ci.lb.delta[x$delta.fix] <- delta[x$delta.fix] ci.ub.delta[x$delta.fix] <- delta[x$delta.fix] } ys.lb <- wi.fun(ps, delta=ci.lb.delta, yi=x$yi, vi=x$vi, preci=prec, alternative=x$alternative, steps=x$steps) ys.ub <- wi.fun(ps, delta=ci.ub.delta, yi=x$yi, vi=x$vi, preci=prec, alternative=x$alternative, steps=x$steps) } } else { ys.lb <- NA_real_ ys.ub <- NA_real_ } if (scale) { #is.inf.pos <- ys == Inf #is.inf.neg <- ys == -Inf ys[is.infinite(ys)] <- NA_real_ rng.ys <- max(ys, na.rm=TRUE) - min(ys, na.rm=TRUE) min.ys <- min(ys, na.rm=TRUE) if (rng.ys > .Machine$double.eps^0.5) { ys <- (ys - min.ys) / rng.ys ys.lb <- (ys.lb - min.ys) / rng.ys ys.ub <- (ys.ub - min.ys) / rng.ys } #ys[is.inf.pos] <- 1 #ys[is.inf.neg] <- 0 } ys[ys < 0] <- 0 ys.lb[ys.lb < 0] <- 0 ys.ub[ys.ub < 0] <- 0 if (missing(ylim)) { if (is.element(x$type, c("halfnorm", "negexp", "logistic", "power", "negexppow", "halfnorm2", "negexp2", "logistic2", "power2"))) { ylim <- c(0,1) } else { if (ci) { ylim <- c(min(c(ys.lb[is.finite(ys.lb)], ys[is.finite(ys)]), na.rm=TRUE), max(c(ys.ub[is.finite(ys.ub)], ys[is.finite(ys)]), na.rm=TRUE)) } else { ylim <- range(ys[is.finite(ys)], na.rm=TRUE) } } } else { if (length(ylim) != 2L) stop(mstyle$stop("Argument 'ylim' should be a vector of length 2.")) ylim <- sort(ylim) } if (!add) lplot(ps, ys, ylim=ylim, type="n", lwd=lwd, xlab="p-value", ylab="Relative Likelihood of Selection", ...) if (ci) { if (shade) { tmp <- approx(ps, ys.lb, n=10000, method="constant", f=1) ps.int.lb <- tmp$x ys.lb.int.lb <- tmp$y tmp <- approx(ps, ys.ub, n=10000, method="constant", f=1) ps.int.ub <- tmp$x ys.lb.int.ub <- tmp$y lpolygon(c(ps.int.lb,rev(ps.int.ub)), c(ys.lb.int.lb,rev(ys.lb.int.ub)), col=shadecol, border=NA) #lpolygon(c(ps,rev(ps)), c(ys.lb,rev(ys.ub)), col=shadecol, border=NA) } llines(ps, ys.lb, type=plot.type, lty=lty[2], lwd=lwd[2], ...) llines(ps, ys.ub, type=plot.type, lty=lty[2], lwd=lwd[2], ...) } if (rug && !add) lrug(x$pvals, quiet=TRUE) llines(ps, ys, type=plot.type, lty=lty[1], lwd=lwd[1], ...) sav <- data.frame(xs=ps, ys=ys, ys.lb=ys.lb, ys.ub=ys.ub) invisible(sav) } metafor/R/leave1out.rma.uni.r0000644000176200001440000001412214722327602015555 0ustar liggesusersleave1out.rma.uni <- function(x, cluster, digits, transf, targs, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni", notav=c("robust.rma", "rma.ls", "rma.gen", "rma.uni.selmodel")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (!x$int.only) stop(mstyle$stop("Method only applicable to models without moderators.")) if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) if (is.null(x$yi.f) || is.null(x$vi.f)) stop(mstyle$stop("Information needed to carry out a leave-one-out analysis is not available in the model object.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL funlist <- lapply(list(transf.exp.int, transf.ilogit.int, transf.ztor.int, transf.exp.mode, transf.ilogit.mode, transf.ztor.mode), deparse) if (is.null(targs) && any(sapply(funlist, identical, deparse(transf))) && inherits(x, c("rma.uni","rma.glmm")) && length(x$tau2 == 1L)) targs <- c(tau2=x$tau2) ddd <- list(...) .chkdots(ddd, c("time", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### ### process cluster variable misscluster <- ifelse(missing(cluster), TRUE, FALSE) if (misscluster) { cluster <- seq_len(x$k.all) } else { mf <- match.call() cluster <- .getx("cluster", mf=mf, data=x$data) } ### note: cluster variable must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing ### of NAs as was done during model fitting if (length(cluster) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not match the length of the data (", x$k.all, ")."))) cluster <- .getsubset(cluster, x$subset) cluster.f <- cluster cluster <- cluster[x$not.na] ### checks on cluster variable if (anyNA(cluster.f)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster.f) == 0L) stop(mstyle$stop(paste0("Cannot find 'cluster' variable (or it has zero length)."))) ### cluster ids and number of clusters ids <- unique(cluster) n <- length(ids) if (!misscluster) ids <- sort(ids) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### beta <- rep(NA_real_, n) se <- rep(NA_real_, n) zval <- rep(NA_real_, n) pval <- rep(NA_real_, n) ci.lb <- rep(NA_real_, n) ci.ub <- rep(NA_real_, n) QE <- rep(NA_real_, n) QEp <- rep(NA_real_, n) tau2 <- rep(NA_real_, n) I2 <- rep(NA_real_, n) H2 <- rep(NA_real_, n) ### elements that need to be returned outlist <- "beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, QE=QE, QEp=QEp, tau2=tau2, I2=I2, H2=H2" if (progbar) pbar <- pbapply::startpb(min=0, max=n) for (i in seq_len(n)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) args <- list(yi=x$yi, vi=x$vi, weights=x$weights, intercept=TRUE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, subset=ids[i]!=cluster, skipr2=TRUE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) if (inherits(res, "try-error")) next beta[i] <- res$beta se[i] <- res$se zval[i] <- res$zval pval[i] <- res$pval ci.lb[i] <- res$ci.lb ci.ub[i] <- res$ci.ub QE[i] <- res$QE QEp[i] <- res$QEp tau2[i] <- res$tau2 I2[i] <- res$I2 H2[i] <- res$H2 } if (progbar) pbapply::closepb(pbar) ######################################################################### ### if requested, apply transformation function if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) se <- rep(NA_real_, n) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) se <- rep(NA_real_, n) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } transf <- TRUE } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ######################################################################### out <- list(estimate=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, Q=QE, Qp=QEp, tau2=tau2, I2=I2, H2=H2) if (na.act == "na.omit") { if (misscluster) { out$slab <- paste0("-", x$slab[x$not.na]) } else { out$slab <- paste0("-", ids) } } if (na.act == "na.exclude" || na.act == "na.pass") { if (misscluster) { out <- .expandna(out, x$not.na) out$slab <- paste0("-", x$slab) } else { out$slab <- paste0("-", ids) } } if (is.element(x$test, c("knha","adhoc","t"))) names(out)[3] <- "tval" ### remove tau2 for FE/EE/CE models if (is.element(x$method, c("FE","EE","CE"))) out <- out[-9] out$digits <- digits out$transf <- transf if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- "list.rma" return(out) } metafor/R/methods.vif.rma.r0000644000176200001440000000233614277371247015321 0ustar liggesusers############################################################################ as.data.frame.vif.rma <- function(x, ...) { .chkclass(class(x), must="vif.rma") if (!is.null(x$alpha)) { tab <- list(beta = as.data.frame(x[[1]], ...), alpha = as.data.frame(x[[2]], ...)) } else { tab <- data.frame(spec = sapply(x$vif, function(x) x$spec), coefs = sapply(x$vif, function(x) x$coefs), m = sapply(x$vif, function(x) x$m), vif = sapply(x$vif, function(x) x$vif), sif = sapply(x$vif, function(x) x$sif)) # add proportions if they are available if (!is.null(x$prop)) tab$prop <- x$prop #names(tab)[2] <- "coef(s)" #names(tab)[4] <- "(g)vif" #names(tab)[5] <- "(g)sif" # if all btt/att specifications are numeric, remove the 'spec' column if (all(substr(tab$spec, 1, 1) %in% as.character(1:9))) tab$spec <- NULL # just use numbers for row names when btt was specified if (isTRUE(x$bttspec) || isTRUE(x$attspec)) rownames(tab) <- NULL } return(tab) } ############################################################################ metafor/R/plot.rma.mv.r0000644000176200001440000000020614707700225014452 0ustar liggesusersplot.rma.mv <- function(x, qqplot=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.mv", notav="rma.mv") } metafor/R/contrmat.r0000644000176200001440000001034414515470404014130 0ustar liggesuserscontrmat <- function(data, grp1, grp2, last, shorten=FALSE, minlen=2, check=TRUE, append=TRUE) { mstyle <- .get.mstyle() if (!is.data.frame(data)) data <- data.frame(data) ### get variable names varnames <- names(data) ### number of variables nvars <- length(varnames) ############################################################################ ### checks on 'grp1' argument if (length(grp1) != 1L) stop(mstyle$stop("Argument 'grp1' must of length 1.")) if (!(is.character(grp1) | is.numeric(grp1))) stop(mstyle$stop("Argument 'grp1' must either be a character string or a number.")) if (is.character(grp1)) { grp1.pos <- charmatch(grp1, varnames) if (is.na(grp1.pos) || grp1.pos == 0L) stop(mstyle$stop("Could not find or uniquely identify variable specified via the 'grp1' argument.")) } else { grp1.pos <- round(grp1) if (grp1.pos < 1 | grp1.pos > nvars) stop(mstyle$stop("Specified position of 'grp1' variable does not exist in the data frame.")) } ### get grp1 variable grp1 <- data[[grp1.pos]] ### make sure there are no missing values in grp1 variable if (anyNA(grp1)) stop(mstyle$stop("Variable specified via 'grp1' argument should not contain missing values.")) ############################################################################ ### checks on 'grp2' argument if (length(grp2) != 1L) stop(mstyle$stop("Argument 'grp2' must of length 1.")) if (!(is.character(grp2) | is.numeric(grp2))) stop(mstyle$stop("Argument 'grp2' must either be a character string or a number.")) if (is.character(grp2)) { grp2.pos <- charmatch(grp2, varnames) if (is.na(grp2.pos) || grp2.pos == 0L) stop(mstyle$stop("Could not find or uniquely identify variable specified via the 'grp2' argument.")) } else { grp2.pos <- round(grp2) if (grp2.pos < 1 | grp2.pos > nvars) stop(mstyle$stop("Specified position of 'grp2' variable does not exist in the data frame.")) } ### get grp2 variable grp2 <- data[[grp2.pos]] ### make sure there are no missing values in grp2 variable if (anyNA(grp2)) stop(mstyle$stop("Variable specified via 'grp2' argument should not contain missing values.")) ############################################################################ ### get all levels (of grp1 and grp2) if (is.factor(grp1) && is.factor(grp2) && identical(levels(grp1), levels(grp2))) { lvls <- levels(grp1) } else { lvls <- sort(union(levels(factor(grp1)), levels(factor(grp2)))) } ############################################################################ ### checks on 'last' argument ### if last is not specified, place most common grp2 group last if (missing(last)) last <- names(sort(table(grp2), decreasing=TRUE)[1]) if (length(last) != 1L) stop(mstyle$stop("Argument 'last' must be of length one.")) ### if last is set to NA, leave last unchanged if (is.na(last)) last <- tail(lvls, 1) last.pos <- charmatch(last, lvls) if (is.na(last.pos) || last.pos == 0L) stop(mstyle$stop("Could not find or uniquely identify group specified via the 'last' argument.")) last <- lvls[last.pos] ### reorder levels so that the reference level is always last lvls <- c(lvls[-last.pos], lvls[last.pos]) ############################################################################ ### turn grp1 and grp2 into factors with all levels grp1 <- factor(grp1, levels=lvls) grp2 <- factor(grp2, levels=lvls) ### create contrast matrix X <- model.matrix(~ grp1 - 1, contrasts.arg = list(grp1 = "contr.treatment")) - model.matrix(~ grp2 - 1, contrasts.arg = list(grp2 = "contr.treatment")) attr(X, "assign") <- NULL attr(X, "contrasts") <- NULL ### shorten variables names (if shorten=TRUE) if (shorten) lvls <- .shorten(lvls, minlen=minlen) ### add variable names if (check) { colnames(X) <- make.names(lvls, unique=TRUE) } else { colnames(X) <- lvls } ### append to original data if requested if (append) X <- cbind(data, X) ############################################################################ return(X) } metafor/R/dfbetas.rma.uni.r0000644000176200001440000000016413457322061015257 0ustar liggesusersdfbetas.rma.uni <- function(model, progbar=FALSE, ...) influence(model, progbar=progbar, measure="dfbetas", ...) metafor/R/print.rma.mh.r0000644000176200001440000001007614515471040014615 0ustar liggesusersprint.rma.mh <- function(x, digits, showfit=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.mh") if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } .space() cat(mstyle$section("Equal-Effects Model")) cat(mstyle$section(paste0(" (k = ", x$k, ")"))) cat("\n") if (showfit) { fs <- fmtx(x$fit.stats$ML, digits[["fit"]]) names(fs) <- c("logLik", "deviance", "AIC", "BIC", "AICc") cat("\n") tmp <- capture.output(print(fs, quote=FALSE, print.gap=2)) #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) } cat("\n") if (!is.na(x$I2)) { cat(mstyle$text("I^2 (total heterogeneity / total variability): ")) cat(mstyle$result(paste0(fmtx(x$I2, 2), "%"))) cat("\n") } if (!is.na(x$H2)) { cat(mstyle$text("H^2 (total variability / sampling variability): ")) cat(mstyle$result(fmtx(x$H2, 2))) cat("\n") } if (!is.na(x$QE)) { cat("\n") cat(mstyle$section("Test for Heterogeneity:"), "\n") cat(mstyle$result(fmtt(x$QE, "Q", df=ifelse(x$k.yi-1 >= 0, x$k.yi-1, 0), pval=x$QEp, digits=digits))) } if (any(!is.na(c(x$I2, x$H2, x$QE)))) cat("\n\n") if (is.element(x$measure, c("OR","RR","IRR"))) { res.table <- c(estimate=fmtx(unname(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), zval=fmtx(x$zval, digits[["test"]]), pval=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]])) res.table.exp <- c(estimate=fmtx(exp(unname(x$beta)), digits[["est"]]), ci.lb=fmtx(exp(x$ci.lb), digits[["ci"]]), ci.ub=fmtx(exp(x$ci.ub), digits[["ci"]])) cat(mstyle$section("Model Results (log scale):")) cat("\n\n") tmp <- capture.output(.print.vector(res.table)) .print.table(tmp, mstyle) cat("\n") cat(mstyle$section(paste0("Model Results (", x$measure, " scale):"))) cat("\n\n") tmp <- capture.output(.print.vector(res.table.exp)) .print.table(tmp, mstyle) if (x$measure == "OR") { cat("\n") MH <- fmtx(x$MH, digits[["test"]]) TA <- fmtx(x$TA, digits[["test"]]) if (is.na(MH) && is.na(TA)) { width <- 1 } else { width <- max(nchar(MH), nchar(TA), na.rm=TRUE) } cat(mstyle$text("Cochran-Mantel-Haenszel Test: ")) if (is.na(MH)) { cat(mstyle$result("test value not computable for these data")) cat("\n") } else { cat(mstyle$result(paste0("CMH = ", formatC(MH, width=width), ", df = 1,", paste(rep(" ", nchar(x$k.pos)-1L), collapse=""), " p-val ", fmtp(x$MHp, digits[["pval"]], equal=TRUE, sep=TRUE, add0=TRUE)))) cat("\n") } cat(mstyle$text("Tarone's Test for Heterogeneity: ")) if (is.na(TA)) { cat(mstyle$result("test value not computable for these data")) } else { cat(mstyle$result(paste0("X^2 = ", formatC(TA, width=width), ", df = ", x$k.pos-1, ", p-val ", fmtp(x$TAp, digits[["pval"]], equal=TRUE, sep=TRUE, add0=TRUE)))) } cat("\n") } if (x$measure == "IRR") { cat("\n") cat(mstyle$text("Mantel-Haenszel Test: ")) if (is.na(x$MH)) { cat(mstyle$result("test value not computable for these data")) } else { cat(mstyle$result(paste0("MH = ", fmtx(x$MH, digits[["test"]]), ", df = 1, p-val ", fmtp(x$MHp, digits[["pval"]], equal=TRUE, sep=TRUE)))) } cat("\n") } } else { res.table <- c(estimate=fmtx(unname(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), zval=fmtx(x$zval, digits[["test"]]), pval=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]])) cat(mstyle$section("Model Results:")) cat("\n\n") tmp <- capture.output(.print.vector(res.table)) .print.table(tmp, mstyle) } .space() invisible() } metafor/R/ranef.rma.mv.r0000644000176200001440000002534514717413517014610 0ustar liggesusersranef.rma.mv <- function(object, level, digits, transf, targs, verbose=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.mv") x <- object na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(x$yi) || is.null(x$M) || is.null(x$X)) stop(mstyle$stop("Information needed to compute the BLUPs is not available in the model object.")) if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL level <- .level(level) if (x$test == "z") crit <- qnorm(level/2, lower.tail=FALSE) ### TODO: check computations for user-defined weights if (!is.null(x$W)) stop(mstyle$stop("Extraction of random effects not available for models with non-standard weights.")) ddd <- list(...) .chkdots(ddd, c("expand", "vcov")) expand <- ifelse(is.null(expand), FALSE, isTRUE(ddd$expand)) # TODO: make this an option? vcov <- list() ######################################################################### out <- NULL vcov <- NULL if (verbose) message(mstyle$message("\nComputing the inverse marginal var-cov and hat matrix ... "), appendLF = FALSE) ### compute inverse marginal var-cov and hat matrix W <- chol2inv(chol(x$M)) stXWX <- chol2inv(chol(as.matrix(t(x$X) %*% W %*% x$X))) Hmat <- x$X %*% stXWX %*% crossprod(x$X,W) if (verbose) message(mstyle$message("Done!")) ### compute residuals ei <- c(x$yi - x$X %*% x$beta) # use this instead of resid(), since this guarantees that the length is correct ### create identity matrix if (x$sparse) { I <- Diagonal(x$k) } else { I <- diag(x$k) } if (x$withS) { # u^ = DZ'W(y - Xb) = DZ'We, where W = M^-1 # note: vpred = var(u^ - u) out <- vector(mode="list", length=x$sigma2s) names(out) <- x$s.names vcov <- vector(mode="list", length=x$sigma2s) names(vcov) <- x$s.names for (j in seq_len(x$sigma2s)) { if (verbose) message(mstyle$message(paste0("Computing the BLUPs for '", paste0("~ 1 | ", x$s.names[j]), "' term ... ")), appendLF = FALSE) if (x$Rfix[j]) { if (x$sparse) { D <- x$sigma2[j] * Matrix(x$R[[j]], sparse=TRUE) } else { D <- x$sigma2[j] * x$R[[j]] } } else { if (x$sparse) { D <- x$sigma2[j] * Diagonal(x$s.nlevels[j]) } else { D <- x$sigma2[j] * diag(x$s.nlevels[j]) } } DZtW <- D %*% t(x$Z.S[[j]]) %*% W pred <- as.vector(DZtW %*% cbind(ei)) pred[abs(pred) < 100 * .Machine$double.eps] <- 0 #vpred <- D - (DZtW %*% x$Z.S[[j]] %*% D - DZtW %*% x$X %*% stXWX %*% t(x$X) %*% W %*% x$Z.S[[j]] %*% D) vpred <- D - (DZtW %*% (I - Hmat) %*% x$Z.S[[j]] %*% D) # this one is the same as ranef.rma.uni() for standard RE/ME models #vpred <- DZtW %*% (I - Hmat) %*% x$Z.S[[j]] %*% D # = var(u^) #vpred <- D - (DZtW %*% x$Z.S[[j]] %*% D) # same as lme4::ranef() #vpred <- DZtW %*% x$Z.S[[j]] %*% D if (is.element(x$test, c("knha","adhoc","t"))) { ddf <- .ddf.calc(x$dfs, k=x$k, p=x$p, mf.s=x$mf.s[[j]], beta=FALSE) crit <- qt(level/2, df=ddf, lower.tail=FALSE) } se <- sqrt(diag(vpred)) pi.lb <- c(pred - crit * se) pi.ub <- c(pred + crit * se) pred <- data.frame(intrcpt=pred, se=se, pi.lb=pi.lb, pi.ub=pi.ub) if (na.act == "na.omit") { rownames(pred) <- x$s.levels[[j]] out[[j]] <- pred if (isTRUE(ddd$vcov)) vcov[[j]] <- vpred } if (na.act == "na.exclude" || na.act == "na.pass") { ### determine which levels were removed s.levels.r <- !is.element(x$s.levels.f[[j]], x$s.levels[[j]]) NAs <- rep(NA_real_, x$s.nlevels.f[j]) tmp <- data.frame(intrcpt=NAs, se=NAs, pi.lb=NAs, pi.ub=NAs) tmp[!s.levels.r,] <- pred pred <- tmp rownames(pred) <- x$s.levels.f[[j]] out[[j]] <- pred } if (expand) { rows <- as.vector(x$Z.S[[j]] %*% seq_along(x$s.levels[[j]])) pred <- pred[rows,] rnames <- x$s.levels[[j]][rows] rownames(pred) <- .make.unique(x$s.levels[[j]][rows]) out[[j]] <- pred } if (verbose) message(mstyle$message("Done!")) } } if (x$withG) { if (is.element(x$struct[1], c("GEN","GDIAG"))) { if (verbose) message(mstyle$message("Computation of BLUPs not currently available for struct=\"GEN\".")) } else { if (verbose) message(mstyle$message(paste0("Computing the BLUPs for '", paste(x$g.names, collapse=" | "), "' term ... ")), appendLF = FALSE) G <- (x$Z.G1 %*% x$G %*% t(x$Z.G1)) * tcrossprod(x$Z.G2) GW <- G %*% W pred <- as.vector(GW %*% cbind(ei)) pred[abs(pred) < 100 * .Machine$double.eps] <- 0 #vpred <- G - (GW %*% G - GW %*% x$X %*% stXWX %*% t(x$X) %*% W %*% G) vpred <- G - (GW %*% (I - Hmat) %*% G) if (is.element(x$test, c("knha","adhoc","t"))) { ddf <- .ddf.calc(x$dfs, k=x$k, p=x$p, mf.g=x$mf.g[[2]], beta=FALSE) crit <- qt(level/2, df=ddf, lower.tail=FALSE) } se <- sqrt(diag(vpred)) pi.lb <- c(pred - crit * se) pi.ub <- c(pred + crit * se) pred <- data.frame(intrcpt=pred, se=se, pi.lb=pi.lb, pi.ub=pi.ub) nvars <- ncol(x$mf.g) if (is.element(x$struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { r.names <- paste(formatC(x$ids[x$not.na], format="f", digits=0, width=max(nchar(x$ids[x$not.na]))), x$mf.g[[nvars]], sep=" | ") } else { #r.names <- paste(x$mf.g[[1]], x$mf.g[[2]], sep=" | ") r.names <- paste(sprintf(paste0("%", max(nchar(paste(x$mf.g[[1]]))), "s", collapse=""), x$mf.g[[1]]), x$mf.g[[nvars]], sep=" | ") } is.dup <- duplicated(r.names) pred <- pred[!is.dup,] rownames(pred) <- r.names[!is.dup] if (isTRUE(ddd$vcov)) vpred <- vpred[!is.dup, !is.dup] if (is.element(x$struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { #r.order <- order(x$mf.g[[nvars]][!is.dup], seq_len(x$k)[!is.dup]) r.order <- seq_len(x$k) } else { r.order <- order(x$mf.g[[2]][!is.dup], x$mf.g[[1]][!is.dup]) } pred <- pred[r.order,] out <- c(out, list(pred)) #names(out)[length(out)] <- paste(x$g.names, collapse=" | ") names(out)[length(out)] <- paste0(x$formulas[[1]], collapse="") if (isTRUE(ddd$vcov)) { vpred <- vpred[r.order, r.order] vcov <- c(vcov, list(vpred)) names(vcov)[length(vcov)] <- paste0(x$formulas[[1]], collapse="") } if (verbose) message(mstyle$message("Done!")) } } if (x$withH) { if (is.element(x$struct[2], c("GEN","GDIAG"))) { if (verbose) message(mstyle$message("Computation of BLUPs not currently available for struct=\"GEN\".")) } else { if (verbose) message(mstyle$message(paste0("Computing the BLUPs for '", paste(x$h.names, collapse=" | "), "' term ... ")), appendLF = FALSE) H <- (x$Z.H1 %*% x$H %*% t(x$Z.H1)) * tcrossprod(x$Z.H2) HW <- H %*% W pred <- as.vector(HW %*% cbind(ei)) pred[abs(pred) < 100 * .Machine$double.eps] <- 0 #vpred <- H - (HW %*% H - HW %*% x$X %*% stXWX %*% t(x$X) %*% W %*% H) vpred <- H - (HW %*% (I - Hmat) %*% H) if (is.element(x$test, c("knha","adhoc","t"))) { ddf <- .ddf.calc(x$dfs, k=x$k, p=x$p, mf.h=x$mf.h[[2]], beta=FALSE) crit <- qt(level/2, df=ddf, lower.tail=FALSE) } se <- sqrt(diag(vpred)) pi.lb <- c(pred - crit * se) pi.ub <- c(pred + crit * se) pred <- data.frame(intrcpt=pred, se=se, pi.lb=pi.lb, pi.ub=pi.ub) nvars <- ncol(x$mf.h) if (is.element(x$struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { r.names <- paste(formatC(x$ids[x$not.na], format="f", digits=0, width=max(nchar(x$ids[x$not.na]))), x$mf.h[[nvars]], sep=" | ") } else { #r.names <- paste(x$mf.h[[1]], x$mf.h[[2]], sep=" | ") r.names <- paste(sprintf(paste0("%", max(nchar(paste(x$mf.h[[1]]))), "s", collapse=""), x$mf.h[[1]]), x$mf.h[[nvars]], sep=" | ") } is.dup <- duplicated(r.names) pred <- pred[!is.dup,] rownames(pred) <- r.names[!is.dup] if (isTRUE(ddd$vcov)) vpred <- vpred[!is.dup, !is.dup] if (is.element(x$struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { #r.order <- order(x$mf.h[[nvars]][!is.dup], seq_len(x$k)[!is.dup]) r.order <- seq_len(x$k) } else { r.order <- order(x$mf.h[[2]][!is.dup], x$mf.h[[1]][!is.dup]) } pred <- pred[r.order,] out <- c(out, list(pred)) #names(out)[length(out)] <- paste(x$h.names, collapse=" | ") names(out)[length(out)] <- paste0(x$formulas[[2]], collapse="") if (isTRUE(ddd$vcov)) { vpred <- vpred[r.order, r.order] vcov <- c(vcov, list(vpred)) names(vcov)[length(vcov)] <- paste0(x$formulas[[2]], collapse="") } if (verbose) message(mstyle$message("Done!")) } } if (verbose) cat("\n") ######################################################################### ### if requested, apply transformation function if (is.function(transf)) { if (is.null(targs)) { out <- lapply(out, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) out <- lapply(out, transf, targs) } out <- lapply(out, function(x) x[,-2,drop=FALSE]) transf <- TRUE } ### make sure order of intervals is always increasing #tmp <- .psort(pi.lb, pi.ub) #pi.lb <- tmp[,1] #pi.ub <- tmp[,2] ######################################################################### if (is.null(out)) { return() } else { if (isTRUE(ddd$vcov)) { out <- list(pred=out) out$vcov <- vcov } return(out) } } metafor/R/logLik.rma.r0000644000176200001440000000126714515470547014314 0ustar liggesuserslogLik.rma <- function(object, REML, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") # in case something like logLik(res1, res2) is used if (!missing(REML) && inherits(REML, "rma")) REML <- NULL if (missing(REML) || is.null(REML)) { if (object$method == "REML") { REML <- TRUE } else { REML <- FALSE } } if (REML) { val <- object$fit.stats["ll","REML"] } else { val <- object$fit.stats["ll","ML"] } attr(val, "nall") <- object$k.eff attr(val, "nobs") <- object$k.eff - ifelse(REML, object$p.eff, 0) attr(val, "df") <- object$parms class(val) <- "logLik" return(val) } metafor/R/profile.rma.mv.r0000644000176200001440000005301314722342652015143 0ustar liggesusersprofile.rma.mv <- function(fitted, sigma2, tau2, rho, gamma2, phi, xlim, ylim, steps=20, lltol=1e-03, progbar=TRUE, parallel="no", ncpus=1, cl, plot=TRUE, ...) { mstyle <- .get.mstyle() .chkclass(class(fitted), must="rma.mv") x <- fitted if (is.null(x$yi) || is.null(x$V)) stop(mstyle$stop("Information needed for profiling is not available in the model object.")) if (anyNA(steps)) stop(mstyle$stop("No missing values allowed in 'steps' argument.")) if (length(steps) >= 2L) { if (missing(xlim)) xlim <- range(steps) stepseq <- TRUE } else { if (steps < 2) stop(mstyle$stop("Argument 'steps' must be >= 2.")) stepseq <- FALSE } parallel <- match.arg(parallel, c("no", "snow", "multicore")) if (parallel == "no" && ncpus > 1) parallel <- "snow" if (missing(cl)) cl <- NULL if (!is.null(cl) && inherits(cl, "SOCKcluster")) { parallel <- "snow" ncpus <- length(cl) } if (parallel == "snow" && ncpus < 2) parallel <- "no" if (parallel == "snow" || parallel == "multicore") { if (!requireNamespace("parallel", quietly=TRUE)) stop(mstyle$stop("Please install the 'parallel' package for parallel processing.")) ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Argument 'ncpus' must be >= 1.")) } if (!progbar) { pbo <- pbapply::pboptions(type="none") on.exit(pbapply::pboptions(pbo), add=TRUE) } ddd <- list(...) if (.isTRUE(ddd$time)) time.start <- proc.time() if (!is.null(ddd$startmethod)) warning(mstyle$warning("Argument 'startmethod' has been deprecated."), call.=FALSE) ######################################################################### ### check if user has not specified one of the sigma2, tau2, rho, gamma2, or phi arguments if (missing(sigma2) && missing(tau2) && missing(rho) && missing(gamma2) && missing(phi)) { mc <- match.call() ### total number of non-fixed components comps <- ifelse(x$withS, sum(!x$vc.fix$sigma2), 0) + ifelse(x$withG, sum(!x$vc.fix$tau2) + sum(!x$vc.fix$rho), 0) + ifelse(x$withH, sum(!x$vc.fix$gamma2) + sum(!x$vc.fix$phi), 0) if (comps == 0) stop(mstyle$stop("No components in the model for which a profile likelihood can be constructed.")) if (!is.null(ddd[["code3"]])) eval(expr = parse(text = ddd[["code3"]])) if (plot) { if (comps > 1L) { # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < comps) par(mfrow=n2mfrow(comps)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) } } sav <- list() j <- 0 if (x$withS && any(!x$vc.fix$sigma2)) { for (pos in seq_len(x$sigma2s)[!x$vc.fix$sigma2]) { j <- j + 1 if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) mc.vc <- mc mc.vc$sigma2 <- pos mc.vc$time <- FALSE #mc.vc$fitted <- quote(x) mc.vc[[1]] <- str2lang("metafor::profile.rma.mv") if (progbar) cat(mstyle$verbose(paste("Profiling sigma2 =", pos, "\n"))) sav[[j]] <- eval(mc.vc, envir=parent.frame()) } } if (x$withG) { if (any(!x$vc.fix$tau2)) { for (pos in seq_len(x$tau2s)[!x$vc.fix$tau2]) { j <- j + 1 if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) mc.vc <- mc mc.vc$tau2 <- pos mc.vc$time <- FALSE #mc.vc$fitted <- quote(x) mc.vc[[1]] <- str2lang("metafor::profile.rma.mv") if (progbar) cat(mstyle$verbose(paste("Profiling tau2 =", pos, "\n"))) sav[[j]] <- eval(mc.vc, envir=parent.frame()) } } if (any(!x$vc.fix$rho)) { for (pos in seq_len(x$rhos)[!x$vc.fix$rho]) { j <- j + 1 if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) mc.vc <- mc mc.vc$rho <- pos mc.vc$time <- FALSE #mc.vc$fitted <- quote(x) mc.vc[[1]] <- str2lang("metafor::profile.rma.mv") if (progbar) cat(mstyle$verbose(paste("Profiling rho =", pos, "\n"))) sav[[j]] <- eval(mc.vc, envir=parent.frame()) } } } if (x$withH) { if (any(!x$vc.fix$gamma2)) { for (pos in seq_len(x$gamma2s)[!x$vc.fix$gamma2]) { j <- j + 1 if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) mc.vc <- mc mc.vc$gamma2 <- pos mc.vc$time <- FALSE #mc.vc$fitted <- quote(x) mc.vc[[1]] <- str2lang("metafor::profile.rma.mv") if (progbar) cat(mstyle$verbose(paste("Profiling gamma2 =", pos, "\n"))) sav[[j]] <- eval(mc.vc, envir=parent.frame()) } } if (any(!x$vc.fix$phi)) { for (pos in seq_len(x$phis)[!x$vc.fix$phi]) { j <- j + 1 if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) mc.vc <- mc mc.vc$phi <- pos mc.vc$time <- FALSE #mc.vc$fitted <- quote(x) mc.vc[[1]] <- str2lang("metafor::profile.rma.mv") if (progbar) cat(mstyle$verbose(paste("Profiling phi =", pos, "\n"))) sav[[j]] <- eval(mc.vc, envir=parent.frame()) } } } ### if there is just one component, turn the list of lists into a simple list if (comps == 1) sav <- sav[[1]] sav$comps <- comps if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(sav) <- "profile.rma" return(invisible(sav)) } ######################################################################### ### round and take unique values if (!missing(sigma2) && is.numeric(sigma2)) sigma2 <- unique(round(sigma2)) if (!missing(tau2) && is.numeric(tau2)) tau2 <- unique(round(tau2)) if (!missing(rho) && is.numeric(rho)) rho <- unique(round(rho)) if (!missing(gamma2) && is.numeric(gamma2)) gamma2 <- unique(round(gamma2)) if (!missing(phi) && is.numeric(phi)) phi <- unique(round(phi)) #if (missing(sigma2) && missing(tau2) && missing(rho) && missing(gamma2) && missing(phi)) # stop(mstyle$stop("Must specify one of the arguments 'sigma2', 'tau2', 'rho', 'gamma2', or 'phi'.")) ### check if user has specified more than one of these arguments if (sum(!missing(sigma2), !missing(tau2), !missing(rho), !missing(gamma2), !missing(phi)) > 1L) stop(mstyle$stop("Must specify only one of the arguments 'sigma2', 'tau2', 'rho', 'gamma2', or 'phi'.")) ### check if model actually contains (at least one) such a component and that it was actually estimated ### note: a component that is not in the model is NA; components that are fixed are TRUE if (!missing(sigma2) && (all(is.na(x$vc.fix$sigma2)) || all(x$vc.fix$sigma2))) stop(mstyle$stop("Model does not contain any (estimated) 'sigma2' components.")) if (!missing(tau2) && (all(is.na(x$vc.fix$tau2)) || all(x$vc.fix$tau2))) stop(mstyle$stop("Model does not contain any (estimated) 'tau2' components.")) if (!missing(rho) && c(all(is.na(x$vc.fix$rho)) || all(x$vc.fix$rho))) stop(mstyle$stop("Model does not contain any (estimated) 'rho' components.")) if (!missing(gamma2) && (all(is.na(x$vc.fix$gamma2)) || all(x$vc.fix$gamma2))) stop(mstyle$stop("Model does not contain any (estimated) 'gamma2' components.")) if (!missing(phi) && c(all(is.na(x$vc.fix$phi)) || all(x$vc.fix$phi))) stop(mstyle$stop("Model does not contain any (estimated) 'phi' components.")) ### check if user specified more than one sigma2, tau2, rho, gamma2, or rho component if (!missing(sigma2) && (length(sigma2) > 1L)) stop(mstyle$stop("Can only specify one 'sigma2' component.")) if (!missing(tau2) && (length(tau2) > 1L)) stop(mstyle$stop("Can only specify one 'tau2' component.")) if (!missing(rho) && (length(rho) > 1L)) stop(mstyle$stop("Can only specify one 'rho' component.")) if (!missing(gamma2) && (length(gamma2) > 1L)) stop(mstyle$stop("Can only specify one 'gamma2' component.")) if (!missing(phi) && (length(phi) > 1L)) stop(mstyle$stop("Can only specify one 'phi' component.")) ### check if user specified a logical if (!missing(sigma2) && is.logical(sigma2)) stop(mstyle$stop("Must specify a number for the 'sigma2' component.")) if (!missing(tau2) && is.logical(tau2)) stop(mstyle$stop("Must specify a number for the 'tau2' component.")) if (!missing(rho) && is.logical(rho)) stop(mstyle$stop("Must specify a number for the 'rho' component.")) if (!missing(gamma2) && is.logical(gamma2)) stop(mstyle$stop("Must specify a number for the 'gamma2' component.")) if (!missing(phi) && is.logical(phi)) stop(mstyle$stop("Must specify a number for the 'phi' component.")) ### check if user specified a component that does not exist if (!missing(sigma2) && (sigma2 > length(x$vc.fix$sigma2) || sigma2 <= 0)) stop(mstyle$stop("No such 'sigma2' component in the model.")) if (!missing(tau2) && (tau2 > length(x$vc.fix$tau2) || tau2 <= 0)) stop(mstyle$stop("No such 'tau2' component in the model.")) if (!missing(rho) && (rho > length(x$vc.fix$rho) || rho <= 0)) stop(mstyle$stop("No such 'rho' component in the model.")) if (!missing(gamma2) && (gamma2 > length(x$vc.fix$gamma2) || gamma2 <= 0)) stop(mstyle$stop("No such 'gamma2' component in the model.")) if (!missing(phi) && (phi > length(x$vc.fix$phi) || phi <= 0)) stop(mstyle$stop("No such 'phi' component in the model.")) ### check if user specified a component that was fixed if (!missing(sigma2) && x$vc.fix$sigma2[sigma2]) stop(mstyle$stop("Specified 'sigma2' component was fixed.")) if (!missing(tau2) && x$vc.fix$tau2[tau2]) stop(mstyle$stop("Specified 'tau2' component was fixed.")) if (!missing(rho) && x$vc.fix$rho[rho]) stop(mstyle$stop("Specified 'rho' component was fixed.")) if (!missing(gamma2) && x$vc.fix$gamma2[gamma2]) stop(mstyle$stop("Specified 'gamma2' component was fixed.")) if (!missing(phi) && x$vc.fix$phi[phi]) stop(mstyle$stop("Specified 'phi' component was fixed.")) ### if everything is good so far, get value of the variance component and set 'comp' sigma2.pos <- NA_integer_ tau2.pos <- NA_integer_ rho.pos <- NA_integer_ gamma2.pos <- NA_integer_ phi.pos <- NA_integer_ if (!missing(sigma2)) { vc <- x$sigma2[sigma2] comp <- "sigma2" sigma2.pos <- sigma2 } if (!missing(tau2)) { vc <- x$tau2[tau2] comp <- "tau2" tau2.pos <- tau2 } if (!missing(rho)) { vc <- x$rho[rho] comp <- "rho" rho.pos <- rho } if (!missing(gamma2)) { vc <- x$gamma2[gamma2] comp <- "gamma2" gamma2.pos <- gamma2 } if (!missing(phi)) { vc <- x$phi[phi] comp <- "phi" phi.pos <- phi } #return(list(comp=comp, vc=vc)) ######################################################################### if (missing(xlim) || is.null(xlim)) { ### if the user has not specified xlim, set it automatically ### TODO: maybe try something based on CI later if (comp == "sigma2") { vc.lb <- max( 0, vc/4) vc.ub <- max(0.1, vc*4) } if (comp == "tau2") { if (is.element(x$struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { vc.lb <- max( 0, vc/2) vc.ub <- max(0.1, vc*2) } else { vc.lb <- max( 0, vc/4) vc.ub <- max(0.1, vc*4) } } if (comp == "gamma2") { if (is.element(x$struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { vc.lb <- max( 0, vc/2) vc.ub <- max(0.1, vc*2) } else { vc.lb <- max( 0, vc/4) vc.ub <- max(0.1, vc*4) } } if (comp == "rho") { if (x$struct[1] == "CAR") { vc.lb <- max(0, vc-0.5) vc.ub <- min(0.99999, vc+0.5) } if (is.element(x$struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD"))) { vc.lb <- vc/2 vc.ub <- vc*2 } if (!is.element(x$struct[1], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD"))) { vc.lb <- max(-0.99999, vc-0.5) vc.ub <- min( 0.99999, vc+0.5) } } if (comp == "phi") { if (x$struct[2] == "CAR") { vc.lb <- max(0, vc-0.5) vc.ub <- min(0.99999, vc+0.5) } if (is.element(x$struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD"))) { vc.lb <- vc/2 vc.ub <- vc*2 } if (!is.element(x$struct[2], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD"))) { vc.lb <- max(-0.99999, vc-0.5) vc.ub <- min( 0.99999, vc+0.5) } } ### if that fails, throw an error if (is.na(vc.lb) || is.na(vc.ub)) stop(mstyle$stop("Cannot set 'xlim' automatically. Please set this argument manually.")) xlim <- c(vc.lb, vc.ub) } else { if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' should be a vector of length 2.")) xlim <- sort(xlim) if (is.element(comp, c("sigma2", "tau2", "gamma2"))) { if (xlim[1] < 0) stop(mstyle$stop("Lower bound for profiling must be >= 0.")) } if (comp == "rho") { if (is.element(x$struct[1], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD")) && xlim[1] < 0) stop(mstyle$stop("Lower bound for profiling must be >= 0.")) if (xlim[1] < -1) stop(mstyle$stop("Lower bound for profiling must be >= -1.")) if (!is.element(x$struct[1], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD")) && xlim[2] > 1) stop(mstyle$stop("Upper bound for profiling must be <= 1.")) } if (comp == "phi") { if (is.element(x$struct[2], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD")) && xlim[1] < 0) stop(mstyle$stop("Lower bound for profiling must be >= 0.")) if (xlim[1] < -1) stop(mstyle$stop("Lower bound for profiling must be >= -1.")) if (!is.element(x$struct[2], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD")) && xlim[2] > 1) stop(mstyle$stop("Upper bound for profiling must be <= 1.")) } } if (stepseq) { vcs <- steps } else { vcs <- seq(xlim[1], xlim[2], length.out=steps) } #return(vcs) if (length(vcs) <= 1L) stop(mstyle$stop("Cannot set 'xlim' automatically. Please set this argument manually.")) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) if (parallel == "no") res <- pbapply::pblapply(vcs, .profile.rma.mv, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) if (parallel == "multicore") res <- pbapply::pblapply(vcs, .profile.rma.mv, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2, cl=ncpus) #res <- parallel::mclapply(vcs, .profile.rma.mv, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2, mc.cores=ncpus) if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, vcs, .profile.rma.mv, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterApplyLB(cl, vcs, .profile.rma.mv, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterMap(cl, .profile.rma.mv, vcs, MoreArgs=list(obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2), .scheduling = "dynamic") } else { res <- pbapply::pblapply(vcs, .profile.rma.mv, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, vcs, .profile.rma.mv, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterApply(cl, vcs, .profile.rma.mv, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterMap(cl, .profile.rma.mv, vcs, MoreArgs=list(obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, parallel=parallel, profile=TRUE, code2=ddd$code2)) } } lls <- sapply(res, function(x) x$ll) beta <- do.call(rbind, lapply(res, function(x) t(x$beta))) ci.lb <- do.call(rbind, lapply(res, function(x) t(x$ci.lb))) ci.ub <- do.call(rbind, lapply(res, function(x) t(x$ci.ub))) beta <- data.frame(beta) ci.lb <- data.frame(ci.lb) ci.ub <- data.frame(ci.ub) names(beta) <- rownames(x$beta) names(ci.lb) <- rownames(x$beta) names(ci.ub) <- rownames(x$beta) ######################################################################### maxll <- c(logLik(x)) if (any(lls >= maxll + lltol, na.rm=TRUE)) warning(mstyle$warning("At least one profiled log-likelihood value is larger than the log-likelihood of the fitted model."), call.=FALSE) if (all(is.na(lls))) warning(mstyle$warning("All model fits failed. Cannot draw profile likelihood plot."), call.=FALSE) if (.isTRUE(ddd$exp)) { lls <- exp(lls) maxll <- exp(maxll) } if (missing(ylim)) { if (any(is.finite(lls))) { if (xlim[1] <= vc && xlim[2] >= vc) { ylim <- range(c(maxll,lls[is.finite(lls)]), na.rm=TRUE) } else { ylim <- range(lls[is.finite(lls)], na.rm=TRUE) } } else { ylim <- rep(maxll, 2L) } if (!.isTRUE(ddd$exp)) ylim <- ylim + c(-0.1, 0.1) } else { if (length(ylim) != 2L) stop(mstyle$stop("Argument 'ylim' should be a vector of length 2.")) ylim <- sort(ylim) } if (comp == "sigma2") { if (x$sigma2s == 1L) { xlab <- expression(paste(sigma^2, " Value")) title <- expression(paste("Profile Plot for ", sigma^2)) } else { xlab <- bquote(sigma[.(sigma2)]^2 ~ "Value") title <- bquote("Profile Plot for" ~ sigma[.(sigma2)]^2) } } if (comp == "tau2") { if (x$tau2s == 1L) { xlab <- expression(paste(tau^2, " Value")) title <- expression(paste("Profile Plot for ", tau^2)) } else { xlab <- bquote(tau[.(tau2)]^2 ~ "Value") title <- bquote("Profile Plot for" ~ tau[.(tau2)]^2) } } if (comp == "rho") { if (x$rhos == 1L) { xlab <- expression(paste(rho, " Value")) title <- expression(paste("Profile Plot for ", rho)) } else { xlab <- bquote(rho[.(rho)] ~ "Value") title <- bquote("Profile Plot for" ~ rho[.(rho)]) } } if (comp == "gamma2") { if (x$gamma2s == 1L) { xlab <- expression(paste(gamma^2, " Value")) title <- expression(paste("Profile Plot for ", gamma^2)) } else { xlab <- bquote(gamma[.(gamma2)]^2 ~ "Value") title <- bquote("Profile Plot for" ~ gamma[.(gamma2)]^2) } } if (comp == "phi") { if (x$phis == 1L) { xlab <- expression(paste(phi, " Value")) title <- expression(paste("Profile Plot for ", phi)) } else { xlab <- bquote(phi[.(phi)] ~ "Value") title <- bquote("Profile Plot for" ~ phi[.(phi)]) } } sav <- list(vc=vcs, ll=lls, beta=beta, ci.lb=ci.lb, ci.ub=ci.ub, comps=1, ylim=ylim, method=x$method, vc=vc, maxll=maxll, xlab=xlab, title=title, exp=ddd$exp) names(sav)[1] <- switch(comp, sigma2="sigma2", tau2="tau2", rho="rho", gamma2="gamma2", phi="phi") class(sav) <- "profile.rma" ######################################################################### if (plot) plot(sav, ...) ######################################################################### if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } invisible(sav) } metafor/R/transf.r0000644000176200001440000004041514720051366013600 0ustar liggesusers############################################################################ .chktargsint <- function(targs) { if (length(targs) > 3L) stop("Length of the 'targs' argument must be <= 3.", call.=FALSE) if (.is.vector(targs)) { if (is.null(names(targs))) { names(targs) <- c("tau2", "lower", "upper")[seq_along(targs)] targs <- as.list(targs) } else { targs <- list(tau2=unname(targs[startsWith(names(targs), "t")]), lower=unname(targs[startsWith(names(targs), "l")]), upper=unname(targs[startsWith(names(targs), "u")])) targs <- targs[lengths(targs) > 0L] } } if (any(lengths(targs) > 1L)) stop("Elements of the 'targs' arguments must be scalars.", call.=FALSE) if (is.null(targs$tau2)) stop("Must specify a 'tau2' value via the 'targs' argument.", call.=FALSE) #targs$tau2 <- 0 return(targs) } ############################################################################ transf.rtoz <- function(xi) { # resulting value between -Inf (for -1) and +Inf (for +1) xi[xi > 1] <- 1 xi[xi < -1] <- -1 atanh(xi) # same as 1/2 * log((1+xi)/(1-xi)) } transf.ztor <- function(xi) tanh(xi) # same as (exp(2*xi)-1)/(exp(2*xi)+1) transf.ztor.int <- function(xi, targs=NULL) { targs <- .chktargsint(targs) if (is.null(targs$lower)) targs$lower <- xi-10*sqrt(targs$tau2) if (is.null(targs$upper)) targs$upper <- xi+10*sqrt(targs$tau2) toint <- function(zval, xi, tau2) tanh(zval) * dnorm(zval, mean=xi, sd=sqrt(tau2)) cfunc <- function(xi, tau2, lower, upper) { out <- try(integrate(toint, lower=lower, upper=upper, xi=xi, tau2=tau2), silent=TRUE) if (inherits(out, "try-error")) { return(NA_real_) } else { return(out$value) } } if (targs$tau2 == 0) { zi <- transf.ztor(xi) } else { zi <- mapply(xi, FUN=cfunc, tau2=targs$tau2, lower=targs$lower, upper=targs$upper) } return(c(zi)) } transf.ztor.mode <- function(xi, targs=NULL) { if (is.null(targs) || (is.list(targs) && is.null(targs$tau2))) stop("Must specify a 'tau2' value via the 'targs' argument.", call.=FALSE) if (is.list(targs)) { tau2 <- targs$tau2 } else { tau2 <- targs } tau <- sqrt(tau2) dfun <- function(x, mu, sigma) dnorm(atanh(x), mean=mu, sd=sigma) / (1 - x^2) zi <- sapply(xi, function(x) { if (tau2 == 0) return(tanh(xi)) res <- try(optimize(dfun, maximum=TRUE, lower=-0.9999, upper=0.9999, mu=x, sigma=tau)) if (inherits(res, "try-error")) { return(NA_real_) } else { return(res$maximum) } }) return(c(zi)) } ############################################################################ transf.r2toz <- function(xi) { xi[xi > 1] <- 1 xi[xi < 0] <- 0 atanh(sqrt(xi)) } transf.ztor2 <- function(xi) tanh(xi)^2 ############################################################################ #transf.exp.int <- function(xi, targs=NULL) { # # targs <- .chktargsint(targs) # # if (is.null(targs$lower)) # targs$lower <- xi-10*sqrt(targs$tau2) # if (is.null(targs$upper)) # targs$upper <- xi+10*sqrt(targs$tau2) # # toint <- function(zval, xi, tau2) # exp(zval) * dnorm(zval, mean=xi, sd=sqrt(tau2)) # # cfunc <- function(xi, tau2, lower, upper) { # out <- try(integrate(toint, lower=lower, upper=upper, xi=xi, tau2=tau2), silent=TRUE) # if (inherits(out, "try-error")) { # return(NA_real_) # } else { # return(out$value) # } # } # # if (targs$tau2 == 0) { # zi <- exp(xi) # } else { # zi <- mapply(xi, FUN=cfunc, tau2=targs$tau2, lower=targs$lower, upper=targs$upper) # } # # return(c(zi)) # #} transf.exp.int <- function(xi, targs=NULL) { targs <- .chktargsint(targs) return(exp(xi + targs$tau2/2)) } transf.exp.mode <- function(xi, targs=NULL) { if (is.null(targs) || (is.list(targs) && is.null(targs$tau2))) stop("Must specify a 'tau2' value via the 'targs' argument.", call.=FALSE) if (is.list(targs)) { tau2 <- targs$tau2 } else { tau2 <- targs } return(c(exp(xi - tau2))) } ############################################################################ transf.logit <- function(xi) # resulting value between -Inf (for 0) and +Inf (for +1) qlogis(xi) transf.ilogit <- function(xi) plogis(xi) transf.ilogit.int <- function(xi, targs=NULL) { targs <- .chktargsint(targs) if (is.null(targs$lower)) targs$lower <- xi-10*sqrt(targs$tau2) if (is.null(targs$upper)) targs$upper <- xi+10*sqrt(targs$tau2) toint <- function(zval, xi, tau2) plogis(zval) * dnorm(zval, mean=xi, sd=sqrt(tau2)) cfunc <- function(xi, tau2, lower, upper) { out <- try(integrate(toint, lower=lower, upper=upper, xi=xi, tau2=tau2), silent=TRUE) if (inherits(out, "try-error")) { return(NA_real_) } else { return(out$value) } } if (targs$tau2 == 0) { zi <- transf.ilogit(xi) } else { zi <- mapply(xi, FUN=cfunc, tau2=targs$tau2, lower=targs$lower, upper=targs$upper) } return(c(zi)) } transf.ilogit.mode <- function(xi, targs=NULL) { if (is.null(targs) || (is.list(targs) && is.null(targs$tau2))) stop("Must specify a 'tau2' value via the 'targs' argument.", call.=FALSE) if (is.list(targs)) { tau2 <- targs$tau2 } else { tau2 <- targs } tau <- sqrt(tau2) xs <- seq(0, 1, length=10^5) modefun <- function(x, mu, sigma) sigma^2 * (2*x - 1) + mu - qlogis(x) zi <- sapply(xi, function(x) { if (tau2 == 0) return(plogis(xi)) ys <- modefun(xs, mu=x, sigma=tau) nmodes <- length(unique(sign(diff(ys)))) # check if there is a single mode if (nmodes == 1L) { res <- try(uniroot(modefun, lower=0, upper=1, mu=x, sigma=tau), silent=TRUE) if (inherits(res, "try-error")) { return(NA_real_) } else { return(res$root) } } else { return(NA_real_) } }) return(c(zi)) } ############################################################################ transf.arcsin <- function(xi) # resulting value between 0 (for 0) and asin(1) = pi/2 (for 1) asin(sqrt(xi)) transf.iarcsin <- function(xi) { zi <- sin(xi)^2 zi[xi < 0] <- 0 # if xi value is below 0 (e.g., CI bound), return 0 zi[xi > asin(1)] <- 1 # if xi value is above maximum possible value, return 1 return(c(zi)) } # transf.iarcsin.int <- function(xi, targs=NULL) { # # targs <- .chktargsint(targs) # # if (is.null(targs$lower)) # targs$lower <- 0 # if (is.null(targs$upper)) # targs$upper <- asin(1) # # toint <- function(zval, xi, tau2) # transf.iarcsin(zval) * dnorm(zval, mean=xi, sd=sqrt(tau2)) # # cfunc <- function(xi, tau2, lower, upper) { # out <- try(integrate(toint, lower=lower, upper=upper, xi=xi, tau2=tau2), silent=TRUE) # if (inherits(out, "try-error")) { # return(NA_real_) # } else { # return(out$value) # } # } # # if (targs$tau2 == 0) { # zi <- transf.iarcsin(xi) # } else { # zi <- mapply(xi, FUN=cfunc, tau2=targs$tau2, lower=targs$lower, upper=targs$upper) # } # # return(c(zi)) # # } ############################################################################ transf.pft <- function(xi, ni) { # Freeman-Tukey transformation for proportions xi <- xi*ni zi <- 1/2*(asin(sqrt(xi/(ni+1))) + asin(sqrt((xi+1)/(ni+1)))) return(c(zi)) } transf.ipft <- function(xi, ni) { # inverse of Freeman-Tukey transformation for individual proportions zi <- suppressWarnings(1/2 * (1 - sign(cos(2*xi)) * sqrt(1 - (sin(2*xi)+(sin(2*xi)-1/sin(2*xi))/ni)^2))) zi <- ifelse(is.nan(zi), NA_real_, zi) zi[xi > transf.pft(1,ni)] <- 1 # if xi is above upper limit, return 1 zi[xi < transf.pft(0,ni)] <- 0 # if xi is below lower limit, return 0 return(c(zi)) } transf.ipft.hm <- function(xi, targs) { # inverse of Freeman-Tukey transformation for a collection of proportions if (is.null(targs) || (is.list(targs) && is.null(targs$ni))) stop("Must specify the sample sizes via the 'targs' argument.", call.=FALSE) if (is.list(targs)) { ni <- targs$ni } else { ni <- ni } nhm <- 1/(mean(1/ni, na.rm=TRUE)) # calculate harmonic mean of the ni's zi <- suppressWarnings(1/2 * (1 - sign(cos(2*xi)) * sqrt(1 - (sin(2*xi)+(sin(2*xi)-1/sin(2*xi))/nhm)^2))) zi <- ifelse(is.nan(zi), NA_real_, zi) # it may not be possible to calculate zi zi[xi > transf.pft(1,nhm)] <- 1 # if xi is above upper limit, return 1 zi[xi < transf.pft(0,nhm)] <- 0 # if xi is below lower limit, return 0 return(c(zi)) } ############################################################################ transf.isqrt <- function(xi) { zi <- xi*xi zi[xi < 0] <- 0 # if xi value is below 0 (e.g., CI bound), return 0 return(c(zi)) } ############################################################################ transf.irft <- function(xi, ti) { # Freeman-Tukey transformation for incidence rates zi <- 1/2*(sqrt(xi) + sqrt(xi + 1/ti)) # xi is the incidence rate (not the number of events!) return(c(zi)) } transf.iirft <- function(xi, ti) { # inverse of Freeman-Tukey transformation for incidence rates (see Freeman-Tukey_incidence.r in code directory) #zi <- (1/ti - 2*xi^2 + ti*xi^4)/(4*xi^2*ti) # old version where transf.irft was not multiplied by 1/2 zi <- (1/ti - 8*xi^2 + 16*ti*xi^4)/(16*xi^2*ti) # xi is the incidence rate (not the number of events!) zi <- ifelse(is.nan(zi), NA_real_, zi) zi[xi < transf.irft(0,ti)] <- 0 # if xi is below lower limit, return 0 zi[zi <= .Machine$double.eps] <- 0 # avoid finite precision errors in back-transformed values (transf.iirft(transf.irft(0, 1:200), 1:200)) return(c(zi)) } ############################################################################ transf.ahw <- function(xi) { # resulting value between 0 (for alpha=0) and 1 (for alpha=1) #zi <- (1-xi)^(1/3) zi <- 1 - (1-xi)^(1/3) return(c(zi)) } transf.iahw <- function(xi) { #zi <- 1-xi^3 zi <- 1 - (1-xi)^3 zi <- ifelse(is.nan(zi), NA_real_, zi) zi[xi > 1] <- 1 # if xi is above upper limit, return 1 zi[xi < 0] <- 0 # if xi is below lower limit, return 0 return(c(zi)) } transf.abt <- function(xi) { # Bonett (2002) transformation of alphas (without bias correction) #transf.abt <- function(xi, ni) { # resulting value between 0 (for alpha=0) to Inf (for alpha=1) #zi <- log(1-xi) - log(ni/(ni-1)) #zi <- log(1-xi) zi <- -log(1-xi) return(c(zi)) } transf.iabt <- function(xi) { # inverse of Bonett (2002) transformation #transf.iabt <- function(xi, ni) { #zi <- 1 - exp(xi) * ni / (ni-1) #zi <- 1 - exp(xi) zi <- 1 - exp(-xi) zi <- ifelse(is.nan(zi), NA_real_, zi) zi[xi < 0] <- 0 # if xi is below lower limit, return 0 return(c(zi)) } ############################################################################ transf.dtou1 <- function(xi) { u2i <- pnorm(abs(xi)/2) return((2*u2i - 1) / u2i) } transf.dtou2 <- function(xi) pnorm(xi/2) transf.dtou3 <- function(xi) pnorm(xi) transf.dtoovl <- function(xi) 2*pnorm(-abs(xi)/2) transf.dtocles <- function(xi) # note: this does not assume homoscedasticity pnorm(xi/sqrt(2)) transf.dtocliffd <- function(xi) # note: this does not assume homoscedasticity 2 * pnorm(xi/sqrt(2)) - 1 transf.dtobesd <- function(xi) { rpbi <- xi / sqrt(xi^2 + 4) return(0.50 + rpbi/2) } transf.dtomd <- function(xi, targs=NULL) { if (is.null(targs) || (is.list(targs) && is.null(targs$sd))) stop("Must specify a standard deviation value via the 'targs' argument.", call.=FALSE) if (is.list(targs)) { sd <- targs$sd } else { sd <- targs } if (length(sd) != 1L) stop("Specify a single standard deviation value via the 'targs' argument.", call.=FALSE) return(xi * sd) } transf.dtorpb <- function(xi, n1i, n2i) { if (missing(n1i) || missing(n2i)) { hi <- 4 } else { if (length(n1i) != length(n2i)) stop("Length of 'n1i' does not match the length of 'n2i'.", call.=FALSE) if (length(n1i) != length(xi)) stop("Length of 'n1i' and 'n2i' does not match the length of 'xi'.", call.=FALSE) mi <- n1i + n2i - 2 hi <- mi / n1i + mi / n2i } return(xi / sqrt(xi^2 + hi)) } transf.dtorbis <- function(xi, n1i, n2i) { if (missing(n1i) || missing(n2i)) { hi <- 4 n1i <- 1 n2i <- 1 } else { if (length(n1i) != length(n2i)) stop("Length of 'n1i' does not match the length of 'n2i'.", call.=FALSE) if (length(n1i) != length(xi)) stop("Lengths of 'n1i' and 'n2i' do not match the length of 'xi'.", call.=FALSE) mi <- n1i + n2i - 2 hi <- mi / n1i + mi / n2i } rpbi <- xi / sqrt(xi^2 + hi) pi <- n1i / (n1i + n2i) return(sqrt(pi*(1-pi)) / dnorm(qnorm(pi)) * rpbi) } transf.rpbtorbis <- function(xi, pi) { if (missing(pi)) { pi <- 0.5 } else { pi <- .expand1(pi, length(xi)) if (length(xi) != length(pi)) stop("Length of 'xi' does not match the length of 'pi'.", call.=FALSE) } if (any(pi < 0 | pi > 1, na.rm=TRUE)) stop("One or more 'pi' values are < 0 or > 1.", call.=FALSE) return(sqrt(pi*(1-pi)) / dnorm(qnorm(pi)) * xi) } transf.rtorpb <- function(xi, pi) { if (missing(pi)) { pi <- 0.5 } else { pi <- .expand1(pi, length(xi)) if (length(xi) != length(pi)) stop("Length of 'xi' does not match the length of 'pi'.", call.=FALSE) } if (any(pi < 0 | pi > 1, na.rm=TRUE)) stop("One or more 'pi' values are < 0 or > 1.", call.=FALSE) return(xi * dnorm(qnorm(pi)) / sqrt(pi*(1-pi))) } transf.rtod <- function(xi, n1i, n2i) { if (missing(n1i) || missing(n2i)) { hi <- 4 n1i <- 1 n2i <- 1 } else { if (length(n1i) != length(n2i)) stop("Length of 'n1i' does not match the length of 'n2i'.", call.=FALSE) if (length(n1i) != length(xi)) stop("Lengths of 'n1i' and 'n2i' do not match the length of 'xi'.", call.=FALSE) mi <- n1i + n2i - 2 hi <- mi / n1i + mi / n2i } if (any(c(n1i < 0, n2i < 0), na.rm=TRUE)) stop("One or more values specified via the 'n1i' or 'n2i' arguments are negative.") pi <- n1i / (n1i + n2i) rpbi <- xi * dnorm(qnorm(pi)) / sqrt(pi*(1-pi)) return(sqrt(hi) * rpbi / sqrt(1 - rpbi^2)) } transf.rpbtod <- function(xi, n1i, n2i) { if (missing(n1i) || missing(n2i)) { hi <- 4 } else { if (length(n1i) != length(n2i)) stop("Length of 'n1i' does not match the length of 'n2i'.", call.=FALSE) if (length(n1i) != length(xi)) stop("Lengths of 'n1i' and 'n2i' do not match the length of 'xi'.", call.=FALSE) mi <- n1i + n2i - 2 hi <- mi / n1i + mi / n2i } return(sqrt(hi) * xi / sqrt(1 - xi^2)) } transf.lnortord <- function(xi, pc) { pc <- .expand1(pc, length(xi)) if (length(xi) != length(pc)) stop("Length of 'xi' does not match the length of 'pc'.", call.=FALSE) if (any(pc < 0) || any(pc > 1)) stop("The control group risk 'pc' must be between 0 and 1.", call.=FALSE) return(exp(xi)*pc / (1 - pc + pc * exp(xi)) - pc) } transf.lnortorr <- function(xi, pc) { pc <- .expand1(pc, length(xi)) if (length(xi) != length(pc)) stop("Length of 'xi' does not match the length of 'pc'.", call.=FALSE) if (any(pc < 0) || any(pc > 1)) stop("The control group risk 'pc' must be between 0 and 1.", call.=FALSE) return(exp(xi) / (pc * (exp(xi) - 1) + 1)) } ############################################################################ transf.lnortod.norm <- function(xi) xi / 1.65 transf.lnortod.logis <- function(xi) sqrt(3) / base::pi * xi transf.dtolnor.norm <- function(xi) xi * 1.65 transf.dtolnor.logis <- function(xi) xi / sqrt(3) * base::pi transf.lnortortet.pearson <- function(xi) cos(base::pi / (1 + sqrt(exp(xi)))) transf.lnortortet.digby <- function(xi) (exp(xi)^(3/4) - 1) / (exp(xi)^(3/4) + 1) ############################################################################ metafor/R/blup.rma.uni.r0000644000176200001440000000752214722306601014614 0ustar liggesusersblup.rma.uni <- function(x, level, digits, transf, targs, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni", notav=c("rma.uni.selmodel", "rma.gen")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(x$X.f) || is.null(x$yi.f)) stop(mstyle$stop("Information needed to compute the BLUPs is not available in the model object.")) if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL level <- .level(level) if (is.element(x$test, c("knha","adhoc","t"))) { crit <- qt(level/2, df=x$ddf, lower.tail=FALSE) } else { crit <- qnorm(level/2, lower.tail=FALSE) } ### TODO: check computations for user-defined weights if (!is.null(x$weights) || !x$weighted) stop(mstyle$stop("Extraction of random effects not available for models with non-standard weights.")) ddd <- list(...) .chkdots(ddd, c("code1", "code2")) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### pred <- rep(NA_real_, x$k.f) vpred <- rep(NA_real_, x$k.f) ### see Appendix in: Raudenbush, S. W., & Bryk, A. S. (1985). Empirical ### Bayes meta-analysis. Journal of Educational Statistics, 10(2), 75-98 x$tau2.f <- .expand1(x$tau2.f, x$k.f) li <- ifelse(is.infinite(x$tau2.f), 1, x$tau2.f / (x$tau2.f + x$vi.f)) for (i in seq_len(x$k.f)[x$not.na]) { # note: skipping NA cases if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) Xi <- matrix(x$X.f[i,], nrow=1) pred[i] <- li[i] * x$yi.f[i] + (1 - li[i]) * Xi %*% x$beta if (li[i] == 1) { vpred[i] <- li[i] * x$vi.f[i] } else { vpred[i] <- li[i] * x$vi.f[i] + (1 - li[i])^2 * Xi %*% tcrossprod(x$vb,Xi) } } se <- sqrt(vpred) pi.lb <- pred - crit * se pi.ub <- pred + crit * se ######################################################################### ### if requested, apply transformation function to 'pred' and interval bounds if (is.function(transf)) { if (is.null(targs)) { pred <- sapply(pred, transf) se <- rep(NA_real_, x$k.f) pi.lb <- sapply(pi.lb, transf) pi.ub <- sapply(pi.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) pred <- sapply(pred, transf, targs) se <- rep(NA_real_, x$k.f) pi.lb <- sapply(pi.lb, transf, targs) pi.ub <- sapply(pi.ub, transf, targs) } transf <- TRUE } ### make sure order of intervals is always increasing tmp <- .psort(pi.lb, pi.ub) pi.lb <- tmp[,1] pi.ub <- tmp[,2] ######################################################################### if (na.act == "na.omit") { out <- list(pred=pred[x$not.na], se=se[x$not.na], pi.lb=pi.lb[x$not.na], pi.ub=pi.ub[x$not.na]) out$slab <- x$slab[x$not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(pred=pred, se=se, pi.lb=pi.lb, pi.ub=pi.ub) out$slab <- x$slab } if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) ######################################################################### out$digits <- digits out$transf <- transf class(out) <- "list.rma" return(out) } metafor/R/qqnorm.rma.mv.r0000644000176200001440000000017214515471105015012 0ustar liggesusersqqnorm.rma.mv <- function(y, ...) { mstyle <- .get.mstyle() .chkclass(class(y), must="rma.mv", notav="rma.mv") } metafor/R/reporter.rma.uni.r0000644000176200001440000006663214662672504015536 0ustar liggesusersreporter.rma.uni <- function(x, dir, filename, format="html_document", open=TRUE, digits, forest, funnel, footnotes=FALSE, verbose=TRUE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni", notav=c("robust.rma", "rma.ls", "rma.gen", "rma.uni.selmodel")) if (!suppressMessages(suppressWarnings(requireNamespace("rmarkdown", quietly=TRUE)))) stop(mstyle$stop("Please install the 'rmarkdown' package to use the reporter function.")) if (!is.element(x$test, c("z", "knha"))) stop(mstyle$stop("Cannot only use reporter function when test='z' or test='knha'.")) if (!x$weighted) stop(mstyle$stop("Cannot use reporter function when 'weighted=FALSE'.")) if (!is.null(x$weights)) stop(mstyle$stop("Cannot use reporter function for models with custom weights.")) if (is.null(x$tau2.fix)) stop(mstyle$stop("Cannot use reporter function for models with a fixed tau^2 value.")) if (!x$int.only) stop(mstyle$stop("Cannot currently use reporter function for models with moderators. This will be implemented eventually.")) if (x$k == 1L) stop(mstyle$stop("Cannot use reporter function when k = 1.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } format <- match.arg(format, c("html_document", "pdf_document", "word_document")) # , "bookdown::pdf_document2")) if (format == "pdf_document" && (Sys.which("pdflatex") == "")) warning(mstyle$warning("Cannot detect pdflatex executable. Rendering the pdf is likely to fail."), call.=FALSE, immediate.=TRUE) ### set/get directory for generating the report if (missing(dir)) { dir <- normalizePath(tempdir(), winslash="/") success <- file.exists(dir) if (!success) stop(mstyle$stop("No temporary directory available for creating the report.")) } else { if (!is.character(dir)) stop(mstyle$stop("Argument 'dir' must be a character string.")) success <- file.exists(dir) if (!success) stop(mstyle$stop("Specified directory does not exist.")) } if (verbose) message(mstyle$message(paste0("\nDirectory for generating the report is: ", dir, "\n"))) ### copy references.bib and apa.csl files to directory for generating the report if (verbose) message(mstyle$message("Copying references.bib and apa.csl to report directory ...")) success <- file.copy(system.file("reporter", "references.bib", package = "metafor"), dir, overwrite=TRUE) if (!success) stop(mstyle$stop("Could not copy 'references.bib' file to report directory.")) success <- file.copy(system.file("reporter", "apa.csl", package = "metafor"), dir, overwrite=TRUE) if (!success) stop(mstyle$stop("Could not copy 'apa.csl' file to report directory.")) ### set default filenames object.name <- deparse1(substitute(x)) has.object.name <- TRUE if (grepl("rma(", object.name, fixed=TRUE) || grepl("rma.uni(", object.name, fixed=TRUE)) { # check for 'reporter(rma(yi, vi))' usage has.object.name <- FALSE object.name <- "res" } if (missing(filename)) { file.rmd <- paste0("report_", object.name, ".rmd") file.obj <- paste0("report_", object.name, ".rdata") file.tex <- paste0("report_", object.name, ".tex") } else { if (!is.character(filename)) stop(mstyle$stop("Argument 'filename' must be a character string.")) file.rmd <- paste0(filename, ".rmd") file.obj <- paste0(filename, ".rdata") file.tex <- paste0(filename, ".tex") } ### process forest argument plot.forest <- TRUE args.forest <- "" if (!missing(forest)) { if (is.logical(forest)) { if (isFALSE(forest)) plot.forest <- FALSE } else { if (!is.character(forest)) stop(mstyle$stop("Argument 'forest' must be a character string.")) args.forest <- paste0(", ", forest) } } ### process funnel argument plot.funnel <- TRUE args.funnel <- "" if (!missing(funnel)) { if (is.logical(funnel)) { if (isFALSE(funnel)) plot.funnel <- FALSE } else { if (!is.character(funnel)) stop(mstyle$stop("Argument 'funnel' must be a character string.")) args.funnel <- paste0(", ", funnel) } } ### forest and funnel plot numbers if (plot.forest) { num.forest <- 1 num.funnel <- 2 } else { num.forest <- NA num.funnel <- 1 } ### save model object if (verbose) message(mstyle$message(paste0("Saving model object to ", file.obj, " ..."))) success <- try(save(x, file=file.path(dir, file.obj))) if (inherits(success, "try-error")) stop(mstyle$stop("Could not save model object to report directory.")) ### open rmd file connection if (verbose) message(mstyle$message(paste0("Creating ", file.rmd, " file ..."))) con <- try(file(file.path(dir, file.rmd), "w")) if (inherits(con, "try-error")) stop(mstyle$stop("Could not create .rmd file in report directory.")) ### get measure name measure <- tolower(.setlab(x$measure, transf.char="FALSE", atransf.char="FALSE", gentype=1)) measure <- sub("observed outcome", "outcome", measure) measure <- sub("fisher's z", "Fisher r-to-z", measure) measure <- sub("yule", "Yule", measure) measure <- sub("freeman", "Freeman", measure) measure <- sub("tukey", "Tukey", measure) measure <- sub("log ratio of means", "response ratio", measure) ### model type if (x$int.only) { if (is.element(x$method, c("FE","EE","CE"))) { model <- x$method } else { model <- "RE" } } else { if (is.element(x$method, c("FE","EE","CE"))) { model <- "MR" } else { model <- "ME" } } model.name <- c(FE = "fixed-effects", EE = "equal-effects", CE = "common-effects", MR = "(fixed-effects) meta-regression", RE = "random-effects", ME = "(mixed-effects) meta-regression")[model] ### get tau^2 estimator name and set reference tau2.method <- c(FE = "", HS = "Hunter-Schmidt", HSk = "k-corrected Hunter-Schmidt", HE = "Hedges'", DL = "DerSimonian-Laird", GENQ = "generalized Q-statistic", GENQM = "(median-unbiased) generalized Q-statistic", SJ = "Sidik-Jonkman", ML = "maximum-likelihood", REML = "restricted maximum-likelihood", EB = "empirical Bayes", PM = "Paule-Mandel", PMM = "(median-unbiased) Paule-Mandel")[x$method] if (x$method == "HS" && model == "RE") tau2.ref <- "[@hunter1990; @viechtbauer2005]" if (x$method == "HS" && model == "ME") tau2.ref <- "[@hunter1990; @viechtbauer2015]" if (x$method == "HSk" && model == "RE") tau2.ref <- "[@brannick2019; @hunter1990; @viechtbauer2005]" if (x$method == "HSk" && model == "ME") tau2.ref <- "[@brannick2019; @hunter1990; @viechtbauer2015]" if (x$method == "HE" && model == "RE") tau2.ref <- "[@hedges1985]" if (x$method == "HE" && model == "ME") tau2.ref <- "[@hedges1992]" if (x$method == "DL" && model == "RE") tau2.ref <- "[@dersimonian1986]" if (x$method == "DL" && model == "ME") tau2.ref <- "[@raudenbush2009]" if (x$method == "GENQ" && model == "RE") tau2.ref <- "[@dersimonian2007]" if (x$method == "GENQ" && model == "ME") tau2.ref <- "[@jackson2014]" if (x$method == "GENQM") tau2.ref <- "[@viechtbauer2021]" if (x$method == "SJ") tau2.ref <- "[@sidik2005]" if (x$method == "ML" && model == "RE") tau2.ref <- "[@hardy1996]" if (x$method == "ML" && model == "ME") tau2.ref <- "[@raudenbush2009]" if (x$method == "REML" && model == "RE") tau2.ref <- "[@viechtbauer2005]" if (x$method == "REML" && model == "ME") tau2.ref <- "[@raudenbush2009]" if (x$method == "EB" && model == "RE") tau2.ref <- "[@morris1983]" if (x$method == "EB" && model == "ME") tau2.ref <- "[@berkey1995]" if (is.element(x$method, c("PM","MP")) && model == "RE") tau2.ref <- "[@paule1982]" if (is.element(x$method, c("PM","MP")) && model == "ME") tau2.ref <- "[@viechtbauer2015]" if (x$method == "PMM") tau2.ref <- "[@viechtbauer2021]" ### Q-test reference if (is.element(model, c("FE","EE","CE","RE"))) { qtest.ref <- "[@cochran1954]" } else { qtest.ref <- "[@hedges1983]" } ### CI level level <- 100 * (1-x$level) ### Bonferroni-corrected critical value for studentized residuals crit <- qnorm(x$level/(2*x$k), lower.tail=FALSE) ### get influence results infres <- influence(x) ### formating function for p-values fpval <- function(p, pdigits=digits[["pval"]]) paste0("$p ", ifelse(p < 10^(-pdigits), paste0("< ", fmtx(10^(-pdigits), pdigits)), paste0("= ", fmtx(p, pdigits))), "$") # consider giving only 2 digits for p-value if p > 0.05 or p > 0.10 ######################################################################### ### yaml header header <- paste0("---\n") header <- paste0(header, "output:\n") if (format == "html_document") header <- paste0(header, " html_document:\n toc: true\n toc_float:\n collapsed: false\n") if (format == "pdf_document") header <- paste0(header, " pdf_document:\n toc: true\n") if (format == "word_document") header <- paste0(header, " word_document\n") header <- paste0(header, "title: Analysis Report\n") header <- paste0(header, "toc-title: Table of Contents\n") header <- paste0(header, "author: Generated with the reporter() Function of the metafor Package\n") header <- paste0(header, "bibliography: references.bib\n") header <- paste0(header, "csl: apa.csl\n") header <- paste0(header, "date: \"`r format(Sys.time(), '%d %B, %Y')`\"\n") header <- paste0(header, "---\n") ######################################################################### ### rsetup rsetup <- paste0("```{r, setup, include=FALSE}\n") rsetup <- paste0(rsetup, "library(metafor)\n") rsetup <- paste0(rsetup, "load('", file.path(dir, file.obj), "')\n") rsetup <- paste0(rsetup, "```") ######################################################################### ### methods section methods <- "\n## Methods\n\n" if (x$measure != "GEN") methods <- paste0(methods, "The analysis was carried out using the ", measure, " as the outcome measure. ") methods <- paste0(methods, "A", ifelse(model.name == "equal-effects", "n ", " "), model.name, " model was fitted to the data. ") if (is.element(model, c("RE", "ME"))) methods <- paste0(methods, "The amount of ", ifelse(x$int.only, "", "residual "), "heterogeneity (i.e., $\\tau^2$), was estimated using the ", tau2.method, " estimator ", tau2.ref, ". ") if (is.element(model, c("FE","EE","CE"))) methods <- paste0(methods, "The $Q$-test for heterogeneity ", qtest.ref, " and the $I^2$ statistic [@higgins2002] are reported. ") if (model == "MR") methods <- paste0(methods, "The $Q$-test for residual heterogeneity ", qtest.ref, " is reported. ") if (model == "RE") methods <- paste0(methods, "In addition to the estimate of $\\tau^2$, the $Q$-test for heterogeneity ", qtest.ref, " and the $I^2$ statistic [@higgins2002] are reported. ") if (model == "ME") methods <- paste0(methods, "In addition to the estimate of $\\tau^2$, the $Q$-test for residual heterogeneity ", qtest.ref, " is reported. ") if (model == "RE") methods <- paste0(methods, "In case any amount of heterogeneity is detected (i.e., $\\hat{\\tau}^2 > 0$, regardless of the results of the $Q$-test), a prediction interval for the true outcomes is also provided [@riley2011]. ") if (x$test == "knha") methods <- paste0(methods, "Tests and confidence intervals were computed using the Knapp and Hartung method [@knapp2003]. ") methods <- paste0(methods, "Studentized residuals and Cook's distances are used to examine whether studies may be outliers and/or influential in the context of the model [@viechtbauer2010b]. ") #methods <- paste0(methods, "Studies with a studentized residual larger than $\\pm 1.96$ are considered potential outliers. ") methods <- paste0(methods, "Studies with a studentized residual larger than the $100 \\times (1 - ", x$level, "/(2 \\times k))$th percentile of a standard normal distribution are considered potential outliers (i.e., using a Bonferroni correction with two-sided $\\alpha = ", x$level, "$ for $k$ studies included in the meta-analysis). ") # $\\pm ", fmtx(crit, digits[["test"]]), "$ ( #methods <- paste0(methods, "Studies with a Cook's distance larger than ", fmtx(qchisq(0.5, df=infres$m), digits[["test"]]), " (the 50th percentile of a $\\chi^2$-distribution with ", infres$m, " degree", ifelse(infres$m > 1, "s", ""), " of freedom) are considered to be influential. ") methods <- paste0(methods, "Studies with a Cook's distance larger than the median plus six times the interquartile range of the Cook's distances are considered to be influential.") methods <- if (footnotes) paste0(methods, "[^cook] ") else paste0(methods, " ") if (is.element(model, c("FE","EE","CE","RE"))) methods <- paste0(methods, "The rank correlation test [@begg1994] and the regression test [@sterne2005], using the standard error of the observed outcomes as predictor, are used to check for funnel plot asymmetry. ") if (is.element(model, c("MR","ME"))) methods <- paste0(methods, "The regression test [@sterne2005], using the standard error of the observed outcomes as predictor (in addition to the moderators already included in the model), is used to check for funnel plot asymmetry. ") methods <- paste0(methods, "The analysis was carried out using R (version ", getRversion(), ") [@rcore2020] and the **metafor** package (version ", x$version, ") [@viechtbauer2010a]. ") ######################################################################### ### results section results <- "\n## Results\n\n" ### number of studies results <- paste0(results, "A total of $k=", x$k, "$ studies were included in the analysis. ") ### range of observed outcomes results <- paste0(results, "The observed ", measure, "s ranged from $", fmtx(min(x$yi), digits[["est"]]), "$ to $", fmtx(max(x$yi), digits[["est"]]), "$, ") ### percent positive/negative results <- paste0(results, "with the majority of estimates being ", ifelse(mean(x$yi > 0) > 0.50, "positive", "negative"), " (", ifelse(mean(x$yi > 0) > 0.50, round(100*mean(x$yi > 0)), round(100*mean(x$yi < 0))), "%). ") if (is.element(model, c("FE","EE","CE","RE"))) { ### estimated average outcome with CI results <- paste0(results, "The estimated average ", measure, " based on the ", model.name, " model was ", ifelse(is.element(model, c("FE","EE","CE")), "$\\hat{\\theta} = ", "$\\hat{\\mu} = "), fmtx(c(x$beta), digits[["est"]]), "$ ") results <- paste0(results, "(", level, "% CI: $", fmtx(x$ci.lb, digits[["ci"]]), "$ to $", fmtx(x$ci.ub, digits[["ci"]]), "$). ") ### note: for some outcome measures (e.g., proportions), the test H0: mu/theta = 0 is not really relevant; maybe check for this results <- paste0(results, "Therefore, the average outcome ", ifelse(x$pval > 0.05, "did not differ", "differed"), " significantly from zero ($", ifelse(x$test == "z", "z", paste0("t(", x$k-1, ")")), " = ", fmtx(x$zval, digits[["test"]]), "$, ", fpval(x$pval), "). ") ### forest plot if (plot.forest) { results <- paste0(results, "A forest plot showing the observed outcomes and the estimate based on the ", model.name, " model is shown in Figure ", num.forest, ".\n\n") if (is.element(format, c("pdf_document", "bookdown::pdf_document2"))) results <- paste0(results, "```{r, forestplot, echo=FALSE, fig.align=\"center\", fig.cap=\"Forest plot showing the observed outcomes and the estimate of the ", model.name, " model\"") if (format == "html_document") results <- paste0(results, "```{r, forestplot, echo=FALSE, fig.align=\"center\", fig.cap=\"Figure ", num.forest, ": Forest plot showing the observed outcomes and the estimate of the ", model.name, " model\"") if (format == "word_document") results <- paste0(results, "```{r, forestplot, echo=FALSE, fig.cap=\"Figure ", num.forest, ": Forest plot showing the observed outcomes and the estimate of the ", model.name, " model\"") results <- paste0(results, ", dev.args=list(pointsize=9)}\npar(family=\"mono\")\npar(mar=c(5,4,1,2))\ntmp <- metafor::forest(x, addpred=TRUE, header=TRUE", args.forest, ")\n```") #text(tmp$xlim[1], x$k+2, \"Study\", pos=4, font=2, cex=tmp$cex)\ntext(tmp$xlim[2], x$k+2, \"Outcome [", level, "% CI]\", pos=2, font=2, cex=tmp$cex)\n } results <- paste0(results, "\n\n") ### test for heterogeneity if (x$QEp > 0.10) results <- paste0(results, "According to the $Q$-test, there was no significant amount of heterogeneity in the true outcomes ") if (x$QEp > 0.05 && x$QEp <= 0.10) results <- paste0(results, "The $Q$-test for heterogeneity was not significant, but some heterogeneity may still be present in the true outcomes ") if (x$QEp <= 0.05) results <- paste0(results, "According to the $Q$-test, the true outcomes appear to be heterogeneous ") results <- paste0(results, "($Q(", x$k-1, ") = ", fmtx(x$QE, digits[["test"]]), "$, ", fpval(x$QEp)) ### tau^2 estimate (only for RE models) if (model == "RE") results <- paste0(results, ", $\\hat{\\tau}^2 = ", fmtx(x$tau2, digits[["var"]]), "$") ### I^2 statistic results <- paste0(results, ", $I^2 = ", fmtx(x$I2, digits[["het"]]), "$%). ") ### for the RE model, when any amount of heterogeneity is detected, provide prediction interval and note whether the directionality of effects is consistent or not if (model == "RE" && x$tau2 > 0) { predres <- predict(x) results <- paste0(results, "A ", level, "% prediction interval for the true outcomes is given by $", fmtx(predres$pi.lb, digits[["ci"]]), "$ to $", fmtx(predres$pi.ub, digits[["ci"]]), "$. ") if (c(x$beta) > 0 && predres$pi.lb < 0) results <- paste0(results, "Hence, although the average outcome is estimated to be positive, in some studies the true outcome may in fact be negative.") if (c(x$beta) < 0 && predres$pi.ub > 0) results <- paste0(results, "Hence, although the average outcome is estimated to be negative, in some studies the true outcome may in fact be positive.") if ((c(x$beta) > 0 && predres$pi.lb > 0) || (c(x$beta) < 0 && predres$pi.ub < 0)) results <- paste0(results, "Hence, even though there may be some heterogeneity, the true outcomes of the studies are generally in the same direction as the estimated average outcome.") } results <- paste0(results, "\n\n") ### check if some studies have very large weights relatively speaking largeweight <- weights(x)/100 >= 3 / x$k if (any(largeweight)) { if (sum(largeweight) == 1) results <- paste0(results, "One study (", names(largeweight)[largeweight], ") had a relatively large weight ") if (sum(largeweight) == 2) results <- paste0(results, "Two studies (", paste(names(largeweight)[largeweight], collapse="; "), ") had relatively large weights ") if (sum(largeweight) >= 3) results <- paste0(results, "Several studies (", paste(names(largeweight)[largeweight], collapse="; "), ") had relatively large weights ") results <- paste0(results, "compared to the rest of the studies (i.e., $\\mbox{weight} \\ge 3/k$, so a weight at least 3 times as large as having equal weights across studies). ") } ### check for outliers zi <- infres$inf$rstudent abszi <- abs(zi) results <- paste0(results, "An examination of the studentized residuals revealed that ") if (all(abszi < crit, na.rm=TRUE)) results <- paste0(results, "none of the studies had a value larger than $\\pm ", fmtx(crit, digits[["test"]]), "$ and hence there was no indication of outliers ") if (sum(abszi >= crit, na.rm=TRUE) == 1) results <- paste0(results, "one study (", infres$inf$slab[abszi >= crit & !is.na(abszi)], ") had a value larger than $\\pm ", fmtx(crit, digits[["test"]]), "$ and may be a potential outlier ") if (sum(abszi >= crit, na.rm=TRUE) == 2) results <- paste0(results, "two studies (", paste(infres$inf$slab[abszi >= crit & !is.na(abszi)], collapse="; "), ") had values larger than $\\pm ", fmtx(crit, digits[["test"]]), "$ and may be potential outliers ") if (sum(abszi >= crit, na.rm=TRUE) >= 3) results <- paste0(results, "several studies (", paste(infres$inf$slab[abszi >= crit & !is.na(abszi)], collapse="; "), ") had values larger than $\\pm ", fmtx(crit, digits[["test"]]), "$ and may be potential outliers ") results <- paste0(results, "in the context of this model. ") ### check for influential cases #is.infl <- pchisq(infres$inf$cook.d, df=1) > 0.50 is.infl <- infres$inf$cook.d > median(infres$inf$cook.d, na.rm=TRUE) + 6 * IQR(infres$inf$cook.d, na.rm=TRUE) results <- paste0(results, "According to the Cook's distances, ") if (all(!is.infl, na.rm=TRUE)) results <- paste0(results, "none of the studies ") if (sum(is.infl, na.rm=TRUE) == 1) results <- paste0(results, "one study (", infres$inf$slab[is.infl & !is.na(abszi)], ") ") if (sum(is.infl, na.rm=TRUE) == 2) results <- paste0(results, "two studies (", paste(infres$inf$slab[is.infl & !is.na(abszi)], collapse="; "), ") ") if (sum(is.infl, na.rm=TRUE) >= 3) results <- paste0(results, "several studies (", paste(infres$inf$slab[is.infl & !is.na(abszi)], collapse="; "), ") ") results <- paste0(results, "could be considered to be overly influential.") results <- paste0(results, "\n\n") ### publication bias ranktest <- suppressWarnings(ranktest(x)) regtest <- regtest(x) if (plot.funnel) results <- paste0(results, "A funnel plot of the estimates is shown in Figure ", num.funnel, ". ") if (ranktest$pval > 0.05 && regtest$pval > 0.05) { results <- paste0(results, "Neither the rank correlation nor the regression test indicated any funnel plot asymmetry ") results <- paste0(results, "(", fpval(ranktest$pval), " and ", fpval(regtest$pval), ", respectively). ") } if (ranktest$pval <= 0.05 && regtest$pval <= 0.05) { results <- paste0(results, "Both the rank correlation and the regression test indicated potential funnel plot asymmetry ") results <- paste0(results, "(", fpval(ranktest$pval), " and ", fpval(regtest$pval), ", respectively). ") } if (ranktest$pval > 0.05 && regtest$pval <= 0.05) results <- paste0(results, "The regression test indicated funnel plot asymmetry (", fpval(regtest$pval), ") but not the rank correlation test (", fpval(ranktest$pval), "). ") if (ranktest$pval <= 0.05 && regtest$pval > 0.05) results <- paste0(results, "The rank correlation test indicated funnel plot asymmetry ($", fpval(ranktest$pval), ") but not the regression test (", fpval(regtest$pval), "). ") ### funnel plot if (plot.funnel) { if (is.element(format, c("pdf_document", "bookdown::pdf_document2"))) results <- paste0(results, "\n\n```{r, funnelplot, echo=FALSE, fig.align=\"center\", fig.cap=\"Funnel plot\", dev.args=list(pointsize=9)}\npar(mar=c(5,4,2,2))\nmetafor::funnel(x", args.funnel, ")\n```") if (format == "html_document") results <- paste0(results, "\n\n```{r, funnelplot, echo=FALSE, fig.align=\"center\", fig.cap=\"Figure ", num.funnel, ": Funnel plot\", dev.args=list(pointsize=9)}\npar(mar=c(5,4,2,2))\nmetafor::funnel(x", args.funnel, ")\n```") if (format == "word_document") results <- paste0(results, "\n\n```{r, funnelplot, echo=FALSE, fig.cap=\"Figure ", num.funnel, ": Funnel plot\", dev.args=list(pointsize=9)}\npar(mar=c(5,4,2,2))\nmetafor::funnel(x", args.funnel, ")\n```") } } if (is.element(model, c("MR", "ME"))) { if (x$int.incl) { mods <- colnames(x$X)[-1] p <- x$p - 1 } else { mods <- colnames(x$X) p <- x$p } results <- paste0(results, "The meta-regression model included ", p, " predictor", ifelse(p > 1, "s ", " ")) if (p == 1) results <- paste0(results, "(i.e., '", mods, "').") if (p == 2) results <- paste0(results, "(i.e., '", mods[1], "' and '", mods[2], "').") if (p >= 3) results <- paste0(results, "(i.e., ", paste0("'", mods[-p], "'", collapse=", "), " and ", mods[p], ").") } # 95% CI for tau^2 and I^2 # table for meta-regression model # links to help pages for functions used ######################################################################### ### notes section notes <- "\n## Notes\n\n" notes <- paste0(notes, "This analysis report was dynamically generated ", ifelse(has.object.name, paste0("for model object '`", object.name, "`'"), ""), " with the `reporter()` function of the **metafor** package. ") call <- capture.output(x$call) call <- trimws(call, which="left") call <- paste(call, collapse="") notes <- paste0(notes, "The model call that was used to fit the model was '`", call, "`'. ") notes <- paste0(notes, "This report provides an illustration of how the results of the model can be reported, but is not a substitute for a careful examination of the results.") ######################################################################### ### references section references <- "\n## References\n" ######################################################################### if (footnotes) { fnotes <- "" fnotes <- paste0(fnotes, "[^cook]: This is a somewhat arbitrary rule, but tends to detect 'spikes' in a plot of the Cook's distances fairly accurately. A better rule may be implemented in the future.") } ######################################################################### ### write sections to rmd file writeLines(header, con) writeLines(rsetup, con) writeLines(methods, con) writeLines(results, con) writeLines(notes, con) writeLines(references, con) if (footnotes) writeLines(fnotes, con) ### close rmd file connection close(con) ### render rmd file if (verbose) message(mstyle$message(paste0("Rendering ", file.rmd, " file ..."))) if (verbose >= 2) { file.out <- rmarkdown::render(file.path(dir, file.rmd), output_format=format, quiet=ifelse(verbose <= 1, TRUE, FALSE)) } else { file.out <- suppressWarnings(rmarkdown::render(file.path(dir, file.rmd), output_format=format, quiet=ifelse(verbose <= 1, TRUE, FALSE))) } if (verbose) message(mstyle$message(paste0("Generated ", file.out, " ..."))) ### render() sometimes fails to delete the intermediate tex file, so in case this happens clean up ### see also: https://github.com/rstudio/rmarkdown/issues/1308 if (file.exists(file.path(dir, file.tex))) unlink(file.path(dir, file.tex)) ### try to open output file if (open) { if (verbose) message(mstyle$message(paste0("Opening report ...\n"))) if (.Platform$OS.type == "windows") { shell.exec(file.out) } else { optb <- getOption("browser") if (is.function(optb)) { invisible(optb(file.out)) } else { system(paste0(optb, " '", file.out, "'")) } } } invisible(file.out) } metafor/R/replmiss.r0000644000176200001440000000165014717402256014143 0ustar liggesusersreplmiss <- function(x, y, data) { mstyle <- .get.mstyle() ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() x <- .getx("x", mf=mf, data=data, checknull=FALSE) y <- .getx("y", mf=mf, data=data, checknull=FALSE) if (length(y) == 0L) return(x) if (length(x) == 0L) x <- rep(NA_real_, length(y)) ### in case user specified a constant for y to use for replacement y <- .expand1(y, length(x)) ### check that x and y are of the same length if (length(x) != length(y)) stop(mstyle$stop("Length of 'x' and 'y' are not the same.")) #x <- ifelse(is.na(x), y, x) # this is quite a bit slower than the following is.na.x <- is.na(x) x[is.na.x] <- y[is.na.x] return(x) } metafor/R/blup.r0000644000176200001440000000005613672736517013257 0ustar liggesusersblup <- function(x, ...) UseMethod("blup") metafor/R/misc.func.hidden.vif.r0000644000176200001440000002124414440115472016202 0ustar liggesusers############################################################################ .compvif <- function(j, btt, vcov, xintercept, intercept, spec=NULL, colnames=NULL, obj=NULL, coef="beta", sim=FALSE) { x <- obj btt <- btt[[j]] # note: this might actually be att when computing (G)VIFs for the scale coefficients in location-scale model if (is.null(x)) { ### remove intercept (if there is one and intercept=FALSE) from vcov and adjust btt accordingly if (xintercept && !intercept) { vcov <- vcov[-1,-1,drop=FALSE] btt <- btt - 1 btt <- btt[btt > 0] } rb <- suppressWarnings(cov2cor(vcov)) gvif <- det(rb[btt,btt,drop=FALSE]) * det(rb[-btt,-btt,drop=FALSE]) / det(rb) } else { ### if 'x' is not NULL, then reestimate the model for the computation of the (G)VIF if (xintercept && !intercept) btt <- btt[btt > 1] if (coef == "beta") { Xbtt <- x$X[,btt,drop=FALSE] Zbtt <- x$Z if (xintercept && !intercept && !identical(btt,1L)) Xbtt <- cbind(1, Xbtt) outlist <- "vb=vb" } else { Xbtt <- x$X Zbtt <- x$Z[,btt,drop=FALSE] if (xintercept && !intercept && !identical(btt,1L)) Zbtt <- cbind(1, Zbtt) outlist <- "va=va" } if (inherits(x, "rma.uni")) { if (inherits(x, "rma.ls")) { args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=Xbtt, intercept=FALSE, scale=Zbtt, link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control, skiphes=FALSE, outlist=outlist) } else { args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=Xbtt, intercept=FALSE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, skipr2=TRUE, outlist=outlist) } tmp <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) } if (inherits(x, "rma.mv")) { args <- list(yi=x$yi, V=x$V, W=x$W, mods=Xbtt, random=x$random, struct=x$struct, intercept=FALSE, data=x$mf.r, method=x$method, test=x$test, dfs=x$dfs, level=x$level, R=x$R, Rscale=x$Rscale, sigma2=ifelse(x$vc.fix$sigma2, x$sigma2, NA), tau2=ifelse(x$vc.fix$tau2, x$tau2, NA), rho=ifelse(x$vc.fix$rho, x$rho, NA), gamma2=ifelse(x$vc.fix$gamma2, x$gamma2, NA), phi=ifelse(x$vc.fix$phi, x$phi, NA), sparse=x$sparse, dist=x$dist, vccon=obj$vccon, control=x$control, outlist=outlist) tmp <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) } if (inherits(tmp, "try-error")) { if (sim) { return(NA_real_) } else { gvif <- NA_real_ } } else { if (xintercept && !intercept) { gvif <- det(vcov(x, type=coef)[btt,btt,drop=FALSE]) / det(vcov(tmp, type=coef)[-1,-1,drop=FALSE]) } else { gvif <- det(vcov(x, type=coef)[btt,btt,drop=FALSE]) / det(vcov(tmp, type=coef)) } } } if (sim) { return(gvif) } else { m <- length(btt) gsif <- gvif^(1/(2*m)) ### readjust btt if this was done earlier if (is.null(x) && xintercept && !intercept) btt <- btt + 1 if (length(btt) == 1L) { coefname <- colnames[btt] } else { coefname <- "" } return(data.frame(spec=.format.btt(spec[[j]]), coefs=.format.btt(btt), coefname=coefname, m=m, vif=gvif, sif=gsif)) } } ############################################################################ .compvifsim <- function(l, obj, coef, btt=NULL, att=NULL, reestimate=FALSE, intercept=FALSE, parallel=FALSE, seed=NULL, joinb=NULL, joina=NULL) { if (parallel == "snow") library(metafor) if (!is.null(seed)) set.seed(seed+l) x <- obj if (coef == "beta") { if (reestimate) { outlist <- "nodata" } else { outlist <- "coef.na=coef.na, vb=vb" } if (is.null(joinb)) { if (is.null(x$data) || is.null(x$formula.mods)) { Xperm <- apply(x$X, 2, sample) } else { #data <- x$data data <- get_all_vars(x$formula.mods, data=x$data) # only get variables that are actually needed if (!is.null(x$subset)) data <- data[x$subset,,drop=FALSE] data <- data[x$not.na,,drop=FALSE] Xperm <- model.matrix(x$formula.mods, data=as.data.frame(lapply(data, sample))) #Xperm <- Xperm[,!x$coef.na,drop=FALSE] } } else { Xperm <- .permXvif(joinb, x$X) } if (inherits(x, "rma.uni")) { if (inherits(x, "rma.ls")) { args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=Xperm, intercept=FALSE, scale=x$Z, link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control, skiphes=FALSE, outlist=outlist) } else { args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=Xperm, intercept=FALSE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, skipr2=TRUE, outlist=outlist) } tmp <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) #tmp <- try(.do.call(rma.uni, args)) } if (inherits(x, "rma.mv")) { args <- list(yi=x$yi, V=x$V, W=x$W, mods=Xperm, random=x$random, struct=x$struct, intercept=FALSE, data=x$mf.r, method=x$method, test=x$test, dfs=x$dfs, level=x$level, R=x$R, Rscale=x$Rscale, sigma2=ifelse(x$vc.fix$sigma2, x$sigma2, NA), tau2=ifelse(x$vc.fix$tau2, x$tau2, NA), rho=ifelse(x$vc.fix$rho, x$rho, NA), gamma2=ifelse(x$vc.fix$gamma2, x$gamma2, NA), phi=ifelse(x$vc.fix$phi, x$phi, NA), sparse=x$sparse, dist=x$dist, vccon=obj$vccon, control=x$control, outlist=outlist) tmp <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) } if (inherits(tmp, "try-error")) return(rep(NA_real_, length(btt))) if (any(tmp$coef.na)) return(sapply(btt, function(x) if (any(which(tmp$coef.na) %in% x)) Inf else NA_real_)) vcov <- vcov(tmp, type="beta") obj <- if (reestimate) tmp else NULL vifs <- sapply(seq_along(btt), .compvif, btt=btt, vcov=vcov, xintercept=x$intercept, intercept=intercept, obj=obj, sim=TRUE) } else { if (reestimate) { outlist <- "nodata" } else { outlist <- "coef.na.Z=coef.na.Z, va=va" } if (is.null(joina)) { if (is.null(x$data) || is.null(x$formula.scale)) { Zperm <- apply(x$Z, 2, sample) } else { #data <- x$data data <- get_all_vars(x$formula.scale, data=x$data) # only get variables that are actually needed if (!is.null(x$subset)) data <- data[x$subset,,drop=FALSE] data <- data[x$not.na,,drop=FALSE] Zperm <- model.matrix(x$formula.scale, data=as.data.frame(lapply(data, sample))) #Zperm <- Zperm[,!x$coef.na.Z,drop=FALSE] } } else { Zperm <- .permXvif(joina, x$Z) } args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=x$X, intercept=FALSE, scale=Zperm, link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control, skiphes=FALSE, outlist=outlist) tmp <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) #tmp <- try(.do.call(rma.uni, args)) if (inherits(tmp, "try-error")) return(rep(NA_real_, length(att))) if (any(tmp$coef.na.Z)) return(sapply(att, function(x) if (any(which(tmp$coef.na.Z) %in% x)) Inf else NA_real_)) vcov <- vcov(tmp, type="alpha") obj <- if (reestimate) tmp else NULL vifs <- sapply(seq_along(att), .compvif, btt=att, vcov=vcov, xintercept=x$Z.intercept, intercept=intercept, obj=obj, sim=TRUE) } return(vifs) } .permXvif <- function(b, X) { ub <- unique(b) n <- nrow(X) for (j in 1:length(ub)) { pos <- which(ub[j] == b) X[,pos] <- X[sample(n),pos] } return(X) } ############################################################################ metafor/R/misc.func.hidden.evals.r0000644000176200001440000000404714313415473016535 0ustar liggesusers############################################################################ ### to register getfit method for 'rma.uni' and 'rma.mv' objects: eval(metafor:::.glmulti) .glmulti <- str2expression(" if (!(\"glmulti\" %in% .packages())) stop(\"Must load the 'glmulti' package first to use this code.\") setOldClass(\"rma.uni\") setMethod(\"getfit\", \"rma.uni\", function(object, ...) { if (object$test==\"z\") { cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=Inf) } else { cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=object$k-object$p) } }) setOldClass(\"rma.mv\") setMethod(\"getfit\", \"rma.mv\", function(object, ...) { if (object$test==\"z\") { cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=Inf) } else { cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=object$k-object$p) } }) setOldClass(\"rma.glmm\") setMethod(\"getfit\", \"rma.glmm\", function(object, ...) { if (object$test==\"z\") { cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=Inf) } else { cbind(estimate=coef(object), se=sqrt(diag(vcov(object))), df=object$k-object$p) } }) ") ### helper functions to make MuMIn work together with metafor: eval(metafor:::.MuMIn) .MuMIn <- str2expression(" makeArgs.rma <- function (obj, termNames, comb, opt, ...) { ret <- MuMIn:::makeArgs.default(obj, termNames, comb, opt) names(ret)[1L] <- \"mods\" ret } coefTable.rma <- function (model, ...) { MuMIn:::.makeCoefTable(model$b, model$se, coefNames = rownames(model$b)) } ") ### helper functions to make mice work together with metafor (note: no longer ### needed, as there are glance and tidy methods for rma objects in broom now) #.mice <- str2expression(" # #glance.rma <- function (x, ...) # data.frame(df.residual=df.residual(x)) # #tidy.rma <- function (x, ...) { # ret <- coef(summary(x)) # colnames(ret)[2] <- \"std.error\" # ret$term <- rownames(ret) # return(ret) #} # #") ############################################################################ metafor/R/forest.r0000644000176200001440000000006213674405412013601 0ustar liggesusersforest <- function(x, ...) UseMethod("forest") metafor/R/funnel.r0000644000176200001440000000006214167240043013561 0ustar liggesusersfunnel <- function(x, ...) UseMethod("funnel") metafor/R/vif.r0000644000176200001440000000005414276764412013073 0ustar liggesusersvif <- function(x, ...) UseMethod("vif") metafor/R/vcov.deltamethod.r0000644000176200001440000000024214710451303015535 0ustar liggesusersvcov.deltamethod <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="deltamethod") out <- object$vcov return(out) } metafor/R/methods.list.rma.r0000644000176200001440000000756314667663646015531 0ustar liggesusers############################################################################ "[.list.rma" <- function(x, i, ...) { # removed j argument (see below), so can only select rows, not columns out <- x attr(out, "class") <- NULL slab.pos <- which(names(out) == "slab") if (!missing(i)) { # for X and Z element mf <- match.call() i <- .getx("i", mf=mf, data=x) # not sure about the consequences of using this out[seq_len(slab.pos-1)] <- lapply(out[seq_len(slab.pos-1)], function(r) if (inherits(r, "matrix")) r[i,,drop=FALSE] else r[i]) } ### catch cases where user selects values outside 1:k if (length(out[[1]]) == 0L) return(NULL) #out <- out[j] # this causes all kinds of problems, so left out for now (TODO: check if this is really a problem) out$slab <- x$slab[i] ### slab can only contain NAs if user selects values outside 1:k if (anyNA(out$slab)) return(NULL) out$digits <- x$digits out$transf <- x$transf out$method <- x$method class(out) <- "list.rma" return(out) } ############################################################################ as.data.frame.list.rma <- function(x, ...) { attr(x, "class") <- NULL ### remove cr.lb and cr.ub (in case they are there) x$cr.lb <- NULL x$cr.ub <- NULL ### strip attributes from pi.lb if (!is.null(x$pi.lb)) x$pi.lb <- c(x$pi.lb) ### turn all vectors before the slab vector into a data frame slab.pos <- which(names(x) == "slab") out <- x[seq_len(slab.pos-1)] out <- data.frame(out, row.names=x$slab, stringsAsFactors=FALSE) ### in case all values were NA and have been omitted if (nrow(out) == 0L) return(data.frame()) ### if transf exists and is TRUE, set SEs to NULL so that column is omitted from the output if (exists("transf", where=x, inherits=FALSE) && x$transf) out$se <- NULL return(out) } ############################################################################ as.matrix.list.rma <- function(x, ...) { attr(x, "class") <- NULL ### remove cr.lb and cr.ub (in case they are there) x$cr.lb <- NULL x$cr.ub <- NULL ### turn all vectors before the slab vector into a matrix slab.pos <- which(names(x) == "slab") out <- x[seq_len(slab.pos-1)] out <- do.call(cbind, out) rownames(out) <- x$slab ### if transf exists and is TRUE, set SEs to NULL so that column is omitted from the output if (exists("transf", where=x, inherits=FALSE) && x$transf) out <- out[,-which(colnames(out) == "se")] return(out) } ############################################################################ ### like utils:::head.data.frame and utils:::tail.data.frame, ### but with nrow(x) replaced by length(x[[1]]) head.list.rma <- function (x, n = 6L, ...) { stopifnot(length(n) == 1L) n <- if (n < 0L) { max(length(x[[1]]) + n, 0L) } else { min(n, length(x[[1]])) } x[seq_len(n), , drop = FALSE] } tail.list.rma <- function (x, n = 6L, ...) { stopifnot(length(n) == 1L) nrx <- length(x[[1]]) n <- if (n < 0L) { max(nrx + n, 0L) } else { min(n, nrx) } x[seq.int(to = nrx, length.out = n), , drop = FALSE] } ############################################################################ `$<-.list.rma` <- function(x, name, value) { if (name %in% names(x)) { x[[name]] <- value return(x) } else { slab.pos <- which(names(x) == "slab") out <- list() for (i in seq_len(slab.pos-1)) { out[[i]] <- x[[i]] } names(out) <- names(x)[seq_len(slab.pos-1)] out[[name]] <- value for (i in (slab.pos:length(x))) { out[[i+1]] <- x[[i]] } names(out)[(slab.pos+1):(length(x)+1)] <- names(x)[slab.pos:length(x)] class(out) <- class(x) return(out) } } ############################################################################ metafor/R/dfround.r0000644000176200001440000000211714717400220013732 0ustar liggesusersdfround <- function(x, digits, drop0=TRUE) { mstyle <- .get.mstyle() if (inherits(x, "matrix") && length(dim(x)) == 2L) x <- data.frame(x, check.names=FALSE) .chkclass(class(x), must="data.frame") p <- ncol(x) if (missing(digits)) digits <- 0 digits <- .expand1(digits, p) drop0 <- .expand1(drop0, p) if (p != length(digits)) stop(mstyle$stop(paste0("Number of columns in 'x' (", p, ") do not match the length of 'digits' (", length(digits), ")."))) if (p != length(drop0)) stop(mstyle$stop(paste0("Number of columns in 'x' (", p, ") do not match the length of 'drop0' (", length(drop0), ")."))) if (!is.numeric(digits)) stop(mstyle$stop("Argument 'digits' must be a numeric vector.")) if (!is.logical(drop0)) stop(mstyle$stop("Argument 'drop0' must be a logical vector.")) for (i in seq_len(p)) { if (!is.numeric(x[[i]])) next if (drop0[i]) { x[[i]] <- round(x[[i]], digits[i]) } else { x[[i]] <- formatC(x[[i]], format="f", digits=digits[i]) } } return(x) } metafor/R/deviance.rma.r0000644000176200001440000000102114515470442014627 0ustar liggesusersdeviance.rma <- function(object, REML, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") # in case something like logLik(res1, res2) is used if (!missing(REML) && inherits(REML, "rma")) REML <- NULL if (missing(REML) || is.null(REML)) { if (object$method == "REML") { REML <- TRUE } else { REML <- FALSE } } if (REML) { val <- object$fit.stats["dev","REML"] } else { val <- object$fit.stats["dev","ML"] } return(val) } metafor/R/hatvalues.rma.uni.r0000644000176200001440000000417114671510734015652 0ustar liggesusershatvalues.rma.uni <- function(model, type="diagonal", ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.uni", notav=c("rma.uni.selmodel", "rma.gen")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$vi) || is.null(model$X)) stop(mstyle$stop("Information needed to compute the hat values is not available in the model object.")) type <- match.arg(type, c("diagonal", "matrix")) ######################################################################### x <- model if (x$weighted) { if (is.null(x$weights)) { W <- diag(1/(x$vi + x$tau2), nrow=x$k, ncol=x$k) stXWX <- .invcalc(X=x$X, W=W, k=x$k) H <- x$X %*% stXWX %*% crossprod(x$X,W) #H <- x$X %*% (x$vb / x$s2w) %*% crossprod(x$X,W) # x$vb may be changed through robust() (and when test="knha") } else { A <- diag(x$weights, nrow=x$k, ncol=x$k) stXAX <- .invcalc(X=x$X, W=A, k=x$k) H <- x$X %*% stXAX %*% crossprod(x$X,A) } } else { stXX <- .invcalc(X=x$X, W=diag(x$k), k=x$k) H <- x$X %*% tcrossprod(stXX,x$X) } ######################################################################### if (type == "diagonal") { hii <- rep(NA_real_, x$k.f) hii[x$not.na] <- diag(H) hii[hii > 1 - 10 * .Machine$double.eps] <- 1 # as in lm.influence() names(hii) <- x$slab if (na.act == "na.omit") hii <- hii[x$not.na] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) return(hii) } if (type == "matrix") { Hfull <- matrix(NA_real_, nrow=x$k.f, ncol=x$k.f) Hfull[x$not.na, x$not.na] <- H rownames(Hfull) <- x$slab colnames(Hfull) <- x$slab if (na.act == "na.omit") Hfull <- Hfull[x$not.na, x$not.na, drop=FALSE] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) return(Hfull) } } metafor/R/hc.rma.uni.r0000644000176200001440000001326614717663313014260 0ustar liggesusershc.rma.uni <- function(object, digits, transf, targs, control, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.uni", notav=c("rma.ls", "rma.gen", "rma.uni.selmodel")) x <- object if (!x$int.only) stop(mstyle$stop("Method only applicable to models without moderators.")) if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed is not available in the model object.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL funlist <- lapply(list(transf.exp.int, transf.ilogit.int, transf.ztor.int, transf.exp.mode, transf.ilogit.mode, transf.ztor.mode), deparse) if (is.null(targs) && any(sapply(funlist, identical, deparse(transf))) && inherits(x, c("rma.uni","rma.glmm")) && length(x$tau2 == 1L)) targs <- c(tau2=x$tau2) yi <- x$yi vi <- x$vi k <- length(yi) if (k == 1L) stop(mstyle$stop("Stopped because k = 1.")) if (!x$allvipos) stop(mstyle$stop("Cannot use method when one or more sampling variances are non-positive.")) level <- .level(x$level) if (missing(control)) control <- list() ######################################################################### ### set defaults for control parameters for uniroot() and replace with any user-defined values con <- list(tol=.Machine$double.eps^0.25, maxiter=1000, verbose=FALSE) con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] ######################################################################### ### original code by Henmi & Copas (2012), modified by Michael Dewey, small adjustments ### for consistency with other functions in the metafor package by Wolfgang Viechtbauer wi <- 1/vi # fixed effects weights W1 <- sum(wi) W2 <- sum(wi^2) / W1 W3 <- sum(wi^3) / W1 W4 <- sum(wi^4) / W1 ### fixed-effects estimate of theta beta <- sum(wi*yi) / W1 ### Q statistic Q <- sum(wi * ((yi - beta)^2)) ### DL estimate of tau^2 tau2 <- max(0, (Q - (k-1)) / (W1 - W2)) vb <- (tau2 * W2 + 1) / W1 # estimated Var of b se <- sqrt(vb) # estimated SE of b VR <- 1 + tau2 * W2 # estimated Var of R SDR <- sqrt(VR) # estimated SD of R ### conditional mean of Q given R=r EQ <- function(r) (k - 1) + tau2 * (W1 - W2) + (tau2^2)*((1/VR^2) * (r^2) - 1/VR) * (W3 - W2^2) ### conditional variance of Q given R=r VQ <- function(r) { rsq <- r^2 recipvr2 <- 1 / VR^2 2 * (k - 1) + 4 * tau2 * (W1 - W2) + 2 * tau2^2 * (W1*W2 - 2*W3 + W2^2) + 4 * tau2^2 * (recipvr2 * rsq - 1/VR) * (W3 - W2^2) + 4 * tau2^3 * (recipvr2 * rsq - 1/VR) * (W4 - 2*W2*W3 + W2^3) + 2 * tau2^4 * (recipvr2 - 2 * (1/VR^3) * rsq) * (W3 - W2^2)^2 } scale <- function(r) VQ(r) / EQ(r) # scale parameter of the gamma distribution shape <- function(r) EQ(r)^2 / VQ(r) # shape parameter of the gamma distribution ### inverse of f finv <- function(f) (W1/W2 - 1) * ((f^2) - 1) + (k - 1) ### equation to be solved eqn <- function(x) { integrand <- function(r) { pgamma(finv(r/x), scale=scale(SDR*r), shape=shape(SDR*r))*dnorm(r) } integral <- integrate(integrand, lower=x, upper=Inf)$value #integral <- cubintegrate(integrand, lower=x, upper=Inf)$integral val <- integral - level / 2 #cat(val, "\n") val } t0 <- try(uniroot(eqn, lower=0, upper=2, tol=con$tol, maxiter=con$maxiter)) if (inherits(t0, "try-error")) stop(mstyle$stop("Error in uniroot().")) t0 <- t0$root u0 <- SDR * t0 # (approximate) percentage point for the distribution of U ######################################################################### ci.lb <- beta - u0 * se # lower CI bound ci.ub <- beta + u0 * se # upper CI bound beta.rma <- x$beta se.rma <- x$se ci.lb.rma <- x$ci.lb ci.ub.rma <- x$ci.ub ### if requested, apply transformation to yi's and CI bounds if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) beta.rma <- sapply(beta.rma, transf) se <- NA_real_ se.rma <- NA_real_ ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) ci.lb.rma <- sapply(ci.lb.rma, transf) ci.ub.rma <- sapply(ci.ub.rma, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) beta.rma <- sapply(beta.rma, transf, targs) se <- NA_real_ se.rma <- NA_real_ ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) ci.lb.rma <- sapply(ci.lb.rma, transf, targs) ci.ub.rma <- sapply(ci.ub.rma, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] tmp <- .psort(ci.lb.rma, ci.ub.rma) ci.lb.rma <- tmp[,1] ci.ub.rma <- tmp[,2] ######################################################################### res <- list(beta=beta, se=se, ci.lb=ci.lb, ci.ub=ci.ub, beta.rma=beta.rma, se.rma=se.rma, ci.lb.rma=ci.lb.rma, ci.ub.rma=ci.ub.rma, method="DL", method.rma=x$method, tau2=tau2, tau2.rma=x$tau2, digits=digits) class(res) <- "hc.rma.uni" return(res) } metafor/R/trimfill.r0000644000176200001440000000006613457322061014122 0ustar liggesuserstrimfill <- function(x, ...) UseMethod("trimfill") metafor/R/coef.rma.r0000644000176200001440000000153614515470353014001 0ustar liggesuserscoef.rma <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") ddd <- list(...) coefs <- c(object$beta) names(coefs) <- rownames(object$beta) if (isTRUE(ddd$type=="beta")) return(coefs) if (inherits(object, "rma.ls")) { coefs <- list(beta=coefs) coefs$alpha <- c(object$alpha) names(coefs$alpha) <- rownames(object$alpha) if (isTRUE(ddd$type=="alpha")) return(coefs$alpha) } if (inherits(object, "rma.uni.selmodel")) { coefs <- list(beta=coefs) coefs$delta <- c(object$delta) if (length(object$delta) == 1L) { names(coefs$delta) <- "delta" } else { names(coefs$delta) <- paste0("delta.", seq_along(object$delta)) } if (isTRUE(ddd$type=="delta")) return(coefs$delta) } return(coefs) } metafor/R/selmodel.rma.uni.r0000644000176200001440000016171114721102013015445 0ustar liggesusersselmodel.rma.uni <- function(x, type, alternative="greater", prec, subset, delta, steps, decreasing=FALSE, verbose=FALSE, digits, control, ...) { # TODO: add a H0 argument? since p-value may not be based on H0: theta_i = 0 # TODO: argument for which deltas to include in LRT (a delta may also not be constrained under H0, so it should not be included in the LRT then) mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni", notav=c("rma.ls", "rma.gen", "robust.rma")) if (is.null(x$yi)) stop(mstyle$stop("Information needed to fit the selection model is not available in the model object.")) alternative <- match.arg(alternative, c("two.sided", "greater", "less")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } time.start <- proc.time() if (!x$allvipos) stop(mstyle$stop("Cannot fit selection model when one or more sampling variances are non-positive.")) if (!x$weighted || !is.null(x$weights)) stop(mstyle$stop("Cannot fit selection model for unweighted models or models with custom weights.")) if (missing(type)) stop(mstyle$stop("Must choose a specific selection model via the 'type' argument (see 'help(selmodel)' for options).")) type.options <- c("beta", "halfnorm", "negexp", "logistic", "power", "negexppow", "halfnorm1", "negexp1", "logistic1", "power1", "halfnorm2", "negexp2", "logistic2", "power2", "stepfun", "stepcon", "trunc", "truncest") #type <- match.arg(type, type.options) type <- type.options[grep(type, type.options)[1]] if (is.na(type)) stop(mstyle$stop("Unknown 'type' specified (see 'help(selmodel)' for options).")) if (is.element(type, c("trunc","truncest")) && alternative == "two.sided") stop(mstyle$stop("Cannot use alternative='two-sided' with this type of selection model.")) decreasing <- isTRUE(decreasing) if (type != "stepfun" && decreasing) { warning(mstyle$warning("Argument 'decreasing' ignored (not applicable to this type of selection model)."), call.=FALSE) decreasing <- FALSE } if (missing(control)) control <- list() ### refit RE/ME models with ML estimation if (!is.element(x$method, c("FE","EE","CE","ML"))) { #stop(mstyle$stop("Argument 'x' must either be an equal/fixed-effects model or a model fitted with ML estimation.")) #x <- try(update(x, method="ML"), silent=TRUE) #x <- suppressWarnings(update(x, method="ML")) #x <- try(suppressWarnings(rma.uni(x$yi, x$vi, weights=x$weights, mods=x$X, intercept=FALSE, method="ML", weighted=x$weighted, test=x$test, level=x$level, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, skipr2=TRUE)), silent=TRUE) args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=x$X, intercept=FALSE, method="ML", weighted=x$weighted, test=x$test, level=x$level, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, skipr2=TRUE) x <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) if (inherits(x, "try-error")) stop(mstyle$stop("Could not refit input model using method='ML'.")) } ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("time", "tau2", "beta", "skiphes", "skiphet", "skipintcheck", "scaleprec", "defmap", "mapfun", "mapinvfun", "pval", "ptable", "retopt")) ### handle 'tau2' argument from ... if (is.null(ddd$tau2)) { if (is.element(x$method, c("FE","EE","CE"))) { tau2 <- 0 } else { if (x$tau2.fix) { tau2 <- x$tau2 } else { tau2 <- NA_real_ } } } else { tau2 <- ddd$tau2 if (!is.na(tau2)) x$tau2.fix <- TRUE } ### handle 'beta' argument from ... if (is.null(ddd$beta)) { beta <- rep(NA_real_, x$p) betaspec <- FALSE # [a] sets con$scaleX=TRUE } else { beta <- ddd$beta betaspec <- TRUE # [a] sets con$scaleX=FALSE } yi <- c(x$yi) vi <- x$vi X <- x$X p <- x$p k <- x$k ### set precision measure if (!missing(prec) && !is.null(prec)) { precspec <- TRUE # used to check if prec is set for certain models where this is not applicable or experimental [b] prec <- match.arg(prec, c("sei", "vi", "ninv", "sqrtninv")) ### check if sample size information is available if prec is "ninv" or "sqrtninv" if (is.element(prec, c("ninv", "sqrtninv"))) { if (is.null(x$ni) || anyNA(x$ni)) stop(mstyle$stop("No sample size information stored in model object (or sample size information stored in model object contains NAs).")) } if (prec == "sei") preci <- sqrt(vi) if (prec == "vi") preci <- vi if (prec == "ninv") preci <- 1/x$ni if (prec == "sqrtninv") preci <- 1/sqrt(x$ni) if (is.null(ddd$scaleprec) || isTRUE(ddd$scaleprec)) preci <- preci / max(preci) } else { precspec <- FALSE prec <- NULL preci <- rep(1, k) } precis <- c(min = min(preci), max = max(preci), mean = mean(preci), median = median(preci)) ### compute p-values if (is.null(ddd$pval)) { pvals <- .selmodel.pval(yi=yi, vi=vi, alternative=alternative) } else { # can pass p-values directly to the function via 'pval' argument from ... (this is highly experimental) pvals <- ddd$pval if (length(pvals) != x$k.all) stop(mstyle$stop(paste0("Length of the 'pval' argument (", length(pvals), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) pvals <- .getsubset(pvals, x$subset) pvals <- pvals[x$not.na] if (anyNA(pvals)) stop(mstyle$stop(paste0("No missing values in 'pval' argument allowed."))) if (any(pvals <= 0) || any(pvals > 1)) stop(mstyle$stop(paste0("One or more 'pval' values are <= 0 or > 1."))) } ### checks on steps argument if (missing(steps) || (length(steps) == 1L && is.na(steps))) { stepsspec <- FALSE steps <- NA_real_ } else { stepsspec <- TRUE if (anyNA(steps)) stop(mstyle$stop("No missing values allowed in 'steps' argument.")) if (type != "trunc" && any(steps < 0 | steps > 1)) stop(mstyle$stop("Value(s) specified for 'steps' argument must be between 0 and 1.")) steps <- unique(sort(steps)) if (!is.element(type, c("trunc","beta"))) { if (steps[1] == 0) stop(mstyle$stop("Lowest 'steps' value must be > 0.")) if (steps[length(steps)] != 1) steps <- c(steps, 1) } } if (type == "trunc" && !stepsspec) { stepsspec <- TRUE #if (alternative == "greater") # steps <- min(yi) #if (alternative == "less") # steps <- max(yi) steps <- 0 } if (is.element(type, c("trunc","truncest")) && verbose > 2) { warning(mstyle$warning("Cannot use 'verbose > 2' for this type of selection model (setting verbose=2)."), call.=FALSE) verbose <- 2 } if (missing(subset)) { subset <- rep(TRUE, k) subset.spec <- FALSE } else { mf <- match.call() subset <- .getx("subset", mf=mf, data=x$data) subset <- .chksubset(subset, x$k.all) subset <- .getsubset(subset, x$subset) subset <- subset[x$not.na] subset.spec <- TRUE } ############################################################################ ### set defaults for control parameters con <- list(verbose = FALSE, delta.init = NULL, # initial value(s) for selection model parameter(s) beta.init = NULL, # initial value(s) for fixed effect(s) tau2.init = NULL, # initial value for tau^2 delta.min = NULL, # min possible value(s) for selection model parameter(s) delta.max = NULL, # max possible value(s) for selection model parameter(s) tau2.max = Inf, # max possible value for tau^2 tau2tol = min(vi/10, 1e-04), # threshold for treating tau^2 as effectively equal to 0 in the Hessian computation deltatol = 1e-04, # threshold for treating deltas as effectively equal to 0 in the Hessian computation (only for stepfun) pval.min = NULL, # minimum p-value to intergrate over (for selection models where this matters) optimizer = "optim", # optimizer to use ("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","solnp","alabama"/"constrOptim.nl","Rcgmin","Rvmmin") optmethod = "BFGS", # argument 'method' for optim() ("Nelder-Mead" and "BFGS" are sensible options) parallel = list(), # parallel argument for optimParallel() (note: 'cl' argument in parallel is not passed; this is directly specified via 'cl') cl = NULL, # arguments for optimParallel() ncpus = 1L, # arguments for optimParallel() beta.fix = FALSE, # fix beta in Hessian computation tau2.fix = FALSE, # fix tau2 in Hessian computation delta.fix = FALSE, # fix delta in Hessian computation htransf = FALSE, # when FALSE, Hessian is computed directly for the delta and tau^2 estimates (e.g., we get Var(tau^2)); when TRUE, Hessian is computed for the transformed estimates (e.g., we get Var(log(tau2))) hessianCtrl=list(r=6), # arguments passed on to 'method.args' of hessian() hesspack = "numDeriv", # package for computing the Hessian (numDeriv or pracma) scaleX = !betaspec) # whether non-dummy variables in the X matrix should be rescaled before model fitting [a] ### replace defaults with any user-defined values con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] if (verbose) con$verbose <- verbose verbose <- con$verbose optimizer <- match.arg(con$optimizer, c("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","solnp","alabama","constrOptim.nl","Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent","Rcgmin","Rvmmin")) optmethod <- match.arg(con$optmethod, c("Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent")) if (optimizer %in% c("Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent")) { optmethod <- optimizer optimizer <- "optim" } parallel <- con$parallel cl <- con$cl ncpus <- con$ncpus optcontrol <- control[is.na(con.pos)] # get arguments that are control arguments for optimizer optcontrol$intCtrl <- NULL # but remove intCtrl from this list if (length(optcontrol) == 0L) optcontrol <- list() pos.intCtrl <- pmatch(names(control), "intCtrl", nomatch=0) if (sum(pos.intCtrl) > 0) { intCtrl <- control[[which(pos.intCtrl == 1)]] } else { intCtrl <- list() } con.pos <- pmatch(names(intCtrl), "lower", nomatch=0) if (sum(con.pos) > 0) { names(intCtrl)[which(con.pos == 1)] <- "lower" } else { intCtrl$lower <- -Inf } con.pos <- pmatch(names(intCtrl), "upper", nomatch=0) if (sum(con.pos) > 0) { names(intCtrl)[which(con.pos == 1)] <- "upper" } else { intCtrl$upper <- Inf } con.pos <- pmatch(names(intCtrl), "subdivisions", nomatch=0) if (sum(con.pos) > 0) { names(intCtrl)[which(con.pos == 1)] <- "subdivisions" } else { intCtrl$subdivisions <- 100L } con.pos <- pmatch(names(intCtrl), "rel.tol", nomatch=0) if (sum(con.pos) > 0) { names(intCtrl)[which(con.pos == 1)] <- "rel.tol" } else { intCtrl$rel.tol <- .Machine$double.eps^0.25 } ### if control argument 'ncpus' is larger than 1, automatically switch to optimParallel optimizer if (ncpus > 1L) optimizer <- "optimParallel" ### can use optimizer="alabama" as a shortcut for optimizer="constrOptim.nl" if (optimizer == "alabama") optimizer <- "constrOptim.nl" ### when type="stepcon", automatically set solnp as the default optimizer if (type == "stepcon") { if (optimizer == "optim" && optmethod=="BFGS") { # this is the default optimizer <- "solnp" } else { if (!is.element(optimizer, c("solnp","nloptr","constrOptim.nl"))) { optimizer <- "solnp" warning(mstyle$warning(paste0("Can only use optimizers 'solnp', 'nloptr', or 'constrOptim.nl' when type='stepcon' (resetting to '", optimizer, "').")), call.=FALSE) } } } if (type != "stepcon" && optimizer == "constrOptim.nl") { # but can use solnp and nloptr optimizer <- "optim" warning(mstyle$warning(paste0("Cannot use 'constrOptim.nl' optimizer to fit this model (resetting to '", optimizer, "').")), call.=FALSE) } ### rescale X matrix (only for models with moderators and models including an intercept term) if (!x$int.only && x$int.incl && con$scaleX) { Xsave <- X meanX <- colMeans(X[, 2:p, drop=FALSE]) sdX <- apply(X[, 2:p, drop=FALSE], 2, sd) # consider using colSds() from matrixStats package is.d <- apply(X, 2, .is.dummy) # is each column a dummy variable (i.e., only 0s and 1s)? mX <- rbind(c(intrcpt=1, -1*ifelse(is.d[-1], 0, meanX/sdX)), cbind(0, diag(ifelse(is.d[-1], 1, 1/sdX), nrow=length(is.d)-1, ncol=length(is.d)-1))) X[,!is.d] <- apply(X[, !is.d, drop=FALSE], 2, scale) # rescale the non-dummy variables } ### initial value(s) for beta if (is.null(con$beta.init)) { beta.init <- c(x$beta) } else { if (length(con$beta.init) != p) stop(mstyle$stop(paste0("Length of the 'beta.init' argument (", length(con$beta.init), ") does not match the actual number of parameters (", p, ")."))) beta.init <- con$beta.init } if (!x$int.only && x$int.incl && con$scaleX) { imX <- try(suppressWarnings(solve(mX)), silent=TRUE) if (inherits(imX, "try-error")) stop(mstyle$stop("Unable to rescale starting values for the fixed effects.")) beta.init <- c(imX %*% cbind(beta.init)) } ### check that tau2.max (Inf by default) is larger than the tau^2 value tau2.max <- con$tau2.max if (x$tau2 >= con$tau2.max) stop(mstyle$stop("Value of 'tau2.max' must be > tau^2 value.")) ### initial value for tau^2 if (is.null(con$tau2.init)) { tau2.init <- log(x$tau2 + 1e-3) } else { if (length(con$tau2.init) != 1L) stop(mstyle$stop("Argument 'tau2.init' should specify a single value.")) if (con$tau2.init <= 0) stop(mstyle$stop("Value of 'tau2.init' must be > 0.")) if (con$tau2.init >= tau2.max) stop(mstyle$stop("Value of 'tau2.init' must be < 'tau2.max'.")) tau2.init <- log(con$tau2.init) } con$hesspack <- match.arg(con$hesspack, c("numDeriv","pracma","calculus")) if (!isTRUE(ddd$skiphes) && !requireNamespace(con$hesspack, quietly=TRUE)) stop(mstyle$stop(paste0("Please install the '", con$hesspack, "' package to compute the Hessian."))) ############################################################################ ### definition of the various selection model types # delta.lb / delta.ub: parameter space of the delta value(s) # delta.lb.excl / delta.ub.excl: whether delta must be >/< or can be >=/<= # delta.min / delta.max: limits imposed on delta for numerical reasons delta.min.check <- TRUE delta.max.check <- TRUE if (type == "beta") { if (stepsspec) { if (length(steps) != 2L) # steps should be c(alpha1,alpha2) stop(mstyle$stop("The 'steps' argument for this type of selection model should be of length 2.")) } else { steps <- c(0,1) } if (precspec) # [b] warning(mstyle$warning("Argument 'prec' ignored (not applicable to this type of selection model)."), call.=FALSE) deltas <- 2L delta.transf.fun <- c("exp", "exp") delta.transf.fun.inv <- c("log", "log") delta.lb <- c(0, 0) delta.ub <- c(Inf, Inf) delta.lb.excl <- c(TRUE, TRUE) delta.ub.excl <- c(FALSE, FALSE) delta.init <- c(1, 1) delta.min <- c(1e-05, 1e-05) delta.max <- c(100, 100) H0.delta <- c(1, 1) delta.LRT <- c(TRUE, TRUE) pval.min <- 1e-5 wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) pmin(pmax(steps[1],x),steps[2])^(delta[1]-1) * (1-pmin(pmax(steps[1],x),steps[2]))^(delta[2]-1) .selmodel.ll <- ".selmodel.ll.cont" } if (is.element(type, c("halfnorm", "negexp", "logistic", "power"))) { if (stepsspec) { if (length(steps) != 2L) # steps should be c(alpha,1) stop(mstyle$stop("Can only specify a single value for the 'steps' argument for this type of selection model.")) } else { steps <- 0 } deltas <- 1L delta.transf.fun <- "exp" delta.transf.fun.inv <- "log" delta.lb <- 0 delta.ub <- Inf delta.lb.excl <- FALSE delta.ub.excl <- FALSE delta.init <- 1 delta.min <- 0 delta.max <- 100 H0.delta <- 0 delta.LRT <- TRUE if (type == "power") { pval.min <- 1e-5 } else { pval.min <- 0 } if (type == "halfnorm") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, exp(-delta * preci * x^2) / exp(-delta * preci * steps[1]^2)) #pmin(1, exp(-delta * preci * x^2) / exp(-delta * preci * steps[1]^2)) } if (type == "negexp") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, exp(-delta * preci * x) / exp(-delta * preci * steps[1])) } if (type == "logistic") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, (2 * exp(-delta * preci * x) / (1 + exp(-delta * preci * x))) / (2 * exp(-delta * preci * steps[1]) / (1 + exp(-delta * preci * steps[1])))) } if (type == "power") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, (1-x)^(preci*delta) / (1-steps[1])^(preci*delta)) } .selmodel.ll <- ".selmodel.ll.cont" } if (is.element(type, c("halfnorm1", "negexp1", "logistic1", "power1"))) { if (stepsspec) { if (length(steps) != 2L) # steps should be c(alpha,1) stop(mstyle$stop("Can only specify a single value for the 'steps' argument for this type of selection model.")) } else { steps <- 0 } deltas <- 1L delta.transf.fun <- "exp" delta.transf.fun.inv <- "log" delta.lb <- 0 delta.ub <- Inf delta.lb.excl <- FALSE delta.ub.excl <- FALSE delta.init <- 1 delta.min <- 0 delta.max <- 100 H0.delta <- 0 delta.LRT <- TRUE if (type == "power") { pval.min <- 1e-5 } else { pval.min <- 0 } if (type == "halfnorm1") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, exp(-delta * preci * ((x-steps[1])/(1-steps[1]))^2)) } if (type == "negexp1") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, exp(-delta * preci * ((x-steps[1])/(1-steps[1])))) } if (type == "logistic1") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, (2 * exp(-delta * preci * ((x-steps[1])/(1-steps[1]))) / (1 + exp(-delta * preci * ((x-steps[1])/(1-steps[1])))))) } if (type == "power1") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, (1-((x-steps[1])/(1-steps[1])))^(preci*delta)) } .selmodel.ll <- ".selmodel.ll.cont" } if (type == "negexppow") { if (stepsspec) { if (length(steps) != 2L) # steps should be c(alpha,1) stop(mstyle$stop("Can only specify a single value for the 'steps' argument for this type of selection model.")) } else { steps <- 0 } deltas <- 2L delta.transf.fun <- c("exp", "exp") delta.transf.fun.inv <- c("log", "log") delta.lb <- c(0, 0) delta.ub <- c(Inf, Inf) delta.lb.excl <- c(FALSE, FALSE) delta.ub.excl <- c(FALSE, FALSE) delta.init <- c(1, 1) delta.min <- c(0, 0) delta.max <- c(100, 100) H0.delta <- c(0, 0) delta.LRT <- c(TRUE, TRUE) pval.min <- 0 wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, exp(-delta[1] * preci * x^(1/delta[2])) / exp(-delta[1] * preci * steps[1]^(1/delta[2]))) .selmodel.ll <- ".selmodel.ll.cont" } if (is.element(type, c("halfnorm2", "negexp2", "logistic2", "power2"))) { if (stepsspec) { if (length(steps) != 2L) # steps should be c(alpha,1) stop(mstyle$stop("Can only specify a single value for the 'steps' argument for this type of selection model.")) } else { steps <- 0 } deltas <- 2L delta.transf.fun <- c("exp", "exp") delta.transf.fun.inv <- c("log", "log") delta.lb <- c(0,0) delta.ub <- c(Inf, Inf) delta.lb.excl <- c(FALSE, FALSE) delta.ub.excl <- c(FALSE, FALSE) delta.init <- c(1, 0.25) delta.min <- c(0, 0) delta.max <- c(100, 100) H0.delta <- c(0, 0) delta.LRT <- c(TRUE, TRUE) pval.min <- 0 if (type == "halfnorm2") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, (delta[1] + exp(-delta[2] * preci * x^2) / exp(-delta[2] * preci * steps[1]^2)) / (1 + delta[1])) } if (type == "negexp2") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, (delta[1] + exp(-delta[2] * preci * x) / exp(-delta[2] * preci * steps[1])) / (1 + delta[1])) } if (type == "logistic2") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, (delta[1] + (2 * exp(-delta[2] * preci * x) / (1 + exp(-delta[2] * preci * x))) / (2 * exp(-delta[2] * preci * steps[1]) / (1 + exp(-delta[2] * preci * steps[1])))) / (1 + delta[1])) } if (type == "power2") { wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) ifelse(x <= steps[1], 1, (delta[1] + (1-x)^(preci*delta[2]) / (1-steps[1])^(preci*delta[2])) / (1 + delta[1])) } .selmodel.ll <- ".selmodel.ll.cont" } if (type == "stepfun") { if (!stepsspec) stop(mstyle$stop("Must specify the 'steps' argument for this type of selection model.")) if (precspec) { # [b] if (decreasing) { warning(mstyle$warning("Argument 'prec' ignored (not applicable to this type of selection model)."), call.=FALSE) preci <- rep(1, k) } else { warning(mstyle$warning("Adding a precision measure to this selection model is undocumented and experimental."), call.=FALSE) } } deltas <- length(steps) if (decreasing) { delta.transf.fun <- rep("I", deltas) delta.transf.fun.inv <- rep("I", deltas) ddd$defmap <- TRUE # actual mapping is defined directly in .selmodel.ll.stepfun() for this special case if (con$htransf) stop(mstyle$stop("Cannot use 'htransf=TRUE' for this type of selection model.")) #delta.lb <- rep(0, deltas) #delta.ub <- rep(1, deltas) delta.lb <- c(0, rep(-Inf, deltas-1)) delta.ub <- c(1, rep( Inf, deltas-1)) delta.lb.excl <- rep(FALSE, deltas) delta.ub.excl <- rep(FALSE, deltas) #delta.init <- rep(1, deltas) delta.init <- c(1, rep(-2, deltas-1)) delta.min <- rep(0, deltas) delta.max <- rep(1, deltas) delta.max.check <- FALSE } else { delta.transf.fun <- rep("exp", deltas) delta.transf.fun.inv <- rep("log", deltas) delta.lb <- rep(0, deltas) delta.ub <- rep(Inf, deltas) delta.lb.excl <- rep(FALSE, deltas) delta.ub.excl <- rep(FALSE, deltas) delta.init <- seq(1, 0.8, length.out=deltas) delta.min <- rep(0, deltas) delta.max <- rep(100, deltas) } H0.delta <- rep(1, deltas) delta.LRT <- rep(TRUE, deltas) # note: delta[1] should actually not be included in the LRT, but gets constrained to 1 below anyway pval.min <- 0 wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) delta[sapply(x, function(p) which(p <= steps)[1])] / preci .selmodel.ll <- ".selmodel.ll.stepfun" } if (type == "stepcon") { if (!stepsspec) stop(mstyle$stop("Must specify the 'steps' argument for this type of selection model.")) if (precspec) { # [b] warning(mstyle$warning("Argument 'prec' ignored (not applicable to this type of selection model)."), call.=FALSE) preci <- rep(1, k) } deltas <- length(steps) delta.transf.fun <- rep("plogis", deltas) delta.transf.fun.inv <- rep("qlogis", deltas) delta.lb <- rep(0, deltas) delta.ub <- rep(1, deltas) delta.lb.excl <- rep(FALSE, deltas) delta.ub.excl <- rep(FALSE, deltas) delta.init <- seq(1, 0.5, length.out=deltas) delta.min <- rep(0, deltas) delta.max <- rep(1, deltas) delta.max.check <- FALSE H0.delta <- rep(1, deltas) delta.LRT <- rep(TRUE, deltas) # note: delta[1] should actually not be included in the LRT, but gets constrained to 1 below anyway pval.min <- 0 wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) delta[sapply(x, function(p) which(p <= steps)[1])] / preci .selmodel.ll <- ".selmodel.ll.stepfun" } if (type == "trunc") { if (length(steps) != 1L) # steps should be a single value stop(mstyle$stop("Can only specify a single value for the 'steps' argument for this type of selection model.")) if (precspec) # [b] warning(mstyle$warning("Argument 'prec' ignored (not applicable to this type of selection model)."), call.=FALSE) deltas <- 1L delta.transf.fun <- "exp" delta.transf.fun.inv <- "log" delta.lb <- 0 delta.ub <- Inf delta.lb.excl <- FALSE delta.ub.excl <- FALSE delta.init <- 1 delta.min <- 0 delta.max <- 100 H0.delta <- 1 delta.LRT <- TRUE pval.min <- 0 wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) { if (alternative == "less") { yival <- qnorm(x, sd=sqrt(vi), lower.tail=TRUE) ifelse(yival < steps[1], 1, delta) } else { yival <- qnorm(x, sd=sqrt(vi), lower.tail=FALSE) ifelse(yival > steps[1], 1, delta) } } #.selmodel.ll <- ".selmodel.ll.cont" .selmodel.ll <- ".selmodel.ll.trunc" } if (type == "truncest") { if (stepsspec) warning(mstyle$warning("Argument 'steps' ignored (not applicable to this type of selection model)."), call.=FALSE) stepsspec <- FALSE steps <- NA_real_ if (precspec) # [b] warning(mstyle$warning("Argument 'prec' ignored (not applicable to this type of selection model)."), call.=FALSE) deltas <- 2L delta.transf.fun <- c("exp", "I") delta.transf.fun.inv <- c("log", "I") delta.lb <- c(0, -Inf) delta.ub <- c(Inf, Inf) delta.lb.excl <- c(FALSE, FALSE) delta.ub.excl <- c(FALSE, FALSE) delta.init <- c(1, mean(yi)) delta.min <- c(0, ifelse(alternative=="greater", min(yi)-sd(yi), min(yi))) delta.max <- c(100, ifelse(alternative=="greater", max(yi), max(yi)+sd(yi))) H0.delta <- c(1, 0) delta.LRT <- c(TRUE, FALSE) pval.min <- 0 wi.fun <- function(x, delta, yi, vi, preci, alternative, steps) { if (alternative == "less") { yival <- qnorm(x, sd=sqrt(vi), lower.tail=TRUE) ifelse(yival < delta[2], 1, delta[1]) } else { yival <- qnorm(x, sd=sqrt(vi), lower.tail=FALSE) ifelse(yival > delta[2], 1, delta[1]) } } #.selmodel.ll <- ".selmodel.ll.cont" .selmodel.ll <- ".selmodel.ll.trunc" } ############################################################################ ### checks on delta, delta.min, delta.max, and delta.init if (missing(delta)) { delta <- rep(NA_real_, deltas) } else { delta <- .expand1(delta, deltas) if (length(delta) != deltas) stop(mstyle$stop(paste0("Argument 'delta' should be of length ", deltas, " for this type of selection model."))) for (j in seq_len(deltas)) { if (delta.lb.excl[j] && isTRUE(delta[j] <= delta.lb[j])) stop(mstyle$stop(paste0("Value of 'delta[", j, "]' must be > ", delta.lb[j], " for this type of selection model."))) if (!delta.lb.excl[j] && isTRUE(delta[j] < delta.lb[j])) stop(mstyle$stop(paste0("Value of 'delta[", j, "]' must be >= ", delta.lb[j], " for this type of selection model."))) } for (j in seq_len(deltas)) { if (delta.ub.excl[j] && isTRUE(delta[j] >= delta.ub[j])) stop(mstyle$stop(paste0("Value of 'delta[", j, "]' must be < ", delta.ub[j], " for this type of selection model."))) if (!delta.ub.excl[j] && isTRUE(delta[j] > delta.ub[j])) stop(mstyle$stop(paste0("Value of 'delta[", j, "]' must be <= ", delta.ub[j], " for this type of selection model."))) } } if (type == "stepfun") { if (decreasing) { delta[1] <- 1 } else if (is.na(delta[1])) { delta[1] <- 1 } } if (type == "stepcon") delta[1] <- 1 if (!is.null(con$delta.min)) delta.min <- con$delta.min delta.min <- .expand1(delta.min, deltas) if (length(delta.min) != deltas) stop(mstyle$stop(paste0("Argument 'delta.min' should be of length ", deltas, " for this type of selection model."))) if (anyNA(delta.min)) stop(mstyle$stop("No missing values allowed in 'delta.min'.")) for (j in seq_len(deltas)) { if (delta.lb.excl[j] && delta.min[j] <= delta.lb[j]) stop(mstyle$stop(paste0("Value of 'delta.min[", j, "]' must be > ", delta.lb[j], " for this type of selection model."))) if (!delta.lb.excl[j] && delta.min[j] < delta.lb[j]) stop(mstyle$stop(paste0("Value of 'delta.min[", j, "]' must be >= ", delta.lb[j], " for this type of selection model."))) } for (j in seq_len(deltas)) { if (delta.ub.excl[j] && delta.min[j] >= delta.ub[j]) stop(mstyle$stop(paste0("Value of 'delta.min[", j, "]' must be < ", delta.ub[j], " for this type of selection model."))) if (!delta.ub.excl[j] && delta.min[j] > delta.ub[j]) stop(mstyle$stop(paste0("Value of 'delta.min[", j, "]' must be <= ", delta.ub[j], " for this type of selection model."))) } delta.min <- ifelse(!is.na(delta) & delta.min > delta, delta - .Machine$double.eps^0.2, delta.min) if (!is.null(con$delta.max)) delta.max <- con$delta.max delta.max <- .expand1(delta.max, deltas) if (length(delta.max) != deltas) stop(mstyle$stop(paste0("Argument 'delta.max' should be of length ", deltas, " for this type of selection model."))) if (anyNA(delta.max)) stop(mstyle$stop("No missing values allowed in 'delta.max'.")) for (j in seq_len(deltas)) { if (delta.lb.excl[j] && delta.max[j] <= delta.lb[j]) stop(mstyle$stop(paste0("Value of 'delta.max[", j, "]' must be > ", delta.lb[j], " for this type of selection model."))) if (!delta.lb.excl[j] && delta.max[j] < delta.lb[j]) stop(mstyle$stop(paste0("Value of 'delta.max[", j, "]' must be >= ", delta.lb[j], " for this type of selection model."))) } for (j in seq_len(deltas)) { if (delta.ub.excl[j] && delta.max[j] >= delta.ub[j]) stop(mstyle$stop(paste0("Value of 'delta.max[", j, "]' must be < ", delta.ub[j], " for this type of selection model."))) if (!delta.ub.excl[j] && delta.max[j] > delta.ub[j]) stop(mstyle$stop(paste0("Value of 'delta.max[", j, "]' must be <= ", delta.ub[j], " for this type of selection model."))) } if (any(delta.max < delta.min)) stop(mstyle$stop("Value(s) of 'delta.max' must be >= value(s) of 'delta.min'.")) delta.max <- ifelse(!is.na(delta) & delta.max < delta, delta + .Machine$double.eps^0.2, delta.max) if (!is.null(con$delta.init)) delta.init <- con$delta.init delta.init <- .expand1(delta.init, deltas) if (length(delta.init) != deltas) stop(mstyle$stop(paste0("Argument 'delta.init' should be of length ", deltas, " for this type of selection model."))) if (anyNA(delta.init)) stop(mstyle$stop("No missing values allowed in 'delta.init'.")) for (j in seq_len(deltas)) { if (delta.lb.excl[j] && delta.init[j] <= delta.lb[j]) stop(mstyle$stop(paste0("Value of 'delta.init[", j, "]' must be > ", delta.lb[j], " for this type of selection model."))) if (!delta.lb.excl[j] && delta.init[j] < delta.lb[j]) stop(mstyle$stop(paste0("Value of 'delta.init[", j, "]' must be >= ", delta.lb[j], " for this type of selection model."))) } for (j in seq_len(deltas)) { if (delta.ub.excl[j] && delta.init[j] >= delta.ub[j]) stop(mstyle$stop(paste0("Value of 'delta.init[", j, "]' must be < ", delta.ub[j], " for this type of selection model."))) if (!delta.ub.excl[j] && delta.init[j] > delta.ub[j]) stop(mstyle$stop(paste0("Value of 'delta.init[", j, "]' must be <= ", delta.ub[j], " for this type of selection model."))) } # when ddd$defmap=TRUE or any delta.max value is infinity, use the default mapping functions defined # above for the various models (note that this will not be the case with the default settings); # otherwise use .mapfun() / .mapinvfun() or the functions passed via ddd$mapfun / ddd$mapinvfun if (.isTRUE(ddd$defmap) || any(is.infinite(delta.max))) { ddd$mapfun <- delta.transf.fun ddd$mapinvfun <- delta.transf.fun.inv } if (is.null(ddd$mapfun)) { mapfun <- rep(NA, deltas) } else { if (length(ddd$mapfun) == 1L) { # note: mapfun must be given as character string mapfun <- rep(ddd$mapfun, deltas) } else { mapfun <- ddd$mapfun } } if (is.null(ddd$mapinvfun)) { mapinvfun <- rep(NA, deltas) } else { if (length(ddd$mapinvfun) == 1L) { # note: mapinvfun must be given as character string mapinvfun <- rep(ddd$mapinvfun, deltas) } else { mapinvfun <- ddd$mapinvfun } } ### force use of certain transformation functions for mapfunv / mapinvfun for some special cases if (type == "truncest") { mapfun[2] <- "I" mapinvfun[2] <- "I" } ### remap initial delta values (except for the fixed ones) delta.init <- mapply(.mapinvfun, delta.init, delta.min, delta.max, mapinvfun) delta.init <- ifelse(is.na(delta), delta.init, delta) if (!is.null(con$pval.min)) pval.min <- con$pval.min if (subset.spec) { if (sum(subset) < p + ifelse(is.element(x$method, c("FE","EE","CE")) || x$tau2.fix, 0, 1) + sum(is.na(delta))) stop(mstyle$stop(paste0("Number of studies (k_subset=", sum(subset), ") is too small to fit the selection model."))) } else { if (k < p + ifelse(is.element(x$method, c("FE","EE","CE")) || x$tau2.fix, 0, 1) + sum(is.na(delta))) stop(mstyle$stop(paste0("Number of studies (k=", k, ") is too small to fit the selection model."))) } ############################################################################ pvals[pvals < pval.min] <- pval.min pvals[pvals > 1-pval.min] <- 1-pval.min if (type != "trunc" && stepsspec) { tmp <- .ptable(pvals, steps, subset) pgrp <- tmp$pgrp ptable <- tmp$ptable if (isTRUE(ddd$ptable)) return(ptable) if (any(ptable[["k"]] == 0L)) { if (!isTRUE(ddd$skipintcheck) && type == "stepfun" && any(is.na(delta[-1]))) warning(mstyle$warning(paste0("One or more intervals do not contain any observed p-values.")), call.=FALSE) if (!isTRUE(ddd$skipintcheck) && type != "stepfun") warning(mstyle$warning(paste0("One of the intervals does not contain any observed p-values.")), call.=FALSE) } } else { pgrp <- NA ptable <- NA } ############################################################################ ### model fitting if (verbose > 1) message(mstyle$message("\nModel fitting ...\n")) tmp <- .chkopt(optimizer, optcontrol, ineq=type=="stepcon") optimizer <- tmp$optimizer optcontrol <- tmp$optcontrol par.arg <- tmp$par.arg ctrl.arg <- tmp$ctrl.arg ### set up default cluster when using optimParallel if (optimizer == "optimParallel::optimParallel") { parallel$cl <- NULL if (is.null(cl)) { ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Control argument 'ncpus' must be >= 1.")) cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } else { if (!inherits(cl, "SOCKcluster")) stop(mstyle$stop("Specified cluster is not of class 'SOCKcluster'.")) } parallel$cl <- cl if (is.null(parallel$forward)) parallel$forward <- FALSE if (is.null(parallel$loginfo)) { if (verbose) { parallel$loginfo <- TRUE } else { parallel$loginfo <- FALSE } } } if (type == "stepcon") { if (optimizer == "Rsolnp::solnp") optcall <- paste0("Rsolnp::solnp(pars=c(beta.init, tau2.init, delta.init), fun=.selmodel.ll.stepfun, ineqfun=.rma.selmodel.ineqfun.pos, ineqLB=rep(0,deltas-1), ineqUB=rep(1,deltas-1), yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2, tau2.transf=TRUE, tau2.max=tau2.max, beta.arg=beta, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=verbose, digits=digits, dofit=FALSE", ctrl.arg, ")\n") if (optimizer == "nloptr::nloptr") optcall <- paste0("nloptr::nloptr(x0=c(beta.init, tau2.init, delta.init), eval_f=.selmodel.ll.stepfun, eval_g_ineq=.rma.selmodel.ineqfun.neg, yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2, tau2.transf=TRUE, tau2.max=tau2.max, beta.arg=beta, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=verbose, digits=digits, dofit=FALSE", ctrl.arg, ")\n") if (optimizer == "alabama::constrOptim.nl") optcall <- paste0("alabama::constrOptim.nl(par=c(beta.init, tau2.init, delta.init), fn=.selmodel.ll.stepfun, hin=.rma.selmodel.ineqfun.pos, yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2, tau2.transf=TRUE, tau2.max=tau2.max, beta.arg=beta, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=verbose, digits=digits, dofit=FALSE", ctrl.arg, ")\n") } else { optcall <- paste0(optimizer, "(", par.arg, "=c(beta.init, tau2.init, delta.init), ", .selmodel.ll, ", ", ifelse(optimizer=="optim", "method=optmethod, ", ""), "yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2, tau2.transf=TRUE, tau2.max=tau2.max, beta.arg=beta, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=verbose, digits=digits, dofit=FALSE", ctrl.arg, ")\n") } #return(optcall) .start.plot(verbose > 2) if (verbose) { opt.res <- try(eval(str2lang(optcall)), silent=!verbose) } else { opt.res <- try(suppressWarnings(eval(str2lang(optcall))), silent=!verbose) } if (isTRUE(ddd$retopt)) return(opt.res) ### convergence checks (if verbose print optimParallel log, if verbose > 2 print opt.res, and unify opt.res$par) opt.res$par <- .chkconv(optimizer=optimizer, opt.res=opt.res, optcontrol=optcontrol, fun="selmodel", verbose=verbose) ### estimates/values of tau2 and delta on the transformed scale tau2.transf <- opt.res$par[p+1] delta.transf <- opt.res$par[(p+2):(p+1+deltas)] ### save for Hessian computation beta.arg <- beta tau2.arg <- tau2 delta.arg <- delta ### do the final model fit with estimated values fitcall <- paste0(.selmodel.ll, "(par=opt.res$par, yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2, tau2.transf=TRUE, tau2.max=tau2.max, beta.arg=beta, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=FALSE, digits=digits, dofit=TRUE)\n") #return(fitcall) fitcall <- try(eval(str2lang(fitcall)), silent=!verbose) #return(fitcall) if (inherits(fitcall, "try-error")) stop(mstyle$stop("Error during the optimization. Use verbose=TRUE and see help(selmodel) for more details on the optimization routines.")) ll <- fitcall$ll beta <- cbind(fitcall$beta) tau2 <- fitcall$tau2 delta <- fitcall$delta if ((delta.min.check && any(is.na(delta.arg) & delta <= delta.min + .Machine$double.eps^0.25)) || (delta.max.check && any(is.na(delta.arg) & delta >= delta.max - 100*.Machine$double.eps^0.25))) warning(mstyle$warning("One or more 'delta' estimates are (almost) equal to their lower or upper bound.\nTreat results with caution (or consider adjusting 'delta.min' and/or 'delta.max')."), call.=FALSE) ############################################################################ ### computing (inverse) Hessian H <- NA_real_ vb <- matrix(NA_real_, nrow=p, ncol=p) se.tau2 <- NA_real_ vd <- matrix(NA_real_, nrow=deltas, ncol=deltas) if (con$beta.fix) { beta.hes <- c(beta) } else { beta.hes <- beta.arg } if (con$tau2.fix || tau2 < con$tau2tol) { tau2.hes <- tau2 } else { tau2.hes <- tau2.arg } if (con$delta.fix) { delta.hes <- delta } else { if (type == "stepfun") { delta.hes <- ifelse(delta < con$deltatol, delta, delta.arg) } else { delta.hes <- delta.arg } } hest <- c(is.na(beta.hes), is.na(tau2.hes), is.na(delta.hes)) if (any(hest) && !isTRUE(ddd$skiphes)) { if (verbose > 1) message(mstyle$message("\nComputing the Hessian ...")) if (verbose > 3) cat("\n") if (con$htransf) { # TODO: document these two possibilities? if (con$hesspack == "numDeriv") hescall <- paste0("numDeriv::hessian(", .selmodel.ll, ", x=opt.res$par, method.args=con$hessianCtrl, yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta.hes, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2.hes, tau2.transf=TRUE, tau2.max=tau2.max, beta.arg=beta.hes, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=ifelse(verbose > 3, verbose, 0), digits=digits)\n") if (con$hesspack == "pracma") hescall <- paste0("pracma::hessian(", .selmodel.ll, ", x0=opt.res$par, yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta.hes, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2.hes, tau2.transf=TRUE, tau2.max=tau2.max, beta.arg=beta.hes, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=ifelse(verbose > 3, verbose, 0), digits=digits)\n") if (con$hesspack == "calculus") hescall <- paste0("calculus::hessian(", .selmodel.ll, ", var=c(opt.res$par), params=list(yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta.hes, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2.hes, tau2.transf=TRUE, tau2.max=tau2.max, beta.arg=beta.hes, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=ifelse(verbose > 3, verbose, 0), digits=digits))\n") } else { ### this is the default if (con$hesspack == "numDeriv") hescall <- paste0("numDeriv::hessian(", .selmodel.ll, ", x=c(beta, tau2, delta), method.args=con$hessianCtrl, yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta.hes, delta.transf=FALSE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2.hes, tau2.transf=FALSE, tau2.max=tau2.max, beta.arg=beta.hes, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=ifelse(verbose > 3, verbose, 0), digits=digits)\n") if (con$hesspack == "pracma") hescall <- paste0("pracma::hessian(", .selmodel.ll, ", x0=c(beta, tau2, delta), yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta.hes, delta.transf=FALSE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2.hes, tau2.transf=FALSE, tau2.max=tau2.max, beta.arg=beta.hes, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=ifelse(verbose > 3, verbose, 0), digits=digits)\n") if (con$hesspack == "calculus") hescall <- paste0("calculus::hessian(", .selmodel.ll, ", var=c(beta, tau2, delta), params=list(yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta.hes, delta.transf=FALSE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=tau2.hes, tau2.transf=FALSE, tau2.max=tau2.max, beta.arg=beta.hes, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=ifelse(verbose > 3, verbose, 0), digits=digits))\n") } #return(hescall) H <- try(eval(str2lang(hescall)), silent=F) #return(H) if (verbose > 3) cat("\n") if (inherits(H, "try-error")) { warning(mstyle$warning("Error when trying to compute the Hessian."), call.=FALSE) } else { if (deltas == 1L) { rownames(H) <- colnames(H) <- c(colnames(X), "tau2", "delta") } else { rownames(H) <- colnames(H) <- c(colnames(X), "tau2", paste0("delta.", seq_len(deltas))) } H.hest <- H[hest, hest, drop=FALSE] iH.hest <- try(suppressWarnings(chol2inv(chol(H.hest))), silent=TRUE) if (inherits(iH.hest, "try-error") || anyNA(iH.hest) || any(is.infinite(iH.hest))) { warning(mstyle$warning("Error when trying to invert the Hessian."), call.=FALSE) } else { iH <- matrix(0, nrow=length(hest), ncol=length(hest)) iH[hest, hest] <- iH.hest if (anyNA(beta.hes)) vb[is.na(beta.hes), is.na(beta.hes)] <- iH[c(is.na(beta.hes),FALSE,rep(FALSE,deltas)), c(is.na(beta.hes),FALSE,rep(FALSE,deltas)), drop=FALSE] if (is.na(tau2.hes)) se.tau2 <- sqrt(iH[c(rep(FALSE,p),TRUE,rep(FALSE,deltas)), c(rep(FALSE,p),TRUE,rep(FALSE,deltas))]) if (anyNA(delta.hes)) vd[is.na(delta.hes), is.na(delta.hes)] <- iH[c(rep(FALSE,p),FALSE,is.na(delta.hes)), c(rep(FALSE,p),FALSE,is.na(delta.hes)), drop=FALSE] } } } ############################################################################ ### Wald-type tests of the fixed effects if (verbose > 1) message(mstyle$message("Conducting the tests of the fixed effects ...")) ### scale back beta and vb if (!x$int.only && x$int.incl && con$scaleX) { beta <- mX %*% beta vb <- mX %*% vb %*% t(mX) X <- Xsave } ### QM calculation QM <- try(as.vector(t(beta)[x$btt] %*% chol2inv(chol(vb[x$btt,x$btt])) %*% beta[x$btt]), silent=TRUE) if (inherits(QM, "try-error")) QM <- NA_real_ QMp <- pchisq(QM, df=x$m, lower.tail=FALSE) rownames(beta) <- rownames(vb) <- colnames(vb) <- colnames(X) se <- sqrt(diag(vb)) names(se) <- NULL ### inference for beta parameters zval <- c(beta/se) pval <- 2*pnorm(abs(zval), lower.tail=FALSE) crit <- qnorm(x$level/2, lower.tail=FALSE) ci.lb <- c(beta - crit * se) ci.ub <- c(beta + crit * se) ### inference for delta parameters se.delta <- sqrt(diag(vd)) if (con$htransf) { zval.delta <- rep(NA_real_, deltas) pval.delta <- rep(NA_real_, deltas) ci.lb.delta <- c(delta.transf - crit * se.delta) ci.ub.delta <- c(delta.transf + crit * se.delta) ci.lb.delta <- mapply(.mapfun, ci.lb.delta, delta.min, delta.max, mapfun) ci.ub.delta <- mapply(.mapfun, ci.ub.delta, delta.min, delta.max, mapfun) vd <- matrix(NA_real_, nrow=deltas, ncol=deltas) se.delta <- rep(NA_real_, deltas) } else { zval.delta <- (delta - H0.delta) / se.delta pval.delta <- 2*pnorm(abs(zval.delta), lower.tail=FALSE) ci.lb.delta <- c(delta - crit * se.delta) ci.ub.delta <- c(delta + crit * se.delta) } ### impose constraints on the CI bounds for the delta value(s) ci.lb.delta <- ifelse(ci.lb.delta < delta.lb, delta.lb, ci.lb.delta) ci.ub.delta <- ifelse(ci.ub.delta > delta.ub, delta.ub, ci.ub.delta) ci.lb.delta <- ifelse(ci.lb.delta < delta.min, delta.min, ci.lb.delta) ci.ub.delta <- ifelse(ci.ub.delta > delta.max, delta.max, ci.ub.delta) ### inference for tau^2 parameter if (con$htransf) { ci.lb.tau2 <- exp(tau2.transf - crit * se.tau2) # tau2.transf = log(tau^2) and se.tau2 = SE[log(tau^2)] ci.ub.tau2 <- exp(tau2.transf + crit * se.tau2) se.tau2 <- se.tau2 * exp(tau2.transf) # delta method } else { ci.lb.tau2 <- tau2 - crit * se.tau2 ci.ub.tau2 <- tau2 + crit * se.tau2 } ci.lb.tau2[ci.lb.tau2 < 0] <- 0 ############################################################################ ### LRT for H0: tau^2 = 0 (only when NOT fitting a FE model) LRT.tau2 <- NA_real_ LRTp.tau2 <- NA_real_ if (!x$tau2.fix && !is.element(x$method, c("FE","EE","CE")) && !isTRUE(ddd$skiphet)) { if (verbose > 1) message(mstyle$message("Conducting the heterogeneity test ...")) if (verbose > 4) cat("\n") optcall <- paste0(optimizer, "(", par.arg, "=c(beta.init, tau2.init, delta.init), ", .selmodel.ll, ", ", ifelse(optimizer=="optim", "method=optmethod, ", ""), "yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta.arg, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=0, tau2.transf=FALSE, tau2.max=tau2.max, beta.arg=beta.arg, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=ifelse(verbose > 4, verbose, 0), digits=digits", ctrl.arg, ")\n") opt.res <- try(eval(str2lang(optcall)), silent=!verbose) if (verbose > 4) cat("\n") if (!inherits(opt.res, "try-error")) { fitcall <- paste0(.selmodel.ll, "(par=opt.res$par, yi=yi, vi=vi, X=X, preci=preci, subset=subset, k=k, pX=p, pvals=pvals, deltas=deltas, delta.arg=delta.arg, delta.transf=TRUE, mapfun=mapfun, delta.min=delta.min, delta.max=delta.max, decreasing=decreasing, tau2.arg=0, tau2.transf=FALSE, tau2.max=tau2.max, beta.arg=beta.arg, wi.fun=wi.fun, steps=steps, pgrp=pgrp, alternative=alternative, pval.min=pval.min, intCtrl=intCtrl, verbose=FALSE, digits=digits, dofit=TRUE)\n") fitcall <- try(eval(str2lang(fitcall)), silent=!verbose) if (!inherits(fitcall, "try-error")) { ll0 <- fitcall$ll LRT.tau2 <- max(0, -2 * (ll0 - ll)) LRTp.tau2 <- pchisq(LRT.tau2, df=1, lower.tail=FALSE) } } } ############################################################################ ### LRT for selection model parameter(s) if (verbose > 1) message(mstyle$message("Conducting the LRT for the selection model parameter(s) ...")) ll0 <- c(logLik(x, REML=FALSE)) LRT <- max(0, -2 * (ll0 - ll)) LRTdf <- sum(is.na(delta.arg) & delta.LRT) LRTp <- ifelse(LRTdf > 0, pchisq(LRT, df=LRTdf, lower.tail=FALSE), NA_real_) ############################################################################ ### fit statistics if (verbose > 1) message(mstyle$message("Computing the fit statistics and log-likelihood ...")) ### note: tau2 and delta are not counted as parameters when they were fixed by the user parms <- p + ifelse(is.element(x$method, c("FE","EE","CE")) || x$tau2.fix, 0, 1) + sum(is.na(delta.arg)) ll.ML <- ll dev.ML <- -2 * ll.ML AIC.ML <- -2 * ll.ML + 2*parms BIC.ML <- -2 * ll.ML + parms * log(k) AICc.ML <- -2 * ll.ML + 2*parms * max(k, parms+2) / (max(k, parms+2) - parms - 1) fit.stats <- matrix(c(ll.ML, dev.ML, AIC.ML, BIC.ML, AICc.ML, ll.REML=NA_real_, dev.REML=NA_real_, AIC.REML=NA_real_, BIC.REML=NA_real_, AICc.REML=NA_real_), ncol=2, byrow=FALSE) dimnames(fit.stats) <- list(c("ll","dev","AIC","BIC","AICc"), c("ML","REML")) fit.stats <- data.frame(fit.stats) ############################################################################ ### prepare output if (verbose > 1) message(mstyle$message("Preparing the output ...")) res <- x res$beta <- res$b <- beta res$se <- se res$zval <- zval res$pval <- pval res$ci.lb <- ci.lb res$ci.ub <- ci.ub res$vb <- vb res$betaspec <- betaspec res$tau2 <- res$tau2.f <- tau2 res$se.tau2 <- se.tau2 res$ci.lb.tau2 <- ci.lb.tau2 res$ci.ub.tau2 <- ci.ub.tau2 res$dfs <- res$ddf <- NA_integer_ res$test <- "z" res$s2w <- 1 res$QE <- res$QEp <- NA_real_ res$I2 <- res$H2 <- res$vt <- NA_real_ res$R2 <- NULL res$QM <- QM res$QMp <- QMp res$delta <- delta res$vd <- vd res$se.delta <- se.delta res$zval.delta <- zval.delta res$pval.delta <- pval.delta res$ci.lb.delta <- ci.lb.delta res$ci.ub.delta <- ci.ub.delta res$deltas <- deltas res$delta.fix <- !is.na(delta.arg) res$hessian <- H res$hest <- hest res$ll <- ll res$ll0 <- ll0 res$LRT <- LRT res$LRTdf <- LRTdf res$LRTp <- LRTp res$LRT.tau2 <- LRT.tau2 res$LRTp.tau2 <- LRTp.tau2 res$M <- diag(vi + tau2, nrow=k, ncol=k) res$model <- "rma.uni.selmodel" res$parms <- parms res$fit.stats <- fit.stats res$pvals <- pvals res$digits <- digits res$verbose <- verbose res$type <- type res$steps <- steps res$decreasing <- decreasing res$stepsspec <- stepsspec res$pgrp <- pgrp res$ptable <- ptable res$k0 <- sum(!subset) res$k1 <- sum(subset) res$alternative <- alternative res$pval.min <- pval.min res$prec <- prec res$precspec <- precspec res$precis <- precis res$scaleprec <- ddd$scaleprec res$wi.fun <- wi.fun res$delta.lb <- delta.lb res$delta.ub <- delta.ub res$delta.lb.excl <- delta.lb.excl res$delta.ub.excl <- delta.ub.excl res$delta.min <- delta.min res$delta.max <- delta.max res$tau2.max <- tau2.max res$call <- match.call() res$control <- control res$defmap <- ddd$defmap res$mapfun <- ddd$mapfun res$mapinvfun <- ddd$mapinvfun time.end <- proc.time() res$time <- unname(time.end - time.start)[3] if (.isTRUE(ddd$time)) .print.time(res$time) if (verbose || .isTRUE(ddd$time)) cat("\n") class(res) <- c("rma.uni.selmodel", class(res)) return(res) } metafor/R/weights.rma.glmm.r0000644000176200001440000000021314515471316015461 0ustar liggesusersweights.rma.glmm <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.glmm", notav="rma.glmm") } metafor/R/predict.rma.ls.r0000644000176200001440000005443014717663610015141 0ustar liggesuserspredict.rma.ls <- function(object, newmods, intercept, addx=FALSE, newscale, addz=FALSE, level, adjust=FALSE, digits, transf, targs, vcov=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(object), must="rma.ls") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) x <- object mf <- match.call() if (any(grepl("pairmat(", as.character(mf), fixed=TRUE))) { try(assign("pairmat", object, envir=.metafor), silent=TRUE) on.exit(suppressWarnings(rm("pairmat", envir=.metafor))) } if (missing(newmods)) newmods <- NULL if (missing(intercept)) { intercept <- x$intercept int.spec <- FALSE } else { int.spec <- TRUE } if (missing(newscale)) newscale <- NULL if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL level <- .level(level) if (!is.logical(adjust)) stop(mstyle$stop("Argument 'adjust' must be a logical.")) ddd <- list(...) .chkdots(ddd, c("pi.type", "newvi")) pi.type <- .chkddd(ddd$pi.type, "default", tolower(ddd$pi.type)) if (!is.null(newmods) && x$int.only && !(x$int.only && identical(newmods, 1))) stop(mstyle$stop("Cannot specify new moderator values for models without moderators.")) if (!is.null(newscale) && x$Z.int.only && !(x$Z.int.only && identical(newscale, 1))) stop(mstyle$stop("Cannot specify new scale values for models without scale variables.")) rnames <- NULL ######################################################################### if (!is.null(newmods)) { ### if newmods has been specified if (!(.is.vector(newmods) || inherits(newmods, "matrix"))) stop(mstyle$stop(paste0("Argument 'newmods' should be a vector or matrix, but is of class '", class(newmods), "'."))) singlemod <- (NCOL(newmods) == 1L) && ((!x$int.incl && x$p == 1L) || (x$int.incl && x$p == 2L)) if (singlemod) { # if single moderator (multiple k.new possible) (either without or with intercept in the model) k.new <- length(newmods) # (but when specifying a matrix, it must be a column vector for this work) X.new <- cbind(c(newmods)) # if (.is.vector(newmods)) { # rnames <- names(newmods) # } else { # rnames <- rownames(newmods) # } # } else { # in case the model has more than one predictor: if (.is.vector(newmods) || nrow(newmods) == 1L) { # # if user gives one vector or one row matrix (only one k.new): k.new <- 1 # X.new <- rbind(newmods) # if (inherits(newmods, "matrix")) # rnames <- rownames(newmods) # } else { # # if user gives multiple rows and columns (multiple k.new): k.new <- nrow(newmods) # X.new <- cbind(newmods) # rnames <- rownames(newmods) # } # ### allow matching of terms by names (note: only possible if all columns in X.new and x$X have colnames) if (!is.null(colnames(X.new)) && all(colnames(X.new) != "") && !is.null(colnames(x$X)) && all(colnames(x$X) != "")) { colnames.mod <- colnames(x$X) if (x$int.incl) colnames.mod <- colnames.mod[-1] pos <- sapply(colnames(X.new), function(colname) { d <- c(adist(colname, colnames.mod, costs=c(ins=1, sub=Inf, del=Inf))) # compute edit distances with Inf costs for substitutions/deletions if (all(is.infinite(d))) # if there is no match, then all elements are Inf stop(mstyle$stop(paste0("Could not find variable '", colname, "' in the model."))) d <- which(d == min(d)) # don't use which.min() since that only finds the first minimum if (length(d) > 1L) # if there is no unique match, then there is more than one minimum stop(mstyle$stop(paste0("Could not match up variable '", colname, "' uniquely to a variable in the model."))) return(d) }) if (anyDuplicated(pos)) { # if the same name is used more than once, then there will be duplicated pos values dups <- paste(unique(colnames(X.new)[duplicated(pos)]), collapse=", ") stop(mstyle$stop(paste0("Found multiple matches for the same variable name (", dups, ")."))) } if (length(pos) != length(colnames.mod)) { no.match <- colnames.mod[seq_along(colnames.mod)[-pos]] if (length(no.match) > 3L) stop(mstyle$stop(paste0("Argument 'newmods' does not specify values for these variables: ", paste0(no.match[1:3], collapse=", "), ", ..."))) if (length(no.match) > 1L) stop(mstyle$stop(paste0("Argument 'newmods' does not specify values for these variables: ", paste0(no.match, collapse=", ")))) if (length(no.match) == 1L) stop(mstyle$stop(paste0("Argument 'newmods' does not specify values for this variable: ", no.match))) } X.new <- X.new[,order(pos),drop=FALSE] colnames(X.new) <- colnames.mod } } if (inherits(X.new[1,1], "character")) stop(mstyle$stop(paste0("Argument 'newmods' should only contain numeric variables."))) ### if the user has specified newmods and an intercept was included in the original model, add the intercept to X.new ### but user can also decide to remove the intercept from the predictions with intercept=FALSE ### one special case: when the location model is an intercept-only model, one can set newmods=1 to obtain the predicted intercept if (!singlemod && ncol(X.new) == x$p) { if (int.spec) warning(mstyle$warning("Arguments 'intercept' ignored when 'newmods' includes 'p' columns."), call.=FALSE) } else { if (x$int.incl && !(x$int.only && ncol(X.new) == 1L && nrow(X.new) == 1L && X.new[1,1] == 1)) { if (intercept) { X.new <- cbind(intrcpt=1, X.new) } else { X.new <- cbind(intrcpt=0, X.new) } } } if (ncol(X.new) != x$p) stop(mstyle$stop(paste0("Dimensions of 'newmods' (", ncol(X.new), ") do not match the dimensions of the model (", x$p, ")."))) } if (!is.null(newscale)) { if (!(.is.vector(newscale) || inherits(newscale, "matrix"))) stop(mstyle$stop(paste0("Argument 'newscale' should be a vector or matrix, but is of class '", class(newscale), "'."))) singlescale <- (NCOL(newscale) == 1L) && ((!x$Z.int.incl && x$q == 1L) || (x$Z.int.incl && x$q == 2L)) if (singlescale) { # if single moderator (multiple k.new possible) (either without or with intercept in the model) Z.k.new <- length(newscale) # Z.new <- cbind(c(newscale)) # if (is.null(rnames)) { # if (.is.vector(newscale)) { # rnames <- names(newscale) # } else { # rnames <- rownames(newscale) # } # } # } else { # in case the model has more than one predictor: if (.is.vector(newscale) || nrow(newscale) == 1L) { # # if user gives one vector or one row matrix (only one k.new): Z.k.new <- 1 # Z.new <- rbind(newscale) # if (is.null(rnames) && inherits(newscale, "matrix")) # rnames <- rownames(newscale) # } else { # # if user gives multiple rows and columns (multiple k.new): Z.k.new <- nrow(newscale) # Z.new <- cbind(newscale) # if (is.null(rnames)) # rnames <- rownames(newscale) # } # ### allow matching of terms by names (note: only possible if all columns in Z.new and x$Z have colnames) if (!is.null(colnames(Z.new)) && all(colnames(Z.new) != "") && !is.null(colnames(x$Z)) && all(colnames(x$Z) != "")) { colnames.mod <- colnames(x$Z) if (x$Z.int.incl) colnames.mod <- colnames.mod[-1] pos <- sapply(colnames(Z.new), function(colname) { d <- c(adist(colname, colnames.mod, costs=c(ins=1, sub=Inf, del=Inf))) # compute edit distances with Inf costs for substitutions/deletions if (all(is.infinite(d))) # if there is no match, then all elements are Inf stop(mstyle$stop(paste0("Could not find variable '", colname, "' from 'newscale' in the model."))) d <- which(d == min(d)) # don't use which.min() since that only finds the first minimum if (length(d) > 1L) # if there is no unique match, then there is more than one minimum stop(mstyle$stop(paste0("Could not match up variable '", colname, "' from 'newscale' uniquely to a variable in the model."))) return(d) }) if (anyDuplicated(pos)) { # if the same name is used more than once, then there will be duplicated pos values dups <- paste(unique(colnames(Z.new)[duplicated(pos)]), collapse=", ") stop(mstyle$stop(paste0("Found multiple matches for the same variable name (", dups, ") in 'newscale'."))) } if (length(pos) != length(colnames.mod)) { no.match <- colnames.mod[seq_along(colnames.mod)[-pos]] if (length(no.match) > 3L) stop(mstyle$stop(paste0("Argument 'newscale' does not specify values for these variables: ", paste0(no.match[1:3], collapse=", "), ", ..."))) if (length(no.match) > 1L) stop(mstyle$stop(paste0("Argument 'newscale' does not specify values for these variables: ", paste0(no.match, collapse=", ")))) if (length(no.match) == 1L) stop(mstyle$stop(paste0("Argument 'newscale' does not specify values for this variable: ", no.match))) } Z.new <- Z.new[,order(pos),drop=FALSE] colnames(Z.new) <- colnames.mod } } if (inherits(Z.new[1,1], "character")) stop(mstyle$stop(paste0("Argument 'newscale' should only contain numeric variables."))) ### if the user has specified newscale and an intercept was included in the original model, add the intercept to Z.new ### but user can also decide to remove the intercept from the predictions with intercept=FALSE (only when predicting log(tau^2)) ### one special case: when the scale model is an intercept-only model, one can set newscale=1 to obtain the predicted intercept ### (which can be converted to tau^2 with transf=exp when using a log link) if (!singlescale && ncol(Z.new) == x$q) { if (int.spec) warning(mstyle$warning("Arguments 'intercept' ignored when 'newscale' includes 'q' columns."), call.=FALSE) } else { if (x$Z.int.incl && !(x$Z.int.only && ncol(Z.new) == 1L && nrow(Z.new) == 1L && Z.new[1,1] == 1)) { if (is.null(newmods)) { if (intercept) { Z.new <- cbind(intrcpt=1, Z.new) } else { Z.new <- cbind(intrcpt=0, Z.new) } } else { Z.new <- cbind(intrcpt=1, Z.new) } } } if (ncol(Z.new) != x$q) stop(mstyle$stop(paste0("Dimensions of 'newscale' (", ncol(Z.new), ") do not match the dimensions of the scale model (", x$q, ")."))) } # four possibilities for location-scale models: # 1) newmods not specified, newscale not specified: get the fitted values of the studies and ci/pi bounds thereof # 2) newmods specified, newscale not specified: get the predicted mu values for these newmods values and ci bounds thereof # (note: cannot compute pi bounds, since the tau^2 values cannot be predicted) # 3) newmods not specified, newscale specified: get the predicted log(tau^2) (or tau^2) values and ci bounds thereof # (transf=exp to obtain predicted tau^2 values when using the default log link) # 4) newmods specified, newscale specified: get the predicted mu values for these newmods values and ci/pi bounds thereof pred.mui <- TRUE if (is.null(newmods)) { if (is.null(newscale)) { k.new <- x$k.f X.new <- x$X.f Z.new <- x$Z.f tau2.f <- x$tau2.f } else { k.new <- Z.k.new addx <- FALSE pred.mui <- FALSE } } else { if (is.null(newscale)) { Z.new <- matrix(NA_real_, nrow=k.new, ncol=x$q) tau2.f <- rep(NA_real_, k.new) addz <- FALSE } else { tau2.f <- rep(NA_real_, Z.k.new) for (i in seq_len(Z.k.new)) { Zi.new <- Z.new[i,,drop=FALSE] tau2.f[i] <- Zi.new %*% x$alpha } if (x$link == "log") { tau2.f <- exp(tau2.f) } else { if (any(tau2.f < 0)) { warning(mstyle$warning(paste0("Negative predicted 'tau2' values constrained to 0.")), call.=FALSE) tau2.f[tau2.f < 0] <- 0 } } if (k.new == 1L && Z.k.new > 1L) { X.new <- X.new[rep(1,Z.k.new),,drop=FALSE] k.new <- Z.k.new } if (length(tau2.f) == 1L && k.new > 1L) { Z.new <- Z.new[rep(1,k.new),,drop=FALSE] tau2.f <- rep(tau2.f, k.new) } if (length(tau2.f) != k.new) stop(mstyle$stop(paste0("Dimensions of 'newmods' (", k.new, ") do not match dimensions of newscale (", length(tau2.f), ")."))) } } #return(list(k.new=k.new, tau2=x$tau2, gamma2=x$gamma2, tau2.levels=tau2.levels, gamma2.levels=gamma2.levels)) ######################################################################### ### predicted values, SEs, and confidence intervals pred <- rep(NA_real_, k.new) vpred <- rep(NA_real_, k.new) if (pred.mui) { ddf <- ifelse(is.na(x$ddf), x$k - x$p, x$ddf) for (i in seq_len(k.new)) { Xi.new <- X.new[i,,drop=FALSE] pred[i] <- Xi.new %*% x$beta vpred[i] <- Xi.new %*% tcrossprod(x$vb, Xi.new) } if (is.element(x$test, c("knha","adhoc","t"))) { crit <- if (ddf > 0) qt(level/ifelse(adjust, 2*k.new, 2), df=ddf, lower.tail=FALSE) else NA_real_ } else { crit <- qnorm(level/ifelse(adjust, 2*k.new, 2), lower.tail=FALSE) } } else { ddf <- ifelse(is.na(x$ddf.alpha), x$k - x$q, x$ddf.alpha) for (i in seq_len(k.new)) { Zi.new <- Z.new[i,,drop=FALSE] pred[i] <- Zi.new %*% x$alpha vpred[i] <- Zi.new %*% tcrossprod(x$va, Zi.new) } if (is.element(x$test, c("knha","adhoc","t"))) { crit <- if (ddf > 0) qt(level/ifelse(adjust, 2*k.new, 2), df=ddf, lower.tail=FALSE) else NA_real_ } else { crit <- qnorm(level/ifelse(adjust, 2*k.new, 2), lower.tail=FALSE) } } vpred[vpred < 0] <- NA_real_ se <- sqrt(vpred) ci.lb <- pred - crit * se ci.ub <- pred + crit * se ######################################################################### if (pred.mui) { if (vcov) vcovpred <- symmpart(X.new %*% x$vb %*% t(X.new)) if (pi.type == "simple") { crit <- qnorm(level/ifelse(adjust, 2*k.new, 2), lower.tail=FALSE) vpred <- 0 } pi.ddf <- ddf if (is.element(pi.type, c("riley","t"))) { if (pi.type == "riley") pi.ddf <- x$k - x$p - x$q if (pi.type == "t") pi.ddf <- x$k - x$p pi.ddf[pi.ddf < 1] <- 1 crit <- qt(level/ifelse(adjust, 2*k.new, 2), df=pi.ddf, lower.tail=FALSE) } if (is.null(ddd$newvi)) { newvi <- 0 } else { newvi <- ddd$newvi newvi <- .expand1(newvi, k.new) if (length(newvi) != k.new) stop(mstyle$stop(paste0("Length of the 'newvi' argument (", length(newvi), ") does not match the number of predicted values (", k.new, ")."))) } ### prediction intervals pi.se <- sqrt(vpred + tau2.f + newvi) pi.lb <- pred - crit * pi.se pi.ub <- pred + crit * pi.se } else { if (vcov) vcovpred <- symmpart(Z.new %*% x$va %*% t(Z.new)) pi.lb <- NA_real_ pi.ub <- NA_real_ } ######################################################################### ### apply transformation function if one has been specified if (is.function(transf)) { if (is.null(targs)) { pred <- sapply(pred, transf) se <- rep(NA_real_, k.new) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) pi.lb <- sapply(pi.lb, transf) pi.ub <- sapply(pi.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) pred <- sapply(pred, transf, targs) se <- rep(NA_real_, k.new) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) pi.lb <- sapply(pi.lb, transf, targs) pi.ub <- sapply(pi.ub, transf, targs) } do.transf <- TRUE } else { do.transf <- FALSE } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] tmp <- .psort(pi.lb, pi.ub) pi.lb <- tmp[,1] pi.ub <- tmp[,2] ### when predicting tau^2 values, set negative tau^2 values and CI bounds to 0 if (!pred.mui && x$link=="identity" && !is.function(transf)) { if (any(pred < 0)) warning(mstyle$warning(paste0("Negative predicted 'tau2' values constrained to 0.")), call.=FALSE) pred[pred < 0] <- 0 ci.lb[ci.lb < 0] <- 0 ci.ub[ci.ub < 0] <- 0 } ### use study labels from the object when the model has moderators and no new moderators have been specified if (pred.mui) { if (is.null(newmods)) { slab <- x$slab } else { slab <- seq_len(k.new) if (!is.null(rnames)) slab <- rnames } } else { if (is.null(newscale)) { slab <- x$slab } else { slab <- seq_len(k.new) if (!is.null(rnames)) slab <- rnames } } ### add row/colnames to vcovpred if (vcov) rownames(vcovpred) <- colnames(vcovpred) <- slab ### but when predicting just a single value, use "" as study label if (k.new == 1L && is.null(rnames)) slab <- "" ### handle NAs not.na <- rep(TRUE, k.new) if (na.act == "na.omit") { if (pred.mui) { if (is.null(newmods)) { not.na <- x$not.na } else { not.na <- !is.na(pred) } } else { if (is.null(newscale)) { not.na <- x$not.na } else { not.na <- !is.na(pred) } } } if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) out <- list(pred=pred[not.na], se=se[not.na], ci.lb=ci.lb[not.na], ci.ub=ci.ub[not.na], pi.lb=pi.lb[not.na], pi.ub=pi.ub[not.na], cr.lb=pi.lb[not.na], cr.ub=pi.ub[not.na]) if (vcov) vcovpred <- vcovpred[not.na,not.na,drop=FALSE] if (na.act == "na.exclude" && is.null(newmods)) { out <- lapply(out, function(val) ifelse(x$not.na, val, NA_real_)) if (vcov) { vcovpred[!x$not.na,] <- NA_real_ vcovpred[,!x$not.na] <- NA_real_ } } ### add X matrix to list if (addx) { out$X <- matrix(X.new[not.na,], ncol=x$p) colnames(out$X) <- colnames(x$X) } ### add Z matrix to list if (addz) { out$Z <- matrix(Z.new[not.na,], ncol=x$q) colnames(out$Z) <- colnames(x$Z) } ### add slab values to list out$slab <- slab[not.na] ### for FE/EE/CE models, remove the columns corresponding to the prediction interval bounds if (is.element(x$method, c("FE","EE","CE")) || !pred.mui) { out$cr.lb <- NULL out$cr.ub <- NULL out$pi.lb <- NULL out$pi.ub <- NULL } out$digits <- digits out$method <- x$method out$transf <- do.transf out$pred.type <- ifelse(pred.mui, "location", "scale") if (x$test != "z") out$ddf <- ddf if (pred.mui) { if ((x$test != "z" || is.element(pi.type, c("riley","t"))) && pi.type != "simple") { out$pi.dist <- "t" out$pi.ddf <- pi.ddf } else { out$pi.dist <- "norm" } out$pi.se <- pi.se } class(out) <- c("predict.rma", "list.rma") if (vcov & !do.transf) { out <- list(pred=out) out$vcov <- vcovpred } return(out) } metafor/R/print.escalc.r0000644000176200001440000000412314515470770014672 0ustar liggesusersprint.escalc <- function(x, digits=attr(x,"digits"), ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="escalc") attr(x, "class") <- NULL digits <- .get.digits(digits=digits, xdigits=attr(x, "digits"), dmiss=FALSE) ### get positions of the variable names in the object ### note: if the object no longer contains a particular variable, match() returns NA; ### use na.omit(), so that length() is then zero (as needed for if statements below) yi.pos <- na.omit(match(attr(x, "yi.names"), names(x))) vi.pos <- na.omit(match(attr(x, "vi.names"), names(x))) sei.pos <- na.omit(match(attr(x, "sei.names"), names(x))) zi.pos <- na.omit(match(attr(x, "zi.names"), names(x))) pval.pos <- na.omit(match(attr(x, "pval.names"), names(x))) ci.lb.pos <- na.omit(match(attr(x, "ci.lb.names"), names(x))) ci.ub.pos <- na.omit(match(attr(x, "ci.ub.names"), names(x))) ### get rownames attribute so we can back-assign it rnames <- attr(x, "row.names") ### for printing, turn expressions into strings is.expr <- sapply(x, is.expression) x[is.expr] <- lapply(x[is.expr], as.character) ### turn x into a regular data frame x <- data.frame(x) rownames(x) <- rnames ### round variables according to the digits argument if (length(yi.pos) > 0L) x[yi.pos] <- apply(x[yi.pos], 2, fmtx, digits[["est"]]) if (length(vi.pos) > 0L) x[vi.pos] <- apply(x[vi.pos], 2, fmtx, digits[["var"]]) if (length(sei.pos) > 0L) x[sei.pos] <- apply(x[sei.pos], 2, fmtx, digits[["se"]]) if (length(zi.pos) > 0L) x[zi.pos] <- apply(x[zi.pos], 2, fmtx, digits[["test"]]) if (length(pval.pos) > 0L) x[pval.pos] <- apply(x[pval.pos], 2, fmtp, digits[["pval"]]) # note: using fmtp here if (length(ci.lb.pos) > 0L) x[ci.lb.pos] <- apply(x[ci.lb.pos], 2, fmtx, digits[["ci"]]) if (length(ci.ub.pos) > 0L) x[ci.ub.pos] <- apply(x[ci.ub.pos], 2, fmtx, digits[["ci"]]) ### print data frame with styling .space() tmp <- capture.output(print(x, ...)) .print.table(tmp, mstyle) .space() } metafor/R/se.r0000644000176200001440000000227414606241233012710 0ustar liggesusersse <- function(object, ...) UseMethod("se") se.default <- function(object, ...) { mstyle <- .get.mstyle() vb <- try(vcov(object, ...), silent=TRUE) if (inherits(vb, "try-error") || !is.matrix(vb) || !.is.square(vb)) stop(mstyle$stop("Default method for extracting the standard errors does not work for such model objects.")) return(sqrt(diag(vb))) } se.rma <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") ddd <- list(...) ses <- c(object$se) names(ses) <- rownames(object$beta) if (isTRUE(ddd$type=="beta")) return(ses) if (inherits(object, "rma.ls")) { ses <- list(beta=ses) ses$alpha <- c(object$se.alpha) names(ses$alpha) <- rownames(object$alpha) if (isTRUE(ddd$type=="alpha")) return(ses$alpha) } if (inherits(object, "rma.uni.selmodel")) { ses <- list(beta=ses) ses$delta <- c(object$se.delta) if (length(object$delta) == 1L) { names(ses$delta) <- "delta" } else { names(ses$delta) <- paste0("delta.", seq_along(object$delta)) } if (isTRUE(ddd$type=="delta")) return(ses$delta) } return(ses) } metafor/R/misc.func.hidden.uni.r0000644000176200001440000002015614671542455016225 0ustar liggesusers############################################################################ ### function to calculate ### solve(t(X) %*% W %*% X) = .invcalc(X=X, W=W, k=k) ### solve(t(X) %*% X) = .invcalc(X=X, W=diag(k), k=k) ### via QR decomposition .invcalc <- function(X, W, k) { sWX <- sqrt(W) %*% X res.qrs <- qr.solve(sWX, diag(k)) #res.qrs <- try(qr.solve(sWX, diag(k)), silent=TRUE) #if (inherits(res.qrs, "try-error")) # stop("Cannot compute QR decomposition.") return(tcrossprod(res.qrs)) } ############################################################################ ### function for confint.rma.uni() with Q-profile method and for the PM estimator .QE.func <- function(tau2val, Y, vi, X, k, objective, verbose=FALSE, digits=4) { mstyle <- .get.mstyle() if (any(tau2val + vi < 0)) stop(mstyle$stop("Some marginal variances are negative."), call.=FALSE) W <- diag(1/(vi + tau2val), nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) P <- W - W %*% X %*% stXWX %*% crossprod(X,W) RSS <- crossprod(Y,P) %*% Y if (verbose) cat(mstyle$verbose(paste("tau2 =", fmtx(tau2val, digits[["var"]], addwidth=4), " RSS - objective =", fmtx(RSS - objective, digits[["var"]], flag=" "), "\n"))) return(RSS - objective) } ############################################################################ ### function for confint.rma.uni() with method="GENQ" .GENQ.func <- function(tau2val, P, vi, Q, level, k, p, getlower, verbose=FALSE, digits=4) { mstyle <- .get.mstyle() S <- diag(sqrt(vi + tau2val), nrow=k, ncol=k) lambda <- Re(eigen(S %*% P %*% S, symmetric=TRUE, only.values=TRUE)$values) tmp <- CompQuadForm::farebrother(Q, lambda[seq_len(k-p)]) ### starting with version 1.4.2 of CompQuadForm, the element is called 'Qq' (before it was called 'res') ### this way, things should work regardless of the version of CompQuadForm that is installed if (exists("res", tmp)) tmp$Qq <- tmp$res if (getlower) { res <- tmp$Qq - level } else { res <- (1 - tmp$Qq) - level } if (verbose) cat(mstyle$verbose(paste("tau2 =", fmtx(tau2val, digits[["var"]], addwidth=4), " objective =", fmtx(res, digits[["var"]], flag=" "), "\n"))) return(res) } ############################################################################ ### generate all possible permutations # .genperms <- function(k) { # # v <- seq_len(k) # # sub <- function(k, v) { # if (k==1L) { # matrix(v,1,k) # } else { # X <- NULL # for(i in seq_len(k)) { # X <- rbind(X, cbind(v[i], Recall(k-1, v[-i]))) # } # X # } # } # # return(sub(k, v[seq_len(k)])) # # } ### generate all possible unique permutations .genuperms <- function(x) { z <- NULL sub <- function(x, y) { len.x <- length(x) if (len.x == 0L) { return(y) } else { prev.num <- 0 for (i in seq_len(len.x)) { num <- x[i] if (num > prev.num) { prev.num <- num z <- rbind(z, Recall(x[-i], c(y,num))) } } return(z) } } return(sub(x, y=NULL)) } .permci <- function(val, obj, j, exact, iter, progbar, level, digits, control) { mstyle <- .get.mstyle() ### fit model with shifted outcome args <- list(yi=obj$yi - c(val*obj$X[,j]), vi=obj$vi, weights=obj$weights, mods=obj$X, intercept=FALSE, method=obj$method, weighted=obj$weighted, test=obj$test, tau2=ifelse(obj$tau2.fix, obj$tau2, NA), control=obj$control, skipr2=TRUE) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) if (inherits(res, "try-error")) stop() ### p-value based on permutation test pval <- permutest(res, exact=exact, iter=iter, progbar=FALSE, control=control)$pval[j] ### get difference between p-value and level diff <- pval - level / ifelse(control$alternative == "two.sided", 1, 2) ### show progress if (progbar) cat(mstyle$verbose(paste("pval =", fmtx(pval, digits[["pval"]]), " diff =", fmtx(diff, digits[["pval"]], flag=" "), " val =", fmtx(val, digits[["est"]], flag=" "), "\n"))) ### penalize negative differences, which should force the CI bound to correspond to a p-value of *at least* level diff <- ifelse(diff < 0, diff*10, diff) return(diff) } ############################################################################ .mapfun.alpha <- function(x, lb, ub) { if (is.infinite(lb) || is.infinite(ub)) { x } else { lb + (ub-lb) / (1 + exp(-x)) # map (-inf,inf) to (lb,ub) } } .mapinvfun.alpha <- function(x, lb, ub) { if (is.infinite(lb) || is.infinite(ub)) { x } else { log((x-lb)/(ub-x)) } } ### -1 times the log-likelihood (regular or restricted) for location-scale model .ll.rma.ls <- function(par, yi, vi, X, Z, reml, k, pX, alpha.arg, beta.arg, verbose, digits, REMLf, link, mZ, alpha.min, alpha.max, alpha.transf, tau2.min, tau2.max, optbeta) { mstyle <- .get.mstyle() if (optbeta) { beta <- par[seq_len(pX)] beta <- ifelse(is.na(beta.arg), beta, beta.arg) alpha <- par[-seq_len(pX)] } else { alpha <- par } if (alpha.transf) alpha <- mapply(.mapfun.alpha, alpha, alpha.min, alpha.max) alpha <- ifelse(is.na(alpha.arg), alpha, alpha.arg) ### compute predicted tau2 values if (link == "log") { tau2 <- exp(c(Z %*% alpha)) } else { tau2 <- c(Z %*% alpha) } if (any(is.na(tau2)) || any(tau2 < tau2.min) || any(tau2 > tau2.max)) { llval <- -Inf llcomp <- FALSE } else { llcomp <- TRUE if (any(tau2 < 0)) { llval <- -Inf llcomp <- FALSE } else { ### compute weights / weights matrix wi <- 1/(vi + tau2) W <- diag(wi, nrow=k, ncol=k) if (!optbeta) { stXWX <- try(.invcalc(X=X, W=W, k=k), silent=TRUE) if (inherits(stXWX, "try-error")) { llval <- -Inf llcomp <- FALSE } else { beta <- stXWX %*% crossprod(X,W) %*% as.matrix(yi) } } } } if (llcomp) { ### compute residual sum of squares RSS <- sum(wi*c(yi - X %*% beta)^2) ### compute log-likelihood if (!reml) { llval <- -1/2 * (k) * log(2*base::pi) - 1/2 * sum(log(vi + tau2)) - 1/2 * RSS } else { llval <- -1/2 * (k-pX) * log(2*base::pi) + ifelse(REMLf, 1/2 * determinant(crossprod(X), logarithm=TRUE)$modulus, 0) + -1/2 * sum(log(vi + tau2)) - 1/2 * determinant(crossprod(X,W) %*% X, logarithm=TRUE)$modulus - 1/2 * RSS } } if (!is.null(mZ)) alpha <- mZ %*% alpha if (verbose) { cat(mstyle$verbose(paste0("ll = ", fmtx(llval, digits[["fit"]], flag=" "), " "))) if (optbeta) cat(mstyle$verbose(paste0("beta = ", paste(fmtx(beta, digits[["est"]], flag=" "), collapse=" "), " "))) cat(mstyle$verbose(paste0("alpha = ", paste(fmtx(alpha, digits[["est"]], flag=" "), collapse=" ")))) cat("\n") } return(-1 * llval) } .rma.ls.ineqfun.pos <- function(par, yi, vi, X, Z, reml, k, pX, alpha.arg, beta.arg, verbose, digits, REMLf, link, mZ, alpha.min, alpha.max, alpha.transf, tau2.min, tau2.max, optbeta) { if (optbeta) { alpha <- par[-seq_len(pX)] } else { alpha <- par } if (alpha.transf) alpha <- mapply(.mapfun.alpha, alpha, alpha.min, alpha.max) alpha <- ifelse(is.na(alpha.arg), alpha, alpha.arg) tau2 <- c(Z %*% alpha) return(tau2) } .rma.ls.ineqfun.neg <- function(par, yi, vi, X, Z, reml, k, pX, alpha.arg, beta.arg, verbose, digits, REMLf, link, mZ, alpha.min, alpha.max, alpha.transf, tau2.min, tau2.max, optbeta) { if (optbeta) { alpha <- par[-seq_len(pX)] } else { alpha <- par } if (alpha.transf) alpha <- mapply(.mapfun.alpha, alpha, alpha.min, alpha.max) alpha <- ifelse(is.na(alpha.arg), alpha, alpha.arg) tau2 <- -c(Z %*% alpha) return(tau2) } ############################################################################ metafor/R/mfopt.r0000644000176200001440000000321614515472470013433 0ustar liggesuserssetmfopt <- function(...) { mstyle <- .get.mstyle() mfopts <- getOption("metafor") if (is.null(mfopts) || !is.list(mfopts)) { options("metafor" = list(space=TRUE)) mfopts <- getOption("metafor") } newopts <- list(...) for (opt in names(newopts)) { if (opt == "space" && !is.null(newopts[[opt]]) && !is.logical(newopts[[opt]])) stop(mstyle$stop("'space' must be a logical.")) if (opt == "digits" && !is.null(newopts[[opt]]) && !is.vector(newopts[[opt]], mode="numeric")) stop(mstyle$stop("'digits' must be a numeric vector.")) if (opt == "style" && !is.logical(newopts[[opt]]) && !is.null(newopts[[opt]]) && !is.list(newopts[[opt]])) stop(mstyle$stop("'style' must be a list.")) if (opt == "theme" && !is.null(newopts[[opt]]) && !is.element(newopts[[opt]], c("default", "light", "dark", "auto", "custom", "default2", "light2", "dark2", "auto2", "custom2"))) stop(mstyle$stop("'theme' must be either 'default(2)', 'light(2)', 'dark(2)', 'auto(2)', or 'custom(2)'.")) if (opt == "fg" && !is.null(newopts[[opt]]) && !is.character(newopts[[opt]])) stop(mstyle$stop("'fg' must be a character string.")) if (opt == "bg" && !is.null(newopts[[opt]]) && !is.character(newopts[[opt]])) stop(mstyle$stop("'bg' must be a character string.")) mfopts[[opt]] <- newopts[[opt]] } options("metafor" = mfopts) } getmfopt <- function(x, default=NULL) { opt <- getOption("metafor") if (!missing(x)) { x <- as.character(substitute(x)) opt <- opt[[x]] } if (is.null(opt)) { return(default) } else { return(opt) } } metafor/R/cumul.r0000644000176200001440000000006013457322061013417 0ustar liggesuserscumul <- function(x, ...) UseMethod("cumul") metafor/R/BIC.rma.r0000644000176200001440000000216414671064445013464 0ustar liggesusersBIC.rma <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") if (missing(...)) { ### if there is just 'object' if (object$method == "REML") { out <- object$fit.stats["BIC","REML"] } else { out <- object$fit.stats["BIC","ML"] } } else { ### if there is 'object' and additional objects via ... if (object$method == "REML") { out <- sapply(list(object, ...), function(x) x$fit.stats["BIC","REML"]) } else { out <- sapply(list(object, ...), function(x) x$fit.stats["BIC","ML"]) } dfs <- sapply(list(object, ...), function(x) x$parms) out <- data.frame(df=dfs, BIC=out) ### get names of objects; same idea as in stats:::AIC.default cl <- match.call() rownames(out) <- as.character(cl[-1L]) ### check that all models were fitted to the same data chksums <- sapply(list(object, ...), function(x) x$chksumyi) if (any(chksums[1] != chksums)) warning(mstyle$warning("Models not all fitted to the same data."), call.=FALSE) } return(out) } metafor/R/print.anova.rma.r0000644000176200001440000001544114632073234015321 0ustar liggesusersprint.anova.rma <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="anova.rma") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) .space() if (x$type == "Wald.btt") { if (is.element("rma.ls", x$class)) { cat(mstyle$section(paste0("Test of Location Coefficients (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$btt),"):"))) } else { cat(mstyle$section(paste0("Test of Moderators (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$btt),"):"))) } cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QM, "F", df1=x$QMdf[1], df2=x$QMdf[2], pval=x$QMp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QM, "QM", df=x$QMdf[1], pval=x$QMp, digits=digits))) } cat("\n") } if (x$type == "Wald.att") { cat(mstyle$section(paste0("Test of Scale Coefficients (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$att),"):"))) cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QS, "F", df1=x$QSdf[1], df2=x$QSdf[2], pval=x$QSp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QS, "QS", df=x$QSdf[1], pval=x$QSp, digits=digits))) } cat("\n") } if (x$type == "Wald.Xb") { if (x$m == 1) { cat(mstyle$section("Hypothesis:")) } else { cat(mstyle$section("Hypotheses:")) } tmp <- capture.output(print(x$hyp)) .print.output(tmp, mstyle$text) cat("\n") cat(mstyle$section("Results:")) cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=fmtx(c(x$Xb), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), tval=fmtx(x$zval, digits[["test"]]), df=round(x$ddf,2), pval=fmtp(x$pval, digits[["pval"]]), stringsAsFactors=FALSE) } else { res.table <- data.frame(estimate=fmtx(c(x$Xb), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), zval=fmtx(x$zval, digits[["test"]]), pval=fmtp(x$pval, digits[["pval"]]), stringsAsFactors=FALSE) } rownames(res.table) <- paste0(seq_len(x$m), ":") if (getOption("show.signif.stars")) { signif <- symnum(x$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) if (!is.na(x$QM)) { cat("\n") if (x$m == 1) { cat(mstyle$section("Test of Hypothesis:")) } else { cat(mstyle$section("Omnibus Test of Hypotheses:")) } cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QM, "F", df1=x$QMdf[1], df2=x$QMdf[2], pval=x$QMp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QM, "QM", df=x$QMdf[1], pval=x$QMp, digits=digits))) } cat("\n") } } if (x$type == "Wald.Za") { if (x$m == 1) { cat(mstyle$section("Hypothesis:")) } else { cat(mstyle$section("Hypotheses:")) } tmp <- capture.output(print(x$hyp)) .print.output(tmp, mstyle$text) cat("\n") cat(mstyle$section("Results:")) cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=fmtx(c(x$Za), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), tval=fmtx(x$zval, digits[["test"]]), df=round(x$ddf,2), pval=fmtp(x$pval, digits[["pval"]]), stringsAsFactors=FALSE) } else { res.table <- data.frame(estimate=fmtx(c(x$Za), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), zval=fmtx(x$zval, digits[["test"]]), pval=fmtp(x$pval, digits[["pval"]]), stringsAsFactors=FALSE) } rownames(res.table) <- paste0(seq_len(x$m), ":") if (getOption("show.signif.stars")) { signif <- symnum(x$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) if (!is.na(x$QS)) { cat("\n") if (x$m == 1) { cat(mstyle$section("Test of Hypothesis:")) } else { cat(mstyle$section("Omnibus Test of Hypotheses:")) } cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QS, "F", df1=x$QSdf[1], df2=x$QSdf[2], pval=x$QSp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QS, "QS", df=x$QSdf[1], pval=x$QSp, digits=digits))) } cat("\n") } } if (x$type == "LRT") { res.table <- data.frame(c(x$parms.f, x$parms.r), c(fmtx(x$fit.stats.f["AIC"], digits[["fit"]]), fmtx(x$fit.stats.r["AIC"], digits[["fit"]])), c(fmtx(x$fit.stats.f["BIC"], digits[["fit"]]), fmtx(x$fit.stats.r["BIC"], digits[["fit"]])), c(fmtx(x$fit.stats.f["AICc"], digits[["fit"]]), fmtx(x$fit.stats.r["AICc"], digits[["fit"]])), c(fmtx(x$fit.stats.f["ll"], digits[["fit"]]), fmtx(x$fit.stats.r["ll"], digits[["fit"]])), c(NA_character_, fmtx(x$LRT, digits[["test"]])), c(NA_character_, fmtp(x$pval, digits[["pval"]])), c(fmtx(x$QE.f, digits[["test"]]), fmtx(x$QE.r, digits[["test"]])), c(fmtx(x$tau2.f, digits[["var"]]), fmtx(x$tau2.r, digits[["var"]])), c(NA_character_, NA_character_), stringsAsFactors=FALSE) colnames(res.table) <- c("df", "AIC", "BIC", "AICc", "logLik", "LRT", "pval", "QE", "tau^2", "R^2") rownames(res.table) <- c("Full", "Reduced") res.table["Full",c("LRT","pval")] <- "" res.table["Full","R^2"] <- "" res.table["Reduced","R^2"] <- fmtx(x$R2, digits[["het"]], postfix="%") ### remove tau^2 column if full model is a FE/EE/CE model or tau2.f/tau2.r is NA if (is.element(x$method, c("FE","EE","CE")) || (is.na(x$tau2.f) || is.na(x$tau2.r))) res.table <- res.table[-which(names(res.table) == "tau^2")] ### remove R^2 column if full model is a rma.mv or rma.ls model if (is.element("rma.mv", x$class.f) || is.element("rma.ls", x$class.f)) res.table <- res.table[-which(names(res.table) == "R^2")] tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) } .space() invisible() } metafor/R/print.rma.uni.r0000644000176200001440000004000414640006464015001 0ustar liggesusersprint.rma.uni <- function(x, digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni") if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } footsym <- .get.footsym() ddd <- list(...) .chkdots(ddd, c("num", "legend")) if (is.null(ddd$legend)) { legend <- ifelse(inherits(x, "robust.rma"), TRUE, FALSE) } else { if (is.na(ddd$legend)) { # can suppress legend and legend symbols with legend=NA legend <- FALSE footsym <- rep("", 6) } else { legend <- .isTRUE(ddd$legend) } } if (inherits(x, "rma.uni.trimfill")) { .space() cat(mstyle$text(paste0("Estimated number of missing studies on the ", x$side, " side: "))) cat(mstyle$result(paste0(x$k0, " (SE = ", fmtx(x$se.k0, digits[["se"]]), ")"))) cat("\n") if (x$k0.est == "R0") { cat(mstyle$text(paste0("Test of H0: no missing studies on the ", x$side, " side: "))) cat(paste0(rep(" ", nchar(x$k0)), collapse="")) cat(mstyle$result(paste0("p-val ", fmtp(x$p.k0, digits[["pval"]], equal=TRUE, sep=TRUE)))) cat("\n") } .space(FALSE) } .space() if (x$model == "rma.ls") { cat(mstyle$section("Location-Scale Model")) cat(mstyle$section(paste0(" (k = ", x$k, "; "))) if (isTRUE(x$tau2.fix)) { cat(mstyle$section("user-specified tau^2 value)")) } else { cat(mstyle$section(paste0("tau^2 estimator: ", x$method, ")"))) } } else { if (is.element(x$method, c("FE","EE","CE"))) { if (x$int.only) { cat(mstyle$section(sapply(x$method, switch, "FE"="Fixed-Effects Model", "EE"="Equal-Effects Model", "CE"="Common-Effects Model", USE.NAMES=FALSE))) } else { cat(mstyle$section("Fixed-Effects with Moderators Model")) } cat(mstyle$section(paste0(" (k = ", x$k, ")"))) } else { if (x$int.only) { cat(mstyle$section("Random-Effects Model")) } else { cat(mstyle$section("Mixed-Effects Model")) } cat(mstyle$section(paste0(" (k = ", x$k, "; "))) if (inherits(x, "rma.gen")) { cat(mstyle$section(paste0("estimation method: ", x$method, ")"))) } else { if (isTRUE(x$tau2.fix)) { cat(mstyle$section("user-specified tau^2 value)")) } else { cat(mstyle$section(paste0("tau^2 estimator: ", x$method, ")"))) } } } } cat("\n") if (showfit) { if (x$method == "REML") { fs <- fmtx(x$fit.stats$REML, digits[["fit"]]) } else { fs <- fmtx(x$fit.stats$ML, digits[["fit"]]) } names(fs) <- c("logLik", "deviance", "AIC", "BIC", "AICc") cat("\n") tmp <- capture.output(print(fs, quote=FALSE, print.gap=2)) #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) } cat("\n") if (x$model == "rma.uni" || x$model == "rma.uni.selmodel" || inherits(x, "rma.gen")) { if (!is.element(x$method, c("FE","EE","CE"))) { if (x$int.only) { cat(mstyle$text(paste0("tau^2 (", ifelse(isTRUE(x$tau2.fix), "specified", "estimated"), " amount of total heterogeneity): "))) cat(mstyle$result(paste0(fmtx(x$tau2, digits[["var"]], thresh=.Machine$double.eps*10), ifelse(is.na(x$se.tau2), "", paste0(" (SE = " , fmtx(x$se.tau2, digits[["sevar"]]), ")"))))) cat("\n") cat(mstyle$text(paste0("tau (square root of ", ifelse(isTRUE(x$tau2.fix), "specified", "estimated"), " tau^2 value): "))) cat(mstyle$result(fmtx(.sqrt(x$tau2), digits[["var"]], thresh=.Machine$double.eps*10))) cat("\n") } else { if (!is.na(x$I2) || !is.na(x$H2)) { cat(mstyle$text(paste0("tau^2 (", ifelse(isTRUE(x$tau2.fix), "specified", "estimated"), " amount of residual heterogeneity): "))) } else { cat(mstyle$text(paste0("tau^2 (", ifelse(isTRUE(x$tau2.fix), "specified", "estimated"), " amount of residual heterogeneity): "))) } cat(mstyle$result(paste0(fmtx(x$tau2, digits[["var"]], thresh=.Machine$double.eps*10), ifelse(is.na(x$se.tau2), "", paste0(" (SE = " , fmtx(x$se.tau2, digits[["sevar"]]), ")"))))) cat("\n") if (!is.na(x$I2) || !is.na(x$H2)) { cat(mstyle$text(paste0("tau (square root of ", ifelse(isTRUE(x$tau2.fix), "specified", "estimated"), " tau^2 value): "))) } else { cat(mstyle$text(paste0("tau (square root of ", ifelse(isTRUE(x$tau2.fix), "specified", "estimated"), " tau^2 value): "))) } cat(mstyle$result(fmtx(.sqrt(x$tau2), digits[["var"]], thresh=.Machine$double.eps*10))) cat("\n") } } if (x$int.only) { if (!is.na(x$I2)) { cat(mstyle$text("I^2 (total heterogeneity / total variability): ")) cat(mstyle$result(fmtx(x$I2, 2, postfix="%"))) cat("\n") } if (!is.na(x$H2) && !is.infinite(x$H2)) { cat(mstyle$text("H^2 (total variability / sampling variability): ")) cat(mstyle$result(fmtx(x$H2, 2))) cat("\n") } } else { if (!is.na(x$I2)) { cat(mstyle$text("I^2 (residual heterogeneity / unaccounted variability): ")) cat(mstyle$result(fmtx(x$I2, 2, postfix="%"))) cat("\n") } if (!is.na(x$H2) && !is.infinite(x$H2)) { cat(mstyle$text("H^2 (unaccounted variability / sampling variability): ")) cat(mstyle$result(fmtx(x$H2, 2))) cat("\n") } } if (!x$int.only && !is.null(x$R2)) { if (!is.na(x$I2) || !is.na(x$H2)) { cat(mstyle$text("R^2 (amount of heterogeneity accounted for): ")) } else { cat(mstyle$text("R^2 (amount of heterogeneity accounted for): ")) } cat(mstyle$result(fmtx(x$R2, 2, postfix="%"))) cat("\n") } if (!is.element(x$method, c("FE","EE","CE")) || !is.na(x$I2) || !is.na(x$H2) || !is.null(x$R2)) cat("\n") } if (inherits(x, "rma.gen")) { cat(mstyle$section("Parameter Estimates:")) cat("\n\n") res.table <- data.frame(as.list(fmtx(x$pars, digits[["var"]]))) colnames(res.table) <- names(x$pars) res.table <- res.table[1,,drop=FALSE] tmp <- capture.output(.print.vector(res.table)) .print.table(tmp, mstyle) cat("\n") } if (!is.na(x$QE)) { if (x$int.only) { cat(mstyle$section("Test for Heterogeneity:")) cat("\n") cat(mstyle$result(fmtt(x$QE, "Q", df=x$k-x$p, pval=x$QEp, digits=digits))) } else { cat(mstyle$section("Test for Residual Heterogeneity:")) cat("\n") cat(mstyle$result(fmtt(x$QE, "QE", df=x$k-x$p, pval=x$QEp, digits=digits))) } cat("\n\n") } if (x$model == "rma.uni.selmodel" && !is.na(x$LRT.tau2)) { if (x$int.only) { cat(mstyle$section("Test for Heterogeneity:")) cat("\n") cat(mstyle$result(fmtt(x$LRT.tau2, "LRT", df=1, pval=x$LRTp.tau2, digits=digits))) } else { cat(mstyle$section("Test for Residual Heterogeneity:")) cat("\n") cat(mstyle$result(fmtt(x$LRT.tau2, "LRT", df=1, pval=x$LRTp.tau2, digits=digits))) } cat("\n\n") } if (inherits(x, "robust.rma")) { cat(mstyle$text("Number of estimates: ")) cat(mstyle$result(x$k)) cat("\n") cat(mstyle$text("Number of clusters: ")) cat(mstyle$result(x$n)) cat("\n") cat(mstyle$text("Estimates per cluster: ")) if (all(x$tcl[1] == x$tcl)) { cat(mstyle$result(x$tcl[1])) } else { cat(mstyle$result(paste0(min(x$tcl), "-", max(x$tcl), " (mean: ", fmtx(mean(x$tcl), digits=2), ", median: ", round(median(x$tcl), digits=2), ")"))) } cat("\n\n") } if (x$p > 1L && !is.na(x$QM)) { if (x$model == "rma.ls") { cat(mstyle$section(paste0("Test of Location Coefficients (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$btt),"):"))) } else { cat(mstyle$section(paste0("Test of Moderators (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$btt),"):", ifelse(inherits(x, "robust.rma"), footsym[1], "")))) } cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QM, "F", df1=x$QMdf[1], df2=x$QMdf[2], pval=x$QMp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QM, "QM", df=x$QMdf[1], pval=x$QMp, digits=digits))) } cat("\n\n") } if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=fmtx(c(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), tval=fmtx(x$zval, digits[["test"]]), df=round(x$ddf,2), pval=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) if (inherits(x, "robust.rma") && footsym[1] != "") res.table <- .addfootsym(res.table, 2:7, footsym[1]) } else { res.table <- data.frame(estimate=fmtx(c(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), zval=fmtx(x$zval, digits[["test"]]), pval=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) } rownames(res.table) <- rownames(x$beta) signif <- symnum(x$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } if (.isTRUE(ddd$num)) { width <- nchar(nrow(res.table)) rownames(res.table) <- paste0(formatC(seq_len(nrow(res.table)), format="d", width=width), ") ", rownames(res.table)) } if (x$int.only) res.table <- res.table[1,] if (x$model == "rma.uni" || x$model == "rma.uni.selmodel") { cat(mstyle$section("Model Results:")) } else { cat(mstyle$section("Model Results (Location):")) } cat("\n\n") if (x$int.only) { tmp <- capture.output(.print.vector(res.table)) } else { tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) } #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) if (x$model == "rma.ls") { if (x$q > 1L && !is.na(x$QS)) { cat("\n") cat(mstyle$section(paste0("Test of Scale Coefficients (coefficient", ifelse(x$m.alpha == 1, " ", "s "), .format.btt(x$att),"):"))) cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QS, "F", df1=x$QSdf[1], df2=x$QSdf[2], pval=x$QSp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QS, "QM", df=x$QSdf[1], pval=x$QSp, digits=digits))) } cat("\n") } if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=fmtx(c(x$alpha), digits[["est"]]), se=fmtx(x$se.alpha, digits[["se"]]), tval=fmtx(x$zval.alpha, digits[["test"]]), df=round(x$ddf.alpha, 2), pval=fmtp(x$pval.alpha, digits[["pval"]]), ci.lb=fmtx(x$ci.lb.alpha, digits[["ci"]]), ci.ub=fmtx(x$ci.ub.alpha, digits[["ci"]]), stringsAsFactors=FALSE) } else { res.table <- data.frame(estimate=fmtx(c(x$alpha), digits[["est"]]), se=fmtx(x$se.alpha, digits[["se"]]), zval=fmtx(x$zval.alpha, digits[["test"]]), pval=fmtp(x$pval.alpha, digits[["pval"]]), ci.lb=fmtx(x$ci.lb.alpha, digits[["ci"]]), ci.ub=fmtx(x$ci.ub.alpha, digits[["ci"]]), stringsAsFactors=FALSE) } rownames(res.table) <- rownames(x$alpha) signif <- symnum(x$pval.alpha, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } for (j in seq_len(nrow(res.table))) { res.table[j, is.na(res.table[j,])] <- ifelse(x$alpha.fix[j], "---", "NA") res.table[j, res.table[j,] == "NA"] <- ifelse(x$alpha.fix[j], "---", "NA") } if (.isTRUE(ddd$num)) { width <- nchar(nrow(res.table)) rownames(res.table) <- paste0(formatC(seq_len(nrow(res.table)), format="d", width=width), ") ", rownames(res.table)) } if (length(x$alpha) == 1L) res.table <- res.table[1,] cat("\n") cat(mstyle$section("Model Results (Scale):")) cat("\n\n") if (length(x$alpha) == 1L) { tmp <- capture.output(.print.vector(res.table)) } else { tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) } #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) } if (x$model == "rma.uni.selmodel") { if (!is.na(x$LRT)) { cat("\n") cat(mstyle$section("Test for Selection Model Parameters:")) cat("\n") cat(mstyle$result(fmtt(x$LRT, "LRT", df=x$LRTdf, pval=x$LRTp, digits=digits))) cat("\n") } res.table <- data.frame(estimate=fmtx(c(x$delta), digits[["est"]]), se=fmtx(x$se.delta, digits[["se"]]), zval=fmtx(x$zval.delta, digits[["test"]]), pval=fmtp(x$pval.delta, digits[["pval"]]), ci.lb=fmtx(x$ci.lb.delta, digits[["ci"]]), ci.ub=fmtx(x$ci.ub.delta, digits[["ci"]]), stringsAsFactors=FALSE) if (is.element(x$type, c("stepfun","stepcon"))) { rownames(res.table) <- rownames(x$ptable) res.table <- cbind(k=x$ptable$k, res.table) } else { rownames(res.table) <- paste0("delta.", seq_along(x$delta)) } #if (x$test == "t") # colnames(res.table)[3] <- "tval" signif <- symnum(x$pval.delta, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } for (j in seq_len(nrow(res.table))) { res.table[j, is.na(res.table[j,])] <- ifelse(x$delta.fix[j], "---", "NA") res.table[j, res.table[j,] == "NA"] <- ifelse(x$delta.fix[j], "---", "NA") } if (length(x$delta) == 1L) res.table <- res.table[1,] cat("\n") if (x$k == x$k1) { cat(mstyle$section("Selection Model Results:")) } else { cat(mstyle$section("Selection Model Results (k_subset = ", x$k1, "):")) } cat("\n\n") if (length(x$delta) == 1L) { tmp <- capture.output(.print.vector(res.table)) } else { tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) } #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) } if (signif.legend || legend) { cat("\n") cat(mstyle$legend("---")) } if (signif.legend) { cat("\n") cat(mstyle$legend("Signif. codes: "), mstyle$legend(attr(signif, "legend"))) cat("\n") } if (inherits(x, "robust.rma") && legend) { cat("\n") cat(mstyle$legend(paste0(footsym[2], " results based on cluster-robust inference (var-cov estimator: ", x$vbest))) if (x$robumethod == "default") { cat(mstyle$legend(",")) cat("\n") cat(mstyle$legend(paste0(" approx ", ifelse(x$int.only, "t-test and confidence interval", "t/F-tests and confidence intervals"), ", df: residual method)"))) } else { if (x$coef_test == "Satterthwaite" && x$conf_test == "Satterthwaite" && x$wald_test == "HTZ") { cat(mstyle$legend(",")) cat("\n") cat(mstyle$legend(paste0(" approx ", ifelse(x$int.only, "t-test and confidence interval", "t/F-tests and confidence intervals"), ", df: Satterthwaite approx)"))) } else { cat(mstyle$legend(")")) } } cat("\n") } .space() invisible() } metafor/R/matreg.r0000644000176200001440000002304114710402726013555 0ustar liggesusersmatreg <- function(y, x, R, n, V, cov=FALSE, means, ztor=FALSE, nearpd=FALSE, level=95, digits, ...) { mstyle <- .get.mstyle() if (missing(digits)) digits <- 4 level <- .level(level) ### check/process R argument if (missing(R)) stop(mstyle$stop("Must specify the 'R' argument.")) R <- as.matrix(R) if (nrow(R) != ncol(R)) stop(mstyle$stop("Argument 'R' must be a square matrix.")) if (is.null(rownames(R))) rownames(R) <- colnames(R) if (is.null(colnames(R))) colnames(R) <- rownames(R) p <- nrow(R) if (p <= 1L) stop(mstyle$stop("The 'R' matrix must be at least of size 2x2.")) ### check/process y argument if (length(y) != 1L) stop(mstyle$stop("Argument 'y' should specify a single variable.")) if (is.character(y)) { if (is.null(rownames(R))) stop(mstyle$stop("'R' must have dimension names when specifying a variable name for 'y'.")) if (anyDuplicated(rownames(R))) stop(mstyle$stop("Dimension names of 'R' must be unique.")) y.pos <- pmatch(y, rownames(R)) # NA if no match or there are duplicates if (is.na(y.pos)) stop(mstyle$stop(paste0("Could not find variable '", y, "' in the 'R' matrix."))) y <- y.pos } y <- round(y) if (y < 1 || y > p) stop(mstyle$stop(paste0("Index 'y' must be >= 1 or <= ", p, "."))) ### check/process x argument if (missing(x)) # if not specified, use all other variables in R as predictors x <- seq_len(p)[-y] if (is.character(x)) { if (is.null(rownames(R))) stop(mstyle$stop("'R' must have dimension names when specifying variable names for 'x'.")) if (anyDuplicated(rownames(R))) stop(mstyle$stop("Dimension names of 'R' must be unique.")) x.pos <- pmatch(x, rownames(R)) # NA if no match or there are duplicates if (anyNA(x.pos)) stop(mstyle$stop(paste0("Could not find variable", ifelse(sum(is.na(x.pos)) > 1L, "s", ""), " '", paste(x[is.na(x.pos)], collapse=", "), "' in the 'R' matrix."))) x <- x.pos } x <- round(x) if (anyDuplicated(x)) stop(mstyle$stop("Argument 'x' should not contain duplicated elements.")) if (any(x < 1 | x > p)) stop(mstyle$stop(paste0("Indices in 'x' must be >= 1 or <= ", p, "."))) if (y %in% x) stop(mstyle$stop("Variable 'y' should not be an element of 'x'.")) ### check/process V/n arguments if (missing(V)) V <- NULL if (is.null(V) && missing(n)) stop(mstyle$stop("Either 'V' or 'n' must be specified.")) if (!is.null(V) && !missing(n)) stop(mstyle$stop("Either 'V' or 'n' must be specified, not both.")) if (cov && ztor) stop(mstyle$stop("Cannot use a covariance matrix as input when 'ztor=TRUE'.")) ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("nearPD")) if (.isTRUE(ddd$nearPD)) nearpd <- TRUE ############################################################################ m <- length(x) R[upper.tri(R)] <- t(R)[upper.tri(R)] if (!is.null(V)) { V <- as.matrix(V) if (nrow(V) != ncol(V)) stop(mstyle$stop("Argument 'V' must be a square matrix.")) V[upper.tri(V)] <- t(V)[upper.tri(V)] if (cov) { s <- p*(p+1)/2 } else { s <- p*(p-1)/2 } if (nrow(V) != s) stop(mstyle$stop(paste0("Dimensions of 'V' (", nrow(V), "x", ncol(V), ") do not match the number of elements in 'R' (", s, ")."))) } ############################################################################ if (ztor) { if (!is.null(V)) { zij <- R[lower.tri(R)] Dmat <- diag(2 / (cosh(2*zij) + 1), nrow=length(zij), ncol=length(zij), names=FALSE) V <- Dmat %*% V %*% Dmat } R <- tanh(R) diag(R) <- 1 } if (cov) { S <- R R <- cov2cor(R) sdy <- sqrt(diag(S)[y]) sdx <- sqrt(diag(S)[x]) } else { if (any(abs(R) > 1, na.rm=TRUE)) stop(mstyle$stop("Argument 'R' must be a correlation matrix, but contains values outside [-1,1].")) diag(R) <- 1 sdy <- 1 } ############################################################################ Rxy <- R[x, y, drop=FALSE] Rxx <- R[x, x, drop=FALSE] #invRxx <- solve(Rxx) invRxx <- try(chol2inv(chol(Rxx)), silent=TRUE) if (inherits(invRxx, "try-error")) { if (nearpd) { message(mstyle$message("Cannot invert R[x,x] matrix. Using nearPD(). Treat results with caution.")) Rxx <- as.matrix(nearPD(Rxx, corr=TRUE)$mat) } else { stop(mstyle$stop("Cannot invert R[x,x] matrix.")) } invRxx <- try(chol2inv(chol(Rxx)), silent=TRUE) if (inherits(invRxx, "try-error")) stop(mstyle$stop("Still cannot invert R[x,x] matrix.")) } b <- invRxx %*% Rxy if (!is.null(rownames(Rxx))) { rownames(b) <- rownames(Rxx) } else { rownames(b) <- paste0("x", x) } colnames(b) <- NULL ############################################################################ if (cov) { if (missing(means)) { means <- rep(0,p) has.means <- FALSE } else { if (length(means) != p) stop(mstyle$stop(paste0("Length of 'means' (", length(means), ") does not match the dimensions of 'R' (", p, "x", p, ")."))) has.means <- TRUE } } ############################################################################ if (is.null(V)) { # when no V matrix is specified if (length(n) != 1L) stop(mstyle$stop("Argument 'n' should be a single number.")) df <- n - m - ifelse(cov, 1, 0) if (df <= 0) stop(mstyle$stop("Cannot fit model when 'n' is equal to or less than the number of regression coefficients.")) sse <- 1 - c(t(b) %*% Rxy) mse <- sse / df vb <- mse * invRxx R2 <- 1 - sse R2adj <- 1 - (1 - R2) * ((n-ifelse(cov, 1, 0)) / df) F <- c(value = (R2 / m) / mse, df1=m, df2=df) Fp <- pf(F[[1]], df1=m, df2=df, lower.tail=FALSE) mse <- sdy^2 * (n-1) * (1 - R2) / df if (cov) { b <- b * sdy / sdx b <- rbind(means[y] - means[x] %*% b, b) rownames(b)[1] <- "intrcpt" XtX <- (n-1) * bldiag(0,S[x,x]) + n * tcrossprod(c(1,means[x])) invXtX <- try(suppressWarnings(chol2inv(chol(XtX))), silent=TRUE) if (inherits(invXtX, "try-error")) { vb <- matrix(NA_real_, nrow=(m+1), ncol=(m+1)) warning(mstyle$warning("Cannot obtain var-cov matrix of the regression coefficients."), call.=FALSE) } else { vb <- mse * invXtX } if (!has.means) { b[1,] <- NA_real_ vb[1,] <- NA_real_ vb[,1] <- NA_real_ } } rownames(vb) <- colnames(vb) <- rownames(b) se <- sqrt(diag(vb)) tval <- c(b / se) pval <- 2*pt(abs(tval), df=df, lower.tail=FALSE) crit <- qt(level/2, df=df, lower.tail=FALSE) ci.lb <- c(b - crit * se) ci.ub <- c(b + crit * se) res <- list(tab = data.frame(beta=b, se=se, tval=tval, df=df, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub), vb=vb, R2=R2, R2adj=R2adj, F=F, Fdf=c(m,df), Fp=Fp, mse=mse, digits=digits, test="t") } else { # when a V matrix is specified R2 <- c(t(b) %*% Rxy) # as in Becker & Aloe (2019); assume that this also applies for Cov matrices if (cov) { b <- b * sdy / sdx Rxy <- S[x, y, drop=FALSE] invRxx <- diag(1/sdx, nrow=m, ncol=m) %*% invRxx %*% diag(1/sdx, nrow=m, ncol=m) Udiag <- TRUE } else { Udiag <- FALSE } U <- matrix(NA_integer_, nrow=p, ncol=p) U[lower.tri(U, diag=Udiag)] <- seq_len(s) U[upper.tri(U, diag=Udiag)] <- t(U)[upper.tri(U, diag=Udiag)] Uxx <- U[x, x, drop=FALSE] Uxy <- U[x, y, drop=FALSE] uxx <- unique(c(na.omit(c(Uxx)))) uxy <- c(Uxy) A <- matrix(0, nrow=m, ncol=s) for (a in 1:ncol(A)) { if (a %in% uxx) { pos <- c(which(a == Uxx, arr.ind=TRUE)) J <- matrix(0, nrow=m, ncol=m) J[pos[1],pos[2]] <- J[pos[2],pos[1]] <- 1 A[,a] <- - invRxx %*% J %*% invRxx %*% Rxy } if (a %in% uxy) { pos <- c(which(a == Uxy, arr.ind=TRUE)) A[,a] <- invRxx[,pos[1]] } } vb <- A %*% V %*% t(A) if (cov) { b <- rbind(means[y] - means[x] %*% b, b) rownames(b)[1] <- "intrcpt" X <- rbind(means[x], diag(m)) vb <- X %*% vb %*% t(X) if (!has.means) { b[1,] <- NA_real_ vb[1,] <- NA_real_ vb[,1] <- NA_real_ } } se <- sqrt(diag(vb)) zval <- c(b / se) pval <- 2*pnorm(abs(zval), lower.tail=FALSE) crit <- qnorm(level/2, lower.tail=FALSE) ci.lb <- c(b - crit * se) ci.ub <- c(b + crit * se) if (cov) { QM <- try(as.vector(t(b[-1,,drop=FALSE]) %*% chol2inv(chol(vb[-1,-1,drop=FALSE])) %*% b[-1,,drop=FALSE]), silent=TRUE) } else { QM <- try(as.vector(t(b) %*% chol2inv(chol(vb)) %*% b), silent=TRUE) } if (inherits(QM, "try-error")) QM <- NA_real_ QMp <- pchisq(QM, df=m, lower.tail=FALSE) rownames(vb) <- colnames(vb) <- rownames(b) res <- list(tab = data.frame(beta=b, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub), vb=vb, R2=R2, QM=QM, QMdf=c(m,NA_integer_), QMp=QMp, digits=digits, test="z") } class(res) <- c("matreg") return(res) } metafor/R/fitted.rma.r0000644000176200001440000000273014671074345014345 0ustar liggesusersfitted.rma <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(object$X.f)) stop(mstyle$stop("Information needed to compute the fitted values is not available in the model object.")) ### note: fitted values can be calculated for all studies including those that ### have NA on yi/vi (and with "na.pass" these will be provided); but if there ### is an NA in the X's, then the fitted value will also be NA out <- c(object$X.f %*% object$beta) names(out) <- object$slab #not.na <- !is.na(out) if (na.act == "na.omit") out <- out[object$not.na] if (na.act == "na.exclude") out[!object$not.na] <- NA_real_ if (na.act == "na.fail" && any(!object$not.na)) stop(mstyle$stop("Missing values in results.")) if (inherits(object, "rma.ls")) { out <- list(location = out) out$scale <- c(object$Z.f %*% object$alpha) names(out$scale) <- object$slab #not.na <- !is.na(out$scale) if (na.act == "na.omit") out$scale <- out$scale[object$not.na] if (na.act == "na.exclude") out$scale[!object$not.na] <- NA_real_ if (na.act == "na.fail" && any(!object$not.na)) stop(mstyle$stop("Missing values in results.")) } return(out) } metafor/R/print.gosh.rma.r0000644000176200001440000000273314662672313015163 0ustar liggesusersprint.gosh.rma <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="gosh.rma") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) .space() cat(mstyle$text("Model fits attempted: ")) cat(mstyle$result(length(x$fit))) cat("\n") cat(mstyle$text("Model fits succeeded: ")) cat(mstyle$result(sum(x$fit))) cat("\n\n") res.table <- matrix(NA_real_, nrow=ncol(x$res), ncol=6) res.table[,1] <- apply(x$res, 2, mean, na.rm=TRUE) res.table[,2] <- apply(x$res, 2, min, na.rm=TRUE) res.table[,3] <- apply(x$res, 2, quantile, 0.25, na.rm=TRUE) res.table[,4] <- apply(x$res, 2, quantile, 0.50, na.rm=TRUE) res.table[,5] <- apply(x$res, 2, quantile, 0.75, na.rm=TRUE) res.table[,6] <- apply(x$res, 2, max, na.rm=TRUE) res.table <- fmtx(res.table, digits[["est"]]) colnames(res.table) <- c("mean", "min", "q1", "median", "q3", "max") rownames(res.table) <- colnames(x$res) if (ncol(x$res) == 6) rownames(res.table)[2] <- "Q" ### add blank row before the model coefficients in meta-regression models if (ncol(x$res) > 6) res.table <- rbind(res.table[seq_len(5),], "", res.table[6:nrow(res.table),,drop=FALSE]) ### remove row for tau^2 in FE/EE/CE models if (is.element(x$method, c("FE","EE","CE"))) res.table <- res.table[-5,] tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) .space() invisible() } metafor/R/confint.rma.mv.r0000644000176200001440000006012014722340736015141 0ustar liggesusersconfint.rma.mv <- function(object, parm, level, fixed=FALSE, sigma2, tau2, rho, gamma2, phi, digits, transf, targs, verbose=FALSE, control, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.mv") if (!missing(parm)) warning(mstyle$warning("Argument 'parm' (currently) ignored."), call.=FALSE) x <- object k <- x$k p <- x$p if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL if (missing(control)) control <- list() ddd <- list(...) .chkdots(ddd, c("time", "xlim", "extint", "code1", "code2")) level <- .level(level, stopon100=.isTRUE(ddd$extint)) if (.isTRUE(ddd$time)) time.start <- proc.time() if (!is.null(ddd$xlim)) { if (length(ddd$xlim) != 2L) stop(mstyle$stop("Argument 'xlim' should be a vector of length 2.")) control$vc.min <- ddd$xlim[1] control$vc.max <- ddd$xlim[2] } ### check if user has specified one of the sigma2, tau2, rho, gamma2, or phi arguments random <- !all(missing(sigma2), missing(tau2), missing(rho), missing(gamma2), missing(phi)) if (!fixed && !random) { ### if both 'fixed' and 'random' are FALSE, obtain CIs for all variance/correlation components cl <- match.call() ### total number of non-fixed components comps <- ifelse(x$withS, sum(!x$vc.fix$sigma2), 0) + ifelse(x$withG, sum(!x$vc.fix$tau2) + sum(!x$vc.fix$rho), 0) + ifelse(x$withH, sum(!x$vc.fix$gamma2) + sum(!x$vc.fix$phi), 0) if (comps == 0) stop(mstyle$stop("No components for which a CI can be obtained.")) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) res.all <- list() j <- 0 if (x$withS && any(!x$vc.fix$sigma2)) { for (pos in seq_len(x$sigma2s)[!x$vc.fix$sigma2]) { j <- j + 1 if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) cl.vc <- cl cl.vc$sigma2 <- pos cl.vc$time <- FALSE #cl.vc$object <- quote(x) cl.vc[[1]] <- str2lang("metafor::confint.rma.mv") if (verbose) cat(mstyle$verbose(paste("\nObtaining CI for sigma2 =", pos, "\n"))) res.all[[j]] <- eval(cl.vc, envir=parent.frame()) } } if (x$withG) { if (any(!x$vc.fix$tau2)) { for (pos in seq_len(x$tau2s)[!x$vc.fix$tau2]) { j <- j + 1 if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) cl.vc <- cl cl.vc$tau2 <- pos cl.vc$time <- FALSE #cl.vc$object <- quote(x) cl.vc[[1]] <- str2lang("metafor::confint.rma.mv") if (verbose) cat(mstyle$verbose(paste("\nObtaining CI for tau2 =", pos, "\n"))) res.all[[j]] <- eval(cl.vc, envir=parent.frame()) } } if (any(!x$vc.fix$rho)) { for (pos in seq_len(x$rhos)[!x$vc.fix$rho]) { j <- j + 1 if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) cl.vc <- cl cl.vc$rho <- pos cl.vc$time <- FALSE #cl.vc$object <- quote(x) cl.vc[[1]] <- str2lang("metafor::confint.rma.mv") if (verbose) cat(mstyle$verbose(paste("\nObtaining CI for rho =", pos, "\n"))) res.all[[j]] <- eval(cl.vc, envir=parent.frame()) } } } if (x$withH) { if (any(!x$vc.fix$gamma2)) { for (pos in seq_len(x$gamma2s)[!x$vc.fix$gamma2]) { j <- j + 1 if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) cl.vc <- cl cl.vc$gamma2 <- pos cl.vc$time <- FALSE #cl.vc$object <- quote(x) cl.vc[[1]] <- str2lang("metafor::confint.rma.mv") if (verbose) cat(mstyle$verbose(paste("\nObtaining CI for gamma2 =", pos, "\n"))) res.all[[j]] <- eval(cl.vc, envir=parent.frame()) } } if (any(!x$vc.fix$phi)) { for (pos in seq_len(x$phis)[!x$vc.fix$phi]) { j <- j + 1 if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) cl.vc <- cl cl.vc$phi <- pos cl.vc$time <- FALSE #cl.vc$object <- quote(x) cl.vc[[1]] <- str2lang("metafor::confint.rma.mv") if (verbose) cat(mstyle$verbose(paste("\nObtaining CI for phi =", pos, "\n"))) res.all[[j]] <- eval(cl.vc, envir=parent.frame()) } } } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } if (length(res.all) == 1L) { return(res.all[[1]]) } else { res.all$digits <- digits class(res.all) <- "list.confint.rma" return(res.all) } } ######################################################################### ######################################################################### ######################################################################### if (random) { type <- "pl" ###################################################################### ### check if user has specified more than one of these arguments if (sum(!missing(sigma2), !missing(tau2), !missing(rho), !missing(gamma2), !missing(phi)) > 1L) stop(mstyle$stop("Must specify only one of the arguments 'sigma2', 'tau2', 'rho', 'gamma2', or 'phi'.")) ### check if model actually contains (at least one) such a component and that it was actually estimated ### note: a component that is not in the model is NA; components that are fixed are TRUE if (!missing(sigma2) && (all(is.na(x$vc.fix$sigma2)) || all(x$vc.fix$sigma2))) stop(mstyle$stop("Model does not contain any (estimated) 'sigma2' components.")) if (!missing(tau2) && (all(is.na(x$vc.fix$tau2)) || all(x$vc.fix$tau2))) stop(mstyle$stop("Model does not contain any (estimated) 'tau2' components.")) if (!missing(rho) && c(all(is.na(x$vc.fix$rho)) || all(x$vc.fix$rho))) stop(mstyle$stop("Model does not contain any (estimated) 'rho' components.")) if (!missing(gamma2) && (all(is.na(x$vc.fix$gamma2)) || all(x$vc.fix$gamma2))) stop(mstyle$stop("Model does not contain any (estimated) 'gamma2' components.")) if (!missing(phi) && c(all(is.na(x$vc.fix$phi)) || all(x$vc.fix$phi))) stop(mstyle$stop("Model does not contain any (estimated) 'phi' components.")) ### check if user specified more than one sigma2, tau2, rho, gamma2, or rho component if (!missing(sigma2) && (length(sigma2) > 1L)) stop(mstyle$stop("Can only specify one 'sigma2' component.")) if (!missing(tau2) && (length(tau2) > 1L)) stop(mstyle$stop("Can only specify one 'tau2' component.")) if (!missing(rho) && (length(rho) > 1L)) stop(mstyle$stop("Can only specify one 'rho' component.")) if (!missing(gamma2) && (length(gamma2) > 1L)) stop(mstyle$stop("Can only specify one 'gamma2' component.")) if (!missing(phi) && (length(phi) > 1L)) stop(mstyle$stop("Can only specify one 'phi' component.")) ### check if user specified a logical if (!missing(sigma2) && is.logical(sigma2)) stop(mstyle$stop("Must specify a number for the 'sigma2' component.")) if (!missing(tau2) && is.logical(tau2)) stop(mstyle$stop("Must specify a number for the 'tau2' component.")) if (!missing(rho) && is.logical(rho)) stop(mstyle$stop("Must specify a number for the 'rho' component.")) if (!missing(gamma2) && is.logical(gamma2)) stop(mstyle$stop("Must specify a number for the 'gamma2' component.")) if (!missing(phi) && is.logical(phi)) stop(mstyle$stop("Must specify a number for the 'phi' component.")) ### check if user specified a component that does not exist if (!missing(sigma2) && (sigma2 > length(x$vc.fix$sigma2) || sigma2 <= 0)) stop(mstyle$stop("No such 'sigma2' component in the model.")) if (!missing(tau2) && (tau2 > length(x$vc.fix$tau2) || tau2 <= 0)) stop(mstyle$stop("No such 'tau2' component in the model.")) if (!missing(rho) && (rho > length(x$vc.fix$rho) || rho <= 0)) stop(mstyle$stop("No such 'rho' component in the model.")) if (!missing(gamma2) && (gamma2 > length(x$vc.fix$gamma2) || gamma2 <= 0)) stop(mstyle$stop("No such 'gamma2' component in the model.")) if (!missing(phi) && (phi > length(x$vc.fix$phi) || phi <= 0)) stop(mstyle$stop("No such 'phi' component in the model.")) ### check if user specified a component that was fixed if (!missing(sigma2) && x$vc.fix$sigma2[sigma2]) stop(mstyle$stop("Specified 'sigma2' component was fixed.")) if (!missing(tau2) && x$vc.fix$tau2[tau2]) stop(mstyle$stop("Specified 'tau2' component was fixed.")) if (!missing(rho) && x$vc.fix$rho[rho]) stop(mstyle$stop("Specified 'rho' component was fixed.")) if (!missing(gamma2) && x$vc.fix$gamma2[gamma2]) stop(mstyle$stop("Specified 'gamma2' component was fixed.")) if (!missing(phi) && x$vc.fix$phi[phi]) stop(mstyle$stop("Specified 'phi' component was fixed.")) ### if everything is good so far, get value of the variance component and set 'comp' sigma2.pos <- NA_integer_ tau2.pos <- NA_integer_ rho.pos <- NA_integer_ gamma2.pos <- NA_integer_ phi.pos <- NA_integer_ if (!missing(sigma2)) { vc <- x$sigma2[sigma2] comp <- "sigma2" sigma2.pos <- sigma2 } if (!missing(tau2)) { vc <- x$tau2[tau2] comp <- "tau2" tau2.pos <- tau2 } if (!missing(rho)) { vc <- x$rho[rho] comp <- "rho" rho.pos <- rho } if (!missing(gamma2)) { vc <- x$gamma2[gamma2] comp <- "gamma2" gamma2.pos <- gamma2 } if (!missing(phi)) { vc <- x$phi[phi] comp <- "phi" phi.pos <- phi } #return(list(comp=comp, vc=vc, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos)) ###################################################################### ### set defaults for control parameters for uniroot() and replace with any user-defined values ### set vc.min and vc.max and possibly replace with any user-defined values con <- list(tol=.Machine$double.eps^0.25, maxiter=1000, verbose=FALSE, eptries=10) if (is.element(comp, c("sigma2", "tau2", "gamma2"))) { con$vc.min <- 0 con$vc.max <- max(ifelse(vc <= .Machine$double.eps^0.5, 10, max(10, vc*100)), con$vc.min) } if (comp == "rho") { if (is.element(x$struct[1], c("CS","HCS"))) con$vc.min <- -1 # this will fail most of the time but with retries, this may get closer to actual lower bound #con$vc.min <- min(-1/(x$g.nlevels.f[1] - 1), vc) # this guarantees that cor matrix is semi-positive definite, but since V gets added, this is actually too strict if (is.element(x$struct[1], c("AR","HAR","CAR"))) con$vc.min <- min(0, vc) # negative autocorrelation parameters not considered (not even sensible for CAR) if (is.element(x$struct[1], c("UN","UNR","GEN"))) con$vc.min <- -1 # TODO: this will often fail! (but with retries, this should still work) con$vc.max <- 1 if (is.element(x$struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH"))) { con$vc.min <- 0 # TODO: 0 basically always fails con$vc.max <- max(10, vc*10) } if (is.element(x$struct[1], c("PHYPL","PHYPD"))) { con$vc.min <- 0 con$vc.max <- max(2, vc*2) } } if (comp == "phi") { if (is.element(x$struct[2], c("CS","HCS"))) con$vc.min <- -1 # this will fail most of the time but with retries, this may get closer to actual lower bound #con$vc.min <- min(-1/(x$h.nlevels.f[1] - 1), vc) # this guarantees that cor matrix is semi-positive definite, but since V gets added, this is actually too strict if (is.element(x$struct[2], c("AR","HAR","CAR"))) con$vc.min <- min(0, vc) # negative autocorrelation parameters not considered (not even sensible for CAR) if (is.element(x$struct[2], c("UN","UNR","GEN"))) con$vc.min <- -1 # TODO: this will often fail! (but with retries, this should still work) con$vc.max <- 1 if (is.element(x$struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH"))) { con$vc.min <- 0 # TODO: 0 basically always fails con$vc.max <- max(10, vc*10) } if (is.element(x$struct[2], c("PHYPL","PHYPD"))) { con$vc.min <- 0 con$vc.max <- max(2, vc*2) } } con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] if (verbose) con$verbose <- verbose verbose <- con$verbose ###################################################################### vc.lb <- NA_real_ vc.ub <- NA_real_ ci.null <- FALSE # logical if CI is a null set lb.conv <- FALSE # logical if search converged for lower bound (LB) ub.conv <- FALSE # logical if search converged for upper bound (UB) lb.sign <- "" # for sign in case LB must be below vc.min ("<") or above vc.max (">") ub.sign <- "" # for sign in case UB must be below vc.min ("<") or above vc.max (">") ###################################################################### ###################################################################### ###################################################################### ### Profile Likelihood method if (type == "pl") { if (con$vc.min > vc) stop(mstyle$stop("Lower bound of interval to be searched must be <= estimated value of component.")) if (con$vc.max < vc) stop(mstyle$stop("Upper bound of interval to be searched must be >= estimated value of component.")) objective <- qchisq(1-level, df=1) ################################################################### ### search for lower bound ### get diff value when setting component to vc.min; this value should be positive (i.e., discrepancy must be larger than critical value) ### if it is not, then the lower bound must be below vc.min epdiff <- abs(con$vc.min - vc) / con$eptries for (i in seq_len(con$eptries)) { res <- try(.profile.rma.mv(con$vc.min, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, confint=TRUE, objective=objective, verbose=verbose), silent=TRUE) if (!inherits(res, "try-error") && !is.na(res)) { if (!.isTRUE(ddd$extint) && res < 0) { vc.lb <- con$vc.min lb.conv <- TRUE if (is.element(comp, c("sigma2", "tau2", "gamma2")) && con$vc.min > 0) lb.sign <- "<" if (is.element(comp, c("rho", "phi")) && con$vc.min > -1) lb.sign <- "<" if (((comp == "rho" && is.element(x$struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD"))) || (comp == "phi" && is.element(x$struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD")))) && con$vc.min > 0) lb.sign <- "<" } else { if (.isTRUE(ddd$extint)) { res <- try(uniroot(.profile.rma.mv, interval=c(con$vc.min, vc), tol=con$tol, maxiter=con$maxiter, extendInt="downX", obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } else { res <- try(uniroot(.profile.rma.mv, interval=c(con$vc.min, vc), tol=con$tol, maxiter=con$maxiter, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } ### check if uniroot method converged if (!inherits(res, "try-error")) { vc.lb <- res lb.conv <- TRUE } } break } con$vc.min <- con$vc.min + epdiff } if (verbose) cat("\n") ################################################################### ### search for upper bound ### get diff value when setting component to vc.max; this value should be positive (i.e., discrepancy must be larger than critical value) ### if it is not, then the upper bound must be above vc.max epdiff <- abs(con$vc.max - vc) / con$eptries for (i in seq_len(con$eptries)) { res <- try(.profile.rma.mv(con$vc.max, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, confint=TRUE, objective=objective, verbose=verbose), silent=TRUE) if (!inherits(res, "try-error") && !is.na(res)) { if (!.isTRUE(ddd$extint) && res < 0) { vc.ub <- con$vc.max ub.conv <- TRUE if (is.element(comp, c("sigma2", "tau2", "gamma2"))) ub.sign <- ">" if (is.element(comp, c("rho", "phi")) && con$vc.max < 1) ub.sign <- ">" if ((comp == "rho" && is.element(x$struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD"))) || (comp == "phi" && is.element(x$struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD")))) ub.sign <- ">" } else { if (.isTRUE(ddd$extint)) { res <- try(uniroot(.profile.rma.mv, interval=c(vc, con$vc.max), tol=con$tol, maxiter=con$maxiter, extendInt="upX", obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } else { res <- try(uniroot(.profile.rma.mv, interval=c(vc, con$vc.max), tol=con$tol, maxiter=con$maxiter, obj=x, comp=comp, sigma2.pos=sigma2.pos, tau2.pos=tau2.pos, rho.pos=rho.pos, gamma2.pos=gamma2.pos, phi.pos=phi.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } ### check if uniroot method converged if (!inherits(res, "try-error")) { vc.ub <- res ub.conv <- TRUE } } break } con$vc.max <- con$vc.max - epdiff } ################################################################### } ###################################################################### ###################################################################### ###################################################################### if (!lb.conv) warning(mstyle$warning("Cannot obtain lower bound of profile likelihood CI due to convergence problems."), call.=FALSE) if (!ub.conv) warning(mstyle$warning("Cannot obtain upper bound of profile likelihood CI due to convergence problems."), call.=FALSE) ###################################################################### vc <- c(vc, vc.lb, vc.ub) if (is.element(comp, c("sigma2", "tau2", "gamma2"))) { vcsqrt <- sqrt(ifelse(vc >= 0, vc, NA_real_)) res.random <- rbind(vc, vcsqrt) if (comp == "sigma2") { if (length(x$sigma2) == 1L) { rownames(res.random) <- c("sigma^2", "sigma") } else { rownames(res.random) <- paste0(c("sigma^2", "sigma"), ".", sigma2.pos) } } if (comp == "tau2") { if (length(x$tau2) == 1L) { rownames(res.random) <- c("tau^2", "tau") } else { rownames(res.random) <- paste0(c("tau^2", "tau"), ".", tau2.pos) } } if (comp == "gamma2") { if (length(x$gamma2) == 1L) { rownames(res.random) <- c("gamma^2", "gamma") } else { rownames(res.random) <- paste0(c("gamma^2", "gamma"), ".", gamma2.pos) } } } else { res.random <- rbind(vc) if (comp == "rho") { if (length(x$rho) == 1L) { rownames(res.random) <- "rho" } else { rownames(res.random) <- paste0("rho.", rho.pos) } } if (comp == "phi") { if (length(x$phi) == 1L) { rownames(res.random) <- "phi" } else { rownames(res.random) <- paste0("phi.", rho.pos) } } } colnames(res.random) <- c("estimate", "ci.lb", "ci.ub") } ######################################################################### ######################################################################### ######################################################################### if (fixed) { if (is.element(x$test, c("knha","adhoc","t"))) { crit <- sapply(seq_along(x$ddf), function(j) if (x$ddf[j] > 0) qt(level/2, df=x$ddf[j], lower.tail=FALSE) else NA_real_) } else { crit <- qnorm(level/2, lower.tail=FALSE) } beta <- c(x$beta) ci.lb <- c(beta - crit * x$se) ci.ub <- c(beta + crit * x$se) if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] res.fixed <- cbind(estimate=beta, ci.lb=ci.lb, ci.ub=ci.ub) rownames(res.fixed) <- rownames(x$beta) } ######################################################################### ######################################################################### ######################################################################### res <- list() if (fixed) res$fixed <- res.fixed if (random) res$random <- res.random res$digits <- digits if (random) { res$ci.null <- ci.null res$lb.sign <- lb.sign res$ub.sign <- ub.sign #res$vc.min <- con$vc.min } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(res) <- "confint.rma" return(res) } metafor/R/fitstats.rma.r0000644000176200001440000000300014671064410014706 0ustar liggesusersfitstats.rma <- function(object, ..., REML) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") ### unless REML argument is specified, method of first object determines ### whether to show fit statistics based on the ML or REML likelihood if (missing(REML)) { if (object$method == "REML") { REML <- TRUE } else { REML <- FALSE } } if (missing(...)) { ### if there is just 'object' if (REML) { out <- cbind(object$fit.stats$REML) colnames(out) <- "REML" } else { out <- cbind(object$fit.stats$ML) colnames(out) <- "ML" } } else { ### if there is 'object' and additional objects via ... if (REML) { out <- sapply(list(object, ...), function(x) x$fit.stats$REML) } else { out <- sapply(list(object, ...), function(x) x$fit.stats$ML) } out <- data.frame(out) ### get names of objects; same idea as in stats:::AIC.default cl <- match.call() cl$REML <- NULL names(out) <- as.character(cl[-1L]) ### check that all models were fitted to the same data chksums <- sapply(list(object, ...), function(x) x$chksumyi) if (any(chksums[1] != chksums)) warning(mstyle$warning("Models not all fitted to the same data."), call.=FALSE) } rownames(out) <- c("logLik:", "deviance:", "AIC:", "BIC:", "AICc:") return(out) #print(fmtx(out, object$digits[["fit"]]), quote=FALSE) #invisible(out) } metafor/R/funnel.default.r0000644000176200001440000005140114717402136015213 0ustar liggesusersfunnel.default <- function(x, vi, sei, ni, subset, yaxis="sei", xlim, ylim, xlab, ylab, slab, steps=5, at, atransf, targs, digits, level=95, back, shade, hlines, refline=0, lty=3, pch, col, bg, label=FALSE, offset=0.4, legend=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(subset)) subset <- NULL yaxis <- match.arg(yaxis, c("sei", "vi", "seinv", "vinv", "ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi")) if (missing(atransf)) atransf <- FALSE atransf.char <- deparse(atransf) if (anyNA(level) || is.null(level)) stop(mstyle$stop("Argument 'level' cannot be NA or NULL.")) .start.plot() if (missing(back)) back <- .coladj(par("bg","fg"), dark=0.1, light=-0.2) if (missing(shade)) shade <- .coladj(par("bg","fg"), dark=c(0.2,-0.8), light=c(0,1)) if (length(level) > 1L && length(shade) == 1L) { #shade <- rep(shade, length(level)) shade2 <- .coladj(par("bg","fg"), dark=c(0.5,-0.3), light=c(-0.5,0.3)) shade <- colorRampPalette(c(shade,shade2))(length(level)) shade[-1] <- rev(shade[-1]) } if (missing(hlines)) hlines <- .coladj(par("bg","fg"), dark=c(0,-0.9), light=c(0,1)) if (is.null(refline)) refline <- NA if (missing(pch)) pch <- 19 yi <- x k <- length(yi) ### check if sample size information is available if plotting (some function of) of the sample sizes on the y-axis if (missing(ni)) ni <- NULL if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni"))) { if (is.null(ni)) ni <- attr(yi, "ni") if (!is.null(ni) && length(ni) != k) stop(mstyle$stop(paste0("Length of the 'ni' argument (", length(ni), ") does not correspond to the number of outcomes (", k, ")."))) if (is.null(ni)) stop(mstyle$stop("No sample size information available.")) } ### check if sampling variances and/or standard errors are available if (missing(vi)) vi <- NULL if (is.function(vi)) # if vi is utils::vi() stop(mstyle$stop("Cannot find variable specified for the 'vi' argument.")) if (missing(sei)) sei <- NULL if (is.null(vi)) { if (!is.null(sei)) vi <- sei^2 } if (is.null(sei)) { if (!is.null(vi)) sei <- sqrt(vi) } if (is.element(yaxis, c("sei", "vi", "seinv", "vinv", "wi"))) { if (is.null(vi)) stop(mstyle$stop("Must specify the 'vi' or 'sei' argument.")) if (length(vi) != k) stop(mstyle$stop("Length of 'yi' and 'vi' (or 'sei') are not the same.")) } ### set negative variances and/or standard errors to 0 if (!is.null(vi)) vi[vi < 0] <- 0 if (!is.null(sei)) sei[sei < 0] <- 0 ### if unspecified, get slab from attributes of yi; if not available or it doesn't have the right length, set slab <- 1:k if (missing(slab)) { slab <- attr(yi, "slab") if (is.null(slab) || length(slab) != k) slab <- seq_along(yi) } if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the number of outcomes (", k, ")."))) ### set y-axis label if not specified if (missing(ylab)) { if (yaxis == "sei") ylab <- "Standard Error" if (yaxis == "vi") ylab <- "Variance" if (yaxis == "seinv") ylab <- "Inverse Standard Error" if (yaxis == "vinv") ylab <- "Inverse Variance" if (yaxis == "ni") ylab <- "Sample Size" if (yaxis == "ninv") ylab <- "Inverse Sample Size" if (yaxis == "sqrtni") ylab <- "Square Root Sample Size" if (yaxis == "sqrtninv") ylab <- "Inverse Square Root Sample Size" if (yaxis == "lni") ylab <- "Log Sample Size" if (yaxis == "wi") ylab <- "Weight (in %)" } if (missing(at)) at <- NULL if (missing(targs)) targs <- NULL ### default number of digits (if not specified) if (missing(digits)) { if (yaxis == "sei") digits <- c(2L,3L) if (yaxis == "vi") digits <- c(2L,3L) if (yaxis == "seinv") digits <- c(2L,3L) if (yaxis == "vinv") digits <- c(2L,3L) if (yaxis == "ni") digits <- c(2L,0L) if (yaxis == "ninv") digits <- c(2L,3L) if (yaxis == "sqrtni") digits <- c(2L,3L) if (yaxis == "sqrtninv") digits <- c(2L,3L) if (yaxis == "lni") digits <- c(2L,3L) if (yaxis == "wi") digits <- c(2L,2L) } else { if (length(digits) == 1L) # digits[1] for x-axis labels digits <- c(digits,digits) # digits[2] for y-axis labels } ### note: digits can also be a list (e.g., digits=list(2L,3)); trailing 0's are dropped for integers lty <- .expand1(lty, 2L) # 1st value = funnel lines, 2nd value = reference line if (length(pch) == 1L) { pch.vec <- FALSE pch <- rep(pch, k) } else { pch.vec <- TRUE } if (length(pch) != k) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the number of outcomes (", k, ")."))) if (missing(col)) col <- par("fg") if (length(col) == 1L) { col.vec <- FALSE col <- rep(col, k) } else { col.vec <- TRUE } if (length(col) != k) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the number of outcomes (", k, ")."))) if (missing(bg)) bg <- .coladj(par("bg","fg"), dark=0.1, light=-0.1) if (length(bg) == 1L) { bg.vec <- FALSE bg <- rep(bg, k) } else { bg.vec <- TRUE } if (length(bg) != k) stop(mstyle$stop(paste0("Length of the 'bg' argument (", length(bg), ") does not correspond to the number of outcomes (", k, ")."))) if (length(label) != 1L) stop(mstyle$stop("Argument 'label' should be of length 1.")) ddd <- list(...) if (!is.null(ddd$transf)) warning("Function does not have a 'transf' argument (use 'atransf' instead).", call.=FALSE, immediate.=TRUE) lplot <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) plot(...) labline <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) abline(...) lsegments <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) segments(...) laxis <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) axis(...) lpolygon <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) polygon(...) llines <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) lines(...) lpoints <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) points(...) lrect <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) rect(...) ltext <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) text(...) ### refline2, level2, and lty2 for adding a second reference line / funnel refline2 <- ddd$refline2 level2 <- .chkddd(ddd$level2, 95) lty2 <- .chkddd(ddd$lty2, 3) ### number of y-axis values at which to calculate the bounds of the pseudo confidence interval ci.res <- .chkddd(ddd$ci.res, 1000) ### to adjust color of reference line, region bounds, and the L box colref <- .chkddd(ddd$colref, .coladj(par("bg","fg"), dark=0.6, light=-0.6)) colci <- .chkddd(ddd$colci, .coladj(par("bg","fg"), dark=0.6, light=-0.6)) colbox <- .chkddd(ddd$colbox, .coladj(par("bg","fg"), dark=0.6, light=-0.6)) ######################################################################### ### if a subset of studies is specified if (!is.null(subset)) { subset <- .chksubset(subset, length(yi)) yi <- .getsubset(yi, subset) vi <- .getsubset(vi, subset) sei <- .getsubset(sei, subset) ni <- .getsubset(ni, subset) slab <- .getsubset(slab, subset) pch <- .getsubset(pch, subset) col <- .getsubset(col, subset) bg <- .getsubset(bg, subset) } ### check for NAs and act accordingly has.na <- is.na(yi) | (if (is.element(yaxis, c("vi", "vinv"))) is.na(vi) else FALSE) | (if (is.element(yaxis, c("sei", "seinv"))) is.na(vi) else FALSE) | (if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni"))) is.na(ni) else FALSE) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na] vi <- vi[not.na] sei <- sei[not.na] ni <- ni[not.na] slab <- slab[not.na] pch <- pch[not.na] col <- col[not.na] bg <- bg[not.na] } if (na.act == "na.fail") stop(mstyle$stop("Missing values in data.")) } if (missing(xlab)) xlab <- .setlab(attr(yi, "measure"), transf.char="FALSE", atransf.char, gentype=1) ### at least two studies left? if (length(yi) < 2L) stop(mstyle$stop("Plotting terminated since k < 2.")) ### get weights if (yaxis == "wi") { if (any(vi <= 0)) stop(mstyle$stop("Cannot plot weights when there are non-positive sampling variances in the data.")) weights <- 1/vi weights <- weights / sum(weights) * 100 } ######################################################################### ### set y-axis limits if (missing(ylim)) { ### 1st ylim value is always the lowest precision (should be at the bottom of the plot) ### 2nd ylim value is always the highest precision (should be at the top of the plot) if (yaxis == "sei") ylim <- c(max(sei), 0) if (yaxis == "vi") ylim <- c(max(vi), 0) if (yaxis == "seinv") ylim <- c(min(1/sei), max(1/sei)) if (yaxis == "vinv") ylim <- c(min(1/vi), max(1/vi)) if (yaxis == "ni") ylim <- c(min(ni), max(ni)) if (yaxis == "ninv") ylim <- c(max(1/ni), min(1/ni)) if (yaxis == "sqrtni") ylim <- c(min(sqrt(ni)), max(sqrt(ni))) if (yaxis == "sqrtninv") ylim <- c(max(1/sqrt(ni)), min(1/sqrt(ni))) if (yaxis == "lni") ylim <- c(min(log(ni)), max(log(ni))) if (yaxis == "wi") ylim <- c(min(weights), max(weights)) ### infinite y-axis limits can happen with "seinv" and "vinv" when one or more sampling variances are 0 if (any(is.infinite(ylim))) stop(mstyle$stop("Setting 'ylim' automatically not possible (must set y-axis limits manually).")) } else { ### make sure that user supplied limits are in the right order if (is.element(yaxis, c("sei", "vi", "ninv", "sqrtninv"))) ylim <- c(max(ylim), min(ylim)) if (is.element(yaxis, c("seinv", "vinv", "ni", "sqrtni", "lni", "wi"))) ylim <- c(min(ylim), max(ylim)) ### make sure that user supplied limits are in the appropriate range if (is.element(yaxis, c("sei", "vi", "ni", "ninv", "sqrtni", "sqrtninv", "lni"))) { if (ylim[1] < 0 || ylim[2] < 0) stop(mstyle$stop("Both y-axis limits must be >= 0.")) } if (is.element(yaxis, c("seinv", "vinv"))) { if (ylim[1] <= 0 || ylim[2] <= 0) stop(mstyle$stop("Both y-axis limits must be > 0.")) } if (is.element(yaxis, c("wi"))) { if (ylim[1] < 0 || ylim[2] < 0) stop(mstyle$stop("Both y-axis limits must be >= 0.")) } } ######################################################################### ### set x-axis limits if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { level <- .level(level, allow.vector=TRUE) # note: there may be multiple level values level2 <- .level(level2) level.min <- min(level) # note: smallest level is the widest CI lvals <- length(level) ### calculate the CI bounds at the bottom of the figure (for the widest CI if there are multiple) if (yaxis == "sei") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]^2) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]^2) } if (yaxis == "vi") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]) } if (yaxis == "seinv") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]^2) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]^2) } if (yaxis == "vinv") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]) } if (missing(xlim)) { xlim <- c(min(x.lb.bot,min(yi),na.rm=TRUE), max(x.ub.bot,max(yi),na.rm=TRUE)) # make sure x-axis not only includes widest CI, but also all yi values rxlim <- xlim[2] - xlim[1] # calculate range of the x-axis limits xlim[1] <- xlim[1] - (rxlim * 0.10) # subtract 10% of range from lower x-axis bound xlim[2] <- xlim[2] + (rxlim * 0.10) # add 10% of range to upper x-axis bound } else { xlim <- sort(xlim) # just in case the user supplies the limits in the wrong order } } if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi"))) { if (missing(xlim)) { xlim <- c(min(yi), max(yi)) rxlim <- xlim[2] - xlim[1] # calculate range of the x-axis limits xlim[1] <- xlim[1] - (rxlim * 0.10) # subtract 10% of range from lower x-axis bound xlim[2] <- xlim[2] + (rxlim * 0.10) # add 10% of range to upper x-axis bound } else { xlim <- sort(xlim) # just in case the user supplies the limits in the wrong order } } ### if user has specified 'at' argument, make sure xlim actually contains the min and max 'at' values if (!is.null(at)) { xlim[1] <- min(c(xlim[1], at), na.rm=TRUE) xlim[2] <- max(c(xlim[2], at), na.rm=TRUE) } ######################################################################### ### set up plot lplot(NA, NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, xaxt="n", yaxt="n", bty="n", ...) ### add background shading par.usr <- par("usr") lrect(par.usr[1], par.usr[3], par.usr[2], par.usr[4], col=back, border=NA, ...) ### add y-axis laxis(side=2, at=seq(from=ylim[1], to=ylim[2], length.out=steps), labels=fmtx(seq(from=ylim[1], to=ylim[2], length.out=steps), digits[[2]], drop0ifint=TRUE), ...) ### add horizontal lines labline(h=seq(from=ylim[1], to=ylim[2], length.out=steps), col=hlines, ...) ######################################################################### ### add CI region(s) if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { ### add a bit to the top/bottom ylim so that the CI region(s) fill out the entire figure if (yaxis == "sei") { rylim <- ylim[1] - ylim[2] ylim[1] <- ylim[1] + (rylim * 0.10) ylim[2] <- max(0, ylim[2] - (rylim * 0.10)) } if (yaxis == "vi") { rylim <- ylim[1] - ylim[2] ylim[1] <- ylim[1] + (rylim * 0.10) ylim[2] <- max(0, ylim[2] - (rylim * 0.10)) } if (yaxis == "seinv") { rylim <- ylim[2] - ylim[1] #ylim[1] <- max(0.0001, ylim[1] - (rylim * 0.10)) # not clear how much to add to bottom ylim[2] <- ylim[2] + (rylim * 0.10) } if (yaxis == "vinv") { rylim <- ylim[2] - ylim[1] #ylim[1] <- max(0.0001, ylim[1] - (rylim * 0.10)) # not clear how much to add to bottom ylim[2] <- ylim[2] + (rylim * 0.10) } yi.vals <- seq(from=ylim[1], to=ylim[2], length.out=ci.res) if (yaxis == "sei") vi.vals <- yi.vals^2 if (yaxis == "vi") vi.vals <- yi.vals if (yaxis == "seinv") vi.vals <- 1/yi.vals^2 if (yaxis == "vinv") vi.vals <- 1/yi.vals for (m in lvals:1) { ci.left <- refline - qnorm(level[m]/2, lower.tail=FALSE) * sqrt(vi.vals) ci.right <- refline + qnorm(level[m]/2, lower.tail=FALSE) * sqrt(vi.vals) lpolygon(c(ci.left,ci.right[ci.res:1]), c(yi.vals,yi.vals[ci.res:1]), border=NA, col=shade[m], ...) llines(ci.left, yi.vals, lty=lty[1], col=colci, ...) llines(ci.right, yi.vals, lty=lty[1], col=colci, ...) } if (!is.null(refline2)) { ci.left <- refline2 - qnorm(level2/2, lower.tail=FALSE) * sqrt(vi.vals) ci.right <- refline2 + qnorm(level2/2, lower.tail=FALSE) * sqrt(vi.vals) llines(ci.left, yi.vals, lty=lty2, col=colci, ...) llines(ci.right, yi.vals, lty=lty2, col=colci, ...) } } ### add vertical reference line ### use segments so that line does not extent beyond tip of CI region if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) lsegments(refline, ylim[1], refline, ylim[2], lty=lty[2], col=colref, ...) if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi"))) labline(v=refline, lty=lty[2], col=colref, ...) ######################################################################### ### add points xaxis.vals <- yi if (yaxis == "sei") yaxis.vals <- sei if (yaxis == "vi") yaxis.vals <- vi if (yaxis == "seinv") yaxis.vals <- 1/sei if (yaxis == "vinv") yaxis.vals <- 1/vi if (yaxis == "ni") yaxis.vals <- ni if (yaxis == "ninv") yaxis.vals <- 1/ni if (yaxis == "sqrtni") yaxis.vals <- sqrt(ni) if (yaxis == "sqrtninv") yaxis.vals <- 1/sqrt(ni) if (yaxis == "lni") yaxis.vals <- log(ni) if (yaxis == "wi") yaxis.vals <- weights lpoints(x=xaxis.vals, y=yaxis.vals, pch=pch, col=col, bg=bg, ...) ######################################################################### ### generate x-axis positions if none are specified if (is.null(at)) { at <- axTicks(side=1) #at <- pretty(x=c(alim[1], alim[2]), n=steps-1) #at <- pretty(x=c(min(ci.lb), max(ci.ub)), n=steps-1) } else { at <- at[at > par("usr")[1]] at <- at[at < par("usr")[2]] } if (is.null(ddd$at.lab)) { at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- fmtx(sapply(at.lab, atransf), digits[[1]], drop0ifint=TRUE) } else { if (!is.primitive(atransf) && !is.null(targs) && length(formals(atransf)) == 1L) stop(mstyle$stop("Function specified via 'atransf' does not appear to have an argument for 'targs'.")) at.lab <- fmtx(sapply(at.lab, atransf, targs), digits[[1]], drop0ifint=TRUE) } } else { at.lab <- fmtx(at.lab, digits[[1]], drop0ifint=TRUE) } } else { at.lab <- ddd$at.lab } ### add x-axis laxis(side=1, at=at, labels=at.lab, ...) ### add L-shaped box around plot if (!is.na(colbox)) box(bty="l", col=colbox) ############################################################################ ### labeling of points k <- length(yi) if (is.numeric(label) || is.character(label) || .isTRUE(label)) { if (is.na(refline)) refline <- mean(yi, na.rm=TRUE) if (is.numeric(label)) { label <- round(label) if (label < 0) label <- 0 if (label > k) label <- k label <- order(abs(yi - refline), decreasing=TRUE)[seq_len(label)] } else if ((is.character(label) && label == "all") || .isTRUE(label)) { label <- seq_len(k) } else if ((is.character(label) && label == "out")) { if (!is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { label <- seq_len(k) } else { label <- which(abs(yi - refline) / sqrt(vi) >= qnorm(level.min/2, lower.tail=FALSE)) } } else { label <- NULL } for (i in label) ltext(yi[i], yaxis.vals[i], slab[i], pos=ifelse(yi[i]-refline >= 0, 4, 2), offset=offset, ...) } ######################################################################### ### add legend (if requested) .funnel.legend(legend, level, shade, back, yaxis, trimfill=FALSE, pch, col, bg, pch.fill=NA, pch.vec, col.vec, bg.vec, colci) ############################################################################ ### prepare data frame to return sav <- data.frame(x=xaxis.vals, y=yaxis.vals, slab=slab, stringsAsFactors=FALSE) invisible(sav) } metafor/R/print.confint.rma.r0000644000176200001440000000220114515470765015655 0ustar liggesusersprint.confint.rma <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="confint.rma") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) .space() if (names(x)[1] == "fixed") { res.fixed <- cbind(fmtx(x$fixed[,1,drop=FALSE], digits[["est"]]), fmtx(x$fixed[,2:3,drop=FALSE], digits[["ci"]])) tmp <- capture.output(print(res.fixed, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) } if (is.element("random", names(x))) { if (names(x)[1] == "fixed") cat("\n") res.random <- fmtx(x$random, digits[["var"]]) res.random[,2] <- paste0(x$lb.sign, res.random[,2]) res.random[,3] <- paste0(x$ub.sign, res.random[,3]) tmp <- capture.output(print(res.random, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) ### this can only (currently) happen for 'rma.uni' models if (x$ci.null) message(mstyle$message(paste0("\nThe upper and lower CI bounds for tau^2 both fall below ", round(x$tau2.min,4), ".\nThe CIs are therefore equal to the null/empty set."))) } .space() invisible() } metafor/R/print.deltamethod.r0000644000176200001440000000276114710523056015731 0ustar liggesusersprint.deltamethod <- function(x, digits=x$digits, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="deltamethod") if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } .space() res.table <- data.frame(estimate=fmtx(c(x$tab$coef), digits[["est"]]), se=fmtx(x$tab$se, digits[["se"]]), zval=fmtx(x$tab$zval, digits[["test"]]), pval=fmtp(x$tab$pval, digits[["pval"]]), ci.lb=fmtx(x$tab$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$tab$ci.ub, digits[["ci"]])) rownames(res.table) <- rownames(x$tab) signif <- symnum(x$tab$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } if (length(x$tab$coef) == 1L) res.table <- res.table[1,] if (length(x$tab$coef) == 1L) { tmp <- capture.output(.print.vector(res.table)) } else { tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) } #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) if (signif.legend) { cat("\n") cat(mstyle$legend("---")) cat("\n") cat(mstyle$legend("Signif. codes: "), mstyle$legend(attr(signif, "legend"))) cat("\n") } .space() invisible() } metafor/R/print.list.confint.rma.r0000644000176200001440000000126014515471012016615 0ustar liggesusersprint.list.confint.rma <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="list.confint.rma") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) x$digits <- NULL # so length(x) is correct .space() len <- length(x) for (j in seq_len(len)) { res.random <- fmtx(x[[j]]$random, digits[["var"]]) res.random[,2] <- paste0(x[[j]]$lb.sign, res.random[,2]) res.random[,3] <- paste0(x[[j]]$ub.sign, res.random[,3]) tmp <- capture.output(print(res.random, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) if (j != len) cat("\n") } .space() invisible() } metafor/R/robust.r0000644000176200001440000000007313457322061013614 0ustar liggesusersrobust <- function(x, cluster, ...) UseMethod("robust") metafor/R/baujat.r0000644000176200001440000000006213457322061013542 0ustar liggesusersbaujat <- function(x, ...) UseMethod("baujat") metafor/R/qqnorm.rma.mh.r0000644000176200001440000000534614713142573015010 0ustar liggesusersqqnorm.rma.mh <- function(y, type="rstandard", pch=21, col, bg, grid=FALSE, label=FALSE, offset=0.3, pos=13, ...) { mstyle <- .get.mstyle() .chkclass(class(y), must="rma.mh") x <- y type <- match.arg(type, c("rstandard", "rstudent")) if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) if (length(label) != 1L) stop(mstyle$stop("Argument 'label' should be of length 1.")) .start.plot() if (missing(col)) col <- par("fg") if (missing(bg)) bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) if (is.logical(grid)) gridcol <- .coladj(par("bg","fg"), dark=c(0.2,-0.6), light=c(-0.2,0.6)) if (is.character(grid)) { gridcol <- grid grid <- TRUE } ######################################################################### if (type == "rstandard") { res <- rstandard(x) not.na <- !is.na(res$z) zi <- res$z[not.na] slab <- res$slab[not.na] ord <- order(zi) slab <- slab[ord] } else { res <- rstudent(x) not.na <- !is.na(res$z) zi <- res$z[not.na] slab <- res$slab[not.na] ord <- order(zi) slab <- slab[ord] } sav <- qqnorm(zi, pch=pch, col=col, bg=bg, bty="l", ...) ### add grid (and redraw box) if (.isTRUE(grid)) { grid(col=gridcol) box(..., bty="l") } abline(a=0, b=1, lty="solid", ...) #qqline(zi, ...) #abline(h=0, lty="dotted", ...) #abline(v=0, lty="dotted", ...) points(sav$x, sav$y, pch=pch, col=col, bg=bg, ...) ######################################################################### ### labeling of points if ((is.character(label) && label=="none") || .isFALSE(label)) return(invisible(sav)) if ((is.character(label) && label=="all") || .isTRUE(label)) label <- x$k if (is.numeric(label)) { label <- round(label) if (label < 1 | label > x$k) stop(mstyle$stop("Out of range value for 'label' argument.")) pos.x <- sav$x[ord] pos.y <- sav$y[ord] dev <- abs(pos.x - pos.y) for (i in seq_len(x$k)) { if (sum(dev > dev[i]) < label) { if (pos <= 4) text(pos.x[i], pos.y[i], slab[i], pos=pos, offset=offset, ...) if (pos == 13) text(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] >= 0, 1, 3), offset=offset, ...) if (pos == 24) text(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] <= 0, 2, 4), offset=offset, ...) #text(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i] >= 0, 2, 4), offset=offset, ...) } } } ######################################################################### invisible(sav) } metafor/R/conv.wald.r0000644000176200001440000002032414643463120014172 0ustar liggesusersconv.wald <- function(out, ci.lb, ci.ub, zval, pval, n, data, include, level=95, transf, check=TRUE, var.names, append=TRUE, replace="ifna", ...) { # TODO: allow t-distribution based CIs/tests (then also need dfs argument)? mstyle <- .get.mstyle() if (missing(out) && missing(ci.lb) && missing(ci.ub) && missing(zval) && missing(pval)) stop(mstyle$stop("Must specify at least some of these arguments: 'out', 'ci.lb', 'ci.ub', 'zval', 'pval'.")) if (is.logical(replace)) { if (isTRUE(replace)) { replace <- "all" } else { replace <- "ifna" } } replace <- match.arg(replace, c("ifna","all")) ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("cifac")) cifac <- .chkddd(ddd$cifac, 0.1) ######################################################################### if (missing(data)) data <- NULL has.data <- !is.null(data) if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } x <- data ### checks on var.names argument if (missing(var.names)) { if (inherits(x, "escalc")) { if (!is.null(attr(x, "yi.names"))) { # if yi.names attributes is available yi.name <- attr(x, "yi.names")[1] # take the first entry to be the yi variable } else { # if not, see if 'yi' is in the object and assume that is the yi variable if (!is.element("yi", names(x))) stop(mstyle$stop("Cannot determine name of the 'yi' variable.")) yi.name <- "yi" } if (!is.null(attr(x, "vi.names"))) { # if vi.names attributes is available vi.name <- attr(x, "vi.names")[1] # take the first entry to be the vi variable } else { # if not, see if 'vi' is in the object and assume that is the vi variable if (!is.element("vi", names(x))) stop(mstyle$stop("Cannot determine name of the 'vi' variable.")) vi.name <- "vi" } } else { yi.name <- "yi" vi.name <- "vi" } } else { if (length(var.names) != 2L) stop(mstyle$stop("Argument 'var.names' must be of length 2.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\nVariable names adjusted to: var.names = c('", var.names[1], "','", var.names[2], "').")), call.=FALSE) } yi.name <- var.names[1] vi.name <- var.names[2] } if (missing(transf)) transf <- FALSE ######################################################################### mf <- match.call() out <- .getx("out", mf=mf, data=x, checknumeric=TRUE) ci.lb <- .getx("ci.lb", mf=mf, data=x, checknumeric=TRUE) ci.ub <- .getx("ci.ub", mf=mf, data=x, checknumeric=TRUE) zval <- .getx("zval", mf=mf, data=x, checknumeric=TRUE) pval <- .getx("pval", mf=mf, data=x, checknumeric=TRUE) n <- .getx("n", mf=mf, data=x, checknumeric=TRUE) level <- .getx("level", mf=mf, data=x, checknumeric=TRUE, default=95) include <- .getx("include", mf=mf, data=x) if (!.equal.length(out, ci.lb, ci.ub, zval, pval, n)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- max(length(out), length(ci.lb), length(ci.ub), length(zval), length(pval), length(n)) if (is.null(out)) out <- rep(NA_real_, k) if (is.null(ci.lb)) ci.lb <- rep(NA_real_, k) if (is.null(ci.ub)) ci.ub <- rep(NA_real_, k) if (is.null(zval)) zval <- rep(NA_real_, k) if (is.null(pval)) pval <- rep(NA_real_, k) if (is.null(n)) n <- rep(NA_real_, k) ### if include is NULL, set to TRUE vector if (is.null(include)) include <- rep(TRUE, k) ### turn numeric include vector into a logical vector include <- .chksubset(include, k, stoponk0=FALSE) ### set inputs to NA for rows not to be included out[!include] <- NA_real_ ci.lb[!include] <- NA_real_ ci.ub[!include] <- NA_real_ zval[!include] <- NA_real_ pval[!include] <- NA_real_ n[!include] <- NA_real_ ### check p-values if (any(pval < 0, na.rm=TRUE) || any(pval > 1, na.rm=TRUE)) stop(mstyle$stop("One or more p-values are < 0 or > 1.")) ### if level is a single value, expand to the appropriate length level <- .expand1(level, k) if (length(level) != k) stop(mstyle$stop(paste0("Length of the 'level' argument (", length(level), ") does not correspond to the size of the dataset (", k, ")."))) level <- .level(level, allow.vector=TRUE) crit <- qnorm(level/2, lower.tail=FALSE) ### apply transformation function if one has been specified if (is.function(transf)) { out <- sapply(out, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } ### set up data frame if 'data' was not specified if (!has.data) { x <- data.frame(rep(NA_real_, k), rep(NA_real_, k)) names(x) <- c(yi.name, vi.name) } ######################################################################### ### replace missing x$yi values if (replace=="ifna") { x[[yi.name]] <- replmiss(x[[yi.name]], out) } else { x[[yi.name]][!is.na(out)] <- out[!is.na(out)] } ### replace missing ni attribute values (or add 'ni' attribute if at least one value is not missing) if (!is.null(attributes(x[[yi.name]])$ni)) { attributes(x[[yi.name]])$ni <- replmiss(attributes(x[[yi.name]])$ni, n) } else { if (any(!is.na(n))) attr(x[[yi.name]], "ni") <- n } ######################################################################### ### convert Wald-type CIs to sampling variances vi <- ((ci.ub-ci.lb)/(2*crit))^2 ### check if yi is about halfway between CI bounds if (check) { # |-------------+-------------| # lb yi ub # |---| (ub+lb)/2 # # if the difference is more than 10% of the CI range, then flag this row diffs <- abs((ci.ub+ci.lb)/2 - x[[yi.name]]) / (ci.ub - ci.lb) #x$diffs <- diffs diffslarge <- diffs > cifac diffslarge[!is.na(x[[vi.name]])] <- NA # when x$vi is not missing, ignore diffslarge if (any(diffslarge, na.rm=TRUE)) { diffslarge <- which(diffslarge) if (length(diffslarge) > 5) { diffslarge <- paste0(paste0(head(diffslarge, 5), collapse=", "), ", ...") } else { diffslarge <- paste0(diffslarge, collapse=", ") } warning(mstyle$warning("The observed outcome does not appear to be halfway between '(ci.lb, ci.ub)' in row(s): ", diffslarge), call.=FALSE) } } ### convert two-sided p-values to Wald-type test statistics and replace missing zval values zval <- replmiss(zval, qnorm(pval/2, lower.tail=FALSE)) ### convert Wald-type test statistics to sampling variances and replace missing vi values vi <- replmiss(vi, (x[[yi.name]] / zval)^2) ### note: if both (ci.lb,ci.ub) and zval/pval is available, then this favors ### the back-calculation based on (ci.lb,ci.ub) which seems reasonable ### TODO: could consider checking if the back-calculated vi's differs in this case ### (or if x$vi is already available) ### replace missing x$vi values if (replace=="ifna") { x[[vi.name]] <- replmiss(x[[vi.name]], vi) } else { x[[vi.name]][!is.na(vi)] <- vi[!is.na(vi)] } ######################################################################### measure <- attr(x[[yi.name]], "measure") if (is.null(measure)) measure <- "GEN" #escall <- paste0("escalc(measure='", measure, "', data=x, yi=", yi.name, ", vi=", vi.name, ", var.names=c('", yi.name, "','", vi.name, "'))") #x <- eval(str2lang(escall)) x <- escalc(measure=measure, data=x, yi=x[[yi.name]], vi=x[[vi.name]], var.names=c(yi.name,vi.name)) if (!append) x <- x[,c(yi.name, vi.name)] return(x) ######################################################################### } metafor/R/print.matreg.r0000644000176200001440000000327414710440425014714 0ustar liggesusersprint.matreg <- function(x, digits=x$digits, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="matreg") if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } .space() if (x$test == "t") { res.table <- data.frame(estimate=fmtx(c(x$tab$beta), digits[["est"]]), se=fmtx(x$tab$se, digits[["se"]]), tval=fmtx(x$tab$tval, digits[["test"]]), df=round(x$tab$df,2), pval=fmtp(x$tab$pval, digits[["pval"]]), ci.lb=fmtx(x$tab$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$tab$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) } else { res.table <- data.frame(estimate=fmtx(c(x$tab$beta), digits[["est"]]), se=fmtx(x$tab$se, digits[["se"]]), zval=fmtx(x$tab$zval, digits[["test"]]), pval=fmtp(x$tab$pval, digits[["pval"]]), ci.lb=fmtx(x$tab$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$tab$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) } rownames(res.table) <- rownames(x$tab) signif <- symnum(x$tab$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) if (signif.legend) { cat("\n") cat(mstyle$legend("---")) cat("\n") cat(mstyle$legend("Signif. codes: "), mstyle$legend(attr(signif, "legend"))) cat("\n") } .space() invisible() } metafor/R/radial.r0000644000176200001440000000007713457322061013536 0ustar liggesusersradial <- galbraith <- function(x, ...) UseMethod("radial") metafor/R/permutest.rma.ls.r0000644000176200001440000006434214722315105015527 0ustar liggesuserspermutest.rma.ls <- function(x, exact=FALSE, iter=1000, btt=x$btt, att=x$att, progbar=TRUE, digits, control, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.ls") if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed to carry out permutation test is not available in the model object.")) ddd <- list(...) .chkdots(ddd, c("tol", "time", "seed", "verbose", "permci", "skip.beta", "skip.alpha", "fixed", "code1", "code2", "code3", "code4")) if (!is.null(ddd$tol)) # in case user specified comptol in the old manner comptol <- ddd$tol fixed <- .chkddd(ddd$fixed, FALSE, .isTRUE(ddd$fixed)) if (.isTRUE(ddd$permci)) warning(mstyle$warning("Permutation-based CIs for location-scale models not currently available."), call.=FALSE) if (.isTRUE(ddd$time)) time.start <- proc.time() if (.isTRUE(ddd$skip.beta)) { skip.beta <- TRUE } else { skip.beta <- FALSE } if (.isTRUE(ddd$skip.alpha)) { skip.alpha <- TRUE } else { skip.alpha <- FALSE } iter <- round(iter) if (iter <= 1) stop(mstyle$stop("Argument 'iter' must be >= 2.")) ### for intercept-only models, cannot run a permutation test if (x$Z.int.only) { skip.alpha <- TRUE warning(mstyle$warning("Cannot carry out a permutation test for an intercept-only scale model."), call.=FALSE) } if (skip.beta && skip.alpha) stop(mstyle$stop("Must run permutation test for at least one part of the model.")) ### set defaults for control parameters and replace with any user-defined values if (missing(control)) control <- list() con <- list(comptol=.Machine$double.eps^0.5, alternative="two.sided", p2defn="abs", stat="test") con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] con$alternative <- match.arg(con$alternative, c("two.sided", "less", "greater")) con$p2defn <- match.arg(con$p2defn, c("abs", "px2")) con$stat <- match.arg(con$stat, c("test", "coef")) if (exists("comptol", inherits=FALSE)) con$comptol <- comptol if (is.character(exact) && exact == "i") { skip.beta <- TRUE skip.alpha <- TRUE } if (!missing(btt) || !missing(att)) { btt <- .set.btt(btt, x$p, x$int.incl, colnames(x$X), fixed=fixed) att <- .set.btt(att, x$q, x$Z.int.incl, colnames(x$Z), fixed=fixed) args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=X, intercept=FALSE, scale=x$Z, link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=btt, att=att, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control) x <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) } ######################################################################### ######################################################################### ######################################################################### ### calculate number of permutations for an exact permutation test if (x$int.only) { ### for intercept-only models, there are 2^k possible permutations of the signs X.exact.iter <- 2^x$k } else { ### for meta-regression models, there are k! possible permutations of the rows of the model matrix #X.exact.iter <- round(exp(lfactorial(x$k))) # note: without round(), not exactly an integer! ### however, when there are duplicated rows in the model matrix, the number of *unique* permutations ### is lower; the code below below determines the number of unique permutations ### order the X matrix X <- as.data.frame(x$X)[do.call(order, as.data.frame(x$X)),] ### determine groupings X.indices <- cumsum(c(TRUE, !duplicated(X)[-1])) ### this turns 1,1,1,2,2,3,4,4,4 into 1,1,1,4,4,6,7,7,7 so that the actual row numbers can be permuted X.indices <- rep(cumsum(rle(X.indices)$lengths) - (rle(X.indices)$lengths - 1), rle(X.indices)$lengths) ### determine exact number of unique permutations ind.table <- table(X.indices) X.exact.iter <- round(prod((max(ind.table)+1):x$k) / prod(factorial(ind.table[-which.max(ind.table)]))) # cancel largest value in numerator and denominator to reduce overflow problems #X.exact.iter <- round(factorial(x$k) / prod(factorial(ind.table))) # definitional formula #X.exact.iter <- round(exp(lfactorial(x$k) - sum(lfactorial(ind.table)))) # using log of definitional formula and then round(exp()) if (is.na(X.exact.iter)) X.exact.iter <- Inf } i.exact.iter <- X.exact.iter if (!skip.beta) { ### if 'exact=TRUE' or if the number of iterations for an exact test are smaller ### than what is specified under 'iter', then carry out the exact test X.exact <- exact X.iter <- iter if (X.exact || (X.exact.iter <= X.iter)) { X.exact <- TRUE X.iter <- X.exact.iter } if (X.iter == Inf) stop(mstyle$stop("Too many iterations required for an exact permutation test of the location model.")) ###################################################################### ### generate seed (needed when X.exact=FALSE) if (!X.exact) { seed <- as.integer(runif(1)*2e9) if (!is.null(ddd$seed)) { set.seed(ddd$seed) } else { set.seed(seed) } } ### elements that need to be returned outlist <- "beta=beta, zval=zval, QM=QM" ###################################################################### if (progbar) cat(mstyle$verbose(paste0("Running ", X.iter, " iterations for an ", ifelse(X.exact, "exact", "approximate"), " permutation test of the location model.\n"))) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) if (x$int.only) { ### permutation test for intercept-only model zval.perm <- try(rep(NA_real_, X.iter), silent=TRUE) if (inherits(zval.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) beta.perm <- try(rep(NA_real_, X.iter), silent=TRUE) if (inherits(beta.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) QM.perm <- try(rep(NA_real_, X.iter), silent=TRUE) if (inherits(QM.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) if (progbar) pbar <- pbapply::startpb(min=0, max=X.iter) if (X.exact) { # exact permutation test for intercept-only models signmat <- as.matrix(expand.grid(replicate(x$k, list(c(1,-1))), KEEP.OUT.ATTRS=FALSE)) for (i in seq_len(X.iter)) { if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) args <- list(yi=signmat[i,]*x$yi, vi=x$vi, weights=x$weights, intercept=TRUE, scale=x$Z, link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=1, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control, skiphes=TRUE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next beta.perm[i] <- res$beta[,1] zval.perm[i] <- res$zval QM.perm[i] <- res$QM if (progbar) pbapply::setpb(pbar, i) } } else { # approximate permutation test for intercept-only models i <- 1 while (i <= X.iter) { if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) signs <- sample(c(-1,1), x$k, replace=TRUE) # easier to understand (a tad slower for small k, but faster for larger k) #signs <- 2*rbinom(x$k,1,0.5)-1 args <- list(yi=signs*x$yi, vi=x$vi, weights=x$weights, intercept=TRUE, scale=x$Z, link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=1, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control, skiphes=TRUE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next beta.perm[i] <- res$beta[,1] zval.perm[i] <- res$zval QM.perm[i] <- res$QM i <- i + 1 if (progbar) pbapply::setpb(pbar, i) } } ### the first random permutation is always the observed data (avoids possibility of p=0) if (!X.exact) { beta.perm[1] <- x$beta[,1] zval.perm[1] <- x$zval QM.perm[1] <- x$QM } if (con$alternative == "two.sided") { if (con$p2defn == "abs") { ### absolute value definition of the two-sided p-value if (con$stat == "test") { pval <- mean(abs(zval.perm) >= abs(x$zval) - con$comptol, na.rm=TRUE) # based on test statistic } else { pval <- mean(abs(beta.perm) >= abs(c(x$beta)) - con$comptol, na.rm=TRUE) # based on coefficient } } else { ### two times the one-sided p-value definition of the two-sided p-value if (con$stat == "test") { if (x$zval > median(zval.perm, na.rm=TRUE)) { pval <- 2*mean(zval.perm >= x$zval - con$comptol, na.rm=TRUE) # based on test statistic } else { pval <- 2*mean(zval.perm <= x$zval + con$comptol, na.rm=TRUE) } } else { if (c(x$beta) > median(beta.perm, na.rm=TRUE)) { pval <- 2*mean(beta.perm >= c(x$beta) - con$comptol, na.rm=TRUE) # based on coefficient } else { pval <- 2*mean(beta.perm <= c(x$beta) + con$comptol, na.rm=TRUE) } } } } if (con$alternative == "less") { if (con$stat == "test") { pval <- mean(zval.perm <= x$zval + con$comptol, na.rm=TRUE) # based on test statistic } else { pval <- mean(beta.perm <= c(x$beta) + con$comptol, na.rm=TRUE) # based on coefficient } } if (con$alternative == "greater") { if (con$stat == "test") { pval <- mean(zval.perm >= x$zval - con$comptol, na.rm=TRUE) # based on test statistic } else { pval <- mean(beta.perm >= c(x$beta) - con$comptol, na.rm=TRUE) # based on coefficient } } pval[pval > 1] <- 1 QMp <- mean(QM.perm >= x$QM - con$comptol, na.rm=TRUE) ###################################################################### } else { ### permutation test for meta-regression model zval.perm <- try(suppressWarnings(matrix(NA_real_, nrow=X.iter, ncol=x$p)), silent=TRUE) if (inherits(zval.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) beta.perm <- try(suppressWarnings(matrix(NA_real_, nrow=X.iter, ncol=x$p)), silent=TRUE) if (inherits(beta.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) QM.perm <- try(rep(NA_real_, X.iter), silent=TRUE) if (inherits(QM.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) if (progbar) pbar <- pbapply::startpb(min=0, max=X.iter) if (X.exact) { # exact permutation test for meta-regression models #permmat <- .genperms(x$k) permmat <- .genuperms(X.indices) # use recursive algorithm to obtain all unique permutations for (i in seq_len(X.iter)) { if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=cbind(X[permmat[i,],]), intercept=FALSE, scale=x$Z, link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=x$btt, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control, skiphes=FALSE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next beta.perm[i,] <- res$beta[,1] zval.perm[i,] <- res$zval QM.perm[i] <- res$QM if (progbar) pbapply::setpb(pbar, i) } } else { # approximate permutation test for meta-regression models i <- 1 while (i <= X.iter) { if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=cbind(X[sample(x$k),]), intercept=FALSE, scale=x$Z, link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=x$btt, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control, skiphes=FALSE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next beta.perm[i,] <- res$beta[,1] zval.perm[i,] <- res$zval QM.perm[i] <- res$QM i <- i + 1 if (progbar) pbapply::setpb(pbar, i) } } ### the first random permutation is always the observed data (avoids possibility of p=0) if (!X.exact) { beta.perm[1,] <- x$beta[,1] zval.perm[1,] <- x$zval QM.perm[1] <- x$QM } if (con$alternative == "two.sided") { if (con$p2defn == "abs") { ### absolute value definition of the two-sided p-value if (con$stat == "test") { pval <- rowMeans(t(abs(zval.perm)) >= abs(x$zval) - con$comptol, na.rm=TRUE) # based on test statistics } else { pval <- rowMeans(t(abs(beta.perm)) >= abs(c(x$beta)) - con$comptol, na.rm=TRUE) # based on coefficients } } else { ### two times the one-sided p-value definition of the two-sided p-value pval <- rep(NA_real_, x$p) if (con$stat == "test") { for (j in seq_len(x$p)) { if (x$zval[j] > median(zval.perm[,j], na.rm=TRUE)) { pval[j] <- 2*mean(zval.perm[,j] >= x$zval[j] - con$comptol, na.rm=TRUE) } else { pval[j] <- 2*mean(zval.perm[,j] <= x$zval[j] + con$comptol, na.rm=TRUE) } } } else { for (j in seq_len(x$p)) { if (c(x$beta)[j] > median(beta.perm[,j], na.rm=TRUE)) { pval[j] <- 2*mean(beta.perm[,j] >= c(x$beta)[j] - con$comptol, na.rm=TRUE) } else { pval[j] <- 2*mean(beta.perm[,j] <= c(x$beta)[j] + con$comptol, na.rm=TRUE) } } } } } if (con$alternative == "less") { if (con$stat == "test") { pval <- rowMeans(t(zval.perm) <= x$zval + con$comptol, na.rm=TRUE) # based on test statistics } else { pval <- rowMeans(t(beta.perm) <= c(x$beta) + con$comptol, na.rm=TRUE) # based on coefficients } } if (con$alternative == "greater") { if (con$stat == "test") { pval <- rowMeans(t(zval.perm) >= x$zval - con$comptol, na.rm=TRUE) # based on test statistics } else { pval <- rowMeans(t(beta.perm) >= c(x$beta) - con$comptol, na.rm=TRUE) # based on coefficients } } pval[pval > 1] <- 1 QMp <- mean(QM.perm >= x$QM - con$comptol, na.rm=TRUE) } if (progbar) pbapply::closepb(pbar) } else { beta.perm <- NA_real_ zval.perm <- NA_real_ QM.perm <- NA_real_ pval <- x$pval QMp <- x$QMp X.exact.iter <- 0 } ######################################################################### ######################################################################### ######################################################################### ### calculate number of permutations for an exact permutation test Z <- as.data.frame(x$Z)[do.call(order, as.data.frame(x$Z)),] Z.indices <- cumsum(c(TRUE, !duplicated(Z)[-1])) Z.indices <- rep(cumsum(rle(Z.indices)$lengths) - (rle(Z.indices)$lengths - 1), rle(Z.indices)$lengths) ind.table <- table(Z.indices) Z.exact.iter <- round(prod((max(ind.table)+1):x$k) / prod(factorial(ind.table[-which.max(ind.table)]))) if (is.na(Z.exact.iter)) Z.exact.iter <- Inf if (x$Z.int.only) Z.exact.iter <- NA_integer_ i.exact.iter <- c(i.exact.iter, Z.exact.iter) if (!skip.alpha) { Z.exact <- exact Z.iter <- iter if (Z.exact || (Z.exact.iter <= Z.iter)) { Z.exact <- TRUE Z.iter <- Z.exact.iter } if (Z.iter == Inf) stop(mstyle$stop("Too many iterations required for an exact permutation test of the scale model.")) ######################################################################### ### generate seed (needed when Z.exact=FALSE) if (!Z.exact) { seed <- as.integer(runif(1)*2e9) if (!is.null(ddd$seed)) { set.seed(ddd$seed) } else { set.seed(seed) } } ### elements that need to be returned outlist <- "alpha=alpha, zval.alpha=zval.alpha, QS=QS" ######################################################################### if (progbar) cat(mstyle$verbose(paste0("Running ", Z.iter, " iterations for an ", ifelse(Z.exact, "exact", "approximate"), " permutation test of the scale model.\n"))) if (!is.null(ddd[["code3"]])) eval(expr = parse(text = ddd[["code3"]])) ### permutation test for the scale model zval.alpha.perm <- try(suppressWarnings(matrix(NA_real_, nrow=Z.iter, ncol=x$q)), silent=TRUE) if (inherits(zval.alpha.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) alpha.perm <- try(suppressWarnings(matrix(NA_real_, nrow=Z.iter, ncol=x$q)), silent=TRUE) if (inherits(alpha.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) QS.perm <- try(rep(NA_real_, Z.iter), silent=TRUE) if (inherits(QS.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) if (progbar) pbar <- pbapply::startpb(min=0, max=Z.iter) if (Z.exact) { # exact permutation test for meta-regression models #permmat <- .genperms(x$k) permmat <- .genuperms(Z.indices) # use recursive algorithm to obtain all unique permutations for (i in seq_len(Z.iter)) { if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=x$X, intercept=FALSE, scale=cbind(Z[permmat[i,],]), link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, att=x$att, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control, skiphes=FALSE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next alpha.perm[i,] <- res$alpha[,1] zval.alpha.perm[i,] <- res$zval.alpha QS.perm[i] <- res$QS if (progbar) pbapply::setpb(pbar, i) } } else { # approximate permutation test for meta-regression models i <- 1 while (i <= Z.iter) { if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=x$X, intercept=FALSE, scale=cbind(Z[sample(x$k),]), link=x$link, method=x$method, weighted=x$weighted, test=x$test, level=x$level, att=x$att, alpha=ifelse(x$alpha.fix, x$alpha, NA), optbeta=x$optbeta, beta=ifelse(x$beta.fix, x$beta, NA), control=x$control, skiphes=FALSE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next alpha.perm[i,] <- res$alpha[,1] zval.alpha.perm[i,] <- res$zval.alpha QS.perm[i] <- res$QS i <- i + 1 if (progbar) pbapply::setpb(pbar, i) } } ### the first random permutation is always the observed data (avoids possibility of p=0) if (!Z.exact) { alpha.perm[1,] <- x$alpha[,1] zval.alpha.perm[1,] <- x$zval.alpha QS.perm[1] <- x$QS } if (con$alternative == "two.sided") { if (con$p2defn == "abs") { ### absolute value definition of the two-sided p-value if (con$stat == "test") { pval.alpha <- rowMeans(t(abs(zval.alpha.perm)) >= abs(x$zval.alpha) - con$comptol, na.rm=TRUE) # based on test statistics } else { pval.alpha <- rowMeans(t(abs(alpha.perm)) >= abs(c(x$alpha)) - con$comptol, na.rm=TRUE) # based on coefficients } } else { ### two times the one-sided p-value definition of the two-sided p-value pval.alpha <- rep(NA_real_, x$q) if (con$stat == "test") { for (j in seq_len(x$q)) { if (x$zval.alpha[j] > median(zval.alpha.perm[,j], na.rm=TRUE)) { pval.alpha[j] <- 2*mean(zval.alpha.perm[,j] >= x$zval.alpha.[j] - con$comptol, na.rm=TRUE) } else { pval.alpha[j] <- 2*mean(zval.alpha.perm[,j] <= x$zval.alpha.[j] + con$comptol, na.rm=TRUE) } } } else { for (j in seq_len(x$q)) { if (c(x$alpha)[j] > median(alpha.perm[,j], na.rm=TRUE)) { pval.alpha[j] <- 2*mean(alpha.perm[,j] >= c(x$alpha)[j] - con$comptol, na.rm=TRUE) } else { pval.alpha[j] <- 2*mean(alpha.perm[,j] <= c(x$alpha)[j] + con$comptol, na.rm=TRUE) } } } } } if (con$alternative == "less") { if (con$stat == "test") { pval.alpha <- rowMeans(t(zval.alpha.perm) <= x$zval.alpha + con$comptol, na.rm=TRUE) # based on test statistics } else { pval.alpha <- rowMeans(t(alpha.perm) <= c(x$alpha) + con$comptol, na.rm=TRUE) # based on coefficients } } if (con$alternative == "greater") { if (con$stat == "test") { pval.alpha <- rowMeans(t(zval.alpha.perm) >= x$zval.alpha - con$comptol, na.rm=TRUE) # based on test statistics } else { pval.alpha <- rowMeans(t(alpha.perm) >= c(x$alpha) - con$comptol, na.rm=TRUE) # based on coefficients } } pval.alpha[pval.alpha > 1] <- 1 pval.alpha[x$alpha.fix] <- NA_real_ QSp <- mean(QS.perm >= x$QS - con$comptol, na.rm=TRUE) if (progbar) pbapply::closepb(pbar) } else { alpha.perm <- NA_real_ zval.alpha.perm <- NA_real_ QS.perm <- NA_real_ pval.alpha <- x$pval.alpha QSp <- NA_real_ Z.exact.iter <- 0 } ############################################################################ ############################################################################ ############################################################################ if (is.character(exact) && exact == "i") return(i.exact.iter) out <- list(pval=pval, QMdf=x$QMdf, QMp=QMp, beta=x$beta, se=x$se, zval=x$zval, ci.lb=x$ci.lb, ci.ub=x$ci.ub, QM=x$QM, pval.alpha=pval.alpha, QSdf=x$QSdf, QSp=QSp, alpha=x$alpha, se.alpha=x$se.alpha, zval.alpha=x$zval.alpha, ci.lb.alpha=x$ci.lb.alpha, ci.ub.alpha=x$ci.ub.alpha, QS=x$QS, k=x$k, p=x$p, btt=x$btt, m=x$m, test=x$test, dfs=x$dfs, ddf=x$ddf, q=x$q, att=x$att, m.alpha=x$m.alpha, ddf.alpha=x$ddf.alpha, int.only=x$int.only, int.incl=x$int.incl, Z.int.only=x$Z.int.only, Z.int.incl=x$Z.int.incl, digits=digits, exact.iter=X.exact.iter, Z.exact.iter=Z.exact.iter, permci=FALSE, alternative=con$alternative, p2defn=con$p2defn, stat=con$stat) out$skip.beta <- skip.beta out$QM.perm <- QM.perm out$zval.perm <- data.frame(zval.perm) out$beta.perm <- data.frame(beta.perm) if (!skip.beta) names(out$zval.perm) <- names(out$beta.perm) <- colnames(x$X) out$skip.alpha <- skip.alpha out$QS.perm <- QS.perm out$zval.alpha.perm <- data.frame(zval.alpha.perm) out$alpha.perm <- data.frame(alpha.perm) if (!skip.alpha) names(out$zval.alpha.perm) <- names(out$alpha.perm) <- colnames(x$Z) if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- c("permutest.rma.ls", "permutest.rma.uni") return(out) } metafor/R/rstandard.rma.uni.r0000644000176200001440000000622114671556514015644 0ustar liggesusersrstandard.rma.uni <- function(model, digits, type="marginal", ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.uni", notav=c("robust.rma", "rma.gen", "rma.uni.selmodel")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$yi) || is.null(model$X)) stop(mstyle$stop("Information needed to compute the residuals is not available in the model object.")) type <- match.arg(type, c("marginal", "conditional")) x <- model if (type == "conditional" && (!is.null(x$weights) || !x$weighted)) stop(mstyle$stop("Extraction of conditional residuals not available for models with non-standard weights.")) #if (type == "conditional" & inherits(x, "robust.rma")) # stop(mstyle$stop("Extraction of conditional residuals not available for objects of class \"robust.rma\".")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } ######################################################################### options(na.action="na.omit") H <- hatvalues(x, type="matrix") options(na.action = na.act) ######################################################################### ImH <- diag(x$k) - H #ei <- ImH %*% cbind(x$yi) if (type == "marginal") { ei <- c(x$yi - x$X %*% x$beta) ei[abs(ei) < 100 * .Machine$double.eps] <- 0 #ei[abs(ei) < 100 * .Machine$double.eps * median(abs(ei), na.rm=TRUE)] <- 0 # see lm.influence ### don't allow this; the SEs of the residuals cannot be estimated consistently for "robust.rma" objects #if (inherits(x, "robust.rma")) { # ve <- ImH %*% tcrossprod(x$meat,ImH) #} else { #ve <- ImH %*% tcrossprod(x$M,ImH) #} ve <- ImH %*% tcrossprod(x$M,ImH) #ve <- x$M + x$X %*% x$vb %*% t(x$X) - 2*H%*%x$M sei <- sqrt(diag(ve)) } if (type == "conditional") { li <- x$tau2 / (x$tau2 + x$vi) pred <- rep(NA_real_, x$k) for (i in seq_len(x$k)) { Xi <- matrix(x$X[i,], nrow=1) pred[i] <- li[i] * x$yi[i] + (1 - li[i]) * Xi %*% x$beta } ei <- x$yi - pred sei <- sqrt(x$vi^2 * 1/(x$vi + x$tau2) * (1 - diag(H))) } resid <- rep(NA_real_, x$k.f) seresid <- rep(NA_real_, x$k.f) stresid <- rep(NA_real_, x$k.f) resid[x$not.na] <- ei seresid[x$not.na] <- sei stresid[x$not.na] <- ei / sei ######################################################################### if (na.act == "na.omit") { out <- list(resid=resid[x$not.na], se=seresid[x$not.na], z=stresid[x$not.na]) out$slab <- x$slab[x$not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(resid=resid, se=seresid, z=stresid) out$slab <- x$slab } if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) out$digits <- digits class(out) <- "list.rma" return(out) } metafor/R/misc.func.hidden.fsn.r0000644000176200001440000001130114624655411016203 0ustar liggesusers############################################################################ .fsn.fisher <- function(fsnum, pi, alpha) { k <- length(pi) X2 <- -2*sum(log(c(pi, rep(0.5, fsnum)))) return(pchisq(X2, df=2*(k+fsnum), lower.tail=FALSE) - alpha) } ############################################################################ .fsn.scale <- function(x, k) { if (k == 0) return(x) if (k == 1) return(0) if (k >= 2) return((x-mean(x))/sd(x)) } .fsn.gen <- function(fsnum, yi, vi, vt, est, tau2, tau2fix, test, weighted, target, alpha, exact, method, mumiss, upperint, maxint, verbose=FALSE, newest=FALSE) { fsnum <- floor(fsnum) if (fsnum > maxint) fsnum <- maxint yinew <- c(yi, .fsn.scale(rnorm(fsnum), fsnum)*sqrt(vt+tau2) + mumiss) vinew <- c(vi, rep(vt,fsnum)) if (is.null(target)) { if (exact && fsnum <= 5000) { tmp <- suppressWarnings(try(rma(yinew, vinew, method=method, tau2=tau2fix, test=test, weighted=weighted), silent=TRUE)) if (inherits(tmp, "try-error")) stop() est.fsn <- tmp$beta[1] tau2.fsn <- tmp$tau2 pval.fsn <- tmp$pval if (mumiss != 0 && sign(est.fsn) == sign(mumiss)) pval.fsn <- 1 } else { k <- length(yi) if (is.element(method, c("FE","EE","CE"))) { tau2.fsn <- 0 } else { est.fsn <- (k*est + fsnum*mumiss) / (k + fsnum) if (is.null(tau2fix)) { tau2.fsn <- max(0, ((k-1)*tau2 + max(0,(fsnum-1))*tau2 + k*(est-est.fsn)^2 + fsnum*(mumiss-est.fsn)^2) / (k + fsnum - 1)) } else { tau2.fsn <- tau2 } } if (isTRUE(weighted)) { est.fsn <- weighted.mean(yinew, 1 / (vinew + tau2.fsn)) zval.new <- est.fsn / sqrt(1 / (sum(1 / (vi + tau2.fsn)) + fsnum / (vt + tau2.fsn))) } else { est.fsn <- mean(yinew) zval.new <- (k + fsnum) * est.fsn / sqrt(sum(vi + tau2.fsn) + fsnum * (vt + tau2.fsn)) } pval.fsn <- 2*pnorm(abs(zval.new), lower.tail=FALSE) if (mumiss != 0 && sign(est.fsn * mumiss) == 1) pval.fsn <- 1 } if (newest) { return(list(est.fsn=est.fsn, tau2.fsn=tau2.fsn, pval.fsn=pval.fsn)) } else { if (fsnum == maxint) { diff <- 0 } else { diff <- pval.fsn - alpha } } if (verbose) cat("fsnum =", formatC(fsnum, width=nchar(upperint)+1, format="d"), " est =", fmtx(est.fsn, flag=" "), " tau2 =", fmtx(tau2.fsn), " pval =", fmtx(pval.fsn), " alpha =", fmtx(alpha), " diff =", fmtx(diff, flag=" "), "\n") } else { if (exact && fsnum <= 5000) { tmp <- suppressWarnings(try(rma(yinew, vinew, method=method, tau2=tau2fix, test=test, weighted=weighted), silent=TRUE)) if (inherits(tmp, "try-error")) stop() est.fsn <- tmp$beta[1] tau2.fsn <- tmp$tau2 pval.fsn <- tmp$pval } else { k <- length(yi) if (is.element(method, c("FE","EE","CE"))) { tau2.fsn <- 0 } else { est.fsn <- (k*est + fsnum*mumiss) / (k + fsnum) if (is.null(tau2fix)) { tau2.fsn <- ((k-1)*tau2 + max(0,(fsnum-1))*tau2 + k*(est-est.fsn)^2 + fsnum*(mumiss-est.fsn)^2) / (k + fsnum - 1) } else { tau2.fsn <- tau2 } } if (isTRUE(weighted)) { est.fsn <- weighted.mean(yinew, 1 / (vinew + tau2.fsn)) zval.new <- est.fsn / sqrt(1 / (sum(1 / (vi + tau2.fsn)) + fsnum / (vt + tau2.fsn))) } else { est.fsn <- mean(yinew) zval.new <- (k + fsnum) * est.fsn / sqrt(sum(vi + tau2.fsn) + fsnum * (vt + tau2.fsn)) } pval.fsn <- 2*pnorm(abs(zval.new), lower.tail=FALSE) } if (newest) { return(list(est.fsn=est.fsn, tau2.fsn=tau2.fsn, pval.fsn=pval.fsn)) } else { if (fsnum == maxint) { diff <- 0 } else { diff <- est.fsn - target } } if (verbose) cat("fsnum =", formatC(fsnum, width=nchar(upperint)+1, format="d"), " est =", fmtx(est.fsn, flag=" "), " tau2 =", fmtx(tau2.fsn), " target =", fmtx(target), " diff =", fmtx(diff, flag=" "), "\n") } return(diff) } ############################################################################ .rnd.fsn <- function(fsnum) { if (is.finite(fsnum) && abs(fsnum - round(fsnum)) >= .Machine$double.eps^0.5) { fsnum <- ceiling(fsnum) } else { fsnum <- round(fsnum) } return(fsnum) } ############################################################################ metafor/R/points.regplot.r0000644000176200001440000000135414135066471015274 0ustar liggesuserspoints.regplot <- function(x, ...) { .chkclass(class(x), must="regplot") ### redraw points points(x=x$xi[x$order], y=x$yi[x$order], pch=x$pch[x$order], cex=x$psize[x$order], col=x$col[x$order], bg=x$bg[x$order], ...) ### redraw labels if (any(x$label)) { offset <- attr(x, "offset") labsize <- attr(x, "labsize") for (i in which(x$label)) { if (isTRUE(x$yi[i] > x$pred[i])) { # x$pred might be NULL, so use isTRUE() text(x$xi[i], x$yi[i] + offset[1] + offset[2]*x$psize[i]^offset[3], x$slab[i], cex=labsize, ...) } else { text(x$xi[i], x$yi[i] - offset[1] - offset[2]*x$psize[i]^offset[3], x$slab[i], cex=labsize, ...) } } } invisible() } metafor/R/weights.rma.peto.r0000644000176200001440000000322614671613742015507 0ustar liggesusersweights.rma.peto <- function(object, type="diagonal", ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.peto") if (is.null(object$outdat)) stop(mstyle$stop("Information needed to compute the weights is not available in the model object.")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) type <- match.arg(type, c("diagonal", "matrix")) x <- object ######################################################################### n1i <- with(x$outdat, ai + bi) n2i <- with(x$outdat, ci + di) Ni <- with(x$outdat, ai + bi + ci + di) xt <- with(x$outdat, ai + ci) yt <- with(x$outdat, bi + di) wi <- xt * yt * (n1i/Ni) * (n2i/Ni) / (Ni - 1) ######################################################################### if (type == "diagonal") { weight <- rep(NA_real_, x$k.f) weight[x$not.na] <- wi / sum(wi) * 100 names(weight) <- x$slab if (na.act == "na.omit") weight <- weight[x$not.na] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in weights.")) return(weight) } if (type == "matrix") { Wfull <- matrix(NA_real_, nrow=x$k.f, ncol=x$k.f) Wfull[x$not.na, x$not.na] <- diag(wi) rownames(Wfull) <- x$slab colnames(Wfull) <- x$slab if (na.act == "na.omit") Wfull <- Wfull[x$not.na, x$not.na, drop=FALSE] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) return(Wfull) } } metafor/R/print.tes.r0000644000176200001440000000462614515471060014234 0ustar liggesusersprint.tes <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="tes") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) .space() cat(mstyle$section(paste("Test of Excess Significance"))) cat("\n\n") cat(mstyle$text("Observed Number of Significant Findings: ")) cat(mstyle$result(x$O)) cat(mstyle$result(paste0(" (out of ", x$k, ")"))) cat("\n") cat(mstyle$text("Expected Number of Significant Findings: ")) cat(mstyle$result(fmtx(x$E, digits[["est"]]))) cat("\n") cat(mstyle$text("Observed Number / Expected Number: ")) cat(mstyle$result(fmtx(x$OEratio, digits[["est"]]))) cat("\n\n") if (length(x$theta) == 1L) { cat(mstyle$text("Estimated Power of Tests (based on theta = ")) cat(mstyle$result(fmtx(x$theta, digits[["est"]]))) cat(mstyle$text(")")) } else { cat(mstyle$text("Estimated Power of Tests: ")) } cat("\n\n") if (x$k > 5L) { power <- quantile(x$power) names(power) <- c("min", "q1", "median", "q3", "max") } else { power <- x$power names(power) <- seq_len(x$k) } tmp <- capture.output(.print.vector(fmtx(power, digits[["pval"]]))) .print.table(tmp, mstyle) cat("\n") cat(mstyle$text("Test of Excess Significance: ")) cat(mstyle$result(paste0("p ", fmtp(x$pval, digits[["pval"]], equal=TRUE, sep=TRUE)))) if (x$test == "chi2") { cat(mstyle$result(paste0(" (X^2 = ", fmtx(x$X2, digits[["test"]]), ", df = 1)"))) } if (x$test == "binom") { cat(mstyle$result(" (binomial test)")) } if (x$test == "exact") { cat(mstyle$result(" (exact test)")) } cat("\n") if (!is.null(x$theta.lim)) { cat(mstyle$text(paste0("Limit Estimate (theta_lim): "))) if (is.na(x$theta.lim[1])) { cat(mstyle$result("not estimable")) } else { cat(mstyle$result(fmtx(x$theta.lim[1], digits[["est"]]))) } if (length(x$theta.lim) == 2L) { cat(mstyle$result(", ")) if (is.na(x$theta.lim[2])) { cat(mstyle$result("not estimable")) } else { cat(mstyle$result(fmtx(x$theta.lim[2], digits[["est"]]))) } } if (any(!is.na(x$theta.lim))) cat(mstyle$result(paste0(" (where p = ", ifelse(x$tes.alternative == "two.sided", x$tes.alpha/2, x$tes.alpha), ")"))) cat("\n") } .space() invisible() } metafor/R/profile.rma.uni.r0000644000176200001440000002341714722336462015323 0ustar liggesusersprofile.rma.uni <- function(fitted, xlim, ylim, steps=20, lltol=1e-03, progbar=TRUE, parallel="no", ncpus=1, cl, plot=TRUE, ...) { mstyle <- .get.mstyle() .chkclass(class(fitted), must="rma.uni", notav=c("rma.ls", "rma.uni.selmodel", "rma.gen")) if (is.element(fitted$method, c("FE","EE","CE"))) stop(mstyle$stop("Cannot profile tau^2 parameter for equal/fixed-effects models.")) x <- fitted if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed for profiling is not available in the model object.")) if (anyNA(steps)) stop(mstyle$stop("No missing values allowed in 'steps' argument.")) if (length(steps) >= 2L) { if (missing(xlim)) xlim <- range(steps) stepseq <- TRUE } else { if (steps < 2) stop(mstyle$stop("Argument 'steps' must be >= 2.")) stepseq <- FALSE } parallel <- match.arg(parallel, c("no", "snow", "multicore")) if (parallel == "no" && ncpus > 1) parallel <- "snow" if (missing(cl)) cl <- NULL if (!is.null(cl) && inherits(cl, "SOCKcluster")) { parallel <- "snow" ncpus <- length(cl) } if (parallel == "snow" && ncpus < 2) parallel <- "no" if (parallel == "snow" || parallel == "multicore") { if (!requireNamespace("parallel", quietly=TRUE)) stop(mstyle$stop("Please install the 'parallel' package for parallel processing.")) ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Argument 'ncpus' must be >= 1.")) } if (!progbar) { pbo <- pbapply::pboptions(type="none") on.exit(pbapply::pboptions(pbo), add=TRUE) } ddd <- list(...) if (.isTRUE(ddd$time)) time.start <- proc.time() pred <- isTRUE(ddd$pred) blup <- isTRUE(ddd$blup) newmods <- NULL if (pred) { if (!is.null(ddd$newmods)) newmods <- ddd$newmods ### test if predict() works with the given newmods (and to get slab for [a]) predres <- predict(x, newmods=newmods) if (length(predres$pred) == 0L) stop(mstyle$stop("Cannot compute predicted values.")) } ######################################################################### if (missing(xlim) || is.null(xlim)) { ### if the user has not specified xlim, set it automatically vc.ci <- try(suppressWarnings(confint(x)), silent=TRUE) if (inherits(vc.ci, "try-error")) { vc.lb <- NA_real_ vc.ub <- NA_real_ } else { ### min() and max() so the actual value is within the xlim bounds ### note: could still get NAs for the bounds if the CI is the empty set vc.lb <- min(x$tau2, vc.ci$random[1,2]) vc.ub <- max(0.1, x$tau2, vc.ci$random[1,3]) # if CI is equal to null set, then this still gives vc.ub = 0.1 } if (is.na(vc.lb) || is.na(vc.ub)) { ### if the CI method fails, try a Wald-type CI for tau^2 vc.lb <- max( 0, x$tau2 - qnorm(0.995) * x$se.tau2) vc.ub <- max(0.1, x$tau2 + qnorm(0.995) * x$se.tau2) } if (is.na(vc.lb) || is.na(vc.ub)) { ### if this still results in NA bounds, use simple method vc.lb <- max( 0, x$tau2/4) vc.ub <- max(0.1, x$tau2*4) } ### if that fails, throw an error if (is.na(vc.lb) || is.na(vc.ub)) stop(mstyle$stop("Cannot set 'xlim' automatically. Please set this argument manually.")) xlim <- c(vc.lb, vc.ub) if (.isTRUE(ddd$sqrt)) xlim <- sqrt(xlim) } else { if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' should be a vector of length 2.")) xlim <- sort(xlim) ### note: if sqrt=TRUE, then xlim is assumed to be given in terms of tau } if (stepseq) { vcs <- steps } else { vcs <- seq(xlim[1], xlim[2], length.out=steps) } #return(vcs) if (length(vcs) <= 1L) stop(mstyle$stop("Cannot set 'xlim' automatically. Please set this argument manually.")) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ### if sqrt=TRUE, then the sequence of vcs are tau values, so square them for the actual profiling if (.isTRUE(ddd$sqrt)) vcs <- vcs^2 if (parallel == "no") res <- pbapply::pblapply(vcs, .profile.rma.uni, obj=x, parallel=parallel, profile=TRUE, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2) if (parallel == "multicore") res <- pbapply::pblapply(vcs, .profile.rma.uni, obj=x, parallel=parallel, profile=TRUE, cl=ncpus, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2) #res <- parallel::mclapply(vcs, .profile.rma.uni, obj=x, parallel=parallel, profile=TRUE, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2, mc.cores=ncpus) if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, vcs, .profile.rma.uni, obj=x, parallel=parallel, profile=TRUE, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2) #res <- parallel::clusterApplyLB(cl, vcs, .profile.rma.uni, obj=x, parallel=parallel, profile=TRUE, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2) #res <- parallel::clusterMap(cl, .profile.rma.uni, vcs, MoreArgs=list(obj=x, parallel=parallel, profile=TRUE, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2), .scheduling = "dynamic") } else { res <- pbapply::pblapply(vcs, .profile.rma.uni, obj=x, parallel=parallel, profile=TRUE, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, vcs, .profile.rma.uni, obj=x, parallel=parallel, profile=TRUE, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2) #res <- parallel::clusterApply(cl, vcs, .profile.rma.uni, obj=x, parallel=parallel, profile=TRUE, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2) #res <- parallel::clusterMap(cl, .profile.rma.uni, vcs, MoreArgs=list(obj=x, parallel=parallel, profile=TRUE, pred=pred, blup=blup, newmods=newmods, code2=ddd$code2)) } } ### if sqrt=TRUE, then transform the tau^2 values back to tau values if (.isTRUE(ddd$sqrt)) { vcs <- sqrt(vcs) vc <- sqrt(x$tau2) } else { vc <- x$tau2 } lls <- sapply(res, function(x) x$ll) beta <- do.call(rbind, lapply(res, function(x) t(x$beta))) ci.lb <- do.call(rbind, lapply(res, function(x) t(x$ci.lb))) ci.ub <- do.call(rbind, lapply(res, function(x) t(x$ci.ub))) beta <- data.frame(beta) ci.lb <- data.frame(ci.lb) ci.ub <- data.frame(ci.ub) names(beta) <- rownames(x$beta) names(ci.lb) <- rownames(x$beta) names(ci.ub) <- rownames(x$beta) ######################################################################### maxll <- c(logLik(x)) if (x$method %in% c("ML","REML") && any(lls >= maxll + lltol, na.rm=TRUE)) warning(mstyle$warning("At least one profiled log-likelihood value is larger than the log-likelihood of the fitted model."), call.=FALSE) if (all(is.na(lls))) warning(mstyle$warning("All model fits failed. Cannot draw profile likelihood plot."), call.=FALSE) if (.isTRUE(ddd$exp)) { lls <- exp(lls) maxll <- exp(maxll) } if (missing(ylim)) { if (any(is.finite(lls))) { if (xlim[1] <= vc && xlim[2] >= vc) { ylim <- range(c(maxll,lls[is.finite(lls)]), na.rm=TRUE) } else { ylim <- range(lls[is.finite(lls)], na.rm=TRUE) } } else { ylim <- rep(maxll, 2L) } if (!.isTRUE(ddd$exp)) ylim <- ylim + c(-0.1, 0.1) } else { if (length(ylim) != 2L) stop(mstyle$stop("Argument 'ylim' should be a vector of length 2.")) ylim <- sort(ylim) } if (.isTRUE(ddd$sqrt)) { xlab <- expression(paste(tau, " Value")) title <- expression(paste("Profile Plot for ", tau)) } else { xlab <- expression(paste(tau^2, " Value")) title <- expression(paste("Profile Plot for ", tau^2)) } sav <- list(tau2=vcs, ll=lls, beta=beta, ci.lb=ci.lb, ci.ub=ci.ub, comps=1, xlim=xlim, ylim=ylim, method=x$method, vc=vc, maxll=maxll, xlab=xlab, title=title, exp=ddd$exp, sqrt=ddd$sqrt) class(sav) <- "profile.rma" if (.isTRUE(ddd$sqrt)) names(sav)[1] <- "tau" sav$I2 <- sapply(res, function(x) x$I2) sav$H2 <- sapply(res, function(x) x$H2) if (pred) { sav$pred <- do.call(cbind, lapply(res, function(x) x$pred)) # use do.call(cbind, lapply()) instead of sapply() to always get a matrix, even when predicting a single value sav$pred.ci.lb <- do.call(cbind, lapply(res, function(x) x$pred.ci.lb)) sav$pred.ci.ub <- do.call(cbind, lapply(res, function(x) x$pred.ci.ub)) sav$pred.pi.lb <- do.call(cbind, lapply(res, function(x) x$pred.pi.lb)) sav$pred.pi.ub <- do.call(cbind, lapply(res, function(x) x$pred.pi.ub)) rownames(sav$pred) <- rownames(sav$pred.ci.lb) <- rownames(sav$pred.ci.ub) <- rownames(sav$pred.pi.lb) <- rownames(sav$pred.pi.ub) <- predres$slab # [a] } if (blup) { sav$blup <- sapply(res, function(x) x$blup) sav$blup.se <- sapply(res, function(x) x$blup.se) sav$blup.pi.lb <- sapply(res, function(x) x$blup.pi.lb) sav$blup.pi.ub <- sapply(res, function(x) x$blup.pi.ub) rownames(sav$blup) <- x$slab[x$not.na] rownames(sav$blup.se) <- x$slab[x$not.na] rownames(sav$blup.pi.lb) <- x$slab[x$not.na] rownames(sav$blup.pi.ub) <- x$slab[x$not.na] } ######################################################################### if (plot) plot(sav, ...) ######################################################################### if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } invisible(sav) } metafor/R/confint.rma.ls.r0000644000176200001440000003264014722340757015146 0ustar liggesusersconfint.rma.ls <- function(object, parm, level, fixed=FALSE, alpha, digits, transf, targs, verbose=FALSE, control, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.ls") if (!missing(parm)) warning(mstyle$warning("Argument 'parm' (currently) ignored."), call.=FALSE) x <- object k <- x$k p <- x$p if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL if (missing(control)) control <- list() ddd <- list(...) .chkdots(ddd, c("time", "xlim", "extint", "code1", "code2")) level <- .level(level, stopon100=.isTRUE(ddd$extint)) if (.isTRUE(ddd$time)) time.start <- proc.time() if (!is.null(ddd$xlim)) { if (length(ddd$xlim) != 2L) stop(mstyle$stop("Argument 'xlim' should be a vector of length 2.")) control$vc.min <- ddd$xlim[1] control$vc.max <- ddd$xlim[2] } if (x$optbeta) stop(mstyle$stop("CI calculation not yet implemented for models fitted with 'optbeta=TRUE'.")) ### check if user has specified alpha argument random <- !missing(alpha) if (!fixed && !random) { ### if both 'fixed' and 'random' are FALSE, obtain CIs for alpha parameters cl <- match.call() ### total number of non-fixed components comps <- sum(!x$alpha.fix) if (comps == 0) stop(mstyle$stop("No components for which a CI can be obtained.")) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) res.all <- list() j <- 0 if (any(!x$alpha.fix)) { for (pos in seq_len(x$alphas)[!x$alpha.fix]) { j <- j + 1 if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) cl.vc <- cl cl.vc$alpha <- pos cl.vc$time <- FALSE #cl.vc$object <- quote(x) cl.vc[[1]] <- str2lang("metafor::confint.rma.ls") if (verbose) cat(mstyle$verbose(paste("\nObtaining CI for alpha =", pos, "\n"))) res.all[[j]] <- eval(cl.vc, envir=parent.frame()) } } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } if (length(res.all) == 1L) { return(res.all[[1]]) } else { res.all$digits <- digits class(res.all) <- "list.confint.rma" return(res.all) } } ######################################################################### ######################################################################### ######################################################################### if (random) { type <- "pl" ###################################################################### ### check if model actually contains (at least one) such a component and that it was actually estimated if (!missing(alpha) && all(x$alpha.fix)) stop(mstyle$stop("Model does not contain any estimated 'alpha' components.")) ### check if user specified more than one alpha component if (!missing(alpha) && (length(alpha) > 1L)) stop(mstyle$stop("Can only specify one 'alpha' component.")) ### check if user specified a logical if (!missing(alpha) && is.logical(alpha)) stop(mstyle$stop("Must specify a number for the 'alpha' component.")) ### check if user specified a component that does not exist if (!missing(alpha) && (alpha > x$alphas || alpha <= 0)) stop(mstyle$stop("No such 'alpha' component in the model.")) ### check if user specified a component that was fixed if (!missing(alpha) && x$alpha.fix[alpha]) stop(mstyle$stop("Specified 'alpha' component was fixed.")) ### if everything is good so far, get value of the variance component and set 'comp' alpha.pos <- NA_integer_ if (!missing(alpha)) { vc <- x$alpha[alpha] comp <- "alpha" alpha.pos <- alpha } #return(list(comp=comp, vc=vc, alpha.pos=alpha.pos)) ###################################################################### ### set defaults for control parameters for uniroot() and replace with any user-defined values ### set vc.min and vc.max and possibly replace with any user-defined values con <- list(tol=.Machine$double.eps^0.25, maxiter=1000, verbose=FALSE, eptries=10) if (comp == "alpha") { if (is.na(x$se.alpha[alpha])) { con$vc.min <- vc - 10 * abs(vc) con$vc.max <- vc + 10 * abs(vc) } else { #con$vc.min <- vc - 10 * qnorm(level/2, lower.tail=FALSE) * x$se.alpha[alpha] #con$vc.max <- vc + 10 * qnorm(level/2, lower.tail=FALSE) * x$se.alpha[alpha] # using this now to deal with cases where the SE may be extremely large con$vc.min <- max(vc - 10 * abs(vc), vc - 10 * qnorm(level/2, lower.tail=FALSE) * x$se.alpha[alpha]) con$vc.max <- min(vc + 10 * abs(vc), vc + 10 * qnorm(level/2, lower.tail=FALSE) * x$se.alpha[alpha]) } } if (!is.null(x$control$alpha.min)) { x$control$alpha.min <- .expand1(x$control$alpha.min, x$q) con$vc.min <- max(con$vc.min, x$control$alpha.min[alpha]) } if (!is.null(x$control$alpha.max)) { x$control$alpha.max <- .expand1(x$control$alpha.max, x$q) con$vc.max <- min(con$vc.max, x$control$alpha.max[alpha]) } con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] if (verbose) con$verbose <- verbose verbose <- con$verbose ###################################################################### vc.lb <- NA_real_ vc.ub <- NA_real_ ci.null <- FALSE # logical if CI is a null set lb.conv <- FALSE # logical if search converged for lower bound (LB) ub.conv <- FALSE # logical if search converged for upper bound (UB) lb.sign <- "" # for sign in case LB must be below vc.min ("<") or above vc.max (">") ub.sign <- "" # for sign in case UB must be below vc.min ("<") or above vc.max (">") ###################################################################### ###################################################################### ###################################################################### ### Profile Likelihood method if (type == "pl") { if (con$vc.min > vc) stop(mstyle$stop("Lower bound of interval to be searched must be <= estimated value of component.")) if (con$vc.max < vc) stop(mstyle$stop("Upper bound of interval to be searched must be >= estimated value of component.")) objective <- qchisq(1-level, df=1) ################################################################### ### search for lower bound ### get diff value when setting component to vc.min; this value should be positive (i.e., discrepancy must be larger than critical value) ### if it is not, then the lower bound must be below vc.min epdiff <- abs(con$vc.min - vc) / con$eptries for (i in seq_len(con$eptries)) { res <- try(.profile.rma.ls(con$vc.min, obj=x, comp=comp, alpha.pos=alpha.pos, confint=TRUE, objective=objective, verbose=verbose), silent=TRUE) if (!inherits(res, "try-error") && !is.na(res)) { if (!.isTRUE(ddd$extint) && res < 0) { vc.lb <- con$vc.min lb.conv <- TRUE lb.sign <- "<" } else { if (.isTRUE(ddd$extint)) { res <- try(uniroot(.profile.rma.ls, interval=c(con$vc.min, vc), tol=con$tol, maxiter=con$maxiter, extendInt="downX", obj=x, comp=comp, alpha.pos=alpha.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } else { res <- try(uniroot(.profile.rma.ls, interval=c(con$vc.min, vc), tol=con$tol, maxiter=con$maxiter, obj=x, comp=comp, alpha.pos=alpha.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } ### check if uniroot method converged if (!inherits(res, "try-error")) { vc.lb <- res lb.conv <- TRUE } } break } con$vc.min <- con$vc.min + epdiff } if (verbose) cat("\n") ################################################################### ### search for upper bound ### get diff value when setting component to vc.max; this value should be positive (i.e., discrepancy must be larger than critical value) ### if it is not, then the upper bound must be above vc.max epdiff <- abs(con$vc.max - vc) / con$eptries for (i in seq_len(con$eptries)) { res <- try(.profile.rma.ls(con$vc.max, obj=x, comp=comp, alpha.pos=alpha.pos, confint=TRUE, objective=objective, verbose=verbose), silent=TRUE) if (!inherits(res, "try-error") && !is.na(res)) { if (!.isTRUE(ddd$extint) && res < 0) { vc.ub <- con$vc.max ub.conv <- TRUE ub.sign <- ">" } else { if (.isTRUE(ddd$extint)) { res <- try(uniroot(.profile.rma.ls, interval=c(vc, con$vc.max), tol=con$tol, maxiter=con$maxiter, extendInt="upX", obj=x, comp=comp, alpha.pos=alpha.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } else { res <- try(uniroot(.profile.rma.ls, interval=c(vc, con$vc.max), tol=con$tol, maxiter=con$maxiter, obj=x, comp=comp, alpha.pos=alpha.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } ### check if uniroot method converged if (!inherits(res, "try-error")) { vc.ub <- res ub.conv <- TRUE } } break } con$vc.max <- con$vc.max - epdiff } ################################################################### } ###################################################################### ###################################################################### ###################################################################### if (!lb.conv) warning(mstyle$warning("Cannot obtain lower bound of profile likelihood CI due to convergence problems."), call.=FALSE) if (!ub.conv) warning(mstyle$warning("Cannot obtain upper bound of profile likelihood CI due to convergence problems."), call.=FALSE) ###################################################################### vc <- c(vc, vc.lb, vc.ub) if (comp == "alpha") { res.random <- rbind(vc) if (x$alphas == 1L) { rownames(res.random) <- "alpha" } else { rownames(res.random) <- paste0("alpha.", alpha.pos) } } colnames(res.random) <- c("estimate", "ci.lb", "ci.ub") } ######################################################################### ######################################################################### ######################################################################### if (fixed) { if (is.element(x$test, c("knha","adhoc","t"))) { crit <- qt(level/2, df=x$ddf, lower.tail=FALSE) } else { crit <- qnorm(level/2, lower.tail=FALSE) } beta <- c(x$beta) ci.lb <- c(beta - crit * x$se) ci.ub <- c(beta + crit * x$se) if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] res.fixed <- cbind(estimate=beta, ci.lb=ci.lb, ci.ub=ci.ub) rownames(res.fixed) <- rownames(x$beta) } ######################################################################### ######################################################################### ######################################################################### res <- list() if (fixed) res$fixed <- res.fixed if (random) res$random <- res.random res$digits <- digits if (random) { res$ci.null <- ci.null res$lb.sign <- lb.sign res$ub.sign <- ub.sign #res$vc.min <- con$vc.min } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(res) <- "confint.rma" return(res) } metafor/R/rstandard.rma.mh.r0000644000176200001440000000311514671556444015456 0ustar liggesusersrstandard.rma.mh <- function(model, digits, ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.mh") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$yi.f)) stop(mstyle$stop("Information needed to compute the residuals is not available in the model object.")) x <- model if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } ######################################################################### resid <- c(x$yi.f - x$beta) resid[abs(resid) < 100 * .Machine$double.eps] <- 0 #resid[abs(resid) < 100 * .Machine$double.eps * median(abs(resid), na.rm=TRUE)] <- 0 # see lm.influence ### note: these are like Pearson (or semi-standardized) residuals seresid <- sqrt(x$vi.f) stresid <- resid / seresid ######################################################################### if (na.act == "na.omit") { out <- list(resid=resid[x$not.na.yivi], se=seresid[x$not.na.yivi], z=stresid[x$not.na.yivi]) out$slab <- x$slab[x$not.na.yivi] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(resid=resid, se=seresid, z=stresid) out$slab <- x$slab } if (na.act == "na.fail" && any(!x$not.na.yivi)) stop(mstyle$stop("Missing values in results.")) out$digits <- digits class(out) <- "list.rma" return(out) } metafor/R/cumul.rma.mh.r0000644000176200001440000001530414722327621014612 0ustar liggesuserscumul.rma.mh <- function(x, order, digits, transf, targs, collapse=FALSE, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.mh") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in data.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL ddd <- list(...) .chkdots(ddd, c("time", "decreasing", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() decreasing <- .chkddd(ddd$decreasing, FALSE) ######################################################################### if (grepl("^order\\(", deparse1(substitute(order)))) warning(mstyle$warning("Use of order() in the 'order' argument is probably erroneous."), call.=FALSE) if (missing(order)) { orvar <- seq_len(x$k.all) collapse <- FALSE } else { mf <- match.call() orvar <- .getx("order", mf=mf, data=x$data) if (length(orvar) != x$k.all) stop(mstyle$stop(paste0("Length of the 'order' argument (", length(orvar), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) } ### note: order variable must be of the same length as the original dataset ### so apply the same subsetting as was done during the model fitting orvar <- .getsubset(orvar, x$subset) ### order data by the order variable (NAs in order variable are dropped) order <- base::order(orvar, decreasing=decreasing, na.last=NA) ai <- x$outdat.f$ai[order] bi <- x$outdat.f$bi[order] ci <- x$outdat.f$ci[order] di <- x$outdat.f$di[order] x1i <- x$outdat.f$x1i[order] x2i <- x$outdat.f$x2i[order] t1i <- x$outdat.f$t1i[order] t2i <- x$outdat.f$t2i[order] yi <- x$yi.f[order] vi <- x$vi.f[order] not.na <- x$not.na[order] slab <- x$slab[order] ids <- x$ids[order] orvar <- orvar[order] if (inherits(x$data, "environment")) { data <- NULL } else { data <- x$data[order,] } if (collapse) { uorvar <- unique(orvar) } else { uorvar <- orvar } k.o <- length(uorvar) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) k <- rep(NA_integer_, k.o) beta <- rep(NA_real_, k.o) se <- rep(NA_real_, k.o) zval <- rep(NA_real_, k.o) pval <- rep(NA_real_, k.o) ci.lb <- rep(NA_real_, k.o) ci.ub <- rep(NA_real_, k.o) QE <- rep(NA_real_, k.o) QEp <- rep(NA_real_, k.o) I2 <- rep(NA_real_, k.o) H2 <- rep(NA_real_, k.o) show <- rep(TRUE, k.o) ### elements that need to be returned outlist <- "k=k, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, QE=QE, QEp=QEp, I2=I2, H2=H2" if (progbar) pbar <- pbapply::startpb(min=0, max=k.o) for (i in seq_len(k.o)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) if (collapse) { if (all(!not.na[is.element(orvar, uorvar[i])])) { if (na.act == "na.omit") show[i] <- FALSE # if all studies to be added are !not.na, don't show (but a fit failure is still shown) next } incl <- is.element(orvar, uorvar[1:i]) } else { if (!not.na[i]) { if (na.act == "na.omit") show[i] <- FALSE # if study to be added is !not.na, don't show (but a fit failure is still shown) next } incl <- 1:i } if (is.element(x$measure, c("RR","OR","RD"))) { args <- list(ai=ai, bi=bi, ci=ci, di=di, measure=x$measure, add=x$add, to=x$to, drop00=x$drop00, correct=x$correct, level=x$level, subset=incl, outlist=outlist) } else { args <- list(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, measure=x$measure, add=x$add, to=x$to, drop00=x$drop00, correct=x$correct, level=x$level, subset=incl, outlist=outlist) } res <- try(suppressWarnings(.do.call(rma.mh, args)), silent=TRUE) if (inherits(res, "try-error")) next k[i] <- res$k beta[i] <- res$beta se[i] <- res$se zval[i] <- res$zval pval[i] <- res$pval ci.lb[i] <- res$ci.lb ci.ub[i] <- res$ci.ub QE[i] <- res$QE QEp[i] <- res$QEp I2[i] <- res$I2 H2[i] <- res$H2 } if (progbar) pbapply::closepb(pbar) ######################################################################### ### if requested, apply transformation function if (.isTRUE(transf) && is.element(x$measure, c("OR","RR","IRR"))) # if transf=TRUE, apply exp transformation to ORs, RRs, and IRRs transf <- exp if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) se <- rep(NA_real_, k.o) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) se <- rep(NA_real_, k.o) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } transf <- TRUE } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ######################################################################### out <- list(k=k[show], estimate=beta[show], se=se[show], zval=zval[show], pval=pval[show], ci.lb=ci.lb[show], ci.ub=ci.ub[show], Q=QE[show], Qp=QEp[show], I2=I2[show], H2=H2[show]) if (collapse) { out$slab <- uorvar[show] out$slab.null <- FALSE } else { out$slab <- slab[show] out$ids <- ids[show] out$data <- data[show,,drop=FALSE] out$slab.null <- x$slab.null } out$order <- uorvar[show] out$digits <- digits out$transf <- transf out$level <- x$level out$test <- x$test if (!transf) { out$measure <- x$measure attr(out$estimate, "measure") <- x$measure } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- c("list.rma", "cumul.rma") return(out) } metafor/R/forest.cumul.rma.r0000644000176200001440000006370514717402405015516 0ustar liggesusersforest.cumul.rma <- function(x, annotate=TRUE, header=TRUE, xlim, alim, olim, ylim, at, steps=5, refline=0, digits=2L, width, xlab, ilab, ilab.lab, ilab.xpos, ilab.pos, transf, atransf, targs, rows, efac=1, pch, psize, col, shade, colshade, lty, fonts, cex, cex.lab, cex.axis, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="cumul.rma") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (x$transf) # if results were transformed, need x$se not be missing below (not really used anyway) x$se <- rep(0, length(x$estimate)) if (missing(transf)) transf <- FALSE if (missing(atransf)) atransf <- FALSE transf.char <- deparse(transf) atransf.char <- deparse(atransf) if (is.function(transf) && is.function(atransf)) stop(mstyle$stop("Use either 'transf' or 'atransf' to specify a transformation (not both).")) .start.plot() yi <- x$estimate if (missing(targs)) targs <- NULL if (missing(at)) at <- NULL mf <- match.call() if (missing(ilab)) { ilab <- NULL } else { ilab <- .getx("ilab", mf=mf, data=x$data) } if (missing(ilab.lab)) ilab.lab <- NULL if (missing(ilab.xpos)) ilab.xpos <- NULL if (missing(ilab.pos)) ilab.pos <- NULL if (missing(col)) { col <- par("fg") } else { col <- .getx("col", mf=mf, data=x$data) } if (missing(pch)) { pch <- 15 } else { pch <- .getx("pch", mf=mf, data=x$data) } if (missing(psize)) { psize <- 1 } else { psize <- .getx("psize", mf=mf, data=x$data) } if (missing(shade)) { shade <- NULL } else { shade <- .getx("shade", mf=mf, data=x$data) } if (missing(colshade)) colshade <- .coladj(par("bg","fg"), dark=0.1, light=-0.1) if (missing(cex)) cex <- NULL if (missing(cex.lab)) cex.lab <- NULL if (missing(cex.axis)) cex.axis <- NULL level <- .level(x$level) ### digits[1] for annotations, digits[2] for x-axis labels ### note: digits can also be a list (e.g., digits=list(2,3L)); trailing 0's on the x-axis labels ### are dropped if the value is an integer if (length(digits) == 1L) digits <- c(digits,digits) ddd <- list(...) ############################################################################ ### set default line types if user has not specified 'lty' argument if (missing(lty)) { lty <- c("solid", "solid") # 1st = CIs, 2nd = horizontal line(s) } else { if (length(lty) == 1L) lty <- c(lty, "solid") } ### vertical expansion factor: 1st = CI end lines, 2nd = arrows efac <- .expand1(efac, 2L) efac[efac == 0] <- NA ### annotation symbols vector if (is.null(ddd$annosym)) { annosym <- c(" [", ", ", "]", "-", " ") # 4th element for minus sign symbol; 5th for space (in place of numbers and +); see [a] } else { annosym <- ddd$annosym if (length(annosym) == 3L) annosym <- c(annosym, "-", " ") if (length(annosym) == 4L) annosym <- c(annosym, " ") if (length(annosym) != 5L) stop(mstyle$stop("Argument 'annosym' must be a vector of length 3 (or 4 or 5).")) } ### adjust annosym for tabular figures if (isTRUE(ddd$tabfig == 1)) annosym <- c("\u2009[", ",\u2009", "]", "\u2212", "\u2002") # \u2009 thin space; \u2212 minus, \u2002 en space if (isTRUE(ddd$tabfig == 2)) annosym <- c("\u2009[", ",\u2009", "]", "\u2013", "\u2002") # \u2009 thin space; \u2013 en dash, \u2002 en space if (isTRUE(ddd$tabfig == 3)) annosym <- c("\u2009[", ",\u2009", "]", "\u2212", "\u2007") # \u2009 thin space; \u2212 minus, \u2007 figure space ### get measure from object measure <- x$measure ### column header estlab <- .setlab(measure, transf.char, atransf.char, gentype=3, short=TRUE) if (is.expression(estlab)) { header.right <- str2lang(paste0("bold(", estlab, " * '", annosym[1], "' * '", round(100*(1-level),digits[[1]]), "% CI'", " * '", annosym[3], "')")) } else { header.right <- paste0(estlab, annosym[1], round(100*(1-level),digits[[1]]), "% CI", annosym[3]) } if (is.logical(header)) { if (header) { header.left <- "Study" } else { header.left <- NULL header.right <- NULL } } else { if (!is.character(header)) stop(mstyle$stop("Argument 'header' must either be a logical or character vector.")) if (length(header) == 1L) { header.left <- header } else { header.left <- header[1] header.right <- header[2] } } if (!annotate) header.right <- NULL if (!is.null(ddd$clim)) olim <- ddd$clim ### row adjustments for 1) study labels, 2) annotations, and 3) ilab elements if (is.null(ddd$rowadj)) { rowadj <- rep(0,3) } else { rowadj <- ddd$rowadj if (length(rowadj) == 1L) rowadj <- c(rowadj,rowadj,0) # if one value is specified, use it for both 1&2 if (length(rowadj) == 2L) rowadj <- c(rowadj,0) # if two values are specified, use them for 1&2 } top <- .chkddd(ddd$top, 3) if (is.null(ddd$xlabadj)) { xlabadj <- c(NA,NA) } else { xlabadj <- ddd$xlabadj if (length(xlabadj) == 1L) xlabadj <- c(xlabadj, 1-xlabadj) } xlabfont <- .chkddd(ddd$xlabfont, 1) lplot <- function(..., textpos, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) plot(...) labline <- function(..., textpos, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) abline(...) lsegments <- function(..., textpos, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) segments(...) laxis <- function(..., textpos, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) axis(...) lmtext <- function(..., textpos, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) mtext(...) lpolygon <- function(..., textpos, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) polygon(...) ltext <- function(..., textpos, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) text(...) lpoints <- function(..., textpos, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) points(...) ######################################################################### ### extract data / results and other arguments vi <- x$se^2 ci.lb <- x$ci.lb ci.ub <- x$ci.ub ### check length of yi and vi k <- length(yi) # either of length k when na.action="na.omit" or k.f otherwise if (length(vi) != k) stop(mstyle$stop("Length of 'yi' and 'vi' (or 'sei') are not the same.")) ### note: ilab, pch, psize, col must be of the same length as yi (which may ### or may not contain NAs; this is different than the other forest() ### functions but it would be tricky to make this fully consistent now) if (x$slab.null) { slab <- paste("+ Study", x$ids) # cumul() removes the studies with NAs when na.action="na.omit" slab[1] <- paste("Study", x$ids[1]) slab.null <- TRUE } else { slab <- paste("+", x$slab) # cumul() removes the studies with NAs when na.action="na.omit" slab[1] <- paste(x$slab[1]) slab.null <- FALSE } if (!is.null(ilab)) { if (is.null(dim(ilab))) ilab <- cbind(ilab) if (nrow(ilab) != k) stop(mstyle$stop(paste0("Length of the 'ilab' argument (", nrow(ilab), ") does not correspond to the number of outcomes (", k, ")."))) } pch <- .expand1(pch, k) if (length(pch) != k) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the number of outcomes (", k, ")."))) psize <- .expand1(psize, k) if (length(psize) != k) stop(mstyle$stop(paste0("Length of the 'psize' argument (", length(psize), ") does not correspond to the number of outcomes (", k, ")."))) col <- .expand1(col, k) if (length(col) != k) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the number of outcomes (", k, ")."))) shade.type <- "none" if (is.character(shade)) { shade.type <- "character" shade <- shade[1] if (!is.element(shade, c("zebra", "zebra1", "zebra2", "all"))) stop(mstyle$stop("Unknown option specified for 'shade' argument.")) } if (is.logical(shade)) { if (length(shade) == 1L) { shade <- "zebra" shade.type <- "character" } else { shade.type <- "logical" shade <- .chksubset(shade, k, stoponk0=FALSE) } } if (is.numeric(shade)) shade.type <- "numeric" ### set rows value if (missing(rows)) { rows <- k:1 } else { if (length(rows) == 1L) rows <- rows:(rows-k+1) } if (length(rows) != k) stop(mstyle$stop(paste0("Length of the 'rows' argument (", length(rows), ") does not correspond to the number of outcomes (", k, ")."))) ### reverse order yi <- yi[k:1] vi <- vi[k:1] ci.lb <- ci.lb[k:1] ci.ub <- ci.ub[k:1] slab <- slab[k:1] ilab <- ilab[k:1,,drop=FALSE] # if NULL, remains NULL pch <- pch[k:1] psize <- psize[k:1] # if NULL, remains NULL col <- col[k:1] rows <- rows[k:1] if (shade.type == "logical") shade <- shade[k:1] ### check for NAs in yi/vi and act accordingly yivi.na <- is.na(yi) | is.na(vi) if (any(yivi.na)) { not.na <- !yivi.na if (na.act == "na.omit") { yi <- yi[not.na] vi <- vi[not.na] ci.lb <- ci.lb[not.na] ci.ub <- ci.ub[not.na] slab <- slab[not.na] ilab <- ilab[not.na,,drop=FALSE] # if NULL, remains NULL pch <- pch[not.na] psize <- psize[not.na] # if NULL, remains NULL col <- col[not.na] if (shade.type == "logical") shade <- shade[not.na] rows.new <- rows # rearrange rows due to NAs being omitted from plot rows.na <- rows[!not.na] # shift higher rows down according to number of NAs omitted for (j in seq_along(rows.na)) { rows.new[rows >= rows.na[j]] <- rows.new[rows >= rows.na[j]] - 1 } rows <- rows.new[not.na] } if (na.act == "na.fail") stop(mstyle$stop("Missing values in results.")) } # note: yi/vi may be NA if na.act == "na.exclude" or "na.pass" k <- length(yi) # in case length of k has changed ### if requested, apply transformation to yi's and CI bounds if (is.function(transf)) { if (is.null(targs)) { yi <- sapply(yi, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) yi <- sapply(yi, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ### apply observation/outcome limits if specified if (!missing(olim)) { if (length(olim) != 2L) stop(mstyle$stop("Argument 'olim' must be of length 2.")) olim <- sort(olim) yi <- .applyolim(yi, olim) ci.lb <- .applyolim(ci.lb, olim) ci.ub <- .applyolim(ci.ub, olim) } ######################################################################### if (!is.null(at)) { if (anyNA(at)) stop(mstyle$stop("Argument 'at' cannot contain NAs.")) if (any(is.infinite(at))) stop(mstyle$stop("Argument 'at' cannot contain +-Inf values.")) } ### set x-axis limits (at argument overrides alim argument) alim.spec <- TRUE if (missing(alim)) { if (is.null(at)) { alim <- range(pretty(x=c(min(ci.lb, na.rm=TRUE), max(ci.ub, na.rm=TRUE)), n=steps-1)) alim.spec <- FALSE } else { alim <- range(at) } } alim <- sort(alim)[1:2] if (anyNA(alim)) stop(mstyle$stop("Argument 'alim' cannot contain NAs.")) ### generate x-axis positions if none are specified if (is.null(at)) { if (alim.spec) { at <- seq(from=alim[1], to=alim[2], length.out=steps) } else { at <- pretty(x=c(min(ci.lb, na.rm=TRUE), max(ci.ub, na.rm=TRUE)), n=steps-1) } } else { at[at < alim[1]] <- alim[1] # remove at values that are below or above the axis limits at[at > alim[2]] <- alim[2] at <- unique(at) } ### x-axis labels (apply transformation to axis labels if requested) if (is.null(ddd$at.lab)) { at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- fmtx(sapply(at.lab, atransf), digits[[2]], drop0ifint=TRUE) } else { at.lab <- fmtx(sapply(at.lab, atransf, targs), digits[[2]], drop0ifint=TRUE) } } else { at.lab <- fmtx(at.lab, digits[[2]], drop0ifint=TRUE) } } else { at.lab <- ddd$at.lab } ### set plot limits (xlim) ncol.ilab <- ifelse(is.null(ilab), 0, ncol(ilab)) if (slab.null) { area.slab <- 25 } else { area.slab <- 40 } if (annotate) { area.anno <- 25 } else { area.anno <- 10 } iadd <- 5 area.slab <- area.slab + iadd*ncol.ilab #area.anno <- area.anno area.forest <- 100 + iadd*ncol.ilab - area.slab - area.anno area.slab <- area.slab / (100 + iadd*ncol.ilab) area.anno <- area.anno / (100 + iadd*ncol.ilab) area.forest <- area.forest / (100 + iadd*ncol.ilab) plot.multp.l <- area.slab / area.forest plot.multp.r <- area.anno / area.forest if (missing(xlim)) { if (min(ci.lb, na.rm=TRUE) < alim[1]) { f.1 <- alim[1] } else { f.1 <- min(ci.lb, na.rm=TRUE) } if (max(ci.ub, na.rm=TRUE) > alim[2]) { f.2 <- alim[2] } else { f.2 <- max(ci.ub, na.rm=TRUE) } rng <- f.2 - f.1 xlim <- c(f.1 - rng * plot.multp.l, f.2 + rng * plot.multp.r) xlim <- round(xlim, digits[[2]]) #xlim[1] <- xlim[1]*max(1, digits[[2]]/2) #xlim[2] <- xlim[2]*max(1, digits[[2]]/2) } else { if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' must be of length 2.")) } xlim <- sort(xlim) ### plot limits must always encompass the yi values (no longer done) #if (xlim[1] > min(yi, na.rm=TRUE)) { xlim[1] <- min(yi, na.rm=TRUE) } #if (xlim[2] < max(yi, na.rm=TRUE)) { xlim[2] <- max(yi, na.rm=TRUE) } ### x-axis limits must always encompass the yi values (no longer done) #if (alim[1] > min(yi, na.rm=TRUE)) { alim[1] <- min(yi, na.rm=TRUE) } #if (alim[2] < max(yi, na.rm=TRUE)) { alim[2] <- max(yi, na.rm=TRUE) } ### plot limits must always encompass the x-axis limits (no longer done) #if (alim[1] < xlim[1]) { xlim[1] <- alim[1] } #if (alim[2] > xlim[2]) { xlim[2] <- alim[2] } ### allow adjustment of position of study labels and annotations via textpos argument textpos <- .chkddd(ddd$textpos, xlim) if (length(textpos) != 2L) stop(mstyle$stop("Argument 'textpos' must be of length 2.")) if (is.na(textpos[1])) textpos[1] <- xlim[1] if (is.na(textpos[2])) textpos[2] <- xlim[2] ### set y-axis limits if (missing(ylim)) { ylim <- c(0, max(rows, na.rm=TRUE)+top) } else { if (length(ylim) == 1L) { ylim <- c(ylim, max(rows, na.rm=TRUE)+top) } else { ylim <- sort(ylim) } } ######################################################################### ### set/get fonts (1st for study labels, 2nd for annotations, 3rd for ilab) ### when passing a named vector, the names are for 'family' and the values are for 'font' if (missing(fonts)) { fonts <- rep(par("family"), 3L) } else { if (length(fonts) == 1L) fonts <- rep(fonts, 3L) if (length(fonts) == 2L) fonts <- c(fonts, fonts[1]) } if (is.null(names(fonts))) fonts <- setNames(c(1L,1L,1L), nm=fonts) par(family=names(fonts)[1], font=fonts[1]) ### adjust margins par.mar <- par("mar") par.mar.adj <- par.mar - c(0,3,1,1) par.mar.adj[par.mar.adj < 0] <- 0 par(mar=par.mar.adj) on.exit(par(mar=par.mar), add=TRUE) ### start plot lplot(NA, NA, xlim=xlim, ylim=ylim, xlab="", ylab="", yaxt="n", xaxt="n", xaxs="i", yaxs="i", bty="n", ...) if (shade.type == "character") { if (shade == "zebra" || shade == "zebra1") tmp <- rep_len(c(TRUE,FALSE), k) if (shade == "zebra2") tmp <- rep_len(c(FALSE,TRUE), k) if (shade == "all") tmp <- rep_len(TRUE, k) shade <- tmp } if (shade.type %in% c("character","logical")) { for (i in seq_len(k)) { if (shade[i]) rect(xlim[1], rows[i]-0.5, xlim[2], rows[i]+0.5, border=colshade, col=colshade) } } if (shade.type == "numeric") { for (i in seq_along(shade)) { rect(xlim[1], shade[i]-0.5, xlim[2], shade[i]+0.5, border=colshade, col=colshade) } } ### horizontal title line labline(h=ylim[2]-(top-1), lty=lty[2], ...) ### get coordinates of the plotting region par.usr <- par("usr") ### add reference line if (is.numeric(refline)) lsegments(refline, par.usr[3], refline, ylim[2]-(top-1), lty="dotted", ...) ### set cex, cex.lab, and cex.axis sizes as a function of the height of the figure height <- par.usr[4] - par.usr[3] if (is.null(cex)) { lheight <- strheight("O") cex.adj <- ifelse(k * lheight > height * 0.8, height/(1.25 * k * lheight), 1) } if (is.null(cex)) { cex <- par("cex") * cex.adj } else { if (is.null(cex.lab)) cex.lab <- par("cex") * cex if (is.null(cex.axis)) cex.axis <- cex } if (is.null(cex.lab)) cex.lab <- par("cex") * cex.adj if (is.null(cex.axis)) cex.axis <- par("cex") * cex.adj ### add x-axis laxis(side=1, at=at, labels=at.lab, cex.axis=cex.axis, ...) ### add x-axis label if (missing(xlab)) xlab <- .setlab(measure, transf.char, atransf.char, gentype=2) if (!is.element(length(xlab), 1:3)) stop(mstyle$stop("Argument 'xlab' argument must be of length 1, 2, or 3.")) if (length(xlab) == 1L) lmtext(xlab, side=1, at=min(at) + (max(at)-min(at))/2, line=par("mgp")[1]-0.5, cex=cex.lab, font=xlabfont[1], ...) if (length(xlab) == 2L) { lmtext(xlab[1], side=1, at=min(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[1], font=xlabfont[1], ...) lmtext(xlab[2], side=1, at=max(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[2], font=xlabfont[1], ...) } if (length(xlab) == 3L) { lmtext(xlab[1], side=1, at=min(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[1], font=xlabfont[1], ...) lmtext(xlab[2], side=1, at=min(at) + (max(at)-min(at))/2, line=par("mgp")[1]-0.5, cex=cex.lab, font=xlabfont[2], ...) lmtext(xlab[3], side=1, at=max(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[2], font=xlabfont[1], ...) } ### add CI ends (either | or <> if outside of axis limits) ciendheight <- height / 150 * cex * efac[1] arrowwidth <- 1.4 / 100 * cex * (xlim[2]-xlim[1]) arrowheight <- height / 150 * cex * efac[2] for (i in seq_len(k)) { ### need to skip missings (if check below will otherwise throw an error) if (is.na(yi[i]) || is.na(vi[i])) next ### if the lower bound is actually larger than upper x-axis limit, then everything is to the right and just draw a polygon pointing in that direction if (ci.lb[i] >= alim[2]) { lpolygon(x=c(alim[2], alim[2]-arrowwidth, alim[2]-arrowwidth, alim[2]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=col[i], border=col[i], ...) next } ### if the upper bound is actually lower than lower x-axis limit, then everything is to the left and just draw a polygon pointing in that direction if (ci.ub[i] <= alim[1]) { lpolygon(x=c(alim[1], alim[1]+arrowwidth, alim[1]+arrowwidth, alim[1]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=col[i], border=col[i], ...) next } lsegments(max(ci.lb[i], alim[1]), rows[i], min(ci.ub[i], alim[2]), rows[i], lty=lty[1], col=col[i], ...) if (ci.lb[i] >= alim[1]) { lsegments(ci.lb[i], rows[i]-ciendheight, ci.lb[i], rows[i]+ciendheight, col=col[i], ...) } else { lpolygon(x=c(alim[1], alim[1]+arrowwidth, alim[1]+arrowwidth, alim[1]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=col[i], border=col[i], ...) } if (ci.ub[i] <= alim[2]) { lsegments(ci.ub[i], rows[i]-ciendheight, ci.ub[i], rows[i]+ciendheight, col=col[i], ...) } else { lpolygon(x=c(alim[2], alim[2]-arrowwidth, alim[2]-arrowwidth, alim[2]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=col[i], border=col[i], ...) } } ### add study labels on the left ltext(textpos[1], rows+rowadj[1], slab, pos=4, cex=cex, col=col, ...) ### add info labels if (!is.null(ilab)) { if (is.null(ilab.xpos)) { #stop(mstyle$stop("Must specify the 'ilab.xpos' argument when adding information with 'ilab'.")) dist <- min(ci.lb, na.rm=TRUE) - xlim[1] if (ncol.ilab == 1L) ilab.xpos <- xlim[1] + dist*0.75 if (ncol.ilab == 2L) ilab.xpos <- xlim[1] + dist*c(0.65, 0.85) if (ncol.ilab == 3L) ilab.xpos <- xlim[1] + dist*c(0.60, 0.75, 0.90) if (ncol.ilab >= 4L) ilab.xpos <- seq(xlim[1] + dist*0.5, xlim[1] + dist*0.9, length.out=ncol.ilab) } if (length(ilab.xpos) != ncol.ilab) stop(mstyle$stop(paste0("Number of 'ilab' columns (", ncol.ilab, ") do not match the length of the 'ilab.xpos' argument (", length(ilab.xpos), ")."))) if (!is.null(ilab.pos) && length(ilab.pos) == 1L) ilab.pos <- rep(ilab.pos, ncol.ilab) if (!is.null(ilab.lab) && length(ilab.lab) != ncol.ilab) stop(mstyle$stop(paste0("Number of 'ilab' columns (", ncol.ilab, ") do not match the length of the 'ilab.lab' argument (", length(ilab.lab), ")."))) par(family=names(fonts)[3], font=fonts[3]) for (l in seq_len(ncol.ilab)) { ltext(ilab.xpos[l], rows+rowadj[3], ilab[,l], pos=ilab.pos[l], cex=cex, ...) if (!is.null(ilab.lab)) ltext(ilab.xpos[l], ylim[2]-(top-1)+1+rowadj[3], ilab.lab[l], pos=ilab.pos[l], font=2, cex=cex, ...) } par(family=names(fonts)[1], font=fonts[1]) } ### add study annotations on the right: yi [LB, UB] if (annotate) { if (is.function(atransf)) { if (is.null(targs)) { annotext <- cbind(sapply(yi, atransf), sapply(ci.lb, atransf), sapply(ci.ub, atransf)) } else { annotext <- cbind(sapply(yi, atransf, targs), sapply(ci.lb, atransf, targs), sapply(ci.ub, atransf, targs)) } ### make sure order of intervals is always increasing tmp <- .psort(annotext[,2:3]) annotext[,2:3] <- tmp } else { annotext <- cbind(yi, ci.lb, ci.ub) } annotext <- fmtx(annotext, digits[[1]]) if (missing(width)) { width <- apply(annotext, 2, function(x) max(nchar(x))) } else { width <- .expand1(width, ncol(annotext)) if (length(width) != ncol(annotext)) stop(mstyle$stop(paste0("Length of the 'width' argument (", length(width), ") does not the match number of annotation columns (", ncol(annotext), ")."))) } for (j in seq_len(ncol(annotext))) { annotext[,j] <- formatC(annotext[,j], width=width[j]) } annotext <- cbind(annotext[,1], annosym[1], annotext[,2], annosym[2], annotext[,3], annosym[3]) annotext <- apply(annotext, 1, paste, collapse="") annotext[grepl("NA", annotext, fixed=TRUE)] <- "" annotext <- gsub("-", annosym[4], annotext, fixed=TRUE) # [a] annotext <- gsub(" ", annosym[5], annotext, fixed=TRUE) par(family=names(fonts)[2], font=fonts[2]) ltext(textpos[2], rows+rowadj[2], labels=annotext, pos=2, cex=cex, col=col, ...) par(family=names(fonts)[1], font=fonts[1]) } else { width <- NULL } ### add yi points for (i in seq_len(k)) { ### need to skip missings (if check below will otherwise throw an error) if (is.na(yi[i])) next if (yi[i] >= alim[1] && yi[i] <= alim[2]) lpoints(x=yi[i], y=rows[i], pch=pch[i], cex=cex*psize[i], col=col[i], ...) } ### add header ltext(textpos[1], ylim[2]-(top-1)+1+rowadj[1], header.left, pos=4, font=2, cex=cex, ...) ltext(textpos[2], ylim[2]-(top-1)+1+rowadj[2], header.right, pos=2, font=2, cex=cex, ...) ######################################################################### ### return some information about plot invisibly res <- list(xlim=par("usr")[1:2], alim=alim, at=at, ylim=ylim, rows=rows, cex=cex, cex.lab=cex.lab, cex.axis=cex.axis, ilab.xpos=ilab.xpos, ilab.pos=ilab.pos, textpos=textpos) ### put some additional stuff into .metafor, so that it can be used by addpoly() sav <- c(res, list(level=level, annotate=annotate, digits=digits[[1]], width=width, transf=transf, atransf=atransf, targs=targs, fonts=fonts[1:2], annosym=annosym)) try(assign("forest", sav, envir=.metafor), silent=TRUE) invisible(res) } metafor/R/to.table.r0000644000176200001440000011504614714365405014023 0ustar liggesusersto.table <- function(measure, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, sdi, ni, data, slab, subset, add=1/2, to="none", drop00=FALSE, rows, cols) { mstyle <- .get.mstyle() ### check argument specifications if (missing(measure)) stop(mstyle$stop("Must specify an effect size or outcome measure via the 'measure' argument.")) if (!is.character(measure)) stop(mstyle$stop("The 'measure' argument must be a character string.")) if (!is.element(measure, c("RR","OR","PETO","RD","AS","PHI","YUQ","YUY","RTET", # 2x2 table measures "PBIT","OR2D","OR2DN","OR2DL", # - transformations to SMD "MPRD","MPRR","MPOR","MPORC","MPPETO","MPORM", # - measures for matched pairs data "IRR","IRD","IRSD", # two-group person-time data measures "MD","SMD","SMDH","ROM", # two-group mean/SD measures "CVR","VR", # coefficient of variation ratio, variability ratio "RPB","RBIS","D2OR","D2ORN","D2ORL", # - transformations to r_PB, r_BIS, and log(OR) "COR","UCOR","ZCOR", # correlations (raw and r-to-z transformed) "PCOR","ZPCOR","SPCOR", # partial and semi-partial correlations "R2","ZR2","R2F","ZR2F", # coefficient of determination (raw and r-to-z transformed) "PR","PLN","PLO","PRZ","PAS","PFT", # single proportions (and transformations thereof) "IR","IRLN","IRS","IRFT", # single-group person-time data (and transformations thereof) "MN","SMN","MNLN","CVLN","SDLN", # mean, single-group standardized mean, log(mean), log(CV), log(SD), "MC","SMCC","SMCR","SMCRH","ROMC","CVRC","VRC", # raw/standardized mean change, log(ROM), CVR, and VR for dependent samples "ARAW","AHW","ABT"))) # alpha (and transformations thereof) stop(mstyle$stop("Unknown 'measure' specified.")) if (is.element(measure, c("CVR","VR","PCOR","ZPCOR","SPCOR","R2","ZR2","R2F","ZR2F","CVLN","SDLN","VRC"))) stop(mstyle$stop("Function not available for this outcome measure.")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (!is.element(to, c("all","only0","if0all","none"))) stop(mstyle$stop("Unknown 'to' argument specified.")) ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() ### get slab and subset arguments (will be NULL when unspecified) slab <- .getx("slab", mf=mf, data=data) subset <- .getx("subset", mf=mf, data=data) ######################################################################### ######################################################################### ######################################################################### if (is.element(measure, c("RR","OR","RD","AS","PETO","PHI","YUQ","YUY","RTET","PBIT","OR2D","OR2DN","OR2DL","MPRD","MPRR","MPOR","MPORC","MPPETO","MPORM"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ai, bi, ci, di, n1i, n2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) n1i.inc <- n1i != ai + bi n2i.inc <- n2i != ci + di if (any(n1i.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'n1i' values are not equal to 'ai + bi'.")) if (any(n2i.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'n2i' values are not equal to 'ci + di'.")) bi <- replmiss(bi, n1i-ai) di <- replmiss(di, n2i-ci) if (!.all.specified(ai, bi, ci, di)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ai, bi, ci, di or ai, n1i, ci, n2i).")) k <- length(ai) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) di <- .getsubset(di, subset) } n1i <- ai + bi n2i <- ci + di if (any(c(ai > n1i, ci > n2i), na.rm=TRUE)) stop(mstyle$stop("One or more event counts are larger than the corresponding group sizes.")) if (any(c(ai, bi, ci, di) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(c(n1i < 0, n2i < 0), na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are negative.")) ni.u <- ai + bi + ci + di # unadjusted total sample sizes ### if drop00=TRUE, set counts to NA for studies that have no events (or all events) in both arms if (drop00) { id00 <- c(ai == 0L & ci == 0L) | c(bi == 0L & di == 0L) id00[is.na(id00)] <- FALSE ai[id00] <- NA_real_ bi[id00] <- NA_real_ ci[id00] <- NA_real_ di[id00] <- NA_real_ } if (to == "all") { ### always add to all cells in all studies ai <- ai + add ci <- ci + add bi <- bi + add di <- di + add } if (to == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(ai == 0L | ci == 0L | bi == 0L | di == 0L) id0[is.na(id0)] <- FALSE ai[id0] <- ai[id0] + add ci[id0] <- ci[id0] + add bi[id0] <- bi[id0] + add di[id0] <- di[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(ai == 0L | ci == 0L | bi == 0L | di == 0L) id0[is.na(id0)] <- FALSE if (any(id0)) { ai <- ai + add ci <- ci + add bi <- bi + add di <- di + add } } } ######################################################################### if (is.element(measure, c("IRR","IRD","IRSD"))) { x1i <- .getx("x1i", mf=mf, data=data, checknumeric=TRUE) x2i <- .getx("x2i", mf=mf, data=data, checknumeric=TRUE) t1i <- .getx("t1i", mf=mf, data=data, checknumeric=TRUE) t2i <- .getx("t2i", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(x1i, x2i, t1i, t2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., x1i, x2i, t1i, t2i).")) if (!.equal.length(x1i, x2i, t1i, t2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(x1i) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) x1i <- .getsubset(x1i, subset) x2i <- .getsubset(x2i, subset) t1i <- .getsubset(t1i, subset) t2i <- .getsubset(t2i, subset) } if (any(c(x1i, x2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(c(t1i, t2i) <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more person-times are <= 0.")) ni.u <- t1i + t2i # unadjusted total sample sizes ### if drop00=TRUE, set counts to NA for studies that have no events in both arms if (drop00) { id00 <- c(x1i == 0L & x2i == 0L) id00[is.na(id00)] <- FALSE x1i[id00] <- NA_real_ x2i[id00] <- NA_real_ } if (to == "all") { ### always add to all cells in all studies x1i <- x1i + add x2i <- x2i + add } if (to == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(x1i == 0L | x2i == 0L) id0[is.na(id0)] <- FALSE x1i[id0] <- x1i[id0] + add x2i[id0] <- x2i[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(x1i == 0L | x2i == 0L) id0[is.na(id0)] <- FALSE if (any(id0)) { x1i <- x1i + add x2i <- x2i + add } } } ######################################################################### if (is.element(measure, c("MD","SMD","SMDH","ROM","RPB","RBIS","D2OR","D2ORN","D2ORL"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(m1i, m2i, sd1i, sd2i, n1i, n2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, sd2i, n1i, n2i).")) if (!.equal.length(m1i, m2i, sd1i, sd2i, n1i, n2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(n1i) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) m1i <- .getsubset(m1i, subset) m2i <- .getsubset(m2i, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) n1i <- .getsubset(n1i, subset) n2i <- .getsubset(n2i, subset) } if (any(c(sd1i, sd2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) if (any(c(n1i, n2i) <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are <= 0.")) ni.u <- n1i + n2i # unadjusted total sample sizes } ######################################################################### if (is.element(measure, c("COR","UCOR","ZCOR"))) { ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ri, ni, ti)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ri <- replmiss(ri, ti / sqrt(ni - 2 + ti^2)) if (!.all.specified(ri, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ri, ni).")) k <- length(ri) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) ri <- .getsubset(ri, subset) ni <- .getsubset(ni, subset) } if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes } ######################################################################### if (is.element(measure, c("PR","PLN","PLO","PRZ","PAS","PFT"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(xi, mi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ni.inc <- ni != xi + mi if (any(ni.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'ni' values are not equal to 'xi + mi'.")) mi <- replmiss(mi, ni-xi) if (!.all.specified(xi, mi)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., xi, mi or xi, ni).")) k <- length(xi) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) xi <- .getsubset(xi, subset) mi <- .getsubset(mi, subset) } ni <- xi + mi if (any(xi > ni, na.rm=TRUE)) stop(mstyle$stop("One or more event counts are larger than the corresponding group sizes.")) if (any(c(xi, mi) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes if (to == "all") { ### always add to all cells in all studies xi <- xi + add mi <- mi + add } if (to == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(xi == 0L | mi == 0L) id0[is.na(id0)] <- FALSE xi[id0] <- xi[id0] + add mi[id0] <- mi[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(xi == 0L | mi == 0L) id0[is.na(id0)] <- FALSE if (any(id0)) { xi <- xi + add mi <- mi + add } } } ######################################################################### if (is.element(measure, c("IR","IRLN","IRS","IRFT"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(xi, ti)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., xi, ti).")) if (!.equal.length(xi, ti)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(xi) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) xi <- .getsubset(xi, subset) ti <- .getsubset(ti, subset) } if (any(xi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(ti <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more person-times are <= 0.")) ni.u <- ti # unadjusted total sample sizes if (to == "all") { ### always add to all cells in all studies xi <- xi + add } if (to == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(xi == 0L) id0[is.na(id0)] <- FALSE xi[id0] <- xi[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(xi == 0L) id0[is.na(id0)] <- FALSE if (any(id0)) { xi <- xi + add } } } ######################################################################### if (is.element(measure, c("MN","SMN","MNLN"))) { mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) sdi <- .getx("sdi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(mi, sdi, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., mi, sdi, ni).")) if (!.equal.length(mi, sdi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(ni) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) mi <- .getsubset(mi, subset) sdi <- .getsubset(sdi, subset) ni <- .getsubset(ni, subset) } if (any(sdi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) if (is.element(measure, c("MNLN","CVLN")) && any(mi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more means are negative.")) ni.u <- ni # unadjusted total sample sizes } ######################################################################### if (is.element(measure, c("MC","SMCC","SMCR","SMCRH","ROMC","CVRC"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) # for SMCR, do not need to supply this ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) k <- length(m1i) # number of outcomes before subsetting if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { if (!.all.specified(m1i, m2i, sd1i, sd2i, ni, ri)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, sd2i, ni, ri).")) if (!.equal.length(m1i, m2i, sd1i, sd2i, ni, ri)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } else { if (!.all.specified(m1i, m2i, sd1i, ni, ri)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, ni, ri).")) if (!.equal.length(m1i, m2i, sd1i, ni, ri)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (!is.null(subset)) { subset <- .chksubset(subset, k) m1i <- .getsubset(m1i, subset) m2i <- .getsubset(m2i, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) ni <- .getsubset(ni, subset) ri <- .getsubset(ri, subset) } if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { if (any(c(sd1i, sd2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) } else { if (any(sd1i < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) } if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes } ######################################################################### if (is.element(measure, c("ARAW","AHW","ABT"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(ai, mi, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ai, mi, ni).")) if (!.equal.length(ai, mi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(ai) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) mi <- .getsubset(mi, subset) ni <- .getsubset(ni, subset) } if (any(ai > 1, na.rm=TRUE)) stop(mstyle$stop("One or more alpha values are > 1.")) if (any(mi < 2, na.rm=TRUE)) stop(mstyle$stop("One or more mi values are < 2.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes } ######################################################################### ######################################################################### ######################################################################### ### generate study labels if none are specified if (is.null(slab)) { slab <- seq_len(k) } else { if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the dataset (", k, ")."))) if (is.factor(slab)) slab <- as.character(slab) } ### if a subset of studies is specified if (!is.null(subset)) slab <- .getsubset(slab, subset) ### check if study labels are unique; if not, make them unique if (anyDuplicated(slab)) slab <- .make.unique(slab) ######################################################################### ######################################################################### ######################################################################### if (is.element(measure, c("RR","OR","RD","AS","PETO","PHI","YUQ","YUY","RTET","PBIT","OR2D","OR2DN","OR2DL","MPORM"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ai) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Grp1", "Grp2") } else { if (length(rows) != 2L) stop(mstyle$stop("Group names not of length 2.")) } if (missing(cols)) { cols <- c("Out1", "Out2") } else { if (length(cols) != 2L) stop(mstyle$stop("Outcome names not of length 2.")) } dat <- array(NA_real_, dim=c(2,2,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- rbind(c(ai[i],bi[i]), c(ci[i],di[i])) dat[,,i] <- tab.i } } ######################################################################### if (is.element(measure, c("MPRD","MPRR","MPOR"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ai) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Time1", "Time2") } else { if (length(rows) != 2L) stop(mstyle$stop("Time names not of length 2.")) } if (missing(cols)) { cols <- c("Out1", "Out2") } else { if (length(cols) != 2L) stop(mstyle$stop("Outcome names not of length 2.")) } dat <- array(NA_real_, dim=c(2,2,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- rbind(c(ai[i]+bi[i],ci[i]+di[i]), c(ai[i]+ci[i],bi[i]+di[i])) dat[,,i] <- tab.i } } ######################################################################### if (is.element(measure, c("MPORC","MPPETO"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ai) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Time1.Out1", "Time1.Out2") } else { if (length(rows) != 2L) stop(mstyle$stop("Time1 names not of length 2.")) } if (missing(cols)) { cols <- c("Time2.Out1", "Time2.Out2") } else { if (length(cols) != 2L) stop(mstyle$stop("Time2 names not of length 2.")) } dat <- array(NA_real_, dim=c(2,2,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- rbind(c(ai[i],bi[i]), c(ci[i],di[i])) dat[,,i] <- tab.i } } ######################################################################### if (is.element(measure, c("IRR","IRD","IRSD"))) { ### check for NAs in table data and act accordingly has.na <- is.na(x1i) | is.na(x2i) | is.na(t1i) | is.na(t2i) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { x1i <- x1i[not.na] x2i <- x2i[not.na] t1i <- t1i[not.na] t2i <- t2i[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(x1i) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Grp1", "Grp2") } else { if (length(rows) != 2L) stop(mstyle$stop("Group names not of length 2.")) } if (missing(cols)) { cols <- c("Events", "Person-Time") } else { if (length(cols) != 2L) stop(mstyle$stop("Outcome names not of length 2.")) } dat <- array(NA_real_, dim=c(2,2,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- rbind(c(x1i[i],t1i[i]), c(x2i[i],t2i[i])) dat[,,i] <- tab.i } } ######################################################################### if (is.element(measure, c("MD","SMD","SMDH","ROM","RPB","RBIS","D2OR","D2ORN","D2ORL"))) { ### check for NAs in table data and act accordingly has.na <- is.na(m1i) | is.na(m2i) | is.na(sd1i) | is.na(sd2i) | is.na(n1i) | is.na(n2i) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { m1i <- m1i[not.na] m2i <- m2i[not.na] sd1i <- sd1i[not.na] sd2i <- sd2i[not.na] n1i <- n1i[not.na] n2i <- n2i[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(m1i) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Grp1", "Grp2") } else { if (length(rows) != 2L) stop(mstyle$stop("Group names not of length 2.")) } if (missing(cols)) { cols <- c("Mean", "SD", "n") } else { if (length(cols) != 3L) stop(mstyle$stop("Outcome names not of length 3.")) } dat <- array(NA_real_, dim=c(2,3,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- rbind(c(m1i[i],sd1i[i],n1i[i]), c(m2i[i],sd2i[i],n2i[i])) dat[,,i] <- tab.i } } ######################################################################### if (is.element(measure, c("COR","UCOR","ZCOR"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ri) | is.na(ni) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ri <- ri[not.na] ni <- ni[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ri) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Grp") } else { if (length(rows) != 1L) stop(mstyle$stop("Group names not of length 1.")) } if (missing(cols)) { cols <- c("r", "n") } else { if (length(cols) != 2L) stop(mstyle$stop("Outcome names not of length 2.")) } dat <- array(NA_real_, dim=c(1,2,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- c(ri[i],ni[i]) dat[,,i] <- tab.i } } ######################################################################### if (is.element(measure, c("PR","PLN","PLO","PRZ","PAS","PFT"))) { ### check for NAs in table data and act accordingly has.na <- is.na(xi) | is.na(mi) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { xi <- xi[not.na] mi <- mi[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(xi) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Grp") } else { if (length(rows) != 1L) stop(mstyle$stop("Group names not of length 1.")) } if (missing(cols)) { cols <- c("Out1", "Out2") } else { if (length(cols) != 2L) stop(mstyle$stop("Outcome names not of length 2.")) } dat <- array(NA_real_, dim=c(1,2,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- c(xi[i],mi[i]) dat[,,i] <- tab.i } } ######################################################################### if (is.element(measure, c("IR","IRLN","IRS","IRFT"))) { ### check for NAs in table data and act accordingly has.na <- is.na(xi) | is.na(ti) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { xi <- xi[not.na] ti <- ti[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(xi) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Grp") } else { if (length(rows) != 1L) stop(mstyle$stop("Group names not of length 1.")) } if (missing(cols)) { cols <- c("Events", "Person-Time") } else { if (length(cols) != 2L) stop(mstyle$stop("Outcome names not of length 2.")) } dat <- array(NA_real_, dim=c(1,2,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- c(xi[i],ti[i]) dat[,,i] <- tab.i } } ######################################################################### if (is.element(measure, c("MN","SMN","MNLN"))) { ### check for NAs in table data and act accordingly has.na <- is.na(mi) | is.na(sdi) | is.na(ni) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { mi <- mi[not.na] sdi <- sdi[not.na] ni <- ni[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ni) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Grp") } else { if (length(rows) != 1L) stop(mstyle$stop("Group names not of length 1.")) } if (missing(cols)) { cols <- c("Mean", "SD", "n") } else { if (length(cols) != 3L) stop(mstyle$stop("Outcome names not of length 3.")) } dat <- array(NA_real_, dim=c(1,3,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- c(mi[i],sdi[i],ni[i]) dat[,,i] <- tab.i } } ######################################################################### if (is.element(measure, c("MC","SMCC","SMCR","SMCRH","ROMC","CVRC"))) { ### check for NAs in table data and act accordingly if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { has.na <- is.na(m1i) | is.na(m2i) | is.na(sd1i) | is.na(sd2i) | is.na(ni) | is.na(ri) } else { has.na <- is.na(m1i) | is.na(m2i) | is.na(sd1i) | is.na(ni) | is.na(ri) } if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { m1i <- m1i[not.na] m2i <- m2i[not.na] sd1i <- sd1i[not.na] if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) sd2i <- sd2i[not.na] ni <- ni[not.na] ri <- ri[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(m1i) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Grp") } else { if (length(rows) != 1L) stop(mstyle$stop("Group names not of length 1.")) } if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { if (missing(cols)) { cols <- c("Mean1", "Mean2", "SD1", "SD2", "n", "r") } else { if (length(cols) != 6L) stop(mstyle$stop("Outcome names not of length 6.")) } } else { if (missing(cols)) { cols <- c("Mean1", "Mean2", "SD1", "n", "r") } else { if (length(cols) != 5L) stop(mstyle$stop("Outcome names not of length 5.")) } } if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { dat <- array(NA_real_, dim=c(1,6,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- c(m1i[i],m2i[i],sd1i[i],sd2i[i],ni[i],ri[i]) dat[,,i] <- tab.i } } else { dat <- array(NA_real_, dim=c(1,5,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- c(m1i[i],m2i[i],sd1i[i],ni[i],ri[i]) dat[,,i] <- tab.i } } } ######################################################################### if (is.element(measure, c("ARAW","AHW","ABT"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(mi) | is.na(ni) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ai <- ai[not.na] mi <- mi[not.na] ni <- ni[not.na] slab <- slab[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ai) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### row/group and column/outcome names if (missing(rows)) { rows <- c("Grp") } else { if (length(rows) != 1L) stop(mstyle$stop("Group names not of length 1.")) } if (missing(cols)) { cols <- c("alpha", "m", "n") } else { if (length(cols) != 3L) stop(mstyle$stop("Outcome names not of length 3.")) } dat <- array(NA_real_, dim=c(1,3,k), dimnames=list(rows, cols, slab)) for (i in seq_len(k)) { tab.i <- c(ai[i],mi[i],ni[i]) dat[,,i] <- tab.i } } ######################################################################### return(dat) } metafor/R/hc.r0000644000176200001440000000005713457322061012672 0ustar liggesusershc <- function(object, ...) UseMethod("hc") metafor/R/robust.rma.uni.r0000644000176200001440000002455014717377100015176 0ustar liggesusersrobust.rma.uni <- function(x, cluster, adjust=TRUE, clubSandwich=FALSE, digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni", notav=c("rma.ls", "rma.gen", "rma.uni.selmodel")) if (is.null(x$yi) || is.null(x$X)) stop(mstyle$stop("Information needed for the method is not available in the model object.")) if (missing(cluster)) stop(mstyle$stop("Must specify the 'cluster' variable.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } level <- .level(x$level) ddd <- list(...) .chkdots(ddd, c("vcov", "coef_test", "conf_test", "wald_test", "verbose")) ######################################################################### ### process cluster variable ### note: cluster variable must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing ### of NAs as was done during model fitting mf <- match.call() cluster <- .getx("cluster", mf=mf, data=x$data) if (length(cluster) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) cluster <- .getsubset(cluster, x$subset) cluster <- cluster[x$not.na] if (anyNA(cluster)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster) == 0L) stop(mstyle$stop("Cannot find 'cluster' variable (or it has zero length).")) ### number of clusters n <- length(unique(cluster)) ### compute degrees of freedom ### note: Stata with vce(robust) also uses n-p as the dfs, but with vce(cluster ) always uses n-1 (which seems inconsistent) dfs <- n - x$p ### check if dfs are positive (note: this also handles the case where there is a single cluster) if (!clubSandwich && dfs <= 0) stop(mstyle$stop(paste0("Number of clusters (", n, ") must be larger than the number of fixed effects (", x$p, ")."))) ### use clubSandwich if requested to do so if (clubSandwich) { if (!suppressMessages(requireNamespace("clubSandwich", quietly=TRUE))) stop(mstyle$stop("Please install the 'clubSandwich' package to make use of its methods.")) ### check for vcov, coef_test, conf_test, and wald_test arguments in ... and set values accordingly ddd$vcov <- .chkddd(ddd$vcov, "CR2", match.arg(ddd$vcov, c("CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3"))) ddd$coef_test <- .chkddd(ddd$coef_test, "Satterthwaite", match.arg(ddd$coef_test, c("z", "naive-t", "naive-tp", "Satterthwaite", "saddlepoint"))) if (is.null(ddd$conf_test)) { ddd$conf_test <- ddd$coef_test if (ddd$conf_test == "saddlepoint") { ddd$conf_test <- "Satterthwaite" warning(mstyle$warning("Cannot use 'saddlepoint' for conf_test() - using 'Satterthwaite' instead."), call.=FALSE) } } else { ddd$conf_test <- match.arg(ddd$conf_test, c("z", "naive-t", "naive-tp", "Satterthwaite")) } ddd$wald_test <- .chkddd(ddd$wald_test, "HTZ", match.arg(ddd$wald_test, c("chi-sq", "Naive-F", "Naive-Fp", "HTA", "HTB", "HTZ", "EDF", "EDT"))) ### calculate cluster-robust var-cov matrix of the estimated fixed effects vb <- try(clubSandwich::vcovCR(x, cluster=cluster, type=ddd$vcov), silent=!isTRUE(ddd$verbose)) if (inherits(vb, "try-error")) stop(mstyle$stop("Could not obtain the cluster-robust variance-covariance matrix (use verbose=TRUE for more details).")) #meat <- try(clubSandwich::vcovCR(x, cluster=cluster, type=ddd$vcov, form="estfun"), silent=!isTRUE(ddd$verbose)) meat <- NA_real_ ### obtain cluster-robust inferences cs.coef <- try(clubSandwich::coef_test(x, cluster=cluster, vcov=vb, test=ddd$coef_test, p_values=TRUE), silent=!isTRUE(ddd$verbose)) if (inherits(cs.coef, "try-error")) stop(mstyle$stop("Could not obtain the cluster-robust tests (use verbose=TRUE for more details).")) cs.conf <- try(clubSandwich::conf_int(x, cluster=cluster, vcov=vb, test=ddd$conf_test, level=1-level), silent=!isTRUE(ddd$verbose)) if (inherits(cs.conf, "try-error")) stop(mstyle$stop("Could not obtain the cluster-robust confidence intervals (use verbose=TRUE for more details).")) if (x$int.only) { cs.wald <- NA_real_ } else { cs.wald <- try(clubSandwich::Wald_test(x, cluster=cluster, vcov=vb, test=ddd$wald_test, constraints=clubSandwich::constrain_zero(x$btt)), silent=!isTRUE(ddd$verbose)) if (inherits(cs.wald, "try-error")) { warning(mstyle$warning("Could not obtain the cluster-robust omnibus Wald test (use verbose=TRUE for more details)."), call.=FALSE) cs.wald <- list(Fstat=NA_real_, df_num=NA_integer_, df_denom=NA_real_) } } #return(list(coef_test=cs.coef, conf_int=cs.conf, Wald_test=cs.wald)) vbest <- ddd$vcov beta <- x$beta se <- cs.coef$SE zval <- ifelse(is.infinite(cs.coef$tstat), NA_real_, cs.coef$tstat) pval <- switch(ddd$coef_test, "z" = cs.coef$p_z, "naive-t" = cs.coef$p_t, "naive-tp" = cs.coef$p_tp, "Satterthwaite" = cs.coef$p_Satt, "saddlepoint" = cs.coef$p_saddle) dfs <- switch(ddd$coef_test, "z" = cs.coef$df_z, "naive-t" = cs.coef$df_t, "naive-tp" = cs.coef$df_tp, "Satterthwaite" = cs.coef$df, "saddlepoint" = NA_real_) dfs <- ifelse(is.na(dfs), NA_real_, dfs) # ifelse() part to change NaN into just NA ci.lb <- ifelse(is.na(cs.conf$CI_L), NA_real_, cs.conf$CI_L) # note: if ddd$coef_test != ddd$conf_test, dfs for CI may be different ci.ub <- ifelse(is.na(cs.conf$CI_U), NA_real_, cs.conf$CI_U) if (x$int.only) { QM <- max(0, zval^2) QMdf <- c(1, dfs) QMp <- pval } else { QM <- max(0, cs.wald$Fstat) QMdf <- c(cs.wald$df_num, max(0, cs.wald$df_denom)) QMp <- cs.wald$p_val } x$sandwiches <- list(coef_test=cs.coef, conf_int=cs.conf, Wald_test=cs.wald) x$coef_test <- ddd$coef_test x$conf_test <- ddd$conf_test x$wald_test <- ddd$wald_test cluster.o <- cluster } else { ### note: since we use split() below and then put things back together into a block-diagonal matrix, ### we have to make sure everything is properly ordered by the cluster variable; otherwise, the 'meat' ### block-diagonal matrix is not in the same order as the rest; so we sort all relevant variables by ### the cluster variable (including the cluster variable itself) ocl <- order(cluster) cluster.o <- cluster[ocl] ### construct bread = (X'WX)^-1 X'W, where W is the weight matrix if (x$weighted) { ### for weighted analysis if (is.null(x$weights)) { ### if no weights were specified, then vb = (X'WX)^-1, so we can use that part wi <- 1/(x$vi + x$tau2) wi <- wi[ocl] W <- diag(wi, nrow=x$k, ncol=x$k) bread <- x$vb %*% crossprod(x$X[ocl,], W) } else { ### if weights were specified, then vb cannot be used A <- diag(x$weights[ocl], nrow=x$k, ncol=x$k) stXAX <- .invcalc(X=x$X[ocl,], W=A, k=x$k) bread <- stXAX %*% crossprod(x$X[ocl,], A) } } else { ### for unweighted analysis stXX <- .invcalc(X=x$X[ocl,], W=diag(x$k), k=x$k) bread <- stXX %*% t(x$X[ocl,]) } ### construct meat part ei <- c(x$yi - x$X %*% x$beta) # use this instead of resid(), since this guarantees that the length is correct ei <- ei[ocl] cluster.o <- factor(cluster.o, levels=unique(cluster.o)) meat.o <- bldiag(lapply(split(ei, cluster.o), function(e) tcrossprod(e))) ### construct robust var-cov matrix vb <- bread %*% meat.o %*% t(bread) ### apply adjustments to vb as needed vbest <- "CR0" ### suggested in Hedges, Tipton, & Johnson (2010) -- analogous to HC1 adjustment if (.isTRUE(adjust)) { vb <- (n / dfs) * vb vbest <- "CR1" } ### what Stata does if (is.character(adjust) && (adjust=="Stata" || adjust=="Stata1")) { vb <- (n / (n-1) * (x$k-1) / (x$k-x$p)) * vb # when the model was fitted with regress vbest <- "CR1.S1" } if (is.character(adjust) && adjust=="Stata2") { vb <- (n / (n-1)) * vb # when the model was fitted with mixed vbest <- "CR1.S2" } ### check for elements in vb that are essentially 0 is0 <- diag(vb) < 100 * .Machine$double.eps vb[is0,] <- NA_real_ vb[,is0] <- NA_real_ ### prepare results beta <- x$beta se <- sqrt(diag(vb)) names(se) <- NULL zval <- c(beta/se) pval <- 2*pt(abs(zval), df=dfs, lower.tail=FALSE) crit <- qt(level/2, df=dfs, lower.tail=FALSE) ci.lb <- c(beta - crit * se) ci.ub <- c(beta + crit * se) QM <- try(as.vector(t(beta)[x$btt] %*% chol2inv(chol(vb[x$btt,x$btt])) %*% beta[x$btt]), silent=TRUE) if (inherits(QM, "try-error") || is.na(QM)) { warning(mstyle$warning("Could not obtain the cluster-robust omnibus Wald test."), call.=FALSE) QM <- NA_real_ } QM <- QM / x$m # note: m is the number of coefficients in btt, not the number of clusters QMdf <- c(x$m, dfs) QMp <- pf(QM, df1=x$m, df2=dfs, lower.tail=FALSE) ### don't need this anymore at the moment meat <- matrix(NA_real_, nrow=nrow(meat.o), ncol=ncol(meat.o)) meat[ocl,ocl] <- meat.o } ######################################################################### ### table of cluster variable tcl <- table(cluster.o) x$digits <- digits ### replace elements with robust results x$ddf <- dfs x$dfs <- dfs x$vb <- vb x$se <- se x$zval <- zval x$pval <- pval x$ci.lb <- ci.lb x$ci.ub <- ci.ub x$QM <- QM x$QMdf <- QMdf x$QMp <- QMp x$n <- n x$tcl <- tcl x$test <- "t" x$vbest <- vbest x$s2w <- 1 # just in case test="knha" originally x$robumethod <- ifelse(clubSandwich, "clubSandwich", "default") x$cluster <- cluster x$meat <- meat class(x) <- c("robust.rma", "rma", "rma.uni") return(x) } metafor/R/rstudent.rma.uni.r0000644000176200001440000000021513457322061015514 0ustar liggesusersrstudent.rma.uni <- function(model, digits, progbar=FALSE, ...) influence(model, digits=digits, progbar=progbar, measure="rstudent", ...) metafor/R/escalc.r0000644000176200001440000033323714737723451013555 0ustar liggesusersescalc <- function(measure, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, fi, pi, sdi, r2i, ni, yi, vi, sei, data, slab, flip, subset, include, add=1/2, to="only0", drop00=FALSE, vtype="LS", correct=TRUE, var.names=c("yi","vi"), add.measure=FALSE, append=TRUE, replace=TRUE, digits, ...) { ### check argument specifications mstyle <- .get.mstyle() if (missing(measure) && missing(yi)) stop(mstyle$stop("Must specify an effect size or outcome measure via the 'measure' argument.")) if (!missing(yi) && missing(measure)) measure <- "GEN" if (!is.character(measure)) stop(mstyle$stop("The 'measure' argument must be a character string.")) if (!is.element(measure, c("RR","OR","PETO","RD","AS","PHI","ZPHI","YUQ","YUY","RTET","ZTET", # 2x2 table measures "PBIT","OR2D","OR2DN","OR2DL", # 2x2 table transformations to SMDs "MPRD","MPRR","MPOR","MPORC","MPPETO","MPORM", # 2x2 table measures for matched pairs / pre-post data "IRR","IRD","IRSD", # two-group person-time data (incidence) measures "MD","SMD","SMDH","SMD1","SMD1H","ROM", # two-group mean/SD measures "CVR","VR", # coefficient of variation ratio, variability ratio "RPB","ZPB","RBIS","ZBIS","D2OR","D2ORN","D2ORL", # two-group mean/SD transformations to r_pb, r_bis, and log(OR) "COR","UCOR","ZCOR", # correlations (raw and r-to-z transformed) "PCOR","ZPCOR","SPCOR","ZSPCOR", # partial and semi-partial correlations "R2","ZR2","R2F","ZR2F", # coefficient of determination / R^2 (raw and r-to-z transformed) "PR","PLN","PLO","PRZ","PAS","PFT", # single proportions (and transformations thereof) "IR","IRLN","IRS","IRFT", # single-group person-time (incidence) data (and transformations thereof) "MN","SMN","MNLN","CVLN","SDLN", # mean, single-group standardized mean, log(mean), log(CV), log(SD), "MC","SMCC","SMCR","SMCRH","SMCRP","SMCRPH","CLESCN","AUCCN","ROMC","CVRC","VRC", # raw/standardized mean change, CLES/AUC, log(ROM), CVR, and VR for dependent samples "ARAW","AHW","ABT", # alpha (and transformations thereof) "REH","CLES","CLESN","AUC","AUCN", # relative excess heterozygosity, common language effect size / area under the curve "HR","HD", # hazard (rate) ratios and differences "GEN"))) stop(mstyle$stop("Unknown 'measure' specified.")) # when adding measures, remember to add measures to .setlab() if (!is.element(to, c("all","only0","if0all","none"))) stop(mstyle$stop("Unknown 'to' argument specified.")) if (any(!is.element(vtype, c("UB","LS","LS2","LS3","HO","ST","CS","AV","AV2","AVHO","H0","H0a","H0b","MAX")), na.rm=TRUE)) # vtype can be an entire vector, so use any() and na.rm=TRUE stop(mstyle$stop("Unknown 'vtype' argument specified.")) if (add.measure) { if (length(var.names) == 2L) var.names <- c(var.names, "measure") if (length(var.names) != 3L) stop(mstyle$stop("Argument 'var.names' must be of length 2 or 3.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\nVariable names adjusted to: var.names = c('", var.names[1], "','", var.names[2], "','", var.names[3], "').")), call.=FALSE) } } else { if (length(var.names) == 3L) var.names <- var.names[1:2] if (length(var.names) != 2L) stop(mstyle$stop("Argument 'var.names' must be of length 2.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\nVariable names adjusted to: var.names = c('", var.names[1], "','", var.names[2], "').")), call.=FALSE) } } ### check if user is trying to use the 'formula interface' to escalc() ### note: if so, argument 'ai' may mistakenly be a formula, so check for that as well (further below) if (hasArg(formula) || hasArg(weights)) stop(mstyle$stop("The 'formula interface' to escalc() has been deprecated.")) ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("onlyo1", "addyi", "addvi")) ### set defaults or get onlyo1, addyi, and addvi arguments onlyo1 <- .chkddd(ddd$onlyo1, FALSE, .isTRUE(ddd$onlyo1)) addyi <- .chkddd(ddd$addyi, TRUE, .isTRUE(ddd$addyi)) addvi <- .chkddd(ddd$addvi, TRUE, .isTRUE(ddd$addvi)) ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } ### check if data argument has been specified if (missing(data)) data <- NULL ### need this at the end to check if append=TRUE can actually be done has.data <- !is.null(data) ### check if data argument has been specified if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() ### get slab, subset, and include arguments (NULL when unspecified) slab <- .getx("slab", mf=mf, data=data) subset <- .getx("subset", mf=mf, data=data) include <- .getx("include", mf=mf, data=data) ### get yi (in case it has been specified) yi <- .getx("yi", mf=mf, data=data) ### get flip (NULL if not specified) flip <- .getx("flip", mf=mf, data=data) ### for certain measures, set add=0 by default unless user explicitly set the add argument addval <- mf[[match("add", names(mf))]] if (is.element(measure, c("AS","PHI","ZPHI","RTET","ZTET","IRSD","PAS","PFT","IRS","IRFT")) && is.null(addval)) add <- 0 ######################################################################### ######################################################################### ######################################################################### if (is.null(yi)) { if (is.element(measure, c("RR","OR","RD","AS","PETO","PHI","ZPHI","YUQ","YUY","RTET","ZTET","PBIT","OR2D","OR2DN","OR2DL","MPRD","MPRR","MPOR","MPORC","MPPETO","MPORM"))) { mf.ai <- mf[[match("ai", names(mf))]] if (any("~" %in% as.character(mf.ai))) stop(mstyle$stop("The 'formula interface' to escalc() has been deprecated.")) ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ai, bi, ci, di, n1i, n2i, ri, pi)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) n1i.inc <- n1i != ai + bi n2i.inc <- n2i != ci + di if (any(n1i.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'n1i' values are not equal to 'ai + bi'.")) if (any(n2i.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'n2i' values are not equal to 'ci + di'.")) bi <- replmiss(bi, n1i-ai) di <- replmiss(di, n2i-ci) if (!.all.specified(ai, bi, ci, di)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ai, bi, ci, di or ai, n1i, ci, n2i).")) if (measure == "MPORM" && !(.all.specified(ri) || .all.specified(pi))) stop(mstyle$stop("Need to specify also argument 'ri' (and/or 'pi') for this measure.")) k.all <- length(ai) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) di <- .getsubset(di, subset) ri <- .getsubset(ri, subset) pi <- .getsubset(pi, subset) } n1i <- ai + bi n2i <- ci + di if (any(c(ai > n1i, ci > n2i), na.rm=TRUE)) stop(mstyle$stop("One or more event counts are larger than the corresponding group sizes.")) if (any(c(ai, bi, ci, di) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(c(n1i < 0, n2i < 0), na.rm=TRUE)) # note: in cross-sectional sampling, group sizes could be 0 stop(mstyle$stop("One or more group sizes are negative.")) if (measure == "MPORM" && !is.null(ri) && any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) if (measure == "MPORM" && !is.null(pi) && any(pi < 0 | pi > 1, na.rm=TRUE)) stop(mstyle$stop("One or more proportions are > 1 or < 0.")) ni.u <- ai + bi + ci + di # unadjusted total sample sizes if (measure == "MPORM") ni.u <- round(ni.u / 2) k <- length(ai) ### if drop00=TRUE, set counts to NA for studies that have no events (or all events) in both arms if (drop00) { id00 <- c(ai == 0L & ci == 0L) | c(bi == 0L & di == 0L) id00[is.na(id00)] <- FALSE ai[id00] <- NA_real_ bi[id00] <- NA_real_ ci[id00] <- NA_real_ di[id00] <- NA_real_ } ### save unadjusted counts ai.u <- ai bi.u <- bi ci.u <- ci di.u <- di n1i.u <- ai + bi n2i.u <- ci + di if (to == "all") { ### always add to all cells in all studies ai <- ai + add ci <- ci + add if (!onlyo1) { bi <- bi + add di <- di + add } } if (to == "only0" || to == "if0all") { #if (onlyo1) { # id0 <- c(ai == 0L | ci == 0L) #} else { id0 <- c(ai == 0L | ci == 0L | bi == 0L | di == 0L) #} id0[is.na(id0)] <- FALSE } if (to == "only0") { ### add to cells in studies with at least one 0 entry ai[id0] <- ai[id0] + add ci[id0] <- ci[id0] + add if (!onlyo1) { bi[id0] <- bi[id0] + add di[id0] <- di[id0] + add } } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry if (any(id0)) { ai <- ai + add ci <- ci + add if (!onlyo1) { bi <- bi + add di <- di + add } } } ### recompute group and total sample sizes (after add/to adjustment) n1i <- ai + bi n2i <- ci + di ni <- n1i + n2i # ni.u computed earlier is always the 'unadjusted' total sample size if (measure == "MPORM") ni <- round(ni / 2) ### compute proportions for the two groups (unadjusted and adjusted) p1i.u <- ai.u / n1i.u p2i.u <- ci.u / n2i.u p1i <- ai / n1i p2i <- ci / n2i ### compute sample size weighted averages of the proportions within groups (for vtype="AV") if (addvi) { mnwp1i <- .wmean(p1i, n1i, na.rm=TRUE) mnwp2i <- .wmean(p2i, n2i, na.rm=TRUE) } else { mnwp1i.u <- .wmean(p1i.u, n1i.u, na.rm=TRUE) mnwp2i.u <- .wmean(p2i.u, n2i.u, na.rm=TRUE) } if (addvi) { ppi <- (ai + ci) / (n1i + n2i) } else { ppi.u <- (ai.u + ci.u) / (n1i.u + n2i.u) } ### log risk ratios if (measure == "RR") { if (addyi) { yi <- log(p1i) - log(p2i) } else { yi <- log(p1i.u) - log(p2i.u) } vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","AV","H0")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") { if (addvi) { vi[i] <- 1/ai[i] - 1/n1i[i] + 1/ci[i] - 1/n2i[i] #vi[i] <- (1-p1i[i])/(p1i[i]*n1i[i]) + (1-p2i[i])/(p2i[i]*n2i[i]) # same } else { vi[i] <- 1/ai.u[i] - 1/n1i.u[i] + 1/ci.u[i] - 1/n2i.u[i] } } ### estimate assuming homogeneity (using the average proportions) if (vtype[i] == "AV") { if (addvi) { vi[i] <- (1-mnwp1i)/(mnwp1i*n1i[i]) + (1-mnwp2i)/(mnwp2i*n2i[i]) } else { vi[i] <- (1-mnwp1i.u)/(mnwp1i.u*n1i.u[i]) + (1-mnwp2i.u)/(mnwp2i.u*n2i.u[i]) } } ### estimate assuming H0: RR=1 if (vtype[i] == "H0") { if (addvi) { vi[i] <- (1-ppi[i]) / ppi[i] * (1/n1i[i] + 1/n2i[i]) } else { vi[i] <- (1-ppi.u[i]) / ppi.u[i] * (1/n1i.u[i] + 1/n2i.u[i]) } } } } ### log odds ratio if (is.element(measure, c("OR","OR2D","OR2DN","OR2DL","MPORM"))) { if (addyi) { yi <- log(p1i/(1-p1i)) - log(p2i/(1-p2i)) } else { yi <- log(p1i.u/(1-p1i.u)) - log(p2i.u/(1-p2i.u)) } vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","AV","H0")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") { if (addvi) { vi[i] <- 1/ai[i] + 1/bi[i] + 1/ci[i] + 1/di[i] #vi[i] <- 1/(p1i[i]*(1-p1i[i])*n1i[i]) + 1/(p2i[i]*(1-p2i[i])*n2i[i]) # same } else { vi[i] <- 1/ai.u[i] + 1/bi.u[i] + 1/ci.u[i] + 1/di.u[i] } } ### estimate assuming homogeneity (using the average proportions) if (vtype[i] == "AV") { if (addvi) { vi[i] <- 1/(mnwp1i*(1-mnwp1i)*n1i[i]) + 1/(mnwp2i*(1-mnwp2i)*n2i[i]) } else { vi[i] <- 1/(mnwp1i.u*(1-mnwp1i.u)*n1i[i]) + 1/(mnwp2i.u*(1-mnwp2i.u)*n2i[i]) } } ### estimate assuming H0: OR=1 if (vtype[i] == "H0") { if (addvi) { vi[i] <- 1 / (ppi[i]*(1-ppi[i])) * (1/n1i[i] + 1/n2i[i]) } else { vi[i] <- 1 / (ppi.u[i]*(1-ppi.u[i])) * (1/n1i.u[i] + 1/n2i.u[i]) } } } } ### risk difference if (measure == "RD") { if (addyi) { yi <- p1i - p2i } else { yi <- p1i.u - p2i.u } vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("UB","LS","AV","H0")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'UB', 'LS', or 'AV'.")) for (i in seq_len(k)) { ### unbiased estimate of the sampling variance if (vtype[i] == "UB") { if (addvi) { vi[i] <- p1i[i]*(1-p1i[i])/(n1i[i]-1) + p2i[i]*(1-p2i[i])/(n2i[i]-1) } else { vi[i] <- p1i.u[i]*(1-p1i.u[i])/(n1i.u[i]-1) + p2i.u[i]*(1-p2i.u[i])/(n2i.u[i]-1) } } ### large sample approximation to the sampling variance if (vtype[i] == "LS") { if (addvi) { vi[i] <- p1i[i]*(1-p1i[i])/n1i[i] + p2i[i]*(1-p2i[i])/n2i[i] } else { vi[i] <- p1i.u[i]*(1-p1i.u[i])/n1i.u[i] + p2i.u[i]*(1-p2i.u[i])/n2i.u[i] } } ### estimate assuming homogeneity (using the average proportions) if (vtype[i] == "AV") { if (addvi) { vi[i] <- mnwp1i*(1-mnwp1i)/n1i[i] + mnwp2i*(1-mnwp2i)/n2i[i] } else { vi[i] <- mnwp1i.u*(1-mnwp1i.u)/n1i.u[i] + mnwp2i.u*(1-mnwp2i.u)/n2i.u[i] } } ### estimate assuming H0: RD=0 if (vtype[i] == "H0") { if (addvi) { vi[i] <- (1/n1i[i] + 1/n2i[i]) * ppi[i] * (1-ppi[i]) } else { vi[i] <- (1/n1i.u[i] + 1/n2i.u[i]) * ppi.u[i] * (1-ppi.u[i]) } } } } ### note: addyi and addvi only implemented for measures above ### log odds ratio (Peto's method) if (measure == "PETO") { xt <- ai + ci # frequency of outcome1 in both groups combined yt <- bi + di # frequency of outcome2 in both groups combined Ei <- xt * n1i / ni Vi <- xt * yt * (n1i/ni) * (n2i/ni) / (ni - 1) # 0 when xt = 0 or yt = 0 in a table yi <- (ai - Ei) / Vi # then yi and vi is Inf (set to NA at end) vi <- 1 / Vi } ### arcsine square root risk difference if (measure == "AS") { yi <- asin(sqrt(p1i)) - asin(sqrt(p2i)) vi <- 1/(4*n1i) + 1/(4*n2i) } ### phi coefficient if (is.element(measure, c("PHI","ZPHI"))) { yi <- (ai*di - bi*ci)/sqrt((ai+bi)*(ci+di)*(ai+ci)*(bi+di)) vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) q1i <- 1 - p1i q2i <- 1 - p2i pi1. <- (ai+bi) / ni pi2. <- (ci+di) / ni pi.1 <- (ai+ci) / ni pi.2 <- (bi+di) / ni if (!all(is.element(vtype, c("ST","LS","CS")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'ST', 'LS', or 'CS'.")) for (i in seq_len(k)) { ### estimate of the sampling variance for stratified sampling if (vtype[i] == "ST") { vi[i] <- ((n1i[i]+n2i[i])^2 * (4*n1i[i]^3*p1i[i]^2*p2i[i]*q1i[i]^2*q2i[i] + 4*n2i[i]^3*p1i[i]*p2i[i]^2*q1i[i]*q2i[i]^2 + n1i[i]*n2i[i]^2*p2i[i]*q2i[i]*(p2i[i]*q1i[i] + p1i[i]*q2i[i])*(p2i[i]*q1i[i] + p1i[i]*(4*q1i[i] + q2i[i])) + n1i[i]^2*n2i[i]*p1i[i]*q1i[i]*(p2i[i]*q1i[i] + p1i[i]*q2i[i])*(p1i[i]*q2i[i] + p2i[i]*(q1i[i] + 4*q2i[i])))) / (4*(ai[i]+ci[i])^3*(bi[i]+di[i])^3) } ### estimate of the sampling variance for cross-sectional/multinomial sampling if (vtype[i] == "LS" || vtype[i] == "CS") { vi[i] <- 1/ni[i] * (1 - yi[i]^2 + yi[i]*(1+1/2*yi[i]^2) * (pi1.[i]-pi2.[i])*(pi.1[i]-pi.2[i]) / sqrt(pi1.[i]*pi2.[i]*pi.1[i]*pi.2[i]) - 3/4 * yi[i]^2 * ((pi1.[i]-pi2.[i])^2/(pi1.[i]*pi2.[i]) + (pi.1[i]-pi.2[i])^2/(pi.1[i]*pi.2[i]))) # Yule, 1912, p.603 } } } ### Yule's Q if (measure == "YUQ") { yi <- (ai/bi) / (ci/di) yi <- (yi-1) / (yi+1) vi <- 1/4 * (1-yi^2)^2 * (1/ai + 1/bi + 1/ci + 1/di) # Yule, 1900, p.285; Yule, 1912, p.593 } ### Yule's Y if (measure == "YUY") { yi <- (ai/bi) / (ci/di) yi <- (sqrt(yi)-1) / (sqrt(yi)+1) vi <- 1/16 * (1-yi^2)^2 * (1/ai + 1/bi + 1/ci + 1/di) # Yule, 1912, p.593 } ### tetrachoric correlation if (is.element(measure, c("RTET","ZTET"))) { ### TODO: allow user to set control arguments for pmvnorm and optimizers ### upgrade warnings to errors (so that tables with no events or only events are skipped) #warn.before <- getOption("warn") #options(warn = 2) yi <- rep(NA_real_, k) vi <- rep(NA_real_, k) for (i in seq_len(k)) { if (is.na(ai[i]) || is.na(bi[i]) || is.na(ci[i]) || is.na(di[i])) next res <- .rtet(ai[i], bi[i], ci[i], di[i], maxcor=.9999) yi[i] <- res$yi vi[i] <- res$vi } #options(warn = warn.before) } ### r-to-z transformation for PHI and RTET (note: NOT a variance-stabilizing transformation for these measures) if (is.element(measure, c("ZPHI","ZTET"))) { vi <- vi / (1 - ifelse(yi^2 > 1, 1, yi^2))^2 yi <- transf.rtoz(yi) } ### probit transformation to SMD if (measure == "PBIT") { z1i <- qnorm(p1i) z2i <- qnorm(p2i) yi <- z1i - z2i vi <- 2*base::pi*p1i*(1-p1i)*exp(z1i^2)/n1i + 2*base::pi*p2i*(1-p2i)*exp(z2i^2)/n2i # Sanchez-Meca et al., 2003, equation 21; Rosenthal, 1994, handbook chapter } # seems to be right for stratified and cross-sectional/multinomial sampling # see code/probit_transformation directory ### log(OR) transformation to SMD based on logistic distribution if (is.element(measure, c("OR2D","OR2DL"))) { yi <- sqrt(3) / base::pi * yi vi <- 3 / base::pi^2 * vi } ### log(OR) transformation to SMD based on normal distribution (Cox & Snell method) if (measure == "OR2DN") { yi <- yi / 1.65 vi <- vi / 1.65^2 } ### matched pairs / pre-post 2x2 table measures if (is.element(measure, c("MPRD","MPRR","MPOR"))) { pi12 <- bi / ni pi21 <- ci / ni pi1. <- (ai+bi) / ni pi.1 <- (ai+ci) / ni } if (measure == "MPRD") { yi <- pi1. - pi.1 vi <- pi12*(1-pi12)/ni + 2*pi12*pi21/ni + pi21*(1-pi21)/ni } if (measure == "MPRR") { yi <- log(pi1.) - log(pi.1) vi <- (pi12 + pi21) / (ni * pi1. * pi.1) } if (measure == "MPOR") { yi <- log(pi1./(1-pi1.)) - log(pi.1/(1-pi.1)) vi <- (pi12*(1-pi12) + pi21*(1-pi21) + 2*pi12*pi21) / (ni * pi1.*(1-pi1.) * pi.1*(1-pi.1)) } if (measure == "MPORM") { ai.p <- pi * (ai.u+bi.u) bi.p <- ai.u - ai.p ci.p <- ci.u - ai.p di.p <- bi.u - ci.u + ai.p ri.p <- (ai.p*di.p - bi.p*ci.p) / sqrt((ai.p+bi.p)*(ci.p+di.p)*(ai.p+ci.p)*(bi.p+di.p)) ri.p[ri.p < -1 | ri.p > 1] <- NA_real_ ri <- replmiss(ri, ri.p) if (addvi) { si <- (ri * sqrt(ai * bi * ci * di) + (ai * bi)) / ni deltai <- ni^2 * (ni * si - ai * bi) / (ai * bi * ci * di) vi <- vi - 2*deltai / ni } else { si.u <- (ri * sqrt(ai.u * bi.u * ci.u * di.u) + (ai.u * bi.u)) / ni.u deltai.u <- ni.u^2 * (ni.u * si.u - ai.u * bi) / (ai.u * bi.u * ci.u * di.u) vi <- vi - 2*deltai.u / ni.u } } if (measure == "MPORC") { yi <- log(bi) - log(ci) vi <- 1/bi + 1/ci } if (measure == "MPPETO") { Ei <- (bi + ci) / 2 Vi <- (bi + ci) / 4 yi <- (bi - Ei) / Vi vi <- 1/Vi } ### Note: Could in principle also compute measures commonly used in diagnostic studies. ### But need to take the sampling method into consideration when computing vi (so need ### to give this some more thought). ### sensitivity #if (measure == "SENS") { # res <- escalc("PR", xi=ai, mi=ci, add=0, to="none", vtype=vtype) # yi <- res$yi # vi <- res$vi #} ### specificity #if (measure == "SPEC") { # res <- escalc("PR", xi=di, mi=bi, add=0, to="none", vtype=vtype) # yi <- res$yi # vi <- res$vi #} ### [...] } ###################################################################### if (is.element(measure, c("IRR","IRD","IRSD"))) { x1i <- .getx("x1i", mf=mf, data=data, checknumeric=TRUE) x2i <- .getx("x2i", mf=mf, data=data, checknumeric=TRUE) t1i <- .getx("t1i", mf=mf, data=data, checknumeric=TRUE) t2i <- .getx("t2i", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(x1i, x2i, t1i, t2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., x1i, x2i, t1i, t2i).")) if (!.equal.length(x1i, x2i, t1i, t2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k.all <- length(x1i) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) x1i <- .getsubset(x1i, subset) x2i <- .getsubset(x2i, subset) t1i <- .getsubset(t1i, subset) t2i <- .getsubset(t2i, subset) } if (any(c(x1i, x2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(c(t1i, t2i) <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more person-times are <= 0.")) ni.u <- t1i + t2i # unadjusted total sample sizes k <- length(x1i) ### if drop00=TRUE, set counts to NA for studies that have no events in both arms if (drop00) { id00 <- c(x1i == 0L & x2i == 0L) id00[is.na(id00)] <- FALSE x1i[id00] <- NA_real_ x2i[id00] <- NA_real_ } ### save unadjusted counts x1i.u <- x1i x2i.u <- x2i if (to == "all") { ### always add to all cells in all studies x1i <- x1i + add x2i <- x2i + add } if (to == "only0" || to == "if0all") { id0 <- c(x1i == 0L | x2i == 0L) id0[is.na(id0)] <- FALSE } if (to == "only0") { ### add to cells in studies with at least one 0 entry x1i[id0] <- x1i[id0] + add x2i[id0] <- x2i[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry if (any(id0)) { x1i <- x1i + add x2i <- x2i + add } } ### compute rates for the two groups (unadjusted and adjusted) ### t1i and t2i are the total person-times in the 1st and 2nd group ir1i.u <- x1i.u/t1i ir2i.u <- x2i.u/t2i ir1i <- x1i/t1i ir2i <- x2i/t2i ### log incidence rate ratio if (measure == "IRR") { if (addyi) { yi <- log(ir1i) - log(ir2i) } else { yi <- log(ir1i.u) - log(ir2i.u) } if (addvi) { vi <- 1/x1i + 1/x2i #vi <- 1/(x1i+1/2) + 1/(x2i+1/2) } else { vi <- 1/x1i.u + 1/x2i.u } } ### incidence rate difference if (measure == "IRD") { if (addyi) { yi <- ir1i - ir2i } else { yi <- ir1i.u - ir2i.u } if (addvi) { vi <- ir1i/t1i + ir2i/t2i # same as x1i/t1i^2 + x2i/t2i^2 } else { vi <- ir1i.u/t1i + ir2i.u/t2i # same as x1i.u/t1i^2 + x2i.u/t2i^2 } } ### square root transformed incidence rate difference if (measure == "IRSD") { if (addyi) { yi <- sqrt(ir1i) - sqrt(ir2i) } else { yi <- sqrt(ir1i.u) - sqrt(ir2i.u) } vi <- 1/(4*t1i) + 1/(4*t2i) } } ###################################################################### if (is.element(measure, c("MD","SMD","SMDH","SMD1","SMD1H","ROM","RPB","ZPB","RBIS","ZBIS","D2OR","D2ORN","D2ORL","CVR","VR"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) # for VR, do not need to supply this m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) # for VR, do not need to supply this sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) # for SMD1, do not need to supply this sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) # point-biserial correlation ### for these measures, need m1i, m2i, sd1i, sd2i, n1i, and n2i (and can also specify di/ti/pi/ri) if (is.element(measure, c("SMD","RPB","ZPB","RBIS","ZBIS","D2OR","D2ORN","D2ORL"))) { if (!.equal.length(m1i, m2i, sd1i, sd2i, n1i, n2i, di, ti, pi, ri)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ### convert pi to ti values ti <- replmiss(ti, .convp2t(pi, df=n1i+n2i-2)) ### convert ti to di values di <- replmiss(di, ti * sqrt(1/n1i + 1/n2i)) ### convert ri (point-biserial correlations) to di values mi <- n1i + n2i - 2 hi <- mi / n1i + mi / n2i di <- replmiss(di, sqrt(hi) * ri / sqrt(1 - ri^2)) ### when di is available, set m1i, m2i, sd1i, and sd2i values accordingly m1i[!is.na(di)] <- di[!is.na(di)] m2i[!is.na(di)] <- 0 sd1i[!is.na(di)] <- 1 sd2i[!is.na(di)] <- 1 if (!.all.specified(m1i, m2i, sd1i, sd2i, n1i, n2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, sd2i, n1i, n2i (and di, ti, pi)).")) } ### for these measures, need m1i, m2i, sd1i, sd2i, n1i, and n2i if (is.element(measure, c("MD","SMDH","SMD1H","ROM","CVR"))) { if (!.all.specified(m1i, m2i, sd1i, sd2i, n1i, n2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, sd2i, n1i, n2i).")) if (!.equal.length(m1i, m2i, sd1i, sd2i, n1i, n2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } ### for this measure, need sd1i, sd2i, n1i, and n2i if (measure == "VR") { if (!.all.specified(sd1i, sd2i, n1i, n2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., sd1i, sd2i, n1i, n2i).")) if (!.equal.length(sd1i, sd2i, n1i, n2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } ### for this measure, need m1i, m2i, sd2i, n1i, and n2i if (measure == "SMD1") { if (!.all.specified(m1i, m2i, sd2i, n1i, n2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd2i, n1i, n2i).")) if (!.equal.length(m1i, m2i, sd2i, n1i, n2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } k.all <- length(n1i) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) m1i <- .getsubset(m1i, subset) m2i <- .getsubset(m2i, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) n1i <- .getsubset(n1i, subset) n2i <- .getsubset(n2i, subset) } if (any(c(sd1i, sd2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) if (any(c(n1i, n2i) <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are <= 0.")) ni.u <- n1i + n2i # unadjusted total sample sizes k <- length(n1i) ni <- ni.u if (is.element(measure, c("SMD1","SMD1H"))) { mi <- n2i - 1 sdpi <- sd2i npi <- n2i } else { mi <- ni - 2 sdpi <- sqrt(((n1i-1)*sd1i^2 + (n2i-1)*sd2i^2) / mi) npi <- ni } di <- (m1i - m2i) / sdpi ### (raw) mean difference if (measure == "MD") { yi <- m1i - m2i vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","UB","HO")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'UB', or 'HO'.")) for (i in seq_len(k)) { ### unbiased estimate of the sampling variance (does not assume homoscedasticity) if (vtype[i] == "UB" || vtype[i] == "LS") vi[i] <- sd1i[i]^2/n1i[i] + sd2i[i]^2/n2i[i] ### estimate assuming homoscedasticity of the variances within studies if (vtype[i] == "HO") vi[i] <- sdpi[i]^2 * (1/n1i[i] + 1/n2i[i]) } } ### standardized mean difference (with pooled SDs or just the SD of group 2) if (is.element(measure, c("SMD","SMD1"))) { ### apply bias-correction to di values cmi <- .cmicalc(mi, correct=correct) yi <- cmi * di vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) mnwyi <- .wmean(yi, ni, na.rm=TRUE) # sample size weighted average of yi's if (!all(is.element(vtype, c("LS","LS2","UB","AV","H0")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'LS2', 'UB', or 'H0'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") vi[i] <- 1/n1i[i] + 1/n2i[i] + yi[i]^2/(2*npi[i]) # Hedges, 1982c, equation 8; Hedges & Olkin, 1985, equation 15; see [a] ### alternative large sample approximation to the sampling variance if (vtype[i] == "LS2") vi[i] <- cmi[i]^2 * (1/n1i[i] + 1/n2i[i] + di[i]^2/(2*npi[i])) # Borenstein, 2009, equation 12.17; analogous to LS2 for SMCC and SMCR; see [b] ### unbiased estimate of the sampling variance if (vtype[i] == "UB") vi[i] <- 1/n1i[i] + 1/n2i[i] + (1 - (mi[i]-2)/(mi[i]*cmi[i]^2)) * yi[i]^2 # Hedges, 1983b, equation 9; see [c] ### estimate assuming homogeneity (using the sample size weighted average of the yi's) if (vtype[i] == "AV") vi[i] <- 1/n1i[i] + 1/n2i[i] + mnwyi^2/(2*npi[i]) ### estimate assuming H0: theta=0 if (vtype[i] == "H0") vi[i] <- ifelse(mi[i] > 2, cmi[i]^2 * (1/n1i[i] + 1/n2i[i]) * mi[i] / (mi[i] - 2), NA_real_) } } ### standardized mean difference (with heteroscedastic SDs) if (measure == "SMDH") { cmi <- .cmicalc(mi, correct=correct) sdpi <- sqrt((sd1i^2 + sd2i^2)/2) di <- (m1i - m2i) / sdpi yi <- cmi * di vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","LS2","LS3")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'LS2'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") { vi[i] <- yi[i]^2 * (sd1i[i]^4 / (n1i[i]-1) + sd2i[i]^4 / (n2i[i]-1)) / (8*sdpi[i]^4) + (sd1i[i]^2 / (n1i[i]-1) + sd2i[i]^2 / (n2i[i]-1)) / sdpi[i]^2 # Bonett, 2008a, equation 8; Bonett, 2009, equation 5 # note: Bonett (2008a) plugs the uncorrected yi into the equation for vi; here, the corrected value is plugged in for consistency with [a] #vi[i] <- cmi[i]^2 * vi[i] } ### alternative large sample approximation (replace n1i-1 and n2i-1 with n1i and n2i) if (vtype[i] == "LS2") { #vi[i] <- sd1i[i]^2 / (n1i[i] * sdpi[i]^2) + sd2i[i]^2 / (n2i[i] * sdpi[i]^2) + yi[i]^2 / (8 * sdpi[i]^4) * (sd1i[i]^4 / (n1i[i]-1) + sd2i[i]^4 / (n2i[i]-1)) # based on standard application of the delta method #vi[i] <- sd1i[i]^2 / ((n1i[i]-1) * sdpi[i]^2) + sd2i[i]^2 / ((n2i[i]-1) * sdpi[i]^2) + yi[i]^2 / (8 * sdpi[i]^4) * (sd1i[i]^4 / (n1i[i]-1) + sd2i[i]^4 / (n2i[i]-1)) # same as Bonett vi[i] <- sd1i[i]^2 / (n1i[i] * sdpi[i]^2) + sd2i[i]^2 / (n2i[i] * sdpi[i]^2) + yi[i]^2 / (8 * sdpi[i]^4) * (sd1i[i]^4 / n1i[i] + sd2i[i]^4 / n2i[i]) } ### alternative large sample approximation if (vtype[i] == "LS3") vi[i] <- sd1i[i]^2 / (n1i[i] * sdpi[i]^2) + sd2i[i]^2 / (n2i[i] * sdpi[i]^2) + yi[i]^2 / (8 * sdpi[i]^4) * (sd1i[i]^4 / (n1i[i]-1) + sd2i[i]^4 / (n2i[i]-1)) # based on standard application of the delta method } } ### standardized mean difference standardized by SD of group 2 (with heteroscedastic SDs) if (measure == "SMD1H") { cmi <- .cmicalc(mi, correct=correct) yi <- cmi * di vi <- (sd1i^2/sd2i^2)/(n1i-1) + 1/(n2i-1) + yi^2/(2*(n2i-1)) # Bonett, 2008a, equation 12 #vi <- cmi^2 * vi } ### ratio of means (response ratio) ### to use with pooled SDs, simply set sd1i = sd2i = sdpi or use vtype="HO" if (measure == "ROM") { yi <- log(m1i/m2i) vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) mn1wcvi <- .wmean(sd1i/m1i, n1i, na.rm=TRUE) # sample size weighted average of the coefficient of variation in group 1 mn2wcvi <- .wmean(sd2i/m2i, n2i, na.rm=TRUE) # sample size weighted average of the coefficient of variation in group 2 not.na <- !(is.na(n1i) | is.na(n2i) | is.na(sd1i/m1i) | is.na(sd2i/m2i)) mnwcvi <- (sum(n1i[not.na]*(sd1i/m1i)[not.na]) + sum(n2i[not.na]*(sd2i/m2i)[not.na])) / sum((n1i+n2i)[not.na]) # sample size weighted average of the two CV values if (!all(is.element(vtype, c("LS","HO","AV","AVHO")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'HO', 'AV', or 'AVHO'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance (does not assume homoscedasticity) if (vtype[i] == "LS") vi[i] <- sd1i[i]^2/(n1i[i]*m1i[i]^2) + sd2i[i]^2/(n2i[i]*m2i[i]^2) ### estimate assuming homoscedasticity of the two variances within studies if (vtype[i] == "HO") vi[i] <- sdpi[i]^2/(n1i[i]*m1i[i]^2) + sdpi[i]^2/(n2i[i]*m2i[i]^2) ### estimate using the weighted averages of the CV values if (vtype[i] == "AV") vi[i] <- mn1wcvi^2/n1i[i] + mn2wcvi^2/n2i[i] ### estimate using the weighted average of two weighted averages of the CV values if (vtype[i] == "AVHO") vi[i] <- mnwcvi^2 * (1/n1i[i] + 1/n2i[i]) } } ### point-biserial correlation obtained from the standardized mean difference ### this is based on Tate's model where Y|X=0 and Y|X=1 are normally distributed (with the same variance) ### Das Gupta (1960) describes the case where Y itself is normal, but the variance expressions therein can ### really only be used in some special cases (not useful in practice) if (is.element(measure, c("RPB","ZPB"))) { hi <- mi/n1i + mi/n2i yi <- di / sqrt(di^2 + hi) vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","ST","CS")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'ST', or 'CS'.")) for (i in seq_len(k)) { ### estimate of the sampling variance for fixed n1i and n2i (i.e., stratified sampling) if (vtype[i] == "ST" || vtype[i] == "LS") { vi[i] <- hi[i]^2 / (hi[i] + di[i]^2)^3 * (1/n1i[i] + 1/n2i[i] + di[i]^2/(2*ni[i])) # this is consistent with escalc(measure="SMD", correct=FALSE) -> conv.delta(transf=transf.dtorpb) #tmp <- escalc(measure="SMD", m1i=m1i[i], sd1i=sd1i[i], n1i=n1i[i], m2i=m2i[i], sd2i=sd2i[i], n2i=n2i[i], correct=FALSE) #vi[i] <- conv.delta(yi, vi, data=tmp, transf=transf.dtorpb, replace=TRUE, n1i=n1i[i], n2i=n2i[i])$vi } ### estimate of the sampling variance for fixed ni but random n1i and n2i (i.e., cross-sectional/multinomial sampling) if (vtype[i] == "CS") vi[i] <- (1-yi[i]^2)^2 * (ni[i]*yi[i]^2 / (4*n1i[i]*n2i[i]) + (2-3*yi[i]^2)/(2*ni[i])) # Tate, 1954; Tate, 1955b } } ### biserial correlation obtained from the standardized mean difference (continued from above) if (is.element(measure, c("RBIS","ZBIS"))) { hi <- mi/n1i + mi/n2i yi <- di / sqrt(di^2 + hi) # point-biserial correlation p1i <- n1i / ni p2i <- n2i / ni zi <- qnorm(p1i, lower.tail=FALSE) fzi <- dnorm(zi) yi <- sqrt(p1i*p2i) / fzi * yi # yi on the right-hand side is the point-biserial correlation from above #vi <- (p1i*p2i) / fzi^2 * vi # vi is from RPB, but this is not correct (p1i, p2i, and fzi are random variables and vi from RBP is not correct for the bivariate normal case on which RBIS is based) yi.t <- ifelse(abs(yi) > 1, sign(yi), yi) vi <- 1/(ni-1) * (p1i*p2i/fzi^2 - (3/2 + (1 - p1i*zi/fzi)*(1 + p2i*zi/fzi)) * yi.t^2 + yi.t^4) # Soper, 1914 #vi <- 1/(ni-1) * (yi.t^4 + yi.t^2 * (p1i*p2i*zi^2/fzi^2 + (2*p1i-1)*zi/fzi - 5/2) + p1i*p2i/fzi^2) # Tate, 1955; equivalent to equation from Soper, 1914 # equation appears to work even if dichotomization is done based on a sample quantile value (so that p1i, p2i, and fzi are fixed by design) # this is asymptotically consistent with escalc(measure="SMD", correct=FALSE) -> conv.delta(transf=transf.dtorbis) #tmp <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, correct=FALSE) #yi <- conv.delta(yi, vi, data=tmp, transf=transf.dtorbis, replace=TRUE, n1i=n1i, n2i=n2i)$yi #vi <- conv.delta(yi, vi, data=tmp, transf=transf.dtorbis, replace=TRUE, n1i=n1i, n2i=n2i)$vi } ### r-to-z transformation for RPB and RBIS (note: NOT a variance-stabilizing transformation for these measures) if (is.element(measure, c("ZPB","ZBIS"))) { vi <- vi / (1 - ifelse(yi^2 > 1, 1, yi^2))^2 yi <- transf.rtoz(yi) } ### SMD to log(OR) transformation based on logistic distribution if (is.element(measure, c("D2OR","D2ORL"))) { yi <- base::pi / sqrt(3) * di vi <- base::pi^2 / 3 * (1/n1i + 1/n2i + di^2/(2*ni)) } ### SMD to log(OR) transformation based on normal distribution (Cox & Snell method) if (measure == "D2ORN") { yi <- 1.65 * di vi <- 1.65^2 * (1/n1i + 1/n2i + di^2/(2*ni)) } ### coefficient of variation ratio if (measure == "CVR") { if (correct) { yi <- log(sd1i/m1i) + 1/(2*(n1i-1)) - log(sd2i/m2i) - 1/(2*(n2i-1)) } else { yi <- log(sd1i/m1i) - log(sd2i/m2i) } vi <- 1/(2*(n1i-1)) + sd1i^2/(n1i*m1i^2) + 1/(2*(n2i-1)) + sd2i^2/(n2i*m2i^2) # Nakagawa et al., 2015, equation 12, but without the '-2 rho ...' terms } ### variability ratio if (measure == "VR") { if (correct) { yi <- log(sd1i/sd2i) + 1/(2*(n1i-1)) - 1/(2*(n2i-1)) } else { yi <- log(sd1i/sd2i) } vi <- 1/(2*(n1i-1)) + 1/(2*(n2i-1)) } } ###################################################################### if (is.element(measure, c("CLES","AUC"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(ai, n1i, n2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ai, n1i, n2i).")) if (!.equal.length(ai, n1i, n2i, mi)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (is.null(mi)) mi <- rep(0, length(ai)) mi[is.na(mi)] <- 0 k.all <- length(ai) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) ai <- .getsubset(ai, subset) n1i <- .getsubset(n1i, subset) n2i <- .getsubset(n2i, subset) mi <- .getsubset(mi, subset) } if (any(c(n1i, n2i) <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are <= 0.")) if (any(ai < 0, na.rm=TRUE) || any(ai > 1, na.rm=TRUE)) stop(mstyle$stop("One or more AUC values are < 0 or > 1.")) if (any(mi < 0, na.rm=TRUE) || any(mi > 1, na.rm=TRUE)) stop(mstyle$stop("One or more 'mi' values are < 0 or > 1.")) ni <- n1i + n2i ni.u <- ni # unadjusted total sample sizes k <- length(ai) yi <- ai vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) navgi <- (n1i+n2i)/2 q0 <- ai*(1-ai) q1 <- ai/(2-ai) q2 <- 2*ai^2/(1+ai) if (!all(is.element(vtype, c("LS","LS2","H0","MAX")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be 'LS' or 'LS2'.")) for (i in seq_len(k)) { ### based on Newcombe (2006b) but using (n1i-1)*(n2i-1) in the denominator as given in Cho et al. (2019), section 2.4 if (vtype[i] == "LS") vi[i] <- q0[i] / ((n1i[i]-1)*(n2i[i]-1)) * (2*navgi[i] - 1 - (3*navgi[i]-3) / ((2-ai[i])*(1+ai[i]))) ### based on Hanley and McNeil (1982) but using (n1i-1)*(n2i-1) in the denominator and subtracting mi/4 as given in Cho et al. (2019) if (vtype[i] == "LS2") vi[i] <- (q0[i] - mi[i]/4 + (n1i[i]-1)*(q1[i]-ai[i]^2) + (n2i[i]-1)*(q2[i]-ai[i]^2)) / ((n1i[i]-1)*(n2i[i]-1)) ### estimate under H0: CLES=AUC=0.5 and equal variances (conservative if there are ties) if (vtype[i] == "H0") vi[i] <- (n1i[i]+n2i[i]+1)/(12*n1i[i]*n2i[i]) ### based on sigma^2_max (eq. 7 in Bamber, 1975) if (vtype[i] == "MAX") vi[i] <- q0[i] / (min(n1i[i],n2i[i])-1) } } if (is.element(measure, c("CLESN","AUCN"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(m1i, m2i, sd1i, sd2i, n1i, n2i, di, ti, pi, ai)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (!.all.specified(n1i, n2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments.")) k.all <- max(sapply(list(m1i, m2i, sd1i, sd2i, n1i, n2i, di, ti, pi, ai), length)) vtype <- .expand1(vtype, k.all) ### if sd1i and/or sd2i have not been specified at all, set sd1i and sd2i to NA for all studies if (is.null(sd1i) || is.null(sd2i)) { sd1i <- .expand1(NA_real_, k.all) sd2i <- .expand1(NA_real_, k.all) } ### convert pi to ti values ti <- replmiss(ti, .convp2t(pi, df=n1i+n2i-2)) ### convert ti to di values di <- replmiss(di, ti * sqrt(1/n1i + 1/n2i)) ### for specified pi/ti/di values, assume homoscedasticity if (!is.null(di)) vtype[!is.na(di)] <- "HO" ### compute di values from means and SDs (for these, do not assume homoscedasticity, unless vtype="HO") sdpi <- ifelse(vtype=="HO", sqrt(((n1i-1)*sd1i^2 + (n2i-1)*sd2i^2)/(n1i+n2i-2)), sqrt((sd1i^2 + sd2i^2)/2)) di <- replmiss(di, (m1i - m2i) / sdpi) ### convert di values to ai values and back (in case only ai is known, so we have di for computing vi) ai <- replmiss(ai, pnorm(di/sqrt(2))) di <- replmiss(di, qnorm(ai)*sqrt(2)) k.all <- length(ai) ### if sd1i and/or sd2i is missing for a particular study, assume sd1i=sd2i=1 for that study and homoscedasticity sdsmiss <- is.na(sd1i) | is.na(sd2i) sd1i <- ifelse(sdsmiss, 1, sd1i) sd2i <- ifelse(sdsmiss, 1, sd2i) vtype[sdsmiss] <- "HO" if (!is.null(subset)) { subset <- .chksubset(subset, k.all) vtype <- .getsubset(vtype, subset) ai <- .getsubset(ai, subset) di <- .getsubset(di, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) n1i <- .getsubset(n1i, subset) n2i <- .getsubset(n2i, subset) } if (any(c(sd1i, sd2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) if (any(c(n1i, n2i) <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are <= 0.")) if (any(ai < 0, na.rm=TRUE) || any(ai > 1, na.rm=TRUE)) stop(mstyle$stop("One or more AUC values are < 0 or > 1.")) ni.u <- n1i + n2i # unadjusted total sample sizes k <- length(ai) ni <- ni.u yi <- ai vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","LS2","LS3","HO","H0")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be 'LS' or 'HO'.")) vri <- sd1i^2 / (sd1i^2 + sd2i^2) for (i in seq_len(k)) { ### large sample approximation to the sampling variance based on the binormal model if (vtype[i] == "LS") { vi[i] <- exp(-di[i]^2 / 2) / (8*base::pi) * (di[i]^2 * vri[i]^2 / (n1i[i]-1) + di[i]^2 * (1-vri[i])^2 / (n2i[i]-1) + 4*vri[i]/(n1i[i]-1) + 4*(1-vri[i])/(n2i[i]-1)) # this is consistent with escalc(measure="SMDH", correct=FALSE) -> conv.delta(transf=transf.dtocles) #tmp <- escalc(measure="SMDH", m1i=m1i[i], sd1i=sd1i[i], n1i=n1i[i], m2i=m2i[i], sd2i=sd2i[i], n2i=n2i[i], correct=FALSE) #vi[i] <- conv.delta(yi, vi, data=tmp, transf=transf.dtocles, replace=TRUE)$vi } ### large sample approximation to the sampling variance based on the binormal model if (vtype[i] == "LS2") { vi[i] <- exp(-di[i]^2 / 2) / (8*base::pi) * (di[i]^2 * vri[i]^2 / (n1i[i]-0) + di[i]^2 * (1-vri[i])^2 / (n2i[i]-0) + 4*vri[i]/(n1i[i]-0) + 4*(1-vri[i])/(n2i[i]-0)) # this is consistent with escalc(measure="SMDH", correct=FALSE, vtype="LS2") -> conv.delta(transf=transf.dtocles) #tmp <- escalc(measure="SMDH", m1i=m1i[i], sd1i=sd1i[i], n1i=n1i[i], m2i=m2i[i], sd2i=sd2i[i], n2i=n2i[i], correct=FALSE, vtype="LS2") #vi[i] <- conv.delta(yi, vi, data=tmp, transf=transf.dtocles, replace=TRUE)$vi } ### large sample approximation to the sampling variance based on the binormal model (based on standard application of the delta method) if (vtype[i] == "LS3") { vi[i] <- exp(-di[i]^2 / 2) / (8*base::pi) * (di[i]^2 * vri[i]^2 / (n1i[i]-1) + di[i]^2 * (1-vri[i])^2 / (n2i[i]-1) + 4*vri[i]/(n1i[i]-0) + 4*(1-vri[i])/(n2i[i]-0)) # this is consistent with escalc(measure="SMDH", correct=FALSE, vtype="LS3") -> conv.delta(transf=transf.dtocles) #tmp <- escalc(measure="SMDH", m1i=m1i[i], sd1i=sd1i[i], n1i=n1i[i], m2i=m2i[i], sd2i=sd2i[i], n2i=n2i[i], correct=FALSE, vtype="LS3") #vi[i] <- conv.delta(yi, vi, data=tmp, transf=transf.dtocles, replace=TRUE)$vi } ### estimate assuming homoscedasticity of the variances within studies if (vtype[i] == "HO") { vi[i] <- exp(-di[i]^2 / 2) / (4*base::pi) * (1/n1i[i] + 1/n2i[i] + di[i]^2 / (2*(n1i[i]+n2i[i]))) # this is consistent with escalc(measure="SMD", correct=FALSE) -> conv.delta(transf=transf.dtocles) #tmp <- escalc(measure="SMD", m1i=m1i[i], sd1i=sd1i[i], n1i=n1i[i], m2i=m2i[i], sd2i=sd2i[i], n2i=n2i[i], correct=FALSE) #vi[i] <- conv.delta(yi, vi, data=tmp, transf=transf.dtocles, replace=TRUE)$vi } ### estimate under H0: CLES=AUC=0.5 if (vtype[i] == "H0") vi[i] <- 1 / (8*base::pi) * (4*vri[i]/(n1i[i]-1) + 4*(1-vri[i])/(n2i[i]-1)) } } ###################################################################### if (is.element(measure, c("COR","UCOR","ZCOR"))) { ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ri, ni, ti, pi)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ### convert pi to ti values ti <- replmiss(ti, .convp2t(pi, df=ni-2)) ### convert ti to ri values ri <- replmiss(ri, ti / sqrt(ti^2 + ni-2)) if (!.all.specified(ri, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ri, ni (and ti, pi)).")) k.all <- length(ri) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) ri <- .getsubset(ri, subset) ni <- .getsubset(ni, subset) } if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) if (measure != "UCOR" && any(vtype == "UB")) stop(mstyle$stop("Use of vtype='UB' only permitted when measure='UCOR'.")) if (measure == "UCOR" && any(ni <= 4, na.rm=TRUE)) warning(mstyle$warning("Cannot compute the bias-corrected correlation coefficient when ni <= 4."), call.=FALSE) if (measure == "ZCOR" && any(ni <= 3, na.rm=TRUE)) warning(mstyle$warning("Cannot estimate the sampling variance when ni <= 3."), call.=FALSE) ni.u <- ni # unadjusted total sample sizes k <- length(ri) ### raw correlation coefficient if (measure == "COR") yi <- ri ### raw correlation coefficient with bias correction if (measure == "UCOR") { #yi <- ri + ri*(1-ri^2)/(2*(ni-4)) # approximation #yi[ni <= 4] <- NA_real_ # set corrected correlations for ni <= 4 to NA_real_ yi <- ri * .Fcalc(1/2, 1/2, (ni-2)/2, 1-ri^2) } ### sampling variances for COR or UCOR if (is.element(measure, c("COR","UCOR"))) { vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) mnwyi <- .wmean(yi, ni, na.rm=TRUE) # sample size weighted average of yi's if (measure=="COR" && !all(is.element(vtype, c("LS","UB","AV","H0","H0a","H0b")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'UB', 'AV', or 'H0'.")) if (measure=="UCOR" && !all(is.element(vtype, c("LS","UB","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'UB', or 'AV'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") vi[i] <- (1-yi[i]^2)^2 / (ni[i]-1) ### unbiased estimate of the sampling variance of the bias-corrected correlation coefficient if (vtype[i] == "UB") { #vi[i] <- yi[i]^2 - 1 + (ni[i]-3) / (ni[i]-2) * ((1-ri[i]^2) + 2*(1-ri[i]^2)^2/ni[i] + 8*(1-ri[i]^2)^3/(ni[i]*(ni[i]+2)) + 48*(1-ri[i]^2)^4/(ni[i]*(ni[i]+2)*(ni[i]+4))) vi[i] <- yi[i]^2 - (1 - (ni[i]-3) / (ni[i]-2) * (1-ri[i]^2) * .Fcalc(1, 1, ni[i]/2, 1-ri[i]^2)) } ### estimate assuming homogeneity (using sample size weighted average of the yi's) if (vtype[i] == "AV") vi[i] <- (1-mnwyi^2)^2 / (ni[i]-1) ### large sample approximation to the sampling variance if (vtype[i] == "LS") vi[i] <- (1-yi[i]^2)^2 / (ni[i]-1) ### estimate assuming H0: rho=0 (technically correct) if (is.element(vtype[i], c("H0","H0a"))) vi[i] <- (1-yi[i]^2) / (ni[i]-2) ### estimate assuming H0: rho=0 (alternative formula that works better for the z-test) if (vtype[i] == "H0b") vi[i] <- 1 / ni[i] } } ### r-to-z transformed correlation if (measure == "ZCOR") { yi <- transf.rtoz(ri) vi <- 1 / (ni-3) } ### set sampling variances for ni <= 3 to NA vi[ni <= 3] <- NA_real_ } ###################################################################### if (is.element(measure, c("PCOR","ZPCOR","SPCOR","ZSPCOR"))) { ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) r2i <- .getx("r2i", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ri, ti, mi, ni, pi, r2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ### convert pi to ti values ti <- replmiss(ti, .convp2t(pi, df=ni-mi-1)) ### convert ti to ri values if (is.element(measure, c("PCOR","ZPCOR"))) ri <- replmiss(ri, ti / sqrt(ti^2 + ni-mi-1)) if (is.element(measure, c("SPCOR","ZSPCOR"))) ri <- replmiss(ri, ti * sqrt(1-r2i) / sqrt(ni-mi-1)) if (is.element(measure, c("PCOR","ZPCOR")) && !.all.specified(ri, mi, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ri, ti, mi, ni (and pi)).")) if (is.element(measure, c("SPCOR","ZSPCOR")) && !.all.specified(ri, mi, ni, r2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ri, ti, mi, ni, r2i (and pi)).")) k.all <- length(ri) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) ri <- .getsubset(ri, subset) mi <- .getsubset(mi, subset) ni <- .getsubset(ni, subset) r2i <- .getsubset(r2i, subset) } if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more (semi-)partial correlations are > 1 or < -1.")) if (is.element(measure, c("SPCOR","ZSPCOR")) && any(r2i > 1 | r2i < 0, na.rm=TRUE)) stop(mstyle$stop("One or more R^2 values are > 1 or < 0.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) if (any(mi <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more mi values are <= 0.")) if (any(ni-mi-1 <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more dfs are <= 0.")) ni.u <- ni # unadjusted total sample sizes k <- length(ri) ### partial correlation coefficient if (measure == "PCOR") { yi <- ri vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) mnwyi <- .wmean(yi, ni, na.rm=TRUE) # sample size weighted average of yi's if (!all(is.element(vtype, c("LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") vi[i] <- (1 - yi[i]^2)^2 / (ni[i] - mi[i]) ### estimate assuming homogeneity (using sample size weighted average of the yi's) if (vtype[i] == "AV") vi[i] <- (1 - mnwyi^2)^2 / (ni[i] - mi[i]) } } ### r-to-z transformed partial correlation if (measure == "ZPCOR") { yi <- transf.rtoz(ri) vi <- 1 / (ni-mi-2) } ### semi-partial correlation coefficient if (is.element(measure, c("SPCOR","ZSPCOR"))) { yi <- ri vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) mnwyi <- .wmean(yi, ni, na.rm=TRUE) # sample size weighted average of yi's if (!all(is.element(vtype, c("LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") vi[i] <- (r2i[i]^2 - 2*r2i[i] + (r2i[i] - yi[i]^2) + 1 - (r2i[i] - yi[i]^2)^2) / ni[i] ### estimate assuming homogeneity (using sample size weighted average of the yi's) if (vtype[i] == "AV") vi[i] <- (r2i[i]^2 - 2*r2i[i] + (r2i[i] - mnwyi^2) + 1 - (r2i[i] - mnwyi^2)^2) / ni[i] } } ### r-to-z transformation for ZPCOR (note: NOT a variance-stabilizing transformation for this measure) if (measure == "ZSPCOR") { vi <- vi / (1 - ifelse(yi^2 > 1, 1, yi^2))^2 yi <- transf.rtoz(yi) } } ###################################################################### if (is.element(measure, c("R2","ZR2","R2F","ZR2F"))) { r2i <- .getx("r2i", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) fi <- .getx("fi", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(r2i, mi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ### convert pi to fi values fi <- replmiss(fi, .convp2f(pi, df1=mi, df2=ni-mi-1)) ### convert fi to r2i values r2i <- replmiss(r2i, mi*fi / (mi*fi + (ni-mi-1))) if (!.all.specified(r2i, mi, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., r2i, mi, ni (and fi, pi)).")) k.all <- length(r2i) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) r2i <- .getsubset(r2i, subset) mi <- .getsubset(mi, subset) ni <- .getsubset(ni, subset) } if (any(r2i > 1 | r2i < 0, na.rm=TRUE)) stop(mstyle$stop("One or more R^2 values are > 1 or < 0.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) if (any(mi <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more mi values are <= 0.")) if (any(ni-mi-1 <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more dfs are <= 0.")) ni.u <- ni # unadjusted total sample sizes k <- length(r2i) ### coefficients of determination (R^2 values) if (measure == "R2") { yi <- r2i vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) mnwyi <- .wmean(yi, ni, na.rm=TRUE) # sample size weighted average of yi's if (!all(is.element(vtype, c("LS","AV","LS2","AV2")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance (simplified equation) if (vtype[i] == "LS") vi[i] <- 4 * yi[i] * (1 - yi[i])^2 / ni[i] # Kendall & Stuart, 1979, equation 27.88 ### estimate assuming homogeneity (using sample size weighted average of the yi's) if (vtype[i] == "AV") vi[i] <- 4 * mnwyi * (1 - mnwyi)^2 / ni[i] ### large sample approximation to the sampling variance (full equation) if (vtype[i] == "LS2") vi[i] <- 4 * yi[i] * (1 - yi[i])^2 * (ni[i] - mi[i] - 1)^2 / ((ni[i]^2 - 1) * (ni[i] + 3)) # Kendall & Stuart, 1979, equation 27.87 ### estimate assuming homogeneity (using sample size weighted average of the yi's) if (vtype[i] == "AV2") vi[i] <- 4 * mnwyi * (1 - mnwyi)^2 * (ni[i] - mi[i] - 1)^2 / ((ni[i]^2 - 1) * (ni[i] + 3)) } } ### r-to-z transformed coefficients of determination if (measure == "ZR2") { if (!all(is.element(vtype, "LS"))) stop(mstyle$stop("For this outcome measure, 'vtype' must be 'LS'.")) yi <- transf.rtoz(sqrt(r2i)) vi <- 1 / ni # Olkin & Finn, 1995, p.162, but var(z*) is 4/n, not 16/n and here we use the 1/2 factor, so 1/n is correct } if (is.element(measure, c("R2F","ZR2F"))) { yi <- r2i vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, "LS"))) stop(mstyle$stop("For this outcome measure, 'vtype' must be 'LS'.")) R2s <- seq(0.0001, 0.9999, length=10^5) trapezoid <- function(x,y) sum(diff(x)*(y[-1]+y[-length(y)]))/2 for (i in seq_len(k)) { Fval <- (ni[i] - mi[i] - 1) / mi[i] * r2i[i] / (1 - r2i[i]) ncps <- (mi[i] + ni[i]-mi[i]) * R2s / (1 - R2s) denFval <- sapply(ncps, function(ncp) df(Fval, df1=mi[i], df2=ni[i]-mi[i]-1, ncp=ncp)) denFval <- denFval / trapezoid(R2s, denFval) vi[i] <- sum((R2s[2]-R2s[1])*R2s^2*denFval) - sum((R2s[2]-R2s[1])*R2s*denFval)^2 #plot(R2s[denFval > sqrt(.Machine$double.eps)], denFval[denFval > sqrt(.Machine$double.eps)], type="l", lwd=5, bty="l", xlab="R^2", ylab="Density") } } if (measure == "ZR2F") { vi <- vi / (1 - yi^2)^2 yi <- transf.rtoz(sqrt(r2i)) } } ###################################################################### if (is.element(measure, c("PR","PLN","PLO","PRZ","PAS","PFT"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(xi, mi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ni.inc <- ni != xi + mi if (any(ni.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'ni' values are not equal to 'xi + mi'.")) mi <- replmiss(mi, ni-xi) if (!.all.specified(xi, mi)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., xi, mi or xi, ni).")) k.all <- length(xi) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) xi <- .getsubset(xi, subset) mi <- .getsubset(mi, subset) } ni <- xi + mi if (any(xi > ni, na.rm=TRUE)) stop(mstyle$stop("One or more event counts are larger than the corresponding group sizes.")) if (any(c(xi, mi) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes k <- length(xi) ### save unadjusted counts xi.u <- xi mi.u <- mi k <- length(xi) if (to == "all") { ### always add to all cells in all studies xi <- xi + add mi <- mi + add } if (to == "only0" || to == "if0all") { id0 <- c(xi == 0L | mi == 0L) id0[is.na(id0)] <- FALSE } if (to == "only0") { ### add to cells in studies with at least one 0 entry xi[id0] <- xi[id0] + add mi[id0] <- mi[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry if (any(id0)) { xi <- xi + add mi <- mi + add } } ### recompute sample sizes (after add/to adjustment) ni <- xi + mi ### compute proportions (unadjusted and adjusted) pri.u <- xi.u/ni.u pri <- xi/ni ### raw proportion if (measure == "PR") { if (addyi) { yi <- pri } else { yi <- pri.u } vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (addvi) { mnwpri <- .wmean(pri, ni, na.rm=TRUE) # sample size weighted average of proportions } else { mnwpri.u <- .wmean(pri.u, ni.u, na.rm=TRUE) # sample size weighted average of proportions } if (!all(is.element(vtype, c("LS","UB","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'UB', or 'AV'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") { if (addvi) { vi[i] <- pri[i]*(1-pri[i])/ni[i] } else { vi[i] <- pri.u[i]*(1-pri.u[i])/ni.u[i] } } ### unbiased estimate of the sampling variance if (vtype[i] == "UB") { if (addvi) { vi[i] <- pri[i]*(1-pri[i])/(ni[i]-1) } else { vi[i] <- pri.u[i]*(1-pri.u[i])/(ni.u[i]-1) } } ### estimate assuming homogeneity (using the average proportion) if (vtype[i] == "AV") { if (addvi) { vi[i] <- mnwpri*(1-mnwpri)/ni[i] } else { vi[i] <- mnwpri.u*(1-mnwpri.u)/ni.u[i] } } } } ### proportion with log transformation if (measure == "PLN") { if (addyi) { yi <- log(pri) } else { yi <- log(pri.u) } vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (addvi) { mnwpri <- .wmean(pri, ni, na.rm=TRUE) # sample size weighted average of proportions #mnwpri <- exp(.wmean(yi, ni, na.rm=TRUE)) # alternative strategy (exp of the sample size weighted average of the log proportions) } else { mnwpri.u <- .wmean(pri.u, ni.u, na.rm=TRUE) # sample size weighted average of proportions } if (!all(is.element(vtype, c("LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") { if (addvi) { vi[i] <- 1/xi[i] - 1/ni[i] } else { vi[i] <- 1/xi.u[i] - 1/ni.u[i] } } ### estimate assuming homogeneity (using the average proportion) if (vtype[i] == "AV") { if (addvi) { vi[i] <- 1/(mnwpri*ni[i]) - 1/ni[i] } else { vi[i] <- 1/(mnwpri.u*ni.u[i]) - 1/ni.u[i] } } } } ### proportion with logit (log odds) transformation if (measure == "PLO") { if (addyi) { yi <- log(pri/(1-pri)) } else { yi <- log(pri.u/(1-pri.u)) } vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (addvi) { mnwpri <- .wmean(pri, ni, na.rm=TRUE) # sample size weighted average of proportions #mnwpri <- transf.ilogit(.wmean(yi, ni, na.rm=TRUE)) # alternative strategy (inverse logit of the sample size weighted average of the logit transformed proportions) } else { mnwpri.u <- .wmean(pri.u, ni.u, na.rm=TRUE) # sample size weighted average of proportions } if (!all(is.element(vtype, c("LS","AV")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'AV'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") { if (addvi) { vi[i] <- 1/xi[i] + 1/mi[i] } else { vi[i] <- 1/xi.u[i] + 1/mi.u[i] } } ### estimate assuming homogeneity (using the average proportion) if (vtype[i] == "AV") { if (addvi) { vi[i] <- 1/(mnwpri*ni[i]) + 1/((1-mnwpri)*ni[i]) } else { vi[i] <- 1/(mnwpri.u*ni.u[i]) + 1/((1-mnwpri.u)*ni.u[i]) } } } } ### note: addyi and addvi only implemented for measures above ### proportion with probit transformation if (measure == "PRZ") { yi <- qnorm(pri) vi <- 2*base::pi*pri*(1-pri)*exp(yi^2)/ni # this is consistent with escalc(measure="PR") -> conv.delta(transf=qnorm) #tmp <- escalc(measure="PR", xi=xi, ni=ni) #vi <- conv.delta(yi, vi, data=tmp, transf=qnorm, replace=TRUE)$vi } ### proportion with arcsine square root (angular) transformation if (measure == "PAS") { yi <- asin(sqrt(pri)) vi <- 1/(4*ni) # this is consistent with escalc(measure="PR") -> conv.delta(transf=transf.arcsin) #tmp <- escalc(measure="PR", xi=xi, ni=ni) #vi <- conv.delta(yi, vi, data=tmp, transf=transf.arcsin, replace=TRUE)$vi } ### proportion with Freeman-Tukey double arcsine transformation if (measure == "PFT") { yi <- 1/2*(asin(sqrt(xi/(ni+1))) + asin(sqrt((xi+1)/(ni+1)))) vi <- 1/(4*ni+2) # this is asymptotically consistent with escalc(measure="PR") -> conv.delta(transf=transf.pft) #tmp <- escalc(measure="PR", xi=xi, ni=ni) #vi <- conv.delta(yi, vi, data=tmp, transf=transf.pft, ni=ni, replace=TRUE)$vi } } ###################################################################### if (is.element(measure, c("IR","IRLN","IRS","IRFT"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(xi, ti)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., xi, ti).")) if (!.equal.length(xi, ti)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k.all <- length(xi) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) xi <- .getsubset(xi, subset) ti <- .getsubset(ti, subset) } if (any(xi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(ti <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more person-times are <= 0.")) ni.u <- ti # unadjusted total sample sizes k <- length(xi) ### save unadjusted counts xi.u <- xi if (to == "all") { ### always add to all cells in all studies xi <- xi + add } if (to == "only0" || to == "if0all") { id0 <- c(xi == 0L) id0[is.na(id0)] <- FALSE } if (to == "only0") { ### add to cells in studies with at least one 0 entry xi[id0] <- xi[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry if (any(id0)) { xi <- xi + add } } ### compute rates (unadjusted and adjusted) iri.u <- xi.u / ti iri <- xi / ti ### raw incidence rate if (measure == "IR") { if (addyi) { yi <- iri } else { yi <- iri.u } if (addvi) { vi <- iri / ti # same as xi/ti^2 } else { vi <- iri.u / ti # same as xi.u/ti^2 } } ### log transformed incidence rate if (measure == "IRLN") { if (addyi) { yi <- log(iri) } else { yi <- log(iri.u) } if (addvi) { vi <- 1 / xi } else { vi <- 1 / xi.u } } ### square root transformed incidence rate if (measure == "IRS") { if (addyi) { yi <- sqrt(iri) } else { yi <- sqrt(iri.u) } vi <- 1 / (4*ti) # this is consistent with escalc(measure="IR") -> conv.delta(transf=sqrt) #tmp <- escalc(measure="IR", xi=xi, ti=ti) #vi <- conv.delta(yi, vi, data=tmp, transf=sqrt, replace=TRUE)$vi } ### note: addyi and addvi only implemented for measures above ### incidence rate with Freeman-Tukey transformation if (measure == "IRFT") { yi <- 1/2 * (sqrt(iri) + sqrt(iri+1/ti)) vi <- 1 / (4*ti) # this is asymptotically consistent with escalc(measure="IR") -> conv.delta(transf=transf.irft) #tmp <- escalc(measure="IR", xi=xi, ti=ti) #vi <- conv.delta(yi, vi, data=tmp, transf=transf.irft, ti=ti, replace=TRUE)$vi } } ###################################################################### if (is.element(measure, c("MN","SMN","MNLN","CVLN","SDLN"))) { mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) # for SDLN, do not need to supply this sdi <- .getx("sdi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) ### for these measures, need mi, sdi, and ni if (is.element(measure, c("MN","SMN","MNLN","CVLN"))) { if (!.all.specified(mi, sdi, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., mi, sdi, ni).")) if (!.equal.length(mi, sdi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } ### for this measure, need sdi and ni if (measure == "SDLN") { if (!.all.specified(sdi, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., sdi, ni).")) if (!.equal.length(sdi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } k.all <- length(ni) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) mi <- .getsubset(mi, subset) sdi <- .getsubset(sdi, subset) ni <- .getsubset(ni, subset) } if (any(sdi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) if (is.element(measure, c("MNLN","CVLN")) && any(mi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more means are negative.")) ni.u <- ni # unadjusted total sample sizes k <- length(ni) ### (raw) mean if (measure == "MN") { yi <- mi sdpi <- sqrt(.wmean(sdi^2, ni-1, na.rm=TRUE)) vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","HO")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'HO'.")) for (i in seq_len(k)) { ### unbiased estimate of the sampling variance if (vtype[i] == "LS") vi[i] <- sdi[i]^2 / ni[i] ### estimate assuming homoscedasticity of the variances across studies if (vtype[i] == "HO") vi[i] <- sdpi^2 / ni[i] } } ### single-group standardized mean if (measure == "SMN") { cmi <- .cmicalc(ni-1, correct=correct) yi <- cmi * mi / sdi vi <- 1 / ni + yi^2 / (2*ni) } ### log(mean) if (measure == "MNLN") { yi <- log(mi) vi <- sdi^2 / (ni*mi^2) } ### log(CV) with bias correction if (measure == "CVLN") { if (correct) { yi <- log(sdi/mi) + 1 / (2*(ni-1)) } else { yi <- log(sdi/mi) } vi <- 1 / (2*(ni-1)) + sdi^2 / (ni*mi^2) # Nakagawa et al., 2015, but without the '-2 rho ...' term } ### log(SD) with bias correction if (measure == "SDLN") { if (correct) { yi <- log(sdi) + 1 / (2*(ni-1)) } else { yi <- log(sdi) } vi <- 1 / (2*(ni-1)) } } ###################################################################### if (is.element(measure, c("MC","SMCC","SMCR","SMCRH","SMCRP","SMCRPH","CLESCN","AUCCN","ROMC","CVRC","VRC"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) # for VRC, do not need to supply this m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) # for VRC, do not need to supply this sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) # for SMCR, do not need to supply this ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) ri <- .expand1(ri, list(m1i, m2i, sd1i, sd2i, ni, di, ti, pi)) if (is.element(measure, c("MC","SMCRH","SMCRP","SMCRPH","CLESCN","AUCCN","ROMC","CVRC"))) { ### for these measures, need m1i, m2i, sd1i, sd2i, ni, and ri if (!.all.specified(m1i, m2i, sd1i, sd2i, ri, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, sd2i, ni, ri).")) if (!.equal.length(m1i, m2i, sd1i, sd2i, ri, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (measure == "SMCC") { ### for this measures, need m1i, m2i, sd1i, sd2i, ni, and ri (and can also specify di/ti/pi) if (!.equal.length(m1i, m2i, sd1i, sd2i, ri, ni, di, ti, pi)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ### convert pi to ti values ti <- replmiss(ti, .convp2t(pi, df=ni-1)) ### convert ti to di values di <- replmiss(di, ti * sqrt(1/ni)) ### when di is available, set m1i, m2i, sd1i, sd2i, and ri values accordingly m1i[!is.na(di)] <- di[!is.na(di)] m2i[!is.na(di)] <- 0 sd1i[!is.na(di)] <- 1 sd2i[!is.na(di)] <- 1 ri[!is.na(di)] <- 0.5 if (!.all.specified(m1i, m2i, sd1i, sd2i, ri, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, sd2i, ni, ri (and di, ti, pi)).")) } if (measure == "SMCR") { ### for this measure, need m1i, m2i, sd1i, ni, and ri (do not need sd2i) if (!.all.specified(m1i, m2i, sd1i, ri, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, ni, ri).")) if (!.equal.length(m1i, m2i, sd1i, ri, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (measure == "VRC") { ### for this measure, need sd1i, sd2i, ni, and ri if (!.all.specified(sd1i, sd2i, ri, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., sd1i, sd2i, ni, ri).")) if (!.equal.length(sd1i, sd2i, ri, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } k.all <- length(ni) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) m1i <- .getsubset(m1i, subset) m2i <- .getsubset(m2i, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) ni <- .getsubset(ni, subset) ri <- .getsubset(ri, subset) } if (is.element(measure, c("MC","SMCC","SMCRH","SMCRP","SMCRPH","CLESCN","AUCCN","ROMC","CVRC","VRC"))) { if (any(c(sd1i, sd2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) } if (measure == "SMCR") { if (any(sd1i < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) } if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes k <- length(ni) ni <- ni.u mi <- ni - 1 sddiffi <- sqrt(sd1i^2 + sd2i^2 - 2*ri*sd1i*sd2i) # SD of the change scores sdpi <- sqrt((sd1i^2+sd2i^2)/2) # pooled SD ### (raw) mean change if (measure == "MC") { yi <- m1i - m2i vi <- sddiffi^2 / ni } ### standardized mean change with change score standardization (using sddi) ### note: does not assume homoscedasticity, since we use sddi here if (measure == "SMCC") { cmi <- .cmicalc(mi, correct=correct) di <- (m1i - m2i) / sddiffi yi <- cmi * di vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","LS2","UB","H0")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'LS2', 'UB', or 'H0'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") vi[i] <- 1/ni[i] + yi[i]^2 / (2*ni[i]) # Gibbons et al., 1993, equation 21, but using ni instead of ni-1; see [a] ### alternative large sample approximation to the sampling variance if (vtype[i] == "LS2") vi[i] <- cmi[i]^2 * (1/ni[i] + di[i]^2 / (2*ni[i])) # analogous to LS2 for SMD and SMCR; see [b] ### unbiased estimate of the sampling variance if (vtype[i] == "UB") vi[i] <- 1/ni[i] + (1 - (mi[i]-2)/(mi[i]*cmi[i]^2)) * yi[i]^2 # Viechtbauer, 2007d, equation 26; see [c] ### estimate assuming theta=0 if (vtype[i] == "H0") vi[i] <- ifelse(mi[i] > 2, cmi[i]^2 / ni[i] * mi[i] / (mi[i] - 2), NA_real_) } } ### standardized mean change with raw score standardization (using sd1i) if (measure == "SMCR") { cmi <- .cmicalc(mi, correct=correct) di <- (m1i - m2i) / sd1i yi <- cmi * di vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","LS2","UB","H0")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS', 'LS2', 'UB', or 'H0'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") vi[i] <- 2*(1-ri[i])/ni[i] + yi[i]^2 / (2*ni[i]) # Becker, 1988a, equation 13 ### alternative large sample approximation to the sampling variance if (vtype[i] == "LS2") vi[i] <- cmi[i]^2 * (2*(1-ri[i])/ni[i] + di[i]^2 / (2*ni[i])) # corrected (!) equation from Borenstein et al., 2009; analogous to LS2 for SMD and SMCC; see [b] #vi[i] <- cmi[i]^2 * 2 * (1-ri[i]) * (1/ni[i] + di[i]^2 / (2*ni[i])) # Borenstein, 2009, equation 4.28 (with J^2 multiplier) but this is incorrect ### unbiased estimate of the sampling variance if (vtype[i] == "UB") { rui <- ri[i] * .Fcalc(1/2, 1/2, (ni[i]-2)/2, 1-ri[i]^2) # NA when ni <= 4 vi[i] <- 2*(1-rui)/ni[i] + (1 - (mi[i]-2)/(mi[i]*cmi[i]^2)) * yi[i]^2 # Viechtbauer, 2007d, equation 37; see [c] } ### estimate assuming theta=0 if (vtype[i] == "H0") { rui <- ri[i] * .Fcalc(1/2, 1/2, (ni[i]-2)/2, 1-ri[i]^2) # NA when ni <= 4 vi[i] <- ifelse(mi[i] > 2, cmi[i]^2 * 2*(1-rui) / ni[i] * mi[i] / (mi[i] - 2), NA_real_) } } } ### standardized mean change with raw score standardization (using sd1i) allowing for heteroscedasticity if (measure == "SMCRH") { cmi <- .cmicalc(mi, correct=correct) di <- (m1i - m2i) / sd1i yi <- cmi * di vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","LS2")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be either 'LS' or 'LS2'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") { vi[i] <- sddiffi[i]^2/(sd1i[i]^2*(ni[i]-1)) + yi[i]^2 / (2*(ni[i]-1)) # Bonett, 2008a, equation 13 # note: Bonett (2008a) plugs the uncorrected yi into the equation for vi; here, the corrected value is plugged in for consistency with [a] #vi <- cmi^2 * vi } ### alternative large sample approximation (replace ni-1 with ni) if (vtype[i] == "LS2") vi[i] <- sddiffi[i]^2/(sd1i[i]^2*ni[i]) + yi[i]^2 / (2*ni[i]) } } ### standardized mean change with raw score standardization (using (sd1i+sd2i)/2)) if (measure == "SMCRP") { mi <- 2*(ni-1) / (1 + ri^2) cmi <- .cmicalc(mi, correct=correct) di <- (m1i - m2i) / sdpi yi <- cmi * di vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, "LS"))) stop(mstyle$stop("For this outcome measure, 'vtype' must be 'LS'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") vi[i] <- 2 * (1-ri[i]) / ni[i] + yi[i]^2 * (1 + ri[i]^2) / (4*ni[i]) # follows from Cousineau, 2020, equation 2 } } ### standardized mean change with raw score standardization (using (sd1i+sd2i)/2)) allowing for heteroscedasticity if (measure == "SMCRPH") { mi <- 2*(ni-1) / (1 + ri^2) cmi <- .cmicalc(mi, correct=correct) di <- (m1i - m2i) / sdpi yi <- cmi * di vtype <- .expand1(vtype, k) vi <- rep(NA_real_, k) if (!all(is.element(vtype, c("LS","LS2")))) stop(mstyle$stop("For this outcome measure, 'vtype' must be 'LS' or 'LS2'.")) for (i in seq_len(k)) { ### large sample approximation to the sampling variance if (vtype[i] == "LS") vi[i] <- sddiffi[i]^2 / (sdpi[i]^2 * (ni[i]-1)) + yi[i]^2 * (sd1i[i]^4 + sd2i[i]^4 + 2*ri[i]^2*sd1i[i]^2*sd2i[i]^2) / (8 * sdpi[i]^4 * (ni[i]-1)) # Bonett, 2008a, equation 10 ### alternative large sample approximation to the sampling variance (replace ni-1 with ni) if (vtype[i] == "LS2") vi[i] <- sddiffi[i]^2 / (sdpi[i]^2 * ni[i]) + yi[i]^2 * (sd1i[i]^4 + sd2i[i]^4 + 2*ri[i]^2*sd1i[i]^2*sd2i[i]^2) / (8 * sdpi[i]^4 * ni[i]) } } ### common language effect size / area under the curve allowing for heteroscedasticity if (is.element(measure, c("CLESCN","AUCCN"))) { di <- (m1i - m2i) / sdpi yi <- pnorm(di/sqrt(2)) vi <- exp(-di^2 / 2) / (4*base::pi) * (sddiffi^2 / (sdpi^2 * (ni-1)) + di^2 * (sd1i^4 + sd2i^4 + 2*ri^2*sd1i^2*sd2i^2) / (8 * sdpi^4 * (ni-1))) } ### ratio of means for pre-post or matched designs (eq. 6 in Lajeunesse, 2011) ### to use with pooled SDs, simply set sd1i = sd2i = sdpi if (measure == "ROMC") { yi <- log(m1i/m2i) vi <- sd1i^2 / (ni*m1i^2) + sd2i^2 / (ni*m2i^2) - 2*ri*sd1i*sd2i/(m1i*m2i*ni) } ### coefficient of variation ratio for pre-post or matched designs if (measure == "CVRC") { yi <- log(sd1i/m1i) - log(sd2i/m2i) vi <- (1-ri^2) / (ni-1) + (m1i^2*sd2i^2 + m2i^2*sd1i^2 - 2*m1i*m2i*ri*sd1i*sd2i) / (m1i^2*m2i^2*ni) } ### variability ratio for pre-post or matched designs if (measure == "VRC") { yi <- log(sd1i/sd2i) vi <- (1-ri^2) / (ni-1) } } ###################################################################### if (is.element(measure, c("ARAW","AHW","ABT"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(ai, mi, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ai, mi, ni).")) if (!.equal.length(ai, mi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k.all <- length(ai) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) ai <- .getsubset(ai, subset) mi <- .getsubset(mi, subset) ni <- .getsubset(ni, subset) } if (any(ai > 1, na.rm=TRUE)) stop(mstyle$stop("One or more alpha values are > 1.")) if (any(mi < 2, na.rm=TRUE)) stop(mstyle$stop("One or more mi values are < 2.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes k <- length(ai) ### raw alpha values if (measure == "ARAW") { yi <- ai vi <- 2*mi*(1-ai)^2 / ((mi-1)*(ni-2)) } ### alphas transformed with Hakstian & Whalen (1976) transformation if (measure == "AHW") { #yi <- (1-ai)^(1/3) # technically this is the Hakstian & Whalen (1976) transformation yi <- 1 - (1-ai)^(1/3) # but with this, yi remains a monotonically increasing function of ai vi <- 18*mi*(ni-1)*(1-ai)^(2/3) / ((mi-1)*(9*ni-11)^2) #vi <- 2*mi*(1-ai)^(2/3) / (9*(mi-1)*(ni-2)) # this follows from the delta method # this is asymptotically consistent with escalc(measure="ARAW") -> conv.delta(transf=transf.ahw) #tmp <- escalc(measure="ARAW", ai=ai, mi=mi, ni=ni) #vi <- conv.delta(yi, vi, data=tmp, transf=transf.ahw, replace=TRUE)$vi } ### alphas transformed with Bonett (2002) transformation (without bias correction) if (measure == "ABT") { #yi <- log(1-ai) - log(ni/(ni-1)) #yi <- log(1-ai) # technically this is the Bonett (2002) transformation yi <- -log(1-ai) # but with this, yi remains a monotonically increasing function of ai vi <- 2*mi / ((mi-1)*(ni-2)) # this is consistent with escalc(measure="ARAW") -> conv.delta(transf=transf.abt) #tmp <- escalc(measure="ARAW", ai=ai, mi=mi, ni=ni) #vi <- conv.delta(yi, vi, data=tmp, transf=transf.abt, replace=TRUE)$vi } } ###################################################################### if (measure == "REH") { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(ai, bi, ci)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ai, bi, ci).")) if (!.equal.length(ai, bi, ci)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k.all <- length(ai) if (!is.null(subset)) { subset <- .chksubset(subset, k.all) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) } if (any(ai < 0, na.rm=TRUE) || any(bi < 0, na.rm=TRUE) || any(ci < 0, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are negative.")) ni <- ai + bi + ci ni.u <- ni # unadjusted total sample sizes k <- length(ai) p0i <- ai / ni p1i <- bi / ni p2i <- ci / ni yi <- log(p1i) - log(2 * sqrt(p0i * p2i)) vi <- ((1-p1i) / (4 * p0i * p2i) + 1 / p1i) / ni } ###################################################################### } else { ### in case yi is not NULL (so user wants to convert a regular data frame to an 'escalc' object) ### check if yi is numeric if (!.is.numeric(yi)) stop(mstyle$stop("The object/variable specified for the 'yi' argument is not numeric.")) ### get vi, sei, and ni vi <- .getx("vi", mf=mf, data=data, checknumeric=TRUE) sei <- .getx("sei", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) ### if neither vi nor sei is specified, then throw an error ### if only sei is specified, then square those values to get vi ### if vi is specified, use those values if (is.null(vi)) { if (is.null(sei)) { stop(mstyle$stop("Must specify the 'vi' or 'sei' argument.")) } else { vi <- sei^2 } } if (!.equal.length(yi, vi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k.all <- length(yi) ### if slab is NULL, see if we can get it from yi (subsetting is done further below; see [z]) if (is.null(slab)) { slab <- attributes(yi)$slab if (length(slab) != k.all) slab <- NULL } if (!is.null(subset)) { subset <- .chksubset(subset, k.all) yi <- .getsubset(yi, subset) vi <- .getsubset(vi, subset) ni <- .getsubset(ni, subset) } ni.u <- ni # unadjusted total sample sizes k <- length(yi) } ######################################################################### ######################################################################### ######################################################################### ### make sure yi and vi are really vectors (and not arrays) yi <- as.vector(yi) vi <- as.vector(vi) ### check for infinite values and set them to NA is.inf <- is.infinite(yi) | is.infinite(vi) if (any(is.inf)) { warning(mstyle$warning("Some 'yi' and/or 'vi' values equal to +-Inf. Recoded to NAs."), call.=FALSE) yi[is.inf] <- NA_real_ vi[is.inf] <- NA_real_ } ### check for NaN values and set them to NA is.NaN <- is.nan(yi) | is.nan(vi) if (any(is.NaN)) { yi[is.NaN] <- NA_real_ vi[is.NaN] <- NA_real_ } ### check for negative vi's (should not happen, but just in case) vi[vi < 0] <- NA_real_ ### add study labels if specified if (!is.null(slab)) { if (length(slab) != k.all) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the dataset (", k.all, ")."))) if (is.factor(slab)) slab <- as.character(slab) if (!is.null(subset)) slab <- .getsubset(slab, subset) # [z] if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) ### check if study labels are unique; if not, make them unique if (anyDuplicated(slab)) slab <- .make.unique(slab) } ### if include/subset is NULL, set to TRUE vector if (is.null(include)) include <- rep(TRUE, k.all) if (is.null(subset)) subset <- rep(TRUE, k.all) ### turn numeric include vector into a logical vector (already done for subset) if (!is.null(include)) include <- .chksubset(include, k.all, stoponk0=FALSE) ### apply subset to include include <- .getsubset(include, subset) ### process flip argument if (is.null(flip)) { flip <- rep(1, k.all) } else { if (is.logical(flip)) { flip <- .expand1(flip, k.all) flip <- flip %in% TRUE # so NAs are treated as FALSE flip <- ifelse(flip, -1, 1) } } if (length(flip) != k.all) stop(mstyle$stop(paste0("Length of the 'flip' argument (", length(flip), ") does not correspond to the size of the dataset (", k.all, ")."))) flip <- .getsubset(flip, subset) yi[include] <- flip[include] * yi[include] vi[include] <- flip[include]^2 * vi[include] ### subset data frame (note: subsetting of other parts already done above, so yi/vi/ni.u/slab are already subsetted) if (has.data && any(!subset)) data <- .getsubset(data, subset) ### put together dataset if (has.data && append) { ### if data argument has been specified and user wants to append dat <- data.frame(data) if (replace || !is.element(var.names[1], names(dat))) { yi.replace <- rep(TRUE, k) } else { yi.replace <- is.na(dat[[var.names[1]]]) } if (replace || !is.element(var.names[2], names(dat))) { vi.replace <- rep(TRUE, k) } else { vi.replace <- is.na(dat[[var.names[2]]]) } if (replace || !is.element(var.names[3], names(dat))) { measure.replace <- rep(TRUE, k) } else { measure.replace <- is.na(dat[[var.names[3]]]) | dat[[var.names[3]]] == "" } dat[[var.names[1]]][include & yi.replace] <- yi[include & yi.replace] dat[[var.names[2]]][include & vi.replace] <- vi[include & vi.replace] if (add.measure) dat[[var.names[3]]][!is.na(yi) & include & measure.replace] <- measure if (!is.null(ni.u)) attributes(dat[[var.names[1]]])$ni[include & yi.replace] <- ni.u[include & yi.replace] } else { ### if data argument has not been specified or user does not want to append dat <- data.frame(yi=rep(NA_real_, k), vi=rep(NA_real_, k)) dat$yi[include] <- yi[include] dat$vi[include] <- vi[include] if (add.measure) dat$measure[!is.na(yi) & include] <- measure attributes(dat$yi)$ni[include] <- ni.u[include] if (add.measure) { names(dat) <- var.names } else { names(dat) <- var.names[1:2] } } ### replace missings in measure with "" if (add.measure) dat[[var.names[3]]][is.na(dat[[var.names[3]]])] <- "" ### add slab attribute to the yi vector if (!is.null(slab)) attr(dat[[var.names[1]]], "slab") <- slab ### add measure attribute to the yi vector attr(dat[[var.names[1]]], "measure") <- measure ### add digits attribute attr(dat, "digits") <- digits ### add vtype attribute #attr(dat, "vtype") <- vtype ### add 'yi.names' and 'vi.names' to the first position of the corresponding attributes (so the first is always the last one calculated/added) attr(dat, "yi.names") <- union(var.names[1], attr(data, "yi.names")) # if 'yi.names' is not an attribute, attr() returns NULL, so this works fine attr(dat, "vi.names") <- union(var.names[2], attr(data, "vi.names")) # if 'vi.names' is not an attribute, attr() returns NULL, so this works fine ### add 'out.names' back to object in case these attributes exist (if summary() has been used on the object) attr(dat, "sei.names") <- attr(data, "sei.names") attr(dat, "zi.names") <- attr(data, "zi.names") attr(dat, "pval.names") <- attr(data, "pval.names") attr(dat, "ci.lb.names") <- attr(data, "ci.lb.names") attr(dat, "ci.ub.names") <- attr(data, "ci.ub.names") ### keep only attribute elements from yi.names and vi.names that are actually part of the object attr(dat, "yi.names") <- attr(dat, "yi.names")[attr(dat, "yi.names") %in% colnames(dat)] attr(dat, "vi.names") <- attr(dat, "vi.names")[attr(dat, "vi.names") %in% colnames(dat)] class(dat) <- c("escalc", "data.frame") return(dat) } metafor/R/selmodel.r0000644000176200001440000000006613716753101014105 0ustar liggesusersselmodel <- function(x, ...) UseMethod("selmodel") metafor/R/gosh.rma.r0000644000176200001440000002145214722326640014023 0ustar liggesusersgosh.rma <- function(x, subsets, progbar=TRUE, parallel="no", ncpus=1, cl, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma", notav=c("rma.glmm", "rma.mv", "robust.rma", "rma.ls", "rma.gen", "rma.uni.selmodel")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed to construct the plot is not available in the model object.")) if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) parallel <- match.arg(parallel, c("no", "snow", "multicore")) if (parallel == "no" && ncpus > 1) parallel <- "snow" if (missing(cl)) cl <- NULL if (!is.null(cl) && inherits(cl, "SOCKcluster")) { parallel <- "snow" ncpus <- length(cl) } if (parallel == "snow" && ncpus < 2) parallel <- "no" if (parallel == "snow" || parallel == "multicore") { if (!requireNamespace("parallel", quietly=TRUE)) stop(mstyle$stop("Please install the 'parallel' package for parallel processing.")) ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Argument 'ncpus' must be >= 1.")) } if (!progbar) { pbo <- pbapply::pboptions(type="none") on.exit(pbapply::pboptions(pbo), add=TRUE) } ddd <- list(...) .chkdots(ddd, c("seed", "time", "LB", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() ### total number of possible subsets N.tot <- sum(choose(x$k, x$p:x$k)) ### if 'subsets' is missing, include all possible subsets if N.tot is <= 10^6 ### and otherwise include 10^6 random subsets; if the user specified 'subsets' ### and N.tot <= subsets, then again include all possible subsets if (missing(subsets)) { if (N.tot <= 10^6) { exact <- TRUE } else { exact <- FALSE N.tot <- 10^6 } } else { subsets <- round(subsets) if (subsets <= 1) stop(mstyle$stop("Argument 'subsets' must be >= 2.")) if (N.tot <= subsets) { exact <- TRUE } else { exact <- FALSE N.tot <- subsets } } if (N.tot == Inf) stop(mstyle$stop("Too many iterations required for all combinations.")) if (progbar) message(paste0("Fitting ", N.tot, " models (based on ", ifelse(exact, "all possible", "random"), " subsets).")) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### ### generate inclusion matrix (either exact or at random) if (exact) { incl <- as.matrix(expand.grid(replicate(x$k, list(c(FALSE,TRUE))), KEEP.OUT.ATTRS=FALSE)) incl <- incl[rowSums(incl) >= x$p,,drop=FALSE] ### slower, but does not generate rows that need to be filtered out (as above) #incl <- lapply(x$p:x$k, function(m) apply(combn(x$k,m), 2, function(l) 1:x$k %in% l)) #incl <- t(do.call(cbind, incl)) } else { if (!is.null(ddd$seed)) set.seed(ddd$seed) j <- sample(x$p:x$k, N.tot, replace=TRUE, prob=dbinom(x$p:x$k, x$k, 0.5)) incl <- t(sapply(j, function(m) seq_len(x$k) %in% sample(x$k, m))) } colnames(incl) <- seq_len(x$k) ### check if model is a standard FE/EE/CE model or a standard RE model with the DL estimators model <- 0L if (is.element(x$method, c("FE","EE","CE")) && x$weighted && is.null(x$weights) && x$int.only) model <- 1L if (x$method=="DL" && x$weighted && is.null(x$weights) && x$int.only) model <- 2L ######################################################################### outlist <- "beta=beta, k=k, QE=QE, I2=I2, H2=H2, tau2=tau2, coef.na=coef.na" if (parallel == "no") { if (inherits(x, "rma.uni")) res <- pbapply::pbapply(incl, 1, .profile.rma.uni, obj=x, parallel=parallel, subset=TRUE, model=model, outlist=outlist, code2=ddd$code2) if (inherits(x, "rma.mh")) res <- pbapply::pbapply(incl, 1, .profile.rma.mh, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2) if (inherits(x, "rma.peto")) res <- pbapply::pbapply(incl, 1, .profile.rma.peto, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2) } if (parallel == "multicore") { if (inherits(x, "rma.uni")) res <- pbapply::pbapply(incl, 1, .profile.rma.uni, obj=x, parallel=parallel, subset=TRUE, model=model, outlist=outlist, code2=ddd$code2, cl=ncpus) #res <- parallel::mclapply(asplit(incl, 1), .profile.rma.uni, obj=x, mc.cores=ncpus, parallel=parallel, subset=TRUE, model=model, outlist=outlist, code2=ddd$code2) if (inherits(x, "rma.mh")) res <- pbapply::pbapply(incl, 1, .profile.rma.mh, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2, cl=ncpus) #res <- parallel::mclapply(asplit(incl, 1), .profile.rma.mh, obj=x, mc.cores=ncpus, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2) if (inherits(x, "rma.peto")) res <- pbapply::pbapply(incl, 1, .profile.rma.peto, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2, cl=ncpus) #res <- parallel::mclapply(asplit(incl, 1), .profile.rma.peto, obj=x, mc.cores=ncpus, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2) } if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } if (inherits(x, "rma.uni")) { if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, asplit(incl, 1), .profile.rma.uni, obj=x, parallel=parallel, subset=TRUE, model=model, outlist=outlist, code2=ddd$code2) } else { res <- pbapply::pbapply(incl, 1, .profile.rma.uni, obj=x, parallel=parallel, subset=TRUE, model=model, outlist=outlist, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, asplit(incl, 1), .profile.rma.uni, obj=x, parallel=parallel, subset=TRUE, model=model, outlist=outlist, code2=ddd$code2) } } if (inherits(x, "rma.mh")) { if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, asplit(incl, 1), .profile.rma.mh, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2) } else { res <- pbapply::pbapply(incl, 1, .profile.rma.mh, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, asplit(incl, 1), .profile.rma.mh, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2) } } if (inherits(x, "rma.peto")) { if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, asplit(incl, 1), .profile.rma.peto, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2) } else { res <- pbapply::pbapply(incl, 1, .profile.rma.peto, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, asplit(incl, 1), .profile.rma.peto, obj=x, parallel=parallel, subset=TRUE, outlist=outlist, code2=ddd$code2) } } } beta <- do.call(rbind, lapply(res, function(x) if (inherits(x, "try-error") || any(x$coef.na)) NA_real_ else t(x$beta))) het <- do.call(rbind, lapply(res, function(x) if (inherits(x, "try-error") || any(x$coef.na)) NA_real_ else c(x$k, x$QE, x$I2, x$H2, x$tau2))) if (all(is.na(het))) stop(mstyle$stop("All model fits failed.")) ######################################################################### ### in case a model fit was skipped, this guarantees that we still get ### a value for k in the first column of the het matrix for each model het[,1] <- rowSums(incl) ### set column names colnames(het) <- c("k", "QE", "I2", "H2", "tau2") if (x$int.only) { colnames(beta) <- "estimate" } else { colnames(beta) <- colnames(x$X) } ### add tau as column to het het <- cbind(het, tau=sqrt(het[,"tau2"])) ### combine het and beta objects and order incl and res by k res <- data.frame(het, beta) incl <- incl[order(res$k),,drop=FALSE] res <- res[order(res$k),,drop=FALSE] ### fix rownames rownames(res) <- seq_len(nrow(res)) rownames(incl) <- seq_len(nrow(incl)) ### was model fitted successfully / all values are not NA? fit <- apply(res, 1, function(x) all(!is.na(x))) ### print processing time if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } ### list to return out <- list(res=res, incl=incl, fit=fit, k=x$k, int.only=x$int.only, method=x$method, measure=x$measure, digits=x$digits) class(out) <- "gosh.rma" return(out) } metafor/R/print.list.rma.r0000644000176200001440000000747014643215410015167 0ustar liggesusersprint.list.rma <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="list.rma") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) attr(x, "class") <- NULL ### remove cr.lb and cr.ub elements (if they are there) x$cr.lb <- NULL x$cr.ub <- NULL ### turn all vectors before the slab vector into a data frame slab.pos <- which(names(x) == "slab") out <- x[seq_len(slab.pos-1)] out <- data.frame(out, row.names=x$slab, stringsAsFactors=FALSE) ### in case all values were NA and have been omitted if (nrow(out) == 0L) stop(mstyle$stop("All values are NA."), call.=FALSE) ### in case there is a select element, apply it if (exists("select", where=x, inherits=FALSE)) out <- out[x$select,] if (nrow(out) == 0L) { message(mstyle$message("No values to print.")) return(invisible()) } ### if transf exists and is TRUE, set SEs to NULL so that column is omitted from the output transf.true <- 0 if (exists("transf", where=x, inherits=FALSE) && x$transf) { transf.true <- 1 out$se <- NULL } ### objects created by predict.rma() have a 'method' element ### properly format columns 1-4 (for FE models) or columns 1-6 (for RE/ME models) ### leave element tau2.level, gamma2.level, and/or element X untouched if (exists("method", where=x, inherits=FALSE)) { min.pos <- slab.pos - is.element("tau2.level", names(x)) - is.element("gamma2.level", names(x)) - is.element("X", names(x)) - is.element("Z", names(x)) - transf.true } else { min.pos <- slab.pos - transf.true } sav <- out[,seq_len(min.pos-1)] for (i in seq_len(min.pos-1)) { if (inherits(out[,i], c("integer","logical","factor","character"))) { # do not apply formating to these classes out[,i] <- out[,i] } else { if (names(out)[i] %in% c("pred", "resid")) out[,i] <- fmtx(out[,i], digits[["est"]]) if (names(out)[i] %in% c("se")) out[,i] <- fmtx(out[,i], digits[["se"]]) if (names(out)[i] %in% c("ci.lb", "ci.ub", "cr.lb", "cr.ub", "pi.lb", "pi.ub")) out[,i] <- fmtx(out[,i], digits[["ci"]]) if (names(out)[i] %in% c("zval", "tval", "Q", "z", "X2")) out[,i] <- fmtx(out[,i], digits[["test"]]) if (names(out)[i] %in% c("pval", "Qp")) out[,i] <- fmtx(out[,i], digits[["pval"]]) if (names(out)[i] %in% c("I2", "H2")) out[,i] <- fmtx(out[,i], digits[["het"]]) if (names(out)[i] %in% c("tau2")) out[,i] <- fmtx(out[,i], digits[["var"]]) if (names(out)[i] %in% c("k")) out[,i] <- fmtx(out[,i], 0) # if (names(out)[i] == "rstudent") # out[,i] <- fmtx(out[,i], digits[["test"]]) # if (names(out)[i] == "dffits") # out[,i] <- fmtx(out[,i], digits[["test"]]) # if (names(out)[i] == "cook.d") # out[,i] <- fmtx(out[,i], digits[["test"]]) # if (names(out)[i] == "cov.r") # out[,i] <- fmtx(out[,i], digits[["test"]]) # if (names(out)[i] == "tau2.del") # out[,i] <- fmtx(out[,i], digits[["var"]]) # if (names(out)[i] == "QE.del") # out[,i] <- fmtx(out[,i], digits[["test"]]) # if (names(out)[i] == "hat") # out[,i] <- fmtx(out[,i], digits[["test"]]) # if (names(out)[i] == "weight") # out[,i] <- fmtx(out[,i], digits[["test"]]) # if (names(out)[i] == "dfbs") # out[,i] <- fmtx(out[,i], digits[["est"]]) if (!is.character(out[,i])) out[,i] <- fmtx(out[,i], digits[["est"]]) } } .space() tmp <- capture.output(print(out, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) if (is.null(attr(x, ".rmspace"))) .space() invisible(sav) } metafor/R/plot.rma.mh.r0000644000176200001440000000425014712645731014445 0ustar liggesusersplot.rma.mh <- function(x, qqplot=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma.mh") na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) .start.plot() # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < 4L) par(mfrow=n2mfrow(4)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) col.na <- .coladj(par("bg","fg"), dark=0.2, light=-0.2) ######################################################################### forest(x, ...) title("Forest Plot", ...) ######################################################################### funnel(x, ...) title("Funnel Plot", ...) ######################################################################### radial(x, ...) title("Radial Plot", ...) ######################################################################### if (qqplot) { qqnorm(x, ...) } else { options(na.action = "na.pass") z <- rstandard(x)$z options(na.action = na.act) not.na <- !is.na(z) if (na.act == "na.omit") { z <- z[not.na] ids <- x$ids[not.na] not.na <- not.na[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") ids <- x$ids k <- length(z) plot(NA, NA, xlim=c(1,k), ylim=c(min(z, -2, na.rm=TRUE), max(z, 2, na.rm=TRUE)), xaxt="n", xlab="Study", ylab="", bty="l", ...) lines(seq_len(k)[not.na], z[not.na], col=col.na, ...) lines(seq_len(k), z, ...) points(x=seq_len(k), y=z, pch=21, bg=bg, ...) axis(side=1, at=seq_len(k), labels=ids, ...) abline(h=0, lty="dashed", ...) abline(h=c(qnorm(0.025),qnorm(0.975)), lty="dotted", ...) title("Standardized Residuals", ...) } ######################################################################### invisible() } metafor/R/misc.func.hidden.mv.r0000644000176200001440000015424514722325602016051 0ustar liggesusers############################################################################ ### function to test for missings in a var-cov matrix .anyNAv <- function(x) { k <- nrow(x) not.na <- not.na.diag <- !is.na(diag(x)) for (i in seq_len(k)[not.na.diag]) { not.na[i] <- !anyNA(x[i, seq_len(k)[not.na.diag]]) } return(!not.na) } ### function to test each row for any missings in the lower triangular part of a matrix #.anyNAv <- function(x) # return(sapply(seq_len(nrow(x)), FUN=function(i) anyNA(x[i,seq_len(i)]))) ### function above is faster (and does not require making a copy of the object) #.anyNAv <- function(X) { # X[upper.tri(X)] <- 0 # return(apply(is.na(X), 1, any)) #} ############################################################################ ### function to check vccon elements .chkvccon <- function(ids, vcvals) { # get name of vcvals vcname <- as.character(match.call()[[3]]) if (is.null(ids) || is.null(vcvals)) return(vcvals) if (length(ids) != length(vcvals)) { mstyle <- .get.mstyle() stop(mstyle$stop(paste0("Length of 'vccon$", vcname, "' (", length(ids), ") does not match the length of ", vcname, " (", length(vcvals), ").")), call.=FALSE) } for (id in unique(ids)) vcvals[ids == id] <- mean(vcvals[ids == id], na.rm=TRUE) # if all elements are NA, then the mean will be NaN, so fix this back to NA vcvals[is.nan(vcvals)] <- NA_real_ return(vcvals) } ############################################################################ .process.G.aftersub <- function(mf.g, struct, formula, tau2, rho, isG, k, sparse, verbose) { mstyle <- .get.mstyle() if (verbose > 1) message(mstyle$message(paste0("Processing '", paste0(formula, collapse=""), "' term (#1) ..."))) ### number of variables in model frame nvars <- ncol(mf.g) ### check that the number of variables is correct for the chosen structure if (is.element(struct, c("CS","HCS","UN","UNR","AR","HAR","CAR","ID","DIAG","PHYBM","PHYPL","PHYPD")) && sum(sapply(mf.g, NCOL)) != 2) stop(mstyle$stop(paste0("Only a single inner variable allowed for an '~ inner | outer' term when 'struct=\"", struct, "\"'.")), call.=FALSE) # note: need to use sum(sapply(mf.g, NCOL)) above because when 'random = ~ X | study' (and X is a matrix with 2+ columns), nvars will still be 2 for (unless struct="GEN") ### get variables names in mf.g g.names <- names(mf.g) # names for inner and outer factors/variables ### check that inner variable is a factor (or character variable) for structures that require this (no longer required) #if (is.element(struct, c("CS","HCS","UN","UNR","ID","DIAG")) && !is.factor(mf.g[[1]]) && !is.character(mf.g[[1]])) # stop(mstyle$stop(paste0("Inner variable in '~ inner | outer' term must be a factor or character variable when 'struct=\"", struct, "\"'.")), call.=FALSE) ### for struct="CAR", check that inner term is numeric and get the unique numeric values if (is.element(struct, c("CAR"))) { if (!is.numeric(mf.g[[1]])) stop(mstyle$stop("Inner variable in '~ inner | outer' term must be numeric for 'struct=\"CAR\"'."), call.=FALSE) g.values <- sort(unique(round(mf.g[[1]], digits=8L))) # aweful hack to avoid floating points issues } else { g.values <- NULL } ### turn each variable in mf.g into a factor (not for SP/PHY structures or GEN) ### if a variable was a factor to begin with, this drops any unused levels, but order of existing levels is preserved if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { mf.g <- data.frame(mf.g[-nvars], outer=factor(mf.g[[nvars]])) } else { mf.g <- data.frame(inner=factor(mf.g[[1]]), outer=factor(mf.g[[2]])) } ### check if there are any NAs anywhere in mf.g if (anyNA(mf.g)) stop(mstyle$stop("No NAs allowed in variables specified via the 'random' argument."), call.=FALSE) ### get number of levels of each variable in mf.g (vector with two values, for the inner and outer factor) #g.nlevels <- c(nlevels(mf.g[[1]]), nlevels(mf.g[[2]])) # works only for factors if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { g.nlevels <- c(length(unique(apply(mf.g[-nvars], 1, paste, collapse=" + "))), length(unique(mf.g[[nvars]]))) } else { g.nlevels <- c(length(unique(mf.g[[1]])), length(unique(mf.g[[2]]))) } ### get levels of each variable in mf.g #g.levels <- list(levels(mf.g[[1]]), levels(mf.g[[2]])) # works only for factors if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { g.levels <- list(sort(unique(apply(mf.g[-nvars], 1, paste, collapse=" + "))), sort(unique((mf.g[[nvars]])))) } else { #g.levels <- list(sort(unique(as.character(mf.g[[1]]))), sort(unique(as.character(mf.g[[2]])))) g.levels <- list(as.character(sort(unique(mf.g[[1]]))), as.character(sort(unique(mf.g[[2]])))) } ### determine appropriate number of tau2 and rho values (note: this is done *after* subsetting) ### note: if g.nlevels[1] is 1, then technically there is no correlation, but we still need one ### rho for the optimization function (this rho is fixed to 0 further in the rma.mv() function) if (is.element(struct, c("CS","ID","AR","CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { tau2s <- 1 rhos <- 1 } if (is.element(struct, c("HCS","DIAG","HAR"))) { tau2s <- g.nlevels[1] rhos <- 1 } if (struct == "UN") { tau2s <- g.nlevels[1] rhos <- ifelse(g.nlevels[1] > 1, g.nlevels[1]*(g.nlevels[1]-1)/2, 1) } if (struct == "UNR") { tau2s <- 1 rhos <- ifelse(g.nlevels[1] > 1, g.nlevels[1]*(g.nlevels[1]-1)/2, 1) } if (struct == "GEN") { p <- nvars - 1 tau2s <- p rhos <- ifelse(p > 1, p*(p-1)/2, 1) } if (struct == "GDIAG") { p <- nvars - 1 tau2s <- p rhos <- 1 } ### set default value(s) for tau2 if it is unspecified if (is.null(tau2)) tau2 <- rep(NA_real_, tau2s) ### set default value(s) for rho argument if it is unspecified if (is.null(rho)) rho <- rep(NA_real_, rhos) ### allow quickly setting all tau2 values to a fixed value tau2 <- .expand1(tau2, tau2s) ### allow quickly setting all rho values to a fixed value rho <- .expand1(rho, rhos) ### check if tau2 and rho are of correct length if (length(tau2) != tau2s) stop(mstyle$stop(paste0("Length of the ", ifelse(isG, 'tau2', 'gamma2'), " argument (", length(tau2), ") does not match the actual number of variance components (", tau2s, ").")), call.=FALSE) if (length(rho) != rhos) stop(mstyle$stop(paste0("Length of the ", ifelse(isG, 'rho', 'phi'), " argument (", length(rho), ") does not match the actual number of correlations (", rhos, ").")), call.=FALSE) ### checks on any fixed values of tau2 and rho arguments if (any(tau2 < 0, na.rm=TRUE)) stop(mstyle$stop(paste0("Specified value(s) of ", ifelse(isG, 'tau2', 'gamma2'), " must be >= 0.")), call.=FALSE) if (is.element(struct, c("CAR")) && any(rho > 1 | rho < 0, na.rm=TRUE)) stop(mstyle$stop(paste0("Specified value(s) of ", ifelse(isG, 'rho', 'phi'), " must be in [0,1].")), call.=FALSE) if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYPL","PHYPD")) && any(rho < 0, na.rm=TRUE)) stop(mstyle$stop(paste0("Specified value(s) of ", ifelse(isG, 'rho', 'phi'), " must be >= 0.")), call.=FALSE) if (!is.element(struct, c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD")) && any(rho > 1 | rho < -1, na.rm=TRUE)) stop(mstyle$stop(paste0("Specified value(s) of ", ifelse(isG, 'rho', 'phi'), " must be in [-1,1].")), call.=FALSE) ### create model matrix for inner and outer factors of mf.g if (is.element(struct, c("CS","HCS","UN","UNR","AR","HAR","CAR","ID","DIAG"))) { if (g.nlevels[1] == 1) { Z.G1 <- cbind(rep(1,k)) } else { if (sparse) { Z.G1 <- sparse.model.matrix(~ mf.g[[1]] - 1) } else { Z.G1 <- model.matrix(~ mf.g[[1]] - 1) } } } if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { if (sparse) { Z.G1 <- Diagonal(k) } else { Z.G1 <- diag(1, nrow=k, ncol=k) } } if (is.element(struct, c("GEN","GDIAG"))) { if (sparse) { Z.G1 <- Matrix(as.matrix(mf.g[-nvars]), sparse=TRUE) } else { Z.G1 <- as.matrix(mf.g[-nvars]) } } if (g.nlevels[2] == 1) { Z.G2 <- cbind(rep(1,k)) } else { if (sparse) { Z.G2 <- sparse.model.matrix(~ mf.g[[nvars]] - 1) } else { Z.G2 <- model.matrix(~ mf.g[[nvars]] - 1) } } attr(Z.G1, "assign") <- NULL attr(Z.G1, "contrasts") <- NULL attr(Z.G2, "assign") <- NULL attr(Z.G2, "contrasts") <- NULL return(list(mf.g=mf.g, g.names=g.names, g.nlevels=g.nlevels, g.levels=g.levels, g.values=g.values, tau2s=tau2s, rhos=rhos, tau2=tau2, rho=rho, Z.G1=Z.G1, Z.G2=Z.G2)) } ############################################################################ .process.G.afterrmna <- function(mf.g, g.nlevels, g.levels, g.values, struct, formula, tau2, rho, Z.G1, Z.G2, isG, sparse, distspec, check.k.gtr.1, verbose) { mstyle <- .get.mstyle() if (verbose > 1) message(mstyle$message(paste0("Processing '", paste0(formula, collapse=""), "' term (#2) ..."))) ### number of variables in model frame nvars <- ncol(mf.g) ### copy g.nlevels and g.levels g.nlevels.f <- g.nlevels g.levels.f <- g.levels ### redo: turn each variable in mf.g into a factor (not for SP structures or GEN) ### (reevaluates the levels present, but order of existing levels is preserved) if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { mf.g <- data.frame(mf.g[-nvars], outer=factor(mf.g[[nvars]])) } else { mf.g <- data.frame(inner=factor(mf.g[[1]]), outer=factor(mf.g[[2]])) } ### redo: get number of levels of each variable in mf.g (vector with two values, for the inner and outer factor) #g.nlevels <- c(nlevels(mf.g[[1]]), nlevels(mf.g[[2]])) # works only for factors if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { g.nlevels <- c(length(unique(apply(mf.g[-nvars], 1, paste, collapse=" + "))), length(unique(mf.g[[nvars]]))) } else { g.nlevels <- c(length(unique(mf.g[[1]])), length(unique(mf.g[[2]]))) } ### redo: get levels of each variable in mf.g #g.levels <- list(levels(mf.g[[1]]), levels(mf.g[[2]])) # works only for factors if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { g.levels <- list(sort(unique(apply(mf.g[-nvars], 1, paste, collapse=" + "))), sort(unique((mf.g[[nvars]])))) } else { #g.levels <- list(sort(unique(as.character(mf.g[[1]]))), sort(unique(as.character(mf.g[[2]])))) g.levels <- list(as.character(sort(unique(mf.g[[1]]))), as.character(sort(unique(mf.g[[2]])))) } ### determine which levels of the inner factor were removed g.levels.r <- !is.element(g.levels.f[[1]], g.levels[[1]]) ### warn if any levels were removed (not for "AR","CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","GEN","GDIAG") if (any(g.levels.r) && !is.element(struct, c("AR","CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","GEN","GDIAG"))) warning(mstyle$warning(paste0("One or more levels of inner factor (i.e., ", paste(g.levels.f[[1]][g.levels.r], collapse=", "), ") removed due to NAs.")), call.=FALSE) ### for "ID", "DIAG", and "GDIAG", fix rho to 0 if (is.element(struct, c("ID","DIAG","GDIAG"))) rho <- 0 ### if there is only a single arm for "CS","HCS","AR","HAR","CAR" (either to begin with or after removing NAs), then fix rho to 0 if (g.nlevels[1] == 1 && is.element(struct, c("CS","HCS","AR","HAR","CAR")) && is.na(rho)) { rho <- 0 warning(mstyle$warning(paste0("Inner factor has only a single level, so fixed value of ", ifelse(isG, 'rho', 'phi'), " to 0.")), call.=FALSE) } ### if there is only a single arm for SP/PHY structures or GEN/GDIAG (either to begin with or after removing NAs), cannot fit model if (g.nlevels[1] == 1 && is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) stop(mstyle$stop("Cannot fit model since inner term only has a single level."), call.=FALSE) ### k per level of the inner factor if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { g.levels.k <- table(factor(apply(mf.g[-nvars], 1, paste, collapse=" + "), levels=g.levels.f[[1]])) } else { #g.levels.k <- table(factor(mf.g[[1]], levels=g.levels.f[[1]])) g.levels.k <- apply(table(factor(mf.g[[1]], levels=g.levels.f[[1]]), mf.g[[2]]), 1, function(x) sum(x>0L)) } ### for "HCS","UN","DIAG","HAR": if a particular level of the inner factor only occurs once, then set corresponding tau2 value to 0 (if not already fixed) if (is.element(struct, c("HCS","UN","DIAG","HAR")) && check.k.gtr.1) { if (any(is.na(tau2) & g.levels.k == 1)) { tau2[is.na(tau2) & g.levels.k == 1] <- 0 warning(mstyle$warning("Inner factor has k=1 for one or more levels. Corresponding 'tau2' value(s) fixed to 0."), call.=FALSE) } } ### check if each study has only a single arm (could be different arms!) ### for "CS","HCS","AR","HAR","CAR" must then fix rho to 0 (if not already fixed) ### for SP/PHY structures cannot fit model; for GEN rho may still be (weakly) identifiable if (g.nlevels[2] == nrow(mf.g)) { if (is.element(struct, c("CS","HCS","AR","HAR","CAR")) && is.na(rho)) { rho <- 0 warning(mstyle$warning(paste0("Each level of the outer factor contains only a single level of the inner factor, so fixed value of ", ifelse(isG, 'rho', 'phi'), " to 0.")), call.=FALSE) } if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) stop(mstyle$stop("Cannot fit model since each level of the outer factor contains only a single level of the inner term."), call.=FALSE) } g.levels.comb.k <- NULL if (!is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { ### create matrix where each row (= study) indicates how often each arm occurred ### then turn this into a list (with each element equal to a row (= study)) g.levels.comb.k <- crossprod(Z.G2, Z.G1) g.levels.comb.k <- split(g.levels.comb.k, seq_len(nrow(g.levels.comb.k))) ### create matrix for each element (= study) that indicates which combinations occurred ### sum up all matrices (numbers indicate in how many studies each combination occurred) ### take upper triangle part that corresponds to the arm combinations (in order of rho) g.levels.comb.k <- lapply(g.levels.comb.k, function(x) outer(x,x, FUN="&")) g.levels.comb.k <- Reduce("+", g.levels.comb.k) g.levels.comb.k <- g.levels.comb.k[lower.tri(g.levels.comb.k)] ### UN/UNR: if a particular combination of arms never occurs in any of the studies, then must fix the corresponding rho to 0 (if not already fixed) ### this also takes care of the case where each study has only a single arm if (is.element(struct, c("UN","UNR")) && any(g.levels.comb.k == 0 & is.na(rho))) { rho[g.levels.comb.k == 0] <- 0 warning(mstyle$warning(paste0("Some combinations of the levels of the inner factor never occurred. Corresponding ", ifelse(isG, 'rho', 'phi'), " value(s) fixed to 0.")), call.=FALSE) } ### if there was only a single arm for "UN" or "UNR" to begin with, then fix rho to 0 ### (technically there is then no rho at all to begin with, but rhos was still set to 1 earlier for the optimization routine) ### (if there is a single arm after removing NAs, then this is dealt with below by setting tau2 and rho values to 0) if (is.element(struct, c("UN","UNR")) && g.nlevels.f[1] == 1 && is.na(rho)) { rho <- 0 warning(mstyle$warning(paste0("Inner factor has only a single level, so fixed value of ", ifelse(isG, 'rho', 'phi'), " to 0.")), call.=FALSE) } } ### construct G matrix for the various structures if (struct == "CS") { G <- matrix(rho*tau2, nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) diag(G) <- tau2 } if (struct == "HCS") { G <- matrix(rho, nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) diag(G) <- 1 G <- diag(sqrt(tau2), nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) %*% G %*% diag(sqrt(tau2), nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) diag(G) <- tau2 } if (is.element(struct, c("UN","GEN"))) { G <- .con.vcov.UN(tau2, rho) } if (struct == "UNR") { G <- .con.vcov.UNR(tau2, rho) } if (is.element(struct, c("GDIAG"))) { G <- diag(tau2, nrow=length(tau2), ncol=length(tau2)) } if (is.element(struct, c("ID","DIAG"))) { G <- diag(tau2, nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) } if (struct == "AR") { if (is.na(rho)) { G <- matrix(NA_real_, nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) } else { ### is g.nlevels.f[1] == 1 even possible here? if (g.nlevels.f[1] > 1) { G <- toeplitz(ARMAacf(ar=rho, lag.max=g.nlevels.f[1]-1)) } else { G <- diag(1) } } G <- diag(sqrt(rep(tau2, g.nlevels.f[1])), nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) %*% G %*% diag(sqrt(rep(tau2, g.nlevels.f[1])), nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) diag(G) <- tau2 } if (struct == "HAR") { if (is.na(rho)) { G <- matrix(NA_real_, nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) } else { ### is g.nlevels.f[1] == 1 even possible here? if (g.nlevels.f[1] > 1) { G <- toeplitz(ARMAacf(ar=rho, lag.max=g.nlevels.f[1]-1)) } else { G <- diag(1) } } G <- diag(sqrt(tau2), nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) %*% G %*% diag(sqrt(tau2), nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) diag(G) <- tau2 } if (struct == "CAR") { if (is.na(rho)) { G <- matrix(NA_real_, nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) } else { ### is g.nlevels.f[1] == 1 even possible here? if (g.nlevels.f[1] > 1) { G <- outer(g.values, g.values, function(x,y) rho^(abs(x-y))) } else { G <- diag(1) } } G <- diag(sqrt(rep(tau2, g.nlevels.f[1])), nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) %*% G %*% diag(sqrt(rep(tau2, g.nlevels.f[1])), nrow=g.nlevels.f[1], ncol=g.nlevels.f[1]) diag(G) <- tau2 } if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { ### remove the '| outer' part from the formula and add '- 1' formula <- as.formula(paste0(strsplit(paste0(formula, collapse=""), "|", fixed=TRUE)[[1]][1], "- 1", collapse="")) ### create distance matrix if (.is.matrix(distspec)) { if (anyNA(distspec)) stop(mstyle$stop("No missing values allowed in matrices specified via 'dist'."), call.=FALSE) if (!.is.square(distspec)) stop(mstyle$stop("Distance matrices specified via 'dist' must be square matrices."), call.=FALSE) if (!isSymmetric(unname(distspec))) stop(mstyle$stop("Distance matrices specified via 'dist' must be symmetric matrices."), call.=FALSE) if (is.null(rownames(distspec))) rownames(distspec) <- colnames(distspec) if (is.null(colnames(distspec))) colnames(distspec) <- rownames(distspec) if (length(colnames(distspec)) != length(unique(colnames(distspec)))) stop(mstyle$stop("Distance matrices specified via 'dist' must have unique dimension names."), call.=FALSE) if (any(!is.element(as.character(mf.g[[1]]), colnames(distspec)))) stop(mstyle$stop(paste0("There are levels in '", colnames(mf.g)[1], "' for which there are no matching rows/columns in the corresponding 'dist' matrix.")), call.=FALSE) if (is.element(struct, c("PHYBM","PHYPL","PHYPD")) && !all.equal(min(distspec), 0)) warning(mstyle$warning("Minimum value in the distance matrix is not 0."), call.=FALSE) if (is.element(struct, c("PHYBM","PHYPL","PHYPD")) && !all.equal(max(distspec), 2)) warning(mstyle$warning("Maximum value in the distance matrix is not 2."), call.=FALSE) Dmat <- distspec[as.character(mf.g[[1]]), as.character(mf.g[[1]])] } else { if (is.element(struct, c("PHYBM","PHYPL","PHYPD"))) stop(mstyle$stop("Must supply distance matrix via 'dist' for phylogenetic correlation structures."), call.=FALSE) Cmat <- model.matrix(formula, data=mf.g[-nvars]) if (is.function(distspec)) { Dmat <- distspec(Cmat) } else { if (is.element(distspec, c("euclidean", "maximum", "manhattan"))) Dmat <- as.matrix(dist(Cmat, method=distspec)) if (distspec == "gcd") Dmat <- sp::spDists(Cmat, longlat=TRUE) } } if (sparse) Dmat <- Matrix(Dmat, sparse=TRUE) } else { Dmat <- NULL } if (struct == "SPEXP") { Rmat <- exp(-Dmat/rho) G <- tau2 * Rmat * tcrossprod(Z.G2) } if (struct == "SPGAU") { Rmat <- exp(-Dmat^2/rho^2) G <- tau2 * Rmat * tcrossprod(Z.G2) } if (struct == "SPLIN") { Rmat <- (1 - Dmat/rho) * I(Dmat < rho) G <- tau2 * Rmat * tcrossprod(Z.G2) } if (struct == "SPRAT") { Rmat <- 1 - (Dmat/rho)^2 / (1 + (Dmat/rho)^2) G <- tau2 * Rmat * tcrossprod(Z.G2) } if (struct == "SPSPH") { Rmat <- (1 - 3/2*Dmat/rho + 1/2*(Dmat/rho)^3) * I(Dmat < rho) G <- tau2 * Rmat * tcrossprod(Z.G2) } if (struct == "PHYBM") { rho <- max(Dmat) Rmat <- 1 - Dmat/rho G <- tau2 * Rmat * tcrossprod(Z.G2) } if (struct == "PHYPL") { Rmat <- rho * (1 - Dmat/max(Dmat)) diag(Rmat) <- 1 Rmat[Dmat == 0] <- 1 G <- tau2 * Rmat * tcrossprod(Z.G2) } if (struct == "PHYPD") { Rmat <- 1 - Dmat/max(Dmat) G <- tau2 * Rmat^rho * tcrossprod(Z.G2) } ### for spatial and phylogeny structures, compute a much more sensible initial value for rho if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { if (struct == "PHYBM") rho.init <- max(Dmat) if (struct == "PHYPL") rho.init <- 0.5 if (struct == "PHYPD") rho.init <- 1 if (!is.element(struct, c("PHYBM","PHYPL","PHYPD"))) rho.init <- unname(suppressMessages(quantile(Dmat[lower.tri(Dmat)], 0.25))) # suppressMessages() to avoid '[ ] : .M.sub.i.logical() maybe inefficient' messages when sparse=TRUE } else { rho.init <- NULL } ### for "CS","AR","CAR","ID" set tau2 value to 0 for any levels that were removed if (any(g.levels.r) && is.element(struct, c("CS","AR","CAR","ID"))) { G[g.levels.r,] <- 0 G[,g.levels.r] <- 0 } ### for "HCS","HAR","DIAG" set tau2 value(s) to 0 for any levels that were removed if (any(g.levels.r) && is.element(struct, c("HCS","HAR","DIAG"))) { G[g.levels.r,] <- 0 G[,g.levels.r] <- 0 tau2[g.levels.r] <- 0 warning(mstyle$warning(paste0("Fixed ", ifelse(isG, 'tau2', 'gamma2'), " to 0 for removed level(s).")), call.=FALSE) } ### for "UN", set tau2 value(s) and corresponding rho(s) to 0 for any levels that were removed if (any(g.levels.r) && struct == "UN") { G[g.levels.r,] <- 0 G[,g.levels.r] <- 0 tau2[g.levels.r] <- 0 rho <- G[lower.tri(G)] warning(mstyle$warning(paste0("Fixed ", ifelse(isG, 'tau2', 'gamma2'), " and corresponding ", ifelse(isG, 'rho', 'phi'), " value(s) to 0 for removed level(s).")), call.=FALSE) } ### for "UNR", set rho(s) to 0 corresponding to any levels that were removed if (any(g.levels.r) && struct == "UNR") { G[g.levels.r,] <- 0 G[,g.levels.r] <- 0 diag(G) <- tau2 # don't really need this rho <- G[lower.tri(G)] warning(mstyle$warning(paste0("Fixed ", ifelse(isG, 'rho', 'phi'), " value(s) to 0 for removed level(s).")), call.=FALSE) } ### special handling for the bivariate model: ### if tau2 (for "CS","AR","CAR","UNR") or either tau2.1 or tau2.2 (for "HCS","UN","HAR") is fixed to 0, then rho must be fixed to 0 if (g.nlevels.f[1] == 2) { if (is.element(struct, c("CS","AR","CAR","UNR")) && !is.na(tau2) && tau2 == 0) rho <- 0 if (is.element(struct, c("HCS","UN","HAR")) && ((!is.na(tau2[1]) && tau2[1] == 0) || (!is.na(tau2[2]) && tau2[2] == 0))) rho <- 0 } return(list(mf.g=mf.g, g.nlevels=g.nlevels, g.nlevels.f=g.nlevels.f, g.levels=g.levels, g.levels.f=g.levels.f, g.levels.r=g.levels.r, g.levels.k=g.levels.k, g.levels.comb.k=g.levels.comb.k, tau2=tau2, rho=rho, G=G, Dmat=Dmat, rho.init=rho.init)) } ############################################################################ ### function to construct var-cov matrix for "UN" and "GEN" structures given vector of variances and correlations .con.vcov.UN <- function(vars, cors, vccov=FALSE) { dims <- length(vars) if (vccov) { G <- matrix(0, nrow=dims, ncol=dims) G[lower.tri(G)] <- cors G[upper.tri(G)] <- t(G)[upper.tri(G)] diag(G) <- vars return(G) } else { R <- matrix(1, nrow=dims, ncol=dims) R[lower.tri(R)] <- cors R[upper.tri(R)] <- t(R)[upper.tri(R)] S <- diag(sqrt(vars), nrow=dims, ncol=dims) return(S %*% R %*% S) } } ### function to construct var-cov matrix for "UN" and "GEN" structures given vector of 'choled' variances and covariances .con.vcov.UN.chol <- function(vars, covs) { dims <- length(vars) G <- matrix(0, nrow=dims, ncol=dims) G[lower.tri(G)] <- covs diag(G) <- vars return(tcrossprod(G)) } ### function to construct var-cov matrix for "UNR" structure given the variance and correlations .con.vcov.UNR <- function(var, cors) { dims <- round((1 + sqrt(1 + 8*length(cors)))/2) G <- matrix(1, nrow=dims, ncol=dims) G[lower.tri(G)] <- cors G[upper.tri(G)] <- t(G)[upper.tri(G)] return(var * G) } ### function to construct var-cov matrix for "UNR" structure given the variance and vector of 'choled' correlations .con.vcov.UNR.chol <- function(var, cors) { dims <- round((1 + sqrt(1 + 8*length(cors)))/2) G <- matrix(0, nrow=dims, ncol=dims) G[lower.tri(G)] <- cors diag(G) <- 1 return(var * tcrossprod(G)) } ############################################################################ ### function to construct var-cov matrix (G or H) for '~ inner | outer' terms .con.E <- function(v, r, v.arg, r.arg, Z1, Z2, levels.r, values, Dmat, struct, cholesky, vctransf, vccov, nearpd, sparse) { ### if cholesky=TRUE, back-transformation/substitution is done below; otherwise, back-transform and replace fixed values if (!cholesky) { if (vctransf) { v <- ifelse(is.na(v.arg), exp(v), v.arg) # variances are optimized in log space, so exponentiate if (struct == "CAR") r <- ifelse(is.na(r.arg), plogis(r), r.arg) # CAR correlation is optimized in qlogis space, so use plogis if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) r <- ifelse(is.na(r.arg), exp(r), r.arg) # spatial and phylogenetic 'correlation' parameter is optimized in log space, so exponentiate if (!is.element(struct, c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) r <- ifelse(is.na(r.arg), tanh(r), r.arg) # other correlations are optimized in atanh space, so use tanh } else { ### for Hessian computation, can choose to leave as is v <- ifelse(is.na(v.arg), v, v.arg) r <- ifelse(is.na(r.arg), r, r.arg) v[v < 0] <- 0 if (struct == "CAR") { r[r < 0] <- 0 r[r > 1] <- 1 } if (is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { r[r < 0] <- 0 } if (!is.element(struct, c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD")) && !vccov) { r[r < -1] <- -1 r[r > 1] <- 1 } } v <- ifelse(v <= .Machine$double.eps*10, 0, v) # don't do this with Cholesky factorization, since values can be negative } ncol.Z1 <- ncol(Z1) if (struct == "CS") { E <- matrix(r*v, nrow=ncol.Z1, ncol=ncol.Z1) diag(E) <- v } if (struct == "HCS") { E <- matrix(r, nrow=ncol.Z1, ncol=ncol.Z1) diag(E) <- 1 E <- diag(sqrt(v), nrow=ncol.Z1, ncol=ncol.Z1) %*% E %*% diag(sqrt(v), nrow=ncol.Z1, ncol=ncol.Z1) diag(E) <- v } if (is.element(struct, c("UN","GEN"))) { if (cholesky) { E <- .con.vcov.UN.chol(v, r) v <- diag(E) # need this, so correct values are shown when verbose=TRUE r <- cov2cor(E)[lower.tri(E)] # need this, so correct values are shown when verbose=TRUE v[!is.na(v.arg)] <- v.arg[!is.na(v.arg)] # replace any fixed values r[!is.na(r.arg)] <- r.arg[!is.na(r.arg)] # replace any fixed values } E <- .con.vcov.UN(v, r, vccov) if (nearpd) { E <- as.matrix(nearPD(E)$mat) # nearPD() in Matrix package v <- diag(E) # need this, so correct values are shown when verbose=TRUE r <- cov2cor(E)[lower.tri(E)] # need this, so correct values are shown when verbose=TRUE } } if (struct == "UNR") { if (cholesky) { E <- .con.vcov.UNR.chol(v, r) v <- diag(E)[1,1] # need this, so correct values are shown when verbose=TRUE r <- cov2cor(E)[lower.tri(E)] # need this, so correct values are shown when verbose=TRUE v[!is.na(v.arg)] <- v.arg[!is.na(v.arg)] # replace any fixed values r[!is.na(r.arg)] <- r.arg[!is.na(r.arg)] # replace any fixed values } E <- .con.vcov.UNR(v, r) if (nearpd) { E <- as.matrix(nearPD(E, keepDiag=TRUE)$mat) # nearPD() in Matrix package v <- E[1,1] # need this, so correct values are shown when verbose=TRUE r <- cov2cor(E)[lower.tri(E)] # need this, so correct values are shown when verbose=TRUE } } if (struct == "GDIAG") { E <- diag(v, nrow=length(v), ncol=length(v)) } if (is.element(struct, c("ID","DIAG"))) E <- diag(v, nrow=ncol.Z1, ncol=ncol.Z1) if (struct == "AR") { if (ncol.Z1 > 1) { E <- toeplitz(ARMAacf(ar=r, lag.max=ncol.Z1-1)) } else { E <- diag(1) } E <- diag(sqrt(rep(v, ncol.Z1)), nrow=ncol.Z1, ncol=ncol.Z1) %*% E %*% diag(sqrt(rep(v, ncol.Z1)), nrow=ncol.Z1, ncol=ncol.Z1) diag(E) <- v } if (struct == "HAR") { if (ncol.Z1 > 1) { E <- toeplitz(ARMAacf(ar=r, lag.max=ncol.Z1-1)) } else { E <- diag(1) } E <- diag(sqrt(v), nrow=ncol.Z1, ncol=ncol.Z1) %*% E %*% diag(sqrt(v), nrow=ncol.Z1, ncol=ncol.Z1) diag(E) <- v } if (struct == "CAR") { if (ncol.Z1 > 1) { E <- outer(values, values, function(x,y) r^(abs(x-y))) } else { E <- diag(1) } E <- diag(sqrt(rep(v, ncol.Z1)), nrow=ncol.Z1, ncol=ncol.Z1) %*% E %*% diag(sqrt(rep(v, ncol.Z1)), nrow=ncol.Z1, ncol=ncol.Z1) diag(E) <- v } if (struct == "SPEXP") E <- v * exp(-Dmat/r) * tcrossprod(Z2) if (struct == "SPGAU") E <- v * exp(-Dmat^2/r^2) * tcrossprod(Z2) if (struct == "SPLIN") E <- v * ((1 - Dmat/r) * I(Dmat < r)) * tcrossprod(Z2) if (struct == "SPRAT") E <- v * (1 - (Dmat/r)^2 / (1 + (Dmat/r)^2)) * tcrossprod(Z2) if (struct == "SPSPH") E <- v * ((1 - 3/2*Dmat/r + 1/2*(Dmat/r)^3) * I(Dmat < r)) * tcrossprod(Z2) if (struct == "PHYBM") { r <- max(Dmat) E <- 1 - Dmat/r E <- v * E * tcrossprod(Z2) } if (struct == "PHYPL") { E <- r * (1 - Dmat/max(Dmat)) diag(E) <- 1 E[Dmat == 0] <- 1 E <- v * E * tcrossprod(Z2) } if (struct == "PHYPD") { E <- 1 - Dmat/max(Dmat) E <- v * E^r * tcrossprod(Z2) } ### set variance and corresponding correlation value(s) to 0 for any levels that were removed if (!is.element(struct, c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG")) && any(levels.r)) { E[levels.r,] <- 0 E[,levels.r] <- 0 } if (sparse) E <- Matrix(E, sparse=TRUE) return(list(v=v, r=r, E=E)) } ############################################################################ ### -1 times the log-likelihood (regular or restricted) for rma.mv models .ll.rma.mv <- function(par, reml, Y, M, A, X, k, pX, # note: pX due to nlm(); M=V to begin with D.S, Z.G1, Z.G2, Z.H1, Z.H2, g.Dmat, h.Dmat, sigma2.arg, tau2.arg, rho.arg, gamma2.arg, phi.arg, beta.arg, sigma2s, tau2s, rhos, gamma2s, phis, withS, withG, withH, struct, g.levels.r, h.levels.r, g.values, h.values, sparse, cholesky, nearpd, vctransf, vccov, vccon, verbose, digits, REMLf, dofit=FALSE, hessian=FALSE, optbeta=FALSE, lambda=0, intercept=TRUE) { mstyle <- .get.mstyle() if (optbeta) { beta <- par[1:pX] par <- par[-c(1:pX)] } ### only NA values in sigma2.arg, tau2.arg, rho.arg, gamma2.arg, phi.arg should be estimated; otherwise, replace with fixed values if (withS) { vars <- par[seq_len(sigma2s)] if (vctransf) { sigma2 <- ifelse(is.na(sigma2.arg), exp(vars), sigma2.arg) # sigma2 is optimized in log space, so exponentiate } else { sigma2 <- ifelse(is.na(sigma2.arg), vars, sigma2.arg) # for Hessian computation, can choose to leave as is sigma2[sigma2 < 0] <- 0 } #if (any(is.nan(sigma2))) # return(Inf) ### set really small sigma2 values equal to 0 (anything below .Machine$double.eps*10 is essentially 0) sigma2 <- ifelse(sigma2 <= .Machine$double.eps*10, 0, sigma2) if (!is.null(vccon) && !is.null(vccon$sigma2)) { for (id in unique(vccon$sigma2)) sigma2[vccon$sigma2 == id] <- mean(sigma2[vccon$sigma2 == id]) } for (j in seq_len(sigma2s)) { M <- M + sigma2[j] * D.S[[j]] } } if (withG) { vars <- par[(sigma2s+1):(sigma2s+tau2s)] cors <- par[(sigma2s+tau2s+1):(sigma2s+tau2s+rhos)] resG <- .con.E(v=vars, r=cors, v.arg=tau2.arg, r.arg=rho.arg, Z1=Z.G1, Z2=Z.G2, levels.r=g.levels.r, values=g.values, Dmat=g.Dmat, struct=struct[1], cholesky=cholesky[1], vctransf=vctransf, vccov=vccov, nearpd=nearpd, sparse=sparse) tau2 <- resG$v rho <- resG$r G <- resG$E if (!is.null(vccon)) { if (!is.null(vccon$tau2)) { for (id in unique(vccon$tau2)) tau2[vccon$tau2 == id] <- mean(tau2[vccon$tau2 == id]) } if (!is.null(vccon$rho)) { for (id in unique(vccon$rho)) { rho[vccon$rho == id] <- mean(rho[vccon$rho == id]) } } resG <- .con.E(v=tau2, r=rho, v.arg=tau2.arg, r.arg=rho.arg, Z1=Z.G1, Z2=Z.G2, levels.r=g.levels.r, values=g.values, Dmat=g.Dmat, struct=struct[1], cholesky=FALSE, vctransf=FALSE, vccov=vccov, nearpd=nearpd, sparse=sparse) tau2 <- resG$v rho <- resG$r G <- resG$E } M <- M + (Z.G1 %*% G %*% t(Z.G1)) * tcrossprod(Z.G2) } if (withH) { vars <- par[(sigma2s+tau2s+rhos+1):(sigma2s+tau2s+rhos+gamma2s)] cors <- par[(sigma2s+tau2s+rhos+gamma2s+1):(sigma2s+tau2s+rhos+gamma2s+phis)] resH <- .con.E(v=vars, r=cors, v.arg=gamma2.arg, r.arg=phi.arg, Z1=Z.H1, Z2=Z.H2, levels.r=h.levels.r, values=h.values, Dmat=h.Dmat, struct=struct[2], cholesky=cholesky[2], vctransf=vctransf, vccov=vccov, nearpd=nearpd, sparse=sparse) gamma2 <- resH$v phi <- resH$r H <- resH$E if (!is.null(vccon)) { if (!is.null(vccon$gamma2)) { for (id in unique(vccon$gamma2)) { gamma2[vccon$gamma2 == id] <- mean(gamma2[vccon$gamma2 == id]) } } if (!is.null(vccon$phi)) { for (id in unique(vccon$phi)) { phi[vccon$phi == id] <- mean(phi[vccon$phi == id]) } } resH <- .con.E(v=gamma2, r=phi, v.arg=gamma2.arg, r.arg=phi.arg, Z1=Z.H1, Z2=Z.H2, levels.r=h.levels.r, values=h.values, Dmat=h.Dmat, struct=struct[2], cholesky=FALSE, vctransf=FALSE, vccov=vccov, nearpd=nearpd, sparse=sparse) gamma2 <- resH$v phi <- resH$r H <- resH$E } M <- M + (Z.H1 %*% H %*% t(Z.H1)) * tcrossprod(Z.H2) } ### put estimates so far into .metafor environment if (!hessian) { pars <- list(sigma2 = if (withS) sigma2 else NULL, tau2 = if (withG) tau2 else NULL, rho = if (withG) rho else NULL, gamma2 = if (withH) gamma2 else NULL, phi = if (withH) phi else NULL) try(assign("rma.mv", pars, envir=.metafor), silent=TRUE) } ### note: if M is sparse, then using nearPD() could blow up if (nearpd) M <- as.matrix(nearPD(M)$mat) ### compute W = M^-1 via Cholesky decomposition if (verbose > 1) { W <- try(chol2inv(chol(M)), silent=FALSE) } else { W <- try(suppressWarnings(chol2inv(chol(M))), silent=TRUE) } ### note: need W for REML llval computation if (inherits(W, "try-error")) { ### if M is not positive-definite, set the (restricted) log-likelihood to -Inf ### this idea is based on: https://stats.stackexchange.com/q/11368/1934 (this is crude, but should ### move the parameter estimates away from values that create the non-positive-definite M matrix) if (dofit) { stop(mstyle$stop("Final variance-covariance matrix is not positive definite."), call.=FALSE) } else { llval <- -Inf } } else { if (!dofit || is.null(A)) { stXWX <- chol2inv(chol(as.matrix(t(X) %*% W %*% X))) # TODO: catch if this fails if (!optbeta) beta <- matrix(stXWX %*% crossprod(X,W) %*% Y, ncol=1) beta <- ifelse(is.na(beta.arg), beta, beta.arg) RSS <- as.vector(t(Y - X %*% beta) %*% W %*% (Y - X %*% beta)) if (optbeta && lambda > 0) { if (intercept) { RSS <- RSS + c(lambda * crossprod(beta[-1])) #RSS <- RSS + c(lambda * sum(abs(beta[-1]))) } else { RSS <- RSS + c(lambda * crossprod(beta)) #RSS <- RSS + c(lambda * sum(abs(beta))) } } vb <- stXWX } else { stXAX <- chol2inv(chol(as.matrix(t(X) %*% A %*% X))) # TODO: catch if this fails beta <- matrix(stXAX %*% crossprod(X,A) %*% Y, ncol=1) beta <- ifelse(is.na(beta.arg), beta, beta.arg) RSS <- as.vector(t(Y - X %*% beta) %*% W %*% (Y - X %*% beta)) if (optbeta && lambda > 0) { if (intercept) { RSS <- RSS + c(lambda * crossprod(beta[-1])) } else { RSS <- RSS + c(lambda * crossprod(beta)) } } vb <- matrix(stXAX %*% t(X) %*% A %*% M %*% A %*% X %*% stXAX, nrow=pX, ncol=pX) } llvals <- c(NA_real_, NA_real_) if (dofit || !reml) llvals[1] <- -1/2 * (k) * log(2*base::pi) - 1/2 * determinant(M, logarithm=TRUE)$modulus - 1/2 * RSS if (dofit || reml) llvals[2] <- -1/2 * (k-pX) * log(2*base::pi) + ifelse(REMLf, 1/2 * determinant(crossprod(X), logarithm=TRUE)$modulus, 0) + -1/2 * determinant(M, logarithm=TRUE)$modulus - 1/2 * determinant(crossprod(X,W) %*% X, logarithm=TRUE)$modulus - 1/2 * RSS if (dofit) { res <- list(beta=beta, vb=vb, M=M, llvals=llvals) if (withS) res$sigma2 <- sigma2 if (withG) { res$G <- G res$tau2 <- tau2 res$rho <- rho } if (withH) { res$H <- H res$gamma2 <- gamma2 res$phi <- phi } return(res) } else { llval <- ifelse(reml, llvals[2], llvals[1]) } } if ((vctransf && verbose) || (!vctransf && (verbose > 1))) { if (!hessian) { iteration <- .getfromenv("iteration", default=NULL) if (!is.null(iteration)) { cat(mstyle$verbose(paste0("Iteration ", formatC(iteration, width=5, flag="-", format="f", digits=0), " "))) try(assign("iteration", iteration+1, envir=.metafor), silent=TRUE) } } cat(mstyle$verbose(paste0("ll = ", fmtx(llval, digits[["fit"]], flag=" "))), " ") if (withS) cat(mstyle$verbose(paste0("sigma2 =", paste(fmtx(sigma2, digits[["var"]], flag=" "), collapse=" "), " "))) if (withG) { cat(mstyle$verbose(paste0("tau2 =", paste(fmtx(tau2, digits[["var"]], flag=" "), collapse=" "), " "))) cat(mstyle$verbose(paste0("rho =", paste(fmtx(rho, digits[["var"]], flag=" "), collapse=" "), " "))) } if (withH) { cat(mstyle$verbose(paste0("gamma2 =", paste(fmtx(gamma2, digits[["var"]], flag=" "), collapse=" "), " "))) cat(mstyle$verbose(paste0("phi =", paste(fmtx(phi, digits[["var"]], flag=" "), collapse=" "), " "))) } cat("\n") } return(-1 * c(llval)) } ############################################################################ .cooks.distance.rma.mv <- function(i, obj, parallel, svb, cluster, ids, reestimate, btt, code2=NULL) { if (parallel == "snow") library(metafor) if (!is.null(code2)) eval(expr = parse(text = code2)) incl <- cluster %in% ids[i] ### elements that need to be returned outlist <- "coef.na=coef.na, beta=beta" ### note: not.na=FALSE only when there are missings in data, not when model below cannot be fitted or results in dropped coefficients if (reestimate) { ### set initial values to estimates from full model control <- obj$control control$sigma2.init <- obj$sigma2 control$tau2.init <- obj$tau2 control$rho.init <- obj$rho control$gamma2.init <- obj$gamma2 control$phi.init <- obj$phi ### fit model without data from ith cluster args <- list(yi=obj$yi, V=obj$V, W=obj$W, mods=obj$X, random=obj$random, struct=obj$struct, intercept=FALSE, data=obj$mf.r, method=obj$method, test=obj$test, dfs=obj$dfs, level=obj$level, R=obj$R, Rscale=obj$Rscale, sigma2=ifelse(obj$vc.fix$sigma2, obj$sigma2, NA), tau2=ifelse(obj$vc.fix$tau2, obj$tau2, NA), rho=ifelse(obj$vc.fix$rho, obj$rho, NA), gamma2=ifelse(obj$vc.fix$gamma2, obj$gamma2, NA), phi=ifelse(obj$vc.fix$phi, obj$phi, NA), sparse=obj$sparse, dist=obj$dist, vccon=obj$vccon, optbeta=obj$optbeta, control=control, subset=!incl, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) } else { ### set values of variance/correlation components to those from the 'full' model args <- list(yi=obj$yi, V=obj$V, W=obj$W, mods=obj$X, random=obj$random, struct=obj$struct, intercept=FALSE, data=obj$mf.r, method=obj$method, test=obj$test, dfs=obj$dfs, level=obj$level, R=obj$R, Rscale=obj$Rscale, sigma2=obj$sigma2, tau2=obj$tau2, rho=obj$rho, gamma2=obj$gamma2, phi=obj$phi, sparse=obj$sparse, dist=obj$dist, vccon=obj$vccon, optbeta=obj$optbeta, control=obj$control, subset=!incl, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) } if (inherits(res, "try-error")) return(list(cook.d = NA_real_)) ### removing a cluster could lead to a model coefficient becoming inestimable if (any(res$coef.na)) return(list(cook.d = NA_real_)) ### compute dfbeta value(s) (including coefficients as specified via btt) dfb <- obj$beta[btt] - res$beta[btt] ### compute Cook's distance return(list(cook.d = crossprod(dfb,svb) %*% dfb)) } .rstudent.rma.mv <- function(i, obj, parallel, cluster, ids, reestimate, code2=NULL) { if (parallel == "snow") library(metafor) if (!is.null(code2)) eval(expr = parse(text = code2)) incl <- cluster %in% ids[i] k.id <- sum(incl) ### elements that need to be returned outlist <- "coef.na=coef.na, sigma2=sigma2, tau2=tau2, rho=rho, gamma2=gamma2, phi=phi, beta=beta, vb=vb" if (reestimate) { ### set initial values to estimates from full model control <- obj$control control$sigma2.init <- obj$sigma2 control$tau2.init <- obj$tau2 control$rho.init <- obj$rho control$gamma2.init <- obj$gamma2 control$phi.init <- obj$phi ### fit model without data from ith cluster args <- list(yi=obj$yi, V=obj$V, W=obj$W, mods=obj$X, random=obj$random, struct=obj$struct, intercept=FALSE, data=obj$mf.r, method=obj$method, test=obj$test, dfs=obj$dfs, level=obj$level, R=obj$R, Rscale=obj$Rscale, sigma2=ifelse(obj$vc.fix$sigma2, obj$sigma2, NA), tau2=ifelse(obj$vc.fix$tau2, obj$tau2, NA), rho=ifelse(obj$vc.fix$rho, obj$rho, NA), gamma2=ifelse(obj$vc.fix$gamma2, obj$gamma2, NA), phi=ifelse(obj$vc.fix$phi, obj$phi, NA), sparse=obj$sparse, dist=obj$dist, vccon=obj$vccon, optbeta=obj$optbeta, control=control, subset=!incl, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) } else { ### set values of variance/correlation components to those from the 'full' model args <- list(yi=obj$yi, V=obj$V, W=obj$W, mods=obj$X, random=obj$random, struct=obj$struct, intercept=FALSE, data=obj$mf.r, method=obj$method, test=obj$test, dfs=obj$dfs, level=obj$level, R=obj$R, Rscale=obj$Rscale, sigma2=obj$sigma2, tau2=obj$tau2, rho=obj$rho, gamma2=obj$gamma2, phi=obj$phi, sparse=obj$sparse, dist=obj$dist, vccon=obj$vccon, optbeta=obj$optbeta, control=obj$control, subset=!incl, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) } if (inherits(res, "try-error")) return(list(delresid = rep(NA_real_, k.id), sedelresid = rep(NA_real_, k.id), X2 = NA_real_, k.id = NA_integer_, pos = which(incl))) ### removing a cluster could lead to a model coefficient becoming inestimable if (any(res$coef.na)) return(list(delresid = rep(NA_real_, k.id), sedelresid = rep(NA_real_, k.id), X2 = NA_real_, k.id = NA_integer_, pos = which(incl))) ### elements that need to be returned outlist <- "M=M" ### fit model based on all data but with var/cor components fixed to those from res args <- list(yi=obj$yi, V=obj$V, W=obj$W, mods=obj$X, random=obj$random, struct=obj$struct, intercept=FALSE, data=obj$mf.r, method=obj$method, test=obj$test, dfs=obj$dfs, level=obj$level, R=obj$R, Rscale=obj$Rscale, sigma2=res$sigma2, tau2=res$tau2, rho=res$rho, gamma2=res$gamma2, phi=res$phi, sparse=obj$sparse, dist=obj$dist, vccon=obj$vccon, optbeta=obj$optbeta, control=obj$control, outlist=outlist) tmp <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) Xi <- obj$X[incl,,drop=FALSE] delpred <- Xi %*% res$beta vdelpred <- Xi %*% res$vb %*% t(Xi) delresid <- c(obj$yi[incl] - delpred) sedelresid <- c(sqrt(diag(tmp$M[incl,incl,drop=FALSE] + vdelpred))) sve <- try(chol2inv(chol(tmp$M[incl,incl,drop=FALSE] + vdelpred)), silent=TRUE) #sve <- try(solve(tmp$M[incl,incl,drop=FALSE] + vdelpred), silent=TRUE) if (inherits(sve, "try-error")) return(list(delresid = delresid, sedelresid = sedelresid, X2 = NA_real_, k.id = k.id, pos = which(incl))) X2 <- c(rbind(delresid) %*% sve %*% cbind(delresid)) if (is.list(X2)) # when sparse=TRUE, this is a list with a one-element matrix X2 <- X2[[1]][1] return(list(delresid = delresid, sedelresid = sedelresid, X2 = X2, k.id = k.id, pos = which(incl))) } .dfbetas.rma.mv <- function(i, obj, parallel, cluster, ids, reestimate, code2=NULL) { if (parallel == "snow") library(metafor) if (!is.null(code2)) eval(expr = parse(text = code2)) incl <- cluster %in% ids[i] ### elements that need to be returned outlist <- "coef.na=coef.na, sigma2=sigma2, tau2=tau2, rho=rho, gamma2=gamma2, phi=phi, beta=beta" if (reestimate) { ### set initial values to estimates from full model control <- obj$control control$sigma2.init <- obj$sigma2 control$tau2.init <- obj$tau2 control$rho.init <- obj$rho control$gamma2.init <- obj$gamma2 control$phi.init <- obj$phi ### fit model without data from ith cluster args <- list(yi=obj$yi, V=obj$V, W=obj$W, mods=obj$X, random=obj$random, struct=obj$struct, intercept=FALSE, data=obj$mf.r, method=obj$method, test=obj$test, dfs=obj$dfs, level=obj$level, R=obj$R, Rscale=obj$Rscale, sigma2=ifelse(obj$vc.fix$sigma2, obj$sigma2, NA), tau2=ifelse(obj$vc.fix$tau2, obj$tau2, NA), rho=ifelse(obj$vc.fix$rho, obj$rho, NA), gamma2=ifelse(obj$vc.fix$gamma2, obj$gamma2, NA), phi=ifelse(obj$vc.fix$phi, obj$phi, NA), sparse=obj$sparse, dist=obj$dist, vccon=obj$vccon, optbeta=obj$optbeta, control=control, subset=!incl, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) } else { ### set values of variance/correlation components to those from the 'full' model args <- list(yi=obj$yi, V=obj$V, W=obj$W, mods=obj$X, random=obj$random, struct=obj$struct, intercept=FALSE, data=obj$mf.r, method=obj$method, test=obj$test, dfs=obj$dfs, level=obj$level, R=obj$R, Rscale=obj$Rscale, sigma2=obj$sigma2, tau2=obj$tau2, rho=obj$rho, gamma2=obj$gamma2, phi=obj$phi, sparse=obj$sparse, dist=obj$dist, vccon=obj$vccon, optbeta=obj$optbeta, control=obj$control, subset=!incl, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) } if (inherits(res, "try-error")) return(list(dfbs = NA_real_)) ### removing a cluster could lead to a model coefficient becoming inestimable if (any(res$coef.na)) return(list(dfbs = NA_real_)) ### elements that need to be returned outlist <- "vb=vb" ### fit model based on all data but with var/cor components fixed to those from res args <- list(yi=obj$yi, V=obj$V, W=obj$W, mods=obj$X, random=obj$random, struct=obj$struct, intercept=FALSE, data=obj$mf.r, method=obj$method, test=obj$test, dfs=obj$dfs, level=obj$level, R=obj$R, Rscale=obj$Rscale, sigma2=res$sigma2, tau2=res$tau2, rho=res$rho, gamma2=res$gamma2, phi=res$phi, sparse=obj$sparse, dist=obj$dist, vccon=obj$vccon, optbeta=obj$optbeta, control=obj$control, outlist=outlist) tmp <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) ### compute dfbeta value(s) dfb <- obj$beta - res$beta ### compute dfbetas dfbs <- c(dfb / sqrt(diag(tmp$vb))) return(list(dfbs = dfbs)) } ############################################################################ .ddf.calc <- function(dfs, X, k, p, mf.s=NULL, mf.g=NULL, mf.h=NULL, beta=TRUE) { mstyle <- .get.mstyle() if (beta) { if (is.numeric(dfs)) { ddf <- dfs ddf <- .expand1(ddf, p) if (length(ddf) != p) stop(mstyle$stop(paste0("Length of the 'dfs' argument (", length(dfs), ") does not match the number of model coefficient (", p, ").")), call.=FALSE) } if (is.character(dfs) && dfs == "residual") ddf <- rep(k-p, p) if (is.character(dfs) && dfs == "contain") { if (!is.null(mf.g)) mf.g <- cbind(inner=apply(mf.g, 1, paste, collapse=" + "), outer=mf.g[ncol(mf.g)]) if (!is.null(mf.h)) mf.h <- cbind(inner=apply(mf.h, 1, paste, collapse=" + "), outer=mf.h[ncol(mf.h)]) s.nlevels <- sapply(mf.s, function(x) length(unique(x))) # list() if no S g.nlevels <- c(length(unique(mf.g[[1]])), length(unique(mf.g[[2]]))) # c(0,0) if no G h.nlevels <- c(length(unique(mf.h[[1]])), length(unique(mf.h[[2]]))) # c(0,0) if no H #print(list(s.nlevels, g.nlevels, h.nlevels)) s.ddf <- rep(k, p) g.ddf <- rep(k, p) h.ddf <- rep(k, p) for (j in seq_len(p)) { if (!is.null(mf.s)) { s.lvl <- sapply(seq_along(mf.s), function(i) all(apply(table(X[,j], mf.s[[i]]) > 0, 2, sum) == 1)) if (any(s.lvl)) s.ddf[j] <- min(s.nlevels[s.lvl]) } if (!is.null(mf.g)) { g.lvl <- sapply(seq_along(mf.g), function(i) all(apply(table(X[,j], mf.g[[i]]) > 0, 2, sum) == 1)) if (any(g.lvl)) g.ddf[j] <- min(g.nlevels[g.lvl]) } if (!is.null(mf.h)) { h.lvl <- sapply(seq_along(mf.h), function(i) all(apply(table(X[,j], mf.h[[i]]) > 0, 2, sum) == 1)) if (any(h.lvl)) h.ddf[j] <- min(h.nlevels[h.lvl]) } } #return(list(s.ddf, g.ddf, h.ddf)) ddf <- pmin(s.ddf, g.ddf, h.ddf) ddf <- ddf - p } names(ddf) <- colnames(X) } else { if (is.numeric(dfs)) dfs <- "contain" if (dfs == "residual") ddf <- k-p if (dfs == "contain") { if (!is.null(mf.s)) ddf <- length(unique(mf.s)) if (!is.null(mf.g)) ddf <- length(unique(mf.g)) if (!is.null(mf.h)) ddf <- length(unique(mf.h)) ddf <- ddf - p } } ddf[ddf < 1] <- 1 return(ddf) } ############################################################################ metafor/R/plot.profile.rma.r0000644000176200001440000000701214722334372015475 0ustar liggesusersplot.profile.rma <- function(x, xlim, ylim, pch=19, xlab, ylab, main, refline=TRUE, cline=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="profile.rma") .start.plot() if (x$comps > 1L) { # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < x$comps) par(mfrow=n2mfrow(x$comps)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) } missing.xlim <- missing(xlim) missing.ylim <- missing(ylim) missing.xlab <- missing(xlab) missing.ylab <- missing(ylab) missing.main <- missing(main) lplot <- function(..., time, LB, startmethod, sub1, sqrt, exp, pred, blup, code1, code2, code3, code4) plot(...) lpoints <- function(..., time, LB, startmethod, sub1, log, sqrt, exp, pred, blup, code1, code2, code3, code4) points(...) # need 'log' here so profile(res, log="x") doesn't throw a warning ######################################################################### if (x$comps == 1) { if (missing.xlim) xlim <- x$xlim if (missing.ylim) ylim <- x$ylim if (missing.xlab) xlab <- x$xlab if (missing.ylab) { if (isTRUE(x$exp)) { ylab <- paste0(ifelse(x$method=="REML", "Restricted ", ""), "Likelihood") } else { ylab <- paste0(ifelse(x$method=="REML", "Restricted ", ""), "Log-Likelihood") } } if (missing.main) main <- x$title ### add the actual vc value to the profile if (min(x[[1]]) <= x$vc && max(x[[1]]) >= x$vc) { pos <- which(x[[1]] >= x$vc)[1] x[[1]] <- c(x[[1]][seq_len(pos-1)], x$vc, x[[1]][pos:length(x[[1]])]) x[[2]] <- c(x[[2]][seq_len(pos-1)], x$maxll, x[[2]][pos:length(x[[2]])]) } lplot(x[[1]], x[[2]], type="n", xlab=xlab, ylab=ylab, main=main, bty="l", xlim=xlim, ylim=ylim, ...) if (refline) { abline(v=x$vc, lty="dotted") abline(h=x$maxll, lty="dotted") } if (isTRUE(cline)) cline <- 0.05 if (is.numeric(cline)) { cline <- .level(cline, argname="cline") if (isTRUE(x$exp)) { hval <- exp(log(x$maxll) - qchisq(1-cline, df=1)/2) } else { hval <- x$maxll - qchisq(1-cline, df=1)/2 } abline(h=hval, lty="dotted") } lpoints(x[[1]], x[[2]], type="o", pch=pch, ...) } else { for (j in seq_len(x$comps)) { if (missing.xlim) xlim <- x[[j]]$xlim if (missing.ylim) ylim <- x[[j]]$ylim if (missing.xlab) { xlab <- x[[j]]$xlab } else { xlab <- .expand1(xlab, x$comps) } if (missing.ylab) { if (isTRUE(x$exp)) { ylab <- paste0(ifelse(x$method=="REML", "Restricted ", ""), "Likelihood") } else { ylab <- paste0(ifelse(x$method=="REML", "Restricted ", ""), "Log-Likelihood") } } else { ylab <- .expand1(ylab, x$comps) } if (missing.main) { main <- x[[j]]$title } else { main <- .expand1(main, x$comps) } lplot(x[[j]], xlim=xlim, ylim=ylim, pch=pch, xlab=if (missing.xlab) xlab else xlab[j], ylab=if (missing.ylab) ylab else ylab[j], main=if (missing.main) main else main[j], cline=cline, ...) } } } metafor/R/aggregate.escalc.r0000644000176200001440000003064514717376714015503 0ustar liggesusersaggregate.escalc <- function(x, cluster, time, obs, V, struct="CS", rho, phi, weighted=TRUE, checkpd=TRUE, fun, na.rm=TRUE, addk=FALSE, subset, select, digits, var.names, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="escalc") if (any(!is.element(struct, c("ID","CS","CAR","CS+CAR","CS*CAR")))) stop(mstyle$stop("Unknown 'struct' specified.")) if (missing(cluster)) stop(mstyle$stop("Must specify the 'cluster' variable.")) na.rm <- .expand1(na.rm, 2L) k <- nrow(x) ######################################################################### ### extract V, cluster, time, and subset variables mf <- match.call() V <- .getx("V", mf=mf, data=x) cluster <- .getx("cluster", mf=mf, data=x) time <- .getx("time", mf=mf, data=x) obs <- .getx("obs", mf=mf, data=x) subset <- .getx("subset", mf=mf, data=x) ######################################################################### ### checks on cluster variable if (anyNA(cluster)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not match the length of the data (", k, ")."))) ucluster <- unique(cluster) n <- length(ucluster) ######################################################################### if (missing(var.names)) { if (!is.null(attr(x, "yi.names"))) { # if yi.names attributes is available yi.name <- attr(x, "yi.names")[1] # take the first entry to be the yi variable } else { # if not, see if 'yi' is in the object and assume that is the yi variable if (!is.element("yi", names(x))) stop(mstyle$stop("Cannot determine name of the 'yi' variable.")) yi.name <- "yi" } if (!is.null(attr(x, "vi.names"))) { # if vi.names attributes is available vi.name <- attr(x, "vi.names")[1] # take the first entry to be the vi variable } else { # if not, see if 'vi' is in the object and assume that is the vi variable if (!is.element("vi", names(x))) stop(mstyle$stop("Cannot determine name of the 'vi' variable.")) vi.name <- "vi" } } else { if (length(var.names) != 2L) stop(mstyle$stop("Argument 'var.names' must be of length 2.")) yi.name <- var.names[1] vi.name <- var.names[2] } yi <- as.vector(x[[yi.name]]) # as.vector() to strip attributes vi <- x[[vi.name]] if (is.null(yi)) stop(mstyle$stop(paste0("Cannot find variable '", yi.name, "' in the data frame."))) if (is.null(vi)) stop(mstyle$stop(paste0("Cannot find variable '", vi.name, "' in the data frame."))) if (!is.numeric(yi)) stop(mstyle$stop(paste0("Variable '", yi.name, "' is not numeric."))) if (!is.numeric(vi)) stop(mstyle$stop(paste0("Variable '", vi.name, "' is not numeric."))) ######################################################################### if (is.null(V)) { ### if V is not specified ### construct V matrix based on the specified structure if (struct=="ID") R <- diag(1, nrow=k, ncol=k) if (is.element(struct, c("CS","CS+CAR","CS*CAR"))) { if (missing(rho)) stop(mstyle$stop("Must specify 'rho' for this var-cov structure.")) rho <- .expand1(rho, n) if (length(rho) != n) stop(mstyle$stop(paste0("Length of 'rho' (", length(rho), ") does not match the number of clusters (", n, ")."))) if (any(rho > 1) || any(rho < -1)) stop(mstyle$stop("Value(s) of 'rho' must be in [-1,1].")) } if (is.element(struct, c("CAR","CS+CAR","CS*CAR"))) { if (missing(phi)) stop(mstyle$stop("Must specify 'phi' for this var-cov structure.")) phi <- .expand1(phi, n) if (length(phi) != n) stop(mstyle$stop(paste0("Length of 'phi' (", length(phi), ") does not match the number of clusters (", n, ")."))) if (any(phi > 1) || any(phi < 0)) stop(mstyle$stop("Value(s) of 'phi' must be in [0,1].")) ### checks on time variable if (!is.element("time", names(mf))) stop(mstyle$stop("Must specify a 'time' variable for this var-cov structure.")) if (length(time) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'time' (", length(time), ") does not match the length of the data (", k, ")."))) if (struct == "CS*CAR") { ### checks on obs variable if (!is.element("obs", names(mf))) stop(mstyle$stop("Must specify an 'obs' variable for this var-cov structure.")) if (length(obs) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'obs' (", length(obs), ") does not match the length of the data (", k, ")."))) } } if (struct=="CS") { R <- matrix(0, nrow=k, ncol=k) for (i in seq_len(n)) { R[cluster == ucluster[i], cluster == ucluster[i]] <- rho[i] } } if (struct == "CAR") { R <- matrix(0, nrow=k, ncol=k) for (i in seq_len(n)) { R[cluster == ucluster[i], cluster == ucluster[i]] <- outer(time[cluster == ucluster[i]], time[cluster == ucluster[i]], function(x,y) phi[i]^(abs(x-y))) } } if (struct == "CS+CAR") { R <- matrix(0, nrow=k, ncol=k) for (i in seq_len(n)) { R[cluster == ucluster[i], cluster == ucluster[i]] <- rho[i] + (1 - rho[i]) * outer(time[cluster == ucluster[i]], time[cluster == ucluster[i]], function(x,y) phi[i]^(abs(x-y))) } } if (struct == "CS*CAR") { R <- matrix(0, nrow=k, ncol=k) for (i in seq_len(n)) { R[cluster == ucluster[i], cluster == ucluster[i]] <- outer(obs[cluster == ucluster[i]], obs[cluster == ucluster[i]], function(x,y) ifelse(x==y, 1, rho[i])) * outer(time[cluster == ucluster[i]], time[cluster == ucluster[i]], function(x,y) phi[i]^(abs(x-y))) } } diag(R) <- 1 S <- diag(sqrt(as.vector(vi)), nrow=k, ncol=k) V <- S %*% R %*% S } else { ### if V is specified if (.is.vector(V)) { V <- .expand1(V, k) if (length(V) != k) stop(mstyle$stop(paste0("Length of 'V' (", length(V), ") does not match the length of the data frame (", k, ")."))) V <- diag(as.vector(V), nrow=k, ncol=k) } if (is.data.frame(V)) V <- as.matrix(V) if (!is.null(dimnames(V))) V <- unname(V) if (!.is.square(V)) stop(mstyle$stop("'V' must be a square matrix.")) if (!isSymmetric(V)) stop(mstyle$stop("'V' must be a symmetric matrix.")) if (nrow(V) != k) stop(mstyle$stop(paste0("Dimensions of 'V' (", nrow(V), "x", ncol(V), ") do not match the length of the data frame (", k, ")."))) ### check that covariances are really 0 for estimates belonging to different clusters ### note: if na.rm[1] is FALSE, there may be missings in V, so skip check in those clusters for (i in seq_len(n)) { if (any(abs(V[cluster == ucluster[i], cluster != ucluster[i]]) >= .Machine$double.eps, na.rm=TRUE)) warning(mstyle$warning(paste0("Estimates in cluster '", ucluster[i], "' appear to have non-zero covariances with estimates belonging to different clusters.")), call.=FALSE) } } ### if 'subset' is not null, apply subset if (!is.null(subset)) { subset <- .chksubset(subset, k) x <- .getsubset(x, subset) yi <- .getsubset(yi, subset) V <- .getsubset(V, subset, col=TRUE) cluster <- .getsubset(cluster, subset) k <- nrow(x) ucluster <- unique(cluster) n <- length(ucluster) if (k == 0L) stop(mstyle$stop("Processing terminated since k == 0.")) } ### remove missings in yi/vi/V if na.rm[1] is TRUE if (na.rm[1]) { has.na <- is.na(yi) | .anyNAv(V) not.na <- !has.na if (any(has.na)) { x <- x[not.na,] yi <- yi[not.na] V <- V[not.na,not.na,drop=FALSE] cluster <- cluster[not.na] } k <- nrow(x) ucluster <- unique(cluster) n <- length(ucluster) if (k == 0L) stop(mstyle$stop("Processing terminated since k == 0.")) } ### check that 'V' is positive definite (in each cluster) if (checkpd) { all.pd <- TRUE for (i in seq_len(n)) { Vi <- V[cluster == ucluster[i], cluster == ucluster[i]] if (!anyNA(Vi) && !.chkpd(Vi)) { all.pd <- FALSE warning(mstyle$warning(paste0("'V' appears to be not positive definite in cluster ", ucluster[i], ".")), call.=FALSE) } } if (!all.pd) stop(mstyle$stop("Cannot aggregate estimates with a non-positive-definite 'V' matrix.")) } ### compute aggregated estimates and corresponding sampling variances yi.agg <- rep(NA_real_, n) vi.agg <- rep(NA_real_, n) for (i in seq_len(n)) { Vi <- V[cluster == ucluster[i], cluster == ucluster[i]] if (weighted) { Wi <- try(chol2inv(chol(Vi)), silent=TRUE) if (inherits(Wi, "try-error")) stop(mstyle$stop(paste0("Cannot take inverse of 'V' in cluster ", ucluster[i], "."))) sumWi <- sum(Wi) yi.agg[i] <- sum(Wi %*% cbind(yi[cluster == ucluster[i]])) / sumWi vi.agg[i] <- 1 / sumWi } else { ki <- sum(cluster == ucluster[i]) yi.agg[i] <- sum(yi[cluster == ucluster[i]]) / ki vi.agg[i] <- sum(Vi) / ki^2 } } if (!missing(fun)) { if (!is.list(fun) || length(fun) != 3 || any(sapply(fun, function(f) !is.function(f)))) stop(mstyle$stop("Argument 'fun' must be a list of functions of length 3.")) fun1 <- fun[[1]] fun2 <- fun[[2]] fun3 <- fun[[3]] } else { fun1 <- function(x) { m <- mean(x, na.rm=na.rm[2]) if (is.nan(m)) NA_real_ else m } fun2 <- fun1 fun3 <- function(x) { if (na.rm[2]) { tab <- table(na.omit(x)) #tab <- table(x, useNA=ifelse(na.rm[2], "no", "ifany")) } else { tab <- table(x, useNA="ifany") } val <- tail(names(sort(tab)), 1) if (is.null(val)) NA_integer_ else val } } ### turn 'cluster' into a factor with the desired levels, such that split() will give the same order fcluster <- factor(cluster, levels=ucluster) xsplit <- split(x, fcluster) xagg <- lapply(xsplit, function(xi) { tmp <- lapply(xi, function(xij) { if (inherits(xij, c("numeric","integer"))) { fun1(xij) } else if (inherits(xij, c("logical"))) { fun2(xij) } else { fun3(xij) } }) as.data.frame(tmp) }) xagg <- do.call(rbind, xagg) ### turn variables that were factors back into factors facs <- sapply(x, is.factor) if (any(facs)) { for (j in which(facs)) { xagg[[j]] <- factor(xagg[[j]]) } } ### put yi.agg and vi.agg into the aggregate data at their respective positions xagg[which(names(xagg) == yi.name)] <- yi.agg xagg[which(names(xagg) == vi.name)] <- vi.agg ### add k per cluster as variable to dataset if (addk) { ki <- sapply(xsplit, nrow) xagg <- cbind(xagg, ki) # this way, an existing 'ki' variable will not be overwritten } ### add back some attributes measure <- attr(x[[yi.name]], "measure") if (is.null(measure)) measure <- "GEN" attr(xagg[[yi.name]], "measure") <- measure attr(xagg, "yi.names") <- yi.name attr(xagg, "vi.names") <- vi.name if (!missing(digits)) { attr(xagg, "digits") <- .get.digits(digits=digits, xdigits=attr(x, "digits"), dmiss=FALSE) } else { attr(xagg, "digits") <- attr(x, "digits") } if (is.null(attr(xagg, "digits"))) # in case x no longer has a 'digits' attribute attr(xagg, "digits") <- 4 class(xagg) <- c("escalc", "data.frame") ### if 'select' is not missing, select variables to include in the output if (!missing(select)) { nl <- as.list(seq_along(x)) names(nl) <- names(x) sel <- eval(substitute(select), nl, parent.frame()) xagg <- xagg[,sel,drop=FALSE] } rownames(xagg) <- NULL return(xagg) } metafor/R/misc.func.hidden.profile.r0000644000176200001440000002702114722340004017047 0ustar liggesusers### for profile(), confint(), and gosh() .profile.rma.uni <- function(val, obj, parallel=FALSE, profile=FALSE, confint=FALSE, subset=FALSE, pred=FALSE, blup=FALSE, newmods=NULL, objective, model=0L, verbose=FALSE, outlist=NULL, code2=NULL) { mstyle <- .get.mstyle() if (parallel == "snow") library(metafor) if (!is.null(code2)) eval(expr = parse(text = code2)) if (profile || confint) { ### for profile and confint, fit model with tau2 fixed to 'val' args <- list(yi=obj$yi, vi=obj$vi, weights=obj$weights, mods=obj$X, intercept=FALSE, method=obj$method, weighted=obj$weighted, test=obj$test, level=obj$level, control=obj$control, tau2=val, skipr2=TRUE, outlist = if (pred || blup) NULL else "minimal") res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) } if (profile) { if (inherits(res, "try-error")) { sav <- list(ll = NA_real_, beta = matrix(NA_real_, nrow=nrow(obj$beta), ncol=1), ci.lb = rep(NA_real_, length(obj$ci.lb)), ci.ub = rep(NA_real_, length(obj$ci.ub)), I2 = NA_real_, H2 = NA_real_) } else { sav <- list(ll = logLik(res), beta = res$beta, ci.lb = res$ci.lb, ci.ub = res$ci.ub, I2=res$I2, H2=res$H2) } if (pred) { predres <- predict(res, newmods=newmods) sav$pred <- predres$pred sav$pred.ci.lb <- predres$ci.lb sav$pred.ci.ub <- predres$ci.ub sav$pred.pi.lb <- predres$pi.lb sav$pred.pi.ub <- predres$pi.ub } if (blup) { # note: already removed NAs and subsetted blupres <- blup(res) sav$blup <- blupres$pred sav$blup.se <- blupres$se sav$blup.pi.lb <- blupres$pi.lb sav$blup.pi.ub <- blupres$pi.ub } } if (confint) { if (inherits(res, "try-error")) { if (verbose) cat(mstyle$verbose(paste("tau2 =", fmtx(val, obj$digits[["var"]], addwidth=4), " LRT - objective = NA", "\n"))) stop() } else { sav <- c(-2*(logLik(res) - logLik(obj)) - objective) if (verbose) cat(mstyle$verbose(paste("tau2 =", fmtx(val, obj$digits[["var"]], addwidth=4), " LRT - objective =", fmtx(sav, obj$digits[["test"]], addwidth=4), "\n"))) } } if (subset) { ### for subset, fit model to subset as specified by 'val' if (model >= 1L) { # special cases for gosh() for FE and RE+DL models yi <- obj$yi[val] vi <- obj$vi[val] k <- length(yi) wi <- 1/vi sumwi <- sum(wi) est <- sum(wi*yi)/sumwi Q <- 0 I2 <- 0 H2 <- 1 tau2 <- 0 if (k > 1) { Q <- sum(wi * (yi - est)^2) I2 <- max(0, 100 * (Q - (k-1)) / Q) H2 <- Q / (k-1) if (model == 2L) { tau2 <- max(0, (Q - (k-1)) / (sumwi - sum(wi^2)/sumwi)) wi <- 1 / (vi + tau2) est <- sum(wi*yi)/sum(wi) } } sav <- list(beta = est, k = k, QE = Q, I2 = I2, H2 = H2, tau2 = tau2) } else { args <- list(yi=obj$yi, vi=obj$vi, weights=obj$weights, mods=obj$X, intercept=FALSE, method=obj$method, weighted=obj$weighted, test=obj$test, level=obj$level, control=obj$control, tau2=ifelse(obj$tau2.fix, obj$tau2, NA), subset=val, skipr2=TRUE, outlist=outlist) sav <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) } } return(sav) } .profile.rma.mv <- function(val, obj, comp, sigma2.pos, tau2.pos, rho.pos, gamma2.pos, phi.pos, parallel=FALSE, profile=FALSE, confint=FALSE, subset=FALSE, objective, verbose=FALSE, code2=NULL) { mstyle <- .get.mstyle() if (parallel == "snow") library(metafor) if (!is.null(code2)) eval(expr = parse(text = code2)) if (profile || confint) { ### for profile and confint, fit model with component fixed to 'val' ### set any fixed components to their values sigma2.arg <- ifelse(obj$vc.fix$sigma2, obj$sigma2, NA_real_) tau2.arg <- ifelse(obj$vc.fix$tau2, obj$tau2, NA_real_) rho.arg <- ifelse(obj$vc.fix$rho, obj$rho, NA_real_) gamma2.arg <- ifelse(obj$vc.fix$gamma2, obj$gamma2, NA_real_) phi.arg <- ifelse(obj$vc.fix$phi, obj$phi, NA_real_) if (comp == "sigma2") sigma2.arg[sigma2.pos] <- val if (comp == "tau2") tau2.arg[tau2.pos] <- val if (comp == "rho") rho.arg[rho.pos] <- val if (comp == "gamma2") gamma2.arg[gamma2.pos] <- val if (comp == "phi") phi.arg[phi.pos] <- val args <- list(yi=obj$yi, V=obj$V, W=obj$W, mods=obj$X, random=obj$random, struct=obj$struct, intercept=FALSE, data=obj$mf.r, method=obj$method, test=obj$test, dfs=obj$dfs, level=obj$level, R=obj$R, Rscale=obj$Rscale, sigma2=sigma2.arg, tau2=tau2.arg, rho=rho.arg, gamma2=gamma2.arg, phi=phi.arg, sparse=obj$sparse, dist=obj$dist, vccon=obj$vccon, control=obj$control, outlist="minimal") res <- try(suppressWarnings(.do.call(rma.mv, args)), silent=TRUE) } if (profile) { if (inherits(res, "try-error")) { sav <- list(ll = NA_real_, beta = matrix(NA_real_, nrow=nrow(obj$beta), ncol=1), ci.lb = rep(NA_real_, length(obj$ci.lb)), ci.ub = rep(NA_real_, length(obj$ci.ub))) } else { sav <- list(ll = logLik(res), beta = res$beta, ci.lb = res$ci.lb, ci.ub = res$ci.ub) } } if (confint) { if (inherits(res, "try-error")) { if (verbose) cat(mstyle$verbose(paste("val =", fmtx(val, obj$digits[["var"]], addwidth=4), " LRT - objective = NA", "\n"))) stop() } else { sav <- c(-2*(logLik(res) - logLik(obj)) - objective) if (verbose) cat(mstyle$verbose(paste("val =", fmtx(val, obj$digits[["var"]], addwidth=4), " LRT - objective =", fmtx(sav, obj$digits[["fit"]], addwidth=4), "\n"))) } } return(sav) } .profile.rma.mh <- function(val, obj, parallel=FALSE, subset=FALSE, outlist=NULL, code2=NULL) { if (parallel == "snow") library(metafor) if (subset) { ### for subset, fit model to subset as specified by 'val' if (is.element(obj$measure, c("RR","OR","RD"))) { # obj$outdat.f$ai[obj$not.na] since obj$outlist$ai values may be modified args <- list(ai=obj$outdat.f$ai[obj$not.na], bi=obj$outdat.f$bi[obj$not.na], ci=obj$outdat.f$ci[obj$not.na], di=obj$outdat.f$di[obj$not.na], measure=obj$measure, add=obj$add, to=obj$to, drop00=obj$drop00, correct=obj$correct, level=obj$level, subset=val, outlist=outlist) } else { args <- list(x1i=obj$outdat.f$x1i[obj$not.na], x2i=obj$outdat.f$x2i[obj$not.na], t1i=obj$outdat.f$t1i[obj$not.na], t2i=obj$outdat.f$t2i[obj$not.na], measure=obj$measure, add=obj$add, to=obj$to, drop00=obj$drop00, correct=obj$correct, level=obj$level, subset=val, outlist=outlist) } sav <- try(suppressWarnings(.do.call(rma.mh, args)), silent=TRUE) } return(sav) } .profile.rma.peto <- function(val, obj, parallel=FALSE, subset=FALSE, outlist=NULL, code2=NULL) { if (parallel == "snow") library(metafor) if (subset) { ### for subset, fit model to subset as specified by 'val' args <- list(ai=obj$outdat.f$ai[obj$not.na], bi=obj$outdat.f$bi[obj$not.na], ci=obj$outdat.f$ci[obj$not.na], di=obj$outdat.f$di[obj$not.na], add=obj$add, to=obj$to, drop00=obj$drop00, level=obj$level, subset=val, outlist=outlist) sav <- try(suppressWarnings(.do.call(rma.peto, args)), silent=TRUE) } return(sav) } .profile.rma.uni.selmodel <- function(val, obj, comp, delta.pos, parallel=FALSE, profile=FALSE, confint=FALSE, subset=FALSE, objective, verbose=FALSE, code2=NULL) { mstyle <- .get.mstyle() if (parallel == "snow") library(metafor) if (!is.null(code2)) eval(expr = parse(text = code2)) if (profile || confint) { ### for profile and confint, fit model with component fixed to 'val' ### set any fixed components to their values tau2.arg <- ifelse(is.element(obj$method, c("FE","EE","CE")) || obj$tau2.fix, obj$tau2, NA_real_) delta.arg <- ifelse(obj$delta.fix, obj$delta, NA_real_) if (comp == "tau2") tau2.arg <- val if (comp == "delta") delta.arg[delta.pos] <- val ### reset steps to NA if !stepsspec (some types set steps=0 if steps was not specified) if (!obj$stepsspec) obj$steps <- NA res <- try(suppressWarnings( selmodel(obj, obj$type, alternative=obj$alternative, prec=obj$prec, scaleprec=obj$scaleprec, tau2=tau2.arg, delta=delta.arg, steps=obj$steps, decreasing=obj$decreasing, verbose=FALSE, control=obj$control, skiphes=confint, skiphet=TRUE, defmap=obj$defmap, mapfun=obj$mapfun, mapinvfun=obj$mapinvfun)), silent=TRUE) } if (profile) { if (inherits(res, "try-error")) { sav <- list(ll = NA_real_, beta = matrix(NA_real_, nrow=nrow(obj$beta), ncol=1), ci.lb = rep(NA_real_, length(obj$ci.lb)), ci.ub = rep(NA_real_, length(obj$ci.ub))) } else { sav <- list(ll = logLik(res), beta = res$beta, ci.lb = res$ci.lb, ci.ub = res$ci.ub) } } if (confint) { if (inherits(res, "try-error")) { if (verbose) cat(mstyle$verbose(paste("val =", fmtx(val, obj$digits[["var"]], addwidth=4), " LRT - objective = NA", "\n"))) stop() } else { sav <- c(-2*(logLik(res) - logLik(obj)) - objective) if (verbose) cat(mstyle$verbose(paste("val =", fmtx(val, obj$digits[["var"]], addwidth=4), " LRT - objective =", fmtx(sav, obj$digits[["fit"]], addwidth=4), "\n"))) } } return(sav) } .profile.rma.ls <- function(val, obj, comp, alpha.pos, parallel=FALSE, profile=FALSE, confint=FALSE, subset=FALSE, objective, verbose=FALSE, code2=NULL) { mstyle <- .get.mstyle() if (parallel == "snow") library(metafor) if (!is.null(code2)) eval(expr = parse(text = code2)) if (profile || confint) { ### for profile and confint, fit model with component fixed to 'val' ### set any fixed components to their values alpha.arg <- ifelse(obj$alpha.fix, obj$alpha, NA_real_) if (comp == "alpha") alpha.arg[alpha.pos] <- val args <- list(yi=obj$yi, vi=obj$vi, weights=obj$weights, mods=obj$X, intercept=FALSE, scale=obj$Z, link=obj$link, method=obj$method, weighted=obj$weighted, test=obj$test, level=obj$level, control=obj$control, skiphes=TRUE, alpha=alpha.arg, outlist="minimal") res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) } if (profile) { if (inherits(res, "try-error")) { sav <- list(ll = NA_real_, beta = matrix(NA_real_, nrow=nrow(obj$beta), ncol=1), ci.lb = rep(NA_real_, length(obj$ci.lb)), ci.ub = rep(NA_real_, length(obj$ci.ub))) } else { sav <- list(ll = logLik(res), beta = res$beta, ci.lb = res$ci.lb, ci.ub = res$ci.ub) } } if (confint) { if (inherits(res, "try-error")) { if (verbose) cat(mstyle$verbose(paste("val =", fmtx(val, obj$digits[["var"]], addwidth=4), " LRT - objective = NA", "\n"))) stop() } else { sav <- c(-2*(logLik(res) - logLik(obj)) - objective) if (verbose) cat(mstyle$verbose(paste("val =", fmtx(val, obj$digits[["var"]], addwidth=4), " LRT - objective =", fmtx(sav, obj$digits[["fit"]], addwidth=4), "\n"))) } } return(sav) } metafor/R/plot.cumul.rma.r0000644000176200001440000001611314717356106015167 0ustar liggesusersplot.cumul.rma <- function(x, yaxis, xlim, ylim, xlab, ylab, at, transf, atransf, targs, digits, cols, grid=TRUE, pch=19, cex=1, lwd=2, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="cumul.rma") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) .start.plot() if (missing(cols)) cols <- c(.coladj(par("bg","fg"), dark=0.2, light=-0.2), .coladj(par("bg","fg"), dark=0.8, light=-0.8)) if (missing(yaxis)) { if (is.null(x$tau2)) { yaxis <- "I2" } else { yaxis <- "tau2" } } else { yaxis <- match.arg(yaxis, c("tau2","I2","H2")) if (is.null(x$tau2)) stop(mstyle$stop("Cannot use yaxis=\"tau2\" for equal/fixed-effects models.")) } if (missing(transf)) transf <- FALSE if (missing(atransf)) atransf <- FALSE transf.char <- deparse(transf) atransf.char <- deparse(atransf) if (is.function(transf) && is.function(atransf)) stop(mstyle$stop("Use either 'transf' or 'atransf' to specify a transformation (not both).")) if (missing(xlab)) xlab <- .setlab(x$measure, transf.char, atransf.char, gentype=2) if (missing(ylab)) { if (yaxis == "tau2") #ylab <- "Amount of Heterogeneity (tau^2)" ylab <- expression(paste("Amount of Heterogeneity ", (tau^2))) if (yaxis == "I2") #ylab <- "Percentage of Variability due to Heterogeneity (I^2)" ylab <- expression(paste("Percentage of Variability due to Heterogeneity ", (I^2))) if (yaxis == "H2") #ylab <- "Ratio of Total Variability to Sampling Variability (H^2)" ylab <- expression(paste("Ratio of Total Variability to Sampling Variability ", (H^2))) } par.mar <- par("mar") par.mar.adj <- par.mar + c(0,0.5,0,0) # need a bit more space on the right for the y-axis label par(mar=par.mar.adj) on.exit(par(mar=par.mar), add=TRUE) if (missing(at)) at <- NULL if (missing(targs)) targs <- NULL if (missing(digits)) { if (yaxis == "tau2") digits <- c(2L,3L) if (yaxis == "I2") digits <- c(2L,1L) if (yaxis == "H2") digits <- c(2L,1L) } else { if (length(digits) == 1L) # digits[1] for x-axis labels digits <- c(digits,digits) # digits[2] for y-axis labels } ### note: digits can also be a list (e.g., digits=list(2L,3)); trailing 0's are dropped for integers ddd <- list(...) if (!is.null(ddd$addgrid)) grid <- ddd$addgrid ### grid argument can either be a logical or a color if (is.logical(grid)) gridcol <- .coladj(par("bg","fg"), dark=c(0.2,-0.6), light=c(-0.2,0.6)) if (is.character(grid)) { gridcol <- grid grid <- TRUE } lplot <- function(..., addgrid, at.lab) plot(...) laxis <- function(..., addgrid, at.lab) axis(...) ######################################################################### ### set up data frame with the values to be plotted dat <- data.frame(estim=x$estimate) if (yaxis == "tau2") dat$yval <- x$tau2 if (yaxis == "I2") dat$yval <- x$I2 if (yaxis == "H2") dat$yval <- x$H2 ### apply chosen na.action if (na.act == "na.fail" && anyNA(dat)) stop(mstyle$stop("Missing values in results.")) if (na.act == "na.omit") dat <- na.omit(dat) ### number of remaining rows/points k <- nrow(dat) ### if requested, apply transformation to estimates if (is.function(transf)) { if (is.null(targs)) { dat$estim <- sapply(dat$estim, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) dat$estim <- sapply(dat$estim, transf, targs) } } ### set xlim and ylim values if (missing(xlim)) { xlim <- range(dat$estim, na.rm=TRUE) } else { xlim <- sort(xlim) # just in case the user supplies the limits in the wrong order } if (missing(ylim)) { ylim <- range(dat$yval, na.rm=TRUE) } else { ylim <- sort(ylim) # just in case the user supplies the limits in the wrong order } ### if user has specified 'at' argument, make sure xlim actually contains the min and max 'at' values if (!is.null(at)) { xlim[1] <- min(c(xlim[1], at), na.rm=TRUE) xlim[2] <- max(c(xlim[2], at), na.rm=TRUE) } ### set up plot lplot(NA, NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, xaxt="n", yaxt="n", ...) ### generate x-axis positions if none are specified if (is.null(at)) { at <- axTicks(side=1) } else { at <- at[at > par("usr")[1]] at <- at[at < par("usr")[2]] } if (is.null(ddd$at.lab)) { at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- fmtx(sapply(at.lab, atransf), digits[[1]], drop0ifint=TRUE) } else { at.lab <- fmtx(sapply(at.lab, atransf, targs), digits[[1]], drop0ifint=TRUE) } } else { at.lab <- fmtx(at.lab, digits[[1]], drop0ifint=TRUE) } } else { at.lab <- ddd$at.lab } ### add x-axis laxis(side=1, at=at, labels=at.lab, ...) ### add y-axis aty <- axTicks(side=2) laxis(side=2, at=aty, labels=fmtx(aty, digits[[2]], drop0ifint=TRUE), ...) ### add grid if (.isTRUE(grid)) { abline(v=at, lty="dotted", col=gridcol) abline(h=aty, lty="dotted", col=gridcol) } ### vector with color gradient for points cols.points <- colorRampPalette(cols)(k) #gray.vals.points <- seq(from=.9, to=.1, length.out=k) #cols.points <- gray(gray.vals.points) #cols <- colorRampPalette(c("yellow","red"))(k) #cols <- colorRampPalette(c("blue","red"))(k) #cols <- rev(heat.colors(k+4))[-c(1:2,(k+1):(k+2)] #cols <- rev(topo.colors(k)) #cols <- rainbow(k, start=.2, end=.4) ### add lines that have a gradient (by interpolating values) ### looks better this way, especially when k is low for (i in seq_len(k-1)) { if (is.na(dat$estim[i]) || is.na(dat$estim[i+1]) || is.na(dat$yval[i]) || is.na(dat$yval[i+1])) next estims <- approx(c(dat$estim[i], dat$estim[i+1]), n=50)$y yvals <- approx(c(dat$yval[i], dat$yval[i+1]), n=50)$y cols.lines <- colorRampPalette(c(cols.points[i], cols.points[i+1]))(50) #gray.vals.lines <- approx(c(gray.vals.points[i], gray.vals.points[i+1]), n=50)$y #cols.lines <- gray(gray.vals.lines) segments(estims[-50], yvals[-50], estims[-1], yvals[-1], col=cols.lines, lwd=lwd, ...) } ### add lines (this does no interpolation) #segments(dat$estim[-k], dat$yval[-k], dat$estim[-1], dat$yval[-1], col=cols.points, lwd=lwd) ### add points points(x=dat$estim, y=dat$yval, pch=pch, col=cols.points, cex=cex, ...) ### redraw box around plot box(...) ### return data frame invisibly dat$col <- cols.points invisible(dat) } metafor/R/qqnorm.rma.uni.r0000644000176200001440000001371514713142426015173 0ustar liggesusersqqnorm.rma.uni <- function(y, type="rstandard", pch=21, col, bg, grid=FALSE, envelope=TRUE, level=y$level, bonferroni=FALSE, reps=1000, smooth=TRUE, bass=0, label=FALSE, offset=0.3, pos=13, lty, ...) { mstyle <- .get.mstyle() .chkclass(class(y), must="rma.uni", notav=c("rma.gen", "rma.uni.selmodel")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) x <- y type <- match.arg(type, c("rstandard", "rstudent")) if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) if (length(label) != 1L) stop(mstyle$stop("Argument 'label' should be of length 1.")) .start.plot() envelopecol <- .coladj(par("bg","fg"), dark=0.15, light=-0.15) if (label == "out" && is.logical(envelope)) envelope <- TRUE if (is.logical(envelope)) draw.envelope <- envelope if (is.character(envelope)) { envelopecol <- envelope draw.envelope <- TRUE } if (missing(col)) col <- par("fg") if (missing(bg)) bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) if (is.logical(grid)) gridcol <- .coladj(par("bg","fg"), dark=c(0.2,-0.6), light=c(-0.2,0.6)) if (is.character(grid)) { gridcol <- grid grid <- TRUE } if (missing(lty)) { lty <- c("solid", "dotted") # 1st value = diagonal line, 2nd value = pseudo confidence envelope } else { if (length(lty) == 1L) lty <- c(lty, lty) } ddd <- list(...) lqqnorm <- function(..., seed) qqnorm(...) lpoints <- function(..., seed) points(...) labline <- function(..., seed) abline(...) lpolygon <- function(..., seed) polygon(...) llines <- function(..., seed) lines(...) lbox <- function(..., seed) box(...) ltext <- function(..., seed) text(...) ######################################################################### if (type == "rstandard") { res <- rstandard(x) not.na <- !is.na(res$z) zi <- res$z[not.na] slab <- res$slab[not.na] ord <- order(zi) slab <- slab[ord] } else { res <- rstudent(x) not.na <- !is.na(res$z) zi <- res$z[not.na] slab <- res$slab[not.na] ord <- order(zi) slab <- slab[ord] } sav <- lqqnorm(zi, pch=pch, col=col, bg=bg, bty="l", ...) ######################################################################### ### construct simulation based pseudo confidence envelope if (draw.envelope) { level <- .level(level) if (!is.null(ddd$seed)) set.seed(ddd$seed) dat <- matrix(rnorm(x$k*reps), nrow=x$k, ncol=reps) options(na.action="na.omit") H <- hatvalues(x, type="matrix") options(na.action = na.act) ImH <- diag(x$k) - H ei <- ImH %*% dat ei <- apply(ei, 2, sort) if (bonferroni) { lb <- apply(ei, 1, quantile, (level/2)/x$k) # consider using rowQuantiles() from matrixStats package ub <- apply(ei, 1, quantile, 1-(level/2)/x$k) # consider using rowQuantiles() from matrixStats package } else { lb <- apply(ei, 1, quantile, (level/2)) # consider using rowQuantiles() from matrixStats package ub <- apply(ei, 1, quantile, 1-(level/2)) # consider using rowQuantiles() from matrixStats package } temp.lb <- qqnorm(lb, plot.it=FALSE) temp.ub <- qqnorm(ub, plot.it=FALSE) if (smooth) { temp.lb <- supsmu(temp.lb$x, temp.lb$y, bass=bass) temp.ub <- supsmu(temp.ub$x, temp.ub$y, bass=bass) } if (draw.envelope) { lpolygon(c(temp.lb$x,rev(temp.ub$x)), c(temp.lb$y,rev(temp.ub$y)), col=envelopecol, border=NA, ...) llines(temp.lb$x, temp.lb$y, lty=lty[2], ...) llines(temp.ub$x, temp.ub$y, lty=lty[2], ...) } } ### add grid (and redraw box) if (.isTRUE(grid)) { grid(col=gridcol) lbox(..., bty="l") } ### draw the diagonal line labline(a=0, b=1, lty=lty[1], ...) #qqline(zi, ...) #abline(h=0, lty="dotted", ...) #abline(v=0, lty="dotted", ...) ### add the points lpoints(sav$x, sav$y, pch=pch, col=col, bg=bg, ...) ######################################################################### ### labeling of points if ((is.character(label) && label=="none") || .isFALSE(label)) return(invisible(sav)) if ((is.character(label) && label=="all") || .isTRUE(label)) label <- x$k if (is.numeric(label)) { label <- round(label) if (label < 1 | label > x$k) stop(mstyle$stop("Out of range value for 'label' argument.")) pos.x <- sav$x[ord] pos.y <- sav$y[ord] dev <- abs(pos.x - pos.y) for (i in seq_len(x$k)) { if (sum(dev > dev[i]) < label) { if (pos <= 4) ltext(pos.x[i], pos.y[i], slab[i], pos=pos, offset=offset, ...) if (pos == 13) ltext(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] >= 0, 1, 3), offset=offset, ...) if (pos == 24) ltext(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] <= 0, 2, 4), offset=offset, ...) #ltext(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i] >= 0, 2, 4), offset=offset, ...) } } } else { pos.x <- sav$x[ord] pos.y <- sav$y[ord] for (i in seq_len(x$k)) { if (pos.y[i] < temp.lb$y[i] || pos.y[i] > temp.ub$y[i]) { if (pos <= 4) ltext(pos.x[i], pos.y[i], slab[i], pos=pos, offset=offset, ...) if (pos == 13) ltext(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] >= 0, 1, 3), offset=offset, ...) if (pos == 24) ltext(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] <= 0, 2, 4), offset=offset, ...) } } } ######################################################################### #if (envelope) { # invisible(list(pts=sav, ci.lb=temp.lb, ci.ub=temp.ub)) #} else { # invisible(sav) #} invisible(sav) } metafor/R/coef.permutest.rma.uni.r0000644000176200001440000000173614527114021016612 0ustar liggesuserscoef.permutest.rma.uni <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="permutest.rma.uni") x <- object if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=x$beta, se=x$se, tval=x$zval, df=x$ddf, pval=x$pval, ci.lb=x$ci.lb, ci.ub=x$ci.ub) } else { res.table <- data.frame(estimate=x$beta, se=x$se, zval=x$zval, pval=x$pval, ci.lb=x$ci.lb, ci.ub=x$ci.ub) } if (inherits(x, "permutest.rma.ls")) { if (is.element(x$test, c("knha","adhoc","t"))) { res.table.alpha <- data.frame(estimate=x$alpha, se=x$se.alpha, tval=x$zval.alpha, df=x$ddf.alpha, pval=x$pval.alpha, ci.lb=x$ci.lb.alpha, ci.ub=x$ci.ub.alpha) } else { res.table.alpha <- data.frame(estimate=x$alpha, se=x$se.alpha, zval=x$zval.alpha, pval=x$pval.alpha, ci.lb=x$ci.lb.alpha, ci.ub=x$ci.ub.alpha) } res.table <- list(beta=res.table, alpha=res.table.alpha) } return(res.table) } metafor/R/gosh.r0000644000176200001440000000005613457322061013237 0ustar liggesusersgosh <- function(x, ...) UseMethod("gosh") metafor/R/robust.rma.mv.r0000644000176200001440000002477714717377067015054 0ustar liggesusersrobust.rma.mv <- function(x, cluster, adjust=TRUE, clubSandwich=FALSE, digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.mv") if (is.null(x$yi) || is.null(x$X)) stop(mstyle$stop("Information needed for the method is not available in the model object.")) if (missing(cluster)) stop(mstyle$stop("Must specify the 'cluster' variable.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } level <- .level(x$level) ddd <- list(...) .chkdots(ddd, c("vcov", "coef_test", "conf_test", "wald_test", "verbose")) ######################################################################### ### process cluster variable ### note: cluster variable must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing ### of NAs as was done during model fitting mf <- match.call() cluster <- .getx("cluster", mf=mf, data=x$data) if (length(cluster) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) cluster <- .getsubset(cluster, x$subset) cluster <- cluster[x$not.na] if (anyNA(cluster)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster) == 0L) stop(mstyle$stop("Cannot find 'cluster' variable (or it has zero length).")) ### number of clusters n <- length(unique(cluster)) ### compute degrees of freedom ### note: Stata with vce(robust) also uses n-p as the dfs, but with vce(cluster ) always uses n-1 (which seems inconsistent) dfs <- n - x$p ### check if dfs are positive (note: this also handles the case where there is a single cluster) if (!clubSandwich && dfs <= 0) stop(mstyle$stop(paste0("Number of clusters (", n, ") must be larger than the number of fixed effects (", x$p, ")."))) ### use clubSandwich if requested to do so if (clubSandwich) { if (!suppressMessages(requireNamespace("clubSandwich", quietly=TRUE))) stop(mstyle$stop("Please install the 'clubSandwich' package to make use of its methods.")) ### check for vcov, coef_test, conf_test, and wald_test arguments in ... and set values accordingly ddd$vcov <- .chkddd(ddd$vcov, "CR2", match.arg(ddd$vcov, c("CR0", "CR1", "CR1p", "CR1S", "CR2", "CR3"))) ddd$coef_test <- .chkddd(ddd$coef_test, "Satterthwaite", match.arg(ddd$coef_test, c("z", "naive-t", "naive-tp", "Satterthwaite", "saddlepoint"))) if (is.null(ddd$conf_test)) { ddd$conf_test <- ddd$coef_test if (ddd$conf_test == "saddlepoint") { ddd$conf_test <- "Satterthwaite" warning(mstyle$warning("Cannot use 'saddlepoint' for conf_test() - using 'Satterthwaite' instead."), call.=FALSE) } } else { ddd$conf_test <- match.arg(ddd$conf_test, c("z", "naive-t", "naive-tp", "Satterthwaite")) } ddd$wald_test <- .chkddd(ddd$wald_test, "HTZ", match.arg(ddd$wald_test, c("chi-sq", "Naive-F", "Naive-Fp", "HTA", "HTB", "HTZ", "EDF", "EDT"))) ### calculate cluster-robust var-cov matrix of the estimated fixed effects vb <- try(clubSandwich::vcovCR(x, cluster=cluster, type=ddd$vcov), silent=!isTRUE(ddd$verbose)) if (inherits(vb, "try-error")) stop(mstyle$stop("Could not obtain the cluster-robust variance-covariance matrix (use verbose=TRUE for more details).")) #meat <- try(clubSandwich::vcovCR(x, cluster=cluster, type=ddd$vcov, form="meat"), silent=!isTRUE(ddd$verbose)) meat <- NA_real_ ### obtain cluster-robust inferences cs.coef <- try(clubSandwich::coef_test(x, cluster=cluster, vcov=vb, test=ddd$coef_test, p_values=TRUE), silent=!isTRUE(ddd$verbose)) if (inherits(cs.coef, "try-error")) stop(mstyle$stop("Could not obtain the cluster-robust tests (use verbose=TRUE for more details).")) cs.conf <- try(clubSandwich::conf_int(x, cluster=cluster, vcov=vb, test=ddd$conf_test, level=1-level), silent=!isTRUE(ddd$verbose)) if (inherits(cs.conf, "try-error")) stop(mstyle$stop("Could not obtain the cluster-robust confidence intervals (use verbose=TRUE for more details).")) if (x$int.only) { cs.wald <- NA_real_ } else { cs.wald <- try(clubSandwich::Wald_test(x, cluster=cluster, vcov=vb, test=ddd$wald_test, constraints=clubSandwich::constrain_zero(x$btt)), silent=!isTRUE(ddd$verbose)) if (inherits(cs.wald, "try-error")) { warning(mstyle$warning("Could not obtain the cluster-robust omnibus Wald test (use verbose=TRUE for more details)."), call.=FALSE) cs.wald <- list(Fstat=NA_real_, df_num=NA_integer_, df_denom=NA_real_) } } #return(list(coef_test=cs.coef, conf_int=cs.conf, Wald_test=cs.wald)) vbest <- ddd$vcov beta <- x$beta se <- cs.coef$SE zval <- ifelse(is.infinite(cs.coef$tstat), NA_real_, cs.coef$tstat) pval <- switch(ddd$coef_test, "z" = cs.coef$p_z, "naive-t" = cs.coef$p_t, "naive-tp" = cs.coef$p_tp, "Satterthwaite" = cs.coef$p_Satt, "saddlepoint" = cs.coef$p_saddle) dfs <- switch(ddd$coef_test, "z" = cs.coef$df_z, "naive-t" = cs.coef$df_t, "naive-tp" = cs.coef$df_tp, "Satterthwaite" = cs.coef$df, "saddlepoint" = NA_real_) dfs <- ifelse(is.na(dfs), NA_real_, dfs) # ifelse() part to change NaN into just NA ci.lb <- ifelse(is.na(cs.conf$CI_L), NA_real_, cs.conf$CI_L) # note: if ddd$coef_test != ddd$conf_test, dfs for CI may be different ci.ub <- ifelse(is.na(cs.conf$CI_U), NA_real_, cs.conf$CI_U) if (x$int.only) { QM <- max(0, zval^2) QMdf <- c(1, dfs) QMp <- pval } else { QM <- max(0, cs.wald$Fstat) QMdf <- c(cs.wald$df_num, max(0, cs.wald$df_denom)) QMp <- cs.wald$p_val } x$sandwiches <- list(coef_test=cs.coef, conf_int=cs.conf, Wald_test=cs.wald) x$coef_test <- ddd$coef_test x$conf_test <- ddd$conf_test x$wald_test <- ddd$wald_test cluster.o <- cluster } else { ### note: since we use split() below and then put things back together into a block-diagonal matrix, ### we have to make sure everything is properly ordered by the cluster variable; otherwise, the 'meat' ### block-diagonal matrix is not in the same order as the rest; so we sort all relevant variables by ### the cluster variable (including the cluster variable itself) ocl <- order(cluster) cluster.o <- cluster[ocl] ### construct bread = (X'WX)^-1 X'W, where W is the weight matrix if (is.null(x$W)) { ### if no weights were specified, then vb = (X'WX)^-1, so we can use that part W <- try(chol2inv(chol(x$M[ocl,ocl])), silent=TRUE) if (inherits(W, "try-error")) stop(mstyle$stop("Cannot invert marginal var-cov matrix.")) bread <- x$vb %*% crossprod(x$X[ocl,], W) } else { ### if weights were specified, then vb cannot be used A <- x$W[ocl,ocl] stXAX <- chol2inv(chol(as.matrix(t(x$X[ocl,]) %*% A %*% x$X[ocl,]))) # as.matrix() to avoid some issues with the matrix being not symmetric (when it must be) bread <- stXAX %*% crossprod(x$X[ocl,], A) } ### construct meat part ei <- c(x$yi - x$X %*% x$beta) # use this instead of resid(), since this guarantees that the length is correct ei <- ei[ocl] cluster.o <- factor(cluster.o, levels=unique(cluster.o)) if (x$sparse) { meat.o <- bdiag(lapply(split(ei, cluster.o), function(e) tcrossprod(e))) } else { meat.o <- bldiag(lapply(split(ei, cluster.o), function(e) tcrossprod(e))) } ### construct robust var-cov matrix vb <- bread %*% meat.o %*% t(bread) ### apply adjustments to vb as needed vbest <- "CR0" ### suggested in Hedges, Tipton, & Johnson (2010) -- analogous to HC1 adjustment if (.isTRUE(adjust)) { vb <- (n / dfs) * vb vbest <- "CR1" } ### what Stata does if (is.character(adjust) && (adjust=="Stata" || adjust=="Stata1")) { vb <- (n / (n-1) * (x$k-1) / (x$k-x$p)) * vb # when the model was fitted with regress vbest <- "CR1.S1" } if (is.character(adjust) && adjust=="Stata2") { vb <- (n / (n-1)) * vb # when the model was fitted with mixed vbest <- "CR1.S2" } ### dim(vb) is pxp and not sparse, so this won't blow up ### as.matrix() helps to avoid some issues with 'vb' appearing as non-symmetric (when it must be) if (x$sparse) vb <- as.matrix(vb) ### check for elements in vb that are essentially 0 is0 <- diag(vb) < 100 * .Machine$double.eps vb[is0,] <- NA_real_ vb[,is0] <- NA_real_ ### prepare results beta <- x$beta se <- sqrt(diag(vb)) names(se) <- NULL zval <- c(beta/se) pval <- 2*pt(abs(zval), df=dfs, lower.tail=FALSE) crit <- qt(level/2, df=dfs, lower.tail=FALSE) ci.lb <- c(beta - crit * se) ci.ub <- c(beta + crit * se) QM <- try(as.vector(t(beta)[x$btt] %*% chol2inv(chol(vb[x$btt,x$btt])) %*% beta[x$btt]), silent=TRUE) if (inherits(QM, "try-error") || is.na(QM)) { warning(mstyle$warning("Could not obtain the cluster-robust omnibus Wald test."), call.=FALSE) QM <- NA_real_ } QM <- QM / x$m # note: m is the number of coefficients in btt, not the number of clusters QMdf <- c(x$m, dfs) QMp <- pf(QM, df1=x$m, df2=dfs, lower.tail=FALSE) ### don't need this anymore at the moment meat <- matrix(NA_real_, nrow=nrow(meat.o), ncol=ncol(meat.o)) meat[ocl,ocl] <- as.matrix(meat.o) } ######################################################################### ### table of cluster variable tcl <- table(cluster.o) x$digits <- digits ### replace elements with robust results x$ddf <- dfs x$dfs <- dfs x$vb <- vb x$se <- se x$zval <- zval x$pval <- pval x$ci.lb <- ci.lb x$ci.ub <- ci.ub x$QM <- QM x$QMdf <- QMdf x$QMp <- QMp x$n <- n x$tcl <- tcl x$test <- "t" x$vbest <- vbest x$s2w <- 1 x$robumethod <- ifelse(clubSandwich, "clubSandwich", "default") x$cluster <- cluster x$meat <- meat class(x) <- c("robust.rma", "rma", "rma.mv") return(x) } metafor/R/print.list.anova.rma.r0000644000176200001440000000200314632074630016262 0ustar liggesusersprint.list.anova.rma <- function(x, digits=x[[1]]$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="list.anova.rma") digits <- .get.digits(digits=digits, xdigits=x[[1]]$digits, dmiss=FALSE) .space() res.table <- as.data.frame(x) if ("QM" %in% names(res.table)) res.table$QM <- fmtx(res.table$QM, digits[["test"]]) if ("QS" %in% names(res.table)) res.table$QS <- fmtx(res.table$QS, digits[["test"]]) if ("Fval" %in% names(res.table)) res.table$Fval <- fmtx(res.table$Fval, digits[["test"]]) signif <- symnum(res.table$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) res.table$pval <- fmtp(res.table$pval, digits[["pval"]]) if (getOption("show.signif.stars")) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) .space() invisible() } metafor/R/trimfill.rma.uni.r0000644000176200001440000001376714671613707015517 0ustar liggesuserstrimfill.rma.uni <- function(x, side, estimator="L0", maxiter=100, verbose=FALSE, ilim, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni", notav=c("robust.rma", "rma.ls", "rma.gen", "rma.uni.selmodel")) if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed for trim-and-fill method is not available in the model object.")) if (!x$int.only) stop(mstyle$stop("Trim-and-fill method only applicable to models without moderators.")) if (missing(side)) side <- NULL estimator <- match.arg(estimator, c("L0", "R0", "Q0")) if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) ######################################################################### yi <- x$yi vi <- x$vi wi <- x$weights ni <- x$ni ### determine side (if none is specified) if (is.null(side)) { args <- list(yi=yi, vi=vi, weights=wi, mods=sqrt(vi), method=x$method, weighted=x$weighted, control=x$control, outlist="beta=beta", ...) res <- suppressWarnings(.do.call(rma.uni, args)) ### TODO: add check in case there are problems with fitting the model if (res$beta[2] < 0) { side <- "right" } else { side <- "left" } } else { side <- match.arg(side, c("left", "right")) } ### flip data if examining right side if (side == "right") yi <- -1*yi ### sort data by increasing yi ix <- sort(yi, index.return=TRUE)$ix yi <- yi[ix] vi <- vi[ix] wi <- wi[ix] ni <- ni[ix] ######################################################################### k <- length(yi) k0.sav <- -1 k0 <- 0 # estimated number of missing studies iter <- 0 # iteration counter if (verbose) cat("\n") while (abs(k0 - k0.sav) > 0) { k0.sav <- k0 # save current value of k0 iter <- iter + 1 if (iter > maxiter) stop(mstyle$stop("Trim and fill algorithm did not converge.")) ### truncated data yi.t <- yi[seq_len(k-k0)] vi.t <- vi[seq_len(k-k0)] wi.t <- wi[seq_len(k-k0)] args <- list(yi=yi.t, vi=vi.t, weights=wi.t, method=x$method, weighted=x$weighted, control=x$control, outlist="beta=beta", ...) res <- suppressWarnings(.do.call(rma.uni, args)) ### intercept estimate based on truncated data beta <- c(res$beta) yi.c <- yi - beta # centered values yi.c.r <- rank(abs(yi.c), ties.method="first") # ranked absolute centered values yi.c.r.s <- sign(yi.c) * yi.c.r # signed ranked centered values ### estimate the number of missing studies with the R0 estimator if (estimator == "R0") { k0 <- (k - max(-1*yi.c.r.s[yi.c.r.s < 0])) - 1 se.k0 <- sqrt(2*max(0,k0) + 2) } ### estimate the number of missing studies with the L0 estimator if (estimator == "L0") { Sr <- sum(yi.c.r.s[yi.c.r.s > 0]) k0 <- (4*Sr - k*(k+1)) / (2*k - 1) varSr <- 1/24 * (k*(k+1)*(2*k+1) + 10*k0^3 + 27*k0^2 + 17*k0 - 18*k*k0^2 - 18*k*k0 + 6*k^2*k0) se.k0 <- 4*sqrt(varSr) / (2*k - 1) } ### estimate the number of missing studies with the Q0 estimator if (estimator == "Q0") { Sr <- sum(yi.c.r.s[yi.c.r.s > 0]) k0 <- k - 1/2 - sqrt(2*k^2 - 4*Sr + 1/4) varSr <- 1/24 * (k*(k+1)*(2*k+1) + 10*k0^3 + 27*k0^2 + 17*k0 - 18*k*k0^2 - 18*k*k0 + 6*k^2*k0) se.k0 <- 2*sqrt(varSr) / sqrt((k-1/2)^2 - k0*(2*k - k0 -1)) } ### round k0 and make sure that k0 is non-negative k0 <- max(0, round(k0)) se.k0 <- max(0, se.k0) if (verbose) cat(mstyle$verbose(paste0("Iteration: ", fmtx(iter, 0, addwidth=nchar(maxiter), flag="-"), " missing = ", fmtx(k0, 0, addwidth=nchar(k), flag="-"), " beta = ", fmtx(ifelse(side == "right", -1*beta, beta), x$digits[["est"]]), "\n"))) } ######################################################################### ### if estimated number of missing studies is > 0 if (k0 > 0) { ### flip data back if side is right if (side == "right") { yi.c <- -1 * (yi.c - beta) } else { yi.c <- yi.c - beta } ### create filled-in data set yi.fill <- c(x$yi.f, -1*yi.c[(k-k0+1):k]) ### apply limits if specified if (!missing(ilim)) { ilim <- sort(ilim) if (length(ilim) != 2L) stop(mstyle$stop("Argument 'ilim' must be of length 2.")) yi.fill[yi.fill < ilim[1]] <- ilim[1] yi.fill[yi.fill > ilim[2]] <- ilim[2] } vi.fill <- c(x$vi.f, vi[(k-k0+1):k]) wi.fill <- c(x$weights.f, wi[(k-k0+1):k]) ni.fill <- c(x$ni.f, ni[(k-k0+1):k]) ### add measure attribute to the yi.fill vector attr(yi.fill, "measure") <- x$measure ### fit model with imputed data args <- list(yi=yi.fill, vi=vi.fill, weights=wi.fill, ni=ni.fill, method=x$method, weighted=x$weighted, digits=x$digits, ...) res <- suppressWarnings(.do.call(rma.uni, args)) ### fill, ids, and slab are of length 'k.f + k0' (i.e., subsetted but with NAs) res$fill <- c(rep(FALSE,x$k.f), rep(TRUE,k0)) res$ids <- c(x$ids, (max(x$ids)+1):(max(x$ids)+k0)) if (x$slab.null) { res$slab <- c(paste("Study", x$ids), paste("Filled", seq_len(k0))) } else { res$slab <- c(x$slab, paste("Filled", seq_len(k0))) } res$slab.null <- FALSE } else { ### in case 0 studies are imputed res <- x res$fill <- rep(FALSE,k) } res$k0 <- k0 res$se.k0 <- se.k0 res$side <- side res$k0.est <- estimator res$k.all <- x$k.all + k0 if (estimator == "R0") { m <- -1:(k0-1) res$p.k0 <- 1 - sum(choose(0+m+1, m+1) * 0.5^(0+m+2)) } else { res$p.k0 <- NA_real_ } class(res) <- c("rma.uni.trimfill", class(res)) return(res) } metafor/R/baujat.rma.r0000644000176200001440000001321714722306220014321 0ustar liggesusersbaujat.rma <- function(x, xlim, ylim, xlab, ylab, cex, symbol="ids", grid=TRUE, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma", notav=c("rma.glmm", "rma.mv", "robust.rma", "rma.ls", "rma.gen", "rma.uni.selmodel")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) if (is.null(x$X.f)) stop(mstyle$stop("Information needed to construct the plot is not available in the model object.")) .start.plot() ### grid argument can either be a logical or a color if (is.logical(grid)) gridcol <- .coladj(par("bg","fg"), dark=c(0.2,-0.6), light=c(-0.2,0.6)) if (is.character(grid)) { gridcol <- grid grid <- TRUE } ddd <- list(...) lplot <- function(..., code1, code2) plot(...) lbox <- function(..., code1, code2) box(...) lpoints <- function(..., code1, code2) points(...) ltext <- function(..., code1, code2) text(...) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### ### set up vectors to store results in delpred <- rep(NA_real_, x$k.f) vdelpred <- rep(NA_real_, x$k.f) ### predicted values under the full model pred.full <- x$X.f %*% x$beta ### elements that need to be returned outlist <- "coef.na=coef.na, beta=beta, vb=vb" ### note: skipping NA cases ### also: it is possible that model fitting fails, so that generates more NAs (these NAs will always be shown in output) if (progbar) pbar <- pbapply::startpb(min=0, max=x$k.f) for (i in seq_len(x$k.f)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) if (!x$not.na[i]) next if (inherits(x, "rma.uni")) res <- try(suppressWarnings(.do.call(rma.uni, yi=x$yi.f, vi=x$vi.f, weights=x$weights.f, mods=x$X.f, intercept=FALSE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, subset=-i, skipr2=TRUE, outlist=outlist)), silent=TRUE) if (inherits(x, "rma.mh")) { if (is.element(x$measure, c("RR","OR","RD"))) { res <- try(suppressWarnings(.do.call(rma.mh, ai=x$outdat.f$ai, bi=x$outdat.f$bi, ci=x$outdat.f$ci, di=x$outdat.f$di, measure=x$measure, add=x$add, to=x$to, drop00=x$drop00, correct=x$correct, level=x$level, subset=-i, outlist=outlist)), silent=TRUE) } else { res <- try(suppressWarnings(.do.call(rma.mh, x1i=x$outdat.f$x1i, x2i=x$outdat.f$x2i, t1i=x$outdat.f$t1i, t2i=x$outdat.f$t2i, measure=x$measure, add=x$add, to=x$to, drop00=x$drop00, correct=x$correct, level=x$level, subset=-i, outlist=outlist)), silent=TRUE) } } if (inherits(x, "rma.peto")) res <- try(suppressWarnings(.do.call(rma.peto, ai=x$outdat.f$ai, bi=x$outdat.f$bi, ci=x$outdat.f$ci, di=x$outdat.f$di, add=x$add, to=x$to, drop00=x$drop00, level=x$level, subset=-i)), silent=TRUE) if (inherits(res, "try-error")) next ### removing an observation could lead to a model coefficient becoming inestimable (for 'rma.uni' objects) if (any(res$coef.na)) next Xi <- matrix(x$X.f[i,], nrow=1) delpred[i] <- Xi %*% res$beta vdelpred[i] <- Xi %*% tcrossprod(res$vb,Xi) } if (progbar) pbapply::closepb(pbar) yhati <- (delpred - pred.full)^2 / vdelpred ######################################################################### ### x-axis values (use 'na.pass' to make sure we get a vector of length k.f) options(na.action = "na.pass") xhati <- resid(x)^2 / (x$tau2.f + x$vi.f) options(na.action = na.act) ######################################################################### ### set some defaults (if not specified) if (missing(cex)) cex <- par("cex") * 0.8 if (missing(xlab)) { if (is.element(x$method, c("FE","EE","CE"))) { xlab <- ifelse(x$int.only, "Contribution to Overall Heterogeneity", "Contribution to Residual Heterogeneity") } else { xlab <- "Squared Pearson Residual" } } if (missing(ylab)) ylab <- ifelse(x$int.only, "Influence on Overall Result", "Influence on Fitted Value") if (missing(xlim)) xlim <- range(xhati, na.rm=TRUE) if (missing(ylim)) ylim <- range(yhati, na.rm=TRUE) ######################################################################### ### draw empty plot lplot(NA, xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim, ...) ### add grid (and redraw box) if (.isTRUE(grid)) { grid(col=gridcol) lbox(...) } if (is.numeric(symbol)) { symbol <- .expand1(symbol, x$k.all) if (length(symbol) != x$k.all) stop(mstyle$stop(paste0("Length of the 'symbol' argument (", length(symbol), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) symbol <- .getsubset(symbol, x$subset) lpoints(x=xhati, y=yhati, cex=cex, pch=symbol, ...) } if (is.character(symbol) && symbol=="ids") ltext(xhati, yhati, x$ids, cex=cex, ...) if (is.character(symbol) && symbol=="slab") ltext(xhati, yhati, x$slab, cex=cex, ...) ######################################################################### sav <- data.frame(x=xhati[x$not.na], y=yhati[x$not.na], ids=x$ids[x$not.na], slab=x$slab[x$not.na], stringsAsFactors=FALSE) invisible(sav) } metafor/R/blsplit.r0000644000176200001440000000214014717376745013766 0ustar liggesusersblsplit <- function(x, cluster, fun, args, sort=FALSE) { mstyle <- .get.mstyle() if (missing(cluster)) stop(mstyle$stop("Must specify the 'cluster' variable.")) if (!is.matrix(x) && !inherits(x, "dgCMatrix")) stop(mstyle$stop("Argument 'x' must be a matrix.")) if (!isSymmetric(x)) stop(mstyle$stop("Argument 'x' must be a symmetric matrix.")) k <- nrow(x) if (length(cluster) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not correspond to the dimensions of the matrix (", k, "x", k, ")."))) res <- list() clusters <- unique(cluster) if (sort) clusters <- sort(clusters) for (i in seq_along(clusters)) { res[[i]] <- x[cluster == clusters[i], cluster == clusters[i], drop=FALSE] } names(res) <- clusters if (!missing(fun)) { if (missing(args)) { res <- lapply(res, fun) } else { args <- as.list(args) for (i in 1:length(res)) { res[[i]] <- do.call(fun, c(unname(res[i]), args)) } } } return(res) } metafor/R/reporter.r0000644000176200001440000000006613457322061014142 0ustar liggesusersreporter <- function(x, ...) UseMethod("reporter") metafor/R/dfbetas.rma.mv.r0000644000176200001440000001225614722325310015107 0ustar liggesusersdfbetas.rma.mv <- function(model, progbar=FALSE, cluster, reestimate=TRUE, parallel="no", ncpus=1, cl, ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.mv", notav="robust.rma") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) x <- model parallel <- match.arg(parallel, c("no", "snow", "multicore")) if (parallel == "no" && ncpus > 1) parallel <- "snow" if (missing(cl)) cl <- NULL if (!is.null(cl) && inherits(cl, "SOCKcluster")) { parallel <- "snow" ncpus <- length(cl) } if (parallel == "snow" && ncpus < 2) parallel <- "no" if (parallel == "snow" || parallel == "multicore") { if (!requireNamespace("parallel", quietly=TRUE)) stop(mstyle$stop("Please install the 'parallel' package for parallel processing.")) ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Argument 'ncpus' must be >= 1.")) } if (!progbar) { pbo <- pbapply::pboptions(type="none") on.exit(pbapply::pboptions(pbo), add=TRUE) } misscluster <- ifelse(missing(cluster), TRUE, FALSE) if (misscluster) { cluster <- seq_len(x$k.all) } else { mf <- match.call() cluster <- .getx("cluster", mf=mf, data=x$data) } ddd <- list(...) .chkdots(ddd, c("time", "LB", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### ### process cluster variable ### note: cluster variable must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing ### of NAs as was done during model fitting if (length(cluster) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not match the length of the data (", x$k.all, ")."))) cluster <- .getsubset(cluster, x$subset) cluster.f <- cluster cluster <- cluster[x$not.na] ### checks on cluster variable if (anyNA(cluster.f)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster.f) == 0L) stop(mstyle$stop(paste0("Cannot find 'cluster' variable (or it has zero length)."))) ### cluster ids and number of clusters ids <- unique(cluster) n <- length(ids) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### if (parallel == "no") res <- pbapply::pblapply(seq_len(n), .dfbetas.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) if (parallel == "multicore") res <- pbapply::pblapply(seq_len(n), .dfbetas.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2, cl=ncpus) #res <- parallel::mclapply(seq_len(n), .dfbetas.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2, mc.cores=ncpus) if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, seq_len(n), .dfbetas.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) #res <- parallel::clusterApplyLB(cl, seq_len(n), .dfbetas.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) } else { res <- pbapply::pblapply(seq_len(n), .dfbetas.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, seq_len(n), .dfbetas.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) #res <- parallel::clusterApply(cl, seq_len(n), .dfbetas.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) } } dfbs <- lapply(res, function(x) x$dfbs) dfbs <- do.call(rbind, dfbs) ######################################################################### if (na.act == "na.omit") { out <- dfbs if (misscluster) { rownames(out) <- x$slab[x$not.na] } else { rownames(out) <- ids out <- out[order(ids),,drop=FALSE] } } if (na.act == "na.exclude" || na.act == "na.pass") { ids.f <- unique(cluster.f) out <- matrix(NA_real_, nrow=length(ids.f), ncol=x$p) out[match(ids, ids.f),] <- dfbs if (misscluster) { rownames(out) <- x$slab } else { rownames(out) <- ids.f out <- out[order(ids.f),,drop=FALSE] } } if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) colnames(out) <- rownames(x$beta) out <- data.frame(out) if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } return(out) } metafor/R/cumul.rma.uni.r0000644000176200001440000001552714722327513015010 0ustar liggesuserscumul.rma.uni <- function(x, order, digits, transf, targs, collapse=FALSE, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni", notav=c("robust.rma", "rma.ls", "rma.gen", "rma.uni.selmodel")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in data.")) if (!x$int.only) stop(mstyle$stop("Method only applicable to models without moderators.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL funlist <- lapply(list(transf.exp.int, transf.ilogit.int, transf.ztor.int, transf.exp.mode, transf.ilogit.mode, transf.ztor.mode), deparse) if (is.null(targs) && any(sapply(funlist, identical, deparse(transf))) && inherits(x, c("rma.uni","rma.glmm")) && length(x$tau2 == 1L)) targs <- c(tau2=x$tau2) ddd <- list(...) .chkdots(ddd, c("time", "decreasing", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() decreasing <- .chkddd(ddd$decreasing, FALSE) ######################################################################### if (grepl("^order\\(", deparse1(substitute(order)))) warning(mstyle$warning("Use of order() in the 'order' argument is probably erroneous."), call.=FALSE) if (missing(order)) { orvar <- seq_len(x$k.all) collapse <- FALSE } else { mf <- match.call() orvar <- .getx("order", mf=mf, data=x$data) if (length(orvar) != x$k.all) stop(mstyle$stop(paste0("Length of the 'order' argument (", length(orvar), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) } ### note: order variable must be of the same length as the original dataset ### so apply the same subsetting as was done during the model fitting orvar <- .getsubset(orvar, x$subset) ### order data by the order variable (NAs in order variable are dropped) order <- base::order(orvar, decreasing=decreasing, na.last=NA) yi <- x$yi.f[order] vi <- x$vi.f[order] weights <- x$weights.f[order] not.na <- x$not.na[order] slab <- x$slab[order] ids <- x$ids[order] orvar <- orvar[order] if (inherits(x$data, "environment")) { data <- NULL } else { data <- x$data[order,,drop=FALSE] } if (collapse) { uorvar <- unique(orvar) } else { uorvar <- orvar } k.o <- length(uorvar) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) k <- rep(NA_integer_, k.o) beta <- rep(NA_real_, k.o) se <- rep(NA_real_, k.o) zval <- rep(NA_real_, k.o) pval <- rep(NA_real_, k.o) ci.lb <- rep(NA_real_, k.o) ci.ub <- rep(NA_real_, k.o) QE <- rep(NA_real_, k.o) QEp <- rep(NA_real_, k.o) tau2 <- rep(NA_real_, k.o) I2 <- rep(NA_real_, k.o) H2 <- rep(NA_real_, k.o) show <- rep(TRUE, k.o) ### elements that need to be returned outlist <- "k=k, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, QE=QE, QEp=QEp, tau2=tau2, I2=I2, H2=H2" if (progbar) pbar <- pbapply::startpb(min=0, max=k.o) for (i in seq_len(k.o)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) if (collapse) { if (all(!not.na[is.element(orvar, uorvar[i])])) { if (na.act == "na.omit") show[i] <- FALSE # if all studies to be added are !not.na, don't show (but a fit failure is still shown) next } incl <- is.element(orvar, uorvar[1:i]) } else { if (!not.na[i]) { if (na.act == "na.omit") show[i] <- FALSE # if study to be added is !not.na, don't show (but a fit failure is still shown) next } incl <- 1:i } args <- list(yi=yi, vi=vi, weights=weights, intercept=TRUE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, subset=incl, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) if (inherits(res, "try-error")) next k[i] <- res$k beta[i] <- res$beta se[i] <- res$se zval[i] <- res$zval pval[i] <- res$pval ci.lb[i] <- res$ci.lb ci.ub[i] <- res$ci.ub QE[i] <- res$QE QEp[i] <- res$QEp tau2[i] <- res$tau2 I2[i] <- res$I2 H2[i] <- res$H2 } if (progbar) pbapply::closepb(pbar) ######################################################################### ### if requested, apply transformation function if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) se <- rep(NA_real_, k.o) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) se <- rep(NA_real_, k.o) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } transf <- TRUE } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ######################################################################### out <- list(k=k[show], estimate=beta[show], se=se[show], zval=zval[show], pval=pval[show], ci.lb=ci.lb[show], ci.ub=ci.ub[show], Q=QE[show], Qp=QEp[show], tau2=tau2[show], I2=I2[show], H2=H2[show]) if (collapse) { out$slab <- uorvar[show] out$slab.null <- FALSE } else { out$slab <- slab[show] out$ids <- ids[show] out$data <- data[show,,drop=FALSE] out$slab.null <- x$slab.null } out$order <- uorvar[show] if (is.element(x$test, c("knha","adhoc","t"))) names(out)[4] <- "tval" ### remove tau2 for FE/EE/CE models if (is.element(x$method, c("FE","EE","CE"))) out <- out[-10] out$digits <- digits out$transf <- transf out$level <- x$level out$test <- x$test if (!transf) { out$measure <- x$measure attr(out$estimate, "measure") <- x$measure } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- c("list.rma", "cumul.rma") return(out) } metafor/R/print.summary.matreg.r0000644000176200001440000000273414515471054016415 0ustar liggesusersprint.summary.matreg <- function(x, digits=x$digits, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="summary.matreg") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) ### strip summary.matreg class from object (otherwise get recursion) class(x) <- class(x)[-1] ### print with showfit=TRUE print(x, digits=digits, signif.stars=signif.stars, signif.legend=signif.legend, ...) .space(FALSE) if (x$test == "t") { cat(mstyle$text("Residual standard error: ")) cat(mstyle$result(fmtx(sqrt(x$mse), digits[["se"]]))) cat(mstyle$text(paste0(" on ", x$Fdf[2], " degrees of freedom\n"))) cat(mstyle$text("Multiple R-squared: ")) cat(mstyle$result(fmtx(x$R2, digits[["het"]]))) cat(mstyle$text(", Adjusted R-squared: ")) cat(mstyle$result(fmtx(x$R2adj, digits[["het"]]))) cat("\n") cat(mstyle$text("F-statistic: ")) cat(mstyle$result(fmtx(x$F[["value"]], digits[["test"]]))) cat(mstyle$text(paste0(" on ", x$Fdf[1], " and ", x$Fdf[2], " DF, p-value: "))) cat(mstyle$result(fmtp(x$Fp, digits[["pval"]], equal=FALSE, sep=FALSE))) } else { cat(mstyle$result("R^2: ")) cat(mstyle$result(fmtx(x$R2, digits[["het"]]))) cat(mstyle$result(", ")) cat(mstyle$result(fmtt(x$QM, "QM", df=x$QMdf[1], pval=x$QMp, digits=digits))) } cat("\n") .space() invisible() } metafor/R/rma.uni.r0000644000176200001440000033223214737722725013671 0ustar liggesusersrma <- rma.uni <- function(yi, vi, sei, weights, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, fi, pi, sdi, r2i, ni, mods, scale, measure="GEN", data, slab, subset, add=1/2, to="only0", drop00=FALSE, intercept=TRUE, method="REML", weighted=TRUE, test="z", level=95, btt, att, tau2, verbose=FALSE, digits, control, ...) { ######################################################################### ###### setup mstyle <- .get.mstyle() ### check argument specifications ### (arguments "to" and "vtype" are checked inside escalc function) if (!is.element(measure, c("RR","OR","PETO","RD","AS","PHI","ZPHI","YUQ","YUY","RTET","ZTET", # 2x2 table measures "PBIT","OR2D","OR2DN","OR2DL", # 2x2 table transformations to SMDs "MPRD","MPRR","MPOR","MPORC","MPPETO","MPORM", # 2x2 table measures for matched pairs / pre-post data "IRR","IRD","IRSD", # two-group person-time data (incidence) measures "MD","SMD","SMDH","SMD1","SMD1H","ROM", # two-group mean/SD measures "CVR","VR", # coefficient of variation ratio, variability ratio "RPB","ZPB","RBIS","ZBIS","D2OR","D2ORN","D2ORL", # two-group mean/SD transformations to r_pb, r_bis, and log(OR) "COR","UCOR","ZCOR", # correlations (raw and r-to-z transformed) "PCOR","ZPCOR","SPCOR","ZSPCOR", # partial and semi-partial correlations "R2","ZR2","R2F","ZR2F", # coefficient of determination / R^2 (raw and r-to-z transformed) "PR","PLN","PLO","PRZ","PAS","PFT", # single proportions (and transformations thereof) "IR","IRLN","IRS","IRFT", # single-group person-time (incidence) data (and transformations thereof) "MN","SMN","MNLN","CVLN","SDLN", # mean, single-group standardized mean, log(mean), log(CV), log(SD), "MC","SMCC","SMCR","SMCRH","SMCRP","SMCRPH","CLESCN","AUCCN","ROMC","CVRC","VRC", # raw/standardized mean change, CLES/AUC, log(ROM), CVR, and VR for dependent samples "ARAW","AHW","ABT", # alpha (and transformations thereof) "REH","CLES","CLESN","AUC","AUCN", # relative excess heterozygosity, common language effect size / area under the curve "HR","HD", # hazard (rate) ratios and differences "GEN"))) stop(mstyle$stop("Unknown 'measure' specified.")) if (!is.element(method[1], c("FE","EE","CE","HS","HSk","HE","DL","DLIT","GENQ","GENQM","SJ","SJIT","PM","MP","PMM","ML","REML","EB"))) stop(mstyle$stop("Unknown 'method' specified.")) ### in case user specified more than one add/to value (as one can do with rma.mh() and rma.peto()) ### (any kind of continuity correction is directly applied to the outcomes, which are then analyzed as such) if (length(add) > 1L) add <- add[1] if (length(to) > 1L) to <- to[1] na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(tau2)) tau2 <- NULL if (missing(control)) control <- list() time.start <- proc.time() ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("vtype", "knha", "onlyo1", "addyi", "addvi", "correct", "i2def", "r2def", "skipr2", "abbrev", "dfs", "time", "outlist", "link", "optbeta", "alpha", "beta", "skiphes", "retopt", "pleasedonotreportI2thankyouverymuch")) if (is.null(ddd$vtype)) { vtype <- "LS" } else { vtype <- ddd$vtype } ### handle 'knha' argument from ... (note: overrides test argument) if (.isFALSE(ddd$knha)) test <- "z" if (.isTRUE(ddd$knha)) test <- "knha" test <- tolower(test) if (!is.element(test, c("z", "t", "knha", "hksj", "adhoc"))) stop(mstyle$stop("Invalid option selected for 'test' argument.")) if (test == "hksj") test <- "knha" if (missing(scale)) { model <- "rma.uni" } else { model <- "rma.ls" } ### set defaults or get onlyo1, addyi, addvi, and correct arguments onlyo1 <- .chkddd(ddd$onlyo1, FALSE) addyi <- .chkddd(ddd$addyi, TRUE) addvi <- .chkddd(ddd$addvi, TRUE) correct <- .chkddd(ddd$correct, TRUE) ### set defaults for i2def and r2def i2def <- .chkddd(ddd$i2def, "1") r2def <- .chkddd(ddd$r2def, "1") ### handle arguments for location-scale models link <- .chkddd(ddd$link, "log", match.arg(ddd$link, c("log", "identity"))) optbeta <- .chkddd(ddd$optbeta, FALSE, .isTRUE(ddd$optbeta)) if (optbeta && !weighted) stop(mstyle$stop("Must use 'weighted=TRUE' when 'optbeta=TRUE'.")) alpha <- .chkddd(ddd$alpha, NA_real_) beta <- .chkddd(ddd$beta, NA_real_) if (model == "rma.uni" && !missing(att)) warning(mstyle$warning("Argument 'att' only relevant for location-scale models and hence ignored."), call.=FALSE) ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } ### set defaults for formulas formula.yi <- NULL formula.mods <- NULL formula.scale <- NULL ### set options(warn=1) if verbose > 2 if (verbose > 2) { opwarn <- options(warn=1) on.exit(options(warn=opwarn$warn), add=TRUE) } ######################################################################### if (verbose) .space() if (verbose > 1) message(mstyle$message("Extracting/computing the yi/vi values ...")) ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() ### for certain measures, set add=0 by default unless user explicitly set the add argument addval <- mf[[match("add", names(mf))]] if (is.element(measure, c("AS","PHI","ZPHI","RTET","ZTET","IRSD","PAS","PFT","IRS","IRFT")) && is.null(addval)) add <- 0 ### extract yi (either NULL if not specified, a vector, a formula, or an escalc object) yi <- .getx("yi", mf=mf, data=data) ### if yi is not NULL and it is an escalc object, then use that object in place of the data argument if (!is.null(yi) && inherits(yi, "escalc")) data <- yi ### extract weights, slab, subset, mods, and scale values, possibly from the data frame specified via data or yi (arguments not specified are NULL) weights <- .getx("weights", mf=mf, data=data, checknumeric=TRUE) slab <- .getx("slab", mf=mf, data=data) subset <- .getx("subset", mf=mf, data=data) mods <- .getx("mods", mf=mf, data=data) scale <- .getx("scale", mf=mf, data=data) ai <- bi <- ci <- di <- x1i <- x2i <- t1i <- t2i <- NA_real_ if (!is.null(weights) && optbeta) stop(mstyle$stop("Cannot use custom weights when 'optbeta=TRUE'.")) if (!is.null(yi)) { ### if yi is not NULL, then yi now either contains the yi values, a formula, or an escalc object ### if yi is a formula, extract yi and X (this overrides anything specified via the mods argument further below) if (inherits(yi, "formula")) { formula.yi <- yi formula.mods <- formula.yi[-2] options(na.action = "na.pass") # set na.action to na.pass, so that NAs are not filtered out (we'll do that later) mods <- model.matrix(yi, data=data) # extract model matrix (now mods is no longer a formula, so [a] further below is skipped) attr(mods, "assign") <- NULL # strip assign attribute (not needed at the moment) attr(mods, "contrasts") <- NULL # strip contrasts attribute (not needed at the moment) yi <- model.response(model.frame(yi, data=data)) # extract yi values from model frame options(na.action = na.act) # set na.action back to na.act names(yi) <- NULL # strip names (1:k) from yi (so res$yi is the same whether yi is a formula or not) intercept <- FALSE # set to FALSE since formula now controls whether the intercept is included or not } # note: code further below ([b]) actually checks whether intercept is included or not ### if yi is an escalc object, try to extract yi and vi (note that moderators must then be specified via the mods argument) if (inherits(yi, "escalc")) { if (!is.null(attr(yi, "yi.names"))) { # if yi.names attributes is available yi.name <- attr(yi, "yi.names")[1] # take the first entry to be the yi variable } else { # if not, see if 'yi' is in the object and assume that is the yi variable if (!is.element("yi", names(yi))) stop(mstyle$stop("Cannot determine name of the 'yi' variable.")) yi.name <- "yi" } if (!is.null(attr(yi, "vi.names"))) { # if vi.names attributes is available vi.name <- attr(yi, "vi.names")[1] # take the first entry to be the vi variable } else { # if not, see if 'vi' is in the object and assume that is the vi variable if (!is.element("vi", names(yi))) stop(mstyle$stop("Cannot determine name of the 'vi' variable.")) vi.name <- "vi" } ### get vi and yi variables from the escalc object (vi first, then yi, since yi is overwritten) vi <- yi[[vi.name]] yi <- yi[[yi.name]] ### could still be NULL if attributes do not match up with actual contents of the escalc object if (is.null(yi)) stop(mstyle$stop(paste0("Cannot find variable '", yi.name, "' in the object."))) if (is.null(vi)) stop(mstyle$stop(paste0("Cannot find variable '", vi.name, "' in the object."))) yi.escalc <- TRUE } else { yi.escalc <- FALSE } ### in case user passed a data frame to yi, convert it to a vector (if possible) if (is.data.frame(yi)) { if (ncol(yi) == 1L) { yi <- yi[[1]] } else { stop(mstyle$stop("The object/variable specified for the 'yi' argument is a data frame with multiple columns.")) } } ### in case user passed a matrix to yi, convert it to a vector (if possible) if (.is.matrix(yi)) { if (nrow(yi) == 1L || ncol(yi) == 1L) { yi <- as.vector(yi) } else { stop(mstyle$stop("The object/variable specified for the 'yi' argument is a matrix with multiple rows/columns.")) } } ### check if yi is an array if (inherits(yi, "array")) stop(mstyle$stop("The object/variable specified for the 'yi' argument is an array.")) ### check if yi is numeric if (!is.numeric(yi)) stop(mstyle$stop("The object/variable specified for the 'yi' argument is not numeric.")) ### number of outcomes before subsetting k <- length(yi) k.all <- k ### if the user has specified 'measure' to be something other than "GEN", then use that for the measure argument ### otherwise, if yi has a 'measure' attribute, use that to set the 'measure' argument if (measure == "GEN" && !is.null(attr(yi, "measure"))) measure <- attr(yi, "measure") ### add measure attribute (back) to the yi vector attr(yi, "measure") <- measure ### extract vi and sei values (but only if yi wasn't an escalc object) if (!yi.escalc) { vi <- .getx("vi", mf=mf, data=data, checknumeric=TRUE) sei <- .getx("sei", mf=mf, data=data, checknumeric=TRUE) } ### extract ni argument ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) ### if neither vi nor sei is specified, then throw an error ### if only sei is specified, then square those values to get vi ### if vi is specified, use those values if (is.null(vi)) { if (is.null(sei)) { stop(mstyle$stop("Must specify the 'vi' or 'sei' argument.")) } else { vi <- sei^2 } } ### check 'vi' argument for potential misuse .chkviarg(mf$vi) ### in case user passes a matrix to vi, convert it to a vector ### note: only a row or column matrix with the right dimensions will have the right length if (.is.matrix(vi)) { if (nrow(vi) == 1L || ncol(vi) == 1L) { vi <- as.vector(vi) } else { if (.is.square(vi) && isSymmetric(unname(vi))) { vi <- as.matrix(vi) # in case vi is sparse if (any(vi[!diag(nrow(vi))] != 0)) warning(mstyle$warning("Using only the diagonal elements from 'vi' argument as the sampling variances."), call.=FALSE) vi <- diag(vi) } else { stop(mstyle$stop("The object/variable specified for the 'vi' argument is a matrix with multiple rows/columns.")) } } } ### check if vi is an array if (inherits(vi, "array")) stop(mstyle$stop("The object/variable specified for the 'vi' argument is an array.")) ### check if user constrained vi to 0 if ((length(vi) == 1L && vi == 0) || (length(vi) == k && !anyNA(vi) && all(vi == 0))) { vi0 <- TRUE } else { vi0 <- FALSE } ### allow easy setting of vi to a single value vi <- .expand1(vi, k) # note: k is number of outcomes before subsetting ### check length of yi and vi if (length(vi) != k) stop(mstyle$stop("Length of 'yi' and 'vi' (or 'sei') are not the same.")) ### if ni has not been specified, try to get it from the attributes of yi if (is.null(ni)) ni <- attr(yi, "ni") ### check length of yi and ni (only if ni is not NULL) ### if there is a mismatch, then ni cannot be trusted, so set it to NULL if (!is.null(ni) && length(ni) != k) ni <- NULL ### if ni is now available, add it (back) as an attribute to yi if (!is.null(ni)) attr(yi, "ni") <- ni ### note: one or more yi/vi pairs may be NA/NA (also a corresponding ni value may be NA) ### if slab has not been specified but is an attribute of yi, get it if (is.null(slab)) { slab <- attr(yi, "slab") # will be NULL if there is no slab attribute ### check length of yi and slab (only if slab is now not NULL) ### if there is a mismatch, then slab cannot be trusted, so set it to NULL if (!is.null(slab) && length(slab) != k) slab <- NULL } ### subsetting of yi/vi/ni values (note: mods and slab are subsetted further below) if (!is.null(subset)) { subset <- .chksubset(subset, k) yi <- .getsubset(yi, subset) vi <- .getsubset(vi, subset) ni <- .getsubset(ni, subset) attr(yi, "measure") <- measure # add measure attribute back attr(yi, "ni") <- ni # add ni attribute back } } else { ### if yi is NULL, try to compute yi/vi based on specified measure and supplied data if (is.element(measure, c("RR","OR","PETO","RD","AS","PHI","ZPHI","YUQ","YUY","RTET","ZTET","PBIT","OR2D","OR2DN","OR2DL","MPRD","MPRR","MPOR","MPORC","MPPETO","MPORM"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) if (is.null(bi)) bi <- n1i - ai if (is.null(di)) di <- n2i - ci k <- length(ai) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) di <- .getsubset(di, subset) ri <- .getsubset(ri, subset) pi <- .getsubset(pi, subset) } args <- list(ai=ai, bi=bi, ci=ci, di=di, ri=ri, pi=pi, add=add, to=to, drop00=drop00, onlyo1=onlyo1, addyi=addyi, addvi=addvi) } if (is.element(measure, c("IRR","IRD","IRSD"))) { x1i <- .getx("x1i", mf=mf, data=data, checknumeric=TRUE) x2i <- .getx("x2i", mf=mf, data=data, checknumeric=TRUE) t1i <- .getx("t1i", mf=mf, data=data, checknumeric=TRUE) t2i <- .getx("t2i", mf=mf, data=data, checknumeric=TRUE) k <- length(x1i) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) x1i <- .getsubset(x1i, subset) x2i <- .getsubset(x2i, subset) t1i <- .getsubset(t1i, subset) t2i <- .getsubset(t2i, subset) } args <- list(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, add=add, to=to, drop00=drop00, addyi=addyi, addvi=addvi) } if (is.element(measure, c("MD","SMD","SMDH","SMD1","SMD1H","ROM","RPB","ZPB","RBIS","ZBIS","D2OR","D2ORN","D2ORL","CVR","VR"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) if (is.element(measure, c("SMD","RPB","ZPB","RBIS","ZBIS","D2OR","D2ORN","D2ORL"))) { if (!.equal.length(m1i, m2i, sd1i, sd2i, n1i, n2i, di, ti, pi, ri)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ti <- replmiss(ti, .convp2t(pi, df=n1i+n2i-2)) di <- replmiss(di, ti * sqrt(1/n1i + 1/n2i)) mi <- n1i + n2i - 2 hi <- mi / n1i + mi / n2i di <- replmiss(di, sqrt(hi) * ri / sqrt(1 - ri^2)) m1i[!is.na(di)] <- di[!is.na(di)] m2i[!is.na(di)] <- 0 sd1i[!is.na(di)] <- 1 sd2i[!is.na(di)] <- 1 } k <- length(n1i) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) m1i <- .getsubset(m1i, subset) m2i <- .getsubset(m2i, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) n1i <- .getsubset(n1i, subset) n2i <- .getsubset(n2i, subset) } args <- list(m1i=m1i, m2i=m2i, sd1i=sd1i, sd2i=sd2i, n1i=n1i, n2i=n2i) } if (is.element(measure, c("COR","UCOR","ZCOR"))) { ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ri, ni, ti, pi)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ti <- replmiss(ti, .convp2t(pi, df=ni-2)) ri <- replmiss(ri, ti / sqrt(ti^2 + ni-2)) k <- length(ri) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) ri <- .getsubset(ri, subset) ni <- .getsubset(ni, subset) } args <- list(ri=ri, ni=ni) } if (is.element(measure, c("PCOR","ZPCOR","SPCOR","ZSPCOR"))) { ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) r2i <- .getx("r2i", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ri, ti, mi, ni, pi, r2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ti <- replmiss(ti, .convp2t(pi, df=ni-mi-1)) if (is.element(measure, c("PCOR","ZPCOR"))) ri <- replmiss(ri, ti / sqrt(ti^2 + ni-mi-1)) if (is.element(measure, c("SPCOR","ZSPCOR"))) ri <- replmiss(ri, ti * sqrt(1-r2i) / sqrt(ni-mi-1)) k <- length(ri) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) ri <- .getsubset(ri, subset) mi <- .getsubset(mi, subset) ni <- .getsubset(ni, subset) r2i <- .getsubset(r2i, subset) } args <- list(ri=ri, mi=mi, ni=ni, r2i=r2i) } if (is.element(measure, c("R2","ZR2","R2F","ZR2F"))) { r2i <- .getx("r2i", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) fi <- .getx("fi", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(r2i, mi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) fi <- replmiss(fi, .convp2f(pi, df1=mi, df2=ni-mi-1)) r2i <- replmiss(r2i, mi*fi / (mi*fi + (ni-mi-1))) k <- length(r2i) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) r2i <- .getsubset(r2i, subset) mi <- .getsubset(mi, subset) ni <- .getsubset(ni, subset) } args <- list(r2i=r2i, mi=mi, ni=ni) } if (is.element(measure, c("PR","PLN","PLO","PRZ","PAS","PFT"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (is.null(mi)) mi <- ni - xi k <- length(xi) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) xi <- .getsubset(xi, subset) mi <- .getsubset(mi, subset) } args <- list(xi=xi, mi=mi, add=add, to=to, addyi=addyi, addvi=addvi) } if (is.element(measure, c("IR","IRLN","IRS","IRFT"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) k <- length(xi) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) xi <- .getsubset(xi, subset) ti <- .getsubset(ti, subset) } args <- list(xi=xi, ti=ti, add=add, to=to, addyi=addyi, addvi=addvi) } if (is.element(measure, c("MN","SMN","MNLN","CVLN","SDLN"))) { mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) sdi <- .getx("sdi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) k <- length(ni) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) mi <- .getsubset(mi, subset) sdi <- .getsubset(sdi, subset) ni <- .getsubset(ni, subset) } args <- list(mi=mi, sdi=sdi, ni=ni) } if (is.element(measure, c("MC","SMCC","SMCR","SMCRH","SMCRP","SMCRPH","CLESCN","AUCCN","ROMC","CVRC","VRC"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) ri <- .expand1(ri, list(m1i, m2i, sd1i, sd2i, ni, di, ti, pi)) if (measure == "SMCC") { if (!.equal.length(m1i, m2i, sd1i, sd2i, ri, ni, di, ti, pi)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ti <- replmiss(ti, .convp2t(pi, df=ni-1)) di <- replmiss(di, ti * sqrt(1/ni)) m1i[!is.na(di)] <- di[!is.na(di)] m2i[!is.na(di)] <- 0 sd1i[!is.na(di)] <- 1 sd2i[!is.na(di)] <- 1 ri[!is.na(di)] <- 0.5 } k <- length(m1i) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) m1i <- .getsubset(m1i, subset) m2i <- .getsubset(m2i, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) ni <- .getsubset(ni, subset) ri <- .getsubset(ri, subset) } args <- list(m1i=m1i, m2i=m2i, sd1i=sd1i, sd2i=sd2i, ri=ri, ni=ni) } if (is.element(measure, c("ARAW","AHW","ABT"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) k <- length(ai) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) mi <- .getsubset(mi, subset) ni <- .getsubset(ni, subset) } args <- list(ai=ai, mi=mi, ni=ni) } if (measure == "REH") { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) k <- length(ai) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) } args <- list(ai=ai, bi=bi, ci=ci) } if (is.element(measure, c("CLES","AUC"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) if (is.null(mi)) mi <- rep(0, length(ai)) mi[is.na(mi)] <- 0 k <- length(ai) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) n1i <- .getsubset(n1i, subset) n2i <- .getsubset(n2i, subset) mi <- .getsubset(mi, subset) } args <- list(ai=ai, n1i=n1i, n2i=n2i, mi=mi) } if (is.element(measure, c("CLESN","AUCN"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) pi <- .getx("pi", mf=mf, data=data, checknumeric=TRUE) ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(m1i, m2i, sd1i, sd2i, n1i, n2i, di, ti, pi, ai)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) if (!.all.specified(n1i, n2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments.")) k.all <- max(sapply(list(m1i, m2i, sd1i, sd2i, n1i, n2i, di, ti, pi, ai), length)) vtype <- .expand1(vtype, k.all) if (is.null(sd1i) || is.null(sd2i)) { sd1i <- .expand1(NA_real_, k.all) sd2i <- .expand1(NA_real_, k.all) } ti <- replmiss(ti, .convp2t(pi, df=n1i+n2i-2)) di <- replmiss(di, ti * sqrt(1/n1i + 1/n2i)) if (!is.null(di)) vtype[!is.na(di)] <- "HO" sdpi <- ifelse(vtype=="HO", sqrt(((n1i-1)*sd1i^2 + (n2i-1)*sd2i^2)/(n1i+n2i-2)), sqrt((sd1i^2 + sd2i^2)/2)) di <- replmiss(di, (m1i - m2i) / sdpi) ai <- replmiss(ai, pnorm(di/sqrt(2))) di <- replmiss(di, qnorm(ai)*sqrt(2)) k.all <- length(ai) sdsmiss <- is.na(sd1i) | is.na(sd2i) sd1i <- ifelse(sdsmiss, 1, sd1i) sd2i <- ifelse(sdsmiss, 1, sd2i) vtype[sdsmiss] <- "HO" k <- length(ai) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) vtype <- .getsubset(vtype, subset) ai <- .getsubset(ai, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) n1i <- .getsubset(n1i, subset) n2i <- .getsubset(n2i, subset) } args <- list(ai=ai, sd1i=sd1i, sd2i=sd2i, n1i=n1i, n2i=n2i) } args <- c(args, list(measure=measure, vtype=vtype, correct=correct)) dat <- .do.call(escalc, args) if (is.element(measure, "GEN")) stop(mstyle$stop("Specify the desired outcome measure via the 'measure' argument.")) ### note: these values are already subsetted yi <- dat$yi # one or more yi/vi pairs may be NA/NA vi <- dat$vi # one or more yi/vi pairs may be NA/NA ni <- attr(yi, "ni") # unadjusted total sample sizes (ni.u in escalc) } ######################################################################### ### allow easy setting of weights to a single value weights <- .expand1(weights, k) # note: k is number of outcomes before subsetting ### check length of yi and weights (only if weights is not NULL) if (!is.null(weights) && (length(weights) != k)) stop(mstyle$stop("Length of 'yi' and 'weights' are not the same.")) ### subsetting of weights if (!is.null(subset)) weights <- .getsubset(weights, subset) ######################################################################### if (verbose > 1) message(mstyle$message("Creating the model matrix ...")) ### convert mods formula to X matrix and set intercept equal to FALSE ### skipped if formula has already been specified via yi argument, since mods is then no longer a formula (see [a]) if (inherits(mods, "formula")) { formula.mods <- mods if (isTRUE(all.equal(formula.mods, ~ 1))) { # needed so 'mods = ~ 1' without 'data' specified works mods <- matrix(1, nrow=k, ncol=1) intercept <- FALSE } else { options(na.action = "na.pass") # set na.action to na.pass, so that NAs are not filtered out (we'll do that later) mods <- model.matrix(mods, data=data) # extract model matrix attr(mods, "assign") <- NULL # strip assign attribute (not needed at the moment) attr(mods, "contrasts") <- NULL # strip contrasts attribute (not needed at the moment) options(na.action = na.act) # set na.action back to na.act intercept <- FALSE # set to FALSE since formula now controls whether the intercept is included or not } # note: code further below ([b]) actually checks whether intercept is included or not } ### turn a vector for mods into a column vector if (.is.vector(mods)) mods <- cbind(mods) ### turn a mods data frame into a matrix if (is.data.frame(mods)) mods <- as.matrix(mods) ### check if model matrix contains character variables if (is.character(mods)) stop(mstyle$stop("Model matrix contains character variables.")) ### check if mods matrix has the right number of rows if (!is.null(mods) && nrow(mods) != k) stop(mstyle$stop(paste0("Number of rows in the model matrix (", nrow(mods), ") do not match the length of the outcome vector (", k, ")."))) ### for rma.ls models, get model matrix for the scale part if (model == "rma.ls") { if (inherits(scale, "formula")) { formula.scale <- scale if (isTRUE(all.equal(formula.scale, ~ 1))) { # needed so 'scale = ~ 1' without 'data' specified works Z <- matrix(1, nrow=k, ncol=1) colnames(Z) <- "intrcpt" } else { options(na.action = "na.pass") Z <- model.matrix(scale, data=data) colnames(Z)[grep("(Intercept)", colnames(Z), fixed=TRUE)] <- "intrcpt" attr(Z, "assign") <- NULL attr(Z, "contrasts") <- NULL options(na.action = na.act) } } else { Z <- scale if (.is.vector(Z)) Z <- cbind(Z) if (is.data.frame(Z)) Z <- as.matrix(Z) if (is.character(Z)) stop(mstyle$stop("Scale model matrix contains character variables.")) } if (nrow(Z) != k) stop(mstyle$stop(paste0("Number of rows in the model matrix specified via the 'scale' argument (", nrow(Z), ") do not match the length of the outcome vector (", k, ")."))) } else { Z <- NULL } ### generate study labels if none are specified (or none have been found in yi) if (verbose > 1) message(mstyle$message("Generating/extracting the study labels ...")) ### study ids (1:k sequence before subsetting) ids <- seq_len(k) if (is.null(slab)) { slab.null <- TRUE slab <- ids } else { if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the dataset (", k, ")."))) slab.null <- FALSE } ### if a subset of studies is specified if (!is.null(subset)) { if (verbose > 1) message(mstyle$message("Subsetting ...")) mods <- .getsubset(mods, subset) slab <- .getsubset(slab, subset) ids <- .getsubset(ids, subset) Z <- .getsubset(Z, subset) } ### check if study labels are unique; if not, make them unique if (anyDuplicated(slab)) slab <- .make.unique(slab) ### add slab attribute back attr(yi, "slab") <- slab ### number of outcomes after subsetting k <- length(yi) ### check for negative/infinite weights if (any(weights < 0, na.rm=TRUE)) stop(mstyle$stop("Negative weights not allowed.")) if (any(is.infinite(weights))) stop(mstyle$stop("Infinite weights not allowed.")) ### save full data (including potential NAs in yi/vi/weights/ni/mods/Z.f) outdat.f <- list(ai=ai, bi=bi, ci=ci, di=di, x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i) yi.f <- yi vi.f <- vi weights.f <- weights ni.f <- ni mods.f <- mods Z.f <- Z k.f <- k # total number of observed outcomes including all NAs ### check for NAs and act accordingly has.na <- is.na(yi) | is.na(vi) | (if (is.null(mods)) FALSE else apply(is.na(mods), 1, any)) | (if (is.null(Z)) FALSE else apply(is.na(Z), 1, any)) | (if (is.null(weights)) FALSE else is.na(weights)) not.na <- !has.na if (any(has.na)) { if (verbose > 1) message(mstyle$message("Handling NAs ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na] vi <- vi[not.na] weights <- weights[not.na] ni <- ni[not.na] mods <- mods[not.na,,drop=FALSE] Z <- Z[not.na,,drop=FALSE] k <- length(yi) warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from model fitting.")), call.=FALSE) attr(yi, "measure") <- measure # add measure attribute back attr(yi, "ni") <- ni # add ni attribute back ### note: slab is always of the same length as the full yi vector (after subsetting), so missings are not removed and slab is not added back to yi } if (na.act == "na.fail") stop(mstyle$stop("Missing values in data.")) } ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### check for non-positive sampling variances (and set negative values to 0) ### note: done after removing NAs since only the included studies are relevant if (any(vi <= 0)) { allvipos <- FALSE if (!vi0) warning(mstyle$warning("There are outcomes with non-positive sampling variances."), call.=FALSE) vi.neg <- vi < 0 if (any(vi.neg)) { vi[vi.neg] <- 0 warning(mstyle$warning("Negative sampling variances constrained to 0."), call.=FALSE) } } else { allvipos <- TRUE } ### but even in vi.f, constrain negative sampling variances to 0 (not needed) #vi.f[vi.f < 0] <- 0 ### if k=1 and test != "z", set test="z" (other methods cannot be used) if (k == 1L && test != "z") { warning(mstyle$warning("Setting argument test=\"z\" since k=1."), call.=FALSE) test <- "z" } ### make sure that there is at least one column in X ([b]) if (is.null(mods) && !intercept) { warning(mstyle$warning("Must either include an intercept and/or moderators in model.\nCoerced intercept into the model."), call.=FALSE) intercept <- TRUE } if (!is.null(mods) && ncol(mods) == 0L) { warning(mstyle$warning("Cannot fit model with an empty model matrix. Coerced intercept into the model."), call.=FALSE) intercept <- TRUE } ### add vector of 1s to the X matrix for the intercept (if intercept=TRUE) if (intercept) { X <- cbind(intrcpt=rep(1,k), mods) X.f <- cbind(intrcpt=rep(1,k.f), mods.f) } else { X <- mods X.f <- mods.f } ### drop redundant predictors ### note: need to save coef.na for functions that modify the data/model and then refit the model (regtest() and the ### various function that leave out an observation); so we can check if there are redundant/dropped predictors then tmp <- try(lm(yi ~ X - 1), silent=TRUE) if (inherits(tmp, "lm")) { coef.na <- is.na(coef(tmp)) } else { coef.na <- rep(FALSE, NCOL(X)) } if (any(coef.na)) { warning(mstyle$warning("Redundant predictors dropped from the model."), call.=FALSE) X <- X[,!coef.na,drop=FALSE] X.f <- X.f[,!coef.na,drop=FALSE] } ### check whether intercept is included and if yes, move it to the first column (NAs already removed, so na.rm=TRUE for any() not necessary) is.int <- apply(X, 2, .is.intercept) if (any(is.int)) { int.incl <- TRUE int.indx <- which(is.int, arr.ind=TRUE) X <- cbind(intrcpt=1, X[,-int.indx, drop=FALSE]) # this removes any duplicate intercepts X.f <- cbind(intrcpt=1, X.f[,-int.indx, drop=FALSE]) # this removes any duplicate intercepts intercept <- TRUE # set intercept appropriately so that the predict() function works } else { int.incl <- FALSE } p <- NCOL(X) # number of columns in X (including the intercept if it is included) ### make sure variable names in X and Z are unique colnames(X) <- colnames(X.f) <- .make.unique(colnames(X)) colnames(Z) <- colnames(Z.f) <- .make.unique(colnames(Z)) ### check whether this is an intercept-only model if ((p == 1L) && .is.intercept(X)) { int.only <- TRUE } else { int.only <- FALSE } ### check if there are too many parameters for given k (TODO: what about rma.ls models?) if (!(int.only && k == 1L)) { if (is.element(method[1], c("FE","EE","CE"))) { # have to estimate p parms if (p > k) stop(mstyle$stop("Number of parameters to be estimated is larger than the number of observations.")) } else { if (!is.null(tau2) && !is.na(tau2)) { # have to estimate p parms (tau2 is fixed at value specified) if (p > k) stop(mstyle$stop("Number of parameters to be estimated is larger than the number of observations.")) } else { if ((p+1) > k) # have to estimate p+1 parms stop(mstyle$stop("Number of parameters to be estimated is larger than the number of observations.")) } } } ### set/check 'btt' argument btt <- .set.btt(btt, p, int.incl, colnames(X)) m <- length(btt) # number of betas to test (m = p if all betas are tested) ######################################################################### ### set defaults for control parameters con <- list(verbose = FALSE, evtol = 1e-07, # lower bound for eigenvalues to determine if model matrix is positive definite (also for checking if vimaxmin >= 1/con$evtol) REMLf = TRUE) # should |X'X| term be included in the REML log-likelihood? if (model == "rma.uni") { con <- c(con, list(tau2.init = NULL, # initial value for iterative estimators (ML, REML, EB, SJ, SJIT, DLIT) tau2.min = 0, # lower bound for tau^2 value (passed down to confint.rma.uni()) tau2.max = 100, # upper bound for tau^2 value (for PM/PMM/GENQM estimators) but see [c] threshold = 10^-5, # convergence threshold (for ML, REML, EB, SJIT, DLIT) tol = .Machine$double.eps^0.25, # convergence tolerance for uniroot() as used for PM, PMM, GENQM (also used in 'll0 - ll > con$tol' check for ML/REML) ll0check = TRUE, # should the 'll0 - ll > con$tol' check be conducted for ML/REML? maxiter = 100, # maximum number of iterations (for ML, REML, EB, SJIT, DLIT) stepadj = 1)) # step size adjustment for Fisher scoring algorithm (for ML, REML, EB) ### [c] for some applications, tau2.max = 100 may not be enough; use an adaptive max instead con$tau2.max <- max(con$tau2.max, 10*mad(yi)^2) } if (model == "rma.ls") { con <- c(con, list(beta.init = NULL, # initial values for location parameters (only relevant when optbeta=TRUE) hesspack = "numDeriv", # package for computing the Hessian (numDeriv or pracma) optimizer = "nlminb", # optimizer to use ("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","constrOptim","solnp","alabama"/"constrOptim.nl","Rcgmin","Rvmmin") optmethod = "BFGS", # argument 'method' for optim() ("Nelder-Mead" and "BFGS" are sensible options) parallel = list(), # parallel argument for optimParallel() (note: 'cl' argument in parallel is not passed; this is directly specified via 'cl') cl = NULL, # arguments for optimParallel() ncpus = 1L, # arguments for optimParallel() tau2.min = 0, # lower bound for tau^2 values (can be used to constrain tau^2 values but see [d]) tau2.max = Inf, # upper bound for tau^2 values (can be used to constrain tau^2 values but see [d]) alpha.init = NULL, # initial values for scale parameters alpha.min = -Inf, # min possible value(s) for scale parameter(s) alpha.max = Inf, # max possible value(s) for scale parameter(s) hessianCtrl=list(r=8), # arguments passed on to 'method.args' of hessian() scaleZ = TRUE)) # rescale Z matrix (only if Z.int.incl, is.na(alpha[1]), all(is.infinite(con$alpha.min)), all(is.infinite(con$alpha.max)), !optbeta) ### [d] can constrain the tau^2 values in location-scale models, but this is done in a very crude way ### in the optimization (by returning Inf when any tau^2 value falls outside the bounds) and this is ### not recommended/documented (instead, one can constrain the alpha values via alpha.min/alpha.max); ### note: the tau^2 bounds are only in effect when tau2.min or tau2.max are actually used in 'control' ### (if not, tau2.min and tau2.max are set to 0 and Inf, respectively) } ### replace defaults with any user-defined values con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] if (verbose) con$verbose <- verbose verbose <- con$verbose if (model == "rma.ls") { con$hesspack <- match.arg(con$hesspack, c("numDeriv","pracma","calculus")) if (!isTRUE(ddd$skiphes) && !requireNamespace(con$hesspack, quietly=TRUE)) stop(mstyle$stop(paste0("Please install the '", con$hesspack, "' package to compute the Hessian."))) } if (model == "rma.uni") { ### constrain a negative tau2.min value to -min(vi) (to ensure that the marginal variance is always >= 0) if (con$tau2.min < 0 && (con$tau2.min < -min(vi))) { con$tau2.min <- -min(vi) # + .Machine$double.eps^0.25 # to force tau2.min just above -min(vi) warning(mstyle$warning(paste0("Value of 'tau2.min' constrained to -min(vi) = ", fmtx(-min(vi), digits[["est"]]), ".")), call.=FALSE) } } else { ### constrain a negative tau2.min value to 0 for ls models if (is.element("tau2.min", names(control))) con$tau2.min[con$tau2.min < 0] <- 0 } ### check whether model matrix is of full rank if (!.chkpd(crossprod(X), tol=con$evtol)) stop(mstyle$stop("Model matrix not of full rank. Cannot fit model.")) ### check ratio of largest to smallest sampling variance ### note: need to exclude some special cases (0/0 = NaN, max(vi)/0 = Inf) ### TODO: use the condition number of diag(vi) here instead? vimaxmin <- max(vi) / min(vi) if (is.finite(vimaxmin) && vimaxmin >= 1/con$evtol) warning(mstyle$warning("Ratio of largest to smallest sampling variance extremely large. May not be able to obtain stable results."), call.=FALSE) ### set some defaults se.tau2 <- I2 <- H2 <- QE <- QEp <- NA_real_ s2w <- 1 level <- .level(level) Y <- as.matrix(yi) ### mean center yi for some calculations to increase the stability of the computations ymci <- scale(yi, center=TRUE, scale=FALSE) Ymc <- as.matrix(ymci) ######################################################################### ###### heterogeneity estimation for the standard normal-normal model (rma.uni) tau2.inf <- FALSE if (model == "rma.uni") { if (!is.null(tau2) && !is.na(tau2) && !is.element(method[1], c("FE","EE","CE"))) { # if user has fixed the tau2 value tau2.fix <- TRUE tau2.arg <- tau2 tau2.inf <- identical(tau2, Inf) } else { tau2.fix <- FALSE tau2.arg <- NA_real_ } if (verbose > 1 && !tau2.fix && !is.element(method[1], c("FE","EE","CE"))) message(mstyle$message("Estimating the tau^2 value ...\n")) if (k == 1L) { method.sav <- method[1] method <- "k1" # set method to k1 so all of the stuff below is skipped if (!tau2.fix) tau2 <- 0 } conv <- FALSE while (!conv && !tau2.inf) { ### convergence indicator and change variable conv <- TRUE # assume TRUE for now unless things go wrong below change <- con$threshold + 1 ### iterations counter for iterative estimators (i.e., DLIT, SJIT, ML, REML, EB) ### (note: PM, PMM, and GENQM are also iterative, but uniroot() handles that) iter <- 0 ### Hunter & Schmidt (HS) estimator (or k-corrected HS estimator (HSk)) if (is.element(method[1], c("HS","HSk"))) { if (!allvipos) stop(mstyle$stop(paste0(method[1], " estimator cannot be used when there are non-positive sampling variances in the data."))) wi <- 1/vi W <- diag(wi, nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) P <- W - W %*% X %*% stXWX %*% crossprod(X,W) RSS <- crossprod(Ymc,P) %*% Ymc if (method[1] == "HS") { tau2 <- ifelse(tau2.fix, tau2.arg, (RSS - k) / sum(wi)) } else { tau2 <- ifelse(tau2.fix, tau2.arg, (k/(k-p)*RSS - k) / sum(wi)) } } ### Hedges (HE) estimator (or initial value for ML, REML, EB) if (is.element(method[1], c("HE","ML","REML","EB"))) { stXX <- .invcalc(X=X, W=diag(k), k=k) P <- diag(k) - X %*% tcrossprod(stXX,X) RSS <- crossprod(Ymc,P) %*% Ymc V <- diag(vi, nrow=k, ncol=k) PV <- P %*% V # note: this is not symmetric trPV <- .tr(PV) # since PV needs to be computed anyway, can use .tr() tau2 <- ifelse(tau2.fix, tau2.arg, (RSS - trPV) / (k-p)) } ### DerSimonian-Laird (DL) estimator if (method[1] == "DL") { if (!allvipos) stop(mstyle$stop("DL estimator cannot be used when there are non-positive sampling variances in the data.")) wi <- 1/vi W <- diag(wi, nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) P <- W - W %*% X %*% stXWX %*% crossprod(X,W) RSS <- crossprod(Ymc,P) %*% Ymc trP <- .tr(P) tau2 <- ifelse(tau2.fix, tau2.arg, (RSS - (k-p)) / trP) } ### DerSimonian-Laird (DL) estimator with iteration (when this converges, same as PM) if (method[1] == "DLIT") { if (is.null(con$tau2.init)) { tau2 <- 0 } else { tau2 <- con$tau2.init } while (change > con$threshold) { if (verbose) cat(mstyle$verbose(paste("Iteration", formatC(iter, width=5, flag="-", format="f", digits=0), "tau^2 =", fmtx(tau2, digits[["var"]]), "\n"))) iter <- iter + 1 old2 <- tau2 wi <- 1/(vi + tau2) if (any(tau2 + vi < 0)) stop(mstyle$stop("Some marginal variances are negative.")) if (any(is.infinite(wi))) stop(mstyle$stop("Division by zero when computing the inverse variance weights.")) W <- diag(wi, nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) P <- W - W %*% X %*% stXWX %*% crossprod(X,W) V <- diag(vi, nrow=k, ncol=k) trP <- .tr(P) trPV <- .tr(P %*% V) RSS <- crossprod(Ymc,P) %*% Ymc tau2 <- ifelse(tau2.fix, tau2.arg, (RSS - trPV) / trP) tau2[tau2 < con$tau2.min] <- con$tau2.min change <- abs(old2 - tau2) if (iter > con$maxiter) { conv <- FALSE break } } if (!conv) { if (length(method) == 1L) { stop(mstyle$stop("Iterative DL estimator did not converge.")) } else { if (verbose) warning(mstyle$warning("Iterative DL estimator did not converge."), call.=FALSE) } } } ### generalized Q-statistic estimator if (method[1] == "GENQ") { #if (!allvipos) # stop(mstyle$stop("GENQ estimator cannot be used when there are non-positive sampling variances in the data.")) if (is.null(weights)) stop(mstyle$stop("Must specify the 'weights' argument when method='GENQ'.")) A <- diag(weights, nrow=k, ncol=k) stXAX <- .invcalc(X=X, W=A, k=k) P <- A - A %*% X %*% stXAX %*% crossprod(X,A) V <- diag(vi, nrow=k, ncol=k) PV <- P %*% V # note: this is not symmetric trP <- .tr(P) trPV <- .tr(PV) RSS <- crossprod(Ymc,P) %*% Ymc tau2 <- ifelse(tau2.fix, tau2.arg, (RSS - trPV) / trP) } ### generalized Q-statistic estimator (median unbiased version) if (method[1] == "GENQM") { if (is.null(weights)) stop(mstyle$stop("Must specify the 'weights' argument when method='GENQM'.")) A <- diag(weights, nrow=k, ncol=k) stXAX <- .invcalc(X=X, W=A, k=k) P <- A - A %*% X %*% stXAX %*% crossprod(X,A) V <- diag(vi, nrow=k, ncol=k) PV <- P %*% V # note: this is not symmetric trP <- .tr(P) if (!tau2.fix) { RSS <- crossprod(Ymc,P) %*% Ymc if (.GENQ.func(con$tau2.min, P=P, vi=vi, Q=RSS, level=0, k=k, p=p, getlower=TRUE) > 0.5) { ### if GENQ.tau2.min is > 0.5, then estimate < tau2.min tau2 <- con$tau2.min } else { if (.GENQ.func(con$tau2.max, P=P, vi=vi, Q=RSS, level=0, k=k, p=p, getlower=TRUE) < 0.5) { ### if GENQ.tau2.max is < 0.5, then estimate > tau2.max conv <- FALSE if (length(method) == 1L) { stop(mstyle$stop("Value of 'tau2.max' too low. Try increasing 'tau2.max' or switch to another 'method'.")) } else { if (verbose) warning(mstyle$warning("Value of 'tau2.max' too low. Try increasing 'tau2.max' or switch to another 'method'."), call.=FALSE) } } else { tau2 <- try(uniroot(.GENQ.func, interval=c(con$tau2.min, con$tau2.max), tol=con$tol, maxiter=con$maxiter, P=P, vi=vi, Q=RSS, level=0.5, k=k, p=p, getlower=FALSE, verbose=verbose, digits=digits, extendInt="no")$root, silent=TRUE) if (inherits(tau2, "try-error")) { conv <- FALSE if (length(method) == 1L) { stop(mstyle$stop("Error in iterative search for tau^2 using uniroot().")) } else { if (verbose) warning(mstyle$warning("Error in iterative search for tau^2 using uniroot()."), call.=FALSE) } } } } } else { tau2 <- tau2.arg } } ### Sidik-Jonkman (SJ) estimator if (method[1] == "SJ") { if (is.null(con$tau2.init)) { tau2.0 <- c(var(ymci) * (k-1)/k) } else { tau2.0 <- con$tau2.init } wi <- 1/(vi + tau2.0) W <- diag(wi, nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) P <- W - W %*% X %*% stXWX %*% crossprod(X,W) RSS <- crossprod(Ymc,P) %*% Ymc V <- diag(vi, nrow=k, ncol=k) PV <- P %*% V # note: this is not symmetric tau2 <- ifelse(tau2.fix, tau2.arg, tau2.0 * RSS / (k-p)) } ### Sidik-Jonkman (SJ) estimator with iteration if (method[1] == "SJIT") { if (is.null(con$tau2.init)) { tau2 <- c(var(ymci) * (k-1)/k) } else { tau2 <- con$tau2.init } tau2.0 <- tau2 while (change > con$threshold) { if (verbose) cat(mstyle$verbose(paste("Iteration", formatC(iter, width=5, flag="-", format="f", digits=0), "tau^2 =", fmtx(tau2, digits[["var"]]), "\n"))) iter <- iter + 1 old2 <- tau2 wi <- 1/(vi + tau2) W <- diag(wi, nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) P <- W - W %*% X %*% stXWX %*% crossprod(X,W) RSS <- crossprod(Ymc,P) %*% Ymc V <- diag(vi, nrow=k, ncol=k) PV <- P %*% V # note: this is not symmetric tau2 <- ifelse(tau2.fix, tau2.arg, tau2 * RSS / (k-p)) change <- abs(old2 - tau2) if (iter > con$maxiter) { conv <- FALSE break } } if (!conv) { if (length(method) == 1L) { stop(mstyle$stop("Iterative SJ estimator did not converge.")) } else { if (verbose) warning(mstyle$warning("Iterative SJ estimator did not converge."), call.=FALSE) } } } ### Paule-Mandel (PM) estimator (regular and median unbiased version) if (is.element(method[1], c("PM","MP","PMM"))) { if (!allvipos) stop(mstyle$stop(method[1], " estimator cannot be used when there are non-positive sampling variances in the data.")) if (method[1] == "PMM") { target <- qchisq(0.5, df=k-p) } else { target <- k-p } if (!tau2.fix) { if (.QE.func(con$tau2.min, Y=Ymc, vi=vi, X=X, k=k, objective=0) < target) { tau2 <- con$tau2.min } else { if (.QE.func(con$tau2.max, Y=Ymc, vi=vi, X=X, k=k, objective=0) > target) { conv <- FALSE if (length(method) == 1L) { stop(mstyle$stop("Value of 'tau2.max' too low. Try increasing 'tau2.max' or switch to another 'method'.")) } else { if (verbose) warning(mstyle$warning("Value of 'tau2.max' too low. Try increasing 'tau2.max' or switch to another 'method'."), call.=FALSE) } } else { tau2 <- try(uniroot(.QE.func, interval=c(con$tau2.min, con$tau2.max), tol=con$tol, maxiter=con$maxiter, Y=Ymc, vi=vi, X=X, k=k, objective=target, verbose=verbose, digits=digits, extendInt="no")$root, silent=TRUE) if (inherits(tau2, "try-error")) { conv <- FALSE if (length(method) == 1L) { stop(mstyle$stop("Error in iterative search for tau^2 using uniroot().")) } else { if (verbose) warning(mstyle$warning("Error in iterative search for tau^2 using uniroot()."), call.=FALSE) } } } } #W <- diag(wi, nrow=k, ncol=k) #stXWX <- .invcalc(X=X, W=W, k=k) #P <- W - W %*% X %*% stXWX %*% crossprod(X,W) # needed for se.tau2 computation below (not when using the simpler equation) } else { tau2 <- tau2.arg } } ### maximum-likelihood (ML), restricted maximum-likelihood (REML), and empirical Bayes (EB) estimators if (is.element(method[1], c("ML","REML","EB"))) { if (is.null(con$tau2.init)) { # check if user specified initial value for tau2 tau2 <- max(0, tau2, con$tau2.min) # if not, use HE estimate (or con$tau2.min) as initial estimate for tau2 } else { tau2 <- con$tau2.init # if yes, use value specified by user } while (change > con$threshold) { if (verbose) cat(mstyle$verbose(paste(mstyle$verbose(paste("Iteration", formatC(iter, width=5, flag="-", format="f", digits=0), "tau^2 =", fmtx(tau2, digits[["var"]]), "\n"))))) iter <- iter + 1 old2 <- tau2 wi <- 1/(vi + tau2) if (any(tau2 + vi < 0)) stop(mstyle$stop("Some marginal variances are negative.")) if (any(is.infinite(wi))) stop(mstyle$stop("Division by zero when computing the inverse variance weights.")) W <- diag(wi, nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) P <- W - W %*% X %*% stXWX %*% crossprod(X,W) if (method[1] == "ML") { PP <- P %*% P adj <- c(crossprod(Ymc,PP) %*% Ymc - sum(wi)) / sum(wi^2) } if (method[1] == "REML") { PP <- P %*% P adj <- c(crossprod(Ymc,PP) %*% Ymc - .tr(P)) / .tr(PP) } if (method[1] == "EB") { adj <- c(crossprod(Ymc,P) %*% Ymc * k/(k-p) - k) / sum(wi) } adj <- c(adj) * con$stepadj # apply (user-defined) step adjustment if (is.na(adj)) # can happen for a saturated model when fixing tau^2 adj <- 0 while (tau2 + adj < con$tau2.min) # use step-halving if necessary adj <- adj / 2 tau2 <- ifelse(tau2.fix, tau2.arg, tau2 + adj) change <- abs(old2 - tau2) if (iter > con$maxiter) { conv <- FALSE break } } if (!conv) { if (length(method) == 1L) { stop(mstyle$stop("Fisher scoring algorithm did not converge. See 'help(rma)' for possible remedies.")) } else { if (verbose) warning(mstyle$warning("Fisher scoring algorithm did not converge. See 'help(rma)' for possible remedies."), call.=FALSE) } } ### check if ll is larger when tau^2 = 0 (only if ll0check=TRUE and only possible/sensible if allvipos and !tau2.fix) ### note: this doesn't catch the case where tau^2 = 0 is a local maximum if (conv && is.element(method[1], c("ML","REML")) && con$ll0check && allvipos && !tau2.fix) { wi <- 1/vi W <- diag(wi, nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) beta <- stXWX %*% crossprod(X,W) %*% Ymc RSS <- sum(wi*(ymci - X %*% beta)^2) if (method[1] == "ML") ll0 <- -1/2 * (k) * log(2*base::pi) - 1/2 * sum(log(vi)) - 1/2 * RSS if (method[1] == "REML") ll0 <- -1/2 * (k-p) * log(2*base::pi) - 1/2 * sum(log(vi)) - 1/2 * determinant(crossprod(X,W) %*% X, logarithm=TRUE)$modulus - 1/2 * RSS wi <- 1/(vi + tau2) if (any(tau2 + vi < 0)) stop(mstyle$stop("Some marginal variances are negative.")) if (any(is.infinite(wi))) stop(mstyle$stop("Division by zero when computing the inverse variance weights.")) W <- diag(wi, nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) beta <- stXWX %*% crossprod(X,W) %*% Ymc RSS <- sum(wi*(ymci - X %*% beta)^2) if (method[1] == "ML") ll <- -1/2 * (k) * log(2*base::pi) - 1/2 * sum(log(vi + tau2)) - 1/2 * RSS if (method[1] == "REML") ll <- -1/2 * (k-p) * log(2*base::pi) - 1/2 * sum(log(vi + tau2)) - 1/2 * determinant(crossprod(X,W) %*% X, logarithm=TRUE)$modulus - 1/2 * RSS if (ll0 - ll > con$tol && tau2 > con$threshold) { warning(mstyle$warning("Fisher scoring algorithm may have gotten stuck at a local maximum.\nSetting tau^2 = 0. Check the profile likelihood plot with profile()."), call.=FALSE) tau2 <- 0 } } ### need to run this so that wi and P are based on the final tau^2 value if (conv) { wi <- 1/(vi + tau2) if (any(tau2 + vi < 0)) stop(mstyle$stop("Some marginal variances are negative.")) if (any(is.infinite(wi))) stop(mstyle$stop("Division by zero when computing the inverse variance weights.")) W <- diag(wi, nrow=k, ncol=k) stXWX <- .invcalc(X=X, W=W, k=k) P <- W - W %*% X %*% stXWX %*% crossprod(X,W) } } if (conv) { ### make sure that tau2 is >= con$tau2.min tau2 <- max(con$tau2.min, c(tau2)) ### check if any marginal variances are negative (only possible if user has changed tau2.min) if (!is.na(tau2) && any(tau2 + vi < 0)) stop(mstyle$stop("Some marginal variances are negative.")) ### verbose output upon convergence for ML/REML/EB estimators if (verbose && is.element(method[1], c("ML","REML","EB"))) { cat(mstyle$verbose(paste("Iteration", formatC(iter, width=5, flag="-", format="f", digits=0), "tau^2 =", fmtx(tau2, digits[["var"]]), "\n"))) cat(mstyle$verbose(paste("Fisher scoring algorithm converged after", iter, "iterations.\n"))) } ### standard error of the tau^2 estimators (also when the user has fixed/specified a tau^2 value) ### see notes.pdf and note: .tr(P%*%P) = sum(P*t(P)) = sum(P*P) (since P is symmetric) if (method[1] == "HS") se.tau2 <- sqrt(1/sum(wi)^2 * (2*(k-p) + 4*max(tau2,0)*.tr(P) + 2*max(tau2,0)^2*sum(P*P))) # note: wi = 1/vi if (method[1] == "HSk") se.tau2 <- k/(k-p) * sqrt(1/sum(wi)^2 * (2*(k-p) + 4*max(tau2,0)*.tr(P) + 2*max(tau2,0)^2*sum(P*P))) if (method[1] == "HE") se.tau2 <- sqrt(1/(k-p)^2 * (2*sum(PV*t(PV)) + 4*max(tau2,0)*trPV + 2*max(tau2,0)^2*(k-p))) if (method[1] == "DL") se.tau2 <- sqrt(1/trP^2 * (2*(k-p) + 4*max(tau2,0)*trP + 2*max(tau2,0)^2*sum(P*P))) if (is.element(method[1], c("GENQ","GENQM"))) se.tau2 <- sqrt(1/trP^2 * (2*sum(PV*t(PV)) + 4*max(tau2,0)*sum(PV*P) + 2*max(tau2,0)^2*sum(P*P))) if (method[1] == "SJ") se.tau2 <- sqrt(tau2.0^2/(k-p)^2 * (2*sum(PV*t(PV)) + 4*max(tau2,0)*sum(PV*P) + 2*max(tau2,0)^2*sum(P*P))) if (method[1] == "ML") se.tau2 <- sqrt(2/sum(wi^2)) # note: wi = 1/(vi + tau2) for ML, REML, EB, PM, PMM, and SJIT if (method[1] == "REML") se.tau2 <- sqrt(2/sum(P*P)) # based on Fisher information matrix #se.tau2 <- sqrt(1 / (t(Ymc) %*% P %*% P %*% P %*% Ymc - 1/2 * sum(P*P))) # based on Hessian if (is.element(method[1], c("EB","PM","MP","PMM","DLIT","SJIT"))) { wi <- 1/(vi + tau2) #V <- diag(vi, nrow=k, ncol=k) #PV <- P %*% V # note: this is not symmetric #se.tau2 <- sqrt((k/(k-p))^2 / sum(wi)^2 * (2*sum(PV*t(PV)) + 4*max(tau2,0)*sum(PV*P) + 2*max(tau2,0)^2*sum(P*P))) se.tau2 <- sqrt(2*k^2/(k-p) / sum(wi)^2) # these two equations are actually identical, but this one is much simpler } } else { method <- method[-1] } } if (k == 1L) method <- method.sav } ######################################################################### ###### parameter estimation for the location-scale model (rma.ls) if (model == "rma.ls") { if (!is.element(method[1], c("ML","REML"))) stop(mstyle$stop("Location-scale models can only be fitted with ML or REML estimation.")) tau2.fix <- FALSE if (!is.null(tau2) && !is.na(tau2)) warning(mstyle$warning("Argument 'tau2' ignored for location-scale models."), call.=FALSE) ### get optimizer arguments from control argument optimizer <- match.arg(con$optimizer, c("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","constrOptim","solnp","alabama","constrOptim.nl","Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent","Rcgmin","Rvmmin")) optmethod <- match.arg(con$optmethod, c("Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent")) if (optimizer %in% c("Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent")) { optmethod <- optimizer optimizer <- "optim" } parallel <- con$parallel cl <- con$cl ncpus <- con$ncpus optcontrol <- control[is.na(con.pos)] # get arguments that are control arguments for optimizer if (length(optcontrol) == 0L) optcontrol <- list() ### if control argument 'ncpus' is larger than 1, automatically switch to optimParallel optimizer if (ncpus > 1L) optimizer <- "optimParallel" ### can use optimizer="alabama" as a shortcut for optimizer="constrOptim.nl" if (optimizer == "alabama") optimizer <- "constrOptim.nl" ### when using an identity link, automatically set 'constrOptim' as the default optimizer if (link == "identity") { if (optimizer == "nlminb") { optimizer <- "constrOptim" } else { if (!is.element(optimizer, c("constrOptim","solnp","nloptr","constrOptim.nl"))) { optimizer <- "constrOptim" warning(mstyle$warning(paste0("Can only use optimizers 'constrOptim', 'solnp', 'nloptr', or 'constrOptim.nl' when link='identity' (resetting to '", optimizer, "').")), call.=FALSE) } } } if (link == "log" && is.element(optimizer, c("constrOptim","constrOptim.nl"))) stop(mstyle$stop(paste0("Cannot use '", optimizer, "' optimizer when using a log link."))) # but can use solnp and nloptr reml <- ifelse(method[1] == "REML", TRUE, FALSE) ### drop redundant predictors tmp <- try(lm(yi ~ Z - 1), silent=TRUE) if (inherits(tmp, "lm")) { coef.na.Z <- is.na(coef(tmp)) } else { coef.na.Z <- rep(FALSE, NCOL(Z)) } if (any(coef.na.Z)) { warning(mstyle$warning("Redundant predictors dropped from the scale model."), call.=FALSE) Z <- Z[,!coef.na.Z,drop=FALSE] Z.f <- Z.f[,!coef.na.Z,drop=FALSE] } ### check whether intercept is included and if yes, move it to the first column (NAs already removed, so na.rm=TRUE for any() not necessary) is.int <- apply(Z, 2, .is.intercept) if (any(is.int)) { Z.int.incl <- TRUE int.indx <- which(is.int, arr.ind=TRUE) Z <- cbind(intrcpt=1, Z[,-int.indx, drop=FALSE]) # this removes any duplicate intercepts Z.f <- cbind(intrcpt=1, Z.f[,-int.indx, drop=FALSE]) # this removes any duplicate intercepts Z.intercept <- TRUE # set intercept appropriately so that the predict() function works } else { Z.int.incl <- FALSE } q <- NCOL(Z) # number of columns in Z (including the intercept if it is included) ### check whether model matrix is of full rank if (!.chkpd(crossprod(Z), tol=con$evtol)) stop(mstyle$stop("Model matrix for scale part of the model not of full rank. Cannot fit model.")) ### check whether this is an intercept-only model is.int <- apply(Z, 2, .is.intercept) if (q == 1L && is.int) { Z.int.only <- TRUE } else { Z.int.only <- FALSE } ### checks on alpha argument if (missing(alpha) || is.null(alpha) || all(is.na(alpha))) { alpha <- rep(NA_real_, q) } else { alpha <- .expand1(alpha, q) if (length(alpha) != q) stop(mstyle$stop(paste0("Length of the 'alpha' argument (", length(alpha), ") does not match the actual number of parameters (", q, ")."))) } ### checks on beta argument if (optbeta) { if (missing(beta) || is.null(beta) || all(is.na(beta))) { beta <- rep(NA_real_, p) } else { beta <- .expand1(beta, p) if (length(beta) != p) stop(mstyle$stop(paste0("Length of the 'beta' argument (", length(beta), ") does not match the actual number of parameters (", p, ")."))) } ### needed for constrOptim() when optbeta=TRUE X0 <- X X0[] <- 0 } else { X0 <- NULL } ### rescale Z matrix (only for models with moderators, models including a non-fixed intercept term, when not placing constraints on alpha, and when not optimizing over beta) if (!Z.int.only && Z.int.incl && con$scaleZ && is.na(alpha[1]) && all(is.infinite(con$alpha.min)) && all(is.infinite(con$alpha.max)) && !optbeta) { Zsave <- Z meanZ <- colMeans(Z[, 2:q, drop=FALSE]) sdZ <- apply(Z[, 2:q, drop=FALSE], 2, sd) # consider using colSds() from matrixStats package is.d <- apply(Z, 2, .is.dummy) # is each column a dummy variable (i.e., only 0s and 1s)? mZ <- rbind(c(intrcpt=1, -1*ifelse(is.d[-1], 0, meanZ/sdZ)), cbind(0, diag(ifelse(is.d[-1], 1, 1/sdZ), nrow=length(is.d)-1, ncol=length(is.d)-1))) imZ <- try(suppressWarnings(solve(mZ)), silent=TRUE) Z[,!is.d] <- apply(Z[, !is.d, drop=FALSE], 2, scale) # rescale the non-dummy variables if (any(!is.na(alpha))) { if (inherits(imZ, "try-error")) stop(mstyle$stop("Unable to rescale starting values for the scale parameters.")) alpha <- diag(imZ) * alpha } } else { mZ <- NULL } if (k == 1L && Z.int.only) { if (link == "log") con$alpha.init <- -10000 if (link == "identity") con$alpha.init <- 0.00001 } ### set/transform/check alpha.init if (verbose > 1) message(mstyle$message("Extracting/computing the initial values ...")) if (is.null(con$alpha.init)) { fit <- suppressWarnings(rma.uni(yi, vi, mods=X, intercept=FALSE, method="HE", skipr2=TRUE)) tmp <- rstandard(fit) if (link == "log") { tmp <- suppressWarnings(rma.uni(log(tmp$resid^2), 4/tmp$resid^2*tmp$se^2, mods=Z, intercept=FALSE, method="FE")) #tmp <- rma.uni(log(tmp$resid^2), 4/tmp$resid^2*tmp$se^2, mods=Z, intercept=FALSE, method="FE") #tmp <- rma.uni(log(tmp$resid^2), tmp$se^2, mods=Z, intercept=FALSE, method="FE") #tmp <- rma.uni(log(tmp$resid^2), 1, mods=Z, intercept=FALSE, method="FE") alpha.init <- coef(tmp) } if (link == "identity") { #tmp <- rma.uni(tmp$resid^2, 4*tmp$resid^2*tmp$se^2, mods=Z, intercept=FALSE, method="FE") tmp <- suppressWarnings(rma.uni(tmp$resid^2, tmp$se^2, mods=Z, intercept=FALSE, method="FE")) #tmp <- rma.uni(tmp$resid^2, 1, mods=Z, intercept=FALSE, method="FE") alpha.init <- coef(tmp) if (any(Z %*% alpha.init < 0)) alpha.init <- ifelse(is.int, fit$tau2+0.01, 0) if (any(Z %*% alpha.init < 0)) stop(mstyle$stop("Unable to find suitable starting values for the scale parameters.")) } } else { alpha.init <- con$alpha.init if (!is.null(mZ)) { if (inherits(imZ, "try-error")) stop(mstyle$stop("Unable to rescale starting values for the scale parameters.")) alpha.init <- c(imZ %*% cbind(alpha.init)) } if (link == "identity" && any(Z %*% alpha.init < 0)) stop(mstyle$stop("Starting values for the scale parameters lead to one or more negative tau^2 values.")) if (optbeta) fit <- suppressWarnings(rma.uni(yi, vi, mods=X, intercept=FALSE, method="HE", skipr2=TRUE)) } if (length(alpha.init) != q) stop(mstyle$stop(paste0("Length of the 'alpha.init' argument (", length(alpha.init), ") does not match the actual number of parameters (", q, ")."))) if (anyNA(alpha.init)) stop(mstyle$stop("No missing values allowed in 'alpha.init'.")) if (optbeta) { if (is.null(con$beta.init)) { beta.init <- c(fit$beta) } else { beta.init <- con$beta.init if (length(beta.init) != p) stop(mstyle$stop(paste0("Length of the 'beta.init' argument (", length(beta.init), ") does not match the actual number of parameters (", p, ")."))) if (anyNA(beta.init)) stop(mstyle$stop("No missing values allowed in 'beta.init'.")) } } else { beta.init <- NULL } ### set potential constraints on alpha values con$alpha.min <- .expand1(con$alpha.min, q) con$alpha.max <- .expand1(con$alpha.max, q) if (length(con$alpha.min) != q) stop(mstyle$stop(paste0("Length of the 'alpha.min' argument (", length(alpha.min), ") does not match the actual number of parameters (", q, ")."))) if (length(con$alpha.max) != q) stop(mstyle$stop(paste0("Length of the 'alpha.max' argument (", length(alpha.max), ") does not match the actual number of parameters (", q, ")."))) if (any(xor(is.infinite(con$alpha.min),is.infinite(con$alpha.max)))) stop(mstyle$stop("Constraints on scale coefficients must be placed on both the lower and upper bound.")) alpha.min <- con$alpha.min alpha.max <- con$alpha.max if (link == "identity" && (any(alpha.min != -Inf) || any(alpha.max != Inf))) stop(mstyle$stop("Cannot use constraints on scale coefficients when using an identity link.")) alpha.init <- pmax(alpha.init, alpha.min) alpha.init <- pmin(alpha.init, alpha.max) alpha.init <- mapply(.mapinvfun.alpha, alpha.init, alpha.min, alpha.max) ### estimate alpha (and beta) values if (verbose > 1) message(mstyle$message("Estimating the scale parameters ...\n")) tmp <- .chkopt(optimizer, optcontrol, ineq=link=="identity") optimizer <- tmp$optimizer optcontrol <- tmp$optcontrol par.arg <- tmp$par.arg ctrl.arg <- tmp$ctrl.arg ### set up default cluster when using optimParallel if (optimizer == "optimParallel::optimParallel") { parallel$cl <- NULL if (is.null(cl)) { ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Control argument 'ncpus' must be >= 1.")) cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } else { if (!inherits(cl, "SOCKcluster")) stop(mstyle$stop("Specified cluster is not of class 'SOCKcluster'.")) } parallel$cl <- cl if (is.null(parallel$forward)) parallel$forward <- FALSE if (is.null(parallel$loginfo)) { if (verbose) { parallel$loginfo <- TRUE } else { parallel$loginfo <- FALSE } } } #return(list(con=con, optimizer=optimizer, optmethod=optmethod, optcontrol=optcontrol, ctrl.arg=ctrl.arg)) if (link == "log") { optcall <- paste0(optimizer, "(", par.arg, "=c(beta.init, alpha.init), .ll.rma.ls, ", ifelse(optimizer=="optim", "method=optmethod, ", ""), "yi=yi, vi=vi, X=X, Z=Z, reml=reml, k=k, pX=p, alpha.arg=alpha, beta.arg=beta, verbose=verbose, digits=digits, REMLf=con$REMLf, link=link, mZ=mZ, alpha.min=alpha.min, alpha.max=alpha.max, alpha.transf=TRUE, tau2.min=con$tau2.min, tau2.max=con$tau2.max, optbeta=optbeta", ctrl.arg, ")\n") } if (link == "identity") { if (optimizer == "constrOptim") optcall <- paste0("constrOptim(theta=c(beta.init, alpha.init), f=.ll.rma.ls, grad=NULL, ui=cbind(X0,Z), ci=rep(0,k), yi=yi, vi=vi, X=X, Z=Z, reml=reml, k=k, pX=p, alpha.arg=alpha, beta.arg=beta, verbose=verbose, digits=digits, REMLf=con$REMLf, link=link, mZ=mZ, alpha.min=alpha.min, alpha.max=alpha.max, alpha.transf=TRUE, tau2.min=con$tau2.min, tau2.max=con$tau2.max, optbeta=optbeta", ctrl.arg, ")\n") if (optimizer == "Rsolnp::solnp") optcall <- paste0("Rsolnp::solnp(pars=c(beta.init, alpha.init), fun=.ll.rma.ls, ineqfun=.rma.ls.ineqfun.pos, ineqLB=rep(0,k), ineqUB=rep(Inf,k), yi=yi, vi=vi, X=X, Z=Z, reml=reml, k=k, pX=p, alpha.arg=alpha, beta.arg=beta, verbose=verbose, digits=digits, REMLf=con$REMLf, link=link, mZ=mZ, alpha.min=alpha.min, alpha.max=alpha.max, alpha.transf=TRUE, tau2.min=con$tau2.min, tau2.max=con$tau2.max, optbeta=optbeta", ctrl.arg, ")\n") if (optimizer == "nloptr::nloptr") optcall <- paste0("nloptr::nloptr(x0=c(beta.init, alpha.init), eval_f=.ll.rma.ls, eval_g_ineq=.rma.ls.ineqfun.neg, yi=yi, vi=vi, X=X, Z=Z, reml=reml, k=k, pX=p, alpha.arg=alpha, beta.arg=beta, verbose=verbose, digits=digits, REMLf=con$REMLf, link=link, mZ=mZ, alpha.min=alpha.min, alpha.max=alpha.max, alpha.transf=TRUE, tau2.min=con$tau2.min, tau2.max=con$tau2.max, optbeta=optbeta", ctrl.arg, ")\n") if (optimizer == "alabama::constrOptim.nl") optcall <- paste0("alabama::constrOptim.nl(par=c(beta.init, alpha.init), fn=.ll.rma.ls, hin=.rma.ls.ineqfun.pos, yi=yi, vi=vi, X=X, Z=Z, reml=reml, k=k, pX=p, alpha.arg=alpha, beta.arg=beta, verbose=verbose, digits=digits, REMLf=con$REMLf, link=link, mZ=mZ, alpha.min=alpha.min, alpha.max=alpha.max, alpha.transf=TRUE, tau2.min=con$tau2.min, tau2.max=con$tau2.max, optbeta=optbeta", ctrl.arg, ")\n") } #print(optcall) #return(optcall) if (verbose) { opt.res <- try(eval(str2lang(optcall)), silent=!verbose) } else { opt.res <- try(suppressWarnings(eval(str2lang(optcall))), silent=!verbose) } if (isTRUE(ddd$retopt)) return(opt.res) ### convergence checks (if verbose print optimParallel log, if verbose > 2 print opt.res, and unify opt.res$par) opt.res$par <- .chkconv(optimizer=optimizer, opt.res=opt.res, optcontrol=optcontrol, fun="rma", verbose=verbose) ### back-transform in case constraints were placed on alpha values if (optbeta) { opt.res$par[-seq_len(p)] <- mapply(.mapfun.alpha, opt.res$par[-seq_len(p)], alpha.min, alpha.max) } else { opt.res$par <- mapply(.mapfun.alpha, opt.res$par, alpha.min, alpha.max) } ### replace fixed alpha (and beta) values in opt.res$par if (optbeta) { opt.res$par[seq_len(p)] <- ifelse(is.na(beta), opt.res$par[seq_len(p)], beta) opt.res$par[-seq_len(p)] <- ifelse(is.na(alpha), opt.res$par[-seq_len(p)], alpha) } else { opt.res$par <- ifelse(is.na(alpha), opt.res$par, alpha) } ### try to compute vcov matrix for scale parameter estimates H <- NA_real_ if (optbeta) { va <- matrix(NA_real_, nrow=p+q, ncol=p+q) hest <- c(is.na(beta), is.na(alpha)) } else { va <- matrix(NA_real_, nrow=q, ncol=q) hest <- is.na(alpha) } if (any(hest) && !isTRUE(ddd$skiphes)) { if (verbose > 1) message(mstyle$message("\nComputing the Hessian ...")) if (con$hesspack == "numDeriv") H <- try(numDeriv::hessian(func=.ll.rma.ls, x=opt.res$par, method.args=con$hessianCtrl, yi=yi, vi=vi, X=X, Z=Z, reml=reml, k=k, pX=p, alpha.arg=alpha, beta.arg=beta, verbose=FALSE, digits=digits, REMLf=con$REMLf, link=link, mZ=mZ, alpha.min=alpha.min, alpha.max=alpha.max, alpha.transf=FALSE, tau2.min=con$tau2.min, tau2.max=con$tau2.max, optbeta=optbeta), silent=TRUE) if (con$hesspack == "pracma") H <- try(pracma::hessian(f=.ll.rma.ls, x0=opt.res$par, yi=yi, vi=vi, X=X, Z=Z, reml=reml, k=k, pX=p, alpha.arg=alpha, beta.arg=beta, verbose=FALSE, digits=digits, REMLf=con$REMLf, link=link, mZ=mZ, alpha.min=alpha.min, alpha.max=alpha.max, alpha.transf=FALSE, tau2.min=con$tau2.min, tau2.max=con$tau2.max, optbeta=optbeta), silent=TRUE) if (con$hesspack == "calculus") H <- try(calculus::hessian(f=.ll.rma.ls, var=opt.res$par, params=list(yi=yi, vi=vi, X=X, Z=Z, reml=reml, k=k, pX=p, alpha.arg=alpha, beta.arg=beta, verbose=FALSE, digits=digits, REMLf=con$REMLf, link=link, mZ=mZ, alpha.min=alpha.min, alpha.max=alpha.max, alpha.transf=FALSE, tau2.min=con$tau2.min, tau2.max=con$tau2.max, optbeta=optbeta)), silent=TRUE) if (inherits(H, "try-error")) { warning(mstyle$warning("Error when trying to compute the Hessian."), call.=FALSE) } else { H.hest <- H[hest, hest, drop=FALSE] iH.hest <- try(suppressWarnings(chol2inv(chol(H.hest))), silent=TRUE) if (inherits(iH.hest, "try-error") || anyNA(iH.hest) || any(is.infinite(iH.hest))) { warning(mstyle$warning("Error when trying to invert the Hessian."), call.=FALSE) } else { va[hest, hest] <- iH.hest } } } if (optbeta) { vba <- va vb <- va[seq_len(p), seq_len(p), drop=FALSE] va <- va[-seq_len(p), -seq_len(p), drop=FALSE] } ### get scale (and location) parameter estimates alpha.arg <- alpha beta.arg <- beta if (optbeta) { beta <- cbind(opt.res$par[seq_len(p)]) alpha <- cbind(opt.res$par[-seq_len(p)]) } else { alpha <- cbind(opt.res$par) } if (any(alpha <= alpha.min + 10*.Machine$double.eps^0.25) || any(alpha >= alpha.max - 10*.Machine$double.eps^0.25)) warning(mstyle$warning("One or more 'alpha' estimates are (almost) equal to their lower or upper bound.\nTreat results with caution (or consider adjusting 'alpha.min' and/or 'alpha.max')."), call.=FALSE) ### scale back alpha and va when Z matrix was rescaled if (!is.null(mZ)) { alpha <- mZ %*% alpha va[!hest,] <- 0 va[,!hest] <- 0 va <- mZ %*% va %*% t(mZ) va[!hest,] <- NA_real_ va[,!hest] <- NA_real_ Z <- Zsave } ### set/check 'att' argument att <- .set.btt(att, q, Z.int.incl, colnames(Z)) m.alpha <- length(att) # number of alphas to test (m = q if all alphas are tested) ### ddf calculation if (is.element(test, c("knha","adhoc","t"))) { ddf.alpha <- k-q } else { ddf.alpha <- NA_integer_ } ### QS calculation QS <- try(as.vector(t(alpha)[att] %*% chol2inv(chol(va[att,att])) %*% alpha[att]), silent=TRUE) if (inherits(QS, "try-error")) QS <- NA_real_ se.alpha <- sqrt(diag(va)) rownames(alpha) <- rownames(va) <- colnames(va) <- colnames(Z) names(se.alpha) <- NULL zval.alpha <- c(alpha/se.alpha) if (is.element(test, c("knha","adhoc","t"))) { QS <- QS / m.alpha QSdf <- c(m.alpha, ddf.alpha) QSp <- if (QSdf[2] > 0) pf(QS, df1=QSdf[1], df2=QSdf[2], lower.tail=FALSE) else NA_real_ pval.alpha <- if (ddf.alpha > 0) 2*pt(abs(zval.alpha), df=ddf.alpha, lower.tail=FALSE) else rep(NA_real_,q) crit.alpha <- if (ddf.alpha > 0) qt(level/2, df=ddf.alpha, lower.tail=FALSE) else NA_real_ } else { QSdf <- c(m.alpha, ddf.alpha) QSp <- pchisq(QS, df=QSdf[1], lower.tail=FALSE) pval.alpha <- 2*pnorm(abs(zval.alpha), lower.tail=FALSE) crit.alpha <- qnorm(level/2, lower.tail=FALSE) } ci.lb.alpha <- c(alpha - crit.alpha * se.alpha) ci.ub.alpha <- c(alpha + crit.alpha * se.alpha) if (link == "log") tau2 <- exp(as.vector(Z %*% alpha)) if (link == "identity") tau2 <- as.vector(Z %*% alpha) } ### equal/fixed/common-effects model (note: sets tau2 to zero even when tau2 value is specified) if (is.element(method[1], c("FE","EE","CE"))) tau2 <- 0 ######################################################################### ###### model fitting, test statistics, and confidence intervals if (verbose > 1) message(mstyle$message("\nModel fitting ...")) wi <- 1/(vi + tau2) W <- diag(wi, nrow=k, ncol=k) M <- diag(vi + tau2, nrow=k, ncol=k) if (weighted) { ######################### ### weighted analysis ### ######################### ### fit model with weighted estimation if (is.null(weights) || is.element(test, c("knha","adhoc"))) { ### if no weights are specified, use default inverse variance weights, that is, 1/vi or 1/(vi + tau2) ### also, even with weights, if test="knha" or "adhoc", need to run this to get RSS.knha ### if any vi = 0 and tau^2 is estimated to be 0 (or is set to 0 for a FE model), then get Inf for wi if (any(is.infinite(wi))) stop(mstyle$stop("Division by zero when computing the inverse variance weights.")) ### don't recompute beta and vb when optbeta=TRUE, since these are already estimated if (!optbeta) { if (tau2.inf) { beta <- cbind(coef(lm(yi ~ 0 + X))) vb <- diag(rep(Inf,p), nrow=p, ncol=p) } else { stXWX <- .invcalc(X=X, W=W, k=k) beta <- stXWX %*% crossprod(X,W) %*% Y vb <- stXWX } } RSS.f <- sum(wi*c(yi - X %*% beta)^2) #P <- W - W %*% X %*% stXWX %*% crossprod(X,W) #RSS.f <- crossprod(Y,P) %*% Y RSS.knha <- RSS.f } if (!is.null(weights)) { ### if weights are specified, use them (note: RSS.f is recomputed if test="knha" or "adhoc") A <- diag(weights, nrow=k, ncol=k) stXAX <- .invcalc(X=X, W=A, k=k) beta <- stXAX %*% crossprod(X,A) %*% Y vb <- stXAX %*% t(X) %*% A %*% M %*% A %*% X %*% stXAX RSS.f <- sum(wi*c(yi - X %*% beta)^2) #P <- W - W %*% X %*% stXAX %*% t(X) %*% A - A %*% X %*% stXAX %*% t(X) %*% W + A %*% X %*% stXAX %*% t(X) %*% W %*% X %*% stXAX %*% t(X) %*% A #RSS.f <- crossprod(Y,P) %*% Y } #return(list(beta=beta, vb=vb, se=sqrt(diag(vb)), RSS.f=RSS.f)) ### calculate scaling factor for Knapp & Hartung method ### note: catch cases where RSS.knha is extremely small, which is probably due to all yi being equal ### then set s2w to 0 (to avoid the strange looking output we would obtain if we don't do this) if (is.element(test, c("knha","adhoc"))) { if (RSS.knha <= .Machine$double.eps) { s2w <- 0 } else { s2w <- RSS.knha / (k-p) } } } else { ########################### ### unweighted analysis ### ########################### ### fit model with unweighted estimation ### note: 1) if user has specified weights, they are ignored ### 2) but if method="GENQ/GENQM", they were used to estimate tau^2 stXX <- .invcalc(X=X, W=diag(k), k=k) beta <- stXX %*% crossprod(X,Y) vb <- tcrossprod(stXX,X) %*% M %*% X %*% stXX RSS.f <- sum(wi*(yi - X %*% beta)^2) #P <- W - W %*% X %*% tcrossprod(stXX,X) - X %*% stXX %*% crossprod(X,W) + X %*% stXX %*% crossprod(X,W) %*% X %*% tcrossprod(stXX,X) #RSS.f <- crossprod(Y,P) %*% Y ### calculate scaling factor for Knapp & Hartung method if (is.element(test, c("knha","adhoc"))) { if (any(is.infinite(wi))) stop(mstyle$stop("Division by zero when computing the inverse variance weights.")) stXWX <- .invcalc(X=X, W=W, k=k) beta.knha <- stXWX %*% crossprod(X,W) %*% Y RSS.knha <- sum(wi*(yi - X %*% beta.knha)^2) #P <- W - W %*% X %*% stXWX %*% crossprod(X,W) #RSS.knha <- c(crossprod(Y,P) %*% Y) if (RSS.knha <= .Machine$double.eps) { s2w <- 0 } else { s2w <- RSS.knha / (k-p) } } } if (verbose > 1) message(mstyle$message("Conducting the tests of the fixed effects ...")) ### the Knapp & Hartung method as described in the literature is for random/mixed-effects models if (is.element(method[1], c("FE","EE","CE")) && is.element(test, c("knha","adhoc"))) warning(mstyle$warning(paste0("Knapp and Hartung method is not meant to be used in the context of ", method[1], " models.")), call.=FALSE) ### Knapp & Hartung method with ad-hoc correction so that the scale factor is always >= 1 if (test == "adhoc") s2w[s2w < 1] <- 1 ### for Knapp & Hartung method, apply scaling to vb vb <- s2w * vb ### handle special case of tau2=Inf if (tau2.inf) vb <- diag(rep(Inf,p), nrow=p, ncol=p) ### ddf calculation if (is.element(test, c("knha","adhoc","t"))) { ddf <- .chkddd(ddd$dfs, k-p, ddd$dfs[[1]]) # would be nice to allow multiple dfs values, but tricky since some methods are set up for a single df value } else { ddf <- NA_integer_ } ### QM calculation QM <- try(as.vector(t(beta)[btt] %*% chol2inv(chol(vb[btt,btt])) %*% beta[btt]), silent=TRUE) if (inherits(QM, "try-error")) QM <- NA_real_ ### abbreviate some types of coefficient names if (.isTRUE(ddd$abbrev)) { tmp <- colnames(X) tmp <- gsub("relevel(factor(", "", tmp, fixed=TRUE) tmp <- gsub("\\), ref = \"[[:alnum:]]*\")", "", tmp) tmp <- gsub("poly(", "", tmp, fixed=TRUE) tmp <- gsub(", degree = [[:digit:]], raw = TRUE)", "^", tmp) tmp <- gsub(", degree = [[:digit:]], raw = T)", "^", tmp) tmp <- gsub(", degree = [[:digit:]])", "^", tmp) tmp <- gsub("rcs\\([[:alnum:]]*, [[:digit:]]\\)", "", tmp) tmp <- gsub("factor(", "", tmp, fixed=TRUE) tmp <- gsub("I(", "", tmp, fixed=TRUE) tmp <- gsub(")", "", tmp, fixed=TRUE) colnames(X) <- tmp } rownames(beta) <- rownames(vb) <- colnames(vb) <- colnames(X.f) <- colnames(X) se <- sqrt(diag(vb)) names(se) <- NULL zval <- c(beta/se) if (is.element(test, c("knha","adhoc","t"))) { QM <- QM / m QMdf <- c(m, ddf) QMp <- if (QMdf[2] > 0) pf(QM, df1=QMdf[1], df2=QMdf[2], lower.tail=FALSE) else NA_real_ pval <- if (ddf > 0) 2*pt(abs(zval), df=ddf, lower.tail=FALSE) else rep(NA_real_,p) crit <- if (ddf > 0) qt(level/2, df=ddf, lower.tail=FALSE) else NA_real_ } else { QMdf <- c(m, ddf) QMp <- pchisq(QM, df=QMdf[1], lower.tail=FALSE) pval <- 2*pnorm(abs(zval), lower.tail=FALSE) crit <- qnorm(level/2, lower.tail=FALSE) } ci.lb <- c(beta - crit * se) ci.ub <- c(beta + crit * se) ######################################################################### ### heterogeneity test (Wald-type test of the extra coefficients in the saturated model) if (verbose > 1) message(mstyle$message("Conducting the heterogeneity test ...")) if (allvipos) { ### heterogeneity test (always uses inverse variance method) # note: this is unaffected by the 'weighted' argument, since under H0, the same parameters are # estimated and weighted estimation provides the most efficient estimates; therefore, also any # arbitrary weights specified by the user are not relevant here (different from what the metan # command in Stata does!) see also: Chen, Z., Ng, H. K. T., & Nadarajah, S. (2014). A note on # Cochran test for homogeneity in one-way ANOVA and meta-analysis. Statistical Papers, 55(2), # 301-310. This shows that the weights used are not relevant. if (k > p) { wi <- 1/vi W.FE <- diag(wi, nrow=k, ncol=k) # note: ll.REML below involves W, so cannot overwrite W stXWX <- .invcalc(X=X, W=W.FE, k=k) P <- W.FE - W.FE %*% X %*% stXWX %*% crossprod(X,W.FE) # need P below for calculation of I^2 QE <- max(0, c(crossprod(Ymc,P) %*% Ymc)) #beta.FE <- stXWX %*% crossprod(X,W.FE) %*% Y #QE <- max(0, sum(wi*(yi - X %*% beta.FE)^2)) QEp <- pchisq(QE, df=k-p, lower.tail=FALSE) ### calculation of 'typical' sampling variance #vt <- (k-1) / (sum(wi) - sum(wi^2)/sum(wi)) # this only applies to the RE model if (i2def == "1") vt <- (k-p) / .tr(P) if (i2def == "2") vt <- 1 / mean(wi) # harmonic mean of the vi values (see Takkouche et al., 1999) ### calculation of I^2 and H^2 if (is.element(method[1], c("FE","EE","CE"))) { I2 <- max(0, 100 * (QE - (k-p)) / QE) H2 <- QE / (k-p) } else { I2 <- 100 * tau2 / (vt + tau2) # vector for location-scale models H2 <- tau2 / vt + 1 # vector for location-scale models } } else { QE <- 0 QEp <- 1 I2 <- 0 H2 <- 1 vt <- 0 } } else { if (!vi0) warning(mstyle$warning(paste0("Cannot compute ", ifelse(int.only, "Q", "QE"), "-test, I^2, or H^2 when there are non-positive sampling variances in the data.")), call.=FALSE) vt <- NA_real_ } ######################################################################### ###### fit statistics if (verbose > 1) message(mstyle$message("Computing the fit statistics and log-likelihood ...")) ### note: tau2 is not counted as a parameter when it was fixed by the user (same for fixed alpha values) q.est <- ifelse(model == "rma.uni", 0, sum(is.na(alpha.arg))) parms <- ifelse(optbeta, sum(is.na(beta.arg)), p) + ifelse(model == "rma.uni", ifelse(is.element(method[1], c("FE","EE","CE")) || tau2.fix, 0, 1), q.est) ll.ML <- -1/2 * (k) * log(2*base::pi) - 1/2 * sum(log(vi + tau2)) - 1/2 * RSS.f ll.REML <- -1/2 * (k-p) * log(2*base::pi) + ifelse(con$REMLf, 1/2 * determinant(crossprod(X), logarithm=TRUE)$modulus, 0) + -1/2 * sum(log(vi + tau2)) - 1/2 * determinant(crossprod(X,W) %*% X, logarithm=TRUE)$modulus - 1/2 * RSS.f if (k > p) { if (allvipos) { dev.ML <- -2 * (ll.ML - sum(dnorm(yi, mean=yi, sd=sqrt(vi), log=TRUE))) } else { dev.ML <- -2 * ll.ML } } else { dev.ML <- 0 } AIC.ML <- -2 * ll.ML + 2*parms BIC.ML <- -2 * ll.ML + parms * log(k) AICc.ML <- -2 * ll.ML + 2*parms * max(k, parms+2) / (max(k, parms+2) - parms - 1) dev.REML <- -2 * (ll.REML - 0) # saturated model has ll = 0 when using the full REML likelihood AIC.REML <- -2 * ll.REML + 2*parms BIC.REML <- -2 * ll.REML + parms * log(k-p) AICc.REML <- -2 * ll.REML + 2*parms * max(k-p, parms+2) / (max(k-p, parms+2) - parms - 1) fit.stats <- matrix(c(ll.ML, dev.ML, AIC.ML, BIC.ML, AICc.ML, ll.REML, dev.REML, AIC.REML, BIC.REML, AICc.REML), ncol=2, byrow=FALSE) dimnames(fit.stats) <- list(c("ll","dev","AIC","BIC","AICc"), c("ML","REML")) fit.stats <- data.frame(fit.stats) ######################################################################### ### compute pseudo R^2 statistic for mixed-effects models with an intercept (only for rma.uni normal models) if (!int.only && int.incl && model == "rma.uni" && !isTRUE(ddd$skipr2)) { if (verbose > 1) message(mstyle$message("Computing R^2 ...")) if (is.element(method[1], c("FE","EE","CE"))) { if (identical(var(yi),0)) { R2 <- 0 } else { if (weighted) { if (is.null(weights)) { R2 <- max(0, 100 * summary(lm(yi ~ X, weights=wi))$adj.r.squared) } else { R2 <- max(0, 100 * summary(lm(yi ~ X, weights=weights))$adj.r.squared) } } else { R2 <- max(0, 100 * summary(lm(yi ~ X))$adj.r.squared) } } } else { if (r2def %in% c("1","1v","3","3v","5","6","7","8")) { args <- list(yi=yi, vi=vi, weights=weights, method=method, weighted=weighted, test=test, verbose=ifelse(verbose, TRUE, FALSE), control=con, digits=digits, outlist="minimal") if (verbose > 1) { res0 <- try(.do.call(rma.uni, args), silent=FALSE) } else { res0 <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) } if (!inherits(res0, "try-error")) { tau2.RE <- res0$tau2 if (identical(tau2.RE,0) && r2def %in% c("1","3")) { R2 <- 0 } else { ll0 <- logLik(res0) ll1 <- ifelse(method[1] == "ML", ll.ML, ll.REML) lls <- (ifelse(method[1] == "ML", dev.ML, dev.REML) + 2*ll1) / 2 # based on Raudenbush (1994) if (r2def == "1") R2 <- (tau2.RE - tau2) / tau2.RE # like Raudenbush (1994) but with total variance (including sampling variance) in the denominator if (r2def == "1v") R2 <- (tau2.RE - tau2) / (tau2.RE + 1/mean(1/vi)) # model component definition with tau^2_RE in the denominator if (r2def == "3") R2 <- var(c(X%*%beta)) / tau2.RE # model component definition with total variance (including sampling variance) in the denominator if (r2def == "3v") R2 <- var(c(X%*%beta)) / (tau2.RE + 1/mean(1/vi)) # like McFadden's R^2 if (r2def == "5") R2 <- 1 - ll1 / ll0 # like Cox & Snell R^2 if (r2def == "6") R2 <- 1 - (exp(ll0) / exp(ll1))^(2/k) # like Nagelkerke R^2 if (r2def == "7") R2 <- (1 - (exp(ll0) / exp(ll1))^(2/k)) / (1 - exp(ll0)^(2/k)) # how close ME model is to the saturated model in terms of ll (same as 5 for REML) if (r2def == "8") R2 <- (ll1 - ll0) / (lls - ll0) } } else { R2 <- NA_real_ } } else { # model component definition if (r2def == "2") R2 <- var(c(X%*%beta)) / (var(c(X%*%beta)) + tau2) # model component definition with total variance (including sampling variance) in the denominator if (r2def == "2v") R2 <- var(c(X%*%beta)) / (var(c(X%*%beta)) + tau2 + 1/mean(1/vi)) # squared correlation between observed and fitted values if (r2def == "4") R2 <- cor(yi, c(X%*%beta))^2 # squared weighted correlation between observed and fitted values if (r2def == "4w") { if (is.null(weights)) { # identical to eta^2 = F * df1 / (F * df1 + df2) when test="knha" R2 <- cov.wt(cbind(yi, c(X%*%beta)), cor=TRUE, wt=1/(vi+tau2))$cor[1,2]^2 } else { R2 <- cov.wt(cbind(yi, c(X%*%beta)), cor=TRUE, wt=weights)$cor[1,2]^2 } } } R2 <- max(0, 100 * R2) } } else { R2 <- NULL } if (.isTRUE(ddd$pleasedonotreportI2thankyouverymuch)) { I2 <- NA H2 <- NA } ######################################################################### ###### prepare output if (verbose > 1) message(mstyle$message("Preparing the output ...")) p.eff <- p k.eff <- k if (is.null(ddd$outlist) || ddd$outlist == "nodata") { res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, tau2=tau2, se.tau2=se.tau2, tau2.fix=tau2.fix, tau2.f=tau2, I2=I2, H2=H2, R2=R2, vt=vt, QE=QE, QEp=QEp, QM=QM, QMdf=QMdf, QMp=QMp, k=k, k.f=k.f, k.eff=k.eff, k.all=k.all, p=p, p.eff=p.eff, parms=parms, int.only=int.only, int.incl=int.incl, intercept=intercept, allvipos=allvipos, coef.na=coef.na, yi=yi, vi=vi, X=X, weights=weights, yi.f=yi.f, vi.f=vi.f, X.f=X.f, weights.f=weights.f, M=M, chksumyi=digest::digest(as.vector(yi)), chksumvi=digest::digest(as.vector(vi)), chksumX=digest::digest(X), outdat.f=outdat.f, ni=ni, ni.f=ni.f, ids=ids, not.na=not.na, subset=subset, slab=slab, slab.null=slab.null, measure=measure, method=method[1], model=model, weighted=weighted, test=test, dfs=ddf, ddf=ddf, s2w=s2w, btt=btt, m=m, digits=digits, level=level, control=control, verbose=verbose, add=add, to=to, drop00=drop00, fit.stats=fit.stats, formula.yi=formula.yi, formula.mods=formula.mods, version=packageVersion("metafor"), call=mf) if (is.null(ddd$outlist)) res <- append(res, list(data=data), which(names(res) == "fit.stats")) } else { if (ddd$outlist == "minimal") { res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, tau2=tau2, se.tau2=se.tau2, tau2.fix=tau2.fix, I2=I2, H2=H2, R2=R2, QE=QE, QEp=QEp, QM=QM, QMdf=QMdf, QMp=QMp, k=k, k.f=k.f, k.eff=k.eff, p=p, p.eff=p.eff, parms=parms, int.only=int.only, int.incl=int.incl, intercept=intercept, chksumyi=digest::digest(as.vector(yi)), chksumvi=digest::digest(as.matrix(vi)), chksumX=digest::digest(X), measure=measure, method=method[1], model=model, weighted=weighted, test=test, dfs=ddf, ddf=ddf, btt=btt, m=m, digits=digits, level=level, fit.stats=fit.stats) } else { res <- eval(str2lang(paste0("list(", ddd$outlist, ")"))) } } if (model == "rma.ls") { res$alpha <- alpha res$va <- va res$se.alpha <- se.alpha res$zval.alpha <- zval.alpha res$pval.alpha <- pval.alpha res$ci.lb.alpha <- ci.lb.alpha res$ci.ub.alpha <- ci.ub.alpha res$alpha.fix <- !is.na(alpha.arg) res$optbeta <- optbeta if (optbeta) { res$vba <- vba res$beta.fix <- !is.na(beta.arg) } res$q <- q res$alphas <- q res$link <- link res$Z <- Z res$Z.f <- Z.f res$tau2.f <- rep(NA_real_, k.f) res$tau2.f[not.na] <- tau2 res$att <- att res$m.alpha <- m.alpha res$ddf.alpha <- ddf.alpha res$QS <- QS res$QSdf <- QSdf res$QSp <- QSp res$formula.scale <- formula.scale res$Z.int.incl <- Z.int.incl res$Z.intercept <- Z.int.incl res$Z.int.only <- Z.int.only res$coef.na.Z <- coef.na.Z res$H <- H } time.end <- proc.time() res$time <- unname(time.end - time.start)[3] if (.isTRUE(ddd$time)) .print.time(res$time) if (verbose || .isTRUE(ddd$time)) cat("\n") if (model == "rma.ls") { class(res) <- c("rma.ls", "rma.uni", "rma") } else { class(res) <- c("rma.uni", "rma") } return(res) } metafor/R/forest.rma.r0000644000176200001440000015150114717662673014401 0ustar liggesusersforest.rma <- function(x, annotate=TRUE, addfit=TRUE, addpred=FALSE, predstyle="line", showweights=FALSE, header=TRUE, xlim, alim, olim, ylim, predlim, at, steps=5, level=x$level, refline=0, digits=2L, width, xlab, slab, mlab, ilab, ilab.lab, ilab.xpos, ilab.pos, order, transf, atransf, targs, rows, efac=1, pch, psize, plim=c(0.5,1.5), colout, col, border, shade, colshade, lty, fonts, cex, cex.lab, cex.axis, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma", notav=c("rma.ls", "rma.gen")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(x$yi.f) || is.null(x$vi.f) || is.null(x$X.f)) stop(mstyle$stop("Information needed to construct the plot is not available in the model object.")) if (missing(transf)) transf <- FALSE if (missing(atransf)) atransf <- FALSE transf.char <- deparse(transf) atransf.char <- deparse(atransf) if (is.function(transf) && is.function(atransf)) stop(mstyle$stop("Use either 'transf' or 'atransf' to specify a transformation (not both).")) .start.plot() if (missing(targs)) targs <- NULL if (missing(at)) at <- NULL mf <- match.call() if (missing(ilab)) { ilab <- NULL } else { ilab <- .getx("ilab", mf=mf, data=x$data) } if (missing(ilab.lab)) ilab.lab <- NULL if (missing(ilab.xpos)) ilab.xpos <- NULL if (missing(ilab.pos)) ilab.pos <- NULL if (missing(order)) { order <- NULL } else { order <- .getx("order", mf=mf, data=x$data) } if (missing(colout)) { colout <- par("fg") } else { colout <- .getx("colout", mf=mf, data=x$data) } if (missing(shade)) { shade <- NULL } else { shade <- .getx("shade", mf=mf, data=x$data) } if (missing(colshade)) colshade <- .coladj(par("bg","fg"), dark=0.1, light=-0.1) if (missing(pch)) { pch <- 15 } else { pch <- .getx("pch", mf=mf, data=x$data) } if (missing(psize)) { psize <- NULL } else { psize <- .getx("psize", mf=mf, data=x$data) } if (missing(cex)) cex <- NULL if (missing(cex.lab)) cex.lab <- NULL if (missing(cex.axis)) cex.axis <- NULL level <- .level(level) predstyle <- match.arg(predstyle, c("line", "bar", "shade", "dist")) if (predstyle %in% c("bar","shade","dist") && isFALSE(addpred)) addpred <- TRUE if (missing(predlim)) predlim <- NULL ### digits[1] for annotations, digits[2] for x-axis labels, digits[3] (if specified) for weights ### note: digits can also be a list (e.g., digits=list(2,3L)); trailing 0's on the x-axis labels ### are dropped if the value is an integer if (length(digits) == 1L) digits <- c(digits,digits,digits) if (length(digits) == 2L) digits <- c(digits,digits[[1]]) ddd <- list(...) ############################################################################ ### set default colors if user has not specified 'col' and 'border' arguments if (x$int.only) { if (predstyle=="dist") { col2 <- .coladj(par("bg","fg"), dark=0.60, light=-0.60) } else { col2 <- par("fg") } if (predstyle=="shade") { col3 <- .coladj(par("bg","fg"), dark=0.05, light=-0.05) } else { col3 <- .coladj(par("bg","fg"), dark=0.20, light=-0.20) } if (missing(col)) { # 1st = summary polygon, 2nd = PI line/bar / shade center / tails, 3rd = shade end / ><0 region, 4th = <>0 region col <- c(par("fg"), col2, col3, NA) } else { if (length(col) == 1L) col <- c(col, col2, col3, NA) if (length(col) == 2L) col <- c(col, col3, NA) if (length(col) == 3L) col <- c(col, NA) } if (missing(border)) { border <- c(par("fg"), par("fg")) # 1st = summary polygon, 2nd = bar for predstyle="bar" and distribution for predstyle="dist" } else { if (length(border) == 1L) border <- c(border, par("fg")) # if user only specified one value, assume it is for the summary polygon } } else { if (missing(col)) col <- .coladj(par("bg","fg"), dark=0.2, light=-0.2) # color of the fitted value polygons if (missing(border)) border <- .coladj(par("bg","fg"), dark=0.3, light=-0.3) # border color of the fitted value polygons if (predstyle %in% c("bar","shade","dist")) warning(mstyle$warning("Argument 'predstyle' not relevant for meta-regression models."), call.=FALSE) } ### set default line types if user has not specified 'lty' argument if (missing(lty)) { lty <- c("solid", "dotted", "solid") # 1st = CIs, 2nd = PI, 3rd = horizontal line(s) } else { if (length(lty) == 1L) lty <- c(lty, "dotted", "solid") if (length(lty) == 2L) lty <- c(lty, "solid") } ### vertical expansion factor: 1st = CI/PI end lines, 2nd = arrows, 3rd = polygons, 4th = bar/shade/dist height efac <- .expand1(efac, 4L) if (length(efac) == 2L) efac <- efac[c(1,1,2,2)] # if 2 values specified if (length(efac) == 3L) efac <- efac[c(1:3,3)] # if 3 values specified efac[efac == 0] <- NA ### annotation symbols vector if (is.null(ddd$annosym)) { annosym <- c(" [", ", ", "]", "-", " ") # 4th element for minus sign symbol; 5th for space (in place of numbers and +); see [a] } else { annosym <- ddd$annosym if (length(annosym) == 3L) annosym <- c(annosym, "-", " ") if (length(annosym) == 4L) annosym <- c(annosym, " ") if (length(annosym) != 5L) stop(mstyle$stop("Argument 'annosym' must be a vector of length 3 (or 4 or 5).")) } ### adjust annosym for tabular figures if (isTRUE(ddd$tabfig == 1)) annosym <- c("\u2009[", ",\u2009", "]", "\u2212", "\u2002") # \u2009 thin space; \u2212 minus, \u2002 en space if (isTRUE(ddd$tabfig == 2)) annosym <- c("\u2009[", ",\u2009", "]", "\u2013", "\u2002") # \u2009 thin space; \u2013 en dash, \u2002 en space if (isTRUE(ddd$tabfig == 3)) annosym <- c("\u2009[", ",\u2009", "]", "\u2212", "\u2007") # \u2009 thin space; \u2212 minus, \u2007 figure space ### get measure from object measure <- x$measure ### column header estlab <- .setlab(measure, transf.char, atransf.char, gentype=3, short=TRUE) if (is.expression(estlab)) { header.right <- str2lang(paste0("bold(", estlab, " * '", annosym[1], "' * '", round(100*(1-level),digits[[1]]), "% CI'", " * '", annosym[3], "')")) } else { header.right <- paste0(estlab, annosym[1], round(100*(1-level),digits[[1]]), "% CI", annosym[3]) } if (is.logical(header)) { if (header) { header.left <- "Study" } else { header.left <- NULL header.right <- NULL } } else { if (!is.character(header)) stop(mstyle$stop("Argument 'header' must either be a logical or character vector.")) if (length(header) == 1L) { header.left <- header } else { header.left <- header[1] header.right <- header[2] } } if (!annotate) header.right <- NULL if (!is.null(ddd$addcred)) addpred <- ddd$addcred pi.type <- .chkddd(ddd$pi.type, "default") decreasing <- .chkddd(ddd$decreasing, FALSE) if (!is.null(ddd$clim)) olim <- ddd$clim ### row adjustments for 1) study labels, 2) annotations, and 3) ilab elements if (is.null(ddd$rowadj)) { rowadj <- rep(0,3) } else { rowadj <- ddd$rowadj if (length(rowadj) == 1L) rowadj <- c(rowadj,rowadj,0) # if one value is specified, use it for both 1&2 if (length(rowadj) == 2L) rowadj <- c(rowadj,0) # if two values are specified, use them for 1&2 } top <- .chkddd(ddd$top, 3) if (is.null(ddd$xlabadj)) { xlabadj <- c(NA,NA) } else { xlabadj <- ddd$xlabadj if (length(xlabadj) == 1L) xlabadj <- c(xlabadj, 1-xlabadj) } xlabfont <- .chkddd(ddd$xlabfont, 1) lplot <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) plot(...) labline <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) abline(...) lsegments <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) segments(...) laxis <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) axis(...) lmtext <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) mtext(...) lpolygon <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) polygon(...) ltext <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) text(...) lpoints <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) points(...) lrect <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) rect(...) llines <- function(..., textpos, addcred, pi.type, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) lines(...) if (is.character(showweights)) { weighttype <- match.arg(showweights, c("diagonal", "rowsum")) if (weighttype == "rowsum" && !inherits(x, "rma.mv")) weighttype <- "diagonal" if (weighttype == "rowsum" && !x$int.only) stop(mstyle$stop("Row-sum weights are only meaningful for intercept-only models.")) showweights <- TRUE } else { weighttype <- "diagonal" } if (!is.logical(showweights)) stop(mstyle$stop("Argument 'showweights' must be a logical.")) ### TODO: remove this when there is a weights() function for 'rma.glmm' objects if (inherits(x, "rma.glmm") && showweights) stop(mstyle$stop("Option 'showweights=TRUE' not possible for 'rma.glmm' objects.")) ### TODO: remove this when there is a weights() function for 'rma.uni.selmodel' objects if (inherits(x, "rma.uni.selmodel") && showweights) stop(mstyle$stop("Option 'showweights=TRUE' not possible for 'rma.uni.selmodel' objects.")) if (!is.null(ddd$subset)) stop(mstyle$stop("Function does not have a 'subset' argument.")) ######################################################################### ### extract data and study labels ### note: yi.f/vi.f and pred may contain NAs yi <- x$yi.f vi <- x$vi.f X <- x$X.f k <- length(yi) # length of yi.f ### note: slab (if specified), ilab (if specified), pch (if vector), psize (if ### vector), colout (if vector), order (if vector) must have the same ### length as the original dataset slab.null <- FALSE if (missing(slab)) { if (x$slab.null) { slab <- paste("Study", x$ids) # x$ids is always of length yi.f (i.e., NAs also have an id) slab.null <- TRUE } else { slab <- x$slab # x$slab is always of length yi.f (i.e., NAs also have a study label) } } else { slab <- .getx("slab", mf=mf, data=x$data) if (length(slab) == 1L && is.na(slab)) { # slab=NA can be used to suppress study labels slab <- rep("", x$k.all) slab.null <- TRUE } if (length(slab) != x$k.all) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) slab <- .getsubset(slab, x$subset) } if (!is.null(ilab)) { if (is.null(dim(ilab))) ilab <- cbind(ilab) if (nrow(ilab) != x$k.all) stop(mstyle$stop(paste0("Length of the 'ilab' argument (", nrow(ilab), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) ilab <- .getsubset(ilab, x$subset) } pch <- .expand1(pch, x$k.all) if (length(pch) != x$k.all) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) pch <- .getsubset(pch, x$subset) if (!is.null(psize)) { psize <- .expand1(psize, x$k.all) if (length(psize) != x$k.all) stop(mstyle$stop(paste0("Length of the 'psize' argument (", length(psize), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) psize <- .getsubset(psize, x$subset) } colout <- .expand1(colout, x$k.all) if (length(colout) != x$k.all) stop(mstyle$stop(paste0("Length of the 'colout' argument (", length(colout), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) colout <- .getsubset(colout, x$subset) shade.type <- "none" if (is.character(shade)) { shade.type <- "character" shade <- shade[1] if (!is.element(shade, c("zebra", "zebra1", "zebra2", "all"))) stop(mstyle$stop("Unknown option specified for 'shade' argument.")) } if (is.logical(shade)) { if (length(shade) == 1L) { shade <- "zebra" shade.type <- "character" } else { shade.type <- "logical" shade <- .chksubset(shade, x$k.all, stoponk0=FALSE) shade <- .getsubset(shade, x$subset) } } if (is.numeric(shade)) shade.type <- "numeric" ### extract fitted values options(na.action = "na.pass") # using na.pass to get the entire vector (length of yi.f) if (x$int.only) { pred <- fitted(x) pred.ci.lb <- rep(NA_real_, k) pred.ci.ub <- rep(NA_real_, k) } else { predres <- predict(x, level=level, pi.type=pi.type) pred <- predres$pred if (addpred) { pred.ci.lb <- predres$pi.lb pred.ci.ub <- predres$pi.ub } else { pred.ci.lb <- predres$ci.lb pred.ci.ub <- predres$ci.ub } } weights <- try(weights(x, type=weighttype), silent=TRUE) # does not work for rma.glmm and rma.uni.selmodel objects if (inherits(weights, "try-error")) weights <- rep(1, k) ### sort the data if requested if (!is.null(order)) { if (length(order) == 1L) { order <- match.arg(order, c("obs", "yi", "fit", "prec", "vi", "resid", "rstandard", "abs.resid", "abs.rstandard")) if (order == "obs" || order == "yi") sort.vec <- order(yi) if (order == "fit") sort.vec <- order(pred) if (order == "prec" || order == "vi") sort.vec <- order(vi, yi) if (order == "resid") sort.vec <- order(yi-pred, yi) if (order == "rstandard") sort.vec <- order(rstandard(x)$z, yi) # need options(na.action = "na.pass") here as well if (order == "abs.resid") sort.vec <- order(abs(yi-pred), yi) if (order == "abs.rstandard") sort.vec <- order(abs(rstandard(x)$z), yi) # need options(na.action = "na.pass") here as well } else { if (length(order) != x$k.all) stop(mstyle$stop(paste0("Length of the 'order' argument (", length(order), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) if (grepl("^order\\(", deparse1(substitute(order)))) { sort.vec <- order } else { sort.vec <- order(order, decreasing=decreasing) } if (!is.null(x$subset)) sort.vec <- .getsubset(sort.vec, x$subset) - sum(!x$subset) } yi <- yi[sort.vec] vi <- vi[sort.vec] X <- X[sort.vec,,drop=FALSE] slab <- slab[sort.vec] ilab <- ilab[sort.vec,,drop=FALSE] # if NULL, remains NULL pred <- pred[sort.vec] pred.ci.lb <- pred.ci.lb[sort.vec] pred.ci.ub <- pred.ci.ub[sort.vec] weights <- weights[sort.vec] pch <- pch[sort.vec] psize <- psize[sort.vec] # if NULL, remains NULL colout <- colout[sort.vec] if (shade.type == "logical") shade <- shade[sort.vec] } options(na.action = na.act) k <- length(yi) # in case length of k has changed ### set rows value if (missing(rows)) { rows <- k:1 } else { if (length(rows) == 1L) { # note: rows must be a single value or the same rows <- rows:(rows-k+1) # length of yi.f (including NAs) *after ordering* } } if (length(rows) != k) stop(mstyle$stop(paste0("Length of the 'rows' argument (", length(rows), ") does not correspond to the number of outcomes (", k, ")."))) ### reverse order yi <- yi[k:1] vi <- vi[k:1] X <- X[k:1,,drop=FALSE] slab <- slab[k:1] ilab <- ilab[k:1,,drop=FALSE] # if NULL, remains NULL pred <- pred[k:1] pred.ci.lb <- pred.ci.lb[k:1] pred.ci.ub <- pred.ci.ub[k:1] weights <- weights[k:1] pch <- pch[k:1] psize <- psize[k:1] # if NULL, remains NULL colout <- colout[k:1] rows <- rows[k:1] if (shade.type == "logical") shade <- shade[k:1] ### check for NAs in yi/vi/X and act accordingly yiviX.na <- is.na(yi) | is.na(vi) | apply(is.na(X), 1, any) if (any(yiviX.na)) { not.na <- !yiviX.na if (na.act == "na.omit") { yi <- yi[not.na] vi <- vi[not.na] X <- X[not.na,,drop=FALSE] slab <- slab[not.na] ilab <- ilab[not.na,,drop=FALSE] # if NULL, remains NULL pred <- pred[not.na] pred.ci.lb <- pred.ci.lb[not.na] pred.ci.ub <- pred.ci.ub[not.na] weights <- weights[not.na] pch <- pch[not.na] psize <- psize[not.na] # if NULL, remains NULL colout <- colout[not.na] rows.new <- rows # rearrange rows due to NAs being omitted from plot rows.na <- rows[!not.na] # shift higher rows down according to number of NAs omitted for (j in seq_along(rows.na)) { rows.new[rows >= rows.na[j]] <- rows.new[rows >= rows.na[j]] - 1 } rows <- rows.new[not.na] if (shade.type == "logical") shade <- shade[not.na] } if (na.act == "na.fail") stop(mstyle$stop("Missing values in results.")) } # note: yi/vi may be NA if na.act == "na.exclude" or "na.pass" k <- length(yi) # in case length of k has changed ### calculate individual CI bounds ci.lb <- yi - qnorm(level/2, lower.tail=FALSE) * sqrt(vi) ci.ub <- yi + qnorm(level/2, lower.tail=FALSE) * sqrt(vi) ### if requested, apply transformation to yi's and CI bounds if (is.function(transf)) { if (is.null(targs)) { yi <- sapply(yi, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) pred <- sapply(pred, transf) pred.ci.lb <- sapply(pred.ci.lb, transf) pred.ci.ub <- sapply(pred.ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) yi <- sapply(yi, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) pred <- sapply(pred, transf, targs) pred.ci.lb <- sapply(pred.ci.lb, transf, targs) pred.ci.ub <- sapply(pred.ci.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] tmp <- .psort(pred.ci.lb, pred.ci.ub) pred.ci.lb <- tmp[,1] pred.ci.ub <- tmp[,2] ### apply observation/outcome limits if specified if (!missing(olim)) { if (length(olim) != 2L) stop(mstyle$stop("Argument 'olim' must be of length 2.")) olim <- sort(olim) yi <- .applyolim(yi, olim) ci.lb <- .applyolim(ci.lb, olim) ci.ub <- .applyolim(ci.ub, olim) pred <- .applyolim(pred, olim) pred.ci.lb <- .applyolim(pred.ci.lb, olim) pred.ci.ub <- .applyolim(pred.ci.ub, olim) } ### set default point sizes (if not specified by user) if (is.null(psize)) { if (length(plim) < 2L) stop(mstyle$stop("Argument 'plim' must be of length 2 or 3.")) wi <- sqrt(weights) if (!is.na(plim[1]) && !is.na(plim[2])) { rng <- max(wi, na.rm=TRUE) - min(wi, na.rm=TRUE) if (rng <= .Machine$double.eps^0.5) { psize <- rep(1, k) } else { psize <- (wi - min(wi, na.rm=TRUE)) / rng psize <- (psize * (plim[2] - plim[1])) + plim[1] } } if (is.na(plim[1]) && !is.na(plim[2])) { psize <- wi / max(wi, na.rm=TRUE) * plim[2] if (length(plim) == 3L) psize[psize <= plim[3]] <- plim[3] } if (!is.na(plim[1]) && is.na(plim[2])) { psize <- wi / min(wi, na.rm=TRUE) * plim[1] if (length(plim) == 3L) psize[psize >= plim[3]] <- plim[3] } if (all(is.na(psize))) psize <- rep(1, k) } ######################################################################### if (!is.null(at)) { if (anyNA(at)) stop(mstyle$stop("Argument 'at' cannot contain NAs.")) if (any(is.infinite(at))) stop(mstyle$stop("Argument 'at' cannot contain +-Inf values.")) } ### set x-axis limits (at argument overrides alim argument) alim.spec <- TRUE if (missing(alim)) { if (is.null(at)) { alim <- range(pretty(x=c(min(ci.lb, na.rm=TRUE), max(ci.ub, na.rm=TRUE)), n=steps-1)) alim.spec <- FALSE } else { alim <- range(at) } } alim <- sort(alim)[1:2] if (anyNA(alim)) stop(mstyle$stop("Argument 'alim' cannot contain NAs.")) ### generate x-axis positions if none are specified if (is.null(at)) { if (alim.spec) { at <- seq(from=alim[1], to=alim[2], length.out=steps) } else { at <- pretty(x=c(min(ci.lb, na.rm=TRUE), max(ci.ub, na.rm=TRUE)), n=steps-1) } } else { at[at < alim[1]] <- alim[1] # remove at values that are below or above the axis limits at[at > alim[2]] <- alim[2] at <- unique(at) } ### x-axis labels (apply transformation to axis labels if requested) if (is.null(ddd$at.lab)) { at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- fmtx(sapply(at.lab, atransf), digits[[2]], drop0ifint=TRUE) } else { at.lab <- fmtx(sapply(at.lab, atransf, targs), digits[[2]], drop0ifint=TRUE) } } else { at.lab <- fmtx(at.lab, digits[[2]], drop0ifint=TRUE) } } else { at.lab <- ddd$at.lab } ### set plot limits (xlim) ncol.ilab <- ifelse(is.null(ilab), 0, ncol(ilab)) if (slab.null) { area.slab <- 25 } else { area.slab <- 40 } if (annotate) { if (showweights) { area.anno <- 30 } else { area.anno <- 25 } } else { area.anno <- 10 } iadd <- 5 area.slab <- area.slab + iadd*ncol.ilab #area.anno <- area.anno area.forest <- 100 + iadd*ncol.ilab - area.slab - area.anno area.slab <- area.slab / (100 + iadd*ncol.ilab) area.anno <- area.anno / (100 + iadd*ncol.ilab) area.forest <- area.forest / (100 + iadd*ncol.ilab) plot.multp.l <- area.slab / area.forest plot.multp.r <- area.anno / area.forest if (missing(xlim)) { if (min(ci.lb, na.rm=TRUE) < alim[1]) { f.1 <- alim[1] } else { f.1 <- min(ci.lb, na.rm=TRUE) } if (max(ci.ub, na.rm=TRUE) > alim[2]) { f.2 <- alim[2] } else { f.2 <- max(ci.ub, na.rm=TRUE) } rng <- f.2 - f.1 xlim <- c(f.1 - rng * plot.multp.l, f.2 + rng * plot.multp.r) xlim <- round(xlim, digits[[2]]) #xlim[1] <- xlim[1]*max(1, digits[[2]]/2) #xlim[2] <- xlim[2]*max(1, digits[[2]]/2) } else { if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' must be of length 2.")) } xlim <- sort(xlim) ### plot limits must always encompass the yi values (no longer done) #if (xlim[1] > min(yi, na.rm=TRUE)) { xlim[1] <- min(yi, na.rm=TRUE) } #if (xlim[2] < max(yi, na.rm=TRUE)) { xlim[2] <- max(yi, na.rm=TRUE) } ### x-axis limits must always encompass the yi values (no longer done) #if (alim[1] > min(yi, na.rm=TRUE)) { alim[1] <- min(yi, na.rm=TRUE) } #if (alim[2] < max(yi, na.rm=TRUE)) { alim[2] <- max(yi, na.rm=TRUE) } ### plot limits must always encompass the x-axis limits (no longer done) #if (alim[1] < xlim[1]) { xlim[1] <- alim[1] } #if (alim[2] > xlim[2]) { xlim[2] <- alim[2] } ### allow adjustment of position of study labels and annotations via textpos argument textpos <- .chkddd(ddd$textpos, xlim) if (length(textpos) != 2L) stop(mstyle$stop("Argument 'textpos' must be of length 2.")) if (is.na(textpos[1])) textpos[1] <- xlim[1] if (is.na(textpos[2])) textpos[2] <- xlim[2] ### set y-axis limits if (missing(ylim)) { if (x$int.only && addfit) { ylim <- c(-2 - ifelse(predstyle=="line", 0, 1), max(rows, na.rm=TRUE)+top) } else { ylim <- c(0, max(rows, na.rm=TRUE)+top) } } else { if (length(ylim) == 1L) { if (x$int.only && addfit) { ylim <- c(ylim, max(rows, na.rm=TRUE)+top) } else { ylim <- c(ylim, max(rows, na.rm=TRUE)+top) } } else { ylim <- sort(ylim) } } ######################################################################### ### set/get fonts (1st for study labels, 2nd for annotations, 3rd for ilab) ### when passing a named vector, the names are for 'family' and the values are for 'font' if (missing(fonts)) { fonts <- rep(par("family"), 3L) } else { if (length(fonts) == 1L) fonts <- rep(fonts, 3L) if (length(fonts) == 2L) fonts <- c(fonts, fonts[1]) } if (is.null(names(fonts))) fonts <- setNames(c(1L,1L,1L), nm=fonts) par(family=names(fonts)[1], font=fonts[1]) ### adjust margins par.mar <- par("mar") par.mar.adj <- par.mar - c(0,3,1,1) par.mar.adj[par.mar.adj < 0] <- 0 par(mar=par.mar.adj) on.exit(par(mar=par.mar), add=TRUE) #if (identical(par("mar"), c(5.1,4.1,4.1,2.1))) # par(mar = c(5.1,1.1,3.1,1.1)) ### start plot lplot(NA, NA, xlim=xlim, ylim=ylim, xlab="", ylab="", yaxt="n", xaxt="n", xaxs="i", yaxs="i", bty="n", ...) ### add shading if (shade.type == "character") { if (shade == "zebra" || shade == "zebra1") tmp <- rep_len(c(TRUE,FALSE), k) if (shade == "zebra2") tmp <- rep_len(c(FALSE,TRUE), k) if (shade == "all") tmp <- rep_len(TRUE, k) shade <- tmp } if (shade.type %in% c("character","logical")) { for (i in seq_len(k)) { if (shade[i]) rect(xlim[1], rows[i]-0.5, xlim[2], rows[i]+0.5, border=colshade, col=colshade) } } if (shade.type == "numeric") { for (i in seq_along(shade)) { rect(xlim[1], shade[i]-0.5, xlim[2], shade[i]+0.5, border=colshade, col=colshade) } } ### horizontal title line labline(h=ylim[2]-(top-1), lty=lty[3], ...) ### get coordinates of the plotting region par.usr <- par("usr") ### add reference line if (is.numeric(refline)) lsegments(refline, par.usr[3], refline, ylim[2]-(top-1), lty="dotted", ...) ### set cex, cex.lab, and cex.axis sizes as a function of the height of the figure height <- par.usr[4] - par.usr[3] if (is.null(cex)) { lheight <- strheight("O") cex.adj <- ifelse(k * lheight > height * 0.8, height/(1.25 * k * lheight), 1) } if (is.null(cex)) { cex <- par("cex") * cex.adj } else { if (is.null(cex.lab)) cex.lab <- par("cex") * cex if (is.null(cex.axis)) cex.axis <- cex } if (is.null(cex.lab)) cex.lab <- par("cex") * cex.adj if (is.null(cex.axis)) cex.axis <- par("cex") * cex.adj ######################################################################### ### if addfit and not an intercept-only model, add fitted polygons if (addfit && !x$int.only) { for (i in seq_len(k)) { if (is.na(pred[i])) next polheight <- (height/100)*cex*efac[3] lpolygon(x=c(max(pred.ci.lb[i], alim[1]), pred[i], min(pred.ci.ub[i], alim[2]), pred[i]), y=c(rows[i], rows[i]+polheight, rows[i], rows[i]-polheight), col=col, border=border, ...) ### this would only draw intervals if bounds fall within alim range #if ((pred.ci.lb[i] > alim[1]) && (pred.ci.ub[i] < alim[2])) # lpolygon(x=c(pred.ci.lb[i], pred[i], pred.ci.ub[i], pred[i]), y=c(rows[i], rows[i]+polheight, rows[i], rows[i]-polheight), col=col, border=border, ...) } } ######################################################################### ciendheight <- height / 150 * cex * efac[1] arrowwidth <- 1.4 / 100 * cex * (xlim[2]-xlim[1]) arrowheight <- height / 150 * cex * efac[2] barheight <- min(0.25, height / 150 * cex * efac[4]) ### if addfit and intercept-only model, add fixed/random-effects model polygon if (addfit && x$int.only) { if (inherits(x, "rma.mv") && x$withG && x$tau2s > 1) { if (is.logical(addpred)) { if (addpred) { ### here addpred=TRUE, but user has not specified the level, so throw an error stop(mstyle$stop("Must specify the level of the inner factor(s) via the 'addpred' argument.")) } else { ### here addpred=FALSE, so just use the first tau^2 and gamma^2 arbitrarily (so predict() works) predres <- predict(x, level=level, tau2.levels=1, gamma2.levels=1, pi.type=pi.type) } } else { ### for multiple tau^2 (and gamma^2) values, need to specify level(s) of the inner factor(s) to compute the PI ### this can be done via the addpred argument (i.e., instead of using a logical, one specifies the level(s)) if (length(addpred) == 1L) addpred <- c(addpred, addpred) predres <- predict(x, level=level, tau2.levels=addpred[1], gamma2.levels=addpred[2], pi.type=pi.type) addpred <- TRUE # set addpred to TRUE, so if (!is.element(x$method, c("FE","EE","CE")) && addpred) further below works } } else { predres <- predict(x, level=level, pi.type=pi.type) } beta <- predres$pred beta.ci.lb <- predres$ci.lb beta.ci.ub <- predres$ci.ub beta.pi.lb <- predres$pi.lb beta.pi.ub <- predres$pi.ub if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) beta.ci.lb <- sapply(beta.ci.lb, transf) beta.ci.ub <- sapply(beta.ci.ub, transf) beta.pi.lb <- sapply(beta.pi.lb, transf) beta.pi.ub <- sapply(beta.pi.ub, transf) } else { beta <- sapply(beta, transf, targs) beta.ci.lb <- sapply(beta.ci.lb, transf, targs) beta.ci.ub <- sapply(beta.ci.ub, transf, targs) beta.pi.lb <- sapply(beta.pi.lb, transf, targs) beta.pi.ub <- sapply(beta.pi.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(beta.ci.lb, beta.ci.ub) beta.ci.lb <- tmp[,1] beta.ci.ub <- tmp[,2] tmp <- .psort(beta.pi.lb, beta.pi.ub) beta.pi.lb <- tmp[,1] beta.pi.ub <- tmp[,2] ### apply observation/outcome limits if specified if (!missing(olim)) { beta <- .applyolim(beta, olim) beta.ci.lb <- .applyolim(beta.ci.lb, olim) beta.ci.ub <- .applyolim(beta.ci.ub, olim) beta.pi.lb <- .applyolim(beta.pi.lb, olim) beta.pi.ub <- .applyolim(beta.pi.ub, olim) } ### add prediction interval ### note: in contrast to addpoly(), these respect 'alim' if (!is.element(x$method, c("FE","EE","CE")) && addpred) { if (predstyle == "line") { lsegments(max(beta.pi.lb, alim[1]), -1, min(beta.pi.ub, alim[2]), -1, lty=lty[2], col=col[2], ...) if (beta.pi.lb >= alim[1]) { lsegments(beta.pi.lb, -1-ciendheight, beta.pi.lb, -1+ciendheight, col=col[2], ...) } else { lpolygon(x=c(alim[1], alim[1]+arrowwidth, alim[1]+arrowwidth, alim[1]), y=c(-1, -1+arrowheight, -1-arrowheight, -1), col=col[2], border=col[2], ...) } if (beta.pi.ub <= alim[2]) { lsegments(beta.pi.ub, -1-ciendheight, beta.pi.ub, -1+ciendheight, col=col[2], ...) } else { lpolygon(x=c(alim[2], alim[2]-arrowwidth, alim[2]-arrowwidth, alim[2]), y=c(-1, -1+arrowheight, -1-arrowheight, -1), col=col[2], border=col[2], ...) } } if (predstyle == "bar") { if (beta.pi.lb >= alim[1]) { lrect(beta.pi.lb, -2-barheight, beta, -2+barheight, col=col[2], border=border[2], ...) } else { lrect(alim[1]+arrowwidth, -2-barheight, beta, -2+barheight, col=col[2], border=border[2], ...) lpolygon(x=c(alim[1], alim[1]+arrowwidth, alim[1]+arrowwidth, alim[1]), y=c(-2, -2+barheight, -2-barheight, -2), col=col[2], border=col[2], ...) } if (beta.pi.ub <= alim[2]) { lrect(beta.pi.ub, -2-barheight, beta, -2+barheight, col=col[2], border=border[2], ...) } else { lrect(alim[2]-arrowwidth, -2-barheight, beta, -2+barheight, col=col[2], border=border[2], ...) lpolygon(x=c(alim[2], alim[2]-arrowwidth, alim[2]-arrowwidth, alim[2]), y=c(-2, -2+barheight, -2-barheight, -2), col=col[2], border=col[2], ...) } } if (predstyle %in% c("shade","dist")) { if (is.function(transf)) { funlist <- lapply(list("1"=exp, "2"=transf.ztor, "3"=tanh, "4"=transf.ilogit, "5"=plogis, "6"=transf.iarcsin), deparse) funmatch <- sapply(funlist, identical, transf.char) if (!any(funmatch)) stop(mstyle$stop("Chosen transformation not (currently) possible with this 'predstyle'.")) } if (predres$pi.dist != "norm" && predres$pi.ddf <= 1L) stop(mstyle$stop("Cannot shade/draw prediction distribution when df <= 1.")) if (predstyle == "shade") { x.len <- 100 q.lo <- level/2 q.hi <- 1-level/2 } else { x.len <- 10000 q.lo <- 0.0001 q.hi <- 0.9999 } if (is.null(predlim) || predstyle == "shade") { if (predres$pi.dist == "norm") { crits <- qnorm(c(q.lo,q.hi), mean=predres$pred, sd=predres$pi.se) xs <- seq(crits[1], crits[2], length.out=x.len) ys <- dnorm(xs, mean=predres$pred, sd=predres$pi.se) } else { crits <- qt(c(q.lo,q.hi), df=predres$pi.ddf) * predres$pi.se + predres$pred xs <- seq(crits[1], crits[2], length.out=x.len) ys <- dt((xs - predres$pred) / predres$pi.se, df=predres$pi.ddf) / predres$pi.se } } else { if (length(predlim) != 2L) stop(mstyle$stop("Argument 'predlim' must be of length 2.")) xs <- seq(predlim[1], predlim[2], length.out=x.len) if (is.function(transf)) { if (funmatch[1]) xs <- suppressWarnings(log(xs)) if (any(funmatch[2:3])) xs <- suppressWarnings(atanh(xs)) if (any(funmatch[4:5])) xs <- suppressWarnings(qlogis(xs)) if (funmatch[6]) xs <- suppressWarnings(transf.arcsin(xs)) sel <- is.finite(xs) # FALSE for +-Inf and NA/NaN x.len <- sum(sel) xs <- xs[sel] } if (predres$pi.dist == "norm") { ys <- dnorm(xs, mean=predres$pred, sd=predres$pi.se) } else { ys <- dt((xs - predres$pred) / predres$pi.se, df=predres$pi.ddf) / predres$pi.se } } sel.l0 <- xs < 0 sel.g0 <- xs > 0 if (is.function(transf)) { xs <- sapply(xs, transf) if (funmatch[1]) { ys <- ys / xs x.lo <- 0.01 x.hi <- Inf } if (any(funmatch[2:3])) { ys <- ys / (1-xs^2) x.lo <- -0.99 x.hi <- 0.99 } if (any(funmatch[4:5])) { ys <- ys / (xs*(1-xs)) x.lo <- 0.01 x.hi <- 0.99 } if (funmatch[6]) { ys <- ys / (2*sqrt(xs*(1-xs))) x.lo <- 0.01 x.hi <- 0.99 } if (is.null(predlim)) { sel <- xs > x.lo & xs < x.hi sel.l0 <- sel.l0[sel] sel.g0 <- sel.g0[sel] ys <- ys[sel] xs <- xs[sel] } } } if (predstyle == "shade") { intensity <- 1 - (ys - min(ys)) / (max(ys) - min(ys)) sel <- xs >= alim[1] & xs <= alim[2] if (!missing(olim)) sel <- sel & c(xs > olim[1] & xs < olim[2]) ys <- ys[sel] xs <- xs[sel] intensity <- intensity[sel] colfun <- colorRamp(c(col[2], col[3])) rectcol <- colfun(intensity) rectcol <- apply(rectcol, 1, function(x) if (anyNA(x)) NA else rgb(x[1], x[2], x[3], maxColorValue=255)) lrect(xs[-1], -2-barheight, xs[-length(xs)], -2+barheight, col=rectcol, border=rectcol, ...) } if (predstyle == "dist") { ys <- ys / max(ys) * efac[4] if (is.null(predlim)) { sel <- ys > 0.005 } else { sel <- rep(TRUE, length(ys)) } sel <- sel & xs >= alim[1] & xs <= alim[2] if (!missing(olim)) sel <- sel & c(xs > olim[1] & xs < olim[2]) xs.sel.l0 <- xs[sel.l0 & sel] xs.sel.g0 <- xs[sel.g0 & sel] ys.sel.l0 <- ys[sel.l0 & sel] ys.sel.g0 <- ys[sel.g0 & sel] xs <- xs[sel] ys <- ys[sel] drow <- -2.5 ys <- ys + drow ys.sel.l0 <- ys.sel.l0 + drow ys.sel.g0 <- ys.sel.g0 + drow ### shade regions above/below 0 if (predres$pred > 0) { lpolygon(c(xs.sel.g0,rev(xs.sel.g0)), c(ys.sel.g0,rep(drow,length(ys.sel.g0))), col=col[4], border=ifelse(is.na(col[4]),NA,border[2]), ...) lpolygon(c(xs.sel.l0,rev(xs.sel.l0)), c(ys.sel.l0,rep(drow,length(ys.sel.l0))), col=col[3], border=ifelse(is.na(col[3]),NA,border[2]), ...) } else { lpolygon(c(xs.sel.g0,rev(xs.sel.g0)), c(ys.sel.g0,rep(drow,length(ys.sel.g0))), col=col[3], border=ifelse(is.na(col[3]),NA,border[2]), ...) lpolygon(c(xs.sel.l0,rev(xs.sel.l0)), c(ys.sel.l0,rep(drow,length(ys.sel.l0))), col=col[4], border=ifelse(is.na(col[4]),NA,border[2]), ...) } ### shade tail areas sel <- xs <= beta.pi.lb xs.sel <- xs[sel] ys.sel <- ys[sel] lpolygon(c(xs.sel,rev(xs.sel)), c(ys.sel,rep(drow,length(ys.sel))), col=col[2], border=border[2], ...) sel <- xs >= beta.pi.ub xs.sel <- xs[sel] ys.sel <- ys[sel] lpolygon(c(xs.sel,rev(xs.sel)), c(ys.sel,rep(drow,length(ys.sel))), col=col[2], border=border[2], ...) ### add horizontal and distribution lines llines(xs, rep(drow,length(ys)), col=border[2], ...) llines(xs, ys, col=border[2], ...) } } ### polygon for the summary estimate polheight <- (height/100)*cex*efac[3] lpolygon(x=c(beta.ci.lb, beta, beta.ci.ub, beta), y=c(-1, -1+polheight, -1, -1-polheight), col=col[1], border=border[1], ...) ### add label for model estimate if (missing(mlab)) mlab <- sapply(x$method, switch, "FE"="Fixed-Effect Model", "EE"="Equal-Effects Model", "CE"="Common-Effect Model", "Random-Effects Model", USE.NAMES=FALSE) #mlab <- sapply(x$method, switch, "FE"="FE Model", "EE"="EE Model", "CE"="CE Model", "RE Model", USE.NAMES=FALSE) if (length(mlab) == 1L && predstyle %in% c("bar","shade")) mlab <- c(mlab, paste0("Prediction Interval", annosym[1], round(100*(1-level),digits[[1]]), "% PI", annosym[3])) if (length(mlab) == 1L && predstyle == "dist") mlab <- c(mlab, paste0("Predictive Distribution", annosym[1], round(100*(1-level),digits[[1]]), "% PI", annosym[3])) ltext(textpos[1], -1+rowadj[1], mlab[[1]], pos=4, cex=cex, ...) if (predstyle %in% c("bar","shade","dist")) ltext(textpos[1], -2+rowadj[1], mlab[[2]], pos=4, cex=cex, ...) } ######################################################################### ### add x-axis laxis(side=1, at=at, labels=at.lab, cex.axis=cex.axis, ...) ### add x-axis label if (missing(xlab)) xlab <- .setlab(measure, transf.char, atransf.char, gentype=1) if (!is.element(length(xlab), 1:3)) stop(mstyle$stop("Argument 'xlab' argument must be of length 1, 2, or 3.")) if (length(xlab) == 1L) lmtext(xlab, side=1, at=min(at) + (max(at)-min(at))/2, line=par("mgp")[1]-0.5, cex=cex.lab, font=xlabfont[1], ...) if (length(xlab) == 2L) { lmtext(xlab[1], side=1, at=min(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[1], font=xlabfont[1], ...) lmtext(xlab[2], side=1, at=max(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[2], font=xlabfont[1], ...) } if (length(xlab) == 3L) { lmtext(xlab[1], side=1, at=min(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[1], font=xlabfont[1], ...) lmtext(xlab[2], side=1, at=min(at) + (max(at)-min(at))/2, line=par("mgp")[1]-0.5, cex=cex.lab, font=xlabfont[2], ...) lmtext(xlab[3], side=1, at=max(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[2], font=xlabfont[1], ...) } ### add CI ends (either | or <> if outside of axis limits) for (i in seq_len(k)) { ### need to skip missings (if check below will otherwise throw an error) if (is.na(yi[i]) || is.na(vi[i])) next ### if the lower bound is actually larger than upper x-axis limit, then everything is to the right and just draw a polygon pointing in that direction if (ci.lb[i] >= alim[2]) { lpolygon(x=c(alim[2], alim[2]-arrowwidth, alim[2]-arrowwidth, alim[2]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=colout[i], border=colout[i], ...) next } ### if the upper bound is actually lower than lower x-axis limit, then everything is to the left and just draw a polygon pointing in that direction if (ci.ub[i] <= alim[1]) { lpolygon(x=c(alim[1], alim[1]+arrowwidth, alim[1]+arrowwidth, alim[1]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=colout[i], border=colout[i], ...) next } lsegments(max(ci.lb[i], alim[1]), rows[i], min(ci.ub[i], alim[2]), rows[i], lty=lty[1], col=colout[i], ...) if (ci.lb[i] >= alim[1]) { lsegments(ci.lb[i], rows[i]-ciendheight, ci.lb[i], rows[i]+ciendheight, col=colout[i], ...) } else { lpolygon(x=c(alim[1], alim[1]+arrowwidth, alim[1]+arrowwidth, alim[1]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=colout[i], border=colout[i], ...) } if (ci.ub[i] <= alim[2]) { lsegments(ci.ub[i], rows[i]-ciendheight, ci.ub[i], rows[i]+ciendheight, col=colout[i], ...) } else { lpolygon(x=c(alim[2], alim[2]-arrowwidth, alim[2]-arrowwidth, alim[2]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=colout[i], border=colout[i], ...) } } ### add study labels on the left ltext(textpos[1], rows+rowadj[1], slab, pos=4, cex=cex, ...) ### add info labels if (!is.null(ilab)) { if (is.null(ilab.xpos)) { #stop(mstyle$stop("Must specify the 'ilab.xpos' argument when adding information with 'ilab'.")) dist <- min(ci.lb, na.rm=TRUE) - xlim[1] if (ncol.ilab == 1L) ilab.xpos <- xlim[1] + dist*0.75 if (ncol.ilab == 2L) ilab.xpos <- xlim[1] + dist*c(0.65, 0.85) if (ncol.ilab == 3L) ilab.xpos <- xlim[1] + dist*c(0.60, 0.75, 0.90) if (ncol.ilab >= 4L) ilab.xpos <- seq(xlim[1] + dist*0.5, xlim[1] + dist*0.9, length.out=ncol.ilab) } if (length(ilab.xpos) != ncol.ilab) stop(mstyle$stop(paste0("Number of 'ilab' columns (", ncol.ilab, ") do not match the length of the 'ilab.xpos' argument (", length(ilab.xpos), ")."))) if (!is.null(ilab.pos) && length(ilab.pos) == 1L) ilab.pos <- rep(ilab.pos, ncol.ilab) if (!is.null(ilab.lab) && length(ilab.lab) != ncol.ilab) stop(mstyle$stop(paste0("Number of 'ilab' columns (", ncol.ilab, ") do not match the length of the 'ilab.lab' argument (", length(ilab.lab), ")."))) par(family=names(fonts)[3], font=fonts[3]) for (l in seq_len(ncol.ilab)) { ltext(ilab.xpos[l], rows+rowadj[3], ilab[,l], pos=ilab.pos[l], cex=cex, ...) if (!is.null(ilab.lab)) ltext(ilab.xpos[l], ylim[2]-(top-1)+1+rowadj[3], ilab.lab[l], pos=ilab.pos[l], font=2, cex=cex, ...) } par(family=names(fonts)[1], font=fonts[1]) } ### add study annotations on the right: yi [LB, UB] ### and add model fit annotations if requested: b [LB, UB] ### (have to add this here, so that alignment is correct) if (annotate) { if (is.function(atransf)) { if (is.null(targs)) { if (addfit && x$int.only) { if (predstyle %in% c("bar","shade","dist")) { annotext <- cbind(sapply(c(yi, beta, NA_real_), atransf), sapply(c(ci.lb, beta.ci.lb, beta.pi.lb), atransf), sapply(c(ci.ub, beta.ci.ub, beta.pi.ub), atransf)) } else { annotext <- cbind(sapply(c(yi, beta), atransf), sapply(c(ci.lb, beta.ci.lb), atransf), sapply(c(ci.ub, beta.ci.ub), atransf)) } } else { annotext <- cbind(sapply(yi, atransf), sapply(ci.lb, atransf), sapply(ci.ub, atransf)) } } else { if (addfit && x$int.only) { if (predstyle %in% c("bar","shade","dist")) { annotext <- cbind(sapply(c(yi, beta, NA_real_), atransf, targs), sapply(c(ci.lb, beta.ci.lb, beta.pi.lb), atransf, targs), sapply(c(ci.ub, beta.ci.ub, beta.pi.ub), atransf, targs)) } else { annotext <- cbind(sapply(c(yi, beta), atransf, targs), sapply(c(ci.lb, beta.ci.lb), atransf, targs), sapply(c(ci.ub, beta.ci.ub), atransf, targs)) } } else { annotext <- cbind(sapply(yi, atransf, targs), sapply(ci.lb, atransf, targs), sapply(ci.ub, atransf, targs)) } } ### make sure order of intervals is always increasing tmp <- .psort(annotext[,2:3]) annotext[,2:3] <- tmp } else { if (addfit && x$int.only) { if (predstyle %in% c("bar","shade","dist")) { annotext <- cbind(c(yi, beta, NA_real_), c(ci.lb, beta.ci.lb, beta.pi.lb), c(ci.ub, beta.ci.ub, beta.pi.ub)) } else { annotext <- cbind(c(yi, beta), c(ci.lb, beta.ci.lb), c(ci.ub, beta.ci.ub)) } } else { annotext <- cbind(yi, ci.lb, ci.ub) } } if (showweights) { if (addfit && x$int.only) { if (predstyle %in% c("bar","shade","dist")) { annotext <- cbind(c(unname(weights),100, NA_real_), annotext) } else { annotext <- cbind(c(unname(weights),100), annotext) } annotext <- fmtx(annotext, c(digits[[3]], digits[[1]], digits[[1]], digits[[1]])) if (predstyle %in% c("bar","shade","dist")) { annotext[nrow(annotext)-1,1] <- "100" } else { annotext[nrow(annotext),1] <- "100" } } else { annotext <- cbind(unname(weights), annotext) annotext <- fmtx(annotext, c(digits[[3]], digits[[1]], digits[[1]], digits[[1]])) } } else { annotext <- fmtx(annotext, digits[[1]]) } if (missing(width)) { width <- apply(annotext, 2, function(x) max(nchar(x))) } else { width <- .expand1(width, ncol(annotext)) if (length(width) != ncol(annotext)) stop(mstyle$stop(paste0("Length of the 'width' argument (", length(width), ") does not match the number of annotation columns (", ncol(annotext), ")."))) } for (j in seq_len(ncol(annotext))) { annotext[,j] <- formatC(annotext[,j], width=width[j]) } if (showweights) width <- width[-1] # remove the first entry for the weights (so this can be used by addpoly() via .metafor) if (showweights) { annotext <- cbind(annotext[,1], paste0("%", paste0(rep(substr(annosym[1],1,1),3), collapse="")), annotext[,2], annosym[1], annotext[,3], annosym[2], annotext[,4], annosym[3]) } else { annotext <- cbind(annotext[,1], annosym[1], annotext[,2], annosym[2], annotext[,3], annosym[3]) } annotext <- apply(annotext, 1, paste, collapse="") isna <- grepl("NA", annotext, fixed=TRUE) if (predstyle %in% c("bar","shade","dist")) { isna <- isna[-length(isna)] annotext[isna] <- "" annotext[length(annotext)] <- gsub("NA", "", annotext[length(annotext)], fixed=TRUE) annotext[length(annotext)] <- gsub("%", "", annotext[length(annotext)], fixed=TRUE) } else { annotext[isna] <- "" } annotext <- gsub("-", annosym[4], annotext, fixed=TRUE) # [a] annotext <- gsub(" ", annosym[5], annotext, fixed=TRUE) par(family=names(fonts)[2], font=fonts[2]) if (addfit && x$int.only) { if (predstyle %in% c("bar","shade","dist")) { ltext(textpos[2], c(rows,-1,-2)+rowadj[2], labels=annotext, pos=2, cex=cex, ...) } else { ltext(textpos[2], c(rows,-1)+rowadj[2], labels=annotext, pos=2, cex=cex, ...) } } else { ltext(textpos[2], rows+rowadj[2], labels=annotext, pos=2, cex=cex, ...) } par(family=names(fonts)[1], font=fonts[1]) } else { width <- NULL } ### add yi points for (i in seq_len(k)) { ### need to skip missings, as if () check below will otherwise throw an error if (is.na(yi[i])) next if (yi[i] >= alim[1] && yi[i] <= alim[2]) lpoints(x=yi[i], y=rows[i], pch=pch[i], col=colout[i], cex=cex*psize[i], ...) } ### add horizontal line at 0 for the standard FE/RE model display if (x$int.only && addfit) labline(h=0, lty=lty[3], ...) ### add header ltext(textpos[1], ylim[2]-(top-1)+1+rowadj[1], header.left, pos=4, font=2, cex=cex, ...) ltext(textpos[2], ylim[2]-(top-1)+1+rowadj[2], header.right, pos=2, font=2, cex=cex, ...) ######################################################################### ### return some information about plot invisibly res <- list(xlim=par("usr")[1:2], alim=alim, at=at, ylim=ylim, rows=rows, cex=cex, cex.lab=cex.lab, cex.axis=cex.axis, ilab.xpos=ilab.xpos, ilab.pos=ilab.pos, textpos=textpos, areas=c(area.slab, area.forest, area.anno)) ### put some additional stuff into .metafor, so that it can be used by addpoly() sav <- c(res, list(level=level, annotate=annotate, digits=digits[[1]], width=width, transf=transf, atransf=atransf, targs=targs, efac=efac, fonts=fonts[1:2], annosym=annosym)) try(assign("forest", sav, envir=.metafor), silent=TRUE) invisible(res) } metafor/R/residuals.rma.r0000644000176200001440000000602314671556114015057 0ustar liggesusersresiduals.rma <- function(object, type="response", ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(object$yi.f) || is.null(object$X.f)) stop(mstyle$stop("Information needed to compute the residuals is not available in the model object.")) type <- match.arg(type, c("response", "rstandard", "rstudent", "pearson", "cholesky")) ### for objects of class "rma.mh" and "rma.peto", use rstandard() to get the Pearson residuals if (inherits(object, c("rma.mh", "rma.peto")) && type == "pearson") type <- "rstandard" ######################################################################### if (type == "rstandard") { tmp <- rstandard(object) out <- c(tmp$z) names(out) <- tmp$slab } if (type == "rstudent") { tmp <- rstudent(object) out <- c(tmp$z) names(out) <- tmp$slab } ######################################################################### if (type == "response") { ### note: can calculate this even if vi is missing out <- c(object$yi.f - object$X.f %*% object$beta) out[abs(out) < 100 * .Machine$double.eps] <- 0 } if (type == "pearson") { if (inherits(object, "rma.glmm")) stop(mstyle$stop("Extraction of Pearson residuals not available for objects of class \"rma.glmm\".")) out <- c(object$yi.f - object$X.f %*% object$beta) out[abs(out) < 100 * .Machine$double.eps] <- 0 se <- rep(NA_real_, object$k.f) se[object$not.na] <- sqrt(diag(object$M)) out <- out / se } if (type == "cholesky") { ### note: Cholesky residuals depend on the data order ### but only for the Cholesky residuals is QE = sum(residuals(res, type="cholesky)^2) for models where M (or rather: V) is not diagonal if (inherits(object, c("rma.mh", "rma.peto", "rma.glmm"))) stop(mstyle$stop("Extraction of Cholesky residuals not available for objects of class \"rma.mh\", \"rma.peto\", or \"rma.glmm\".")) out <- c(object$yi - object$X %*% object$beta) out[abs(out) < 100 * .Machine$double.eps] <- 0 L <- try(chol(chol2inv(chol(object$M)))) if (inherits(L, "try-error")) stop(mstyle$stop("Could not take Cholesky decomposition of the marginal var-cov matrix.")) tmp <- L %*% out out <- rep(NA_real_, object$k.f) out[object$not.na] <- tmp } if (is.element(type, c("response", "pearson", "cholesky"))) { names(out) <- object$slab #not.na <- !is.na(out) if (na.act == "na.omit") out <- out[object$not.na] if (na.act == "na.exclude") out[!object$not.na] <- NA_real_ if (na.act == "na.fail" && any(!object$not.na)) stop(mstyle$stop("Missing values in results.")) } ######################################################################### return(out) } metafor/R/update.rma.r0000644000176200001440000000277514515471266014361 0ustar liggesusers### based on stats:::update.default but with some adjustments update.rma <- function(object, formula., ..., evaluate=TRUE) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma", notav="robust.rma") if (is.null(call <- getCall(object))) stop(mstyle$stop("Need an object with call component.")) extras <- match.call(expand.dots = FALSE)$... if (!missing(formula.)) { if (inherits(object, c("rma.uni","rma.mv"))) { if (inherits(object$call$yi, "call")) { call$yi <- update.formula(object$call$yi, formula.) } else { if (is.null(object$call$mods)) { object$call$mods <- ~ 1 call$mods <- update.formula(object$call$mods, formula.) } else { if (!any(grepl("~", object$call$mods))) { stop(mstyle$stop("The 'mods' argument in 'object' must be a formula for updating to work.")) } else { call$mods <- update.formula(object$call$mods, formula.) } } } } if (inherits(object, "rma.glmm")) call$mods <- update.formula(object$call$mods, formula.) } if (length(extras)) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if (any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } if (evaluate) eval(call, parent.frame()) else call } metafor/R/confint.rma.peto.r0000644000176200001440000000411714717355552015500 0ustar liggesusersconfint.rma.peto <- function(object, parm, level, digits, transf, targs, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.peto") if (!missing(parm)) warning(mstyle$warning("Argument 'parm' (currently) ignored."), call.=FALSE) x <- object if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL ddd <- list(...) .chkdots(ddd, c("time")) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### level <- .level(level) crit <- qnorm(level/2, lower.tail=FALSE) beta <- x$beta ci.lb <- beta - crit * x$se ci.ub <- beta + crit * x$se ### if requested, apply transformation function if (.isTRUE(transf)) # if transf=TRUE, apply exp transformation to ORs transf <- exp if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ######################################################################### res <- cbind(estimate=beta, ci.lb, ci.ub) res <- list(fixed=res) rownames(res$fixed) <- "" res$digits <- digits if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(res) <- "confint.rma" return(res) } metafor/R/qqnorm.rma.peto.r0000644000176200001440000000535214713142314015341 0ustar liggesusersqqnorm.rma.peto <- function(y, type="rstandard", pch=21, col, bg, grid=FALSE, label=FALSE, offset=0.3, pos=13, ...) { mstyle <- .get.mstyle() .chkclass(class(y), must="rma.peto") x <- y type <- match.arg(type, c("rstandard", "rstudent")) if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) if (length(label) != 1L) stop(mstyle$stop("Argument 'label' should be of length 1.")) .start.plot() if (missing(col)) col <- par("fg") if (missing(bg)) bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) if (is.logical(grid)) gridcol <- .coladj(par("bg","fg"), dark=c(0.2,-0.6), light=c(-0.2,0.6)) if (is.character(grid)) { gridcol <- grid grid <- TRUE } ######################################################################### if (type == "rstandard") { res <- rstandard(x) not.na <- !is.na(res$z) zi <- res$z[not.na] slab <- res$slab[not.na] ord <- order(zi) slab <- slab[ord] } else { res <- rstudent(x) not.na <- !is.na(res$z) zi <- res$z[not.na] slab <- res$slab[not.na] ord <- order(zi) slab <- slab[ord] } sav <- qqnorm(zi, pch=pch, col=col, bg=bg, bty="l", ...) ### add grid (and redraw box) if (.isTRUE(grid)) { grid(col=gridcol) box(..., bty="l") } abline(a=0, b=1, lty="solid", ...) #qqline(zi, ...) #abline(h=0, lty="dotted", ...) #abline(v=0, lty="dotted", ...) points(sav$x, sav$y, pch=pch, col=col, bg=bg, ...) ######################################################################### ### labeling of points if ((is.character(label) && label=="none") || .isFALSE(label)) return(invisible(sav)) if ((is.character(label) && label=="all") || .isTRUE(label)) label <- x$k if (is.numeric(label)) { label <- round(label) if (label < 1 | label > x$k) stop(mstyle$stop("Out of range value for 'label' argument.")) pos.x <- sav$x[ord] pos.y <- sav$y[ord] dev <- abs(pos.x - pos.y) for (i in seq_len(x$k)) { if (sum(dev > dev[i]) < label) { if (pos <= 4) text(pos.x[i], pos.y[i], slab[i], pos=pos, offset=offset, ...) if (pos == 13) text(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] >= 0, 1, 3), offset=offset, ...) if (pos == 24) text(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i]-pos.y[i] <= 0, 2, 4), offset=offset, ...) #text(pos.x[i], pos.y[i], slab[i], pos=ifelse(pos.x[i] >= 0, 2, 4), offset=offset, ...) } } } ######################################################################### invisible(sav) } metafor/R/misc.func.hidden.tes.r0000644000176200001440000000176214433151070016210 0ustar liggesusers.tes.intfun <- function(x, theta, tau, sei, H0, alternative, crit) { if (alternative == "two.sided") pow <- (pnorm(crit, mean=(x-H0)/sei, sd=1, lower.tail=FALSE) + pnorm(-crit, mean=(x-H0)/sei, sd=1, lower.tail=TRUE)) if (alternative == "greater") pow <- pnorm(crit, mean=(x-H0)/sei, sd=1, lower.tail=FALSE) if (alternative == "less") pow <- pnorm(crit, mean=(x-H0)/sei, sd=1, lower.tail=TRUE) res <- pow * dnorm(x, theta, tau) return(res) } .tes.lim <- function(theta, yi, vi, H0, alternative, alpha, tau2, test, tes.alternative, progbar, tes.alpha, correct, rel.tol, subdivisions, tau2.lb) { pval <- tes(x=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, theta=theta, tau2=tau2, test=test, tes.alternative=tes.alternative, progbar=progbar, tes.alpha=tes.alpha, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb, find.lim=FALSE)$pval #cat("theta = ", theta, " pval = ", pval, "\n") return(pval - tes.alpha) } metafor/R/addpoly.default.r0000644000176200001440000005435614717402037015374 0ustar liggesusersaddpoly.default <- function(x, vi, sei, ci.lb, ci.ub, pi.lb, pi.ub, rows=-1, level, annotate, predstyle, predlim, digits, width, mlab, transf, atransf, targs, efac, col, border, lty, fonts, cex, constarea=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(x)) stop(mstyle$stop("Must specify the 'x' argument.")) k <- length(x) ddd <- list(...) if (!is.null(ddd$cr.lb)) pi.lb <- ddd$cr.lb if (!is.null(ddd$cr.ub)) pi.ub <- ddd$cr.ub if (missing(level)) level <- .getfromenv("forest", "level", default=95) level <- .level(level) if (hasArg(pi.lb) && !is.null((pi.lb))) { pi.level <- attributes(pi.lb)$level if (is.null(pi.level)) pi.level <- level pi.dist <- attributes(pi.lb)$dist if (is.null(pi.dist)) pi.dist <- "norm" pi.ddf <- attributes(pi.lb)$ddf if (is.null(pi.ddf)) pi.ddf <- Inf pi.se <- attributes(pi.lb)$se } else { pi.level <- level } if (missing(annotate)) annotate <- .getfromenv("forest", "annotate", default=TRUE) if (missing(digits)) digits <- .getfromenv("forest", "digits", default=2) if (missing(width)) width <- .getfromenv("forest", "width", default=NULL) if (missing(transf)) transf <- .getfromenv("forest", "transf", default=FALSE) if (missing(atransf)) atransf <- .getfromenv("forest", "atransf", default=FALSE) transf.char <- deparse(transf) if (is.function(transf) && is.function(atransf)) stop(mstyle$stop("Use either 'transf' or 'atransf' to specify a transformation (not both).")) if (missing(targs)) targs <- .getfromenv("forest", "targs", default=NULL) if (missing(predstyle)) predstyle <- "line" predstyle <- match.arg(predstyle, c("line", "bar", "shade", "dist")) if (missing(predlim)) predlim <- NULL if (missing(efac)) efac <- .getfromenv("forest", "efac", default=1) ### vertical expansion factor: 1st = polygon(s), 2nd = PI end lines ### note: forest.rma() puts 'efac' into .metafor in the order: ### 1st = CI/PI end lines, 2nd = arrows, 3rd = polygons, 4th = bar/shade/dist height ### so need to pick out the 3rd and 1st/4th in that order ### (so 1st = polygon, 2nd = PI end lines or bar/shade/dist height) if (predstyle == "line") { if (length(efac) == 4L) efac <- efac[c(3,1)] } else { if (length(efac) == 3L) efac <- efac[c(3,4)] } efac <- .expand1(efac, 2L) ### annotation symbols vector annosym <- .chkddd(ddd$annosym, .getfromenv("forest", "annosym", default=NULL)) if (is.null(annosym)) annosym <- c(" [", ", ", "]", "-", " ") # 4th element for minus sign symbol; 5th for space (in place of numbers and +) if (length(annosym) == 3L) annosym <- c(annosym, "-", " ") if (length(annosym) == 4L) annosym <- c(annosym, " ") if (length(annosym) != 5) stop(mstyle$stop("Argument 'annosym' must be a vector of length 3 (or 4 or 5).")) if (missing(fonts)) fonts <- .getfromenv("forest", "fonts", default=NULL) if (missing(mlab)) mlab <- NULL if (k == 1L) { if (predstyle=="dist") { col2 <- .coladj(par("bg","fg"), dark=0.60, light=-0.60) } else { col2 <- par("fg") } if (predstyle=="shade") { col3 <- .coladj(par("bg","fg"), dark=0.05, light=-0.05) } else { col3 <- .coladj(par("bg","fg"), dark=0.20, light=-0.20) } if (missing(col)) { # 1st = summary polygon, 2nd = PI line/bar / shade center / tails, 3rd = shade end / ><0 region, 4th = <>0 region col <- c(par("fg"), col2, col3, NA) } else { if (length(col) == 1L) col <- c(col, col2, col3, NA) if (length(col) == 2L) col <- c(col, col3, NA) if (length(col) == 3L) col <- c(col, NA) } if (missing(border)) { border <- c(par("fg"), par("fg")) # 1st = summary polygon, 2nd = bar for predstyle="bar" and distribution for predstyle="dist" } else { if (length(border) == 1L) border <- c(border, par("fg")) # if user only specified one value, assume it is for the summary polygon } if (missing(border)) { border <- c(par("fg"), par("fg")) # 1st = summary polygon, 2nd = bar for predstyle="bar" } else { if (length(border) == 1L) border <- c(border, par("fg")) } } else { if (predstyle != "line") stop(mstyle$stop(paste0("Can only use predstyle='", predstyle, "' when plotting a single polygon."))) if (missing(col)) col <- par("fg") # color of the polygons (can be a vector) if (missing(border)) border <- par("fg") # border color of the polygons (can be a vector) } lcol <- .chkddd(ddd$lcol, par("fg")) # color of PI lines (can be a vector) if (missing(lty)) lty <- "dotted" if (length(lty) == 1L) lty <- c(lty, "solid") # 1st for PI line, 2nd for PI end if (missing(cex)) cex <- .getfromenv("forest", "cex", default=NULL) if (is.null(mlab)) { if (predstyle == "line") { mlab <- rep("", k) } else { if (predstyle %in% c("bar","shade")) mlab <- c("", paste0("Prediction Interval", annosym[1], round(100*(1-pi.level),digits[[1]]), "% PI", annosym[3])) if (predstyle == "dist") mlab <- c("", paste0("Predictive Distribution", annosym[1], round(100*(1-pi.level),digits[[1]]), "% PI", annosym[3])) # note: this assumes that the PI actually is a 100*(1-pi.level) PI, which may not be true } } else { if (predstyle == "line") { mlab <- .expand1(mlab, k) if (length(mlab) != k) stop(mstyle$stop(paste0("Length of the 'mlab' argument (", length(mlab), ") does not correspond to the number of polygons to be plotted (", k, ")."))) } else { if (length(mlab) == 1L && predstyle %in% c("bar","shade")) mlab <- c(mlab, paste0("Prediction Interval", annosym[1], round(100*(1-pi.level),digits[[1]]), "% PI", annosym[3])) if (length(mlab) == 1L && predstyle == "dist") mlab <- c(mlab, paste0("Predictive Distribution", annosym[1], round(100*(1-pi.level),digits[[1]]), "% PI", annosym[3])) } } lsegments <- function(..., cr.lb, cr.ub, addcred, pi.type, lcol, annosym, textpos) segments(...) ltext <- function(..., cr.lb, cr.ub, addcred, pi.type, lcol, annosym, textpos) text(...) lpolygon <- function(..., cr.lb, cr.ub, addcred, pi.type, lcol, annosym, textpos) polygon(...) lrect <- function(..., cr.lb, cr.ub, addcred, pi.type, lcol, annosym, textpos) rect(...) llines <- function(..., cr.lb, cr.ub, addcred, pi.type, lcol, annosym, textpos) lines(...) ### set/get fonts (1st for labels, 2nd for annotations) ### when passing a named vector, the names are for 'family' and the values are for 'font' if (is.null(fonts)) { fonts <- rep(par("family"), 2L) } else { fonts <- .expand1(fonts, 2L) } if (is.null(names(fonts))) fonts <- setNames(c(1L,1L), nm=fonts) par(family=names(fonts)[1], font=fonts[1]) ######################################################################### yi <- x if (!missing(vi) && is.function(vi)) # if vi is utils::vi() stop(mstyle$stop("Cannot find variable specified for the 'vi' argument.")) if (hasArg(ci.lb) && hasArg(ci.ub) && !is.null(ci.lb) && !is.null(ci.ub)) { ### CI bounds are specified by user if (length(ci.lb) != length(ci.ub)) stop(mstyle$stop("Length of 'ci.lb' and 'ci.ub' are not the same.")) if (length(ci.lb) != k) stop(mstyle$stop("Length of ('ci.lb','ci.ub') does not match the length of 'x'.")) vi <- ifelse(is.na(ci.lb) | is.na(ci.ub), NA_real_, 1) # need this below for checking for NAs } else { ### CI bounds are not specified by user if (missing(vi)) { if (missing(sei)) { stop(mstyle$stop("Must specify either 'vi', 'sei', or ('ci.lb','ci.ub').")) } else { vi <- sei^2 } } if (length(vi) != k) stop(mstyle$stop("Length of 'vi' (or 'sei') does not match the length of 'x'.")) # note: the CI bounds are calculated based on a normal distribution, but # the Knapp and Hartung method may have been used to obtain vi (or sei), # in which case we would want to use a t-distribution; instead, the user # should pass the CI/PI bounds (calculated with test="knha") directly to # the function via the ci.lb/ci.ub and pi.lb/pi.ub arguments ci.lb <- yi - qnorm(level/2, lower.tail=FALSE) * sqrt(vi) ci.ub <- yi + qnorm(level/2, lower.tail=FALSE) * sqrt(vi) } if (hasArg(pi.lb) && hasArg(pi.ub) && !is.null(pi.lb) && !is.null(pi.ub)) { if (length(pi.lb) != length(pi.ub)) stop(mstyle$stop("Length of 'pi.lb' and 'pi.ub' are not the same.")) if (length(pi.lb) != k) stop(mstyle$stop("Length of ('pi.lb', 'pi.ub') does not match the length of 'x'.")) } else { if (predstyle != "line") stop(mstyle$stop("Cannot draw prediction interval if 'pi.lb' and 'pi.ub' are unspecified.")) pi.lb <- rep(NA_real_, k) pi.ub <- rep(NA_real_, k) } ### set rows value if (is.null(rows)) { rows <- -1:(-k) } else { if (length(rows) == 1L) rows <- rows:(rows-k+1) } if (predstyle == "line") { if (length(rows) != k) stop(mstyle$stop(paste0("Length of the 'rows' argument (", length(rows), ") does not correspond to the number of polygons to be plotted (", k, ")."))) } else { if (length(rows) == 1L) rows <- c(rows, rows-1) } ### check for NAs in yi/vi and act accordingly yivi.na <- is.na(yi) | is.na(vi) if (any(yivi.na)) { not.na <- !yivi.na if (na.act == "na.omit") { yi <- yi[not.na] vi <- vi[not.na] ci.lb <- ci.lb[not.na] ci.ub <- ci.ub[not.na] pi.lb <- pi.lb[not.na] pi.ub <- pi.ub[not.na] if (predstyle == "line") mlab <- mlab[not.na] ### rearrange rows due to NAs being omitted if (predstyle == "line") { rows.new <- rows rows.na <- rows[!not.na] for (j in seq_along(rows.na)) { rows.new[rows <= rows.na[j]] <- rows.new[rows <= rows.na[j]] + 1 } rows <- rows.new[not.na] } } if (na.act == "na.fail") stop(mstyle$stop("Missing values in results.")) } k <- length(yi) if (k == 0L) stop(mstyle$stop("Processing terminated since k = 0.")) ### if requested, apply transformation to yi's and CI bounds yi.utransf <- yi if (is.function(transf)) { if (is.null(targs)) { yi <- sapply(yi, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) pi.lb <- sapply(pi.lb, transf) pi.ub <- sapply(pi.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) yi <- sapply(yi, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) pi.lb <- sapply(pi.lb, transf, targs) pi.ub <- sapply(pi.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] tmp <- .psort(pi.lb, pi.ub) pi.lb <- tmp[,1] pi.ub <- tmp[,2] ### determine height of plot and set cex accordingly (if not specified) par.usr <- par("usr") height <- par.usr[4]-par.usr[3] ### cannot use this since the value of k used in creating the plot is unknown #lheight <- strheight("O") #cex.adj <- ifelse(k * lheight > height * 0.8, height/(1.25 * k * lheight), 1) cex.adj <- min(1,20/height) xlim <- par.usr[1:2] if (is.null(cex)) cex <- par("cex") * cex.adj ### allow adjustment of position of study labels and annotations via textpos argument textpos <- .chkddd(ddd$textpos, .getfromenv("forest", "textpos", default=xlim)) if (length(textpos) != 2L) stop(mstyle$stop("Argument 'textpos' must be of length 2.")) if (is.na(textpos[1])) textpos[1] <- xlim[1] if (is.na(textpos[2])) textpos[2] <- xlim[2] ### add annotations if (annotate) { if (is.function(atransf)) { if (is.null(targs)) { if (predstyle %in% c("bar","shade","dist")) { annotext <- cbind(sapply(c(yi, NA_real_), atransf), sapply(c(ci.lb, pi.lb), atransf), sapply(c(ci.ub, pi.ub), atransf)) } else { annotext <- cbind(sapply(yi, atransf), sapply(ci.lb, atransf), sapply(ci.ub, atransf)) } } else { if (predstyle %in% c("bar","shade","dist")) { annotext <- cbind(sapply(c(yi, NA_real_), atransf, targs), sapply(c(ci.lb, pi.lb), atransf, targs), sapply(c(ci.ub, pi.ub), atransf, targs)) } else { annotext <- cbind(sapply(yi, atransf, targs), sapply(ci.lb, atransf, targs), sapply(ci.ub, atransf, targs)) } } ### make sure order of intervals is always increasing tmp <- .psort(annotext[,2:3]) annotext[,2:3] <- tmp } else { if (predstyle %in% c("bar","shade","dist")) { annotext <- cbind(c(yi, NA_real_), c(ci.lb, pi.lb), c(ci.ub, pi.ub)) } else { annotext <- cbind(yi, ci.lb, ci.ub) } } annotext <- fmtx(annotext, digits[[1]]) if (is.null(width)) { width <- apply(annotext, 2, function(x) max(nchar(x))) } else { width <- .expand1(width, ncol(annotext)) } for (j in seq_len(ncol(annotext))) { annotext[,j] <- formatC(annotext[,j], width=width[j]) } annotext <- cbind(annotext[,1], annosym[1], annotext[,2], annosym[2], annotext[,3], annosym[3]) annotext <- apply(annotext, 1, paste, collapse="") if (predstyle %in% c("bar","shade","dist")) annotext[2] <- gsub("NA", "", annotext[2], fixed=TRUE) annotext <- gsub("-", annosym[4], annotext, fixed=TRUE) annotext <- gsub(" ", annosym[5], annotext, fixed=TRUE) par(family=names(fonts)[2], font=fonts[2]) if (predstyle %in% c("bar","shade","dist")) { ltext(x=textpos[2], c(rows[1],rows[2]), labels=annotext, pos=2, cex=cex, ...) } else { ltext(x=textpos[2], rows, labels=annotext, pos=2, cex=cex, ...) } par(family=names(fonts)[1], font=fonts[1]) } col <- .expand1(col, k) border <- .expand1(border, k) lcol <- .expand1(lcol, k) if (isTRUE(constarea)) { area <- (ci.ub - ci.lb) * (height/100)*cex*efac[1] area <- area / min(area, na.rm=TRUE) invarea <- 1 / area polheight <- (height/100)*cex*efac[1]*invarea } else { polheight <- rep((height/100)*cex*efac[1], k) } piendheight <- height / 150 * cex * efac[2] barheight <- min(0.25, height / 150 * cex * efac[2]) for (i in seq_len(k)) { ### add prediction interval(s) ### note: in contrast to forest.rma(), these do not respect 'alim' (could in principle ### store 'alim' in .metafor environment and extract these limits from there, but it ### is also nice to have the option to draw PIs without being bounded by 'alim') if (predstyle == "line") { lsegments(pi.lb[i], rows[i], pi.ub[i], rows[i], lty=lty[1], col=lcol[i], ...) lsegments(pi.lb[i], rows[i]-piendheight, pi.lb[i], rows[i]+piendheight, col=lcol[i], lty=lty[2], ...) lsegments(pi.ub[i], rows[i]-piendheight, pi.ub[i], rows[i]+piendheight, col=lcol[i], lty=lty[2], ...) } if (predstyle == "bar") { lrect(pi.lb[i], rows[2]-barheight, yi[i], rows[2]+barheight, col=col[2], border=border[2], ...) lrect(pi.ub[i], rows[2]-barheight, yi[i], rows[2]+barheight, col=col[2], border=border[2], ...) } if (predstyle %in% c("shade","dist")) { if (is.null(pi.se)) stop(mstyle$stop("Cannot extract SE of the prediction interval.")) if (is.function(transf)) { funlist <- lapply(list("1"=exp, "2"=transf.ztor, "3"=tanh, "4"=transf.ilogit, "5"=plogis, "6"=transf.iarcsin), deparse) funmatch <- sapply(funlist, identical, transf.char) if (!any(funmatch)) stop(mstyle$stop("Chosen transformation not (currently) possible with this 'predstyle'.")) } if (pi.dist != "norm" && pi.ddf <= 1L) stop(mstyle$stop("Cannot shade/draw prediction distribution when df <= 1.")) if (predstyle == "shade") { x.len <- 100 q.lo <- pi.level/2 q.hi <- 1-pi.level/2 } else { x.len <- 10000 q.lo <- 0.0001 q.hi <- 0.9999 } if (is.null(predlim) || predstyle == "shade") { if (pi.dist == "norm") { crits <- qnorm(c(q.lo,q.hi), mean=yi.utransf[i], sd=pi.se) xs <- seq(crits[1], crits[2], length.out=x.len) ys <- dnorm(xs, mean=yi.utransf[i], sd=pi.se) } else { crits <- qt(c(q.lo,q.hi), df=pi.ddf) * pi.se + yi.utransf[i] xs <- seq(crits[1], crits[2], length.out=x.len) ys <- dt((xs - yi.utransf[i]) / pi.se, df=pi.ddf) / pi.se } } else { if (length(predlim) != 2L) stop(mstyle$stop("Argument 'predlim' must be of length 2.")) xs <- seq(predlim[1], predlim[2], length.out=x.len) if (is.function(transf)) { if (funmatch[1]) xs <- suppressWarnings(log(xs)) if (any(funmatch[2:3])) xs <- suppressWarnings(atanh(xs)) if (any(funmatch[4:5])) xs <- suppressWarnings(qlogis(xs)) if (funmatch[6]) xs <- suppressWarnings(transf.arcsin(xs)) sel <- is.finite(xs) # FALSE for +-Inf and NA/NaN x.len <- sum(sel) xs <- xs[sel] } if (pi.dist == "norm") { ys <- dnorm(xs, mean=yi.utransf[i], sd=pi.se) } else { ys <- dt((xs - yi.utransf[i]) / pi.se, df=pi.ddf) / pi.se } } sel.l0 <- xs < 0 sel.g0 <- xs > 0 if (is.function(transf)) { xs <- sapply(xs, transf) if (funmatch[1]) { ys <- ys / xs x.lo <- 0.01 x.hi <- Inf } if (any(funmatch[2:3])) { ys <- ys / (1-xs^2) x.lo <- -0.99 x.hi <- 0.99 } if (any(funmatch[4:5])) { ys <- ys / (xs*(1-xs)) x.lo <- 0.01 x.hi <- 0.99 } if (funmatch[6]) { ys <- ys / (2*sqrt(xs*(1-xs))) x.lo <- 0.01 x.hi <- 0.99 } if (is.null(predlim)) { sel <- xs > x.lo & xs < x.hi sel.l0 <- sel.l0[sel] sel.g0 <- sel.g0[sel] ys <- ys[sel] xs <- xs[sel] } } } if (predstyle == "shade") { intensity <- 1 - (ys - min(ys)) / (max(ys) - min(ys)) colfun <- colorRamp(c(col[2], col[3])) rectcol <- colfun(intensity) rectcol <- apply(rectcol, 1, function(x) if (anyNA(x)) NA else rgb(x[1], x[2], x[3], maxColorValue=255)) lrect(xs[-1], rows[2]-barheight, xs[-length(xs)], rows[2]+barheight, col=rectcol, border=rectcol, ...) } if (predstyle == "dist") { ys <- ys / max(ys) * efac[2] if (is.null(predlim)) { sel <- ys > 0.005 } else { sel <- rep(TRUE, length(ys)) } xs.sel.l0 <- xs[sel.l0 & sel] xs.sel.g0 <- xs[sel.g0 & sel] ys.sel.l0 <- ys[sel.l0 & sel] ys.sel.g0 <- ys[sel.g0 & sel] xs <- xs[sel] ys <- ys[sel] drow <- rows[2] - 0.5 ys <- ys + drow ys.sel.l0 <- ys.sel.l0 + drow ys.sel.g0 <- ys.sel.g0 + drow ### shade regions above/below 0 if (yi.utransf[i] > 0) { lpolygon(c(xs.sel.g0,rev(xs.sel.g0)), c(ys.sel.g0,rep(drow,length(ys.sel.g0))), col=col[4], border=ifelse(is.na(col[4]),NA,border[2]), ...) lpolygon(c(xs.sel.l0,rev(xs.sel.l0)), c(ys.sel.l0,rep(drow,length(ys.sel.l0))), col=col[3], border=ifelse(is.na(col[3]),NA,border[2]), ...) } else { lpolygon(c(xs.sel.g0,rev(xs.sel.g0)), c(ys.sel.g0,rep(drow,length(ys.sel.g0))), col=col[3], border=ifelse(is.na(col[3]),NA,border[2]), ...) lpolygon(c(xs.sel.l0,rev(xs.sel.l0)), c(ys.sel.l0,rep(drow,length(ys.sel.l0))), col=col[4], border=ifelse(is.na(col[4]),NA,border[2]), ...) } ### shade tail areas sel <- xs <= pi.lb xs.sel <- xs[sel] ys.sel <- ys[sel] lpolygon(c(xs.sel,rev(xs.sel)), c(ys.sel,rep(drow,length(ys.sel))), col=col[2], border=border[2], ...) sel <- xs >= pi.ub xs.sel <- xs[sel] ys.sel <- ys[sel] lpolygon(c(xs.sel,rev(xs.sel)), c(ys.sel,rep(drow,length(ys.sel))), col=col[2], border=border[2], ...) ### add horizontal and distribution lines llines(xs, rep(drow,length(ys)), col=border[2], ...) llines(xs, ys, col=border[2], ...) } ### add polygon(s) lpolygon(x=c(ci.lb[i], yi[i], ci.ub[i], yi[i]), y=c(rows[i], rows[i]+polheight[i], rows[i], rows[i]-polheight[i]), col=col[i], border=border[i], ...) ### add label(s) if (!is.null(mlab)) { ltext(x=textpos[1], rows[i], mlab[[i]], pos=4, cex=cex, ...) if (predstyle %in% c("bar","shade","dist")) ltext(textpos[1], rows[2], mlab[[2]], pos=4, cex=cex, ...) } } } metafor/R/fsn.r0000644000176200001440000003100114717402105013055 0ustar liggesusersfsn <- function(x, vi, sei, subset, data, type, alpha=.05, target, method, exact=FALSE, verbose=FALSE, digits, ...) { ######################################################################### mstyle <- .get.mstyle() na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) ### set defaults if (missing(target)) target <- NULL ddd <- list(...) .chkdots(ddd, c("pool", "mumiss", "interval", "maxint", "tol", "maxiter", "tau2", "test", "weighted")) pool <- .chkddd(ddd$pool, "stouffer", match.arg(tolower(ddd$pool), c("stouffer", "fisher"))) mumiss <- .chkddd(ddd$mumiss, 0) # note: default interval set below; see [a] (based on k) maxint <- .chkddd(ddd$maxint, 10^7) tol <- .chkddd(ddd$tol, .Machine$double.eps^0.25) maxiter <- .chkddd(ddd$maxiter, 1000) ### observed values (to be replaced as needed) est <- NA_real_ # pooled estimate tau2 <- NA_real_ # tau^2 estimate pval <- NA_real_ # p-value ### defaults (to be replaced for type="General") est.fsn <- NA_real_ tau2.fsn <- NA_real_ pval.fsn <- NA_real_ ub.sign <- "" ######################################################################### ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() x <- .getx("x", mf=mf, data=data) ######################################################################### if (inherits(x, "rma")) { .chkclass(class(x), must="rma", notav=c("robust.rma", "rma.glmm", "rma.mv", "rma.ls", "rma.gen", "rma.uni.selmodel")) if (!x$int.only) stop(mstyle$stop("Method only applicable to models without moderators.")) if (!missing(type) && type != "General") warning(mstyle$warning("Setting type='General' when using fsn() on a model object."), call.=FALSE) type <- "General" if (!is.null(x$weights)) stop(mstyle$stop("Cannot use function on models with custom weights.")) if (!missing(vi) || !missing(sei) || !missing(subset)) warning(mstyle$warning("Arguments 'vi', 'sei', and 'subset' ignored when 'x' is a model object."), call.=FALSE) yi <- x$yi vi <- x$vi ### set defaults for digits if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } } else { if (!.is.vector(x)) stop(mstyle$stop("Argument 'x' must be a vector or an 'rma' model object.")) ### select/match type if (missing(type)) type <- "Rosenthal" type.options <- c("rosenthal", "binomial", "orwin", "rosenberg", "general") type <- type.options[grep(tolower(type), type.options)[1]] if (is.na(type)) stop(mstyle$stop("Unknown 'type' specified.")) type <- paste0(toupper(substr(type, 1, 1)), substr(type, 2, nchar(type))) ### check if yi is numeric yi <- x if (!is.numeric(yi)) stop(mstyle$stop("The object/variable specified for the 'x' argument is not numeric.")) ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } vi <- .getx("vi", mf=mf, data=data, checknumeric=TRUE) sei <- .getx("sei", mf=mf, data=data, checknumeric=TRUE) subset <- .getx("subset", mf=mf, data=data) if (is.null(vi)) { if (!is.null(sei)) vi <- sei^2 } if (type %in% c("Rosenthal", "Rosenberg", "General") && is.null(vi)) stop(mstyle$stop("Must specify the 'vi' or 'sei' argument.")) ### ensure backwards compatibility with the 'weighted' argument when type="Orwin" if (type == "Orwin") { if (isTRUE(ddd$weighted) && is.null(vi)) # if weighted=TRUE, then check that the vi's are available stop(mstyle$stop("Must specify the 'vi' or 'sei' argument.")) if (isFALSE(ddd$weighted)) # if weighted=FALSE, then set vi <- 1 for unweighted vi <- 1 if (is.null(ddd$weighted) && is.null(vi)) # if weighted is unspecified, set vi <- 1 if vi's are unspecified vi <- 1 } ### allow easy setting of vi to a single value vi <- .expand1(vi, length(yi)) ### check length of yi and vi if (length(yi) != length(vi)) stop(mstyle$stop("Length of 'yi' and 'vi' (or 'sei') are not the same.")) ### check 'vi' argument for potential misuse .chkviarg(mf$vi) ######################################################################### ### if a subset of studies is specified if (!is.null(subset)) { subset <- .chksubset(subset, length(yi)) yi <- .getsubset(yi, subset) vi <- .getsubset(vi, subset) } ### check for NAs and act accordingly has.na <- is.na(yi) | is.na(vi) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na] vi <- vi[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in data.")) } } ######################################################################### ### check for non-positive sampling variances if (any(vi <= 0)) stop(mstyle$stop("Cannot use function when there are non-positive sampling variances in the data.")) ### number of studies k <- length(yi) if (k == 1L) stop(mstyle$stop("Stopped because k = 1.")) ### set interval for uniroot() [a] interval <- .chkddd(ddd$interval, c(0,k*50)) ######################################################################### if (type == "Rosenthal" && pool == "stouffer") { zi <- c(yi / sqrt(vi)) z.avg <- abs(sum(zi) / sqrt(k)) pval <- pnorm(z.avg, lower.tail=FALSE) fsnum <- max(0, k * (z.avg / qnorm(alpha, lower.tail=FALSE))^2 - k) fsnum <- .rnd.fsn(fsnum) target <- NA_real_ } if (type == "Rosenthal" && pool == "fisher") { zi <- c(yi / sqrt(vi)) pi <- pnorm(abs(zi), lower.tail=FALSE) pval <- .fsn.fisher(0, pi=pi, alpha=0) if (pval >= alpha) { fsnum <- 0 } else { fsnum <- try(uniroot(.fsn.fisher, interval=interval, extendInt="upX", tol=tol, maxiter=maxiter, pi=pi, alpha=alpha)$root, silent=FALSE) if (inherits(fsnum, "try-error")) stop(mstyle$stop("Could not find fail-safe N using Fisher's method for pooling p-values.")) } fsnum <- .rnd.fsn(fsnum) target <- NA_real_ } if (type == "Binomial") { kpos <- sum(yi > 0) pval <- binom.test(kpos, k)$p.value if (pval >= alpha) { fsnum <- 0 } else { pvalnew <- pval fsnum <- 0 while (pvalnew < alpha) { fsnum <- fsnum + 2 pvalnew <- binom.test(kpos + fsnum/2, k + fsnum)$p.value } } fsnum <- .rnd.fsn(fsnum) target <- NA_real_ } if (type == "Orwin") { wi <- 1 / vi est <- .wmean(yi, wi) if (is.null(target)) target <- est / 2 if (identical(target, 0)) { fsnum <- Inf } else { if (sign(target) != sign(est)) target <- -1 * target fsnum <- max(0, k * (est - target) / target) } fsnum <- .rnd.fsn(fsnum) } if (type == "Rosenberg") { wi <- 1 / vi est <- .wmean(yi, wi) zval <- est / sqrt(1/sum(wi)) pval <- 2*pnorm(abs(zval), lower.tail=FALSE) vt <- 1 / mean(1/vi) #w.p <- (sum(wi*yi) / qnorm(alpha/2, lower.tail=FALSE))^2 - sum(wi) #fsnum <- max(0, k*w.p/sum(wi)) fsnum <- max(0, ((sum(wi*yi) / qnorm(alpha/2, lower.tail=FALSE))^2 - sum(wi)) * vt) fsnum <- .rnd.fsn(fsnum) target <- NA_real_ } if (type == "General") { if (missing(method)) { if (inherits(x, "rma")) { method <- x$method } else { method <- "REML" } } tau2fix <- NULL if (inherits(x, "rma") && x$tau2.fix) tau2fix <- x$tau2 if (!is.null(ddd$tau2)) tau2fix <- ddd$tau2 test <- "z" if (inherits(x, "rma")) test <- x$test if (!is.null(ddd$test)) test <- ddd$test if (test != "z") exact <- TRUE weighted <- TRUE if (inherits(x, "rma")) weighted <- x$weighted if (!is.null(ddd$weighted)) weighted <- isTRUE(ddd$weighted) tmp <- try(rma(yi, vi, method=method, tau2=tau2fix, test=test, weighted=weighted, verbose=verbose), silent=!verbose) if (inherits(tmp, "try-error")) stop(mstyle$stop("Could not fit random-effects model (use verbose=TRUE for more info).")) vt <- 1 / mean(1/vi) est <- tmp$beta[1] tau2 <- tmp$tau2 pval <- tmp$pval if (mumiss != 0 && sign(est) == sign(mumiss)) { mumiss <- -mumiss message(mstyle$message("Flipped the sign of 'mumiss'.")) } if (is.null(target)) { if (pval >= alpha) { fsnum <- 0 } else { fsnum <- try(uniroot(.fsn.gen, interval=interval, extendInt="upX", tol=tol, maxiter=maxiter, yi=yi, vi=vi, vt=vt, est=est, tau2=tau2, tau2fix=tau2fix, test=test, weighted=weighted, target=target, alpha=alpha, exact=exact, method=method, mumiss=mumiss, upperint=max(interval), maxint=maxint, verbose=verbose)$root, silent=TRUE) if (inherits(fsnum, "try-error")) stop(mstyle$stop("Could not find fail-safe N based on a random-effects model (use verbose=TRUE for more info).")) if (fsnum > maxint) fsnum <- maxint fsnum <- .rnd.fsn(fsnum) tmp <- .fsn.gen(fsnum, yi=yi, vi=vi, vt=vt, est=est, tau2=tau2, tau2fix=tau2fix, test=test, weighted=weighted, target=target, alpha=alpha, exact=exact, method=method, mumiss=mumiss, upperint=max(interval), maxint=maxint, newest=TRUE) } target <- NA_real_ } else { if (sign(target) != sign(est)) target <- -1 * target if (identical(target, 0)) { fsnum <- Inf } else if (abs(target) >= abs(est)) { fsnum <- 0 } else { fsnum <- try(uniroot(.fsn.gen, interval=interval, extendInt=ifelse(est > 0,"downX","upX"), tol=tol, maxiter=maxiter, yi=yi, vi=vi, vt=vt, est=est, tau2=tau2, tau2fix=tau2fix, test=test, weighted=weighted, target=target, alpha=alpha, exact=exact, method=method, mumiss=mumiss, upperint=max(interval), maxint=maxint, verbose=verbose)$root, silent=TRUE) if (inherits(fsnum, "try-error")) stop(mstyle$stop("Could not find fail-safe N based on a random-effects model (use verbose=TRUE for more info).")) if (fsnum > maxint) fsnum <- maxint fsnum <- .rnd.fsn(fsnum) tmp <- .fsn.gen(fsnum, yi=yi, vi=vi, vt=vt, est=est, tau2=tau2, tau2fix=tau2fix, test=test, weighted=weighted, target=target, alpha=alpha, exact=exact, method=method, mumiss=mumiss, upperint=max(interval), maxint=maxint, newest=TRUE) } } if (fsnum == 0) { est.fsn <- est tau2.fsn <- tau2 pval.fsn <- pval } else { est.fsn <- tmp$est.fsn tau2.fsn <- tmp$tau2.fsn pval.fsn <- tmp$pval.fsn } if (fsnum >= maxint) ub.sign <- ">" } ######################################################################### res <- list(type=type, fsnum=fsnum, est=est, tau2=tau2, meanes=est, pval=pval, alpha=alpha, target=target, method=ifelse(type=="General", method, NA), est.fsn=est.fsn, tau2.fsn=tau2.fsn, pval.fsn=pval.fsn, ub.sign=ub.sign, digits=digits) class(res) <- "fsn" return(res) } metafor/R/summary.escalc.r0000644000176200001440000002134414657374427015250 0ustar liggesuserssummary.escalc <- function(object, out.names=c("sei","zi","pval","ci.lb","ci.ub"), var.names, H0=0, append=TRUE, replace=TRUE, level=95, olim, digits, transf, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="escalc") x <- object level <- .level(level) crit <- qnorm(level/2, lower.tail=FALSE) if (length(out.names) != 5L) stop(mstyle$stop("Argument 'out.names' must be of length 5.")) if (any(out.names != make.names(out.names, unique=TRUE))) { out.names <- make.names(out.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'out.names' does not contain syntactically valid variable names.\nVariable names adjusted to: out.names = c('", out.names[1], "','", out.names[2], "','", out.names[3], "','", out.names[4], "','", out.names[5], "').")), call.=FALSE) } if (missing(transf)) transf <- FALSE ######################################################################### ### figure out names of yi and vi variables (if possible) and extract the values (if possible) if (missing(var.names)) { # if var.names not specified, take from object if possible if (!is.null(attr(x, "yi.names"))) { # if yi.names attributes is available yi.name <- attr(x, "yi.names")[1] # take the first entry to be the yi variable } else { # if not, see if 'yi' is in the object and assume that is the yi variable if (!is.element("yi", names(x))) stop(mstyle$stop("Cannot determine name of the 'yi' variable.")) yi.name <- "yi" } if (!is.null(attr(x, "vi.names"))) { # if vi.names attributes is available vi.name <- attr(x, "vi.names")[1] # take the first entry to be the vi variable } else { # if not, see if 'vi' is in the object and assume that is the vi variable if (!is.element("vi", names(x))) stop(mstyle$stop("Cannot determine name of the 'vi' variable.")) vi.name <- "vi" } } else { if (length(var.names) != 2L) stop(mstyle$stop("Argument 'var.names' must be of length 2.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\nVariable names adjusted to: var.names = c('", var.names[1], "','", var.names[2], "').")), call.=FALSE) } yi.name <- var.names[1] vi.name <- var.names[2] } yi <- x[[yi.name]] vi <- x[[vi.name]] if (is.null(yi)) stop(mstyle$stop(paste0("Cannot find variable '", yi.name, "' in the data frame."))) if (is.null(vi)) stop(mstyle$stop(paste0("Cannot find variable '", vi.name, "' in the data frame."))) ######################################################################### H0 <- .expand1(H0, length(yi)) ### compute sei, zi, and lower/upper CI bounds; when applying a transformation, compute the transformed outcome and CI bounds sei <- sqrt(vi) zi <- c(yi - H0) / sei pval <- 2*pnorm(abs(zi), lower.tail=FALSE) if (is.function(transf)) { ci.lb <- mapply(transf, yi - crit * sei, ...) ci.ub <- mapply(transf, yi + crit * sei, ...) yi <- mapply(transf, yi, ...) attr(x, "transf") <- TRUE vi <- NULL sei <- NULL zi <- NULL pval <- NULL } else { ci.lb <- yi - crit * sei ci.ub <- yi + crit * sei attr(x, "transf") <- FALSE } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ### apply observation/outcome limits if specified if (!missing(olim)) { if (length(olim) != 2L) stop(mstyle$stop("Argument 'olim' must be of length 2.")) olim <- sort(olim) yi <- .applyolim(yi, olim) # note: zi and pval are based on unconstrained yi ci.lb <- .applyolim(ci.lb, olim) ci.ub <- .applyolim(ci.ub, olim) } x[[yi.name]] <- yi x[[vi.name]] <- vi #return(cbind(yi, vi, sei, zi, ci.lb, ci.ub)) ### put together dataset if (append) { ### if user wants to append dat <- data.frame(x) if (replace) { ### and wants to replace all values dat[[out.names[1]]] <- sei # if variable does not exists in dat, it will be added dat[[out.names[2]]] <- zi # if variable does not exists in dat, it will be added dat[[out.names[3]]] <- pval # if variable does not exists in dat, it will be added dat[[out.names[4]]] <- ci.lb # if variable does not exists in dat, it will be added dat[[out.names[5]]] <- ci.ub # if variable does not exists in dat, it will be added } else { ### and only wants to replace any NA values if (is.element(out.names[1], names(dat))) { # if sei variable is in data frame, replace NA values with newly calculated values is.na.sei <- is.na(dat[[out.names[1]]]) dat[[out.names[1]]][is.na.sei] <- sei[is.na.sei] } else { dat[[out.names[1]]] <- sei # if sei variable does not exist in dat, just add as new variable } if (is.element(out.names[2], names(dat))) { # if zi variable is in data frame, replace NA values with newly calculated values is.na.zi <- is.na(dat[[out.names[2]]]) dat[[out.names[2]]][is.na.zi] <- zi[is.na.zi] } else { dat[[out.names[2]]] <- zi # if zi variable does not exist in dat, just add as new variable } if (is.element(out.names[3], names(dat))) { # if pval variable is in data frame, replace NA values with newly calculated values is.na.pval <- is.na(dat[[out.names[3]]]) dat[[out.names[3]]][is.na.pval] <- pval[is.na.pval] } else { dat[[out.names[3]]] <- pval # if pval variable does not exist in dat, just add as new variable } if (is.element(out.names[4], names(dat))) { # if ci.lb variable is in data frame, replace NA values with newly calculated values is.na.ci.lb <- is.na(dat[[out.names[4]]]) dat[[out.names[4]]][is.na.ci.lb] <- ci.lb[is.na.ci.lb] } else { dat[[out.names[4]]] <- ci.lb # if ci.lb variable does not exist in dat, just add as new variable } if (is.element(out.names[5], names(dat))) { # if ci.ub variable is in data frame, replace NA values with newly calculated values is.na.ci.ub <- is.na(dat[[out.names[5]]]) dat[[out.names[5]]][is.na.ci.ub] <- ci.ub[is.na.ci.ub] } else { dat[[out.names[5]]] <- ci.ub # if ci.ub variable does not exist in dat, just add as new variable } } } else { ### if user does not want to append if (is.function(transf)) { dat <- data.frame(yi, ci.lb, ci.ub) names(dat) <- c(yi.name, out.names[4:5]) } else { dat <- data.frame(yi, vi, sei, zi, pval, ci.lb, ci.ub) names(dat) <- c(yi.name, vi.name, out.names) } } ### update existing digits attribute if digits is specified if (!missing(digits)) { attr(dat, "digits") <- .get.digits(digits=digits, xdigits=attr(x, "digits"), dmiss=FALSE) } else { attr(dat, "digits") <- attr(x, "digits") } if (is.null(attr(dat, "digits"))) # in case x no longer has a 'digits' attribute attr(dat, "digits") <- 4 ### update existing var.names attribute if var.names is specified ### and make sure all other yi.names and vi.names are added back in if (!missing(var.names)) { attr(dat, "yi.names") <- union(var.names[1], attr(object, "yi.names")) } else { attr(dat, "yi.names") <- union(yi.name, attr(object, "yi.names")) } if (!missing(var.names)) { attr(dat, "vi.names") <- union(var.names[2], attr(object, "vi.names")) } else { attr(dat, "vi.names") <- union(vi.name, attr(object, "vi.names")) } ### add 'sei.names', 'zi.names', 'pval.names', 'ci.lb.names', and 'ci.ub.names' to the first position of the corresponding attributes ### note: if "xyz" is not an attribute of the object, attr(object, "xyz") returns NULL, so this works fine attr(dat, "sei.names") <- union(out.names[1], attr(object, "sei.names")) attr(dat, "zi.names") <- union(out.names[2], attr(object, "zi.names")) attr(dat, "pval.names") <- union(out.names[3], attr(object, "pval.names")) attr(dat, "ci.lb.names") <- union(out.names[4], attr(object, "ci.lb.names")) attr(dat, "ci.ub.names") <- union(out.names[5], attr(object, "ci.ub.names")) ### TODO: clean up attribute elements that are no longer actually part of the object class(dat) <- c("escalc", "data.frame") return(dat) } metafor/R/to.long.r0000644000176200001440000012657214714365363013704 0ustar liggesusersto.long <- function(measure, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, sdi, ni, data, slab, subset, add=1/2, to="none", drop00=FALSE, vlong=FALSE, append=TRUE, var.names) { mstyle <- .get.mstyle() ### check argument specifications if (missing(measure)) stop(mstyle$stop("Must specify an effect size or outcome measure via the 'measure' argument.")) if (!is.character(measure)) stop(mstyle$stop("The 'measure' argument must be a character string.")) if (!is.element(measure, c("RR","OR","PETO","RD","AS","PHI","YUQ","YUY","RTET", # 2x2 table measures "PBIT","OR2D","OR2DN","OR2DL", # - transformations to SMD "MPRD","MPRR","MPOR","MPORC","MPPETO","MPORM", # - measures for matched pairs data "IRR","IRD","IRSD", # two-group person-time data measures "MD","SMD","SMDH","ROM", # two-group mean/SD measures "CVR","VR", # coefficient of variation ratio, variability ratio "RPB","RBIS","D2OR","D2ORN","D2ORL", # - transformations to r_PB, r_BIS, and log(OR) "COR","UCOR","ZCOR", # correlations (raw and r-to-z transformed) "PCOR","ZPCOR","SPCOR", # partial and semi-partial correlations "R2","ZR2","R2F","ZR2F", # coefficient of determination (raw and r-to-z transformed) "PR","PLN","PLO","PRZ","PAS","PFT", # single proportions (and transformations thereof) "IR","IRLN","IRS","IRFT", # single-group person-time data (and transformations thereof) "MN","SMN","MNLN","CVLN","SDLN", # mean, single-group standardized mean, log(mean), log(CV), log(SD), "MC","SMCC","SMCR","SMCRH","ROMC","CVRC","VRC", # raw/standardized mean change, log(ROM), CVR, and VR for dependent samples "ARAW","AHW","ABT"))) # alpha (and transformations thereof) stop(mstyle$stop("Unknown 'measure' specified.")) if (is.element(measure, c("CVR","VR","PCOR","ZPCOR","SPCOR","R2","ZR2","R2F","ZR2F","CVLN","SDLN","VRC"))) stop(mstyle$stop("Function not available for this outcome measure.")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (!is.element(to, c("all","only0","if0all","none"))) stop(mstyle$stop("Unknown 'to' argument specified.")) ### check if data argument has been specified if (missing(data)) data <- NULL ### need this at the end to check if append=TRUE can actually be done has.data <- !is.null(data) if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } doappend <- FALSE if (has.data && is.logical(append) && isTRUE(append)) { doappend <- TRUE appendvars <- seq_len(ncol(data)) } if (has.data && is.numeric(append)) { doappend <- TRUE append <- unique(round(append)) append <- append[which(append >= 1)] append <- append[which(append <= ncol(data))] append <- c(na.omit(append)) appendvars <- append } if (has.data && is.character(append)) { doappend <- TRUE append <- unique(append) append <- pmatch(append, colnames(data)) append <- c(na.omit(append)) appendvars <- append } mf <- match.call() ### get slab and subset arguments (will be NULL when unspecified) slab <- .getx("slab", mf=mf, data=data) subset <- .getx("subset", mf=mf, data=data) ######################################################################### ######################################################################### ######################################################################### if (is.element(measure, c("RR","OR","RD","AS","PETO","PHI","YUQ","YUY","RTET","PBIT","OR2D","OR2DN","OR2DL","MPRD","MPRR","MPOR","MPORC","MPPETO","MPORM"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ai, bi, ci, di, n1i, n2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) n1i.inc <- n1i != ai + bi n2i.inc <- n2i != ci + di if (any(n1i.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'n1i' values are not equal to 'ai + bi'.")) if (any(n2i.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'n2i' values are not equal to 'ci + di'.")) bi <- replmiss(bi, n1i-ai) di <- replmiss(di, n2i-ci) if (!.all.specified(ai, bi, ci, di)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ai, bi, ci, di or ai, n1i, ci, n2i).")) k <- length(ai) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) di <- .getsubset(di, subset) } n1i <- ai + bi n2i <- ci + di if (any(c(ai > n1i, ci > n2i), na.rm=TRUE)) stop(mstyle$stop("One or more event counts are larger than the corresponding group sizes.")) if (any(c(ai, bi, ci, di) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(c(n1i < 0, n2i < 0), na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are negative.")) ni.u <- ai + bi + ci + di # unadjusted total sample sizes ### if drop00=TRUE, set counts to NA for studies that have no events (or all events) in both arms if (drop00) { id00 <- c(ai == 0L & ci == 0L) | c(bi == 0L & di == 0L) id00[is.na(id00)] <- FALSE ai[id00] <- NA_real_ bi[id00] <- NA_real_ ci[id00] <- NA_real_ di[id00] <- NA_real_ } if (to == "all") { ### always add to all cells in all studies ai <- ai + add ci <- ci + add bi <- bi + add di <- di + add } if (to == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(ai == 0L | ci == 0L | bi == 0L | di == 0L) id0[is.na(id0)] <- FALSE ai[id0] <- ai[id0] + add ci[id0] <- ci[id0] + add bi[id0] <- bi[id0] + add di[id0] <- di[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(ai == 0L | ci == 0L | bi == 0L | di == 0L) id0[is.na(id0)] <- FALSE if (any(id0)) { ai <- ai + add ci <- ci + add bi <- bi + add di <- di + add } } } ######################################################################### if (is.element(measure, c("IRR","IRD","IRSD"))) { x1i <- .getx("x1i", mf=mf, data=data, checknumeric=TRUE) x2i <- .getx("x2i", mf=mf, data=data, checknumeric=TRUE) t1i <- .getx("t1i", mf=mf, data=data, checknumeric=TRUE) t2i <- .getx("t2i", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(x1i, x2i, t1i, t2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., x1i, x2i, t1i, t2i).")) if (!.equal.length(x1i, x2i, t1i, t2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(x1i) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) x1i <- .getsubset(x1i, subset) x2i <- .getsubset(x2i, subset) t1i <- .getsubset(t1i, subset) t2i <- .getsubset(t2i, subset) } if (any(c(x1i, x2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(c(t1i, t2i) <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more person-times are <= 0.")) ni.u <- t1i + t2i # unadjusted total sample sizes ### if drop00=TRUE, set counts to NA for studies that have no events in both arms if (drop00) { id00 <- c(x1i == 0L & x2i == 0L) id00[is.na(id00)] <- FALSE x1i[id00] <- NA_real_ x2i[id00] <- NA_real_ } if (to == "all") { ### always add to all cells in all studies x1i <- x1i + add x2i <- x2i + add } if (to == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(x1i == 0L | x2i == 0L) id0[is.na(id0)] <- FALSE x1i[id0] <- x1i[id0] + add x2i[id0] <- x2i[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(x1i == 0L | x2i == 0L) id0[is.na(id0)] <- FALSE if (any(id0)) { x1i <- x1i + add x2i <- x2i + add } } } ######################################################################### if (is.element(measure, c("MD","SMD","SMDH","ROM","RPB","RBIS","D2OR","D2ORN","D2ORL"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(m1i, m2i, sd1i, sd2i, n1i, n2i)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, sd2i, n1i, n2i).")) if (!.equal.length(m1i, m2i, sd1i, sd2i, n1i, n2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(n1i) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) m1i <- .getsubset(m1i, subset) m2i <- .getsubset(m2i, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) n1i <- .getsubset(n1i, subset) n2i <- .getsubset(n2i, subset) } if (any(c(sd1i, sd2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) if (any(c(n1i, n2i) <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are <= 0.")) ni.u <- n1i + n2i # unadjusted total sample sizes } ######################################################################### if (is.element(measure, c("COR","UCOR","ZCOR"))) { ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ri, ni, ti)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ri <- replmiss(ri, ti / sqrt(ni - 2 + ti^2)) if (!.all.specified(ri, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ri, ni).")) k <- length(ri) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k=k) ri <- .getsubset(ri, subset) ni <- .getsubset(ni, subset) } if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes } ######################################################################### if (is.element(measure, c("PR","PLN","PLO","PRZ","PAS","PFT"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(xi, mi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ni.inc <- ni != xi + mi if (any(ni.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'ni' values are not equal to 'xi + mi'.")) mi <- replmiss(mi, ni-xi) if (!.all.specified(xi, mi)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., xi, mi or xi, ni).")) k <- length(xi) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) xi <- .getsubset(xi, subset) mi <- .getsubset(mi, subset) } ni <- xi + mi if (any(xi > ni, na.rm=TRUE)) stop(mstyle$stop("One or more event counts are larger than the corresponding group sizes.")) if (any(c(xi, mi) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes if (to == "all") { ### always add to all cells in all studies xi <- xi + add mi <- mi + add } if (to == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(xi == 0L | mi == 0L) id0[is.na(id0)] <- FALSE xi[id0] <- xi[id0] + add mi[id0] <- mi[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(xi == 0L | mi == 0L) id0[is.na(id0)] <- FALSE if (any(id0)) { xi <- xi + add mi <- mi + add } } } ######################################################################### if (is.element(measure, c("IR","IRLN","IRS","IRFT"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(xi, ti)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., xi, ti).")) if (!.equal.length(xi, ti)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(xi) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) xi <- .getsubset(xi, subset) ti <- .getsubset(ti, subset) } if (any(xi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(ti <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more person-times are <= 0.")) ni.u <- ti # unadjusted total sample sizes if (to == "all") { ### always add to all cells in all studies xi <- xi + add } if (to == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(xi == 0L) id0[is.na(id0)] <- FALSE xi[id0] <- xi[id0] + add } if (to == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(xi == 0L) id0[is.na(id0)] <- FALSE if (any(id0)) { xi <- xi + add } } } ######################################################################### if (is.element(measure, c("MN","SMN","MNLN"))) { mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) sdi <- .getx("sdi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(mi, sdi, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., mi, sdi, ni).")) if (!.equal.length(mi, sdi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(ni) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) mi <- .getsubset(mi, subset) sdi <- .getsubset(sdi, subset) ni <- .getsubset(ni, subset) } if (any(sdi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) if (is.element(measure, c("MNLN","CVLN")) && any(mi < 0, na.rm=TRUE)) stop(mstyle$stop("One or more means are negative.")) ni.u <- ni # unadjusted total sample sizes } ######################################################################### if (is.element(measure, c("MC","SMCC","SMCR","SMCRH","ROMC","CVRC"))) { m1i <- .getx("m1i", mf=mf, data=data, checknumeric=TRUE) m2i <- .getx("m2i", mf=mf, data=data, checknumeric=TRUE) sd1i <- .getx("sd1i", mf=mf, data=data, checknumeric=TRUE) sd2i <- .getx("sd2i", mf=mf, data=data, checknumeric=TRUE) ri <- .getx("ri", mf=mf, data=data, checknumeric=TRUE) # for SMCR, do not need to supply this ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) k <- length(m1i) # number of outcomes before subsetting if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { if (!.all.specified(m1i, m2i, sd1i, sd2i, ni, ri)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, sd2i, ni, ri).")) if (!.equal.length(m1i, m2i, sd1i, sd2i, ni, ri)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } else { if (!.all.specified(m1i, m2i, sd1i, ni, ri)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., m1i, m2i, sd1i, ni, ri).")) if (!.equal.length(m1i, m2i, sd1i, ni, ri)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) } if (!is.null(subset)) { subset <- .chksubset(subset, k) m1i <- .getsubset(m1i, subset) m2i <- .getsubset(m2i, subset) sd1i <- .getsubset(sd1i, subset) sd2i <- .getsubset(sd2i, subset) ni <- .getsubset(ni, subset) ri <- .getsubset(ri, subset) } if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { if (any(c(sd1i, sd2i) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) } else { if (any(sd1i < 0, na.rm=TRUE)) stop(mstyle$stop("One or more standard deviations are negative.")) } if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes } ######################################################################### if (is.element(measure, c("ARAW","AHW","ABT"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (!.all.specified(ai, mi, ni)) stop(mstyle$stop("Cannot compute outcomes. Check that all of the required information is specified\n via the appropriate arguments (i.e., ai, mi, ni).")) if (!.equal.length(ai, mi, ni)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(ai) # number of outcomes before subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) mi <- .getsubset(mi, subset) ni <- .getsubset(ni, subset) } if (any(ai > 1, na.rm=TRUE)) stop(mstyle$stop("One or more alpha values are > 1.")) if (any(mi < 2, na.rm=TRUE)) stop(mstyle$stop("One or more mi values are < 2.")) if (any(ni <= 0, na.rm=TRUE)) stop(mstyle$stop("One or more sample sizes are <= 0.")) ni.u <- ni # unadjusted total sample sizes } ######################################################################### ######################################################################### ######################################################################### ### generate study labels if none are specified if (is.null(slab)) { slab <- seq_len(k) } else { if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the dataset (", k, ")."))) if (is.factor(slab)) slab <- as.character(slab) } ### if a subset of studies is specified if (!is.null(subset)) { slab <- .getsubset(slab, subset) if (has.data) data <- .getsubset(data, subset) } ### check if study labels are unique; if not, make them unique if (anyDuplicated(slab)) slab <- .make.unique(slab) ######################################################################### ######################################################################### ######################################################################### if (is.element(measure, c("RR","OR","RD","AS","PETO","PHI","YUQ","YUY","RTET","PBIT","OR2D","OR2DN","OR2DL","MPORM"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ai) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset if (vlong) { ### create very long format dataset dat <- data.frame(rep(slab, each=4L), stringsAsFactors=FALSE) dat[[2]] <- rep(c(1,1,2,2), k) dat[[3]] <- rep(c(1,2,1,2), k) dat[[4]] <- c(rbind(ai,bi,ci,di)) if (missing(var.names)) { names(dat) <- c("study", "group", "outcome", "freq") } else { if (length(var.names) != 4L) stop(mstyle$stop("Variable names not of length 4.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) dat[[2]] <- factor(dat[[2]], levels=c(2,1)) dat[[3]] <- factor(dat[[3]], levels=c(2,1)) if (doappend) dat <- cbind(data[rep(seq_len(k), each=4L),appendvars,drop=FALSE], dat) } else { ### create regular long format dataset dat <- data.frame(rep(slab, each=2L), stringsAsFactors=FALSE) dat[[2]] <- rep(c(1,2), k) dat[[3]] <- c(rbind(ai,ci)) dat[[4]] <- c(rbind(bi,di)) if (missing(var.names)) { names(dat) <- c("study", "group", "out1", "out2") } else { if (length(var.names) != 4L) stop(mstyle$stop("Variable names not of length 4.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) dat[[2]] <- factor(dat[[2]], levels=c(2,1)) if (doappend) dat <- cbind(data[rep(seq_len(k), each=2L),appendvars,drop=FALSE], dat) } } ######################################################################### if (is.element(measure, c("MPRD","MPRR","MPOR"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ai) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset if (vlong) { ### create very long format dataset dat <- data.frame(rep(slab, each=4L), stringsAsFactors=FALSE) dat[[2]] <- rep(c(1,1,2,2), k) dat[[3]] <- rep(c(1,2,1,2), k) dat[[4]] <- c(rbind(ai+bi,ci+di,ai+ci,bi+di)) if (missing(var.names)) { names(dat) <- c("study", "time", "outcome", "freq") } else { if (length(var.names) != 4L) stop(mstyle$stop("Variable names not of length 4.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) dat[[2]] <- factor(dat[[2]], levels=c(2,1)) dat[[3]] <- factor(dat[[3]], levels=c(2,1)) if (doappend) dat <- data.frame(data[rep(seq_len(k), each=4L),appendvars,drop=FALSE], dat) } else { ### create regular long format dataset dat <- data.frame(rep(slab, each=2L), stringsAsFactors=FALSE) dat[[2]] <- rep(c(1,2), k) dat[[3]] <- c(rbind(ai+bi,ai+ci)) dat[[4]] <- c(rbind(ci+di,bi+di)) if (missing(var.names)) { names(dat) <- c("study", "time", "out1", "out2") } else { if (length(var.names) != 4L) stop(mstyle$stop("Variable names not of length 4.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) dat[[2]] <- factor(dat[[2]], levels=c(2,1)) if (doappend) dat <- cbind(data[rep(seq_len(k), each=2L),appendvars,drop=FALSE], dat) } } ######################################################################### if (is.element(measure, c("MPORC","MPPETO"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ai) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset if (vlong) { ### create very long format dataset dat <- data.frame(rep(slab, each=4L), stringsAsFactors=FALSE) dat[[2]] <- rep(c(1,1,2,2), k) dat[[3]] <- rep(c(1,2,1,2), k) dat[[4]] <- c(rbind(ai,bi,ci,di)) if (missing(var.names)) { names(dat) <- c("study", "out.time1", "out.time2", "freq") } else { if (length(var.names) != 4L) stop(mstyle$stop("Variable names not of length 4.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) dat[[2]] <- factor(dat[[2]], levels=c(2,1)) dat[[3]] <- factor(dat[[3]], levels=c(2,1)) if (doappend) dat <- cbind(data[rep(seq_len(k), each=4L),appendvars,drop=FALSE], dat) } else { ### create regular long format dataset dat <- data.frame(rep(slab, each=2L), stringsAsFactors=FALSE) dat[[2]] <- rep(c(1,2), k) dat[[3]] <- c(rbind(ai,ci)) dat[[4]] <- c(rbind(bi,di)) if (missing(var.names)) { names(dat) <- c("study", "out.time1", "out1.time2", "out2.time2") } else { if (length(var.names) != 4L) stop(mstyle$stop("Variable names not of length 4.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) dat[[2]] <- factor(dat[[2]], levels=c(2,1)) if (doappend) dat <- cbind(data[rep(seq_len(k), each=2L),appendvars,drop=FALSE], dat) } } ######################################################################### if (is.element(measure, c("IRR","IRD","IRSD"))) { ### check for NAs in table data and act accordingly has.na <- is.na(x1i) | is.na(x2i) | is.na(t1i) | is.na(t2i) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { x1i <- x1i[not.na] x2i <- x2i[not.na] t1i <- t1i[not.na] t2i <- t2i[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(x1i) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset dat <- data.frame(rep(slab, each=2L), stringsAsFactors=FALSE) dat[[2]] <- rep(c(1,2), k) dat[[3]] <- c(rbind(x1i,x2i)) dat[[4]] <- c(rbind(t1i,t2i)) if (missing(var.names)) { names(dat) <- c("study", "group", "events", "ptime") } else { if (length(var.names) != 4L) stop(mstyle$stop("Variable names not of length 4.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) dat[[2]] <- factor(dat[[2]], levels=c(2,1)) if (doappend) dat <- cbind(data[rep(seq_len(k), each=2L),appendvars,drop=FALSE], dat) } ######################################################################### if (is.element(measure, c("MD","SMD","SMDH","ROM","RPB","RBIS","D2OR","D2ORN","D2ORL"))) { ### check for NAs in table data and act accordingly has.na <- is.na(m1i) | is.na(m2i) | is.na(sd1i) | is.na(sd2i) | is.na(n1i) | is.na(n2i) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { m1i <- m1i[not.na] m2i <- m2i[not.na] sd1i <- sd1i[not.na] sd2i <- sd2i[not.na] n1i <- n1i[not.na] n2i <- n2i[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(m1i) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset dat <- data.frame(rep(slab, each=2L), stringsAsFactors=FALSE) dat[[2]] <- rep(c(1,2), k) dat[[3]] <- c(rbind(m1i,m2i)) dat[[4]] <- c(rbind(sd1i,sd2i)) dat[[5]] <- c(rbind(n1i,n2i)) if (missing(var.names)) { names(dat) <- c("study", "group", "mean", "sd", "n") } else { if (length(var.names) != 5L) stop(mstyle$stop("Variable names not of length 5.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) dat[[2]] <- factor(dat[[2]], levels=c(2,1)) if (doappend) dat <- cbind(data[rep(seq_len(k), each=2L),appendvars,drop=FALSE], dat) } ######################################################################### if (is.element(measure, c("COR","UCOR","ZCOR"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ri) | is.na(ni) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ri <- ri[not.na] ni <- ni[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ri) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset dat <- data.frame(slab, stringsAsFactors=FALSE) dat[[2]] <- ri dat[[3]] <- ni if (missing(var.names)) { names(dat) <- c("study", "r", "n") } else { if (length(var.names) != 3L) stop(mstyle$stop("Variable names not of length 3.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) if (doappend) dat <- cbind(data[,appendvars,drop=FALSE], dat) } ######################################################################### if (is.element(measure, c("PR","PLN","PLO","PRZ","PAS","PFT"))) { ### check for NAs in table data and act accordingly has.na <- is.na(xi) | is.na(mi) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { xi <- xi[not.na] mi <- mi[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(xi) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset if (vlong) { ### create very long format dataset dat <- data.frame(rep(slab, each=2L), stringsAsFactors=FALSE) dat[[2]] <- rep(c(1,2), k) dat[[3]] <- c(rbind(xi,mi)) if (missing(var.names)) { names(dat) <- c("study", "outcome", "freq") } else { if (length(var.names) != 3L) stop(mstyle$stop("Variable names not of length 3.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) dat[[2]] <- factor(dat[[2]], levels=c(2,1)) if (doappend) dat <- cbind(data[rep(seq_len(k), each=2L),appendvars,drop=FALSE], dat) } else { ### create regular long format dataset dat <- data.frame(slab, stringsAsFactors=FALSE) dat[[2]] <- xi dat[[3]] <- mi if (missing(var.names)) { names(dat) <- c("study", "out1", "out2") } else { if (length(var.names) != 3L) stop(mstyle$stop("Variable names not of length 3.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) if (doappend) dat <- cbind(data[,appendvars,drop=FALSE], dat) } } ######################################################################### if (is.element(measure, c("IR","IRLN","IRS","IRFT"))) { ### check for NAs in table data and act accordingly has.na <- is.na(xi) | is.na(ti) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { xi <- xi[not.na] ti <- ti[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(xi) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset dat <- data.frame(slab, stringsAsFactors=FALSE) dat[[2]] <- xi dat[[3]] <- ti if (missing(var.names)) { names(dat) <- c("study", "events", "ptime") } else { if (length(var.names) != 3L) stop(mstyle$stop("Variable names not of length 3.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) if (doappend) dat <- cbind(data[,appendvars,drop=FALSE], dat) } ######################################################################### if (is.element(measure, c("MN","SMN","MNLN"))) { ### check for NAs in table data and act accordingly has.na <- is.na(mi) | is.na(sdi) | is.na(ni) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { mi <- mi[not.na] sdi <- sdi[not.na] ni <- ni[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ni) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset dat <- data.frame(slab, stringsAsFactors=FALSE) dat[[2]] <- mi dat[[3]] <- sdi dat[[4]] <- ni if (missing(var.names)) { names(dat) <- c("study", "mean", "sd", "n") } else { if (length(var.names) != 4L) stop(mstyle$stop("Variable names not of length 4.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) if (doappend) dat <- cbind(data[,appendvars,drop=FALSE], dat) } ######################################################################### if (is.element(measure, c("MC","SMCC","SMCR","SMCRH","ROMC","CVRC"))) { ### check for NAs in table data and act accordingly if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { has.na <- is.na(m1i) | is.na(m2i) | is.na(sd1i) | is.na(sd2i) | is.na(ni) | is.na(ri) } else { has.na <- is.na(m1i) | is.na(m2i) | is.na(sd1i) | is.na(ni) | is.na(ri) } if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { m1i <- m1i[not.na] m2i <- m2i[not.na] sd1i <- sd1i[not.na] if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) sd2i <- sd2i[not.na] ni <- ni[not.na] ri <- ri[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(m1i) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset if (is.element(measure, c("MC","SMCC","SMCRH","ROMC","CVRC"))) { dat <- data.frame(slab, stringsAsFactors=FALSE) dat[[2]] <- m1i dat[[3]] <- m2i dat[[4]] <- sd1i dat[[5]] <- sd2i dat[[6]] <- ni dat[[7]] <- ri if (missing(var.names)) { names(dat) <- c("study", "mean1", "mean2", "sd1", "sd2", "n", "r") } else { if (length(var.names) != 7L) stop(mstyle$stop("Variable names not of length 7.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) if (doappend) dat <- cbind(data[,appendvars,drop=FALSE], dat) } else { dat <- data.frame(slab, stringsAsFactors=FALSE) dat[[2]] <- m1i dat[[3]] <- m2i dat[[4]] <- sd1i dat[[5]] <- ni dat[[6]] <- ri if (missing(var.names)) { names(dat) <- c("study", "mean1", "mean2", "sd1", "n", "r") } else { if (length(var.names) != 6L) stop(mstyle$stop("Variable names not of length 6.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) if (doappend) dat <- cbind(data[,appendvars,drop=FALSE], dat) } } ######################################################################### if (is.element(measure, c("ARAW","AHW","ABT"))) { ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(mi) | is.na(ni) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit") { ai <- ai[not.na] mi <- mi[not.na] ni <- ni[not.na] slab <- slab[not.na] if (has.data) data <- data[not.na,] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "tables", "table"), "with NAs omitted.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } k <- length(ai) ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### create long format dataset dat <- data.frame(slab, stringsAsFactors=FALSE) dat[[2]] <- ai dat[[3]] <- mi dat[[4]] <- ni if (missing(var.names)) { names(dat) <- c("study", "alpha", "m", "n") } else { if (length(var.names) != 4L) stop(mstyle$stop("Variable names not of length 4.")) names(dat) <- var.names } dat[[1]] <- factor(dat[[1]]) if (doappend) dat <- data.frame(data[,appendvars,drop=FALSE], dat) } ######################################################################### rownames(dat) <- seq_len(nrow(dat)) return(dat) } metafor/R/coef.summary.rma.r0000644000176200001440000000305114515470356015472 0ustar liggesuserscoef.summary.rma <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="summary.rma") ddd <- list(...) x <- object if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=x$beta, se=x$se, tval=x$zval, df=x$ddf, pval=x$pval, ci.lb=x$ci.lb, ci.ub=x$ci.ub) } else { res.table <- data.frame(estimate=x$beta, se=x$se, zval=x$zval, pval=x$pval, ci.lb=x$ci.lb, ci.ub=x$ci.ub) } if (isTRUE(ddd$type=="beta")) return(res.table) if (inherits(x, "rma.ls")) { res.table <- list(beta=res.table) if (is.element(x$test, c("knha","adhoc","t"))) { res.table$alpha <- data.frame(estimate=x$alpha, se=x$se.alpha, tval=x$zval.alpha, df=x$ddf.alpha, pval=x$pval.alpha, ci.lb=x$ci.lb.alpha, ci.ub=x$ci.ub.alpha) } else { res.table$alpha <- data.frame(estimate=x$alpha, se=x$se.alpha, zval=x$zval.alpha, pval=x$pval.alpha, ci.lb=x$ci.lb.alpha, ci.ub=x$ci.ub.alpha) } if (isTRUE(ddd$type=="alpha")) return(res.table$alpha) } if (inherits(x, "rma.uni.selmodel")) { res.table <- list(beta=res.table) res.table$delta <- data.frame(estimate=x$delta, se=x$se.delta, zval=x$zval.delta, pval=x$pval.delta, ci.lb=x$ci.lb.delta, ci.ub=x$ci.ub.delta) if (length(x$delta) == 1L) { rownames(res.table$delta) <- "delta" } else { rownames(res.table$delta) <- paste0("delta.", seq_along(x$delta)) } if (isTRUE(ddd$type=="delta")) return(res.table$delta) } return(res.table) } metafor/R/hatvalues.rma.mv.r0000644000176200001440000000365114672570447015513 0ustar liggesusershatvalues.rma.mv <- function(model, type="diagonal", ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.mv") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$M) || is.null(model$X)) stop(mstyle$stop("Information needed to compute the hat values is not available in the model object.")) type <- match.arg(type, c("diagonal", "matrix")) ######################################################################### x <- model if (is.null(x$W)) { W <- chol2inv(chol(x$M)) stXWX <- chol2inv(chol(as.matrix(t(x$X) %*% W %*% x$X))) H <- as.matrix(x$X %*% stXWX %*% crossprod(x$X,W)) #H <- as.matrix(x$X %*% x$vb %*% crossprod(x$X,W)) # x$vb may have been changed through robust() } else { A <- x$W stXAX <- chol2inv(chol(as.matrix(t(x$X) %*% A %*% x$X))) H <- as.matrix(x$X %*% stXAX %*% crossprod(x$X,A)) } ######################################################################### if (type == "diagonal") { hii <- rep(NA_real_, x$k.f) hii[x$not.na] <- as.vector(diag(H)) hii[hii > 1 - 10 * .Machine$double.eps] <- 1 # as in lm.influence() names(hii) <- x$slab if (na.act == "na.omit") hii <- hii[x$not.na] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) return(hii) } if (type == "matrix") { Hfull <- matrix(NA_real_, nrow=x$k.f, ncol=x$k.f) Hfull[x$not.na, x$not.na] <- H rownames(Hfull) <- x$slab colnames(Hfull) <- x$slab if (na.act == "na.omit") Hfull <- Hfull[x$not.na, x$not.na, drop=FALSE] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) return(Hfull) } } metafor/R/weights.rma.mh.r0000644000176200001440000000366614671613724015154 0ustar liggesusersweights.rma.mh <- function(object, type="diagonal", ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.mh") if (is.null(object$outdat)) stop(mstyle$stop("Information needed to compute the weights is not available in the model object.")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) type <- match.arg(type, c("diagonal", "matrix")) x <- object ######################################################################### if (is.element(x$measure, c("RR","OR","RD"))) { Ni <- with(x$outdat, ai + bi + ci + di) } else { Ti <- with(x$outdat, t1i + t2i) } if (x$measure == "OR") wi <- with(x$outdat, (bi / Ni) * ci) if (x$measure == "RR") wi <- with(x$outdat, (ci / Ni) * (ai+bi)) if (x$measure == "RD") wi <- with(x$outdat, ((ai+bi) / Ni) * (ci+di)) if (x$measure == "IRR") wi <- with(x$outdat, (x2i / Ti) * t1i) if (x$measure == "IRD") wi <- with(x$outdat, (t1i / Ti) * t2i) ######################################################################### if (type == "diagonal") { weight <- rep(NA_real_, x$k.f) weight[x$not.na] <- wi / sum(wi) * 100 names(weight) <- x$slab if (na.act == "na.omit") weight <- weight[x$not.na] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in weights.")) return(weight) } if (type == "matrix") { Wfull <- matrix(NA_real_, nrow=x$k.f, ncol=x$k.f) Wfull[x$not.na, x$not.na] <- diag(wi) rownames(Wfull) <- x$slab colnames(Wfull) <- x$slab if (na.act == "na.omit") Wfull <- Wfull[x$not.na, x$not.na, drop=FALSE] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) return(Wfull) } } metafor/R/emmprep.r0000644000176200001440000001317114714365121013747 0ustar liggesusersemmprep <- function(x, verbose=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma") if (!requireNamespace("emmeans", quietly=TRUE)) stop(mstyle$stop("Please install the 'emmeans' package to use this function.")) if (any(x$coef.na)) stop(mstyle$stop("Cannot use function when some redundant predictors were dropped from the model.")) ### check if a formula is available formula <- formula(x) if (is.null(formula) && x$int.only) formula <- ~ 1 if (is.null(formula)) stop(mstyle$stop("Cannot use function when model was fitted without a formula specification.")) if (verbose) { .space() cat("Extracted formula: ~", paste(paste(formula)[-1], collapse=""), "\n") } ### get coefficients and corresponding var-cov matrix b <- coef(x, type="beta") vb <- vcov(x, type="beta") ### change intrcpt to (Intercept) names(b) <- sub("intrcpt", "(Intercept)", names(b)) rownames(vb) <- sub("intrcpt", "(Intercept)", rownames(vb)) colnames(vb) <- sub("intrcpt", "(Intercept)", colnames(vb)) ######################################################################### ddd <- list(...) ### get data and apply subsetting / removal of missings as needed if (is.null(ddd$data)) { dat <- x$data if (is.null(dat)) stop(mstyle$stop("Cannot use function when the model object does not contain the original data.")) if (!is.null(x$subset)) dat <- dat[x$subset,,drop=FALSE] dat <- dat[x$not.na,,drop=FALSE] } else { dat <- ddd$data ddd$data <- NULL } ### set the degrees of freedom (use minimum value if there are multiple) if (is.null(ddd$df)) { if (is.na(x$ddf[1])) { ddf <- Inf } else { ddf <- min(x$ddf) } } else { ddf <- ddd$df ddd$df <- NULL } if (verbose && is.finite(ddf)) cat("Degrees of freedom:", round(ddf, 2), "\n") ### set sigma for bias adjustment if (is.null(ddd$sigma)) { if (!inherits(x, c("rma.ls","rma.mv"))) { sigma <- sqrt(x$tau2) } else { sigma <- NA_real_ } } else { sigma <- ddd$sigma ddd$sigma <- NULL } if (verbose && !is.na(sigma) && !is.element(x$method, c("FE","EE","CE"))) cat("Value of tau^2: ", round(sigma^2, 4), "\n") if (is.na(sigma)) sigma <- 0 ### create grid #out <- emmeans::qdrg(formula=formula, data=dat, coef=b, vcov=vb, df=ddf, sigma=sigma, ...) out <- do.call(emmeans::qdrg, c(list(formula=formula, data=dat, coef=b, vcov=vb, df=ddf, sigma=sigma), ddd)) ### set (back)transformation if (is.null(ddd$tran)) { if (is.element(x$measure, c("RR","OR","MPORM","PETO","MPRR","MPOR","MPORC","MPPETO","IRR","ROM","D2OR","D2ORL","D2ORN","CVR","VR","PLN","IRLN","SDLN","MNLN","CVLN","ROMC","CVRC","VRC","REH","HR"))) { out@misc$tran <- "log" #out@misc$tran <- emmeans::make.tran("genlog", 0) #out <- update(out, emmeans::make.tran("genlog", 0)) if (verbose) cat("Transformation: log\n") } if (is.element(x$measure, c("PLO"))) { out@misc$tran <- "logit" if (verbose) cat("Transformation: logit\n") } if (is.element(x$measure, c("PRZ"))) { out@misc$tran <- "probit" if (verbose) cat("Transformation: probit\n") } if (is.element(x$measure, c("PAS"))) { out <- update(out, emmeans::make.tran("asin.sqrt", 1)) if (verbose) cat("Transformation: asin.sqrt\n") } if (is.element(x$measure, c("IRS"))) { out@misc$tran <- "sqrt" if (verbose) cat("Transformation: sqrt\n") } if (is.element(x$measure, c("ZPHI","ZTET","ZPB","ZBIS","ZCOR","ZPCOR","ZSPCOR"))) { out@misc$tran$linkfun <- transf.rtoz out@misc$tran$linkinv <- transf.ztor out@misc$tran$mu.eta <- function(eta) 1/cosh(eta)^2 # derivative of transf.ztor(eta) (= tanh(eta)) out@misc$tran$valideta <- function(eta) all(is.finite(eta)) && all(abs(eta) <= 1) out@misc$tran$name <- "r-to-z" if (verbose) cat("Transformation: r-to-z\n") } if (is.element(x$measure, c("ZR2","ZR2F"))) { out@misc$tran$linkfun <- transf.r2toz out@misc$tran$linkinv <- transf.ztor2 out@misc$tran$mu.eta <- function(eta) 2*sinh(eta)/cosh(eta)^3 # derivative of transf.ztor2(eta) (= tanh(eta)^2) out@misc$tran$valideta <- function(eta) all(is.finite(eta)) && all(eta <= 1) && all(eta >= 0) out@misc$tran$name <- "r-to-z" if (verbose) cat("Transformation: r-to-z\n") } if (is.element(x$measure, c("AHW"))) { out@misc$tran$linkfun <- transf.ahw out@misc$tran$linkinv <- transf.iahw out@misc$tran$mu.eta <- function(eta) 3*(1-eta)^2 out@misc$tran$valideta <- function(eta) all(is.finite(eta)) && all(eta <= 1) && all(eta >= 0) out@misc$tran$name <- "ahw" if (verbose) cat("Transformation: ahw\n") } if (is.element(x$measure, c("ABT"))) { out@misc$tran$linkfun <- transf.abt out@misc$tran$linkinv <- transf.iabt out@misc$tran$mu.eta <- function(eta) 1/(1-eta) out@misc$tran$valideta <- function(eta) all(is.finite(eta)) && all(eta <= 1) && all(eta >= 0) out@misc$tran$name <- "abt" if (verbose) cat("Transformation: abt\n") } } else { if (verbose) cat("Transformation: ", ddd$tran, "\n") } if (verbose) .space() return(out) } ############################################################################ metafor/R/regtest.r0000644000176200001440000001777514717402250013773 0ustar liggesusersregtest <- function(x, vi, sei, ni, subset, data, model="rma", predictor="sei", ret.fit=FALSE, digits, ...) { ######################################################################### mstyle <- .get.mstyle() na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) model <- match.arg(model, c("lm", "rma")) predictor <- match.arg(predictor, c("sei", "vi", "ni", "ninv", "sqrtni", "sqrtninv")) ddd <- list(...) .chkdots(ddd, c("level", "method", "test")) ######################################################################### ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() x <- .getx("x", mf=mf, data=data) ######################################################################### if (inherits(x, "rma")) { .chkclass(class(x), must="rma", notav=c("robust.rma", "rma.glmm", "rma.mv", "rma.ls", "rma.gen", "rma.uni.selmodel")) if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed to carry out the test is not available in the model object.")) if (!missing(vi) || !missing(sei) || !missing(subset)) warning(mstyle$warning("Arguments 'vi', 'sei', and 'subset' ignored when 'x' is a model object."), call.=FALSE) yi <- x$yi vi <- x$vi if (missing(ni)) { ni <- x$ni # may be NULL } else { ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (!is.null(ni)) { if (length(ni) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'ni' (", length(ni), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) ni <- .getsubset(ni, x$subset) if (inherits(x, "rma.mh") || inherits(x, "rma.peto")) { ni <- ni[x$not.na.yivi] } else { ni <- ni[x$not.na] } } } k <- length(yi) ### set defaults for digits if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } p <- x$p if (inherits(x, "rma.mh") || inherits(x, "rma.peto")) { X <- cbind(rep(1,k)) } else { X <- x$X } level <- .chkddd(ddd$level, x$level, .level(ddd$level)) method <- .chkddd(ddd$method, x$method) test <- .chkddd(ddd$test, x$test) weights <- x$weights weighted <- x$weighted tau2 <- ifelse(x$tau2.fix, x$tau2, NA_real_) control <- x$control } else { if (!.is.vector(x)) stop(mstyle$stop("Argument 'x' must be a vector or an 'rma' model object.")) yi <- x ### check if yi is numeric if (!is.numeric(yi)) stop(mstyle$stop("The object/variable specified for the 'x' argument is not numeric.")) ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } level <- .chkddd(ddd$level, 0.05, .level(ddd$level)) k <- length(yi) vi <- .getx("vi", mf=mf, data=data, checknumeric=TRUE) sei <- .getx("sei", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) subset <- .getx("subset", mf=mf, data=data) if (is.null(vi)) { if (!is.null(sei)) vi <- sei^2 } if (is.null(vi)) stop(mstyle$stop("Must specify the 'vi' or 'sei' argument.")) ### check length of yi and vi if (length(vi) != k) stop(mstyle$stop("Length of 'yi' and 'vi' (or 'sei') are not the same.")) ### check length of yi and ni if (!is.null(ni) && length(ni) != k) stop(mstyle$stop("Length of 'yi' and 'ni' are not the same.")) ### check 'vi' argument for potential misuse .chkviarg(mf$vi) ### if ni has not been specified, try to get it from the attributes of yi if (is.null(ni)) ni <- attr(yi, "ni") ### check length of yi and ni (only if ni is not NULL) ### if there is a mismatch, then ni cannot be trusted, so set it to NULL if (!is.null(ni) && length(ni) != k) ni <- NULL ### if ni is now available, add it (back) as an attribute to yi if (!is.null(ni)) attr(yi, "ni") <- ni ### if a subset of studies is specified if (!is.null(subset)) { subset <- .chksubset(subset, k) yi <- .getsubset(yi, subset) vi <- .getsubset(vi, subset) ni <- .getsubset(ni, subset) } ### check for NAs and act accordingly has.na <- is.na(yi) | is.na(vi) | (if (is.null(ni)) FALSE else is.na(ni)) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na] vi <- vi[not.na] ni <- ni[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from test.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in data.")) } p <- 1L k <- length(yi) X <- cbind(rep(1,k)) method <- .chkddd(ddd$method, "REML") test <- .chkddd(ddd$test, "z") weights <- NULL weighted <- TRUE tau2 <- NA_real_ control <- list() } ######################################################################### if (predictor == "sei") X <- cbind(X, sei=sqrt(vi)) if (predictor == "vi") X <- cbind(X, vi=vi) if (is.element(predictor, c("ni", "ninv", "sqrtni", "sqrtninv"))) { if (is.null(ni)) { stop(mstyle$stop("No sample size information available to use this predictor.")) } else { if (predictor == "ni") X <- cbind(X, ni=ni) if (predictor == "ninv") X <- cbind(X, ninv=1/ni) if (predictor == "sqrtni") X <- cbind(X, ni=sqrt(ni)) if (predictor == "sqrtninv") X <- cbind(X, ni=1/sqrt(ni)) } } ### check if X of full rank (if not, cannot carry out the test) tmp <- lm(yi ~ X - 1) coef.na <- is.na(coef(tmp)) if (any(coef.na)) stop(mstyle$stop("Model matrix no longer of full rank after addition of predictor. Cannot fit model.")) if (model == "rma") { ddd$level <- NULL ddd$method <- NULL ddd$test <- NULL args <- list(yi=yi, vi=vi, weights=weights, mods=X, intercept=FALSE, method=method, weighted=weighted, test=test, level=level, tau2=tau2, control=control, ddd) fit <- .do.call(rma.uni, args) zval <- fit$zval[p+1] pval <- fit$pval[p+1] ddf <- fit$ddf } else { yi <- c(yi) # remove attributes fit <- lm(yi ~ X - 1, weights=1/vi) tmp <- summary(fit) zval <- coef(tmp)[p+1,3] pval <- coef(tmp)[p+1,4] ddf <- fit$df.residual } ### get the 'limit estimate' if (predictor %in% c("sei", "vi", "ninv", "sqrtninv") && p == 1L && .is.intercept(X[,1])) { if (model=="lm") { est <- coef(tmp)[1,1] ci.lb <- est - qt(level/2, df=ddf, lower.tail=FALSE) * coef(tmp)[1,2] ci.ub <- est + qt(level/2, df=ddf, lower.tail=FALSE) * coef(tmp)[1,2] } else { est <- coef(fit)[1] ci.lb <- fit$ci.lb[1] ci.ub <- fit$ci.ub[1] } } else { est <- ci.lb <- ci.ub <- NULL } res <- list(model=model, predictor=predictor, zval=zval, pval=pval, dfs=ddf, ddf=ddf, method=fit$method, digits=digits, ret.fit=ret.fit, fit=fit, est=est, ci.lb=ci.lb, ci.ub=ci.ub) class(res) <- "regtest" return(res) } metafor/R/conv.fivenum.r0000644000176200001440000005501414717377336014737 0ustar liggesusersconv.fivenum <- function(min, q1, median, q3, max, n, data, include, method="default", dist="norm", transf=TRUE, test=TRUE, var.names=c("mean","sd"), append=TRUE, replace="ifna", ...) { mstyle <- .get.mstyle() if (missing(min) && missing(q1) && missing(median) && missing(q3) && missing(max)) stop(mstyle$stop("Must specify at least some of these arguments: 'min', 'q1', 'median', 'q3', 'max'.")) if (is.logical(replace)) { if (isTRUE(replace)) { replace <- "all" } else { replace <- "ifna" } } replace <- match.arg(replace, c("ifna","all")) ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("verbose", "seed")) verbose <- .chkddd(ddd$verbose, FALSE, .isTRUE(ddd$verbose)) if (!is.null(ddd$seed)) set.seed(ddd$seed) testarg <- test ######################################################################### if (missing(data)) data <- NULL has.data <- !is.null(data) if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } ### checks on var.names argument if (length(var.names) != 2L) stop(mstyle$stop("Argument 'var.names' must be of length 2.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\nVariable names adjusted to: var.names = c('", var.names[1], "','", var.names[2], "').")), call.=FALSE) } ######################################################################### mf <- match.call() #return(mf) min <- .getx("min", mf=mf, data=data, checknumeric=TRUE) q1 <- .getx("q1", mf=mf, data=data, checknumeric=TRUE) median <- .getx("median", mf=mf, data=data, checknumeric=TRUE) q3 <- .getx("q3", mf=mf, data=data, checknumeric=TRUE) max <- .getx("max", mf=mf, data=data, checknumeric=TRUE) n <- .getx("n", mf=mf, data=data, checknumeric=TRUE) include <- .getx("include", mf=mf, data=data) dist <- .getx("dist", mf=mf, data=data, default="norm") if (!.equal.length(min, q1, median, q3, max, n)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- max(length(min), length(q1), length(median), length(q3), length(max), length(n)) if (is.null(min)) min <- rep(NA_real_, k) if (is.null(q1)) q1 <- rep(NA_real_, k) if (is.null(median)) median <- rep(NA_real_, k) if (is.null(q3)) q3 <- rep(NA_real_, k) if (is.null(max)) max <- rep(NA_real_, k) if (is.null(n)) n <- rep(NA_real_, k) ### handle dist argument dist <- .expand1(dist, k) if (length(dist) != k) stop(mstyle$stop(paste0("Length of the 'dist' argument (", length(dist), ") does not match the length of the data (", k, ")."))) dist <- c("norm","lnorm")[pmatch(dist, c("norm","lnorm"), duplicates.ok=TRUE)] if (anyNA(dist)) stop(mstyle$stop("Unknown 'dist' value specified (should either be 'norm' or 'lnorm').")) ### if include is NULL, set to TRUE vector if (is.null(include)) include <- rep(TRUE, k) ### turn numeric include vector into a logical vector include <- .chksubset(include, k, stoponk0=FALSE) ### exclude rows where n < 5 include[which(n < 5)] <- FALSE ### set inputs to NA for rows not to be included min[!include] <- NA_real_ q1[!include] <- NA_real_ median[!include] <- NA_real_ q3[!include] <- NA_real_ max[!include] <- NA_real_ n[!include] <- NA_real_ ######################################################################### ### determine cases case1 <- !is.na(min) & is.na(q1) & is.na(q3) & !is.na(max) case2 <- is.na(min) & !is.na(q1) & !is.na(q3) & is.na(max) case3 <- !is.na(min) & !is.na(q1) & !is.na(q3) & !is.na(max) ### set method method <- tolower(method) method <- .expand1(method, 2L) method1.options <- c("default", "luo/wan/shi", "qe", "bc", "mln", "blue", "hozo2005", "wan2014", "bland2015", "luo2016", "walter2007") method2.options <- c("default", "luo/wan/shi", "qe", "bc", "mln", "blue", "hozo2005", "wan2014", "bland2015", "shi2020", "walter2007") #method[1] <- method1.options[pmatch(method[1], method1.options)] method[1] <- method1.options[grep(paste0("^", method[1]), method1.options)[1]] if (is.na(method[1])) stop(mstyle$stop("Unknown 'method' specified.")) #method[2] <- method2.options[pmatch(method[2], method2.options)] method[2] <- method2.options[grep(paste0("^", method[2]), method2.options)[1]] if (is.na(method[2])) stop(mstyle$stop("Unknown 'method' specified.")) if (method[1] == "default") method[1] <- "luo/wan/shi" if (method[2] == "default") method[2] <- "luo/wan/shi" if (any(dist == "lnorm")) { # if any dist value is 'lnorm', force use of 'luo/wan/shi' method if (!(method[1] == "luo/wan/shi" && method[2] == "luo/wan/shi")) { method <- c("luo/wan/shi", "luo/wan/shi") warning(mstyle$warning("Switching to method='luo/wan/shi' (since dist='lnorm' for one or more studies)."), call.=FALSE) } } if (method[1] %in% c("qe","bc","mln")) { if (method[1] != method[2]) stop(mstyle$stop("Must use the same 'method' for estimating means and SDs.")) if (!requireNamespace("estmeansd", quietly=TRUE)) stop(mstyle$stop("Please install the 'estmeansd' package to use this method.")) test <- FALSE } if (method[1] == "blue") { if (method[1] != method[2]) stop(mstyle$stop("Must use the same 'method' for estimating means and SDs.")) if (!requireNamespace("metaBLUE", quietly=TRUE)) stop(mstyle$stop("Please install the 'metaBLUE' package to use this method.")) } ######################################################################### means <- rep(NA_real_, k) sds <- rep(NA_real_, k) tval <- rep(NA_real_, k) crit <- rep(NA_real_, k) sig <- rep(NA, k) dists <- rep("norm", k) for (i in seq_len(k)) { ### cannot use bc and mln methods with non-positive values if (method[1] %in% c("bc","mln")) { if (any(c(min[i] <= 0, q1[i] <= 0, median[i] <= 0, q3[i] <= 0, max[i] <= 0), na.rm=TRUE)) stop(mstyle$stop(paste0("Cannot use method with non-positive values (found in row ", i, ")."))) } ### when using qe method with negative values, data are assumed to be normally distributed, so test for this (if testarg=TRUE) ### note: this is reset to FALSE for the next iteration (see [a]) if (method[1] == "qe" && any(c(min[i] < 0, q1[i] < 0, median[i] < 0, q3[i] < 0, max[i] < 0), na.rm=TRUE) && testarg) test <- TRUE ### check min <= q1 <= median <= q3 <= max if (is.unsorted(c(min[i], q1[i], median[i], q3[i], max[i]), na.rm=TRUE)) stop(mstyle$stop(paste0("Found 'min <= q1 <= median <= q3 <= max' not true in row ", i, "."))) if (dist[i] == "lnorm") { ### check that min, q1, median, q3, and max are all > 0 when assuming a log-normal distribution if (any(c(min[i] <= 0, q1[i] <= 0, median[i] <= 0, q3[i] <= 0, max[i] <= 0), na.rm=TRUE)) stop(mstyle$stop(paste0("Cannot assume a log-normal distribution with non-positive values (found in row ", i, ")."))) ### log-transform inputs min[i] <- log(min[i]) q1[i] <- log(q1[i]) median[i] <- log(median[i]) q3[i] <- log(q3[i]) max[i] <- log(max[i]) dists[i] <- "lnorm" } if (case1[i]) { ### case 1: min, median, and max are given # test for skewness tval[i] <- abs((min[i] + max[i] - 2*median[i]) / (max[i] - min[i])) #crit[i] <- 1.01 / log(n[i] + 9) + 2.43 / (n[i] + 1) # Shi et al. (2020b) crit[i] <- 1 / log(n[i] + 9) + 2.5 / (n[i] + 1) # Shi et al. (2023) sig[i] <- isTRUE(tval[i] >= crit[i]) if (test && sig[i]) next # mean estimation if (is.element(method[1], c("luo/wan/shi", "luo2016"))) { # Luo et al. (2016), equation (7) weight <- 4 / (4 + n[i]^0.75) means[i] <- weight * (min[i] + max[i]) / 2 + (1 - weight) * median[i] } if (method[1] == "hozo2005") { if (is.na(n[i])) { means[i] <- NA_real_ } else if (n[i] <= 25) { means[i] <- (min[i] + 2*median[i] + max[i]) / 4 } else { means[i] <- median[i] } } if (method[1] == "wan2014") means[i] <- (min[i] + 2*median[i] + max[i]) / 4 if (method[1] == "walter2007") means[i] <- median[i] if (method[1] == "qe") { if (verbose) { tmp <- try(estmeansd::qe.mean.sd(min.val=min[i], med.val=median[i], max.val=max[i], n=n[i])) } else { tmp <- try(suppressWarnings(suppressMessages(estmeansd::qe.mean.sd(min.val=min[i], med.val=median[i], max.val=max[i], n=n[i]))), silent=TRUE) } if (inherits(tmp, "try-error")) { dists[i] <- NA_character_ } else { means[i] <- tmp$est.mean dists[i] <- tmp$selected.dist } } if (method[1] == "bc") { if (verbose) { tmp <- try(estmeansd::bc.mean.sd(min.val=min[i], med.val=median[i], max.val=max[i], n=n[i])) } else { tmp <- try(suppressWarnings(suppressMessages(estmeansd::bc.mean.sd(min.val=min[i], med.val=median[i], max.val=max[i], n=n[i]))), silent=TRUE) } if (!inherits(tmp, "try-error")) means[i] <- tmp$est.mean } if (method[1] == "mln") { if (verbose) { tmp <- try(estmeansd::mln.mean.sd(min.val=min[i], med.val=median[i], max.val=max[i], n=n[i])) } else { tmp <- try(suppressWarnings(suppressMessages(estmeansd::mln.mean.sd(min.val=min[i], med.val=median[i], max.val=max[i], n=n[i]))), silent=TRUE) } if (!inherits(tmp, "try-error")) means[i] <- tmp$est.mean } if (method[1] == "blue") { tmp <- metaBLUE::BLUE_s(c(min[i], median[i], max[i]), n=n[i], "S1") means[i] <- tmp$muhat } # sd estimation if (is.element(method[2], c("luo/wan/shi", "wan2014"))) { # Wan et al. (2014), equation (9) xi <- 2 * qnorm((n[i] - 0.375) / (n[i] + 0.25)) z1 <- ifelse(dist[i] == "norm", 1, 1.01 + 0.25 / log(n[i])^2) #z1 <- 1 sds[i] <- (max[i] - min[i]) / xi * (1/sqrt(z1)) } if (method[2] == "hozo2005") { if (is.na(n[i])) { sds[i] <- NA_real_ } else if (n[i] <= 15) { sds[i] <- 1/sqrt(12) * sqrt((min[i] - 2*median[i] + max[i])^2 / 4 + (max[i]-min[i])^2) } else if (n[i] <= 70) { sds[i] <- (max[i] - min[i]) / 4 } else { sds[i] <- (max[i] - min[i]) / 6 } } if (method[2] == "walter2007") { intfun <- function(x, n) { alpha <- pnorm(x) 1 - (1-alpha)^n - alpha^n } f <- try(integrate(intfun, lower=-Inf, upper=Inf, n=n[i])$value, silent=TRUE) if (inherits(f, "try-error")) next sds[i] <- (max[i] - min[i]) / f } if (method[2] == "qe" && !inherits(tmp, "try-error")) sds[i] <- tmp$est.sd if (method[2] == "bc" && !inherits(tmp, "try-error")) sds[i] <- tmp$est.sd if (method[2] == "mln" && !inherits(tmp, "try-error")) sds[i] <- tmp$est.sd if (method[2] == "blue") sds[i] <- tmp$sigmahat if (dist[i] == "lnorm" && transf) { s41 <- ((max[i] - min[i]) / xi)^4 / (1 + 2.23 / log(n[i])^2) phi1 <- 1 + 0.565 * sds[i]^2 / n[i] + 0.37 * s41 / n[i] btmean <- exp(means[i] + sds[i]^2 / 2) * (1 / phi1) phi11 <- 1 + 2.26 * sds[i]^2 / n[i] + 5.92 * s41 / n[i] phi12 <- 1 + 2.26 * sds[i]^2 / n[i] + 1.48 * s41 / n[i] btsd <- sqrt(exp(2*means[i] + 2*sds[i]^2) * (1 / phi11) - exp(2*means[i] + sds[i]^2) * (1 / phi12)) means[i] <- btmean sds[i] <- btsd } } if (case2[i]) { ### case 2: q1, median, and q3 are given # test for skewness tval[i] <- abs((q1[i] + q3[i] - 2*median[i]) / (q3[i] - q1[i])) #crit[i] <- 2.66 / sqrt(n[i]) - 5.92 / n[i]^2 # Shi et al. (2020b) crit[i] <- 2.65 / sqrt(n[i]) - 6 / n[i]^2 # Shi et al. (2023) sig[i] <- isTRUE(tval[i] >= crit[i]) if (test && sig[i]) next # mean estimation if (is.element(method[1], c("luo/wan/shi", "luo2016"))) { # Luo et al. (2016), equation (11) weight <- 0.7 + 0.39 / n[i] #weight <- 0.699 + 0.4 / n[i] means[i] <- weight * (q1[i] + q3[i]) / 2 + (1 - weight) * median[i] } if (method[1] == "wan2014") means[i] <- (q1[i] + median[i] + q3[i]) / 3 if (method[1] == "qe") { if (verbose) { tmp <- try(estmeansd::qe.mean.sd(q1.val=q1[i], med.val=median[i], q3.val=q3[i], n=n[i])) } else { tmp <- try(suppressWarnings(suppressMessages(estmeansd::qe.mean.sd(q1.val=q1[i], med.val=median[i], q3.val=q3[i], n=n[i]))), silent=TRUE) } if (inherits(tmp, "try-error")) { dists[i] <- NA_character_ } else { means[i] <- tmp$est.mean dists[i] <- tmp$selected.dist } } if (method[1] == "bc") { if (verbose) { tmp <- try(estmeansd::bc.mean.sd(q1.val=q1[i], med.val=median[i], q3.val=q3[i], n=n[i])) } else { tmp <- try(suppressWarnings(suppressMessages(estmeansd::bc.mean.sd(q1.val=q1[i], med.val=median[i], q3.val=q3[i], n=n[i]))), silent=TRUE) } if (!inherits(tmp, "try-error")) means[i] <- tmp$est.mean } if (method[1] == "mln") { if (verbose) { tmp <- try(estmeansd::mln.mean.sd(q1.val=q1[i], med.val=median[i], q3.val=q3[i], n=n[i])) } else { tmp <- try(suppressWarnings(suppressMessages(estmeansd::mln.mean.sd(q1.val=q1[i], med.val=median[i], q3.val=q3[i], n=n[i]))), silent=TRUE) } if (!inherits(tmp, "try-error")) means[i] <- tmp$est.mean } if (method[1] == "blue") { tmp <- metaBLUE::BLUE_s(c(q1[i], median[i], q3[i]), n=n[i], "S2") means[i] <- tmp$muhat } # sd estimation if (is.element(method[2], c("luo/wan/shi", "wan2014"))) { # Wan et al. (2014), equation (16) eta <- 2 * qnorm((0.75 * n[i] - 0.125) / (n[i] + 0.25)) z2 <- ifelse(dist[i] == "norm", 1, 1 + 1.58 / n[i]) #z2 <- 1 sds[i] <- (q3[i] - q1[i]) / eta * (1/sqrt(z2)) } if (method[2] == "qe" && !inherits(tmp, "try-error")) sds[i] <- tmp$est.sd if (method[2] == "bc" && !inherits(tmp, "try-error")) sds[i] <- tmp$est.sd if (method[2] == "mln" && !inherits(tmp, "try-error")) sds[i] <- tmp$est.sd if (method[2] == "blue") sds[i] <- tmp$sigmahat if (dist[i] == "lnorm" && transf) { s42 <- ((q3[i] - q1[i]) / eta)^4 / (1 + 19.2 / n[i]^1.2) phi2 <- 1 + 0.57 * sds[i]^2 / n[i] + 0.75 * s42 / n[i] btmean <- exp(means[i] + sds[i]^2 / 2) * (1 / phi2) phi21 <- 1 + 2.28 * sds[i]^2 / n[i] + 12 * s42 / n[i] phi22 <- 1 + 2.28 * sds[i]^2 / n[i] + 3 * s42 / n[i] btsd <- sqrt(exp(2*means[i] + 2*sds[i]^2) * (1 / phi21) - exp(2*means[i] + sds[i]^2) * (1 / phi22)) means[i] <- btmean sds[i] <- btsd } } if (case3[i]) { ### case 3: min, q1, median, q3, and max are given # test for skewness tval[i] <- max(2.65 * log(0.6 * n[i]) / sqrt(n[i]) * abs((min[i] + max[i] - 2*median[i]) / (max[i] - min[i])), abs((q1[i] + q3[i] - 2*median[i]) / (q3[i] - q1[i]))) #crit[i] <- 2.97 / sqrt(n[i]) - 39.1 / n[i]^3 # Shi et al. (2020b) crit[i] <- 3 / sqrt(n[i]) - 40 / n[i]^3 # Shi et al. (2023) sig[i] <- isTRUE(tval[i] >= crit[i]) if (test && sig[i]) next # mean estimation if (is.element(method[1], c("luo/wan/shi", "luo2016"))) { # Luo et al. (2016), equation (15) weight1 <- 2.2 / (2.2 + n[i]^0.75) weight2 <- 0.7 - 0.72 / n[i]^0.55 means[i] <- weight1 * (min[i] + max[i]) / 2 + weight2 * (q1[i] + q3[i]) / 2 + (1 - weight1 - weight2) * median[i] } if (is.element(method[1], c("wan2014", "bland2015"))) means[i] <- (min[i] + 2*q1[i] + 2*median[i] + 2*q3[i] + max[i]) / 8 if (method[1] == "qe") { if (verbose) { tmp <- try(estmeansd::qe.mean.sd(min.val=min[i], q1.val=q1[i], med.val=median[i], q3.val=q3[i], max.val=max[i], n=n[i])) } else { tmp <- try(suppressWarnings(suppressMessages(estmeansd::qe.mean.sd(min.val=min[i], q1.val=q1[i], med.val=median[i], q3.val=q3[i], max.val=max[i], n=n[i]))), silent=TRUE) } if (inherits(tmp, "try-error")) { dists[i] <- NA_character_ } else { means[i] <- tmp$est.mean dists[i] <- tmp$selected.dist } } if (method[1] == "bc") { if (verbose) { tmp <- try(estmeansd::bc.mean.sd(min.val=min[i], q1.val=q1[i], med.val=median[i], q3.val=q3[i], max.val=max[i], n=n[i])) } else { tmp <- try(suppressWarnings(suppressMessages(estmeansd::bc.mean.sd(min.val=min[i], q1.val=q1[i], med.val=median[i], q3.val=q3[i], max.val=max[i], n=n[i]))), silent=TRUE) } if (!inherits(tmp, "try-error")) means[i] <- tmp$est.mean } if (method[1] == "mln") { if (verbose) { tmp <- try(estmeansd::mln.mean.sd(min.val=min[i], q1.val=q1[i], med.val=median[i], q3.val=q3[i], max.val=max[i], n=n[i])) } else { tmp <- try(suppressWarnings(suppressMessages(estmeansd::mln.mean.sd(min.val=min[i], q1.val=q1[i], med.val=median[i], q3.val=q3[i], max.val=max[i], n=n[i]))), silent=TRUE) } if (!inherits(tmp, "try-error")) means[i] <- tmp$est.mean } if (method[1] == "blue") { tmp <- metaBLUE::BLUE_s(c(min[i], q1[i], median[i], q3[i], max[i]), n=n[i], "S3") means[i] <- tmp$muhat } # sd estimation if (is.element(method[2], c("luo/wan/shi", "shi2020", "wan2014"))) { xi <- 2 * qnorm((n[i] - 0.375) / (n[i] + 0.25)) eta <- 2 * qnorm((0.75*n[i] - 0.125) / (n[i] + 0.25)) } if (is.element(method[2], c("luo/wan/shi", "shi2020"))) { # Shi et al. (2020), equation (10) weight <- 1 / (1 + 0.07 * n[i]^0.6) z3 <- ifelse(dist[i] == "norm", 1, 1 + 0.28 / log(n[i])^2) #z3 <- 1 sds[i] <- (weight * (max[i] - min[i]) / xi + (1 - weight) * (q3[i] - q1[i]) / eta) * (1/sqrt(z3)) } if (method[2] == "wan2014") sds[i] <- 1/2 * ((max[i] - min[i]) / xi + (q3[i] - q1[i]) / eta) if (method[2] == "bland2015") sds[i] <- sqrt((min[i]^2 + 2*q1[i]^2 + 2*median[i]^2 + 2*q3[i]^2 + max[i]^2) / 16 + (min[i]*q1[i] + q1[i]*median[i] + median[i]*q3[i] + q3[i]*max[i]) / 8 - (min[i] + 2*q1[i] + 2*median[i] + 2*q3[i] + max[i])^2 / 64) if (method[2] == "qe" && !inherits(tmp, "try-error")) sds[i] <- tmp$est.sd if (method[2] == "bc" && !inherits(tmp, "try-error")) sds[i] <- tmp$est.sd if (method[2] == "mln" && !inherits(tmp, "try-error")) sds[i] <- tmp$est.sd if (method[2] == "blue") sds[i] <- tmp$sigmahat if (dist[i] == "lnorm" && transf) { s43 <- (weight * (max[i] - min[i]) / xi + (1 - weight) * (q3[i] - q1[i]) / eta)^4 / (1 + 3.93 / n[i]) phi3 <- 1 + 0.405 * sds[i]^2 / n[i] + 0.315 * s43 / n[i] btmean <- exp(means[i] + sds[i]^2 / 2) * (1 / phi3) phi31 <- 1 + 1.62 * sds[i]^2 / n[i] + 5.04 * s43 / n[i] phi32 <- 1 + 1.62 * sds[i]^2 / n[i] + 1.26 * s43 / n[i] btsd <- sqrt(exp(2*means[i] + 2*sds[i]^2) * (1 / phi31) - exp(2*means[i] + sds[i]^2) * (1 / phi32)) means[i] <- btmean sds[i] <- btsd } } ### reset test to FALSE for qe method ([a]) if (method[1] == "qe") test <- FALSE } ######################################################################### if (has.data && append) { if (is.element(var.names[1], names(data))) { if (replace=="ifna") { attr(data[[var.names[1]]], "est") <- is.na(data[[var.names[1]]]) & !is.na(means) data[[var.names[1]]] <- replmiss(data[[var.names[1]]], means) } else { attr(data[[var.names[1]]], "est") <- !is.na(means) data[[var.names[1]]][!is.na(means)] <- means[!is.na(means)] } } else { data <- cbind(data, means) names(data)[length(names(data))] <- var.names[1] } if (is.element(var.names[2], names(data))) { if (replace=="ifna") { attr(data[[var.names[2]]], "est") <- is.na(data[[var.names[2]]]) & !is.na(sds) data[[var.names[2]]] <- replmiss(data[[var.names[2]]], sds) } else { attr(data[[var.names[2]]], "est") <- !is.na(sds) data[[var.names[2]]][!is.na(sds)] <- sds[!is.na(sds)] } } else { data <- cbind(data, sds) names(data)[length(names(data))] <- var.names[2] } } else { data <- data.frame(means, sds) names(data) <- var.names } dists <- gsub("log-normal", "lnorm", dists, fixed=TRUE) attr(data[[var.names[1]]], "tval") <- tval attr(data[[var.names[1]]], "crit") <- crit attr(data[[var.names[1]]], "sig") <- sig attr(data[[var.names[1]]], "dist") <- dists return(data) } metafor/R/vcov.matreg.r0000644000176200001440000000022614515471273014537 0ustar liggesusersvcov.matreg <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="matreg") out <- object$vb return(out) } metafor/R/summary.rma.r0000644000176200001440000000062414515471246014561 0ustar liggesuserssummary.rma <- function(object, digits, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") if (missing(digits)) { digits <- .get.digits(xdigits=object$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=object$digits, dmiss=FALSE) } object$digits <- digits class(object) <- c("summary.rma", class(object)) return(object) } metafor/R/plot.vif.rma.r0000644000176200001440000001167314712707325014632 0ustar liggesusersplot.vif.rma <- function(x, breaks="Scott", freq=FALSE, col, border, col.out, col.density, trim=0, adjust=1, lwd=c(2,0), ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="vif.rma") .start.plot() if (missing(col)) col <- .coladj(par("bg","fg"), dark=0.3, light=-0.3) if (missing(border)) border <- .coladj(par("bg"), dark=0.1, light=-0.1) if (missing(col.out)) col.out <- ifelse(.is.dark(), rgb(0.7,0.15,0.15,0.5), rgb(1,0,0,0.5)) if (missing(col.density)) col.density <- ifelse(.is.dark(), "dodgerblue", "blue") if (!is.null(x$alpha)) { if (is.null(x[[2]]$sim)) { plot(x[[1]], breaks=breaks, freq=freq, col=col, border=border, trim=trim, col.out=col.out, col.density=col.density, adjust=adjust, lwd=lwd, mainadd="Location ", ...) return(invisible()) } if (is.null(x[[1]]$sim)) { plot(x[[2]], breaks=breaks, freq=freq, col=col, border=border, trim=trim, col.out=col.out, col.density=col.density, adjust=adjust, lwd=lwd, mainadd="Scale ", ...) return(invisible()) } np <- length(x[[1]]$vifs) + length(x[[2]]$vifs) if (np > 1L) { # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < np) par(mfrow=n2mfrow(np)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) } plot(x[[1]], breaks=breaks, freq=freq, col=col, border=border, trim=trim, col.out=col.out, col.density=col.density, adjust=adjust, lwd=lwd, mainadd="Location ", setmfrow=FALSE, ...) plot(x[[2]], breaks=breaks, freq=freq, col=col, border=border, trim=trim, col.out=col.out, col.density=col.density, adjust=adjust, lwd=lwd, mainadd="Scale ", setmfrow=FALSE, ...) return(invisible()) } ddd <- list(...) tail <- .chkddd(ddd$tail, "upper", match.arg(ddd$tail, c("lower", "upper"))) setmfrow <- .chkddd(ddd$setmfrow, TRUE, FALSE) mainadd <- .chkddd(ddd$mainadd, "") if (!is.null(ddd$layout)) warning(mstyle$warning("Argument 'layout' has been deprecated."), call.=FALSE) ### check if 'sim' was actually used if (is.null(x$sim)) stop(mstyle$stop("Can only plot 'vif.rma' objects when 'sim=TRUE' was used.")) ### number of plots np <- length(x$vifs) if (setmfrow && np > 1L) { # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < np) par(mfrow=n2mfrow(np)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) } ### 1st: obs stat, 2nd: density if (length(lwd) == 1L) lwd <- lwd[c(1,1)] ### cannot plot density when freq=TRUE if (freq) lwd[2] <- 0 ### check trim if (trim >= 0.5) stop(mstyle$stop("The value of 'trim' must be < 0.5.")) ### local plotting functions lhist <- function(..., tail, setmfrow, mainadd, layout) hist(...) labline <- function(..., tail, setmfrow, mainadd, layout) abline(...) lsegments <- function(..., tail, setmfrow, mainadd, layout) segments(...) llines <- function(..., tail, setmfrow, mainadd, layout) lines(...) ############################################################################ for (i in seq_len(np)) { pvif <- x$sim[,i] pvif <- pvif[is.finite(pvif)] den <- density(pvif, adjust=adjust) if (trim > 0) { bound <- quantile(pvif, probs=1-trim) pvif <- pvif[pvif <= bound] } tmp <- lhist(pvif, breaks=breaks, plot=FALSE) ylim <- c(0, max(ifelse(lwd[2] == 0, 0, max(den$y)), max(tmp$density))) tmp <- lhist(pvif, breaks=breaks, col=col, border=border, main=paste0(mainadd, "Coefficient", ifelse(x$vif[[i]]$m > 1, "s", ""), ": ", names(x$vifs)[i]), xlab="Value of VIF", freq=freq, ylim=ylim, xaxt="n", ...) xat <- axTicks(side=1) xlabels <- xat axis(side=1, at=xat, labels=xlabels) .coltail(tmp, val=x$vifs[i], col=col.out, border=border, freq=freq, ...) usr <- par("usr") if (x$vifs[i] > usr[2] && lwd[1] > 0) { ya <- mean(par("yaxp")[1:2]) arrows(usr[2] - 0.08*(usr[2]-usr[1]), ya, usr[2] - 0.01*(usr[2]-usr[1]), ya, length = 0.02*(grconvertY(usr[4], from="user", to="inches")- (grconvertY(usr[3], from="user", to="inches")))) } x$vifs[i] <- min(x$vifs[i], usr[2]) par(xpd = TRUE) if (lwd[1] > 0) lsegments(x$vifs[i], usr[3], x$vifs[i], usr[4], lwd=lwd[1], lty="dashed", ...) par(xpd = FALSE) #den$y <- den$y[den$x <= par("xaxp")[2]] #den$x <- den$x[den$x <= par("xaxp")[2]] if (lwd[2] > 0) llines(den, lwd=lwd[2], col=col.density, ...) } ############################################################################ invisible() } metafor/R/bldiag.r0000644000176200001440000000355114601245664013531 0ustar liggesusersbldiag <- function(..., order) { mstyle <- .get.mstyle() mlist <- list(...) ### handle case in which a list of matrices is given if (length(mlist)==1L && is.list(mlist[[1]])) mlist <- unlist(mlist, recursive=FALSE) ### make sure each element is a matrix (so that bldiag(matrix(1, nrow=3, ncol=3), 2) also works) mlist <- lapply(mlist, function(x) if (inherits(x, "matrix")) x else diag(x, nrow=length(x), ncol=length(x))) ### find any ?x0 or 0x? matrices is00 <- sapply(mlist, function(x) any(dim(x) == c(0L,0L))) ### if all are ?x0 or 0x? matrices, return 0x0 matrix if (all(is00)) return(matrix(nrow=0, ncol=0)) ### otherwise filter out those matrices (if there are any) if (any(is00)) mlist <- mlist[!is00] csdim <- rbind(c(0,0), apply(sapply(mlist,dim), 1, cumsum)) # consider using rowCumsums() from matrixStats package out <- array(0, dim=csdim[length(mlist) + 1,]) add1 <- matrix(rep(1:0, 2L), ncol=2) for (i in seq(along.with=mlist)) { indx <- apply(csdim[i:(i+1),] + add1, 2, function(x) x[1]:x[2]) if (is.null(dim(indx))) { # non-square matrix out[indx[[1]],indx[[2]]] <- mlist[[i]] } else { # square matrix out[indx[,1],indx[,2]] <- mlist[[i]] } } if (!missing(order)) { if (nrow(out) != ncol(out)) stop(mstyle$stop("Can only use 'order' argument for square matrices.")) if (length(order) != nrow(out)) stop(mstyle$stop(paste0("Length of the 'order' argument (", length(order), ") does not correspond to the dimensions of the matrix (", nrow(out), "x", ncol(out), ")."))) if (grepl("^order\\(", deparse1(substitute(order)))) { sort.vec <- order } else { sort.vec <- order(order) } out[sort.vec, sort.vec] <- out } return(out) } metafor/R/labbe.rma.r0000644000176200001440000003321014717356012014123 0ustar liggesuserslabbe.rma <- function(x, xlim, ylim, lim, xlab, ylab, flip=FALSE, ci=FALSE, pi=FALSE, grid=FALSE, legend=FALSE, add=x$add, to=x$to, transf, targs, pch=21, psize, plim=c(0.5,3.5), col, bg, lty, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma", notav=c("rma.mv", "rma.ls", "rma.gen", "rma.uni.selmodel")) if (!x$int.only) stop(mstyle$stop("L'Abbe plots can only be drawn for models without moderators.")) if (!is.element(x$measure, c("RR","OR","RD","AS","IRR","IRD","IRSD"))) stop(mstyle$stop("Argument 'measure' must have been set to one of the following: 'RR','OR','RD','AS','IRR','IRD','IRSD'.")) if (is.null(x$outdat.f)) stop(mstyle$stop("Information needed to construct the plot is not available in the model object.")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (length(add) == 2L) # for rma.mh and rma.peto objects (1st 'add' value applies to the individual outcomes) add <- add[1] if (length(to) == 2L) # for rma.mh and rma.peto objects (1st 'to' value applies to the individual outcomes) to <- to[1] if (!is.element(to, c("all","only0","if0all","none"))) stop(mstyle$stop("Unknown 'to' argument specified.")) .start.plot() if (missing(transf)) transf <- FALSE transf.char <- deparse(transf) if (missing(targs)) targs <- NULL if (missing(psize)) psize <- NULL if (missing(lty)) { lty <- c("solid", "dashed") # 1 = diagonal line, 2 = estimated effect line } else { if (length(lty) == 1L) lty <- c(lty, lty) } if (is.logical(ci)) cicol <- .coladj(par("bg","fg"), dark=0.15, light=-0.15) if (is.character(ci)) { cicol <- ci ci <- TRUE } if (is.logical(pi)) picol <- .coladj(par("bg","fg"), dark=0.05, light=-0.05) if (is.character(pi)) { picol <- pi pi <- TRUE } ### get ... argument ddd <- list(...) ### set defaults or get addyi and addvi arguments addyi <- .chkddd(ddd$addyi, TRUE) addvi <- .chkddd(ddd$addvi, TRUE) ### grid argument can either be a logical or a color if (is.logical(grid)) gridcol <- .coladj(par("bg","fg"), dark=c(0.2,-0.6), light=c(-0.2,0.6)) if (is.character(grid)) { gridcol <- grid grid <- TRUE } llim <- ddd$llim lplot <- function(..., addyi, addvi, llim) plot(...) lbox <- function(..., addyi, addvi, llim) box(...) lsegments <- function(..., addyi, addvi, llim) segments(...) llines <- function(..., addyi, addvi, llim) lines(...) lpoints <- function(..., addyi, addvi, llim) points(...) lpolygon <- function(..., addyi, addvi, llim) polygon(...) ######################################################################### ### note: pch, psize, col, and bg (if vectors) must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing of NAs as was ### done during the model fitting (note: NAs are removed further below) pch <- .expand1(pch, x$k.all) if (length(pch) != x$k.all) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) pch <- .getsubset(pch, x$subset) ### if user has set the point sizes if (!is.null(psize)) { psize <- .expand1(psize, x$k.all) if (length(psize) != x$k.all) stop(mstyle$stop(paste0("Length of the 'psize' argument (", length(psize), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) psize <- .getsubset(psize, x$subset) } if (missing(col)) col <- par("fg") col <- .expand1(col, x$k.all) if (length(col) != x$k.all) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) col <- .getsubset(col, x$subset) if (missing(bg)) bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) bg <- .expand1(bg, x$k.all) if (length(bg) != x$k.all) stop(mstyle$stop(paste0("Length of the 'bg' argument (", length(bg), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) bg <- .getsubset(bg, x$subset) ######################################################################### ### these vectors may contain NAs dat.ai <- x$outdat.f$ai dat.bi <- x$outdat.f$bi dat.ci <- x$outdat.f$ci dat.di <- x$outdat.f$di dat.x1i <- x$outdat.f$x1i dat.x2i <- x$outdat.f$x2i dat.y1i <- x$outdat.f$t1i dat.y2i <- x$outdat.f$t2i ### drop00=TRUE may induce that the contrast-based yi value is NA; so ### make sure that the corresponding arm-based yi values are also NA yi.is.na <- is.na(x$yi.f) dat.ai[yi.is.na] <- NA_real_ dat.bi[yi.is.na] <- NA_real_ dat.ci[yi.is.na] <- NA_real_ dat.di[yi.is.na] <- NA_real_ dat.x1i[yi.is.na] <- NA_real_ dat.x2i[yi.is.na] <- NA_real_ dat.y1i[yi.is.na] <- NA_real_ dat.y2i[yi.is.na] <- NA_real_ options(na.action = "na.pass") # to make sure dat.x and dat.y are of the same length measure <- switch(x$measure, "RR"="PLN", "OR"="PLO", "RD"="PR", "AS"="PAS", "IRR"="IRLN", "IRD"="IR", "IRSD"="IRS") if (is.element(x$measure, c("RR","OR","RD","AS"))) { if (flip) { args.x <- list(measure=measure, xi=dat.ai, mi=dat.bi, add=add, to=to, addyi=addyi, addvi=addvi) args.y <- list(measure=measure, xi=dat.ci, mi=dat.di, add=add, to=to, addyi=addyi, addvi=addvi) } else { args.x <- list(measure=measure, xi=dat.ci, mi=dat.di, add=add, to=to, addyi=addyi, addvi=addvi) args.y <- list(measure=measure, xi=dat.ai, mi=dat.bi, add=add, to=to, addyi=addyi, addvi=addvi) } } if (is.element(x$measure, c("IRR","IRD","IRSD"))) { if (flip) { args.x <- list(measure=measure, xi=dat.x1i, ti=dat.y1i, add=add, to=to, addyi=addyi, addvi=addvi) args.y <- list(measure=measure, xi=dat.x2i, ti=dat.y2i, add=add, to=to, addyi=addyi, addvi=addvi) } else { args.x <- list(measure=measure, xi=dat.x2i, ti=dat.y2i, add=add, to=to, addyi=addyi, addvi=addvi) args.y <- list(measure=measure, xi=dat.x1i, ti=dat.y1i, add=add, to=to, addyi=addyi, addvi=addvi) } } dat.x <- .do.call(escalc, args.x) dat.y <- .do.call(escalc, args.y) options(na.action = na.act) ### check for NAs in yi/vi pairs and filter out has.na <- apply(is.na(dat.x), 1, any) | apply(is.na(dat.y), 1, any) not.na <- !has.na if (any(has.na)) { dat.x <- dat.x[not.na,] dat.y <- dat.y[not.na,] pch <- pch[not.na] col <- col[not.na] bg <- bg[not.na] if (is.null(psize)) psize <- psize[not.na] } if (length(dat.x$yi)==0L || length(dat.y$yi)==0L) stop(mstyle$stop("No information in object to compute the arm-level outcomes.")) ######################################################################### ### determine point sizes vi <- dat.x$vi + dat.y$vi k <- length(vi) if (is.null(psize)) { if (length(plim) < 2L) stop(mstyle$stop("Argument 'plim' must be of length 2 or 3.")) wi <- sqrt(1/vi) if (!is.na(plim[1]) && !is.na(plim[2])) { rng <- max(wi, na.rm=TRUE) - min(wi, na.rm=TRUE) if (rng <= .Machine$double.eps^0.5) { psize <- rep(1, k) } else { psize <- (wi - min(wi, na.rm=TRUE)) / rng psize <- (psize * (plim[2] - plim[1])) + plim[1] } } if (is.na(plim[1]) && !is.na(plim[2])) { psize <- wi / max(wi, na.rm=TRUE) * plim[2] if (length(plim) == 3L) psize[psize <= plim[3]] <- plim[3] } if (!is.na(plim[1]) && is.na(plim[2])) { psize <- wi / min(wi, na.rm=TRUE) * plim[1] if (length(plim) == 3L) psize[psize >= plim[3]] <- plim[3] } if (all(is.na(psize))) psize <- rep(1, k) } ### determine x/y values for line that indicates the estimated effect min.yi <- min(c(dat.x$yi, dat.y$yi)) max.yi <- max(c(dat.x$yi, dat.y$yi)) rng.yi <- max.yi - min.yi len <- 10000 intrcpt <- x$beta[1] if (is.null(llim)) { if (x$measure == "RD") x.vals <- seq(ifelse(intrcpt>0, 0, -intrcpt), ifelse(intrcpt>0, 1-intrcpt, 1), length.out=len) if (x$measure == "RR") x.vals <- seq(min.yi-rng.yi, ifelse(intrcpt>0, -intrcpt, 0), length.out=len) if (x$measure == "OR") x.vals <- seq(min.yi-rng.yi, max.yi+rng.yi, length.out=len) if (x$measure == "AS") x.vals <- seq(ifelse(intrcpt>0, 0, -intrcpt), ifelse(intrcpt>0, asin(sqrt(1))-intrcpt, asin(sqrt(1))), length.out=len) if (x$measure == "IRR") x.vals <- seq(min.yi-rng.yi, ifelse(intrcpt>0, -intrcpt, 0), length.out=len) if (x$measure == "IRD") x.vals <- seq(ifelse(intrcpt>0, 0, -intrcpt), ifelse(intrcpt>0, 1-intrcpt, 1), length.out=len) if (x$measure == "IRSD") x.vals <- seq(ifelse(intrcpt>0, 0, -intrcpt), ifelse(intrcpt>0, 1-intrcpt, 1), length.out=len) } else { if (length(llim) != 2L) stop(mstyle$stop("Argument 'llim' must be of length 2.")) x.vals <- seq(llim[1], llim[2], length.out=len) } y.vals <- intrcpt + 1*x.vals if (ci || pi) { predres <- predict(x) y.vals.ci.lb <- predres$ci.lb + 1*x.vals y.vals.ci.ub <- predres$ci.ub + 1*x.vals y.vals.pi.lb <- predres$pi.lb + 1*x.vals y.vals.pi.ub <- predres$pi.ub + 1*x.vals } else { y.vals.ci.lb <- y.vals.ci.ub <- y.vals.pi.lb <- y.vals.pi.ub <- NULL } if (is.function(transf)) { if (is.null(targs)) { dat.x$yi <- sapply(dat.x$yi, transf) dat.y$yi <- sapply(dat.y$yi, transf) x.vals <- sapply(x.vals, transf) y.vals <- sapply(y.vals, transf) y.vals.ci.lb <- sapply(y.vals.ci.lb, transf) y.vals.ci.ub <- sapply(y.vals.ci.ub, transf) y.vals.pi.lb <- sapply(y.vals.pi.lb, transf) y.vals.pi.ub <- sapply(y.vals.pi.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) dat.x$yi <- sapply(dat.x$yi, transf, targs) dat.y$yi <- sapply(dat.y$yi, transf, targs) x.vals <- sapply(x.vals, transf, targs) y.vals <- sapply(y.vals, transf, targs) y.vals.ci.lb <- sapply(y.vals.ci.lb, transf, targs) y.vals.ci.ub <- sapply(y.vals.ci.ub, transf, targs) y.vals.pi.lb <- sapply(y.vals.pi.lb, transf, targs) y.vals.pi.ub <- sapply(y.vals.pi.ub, transf, targs) } } min.yi <- min(c(dat.x$yi, dat.y$yi)) max.yi <- max(c(dat.x$yi, dat.y$yi)) if (missing(lim)) { if (missing(xlim)) xlim <- c(min.yi, max.yi) if (missing(ylim)) ylim <- c(min.yi, max.yi) } else { xlim <- lim ylim <- lim } ### order points by psize order.vec <- order(psize, decreasing=TRUE) dat.x$yi.o <- dat.x$yi[order.vec] dat.y$yi.o <- dat.y$yi[order.vec] pch.o <- pch[order.vec] col.o <- col[order.vec] bg.o <- bg[order.vec] psize.o <- psize[order.vec] ### add x-axis label if (missing(xlab)) { xlab <- .setlab(measure, transf.char, atransf.char="FALSE", gentype=1) xlab <- paste(xlab, "(Group 1)") } ### add y-axis label if (missing(ylab)) { ylab <- .setlab(measure, transf.char, atransf.char="FALSE", gentype=1) ylab <- paste(ylab, "(Group 2)") } lplot(NA, NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, ...) ### add PI bounds if (pi) lpolygon(c(x.vals,rev(x.vals)), c(y.vals.pi.lb,rev(y.vals.pi.ub)), col=picol, border=NA, ...) ### add CI bounds if (ci) lpolygon(c(x.vals,rev(x.vals)), c(y.vals.ci.lb,rev(y.vals.ci.ub)), col=cicol, border=NA, ...) ### add grid (and redraw box) if (.isTRUE(grid)) { grid(col=gridcol) lbox(...) } ### add diagonal reference line #abline(a=0, b=1, lty=lty[1], ...) lsegments(min(x.vals), min(x.vals), max(x.vals), max(x.vals), lty=lty[1], ...) ### add estimated effects line llines(x.vals, y.vals, lty=lty[2], ...) ### add points lpoints(x=dat.x$yi.o, y=dat.y$yi.o, cex=psize.o, pch=pch.o, col=col.o, bg=bg.o, ...) ### add legend if (is.logical(legend) && isTRUE(legend)) lpos <- ifelse(intrcpt > 0, "bottomright", "topleft") if (is.character(legend)) { lpos <- legend legend <- TRUE } if (legend) { lvl <- round(100*(1-x$level), x$digits[["ci"]]) ltxt <- c("Reference Line of No Effect", "Line for the Estimated Effect", paste0(lvl, "% Confidence Interval"), paste0(lvl, "% Prediction Interval")) lpch <- c(NA,NA,22,22) if (is.numeric(lty)) { llty <- c(lty[1],lty[2],0,0) } else { llty <- c(lty[1],lty[2],"blank","blank") } lpt.bg <- c(NA,NA,cicol,picol) sel <- c(lty != "blank" & lty != 0, ci, pi) if (any(sel)) { legend(lpos, inset=0.01, bg=.coladj(par("bg"), dark=0, light=0), pch=lpch[sel], pt.cex=2.5, pt.lwd=0, pt.bg=lpt.bg[sel], lty=llty[sel], legend=ltxt[sel]) } } ######################################################################### ### prepare data frame to return sav <- data.frame(x=dat.x$yi, y=dat.y$yi, cex=psize, pch=pch, col=col, bg=bg, ids=x$ids[not.na], slab=x$slab[not.na]) invisible(sav) } metafor/R/addpoly.rma.r0000644000176200001440000000567514670061620014524 0ustar liggesusersaddpoly.rma <- function(x, row=-2, level=x$level, annotate, addpred=FALSE, predstyle, predlim, digits, width, mlab, transf, atransf, targs, efac, col, border, lty, fonts, cex, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma") if (!x$int.only) stop(mstyle$stop("Fitted model should not contain moderators.")) if (missing(annotate)) annotate <- .getfromenv("forest", "annotate", default=TRUE) if (missing(predstyle)) { predstyle <- "line" } else { predstyle <- match.arg(predstyle, c("line", "bar", "shade", "dist")) addpred <- TRUE } if (missing(predlim)) predlim <- NULL if (missing(digits)) digits <- .getfromenv("forest", "digits", default=2) if (missing(width)) width <- .getfromenv("forest", "width", default=NULL) if (missing(mlab)) mlab <- NULL if (missing(transf)) transf <- .getfromenv("forest", "transf", default=FALSE) if (missing(atransf)) atransf <- .getfromenv("forest", "atransf", default=FALSE) if (missing(targs)) targs <- .getfromenv("forest", "targs", default=NULL) if (missing(efac)) efac <- .getfromenv("forest", "efac", default=1) if (missing(col)) col <- par("fg") if (missing(border)) border <- par("fg") if (missing(lty)) lty <- "dotted" if (missing(fonts)) fonts <- .getfromenv("forest", "fonts", default=NULL) if (missing(cex)) cex <- .getfromenv("forest", "cex", default=NULL) ddd <- list(...) if (!is.null(ddd$addcred)) addpred <- ddd$addcred pi.type <- .chkddd(ddd$pi.type, "default") predres <- predict(x, level=level, pi.type=pi.type) ci.lb <- predres$ci.lb ci.ub <- predres$ci.ub if (addpred) { pi.lb <- predres$pi.lb pi.ub <- predres$pi.ub if (is.null(pi.lb) || is.null(pi.ub)) warning(mstyle$warning("Could not extract prediction interval bounds."), call.=FALSE) } else { pi.lb <- NA_real_ pi.ub <- NA_real_ } ######################################################################### ### label for model estimate (if not specified) if (is.null(mlab)) mlab <- sapply(x$method, switch, "FE"="Fixed-Effect Model", "EE"="Equal-Effects Model", "CE"="Common-Effect Model", "Random-Effects Model", USE.NAMES=FALSE) #mlab <- sapply(x$method, switch, "FE"="FE Model", "EE"="EE Model", "CE"="CE Model", "RE Model", USE.NAMES=FALSE) ### passing ci.lb and ci.ub, so that the bounds are correct when the model was fitted with test="knha" addpoly(x$beta, ci.lb=ci.lb, ci.ub=ci.ub, pi.lb=pi.lb, pi.ub=pi.ub, rows=row, level=level, annotate=annotate, predstyle=predstyle, predlim=predlim, digits=digits, width=width, mlab=mlab, transf=transf, atransf=atransf, targs=targs, efac=efac, col=col, border=border, lty=lty, fonts=fonts, cex=cex, ...) } metafor/R/profile.rma.ls.r0000644000176200001440000002470614722340152015137 0ustar liggesusersprofile.rma.ls <- function(fitted, alpha, xlim, ylim, steps=20, lltol=1e-03, progbar=TRUE, parallel="no", ncpus=1, cl, plot=TRUE, ...) { mstyle <- .get.mstyle() .chkclass(class(fitted), must="rma.ls") x <- fitted if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed for profiling is not available in the model object.")) if (x$optbeta) stop(mstyle$stop("Profiling not yet implemented for models fitted with 'optbeta=TRUE'.")) if (anyNA(steps)) stop(mstyle$stop("No missing values allowed in 'steps' argument.")) if (length(steps) >= 2L) { if (missing(xlim)) xlim <- range(steps) stepseq <- TRUE } else { if (steps < 2) stop(mstyle$stop("Argument 'steps' must be >= 2.")) stepseq <- FALSE } parallel <- match.arg(parallel, c("no", "snow", "multicore")) if (parallel == "no" && ncpus > 1) parallel <- "snow" if (missing(cl)) cl <- NULL if (!is.null(cl) && inherits(cl, "SOCKcluster")) { parallel <- "snow" ncpus <- length(cl) } if (parallel == "snow" && ncpus < 2) parallel <- "no" if (parallel == "snow" || parallel == "multicore") { if (!requireNamespace("parallel", quietly=TRUE)) stop(mstyle$stop("Please install the 'parallel' package for parallel processing.")) ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Argument 'ncpus' must be >= 1.")) } if (!progbar) { pbo <- pbapply::pboptions(type="none") on.exit(pbapply::pboptions(pbo), add=TRUE) } ddd <- list(...) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### ### check if user has not specified alpha argument if (missing(alpha)) { mc <- match.call() ### total number of non-fixed components comps <- sum(!x$alpha.fix) if (comps == 0) stop(mstyle$stop("No components in the model for which a profile likelihood can be constructed.")) if (!is.null(ddd[["code3"]])) eval(expr = parse(text = ddd[["code3"]])) if (plot) { if (comps > 1L) { # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < comps) par(mfrow=n2mfrow(comps)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) } } sav <- list() j <- 0 if (any(!x$alpha.fix)) { for (pos in seq_len(x$alphas)[!x$alpha.fix]) { j <- j + 1 if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) mc.vc <- mc mc.vc$alpha <- pos mc.vc$time <- FALSE #mc.vc$fitted <- quote(x) mc.vc[[1]] <- str2lang("metafor::profile.rma.ls") if (progbar) cat(mstyle$verbose(paste("Profiling alpha =", pos, "\n"))) sav[[j]] <- eval(mc.vc, envir=parent.frame()) } } ### if there is just one component, turn the list of lists into a simple list if (comps == 1) sav <- sav[[1]] sav$comps <- comps if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(sav) <- "profile.rma" return(invisible(sav)) } ######################################################################### ### round and take unique values if (!missing(alpha) && is.numeric(alpha)) alpha <- unique(round(alpha)) ### check if model actually contains (at least one) such a component and that it was actually estimated if (!missing(alpha) && all(x$alpha.fix)) stop(mstyle$stop("Model does not contain any estimated 'alpha' components.")) ### check if user specified more than one alpha component if (!missing(alpha) && (length(alpha) > 1L)) stop(mstyle$stop("Can only specify one 'alpha' component.")) ### check if user specified a logical if (!missing(alpha) && is.logical(alpha)) stop(mstyle$stop("Must specify a number for the 'alpha' component.")) ### check if user specified a component that does not exist if (!missing(alpha) && (alpha > x$alphas || alpha <= 0)) stop(mstyle$stop("No such 'alpha' component in the model.")) ### check if user specified a component that was fixed if (!missing(alpha) && x$alpha.fix[alpha]) stop(mstyle$stop("Specified 'alpha' component was fixed.")) ### if everything is good so far, get value of the component and set 'comp' alpha.pos <- NA_integer_ if (!missing(alpha)) { vc <- x$alpha[alpha] comp <- "alpha" alpha.pos <- alpha } #return(list(comp=comp, vc=vc)) ######################################################################### if (missing(xlim) || is.null(xlim)) { ### if the user has not specified xlim, set it automatically if (comp == "alpha") { if (is.na(x$se.alpha[alpha])) { vc.lb <- vc - 4 * abs(vc) vc.ub <- vc + 4 * abs(vc) } else { vc.lb <- vc - qnorm(0.995) * x$se.alpha[alpha] vc.ub <- vc + qnorm(0.995) * x$se.alpha[alpha] } } ### if that fails, throw an error if (is.na(vc.lb) || is.na(vc.ub)) stop(mstyle$stop("Cannot set 'xlim' automatically. Please set this argument manually.")) ### apply alpha.min/alpha.max limits (if they exist) on vc.lb/vc.ub as well if (!is.null(x$control$alpha.min)) { x$control$alpha.min <- .expand1(x$control$alpha.min, x$q) vc.lb <- max(vc.lb, x$con$alpha.min[alpha]) } if (!is.null(x$control$alpha.max)) { x$control$alpha.max <- .expand1(x$control$alpha.max, x$q) vc.ub <- min(vc.ub, x$con$alpha.max[alpha]) } xlim <- sort(c(vc.lb, vc.ub)) } else { if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' should be a vector of length 2.")) xlim <- sort(xlim) } if (stepseq) { vcs <- steps } else { vcs <- seq(xlim[1], xlim[2], length.out=steps) } #return(vcs) if (length(vcs) <= 1L) stop(mstyle$stop("Cannot set 'xlim' automatically. Please set this argument manually.")) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) if (parallel == "no") res <- pbapply::pblapply(vcs, .profile.rma.ls, obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) if (parallel == "multicore") res <- pbapply::pblapply(vcs, .profile.rma.ls, obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2, cl=ncpus) #res <- parallel::mclapply(vcs, .profile.rma.ls, obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2, mc.cores=ncpus) if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, vcs, .profile.rma.ls, obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterApplyLB(cl, vcs, .profile.rma.ls, obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterMap(cl, .profile.rma.ls, vcs, MoreArgs=list(obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2), .scheduling = "dynamic") } else { res <- pbapply::pblapply(vcs, .profile.rma.ls, obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, vcs, .profile.rma.ls, obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterApply(cl, vcs, .profile.rma.ls, obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterMap(cl, .profile.rma.ls, vcs, MoreArgs=list(obj=x, comp=comp, alpha.pos=alpha.pos, parallel=parallel, profile=TRUE, code2=ddd$code2)) } } lls <- sapply(res, function(x) x$ll) beta <- do.call(rbind, lapply(res, function(x) t(x$beta))) ci.lb <- do.call(rbind, lapply(res, function(x) t(x$ci.lb))) ci.ub <- do.call(rbind, lapply(res, function(x) t(x$ci.ub))) beta <- data.frame(beta) ci.lb <- data.frame(ci.lb) ci.ub <- data.frame(ci.ub) names(beta) <- rownames(x$beta) names(ci.lb) <- rownames(x$beta) names(ci.ub) <- rownames(x$beta) ######################################################################### maxll <- c(logLik(x)) if (any(lls >= maxll + lltol, na.rm=TRUE)) warning(mstyle$warning("At least one profiled log-likelihood value is larger than the log-likelihood of the fitted model."), call.=FALSE) if (all(is.na(lls))) warning(mstyle$warning("All model fits failed. Cannot draw profile likelihood plot."), call.=FALSE) if (.isTRUE(ddd$exp)) { lls <- exp(lls) maxll <- exp(maxll) } if (missing(ylim)) { if (any(is.finite(lls))) { if (xlim[1] <= vc && xlim[2] >= vc) { ylim <- range(c(maxll,lls[is.finite(lls)]), na.rm=TRUE) } else { ylim <- range(lls[is.finite(lls)], na.rm=TRUE) } } else { ylim <- rep(maxll, 2L) } if (!.isTRUE(ddd$exp)) ylim <- ylim + c(-0.1, 0.1) } else { if (length(ylim) != 2L) stop(mstyle$stop("Argument 'ylim' should be a vector of length 2.")) ylim <- sort(ylim) } if (comp == "alpha") { if (x$alphas == 1L) { xlab <- expression(paste(alpha, " Value")) title <- expression(paste("Profile Plot for ", alpha)) } else { if (.isTRUE(ddd$sub1)) alpha <- alpha - 1 xlab <- bquote(alpha[.(alpha)] ~ "Value") title <- bquote("Profile Plot for" ~ alpha[.(alpha)]) } } sav <- list(alpha=vcs, ll=lls, beta=beta, ci.lb=ci.lb, ci.ub=ci.ub, comps=1, ylim=ylim, method=x$method, vc=vc, maxll=maxll, xlab=xlab, title=title, exp=ddd$exp) class(sav) <- "profile.rma" ######################################################################### if (plot) plot(sav, ...) ######################################################################### if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } invisible(sav) } metafor/R/conv.delta.r0000644000176200001440000001634214717402056014344 0ustar liggesusersconv.delta <- function(yi, vi, ni, data, include, transf, var.names, append=TRUE, replace="ifna", ...) { mstyle <- .get.mstyle() if (missing(yi) || missing(vi)) stop(mstyle$stop("Must specify the 'yi' and 'vi' arguments.")) if (missing(transf)) stop(mstyle$stop("Must specify the 'transf' argument.")) if (is.logical(replace)) { if (isTRUE(replace)) { replace <- "all" } else { replace <- "ifna" } } replace <- match.arg(replace, c("ifna","all")) ######################################################################### if (missing(data)) data <- NULL has.data <- !is.null(data) if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } x <- data ### checks on var.names argument if (missing(var.names)) { if (inherits(x, "escalc")) { if (!is.null(attr(x, "yi.names"))) { # if yi.names attributes is available yi.name <- attr(x, "yi.names")[1] # take the first entry to be the yi variable } else { # if not, see if 'yi' is in the object and assume that is the yi variable if (!is.element("yi", names(x))) stop(mstyle$stop("Cannot determine name of the 'yi' variable.")) yi.name <- "yi" } if (!is.null(attr(x, "vi.names"))) { # if vi.names attributes is available vi.name <- attr(x, "vi.names")[1] # take the first entry to be the vi variable } else { # if not, see if 'vi' is in the object and assume that is the vi variable if (!is.element("vi", names(x))) stop(mstyle$stop("Cannot determine name of the 'vi' variable.")) vi.name <- "vi" } } else { yi.name <- "yi" vi.name <- "vi" } } else { if (length(var.names) != 2L) stop(mstyle$stop("Argument 'var.names' must be of length 2.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\nVariable names adjusted to: var.names = c('", var.names[1], "','", var.names[2], "').")), call.=FALSE) } yi.name <- var.names[1] vi.name <- var.names[2] } ######################################################################### mf <- match.call() yi <- .getx("yi", mf=mf, data=x, checknumeric=TRUE) vi <- .getx("vi", mf=mf, data=x, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=x, checknumeric=TRUE) include <- .getx("include", mf=mf, data=x) ### check length of yi and vi (and ni) if (length(yi) != length(vi)) stop(mstyle$stop("Length of 'yi' and 'vi' are not the same.")) if (!.equal.length(yi, vi, ni)) # a bit redundant with the above, but keep stop(mstyle$stop("Supplied data vectors are not all of the same length.")) ### check 'vi' argument for potential misuse .chkviarg(mf$vi) k <- length(yi) ### if ni/include is NULL, set to TRUE vector if (is.null(ni)) ni <- rep(NA_real_, k) if (is.null(include)) include <- rep(TRUE, k) ### turn numeric include vector into a logical vector include <- .chksubset(include, k, stoponk0=FALSE) ### set inputs to NA for rows not to be included yi[!include] <- NA_real_ vi[!include] <- NA_real_ ni[!include] <- NA_real_ ### get names of arguments to transf (except the first and ... in case that is there) transfargs <- names(formals(args(transf))) transfargs <- transfargs[-1] transfargs <- transfargs[transfargs != "..."] ### get ... args args <- names(sapply(mf[-1], deparse)) rmargs <- c("yi", "vi", "data", "include", "transf", "var.names", "append", "replace") dotargs <- args[!args %in% rmargs] ### keep arguments in dotargs that are actual arguments of 'transf' dotargs <- dotargs[dotargs %in% transfargs] dotarglist <- list() for (i in seq_along(dotargs)) { dotarglist[[i]] <- .getx(dotargs[i], mf=mf, data=x, checknumeric=TRUE) dotarglist[[i]] <- .expand1(dotarglist[[i]], k) names(dotarglist)[i] <- dotargs[i] } #print(dotarglist) argmatch <- pmatch(names(dotarglist), table=c("func","method","side"), duplicates.ok=TRUE) if (!all(is.na(argmatch))) stop(mstyle$stop("One or more arguments in ... (partially) match an argument from numDeriv::grad().")) ######################################################################### #ddd <- list(c(yi), ...) #yi.t <- unlist(.mapply(FUN=transf, dots=ddd, MoreArgs=NULL)) #deriv <- unlist(.mapply(FUN=.compgrad, dots=ddd, MoreArgs=list(func=transf))) #vi.t <- vi * deriv^2 #dat <- data.frame(yi=yi.t, vi=vi.t) #return(dat) yi.t <- rep(NA_real_, k) vi.t <- rep(NA_real_, k) deriv <- rep(NA_real_, k) for (i in 1:k) { args <- c(yi[[i]], as.list(sapply(dotarglist, `[[`, i))) # use [[]] in case yi is a named vector #print(args) tmp <- try(suppressWarnings(do.call(transf, args)), silent=TRUE) #tmp <- try(do.call(transf, args), silent=FALSE) if (inherits(tmp, "try-error")) { yi.t[i] <- NA_real_ } else { yi.t[i] <- tmp } args <- c(args, func=transf) #print(args) tmp <- try(suppressWarnings(do.call(numDeriv::grad, args)), silent=TRUE) #tmp <- try(do.call(numDeriv::grad, args)) if (inherits(tmp, "try-error")) { vi.t[i] <- NA_real_ } else { vi.t[i] <- vi[i] * tmp^2 } #tmp <- try(suppressWarnings(numDeriv::grad(func=transf, yi[i])), silent=TRUE) #if (inherits(tmp, "try-error")) { # deriv[i] <- NA_real_ #} else { # deriv[i] <- tmp #} #vi.t[i] <- vi[i] * deriv[i]^2 } ######################################################################### ### set up data frame if 'data' was not specified if (!has.data) { x <- data.frame(rep(NA_real_, k), rep(NA_real_, k)) names(x) <- c(yi.name, vi.name) } ### replace missing x$yi values if (replace=="ifna") { x[[yi.name]] <- replmiss(x[[yi.name]], yi.t) } else { x[[yi.name]][!is.na(yi.t)] <- yi.t[!is.na(yi.t)] } ### replace missing ni values with ni attributes values from the source and target variables ### and then add ni attribute to target variable (if at least one value is not missing) ### note: values specified via 'ni' argument in conv.delta() overrule existing attribute values ni <- replmiss(ni, attributes(yi)$ni) ni <- replmiss(ni, attributes(x[[yi.name]])$ni) if (any(!is.na(ni))) attr(x[[yi.name]], "ni") <- ni ### replace missing x$vi values if (replace=="ifna") { x[[vi.name]] <- replmiss(x[[vi.name]], vi.t) } else { x[[vi.name]][!is.na(vi.t)] <- vi.t[!is.na(vi.t)] } #escall <- paste0("escalc(data=x, yi=", yi.name, ", vi=", vi.name, ", var.names=c('", yi.name, "','", vi.name, "'))") #x <- eval(str2lang(escall)) x <- escalc(data=x, yi=x[[yi.name]], vi=x[[vi.name]], var.names=c(yi.name,vi.name)) if (!append) x <- x[,c(yi.name, vi.name)] return(x) } metafor/R/tes.r0000644000176200001440000003364214717402322013100 0ustar liggesuserstes <- function(x, vi, sei, subset, data, H0=0, alternative="two.sided", alpha=.05, theta, tau2, test, tes.alternative="greater", progbar=TRUE, tes.alpha=.10, digits, ...) { # allow multiple alpha values? plot for pval as a function of alpha? ######################################################################### mstyle <- .get.mstyle() na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) alternative <- match.arg(alternative, c("two.sided", "greater", "less")) tes.alternative <- match.arg(tes.alternative, c("two.sided", "greater", "less")) ######################################################################### ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() x <- .getx("x", mf=mf, data=data) ######################################################################### if (inherits(x, "rma")) { on.exit(options(na.action=na.act), add=TRUE) .chkclass(class(x), must="rma", notav=c("rma.glmm", "rma.mv", "robust.rma", "rma.ls", "rma.gen", "rma.uni.selmodel")) if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed to carry out the test is not available in the model object.")) ### set defaults for digits if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(test)) test <- NULL if (x$int.only) { theta <- c(x$beta) } else { options(na.action="na.omit") theta <- fitted(x) options(na.action = na.act) } tes(c(x$yi), vi=x$vi, H0=H0, alternative=alternative, alpha=alpha, theta=theta, tau2=x$tau2, test=test, tes.alternative=tes.alternative, progbar=progbar, tes.alpha=tes.alpha, digits=digits, ...) } else { ######################################################################### if (!.is.vector(x)) stop(mstyle$stop("Argument 'x' must be a vector or an 'rma' model object.")) yi <- x ### check if yi is numeric if (!is.numeric(yi)) stop(mstyle$stop("The object/variable specified for the 'x' argument is not numeric.")) ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } vi <- .getx("vi", mf=mf, data=data, checknumeric=TRUE) sei <- .getx("sei", mf=mf, data=data, checknumeric=TRUE) subset <- .getx("subset", mf=mf, data=data) if (is.null(vi)) { if (!is.null(sei)) vi <- sei^2 } if (is.null(vi)) stop(mstyle$stop("Must specify the 'vi' or 'sei' argument.")) ### check length of yi and vi if (length(yi) != length(vi)) stop(mstyle$stop("Length of 'yi' and 'vi' (or 'sei') are not the same.")) ### check 'vi' argument for potential misuse .chkviarg(mf$vi) ######################################################################### if (length(alpha) != 1L) stop(mstyle$stop("Argument 'alpha' must specify a single value.")) if (length(tes.alpha) != 1L) stop(mstyle$stop("Argument 'tes.alpha' must specify a single value.")) if (alpha <= 0 || alpha >= 1) stop(mstyle$stop("Value of 'alpha' needs to be > 0 and < 1.")) if (tes.alpha <= 0 || tes.alpha >= 1) stop(mstyle$stop("Value of 'tes.alpha' needs to be > 0 and < 1.")) if (alternative == "two.sided") crit <- qnorm(alpha/2, lower.tail=FALSE) if (alternative == "greater") crit <- qnorm(alpha, lower.tail=FALSE) if (alternative == "less") crit <- qnorm(alpha, lower.tail=TRUE) ddd <- list(...) .chkdots(ddd, c("correct", "rel.tol", "subdivisions", "tau2.lb", "find.lim")) correct <- .chkddd(ddd$correct, FALSE) rel.tol <- .chkddd(ddd$rel.tol, .Machine$double.eps^0.25) subdivisions <- .chkddd(ddd$subdivisions, 100L) tau2.lb <- .chkddd(ddd$tau2.lb, 0) # 0.0001 find.lim <- .chkddd(ddd$find.lim, TRUE) ######################################################################### k.f <- length(yi) ### checks on H0 if (length(H0) != 1L) stop(mstyle$stop("Argument 'H0' must specify a single value.")) ### checks on theta if (missing(theta) || is.null(theta)) { single.theta <- TRUE est.theta <- TRUE theta <- rep(0, k.f) } else { if (length(theta) == 1L) { single.theta <- TRUE est.theta <- FALSE theta.1 <- theta theta <- rep(theta, k.f) } else { single.theta <- FALSE est.theta <- FALSE } if (length(theta) != k.f) stop(mstyle$stop("Length of 'theta' and 'yi' are not the same.")) } ######################################################################### ### if a subset of studies is specified if (!is.null(subset)) { subset <- .chksubset(subset, k.f) yi <- .getsubset(yi, subset) vi <- .getsubset(vi, subset) theta <- .getsubset(theta, subset) } ### check for NAs and act accordingly has.na <- is.na(yi) | is.na(vi) | is.na(theta) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na] vi <- vi[not.na] theta <- theta[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from test.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in data.")) } ######################################################################### k <- length(yi) if (k == 0L) stop(mstyle$stop("Stopped because k = 0.")) sei <- sqrt(vi) zi <- (yi - H0) / sei if (missing(tau2) || is.null(tau2) || tau2 <= tau2.lb) { wi <- 1 / vi } else { wi <- 1 / (vi + tau2) } if (est.theta) { theta.1 <- .wmean(yi, wi) theta <- rep(theta.1, k) } if (missing(tau2) || is.null(tau2) || tau2 <= tau2.lb) { if (alternative == "two.sided") pow <- pnorm(crit, mean=(theta-H0)/sei, sd=1, lower.tail=FALSE) + pnorm(-crit, mean=(theta-H0)/sei, sd=1, lower.tail=TRUE) if (alternative == "greater") pow <- pnorm(crit, mean=(theta-H0)/sei, sd=1, lower.tail=FALSE) if (alternative == "less") pow <- pnorm(crit, mean=(theta-H0)/sei, sd=1, lower.tail=TRUE) } else { tau <- sqrt(tau2) pow <- rep(NA_real_, k) for (i in seq_len(k)) { res <- try(integrate(.tes.intfun, lower=theta[i]-5*tau, upper=theta[i]+5*tau, theta=theta[i], tau=tau, sei=sei[i], H0=H0, alternative=alternative, crit=crit, rel.tol=rel.tol, subdivisions=subdivisions, stop.on.error=FALSE), silent=TRUE) if (inherits(res, "try-error")) { stop(mstyle$stop(paste0("Could not integrate over density in study ", i, "."))) } else { pow[i] <- res$value } } } if (alternative == "two.sided") sig <- abs(zi) >= crit if (alternative == "greater") sig <- zi >= crit if (alternative == "less") sig <- zi <= crit E <- sum(pow) O <- sum(sig) if (tes.alternative == "two.sided") js <- 0:k if (tes.alternative == "greater") js <- O:k if (tes.alternative == "less") js <- 0:O if (missing(test) || is.null(test)) { tot <- sum(sapply(js, function(j) choose(k,j))) if (tot <= 10^6) { test <- "exact" } else { test <- "chi2" } } else { test <- match.arg(test, c("chi2", "binom", "exact")) } ### set defaults for progbar if (missing(progbar)) progbar <- ifelse(test == "exact", TRUE, FALSE) if (test == "chi2") { res <- suppressWarnings(prop.test(O, k, p=E/k, alternative=tes.alternative, correct=correct)) X2 <- unname(res$statistic) pval <- res$p.value } if (test == "binom") { res <- binom.test(O, k, p=E/k, alternative=tes.alternative) X2 <- NA_real_ pval <- binom.test(O, k, p=E/k, alternative=tes.alternative)$p.value } if (test == "exact") { X2 <- NA_real_ if (progbar) pbar <- pbapply::startpb(min=0, max=length(js)) prj <- rep(NA_real_, length(js)) id <- seq_len(k) for (j in seq_along(js)) { if (progbar) pbapply::setpb(pbar, j) if (js[j] == 0L) { prj[j] <- prod(1-pow) } else if (js[j] == k) { prj[j] <- prod(pow) } else { tmp <- try(suppressWarnings(sum(combn(k, js[j], FUN = function(i) { sel <- i not <- id[-i] prod(pow[sel])*prod(1-pow[not]) }))), silent=TRUE) if (inherits(tmp, "try-error")) { if (progbar) pbapply::closepb(pbar) stop(mstyle$stop(paste0("Number of combinations too large to do an exact test (use test=\"chi2\" or test=\"binomial\" instead)."))) } else { prj[j] <- tmp } } } if (progbar) pbapply::closepb(pbar) if (tes.alternative == "two.sided") pval <- sum(prj[prj <= prj[O+1] + .Machine$double.eps^0.5]) if (tes.alternative == "greater") pval <- sum(prj) if (tes.alternative == "less") pval <- sum(prj) pval[pval > 1] <- 1 } theta.lim <- NULL if (find.lim && single.theta) { if (tes.alternative == "greater") { diff.H0 <- .tes.lim(H0, yi=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, tau2=tau2, test=test, tes.alternative=tes.alternative, progbar=FALSE, tes.alpha=tes.alpha, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb) if (diff.H0 >= 0) { theta.lim <- NA_real_ } else { if (theta.1 >= H0) { theta.lim <- try(uniroot(.tes.lim, interval=c(H0,theta.1), extendInt="upX", yi=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, tau2=tau2, test=test, tes.alternative=tes.alternative, progbar=FALSE, tes.alpha=tes.alpha, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb)$root, silent=TRUE) } else { theta.lim <- try(uniroot(.tes.lim, interval=c(theta.1,H0), extendInt="downX", yi=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, tau2=tau2, test=test, tes.alternative=tes.alternative, progbar=FALSE, tes.alpha=tes.alpha, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb)$root, silent=TRUE) } if (inherits(theta.lim, "try-error")) theta.lim <- NA_real_ } } if (tes.alternative == "less") { diff.H0 <- .tes.lim(H0, yi=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, tau2=tau2, test=test, tes.alternative=tes.alternative, progbar=FALSE, tes.alpha=tes.alpha, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb) if (diff.H0 <= 0) { theta.lim <- NA_real_ } else { if (theta.1 >= H0) { theta.lim <- try(uniroot(.tes.lim, interval=c(H0,theta.1), extendInt="downX", yi=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, tau2=tau2, test=test, tes.alternative=tes.alternative, progbar=FALSE, tes.alpha=tes.alpha, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb)$root, silent=TRUE) } else { theta.lim <- try(uniroot(.tes.lim, interval=c(theta.1,H0), extendInt="upX", yi=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, tau2=tau2, test=test, tes.alternative=tes.alternative, progbar=FALSE, tes.alpha=tes.alpha, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb)$root, silent=TRUE) } if (inherits(theta.lim, "try-error")) theta.lim <- NA_real_ } } if (tes.alternative == "two.sided") { theta.lim.lb <- tes(x=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, theta=theta.1, tau2=tau2, test=test, tes.alternative="greater", progbar=FALSE, tes.alpha=tes.alpha/2, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb, find.lim=TRUE)$theta.lim theta.lim.ub <- tes(x=yi, vi=vi, H0=H0, alternative=alternative, alpha=alpha, theta=theta.1, tau2=tau2, test=test, tes.alternative="less", progbar=FALSE, tes.alpha=tes.alpha/2, correct=correct, rel.tol=rel.tol, subdivisions=subdivisions, tau2.lb=tau2.lb, find.lim=TRUE)$theta.lim theta.lim <- c(theta.lim.lb, theta.lim.ub) } } if (single.theta) theta <- theta.1 res <- list(k=k, O=O, E=E, OEratio=O/E, test=test, X2=X2, pval=pval, power=pow, sig=sig, theta=theta, theta.lim=theta.lim, tes.alternative=tes.alternative, tes.alpha=tes.alpha, digits=digits) class(res) <- "tes" return(res) } } metafor/R/labbe.r0000644000176200001440000000006013457322061013337 0ustar liggesuserslabbe <- function(x, ...) UseMethod("labbe") metafor/R/regplot.r0000644000176200001440000000006414032075631013750 0ustar liggesusersregplot <- function(x, ...) UseMethod("regplot") metafor/R/forest.default.r0000644000176200001440000010033014717402430015217 0ustar liggesusersforest.default <- function(x, vi, sei, ci.lb, ci.ub, annotate=TRUE, showweights=FALSE, header=TRUE, xlim, alim, olim, ylim, at, steps=5, level=95, refline=0, digits=2L, width, xlab, slab, ilab, ilab.lab, ilab.xpos, ilab.pos, order, subset, transf, atransf, targs, rows, efac=1, pch, psize, plim=c(0.5,1.5), col, shade, colshade, lty, fonts, cex, cex.lab, cex.axis, ...) { ######################################################################### mstyle <- .get.mstyle() na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(transf)) transf <- FALSE if (missing(atransf)) atransf <- FALSE transf.char <- deparse(transf) atransf.char <- deparse(atransf) if (is.function(transf) && is.function(atransf)) stop(mstyle$stop("Use either 'transf' or 'atransf' to specify a transformation (not both).")) .start.plot() yi <- x if (missing(targs)) targs <- NULL if (missing(at)) at <- NULL if (missing(ilab)) ilab <- NULL if (missing(ilab.lab)) ilab.lab <- NULL if (missing(ilab.xpos)) ilab.xpos <- NULL if (missing(ilab.pos)) ilab.pos <- NULL if (missing(subset)) subset <- NULL if (missing(order)) order <- NULL if (missing(pch)) pch <- 15 if (missing(psize)) psize <- NULL if (missing(col)) col <- NULL if (missing(shade)) shade <- NULL if (missing(colshade)) colshade <- .coladj(par("bg","fg"), dark=0.1, light=-0.1) if (missing(cex)) cex <- NULL if (missing(cex.lab)) cex.lab <- NULL if (missing(cex.axis)) cex.axis <- NULL level <- .level(level) ### digits[1] for annotations, digits[2] for x-axis labels, digits[3] (if specified) for weights ### note: digits can also be a list (e.g., digits=list(2,3L)); trailing 0's on the x-axis labels ### are dropped if the value is an integer if (length(digits) == 1L) digits <- c(digits,digits,digits) if (length(digits) == 2L) digits <- c(digits,digits[[1]]) ddd <- list(...) ############################################################################ ### set default line types if user has not specified 'lty' argument if (missing(lty)) { lty <- c("solid", "solid") # 1st = CIs, 2nd = horizontal line(s) } else { if (length(lty) == 1L) lty <- c(lty, "solid") } ### vertical expansion factor: 1st = CI end lines, 2nd = arrows efac <- .expand1(efac, 2L) efac[efac == 0] <- NA ### annotation symbols vector if (is.null(ddd$annosym)) { annosym <- c(" [", ", ", "]", "-", " ") # 4th element for minus sign symbol; 5th for space (in place of numbers and +); see [a] } else { annosym <- ddd$annosym if (length(annosym) == 3L) annosym <- c(annosym, "-", " ") if (length(annosym) == 4L) annosym <- c(annosym, " ") if (length(annosym) != 5L) stop(mstyle$stop("Argument 'annosym' must be a vector of length 3 (or 4 or 5).")) } ### adjust annosym for tabular figures if (isTRUE(ddd$tabfig == 1)) annosym <- c("\u2009[", ",\u2009", "]", "\u2212", "\u2002") # \u2009 thin space; \u2212 minus, \u2002 en space if (isTRUE(ddd$tabfig == 2)) annosym <- c("\u2009[", ",\u2009", "]", "\u2013", "\u2002") # \u2009 thin space; \u2013 en dash, \u2002 en space if (isTRUE(ddd$tabfig == 3)) annosym <- c("\u2009[", ",\u2009", "]", "\u2212", "\u2007") # \u2009 thin space; \u2212 minus, \u2007 figure space ### set measure based on the measure attribute of yi if (is.null(attr(yi, "measure"))) { measure <- "GEN" } else { measure <- attr(yi, "measure") } ### column header estlab <- .setlab(measure, transf.char, atransf.char, gentype=3, short=TRUE) if (is.expression(estlab)) { header.right <- str2lang(paste0("bold(", estlab, " * '", annosym[1], "' * '", round(100*(1-level),digits[[1]]), "% CI'", " * '", annosym[3], "')")) } else { header.right <- paste0(estlab, annosym[1], round(100*(1-level),digits[[1]]), "% CI", annosym[3]) } if (is.logical(header)) { if (header) { header.left <- "Study" } else { header.left <- NULL header.right <- NULL } } else { if (!is.character(header)) stop(mstyle$stop("Argument 'header' must either be a logical or character vector.")) if (length(header) == 1L) { header.left <- header } else { header.left <- header[1] header.right <- header[2] } } if (!annotate) header.right <- NULL decreasing <- .chkddd(ddd$decreasing, FALSE) if (!is.null(ddd$clim)) olim <- ddd$clim ### row adjustments for 1) study labels, 2) annotations, and 3) ilab elements if (is.null(ddd$rowadj)) { rowadj <- rep(0,3) } else { rowadj <- ddd$rowadj if (length(rowadj) == 1L) rowadj <- c(rowadj,rowadj,0) # if one value is specified, use it for both 1&2 if (length(rowadj) == 2L) rowadj <- c(rowadj,0) # if two values are specified, use them for 1&2 } top <- .chkddd(ddd$top, 3) if (is.null(ddd$xlabadj)) { xlabadj <- c(NA,NA) } else { xlabadj <- ddd$xlabadj if (length(xlabadj) == 1L) xlabadj <- c(xlabadj, 1-xlabadj) } xlabfont <- .chkddd(ddd$xlabfont, 1) lplot <- function(..., textpos, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) plot(...) labline <- function(..., textpos, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) abline(...) lsegments <- function(..., textpos, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) segments(...) laxis <- function(..., textpos, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) axis(...) lmtext <- function(..., textpos, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) mtext(...) lpolygon <- function(..., textpos, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) polygon(...) ltext <- function(..., textpos, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) text(...) lpoints <- function(..., textpos, decreasing, clim, rowadj, annosym, tabfig, top, xlabadj, xlabfont, at.lab) points(...) ######################################################################### ### extract data, study labels, and other arguments if (!missing(vi) && is.function(vi)) # if vi is utils::vi() stop(mstyle$stop("Cannot find variable specified for the 'vi' argument.")) if (hasArg(ci.lb) && hasArg(ci.ub) && !is.null(ci.lb) && !is.null(ci.ub)) { # CI bounds are specified by user if (length(ci.lb) != length(ci.ub)) stop(mstyle$stop("Length of 'ci.lb' and 'ci.ub' are not the same.")) if (missing(vi) && missing(sei)) { # vi/sei not specified, so calculate vi based on CI vi <- ((ci.ub - ci.lb) / (2*qnorm(level/2, lower.tail=FALSE)))^2 } else { if (missing(vi)) # vi not specified, but sei is, so set vi = sei^2 vi <- sei^2 } if (length(ci.lb) != length(vi)) stop(mstyle$stop("Length of 'vi' (or 'sei') does not match the length of ('ci.lb','ci.ub').")) } else { # CI bounds are not specified by user if (missing(vi)) { if (missing(sei)) { stop(mstyle$stop("Must specify either 'vi', 'sei', or ('ci.lb','ci.ub').")) } else { vi <- sei^2 } } if (length(yi) != length(vi)) # need to do this here to avoid warning when calculating 'ci.lb' and 'ci.ub' stop(mstyle$stop("Length of 'vi' (or 'sei') does not match the length of 'yi'.")) ci.lb <- yi - qnorm(level/2, lower.tail=FALSE) * sqrt(vi) ci.ub <- yi + qnorm(level/2, lower.tail=FALSE) * sqrt(vi) } ### check length of yi and vi k <- length(yi) if (length(vi) != k) stop(mstyle$stop("Length of 'yi' does not match the length of 'vi', 'sei', or the ('ci.lb','ci.ub').")) ### note: slab (if specified), ilab (if specified), pch (if vector), psize (if ### vector), col (if vector), subset (if specified), order (if vector) ### must have the same length as yi (including NAs) even when subsetting eventually slab.null <- FALSE if (missing(slab)) { slab <- attr(yi, "slab") # use slab info if it can be found in slab attribute of yi (and it has the right length) if (is.null(slab) || length(slab) != k) { slab <- paste("Study", seq_len(k)) slab.null <- TRUE } } else { if (length(slab) == 1L && is.na(slab)) { # slab=NA can be used to suppress study labels slab <- rep("", k) slab.null <- TRUE } } if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the number of outcomes (", k, ")."))) if (!is.null(ilab)) { if (is.null(dim(ilab))) ilab <- cbind(ilab) if (nrow(ilab) != k) stop(mstyle$stop(paste0("Length of the 'ilab' argument (", nrow(ilab), ") does not correspond to the number of outcomes (", k, ")."))) } pch <- .expand1(pch, k) # pch can be a single value (which is then repeated) if (length(pch) != k) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the number of outcomes (", k, ")."))) if (!is.null(psize)) { if (length(psize) == 1L) psize <- .expand1(psize, k) # psize can be a single value (which is then repeated) if (length(psize) != k) stop(mstyle$stop(paste0("Length of the 'psize' argument (", length(psize), ") does not correspond to the number of outcomes (", k, ")."))) } if (!is.null(col)) { col <- .expand1(col, k) # col can be a single value (which is then repeated) if (length(col) != k) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the number of outcomes (", k, ")."))) } else { col <- rep(par("fg"), k) } shade.type <- "none" if (is.character(shade)) { shade.type <- "character" shade <- shade[1] if (!is.element(shade, c("zebra", "zebra1", "zebra2", "all"))) stop(mstyle$stop("Unknown option specified for 'shade' argument.")) } if (is.logical(shade)) { if (length(shade) == 1L) { shade <- "zebra" shade.type <- "character" } else { shade.type <- "logical" shade <- .chksubset(shade, k, stoponk0=FALSE) } } if (is.numeric(shade)) shade.type <- "numeric" ### adjust subset if specified subset <- .chksubset(subset, k) ### sort the data if requested if (!is.null(order)) { if (length(order) == 1L) { order <- match.arg(order, c("obs", "yi", "prec", "vi")) if (order == "obs" || order == "yi") sort.vec <- order(yi) if (order == "prec" || order == "vi") sort.vec <- order(vi, yi) } else { if (length(order) != k) stop(mstyle$stop(paste0("Length of the 'order' argument (", length(order), ") does not correspond to the number of outcomes (", k, ")."))) if (grepl("^order\\(", deparse1(substitute(order)))) { sort.vec <- order } else { sort.vec <- order(order, decreasing=decreasing) } } yi <- yi[sort.vec] vi <- vi[sort.vec] ci.lb <- ci.lb[sort.vec] ci.ub <- ci.ub[sort.vec] slab <- slab[sort.vec] ilab <- ilab[sort.vec,,drop=FALSE] # if NULL, remains NULL pch <- pch[sort.vec] psize <- psize[sort.vec] # if NULL, remains NULL col <- col[sort.vec] subset <- subset[sort.vec] # if NULL, remains NULL if (shade.type == "logical") shade <- shade[sort.vec] } ### if a subset of studies is specified if (!is.null(subset)) { yi <- .getsubset(yi, subset) vi <- .getsubset(vi, subset) ci.lb <- .getsubset(ci.lb, subset) ci.ub <- .getsubset(ci.ub, subset) slab <- .getsubset(slab, subset) ilab <- .getsubset(ilab, subset) # if NULL, remains NULL pch <- .getsubset(pch, subset) psize <- .getsubset(psize, subset) # if NULL, remains NULL col <- .getsubset(col, subset) if (shade.type == "logical") shade <- .getsubset(shade, subset) } k <- length(yi) # in case length of k has changed ### set rows value if (missing(rows)) { rows <- k:1 } else { if (length(rows) == 1L) # note: rows must be a single value or the same rows <- rows:(rows-k+1) # length of yi (including NAs) *after ordering/subsetting* } if (length(rows) != k) stop(mstyle$stop(paste0("Length of the 'rows' argument (", length(rows), ") does not correspond to the number of outcomes (", k, ")", ifelse(is.null(subset), ".", " after subsetting.")))) ### reverse order yi <- yi[k:1] vi <- vi[k:1] ci.lb <- ci.lb[k:1] ci.ub <- ci.ub[k:1] slab <- slab[k:1] ilab <- ilab[k:1,,drop=FALSE] # if NULL, remains NULL pch <- pch[k:1] psize <- psize[k:1] # if NULL, remains NULL col <- col[k:1] rows <- rows[k:1] if (shade.type == "logical") shade <- shade[k:1] ### check for NAs in yi/vi and act accordingly yivi.na <- is.na(yi) | is.na(vi) if (any(yivi.na)) { not.na <- !yivi.na if (na.act == "na.omit") { yi <- yi[not.na] vi <- vi[not.na] ci.lb <- ci.lb[not.na] ci.ub <- ci.ub[not.na] slab <- slab[not.na] ilab <- ilab[not.na,,drop=FALSE] # if NULL, remains NULL pch <- pch[not.na] psize <- psize[not.na] # if NULL, remains NULL col <- col[not.na] if (shade.type == "logical") shade <- shade[not.na] rows.new <- rows # rearrange rows due to NAs being omitted from plot rows.na <- rows[!not.na] # shift higher rows down according to number of NAs omitted for (j in seq_along(rows.na)) { rows.new[rows >= rows.na[j]] <- rows.new[rows >= rows.na[j]] - 1 } rows <- rows.new[not.na] } if (na.act == "na.fail") stop(mstyle$stop("Missing values in results.")) } # note: yi/vi may be NA if na.act == "na.exclude" or "na.pass" k <- length(yi) # in case length of k has changed ### if requested, apply transformation to yi's and CI bounds if (is.function(transf)) { if (is.null(targs)) { yi <- sapply(yi, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) yi <- sapply(yi, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ### apply observation/outcome limits if specified if (!missing(olim)) { if (length(olim) != 2L) stop(mstyle$stop("Argument 'olim' must be of length 2.")) olim <- sort(olim) yi <- .applyolim(yi, olim) ci.lb <- .applyolim(ci.lb, olim) ci.ub <- .applyolim(ci.ub, olim) } if (showweights) { # inverse variance weights after ordering/subsetting and weights <- 1/vi # omitting NAs (so these weights always add up to 100%) weights <- 100 * weights / sum(weights, na.rm=TRUE) } ### set default point sizes (if not specified by user) if (is.null(psize)) { if (any(vi <= 0, na.rm=TRUE)) { # in case any vi value is zero psize <- rep(1, k) } else { # default psize is proportional to inverse standard error (only vi's that are still in the subset are considered) if (length(plim) < 2L) # note: vi's that are NA are ignored (but vi's whose yi is NA are NOT ignored; an unlikely case in practice) stop(mstyle$stop("Argument 'plim' must be of length 2 or 3.")) wi <- 1/sqrt(vi) if (!is.na(plim[1]) && !is.na(plim[2])) { rng <- max(wi, na.rm=TRUE) - min(wi, na.rm=TRUE) if (rng <= .Machine$double.eps^0.5) { psize <- rep(1, k) } else { psize <- (wi - min(wi, na.rm=TRUE)) / rng psize <- (psize * (plim[2] - plim[1])) + plim[1] } } if (is.na(plim[1]) && !is.na(plim[2])) { psize <- wi / max(wi, na.rm=TRUE) * plim[2] if (length(plim) == 3L) psize[psize <= plim[3]] <- plim[3] } if (!is.na(plim[1]) && is.na(plim[2])) { psize <- wi / min(wi, na.rm=TRUE) * plim[1] if (length(plim) == 3L) psize[psize >= plim[3]] <- plim[3] } if (all(is.na(psize))) # if k=1, then psize is NA, so catch this (and maybe some other problems) psize <- rep(1, k) } } ######################################################################### if (!is.null(at)) { if (anyNA(at)) stop(mstyle$stop("Argument 'at' cannot contain NAs.")) if (any(is.infinite(at))) stop(mstyle$stop("Argument 'at' cannot contain +-Inf values.")) } ### set x-axis limits (at argument overrides alim argument) alim.spec <- TRUE if (missing(alim)) { if (is.null(at)) { alim <- range(pretty(x=c(min(ci.lb, na.rm=TRUE), max(ci.ub, na.rm=TRUE)), n=steps-1)) alim.spec <- FALSE } else { alim <- range(at) } } alim <- sort(alim)[1:2] if (anyNA(alim)) stop(mstyle$stop("Argument 'alim' cannot contain NAs.")) ### generate x-axis positions if none are specified if (is.null(at)) { if (alim.spec) { at <- seq(from=alim[1], to=alim[2], length.out=steps) } else { at <- pretty(x=c(min(ci.lb, na.rm=TRUE), max(ci.ub, na.rm=TRUE)), n=steps-1) } } else { at[at < alim[1]] <- alim[1] # remove at values that are below or above the axis limits at[at > alim[2]] <- alim[2] at <- unique(at) } ### x-axis labels (apply transformation to axis labels if requested) if (is.null(ddd$at.lab)) { at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- fmtx(sapply(at.lab, atransf), digits[[2]], drop0ifint=TRUE) } else { at.lab <- fmtx(sapply(at.lab, atransf, targs), digits[[2]], drop0ifint=TRUE) } } else { at.lab <- fmtx(at.lab, digits[[2]], drop0ifint=TRUE) } } else { at.lab <- ddd$at.lab } ### set plot limits (xlim) ncol.ilab <- ifelse(is.null(ilab), 0, ncol(ilab)) if (slab.null) { area.slab <- 25 } else { area.slab <- 40 } if (annotate) { if (showweights) { area.anno <- 30 } else { area.anno <- 25 } } else { area.anno <- 10 } iadd <- 5 area.slab <- area.slab + iadd*ncol.ilab #area.anno <- area.anno area.forest <- 100 + iadd*ncol.ilab - area.slab - area.anno area.slab <- area.slab / (100 + iadd*ncol.ilab) area.anno <- area.anno / (100 + iadd*ncol.ilab) area.forest <- area.forest / (100 + iadd*ncol.ilab) plot.multp.l <- area.slab / area.forest plot.multp.r <- area.anno / area.forest if (missing(xlim)) { if (min(ci.lb, na.rm=TRUE) < alim[1]) { f.1 <- alim[1] } else { f.1 <- min(ci.lb, na.rm=TRUE) } if (max(ci.ub, na.rm=TRUE) > alim[2]) { f.2 <- alim[2] } else { f.2 <- max(ci.ub, na.rm=TRUE) } rng <- f.2 - f.1 xlim <- c(f.1 - rng * plot.multp.l, f.2 + rng * plot.multp.r) xlim <- round(xlim, digits[[2]]) #xlim[1] <- xlim[1]*max(1, digits[[2]]/2) #xlim[2] <- xlim[2]*max(1, digits[[2]]/2) } else { if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' must be of length 2.")) } xlim <- sort(xlim) ### plot limits must always encompass the yi values (no longer done) #if (xlim[1] > min(yi, na.rm=TRUE)) { xlim[1] <- min(yi, na.rm=TRUE) } #if (xlim[2] < max(yi, na.rm=TRUE)) { xlim[2] <- max(yi, na.rm=TRUE) } ### x-axis limits must always encompass the yi values (no longer done) #if (alim[1] > min(yi, na.rm=TRUE)) { alim[1] <- min(yi, na.rm=TRUE) } #if (alim[2] < max(yi, na.rm=TRUE)) { alim[2] <- max(yi, na.rm=TRUE) } ### plot limits must always encompass the x-axis limits (no longer done) #if (alim[1] < xlim[1]) { xlim[1] <- alim[1] } #if (alim[2] > xlim[2]) { xlim[2] <- alim[2] } ### allow adjustment of position of study labels and annotations via textpos argument textpos <- .chkddd(ddd$textpos, xlim) if (length(textpos) != 2L) stop(mstyle$stop("Argument 'textpos' must be of length 2.")) if (is.na(textpos[1])) textpos[1] <- xlim[1] if (is.na(textpos[2])) textpos[2] <- xlim[2] ### set y-axis limits if (missing(ylim)) { ylim <- c(0, max(rows, na.rm=TRUE)+top) } else { if (length(ylim) == 1L) { ylim <- c(ylim, max(rows, na.rm=TRUE)+top) } else { ylim <- sort(ylim) } } ######################################################################### ### set/get fonts (1st for study labels, 2nd for annotations, 3rd for ilab) ### when passing a named vector, the names are for 'family' and the values are for 'font' if (missing(fonts)) { fonts <- rep(par("family"), 3L) } else { if (length(fonts) == 1L) fonts <- rep(fonts, 3L) if (length(fonts) == 2L) fonts <- c(fonts, fonts[1]) } if (is.null(names(fonts))) fonts <- setNames(c(1L,1L,1L), nm=fonts) par(family=names(fonts)[1], font=fonts[1]) ### adjust margins par.mar <- par("mar") par.mar.adj <- par.mar - c(0,3,1,1) par.mar.adj[par.mar.adj < 0] <- 0 par(mar=par.mar.adj) on.exit(par(mar=par.mar), add=TRUE) ### start plot lplot(NA, NA, xlim=xlim, ylim=ylim, xlab="", ylab="", yaxt="n", xaxt="n", xaxs="i", yaxs="i", bty="n", ...) ### add shading if (shade.type == "character") { if (shade == "zebra" || shade == "zebra1") tmp <- rep_len(c(TRUE,FALSE), k) if (shade == "zebra2") tmp <- rep_len(c(FALSE,TRUE), k) if (shade == "all") tmp <- rep_len(TRUE, k) shade <- tmp } if (shade.type %in% c("character","logical")) { for (i in seq_len(k)) { if (shade[i]) rect(xlim[1], rows[i]-0.5, xlim[2], rows[i]+0.5, border=colshade, col=colshade) } } if (shade.type == "numeric") { for (i in seq_along(shade)) { rect(xlim[1], shade[i]-0.5, xlim[2], shade[i]+0.5, border=colshade, col=colshade) } } ### horizontal title line labline(h=ylim[2]-(top-1), lty=lty[2], ...) ### get coordinates of the plotting region par.usr <- par("usr") ### add reference line if (is.numeric(refline)) lsegments(refline, par.usr[3], refline, ylim[2]-(top-1), lty="dotted", ...) ### set cex, cex.lab, and cex.axis sizes as a function of the height of the figure height <- par.usr[4] - par.usr[3] if (is.null(cex)) { lheight <- strheight("O") cex.adj <- ifelse(k * lheight > height * 0.8, height/(1.25 * k * lheight), 1) } if (is.null(cex)) { cex <- par("cex") * cex.adj } else { if (is.null(cex.lab)) cex.lab <- par("cex") * cex if (is.null(cex.axis)) cex.axis <- cex } if (is.null(cex.lab)) cex.lab <- par("cex") * cex.adj if (is.null(cex.axis)) cex.axis <- par("cex") * cex.adj ### add x-axis laxis(side=1, at=at, labels=at.lab, cex.axis=cex.axis, ...) ### add x-axis label if (missing(xlab)) xlab <- .setlab(measure, transf.char, atransf.char, gentype=1) if (!is.element(length(xlab), 1:3)) stop(mstyle$stop("Argument 'xlab' argument must be of length 1, 2, or 3.")) if (length(xlab) == 1L) lmtext(xlab, side=1, at=min(at) + (max(at)-min(at))/2, line=par("mgp")[1]-0.5, cex=cex.lab, font=xlabfont[1], ...) if (length(xlab) == 2L) { lmtext(xlab[1], side=1, at=min(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[1], font=xlabfont[1], ...) lmtext(xlab[2], side=1, at=max(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[2], font=xlabfont[1], ...) } if (length(xlab) == 3L) { lmtext(xlab[1], side=1, at=min(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[1], font=xlabfont[1], ...) lmtext(xlab[2], side=1, at=min(at) + (max(at)-min(at))/2, line=par("mgp")[1]-0.5, cex=cex.lab, font=xlabfont[2], ...) lmtext(xlab[3], side=1, at=max(at), line=par("mgp")[1]-0.5, cex=cex.lab, adj=xlabadj[2], font=xlabfont[1], ...) } ### add CI ends (either | or <> if outside of axis limits) ciendheight <- height / 150 * cex * efac[1] arrowwidth <- 1.4 / 100 * cex * (xlim[2]-xlim[1]) arrowheight <- height / 150 * cex * efac[2] for (i in seq_len(k)) { ### need to skip missings (if check below will otherwise throw an error) if (is.na(yi[i]) || is.na(ci.lb[i]) || is.na(ci.ub[i])) next ### if the lower bound is actually larger than upper x-axis limit, then everything is to the right and just draw a polygon pointing in that direction if (ci.lb[i] >= alim[2]) { lpolygon(x=c(alim[2], alim[2]-arrowwidth, alim[2]-arrowwidth, alim[2]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=col[i], border=col[i], ...) next } ### if the upper bound is actually lower than lower x-axis limit, then everything is to the left and just draw a polygon pointing in that direction if (ci.ub[i] <= alim[1]) { lpolygon(x=c(alim[1], alim[1]+arrowwidth, alim[1]+arrowwidth, alim[1]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=col[i], border=col[i], ...) next } lsegments(max(ci.lb[i], alim[1]), rows[i], min(ci.ub[i], alim[2]), rows[i], lty=lty[1], col=col[i], ...) if (ci.lb[i] >= alim[1]) { lsegments(ci.lb[i], rows[i]-ciendheight, ci.lb[i], rows[i]+ciendheight, col=col[i], ...) } else { lpolygon(x=c(alim[1], alim[1]+arrowwidth, alim[1]+arrowwidth, alim[1]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=col[i], border=col[i], ...) } if (ci.ub[i] <= alim[2]) { lsegments(ci.ub[i], rows[i]-ciendheight, ci.ub[i], rows[i]+ciendheight, col=col[i], ...) } else { lpolygon(x=c(alim[2], alim[2]-arrowwidth, alim[2]-arrowwidth, alim[2]), y=c(rows[i], rows[i]+arrowheight, rows[i]-arrowheight, rows[i]), col=col[i], border=col[i], ...) } } ### add study labels on the left ltext(textpos[1], rows+rowadj[1], slab, pos=4, cex=cex, col=col, ...) ### add info labels if (!is.null(ilab)) { if (is.null(ilab.xpos)) { #stop(mstyle$stop("Must specify the 'ilab.xpos' argument when adding information with 'ilab'.")) dist <- min(ci.lb, na.rm=TRUE) - xlim[1] if (ncol.ilab == 1L) ilab.xpos <- xlim[1] + dist*0.75 if (ncol.ilab == 2L) ilab.xpos <- xlim[1] + dist*c(0.65, 0.85) if (ncol.ilab == 3L) ilab.xpos <- xlim[1] + dist*c(0.60, 0.75, 0.90) if (ncol.ilab >= 4L) ilab.xpos <- seq(xlim[1] + dist*0.5, xlim[1] + dist*0.9, length.out=ncol.ilab) } if (length(ilab.xpos) != ncol.ilab) stop(mstyle$stop(paste0("Number of 'ilab' columns (", ncol.ilab, ") do not match the length of the 'ilab.xpos' argument (", length(ilab.xpos), ")."))) if (!is.null(ilab.pos) && length(ilab.pos) == 1L) ilab.pos <- rep(ilab.pos, ncol.ilab) if (!is.null(ilab.lab) && length(ilab.lab) != ncol.ilab) stop(mstyle$stop(paste0("Number of 'ilab' columns (", ncol.ilab, ") do not match the length of the 'ilab.lab' argument (", length(ilab.lab), ")."))) par(family=names(fonts)[3], font=fonts[3]) for (l in seq_len(ncol.ilab)) { ltext(ilab.xpos[l], rows+rowadj[3], ilab[,l], pos=ilab.pos[l], cex=cex, ...) if (!is.null(ilab.lab)) ltext(ilab.xpos[l], ylim[2]-(top-1)+1+rowadj[3], ilab.lab[l], pos=ilab.pos[l], font=2, cex=cex, ...) } par(family=names(fonts)[1], font=fonts[1]) } ### add study annotations on the right: yi [LB, UB] if (annotate) { if (is.function(atransf)) { if (is.null(targs)) { annotext <- cbind(sapply(yi, atransf), sapply(ci.lb, atransf), sapply(ci.ub, atransf)) } else { annotext <- cbind(sapply(yi, atransf, targs), sapply(ci.lb, atransf, targs), sapply(ci.ub, atransf, targs)) } ### make sure order of intervals is always increasing tmp <- .psort(annotext[,2:3]) annotext[,2:3] <- tmp } else { annotext <- cbind(yi, ci.lb, ci.ub) } if (showweights) { annotext <- cbind(weights, annotext) annotext <- fmtx(annotext, c(digits[[3]], digits[[1]], digits[[1]], digits[[1]])) } else { annotext <- fmtx(annotext, digits[[1]]) } if (missing(width)) { width <- apply(annotext, 2, function(x) max(nchar(x))) } else { width <- .expand1(width, ncol(annotext)) if (length(width) != ncol(annotext)) stop(mstyle$stop(paste0("Length of the 'width' argument (", length(width), ") does not match the number of annotation columns (", ncol(annotext), ")."))) } for (j in seq_len(ncol(annotext))) { annotext[,j] <- formatC(annotext[,j], width=width[j]) } if (showweights) { annotext <- cbind(annotext[,1], paste0("%", paste0(rep(substr(annosym[1],1,1),3), collapse="")), annotext[,2], annosym[1], annotext[,3], annosym[2], annotext[,4], annosym[3]) } else { annotext <- cbind(annotext[,1], annosym[1], annotext[,2], annosym[2], annotext[,3], annosym[3]) } annotext <- apply(annotext, 1, paste, collapse="") annotext[grepl("NA", annotext, fixed=TRUE)] <- "" annotext <- gsub("-", annosym[4], annotext, fixed=TRUE) # [a] annotext <- gsub(" ", annosym[5], annotext, fixed=TRUE) par(family=names(fonts)[2], font=fonts[2]) ltext(textpos[2], rows+rowadj[2], labels=annotext, pos=2, cex=cex, col=col, ...) par(family=names(fonts)[1], font=fonts[1]) } else { width <- NULL } ### add yi points for (i in seq_len(k)) { ### need to skip missings (if check below will otherwise throw an error) if (is.na(yi[i])) next if (yi[i] >= alim[1] && yi[i] <= alim[2]) lpoints(x=yi[i], y=rows[i], pch=pch[i], cex=cex*psize[i], col=col[i], ...) } ### add header ltext(textpos[1], ylim[2]-(top-1)+1+rowadj[1], header.left, pos=4, font=2, cex=cex, ...) ltext(textpos[2], ylim[2]-(top-1)+1+rowadj[2], header.right, pos=2, font=2, cex=cex, ...) ######################################################################### ### return some information about plot invisibly res <- list(xlim=par("usr")[1:2], alim=alim, at=at, ylim=ylim, rows=rows, cex=cex, cex.lab=cex.lab, cex.axis=cex.axis, ilab.xpos=ilab.xpos, ilab.pos=ilab.pos, textpos=textpos) ### put some additional stuff into .metafor, so that it can be used by addpoly() sav <- c(res, list(level=level, annotate=annotate, digits=digits[[1]], width=width, transf=transf, atransf=atransf, targs=targs, fonts=fonts[1:2], annosym=annosym)) try(assign("forest", sav, envir=.metafor), silent=TRUE) invisible(res) } metafor/R/pairmat.r0000644000176200001440000000366114717402467013752 0ustar liggesuserspairmat <- function(x, btt, btt2, ...) { mstyle <- .get.mstyle() if (missing(x)) { x <- .getfromenv("pairmat", envir=.metafor) } else { if (is.atomic(x)) { btt <- x x <- .getfromenv("pairmat", envir=.metafor) } } if (is.null(x)) stop(mstyle$stop("Need to specify the 'x' argument."), call.=FALSE) .chkclass(class(x), must="rma") if (x$int.only) stop(mstyle$stop("Cannot construct contrast matrices for intercept-only models.")) if (missing(btt) || is.null(btt)) stop(mstyle$stop("Need to specify the 'btt' argument."), call.=FALSE) ddd <- list(...) .chkdots(ddd, c("fixed")) fixed <- .chkddd(ddd$fixed, FALSE, .isTRUE(ddd$fixed)) ######################################################################### btt <- .set.btt(btt, x$p, x$int.incl, colnames(x$X), fixed=fixed) p <- length(btt) if (p == 1L) stop(mstyle$stop("Need to specify multiple coefficients via argument 'btt' for pairwise comparisons."), call.=FALSE) names <- rownames(x$beta) connames <- rep("", p*(p-1)/2) X <- matrix(0, nrow=p*(p-1)/2, ncol=x$p) row <- 0 for (i in 1:(p-1)) { btti <- btt[i] for (j in (i+1):p) { bttj <- btt[j] row <- row + 1 X[row,btti] <- -1 X[row,bttj] <- +1 connames[row] <- paste0(names[btti], "-", names[bttj]) } } rownames(X) <- connames ######################################################################### ### in case btt2 is specified, add these coefficients to X if (!missing(btt2)) { btt <- .set.btt(btt2, x$p, x$int.incl, colnames(x$X), fixed=fixed) p <- length(btt) Xadd <- matrix(0, nrow=p, ncol=x$p) for (i in 1:p) { Xadd[i,btt[i]] <- 1 } rownames(Xadd) <- names[btt] X <- rbind(Xadd, X) } ######################################################################### return(X) } metafor/R/plot.rma.uni.r0000644000176200001440000001041514712645766014644 0ustar liggesusersplot.rma.uni <- function(x, qqplot=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni", notav=c("robust.rma", "rma.ls", "rma.gen", "rma.uni.selmodel")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) .start.plot() # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < 4L) par(mfrow=n2mfrow(4)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) col.na <- .coladj(par("bg","fg"), dark=0.2, light=-0.2) ######################################################################### if (x$int.only) { ###################################################################### forest(x, ...) title("Forest Plot", ...) ###################################################################### funnel(x, ...) title("Funnel Plot", ...) ###################################################################### radial(x, ...) title("Radial Plot", ...) ###################################################################### if (qqplot) { qqnorm(x, ...) } else { options(na.action = "na.pass") z <- rstandard(x)$z options(na.action = na.act) not.na <- !is.na(z) if (na.act == "na.omit") { z <- z[not.na] ids <- x$ids[not.na] not.na <- not.na[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") ids <- x$ids k <- length(z) plot(NA, NA, xlim=c(1,k), ylim=c(min(z, -2, na.rm=TRUE), max(z, 2, na.rm=TRUE)), xaxt="n", xlab="Study", ylab="", bty="l", ...) lines(seq_len(k)[not.na], z[not.na], col=col.na, ...) lines(seq_len(k), z, ...) points(x=seq_len(k), y=z, pch=21, bg=bg, ...) axis(side=1, at=seq_len(k), labels=ids, ...) abline(h=0, lty="dashed", ...) abline(h=c(qnorm(0.025),qnorm(0.975)), lty="dotted", ...) title("Standardized Residuals", ...) } } else { ###################################################################### forest(x, ...) title("Forest Plot", ...) ###################################################################### funnel(x, ...) title("Residual Funnel Plot", ...) ###################################################################### options(na.action = "na.pass") z <- rstandard(x)$z pred <- fitted(x) options(na.action = na.act) plot(NA, NA, xlim=range(pred), ylim=c(min(z, -2, na.rm=TRUE), max(z, 2, na.rm=TRUE)), bty="l", xlab="Fitted Value", ylab="Standardized Residual", ...) abline(h=0, lty="dashed", ...) abline(h=c(qnorm(0.025),qnorm(0.975)), lty="dotted", ...) points(pred, z, pch=21, bg=bg, ...) title("Fitted vs. Standardized Residuals", ...) ###################################################################### if (qqplot) { qqnorm(x, ...) } else { options(na.action = "na.pass") z <- rstandard(x)$z options(na.action = na.act) not.na <- !is.na(z) if (na.act == "na.omit") { z <- z[not.na] ids <- x$ids[not.na] not.na <- not.na[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") ids <- x$ids k <- length(z) plot(NA, NA, xlim=c(1,k), ylim=c(min(z, -2, na.rm=TRUE), max(z, 2, na.rm=TRUE)), xaxt="n", xlab="Study", ylab="", bty="l", ...) lines(seq_len(k)[not.na], z[not.na], col=col.na, ...) lines(seq_len(k), z, ...) points(x=seq_len(k), y=z, pch=21, bg=bg, ...) axis(side=1, at=seq_len(k), labels=ids, ...) abline(h=0, lty="dashed", ...) abline(h=c(qnorm(0.025),qnorm(0.975)), lty="dotted", ...) title("Standardized Residuals", ...) } ###################################################################### } invisible() } metafor/R/methods.anova.rma.r0000644000176200001440000001070514401670246015626 0ustar liggesusers############################################################################ as.data.frame.anova.rma <- function(x, ...) { .chkclass(class(x), must="anova.rma") if (x$type == "Wald.btt") { tab <- data.frame(coefs = .format.btt(x$btt), QM = x$QM, df = round(x$QMdf[1], 2), pval = x$QMp) if (is.element(x$test, c("knha","adhoc","t"))) { names(tab)[2:3] <- c("Fval", "df1") tab <- cbind(tab[1:3], df2 = round(x$QMdf[2], 2), tab[4]) } } if (x$type == "Wald.att") { tab <- data.frame(coefs = .format.btt(x$att), QS = x$QS, df = round(x$QSdf[1], 2), pval = x$QSp) if (is.element(x$test, c("knha","adhoc","t"))) { names(tab)[2:3] <- c("Fval", "df1") tab <- cbind(tab[1:3], df2 = round(x$QSdf[2], 2), tab[4]) } } if (x$type == "Wald.Xb") { if (is.element(x$test, c("knha","adhoc","t"))) { tab <- data.frame(hyp=x$hyp[[1]], estimate=c(x$Xb), se=x$se, tval=x$zval, df=round(x$ddf,2), pval=x$pval) } else { tab <- data.frame(hyp=x$hyp[[1]], estimate=c(x$Xb), se=x$se, zval=x$zval, pval=x$pval) } rownames(tab) <- paste0(seq_len(x$m), ":") return(tab) } if (x$type == "Wald.Za") { if (is.element(x$test, c("knha","adhoc","t"))) { tab <- data.frame(hyp=x$hyp[[1]], estimate=c(x$Za), se=x$se, tval=x$zval, df=round(x$ddf,2), pval=x$pval) } else { tab <- data.frame(hyp=x$hyp[[1]], estimate=c(x$Za), se=x$se, zval=x$zval, pval=x$pval) } rownames(tab) <- paste0(seq_len(x$m), ":") return(tab) } if (x$type == "LRT") { tab <- data.frame(c(x$parms.f, x$parms.r), c(x$fit.stats.f["AIC"], x$fit.stats.r["AIC"]), c(x$fit.stats.f["BIC"], x$fit.stats.r["BIC"]), c(x$fit.stats.f["AICc"], x$fit.stats.r["AICc"]), c(x$fit.stats.f["ll"], x$fit.stats.r["ll"]), c(NA_real_, x$LRT), c(NA_real_, x$pval), c(x$QE.f, x$QE.r), c(x$tau2.f, x$tau2.r), c(NA_real_, NA_real_)) colnames(tab) <- c("df", "AIC", "BIC", "AICc", "logLik", "LRT", "pval", "QE", "tau^2", "R^2") rownames(tab) <- c("Full", "Reduced") tab["Full",c("LRT","pval")] <- NA_real_ tab["Full","R^2"] <- NA_real_ tab["Reduced","R^2"] <- x$R2 ### remove tau^2 column if full model is a FE/EE/CE model or tau2.f/tau2.r is NA if (is.element(x$method, c("FE","EE","CE")) || (is.na(x$tau2.f) || is.na(x$tau2.r))) tab <- tab[-which(names(tab) == "tau^2")] ### remove R^2 column if full model is a rma.mv or rma.ls model if (is.element("rma.mv", x$class.f) || is.element("rma.ls", x$class.f)) tab <- tab[-which(names(tab) == "R^2")] } return(tab) } as.data.frame.list.anova.rma <- function(x, ...) { .chkclass(class(x), must="list.anova.rma") if (x[[1]]$type == "Wald.btt") { tab <- data.frame(spec = names(x), coefs = sapply(x, function(x) .format.btt(x$btt)), QM = sapply(x, function(x) x$QM), df = sapply(x, function(x) round(x$QMdf[1], 2)), pval = sapply(x, function(x) x$QMp)) } if (x[[1]]$type == "Wald.att") { tab <- data.frame(spec = names(x), coefs = sapply(x, function(x) .format.btt(x$att)), QS = sapply(x, function(x) x$QS), df = sapply(x, function(x) round(x$QSdf[1], 2)), pval = sapply(x, function(x) x$QSp)) } if (is.element(x[[1]]$test, c("knha","adhoc","t"))) { names(tab)[3:4] <- c("Fval", "df1") if (x[[1]]$type == "Wald.btt") tab <- cbind(tab[1:4], df2 = sapply(x, function(x) round(x$QMdf[2], 2)), tab[5]) if (x[[1]]$type == "Wald.att") tab <- cbind(tab[1:4], df2 = sapply(x, function(x) round(x$QSdf[2], 2)), tab[5]) } # if all btt/att specifications are numeric, remove the 'spec' column if (all(substr(tab$spec, 1, 1) %in% as.character(1:9))) tab$spec <- NULL # just use numbers for row names rownames(tab) <- NULL return(tab) } ############################################################################ metafor/R/misc.func.hidden.glmm.r0000644000176200001440000001262514711204626016356 0ustar liggesusers############################################################################ ### density of non-central hypergeometric distribution (based on Liao and Rosen, 2001) from MCMCpack ### Liao, J. G. & Rosen, O. (2001). Fast and stable algorithms for computing and sampling from the ### noncentral hypergeometric distribution. The American Statistician, 55, 366-369. .dnoncenhypergeom <- function (x=NA_real_, n1, n2, m1, psi) { # x=ai, n1=ai+bi, n2=ci+di, m1=ai+ci, psi=ORi mstyle <- .get.mstyle() mode.compute <- function(n1, n2, m1, psi, ll, uu) { a <- psi - 1 b <- -((m1 + n1 + 2) * psi + n2 - m1) c <- psi * (n1 + 1) * (m1 + 1) q <- b + sign(b) * sqrt(b * b - 4 * a * c) q <- -q/2 mode <- trunc(c/q) if (uu >= mode && mode >= ll) return(mode) else return(trunc(q/a)) } r.function <- function(n1, n2, m1, psi, i) { (n1 - i + 1) * (m1 - i + 1)/i/(n2 - m1 + i) * psi } ll <- max(0, m1 - n2) uu <- min(n1, m1) if (n1 < 0 | n2 < 0) stop(mstyle$stop("'n1' or 'n2' negative in dnoncenhypergeom()."), call.=FALSE) if (m1 < 0 | m1 > (n1 + n2)) stop(mstyle$stop("'m1' out of range in dnoncenhypergeom().")) if (psi <= 0) stop(mstyle$stop("'psi' [odds ratio] negative in dnoncenhypergeom()."), call.=FALSE) if (!is.na(x) & (x < ll | x > uu)) stop(mstyle$stop("'x' out of bounds in dnoncenhypergeom().")) if (!is.na(x) & length(x) > 1L) stop(mstyle$stop("'x' neither missing or scalar in dnoncenhypergeom()."), call.=FALSE) mode <- mode.compute(n1, n2, m1, psi, ll, uu) pi <- array(1, uu - ll + 1) shift <- 1 - ll if (mode < uu) { r1 <- r.function(n1, n2, m1, psi, (mode + 1):uu) pi[(mode + 1 + shift):(uu + shift)] <- cumprod(r1) } if (mode > ll) { r1 <- 1/r.function(n1, n2, m1, psi, mode:(ll + 1)) pi[(mode - 1 + shift):(ll + shift)] <- cumprod(r1) } pi <- pi/sum(pi) if (is.na(x)) { return(cbind(ll:uu, pi)) } else { return(pi[x + shift]) } } ############################################################################ ### density of non-central hypergeometric distribution for fixed- and random/mixed-effects models .dnchgi <- function(logOR, ai, bi, ci, di, mu.i, tau2, random, dnchgcalc, dnchgprec) { mstyle <- .get.mstyle() k <- length(logOR) dnchgi <- rep(NA_real_, k) ### beyond these values, the results from dFNCHypergeo (from BiasedUrn package) become unstable pow <- 12 logOR[logOR < log(10^-pow)] <- log(10^-pow) logOR[logOR > log(10^pow)] <- log(10^pow) for (i in seq_len(k)) { ORi <- exp(logOR[i]) if (dnchgcalc == "dnoncenhypergeom") { res <- try(.dnoncenhypergeom(x=ai, n1=ai+bi, n2=ci+di, m1=ai+ci, psi=ORi)) } else { res <- try(BiasedUrn::dFNCHypergeo(x=ai, m1=ai+bi, m2=ci+di, n=ai+ci, odds=ORi, precision=dnchgprec)) } if (inherits(res, "try-error")) { stop(mstyle$stop(paste0("Could not compute density of non-central hypergeometric distribution in study ", i, ".")), call.=FALSE) } else { dnchgi[i] <- res } } if (random) dnchgi <- dnchgi * dnorm(logOR, mu.i, sqrt(tau2)) return(dnchgi) } ############################################################################ ### joint density of k non-central hypergeometric distributions for fixed- and random/mixed-effects models .dnchg <- function(parms, ai, bi, ci, di, X.fit, random, verbose=FALSE, digits, dnchgcalc, dnchgprec, intCtrl) { mstyle <- .get.mstyle() p <- ncol(X.fit) k <- length(ai) beta <- parms[seq_len(p)] # first p elemenets in parms are the model coefficients tau2 <- ifelse(random, exp(parms[p+1]), 0) # next value is tau^2 -- optimize over exp(tau^2) value or hold at 0 if random=FALSE mu.i <- X.fit %*% cbind(beta) lli <- rep(NA_real_, k) if (!random) { for (i in seq_len(k)) { lli[i] <- log(.dnchgi(logOR=mu.i[i], ai=ai[i], bi=bi[i], ci=ci[i], di=di[i], random=random, dnchgcalc=dnchgcalc, dnchgprec=dnchgprec)) } if (verbose) cat(mstyle$verbose(paste("ll =", fmtx(sum(lli), digits[["fit"]]), " ", fmtx(beta, digits[["est"]]), "\n"))) } if (random) { for (i in seq_len(k)) { res <- try(integrate(.dnchgi, lower=intCtrl$lower, upper=intCtrl$upper, ai=ai[i], bi=bi[i], ci=ci[i], di=di[i], mu.i=mu.i[i], tau2=tau2, random=random, dnchgcalc=dnchgcalc, dnchgprec=dnchgprec, rel.tol=intCtrl$rel.tol, subdivisions=intCtrl$subdivisions, stop.on.error=FALSE), silent=!verbose) #res <- try(cubintegrate(.dnchgi, lower=intCtrl$lower, upper=intCtrl$upper, ai=ai[i], bi=bi[i], ci=ci[i], di=di[i], mu.i=mu.i[i], tau2=tau2, random=random, dnchgcalc=dnchgcalc, dnchgprec=dnchgprec), silent=!verbose) if (inherits(res, "try-error")) { stop(mstyle$stop(paste0("Could not integrate over density of non-central hypergeometric distribution in study ", i, ".")), call.=FALSE) } else { #res$value <- res$integral if (res$value > 0) { lli[i] <- log(res$value) } else { lli[i] <- -Inf } } } if (verbose) cat(mstyle$verbose(paste("ll = ", fmtx(sum(lli), digits[["fit"]]), " ", fmtx(tau2, digits[["var"]]), " ", fmtx(beta, digits[["est"]]), "\n"))) } return(-sum(lli)) } ############################################################################ metafor/R/confint.rma.uni.selmodel.r0000644000176200001440000003671114722340753017125 0ustar liggesusersconfint.rma.uni.selmodel <- function(object, parm, level, fixed=FALSE, tau2, delta, digits, transf, targs, verbose=FALSE, control, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.uni.selmodel") if (!missing(parm)) warning(mstyle$warning("Argument 'parm' (currently) ignored."), call.=FALSE) x <- object if (x$betaspec) # TODO: consider providing CIs also for this case stop(mstyle$stop("Cannot obtain confidence intervals when one or more beta values were fixed.")) if (x$decreasing || x$type == "stepcon") stop(mstyle$stop("Method not currently implemented for this type of model.")) k <- x$k p <- x$p if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL funlist <- lapply(list(transf.exp.int, transf.ilogit.int, transf.ztor.int, transf.exp.mode, transf.ilogit.mode, transf.ztor.mode), deparse) if (is.null(targs) && any(sapply(funlist, identical, deparse(transf))) && inherits(x, c("rma.uni","rma.glmm")) && length(x$tau2 == 1L)) targs <- c(tau2=x$tau2) if (missing(control)) control <- list() ddd <- list(...) .chkdots(ddd, c("time", "xlim", "extint", "code1", "code2")) level <- .level(level, stopon100=.isTRUE(ddd$extint)) if (.isTRUE(ddd$time)) time.start <- proc.time() if (!is.null(ddd$xlim)) { if (length(ddd$xlim) != 2L) stop(mstyle$stop("Argument 'xlim' should be a vector of length 2.")) control$vc.min <- ddd$xlim[1] control$vc.max <- ddd$xlim[2] } ### check if user has specified one of the tau2 or delta arguments random <- !all(missing(tau2), missing(delta)) if (!fixed && !random) { ### if both 'fixed' and 'random' are FALSE, obtain CIs for tau2 and all selection model parameters cl <- match.call() ### total number of non-fixed components comps <- ifelse(!is.element(x$method, c("FE","EE","CE")) && !x$tau2.fix, 1, 0) + sum(!x$delta.fix) if (comps == 0) stop(mstyle$stop("No components for which a CI can be obtained.")) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) res.all <- list() j <- 0 if (!is.element(x$method, c("FE","EE","CE")) && !x$tau2.fix) { j <- j + 1 if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) cl.vc <- cl cl.vc$tau2 <- 1 cl.vc$time <- FALSE #cl.vc$object <- quote(x) cl.vc[[1]] <- str2lang("metafor::confint.rma.uni.selmodel") if (verbose) cat(mstyle$verbose(paste("\nObtaining CI for tau2\n"))) res.all[[j]] <- eval(cl.vc, envir=parent.frame()) } if (any(!x$delta.fix)) { for (pos in seq_len(x$deltas)[!x$delta.fix]) { j <- j + 1 if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) cl.vc <- cl cl.vc$delta <- pos cl.vc$time <- FALSE #cl.vc$object <- quote(x) cl.vc[[1]] <- str2lang("metafor::confint.rma.uni.selmodel") if (verbose) cat(mstyle$verbose(paste("\nObtaining CI for delta =", pos, "\n"))) res.all[[j]] <- eval(cl.vc, envir=parent.frame()) } } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } if (length(res.all) == 1L) { return(res.all[[1]]) } else { res.all$digits <- digits class(res.all) <- "list.confint.rma" return(res.all) } } ######################################################################### ######################################################################### ######################################################################### if (random) { type <- "pl" ###################################################################### ### check if user has specified more than one of these arguments if (sum(!missing(tau2), !missing(delta)) > 1L) stop(mstyle$stop("Must specify only one of the 'tau2' or 'delta' arguments.")) ### check if model actually contains (at least one) such a component and that it was actually estimated if (!missing(tau2) && (is.element(x$method, c("FE","EE","CE")) || x$tau2.fix)) stop(mstyle$stop("Model does not contain an (estimated) 'tau2' component.")) if (!missing(delta) && all(x$delta.fix)) stop(mstyle$stop("Model does not contain any estimated 'delta' components.")) ### check if user specified more than one tau2 or delta component if (!missing(tau2) && (length(tau2) > 1L)) stop(mstyle$stop("Can only specify one 'tau2' component.")) if (!missing(delta) && (length(delta) > 1L)) stop(mstyle$stop("Can only specify one 'delta' component.")) ### check if user specified a logical if (!missing(tau2) && is.logical(tau2) && isTRUE(tau2)) tau2 <- 1 if (!missing(delta) && is.logical(delta)) stop(mstyle$stop("Must specify a number for the 'delta' component.")) ### check if user specified a component that does not exist if (!missing(tau2) && (tau2 > 1 || tau2 <= 0)) stop(mstyle$stop("No such 'tau2' component in the model.")) if (!missing(delta) && (delta > x$deltas || delta <= 0)) stop(mstyle$stop("No such 'delta' component in the model.")) ### check if user specified a component that was fixed if (!missing(tau2) && x$tau2.fix) stop(mstyle$stop("Specified 'tau2' component was fixed.")) if (!missing(delta) && x$delta.fix[delta]) stop(mstyle$stop("Specified 'delta' component was fixed.")) ### if everything is good so far, get value of the variance component and set 'comp' delta.pos <- NA_integer_ if (!missing(tau2)) { vc <- x$tau2 comp <- "tau2" tau2.pos <- 1 } if (!missing(delta)) { vc <- x$delta[delta] comp <- "delta" delta.pos <- delta } #return(list(comp=comp, vc=vc, tau2.pos=tau2.pos, delta.pos=delta.pos)) ###################################################################### ### set defaults for control parameters for uniroot() and replace with any user-defined values ### set vc.min and vc.max and possibly replace with any user-defined values con <- list(tol=.Machine$double.eps^0.25, maxiter=1000, verbose=FALSE, eptries=10) if (comp == "tau2") { con$vc.min <- 0 con$vc.max <- min(max(ifelse(vc <= .Machine$double.eps^0.5, 10, max(10, vc*100)), con$vc.min), x$tau2.max) } if (comp == "delta") { con$vc.min <- max(0, x$delta.min[delta]) con$vc.max <- min(max(ifelse(vc <= .Machine$double.eps^0.5, 10, max(10, vc*10)), con$vc.min), x$delta.max[delta]) } con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] if (verbose) con$verbose <- verbose verbose <- con$verbose ###################################################################### vc.lb <- NA_real_ vc.ub <- NA_real_ ci.null <- FALSE # logical if CI is a null set lb.conv <- FALSE # logical if search converged for lower bound (LB) ub.conv <- FALSE # logical if search converged for upper bound (UB) lb.sign <- "" # for sign in case LB must be below vc.min ("<") or above vc.max (">") ub.sign <- "" # for sign in case UB must be below vc.min ("<") or above vc.max (">") ###################################################################### ###################################################################### ###################################################################### ### Profile Likelihood method # TODO: could also provide Wald-type CIs (ci.lb.tau2, ci.ub.tau2) and (ci.lb.delta, ci.ub.delta) if (type == "pl") { if (con$vc.min > vc) stop(mstyle$stop("Lower bound of interval to be searched must be <= estimated value of component.")) if (con$vc.max < vc) stop(mstyle$stop("Upper bound of interval to be searched must be >= estimated value of component.")) objective <- qchisq(1-level, df=1) ################################################################### ### search for lower bound ### get diff value when setting component to vc.min; this value should be positive (i.e., discrepancy must be larger than critical value) ### if it is not, then the lower bound must be below vc.min epdiff <- abs(con$vc.min - vc) / con$eptries for (i in seq_len(con$eptries)) { res <- try(.profile.rma.uni.selmodel(con$vc.min, obj=x, comp=comp, delta.pos=delta.pos, confint=TRUE, objective=objective, verbose=verbose), silent=TRUE) if (!inherits(res, "try-error") && !is.na(res)) { if (!.isTRUE(ddd$extint) && res < 0) { vc.lb <- con$vc.min lb.conv <- TRUE if (comp == "tau2" && con$vc.min > 0) lb.sign <- "<" if (comp == "delta" && con$vc.min > 0) lb.sign <- "<" } else { if (.isTRUE(ddd$extint)) { res <- try(uniroot(.profile.rma.uni.selmodel, interval=c(con$vc.min, vc), tol=con$tol, maxiter=con$maxiter, extendInt="downX", obj=x, comp=comp, delta.pos=delta.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } else { res <- try(uniroot(.profile.rma.uni.selmodel, interval=c(con$vc.min, vc), tol=con$tol, maxiter=con$maxiter, obj=x, comp=comp, delta.pos=delta.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } ### check if uniroot method converged if (!inherits(res, "try-error")) { vc.lb <- res lb.conv <- TRUE } } break } con$vc.min <- con$vc.min + epdiff } if (verbose) cat("\n") ################################################################### ### search for upper bound ### get diff value when setting component to vc.max; this value should be positive (i.e., discrepancy must be larger than critical value) ### if it is not, then the upper bound must be above vc.max epdiff <- abs(con$vc.max - vc) / con$eptries for (i in seq_len(con$eptries)) { res <- try(.profile.rma.uni.selmodel(con$vc.max, obj=x, comp=comp, delta.pos=delta.pos, confint=TRUE, objective=objective, verbose=verbose), silent=TRUE) if (!inherits(res, "try-error") && !is.na(res)) { if (!.isTRUE(ddd$extint) && res < 0) { vc.ub <- con$vc.max ub.conv <- TRUE if (comp == "tau2") ub.sign <- ">" if (comp == "delta") ub.sign <- ">" } else { if (.isTRUE(ddd$extint)) { res <- try(uniroot(.profile.rma.uni.selmodel, interval=c(vc, con$vc.max), tol=con$tol, maxiter=con$maxiter, extendInt="upX", obj=x, comp=comp, delta.pos=delta.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } else { res <- try(uniroot(.profile.rma.uni.selmodel, interval=c(vc, con$vc.max), tol=con$tol, maxiter=con$maxiter, obj=x, comp=comp, delta.pos=delta.pos, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } ### check if uniroot method converged if (!inherits(res, "try-error")) { vc.ub <- res ub.conv <- TRUE } } break } con$vc.max <- con$vc.max - epdiff } ################################################################### } ###################################################################### ###################################################################### ###################################################################### if (!lb.conv) warning(mstyle$warning("Cannot obtain lower bound of profile likelihood CI due to convergence problems."), call.=FALSE) if (!ub.conv) warning(mstyle$warning("Cannot obtain upper bound of profile likelihood CI due to convergence problems."), call.=FALSE) ###################################################################### vc <- c(vc, vc.lb, vc.ub) if (comp == "tau2") { vcsqrt <- sqrt(ifelse(vc >= 0, vc, NA_real_)) res.random <- rbind(vc, vcsqrt) rownames(res.random) <- c("tau^2", "tau") } if (comp == "delta") { res.random <- rbind(vc) if (x$deltas == 1L) { rownames(res.random) <- "delta" } else { rownames(res.random) <- paste0("delta.", delta.pos) } } colnames(res.random) <- c("estimate", "ci.lb", "ci.ub") } ######################################################################### ######################################################################### ######################################################################### if (fixed) { if (is.element(x$test, c("knha","adhoc","t"))) { crit <- qt(level/2, df=x$ddf, lower.tail=FALSE) } else { crit <- qnorm(level/2, lower.tail=FALSE) } beta <- c(x$beta) ci.lb <- c(beta - crit * x$se) ci.ub <- c(beta + crit * x$se) if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] res.fixed <- cbind(estimate=beta, ci.lb=ci.lb, ci.ub=ci.ub) rownames(res.fixed) <- rownames(x$beta) } ######################################################################### ######################################################################### ######################################################################### res <- list() if (fixed) res$fixed <- res.fixed if (random) res$random <- res.random res$digits <- digits if (random) { res$ci.null <- ci.null res$lb.sign <- lb.sign res$ub.sign <- ub.sign #res$vc.min <- con$vc.min } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(res) <- "confint.rma" return(res) } metafor/R/formula.rma.r0000644000176200001440000000070514515470477014536 0ustar liggesusersformula.rma <- function(x, type="mods", ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma") type <- match.arg(type, c("mods", "yi", "scale")) if (type == "scale" && x$model != "rma.ls") stop(mstyle$stop("Can only use type='scale' for location-scale models.")) if (type == "mods") return(x$formula.mods) if (type == "yi") return(x$formula.yi) if (type == "scale") return(x$formula.scale) } metafor/R/predict.rma.r0000644000176200001440000007301614717663140014523 0ustar liggesuserspredict.rma <- function(object, newmods, intercept, tau2.levels, gamma2.levels, addx=FALSE, level, adjust=FALSE, digits, transf, targs, vcov=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(object), must="rma", notav="rma.ls") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) x <- object mf <- match.call() if (any(grepl("pairmat(", as.character(mf), fixed=TRUE))) { try(assign("pairmat", object, envir=.metafor), silent=TRUE) on.exit(suppressWarnings(rm("pairmat", envir=.metafor))) } if (missing(newmods)) newmods <- NULL if (missing(intercept)) { intercept <- x$intercept int.spec <- FALSE } else { int.spec <- TRUE } if (missing(tau2.levels)) tau2.levels <- NULL if (missing(gamma2.levels)) gamma2.levels <- NULL if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL funlist <- lapply(list(transf.exp.int, transf.ilogit.int, transf.ztor.int, transf.exp.mode, transf.ilogit.mode, transf.ztor.mode), deparse) if (is.null(targs) && any(sapply(funlist, identical, deparse(transf))) && inherits(x, c("rma.uni","rma.glmm")) && length(x$tau2 == 1L)) targs <- c(tau2=x$tau2) level <- .level(level) if (!is.logical(adjust)) stop(mstyle$stop("Argument 'adjust' must be a logical.")) ddd <- list(...) .chkdots(ddd, c("pi.type", "newvi", "verbose")) pi.type <- .chkddd(ddd$pi.type, "default", tolower(ddd$pi.type)) if (x$int.only && !is.null(newmods)) stop(mstyle$stop("Cannot specify new moderator values for models without moderators.")) rnames <- NULL ######################################################################### ### TODO: can this be simplified? (every time I sit down and stare at the mess below, it gives me a headache) if (is.null(newmods)) { ### if no new moderator values are specified if (!inherits(object, "rma.mv") || (inherits(object, "rma.mv") && any(is.element(object$struct, c("GEN","GDIAG"))))) { ### for rma.uni, rma.mh, rma.peto, and rma.glmm objects if (x$int.only) { # if intercept-only model predict only the intercept k.new <- 1L # X.new <- cbind(1) # } else { # otherwise predict for all k.f studies (including studies with NAs) k.new <- x$k.f # X.new <- x$X.f # } # } else { ### for rma.mv objects if (x$int.only) { # if intercept-only model: if (!x$withG) { # # if there is no G structure (and hence also no H structure) k.new <- 1L # # then we just need to predict the intercept once X.new <- cbind(1) # } # if (x$withG && x$withH) { # # if there is both a G and H structure if (is.null(tau2.levels) && is.null(gamma2.levels)) { # # and user has not specified tau2s.levels and gamma2.levels k.new <- x$tau2s * x$gamma2s # # then we need to predict intercepts for all combinations of tau2 and gamma2 values X.new <- cbind(rep(1,k.new)) # if (x$tau2s == 1) { # # if there is only a single tau^2 tau2.levels <- rep(1,k.new) # # then tau2.levels should be 1 repeated k.new times } else { # tau2.levels <- rep(levels(x$mf.g.f$inner), each=x$gamma2s) # # otherwise repeat actual levels gamma2s times } # if (x$gamma2s == 1) { # # if there is only a single gamma^2 value gamma2.levels <- rep(1,k.new) # # then gamma2.levels should be 1 repeated k.new times } else { # gamma2.levels <- rep(levels(x$mf.h.f$inner), times=x$tau2s) # # otherwise repeat actual levels tau2s times } # } # if ((!is.null(tau2.levels) && is.null(gamma2.levels)) || # # if user specified only one of tau2.levels and gamma2.levels, throw an error (is.null(tau2.levels) && !is.null(gamma2.levels))) # stop(mstyle$stop("Either specify both of 'tau2.levels' and 'gamma2.levels' or neither.")) if (!is.null(tau2.levels) && !is.null(gamma2.levels)) { # # if user has specified both tau2s.levels and gamma2.levels if (length(tau2.levels) != length(gamma2.levels)) # stop(mstyle$stop("Length of 'tau2.levels' and 'gamma2.levels' are not the same.")) k.new <- length(tau2.levels) # # then we need to predict intercepts for those level combinations X.new <- cbind(rep(1,k.new)) # } # } # if (x$withG && !x$withH) { # # if there is only a G structure (and no H structure) if (is.null(tau2.levels)) { # # and user has not specified tau2.levels k.new <- x$tau2s # # then we need to predict intercepts for all tau2 values X.new <- cbind(rep(1,k.new)) # if (x$tau2s == 1) { # tau2.levels <- rep(1, k.new) # } else { # tau2.levels <- levels(x$mf.g.f$inner) # } # } else { # # and the user has specified tau2.levels k.new <- length(tau2.levels) # # then we need to predict intercepts for those levels X.new <- cbind(rep(1,k.new)) # } # gamma2.levels <- rep(1, k.new) # } # } else { # if not an intercept-only model k.new <- x$k.f # # then predict for all k.f studies (including studies with NAs) X.new <- x$X.f # if (!is.null(tau2.levels) || !is.null(gamma2.levels)) # warning(mstyle$warning("Arguments 'tau2.levels' and 'gamma2.levels' ignored when obtaining fitted values."), call.=FALSE) tau2.levels <- as.character(x$mf.g.f$inner) # gamma2.levels <- as.character(x$mf.h.f$inner) # } # } } else { ### if new moderator values have been specified if (!(.is.vector(newmods) || inherits(newmods, "matrix"))) stop(mstyle$stop(paste0("Argument 'newmods' should be a vector or matrix, but is of class '", class(newmods)[1], "'."))) singlemod <- (NCOL(newmods) == 1L) && ((!x$int.incl && x$p == 1L) || (x$int.incl && x$p == 2L)) if (singlemod) { # if single moderator (multiple k.new possible) (either without or with intercept in the model) k.new <- length(newmods) # (but when specifying a matrix, it must be a column vector for this work) X.new <- cbind(c(newmods)) # if (.is.vector(newmods)) { # rnames <- names(newmods) # } else { # rnames <- rownames(newmods) # } # } else { # in case the model has more than one predictor: if (.is.vector(newmods) || nrow(newmods) == 1L) { # # if user gives one vector or one row matrix (only one k.new): k.new <- 1L # X.new <- rbind(newmods) # if (inherits(newmods, "matrix")) # rnames <- rownames(newmods) # } else { # # if user gives multiple rows and columns (multiple k.new): k.new <- nrow(newmods) # X.new <- cbind(newmods) # rnames <- rownames(newmods) # } # ### allow matching of terms by names (note: only possible if all columns in X.new and x$X have colnames) if (!is.null(colnames(X.new)) && all(colnames(X.new) != "") && !is.null(colnames(x$X)) && all(colnames(x$X) != "")) { colnames.mod <- colnames(x$X) if (x$int.incl) colnames.mod <- colnames.mod[-1] pos <- sapply(colnames(X.new), function(colname) { d <- c(adist(colname, colnames.mod, costs=c(ins=1, sub=Inf, del=Inf))) # compute edit distances with Inf costs for substitutions/deletions if (all(is.infinite(d))) # if there is no match, then all elements are Inf stop(mstyle$stop(paste0("Could not find variable '", colname, "' in the model."))) d <- which(d == min(d)) # don't use which.min() since that only finds the first minimum if (length(d) > 1L) # if there is no unique match, then there is more than one minimum stop(mstyle$stop(paste0("Could not match up variable '", colname, "' uniquely to a variable in the model."))) return(d) }) if (anyDuplicated(pos)) { # if the same name is used more than once, then there will be duplicated pos values dups <- paste(unique(colnames(X.new)[duplicated(pos)]), collapse=", ") stop(mstyle$stop(paste0("Found multiple matches for the same variable name (", dups, ")."))) } if (length(pos) != length(colnames.mod)) { no.match <- colnames.mod[seq_along(colnames.mod)[-pos]] if (length(no.match) > 3L) stop(mstyle$stop(paste0("Argument 'newmods' does not specify values for these variables: ", paste0(no.match[1:3], collapse=", "), ", ..."))) if (length(no.match) > 1L) stop(mstyle$stop(paste0("Argument 'newmods' does not specify values for these variables: ", paste0(no.match, collapse=", ")))) if (length(no.match) == 1L) stop(mstyle$stop(paste0("Argument 'newmods' does not specify values for this variable: ", no.match))) } X.new <- X.new[,order(pos),drop=FALSE] colnames(X.new) <- colnames.mod } } if (inherits(X.new[1,1], "character")) stop(mstyle$stop("Argument 'newmods' should only contain numeric variables.")) ### if the user has specified newmods and an intercept was included in the original model, add the intercept to X.new ### but user can also decide to remove the intercept from the predictions with intercept=FALSE (but only do this when ### newmods was not a matrix with p columns) if (!singlemod && ncol(X.new) == x$p) { if (int.spec) warning(mstyle$warning("Arguments 'intercept' ignored when 'newmods' includes 'p' columns."), call.=FALSE) } else { if (x$int.incl) { if (intercept) { X.new <- cbind(intrcpt=1, X.new) } else { X.new <- cbind(intrcpt=0, X.new) } } } if (ncol(X.new) != x$p) stop(mstyle$stop(paste0("Dimensions of 'newmods' (", ncol(X.new), ") do not the match dimensions of the model (", x$p, ")."))) } if (is.null(X.new)) stop(mstyle$stop("Matrix 'X.new' is NULL.")) #return(list(k.new=k.new, tau2=x$tau2, gamma2=x$gamma2, tau2.levels=tau2.levels, gamma2.levels=gamma2.levels)) ######################################################################### ### for rma.mv models with multiple tau^2 values, must use tau2.levels argument when using newmods to obtain prediction interval if (inherits(object, "rma.mv") && x$withG) { if (x$tau2s > 1L) { if (is.null(tau2.levels)) { #warning(mstyle$warning("Must specify the 'tau2.levels' argument to obtain prediction intervals."), call.=FALSE) } else { ### if tau2.levels argument is a character vector, check that specified tau^2 values actually exist if (!is.numeric(tau2.levels) && anyNA(pmatch(tau2.levels, x$g.levels.f[[1]], duplicates.ok=TRUE))) stop(mstyle$stop("Non-existing levels specified via 'tau2.levels' argument.")) ### if tau2.levels argument is numeric, check that specified tau^2 values actually exist if (is.numeric(tau2.levels)) { tau2.levels <- round(tau2.levels) if (any(tau2.levels < 1) || any(tau2.levels > x$g.nlevels.f[1])) stop(mstyle$stop("Non-existing tau^2 values specified via 'tau2.levels' argument.")) } ### allow quick setting of all levels tau2.levels <- .expand1(tau2.levels, k.new) ### check length of tau2.levels argument if (length(tau2.levels) != k.new) stop(mstyle$stop(paste0("Length of the 'tau2.levels' argument (", length(tau2.levels), ") does not match the number of predicted values (", k.new, ")."))) } } else { tau2.levels <- rep(1, k.new) } } ### for rma.mv models with multiple gamma^2 values, must use gamma.levels argument when using newmods to obtain prediction intervals if (inherits(object, "rma.mv") && x$withH) { if (x$gamma2s > 1L) { if (is.null(gamma2.levels)) { #warning(mstyle$warning("Must specify the 'gamma2.levels' argument to obtain prediction intervals."), call.=FALSE) } else { ### if gamma2.levels argument is a character vector, check that specified gamma^2 values actually exist if (!is.numeric(gamma2.levels) && anyNA(pmatch(gamma2.levels, x$h.levels.f[[1]], duplicates.ok=TRUE))) stop(mstyle$stop("Non-existing levels specified via 'gamma2.levels' argument.")) ### if gamma2.levels argument is numeric, check that specified gamma^2 values actually exist if (is.numeric(gamma2.levels)) { gamma2.levels <- round(gamma2.levels) if (any(gamma2.levels < 1) || any(gamma2.levels > x$h.nlevels.f[1])) stop(mstyle$stop("Non-existing gamma^2 values specified via 'gamma2.levels' argument.")) } ### allow quick setting of all levels gamma2.levels <- .expand1(gamma2.levels, k.new) ### check length of gamma2.levels argument if (length(gamma2.levels) != k.new) stop(mstyle$stop(paste0("Length of the 'gamma2.levels' argument (", length(gamma2.levels), ") does not match the number of predicted values (", k.new, ")."))) } } else { gamma2.levels <- rep(1, k.new) } } ######################################################################### if (inherits(x, "robust.rma") && x$robumethod == "clubSandwich") { if (x$coef_test == "saddlepoint") stop(mstyle$stop("Cannot use method when saddlepoint correction was used.")) cs.lc <- try(clubSandwich::linear_contrast(x, cluster=x$cluster, vcov=x$vb, test=x$coef_test, contrasts=X.new, p_values=FALSE, level=1-level), silent=!isTRUE(ddd$verbose)) if (inherits(cs.lc, "try-error")) stop(mstyle$stop("Could not obtain the linear contrast(s) (use verbose=TRUE for more details).")) pred <- cs.lc$Est se <- cs.lc$SE vpred <- se^2 ddf <- cs.lc$df crit <- sapply(seq_along(ddf), function(j) if (ddf[j] > 0) qt(level/ifelse(adjust, 2*k.new, 2), df=ddf[j], lower.tail=FALSE) else NA_real_) #ci.lb <- cs.lc$CI_L #ci.ub <- cs.lc$CI_U ci.lb <- pred - crit * se ci.ub <- pred + crit * se x$test <- switch(x$coef_test, "z"="z", "naive-t"="t", "naive-tp"="t", "Satterthwaite"="t") } else { ### ddf calculation for x$test %in% c("knha","adhoc","t") but also need this ### for pi.ddf calculation when test="z" and pi.type %in% c("riley","t") if (length(x$ddf) == 1L) { ddf <- rep(x$ddf, k.new) # when test="z", x$ddf is NA, so this then results in a vector of NAs } else { ddf <- rep(NA_integer_, k.new) for (j in seq_len(k.new)) { bn0 <- X.new[j,] != 0 # determine which coefficients are involved in the linear contrast ddf[j] <- min(x$ddf[bn0]) # take the smallest ddf value for those coefficients } } ddf[is.na(ddf)] <- x$k - x$p # when test="z", turn all NAs into the usual k-p dfs ### predicted values, SEs, and confidence intervals pred <- rep(NA_real_, k.new) vpred <- rep(NA_real_, k.new) for (i in seq_len(k.new)) { Xi.new <- X.new[i,,drop=FALSE] pred[i] <- Xi.new %*% x$beta vpred[i] <- Xi.new %*% tcrossprod(x$vb, Xi.new) } if (is.element(x$test, c("knha","adhoc","t"))) { crit <- sapply(seq_along(ddf), function(j) if (ddf[j] > 0) qt(level/ifelse(adjust, 2*k.new, 2), df=ddf[j], lower.tail=FALSE) else NA_real_) } else { crit <- qnorm(level/ifelse(adjust, 2*k.new, 2), lower.tail=FALSE) } vpred[vpred < 0] <- NA_real_ se <- sqrt(vpred) ci.lb <- pred - crit * se ci.ub <- pred + crit * se } ######################################################################### if (vcov) vcovpred <- symmpart(X.new %*% x$vb %*% t(X.new)) if (pi.type == "simple") { crit <- qnorm(level/ifelse(adjust, 2*k.new, 2), lower.tail=FALSE) vpred <- 0 } pi.ddf <- ddf if (is.element(pi.type, c("riley","t"))) { if (pi.type == "riley") pi.ddf <- ddf - x$parms + x$p if (pi.type == "t") pi.ddf <- ddf pi.ddf[pi.ddf < 1] <- 1 crit <- sapply(seq_along(pi.ddf), function(j) if (pi.ddf[j] > 0) qt(level/ifelse(adjust, 2*k.new, 2), df=pi.ddf[j], lower.tail=FALSE) else NA_real_) } if (is.null(ddd$newvi)) { newvi <- 0 } else { newvi <- ddd$newvi newvi <- .expand1(newvi, k.new) if (length(newvi) != k.new) stop(mstyle$stop(paste0("Length of the 'newvi' argument (", length(newvi), ") does not match the number of predicted values (", k.new, ")."))) } ######################################################################### ### prediction intervals pi.se <- NULL if (!inherits(object, "rma.mv")) { ### for rma.uni, rma.mh, rma.peto, and rma.glmm objects (in rma.mh and rma.peto, tau2 = 0 by default and stored as such) pi.se <- sqrt(vpred + x$tau2 + newvi) pi.lb <- pred - crit * pi.se pi.ub <- pred + crit * pi.se } else { ### for rma.mv objects if (!x$withG) { ### if there is no G structure (and hence no H structure), there are no tau2 and gamma2 values, so just add the sum of all of the sigma2 values pi.se <- sqrt(vpred + sum(x$sigma2) + newvi) pi.lb <- pred - crit * pi.se pi.ub <- pred + crit * pi.se } if (x$withG && !x$withH) { ### if there is a G structure but no H structure if (x$tau2s == 1L) { ### if there is only a single tau^2 value, always add that (in addition to the sum of all of the sigma^2 values) pi.se <- sqrt(vpred + sum(x$sigma2) + x$tau2 + newvi) pi.lb <- pred - crit * pi.se pi.ub <- pred + crit * pi.se } else { if (is.null(tau2.levels)) { ### if user has not specified tau2.levels, cannot compute bounds pi.lb <- rep(NA_real_, k.new) pi.ub <- rep(NA_real_, k.new) tau2.levels <- rep(NA, k.new) } else { ### if there are multiple tau^2 values, either let user define numerically which value(s) to use or ### match the position of the specified tau2.levels to the levels of the inner factor in the model if (!is.numeric(tau2.levels)) tau2.levels <- pmatch(tau2.levels, x$g.levels.f[[1]], duplicates.ok=TRUE) pi.se <- sqrt(vpred + sum(x$sigma2) + x$tau2[tau2.levels] + newvi) pi.lb <- pred - crit * pi.se pi.ub <- pred + crit * pi.se tau2.levels <- x$g.levels.f[[1]][tau2.levels] } } } if (x$withG && x$withH) { ### if there is a G structure and an H structure if (x$tau2s == 1L && x$gamma2s == 1L) { ### if there is only a single tau^2 and gamma^2 value, always add that (in addition to the sum of all of the sigma^2 values) pi.se <- sqrt(vpred + sum(x$sigma2) + x$tau2 + x$gamma2 + newvi) pi.lb <- pred - crit * pi.se pi.ub <- pred + crit * pi.se } else { if (is.null(tau2.levels) || is.null(gamma2.levels)) { ### if user has not specified tau2.levels and gamma2.levels, cannot compute bounds pi.lb <- rep(NA_real_, k.new) pi.ub <- rep(NA_real_, k.new) tau2.levels <- rep(NA, k.new) gamma2.levels <- rep(NA, k.new) } else { ### if there are multiple tau^2 and/or gamma^2 values, either let user define numerically which value(s) to use or ### match the position of the specified tau2.levels and gamma2.levels to the levels of the inner factors in the model if (!is.numeric(tau2.levels)) tau2.levels <- pmatch(tau2.levels, x$g.levels.f[[1]], duplicates.ok=TRUE) if (!is.numeric(gamma2.levels)) gamma2.levels <- pmatch(gamma2.levels, x$h.levels.f[[1]], duplicates.ok=TRUE) pi.se <- sqrt(vpred + sum(x$sigma2) + x$tau2[tau2.levels] + x$gamma2[gamma2.levels] + newvi) pi.lb <- pred - crit * pi.se pi.ub <- pred + crit * pi.se tau2.levels <- x$g.levels.f[[1]][tau2.levels] gamma2.levels <- x$h.levels.f[[1]][gamma2.levels] } } } } ######################################################################### ### apply transformation function if one has been specified if (is.function(transf)) { if (is.null(targs)) { pred <- sapply(pred, transf) se <- rep(NA_real_, k.new) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) pi.lb <- sapply(pi.lb, transf) pi.ub <- sapply(pi.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) pred <- sapply(pred, transf, targs) se <- rep(NA_real_, k.new) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) pi.lb <- sapply(pi.lb, transf, targs) pi.ub <- sapply(pi.ub, transf, targs) } do.transf <- TRUE } else { do.transf <- FALSE } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] tmp <- .psort(pi.lb, pi.ub) pi.lb <- tmp[,1] pi.ub <- tmp[,2] ### use study labels from the object when the model has moderators and no new moderators have been specified ### otherwise, just use consecutive numbers to label the predicted values if (is.null(newmods) && !x$int.only) { slab <- x$slab } else { slab <- seq_len(k.new) if (!is.null(rnames)) slab <- rnames } ### add row/colnames to vcovpred if (vcov) rownames(vcovpred) <- colnames(vcovpred) <- slab ### but when predicting just a single value, use "" as study label if (k.new == 1L && is.null(rnames)) slab <- "" ### handle NAs not.na <- rep(TRUE, k.new) if (na.act == "na.omit") { if (is.null(newmods) && !x$int.only) { not.na <- x$not.na } else { not.na <- !is.na(pred) } } #if (na.act == "na.omit") { # not.na <- !is.na(pred) #} else { # not.na <- rep(TRUE, k.new) #} if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) out <- list(pred=pred[not.na], se=se[not.na], ci.lb=ci.lb[not.na], ci.ub=ci.ub[not.na], pi.lb=pi.lb[not.na], pi.ub=pi.ub[not.na], cr.lb=pi.lb[not.na], cr.ub=pi.ub[not.na]) if (vcov) vcovpred <- vcovpred[not.na,not.na,drop=FALSE] if (na.act == "na.exclude" && is.null(newmods) && !x$int.only) { out <- lapply(out, function(val) ifelse(x$not.na, val, NA_real_)) if (vcov) { vcovpred[!x$not.na,] <- NA_real_ vcovpred[,!x$not.na] <- NA_real_ } } ### add tau2.levels values to list if (inherits(object, "rma.mv") && x$withG && x$tau2s > 1L) out$tau2.level <- tau2.levels ### add gamma2.levels values to list if (inherits(object, "rma.mv") && x$withH && x$gamma2s > 1L) out$gamma2.level <- gamma2.levels ### add X matrix to list if (addx) { out$X <- matrix(X.new[not.na,], ncol=x$p) colnames(out$X) <- colnames(x$X) } ### add slab values to list out$slab <- slab[not.na] ### add some additional info out$digits <- digits out$method <- x$method out$transf <- do.transf out$pred.type <- "location" if (x$test != "z") out$ddf <- ddf if ((x$test != "z" || is.element(pi.type, c("riley","t"))) && pi.type != "simple") { out$pi.dist <- "t" out$pi.ddf <- pi.ddf } else { out$pi.dist <- "norm" } out$pi.se <- pi.se ### add some info to pi.lb attr(out$pi.lb, "level") <- level attr(out$pi.lb, "dist") <- out$pi.dist if (out$pi.dist == "t") { attr(out$pi.lb, "ddf") <- out$pi.ddf } attr(out$pi.lb, "se") <- pi.se ### for rma.mv models with a GEN structure, remove PI bounds if (inherits(object, "rma.mv") && any(is.element(object$struct, c("GEN","GDIAG")))) { out$cr.lb <- NULL out$cr.ub <- NULL out$pi.lb <- NULL out$pi.ub <- NULL out$tau2.level <- NULL out$gamma2.level <- NULL } ### for FE/EE/CE models, remove the PI bounds if (is.element(x$method, c("FE","EE","CE"))) { out$cr.lb <- NULL out$cr.ub <- NULL out$pi.lb <- NULL out$pi.ub <- NULL } ### for certain transformations, remove the PI bounds funlist <- lapply(list(transf.exp.mode, transf.ilogit.mode, transf.ztor.mode), deparse) if (do.transf && any(sapply(funlist, identical, deparse(transf)))) { out$cr.lb <- NULL out$cr.ub <- NULL out$pi.lb <- NULL out$pi.ub <- NULL } class(out) <- c("predict.rma", "list.rma") if (vcov & !do.transf) { out <- list(pred=out) out$vcov <- vcovpred } return(out) } metafor/R/weights.rma.uni.r0000644000176200001440000000334114671613750015330 0ustar liggesusersweights.rma.uni <- function(object, type="diagonal", ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.uni", notav=c("rma.gen", "rma.uni.selmodel")) if (is.null(object$not.na)) stop(mstyle$stop("Information needed to compute the weights is not available in the model object.")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) type <- match.arg(type, c("diagonal", "matrix")) x <- object ######################################################################### if (x$weighted) { if (is.null(x$weights)) { W <- diag(1/(x$vi + x$tau2), nrow=x$k, ncol=x$k) } else { W <- diag(x$weights, nrow=x$k, ncol=x$k) } } else { W <- diag(1/x$k, nrow=x$k, ncol=x$k) } ######################################################################### if (type == "diagonal") { wi <- as.vector(diag(W)) weight <- rep(NA_real_, x$k.f) weight[x$not.na] <- wi / sum(wi) * 100 names(weight) <- x$slab if (na.act == "na.omit") weight <- weight[x$not.na] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in weights.")) return(weight) } if (type == "matrix") { Wfull <- matrix(NA_real_, nrow=x$k.f, ncol=x$k.f) Wfull[x$not.na, x$not.na] <- W rownames(Wfull) <- x$slab colnames(Wfull) <- x$slab if (na.act == "na.omit") Wfull <- Wfull[x$not.na, x$not.na, drop=FALSE] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) return(Wfull) } } metafor/R/misc.func.hidden.r0000644000176200001440000022043014720146254015420 0ustar liggesusers############################################################################ ### function to set default 'btt' value(s) or check specified 'btt' values .set.btt <- function(btt, p, int.incl, Xnames, fixed=FALSE) { mstyle <- .get.mstyle() if (missing(btt) || is.null(btt)) { if (p > 1L) { # if the model matrix has more than one column if (int.incl) { btt <- seq.int(from=2, to=p) # and the model has an intercept term, test all coefficients except the intercept } else { btt <- seq_len(p) # and the model does not have an intercept term, test all coefficients } } else { btt <- 1L # if the model matrix has a single column, test that single coefficient } } else { if (is.character(btt)) { btt <- grep(btt, Xnames, fixed=fixed) if (length(btt) == 0L) stop(mstyle$stop("Cannot identify coefficient(s) corresponding to the specified 'btt' string."), call.=FALSE) } else { ### round, take unique values, sort, and turn into integer(s) btt <- as.integer(sort(unique(round(btt)))) ### check for mix of positive and negative values if (any(btt < 0) && any(btt > 0)) stop(mstyle$stop("Cannot mix positive and negative 'btt' values."), call.=FALSE) ### keep/remove from 1:p vector as specified btt <- seq_len(p)[btt] ### (1:5)[5:6] yields c(5, NA) so remove NAs if this happens btt <- btt[!is.na(btt)] ### make sure that at least one valid value is left if (length(btt) == 0L) stop(mstyle$stop("Non-existent coefficient(s) specified via 'btt'."), call.=FALSE) } } return(btt) } ### function to format 'btt' value(s) for printing .format.btt <- function(btt) { sav <- c() if (length(btt) > 1L) { btt <- sort(btt) while (length(btt) > 0L) { x <- rle(diff(btt)) if (x$values[1] == 1 && length(x$values) != 0L) { sav <- c(sav, c(btt[1], ":", btt[x$lengths[1] + 1])) btt <- btt[-c(1:(x$lengths[1] + 1))] #sav <- c(sav, ", ") # this adds a space between multiple a:b sets sav <- c(sav, ",") } else { sav <- c(sav, btt[1], ",") btt <- btt[-1] } } sav <- paste0(sav[-length(sav)], collapse="") } else { sav <- paste0(btt) } return(sav) } ############################################################################ ### pairwise sorting of the elements of two vectors #.psort.old <- function(x, y) { # # if (is.null(x) || length(x) == 0L) # need to catch this # return(NULL) # # if (missing(y)) { # if (is.matrix(x)) { # xy <- x # } else { # xy <- rbind(x) # in case x is just a vector # } # } else { # xy <- cbind(x,y) # } # # n <- nrow(xy) # # for (i in seq_len(n)) { # if (anyNA(xy[i,])) # next # xy[i,] <- sort(xy[i,]) # } # # colnames(xy) <- NULL # # return(xy) # #} .psort <- function(x, y, as.list=FALSE) { # simpler / vectorized version that also deals with x and y being matrices # (of the same dimensions) for elementwise swapping of pairs as needed # t(apply(xy, 1, sort)) would be okay, but problematic if there are NAs; # either they are removed completely (na.last=NA) or they are always put # first/last (na.last=FALSE/TRUE); but we just want to leave the NAs in # their position! if (is.null(x) || length(x) == 0L) # need to catch this return(NULL) if (missing(y)) { if (is.matrix(x)) { y <- x[,2] x <- x[,1] } else { y <- x[2] x <- x[1] } } flip <- x > y flip[is.na(flip)] <- FALSE x.flip <- x y.flip <- y x.flip[flip] <- y[flip] y.flip[flip] <- x[flip] if (as.list) { return(list(x=x.flip, y=y.flip)) } else { return(unname(cbind(x.flip, y.flip))) } } ############################################################################ ### function for applying observation limits .applyolim <- function(x, olim) { x[x < olim[1]] <- olim[1] x[x > olim[2]] <- olim[2] return(x) } ############################################################################ ### function to take the square root of a vector of numbers, giving NA for negative numbers (without a warning) .sqrt <- function(x) sapply(x, function(x) if (is.na(x) || x < 0) NA_real_ else sqrt(x)) ### function to obtain the trace of a matrix .tr <- function(X) return(sum(diag(X))) ### function to check if a matrix is square .is.square <- function(X) NROW(X) == NCOL(X) ### use NROW/NCOL to better deal with scalars; compare: ### (V <- list(matrix(1, nrow=2, ncol=2), 3, c(1,4), cbind(c(2,1)))); sapply(V, function(x) nrow(x) == ncol(x)); sapply(V, function(x) NROW(x) == NCOL(x)) ### function to test whether a vector is all equal to 1s (e.g., to find intercept(s) in a model matrix) .is.intercept <- function(x, eps=1e-08) return(all(abs(x - 1) < eps)) ### function to test whether a vector is a dummy variable (i.e., consists of only 0s and 1s) .is.dummy <- function(x, eps=1e-08) return(all(abs(x) < eps | abs(x - 1) < eps)) #return(all(sapply(x, identical, 0) | sapply(x, identical, 1))) ### function to test whether something is a vector (in the sense of being atomic, not a matrix, and not NULL) .is.vector <- function(x) is.atomic(x) && !is.matrix(x) && !is.null(x) ### function to test if a string is an integer and to return the integer if so (otherwise return NA) .is.stringint <- function(x) { is.int <- grepl("^[0-9]+L?$", x) if (is.int) { x <- sub("L", "", x, fixed=TRUE) x <- as.integer(x) } else { x <- NA } return(x) } ### function to test if x is a matrix and that also covers Matrix objects .is.matrix <- function(x) is.matrix(x) || inherits(x, "Matrix") ### function to test if x is numeric but also allow a (vector of) NA .is.numeric <- function(x) { if (all(is.na(x))) return(TRUE) is.numeric(x) } ### sapply()-like function but for matrices that always preserves the matrix dimensions (used in traceplot.rma.uni()) .matapply <- function(x, FUN, targs=NULL) { if (is.null(x)) return(NULL) if (is.null(targs)) { x[] <- sapply(x, FUN) } else { x[] <- sapply(x, FUN, targs) } return(x) } ### check if ddd element is NULL; if so, return ifnull, otherwise the ddd element or ifnot .chkddd <- function(x, ifnull=NULL, ifnot=NULL) { if (is.null(x)) { return(ifnull) } else { if (is.null(ifnot)) { return(x) } else { return(ifnot) } } } ### function that expands a scalar to length k; can also expand a scalar to ### the maximum length of the list elements given to k .expand1 <- function(x, k) { if (is.list(k)) k <- max(lengths(k, use.names=FALSE)) if (length(x) == 1L) x <- rep(x, k) return(x) } ### function that takes a vector as input and creates an expanded vector of ### the length of 'fill' of all NAs but where the fill values are given by x ### (can also take an entire list as input) .expandna <- function(x, fill) { if (is.list(x)) { return(lapply(x, function(xi) .expandna(xi, fill))) } else { if (!is.logical(fill)) stop("Argument 'fill' is not a logical vector.") k <- length(fill) out <- rep(NA_real_, k) out[fill] <- x return(out) } } ############################################################################ ### function to format p-values (no longer used; use fmtp() instead) ### if showeq=FALSE, c(0.001, 0.00001) becomes c("0.0010", "<.0001") ### if showeq=TRUE, c(0.001, 0.00001) becomes c("=0.0010", "<.0001") ### if add0=FALSE, "<.0001"; if add0=TRUE, "<0.0001" .pval <- function(p, digits=4, showeq=FALSE, sep="", add0=FALSE) { digits <- max(digits, 1) cutoff <- paste(c(".", rep(0,digits-1),1), collapse="") ncutoff <- as.numeric(cutoff) ifelse(is.na(p), paste0(ifelse(showeq, "=", ""), sep, "NA"), ifelse(p >= ncutoff, paste0(ifelse(showeq, "=", ""), sep, formatC(p, digits=digits, format="f")), paste0("<", sep, ifelse(add0, "0", ""), cutoff))) } ### function to format/round values in general (no longer used; use fmtx() instead) .fcf <- function(x, digits) { if (all(is.na(x))) { # since formatC(NA, format="f", digits=2) fails rep("NA", length(x)) } else { trimws(formatC(x, format="f", digits=digits)) } } ### function to handle 'level' argument .level <- function(level, allow.vector=FALSE, argname="level", stopon100=FALSE) { if (is.null(level)) return(NULL) mstyle <- .get.mstyle() if (any(level > 100) || any(level < 0)) stop(mstyle$stop(paste0("Argument '", argname, "' must be between 0 and 100.")), call.=FALSE) if (isTRUE(stopon100) && any(level==100)) stop(mstyle$stop(paste0("Argument '", argname, "' cannot be equal to 100.")), call.=FALSE) if (!allow.vector && length(level) != 1L) stop(mstyle$stop(paste0("Argument '", argname, "' must specify a single value.")), call.=FALSE) if (!is.numeric(level)) stop(mstyle$stop(paste0("The '", argname, "' argument must be numeric.")), call.=FALSE) ifelse(level == 0, 1, ifelse(level >= 1, (100-level)/100, ifelse(level > 0.5, 1-level, level))) } ############################################################################ ### function to print a named (character) vector right aligned with ### a gap of two spaces between adjacent values and no padding .print.vector <- function(x, minfoot=NA, print.gap=2) { empty.last.colname <- colnames(x)[length(colnames(x))] == "" if (is.null(names(x))) names(x) <- seq_along(x) gap <- paste0(rep(" ", print.gap), collapse="") len.n <- nchar(names(x)) len.x <- nchar(x, keepNA=FALSE) len.max <- pmax(len.n, len.x) #format <- sapply(len.max, function(x) paste("%", x, "s", sep="")) #row.n <- paste(sprintf(format, names(x)), collapse=gap) # sprintf("%3s", "\u00b9") isn't right #row.x <- paste(sprintf(format, x), collapse=gap) #f <- function(x, n) # paste0(paste0(rep(" ", n-nchar(x)), collapse=""), x, collapse="") #row.n <- paste(mapply(f, names(x), len.max), collapse=gap) #row.x <- paste(mapply(f, unname(x), len.max), collapse=gap) if (is.na(minfoot)) { row.n <- paste(mapply(formatC, names(x), width=len.max), collapse=gap) # formatC("\u00b9", width=3) works row.x <- paste(mapply(formatC, x, width=len.max), collapse=gap) } else { row.n <- mapply(formatC, names(x), width=len.max) row.n[minfoot] <- paste0(" ", row.n[minfoot]) row.n <- paste(row.n, collapse=gap) row.x <- mapply(formatC, x, width=len.max) if (empty.last.colname) { row.x[length(row.x)] <- paste0(" ", row.x[length(row.x)]) } else { row.x[length(row.x)] <- paste0(row.x[length(row.x)], " ") } row.x <- paste(row.x, collapse=gap) } cat(row.n, "\n", row.x, "\n", sep="") } .addfootsym <- function(x, cols, footsym) { nc <- length(cols) if (length(footsym) == 1L) footsym <- rep(footsym, nc) if (length(footsym) != nc) stop(paste0("Length of 'cols' not the same as length of 'footsym' in .addfootsym()."), call.=FALSE) for (i in seq_along(cols)) { colnames(x)[cols[i]] <- paste0(colnames(x)[cols[i]], footsym[i]) x[[cols[i]]] <- paste0(x[[cols[i]]], " ") } return(x) } ############################################################################ .space <- function(x=TRUE) { if (exists(".rmspace")) { addspace <- FALSE } else { addspace <- isTRUE(getmfopt("space", default=TRUE)) } if (addspace && x) cat("\n") if (!addspace && !x) cat("\n") } .get.footsym <- function() { fs <- getmfopt("footsym") if (is.null(fs) || length(fs) != 6L) fs <- c("\u00b9", "1)", "\u00b2", "2)", "\u00b3", "3)") return(fs) } # setmfopt(footsym = c("\u00b9", "\u00b9\u207e", "\u00b2", "\u00b2\u207e", "\u00b3", "\u00b3\u207e")) ############################################################################ ### function that prints the model fitting time .print.time <- function(x) { mstyle <- .get.mstyle() hours <- floor(x/60/60) minutes <- floor(x/60) - hours*60 seconds <- round(x - minutes*60 - hours*60*60, ifelse(x > 60, 0, 2)) cat("\n") cat(mstyle$message(paste("Processing time:", hours, ifelse(hours == 0 || hours > 1, "hours,", "hour,"), minutes, ifelse(minutes == 0 || minutes > 1, "minutes,", "minute,"), seconds, ifelse(x < 60 || seconds == 0 || seconds > 1, "seconds", "second")))) cat("\n") } ############################################################################ ### function like make.unique(), but starts at .1 for the first instance ### of a repeated element .make.unique <- function(x) { if (is.null(x)) return(NULL) x <- as.character(x) ux <- unique(x) for (i in seq_along(ux)) { #xiTF <- x == ux[i] xiTF <- x %in% ux[i] # works also with NAs in vector (multiple NAs are then NA.1, NA.2, ...) xi <- x[xiTF] if (length(xi) == 1L) next x[xiTF] <- paste(xi, seq_along(xi), sep=".") } return(x) } ############################################################################ ### function to check if extra/superfluous arguments are specified via ... .chkdots <- function(ddd, okargs) { for (i in seq_along(okargs)) ddd[okargs[i]] <- NULL if (length(ddd) > 0L) { mstyle <- .get.mstyle() warning(mstyle$warning(paste0("Extra argument", ifelse(length(ddd) > 1L, "s ", " "), "(", paste0("'", names(ddd), "'", collapse=", "), ") disregarded.")), call.=FALSE) } } ############################################################################ .getx <- function(x, mf, data, enclos=sys.frame(sys.parent(n=2)), checknull=TRUE, checknumeric=FALSE, default) { mstyle <- .get.mstyle() mf.getx <- match.call() dname <- deparse1(mf.getx[[match("data", names(mf.getx))]]) dname <- deparse1(mf[[match(dname, names(mf))]]) mf.x <- mf[[match(x, names(mf))]] if (!is.null(dname) && dname %in% names(data) && grepl("$", deparse1(mf.x), fixed=TRUE) || grepl("[[", deparse1(mf.x), fixed=TRUE)) data <- NULL out <- try(eval(mf.x, data, enclos), silent=TRUE) # NULL if x was not specified if (inherits(out, "try-error") || is.function(out)) stop(mstyle$stop(paste0("Cannot find the object/variable ('", deparse(mf.x), "') specified for the '", x, "' argument.")), call.=FALSE) # note: is.function() check catches case where 'vi' is the utils::vi() function and other shenanigans # check if x is actually one of the elements in the call spec <- x %in% names(mf) # out could be NULL if it is not a specified argument; if so, apply default if there is one if (is.null(out) && !spec && !missing(default)) out <- default if (checknull) { # when using something like fun(dat$blah) and blah doesn't exist in dat, then get NULL if (spec && is.null(out)) { mf.txt <- deparse(mf.x) if (mf.txt == "NULL") { mf.txt <- " " } else { mf.txt <- paste0(" ('", mf.txt, "') ") } stop(mstyle$stop(paste0(deparse(mf)[1], ":\nThe object/variable", mf.txt, "specified for the '", x, "' argument is NULL.")), call.=FALSE) } } if (checknumeric && !is.null(out) && !is.list(out) && !.is.numeric(out[1])) # using [1] so is.numeric(Matrix(1:3)[1]) works stop(mstyle$stop(paste0("The object/variable specified for the '", x, "' argument is not numeric.")), call.=FALSE) return(out) } .getfromenv <- function(what, element, envir=.metafor, default=NULL) { x <- try(get(what, envir=envir, inherits=FALSE), silent=TRUE) if (inherits(x, "try-error")) { return(default) } else { if (missing(element)) { return(x) } else { x <- x[[element]] if (is.null(x)) { return(default) } else { return(x) } } } } ### a version of do.call() that allows for the arguments to be passed via ... (i.e., can either be a list or not) and removes NULL arguments .do.call <- function(fun, ...) { if (is.list(..1) && ...length() == 1L) { args <- c(...) } else { args <- list(...) } args <- args[!sapply(args, is.null)] do.call(fun, args) } ############################################################################ .chkclass <- function(class, must, notap, notav, type="Method") { mstyle <- .get.mstyle() obj <- as.character(match.call()[2]) obj <- substr(obj, 7, nchar(obj)-1) if (!missing(must) && !is.element(must, class)) stop(mstyle$stop(paste0("Argument '", obj, "' must be an object of class \"", must, "\".")), call.=FALSE) if (!missing(notap) && any(is.element(notap, class))) stop(mstyle$stop(paste0(type, " not applicable to objects of class \"", class[1], "\".")), call.=FALSE) #stop(mstyle$stop(paste0("Method not applicable to objects of class \"", paste0(class, collapse=", "), "\".")), call.=FALSE) if (!missing(notav) && any(is.element(notav, class))) stop(mstyle$stop(paste0(type, " not available for objects of class \"", class[1], "\".")), call.=FALSE) #stop(mstyle$stop(paste0("Method not available for objects of class \"", paste0(class, collapse=", "), "\".")), call.=FALSE) } ############################################################################ .chkviarg <- function(x) { runvicheck <- .getfromenv("runvicheck", default=TRUE) if (runvicheck) { x <- deparse(x) xl <- tolower(x) ok <- TRUE # starts with 'se' or 'std' if (any(grepl("^se", xl))) ok <- FALSE if (any(grepl("^std", xl))) ok <- FALSE # ends with 'se' or 'std' if (any(grepl("se$", xl))) ok <- FALSE if (any(grepl("std$", xl))) ok <- FALSE # catch cases where vi=$se and vi=$std if (any(grepl("^[[:alpha:]][[:alnum:]_.]*\\$se", xl))) ok <- FALSE if (any(grepl("^[[:alpha:]][[:alnum:]_.]*\\$std", xl))) ok <- FALSE # but if ^, *, or ( appears, don't issue a warning if (any(grepl("^", xl, fixed=TRUE))) ok <- TRUE if (any(grepl("*", xl, fixed=TRUE))) ok <- TRUE if (any(grepl("(", xl, fixed=TRUE))) ok <- TRUE if (!ok) { mstyle <- .get.mstyle() warning(mstyle$warning(paste0("The 'vi' argument should be used to specify sampling variances,\nbut '", x, "' sounds like this variable may contain standard\nerrors (maybe use 'sei=", x, "' instead?).")), call.=FALSE) try(assign("runvicheck", FALSE, envir=.metafor), silent=TRUE) } } } ############################################################################ ### check that the lengths of all non-zero length elements given via ... are equal to each other .equal.length <- function(...) { ddd <- list(...) ks <- lengths(ddd) # get the length of each element in ddd if (all(ks == 0L)) { # if all elements have length 0 (are NULL), return TRUE return(TRUE) } else { ks <- ks[ks > 0L] # keep the non-zero lengths return(length(unique(ks)) == 1L) # check that they are all identical } } ### check that all elements given via ... are not of length 0 (are not NULL) .all.specified <- function(...) { ddd <- list(...) #all(!sapply(ddd, is.null)) not0 <- lengths(ddd) != 0L all(not0) } ############################################################################ ### set axis label (for forest, funnel, and labbe functions) .setlab <- function(measure, transf.char, atransf.char, gentype, short=FALSE) { if (gentype == 1) lab <- "Observed Outcome" if (gentype == 2) lab <- "Overall Estimate" # for forest.cumul.rma() function if (gentype == 3) lab <- "Estimate" # for header ######################################################################### if (!is.null(measure)) { ###################################################################### if (is.element(measure, c("RR","MPRR"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[RR]", "Log Risk Ratio") } else { lab <- ifelse(short, lab, "Transformed Log Risk Ratio") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Risk Ratio", "Risk Ratio (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Risk Ratio", "Risk Ratio") } } if (is.element(measure, c("OR","PETO","D2OR","D2ORN","D2ORL","MPOR","MPORC","MPPETO","MPORM"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[OR]", "Log Odds Ratio") } else { lab <- ifelse(short, lab, "Transformed Log Odds Ratio") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Odds Ratio", "Odds Ratio (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Odds Ratio", "Odds Ratio") } } if (is.element(measure, c("RD","MPRD"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Risk Difference", "Risk Difference") } else { lab <- ifelse(short, lab, "Transformed Risk Difference") } } if (measure == "AS") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Arcsine RD", "Arcsine Transformed Risk Difference") } else { lab <- ifelse(short, lab, "Transformed Arcsine Transformed Risk Difference") } } if (measure == "PHI") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Phi", "Phi Coefficient") } else { lab <- ifelse(short, lab, "Transformed Phi Coefficient") } } if (measure == "ZPHI") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression('Fisher\'s ' * z[phi]), "Fisher's z Transformed Phi Coefficient") } else { lab <- ifelse(short, lab, "Transformed Fisher's z Transformed Phi Coefficient") funlist <- lapply(list(transf.ztor, transf.ztor.int, tanh), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Phi", "Phi Coefficient") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Phi", "Phi Coefficient") } } if (measure == "YUQ") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Yule's Q", "Yule's Q") } else { lab <- ifelse(short, lab, "Transformed Yule's Q") } } if (measure == "YUY") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Yule's Y", "Yule's Y") } else { lab <- ifelse(short, lab, "Transformed Yule's Y") } } ###################################################################### if (measure == "IRR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[IRR]", "Log Incidence Rate Ratio") } else { lab <- ifelse(short, lab, "Transformed Log Incidence Rate Ratio") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Rate Ratio", "Incidence Rate Ratio (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Rate Ratio", "Incidence Rate Ratio") } } if (measure == "IRD") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "IRD", "Incidence Rate Difference") } else { lab <- ifelse(short, lab, "Transformed Incidence Rate Difference") } } if (measure == "IRSD") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "IRSD", "Square Root Transformed Incidence Rate Difference") } else { lab <- ifelse(short, lab, "Transformed Square Root Transformed Incidence Rate Difference") } } ###################################################################### if (measure == "MD") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "MD", "Mean Difference") } else { lab <- ifelse(short, lab, "Transformed Mean Difference") } } if (is.element(measure, c("SMD","SMDH","SMD1","SMD1H","PBIT","OR2D","OR2DN","OR2DL"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "SMD", "Standardized Mean Difference") } else { lab <- ifelse(short, lab, "Transformed Standardized Mean Difference") } } if (measure == "ROM") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[RoM]", "Log Ratio of Means") } else { lab <- ifelse(short, lab, "Transformed Log Ratio of Means") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Ratio of Means", "Ratio of Means (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Ratio of Means", "Ratio of Means") } } if (measure == "RPB") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Correlation", "Point-Biserial Correlation Coefficient") } else { lab <- ifelse(short, lab, "Transformed Point-Biserial Correlation Coefficient") } } if (measure == "ZPB") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression('Fisher\'s ' * z[phi]), "Fisher's z Transformed Point-Biserial Correlation Coefficient") } else { lab <- ifelse(short, lab, "Transformed Fisher's z Transformed Point-Biserial Correlation Coefficient") funlist <- lapply(list(transf.ztor, transf.ztor.int, tanh), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Correlation", "Point-Biserial Correlation Coefficient") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Correlation", "Point-Biserial Correlation Coefficient") } } if (measure == "CVR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[CVR]", "Log Coefficient of Variation Ratio") } else { lab <- ifelse(short, lab, "Transformed Log Coefficient of Variation Ratio") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "CVR", "Coefficient of Variation Ratio (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "CVR", "Coefficient of Variation Ratio") } } if (measure == "VR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[VR]", "Log Variability Ratio") } else { lab <- ifelse(short, lab, "Transformed Log Variability Ratio") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "VR", "Variability Ratio (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "VR", "Variability Ratio") } } ###################################################################### if (is.element(measure, c("COR","UCOR","RTET","RBIS"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Correlation", "Correlation Coefficient") } else { lab <- ifelse(short, lab, "Transformed Correlation Coefficient") } } if (is.element(measure, c("ZCOR","ZTET","ZBIS"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression('Fisher\'s ' * z[r]), "Fisher's z Transformed Correlation Coefficient") } else { lab <- ifelse(short, lab, "Transformed Fisher's z Transformed Correlation Coefficient") funlist <- lapply(list(transf.ztor, transf.ztor.int, tanh), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Correlation", "Correlation Coefficient") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Correlation", "Correlation Coefficient") } } ###################################################################### if (measure == "PCOR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Correlation", "Partial Correlation Coefficient") } else { lab <- ifelse(short, lab, "Transformed Partial Correlation Coefficient") } } if (measure == "ZPCOR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression('Fisher\'s ' * z[r]), "Fisher's z Transformed Partial Correlation Coefficient") } else { lab <- ifelse(short, lab, "Transformed Fisher's z Transformed Partial Correlation Coefficient") funlist <- lapply(list(transf.ztor, transf.ztor.int, tanh), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Correlation", "Partial Correlation Coefficient") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Correlation", "Partial Correlation Coefficient") } } if (measure == "SPCOR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Correlation", "Semi-Partial Correlation Coefficient") } else { lab <- ifelse(short, lab, "Transformed Semi-Partial Correlation Coefficient") } } if (measure == "ZSPCOR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression('Fisher\'s ' * z[r]), "Fisher's z Transformed Semi-Partial Correlation Coefficient") } else { lab <- ifelse(short, lab, "Transformed Fisher's z Transformed Semi-Partial Correlation Coefficient") funlist <- lapply(list(transf.ztor, transf.ztor.int, tanh), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Correlation", "Semi-Partial Correlation Coefficient") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Correlation", "Semi-Partial Correlation Coefficient") } } ###################################################################### if (is.element(measure, c("R2","R2F"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression(R^2), "Coefficient of Determination") } else { lab <- ifelse(short, lab, "Transformed Coefficient of Determination") } } if (is.element(measure, c("ZR2","ZR2F"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression(z[R^2]), "z Transformed Coefficient of Determination") } else { lab <- ifelse(short, lab, "Transformed z Transformed Coefficient of Determination") funlist <- lapply(list(transf.ztor2), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, expression(R^2), "Coefficient of Determination") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, expression(R^2), "Coefficient of Determination") } } ###################################################################### if (measure == "PR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Proportion", "Proportion") } else { lab <- ifelse(short, lab, "Transformed Proportion") } } if (measure == "PLN") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[Pr]", "Log Proportion") } else { lab <- ifelse(short, lab, "Transformed Log Proportion") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Proportion", "Proportion (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Proportion", "Proportion") } } if (measure == "PLO") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[Odds]", "Log Odds") } else { lab <- ifelse(short, lab, "Transformed Log Odds") funlist <- lapply(list(transf.ilogit, transf.ilogit.int, plogis), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Proportion", "Proportion (logit scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Proportion", "Proportion") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Odds", "Odds (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Odds", "Odds") } } if (measure == "PRZ") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression(Phi^{-1}*(p)), "Probit Transformed Proportion") # expression(z[p]) } else { lab <- ifelse(short, lab, "Transformed Probit Transformed Proportion") funlist <- lapply(list(pnorm), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Proportion", "Proportion (probit scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Proportion", "Proportion") } } if (measure == "PAS") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression(arcsin(sqrt(p))), "Arcsine Transformed Proportion") } else { lab <- ifelse(short, lab, "Transformed Arcsine Transformed Proportion") funlist <- lapply(list(transf.iarcsin), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Proportion", "Proportion (arcsine scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Proportion", "Proportion") } } if (measure == "PFT") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "PFT", "Double Arcsine Transformed Proportion") } else { lab <- ifelse(short, lab, "Transformed Double Arcsine Transformed Proportion") funlist <- lapply(list(transf.ipft.hm), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Proportion", "Proportion") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Proportion", "Proportion") } } ###################################################################### if (measure == "IR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Rate", "Incidence Rate") } else { lab <- ifelse(short, lab, "Transformed Incidence Rate") } } if (measure == "IRLN") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[IR]", "Log Incidence Rate") } else { lab <- ifelse(short, lab, "Transformed Log Incidence Rate") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Rate", "Incidence Rate (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Rate", "Incidence Rate") } } if (measure == "IRS") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Sqrt[IR]", "Square Root Transformed Incidence Rate") } else { lab <- ifelse(short, lab, "Transformed Square Root Transformed Incidence Rate") funlist <- lapply(list(transf.isqrt, atransf.char), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Rate", "Incidence Rate (square root scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Rate", "Incidence Rate") } } if (measure == "IRFT") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "IRFT", "Freeman-Tukey Transformed Incidence Rate") } else { lab <- ifelse(short, lab, "Transformed Freeman-Tukey Transformed Incidence Rate") } } ###################################################################### if (measure == "MN") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Mean", "Mean") } else { lab <- ifelse(short, lab, "Transformed Mean") } } if (measure == "SMN") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Std. Mean", "Standardized Mean") } else { lab <- ifelse(short, lab, "Transformed Standardized Mean") } } if (measure == "MNLN") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[Mean]", "Log Mean") } else { lab <- ifelse(short, lab, "Transformed Log Mean") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Mean", "Mean (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Mean", "Mean") } } if (measure == "CVLN") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[CV]", "Log Coefficient of Variation") } else { lab <- ifelse(short, lab, "Transformed Log Coefficient of Variation") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "CV", "Coefficient of Variation (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "CV", "Coefficient of Variation") } } if (measure == "SDLN") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[SD]", "Log Standard Deviation") } else { lab <- ifelse(short, lab, "Transformed Log Standard Deviation") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "SD", "Standard Deviation (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "SD", "Standard Deviation") } } ###################################################################### if (measure == "MC") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Mean Change", "Mean Change") } else { lab <- ifelse(short, lab, "Transformed Mean Change") } } if (is.element(measure, c("SMCC","SMCR","SMCRH","SMCRP","SMCRPH"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "SMC", "Standardized Mean Change") } else { lab <- ifelse(short, lab, "Transformed Standardized Mean Change") } } if (measure == "ROMC") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[RoM]", "Log Ratio of Means") } else { lab <- ifelse(short, lab, "Transformed Log Ratio of Means") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Ratio of Means", "Ratio of Means (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Ratio of Means", "Ratio of Means") } } if (measure == "CVRC") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[CVR]", "Log Coefficient of Variation Ratio") } else { lab <- ifelse(short, lab, "Transformed Log Coefficient of Variation Ratio") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "CVR", "Coefficient of Variation Ratio (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "CVR", "Coefficient of Variation Ratio") } } if (measure == "VRC") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[VR]", "Log Variability Ratio") } else { lab <- ifelse(short, lab, "Transformed Log Variability Ratio") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "VR", "Variability Ratio (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "VR", "Variability Ratio") } } ###################################################################### if (measure == "ARAW") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Alpha", "Cronbach's alpha") } else { lab <- ifelse(short, lab, "Transformed Cronbach's alpha") } } if (measure == "AHW") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression('Alpha'[HW]), "Transformed Cronbach's alpha") } else { lab <- ifelse(short, lab, "Transformed Cronbach's alpha") funlist <- lapply(list(transf.iahw), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Alpha", "Cronbach's alpha") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Alpha", "Cronbach's alpha") } } if (measure == "ABT") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, expression('Alpha'[B]), "Transformed Cronbach's alpha") } else { lab <- ifelse(short, lab, "Transformed Cronbach's alpha") funlist <- lapply(list(transf.iabt), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "Alpha", "Cronbach's alpha") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "Alpha", "Cronbach's alpha") } } ###################################################################### if (measure == "REH") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[REH]", "Log Relative Excess Heterozygosity") } else { lab <- ifelse(short, lab, "Transformed Log Relative Excess Heterozygosity") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "REH", "Relative Excess Heterozygosity (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "REH", "Relative Excess Heterozygosity") } } ###################################################################### if (is.element(measure, c("CLES","CLESN","CLESCN"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "CLES", "Common Language Effect Size") } else { lab <- ifelse(short, lab, "Transformed Common Language Effect Size") } } ###################################################################### if (is.element(measure, c("AUC","AUCN","AUCCN"))) { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "AUC", "Area under the Curve") } else { lab <- ifelse(short, lab, "Transformed Area under the Curve") } } ###################################################################### if (measure == "HR") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "Log[HR]", "Log Hazard Ratio") } else { lab <- ifelse(short, lab, "Transformed Log Hazard Ratio") funlist <- lapply(list(exp, transf.exp.int), deparse) if (any(sapply(funlist, identical, atransf.char))) lab <- ifelse(short, "HR", "Hazard Ratio (log scale)") if (any(sapply(funlist, identical, transf.char))) lab <- ifelse(short, "HR", "Hazard Ratio") } } if (measure == "HD") { if (identical(transf.char, "FALSE") && identical(atransf.char, "FALSE")) { lab <- ifelse(short, "HD", "Hazard Difference") } else { lab <- ifelse(short, lab, "Transformed Hazard Difference") } } ###################################################################### } return(lab) } ############################################################################ ### stuff related to colored/styled output .get.mstyle <- function() { crayonloaded <- "crayon" %in% .packages() styleopt <- getmfopt("style") if (is.logical(styleopt)) { if (isTRUE(styleopt)) { styleopt <- NULL } else { crayonloaded <- FALSE } } if (crayonloaded) { if (exists(".mstyle")) { .mstyle <- get(".mstyle") } else { .mstyle <- list() } if (!is.null(styleopt)) .mstyle <- styleopt if (!is.list(.mstyle)) .mstyle <- list(.mstyle) if (is.null(.mstyle$section)) { section <- crayon::bold } else { section <- .mstyle$section } if (is.null(.mstyle$header)) { header <- crayon::underline } else { header <- .mstyle$header } if (is.null(.mstyle$body1)) { body1 <- crayon::reset } else { body1 <- .mstyle$body1 } if (is.null(.mstyle$body2)) { body2 <- crayon::reset } else { body2 <- .mstyle$body2 } if (is.null(.mstyle$na)) { na <- crayon::reset } else { na <- .mstyle$na } if (is.null(.mstyle$text)) { text <- crayon::reset } else { text <- .mstyle$text } if (is.null(.mstyle$result)) { result <- crayon::reset } else { result <- .mstyle$result } if (is.null(.mstyle$stop)) { stop <- crayon::combine_styles(crayon::red, crayon::bold) } else { stop <- .mstyle$stop } if (is.null(.mstyle$warning)) { warning <- crayon::yellow } else { warning <- .mstyle$warning } if (is.null(.mstyle$message)) { message <- crayon::green } else { message <- .mstyle$message } if (is.null(.mstyle$verbose)) { verbose <- crayon::cyan } else { verbose <- .mstyle$verbose } if (is.null(.mstyle$legend)) { legend <- crayon::silver #legend <- crayon::make_style("gray90") } else { legend <- .mstyle$legend } } else { tmp <- function(...) paste0(...) section <- tmp header <- tmp body1 <- tmp body2 <- tmp na <- tmp text <- tmp result <- tmp stop <- tmp warning <- tmp message <- tmp verbose <- tmp legend <- tmp } return(list(section=section, header=header, body1=body1, body2=body2, na=na, text=text, result=result, stop=stop, warning=warning, message=message, verbose=verbose, legend=legend)) } .print.output <- function(x, mstyle) { if (missing(mstyle)) { for (i in seq_along(x)) { cat(x[i], "\n") } } else { for (i in seq_along(x)) { cat(mstyle(x[i]), "\n") } } } .is.even <- function(x) x %% 2 == 0 .print.table <- function(x, mstyle) { is.header <- !grepl(" [-0-9]", x) #is.header <- !grepl("^\\s*[0-9]", x) has.header <- any(is.header) for (i in seq_along(x)) { if (is.header[i]) { #x[i] <- trimws(x[i], which="right") x[i] <- mstyle$header(x[i]) } else { x[i] <- gsub("NA", mstyle$na("NA"), x[i], fixed=TRUE) if (.is.even(i-has.header)) { x[i] <- mstyle$body2(x[i]) } else { x[i] <- mstyle$body1(x[i]) } } cat(x[i], "\n") } } #.set.mstyle.1 <- str2lang(".mstyle <- list(section=make_style(\"gray90\")$bold, header=make_style(\"skyblue1\")$bold$underline, body=make_style(\"skyblue2\"), text=make_style(\"slateblue3\"), result=make_style(\"slateblue1\"))") #eval(metafor:::.set.mstyle.1) ############################################################################ .set.digits <- function(digits, dmiss) { res <- c(est=4, se=4, test=4, pval=4, ci=4, var=4, sevar=4, fit=4, het=4) if (exists(".digits")) { .digits <- get(".digits") if (is.null(names(.digits)) && length(.digits) == 1L) { # if .digits is a single unnamed scalar, set all digit values to that value res <- c(est=.digits, se=.digits, test=.digits, pval=.digits, ci=.digits, var=.digits, sevar=.digits, fit=.digits, het=.digits) } else if (any(names(.digits) != "") && any(names(.digits) == "")) { # if .digits has (at least) one unnamed element, use it to set all unnamed elements to that digits value pos <- pmatch(names(.digits), names(res)) res[c(na.omit(pos))] <- .digits[!is.na(pos)] otherval <- .digits[names(.digits) == ""][1] res[(1:9)[-c(na.omit(pos))]] <- otherval } else { pos <- pmatch(names(.digits), names(res)) res[c(na.omit(pos))] <- .digits[!is.na(pos)] } } if (!dmiss) { if (is.null(names(digits))) { res <- c(est=digits[[1]], se=digits[[1]], test=digits[[1]], pval=digits[[1]], ci=digits[[1]], var=digits[[1]], sevar=digits[[1]], fit=digits[[1]], het=digits[[1]]) } else { pos <- pmatch(names(digits), names(res)) res[c(na.omit(pos))] <- digits[!is.na(pos)] } } ### p-values are always given to at least 2 digits if (res["pval"] <= 1) res["pval"] <- 2 res } .get.digits <- function(digits, xdigits, dmiss) { res <- xdigits if (exists(".digits")) { .digits <- get(".digits") pos <- pmatch(names(.digits), names(res)) res[c(na.omit(pos))] <- .digits[!is.na(pos)] } if (!is.null(getmfopt("digits"))) { .digits <- getmfopt("digits") if (length(.digits) == 1L) .digits <- c(est=.digits[[1]], se=.digits[[1]], test=.digits[[1]], pval=.digits[[1]], ci=.digits[[1]], var=.digits[[1]], sevar=.digits[[1]], fit=.digits[[1]], het=.digits[[1]]) pos <- pmatch(names(.digits), names(res)) res[c(na.omit(pos))] <- .digits[!is.na(pos)] } if (!dmiss) { if (is.null(names(digits))) { res <- c(est=digits[[1]], se=digits[[1]], test=digits[[1]], pval=digits[[1]], ci=digits[[1]], var=digits[[1]], sevar=digits[[1]], fit=digits[[1]], het=digits[[1]]) } else { pos <- pmatch(names(digits), names(res)) res[c(na.omit(pos))] <- digits[!is.na(pos)] } } ### so we can still print objects created with older metafor versions (where xdigit is just an unnamed scalar) if (length(res) == 1L && is.null(names(res))) res <- c(est=res[[1]], se=res[[1]], test=res[[1]], pval=res[[1]], ci=res[[1]], var=res[[1]], sevar=res[[1]], fit=res[[1]], het=res[[1]]) ### p-values are always given to at least 2 digits if (!is.null(res["pval"]) && res["pval"] <= 1) res["pval"] <- 2 res } ############################################################################ ### check if x is logical and TRUE/FALSE (NAs and NULL always evaluate as FALSE) .isTRUE <- function(x) !is.null(x) && is.logical(x) && !is.na(x) && x .isFALSE <- function(x) !is.null(x) && is.logical(x) && !is.na(x) && !x # not sure anymore why I implemented these; c(isTRUE(NULL), isTRUE(NA), isFALSE(NULL), isFALSE(NA)) are all FALSE ############################################################################ ### shorten a character vector so that elements remain distinguishable .shorten <- function(x, minlen) { y <- x x <- c(na.omit(x)) n <- length(unique(x)) maxlen <- max(nchar(unique(x))) for (l in seq_len(maxlen)) { tab <- table(x, substr(x, 1, l)) if (nrow(tab) == n && ncol(tab) == n && sum(tab[upper.tri(tab)]) == 0 && sum(tab[lower.tri(tab)]) == 0) break } if (!missing(minlen) && l < minlen) { if (minlen > maxlen) minlen <- maxlen l <- minlen } return(substr(y, 1, l)) } ############################################################################ ### simplified version of what mvtnorm::rmvnorm() does .mvrnorm <- function(n, mu, Sigma) { p <- nrow(Sigma) eS <- eigen(Sigma, symmetric = TRUE) eval <- eS$values evec <- eS$vectors Y <- matrix(rnorm(p * n), nrow = n, byrow = TRUE) %*% t(evec %*% (t(evec) * sqrt(pmax(eval, 0)))) Y <- sweep(Y, 2, mu, "+") return(Y) } ############################################################################ ### check subset argument (if logical, make sure it's of the right length and set NAs to FALSE; if ### numeric, remove NAs and 0's and check that values are not beyond k) .chksubset <- function(x, k, stoponk0=TRUE) { if (is.null(x)) # if x is NULL, return x (i.e., NULL) return(x) mstyle <- .get.mstyle() argname <- deparse(substitute(x)) if (length(x) == 0L) stop(mstyle$stop(paste0("Argument '", argname, "' is of length 0.")), call.=FALSE) if (is.character(x)) stop(mstyle$stop(paste0("Argument '", argname, "' is not a logical or numeric vector.")), call.=FALSE) if (is.logical(x)) { if (length(x) != k) stop(mstyle$stop(paste0("Length of the '", argname, "' argument (", length(x), ") is not of length k = ", k, ".")), call.=FALSE) #x <- x[seq_len(k)] # keep only elements 1:k from x if (anyNA(x)) # if x includes any NA elements x[is.na(x)] <- FALSE # set NA elements to FALSE } if (is.numeric(x)) { if (anyNA(x)) # if x includes any NA elements x <- x[!is.na(x)] # remove them x <- as.integer(round(x)) x <- x[x != 0L] # also remove any 0's if (any(x > 0L) && any(x < 0L)) stop(mstyle$stop(paste0("Cannot mix positive and negative values in '", argname, "' argument.")), call.=FALSE) if (all(x > 0L)) { if (any(x > k)) stop(mstyle$stop(paste0("Argument '", argname, "' includes values larger than k = ", k, ".")), call.=FALSE) x <- is.element(seq_len(k), x) } else { if (any(x < -k)) stop(mstyle$stop(paste0("Argument '", argname, "' includes values larger than k = ", k, ".")), call.=FALSE) x <- !is.element(seq_len(k), abs(x)) } } if (stoponk0 && !any(x)) stop(mstyle$stop(paste0("Stopped because k = 0 after subsetting.")), call.=FALSE) return(x) } ### get subset function that works for matrices and data frames (selecting rows by default but rows ### and columns when col=TRUE) and vectors and also checks that x is of the same length as subset .getsubset <- function(x, subset, col=FALSE, drop=FALSE) { if (is.null(x) || is.null(subset)) # if x or subset is NULL, return x return(x) mstyle <- .get.mstyle() xname <- deparse(substitute(x)) k <- length(subset) if (.is.matrix(x) || is.data.frame(x)) { if (nrow(x) != k) stop(mstyle$stop(paste0("Element '", xname, "' is not of length ", k, ".")), call.=FALSE) if (col) { x <- x[subset,subset,drop=drop] } else { x <- x[subset,,drop=drop] } } else { if (length(x) != k) stop(mstyle$stop(paste0("Element '", xname, "' is not of length ", k, ".")), call.=FALSE) x <- x[subset] } return(x) } ############################################################################ # function to compute a weighted mean (this one works a bit different than # stats:::weighted.mean.default) .wmean <- function (x, w, na.rm=FALSE) { if (na.rm) { i <- !(is.na(x) | is.na(w)) # only include x if x and w are not missing x <- x[i] w <- w[i] } sum(x*w) / sum(w) } ############################################################################ .chkopt <- function(optimizer, optcontrol, ineq=FALSE) { mstyle <- .get.mstyle() ### set NLOPT_LN_BOBYQA as the default algorithm for the nloptr optimizer when ineq=FALSE ### and otherwise use NLOPT_LN_COBYLA to allow for nonlinear inequality constraints ### and by default use a relative convergence criterion of 1e-8 on the function value if (optimizer == "nloptr" && !is.element("algorithm", names(optcontrol))) { if (ineq) { optcontrol$algorithm <- "NLOPT_LN_COBYLA" } else { optcontrol$algorithm <- "NLOPT_LN_BOBYQA" } } if (optimizer == "nloptr" && !is.element("ftol_rel", names(optcontrol))) optcontrol$ftol_rel <- 1e-8 ### for mads, set trace=FALSE and tol=1e-6 by default if (optimizer == "mads" && !is.element("trace", names(optcontrol))) optcontrol$trace <- FALSE if (optimizer == "mads" && !is.element("tol", names(optcontrol))) optcontrol$tol <- 1e-6 ### for subplex, set reltol=1e-8 by default (the default in subplex() is .Machine$double.eps) if (optimizer == "subplex" && !is.element("reltol", names(optcontrol))) optcontrol$reltol <- 1e-8 ### for BBoptim, set trace=FALSE by default if (optimizer == "BBoptim" && !is.element("trace", names(optcontrol))) optcontrol$trace <- FALSE ### for solnp, set trace=FALSE by default if (optimizer == "solnp" && !is.element("trace", names(optcontrol))) optcontrol$trace <- FALSE ### check that the required packages are installed if (is.element(optimizer, c("uobyqa","newuoa","bobyqa"))) { if (!requireNamespace("minqa", quietly=TRUE)) stop(mstyle$stop("Please install the 'minqa' package to use this optimizer."), call.=FALSE) } if (is.element(optimizer, c("nloptr","ucminf","lbfgsb3c","subplex","optimParallel"))) { if (!requireNamespace(optimizer, quietly=TRUE)) stop(mstyle$stop(paste0("Please install the '", optimizer, "' package to use this optimizer.")), call.=FALSE) } if (is.element(optimizer, c("hjk","nmk","mads"))) { if (!requireNamespace("dfoptim", quietly=TRUE)) stop(mstyle$stop("Please install the 'dfoptim' package to use this optimizer."), call.=FALSE) } if (optimizer == "BBoptim") { if (!requireNamespace("BB", quietly=TRUE)) stop(mstyle$stop("Please install the 'BB' package to use this optimizer."), call.=FALSE) } if (optimizer == "solnp") { if (!requireNamespace("Rsolnp", quietly=TRUE)) stop(mstyle$stop("Please install the 'Rsolnp' package to use this optimizer."), call.=FALSE) } if (optimizer == "constrOptim.nl") { if (!requireNamespace("alabama", quietly=TRUE)) stop(mstyle$stop("Please install the 'alabama' package to use this optimizer."), call.=FALSE) } if (is.element(optimizer, c("Rcgmin","Rvmmin"))) { if (!requireNamespace("optimx", quietly=TRUE)) stop(mstyle$stop(paste0("Please install the 'optimx' package to use this optimizer.")), call.=FALSE) } ######################################################################### if (is.element(optimizer, c("optim","constrOptim"))) { par.arg <- "par" ctrl.arg <- ", control=optcontrol" } if (optimizer == "nlminb") { par.arg <- "start" ctrl.arg <- ", control=optcontrol" } if (is.element(optimizer, c("uobyqa","newuoa","bobyqa"))) { par.arg <- "par" optimizer <- paste0("minqa::", optimizer) # need to use this since loading nloptr masks bobyqa() and newuoa() functions ctrl.arg <- ", control=optcontrol" } if (optimizer == "nloptr") { par.arg <- "x0" optimizer <- paste0("nloptr::nloptr") # need to use this due to requireNamespace() ctrl.arg <- ", opts=optcontrol" } if (optimizer == "nlm") { par.arg <- "p" # because of this, must use argument name pX for p (number of columns in X matrix) ctrl.arg <- paste(names(optcontrol), unlist(optcontrol), sep="=", collapse=", ") if (nchar(ctrl.arg) != 0L) ctrl.arg <- paste0(", ", ctrl.arg) } if (is.element(optimizer, c("hjk","nmk","mads"))) { par.arg <- "par" optimizer <- paste0("dfoptim::", optimizer) # need to use this so that the optimizers can be found ctrl.arg <- ", control=optcontrol" } if (is.element(optimizer, c("ucminf","lbfgsb3c","subplex"))) { par.arg <- "par" optimizer <- paste0(optimizer, "::", optimizer) # need to use this due to requireNamespace() ctrl.arg <- ", control=optcontrol" } if (optimizer == "BBoptim") { par.arg <- "par" optimizer <- "BB::BBoptim" ctrl.arg <- ", quiet=TRUE, control=optcontrol" } if (optimizer == "solnp") { par.arg <- "pars" optimizer <- "Rsolnp::solnp" ctrl.arg <- ", control=optcontrol" } if (optimizer == "constrOptim.nl") { par.arg <- "par" optimizer <- "alabama::constrOptim.nl" if ("control.outer" %in% names(optcontrol)) { # can specify 'control.outer' to be passed to constrOptim.nl(), but when using # the 'method' argument, must escape " or use ' for this to work; for example: # control=list(optimizer="constrOptim.nl", control.outer=list(method="'Nelder-Mead'")) control.outer <- paste0("control.outer=list(", paste(names(optcontrol$control.outer), unlist(optcontrol$control.outer), sep="=", collapse=", "), ")") ctrl.arg <- paste0(", control.optim=optcontrol, ", control.outer) optcontrol$control.outer <- NULL } else { ctrl.arg <- ", control.optim=optcontrol, control.outer=list(trace=FALSE)" } } if (optimizer == "Rcgmin") { par.arg <- "par" optimizer <- "optimx::Rcgmin" ctrl.arg <- ", gr='grnd', control=optcontrol" #ctrl.arg <- ", control=optcontrol" } if (optimizer == "Rvmmin") { par.arg <- "par" optimizer <- "optimx::Rvmmin" ctrl.arg <- ", gr='grnd', control=optcontrol" #ctrl.arg <- ", control=optcontrol" } if (optimizer == "optimParallel") { par.arg <- "par" optimizer <- "optimParallel::optimParallel" ctrl.arg <- ", control=optcontrol, parallel=parallel" } return(list(optimizer=optimizer, optcontrol=optcontrol, par.arg=par.arg, ctrl.arg=ctrl.arg)) } .chkconv <- function(optimizer, opt.res, optcontrol, fun, verbose) { mstyle <- .get.mstyle() if (optimizer == "optimParallel::optimParallel" && verbose) { tmp <- capture.output(print(opt.res$loginfo)) .print.output(tmp, mstyle$verbose) } ### convergence checks if (inherits(opt.res, "try-error")) stop(mstyle$stop(paste0("Error during the optimization. Use verbose=TRUE and see\n help(", fun, ") for more details on the optimization routines.")), call.=FALSE) if (optimizer == "lbfgsb3c::lbfgsb3c" && is.null(opt.res$convergence)) # special provision for lbfgsb3c in case 'convergence' is missing opt.res$convergence <- -99 if (is.element(optimizer, c("optim","constrOptim","nlminb","dfoptim::hjk","dfoptim::nmk","lbfgsb3c::lbfgsb3c","subplex::subplex","BB::BBoptim","Rsolnp::solnp","alabama::constrOptim.nl","optimx::Rcgmin","optimx:Rvmmin","optimParallel::optimParallel")) && opt.res$convergence != 0) stop(mstyle$stop(paste0("Optimizer (", optimizer, ") did not achieve convergence (convergence = ", opt.res$convergence, ").")), call.=FALSE) if (is.element(optimizer, c("dfoptim::mads")) && opt.res$convergence > optcontrol$tol) stop(mstyle$stop(paste0("Optimizer (", optimizer, ") did not achieve convergence (convergence = ", opt.res$convergence, ").")), call.=FALSE) if (is.element(optimizer, c("minqa::uobyqa","minqa::newuoa","minqa::bobyqa")) && opt.res$ierr != 0) stop(mstyle$stop(paste0("Optimizer (", optimizer, ") did not achieve convergence (ierr = ", opt.res$ierr, ").")), call.=FALSE) if (optimizer=="nloptr::nloptr" && !(opt.res$status >= 1 && opt.res$status <= 4)) stop(mstyle$stop(paste0("Optimizer (", optimizer, ") did not achieve convergence (status = ", opt.res$status, ").")), call.=FALSE) if (optimizer=="ucminf::ucminf" && !(opt.res$convergence == 1 || opt.res$convergence == 2)) stop(mstyle$stop(paste0("Optimizer (", optimizer, ") did not achieve convergence (convergence = ", opt.res$convergence, ").")), call.=FALSE) if (verbose > 2) { cat("\n") tmp <- capture.output(print(opt.res)) .print.output(tmp, mstyle$verbose) } ### copy estimated values to 'par' if (optimizer=="nloptr::nloptr") opt.res$par <- opt.res$solution if (optimizer=="nlm") opt.res$par <- opt.res$estimate if (optimizer=="Rsolnp::solnp") opt.res$par <- opt.res$pars return(opt.res$par) } ############################################################################ .coltail <- function(h, val, tail="upper", mult=1, col, border, freq, ...) { h$counts <- h$counts * mult h$density <- h$density * mult if (tail == "lower") { above <- which(h$breaks > val) if (length(above) > 0L) { pos <- above[1] h$breaks[pos] <- val } sel <- h$breaks <= val if (sum(sel) >= 2L) { h$breaks <- h$breaks[sel] h$counts <- h$counts[sel[-1]] h$density <- h$density[sel[-1]] h$mids <- h$mids[sel[-1]] lines(h, col=col, border=border, freq=freq, ...) } } else { below <- which(h$breaks < val) if (length(below) > 0L) { pos <- below[length(below)] h$breaks[pos] <- val } sel <- h$breaks >= val if (sum(sel) >= 2L) { len <- length(below) h$breaks <- h$breaks[sel] h$counts <- h$counts[sel[-len]] h$density <- h$density[sel[-len]] h$mids <- h$mids[sel[-len]] lines(h, col=col, border=border, freq=freq, ...) } } } ############################################################################ # theme="default" - uses the default par() of the plotting device # theme="light" - forces par(fg="black", bg="white", ...) # theme="dark" - forces par(fg="gray95", bg="gray10", ...) # theme="auto" - in RStudio, picks fg/bg based on theme that is set (outside RStudio, same as "default") # theme="custom" - uses getmfopt("fg") and getmfopt("bg") .start.plot <- function(x=TRUE) { if (!x) return() themeopt <- getmfopt("theme", default="default")[[1]] themeopt <- sub("2", "", themeopt, fixed=TRUE) if (!is.element(themeopt, c("default", "light", "dark", "auto", "custom"))) themeopt <- "default" if (exists(".darkplots")) themeopt <- "dark" if (isTRUE(themeopt == "light")) { fg <- "black" bg <- "white" #fg <- "gray5" #bg <- "gray95" } if (isTRUE(themeopt == "dark")) { fg <- "gray95" bg <- "gray10" } if (isTRUE(themeopt == "auto")) { rsapi <- try(rstudioapi::isAvailable(), silent=TRUE) if (inherits(rsapi, "try-error") || isFALSE(rsapi)) { themeopt <- "default" } else { fg <- .rsapicol2rgb(rstudioapi::getThemeInfo()$foreground) bg <- .rsapicol2rgb(rstudioapi::getThemeInfo()$background) } } if (isTRUE(themeopt == "custom")) { fgopt <- getmfopt("fg") bgopt <- getmfopt("bg") if (is.null(fgopt) || is.null(bgopt)) { themeopt <- "default" } else { fg <- fgopt bg <- bgopt } } if (themeopt != "default" && isFALSE(par("new"))) par(fg=fg, bg=bg, col=fg, col.axis=fg, col.lab=fg, col.main=fg, col.sub=fg) invisible() } # convert the string "rgb(val1, val2, val3)" into rgb(val1, val2, val3, maxColorValue=255) .rsapicol2rgb <- function(col) { col <- strsplit(col, ",")[[1]] col <- trimws(col) col1 <- as.numeric(sub("rgb(", "", col[1], fixed=TRUE)) col2 <- as.numeric(col[2]) col3 <- as.numeric(trimws(sub(")", "", col[3], fixed=TRUE))) col <- rgb(col1, col2, col3, maxColorValue=255) return(col) } .is.dark <- function() { rgb <- col2rgb(par("bg")) res <- sum(rgb) <= 384 # note: sum(col2rgb(rgb(0.5,0.5,0.5))) == 384 return(res) } .coladj <- function(col, dark, light) { themeopt <- getmfopt("theme", default="default") if (length(col) == 2L && substr(themeopt, nchar(themeopt), nchar(themeopt)) == "2") { pos <- 2 if (length(dark) == 1L) dark <- c(dark, ifelse(dark > 0, dark-1, dark+1)) if (length(light) == 1L) light <- c(light, ifelse(light > 0, light-1, light+1)) } else { pos <- 1 } col <- c(col2rgb(col[[pos]])) if (.is.dark()) { col <- col + round(dark*255)[[pos]] } else { col <- col + round(light*255)[[pos]] } col[col < 0] <- 0 col[col > 255] <- 255 col <- rgb(col[1], col[2], col[3], maxColorValue=255) return(col) } ############################################################################ .chkpd <- function(x, tol=.Machine$double.eps, corr=FALSE, nearpd=FALSE) { if (any(eigen(x, symmetric=TRUE, only.values=TRUE)$values <= tol)) { ispd <- FALSE if (nearpd) { tmp <- nearPD(x, corr=corr) x <- as.matrix(tmp$mat) if (tmp$converged) ispd <- TRUE } } else { ispd <- TRUE } if (nearpd) { return(list(ispd=ispd, x=x)) } else { return(ispd) } } ############################################################################ metafor/R/print.profile.rma.r0000644000176200001440000000070214515471024015646 0ustar liggesusersprint.profile.rma <- function(x, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="profile.rma") ######################################################################### if (x$comps == 1) { res <- data.frame(x[1], x[2]) print(res) } else { x$comps <- NULL print(lapply(x, function(x) data.frame(x[1], x[2]))) } } metafor/R/rma.mv.r0000644000176200001440000032251214722345330013503 0ustar liggesusers# fixed/random/mixed-effects multivariate/multilevel model with: # - possibly one or multiple random intercepts (sigma2) with potentially known correlation matrices # - possibly correlated random effects for arms/groups/levels within studies (tau2 and rho for 1st term, gamma2 and phi for 2nd term) # model also allows for correlated sampling errors via non-diagonal V matrix # V = variance-covariance matrix of the sampling errors # sigma2 = (preset) value(s) for the variance of the random intercept(s) # tau2 = (preset) value(s) for the variance of the random effects # rho = (preset) value(s) for the correlation(s) between random effects # gamma2 = (preset) value(s) for the variance of the random effects # phi = (preset) value(s) for the correlation(s) between random effects # structures when there is an '~ inner | outer' term in the random argument: # - CS (compound symmetry) # - HCS (heteroscedastic compound symmetry) # - UN (general positive-definite matrix with no structure) # - UNR (general positive-definite correlation matrix with a single tau2/gamma2 value) # - AR (AR1 structure with a single tau2/gamma2 value and autocorrelation rho/phi) # - HAR (heteroscedastic AR1 structure with multiple tau2/gamma2 values and autocorrelation rho/phi) # - CAR (continuous time AR1 structure) # - ID (same as CS but with rho/phi=0) # - DIAG (same as HCS but with rho/phi=0) # - SPEXP/SPGAU/SPLIN/SPRAT/SPSPH (spatial structures: exponential, gaussian, linear, rational quadratic, spherical) # - GEN (general positive-definite matrix for an arbitrary number of predictors) # - PHYBM/PHYPL/PHYPD (phylogenetic structures: Brownian motion, Pagel's lambda, Pagel's delta) rma.mv <- function(yi, V, W, mods, data, slab, subset, random, struct="CS", intercept=TRUE, method="REML", test="z", dfs="residual", level=95, btt, R, Rscale="cor", sigma2, tau2, rho, gamma2, phi, cvvc=FALSE, sparse=FALSE, verbose=FALSE, digits, control, ...) { # add ni as argument in the future ######################################################################### ###### setup ### check argument specifications mstyle <- .get.mstyle() if (!is.element(method, c("FE","EE","CE","ML","REML"))) stop(mstyle$stop("Unknown 'method' specified.")) if (any(!is.element(struct, c("CS","HCS","UN","AR","HAR","CAR","ID","DIAG","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","GEN","GDIAG")))) # "UNR", "PHYBM","PHYPL","PHYPD")))) stop(mstyle$stop("Unknown 'struct' specified.")) if (length(struct) == 1L) struct <- c(struct, struct) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(random)) random <- NULL if (missing(R)) R <- NULL if (missing(sigma2)) sigma2 <- NULL if (missing(tau2)) tau2 <- NULL if (missing(rho)) rho <- NULL if (missing(gamma2)) gamma2 <- NULL if (missing(phi)) phi <- NULL if (missing(control)) control <- list() ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } time.start <- proc.time() ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("tdist", "outlist", "time", "dist", "abbrev", "restart", "optbeta", "beta", "vccon", "retopt", "lambda")) if (is.null(ddd$lambda)) { lambda <- 0 } else { lambda <- ddd$lambda } ### handle 'tdist' argument from ... (note: overrides test argument) if (.isFALSE(ddd$tdist)) test <- "z" if (.isTRUE(ddd$tdist)) test <- "t" test <- tolower(test) if (!is.element(test, c("z", "t", "knha", "hksj", "adhoc"))) stop(mstyle$stop("Invalid option selected for 'test' argument.")) if (test == "hksj") test <- "knha" if (is.character(dfs)) dfs <- match.arg(dfs, c("residual", "contain")) if (test == "z") { # if test="z", switch to test="t" if dfs are numeric or dfs="contain" if (is.numeric(dfs)) { test <- "t" } else { if (dfs == "contain") test <- "t" } } ### handle Rscale argument (either character, logical, or integer) if (is.character(Rscale)) Rscale <- match.arg(Rscale, c("none", "cor", "cor0", "cov0")) if (is.logical(Rscale)) Rscale <- ifelse(Rscale, "cor", "none") if (is.numeric(Rscale)) { Rscale <- round(Rscale) if (Rscale > 3 | Rscale < 0) stop(mstyle$stop("Unknown 'Rscale' value specified.")) Rscale <- switch(as.character(Rscale), "0"="none", "1"="cor", "2"="cor0", "3"="cov0") } ### handle 'dist' argument from ... if (is.null(ddd$dist)) { ddd$dist <- list("euclidean", "euclidean") } else { if (is.data.frame(ddd$dist) || .is.matrix(ddd$dist)) ddd$dist <- list(ddd$dist) if (!inherits(ddd$dist, "list")) ddd$dist <- as.list(ddd$dist) if (length(ddd$dist) == 1L) ddd$dist <- c(ddd$dist, ddd$dist) dist.methods <- c("euclidean", "maximum", "manhattan", "gcd") for (j in 1:2) { if (is.data.frame(ddd$dist[[j]])) ddd$dist[[j]] <- as.matrix(ddd$dist[[j]]) if (!is.function(ddd$dist[[j]]) && !.is.matrix(ddd$dist[[j]])) { ddd$dist[[j]] <- charmatch(ddd$dist[[j]], dist.methods, nomatch = 0) if (ddd$dist[[j]] == 0) { stop(mstyle$stop("Argument 'dist' must be one of 'euclidean', 'maximum', 'manhattan', or 'gcd'.")) } else { ddd$dist[[j]] <- dist.methods[ddd$dist[[j]]] } } } if (any(ddd$dist == "gcd")) { if (!requireNamespace("sp", quietly=TRUE)) stop(mstyle$stop("Please install the 'sp' package to compute great-circle distances.")) } } if (is.null(ddd$vccon)) { vccon <- NULL } else { vccon <- ddd$vccon sigma2 <- .chkvccon(vccon$sigma2, sigma2) tau2 <- .chkvccon(vccon$tau2, tau2) rho <- .chkvccon(vccon$rho, rho) gamma2 <- .chkvccon(vccon$gamma2, gamma2) phi <- .chkvccon(vccon$phi, phi) } ### set defaults for formulas formula.yi <- NULL formula.mods <- NULL ### in case user specified v (instead of V), verbose is set to v, which is non-sensical ### - if v is set to the name of a variable in 'data', it won't be found; can check for ### this with try() and inherits(verbose, "try-error") ### - if v is set to vi or var (or anything else that might be interpreted as a function), ### then can catch this by checking if verbose is a function verbose <- try(verbose, silent=TRUE) if (inherits(verbose, "try-error") || is.function(verbose) || length(verbose) != 1L || !(is.logical(verbose) || is.numeric(verbose))) stop(mstyle$stop("Argument 'verbose' must be a scalar (logical or numeric/integer).")) ### set defaults for control parameters (part 1) con <- list(verbose = FALSE, optimizer = "nlminb", # optimizer to use ("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","Rcgmin","Rvmmin") optmethod = "BFGS", # argument 'method' for optim() ("Nelder-Mead" and "BFGS" are sensible options) parallel = list(), # parallel argument for optimParallel() (note: 'cl' argument in parallel is not passed; this is directly specified via 'cl') cl = NULL, # arguments for optimParallel() ncpus = 1L, # arguments for optimParallel() REMLf = TRUE, # full REML likelihood (including all constants) evtol = 1e-07, # lower bound for eigenvalues to determine if model matrix is positive definite nearpd = FALSE, # to force G and H matrix to become positive definite hessianCtrl = list(r=8), # arguments passed on to 'method.args' of hessian() hesstol = .Machine$double.eps^0.5, # threshold for detecting fixed elements in Hessian hesspack = "numDeriv", # package for computing the Hessian (numDeriv or pracma) check.k.gtr.1 = TRUE) # check that s.nlevels > 1 and g.levels.k > 1 ### replace defaults with any user-defined values con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] if (verbose) con$verbose <- verbose verbose <- con$verbose ### set options(warn=1) if verbose > 2 if (verbose > 2) { opwarn <- options(warn=1) on.exit(options(warn=opwarn$warn), add=TRUE) } ######################################################################### if (verbose > 1) .space() if (verbose > 1) message(mstyle$message("Extracting yi/V values ...")) ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() ### extract yi, V, W, ni, slab, subset, and mods values, possibly from the data frame specified via data (arguments not specified are NULL) yi <- .getx("yi", mf=mf, data=data) V <- .getx("V", mf=mf, data=data) W <- .getx("W", mf=mf, data=data) ni <- .getx("ni", mf=mf, data=data) # not yet possible to specify this slab <- .getx("slab", mf=mf, data=data) subset <- .getx("subset", mf=mf, data=data) mods <- .getx("mods", mf=mf, data=data) ### if yi is a formula, extract yi and X (this overrides anything specified via the mods argument further below) if (inherits(yi, "formula")) { formula.yi <- yi formula.mods <- formula.yi[-2] options(na.action = "na.pass") # set na.action to na.pass, so that NAs are not filtered out (we'll do that later) mods <- model.matrix(yi, data=data) # extract model matrix (now mods is no longer a formula, so [a] further below is skipped) attr(mods, "assign") <- NULL # strip assign attribute (not needed at the moment) attr(mods, "contrasts") <- NULL # strip contrasts attribute (not needed at the moment) yi <- model.response(model.frame(yi, data=data)) # extract yi values from model frame options(na.action = na.act) # set na.action back to na.act names(yi) <- NULL # strip names (1:k) from yi (so res$yi is the same whether yi is a formula or not) intercept <- FALSE # set to FALSE since formula now controls whether the intercept is included or not } # note: code further below ([b]) actually checks whether intercept is included or not ### in case user passed a data frame to yi, convert it to a vector (if possible) if (is.data.frame(yi)) { if (ncol(yi) == 1L) { yi <- yi[[1]] } else { stop(mstyle$stop("The object/variable specified for the 'yi' argument is a data frame with multiple columns.")) } } ### in case user passed a matrix to yi, convert it to a vector (if possible) if (.is.matrix(yi)) { if (nrow(yi) == 1L || ncol(yi) == 1L) { yi <- as.vector(yi) } else { stop(mstyle$stop("The object/variable specified for the 'yi' argument is a matrix with multiple rows/columns.")) } } ### check if yi is an array if (inherits(yi, "array")) stop(mstyle$stop("The object/variable specified for the 'yi' argument is an array.")) ### check if yi is numeric if (!is.numeric(yi)) stop(mstyle$stop("The object/variable specified for the 'yi' argument is not numeric.")) ### number of outcomes before subsetting k <- length(yi) k.all <- k ### set default measure argument measure <- "GEN" if (!is.null(attr(yi, "measure"))) # take 'measure' from yi (if it is there) measure <- attr(yi, "measure") ### add measure attribute (back) to the yi vector attr(yi, "measure") <- measure ### some checks on V (and turn V into a diagonal matrix if it is a column/row vector) if (is.null(V)) stop(mstyle$stop("Must specify the 'V' argument.")) ### catch cases where 'V' is the utils::vi() function if (identical(V, utils::vi)) stop(mstyle$stop("Variable specified for 'V' argument cannot be found.")) if (is.list(V) && !is.data.frame(V)) { ### list elements may be data frames (or scalars), so coerce to matrices V <- lapply(V, as.matrix) ### check that all elements are square if (any(!sapply(V, .is.square))) stop(mstyle$stop("All list elements in 'V' must be square matrices.")) ### turn list into block-diagonal (sparse) matrix if (sparse) { V <- bdiag(V) } else { V <- bldiag(V) } } ### check if user constrained V to 0 (can skip a lot of the steps below then) if ((.is.vector(V) && length(V) == 1L && V == 0) || (.is.vector(V) && length(V) == k && !anyNA(V) && all(V == 0))) { V0 <- TRUE } else { V0 <- FALSE } ### turn V into a diagonal matrix if it is a column/row vector ### note: if V is a scalar (e.g., V=0), then this will turn V into a kxk ### matrix with the value of V along the diagonal if (V0 || .is.vector(V) || nrow(V) == 1L || ncol(V) == 1L) { if (sparse) { V <- Diagonal(k, as.vector(V)) } else { V <- diag(as.vector(V), nrow=k, ncol=k) } } ### turn V into a matrix if it is a data frame if (is.data.frame(V)) V <- as.matrix(V) ### remove row and column names (important for isSymmetric() function) ### (but only do this if V has row/column names to avoid making an unnecessary copy) if (!is.null(dimnames(V))) V <- unname(V) ### check whether V is square and symmetric (can skip when V0) if (!V0 && !.is.square(V)) stop(mstyle$stop("'V' must be a square matrix.")) if (!V0 && !isSymmetric(V)) # note: copy of V is made when doing this stop(mstyle$stop("'V' must be a symmetric matrix.")) ### check length of yi and V if (nrow(V) != k) stop(mstyle$stop(paste0("Length of 'yi' (", k, ") and the length/dimensions of 'V' (", nrow(V), ") are not the same."))) ### force V to be sparse when sparse=TRUE (and V is not yet sparse) if (sparse && inherits(V, "matrix")) V <- Matrix(V, sparse=TRUE) ### check if V is numeric (but only for 'regular' matrices, since this is always FALSE for sparse matrices) if (inherits(V, "matrix") && !is.numeric(V)) stop(mstyle$stop("The object/variable specified for the 'V' argument is not numeric.")) ### process W if it was specified (turned into matrix called 'A') if (!is.null(W)) { ### turn W into a diagonal matrix if it is a column/row vector ### in general, turn W into A (arbitrary weight matrix) if (.is.vector(W) || nrow(W) == 1L || ncol(W) == 1L) { W <- as.vector(W) ### allow easy setting of W to a single value W <- .expand1(W, k) A <- diag(W, nrow=length(W), ncol=length(W)) } else { A <- W } if (is.data.frame(A)) A <- as.matrix(A) ### remove row and column names (important for isSymmetric() function) ### (but only do this if A has row/column names to avoid making an unnecessary copy) if (!is.null(dimnames(A))) A <- unname(A) ### check whether A is square and symmetric if (!.is.square(A)) stop(mstyle$stop("'W' must be a square matrix.")) if (!isSymmetric(A)) stop(mstyle$stop("'W' must be a symmetric matrix.")) ### check length of yi and A if (nrow(A) != k) stop(mstyle$stop(paste0("Length of 'yi' (", k, ") and length/dimensions of 'W' (", nrow(A), ") are not the same."))) ### force A to be sparse when sparse=TRUE (and A is not yet sparse) if (sparse && inherits(A, "matrix")) A <- Matrix(A, sparse=TRUE) if (inherits(A, "matrix") && !is.numeric(A)) stop(mstyle$stop("The object/variable specified for the 'W' argument is not numeric.")) } else { A <- NULL } ### if ni has not been specified (and hence is NULL), try to get it from the attributes of yi ### note: currently ni argument removed, so this is the only way to pass ni to the function if (is.null(ni)) ni <- attr(yi, "ni") ### check length of yi and ni ### if there is a mismatch, then ni cannot be trusted, so set it to NULL if (!is.null(ni) && length(ni) != k) ni <- NULL ### if ni is now available, add it (back) as an attribute to yi ### this is currently pointless, but may be useful if function has an ni argument #if (!is.null(ni)) # attr(yi, "ni") <- ni ######################################################################### if (verbose > 1) message(mstyle$message("Creating model matrix ...")) ### convert mods formula to X matrix and set intercept equal to FALSE ### skipped if formula has already been specified via yi argument, since mods is then no longer a formula (see [a]) if (inherits(mods, "formula")) { formula.mods <- mods if (isTRUE(all.equal(formula.mods, ~ 1))) { # needed so 'mods = ~ 1' without 'data' specified works mods <- matrix(1, nrow=k, ncol=1) intercept <- FALSE } else { options(na.action = "na.pass") # set na.action to na.pass, so that NAs are not filtered out (we'll do that later) mods <- model.matrix(mods, data=data) # extract model matrix attr(mods, "assign") <- NULL # strip assign attribute (not needed at the moment) attr(mods, "contrasts") <- NULL # strip contrasts attribute (not needed at the moment) options(na.action = na.act) # set na.action back to na.act intercept <- FALSE # set to FALSE since formula now controls whether the intercept is included or not } # note: code further below ([b]) actually checks whether intercept is included or not } ### turn a vector for mods into a column vector if (.is.vector(mods)) mods <- cbind(mods) ### turn a mods data frame into a matrix if (is.data.frame(mods)) mods <- as.matrix(mods) ### check if model matrix contains character variables if (is.character(mods)) stop(mstyle$stop("Model matrix contains character variables.")) ### check if mods matrix has the right number of rows if (!is.null(mods) && nrow(mods) != k) stop(mstyle$stop(paste0("Number of rows in the model matrix (", nrow(mods), ") do not match the length of the outcome vector (", k, ")."))) ######################################################################### ######################################################################### ######################################################################### ### process random argument if (!is.element(method, c("FE","EE","CE")) && !is.null(random)) { if (verbose > 1) message(mstyle$message("Processing 'random' argument ...")) ### make sure random argument is always a list (so lapply() below works) if (!is.list(random)) random <- list(random) ### check that all elements are formulas if (any(sapply(random, function(x) !inherits(x, "formula")))) stop(mstyle$stop("All elements of 'random' must be formulas.")) ### check that all formulas have a vertical bar has.vbar <- sapply(random, function(f) grepl("|", paste0(f, collapse=""), fixed=TRUE)) if (any(!has.vbar)) stop(mstyle$stop("All formulas in 'random' must contain a grouping variable after the | symbol.")) ### check if any formula have a $ has.dollar <- sapply(random, function(f) grepl("$", paste0(f, collapse=""), fixed=TRUE)) if (any(has.dollar)) stop(mstyle$stop("Cannot use '$' notation in formulas in the 'random' argument (use the 'data' argument instead).")) ### check if any formula have a : has.colon <- sapply(random, function(f) grepl(":", paste0(f, collapse=""), fixed=TRUE)) if (any(has.colon)) stop(mstyle$stop("Cannot use ':' notation in formulas in the 'random' argument (use 'interaction()' instead).")) ### check if any formula have a %in% has.in <- sapply(random, function(f) grepl("%in%", paste0(f, collapse=""), fixed=TRUE)) if (any(has.in)) stop(mstyle$stop("Cannot use '%in%' notation in formulas in the 'random' argument (use 'interaction()' instead).")) ### check which formulas have a || has.dblvbar <- sapply(random, function(f) grepl("||", paste0(f, collapse=""), fixed=TRUE)) ### replace || with | random <- lapply(random, function(f) { if (grepl("||", paste0(f, collapse=""), fixed=TRUE)) { f <- paste0(f, collapse="") f <- gsub("||", "|", f, fixed=TRUE) f <- as.formula(f) } return(f) }) ### check which formulas in random are '~ inner | outer' formulas formulas <- list(NULL, NULL) split.formulas <- sapply(random, function(f) strsplit(paste0(f, collapse=""), " | ", fixed=TRUE)) is.inner.outer <- sapply(split.formulas, function(f) f[1] != "~1") ### make sure that there are only up to two '~ inner | outer' formulas if (sum(is.inner.outer) > 2) stop(mstyle$stop("Only up to two '~ inner | outer' formulas allowed in the 'random' argument.")) ### get '~ inner | outer' formulas if (any(is.inner.outer)) formulas[[1]] <- random[is.inner.outer][1][[1]] if (sum(is.inner.outer) == 2) formulas[[2]] <- random[is.inner.outer][2][[1]] ### figure out if a formulas has a slash (as in '~ 1 | study/id') has.slash <- sapply(random, function(f) grepl("/", paste0(f, collapse=""), fixed=TRUE)) ### check if slash is used in combination with an '~ inner | outer' term if (any(is.inner.outer & has.slash)) stop(mstyle$stop("Cannot use '~ inner | outer1/outer2' type terms in the 'random' argument.")) ### substitute + for | in all formulas (so that model.frame() below works) random.plus <- lapply(random, function(f) formula(sub("\\|", "+", paste0(f, collapse="")))) ### get all model frames corresponding to the formulas in the random argument ### mf.r <- lapply(random, get_all_vars, data=data) ### note: get_all_vars() does not carry out any functions calls within the formula ### so use model.frame(), which allows for things like 'random = ~ factor(arm) | study' ### need to use na.pass so that NAs are passed through (checks for NAs are done later) #mf.r <- lapply(random.plus, model.frame, data=data, na.action=na.pass) mf.r <- list() io <- 0 for (j in seq_along(is.inner.outer)) { if (is.inner.outer[j]) { io <- io + 1 ### for an '~ inner | outer' term with struct="GEN", expand the inner formula to the ### model matrix and re-combine this with the outer variable if (is.element(struct[io], c("GEN","GDIAG"))) { f.inner <- as.formula(strsplit(paste(random[[j]], collapse=""), " | ", fixed=TRUE)[[1]][1]) f.outer <- as.formula(paste("~", strsplit(paste(random[[j]], collapse=""), " | ", fixed=TRUE)[[1]][2])) options(na.action = "na.pass") X.inner <- model.matrix(f.inner, data=data) options(na.action = na.act) is.int <- apply(X.inner, 2, .is.intercept) colnames(X.inner)[is.int] <- "intrcpt" mf.r[[j]] <- cbind(X.inner, model.frame(f.outer, data=data, na.action=na.pass)) if (has.dblvbar[j]) # change "GEN" to "GDIAG" if the formula had a || struct[io] <- "GDIAG" } else { mf.r[[j]] <- model.frame(random.plus[[j]], data=data, na.action=na.pass) } } else { mf.r[[j]] <- model.frame(random.plus[[j]], data=data, na.action=na.pass) } } ### count number of columns in each model frame mf.r.ncols <- sapply(mf.r, ncol) ### for formulas with slashes, create interaction terms for (j in seq_along(has.slash)) { if (!has.slash[j]) next ### need to go backwards; otherwise, with 3 or more terms (e.g., ~ 1 | var1/var2/var3), the third term would be an ### interaction between var1, var1:var2, and var3; by going backwards, we get var1, var1:var2, and var1:var2:var3 for (p in mf.r.ncols[j]:1) { mf.r[[j]][,p] <- interaction(mf.r[[j]][1:p], drop=TRUE, lex.order=TRUE, sep = "/") colnames(mf.r[[j]])[p] <- paste(colnames(mf.r[[j]])[1:p], collapse="/") } } ### create list where model frames with multiple columns based on slashes are flattened out if (any(has.slash)) { if (length(mf.r) == 1L) { ### if formula only has one element of the form ~ 1 | var1/var2/..., create a list of the data frames (each with one column) mf.r <- lapply(seq(ncol(mf.r[[1]])), function(x) mf.r[[1]][x]) } else { ### if there are non-slash elements, then this flattens things out (obviously ...) mf.r <- unlist(mapply(function(mf, sl) if (sl) lapply(seq(mf), function(x) mf[x]) else list(mf), mf.r, has.slash, SIMPLIFY=FALSE), recursive=FALSE, use.names=FALSE) } ### recount number of columns in each model frame mf.r.ncols <- sapply(mf.r, ncol) } #return(mf.r) ### separate mf.r into mf.s (~ 1 | id), mf.g (~ inner | outer), and mf.h (~ inner | outer) parts mf.s <- mf.r[which(mf.r.ncols == 1)] # if there is no '~ 1 | factor' term, this is list() ([] so that we get a list of data frames) mf.g <- mf.r[[which(mf.r.ncols >= 2)[1]]] # if there is no 1st '~ inner | outer' terms, this is NULL ([[]] so that we get a data frame, not a list) mf.h <- mf.r[[which(mf.r.ncols >= 2)[2]]] # if there is no 2nd '~ inner | outer' terms, this is NULL ([[]] so that we get a data frame, not a list) ### if there is no (~ 1 | factor) term, then mf.s is list(), so turn that into NULL if (length(mf.s) == 0L) mf.s <- NULL ### does the random argument include at least one (~ 1 | id) term? withS <- !is.null(mf.s) ### does the random argument include '~ inner | outer' terms? withG <- !is.null(mf.g) withH <- !is.null(mf.h) ### count number of rows in each model frame mf.r.nrows <- sapply(mf.r, nrow) ### make sure that rows in each model frame match the length of the data if (any(mf.r.nrows != k)) stop(mstyle$stop("Length of the variables specified via the 'random' argument does not match the length of the data.")) ### need this for profile(); with things like 'random = ~ factor(arm) | study', 'mf.r' contains variables 'factor(arm)' and 'study' ### but the former won't work when using the same formula for the refitting (same when using interaction() in the random formula) ### note: with ~ 1 | interaction(var1, var2), mf.r will have 2 columns, but is actually a 'one variable' term ### and with ~ interaction(var1, var2) | var3, mf.r will have 3 columns, but is actually a 'two variable' term ### mf.r.ncols above is correct even in these cases (since it is based on the model.frame() results), but need ### to be careful that this doesn't screw up anything in other functions (for now, mf.r.ncols is not used in any other function) mf.r <- lapply(random.plus, get_all_vars, data=data) } else { ### set defaults for some elements when method="FE/EE/CE" formulas <- list(NULL, NULL) mf.r <- NULL mf.s <- NULL mf.g <- NULL mf.h <- NULL withS <- FALSE withG <- FALSE withH <- FALSE } mf.r <- unname(mf.r) # to avoid problems when list elements in 'random' are named ### warn that 'struct' argument is disregarded if it has been specified, but model contains no '~ inner | outer' terms if (!withG && "struct" %in% names(mf)) warning(mstyle$warning("Model does not contain an '~ inner | outer' term, so 'struct' argument is disregaded."), call.=FALSE) ### warn that 'random' argument is disregarded if it has been specified, but method="FE/EE/CE" if (is.element(method, c("FE","EE","CE")) && "random" %in% names(mf)) warning(mstyle$warning(paste0("The 'random' argument is disregaded when method=\"", method, "\".")), call.=FALSE) #return(list(mf.r=mf.r, mf.s=mf.s, mf.g=mf.g, mf.h=mf.h)) ### note: checks on NAs in mf.s, mf.g, and mf.h after subsetting (since NAs may be removed by subsetting) ######################################################################### ######################################################################### ######################################################################### ### generate study labels if none are specified (or none can be found in yi argument) if (verbose > 1) message(mstyle$message("Generating/extracting study labels ...")) ### study ids (1:k sequence before subsetting) ids <- seq_len(k) ### if slab has not been specified but is an attribute of yi, get it if (is.null(slab)) { slab <- attr(yi, "slab") # will be NULL if there is no slab attribute ### check length of yi and slab (only if slab is now not NULL) ### if there is a mismatch, then slab cannot be trusted, so set it to NULL if (!is.null(slab) && length(slab) != k) slab <- NULL } if (is.null(slab)) { slab.null <- TRUE slab <- ids } else { if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the dataset (", k, ")."))) if (is.factor(slab)) slab <- as.character(slab) slab.null <- FALSE } ### if a subset of studies is specified if (!is.null(subset)) { if (verbose > 1) message(mstyle$message("Subsetting ...")) subset <- .chksubset(subset, k) yi <- .getsubset(yi, subset) V <- .getsubset(V, subset, col=TRUE) A <- .getsubset(A, subset, col=TRUE) ni <- .getsubset(ni, subset) mods <- .getsubset(mods, subset) slab <- .getsubset(slab, subset) mf.r <- lapply(mf.r, .getsubset, subset) mf.s <- lapply(mf.s, .getsubset, subset) mf.g <- .getsubset(mf.g, subset) mf.h <- .getsubset(mf.h, subset) ids <- .getsubset(ids, subset) k <- length(yi) attr(yi, "measure") <- measure # add measure attribute back attr(yi, "ni") <- ni # add ni attribute back } ### check if study labels are unique; if not, make them unique if (anyDuplicated(slab)) slab <- .make.unique(slab) ### add slab attribute back attr(yi, "slab") <- slab ### get the sampling variances from the diagonal of V vi <- diag(V) ### save full data (including potential NAs in yi/vi/V/W/ni/mods) yi.f <- yi vi.f <- vi V.f <- V W.f <- A ni.f <- ni mods.f <- mods #mf.g.f <- mf.g # copied further below #mf.h.f <- mf.h # copied further below #mf.s.f <- mf.s # copied further below k.f <- k # total number of observed outcomes including all NAs ######################################################################### ######################################################################### ######################################################################### ### stuff that need to be done after subsetting if (withS) { if (verbose > 1) message(mstyle$message(paste0("Processing '", paste0("~ 1 | ", sapply(mf.s, names), collapse=", "), "' term(s) ..."))) ### get variables names in mf.s s.names <- sapply(mf.s, names) # one name per term ### turn each variable in mf.s into a factor (and turn each column vector into just a vector) ### if a variable was a factor to begin with, this drops any unused levels, but order of existing levels is preserved mf.s <- lapply(mf.s, function(x) factor(x[[1]])) ### check if there are any NAs anywhere in mf.s if (any(sapply(mf.s, anyNA))) stop(mstyle$stop("No NAs allowed in variables specified in the 'random' argument.")) ### how many (~ 1 | id) terms does the random argument include? (0 if none, but if withS is TRUE, must be at least 1) sigma2s <- length(mf.s) ### set default value(s) for sigma2 argument if it is unspecified if (is.null(sigma2)) sigma2 <- rep(NA_real_, sigma2s) ### allow quickly setting all sigma2 values to a fixed value sigma2 <- .expand1(sigma2, sigma2s) ### check if sigma2 is of the correct length if (length(sigma2) != sigma2s) stop(mstyle$stop(paste0("Length of the 'sigma2' argument (", length(sigma2), ") does not match the actual number of variance components (", sigma2s, ")."))) ### checks on any fixed values of sigma2 argument if (any(sigma2 < 0, na.rm=TRUE)) stop(mstyle$stop("Specified value(s) of 'sigma2' must be non-negative.")) ### get number of levels of each variable in mf.s (vector with one value per term) s.nlevels <- sapply(mf.s, nlevels) ### get levels of each variable in mf.s (list with levels for each variable) s.levels <- lapply(mf.s, levels) ### checks on R (note: do this after subsetting, so user can filter out ids with no info in R) if (is.null(R)) { withR <- FALSE Rfix <- rep(FALSE, sigma2s) } else { if (verbose > 1) message(mstyle$message("Processing 'R' argument ...")) withR <- TRUE ### make sure R is always a list (so lapply() below works) if (is.data.frame(R) || !is.list(R)) R <- list(R) ### check if R list has no names at all or some names are missing ### (if only some elements of R have names, then names(R) is "" for the unnamed elements, so use nchar()==0 to check for that) if (is.null(names(R)) || any(nchar(names(R)) == 0L)) stop(mstyle$stop("Argument 'R' must be a *named* list.")) ### remove elements in R that are NULL (not sure why this is needed; why would anybody ever do this?) ### maybe this had something to do with functions that repeatedly call rma.mv(); so leave this be for now R <- R[!sapply(R, is.null)] ### turn all elements in R into matrices (this would fail with a NULL element) R <- lapply(R, as.matrix) ### match up R matrices based on the s.names (and correct names of R) ### so if a particular ~ 1 | id term has a matching id=R element, the corresponding R element is that R matrix ### if a particular ~ 1 | id term does not have a matching id=R element, the corresponding R element is NULL R <- R[s.names] ### NULL elements in R would have no name, so this makes sure that all R elements have the correct s.names names(R) <- s.names ### check for which components an R matrix has been specified Rfix <- !sapply(R, is.null) ### Rfix could be all FALSE (if user has used id names in R that are not actually in 'random') ### so only do the rest below if that is *not* the case if (any(Rfix)) { ### check if given R matrices are square and symmetric if (any(!sapply(R[Rfix], .is.square))) stop(mstyle$stop("Elements of 'R' must be square matrices.")) if (any(!sapply(R[Rfix], function(x) isSymmetric(unname(x))))) stop(mstyle$stop("Elements of 'R' must be symmetric matrices.")) for (j in seq_along(R)) { if (!Rfix[j]) next ### even if isSymmetric() is TRUE, there may still be minor numerical differences between the lower and upper triangular ### parts that could lead to isSymmetric() being FALSE once we do any potentially rescaling of the R matrices further ### below; this ensures strict symmetry to avoid this issue #R[[j]][lower.tri(R[[j]])] <- t(R[[j]])[lower.tri(R[[j]])] R[[j]] <- symmpart(R[[j]]) ### if rownames are missing, copy colnames to rownames and vice-versa if (is.null(rownames(R[[j]]))) rownames(R[[j]]) <- colnames(R[[j]]) if (is.null(colnames(R[[j]]))) colnames(R[[j]]) <- rownames(R[[j]]) ### if colnames are still missing at this point, R element did not have dimension names to begin with if (is.null(colnames(R[[j]]))) stop(mstyle$stop("Elements of 'R' must have dimension names.")) } ### if user specified the entire (k x k) correlation matrix, this removes the duplicate rows/columns #R[Rfix] <- lapply(R[Rfix], unique, MARGIN=1) #R[Rfix] <- lapply(R[Rfix], unique, MARGIN=2) ### no, the user can specify an entire (k x k) matrix; the problem is repeated dimension names ### so let's filter out rows/columns with the same dimension names R[Rfix] <- lapply(R[Rfix], function(x) x[!duplicated(rownames(x)), !duplicated(colnames(x)), drop=FALSE]) ### after the two commands above, this should always be FALSE, but leave for now just in case if (any(sapply(R[Rfix], function(x) length(colnames(x)) != length(unique(colnames(x)))))) stop(mstyle$stop("Each element of 'R' must have unique dimension names.")) ### check for R being positive definite ### skipped: even if R is not positive definite, the marginal var-cov matrix can still be; so just check for pd during optimization #if (any(sapply(R[Rfix], !.chkpd))) # stop(mstyle$stop("Matrix in R is not positive definite.")) for (j in seq_along(R)) { if (!Rfix[j]) next ### check if there are NAs in a matrix specified via R if (anyNA(R[[j]])) stop(mstyle$stop("No missing values allowed in matrices specified via 'R'.")) ### check if there are levels in s.levels which are not in R (if yes, issue an error and stop) if (any(!is.element(s.levels[[j]], colnames(R[[j]])))) stop(mstyle$stop(paste0("There are levels in '", s.names[j], "' for which there are no matching rows/columns in the corresponding 'R' matrix."))) ### check if there are levels in R which are not in s.levels (if yes, issue a warning) if (any(!is.element(colnames(R[[j]]), s.levels[[j]]))) warning(mstyle$warning(paste0("There are rows/columns in the 'R' matrix for '", s.names[j], "' for which there are no data.")), call.=FALSE) } } else { warning(mstyle$warning("Argument 'R' specified, but list name(s) not in 'random'."), call.=FALSE) withR <- FALSE Rfix <- rep(FALSE, sigma2s) R <- NULL } } } else { ### need one fixed sigma2 value for optimization function sigma2s <- 1 sigma2 <- 0 s.nlevels <- NULL s.levels <- NULL s.names <- NULL withR <- FALSE Rfix <- FALSE R <- NULL } #mf.s.f <- mf.s # not needed at the moment ### copy s.nlevels and s.levels (needed for ranef()) s.nlevels.f <- s.nlevels s.levels.f <- s.levels ######################################################################### ### stuff that need to be done after subsetting if (withG) { tmp <- .process.G.aftersub(mf.g, struct[1], formulas[[1]], tau2, rho, isG=TRUE, k, sparse, verbose) mf.g <- tmp$mf.g g.names <- tmp$g.names g.nlevels <- tmp$g.nlevels g.levels <- tmp$g.levels g.values <- tmp$g.values tau2s <- tmp$tau2s rhos <- tmp$rhos tau2 <- tmp$tau2 rho <- tmp$rho Z.G1 <- tmp$Z.G1 Z.G2 <- tmp$Z.G2 } else { ### need one fixed tau2 and rho value for optimization function tau2s <- 1 rhos <- 1 tau2 <- 0 rho <- 0 ### need Z.G1 and Z.G2 to exist further below and for optimization function Z.G1 <- NULL Z.G2 <- NULL g.nlevels <- NULL g.levels <- NULL g.values <- NULL g.names <- NULL } mf.g.f <- mf.g # needed for predict() ######################################################################### ### stuff that need to be done after subsetting if (withH) { tmp <- .process.G.aftersub(mf.h, struct[2], formulas[[2]], gamma2, phi, isG=FALSE, k, sparse, verbose) mf.h <- tmp$mf.g h.names <- tmp$g.names h.nlevels <- tmp$g.nlevels h.levels <- tmp$g.levels h.values <- tmp$g.values gamma2s <- tmp$tau2s phis <- tmp$rhos gamma2 <- tmp$tau2 phi <- tmp$rho Z.H1 <- tmp$Z.G1 Z.H2 <- tmp$Z.G2 } else { ### need one fixed gamma2 and phi value for optimization function gamma2s <- 1 phis <- 1 gamma2 <- 0 phi <- 0 ### need Z.H1 and Z.H2 to exist further below and for optimization function Z.H1 <- NULL Z.H2 <- NULL h.nlevels <- NULL h.levels <- NULL h.values <- NULL h.names <- NULL } mf.h.f <- mf.h # needed for predict() # return(list(Z.G1=Z.G1, Z.G2=Z.G2, g.nlevels=g.nlevels, g.levels=g.levels, g.values=g.values, tau2=tau2, rho=rho, # Z.H1=Z.H1, Z.H2=Z.H2, h.nlevels=h.nlevels, h.levels=h.levels, h.values=h.values, gamma2=gamma2, phi=phi)) ######################################################################### ######################################################################### ######################################################################### ### check for NAs and act accordingly has.na <- is.na(yi) | (if (is.null(mods)) FALSE else apply(is.na(mods), 1, any)) | (if (V0) FALSE else .anyNAv(V)) | (if (is.null(A)) FALSE else apply(is.na(A), 1, any)) not.na <- !has.na if (any(has.na)) { if (verbose > 1) message(mstyle$message("Handling NAs ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na] V <- V[not.na,not.na,drop=FALSE] A <- A[not.na,not.na,drop=FALSE] vi <- vi[not.na] ni <- ni[not.na] mods <- mods[not.na,,drop=FALSE] mf.r <- lapply(mf.r, function(x) x[not.na,,drop=FALSE]) mf.s <- lapply(mf.s, function(x) x[not.na]) # note: mf.s is a list of vectors at this point mf.g <- mf.g[not.na,,drop=FALSE] mf.h <- mf.h[not.na,,drop=FALSE] if (is.element(struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { Z.G1 <- Z.G1[not.na,not.na,drop=FALSE] } else { Z.G1 <- Z.G1[not.na,,drop=FALSE] } Z.G2 <- Z.G2[not.na,,drop=FALSE] if (is.element(struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { Z.H1 <- Z.H1[not.na,not.na,drop=FALSE] } else { Z.H1 <- Z.H1[not.na,,drop=FALSE] } Z.H2 <- Z.H2[not.na,,drop=FALSE] k <- length(yi) warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "rows", "row"), "with NAs omitted from model fitting.")), call.=FALSE) attr(yi, "measure") <- measure # add measure attribute back attr(yi, "ni") <- ni # add ni attribute back ### note: slab is always of the same length as the full yi vector (after subsetting), so missings are not removed and slab is not added back to yi } if (na.act == "na.fail") stop(mstyle$stop("Missing values in data.")) } ### more than one study left? if (k <= 1) stop(mstyle$stop("Processing terminated since k <= 1.")) ### check for non-positive sampling variances (and set negative values to 0) if (any(vi <= 0)) { allvipos <- FALSE if (!V0) warning(mstyle$warning("There are outcomes with non-positive sampling variances."), call.=FALSE) vi.neg <- vi < 0 if (any(vi.neg)) { V[vi.neg,] <- 0 # note: entire row set to 0 (so covariances are also 0) V[,vi.neg] <- 0 # note: entire col set to 0 (so covariances are also 0) vi[vi.neg] <- 0 warning(mstyle$warning("Negative sampling variances constrained to 0."), call.=FALSE) } } else { allvipos <- TRUE } ### check for V being positive definite (this should also cover non-positive variances) ### skipped: even if V is not positive definite, the marginal var-cov matrix can still be; so just check for pd during the optimization ### but at least issue a warning, since a fixed-effects model can then not be fitted and there is otherwise no indication why this is the case if (!V0 && !.chkpd(V)) warning(mstyle$warning("'V' appears to be not positive definite."), call.=FALSE) ### check ratio of largest to smallest sampling variance ### note: need to exclude some special cases (0/0 = NaN, max(vi)/0 = Inf) ### TODO: use the condition number of V here instead? vimaxmin <- max(vi) / min(vi) if (is.finite(vimaxmin) && vimaxmin >= 1e7) warning(mstyle$warning("Ratio of largest to smallest sampling variance extremely large. May not be able to obtain stable results."), call.=FALSE) ### make sure that there is at least one column in X ([b]) if (is.null(mods) && !intercept) { warning(mstyle$warning("Must either include an intercept and/or moderators in model.\nCoerced intercept into the model."), call.=FALSE) intercept <- TRUE } if (!is.null(mods) && ncol(mods) == 0L) { warning(mstyle$warning("Cannot fit model with an empty model matrix. Coerced intercept into the model."), call.=FALSE) intercept <- TRUE } ### add vector of 1s to the X matrix for the intercept (if intercept=TRUE) if (intercept) { X <- cbind(intrcpt=rep(1,k), mods) X.f <- cbind(intrcpt=rep(1,k.f), mods.f) } else { X <- mods X.f <- mods.f } ### drop redundant predictors ### note: need to save coef.na for functions that modify the data/model and then refit the model (regtest() and the ### various function that leave out an observation); so we can check if there are redundant/dropped predictors then tmp <- try(lm(yi ~ X - 1), silent=TRUE) if (inherits(tmp, "try-error")) { stop(mstyle$stop("Error in check for redundant predictors.")) } else { coef.na <- is.na(coef(tmp)) if (any(coef.na)) { warning(mstyle$warning("Redundant predictors dropped from the model."), call.=FALSE) X <- X[,!coef.na,drop=FALSE] X.f <- X.f[,!coef.na,drop=FALSE] } } ### check whether intercept is included and if yes, move it to the first column (NAs already removed, so na.rm=TRUE for any() not necessary) is.int <- apply(X, 2, .is.intercept) if (any(is.int)) { int.incl <- TRUE int.indx <- which(is.int, arr.ind=TRUE) X <- cbind(intrcpt=1, X[,-int.indx, drop=FALSE]) # this removes any duplicate intercepts X.f <- cbind(intrcpt=1, X.f[,-int.indx, drop=FALSE]) # this removes any duplicate intercepts intercept <- TRUE # set intercept appropriately so that the predict() function works } else { int.incl <- FALSE } ### check whether model matrix is of full rank if (!.chkpd(crossprod(X), tol=con$evtol)) stop(mstyle$stop("Model matrix not of full rank. Cannot fit model.")) ### number of columns in X (including the intercept if it is included) p <- NCOL(X) ### make sure variable names in X are unique colnames(X) <- colnames(X.f) <- .make.unique(colnames(X)) ### check whether this is an intercept-only model if ((p == 1L) && .is.intercept(X)) { int.only <- TRUE } else { int.only <- FALSE } ### check if there are too many parameters for given k (currently skipped) ### set/check 'btt' argument btt <- .set.btt(btt, p, int.incl, colnames(X)) m <- length(btt) # number of betas to test (m = p if all betas are tested) ### check which beta elements are estimated versus fixed optbeta <- .chkddd(ddd$optbeta, FALSE, .isTRUE(ddd$optbeta)) if (optbeta && !is.null(A)) stop(mstyle$stop("Cannot use custom weights when 'optbeta=TRUE'.")) if (is.null(ddd$beta)) { beta.arg <- rep(NA_real_, p) beta.est <- rep(TRUE, p) } else { beta.arg <- ddd$beta if (length(beta.arg) != p) stop(mstyle$stop(paste0("Length of the 'beta' argument (", length(beta.arg), ") does not match the actual number of fixed effects (", p, ")."))) beta.est <- is.na(beta.arg) } ######################################################################### ######################################################################### ######################################################################### ### stuff that need to be done after subsetting and filtering out NAs if (withS) { ### redo: turn each variable in mf.s into a factor (reevaluates the levels present, but order of existing levels is preserved) mf.s <- lapply(mf.s, factor) ### redo: get number of levels of each variable in mf.s (vector with one value per term) s.nlevels <- sapply(mf.s, nlevels) ### redo: get levels of each variable in mf.s s.levels <- lapply(mf.s, levels) ### for any single-level factor with unfixed sigma2, fix the sigma2 value to 0 if (any(is.na(sigma2) & s.nlevels == 1) && con$check.k.gtr.1) { sigma2[is.na(sigma2) & s.nlevels == 1] <- 0 warning(mstyle$warning("Single-level factor(s) found in 'random' argument. Corresponding 'sigma2' value(s) fixed to 0."), call.=FALSE) } ### create model matrix for each element in mf.s Z.S <- vector(mode="list", length=sigma2s) for (j in seq_len(sigma2s)) { if (s.nlevels[j] == 1) { Z.S[[j]] <- cbind(rep(1,k)) } else { if (sparse) { Z.S[[j]] <- sparse.model.matrix(~ mf.s[[j]] - 1) # cannot use this for factors with a single level } else { Z.S[[j]] <- model.matrix(~ mf.s[[j]] - 1) # cannot use this for factors with a single level } } attr(Z.S[[j]], "assign") <- NULL attr(Z.S[[j]], "contrasts") <- NULL } } else { Z.S <- NULL } ######################################################################### ### stuff that need to be done after subsetting and filtering out NAs if (withR) { ### R may contain levels that are not in ids (that's fine; just filter them out) ### also, R may not be in the order that Z.S is in, so this fixes that up for (j in seq_along(R)) { if (!Rfix[j]) next R[[j]] <- R[[j]][s.levels[[j]], s.levels[[j]]] } ### TODO: allow Rscale to be a vector so that different Rs can be scaled differently ### force each element of R to be a correlation matrix (and do some checks on that) if (Rscale=="cor" || Rscale=="cor0") { R[Rfix] <- lapply(R[Rfix], function(x) { if (any(diag(x) <= 0)) stop(mstyle$stop("Cannot use Rscale=\"cor\" or Rscale=\"cor0\" with non-positive values on the diagonal of an 'R' matrix.")) tmp <- cov2cor(x) if (any(abs(tmp) > 1)) warning(mstyle$warning("Some values are larger than +-1 in an 'R' matrix after cov2cor() (see 'Rscale' argument)."), call.=FALSE) return(tmp) }) } ### rescale R so that entries are 0 to (max(R) - min(R)) / (1 - min(R)) ### this preserves the ultrametric properties of R and makes levels split at the root uncorrelated if (Rscale=="cor0") R[Rfix] <- lapply(R[Rfix], function(x) (x - min(x)) / (1 - min(x))) ### rescale R so that min(R) is zero (this is for the case that R is covariance matrix) if (Rscale=="cov0") R[Rfix] <- lapply(R[Rfix], function(x) (x - min(x))) } ######################################################################### ### create (kxk) indicator/correlation matrices for random intercepts if (withS) { D.S <- vector(mode="list", length=sigma2s) for (j in seq_len(sigma2s)) { if (Rfix[j]) { if (sparse) { D.S[[j]] <- Z.S[[j]] %*% Matrix(R[[j]], sparse=TRUE) %*% t(Z.S[[j]]) } else { D.S[[j]] <- Z.S[[j]] %*% R[[j]] %*% t(Z.S[[j]]) } # D.S[[j]] <- as.matrix(nearPD(D.S[[j]])$mat) ### this avoids that the full matrix becomes non-positive definite but adding ### a tiny amount to the diagonal of D.S[[j]] is easier and works just as well ### TODO: consider doing something like this by default } else { D.S[[j]] <- tcrossprod(Z.S[[j]]) } } } else { D.S <- NULL } ######################################################################### ### stuff that need to be done after subsetting and filtering out NAs if (withG) { tmp <- .process.G.afterrmna(mf.g, g.nlevels, g.levels, g.values, struct[1], formulas[[1]], tau2, rho, Z.G1, Z.G2, isG=TRUE, sparse, ddd$dist[[1]], con$check.k.gtr.1, verbose) mf.g <- tmp$mf.g g.nlevels <- tmp$g.nlevels g.nlevels.f <- tmp$g.nlevels.f g.levels <- tmp$g.levels g.levels.f <- tmp$g.levels.f g.levels.r <- tmp$g.levels.r g.levels.k <- tmp$g.levels.k g.levels.comb.k <- tmp$g.levels.comb.k tau2 <- tmp$tau2 rho <- tmp$rho G <- tmp$G g.Dmat <- tmp$Dmat g.rho.init <- tmp$rho.init } else { g.nlevels.f <- NULL g.levels.f <- NULL g.levels.r <- NULL g.levels.k <- NULL g.levels.comb.k <- NULL G <- NULL g.Dmat <- NULL g.rho.init <- NULL } ######################################################################### ### stuff that need to be done after subsetting and filtering out NAs if (withH) { tmp <- .process.G.afterrmna(mf.h, h.nlevels, h.levels, h.values, struct[2], formulas[[2]], gamma2, phi, Z.H1, Z.H2, isG=FALSE, sparse, ddd$dist[[2]], con$check.k.gtr.1, verbose) mf.h <- tmp$mf.g h.nlevels <- tmp$g.nlevels h.nlevels.f <- tmp$g.nlevels.f h.levels <- tmp$g.levels h.levels.f <- tmp$g.levels.f h.levels.r <- tmp$g.levels.r h.levels.k <- tmp$g.levels.k h.levels.comb.k <- tmp$g.levels.comb.k gamma2 <- tmp$tau2 phi <- tmp$rho H <- tmp$G h.Dmat <- tmp$Dmat h.phi.init <- tmp$rho.init } else { h.nlevels.f <- NULL h.levels.f <- NULL h.levels.r <- NULL h.levels.k <- NULL h.levels.comb.k <- NULL H <- NULL h.Dmat <- NULL h.phi.init <- NULL } ######################################################################### #return(list(Z.S=Z.S, sigma2=sigma2, Z.G1=Z.G1, Z.G2=Z.G2, tau2=tau2, rho=rho, G=G, Z.H1=Z.H1, Z.H2=Z.H2, gamma2=gamma2, phi=phi, H=H, Rfix=Rfix, R=R)) ######################################################################### ######################################################################### ######################################################################### Y <- as.matrix(yi) ### initial values for variance components (need to do something better here in the future; see rma.mv2() and rma.bv() for some general ideas) if (verbose > 1) message(mstyle$message("Extracting/computing initial values ...")) QE <- NA_real_ if (!V0) { # for V0 case, this always fails, so can skip it if (verbose > 1) { U <- try(chol(chol2inv(chol(V))), silent=FALSE) } else { U <- try(suppressWarnings(chol(chol2inv(chol(V)))), silent=TRUE) } } if (V0 || inherits(U, "try-error") || any(is.infinite(U))) { ### note: if V is sparse diagonal with 0 along the diagonal, U will not be a 'try-error' ### but have Inf along the diagonal, so need to check for this as well total <- sigma(lm(Y ~ X - 1))^2 if (is.na(total)) # if X is a saturated model, then sigma() yields NaN total <- var(as.vector(Y)) / 100 } else { sX <- U %*% X sY <- U %*% Y beta.FE <- try(solve(crossprod(sX), crossprod(sX, sY)), silent=TRUE) if (inherits(beta.FE, "try-error")) { total <- var(as.vector(Y)) } else { ### TODO: consider a better way to set initial values #total <- max(0.001*(sigma2s + tau2s + gamma2s), var(c(Y - X %*% res.FE$beta)) - 1/mean(1/diag(V))) #total <- max(0.001*(sigma2s + tau2s + gamma2s), var(as.vector(sY - sX %*% beta)) - 1/mean(1/diag(V))) total <- max(0.001*(sigma2s + tau2s + gamma2s), var(as.vector(Y) - as.vector(X %*% beta.FE)) - 1/mean(1/diag(V))) #beta.FE <- ifelse(beta.est, beta.FE, beta.arg) QE <- sum(as.vector(sY - sX %*% beta.FE)^2) ### QEp calculated further below } } sigma2.init <- rep(total / (sigma2s + tau2s + gamma2s), sigma2s) tau2.init <- rep(total / (sigma2s + tau2s + gamma2s), tau2s) gamma2.init <- rep(total / (sigma2s + tau2s + gamma2s), gamma2s) if (is.null(g.rho.init)) { rho.init <- rep(0.50, rhos) } else { rho.init <- g.rho.init } if (is.null(h.phi.init)) { phi.init <- rep(0.50, phis) } else { phi.init <- h.phi.init } ######################################################################### ### set default control parameters (part 2) con <- c(con, list(sigma2.init = sigma2.init, # initial value(s) for sigma2 tau2.init = tau2.init, # initial value(s) for tau2 rho.init = rho.init, # initial value(s) for rho gamma2.init = gamma2.init, # initial value(s) for gamma2 phi.init = phi.init, # initial value(s) for phi cholesky = ifelse(is.element(struct, c("UN","UNR","GEN")), TRUE, FALSE))) # by default, use Cholesky factorization for G and H matrix for "UN", "UNR", and "GEN" structures ### replace defaults with any user-defined values con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] ### when restart=TRUE, restart at current estimates if (isTRUE(ddd$restart)) { ### check that the restart is done for a model that has the same type/number of var-cor components as the initial one okrestart <- TRUE if (withS && (is.null(.getfromenv("rma.mv", "sigma2")) || length(.getfromenv("rma.mv", "sigma2")) != sigma2s)) okrestart <- FALSE if (withG && (is.null(.getfromenv("rma.mv", "tau2")) || length(.getfromenv("rma.mv", "tau2")) != tau2s)) okrestart <- FALSE if (withG && (is.null(.getfromenv("rma.mv", "rho")) || length(.getfromenv("rma.mv", "rho")) != rhos)) okrestart <- FALSE if (withH && (is.null(.getfromenv("rma.mv", "gamma2")) || length(.getfromenv("rma.mv", "gamma2")) != gamma2s)) okrestart <- FALSE if (withH && (is.null(.getfromenv("rma.mv", "phi")) || length(.getfromenv("rma.mv", "phi")) != phis)) okrestart <- FALSE if (!okrestart) stop(mstyle$stop(paste0("Restarting for a different model than the initial one."))) con$sigma2.init <- .getfromenv("rma.mv", "sigma2", default=con$sigma2.init) con$tau2.init <- .getfromenv("rma.mv", "tau2", default=con$tau2.init) con$rho.init <- .getfromenv("rma.mv", "rho", default=con$rho.init) con$gamma2.init <- .getfromenv("rma.mv", "gamma2", default=con$gamma2.init) con$phi.init <- .getfromenv("rma.mv", "phi", default=con$phi.init) } ### check for missings in initial values if (anyNA(con$sigma2.init)) stop(mstyle$stop(paste0("No missing values allowed in 'sigma2.init'."))) if (anyNA(con$tau2.init)) stop(mstyle$stop(paste0("No missing values allowed in 'tau2.init'."))) if (anyNA(con$rho.init)) stop(mstyle$stop(paste0("No missing values allowed in 'rho.init'."))) if (anyNA(con$gamma2.init)) stop(mstyle$stop(paste0("No missing values allowed in 'gamma2.init'."))) if (anyNA(con$phi.init)) stop(mstyle$stop(paste0("No missing values allowed in 'phi.init'."))) ### expand initial values to correct length con$sigma2.init <- .expand1(con$sigma2.init, sigma2s) con$tau2.init <- .expand1(con$tau2.init, tau2s) con$rho.init <- .expand1(con$rho.init, rhos) con$gamma2.init <- .expand1(con$gamma2.init, gamma2s) con$phi.init <- .expand1(con$phi.init, phis) ### checks on initial values set by the user (the initial values computed by the function are replaced by the user defined ones at this point) if (withS && any(con$sigma2.init <= 0)) stop(mstyle$stop("Value(s) of 'sigma2.init' must be > 0")) if (withG && any(con$tau2.init <= 0)) stop(mstyle$stop("Value(s) of 'tau2.init' must be > 0.")) if (withG && struct[1]=="CAR" && (con$rho.init <= 0 | con$rho.init >= 1)) stop(mstyle$stop("Value(s) of 'rho.init' must be in (0,1).")) if (withG && is.element(struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH")) && any(con$rho.init <= 0)) stop(mstyle$stop("Value(s) of 'rho.init' must be > 0.")) if (withG && is.element(struct[1], c("PHYPL","PHYPD")) && con$rho.init < 0) stop(mstyle$stop("Value(s) of 'rho.init' must be in >= 0.")) if (withG && !is.element(struct[1], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD")) && any(con$rho.init <= -1 | con$rho.init >= 1)) stop(mstyle$stop("Value(s) of 'rho.init' must be in (-1,1).")) if (withH && any(con$gamma2.init <= 0)) stop(mstyle$stop("Value(s) of 'gamma2.init' must be > 0.")) if (withH && struct[2]=="CAR" && (con$phi.init <= 0 | con$phi.init >= 1)) stop(mstyle$stop("Value(s) of 'phi.init' must be in (0,1).")) if (withH && is.element(struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH")) && any(con$phi.init <= 0)) stop(mstyle$stop("Value(s) of 'phi.init' must be > 0.")) if (withH && is.element(struct[2], c("PHYPL","PHYPD")) && con$phi.init < 0) stop(mstyle$stop("Value(s) of 'phi.init' must be in >= 0.")) if (withH && !is.element(struct[2], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD")) && any(con$phi.init <= -1 | con$phi.init >= 1)) stop(mstyle$stop("Value(s) of 'phi.init' must be in (-1,1).")) ### in case user manually set con$cholesky and specified only a single value con$cholesky <- .expand1(con$cholesky, 2L) ### use of Cholesky factorization only applicable for models with "UN", "UNR", and "GEN" structure if (!withG) # in case user set cholesky=TRUE and struct="UN", struct="UNR", or struct="GEN" even though there is no 1st 'inner | outer' term con$cholesky[1] <- FALSE if (con$cholesky[1] && !is.element(struct[1], c("UN","UNR","GEN"))) con$cholesky[1] <- FALSE if (!withH) # in case user set cholesky=TRUE and struct="UN", struct="UNR", or struct="GEN" even though there is no 2nd 'inner | outer' term con$cholesky[2] <- FALSE if (con$cholesky[2] && !is.element(struct[2], c("UN","UNR","GEN"))) con$cholesky[2] <- FALSE ### copy initial values back (in case they were replaced by user-defined values); those values are ### then shown in the 'Variance Components in Model' table that is given when verbose=TRUE; cannot ### replace any fixed values, since that can lead to -Inf/+Inf below when transforming the initial ### values and then optim() throws an error and chol(G) and/or chol(H) is then likely to fail #sigma2.init <- ifelse(is.na(sigma2), con$sigma2.init, sigma2) #tau2.init <- ifelse(is.na(tau2), con$tau2.init, tau2) #rho.init <- ifelse(is.na(rho), con$rho.init, rho) sigma2.init <- con$sigma2.init tau2.init <- con$tau2.init rho.init <- con$rho.init gamma2.init <- con$gamma2.init phi.init <- con$phi.init ### plug in fixed values for sigma2, tau2, rho, gamma2, and phi and transform initial values con$sigma2.init <- log(sigma2.init) if (con$cholesky[1]) { if (struct[1] == "UNR") { G <- .con.vcov.UNR(tau2.init, rho.init) } else { G <- .con.vcov.UN(tau2.init, rho.init) } G <- try(chol(G), silent=TRUE) if (inherits(G, "try-error") || anyNA(G)) stop(mstyle$stop("Cannot take Choleski decomposition of initial 'G' matrix.")) if (struct[1] == "UNR") { con$tau2.init <- log(tau2.init) } else { con$tau2.init <- diag(G) # note: con$tau2.init and con$rho.init are the 'choled' values of the initial G matrix, so con$rho.init really con$rho.init <- G[lower.tri(G)] # contains the 'choled' covariances; and these values are also passed on the .ll.rma.mv as the initial values } if (length(con$rho.init) == 0L) con$rho.init <- 0 } else { con$tau2.init <- log(tau2.init) if (struct[1] == "CAR") con$rho.init <- qlogis(rho.init) if (is.element(struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) con$rho.init <- log(rho.init) if (!is.element(struct[1], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) con$rho.init <- atanh(rho.init) } if (con$cholesky[2]) { H <- .con.vcov.UN(gamma2.init, phi.init) H <- try(chol(H), silent=TRUE) if (inherits(H, "try-error") || anyNA(H)) stop(mstyle$stop("Cannot take Choleski decomposition of initial 'H' matrix.")) con$gamma2.init <- diag(H) # note: con$gamma2.init and con$phi.init are the 'choled' values of the initial H matrix, so con$phi.init really con$phi.init <- H[lower.tri(H)] # contains the 'choled' covariances; and these values are also passed on the .ll.rma.mv as the initial values if (length(con$phi.init) == 0L) con$phi.init <- 0 } else { con$gamma2.init <- log(gamma2.init) if (struct[2] == "CAR") con$phi.init <- qlogis(phi.init) if (is.element(struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) con$phi.init <- log(phi.init) if (!is.element(struct[2], c("CAR","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) con$phi.init <- atanh(phi.init) } optimizer <- match.arg(con$optimizer, c("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent","Rcgmin","Rvmmin")) optmethod <- match.arg(con$optmethod, c("Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent")) if (optimizer %in% c("Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent")) { optmethod <- optimizer optimizer <- "optim" } nearpd <- con$nearpd cholesky <- con$cholesky parallel <- con$parallel cl <- con$cl ncpus <- con$ncpus optcontrol <- control[is.na(con.pos)] # get arguments that are control arguments for optimizer if (length(optcontrol) == 0L) optcontrol <- list() ### if control argument 'ncpus' is larger than 1, automatically switch to optimParallel optimizer if (ncpus > 1L) optimizer <- "optimParallel" reml <- ifelse(method == "REML", TRUE, FALSE) con$hesspack <- match.arg(con$hesspack, c("numDeriv","pracma","calculus")) if ((.isTRUE(cvvc) || cvvc %in% c("varcor","varcov","transf") || optbeta) && !requireNamespace(con$hesspack, quietly=TRUE)) stop(mstyle$stop(paste0("Please install the '", con$hesspack, "' package to compute the Hessian."))) ### check if length of sigma2.init, tau2.init, rho.init, gamma2.init, and phi.init matches the number of variance components ### note: if a particular component is not included, reset (transformed) initial values (in case the user still specified multiple initial values) if (withS) { if (length(con$sigma2.init) != sigma2s) stop(mstyle$stop(paste0("Length of the 'sigma2.init' argument (", length(con$sigma2.init), ") does not match the actual number of variance components (", sigma2s, ")."))) } else { con$sigma2.init <- 0 } if (withG) { if (length(con$tau2.init) != tau2s) stop(mstyle$stop(paste0("Length of the 'tau2.init' argument (", length(con$tau2.init), ") does not match the actual number of variance components (", tau2s, ")."))) } else { con$tau2.init <- 0 } if (withG) { if (length(con$rho.init) != rhos) stop(mstyle$stop(paste0("Length of the 'rho.init' argument (", length(con$rho.init), ") does not match the actual number of correlations (", rhos, ")."))) } else { con$rho.init <- 0 } if (withH) { if (length(con$gamma2.init) != gamma2s) stop(mstyle$stop(paste0("Length of the 'gamma2.init' argument (", length(con$gamma2.init), ") does not match the actual number of variance components (", gamma2s, ")."))) } else { con$gamma2.init <- 0 } if (withH) { if (length(con$phi.init) != phis) stop(mstyle$stop(paste0("Length of the 'phi.init' argument (", length(con$phi.init), ") does not match the actual number of correlations (", phis, ")."))) } else { con$phi.init <- 0 } ######################################################################### ### which variance components are fixed? (TRUE/FALSE or NA if not applicable = not included) if (withS) { sigma2.fix <- !is.na(sigma2) } else { sigma2.fix <- NA } if (withG) { tau2.fix <- !is.na(tau2) rho.fix <- !is.na(rho) } else { tau2.fix <- NA rho.fix <- NA } if (withH) { gamma2.fix <- !is.na(gamma2) phi.fix <- !is.na(phi) } else { gamma2.fix <- NA phi.fix <- NA } vc.fix <- list(sigma2=sigma2.fix, tau2=tau2.fix, rho=rho.fix, gamma2=gamma2.fix, phi=phi.fix) ### show which variance components are included in the model, their initial value, and their specified value (NA if not specified) if (verbose) { cat("\n") cat(mstyle$verbose("Variance Components in Model:")) if (!withS && !withG && !withH) { cat(mstyle$verbose(" none")) cat("\n\n") } else { cat("\n\n") vcs <- rbind(c("sigma2" = if (withS) round(sigma2.init, digits[["var"]]) else NA_real_, "tau2" = if (withG) round(tau2.init, digits[["var"]]) else NA_real_, "rho" = if (withG) round(rho.init, digits[["var"]]) else NA_real_, "gamma2" = if (withH) round(gamma2.init, digits[["var"]]) else NA_real_, "phi" = if (withH) round(phi.init, digits[["var"]]) else NA_real_), round(c( if (withS) sigma2 else NA_real_, if (withG) tau2 else NA_real_, if (withG) rho else NA_real_, if (withH) gamma2 else NA_real_, if (withH) phi else NA_real_), digits[["var"]])) vcs <- data.frame(vcs, stringsAsFactors=FALSE) rownames(vcs) <- c("initial", "specified") vcs <- rbind(included=ifelse(c(rep(withS, sigma2s), rep(withG, tau2s), rep(withG, rhos), rep(withH, gamma2s), rep(withH, phis)), "Yes", "No"), fixed=unlist(vc.fix), vcs) tmp <- capture.output(print(vcs, na.print="---")) .print.output(tmp, mstyle$verbose) cat("\n") } } level <- .level(level) #return(list(sigma2s, tau2s, rhos, gamma2s, phis)) ######################################################################### ######################################################################### ######################################################################### ###### model fitting, test statistics, and confidence intervals if (verbose > 1) message(mstyle$message("Model fitting ...\n")) ### estimate sigma2, tau2, rho, gamma2, and phi as needed tmp <- .chkopt(optimizer, optcontrol) optimizer <- tmp$optimizer optcontrol <- tmp$optcontrol par.arg <- tmp$par.arg ctrl.arg <- tmp$ctrl.arg if (optimizer == "optimParallel::optimParallel") { parallel$cl <- NULL if (is.null(cl)) { ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Control argument 'ncpus' must be >= 1.")) cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } else { if (!inherits(cl, "SOCKcluster")) stop(mstyle$stop("Specified cluster is not of class 'SOCKcluster'.")) } parallel$cl <- cl if (is.null(parallel$forward)) parallel$forward <- FALSE if (is.null(parallel$loginfo)) { if (verbose) { parallel$loginfo <- TRUE } else { parallel$loginfo <- FALSE } } } if (optbeta || (!is.element(method, c("FE","EE","CE")) && !is.null(random))) { if (optbeta) { # TODO: better start values for beta par.val <- "c(rep(0,p), con$sigma2.init, con$tau2.init, con$rho.init, con$gamma2.init, con$phi.init)" } else { par.val <- "c(con$sigma2.init, con$tau2.init, con$rho.init, con$gamma2.init, con$phi.init)" } if (anyNA(c(sigma2, tau2, rho, gamma2, phi)) || optbeta) { ### if at least one parameter needs to be estimated or optbeta=TRUE optcall <- paste0(optimizer, "(", par.arg, "=", par.val, ", .ll.rma.mv, reml=reml, ", ifelse(optimizer=="optim", "method=optmethod, ", ""), "Y=Y, M=V, A=NULL, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2, tau2.arg=tau2, rho.arg=rho, gamma2.arg=gamma2, phi.arg=phi, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=cholesky, nearpd=nearpd, vctransf=TRUE, vccov=FALSE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, dofit=FALSE, hessian=FALSE, optbeta=", optbeta, ", lambda=", lambda, ", intercept=", intercept, ctrl.arg, ")\n") #return(optcall) iteration <- 0 try(assign("iteration", iteration, envir=.metafor), silent=TRUE) if (verbose) { opt.res <- try(eval(str2lang(optcall)), silent=!verbose) } else { opt.res <- try(suppressWarnings(eval(str2lang(optcall))), silent=!verbose) } if (isTRUE(ddd$retopt)) return(opt.res) ### convergence checks (if verbose print optimParallel log, if verbose > 2 print opt.res, and unify opt.res$par) opt.res$par <- .chkconv(optimizer=optimizer, opt.res=opt.res, optcontrol=optcontrol, fun="rma.mv", verbose=verbose) if (p == k) { ### when fitting a saturated model (with REML estimation), estimated values of variance components can remain stuck ### at their initial values; this ensures that the values are fixed to zero (unless values were fixed by the user) sigma2[is.na(sigma2)] <- 0 tau2[is.na(tau2)] <- 0 rho[is.na(rho)] <- 0 gamma2[is.na(gamma2)] <- 0 phi[is.na(phi)] <- 0 } } else { ### if all parameters are fixed to known values and optbeta=FALSE, can skip optimization opt.res <- list(par=c(sigma2, tau2, rho, gamma2, phi)) } ### save these for Hessian computation sigma2.arg <- sigma2 tau2.arg <- tau2 rho.arg <- rho gamma2.arg <- gamma2 phi.arg <- phi } else { opt.res <- list(par=c(0,0,0,0,0)) } ######################################################################### ### do the final model fit with estimated variance components fitcall <- .ll.rma.mv(opt.res$par, reml=reml, Y=Y, M=V, A=A, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2, tau2.arg=tau2, rho.arg=rho, gamma2.arg=gamma2, phi.arg=phi, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=cholesky, nearpd=nearpd, vctransf=TRUE, vccov=FALSE, vccon=vccon, verbose=FALSE, digits=digits, REMLf=con$REMLf, dofit=TRUE, optbeta=optbeta, lambda=lambda, intercept=intercept) ### extract elements beta <- as.matrix(fitcall$beta) vb <- matrix(NA_real_, nrow=p, ncol=p) hessian <- NA_real_ vvc <- NA_real_ if (optbeta) { if (verbose > 1) message(mstyle$message("Computing var-cov matrix ...\n")) if (con$hesspack == "numDeriv") hessian <- try(numDeriv::hessian(func=.ll.rma.mv, x=opt.res$par, method.args=con$hessianCtrl, reml=reml, Y=Y, M=V, A=A, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2, tau2.arg=tau2, rho.arg=rho, gamma2.arg=gamma2, phi.arg=phi, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=cholesky, nearpd=nearpd, vctransf=TRUE, vccov=FALSE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, dofit=FALSE, hessian=TRUE, optbeta=optbeta, lambda=lambda, intercept=intercept), silent=!verbose) if (con$hesspack == "pracma") hessian <- try(pracma::hessian(f=.ll.rma.mv, x0=opt.res$par, reml=reml, Y=Y, M=V, A=A, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2, tau2.arg=tau2, rho.arg=rho, gamma2.arg=gamma2, phi.arg=phi, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=cholesky, nearpd=nearpd, vctransf=TRUE, vccov=FALSE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, dofit=FALSE, hessian=TRUE, optbeta=optbeta, lambda=lambda, intercept=intercept), silent=!verbose) if (con$hesspack == "calculus") hessian <- try(calculus::hessian(f=.ll.rma.mv, var=opt.res$par, params = list(reml=reml, Y=Y, M=V, A=A, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2, tau2.arg=tau2, rho.arg=rho, gamma2.arg=gamma2, phi.arg=phi, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=cholesky, nearpd=nearpd, vctransf=TRUE, vccov=FALSE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, dofit=FALSE, hessian=TRUE, optbeta=optbeta, lambda=lambda, intercept=intercept)), silent=!verbose) if (inherits(hessian, "try-error")) { warning(mstyle$warning("Error when trying to compute the Hessian."), call.=FALSE) hessian <- NA_real_ } else { colnames(hessian) <- rep("", ncol(hessian)) if (int.incl) { colnames(hessian)[1:p] <- paste0("beta", 0:(p-1)) } else { colnames(hessian)[1:p] <- paste0("beta", 1:p) } rownames(hessian) <- colnames(hessian) ### detect rows/columns that are essentially all equal to 0 (fixed elements) and filter them out hest <- !apply(hessian, 1, function(x) all(abs(x) <= con$hesstol)) hessian <- hessian[hest, hest, drop=FALSE] ### try to invert Hessian if (any(hest)) { vvc <- try(suppressWarnings(chol2inv(chol(hessian))), silent=TRUE) if (inherits(vvc, "try-error") || anyNA(vvc) || any(is.infinite(vvc))) warning(mstyle$warning("Error when trying to invert the Hessian."), call.=FALSE) sel <- grep("beta", colnames(hessian), fixed=TRUE) vb[hest[1:p],hest[1:p]] <- vvc[sel,sel,drop=FALSE] } else { vb <- matrix(NA_real_, nrow=p, ncol=p) } } if (verbose > 1) cat("\n") } else { vb <- as.matrix(fitcall$vb) vb[!beta.est,] <- NA_real_ vb[,!beta.est] <- NA_real_ } if (withS) sigma2 <- fitcall$sigma2 if (withG) { G <- as.matrix(fitcall$G) if (is.element(struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) colnames(G) <- rownames(G) <- seq_len(nrow(G)) if (is.element(struct[1], c("CS","HCS","UN","UNR","AR","HAR","CAR","ID","DIAG"))) colnames(G) <- rownames(G) <- g.levels.f[[1]] if (is.element(struct[1], c("GEN","GDIAG"))) colnames(G) <- rownames(G) <- g.names[-length(g.names)] tau2 <- fitcall$tau2 rho <- fitcall$rho cov1 <- G[lower.tri(G)] } else { cov1 <- 0 } if (withH) { H <- as.matrix(fitcall$H) if (is.element(struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) colnames(H) <- rownames(H) <- seq_len(nrow(H)) if (is.element(struct[2], c("CS","HCS","UN","UNR","AR","HAR","CAR","ID","DIAG"))) colnames(H) <- rownames(H) <- h.levels.f[[1]] if (is.element(struct[2], c("GEN","GDIAG"))) colnames(H) <- rownames(H) <- h.names[-length(h.names)] gamma2 <- fitcall$gamma2 phi <- fitcall$phi cov2 <- H[lower.tri(H)] } else { cov2 <- 0 } M <- fitcall$M ### remove row and column names of M (but only do this if M has row/column names) if (!is.null(dimnames(M))) M <- unname(M) #print(M[1:8,1:8]) if (verbose > 1) message(mstyle$message(ifelse(verbose > 2, "", "\n"), "Conducting tests of the fixed effects ...")) ### ddf calculation if (is.element(test, c("knha","adhoc","t"))) { ddf <- .ddf.calc(dfs, X=X, k=k, p=p, mf.s=mf.s, mf.g=mf.g, mf.h=mf.h) } else { ddf <- rep(NA_integer_, p) } ### the Knapp & Hartung method (this is experimental!) s2w <- 1 if (is.element(test, c("knha","adhoc"))) { knha.rma.mv.warn <- .getfromenv("knha.rma.mv.warn", default=TRUE) if (knha.rma.mv.warn) { warning(mstyle$warning("Use of the Knapp and Hartung method for 'rma.mv()' models is experimental.\nNote: This warning is only issued once per session (ignore at your peril)."), call.=FALSE) try(assign("knha.rma.mv.warn", FALSE, envir=.metafor), silent=TRUE) } RSS <- try(as.vector(t(Y - X %*% beta) %*% chol2inv(chol(M)) %*% (Y - X %*% beta)), silent=TRUE) if (inherits(RSS, "try-error")) stop(mstyle$stop(paste0("Failure when trying to compute adjustment factor for Knapp and Hartung method."))) if (RSS <= .Machine$double.eps) { s2w <- 0 } else { s2w <- as.vector(RSS / (k - p)) } } if (test == "adhoc") s2w[s2w < 1] <- 1 vb <- s2w * vb ### QM calculation QM <- try(as.vector(t(beta)[btt] %*% chol2inv(chol(vb[btt,btt])) %*% beta[btt]), silent=TRUE) if (inherits(QM, "try-error")) QM <- NA_real_ ### abbreviate some types of coefficient names if (.isTRUE(ddd$abbrev)) { tmp <- colnames(X) tmp <- gsub("relevel(factor(", "", tmp, fixed=TRUE) tmp <- gsub("\\), ref = \"[[:alnum:]]*\")", "", tmp) tmp <- gsub("poly(", "", tmp, fixed=TRUE) tmp <- gsub(", degree = [[:digit:]], raw = TRUE)", "^", tmp) tmp <- gsub(", degree = [[:digit:]], raw = T)", "^", tmp) tmp <- gsub(", degree = [[:digit:]])", "^", tmp) tmp <- gsub("rcs\\([[:alnum:]]*, [[:digit:]]\\)", "", tmp) tmp <- gsub("factor(", "", tmp, fixed=TRUE) tmp <- gsub("I(", "", tmp, fixed=TRUE) tmp <- gsub(")", "", tmp, fixed=TRUE) colnames(X) <- tmp } rownames(beta) <- rownames(vb) <- colnames(vb) <- colnames(X.f) <- colnames(X) se <- sqrt(diag(vb)) names(se) <- NULL zval <- c(beta/se) if (is.element(test, c("knha","adhoc","t"))) { QM <- QM / m QMdf <- c(m, min(ddf[btt])) QMp <- if (QMdf[2] > 0) pf(QM, df1=QMdf[1], df2=QMdf[2], lower.tail=FALSE) else NA_real_ pval <- sapply(seq_along(ddf), function(j) if (ddf[j] > 0) 2*pt(abs(zval[j]), df=ddf[j], lower.tail=FALSE) else NA_real_) crit <- sapply(seq_along(ddf), function(j) if (ddf[j] > 0) qt(level/2, df=ddf[j], lower.tail=FALSE) else NA_real_) } else { QMdf <- c(m, NA_integer_) QMp <- pchisq(QM, df=QMdf[1], lower.tail=FALSE) pval <- 2*pnorm(abs(zval), lower.tail=FALSE) crit <- qnorm(level/2, lower.tail=FALSE) } ci.lb <- c(beta - crit * se) ci.ub <- c(beta + crit * se) ######################################################################### ### heterogeneity test (Wald-type test of the extra coefficients in the saturated model) if (verbose > 1) message(mstyle$message("Conducting heterogeneity test ...")) QEdf <- k - p if (QEdf > 0L) { ### if V is not positive definite, FE model fit will fail; then QE is NA ### otherwise compute the RSS (which is equal to the Q/QE-test statistic) QEp <- pchisq(QE, df=QEdf, lower.tail=FALSE) } else { ### if the user fits a saturated model, then fit must be perfect and QE = 0 and QEp = 1 QE <- 0 QEp <- 1 } ### log-likelihood under a saturated model with ML estimation ll.QE <- -1/2 * (k) * log(2*base::pi) - 1/2 * determinant(V, logarithm=TRUE)$modulus ######################################################################### ###### compute Hessian if (!optbeta && (!is.element(method, c("FE","EE","CE")) && !is.null(random)) && (.isTRUE(cvvc) || cvvc %in% c("varcor","varcov","transf"))) { if (verbose > 1) message(mstyle$message("Computing the Hessian ...\n")) if (cvvc == "varcov" && (any(sigma2.fix, na.rm=TRUE) || any(tau2.fix, na.rm=TRUE) || any(rho.fix, na.rm=TRUE) || any(gamma2.fix, na.rm=TRUE) || any(phi.fix, na.rm=TRUE))) { warning(mstyle$warning("Cannot use cvvc='varcov' when one or more components are fixed. Setting cvvc='varcor'."), call.=FALSE) cvvc <- "varcor" } if (cvvc == "varcov" && any(!is.element(struct, c("UN","GEN")))) { warning(mstyle$warning("Cannot use cvvc='varcov' for the specified structure(s). Setting cvvc='varcor'."), call.=FALSE) cvvc <- "varcor" } if (cvvc == "varcov") { if (con$hesspack == "numDeriv") hessian <- try(numDeriv::hessian(func=.ll.rma.mv, x = c(sigma2, tau2, cov1, gamma2, cov2), method.args=con$hessianCtrl, reml=reml, Y=Y, M=V, A=NULL, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2.arg, tau2.arg=tau2.arg, rho.arg=rho.arg, gamma2.arg=gamma2.arg, phi.arg=phi.arg, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=c(FALSE,FALSE), nearpd=nearpd, vctransf=FALSE, vccov=TRUE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, hessian=TRUE), silent=TRUE) if (con$hesspack == "pracma") hessian <- try(pracma::hessian(f=.ll.rma.mv, x0 = c(sigma2, tau2, cov1, gamma2, cov2), reml=reml, Y=Y, M=V, A=NULL, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2.arg, tau2.arg=tau2.arg, rho.arg=rho.arg, gamma2.arg=gamma2.arg, phi.arg=phi.arg, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=c(FALSE,FALSE), nearpd=nearpd, vctransf=FALSE, vccov=TRUE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, hessian=TRUE), silent=TRUE) if (con$hesspack == "calculus") hessian <- try(calculus::hessian(f=.ll.rma.mv, var = c(sigma2, tau2, cov1, gamma2, cov2), params=list(reml=reml, Y=Y, M=V, A=NULL, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2.arg, tau2.arg=tau2.arg, rho.arg=rho.arg, gamma2.arg=gamma2.arg, phi.arg=phi.arg, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=c(FALSE,FALSE), nearpd=nearpd, vctransf=FALSE, vccov=TRUE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, hessian=TRUE)), silent=TRUE) # note: vctransf=FALSE and cholesky=c(FALSE,FALSE), so we get the Hessian for the raw/untransfored variances and covariances } else { if (con$hesspack == "numDeriv") hessian <- try(numDeriv::hessian(func=.ll.rma.mv, x = if (cvvc=="transf") opt.res$par else c(sigma2, tau2, rho, gamma2, phi), method.args=con$hessianCtrl, reml=reml, Y=Y, M=V, A=NULL, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2.arg, tau2.arg=tau2.arg, rho.arg=rho.arg, gamma2.arg=gamma2.arg, phi.arg=phi.arg, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=ifelse(c(cvvc=="transf",cvvc=="transf") & cholesky, TRUE, FALSE), nearpd=nearpd, vctransf=cvvc=="transf", vccov=FALSE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, hessian=TRUE), silent=TRUE) if (con$hesspack == "pracma") hessian <- try(pracma::hessian(f=.ll.rma.mv, x0 = if (cvvc=="transf") opt.res$par else c(sigma2, tau2, rho, gamma2, phi), reml=reml, Y=Y, M=V, A=NULL, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2.arg, tau2.arg=tau2.arg, rho.arg=rho.arg, gamma2.arg=gamma2.arg, phi.arg=phi.arg, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=ifelse(c(cvvc=="transf",cvvc=="transf") & cholesky, TRUE, FALSE), nearpd=nearpd, vctransf=cvvc=="transf", vccov=FALSE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, hessian=TRUE), silent=TRUE) if (con$hesspack == "calculus") hessian <- try(calculus::hessian(f=.ll.rma.mv, var = if (cvvc=="transf") opt.res$par else c(sigma2, tau2, rho, gamma2, phi), params=list(reml=reml, Y=Y, M=V, A=NULL, X=X, k=k, pX=p, D.S=D.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, g.Dmat=g.Dmat, h.Dmat=h.Dmat, sigma2.arg=sigma2.arg, tau2.arg=tau2.arg, rho.arg=rho.arg, gamma2.arg=gamma2.arg, phi.arg=phi.arg, beta.arg=beta.arg, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, withS=withS, withG=withG, withH=withH, struct=struct, g.levels.r=g.levels.r, h.levels.r=h.levels.r, g.values=g.values, h.values=h.values, sparse=sparse, cholesky=ifelse(c(cvvc=="transf",cvvc=="transf") & cholesky, TRUE, FALSE), nearpd=nearpd, vctransf=cvvc=="transf", vccov=FALSE, vccon=vccon, verbose=verbose, digits=digits, REMLf=con$REMLf, hessian=TRUE)), silent=TRUE) # note: when cvvc=TRUE/"covcor", get the Hessian for the (raw/untransfored) variances and correlations # when cvvc="transf", get the Hessian for the transformed variances (i.e., log(var)) and correlations (i.e., transf.rtoz(cor)) } if (inherits(hessian, "try-error")) { warning(mstyle$warning("Error when trying to compute the Hessian."), call.=FALSE) hessian <- NA_real_ } else { ### row/column names colnames(hessian) <- seq_len(ncol(hessian)) # need to do this, so the subsetting of colnames below works if (sigma2s == 1) { colnames(hessian)[1] <- "sigma^2" } else { colnames(hessian)[1:sigma2s] <- paste0("sigma^2.", seq_len(sigma2s)) } if (tau2s == 1) { colnames(hessian)[sigma2s+1] <- "tau^2" } else { colnames(hessian)[(sigma2s+1):(sigma2s+tau2s)] <- paste0("tau^2.", seq_len(tau2s)) } term <- ifelse(cvvc == "varcov", ifelse(withH, "cov1", "cov"), "rho") if (rhos == 1) { colnames(hessian)[sigma2s+tau2s+1] <- term } else { colnames(hessian)[(sigma2s+tau2s+1):(sigma2s+tau2s+rhos)] <- paste0(term, ".", outer(seq_len(g.nlevels.f[1]), seq_len(g.nlevels.f[1]), paste, sep=".")[lower.tri(matrix(NA,nrow=g.nlevels.f,ncol=g.nlevels.f))]) #colnames(hessian)[(sigma2s+tau2s+1):(sigma2s+tau2s+rhos)] <- paste0(term, ".", seq_len(rhos)) } if (gamma2s == 1) { colnames(hessian)[sigma2s+tau2s+rhos+1] <- "gamma^2" } else { colnames(hessian)[(sigma2s+tau2s+rhos+1):(sigma2s+tau2s+rhos+gamma2s)] <- paste0("gamma^2.", seq_len(gamma2s)) } term <- ifelse(cvvc == "varcov", "cov2", "phi") if (phis == 1) { colnames(hessian)[sigma2s+tau2s+rhos+gamma2s+1] <- term } else { colnames(hessian)[(sigma2s+tau2s+rhos+gamma2s+1):(sigma2s+tau2s+rhos+gamma2s+phis)] <- paste0(term, ".", outer(seq_len(h.nlevels.f[1]), seq_len(h.nlevels.f[1]), paste, sep=".")[lower.tri(matrix(NA,nrow=h.nlevels.f,ncol=h.nlevels.f))]) #colnames(hessian)[(sigma2s+tau2s+rhos+gamma2s+1):(sigma2s+tau2s+rhos+gamma2s+phis)] <- paste0(term, ".", seq_len(phis)) } rownames(hessian) <- colnames(hessian) ### select correct rows/columns from the Hessian depending on the components in the model ### FIXME: this isn't quite right, since "DIAG" and "ID" have a rho/phi element, but this is fixed to 0, so should also exclude this ### in fact, all fixed elements should be filtered out (this is now done below) #if (withS && withG && withH) #hessian <- hessian[1:nrow(hessian),1:ncol(hessian), drop=FALSE] if (withS && withG && !withH) hessian <- hessian[1:(nrow(hessian)-2),1:(ncol(hessian)-2), drop=FALSE] if (withS && !withG && !withH) hessian <- hessian[1:(nrow(hessian)-4),1:(ncol(hessian)-4), drop=FALSE] if (!withS && withG && withH) hessian <- hessian[2:nrow(hessian),2:ncol(hessian), drop=FALSE] if (!withS && withG && !withH) hessian <- hessian[2:(nrow(hessian)-2),2:(ncol(hessian)-2), drop=FALSE] if (!withS && !withG && !withH) hessian <- NA_real_ ### reorder hessian when cvvc="vccov" into the order of the lower triangular elements of G/H if (cvvc == "varcov" && withG) { posG <- matrix(NA_real_, nrow=tau2s, ncol=tau2s) diag(posG) <- 1:tau2s posG[lower.tri(posG)] <- (tau2s+1):(tau2s*(tau2s+1)/2) posG <- posG[lower.tri(posG, diag=TRUE)] if (withS) { pos <- c(1:sigma2s, sigma2s+posG) } else { pos <- posG } if (withH) { posH <- matrix(NA_real_, nrow=gamma2s, ncol=gamma2s) diag(posH) <- 1:gamma2s posH[lower.tri(posH)] <- (gamma2s+1):(gamma2s*(gamma2s+1)/2) posH <- posH[lower.tri(posH, diag=TRUE)] pos <- c(pos, max(pos)+posH) } hessian <- hessian[pos,pos] } ### detect rows/columns that are essentially all equal to 0 (fixed elements) and filter them out hest <- !apply(hessian, 1, function(x) all(abs(x) <= con$hesstol)) hessian <- hessian[hest, hest, drop=FALSE] ### try to invert Hessian vvc <- try(suppressWarnings(chol2inv(chol(hessian))), silent=TRUE) if (inherits(vvc, "try-error") || anyNA(vvc) || any(is.infinite(vvc))) { warning(mstyle$warning("Error when trying to invert the Hessian."), call.=FALSE) vvc <- NA_real_ } else { dimnames(vvc) <- dimnames(hessian) } } if (verbose > 1) cat("\n") } ######################################################################### ###### fit statistics if (verbose > 1) message(mstyle$message("Computing fit statistics and log-likelihood ...")) ### note: this only counts *estimated* variance components and correlations for the total number of parameters p <- sum(beta.est) if (is.null(vccon)) { parms <- p + ifelse(withS, sum(ifelse(sigma2.fix, 0, 1)), 0) + ifelse(withG, sum(ifelse(tau2.fix, 0, 1)), 0) + ifelse(withG, sum(ifelse(rho.fix, 0, 1)), 0) + ifelse(withH, sum(ifelse(gamma2.fix, 0, 1)), 0) + ifelse(withH, sum(ifelse(phi.fix, 0, 1)), 0) } else { parms <- p + ifelse(withS && !is.null(vccon$sigma2), length(unique(vccon$sigma2)) - sum(sigma2.fix), 0) + ifelse(withG && !is.null(vccon$tau2), length(unique(vccon$tau2)) - sum(tau2.fix), 0) + ifelse(withG && !is.null(vccon$rho), length(unique(vccon$rho)) - sum(rho.fix), 0) + ifelse(withH && !is.null(vccon$gamma2), length(unique(vccon$gamma2)) - sum(gamma2.fix), 0) + ifelse(withH && !is.null(vccon$phi), length(unique(vccon$phi)) - sum(phi.fix), 0) } ll.ML <- fitcall$llvals[1] ll.REML <- fitcall$llvals[2] if (allvipos) { dev.ML <- -2 * (ll.ML - ll.QE) } else { dev.ML <- -2 * ll.ML } AIC.ML <- -2 * ll.ML + 2*parms BIC.ML <- -2 * ll.ML + parms * log(k) AICc.ML <- -2 * ll.ML + 2*parms * max(k, parms+2) / (max(k, parms+2) - parms - 1) dev.REML <- -2 * (ll.REML - 0) # saturated model has ll = 0 when using the full REML likelihood AIC.REML <- -2 * ll.REML + 2*parms BIC.REML <- -2 * ll.REML + parms * log(k-p) AICc.REML <- -2 * ll.REML + 2*parms * max(k-p, parms+2) / (max(k-p, parms+2) - parms - 1) fit.stats <- matrix(c(ll.ML, dev.ML, AIC.ML, BIC.ML, AICc.ML, ll.REML, dev.REML, AIC.REML, BIC.REML, AICc.REML), ncol=2, byrow=FALSE) dimnames(fit.stats) <- list(c("ll","dev","AIC","BIC","AICc"), c("ML","REML")) fit.stats <- data.frame(fit.stats) ######################################################################### ### replace interaction() notation with : notation for nicer output (also for paste() and paste0()) replfun <- function(x) { if (grepl("interaction(", x, fixed=TRUE) || grepl("paste(", x, fixed=TRUE) || grepl("paste0(", x, fixed=TRUE)) { #x <- gsub("^interaction\\(", "", x) #x <- gsub(", ", ":", x, fixed=TRUE) #x <- gsub("\\)$", "", x, fixed=FALSE) #x <- gsub("(.*)interaction\\(\\s*(.*)\\s*,\\s*(.*)\\s*\\)(.*)", "\\1(\\2:\\3)\\4", x) #x <- gsub("interaction\\((.*)\\s*,\\s*(.*)\\)", "(\\1:\\2)", x) x <- gsub("interaction\\((.*)\\)", "(\\1)", x) x <- gsub("paste[0]?\\((.*)\\)", "(\\1)", x) x <- gsub(",", ":", x, fixed=TRUE) x <- gsub(" ", "", x, fixed=TRUE) x <- gsub("^\\((.*)\\)$", "\\1", x) # if a name is "(...)", then can remove the () } return(x) } s.names <- sapply(s.names, replfun) g.names <- sapply(g.names, replfun) h.names <- sapply(h.names, replfun) ############################################################################ ###### prepare output if (verbose > 1) message(mstyle$message("Preparing output ...")) p.eff <- p k.eff <- k weighted <- TRUE if (is.null(ddd$outlist) || ddd$outlist == "nodata") { res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, sigma2=sigma2, tau2=tau2, rho=rho, gamma2=gamma2, phi=phi, QE=QE, QEdf=QEdf, QEp=QEp, QM=QM, QMdf=QMdf, QMp=QMp, k=k, k.f=k.f, k.eff=k.eff, k.all=k.all, p=p, p.eff=p.eff, parms=parms, int.only=int.only, int.incl=int.incl, intercept=intercept, allvipos=allvipos, coef.na=coef.na, yi=yi, vi=vi, V=V, W=A, X=X, yi.f=yi.f, vi.f=vi.f, V.f=V.f, X.f=X.f, W.f=W.f, ni=ni, ni.f=ni.f, M=M, G=G, H=H, hessian=hessian, vvc=vvc, vccon=vccon, chksumyi=digest::digest(as.vector(yi)), chksumV=digest::digest(as.matrix(V)), chksumX=digest::digest(X), ids=ids, not.na=not.na, subset=subset, slab=slab, slab.null=slab.null, measure=measure, method=method, weighted=weighted, optbeta=optbeta, test=test, dfs=dfs, ddf=ddf, s2w=s2w, btt=btt, m=m, digits=digits, level=level, sparse=sparse, dist=ddd$dist, control=control, verbose=verbose, fit.stats=fit.stats, vc.fix=vc.fix, withS=withS, withG=withG, withH=withH, withR=withR, formulas=formulas, sigma2s=sigma2s, tau2s=tau2s, rhos=rhos, gamma2s=gamma2s, phis=phis, s.names=s.names, g.names=g.names, h.names=h.names, s.levels=s.levels, s.levels.f=s.levels.f, s.nlevels=s.nlevels, s.nlevels.f=s.nlevels.f, g.nlevels.f=g.nlevels.f, g.nlevels=g.nlevels, h.nlevels.f=h.nlevels.f, h.nlevels=h.nlevels, g.levels.f=g.levels.f, g.levels.k=g.levels.k, g.levels.comb.k=g.levels.comb.k, h.levels.f=h.levels.f, h.levels.k=h.levels.k, h.levels.comb.k=h.levels.comb.k, struct=struct, Rfix=Rfix, R=R, Rscale=Rscale, mf.r=mf.r, mf.s=mf.s, mf.g=mf.g, mf.g.f=mf.g.f, mf.h=mf.h, mf.h.f=mf.h.f, Z.S=Z.S, Z.G1=Z.G1, Z.G2=Z.G2, Z.H1=Z.H1, Z.H2=Z.H2, formula.yi=formula.yi, formula.mods=formula.mods, random=random, version=packageVersion("metafor"), call=mf) if (is.null(ddd$outlist)) res <- append(res, list(data=data), which(names(res) == "fit.stats")) } else { if (ddd$outlist == "minimal") { res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, sigma2=sigma2, tau2=tau2, rho=rho, gamma2=gamma2, phi=phi, QE=QE, QEdf=QEdf, QEp=QEp, QM=QM, QMdf=QMdf, QMp=QMp, k=k, k.f=k.f, k.eff=k.eff, k.all=k.all, p=p, p.eff=p.eff, parms=parms, int.only=int.only, int.incl=int.incl, intercept=intercept, chksumyi=digest::digest(as.vector(yi)), chksumV=digest::digest(as.matrix(V)), chksumX=digest::digest(X), measure=measure, method=method, weighted=weighted, optbeta=optbeta, test=test, dfs=dfs, ddf=ddf, btt=btt, m=m, digits=digits, level=level, fit.stats=fit.stats, vc.fix=vc.fix, withS=withS, withG=withG, withH=withH, withR=withR, s.names=s.names, g.names=g.names, h.names=h.names, s.nlevels=s.nlevels, g.nlevels.f=g.nlevels.f, g.nlevels=g.nlevels, h.nlevels.f=h.nlevels.f, h.nlevels=h.nlevels, g.levels.f=g.levels.f, g.levels.k=g.levels.k, g.levels.comb.k=g.levels.comb.k, h.levels.f=h.levels.f, h.levels.k=h.levels.k, h.levels.comb.k=h.levels.comb.k, struct=struct, Rfix=Rfix) } else { res <- eval(str2lang(paste0("list(", ddd$outlist, ")"))) } } time.end <- proc.time() res$time <- unname(time.end - time.start)[3] if (.isTRUE(ddd$time)) .print.time(res$time) if (verbose || .isTRUE(ddd$time)) cat("\n") class(res) <- c("rma.mv", "rma") return(res) } metafor/R/print.hc.rma.uni.r0000644000176200001440000000166714515471000015377 0ustar liggesusersprint.hc.rma.uni <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="hc.rma.uni") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) res.table <- data.frame(method = c(x$method.rma, x$method), tau2 = fmtx(c(x$tau2.rma, x$tau2), digits[["var"]]), estimate = fmtx(c(x$beta.rma, x$beta), digits[["est"]]), se = fmtx(c(x$se.rma, x$se), digits[["se"]]), ci.lb = fmtx(c(x$ci.lb.rma, x$ci.lb), digits[["ci"]]), ci.ub = fmtx(c(x$ci.ub.rma, x$ci.ub), digits[["ci"]]), stringsAsFactors=FALSE) if (is.na(x$se[1])) res.table$se <- NULL rownames(res.table) <- c("rma", "hc") .space() tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE)) .print.table(tmp, mstyle) .space() invisible(res.table) } metafor/R/zzz.r0000644000176200001440000000705214744452016013143 0ustar liggesusers.onAttach <- function(libname, pkgname) { ver <- "4.8-0" loadmsg <- paste0("\nLoading the 'metafor' package (version ", ver, "). For an\nintroduction to the package please type: help(metafor)\n") installed.ver <- as.numeric(strsplit(gsub("-", ".", ver, fixed=TRUE), ".", fixed=TRUE)[[1]]) # set default options mfopts <- getOption("metafor") if (is.null(mfopts) || !is.list(mfopts)) { options("metafor" = list(check=TRUE, silent=FALSE, space=TRUE, theme="default")) } else { if (is.null(mfopts$check)) mfopts$check <- TRUE if (is.null(mfopts$silent)) mfopts$silent <- FALSE if (is.null(mfopts$space)) mfopts$space <- TRUE if (is.null(mfopts$theme)) mfopts$theme <- "default" options("metafor" = mfopts) } # only run version check in an interactive session and if METAFOR_VERSION_CHECK is not FALSE verchk <- tolower(Sys.getenv("METAFOR_VERSION_CHECK")) # "" if unset checkopt <- getOption("metafor")$check if (!is.null(checkopt)) { if (is.logical(checkopt) && isFALSE(checkopt)) verchk <- "false" if (is.character(checkopt) && isTRUE(checkopt == "devel")) verchk <- "devel" } if (interactive() && verchk != "false") { #print("Version check ...") if (isTRUE(verchk == "devel")) { # pull version number from GitHub tmp <- suppressWarnings(try(readLines("https://raw.githubusercontent.com/wviechtb/metafor/master/DESCRIPTION", n=2), silent=TRUE)) if (!inherits(tmp, "try-error") && length(tmp) == 2L) { available.ver <- tmp[2] if (!is.na(available.ver) && length(available.ver) != 0L) available.ver <- substr(available.ver, 10, nchar(available.ver)) # strip 'Version: ' part } } else { # pull version number from CRAN tmp <- suppressWarnings(try(readLines("https://cran.r-project.org/web/packages/metafor/index.html"), silent=TRUE)) if (!inherits(tmp, "try-error")) { available.ver <- tmp[grep("Version:", tmp, fixed=TRUE) + 1] if (!is.na(available.ver) && length(available.ver) != 0L) available.ver <- substr(available.ver, 5, nchar(available.ver)-5) # strip and } } if (!inherits(tmp, "try-error")) { save.ver <- available.ver # need this below is message available.ver <- as.numeric(strsplit(gsub("-", ".", available.ver), ".", fixed=TRUE)[[1]]) installed.ver <- 100000 * installed.ver[1] + 1000 * installed.ver[2] + installed.ver[3] available.ver <- 100000 * available.ver[1] + 1000 * available.ver[2] + available.ver[3] if (isTRUE(installed.ver < available.ver)) { loadmsg <- paste0(loadmsg, "\nAn updated version of the package (version ", save.ver, ") is available!\nTo update to this version type: ") if (isTRUE(verchk == "devel")) { loadmsg <- paste0(loadmsg, "remotes::install_github(\"wviechtb/metafor\")\n") } else { loadmsg <- paste0(loadmsg, "install.packages(\"metafor\")\n") } } } } options("pboptions" = list( type = if (interactive()) "timer" else "none", char = "=", txt.width = 50, gui.width = 300, style = 3, initial = 0, title = "Progress Bar", label = "", nout = 100L, min_time = 2, use_lb = FALSE)) if (isFALSE(getOption("metafor")$silent)) packageStartupMessage(loadmsg, domain=NULL, appendLF=TRUE) } .metafor <- new.env() metafor/R/confint.rma.glmm.r0000644000176200001440000000025714515470361015456 0ustar liggesusersconfint.rma.glmm <- function(object, parm, level, digits, transf, targs, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.glmm", notav="rma.glmm") } metafor/R/rma.mh.r0000644000176200001440000006256714701455117013502 0ustar liggesusersrma.mh <- function(ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, measure="OR", data, slab, subset, add=1/2, to="only0", drop00=TRUE, # for add/to/drop00, 1st element for escalc(), 2nd for MH method correct=TRUE, level=95, verbose=FALSE, digits, ...) { ######################################################################### ###### setup mstyle <- .get.mstyle() ### check argument specifications if (!is.element(measure, c("OR","RR","RD","IRR","IRD"))) stop(mstyle$stop("Mantel-Haenszel method can only be used with measures OR, RR, RD, IRR, and IRD.")) if (length(add) == 1L) add <- c(add, 0) if (length(add) != 2L) stop(mstyle$stop("Argument 'add' should specify one or two values (see 'help(rma.mh)').")) if (length(to) == 1L) to <- c(to, "none") if (length(to) != 2L) stop(mstyle$stop("Argument 'to' should specify one or two values (see 'help(rma.mh)').")) if (length(drop00) == 1L) drop00 <- c(drop00, FALSE) if (length(drop00) != 2L) stop(mstyle$stop("Argument 'drop00' should specify one or two values (see 'help(rma.mh)').")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (!is.element(to[1], c("all","only0","if0all","none"))) stop(mstyle$stop("Unknown 'to' argument specified.")) if (!is.element(to[2], c("all","only0","if0all","none"))) stop(mstyle$stop("Unknown 'to' argument specified.")) time.start <- proc.time() ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("outlist", "onlyo1", "addyi", "addvi", "time")) ### set defaults or get onlyo1, addyi, and addvi arguments onlyo1 <- .chkddd(ddd$onlyo1, FALSE) addyi <- .chkddd(ddd$addyi, TRUE) addvi <- .chkddd(ddd$addvi, TRUE) ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } ### set options(warn=1) if verbose > 2 if (verbose > 2) { opwarn <- options(warn=1) on.exit(options(warn=opwarn$warn), add=TRUE) } ######################################################################### if (verbose) .space() if (verbose) message(mstyle$message("Extracting the data and computing yi/vi values ...")) ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() ### extract slab and subset values, possibly from the data frame specified via data (arguments not specified are NULL) slab <- .getx("slab", mf=mf, data=data) subset <- .getx("subset", mf=mf, data=data) ######################################################################### ### for RR, OR, and RD: extract/calculate ai,bi,ci,di,n1i,n2i values if (is.element(measure, c("RR","OR","RD"))) { x1i <- x2i <- t1i <- t2i <- NA_real_ ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) if (is.null(bi)) bi <- n1i - ai if (is.null(di)) di <- n2i - ci ni <- ai + bi + ci + di k <- length(ai) # number of outcomes before subsetting k.all <- k if (length(ai)==0L || length(bi)==0L || length(ci)==0L || length(di)==0L) stop(mstyle$stop("Must specify arguments ai, bi, ci, di (or ai, ci, n1i, n2i) for this measure.")) ids <- seq_len(k) ### generate study labels if none are specified if (verbose) message(mstyle$message("Generating/extracting the study labels ...")) if (is.null(slab)) { slab.null <- TRUE slab <- ids } else { if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the dataset (", k, ")."))) if (is.factor(slab)) slab <- as.character(slab) slab.null <- FALSE } ### if a subset of studies is specified if (!is.null(subset)) { if (verbose) message(mstyle$message("Subsetting ...")) subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) di <- .getsubset(di, subset) ni <- .getsubset(ni, subset) slab <- .getsubset(slab, subset) ids <- .getsubset(ids, subset) k <- length(ai) } ### check if study labels are unique; if not, make them unique if (anyDuplicated(slab)) slab <- .make.unique(slab) ### calculate observed effect estimates and sampling variances dat <- .do.call(escalc, measure=measure, ai=ai, bi=bi, ci=ci, di=di, add=add[1], to=to[1], drop00=drop00[1], onlyo1=onlyo1, addyi=addyi, addvi=addvi) yi <- dat$yi # one or more yi/vi pairs may be NA/NA vi <- dat$vi # one or more yi/vi pairs may be NA/NA ### if drop00[2]=TRUE, set counts to NA for studies that have no events (or all events) in both arms if (drop00[2]) { id00 <- c(ai == 0L & ci == 0L) | c(bi == 0L & di == 0L) id00[is.na(id00)] <- FALSE ai[id00] <- NA_real_ bi[id00] <- NA_real_ ci[id00] <- NA_real_ di[id00] <- NA_real_ } ### save the actual cell frequencies and yi/vi values (including potential NAs) outdat.f <- list(ai=ai, bi=bi, ci=ci, di=di) yi.f <- yi vi.f <- vi ni.f <- ni k.f <- k # total number of tables including all NAs ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) not.na <- !has.na if (any(has.na)) { if (verbose) message(mstyle$message("Handling NAs in the table data ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] k <- length(ai) warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from model fitting.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### check for NAs in yi/vi and act accordingly yivi.na <- is.na(yi) | is.na(vi) not.na.yivi <- !yivi.na if (any(yivi.na)) { if (verbose) message(mstyle$message("Handling NAs in yi/vi ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na.yivi] vi <- vi[not.na.yivi] ni <- ni[not.na.yivi] warning(mstyle$warning("Some yi/vi values are NA."), call.=FALSE) attr(yi, "measure") <- measure # add measure attribute back attr(yi, "ni") <- ni # add ni attribute back } if (na.act == "na.fail") stop(mstyle$stop("Missing yi/vi values.")) } k.yi <- length(yi) # number of yi/vi pairs that are not NA (needed for QE df and fit.stats calculation) ### add/to procedures for the 2x2 tables for the actual meta-analysis ### note: technically, nothing needs to be added, but Stata/RevMan add 1/2 by default for only0 studies (but drop studies with no/all events) if (to[2] == "all") { ### always add to all cells in all studies ai <- ai + add[2] bi <- bi + add[2] ci <- ci + add[2] di <- di + add[2] } if (to[2] == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(ai == 0L | bi == 0L | ci == 0L | di == 0L) ai[id0] <- ai[id0] + add[2] bi[id0] <- bi[id0] + add[2] ci[id0] <- ci[id0] + add[2] di[id0] <- di[id0] + add[2] } if (to[2] == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(ai == 0L | bi == 0L | ci == 0L | di == 0L) if (any(id0)) { ai <- ai + add[2] bi <- bi + add[2] ci <- ci + add[2] di <- di + add[2] } } n1i <- ai + bi n2i <- ci + di Ni <- ai + bi + ci + di } ######################################################################### ### for IRR and IRD: extract/calculate x1i,x2i,t1i,t2i values if (is.element(measure, c("IRR","IRD"))) { ai <- bi <- ci <- di <- NA_real_ x1i <- .getx("x1i", mf=mf, data=data, checknumeric=TRUE) x2i <- .getx("x2i", mf=mf, data=data, checknumeric=TRUE) t1i <- .getx("t1i", mf=mf, data=data, checknumeric=TRUE) t2i <- .getx("t2i", mf=mf, data=data, checknumeric=TRUE) ni <- t1i + t2i k <- length(x1i) # number of outcomes before subsetting k.all <- k if (length(x1i)==0L || length(x2i)==0L || length(t1i)==0L || length(t2i)==0L) stop(mstyle$stop("Must specify arguments x1i, x2i, t1i, t2i for this measure.")) ids <- seq_len(k) ### generate study labels if none are specified if (verbose) message(mstyle$message("Generating/extracting the study labels ...")) if (is.null(slab)) { slab.null <- TRUE slab <- ids } else { if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the dataset (", k, ")."))) slab.null <- FALSE } ### if a subset of studies is specified if (!is.null(subset)) { if (verbose) message(mstyle$message("Subsetting ...")) subset <- .chksubset(subset, k) x1i <- .getsubset(x1i, subset) x2i <- .getsubset(x2i, subset) t1i <- .getsubset(t1i, subset) t2i <- .getsubset(t2i, subset) ni <- .getsubset(ni, subset) slab <- .getsubset(slab, subset) ids <- .getsubset(ids, subset) k <- length(x1i) } ### check if study labels are unique; if not, make them unique if (anyDuplicated(slab)) slab <- .make.unique(slab) ### calculate observed effect estimates and sampling variances dat <- .do.call(escalc, measure=measure, x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, add=add[1], to=to[1], drop00=drop00[1], onlyo1=onlyo1, addyi=addyi, addvi=addvi) yi <- dat$yi # one or more yi/vi pairs may be NA/NA vi <- dat$vi # one or more yi/vi pairs may be NA/NA ### if drop00[2]=TRUE, set counts to NA for studies that have no events in both arms if (drop00[2]) { id00 <- c(x1i == 0L & x2i == 0L) id00[is.na(id00)] <- FALSE x1i[id00] <- NA_real_ x2i[id00] <- NA_real_ } ### save the actual cell frequencies and yi/vi values (including potential NAs) outdat.f <- list(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i) yi.f <- yi vi.f <- vi ni.f <- ni k.f <- k # total number of tables including all NAs ### check for NAs in table data and act accordingly has.na <- is.na(x1i) | is.na(x2i) | is.na(t1i) | is.na(t2i) not.na <- !has.na if (any(has.na)) { if (verbose) message(mstyle$message("Handling NAs in the table data ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { x1i <- x1i[not.na] x2i <- x2i[not.na] t1i <- t1i[not.na] t2i <- t2i[not.na] k <- length(x1i) warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from model fitting.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### check for NAs in yi/vi and act accordingly yivi.na <- is.na(yi) | is.na(vi) not.na.yivi <- !yivi.na if (any(yivi.na)) { if (verbose) message(mstyle$message("Handling NAs in yi/vi ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na.yivi] vi <- vi[not.na.yivi] ni <- ni[not.na.yivi] warning(mstyle$warning("Some yi/vi values are NA."), call.=FALSE) attr(yi, "measure") <- measure # add measure attribute back attr(yi, "ni") <- ni # add ni attribute back } if (na.act == "na.fail") stop(mstyle$stop("Missing yi/vi values.")) } k.yi <- length(yi) # number of yi/vi pairs that are not NA (needed for QE df and fitstats calculation) ### add/to procedures for the 2x2 tables for the actual meta-analysis ### note: technically, nothing needs to be added if (to[2] == "all") { ### always add to all cells in all studies x1i <- x1i + add[2] x2i <- x2i + add[2] } if (to[2] == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(x1i == 0L | x2i == 0L) x1i[id0] <- x1i[id0] + add[2] x2i[id0] <- x2i[id0] + add[2] } if (to[2] == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(x1i == 0L | x2i == 0L) if (any(id0)) { x1i <- x1i + add[2] x2i <- x2i + add[2] } } Ti <- t1i + t2i } ######################################################################### level <- .level(level) CO <- COp <- MH <- MHp <- BD <- BDp <- TA <- TAp <- NA_real_ k.pos <- NA_integer_ ###### model fitting, test statistics, and confidence intervals if (verbose) message(mstyle$message("Model fitting ...")) if (measure == "OR") { Pi <- ai/Ni + di/Ni Qi <- bi/Ni + ci/Ni Ri <- (ai/Ni) * di Si <- (bi/Ni) * ci R <- sum(Ri) S <- sum(Si) if (identical(R,0) || identical(S,0) || identical(R,0L) || identical(S,0L)) { beta.exp <- NA_real_ beta <- NA_real_ se <- NA_real_ zval <- NA_real_ pval <- NA_real_ ci.lb <- NA_real_ ci.ub <- NA_real_ } else { beta.exp <- R/S beta <- log(beta.exp) se <- sqrt(1/2 * (sum(Pi*Ri)/R^2 + sum(Pi*Si + Qi*Ri)/(R*S) + sum(Qi*Si)/S^2)) # based on Robins et al. (1986) zval <- beta / se pval <- 2*pnorm(abs(zval), lower.tail=FALSE) ci.lb <- beta - qnorm(level/2, lower.tail=FALSE) * se ci.ub <- beta + qnorm(level/2, lower.tail=FALSE) * se } names(beta) <- "intrcpt" vb <- matrix(se^2, dimnames=list("intrcpt", "intrcpt")) ### Cochran and Cochran-Mantel-Haenszel Statistics xt <- ai + ci yt <- bi + di if (identical(sum(xt),0) || identical(sum(yt),0) || identical(sum(xt),0L) || identical(sum(yt),0L)) { CO <- NA_real_ COp <- NA_real_ MH <- NA_real_ MHp <- NA_real_ } else { CO <- (abs(sum(ai - (n1i/Ni)*xt)) - ifelse(correct, 0.5, 0))^2 / sum((n1i/Ni)*(n2i/Ni)*(xt*(yt/Ni))) COp <- pchisq(CO, df=1, lower.tail=FALSE) MH <- (abs(sum(ai - (n1i/Ni)*xt)) - ifelse(correct, 0.5, 0))^2 / sum((n1i/Ni)*(n2i/Ni)*(xt*(yt/(Ni-1)))) MHp <- pchisq(MH, df=1, lower.tail=FALSE) } ### Breslow-Day and Tarone's Test for Heterogeneity if (is.na(beta)) { BD <- NA_real_ TA <- NA_real_ BDp <- NA_real_ TAp <- NA_real_ k.pos <- 0L } else { if (identical(beta.exp,1) || identical(beta.exp,1L)) { N11 <- (n1i/Ni)*xt } else { A <- beta.exp * (n1i + xt) + (n2i - xt) B <- sqrt(A^2 - 4*n1i*xt*beta.exp*(beta.exp-1)) N11 <- (A-B) / (2*(beta.exp-1)) } pos <- (N11 > 0) & (xt > 0) & (yt > 0) k.pos <- sum(pos) N11 <- N11[pos] N12 <- n1i[pos] - N11 N21 <- xt[pos] - N11 N22 <- N11 - n1i[pos] - xt[pos] + Ni[pos] BD <- max(0, sum((ai[pos]-N11)^2 / (1/N11 + 1/N12 + 1/N21 + 1/N22)^(-1))) TA <- max(0, BD - sum(ai[pos]-N11)^2 / sum((1/N11 + 1/N12 + 1/N21 + 1/N22)^(-1))) if (k.pos > 1L) { BDp <- pchisq(BD, df=k.pos-1L, lower.tail=FALSE) TAp <- pchisq(TA, df=k.pos-1L, lower.tail=FALSE) } else { BDp <- NA_real_ TAp <- NA_real_ } } } if (measure == "RR") { R <- sum(ai * (n2i/Ni)) S <- sum(ci * (n1i/Ni)) if (identical(sum(ai),0) || identical(sum(ci),0) || identical(sum(ai),0L) || identical(sum(ci),0L)) { beta.exp <- NA_real_ beta <- NA_real_ se <- NA_real_ zval <- NA_real_ pval <- NA_real_ ci.lb <- NA_real_ ci.ub <- NA_real_ } else { beta.exp <- R/S beta <- log(beta.exp) se <- sqrt(sum(((n1i/Ni)*(n2i/Ni)*(ai+ci) - (ai/Ni)*ci)) / (R*S)) zval <- beta / se pval <- 2*pnorm(abs(zval), lower.tail=FALSE) ci.lb <- beta - qnorm(level/2, lower.tail=FALSE) * se ci.ub <- beta + qnorm(level/2, lower.tail=FALSE) * se } names(beta) <- "intrcpt" vb <- matrix(se^2, dimnames=list("intrcpt", "intrcpt")) } if (measure == "RD") { beta <- sum(ai*(n2i/Ni) - ci*(n1i/Ni)) / sum(n1i*(n2i/Ni)) se <- sqrt((beta * (sum(ci*(n1i/Ni)^2 - ai*(n2i/Ni)^2 + (n1i/Ni)*(n2i/Ni)*(n2i-n1i)/2)) + sum(ai*(n2i-ci)/Ni + ci*(n1i-ai)/Ni)/2) / sum(n1i*(n2i/Ni))^2) # equation in: Sato, Greenland, & Robins (1989) #se <- sqrt(sum(((ai/Ni^2)*bi*(n2i^2/n1i) + (ci/Ni^2)*di*(n1i^2/n2i))) / sum(n1i*(n2i/Ni))^2) # equation in: Greenland & Robins (1985) zval <- beta / se pval <- 2*pnorm(abs(zval), lower.tail=FALSE) ci.lb <- beta - qnorm(level/2, lower.tail=FALSE) * se ci.ub <- beta + qnorm(level/2, lower.tail=FALSE) * se names(beta) <- "intrcpt" vb <- matrix(se^2, dimnames=list("intrcpt", "intrcpt")) } if (measure == "IRR") { R <- sum(x1i * (t2i/Ti)) S <- sum(x2i * (t1i/Ti)) if (identical(sum(x1i),0) || identical(sum(x2i),0) || identical(sum(x1i),0L) || identical(sum(x2i),0L)) { beta.exp <- NA_real_ beta <- NA_real_ se <- NA_real_ zval <- NA_real_ pval <- NA_real_ ci.lb <- NA_real_ ci.ub <- NA_real_ } else { beta.exp <- R/S beta <- log(beta.exp) se <- sqrt(sum((t1i/Ti)*(t2i/Ti)*(x1i+x2i)) / (R*S)) zval <- beta / se pval <- 2*pnorm(abs(zval), lower.tail=FALSE) ci.lb <- beta - qnorm(level/2, lower.tail=FALSE) * se ci.ub <- beta + qnorm(level/2, lower.tail=FALSE) * se } names(beta) <- "intrcpt" vb <- matrix(se^2, dimnames=list("intrcpt", "intrcpt")) ### Mantel-Haenszel Statistic xt <- x1i + x2i if (identical(sum(xt),0) || identical(sum(xt),0L)) { MH <- NA_real_ MHp <- NA_real_ } else { MH <- (abs(sum(x1i - xt*(t1i/Ti))) - ifelse(correct, 0.5, 0))^2 / sum(xt*(t1i/Ti)*(t2i/Ti)) MHp <- pchisq(MH, df=1, lower.tail=FALSE) } } if (measure == "IRD") { beta <- sum((x1i*t2i - x2i*t1i)/Ti) / sum((t1i/Ti)*t2i) se <- sqrt(sum(((t1i/Ti)*t2i)^2*(x1i/t1i^2+x2i/t2i^2))) / sum((t1i/Ti)*t2i) # from Rothland et al. (2008), chapter 15 zval <- beta / se pval <- 2*pnorm(abs(zval), lower.tail=FALSE) ci.lb <- beta - qnorm(level/2, lower.tail=FALSE) * se ci.ub <- beta + qnorm(level/2, lower.tail=FALSE) * se names(beta) <- "intrcpt" vb <- matrix(se^2, dimnames=list("intrcpt", "intrcpt")) } ######################################################################### ### heterogeneity test (inverse variance method) if (verbose) message(mstyle$message("Heterogeneity testing ...")) wi <- 1/vi if (k.yi > 1) { QE <- max(0, sum(wi*(yi-beta)^2)) QEp <- pchisq(QE, df=k.yi-1, lower.tail=FALSE) I2 <- max(0, 100 * (QE - (k.yi-1)) / QE) H2 <- QE / (k.yi-1) } else { QE <- 0 QEp <- 1 I2 <- 0 H2 <- 1 } ######################################################################### ###### fit statistics if (verbose) message(mstyle$message("Computing the fit statistics and log-likelihood ...")) if (k.yi >= 1) { ll.ML <- -1/2 * (k.yi) * log(2*base::pi) - 1/2 * sum(log(vi)) - 1/2 * QE ll.REML <- -1/2 * (k.yi-1) * log(2*base::pi) + 1/2 * log(k.yi) - 1/2 * sum(log(vi)) - 1/2 * log(sum(wi)) - 1/2 * QE if (any(vi <= 0)) { dev.ML <- -2 * ll.ML } else { dev.ML <- -2 * (ll.ML - sum(dnorm(yi, mean=yi, sd=sqrt(vi), log=TRUE))) } AIC.ML <- -2 * ll.ML + 2 BIC.ML <- -2 * ll.ML + log(k.yi) AICc.ML <- -2 * ll.ML + 2 * max(k.yi, 3) / (max(k.yi, 3) - 2) dev.REML <- -2 * (ll.REML - 0) AIC.REML <- -2 * ll.REML + 2 BIC.REML <- -2 * ll.REML + log(k.yi-1) AICc.REML <- -2 * ll.REML + 2 * max(k.yi-1, 3) / (max(k.yi-1, 3) - 2) fit.stats <- matrix(c(ll.ML, dev.ML, AIC.ML, BIC.ML, AICc.ML, ll.REML, dev.REML, AIC.REML, BIC.REML, AICc.REML), ncol=2, byrow=FALSE) } else { fit.stats <- matrix(NA_real_, nrow=5, ncol=2, byrow=FALSE) } dimnames(fit.stats) <- list(c("ll","dev","AIC","BIC","AICc"), c("ML","REML")) fit.stats <- data.frame(fit.stats) ######################################################################### ###### prepare output if (verbose) message(mstyle$message("Preparing the output ...")) parms <- 1 p <- 1 p.eff <- 1 k.eff <- k tau2 <- 0 X.f <- cbind(rep(1,k.f)) intercept <- TRUE int.only <- TRUE btt <- 1 m <- 1 coef.na <- c(X=FALSE) method <- "FE" weighted <- TRUE test <- "z" ddf <- NA_integer_ if (is.null(ddd$outlist) || ddd$outlist == "nodata") { outdat <- list(ai=ai, bi=bi, ci=ci, di=di, x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i) res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, tau2=tau2, tau2.f=tau2, I2=I2, H2=H2, QE=QE, QEp=QEp, CO=CO, COp=COp, MH=MH, MHp=MHp, BD=BD, BDp=BDp, TA=TA, TAp=TAp, k=k, k.f=k.f, k.yi=k.yi, k.pos=k.pos, k.eff=k.eff, k.all=k.all, p=p, p.eff=p.eff, parms=parms, int.only=int.only, intercept=intercept, coef.na=coef.na, yi=yi, vi=vi, yi.f=yi.f, vi.f=vi.f, X.f=X.f, chksumyi=digest::digest(as.vector(yi)), chksumvi=digest::digest(as.vector(vi)), outdat.f=outdat.f, outdat=outdat, ni=ni, ni.f=ni.f, ids=ids, not.na=not.na, subset=subset, not.na.yivi=not.na.yivi, slab=slab, slab.null=slab.null, measure=measure, method=method, weighted=weighted, test=test, ddf=ddf, dfs=ddf, btt=btt, m=m, digits=digits, level=level, add=add, to=to, drop00=drop00, correct=correct, fit.stats=fit.stats, formula.yi=NULL, formula.mods=NULL, version=packageVersion("metafor"), call=mf) if (is.null(ddd$outlist)) res <- append(res, list(data=data), which(names(res) == "fit.stats")) } else { if (ddd$outlist == "minimal") { res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, tau2=tau2, I2=I2, H2=H2, QE=QE, QEp=QEp, CO=CO, COp=COp, MH=MH, MHp=MHp, BD=BD, BDp=BDp, TA=TA, TAp=TAp, k=k, k.f=k.f, k.yi=k.yi, k.pos=k.pos, k.eff=k.eff, p=p, p.eff=p.eff, parms=parms, int.only=int.only, intercept=intercept, chksumyi=digest::digest(as.vector(yi)), chksumvi=digest::digest(as.vector(vi)), measure=measure, method=method, test=test, ddf=ddf, dfs=ddf, btt=btt, m=m, digits=digits, level=level, fit.stats=fit.stats) } else { res <- eval(str2lang(paste0("list(", ddd$outlist, ")"))) } } time.end <- proc.time() res$time <- unname(time.end - time.start)[3] if (.isTRUE(ddd$time)) .print.time(res$time) if (verbose || .isTRUE(ddd$time)) cat("\n") class(res) <- c("rma.mh", "rma") return(res) } metafor/R/metafor.news.r0000644000176200001440000000006613457322061014710 0ustar liggesusersmetafor.news <- function() news(package="metafor") metafor/R/print.summary.rma.r0000644000176200001440000000104014515471056015704 0ustar liggesusersprint.summary.rma <- function(x, digits=x$digits, showfit=TRUE, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="summary.rma") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) ### strip summary.rma class from object (otherwise get recursion) class(x) <- class(x)[-1] ### print with showfit=TRUE print(x, digits=digits, showfit=showfit, signif.stars=signif.stars, signif.legend=signif.legend, ...) invisible() } metafor/R/nobs.rma.r0000644000176200001440000000107214640760317014022 0ustar liggesusersnobs.rma <- function(object, all=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") if (all) { n.obs <- c(studies = object$k, data = object$k.all, subset = sum(object$subset), not.na = sum(object$not.na), effective = object$k.eff, df.residual = object$k.eff - object$p.eff) } else { #n.obs <- object$k.eff - ifelse(object$method == "REML", 1, 0) * object$p.eff n.obs <- object$k } return(n.obs) } metafor/R/print.fsn.r0000644000176200001440000000607614515470773014242 0ustar liggesusersprint.fsn <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="fsn") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) .space() cat(mstyle$section(paste("Fail-safe N Calculation Using the", x$type, "Approach"))) cat("\n\n") if (x$type == "Rosenthal" || x$type == "Binomial") { cat(mstyle$text("Observed Significance Level: ")) cat(mstyle$result(fmtp(x$pval, digits[["pval"]]))) cat("\n") cat(mstyle$text("Target Significance Level: ")) cat(mstyle$result(round(x$alpha, digits[["pval"]]))) } if (x$type == "Orwin") { cat(mstyle$text("Average Effect Size: ")) cat(mstyle$result(fmtx(x$est, digits[["est"]]))) cat("\n") cat(mstyle$text("Target Effect Size: ")) cat(mstyle$result(fmtx(x$target, digits[["est"]]))) } if (x$type == "Rosenberg") { flag.left <- ifelse(isTRUE(x$est < 0), " ", "") cat(mstyle$text("Average Effect Size: ")) cat(mstyle$result(fmtx(x$est, digits[["est"]], flag=flag.left))) cat("\n") cat(mstyle$text("Observed Significance Level: ")) cat(flag.left) cat(mstyle$result(fmtp(x$pval, digits[["pval"]]))) cat("\n") cat(mstyle$text("Target Significance Level: ")) cat(flag.left) cat(mstyle$result(round(x$alpha, digits[["pval"]]))) } if (x$type == "General") { flag.left <- ifelse(isTRUE(x$est < 0), " ", "") flag.right <- ifelse(isTRUE(x$est.fsn < 0), " ", "") cat(mstyle$text("Average Effect Size: ")) cat(mstyle$result(fmtx(x$est, digits[["est"]], flag=flag.left))) if (x$fsnum > 0) { cat(mstyle$text(" (with file drawer: ")) cat(mstyle$result(fmtx(x$est.fsn, digits[["est"]], flag=flag.right))) cat(mstyle$text(")")) } cat("\n") if (!is.element(x$method, c("FE","EE","CE"))) { cat(mstyle$text("Amount of Heterogeneity: ")) cat(mstyle$result(fmtx(x$tau2, digits[["var"]], flag=flag.left))) if (x$fsnum > 0) { cat(mstyle$text(" (with file drawer: ")) cat(mstyle$result(fmtx(x$tau2.fsn, digits[["var"]], flag=flag.right))) cat(mstyle$text(")")) } cat("\n") } cat(mstyle$text("Observed Significance Level: ")) cat(flag.left) cat(mstyle$result(fmtp(x$pval, digits[["pval"]]))) if (x$fsnum > 0) { cat(mstyle$text(" (with file drawer: ")) cat(flag.right) cat(mstyle$result(fmtp(x$pval.fsn, digits[["pval"]]))) cat(mstyle$text(")")) } cat("\n") if (is.na(x$target)) { cat(mstyle$text("Target Significance Level: ")) cat(flag.left) cat(mstyle$result(round(x$alpha, digits[["pval"]]))) } else { cat(mstyle$text("Target Effect Size: ")) cat(mstyle$result(fmtx(x$target, digits[["est"]], , flag=flag.left))) } } cat("\n\n") cat(mstyle$text("Fail-safe N: ")) cat(mstyle$result(paste0(x$ub.sign, x$fsnum))) cat("\n") .space() invisible() } metafor/R/print.rma.glmm.r0000644000176200001440000001576514515471036015164 0ustar liggesusersprint.rma.glmm <- function(x, digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.glmm") if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } ddd <- list(...) .chkdots(ddd, c("num")) .space() if (is.element(x$method, c("FE","EE","CE"))) { if (x$int.only) { cat(mstyle$section(sapply(x$method, switch, "FE"="Fixed-Effects Model", "EE"="Equal-Effects Model", "CE"="Common-Effects Model", USE.NAMES=FALSE))) } else { cat(mstyle$section("Fixed-Effects with Moderators Model")) } cat(mstyle$section(paste0(" (k = ", x$k, ")"))) } else { if (x$int.only) { cat(mstyle$section("Random-Effects Model")) } else { cat(mstyle$section("Mixed-Effects Model")) } cat(mstyle$section(paste0(" (k = ", x$k, "; "))) cat(mstyle$section(paste0("tau^2 estimator: ", x$method, ")"))) } if (is.element(x$measure, c("OR","IRR"))) { cat("\n") if (x$model == "UM.FS") cat(mstyle$section("Model Type: Unconditional Model with Fixed Study Effects")) if (x$model == "UM.RS") cat(mstyle$section("Model Type: Unconditional Model with Random Study Effects")) if (x$model == "CM.AL") cat(mstyle$section("Model Type: Conditional Model with Approximate Likelihood")) if (x$model == "CM.EL") cat(mstyle$section("Model Type: Conditional Model with Exact Likelihood")) } if (showfit) { cat("\n") fs <- fmtx(x$fit.stats$ML, digits[["fit"]]) names(fs) <- c("logLik", "deviance", "AIC", "BIC", "AICc") cat("\n") tmp <- capture.output(print(fs, quote=FALSE, print.gap=2)) #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) cat("\n") } else { cat("\n\n") } if (!is.element(x$method, c("FE","EE","CE"))) { if (x$int.only) { cat(mstyle$text("tau^2 (estimated amount of total heterogeneity): ")) cat(mstyle$result(paste0(fmtx(x$tau2, digits[["var"]], thresh=.Machine$double.eps*10), ifelse(is.na(x$se.tau2), "", paste0(" (SE = " , fmtx(x$se.tau2, digits[["sevar"]]), ")"))))) cat("\n") cat(mstyle$text("tau (square root of estimated tau^2 value): ")) cat(mstyle$result(fmtx(.sqrt(x$tau2), digits[["var"]], thresh=.Machine$double.eps*10))) cat("\n") cat(mstyle$text("I^2 (total heterogeneity / total variability): ")) cat(mstyle$result(paste0(fmtx(x$I2, 2), "%"))) cat("\n") cat(mstyle$text("H^2 (total variability / sampling variability): ")) cat(mstyle$result(fmtx(x$H2, 2))) } else { cat(mstyle$text("tau^2 (estimated amount of residual heterogeneity): ")) cat(mstyle$result(paste0(fmtx(x$tau2, digits[["var"]], thresh=.Machine$double.eps*10), ifelse(is.na(x$se.tau2), "", paste0(" (SE = " , fmtx(x$se.tau2, digits[["sevar"]]), ")"))))) cat("\n") cat(mstyle$text("tau (square root of estimated tau^2 value): ")) cat(mstyle$result(fmtx(.sqrt(x$tau2), digits[["var"]], thresh=.Machine$double.eps*10))) cat("\n") cat(mstyle$text("I^2 (residual heterogeneity / unaccounted variability): ")) cat(mstyle$result(paste0(fmtx(x$I2, 2), "%"))) cat("\n") cat(mstyle$text("H^2 (unaccounted variability / sampling variability): ")) cat(mstyle$result(fmtx(x$H2, 2))) } cat("\n\n") } if (!is.na(x$sigma2)) { cat(mstyle$text("sigma^2 (estimated amount of study level variability): ")) cat(mstyle$result(fmtx(x$sigma2, digits[["var"]], thresh=.Machine$double.eps*10))) cat("\n") cat(mstyle$text("sigma (square root of estimated sigma^2 value): ")) cat(mstyle$result(fmtx(.sqrt(x$sigma2), digits[["var"]], thresh=.Machine$double.eps*10))) cat("\n\n") } if (!is.na(x$QE.Wld) || !is.na(x$QE.LRT)) { QE.Wld <- fmtx(x$QE.Wld, digits[["test"]]) QE.LRT <- fmtx(x$QE.LRT, digits[["test"]]) nchar.Wld <- nchar(QE.Wld, keepNA=FALSE) nchar.LRT <- nchar(QE.LRT, keepNA=FALSE) if (nchar.Wld > nchar.LRT) QE.LRT <- paste0(paste(rep(" ", nchar.Wld - nchar.LRT), collapse=""), QE.LRT) if (nchar.LRT > nchar.Wld) QE.Wld <- paste0(paste(rep(" ", nchar.LRT - nchar.Wld), collapse=""), QE.Wld) if (x$int.only) { cat(mstyle$section("Tests for Heterogeneity:")) } else { cat(mstyle$section("Tests for Residual Heterogeneity:")) } cat("\n") cat(mstyle$result(fmtt(x$QE.Wld, "Wld", df=x$QE.df, pval=x$QEp.Wld, digits=digits))) cat("\n") cat(mstyle$result(fmtt(x$QE.LRT, "LRT", df=x$QE.df, pval=x$QEp.LRT, digits=digits))) cat("\n\n") } if (x$p > 1L && !is.na(x$QM)) { cat(mstyle$section(paste0("Test of Moderators (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$btt),"):"))) cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QM, "F", df1=x$QMdf[1], df2=x$QMdf[2], pval=x$QMp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QM, "QM", df=x$QMdf[1], pval=x$QMp, digits=digits))) } cat("\n\n") } if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=fmtx(c(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), tval=fmtx(x$zval, digits[["test"]]), df=round(x$ddf,2), pval=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) } else { res.table <- data.frame(estimate=fmtx(c(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), zval=fmtx(x$zval, digits[["test"]]), pval=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) } rownames(res.table) <- rownames(x$beta) signif <- symnum(x$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } if (.isTRUE(ddd$num)) { width <- nchar(nrow(res.table)) rownames(res.table) <- paste0(formatC(seq_len(nrow(res.table)), format="d", width=width), ") ", rownames(res.table)) } if (x$int.only) res.table <- res.table[1,] cat(mstyle$section("Model Results:")) cat("\n\n") if (x$int.only) { tmp <- capture.output(.print.vector(res.table)) } else { tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) } #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) if (signif.legend) { cat("\n") cat(mstyle$legend("---")) cat("\n") cat(mstyle$legend("Signif. codes: "), mstyle$legend(attr(signif, "legend"))) cat("\n") } .space() invisible() } metafor/R/plot.rma.glmm.r0000644000176200001440000000033214515470735014773 0ustar liggesusersplot.rma.glmm <- function(x, qqplot=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma.glmm", notav="rma.glmm") } metafor/R/methods.confint.rma.r0000644000176200001440000000151014530160543016151 0ustar liggesusers############################################################################ as.data.frame.confint.rma <- function(x, ...) { .chkclass(class(x), must="confint.rma") ddd <- list(...) .chkdots(ddd, c("fixed", "random")) fixed <- .chkddd(ddd$fixed, is.element("fixed", names(x))) random <- .chkddd(ddd$random, is.element("random", names(x))) if (fixed) { df <- x$fixed } else { df <- NULL } if (random && is.element("random", names(x))) df <- rbind(df, x$random) return(df) } as.data.frame.list.confint.rma <- function(x, ...) { .chkclass(class(x), must="list.confint.rma") x$digits <- NULL # remove digits elements df <- lapply(x, as.data.frame) df <- do.call(rbind, df) return(df) } ############################################################################ metafor/R/anova.rma.r0000644000176200001440000007145714672305026014200 0ustar liggesusersanova.rma <- function(object, object2, btt, X, att, Z, rhs, adjust, digits, refit=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma", notap=c("rma.mh", "rma.peto"), notav="rma.glmm") if (missing(digits)) { digits <- .get.digits(xdigits=object$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=object$digits, dmiss=FALSE) } ddd <- list(...) .chkdots(ddd, c("test", "L", "verbose", "fixed", "df", "abbrev")) if (!is.null(ddd$L)) X <- ddd$L fixed <- .chkddd(ddd$fixed, FALSE, .isTRUE(ddd$fixed)) if (!missing(att) && !inherits(object, "rma.ls")) stop(mstyle$stop("Can only specify 'att' for location-scale models.")) if (!missing(Z) && !inherits(object, "rma.ls")) stop(mstyle$stop("Can only specify 'Z' for location-scale models.")) if (missing(adjust)) { adjust <- NULL } else { if (is.logical(adjust)) { if (isTRUE(adjust)) { adjust <- "bonferroni" } else { adjust <- "none" } } adjust <- try(match.arg(adjust, choices=p.adjust.methods), silent=TRUE) if (inherits(adjust, "try-error")) stop(mstyle$stop("Unknown 'adjust' method specified (see help(p.adjust) for options).")) } mf <- match.call() if (any(grepl("pairmat(", as.character(mf), fixed=TRUE))) { try(assign("pairmat", object, envir=.metafor), silent=TRUE) on.exit(suppressWarnings(rm("pairmat", envir=.metafor))) } if (missing(object2)) { ### if only 'object' has been specified, can use function to test one or multiple coefficients ### via the 'btt' (or 'att') argument or one or more linear contrasts of the coefficients via ### the 'X' (or 'Z') argument x <- object if (missing(X) && missing(Z)) { ### if 'X' (and 'Z') has not been specified, then do a Wald-test via the 'btt' argument (can also use 'att' for location-scale models) if (inherits(object, "rma.ls") && !missing(att)) { if (!missing(btt)) stop(mstyle$stop("Can only specify either 'btt' or 'att', but not both.")) ### set/check 'att' argument if (missing(att) || is.null(att)) { att <- x$att } else { if (is.character(att) && length(att) > 1L) att <- as.list(att) if (is.list(att)) { if (!missing(rhs)) stop(mstyle$stop("Cannot use 'rhs' argument when specifying a list for 'att'.")) sav <- lapply(att, function(attj) anova(x, att=attj, digits=digits, fixed=fixed)) if (!is.null(adjust)) { QSp <- sapply(sav, function(x) x$QSp) QSp <- p.adjust(QSp, method=adjust) sav <- mapply(function(x,y) {x$QSp <- y; return(x)}, sav, QSp, SIMPLIFY=FALSE) } names(sav) <- sapply(att, .format.btt) class(sav) <- "list.anova.rma" return(sav) } att <- .set.btt(att, x$q, x$Z.int.incl, colnames(x$Z), fixed=fixed) } m <- length(att) if (missing(rhs)) { rhs <- rep(0, m) } else { rhs <- .expand1(rhs, m) if (length(rhs) != m) stop(mstyle$stop(paste0("Length of 'rhs' (", length(rhs), ") does not match the number of coefficients tested (", m, ")."))) } x$alpha[att,] <- x$alpha[att,] - rhs QS <- try(as.vector(t(x$alpha)[att] %*% chol2inv(chol(x$va[att,att])) %*% x$alpha[att]), silent=TRUE) if (inherits(QS, "try-error")) QS <- NA_real_ if (is.element(x$test, c("knha","adhoc","t"))) { QS <- QS / m QSdf <- c(m, x$QSdf[2]) QSp <- pf(QS, df1=QSdf[1], df2=QSdf[2], lower.tail=FALSE) } else { QSdf <- c(m, NA) QSp <- pchisq(QS, df=QSdf[1], lower.tail=FALSE) } if (!is.null(adjust)) QSp <- p.adjust(QSp, method=adjust) res <- list(QS=QS, QSdf=QSdf, QSp=QSp, att=att, k=x$k, q=x$q, m=m, test=x$test, digits=digits, type="Wald.att") } else { ### set/check 'btt' argument if (missing(btt) || is.null(btt)) { btt <- x$btt } else { if (is.character(btt) && length(btt) > 1L) btt <- as.list(btt) if (is.list(btt)) { if (!missing(rhs)) stop(mstyle$stop("Cannot use 'rhs' argument when specifying a list for 'btt'.")) sav <- lapply(btt, function(bttj) anova(x, btt=bttj, digits=digits, fixed=fixed)) if (!is.null(adjust)) { QMp <- sapply(sav, function(x) x$QMp) QMp <- p.adjust(QMp, method=adjust) sav <- mapply(function(x,y) {x$QMp <- y; return(x)}, sav, QMp, SIMPLIFY=FALSE) } names(sav) <- sapply(btt, .format.btt) class(sav) <- "list.anova.rma" return(sav) } btt <- .set.btt(btt, x$p, x$int.incl, colnames(x$X), fixed=fixed) } m <- length(btt) if (missing(rhs)) { rhs <- rep(0, m) } else { rhs <- .expand1(rhs, m) if (length(rhs) != m) stop(mstyle$stop(paste0("Length of 'rhs' (", length(rhs), ") does not match the number of coefficients tested (", m, ")."))) } x$b[btt,] <- x$beta[btt,] <- x$b[btt,] - rhs if (inherits(x, "robust.rma") && x$robumethod == "clubSandwich") { cs.wald <- try(clubSandwich::Wald_test(x, cluster=x$cluster, vcov=x$vb, test=x$wald_test, constraints=clubSandwich::constrain_zero(btt)), silent=!isTRUE(ddd$verbose)) if (inherits(cs.wald, "try-error")) stop(mstyle$stop("Could not obtain the cluster-robust Wald test (use verbose=TRUE for more details).")) QM <- max(0, cs.wald$Fstat) QMdf <- c(cs.wald$df_num, cs.wald$df_denom) QMp <- cs.wald$p_val } else { #QM <- try(as.vector(t((x$beta)[btt]-rhs) %*% chol2inv(chol(x$vb[btt,btt])) %*% (x$beta[btt]-rhs)), silent=TRUE) QM <- try(as.vector(t(x$beta)[btt] %*% chol2inv(chol(x$vb[btt,btt])) %*% x$beta[btt]), silent=TRUE) if (inherits(QM, "try-error")) QM <- NA_real_ if (is.element(x$test, c("knha","adhoc","t"))) { QM <- QM / m QMdf <- c(m, x$QMdf[2]) QMp <- pf(QM, df1=QMdf[1], df2=QMdf[2], lower.tail=FALSE) } else { QMdf <- c(m, NA_integer_) QMp <- pchisq(QM, df=QMdf[1], lower.tail=FALSE) } } if (!is.null(adjust)) QMp <- p.adjust(QMp, method=adjust) res <- list(QM=QM, QMdf=QMdf, QMp=QMp, btt=btt, k=x$k, p=x$p, m=m, test=x$test, digits=digits, type="Wald.btt", class=class(x)) } } else { if (inherits(object, "rma.ls") && !missing(Z)) { ### if 'Z' has been specified, then do Wald-type test(s) via 'Z' argument if (!missing(X)) stop(mstyle$stop("Can only specify either 'X' or 'Z', but not both.")) if (.is.vector(Z)) Z <- rbind(Z) if (is.data.frame(Z)) Z <- as.matrix(Z) if (is.character(Z)) stop(mstyle$stop("Argument 'Z' must be a numeric vector/matrix.")) ### if model has an intercept term and Z has q-1 columns, assume user left out the intercept and add it automatically if (x$Z.int.incl && ncol(Z) == (x$q-1)) Z <- cbind(1, Z) if (ncol(Z) != x$q) stop(mstyle$stop(paste0("Length or number of columns of 'Z' (", ncol(Z), ") does not match the number of scale coefficients (", x$q, ")."))) m <- nrow(Z) ### specification of the right-hand side if (missing(rhs)) { rhs <- rep(0, m) } else { rhs <- .expand1(rhs, m) if (length(rhs) != m) stop(mstyle$stop(paste0("Length of 'rhs' (", length(rhs), ") does not match the number of linear combinations (", m, ")."))) } ### test of individual hypotheses Za <- Z %*% x$alpha - rhs vZa <- Z %*% x$va %*% t(Z) se <- sqrt(diag(vZa)) zval <- c(Za/se) if (is.element(x$test, c("knha","adhoc","t"))) { pval <- if (x$ddf.alpha > 0) 2*pt(abs(zval), df=x$ddf.alpha, lower.tail=FALSE) else rep(NA_real_,m) } else { pval <- 2*pnorm(abs(zval), lower.tail=FALSE) } ### omnibus test of all hypotheses (only possible if 'Z' is of full rank) QS <- NA_real_ # need this in case QS cannot be calculated below QSp <- NA_real_ # need this in case QSp cannot be calculated below if (rankMatrix(Z) == m) { QS <- try(as.vector(t(Za) %*% chol2inv(chol(vZa)) %*% Za), silent=TRUE) if (inherits(QS, "try-error")) QS <- NA_real_ if (is.element(x$test, c("knha","adhoc","t"))) { QS <- QS / m QSdf <- c(m, x$QSdf[2]) QSp <- if (QSdf[2] > 0) pf(QS, df1=QSdf[1], df2=QSdf[2], lower.tail=FALSE) else NA_real_ } else { QSdf <- c(m, NA_integer_) QSp <- pchisq(QS, df=QSdf[1], lower.tail=FALSE) } } ### create a data frame with each row specifying the linear combination tested hyp <- rep("", m) for (j in seq_len(m)) { Zj <- round(Z[j,], digits[["est"]]) # coefficients for the jth contrast sel <- Zj != 0 # TRUE if coefficient is != 0 hyp[j] <- paste(paste(Zj[sel], rownames(x$alpha)[sel], sep="*"), collapse=" + ") # coefficient*variable + coefficient*variable ... hyp[j] <- gsub("1*", "", hyp[j], fixed=TRUE) # turn '+1' into '+' and '-1' into '-' hyp[j] <- gsub("+ -", "- ", hyp[j], fixed=TRUE) # turn '+ -' into '-' } if (identical(rhs, rep(0,m))) { hyp <- paste0(hyp, " = 0") # add '= 0' at the right } else { if (length(unique(rhs)) == 1L) { hyp <- paste0(hyp, " = ", round(rhs, digits=digits[["est"]])) # add '= rhs' at the right } else { hyp <- paste0(hyp, " = ", fmtx(rhs, digits=digits[["est"]])) # add '= rhs' at the right } } hyp <- data.frame(hyp, stringsAsFactors=FALSE) colnames(hyp) <- "" rownames(hyp) <- paste0(seq_len(m), ":") # add '1:', '2:', ... as row names ### abbreviate some hyp elements if (.isTRUE(ddd$abbrev)) { hyp[,1] <- gsub("factor(", "", hyp[,1], fixed=TRUE) hyp[,1] <- gsub(")", "", hyp[,1], fixed=TRUE) } if (!is.null(adjust)) pval <- p.adjust(pval, method=adjust) res <- list(QS=QS, QSdf=QSdf, QSp=QSp, hyp=hyp, Za=Za, se=se, zval=zval, pval=pval, k=x$k, q=x$q, m=m, test=x$test, ddf=x$ddf.alpha, digits=digits, type="Wald.Za") } else { ### if 'X' has been specified, then do Wald-type test(s) via 'X' argument if (.is.vector(X)) X <- rbind(X) if (is.data.frame(X)) X <- as.matrix(X) if (is.character(X)) stop(mstyle$stop("Argument 'X' must be a numeric vector/matrix.")) ### if model has an intercept term and X has p-1 columns, assume user left out the intercept and add it automatically if (x$int.incl && ncol(X) == (x$p-1)) X <- cbind(1, X) if (ncol(X) != x$p) stop(mstyle$stop(paste0("Length or number of columns of 'X' (", ncol(X), ") does not match the number of ", ifelse(inherits(object, "rma.ls"), "location", "model"), " coefficients (", x$p, ")."))) m <- nrow(X) if (inherits(x, "robust.rma") && x$robumethod == "clubSandwich") { cs.lc <- try(clubSandwich::linear_contrast(x, cluster=x$cluster, vcov=x$vb, test=x$coef_test, contrasts=X, p_values=TRUE), silent=!isTRUE(ddd$verbose)) if (inherits(cs.lc, "try-error")) stop(mstyle$stop("Could not obtain the cluster-robust test(s) (use verbose=TRUE for more details).")) ddf <- cs.lc$df if (!missing(rhs)) warning(mstyle$warning("Cannot use 'rhs' argument for 'robust.rma' objects based on 'clubSandwich'."), call.=FALSE) rhs <- rep(0, m) Xb <- cs.lc$Est se <- cs.lc$SE zval <- c(Xb/se) pval <- cs.lc$p_val ### omnibus test of all hypotheses (only possible if 'X' is of full rank) QM <- NA_real_ # need this in case QMp cannot be calculated below QMp <- NA_real_ # need this in case QMp cannot be calculated below QMdf <- NA_integer_ # need this in case X is not of full rank if (rankMatrix(X) == m) { cs.wald <- try(clubSandwich::Wald_test(x, cluster=x$cluster, vcov=x$vb, test=x$wald_test, constraints=X), silent=!isTRUE(ddd$verbose)) if (inherits(cs.wald, "try-error")) stop(mstyle$stop("Could not obtain the cluster-robust omnibus Wald test (use verbose=TRUE for more details).")) QM <- max(0, cs.wald$Fstat) QMdf <- c(cs.wald$df_num, cs.wald$df_denom) QMp <- cs.wald$p_val } } else { ### ddf calculation if (is.element(x$test, c("knha","adhoc","t"))) { if (length(x$ddf) == 1L) { ddf <- rep(x$ddf, m) } else { ddf <- rep(NA_integer_, m) for (j in seq_len(m)) { bn0 <- X[j,] != 0 ddf[j] <- min(x$ddf[bn0]) } } } else { ddf <- rep(NA_integer_, m) } ### specification of the right-hand side if (missing(rhs)) { rhs <- rep(0, m) } else { rhs <- .expand1(rhs, m) if (length(rhs) != m) stop(mstyle$stop(paste0("Length of 'rhs' (", length(rhs), ") does not match the number of linear combinations (", m, ")."))) } ### test of individual hypotheses Xb <- X %*% x$beta - rhs vXb <- X %*% x$vb %*% t(X) se <- sqrt(diag(vXb)) zval <- c(Xb/se) if (is.element(x$test, c("knha","adhoc","t"))) { pval <- sapply(seq_along(ddf), function(j) if (ddf[j] > 0) 2*pt(abs(zval[j]), df=ddf[j], lower.tail=FALSE) else NA_real_) } else { pval <- 2*pnorm(abs(zval), lower.tail=FALSE) } ### omnibus test of all hypotheses (only possible if 'X' is of full rank) QM <- NA_real_ # need this in case QMp cannot be calculated below QMp <- NA_real_ # need this in case QMp cannot be calculated below QMdf <- NA_integer_ # need this in case X is not of full rank if (rankMatrix(X) == m) { ### use try(), since this could fail: this could happen when the var-cov matrix of the ### fixed effects has been estimated using robust() -- 'vb' is then only guaranteed to ### be positive semidefinite, so for certain linear combinations, vXb could be singular ### (see Cameron & Miller, 2015, p. 326) QM <- try(as.vector(t(Xb) %*% chol2inv(chol(vXb)) %*% Xb), silent=TRUE) if (inherits(QM, "try-error")) QM <- NA_real_ if (is.element(x$test, c("knha","adhoc","t"))) { QM <- QM / m QMdf <- c(m, min(ddf)) QMp <- if (QMdf[2] > 0) pf(QM, df1=QMdf[1], df2=QMdf[2], lower.tail=FALSE) else NA_real_ } else { QMdf <- c(m, NA_integer_) QMp <- pchisq(QM, df=QMdf[1], lower.tail=FALSE) } } } ### create a data frame with each row specifying the linear combination tested hyp <- rep("", m) for (j in seq_len(m)) { Xj <- round(X[j,], digits[["est"]]) # coefficients for the jth contrast sel <- Xj != 0 # TRUE if coefficient is != 0 hyp[j] <- paste(paste(Xj[sel], rownames(x$beta)[sel], sep="*"), collapse=" + ") # coefficient*variable + coefficient*variable ... hyp[j] <- gsub("1*", "", hyp[j], fixed=TRUE) # turn '+1' into '+' and '-1' into '-' hyp[j] <- gsub("+ -", "- ", hyp[j], fixed=TRUE) # turn '+ -' into '-' } if (identical(rhs, rep(0,m))) { hyp <- paste0(hyp, " = 0") # add '= 0' at the right } else { if (length(unique(rhs)) == 1L) { hyp <- paste0(hyp, " = ", round(rhs, digits=digits[["est"]])) # add '= rhs' at the right } else { hyp <- paste0(hyp, " = ", fmtx(rhs, digits=digits[["est"]])) # add '= rhs' at the right } } hyp <- data.frame(hyp, stringsAsFactors=FALSE) colnames(hyp) <- "" rownames(hyp) <- paste0(seq_len(m), ":") # add '1:', '2:', ... as row names ### abbreviate some hyp elements if (.isTRUE(ddd$abbrev)) { hyp[,1] <- gsub("factor(", "", hyp[,1], fixed=TRUE) hyp[,1] <- gsub(")", "", hyp[,1], fixed=TRUE) } if (!is.null(adjust)) pval <- p.adjust(pval, method=adjust) res <- list(QM=QM, QMdf=QMdf, QMp=QMp, hyp=hyp, Xb=Xb, se=se, zval=zval, pval=pval, k=x$k, p=x$p, m=m, test=x$test, ddf=ddf, digits=digits, type="Wald.Xb") } } } else { ### if 'object' and 'object2' have been specified, can use function to ### do model comparisons via a likelihood ratio test (and fit indices) if (!inherits(object2, "rma")) stop(mstyle$stop("Argument 'object2' must be an object of class \"rma\".")) if (inherits(object2, c("rma.mh","rma.peto"))) stop(mstyle$stop("Function not applicable to objects of class \"rma.mh\" or \"rma.peto\".")) if (inherits(object2, "rma.glmm")) stop(mstyle$stop("Method not available for objects of class \"rma.glmm\".")) if (!identical(class(object), class(object2))) stop(mstyle$stop("Class of 'object' must be the same as class of 'object2'.")) test <- .chkddd(ddd$test, "LRT", match.arg(ddd$test, c("LRT", "Wald"))) ### get df value (NULL if not specified) df <- ddd$df ### assume 'object' is the full model and 'object2' the reduced model model.f <- object model.r <- object2 ### number of parameters in the models parms.f <- model.f$parms parms.r <- model.r$parms ### check if they have the same number of parameters if (is.null(df) && parms.f == parms.r) stop(mstyle$stop("Models have the same number of parameters. LRT not meaningful.")) ### if parms.f < parms.r, then let 'object' be the reduced model and 'object2' the full model (only do this if 'df' is not specified) if (is.null(df) && parms.f < parms.r) { model.f <- object2 model.r <- object parms.f <- model.f$parms parms.r <- model.r$parms } ### check if models are based on the same data (TODO: also check for same weights?) ### note: using as.vector() to strip attributes/names, as.matrix() to make both V matrices non-sparse, and ### isTRUE(all.equal()) because conversion to non-sparse can introduce some negligible discrepancies if (inherits(object, "rma.uni")) { if (!identical(model.f$chksumyi, model.r$chksumyi) || !identical(model.f$chksumvi, model.r$chksumvi)) stop(mstyle$stop("The observed outcomes and/or sampling variances are not equal in the full and reduced model.")) } if (is.null(df)) { if (inherits(object, "rma.mv")) { if (!identical(model.f$chksumyi, model.r$chksumyi) || !identical(model.f$chksumV, model.r$chksumV)) stop(mstyle$stop("The observed outcomes and/or sampling variances/covariances are not equal in the full and reduced model.")) } } else { if (inherits(object, "rma.mv")) { if (!(identical(model.f$chksumyi, model.r$chksumyi))) stop(mstyle$stop("The observed outcomes are not equal in the full and reduced model.")) } } ### for Wald-type test, both models should be fitted using the same method if (test == "Wald" && (model.f$method != model.r$method)) stop(mstyle$stop("Full and reduced model must use the same 'method' for the model fitting.")) ### for LRTs, reduced model may use method="FE/EE/CE" and full model method="(RE)ML" but the other way around is not allowed if (is.element(model.f$method, c("FE","EE","CE")) && !is.element(model.r$method, c("FE","EE","CE"))) stop(mstyle$stop("Full model uses a fixed- and reduced model uses a random/mixed-effects model.")) ### but have to check for a ML/REML mismatch if ((model.f$method == "ML" && model.r$method == "REML") || model.r$method == "ML" && model.f$method == "REML") stop(mstyle$stop(paste0("Mismatch between the use of ", model.f$method, " and ", model.r$method, " estimation in the full versus reduced model."))) ### for LRTs, using anything besides ML/REML is strictly speaking incorrect if (test == "LRT" && (!is.element(model.f$method, c("FE","EE","CE","ML","REML")) || !is.element(model.r$method, c("FE","EE","CE","ML","REML")))) warning(mstyle$warning("LRTs should be based on ML/REML estimation."), call.=FALSE) ### for LRTs based on REML estimation, check if fixed effects differ if (test == "LRT" && model.f$method == "REML" && !identical(model.f$chksumX, model.r$chksumX)) { if (refit) { #message(mstyle$message("Refitting the models with ML (instead of REML) estimation ...")) if (inherits(model.f, "rma.uni") && model.f$model == "rma.uni") { #model.f <- try(update(model.f, method="ML", data=model.f$data), silent=TRUE) args <- list(yi=model.f$yi, vi=model.f$vi, weights=model.f$weights, mods=model.f$X, intercept=FALSE, method="ML", weighted=model.f$weighted, test=model.f$test, level=model.f$level, tau2=ifelse(model.f$tau2.fix, model.f$tau2, NA), control=model.f$control, skipr2=TRUE) model.f <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) } else { # note: this fails when building the docs with pkgdown; not sure why; the approach above at least works for 'rma.uni' objects and is more efficient as it skips the R^2 calculation model.f <- try(update(model.f, method="ML"), silent=TRUE) } if (inherits(model.f, "try-error")) stop(mstyle$stop("Refitting the full model with ML estimation failed.")) if (inherits(model.r, "rma.uni") && model.r$model == "rma.uni") { #model.r <- try(update(model.r, method="ML", data=model.r$data), silent=TRUE) args <- list(yi=model.r$yi, vi=model.r$vi, weights=model.r$weights, mods=model.r$X, intercept=FALSE, method="ML", weighted=model.r$weighted, test=model.r$test, level=model.r$level, tau2=ifelse(model.r$tau2.fix, model.r$tau2, NA), control=model.r$control, skipr2=TRUE) model.r <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) } else { model.r <- try(update(model.r, method="ML"), silent=TRUE) } if (inherits(model.r, "try-error")) stop(mstyle$stop("Refitting the reduced model with ML estimation failed.")) parms.f <- model.f$parms parms.r <- model.r$parms } else { warning(mstyle$warning("REML comparisons not meaningful for models with different fixed effects\n(use 'refit=TRUE' to refit both models based on ML estimation)."), call.=FALSE) } } ### in this case, one could consider just taking the ML deviances, but this ### is really ad-hoc; there is some theory in Welham & Thompson (1997) about ### LRTs for fixed effects when using REML estimation, but this involves ### additional work ### could do even more checks for cases where the models are clearly not nested ###################################################################### ### for 'rma.uni' objects, calculate pseudo R^2 value (based on the ### proportional reduction in tau^2) comparing full vs. reduced model if (inherits(object, "rma.uni") && !inherits(object, "rma.ls") && !inherits(object, "rma.gen")) { if (is.element(model.f$method, c("FE","EE","CE"))) { if (model.f$weighted) { if (is.null(model.f$weights)) { lm.f <- lm(model.f$yi ~ model.f$X, weights=1/model.f$vi) } else { lm.f <- lm(model.f$yi ~ model.f$X, weights=model.f$weights) } } else { lm.f <- lm(model.f$yi ~ model.f$X) } if (model.r$weighted) { if (is.null(model.r$weights)) { lm.r <- lm(model.r$yi ~ model.r$X, weights=1/model.r$vi) } else { lm.r <- lm(model.r$yi ~ model.r$X, weights=model.r$weights) } } else { lm.r <- lm(model.r$yi ~ model.r$X) } s2.f <- sigma(lm.f)^2 s2.r <- sigma(lm.r)^2 R2 <- 100 * max(0, (s2.r - s2.f) / s2.r) } else if (identical(model.r$tau2,0)) { R2 <- 0 } else { R2 <- 100 * max(0, (model.r$tau2 - model.f$tau2) / model.r$tau2) } } else { R2 <- NA_real_ } ### for 'rma.uni' objects, extract tau^2 estimates if (inherits(object, "rma.uni") && !inherits(object, "rma.ls") && !inherits(object, "rma.gen")) { tau2.f <- model.f$tau2 tau2.r <- model.r$tau2 } else { tau2.f <- NA_real_ tau2.r <- NA_real_ } if (test == "LRT") { if (is.null(df)) { parms.diff <- parms.f - parms.r } else { parms.f <- parms.f + df parms.diff <- df } if (model.f$method == "REML") { LRT <- model.r$fit.stats["dev","REML"] - model.f$fit.stats["dev","REML"] fit.stats.f <- t(model.f$fit.stats)["REML",] # to keep (row)names of fit.stats fit.stats.r <- t(model.r$fit.stats)["REML",] # to keep (row)names of fit.stats } else { LRT <- model.r$fit.stats["dev","ML"] - model.f$fit.stats["dev","ML"] fit.stats.f <- t(model.f$fit.stats)["ML",] fit.stats.r <- t(model.r$fit.stats)["ML",] } ### set LRT to 0 if LRT < 0 (this should not happen, but could due to numerical issues) LRT[LRT < 0] <- 0 pval <- pchisq(LRT, df=parms.diff, lower.tail=FALSE) res <- list(fit.stats.f=fit.stats.f, fit.stats.r=fit.stats.r, parms.f=parms.f, parms.r=parms.r, LRT=LRT, pval=pval, QE.f=model.f$QE, QE.r=model.r$QE, tau2.f=tau2.f, tau2.r=tau2.r, R2=R2, method=model.f$method, class.f=class(model.f), digits=digits, type="LRT") } if (test == "Wald") { btt <- setdiff(colnames(model.f$X), colnames(model.r$X)) if (length(btt) == 0L) stop(mstyle$stop("Full and reduced models appear to contain the same moderators.")) if (length(setdiff(colnames(model.r$X), colnames(model.f$X))) != 0L) stop(mstyle$stop("There are coefficients in the reduced model that are not in the full model.")) btt <- charmatch(btt, colnames(model.f$X)) if (anyNA(btt)) stop(mstyle$stop("Cannot identify coefficients to test.")) res <- anova(model.f, btt=btt) return(res) } } class(res) <- "anova.rma" return(res) } metafor/R/rstudent.rma.peto.r0000644000176200001440000000531714722317472015706 0ustar liggesusersrstudent.rma.peto <- function(model, digits, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.peto") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$outdat.f)) stop(mstyle$stop("Information needed to compute the residuals is not available in the model object.")) x <- model if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } ddd <- list(...) .chkdots(ddd, c("time", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### delpred <- rep(NA_real_, x$k.f) vdelpred <- rep(NA_real_, x$k.f) ### elements that need to be returned outlist <- "beta=beta, vb=vb" ### note: skipping NA tables if (progbar) pbar <- pbapply::startpb(min=0, max=x$k.f) for (i in seq_len(x$k.f)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) if (!x$not.na[i]) next args <- list(ai=x$outdat.f$ai, bi=x$outdat.f$bi, ci=x$outdat.f$ci, di=x$outdat.f$di, add=x$add, to=x$to, drop00=x$drop00, level=x$level, subset=-i, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.peto, args)), silent=TRUE) if (inherits(res, "try-error")) next delpred[i] <- res$beta vdelpred[i] <- res$vb } if (progbar) pbapply::closepb(pbar) resid <- x$yi.f - delpred resid[abs(resid) < 100 * .Machine$double.eps] <- 0 #resid[abs(resid) < 100 * .Machine$double.eps * median(abs(resid), na.rm=TRUE)] <- 0 # see lm.influence seresid <- sqrt(x$vi.f + vdelpred) stresid <- resid / seresid ######################################################################### if (na.act == "na.omit") { out <- list(resid=resid[x$not.na.yivi], se=seresid[x$not.na.yivi], z=stresid[x$not.na.yivi]) out$slab <- x$slab[x$not.na.yivi] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(resid=resid, se=seresid, z=stresid) out$slab <- x$slab } if (na.act == "na.fail" && any(!x$not.na.yivi)) stop(mstyle$stop("Missing values in results.")) out$digits <- digits if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- "list.rma" return(out) } metafor/R/vec2mat.r0000644000176200001440000000142414515471300013635 0ustar liggesusersvec2mat <- function(x, diag=FALSE, corr=!diag, dimnames) { mstyle <- .get.mstyle() p <- length(x) dims <- sqrt(2*p + 1/4) + ifelse(diag, -1/2, 1/2) if (abs(dims - round(dims)) >= .Machine$double.eps^0.5) stop(mstyle$stop("Length of 'x' does not correspond to a square matrix.")) dims <- round(dims) R <- matrix(NA_real_, nrow=dims, ncol=dims) if (!missing(dimnames)) { if (length(dimnames) != dims) stop(mstyle$stop(paste0("Length of 'dimnames' (", length(dimnames), ") does not correspond to the dimensions of the matrix (", dims, ")."))) rownames(R) <- colnames(R) <- dimnames } R[lower.tri(R, diag=diag)] <- x R[upper.tri(R, diag=diag)] <- t(R)[upper.tri(R, diag=diag)] if (corr) diag(R) <- 1 return(R) } metafor/R/print.permutest.rma.uni.r0000644000176200001440000001461014515471022017031 0ustar liggesusersprint.permutest.rma.uni <- function(x, digits=x$digits, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="permutest.rma.uni") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) .space() ddd <- list(...) .chkdots(ddd, c("num", "legend")) if (is.null(ddd$legend)) { legend <- TRUE } else { if (is.na(ddd$legend)) { # can suppress legend and legend symbols with legend=NA legend <- FALSE footsym <- rep("", 6) } else { legend <- .isTRUE(ddd$legend) } } footsym <- .get.footsym() if (!x$int.only) { if (inherits(x, "permutest.rma.ls")) { cat(mstyle$section(paste0("Test of Location Coefficients (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$btt),"):", ifelse(x$skip.beta, "", footsym[1])))) } else { cat(mstyle$section(paste0("Test of Moderators (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$btt),"):", ifelse(x$skip.beta, "", footsym[1])))) } cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QM, "F", df1=x$QMdf[1], df2=x$QMdf[2], pval=x$QMp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QM, "QM", df=x$QMdf[1], pval=x$QMp, digits=digits))) } cat("\n\n") } if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=fmtx(c(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), tval=fmtx(x$zval, digits[["test"]]), df=round(x$ddf,2), "pval"=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) if (!x$skip.beta && footsym[1] != "") res.table <- .addfootsym(res.table, 5, footsym[1]) if (x$permci && footsym[1] != "") res.table <- .addfootsym(res.table, 6:7, footsym[1]) } else { res.table <- data.frame(estimate=fmtx(c(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), zval=fmtx(x$zval, digits[["test"]]), "pval"=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) if (!x$skip.beta && footsym[1] != "") res.table <- .addfootsym(res.table, 4, footsym[1]) if (x$permci && footsym[1] != "") res.table <- .addfootsym(res.table, 5:6, footsym[1]) } rownames(res.table) <- rownames(x$beta) signif <- symnum(x$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } if (.isTRUE(ddd$num)) { width <- nchar(nrow(res.table)) rownames(res.table) <- paste0(formatC(seq_len(nrow(res.table)), format="d", width=width), ") ", rownames(res.table)) } if (x$int.only) res.table <- res.table[1,] if (inherits(x, "permutest.rma.ls")) { cat(mstyle$section("Model Results (Location):")) } else { cat(mstyle$section("Model Results:")) } cat("\n\n") if (x$int.only) { tmp <- capture.output(.print.vector(res.table)) } else { tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) } #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) if (inherits(x, "permutest.rma.ls")) { cat("\n") if (!x$Z.int.only) { cat(mstyle$section(paste0("Test of Scale Coefficients (coefficient", ifelse(x$m.alpha == 1, " ", "s "), .format.btt(x$att),"):", ifelse(x$skip.alpha, "", footsym[1])))) cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QS, "F", df1=x$QSdf[1], df2=x$QSdf[2], pval=x$QSp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QS, "QS", df=x$QSdf[1], pval=x$QSp, digits=digits))) } cat("\n\n") } if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=fmtx(c(x$alpha), digits[["est"]]), se=fmtx(x$se.alpha, digits[["se"]]), tval=fmtx(x$zval.alpha, digits[["test"]]), df=round(x$ddf.alpha,2), "pval"=fmtp(x$pval.alpha, digits[["pval"]]), ci.lb=fmtx(x$ci.lb.alpha, digits[["ci"]]), ci.ub=fmtx(x$ci.ub.alpha, digits[["ci"]]), stringsAsFactors=FALSE) if (!x$skip.alpha && footsym[1] != "") res.table <- .addfootsym(res.table, 5, footsym[1]) } else { res.table <- data.frame(estimate=fmtx(c(x$alpha), digits[["est"]]), se=fmtx(x$se.alpha, digits[["se"]]), zval=fmtx(x$zval.alpha, digits[["test"]]), "pval"=fmtp(x$pval.alpha, digits[["pval"]]), ci.lb=fmtx(x$ci.lb.alpha, digits[["ci"]]), ci.ub=fmtx(x$ci.ub.alpha, digits[["ci"]]), stringsAsFactors=FALSE) if (!x$skip.alpha && footsym[1] != "") res.table <- .addfootsym(res.table, 4, footsym[1]) } rownames(res.table) <- rownames(x$alpha) signif <- symnum(x$pval.alpha, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } if (.isTRUE(ddd$num)) { width <- nchar(nrow(res.table)) rownames(res.table) <- paste0(formatC(seq_len(nrow(res.table)), format="d", width=width), ") ", rownames(res.table)) } if (x$Z.int.only) res.table <- res.table[1,] cat(mstyle$section("Model Results (Scale):")) cat("\n\n") if (x$Z.int.only) { tmp <- capture.output(.print.vector(res.table)) } else { tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) } #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) } if (signif.legend || legend) { cat("\n") cat(mstyle$legend("---")) } if (signif.legend) { cat("\n") cat(mstyle$legend("Signif. codes: "), mstyle$legend(attr(signif, "legend"))) cat("\n") } if (legend) { cat("\n") if (inherits(x, "permutest.rma.ls")) { cat(mstyle$legend(paste0(footsym[2], " p-values based on permutation testing"))) } else { cat(mstyle$legend(paste0(footsym[2], " p-value", ifelse(x$int.only, "", "s"), ifelse(x$permci, " and CI bounds", ""), " based on permutation testing"))) } cat("\n") } .space() invisible() } metafor/R/ranef.rma.uni.r0000644000176200001440000000725114717356172014760 0ustar liggesusersranef.rma.uni <- function(object, level, digits, transf, targs, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.uni", notav=c("rma.gen", "rma.uni.selmodel")) x <- object na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(x$yi.f) || is.null(x$vi.f) || is.null(x$X.f)) stop(mstyle$stop("Information needed to compute the BLUPs is not available in the model object.")) if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL level <- .level(level) if (is.element(x$test, c("knha","adhoc","t"))) { crit <- qt(level/2, df=x$ddf, lower.tail=FALSE) } else { crit <- qnorm(level/2, lower.tail=FALSE) } ### TODO: check computations for user-defined weights if (!is.null(x$weights) || !x$weighted) stop(mstyle$stop("Extraction of random effects not available for models with non-standard weights.")) ######################################################################### pred <- rep(NA_real_, x$k.f) vpred <- rep(NA_real_, x$k.f) ### see Appendix in: Raudenbush, S. W., & Bryk, A. S. (1985). Empirical ### Bayes meta-analysis. Journal of Educational Statistics, 10(2), 75-98 x$tau2.f <- .expand1(x$tau2.f, x$k.f) li <- ifelse(is.infinite(x$tau2.f), 1, x$tau2.f / (x$tau2.f + x$vi.f)) for (i in seq_len(x$k.f)[x$not.na]) { # note: skipping NA cases Xi <- matrix(x$X.f[i,], nrow=1) if (is.element(x$method, c("FE","EE","CE"))) { pred[i] <- 0 vpred[i] <- 0 } else { pred[i] <- li[i] * (x$yi.f[i] - Xi %*% x$beta) vpred[i] <- li[i] * x$vi.f[i] + li[i]^2 * Xi %*% tcrossprod(x$vb,Xi) } } se <- sqrt(vpred) pi.lb <- pred - crit * se pi.ub <- pred + crit * se ######################################################################### ### if requested, apply transformation function to 'pred' and interval bounds if (is.function(transf)) { if (is.null(targs)) { pred <- sapply(pred, transf) se <- rep(NA_real_, x$k.f) pi.lb <- sapply(pi.lb, transf) pi.ub <- sapply(pi.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) pred <- sapply(pred, transf, targs) se <- rep(NA_real_, x$k.f) pi.lb <- sapply(pi.lb, transf, targs) pi.ub <- sapply(pi.ub, transf, targs) } transf <- TRUE } ### make sure order of intervals is always increasing tmp <- .psort(pi.lb, pi.ub) pi.lb <- tmp[,1] pi.ub <- tmp[,2] ######################################################################### if (na.act == "na.omit") { out <- list(pred=pred[x$not.na], se=se[x$not.na], pi.lb=pi.lb[x$not.na], pi.ub=pi.ub[x$not.na]) out$slab <- x$slab[x$not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(pred=pred, se=se, pi.lb=pi.lb, pi.ub=pi.ub) out$slab <- x$slab } if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) ######################################################################### out$digits <- digits out$transf <- transf class(out) <- "list.rma" return(out) } metafor/R/methods.escalc.r0000644000176200001440000001562514467671166015222 0ustar liggesusers############################################################################ "[.escalc" <- function(x, i, ...) { mf <- paste0(deparse1(match.call()), collapse="") has.drop <- grepl("drop = T", mf, fixed=TRUE) || grepl("drop = F", mf, fixed=TRUE) if (!missing(i) && nargs()-has.drop > 2L) { mf <- match.call() i <- .getx("i", mf=mf, data=x) # TODO: enable this? # treat missings in a logical vector as FALSE when selecting rows #if (is.logical(i) && length(i) == nrow(x)) # i[is.na(i)] <- FALSE } dat <- NextMethod("[") ### find all 'yi' variables that are still part of the dataset yi.names <- attr(x, "yi.names") yi.names <- yi.names[is.element(yi.names, names(dat))] for (l in seq_along(yi.names)) { ### if selecting rows, subset ni and slab attributes accordingly and add them back to each yi variable if (!missing(i) && nargs()-has.drop > 2L) { attr(dat[[yi.names[l]]], "ni") <- attr(x[[yi.names[l]]], "ni")[i] attr(dat[[yi.names[l]]], "slab") <- attr(x[[yi.names[l]]], "slab")[i] } ### add measure attribute back to each yi variable attr(dat[[yi.names[l]]], "measure") <- attr(x[[yi.names[l]]], "measure") } ### add var.names and out.names attributes back to object (but only if they exist and only keep variables still in the dataset) all.names <- c("yi.names", "vi.names", "sei.names", "zi.names", "pval.names", "ci.lb.names", "ci.ub.names") for (l in seq_along(all.names)) { if (any(is.element(attr(x, all.names[l]), names(dat)))) # check if any of the variables still exist in the dataset attr(dat, all.names[l]) <- attr(x, all.names[l])[is.element(attr(x, all.names[l]), names(dat))] } ### add digits attribute back to object (but not to vectors) if (!is.null(attr(x, "digits")) && !is.null(dim(dat))) attr(dat, "digits") <- attr(x, "digits") return(dat) } "$<-.escalc" <- function(x, name, value) { dat <- NextMethod("$<-") ### for each attribute, only keep elements that are still part of the data frame (and remove empty attributes) ### (this is relevant when 'value' is NULL, so when a particular variable is getting removed) all.names <- c("yi.names", "vi.names", "sei.names", "zi.names", "pval.names", "ci.lb.names", "ci.ub.names") for (l in seq_along(all.names)) { if (!is.null(attr(dat, all.names[l]))) { attr(dat, all.names[l]) <- attr(dat, all.names[l])[is.element(attr(dat, all.names[l]), names(dat))] if (length(attr(dat, all.names[l])) == 0L) attr(dat, all.names[l]) <- NULL } } return(dat) } ############################################################################ cbind.escalc <- function (..., deparse.level=1) { dat <- data.frame(..., check.names = FALSE) allargs <- list(...) ### for each element, extract the 'var.names' and 'out.names' attributes and add entire set back to the object yi.names <- NULL vi.names <- NULL sei.names <- NULL zi.names <- NULL pval.names <- NULL ci.lb.names <- NULL ci.ub.names <- NULL for (arg in allargs) { yi.names <- c(attr(arg, "yi.names"), yi.names) vi.names <- c(attr(arg, "vi.names"), vi.names) sei.names <- c(attr(arg, "sei.names"), sei.names) zi.names <- c(attr(arg, "zi.names"), zi.names) pval.names <- c(attr(arg, "pval.names"), pval.names) ci.lb.names <- c(attr(arg, "ci.lb.names"), ci.lb.names) ci.ub.names <- c(attr(arg, "ci.ub.names"), ci.ub.names) } ### but only keep unique variable names attr(dat, "yi.names") <- unique(yi.names) attr(dat, "vi.names") <- unique(vi.names) attr(dat, "sei.names") <- unique(sei.names) attr(dat, "zi.names") <- unique(zi.names) attr(dat, "pval.names") <- unique(pval.names) attr(dat, "ci.lb.names") <- unique(ci.lb.names) attr(dat, "ci.ub.names") <- unique(ci.ub.names) ### add 'digits' attribute back (use the values from first element) attr(dat, "digits") <- attr(arg[1], "digits") class(dat) <- c("escalc", "data.frame") return(dat) } ############################################################################ rbind.escalc <- function (..., deparse.level=1) { dat <- rbind.data.frame(..., deparse.level = deparse.level) allargs <- list(...) yi.names <- attr(dat, "yi.names") yi.names <- yi.names[is.element(yi.names, names(dat))] for (i in seq_along(yi.names)) { ### get position (column number) of the 'yi' variable (in the first argument) #yi.pos <- which(names(allargs[[1]]) == yi.names[i]) ### get position (column number) of the 'yi' variable yi.pos <- sapply(allargs, function(x) which(names(x) == yi.names[i])[1]) yi.pos <- na.omit(yi.pos)[1] ### just in case if (length(yi.pos) == 0L) next ### get 'ni' attribute from all arguments (but only if argument has 'yi' variable) ni <- lapply(allargs, function(x) {if (isTRUE(names(x)[yi.pos] == yi.names[i])) attr(x[[yi.pos]], "ni")}) ### if none of them are missing, then combine and add back to variable ### otherwise remove 'ni' attribute, since it won't be of the right length if (all(sapply(ni, function(x) !is.null(x)))) { attr(dat[[yi.pos]], "ni") <- unlist(ni) } else { attr(dat[[yi.pos]], "ni") <- NULL } ### get 'slab' attribute from all arguments (but only if argument has 'yi' variable) slab <- lapply(allargs, function(x) {if (isTRUE(names(x)[yi.pos] == yi.names[i])) attr(x[[yi.pos]], "slab")}) ### if none of them are missing, then combine and add back to variable (and make sure they are unique) ### otherwise remove 'slab' attribute, since it won't be of the right length if (all(sapply(slab, function(x) !is.null(x)))) { attr(dat[[yi.pos]], "slab") <- .make.unique(unlist(slab)) } else { attr(dat[[yi.pos]], "slab") <- NULL } } return(dat) } ############################################################################ #as.data.frame.escalc <- function(x, row.names=NULL, optional=FALSE, ...) { # # ### strip measure, ni, and slab attributes from any yi elements # # yi.names <- attr(x, "yi.names") # yi.names <- yi.names[is.element(yi.names, names(x))] # # for (l in seq_along(yi.names)) { # # attr(x[[yi.names[l]]], "measure") <- NULL # attr(x[[yi.names[l]]], "ni") <- NULL # attr(x[[yi.names[l]]], "slab") <- NULL # # } # # ### strip other attributes that may be part of an 'escalc' object # # attr(x, "digits") <- NULL # # attr(x, "yi.names") <- NULL # attr(x, "vi.names") <- NULL # attr(x, "sei.names") <- NULL # attr(x, "zi.names") <- NULL # attr(x, "pval.names") <- NULL # attr(x, "ci.lb.names") <- NULL # attr(x, "ci.ub.names") <- NULL # # class(x) <- "data.frame" # # return(x) # #} ############################################################################ metafor/R/llplot.r0000644000176200001440000002531114717401042013603 0ustar liggesusersllplot <- function(measure, yi, vi, sei, ai, bi, ci, di, n1i, n2i, data, subset, drop00=TRUE, xvals=1000, xlim, ylim, xlab, ylab, scale=TRUE, lty, lwd, col, level=99.99, refline=0, ...) { ######################################################################### mstyle <- .get.mstyle() ### data setup if (missing(measure)) stop(mstyle$stop("Must specify an effect size or outcome measure via the 'measure' argument.")) .chkclass(class(measure), notap="rma", type="Function") if (!is.element(measure, c("GEN", "OR"))) stop(mstyle$stop("Currently only measure=\"GEN\" or measure=\"OR\" can be specified.")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (measure == "OR" && !requireNamespace("BiasedUrn", quietly=TRUE)) stop(mstyle$stop("Please install the 'BiasedUrn' package to use this function.")) if (missing(xlab)) { if (measure == "GEN") xlab <- "Observed Outcome" if (measure == "OR") xlab <- "Log Odds Ratio" } if (missing(ylab)) { if (scale) { ylab <- "Scaled Likelihood" } else { ylab <- "Likelihood" } } level <- .level(level) ### get ... argument ddd <- list(...) ### set defaults or get onlyo1, addyi, and addvi arguments onlyo1 <- .chkddd(ddd$onlyo1, FALSE) addyi <- .chkddd(ddd$addyi, TRUE) addvi <- .chkddd(ddd$addvi, TRUE) .start.plot() ######################################################################### ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } ### extract values, possibly from the data frame specified via data (arguments not specified are NULL) mf <- match.call() subset <- .getx("subset", mf=mf, data=data) lty <- .getx("lty", mf=mf, data=data) lwd <- .getx("lwd", mf=mf, data=data) col <- .getx("col", mf=mf, data=data) if (measure == "GEN") { yi <- .getx("yi", mf=mf, data=data, checknumeric=TRUE) vi <- .getx("vi", mf=mf, data=data, checknumeric=TRUE) sei <- .getx("sei", mf=mf, data=data, checknumeric=TRUE) if (is.null(vi)) { if (is.null(sei)) { stop(mstyle$stop("Must specify the 'vi' or 'sei' argument.")) } else { vi <- sei^2 } } if (!.all.specified(yi, vi)) stop(mstyle$stop("Cannot construct plot. Check that all of the required information is specified\n via the appropriate arguments (i.e., yi, vi).")) if (!.equal.length(yi, vi)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) k <- length(yi) # number of outcomes before subsetting ### subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) yi <- .getsubset(yi, subset) vi <- .getsubset(vi, subset) } } if (measure == "OR") { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) if (!.equal.length(ai, bi, ci, di, n1i, n2i)) stop(mstyle$stop("Supplied data vectors are not all of the same length.")) n1i.inc <- n1i != ai + bi n2i.inc <- n2i != ci + di if (any(n1i.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'n1i' values are not equal to 'ai + bi'.")) if (any(n2i.inc, na.rm=TRUE)) stop(mstyle$stop("One or more 'n2i' values are not equal to 'ci + di'.")) bi <- replmiss(bi, n1i-ai) di <- replmiss(di, n2i-ci) if (!.all.specified(ai, bi, ci, di)) stop(mstyle$stop("Cannot construct plot. Check that all of the required information is specified\n via the appropriate arguments (i.e., ai, bi, ci, di or ai, n1i, ci, n2i).")) n1i <- ai + bi n2i <- ci + di if (any(c(ai > n1i, ci > n2i), na.rm=TRUE)) stop(mstyle$stop("One or more event counts are larger than the corresponding group sizes.")) if (any(c(ai, bi, ci, di) < 0, na.rm=TRUE)) stop(mstyle$stop("One or more counts are negative.")) if (any(c(n1i < 0, n2i < 0), na.rm=TRUE)) stop(mstyle$stop("One or more group sizes are negative.")) k <- length(ai) # number of outcomes before subsetting ### note studies that have at least one zero cell id0 <- c(ai == 0L | bi == 0L | ci == 0L | di == 0L) id0[is.na(id0)] <- FALSE ### note studies that have no events or all events id00 <- c(ai == 0L & ci == 0L) | c(bi == 0L & di == 0L) id00[is.na(id00)] <- FALSE ### if drop00=TRUE, set counts to NA for studies that have no events (or all events) in both arms if (drop00) { ai[id00] <- NA_real_ bi[id00] <- NA_real_ ci[id00] <- NA_real_ di[id00] <- NA_real_ } ### subsetting if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) di <- .getsubset(di, subset) } dat <- .do.call(escalc, measure="OR", ai=ai, bi=bi, ci=ci, di=di, drop00=drop00, onlyo1=onlyo1, addyi=addyi, addvi=addvi) yi <- dat$yi # one or more yi/vi pairs may be NA/NA vi <- dat$vi # one or more yi/vi pairs may be NA/NA } ######################################################################### ### study ids (1:k sequence before subsetting) ids <- seq_len(k) ### setting of lty, lwd, and col arguments (if a single value, repeat k times) ### if any of these arguments is not a single value, it must have the same length as the data before subsetting if (!is.null(lty)) { lty <- .expand1(lty, k) if (length(lty) != k) stop(mstyle$stop(paste0("Length of the 'lty' argument (", length(lty), ") does not match the length of the data (", k, ")."))) } if (!is.null(lwd)) { lwd <- .expand1(lwd, k) if (length(lwd) != k) stop(mstyle$stop(paste0("Length of the 'lwd' argument (", length(lwd), ") does not match the length of the data (", k, ")."))) } if (!is.null(col)) { col <- .expand1(col, k) if (length(col) != k) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not match the length of the data (", k, ")."))) } ### if a subset of studies is specified if (!is.null(subset)) { ids <- .getsubset(ids, subset) lty <- .getsubset(lty, subset) lwd <- .getsubset(lwd, subset) col <- .getsubset(col, subset) id0 <- .getsubset(id0, subset) id00 <- .getsubset(id00, subset) } ### number of outcomes after subsetting k <- length(yi) ### check for NAs and act accordingly if (measure == "GEN") { has.na <- is.na(yi) | is.na(vi) } if (measure == "OR") { has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) } not.na <- !has.na if (any(has.na)) { if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na] vi <- vi[not.na] if (measure == "OR") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] id0 <- id0[not.na] id00 <- id00[not.na] } k <- length(yi) ids <- ids[not.na] lty <- lty[not.na] lwd <- lwd[not.na] col <- col[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from plotting.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in studies.")) } ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ######################################################################### ### set default line types (id0 studies = dashed line, id00 studies = dotted line, all others = solid line) if (measure == "GEN") { if (is.null(lty)) lty <- rep("solid", k) } if (measure == "OR") { if (is.null(lty)) lty <- ifelse(id0 | id00, ifelse(id00, "dotted", "dashed"), "solid") } ### set default line widths (4.0 to 0.4 according to the rank of vi) if (is.null(lwd)) lwd <- seq(from=4.0, to=0.4, length.out=k)[rank(vi)] ### set default line color (darker to lighter according to the rank of vi) if (is.null(col)) { col <- sapply(seq(from=0.8, to=0.2, length.out=k), function(x) .coladj(par("bg","fg"), dark=x, light=-x)) col <- col[rank(vi)] } ### set x-axis limits ci.lb <- yi - qnorm(level/2, lower.tail=FALSE) * sqrt(vi) ci.ub <- yi + qnorm(level/2, lower.tail=FALSE) * sqrt(vi) if (missing(xlim)) { xlim <- c(min(ci.lb, na.rm=TRUE),max(ci.ub, na.rm=TRUE)) } else { xlim <- sort(xlim) } xs <- seq(from=xlim[1], to=xlim[2], length.out=xvals) lls <- matrix(NA_real_, nrow=k, ncol=xvals) out <- matrix(TRUE, nrow=k, ncol=xvals) if (measure == "GEN") { for (i in seq_len(k)) { for (j in seq_len(xvals)) { lls[i,j] <- dnorm(yi[i], xs[j], sqrt(vi[i])) if (xs[j] >= ci.lb[i] & xs[j] <= ci.ub[i]) out[i,j] <- FALSE } } } if (measure == "OR") { for (i in seq_len(k)) { for (j in seq_len(xvals)) { lls[i,j] <- .dnchgi(xs[j], ai=ai[i], bi=bi[i], ci=ci[i], di=di[i], random=FALSE, dnchgcalc="dFNCHypergeo", dnchgprec=1e-10) if (xs[j] >= ci.lb[i] & xs[j] <= ci.ub[i]) out[i,j] <- FALSE } } } if (scale) { trapezoid <- function(x,y) sum(diff(x)*(y[-1]+y[-length(y)]))/2 lls.sum <- rep(NA_real_, k) for (i in seq_len(k)) { lls.sum[i] <- trapezoid(xs[!is.na(lls[i,])], lls[i,!is.na(lls[i,])]) lls[i,] <- lls[i,] / lls.sum[i] } } lls[out] <- NA_real_ ### set y-axis limits if (missing(ylim)) { ylim <- c(0, max(lls, na.rm=TRUE)) } else { ylim <- sort(ylim) } plot(NA, NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, ...) for (i in seq_len(k)[order(1/vi)]) { lines(xs, lls[i,], lty=lty[i], lwd=lwd[i], col=col[i], ...) } if (is.numeric(refline)) abline(v=refline, lty="solid", lwd=2, ...) invisible(lls) } metafor/R/cooks.distance.rma.uni.r0000644000176200001440000000020213457322061016547 0ustar liggesuserscooks.distance.rma.uni <- function(model, progbar=FALSE, ...) influence(model, progbar=progbar, measure="cooks.distance", ...) metafor/R/print.rma.mv.r0000644000176200001440000004470314610512036014634 0ustar liggesusersprint.rma.mv <- function(x, digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.mv") if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } footsym <- .get.footsym() ddd <- list(...) .chkdots(ddd, c("num", "legend")) if (is.null(ddd$legend)) { legend <- ifelse(inherits(x, "robust.rma"), TRUE, FALSE) } else { if (is.na(ddd$legend)) { # can suppress legend and legend symbols with legend=NA legend <- FALSE footsym <- rep("", 6) } else { legend <- .isTRUE(ddd$legend) } } .space() cat(mstyle$section("Multivariate Meta-Analysis Model")) cat(mstyle$section(paste0(" (k = ", x$k, "; "))) cat(mstyle$section(paste0("method: ", x$method, ")"))) if (showfit) { cat("\n") if (x$method == "REML") { fs <- fmtx(x$fit.stats$REML, digits[["fit"]]) } else { fs <- fmtx(x$fit.stats$ML, digits[["fit"]]) } names(fs) <- c("logLik", "Deviance", "AIC", "BIC", "AICc") cat("\n") tmp <- capture.output(print(fs, quote=FALSE, print.gap=2)) #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) cat("\n") } else { cat("\n\n") } sigma2 <- fmtx(x$sigma2, digits[["var"]]) tau2 <- fmtx(x$tau2, digits[["var"]]) rho <- fmtx(x$rho, digits[["var"]]) gamma2 <- fmtx(x$gamma2, digits[["var"]]) phi <- fmtx(x$phi, digits[["var"]]) sigma <- fmtx(sqrt(x$sigma2), digits[["var"]]) tau <- fmtx(sqrt(x$tau2), digits[["var"]]) gamma <- fmtx(sqrt(x$gamma2), digits[["var"]]) cat(mstyle$section("Variance Components:")) right <- TRUE if (!x$withS && !x$withG && !x$withH) { cat(mstyle$text(" none")) cat("\n\n") } else { cat("\n\n") if (x$withS) { vc <- cbind(estim=sigma2, sqrt=sigma, nlvls=x$s.nlevels, fixed=ifelse(x$vc.fix$sigma2, "yes", "no"), factor=x$s.names, R=ifelse(x$Rfix, "yes", "no")) colnames(vc) <- c("estim", "sqrt", "nlvls", "fixed", "factor", "R") if (!x$withR) vc <- vc[,-6,drop=FALSE] if (length(x$sigma2) == 1L) { rownames(vc) <- "sigma^2 " } else { rownames(vc) <- paste0("sigma^2.", seq_along(x$sigma2)) } tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) cat("\n") } if (x$withG) { ### note: use g.nlevels.f[1] since the number of arms is based on all data (i.e., including NAs), but use ### g.nlevels[2] since the number of studies is based on what is actually available (i.e., excluding NAs) if (is.element(x$struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { inner <- trimws(paste0(strsplit(paste0(x$formulas[[1]], collapse=""), "|", fixed=TRUE)[[1]][1], collapse="")) if (nchar(inner) > 15) inner <- paste0(substr(inner, 1, 15), "[...]", collapse="") } else { inner <- x$g.names[1] } outer <- tail(x$g.names, 1) mng <- max(nchar(c(inner, outer))) cat(mstyle$text(paste0("outer factor: ", paste0(outer, paste(rep(" ", max(0,mng-nchar(outer))), collapse=""), collapse=""), " (nlvls = ", x$g.nlevels[2], ")"))) cat("\n") if (is.element(x$struct[1], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { cat(mstyle$text(paste0("inner term: ", paste0(inner, paste(rep(" ", max(0,mng-nchar(inner))), collapse=""), collapse=""), " (nlvls = ", x$g.nlevels.f[1], ")"))) } else { cat(mstyle$text(paste0("inner factor: ", paste0(inner, paste(rep(" ", max(0,mng-nchar(inner))), collapse=""), collapse=""), " (nlvls = ", x$g.nlevels.f[1], ")"))) } cat("\n\n") if (is.element(x$struct[1], c("CS","AR","CAR","ID","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { vc <- cbind(tau2, tau, ifelse(x$vc.fix$tau2, "yes", "no")) vc <- rbind(vc, c(rho, "", ifelse(x$vc.fix$rho, "yes", "no"))) colnames(vc) <- c("estim", "sqrt", "fixed") rownames(vc) <- c("tau^2 ", "rho") if (x$struct[1] == "ID") vc <- vc[1,,drop=FALSE] tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } if (is.element(x$struct[1], c("HCS","HAR","DIAG"))) { vc <- cbind(tau2, tau, x$g.levels.k, ifelse(x$vc.fix$tau2, "yes", "no"), x$g.levels.f[[1]]) vc <- rbind(vc, c(rho, "", "", ifelse(x$vc.fix$rho, "yes", "no"), "")) colnames(vc) <- c("estim", "sqrt", "k.lvl", "fixed", "level") if (length(x$tau2) == 1L) { rownames(vc) <- c("tau^2 ", "rho") } else { rownames(vc) <- c(paste0("tau^2.", seq_along(x$tau2), " "), "rho") } if (x$struct[1] == "DIAG") vc <- vc[seq_along(tau2),,drop=FALSE] tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } if (is.element(x$struct[1], c("UN","UNR"))) { if (x$struct[1] == "UN") { vc <- cbind(tau2, tau, x$g.levels.k, ifelse(x$vc.fix$tau2, "yes", "no"), x$g.levels.f[[1]]) } else { vc <- cbind(rep(tau2, length(x$g.levels.k)), rep(tau, length(x$g.levels.k)), x$g.levels.k, ifelse(rep(x$vc.fix$tau2,length(x$g.levels.k)), "yes", "no"), x$g.levels.f[[1]]) } colnames(vc) <- c("estim", "sqrt", "k.lvl", "fixed", "level") if (length(x$g.levels.k) == 1L) { rownames(vc) <- c("tau^2") } else { rownames(vc) <- paste0("tau^2.", seq_along(x$g.levels.k), " ") } tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) cat("\n") if (length(x$rho) == 1L) { G <- matrix(NA_real_, nrow=2, ncol=2) } else { G <- matrix(NA_real_, nrow=x$g.nlevels.f[1], ncol=x$g.nlevels.f[1]) } G[lower.tri(G)] <- rho G[upper.tri(G)] <- t(G)[upper.tri(G)] diag(G) <- 1 G[upper.tri(G)] <- "" if (length(x$rho) == 1L) { G.info <- matrix(NA_real_, nrow=2, ncol=2) } else { G.info <- matrix(NA_real_, nrow=x$g.nlevels.f[1], ncol=x$g.nlevels.f[1]) } G.info[lower.tri(G.info)] <- x$g.levels.comb.k G.info[upper.tri(G.info)] <- t(G.info)[upper.tri(G.info)] G.info[lower.tri(G.info)] <- ifelse(x$vc.fix$rho, "yes", "no") diag(G.info) <- "-" vc <- cbind(G, "", G.info) colnames(vc) <- c(paste0("rho.", abbreviate(x$g.levels.f[[1]])), "", abbreviate(x$g.levels.f[[1]])) # FIXME: x$g.levels.f[[1]] may be numeric, in which case a wrapping 'header' is not recognized rownames(vc) <- x$g.levels.f[[1]] tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } if (is.element(x$struct[1], c("GEN"))) { vc <- cbind(tau2, tau, ifelse(x$vc.fix$tau2, "yes", "no"), "") colnames(vc) <- c("estim", "sqrt", "fixed", "rho:") rownames(vc) <- x$g.names[-length(x$g.names)] G.info <- fmtx(cov2cor(x$G), digits[["var"]]) diag(G.info) <- "-" G.info[lower.tri(G.info)] <- ifelse(x$vc.fix$rho, "yes", "no") colnames(G.info) <- abbreviate(x$g.names[-length(x$g.names)]) vc <- cbind(vc, G.info) tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } if (is.element(x$struct[1], c("GDIAG"))) { vc <- cbind(tau2, tau, ifelse(x$vc.fix$tau2, "yes", "no")) colnames(vc) <- c("estim", "sqrt", "fixed") rownames(vc) <- x$g.names[-length(x$g.names)] tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } cat("\n") } if (x$withH) { ### note: use h.nlevels.f[1] since the number of arms is based on all data (i.e., including NAs), but use ### h.nlevels[2] since the number of studies is based on what is actually available (i.e., excluding NAs) if (is.element(x$struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { inner <- trimws(paste0(strsplit(paste0(x$formulas[[2]], collapse=""), "|", fixed=TRUE)[[1]][1], collapse="")) if (nchar(inner) > 15) inner <- paste0(substr(inner, 1, 15), "[...]", collapse="") } else { inner <- x$h.names[1] } outer <- tail(x$h.names, 1) mng <- max(nchar(c(inner, outer))) cat(mstyle$text(paste0("outer factor: ", paste0(outer, paste(rep(" ", max(0,mng-nchar(outer))), collapse=""), collapse=""), " (nlvls = ", x$h.nlevels[2], ")"))) cat("\n") if (is.element(x$struct[2], c("SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD","GEN","GDIAG"))) { cat(mstyle$text(paste0("inner term: ", paste0(inner, paste(rep(" ", max(0,mng-nchar(inner))), collapse=""), collapse=""), " (nlvls = ", x$h.nlevels.f[1], ")"))) } else { cat(mstyle$text(paste0("inner factor: ", paste0(inner, paste(rep(" ", max(0,mng-nchar(inner))), collapse=""), collapse=""), " (nlvls = ", x$h.nlevels.f[1], ")"))) } cat("\n\n") if (is.element(x$struct[2], c("CS","AR","CAR","ID","SPEXP","SPGAU","SPLIN","SPRAT","SPSPH","PHYBM","PHYPL","PHYPD"))) { vc <- cbind(gamma2, gamma, ifelse(x$vc.fix$gamma2, "yes", "no")) vc <- rbind(vc, c(phi, "", ifelse(x$vc.fix$phi, "yes", "no"))) colnames(vc) <- c("estim", "sqrt", "fixed") rownames(vc) <- c("gamma^2 ", "phi") if (x$struct[2] == "ID") vc <- vc[1,,drop=FALSE] tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } if (is.element(x$struct[2], c("HCS","HAR","DIAG"))) { vc <- cbind(gamma2, gamma, x$h.levels.k, ifelse(x$vc.fix$gamma2, "yes", "no"), x$h.levels.f[[1]]) vc <- rbind(vc, c(phi, "", "", ifelse(x$vc.fix$phi, "yes", "no"), "")) colnames(vc) <- c("estim", "sqrt", "k.lvl", "fixed", "level") if (length(x$gamma2) == 1L) { rownames(vc) <- c("gamma^2 ", "phi") } else { rownames(vc) <- c(paste0("gamma^2.", seq_along(x$gamma2), " "), "phi") } if (x$struct[2] == "DIAG") vc <- vc[seq_along(gamma2),,drop=FALSE] tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } if (is.element(x$struct[2], c("UN","UNR"))) { if (x$struct[2] == "UN") { vc <- cbind(gamma2, gamma, x$h.levels.k, ifelse(x$vc.fix$gamma2, "yes", "no"), x$h.levels.f[[1]]) } else { vc <- cbind(rep(gamma2, length(x$h.levels.k)), rep(gamma, length(x$h.levels.k)), x$h.levels.k, ifelse(rep(x$vc.fix$gamma2,length(x$h.levels.k)), "yes", "no"), x$h.levels.f[[1]]) } colnames(vc) <- c("estim", "sqrt", "k.lvl", "fixed", "level") if (length(x$h.levels.k) == 1L) { rownames(vc) <- c("gamma^2") } else { rownames(vc) <- paste0("gamma^2.", seq_along(x$h.levels.k), " ") } tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) cat("\n") if (length(x$phi) == 1L) { H <- matrix(NA_real_, nrow=2, ncol=2) } else { H <- matrix(NA_real_, nrow=x$h.nlevels.f[1], ncol=x$h.nlevels.f[1]) } H[lower.tri(H)] <- phi H[upper.tri(H)] <- t(H)[upper.tri(H)] diag(H) <- 1 #H[upper.tri(H)] <- "" if (length(x$phi) == 1L) { H.info <- matrix(NA_real_, nrow=2, ncol=2) } else { H.info <- matrix(NA_real_, nrow=x$h.nlevels.f[1], ncol=x$h.nlevels.f[1]) } H.info[lower.tri(H.info)] <- x$h.levels.comb.k H.info[upper.tri(H.info)] <- t(H.info)[upper.tri(H.info)] H.info[lower.tri(H.info)] <- ifelse(x$vc.fix$phi, "yes", "no") diag(H.info) <- "-" vc <- cbind(H, "", H.info) colnames(vc) <- c(paste0("phi.", abbreviate(x$h.levels.f[[1]])), "", abbreviate(x$h.levels.f[[1]])) # FIXME: x$h.levels.f[[1]] may be numeric, in which case a wrapping 'header' is not recognized rownames(vc) <- x$h.levels.f[[1]] tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } if (is.element(x$struct[2], c("GEN"))) { vc <- cbind(gamma2, gamma, ifelse(x$vc.fix$gamma2, "yes", "no"), "") colnames(vc) <- c("estim", "sqrt", "fixed", "phi:") rownames(vc) <- x$h.names[-length(x$h.names)] H.info <- fmtx(cov2cor(x$H), digits[["var"]]) diag(H.info) <- "-" H.info[lower.tri(H.info)] <- ifelse(x$vc.fix$phi, "yes", "no") colnames(H.info) <- abbreviate(x$h.names[-length(x$h.names)]) vc <- cbind(vc, H.info) tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } if (is.element(x$struct[2], c("GDIAG"))) { vc <- cbind(gamma2, gamma, ifelse(x$vc.fix$gamma2, "yes", "no")) colnames(vc) <- c("estim", "sqrt", "fixed") rownames(vc) <- x$h.names[-length(x$h.names)] tmp <- capture.output(print(vc, quote=FALSE, right=right, print.gap=2)) .print.table(tmp, mstyle) } cat("\n") } } if (!is.na(x$QE)) { if (x$int.only) { cat(mstyle$section("Test for Heterogeneity:")) cat("\n") cat(mstyle$result(fmtt(x$QE, "Q", df=x$QEdf, pval=x$QEp, digits=digits))) } else { cat(mstyle$section("Test for Residual Heterogeneity:")) cat("\n") cat(mstyle$result(fmtt(x$QE, "QE", df=x$QEdf, pval=x$QEp, digits=digits))) } cat("\n\n") } if (inherits(x, "robust.rma")) { cat(mstyle$text("Number of estimates: ")) cat(mstyle$result(x$k)) cat("\n") cat(mstyle$text("Number of clusters: ")) cat(mstyle$result(x$n)) cat("\n") cat(mstyle$text("Estimates per cluster: ")) if (all(x$tcl[1] == x$tcl)) { cat(mstyle$result(x$tcl[1])) } else { cat(mstyle$result(paste0(min(x$tcl), "-", max(x$tcl), " (mean: ", fmtx(mean(x$tcl), digits=2), ", median: ", round(median(x$tcl), digits=2), ")"))) } cat("\n\n") } if (x$p > 1L && !is.na(x$QM)) { cat(mstyle$section(paste0("Test of Moderators (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$btt),"):", ifelse(inherits(x, "robust.rma"), footsym[1], "")))) cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(fmtt(x$QM, "F", df1=x$QMdf[1], df2=x$QMdf[2], pval=x$QMp, digits=digits))) } else { cat(mstyle$result(fmtt(x$QM, "QM", df=x$QMdf[1], pval=x$QMp, digits=digits))) } cat("\n\n") } if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=fmtx(c(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), tval=fmtx(x$zval, digits[["test"]]), df=round(x$ddf,2), pval=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) if (inherits(x, "robust.rma") && footsym[1] != "") res.table <- .addfootsym(res.table, 2:7, footsym[1]) } else { res.table <- data.frame(estimate=fmtx(c(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), zval=fmtx(x$zval, digits[["test"]]), pval=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) } rownames(res.table) <- rownames(x$beta) signif <- symnum(x$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } if (.isTRUE(ddd$num)) { width <- nchar(nrow(res.table)) rownames(res.table) <- paste0(formatC(seq_len(nrow(res.table)), format="d", width=width), ") ", rownames(res.table)) } if (x$int.only) res.table <- res.table[1,] cat(mstyle$section("Model Results:")) cat("\n\n") if (x$int.only) { tmp <- capture.output(.print.vector(res.table)) } else { tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) } #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) if (signif.legend || legend) { cat("\n") cat(mstyle$legend("---")) } if (signif.legend) { cat("\n") cat(mstyle$legend("Signif. codes: "), mstyle$legend(attr(signif, "legend"))) cat("\n") } if (inherits(x, "robust.rma") && legend) { cat("\n") cat(mstyle$legend(paste0(footsym[2], " results based on cluster-robust inference (var-cov estimator: ", x$vbest))) if (x$robumethod == "default") { cat(mstyle$legend(",")) cat("\n") cat(mstyle$legend(paste0(" approx ", ifelse(x$int.only, "t-test and confidence interval", "t/F-tests and confidence intervals"), ", df: residual method)"))) } else { if (x$coef_test == "Satterthwaite" && x$conf_test == "Satterthwaite" && x$wald_test == "HTZ") { cat(mstyle$legend(",")) cat("\n") cat(mstyle$legend(paste0(" approx ", ifelse(x$int.only, "t-test and confidence interval", "t/F-tests and confidence intervals"), ", df: Satterthwaite approx)"))) } else { cat(mstyle$legend(")")) } } cat("\n") } .space() invisible() } metafor/R/permutest.rma.uni.r0000644000176200001440000004452514722315236015712 0ustar liggesuserspermutest.rma.uni <- function(x, exact=FALSE, iter=1000, btt=x$btt, permci=FALSE, progbar=TRUE, digits, control, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.uni", notav=c("robust.rma", "rma.ls", "rma.gen", "rma.uni.selmodel")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed to carry out permutation test is not available in the model object.")) ddd <- list(...) .chkdots(ddd, c("tol", "time", "seed", "verbose", "fixed", "code1", "code2")) if (!is.null(ddd$tol)) # in case user specified comptol in the old manner comptol <- ddd$tol fixed <- .chkddd(ddd$fixed, FALSE, .isTRUE(ddd$fixed)) iter <- round(iter) if (iter <= 1) stop(mstyle$stop("Argument 'iter' must be >= 2.")) if (.isTRUE(ddd$time)) time.start <- proc.time() if (!missing(btt)) { btt <- .set.btt(btt, x$p, x$int.incl, colnames(x$X), fixed=fixed) args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=x$X, intercept=FALSE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=btt, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, skipr2=TRUE) x <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) } ######################################################################### ######################################################################### ######################################################################### ### calculate number of permutations for an exact permutation test if (x$int.only) { ### for intercept-only models, there are 2^k possible permutations of the signs X.exact.iter <- 2^x$k } else { ### for meta-regression models, there are k! possible permutations of the rows of the model matrix #X.exact.iter <- round(exp(lfactorial(x$k))) # note: without round(), not exactly an integer! ### however, when there are duplicated rows in the model matrix, the number of *unique* permutations ### is lower; the code below below determines the number of unique permutations ### order the X matrix X <- as.data.frame(x$X)[do.call(order, as.data.frame(x$X)),] ### determine groupings X.indices <- cumsum(c(TRUE, !duplicated(X)[-1])) ### this turns 1,1,1,2,2,3,4,4,4 into 1,1,1,4,4,6,7,7,7 so that the actual row numbers can be permuted X.indices <- rep(cumsum(rle(X.indices)$lengths) - (rle(X.indices)$lengths - 1), rle(X.indices)$lengths) ### determine exact number of unique permutations ind.table <- table(X.indices) X.exact.iter <- round(prod((max(ind.table)+1):x$k) / prod(factorial(ind.table[-which.max(ind.table)]))) # cancel largest value in numerator and denominator to reduce overflow problems #X.exact.iter <- round(factorial(x$k) / prod(factorial(ind.table))) # definitional formula #X.exact.iter <- round(exp(lfactorial(x$k) - sum(lfactorial(ind.table)))) # using log of definitional formula and then round(exp()) if (is.na(X.exact.iter)) X.exact.iter <- Inf } if (is.character(exact) && exact == "i") return(X.exact.iter) ### if 'exact=TRUE' or if the number of iterations for an exact test are smaller ### than what is specified under 'iter', then carry out the exact test X.exact <- exact X.iter <- iter if (X.exact || (X.exact.iter <= X.iter)) { X.exact <- TRUE X.iter <- X.exact.iter } if (X.iter == Inf) stop(mstyle$stop("Too many iterations required for an exact permutation test.")) ######################################################################### ### generate seed (needed when X.exact=FALSE) if (!X.exact) seed <- as.integer(runif(1)*2e9) ### set defaults for control parameters and replace with any user-defined values if (missing(control)) control <- list() con <- list(comptol=.Machine$double.eps^0.5, tol=.Machine$double.eps^0.25, maxiter=100, alternative="two.sided", p2defn="abs", stat="test", cialt="one.sided", distfac=1, extendInt="no") con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] con$alternative <- match.arg(con$alternative, c("two.sided", "less", "greater")) con$p2defn <- match.arg(con$p2defn, c("abs", "px2")) con$stat <- match.arg(con$stat, c("test", "coef")) if (exists("comptol", inherits=FALSE)) con$comptol <- comptol if (!X.exact) { if (!is.null(ddd$seed)) { set.seed(ddd$seed) } else { set.seed(seed) } } ### elements that need to be returned outlist <- "beta=beta, zval=zval, QM=QM" ######################################################################### if (progbar) cat(mstyle$verbose(paste0("Running ", X.iter, " iterations for an ", ifelse(X.exact, "exact", "approximate"), " permutation test.\n"))) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) if (x$int.only) { ### permutation test for intercept-only model zval.perm <- try(rep(NA_real_, X.iter), silent=TRUE) if (inherits(zval.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) beta.perm <- try(rep(NA_real_, X.iter), silent=TRUE) if (inherits(beta.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) QM.perm <- try(rep(NA_real_, X.iter), silent=TRUE) if (inherits(QM.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) if (progbar) pbar <- pbapply::startpb(min=0, max=X.iter) if (X.exact) { # exact permutation test for intercept-only models signmat <- as.matrix(expand.grid(replicate(x$k, list(c(1,-1))), KEEP.OUT.ATTRS=FALSE)) for (i in seq_len(X.iter)) { if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) args <- list(yi=signmat[i,]*x$yi, vi=x$vi, weights=x$weights, intercept=TRUE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=1, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, skipr2=TRUE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next beta.perm[i] <- res$beta[,1] zval.perm[i] <- res$zval QM.perm[i] <- res$QM if (progbar) pbapply::setpb(pbar, i) } } else { # approximate permutation test for intercept-only models i <- 1 while (i <= X.iter) { if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) signs <- sample(c(-1,1), x$k, replace=TRUE) # easier to understand (a tad slower for small k, but faster for larger k) #signs <- 2*rbinom(x$k,1,0.5)-1 args <- list(yi=signs*x$yi, vi=x$vi, weights=x$weights, intercept=TRUE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=1, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, skipr2=TRUE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next beta.perm[i] <- res$beta[,1] zval.perm[i] <- res$zval QM.perm[i] <- res$QM i <- i + 1 if (progbar) pbapply::setpb(pbar, i) } } ### the first random permutation is always the observed data (avoids possibility of p=0) if (!X.exact) { beta.perm[1] <- x$beta[,1] zval.perm[1] <- x$zval QM.perm[1] <- x$QM } if (con$alternative == "two.sided") { if (con$p2defn == "abs") { ### absolute value definition of the two-sided p-value if (con$stat == "test") { pval <- mean(abs(zval.perm) >= abs(x$zval) - con$comptol, na.rm=TRUE) # based on test statistic } else { pval <- mean(abs(beta.perm) >= abs(c(x$beta)) - con$comptol, na.rm=TRUE) # based on coefficient } } else { ### two times the one-sided p-value definition of the two-sided p-value if (con$stat == "test") { if (x$zval > median(zval.perm, na.rm=TRUE)) { pval <- 2*mean(zval.perm >= x$zval - con$comptol, na.rm=TRUE) # based on test statistic } else { pval <- 2*mean(zval.perm <= x$zval + con$comptol, na.rm=TRUE) } } else { if (c(x$beta) > median(beta.perm, na.rm=TRUE)) { pval <- 2*mean(beta.perm >= c(x$beta) - con$comptol, na.rm=TRUE) # based on coefficient } else { pval <- 2*mean(beta.perm <= c(x$beta) + con$comptol, na.rm=TRUE) } } } } if (con$alternative == "less") { if (con$stat == "test") { pval <- mean(zval.perm <= x$zval + con$comptol, na.rm=TRUE) # based on test statistic } else { pval <- mean(beta.perm <= c(x$beta) + con$comptol, na.rm=TRUE) # based on coefficient } } if (con$alternative == "greater") { if (con$stat == "test") { pval <- mean(zval.perm >= x$zval - con$comptol, na.rm=TRUE) # based on test statistic } else { pval <- mean(beta.perm >= c(x$beta) - con$comptol, na.rm=TRUE) # based on coefficient } } pval[pval > 1] <- 1 QMp <- mean(QM.perm >= x$QM - con$comptol, na.rm=TRUE) ######################################################################### } else { ### permutation test for meta-regression model zval.perm <- try(suppressWarnings(matrix(NA_real_, nrow=X.iter, ncol=x$p)), silent=TRUE) if (inherits(zval.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) beta.perm <- try(suppressWarnings(matrix(NA_real_, nrow=X.iter, ncol=x$p)), silent=TRUE) if (inherits(beta.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) QM.perm <- try(rep(NA_real_, X.iter), silent=TRUE) if (inherits(QM.perm, "try-error")) stop(mstyle$stop("Number of iterations requested too large.")) if (progbar) pbar <- pbapply::startpb(min=0, max=X.iter) if (X.exact) { # exact permutation test for meta-regression models #permmat <- .genperms(x$k) permmat <- .genuperms(X.indices) # use recursive algorithm to obtain all unique permutations for (i in seq_len(X.iter)) { args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=cbind(X[permmat[i,],]), intercept=FALSE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=x$btt, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, skipr2=TRUE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next beta.perm[i,] <- res$beta[,1] zval.perm[i,] <- res$zval QM.perm[i] <- res$QM if (progbar) pbapply::setpb(pbar, i) } } else { # approximate permutation test for meta-regression models i <- 1 while (i <= X.iter) { args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=cbind(X[sample(x$k),]), intercept=FALSE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, btt=x$btt, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, skipr2=TRUE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=!isTRUE(ddd$verbose)) if (inherits(res, "try-error")) next beta.perm[i,] <- res$beta[,1] zval.perm[i,] <- res$zval QM.perm[i] <- res$QM i <- i + 1 if (progbar) pbapply::setpb(pbar, i) } } ### the first random permutation is always the observed data (avoids possibility of p=0) if (!X.exact) { beta.perm[1,] <- x$beta[,1] zval.perm[1,] <- x$zval QM.perm[1] <- x$QM } if (con$alternative == "two.sided") { if (con$p2defn == "abs") { ### absolute value definition of the two-sided p-value if (con$stat == "test") { pval <- rowMeans(t(abs(zval.perm)) >= abs(x$zval) - con$comptol, na.rm=TRUE) # based on test statistics } else { pval <- rowMeans(t(abs(beta.perm)) >= abs(c(x$beta)) - con$comptol, na.rm=TRUE) # based on coefficients } } else { ### two times the one-sided p-value definition of the two-sided p-value pval <- rep(NA_real_, x$p) if (con$stat == "test") { for (j in seq_len(x$p)) { if (x$zval[j] > median(zval.perm[,j], na.rm=TRUE)) { pval[j] <- 2*mean(zval.perm[,j] >= x$zval[j] - con$comptol, na.rm=TRUE) } else { pval[j] <- 2*mean(zval.perm[,j] <= x$zval[j] + con$comptol, na.rm=TRUE) } } } else { for (j in seq_len(x$p)) { if (c(x$beta)[j] > median(beta.perm[,j], na.rm=TRUE)) { pval[j] <- 2*mean(beta.perm[,j] >= c(x$beta)[j] - con$comptol, na.rm=TRUE) } else { pval[j] <- 2*mean(beta.perm[,j] <= c(x$beta)[j] + con$comptol, na.rm=TRUE) } } } } } if (con$alternative == "less") { if (con$stat == "test") { pval <- rowMeans(t(zval.perm) <= x$zval + con$comptol, na.rm=TRUE) # based on test statistics } else { pval <- rowMeans(t(beta.perm) <= c(x$beta) + con$comptol, na.rm=TRUE) # based on coefficients } } if (con$alternative == "greater") { if (con$stat == "test") { pval <- rowMeans(t(zval.perm) >= x$zval - con$comptol, na.rm=TRUE) # based on test statistics } else { pval <- rowMeans(t(beta.perm) >= c(x$beta) - con$comptol, na.rm=TRUE) # based on coefficients } } pval[pval > 1] <- 1 QMp <- mean(QM.perm >= x$QM - con$comptol, na.rm=TRUE) } if (progbar) pbapply::closepb(pbar) ######################################################################### ######################################################################### ######################################################################### ### permutation-based CI ci.lb <- x$ci.lb ci.ub <- x$ci.ub if (.isTRUE(permci) || is.numeric(permci)) { level <- .level(x$level) ### check if it is even possible to reject at level if (1/X.iter > level / ifelse(con$cialt == "one.sided", 1, 2)) { permci <- FALSE warning(mstyle$warning(paste0("Cannot obtain ", 100*(1-x$level), "% permutation-based CI; number of permutations (", X.iter, ") too low.")), call.=FALSE) } else { ### if permci is numeric, check if existing coefficients have been specified ### otherwise, CIs will be obtained for all model coefficients if (is.numeric(permci)) { coefs <- unique(round(permci)) if (any(coefs > x$p) || any(coefs < 1)) stop(mstyle$stop("Non-existent coefficients specified via 'permci'.")) permci <- TRUE } else { coefs <- seq_len(x$p) } ci.lb <- rep(NA_real_, x$p) ci.ub <- rep(NA_real_, x$p) for (j in coefs) { if (progbar) cat(mstyle$verbose(paste0("Searching for lower CI bound of coefficient ", j, ": \n"))) if (con$cialt == "one.sided") { con$alternative <- "greater" } else { con$alternative <- "two.sided" } tmp <- try(uniroot(.permci, interval=c(x$ci.lb[j] - con$distfac*(x$beta[j,1] - x$ci.lb[j]), x$beta[j,1]), extendInt=ifelse(con$extendInt == "no", "no", "upX"), tol=con$tol, maxiter=con$maxiter, obj=x, j=j, exact=X.exact, iter=X.iter, progbar=progbar, level=level, digits=digits, control=con)$root, silent=TRUE) if (inherits(tmp, "try-error")) { ci.lb[j] <- NA_real_ } else { ci.lb[j] <- tmp } if (progbar) cat(mstyle$verbose(paste0("Searching for upper CI bound of coefficient ", j, ": \n"))) if (con$cialt == "one.sided") { con$alternative <- "less" } else { con$alternative <- "two.sided" } tmp <- try(uniroot(.permci, interval=c(x$beta[j,1], x$ci.ub[j] + con$distfac*(x$ci.ub[j] - x$beta[j,1])), extendInt=ifelse(con$extendInt == "no", "no", "downX"), tol=con$tol, maxiter=con$maxiter, obj=x, j=j, exact=X.exact, iter=X.iter, progbar=progbar, level=level, digits=digits, control=con)$root, silent=TRUE) if (inherits(tmp, "try-error")) { ci.ub[j] <- NA_real_ } else { ci.ub[j] <- tmp } } } } ######################################################################### out <- list(pval=pval, QMdf=x$QMdf, QMp=QMp, beta=x$beta, se=x$se, zval=x$zval, ci.lb=ci.lb, ci.ub=ci.ub, QM=x$QM, k=x$k, p=x$p, btt=x$btt, m=x$m, test=x$test, dfs=x$dfs, ddf=x$ddf, int.only=x$int.only, int.incl=x$int.incl, digits=digits, exact.iter=X.exact.iter, permci=permci, alternative=con$alternative, p2defn=con$p2defn, stat=con$stat) out$skip.beta <- FALSE out$QM.perm <- QM.perm out$zval.perm <- data.frame(zval.perm) out$beta.perm <- data.frame(beta.perm) names(out$zval.perm) <- names(out$beta.perm) <- colnames(x$X) if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- "permutest.rma.uni" return(out) } metafor/R/rstandard.rma.mv.r0000644000176200001440000001215414717377115015474 0ustar liggesusersrstandard.rma.mv <- function(model, digits, cluster, ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.mv", notav="robust.rma") na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$yi) || is.null(model$X)) stop(mstyle$stop("Information needed to compute the residuals is not available in the model object.")) x <- model if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } misscluster <- ifelse(missing(cluster), TRUE, FALSE) if (misscluster) { cluster <- seq_len(x$k.all) } else { mf <- match.call() cluster <- .getx("cluster", mf=mf, data=x$data) } ######################################################################### ### process cluster variable ### note: cluster variable must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing ### of NAs as was done during model fitting if (length(cluster) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not match the length of the data (", x$k.all, ")."))) cluster <- .getsubset(cluster, x$subset) cluster.f <- cluster cluster <- cluster[x$not.na] ### checks on cluster variable if (anyNA(cluster.f)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster.f) == 0L) stop(mstyle$stop(paste0("Cannot find 'cluster' variable (or it has zero length)."))) ######################################################################### options(na.action="na.omit") H <- hatvalues(x, type="matrix") options(na.action = na.act) ######################################################################### ImH <- diag(x$k) - H #ei <- ImH %*% cbind(x$yi) ei <- c(x$yi - x$X %*% x$beta) ei[abs(ei) < 100 * .Machine$double.eps] <- 0 #ei[abs(ei) < 100 * .Machine$double.eps * median(abs(ei), na.rm=TRUE)] <- 0 # see lm.influence ### don't allow this; the SEs of the residuals cannot be estimated consistently for "robust.rma" objects #if (inherits(x, "robust.rma")) { # ve <- ImH %*% tcrossprod(x$meat,ImH) #} else { # ve <- ImH %*% tcrossprod(x$M,ImH) #} ve <- ImH %*% tcrossprod(x$M,ImH) #ve <- x$M + x$X %*% x$vb %*% t(x$X) - 2*H%*%x$M sei <- sqrt(diag(ve)) ######################################################################### if (!misscluster) { ### cluster ids and number of clusters ids <- unique(cluster) n <- length(ids) X2 <- rep(NA_real_, n) k.id <- rep(NA_integer_, n) for (i in seq_len(n)) { incl <- cluster %in% ids[i] k.id[i] <- sum(incl) vei <- as.matrix(ve[incl,incl,drop=FALSE]) if (!.chkpd(crossprod(vei))) next sve <- try(chol2inv(chol(vei)), silent=TRUE) #sve <- try(solve(ve[incl,incl,drop=FALSE]), silent=TRUE) if (inherits(sve, "try-error")) next X2[i] <- rbind(ei[incl]) %*% sve %*% cbind(ei[incl]) } } ######################################################################### resid <- rep(NA_real_, x$k.f) seresid <- rep(NA_real_, x$k.f) stresid <- rep(NA_real_, x$k.f) resid[x$not.na] <- ei seresid[x$not.na] <- sei stresid[x$not.na] <- ei / sei ######################################################################### if (na.act == "na.omit") { out <- list(resid=resid[x$not.na], se=seresid[x$not.na], z=stresid[x$not.na]) if (!misscluster) out$cluster <- cluster.f[x$not.na] out$slab <- x$slab[x$not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(resid=resid, se=seresid, z=stresid) if (!misscluster) out$cluster <- cluster.f out$slab <- x$slab } if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) if (misscluster) { out$digits <- digits class(out) <- "list.rma" return(out) } else { out <- list(out) if (na.act == "na.omit") { out[[2]] <- list(X2=X2[order(ids)], k=k.id[order(ids)], slab=ids[order(ids)]) } if (na.act == "na.exclude" || na.act == "na.pass") { ids.f <- unique(cluster.f) X2.f <- rep(NA_real_, length(ids.f)) X2.f[match(ids, ids.f)] <- X2 k.id.f <- sapply(ids.f, function(id) sum((id == cluster.f) & x$not.na)) out[[2]] <- list(X2=X2.f[order(ids.f)], k=k.id.f[order(ids.f)], slab=ids.f[order(ids.f)]) } out[[1]]$digits <- digits out[[2]]$digits <- digits names(out) <- c("obs", "cluster") class(out[[1]]) <- "list.rma" class(out[[2]]) <- "list.rma" attr(out[[1]], ".rmspace") <- TRUE attr(out[[2]], ".rmspace") <- TRUE return(out) } } metafor/R/print.vif.rma.r0000644000176200001440000001047714515471062015006 0ustar liggesusersprint.vif.rma <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="vif.rma") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) ddd <- list(...) .chkdots(ddd, c("num")) .space() if (!is.null(x$alpha)) { cat(mstyle$section(paste0("Location Coefficients:\n"))) print(x[[1]], digits=digits, ...) .space(FALSE) cat(mstyle$section(paste0("Scale Coefficients:\n"))) print(x[[2]], digits=digits, ...) } else { if (isTRUE(x$bttspec) || isTRUE(x$attspec)) { if (length(x$vif) == 1L) { if (x$vif[[1]]$m == 1) { cat(mstyle$section(paste0("Collinearity Diagnostics (coefficient ", x$vif[[1]]$coefs,"):\n"))) cat(mstyle$result(paste0("VIF = ", fmtx(x$vif[[1]]$vif, digits[["est"]]), ", SIF = ", fmtx(x$vif[[1]]$sif, digits[["est"]])))) } else { cat(mstyle$section(paste0("Collinearity Diagnostics (coefficients ", x$vif[[1]]$coefs,"):\n"))) cat(mstyle$result(paste0("GVIF = ", fmtx(x$vif[[1]]$vif, digits[["est"]]), ", GSIF = ", fmtx(x$vif[[1]]$sif, digits[["est"]])))) } if (!is.null(x$sim)) cat(mstyle$result(paste0(", prop = ", fmtx(x$prop, 2)))) cat("\n") } else { res.table <- do.call(rbind, x$vif) res.table$vif <- fmtx(res.table$vif, digits[["est"]]) res.table$sif <- fmtx(res.table$sif, digits[["est"]]) res.table$coefname <- NULL if (!is.null(x$sim)) res.table$prop <- fmtx(x$prop, 2) # if all btt/att specifications are numeric, remove the 'spec' column if (all(substr(res.table$spec, 1, 1) %in% as.character(1:9))) res.table$spec <- NULL # just use numbers for row names rownames(res.table) <- NULL tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=1)) .print.table(tmp, mstyle) } } else { vifs <- sapply(x$vif, function(x) x$vif) sifs <- sapply(x$vif, function(x) x$sif) if (is.null(x$table)) { if (is.null(x$sim)) { tmp <- fmtx(vifs, digits[["est"]]) tmp <- capture.output(.print.vector(tmp)) .print.table(tmp, mstyle) } else { res.table <- data.frame(vif=vifs) res.table$prop <- fmtx(x$prop, 2) res.table$vif <- fmtx(res.table$vif, digits[["est"]]) tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) .print.table(tmp, mstyle) } } else { if (length(vifs) != length(x$table$estimate)) { vifs <- c(NA_real_, vifs) sifs <- c(NA_real_, sifs) x$prop <- c(NA_real_, x$prop) } if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=fmtx(x$table$estimate, digits[["est"]]), se=fmtx(x$table$se, digits[["se"]]), tval=fmtx(x$table$tval, digits[["test"]]), df=round(x$table$df,2), "pval"=fmtp(x$table$pval, digits[["pval"]]), ci.lb=fmtx(x$table$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$table$ci.ub, digits[["ci"]]), vif=fmtx(vifs, digits[["est"]]), sif=fmtx(sifs, digits[["est"]]), stringsAsFactors=FALSE) } else { res.table <- data.frame(estimate=fmtx(x$table$estimate, digits[["est"]]), se=fmtx(x$table$se, digits[["se"]]), zval=fmtx(x$table$zval, digits[["test"]]), "pval"=fmtp(x$table$pval, digits[["pval"]]), ci.lb=fmtx(x$table$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$table$ci.ub, digits[["ci"]]), vif=fmtx(vifs, digits[["est"]]), sif=fmtx(sifs, digits[["est"]]), stringsAsFactors=FALSE) } rownames(res.table) <- rownames(x$table) if (!is.null(x$sim)) res.table$prop <- fmtx(x$prop, 2) if (.isTRUE(ddd$num)) { width <- nchar(nrow(res.table)) rownames(res.table) <- paste0(formatC(seq_len(nrow(res.table)), format="d", width=width), ") ", rownames(res.table)) } tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=1)) .print.table(tmp, mstyle) } } .space() } invisible() } metafor/R/formatters.r0000644000176200001440000001447414707633412014502 0ustar liggesusers############################################################################ fmtp <- function(p, digits=4, pname="", equal=FALSE, sep=FALSE, add0=FALSE, quote=FALSE) { p[p < 0] <- 0 p[p > 1] <- 1 digits <- max(digits, 1) cutoff <- paste(c(".", rep(0,digits-1),1), collapse="") ncutoff <- as.numeric(cutoff) equal <- ifelse(equal, "=", "") if (sep) { if (pname != "") pname <- paste0(pname, " ") sep <- " " } else { sep <- "" } out <- ifelse(is.na(p), paste0(pname, equal, sep, "NA"), ifelse(p >= ncutoff, paste0(pname, equal, sep, formatC(p, digits=digits, format="f")), paste0(pname, "<", sep, ifelse(add0, "0", ""), cutoff))) if (!quote) out <- noquote(out) return(out) } fmtp2 <- function(p, cutoff=c(0.001,0.06), pname="p", sep=TRUE, add0=FALSE, quote=FALSE) { p[p < 0] <- 0 p[p > 1] <- 1 if (length(cutoff) == 1L) stop("Argument 'cutoff' must be of length 2.") cutoff <- sort(cutoff) if (cutoff[1] == 0) stop("The lower 'cutoff' value must be > 0.") digits1 <- nchar(formatC(cutoff[1], format="f", digits=10, drop0trailing=T))-2 digits2 <- nchar(formatC(cutoff[2], format="f", digits=10, drop0trailing=T))-2 if (sep) { if (pname != "") pname <- paste0(pname, " ") sep <- " " } else { sep <- "" } out <- sapply(p, function(x) { if (is.na(x)) return(paste0(pname, "=", sep, "NA")) if (x < cutoff[1]) { return(paste0(pname, "<", sep, formatC(cutoff[1], digits=digits1, format="f"))) } if (x < cutoff[2]) { return(paste0(pname, "=", sep, formatC(x, digits=digits1, format="f"))) } return(paste0(pname, "=", sep, formatC(x, digits=digits2, format="f"))) }) if (!add0) out <- gsub("0.", ".", fixed=TRUE, out) if (!quote) out <- noquote(out) return(out) } fmtx <- function(x, digits=4, flag="", quote=FALSE, ...) { # in case x is a data frame / matrix with two dimensions if (length(dim(x)) == 2L) { digits <- .expand1(digits, ncol(x)) out <- matrix("", nrow=nrow(x), ncol=ncol(x)) rownames(out) <- rownames(x) colnames(out) <- colnames(x) for (j in seq_len(ncol(x))) out[,j] <- fmtx(x[,j], digits=digits[[j]], flag=flag, ...) if (!quote) out <- noquote(out, right=TRUE) return(out) } ddd <- list(...) width <- .chkddd(ddd$addwidth, NULL, digits + ddd$addwidth) drop0ifint <- .chkddd(ddd$drop0ifint, FALSE) add0 <- .chkddd(ddd$add0, TRUE) if (!is.null(ddd$thresh)) { if (length(x) != 1L) stop("Can only use 'thresh' when 'x' is a scalar.") if (isTRUE(abs(x) <= ddd$thresh)) digits <- 0 } postfix <- .chkddd(ddd$postfix, "") out <- sapply(x, function(x) { if (is.na(x)) return(paste0("NA", postfix)) out <- formatC(x, format="f", digits=digits, flag=flag, width=width, drop0trailing=drop0ifint && is.integer(digits)) if (!add0) out <- gsub("0\\.", ".", out) out <- paste0(out, postfix) return(out) }) if (!quote) out <- noquote(out, right=TRUE) return(out) } ############################################################################ fmtt <- function(val, tname, df, df1, df2, pval, digits=4, pname="p-val", format=1, sep=TRUE, quote=FALSE, call=FALSE, ...) { if (length(val) != 1L) stop("Argument 'val' must be a scalar.") if (!is.element(format, c(1,2))) stop("Argument 'format' can only be equal to 1 or 2.") if (missing(pval)) stop("Must specify the 'pval' argument.") sepset <- sep if (sep) { sep <- " " } else { sep <- "" } ddd <- list(...) flag <- .chkddd(ddd$flag, "") if (length(digits) == 1L) digits <- c(test = digits, pval = digits) if (length(digits) == 2L) names(digits) <- c("test", "pval") if (any(!is.element(c("test","pval"), names(digits)))) stop("Argument 'digits' must have a 'test' and a 'pval' element.") if (format == 1) { if (missing(df)) { if (!missing(df1) && !missing(df2)) { out <- bquote(paste(.(tname), "(df1", .(sep), "=", .(sep), .(df1), ",", .(sep), "df2", .(sep), "=", .(sep), .(round(df2,2)), ")", .(sep), "=", .(sep), .(fmtx(val, digits[["test"]], flag=flag)), ", ", .(pname), .(sep), .(fmtp(pval, digits[["pval"]], equal=TRUE, sep=sepset)), sep="")) #paste0(tname, "(df1 = ", df1, ", df2 = ", round(df2,2), ") = ", fmtx(val, digits[["test"]]), ", ", pname, fmtp(pval, digits[["pval"]], equal=TRUE, sep=TRUE)) } else { out <- bquote(paste(.(tname), .(sep), "=", .(sep), .(fmtx(val, digits[["test"]], flag=flag)), ", ", .(pname), .(sep), .(fmtp(pval, digits[["pval"]], equal=TRUE, sep=sepset)), sep="")) } } else { out <- bquote(paste(.(tname), "(df", .(sep), "=", .(sep), .(df), ")", .(sep), "=", .(sep), .(fmtx(val, digits[["test"]], flag=flag)), ", ", .(pname), .(sep), .(fmtp(pval, digits[["pval"]], equal=TRUE, sep=sepset)), sep="")) #paste0(tname, "(df = ", df, ") = ", fmtx(val, digits[["test"]]), ", ", pname, fmtp(pval, digits[["pval"]], equal=TRUE, sep=TRUE)) } } if (format[[1]] == 2) { if (missing(df)) { if (!missing(df1) && !missing(df2)) { out <- bquote(paste(.(tname), .(sep), "=", .(sep), .(fmtx(val, digits[["test"]], flag=flag)), ", df1", .(sep), "=", .(sep), .(df1), ", df2", .(sep), "=", .(sep), .(round(df2,2)), ", ", .(pname), .(sep), .(fmtp(pval, digits[["pval"]], equal=TRUE, sep=sepset)), sep="")) } else { out <- bquote(paste(.(tname), .(sep), "=", .(sep), .(fmtx(val, digits[["test"]], flag=flag)), ", ", .(pname), .(sep), .(fmtp(pval, digits[["pval"]], equal=TRUE, sep=sepset)), sep="")) } } else { out <- bquote(paste(.(tname), .(sep), "=", .(sep), .(fmtx(val, digits[["test"]], flag=flag)), ", df", .(sep), "=", .(sep), .(df), ", ", .(pname), .(sep), .(fmtp(pval, digits[["pval"]], equal=TRUE, sep=sepset)), sep="")) } } if (call) { out$sep <- NULL return(out) } else { out <- eval(out) if (!quote) out <- noquote(out) return(out) } } ############################################################################ metafor/R/addpoly.r0000644000176200001440000000006413457322061013732 0ustar liggesusersaddpoly <- function(x, ...) UseMethod("addpoly") metafor/R/fitstats.r0000644000176200001440000000007413457322061014140 0ustar liggesusersfitstats <- function (object, ...) UseMethod("fitstats") metafor/R/vif.rma.r0000644000176200001440000002740114722317674013656 0ustar liggesusersvif.rma <- function(x, btt, att, table=FALSE, reestimate=FALSE, sim=FALSE, progbar=TRUE, seed=NULL, parallel="no", ncpus=1, cl, digits, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma") # allow vif() for 'rma.glmm', 'robust.rma', and 'rma.uni.selmodel' objects based on the same principle (but not sim/reestimate) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } ### determine for which types of coefficients (G)VIFs will be computed vif.loc <- !x$int.only if (inherits(x, "rma.ls") && !x$Z.int.only) { vif.scale <- TRUE } else { vif.scale <- FALSE } if (!vif.loc && !vif.scale) stop(mstyle$stop("VIFs not applicable to intercept-only models.")) if (!is.null(seed)) set.seed(seed) ddd <- list(...) .chkdots(ddd, c("fixed", "intercept", "time", "LB", "joinb", "joina")) fixed <- .chkddd(ddd$fixed, FALSE, .isTRUE(ddd$fixed)) intercept <- .chkddd(ddd$intercept, FALSE, .isTRUE(ddd$intercept)) joinb <- ddd$joinb joina <- ddd$joina if (.isTRUE(ddd$time)) time.start <- proc.time() ### process 'sim' argument (if TRUE, set sim to 1000, otherwise use given value) if (is.logical(sim)) { sim <- ifelse(isTRUE(sim), 1000, 0) } else { sim <- round(sim) if (sim <= 1) stop(mstyle$stop("Argument 'sim' must be >= 2.")) } ### do not allow sim and reestimate for 'rma.glmm', 'robust.rma', and 'rma.uni.selmodel' objects if (sim >= 2 && inherits(x, "rma.glmm")) stop(mstyle$stop("Cannot use 'sim' with models of class 'rma.glmm'.")) if (sim >= 2 && inherits(x, "robust.rma")) stop(mstyle$stop("Cannot use 'sim' with models of class 'robust.rma'.")) if (sim >= 2 && inherits(x, "rma.uni.selmodel")) stop(mstyle$stop("Cannot use 'sim' with models of class 'rma.uni.selmodel'.")) if (reestimate && inherits(x, "rma.glmm")) stop(mstyle$stop("Cannot use 'restimate=TRUE' with models of class 'rma.glmm'.")) if (reestimate && inherits(x, "robust.rma")) stop(mstyle$stop("Cannot use 'restimate=TRUE' with models of class 'robust.rma'.")) if (reestimate && inherits(x, "rma.uni.selmodel")) stop(mstyle$stop("Cannot use 'restimate=TRUE' with models of class 'rma.uni.selmodel'.")) ### check if btt/att have been specified bttmiss <- missing(btt) || is.null(btt) attmiss <- missing(att) || is.null(att) if (!attmiss && !inherits(x, "rma.ls")) stop(mstyle$stop("Argument 'att' only relevant for location-scale models.")) ### handle parallel (and related) arguments parallel <- match.arg(parallel, c("no", "snow", "multicore")) if (parallel == "no" && ncpus > 1) parallel <- "snow" if (missing(cl)) cl <- NULL if (!is.null(cl) && inherits(cl, "SOCKcluster")) { parallel <- "snow" ncpus <- length(cl) } if (parallel == "snow" && ncpus < 2) parallel <- "no" if (sim <= 1) parallel <- "no" if (parallel == "snow" || parallel == "multicore") { if (!requireNamespace("parallel", quietly=TRUE)) stop(mstyle$stop("Please install the 'parallel' package for parallel processing.")) ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Argument 'ncpus' must be >= 1.")) } if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } } if (!progbar) { pbo <- pbapply::pboptions(type="none") on.exit(pbapply::pboptions(pbo), add=TRUE) } ######################################################################### if (vif.loc) { ### process/set btt argument if (bttmiss) { if (x$intercept && !intercept) { btt <- as.list(2:x$p) } else { btt <- as.list(seq_len(x$p)) } } if (is.character(btt)) # turn btt=c("foo","bar") into list("foo","bar") btt <- as.list(btt) if (!is.list(btt)) btt <- list(btt) spec <- btt btt <- lapply(btt, .set.btt, x$p, x$int.incl, colnames(x$X), fixed=fixed) if (x$intercept && !intercept && any(sapply(btt, function(bttj) length(bttj) == 1L && bttj == 1L))) stop(mstyle$stop("Cannot compute VIF(s) for the specified 'btt' argument.")) ### get var-cov matrix of the fixed effects (location coefficients) vcov <- vcov(x, type="beta") ### compute (G)VIF for each element in the btt list obj <- if (reestimate) x else NULL res <- list() res$vif <- lapply(seq_along(btt), .compvif, btt=btt, vcov=vcov, xintercept=x$intercept, intercept=intercept, spec=spec, colnames=colnames(x$X), obj=obj, sim=FALSE) ### add coefficient names if (bttmiss) { names(res$vif) <- sapply(res$vif, function(x) x$coefname) } else { names(res$vif) <- sapply(res$vif, function(x) x$coefs) } ### add (G)VIFs as vector res$vifs <- sapply(res$vif, function(x) x$vif) ### add coefficient table if requested if (table && bttmiss) { res$table <- coef(summary(x), type="beta") res$test <- x$test } res$bttspec <- !bttmiss res$digits <- digits class(res) <- "vif.rma" ###################################################################### ### if sim >= 2, simulate corresponding (G)VIFs under independence sim.loc <- sim ### but skip this if all (G)VIFs are equal to 1 if (all(sapply(res$vif, function(x) x$vif) == 1, na.rm=TRUE)) sim.loc <- 0 if (sim >= 2 && any(x$coef.na)) { warning(mstyle$warning("Cannot use 'sim' when some redundant predictors were dropped from the model."), call.=FALSE) sim.loc <- 0 } if (sim.loc >= 2) { if (parallel == "no") vif.sim <- pbapply::pblapply(seq_len(sim.loc), .compvifsim, obj=x, coef="beta", btt=btt, att=NULL, reestimate=reestimate, intercept=intercept, parallel=parallel, seed=seed, joinb=joinb) if (parallel == "multicore") vif.sim <- pbapply::pblapply(seq_len(sim.loc), .compvifsim, obj=x, coef="beta", btt=btt, att=NULL, reestimate=reestimate, intercept=intercept, parallel=parallel, seed=seed, joinb=joinb, cl=ncpus) if (parallel == "snow") { if (.isTRUE(ddd$LB)) { vif.sim <- parallel::parLapplyLB(cl, seq_len(sim.loc), .compvifsim, obj=x, coef="beta", btt=btt, att=NULL, reestimate=reestimate, intercept=intercept, parallel=parallel, seed=seed, joinb=joinb) } else { vif.sim <- pbapply::pblapply(seq_len(sim.loc), .compvifsim, obj=x, coef="beta", btt=btt, att=NULL, reestimate=reestimate, intercept=intercept, parallel=parallel, seed=seed, joinb=joinb, cl=cl) } } vif.sim <- do.call(rbind, vif.sim) rownames(vif.sim) <- seq_len(sim.loc) colnames(vif.sim) <- seq_along(btt) if (!is.null(joinb) || is.null(x$data) || is.null(x$formula.mods)) { attr(vif.sim, "type") <- "X" } else { attr(vif.sim, "type") <- "data" } res$sim <- vif.sim vifs <- sapply(res$vif, function(x) x$vif) res$prop <- apply(vifs >= t(vif.sim), 1, mean, na.rm=TRUE) } ###################################################################### } else { res <- NULL } ######################################################################### if (vif.scale) { res.loc <- res ### process/set att argument if (attmiss) { if (x$Z.intercept && !intercept) { att <- as.list(2:x$q) } else { att <- as.list(seq_len(x$q)) } } if (is.character(att)) att <- as.list(att) if (!is.list(att)) att <- list(att) spec <- att att <- lapply(att, .set.btt, x$q, x$Z.int.incl, colnames(x$Z), fixed=fixed) if (x$Z.intercept && !intercept && any(sapply(att, function(attj) length(attj) == 1L && attj == 1L))) stop(mstyle$stop("Cannot compute VIF(s) for the specified 'att' argument.")) ### get var-cov matrix of the fixed effects (scale coefficients) vcov <- vcov(x, type="alpha") ### compute (G)VIF for each element in the att list obj <- if (reestimate) x else NULL res.scale <- list() res.scale$vif <- lapply(seq_along(att), .compvif, btt=att, vcov=vcov, xintercept=x$Z.intercept, intercept=intercept, spec=spec, colnames=colnames(x$Z), obj=obj, coef="alpha", sim=FALSE) ### add coefficient names if (attmiss) { names(res.scale$vif) <- sapply(res.scale$vif, function(x) x$coefname) } else { names(res.scale$vif) <- sapply(res.scale$vif, function(x) x$coefs) } ### add (G)VIFs as vector res.scale$vifs <- sapply(res.scale$vif, function(x) x$vif) ### add coefficient table if requested if (table && attmiss) { res.scale$table <- coef(summary(x), type="alpha") res.scale$test <- x$test } res.scale$attspec <- !attmiss res.scale$digits <- digits class(res.scale) <- "vif.rma" ###################################################################### ### if sim >= 2, simulate corresponding (G)VIFs under independence sim.scale <- sim ### but skip this if all (G)VIFs are equal to 1 if (all(sapply(res.scale$vif, function(x) x$vif) == 1, na.rm=TRUE)) sim.scale <- 0 if (sim >= 2 && any(x$coef.na.Z)) { warning(mstyle$warning("Cannot use 'sim' when some redundant predictors were dropped from the model."), call.=FALSE) sim.scale <- 0 } if (sim.scale >= 2) { if (parallel == "no") vif.sim <- pbapply::pblapply(seq_len(sim.scale), .compvifsim, obj=x, coef="alpha", btt=NULL, att=att, reestimate=reestimate, intercept=intercept, parallel=parallel, seed=seed, joina=joina) if (parallel == "multicore") vif.sim <- pbapply::pblapply(seq_len(sim.scale), .compvifsim, obj=x, coef="alpha", btt=NULL, att=att, reestimate=reestimate, intercept=intercept, parallel=parallel, seed=seed, joina=joina, cl=ncpus) if (parallel == "snow") { if (.isTRUE(ddd$LB)) { vif.sim <- parallel::parLapplyLB(cl, seq_len(sim.scale), .compvifsim, obj=x, coef="alpha", btt=NULL, att=att, reestimate=reestimate, intercept=intercept, parallel=parallel, seed=seed, joina=joina) } else { vif.sim <- pbapply::pblapply(seq_len(sim.scale), .compvifsim, obj=x, coef="alpha", btt=NULL, att=att, reestimate=reestimate, intercept=intercept, parallel=parallel, seed=seed, joina=joina, cl=cl) } } vif.sim <- do.call(rbind, vif.sim) rownames(vif.sim) <- seq_len(sim.scale) colnames(vif.sim) <- seq_along(att) if (!is.null(joina) || is.null(x$data) || is.null(x$formula.scale)) { attr(vif.sim, "type") <- "X" } else { attr(vif.sim, "type") <- "data" } res.scale$sim <- vif.sim vifs <- sapply(res.scale$vif, function(x) x$vif) res.scale$prop <- apply(vifs >= t(vif.sim), 1, mean, na.rm=TRUE) } ###################################################################### if (vif.loc) { res <- list(beta=res.loc, alpha=res.scale) class(res) <- "vif.rma" } else { res <- res.scale } } ######################################################################### if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } return(res) } metafor/R/misc.func.hidden.selmodel.r0000644000176200001440000003212014662650447017231 0ustar liggesusers############################################################################ .selmodel.pval <- function(yi, vi, alternative) { zi <- yi / sqrt(vi) if (alternative == "two.sided") { pval <- 2 * pnorm(abs(zi), lower.tail=FALSE) } else { pval <- pnorm(zi, lower.tail=alternative=="less") } return(pval) } .selmodel.verbose <- function(ll, beta, tau2, delta, mstyle, digits) { cat(mstyle$verbose(paste0("ll = ", fmtx(ll, digits[["fit"]], flag=" "), " "))) cat(mstyle$verbose(paste0("beta =", paste(fmtx(beta, digits[["est"]], flag=" "), collapse=" "), " "))) cat(mstyle$verbose(paste0("tau2 =", fmtx(tau2, digits[["var"]], flag=" "), " "))) cat(mstyle$verbose(paste0("delta =", paste(fmtx(delta, digits[["est"]], flag=" "), collapse=" ")))) cat("\n") } .mapfun <- function(x, lb, ub, fun=NA) { if (is.na(fun)) { if (lb==0 && ub==1) { plogis(x) } else { lb + (ub-lb) / (1 + exp(-x)) # map (-inf,inf) to (lb,ub) } } else { x <- sapply(x, fun) pmin(pmax(x, lb), ub) } } .mapinvfun <- function(x, lb, ub, fun=NA) { if (is.na(fun)) { if (lb==0 && ub==1) { qlogis(x) } else { log((x-lb)/(ub-x)) # map (lb,ub) to (-inf,inf) } } else { sapply(x, fun) } } .ptable <- function(pvals, steps, subset) { pvals[!subset] <- NA pgrp <- sapply(pvals, function(p) which(p <= steps)[1]) psteps.l <- as.character(c(0,steps[-length(steps)])) psteps.r <- as.character(steps) len.l <- nchar(psteps.l) pad.l <- sapply(max(len.l) - len.l, function(x) paste0(rep(" ", x), collapse="")) psteps.l <- paste0(psteps.l, pad.l) psteps <- paste0(psteps.l, " < p <= ", psteps.r) ptable <- table(factor(pgrp, levels=seq_along(steps), labels=psteps)) ptable <- data.frame(k=as.vector(ptable), row.names=names(ptable)) return(list(pgrp=pgrp, ptable=ptable)) } ############################################################################ .selmodel.int <- function(yvals, yi, vi, preci, yhat, wi.fun, delta, tau2, alternative, pval.min, steps) { pval <- .selmodel.pval(yvals, vi, alternative) pval[pval < pval.min] <- pval.min pval[pval > (1-pval.min)] <- 1-pval.min wi.fun(pval, delta, yi, vi, preci, alternative, steps) * dnorm(yvals, yhat, sqrt(vi+tau2)) } .selmodel.ll.cont <- function(par, yi, vi, X, preci, subset, k, pX, pvals, deltas, delta.arg, delta.transf, mapfun, delta.min, delta.max, decreasing, tau2.arg, tau2.transf, tau2.max, beta.arg, wi.fun, steps, pgrp, alternative, pval.min, intCtrl, verbose, digits, dofit=FALSE) { mstyle <- .get.mstyle() beta <- par[1:pX] tau2 <- par[pX+1] delta <- par[(pX+2):(pX+1+deltas)] beta <- ifelse(is.na(beta.arg), beta, beta.arg) if (tau2.transf) tau2 <- exp(tau2) tau2[!is.na(tau2.arg)] <- tau2.arg tau2[tau2 < .Machine$double.eps*10] <- 0 tau2[tau2 > tau2.max] <- tau2.max if (delta.transf) delta <- mapply(.mapfun, delta, delta.min, delta.max, mapfun) delta <- ifelse(is.na(delta.arg), delta, delta.arg) yhat <- c(X %*% beta) Ai <- rep(NA_real_, k) for (i in seq_len(k)[subset]) { tmp <- try(integrate(.selmodel.int, lower=intCtrl$lower, upper=intCtrl$upper, yi=yi[i], vi=vi[i], preci=preci[i], yhat=yhat[i], wi.fun=wi.fun, delta=delta, tau2=tau2, alternative=alternative, pval.min=pval.min, steps=steps, subdivisions=intCtrl$subdivisions, rel.tol=intCtrl$rel.tol)$value, silent=TRUE) #tmp <- try(cubintegrate(.selmodel.int, lower=intCtrl$lower, upper=intCtrl$upper, # yi=yi[i], vi=vi[i], preci=preci[i], yhat=yhat[i], wi.fun=wi.fun, # delta=delta, tau2=tau2, alternative=alternative, pval.min=pval.min, steps=steps)$integral, silent=TRUE) if (inherits(tmp, "try-error")) stop(mstyle$stop(paste0("Could not integrate over density in study ", i, ".")), call.=FALSE) Ai[i] <- tmp } #llval <- sum(log(wi.fun(pvals, delta, yi, vi, preci, alternative, steps)) + dnorm(yi, yhat, sqrt(vi+tau2), log=TRUE) - log(Ai)) llval0 <- sum( dnorm(yi[!subset], yhat[!subset], sqrt(vi[!subset]+tau2), log=TRUE)) llval1 <- sum(log(wi.fun(pvals[ subset], delta, yi[ subset], vi[ subset], preci[ subset], alternative, steps)) + dnorm(yi[ subset], yhat[ subset], sqrt(vi[ subset]+tau2), log=TRUE) - log(Ai[subset])) llval <- llval0 + llval1 if (dofit) { res <- list(ll=llval, beta=beta, tau2=tau2, delta=delta) return(res) } if (verbose) .selmodel.verbose(ll=llval, beta=beta, tau2=tau2, delta=delta, mstyle=mstyle, digits=digits) if (verbose > 2) { xs <- seq(pval.min, 1-pval.min, length.out=1001) ys <- wi.fun(xs, delta, yi, vi, preci=1, alternative, steps) plot(xs, ys, type="l", lwd=2, xlab="p-value", ylab="Relative Likelihood of Selection") } return(-1*llval) } ############################################################################ .selmodel.ll.stepfun <- function(par, yi, vi, X, preci, subset, k, pX, pvals, deltas, delta.arg, delta.transf, mapfun, delta.min, delta.max, decreasing, tau2.arg, tau2.transf, tau2.max, beta.arg, wi.fun, steps, pgrp, alternative, pval.min, intCtrl, verbose, digits, dofit=FALSE) { mstyle <- .get.mstyle() beta <- par[1:pX] tau2 <- par[pX+1] delta <- par[(pX+2):(pX+1+deltas)] beta <- ifelse(is.na(beta.arg), beta, beta.arg) if (tau2.transf) tau2 <- exp(tau2) tau2[!is.na(tau2.arg)] <- tau2.arg tau2[tau2 < .Machine$double.eps*10] <- 0 tau2[tau2 > tau2.max] <- tau2.max if (decreasing) { if (delta.transf) { delta <- exp(delta) delta <- cumsum(c(0, -delta[-1])) delta <- exp(delta) } } else { if (delta.transf) delta <- mapply(.mapfun, delta, delta.min, delta.max, mapfun) } delta <- ifelse(is.na(delta.arg), delta, delta.arg) if (decreasing && any(!is.na(delta.arg[-1]))) delta <- rev(cummax(rev(delta))) yhat <- c(X %*% beta) sei <- sqrt(vi + tau2) N <- length(steps) Ai <- rep(NA_real_, k) if (alternative == "greater") { for (i in seq_len(k)[subset]) { Ai[i] <- pnorm(qnorm(steps[1], 0, sqrt(vi[i]), lower.tail=FALSE), yhat[i], sei[i], lower.tail=FALSE) for (j in 2:N) { if (j < N) { Ai[i] <- Ai[i] + delta[j] / preci[i] * (pnorm(qnorm(steps[j], 0, sqrt(vi[i]), lower.tail=FALSE), yhat[i], sei[i], lower.tail=FALSE) - pnorm(qnorm(steps[j-1], 0, sqrt(vi[i]), lower.tail=FALSE), yhat[i], sei[i], lower.tail=FALSE)) } else { Ai[i] <- Ai[i] + delta[j] / preci[i] * pnorm(qnorm(steps[j-1], 0, sqrt(vi[i]), lower.tail=FALSE), yhat[i], sei[i], lower.tail=TRUE) } } } } if (alternative == "less") { for (i in seq_len(k)[subset]) { Ai[i] <- pnorm(qnorm(steps[1], 0, sqrt(vi[i]), lower.tail=TRUE), yhat[i], sei[i], lower.tail=TRUE) for (j in 2:N) { if (j < N) { Ai[i] <- Ai[i] + delta[j] / preci[i] * (pnorm(qnorm(steps[j], 0, sqrt(vi[i]), lower.tail=TRUE), yhat[i], sei[i], lower.tail=TRUE) - pnorm(qnorm(steps[j-1], 0, sqrt(vi[i]), lower.tail=TRUE), yhat[i], sei[i], lower.tail=TRUE)) } else { Ai[i] <- Ai[i] + delta[j] / preci[i] * pnorm(qnorm(steps[j-1], 0, sqrt(vi[i]), lower.tail=TRUE), yhat[i], sei[i], lower.tail=FALSE) } } } } if (alternative == "two.sided") { for (i in seq_len(k)[subset]) { Ai[i] <- pnorm(qnorm(steps[1]/2, 0, sqrt(vi[i]), lower.tail=FALSE), yhat[i], sei[i], lower.tail=FALSE) + pnorm(qnorm(steps[1]/2, 0, sqrt(vi[i]), lower.tail=TRUE), yhat[i], sei[i], lower.tail=TRUE) for (j in 2:N) { if (j < N) { Ai[i] <- Ai[i] + delta[j] / preci[i] * ((pnorm(qnorm(steps[j]/2, 0, sqrt(vi[i]), lower.tail=FALSE), yhat[i], sei[i], lower.tail=FALSE) - pnorm(qnorm(steps[j-1]/2, 0, sqrt(vi[i]), lower.tail=FALSE), yhat[i], sei[i], lower.tail=FALSE)) + (pnorm(qnorm(steps[j]/2, 0, sqrt(vi[i]), lower.tail=TRUE), yhat[i], sei[i], lower.tail=TRUE) - pnorm(qnorm(steps[j-1]/2, 0, sqrt(vi[i]), lower.tail=TRUE), yhat[i], sei[i], lower.tail=TRUE))) } else { Ai[i] <- Ai[i] + delta[j] / preci[i] * (pnorm(qnorm(steps[j-1]/2, 0, sqrt(vi[i]), lower.tail=FALSE), yhat[i], sei[i], lower.tail=TRUE) - pnorm(qnorm(steps[j-1]/2, 0, sqrt(vi[i]), lower.tail=TRUE), yhat[i], sei[i], lower.tail=TRUE)) } } } } #llval <- sum(log(delta[pgrp] / preci) + dnorm(yi, yhat, sei, log=TRUE) - log(Ai)) llval0 <- sum( dnorm(yi[!subset], yhat[!subset], sei[!subset], log=TRUE)) llval1 <- sum(log(delta[pgrp[ subset]] / preci[ subset]) + dnorm(yi[ subset], yhat[ subset], sei[ subset], log=TRUE) - log(Ai[subset])) llval <- llval0 + llval1 if (dofit) { res <- list(ll=llval, beta=beta, tau2=tau2, delta=delta) return(res) } if (verbose) .selmodel.verbose(ll=llval, beta=beta, tau2=tau2, delta=delta, mstyle=mstyle, digits=digits) if (verbose > 2) { xs <- seq(0, 1, length.out=1001) ys <- wi.fun(xs, delta, yi, vi, preci=1, alternative, steps) plot(xs, ys, type="l", lwd=2, xlab="p-value", ylab="Relative Likelihood of Selection") } return(-1*llval) } ############################################################################ .selmodel.ll.trunc <- function(par, yi, vi, X, preci, subset, k, pX, pvals, deltas, delta.arg, delta.transf, mapfun, delta.min, delta.max, decreasing, tau2.arg, tau2.transf, tau2.max, beta.arg, wi.fun, steps, pgrp, alternative, pval.min, intCtrl, verbose, digits, dofit=FALSE) { mstyle <- .get.mstyle() beta <- par[1:pX] tau2 <- par[pX+1] delta <- par[(pX+2):(pX+1+deltas)] beta <- ifelse(is.na(beta.arg), beta, beta.arg) if (tau2.transf) tau2 <- exp(tau2) tau2[!is.na(tau2.arg)] <- tau2.arg tau2[tau2 < .Machine$double.eps*10] <- 0 tau2[tau2 > tau2.max] <- tau2.max if (delta.transf) delta <- mapply(.mapfun, delta, delta.min, delta.max, mapfun) delta <- ifelse(is.na(delta.arg), delta, delta.arg) yhat <- c(X %*% beta) sei <- sqrt(vi + tau2) if (is.na(steps)) steps <- delta[2] if (alternative == "greater") { ll0i <- dnorm(yi[!subset], yhat[!subset], sei[!subset], log=TRUE) ll1i <- ifelse(yi[subset] > steps, 0, log(delta[1])) + dnorm(yi[subset], yhat[subset], sei[subset], log=TRUE) - log(1 - (1-delta[1]) * pnorm(steps, yhat[subset], sei[subset], lower.tail=TRUE)) } if (alternative == "less") { ll0i <- dnorm(yi[!subset], yhat[!subset], sei[!subset], log=TRUE) ll1i <- ifelse(yi[subset] < steps, 0, log(delta[1])) + dnorm(yi[subset], yhat[subset], sei[subset], log=TRUE) - log(1 - (1-delta[1]) * pnorm(steps, yhat[subset], sei[subset], lower.tail=FALSE)) } llval <- sum(ll0i) + sum(ll1i) if (dofit) { res <- list(ll=llval, beta=beta, tau2=tau2, delta=delta) return(res) } if (verbose) .selmodel.verbose(ll=llval, beta=beta, tau2=tau2, delta=delta, mstyle=mstyle, digits=digits) return(-1*llval) } ############################################################################ .rma.selmodel.ineqfun.pos <- function(par, yi, vi, X, preci, k, pX, pvals, deltas, delta.arg, delta.transf, mapfun, delta.min, delta.max, decreasing, tau2.arg, tau2.transf, tau2.max, beta.arg, wi.fun, steps, pgrp, alternative, pval.min, intCtrl, verbose, digits, dofit=FALSE) { delta <- par[-seq_len(pX+1)] if (delta.transf) delta <- mapply(.mapfun, delta, delta.min, delta.max, mapfun) delta <- ifelse(is.na(delta.arg), delta, delta.arg) diffs <- -diff(delta) # -1 * differences (delta1-delta2, delta2-delta3, ...) must be positive return(diffs) } .rma.selmodel.ineqfun.neg <- function(par, yi, vi, X, preci, k, pX, pvals, deltas, delta.arg, delta.transf, mapfun, delta.min, delta.max, decreasing, tau2.arg, tau2.transf, tau2.max, beta.arg, wi.fun, steps, pgrp, alternative, pval.min, intCtrl, verbose, digits, dofit=FALSE) { delta <- par[-seq_len(pX+1)] if (delta.transf) delta <- mapply(.mapfun, delta, delta.min, delta.max, mapfun) delta <- ifelse(is.na(delta.arg), delta, delta.arg) diffs <- diff(delta) # differences (delta1-delta2, delta2-delta3, ...) must be negative return(diffs) } ############################################################################ metafor/R/ranktest.r0000644000176200001440000000762114717402235014141 0ustar liggesusersranktest <- function(x, vi, sei, subset, data, digits, ...) { ######################################################################### mstyle <- .get.mstyle() na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) ddd <- list(...) .chkdots(ddd, c("exact")) exact <- .chkddd(ddd$exact, TRUE) ######################################################################### ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() x <- .getx("x", mf=mf, data=data) ############################################################################ if (inherits(x, "rma")) { if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed to carry out the test is not available in the model object.")) if (!missing(vi) || !missing(sei) || !missing(subset)) warning(mstyle$warning("Arguments 'vi', 'sei', and 'subset' ignored when 'x' is a model object."), call.=FALSE) if (!x$int.only) stop(mstyle$stop("Test only applicable to models without moderators.")) yi <- x$yi vi <- x$vi ### set defaults for digits if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } } else { if (!.is.vector(x)) stop(mstyle$stop("Argument 'x' must be a vector or an 'rma' model object.")) yi <- x ### check if yi is numeric if (!is.numeric(yi)) stop(mstyle$stop("The object/variable specified for the 'x' argument is not numeric.")) ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } vi <- .getx("vi", mf=mf, data=data, checknumeric=TRUE) sei <- .getx("sei", mf=mf, data=data, checknumeric=TRUE) subset <- .getx("subset", mf=mf, data=data) if (is.null(vi)) { if (!is.null(sei)) vi <- sei^2 } if (is.null(vi)) stop(mstyle$stop("Must specify the 'vi' or 'sei' argument.")) ### check length of yi and vi if (length(yi) != length(vi)) stop(mstyle$stop("Length of 'yi' and 'vi' (or 'sei') are not the same.")) ### check 'vi' argument for potential misuse .chkviarg(mf$vi) ######################################################################### ### if a subset of studies is specified if (!is.null(subset)) { subset <- .chksubset(subset, length(yi)) yi <- .getsubset(yi, subset) vi <- .getsubset(vi, subset) } ### check for NAs and act accordingly has.na <- is.na(yi) | is.na(vi) if (any(has.na)) { not.na <- !has.na if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na] vi <- vi[not.na] warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from test.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in data.")) } } ######################################################################### wi <- 1/vi theta <- weighted.mean(yi, wi) vb <- 1 / sum(wi) vi.star <- vi - vb yi.star <- (yi - theta) / sqrt(vi.star) res <- cor.test(yi.star, vi, method="kendall", exact=exact) pval <- res$p.value tau <- res$estimate res <- list(tau=tau, pval=pval, digits=digits) class(res) <- "ranktest" return(res) } metafor/R/radial.rma.r0000644000176200001440000002366414717356144014334 0ustar liggesusersradial.rma <- function(x, center=FALSE, xlim=NULL, zlim, xlab, zlab, atz, aty, steps=7, level=x$level, digits=2, transf, targs, pch=21, col, bg, back, arc.res=100, cex, cex.lab, cex.axis, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma", notav=c("robust.rma", "rma.mv", "rma.ls", "rma.gen", "rma.uni.selmodel")) if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed to construct the plot is not available in the model object.")) if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL if (missing(atz)) atz <- NULL if (missing(aty)) aty <- NULL .start.plot() if (missing(back)) back <- .coladj(par("bg","fg"), dark=0.1, light=-0.1) if (missing(col)) col <- par("fg") if (missing(bg)) bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) ######################################################################### ### radial plots only for intercept-only models if (x$int.only) { yi <- x$yi yi.c <- yi vi <- x$vi beta <- c(x$beta) ci.lb <- x$ci.lb ci.ub <- x$ci.ub tau2 <- 1/mean(1/x$tau2) # geometric mean of tau^2 values (hackish solution for models with multiple tau^2 values) # note: this works for 1/mean(1/0) = 0; TODO: consider something more sophisticated here if (is.null(aty)) { atyis <- range(yi) } else { atyis <- range(aty) aty.c <- aty } } else { stop(mstyle$stop("Radial plots only available for models without moderators.")) } if (center) { yi <- yi - c(x$beta) beta <- 0 ci.lb <- ci.lb - c(x$beta) ci.ub <- ci.ub - c(x$beta) atyis <- atyis - c(x$beta) if (!is.null(aty)) aty <- aty - c(x$beta) } ######################################################################### level <- .level(level) zcrit <- qnorm(level/2, lower.tail=FALSE) zi <- yi / sqrt(vi+tau2) xi <- 1 / sqrt(vi+tau2) ### if vi=0 and tau2=0, then zi and xi will be Inf if (any(is.infinite(c(xi,zi)))) stop(mstyle$stop("Setting 'xlim' and 'zlim' automatically not possible (must set axis limits manually).")) ### set x-axis limits if none are specified if (missing(xlim)) { xlims <- c(0, (1.30*max(xi))) # add 30% to upper bound } else { xlims <- sort(xlim) } ### x-axis position of the confidence interval ci.xpos <- xlims[2] + 0.12*(xlims[2]-xlims[1]) # add 12% of range to upper bound ### x-axis position of the y-axis on the right ya.xpos <- xlims[2] + 0.14*(xlims[2]-xlims[1]) # add 14% of range to upper bound xaxismax <- xlims[2] ### set z-axis limits if none are specified (these are the actual y-axis limits of the plot) if (missing(zlim)) { zlims <- c(min(-5, 1.10*min(zi), 1.10*ci.lb*ci.xpos, 1.10*min(atyis)*ya.xpos, 1.10*min(yi)*ya.xpos, -1.10*zcrit+xaxismax*beta), max(5, 1.10*max(zi), 1.10*ci.ub*ci.xpos, 1.10*max(atyis)*ya.xpos, 1.10*max(yi)*ya.xpos, 1.10*zcrit+xaxismax*beta)) } else { zlims <- sort(zlim) } ### adjust margins par.mar <- par("mar") par.mar.adj <- par.mar + c(0,4,0,6) par.mar.adj[par.mar.adj < 1] <- 1 par(mar=par.mar.adj) on.exit(par(mar=par.mar), add=TRUE) ### label for the x-axis if (missing(xlab)) { if (is.element(x$method, c("FE","EE","CE"))) { xlab <- expression(x[i]==1/sqrt(v[i]), ...) } else { xlab <- expression(x[i]==1/sqrt(v[i]+tau^2), ...) } } par.pty <- par("pty") par(pty="s") on.exit(par(pty = par.pty), add=TRUE) if (missing(cex)) { # this affects only the point sizes cex <- 1 } else { cex <- par("cex") * cex } if (missing(cex.lab)) { cex.lab <- 1 } else { cex.lab <- par("cex") * cex.lab } if (missing(cex.axis)) { cex.axis <- 1 } else { cex.axis <- par("cex") * cex.axis } plot(NA, NA, ylim=zlims, xlim=xlims, bty="n", xaxt="n", yaxt="n", xlab=xlab, ylab="", xaxs="i", yaxs="i", cex.lab=cex.lab, ...) ### add polygon and +-zcrit lines polygon(c(0,xaxismax,xaxismax,0), c(zcrit, zcrit+xaxismax*beta, -zcrit+xaxismax*beta, -zcrit), border=NA, col=back) segments(0, 0, xaxismax, xaxismax*beta, lty="solid", ...) segments(0, -zcrit, xaxismax, -zcrit+xaxismax*beta, lty="dotted", ...) segments(0, zcrit, xaxismax, zcrit+xaxismax*beta, lty="dotted", ...) ### add x-axis axis(side=1, cex.axis=cex.axis, ...) ### add z-axis if (is.null(atz)) { axis(side=2, at=seq(-4, 4, length.out=9), labels=NA, las=1, tcl=par("tcl")/2, cex.axis=cex.axis, ...) axis(side=2, at=seq(-2, 2, length.out=3), las=1, cex.axis=cex.axis, ...) } else { axis(side=2, at=atz, labels=atz, las=1, cex.axis=cex.axis, ...) } ### add label for the z-axis if (missing(zlab)) { if (center) { if (is.element(x$method, c("FE","EE","CE"))) { mtext(expression(z[i]==frac(y[i]-hat(theta),sqrt(v[i]))), side=2, line=par.mar.adj[2]-1, at=0, adj=0, las=1, cex=par("cex")*cex.lab, ...) } else { mtext(expression(z[i]==frac(y[i]-hat(mu),sqrt(v[i]+tau^2))), side=2, line=par.mar.adj[2]-1, adj=0, at=0, las=1, cex=par("cex")*cex.lab, ...) } } else { if (is.element(x$method, c("FE","EE","CE"))) { mtext(expression(z[i]==frac(y[i],sqrt(v[i]))), side=2, line=par.mar.adj[2]-2, at=0, adj=0, las=1, cex=par("cex")*cex.lab, ...) } else { mtext(expression(z[i]==frac(y[i],sqrt(v[i]+tau^2))), side=2, line=par.mar.adj[2]-1, at=0, adj=0, las=1, cex=par("cex")*cex.lab, ...) } } } else { mtext(zlab, side=2, line=par.mar.adj[2]-4, at=0, cex=par("cex")*cex.lab, ...) } ######################################################################### ### add y-axis arc and CI arc on the right par.xpd <- par("xpd") par(xpd=TRUE) par.usr <- par("usr") asp.rat <- (par.usr[4]-par.usr[3])/(par.usr[2]-par.usr[1]) if (length(arc.res) == 1L) arc.res <- c(arc.res, arc.res/4) ### add y-axis arc if (is.null(aty)) { atyis <- seq(min(yi), max(yi), length.out=arc.res[1]) } else { atyis <- seq(min(aty), max(aty), length.out=arc.res[1]) } len <- ya.xpos xis <- rep(NA_real_, length(atyis)) zis <- rep(NA_real_, length(atyis)) for (i in seq_along(atyis)) { xis[i] <- sqrt(len^2/(1+(atyis[i]/asp.rat)^2)) zis[i] <- xis[i]*atyis[i] } valid <- zis > zlims[1] & zis < zlims[2] lines(xis[valid], zis[valid], ...) ### add y-axis tick marks if (is.null(aty)) { atyis <- seq(min(yi), max(yi), length.out=steps) } else { atyis <- aty } len.l <- ya.xpos len.u <- ya.xpos + 0.015*(xlims[2]-xlims[1]) xis.l <- rep(NA_real_, length(atyis)) zis.l <- rep(NA_real_, length(atyis)) xis.u <- rep(NA_real_, length(atyis)) zis.u <- rep(NA_real_, length(atyis)) for (i in seq_along(atyis)) { xis.l[i] <- sqrt(len.l^2/(1+(atyis[i]/asp.rat)^2)) zis.l[i] <- xis.l[i]*atyis[i] xis.u[i] <- sqrt(len.u^2/(1+(atyis[i]/asp.rat)^2)) zis.u[i] <- xis.u[i]*atyis[i] } valid <- zis.l > zlims[1] & zis.u > zlims[1] & zis.l < zlims[2] & zis.u < zlims[2] if (any(valid)) segments(xis.l[valid], zis.l[valid], xis.u[valid], (xis.u*atyis)[valid], ...) ### add y-axis labels if (is.null(aty)) { atyis <- seq(min(yi), max(yi), length.out=steps) atyis.lab <- seq(min(yi.c), max(yi.c), length.out=steps) } else { atyis <- aty atyis.lab <- aty.c } len <- ya.xpos+0.02*(xlims[2]-xlims[1]) xis <- rep(NA_real_, length(atyis)) zis <- rep(NA_real_, length(atyis)) for (i in seq_along(atyis)) { xis[i] <- sqrt(len^2/(1+(atyis[i]/asp.rat)^2)) zis[i] <- xis[i]*atyis[i] } if (is.function(transf)) { if (is.null(targs)) { atyis.lab <- sapply(atyis.lab, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) atyis.lab <- sapply(atyis.lab, transf, targs) } } valid <- zis > zlims[1] & zis < zlims[2] if (any(valid)) text(xis[valid], zis[valid], fmtx(atyis.lab[valid], digits), pos=4, cex=cex.axis*0.85, offset=0.25, ...) ### add CI arc atyis <- seq(ci.lb, ci.ub, length.out=arc.res[2]) len <- ci.xpos xis <- rep(NA_real_, length(atyis)) zis <- rep(NA_real_, length(atyis)) for (i in seq_along(atyis)) { xis[i] <- sqrt(len^2/(1+(atyis[i]/asp.rat)^2)) zis[i] <- xis[i]*atyis[i] } valid <- zis > zlims[1] & zis < zlims[2] if (any(valid)) lines(xis[valid], zis[valid], ...) ### add CI tick marks atyis <- c(ci.lb, beta, ci.ub) len.l <- ci.xpos-0.007*(xlims[2]-xlims[1]) len.u <- ci.xpos+0.007*(xlims[2]-xlims[1]) xis.l <- rep(NA_real_, 3L) zis.l <- rep(NA_real_, 3L) xis.u <- rep(NA_real_, 3L) zis.u <- rep(NA_real_, 3L) for (i in seq_along(atyis)) { xis.l[i] <- sqrt(len.l^2/(1+(atyis[i]/asp.rat)^2)) zis.l[i] <- xis.l[i]*atyis[i] xis.u[i] <- sqrt(len.u^2/(1+(atyis[i]/asp.rat)^2)) zis.u[i] <- xis.u[i]*atyis[i] } valid <- zis.l > zlims[1] & zis.u > zlims[1] & zis.l < zlims[2] & zis.u < zlims[2] if (any(valid)) segments(xis.l[valid], zis.l[valid], xis.u[valid], (xis.u*atyis)[valid], ...) par(xpd=par.xpd) ######################################################################### ### add points to the plot points(x=xi, y=zi, pch=pch, cex=cex, col=col, bg=bg, ...) if (is.null(x$not.na.yivi)) { invisible(data.frame(x=xi, y=zi, ids=x$ids[x$not.na], slab=x$slab[x$not.na], stringsAsFactors=FALSE)) } else { invisible(data.frame(x=xi, y=zi, ids=x$ids[x$not.na.yivi], slab=x$slab[x$not.na.yivi], stringsAsFactors=FALSE)) } } metafor/R/regplot.rma.r0000644000176200001440000006021114717356212014535 0ustar liggesusersregplot.rma <- function(x, mod, pred=TRUE, ci=TRUE, pi=FALSE, shade=TRUE, xlim, ylim, predlim, olim, xlab, ylab, at, digits=2L, transf, atransf, targs, level=x$level, pch, psize, plim=c(0.5,3), col, bg, slab, grid=FALSE, refline, label=FALSE, offset=c(1,1), labsize=1, lcol, lwd, lty, legend=FALSE, xvals, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma", notav=c("rma.mh","rma.peto")) if (x$int.only) stop(mstyle$stop("Cannot draw plot for intercept-only models.")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(transf)) transf <- FALSE if (missing(atransf)) atransf <- FALSE transf.char <- deparse(transf) atransf.char <- deparse(atransf) if (is.function(transf) && is.function(atransf)) stop(mstyle$stop("Use either 'transf' or 'atransf' to specify a transformation (not both).")) .start.plot() mf <- match.call() if (missing(pch)) { pch <- 21 } else { pch <- .getx("pch", mf=mf, data=x$data) } if (missing(psize)) { psize <- NULL } else { psize <- .getx("psize", mf=mf, data=x$data) } if (missing(col)) { col <- par("fg") } else { col <- .getx("col", mf=mf, data=x$data) } if (missing(bg)) { bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) } else { bg <- .getx("bg", mf=mf, data=x$data) } if (missing(slab)) { slab <- x$slab } else { slab <- .getx("slab", mf=mf, data=x$data) if (length(slab) != x$k.all) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) slab <- .getsubset(slab, x$subset) } if (missing(label)) { label <- NULL } else { label <- .getx("label", mf=mf, data=x$data) } if (missing(targs)) targs <- NULL if (missing(ylab)) ylab <- .setlab(x$measure, transf.char, atransf.char, gentype=1, short=FALSE) if (missing(at)) at <- NULL ### grid argument can either be a logical or a color if (is.logical(grid)) gridcol <- .coladj(par("bg","fg"), dark=c(0.2,-0.6), light=c(-0.2,0.6)) if (is.character(grid)) { gridcol <- grid grid <- TRUE } ### shade argument can either be a logical or a color vector (first for ci, second for pi) if (is.logical(shade)) shadecol <- c(.coladj(par("bg","fg"), dark=0.15, light=-0.15), .coladj(par("bg","fg"), dark=0.05, light=-0.05)) if (is.character(shade)) { if (length(shade) == 1L) shade <- c(shade, shade) shadecol <- shade shade <- TRUE } ### copy pred to addpred (since using pred below for predicted values) if (inherits(pred, "list.rma")) { addpred <- TRUE if (missing(xvals)) stop(mstyle$stop("Must specify the 'xvals' argument when passing an object from predict() to 'pred'.")) if (length(xvals) != length(pred$pred)) stop(mstyle$stop(paste0("Length of the 'xvals' argument (", length(xvals), ") does not correspond to the number of predicted values (", length(pred$pred), ")."))) } else { addpred <- pred } ### set refline to NA if it is not specified if (missing(refline)) refline <- NA_real_ ### set lcol, lty, and lwd (1 = reg line, 2 = ci bounds, 3 = pi bounds, 4 = refline) if (missing(lcol)) { lcol <- c(rep(par("fg"), 3), .coladj(par("bg","fg"), dark=0.5, light=-0.5)) } else { lcol <- .expand1(lcol, 4L) if (length(lcol) == 2L) lcol <- c(lcol[c(1,2,2)], .coladj(par("bg","fg"), dark=0.5, light=-0.5)) if (length(lcol) == 3L) lcol <- c(lcol, .coladj(par("bg","fg"), dark=0.5, light=-0.5)) } if (missing(lty)) { lty <- c("solid", "dashed", "dotted", "solid") } else { lty <- .expand1(lty, 4L) if (length(lty) == 2L) lty <- c(lty[c(1,2,2)], "solid") if (length(lty) == 3L) lty <- c(lty, "solid") } if (missing(lwd)) { lwd <- c(3,1,1,2) } else { lwd <- .expand1(lwd, 4L) if (length(lwd) == 2L) lwd <- c(lwd[c(1,2,2)], 2) if (length(lwd) == 3L) lwd <- c(lwd, 2) } level <- .level(level) ddd <- list(...) lplot <- function(..., grep, fixed, box.lty, at.lab) plot(...) laxis <- function(..., grep, fixed, box.lty, at.lab) axis(...) lpolygon <- function(..., grep, fixed, box.lty, at.lab) polygon(...) llines <- function(..., grep, fixed, box.lty, at.lab) lines(...) lpoints <- function(..., grep, fixed, box.lty, at.lab) points(...) labline <- function(..., grep, fixed, box.lty, at.lab) abline(...) lbox <- function(..., grep, fixed, box.lty, at.lab) box(...) ltext <- function(..., grep, fixed, box.lty, at.lab) text(...) grep <- .chkddd(ddd$grep, FALSE, .isTRUE(ddd$grep)) fixed <- .chkddd(ddd$fixed, FALSE, .isTRUE(ddd$fixed)) box.lty <- .chkddd(ddd$box.lty, par("lty")) ############################################################################ ### checks on mod argument if (missing(mod)) { if (x$p == 2L && x$int.incl) { mod <- 2 } else { if (x$p == 1L) { mod <- 1 } else { stop(mstyle$stop("Must specify the 'mod' argument for models with multiple predictors.")) } } } if (length(mod) != 1L) stop(mstyle$stop("Can only specify a single variable via argument 'mod'.")) if (!(is.character(mod) || is.numeric(mod))) stop(mstyle$stop("Argument 'mod' must either be a character string or a scalar.")) if (is.character(mod)) { if (grep) { mod.pos <- grep(mod, colnames(x$X), fixed=fixed) if (length(mod.pos) != 1L) stop(mstyle$stop("Could not find or uniquely identify the moderator variable specified via the 'mod' argument.")) } else { mod.pos <- charmatch(mod, colnames(x$X)) if (is.na(mod.pos) || mod.pos == 0L) stop(mstyle$stop("Could not find or uniquely identify the moderator variable specified via the 'mod' argument.")) } } else { mod.pos <- round(mod) if (mod.pos < 1 | mod.pos > x$p) stop(mstyle$stop("Specified position of 'mod' variable does not exist in the model.")) } ### extract the observed outcomes, corresponding sampling variances, model matrix, and ids yi <- c(x$yi.f) vi <- x$vi.f X <- x$X.f ids <- x$ids ### get weights options(na.action = "na.pass") # using na.pass to get the entire vector (length of yi.f) weights <- try(weights(x), silent=TRUE) # does not work for rma.glmm and rma.uni.selmodel objects if (inherits(weights, "try-error")) weights <- rep(1, x$k.f) options(na.action = na.act) ### note: pch, psize, col, and bg (if vectors) must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing of NAs as was ### done during the model fitting (note: NAs are removed further below) pch <- .expand1(pch, x$k.all) if (length(pch) != x$k.all) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) pch <- .getsubset(pch, x$subset) psize.char <- FALSE if (!is.null(psize)) { if (is.character(psize)) { psize <- match.arg(psize, c("seinv", "vinv")) if (psize == "seinv") { psize <- 1 / sqrt(vi) } else { psize <- 1 / vi } psize.char <- TRUE } else { psize <- .expand1(psize, x$k.all) if (length(psize) != x$k.all) stop(mstyle$stop(paste0("Length of the 'psize' argument (", length(psize), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) psize <- .getsubset(psize, x$subset) } } col <- .expand1(col, x$k.all) if (length(col) != x$k.all) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) col <- .getsubset(col, x$subset) bg <- .expand1(bg, x$k.all) if (length(bg) != x$k.all) stop(mstyle$stop(paste0("Length of the 'bg' argument (", length(bg), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) bg <- .getsubset(bg, x$subset) if (!is.null(label)) { if (is.character(label)) { label <- match.arg(label, c("all", "ciout", "piout")) if (label == "all") { label <- rep(TRUE, x$k.all) label <- .getsubset(label, x$subset) } } else if (is.logical(label)) { #if (!is.logical(label)) # stop(mstyle$stop("Argument 'label' must be a logical vector (or a single character string).")) label <- .expand1(label, x$k.all) if (length(label) != x$k.all) stop(mstyle$stop(paste0("Length of the 'label' argument (", length(label), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) label <- .getsubset(label, x$subset) } else if (is.numeric(label)) { label <- round(label) label <- seq(x$k.all) %in% label label <- .getsubset(label, x$subset) } } ############################################################################ has.na <- is.na(yi) | is.na(vi) | apply(is.na(X), 1, any) not.na <- !has.na if (any(has.na)) { yi <- yi[not.na] vi <- vi[not.na] X <- X[not.na,,drop=FALSE] slab <- slab[not.na] ids <- ids[not.na] weights <- weights[not.na] pch <- pch[not.na] psize <- psize[not.na] # if NULL, remains NULL col <- col[not.na] bg <- bg[not.na] if (!is.character(label)) label <- label[not.na] } k <- length(yi) ############################################################################ ### extract values for moderator of interest xi <- X[,mod.pos] if (inherits(pred, "list.rma")) { xs <- xvals ci.lb <- pred$ci.lb ci.ub <- pred$ci.ub if (is.null(pred$pi.lb) || anyNA(pred$pi.lb)) { pi.lb <- pred$ci.lb pi.ub <- pred$ci.ub if (pi) warning(mstyle$warning("Object passed to 'pred' argument does not contain prediction interval information."), call.=FALSE) pi <- FALSE } else { pi.lb <- pred$pi.lb pi.ub <- pred$pi.ub } pred <- pred$pred if (!is.null(label) && is.character(label) && label %in% c("ciout", "piout")) { warning(mstyle$stop("Cannot label points based on the confidence/prediction interval when passing an object to 'pred'."), call.=FALSE) label <- NULL } yi.pred <- NULL yi.ci.lb <- NULL yi.ci.ub <- NULL yi.pi.lb <- NULL yi.pi.ub <- NULL } else { ### get predicted values if (!missing(xvals)) { xs <- xvals len <- length(xs) predlim <- range(xs) } else { len <- 1000 if (missing(predlim)) { range.xi <- max(xi) - min(xi) predlim <- c(min(xi) - 0.04*range.xi, max(xi) + 0.04*range.xi) xs <- seq(predlim[1], predlim[2], length.out=len) } else { if (length(predlim) != 2L) stop(mstyle$stop("Argument 'predlim' must be of length 2.")) xs <- seq(predlim[1], predlim[2], length.out=len) } } Xnew <- rbind(colMeans(X))[rep(1,len),,drop=FALSE] Xnew[,mod.pos] <- xs if (x$int.incl) Xnew <- Xnew[,-1,drop=FALSE] predres <- predict(x, newmods=Xnew, level=level) pred <- predres$pred ci.lb <- predres$ci.lb ci.ub <- predres$ci.ub if (is.null(predres$pi.lb) || anyNA(predres$pi.lb)) { pi.lb <- ci.lb pi.ub <- ci.ub if (pi) warning(mstyle$warning("Cannot draw prediction interval for the given model."), call.=FALSE) pi <- FALSE } else { pi.lb <- predres$pi.lb pi.ub <- predres$pi.ub } Xnew <- rbind(colMeans(X))[rep(1,k),,drop=FALSE] Xnew[,mod.pos] <- xi if (x$int.incl) Xnew <- Xnew[,-1,drop=FALSE] predres <- predict(x, newmods=Xnew, level=level) yi.pred <- predres$pred yi.ci.lb <- predres$ci.lb yi.ci.ub <- predres$ci.ub if (is.null(predres$pi.lb) || anyNA(predres$pi.lb)) { yi.pi.lb <- yi.ci.lb yi.pi.ub <- yi.ci.ub if (!is.null(label) && is.character(label) && label == "piout") { warning(mstyle$warning("Cannot label points based on the prediction interval for the given model."), call.=FALSE) label <- NULL } } else { yi.pi.lb <- predres$pi.lb yi.pi.ub <- predres$pi.ub } } ############################################################################ ### if requested, apply transformation to yi's and CI/PI bounds if (is.function(transf)) { if (is.null(targs)) { yi <- sapply(yi, transf) pred <- sapply(pred, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) pi.lb <- sapply(pi.lb, transf) pi.ub <- sapply(pi.ub, transf) yi.pred <- sapply(yi.pred, transf) yi.ci.lb <- sapply(yi.ci.lb, transf) yi.ci.ub <- sapply(yi.ci.ub, transf) yi.pi.lb <- sapply(yi.pi.lb, transf) yi.pi.ub <- sapply(yi.pi.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) yi <- sapply(yi, transf, targs) pred <- sapply(pred, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) pi.lb <- sapply(pi.lb, transf, targs) pi.ub <- sapply(pi.ub, transf, targs) yi.pred <- sapply(yi.pred, transf, targs) yi.ci.lb <- sapply(yi.ci.lb, transf, targs) yi.ci.ub <- sapply(yi.ci.ub, transf, targs) yi.pi.lb <- sapply(yi.pi.lb, transf, targs) yi.pi.ub <- sapply(yi.pi.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] tmp <- .psort(pi.lb, pi.ub) pi.lb <- tmp[,1] pi.ub <- tmp[,2] tmp <- .psort(yi.ci.lb, yi.ci.ub) yi.ci.lb <- tmp[,1] yi.ci.ub <- tmp[,2] tmp <- .psort(yi.pi.lb, yi.pi.ub) yi.pi.lb <- tmp[,1] yi.pi.ub <- tmp[,2] ### apply observation/outcome limits if specified if (!missing(olim)) { if (length(olim) != 2L) stop(mstyle$stop("Argument 'olim' must be of length 2.")) olim <- sort(olim) yi <- .applyolim(yi, olim) ci.lb <- .applyolim(ci.lb, olim) ci.ub <- .applyolim(ci.ub, olim) pred <- .applyolim(pred, olim) pi.lb <- .applyolim(pi.lb, olim) pi.ub <- .applyolim(pi.ub, olim) } ### set default point sizes (if not specified by user) if (is.null(psize) || psize.char) { if (length(plim) < 2L) stop(mstyle$stop("Argument 'plim' must be of length 2 or 3.")) if (psize.char) { wi <- psize } else { wi <- sqrt(weights) } if (!is.na(plim[1]) && !is.na(plim[2])) { rng <- max(wi, na.rm=TRUE) - min(wi, na.rm=TRUE) if (rng <= .Machine$double.eps^0.5) { psize <- rep(1, k) } else { psize <- (wi - min(wi, na.rm=TRUE)) / rng psize <- (psize * (plim[2] - plim[1])) + plim[1] } } if (is.na(plim[1]) && !is.na(plim[2])) { psize <- wi / max(wi, na.rm=TRUE) * plim[2] if (length(plim) == 3L) psize[psize <= plim[3]] <- plim[3] } if (!is.na(plim[1]) && is.na(plim[2])) { psize <- wi / min(wi, na.rm=TRUE) * plim[1] if (length(plim) == 3L) psize[psize >= plim[3]] <- plim[3] } if (all(is.na(psize))) psize <- rep(1, k) } ############################################################################ if (missing(xlab)) xlab <- colnames(X)[mod.pos] if (!is.expression(xlab) && xlab == "") xlab <- "Moderator" if (missing(xlim)) { xlim <- range(xi) } else { if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' must be of length 2.")) } if (missing(ylim)) { if (pi) { ylim <- range(c(yi, pi.lb, pi.ub)) } else if (ci) { ylim <- range(c(yi, ci.lb, ci.ub)) } else { ylim <- range(yi) } } else { if (length(ylim) != 2L) stop(mstyle$stop("Argument 'ylim' must be of length 2.")) } ### if user has specified 'at' argument, make sure ylim actually contains the min and max 'at' values if (!is.null(at)) { ylim[1] <- min(c(ylim[1], at), na.rm=TRUE) ylim[2] <- max(c(ylim[2], at), na.rm=TRUE) } ############################################################################ ### set up plot lplot(NA, xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim, yaxt="n", ...) ### generate y-axis positions if none are specified if (is.null(at)) { at <- axTicks(side=2) } else { at <- at[at > par("usr")[3]] at <- at[at < par("usr")[4]] } ### y-axis labels (apply transformation to axis labels if requested) if (is.null(ddd$at.lab)) { at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- fmtx(sapply(at.lab, atransf), digits[[1]], drop0ifint=TRUE) } else { at.lab <- fmtx(sapply(at.lab, atransf, targs), digits[[1]], drop0ifint=TRUE) } } else { at.lab <- fmtx(at.lab, digits[[1]], drop0ifint=TRUE) } } else { at.lab <- ddd$at.lab } ### add y-axis laxis(side=2, at=at, labels=at.lab, ...) ### add predicted values / CI bounds if (shade) { if (pi) lpolygon(c(xs, rev(xs)), c(pi.lb, rev(pi.ub)), border=NA, col=shadecol[2], ...) if (ci) lpolygon(c(xs, rev(xs)), c(ci.lb, rev(ci.ub)), border=NA, col=shadecol[1], ...) } if (ci) { llines(xs, ci.lb, col=lcol[2], lty=lty[2], lwd=lwd[2], ...) llines(xs, ci.ub, col=lcol[2], lty=lty[2], lwd=lwd[2], ...) } if (pi) { llines(xs, pi.lb, col=lcol[3], lty=lty[3], lwd=lwd[3], ...) llines(xs, pi.ub, col=lcol[3], lty=lty[3], lwd=lwd[3], ...) } ### add grid if (.isTRUE(grid)) grid(col=gridcol) # grid needs to be at x and y tick positions also if using y-axis transformation ### add refline labline(h=refline, col=lcol[4], lty=lty[4], lwd=lwd[4], ...) ### add predicted line if (addpred) llines(xs, pred, col=lcol[1], lty=lty[1], lwd=lwd[1], ...) ### redraw box lbox(...) ### order points by psize for plotting order.vec <- order(psize, decreasing=TRUE) xi.o <- xi[order.vec] yi.o <- yi[order.vec] pch.o <- pch[order.vec] psize.o <- psize[order.vec] col.o <- col[order.vec] bg.o <- bg[order.vec] ### add points lpoints(x=xi.o, y=yi.o, pch=pch.o, col=col.o, bg=bg.o, cex=psize.o, ...) ### labeling of points if (!is.null(label)) { if (!is.null(label) && is.character(label) && label %in% c("ciout", "piout")) { if (label == "ciout") { label <- yi < yi.ci.lb | yi > yi.ci.ub label[xi < predlim[1] | xi > predlim[2]] <- FALSE } else { label <- yi < yi.pi.lb | yi > yi.pi.ub label[xi < predlim[1] | xi > predlim[2]] <- FALSE } } yrange <- ylim[2] - ylim[1] if (length(offset) == 2L) offset <- c(offset[1]/100 * yrange, offset[2]/100 * yrange, 1) if (length(offset) == 1L) offset <- c(0, offset/100 * yrange, 1) for (i in which(label)) { if (isTRUE(yi[i] > yi.pred[i])) { # yi.pred might be NULL, so use isTRUE() ltext(xi[i], yi[i] + offset[1] + offset[2]*psize[i]^offset[3], slab[i], cex=labsize, ...) } else { ltext(xi[i], yi[i] - offset[1] - offset[2]*psize[i]^offset[3], slab[i], cex=labsize, ...) } } } else { label <- rep(FALSE, k) } ### add legend (if requested) if (is.logical(legend) && isTRUE(legend)) lpos <- "topright" if (is.character(legend)) { lpos <- legend legend <- TRUE } if (legend) { pch.l <- NULL col.l <- NULL bg.l <- NULL lty.l <- NULL lwd.l <- NULL tcol.l <- NULL ltxt <- NULL if (length(unique(pch)) == 1L && length(unique(col)) == 1L && length(unique(bg)) == 1L) { pch.l <- NA col.l <- NA bg.l <- NA lty.l <- "blank" lwd.l <- NA tcol.l <- "transparent" ltxt <- "Studies" } if (addpred) { pch.l <- c(pch.l, NA) col.l <- c(col.l, NA) bg.l <- c(bg.l, NA) lty.l <- c(lty.l, NA) lwd.l <- c(lwd.l, NA) tcol.l <- c(tcol.l, "transparent") ltxt <- c(ltxt, "Regression Line") } if (ci) { pch.l <- c(pch.l, 22) col.l <- c(col.l, lcol[2]) bg.l <- c(bg.l, shadecol[1]) lty.l <- c(lty.l, NA) lwd.l <- c(lwd.l, 1) tcol.l <- c(tcol.l, "transparent") ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Confidence Interval")) } if (pi) { pch.l <- c(pch.l, 22) col.l <- c(col.l, lcol[3]) bg.l <- c(bg.l, shadecol[2]) lty.l <- c(lty.l, NA) lwd.l <- c(lwd.l, 1) tcol.l <- c(tcol.l, "transparent") ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Prediction Interval")) } if (length(ltxt) >= 1L) legend(lpos, inset=.01, bg=.coladj(par("bg"), dark=0, light=0), pch=pch.l, col=col.l, pt.bg=bg.l, lty=lty.l, lwd=lwd.l, text.col=tcol.l, pt.cex=1.5, seg.len=3, legend=ltxt, box.lty=box.lty) pch.l <- NULL col.l <- NULL bg.l <- NULL lty.l <- NULL lwd.l <- NULL tcol.l <- NULL ltxt <- NULL if (length(unique(pch)) == 1L && length(unique(col)) == 1L && length(unique(bg)) == 1L) { pch.l <- pch[1] col.l <- col[1] bg.l <- bg[1] lty.l <- "blank" lwd.l <- 1 tcol.l <- par("fg") ltxt <- "Studies" } if (addpred) { pch.l <- c(pch.l, NA) col.l <- c(col.l, lcol[1]) bg.l <- c(bg.l, NA) lty.l <- c(lty.l, lty[1]) lwd.l <- c(lwd.l, lwd[1]) tcol.l <- c(tcol.l, par("fg")) ltxt <- c(ltxt, "Regression Line") } if (ci) { pch.l <- c(pch.l, NA) col.l <- c(col.l, lcol[2]) bg.l <- c(bg.l, NA) lty.l <- c(lty.l, lty[2]) lwd.l <- c(lwd.l, lwd[2]) tcol.l <- c(tcol.l, par("fg")) ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Confidence Interval")) } if (pi) { pch.l <- c(pch.l, NA) col.l <- c(col.l, lcol[3]) bg.l <- c(bg.l, NA) lty.l <- c(lty.l, lty[3]) lwd.l <- c(lwd.l, lwd[3]) tcol.l <- c(tcol.l, par("fg")) ltxt <- c(ltxt, paste0(round(100*(1-level), digits[[1]]), "% Prediction Interval")) } if (length(ltxt) >= 1L) legend(lpos, inset=.01, bg=NA, pch=pch.l, col=col.l, pt.bg=bg.l, lty=lty.l, lwd=lwd.l, text.col=tcol.l, pt.cex=1.5, seg.len=3, legend=ltxt, box.lty=box.lty) } ############################################################################ sav <- data.frame(slab, ids, xi, yi, pch, psize, col, bg, label, order=order.vec) if (length(yi.pred) != 0L) # yi.pred might be NULL or list() sav$pred <- yi.pred attr(sav, "offset") <- offset attr(sav, "labsize") <- labsize class(sav) <- "regplot" invisible(sav) } metafor/R/plot.gosh.rma.r0000644000176200001440000002537614712705400015003 0ustar liggesusersplot.gosh.rma <- function(x, het="I2", pch=16, cex, out, col, alpha, border, xlim, ylim, xhist=TRUE, yhist=TRUE, hh=0.3, breaks, adjust, lwd, labels, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="gosh.rma") het <- match.arg(het, c("QE", "I2", "I^2", "H2", "H^2", "tau2", "tau^2", "tau")) het <- sub("^", "", het, fixed=TRUE) if (is.element(het, c("tau2","tau")) && is.element(x$method, c("FE","EE","CE"))) stop(mstyle$stop("Cannot plot 'tau2' for equal/fixed-effects models.")) if (missing(cex)) { cex <- par("cex") * 0.5 } else { cex <- par("cex") * cex } ddd <- list(...) if (!is.null(ddd$trim)) { trim <- ddd$trim if (!is.list(trim)) { trim <- .expand1(trim, ncol(x$res)-4L) trim <- as.list(trim) } X <- cbind(x$res[,het], x$res[,7:ncol(x$res)]) del <- rep(FALSE, nrow(X)) for (i in seq_len(ncol(X))) { del[X[,i] < quantile(X[,i], trim[[i]][1], na.rm=TRUE) | X[,i] > quantile(X[,i], 1-trim[[i]][length(trim[[i]])], na.rm=TRUE)] <- TRUE } del[is.na(del)] <- TRUE x$res <- x$res[!del,] x$incl <- x$incl[!del,] } .start.plot() lplot <- function(..., trim) plot(...) lpairs <- function(..., trim) pairs(...) if (missing(alpha)) alpha <- nrow(x$res)^(-0.2) if (length(alpha) == 1L) alpha <- c(alpha, 0.5, 0.9) # 1st for points, 2nd for histograms, 3rd for density lines if (length(alpha) == 2L) alpha <- c(alpha[1], alpha[2], 0.9) missout <- ifelse(missing(out), TRUE, FALSE) # need this for panel.hist() if (missout) { if (missing(col)) col <- par("fg") col <- col2rgb(col) / 255 col.pnts <- rgb(col[1], col[2], col[3], alpha[1]) col.hist <- rgb(col[1], col[2], col[3], alpha[2]) col.line <- rgb(col[1], col[2], col[3], alpha[3]) } else { if (length(out) != 1L) stop(mstyle$stop("Argument 'out' should only specify a single study.")) out <- round(out) if (out > x$k || out < 1) stop(mstyle$stop("Non-existing study chosen as potential outlier.")) if (missing(col)) { if (.is.dark()) { col <- c("firebrick", "dodgerblue") } else { col <- c("red", "blue") } } if (length(col) != 2L) stop(mstyle$stop("Argument 'col' should specify two colors when argument 'out' is used.")) col.o <- col2rgb(col[1]) / 255 col.i <- col2rgb(col[2]) / 255 col.pnts.o <- rgb(col.o[1], col.o[2], col.o[3], alpha[1]) col.pnts.i <- rgb(col.i[1], col.i[2], col.i[3], alpha[1]) col.pnts <- ifelse(x$incl[,out], col.pnts.o, col.pnts.i) col.hist.o <- rgb(col.o[1], col.o[2], col.o[3], alpha[2]) col.hist.i <- rgb(col.i[1], col.i[2], col.i[3], alpha[2]) col.line.o <- rgb(col.o[1], col.o[2], col.o[3], alpha[3]) col.line.i <- rgb(col.i[1], col.i[2], col.i[3], alpha[3]) } if (missing(border)) border <- .coladj(par("bg"), dark=0.1, light=-0.1) if (length(border) == 1L) border <- c(border, border) if (length(hh) == 1L) hh <- c(hh, hh) if (x$int.only && (any(hh < 0) | any(hh > 1))) stop(mstyle$stop("Invalid value(s) specified for 'hh' argument.")) if (missing(breaks)) breaks <- "Sturges" if (length(breaks) == 1L) breaks <- list(breaks, breaks) # use list so can also specify two vectors (or two functions) if (missing(adjust)) adjust <- 1 if (length(adjust) == 1L) adjust <- c(adjust, adjust) if (missing(lwd)) lwd <- 2 if (length(lwd) == 1L) lwd <- c(lwd, lwd) if (missing(labels)) { if (het == "QE" && x$int.only) labels <- expression(Q) if (het == "QE" && !x$int.only) labels <- expression(Q[E]) if (het == "I2") labels <- expression(I^2) if (het == "H2") labels <- expression(H^2) if (het == "tau2") labels <- expression(tau^2) if (het == "tau") labels <- expression(tau) if (x$int.only) { labels <- c(.setlab(x$measure, transf.char="FALSE", atransf.char="FALSE", gentype=2), labels) } else { labels <- c(labels, colnames(x$res)[-seq_len(6)]) } } ######################################################################### if (x$int.only) { par.mar <- par("mar") par.mar.adj <- par.mar - c(0,-1,3.1,1.1) par.mar.adj[par.mar.adj < 0] <- 0 on.exit(par(mar=par.mar), add=TRUE) if (xhist & yhist) layout(mat=matrix(c(1,2,3,4), nrow=2, byrow=TRUE), widths=c(1-hh[2],hh[2]), heights=c(hh[1],1-hh[1])) if (xhist & !yhist) layout(mat=matrix(c(1,2), nrow=2, byrow=TRUE), heights=c(hh[1],1-hh[1])) if (!xhist & yhist) layout(mat=matrix(c(1,2), nrow=1, byrow=TRUE), widths=c(1-hh[2],hh[2])) hx <- hist(x$res[,"estimate"], breaks=breaks[[1]], plot=FALSE) hy <- hist(x$res[,het], breaks=breaks[[2]], plot=FALSE) if (missout) { if (missing(xlim)) xlim <- range(hx$breaks) if (missing(ylim)) ylim <- range(hy$breaks) if (xhist) { d <- density(x$res[,"estimate"], adjust=adjust[1], na.rm=TRUE) brks <- hx$breaks nB <- length(brks) y <- hx$density par(mar=c(0,par.mar.adj[2:4])) plot(NULL, xlim=xlim, ylim=c(0,max(hx$density,d$y)), xlab="", ylab="", xaxt="n", yaxt="n", bty="n") rect(brks[-nB], 0, brks[-1], y, col=col.hist, border=border[1]) if (lwd[1] > 0) lines(d$x, d$y, lwd=lwd[1], col=col.line) } } else { isout <- x$incl[,out] hx.o <- hist(x$res[isout,"estimate"], breaks=hx$breaks, plot=FALSE) hx.i <- hist(x$res[!isout,"estimate"], breaks=hx$breaks, plot=FALSE) hy.o <- hist(x$res[isout,het], breaks=hy$breaks, plot=FALSE) hy.i <- hist(x$res[!isout,het], breaks=hy$breaks, plot=FALSE) if (missing(xlim)) xlim <- c(min(hx.o$breaks, hx.i$breaks), max(hx.o$breaks, hx.i$breaks)) if (missing(ylim)) ylim <- c(min(hy.o$breaks, hy.i$breaks), max(hy.o$breaks, hy.i$breaks)) if (xhist) { d.o <- density(x$res[isout,"estimate"], adjust=adjust[1], na.rm=TRUE) d.i <- density(x$res[!isout,"estimate"], adjust=adjust[1], na.rm=TRUE) brks.o <- hx.o$breaks brks.i <- hx.i$breaks nB.o <- length(brks.o) nB.i <- length(brks.i) y.o <- hx.o$density y.i <- hx.i$density par(mar=c(0,par.mar.adj[2:4])) plot(NULL, xlim=xlim, ylim=c(0,max(hx.o$density,hx.i$density,d.o$y,d.i$y)), xlab="", ylab="", xaxt="n", yaxt="n", bty="n") rect(brks.i[-nB.i], 0, brks.i[-1], y.i, col=col.hist.i, border=border[1]) rect(brks.o[-nB.o], 0, brks.o[-1], y.o, col=col.hist.o, border=border[1]) if (lwd[1] > 0) { lines(d.i$x, d.i$y, lwd=lwd[1], col=col.line.i) lines(d.o$x, d.o$y, lwd=lwd[1], col=col.line.o) } } } if (xhist & yhist) plot.new() par(mar=par.mar.adj) lplot(x$res[,"estimate"], x$res[,het], xlim=xlim, ylim=ylim, pch=pch, cex=cex, col=col.pnts, bty="l", xlab=labels[1], ylab=labels[2], ...) if (missout) { if (yhist) { d <- density(x$res[,het], adjust=adjust[2], na.rm=TRUE) brks <- hy$breaks nB <- length(brks) y <- hy$density par(mar=c(par.mar.adj[1],0,par.mar.adj[3:4])) plot(NULL, xlim=c(0,max(hy$density,d$y)), ylim=ylim, xlab="", ylab="", xaxt="n", yaxt="n", bty="n") rect(0, brks[-nB], y, brks[-1], col=col.hist, border=border[2]) if (lwd[2] > 0) lines(d$y, d$x, lwd=lwd[2], col=col.line) } } else { if (yhist) { d.o <- density(x$res[isout,het], adjust=adjust[2], na.rm=TRUE) d.i <- density(x$res[!isout,het], adjust=adjust[2], na.rm=TRUE) brks.o <- hy.o$breaks brks.i <- hy.i$breaks nB.o <- length(brks.o) nB.i <- length(brks.i) y.o <- hy.o$density y.i <- hy.i$density par(mar=c(par.mar.adj[1],0,par.mar.adj[3:4])) plot(NULL, xlim=c(0,max(hy.o$density,hy.i$density,d.o$y,d.i$y)), ylim=ylim, xlab="", ylab="", xaxt="n", yaxt="n", bty="n") rect(0, brks.i[-nB.i], y.i, brks.i[-1], col=col.hist.i, border=border[2]) rect(0, brks.o[-nB.o], y.o, brks.o[-1], col=col.hist.o, border=border[2]) if (lwd[2] > 0) { lines(d.i$y, d.i$x, lwd=lwd[2], col=col.line.i) lines(d.o$y, d.o$x, lwd=lwd[2], col=col.line.o) } } } ### reset to a single figure if (xhist | yhist) layout(matrix(1)) } else { isout <- x$incl[,out] ### function for histograms with kernel density estimates on the diagonal panel.hist <- function(x, ...) { usr <- par("usr") on.exit(par(usr=usr)) par(usr = c(usr[1:2], 0, 1.2 + hh[1])) h <- hist(x, plot=FALSE, breaks=breaks[[1]]) if (missout) { brks <- h$breaks nB <- length(brks) y <- h$density z <- y / max(y) rect(brks[-nB], 0, brks[-1], z, col=col.hist, border=border[1]) res <- density(x, adjust=adjust[1], na.rm=TRUE) res$y <- res$y / max(y) if (lwd[1] > 0) lines(res, lwd=lwd[1], col=col.line) } else { h.o <- hist(x[isout], plot=FALSE, breaks=h$breaks) h.i <- hist(x[!isout], plot=FALSE, breaks=h$breaks) brks.o <- h.o$breaks brks.i <- h.i$breaks nB.o <- length(brks.o) nB.i <- length(brks.i) y.o <- h.o$density y.i <- h.i$density z.o <- y.o / max(y.o, y.i) z.i <- y.i / max(y.o, y.i) rect(brks.i[-nB.i], 0, brks.i[-1], z.i, col=col.hist.i, border=border[1]) rect(brks.o[-nB.o], 0, brks.o[-1], z.o, col=col.hist.o, border=border[1]) res.o <- density(x[isout], adjust=adjust[1], na.rm=TRUE) res.i <- density(x[!isout], adjust=adjust[1], na.rm=TRUE) res.o$y <- res.o$y / max(y.o, y.i) res.i$y <- res.i$y / max(y.o, y.i) if (lwd[1] > 0) { lines(res.i, lwd=lwd[1], col=col.line.i) lines(res.o, lwd=lwd[1], col=col.line.o) } } box() } ### draw scatterplot matrix X <- cbind(x$res[,het], x$res[,7:ncol(x$res)]) lpairs(X, pch=pch, cex=cex, diag.panel=panel.hist, col=col.pnts, labels=labels, ...) } ######################################################################### } metafor/R/AIC.rma.r0000644000176200001440000000264314671064435013464 0ustar liggesusersAIC.rma <- function(object, ..., k=2, correct=FALSE) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") if (missing(...)) { ### if there is just 'object' if (object$method == "REML") { out <- ifelse(correct, object$fit.stats["AICc","REML"], object$fit.stats["AIC","REML"]) } else { out <- ifelse(correct, object$fit.stats["AICc","ML"], object$fit.stats["AIC","ML"]) } } else { ### if there is 'object' and additional objects via ... if (object$method == "REML") { out <- sapply(list(object, ...), function(x) ifelse(correct, x$fit.stats["AICc","REML"], x$fit.stats["AIC","REML"])) } else { out <- sapply(list(object, ...), function(x) ifelse(correct, x$fit.stats["AICc","ML"], x$fit.stats["AIC","ML"])) } dfs <- sapply(list(object, ...), function(x) x$parms) out <- data.frame(df=dfs, AIC=out) if (correct) names(out)[2] <- "AICc" ### get names of objects; same idea as in stats:::AIC.default cl <- match.call() cl$k <- NULL cl$correct <- NULL rownames(out) <- as.character(cl[-1L]) ### check that all models were fitted to the same data chksums <- sapply(list(object, ...), function(x) x$chksumyi) if (any(chksums[1] != chksums)) warning(mstyle$warning("Models not all fitted to the same data."), call.=FALSE) } return(out) } metafor/R/plot.rma.peto.r0000644000176200001440000000425414712645761015017 0ustar liggesusersplot.rma.peto <- function(x, qqplot=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma.peto") na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) .start.plot() # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < 4L) par(mfrow=n2mfrow(4)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) bg <- .coladj(par("bg","fg"), dark=0.35, light=-0.35) col.na <- .coladj(par("bg","fg"), dark=0.2, light=-0.2) ######################################################################### forest(x, ...) title("Forest Plot", ...) ######################################################################### funnel(x, ...) title("Funnel Plot", ...) ######################################################################### radial(x, ...) title("Radial Plot", ...) ######################################################################### if (qqplot) { qqnorm(x, ...) } else { options(na.action = "na.pass") z <- rstandard(x)$z options(na.action = na.act) not.na <- !is.na(z) if (na.act == "na.omit") { z <- z[not.na] ids <- x$ids[not.na] not.na <- not.na[not.na] } if (na.act == "na.exclude" || na.act == "na.pass") ids <- x$ids k <- length(z) plot(NA, NA, xlim=c(1,k), ylim=c(min(z, -2, na.rm=TRUE), max(z, 2, na.rm=TRUE)), xaxt="n", xlab="Study", ylab="", bty="l", ...) lines(seq_len(k)[not.na], z[not.na], col=col.na, ...) lines(seq_len(k), z, ...) points(x=seq_len(k), y=z, pch=21, bg=bg, ...) axis(side=1, at=seq_len(k), labels=ids, ...) abline(h=0, lty="dashed", ...) abline(h=c(qnorm(0.025),qnorm(0.975)), lty="dotted", ...) title("Standardized Residuals", ...) } ######################################################################### invisible() } metafor/R/rma.peto.r0000644000176200001440000003305214701455146014032 0ustar liggesusersrma.peto <- function(ai, bi, ci, di, n1i, n2i, data, slab, subset, add=1/2, to="only0", drop00=TRUE, # for add/to/drop00, 1st element for escalc(), 2nd for Peto's method level=95, verbose=FALSE, digits, ...) { ######################################################################### ###### setup mstyle <- .get.mstyle() ### check argument specifications if (length(add) == 1L) add <- c(add, 0) if (length(add) != 2L) stop(mstyle$stop("Argument 'add' should specify one or two values (see 'help(rma.peto)').")) if (length(to) == 1L) to <- c(to, "none") if (length(to) != 2L) stop(mstyle$stop("Argument 'to' should specify one or two values (see 'help(rma.peto)').")) if (length(drop00) == 1L) drop00 <- c(drop00, FALSE) if (length(drop00) != 2L) stop(mstyle$stop("Argument 'drop00' should specify one or two values (see 'help(rma.peto)').")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (!is.element(to[1], c("all","only0","if0all","none"))) stop(mstyle$stop("Unknown 'to' argument specified.")) if (!is.element(to[2], c("all","only0","if0all","none"))) stop(mstyle$stop("Unknown 'to' argument specified.")) time.start <- proc.time() ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("outlist", "time")) measure <- "PETO" # set measure here so that it can be added below ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } ### set options(warn=1) if verbose > 2 if (verbose > 2) { opwarn <- options(warn=1) on.exit(options(warn=opwarn$warn), add=TRUE) } ######################################################################### if (verbose) .space() if (verbose) message(mstyle$message("Extracting the data and computing yi/vi values ...")) ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() ### extract slab and subset values, possibly from the data frame specified via data (arguments not specified are NULL) slab <- .getx("slab", mf=mf, data=data) subset <- .getx("subset", mf=mf, data=data) ### extract/calculate ai,bi,ci,di,n1i,n2i values ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) if (is.null(bi)) bi <- n1i - ai if (is.null(di)) di <- n2i - ci ni <- ai + bi + ci + di k <- length(ai) # number of outcomes before subsetting k.all <- k if (length(ai)==0L || length(bi)==0L || length(ci)==0L || length(di)==0L) stop(mstyle$stop("Must specify arguments ai, bi, ci, di (or ai, ci, n1i, n2i).")) ids <- seq_len(k) ### generate study labels if none are specified if (verbose) message(mstyle$message("Generating/extracting the study labels ...")) if (is.null(slab)) { slab.null <- TRUE slab <- ids } else { if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the dataset (", k, ")."))) if (is.factor(slab)) slab <- as.character(slab) slab.null <- FALSE } ### if a subset of studies is specified if (!is.null(subset)) { if (verbose) message(mstyle$message("Subsetting ...")) subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) di <- .getsubset(di, subset) ni <- .getsubset(ni, subset) slab <- .getsubset(slab, subset) ids <- .getsubset(ids, subset) k <- length(ai) } ### check if study labels are unique; if not, make them unique if (anyDuplicated(slab)) slab <- .make.unique(slab) ### calculate observed effect estimates and sampling variances dat <- .do.call(escalc, measure="PETO", ai=ai, bi=bi, ci=ci, di=di, add=add[1], to=to[1], drop00=drop00[1]) yi <- dat$yi # one or more yi/vi pairs may be NA/NA vi <- dat$vi # one or more yi/vi pairs may be NA/NA ### if drop00[2]=TRUE, set counts to NA for studies that have no events (or all events) in both arms if (drop00[2]) { id00 <- c(ai == 0L & ci == 0L) | c(bi == 0L & di == 0L) id00[is.na(id00)] <- FALSE ai[id00] <- NA_real_ bi[id00] <- NA_real_ ci[id00] <- NA_real_ di[id00] <- NA_real_ } ### save the actual cell frequencies and yi/vi values (including potential NAs) outdat.f <- list(ai=ai, bi=bi, ci=ci, di=di) yi.f <- yi vi.f <- vi ni.f <- ni k.f <- k # total number of tables including all NAs ### check for NAs in table data and act accordingly has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) not.na <- !has.na if (any(has.na)) { if (verbose) message(mstyle$message("Handling NAs in the table data ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] k <- length(ai) warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from model fitting.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in tables.")) } ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### check for NAs in yi/vi and act accordingly yivi.na <- is.na(yi) | is.na(vi) not.na.yivi <- !yivi.na if (any(yivi.na)) { if (verbose) message(mstyle$message("Handling NAs in yi/vi ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na.yivi] vi <- vi[not.na.yivi] ni <- ni[not.na.yivi] warning(mstyle$warning("Some yi/vi values are NA."), call.=FALSE) attr(yi, "measure") <- measure # add measure attribute back attr(yi, "ni") <- ni # add ni attribute back } if (na.act == "na.fail") stop(mstyle$stop("Missing yi/vi values.")) } k.yi <- length(yi) # number of yi/vi pairs that are not NA (needed for QE df and fit.stats calculation) ### add/to procedures for the 2x2 tables for the actual meta-analysis ### note: technically, nothing needs to be added, but Stata/RevMan add 1/2 by default for only0 studies (but drop studies with no/all events) if (to[2] == "all") { ### always add to all cells in all studies ai <- ai + add[2] bi <- bi + add[2] ci <- ci + add[2] di <- di + add[2] } if (to[2] == "only0") { ### add to cells in studies with at least one 0 entry id0 <- c(ai == 0L | bi == 0L | ci == 0L | di == 0L) ai[id0] <- ai[id0] + add[2] bi[id0] <- bi[id0] + add[2] ci[id0] <- ci[id0] + add[2] di[id0] <- di[id0] + add[2] } if (to[2] == "if0all") { ### add to cells in all studies if there is at least one 0 entry id0 <- c(ai == 0L | bi == 0L | ci == 0L | di == 0L) if (any(id0)) { ai <- ai + add[2] bi <- bi + add[2] ci <- ci + add[2] di <- di + add[2] } } n1i <- ai + bi n2i <- ci + di Ni <- ai + bi + ci + di ######################################################################### level <- .level(level) ###### model fitting, test statistics, and confidence intervals if (verbose) message(mstyle$message("Model fitting ...")) xt <- ai + ci # frequency of outcome1 in both groups combined yt <- bi + di # frequency of outcome2 in both groups combined Ei <- xt * n1i / Ni Vi <- xt * yt * (n1i/Ni) * (n2i/Ni) / (Ni - 1) # 0 when xt = 0 or yt = 0 in a table sumVi <- sum(Vi) if (sumVi == 0L) # sumVi = 0 when xt or yt = 0 in *all* tables stop(mstyle$stop("One of the two outcomes never occurred in any of the tables. Peto's method cannot be used.")) beta <- sum(ai - Ei) / sumVi se <- sqrt(1/sumVi) zval <- beta / se pval <- 2*pnorm(abs(zval), lower.tail=FALSE) ci.lb <- beta - qnorm(level/2, lower.tail=FALSE) * se ci.ub <- beta + qnorm(level/2, lower.tail=FALSE) * se names(beta) <- "intrcpt" vb <- matrix(se^2, dimnames=list("intrcpt", "intrcpt")) ######################################################################### ### heterogeneity test (Peto's method) if (verbose) message(mstyle$message("Heterogeneity testing ...")) k.pos <- sum(Vi > 0) # number of tables with positive sampling variance Vi[Vi == 0] <- NA_real_ # set 0 sampling variances to NA QE <- max(0, sum((ai - Ei)^2 / Vi, na.rm=TRUE) - sum(ai - Ei)^2 / sum(Vi, na.rm=TRUE)) if (k.pos > 1L) { QEp <- pchisq(QE, df=k.yi-1, lower.tail=FALSE) I2 <- max(0, 100 * (QE - (k.yi-1)) / QE) H2 <- QE / (k.yi-1) } else { QEp <- 1 I2 <- 0 H2 <- 1 } wi <- 1/vi RSS <- sum(wi*(yi-beta)^2) ######################################################################### ###### fit statistics if (verbose) message(mstyle$message("Computing the fit statistics and log-likelihood ...")) ll.ML <- -1/2 * (k.yi) * log(2*base::pi) - 1/2 * sum(log(vi)) - 1/2 * RSS ll.REML <- -1/2 * (k.yi-1) * log(2*base::pi) + 1/2 * log(k.yi) - 1/2 * sum(log(vi)) - 1/2 * log(sum(wi)) - 1/2 * RSS if (any(vi <= 0)) { dev.ML <- -2 * ll.ML } else { dev.ML <- -2 * (ll.ML - sum(dnorm(yi, mean=yi, sd=sqrt(vi), log=TRUE))) } AIC.ML <- -2 * ll.ML + 2 BIC.ML <- -2 * ll.ML + log(k.yi) AICc.ML <- -2 * ll.ML + 2 * max(k.yi, 3) / (max(k.yi, 3) - 2) dev.REML <- -2 * (ll.REML - 0) AIC.REML <- -2 * ll.REML + 2 BIC.REML <- -2 * ll.REML + log(k.yi-1) AICc.REML <- -2 * ll.REML + 2 * max(k.yi-1, 3) / (max(k.yi-1, 3) - 2) fit.stats <- matrix(c(ll.ML, dev.ML, AIC.ML, BIC.ML, AICc.ML, ll.REML, dev.REML, AIC.REML, BIC.REML, AICc.REML), ncol=2, byrow=FALSE) dimnames(fit.stats) <- list(c("ll","dev","AIC","BIC","AICc"), c("ML","REML")) fit.stats <- data.frame(fit.stats) ######################################################################### ###### prepare output if (verbose) message(mstyle$message("Preparing the output ...")) parms <- 1 p <- 1 p.eff <- 1 k.eff <- k tau2 <- 0 X.f <- cbind(rep(1,k.f)) intercept <- TRUE int.only <- TRUE btt <- 1 m <- 1 coef.na <- c(X=FALSE) method <- "FE" weighted <- TRUE test <- "z" ddf <- NA_integer_ if (is.null(ddd$outlist) || ddd$outlist == "nodata") { outdat <- list(ai=ai, bi=bi, ci=ci, di=di) res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, tau2=tau2, tau2.f=tau2, I2=I2, H2=H2, QE=QE, QEp=QEp, k=k, k.f=k.f, k.yi=k.yi, k.pos=k.pos, k.eff=k.eff, k.all=k.all, p=p, p.eff=p.eff, parms=parms, int.only=int.only, intercept=intercept, coef.na=coef.na, yi=yi, vi=vi, yi.f=yi.f, vi.f=vi.f, X.f=X.f, outdat.f=outdat.f, outdat=outdat, ni=ni, ni.f=ni.f, chksumyi=digest::digest(as.vector(yi)), chksumvi=digest::digest(as.vector(vi)), ids=ids, not.na=not.na, subset=subset, not.na.yivi=not.na.yivi, slab=slab, slab.null=slab.null, measure=measure, method=method, weighted=weighted, test=test, ddf=ddf, dfs=ddf, btt=btt, m=m, digits=digits, level=level, add=add, to=to, drop00=drop00, fit.stats=fit.stats, formula.yi=NULL, formula.mods=NULL, version=packageVersion("metafor"), call=mf) if (is.null(ddd$outlist)) res <- append(res, list(data=data), which(names(res) == "fit.stats")) } else { if (ddd$outlist == "minimal") { res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, tau2=tau2, I2=I2, H2=H2, QE=QE, QEp=QEp, k=k, k.f=k.f, k.pos=k.pos, k.eff=k.eff, p=p, p.eff=p.eff, parms=parms, int.only=int.only, intercept=intercept, chksumyi=digest::digest(as.vector(yi)), chksumvi=digest::digest(as.vector(vi)), measure=measure, method=method, test=test, ddf=ddf, dfs=ddf, btt=btt, m=m, digits=digits, level=level, fit.stats=fit.stats) } else { res <- eval(str2lang(paste0("list(", ddd$outlist, ")"))) } } time.end <- proc.time() res$time <- unname(time.end - time.start)[3] if (.isTRUE(ddd$time)) .print.time(res$time) if (verbose || .isTRUE(ddd$time)) cat("\n") class(res) <- c("rma.peto", "rma") return(res) } metafor/R/print.ranktest.r0000644000176200001440000000101714515471031015261 0ustar liggesusersprint.ranktest <- function(x, digits=x$digits, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="ranktest") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) .space() cat(mstyle$section("Rank Correlation Test for Funnel Plot Asymmetry")) cat("\n\n") cat(mstyle$result(paste0("Kendall's tau = ", fmtx(x$tau, digits[["est"]]), ", p ", fmtp(x$pval, digits[["pval"]], equal=TRUE, sep=TRUE)))) cat("\n") #cat("H0: true tau is equal to 0\n\n") .space() invisible() } metafor/R/weights.rma.mv.r0000644000176200001440000000405314671614025015154 0ustar liggesusersweights.rma.mv <- function(object, type="diagonal", ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.mv") if (is.null(object$not.na)) stop(mstyle$stop("Information needed to compute the weights is not available in the model object.")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) type <- match.arg(type, c("diagonal", "matrix", "rowsum")) x <- object ######################################################################### if (is.null(x$W)) { W <- chol2inv(chol(x$M)) } else { W <- x$W } ######################################################################### if (type == "diagonal") { wi <- as.vector(diag(W)) weight <- rep(NA_real_, x$k.f) weight[x$not.na] <- wi / sum(wi) * 100 names(weight) <- x$slab if (na.act == "na.omit") weight <- weight[x$not.na] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in weights.")) return(weight) } if (type == "matrix") { Wfull <- matrix(NA_real_, nrow=x$k.f, ncol=x$k.f) Wfull[x$not.na, x$not.na] <- as.matrix(W) # as.matrix() needed when sparse=TRUE rownames(Wfull) <- x$slab colnames(Wfull) <- x$slab if (na.act == "na.omit") Wfull <- Wfull[x$not.na, x$not.na, drop=FALSE] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) return(Wfull) } if (type == "rowsum") { if (!x$int.only) stop("Row-sum weights are only meaningful for intercept-only models.") wi <- rowSums(W) weight <- rep(NA_real_, x$k.f) weight[x$not.na] <- wi / sum(wi) * 100 names(weight) <- x$slab if (na.act == "na.omit") weight <- weight[x$not.na] if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in weights.")) return(weight) } } metafor/R/misc.func.hidden.funnel.r0000644000176200001440000001104314605253301016676 0ustar liggesusers############################################################################ .funnel.legend <- function(legend, level, shade, back, yaxis, trimfill, pch, col, bg, pch.fill, pch.vec, col.vec, bg.vec, colci) { mstyle <- .get.mstyle() lopts <- list(x = "topright", y = NULL, inset = 0.01, bty = "o", bg = .coladj(par("bg","fg"), dark=c(0,-0.9), light=c(0,0.9)), studies = TRUE, show = "pvals", cex = c(1,2,1), x.intersp = 1, y.intersp = 1) if (is.list(legend)) { ### replace defaults with any user-defined values lopts.pos <- pmatch(names(legend), names(lopts)) lopts[c(na.omit(lopts.pos))] <- legend[!is.na(lopts.pos)] legend <- TRUE if (length(lopts$cex) == 1L) lopts$cex <- c(lopts$cex, 2*lopts$cex, lopts$cex) if (length(lopts$cex) == 2L) lopts$cex <- c(lopts$cex[1], lopts$cex[2], lopts$cex[1]) } else { if (is.character(legend)) { lopts$x <- legend legend <- TRUE } else { if (!is.logical(legend)) stop(mstyle$stop("Argument 'legend' must either be logical, a string, or a list."), call.=FALSE) } } if (!is.na(lopts$show) && !is.element(lopts$show, c("pvals","cis"))) stop(mstyle$stop("Valid options for 'show' are 'pvals, 'cis', or NA."), call.=FALSE) ### can only add p-values / CI regions if 'yaxis' is 'sei', 'vi', 'seinv', or 'vinv' if (legend && !is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) lopts$show <- NA ### only add 'Studies' to legend if pch, col, and bg are not vectors if (pch.vec || col.vec || bg.vec) lopts$studies <- FALSE ### if neither studies nor p-values / CI regions are shown, then omit the legend if (!lopts$studies && is.na(lopts$show)) legend <- FALSE if (legend) { ltxt <- NULL pch.l <- NULL col.l <- NULL pt.cex <- NULL pt.bg <- NULL if (isTRUE(lopts$show == "pvals")) { level <- c(level, 0) lvals <- length(level) scipen <- options(scipen=100) level <- signif(level, digits=8) lchars <- pmax(0, max(nchar(level))-2L) options(scipen=scipen$scipen) ltxt <- sapply(seq_len(lvals), function(i) { if (i == 1) return(as.expression(bquote(paste(.(pval1) < p, phantom() <= .(pval2)), list(pval1=fmtx(level[i], lchars), pval2=fmtx(1, lchars))))) if (i > 1 && i < lvals) return(as.expression(bquote(paste(.(pval1) < p, phantom() <= .(pval2)), list(pval1=fmtx(level[i], lchars), pval2=fmtx(level[i-1], lchars))))) if (i == lvals) return(as.expression(bquote(paste(.(pval1) < p, phantom() <= .(pval2)), list(pval1=fmtx(0, lchars), pval2=fmtx(level[i-1], lchars))))) }) pch.l <- rep(22, lvals) col.l <- rep(colci, lvals) pt.cex <- rep(lopts$cex[2], lvals) pt.bg <- c(shade, back) } if (isTRUE(lopts$show == "cis")) { level <- 100-100*level lvals <- length(level) scipen <- options(scipen=100) lchars <- pmax(0, max(nchar(level))-3L) options(scipen=scipen$scipen) ltxt <- sapply(seq_len(lvals), function(i) as.expression(bquote(paste(.(ci)*"% CI Region"), list(ci=fmtx(level[i], lchars))))) pch.l <- rep(22, lvals) col.l <- rep(colci, lvals) pt.cex <- rep(lopts$cex[2], lvals) pt.bg <- c(shade) } if (isTRUE(lopts$studies)) { if (trimfill) { ltxt <- c(ltxt, expression(plain(Observed~Studies))) } else { ltxt <- c(ltxt, expression(plain(Studies))) } pch.l <- c(pch.l, pch[1]) col.l <- c(col.l, col[1]) pt.cex <- c(pt.cex, lopts$cex[3]) pt.bg <- c(pt.bg, bg[1]) if (trimfill) { ltxt <- c(ltxt, expression(plain(Imputed~Studies))) pch.l <- c(pch.l, pch.fill[1]) col.l <- c(col.l, col[2]) pt.cex <- c(pt.cex, lopts$cex[3]) pt.bg <- c(pt.bg, bg[2]) } } legend(x=lopts$x, y=lopts$y, inset=lopts$inset, bty=lopts$bty, bg=lopts$bg, cex=lopts$cex[1], x.intersp=lopts$x.intersp, y.intersp=lopts$y.intersp, pch=pch.l, col=col.l, pt.cex=pt.cex, pt.bg=pt.bg, legend=ltxt) } } ############################################################################ metafor/R/leave1out.rma.mh.r0000644000176200001440000001367514722327573015411 0ustar liggesusersleave1out.rma.mh <- function(x, cluster, digits, transf, targs, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.mh") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (!x$int.only) stop(mstyle$stop("Method only applicable to models without moderators.")) if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) if (is.null(x$outdat.f)) stop(mstyle$stop("Information needed to carry out a leave-one-out analysis is not available in the model object.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL ddd <- list(...) .chkdots(ddd, c("time", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### ### process cluster variable misscluster <- ifelse(missing(cluster), TRUE, FALSE) if (misscluster) { cluster <- seq_len(x$k.all) } else { mf <- match.call() cluster <- .getx("cluster", mf=mf, data=x$data) } ### note: cluster variable must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing ### of NAs as was done during model fitting if (length(cluster) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not match the length of the data (", x$k.all, ")."))) cluster <- .getsubset(cluster, x$subset) cluster.f <- cluster cluster <- cluster[x$not.na] ### checks on cluster variable if (anyNA(cluster.f)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster.f) == 0L) stop(mstyle$stop(paste0("Cannot find 'cluster' variable (or it has zero length)."))) ### cluster ids and number of clusters ids <- unique(cluster) n <- length(ids) if (!misscluster) ids <- sort(ids) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### beta <- rep(NA_real_, n) se <- rep(NA_real_, n) zval <- rep(NA_real_, n) pval <- rep(NA_real_, n) ci.lb <- rep(NA_real_, n) ci.ub <- rep(NA_real_, n) QE <- rep(NA_real_, n) QEp <- rep(NA_real_, n) #tau2 <- rep(NA_real_, n) I2 <- rep(NA_real_, n) H2 <- rep(NA_real_, n) ### elements that need to be returned outlist <- "beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, QE=QE, QEp=QEp, tau2=tau2, I2=I2, H2=H2" if (progbar) pbar <- pbapply::startpb(min=0, max=n) for (i in seq_len(n)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) if (is.element(x$measure, c("RR","OR","RD"))) { args <- list(ai=x$outdat$ai, bi=x$outdat$bi, ci=x$outdat$ci, di=x$outdat$di, measure=x$measure, add=x$add, to=x$to, drop00=x$drop00, correct=x$correct, level=x$level, subset=ids[i]!=cluster, outlist=outlist) } else { args <- list(x1i=x$outdat$x1i, x2i=x$outdat$x2i, t1i=x$outdat$t1i, t2i=x$outdat$t2i, measure=x$measure, add=x$add, to=x$to, drop00=x$drop00, correct=x$correct, level=x$level, subset=ids[i]!=cluster, outlist=outlist) } res <- try(suppressWarnings(.do.call(rma.mh, args)), silent=TRUE) if (inherits(res, "try-error")) next beta[i] <- res$beta se[i] <- res$se zval[i] <- res$zval pval[i] <- res$pval ci.lb[i] <- res$ci.lb ci.ub[i] <- res$ci.ub QE[i] <- res$QE QEp[i] <- res$QEp I2[i] <- res$I2 H2[i] <- res$H2 } if (progbar) pbapply::closepb(pbar) ######################################################################### ### if requested, apply transformation function if (.isTRUE(transf) && is.element(x$measure, c("OR","RR","IRR"))) # if transf=TRUE, apply exp transformation to ORs, RRs, and IRRs transf <- exp if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) se <- rep(NA_real_, n) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) se <- rep(NA_real_, n) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } transf <- TRUE } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ######################################################################### out <- list(estimate=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, Q=QE, Qp=QEp, I2=I2, H2=H2) if (na.act == "na.omit") { if (misscluster) { out$slab <- paste0("-", x$slab[x$not.na]) } else { out$slab <- paste0("-", ids) } } if (na.act == "na.exclude" || na.act == "na.pass") { if (misscluster) { out <- .expandna(out, x$not.na) out$slab <- paste0("-", x$slab) } else { out$slab <- paste0("-", ids) } } out$digits <- digits out$transf <- transf if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- "list.rma" return(out) } metafor/R/rstandard.rma.peto.r0000644000176200001440000000312114671556474016021 0ustar liggesusersrstandard.rma.peto <- function(model, digits, ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.peto") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$yi.f)) stop(mstyle$stop("Information needed to compute the residuals is not available in the model object.")) x <- model if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } ######################################################################### resid <- c(x$yi.f - x$beta) resid[abs(resid) < 100 * .Machine$double.eps] <- 0 #resid[abs(resid) < 100 * .Machine$double.eps * median(abs(resid), na.rm=TRUE)] <- 0 # see lm.influence ### note: these are like Pearson (or semi-standardized) residuals seresid <- sqrt(x$vi.f) stresid <- resid / seresid ######################################################################### if (na.act == "na.omit") { out <- list(resid=resid[x$not.na.yivi], se=seresid[x$not.na.yivi], z=stresid[x$not.na.yivi]) out$slab <- x$slab[x$not.na.yivi] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(resid=resid, se=seresid, z=stresid) out$slab <- x$slab } if (na.act == "na.fail" && any(!x$not.na.yivi)) stop(mstyle$stop("Missing values in results.")) out$digits <- digits class(out) <- "list.rma" return(out) } metafor/R/profile.rma.uni.selmodel.r0000644000176200001440000003135214722340157017117 0ustar liggesusersprofile.rma.uni.selmodel <- function(fitted, tau2, delta, xlim, ylim, steps=20, lltol=1e-03, progbar=TRUE, parallel="no", ncpus=1, cl, plot=TRUE, ...) { mstyle <- .get.mstyle() .chkclass(class(fitted), must="rma.uni.selmodel") x <- fitted if (x$betaspec) # TODO: consider allowing profiling over beta values as well stop(mstyle$stop("Cannot profile when one or more beta values were fixed.")) if (x$decreasing || x$type == "stepcon") stop(mstyle$stop("Method not currently implemented for this type of model.")) if (anyNA(steps)) stop(mstyle$stop("No missing values allowed in 'steps' argument.")) if (length(steps) >= 2L) { if (missing(xlim)) xlim <- range(steps) stepseq <- TRUE } else { if (steps < 2) stop(mstyle$stop("Argument 'steps' must be >= 2.")) stepseq <- FALSE } parallel <- match.arg(parallel, c("no", "snow", "multicore")) if (parallel == "no" && ncpus > 1) parallel <- "snow" if (missing(cl)) cl <- NULL if (!is.null(cl) && inherits(cl, "SOCKcluster")) { parallel <- "snow" ncpus <- length(cl) } if (parallel == "snow" && ncpus < 2) parallel <- "no" if (parallel == "snow" || parallel == "multicore") { if (!requireNamespace("parallel", quietly=TRUE)) stop(mstyle$stop("Please install the 'parallel' package for parallel processing.")) ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Argument 'ncpus' must be >= 1.")) } if (!progbar) { pbo <- pbapply::pboptions(type="none") on.exit(pbapply::pboptions(pbo), add=TRUE) } ddd <- list(...) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### ### check if user has not specified tau2 or delta argument if (missing(tau2) && missing(delta)) { mc <- match.call() ### total number of non-fixed components comps <- ifelse(!is.element(x$method, c("FE","EE","CE")) && !x$tau2.fix, 1, 0) + sum(!x$delta.fix) if (comps == 0) stop(mstyle$stop("No components in the model for which a profile likelihood can be constructed.")) if (!is.null(ddd[["code3"]])) eval(expr = parse(text = ddd[["code3"]])) if (plot) { if (comps > 1L) { # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < comps) par(mfrow=n2mfrow(comps)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) } } sav <- list() j <- 0 if (!is.element(x$method, c("FE","EE","CE")) && !x$tau2.fix) { j <- j + 1 if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) mc.vc <- mc mc.vc$tau2 <- 1 mc.vc$time <- FALSE #mc.vc$fitted <- quote(x) mc.vc[[1]] <- str2lang("metafor::profile.rma.uni.selmodel") if (progbar) cat(mstyle$verbose(paste("Profiling tau2\n"))) sav[[j]] <- eval(mc.vc, envir=parent.frame()) } if (any(!x$delta.fix)) { for (pos in seq_len(x$deltas)[!x$delta.fix]) { j <- j + 1 if (!is.null(ddd[["code4"]])) eval(expr = parse(text = ddd[["code4"]])) mc.vc <- mc mc.vc$delta <- pos mc.vc$time <- FALSE #mc.vc$fitted <- quote(x) mc.vc[[1]] <- str2lang("metafor::profile.rma.uni.selmodel") if (progbar) cat(mstyle$verbose(paste("Profiling delta =", pos, "\n"))) sav[[j]] <- eval(mc.vc, envir=parent.frame()) } } ### if there is just one component, turn the list of lists into a simple list if (comps == 1) sav <- sav[[1]] sav$comps <- comps if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(sav) <- "profile.rma" return(invisible(sav)) } ######################################################################### ### round and take unique values if (!missing(delta) && is.numeric(delta)) delta <- unique(round(delta)) if (!missing(tau2) && is.numeric(tau2)) tau2 <- unique(round(tau2)) ### check if user has specified more than one of these arguments if (sum(!missing(tau2), !missing(delta)) > 1L) stop(mstyle$stop("Must specify only one of the 'tau2' or 'delta' arguments.")) ### check if model actually contains (at least one) such a component and that it was actually estimated if (!missing(tau2) && (is.element(x$method, c("FE","EE","CE")) || x$tau2.fix)) stop(mstyle$stop("Model does not contain an (estimated) 'tau2' component.")) if (!missing(delta) && all(x$delta.fix)) stop(mstyle$stop("Model does not contain any estimated 'delta' components.")) ### check if user specified more than one tau2 or delta component if (!missing(tau2) && (length(tau2) > 1L)) stop(mstyle$stop("Can only specify one 'tau2' component.")) if (!missing(delta) && (length(delta) > 1L)) stop(mstyle$stop("Can only specify one 'delta' component.")) ### check if user specified a logical if (!missing(tau2) && is.logical(tau2) && isTRUE(tau2)) tau2 <- 1 if (!missing(delta) && is.logical(delta)) stop(mstyle$stop("Must specify a number for the 'delta' component.")) ### check if user specified a component that does not exist if (!missing(tau2) && (tau2 > 1 || tau2 <= 0)) stop(mstyle$stop("No such 'tau2' component in the model.")) if (!missing(delta) && (delta > x$deltas || delta <= 0)) stop(mstyle$stop("No such 'delta' component in the model.")) ### check if user specified a component that was fixed if (!missing(tau2) && x$tau2.fix) stop(mstyle$stop("Specified 'tau2' component was fixed.")) if (!missing(delta) && x$delta.fix[delta]) stop(mstyle$stop("Specified 'delta' component was fixed.")) ### if everything is good so far, get value of the variance component and set 'comp' delta.pos <- NA_integer_ if (!missing(tau2)) { vc <- x$tau2 comp <- "tau2" tau2.pos <- 1 } if (!missing(delta)) { vc <- x$delta[delta] comp <- "delta" delta.pos <- delta } #return(list(comp=comp, vc=vc)) ######################################################################### if (missing(xlim) || is.null(xlim)) { ### if the user has not specified xlim, set it automatically if (comp == "tau2") { if (is.na(x$se.tau2)) { vc.lb <- max(0, vc/4) vc.ub <- min(max(0.1, vc*4), x$tau2.max) } else { vc.lb <- max(0, vc - qnorm(0.995) * x$se.tau2) vc.ub <- min(max(0.1, vc + qnorm(0.995) * x$se.tau2), x$tau2.max) } } if (comp == "delta") { if (is.na(x$se.delta[delta])) { vc.lb <- max(0, vc/4, x$delta.min[delta]) vc.ub <- min(max(0.1, vc*4), x$delta.max[delta]) } else { vc.lb <- max(0, vc - qnorm(0.995) * x$se.delta[delta], x$delta.min[delta]) vc.ub <- min(max(0.1, vc + qnorm(0.995) * x$se.delta[delta]), x$delta.max[delta]) } } ### if that fails, throw an error if (is.na(vc.lb) || is.na(vc.ub)) stop(mstyle$stop("Cannot set 'xlim' automatically. Please set this argument manually.")) xlim <- c(vc.lb, vc.ub) } else { if (length(xlim) != 2L) stop(mstyle$stop("Argument 'xlim' should be a vector of length 2.")) xlim <- sort(xlim) if (comp == "tau2") { if (xlim[1] < 0) stop(mstyle$stop("Lower bound for profiling must be >= 0.")) } if (comp == "delta") { if (xlim[1] < x$delta.min[delta]) stop(mstyle$stop(paste0("Lower bound for profiling must be >= ", x$delta.min[delta], "."))) if (xlim[2] > x$delta.max[delta]) stop(mstyle$stop(paste0("Upper bound for profiling must be <= ", x$delta.max[delta], "."))) } } if (stepseq) { vcs <- steps } else { vcs <- seq(xlim[1], xlim[2], length.out=steps) } #return(vcs) if (length(vcs) <= 1L) stop(mstyle$stop("Cannot set 'xlim' automatically. Please set this argument manually.")) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) if (parallel == "no") res <- pbapply::pblapply(vcs, .profile.rma.uni.selmodel, obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) if (parallel == "multicore") res <- pbapply::pblapply(vcs, .profile.rma.uni.selmodel, obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2, cl=ncpus) #res <- parallel::mclapply(vcs, .profile.rma.uni.selmodel, obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2, mc.cores=ncpus) if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, vcs, .profile.rma.uni.selmodel, obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterApplyLB(cl, vcs, .profile.rma.uni.selmodel, obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterMap(cl, .profile.rma.uni.selmodel, vcs, MoreArgs=list(obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2), .scheduling = "dynamic") } else { res <- pbapply::pblapply(vcs, .profile.rma.uni.selmodel, obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, vcs, .profile.rma.uni.selmodel, obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterApply(cl, vcs, .profile.rma.uni.selmodel, obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2) #res <- parallel::clusterMap(cl, .profile.rma.uni.selmodel, vcs, MoreArgs=list(obj=x, comp=comp, delta.pos=delta.pos, parallel=parallel, profile=TRUE, code2=ddd$code2)) } } lls <- sapply(res, function(x) x$ll) beta <- do.call(rbind, lapply(res, function(x) t(x$beta))) ci.lb <- do.call(rbind, lapply(res, function(x) t(x$ci.lb))) ci.ub <- do.call(rbind, lapply(res, function(x) t(x$ci.ub))) beta <- data.frame(beta) ci.lb <- data.frame(ci.lb) ci.ub <- data.frame(ci.ub) names(beta) <- rownames(x$beta) names(ci.lb) <- rownames(x$beta) names(ci.ub) <- rownames(x$beta) ######################################################################### maxll <- c(logLik(x)) if (any(lls >= maxll + lltol, na.rm=TRUE)) warning(mstyle$warning("At least one profiled log-likelihood value is larger than the log-likelihood of the fitted model."), call.=FALSE) if (all(is.na(lls))) warning(mstyle$warning("All model fits failed. Cannot draw profile likelihood plot."), call.=FALSE) if (.isTRUE(ddd$exp)) { lls <- exp(lls) maxll <- exp(maxll) } if (missing(ylim)) { if (any(is.finite(lls))) { if (xlim[1] <= vc && xlim[2] >= vc) { ylim <- range(c(maxll,lls[is.finite(lls)]), na.rm=TRUE) } else { ylim <- range(lls[is.finite(lls)], na.rm=TRUE) } } else { ylim <- rep(maxll, 2L) } if (!.isTRUE(ddd$exp)) ylim <- ylim + c(-0.1, 0.1) } else { if (length(ylim) != 2L) stop(mstyle$stop("Argument 'ylim' should be a vector of length 2.")) ylim <- sort(ylim) } if (comp == "tau2") { xlab <- expression(paste(tau^2, " Value")) title <- expression(paste("Profile Plot for ", tau^2)) } if (comp == "delta") { if (x$deltas == 1L) { xlab <- expression(paste(delta, " Value")) title <- expression(paste("Profile Plot for ", delta)) } else { xlab <- bquote(delta[.(delta)] ~ "Value") title <- bquote("Profile Plot for" ~ delta[.(delta)]) } } sav <- list(vc=vcs, ll=lls, beta=beta, ci.lb=ci.lb, ci.ub=ci.ub, comps=1, ylim=ylim, method=x$method, vc=vc, maxll=maxll, xlab=xlab, title=title, exp=ddd$exp) names(sav)[1] <- switch(comp, tau2="tau2", delta="delta") class(sav) <- "profile.rma" ######################################################################### if (plot) plot(sav, ...) ######################################################################### if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } invisible(sav) } metafor/R/permutest.r0000644000176200001440000000007013457322061014323 0ustar liggesuserspermutest <- function(x, ...) UseMethod("permutest") metafor/R/rstudent.rma.mv.r0000644000176200001440000001557114722325515015361 0ustar liggesusersrstudent.rma.mv <- function(model, digits, progbar=FALSE, cluster, reestimate=TRUE, parallel="no", ncpus=1, cl, ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.mv", notav="robust.rma") if (is.null(model$not.na)) stop(mstyle$stop("Information needed to compute the residuals is not available in the model object.")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$yi)) stop(mstyle$stop("Information needed to compute the residuals is not available in the model object.")) x <- model parallel <- match.arg(parallel, c("no", "snow", "multicore")) if (parallel == "no" && ncpus > 1) parallel <- "snow" if (missing(cl)) cl <- NULL if (!is.null(cl) && inherits(cl, "SOCKcluster")) { parallel <- "snow" ncpus <- length(cl) } if (parallel == "snow" && ncpus < 2) parallel <- "no" if (parallel == "snow" || parallel == "multicore") { if (!requireNamespace("parallel", quietly=TRUE)) stop(mstyle$stop("Please install the 'parallel' package for parallel processing.")) ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Argument 'ncpus' must be >= 1.")) } if (!progbar) { pbo <- pbapply::pboptions(type="none") on.exit(pbapply::pboptions(pbo), add=TRUE) } if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } misscluster <- ifelse(missing(cluster), TRUE, FALSE) if (misscluster) { cluster <- seq_len(x$k.all) } else { mf <- match.call() cluster <- .getx("cluster", mf=mf, data=x$data) } ddd <- list(...) .chkdots(ddd, c("time", "LB", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### ### process cluster variable ### note: cluster variable must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing ### of NAs as was done during model fitting if (length(cluster) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not match the length of the data (", x$k.all, ")."))) cluster <- .getsubset(cluster, x$subset) cluster.f <- cluster cluster <- cluster[x$not.na] ### checks on cluster variable if (anyNA(cluster.f)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster.f) == 0L) stop(mstyle$stop(paste0("Cannot find 'cluster' variable (or it has zero length)."))) ### cluster ids and number of clusters ids <- unique(cluster) n <- length(ids) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### if (parallel == "no") res <- pbapply::pblapply(seq_len(n), .rstudent.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) if (parallel == "multicore") res <- pbapply::pblapply(seq_len(n), .rstudent.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2, cl=ncpus) #res <- parallel::mclapply(seq_len(n), .rstudent.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2, mc.cores=ncpus) if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, seq_len(n), .rstudent.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) #res <- parallel::clusterApplyLB(cl, seq_len(n), .rstudent.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) } else { res <- pbapply::pblapply(seq_len(n), .rstudent.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, seq_len(n), .rstudent.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) #res <- parallel::clusterApply(cl, seq_len(n), .rstudent.rma.mv, obj=x, parallel=parallel, cluster=cluster, ids=ids, reestimate=reestimate, code2=ddd$code2) } } delresid <- rep(NA_real_, x$k) sedelresid <- rep(NA_real_, x$k) pos <- unlist(sapply(res, function(x) x$pos)) delresid[pos] <- unlist(sapply(res, function(x) x$delresid)) sedelresid[pos] <- unlist(sapply(res, function(x) x$sedelresid)) X2 <- sapply(res, function(x) x$X2) k.id <- sapply(res, function(x) x$k.id) ######################################################################### delresid[abs(delresid) < 100 * .Machine$double.eps] <- 0 resid <- rep(NA_real_, x$k.f) seresid <- rep(NA_real_, x$k.f) resid[x$not.na] <- delresid seresid[x$not.na] <- sedelresid stresid <- resid / seresid ######################################################################### if (na.act == "na.omit") { out <- list(resid=resid[x$not.na], se=seresid[x$not.na], z=stresid[x$not.na]) if (!misscluster) out$cluster <- cluster.f[x$not.na] out$slab <- x$slab[x$not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(resid=resid, se=seresid, z=stresid) if (!misscluster) out$cluster <- cluster.f out$slab <- x$slab } if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } if (misscluster) { out$digits <- digits class(out) <- "list.rma" return(out) } else { out <- list(out) if (na.act == "na.omit") { out[[2]] <- list(X2=X2[order(ids)], k=k.id[order(ids)], slab=ids[order(ids)]) } if (na.act == "na.exclude" || na.act == "na.pass") { ids.f <- unique(cluster.f) X2.f <- rep(NA_real_, length(ids.f)) X2.f[match(ids, ids.f)] <- X2 k.id.f <- sapply(ids.f, function(id) sum((id == cluster.f) & x$not.na)) out[[2]] <- list(X2=X2.f[order(ids.f)], k=k.id.f[order(ids.f)], slab=ids.f[order(ids.f)]) } out[[1]]$digits <- digits out[[2]]$digits <- digits names(out) <- c("obs", "cluster") class(out[[1]]) <- "list.rma" class(out[[2]]) <- "list.rma" attr(out[[1]], ".rmspace") <- TRUE attr(out[[2]], ".rmspace") <- TRUE return(out) } } metafor/R/rstudent.rma.mh.r0000644000176200001440000000610714722317472015341 0ustar liggesusersrstudent.rma.mh <- function(model, digits, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.mh") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$outdat.f)) stop(mstyle$stop("Information needed to compute the residuals is not available in the model object.")) x <- model if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } ddd <- list(...) .chkdots(ddd, c("time", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### delpred <- rep(NA_real_, x$k.f) vdelpred <- rep(NA_real_, x$k.f) ### elements that need to be returned outlist <- "beta=beta, vb=vb" ### note: skipping NA tables if (progbar) pbar <- pbapply::startpb(min=0, max=x$k.f) for (i in seq_len(x$k.f)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) if (!x$not.na[i]) next if (is.element(x$measure, c("RR","OR","RD"))) { args <- list(ai=x$outdat.f$ai, bi=x$outdat.f$bi, ci=x$outdat.f$ci, di=x$outdat.f$di, measure=x$measure, add=x$add, to=x$to, drop00=x$drop00, correct=x$correct, level=x$level, subset=-i, outlist=outlist) } else { args <- list(x1i=x$outdat.f$x1i, x2i=x$outdat.f$x2i, t1i=x$outdat.f$t1i, t2i=x$outdat.f$t2i, measure=x$measure, add=x$add, to=x$to, drop00=x$drop00, correct=x$correct, level=x$level, subset=-i, outlist=outlist) } res <- try(suppressWarnings(.do.call(rma.mh, args)), silent=TRUE) if (inherits(res, "try-error")) next delpred[i] <- res$beta vdelpred[i] <- res$vb } if (progbar) pbapply::closepb(pbar) resid <- x$yi.f - delpred resid[abs(resid) < 100 * .Machine$double.eps] <- 0 #resid[abs(resid) < 100 * .Machine$double.eps * median(abs(resid), na.rm=TRUE)] <- 0 # see lm.influence seresid <- sqrt(x$vi.f + vdelpred) stresid <- resid / seresid ######################################################################### if (na.act == "na.omit") { out <- list(resid=resid[x$not.na.yivi], se=seresid[x$not.na.yivi], z=stresid[x$not.na.yivi]) out$slab <- x$slab[x$not.na.yivi] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(resid=resid, se=seresid, z=stresid) out$slab <- x$slab } if (na.act == "na.fail" && any(!x$not.na.yivi)) stop(mstyle$stop("Missing values in results.")) out$digits <- digits if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- "list.rma" return(out) } metafor/R/rcalc.r0000644000176200001440000002466714710403013013367 0ustar liggesusersrcalc <- function(x, ni, data, rtoz=FALSE, nfun="min", sparse=FALSE, ...) { mstyle <- .get.mstyle() if (!(inherits(x, "formula") || inherits(x, "matrix") || inherits(x, "list"))) stop(mstyle$stop("Argument 'x' must be either a formula, a matrix, or a list of matrices.")) if (missing(ni)) stop(mstyle$stop("Argument 'ni' must be specified.")) if (is.character(nfun)) nfun <- match.arg(nfun, c("min", "harmonic", "mean")) ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("upper", "simplify", "rowid", "vnames", "noid")) upper <- .chkddd(ddd$upper, FALSE) simplify <- .chkddd(ddd$simplify, TRUE) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) ############################################################################ ### in case x is a formula, process it if (inherits(x, "formula")) { if (missing(data)) stop(mstyle$stop("Must specify the 'data' argument when 'x' is a formula.")) if (!is.data.frame(data)) data <- data.frame(data) ### extract ni mf <- match.call() ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) ### get all variables from data options(na.action = "na.pass") dat <- get_all_vars(x, data=data) options(na.action = na.act) ### if no study id has been specified, assume it is a single study if (ncol(dat) == 3L) { dat[[4]] <- 1 noid <- TRUE } else { noid <- FALSE } vnames <- names(dat) ### check that there are really 4 variables if (ncol(dat) != 4L) stop(mstyle$stop(paste0("Formula should contain 4 variables, but contains ", ncol(dat), " variables."))) ### check that there are no missings in the variable identifiers if (anyNA(c(dat[[2]],dat[[3]]))) stop(mstyle$stop("No missing values allowed in variable identifiers.")) id <- dat[[4]] ### check that ni has the same length as there are rows in 'data' if (length(ni) != nrow(data)) stop(mstyle$stop("Argument 'ni' must be of the same length as the data frame specified via 'data'.")) ### check that there are no missings in the study identifier if (anyNA(id)) stop(mstyle$stop("No missing values allowed in study identifier.")) ### need these to correctly sort 'dat' and 'V' back into the original order at the end ### (and need to order within rows, so that matching works correctly) id.var1 <- paste0(id, ".", as.character(dat[[2]])) id.var2 <- paste0(id, ".", as.character(dat[[3]])) id.var1.id.var2 <- .psort(id.var1, id.var2) id.var1 <- id.var1.id.var2[,1] id.var2 <- id.var1.id.var2[,2] rowid <- paste0(id.var1, ".", id.var2) dat <- split(dat, id) ni <- split(ni, id) Rlist <- list() nmi <- rep(NA_real_, length(ni)) for (i in seq_along(dat)) { if (any(ni[[i]] <= 0, na.rm=TRUE)) stop(mstyle$stop(paste0("One or more sample sizes are <= 0 in study ", dat[[i]][[4]][[1]], "."))) if (is.function(nfun)) { nfunnmi <- nfun(ni[[i]]) if (length(nfunnmi) != 1L) stop(mstyle$stop("Function specified via 'nfun' does not return a single value.")) nmi[i] <- nfunnmi } else { if (nfun == "min") nmi[i] <- min(ni[[i]], na.rm=TRUE) if (nfun == "harmonic") nmi[i] <- 1 / mean(1/ni[[i]], na.rm=TRUE) if (nfun == "mean") nmi[i] <- mean(ni[[i]], na.rm=TRUE) } var1 <- as.character(dat[[i]][[2]]) var2 <- as.character(dat[[i]][[3]]) var1.var2 <- paste0(var1, ".", var2) var1.var2.eq <- var1 == var2 if (any(var1.var2.eq)) stop(mstyle$stop(paste0("Identical var1-var2 pair", ifelse(sum(var1.var2.eq) >= 2L, "s", ""), " (", paste0(var1.var2[var1.var2.eq], collapse=", "), ") in study ", dat[[i]][[4]][[1]], "."))) var1.var2.dup <- duplicated(var1.var2) if (any(var1.var2.dup)) stop(mstyle$stop(paste0("Duplicated var1-var2 pair", ifelse(sum(var1.var2.dup) >= 2L, "s", ""), " (", paste0(var1.var2[var1.var2.dup], collapse=", "), ") in study ", dat[[i]][[4]][[1]], "."))) ri <- dat[[i]][[1]] if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop(paste0("One or more correlations are > 1 or < -1 in study ", dat[[i]][[4]][[1]], "."))) vars <- sort(union(var1, var2)) Ri <- matrix(NA_real_, nrow=length(vars), ncol=length(vars)) diag(Ri) <- 1 rownames(Ri) <- colnames(Ri) <- vars for (j in seq_along(var1)) { Ri[var1[j],var2[j]] <- Ri[var2[j],var1[j]] <- ri[j] } Rlist[[i]] <- Ri } names(Rlist) <- names(dat) return(rcalc(Rlist, ni=nmi, simplify=simplify, rtoz=rtoz, sparse=sparse, rowid=rowid, vnames=vnames, noid=noid)) } ############################################################################ ### in case x is a list, need to loop through elements if (is.list(x)) { k <- length(x) if (length(x) != length(ni)) stop(mstyle$stop("Argument 'ni' must be of the same length as there are elements in 'x'.")) res <- list() for (i in seq_len(k)) { res[[i]] <- rcalc(x[[i]], ni[i], upper=upper, rtoz=rtoz, ...) } if (is.null(names(x))) names(x) <- seq_len(k) if (simplify) { ki <- sapply(res, function(x) NROW(x$dat)) dat <- cbind(id=rep(names(x), times=ki), do.call(rbind, lapply(res, "[[", "dat"))) if (sparse) { V <- bdiag(lapply(res, "[[", "V")) } else { V <- bldiag(lapply(res, "[[", "V")) } rownames(V) <- colnames(V) <- unlist(lapply(res, function(x) rownames(x$V))) if (!is.null(ddd$rowid)) { rowid <- match(ddd$rowid, paste0(dat[[1]], ".", as.character(dat[[2]]), ".", dat[[1]], ".", as.character(dat[[3]]))) dat <- dat[rowid,] V <- V[rowid,rowid] } if (!is.null(ddd$vnames)) { names(dat)[1:3] <- ddd$vnames[c(4,2,3)] names(dat)[4] <- paste0(ddd$vnames[2], ".", ddd$vnames[3]) } if (!is.null(ddd$noid) && ddd$noid) { dat[[1]] <- NULL } rownames(dat) <- seq_len(nrow(dat)) return(list(dat=dat, V=V)) } else { names(res) <- names(x) return(res) } } ############################################################################ ### check if x is square matrix if (!is.matrix(x)) stop(mstyle$stop("Argument 'x' must be a matrix.")) if (dim(x)[1] != dim(x)[2]) stop(mstyle$stop("Argument 'x' must be a square matrix.")) ### set default dimension names dimsx <- nrow(x) dnames <- paste0("x", seq_len(dimsx)) ### in case x has dimension names, use those if (!is.null(rownames(x))) dnames <- rownames(x) if (!is.null(colnames(x))) dnames <- colnames(x) ### in case x is a 1x1 (or 0x0) matrix, return nothing if (dimsx <= 1L) return(list(dat=NULL, V=NULL)) ### make x symmetric, depending on whether we use upper or lower part if (upper) { x[lower.tri(x)] <- t(x)[lower.tri(x)] } else { x[upper.tri(x)] <- t(x)[upper.tri(x)] } ### check if x is symmetric (can be skipped since x must now be symmetric) #if (!isSymmetric(x)) # stop(mstyle$stop("Argument 'x' must be a symmetric matrix.")) ### stack upper/lower triangular part of x into a column vector (this is always done column-wise!) if (upper) { ri <- cbind(x[upper.tri(x)]) } else { ri <- cbind(x[lower.tri(x)]) } ### check that correlations are in [-1,1] if (any(abs(ri) > 1, na.rm=TRUE)) stop(mstyle$stop("One or more correlations are > 1 or < -1.")) ### check that sample sizes are > 0 if (isTRUE(ni <= 0)) stop(mstyle$stop("One or more sample sizes are <= 0.")) ### apply r-to-z transformation if requested if (rtoz) ri <- 1/2 * log((1 + ri)/(1 - ri)) ### I and J are matrices with 1:dimsx for rows and columns, respectively I <- matrix(seq_len(dimsx), nrow=dimsx, ncol=dimsx) J <- matrix(seq_len(dimsx), nrow=dimsx, ncol=dimsx, byrow=TRUE) ### get upper/lower triangular elements of I and J if (upper) { I <- I[upper.tri(I)] J <- J[upper.tri(J)] } else { I <- I[lower.tri(I)] J <- J[lower.tri(J)] } ### dimensions in V (must be dimsx*(dimsx-1)/2) dimsV <- length(ri) ### set up V matrix V <- matrix(NA_real_, nrow=dimsV, ncol=dimsV) for (ro in seq_len(dimsV)) { for (co in seq_len(dimsV)) { i <- I[ro] j <- J[ro] k <- I[co] l <- J[co] ### Olkin & Finn (1995), equation 5, page 157 V[ro,co] <- 1/2 * x[i,j]*x[k,l] * (x[i,k]^2 + x[i,l]^2 + x[j,k]^2 + x[j,l]^2) + x[i,k]*x[j,l] + x[i,l]*x[j,k] - (x[i,j]*x[i,k]*x[i,l] + x[j,i]*x[j,k]*x[j,l] + x[k,i]*x[k,j]*x[k,l] + x[l,i]*x[l,j]*x[l,k]) ### Steiger (1980), equation 2, page 245 (provides the same result) #V[ro,co] <- 1/2 * ((x[i,k] - x[i,j]*x[j,k]) * (x[j,l] - x[j,k]*x[k,l]) + # (x[i,l] - x[i,k]*x[k,l]) * (x[j,k] - x[j,i]*x[i,k]) + # (x[i,k] - x[i,l]*x[l,k]) * (x[j,l] - x[j,i]*x[i,l]) + # (x[i,l] - x[i,j]*x[j,l]) * (x[j,k] - x[j,l]*x[l,k])) ### Steiger (1980), equation 11, page 247 for r-to-z transformed values if (rtoz) V[ro,co] <- V[ro,co] / ((1 - x[i,j]^2) * (1 - x[k,l]^2)) } } ### divide V by (n-1) for raw correlations and by (n-3) for r-to-z transformed correlations if (isTRUE(ni >= 5)) { if (rtoz) { V <- V/(ni-3) } else { V <- V/(ni-1) } } else { V <- NA_real_*V } ### create matrix with var1 and var2 names and sort rowwise dmat <- cbind(dnames[I], dnames[J]) dmat <- t(apply(dmat, 1, sort)) ### set row/column names for V var1.var2 <- paste0(dmat[,1], ".", dmat[,2]) rownames(V) <- colnames(V) <- var1.var2 #return(list(dat=data.frame(var1=dmat[,1], var2=dmat[,2], var1.var2=var1.var2, yi=ri, vi=unname(diag(V)), ni=ni, stringsAsFactors=FALSE), V=V)) return(list(dat=data.frame(var1=dmat[,1], var2=dmat[,2], var1.var2=var1.var2, yi=ri, ni=ni, stringsAsFactors=FALSE), V=V)) } metafor/R/simulate.rma.r0000644000176200001440000000414314671556760014717 0ustar liggesuserssimulate.rma <- function(object, nsim=1, seed=NULL, olim, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma", notav=c("rma.gen", "rma.glmm", "rma.mh", "rma.peto", "rma.uni.selmodel")) if (is.null(object$X)) stop(mstyle$stop("Information needed to simulate values is not available in the model object.")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) ### as in stats:::simulate.lm if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) runif(1) if (is.null(seed)) { RNGstate <- get(".Random.seed", envir = .GlobalEnv) } else { R.seed <- get(".Random.seed", envir = .GlobalEnv) set.seed(seed) RNGstate <- structure(seed, kind = as.list(RNGkind())) on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv), add=TRUE) } nsim <- round(nsim) if (nsim <= 0) stop(mstyle$stop("Argument 'nsim' must be >= 1.")) ######################################################################### ### fitted values ftd <- c(object$X %*% object$beta) ### simulate for rma.uni (and rma.ls) objects if (inherits(object, "rma.uni")) val <- replicate(nsim, rnorm(object$k, mean=ftd, sd=sqrt(object$vi + object$tau2))) ### simulate for rma.mv objects if (inherits(object, "rma.mv")) val <- t(.mvrnorm(nsim, mu=ftd, Sigma=object$M)) ### apply observation/outcome limits if specified if (!missing(olim)) { if (length(olim) != 2L) stop(mstyle$stop("Argument 'olim' must be of length 2.")) olim <- sort(olim) val <- .applyolim(val, olim) } ######################################################################### res <- matrix(NA_real_, nrow=object$k.f, ncol=nsim) res[object$not.na,] <- val res <- as.data.frame(res) rownames(res) <- object$slab colnames(res) <- paste0("sim_", seq_len(nsim)) if (na.act == "na.omit") res <- res[object$not.na,,drop=FALSE] attr(res, "seed") <- RNGstate return(res) } metafor/R/print.rma.peto.r0000644000176200001440000000402414515471045015161 0ustar liggesusersprint.rma.peto <- function(x, digits, showfit=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.peto") if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } .space() cat(mstyle$section("Equal-Effects Model")) cat(mstyle$section(paste0(" (k = ", x$k, ")"))) cat("\n") if (showfit) { fs <- fmtx(x$fit.stats$ML, digits[["fit"]]) names(fs) <- c("logLik", "deviance", "AIC", "BIC", "AICc") cat("\n") tmp <- capture.output(print(fs, quote=FALSE, print.gap=2)) #tmp[1] <- paste0(tmp[1], "\u200b") .print.table(tmp, mstyle) } cat("\n") if (!is.na(x$I2)) { cat(mstyle$text("I^2 (total heterogeneity / total variability): ")) cat(mstyle$result(paste0(fmtx(x$I2, 2), "%"))) cat("\n") } if (!is.na(x$H2)) { cat(mstyle$text("H^2 (total variability / sampling variability): ")) cat(mstyle$result(fmtx(x$H2, 2))) cat("\n") } if (!is.na(x$QE)) { cat("\n") cat(mstyle$section("Test for Heterogeneity:"), "\n") cat(mstyle$result(fmtt(x$QE, "Q", df=x$k.pos-1, pval=x$QEp, digits=digits))) } if (any(!is.na(c(x$I2, x$H2, x$QE)))) cat("\n\n") res.table <- c(estimate=fmtx(unname(x$beta), digits[["est"]]), se=fmtx(x$se, digits[["se"]]), zval=fmtx(x$zval, digits[["test"]]), pval=fmtp(x$pval, digits[["pval"]]), ci.lb=fmtx(x$ci.lb, digits[["ci"]]), ci.ub=fmtx(x$ci.ub, digits[["ci"]])) res.table.exp <- c(estimate=fmtx(exp(unname(x$beta)), digits[["est"]]), ci.lb=fmtx(exp(x$ci.lb), digits[["ci"]]), ci.ub=fmtx(exp(x$ci.ub), digits[["ci"]])) cat(mstyle$section("Model Results (log scale):")) cat("\n\n") tmp <- capture.output(.print.vector(res.table)) .print.table(tmp, mstyle) cat("\n") cat(mstyle$section("Model Results (OR scale):")) cat("\n\n") tmp <- capture.output(.print.vector(res.table.exp)) .print.table(tmp, mstyle) .space() invisible() } metafor/R/df.residual.rma.r0000644000176200001440000000026414515470444015263 0ustar liggesusersdf.residual.rma <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") df.resid <- object$k.eff - object$p.eff return(df.resid) } metafor/R/addpoly.predict.rma.r0000644000176200001440000000455614670062465016162 0ustar liggesusersaddpoly.predict.rma <- function(x, rows=-2, annotate, addpred=FALSE, predstyle, predlim, digits, width, mlab, transf, atransf, targs, efac, col, border, lty, fonts, cex, constarea=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="predict.rma") if (x$pred.type == "scale") stop(mstyle$stop("Cannot add polygons based on predicted scale values.")) if (missing(annotate)) annotate <- .getfromenv("forest", "annotate", default=TRUE) if (missing(predstyle)) { predstyle <- "line" } else { predstyle <- match.arg(predstyle, c("line", "bar", "shade", "dist")) addpred <- TRUE } if (missing(predlim)) predlim <- NULL if (missing(digits)) digits <- .getfromenv("forest", "digits", default=2) if (missing(width)) width <- .getfromenv("forest", "width", default=NULL) if (missing(mlab)) mlab <- NULL if (missing(transf)) transf <- .getfromenv("forest", "transf", default=FALSE) if (missing(atransf)) atransf <- .getfromenv("forest", "atransf", default=FALSE) if (missing(targs)) targs <- .getfromenv("forest", "targs", default=NULL) if (missing(efac)) efac <- .getfromenv("forest", "efac", default=1) if (missing(col)) col <- par("fg") if (missing(border)) border <- par("fg") if (missing(lty)) lty <- "dotted" if (missing(fonts)) fonts <- .getfromenv("forest", "fonts", default=NULL) if (missing(cex)) cex <- .getfromenv("forest", "cex", default=NULL) if (addpred) { pi.lb <- x$pi.lb pi.ub <- x$pi.ub if (is.null(pi.lb) || is.null(pi.ub)) warning(mstyle$warning("Could not extract prediction interval bounds."), call.=FALSE) } else { pi.lb <- rep(NA_real_, length(x$pred)) pi.ub <- rep(NA_real_, length(x$pred)) } ######################################################################### addpoly(x$pred, ci.lb=x$ci.lb, ci.ub=x$ci.ub, pi.lb=pi.lb, pi.ub=pi.ub, rows=rows, annotate=annotate, predstyle=predstyle, predlim=predlim, digits=digits, width=width, mlab=mlab, transf=transf, atransf=atransf, targs=targs, efac=efac, col=col, border=border, lty=lty, fonts=fonts, cex=cex, constarea=constarea, ...) } metafor/R/cooks.distance.rma.mv.r0000644000176200001440000001316714722325263016417 0ustar liggesuserscooks.distance.rma.mv <- function(model, progbar=FALSE, cluster, reestimate=TRUE, parallel="no", ncpus=1, cl, ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.mv") #if (inherits(model, "robust.rma")) # can compute Cook's distance also for 'robust.rma' objects # stop(mstyle$stop("Method not available for objects of class \"robust.rma\".")) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) x <- model parallel <- match.arg(parallel, c("no", "snow", "multicore")) if (parallel == "no" && ncpus > 1) parallel <- "snow" if (missing(cl)) cl <- NULL if (!is.null(cl) && inherits(cl, "SOCKcluster")) { parallel <- "snow" ncpus <- length(cl) } if (parallel == "snow" && ncpus < 2) parallel <- "no" if (parallel == "snow" || parallel == "multicore") { if (!requireNamespace("parallel", quietly=TRUE)) stop(mstyle$stop("Please install the 'parallel' package for parallel processing.")) ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Argument 'ncpus' must be >= 1.")) } if (!progbar) { pbo <- pbapply::pboptions(type="none") on.exit(pbapply::pboptions(pbo), add=TRUE) } misscluster <- ifelse(missing(cluster), TRUE, FALSE) if (misscluster) { cluster <- seq_len(x$k.all) } else { mf <- match.call() cluster <- .getx("cluster", mf=mf, data=x$data) } ddd <- list(...) .chkdots(ddd, c("btt", "time", "LB", "code1", "code2")) btt <- .set.btt(ddd$btt, x$p, int.incl=FALSE, Xnames=colnames(x$X)) m <- length(btt) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### ### process cluster variable ### note: cluster variable must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing ### of NAs as was done during model fitting if (length(cluster) != x$k.all) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not match the length of the data (", x$k.all, ")."))) cluster <- .getsubset(cluster, x$subset) cluster.f <- cluster cluster <- cluster[x$not.na] ### checks on cluster variable if (anyNA(cluster.f)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster.f) == 0L) stop(mstyle$stop(paste0("Cannot find 'cluster' variable (or it has zero length)."))) ### cluster ids and number of clusters ids <- unique(cluster) n <- length(ids) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### ### calculate inverse of variance-covariance matrix under the full model svb <- chol2inv(chol(x$vb[btt,btt,drop=FALSE])) if (parallel == "no") res <- pbapply::pblapply(seq_len(n), .cooks.distance.rma.mv, obj=x, parallel=parallel, svb=svb, cluster=cluster, ids=ids, reestimate=reestimate, btt=btt, code2=ddd$code2) if (parallel == "multicore") res <- pbapply::pblapply(seq_len(n), .cooks.distance.rma.mv, obj=x, parallel=parallel, svb=svb, cluster=cluster, ids=ids, reestimate=reestimate, btt=btt, code2=ddd$code2, cl=ncpus) #res <- parallel::mclapply(seq_len(n), .cooks.distance.rma.mv, obj=x, parallel=parallel, svb=svb, cluster=cluster, ids=ids, reestimate=reestimate, btt=btt, code2=ddd$code2, mc.cores=ncpus) if (parallel == "snow") { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } if (.isTRUE(ddd$LB)) { res <- parallel::parLapplyLB(cl, seq_len(n), .cooks.distance.rma.mv, obj=x, parallel=parallel, svb=svb, cluster=cluster, ids=ids, reestimate=reestimate, btt=btt, code2=ddd$code2) #res <- parallel::clusterApplyLB(cl, seq_len(n), .cooks.distance.rma.mv, obj=x, parallel=parallel, svb=svb, cluster=cluster, ids=ids, reestimate=reestimate, btt=btt, code2=ddd$code2) } else { res <- pbapply::pblapply(seq_len(n), .cooks.distance.rma.mv, obj=x, parallel=parallel, svb=svb, cluster=cluster, ids=ids, reestimate=reestimate, btt=btt, code2=ddd$code2, cl=cl) #res <- parallel::parLapply(cl, seq_len(n), .cooks.distance.rma.mv, obj=x, parallel=parallel, svb=svb, cluster=cluster, ids=ids, reestimate=reestimate, btt=btt, code2=ddd$code2) #res <- parallel::clusterApply(cl, seq_len(n), .cooks.distance.rma.mv, obj=x, parallel=parallel, svb=svb, cluster=cluster, ids=ids, reestimate=reestimate, btt=btt, code2=ddd$code2) } } cook.d <- sapply(res, function(x) x$cook.d) ######################################################################### if (na.act == "na.omit") { out <- cook.d if (misscluster) { names(out) <- x$slab[x$not.na] } else { names(out) <- ids out <- out[order(ids)] } } if (na.act == "na.exclude" || na.act == "na.pass") { ids.f <- unique(cluster.f) out <- rep(NA_real_, length(ids.f)) out[match(ids, ids.f)] <- cook.d if (misscluster) { names(out) <- x$slab } else { names(out) <- ids.f out <- out[order(ids.f)] } } if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } return(out) } metafor/R/print.infl.rma.uni.r0000644000176200001440000000175014515471005015733 0ustar liggesusersprint.infl.rma.uni <- function(x, digits=x$digits, infonly=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="infl.rma.uni") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) if (x$p == 1) { out <- list(rstudent=x$inf$rstudent, dffits=x$inf$dffits, cook.d=x$inf$cook.d, cov.r=x$inf$cov.r, tau2.del=x$inf$tau2.del, QE.del=x$inf$QE.del, hat=x$inf$hat, weight=x$inf$weight, dfbs=x$dfbs[[1]], inf=x$inf$inf, slab=x$inf$slab, digits=digits) class(out) <- "list.rma" if (infonly) out[["select"]] <- !is.na(x$is.infl) & x$is.infl } else { out <- x[1:2] out$inf[["digits"]] <- digits out$dfbs[["digits"]] <- digits attr(out$inf, ".rmspace") <- TRUE attr(out$dfbs, ".rmspace") <- TRUE if (infonly) { out$inf[["select"]] <- !is.na(x$is.infl) & x$is.infl out$dfbs[["select"]] <- !is.na(x$is.infl) & x$is.infl } } print(out) } metafor/R/cumul.rma.peto.r0000644000176200001440000001425614722327634015166 0ustar liggesuserscumul.rma.peto <- function(x, order, digits, transf, targs, collapse=FALSE, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="rma.peto") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in data.")) if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL ddd <- list(...) .chkdots(ddd, c("time", "decreasing", "code1", "code2")) if (.isTRUE(ddd$time)) time.start <- proc.time() decreasing <- .chkddd(ddd$decreasing, FALSE) ######################################################################### if (grepl("^order\\(", deparse1(substitute(order)))) warning(mstyle$warning("Use of order() in the 'order' argument is probably erroneous."), call.=FALSE) if (missing(order)) { orvar <- seq_len(x$k.all) collapse <- FALSE } else { mf <- match.call() orvar <- .getx("order", mf=mf, data=x$data) if (length(orvar) != x$k.all) stop(mstyle$stop(paste0("Length of the 'order' argument (", length(orvar), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) } ### note: order variable must be of the same length as the original dataset ### so apply the same subsetting as was done during the model fitting orvar <- .getsubset(orvar, x$subset) ### order data by the order variable (NAs in order variable are dropped) order <- base::order(orvar, decreasing=decreasing, na.last=NA) ai <- x$outdat.f$ai[order] bi <- x$outdat.f$bi[order] ci <- x$outdat.f$ci[order] di <- x$outdat.f$di[order] yi <- x$yi.f[order] vi <- x$vi.f[order] not.na <- x$not.na[order] slab <- x$slab[order] ids <- x$ids[order] orvar <- orvar[order] if (inherits(x$data, "environment")) { data <- NULL } else { data <- x$data[order,] } if (collapse) { uorvar <- unique(orvar) } else { uorvar <- orvar } k.o <- length(uorvar) if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) k <- rep(NA_integer_, k.o) beta <- rep(NA_real_, k.o) se <- rep(NA_real_, k.o) zval <- rep(NA_real_, k.o) pval <- rep(NA_real_, k.o) ci.lb <- rep(NA_real_, k.o) ci.ub <- rep(NA_real_, k.o) QE <- rep(NA_real_, k.o) QEp <- rep(NA_real_, k.o) I2 <- rep(NA_real_, k.o) H2 <- rep(NA_real_, k.o) show <- rep(TRUE, k.o) ### elements that need to be returned outlist <- "k=k, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, QE=QE, QEp=QEp, I2=I2, H2=H2" if (progbar) pbar <- pbapply::startpb(min=0, max=k.o) for (i in seq_len(k.o)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) if (collapse) { if (all(!not.na[is.element(orvar, uorvar[i])])) { if (na.act == "na.omit") show[i] <- FALSE # if all studies to be added are !not.na, don't show (but a fit failure is still shown) next } incl <- is.element(orvar, uorvar[1:i]) } else { if (!not.na[i]) { if (na.act == "na.omit") show[i] <- FALSE # if study to be added is !not.na, don't show (but a fit failure is still shown) next } incl <- 1:i } args <- list(ai=ai, bi=bi, ci=ci, di=di, add=x$add, to=x$to, drop00=x$drop00, level=x$level, subset=incl, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.peto, args)), silent=TRUE) if (inherits(res, "try-error")) next k[i] <- res$k beta[i] <- res$beta se[i] <- res$se zval[i] <- res$zval pval[i] <- res$pval ci.lb[i] <- res$ci.lb ci.ub[i] <- res$ci.ub QE[i] <- res$QE QEp[i] <- res$QEp I2[i] <- res$I2 H2[i] <- res$H2 } if (progbar) pbapply::closepb(pbar) ######################################################################### ### if requested, apply transformation function if (.isTRUE(transf)) # if transf=TRUE, apply exp transformation to ORs transf <- exp if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) se <- rep(NA_real_, k.o) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) se <- rep(NA_real_, k.o) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } transf <- TRUE } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ######################################################################### out <- list(k=k[show], estimate=beta[show], se=se[show], zval=zval[show], pval=pval[show], ci.lb=ci.lb[show], ci.ub=ci.ub[show], Q=QE[show], Qp=QEp[show], I2=I2[show], H2=H2[show]) if (collapse) { out$slab <- uorvar[show] out$slab.null <- FALSE } else { out$slab <- slab[show] out$ids <- ids[show] out$data <- data[show,,drop=FALSE] out$slab.null <- x$slab.null } out$order <- uorvar[show] out$digits <- digits out$transf <- transf out$level <- x$level out$test <- x$test if (!transf) { out$measure <- x$measure attr(out$estimate, "measure") <- x$measure } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(out) <- c("list.rma", "cumul.rma") return(out) } metafor/R/funnel.rma.r0000644000176200001440000005600214717355765014367 0ustar liggesusersfunnel.rma <- function(x, yaxis="sei", xlim, ylim, xlab, ylab, slab, steps=5, at, atransf, targs, digits, level=x$level, addtau2=FALSE, type="rstandard", back, shade, hlines, refline, lty=3, pch, pch.fill, col, bg, label=FALSE, offset=0.4, legend=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="rma") na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (is.null(x$yi) || is.null(x$vi)) stop(mstyle$stop("Information needed to construct the plot is not available in the model object.")) yaxis <- match.arg(yaxis, c("sei", "vi", "seinv", "vinv", "ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi")) type <- match.arg(type, c("rstandard", "rstudent")) if (missing(atransf)) atransf <- FALSE atransf.char <- deparse(atransf) if (anyNA(level) || is.null(level)) stop(mstyle$stop("Argument 'level' cannot be NA or NULL.")) .start.plot() mf <- match.call() if (missing(back)) back <- .coladj(par("bg","fg"), dark=0.1, light=-0.2) if (missing(shade)) shade <- .coladj(par("bg","fg"), dark=c(0.2,-0.8), light=c(0,1)) if (length(level) > 1L && length(shade) == 1L) { #shade <- rep(shade, length(level)) shade2 <- .coladj(par("bg","fg"), dark=c(0.5,-0.3), light=c(-0.5,0.3)) shade <- colorRampPalette(c(shade,shade2))(length(level)) shade[-1] <- rev(shade[-1]) } if (missing(hlines)) hlines <- .coladj(par("bg","fg"), dark=c(0,-0.8), light=c(0,1)) if (!missing(refline) && is.null(refline)) refline <- NA #print(c(back=back, shade=shade, hlines=hlines)) if (missing(pch)) { pch <- 19 } else { pch <- .getx("pch", mf=mf, data=x$data) } if (missing(pch.fill)) pch.fill <- 21 ### check if sample size information is available if plotting (some function of) the sample sizes on the y-axis if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni"))) { if (is.null(x$ni)) stop(mstyle$stop("No sample size information stored in model object.")) if (anyNA(x$ni)) warning(mstyle$warning("Sample size information stored in model object\ncontains NAs. Not all studies will be plotted."), call.=FALSE) } ### set y-axis label if not specified if (missing(ylab)) { if (yaxis == "sei") ylab <- "Standard Error" if (yaxis == "vi") ylab <- "Variance" if (yaxis == "seinv") ylab <- "Inverse Standard Error" if (yaxis == "vinv") ylab <- "Inverse Variance" if (yaxis == "ni") ylab <- "Sample Size" if (yaxis == "ninv") ylab <- "Inverse Sample Size" if (yaxis == "sqrtni") ylab <- "Square Root Sample Size" if (yaxis == "sqrtninv") ylab <- "Inverse Square Root Sample Size" if (yaxis == "lni") ylab <- "Log Sample Size" if (yaxis == "wi") ylab <- "Weight (in %)" } if (missing(at)) at <- NULL if (missing(targs)) targs <- NULL ### default number of digits (if not specified) if (missing(digits)) { if (yaxis == "sei") digits <- c(2L,3L) if (yaxis == "vi") digits <- c(2L,3L) if (yaxis == "seinv") digits <- c(2L,3L) if (yaxis == "vinv") digits <- c(2L,3L) if (yaxis == "ni") digits <- c(2L,0L) if (yaxis == "ninv") digits <- c(2L,3L) if (yaxis == "sqrtni") digits <- c(2L,3L) if (yaxis == "sqrtninv") digits <- c(2L,3L) if (yaxis == "lni") digits <- c(2L,3L) if (yaxis == "wi") digits <- c(2L,2L) } else { if (length(digits) == 1L) # digits[1] for x-axis labels digits <- c(digits,digits) # digits[2] for y-axis labels } ### note: digits can also be a list (e.g., digits=list(2L,3)); trailing 0's are dropped for integers lty <- .expand1(lty, 2L) # 1st value = funnel lines, 2nd value = reference line ### note: slab, pch, col, and bg (if vectors) must be of the same length as the original dataset ### so we have to apply the same subsetting (if necessary) and removing of NAs as was ### done during the model fitting (note: NAs are removed further below) if (missing(slab)) { slab <- x$slab } else { slab <- .getx("slab", mf=mf, data=x$data) if (length(slab) != x$k.all) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) slab <- .getsubset(slab, x$subset) } if (length(pch) == 1L) { pch.vec <- FALSE pch <- rep(pch, x$k.all) } else { pch.vec <- TRUE } if (length(pch) != x$k.all) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) pch <- .getsubset(pch, x$subset) if (!inherits(x, "rma.uni.trimfill")) { if (missing(col)) { col <- par("fg") } else { col <- .getx("col", mf=mf, data=x$data) } if (length(col) == 1L) { col.vec <- FALSE col <- rep(col, x$k.all) } else { col.vec <- TRUE } if (length(col) != x$k.all) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) col <- .getsubset(col, x$subset) if (missing(bg)) { bg <- .coladj(par("bg","fg"), dark=0.1, light=-0.1) } else { bg <- .getx("bg", mf=mf, data=x$data) } if (length(bg) == 1L) { bg.vec <- FALSE bg <- rep(bg, x$k.all) } else { bg.vec <- TRUE } if (length(bg) != x$k.all) stop(mstyle$stop(paste0("Length of the 'bg' argument (", length(bg), ") does not correspond to the size of the original dataset (", x$k.all, ")."))) bg <- .getsubset(bg, x$subset) } else { ### for trimfill objects, 'col' and 'bg' are used to specify the colors of the observed and imputed data if (missing(col)) col <- c(par("fg"), par("fg")) if (length(col) == 1L) col <- c(col, par("fg")) col.vec <- FALSE if (missing(bg)) bg <- c(.coladj(par("bg","fg"), dark=0.6, light=-0.6), .coladj(par("bg","fg"), dark=0.1, light=-0.1)) if (length(bg) == 1L) bg <- c(bg, .coladj(par("bg","fg"), dark=0.1, light=-0.1)) bg.vec <- FALSE } if (length(label) != 1L) stop(mstyle$stop("Argument 'label' should be of length 1.")) ddd <- list(...) if (!is.null(ddd$transf)) warning("Function does not have a 'transf' argument (use 'atransf' instead).", call.=FALSE, immediate.=TRUE) lplot <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) plot(...) labline <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) abline(...) lsegments <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) segments(...) laxis <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) axis(...) lpolygon <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) polygon(...) llines <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) lines(...) lpoints <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) points(...) lrect <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) rect(...) ltext <- function(..., refline2, level2, lty2, colci, colref, colbox, transf, ci.res, at.lab) text(...) ### refline2, level2, and lty2 for adding a second reference line / funnel refline2 <- ddd$refline2 level2 <- .chkddd(ddd$level2, x$level) lty2 <- .chkddd(ddd$lty2, 3) ### number of y-axis values at which to calculate the bounds of the pseudo confidence interval ci.res <- .chkddd(ddd$ci.res, 1000) ### to adjust color of reference line, region bounds, and the L box colref <- .chkddd(ddd$colref, .coladj(par("bg","fg"), dark=0.6, light=-0.6)) colci <- .chkddd(ddd$colci, .coladj(par("bg","fg"), dark=0.6, light=-0.6)) colbox <- .chkddd(ddd$colbox, .coladj(par("bg","fg"), dark=0.6, light=-0.6)) ######################################################################### ### get values for the x-axis (and corresponding vi, sei, and ni values) ### if int.only, get the observed values; otherwise, get the (deleted) residuals if (x$int.only) { if (missing(refline)) refline <- c(x$beta) if (inherits(x, "rma.mv") && addtau2) { warning(mstyle$warning("Argument 'addtau2' ignored for 'rma.mv' models."), call.=FALSE) addtau2 <- FALSE } yi <- x$yi # yi/vi/ni is already subsetted and NAs are removed vi <- x$vi ni <- x$ni # ni can be NULL (and there may be 'additional' NAs) sei <- sqrt(vi) if (!is.null(x$not.na.yivi)) x$not.na <- x$not.na.yivi slab <- slab[x$not.na] # slab is subsetted but NAs are not removed, so still need to do this here pch <- pch[x$not.na] # same for pch if (!inherits(x, "rma.uni.trimfill")) { col <- col[x$not.na] bg <- bg[x$not.na] } else { fill <- x$fill[x$not.na] } if (missing(xlab)) xlab <- .setlab(x$measure, transf.char="FALSE", atransf.char, gentype=1) } else { if (missing(refline)) refline <- 0 if (addtau2) { warning(mstyle$warning("Argument 'addtau2' ignored for models that contain moderators."), call.=FALSE) addtau2 <- FALSE } options(na.action = "na.pass") # note: subsetted but include the NAs (there may be more # NAs than the ones in x$not.na (rstudent() can fail), if (type == "rstandard") { # so we don't use x$not.na below res <- rstandard(x) } else { res <- rstudent(x) } options(na.action = na.act) ### need to check for missings here not.na <- !is.na(res$resid) # vector of residuals is of size k.f and can includes NAs yi <- res$resid[not.na] sei <- res$se[not.na] ni <- x$ni.f[not.na] # ni can be NULL and can still include NAs vi <- sei^2 slab <- slab[not.na] pch <- pch[not.na] col <- col[not.na] bg <- bg[not.na] if (missing(xlab)) xlab <- "Residual Value" } if (inherits(x, "rma.ls") && addtau2) { warning(mstyle$warning("Argument 'addtau2' ignored for 'rma.ls' models."), call.=FALSE) addtau2 <- FALSE } tau2 <- ifelse(addtau2, x$tau2, 0) ### get weights (omit any NAs) if (yaxis == "wi") { options(na.action = "na.omit") weights <- weights(x) options(na.action = na.act) } ######################################################################### ### set y-axis limits if (missing(ylim)) { ### 1st ylim value is always the lowest precision (should be at the bottom of the plot) ### 2nd ylim value is always the highest precision (should be at the top of the plot) if (yaxis == "sei") ylim <- c(max(sei), 0) if (yaxis == "vi") ylim <- c(max(vi), 0) if (yaxis == "seinv") ylim <- c(min(1/sei), max(1/sei)) if (yaxis == "vinv") ylim <- c(min(1/vi), max(1/vi)) if (yaxis == "ni") ylim <- c(min(ni, na.rm=TRUE), max(ni, na.rm=TRUE)) if (yaxis == "ninv") ylim <- c(max(1/ni, na.rm=TRUE), min(1/ni, na.rm=TRUE)) if (yaxis == "sqrtni") ylim <- c(min(sqrt(ni), na.rm=TRUE), max(sqrt(ni), na.rm=TRUE)) if (yaxis == "sqrtninv") ylim <- c(max(1/sqrt(ni), na.rm=TRUE), min(1/sqrt(ni), na.rm=TRUE)) if (yaxis == "lni") ylim <- c(min(log(ni), na.rm=TRUE), max(log(ni), na.rm=TRUE)) if (yaxis == "wi") ylim <- c(min(weights), max(weights)) ### infinite y-axis limits can happen with "seinv" and "vinv" when one or more sampling variances are 0 if (any(is.infinite(ylim))) stop(mstyle$stop("Setting 'ylim' automatically not possible (must set y-axis limits manually).")) } else { ### make sure that user supplied limits are in the right order if (is.element(yaxis, c("sei", "vi", "ninv", "sqrtninv"))) ylim <- c(max(ylim), min(ylim)) if (is.element(yaxis, c("seinv", "vinv", "ni", "sqrtni", "lni", "wi"))) ylim <- c(min(ylim), max(ylim)) ### make sure that user supplied limits are in the appropriate range if (is.element(yaxis, c("sei", "vi", "ni", "ninv", "sqrtni", "sqrtninv", "lni"))) { if (ylim[1] < 0 || ylim[2] < 0) stop(mstyle$stop("Both y-axis limits must be >= 0.")) } if (is.element(yaxis, c("seinv", "vinv"))) { if (ylim[1] <= 0 || ylim[2] <= 0) stop(mstyle$stop("Both y-axis limits must be > 0.")) } if (is.element(yaxis, c("wi"))) { if (ylim[1] < 0 || ylim[2] < 0) stop(mstyle$stop("Both y-axis limits must be >= 0.")) } } ######################################################################### ### set x-axis limits if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { level <- .level(level, allow.vector=TRUE) # note: there may be multiple level values level2 <- .level(level2) level.min <- min(level) # note: smallest level is the widest CI lvals <- length(level) ### calculate the CI bounds at the bottom of the figure (for the widest CI if there are multiple) if (yaxis == "sei") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]^2 + tau2) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1]^2 + tau2) } if (yaxis == "vi") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1] + tau2) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(ylim[1] + tau2) } if (yaxis == "seinv") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]^2 + tau2) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1]^2 + tau2) } if (yaxis == "vinv") { x.lb.bot <- refline - qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1] + tau2) x.ub.bot <- refline + qnorm(level.min/2, lower.tail=FALSE) * sqrt(1/ylim[1] + tau2) } if (missing(xlim)) { xlim <- c(min(x.lb.bot,min(yi),na.rm=TRUE), max(x.ub.bot,max(yi),na.rm=TRUE)) # make sure x-axis not only includes widest CI, but also all yi values rxlim <- xlim[2] - xlim[1] # calculate range of the x-axis limits xlim[1] <- xlim[1] - (rxlim * 0.10) # subtract 10% of range from lower x-axis bound xlim[2] <- xlim[2] + (rxlim * 0.10) # add 10% of range to upper x-axis bound } else { xlim <- sort(xlim) # just in case the user supplies the limits in the wrong order } } if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi"))) { if (missing(xlim)) { xlim <- c(min(yi), max(yi)) rxlim <- xlim[2] - xlim[1] # calculate range of the x-axis limits xlim[1] <- xlim[1] - (rxlim * 0.10) # subtract 10% of range from lower x-axis bound xlim[2] <- xlim[2] + (rxlim * 0.10) # add 10% of range to upper x-axis bound } else { xlim <- sort(xlim) # just in case the user supplies the limits in the wrong order } } ### if user has specified 'at' argument, make sure xlim actually contains the min and max 'at' values if (!is.null(at)) { xlim[1] <- min(c(xlim[1], at), na.rm=TRUE) xlim[2] <- max(c(xlim[2], at), na.rm=TRUE) } ######################################################################### ### set up plot lplot(NA, NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, xaxt="n", yaxt="n", bty="n", ...) ### add background shading par.usr <- par("usr") lrect(par.usr[1], par.usr[3], par.usr[2], par.usr[4], col=back, border=NA, ...) ### add y-axis laxis(side=2, at=seq(from=ylim[1], to=ylim[2], length.out=steps), labels=fmtx(seq(from=ylim[1], to=ylim[2], length.out=steps), digits[[2]], drop0ifint=TRUE), ...) ### add horizontal lines labline(h=seq(from=ylim[1], to=ylim[2], length.out=steps), col=hlines, ...) ######################################################################### ### add CI region(s) if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { ### add a bit to the top/bottom ylim so that the CI region(s) fill out the entire figure if (yaxis == "sei") { rylim <- ylim[1] - ylim[2] ylim[1] <- ylim[1] + (rylim * 0.10) ylim[2] <- max(0, ylim[2] - (rylim * 0.10)) } if (yaxis == "vi") { rylim <- ylim[1] - ylim[2] ylim[1] <- ylim[1] + (rylim * 0.10) ylim[2] <- max(0, ylim[2] - (rylim * 0.10)) } if (yaxis == "seinv") { rylim <- ylim[2] - ylim[1] #ylim[1] <- max(0.0001, ylim[1] - (rylim * 0.10)) # not clear how much to add to bottom ylim[2] <- ylim[2] + (rylim * 0.10) } if (yaxis == "vinv") { rylim <- ylim[2] - ylim[1] #ylim[1] <- max(0.0001, ylim[1] - (rylim * 0.10)) # not clear how much to add to bottom ylim[2] <- ylim[2] + (rylim * 0.10) } yi.vals <- seq(from=ylim[1], to=ylim[2], length.out=ci.res) if (yaxis == "sei") vi.vals <- yi.vals^2 if (yaxis == "vi") vi.vals <- yi.vals if (yaxis == "seinv") vi.vals <- 1/yi.vals^2 if (yaxis == "vinv") vi.vals <- 1/yi.vals for (m in lvals:1) { ci.left <- refline - qnorm(level[m]/2, lower.tail=FALSE) * sqrt(vi.vals + tau2) ci.right <- refline + qnorm(level[m]/2, lower.tail=FALSE) * sqrt(vi.vals + tau2) lpolygon(c(ci.left,ci.right[ci.res:1]), c(yi.vals,yi.vals[ci.res:1]), border=NA, col=shade[m], ...) llines(ci.left, yi.vals, lty=lty[1], col=colci, ...) llines(ci.right, yi.vals, lty=lty[1], col=colci, ...) } if (!is.null(refline2)) { ci.left <- refline2 - qnorm(level2/2, lower.tail=FALSE) * sqrt(vi.vals + tau2) ci.right <- refline2 + qnorm(level2/2, lower.tail=FALSE) * sqrt(vi.vals + tau2) llines(ci.left, yi.vals, lty=lty2, col=colci, ...) llines(ci.right, yi.vals, lty=lty2, col=colci, ...) } } ### add vertical reference line ### use segments so that line does not extent beyond tip of CI region if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) lsegments(refline, ylim[1], refline, ylim[2], lty=lty[2], col=colref, ...) if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi"))) labline(v=refline, lty=lty[2], col=colref, ...) if (!is.null(refline2)) { if (is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) lsegments(refline2, ylim[1], refline2, ylim[2], lty=lty2, col=colref, ...) if (is.element(yaxis, c("ni", "ninv", "sqrtni", "sqrtninv", "lni", "wi"))) labline(v=refline2, lty=lty2, col=colref, ...) } ######################################################################### ### add points xaxis.vals <- yi if (yaxis == "sei") yaxis.vals <- sei if (yaxis == "vi") yaxis.vals <- vi if (yaxis == "seinv") yaxis.vals <- 1/sei if (yaxis == "vinv") yaxis.vals <- 1/vi if (yaxis == "ni") yaxis.vals <- ni if (yaxis == "ninv") yaxis.vals <- 1/ni if (yaxis == "sqrtni") yaxis.vals <- sqrt(ni) if (yaxis == "sqrtninv") yaxis.vals <- 1/sqrt(ni) if (yaxis == "lni") yaxis.vals <- log(ni) if (yaxis == "wi") yaxis.vals <- weights if (!inherits(x, "rma.uni.trimfill")) { lpoints(x=xaxis.vals, y=yaxis.vals, pch=pch, col=col, bg=bg, ...) } else { lpoints(x=xaxis.vals[!fill], y=yaxis.vals[!fill], pch=pch, col=col[1], bg=bg[1], ...) lpoints(x=xaxis.vals[fill], y=yaxis.vals[fill], pch=pch.fill, col=col[2], bg=bg[2], ...) } ######################################################################### ### generate x-axis positions if none are specified if (is.null(at)) { at <- axTicks(side=1) #at <- pretty(x=c(alim[1], alim[2]), n=steps-1) #at <- pretty(x=c(min(ci.lb), max(ci.ub)), n=steps-1) } else { at <- at[at > par("usr")[1]] at <- at[at < par("usr")[2]] } if (is.null(ddd$at.lab)) { at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- fmtx(sapply(at.lab, atransf), digits[[1]], drop0ifint=TRUE) } else { if (!is.primitive(atransf) && !is.null(targs) && length(formals(atransf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) at.lab <- fmtx(sapply(at.lab, atransf, targs), digits[[1]], drop0ifint=TRUE) } } else { at.lab <- fmtx(at.lab, digits[[1]], drop0ifint=TRUE) } } else { at.lab <- ddd$at.lab } ### add x-axis laxis(side=1, at=at, labels=at.lab, ...) ### add L-shaped box around plot if (!is.na(colbox)) box(bty="l", col=colbox) ############################################################################ ### labeling of points k <- length(yi) if (is.numeric(label) || is.character(label) || .isTRUE(label)) { if (is.na(refline)) refline <- mean(yi, na.rm=TRUE) if (is.numeric(label)) { label <- round(label) if (label < 0) label <- 0 if (label > k) label <- k label <- order(abs(yi - refline), decreasing=TRUE)[seq_len(label)] } else if ((is.character(label) && label == "all") || .isTRUE(label)) { label <- seq_len(k) } else if ((is.character(label) && label == "out")) { if (!is.element(yaxis, c("sei", "vi", "seinv", "vinv"))) { label <- seq_len(k) } else { label <- which(abs(yi - refline) / sqrt(vi + tau2) >= qnorm(level.min/2, lower.tail=FALSE)) } } else { label <- NULL } for (i in label) ltext(yi[i], yaxis.vals[i], slab[i], pos=ifelse(yi[i]-refline >= 0, 4, 2), offset=offset, ...) } ######################################################################### ### add legend (if requested) .funnel.legend(legend, level, shade, back, yaxis, trimfill=inherits(x, "rma.uni.trimfill"), pch, col, bg, pch.fill, pch.vec, col.vec, bg.vec, colci) ############################################################################ ### prepare data frame to return sav <- data.frame(x=xaxis.vals, y=yaxis.vals, slab=slab, stringsAsFactors=FALSE) if (inherits(x, "rma.uni.trimfill")) sav$fill <- fill invisible(sav) } metafor/R/deltamethod.r0000644000176200001440000001075514717400617014604 0ustar liggesusersdeltamethod <- function(x, vcov, fun, level, H0=0, digits) { mstyle <- .get.mstyle() if (!requireNamespace("calculus", quietly=TRUE)) stop(mstyle$stop("Please install the 'calculus' package to use this function.")) if (missing(vcov)) vcov <- NULL if (!is.function(fun)) stop(mstyle$stop("Argument 'fun' must be a function.")) ######################################################################### if (.is.vector(x)) { ### when x is a vector of coefficients coef <- x if (is.null(vcov)) stop(mstyle$stop("Must specify the 'vcov' argument when 'x' is a vector.")) } else { ### when x is not a vector (and then presumably a model object) coef <- try(coef(x)) if (inherits(coef, "try-error")) stop(mstyle$stop("Cannot extract coefficients via coef() from 'x'.")) if (!is.null(vcov)) warning(mstyle$warning("Argument 'vcov' ignored when 'x' is a model object.")) vcov <- try(vcov(x)) if (inherits(vcov, "try-error")) stop(mstyle$stop("Cannot extract var-cov matrix via vcov() from 'x'.")) if (is.list(coef) && names(coef)[1] == "beta") coef <- coef$beta if (is.list(vcov) && names(vcov)[1] == "beta") vcov <- vcov$beta } if (inherits(x, "rma")) { if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(level)) level <- x$level } else { if (missing(digits)) digits <- c(est=4, se=4, test=4, pval=4, ci=4) if (length(digits) == 1L) digits <- c(est=digits, se=digits, test=digits, pval=digits, ci=digits) if (missing(level)) level <- 95 } ######################################################################### if (.is.vector(vcov) || nrow(vcov) == 1L || ncol(vcov) == 1L) { vcov <- as.vector(vcov) p <- length(vcov) vcov <- diag(vcov, nrow=p, ncol=p) } if (!.is.square(vcov)) stop(mstyle$stop("Argument 'vcov' must be a square matrix.")) if (!is.null(dimnames(vcov))) vcov <- unname(vcov) if (!isSymmetric(vcov)) stop(mstyle$stop("Argument 'vcov' must be a symmetric matrix.")) p <- length(coef) pvcov <- nrow(vcov) if (p != pvcov) stop(mstyle$stop(paste0("Length of the 'coef' vector (", p, ") does not match the dimensions of 'vcov' (", pvcov, "x", pvcov, ")."))) args <- formalArgs(fun) if (length(args) == 1L) { coef <- unname(coef) coef.transf <- try(fun(coef)) } else { if (length(args) != p) stop(mstyle$stop(paste0("Number of function arguments (", length(args), ") do not match the number of coefficients (", p, ")."))) names(coef) <- args coef.transf <- try(do.call(fun, args=as.list(coef))) } if (inherits(coef.transf, "try-error")) stop(mstyle$stop("Error when applying the function to the coefficient(s).")) if (!.is.vector(coef.transf)) stop(mstyle$stop("Specified function does not return an atomic vector.")) grad <- try(calculus::derivative(fun, var=coef, drop=FALSE)) if (inherits(grad, "try-error")) stop(mstyle$stop("Error when computing the gradient.")) if (ncol(grad) != p) stop(mstyle$stop(paste0("Length of the gradient (", ncol(grad), ") does not match the dimensions of 'vcov' (", pvcov, "x", pvcov, ")."))) q <- length(coef.transf) if (length(H0) == 1L) H0 <- rep(H0, q) if (length(H0) != q) stop(mstyle$stop(paste0("Length of the 'H0' argument (", length(H0), ") does not match the number of transformed coefficients (", q, ")."))) ######################################################################### level <- .level(level) vcov.transf <- grad %*% vcov %*% t(grad) rownames(vcov.transf) <- colnames(vcov.transf) <- names(coef.transf) crit <- qnorm(level/2, lower.tail=FALSE) se.transf <- sqrt(diag(vcov.transf)) ci.lb <- coef.transf - crit * se.transf ci.ub <- coef.transf + crit * se.transf zval <- (coef.transf - H0) / se.transf pval <- 2*pnorm(abs(zval), lower.tail=FALSE) ######################################################################### res <- list(tab = data.frame(coef=coef.transf, se=se.transf, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub), vcov=vcov.transf, level=level, digits=digits, test="z") rownames(res$tab) <- names(coef.transf) class(res) <- "deltamethod" return(res) } metafor/R/leave1out.r0000644000176200001440000000007013457322061014200 0ustar liggesusersleave1out <- function(x, ...) UseMethod("leave1out") metafor/R/plot.permutest.rma.uni.r0000644000176200001440000003677514712646752016710 0ustar liggesusersplot.permutest.rma.uni <- function(x, beta, alpha, QM=FALSE, QS=FALSE, breaks="Scott", freq=FALSE, col, border, col.out, col.ref, col.density, trim=0, adjust=1, lwd=c(2,0,0,4), legend=FALSE, ...) { ######################################################################### mstyle <- .get.mstyle() .chkclass(class(x), must="permutest.rma.uni") .start.plot() if (missing(col)) col <- .coladj(par("bg","fg"), dark=0.3, light=-0.3) if (missing(border)) border <- .coladj(par("bg"), dark=0.1, light=-0.1) if (missing(col.out)) col.out <- ifelse(.is.dark(), rgb(0.7,0.15,0.15,0.5), rgb(1,0,0,0.5)) if (missing(col.ref)) col.ref <- .coladj(par("fg"), dark=-0.3, light=0.3) if (missing(col.density)) col.density <- ifelse(.is.dark(), "dodgerblue", "blue") ddd <- list(...) alternative <- .chkddd(ddd$alternative, x$alternative, match.arg(ddd$alternative, c("two.sided", "less", "greater"))) p2defn <- .chkddd(ddd$p2defn, x$p2defn, match.arg(ddd$p2defn, c("abs", "px2"))) stat <- .chkddd(ddd$stat, x$stat, match.arg(ddd$stat, c("test", "coef"))) if (!is.null(ddd$layout)) warning(mstyle$warning("Argument 'layout' has been deprecated."), call.=FALSE) ### check trim if (trim >= 0.5) stop(mstyle$stop("The value of 'trim' must be < 0.5.")) # 1st: obs stat, 2nd: ref dist, 3rd: density, 4th: refline if (length(lwd) == 1L) lwd <- c(lwd[c(1,1,1)], 4) if (length(lwd) == 2L) lwd <- c(lwd[c(1,2,2)], 4) if (length(lwd) == 3L) lwd <- c(lwd[c(1,2,2,3)]) # cannot plot ref dist and density when freq=TRUE if (freq) lwd[c(2,3)] <- 0 lhist <- function(..., alternative, p2defn, stat, layout) hist(...) labline <- function(..., alternative, p2defn, stat, layout) abline(...) llines <- function(..., alternative, p2defn, stat, layout) lines(...) ############################################################################ if (x$skip.beta) { beta <- NULL } else { if (missing(beta)) { if (x$int.only) { beta <- 1 } else { if (x$int.incl) { beta <- 2:x$p } else { beta <- 1:x$p } } } else { if (all(is.na(beta))) { # set beta=NA to not plot any location coefficients beta <- NULL } else { beta <- .set.btt(beta, x$p, x$int.incl, names(x$zval.perm)) } } } if (stat == "test") { perm1 <- x$zval.perm[beta] obs1 <- x$zval[beta] } else { perm1 <- x$beta.perm[beta] obs1 <- x$beta[beta,1] } if (x$int.only || x$skip.beta) { QM.perm <- NULL } else { if (QM) { QM.perm <- x$QM.perm } else { QM.perm <- NULL } } if (inherits(x, "permutest.rma.ls") && !x$skip.alpha) { if (missing(alpha)) { if (x$Z.int.only) { alpha <- 1 } else { if (x$Z.int.incl) { alpha <- 2:x$q } else { alpha <- 1:x$q } } } else { if (all(is.na(alpha))) { # set alpha=NA to not plot any scale coefficients alpha <- NULL } else { alpha <- .set.btt(alpha, x$q, x$Z.int.incl, names(x$zval.perm.alpha)) } } if (stat == "test") { perm2 <- x$zval.alpha.perm[alpha] obs2 <- x$zval.alpha[alpha] } else { perm2 <- x$alpha.perm[alpha] obs2 <- x$alpha[alpha,1] } if (QS) { QS.perm <- x$QS.perm } else { QS.perm <- NULL } } else { alpha <- NULL QS.perm <- NULL } ############################################################################ ### function to add legend addlegend <- function(legend) { if (is.logical(legend) && isTRUE(legend)) lpos <- "topright" if (is.character(legend)) { lpos <- legend legend <- TRUE } if (legend && any(lwd[2:3] > 0)) { ltxt <- c("Kernel Density Estimate of\nthe Permutation Distribution", "Theoretical Null Distribution") lwds <- lwd[2:3] lcols <- c(col.density, col.ref) ltys <- c("solid", "solid") #pchs <- c("","","\u2506") # \u250a ltxt <- ltxt[lwds > 0] lcols <- lcols[lwds > 0] ltys <- ltys[lwds > 0] #pchs <- pchs[lwds > 0] lwds <- lwds[lwds > 0] legend(lpos, inset=.01, bg=.coladj(par("bg"), dark=0, light=0), lwd=lwds, col=lcols, lty=ltys, legend=ltxt) } return(FALSE) } ############################################################################ # determine number of plots and set mfrow appropriately if needed np <- length(beta) + length(alpha) + ifelse(is.null(QM.perm), 0L, 1L) + ifelse(is.null(QS.perm), 0L, 1L) if (np == 0L) stop(mstyle$stop("Must select at least one elements to plot.")) if (np > 1L) { # if no plotting device is open or mfrow is too small, set mfrow appropriately if (dev.cur() == 1L || prod(par("mfrow")) < np) par(mfrow=n2mfrow(np)) on.exit(par(mfrow=c(1L,1L)), add=TRUE) } ############################################################################ if (!is.null(QM.perm)) { pdist <- QM.perm if (is.na(x$ddf)) { xs <- seq(0, max(qchisq(0.995, df=length(x$btt)), max(pdist, na.rm=TRUE)), length.out=1000) ys <- dchisq(xs, df=length(x$btt)) } else { xs <- seq(0, max(qf(0.995, df1=length(x$btt), df2=x$ddf), max(pdist, na.rm=TRUE)), length.out=1000) ys <- df(xs, df1=length(x$btt), df2=x$ddf) } den <- density(pdist, adjust=adjust, na.rm=TRUE, n=8192) if (trim > 0) { bound <- quantile(pdist, probs=1-trim, na.rm=TRUE) pdist <- pdist[pdist <= bound] } if (lwd[2] == 0 && lwd[3] == 0) { tmp <- lhist(pdist, breaks=breaks, col=col, border=border, main=ifelse(inherits(x, "permutest.rma.ls"), "Omnibus Test of Location Coefficients", "Omnibus Test of Coefficients"), xlab="Value of Test Statistic", freq=freq, ...) } else { tmp <- lhist(pdist, breaks=breaks, plot=FALSE) ylim <- c(0, max(ifelse(lwd[2] == 0, 0, max(ys)), ifelse(lwd[3] == 0, 0, max(den$y)), max(tmp$density))) tmp <- lhist(pdist, breaks=breaks, col=col, border=border, main=ifelse(inherits(x, "permutest.rma.ls"), "Omnibus Test of Location Coefficients", "Omnibus Test of Coefficients"), xlab="Value of Test Statistic", freq=freq, ylim=ylim, ...) } .coltail(tmp, val=x$QM, tail="upper", col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=x$QM, lwd=lwd[1], lty="dashed", ...) if (lwd[2] > 0) llines(xs, ys, lwd=lwd[2], col=col.ref, ...) if (lwd[3] > 0) llines(den, lwd=lwd[3], col=col.density, ...) legend <- addlegend(legend) } for (i in seq_len(ncol(perm1))) { pdist <- perm1[[i]] if (is.na(x$ddf)) { xs <- seq(min(-qnorm(0.995), min(pdist, na.rm=TRUE)), max(qnorm(0.995), max(pdist, na.rm=TRUE)), length.out=1000) ys <- dnorm(xs) } else { xs <- seq(min(-qt(0.995, df=x$ddf), min(pdist, na.rm=TRUE)), max(qt(0.995, df=x$ddf), max(pdist, na.rm=TRUE)), length.out=1000) ys <- dt(xs, df=x$ddf) } den <- density(pdist, adjust=adjust, na.rm=TRUE, n=8192) if (trim > 0) { bounds <- quantile(pdist, probs=c(trim/2, 1-trim/2), na.rm=TRUE) pdist <- pdist[pdist >= bounds[1] & pdist <= bounds[2]] } if (lwd[2] == 0 && lwd[3] == 0) { tmp <- lhist(pdist, breaks=breaks, col=col, border=border, main=ifelse(np==1L, "", paste0(ifelse(inherits(x, "permutest.rma.ls"), "Location Coefficient: ", "Coefficient: "), names(perm1)[i])), xlab=ifelse(stat == "test", "Value of Test Statistic", "Value of Coefficient"), freq=freq, ...) } else { tmp <- lhist(pdist, breaks=breaks, plot=FALSE) ylim <- c(0, max(ifelse(lwd[2] == 0, 0, max(ys)), ifelse(lwd[3] == 0, 0, max(den$y)), max(tmp$density))) tmp <- lhist(pdist, breaks=breaks, col=col, border=border, main=ifelse(np==1L, "", paste0(ifelse(inherits(x, "permutest.rma.ls"), "Location Coefficient: ", "Coefficient: "), names(perm1)[i])), xlab=ifelse(stat == "test", "Value of Test Statistic", "Value of Coefficient"), freq=freq, ylim=ylim, ...) } if (alternative == "two.sided") { if (p2defn == "abs") { .coltail(tmp, val=-abs(obs1[i]), tail="lower", col=col.out, border=border, freq=freq, ...) .coltail(tmp, val= abs(obs1[i]), tail="upper", col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=c(-obs1[i],obs1[i]), lwd=lwd[1], lty="dashed", ...) } else { if (obs1[i] > median(pdist, na.rm=TRUE)) { .coltail(tmp, val= abs(obs1[i]), tail="upper", mult=2, col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=obs1[i], lwd=lwd[1], lty="dashed", ...) } else { .coltail(tmp, val=-abs(obs1[i]), tail="lower", mult=2, col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=-abs(obs1[i]), lwd=lwd[1], lty="dashed", ...) } } } if (alternative == "less") { .coltail(tmp, val=obs1[i], tail="lower", col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=obs1[i], lwd=lwd[1], lty="dashed", ...) } if (alternative == "greater") { .coltail(tmp, val=obs1[i], tail="upper", col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=obs1[i], lwd=lwd[1], lty="dashed", ...) } if (lwd[2] > 0) llines(xs, ys, lwd=lwd[2], col=col.ref, ...) if (lwd[3] > 0) llines(den, lwd=lwd[3], col=col.density, ...) if (lwd[4] > 0) labline(v=0, lwd=lwd[4], ...) legend <- addlegend(legend) } if (inherits(x, "permutest.rma.ls")) { if (!is.null(QS.perm)) { pdist <- QS.perm if (is.na(x$ddf.alpha)) { xs <- seq(0, max(qchisq(0.995, df=length(x$att)), max(pdist, na.rm=TRUE)), length.out=1000) ys <- dchisq(xs, df=length(x$att)) } else { xs <- seq(0, max(qf(0.995, df1=length(x$att), df2=x$ddf.alpha), max(pdist, na.rm=TRUE)), length.out=1000) ys <- df(xs, df1=length(x$att), df2=x$ddf.alpha) } den <- density(pdist, adjust=adjust, na.rm=TRUE, n=8192) if (trim > 0) { bound <- quantile(pdist, probs=1-trim, na.rm=TRUE) pdist <- pdist[pdist <= bound] } if (lwd[2] == 0 && lwd[3] == 0) { tmp <- lhist(pdist, breaks=breaks, col=col, border=border, main="Omnibus Test of Scale Coefficients", xlab="Value of Test Statistic", freq=freq, ...) } else { tmp <- lhist(pdist, breaks=breaks, plot=FALSE) ylim <- c(0, max(ifelse(lwd[2] == 0, 0, max(ys)), ifelse(lwd[3] == 0, 0, max(den$y)), max(tmp$density))) tmp <- lhist(pdist, breaks=breaks, col=col, border=border, main="Omnibus Test of Scale Coefficients", xlab="Value of Test Statistic", freq=freq, ylim=ylim, ...) } .coltail(tmp, val=x$QS, tail="upper", col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=x$QS, lwd=lwd[1], lty="dashed", ...) if (lwd[2] > 0) llines(xs, ys, lwd=lwd[2], col=col.ref, ...) if (lwd[3] > 0) llines(den, lwd=lwd[3], col=col.density, ...) legend <- addlegend(legend) } for (i in seq_len(ncol(perm2))) { pdist <- perm2[[i]] if (is.na(x$ddf.alpha)) { xs <- seq(min(-qnorm(0.995), min(pdist, na.rm=TRUE)), max(qnorm(0.995), max(pdist, na.rm=TRUE)), length.out=1000) ys <- dnorm(xs) } else { xs <- seq(min(-qt(0.995, df=x$ddf.alpha), min(pdist, na.rm=TRUE)), max(qt(0.995, df=x$ddf.alpha), max(pdist, na.rm=TRUE)), length.out=1000) ys <- dt(xs, df=x$ddf.alpha) } den <- density(pdist, adjust=adjust, na.rm=TRUE, n=8192) if (trim > 0) { bounds <- quantile(pdist, probs=c(trim/2, 1-trim/2), na.rm=TRUE) pdist <- pdist[pdist >= bounds[1] & pdist <= bounds[2]] } if (lwd[2] == 0 && lwd[3] == 0) { tmp <- lhist(pdist, breaks=breaks, col=col, border=border, main=ifelse(np==1L, "", paste0("Scale Coefficient: ", names(perm2)[i])), xlab=ifelse(stat == "test", "Value of Test Statistic", "Value of Coefficient"), freq=freq, ...) } else { tmp <- lhist(pdist, breaks=breaks, plot=FALSE) ylim <- c(0, max(ifelse(lwd[2] == 0, 0, max(ys)), ifelse(lwd[3] == 0, 0, max(den$y)), max(tmp$density))) tmp <- lhist(pdist, breaks=breaks, col=col, border=border, main=ifelse(np==1L, "", paste0("Scale Coefficient: ", names(perm2)[i])), xlab=ifelse(stat == "test", "Value of Test Statistic", "Value of Coefficient"), freq=freq, ylim=ylim, ...) } if (alternative == "two.sided") { if (p2defn == "abs") { .coltail(tmp, val=-abs(obs2[i]), tail="lower", col=col.out, border=border, freq=freq, ...) .coltail(tmp, val= abs(obs2[i]), tail="upper", col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=c(-obs2[i],obs2[i]), lwd=lwd[1], lty="dashed", ...) } else { if (obs2[i] > median(pdist, na.rm=TRUE)) { .coltail(tmp, val= abs(obs2[i]), tail="upper", mult=2, col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=obs2[i], lwd=lwd[1], lty="dashed", ...) } else { .coltail(tmp, val=-abs(obs2[i]), tail="lower", mult=2, col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=-abs(obs2[i]), lwd=lwd[1], lty="dashed", ...) } } } if (alternative == "less") { .coltail(tmp, val=obs2[i], tail="lower", col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=obs2[i], lwd=lwd[1], lty="dashed", ...) } if (alternative == "greater") { .coltail(tmp, val=obs2[i], tail="upper", col=col.out, border=border, freq=freq, ...) if (lwd[1] > 0) labline(v=obs2[i], lwd=lwd[1], lty="dashed", ...) } if (lwd[2] > 0) llines(xs, ys, lwd=lwd[2], col=col.ref, ...) if (lwd[3] > 0) llines(den, lwd=lwd[3], col=col.density, ...) if (lwd[4] > 0) labline(v=0, lwd=lwd[4], ...) legend <- addlegend(legend) } } ############################################################################ invisible() } metafor/R/misc.func.hidden.escalc.r0000644000176200001440000002536014717402201016647 0ustar liggesusers############################################################################ ### c(m) calculation function for bias correction of SMDs or SMCC/SMCRs .cmicalc <- function(mi, correct=TRUE) { ### this can overflow if mi is 'large' (if mi >= 344) #cmi <- gamma(mi/2)/(sqrt(mi/2)*gamma((mi-1)/2)) ### catch those cases and apply the approximate formula (which is accurate then) #is.na <- is.na(cmi) #cmi[is.na] <- 1 - 3/(4*mi[is.na] - 1) if (correct) { # this avoids the problem with overflow altogether cmi <- ifelse(mi <= 1, NA_real_, exp(lgamma(mi/2) - log(sqrt(mi/2)) - lgamma((mi-1)/2))) } else { cmi <- rep(1, length(mi)) } return(cmi) } ############################################################################ ### function to compute the tetrachoric correlation coefficient and its sampling variance .rtet <- function(ai, bi, ci, di, maxcor=.9999) { mstyle <- .get.mstyle() if (!requireNamespace("mvtnorm", quietly=TRUE)) stop(mstyle$stop("Please install the 'mvtnorm' package to compute this measure."), call.=FALSE) fn <- function(par, ai, bi, ci, di, maxcor, fixcut=FALSE) { rho <- par[1] cut.row <- par[2] cut.col <- par[3] ### truncate rho values outside of specified bounds if (abs(rho) > maxcor) rho <- sign(rho) * maxcor ### to substitute fixed cut values if (fixcut) { cut.row <- qnorm((ai+bi)/ni) cut.col <- qnorm((ai+ci)/ni) } # │ ci | di # ci = lo X and hi Y di = hi X and hi Y # var Y │----+---- # # │ ai | bi # ai = lo X and lo Y bi = hi X and lo Y # ┼───────── # var X # # lo hi # +----+----+ # lo | ai | bi | # +----+----+ var Y # hi | ci | di | # +----+----+ # var X R <- matrix(c(1,rho,rho,1), nrow=2, ncol=2) p.ai <- mvtnorm::pmvnorm(lower=c(-Inf,-Inf), upper=c(cut.col,cut.row), corr=R) p.bi <- mvtnorm::pmvnorm(lower=c(cut.col,-Inf), upper=c(+Inf,cut.row), corr=R) p.ci <- mvtnorm::pmvnorm(lower=c(-Inf,cut.row), upper=c(cut.col,+Inf), corr=R) p.di <- mvtnorm::pmvnorm(lower=c(cut.col,cut.row), upper=c(+Inf,+Inf), corr=R) ### in principle, should be able to compute these values with the following code, but this ### leads to more numerical instabilities when optimizing (possibly due to negative values) #p.y.lo <- pnorm(cut.row) #p.x.lo <- pnorm(cut.col) #p.ai <- mvtnorm::pmvnorm(lower=c(-Inf,-Inf), upper=c(cut.col,cut.row), corr=R) #p.bi <- p.y.lo - p.ai #p.ci <- p.x.lo - p.ai #p.di <- 1 - p.ai - p.bi - p.ci if (any(p.ai <= 0 || p.bi <= 0 || p.ci <= 0 || p.di <= 0)) { ll <- -Inf } else { ll <- ai*log(p.ai) + bi*log(p.bi) + ci*log(p.ci) + di*log(p.di) } return(-ll) } ni <- ai + bi + ci + di ### if one of the margins is equal to zero, then r_tet could in principle be equal to any value, ### but we define it here to be zero (presuming independence until evidence of dependence is found) ### but with infinite variance if ((ai + bi) == 0L || (ci + di) == 0L || (ai + ci) == 0L || (bi + di) == 0L) return(list(yi=0, vi=Inf)) ### if bi and ci is zero, then r_tet must be +1 with zero variance if (bi == 0L && ci == 0L) return(list(yi=1, vi=0)) ### if ai and di is zero, then r_tet must be -1 with zero variance if (ai == 0L && di == 0L) return(list(yi=-1, vi=0)) ### cases where only one cell is equal to zero are handled further below ### in all other cases, first optimize over rho with cut values set to the sample values ### use suppressWarnings() to suppress "NA/Inf replaced by maximum positive value" warnings res <- try(suppressWarnings(optimize(fn, interval=c(-1,1), ai=ai, bi=bi, ci=ci, di=di, maxcor=maxcor, fixcut=TRUE)), silent=TRUE) ### check for non-convergence if (inherits(res, "try-error")) { warning(mstyle$warning("Could not estimate tetrachoric correlation coefficient."), call.=FALSE) return(list(yi=NA, vi=NA)) } ### then use the value as the starting point and maximize over rho and the cut values ### (Nelder-Mead seems to do fine here; using L-BFGS-B doesn't seem to improve on this) res <- try(optim(par=c(res$minimum,qnorm((ai+bi)/ni),qnorm((ai+ci)/ni)), fn, ai=ai, bi=bi, ci=ci, di=di, maxcor=maxcor, fixcut=FALSE, hessian=TRUE), silent=TRUE) #res <- try(optim(par=c(res$minimum,qnorm((ai+bi)/ni),qnorm((ai+ci)/ni)), fn, method="L-BFGS-B", lower=c(-1,-Inf,-Inf), upper=c(1,Inf,Inf), ai=ai, bi=bi, ci=ci, di=di, maxcor=maxcor, fixcut=FALSE, hessian=TRUE), silent=TRUE) ### check for non-convergence if (inherits(res, "try-error")) { warning(mstyle$warning("Could not estimate tetrachoric correlation coefficient."), call.=FALSE) return(list(yi=NA, vi=NA)) } ### take inverse of hessian and extract variance for estimate ### (using hessian() seems to lead to more problems, so stick with hessian from optim()) vi <- try(chol2inv(chol(res$hessian))[1,1], silent=TRUE) #res$hessian <- try(chol2inv(chol(numDeriv::hessian(fn, x=res$par, ai=ai, bi=bi, ci=ci, di=di, maxcor=maxcor, fixcut=FALSE))), silent=TRUE) ### check for problems with computing the inverse if (inherits(vi, "try-error")) { warning(mstyle$warning("Could not estimate sampling variance of tetrachoric correlation coefficient."), call.=FALSE) vi <- NA } ### extract estimate yi <- res$par[1] ### but if bi or ci is zero, then r_tet must be +1 if (bi == 0 || ci == 0) yi <- 1 ### but if ai or di is zero, then r_tet must be -1 if (ai == 0 || di == 0) yi <- -1 ### note: what is the right variance when there is one zero cell? ### vi as estimated gets smaller as the table becomes more and more like ### a table with 0 diagonal/off-diagonal, which intuitively makes sense ### return estimate and sampling variance (and SE) return(list(yi=yi, vi=vi, sei=sqrt(vi))) ### Could consider implementing the Fisher scoring algorithm; first derivatives and ### elements of the information matrix are given in Tallis (1962). Could also consider ### estimating the variance from the inverse of the information matrix. But constructing ### the information matrix takes a bit of extra work and it is not clear to me how to ### handle estimated cell probabilities that go to zero here. } ############################################################################ ### function to calculate the Gaussian hypergeometric (Hypergeometric2F1) function .Fcalc <- function(a, b, g, x) { mstyle <- .get.mstyle() if (!requireNamespace("gsl", quietly=TRUE)) stop(mstyle$stop("Please install the 'gsl' package to use measure='UCOR'."), call.=FALSE) k.g <- length(g) k.x <- length(x) k <- max(k.g, k.x) res <- rep(NA_real_, k) if (k.g == 1L) g <- rep(g, k) if (k.x == 1L) x <- rep(x, k) if (length(g) != length(x)) stop(mstyle$stop("Length of the 'g' and 'x' arguments are not the same.")) for (i in seq_len(k)) { if (!is.na(g[i]) && !is.na(x[i]) && g[i] > (a+b)) { res[i] <- gsl::hyperg_2F1(a, b, g[i], x[i]) } else { res[i] <- NA } } return(res) } ############################################################################ ### pdf of SMD (with or without bias correction) .dsmd <- function(x, n1, n2, theta, correct=TRUE, xisg=FALSE, warn=FALSE) { nt <- n1 * n2 / (n1 + n2) m <- n1 + n2 - 2 cm <- .cmicalc(m) if (xisg) x <- x / cm if (!correct) cm <- 1 if (warn) { res <- dt(x * sqrt(nt) / cm, df = m, ncp = sqrt(nt) * theta) * sqrt(nt) / cm } else { res <- suppressWarnings(dt(x * sqrt(nt) / cm, df = m, ncp = sqrt(nt) * theta) * sqrt(nt) / cm) } return(res) } #integrate(function(x) .dsmd(x, n1=4, n2=4, theta=.5), lower=-Inf, upper=Inf) #integrate(function(x) x*.dsmd(x, n1=4, n2=4, theta=.5), lower=-Inf, upper=Inf) ### pdf of COR .dcor <- function(x, n, rho) { x[x < -1] <- NA x[x > 1] <- NA ### only accurate for n >= 5 n[n <= 4] <- NA ### calculate density res <- exp(log(n-2) + lgamma(n-1) + (n-1)/2 * log(1 - rho^2) + (n-4)/2 * log(1 - x^2) - 1/2 * log(2*base::pi) - lgamma(n-1/2) - (n-3/2) * log(1 - rho*x)) * .Fcalc(1/2, 1/2, n-1/2, (rho*x + 1)/2) ### make sure that density is 0 for r = +-1 res[abs(x) == 1] <- 0 return(res) } #integrate(function(x) .dcor(x, n=5, rho=.8), lower=-1, upper=1) #integrate(function(x) x*.dcor(x, n=5, rho=.8), lower=-1, upper=1) # should not be rho due to bias! #integrate(function(x) x*.Fcalc(1/2, 1/2, (5-2)/2, 1-x^2)*.dcor(x, n=5, rho=.8), lower=-1, upper=1) # should be ~rho ### pdf of ZCOR .dzcor <- function(x, n, rho, zrho) { ### only accurate for n >= 5 n[n <= 4] <- NA ### if rho is missing, then back-transform zrho value(s) if (missing(rho)) rho <- tanh(zrho) ### copy x to z and back-transform z values (so x = correlation) z <- x x <- tanh(z) ### calculate density res <- exp(log(n-2) + lgamma(n-1) + (n-1)/2 * log(1 - rho^2) + (n-4)/2 * log(1 - x^2) - 1/2 * log(2*base::pi) - lgamma(n-1/2) - (n-3/2) * log(1 - rho*x) + log(4) + 2*z - 2*log(exp(2*z) + 1)) * .Fcalc(1/2, 1/2, n-1/2, (rho*x + 1)/2) ### make sure that density is 0 for r = +-1 res[abs(x) == 1] <- 0 return(res) } #integrate(function(x) .dzcor(x, n=5, rho=.8), lower=-100, upper=100) #integrate(function(x) x*.dzcor(x, n=5, rho=.8), lower=-100, upper=100) ### pdf of ARAW .daraw <- function(x, n, m, alpha) { res <- df((1-x)/(1-alpha), (n-1)*(m-1), (n-1)) / (1-alpha) res[alpha >= 1] <- 0 res[alpha <= -1] <- 0 return(res) } #integrate(function(x) .daraw(x, n=10, m=2, alpha=.8), lower=-Inf, upper=Inf) #integrate(function(x) x*.daraw(x, n=10, m=2, alpha=.8), lower=-Inf, upper=Inf) ############################################################################ ### function to convert p-values to t-statistics (need this to catch NULL ### since sign(NULL) and qt(NULL) throw errors) .convp2t <- function(pval, df) { if (is.null(pval)) return(NULL) df <- ifelse(df < 1, NA, df) pval <- ifelse(abs(pval) > 1, NA, pval) sign(pval) * qt(abs(pval)/2, df=df, lower.tail=FALSE) } ### function to convert p-values to F-statistics (need this to catch NULL ### since qf(NULL) throws an error) .convp2f <- function(pval, df1, df2) { if (is.null(pval)) return(NULL) df1 <- ifelse(df1 < 1, NA, df1) df2 <- ifelse(df2 < 1, NA, df2) pval <- ifelse(pval < 0, NA, pval) pval <- ifelse(pval > 1, NA, pval) qf(pval, df1=df1, df2=df2, lower.tail=FALSE) } ############################################################################ metafor/R/vcov.rma.r0000644000176200001440000000726114515471275014047 0ustar liggesusersvcov.rma <- function(object, type="fixed", ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) type <- match.arg(type, c("fixed", "beta", "alpha", "delta", "obs", "fitted", "resid")) ######################################################################### if (type=="fixed") { out <- object$vb if (inherits(object, "rma.ls")) out <- list(beta = object$vb, alpha = object$va) if (inherits(object, "rma.uni.selmodel")) out <- list(beta = object$vb, delta = object$vd) return(out) } if (type=="beta") { out <- object$vb return(out) } if (type=="alpha") { if (!inherits(object, "rma.ls")) stop(mstyle$stop("Can only extract var-cov matrix of alpha coefficients for location-scale models.")) out <- object$va return(out) } if (type=="delta") { if (!inherits(object, "rma.uni.selmodel")) stop(mstyle$stop("Can only extract var-cov matrix of delta coefficients for selection models.")) out <- object$vd return(out) } ######################################################################### if (type=="obs") { if (inherits(object, c("rma.uni","rma.mv"))) { out <- matrix(NA_real_, nrow=object$k.f, ncol=object$k.f) out[object$not.na, object$not.na] <- as.matrix(object$M) # as.matrix() needed when sparse=TRUE rownames(out) <- colnames(out) <- object$slab if (na.act == "na.omit") out <- out[object$not.na, object$not.na] if (na.act == "na.fail" && any(!object$not.na)) stop(mstyle$stop("Missing values in data.")) return(out) } else { stop(mstyle$stop("Extraction of marginal var-cov matrix not available for objects of this class.")) } } ######################################################################### if (type=="fitted") { out <- object$X.f %*% object$vb %*% t(object$X.f) rownames(out) <- colnames(out) <- object$slab if (na.act == "na.omit") out <- out[object$not.na, object$not.na] if (na.act == "na.exclude" || na.act == "na.pass") { out[!object$not.na,] <- NA_real_ out[,!object$not.na] <- NA_real_ } return(out) } ######################################################################### if (type=="resid") { ### the SEs of the residuals cannot be estimated consistently for "robust.rma" objects if (inherits(object, c("robust.rma", "rma.gen"))) stop(mstyle$stop("Extraction of var-cov matrix of the residuals not available for objects of this type.")) options(na.action="na.omit") H <- hatvalues(object, type="matrix") options(na.action = na.act) ImH <- diag(object$k) - H if (inherits(object, "robust.rma")) { ve <- ImH %*% tcrossprod(object$meat,ImH) } else { ve <- ImH %*% tcrossprod(as.matrix(object$M),ImH) # as.matrix() needed when sparse=TRUE } if (na.act == "na.omit") { out <- ve rownames(out) <- colnames(out) <- object$slab[object$not.na] } if (na.act == "na.exclude" || na.act == "na.pass") { out <- matrix(NA_real_, nrow=object$k.f, ncol=object$k.f) out[object$not.na, object$not.na] <- ve rownames(out) <- colnames(out) <- object$slab } return(out) } ######################################################################### } metafor/R/influence.rma.uni.r0000644000176200001440000002317614722313316015626 0ustar liggesusersinfluence.rma.uni <- function(model, digits, progbar=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(model), must="rma.uni", notav=c("rma.ls", "rma.gen", "rma.uni.selmodel")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (is.null(model$yi) || is.null(model$vi)) stop(mstyle$stop("Information needed is not available in the model object.")) x <- model if (x$k == 1L) stop(mstyle$stop("Stopped because k = 1.")) ddd <- list(...) .chkdots(ddd, c("btt", "measure", "time", "code1", "code2")) btt <- .set.btt(ddd$btt, x$p, int.incl=FALSE, Xnames=colnames(x$X)) # note: 1:p by default (also in models with intercept) m <- length(btt) measure <- .chkddd(ddd$measure, "all") if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (!measure == "cooks.distance" && inherits(model, "robust.rma")) stop(mstyle$stop("Method not available for objects of class \"robust.rma\".")) if (.isTRUE(ddd$time)) time.start <- proc.time() if (!is.null(ddd[["code1"]])) eval(expr = parse(text = ddd[["code1"]])) ######################################################################### tau2.del <- rep(NA_real_, x$k) delpred <- rep(NA_real_, x$k) vdelpred <- rep(NA_real_, x$k) s2w.del <- rep(NA_real_, x$k) QE.del <- rep(NA_real_, x$k) dffits <- rep(NA_real_, x$k) dfbs <- matrix(NA_real_, nrow=x$k, ncol=x$p) cook.d <- rep(NA_real_, x$k) cov.r <- rep(NA_real_, x$k) weight <- rep(NA_real_, x$k) ### predicted values under the full model pred.full <- x$X %*% x$beta ### calculate inverse of variance-covariance matrix under the full model (needed for the Cook's distances) svb <- chol2inv(chol(x$vb[btt,btt,drop=FALSE])) ### also need stXAX/stXX and H matrix for DFFITS calculation when not using the standard weights if (x$weighted) { if (!is.null(x$weights)) { A <- diag(x$weights, nrow=x$k, ncol=x$k) stXAX <- .invcalc(X=x$X, W=A, k=x$k) H <- x$X %*% stXAX %*% t(x$X) %*% A } } else { stXX <- .invcalc(X=x$X, W=diag(x$k), k=x$k) H <- x$X %*% stXX %*% t(x$X) } ### hat values options(na.action = "na.omit") hat <- hatvalues(x) options(na.action = na.act) ### elements that need to be returned outlist <- "coef.na=coef.na, tau2=tau2, QE=QE, beta=beta, vb=vb, s2w=s2w" ### note: skipping NA cases ### also: it is possible that model fitting fails, so that generates more NAs (these NAs will always be shown in output) if (progbar) pbar <- pbapply::startpb(min=0, max=x$k) for (i in seq_len(x$k)) { if (progbar) pbapply::setpb(pbar, i) if (!is.null(ddd[["code2"]])) eval(expr = parse(text = ddd[["code2"]])) args <- list(yi=x$yi, vi=x$vi, weights=x$weights, mods=x$X, intercept=FALSE, method=x$method, weighted=x$weighted, test=x$test, level=x$level, tau2=ifelse(x$tau2.fix, x$tau2, NA), control=x$control, subset=-i, skipr2=TRUE, outlist=outlist) res <- try(suppressWarnings(.do.call(rma.uni, args)), silent=TRUE) if (inherits(res, "try-error")) next ### removing an observation could lead to a model coefficient becoming inestimable if (any(res$coef.na)) next ### save tau2.del and QE.del values tau2.del[i] <- res$tau2 QE.del[i] <- res$QE ### 'deleted' predicted value for the ith observation based on the model without the ith observation included Xi <- matrix(x$X[i,], nrow=1) delpred[i] <- Xi %*% res$beta vdelpred[i] <- Xi %*% tcrossprod(res$vb,Xi) s2w.del[i] <- res$s2w ### compute DFFITS if (x$weighted) { if (is.null(x$weights)) { dffits[i] <- (pred.full[i] - delpred[i]) / sqrt(res$s2w * hat[i] * (tau2.del[i] + x$vi[i])) } else { dffits[i] <- (pred.full[i] - delpred[i]) / sqrt(res$s2w * diag(H %*% diag(tau2.del[i] + x$vi, nrow=x$k, ncol=x$k) %*% t(H)))[i] } } else { dffits[i] <- (pred.full[i] - delpred[i]) / sqrt(res$s2w * diag(H %*% diag(tau2.del[i] + x$vi, nrow=x$k, ncol=x$k) %*% t(H)))[i] } #dffits[i] <- (pred.full[i] - delpred[i]) / sqrt(vdelpred[i]) ### compute var-cov matrix of the fixed effects for the full model, but with tau2.del[i] plugged in if (x$weighted) { if (is.null(x$weights)) { vb.del <- .invcalc(X=x$X, W=diag(1/(x$vi+tau2.del[i]), nrow=x$k, ncol=x$k), k=x$k) } else { vb.del <- tcrossprod(stXAX,x$X) %*% A %*% diag(x$vi+tau2.del[i], nrow=x$k, ncol=x$k) %*% A %*% x$X %*% stXAX } } else { vb.del <- tcrossprod(stXX,x$X) %*% diag(x$vi+tau2.del[i], nrow=x$k, ncol=x$k) %*% x$X %*% stXX } ### compute DFBETA and DFBETAS dfb <- x$beta - res$beta dfbs[i,] <- dfb / sqrt(res$s2w * diag(vb.del)) #dfbs[i,] <- dfb / sqrt(diag(res$vb)) ### compute DFBETA (including coefficients as specified via btt) dfb <- x$beta[btt] - res$beta[btt] ### compute Cook's distance cook.d[i] <- crossprod(dfb,svb) %*% dfb # / x$p #cook.d[i] <- sum(1/(x$vi+tau2.del[i]) * (pred.full - x$X %*% res$beta)^2) # / x$p #cook.d[i] <- sum(1/(x$vi+x$tau2) * (pred.full - x$X %*% res$beta)^2) # / x$p ### compute covariance ratio cov.r[i] <- det(res$vb[btt,btt,drop=FALSE]) / det(x$vb[btt,btt,drop=FALSE]) } if (progbar) pbapply::closepb(pbar) ### calculate studentized residual resid <- x$yi - delpred resid[abs(resid) < 100 * .Machine$double.eps] <- 0 #resid[abs(resid) < 100 * .Machine$double.eps * median(abs(resid), na.rm=TRUE)] <- 0 # see lm.influence #seresid <- sqrt(x$vi + vdelpred + tau2.del) seresid <- sqrt(x$vi * s2w.del + vdelpred + tau2.del * s2w.del) # this yields the same results as a mean shift outlier model when using test="knha" stresid <- resid / seresid ### extract weights options(na.action="na.omit") weight <- weights(x) options(na.action = na.act) ######################################################################### inf <- matrix(NA_real_, nrow=x$k.f, ncol=8) inf[x$not.na,] <- cbind(stresid, dffits, cook.d, cov.r, tau2.del, QE.del, hat, weight) colnames(inf) <- c("rstudent", "dffits", "cook.d", "cov.r", "tau2.del", "QE.del", "hat", "weight") inf <- data.frame(inf) tmp <- dfbs dfbs <- matrix(NA_real_, nrow=x$k.f, ncol=x$p) dfbs[x$not.na,] <- tmp colnames(dfbs) <- rownames(x$beta) dfbs <- data.frame(dfbs) ######################################################################### ### determine "influential" cases is.infl <- #abs(inf$rstudent) > qnorm(0.975) | abs(inf$dffits) > 3*sqrt(x$p/(x$k-x$p)) | pchisq(inf$cook.d, df=m) > 0.50 | #inf$cov.r > 1 + 3*m/(x$k-m) | #inf$cov.r < 1 - 3*m/(x$k-m) | inf$hat > 3*x$p/x$k | apply(abs(dfbs) > 1, 1, any) # consider using rowAnys() from matrixStats package #print(is.infl) ######################################################################### if (na.act == "na.omit") { out <- list(rstudent=inf$rstudent[x$not.na], dffits=inf$dffits[x$not.na], cook.d=inf$cook.d[x$not.na], cov.r=inf$cov.r[x$not.na], tau2.del=inf$tau2.del[x$not.na], QE.del=inf$QE.del[x$not.na], hat=inf$hat[x$not.na], weight=inf$weight[x$not.na], inf=ifelse(is.infl & !is.na(is.infl), "*", "")[x$not.na], slab=x$slab[x$not.na], digits=digits) out <- list(inf=out) out$dfbs <- lapply(dfbs, function(z) z[x$not.na]) out$dfbs <- c(out$dfbs, list(slab=x$slab[x$not.na], digits=digits)) out <- c(out, list(ids=x$ids[x$not.na], not.na=x$not.na[x$not.na], is.infl=is.infl[x$not.na])) } if (na.act == "na.exclude" || na.act == "na.pass") { out <- list(rstudent=inf$rstudent, dffits=inf$dffits, cook.d=inf$cook.d, cov.r=inf$cov.r, tau2.del=inf$tau2.del, QE.del=inf$QE.del, hat=inf$hat, weight=inf$weight, inf=ifelse(is.infl & !is.na(is.infl), "*", ""), slab=x$slab, digits=digits) out <- list(inf=out) out$dfbs <- lapply(dfbs, function(z) z) out$dfbs <- c(out$dfbs, list(slab=x$slab, digits=digits)) out <- c(out, list(ids=x$ids, not.na=x$not.na, is.infl=is.infl)) } out <- c(out, list(tau2=x$tau2, QE=x$QE, k=x$k, p=x$p, m=m, digits=digits)) if (na.act == "na.fail" && any(!x$not.na)) stop(mstyle$stop("Missing values in results.")) class(out$inf) <- c("list.rma") class(out$dfbs) <- c("list.rma") class(out) <- c("infl.rma.uni") if (measure == "cooks.distance") { names(out$inf$cook.d) <- out$inf$slab out <- out$inf$cook.d } if (measure == "dfbetas") out <- out$dfbs if (measure == "rstudent") { if (na.act == "na.omit") { resid.f <- c(resid) seresid.f <- c(seresid) stresid.f <- c(stresid) } if (na.act == "na.exclude" || na.act == "na.pass") { resid.f <- rep(NA_real_, x$k.f) seresid.f <- rep(NA_real_, x$k.f) stresid.f <- rep(NA_real_, x$k.f) resid.f[x$not.na] <- c(resid) seresid.f[x$not.na] <- c(seresid) stresid.f[x$not.na] <- c(stresid) } out <- list(resid=resid.f, se=seresid.f, z=stresid.f, slab=out$inf$slab, digits=digits) class(out) <- c("list.rma") } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } return(out) } metafor/R/confint.rma.uni.r0000644000176200001440000005463714717663171015337 0ustar liggesusers# What would be most consistent is this: # if method='ML/REML': profile likelihood (PL) CI (based on the ML/REML likelihood) # if method='EB/PM/PMM': Q-profile (QP) CI # if method='GENQ/GENQM': generalized Q-statistic (GENQ) CI (which also covers method='DL/HE' as special cases) # if method='SJ': method by Sidik & Jonkman (2005) (but this performs poorly, except if tau^2 is very large) # if method='HS': not sure since this is an ad-hoc estimator with no obvious underlying statistical principle # Also can compute Wald-type CIs (but those perform poorly except when k is very large). # Too late to change how the function works (right now, type="GENQ" if method="GENQ/GENQM" and type="QP" otherwise). confint.rma.uni <- function(object, parm, level, fixed=FALSE, random=TRUE, type, digits, transf, targs, verbose=FALSE, control, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.uni", notav=c("robust.rma", "rma.ls", "rma.gen")) if (!missing(parm)) warning(mstyle$warning("Argument 'parm' (currently) ignored."), call.=FALSE) x <- object k <- x$k p <- x$p yi <- x$yi vi <- x$vi X <- x$X Y <- cbind(yi) weights <- x$weights if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL funlist <- lapply(list(transf.exp.int, transf.ilogit.int, transf.ztor.int, transf.exp.mode, transf.ilogit.mode, transf.ztor.mode), deparse) if (is.null(targs) && any(sapply(funlist, identical, deparse(transf))) && inherits(x, c("rma.uni","rma.glmm")) && length(x$tau2 == 1L)) targs <- c(tau2=x$tau2) if (missing(control)) control <- list() if (!fixed && !random) stop(mstyle$stop("At least one of the arguments 'fixed' and 'random' must be TRUE.")) ddd <- list(...) .chkdots(ddd, c("time", "xlim", "extint")) if (.isTRUE(ddd$time)) time.start <- proc.time() if (!is.null(ddd$xlim)) { if (length(ddd$xlim) == 1L) ddd$xlim <- c(0, ddd$xlim) if (length(ddd$xlim) != 2L) stop(mstyle$stop("Argument 'xlim' should be a vector of length 1 or 2.")) control$tau2.min <- ddd$xlim[1] control$tau2.max <- ddd$xlim[2] } if (missing(type)) { if (x$method == "GENQ" || x$method == "GENQM") { type <- "genq" } else { type <- "qp" } } else { type <- tolower(type) if (!is.element(type, c("qp","genq","pl","ht","wald","wald.log","wald.sqrt"))) stop(mstyle$stop("Unknown 'type' specified.")) } level <- .level(level, stopon100=(type=="pl" && .isTRUE(ddd$extint))) ######################################################################### ######################################################################### ######################################################################### if (random) { if (k == 1L) stop(mstyle$stop("Stopped because k = 1.")) if (is.element(x$method, c("FE","EE","CE"))) stop(mstyle$stop("Model does not contain a random-effects component.")) if (x$tau2.fix) stop(mstyle$stop("Model does not contain an estimated random-effects component.")) if (type == "genq" && !(is.element(x$method, c("GENQ","GENQM")))) stop(mstyle$stop("Model must be fitted with method=\"GENQ\" or method=\"GENQM\" to use this option.")) ###################################################################### ### set defaults for control parameters for uniroot() and replace with any user-defined values ### set tau2.min and tau2.max and replace with any user-defined values ### note: the default for tau2.min is the smaller of 0 and tau2, since tau2 could in principle be negative ### note: the default for tau2.max must be larger than tau2 and tau2.min and really should be much larger (at least 100) if (!is.null(x$control$tau2.min) && x$control$tau2.min == -min(x$vi)) x$control$tau2.min <- x$control$tau2.min + 0.0001 # push tau2.min just a bit above -min(vi) to avoid division by zero tau2.min <- ifelse(is.null(x$control$tau2.min), min(0, x$tau2), x$control$tau2.min) tau2.max <- ifelse(is.null(x$control$tau2.max), max(100, x$tau2*10, tau2.min*10), x$control$tau2.max) ### user can in principle set non-sensical limits (i.e., tau2.min > tau2.max), but this is handled properly by the methods below con <- list(tol=.Machine$double.eps^0.25, maxiter=1000, tau2.min=tau2.min, tau2.max=tau2.max, verbose=FALSE) con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] if (verbose) con$verbose <- verbose verbose <- con$verbose #return(con) ###################################################################### tau2.lb <- NA_real_ tau2.ub <- NA_real_ ci.null <- FALSE # logical if CI is a null set lb.conv <- FALSE # logical if search converged for lower bound (LB) ub.conv <- FALSE # logical if search converged for upper bound (UB) lb.sign <- "" # for sign in case LB must be below tau2.min ("<") or above tau2.max (">") ub.sign <- "" # for sign in case UB must be below tau2.min ("<") or above tau2.max (">") ###################################################################### ######################## ### Q-profile method ### ######################## if (type == "qp") { if (!x$allvipos) stop(mstyle$stop("Cannot compute CI for tau^2 when there are non-positive sampling variances in the data.")) crit.u <- qchisq(level/2, k-p, lower.tail=FALSE) # upper critical chi^2 value for df = k-p crit.l <- qchisq(level/2, k-p, lower.tail=TRUE) # lower critical chi^2 value for df = k-p QE.tau2.max <- .QE.func(con$tau2.max, Y=Y, vi=vi, X=X, k=k, objective=0) QE.tau2.min <- try(.QE.func(con$tau2.min, Y=Y, vi=vi, X=X, k=k, objective=0), silent=TRUE) #dfs <- 12; curve(dchisq(x, df=dfs), from=0, to=40, ylim=c(0,0.1), xlab="", ylab=""); abline(v=qchisq(c(0.025, 0.975), df=dfs)); text(qchisq(c(0.025, 0.975), df=dfs)+1.6, 0.1, c("crit.l", "crit.u")) ################################################################### ### start search for upper bound if (QE.tau2.min < crit.l) { ### if QE.tau2.min is to the left of the crit.l, then both bounds are below tau2.min tau2.lb <- con$tau2.min tau2.ub <- con$tau2.min lb.sign <- "<" ub.sign <- "<" lb.conv <- TRUE ub.conv <- TRUE ### and if tau2.min <= 0, then the CI is equal to the null set if (con$tau2.min <= 0) ci.null <- TRUE } else { if (QE.tau2.max > crit.l) { ### if QE.tau2.max is to the right of crit.l, then upper bound > tau2.max, so set tau2.ub to >tau2.max tau2.ub <- con$tau2.max ub.sign <- ">" ub.conv <- TRUE } else { ### now QE.tau2.min is to the right of crit.l and QE.tau2.max is to the left of crit.l, so upper bound can be found res <- try(uniroot(.QE.func, interval=c(con$tau2.min, con$tau2.max), tol=con$tol, maxiter=con$maxiter, Y=Y, vi=vi, X=X, k=k, objective=crit.l, verbose=verbose, digits=digits)$root, silent=TRUE) ### check if uniroot method converged if (!inherits(res, "try-error")) { tau2.ub <- res ub.conv <- TRUE } } } ### end search for upper bound ################################################################### ### start search for lower bound if (QE.tau2.max > crit.u) { ### if QE.tau2.max is to the right of the crit.u, then both bounds are above tau2.max tau2.lb <- con$tau2.max tau2.ub <- con$tau2.max lb.sign <- ">" ub.sign <- ">" lb.conv <- TRUE ub.conv <- TRUE } else { if (QE.tau2.min < crit.u) { ### if QE.tau2.min is to the left of crit.u, then lower bound < tau2.min, so set tau2.lb to 0) lb.sign <- "<" } else { ### now QE.tau2.min is to the right of crit.u and QE.tau2.max is to the left of crit.u, so lower bound can be found res <- try(uniroot(.QE.func, interval=c(con$tau2.min, con$tau2.max), tol=con$tol, maxiter=con$maxiter, Y=Y, vi=vi, X=X, k=k, objective=crit.u, verbose=verbose, digits=digits)$root, silent=TRUE) ### check if uniroot method converged if (!inherits(res, "try-error")) { tau2.lb <- res lb.conv <- TRUE } } } ### end search for lower bound ################################################################### } ###################################################################### ################### ### GENQ method ### ################### if (type == "genq") { if (!requireNamespace("CompQuadForm", quietly=TRUE)) stop(mstyle$stop("Please install the 'CompQuadForm' package when method='QGEN'.")) A <- diag(weights, nrow=k, ncol=k) stXAX <- .invcalc(X=X, W=A, k=k) P <- A - A %*% X %*% stXAX %*% t(X) %*% A Q <- crossprod(Y,P) %*% Y ### note: .GENQ.func(tau2val, ..., Q=Q, level=0, getlower=TRUE) gives the area to the right of Q for a ### distribution with specified tau2val; and as we increase tau2val, so does the area to the right of Q GENQ.tau2.max <- .GENQ.func(con$tau2.max, P=P, vi=vi, Q=Q, level=0, k=k, p=p, getlower=TRUE) GENQ.tau2.min <- .GENQ.func(con$tau2.min, P=P, vi=vi, Q=Q, level=0, k=k, p=p, getlower=TRUE) ################################################################### ### start search for upper bound if (GENQ.tau2.min > 1 - level/2) { ### if GENQ.tau2.min is to the right of 1 - level/2, then both bounds are below tau2.min tau2.lb <- con$tau2.min tau2.ub <- con$tau2.min lb.sign <- "<" ub.sign <- "<" lb.conv <- TRUE ub.conv <- TRUE ### and if tau2.min = 0, then the CI is equal to the null set if (con$tau2.min <= 0) ci.null <- TRUE } else { if (GENQ.tau2.max < 1 - level/2) { ### if GENQ.tau2.max is to the left of 1 - level/2, then upper bound > tau2.max, so set tau2.ub to >tau2.max tau2.ub <- con$tau2.max ub.sign <- ">" ub.conv <- TRUE } else { ### now GENQ.tau2.min is to the left of 1 - level/2 and GENQ.tau2.max is to the right of 1 - level/2, so upper bound can be found res <- try(uniroot(.GENQ.func, c(con$tau2.min, con$tau2.max), P=P, vi=vi, Q=Q, level=level/2, k=k, p=p, getlower=FALSE, verbose=verbose, digits=digits)$root, silent=TRUE) ### check if uniroot method converged if (!inherits(res, "try-error")) { tau2.ub <- res ub.conv <- TRUE } } } ### end search for upper bound ################################################################### ### start search for lower bound if (GENQ.tau2.max < level/2) { ### if GENQ.tau2.max is to the left of level/2, then both bounds are abova tau2.max tau2.lb <- con$tau2.max tau2.ub <- con$tau2.max lb.sign <- ">" ub.sign <- ">" lb.conv <- TRUE ub.conv <- TRUE } else { if (GENQ.tau2.min > level/2) { ### if GENQ.tau2.min is to the right of level/2, then lower bound < tau2.min, so set tau2.lb to 0) lb.sign <- "<" } else { ### now GENQ.tau2.max is to the right of level/2 and GENQ.tau2.min is to the left of level/2, so lower bound can be found res <- try(uniroot(.GENQ.func, c(con$tau2.min, con$tau2.max), P=P, vi=vi, Q=Q, level=level/2, k=k, p=p, getlower=TRUE, verbose=verbose, digits=digits)$root, silent=TRUE) ### check if uniroot method converged if (!inherits(res, "try-error")) { tau2.lb <- res lb.conv <- TRUE } } } ### end search for lower bound ################################################################### } ###################################################################### ################# ### PL method ### ################# if (type == "pl") { if (con$tau2.min > x$tau2) stop(mstyle$stop("Lower bound of interval to be searched must be <= actual value of component.")) if (con$tau2.max < x$tau2) stop(mstyle$stop("Upper bound of interval to be searched must be >= actual value of component.")) objective <- qchisq(1-level, df=1) ################################################################### ### start search for lower bound ### get diff value when setting component to tau2.min; this value should be positive (i.e., discrepancy must be larger than critical value) ### if it is not, then the lower bound must be below tau2.min res <- try(.profile.rma.uni(con$tau2.min, obj=x, confint=TRUE, objective=objective, verbose=verbose), silent=TRUE) if (!inherits(res, "try-error") && !is.na(res)) { if (res < 0) { tau2.lb <- con$tau2.min lb.conv <- TRUE if (con$tau2.min > 0) lb.sign <- "<" } else { if (.isTRUE(ddd$extint)) { res <- try(uniroot(.profile.rma.uni, interval=c(con$tau2.min, x$tau2), tol=con$tol, maxiter=con$maxiter, extendInt="downX", obj=x, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } else { res <- try(uniroot(.profile.rma.uni, interval=c(con$tau2.min, x$tau2), tol=con$tol, maxiter=con$maxiter, obj=x, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } ### check if uniroot method converged if (!inherits(res, "try-error")) { tau2.lb <- res lb.conv <- TRUE } } } ### end search for lower bound ################################################################### ### start search for upper bound ### get diff value when setting component to tau2.max; this value should be positive (i.e., discrepancy must be larger than critical value) ### if it is not, then the upper bound must be above tau2.max res <- try(.profile.rma.uni(con$tau2.max, obj=x, confint=TRUE, objective=objective, verbose=verbose), silent=TRUE) if (!inherits(res, "try-error") && !is.na(res)) { if (!.isTRUE(ddd$extint) && res < 0) { tau2.ub <- con$tau2.max ub.conv <- TRUE ub.sign <- ">" } else { if (.isTRUE(ddd$extint)) { res <- try(uniroot(.profile.rma.uni, interval=c(x$tau2, con$tau2.max), tol=con$tol, maxiter=con$maxiter, extendInt="upX", obj=x, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } else { res <- try(uniroot(.profile.rma.uni, interval=c(x$tau2, con$tau2.max), tol=con$tol, maxiter=con$maxiter, obj=x, confint=TRUE, objective=objective, verbose=verbose, check.conv=TRUE)$root, silent=TRUE) } ### check if uniroot method converged if (!inherits(res, "try-error")) { tau2.ub <- res ub.conv <- TRUE } } } ### end search for upper bound ################################################################### } ###################################################################### ################# ### HT method ### ################# if (type == "ht") { if (!x$int.only) stop(mstyle$stop("Method only applicable to models without moderators.")) #if (x$method != "DL") # stop(mstyle$stop("Method only applicable when 'method=DL'.")) if (x$k <= 2) stop(mstyle$stop("Method only applicable when k > 2.")) if (x$QE > x$k) { se.lnH <- 1/2 * (log(x$QE) - log(x$k-1)) / (sqrt(2*x$QE) - sqrt(2*x$k-3)) } else { se.lnH <- sqrt(1 / (2*(x$k-2)) * (1 - 1/(3*(x$k-2)^2))) # as in Higgins and Thompson (2002), p. 1549 #se.lnH <- sqrt(1 / ((2*(x$k-2)) * (1 - 1/(3*(x$k-2)^2)))) # as in Borenstein et al. (2009), eq. 16.21 } crit <- qnorm(level/2, lower.tail=FALSE) lb.conv <- TRUE ub.conv <- TRUE #H2.lb <- exp(log(sqrt(x$H2)) - crit * se.lnH)^2 #H2.ub <- exp(log(sqrt(x$H2)) + crit * se.lnH)^2 H2.lb <- exp(log(x$H2) - crit * 2*se.lnH) # note: SE[log(H^2)] = 2*SE[log(H)] H2.ub <- exp(log(x$H2) + crit * 2*se.lnH) I2.lb <- (H2.lb - 1) / H2.lb I2.ub <- (H2.ub - 1) / H2.ub tau2.lb <- max(0, I2.lb * x$vt / (1 - I2.lb)) tau2.ub <- I2.ub * x$vt / (1 - I2.ub) } ###################################################################### if (is.element(type, c("wald","wald.log","wald.sqrt"))) { crit <- qnorm(level/2, lower.tail=FALSE) lb.conv <- TRUE ub.conv <- TRUE } ################### ### Wald method ### ################### if (type == "wald") { tau2.lb <- x$tau2 - crit * x$se.tau2 tau2.ub <- x$tau2 + crit * x$se.tau2 tau2.lb <- max(ifelse(is.null(x$control$tau2.min), 0, x$control$tau2.min), tau2.lb) } ####################### ### Wald.log method ### ####################### if (type == "wald.log") { if (x$tau2 >= 0) { tau2.lb <- exp(log(x$tau2) - crit * x$se.tau2 / x$tau2) tau2.ub <- exp(log(x$tau2) + crit * x$se.tau2 / x$tau2) tau2.ub <- max(x$tau2, tau2.ub) # if tau2 is 0, then CI is 0 to tau2 } } ######################## ### Wald.sqrt method ### ######################## if (type == "wald.sqrt") { if (x$tau2 >= 0) { tau2.lb <- (max(0, sqrt(x$tau2) - crit * x$se.tau2 / (2 * sqrt(x$tau2))))^2 tau2.ub <- (sqrt(x$tau2) + crit * x$se.tau2 / (2 * sqrt(x$tau2)))^2 } } ###################################################################### if (!lb.conv) warning(mstyle$warning("Error in iterative search for the lower bound."), call.=FALSE) if (!ub.conv) warning(mstyle$warning("Error in iterative search for the upper bound."), call.=FALSE) #if (lb.sign == "<" && con$tau2.min > 0) # warning(mstyle$warning("Lower bound < tau2.min. Try decreasing tau2.min (via the 'control' argument)."), call.=FALSE) #if (ub.sign == ">") # warning(mstyle$warning("Upper bound > tau2.max. Try increasing tau2.max (via the 'control' argument)."), call.=FALSE) ###################################################################### I2.lb <- 100 * tau2.lb / (x$vt + tau2.lb) I2.ub <- 100 * tau2.ub / (x$vt + tau2.ub) H2.lb <- tau2.lb / x$vt + 1 H2.ub <- tau2.ub / x$vt + 1 tau2 <- c(x$tau2, tau2.lb, tau2.ub) tau <- sqrt(c(ifelse(x$tau2 >= 0, x$tau2, NA_real_), ifelse(tau2.lb >= 0, tau2.lb, NA_real_), ifelse(tau2.ub >= 0, tau2.ub, NA_real_))) I2 <- c(x$I2, I2.lb, I2.ub) H2 <- c(x$H2, H2.lb, H2.ub) res.random <- rbind("tau^2"=tau2, "tau"=tau, "I^2(%)"=I2, "H^2"=H2) colnames(res.random) <- c("estimate", "ci.lb", "ci.ub") } ######################################################################### ######################################################################### ######################################################################### if (fixed) { if (is.element(x$test, c("knha","adhoc","t"))) { crit <- qt(level/2, df=x$ddf, lower.tail=FALSE) } else { crit <- qnorm(level/2, lower.tail=FALSE) } beta <- c(x$beta) ci.lb <- c(beta - crit * x$se) ci.ub <- c(beta + crit * x$se) if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] res.fixed <- cbind(estimate=beta, ci.lb=ci.lb, ci.ub=ci.ub) rownames(res.fixed) <- rownames(x$beta) } ######################################################################### ######################################################################### ######################################################################### res <- list() if (fixed) res$fixed <- res.fixed if (random) res$random <- res.random res$digits <- digits if (random) { res$ci.null <- ci.null res$lb.sign <- lb.sign res$ub.sign <- ub.sign res$tau2.min <- con$tau2.min } if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(res) <- "confint.rma" return(res) } metafor/R/model.matrix.rma.r0000644000176200001440000000225714515470703015470 0ustar liggesusersmodel.matrix.rma <- function(object, asdf=FALSE, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma") na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) ### note: lm() always returns X (never the full model matrix, even with na.exclude or na.pass) ### but it seems a bit more logical to actually return X.f in that case if (na.act == "na.omit") out <- object$X if (na.act == "na.exclude" || na.act == "na.pass") out <- object$X.f if (na.act == "na.fail" && any(!object$not.na)) stop(mstyle$stop("Missing values in results.")) if (asdf) out <- as.data.frame(out) if (inherits(object, "rma.ls")) { out <- list(location = out) if (na.act == "na.omit") out$scale <- object$Z if (na.act == "na.exclude" || na.act == "na.pass") out$scale <- object$Z.f if (na.act == "na.fail" && any(!object$not.na)) stop(mstyle$stop("Missing values in results.")) if (asdf) out$scale <- as.data.frame(out$scale) } return(out) } metafor/R/vcalc.r0000644000176200001440000004566214717377235013420 0ustar liggesusersvcalc <- function(vi, cluster, subgroup, obs, type, time1, time2, grp1, grp2, w1, w2, data, rho, phi, rvars, checkpd=TRUE, nearpd=FALSE, sparse=FALSE, ...) { mstyle <- .get.mstyle() ############################################################################ if (missing(vi)) stop(mstyle$stop("Must specify the 'vi' variable.")) if (missing(cluster)) stop(mstyle$stop("Must specify the 'cluster' variable.")) ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("nearPD", "retdat")) if (.isTRUE(ddd$nearPD)) nearpd <- TRUE ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data) && !missing(rvars)) stop(mstyle$stop("Must specify the 'data' argument when using 'rvars'.")) if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } subgroup.spec <- !missing(subgroup) type.spec <- !missing(type) obs.spec <- !missing(obs) grp1.spec <- !missing(grp1) grp2.spec <- !missing(grp2) time1.spec <- !missing(time1) time2.spec <- !missing(time2) w1.spec <- !missing(w1) w2.spec <- !missing(w2) mf <- match.call() vi <- .getx("vi", mf=mf, data=data, checknumeric=TRUE) cluster <- .getx("cluster", mf=mf, data=data) subgroup <- .getx("subgroup", mf=mf, data=data) type <- .getx("type", mf=mf, data=data) obs <- .getx("obs", mf=mf, data=data) grp1 <- .getx("grp1", mf=mf, data=data) grp2 <- .getx("grp2", mf=mf, data=data) time1 <- .getx("time1", mf=mf, data=data, checknumeric=TRUE) time2 <- .getx("time2", mf=mf, data=data, checknumeric=TRUE) w1 <- .getx("w1", mf=mf, data=data, checknumeric=TRUE) w2 <- .getx("w2", mf=mf, data=data, checknumeric=TRUE) ############################################################################ # to be able to quickly set vi to a constant (e.g., 1) for all rows if (length(vi) == 1L && length(cluster) > 1L) vi <- rep(vi, length(cluster)) k <- length(vi) if (k == 1L) stop(mstyle$stop("Processing terminated since k = 1.")) # could also do: return(matrix(vi, nrow=1, ncol=1)) ######################################################################### ### checks on cluster variable if (anyNA(cluster)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'cluster' (", length(cluster), ") does not match the length of 'vi' (", k, ")."))) ### checks on subgroup variable if (subgroup.spec) { if (anyNA(subgroup)) stop(mstyle$stop("No missing values allowed in 'subgroup' variable.")) if (length(subgroup) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'subgroup' (", length(subgroup), ") does not match the length of 'vi' (", k, ")."))) cluster <- paste0(cluster, ".", subgroup) } ucluster <- unique(cluster) n <- length(ucluster) ######################################################################### if (missing(rvars)) { ############################################################################ ### process type variable if (type.spec) { if (missing(rho)) stop(mstyle$stop("Must specify 'rho' when 'type' is specified.")) } else { type <- rep(1, k) } if (anyNA(type)) stop(mstyle$stop("No missing values allowed in 'type' variable.")) if (length(type) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'type' (", length(type), ") does not match the length of 'vi' (", k, ")."))) ### process obs variable if (obs.spec) { if (missing(rho)) stop(mstyle$stop("Must specify 'rho' when 'obs' is specified.")) } else { #obs <- ave(cluster, cluster, FUN=seq_along) obs <- rep(1, k) } if (anyNA(obs)) stop(mstyle$stop("No missing values allowed in 'obs' variable.")) if (length(obs) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'obs' (", length(obs), ") does not match the length of 'vi' (", k, ")."))) ### process grp1 and grp2 variables #if ((grp1.spec && !grp2.spec) || (!grp1.spec && grp2.spec)) # stop(mstyle$stop("Either specify both 'grp1' and 'grp2' or neither.")) if ((grp2.spec && !grp1.spec)) stop(mstyle$stop("Either specify only 'grp1', both 'grp1' and 'grp2', or neither.")) if (!grp1.spec) grp1 <- rep(1, k) if (!grp2.spec) grp2 <- rep(2, k) if (anyNA(grp1)) stop(mstyle$stop("No missing values allowed in 'grp1' variable.")) if (anyNA(grp2)) stop(mstyle$stop("No missing values allowed in 'grp2' variable.")) if (length(grp1) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'grp1' (", length(grp1), ") does not match the length of 'vi' (", k, ")."))) if (length(grp2) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'grp2' (", length(grp2), ") does not match the length of 'vi' (", k, ")."))) ### process time1 and time2 variables if ((time2.spec && !time1.spec)) stop(mstyle$stop("Either specify only 'time1', both 'time1' and 'time2', or neither.")) if (time2.spec && !grp2.spec) stop(mstyle$stop("Must specify 'grp2' when 'time2' is specified.")) if (!time1.spec) time1 <- rep(1, k) if (!time2.spec) time2 <- time1 if (time1.spec || time2.spec) { if (missing(phi)) stop(mstyle$stop("Must specify 'phi' when 'time1' and/or 'time2' is specified.")) } else { phi <- 1 } if (abs(phi) > 1) stop(mstyle$stop("Value of argument 'phi' must be in [-1,1].")) if (anyNA(time1)) stop(mstyle$stop("No missing values allowed in 'time1' variable.")) if (anyNA(time2)) stop(mstyle$stop("No missing values allowed in 'time2' variable.")) if (length(time1) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'time1' (", length(time1), ") does not match the length of 'vi' (", k, ")."))) if (length(time2) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'time2' (", length(time2), ") does not match the length of 'vi' (", k, ")."))) if (!is.numeric(time1)) stop(mstyle$stop("Variable 'time1' must be a numeric variable.")) if (!is.numeric(time2)) stop(mstyle$stop("Variable 'time2' must be a numeric variable.")) ### process w1 and w2 variables if ((w2.spec && !w1.spec)) stop(mstyle$stop("Either specify only 'w1', both 'w1' and 'w2', or neither.")) if (w2.spec && !grp2.spec) stop(mstyle$stop("Must specify 'grp2' when 'w2' is specified.")) if (!w1.spec) w1 <- rep(1, k) if (!w2.spec) w2 <- w1 if (anyNA(w1)) stop(mstyle$stop("No missing values allowed in 'w1' variable.")) if (anyNA(w2)) stop(mstyle$stop("No missing values allowed in 'w2' variable.")) if (length(w1) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'w1' (", length(w1), ") does not match the length of 'vi' (", k, ")."))) if (length(w2) != k) stop(mstyle$stop(paste0("Length of the variable specified via 'w2' (", length(w2), ") does not match the length of 'vi' (", k, ")."))) if (!is.numeric(w1)) stop(mstyle$stop("Variable 'w1' must be a numeric variable.")) if (!is.numeric(w2)) stop(mstyle$stop("Variable 'w2' must be a numeric variable.")) ############################################################################ ### process/create rho if (!missing(rho) && !(.is.vector(rho) || is.matrix(rho) || is.list(rho))) stop(mstyle$stop("Argument 'rho' must either be a vector, a matrix, or a list.")) if (type.spec) { if (obs.spec) { # both type and obs are specified if (.is.vector(rho)) { if (length(rho) != 2L) stop(mstyle$stop("When 'type' and 'obs' are both specified, 'rho' must specify both the within- and between-construct correlations.")) rho <- as.list(rho) } else { if (is.matrix(rho)) { stop(mstyle$stop("When 'type' and 'obs' are both specified, 'rho' must specify both the within- and between-construct correlations.")) } else { if (length(rho) != 2L) stop(mstyle$stop("When 'type' and 'obs' are both specified and 'rho' is a list, then it must have two elements.")) } } } else { # only type is specified if (.is.vector(rho)) { if (length(rho) != 1L) stop(mstyle$stop("When only 'type' is specified, 'rho' must be a scalar.")) rho <- list(0, rho) } else { if (is.matrix(rho)) { rho <- list(0, rho) } else { if (length(rho) != 1L) stop(mstyle$stop("When only 'type' is specified, 'rho' must have a single list element.")) rho <- list(0, rho[[1]]) } } } } else { if (obs.spec) { # only obs is specified if (.is.vector(rho)) { if (length(rho) != 1L) stop(mstyle$stop("When only 'obs' is specified, 'rho' must be a scalar.")) rho <- list(rho, 0) } else { if (is.matrix(rho)) { rho <- list(rho, 0) } else { if (length(rho) != 1L) stop(mstyle$stop("When only 'obs' is specified, 'rho' must have a single list element.")) rho <- list(rho[[1]], 0) } } } else { # neither type nor obs is specified rho <- list(0, 0) } } if (length(rho[[1]]) == 1L) { rho[[1]] <- matrix(rho[[1]], nrow=length(unique(obs)), ncol=length(unique(obs))) diag(rho[[1]]) <- 1 rownames(rho[[1]]) <- colnames(rho[[1]]) <- unique(obs) } if (length(rho[[2]]) == 1L) { rho[[2]] <- matrix(rho[[2]], nrow=length(unique(type)), ncol=length(unique(type))) diag(rho[[2]]) <- 1 rownames(rho[[2]]) <- colnames(rho[[2]]) <- unique(type) } if (any(!sapply(rho, .is.square))) stop(mstyle$stop("All matrices specified via 'rho' argument must be square matrices.")) if (any(abs(rho[[1]]) > 1) || any(abs(rho[[2]]) > 1)) stop(mstyle$stop("All correlations specified via 'rho' must be in [-1,1].")) if (is.null(dimnames(rho[[1]])) || is.null(dimnames(rho[[2]]))) stop(mstyle$stop("Any matrices specified via 'rho' must have dimension names.")) if (is.null(rownames(rho[[1]]))) rownames(rho[[1]]) <- colnames(rho[[1]]) if (is.null(rownames(rho[[2]]))) rownames(rho[[2]]) <- colnames(rho[[2]]) if (is.null(colnames(rho[[1]]))) colnames(rho[[1]]) <- rownames(rho[[1]]) if (is.null(colnames(rho[[2]]))) colnames(rho[[2]]) <- rownames(rho[[2]]) if (!all(unique(obs) %in% rownames(rho[[1]]))) stop("There are 'obs' values with no corresponding row/column in the correlation matrix.") if (!all(unique(type) %in% rownames(rho[[2]]))) stop("There are 'type' values with no corresponding row/column in the correlation matrix.") #return(rho) ############################################################################ #### turn obs and type into character variables to that [obs[i],obs[j]] and [type[i],type[j]] below work correctly obs <- as.character(obs) type <- as.character(type) ### construct R matrix if (sparse) { R <- Matrix(0, nrow=k, ncol=k) } else { R <- matrix(0, nrow=k, ncol=k) } cluster_set <- unique(cluster) for (cl in cluster_set) { cl_i <- which(cl == cluster) k_c <- length(cl_i) R_c <- matrix(0, nrow=k_c, ncol=k_c) diag(R_c) <- 1 if (k_c > 1L) { for (i in 2:k_c) { for (j in 1:i) { ci <- cl_i[i] cj <- cl_i[j] R_c[i,j] <- ifelse(type[ci]==type[cj], ifelse(obs[ci]==obs[cj], 1, rho[[1]][obs[ci],obs[cj]]), rho[[2]][type[ci],type[cj]]) * (ifelse(grp1[ci]==grp1[cj], ifelse(time1[ci]==time1[cj], 1, phi^abs(time1[ci]-time1[cj])), 0) * sqrt(1/w1[ci] * 1/w1[cj]) - ifelse(grp1[ci]==grp2[cj], ifelse(time1[ci]==time2[cj], 1, phi^abs(time1[ci]-time2[cj])), 0) * sqrt(1/w1[ci] * 1/w2[cj]) - ifelse(grp2[ci]==grp1[cj], ifelse(time2[ci]==time1[cj], 1, phi^abs(time2[ci]-time1[cj])), 0) * sqrt(1/w2[ci] * 1/w1[cj]) + ifelse(grp2[ci]==grp2[cj], ifelse(time2[ci]==time2[cj], 1, phi^abs(time2[ci]-time2[cj])), 0) * sqrt(1/w2[ci] * 1/w2[cj])) / (sqrt(1/w1[ci] + 1/w2[ci] - 2*ifelse(grp1[ci]==grp2[ci], ifelse(time1[ci]==time2[ci], 1, phi^abs(time1[ci]-time2[ci])), 0) * sqrt(1/w1[ci] * 1/w2[ci])) * sqrt(1/w1[cj] + 1/w2[cj] - 2*ifelse(grp1[cj]==grp2[cj], ifelse(time1[cj]==time2[cj], 1, phi^abs(time1[cj]-time2[cj])), 0) * sqrt(1/w1[cj] * 1/w2[cj]))) } } } R_c[upper.tri(R_c)] <- t(R_c)[upper.tri(R_c)] R[cl_i, cl_i] <- R_c } # diag(R) <- 1 # # for (i in 2:k) { # for (j in 1:i) { # if (cluster[i] == cluster[j]) { # # R[i,j] <- ifelse(type[i]==type[j], ifelse(obs[i]==obs[j], 1, rho[[1]][obs[i],obs[j]]), rho[[2]][type[i],type[j]]) * # (ifelse(grp1[i]==grp1[j], ifelse(time1[i]==time1[j], 1, phi^abs(time1[i]-time1[j])), 0) * sqrt(1/w1[i] * 1/w1[j]) - # ifelse(grp1[i]==grp2[j], ifelse(time1[i]==time2[j], 1, phi^abs(time1[i]-time2[j])), 0) * sqrt(1/w1[i] * 1/w2[j]) - # ifelse(grp2[i]==grp1[j], ifelse(time2[i]==time1[j], 1, phi^abs(time2[i]-time1[j])), 0) * sqrt(1/w2[i] * 1/w1[j]) + # ifelse(grp2[i]==grp2[j], ifelse(time2[i]==time2[j], 1, phi^abs(time2[i]-time2[j])), 0) * sqrt(1/w2[i] * 1/w2[j])) / # (sqrt(1/w1[i] + 1/w2[i] - 2*ifelse(grp1[i]==grp2[i], ifelse(time1[i]==time2[i], 1, phi^abs(time1[i]-time2[i])), 0) * sqrt(1/w1[i] * 1/w2[i])) * # sqrt(1/w1[j] + 1/w2[j] - 2*ifelse(grp1[j]==grp2[j], ifelse(time1[j]==time2[j], 1, phi^abs(time1[j]-time2[j])), 0) * sqrt(1/w1[j] * 1/w2[j]))) # # } # } # } # # R[upper.tri(R)] <- t(R)[upper.tri(R)] } else { ### when rvars are specified ### warn user if non-relevant arguments have been specified not.miss <- c(type.spec, obs.spec, grp1.spec, grp2.spec, time1.spec, time2.spec, w1.spec, w2.spec, !missing(rho), !missing(phi)) if (any(not.miss)) { args <- c("type", "obs", "grp1", "grp2", "time1", "time2", "w1", "w2", "rho", "phi") warning(mstyle$warning("Argument", ifelse(sum(not.miss) > 1, "s", ""), " '", paste0(args[not.miss], collapse=","), "' ignored for when 'rvars' is specified."), call.=FALSE) } ### get position of rvars in data nl <- as.list(seq_along(data)) names(nl) <- names(data) rvars <- try(eval(substitute(rvars), envir=nl, enclos=NULL), silent=TRUE) if (inherits(rvars, "try-error")) stop(mstyle$stop("Could not find all variables specified via 'rvars' in 'data'.")) ### get rvars from data has.colon <- grepl(":", deparse1(substitute(rvars)), fixed=TRUE) if (has.colon && length(rvars) == 2L) { rvars <- data[seq(from = rvars[1], to = rvars[2])] } else { rvars <- data[rvars] } ### check that number of rvars makes sense given the k per cluster k.cluster <- tapply(cluster, cluster, length) if (max(k.cluster) > length(rvars)) stop(mstyle$stop(paste0("There ", ifelse(length(rvars) == 1L, "is 1 variable ", paste0("are ", length(rvars), " variables ")), "specified via 'rvars', but there are clusters with more rows."))) if (max(k.cluster) != length(rvars)) stop(mstyle$stop(paste0("There ", ifelse(length(rvars) == 1L, "is 1 variable ", paste0("are ", length(rvars), " variables ")), "specified via 'rvars', but no cluster with this many rows."))) ### construct R matrix based on rvars R <- list() for (i in seq_len(n)) { x <- rvars[cluster == ucluster[i],] x <- x[seq_len(nrow(x))] if (anyNA(x[lower.tri(x, diag=TRUE)])) warning(mstyle$warning(paste0("There are missing values in 'rvals' for cluster ", ucluster[i], ".")), call.=FALSE) x[upper.tri(x)] <- t(x)[upper.tri(x)] R[[i]] <- as.matrix(x) } names(R) <- ucluster #R <- lapply(split(rvars, cluster), function(x) { # k <- nrow(x) # x <- x[seq_len(k)] # x[upper.tri(x)] <- t(x)[upper.tri(x)] # as.matrix(x) # }) #R <- bldiag(R, order=cluster) R <- bldiag(R) R <- Matrix(R, sparse=TRUE) } #return(R) ############################################################################ ### check that 'R' is positive definite in each cluster if (checkpd || nearpd) { for (i in seq_len(n)) { Ri <- R[cluster == ucluster[i], cluster == ucluster[i]] if (!anyNA(Ri) && !.chkpd(Ri)) { if (nearpd) { Ri <- try(as.matrix(nearPD(Ri, corr=TRUE)$mat), silent=TRUE) if (inherits(Ri, "try-error")) { warning(mstyle$warning(paste0("Using nearPD() failed in cluster ", ucluster[i], ".")), call.=FALSE) } else { if (!anyNA(Ri) && !.chkpd(Ri)) warning(mstyle$warning(paste0("The var-cov matrix still appears to be not positive definite in cluster ", ucluster[i], " even after nearPD().")), call.=FALSE) R[cluster == ucluster[i], cluster == ucluster[i]] <- Ri } } else { warning(mstyle$warning(paste0("The var-cov matrix appears to be not positive definite in cluster ", ucluster[i], ".")), call.=FALSE) } } } } ############################################################################ ### turn R into V vi <- as.vector(vi) S <- Diagonal(k, sqrt(vi)) V <- S %*% R %*% S if (!sparse) V <- as.matrix(V) if (.isTRUE(ddd$retdat)) V <- data.frame(cluster, type, obs, grp1, grp2, time1, time2, w1, w2, vi, V=V) return(V) } metafor/R/confint.rma.mh.r0000644000176200001440000000420614717355532015132 0ustar liggesusersconfint.rma.mh <- function(object, parm, level, digits, transf, targs, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="rma.mh") if (!missing(parm)) warning(mstyle$warning("Argument 'parm' (currently) ignored."), call.=FALSE) x <- object if (missing(level)) level <- x$level if (missing(digits)) { digits <- .get.digits(xdigits=x$digits, dmiss=TRUE) } else { digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) } if (missing(transf)) transf <- FALSE if (missing(targs)) targs <- NULL ddd <- list(...) .chkdots(ddd, c("time")) if (.isTRUE(ddd$time)) time.start <- proc.time() ######################################################################### level <- .level(level) crit <- qnorm(level/2, lower.tail=FALSE) beta <- x$beta ci.lb <- beta - crit * x$se ci.ub <- beta + crit * x$se ### if requested, apply transformation function if (.isTRUE(transf) && is.element(x$measure, c("OR","RR","IRR"))) # if transf=TRUE, apply exp transformation to ORs, RRs, and IRRs transf <- exp if (is.function(transf)) { if (is.null(targs)) { beta <- sapply(beta, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { if (!is.primitive(transf) && !is.null(targs) && length(formals(transf)) == 1L) stop(mstyle$stop("Function specified via 'transf' does not appear to have an argument for 'targs'.")) beta <- sapply(beta, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } } ### make sure order of intervals is always increasing tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] ######################################################################### res <- cbind(estimate=beta, ci.lb, ci.ub) res <- list(fixed=res) rownames(res$fixed) <- "" res$digits <- digits if (.isTRUE(ddd$time)) { time.end <- proc.time() .print.time(unname(time.end - time.start)[3]) } class(res) <- "confint.rma" return(res) } metafor/R/qqnorm.rma.glmm.r0000644000176200001440000000020014515471100015307 0ustar liggesusersqqnorm.rma.glmm <- function(y, ...) { mstyle <- .get.mstyle() .chkclass(class(y), must="rma.glmm", notav="rma.glmm") } metafor/R/rma.glmm.r0000644000176200001440000035423314717377703014037 0ustar liggesusersrma.glmm <- function(ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, xi, mi, ti, ni, mods, measure, data, slab, subset, add=1/2, to="only0", drop00=TRUE, intercept=TRUE, model="UM.FS", method="ML", coding=1/2, cor=FALSE, test="z", level=95, btt, nAGQ=7, verbose=FALSE, digits, control, ...) { ######################################################################### ###### setup mstyle <- .get.mstyle() ### check argument specifications ### (arguments "to" and "vtype" are checked inside escalc function) if (missing(measure)) stop(mstyle$stop("Must specify the 'measure' argument.")) if (!is.element(measure, c("OR","IRR","PLO","IRLN", "PR","RR","RD","PLN"))) stop(mstyle$stop("Unknown 'measure' specified.")) if (!is.element(method, c("FE","EE","CE","ML"))) stop(mstyle$stop("Unknown 'method' specified.")) if (!is.element(coding, c(1/2, 1, 0))) stop(mstyle$stop("Unknown 'coding' option specified.")) ### in case user specified more than one add/to value (as one can do with rma.mh() and rma.peto()) ### (never apply any kind of continuity correction to the data used in the actual model fitting for models implemented in this function) if (length(add) > 1L) add <- add[1] if (length(to) > 1L) to <- to[1] ### model argument only relevant for 2x2 table data (measure="OR") and for 2-group rate data (measure="IRR") ### UM.FS/UM.RS = unconditional GLMM with fixed/random study effects (logistic or poisson mixed-effects model with fixed/random intercepts) ### CM.EL/CM.AL = conditional GLMM (exact/approximate) (hypergeometric or conditional logistic model) ### BV/MV = bi/multivariate model (logistic or poisson mixed-effects model with unstructured covariance matrix) -- not implemented if (!is.element(model, c("UM.FS","UM.RS","CM.EL","CM.AL"))) stop(mstyle$stop("Unknown 'model' specified.")) ### no need for CM.AL for IRR -- use CM.EL if (model == "CM.AL" && measure == "IRR") model <- "CM.EL" ### check if user changed model for measures where this is not relevant; if so, issue a warning if (is.element(measure, c("PLO","PR","PLN","IRLN")) && !is.null(match.call()$model)) warning(mstyle$warning("Argument 'model' not relevant for this outcome measure."), call.=FALSE) ### warning about experimental measures if (!is.element(measure, c("OR","IRR","PLO","IRLN"))) warning(mstyle$warning("The use of this 'measure' is experimental - treat results with caution."), call.=FALSE) if (is.element(model, c("CM.EL","CM.AL")) && is.element(measure, c("RR","RD"))) stop(mstyle$stop("Cannot use this measure with model='CM.EL' or model='CM.AL'.")) na.act <- getOption("na.action") on.exit(options(na.action=na.act), add=TRUE) if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(control)) control <- list() time.start <- proc.time() ### get ... argument and check for extra/superfluous arguments ddd <- list(...) .chkdots(ddd, c("vtype", "tdist", "outlist", "onlyo1", "addyi", "addvi", "time", "retdat", "family", "retfit", "skiphet", "i2def", "link")) if (is.null(ddd$vtype)) { vtype <- "LS" } else { vtype <- ddd$vtype } ### handle 'tdist' argument from ... (note: overrides test argument) if (.isFALSE(ddd$tdist)) test <- "z" if (.isTRUE(ddd$tdist)) test <- "t" if (!is.element(test, c("z", "t"))) stop(mstyle$stop("Invalid option selected for 'test' argument.")) ### set defaults or get onlyo1, addyi, and addvi arguments onlyo1 <- .chkddd(ddd$onlyo1, FALSE) addyi <- .chkddd(ddd$addyi, TRUE) addvi <- .chkddd(ddd$addvi, TRUE) ### set default for i2def i2def <- .chkddd(ddd$i2def, "1") ### set defaults for digits if (missing(digits)) { digits <- .set.digits(dmiss=TRUE) } else { digits <- .set.digits(digits, dmiss=FALSE) } ### set default for formula.mods formula.mods <- NULL ### set options(warn=1) if verbose > 2 if (verbose > 2) { opwarn <- options(warn=1) on.exit(options(warn=opwarn$warn), add=TRUE) } if (is.null(ddd$link)) { if (measure=="OR" || measure=="PLO") link <- "logit" if (measure=="RR" || measure=="PLN") link <- "log" if (measure=="RD" || measure=="PR") link <- "identity" if (measure=="IRR" || measure=="IRLN") link <- "log" } else { link <- ddd$link } ######################################################################### if (verbose) .space() if (verbose > 1) message(mstyle$message("Extracting the data and computing yi/vi values ...")) ### check if data argument has been specified if (missing(data)) data <- NULL if (is.null(data)) { data <- sys.frame(sys.parent()) } else { if (!is.data.frame(data)) data <- data.frame(data) } mf <- match.call() ### extract slab, subset, and mods values, possibly from the data frame specified via data (arguments not specified are NULL) slab <- .getx("slab", mf=mf, data=data) subset <- .getx("subset", mf=mf, data=data) mods <- .getx("mods", mf=mf, data=data) ai <- bi <- ci <- di <- x1i <- x2i <- t1i <- t2i <- xi <- mi <- ti <- NA_real_ ### calculate yi and vi values if (is.element(measure, c("OR","RR","RD"))) { ai <- .getx("ai", mf=mf, data=data, checknumeric=TRUE) bi <- .getx("bi", mf=mf, data=data, checknumeric=TRUE) ci <- .getx("ci", mf=mf, data=data, checknumeric=TRUE) di <- .getx("di", mf=mf, data=data, checknumeric=TRUE) n1i <- .getx("n1i", mf=mf, data=data, checknumeric=TRUE) n2i <- .getx("n2i", mf=mf, data=data, checknumeric=TRUE) if (is.null(bi)) bi <- n1i - ai if (is.null(di)) di <- n2i - ci k <- length(ai) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) ai <- .getsubset(ai, subset) bi <- .getsubset(bi, subset) ci <- .getsubset(ci, subset) di <- .getsubset(di, subset) } args <- list(ai=ai, bi=bi, ci=ci, di=di, add=add, to=to, drop00=drop00, onlyo1=onlyo1, addyi=addyi, addvi=addvi) } if (is.element(measure, c("IRR"))) { x1i <- .getx("x1i", mf=mf, data=data, checknumeric=TRUE) x2i <- .getx("x2i", mf=mf, data=data, checknumeric=TRUE) t1i <- .getx("t1i", mf=mf, data=data, checknumeric=TRUE) t2i <- .getx("t2i", mf=mf, data=data, checknumeric=TRUE) k <- length(x1i) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) x1i <- .getsubset(x1i, subset) x2i <- .getsubset(x2i, subset) t1i <- .getsubset(t1i, subset) t2i <- .getsubset(t2i, subset) } args <- list(x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, add=add, to=to, drop00=drop00, onlyo1=onlyo1, addyi=addyi, addvi=addvi) } if (is.element(measure, c("PLO","PR","PLN"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) mi <- .getx("mi", mf=mf, data=data, checknumeric=TRUE) ni <- .getx("ni", mf=mf, data=data, checknumeric=TRUE) if (is.null(mi)) mi <- ni - xi k <- length(xi) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) xi <- .getsubset(xi, subset) mi <- .getsubset(mi, subset) } args <- list(xi=xi, mi=mi, add=add, to=to, onlyo1=onlyo1, addyi=addyi, addvi=addvi) } if (is.element(measure, c("IRLN"))) { xi <- .getx("xi", mf=mf, data=data, checknumeric=TRUE) ti <- .getx("ti", mf=mf, data=data, checknumeric=TRUE) k <- length(xi) # number of outcomes before subsetting k.all <- k if (!is.null(subset)) { subset <- .chksubset(subset, k) xi <- .getsubset(xi, subset) ti <- .getsubset(ti, subset) } args <- list(xi=xi, ti=ti, add=add, to=to, onlyo1=onlyo1, addyi=addyi, addvi=addvi) } args <- c(args, list(measure=measure, vtype=vtype)) dat <- .do.call(escalc, args) yi <- dat$yi # one or more yi/vi pairs may be NA/NA (note: yi/vi pairs that are NA/NA may still have 'valid' table data) vi <- dat$vi # one or more yi/vi pairs may be NA/NA (note: yi/vi pairs that are NA/NA may still have 'valid' table data) ni <- attr(yi, "ni") # unadjusted total sample sizes (ni.u in escalc) ### study ids (1:k sequence before subsetting) ids <- seq_len(k) ######################################################################### if (verbose > 1) message(mstyle$message("Creating the model matrix ...")) ### convert mods formula to X matrix and set intercept equal to FALSE if (inherits(mods, "formula")) { formula.mods <- mods if (isTRUE(all.equal(formula.mods, ~ 1))) { # needed so 'mods = ~ 1' without 'data' specified works mods <- matrix(1, nrow=k, ncol=1) intercept <- FALSE } else { options(na.action = "na.pass") # set na.action to na.pass, so that NAs are not filtered out (we'll do that later) mods <- model.matrix(mods, data=data) # extract model matrix attr(mods, "assign") <- NULL # strip assign attribute (not needed at the moment) options(na.action = na.act) # set na.action back to na.act intercept <- FALSE # set to FALSE since formula now controls whether the intercept is included or not } } ### turn a vector for mods into a column vector if (.is.vector(mods)) mods <- cbind(mods) ### turn a mods data frame into a matrix if (is.data.frame(mods)) mods <- as.matrix(mods) ### check if model matrix contains character variables if (is.character(mods)) stop(mstyle$stop("Model matrix contains character variables.")) ### check if mods matrix has the right number of rows if (!is.null(mods) && nrow(mods) != k) stop(mstyle$stop(paste0("Number of rows in the model matrix (", nrow(mods), ") do not match the length of the the outcome vector (", k, ")."))) ### generate study labels if none are specified if (verbose > 1) message(mstyle$message("Generating/extracting the study labels ...")) if (is.null(slab)) { slab.null <- TRUE slab <- ids } else { if (anyNA(slab)) stop(mstyle$stop("NAs in study labels.")) if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the size of the dataset (", k, ")."))) if (is.factor(slab)) slab <- as.character(slab) slab.null <- FALSE } ### if a subset of studies is specified (note: tables, yi/vi, and ni are already subsetted above) if (!is.null(subset)) { if (verbose > 1) message(mstyle$message("Subsetting ...")) mods <- .getsubset(mods, subset) slab <- .getsubset(slab, subset) ids <- .getsubset(ids, subset) } ### check if study labels are unique; if not, make them unique if (anyDuplicated(slab)) slab <- .make.unique(slab) ### add slab attribute back attr(yi, "slab") <- slab k <- length(yi) # number of tables/outcomes after subsetting (can all still include NAs) ### if drop00=TRUE, set counts to NA for studies that have no events (or all events) in both arms (corresponding yi/vi will also be NA/NA then) if (is.element(measure, c("OR","RR","RD"))) { if (drop00) { id00 <- c(ai == 0L & ci == 0L) | c(bi == 0L & di == 0L) id00[is.na(id00)] <- FALSE ai[id00] <- NA_real_ bi[id00] <- NA_real_ ci[id00] <- NA_real_ di[id00] <- NA_real_ } } if (is.element(measure, c("IRR"))) { if (drop00) { id00 <- c(x1i == 0L & x2i == 0L) id00[is.na(id00)] <- FALSE x1i[id00] <- NA_real_ x2i[id00] <- NA_real_ } } ### save full data (including potential NAs in table data, yi/vi/ni/mods) (after subsetting) outdat.f <- list(ai=ai, bi=bi, ci=ci, di=di, x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, xi=xi, mi=mi, ni=ni, ti=ti) yi.f <- yi vi.f <- vi ni.f <- ni mods.f <- mods k.f <- k # total number of tables/outcomes and rows in the model matrix (including all NAs) ### check for NAs in tables (and corresponding mods) and act accordingly if (is.element(measure, c("OR","RR","RD"))) { has.na <- is.na(ai) | is.na(bi) | is.na(ci) | is.na(di) | (if (is.null(mods)) FALSE else apply(is.na(mods), 1, any)) not.na <- !has.na if (any(has.na)) { if (verbose > 1) message(mstyle$message("Handling NAs in the table data ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { ai <- ai[not.na] bi <- bi[not.na] ci <- ci[not.na] di <- di[not.na] mods <- mods[not.na,,drop=FALSE] k <- length(ai) warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from model fitting.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in studies.")) } } if (is.element(measure, "IRR")) { has.na <- is.na(x1i) | is.na(x2i) | is.na(t1i) | is.na(t2i) | (if (is.null(mods)) FALSE else apply(is.na(mods), 1, any)) not.na <- !has.na if (any(has.na)) { if (verbose > 1) message(mstyle$message("Handling NAs in the table data ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { x1i <- x1i[not.na] x2i <- x2i[not.na] t1i <- t1i[not.na] t2i <- t2i[not.na] mods <- mods[not.na,,drop=FALSE] k <- length(x1i) warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from model fitting.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in studies.")) } } if (is.element(measure, c("PLO","PR","PLN"))) { has.na <- is.na(xi) | is.na(mi) | (if (is.null(mods)) FALSE else apply(is.na(mods), 1, any)) not.na <- !has.na if (any(has.na)) { if (verbose > 1) message(mstyle$message("Handling NAs in the table data ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { xi <- xi[not.na] mi <- mi[not.na] mods <- mods[not.na,,drop=FALSE] k <- length(xi) warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from model fitting.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in studies.")) } } if (is.element(measure, "IRLN")) { has.na <- is.na(xi) | is.na(ti) | (if (is.null(mods)) FALSE else apply(is.na(mods), 1, any)) not.na <- !has.na if (any(has.na)) { if (verbose > 1) message(mstyle$message("Handling NAs in the table data ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { xi <- xi[not.na] ti <- ti[not.na] mods <- mods[not.na,,drop=FALSE] k <- length(xi) warning(mstyle$warning(paste(sum(has.na), ifelse(sum(has.na) > 1, "studies", "study"), "with NAs omitted from model fitting.")), call.=FALSE) } if (na.act == "na.fail") stop(mstyle$stop("Missing values in studies.")) } } ### note: k = number of tables (and corresponding rows of 'mods') after removing NAs ### k.f = total number of tables/outcomes and rows in the model matrix (including all NAs) stored in .f elements ### at least one study left? if (k < 1L) stop(mstyle$stop("Processing terminated since k = 0.")) ### check for NAs in yi/vi and act accordingly (yi/vi pair can be NA/NA if add=0 is used) ### note: if a table was removed because of NAs in mods, must also remove the corresponding yi/vi pair; ### also, must use mods.f here, since NAs in mods were already removed above (and need a separate ### mods.yi element, so that dimensions of the model matrix and vi are guaranteed to match up) mods.yi <- mods.f yivi.na <- is.na(yi) | is.na(vi) | (if (is.null(mods.yi)) FALSE else apply(is.na(mods.yi), 1, any)) not.na.yivi <- !yivi.na if (any(yivi.na)) { if (verbose > 1) message(mstyle$message("Handling NAs in yi/vi ...")) if (na.act == "na.omit" || na.act == "na.exclude" || na.act == "na.pass") { yi <- yi[not.na.yivi] ni <- ni[not.na.yivi] vi <- vi[not.na.yivi] mods.yi <- mods.f[not.na.yivi,,drop=FALSE] warning(mstyle$warning("Some yi/vi values are NA."), call.=FALSE) attr(yi, "measure") <- measure # add measure attribute back attr(yi, "ni") <- ni # add ni attribute back } if (na.act == "na.fail") stop(mstyle$stop("Missing yi/vi values.")) } k.yi <- length(yi) # number of yi/vi pairs that are not NA ### make sure that there is at least one column in X if (is.null(mods) && !intercept) { warning(mstyle$warning("Must either include an intercept and/or moderators in model.\nCoerced intercept into the model."), call.=FALSE) intercept <- TRUE } if (!is.null(mods) && ncol(mods) == 0L) { warning(mstyle$warning("Cannot fit model with an empty model matrix. Coerced intercept into the model."), call.=FALSE) intercept <- TRUE } ### add vector of 1s to the X matrix for the intercept (if intercept=TRUE) if (intercept) { X <- cbind(intrcpt=rep(1,k), mods) X.f <- cbind(intrcpt=rep(1,k.f), mods.f) X.yi <- cbind(intrcpt=rep(1,k.yi), mods.yi) } else { X <- mods X.f <- mods.f X.yi <- mods.yi } ### drop redundant predictors ### note: yi may have become shorter than X due to the omission of NAs, so just use a fake yi vector here tmp <- lm(rep(0,k) ~ X - 1) coef.na <- is.na(coef(tmp)) if (any(coef.na)) { warning(mstyle$warning("Redundant predictors dropped from the model."), call.=FALSE) X <- X[,!coef.na,drop=FALSE] X.f <- X.f[,!coef.na,drop=FALSE] } ### need to do this separately for X.yi, since model matrix may have fewer rows due to removal of NA/NA pairs for yi/vi tmp <- lm(yi ~ X.yi - 1) coef.na <- is.na(coef(tmp)) if (any(coef.na)) X.yi <- X.yi[,!coef.na,drop=FALSE] ### check whether intercept is included and if yes, move it to the first column (NAs already removed, so na.rm=TRUE for any() not necessary) is.int <- apply(X, 2, .is.intercept) if (any(is.int)) { int.incl <- TRUE int.indx <- which(is.int, arr.ind=TRUE) X <- cbind(intrcpt=1, X[,-int.indx, drop=FALSE]) # note: this removes any duplicate intercepts X.f <- cbind(intrcpt=1, X.f[,-int.indx, drop=FALSE]) # note: this removes any duplicate intercepts intercept <- TRUE # set intercept appropriately so that the predict() function works } else { int.incl <- FALSE } ### need to do this separately for X.yi, since model matrix may have fewer rows due to removal of NA/NA pairs for yi/vi is.int <- apply(X.yi, 2, .is.intercept) if (any(is.int)) { int.indx <- which(is.int, arr.ind=TRUE) X.yi <- cbind(intrcpt=1, X.yi[,-int.indx, drop=FALSE]) # note: this removes any duplicate intercepts } p <- NCOL(X) # number of columns in X (including the intercept if it is included) ### note: number of columns in X.yi may be lower than p; but computation of I^2 below is based on p ### make sure variable names in X are unique colnames(X) <- colnames(X.f) <- .make.unique(colnames(X)) ### check whether this is an intercept-only model if ((p == 1L) && .is.intercept(X)) { int.only <- TRUE } else { int.only <- FALSE } ### check if there are too many parameters for given k if (is.element(method, c("FE","EE","CE")) && p > k) stop(mstyle$stop("Number of parameters to be estimated is larger than the number of observations.")) if (!is.element(method, c("FE","EE","CE")) && (p+1) > k) stop(mstyle$stop("Number of parameters to be estimated is larger than the number of observations.")) ### set/check 'btt' argument btt <- .set.btt(btt, p, int.incl, colnames(X)) m <- length(btt) # number of betas to test (m = p if all betas are tested) ######################################################################### ### set defaults for control parameters con <- list(verbose = FALSE, # also passed on to glm/glmer/optim/nlminb/minqa (uobyqa/newuoa/bobyqa) package="lme4", # package for fitting logistic mixed-effects models ("lme4", "GLMMadaptive", "glmmTMB") optimizer = "nlminb", # optimizer to use for CM.EL+OR ("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","clogit","clogistic","Rcgmin","Rvmmin") optmethod = "BFGS", # argument 'method' for optim() ("Nelder-Mead" and "BFGS" are sensible options) parallel = list(), # parallel argument for optimParallel() (note: 'cl' argument in parallel is not passed; this is directly specified via 'cl') cl = NULL, # arguments for optimParallel() ncpus = 1L, # arguments for optimParallel() scaleX = TRUE, # whether non-dummy variables in the X matrix should be rescaled before model fitting evtol = 1e-07, # lower bound for eigenvalues to determine if model matrix is positive definite dnchgcalc = "dFNCHypergeo", # method for calculating dnchg ("dFNCHypergeo" from BiasedUrn package or "dnoncenhypergeom") dnchgprec = 1e-10, # precision for dFNCHypergeo() hesspack = "numDeriv", # package for computing the Hessian (numDeriv or pracma) tau2tol = 1e-04) # for "CM.EL" + "ML", threshold for treating tau^2 values as effectively equal to 0 ### replace defaults with any user-defined values con.pos <- pmatch(names(control), names(con)) con[c(na.omit(con.pos))] <- control[!is.na(con.pos)] if (verbose) con$verbose <- verbose verbose <- con$verbose optimizer <- match.arg(con$optimizer, c("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","clogit","clogistic","Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent","Rcgmin","Rvmmin")) optmethod <- match.arg(con$optmethod, c("Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent")) if (optimizer %in% c("Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent")) { optmethod <- optimizer optimizer <- "optim" } package <- match.arg(con$package, c("lme4","GLMMadaptive","glmmTMB")) parallel <- con$parallel cl <- con$cl ncpus <- con$ncpus if (con$dnchgcalc != "dnoncenhypergeom" && con$dnchgcalc != "dFNCHypergeo") stop(mstyle$stop("Unknown dnchgcalc method specified.")) if (is.element(optimizer, c("clogit","clogistic")) && method == "ML") stop(mstyle$stop("Cannot use 'clogit' or 'clogistic' with method='ML'.")) if (package == "lme4" && is.element(measure, c("OR","RR","RD","IRR")) && model == "UM.RS" && method == "ML" && nAGQ > 1) { warning(mstyle$warning("Not possible to fit RE/ME model='UM.RS' with nAGQ > 1 with glmer(). nAGQ automatically set to 1."), call.=FALSE) nAGQ <- 1 } ### if control argument 'ncpus' is larger than 1, automatically switch to optimParallel optimizer if (ncpus > 1L) optimizer <- "optimParallel" pos.optCtrl <- pmatch(names(control), "optCtrl", nomatch=0) if (sum(pos.optCtrl) > 0) { optCtrl <- control[[which(pos.optCtrl == 1)]] } else { optCtrl <- list() } ### set NLOPT_LN_BOBYQA as the default algorithm for nloptr optimizer ### and by default use a relative convergence criterion of 1e-8 on the function value if (optimizer == "nloptr" && !is.element("algorithm", names(optCtrl))) optCtrl$algorithm <- "NLOPT_LN_BOBYQA" if (optimizer == "nloptr" && !is.element("ftol_rel", names(optCtrl))) optCtrl$ftol_rel <- 1e-8 ### for mads, set trace=FALSE and tol=1e-6 by default if (optimizer == "mads" && !is.element("trace", names(optCtrl))) optCtrl$trace <- FALSE if (optimizer == "mads" && !is.element("tol", names(optCtrl))) optCtrl$tol <- 1e-6 ### for subplex, set reltol=1e-8 by default (the default in subplex() is .Machine$double.eps) if (optimizer == "subplex" && !is.element("reltol", names(optCtrl))) optCtrl$reltol <- 1e-8 ### for BBoptim, set trace=FALSE by default if (optimizer == "BBoptim" && !is.element("trace", names(optCtrl))) optCtrl$trace <- FALSE if (optimizer == "optim") { con.pos <- pmatch(names(optCtrl), "REPORT", nomatch=0) # set REPORT to 1 if it is not already set by the user if (sum(con.pos) > 0) { names(optCtrl)[which(con.pos == 1)] <- "REPORT" } else { optCtrl$REPORT <- 1 } optCtrl$trace <- con$verbose # trace for optim is a non-negative integer } if (optimizer == "nlminb") optCtrl$trace <- ifelse(con$verbose > 0, 1, 0) # set trace to 1, so information is printed every iteration if (is.element(optimizer, c("uobyqa", "newuoa", "bobyqa"))) optCtrl$iprint <- ifelse(con$verbose > 0, 3, 0) # set iprint to 3 for maximum information pos.clogitCtrl <- pmatch(names(control), "clogitCtrl", nomatch=0) if (sum(pos.clogitCtrl) > 0) { clogitCtrl <- control[[which(pos.clogitCtrl == 1)]] } else { clogitCtrl <- list() } pos.clogisticCtrl <- pmatch(names(control), "clogisticCtrl", nomatch=0) if (sum(pos.clogisticCtrl) > 0) { clogisticCtrl <- control[[which(pos.clogisticCtrl == 1)]] } else { clogisticCtrl <- list() } pos.glmCtrl <- pmatch(names(control), "glmCtrl", nomatch=0) if (sum(pos.glmCtrl) > 0) { glmCtrl <- control[[which(pos.glmCtrl == 1)]] } else { glmCtrl <- list() } glmCtrl$trace <- ifelse(con$verbose > 0, TRUE, FALSE) # trace for glmCtrl is logical pos.glmerCtrl <- pmatch(names(control), "glmerCtrl", nomatch=0) if (sum(pos.glmerCtrl) > 0) { glmerCtrl <- control[[which(pos.glmerCtrl == 1)]] } else { glmerCtrl <- list() } pos.intCtrl <- pmatch(names(control), "intCtrl", nomatch=0) if (sum(pos.intCtrl) > 0) { intCtrl <- control[[which(pos.intCtrl == 1)]] } else { intCtrl <- list() } con.pos <- pmatch(names(intCtrl), "lower", nomatch=0) if (sum(con.pos) > 0) { names(intCtrl)[which(con.pos == 1)] <- "lower" } else { intCtrl$lower <- -Inf } con.pos <- pmatch(names(intCtrl), "upper", nomatch=0) if (sum(con.pos) > 0) { names(intCtrl)[which(con.pos == 1)] <- "upper" } else { intCtrl$upper <- Inf } con.pos <- pmatch(names(intCtrl), "subdivisions", nomatch=0) if (sum(con.pos) > 0) { names(intCtrl)[which(con.pos == 1)] <- "subdivisions" } else { intCtrl$subdivisions <- 100L } con.pos <- pmatch(names(intCtrl), "rel.tol", nomatch=0) if (sum(con.pos) > 0) { names(intCtrl)[which(con.pos == 1)] <- "rel.tol" } else { intCtrl$rel.tol <- .Machine$double.eps^0.25 } pos.hessianCtrl <- pmatch(names(control), "hessianCtrl", nomatch=0) if (sum(pos.hessianCtrl) > 0) { hessianCtrl <- control[[which(pos.hessianCtrl == 1)]] } else { hessianCtrl <- list(r=16) } #return(list(verbose=verbose, optimizer=optimizer, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec, optCtrl=optCtrl, glmCtrl=glmCtrl, glmerCtrl=glmerCtrl, intCtrl=intCtrl, hessianCtrl=hessianCtrl)) ######################################################################### ### check that the required packages are installed if (is.element(measure, c("OR","RR","RD","IRR"))) { if ((model == "UM.FS" && method == "ML") || (model == "UM.RS") || (model == "CM.AL" && method == "ML") || (model == "CM.EL" && method == "ML")) { if (!requireNamespace(package, quietly=TRUE)) stop(mstyle$stop(paste0("Please install the '", package, "' package to fit this model."))) } } if (is.element(measure, c("PLO","PR","PLN","IRLN")) && method == "ML") { if (!requireNamespace(package, quietly=TRUE)) stop(mstyle$stop(paste0("Please install the '", package, "' package to fit this model."))) } if (measure == "OR" && model == "CM.EL") { if (is.element(optimizer, c("uobyqa","newuoa","bobyqa"))) { if (!requireNamespace("minqa", quietly=TRUE)) stop(mstyle$stop("Please install the 'minqa' package to fit this model.")) } if (is.element(optimizer, c("nloptr","ucminf","lbfgsb3c","subplex","optimParallel"))) { if (!requireNamespace(optimizer, quietly=TRUE)) stop(mstyle$stop(paste0("Please install the '", optimizer, "' package to use this optimizer."))) } if (is.element(optimizer, c("hjk","nmk","mads"))) { if (!requireNamespace("dfoptim", quietly=TRUE)) stop(mstyle$stop("Please install the 'dfoptim' package to use this optimizer.")) } if (optimizer == "BBoptim") { if (!requireNamespace("BB", quietly=TRUE)) stop(mstyle$stop("Please install the 'BB' package to use this optimizer.")) } if (is.element(optimizer, c("Rcgmin","Rvmmin"))) { if (!requireNamespace("optimx", quietly=TRUE)) stop(mstyle$stop(paste0("Please install the 'optimx' package to use this optimizer."))) } if (is.element(optimizer, c("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","Rcgmin","Rvmmin"))) { con$hesspack <- match.arg(con$hesspack, c("numDeriv","pracma","calculus")) if (!requireNamespace(con$hesspack, quietly=TRUE)) stop(mstyle$stop(paste0("Please install the '", con$hesspack, "' package to fit this model."))) if (con$dnchgcalc == "dFNCHypergeo") { if (!requireNamespace("BiasedUrn", quietly=TRUE)) stop(mstyle$stop("Please install the 'BiasedUrn' package to fit this model.")) } } if (optimizer == "clogit") { if (!requireNamespace("survival", quietly=TRUE)) stop(mstyle$stop("Please install the 'survival' package to fit this model.")) coxph <- survival::coxph Surv <- survival::Surv clogit <- survival::clogit strata <- survival::strata } if (optimizer == "clogistic") { if (!requireNamespace("Epi", quietly=TRUE)) stop(mstyle$stop("Please install the 'Epi' package to fit this model.")) } } ### check whether model matrix is of full rank if (!.chkpd(crossprod(X), tol=con$evtol)) stop(mstyle$stop("Model matrix not of full rank. Cannot fit model.")) ######################################################################### ######################################################################### ######################################################################### se.tau2 <- ci.lb.tau2 <- ci.ub.tau2 <- I2 <- H2 <- QE <- QEp <- NA_real_ se.warn <- FALSE rho <- NA_real_ level <- .level(level) ###### model fitting, test statistics, and confidence intervals ### upgrade warnings to errors (for some testing) #o.warn <- getOption("warn") #on.exit(options(warn = o.warn), add=TRUE) #options(warn = 2) ### rescale X matrix (only for models with moderators and models including an intercept term) if (!int.only && int.incl && con$scaleX) { Xsave <- X meanX <- colMeans(X[, 2:p, drop=FALSE]) sdX <- apply(X[, 2:p, drop=FALSE], 2, sd) # consider using colSds() from matrixStats package is.d <- apply(X, 2, .is.dummy) # is each column a dummy variable (i.e., only 0s and 1s)? X[,!is.d] <- apply(X[, !is.d, drop=FALSE], 2, scale) # rescale the non-dummy variables } ######################################################################### ######################################################################### ######################################################################### ### two group outcomes (odds ratios and incidence rate ratios) if (is.element(measure, c("OR","RR","RD","IRR"))) { ###################################################################### if (is.element(model, c("UM.FS","UM.RS"))) { ### prepare data for the unconditional models if (is.element(measure, c("OR","RR","RD"))) { # xi mi study group1 group2 group12 offset intrcpt mod1 dat.grp <- cbind(xi=c(rbind(ai,ci)), mi=c(rbind(bi,di))) # grp-level outcome data ai bi i 1 0 +1/2 NULL 1 x1i # ci di i 0 1 -1/2 NULL 0 0 if (is.null(ddd$family)) { if (measure == "OR") dat.fam <- binomial(link=link) if (measure == "RR") dat.fam <- binomial(link=link) if (measure == "RD") #dat.fam <- eval(parse(text="binomial(link=\"identity\")")) dat.fam <- binomial(link=link) } else { dat.fam <- ddd$family } dat.off <- NULL } if (is.element(measure, c("IRR"))) { # xi ti study group1 group2 group12 offset intrcpt mod1 dat.grp <- c(rbind(x1i,x2i)) # grp-level outcome data x1i t1i i 1 0 +1/2 t1i 1 x1i # log(ti) for offset x2i t2i i 0 1 -1/2 t2i 0 0 if (is.null(ddd$family)) { dat.fam <- poisson(link=link) } else { dat.fam <- ddd$family } dat.off <- log(c(rbind(t1i,t2i))) } group1 <- rep(c(1,0), times=k) # group dummy for 1st group (ai,bi for group 1) group2 <- rep(c(0,1), times=k) # group dummy for 2nd group (ci,di for group 2) (not really needed) group12 <- rep(c(1/2,-1/2), times=k) # group dummy with +- 1/2 coding study <- factor(rep(seq_len(k), each=2L)) # study factor const <- cbind(rep(1,2*k)) # intercept for random study effects model X.fit <- X[rep(seq(k), each=2L),,drop=FALSE] # duplicate each row in X (drop=FALSE, so column names are preserved) X.fit <- cbind(group1*X.fit[,,drop=FALSE]) # then multiply by group1 dummy (intercept, if included, becomes the group1 dummy) if (coding == 1/2) group <- group12 if (coding == 1) group <- group1 if (coding == 0) group <- group2 rownames(X.fit) <- seq_len(2*k) if (.isTRUE(ddd$retdat)) return(list(dat.grp=dat.grp, X.fit=X.fit, study=study, dat.off = if (!is.null(dat.off)) dat.off else NULL, const=const, group1=group1, group2=group2, group12=group12, group=group, dat.fam=dat.fam)) ################################################################### #################################################### ### unconditional model with fixed study effects ### #################################################### if (model == "UM.FS") { ### fit FE model if (verbose) message(mstyle$message("Fitting the FE model ...")) if (k > 1) { res.FE <- try(glm(dat.grp ~ -1 + X.fit + study, offset=dat.off, family=dat.fam, control=glmCtrl), silent=!verbose) } else { res.FE <- try(glm(dat.grp ~ -1 + X.fit + const, offset=dat.off, family=dat.fam, control=glmCtrl), silent=!verbose) } if (inherits(res.FE, "try-error")) stop(mstyle$stop(paste0("Cannot fit FE model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### log-likelihood #ll.FE <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, predict(res.FE, type="response"), log=TRUE))) # model has a NULL offset #ll.FE <- with(data.frame(dat.grp), sum(dpois(xi, predict(res.FE, type="response"), log=TRUE))) # offset already incorporated into predict() ll.FE <- c(logLik(res.FE)) # same as above ### fit saturated FE model (= QE model) QEconv <- FALSE ll.QE <- NA_real_ if (!isTRUE(ddd$skiphet)) { if (k > 1 && verbose) message(mstyle$message("Fitting the saturated model ...")) if (k > 1) { X.QE <- model.matrix(~ -1 + X.fit + study + study:group1) res.QE <- try(glm(dat.grp ~ -1 + X.QE, offset=dat.off, family=dat.fam, control=glmCtrl), silent=!verbose) } else { res.QE <- res.FE } if (inherits(res.QE, "try-error")) { warning(mstyle$warning(paste0("Cannot fit saturated model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details)."))), call.=FALSE) } else { QEconv <- TRUE ### log-likelihood #ll.QE <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, xi/(xi+mi), log=TRUE))) # model has a NULL offset #ll.QE <- with(data.frame(dat.grp), sum(dpois(xi, xi, log=TRUE))) # offset not relevant for saturated model ll.QE <- c(logLik(res.QE)) # same as above ### extract coefficients and variance-covariance matrix for Wald-type test for heterogeneity #b2.QE <- cbind(na.omit(coef(res.QE)[-seq_len(k+p)])) # coef() still includes aliased coefficients as NAs, so filter them out b2.QE <- cbind(coef(res.QE, complete=FALSE)[-seq_len(k+p)]) # aliased coefficients are removed by coef() when complete=FALSE vb2.QE <- vcov(res.QE, complete=FALSE)[-seq_len(k+p),-seq_len(k+p),drop=FALSE] # aliased coefficients are removed by vcov() when complete=FALSE } } if (method == "ML") { ### fit ML model if (verbose) message(mstyle$message("Fitting the ML model ...")) if (package == "lme4") { if (verbose) { res.ML <- try(lme4::glmer(dat.grp ~ -1 + X.fit + study + (group - 1 | study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose) } else { res.ML <- suppressMessages(try(lme4::glmer(dat.grp ~ -1 + X.fit + study + (group - 1 | study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose)) } } if (package == "GLMMadaptive") { if (is.element(measure, c("OR","RR","RD"))) { dat.mm <- data.frame(xi=dat.grp[,"xi"], mi=dat.grp[,"mi"], study=study, group=group) res.ML <- try(GLMMadaptive::mixed_model(cbind(xi,mi) ~ -1 + X.fit + study, random = ~ group - 1 | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } else { dat.mm <- data.frame(xi=dat.grp, study=study, group=group) res.ML <- try(GLMMadaptive::mixed_model(xi ~ -1 + X.fit + study + offset(dat.off), random = ~ group - 1 | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } } if (package == "glmmTMB") { if (verbose) { res.ML <- try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + study + (group - 1 | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose) } else { res.ML <- suppressMessages(try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + study + (group - 1 | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose)) } } if (inherits(res.ML, "try-error")) stop(mstyle$stop(paste0("Cannot fit ML model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### log-likelihood #ll.ML <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, fitted(res.ML), log=TRUE))) # not correct (since it does not incorporate the random effects; same as ll.FE if tau^2=0) #ll.ML <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, plogis(qlogis(fitted(res.ML)) + group12*unlist(ranef(res.ML))), log=TRUE))) # not correct (since one really has to integrate; same as ll.FE if tau^2=0) #ll.ML <- c(logLik(res.ML)) # this is not the same as ll.FE when tau^2 = 0 (not sure why) if (package == "lme4") { if (is.na(ll.QE)) { ll.ML <- c(logLik(res.ML)) } else { ll.ML <- ll.QE - 1/2 * deviance(res.ML) # this makes ll.ML comparable to ll.FE (same as ll.FE when tau^2=0) } } else { ll.ML <- c(logLik(res.ML)) # not 100% sure how comparable this is to ll.FE when tau^2 = 0 (seems correct for glmmTMB) } } #return(list(res.FE, res.QE, res.ML, ll.FE=ll.FE, ll.QE=ll.QE, ll.ML=ll.ML)) #res.FE <- res[[1]]; res.QE <- res[[2]]; res.ML <- res[[3]] if (is.element(method, c("FE","EE","CE"))) { beta <- cbind(coef(res.FE)[seq_len(p)]) vb <- vcov(res.FE)[seq_len(p),seq_len(p),drop=FALSE] tau2 <- 0 sigma2 <- NA_real_ parms <- p + k p.eff <- p + k k.eff <- 2*k } if (method == "ML") { if (package == "lme4") { beta <- cbind(lme4::fixef(res.ML)[seq_len(p)]) vb <- as.matrix(vcov(res.ML))[seq_len(p),seq_len(p),drop=FALSE] tau2 <- lme4::VarCorr(res.ML)[[1]][1] } if (package == "GLMMadaptive") { beta <- cbind(GLMMadaptive::fixef(res.ML)[seq_len(p)]) vb <- as.matrix(vcov(res.ML))[seq_len(p),seq_len(p),drop=FALSE] tau2 <- res.ML$D[1,1] } if (package == "glmmTMB") { beta <- cbind(glmmTMB::fixef(res.ML)$cond[seq_len(p)]) vb <- as.matrix(vcov(res.ML)$cond)[seq_len(p),seq_len(p),drop=FALSE] tau2 <- glmmTMB::VarCorr(res.ML)[[1]][[1]][[1]] } sigma2 <- NA_real_ parms <- p + k + 1 p.eff <- p + k k.eff <- 2*k } #return(list(beta=beta, vb=vb, tau2=tau2, sigma2=sigma2, parms=parms, p.eff=p.eff, k.eff=k.eff, b2.QE=b2.QE, vb2.QE=vb2.QE)) } ################################################################### ##################################################### ### unconditional model with random study effects ### ##################################################### if (model == "UM.RS") { ### fit FE model if (verbose) message(mstyle$message("Fitting the FE model ...")) if (package == "lme4") { if (verbose) { res.FE <- try(lme4::glmer(dat.grp ~ -1 + X.fit + const + (1 | study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose) } else { res.FE <- suppressMessages(try(lme4::glmer(dat.grp ~ -1 + X.fit + const + (1 | study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose)) } } if (package == "GLMMadaptive") { if (is.element(measure, c("OR","RR","RD"))) { dat.mm <- data.frame(xi=dat.grp[,"xi"], mi=dat.grp[,"mi"], study=study, const=const) res.FE <- try(GLMMadaptive::mixed_model(cbind(xi,mi) ~ -1 + X.fit + const, random = ~ 1 | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } else { dat.mm <- data.frame(xi=dat.grp, study=study, const=const) res.FE <- try(GLMMadaptive::mixed_model(xi ~ -1 + X.fit + const + offset(dat.off), random = ~ 1 | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } } if (package == "glmmTMB") { if (verbose) { res.FE <- try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + const + (1 | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose) } else { res.FE <- suppressMessages(try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + const + (1 | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose)) } } if (inherits(res.FE, "try-error")) stop(mstyle$stop(paste0("Cannot fit FE model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### log-likelihood ll.FE <- c(logLik(res.FE)) ### fit saturated FE model (= QE model) ### notes: 1) must remove aliased terms before fitting (for GLMMadaptive to work) ### 2) use the sigma^2 value from the FE model as the starting value for the study-level random effect QEconv <- FALSE ll.QE <- NA_real_ if (!isTRUE(ddd$skiphet)) { if (k > 1 && verbose) message(mstyle$message("Fitting the saturated model ...")) if (k > 1) { X.QE <- model.matrix(~ -1 + X.fit + const + study:group1) res.QE <- try(glm(dat.grp ~ -1 + X.QE, offset=dat.off, family=dat.fam, control=glmCtrl), silent=TRUE) X.QE <- X.QE[,!is.na(coef(res.QE)),drop=FALSE] if (package == "lme4") { if (verbose) { res.QE <- try(lme4::glmer(dat.grp ~ -1 + X.QE + (1 | study), offset=dat.off, family=dat.fam, start=c(sqrt(lme4::VarCorr(res.FE)[[1]][1])), nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose) } else { res.QE <- suppressMessages(try(lme4::glmer(dat.grp ~ -1 + X.QE + (1 | study), offset=dat.off, family=dat.fam, start=c(sqrt(lme4::VarCorr(res.FE)[[1]][1])), nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose)) } } if (package == "GLMMadaptive") { glmerCtrl$max_coef_value <- 50 if (is.element(measure, c("OR","RR","RD"))) { dat.mm <- data.frame(xi=dat.grp[,"xi"], mi=dat.grp[,"mi"], study=study) res.QE <- try(GLMMadaptive::mixed_model(cbind(xi,mi) ~ -1 + X.QE, random = ~ 1 | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl, initial_values=list(D=matrix(res.FE$D[1,1]))), silent=!verbose) } else { dat.mm <- data.frame(xi=dat.grp, study=study) res.QE <- try(GLMMadaptive::mixed_model(xi ~ -1 + X.QE + offset(dat.off), random = ~ 1 | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } } if (package == "glmmTMB") { if (verbose) { res.QE <- try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.QE + (1 | study), offset=dat.off, family=dat.fam, start=list(theta=sqrt(glmmTMB::VarCorr(res.FE)[[1]][[1]][[1]])), verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose) } else { res.QE <- suppressMessages(try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.QE + (1 | study), offset=dat.off, family=dat.fam, start=list(theta=sqrt(glmmTMB::VarCorr(res.FE)[[1]][[1]][[1]])), verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose)) } } } else { res.QE <- res.FE } if (inherits(res.QE, "try-error")) { warning(mstyle$warning(paste0("Cannot fit saturated model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details)."))), call.=FALSE) } else { QEconv <- TRUE ### log-likelihood ll.QE <- c(logLik(res.QE)) ### extract coefficients and variance-covariance matrix for Wald-type test for heterogeneity (aliased coefficients are already removed) if (package == "lme4") { b2.QE <- cbind(lme4::fixef(res.QE)[-seq_len(p+1)]) vb2.QE <- as.matrix(vcov(res.QE))[-seq_len(p+1),-seq_len(p+1),drop=FALSE] } if (package == "GLMMadaptive") { b2.QE <- cbind(GLMMadaptive::fixef(res.QE)[-seq_len(p+1)]) vb2.QE <- as.matrix(vcov(res.QE))[-seq_len(p+1),-seq_len(p+1),drop=FALSE] vb2.QE <- vb2.QE[-nrow(vb2.QE), -ncol(vb2.QE)] } if (package == "glmmTMB") { b2.QE <- cbind(glmmTMB::fixef(res.QE)$cond[-seq_len(p+1)]) vb2.QE <- as.matrix(vcov(res.QE)$cond)[-seq_len(p+1),-seq_len(p+1),drop=FALSE] } } } if (method == "ML") { ### fit ML model ### notes: 1) not recommended alternative: using group1 instead of group12 for the random effect (since that forces the variance in group 2 to be lower) ### 2) this approach is okay if we also allow group1 random effect and intercepts to correlate (in fact, this is identical to the bivariate model) ### 3) start=c(sqrt(lme4::VarCorr(res.FE)[[1]][1])) has no effect, since the start value for tau^2 is not specified (and using 0 is probably not ideal for that) if (verbose) message(mstyle$message("Fitting the ML model ...")) if (package == "lme4") { if (verbose) { if (cor) { res.ML <- try(lme4::glmer(dat.grp ~ -1 + X.fit + const + (group | study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose) } else { res.ML <- try(lme4::glmer(dat.grp ~ -1 + X.fit + const + (group || study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose) } } else { if (cor) { res.ML <- suppressMessages(try(lme4::glmer(dat.grp ~ -1 + X.fit + const + (group | study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose)) } else { res.ML <- suppressMessages(try(lme4::glmer(dat.grp ~ -1 + X.fit + const + (group || study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose)) } } } if (package == "GLMMadaptive") { if (is.element(measure, c("OR","RR","RD"))) { dat.mm <- data.frame(xi=dat.grp[,"xi"], mi=dat.grp[,"mi"], study=study, const=const, group=group) if (cor) { res.ML <- try(GLMMadaptive::mixed_model(cbind(xi,mi) ~ -1 + X.fit + const, random = ~ group | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } else { res.ML <- try(GLMMadaptive::mixed_model(cbind(xi,mi) ~ -1 + X.fit + const, random = ~ group || study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } } else { dat.mm <- data.frame(xi=dat.grp, study=study, const=const, group=group) if (cor) { res.ML <- try(GLMMadaptive::mixed_model(xi ~ -1 + X.fit + const + offset(dat.off), random = ~ group | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } else { res.ML <- try(GLMMadaptive::mixed_model(xi ~ -1 + X.fit + const + offset(dat.off), random = ~ group || study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } } } if (package == "glmmTMB") { if (verbose) { if (cor) { res.ML <- try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + const + (group | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose) } else { res.ML <- try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + const + (1 | study) + (group - 1 | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose) } } else { if (cor) { res.ML <- suppressMessages(try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + const + (group | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose)) } else { res.ML <- suppressMessages(try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + const + (1 | study) + (group - 1 | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose)) } } } if (inherits(res.ML, "try-error")) stop(mstyle$stop(paste0("Cannot fit ML model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### log-likelihood ll.ML <- c(logLik(res.ML)) } #return(list(res.FE, res.QE, res.ML, ll.FE=ll.FE, ll.QE=ll.QE, ll.ML=ll.ML)) #res.FE <- res[[1]]; res.QE <- res[[2]]; res.ML <- res[[3]] if (is.element(method, c("FE","EE","CE"))) { tau2 <- 0 if (package == "lme4") { beta <- cbind(lme4::fixef(res.FE)[seq_len(p)]) vb <- as.matrix(vcov(res.FE))[seq_len(p),seq_len(p),drop=FALSE] sigma2 <- lme4::VarCorr(res.FE)[[1]][1] } if (package == "GLMMadaptive") { beta <- cbind(GLMMadaptive::fixef(res.FE)[seq_len(p)]) vb <- as.matrix(vcov(res.FE))[seq_len(p),seq_len(p),drop=FALSE] sigma2 <- res.FE$D[1,1] } if (package == "glmmTMB") { beta <- cbind(glmmTMB::fixef(res.FE)$cond[seq_len(p)]) vb <- as.matrix(vcov(res.FE)$cond)[seq_len(p),seq_len(p),drop=FALSE] sigma2 <- glmmTMB::VarCorr(res.FE)[[1]][[1]][[1]] } parms <- p + 1 + 1 p.eff <- p + 1 k.eff <- 2*k } if (method == "ML") { if (package == "lme4") { beta <- cbind(lme4::fixef(res.ML)[seq_len(p)]) vb <- as.matrix(vcov(res.ML))[seq_len(p),seq_len(p),drop=FALSE] if (cor) { tau2 <- lme4::VarCorr(res.ML)[[1]][2,2] sigma2 <- lme4::VarCorr(res.ML)[[1]][1,1] rho <- lme4::VarCorr(res.ML)[[1]][1,2] / sqrt(tau2 * sigma2) } else { tau2 <- lme4::VarCorr(res.ML)[[2]][1] sigma2 <- lme4::VarCorr(res.ML)[[1]][1] } } if (package == "GLMMadaptive") { beta <- cbind(GLMMadaptive::fixef(res.ML)[seq_len(p)]) vb <- as.matrix(vcov(res.ML))[seq_len(p),seq_len(p),drop=FALSE] tau2 <- res.ML$D[2,2] sigma2 <- res.ML$D[1,1] if (cor) rho <- res.ML$D[1,2] / sqrt(tau2 * sigma2) } if (package == "glmmTMB") { beta <- cbind(glmmTMB::fixef(res.ML)$cond[seq_len(p)]) vb <- as.matrix(vcov(res.ML)$cond)[seq_len(p),seq_len(p),drop=FALSE] if (cor) { tau2 <- glmmTMB::VarCorr(res.ML)[[1]][[1]][2,2] sigma2 <- glmmTMB::VarCorr(res.ML)[[1]][[1]][1,1] rho <- glmmTMB::VarCorr(res.ML)[[1]][[1]][1,2] / sqrt(tau2 * sigma2) } else { tau2 <- glmmTMB::VarCorr(res.ML)[[1]][[2]][[1]] sigma2 <- glmmTMB::VarCorr(res.ML)[[1]][[1]][[1]] } } parms <- p + 1 + 2 p.eff <- p + 1 k.eff <- 2*k } #return(list(beta=beta, vb=vb, tau2=tau2, sigma2=sigma2, parms=parms, p.eff=p.eff, k.eff=k.eff, b2.QE=b2.QE, vb2.QE=vb2.QE)) } ################################################################### } ###################################################################### if ((measure=="IRR" && model == "CM.EL") || (measure=="OR" && model=="CM.AL") || (measure=="OR" && model=="CM.EL")) { ### prepare data for the conditional models if (measure == "OR") { dat.grp <- cbind(xi=ai, mi=ci) # conditional outcome data (number of cases in group 1 conditional on total number of cases) dat.off <- log((ai+bi)/(ci+di)) # log(n1i/n2i) for offset } if (measure == "IRR") { dat.grp <- cbind(xi=x1i, mi=x2i) # conditional outcome data (number of events in group 1 conditional on total number of events) dat.off <- log(t1i/t2i) # log(t1i/t1i) for offset } study <- factor(seq_len(k)) # study factor X.fit <- X if (.isTRUE(ddd$retdat)) return(list(dat.grp=dat.grp, X.fit=X.fit, study=study, dat.off = if (!is.null(dat.off)) dat.off else NULL)) ################################################################### ############################################################### ### conditional model (approx. ll for ORs / exact for IRRs) ### ############################################################### ### fit FE model if (verbose) message(mstyle$message("Fitting the FE model ...")) res.FE <- try(glm(dat.grp ~ -1 + X.fit, offset=dat.off, family=binomial, control=glmCtrl), silent=!verbose) if (inherits(res.FE, "try-error")) stop(mstyle$stop(paste0("Cannot fit FE model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### log-likelihood #ll.FE <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, predict(res.FE, type="response"), log=TRUE))) # offset already incorporated into predict() #ll.FE <- with(data.frame(dat.grp), sum(dpois(xi, predict(res.FE, type="response"), log=TRUE))) # offset already incorporated into predict() ll.FE <- c(logLik(res.FE)) # same as above ### fit saturated FE model (= QE model) QEconv <- FALSE ll.QE <- NA_real_ if (!isTRUE(ddd$skiphet)) { if (k > 1 && verbose) message(mstyle$message("Fitting the saturated model ...")) if (k > 1) { X.QE <- model.matrix(~ -1 + X.fit + study) res.QE <- try(glm(dat.grp ~ -1 + X.QE, offset=dat.off, family=binomial, control=glmCtrl), silent=!verbose) } else { res.QE <- res.FE } if (inherits(res.QE, "try-error")) { warning(mstyle$warning(paste0("Cannot fit saturated model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details)."))), call.=FALSE) } else { QEconv <- TRUE ### log-likelihood #ll.QE <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, xi/(xi+mi), log=TRUE))) # offset not relevant for saturated model #ll.QE <- with(data.frame(dat.grp), sum(dpois(xi, xi, log=TRUE))) # offset not relevant for saturated model ll.QE <- c(logLik(res.QE)) # same as above ### extract coefficients and variance-covariance matrix for Wald-type test for heterogeneity #b2.QE <- cbind(na.omit(coef(res.QE)[-seq_len(p)])) # coef() still includes aliased coefficients as NAs, so filter them out b2.QE <- cbind(coef(res.QE, complete=FALSE)[-seq_len(p)]) # aliased coefficients are removed by coef() when complete=FALSE vb2.QE <- vcov(res.QE, complete=FALSE)[-seq_len(p),-seq_len(p),drop=FALSE] # aliased coefficients are removed by vcov() when complete=FALSE } #return(list(res.FE, res.QE, ll.FE, ll.QE)) #res.FE <- res[[1]]; res.QE <- res[[2]] } if (method == "ML") { ### fit ML model ### notes: 1) suppressMessages to suppress the 'one random effect per observation' warning if (verbose) message(mstyle$message("Fitting the ML model ...")) if (package == "lme4") { if (verbose) { res.ML <- try(lme4::glmer(dat.grp ~ -1 + X.fit + (1 | study), offset=dat.off, family=binomial, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose) } else { res.ML <- suppressMessages(try(lme4::glmer(dat.grp ~ -1 + X.fit + (1 | study), offset=dat.off, family=binomial, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose)) } } if (package == "GLMMadaptive") { dat.mm <- data.frame(xi=dat.grp[,"xi"], mi=dat.grp[,"mi"], study=study) res.ML <- try(GLMMadaptive::mixed_model(cbind(xi,mi) ~ -1 + X.fit + offset(dat.off), random = ~ 1 | study, data=dat.mm, family=binomial, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } if (package == "glmmTMB") { if (verbose) { res.ML <- try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + (1 | study), offset=dat.off, family=binomial, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose) } else { res.ML <- suppressMessages(try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + (1 | study), offset=dat.off, family=binomial, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose)) } } if (inherits(res.ML, "try-error")) stop(mstyle$stop(paste0("Cannot fit ML model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### log-likelihood if (package == "lme4") { if (is.na(ll.QE)) { ll.ML <- c(logLik(res.ML)) } else { if (verbose) { ll.ML <- ll.QE - 1/2 * deviance(res.ML) # this makes ll.ML comparable to ll.FE (same as ll.FE when tau^2=0) } else { ll.ML <- ll.QE - 1/2 * suppressWarnings(deviance(res.ML)) # suppressWarnings() to suppress 'Warning in sqrt(object$devResid()) : NaNs produced' } } } else { ll.ML <- c(logLik(res.ML)) # not 100% sure how comparable this is to ll.FE when tau^2 = 0 (seems correct for glmmTMB) } } #return(list(res.FE, res.QE, res.ML, ll.FE=ll.FE, ll.QE=ll.QE, ll.ML=ll.ML)) #res.FE <- res[[1]]; res.QE <- res[[2]]; res.ML <- res[[3]] if (is.element(method, c("FE","EE","CE"))) { beta <- cbind(coef(res.FE)[seq_len(p)]) vb <- vcov(res.FE)[seq_len(p),seq_len(p),drop=FALSE] tau2 <- 0 sigma2 <- NA_real_ parms <- p p.eff <- p k.eff <- k } if (method == "ML") { if (package == "lme4") { beta <- cbind(lme4::fixef(res.ML)[seq_len(p)]) vb <- as.matrix(vcov(res.ML))[seq_len(p),seq_len(p),drop=FALSE] tau2 <- lme4::VarCorr(res.ML)[[1]][1] } if (package == "GLMMadaptive") { beta <- cbind(GLMMadaptive::fixef(res.ML)[seq_len(p)]) vb <- as.matrix(vcov(res.ML))[seq_len(p),seq_len(p),drop=FALSE] tau2 <- res.ML$D[1,1] } if (package == "glmmTMB") { beta <- cbind(glmmTMB::fixef(res.ML)$cond[seq_len(p)]) vb <- as.matrix(vcov(res.ML)$cond)[seq_len(p),seq_len(p),drop=FALSE] tau2 <- glmmTMB::VarCorr(res.ML)[[1]][[1]][[1]] } sigma2 <- NA_real_ parms <- p + 1 p.eff <- p k.eff <- k } #return(list(beta=beta, vb=vb, tau2=tau2, sigma2=sigma2, parms=parms, p.eff=p.eff, k.eff=k.eff, b2.QE=b2.QE, vb2.QE=vb2.QE)) ################################################################### } if (measure=="OR" && model=="CM.EL") { #################################################### ### conditional model (exact likelihood for ORs) ### #################################################### if (verbose) message(mstyle$message("Fitting the FE model ...")) if (is.element(optimizer, c("optim","nlminb","uobyqa","newuoa","bobyqa","nloptr","nlm","hjk","nmk","mads","ucminf","lbfgsb3c","subplex","BBoptim","optimParallel","Rcgmin","Rvmmin"))) { if (optimizer == "optim") { par.arg <- "par" ctrl.arg <- ", control=optCtrl" } if (optimizer == "nlminb") { par.arg <- "start" ctrl.arg <- ", control=optCtrl" } if (is.element(optimizer, c("uobyqa","newuoa","bobyqa"))) { par.arg <- "par" optimizer <- paste0("minqa::", optimizer) ctrl.arg <- ", control=optCtrl" } if (optimizer == "nloptr") { par.arg <- "x0" optimizer <- paste0("nloptr::nloptr") ctrl.arg <- ", opts=optCtrl" } if (optimizer == "nlm") { par.arg <- "p" ctrl.arg <- paste(names(optCtrl), unlist(optCtrl), sep="=", collapse=", ") if (nchar(ctrl.arg) != 0L) ctrl.arg <- paste0(", ", ctrl.arg) } if (is.element(optimizer, c("hjk","nmk","mads"))) { par.arg <- "par" optimizer <- paste0("dfoptim::", optimizer) ctrl.arg <- ", control=optCtrl" } if (is.element(optimizer, c("ucminf","lbfgsb3c","subplex"))) { par.arg <- "par" optimizer <- paste0(optimizer, "::", optimizer) ctrl.arg <- ", control=optCtrl" } if (optimizer == "BBoptim") { par.arg <- "par" optimizer <- "BB::BBoptim" ctrl.arg <- ", quiet=TRUE, control=optCtrl" } if (optimizer == "Rcgmin") { par.arg <- "par" optimizer <- "optimx::Rcgmin" ctrl.arg <- ", gr='grnd', control=optCtrl" #ctrl.arg <- ", control=optCtrl" } if (optimizer == "Rvmmin") { par.arg <- "par" optimizer <- "optimx::Rvmmin" ctrl.arg <- ", gr='grnd', control=optCtrl" #ctrl.arg <- ", control=optCtrl" } if (optimizer == "optimParallel") { par.arg <- "par" optimizer <- paste0("optimParallel::optimParallel") ctrl.arg <- ", control=optCtrl, parallel=parallel" parallel$cl <- NULL if (is.null(cl)) { ncpus <- as.integer(ncpus) if (ncpus < 1L) stop(mstyle$stop("Control argument 'ncpus' must be >= 1.")) cl <- parallel::makePSOCKcluster(ncpus) on.exit(parallel::stopCluster(cl), add=TRUE) } else { if (!inherits(cl, "SOCKcluster")) stop(mstyle$stop("Specified cluster is not of class 'SOCKcluster'.")) } parallel$cl <- cl if (is.null(parallel$forward)) parallel$forward <- FALSE if (is.null(parallel$loginfo)) { if (verbose) { parallel$loginfo <- TRUE } else { parallel$loginfo <- FALSE } } } ### fit FE model ### notes: 1) this routine uses direct optimization over the non-central hypergeometric distribution ### 2) start values from CM.AL model (res.FE) and tau^2=0 (random=FALSE) ### 3) no integration needed for FE model, so intCtrl is not actually relevant ### 4) results can be sensitive to the scaling of moderators optcall <- paste0(optimizer, "(", par.arg, "=c(coef(res.FE)[seq_len(p)], 0), .dnchg, ", ifelse(optimizer=="optim", "method=optmethod, ", ""), "ai=ai, bi=bi, ci=ci, di=di, X.fit=X.fit, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec, intCtrl=intCtrl", ctrl.arg, ")\n") #return(optcall) if (verbose) { res.FE <- try(eval(str2lang(optcall)), silent=!verbose) } else { res.FE <- try(suppressWarnings(eval(str2lang(optcall))), silent=!verbose) } #return(res.FE) if (optimizer == "optimParallel::optimParallel" && verbose) { tmp <- capture.output(print(res.FE$loginfo)) .print.output(tmp, mstyle$verbose) } if (inherits(res.FE, "try-error")) stop(mstyle$stop(paste0("Cannot fit FE model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### convergence checks if (is.element(optimizer, c("optim","nlminb","dfoptim::hjk","dfoptim::nmk","lbfgsb3c::lbfgsb3c","subplex::subplex","BB::BBoptim","optimx::Rcgmin","optimx::Rvmmin","optimParallel::optimParallel")) && res.FE$convergence != 0) stop(mstyle$stop(paste0("Cannot fit FE model. Optimizer (", optimizer, ") did not achieve convergence (convergence = ", res.FE$convergence, ")."))) if (is.element(optimizer, c("dfoptim::mads")) && res.FE$convergence > optCtrl$tol) stop(mstyle$stop(paste0("Cannot fit FE model. Optimizer (", optimizer, ") did not achieve convergence (convergence = ", res.FE$convergence, ")."))) if (is.element(optimizer, c("minqa::uobyqa","minqa::newuoa","minqa::bobyqa")) && res.FE$ierr != 0) stop(mstyle$stop(paste0("Cannot fit FE model. Optimizer (", optimizer, ") did not achieve convergence (ierr = ", res.FE$ierr, ")."))) if (optimizer=="nloptr::nloptr" && !(res.FE$status >= 1 && res.FE$status <= 4)) stop(mstyle$stop(paste0("Cannot fit FE model. Optimizer (", optimizer, ") did not achieve convergence (status = ", res.FE$status, ")."))) if (optimizer=="ucminf::ucminf" && !(res.FE$convergence == 1 || res.FE$convergence == 2)) stop(mstyle$stop(paste0("Cannot fit FE model. Optimizer (", optimizer, ") did not achieve convergence (convergence = ", res.FE$convergence, ")."))) if (verbose > 2) { cat("\n") tmp <- capture.output(print(res.FE)) .print.output(tmp, mstyle$verbose) } ### copy estimated values to 'par' if (optimizer=="nloptr::nloptr") res.FE$par <- res.FE$solution if (optimizer=="nlm") res.FE$par <- res.FE$estimate res.FE$par <- unname(res.FE$par) if (verbose > 1) message(mstyle$message("Computing the Hessian ...")) if (con$hesspack == "numDeriv") h.FE <- numDeriv::hessian(.dnchg, x=res.FE$par, method.args=hessianCtrl, ai=ai, bi=bi, ci=ci, di=di, X.fit=X.fit, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec) if (con$hesspack == "pracma") h.FE <- pracma::hessian(.dnchg, x0=res.FE$par, ai=ai, bi=bi, ci=ci, di=di, X.fit=X.fit, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec) if (con$hesspack == "calculus") h.FE <- calculus::hessian(.dnchg, var=res.FE$par, params=list(ai=ai, bi=bi, ci=ci, di=di, X.fit=X.fit, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec)) #return(list(res.FE=res.FE, h.FE=h.FE)) ### log-likelihood if (is.element(optimizer, c("optim","dfoptim::hjk","dfoptim::nmk","dfoptim::mads","ucminf::ucminf","lbfgsb3c::lbfgsb3c","subplex::subplex","BB::BBoptim","optimx::Rcgmin","optimx::Rvmmin","optimParallel::optimParallel"))) ll.FE <- -1 * res.FE$value if (is.element(optimizer, c("nlminb","nloptr::nloptr"))) ll.FE <- -1 * res.FE$objective if (is.element(optimizer, c("minqa::uobyqa","minqa::newuoa","minqa::bobyqa"))) ll.FE <- -1 * res.FE$fval if (optimizer == "nlm") ll.FE <- -1 * res.FE$minimum ### fit saturated FE model (= QE model) ### notes: 1) must figure out which terms are aliased in saturated model and remove those terms before fitting ### 2) start values from CM.AL model (res.QE) and tau^2=0 (random=FALSE) ### 3) so only try to fit saturated model if this was possible with CM.AL ### 4) no integration needed for FE model, so intCtrl is not relevant if (QEconv) { # QEconv is FALSE when skiphet=TRUE so this then also gets skipped automatically if (k > 1 && verbose) message(mstyle$message("Fitting the saturated model ...")) if (k > 1) { b.QE <- coef(res.QE, complete=TRUE) # res.QE is from CM.AL model is.aliased <- is.na(b.QE) b.QE <- b.QE[!is.aliased] X.QE <- X.QE[,!is.aliased,drop=FALSE] optcall <- paste0(optimizer, "(", par.arg, "=c(b.QE, 0), .dnchg, ", ifelse(optimizer=="optim", "method=optmethod, ", ""), "ai=ai, bi=bi, ci=ci, di=di, X.fit=X.QE, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec, intCtrl=intCtrl", ctrl.arg, ")\n") #return(optcall) if (verbose) { res.QE <- try(eval(str2lang(optcall)), silent=!verbose) } else { res.QE <- try(suppressWarnings(eval(str2lang(optcall))), silent=!verbose) } #return(res.QE) if (optimizer == "optimParallel::optimParallel" && verbose) { tmp <- capture.output(print(res.QE$loginfo)) .print.output(tmp, mstyle$verbose) } if (inherits(res.QE, "try-error")) { warning(mstyle$warning(paste0("Cannot fit saturated model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details)."))), call.=FALSE) QEconv <- FALSE ll.QE <- NA_real_ } ### convergence checks if (QEconv && is.element(optimizer, c("optim","nlminb","dfoptim::hjk","dfoptim::nmk","lbfgsb3c::lbfgsb3c","subplex::subplex","BB::BBoptim","optimx::Rcgmin","optimx:Rvmmin","optimParallel::optimParallel")) && res.QE$convergence != 0) { warning(mstyle$warning(paste0("Cannot fit saturated model. Optimizer (", optimizer, ") did not achieve convergence (convergence = ", res.QE$convergence, ").")), call.=FALSE) QEconv <- FALSE ll.QE <- NA_real_ } if (QEconv && is.element(optimizer, c("dfoptim::mads")) && res.QE$convergence > optCtrl$tol) { warning(mstyle$warning(paste0("Cannot fit saturated model. Optimizer (", optimizer, ") did not achieve convergence (convergence = ", res.QE$convergence, ").")), call.=FALSE) QEconv <- FALSE ll.QE <- NA_real_ } if (QEconv && is.element(optimizer, c("minqa::uobyqa","minqa::newuoa","minqa::bobyqa")) && res.QE$ierr != 0) { warning(mstyle$warning(paste0("Cannot fit saturated model. Optimizer (", optimizer, ") did not achieve convergence (ierr = ", res.QE$ierr, ").")), call.=FALSE) QEconv <- FALSE ll.QE <- NA_real_ } if (QEconv && optimizer=="nloptr::nloptr" && !(res.QE$status >= 1 && res.QE$status <= 4)) { warning(mstyle$warning(paste0("Cannot fit saturated model. Optimizer (", optimizer, ") did not achieve convergence (status = ", res.QE$status, ").")), call.=FALSE) QEconv <- FALSE ll.QE <- NA_real_ } if (QEconv && optimizer=="ucminf::ucminf" && !(res.QE$convergence == 1 || res.QE$convergence == 2)) { warning(mstyle$warning(paste0("Cannot fit saturated model. Optimizer (", optimizer, ") did not achieve convergence (convergence = ", res.QE$convergence, ").")), call.=FALSE) QEconv <- FALSE ll.QE <- NA_real_ } if (verbose > 2) { cat("\n") tmp <- capture.output(print(res.QE)) .print.output(tmp, mstyle$verbose) } ### copy estimated values to 'par' if (QEconv && optimizer=="nloptr::nloptr") res.QE$par <- res.QE$solution if (QEconv && optimizer=="nlm") res.QE$par <- res.QE$estimate res.QE$par <- unname(res.QE$par) if (QEconv) { if (verbose > 1) message(mstyle$message("Computing the Hessian ...")) if (con$hesspack == "numDeriv") h.QE <- numDeriv::hessian(.dnchg, x=res.QE$par, method.args=hessianCtrl, ai=ai, bi=bi, ci=ci, di=di, X.fit=X.QE, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec) if (con$hesspack == "pracma") h.QE <- pracma::hessian(.dnchg, x0=res.QE$par, ai=ai, bi=bi, ci=ci, di=di, X.fit=X.QE, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec) if (con$hesspack == "calculus") h.QE <- calculus::hessian(.dnchg, var=res.QE$par, params=list(ai=ai, bi=bi, ci=ci, di=di, X.fit=X.QE, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec)) } } else { res.QE <- res.FE h.QE <- h.FE } #return(list(res.QE, h.QE)) } if (k > 1 && QEconv) { ### log-likelihood if (is.element(optimizer, c("optim","dfoptim::hjk","dfoptim::nmk","dfoptim::mads","ucminf::ucminf","lbfgsb3c::lbfgsb3c","subplex::subplex","BB::BBoptim","optimx::Rcgmin","optimx::Rvmmin","optimParallel::optimParallel"))) ll.QE <- -1 * res.QE$value if (is.element(optimizer, c("nlminb","nloptr::nloptr"))) ll.QE <- -1 * res.QE$objective if (is.element(optimizer, c("minqa::uobyqa","minqa::newuoa","minqa::bobyqa"))) ll.QE <- -1 * res.QE$fval if (optimizer == "nlm") ll.QE <- -1 * res.QE$minimum ### extract coefficients and variance-covariance matrix for Wald-type test for heterogeneity #return(res.QE) b2.QE <- res.QE$par # recall: aliased coefficients are already removed hessian <- h.QE # take hessian from hessian() (again, aliased coefs are already removed) #hessian <- res.QE$hessian # take hessian from optim() (again, aliased coefs are already removed) p.QE <- length(b2.QE) # how many parameters are left in saturated model? b2.QE <- b2.QE[-p.QE] # remove last element (for tau^2, constrained to 0) hessian <- hessian[-p.QE,-p.QE,drop=FALSE] # remove last row/column (for tau^2, constrained to 0) p.QE <- length(b2.QE) # how many parameters are now left? is.0 <- colSums(hessian == 0L) == p.QE # any columns in hessian entirely composed of 0s? b2.QE <- b2.QE[!is.0] # keep coefficients where this is not the case hessian <- hessian[!is.0,!is.0,drop=FALSE] # keep parts of hessian where this is not the case b2.QE <- cbind(b2.QE[-seq_len(p)]) # remove first p coefficients h.A <- hessian[seq_len(p),seq_len(p),drop=FALSE] # upper left part of hessian h.B <- hessian[seq_len(p),-seq_len(p),drop=FALSE] # upper right part of hessian h.C <- hessian[-seq_len(p),seq_len(p),drop=FALSE] # lower left part of hessian h.D <- hessian[-seq_len(p),-seq_len(p),drop=FALSE] # lower right part of hessian (of which we need the inverse) chol.h.A <- try(chol(h.A), silent=!verbose) # see if h.A can be inverted with chol() if (inherits(chol.h.A, "try-error") || anyNA(chol.h.A)) { warning(mstyle$warning("Cannot invert the Hessian for the saturated model."), call.=FALSE) QE.Wld <- NA_real_ } else { Ivb2.QE <- h.D-h.C%*%chol2inv(chol.h.A)%*%h.B # inverse of the inverse of the lower right part QE.Wld <- c(t(b2.QE) %*% Ivb2.QE %*% b2.QE) # Wald statistic (note: this approach only requires taking the inverse of h.A) } # see: https://en.wikipedia.org/wiki/Invertible_matrix#Blockwise_inversion #vb2.QE <- chol2inv(chol(hessian))[-seq_len(p),-seq_len(p),drop=FALSE] # take inverse, then take part relevant for QE test #QE.Wld <- c(t(b2.QE) %*% chol2inv(chol(vb2.QE)) %*% b2.QE) } } if (is.element(optimizer, c("clogit","clogistic"))) { ### fit FE model ### notes: 1) this routine uses either clogit() from the survival package or clogistic() from the Epi package ### 2) the dataset must be in group-level and IPD format (i.e., not in the conditional format) ### 3) if the studies are large, the IPD dataset may also be very large, and R may run out of memory ### 4) for larger datasets, run time is often excessive (and may essentially freeze R) ### 5) suppressMessages for clogit() to suppress the 'beta may be infinite' warning ### prepare IPD dataset # study event group1 intrcpt moderator # i 1 1 1 x1i (repeated ai times) event <- unlist(lapply(seq_len(k), function(i) c(rep.int(1,ai[i]), rep.int(0,bi[i]), rep.int(1,ci[i]), rep.int(0,di[i])))) # event dummy i 0 1 1 x1i (repeated bi times) group1 <- unlist(lapply(seq_len(k), function(i) c(rep.int(1,ai[i]), rep.int(1,bi[i]), rep.int(0,ci[i]), rep.int(0,di[i])))) # group1 dummy i 1 0 0 0 (repeated ci times) study.l <- factor(rep(seq_len(k), times=ni)) # study factor i 0 0 0 0 (repeated di times) X.fit.l <- X[rep(seq_len(k), times=ni),,drop=FALSE] # repeat each row in X ni times each X.fit.l <- cbind(group1*X.fit.l) # multiply by group1 dummy (including intercept, which becomes the group1 dummy) const <- rep(1,length(event)) if (.isTRUE(ddd$retdat)) return(data.frame(event, group1, study.l, X.fit.l, const)) ### fit FE model if (k > 1) { if (optimizer == "clogit") { args.clogit <- clogitCtrl args.clogit$formula <- event ~ X.fit.l + strata(study.l) res.FE <- try(do.call(clogit, args.clogit), silent=!verbose) } if (optimizer == "clogistic") { args.clogistic <- clogisticCtrl args.clogistic$formula <- event ~ X.fit.l args.clogistic$strata <- study.l res.FE <- try(do.call(Epi::clogistic, args.clogistic), silent=!verbose) } } else { stop(mstyle$stop(paste0("Cannot use '", optimizer, "' optimizer when k=1."))) } if (inherits(res.FE, "try-error")) stop(mstyle$stop(paste0("Cannot fit FE model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### fit saturated FE model (= QE model) ### notes: 1) must figure out which terms are aliased in saturated model and remove those terms before fitting ### 2) fixed effects part does not include 'study' factor, since this is incorporated into the strata ### 3) however, for calculating the log-likelihood, we need to go back to the conditional data, so we need to reconstruct X.QE (the study.l:group1 coefficients are the study coefficients) if (QEconv) { # QEconv is FALSE when skiphet=TRUE so this then also gets skipped automatically if (verbose) message(mstyle$message("Fitting the saturated model ...")) b.QE <- coef(res.QE, complete=TRUE) # res.QE is from CM.AL model is.aliased <- is.na(b.QE) X.QE.l <- model.matrix(~ -1 + X.fit.l + study.l:group1) X.QE.l <- X.QE.l[,!is.aliased,drop=FALSE] X.QE <- X.QE[,!is.aliased,drop=FALSE] if (optimizer == "clogit") { args.clogit <- clogitCtrl args.clogit$formula <- event ~ X.QE.l + strata(study.l) #args.clogit$method <- "efron" # c("exact", "approximate", "efron", "breslow") if (verbose) { res.QE <- try(do.call(clogit, args.clogit), silent=!verbose) } else { res.QE <- try(suppressWarnings(do.call(clogit, args.clogit)), silent=!verbose) } } if (optimizer == "clogistic") { args.clogistic <- clogisticCtrl args.clogistic$formula <- event ~ X.QE.l args.clogistic$strata <- study.l res.QE <- try(do.call(Epi::clogistic, args.clogistic), silent=!verbose) } if (inherits(res.QE, "try-error")) stop(mstyle$stop(paste0("Cannot fit saturated model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### log-likelihood ll.FE <- -1 * .dnchg(c(cbind(coef(res.FE)),0), ai=ai, bi=bi, ci=ci, di=di, X.fit=X.fit, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec) ll.QE <- -1 * .dnchg(c(cbind(coef(res.QE)),0), ai=ai, bi=bi, ci=ci, di=di, X.fit=X.QE, random=FALSE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec) ### extract coefficients and variance-covariance matrix for Wald-type test for heterogeneity b2.QE <- cbind(coef(res.QE)[-seq_len(p)]) # aliased coefficients are already removed vb2.QE <- vcov(res.QE)[-seq_len(p),-seq_len(p),drop=FALSE] # aliased coefficients are already removed } } #return(list(res.FE, res.QE, ll.FE=ll.FE, ll.QE=ll.QE)) #res.FE <- res[[1]]; res.QE <- res[[2]] if (method == "ML") { ### fit ML model ### notes: 1) cannot use clogit() or clogistic() for this (do not allow for the addition of random effects) ### 2) mclogit() from mclogit package may be an alternative (but it only provides a PQL method) ### 3) start values from CM.AL model (add 0.01 to tau^2 estimate, in case estimate of tau^2 is 0) ### 4) optimization involves integration, so intCtrl is relevant ### 5) results can be sensitive to the scaling of moderators if (verbose) message(mstyle$message("Fitting the ML model ...")) optcall <- paste0(optimizer, "(", par.arg, "=c(beta, log(tau2+0.01)), .dnchg, ", ifelse(optimizer=="optim", "method=optmethod, ", ""), "ai=ai, bi=bi, ci=ci, di=di, X.fit=X.fit, random=TRUE, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec, intCtrl=intCtrl", ctrl.arg, ")\n") #return(optcall) if (verbose) { res.ML <- try(eval(str2lang(optcall)), silent=!verbose) } else { res.ML <- try(suppressWarnings(eval(str2lang(optcall))), silent=!verbose) } #return(res.ML) if (optimizer == "optimParallel::optimParallel" && verbose) { tmp <- capture.output(print(res.ML$loginfo)) .print.output(tmp, mstyle$verbose) } if (inherits(res.ML, "try-error")) stop(mstyle$stop(paste0("Cannot fit ML model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### convergence checks if (is.element(optimizer, c("optim","nlminb","dfoptim::hjk","dfoptim::nmk","lbfgsb3c::lbfgsb3c","subplex::subplex","BB::BBoptim","optimx::Rcgmin","optimx::Rvmmin","optimParallel::optimParallel")) && res.ML$convergence != 0) stop(mstyle$stop(paste0("Cannot fit ML model. Optimizer (", optimizer, ") did not achieve convergence (convergence = ", res.ML$convergence, ")."))) if (is.element(optimizer, c("dfoptim::mads")) && res.ML$convergence > optCtrl$tol) stop(mstyle$stop(paste0("Cannot fit ML model. Optimizer (", optimizer, ") did not achieve convergence (convergence = ", res.ML$convergence, ")."))) if (is.element(optimizer, c("minqa::uobyqa","minqa::newuoa","minqa::bobyqa")) && res.ML$ierr != 0) stop(mstyle$stop(paste0("Cannot fit ML model. Optimizer (", optimizer, ") did not achieve convergence (ierr = ", res.ML$ierr, ")."))) if (optimizer=="nloptr::nloptr" && !(res.ML$status >= 1 && res.ML$status <= 4)) stop(mstyle$stop(paste0("Cannot fit ML model. Optimizer (", optimizer, ") did not achieve convergence (status = ", res.ML$status, ")."))) if (optimizer=="ucminf::ucminf" && !(res.ML$convergence == 1 || res.ML$convergence == 2)) stop(mstyle$stop(paste0("Cannot fit ML model. Optimizer (", optimizer, ") did not achieve convergence (convergence = ", res.ML$convergence, ")."))) if (verbose > 2) { cat("\n") tmp <- capture.output(print(res.ML)) .print.output(tmp, mstyle$verbose) } ### copy estimated values to 'par' if (optimizer=="nloptr::nloptr") res.ML$par <- res.ML$solution if (optimizer=="nlm") res.ML$par <- res.ML$estimate res.ML$par <- unname(res.ML$par) if (verbose > 1) message(mstyle$message("Computing the Hessian ...")) tau2eff0 <- exp(res.ML$par[p+1]) < con$tau2tol if (tau2eff0) method <- "T0" if (con$hesspack == "numDeriv") h.ML <- numDeriv::hessian(.dnchg, x=res.ML$par, method.args=hessianCtrl, ai=ai, bi=bi, ci=ci, di=di, X.fit=X.fit, random=!tau2eff0, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec, intCtrl=intCtrl) if (con$hesspack == "pracma") h.ML <- pracma::hessian(.dnchg, x0=res.ML$par, ai=ai, bi=bi, ci=ci, di=di, X.fit=X.fit, random=!tau2eff0, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec, intCtrl=intCtrl) if (con$hesspack == "calculus") h.ML <- calculus::hessian(.dnchg, var=res.ML$par, params=list(ai=ai, bi=bi, ci=ci, di=di, X.fit=X.fit, random=!tau2eff0, verbose=verbose, digits=digits, dnchgcalc=con$dnchgcalc, dnchgprec=con$dnchgprec, intCtrl=intCtrl)) #return(list(res.ML, h.ML)) ### log-likelihood if (is.element(optimizer, c("optim","dfoptim::hjk","dfoptim::nmk","dfoptim::mads","ucminf::ucminf","lbfgsb3c::lbfgsb3c","subplex::subplex","BB::BBoptim","optimx::Rcgmin","optimx:Rvmmin","optimParallel::optimParallel"))) ll.ML <- -1 * res.ML$value if (is.element(optimizer, c("nlminb","nloptr::nloptr"))) ll.ML <- -1 * res.ML$objective if (is.element(optimizer, c("minqa::uobyqa","minqa::newuoa","minqa::bobyqa"))) ll.ML <- -1 * res.ML$fval if (optimizer == "nlm") ll.ML <- -1 * res.ML$minimum } #return(list(res.FE, res.QE, res.ML, ll.FE=ll.FE, ll.QE=ll.QE, ll.ML=ll.ML)) #res.FE <- res[[1]]; res.QE <- res[[2]]; res.ML <- res[[3]] if (is.element(method, c("FE","EE","CE","T0"))) { if (!is.element(optimizer, c("clogit","clogistic"))) { beta <- cbind(res.FE$par[seq_len(p)]) chol.h <- try(chol(h.FE[seq_len(p),seq_len(p)]), silent=!verbose) # see if Hessian can be inverted with chol() if (inherits(chol.h, "try-error") || anyNA(chol.h)) { if (anyNA(chol.h)) stop(mstyle$stop(paste0("Cannot invert the Hessian for the ", ifelse(method == "T0", "ML", method), " model."))) warning(mstyle$warning("Choleski factorization of Hessian failed. Trying inversion via QR decomposition."), call.=FALSE) vb <- try(qr.solve(h.FE[seq_len(p),seq_len(p)]), silent=!verbose) # see if Hessian can be inverted with qr.solve() if (inherits(vb, "try-error")) stop(mstyle$stop(paste0("Cannot invert the Hessian for the ", ifelse(method == "T0", "ML", method), " model."))) } else { vb <- chol2inv(chol.h) } } if (is.element(optimizer, c("clogit","clogistic"))) { beta <- cbind(coef(res.FE)[seq_len(p)]) vb <- vcov(res.FE)[seq_len(p),seq_len(p),drop=FALSE] } tau2 <- 0 sigma2 <- NA_real_ parms <- p p.eff <- p k.eff <- k } if (method == "ML") { beta <- cbind(res.ML$par[seq_len(p)]) chol.h <- try(chol(h.ML), silent=!verbose) # see if Hessian can be inverted with chol() if (inherits(chol.h, "try-error") || anyNA(chol.h)) { if (anyNA(chol.h)) stop(mstyle$stop("Cannot invert the Hessian for the ML model.")) warning(mstyle$warning("Choleski factorization of Hessian failed. Trying inversion via QR decomposition."), call.=FALSE) vb.f <- try(qr.solve(h.ML), silent=!verbose) # see if Hessian can be inverted with qr.solve() if (inherits(vb.f, "try-error")) stop(mstyle$stop("Cannot invert the Hessian for the ML model.")) } else { vb.f <- chol2inv(chol.h) } vb <- vb.f[seq_len(p),seq_len(p),drop=FALSE] if (any(diag(vb) <= 0)) stop(mstyle$stop("Cannot compute var-cov matrix of the fixed effects.")) tau2 <- exp(res.ML$par[p+1]) sigma2 <- NA_real_ parms <- p + 1 p.eff <- p k.eff <- k if (vb.f[p+1,p+1] >= 0) { se.tau2 <- sqrt(vb.f[p+1,p+1]) * tau2 # delta rule: vb[p+1,p+1] is the variance of log(tau2), so vb[p+1,p+1] * tau2^2 is the variance of exp(log(tau2)) crit <- qnorm(level/2, lower.tail=FALSE) ci.lb.tau2 <- exp(res.ML$par[p+1] - crit * sqrt(vb.f[p+1,p+1])) ci.ub.tau2 <- exp(res.ML$par[p+1] + crit * sqrt(vb.f[p+1,p+1])) } } if (is.element(method, c("ML","T0"))) { tmp <- try(rma.uni(measure="PETO", ai=ai, bi=bi, ci=ci, di=di, add=0, mods=X.fit, intercept=FALSE, skipr2=TRUE), silent=TRUE) if (!inherits(tmp, "try-error")) { gvar1 <- det(vcov(tmp)) gvar2 <- det(vb) ratio <- (gvar1 / gvar2)^(1/(2*m)) if (!is.na(ratio) && ratio >= 100) { warning(mstyle$warning("Standard errors of fixed effects appear to be unusually small. Treat results with caution."), call.=FALSE) se.warn <- TRUE } if (!is.na(ratio) && ratio <= 1/100) { warning(mstyle$warning("Standard errors of fixed effects appear to be unusually large. Treat results with caution."), call.=FALSE) se.warn <- TRUE } } } if (method == "T0") { tau2 <- exp(res.ML$par[p+1]) parms <- p + 1 se.tau2 <- 0 method <- "ML" } #return(list(beta=beta, vb=vb, tau2=tau2, sigma2=sigma2, parms=parms, p.eff=p.eff, k.eff=k.eff, b2.QE=b2.QE, vb2.QE=vb2.QE)) } } ######################################################################### ######################################################################### ######################################################################### ### one group outcomes (log odds and log transformed rates) if (is.element(measure, c("PLO","PR","PLN","IRLN"))) { ### prepare data if (is.element(measure, c("PLO","PR","PLN"))) { dat.grp <- cbind(xi=xi,mi=mi) if (is.null(ddd$family)) { if (measure == "PLO") dat.fam <- binomial(link=link) #dat.fam <- binomial(link="probit") if (measure == "PR") #dat.fam <- eval(parse(text="binomial(link=\"identity\")")) dat.fam <- binomial(link=link) if (measure == "PLN") dat.fam <- binomial(link=link) } else { dat.fam <- ddd$family } dat.off <- NULL } if (is.element(measure, c("IRLN"))) { dat.grp <- xi if (is.null(ddd$family)) { dat.fam <- poisson(link=link) } else { dat.fam <- ddd$family } dat.off <- log(ti) } study <- factor(seq_len(k)) # study factor X.fit <- X if (.isTRUE(ddd$retdat)) return(list(dat.grp=dat.grp, X.fit=X.fit, study=study, dat.off = if (!is.null(dat.off)) dat.off else NULL, dat.fam=dat.fam)) ### fit FE model if (verbose) message(mstyle$message("Fitting the FE model ...")) res.FE <- try(glm(dat.grp ~ -1 + X.fit, offset=dat.off, family=dat.fam, control=glmCtrl), silent=!verbose) if (inherits(res.FE, "try-error")) stop(mstyle$stop(paste0("Cannot fit FE model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) ### log-likelihood #ll.FE <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, predict(res.FE, type="response"), log=TRUE))) # model has a NULL offset #ll.FE <- with(data.frame(dat.grp), sum(dpois(xi, predict(res.FE, type="response"), log=TRUE))) # offset already incorporated into predict() ll.FE <- c(logLik(res.FE)) # same as above ### fit saturated FE model (= QE model) ### notes: 1) suppressWarnings() to suppress warning "glm.fit: fitted probabilities numerically 0 or 1 occurred" QEconv <- FALSE ll.QE <- NA_real_ if (!isTRUE(ddd$skiphet)) { if (k > 1 && verbose) message(mstyle$message("Fitting the saturated model ...")) if (k > 1) { X.QE <- model.matrix(~ -1 + X.fit + study) if (verbose) { res.QE <- try(glm(dat.grp ~ -1 + X.QE, offset=dat.off, family=dat.fam, control=glmCtrl), silent=!verbose) } else { res.QE <- try(suppressWarnings(glm(dat.grp ~ -1 + X.QE, offset=dat.off, family=dat.fam, control=glmCtrl)), silent=!verbose) } } else { res.QE <- res.FE } if (inherits(res.QE, "try-error")) { warning(mstyle$warning(paste0("Cannot fit saturated model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details)."))), call.=FALSE) } else { QEconv <- TRUE ### log-likelihood #ll.QE <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, xi/(xi+mi), log=TRUE))) # model has a NULL offset #ll.QE <- with(data.frame(dat.grp), sum(dpois(xi, xi, log=TRUE))) # offset not relevant for saturated model ll.QE <- c(logLik(res.QE)) # same as above ### extract coefficients and variance-covariance matrix for Wald-type test for heterogeneity #b2.QE <- cbind(na.omit(coef(res.QE)[-seq_len(p)])) # coef() still includes aliased coefficients as NAs, so filter them out b2.QE <- cbind(coef(res.QE, complete=FALSE)[-seq_len(p)]) # aliased coefficients are removed by coef() when complete=FALSE vb2.QE <- vcov(res.QE, complete=FALSE)[-seq_len(p),-seq_len(p),drop=FALSE] # aliased coefficients are removed by vcov() when complete=FALSE } } if (method == "ML") { ### fit ML model ### notes: 1) suppressMessages to suppress the 'one random effect per observation' warning if (verbose) message(mstyle$message("Fitting the ML model ...")) if (package == "lme4") { if (verbose) { res.ML <- try(lme4::glmer(dat.grp ~ -1 + X.fit + (1 | study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose) } else { res.ML <- suppressMessages(try(lme4::glmer(dat.grp ~ -1 + X.fit + (1 | study), offset=dat.off, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=do.call(lme4::glmerControl, glmerCtrl)), silent=!verbose)) } } if (package == "GLMMadaptive") { if (is.element(measure, c("PLO","PR","PLN"))) { dat.mm <- data.frame(xi=dat.grp[,"xi"], mi=dat.grp[,"mi"], study=study) res.ML <- try(GLMMadaptive::mixed_model(cbind(xi,mi) ~ -1 + X.fit, random = ~ 1 | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } else { dat.mm <- data.frame(xi=dat.grp, study=study) res.ML <- try(GLMMadaptive::mixed_model(xi ~ -1 + X.fit + offset(dat.off), random = ~ 1 | study, data=dat.mm, family=dat.fam, nAGQ=nAGQ, verbose=verbose, control=glmerCtrl), silent=!verbose) } } if (package == "glmmTMB") { if (verbose) { res.ML <- try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + (1 | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose) } else { res.ML <- suppressMessages(try(glmmTMB::glmmTMB(dat.grp ~ -1 + X.fit + (1 | study), offset=dat.off, family=dat.fam, verbose=verbose, data=NULL, control=do.call(glmmTMB::glmmTMBControl, glmerCtrl)), silent=!verbose)) } } if (inherits(res.ML, "try-error")) stop(mstyle$stop(paste0("Cannot fit ML model", ifelse(verbose, ".", " (set 'verbose=TRUE' to obtain further details).")))) #return(res.ML) ### log-likelihood #ll.ML <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, fitted(res.ML), log=TRUE))) # not correct (since it does not incorporate the random effects; same as ll.FE if tau^2=0) #ll.ML <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, plogis(qlogis(fitted(res.ML)) + group12*unlist(ranef(res.ML))), log=TRUE))) # not correct (since one really has to integrate; same as ll.FE if tau^2=0) #ll.ML <- with(data.frame(dat.grp), sum(dbinom(xi, xi+mi, plogis(predict(res.ML))))) # not correct (since one really has to integrate; same as ll.FE if tau^2=0) #ll.ML <- c(logLik(res.ML)) # this is not the same as ll.FE when tau^2 = 0 (not sure why) if (package == "lme4") { ll.ML <- ll.QE - 1/2 * deviance(res.ML) # this makes ll.ML comparable to ll.FE (same as ll.FE when tau^2=0) } else { ### FIXME: When using GLMMadaptive, ll is not comparable for FE model when tau^2 = 0 ll.ML <- c(logLik(res.ML)) } } #return(list(res.FE, res.QE, res.ML, ll.FE=ll.FE, ll.QE=ll.QE, ll.ML=ll.ML)) #res.FE <- res[[1]]; res.QE <- res[[2]]; res.ML <- res[[3]] if (is.element(method, c("FE","EE","CE"))) { beta <- cbind(coef(res.FE)[seq_len(p)]) vb <- vcov(res.FE)[seq_len(p),seq_len(p),drop=FALSE] tau2 <- 0 sigma2 <- NA_real_ parms <- p p.eff <- p k.eff <- k } if (method == "ML") { if (package == "lme4") { beta <- cbind(lme4::fixef(res.ML)[seq_len(p)]) vb <- as.matrix(vcov(res.ML))[seq_len(p),seq_len(p),drop=FALSE] tau2 <- lme4::VarCorr(res.ML)[[1]][1] } if (package == "GLMMadaptive") { beta <- cbind(GLMMadaptive::fixef(res.ML)[seq_len(p)]) vb <- as.matrix(vcov(res.ML))[seq_len(p),seq_len(p),drop=FALSE] tau2 <- res.ML$D[1,1] } if (package == "glmmTMB") { beta <- cbind(glmmTMB::fixef(res.ML)$cond[seq_len(p)]) vb <- as.matrix(vcov(res.ML)$cond)[seq_len(p),seq_len(p),drop=FALSE] tau2 <- glmmTMB::VarCorr(res.ML)[[1]][[1]][[1]] } sigma2 <- NA_real_ parms <- p + 1 p.eff <- p k.eff <- k } #return(list(beta=beta, vb=vb, tau2=tau2, sigma2=sigma2, parms=parms, p.eff=p.eff, k.eff=k.eff, b2.QE=b2.QE, vb2.QE=vb2.QE)) } ######################################################################### ######################################################################### ######################################################################### ### heterogeneity tests (Wald-type and likelihood ratio tests of the extra coefficients in the saturated model) if (verbose > 1) message(mstyle$message("Conducting the heterogeneity tests ...")) if (k > 1 && QEconv) { ### for OR + CM.EL + NOT clogit/clogistic, QE.Wld is already calculated, so skip this part then if (!(measure == "OR" && model == "CM.EL" && !is.element(optimizer, c("clogit","clogistic")))) { if (nrow(vb2.QE) > 0) { chol.h <- try(chol(vb2.QE), silent=!verbose) # see if Hessian can be inverted with chol() if (inherits(chol.h, "try-error") || anyNA(chol.h)) { warning(mstyle$warning("Cannot invert the Hessian for the saturated model."), call.=FALSE) QE.Wld <- NA_real_ } else { QE.Wld <- try(c(t(b2.QE) %*% chol2inv(chol.h) %*% b2.QE), silent=!verbose) if (inherits(QE.Wld, "try-error")) { warning(mstyle$warning("Cannot invert the Hessian for the saturated model."), call.=FALSE) QE.Wld <- NA_real_ } } } else { QE.Wld <- 0 # if vb2.QE has 0x0 dims, then fitted model is the saturated model and QE.Wld must be 0 } } QE.LRT <- -2 * (ll.FE - ll.QE) QE.Wld[QE.Wld <= 0] <- 0 QE.LRT[QE.LRT <= 0] <- 0 #QE.df <- length(b2.QE) # removed coefficients are not counted if dfs are determined like this QE.df <- k-p # this yields always the same dfs regardless of how many coefficients are removed if (QE.df > 0L) { QEp.Wld <- pchisq(QE.Wld, df=QE.df, lower.tail=FALSE) QEp.LRT <- pchisq(QE.LRT, df=QE.df, lower.tail=FALSE) } else { QEp.Wld <- 1 QEp.LRT <- 1 } } else { QE.Wld <- NA_real_ QE.LRT <- NA_real_ QEp.Wld <- NA_real_ QEp.LRT <- NA_real_ QE.df <- NA_integer_ } ### calculation of I^2 and H^2 wi <- 1/vi W <- diag(wi, nrow=k.yi, ncol=k.yi) stXWX <- .invcalc(X=X.yi, W=W, k=k.yi) P <- W - W %*% X.yi %*% stXWX %*% crossprod(X.yi,W) if (i2def == "1") vt <- (k.yi-p) / .tr(P) if (i2def == "2") vt <- 1/mean(wi) # harmonic mean of vi's (see Takkouche et al., 1999) #vt <- (k-1) / (sum(wi) - sum(wi^2)/sum(wi)) # this only applies to the RE model I2 <- 100 * tau2 / (vt + tau2) H2 <- tau2 / vt + 1 ### testing of the fixed effects in the model if (verbose > 1) message(mstyle$message("Conducting the tests of the fixed effects ...")) chol.h <- try(chol(vb[btt,btt]), silent=!verbose) # see if Hessian can be inverted with chol() if (inherits(chol.h, "try-error") || anyNA(chol.h)) { warning(mstyle$warning("Cannot invert the Hessian for the QM-test."), call.=FALSE) QM <- NA_real_ } else { QM <- as.vector(t(beta)[btt] %*% chol2inv(chol.h) %*% beta[btt]) } ### scale back beta and vb if (!int.only && int.incl && con$scaleX) { mX <- rbind(c(intrcpt=1, -1*ifelse(is.d[-1], 0, meanX/sdX)), cbind(0, diag(ifelse(is.d[-1], 1, 1/sdX), nrow=length(is.d)-1, ncol=length(is.d)-1))) beta <- mX %*% beta vb <- mX %*% vb %*% t(mX) X <- Xsave } ### ddf calculation if (test == "t") { ddf <- k-p } else { ddf <- NA_integer_ } ### abbreviate some types of coefficient names if (.isTRUE(ddd$abbrev)) { tmp <- colnames(X) tmp <- gsub("relevel(factor(", "", tmp, fixed=TRUE) tmp <- gsub("\\), ref = \"[[:alnum:]]*\")", "", tmp) tmp <- gsub("poly(", "", tmp, fixed=TRUE) tmp <- gsub(", degree = [[:digit:]], raw = TRUE)", "^", tmp) tmp <- gsub(", degree = [[:digit:]], raw = T)", "^", tmp) tmp <- gsub(", degree = [[:digit:]])", "^", tmp) tmp <- gsub("rcs\\([[:alnum:]]*, [[:digit:]]\\)", "", tmp) tmp <- gsub("factor(", "", tmp, fixed=TRUE) tmp <- gsub("I(", "", tmp, fixed=TRUE) tmp <- gsub(")", "", tmp, fixed=TRUE) colnames(X) <- tmp } rownames(beta) <- rownames(vb) <- colnames(vb) <- colnames(X.f) <- colnames(X) ve <- diag(vb) se <- ifelse(ve >= 0, sqrt(ve), NA_real_) names(se) <- NULL zval <- c(beta/se) if (test == "t") { QM <- QM / m QMdf <- c(m, k-p) QMp <- if (QMdf[2] > 0) pf(QM, df1=QMdf[1], df2=QMdf[2], lower.tail=FALSE) else NA_real_ pval <- if (ddf > 0) 2*pt(abs(zval), df=ddf, lower.tail=FALSE) else rep(NA_real_, p) crit <- if (ddf > 0) qt(level/2, df=ddf, lower.tail=FALSE) else rep(NA_real_, p) } else { QMdf <- c(m, NA_integer_) QMp <- pchisq(QM, df=QMdf[1], lower.tail=FALSE) pval <- 2*pnorm(abs(zval), lower.tail=FALSE) crit <- qnorm(level/2, lower.tail=FALSE) } ci.lb <- c(beta - crit * se) ci.ub <- c(beta + crit * se) #return(list(beta=beta, se=se, zval=zval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, tau2=tau2, QM=QM, QMp=QMp)) ######################################################################### ###### fit statistics if (verbose > 1) message(mstyle$message("Computing the fit statistics and log-likelihood ...")) ll.ML <- ifelse(is.element(method, c("FE","EE","CE")), ll.FE, ll.ML) ll.REML <- NA_real_ dev.ML <- -2 * (ll.ML - ll.QE) AIC.ML <- -2 * ll.ML + 2*parms BIC.ML <- -2 * ll.ML + parms * log(k.eff) AICc.ML <- -2 * ll.ML + 2*parms * max(k.eff, parms+2) / (max(k.eff, parms+2) - parms - 1) dev.REML <- NA_real_ AIC.REML <- NA_real_ BIC.REML <- NA_real_ AICc.REML <- NA_real_ fit.stats <- matrix(c(ll.ML, dev.ML, AIC.ML, BIC.ML, AICc.ML, ll.REML, dev.REML, AIC.REML, BIC.REML, AICc.REML), ncol=2, byrow=FALSE) dimnames(fit.stats) <- list(c("ll","dev","AIC","BIC","AICc"), c("ML","REML")) fit.stats <- data.frame(fit.stats) ######################################################################### ###### prepare output if (verbose > 1) message(mstyle$message("Preparing the output ...")) weighted <- TRUE if (is.null(ddd$outlist) || ddd$outlist == "nodata") { outdat <- list(ai=ai, bi=bi, ci=ci, di=di, x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, xi=xi, mi=mi, ti=ti) res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, tau2=tau2, se.tau2=se.tau2, sigma2=sigma2, rho=rho, ci.lb.tau2=ci.lb.tau2, ci.ub.tau2=ci.ub.tau2, I2=I2, H2=H2, vt=vt, QE.Wld=QE.Wld, QEp.Wld=QEp.Wld, QE.LRT=QE.LRT, QEp.LRT=QEp.LRT, QE.df=QE.df, QM=QM, QMdf=QMdf, QMp=QMp, k=k, k.f=k.f, k.yi=k.yi, k.eff=k.eff, k.all=k.all, p=p, p.eff=p.eff, parms=parms, int.only=int.only, int.incl=int.incl, intercept=intercept, yi=yi, vi=vi, X=X, yi.f=yi.f, vi.f=vi.f, X.f=X.f, chksumyi=digest::digest(as.vector(yi)), chksumvi=digest::digest(as.vector(vi)), chksumX=digest::digest(X), outdat.f=outdat.f, outdat=outdat, ni=ni, ni.f=ni.f, ids=ids, not.na=not.na, subset=subset, not.na.yivi=not.na.yivi, slab=slab, slab.null=slab.null, measure=measure, method=method, model=model, weighted=weighted, test=test, dfs=ddf, ddf=ddf, btt=btt, m=m, digits=digits, level=level, control=control, verbose=verbose, add=add, to=to, drop00=drop00, fit.stats=fit.stats, se.warn=se.warn, formula.yi=NULL, formula.mods=formula.mods, version=packageVersion("metafor"), call=mf) if (is.null(ddd$outlist)) res <- append(res, list(data=data), which(names(res) == "fit.stats")) } else { if (ddd$outlist == "minimal") { res <- list(b=beta, beta=beta, se=se, zval=zval, pval=pval, ci.lb=ci.lb, ci.ub=ci.ub, vb=vb, tau2=tau2, se.tau2=se.tau2, sigma2=sigma2, I2=I2, H2=H2, QE.Wld=QE.Wld, QEp.Wld=QEp.Wld, QE.LRT=QE.LRT, QEp.LRT=QEp.LRT, QE.df=QE.df, QEp=QEp, QM=QM, QMdf=QMdf, QMp=QMp, k=k, k.eff=k.eff, p=p, p.eff=p.eff, parms=parms, int.only=int.only, chksumyi=digest::digest(as.vector(yi)), chksumvi=digest::digest(as.vector(vi)), chksumX=digest::digest(X), measure=measure, method=method, model=model, test=test, dfs=ddf, ddf=ddf, btt=btt, m=m, digits=digits, level=level, fit.stats=fit.stats) } else { res <- eval(str2lang(paste0("list(", ddd$outlist, ")"))) } } if (.isTRUE(ddd$retfit)) { res$res.FE <- res.FE if (!isTRUE(ddd$skiphet)) res$res.QE <- res.QE if (method == "ML") res$res.ML <- res.ML } time.end <- proc.time() res$time <- unname(time.end - time.start)[3] if (.isTRUE(ddd$time)) .print.time(res$time) if (verbose || .isTRUE(ddd$time)) cat("\n") class(res) <- c("rma.glmm", "rma") return(res) } metafor/R/to.wide.r0000644000176200001440000001574214515471261013663 0ustar liggesusersto.wide <- function(data, study, grp, ref, grpvars, postfix=c(".1",".2"), addid=TRUE, addcomp=TRUE, adddesign=TRUE, minlen=2, var.names=c("id","comp","design")) { mstyle <- .get.mstyle() if (!is.data.frame(data)) data <- data.frame(data) ### get variable names varnames <- names(data) ### number of variables nvars <- length(varnames) ### checks on 'var.names' argument if (length(var.names) != 3L) stop(mstyle$stop("Argument 'var.names' must of length 3.")) if (!inherits(var.names, "character")) stop(mstyle$stop("Argument 'var.names' must of vector with character strings.")) if (any(var.names != make.names(var.names, unique=TRUE))) { var.names <- make.names(var.names, unique=TRUE) warning(mstyle$warning(paste0("Argument 'var.names' does not contain syntactically valid variable names.\nVariable names adjusted to: var.names = c('", var.names[1], "','", var.names[2], "','", var.names[3], "').")), call.=FALSE) } ############################################################################ ### checks on 'study' argument if (length(study) != 1L) stop(mstyle$stop("Argument 'study' must of length 1.")) if (!(is.character(study) | is.numeric(study))) stop(mstyle$stop("Argument 'study' must either be a character string or a scalar.")) if (is.character(study)) { study.pos <- charmatch(study, varnames) if (is.na(study.pos) || study.pos == 0L) stop(mstyle$stop("Could not find or uniquely identify variable specified via the 'study' argument.")) } else { study.pos <- round(study) if (study.pos < 1 | study.pos > nvars) stop(mstyle$stop("Specified position of 'study' variable does not exist in the data frame.")) } ### get study variable study <- data[[study.pos]] ### make sure there are no missing values in study variable if (anyNA(study)) stop(mstyle$stop("Variable specified via 'study' argument should not contain missing values.")) ############################################################################ ### checks on 'grp' argument if (length(grp) != 1L) stop(mstyle$stop("Argument 'grp' must of length 1.")) if (!(is.character(grp) || is.numeric(grp))) stop(mstyle$stop("Argument 'grp' must either be a character string or a scalar.")) if (is.character(grp)) { grp.pos <- charmatch(grp, varnames) if (is.na(grp.pos) || grp.pos == 0L) stop(mstyle$stop("Could not find or uniquely identify variable specified via the 'grp' argument.")) } else { grp.pos <- round(grp) if (grp.pos < 1 | grp.pos > nvars) stop(mstyle$stop("Specified position of 'grp' variable does not exist in the data frame.")) } ### get grp variable grp <- data[[grp.pos]] ### make sure there are no missing values in group variable if (anyNA(grp)) stop(mstyle$stop("Variable specified via 'grp' argument should not contain missing values.")) ### get levels of the group variable if (is.factor(grp)) { lvls <- levels(grp) } else { lvls <- sort(unique(grp)) } ############################################################################ ### checks on 'ref' argument ### if ref is not specified, use the most common group as the reference group if (missing(ref)) ref <- names(sort(table(grp), decreasing=TRUE)[1]) if (length(ref) != 1L) stop(mstyle$stop("Argument 'ref' must be of length one.")) ref.pos <- charmatch(ref, lvls) if (is.na(ref.pos) || ref.pos == 0L) stop(mstyle$stop("Could not find or uniquely identify reference group specified via the 'ref' argument.")) ############################################################################ ### reorder levels and data so that the reference level is always last lvls <- c(lvls[-ref.pos], lvls[ref.pos]) data <- data[order(study, factor(grp, levels=lvls)),] ### get study and group variables again study <- data[[study.pos]] grp <- data[[grp.pos]] ############################################################################ ### checks on 'grpvars' argument if (!(is.character(grpvars) || is.numeric(grpvars))) stop(mstyle$stop("Argument 'grpvars' must either be a string or numeric vector.")) if (is.character(grpvars)) { grpvars.pos <- unique(charmatch(grpvars, varnames)) if (anyNA(grpvars.pos) || any(grpvars.pos == 0L)) stop(mstyle$stop("Could not find or uniquely identify variable(s) specified via the 'grpvars' argument.")) } else { grpvars.pos <- unique(round(grpvars)) if (any(grpvars.pos < 1) | any(grpvars.pos > nvars)) stop(mstyle$stop("Specified positions of 'grpvars' variables do not exist in the data frame.")) } ### in case the group variable is not specified as part of the group variables, add it if (!(grp.pos %in% grpvars.pos)) grpvars.pos <- c(grp.pos, grpvars.pos) ### and make sure that grp.pos is always in the first position of grpvars.pos grpvars.pos <- union(grp.pos, grpvars.pos) ############################################################################ ### restructure data set into wide format restruct <- function(x) { if (nrow(x) > 1L) { cbind(x[-nrow(x),], x[rep(nrow(x),nrow(x)-1L),grpvars.pos]) } else { # to handle one-arm studies unname(c(x, rep(NA, length(grpvars.pos)))) } } dat <- lapply(split(data, study), restruct) dat <- do.call(rbind, dat) ### add postfix to outcome variable names names(dat)[grpvars.pos] <- paste0(names(dat)[grpvars.pos], postfix[1]) names(dat)[(nvars+1):ncol(dat)] <- paste0(names(dat)[(nvars+1):ncol(dat)], postfix[2]) ### fix row names rownames(dat) <- seq_len(nrow(dat)) ############################################################################ ### generate comp variable grps <- .shorten(as.character(data[[grp.pos]]), minlen=minlen) restruct <- function(x) { if (length(x) > 1L) { paste0(x[-length(x)], "-", x[length(x)]) } else { NA } } comp <- unlist(sapply(split(grps, study), restruct)) ### generate design variable restruct <- function(x) { if (length(x) > 1L) { rep(paste0(x, collapse="-"), length(x)-1L) } else { NA } } design <- unlist(sapply(split(grps, study), restruct)) ############################################################################ ### add row id to dataset if (addid) { dat[[var.names[1]]] <- seq_len(nrow(dat)) ### make sure that row id variable is always the first variable in the dataset #id.pos <- which(names(dat) == "id") #dat <- dat[c(id.pos, seq_along(names(dat))[-id.pos])] } ### add comp variable to dataset if (addcomp) dat[[var.names[2]]] <- comp ### add design variable to dataset if (adddesign) dat[[var.names[3]]] <- design ############################################################################ return(dat) } metafor/R/coef.matreg.r0000644000176200001440000000031414515470346014474 0ustar liggesuserscoef.matreg <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="matreg") coefs <- c(object$tab$beta) names(coefs) <- rownames(object$tab) return(coefs) } metafor/R/print.regtest.r0000644000176200001440000000452214515471034015112 0ustar liggesusersprint.regtest <- function(x, digits=x$digits, ret.fit=x$ret.fit, ...) { mstyle <- .get.mstyle() .chkclass(class(x), must="regtest") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) .space() cat(mstyle$section("Regression Test for Funnel Plot Asymmetry")) cat("\n\n") if (x$model == "lm") { cat(mstyle$text("Model: weighted regression with multiplicative dispersion")) } else { cat(mstyle$text(paste("Model: ", ifelse(is.element(x$method, c("FE","EE","CE")), "fixed-effects", "mixed-effects"), "meta-regression model"))) } cat("\n") if (x$predictor == "sei") cat(mstyle$text("Predictor: standard error")) if (x$predictor == "vi") cat(mstyle$text("Predictor: sampling variance")) if (x$predictor == "ni") cat(mstyle$text("Predictor: sample size")) if (x$predictor == "ninv") cat(mstyle$text("Predictor: inverse of the sample size")) if (x$predictor == "sqrtni") cat(mstyle$text("Predictor: square root sample size")) if (x$predictor == "sqrtninv") cat(mstyle$text("Predictor: inverse of the square root sample size")) cat("\n") if (ret.fit) { if (x$model == "lm") { print(summary(x$fit)) } else { .space(FALSE) print(x$fit) .space(FALSE) } } else { cat("\n") } cat(mstyle$text("Test for Funnel Plot Asymmetry: ")) if (is.na(x$ddf)) { cat(mstyle$result(fmtt(x$zval, "z", pval=x$pval, pname="p", format=2, digits=digits, flag=ifelse(!is.null(x$est) && sign(x$zval)!=sign(x$est), " ", "")))) } else { cat(mstyle$result(fmtt(x$zval, "t", df=x$ddf, pval=x$pval, pname="p", format=2, digits=digits, flag=ifelse(!is.null(x$est) && sign(x$zval)!=sign(x$est), " ", "")))) } cat("\n") if (!is.null(x$est)) { if (x$predictor == "sei") cat(mstyle$text("Limit Estimate (as sei -> 0): ")) if (x$predictor == "vi") cat(mstyle$text("Limit Estimate (as vi -> 0): ")) if (x$predictor %in% c("ninv", "sqrtninv")) cat(mstyle$text("Limit Estimate (as ni -> inf): ")) cat(mstyle$result(paste0("b = ", fmtx(x$est, digits[["est"]], flag=ifelse(sign(x$zval)!=sign(x$est), " ", "")), " (CI: ", fmtx(x$ci.lb, digits[["est"]]), ", ", fmtx(x$ci.ub, digits[["est"]]), ")"))) cat("\n") } .space() invisible() } metafor/R/coef.deltamethod.r0000644000176200001440000000032614710444435015507 0ustar liggesuserscoef.deltamethod <- function(object, ...) { mstyle <- .get.mstyle() .chkclass(class(object), must="deltamethod") coefs <- c(object$tab$coef) names(coefs) <- rownames(object$tab) return(coefs) } metafor/vignettes/0000755000176200001440000000000014746146344013734 5ustar liggesusersmetafor/vignettes/metafor.pdf.asis0000644000176200001440000000015314513444712017011 0ustar liggesusers%\VignetteEngine{R.rsp::asis} %\VignetteIndexEntry{Conducting Meta-Analyses in R with the metafor Package} metafor/vignettes/diagram.pdf.asis0000644000176200001440000000014014513444713016755 0ustar liggesusers%\VignetteEngine{R.rsp::asis} %\VignetteIndexEntry{Diagram of Functions in the metafor Package} metafor/NAMESPACE0000644000176200001440000001020314712101054013115 0ustar liggesusersexportPattern("^[^\\.]") import(stats) import(utils) import(graphics) import(grDevices) import(methods) import(Matrix) importFrom(nlme, ranef) export(ranef) import(mathjaxr) import(metadat) import(numDeriv) import(digest) S3method("[", list.rma) S3method("$<-", list.rma) S3method("[", escalc) S3method("$<-", escalc) S3method(addpoly, default) S3method(addpoly, predict.rma) S3method(addpoly, rma) S3method(aggregate, escalc) S3method(AIC, rma) S3method(anova, rma) S3method(as.data.frame, anova.rma) S3method(as.data.frame, confint.rma) S3method(as.data.frame, vif.rma) S3method(as.data.frame, list.anova.rma) S3method(as.data.frame, list.confint.rma) S3method(as.data.frame, list.rma) S3method(as.matrix, list.rma) S3method(baujat, rma) S3method(BIC, rma) S3method(blup, rma.uni) S3method(cbind, escalc) S3method(coef, deltamethod) S3method(coef, matreg) S3method(coef, rma) S3method(coef, summary.rma) S3method(coef, permutest.rma.uni) S3method(confint, rma.glmm) S3method(confint, rma.mh) S3method(confint, rma.mv) S3method(confint, rma.peto) S3method(confint, rma.uni) S3method(confint, rma.uni.selmodel) S3method(confint, rma.ls) S3method(cooks.distance, rma.mv) S3method(cooks.distance, rma.uni) S3method(cumul, rma.mh) S3method(cumul, rma.peto) S3method(cumul, rma.uni) S3method(deviance, rma) S3method(df.residual, rma) S3method(dfbetas, rma.mv) S3method(dfbetas, rma.uni) S3method(fitstats, rma) S3method(fitted, rma) S3method(forest, default) S3method(forest, rma) S3method(forest, cumul.rma) S3method(formula, rma) S3method(funnel, default) S3method(funnel, rma) S3method(gosh, rma) S3method(hatvalues, rma.mv) S3method(hatvalues, rma.uni) S3method(hc, rma.uni) S3method(influence, rma.uni) S3method(labbe, rma) S3method(leave1out, rma.mh) S3method(leave1out, rma.peto) S3method(leave1out, rma.uni) S3method(logLik, rma) S3method(regplot, rma) S3method(model.matrix, rma) S3method(nobs, rma) S3method(permutest, rma.uni) S3method(permutest, rma.ls) S3method(plot, cumul.rma) S3method(plot, gosh.rma) S3method(plot, infl.rma.uni) S3method(plot, permutest.rma.uni) S3method(plot, profile.rma) S3method(plot, vif.rma) S3method(plot, rma.glmm) S3method(plot, rma.mh) S3method(plot, rma.mv) S3method(plot, rma.peto) S3method(plot, rma.uni) S3method(plot, rma.uni.selmodel) S3method(points, regplot) S3method(predict, rma) S3method(predict, rma.ls) S3method(print, anova.rma) S3method(print, confint.rma) S3method(print, deltamethod) S3method(print, vif.rma) S3method(print, list.anova.rma) S3method(print, list.confint.rma) S3method(print, escalc) S3method(print, fsn) S3method(print, gosh.rma) S3method(print, infl.rma.uni) S3method(print, list.rma) S3method(head, list.rma) S3method(tail, list.rma) S3method(print, hc.rma.uni) S3method(print, matreg) S3method(print, permutest.rma.uni) S3method(print, profile.rma) S3method(print, ranktest) S3method(print, regtest) S3method(print, rma.glmm) S3method(print, rma.mh) S3method(print, rma.mv) S3method(print, rma.peto) S3method(print, rma.uni) S3method(print, summary.matreg) S3method(print, summary.rma) S3method(print, tes) S3method(profile, rma.mv) S3method(profile, rma.uni) S3method(profile, rma.uni.selmodel) S3method(profile, rma.ls) S3method(qqnorm, rma.glmm) S3method(qqnorm, rma.mh) S3method(qqnorm, rma.mv) S3method(qqnorm, rma.peto) S3method(qqnorm, rma.uni) S3method(radial, rma) S3method(ranef, rma.mv) S3method(ranef, rma.uni) S3method(rbind, escalc) S3method(reporter, rma.uni) S3method(residuals, rma) S3method(robust, rma.mv) S3method(robust, rma.uni) S3method(selmodel, rma.uni) S3method(rstandard, rma.mh) S3method(rstandard, rma.mv) S3method(rstandard, rma.peto) S3method(rstandard, rma.uni) S3method(rstudent, rma.mh) S3method(rstudent, rma.mv) S3method(rstudent, rma.peto) S3method(rstudent, rma.uni) S3method(se, default) S3method(se, rma) S3method(simulate, rma) S3method(summary, escalc) S3method(summary, matreg) S3method(summary, rma) #S3method(traceplot, rma.uni) S3method(trimfill, rma.uni) S3method(update, rma) S3method(vif, rma) S3method(vcov, deltamethod) S3method(vcov, matreg) S3method(vcov, rma) S3method(weights, rma.glmm) S3method(weights, rma.mh) S3method(weights, rma.mv) S3method(weights, rma.peto) S3method(weights, rma.uni) metafor/NEWS.md0000644000176200001440000026726114746125440013032 0ustar liggesusers# metafor 4.8-0 (2025-01-28) - some general changes to the various `forest()` functions: argument `header` is now `TRUE` by default, the y-axis is now created with `yaxs="i"`, and the y-axis limits have been tweaked slightly in accordance - `forest.rma()` and the various `addpoly()` functions now provides multiple styles for drawing the prediction interval via the `predstyle` argument - `forest.rma()` and `addpoly.rma()` now write out the default label (instead of an abbreviation) for the model results; as before, the label can be changed via the `mlab` argument - added an `ilab.lab` argument to the various `forest()` functions for adding header labels to the plot for the additional study information columns - all plot functions that create multi-panel plots now behave in a consistent manner, setting `par(mfrow)` automatically when no plotting device is open or when the number of panels in an open plotting device is too small for the number of panels to be plotted; all multi-panel plots also set `par(mfrow)=c(1L,1L)` upon exit; argument `layout` has been deprecated from `plot.permutest.rma.uni()`, `plot.vif.rma()`, and `plot.infl.rma.uni()` - the `predict.rma()` and `predict.rma.ls()` functions now also accept a matrix as input that includes a column for the intercept term (in which case the `intercept` argument is ignored and the first column of the matrix controls whether the intercept term is included in calculating the predicted value(s)) - added extractor function `se()` for extracting standard errors from model objects - added function `pairmat()` to construct a matrix of pairwise contrasts - added function `deltamethod()` to apply the (multivariate) delta method to a set of estimates - `anova()` and `predict()` gain an `adjust` argument for adjusting p-values / interval bounds for multiple testing - fixed `predict()` ignoring the `level` argument for `robust.rma` objects obtained with `clubSandwich=TRUE` - `print.anova.rma()` and `print.list.anova.rma()` now also print significance stars for some tests (unless `getOption("show.signif.stars")` is `FALSE`) - added a `collapse` argument to the various `cumul()` functions (to specify whether studies with the same value of the `order` variable should be added simultaneously) - the various `leave1out()` functions gain a `cluster` argument - `rma.mv()` now counts the number of levels of a random effect more appropriately; this may trigger more often the check that the number of levels is equal to 1, in which case the corresponding variance component is automatically fixed to 0; this check can be omitted with `control=list(check.k.gtr.1=FALSE)` - made optimizers `Rcgmin` and `Rvmmin` available again via the `optimx` package - when unspecified, argument `shade` in `funnel()` now automatically uses a color gradient for the regions when multiple `level` values are specified - added `lim`, `ci`, `pi`, `legend`, and `flip` arguments to `labbe()` - `fsn(..., type="General")` now computes the final estimates after rounding the fail-safe N value (not before) - `permutest.rma.uni()` gains a `btt` argument and `permutest.rma.ls()` gains `btt` and `att` arguments - `selmodel()` gains a `subset` argument (to specify a subset of studies to which the selection function should apply); for the beta selection model, one can now also specify two `steps` values to fit a truncated beta selection model - `nobs()` now just returns the number of estimates, not the effective number of observations - some tweaks were made to `vcalc()` to speed up the calculations (by James Pustejovsky) - added measures `"PRZ"`, `"CLES"`, `"AUC"`, `"CLESN"`, `"AUCN"`, `"CLESCN"`, `"AUCCN"`, `"R2F"`, and `"ZR2F"` to `escalc()` - `escalc()` gains a `flip` argument - `escalc()` gains a `correct` argument (to specify whether a bias correction should be applied) - added transformation function `transf.dtoovl()` (for transforming standardized mean differences to overlapping coefficient values) and ``transf.dtocliffd()` (for transforming standardized mean differences to Cliff's delta values) - `qqnorm.rma.uni()` now shades the pseudo confidence region; all `qqnorm()` functions gain a `grid` argument - better handling of `outlist="minimal"` - added more tests # metafor 4.6-0 (2024-03-28) - the `steps` argument in the various `profile()` functions can now also be a numeric vector to specify for which parameter values the likelihood should be evaluated - a few minor fixes to the dynamic theming of plots based on the foreground and background colors of the plotting device - slightly improved flexibility for setting package options - new measures added to `escalc()`: `"SMN"` for the single-group standardized mean / single-group standardized mean difference, `"SMCRP"` for the standardized mean change using raw score standardization with pooled standard deviations, and `"SMCRPH"` for the standardized mean change using raw score standardization with pooled standard deviations and heteroscedastic population variances at the two measurement occasions - calculation of the sampling variances for measures `"SMDH"`, `"SMD1H"`, and `"SMCRH"` was slightly adjusted for consistency - in `plot.gosh.rma()`, can also set `het="tau"` (to plot the square root of tau^2 as the measure of heterogeneity) - in the various `forest()` functions, argument `ylim` can now only be a single value to specify the lower bound (while the upper bound is still set automatically) - in `forest()` and `regplot()`, observation limits set via `olim` are now properly applied to all elements - various internal improvements to `selmodel()` - `selmodel()` no longer stops with an error when one or more intervals defined by the `steps` argument do not contain any observed p-values (instead a warning is issued and model fitting proceeds, but may fail) - added `decreasing` argument to `selmodel()` for enforcing that the delta estimates must be a monotonically decreasing function of the p-values in the step function model - added the undocumented argument `pval` to `selmodel()` for passing p-values directly to the function (doing this is highly experimental) - some internal refactoring of the code - improved the documentation a bit # metafor 4.4-0 (2023-09-27) - added `getmfopt()` and `setmfopt()` functions for getting and setting package options and made some of the options more flexible - removed argument `weighted` from `fsn()` (whether weighted or unweighted averages are used in Orwin's method is now simply determined by whether sampling variances are specified or not); added `type="General"` to `fsn()` as a generalization of the Orwin and Rosenberg methods (that allows for a fail-safe N calculation based on a random-effects model); can now pass an `rma` object to the `fsn()` function - further improved the theming of all plots based on the foreground and background colors; within RStudio, plot colors can also be automatically chosen based on the theme (with `setmfopt(theme="auto")`) - added additional/optional argument `tabfig` to the various `forest()` functions, for easily setting the `annosym` argument to an appropriate vector for exactly aligning numbers (when using a matching font) - added (for now undocumented) `vccon` argument to `rma.mv()` for setting equality constraints on variance/correlation components - `replace` argument in `conv.2x2()`, `conv.delta()`, `conv.fivenum()`, and `conv.wald()` can now also be a logical - added `summary.matreg()` and `print.summary.matreg()` methods for including additional statistics in the output (R^2 and the omnibus test) and added `coef.matreg()` and `vcov.matreg()` extractor functions - formatting functions `fmtp()`, `fmtx()`, and `fmtt()` gain a `quote` argument, which is set to `FALSE` by default - for measures `"PCOR"`, `"ZPCOR"`, `"SPCOR"`, and `"ZSPCOR"`, argument `mi` in `escalc()` now refers to the total number of predictors in the regression models (i.e., also counting the focal predictor of interest) - added measures `"R2"` and "`ZR2"` to `escalc()` - `addpoly.default()` and `addpoly.rma.predict()` gain a `constarea` argument (for the option to draw the polygons with a constant area) - `plot.rma.uni.selmodel()` gains a `shade` argument (for shading the confidence interval region) - `plot.permutest.rma.uni()` gains a `legend` argument - `vcalc()` gains a `sparse` argument - `aggregate.escalc` gains `var.names` argument - made the `legend` argument more flexible in `funnel()` - made the `append` argument more flexible in `to.long()` - added a few more transformation functions - small bug fixes - added automated visual comparison tests of plots - improved the documentation a bit # metafor 4.2-0 (2023-05-08) - improved the various plotting functions so they respect `par("fg")`; as a result, one can now create plots with a dark background and light plotting colors - also allow two or three values for `xlab` in the various `forest()` functions (for adding labels at the ends of the x-axis limits) - better default choices for `xlim` in the various `forest()` functions; also, argument `ilab.xpos` is now optional when using the `ilab` argument - added `shade` and `colshade` arguments to the various `forest()` functions - the various `forest()` functions no longer enforce that `xlim` must be at least as wide as `alim` - added `link` argument to `rma.glmm()` - `rma.glmm()` with `measure="OR", model="CM.EL", method="ML"` now treats tau^2 values below 1e-04 effectively as zero before computing the standard errors of the fixed effects; this helps to avoid numerical problems in approximating the Hessian; similarly, `selmodel()` now treats tau^2 values below 1e-04 or min(vi/10) effectively as zero before computing the standard errors - for measure `SMCC`, can now specify d-values, t-test statistics, and p-values via arguments `di`, `ti`, and `pi` - functions that issue a warning when omitting studies due to NAs now indicate how many were omitted - properly documented the `level` argument - added a few more transformation functions - small bug fixes - improved the documentation a bit # metafor 4.0-0 (2023-03-19) - added `conv.2x2()` function for reconstructing the cell frequencies in 2x2 tables based on other summary statistics - added `conv.wald()` function for converting Wald-type confidence intervals and test statistics to sampling variances - added `conv.fivenum()` function for estimating means and standard deviations from five-number summary values - added `conv.delta()` function for transforming observed effect sizes or outcomes and their sampling variances using the delta method - added `emmprep()` function to create a reference grid for use with the `emmeans()` function from the package of the same name - exposed formatter functions `fmtp()`, `fmtx()`, and `fmtt()` - package `numDeriv` moved from `Suggests` to `Depends` - `model.matrix.rma()` gains `asdf` argument - corrected bug in `vcalc()` (values for `obs` and `type` were taken directly as indices instead of using them as identifiers) - improved efficiency of `vif()` when `sim=TRUE` by reshuffling only the data needed in the model matrix; due to some edge cases, the simulation approach cannot be used when some redundant predictors were dropped from the original model; and when redundancies occur after reshuffling the data, the simulated (G)VIF value(s) are now set to `Inf` instead of `NA` - `selmodel()` gains `type='trunc'` and `type='truncest'` models (the latter should be considered experimental) - added `exact="i"` option in `permutest()` (to just return the number of iterations required for an exact permutation test) - `escalc()` now provides more informative error messages when not specifying all required arguments to compute a particular measure - added measures `"ZPHI"`, `"ZTET"`, `"ZPB"`, `"ZBIS"`, and `"ZSPCOR"` to `escalc()` (but note that Fisher's r-to-z transformation is not a variance-stabilizing transformation for these measures) - the variance of measure `ZPCOR` is now calculated with `1/(ni-mi-3)` (instead of `1/(ni-mi-1)`), which provides a better approximation in small samples (and analogous to how the variance of `ZCOR` is calculated with `1/(ni-3)`) - as with `measure="SMD"`, one can now also use arguments `di` and `ti` to specify d-values and t-test statistics for measures `RPB`, `RBIS`, `D2ORN`, and `D2ORL` in `escalc()` - for measures `COR`, `UCOR`, and `ZCOR`, can now use argument `ti` to specify t-test statistics in `escalc()` - can also specify (two-sided) p-values (of the respective t-tests) for these measures (and for measures `PCOR`, `ZPCOR`, `SPCOR`, and `ZSPCOR`) via argument `pi` (the sign of the p-value is taken to be the sign of the measure) - can also specify (semi-)partial correlations directly via argument `ri` for measures `PCOR`, `ZPCOR`, `SPCOR`, and `ZSPCOR` - when passing a correlation marix to `rcalc()`, it now orders the elements (columnwise) based on the lower triangular part of the matrix, not the upper one (which is more consistent with what `matreg()` expects as input when using the `V` argument) - optimizers `Rcgmin` and `Rvmmin` are now available in `rma.uni()`, `rma.mv()`, `rma.glmm()`, and `selmodel()` - improved the documentation a bit # metafor 3.8-1 (2022-08-26) - `funnel.default()`, `funnel.rma()`, and `regplot.rma()` gain `slab` argument - `vif()` was completely refactored and gains `reestimate`, `sim`, and `parallel` arguments; added `as.data.frame.vif.rma()` and `plot.vif.rma()` methods - `plot.permutest.rma.uni()` function sets the y-axis limits automatically and in a smarter way when also drawing the reference/null distribution and the density estimate - added possibility to specify a list for `btt` in `anova.rma()`; added `print.list.anova.rma()` to print the resulting object - added `as.data.frame.anova.rma()` and `as.data.frame.list.anova.rma()` methods - documented the possibility to use an identity link (with `link="identity"`) in `rma.uni()` when fitting location-scale models (although this will often lead to estimation problems); added `solnp()` as an additional optimizer for this case - optimizers `nloptr` and `constrOptim.nl` (the latter from the `alabama` package) are now available in `rma.uni()` for location-scale models when using an identity link - added measure `SMD1H` to `escalc()` - for `measure="SMD"`, `escalc()` now also allows the user to specify d-values and t-test statistics via arguments `di` and `ti`, respectively - `aggregate.escalc()` gains `addk` argument - added (experimental!) support for measures `"RR"`, `"RD"`, `"PLN"`, and `"PR"` to `rma.glmm()` (but using these measures will often lead to estimation problems) - `replmiss()` gains `data` argument - `cumul()` functions also store data, so that arguments `ilab`, `col`, `pch`, and `psize` in the `forest.cumul.rma()` function can look for variables therein - fixed issue with rendering Rmarkdown documents with `metafor` output due to the use of a zero-width space # metafor 3.4-0 (2022-04-21) - added `misc-models`, `misc-recs`, and `misc-options` help pages - added `as.data.frame.confint.rma()` and `as.data.frame.list.confint.rma` methods - `permutest()` can now also do permutation tests for location-scale models; it also always returns the permutation distributions; hence, argument `retpermdist` was removed - added `plot.permutest.rma.uni()` function to plot the permutation distributions - simplified `regtest()`, `ranktest()`, and `tes()` to single functions instead of using generics and methods; this way, a `data` argument could be added - added `vcalc()` and `blsplit()` functions - `robust()` gains `clubSandwich` argument; if set to `TRUE`, the methods from the `clubSandwich` package (https://cran.r-project.org/package=clubSandwich) are used to obtain the cluster-robust results; `anova.rma()` and `predict.rma()` updated to work appropriately in this case - results from `robust()` are no longer printed with `print.robust.rma()` but with the print methods `print.rma.uni()` and `print.rma.mv()` - `anova.rma()` now gives a warning when running LRTs not based on ML/REML estimation and gains `rhs` argument; it also now has a `refit` argument (to refit REML fits with ML in case the fixed effects of the models differ) - setting `dfs="contain"` in `rma.mv()` automatically sets `test="t"` for convenience - elements of `rho` and `phi` in `rma.mv()` are now based on the lower triangular part of the respective correlation matrix (instead of the upper triangular part) for consistency with other functions; note that this is in principle a backwards incompatible change, although this should only be a concern in very special circumstances - `rma.mv()` gains `cvvc` argument (for calculating the var-cov matrix of the variance/correlation/covariance components) - added measure `"MPORM"` to `escalc()` for computing marginal log odds ratios based on marginal 2x2 tables directly (which requires specification of the correlation coefficients in the paired tables for the calculation of the sampling variances via the `ri` argument) - added measure `"REH"` to `escalc()` for computing the (log transformed) relative excess heterozygosity (to assess deviations from the Hardy-Weinberg equilibrium) - `aggregate.escalc()` gains `checkpd` argument and `struct="CS+CAR"` - `rma.glmm()` now has entire array of optimizers available for `model="CM.EL"` and `measure="OR"`; switched the default from `optim()` with method `BFGS` to `nlminb()` for consistency with `rma.mv()`, `rma.uni()`, and `selmodel.rma.uni()` - `rma.glmm()` gains `coding` and `cor` arguments and hence more flexibility how the group variable should be coded in the random effects structure and whether the random study effects should be allowed to be correlated with the random group effects - `rma.uni()` now also provides R^2 for fixed-effects models - `matreg()` can now also analyze a covariance matrix with a corresponding `V` matrix; can also specify variable names (instead of indices) for arguments `x` and `y` - renamed argument `nearPD` to `nearpd` in `matreg()` (but `nearPD` continues to work) - `plot.profile.rma()` gains `refline` argument - added `addpoly.rma.predict()` method - `addpoly.default()` and `addpoly.rma()` gain `lty` and `annosym` arguments; if unspecified, arguments `annotate`, `digits`, `width`, `transf`, `atransf`, `targs`, `efac`, `fonts`, `cex`, and `annosym` are now automatically set equal to the same values that were used when creating the forest plot - documented `textpos` and `rowadj` arguments for the various `forest` functions and moved the `top` and `annosym` arguments to 'additional arguments' - fixed that `level` argument in `addpoly.rma()` did not affect the CI width - `points.regplot()` function now also redraws the labels (if there were any to begin with) - added `lbfgsb3c`, `subplex`, and `BBoptim` as possible optimizer in `rma.mv()`, `rma.glmm()`, `rma.uni()`, and `selmodel.rma.uni()` - the object returned by model fitting functions now includes the data frame specified via the `data` argument; various method functions now automatically look for specified variables within this data frame first - datasets moved to the `metadat` package (https://cran.r-project.org/package=metadat) - improved the documentation a bit # metafor 3.0-2 (2021-06-09) - the `metafor` package now makes use of the `mathjaxr` package to nicely render equations shown in the HTML help pages - `rma()` can now also fit location-scale models - added `selmodel()` for fitting a wide variety of selection models (and added the corresponding `plot.rma.uni.selmodel()` function for drawing the estimated selection function) - `rma.mv()` gains `dfs` argument and now provides an often better way for calculating the (denominator) degrees of freedom for approximate t- and F-tests when `dfs="contain"` - added `tes()` function for the test of excess significance - added `regplot()` function for drawing scatter plots / bubble plots based on meta-regression models - added `rcalc()` for calculating the variance-covariance matrix of correlation coefficients and `matreg()` for fitting regression models based on correlation/covariance matrices - added convenience functions `dfround()` and `vec2mat()` - added `aggregate.escalc()` function to aggregate multiple effect sizes or outcomes within studies/clusters - `regtest()` now shows the 'limit estimate' of the (average) true effect when using `sei`, `vi`, `ninv`, or `sqrtninv` as predictors (and the model does not contain any other moderators) - `vif()` gains `btt` argument and can now also compute generalized variance inflation factors; a proper `print.vif.rma()` function was also added - `anova.rma()` argument `L` renamed to `X` (the former still works, but is no longer documented) - argument `order` in `cumul()` should now just be a variable, not the order of the variable, to be used for ordering the studies and must be of the same length as the original dataset that was used in the model fitting - similarly, vector arguments in various plotting functions such as `forest.rma()` must now be of the same length as the original dataset that was used in the model fitting (any subsetting and removal of `NA`s is automatically applied) - the various `leave1out()` and `cumul()` functions now provide `I^2` and `H^2` also for fixed-effects models; accordingly, `plot.cumul.rma()` now also works with such models - fixed `level` not getting passed down to the various `cumul()` functions - `plot.cumul.rma()` argument `addgrid` renamed to `grid` (the former still works, but is no longer documented) - `forest.default()`, `forest.rma()`, and `labbe()` gain `plim` argument and now provide more flexibility in terms of the scaling of the points - `forest.rma()` gains `colout` argument (to adjust the color of the observed effect sizes or outcomes) - in the various `forest()` functions, the right header is now suppressed when `annotate=FALSE` and `header=TRUE` - `funnel.default()` and `funnel.rma()` gain `label` and `offset` arguments - `funnel.default()` and `funnel.rma()` gain `lty` argument; the reference line is now drawn by default as a dotted line (like the line for the pseudo confidence region) - the `forest` and `funnel` arguments of `reporter.rma.uni()` can now also be logicals to suppress the drawing of these plots - added `weighted` argument to `fsn()` (for Orwin's method) - added some more transformation functions - `bldiag()` now properly handles ?x0 or 0x? matrices - p-values are still given to 2 digits even when `digits=1` - `summary.escalc()` also provides the p-values (of the Wald-type tests); but when using the `transf` argument, the sampling variances, standard errors, test statistics, and p-values are no longer shown - `rma.uni()` no longer constrains a fixed tau^2 value to 0 when k=1 - slight speedup in functions that repeatedly fit `rma.uni()` models by skipping the computation of the pseudo R^2 statistic - started using the `pbapply` package for showing progress bars, also when using parallel processing - to avoid potential confusion, all references to 'credibility intervals' have been removed from the documentation; these intervals are now exclusively referred to as 'prediction intervals'; in the output, the bounds are therefore indicated now as `pi.lb` and `pi.ub` (instead of `cr.lb` and `cr.ub`); the corresponding argument names were changed in `addpoly.default()`; argument `addcred` was changed to `addpred` in `addpoly.rma()` and `forest.rma()`; however, code using the old arguments names should continue to work - one can now use `weights(..., type="rowsum")` for intercept-only `rma.mv` models (to obtain 'row-sum weights') - `simulate.rma()` gains `olim` argument; renamed the `clim` argument in `summary.escalc()` and the various `forest()` functions to `olim` for consistency (the old `clim` argument should continue to work) - show nicer network graphs for `dat.hasselblad1998` and `dat.senn2013` in the help files - added 24 datasets (`dat.anand1999`, `dat.assink2016`, `dat.baskerville2012`, `dat.bornmann2007`, `dat.cannon2006`, `dat.cohen1981`, `dat.craft2003`, `dat.crede2010`, `dat.dagostino1998`, `dat.damico2009`, `dat.dorn2007`, `dat.hahn2001`, `dat.kalaian1996`, `dat.kearon1998`, `dat.knapp2017`, `dat.landenberger2005`, `dat.lau1992`, `dat.lim2014`, `dat.lopez2019`, `dat.maire2019, `, `dat.moura2021` `dat.obrien2003`, `dat.vanhowe1999`, `dat.viechtbauer2021`) - the package now runs a version check on startup in interactive sessions; setting the environment variable `METAFOR_VERSION_CHECK` to `FALSE` disables this - refactored various functions (for cleaner/simpler code) - improved the documentation a bit # metafor 2.4-0 (2020-03-19) - version jump to 2.4-0 for CRAN release (from now on, even minor numbers for CRAN releases, odd numbers for development versions) - the various `forest()` functions gain `header` argument - `escalc()` gains `include` argument - setting `verbose=3` in model fitting functions sets `options(warn=1)` - `forest.rma()` and `forest.default()` now throw informative errors when misusing `order` and `subset` arguments - fixed failing tests due to the `stringsAsFactors=FALSE` change in the upcoming version of R - `print.infl.rma.uni()` gains `infonly` argument, to only show the influential studies - removed `MASS` from `Suggests` (no longer needed) - argument `btt` can now also take a string to grep for - added `optimParallel` as possible optimizer in `rma.mv()` - added (for now undocumented) option to fit models in `rma.glmm()` via the `GLMMadaptive` package (instead of `lme4`); to try this, use: `control=list(package="GLMMadaptive")` - started to use numbering scheme for devel version (the number after the dash indicates the devel version) - added `contrmat()` function (for creating a matrix that indicates which groups have been compared against each other in each row of a dataset) - added `to.wide()` function (for restructuring long format datasets into the wide format needed for contrast-based analyses) - `I^2` and `H^2` are also shown in output for fixed-effects models - argument `grid` in `baujat()` can now also be a color name - added (for now undocumented) `time` argument to more functions that are computationally expensive - added (for now undocumented) `textpos` argument to the various forest functions - added a new dataset (`dat.graves2010`) - added more tests # metafor 2.1-0 (2019-05-13) - added `formula()` method for objects of class `rma` - `llplot()` now also allows for `measure="GEN"`; also, the documentation and y-axis label have been corrected to indicate that the function plots likelihoods (not log likelihoods) - `confint.rma.mv()` now returns an object of class `list.confint.rma` when obtaining CIs for all variance and correlation components of the model; added corresponding `print.list.confint.rma()` function - moved `tol` argument in `permutest()` to `control` and renamed to `comptol` - added `PMM` and `GENQM` estimators in `rma.uni()` - added `vif()` function to get variance inflation factors - added `.glmulti` object for making the interaction with `glmulti` easier - added `reporter()` and `reporter.rma.uni()` for dynamically generating analysis reports for objects of class `rma.uni` - output is now styled/colored when `crayon` package is loaded (this only works on a 'proper' terminal with color support; also works in RStudio) - overhauled `plot.gosh.rma()`; when `out` is specified, it now shows two distributions, one for the values when the outlier is included and one for the values when for outlier is excluded; dropped the `hcol` argument and added `border` argument - refactored `influence.rma.uni()` to be more consistent internally with other functions; `print.infl.rma.uni()` and `plot.infl.rma.uni()` adjusted accordingly; functions `cooks.distance.rma.uni()`, `dfbetas.rma.uni()`, and `rstudent.rma.uni()` now call `influence.rma.uni()` for the computations - `rstudent.rma.uni()` now computes the SE of the deleted residuals in such a way that it will yield identical results to a mean shift outlier model even when that model is fitted with `test="knha"` - `rstandard.rma.uni()` gains `type` argument, and can now also compute conditional residuals (it still computes marginal residuals by default) - `cooks.distance.rma.mv()` gains `cluster` argument, so that the Cook's distances can be computed for groups of estimates - `cooks.distance.rma.mv()` gains `parallel`, `ncpus`, and `cl` arguments and can now make use of parallel processing - `cooks.distance.rma.mv()` should be faster by using the estimates from the full model as starting values when fitting the models with the ith study/cluster deleted from the dataset - `cooks.distance.rma.mv()` gains `reestimate` argument; when set to `FALSE`, variance/correlation components are not reestimated - `rstandard.rma.mv()` gains `cluster` argument for computing cluster-level multivariate standardized residuals - added `rstudent.rma.mv()` and `dfbetas.rma.mv()` - smarter matching of elements in `newmods` (when using a named vector) in `predict()` that also works for models with interactions (thanks to Nicole Erler for pointing out the problem) - `rma.uni()` and `rma.mv()` no longer issue (obvious) warnings when user constrains `vi` or `V` to 0 (i.e., `vi=0` or `V=0`, respectively) - `rma.mv()` does more intelligent filtering based on `NA`s in `V` matrix - `rma.mv()` now ensures strict symmetry of any (var-cov or correlation) matrices specified via the `R` argument - fixed `rma.mv()` so checks on `R` argument run as intended; also fixed an issue when multiple formulas with slashes are specified via `random` (thanks to Andrew Loignon for pointing out the problem) - suppressed showing calls on some warnings/errors in `rma.mv()` - `rma.mv()` now allows for a continuous-time autoregressive random effects structure (`struct="CAR"`) and various spatial correlation structures (`struct="SPEXP"`, `"SPGAU"`, `"SPLIN"`, `"SPRAT"`, and `"SPSPH"`) - `rma.mv()` now allows for `struct="GEN"` which models correlated random effects for any number of predictors, including continuous ones (i.e., this allows for 'random slopes') - in the various `forest()` functions, when `options(na.action="na.pass")` or `options(na.action="na.exclude")` and an annotation contains `NA`, this is now shown as a blank (instead of `NA [NA, NA]`) - the various `forest()` and `addpoly()` functions gain a `fonts` argument - the various `forest()` functions gain a `top` argument - the various `forest()` functions now show correct point sizes when the weights of the studies are exactly the same - `forest.cumul.rma()` gains a `col` argument - `funnel.default()` and `funnel.rma()` can now take vectors as input for the `col` and `bg` arguments (and also for `pch`); both functions also gain a `legend` argument - `addpoly()` functions can now also show prediction interval bounds - removed 'formula interface' from `escalc()`; until this actually adds some kind of extra functionality, this just makes `escalc()` more confusing to use - `escalc()` can now compute the coefficient of variation ratio and the variability ratio for pre-post or matched designs (`"CVRC"`, `"VRC"`) - `escalc()` does a bit more housekeeping - added (currently undocumented) arguments `onlyo1`, `addyi`, and `addvi` to `escalc()` that allow for more flexibility when computing certain bias corrections and when computing sampling variances for measures that make use of the `add` and `to` arguments - `escalc()` now sets `add=0` for measures where the use of such a bias correction makes little sense; this applies to the following measures: `"AS"`, `"PHI"`, `"RTET"`, `"IRSD"`, `"PAS"`, `"PFT"`, `"IRS"`, and `"IRFT"`; one can still force the use of the bias correction by explicitly setting the `add` argument to some non-zero value - added `clim` argument to `summary.escalc()` - added `ilim` argument to `trimfill()` - `labbe()` gains `lty` argument - `labbe()` now (invisibly) returns a data frame with the coordinates of the points that were drawn (which may be useful for manual labeling of points in the plot) - added a print method for `profile.rma` objects - `profile.rma.mv()` now check whether any of the profiled log-likelihood values is larger than the log-likelihood of the fitted model (using numerical tolerance given by `lltol`) and issues a warning if so - `profile.rma.uni()`, `profile.rma.mv()`, and `plot.profile.rma()` gain `cline` argument; `plot.profile.rma()` gains `xlim`, `ylab`, and `main` arguments - fixed an issue with `robust.rma.mv()` when the model was fitted with `sparse=TRUE` (thanks to Roger Martineau for noting the problem) - various method functions (`fitted()`, `resid()`, `predict()`, etc.) behave in a more consistent manner when model omitted studies with missings - `predict.rma()` gains `vcov` argument; when set to `TRUE`, the variance-covariance matrix of the predicted values is also returned - `vcov.rma()` can now also return the variance-covariance matrix of the fitted values (`type="fitted"`) and the residuals (`type="resid"`) - added `$<-` and `as.matrix()` methods for `list.rma` objects - fixed error in `simulate.rma()` that would generate too many samples for `rma.mv` models - added undocumented argument `time` to all model fitting functions; if set to `TRUE`, the model fitting time is printed - added more tests (also for parallel operations); also, all tests updated to use proper tolerances instead of rounding - reorganized the documentation a bit # metafor 2.0-0 (2017-06-22) - added `simulate()` method for `rma` objects; added `MASS` to `Suggests` (since simulating for `rma.mv` objects requires `mvrnorm()` from `MASS`) - `cooks.distance.rma.mv()` now works properly even when there are missing values in the data - `residuals()` gains `type` argument and can compute Pearson residuals - the `newmods` argument in `predict()` can now be a named vector or a matrix/data frame with column names that get properly matched up with the variables in the model - added `ranef.rma.mv()` for extracting the BLUPs of the random effects for `rma.mv` models - all functions that repeatedly refit models now have the option to show a progress bar - added `ranktest.default()`, so user can now pass the outcomes and corresponding sampling variances directly to the function - added `regtest.default()`, so user can now pass the outcomes and corresponding sampling variances directly to the function - `funnel.default()` gains `subset` argument - `funnel.default()` and `funnel.rma()` gain `col` and `bg` arguments - `plot.profile.rma()` gains `ylab` argument - more consistent handling of `robust.rma` objects - added a print method for `rma.gosh` objects - the (log) relative risk is now called the (log) risk ratio in all help files, plots, code, and comments - `escalc()` can now compute outcome measures based on paired binary data (`"MPRR"`, `"MPOR"`, `"MPRD"`, `"MPORC"`, and `"MPPETO"`) - `escalc()` can now compute (semi-)partial correlation coefficients (`"PCOR"`, `"ZPCOR"`, `"SPCOR"`) - `escalc()` can now compute measures of variability for single groups (`"CVLN"`, `"SDLN"`) and for the difference in variability between two groups (`"CVR"`, `"VR"`); also the log transformed mean (`"MNLN"`) has been added for consistency - `escalc()` can now compute the sampling variance for `measure="PHI"` for studies using stratified sampling (`vtpye="ST"`) - the `[` method for `escalc` objects now properly handles the `ni` and `slab` attributes and does a better job of cleaning out superfluous variable name information - added `rbind()` method for `escalc` objects - added `as.data.frame()` method for `list.rma` objects - added a new dataset (`dat.pagliaro1992`) for another illustration of a network meta-analysis - added a new dataset (`dat.laopaiboon2015`) on the effectiveness of azithromycin for treating lower respiratory tract infections - `rma.uni()` and `rma.mv()` now check if the ratio of the largest to smallest sampling variance is very large; results may not be stable then (and very large ratios typically indicate wrongly coded data) - model fitting functions now check if extra/superfluous arguments are specified via `...` and issues are warning if so - instead of defining own generic `ranef()`, import `ranef()` from `nlme` - improved output formatting - added more tests (but disabled a few tests on CRAN to avoid some issues when R is compiled with `--disable-long-double`) - some general code cleanup - renamed `diagram_metafor.pdf` vignette to just `diagram.pdf` - minor updates in the documentation # metafor 1.9-9 (2016-09-25) - started to use git as version control system, GitHub to host the repository (https://github.com/wviechtb/metafor) for the development version of the package, Travis CI as continuous integration service (https://travis-ci.org/wviechtb/metafor), and Codecov for automated code coverage reporting (https://app.codecov.io/gh/wviechtb/metafor) - argument `knha` in `rma.uni()` and argument `tdist` in `rma.glmm()` and `rma.mv()` are now superseded by argument `test` in all three functions; for backwards compatibility, the `knha` and `tdist` arguments still work, but are no longer documented - `rma(yi, vi, weights=1, test="knha")` now yields the same results as `rma(yi, vi, weighted=FALSE, test="knha")` (but use of the Knapp and Hartung method in the context of an unweighted analysis remains an experimental feature) - one can now pass an `escalc` object directly to `rma.uni()`, which then tries to automatically determine the `yi` and `vi` variables in the data frame (thanks to Christian Roever for the suggestion) - `escalc()` can now also be used to convert a regular data frame to an `escalc` object - for `measure="UCOR"`, the exact bias-correction is now used (instead of the approximation); when `vtype="UB"`, the exact equation is now used to compute the unbiased estimate of the variance of the bias-corrected correlation coefficient; hence `gsl` is now a suggested package (needed to compute the hypergeometric function) and is loaded when required - `cooks.distance()` now also works with `rma.mv` objects; and since model fitting can take some time, an option to show a progress bar has been added - fixed an issue with `robust.rma.mv()` throwing errors when the model was fitted with `sparse=TRUE` - fixed an error with `robust.rma.mv()` when the model was fitted with user-defined weights (or a user-defined weight matrix) - added `ranef()` for extracting the BLUPs of the random effects (only for `rma.uni` objects at the moment) - reverted back to the pre-1.1-0 way of computing p-values for individual coefficients in `permutest.rma.uni()`, that is, the p-value is computed with `mean(abs(z_perm) >= abs(z_obs) - tol)` (where `tol` is a numerical tolerance) - `permutest.rma.uni()` gains `permci` argument, which can be used to obtain permutation-based CIs of the model coefficients (note that this is computationally very demanding and may take a long time to complete) - `rma.glmm()` continues to work even when the saturated model cannot be fitted (although the tests for heterogeneity are not available then) - `rma.glmm()` now allows control over the arguments used for `method.args` (via `control=list(hessianCtrl=list(...))`) passed to `hessian()` (from the `numDeriv` package) when using `model="CM.EL"` and `measure="OR"` - in `rma.glmm()`, default `method.args` value for `r` passed to `hessian()` has been increased to 16 (while this slows things down a bit, this appears to improve the accuracy of the numerical approximation to the Hessian, especially when tau^2 is close to 0) - the various `forest()` and `addpoly()` functions now have a new argument called `width`, which provides manual control over the width of the annotation columns; this is useful when creating complex forest plots with a monospaced font and we want to ensure that all annotations are properly lined up at the decimal point - the annotations created by the various `forest()` and `addpoly()` functions are now a bit more compact by default - more flexible `efac` argument in the various `forest()` functions - trailing zeros in the axis labels are now dropped in forest and funnel plots by default; but trailing zeros can be retained by specifying a numeric (and not an integer) value for the `digits` argument - added `funnel.default()`, which directly takes as input a vector with the observed effect sizes or outcomes and the corresponding sampling variances, standard errors, and/or sample sizes - added `plot.profile.rma()`, a plot method for objects returned by the `profile.rma.uni()` and `profile.rma.mv()` functions - simplified `baujat.rma.uni()`, `baujat.rma.mh()`, and `baujat.rma.peto()` to `baujat.rma()`, which now handles objects of class `rma.uni`, `rma.mh`, and `rma.peto` - `baujat.rma()` gains argument `symbol` for more control over the plotting symbol - `labbe()` gains a `grid` argument - more logical placement of labels in `qqnorm.rma.uni()`, `qqnorm.rma.mh()`, and `qqnorm.rma.peto()` functions (and more control thereof) - `qqnorm.rma.uni()` gains `lty` argument - added `gosh.rma()` and `plot.gosh.rma()` for creating GOSH (i.e., graphical display of study heterogeneity) plots based on Olkin et al. (2012) - in the (rare) case where all observed outcomes are exactly equal to each other, `test="knha"` (i.e., `knha=TRUE`) in `rma()` now leads to more appropriate results - updated datasets so those containing precomputed effect size estimates or observed outcomes are already declared to be `escalc` objects - added new datasets (`dat.egger2001` and `dat.li2007`) on the effectiveness of intravenous magnesium in acute myocardial infarction - `methods` package is now under `Depends` (in addition to `Matrix`), so that `rma.mv(..., sparse=TRUE)` always works, even under Rscript - some general code cleanup - added more tests (and used a more consistent naming scheme for tests) # metafor 1.9-8 (2015-09-28) - due to more stringent package testing, it is increasingly difficult to ensure that the package passes all checks on older versions of R; from now on, the package will therefore require, and be checked under, only the current (and the development) version of R - added `graphics`, `grDevices`, and `methods` to `Imports` (due to recent change in how CRAN checks packages) - the `struct` argument for `rma.mv()` now also allows for `"ID"` and `"DIAG"`, which are identical to the `"CS"` and `"HCS"` structures, but with the correlation parameter fixed to 0 - added `robust()` for (cluster) robust tests and confidence intervals for `rma.uni` and `rma.mv` models (this uses a robust sandwich-type estimator of the variance-covariance matrix of the fixed effects along the lines of the Eicker-Huber-White method) - `confint()` now works for models fitted with the `rma.mv()` function; for variance and correlation parameters, the function provides profile likelihood confidence intervals; the output generated by the `confint()` function has been adjusted in general to make the formatting more consistent across the different model types - for objects of class `rma.mv`, `profile()` now provides profile plots for all (non-fixed) variance and correlation components of the model when no component is specified by the user (via the `sigma2`, `tau2`, `rho`, `gamma2`, or `phi` arguments) - for `measure="MD"` and `measure="ROM"`, one can now choose between `vtype="LS"` (the default) and `vtype="HO"`; the former computes the sampling variances without assuming homoscedasticity, while the latter assumes homoscedasticity - multiple model objects can now be passed to the `fitstats()`, `AIC()`, and `BIC()` functions - check for duplicates in the `slab` argument is now done *after* any subsetting is done (as suggested by Michael Dewey) - `rma.glmm()` now again works when using `add=0`, in which case some of the observed outcomes (e.g., log odds or log odds ratios) may be `NA` - when using `rma.glmm()` with `model="CM.EL"`, the saturated model (used to compute the Wald-type and likelihood ratio tests for the presence of (residual) heterogeneity) often fails to converge; the function now continues to run (instead of stopping with an error) and simply omits the test results from the output - when using `rma.glmm()` with `model="CM.EL"` and inversion of the Hessian fails via the Choleski factorization, the function now makes another attempt via the QR decomposition (even when this works, a warning is issued) - for `rma.glmm()`, BIC and AICc values were switched around; corrected - more use of `suppressWarnings()` is made when functions repeatedly need to fit the same model, such as `cumul()`, `influence()`, and `profile()`; that way, one does not get inundated with the same warning(s) - some (overdue) updates to the documentation # metafor 1.9-7 (2015-05-22) - default optimizer for `rma.mv()` changed to `nlminb()` (instead of `optim()` with `"Nelder-Mead"`); extensive testing indicated that `nlminb()` (and also `optim()` with `"BFGS"`) is typically quicker and more robust; note that this is in principle a non-backwards compatible change, but really a necessary one; and you can always revert to the old behavior with `control=list(optimizer="optim", optmethod="Nelder-Mead")` - all tests have been updated in accordance with the recommended syntax of the `testthat` package; for example, `expect_equivalent(x,y)` is used instead of `test_that(x, is_equivalent_to(y))` - changed a few `is_identical_to()` comparisons to `expect_equivalent()` ones (that failed on Sparc Solaris) # metafor 1.9-6 (2015-05-07) - `funnel()` now works again for `rma.glmm` objects (note to self: quit breaking things that work!) - `rma.glmm()` will now only issue a warning (and not an error) when the Hessian for the saturated model cannot be inverted (which is needed to compute the Wald-type test for heterogeneity, so the test statistic is then simply set to `NA`) - `rma.mv()` now allows for two terms of the form `~ inner | outer`; the variance components corresponding to such a structure are called `gamma2` and correlations are called `phi`; other functions that work with objects of class `rma.mv` have been updated accordingly - `rma.mv()` now provides (even) more optimizer choices: `nlm()` from the `stats` package, `hjk()` and `nmk()` from the `dfoptim` package, and `ucminf()` from the `ucminf` package; choose the desired optimizer via the control argument (e.g., `control=list(optimizer="nlm")`) - `profile.rma.uni()` and `profile.rma.mv()` now can do parallel processing (which is especially relevant for `rma.mv` objects, where profiling is crucial and model fitting can be slow) - the various `confint()` functions now have a `transf` argument (to apply some kind of transformation to the model coefficients and confidence interval bounds); coefficients and bounds for objects of class `rma.mh` and `rma.peto` are no longer automatically transformed - the various `forest()` functions no longer enforce that the actual x-axis limits (`alim`) encompass the observed outcomes to be plotted; also, outcomes below or above the actual x-axis limits are no longer shown - the various `forest()` functions now provide control over the horizontal lines (at the top/bottom) that are automatically added to the plot via the `lty` argument (this also allows for removing them); also, the vertical reference line is now placed *behind* the points/CIs - `forest.default()` now has argument `col` which can be used to specify the color(s) to be used for drawing the study labels, points, CIs, and annotations - the `efac` argument for `forest.rma()` now also allows two values, the first for the arrows and CI limits, the second for summary estimates - corrected some axis labels in various plots when `measure="PLO"` - axes in `labbe()` plots now have `"(Group 1)"` and `"(Group 2)"` added by default - `anova.rma()` gains argument `L` for specifying linear combinations of the coefficients in the model that should be tested to be zero - in case removal of a row of data would lead to one or more inestimable model coefficients, `baujat()`, `cooks.distance()`, `dfbetas()`, `influence()`, and `rstudent()` could fail for `rma.uni` objects; such cases are now handled properly - for models with moderators, the `predict()` function now shows the study labels when they have been specified by the user (and `newmods` is not used) - if there is only one fixed effect (model coefficient) in the model, the `print.infl.rma.uni()` function now shows the DFBETAS values with the other case diagnostics in a single table (for easier inspection); if there is more than one fixed effect, a separate table is still used for the DFBETAS values (with one column for each coefficient) - added `measure="SMCRH"` to the `escalc()` function for the standardized mean change using raw score standardization with heteroscedastic population variances at the two measurement occasions - added `measure="ROMC"` to the `escalc()` function for the (log transformed) ratio of means (response ratio) when the means reflect two measurement occasions (e.g., for a single group of people) and hence are correlated - added own function for computing/estimating the tetrachoric correlation coefficient (for `measure="RTET"`); package therefore no longer suggests `polycor` but now suggest `mvtnorm` (which is loaded as needed) - element `fill` returned by `trimfill.rma.uni()` is now a logical vector (instead of a 0/1 dummy variable) - `print.list.rma()` now also returns the printed results invisibly as a data frame - added a new dataset (`dat.senn2013`) as another illustration of a network meta-analysis - `metafor` now depends on at least version 3.1.0 of R # metafor 1.9-5 (2014-11-24) - moved the `stats` and `Matrix` packages from `Depends` to `Imports`; as a result, had to add `utils` to `Imports`; moved the `Formula` package from `Depends` to `Suggests` - added `update.rma()` function (for updating/refitting a model); model objects also now store and keep the call - the `vcov()` function now also extracts the marginal variance-covariance matrix of the observed effect sizes or outcomes from a fitted model (of class `rma.uni` or `rma.mv`) - `rma.mv()` now makes use of the Cholesky decomposition when there is a `random = ~ inner | outer` formula and `struct="UN"`; this is numerically more stable than the old approach that avoided non-positive definite solutions by forcing the log-likelihood to be -Inf in those cases; the old behavior can be restored with `control = list(cholesky=FALSE)` - `rma.mv()` now requires the `inner` variable in an `~ inner | outer` formula to be a factor or character variable (except when `struct` is `"AR"` or `"HAR"`); use `~ factor(inner) | outer` in case it isn't - `anova.rma.uni()` function changed to `anova.rma()` that works now for both `rma.uni` and `rma.mv` objects - the `profile.rma.mv()` function now omits the number of the variance or correlation component from the plot title and x-axis label when the model only includes one of the respective parameters - `profile()` functions now pass on the `...` argument also to the `title()` function used to create the figure titles (esp. relevant when using the `cex.main` argument) - the `drop00` argument of the `rma.mh()` and `rma.peto()` functions now also accepts a vector with two logicals, the first applies when calculating the observed outcomes, the second when applying the Mantel-Haenszel or Peto's method - `weights.rma.uni()` now shows the correct weights when `weighted=FALSE` - argument `showweight` renamed to `showweights` in the `forest.default()` and `forest.rma()` functions (more consistent with the naming of the various `weights()` functions) - added `model.matrix.rma()` function (to extract the model matrix from objects of class `rma`) - `funnel()` and `radial()` now (invisibly) return data frames with the coordinates of the points that were drawn (may be useful for manual labeling of points in the plots) - `permutest.rma.uni()` function now uses a numerical tolerance when making comparisons (>= or <=) between an observed test statistic and the test statistic under the permuted data; when using random permutations, the function now ensures that the very first permutation correspond to the original data - corrected some missing/redundant row/column labels in some output - most `require()` calls replaced with `requireNamespace()` to avoid altering the search path (hopefully this won't break stuff ...) - some non-visible changes including more use of some (non-exported) helper functions for common tasks - dataset `dat.collins91985a` updated (including all reported outcomes and some more information about the various trials) - oh, and guess what? I updated the documentation ... # metafor 1.9-4 (2014-07-30) - added `method="GENQ"` to `rma.uni()` for the generalized Q-statistic estimator of tau^2, which allows for used-defined weights (note: the DL and HE estimators are just special cases of this method) - when the model was fitted with `method="GENQ"`, then `confint()` will now use the generalized Q-statistic method to construct the corresponding confidence interval for tau^2 (thanks to Dan Jackson for the code); the iterative method used to obtain the CI makes use of Farebrother's algorithm as implemented in the `CompQuadForm` package - slight improvements in how the `rma.uni()` function handles non-positive sampling variances - `rma.uni()`, `rma.mv()`, and `rma.glmm()` now try to detect and remove any redundant predictors before the model fitting; therefore, if there are exact linear relationships among the predictor variables (i.e., perfect multicollinearity), terms are removed to obtain a set of predictors that is no longer perfectly multicollinear (a warning is issued when this happens); note that the order of how the variables are specified in the model formula can influence which terms are removed - the last update introduced an error in how hat values were computed when the model was fitted with the `rma()` function using the Knapp & Hartung method (i.e., when `knha=TRUE`); this has been fixed - `regtest()` no longer works (for now) with `rma.mv` objects (it wasn't meant to in the first place); if you want to run something along the same lines, just consider adding some measure of the precision of the observed outcomes (e.g., their standard errors) as a predictor to the model - added `"sqrtni"` and `"sqrtninv"` as possible options for the `predictor` argument of `regtest()` - more optimizers are now available for the `rma.mv()` function via the `nloptr` package by setting `control = list(optimizer="nloptr")`; when using this optimizer, the default is to use the BOBYQA implementation from that package with a relative convergence criterion of 1e-8 on the function value (see documentation on how to change these defaults) - `predict.rma()` function now works for `rma.mv` objects with multiple tau^2 values even if the user specifies the `newmods` argument but not the `tau2.levels` argument (but a warning is issued and the prediction intervals are not computed) - argument `var.names` now works properly in `escalc()` when the user has not made use of the `data` argument (thanks to Jarrett Byrnes for bringing this to my attention) - added `plot()` function for cumulative random-effects models results as obtained with the `cumul.rma.uni()` function; the plot shows the model estimate on the x-axis and the corresponding tau^2 estimate on the y-axis in the cumulative order of the results - fixed the omitted offset term in the underlying model fitted by the `rma.glmm()` function when `method="ML"`, `measure="IRR"`, and `model="UM.FS"`, that is, when fitting a mixed-effects Poisson regression model with fixed study effects to two-group event count data (thanks to Peter Konings for pointing out this error) - added two new datasets (`dat.bourassa1996`, `dat.riley2003`) - added function `replmiss()` (just a useful helper function) - package now uses `LazyData: TRUE` - some improvements to the documentation (do I still need to mention this every time?) # metafor 1.9-3 (2014-05-05) - some minor tweaks to `rma.uni()` that should be user transparent - `rma.uni()` now has a `weights` argument, allowing the user to specify arbitrary user-defined weights; all functions affected by this have been updated accordingly - better handling of mismatched length of `yi` and `ni` vectors in `rma.uni()` and `rma.mv()` functions - subsetting is now handled as early as possible within functions with subsetting capabilities; this avoids some (rare) cases where studies ultimately excluded by the subsetting could still affect the results - some general tweaks to `rma.mv()` that should make it a bit faster - argument `V` of `rma.mv()` now also accepts a list of var-cov matrices for the observed effects or outcomes; from the list elements, the full (block diagonal) var-cov matrix `V` is then automatically constructed - `rma.mv()` now has a new argument `W` allowing the user to specify arbitrary user-defined weights or an arbitrary weight matrix - `rma.mv()` now has a new argument `sparse`; by setting this to `TRUE`, the function uses sparse matrix objects to the extent possible; this can speed up model fitting substantially for certain models (hence, the `metafor` package now depends on the `Matrix` package) - `rma.mv()` now allows for `struct="AR"` and `struct="HAR"`, to fit models with (heteroscedastic) autoregressive (AR1) structures among the true effects (useful for meta-analyses of studies reporting outcomes at multiple time points) - `rma.mv()` now has a new argument `Rscale` which can be used to control how matrices specified via the `R` argument are scaled (see docs for more details) - `rma.mv()` now only checks for missing values in the rows of the lower triangular part of the `V` matrix (including the diagonal); this way, if `Vi = matrix(c(.5,NA,NA,NA), nrow=2, ncol=2)` is the var-cov matrix of the sampling errors for a particular study with two outcomes, then only the second row/column needs to be removed before the model fitting (and not the entire study) - added five new datasets (`dat.begg1989`, `dat.ishak2007`, `dat.fine1993`, `dat.konstantopoulos2011`, and `dat.hasselblad1998`) to provide further illustrations of the use of the `rma.mv()` function (for meta-analyses combining controlled and uncontrolled studies, for meta-analyses of longitudinal studies, for multilevel meta-analyses, and for network meta-analyses / mixed treatment comparison meta-analyses) - added `rstandard.rma.mv()` function to compute standardized residuals for models fitted with the `rma.mv()` function (`rstudent.rma.mv()` to be added at a later point); also added `hatvalues.rma.mv()` for computing the hat values and `weights.rma.uni()` for computing the weights (i.e., the diagonal elements of the weight matrix) - the various `weights()` functions now have a new argument `type` to indicate whether only the diagonal elements of the weight matrix (default) or the entire weight matrix should be returned - the various `hatvalues()` functions now have a new argument `type` to indicate whether only the diagonal elements of the hat matrix (default) or the entire hat matrix should be returned - `predict.rma()` function now works properly for `rma.mv` objects (also has a new argument `tau2.levels` to specify, where applicable, the levels of the inner factor when computing prediction intervals) - `forest.rma()` function now provides a bit more control over the color of the summary polygon and is now compatible with `rma.mv` objects; also, has a new argument `lty`, which provides more control over the line type for the individual CIs and the prediction interval - `addpoly.default()` and `addpoly.rma()` now have a `border` argument (for consistency with the `forest.rma()` function); `addpoly.rma()` now yields the correct CI bounds when the model was fitted with `knha=TRUE` - `forest.cumul.rma()` now provides the correct CI bounds when the models were fitted with the Knapp & Hartung method (i.e., when `knha=TRUE` in the original `rma()` function call) - the various `forest()` functions now return information about the chosen values for arguments `xlim`, `alim`, `at`, `ylim`, `rows`, `cex`, `cex.lab`, and `cex.axis` invisibly (useful for tweaking the default values); thanks to Michael Dewey for the suggestion - the various `forest()` functions now have a new argument, `clim`, to set limits for the confidence/prediction interval bounds - `cumul.mh()` and `cumul.peto()` now get the order of the studies right when there are missing values in the data - the `transf` argument of `leave1out.rma.mh()`, `leave1out.rma.peto()`, `cumul.rma.mh()`, and `cumul.rma.peto()` should now be used to specify the actual function for the transformation (the former behavior of setting this argument to `TRUE` to exponentiate log RRs, log ORs, or log IRRs still works for back-compatibility); this is more consistent with how the `cumul.rma.uni()` and `leave1out.rma.uni()` functions work and is also more flexible - added `bldiag()` function to construct a block diagonal matrix from (a list of) matrices (may be needed to construct the `V` matrix when using the `rma.mv()` function); `bdiag()` function from the `Matrix` package does the same thing, but creates sparse matrix objects - `profile.rma.mv()` now has a `startmethod` argument; by setting this to `"prev"`, successive model fits are started at the parameter estimates from the previous model fit; this may speed things up a bit; also, the method for automatically choosing the `xlim` values has been changed - slight improvement to `profile.rma.mv()` function, which would throw an error if the last model fit did not converge - added a new dataset (`dat.linde2005`) for replication of the analyses in Viechtbauer (2007) - added a new dataset (`dat.molloy2014`) for illustrating the meta-analysis of (r-to-z transformed) correlation coefficients - added a new dataset (`dat.gibson2002`) to illustrate the combined analysis of standardized mean differences and probit transformed risk differences - computations in `weights.mh()` slightly changed to prevent integer overflows for large counts - unnecessary warnings in `transf.ipft.hm()` are now suppressed (cases that raised those warnings were already handled correctly) - in `predict()`, `blup()`, `cumul()`, and `leave1out()`, when using the `transf` argument, the standard errors (which are `NA`) are no longer shown in the output - argument `slab` in various functions will now also accept non-unique study labels; `make.unique()` is used as needed to make them unique - `vignettes("metafor")` and `vignettes("metafor_diagram")` work again (yes, I know they are not true vignettes in the strict sense, but I think they should show up on the CRAN website for the package and using a minimal valid Sweave document that is recognized by the R build system makes that happen) - `escalc()` and its `summary()` method now keep better track when the data frame contains multiple columns with outcome or effect size values (and corresponding sampling variances) for print formatting; also simplified the class structure a bit (and hence, `print.summary.escalc()` removed) - `summary.escalc()` has a new argument `H0` to specify the value of the outcome under the null hypothesis for computing the test statistics - added measures `"OR2DN"` and `"D2ORN"` to `escalc()` for transforming log odds ratios to standardized mean differences and vice-versa, based on the method of Cox & Snell (1989), which assumes normally distributed response variables within the two groups before the dichotomization - `permutest.rma.uni()` function now catches an error when the number of permutations requested is too large (for R to even create the objects to store the results in) and produces a proper error message - `funnel.rma()` function now allows the `yaxis` argument to be set to `"wi"` so that the actual weights (in %) are placed on the y-axis (useful when arbitrary user-defined have been specified) - for `rma.glmm()`, the control argument `optCtrl` is now used for passing control arguments to all of the optimizers (hence, control arguments `nlminbCtrl` and `minqaCtrl` are now defunct) - `rma.glmm()` should not throw an error anymore when including only a single moderator/predictor in the model - `predict.rma()` now returns an object of class `list.rma` (therefore, function `print.predict.rma()` has been removed) - for `rma.list` objects, added `[`, `head()`, and `tail()` methods - automated testing using the `testthat` package (still many more tests to add, but finally made a start on this) - encoding changed to UTF-8 (to use 'foreign characters' in the docs and to make the HTML help files look a bit nicer) - guess what? some improvements to the documentation! (also combined some of the help files to reduce the size of the manual a bit; and yes, it's still way too big) # metafor 1.9-2 (2013-10-07) - added function `rma.mv()` to fit multivariate/multilevel meta-analytic models via appropriate linear (mixed-effects) models; this function allows for modeling of non-independent sampling errors and/or true effects and can be used for network meta-analyses, meta-analyses accounting for phylogenetic relatedness, and other complicated meta-analytic data structures - added the AICc to the information criteria computed by the various model fitting functions - if the value of tau^2 is fixed by the user via the corresponding argument in `rma.uni()`, then tau^2 is no longer counted as an additional parameter for the computation of the information criteria (i.e., AIC, BIC, and AICc) - `rma.uni()`, `rma.glmm()`, and `rma.mv()` now use a more stringent check whether the model matrix is of full rank - added `profile()` method functions for objects of class `rma.uni` and `rma.mv` (can be used to obtain a plot of the profiled log-likelihood as a function of a specific variance component or correlation parameter of the model) - `predict.rma()` function now has an `intercept` argument that allows the user to decide whether the intercept term should be included when calculating the predicted values (rare that this should be changed from the default) - for `rma.uni()`, `rma.glmm()`, and `rma.mv()`, the `control` argument can now also accept an integer value; values > 1 generate more verbose output about the progress inside of the function - `rma.glmm()` has been updated to work with `lme4` 1.0.x for fitting various models; as a result, `model="UM.RS"` can only use `nAGQ=1` at the moment (hopefully this will change in the future) - the `control` argument of `rma.glmm()` can now be used to pass all desired control arguments to the various functions and optimizers used for the model fitting (admittedly the use of lists within this argument is a bit unwieldy, but much more flexible) - `rma.mh()` and `rma.peto()` also now have a `verbose` argument (not really needed, but added for sake of consistency across functions) - fixed (silly) error that would prevent `rma.glmm()` from running for measures `"IRR"`, `"PLO"`, and `"IRLN"` when there are missing values in the data (lesson: add some missing values to datasets for the unit tests!) - a bit of code reorganization (should be user transparent) - vignettes (`"metafor"` and `"metafor_diagram"`) are now just 'other files' in the doc directory (as these were not true vignettes to begin with) - some improvements to the documentation (as always) # metafor 1.9-1 (2013-07-20) - `rma.mh()` now also implements the Mantel-Haenszel method for incidence rate differences (`measure="IRD"`) - when analyzing incidence rate ratios (`measure="IRR"`) with the `rma.mh()` function, the Mantel-Haenszel test for person-time data is now also provided - `rma.mh()` has a new argument `correct` (default is `TRUE`) to indicate whether the continuity correction should be applied when computing the (Cochran-)Mantel-Haenszel test statistic - renamed elements `CMH` and `CMHp` (for the Cochran-Mantel-Haenszel test statistic and corresponding p-value) to `MH` and `MHp` - added function `baujat()` to create Baujat plots - added a new dataset (`dat.pignon2000`) to illustrate the use of the `baujat()` function - added function `to.table()` to convert data from vector format into the corresponding table format - added function `to.long()` to convert data from vector format into the corresponding long format - `rma.glmm()` now even runs when k=1 (yielding trivial results) - for models with an intercept and moderators, `rma.glmm()` now internally rescales (non-dummy) variables to z-scores during the model fitting (this improves the stability of the model fitting, especially when `model="CM.EL"`); results are given after back-scaling, so this should be transparent to the user - in `rma.glmm()`, default number of quadrature points (`nAGQ`) is now 7 (setting this to 100 was a bit overkill) - a few more error checks here and there for misspecified arguments - some improvements to the documentation # metafor 1.9-0 (2013-06-21) - vignette renamed to `metafor` so `vignette("metafor")` works now - added a diagram to the documentation, showing the various functions in the `metafor` package (and how they relate to each other); can be loaded with `vignette("metafor_diagram")` - `anova.rma.uni()` function can now also be used to test (sub)sets of model coefficients with a Wald-type test when a single model is passed to the function - the pseudo R^2 statistic is now automatically calculated by the `rma.uni()` function and supplied in the output (only for mixed-effects models and when the model includes an intercept, so that the random- effects model is clearly nested within the mixed-effects model) - component `VAF` is now called `R2` in `anova.rma.uni()` function - added function `hc()` that carries out a random-effects model analysis using the method by Henmi and Copas (2010); thanks to Michael Dewey for the suggestion and providing the code - added new dataset (`dat.lee2004`), which was used in the article by Henmi and Copas (2010) to illustrate their method - fixed missing x-axis labels in the `forest()` functions - `rma.glmm()` now computes Hessian matrices via the `numDeriv` package when `model="CM.EL"` and `measure="OR"` (i.e., for the conditional logistic model with exact likelihood); so `numDeriv` is now a suggested package and is loaded within `rma.glmm()` when required - `trimfill.rma.uni()` now also implements the `"Q0"` estimator (although the `"L0"` and `"R0"` estimators are generally to be preferred) - `trimfill.rma.uni()` now also calculates the SE of the estimated number of missing studies and, for estimator `"R0"`, provides a formal test of the null hypothesis that the number of missing studies on a given side is zero - added new dataset (`dat.bangertdrowns2004`) - the `level` argument in various functions now either accepts a value representing a percentage or a proportion (values greater than 1 are assumed to be a percentage) - `summary.escalc()` now computes confidence intervals correctly when using the `transf` argument - computation of Cochran-Mantel-Haenszel statistic in `rma.mh()` changed slightly to avoid integer overflow with very big counts - some internal improvements with respect to object attributes that were getting discarded when subsetting - some general code cleanup - some improvements to the documentation # metafor 1.8-0 (2013-04-11) - added additional clarifications about the change score outcome measures (`"MC"`, `"SMCC"`, and `"SMCR"`) to the help file for the `escalc()` function and changed the code so that `"SMCR"` no longer expects argument `sd2i` to be specified (which is not needed anyways) (thanks to Markus Kösters for bringing this to my attention) - sampling variance for the biserial correlation coefficient (`"RBIS"`) is now calculated in a slightly more accurate way - `llplot()` now properly scales the log-likelihoods - argument `which` in the `plot.infl.rma.uni()` function has been replaced with argument `plotinf` which can now also be set to `FALSE` to suppress plotting of the various case diagnostics altogether - labeling of the axes in `labbe()` plots is now correct for odds ratios (and transformations thereof) - added two new datasets (`dat.nielweise2007` and `dat.nielweise2008`) to illustrate some methods/models from the `rma.glmm()` function - added a new dataset (`dat.yusuf1985`) to illustrate the use of `rma.peto()` - test for heterogeneity is now conducted by the `rma.peto()` function exactly as described by Yusuf et al. (1985) - in `rma.glmm()`, default number of quadrature points (`nAGQ`) is now 100 (which is quite a bit slower, but should provide more than sufficient accuracy in most cases) - the standard errors of the HS and DL estimators of tau^2 are now correctly computed when tau^2 is prespecified by the user in the `rma()` function; in addition, the standard error of the SJ estimator is also now provided when tau^2 is prespecified - `rma.uni()` and `rma.glmm()` now use a better method to check whether the model matrix is of full rank - I^2 and H^2 statistics are now also calculated for mixed-effects models by the `rma.uni()` and `rma.glmm()` function; `confint.rma.uni()` provides the corresponding confidence intervals for `rma.uni` models - various `print()` methods now have a new argument called `signif.stars`, which defaults to `getOption("show.signif.stars")` (which by default is `TRUE`) to determine whether the infamous 'significance stars' should be printed - slight changes in wording in the output produced by the `print.rma.uni()` and `print.rma.glmm()` functions - some improvements to the documentation # metafor 1.7-0 (2013-02-06) - added `rma.glmm()` function for fitting of appropriate generalized linear (mixed-effects) models when analyzing odds ratios, incidence rate ratios, proportions, or rates; the function makes use of the `lme4` and `BiasedUrn` packages; these are now suggested packages and loaded within `rma.glmm()` only when required (this makes for faster loading of the `metafor` package) - added several method functions for objects of class `rma.glmm` (not all methods yet implemented; to be completed in the future) - `rma.uni()` now allows the user to specify a formula for the `yi` argument, so instead of rma(yi, vi, mods=~mod1+mod2), one can specify the same model with rma(yi~mod1+mod2, vi) - `rma.uni()` now has a `weights` argument to specify the inverse of the sampling variances (instead of using the `vi` or `sei` arguments); for now, this is all this argument should be used for (in the future, this argument may potentially be used to allow the user to define alternative weights) - `rma.uni()` now checks whether the model matrix is not of full rank and issues an error accordingly (instead of the rather cryptic error that was issued before) - `rma.uni()` now has a `verbose` argument - `coef.rma()` now returns only the model coefficients (this change was necessary to make the package compatible with the `multcomp` package; see `help(rma)` for an example); use `coef(summary())` to obtain the full table of results - the `escalc()` function now does some more extensive error checking for misspecified data and some unusual cases - `append` argument is now `TRUE` by default in the `escalc()` function - objects generated by the `escalc()` function now have their own class - added `print()` and `summary()` methods for objects of class `escalc` - added `[` and `cbind()` methods for objects of class `escalc` - added a few additional arguments to the `escalc()` function (i.e., `slab`, `subset`, `var.names`, `replace`, `digits`) - added `drop00` argument to the `escalc()`, `rma.uni()`, `rma.mh()`, and `rma.peto()` functions - added `"MN"`, `"MC"`, `"SMCC"`, and `"SMCR"` measures to the `escalc()` and `rma.uni()` functions for the raw mean, the raw mean change, and the standardized mean change (with change score or raw score standardization) as possible outcome measures - the `"IRFT"` measure in the `escalc()` and `rma.uni()` functions is now computed with `1/2*(sqrt(xi/ti) + sqrt(xi/ti+1/ti))` which is more consistent with the definition of the Freeman-Tukey transformation for proportions - added `"RTET"` measure to the `escalc()` and `rma.uni()` functions to compute the tetrachoric correlation coefficient based on 2x2 table data (the `polycor` package is therefore now a suggested package, which is loaded within `escalc()` only when required) - added `"RPB"` and `"RBIS"` measures to the `escalc()` and `rma.uni()` functions to compute the point-biserial and biserial correlation coefficient based on means and standard deviations - added `"PBIT"` and `"OR2D"` measures to the `escalc()` and `rma.uni()` functions to compute the standardized mean difference based on 2x2 table data - added the `"D2OR"` measure to the `escalc()` and `rma.uni()` functions to compute the log odds ratio based on the standardized mean difference - added `"SMDH"` measure to the `escalc()` and `rma.uni()` functions to compute the standardized mean difference without assuming equal population variances - added `"ARAW"`, `"AHW"`, and `"ABT"` measures to the `escalc()` and `rma.uni()` functions for the raw value of Cronbach's alpha, the transformation suggested by Hakstian & Whalen (1976), and the transformation suggested by Bonett (2002) for the meta-analysis of reliability coefficients (see `help(escalc)` for details) - corrected a small mistake in the equation used to compute the sampling variance of the phi coefficient (`measure="PHI"`) in the `escalc()` function - the `permutest.rma.uni()` function now uses an algorithm to find only the unique permutations of the model matrix (which may be much smaller than the total number of permutations), making the exact permutation test feasible in a larger set of circumstances (thanks to John Hodgson for making me aware of this issue and to Hans-Jörg Viechtbauer for coming up with a recursive algorithm for finding the unique permutations) - prediction interval in `forest.rma()` is now indicated with a dotted (instead of a dashed) line; ends of the interval are now marked with vertical bars - completely rewrote the `funnel.rma()` function which now supports many more options for the values to put on the y-axis; `trimfill.rma.uni()` function was adapted accordingly - removed the `ni` argument from the `regtest.rma()` function; instead, sample sizes can now be explicitly specified via the `ni` argument when using the `rma.uni()` function (i.e., when `measure="GEN"`); the `escalc()` function also now adds information on the `ni` values to the resulting data frame (as an attribute of the `yi` variable), so, if possible, this information is passed on to `regtest.rma()` - added switch so that `regtest()` can also provide the full results from the fitted model (thanks to Michael Dewey for the suggestion) - `weights.rma.mh()` now shows the weights in % as intended (thanks to Gavin Stewart for pointing out this error) - more flexible handling of the `digits` argument in the various forest functions - forest functions now use `pretty()` by default to set the x-axis tick locations (`alim` and `at` arguments can still be used for complete control) - studies that are considered to be 'influential' are now marked with an asterisk when printing the results returned by the `influence.rma.uni()` function (see the documentation of this function for details on how such studies are identified) - added additional extractor functions for some of the influence measures (i.e., `cooks.distance()`, `dfbetas()`); unfortunately, the `covratio()` and `dffits()` functions in the `stats` package are not generic; so, to avoid masking, there are currently no extractor functions for these measures - better handling of missing values in some unusual situations - corrected small bug in `fsn()` that would not allow the user to specify the standard errors instead of the sampling variances (thanks to Bernd Weiss for pointing this out) - `plot.infl.rma.uni()` function now allows the user to specify which plots to draw (and the layout) and adds the option to show study labels on the x-axis - added proper `print()` method for objects generated by the `confint.rma.uni()`, `confint.rma.mh()`, and `confint.rma.peto()` functions - when `transf` or `atransf` argument was a monotonically *decreasing* function, then confidence and prediction interval bounds were in reversed order; various functions now check for this and order the bounds correctly - `trimfill.rma.uni()` now only prints information about the number of imputed studies when actually printing the model object - `qqnorm.rma.uni()`, `qqnorm.rma.mh()`, and `qqnorm.rma.peto()` functions now have a new argument called `label`, which allows for labeling of points; the functions also now return (invisibly) the x and y coordinates of the points drawn - `rma.mh()` with `measure="RD"` now computes the standard error of the estimated risk difference based on Sato, Greenland, & Robins (1989), which provides a consistent estimate under both large-stratum and sparse-data limiting models - the restricted maximum likelihood (REML) is now calculated using the full likelihood equation (without leaving out additive constants) - the model deviance is now calculated as -2 times the difference between the model log-likelihood and the log-likelihood under the saturated model (this is a more appropriate definition of the deviance than just taking -2 times the model log-likelihood) - naming scheme of illustrative datasets bundled with the package has been changed; now datasets are called ``; therefore, the datasets are now called (`old name -> new name`): - `dat.bcg -> dat.colditz1994` - `dat.warfarin -> dat.hart1999` - `dat.los -> dat.normand1999` - `dat.co2 -> dat.curtis1998` - `dat.empint -> dat.mcdaniel1994` - but `dat.bcg` has been kept as an alias for `dat.colditz1994`, as it has been referenced under that name in some publications - added new dataset (`dat.pritz1997`) to illustrate the meta-analysis of proportions (raw values and transformations thereof) - added new dataset (`dat.bonett2010`) to illustrate the meta-analysis of Cronbach's alpha values (raw values and transformations thereof) - added new datasets (`dat.hackshaw1998`, `dat.raudenbush1985`) - (approximate) standard error of the tau^2 estimate is now computed and shown for most of the (residual) heterogeneity estimators - added `nobs()` and `df.residual()` methods for objects of class `rma` - `metafor.news()` is now simply a wrapper for `news(package="metafor")` - the package code is now byte-compiled, which yields some modest increases in execution speed - some general code cleanup - the `metafor` package no longer depends on the `nlme` package - some improvements to the documentation # metafor 1.6-0 (2011-04-13) - `trimfill.rma.uni()` now returns a proper object even when the number of missing studies is estimated to be zero - added the (log transformed) ratio of means as a possible outcome measure to the `escalc()` and `rma.uni()` functions (`measure="ROM"`) - added new dataset (`dat.co2`) to illustrate the use of the ratio of means outcome measure - some additional error checking in the various forest functions (especially when using the `ilab` argument) - in `labbe.rma()`, the solid and dashed lines are now drawn behind (and not on top of) the points - slight change to `transf.ipft.hm()` so that missing values in `targs$ni` are ignored - some improvements to the documentation # metafor 1.5-0 (2010-12-16) - the `metafor` package now has its own project website at: https://www.metafor-project.org - added `labbe()` function to create L'Abbe plots - the `forest.default()` and `addpoly.default()` functions now allow the user to directly specify the lower and upper confidence interval bounds (this can be useful when the CI bounds have been calculated with other methods/functions) - added the incidence rate for a single group and for two groups (and transformations thereof) as possible outcome measures to the `escalc()` and `rma.uni()` functions (`measure="IRR"`, `"IRD"`, `"IRSD"`, `"IR"`, `"IRLN"`, `"IRS"`, and `"IRFT"`) - added the incidence rate ratio as a possible outcome measure to the `rma.mh()` function - added transformation functions related to incidence rates - added the Freeman-Tukey double arcsine transformation and its inverse to the transformation functions - added some additional error checking for out-of-range p-values in the `permutest.rma.uni()` function - added some additional checking for out-of-range values in several transformation functions - added `confint()` methods for `rma.mh` and `rma.peto` objects (only for completeness sake; print already provides CIs) - added new datasets (`dat.warfarin`, `dat.los`, `dat.empint`) - some improvements to the documentation # metafor 1.4-0 (2010-07-30) - a paper about the package has now been published in the Journal of Statistical Software (https://www.jstatsoft.org/v36/i03/) - added citation info; see: `citation("metafor")` - the `metafor` package now depends on the `nlme` package - added extractor functions for the AIC, BIC, and deviance - some updates to the documentation # metafor 1.3-0 (2010-06-25) - the `metafor` package now depends on the `Formula` package - made `escalc()` generic and implemented a default and a formula interface - added the (inverse) arcsine transformation to the set of transformation functions # metafor 1.2-0 (2010-05-18) - cases where k is very small (e.g., k equal to 1 or 2) are now handled more gracefully - added sanity check for cases where all observed outcomes are equal to each other (this led to division by zero when using the Knapp & Hartung method) - the "smarter way to set the number of iterations for permutation tests" (see notes for previous version below) now actually works like it is supposed to - the `permutest.rma.uni()` function now provides more sensible results when k is very small; the documentation for the function has also been updated with some notes about the use of permutation tests under those circumstances - made some general improvements to the various forest plot functions making them more flexible in particular when creating more complex displays; most importantly, added a `rows` argument and removed the `addrows` argument - some additional examples have been added to the help files for the forest and addpoly functions to demonstrate how to create more complex displays with these functions - added `showweight` argument to the `forest.default()` and `forest.rma()` functions - `cumul()` functions not showing all of the output columns when using fixed-effects models has been corrected - `weights.rma.uni()` function now handles `NA`s appropriately - `weights.rma.mh()` and `weights.rma.peto()` functions added - `logLik.rma()` function now behaves more like other `logLik()` functions (such as `logLik.lm()` and `logLik.lme()`) # metafor 1.1-0 (2010-04-28) - `cint()` generic removed and replaced with `confint()` method for objects of class `rma.uni` - slightly improved the code to set the x-axis title in the `forest()` and `funnel()` functions - added `coef()` method for `permutest.rma.uni` objects - added `append` argument to `escalc()` function - implemented a smarter way to set the number of iterations for permutation tests (i.e., the `permutest.rma.uni()` function will now switch to an exact test if the number of iterations required for an exact test is actually smaller than the requested number of iterations for an approximate test) - changed the way how p-values for individual coefficients are calculated in `permutest.rma.uni()` to 'two times the one-tailed area under the permutation distribution' (more consistent with the way we typically define two-tailed p-values) - added `retpermdist` argument to `permutest.rma.uni()` to return the permutation distributions of the test statistics - slight improvements to the various transformation functions to cope better with some extreme cases - p-values are now calculated in such a way that very small p-values stored in fitted model objects are no longer truncated to 0 (the printed results are still truncated depending on the number of digits specified) - changed the default number of iterations for the ML, REML, and EB estimators from 50 to 100 # metafor 1.0-1 (2010-02-02) - version jump in conjunction with the upcoming publication of a paper in the Journal of Statistical Software describing the `metafor` package - instead of specifying a model matrix, the user can now specify a model formula for the `mods` argument in the `rma()` function (e.g., like in the `lm()` function) - `permutest()` function now allows exact permutation tests (but this is only feasible when k is not too large) - `forest()` function now uses the `level` argument properly to adjust the CI level of the summary estimate for models without moderators (i.e., for fixed- and random-effets models) - `forest()` function can now also show the prediction interval as a dashed line for a random-effects model - information about the measure used is now passed on to the `forest()` and `funnel()` functions, which try to set an appropriate x-axis title accordingly - `funnel()` function now has more arguments (e.g., `atransf`, `at`) providing more control over the display of the x-axis - `predict()` function now has its own `print()` method and has a new argument called `addx`, which adds the values of the moderator variables to the returned object (when `addx=TRUE`) - functions now properly handle the `na.action` `"na.pass"` (treated essentially like `"na.exclude"`) - added method for `weights()` to extract the weights used when fitting models with `rma.uni()` - some small improvements to the documentation # metafor 0.5-7 (2009-12-06) - added `permutest()` function for permutation tests - added `metafor.news()` function to display the `NEWS` file of the `metafor` package within R (based on same idea in the `animate` package by Yihui Xie) - added some checks for values below machine precision - a bit of code reorganization (nothing that affects how the functions work) # metafor 0.5-6 (2009-10-19) - small changes to the computation of the DFFITS and DFBETAS values in the `influence()` function, so that these statistics are more in line with their definitions in regular linear regression models - added option to the plot function for objects returned by `influence()` to allow plotting the covariance ratios on a log scale (now the default) - slight adjustments to various `print()` functions (to catch some errors when certain values were `NA`) - added a control option to `rma()` to adjust the step length of the Fisher scoring algorithm by a constant factor (this may be useful when the algorithm does not converge) # metafor 0.5-5 (2009-10-08) - added the phi coefficient (`measure="PHI"`), Yule's Q (`"YUQ"`), and Yule's Y (`"YUY"`) as additional measures to the `escalc()` function for 2x2 table data - forest plots now order the studies so that the first study is at the top of the plot and the last study at the bottom (the order can still be set with the `order` or `subset` argument) - added `cumul()` function for cumulative meta-analyses (with a corresponding `forest()` method to plot the cumulative results) - added `leave1out()` function for leave-one-out diagnostics - added option to `qqnorm.rma.uni()` so that the user can choose whether to apply the Bonferroni correction to the bounds of the pseudo confidence envelope - some internal changes to the class and methods names - some small corrections to the documentation # metafor 0.5-4 (2009-09-18) - corrected the `trimfill()` function - improvements to various print functions - added a `regtest()` function for various regression tests of funnel plot asymmetry (e.g., Egger's regression test) - made `ranktest()` generic and added a method for objects of class `rma` so that the test can be carried out after fitting - added `anova()` function for full vs reduced model comparisons via fit statistics and likelihood ratio tests - added the Orwin and Rosenberg approaches to `fsn()` - added H^2 measure to the output for random-effects models - in `escalc()`, `measure="COR"` is now used for the (usual) raw correlation coefficient and `measure="UCOR"` for the bias corrected correlation coefficients - some small corrections to the documentation # metafor 0.5-3 (2009-07-31) - small changes to some of the examples - added the log transformed proportion (`measure="PLN"`) as another measure to the `escalc()` function; changed `"PL"` to `"PLO"` for the logit (i.e., log odds) transformation for proportions # metafor 0.5-2 (2009-07-06) - added an option in `plot.infl.rma.uni()` to open a new device for plotting the DFBETAS values - thanks to Jim Lemon, added a much better method for adjusting the size of the labels, annotations, and symbols in the `forest()` function when the number of studies is large # metafor 0.5-1 (2009-06-14) - made some small changes to the documentation (some typos corrected, some confusing points clarified) # metafor 0.5-0 (2009-06-05) - first version released on CRAN metafor/inst/0000755000176200001440000000000014746146344012701 5ustar liggesusersmetafor/inst/CITATION0000644000176200001440000000133514402657721014033 0ustar liggesuserscitHeader("To cite the metafor package in publications, please use:") bibentry(bibtype = "Article", title = "Conducting meta-analyses in {R} with the {metafor} package", author = person(given = "Wolfgang", family = "Viechtbauer"), journal = "Journal of Statistical Software", year = "2010", volume = "36", number = "3", pages = "1--48", doi = "10.18637/jss.v036.i03", textVersion = paste("Viechtbauer, W. (2010).", "Conducting meta-analyses in R with the metafor package.", "Journal of Statistical Software, 36(3), 1-48.", "https://doi.org/10.18637/jss.v036.i03") ) metafor/inst/reporter/0000755000176200001440000000000013713320160014522 5ustar liggesusersmetafor/inst/reporter/references.bib0000644000176200001440000001761114222557326017343 0ustar liggesusers@article{begg1994, author = {Begg, C. B. and Mazumdar, M.}, year = {1994}, title = {Operating characteristics of a rank correlation test for publication bias}, journal = {Biometrics}, volume = {50}, number = {4}, pages = {1088-1101}, doi = {10.2307/2533446} } @article{berkey1995, author = {Berkey, C. S. and Hoaglin, D. C. and Mosteller, F. and Colditz, G. A.}, year = {1995}, title = {A random-effects regression model for meta-analysis}, journal = {Statistics in Medicine}, volume = {14}, number = {4}, pages = {395-411}, doi = {10.1002/sim.4780140406} } @article{brannick2019, author = {Brannick, Michael T. and Potter, Sean M. and Benitez, Bryan and Morris, Scott B.}, year = {2019}, title = {Bias and precision of alternate estimators in meta-analysis: Benefits of blending {Schmidt--Hunter} and {Hedges} approaches}, shorttitle = {Bias and Precision of Alternate Estimators in Meta-Analysis}, journal = {Organizational Research Methods}, volume = {22}, number = {2}, pages = {490--514}, doi = {10.1177/1094428117741966} } @article{cochran1954, author = {Cochran, W. G.}, year = {1954}, title = {The combination of estimates from different experiments}, journal = {Biometrics}, volume = {10}, number = {1}, pages = {101-129}, doi = {10.2307/3001666} } @article{dersimonian1986, author = {DerSimonian, R. and Laird, N.}, year = {1986}, title = {Meta-analysis in clinical trials}, journal = {Controlled Clinical Trials}, volume = {7}, number = {3}, pages = {177-188}, doi = {10.1016/0197-2456(86)90046-2} } @article{dersimonian2007, author = {DerSimonian, R. and Kacker, R.}, year = {2007}, title = {Random-effects model for meta-analysis of clinical trials: An update}, journal = {Contemporary Clinical Trials}, volume = {28}, number = {2}, pages = {105-114}, doi = {10.1016/j.cct.2006.04.004} } @article{hardy1996, author = {Hardy, R. J. and Thompson, S. G.}, year = {1996}, title = {A likelihood approach to meta-analysis with random effects}, journal = {Statistics in Medicine}, volume = {15}, number = {6}, pages = {619-629}, doi = {10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A} } @article{hedges1983, author = {Hedges, L. V. and Olkin, I.}, year = {1983}, title = {Regression models in research synthesis}, journal = {American Statistician}, volume = {37}, number = {2}, pages = {137-140}, doi = {10.2307/2685874} } @book{hedges1985, author = {Hedges, L. V. and Olkin, I.}, title = {Statistical methods for meta-analysis}, publisher = {Academic Press}, address = {San Diego, CA}, keywords = {meta-analysis}, year = {1985} } @article{hedges1992, author = {Hedges, L. V.}, year = {1992}, title = {Meta-analysis}, journal = {Journal of Educational Statistics}, volume = {17}, number = {4}, pages = {279-296}, doi = {10.3102/10769986017004279} } @article{higgins2002, author = {Higgins, J. P. T. and Thompson, S. G.}, year = {2002}, title = {Quantifying heterogeneity in a meta-analysis}, journal = {Statistics in Medicine}, volume = {21}, number = {11}, pages = {1539-1558}, doi = {10.1002/sim.1186} } @book{hunter1990, author = {Hunter, J. E. and Schmidt, F. L.}, title = {Methods of meta-analysis: Correcting error and bias in research findings}, publisher = {Sage}, address = {Newbury Park, CA}, year = {1990} } @article{jackson2014, author = {Jackson, D. and Turner, R. and Rhodes, K. and Viechtbauer, W.}, year = {2014}, title = {Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models}, journal = {BMC Medical Research Methodology}, volume = {14}, pages = {103}, doi = {10.1186/1471-2288-14-103} } @article{knapp2003, author = {Knapp, G. and Hartung, J.}, year = {2003}, title = {Improved tests for a random effects meta-regression with a single covariate}, journal = {Statistics in Medicine}, volume = {22}, number = {17}, pages = {2693-2710}, doi = {10.1002/sim.1482} } @article{morris1983, author = {Morris, C. N.}, year = {1983}, title = {Parametric empirical {Bayes} inference: Theory and applications}, journal = {Journal of the American Statistical Association}, volume = {78}, number = {381}, pages = {47-55}, doi = {10.2307/2287098} } @article{paule1982, author = {Paule, R. C. and Mandel, J.}, year = {1982}, title = {Consensus values and weighting factors}, journal = {Journal of Research of the National Bureau of Standards}, volume = {87}, number = {5}, pages = {377-385}, doi = {10.6028/jres.087.022} } @incollection{raudenbush2009, author = {Raudenbush, S. W.}, year = {2009}, title = {Analyzing effect sizes: Random-effects models}, booktitle = {The handbook of research synthesis and meta-analysis}, editor = {Cooper, H. and Hedges, L. V. and Valentine, J. C.}, publisher = {Russell Sage Foundation}, address = {New York}, edition = {2nd}, pages = {295-315} } @manual{rcore2020, title = {R: A Language and Environment for Statistical Computing}, author = {{R Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2020}, url = {https://www.R-project.org/}, } @article{riley2011, author = {Riley, R. D. and Higgins, J. P. T. and Deeks, J. J.}, year = {2011}, title = {Interpretation of random effects meta-analyses}, journal = {British Medical Journal}, volume = {342}, pages = {d549}, doi = {10.1136/bmj.d549} } @article{sidik2005, author = {Sidik, K. and Jonkman, J. N.}, year = {2005}, title = {Simple heterogeneity variance estimation for meta-analysis}, journal = {Applied Statistics}, volume = {54}, number = {2}, pages = {367-384}, doi = {10.1111/j.1467-9876.2005.00489.x} } @incollection{sterne2005, author = {Sterne, J. A. C. and Egger, M.}, year = {2005}, title = {Regression methods to detect publication and other bias in meta-analysis}, booktitle = {Publication bias in meta-analysis: Prevention, assessment and adjustment}, editor = {Rothstein, H. R. and Sutton, A. J. and Borenstein, M.}, publisher = {Wiley}, address = {Chichester}, pages = {99-110} } @article{viechtbauer2005, author = {Viechtbauer, W.}, year = {2005}, title = {Bias and efficiency of meta-analytic variance estimators in the random-effects model}, journal = {Journal of Educational and Behavioral Statistics}, volume = {30}, number = {3}, pages = {261-293}, doi = {10.3102/10769986030003261} } @article{viechtbauer2010a, author = {Viechtbauer, W.}, year = {2010}, title = {Conducting meta-analyses in {R} with the metafor package}, journal = {Journal of Statistical Software}, volume = {36}, number = {3}, pages = {1-48}, doi = {10.18637/jss.v036.i03} } @article{viechtbauer2010b, author = {Viechtbauer, W. and Cheung, M. W.-L.}, year = {2010}, title = {Outlier and influence diagnostics for meta-analysis}, journal = {Research Synthesis Methods}, volume = {1}, number = {2}, pages = {112-125}, doi = {10.1002/jrsm.11} } @article{viechtbauer2015, author = {Viechtbauer, W. and Lopez-Lopez, J. A. and Sanchez-Meca, J. and Marin-Martinez, F.}, year = {2015}, title = {A comparison of procedures to test for moderators in mixed-effects meta-regression models}, journal = {Psychological Methods}, volume = {20}, number = {3}, pages = {360-374}, doi = {10.1037/met0000023} } @unpublished{viechtbauer2021, title = {Median-unbiased estimators for the amount of heterogeneity in meta-analysis}, author = {Viechtbauer, W.}, year = {2021}, howpublished = {European Congress of Methodology, Valencia, Spain}, URL = {https://www.wvbauer.com/lib/exe/fetch.php/talks:2021_viechtbauer_eam_median_tau2.pdf} } metafor/inst/reporter/apa.csl0000644000176200001440000021037313713314420015776 0ustar liggesusers metafor/inst/doc/0000755000176200001440000000000014746146344013446 5ustar liggesusersmetafor/inst/doc/metafor.pdf.asis0000644000176200001440000000015314513444712016523 0ustar liggesusers%\VignetteEngine{R.rsp::asis} %\VignetteIndexEntry{Conducting Meta-Analyses in R with the metafor Package} metafor/inst/doc/diagram.pdf0000644000176200001440000053555414746146344015566 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 1530 /Filter /FlateDecode /N 21 /First 147 >> stream xœ­—mOÜ8Çßߧ𻶪èú9ΩB¶<lAÀAÛ/®Y¢[”d{ðíï?v²<õtZãñx<óó8HÆ™b6aš©T1ôJ˜eÆi†Vjæ˜M%KY¢œ9.™,Uœ HZ9&0`µ@‡InÑ&e‚Ö2iô&]j˜pL ®™H™R˜/±²M1(°4M–äÿíógÖø&eMƤ‚ƒ§¬wkò²èggïû¿K.5×B +­N>rùŽówì|¾ñ77œëç6Å£8O$Z¼KTl­…¬9Ï<ç↷ã Zõ»wÁ†_ÖWø£¨xÒMD¡½æÞIUަC}î±½Û²nêa•ß7,ýd8Îóf [;þ髟¹ÿ‡•7lwZ i÷5Ë ÖÜzv‡€ß`›'Ùðo„öCÅrZ4L°Þa>ªÙ_„"~ÕÅ<¦a¦[4¾hj&Û¼ ü(϶ËÌãøaÿÌhN³O² š]þN}]N«!,‘™/ÍÞYCûa|† ˜ùªžù6{'ý]8â˜ÜÜ\ôiÍýݼª Le3¹Õëûº™í®÷íû\ýDnÏÝmÙkCz6ÉGž‰Y¨¶¬÷µ¬î² p=Ъ燬©¦¾ól¾³vÊq5òU6ߌ°@Þ<~ hŒóº©‘´QyTôΦ÷÷G.ðÙjYíC\z?Ž;‡w²I~]åa/C_Œ²¢¡qJš]Ö¾ÃrD öº7öÉþu$79šòÏ"‡"2`OXXïÕõwúguã•#ÀËórï ?ÈîçkÃ×Kf°F°L~¹ P´¹ž9†é¤BnÈ%oz—ØŸÂ#%ªV’b“¨3ȤRuB#FB´ôÖ1Õµ º(VPFý»‚©è`C&’dIF¤³$§Žä”dÅÉŒRá=*dh®B „¬¢× ú6™ë$äs’¦aûè;šc$ù¡âšôPHNi -‚¬H_ëàkØY'™|u&ÄÂp*½ñŠM|gˆfgÃÞ&zÐOÅl.ÄFqć»t6x5+­ŽGÌCºqe{8v²û}Ÿo»áHcÃ6’ÚÛdcÔpcàYHàv,÷JP¨sqêUÔØÍ'ȹLæ¥àkvç×±;@õχ[Åg ŸÀ °`qY@l ãýÁùöÅñÜ^¨;·YÅ”\TÏ+IÐ(O ç‡>®ºp”ÜÚQê]æ£æ¶néå ?I—b›…ÐGæ·!› {2<™=¼ý;›Ûfž‡´Åwt2¨µÂ´o¬TK+BGD+t2Bß&+ñG'„¨¥ÓZ¬B'‚Nõ‰p¢Ÿ¸$¹£œèŽ­ tÕDs°}%‚¾>T Y¥f ·þ-àEŸsºDâ:ºô2Y¸tÂh‚“‰e¬ÒU¬V1XÁj×5êgHâng q÷ h½o­Ãg~º­ýý­í½n¹ír2z =»†žx=Å=€†c¨B æ¡(R…9rÏÿ,‚b,¡.áÔÙÐ-x6ž’/Ú ú(I¥T¬¨5t,Ä÷RÓ±:øÔ$Ùá{4è©V¸†JÇ>¥"Ñ&øFvVQ³Ào 5õ4jv5ÐQ3:˜XBM-|ÌDÔžÌý[yƒ÷¯ò–®óvxytúÇÅÒšqÅEêðQ¾F[¥NØ×¨“/Pg¤›åW„|.æÜqª¯FFb”!K”»µ<9µ”'÷Lž>©“•d9×& W4M\N–ZMÖ {kÊpiü—”}ÿÖ?êÍV^O×EBò_/ú…t­‰•’áÜ‹ãÿÏÏ ‚ô耋N⽊K[lâ}#ZMZB%Ã¥ñ¶ oxOµrÇ„îÈjËÚ£Ì*KÏdôÍñ_¸jNSn×Ç?¢¥ã±ª“-¦“í×)Pigá_Y¬$Zendstream endobj 23 0 obj << /Subtype /XML /Type /Metadata /Length 1475 >> stream 2024-04-12T16:26:47+02:00 2024-04-12T16:26:47+02:00 Microsoft® PowerPoint® 2019 An Overview of Functions in the metafor PackageWolfgang Viechtbauer endstream endobj 24 0 obj << /Filter /FlateDecode /Length 99586 >> stream xœÌ½ËgÉu&ÆbϪ6¼Ô¢qw“5`¥n¼#F˜ÅcÃ0 X¶9ò˜1ŠÕYÍ–*«ÈzôP28^ Ђkþ³×Îÿ–#Î÷}q³²šlI tÝ“÷Üxœ8_ç­;Îñÿ}yÿôÏþ·v|ýþ©;¾~:þRüy)öÿ½»{úê_õ¿}ýô×O}tðŸ—÷Ç÷ã§çíéêñã—½çŽvüøÕS4êŽèÂmôGôí6øãÇ÷Oo¾ø¿ðųÿUoD|oc=ÏÚ?úñWOzóîþÅíÇ7ÏžûÛVC‹7ß<{în} >ßüìægϞ団ÿ%Üžþ¬7ÿæ¸{ö<Þžghîæ×jk9…›¯Çsÿ{n7öê›g¾?—Po~s÷Õ³çù6ûVÊÍógÏÏÛ\CêÝôFËmé,7/Þ|…î[(ýï®?–oÞõ¿¿½ÿ³ñ mÝ3¾o­úÑpì —ê/ ß½Z½º[Ï/ŸééÃûcŒ©ÕRÓÍýÛ¯€Ôbi7¯m஥›÷Ï~þãÿéésë¹;o+vöoßÎu»Ž©åÛ >wò¾yÛæõ¶ƒ;F õó¤ì\t¥Sç§z{¥ª1ë R8ó ÆöÅèÿÿÉj±õÿ´oét7c:âÊño·oðïŒ"¿òågçVRŸÍé›Þÿ8¹äÅÝ,ÛhôýßÞm ¾ñîý݇_¾ýʦ÷ˆl>WOs¢ßC(ugý×’Ã͇·cŒµ¶’Ê&–ZÏsôaçè]¼ù‹Aˆ’K½¹ûðö_¾ƒÎ)–0Ðû,“;£×¨e» ø›ãg7wßCšÏœR$Ùb_b÷Ï%td”Ç(ù‰ ~J~™9·uu?È×¹'„ ~°W ƒ "ýݯ‡}|H’O4QÈ®Õ Qþ¹T\qÞÿ× ö©âRŸCíëý³›_|óLºÿÍÛËP¡|¨Å¥êãðëúRŒù´šê>ŒìŸ!Óâé·ß<“Ž{ÿâÑióöÍ t.¹–.]õ˜¡5òüÏd¼ùGðÝý·ÆxõôiñØ¥õnËÔDƒëÄÏù6…n0ÔÚDŽÌäØþÿÄ„Æa±Þ~ž½ž·Þzîlsÿq_ªƒ×ºº;ãÍ·/Þ™ r¾Þ¼øp÷g÷]SµÞ@íŠy­ÜsL|'¬¹0çxÞßß Bt%Ð9ùÛþ\{±OöQ>ü,w êÃj§ï ÚÙkʃñY»MÕ¹ü‡y°KDççïe0Ï!8‡+á¶Dz?»yò_–Î6/à÷C<œë‹M!æþøÛþîw`ñª{?ßôäÛaKGó5;8 _þà‹/~òÀIÉî6‰?~°ñ®ù›mn×1wI«þœNÄ?}¦™Žþ|_ aéÿ®[ë?yòºÿÿ/†Ç"t×úxûò÷ýö‹ÿœÔ?Jñ*wÏ;IÂègY†ãØí‡c̦џþFêŽi÷7¾ì#øÓþ§ÁX)¤ ýŒ@eøÇ}4Úÿä‡c€çøS¶…øûNä?øâÿâÿñÿ-¤Þ·îŒüYÿokôg£Ý)ÂÝA™~á—ŸŸ FþO™àï@ÜÎv}_îoÌ\Ìð»'¿ío‡øpÓ™@k6†þ[£Ó…wþâÉ·sàÁ=Õ¾Þ_üûÍ@÷@/~B7ÊÁí|ÔüTœw/¾úÍg™Êw?gºÊ?ÝøÅ¿¿ð×tu‡3ø§x¹SÒÝÆ¼SôêtwÝxæÓ?ÒM—Ž>ùÐrøž ßn.êOöAŠŸðx§ò`Ÿ2Ôueû_†Zè¶m²ã…W¾}ò»x\ß}2?Žÿ¢t»ísƒInÞ~øåÝ»ãYüíüÍW/>¼8l8g'Ø«¡°>À7øïüôíÆ*vKJ}î Ô#6ïz0{ÿÔu½}Z=×ög‡jìªâõÀnãmë£ þåÀ/·=F]7„ñ}ê›ú¹ûÉö}7ˆ­Ãeüóúé+´‘Fú¡÷p[F”[¬ÇÀøÚÐcwÄÐc² ¿Ç¡£%û>Ÿ£=ŸsŸHÿ>ufê_;Ãï ßÒ|z <ð/¦kDæÁ»ÚÛ ÍšèmõØÓàxÚ×ó½?ÙZŸ—ý¥O¢ãwߨSÿp5›mCËŽÍf’Ãè9÷%‹6öß\?¢ˆþ}.ÝRöáºêÙ@èNGˆÎ(l=v.­ÔÞJ§p9):Fè„=àÖQ]7N˜ÿè5|Çj]Yõ÷Y+œ«Á'VÄ?׿wkŽs,ö…ï†ÏzLþÖÙš´.ácÅÆØ{<ÔñÅ>÷ ŽyæÊú˜Êê³/‰ªyôÙfÌ" Œ±<®¤ñr¬R¸ì]Nä˜ ˜­…÷l-öþæ bî¹Ã ÍböѾˆâ9ëv›AÌ}âšAÌýÓºúŒùÌö>ÖÕg@ŸX§”{0[±N£Í”Ï‚U˜µªX¥ŽÆ\¥îkŸý¥îaÛûm•²G ƒ&$«˜mrêá~YŒÕû+xѾ0šD뱓̯þ:›ƒ¦®q~ß™Âòîjá”ÂêйÐÉ·Ûîûþø¾«­¯‡3×=¶7pœÇ‡½“=|Š­»±]§Ñîæ ¿½³¨v¸zͼÂá™–âúßÍ[±Ä(Ü®»>{ýb„<çðmŽiÛ|=wL+QÓƒæiÞ†ZãxnÇ0Bt=âùºû‡¡;ßø›ïjÔÝü¨›Þþ”<Á.Ýc¼¿{#ú€Þ¼_¾Úž¶Rlæÿ>Ùõt¾ùwïô¬ŽOj™Måîä?ës±°?¶à43x0]éc _¿{ûñW#®`ÓïÔ{÷þYºùóÞôÙ½M§—æÖ·N·f¦œ7#k(ïóÃ{<Ç5ÒnHº‰é£8ó>Uÿ¬Üü¦·ÑC’# H 8ºìÃôfûë_¬(î±o="?Ì{Hµ‡‘>èB  0Ô³tC÷nxèÝçzc œ?|c‘ýAGØ8Z=°|oäï!ä¢Í¸MaߟõuY-=<Û8П#Ê ½sÃúò¼¸ÿƒ¢¢¼C—§søÏ؇|ùL¤ÿÙ³õº<…¸¿9\ÈÒzi!`‡Óh¯þãC Nz”4º ¾³ájfȈýÔN Ä‘=ÝôP€czgá\×·7™îAºË'ŒÞŒíy­Â‡Ùé±ù)Ã"Zn® ©as¬cÁÍ,Å‚4I¤ É–¢›£¤¥è ¾IdÝó¦–Äîj½ÓéíÇ–Eè:á¥p­3óÛû»ÎJåŒÉ ×w®ê‚ùþã»»Î¯Ý §¶¿üÝm§O©¬ÖÆ¡‚é£à#¢p|fÃ4Ãq‘b÷‹sêÑo—Û<w¾ÏþæoÞ[¦ÍŸ=ŠøÆÖÀ×D6íAþ§ºióþº¹*CMIÇÃÖV=nîÚj°ÄYÂü#´Þ2‘ºT¾ÿ`jñø›¯^ î.ÚÍW\8ùÀ`™®¼(VÝŵnÌoæè†‡·9ßêø lÿÕ«»•ëxw÷æåÝû iÊÚPo¿FúÓŸþfCxûÕWÔ gÙ9*[S‡É{Œ›øG‹ºÂª}éw¦}ÖÊ Ó¡Êßÿ5F=Ò‹ÃJ]¨^ºâŠ»Ô¾}?´}Cn·ï,bÚ­uQ:Ójíæ«¥V[¯^™>.]Íݽ»{ƒÈ!…MßÑÊ í÷£Ý^¬Q6>Œ„Ò”:]w³‹òáíF¥\ZžÑÙžùÛ.ÁC¸0µzóáÅЭëˆoÞÀãî«]-ÁrõoÕ~ª)„¥ßdzô;ö§2ņ”¥I5ƒÚÛ·4åÃ͛ő_üŸ×(5ßúxú™ÍøÙ³gá!K§[%ò†©M>µÝÿÌ9Óci”„=…`ḛ́™Ú}z\®Ôÿþ«ù×·#¥7ÔMü9ßÁøo¾üÝÔÅÙa‘mr¶©{ ³afªöu¾¶ÐÝÛ⃴öȳÄŠzeæÎ¡ º Ž¡—æl>ùÉÂÖ5Ï[Ó·c%ÞÙFEJŸ¯AU‰€“~m£œZCw3Õçb‰ÂsÄ5] † Ég³5@ï“éÃDB ÷%7pLwŒø™¼®Y7¦(Â÷f~g¾]öÓÅê¾ZCî´‰ïðüÍo°ÓÅ,f³–Š.u‘Òê­_Iá¯î~u÷æ«»7&Eây»+Gkr°ö.ÑUú ð¦»+€ïHpw»ÑÝîç})âèÿ²É2Öï;Þ3tóôÑ{\±'u7›[+¶«ööË‘E»{÷­<Œ‘;º•~i|cjþ~La´KפoßMåp›?É,œËq@kvoòúèFˆÐéýkwGk›=ߕԶ|χÞD0ófnÊÌ„ýíÝqëlÎé_c"ý¯ºæÇÿêa‚î.y5ÛÝ>Og›¹»ix2Gb鸿6·_î9Þ'gYß?][˜—„æÈ%Šº²ec÷äÉïžüQÔ'{3—ìàÏŸé«OÚ¸f Æÿ±‹ñIÆïÜ2~—ýo› ÷¿¯nÛÝáÖÿùÉoŸ)ñù÷–×–òüÁû/~º¶w*(#7ÚþdjÏ5¢krÍ{?ÔìÔMåÂïî–{â¼ïù 5 †Û‚ÌŸ>¢—Æâ¿ýËâÇ:MB/}3¶!~³¶â1Ò×vÖ`$ºãR,êÑÇ›a úG]¶Þ~0·µœÃDþë1•Ü—h÷6cðeÕlgoÄQòÞº' åáNû¬SnßÖúø†"TBÎÓÅ(Š»üjǶϦ¼ÝÍiõÝ4‡±ÿc¶´GK#~ìŒÐMâ_Cùöõí"xÞ¦ÖCÚ>º‹Þ{Œv¡‹DgS¿¼{׿‹g¨Óå6Ö9cœFym›AlSU q8c›kdÚÒœÄ6uæ¥áÔž¾ŒÍy#[ƒ»úsêkRÝØEÅþר<ùjìJÕn'ëc£wåv®Å?Y:h,Çèóîé–a©u¸Â¶byŒ¿‡8çmGî=fXñ÷[ú¿¥Áí^P÷'|Þɾqá¯ÖcÖ:³öèÏÞ—³3|«Ÿðcï9ÅÉ-ù1-ÿëÖ"’Ãv›ǫ̀Եõ/½ÌuéïðÂS©9}ÒK7í±¼ºð=ø¾ùÕ]÷Ž2v™,3ºýÑF£ò`EcNÝsXÑb¶+Úæ˜Íá=wnd,'ýÿ82|ýÚ"ͳvezÿp´~…Cß!ƒÝ¸wÙŠ7ï`°{D§qãÈQÿö†ºµÕ3‰¼èˆ›ûo/+8b¸k˜íû¼¼óUú׿!Ë H§p>¯Á“tƒw—øéiÃO|Ǫ6\êõ¡bê+=vé κ¼t¿ãÚO?ü:»MÏ›ãp9y$¬zç?I?zßãIß¾Ÿ‚<>ßh{Jð_n=ÖÐΡúhC ·3q¶–††(þ­OKJ÷Ý2‰)YLµ Í ;ÎÑF–¦ÇW¦5rŒÈúõèÌëù@)¥+å.¯K™ ¡6ZApíaåƒÚØRS‚ãØ¼Zâ{ÿâÃRGKSl$ÿ~q­l¤=ˆÔ5Èæ½}µïu?H=–±­ßÚw§sPñÕݼï±ùk;ŽÑºê¹¬>‚úâÔwñͱ«©î ¤mì–”utŒäá.n )Ýa]ÒØœÁöæüs|üÏþñ?Ÿþ¹‡Sþùñ.Ãã]†Ç» wéïÒ?Þ¥¼Kÿx—þñ.Ýã]ºÇ»twéïÒqÇzƒÇÎÞ„ÆÞc‡ÊØÕëAOÎ'ÞœÇËŽWF–À × ò€ˆ)èÒ~Þz·½ÆPgKkñ|ìþ±?ÆÇþ˜ûãc¥Ç:Ju”ë(=ÖQz¬£üXGù±ŽòcåÇ:ÊuTë¨<ÖQYuÅÙ­RžoÂØÿg3)Í ® ßý‘ïÞ‰½P•Œ½W¤—Öö`ß¼ýÀ|›÷7wÿz(ŸÛØiS»2~3Ž!îîSWQíäyÇ‘‰í.Ða Hϯ”¾¹ØÀŒÑ´ŽÛ9¡Ï¸ KëÝ¿¸Eîeø)8´×žÂmØ÷ü´ú¿^ΓÿæÉ7O¾géžüî‹¿ä¡B$> ‡žw§ìaÇæ¾Y>ëÛo_|âüï{×F¤ýÌgÙpí-}5lÈ®åññ=\Õ:2Qb¿}³¹™ó¥Ÿûqø~œJŸ£~ò³³L®õhcä>¦a^¤G&õf?8—¤{®[\ñ™%ù$пúVi õ± ‹î#ƒùŒØÌÎèÙÌšFÈjù¯“%«~øÅX]vøº›6ö“k/_0K½/ßÛ_üÕÝËïÿ´[÷Ã4óÏ®sf[-8¸ÿøáî½9^.žù»?›É”±¢äcKQÈÐÿ\+±Qñ]‰Ïù»i[W,É£o¸¸‘$é0ÎEÅ#2Gö¸q¹Ýü‚T/Ɖ„NÇt!*w©ÇìsJ «ñ6özºKù D+¹îÐc̯Ä×÷Ö3Õ-JºÐ@I÷(3of‰NË@þöõâ†ßú÷ÈŠV'Í€½ñWäüîòï*æ)N¦Ü¸o$ß‚¬CW?ù/£o2OÞ,nTã<Æ‘Þv¦Ü2~ªàÞ÷©—V¶ M‘{\»«ßü®"¼›‰pc±ï·Pc`ùj^~´óìŸNl‘ÚˆbEM£í³ÖëFÖï™b¯Vð4ÔJðí;×a5ð=§ŽýÖ#\8â-³ëÞd|„M/ËL£ì|Ÿ5ÊÖ›F¹Ç#£ü鲃Qýœ¦yñZg)œR0y¤Ï^}ä9^×ÃÆßÀkÆâí–.8"Yôøf}o𻹻Ç&âheKÝ}eA1HAõ4Êþ€zÇ\ÿ€jÚóÈhù±¼ß!TŸZªa@eùòË9†¸qûÛo-ÓÞc HÉV/¾¦bÏ=?lGy*ë±òa¡¹ki£ÍǾ ÆñÞç¶“Ú[ˆþ»©YY.¹™ô¿Ü¸a î±zޏÓÚ'ž¢™-ýìæýÝšæñÕ[;>äFÕìV²ÑôÌÃM¾–ÛÔi;•lMüÛ7ƒûoþ—oDZ®1.㾮ܾýæÎ6õZl7ÿé0R™cÑòÍÿ0ôÍ[ø…1úñi“óܵ‹íéÜ|óæøðË;k¯kL±óô¦:óŽsè§e^5š¯úc7¬}:?W —-ªÁè·±ÄnŽþ♳dg½yñò¯-¿Þc”ÁÕŽ4Œ2œ»i³DÒ Œ¤BXc²•:î%P¯mŸ'œ„W¨c¬=øR=ëž™å5ó4ÈøóXÅ÷ã@Q—Þ»¯Vôc›gÏý(ØêÌýwø5qœ2]Éð¯?,se~£ï*³j]œpÚÖk›Ÿ ˜Æ.¬þ‹˜†ºrŽá1ýýluˆÏøäŸ·:4‹|Æ'/Ñ<ìrÛÇ/©êOòw¦£_}³\ùM÷Ë4o~SlˆŠ¶­™™ÀÅîe5®×&Ó/_Ît1è²¾r¸{–üͽùëæÁ6vØkûfÐÃÆê8;·²Åïï^oúkT•ÙL}È1|âD%zú¶b“ÁbƒÊÈqö{ت‘)ú§3ß?ÝV=âyæ7+,ëpÐ8>ž{7²º¬’N`Žó"##“FX×áQ&Ù¡Q‹Ó!7j®TtsœàèÁÁèÊ 4 ¶ê­; @\ƒGe×µ:­bÕw]¨F˜áŽÎ:ŒÑ&{—GU]Ûxç9^jNcÕÇœ ¾ñÖb}¬„ÖOWdxÁf7ö€‹QŽÃã-Æ1¤À =æiíx«P,¡©9V æ3Týju¼PŸÎÊ"m •Ñ™áF|›v〤Ð*€¬Ömýgô‘E‘ ؉"Ø(AAu†×· 4 xÛ–~ñM£çÚŸÒKãÙhGQlÇZ™¨áyû.[En Ôl¼mþV•ÊucËQüdí@B5êäđƸ)傸Z)KgÅ€~¢ b½2ôbÄdñie‡·É^6]ür.Kï$K[ϤXÄ86>‰Në{‘ÝT iµŠâçÆ¹R:SƒdUðµPÕ3¥,l˜˜K¢n#GUöoê×`®K[6êÆlû ¦àdW ,»b¸X‰½ÜnYø.féؤÈõF»‘rN;s®ÑŽ•°}æ×àBmS9h³`8ï°"ü*Âj°MòÔ죂3,VÔ`˲øÄp+ÞBcõŽ‹qÙDàAÓEp¿ ò^Áì«Zl ,æm3(WÅÑ\Ë#K’÷AÖÓ>£0® ]YŽ+ï‚›34xŒz~«³gØÂꨟ2ß±gè˜z3¤¦žS®Ö¯S0hŒ°4á@·f»UŒÚ©TrÓ‚Ýö¶¨]Bé‚ -­v‹¾Ì ÓÆÍϹ”¬V —O'…ô¶ ,êAÀd´„…[Pı²•ÁvPÆ ÈÚLÔüú´À¯ÈÖ d6ƒÓ‹4m¶ï`_3$­€2µµ<© «™¡%e}é¡W'.5}ÃÛ*;`#ˆÒE¤«·¿Þà$:ª(_¾M  V!Â/ÍYÜÖ$ÂâšÄ¸¯IŒâ Ê£Ç*dHjD¹å’ÞrU< ›iÄ‚Ö$Aþ+Þ… ä¤ñ°*+4`†² ¬/‰ËvÛ¢n x—Ç^°ÚðEéÁúúx†W>¡°ûúv_Êjº$ÁÒ• h#€Û,€õ(ðCy/**À, Ö ë“@­¢ÕK eÁJ§Éïq™À*à™„+à§k1%%QÆæÛ|ŠÚ!nU?µm E£3Lj•t&ÄØˆì@jݤ4,V]2ó=å8ÁS_ú~¼é2ƒª´`‡`Q‹<‡ìMÓB ´n^üR壑ó*uÖÄ.¨™lzŸÝd%&ïW>„\T/)1LxžkP½ä+ ‚–Ã<¥x^ßQ¢ãÖNa;ÇÕ~Á¢ÄŒMÓpPƒU(à + HÚ¼`.v)é‚À#ž|K\µ ÿ³X;àïo³IÇh€‘2,ö¸A¢ 䶉' V¬Yïд z£À“lž+RàW5D^ÅmÏðËæ‰q³øÐÖƒ)|뺹Ž-7Ž4÷¶©÷ÁÛmêck)/{Þò²Ñ„ÛövZáˆÚ°aåzô€Ò±ÆVe÷ !­Ùè4ǶQ£³˜·Šc—ƒªxN p”Eý˜kã/P¾àá&¬¸ßúˆMÓú—mt‘#?®¼ î­ôô«Ê5˜û ×‚ÜY/ú|^«âÌ ˆj.£·ˆ-Ç3lg’DTÈãÁZÛh2#f`2&…άŒl¡Ïj’ßÉþ“ârë? ×Ê‚ 7ê[¾ h¶ÜcF²•ž/8tAsýÌCM¼® «=àpìPº@Eß®K†kƳi¦Ìñ€kLÙ¯€2øÀš\b:iM*bêš*9)Io‹¨eá¯jÙ*ëUa- V°Bª ¼!ƒ ·èÛŒ·å‚[ÕŽáÖ­Õºõ_ÕƒOWˉé=  i°›œ(ãÙž¥©"ÕyéŠq” Ð"Éž¡¸"ã>(z󶚸ÊüùõŒûÄ4¿œ–vµ“uËýp'\Ú膷ô/¬—*!·Ê£x /f<—å fÙü€êèkDÌ™^JÔšòžm^ô„䶺t{}/Ðl…¸ðÝðΩÇôéÞYeIì½{Y¯áÙnq+²€ ÆYd;Þ:@cÕÏ,Ûa˜ðá¸æ'm¬ÝqF+ZÕ&ü™Æ{ã¼Þ®£^æ©6¯6Úh´ÍؤAšF~س_vµaeÚIymX›ŠLK£ÔAß6hÆ©1=£¿Ú¥ÿÔUŸ\ã8/4¸.Ç¥ |ëðÖ2YϧÑðŒ·xŽ ]9˜W3Lø—æèP¶®ž§rlq§sFDКrnP8¶¼_k€2Ö€˜ÛŠdy%­êˈ·nÇÕ3×nor†;þ6¨É®‘w—eÙèû,¨m²ê öÇj ~|%§GÚÚφ˜¼’»Ì&Öïj•F‹ËzCBJ¥§E‹ŒÌ`CΨ6yWÆ…ç±y^ Qƒ8ý”¯›AÄmÛ[ÊÏ„¦Ä®S»oã6·Fg¸°ˆ WUlïuò‚è&}[EËEQ¨‚Ö4JS€÷–…¡Üß,lžO'~ªòÐaçxâû`4 }EÜÐxÒœœÑf„T&´ ~f½sÒ…ek·¢Ý}×Ч—91RÓÚ'Ç}ì6Xt0nE6ŒwfÊÆóXÉl¦Ì ¾Ã¸ƒiÍl¦Ì 8 hÔá&ÀñØ!~9èád¹œ/oãrܬ^ •­rÞì³FŸ5íú„·ð˜•n(738R+óÙ «Çœt›râIõhÑÇ6x—ô Àt9y·Y2“-ÛQ,® á¸ϼ)³á;öOýÁV¡ášÍ·Ê:“:Ó‘•´iàlæÊ5'x5 üšì1ëÔtÕv( ç*÷b¦…çN#iOi½ (?À­\ÐwŸRó îñ@+×È5 Ó¸p÷V¼­¢ŽA ›p=hj˜^ôÏZCá>‰)(Ïï¨Uf¶¢ÞkÓXè)¤}VRé-WÐbzÜUÍ—&ý-@›«V‹$kŒè¡r¿¨ò]pJRÄ~,wà*¬?9³Ò. Î5Ö?0Ö‰’Õ\J2ç™ Xå #œŠvÐ.w9BÏñB_øA@²|QÃK‰ë¢žgŒ"ÚzF0 ¼§5ƪø"©‹ÂÝV×OÉs€(¿lyÆgÉ>qiň{B§7乇×nö Û¥µòêóɈľÎ'4ž)3¾ƒÇ¿aÒ®úæh…1=}ülæE>}>ëôéóY…aÁsv°ÀFë@Y¸Å¢ÕŽx\Ö»½Qƒvœ;ff¦æXœtb¥ìè{‰vêõŒrLúäögr‘¾tˆ²&”fì”½Óø`‡½OqÅ€¢â±8ãmÔÇYAýc&>(z €ÊŒT·H3ûA;;W´ž­MùþÄwˆÀŒ “½ÁŠx§öÇó­[}{øž{g2O/™4&P8 ®‹âÁíÏZ‹,ç—´•P8v/^ v޲%ôï{ÀcŒÖÛÒÿß>Ýሷ4zMš9ö¯2ö8+òÜ9a°•“ÖhÂx7(˜¼¾#¹Íõˆçù上úÆ]Zpê¹ÚGé.3¯ŠÜK7l³%ëÓéKBƒ#®Aã xÅŽ}äa¬©aæ°WØoÐ ö&rRÔ™f„—hiBƒì&nøÏQ6ÉR~Ü^ñÖ"î[T<šÆèpŸáè+ñ'öfrôzk£Uä3ÊÒZ*Ôç€kÞû¬£Þ7ÁÖ–Ñ:JÏ ÏFCèÄHÊÁWŒðÇìZƒ¢p3`‡·£ÍÐôe”…ÛÛšg<Ûw M¨âaЧ 6ßaŽU+ž5çzìP¾@ñ®ßÞ»V/².SfKxNÇšcÉŠ©¸£X‘Q àN<¡'‹Ùpo¡çݨ‡µsŸ¦ÌØrP¾œkWá%ZMмÕ'|ZíG8Q³Ê¶ÛÜÉ7lÂõ˜§;xc¿²S”§‘”IóÏu÷j3³Ð ªS÷,_yÁáò6] ri×IoE5ßt]â/;p† Êpþ+— ºÒÿÏ[4°´-3{Z¹퓽Ú-›W\Á |žƒ²H-ã“ ÎÊï&ÅKEz"‰Ó'"§CÙ›¹ “Ë‘½ÌÛ»*);K«UîJÕLЉӑw€fa¯rZ-zK¨ 2Ü*µþùθ^yÈç©‘™„ºMƒÕ65c]²ì)åé˜~ ö¡rP¬Ü°Þñg@ö¡™e—%¡¶ 5[ È´5¯(×iF´,ر¨õ˜Ù=§cÇ+¾kxë—µ¢ž™Öç€d]qbH6±ÒÊ5é+û{+Øẻº“yqM£. °<ŒÝÀ¬Š–Ú1I<çµI>eóú’oóš­·ŽxÛÔ'×4A††µF ~mnXk´CÞ–íÈp‡ì™RÕ<ø{ëÍÿÁžyC†:gYJì÷dtn¨zÉ8é¼AåÍo ÇcµdvªH]L¤æÖÕ̰ ˆùøÈÜS¿vzØFC­Ô?33ƒÈègœrnÌâ”s òLÑ;}Q9ÁSÐ)çûË[·CjŨÜÔê›o´x. <(ã§ç:ŒuGÍQóà˜ŒÑ¡î+ëLAC]X_¯ñ6!ÃñЙ֤1ÿªU?;ú“kà´ç ƒvð¼Cä!ÃKúí1KžáÇ9¬¹§šrf&¸9ÈÎÖ7?ÔækIÏì7GÿÖ² ûÃ8µ×œS.5 ×´èÏv‘Clt‹-ý­„Ì|sð·<ËÅcÇõ¾uxkZ~¦ƒo¨ÃN=eTö4fêÙ B´$Lm[AÝ2uoã>Cà>§h¬HNàœ#žI ø,aøv[“àµÒl%€VuÃôj%jõòÖªWDX.P•NÞ/ÓK·ÔÃÕ ú"¶é==ž“¢ÂQAÔ•óN/}ÆhÃ/ aÔ¢ vB e{ß'C[ñTD¦õigd˜X«EAÀ”våÛrªdÆp³úXÏÖ{Ö¸ ‹V²Á'j§µq³J“  vÔ—It4ˆ”1*ÂoΊ¼ÜÒЇyÊ£¬I6@ýrJ ŒV úç.[qjÓ ò ¤µ § s™üŽØÉ\U׸ YÀ Þñô_X­z¬o¡æ„N*Nº«hÇÊÍ~F̤Wk ûj¹ ;¢toÐ-áÁ ³Fþ²¡Ò$ëœjC­IFþ´%È–íoÔ ¦Aˆ”6H+¢v’p  ¸GK£…ÆB½ü… î©~¬×SoG»ÌUUqh¬Âs‰à6áõ * êO½¢1Wp[„¤U¶Ê™b}qþ Wè¢ÈÑ:µ /õw õï¹4{OEv6§a'Dß–Y'Lù%´Î)ˆƒ#yŸçß[tà‘‚‘EXÇ´F•åˆ^zÀæäe™mNA6cEc¶tºQªA¢IÕioû ˜ôÛj%@ä /É]Aíç±hü”¤C¡'4áa?眤 ¢]‡…IÓw4\úŽÈ %Ä̹—Úšƒ»]V’hP-‰[[¯m¾u̦v2Þ¦­Õ¶tq9¢†·ôuó)OœÅœ\滈Yf@ &µsÅÛ"-nP]ºZPTuÙ"}ÇàÙ*´³FL­ç”±ªy£Î ZQßZÕ"n Xó¥H¹¬¸„ú%)ñà‹D ?ʤN]Ä8‰Ê]ê¸ä<Éþ’óQ}-éµx˵À¨M¼Œ:柗e¹\C%øàNÃÚìi@&ü’8¥)ª ¾·8ü_üÞÐì}!f†.©«UUõ¶‹^¡!psÆÐVãNÐrŒ,ªô'gï` L·øÝfN8=ÕPÛq2¨Ex|:Ôp—HÆ®—ôÅØõ:·Ø3g…r£.AD½ &ÈpÁW|›Î—û"ÚMkÌÉ7haÜÎ’q6i@ÀfYcMÔíÒW-,,n1ÜrÂâ"ÃUNøuæD48gÔ>•S1êË Nž.Ïa<+z³Å÷ü…÷ âwÉ aäØŸ xànmB”…Çm¤ð Ÿ!7ÜñjŠ»™, »Z {ϵå¹ÁÉfn°0ck-gT\²ÏŒjqŽ/«†¤•+is²™†IùP4É|ê`[¢¶d¿TAÒ lj[3«q(³®Ev³@ƒ¡î¼1c[ì¹aÜàÀÒ4›1ýEHl'—*Ìj¼k€Æ ÔÏg¥7*Vzš&nÑ·ÕÕGu«÷ÊuÃÈ*W kQFí…›1wânLu¢ÚÄm‹¦ 2\Ð×1L¿VFÏyûFyõ€¼Šz‡ôi¤Ê¬T·{ïdAt_¡+Š@UJ,²±èZ7'N¡¿î±öÚ»m|2%iúeƒßðlüŽ-:a>;7ð³—u˜œo‡/^>”a)ËôûŒó΃ŽI&üŽ+WÅ8fáëÁXÄ0ÉéfËèé1¢IÂ$}+Þúµ8’UÞrd˜SÒ< ²Ëª”3ª¼nfÄ]ô>L‡äl[¢%q‚hGè† äÑ ]iÇô*pµ%Ä\:‹ÚPŸqµq'gQ;„gbÂÁi…–`ÙQ¯Õìu“?MO×.6œÏ·qÃŒ Ó`FFì#ÉCv€Òî¡ZÑib;~·cAi–W:á8©YÎ$¯,ªÂÍæ;³ˆXAìR(É׋€Ë!_¼œåçÝŸÕå;ùÌP9äO¨mt9ééZvÞ‰þ2 rPº¼-ˆ­³©9<[î–¤÷FÀ~šÕ;1GѼ°HCa»„Ø–ÖÚÒ'¼Í€Â±{ôD0kK5Ü?…(8GJ}VpRTSöV£¸¦·UiFHš;d¥ŠÃ*@/§¬ìЋšZ±8ÙG<‡ÍΗaƒíÚ\p•SW2 hLô<¡xÁäw>@íG´8ûŽ˜)ÇÅÑ{èÝ ˆökŠê›†:ãN/ç¢-Û†ù=àt0²Cn‡¬} .oÈQàÆÖ`;«b…Æwc ܳ÷t´†lp‘4p/¬À67z î¨Ì‘§ p;RkÓÛJ€œ¼+“›&o˼&\(ì¾omúÖÞVõBh¶c¸u÷+-;=Å iý Ý`-¹Ö'}Ì ¥ TÄ%„«$ø¤‡czxú.ÔÚM’e@ønqˆi–Sº$’[TÛ@?vÀmznÅàÕ§\N]‡¨þaqnú˜x†©/ͳDÔ31W+ÄÍ[«Ú>Ÿ…ÑÏàg:ÊÉÿý€973Z§§~5çêôœÍX¡qô&ü§·ñY×'rÆ azÑÖãm† ŠÇz‡ÓW›1ƒV±qz·Çz6ó+&š¹}§£'í“û%à¦12Ìg® ¶[Îà5CÈfèÉ¡¸™¡àPÕ‰[ÆõËĵˆI<Š[xµôüŠ®¬Ï5/IFçn›Ðö\4ú ¼¥ô§EŸ³G‚ò&oaös)ð]2y?@”%¦ä éÛNg9Q™ŽüQ~i…ëðÙ!<£U­I›oèñy~O¼´µªÒq]Oé|°-¯×>´ xòƒo+ÞVpº=“Ï1"Y›’[ Oi…=e ôÇ=æ’ýÂjAƒ›$¦CÐZXÎŽ®À7\ذ‰É7(Âz &°Aù‚K‰!fU/µmÏœ—½ñ 1ä5x|eÏßÀ›\dÀZ'ÎòÊì3œ3yã”Õ0Žw²(Ra}Ú.ÛPFâ7(±_¢¼Ê@ËEîás…ò€Ð*N‰-NqØ" Í€IÍôåhÓti¤î„=‰‘|ƒÛÎ ŽO +ê1ît\m*¬,n],Ù™EÖžŽ(Ê€2 ¬xF.©ÏwKòZÓ•›¸uàŽ½q=ê ³žãö¼cµ×±ï(©ï8à­4x7N–$í‰ûœçÛ²Þä.¸YíŽõ@•ž]{¢ž¯$ézÜòËkeOܵÊ+hOT¯—¤h NÁi™\¤ÔOfƒYç>`@fkAo›:Ö"‰™Nðò)p ×Ö¼-ܘ¸Æ­U¸fù8+xÿ±¬‘b³üD®D7Lè1_:™ŽœkªÅ‰›ÕRÄ 4@Y+»õZàý ’|—ûƸ¦ýd®“c`æ5j Jlo¡­pdàĉ%ñ!eÄú„ïHÏ€ùÈPÉ¥îúEo!ëÌT…H*àvEi°B-ˆØ…ùTVØè-²ƒSg⺨àµÌö{ʉEð@2#XÙLò¾‡ÞÈYÑxäŽ-6G…ü€·…i9sÔ³aa:ð~½@Q­küÖ*ŸÃâ/V‰œ·Ñ9Åíü!azÍÒ wL_)ó9‹»à ÙcFÁ*€‚p SN™ahKj}&)C\­µ]ÂpåÍ…­]Ù§ïc€ոĉ˜iÛ¨Ó6ªVõNOž,ªÝ'Ô~“†‹Û[xch•Ùþ¶øŠÞ+¹ŽoÛ²!Aù>Tøóg"ÄËÁ㙾Hº 9¾ Kò@ÉÂHËŒÊÒ8rtr?$h­JÇÓ–dáÒY¼ü~¯ âÄè¨2ôR9è+Pk™³5ÅÖ·èï´. ¶…Ñ,jµ·öÂÞ¥Hµà)ër*.®Ë°œ-”½ï05Ç[úfm¦ã‰èKƬÔà ƒaÄeÏz›8èᤸõż þľwÁ&ò‰Ýt\ÜÎÑÒVÃRÓ‡ ,¤¶,,=j(-.ÏmG«™+.Qe峓b•`ÀOœ (ª3=S`[ϺáÁÿX˜Uýq †¿ùb/Ÿ¾zêÓ`æép5ø°ç6žmEÜ`ÑÀóI³ö[y@Pä…› Æ»<žmÒ  µ§«-ºèðììý¡BÀ`8;/€ë¶·³b»a¶ ¨l£ ·ûÈqRÄà˜sæ—áXT ~y'¾3L3b'/Cñ¤~+Àíp¡âyŒáT(Ž+€P,`sÝ!ˆ 0Ôn{!7aš„Áño€o¹M«ŠV°RPu!‹þˆ?BᜈFç8Áa 7—uJEôŠ]ƒ›µ<¨h‹=ŸÑ#¨ÍqóMU Êøf® (‘¹.·©s‡_ÃÁ8‰[¼m€Ò€ø†8¬EâóX?¨ÿà´.v±×þ6Ê€¢ ↭U³àÛ-.…­wcøÙsÅ @Q˜œAÂ[Ìí{͵ ׃o A]œÛ .h¤½BpÆ78h:œÿ ŽÑCN6 Ñ¿Aå5áF¬”ÛÞ&Ìí&ͽ&µË56Êz=sfn[Ε3Á¥Eë%oÔÌ¢HäµZpÜÖ2keÑ eÎ.épÁX#¨G^…öqU¸ ³nÀb£[ï<öÇ Ž€Þz“r%dg®xÖGÐÞ&A2YelžÎ_ä(ƒü.ö<Æ„ ‡ü —Àt3¬V Ê€h ˆÞ²RÁ~3Ì ˆ­Ú»k‚uÁµ59ä›,Ö×ó8䪮îqÈ>‡t’Su4ã‚* I◷镸mk×k P-´â×&L¾^c„èd‡Ì¶œlç ×o@f!2¾„w”‹Vœ¸¤)="Úu' ït’/äƒpýí]Òê›ÏŠ\„+ÒÈÃ?ã¼ÍëÈÀ¤_!ÞÊäNXE$7j.~Â!ÝÊô- íq4ËÙ¥t;”·noÛþ¬VÒų* OS;þ¸ú¶–‰t¸ *ðLV—6Ø<¾q¸e*TÐ{K‚ÌÂæê‚ ¹ ªä²DO±BSœ¢ ûð;U"}ló$ýdøô½Áå±Êo6LhùÉý'áÂ#ÀÅ ðcp`PþO‰ËÿÙ1³Z1‹mNÿ+ný'mús+2€Þ! ¾0 ÔÀźЧæCiÁ„@Ó¥ .´Gä:±‡höŸ°Æ]”—OY½ædïèïe¾¥Æ¬jؽ?\e"_lAUWÊöX)àâ¹¢‡¢µw€#VŸc»ò)8gfƒåï'Àc–‚°Ž8Qø[Ë;œ/¸ñXí*VB¶$à'‚‹©Þy÷3†?¥ÀïCù”C¶"Dù?ȆèñÎZ…w…ßy Q~2Š‘m@˜æð}!J÷#÷¢½ƒè9?ÀK[+ðŸ:üz_ˆNÞ ¤9ËÂRšó”fBñå]ò1¥ µ¥#Xap ¯î`¼fþ“iˆs÷Ù ½x{ ¼üÄâv /µLÿ•P“¿”WÒÿ(ô[#žƒ</xú- JpËÞŽZu€L›yq3et°ù=à Øø -á8©+”`ž²q…_ÏÁÏÂaRuªôp¡´c­¸ÌÆÁô…*ïŠ-àÇ4Ò?¼±A^¸€·wùö å fV;߯# Ÿ)󸱺¿·X4MÞ4>ÌPÈ”÷ÆšŒ“ðŠÍ+ý sê\=;c.PŒé?UarþDßTp rN÷3!Bî£uÅ0uÆèc¼˜r@ZÌÙ¥ñ6^̼2 G\R³fcc`Ü4^FÛˆ5*cmD•1r¦~ ~ƒ, ½æpóò†Ëw6:èïAÀdz»åKÀ†¿œÓaè9l{8œ‡žcå r¿ßõ1Oƒ6àÔuàM@{Ào™'±ç$:“0ßf­ý‚´bÂE̲ ~‰üŽ0Ée+ôµæ¡~YFY Qä\´Km®²F±"(qÊŸ_³§¡<ÞUh‹”EWø)ƒŸ‘A«Œ9’FêäïWÈIÖw8Û”3†d²¿Âø ñd)Šˆ îE‰½C"„A3/f¸ lÂ:¸ß ŽA¤µJMÃÒ*Ì"Q«äsé5檨s¸r›fUÖØáNjx÷Cç †x‚03žf·½¢Ñ/TF(ŠxÀ×1ÿ ß`æròGí˜Ù[f—`\f.9 1 1鑦™«¦5lòJÓ13]ØPY¸„‰Ë¨aoWv"‡1¼Æ·¶!vËrX¶ Šh>—•«Œ øÍ̘yY-ŽŽV ­È¦µ5ÖÚÖLh+IIÐÊNº¶STÇ*@еBíÔ .1½=Ã[‚Ï’õš|'(€+ñöi'.˜ c£—n÷>௴Í{³yDÙ y·Ð0ؙ۠ ˆ¾çèÁýøî¸ú#ðPšÙÅhsïÀcì’iƒL;z<£TÚDœòrV0Ð!jr£W<§&7 ‹8ìp#]ÄåG7ÒÅ3H?5#®Jr¸‘.žA_Åšõ‰l¼žË†Ç² Çê]£ñÒ¹ƒ³ì×»Õ4’'€­%Ä™p6\+£jë“Ñ)"¹Vö¸¿¶мäVYÛ,ÛIûsFÒ¦½ÜwÈéK7 j2f­Q&3Y#E&HsPÞÊŸY™–xLjR˜™±IæÍÜ1W¶ÉŸŒqèw‹S ‚&yÐÊk׸Œò<8™ñY—ÇcÛçkuíû-y‡Þ²ú lå}o>kŒÞ%´¸ï 6¾³ï‚ve¥M”{ xËLPD‹Ü¦æÁίô‰lpóËS÷DYaiMåñš—6ÝC«âé— îÚšpˆŽ|å±lÊS"Šâ¼³õäÙÏ9Ko[“âï8+'Í ™³š©×€Í¯¨Ð¨ðu­6¼ÛÆ\¿wäôéŸáÊõÞ‹= zÆ*";D/ϸßc«1ðW Ç<0Sb¤bªÐ{zÇŒ½÷’²Ñ»§÷ZUÍÁp£æhTMàdÏàgÖÖyOk<Ý.?Í{J³4Þgù~ö¶,úâ÷çâ…Y$¥oÓ*‚ˆ[%Ѫjg<³UàaíaÞ¼§LÌ®ÊK¸ÓíeÔãKp©¼Osôô7=ŽöEpzO vâÛ†~Àážòì¶çSÔ'æ)ÌŒµX#ªjãhÇÊÅ9³¹ªEoµ"`‡*ଞ8Î0“xÎÖvæÏ£ 4ð7†Œ¯VæQZÉøMü¨|¦wÜi3qôÙà븤gà ÊmÚ;ÏV 5moñœ–Ôü 亠´üIJ.<£F>+œxÅ-É  "=o gx唿ùìZóó”å2ÜS6ô#Wz¸‘;ž+4çtBk%´hú Žß¥ˆ.+ðЄôúí]›>xô§s”¸è¤õÜœ/׎V˜X z8Gj"®§ö¸O:bI/+‡µÄyÕh§Òïo\² w,\ñbÊâ“€·|2¨Žó*ÑÓ7õ)ÁtÆNNĵ ûP2ázƒƒ&8 üœõѼqÊFZgV@!Ã…ôÁ“õv嘾ƒ“_é‹Ö…öØ-¾Ã¡Åè½ü³$Mágn†ýµ7ÊAX"Ü ›©c`«£ÍÀÞí‘>š8 .Ì~Çl}=H ö™åEÅéï`~Xjù)Ø[÷8µïQ¼±gïƒÇsuÅ"c+Ó[U{·§Ftð¨oQÙŒÙÚ— ‚M‰iùqƒJ¿ŠDï)d­ Ž„NÈík–IÏŠgzWPV0½Ê1nl*x”£Äì×h*಼ʼü»˜%çã—b&Bàç=ÎUÅ,/ '«"v= fÒV1GI‚Ó·oËjܽH‚úðêC–š’lGˇvð­£;¦¤’—(›Q> NðáKkÙVöÄxÀŸÂļqô EÞyW;y΃^!MO9† )µ7~yãR×êŸÑƒßz¾|LšCxEUÕŽ‰>>..GÁ²xÜËkÆÙƈ‹}| ?Ó@§rÐ1Ì"í é³$Ó£xFôRôÂôÐÎ ­€Ë"­vÅÛ´{T‘ž›üј—¥5(Ó“$ β´Ìh·‚ÊQÖ„kâ`MÖ«a¼¦¯à‘NC.|8ÔžÐ11µ/ëqÑHĶ”ÇåH527EU×zd #Šj ò~nƒmôÐ8…áþxüF[LòÁp."â: _ÁÉ8 æ+|2»õ+Œ+J<ù¥×ÛQu´ùÑwÄ3Ã&ˆZ†{Û¾°Wä9°/Qðà û„åÃ1 ˆCm¾Ð^ÁVã¸jL’œþŠ88îqÂ+âÀ¼Ç¹­˜+àhEÄkß&ÅŠfr¢rY¨«ŠØæôPú²'ØCŒ:ë±q~Æã÷W#Š '$ÚÆ)+?ÌLÄd=êc‰êßÞ!{†¦ca›ˆØx£±ÍÙÞBKát\ä>NäÅÊ»™<*#Žæx$å'êT7×k@¼ñdâ Zõb˜Ò4HæÇбsÕë䉫§>1³Âç`ÏÆKU:l¡GØðØB`zm»¨W[s€ (êK⦭%ðz©ê…g%=îpŒ6ì{ŒÊ­•ÁáÈ¡ÙÄÓ pƺxƒÀÑÖFÀ>¢¦L…›k JãŒbÄáI›ˆ#Îúé]^\® «•L‰™{‡iò–Ëë'aïßóT.k¢ FQïêÖ[U ƒØŒúÄãÄG:áEèÆi –&!6l°HlâŒfm€¾¶ [J8«5 ,=dp—ÙHš´ ñ<¿kB r‡¦H<„ŠÄC?Ë¦ÂÆ"c›ìÆæae#5 T&äK¦SÒÙ.¤UVéd J†u&·Äh1ãyH*«&Õ² »çQ}â‘$dŒ“NG°À'Ùa.Ô]Íçü/ V©Ïì!ª‡\Øs^?e!L‡YÜãÐ2¶âUÝiÖñ` Ï;×X¾C¤W‚2ìH‡€p_B:¥—Qågö& R06ð@(„€GM1Zd† F' Þ1âL@@E+õM`¶ŒÇ£˜ÍÓ ª! zæ[O9eyoÛôT`³ :ù¢Þí+Ú6žu øMCZÉ€ýáÈ£\ÌOKO¿ÍÅ÷‘G ½1Иn÷ü);å3ùÍw¬;?ÀcI§ìŒË’ó™ÀÇ8ÆâìyáÂ+A?Ë÷¦±ï•¸—µ`¦G xònï…¿?Æ4 x™ÃKžcµA%Ïnú† w…±”*¦7š|U=¾cK,TeÀ~@ ÜMÁÇCeÙ‰E¹H\&Ý4púb¾­û³õÎ嵎/í‹×€à:ýÖÄ‚DA’æ‡ËÛt¬v²<^PˆWY8Ä ¼°)ÒeùÉ%,`ô'FXÅAP’7ï“۬ݦ˜¡Š¢µœÁµPÄ/«p+`ðûþ¬Vˆ‰5‹sãÖGÀ¬›r”êdÛ3CËcŸ)á&®€½ˆ„û»)­’¬z}i-7@õq‹†pø*ñ "š¤û¶Ó$ŠºÉdaF;I÷øNëËvµúp³ÿi$e=$5­‘ºSüzÑÊ’çÏŠgØmÍ>ÃÂ7PÆl…µX A¼tõwžZ2(&ÃÞUÒ)'êÛ4Në$¨ñÎt¶G+IúœzËÞfŒ ñ%2ù‰§à .²¸5X¦² 9{ÁÄ4úa:ÐwŽ a58¾ªuÂV`òçŒÖ‘&JV63x ù„,­'ähxÔ9eEáÈh$e ÐL*ý_%i9œMÉŽê@ xÂ锼0á/±¸iÀ¤2cBÜÃÈR$^¬Sí®…`‘™õçXM#r¬Ð!1‚æ©‹*pYvŽUÐ~þ&^:„ó¥)ÌBó ü†\f FK뇯©É£ú‡žçµ84=qݳBBí”l(”Övè zò,!˜PÒ ÇË[¨îÑͶë J‹;¼¬²aÉmåF¥C‡¢“ö´D7ÇK ½pJ‡GÚ“öÐY¤+ÌcÚÆÝíPé ÃMâýzè¸÷ù+îÖ,¦«Ç\'Ý_Ž«7:GÊ9á§É&Äb7âÊ–¥)cìHöA*:dϳh7ÔÙÜô“P=šì²̸K*šK¬°I“’ìÎÁ$–\¡†yBé‚™ÔªµÊ©Ä>€ ½™àkc )±t‰Ç„ ë&$2™¤W¼Ùç@=#OÉÝÄ. %+¾Â…QC?jØüK™%ƒÐA™Å¹°&3K5–Xœ»SfqgÆ3Ɖôu*,RÅ|™ñN¨mÈM'>£T<áz`ɵ2ã,Ly^u‘1VJÀÔÃÔÌЖ­5Í N²B¶Ây²–8Ëó̤ŽP"ÏžPI­¹¨nW¶³ùYQýWXdÞ°«%ËP¦0Íð÷ÕÔ-Iö%`5­?'\Øy^kF½ƒ ‚ñPÛ5X4jæÍO¦žŽò²€ÙVº˜…9µ=41/ ¢&Æ% Yôõ»¦Å9K—&^‰¥‘2ç¯Uô¸$ò{å\ð2J2S³{?ª6¾G Š=×CÅ“©ñ| RRca'4mã±vp )’Ç‘ cÀ{b™9*So f1U¬ç°¸ù¨¤,.‹[jWyt8±¤~AàÏf½°Ð†ïо«€’ZÍ€ã±ÆSÔªä‰ ˆ³F;‹5k¤ Ve¡Ã³až˜“ò58´´òÑTY íVå¡¢Ú=ÕíZбH|\y‚ŽÅ¿©šOe£¤·…¿Ù~ä-K*µ+/²4Ó­—,rJ`(2%f·9Û¬Ve`Pí5`ãm›?¼˜Äãà*ú’p:Öw¤M•>š½äcÚ~¤I¯Uã~Câù³Ð(wˆ»´•D%¥(\J¢qô./ûk”Ií31É Q¬¯\k´ÓA˜ÐxžOôˆ¥QÞ@P–¶…‡5Å.µJ¥Æ›P¼@YˆßÖí-¼k{Z¤—«³ 6šž©ñ¢_^+¯þ@URM)‹bSUÙ;žŸ‘{™{x(p9x‰AõPÁè€Ð?öoÏègAA_7m-Áª¨§^’bó/øK;Šy ËäñÔù&بL5lïâ9éìDÀ†gâ¥&8^Ó!ðÍÔj8`‘ªÍ,ã/z×òWß­\ƒZׯ KÓX°hîª-¨Û©KpÄIzFuÐ ´PÓ ^¢ù¥1`i–f›Ï°-Š©×ÛÙÎn¯Ì~ÙÑÞl)ùûÕaÓÐáWy%Yõî,ÅÈç^®Y0â8GV-ð ^Â6eÄϥƣ€ð¼ø›Ä:–œx< ¿ã—¸us6Ù´‹äBÒÍ›ä‹xVqqñh˜§íãñzÚLôÎL›~@-ÛàõAge30!_`Έ¤Xæ*âW^`é S|þ°¨3ŠÈ†'UåF$åÌgdΉÛe̸VVŽGTÆm¸U-C¦êÃ0‹ZõöŽ­â9a¬E˜ôZÞÒ/±ï(ÛXSdüé—DO‹mG_åLÜ$ÚíP¸@î‚ ŽUK<Ä^Áqé2V–ZéJjqÜNW'ª'ٔ㰲‹çÈ¥,+2Ãï\…‹­(£©è8,ž8Õ8—…UЋvÄeãÙðØƒ½që‹“±¢Úö[*,*k(%^c<§0ÉC6 PÂéK²MJ¯åp ¦šäK7yœ¦ïè×µåñ,O+Ù¼ü!Ó“QþéÉͪÐZí`I¬é´Œ˜6”†8©Ý¡‚ɬÒ(£fVqÄ.i†ªŠü-Á“E›ÖU>›hڀ˂üòüÉr3'¿À‘d­_ÞÒPù”Ü¡8£t ¿O²xxZZ† Ÿ`ðû„'‹ œ ‚±9@™#ÄYUY•Žç“ ÄòÉ \ð{õ'K±açµ+.^i“s"ÖÇmP’~G†‚¢qâ"5òn%uâH'.Qɼ´Ö9=†(›3c³×X#rTV¤o¤¨$NO2*)Í,¦'4© ØË¢8è¯v¨ˆ5»¤1À»à5øÉŒ?"ÍŸ=ëßYžš¶*³ÔEL?2±E‘u£'   Ç‚ C”„;¼£@1Õ‘S•‡§Y†EÌÔdˆ9%ÑÛœ´¤¿Zñ{Ä9 ”\ôé%\Ũw†ë/¸N¸m­rÓ*—c8× Š}'9ÌÕÁj7@´áÖ dÏ™— ]´Õ;ž¨ÛವƒÒóQƒ™u[kŒÔWY£+Xûˆyy@Uó²·U|ã‘^ P½l&M”÷( ZþNNmÉv’ÅÇ©j´ðOSÏÏñ]ùœŒ[,gß?U‘OfáÂÊB? Ž—·þX­žÂt%k6 §".)κéå)æ74¼…¦4úá×4³vñ#®%Î,|ÀµÄ’ßLéfe% ¬ v‡Š¯3Fì%fýPÄ…ÐÒÈØÝ ø×_Z‚9Pžt,%;òÖZIvœ’ù 4ýbÂùØ¿¬KcÄ©/Ì®'µS™Œ<“÷°B¼ "ÒÐÃØüwúôî#µ$¼É?|.^>Cpð1àä(/s˜s@VŽé.P¸b¢÷Šwiµ%”ãŠÜ±»™³´21yü\•Ëe0[D=XÖØWfuâäJÆùƒˆýÔœ¹_‹½ƒeÒs\Ïıø&\Z zÛ¨`[±û<Þ¼ÄLüÄg ¼›yãDÄ …ÌÂRl³e•Ž:} žÄ¶[μ*  ½dÄ‚™û(·0}DiwKËQ†Q3­".J0±LHó®?¦äã”XÌäÝvÕ6±J¿ØÛr¨LeqvnŽr¨ 1GÈ’—äuàw$2T6Ju:݇*ÄO­}Ää4ÚÓzë—Æ#Òà™EþØ‘Êa–gYÌ }‡öÈ‘ådÐú‘…hÐRQë…ºÀÌKYjZúû;Ò¸õ>³4{=Š""™›#ï Œ¸§2<ŠkkÅ1«J½Ã¢Wj–@1*‘ ªY1…áIxw Çýø’ꪕE»|Æ ùU¯\uWÍqbÎèª2îÂ3F¢ÜÒð&3Ö&=›.nõ˱¾dQ4¤E¿++µ$‹ 9Vp¶Í)ðÜ‚fó(±ðéÁ7A+eoµŽã™³B<£_…eaaF(qÞ/• Û,‚[|]ÇcJD`‰ù˜ùfce¤B"*âÅ×´Í“¯q IFA…,lôÇ´˜1¨UO ]âÑÚs§P³Ð»´ß$^^C,èêGÝ„1CªS“þ½Îô ÂÒ•0Y'¥b¦¦Žò…<¬t%ž9J¬}žwq³<°uYÞƒ404Š3*â"~²$gž·¸²7ób\Ÿ›Y¸-+ /'™æ[DP šíж8õcP—žËË_Äe®<Á±…;à1æq®%ãdIÄÆk®²œØ–Íx6>^“3yî&á¼NfÁ2ÎÙdÛÁ œ¬]øØ k“Ïö Ö¿“4¡Y²F(_ ¸µ®Ro~…›rÛ!3ßÛk´Ýʤ6r d®ÑêÃnô”Éûÿ¸:—dYRY÷k9‚²à ã9f×þÆÞóïÞ }î@Vk¥¯ BB{S Þœ%åèÙà×bÝ~-ÓökB´kÒ¼*H(ê’Ù;†IÉ⯼f˧¸=ýãÀ¨Îí©érºw¯Ú#ŠK*çþž ŽÃ}ºïo!+ÖÝk }¤¯Ä{¢LÍM{šWhû8]ëUÁ •?e—kr(ØÖƒ:³¤€¸.·Å§»µjƒzm * ¦’Œ‚ ‡÷s 4<Æ*;Í—.týÞsµq»ê™?ßÙaŠh§µø-+°Ûcª=ÜÛ¬ðPF„ß{¢¤Æ5øiõÌ.P9Ô"'hÓæo:Ë‚/´ÿo,‚HOS¹íJøoí§ÃÖ‹yÖ–ëõºl; õ´¨®j[ÊVÛZO3(Þd4ÌM&ã‘á²æÀƒ~m=â.²*ˆŸ4…fø0×coþÙ¼²›“:òB)z\Úþr4z_7pptô%»Áã$]u]Oç©)ÐÛoü¢+±ŸéŠÇWÇQ¹â Û‡­FÄœt§*ae(͇´å‘Ï~J)?ð±¥_툒ƒßª/ƒsÖzlãþðfE2$cIŠK’·ÌAÝ_-–7©¤$X¾wr³ºžqä›Ú>›Çæ’’)”têìñø^·7@ãhuÛ¯¿â>•. P*'ÑÇ´&IºŸ.be.”ï²͹÷2í|§/òî$ž=–ZoÔho¬ô‡Ø'?ù…zk&y|ÖçWû}„’<âäëï?ŽR_ ‡æ¸©/¸.¦ª¾´£QLãtñm³¿ýžhª±ØÃmcT—ó¥>e“jDªŸ ç ŠiòpÂοtúNÜŸ;ï MÂlßÕ’Øî»9  ú~ûDÖØî¬‘¾÷@AxKešNÓÄ:¿Õnd¹‚4Š}(Ìp׊´"]iW€ƒÎòðýmD&Ò([ÝËWö©UëÛWTa]fY+ ù®s¯©³Ç–‡×iÞf2¾G}Ö]Îë²|¢{£ie§Wtìf×ãPÞnOѦ³Fü=›ÎÈÐC[žÖQU+èa¾™ PýͳéDÏ8…w<óq¢Ýù[.œyºÕõƒºË çS¯hÕ†±\21w…~ôk^ÑD}O†Çuhnô‘>{íñýβh)æGô Àgd©oÙ”%úÐî­H4é[-æÕ»‚Òúµwjiïi/¼LöÓìÝÑú8ˆüÔûliše 5³t·÷Q_qp‘¾:ÆŠõÆw¶(½MÒXßhfâj:óŒTϼt!ÑÖóÙ¼Rt?6šÒ¢àRêo.iÀâ|JdµoCà˽C¹.G0ü‚ÆóX &0œÐg¾¿ \+ørñl=”'ŠÎ ¶ î EÙ¹ý´™k {ã6ÌîCnNä<âû·\¤¨âþÈ õ g7ñɵܺJ7Ç%kD.tò\s6ïP;Ñ›—’eÀëÖÖ¡³1ÏŽhíýÑ`æª÷GAw²„>X,~ÚÏ®GÒ²ž]xسùé2'ÓÒz)™¼‘ -UäX¦ Ã3”iqB®Lz“™¯Œì,–ˆôœùk–³*#Ý]²0z“Z5¶õsϳˆAa‡ˆ Óˆ~r¨ÚÁRlжà ~p³T¡G¼ë•#ÄAªþÆvg8/![çÀ#làáüŽ’…V³cäóBí?eëUOQ{>í¸¾ÿ¼¨Kàe(5æ2¯%#Ï13ÇYËþâÖ˜sáˆòuÖ£  i9Êé =‘—™‚°×Wv­šs¸N64¦3øõ¸,\SAC:Q^JŸô=IM§». ÏilEkÖût‚»Jw ÞZåÓãè5…l£–ê5üŽ,¹\ºoJjd mò¸¿-Øb–r37ùjàié?¼Bw°Ï›e°Ü~Ñt¶¦Û=“ÃRwž‘EÍìçñ—-EøÓ…a$Õ+d®‘¡nà©5œ(…¯8ÛmpzÖ¢Ó¡¼”–/Ýçý wGH»Yc‡äÈÖè0U>ÝÈÎ<ä8^Þ~dÍkÜPâ üX†JüÙ6 2<€­«ìàûmk‰ñÅpRø³geÔçÒ“NZ× %7:¨|N½[ÇC‚ÕäšÞö×¼õÍáLA%/꥖ ´¶¶7ª×;~Xƒ3 ÒÀZ ({ÆT Øj êž½9xº.”J2[uÏj­ ê/ÂãYÓ#<^Ožì!gÿ2LM¬Ò‘­“°2‡Ò™°‡Qð„Éö4õ:‚4:iLÖ‰ÐÎBIzóHåÒ¢GÊG;o¬ ræ )%ÅÃJ¼¾ßY‹Ù/רVíæ)ÅÚh]¢õÇzi©æäƒñߘ …6#îW”5§d7).G´ºõÄàäÙeƒÿªèL>(˜¯•ÌÃÚ.ã±fZ­Aòl}®ößþwK’ÆHÖ“ ß>¡pë‘òGá1[©Ò™Yy†¢‘GœØü—ÀŸøý~Eòl†F÷N»×‹+O'(ÞuʵH!N¯Äî¶øŽEóÞž­ïh Þƒr›‚‡i·ó56±£*¼æZÉÆÀe¢$#.÷fÌIƒŒ& Å´‹yi}Sˆ¹ËšÊn…"Ò›%K¾#\´ÌïúqpÑpž+·]©{6Y.¹ Ó;N’ >y‡07êEgr#ë°¥ ‡—}U7ÃY’0Fþ­ùš~3P¿jM®…•ÞÄßu _$ÍJÈÇΨ †ªªµz øžiÏFUxñ0,— ¾­`äÁïKvž­ Ÿ§k¿§ú]çt[3¨NÛÌÏÜv‚‘è#zE“[g<‚ÖÑÊ8ú8õ( Áhæè›ŒöÖÙáÒø+6®ö+T‚—]hþ”MF‘Úà®5¹5ËóÔ\ñÞòLÇU4¿x½+P“ï⎨ðjä:|¹WøÙ•|"T¬Ýó þÒ4Ϭ48 ÞC£Y§Äch0­„ß{øÜÍçoœ+¿T~PûOÙñótíZ­ÿ’?bð^ÁsC)D0Üî]Ž×Vg'>`Kœ‰Ãwfô$ú‘sz»~³>%™!×S]kµŸ$ÓAœ›w.[]Á"pSRÂt.¤]»?㆙Teý4Ò¶KFÛ9NâO$qiÄ8¶AÐÔ·ø„{yü~(ÅT¹¸³*? ± ®Ù)'v6¥‡‡ÿ®éwßu¿6}©né{šãFÚÏAäƒ7áNt'È aC:š‚îàLJ7ELü°´–_.òkž™U²€oI{iE;%IÌ\9²Þ÷j$VBû(\õ‹¤}€8SÜH¯èp¸¶X»ð}ÏJe0”à†t-à %ࡎnœ! %tÀÌ6^ÑýŽ]‹ßZϨ¯C6y¼/ÆÔØ!…œã=‚¶F¸Ú½<Þeá=Fñ›_þ+Û‰˜õ¹i¢€4ẇÝ^ î þ[AqÃÑáo!G7ý®n˜oÞßQ”ãÁª?%5®5výÉíÒ¹›‚>F(¹ÿQ[5˜ˆÆØ´¼@É´Üxs2” åÄ'Ór†2´oîT jÑ¡ßc§ ŠxL÷ÁK}@‘õÔÓ‡¿! ¯¦mw(I’«ÒÚ ÷R $ÇÒ¡3ù{hý¶éZcjXIMôWYª‘=D¡}†4Á׺ig‚TÐX÷ãÌ»3ÎxöšÍ#2<­€*e«ßtHޏIÇÚ¼[`.Ù’#ýDÏCú_QÛüXyùî–}¬öúÙXýÚ{¬ *ÌÝnÁdž£â-™–‹:–(¸<ÆAyÔ~-:8ßO?®S9N:›˜!·>Ù¸’¨Ëf0’Kf¨õý:'ˆCîʲüÀ1{Vÿ^ "k÷©PGhÇÙ“z–vÂz–õ­+dMÜÛÜDÖC9|fñóòoY£“»kßßüä[Ë|”õF48ŸÍ_Ò‹~~K£9¸þ<íŸS‹vâaóÍ 6u\ƒÇÛt,X 3),.ó–h#S2¹d,„™´¢N…ÌJf¯£ Ê©ã#|àfR(w°ŒiËiçäf¦²©Q¿›ëP¹¦¯K׈Qôš¿ œ‚r&¡>üýGAKÃe ºäúeß1âÈê 9%5PsÙ .¶îSñ–4n9ÝŽ¥0#øÃRå’&ß1rŒã†Õ@å#§¬@Ye}Ây+ÞR8; ûiȵkpÖ@˜ÁÒoÙ«v2|!»]¬#R;%? …Ÿ²1(lu‡¾Qw»…c4ýÔi:b‹<äúBþX;0¦X.GÙa âí)µ‡ÝñCfËY!B/$9®iWl#µ@ò‡5ŒÙCŽfEz37¹ºd§žp ç‹”„;(l¡4ÚööÜaŸŸ.û¥Â r©µ”Y“ Tÿœ¤ ¹æëd`‰SטBÚ¦ÜÆý[mÁë`Êyò< ^˜ø-þ.μos»ê î’óð>.]œJsBø0ü-Êf¾Ènüâ“[t;G"3él¸çb=7BŽrªÇ‹²ÕÜqñtü ùŸ²ëª©¹ÞñƒºgY«óh@ç¢ÖÜÇ ‡æuÊ"râµ¹ÃLU+™â2ë!êDƒÖê pbødzÓªBÓ?ÍU[BVëÆŸCÿ Éç½()T­ÅZôµ®Öã²ì€Ã©­ŠçZ¯±‰’ŒåuóØúQ(ËËe\²Àƒ†VùDð)¸oúDW¡,S„™êk¹i’™šYwé*˜dÊî ñƒ–ß ¬p‘ÊçÔ›Îwx¼¿3ôPâ·Z}LRñ‹:¦RL@3»—ÐÇÌ ^yi7Wh#ÊYnÀ«¦’Zpº1å‚T–‹n2x@Uõµÿ”w=®µ}ØH§Xåh ½š|´S‡)\ç8uÔÂveYS;ÊâÔ! Ñ9“ôï~³XN[2•À‚ÁSɺÆËv a3ï –rF óËôì Hžáù|D¡ôw…Ìd‰J?“åéMR€e‚É ×»´.…7Z[¢,´‘äÇѹŒj&Á¨ ro”ÞGÉ!Ý.œÞ _ŒÑ“®f©:š{)W¶q¨h´t2+ÇÇigµqèàÌ^áœA›c˜jxëPM”¼(“œ™¦¾±iZ=š‡C}x›ú±/лJÇrÛ¨‚Të¢OE^_zSk‘Y}O¯&bKn…PK âµNI¾’\V(_È<åà»Þç|?éäËmU¢Æ!ú”C:+> ¯Ši“ í¡jÓ×&œZ/­<¨EZxú¡*чdÿvD~›R\7VÀ@xë$bnú†¯B?•0½rºõ­«üÙ{"L¿n ¡n§­Mý,ÖÂÕëÐu¥4ëäZ!Òf³×öü8Ôn:þ_©<ó-A/-8¨G§¤½ifµ' “ñ@š%¹ä€‡E=ìõ”‚¤Åos ´ôY&½^w't˜5Y}ð<ÉÞïqµ‚®f…®8šUÁK±¼§’g`òi¶:Xs)tq+çÿV0ÝT .Üœrnº¥ƒäEµ (È‹Ê(0^â’êk×ïfªX`õmPÏ ßIÒ=*…ñdÇ,hßÖO·_4S6Å›÷oŸZ°Ç›reÖS9Ok^²wŸPÈÙmš‡5qžbé³KþùGXAK…9’\Ó Z“T’¶ýÈÝf AÈŽ&¨gÛq;jI»$mW üX *$iÑ éYÕ+ô#%Óãù‹(Ǿ0RlLq•«FÕã/,:á{ÌoãÛ*©vÊÕW£ÎAðŽ&Ÿ‘pqœœ›ãÔ¸{‡Å~úl¼cÛvo1ñuŒ"Ó·ÃËutbÀ;ÐT:ÎZ& yFgÝ.±)Ç¡xf9ĹÚ,85™Ë…£½-–n¤œœE®ÄÈEbÝå¦=‹u< QSéÇØÎN¥1[â:Þ±³… ŸÀutæ&TÍcÄÏ8YÌÚ4_ë^§pË{;¸…•™‡ë”>ºŸ–ëÍî7›Êú+›7¹͵,SUÛ-Ýœ<Ÿžç¦¿Ó_îœ6GÆôÄȰúùö"ÆÇMÕy¯ɽÇ4/¤7÷îfs•bŽÃïµ§ýuÐ]²Áµ§]ß¿*;N/ä¶«Þ—tÆiïÑé8¥Ëä{Fµ?ãXÏÒhŠn‹Wo§bíåt^RšËJ#èÐéBVÍÏ¡aÓ7Lr˜lŠ—#wóªJ^Õ|­Œ$ƒÅ´ÿi_Ò…ÊáJ_…éuVïÇÅIì( K蓵¹VíŒáÔâU*K~ q ¬´/ÉÉ*™jÍÌó*ío\\UU­±æ!‰£hss¤àðËÜI»<á7]:%’‚5V›Ë2JÔD¨ÐÄ@­Ó§þçg ©VàÁësžøŒŽ¾‰IPØ™o4dãÞçDY{uËàkÚå›ä½§ÒfD¯å«!‰Û‹©>g]EZ¤ÚøHÇ‘\“–3> G tÉ9g[’¶Ð¼bÑ4Ò*L×Sxž˜?:Øÿþùÿؽð &ðÕÊÆ{n’+â‹>vR|œobà­û÷7`2\ ñÝ}÷7`-a%Ý%ó»S2Fä‘Ûa¸bJ x/¹™oÊá¬ðM¹§Z.~÷⨗ÃïƒÆUVtׄ[AQÉL f ÿm[r·bÓè3Öî¨Òÿ Ê w‡4ƒS~P£<’ŸGy —}ø&î š¡±LãY»g‹åðº¢~gÏU<Ù#EË9W¥÷lÓFykïŠÑxR?$žÜóûÜfWò8Å &æ mòxß±ªúݮߕ÷ba> øÙèú-;ŒÞËWr¯áûØ#h·$ÙŨèíy{v«Ar\zßÓa)ßkrkzhÔˆ„R_ÄѧR½Bå¬úT¹<ó{ð øqƒT¶ü<Í?o¦»^?]gÌCÓæzpâó&;¿5ã«ÎÎ/Ô~иˎçÔC<¨¿7—ù-¾«’ÜW%ƒïÅØðËcÌš9.æíÈbsGŠ|9,[Ø"<¨›8²Ò÷5É­}QÓF»ž°,ŒH—SœL¾2 wÀ$˜×Z–9|F‡’o)3Oâê9ó¤G•õý ¯?œsË‘èYr3~Ûí“ôA>úGîYMr5XÕ§fN QÍœ&ÈáÑÒ®^3EþÈ3í±Ä ×¥GRÉß÷°iƒU iI’D*;]öý*Adh¸$IÂS;ìÃ6Ç/õÍ¡3rÈ-ú‘e—|]F¤²¬S9­á&íñìyYp.Å:‘AaI†Ä,¦gó»Ä»pe‚4“œ!Ù†&ŸiäÒ£ÀÏfT?Ö xvøh’ë$êQzÇE.HR¥ˆòþûç+q Ç`Kp‚#ü3¾SŽlÀ—ä`LØê³¶>ˆ¶½vÈkF^LP¬`ÏŸ±BØs”´GðY[{…/…§jW…¦.jšÓõŠç*D N)÷tÌÏlnï¦tš*>‚“ˆôâ%‡~¤úÚz¦7ýH8¹9YC7!Ýþ-HWïÒ£èÉÁô(ÐvÜ2ùž?f”°‡ôÝœüýGá_Ä>„´àI.Up‡Td«˜ÓS‘“o½Tôûýf±ÎÉcRX.‚T²åb|Ñs„±?)¸ö ½ÙAÙey÷s¾ñ¸­ ´ÛÚÀåêÉCß:mUÈBRð3Ç d8V'Ç<“\gIp—ä‹ãòIûáG$…¿ã­˜|cÉ DÊr¤²FÅ›Þkb¤IYšKTŸ’œ·ƒC¥´u“÷ͤ~tžM÷1Þ“½8PnärÍ(¦qæµð¦ƒ’C‘â÷­½$_IËHdw—v|r/)—²‚y:([: éëš9é ÐÛ”A6ÔdŸ„ÁýØ /ŸÐbÌ# ÞõbgK¯gÑQgú(¶`)]ö&z!KWK‡Êïþ²ûjZq©.YÀ¢ÖÊø–«ì¶p©žŸ•¥ŒîÉù‘Ÿ"0F+Rá3¢rgü••*)½‚F@ ZõïK¿Têi. Ohæ…Ò!#…CÌ’’žÝT ÝrŠú]ƒAµ~&ŸMýž×oèVR §ƒòTòšö©þÌV=e·Øí œŒ'¡ ›²÷Ós‚⫉`…1¥õÛÊIøH«y`,HJg…÷ÔQ²[ï\‡Ò$Œã¿'Ê–Ÿ§ùçÍtjÅ¿9ùÆÙS úªÕÖ ÚVÆnŸ´\6Þm—(°¿è±s‹ºË.бe&ß "kfªÃOãMÙ9+¼Øn•ÀÚ)hýË’ÙÌ Ž+Õm?hÉ"™®§æü®§Ö/%Or’§§¹óûLlB':“Ó7z¿@9¹³c*Or¥%êî‹(‡„‘c-†­¾IDl"óÀD©O˜˜ç£UÛý^5—M›7L’:%˜ì$ÎeÅöÓöóf¹ê(é)¶Ö/Ý¡^'¥T!J8±Eœ¨Ìɾ“¨áÝbä9²kböIMÞ‰“¸LñÏù$¸n»J>.ùˆz(ù˜ÒíéP!Ô´ûÎ9G “!ޱžX_„*&…æ,vò„þ*©Ú>±D=H…%U¸˜(=¹^­“ñÇ3zÎÝW«húâTBîûFs•ªTj-¯)™éžMQ¾x2¤ŠËí¾¼KÍŒ_èðSkóûLITéþݲ¿-½)Œ¿ZúUëÞ•¹^hÛݶ÷Îÿ1†dão®±ÿÕnäý¦½D\¶_õtiôïtÛñ´3é ’~kw 4½÷xû?’{õŽÕˆ] ýÖ•1¥'¡jW®³OŒîi[Íeç€öþ²„ã³™œß8ÎRX¦ÿüã“‹tÎ&H–•]Þ]¼_Uz®ƒÊUÖ«úàyÕ»Ð,P½Z4¼}{=§÷± 4¼²ÚO~GË¡æiˉöIëg½ö{‚ö{£&tÙo9pOÎé©]þU¶ÿ qê E³ý¾: +™[‡)Îé‰DIÝ–´×w)uÙ}‚?j¯ˆ–ÐûY%!I´'…†z½~gÛG„Ù•àõ•0všÖÚ:´7X3õã4ÖßðV¶^ö¶ž›­IïœÒm½šÄšBb‹5ß éˆç)ùö|¶¾S×­EmŸ <í ÈLUá™ÙÏšùjúl-ŸÁ„);ÂÓ³} ¼m­³c,OòW1²ÀXR ›ût׺yÏ’®«pê*-€ZÑ5ºí)âó]¡åX>9°ý—&¤O`ÈMK1{ŒÄÙ¥‚½^Y èuÐÓïýK^\Ýïã䉧G"òu÷ñwÛ^u ?Û+4‚*“I1='Ôñ‰a69‚\áXIÎàx·$; 'ó õ&mîA¨Ö†Q”ÄΞV×hã-Ë- )N{ÿüZ™1xÛ€‘‡uOèýŠ7Ç]oÿ"ä‹@“} "Ð/Éå˜ßÅo’v01%®³P°bâÚ”Iv­4ÜË$ ƒ†—BÂà^ˆÙ%qBú†[¤DÔ’/y2É‚µ¥Í¸ÕÀ¡g­4Ë–îšHŠ,ÚZëPŒ’µQ…²=•ßíèŒCuBe0´ùd~‡¬–z½k‡'èþ!ÝQZÏÑh$Äm–ý1n%(Øá<[?e•ª¨yuÄ›ßË­É{­‘pÉkÔú–ó1{Ç'í—v†±½ûÒ>§fsÇ¥T h ÎaÁntµ£ý¡xŽ)ii;ö´çi¿Þ›WÞØ?Æ{’PNrˆ¤©tèp¾bbÖMSi Os§3H f:àôq˜aR åC›œMk’Ë?)ì’ÄF‰unŸO%Hr6¥+€S\éñZbÏéuÏUë1'ß–¢Pß„oÖ$•k ÷`ÿÖùŠ8“¤üÜ͵.¯|x¨81&×´Êéת^wÒ[§xDÚ² ÷É Ã9†ø¸‚'R²€Ö….‰–Áås£öƒ†ËÆ»ª'¾±ü^õ»Eéù(YËû[Rúî¼O²H?•¨Ù›e}æ0?;²ôM$¨~œb&ë|ŒÈŸœ¶ì5•“R«íe9-;ÿÍ›òà<›´NïMÃrß‹‘ƒÁ\mX/RPÄFЉ˪äÛÏLZ rJdÇ{¿ üR&•YiBðÉY „þ.<Í ü!X5s'öÄ£%'/iDGÅß$ûÔRáÿ×Óòófâ h xdç,¯ãY (¾_x¦^÷ I©{·µª EfŸ O²àgN6R8‰Þ+§leÎbimM޲r9Y xGn}Ìo2Wb(­LNÝ’]4À7áô¦ˆ§3«Ý2¡ ·TÎmk 9wsy•œ¶‡½½Â÷brD˜K¶E‡5[ÜÖ÷·ÒV1SEüÄós׎g P§-eš¿£QôAhÇ iO¹n9(ù *+®zH±ÃÁX®Å’!ÞD³â°.×b‰2@Ëeß^a¡ÜH“«’F0§µZâ@ãUš&+ *´žµã ø“ì©»l»ûÚí*ÅFŽ…ù÷4á\”ä‡Ù*ÅßLÌÏ–kš¯ü9s Éšà–<-σBDÛi¤ºlà=×n{×»ÛÀ Vê#d}fÓðŽn‚bÇ=Úiº7~£q·QÙκa¥&qN%,š”­Ö0àñLü„eKš FòK{-8Õlj/2KTi X·Q²Z*¿a%ñÞ£œäe<‘$¨,K’y•æé/¼½ 7`NÚ_^}>É ã ]A9)(ý1§Î.;×q¸¨8¼êÍÖ°8˜ÍJ8ÅñNVb(<åsÞü·›J\uAQå£Ðýàò?œ5èvj/7[Vj /ª?ˆïà“÷âô9Háv —-໦á7\iª,(JŠ·u~7x+Áü¦.›oÖ¥\êM:CÂ䆃\*Ï´2çÇዹXbÚöºÅ¨›ÌJ5‘}^­€Æëiûy³Þõ"6s¿ü'0»H~·­»æ¾ß„—÷â}B zÿö)„Þ„ò=›Ÿó5ù™ìÖ|É6wýñÛû¨q|œ-+Yɳo©Vª“Œ“é¿hŠñ»˜G%p=LiX$ú<ü¬ÿ”?hùÒ6¡Ü©»&­—io&ŽHt=GíY+T€¿tÆ™¬#RÖZéÛzíÚÎÍSIR“½’ö;}ÑÎë<ÛÚn—£á*Q‚4Ú1Ok+¸¶¦ªPPõÙÑx“<]™‹1&K*im¬’Ñ­³F?:åhÖ6ã‰)Å“e‘ÞÊ1„õƱÇ~ãÔY]oߣP<ÃÓÚ¨hHzª3ÉZ«í»'ª±íü. ­Kï í ü÷ìf¿ûWŸ:«¨m˜£$?x]6ÆÚß½*æ1>Ïá>N+Ö=VÉ<²ãé4 Nµ˜[ÅðæÉïYÊ|(2NVߌSgÓL¢)âöBÛœ‚#÷é²Ã«ÿí^,æøôfg?™-ÆÈïÇo½u8ÿýĨž›R]À³”lFß·Íä5+±‘ÚŠ§ÌÄäžíI¢¤ Y ŠZhx¬´&=ÒãÏhÖù&æøLÚΉÔQ2¡9²Z4Â2’t*ÿÎÌÎúAÃ(æ•Õ~ž×D¾%§ëiPÀ8í=Ô-Q§[4H?WÏÕ6Q^ÏuËð ’|Ï•^-¨s1ŽùÈaÇ—*D>×õï%™«6m´\¶2Wés£|Ê:Šëm{…,ÐFH•íÙujUÍÏþ‚ô¼“^É/š¬ÆN;%ß4]AÕ”ÚmvQÔâɦ(ÕÓŽŽ¦Z5kÝ»*éT¡‰H¹D‰²#­'‡ê‡–Éq¼ûo¾úXZ,ãKöv¥NwzÌ×;£¼•’’ÉI¶ µ $s,ÞE ™ÜmÁÏËZTì-–$KüþHÿÑžà’UlÏÌeqÒ:¼:Kžï$[e;‰7½*Qª"D#ms‘¤ß½Š§xÈy Ëb,)<·Ý Ê’õVÒg…YªŸ­[°ÞÔ¬7U4ˆjžéXÒ/æ….} SÏêá«¡‘¢ N9WrÔºxoëž‹¾-i©±ª²Òª±nœÏŠÄvUÓ[ëͦx< *bå¨$¢êBíÔúò<<#KDj½ÌŸ´þ…oî0àÙ«6J"Û9D›ÄålΖŸ ”ýn?éÍvñ.¯Sø3‡l“¸™ÌÁÙW?¢ìæñ´Ã‘ÓþmÉ ‡—ÌO-Ú<” &–Ée)e[1ÙVŒî“-xIJÉšR¦ÙÿC~½ÿ øûÏ–…J:õ;!_£¤ò„XŽKk~}ŠÙrê_šì¿‹ÚþšÀ ü-¶¸´¾prp¡Â»pµÈ#{¡ë·|«ö›!iÖ£gQ’ïñ·ãÌ⎥òf.\þ–"ÈÅ”•׌´ðÃ-¨§ ¶_ЏíBÀ, b/˜eþ½/b6—¸þ½Ó%^Ç—g*[Ê–”ïz¥Õð ™ÜTZØ”Î7JÑÎYzI³&ÇgQÚ_#|Ä&‰>Šokœ¶ ãTÑÞuö‹DÙ ö¢níâß7m¿ßc“¢5V´6êþº0tFôe©¢ôfÊÙ+°Cù³[#{7†2fëÿì~”íJg<¨ÏeŸê ö”7-LÜÏŠN·q{)ÄÊNüôŠã´.\žæý”Ì®§ƒô^%—-Èr•M —Ÿ‘³øNæ‰ÂTt.Ž£WщåJG‚Q%¡ý„¥rI'Ñx@ùúL”· %#Êžg$±LÄßÑu’Ïä]“¶Œ(˜K•N®èª€ƒŠÞÜ+{ÿ×ïuJ‰2TCUê¼öÃU”Ê®pIÅdË\ðJŸ¸-–j([ï‚÷»dYÁh816–š]¶›vO¨€&¨Jò¢Ohj#ÉÈúó´»ËÏâÌŠ“(dÆêrc^ëÚP¿Gr¿¤µ÷ÓZ6ÃóçÄA¼8Úe¾æÐRcµ>¬òz¤RõÉ#ÑÊ¥ékP[Óþ‚õ׼Ш_¹’0ä2q!«¶ÄŒ:Æ¿—lm’ÕŒ¶âJð .(a“)­»$Iû\ ~ÎþÂ-GC².ŽûJXÏÿ¾x^9ÆB*_YBÉ(§:b5/ Ê÷ØÂ¢¼»H¼_ØB-Îc‹-î‹Ü‚¢´H,_ÞÐæ…Ÿeé²6¬4@Ñ.ôB”†Å‰/Ï¢$Rþ”m?H_ˆ’ŒÔ7Ý E=Ìîa ¢ÁÛ~cjilz ÁÛ ¸øk¥—~X¬úö[²R-ü Jßß ZZ”…Ï6ép+I.Æà- Ð+‰be_Xϲvz »Œ×ë™ü–FÈ·ÐR' ‚ sD±|>¾ŸÒr#쎲ŽÃ6Ïz‹¿Ï mön”Ž!Ím©­È>¼»v¿æ‚ßHÄk­(êj©}>ó#uLië–=²‡âfZœÓôå÷y îÏ>C—/µS|ƒðħ´Àì&APì¶-yML Lb’­´À6Ú,í×…3~¯£ÍNÛõ}ù{¾ù„‹l_ëœtÿÓ2‹{õŽ–ÒݪÇsÏœRiÃ%a•ÆXrzn½¡b\e¥‚ç*³â¬Xaá)a±øóÏÖdÖüØÞSÖg[ž;Ù—Ö´$4.´íFñæú©gÝšÓònûmMÕÎKT•½„§õñù¼µ¢ŒKë¬qY ÆÌê\HÒO룈ª.„'×Ǻšm}Š­sée#YòêÏÓèc«žk}wMlPK˜ß]©EitqZ.²¥çV¶튒¡GE³ÿþwLÏ"£*û0áeÈιLÅå^Iò>÷›ÅšZ†»n𬖠••-3¬9ú†É/V]?tÖµó@ºî……|•5}IRH'FÒW§9r=»âwÖ³¹ÄÞýuxHpUlX˜pÖ#™¾Ì-áToR‡…çCáâ£õ,¾WÌ©;í ̪ åusÕe™Óxº¥QÔ錣 ߊB0Ý„[H$½ð ,£y7Œ‰²ˆG-\làþNßþoïUk–]i‘´¤â&´ˆ¨8.­§ð[;Òò¯pBz¼ôœµ{¦Uç®_D¶Vìrª×›[ÒÅÀUì}‹d(磅1¨æzæ/Þ-|•‡k’$Vµ§šöá• íÄ+{žõ’ø­½ö—-ÝjÞô¤Z›e]žFMI§¶UÑ%hnš­ä™š\ãYÓ.™XÓ(©w4*h‚´ßéÉü¹Q¿Êzº¨óżçnâ·]ó^™Ã4¡~$нmõí+^‹¤ðâ·¬*¹­ÃØ6‹ 5Pó ¨¦ræª<Ÿ_z…‚ÙF׸ìõ/8›Ÿ* ‚·ÇWŒà õTÿS6]µ>~S’§©,(JÂ×èü­ Ù%áÝ â";72ó‹²ek”D…p^Ô…‰[d/˶"Ò·&y½ù¹÷oö`køûɵêiP½k…ÿÕPîÃÊebU^ø×$N¶‘lgP&›ˆÄ96*?e§¹ÛÍÏù¦ÇÏmZ”¬Ô‡ßAÓ›¢DÓIúr%ų8yµäz´j-æÒº§ùÜûâ ZùÙœ¼\\ba¿Êö4N­ÿǬ¼5Wódæ¾âA!𩸡@ku*}kÆ—cq[qwX侬UÖæÅf¸aÿgð;ûMk.H{á PKõ›±ZÙ)4~Ð.[Áùª5ûÍ j?-b´›x@¢Þ`*Õù~4•c÷Õ67y{Šró¨U5ÂÈõ*Ž ÍÔeyW]6oÞ·êº~Ï7Š’ÓµêiÿAõ®•sôº-Ô @Å’£õ[±ähMV¼ÙÉ‘*6–»¬x³/î0¨öf_9êŒÝÀÂi·âlº¼5ìšQ²¿_| µ|W·E%‘Õ²¥“¯Vø²PñÞÞzCÔÕÒ©µšÖ¢de† µ†ëÜVŸ¨¹'Ü/¶²æË7Ó_}ݪŒ]Ò}À ÿºŠ)aá3R9ùZ5ó[³)”ö“X.û÷¸J5ÞWmwô%Ee.¬4°0èÕ¤ßQ‹lj ß•š‚n˜_ ‹©5™ß0ìõõ]_=Ô$ÙÅûlna”¬I² ~CàÛ¿¤²åçi¾ß¼k%ÊùÜÀa1ÑÃ9²--Õ+?nTPÿOÙ»¦Žû›=ž*bvSPQ VjüVÉfþµ6j•E§QK;e'k“驎{‘êÅ™§õu#•?O§kÂ*ö~!èʉ‘úN×ZyîþâäOŸ°ì5‡P¬¸Ï¬$mÌ'OÞ+áqFXc_Ôà¶šëè›o{pq_YÉ눨óÊ¥+g˪GÈȱÍÞš`Þp!ü0×›÷¿:«Á—€¢ÿóú½îR¯zè÷ËUï-M‘¯D=Ô þ nÆ:(ƒˆÇ'«Î/z¿C ê‚õ×ÙÝjF‘ÃÊ…»@ÅÔ³8毾}qýUýpuB¢"­ú¶÷…r]¹úÆò€£Ò %—§Äuj—¬§Vaµ $s h·5ƒÓÕ“â1 þ3ŽΠô9#™Íç5îðÏ‘æ F'¹ÖAIö¸wTLC‹–:–çKxR«Êæ„]ذF´Å3¦ è¸å£ž¹}ÛŽÝÏc‹MD:væÚÚÄ1FÈ~4Ó°¶wpŒ=z*™VÙ¿£&tÕ!Ù7]%ý^W‰§P5÷ó’£9‚seÌØÒJ »€¥iB-¹†i¯jLà¶5yôBþ 5KJmùÜHRµxœUVxüÒ”eó©÷;]Zk®K‹Ö~|áºnŒ*±‡ ƒU­²å.œÞ+"wõÏ-” Þ<\N§Ÿ:¥{÷fÙ©:­-Ñ6ÉÜ(¹uà(‡ÕE»fÜhÙ5ã#Sí{´z¶.ýÍÖ¸„úʶŸ§§Öl­;©¤Ñ;ÚÖÁ3h[ ¢drKOÕÊ?½Ò7âë5Åê‹(ùXi<ÍŸ½èÚ!$ï~ÖÓ&©©}‡ì–~·Ÿ§ãM—šÊç|¡¨­í‚ÔÒ.WK‹Û]@ý§WÅý¸ö^ø}Uß¿ÇGt¤ýÝ=ªÖ<Z5[ÝóÈÖ;æu^OØ{víõ| ¨oT͹4ƒÝ{{N¬¶¼Çˆ…qÚ»8î¬Õ=Ò6Èî;©÷Íë˜á­œ§®wà+n oíÚ¶ý¤ƒö~Ëåè“O™Ì¿Û´„÷¤WDëÚ4—MþºöcªiÛÖ‘Æ \ŽTÅUÏò¿­_ù¢sC6®µ?–¸T\¶ƒÛgKÜ.ÙˆÖgö“k*×›{_@Ï»ü0Ѭ5¢|£Ï´0×Ö¡VÀA½å]ä`×x¸=fÓ#a¤/JÂav©ø­/L+Õ±n~—ºE,oåÐÅ{Ïé]‚4ÍY?{‡+íF-õ©Z¨ô)b~+©j9ê´î jåœla‚­$ÝZ܆õj‰ÿûgïh­_JŸ”>’AíÖVæÖOÚš?e7ÚsãZ/ý—#öÚu‹Ôâp³âαú–“ç·ø n¡ßôð ­ýŠ:T{ç÷„ŠÄÍÔ’æ’Ash¥]f+A7ÅéÐÕºx$#Ó7?æ*›@ã³%r·•Ir˜ó!Ëლ‘Ê–Ÿ§ùé+ý^³ÎvåU»D‘¬Ú•­OvP»õdܲ.´.TLwz·üÔTüf|³ž² \—Y{ðRÉjæ{HSŽàÍË8x4Ÿ[ýð†ž<ŽÏ¶^-S¸©mÊùþM–2âÊçiÉBÖO­/Es]ãøå/x‚ßž²yªœ!¯ÙùM‹ÈnUqK¸ÐøAí?eË®g^õÛ¾íÖ ½{<8~¯Ëz9þWâO*iM›³º¼VØŽU’þ,V%=Ð"6¥:÷Ôb;V¹´w±»Ð4вpãó4f¯ñ»Þµ§QãHõ¥i‹+GBk¬{nçsz_yTo”…MW®.^:_^;:ƒçÀx£ç”t.Ë¥sü¹¿YÌ“£=ãæåczoúr¢1-!ÞžqZK(¿ëŒzet`áZ}ëÜb»Qéî"\y£ôŸ²Ï]Y0ë”.+.my+‡K;.Ñ]]m³M–è”JÑ¿°Né‡Õ{wfAöì ¿?`ÍRì ´Æc6MÓÚÁMÏnþܨþ”.+¼v­HmÏSÝDIhdÙn¯5-múKã×E˜gãhVÖÿÆ-:h.¢]7¨¬7.³ù04øqq¡f¤²ýçéé”c1wï˜/ï4ÑaIµ¾ƒ³Äs>Eäæ–©ýÈôñX¦gÓÒülk.{¶.qÇKuÙÅ£ž5ÊýÛV)$ܨ~ïP:´ÁÖÝ:ÌhÖL +dœvNªWRg4¢N¤/Ž!e÷©›+tž^#juÌÅâ£PÕgÄzIŸ˜ÿÓû†³À1ãÚ-ž˜Ã¢¸·´ÏÀbvFæEtJÃì}¡éw_êI*Éov5—¬à»žÎ�×T{ºK¾T–°QÓÒpÛm~:@Ú¥.мö› GPí0F_í/[²U–]uÓ™*;Ê -#íøÒõ4ÑÂå]d1’Ìõ¦UÝ !™ÕÈc¿ˆÌl:¿zem«Öï ÉVCò ÊÁS…Ê–A M‘,–Fš‡E&ɶÏ1¢6Y,¯-K†Çî±eë¢È¤‰Sÿ€ßaþ^0ê†ßûÂM«¥uäm;ã25Ú’âyZîggŽ£½¢øÁ+[R¬àƒ¯q§×Zé·-dAoÙ–Ä|Ãø¾P&èW è…×y[»E€S“OAKÍ7D,DHC=]K#ÍÞÿ èïU…›ç…wK“]fiþvk5X×7M–BIA*;Á隷y•œži$^+­èYç‹´@êÕr{¢­ð aN_ä’»åÁÝ£Å&?PñhüïŸÀPÏ4n4AÕ%8}š®u2Óe£&ÕÓ˜¹|¾ŸÛþ>s^N/ä%¥þæ=¦“o`!иqäãñöýAžeܽ‡ÆÑÙ"K3¼3Êè•ýÛ †söZ‰ßpï)N–¼ Húù-¯`Õ“·žëZñÆlÉv´)NÆ(lŽnØöi0ÎsîÙÐW¦¥¤¸œ4Çb¾ðJÆR291ê[~gæäÈzs›®Y°_ »æV¶¦8 fí’ÅÓÆµGoÄl-n[keZ‡˜æ•ц$>ªÖ‚˜ŒêÍùîT3ï,xwÚr¼Õ­oLPÈÛx2¤õÇoqÐS%·‘¤ãG.HR@Íqˆð÷Ÿ=[£/s6‚cÔä™+G: µ4Eâ¡ß´âyc¤¤íÀ£‹z[X÷{Һž&¿9½ò5n‰¹,|s°‚ó¡$ûä½­…ßF?‚:èQ¬zéSÈùxçÏÞ5yh=ÖdŸâz¢øÌ3|x4ÊEÒV¨Ÿ²‡×#åùIŒb±,Œùz>[.Z_óÆLQØ2_œ(Η6ÿŠAù"ô…Ȭ胘²/Š%õEïïdm`Û+"°õwt½%CQ 4@óu¿9Áís£r#—|ß óþô^¥»=qá[  zÛŽ\kHñÀ¬§ñæàw¼‡þûbP”ƒ 6x=ÊbkÝßGNG„E òƒ²‘ʦë)kü y׫ÙêXÞgðDŽÄ¸/K•ê–*o›"’(ä4A]–è;âˆ0é¦hLmHW£b‰’®²h`²?K;rî¬'ÚeáŠaÕôoëêÆœ?ú=8ú‚_”_­ió´Ô9~ÜîYYd[nM’ÉÓ²%õ‚#Ƙq =8Ph¾…ßN¾ôžñàiµŸ²å·ìUgò{Éœõ´&4‘iIÒAZç¢ é[KOùõË#µS:ܤ¤ô;Vdzuùâ² 5I§œhFÝõªÝõêiûy³œzÅ%c“&M~y…š öÙœnGl ÂÚ>hÝ¿ì‡:\Ïò{â4Ée¸nÛv=¹,œã;ïR8–ó¾£[—ÃÑ¢É^͵¦e,}Í÷f,Œd£`kR²§cMä¶Æ«$´.[û¬þ†jÕÈ.FZœQc2¯>÷ªy—¯¶2óä®´Ø·å“™ÇH¶Ñ¸õžm¿¡oVøÇ@Ï n¢ÙƒÚuJŽ!Mž\oÐF7g©È·qq!lfDæ´aj.Boò>!¯{Ãû'¡rïƒÈ±¸0@ï¯\2õ•²Aáß=2güýÇk¥Çcï:â÷Øk¬ëVY¯ÀA^=B;¼v»"˜X×=¬*^ñý¿™Ô’%“á=|ð Ðá$ýIæ“¶šñ»]¿ËæE=üïýûqK„”$Ái‹Üè[’ë®…/†ÇMÚ†é⋾¿Ùæ4ERîà·dÖ³¿cÁ÷ÅÙ8J¢¡„M8Ðò³(Ëž¢udy×Ë~|" rw»ßß”+”cg>­qÞØfåY¼WÿýEÃ%ã Íõ©ìí²ÂëzŠÖn›Ý½ è|;–b bDIÚºŸŽ é H\~ùF ½—@»mQV³Ú‚Š8ÙÞýÒ{7Ì©X‹s‚òÍz79—gôÞ²œÚ·`sºÇ™óý6‹Fëàöó4_(kç~p½jUÉ=4—Œž$žåC9¯ Î÷·{ü TýëŒÄ˜¦q64Î,®·ç­~¤_ó?L+pÄ~¨V™\ƒ¦ãÍ ½,P5wñÒH´ÁxæÇ¨Ÿµ8Œ‡“Ö¼åeºöÝ–µäõ¼í<òmXâÞÃJŸ•flsÛ £ìní‹â~¬?ÿÈjfÅ?èÓ Ü‘¤4A´¬{–tܨü þŸ²óªwúÍÒØÐDz‡ÑŽª^öÐ!^µ?²wV~÷­ý#$õ+’‹’Hؽ§™–wì@Ò’墵…¾Oœ°ã^OûÏ›ãÔ{éæ±ü³%$pÔ€jb}r_*HZvºžvÚP­soDZ }Í„¯f䙾vÇýœlÙä;£eýý‹Î7³÷ðhú=á7JìÓõ^ZÖ bÍö4õ”ß…ï¿mW¼Zà N<}[“Q\2Ò“%w7}1Ï¢¤ìÐH²<%Ò(](ÓË3Â{BÚa é©ÛRÂxÑÚ¼-Á=Øœ9Í·Ÿæ-‹^×m îéÞÁ÷[Gdk×ÙŽPÄÖé½[ÇÒü<ÌÛ±‚we²¡géŒ1ÃÅýË ›b{–þJïseœ2¿5JAE¢À|•+|»x< ß–Ìü%Jfת§õµSëKפvé¡r¿tMzêžÑIíÒ3<ÏϬµüŽ™k¢ý˜²ÞUHû›Ö£BžPVeÓ µÎLSÖ} ­úª ì²ùp R½köû[ü5Hê¸ý¤_ïl®BF|{´G˜lÏðX²‚»‡äHïÙ»¢=ÝR¼_às_´h™÷†xàÀGÂ2UÅÕ—k‡*ˆ!í ž ö¤r·\ÔNØBOÈÀ*b‰—,ÚcþEŒñƒÜ#f¢?¶¢ÿñÅïZ~/Á¡*¨]œ¦ÇæÛ¡‡Ùñ‹Š×­j%>ð!¾™’÷*Zm{Ï×ÏzcïØ\’{wõgIâá}¶¤Ycߌºv–KÜpjªàÓC½IÒLûxEfŒ–×?ü*N£¦·gEm§Ÿeï:¡Ø2hëÛ/Ù=ãÓ_d=Eý¬Ì';ä^ቷ÷j.È^»Gž·?{ÏÖkñŽ~€æç<³6wðøœšàPìÒ{íç;¬âE½“7‡Ëƾ½×½Ç¬ öÙó[­i±íAÞÖ…–ëÞåæŸ§Õ5qAë)^ÿ·!ÅáÀ-)kævZ ÷U3W>¶¼ô7#G/¶»ÉÜÛÀ¶^ tÍköJ4Ö¬7¸m¦ÖÍi›øëÇ4ïÑ{¶%!‹3%‚xlé#møŒ@b…ÄšÍF‰5›XKÅR<¶Î[¬‡Îa%> ½õâá#$ƒ¤¬#+‹$½¸Ûsx]ð¬ä73\JoÖÃÁ’×+é9Ýq;iÕõêE”ÝcÀ7¯ñ¨ÚGˆÃ·ö#ñÖ¸¸½tÇj® ·³Üß™´ûgþ¹ÚîK+ô¿@G•qpŽ)ê%&ªGXù_°ÖýÛrÌÿ½Âwˆ®êûÔæàÂÓiŽqžY;¸_õ>~³Á—–˰ÊfPÔ O•VàÎ<­¬½ ÒÊl*{Ö%G$pIrk÷â}™·{ÁVÓ4‚P(Þq½ø¼´­«$\å ­üm»}¿Ò»Î5IËÑ{·) ñƒ¦ß}¿ÚõŒß¬èêoÉŸz&¿[ü>%;X%ßñèË2.Ä©#c[š¨&ÈÒòE²3³.†,Ûh~Ãô­4.þ秬¨‘.Û¶ë ªæâØØ~U—ÁÙH˜5tNADæxŠiZÏ‚š*%ÑЉÖõw¢%ǃvwôxÐüɾ:·ž0”ñh¥]%÷:i Æ¨€ ÞÍ1ÕÓ‹wdözß—ùÁW×ç¤Z[‹Y×êYÖËðçì *Ê_¢|$ê2G~ »v’äZï‹‘2rïéGC¦O( Ö>í©À‘gŸ{í½Ô4ÙãOÚeÁŒ¾¼T0ÑA¢—““hûÜãÏ>b"¯ºhiy®&™@ÜNèwð}Ñû c ÕŠ@—U›<´}`I!d»Ÿ1à‘ÓzloMŸáÕ64&ìG‡F:#Ö Ï"ùÉ¥k]§0¤}ì:ð3[¤Çb¤£}Ë£~ê4gðï¯cñš¹y{=çËëQíÑÛeZ%óâõtú=ú4ï'ŸbŸx-r™wŸH‚©’´’ ïLGœƒ÷‰Œå¤»Ï©%\¯Ov#x}¿#1]R#óö—“m}š+sÒÝ'™“î>Ùã‹ûE.Ù˜¥|=CλïLü•¤Z¡„zÚ:ö AÆÔS(ªÒÿúC}hAƒˆé =ÄK­‘ Éf ëMö~÷á3Õ.΋­U«lx=òïe%Çu®"N£µ#Y9< ¤ªíC<‚¯ê<ª±’tvÙªÇ2xZÙl¶h~–wöÓTH4)‹Á„ƒiw_àn‰z:|P x&åüsÒ²§ú;ÜZíìÿ ‹CJZ4Ð@’$óÀbIc­â+“µö#­ê)ÖwzÁç‘Ùc_ÁGSOÝ|“ßÈŠóU2ÿ¼wIÕ³‰£ˆimþ‚ø[sz-¯ßßû—ôó]*F7a­á±èý¾­déµóYаÿY×°#m{ÃrS’=7þÈ#£óá¹<2=BO±eÿîà‚Ó@ãBö!tYøþÉ£ ;ãÒ4ŠÏãÕ†‚… oåQØ¿6JÓÌÅo¾Ý,•šÓâ³xâ'GaN¬Ø(È_RËð,Êö«dؽ.”O­ÿ:HŒ²ì9øìŒL!vläêoæ@÷Xf€æ EIëù¢¹„”Åõt$Ñu2…4— Ùs=à±W½iËî.fDœE£œá,óŒó³ÜŸÑˆ,¨^%‡9ÍÜÚâ¡ÉÅoŸKr:f-Ìû®¹WÝÖs$ËÄÄ¡‚4¯Ö(Ù,ƒÏ0âexðÙ9‡weñtzÏVàW’«ÐÄ\G²®Ç­é Ýà{ÌÀÃ>dI~v¤B2..;Ù¹9èæî’|¶ªqËÈÅiJ‚‰gNSAuÏ¢l<ëÐReä*<Ãç/AŽðÿûÏþjSkßñjÓmo ~·]^äK%ráýz3Mp—Ëhœþâí0Ú° ‰ï Ë—wý4vt… +ü.®sõÅø£AzƒÑÚiéWúQAéŒr³å©õbr<UBmS%ú@¢‰µ ¥Å“t(-ž¡¿Ÿ£"ð#Õg8´ Y7Úo¹ÿ¢å •žûEŸMÕµžV¾ß®Å”²@íPQµ7¥hLÛxššMÉ ´<ÃïnFõâ_2ª9:ž"CV} Œªù@n«þ𠉿´Ð~/´½Ä¸•÷IþW¨¿¨P¿ì~‰@ÛGY_„$ˆÿ¢=Þ“²èjqnðEÌx´­¤ô¸´€Û1F˜wMÆçmkR‹ÄA'Ÿ#L¬ Þ„^±ô'nàaì²1´·@ù«£}ï7‰ÛskãÀ"z2>’ëêYȦÁˆA1q£°@*+¹ßOäcÒ¤ÚôèpÌQõÓÌL,ê…JråY½~Ù˜ž²ÿ¯ÈÒþ³åi¦\V ¦|µC¿›hÅõDo“Z=$õÕ%÷î#kòxöÞ¤ƒ'O£5ß…ñÌ.™ÁªGúX3UgÛˆñ†áÊêgãüúO}^ÖèúÕæMÑ𻬾J×+×xîu¿%Î3á)4Âq3æµAy…²Ò¶DÒ ´%‹ÛÊú.õ¦;t¶„o÷—ò]+|»ûFó*9Ý«~§Ö ¯¶L ú½öñ›Äh±Û©jm5W˦æ´9`ÂcgÄ V›Þj>TÕÁåPGÝ;Î*ž×Íöްjç†t(¶Õã< –ö|Š"g-¶+’rg”qK^ J~ï³ n_:s$(ÈF×' $f: žškv}SÜÔ»'lY£bŸÀ&¦“õlìÓ]lk[jå‹×ÊBµ¹¶,X£=¶|…LgtÙŽfß,SG«n!òž¶Ç“¶{ö‘±µÃ†nòµ]T¯#S›l‚h[m·tÉ:t¢4Fó)ºõ d¿¤íA[Ãb‚'ψíñß!^9ÀJßo³XÒ`?˜’o/fH/Nl»N„¬€‰,Å¿æ”ßÁªLÌpÜü±¥Ul8£o«»VÄÛ’N.æG \(ùÖIÜã~OTd9ןϖ€mY:6’ú×ö\$b ¿èý½g‰ÖÜ@úkÂÃbtxž£{-s¦5â ä‹X÷½ñûÏnÙøžY NÔ§T#bøųµKÆ›ãáÙ` (F[Ü!qb5<ɾòžÉÝ“ö"f&t²D6¸1àVœØ¡C";8мÊöSO”í®©ñ´]-è~SýŠžDá\±Í ÔAÓqzùEüŽ_Pžµ¼1g„ oŒ14O .›Â7ctøþFüÌEqÉÎL©ÖÊ,PÌ~óHA9?“M Ô2þ¢4Ä–Ä-æœ[Æ·~´¾~z&9ÙÖÑÅûÖ´î° I.ví4êÃÔĤbÌÂ<{„¾\’9Й.îùcpF²º9™¬­.'I%/ûí´•×\m T¶8›uÎx«¡=0£D %¼°ÇÖ‚/KGëFÒW„šGþ.»Tw[ È’-ÇÁÍßöLÍ­Ý.ïØë73­{>G·qLN‰ ibpç¡^ Uëèœåì§Ùo2S=¯åøbg½^šVÖ­µZÛ׈‡Þ»‘¾OÐãÍ?‡Š#éDŒe…R:hÑRÉ@töÁ¾@#=ú=îcœ²’4‹7—Êò{zW3? ™Èx_óÆLrZ4Cÿ¯ÀßÒïe‰¿Ýý›–¸ü‰s¬*A ü"M¥÷ljr ’8·šx9&δf² ÒÕ£qî(Þ|üfM•½cªk‘FQ2¸Úõ´‚(ßµÖλ¯€g²réx(8¢½ïè×é^Å{ÓµÎxµï$f}̹ÔO¼ µtïBfMWÉïMиÛSC¡Ç¶¡qÁœ-މQ&~Ä‰Ì ?âDÖi‹£ö³VkH ÔA4\v‚c¢­Ñ§á:—µ®r—£uP'™ë|yû›÷{†*ÿrvü\§,PxOY®Ð‡gÞtß}żJFQÖû&ö3Á{ØÌ4ozJãìG÷5Ó™è‹(-y©•˜ò¥ãZndñ÷[ÇŸ¾/ ïßy>^Op†ù -‘Ë{>âY\Vø¨d1/~©¢ÐVÎ[RÙ\‚^qWÅä'éŠôywë|LkUÏ&Ü7ñ^-¾˜Ì§­{[€î|Ä©…l‰6ÿ¯æ=ëÔ»¹.&·Lƒ;]‘ªd¥ÚÊõ…Ä$]ŸX¥Ü×13ÿ_}¿®#/½‰ï’'é¢Ä&‰;ñÙšÚ¤‹[ãÙ[sƒNumb³æ¡lÅõÕ«¬W«kÍ~úŽ}ÓwÑÚ½ÿ]¼ûxuPPq¬òkÿ7ÀÚÿUP5׫Ëu—ŒZ´v—w´ªu¯¸>{ãï÷Lj{½5=c5B™¡ÈìõÕÒÙýEÙ §_g4tåæÞÏIhWvP¿Þ¬ÿûÃlp2]ÖÉY–ym]²#Lï7᱃³­`¶Í.d}Ú#0¼þ+hñ–<©Þ͸œùjÚƒoŠ…†»xäÒ¾/°™™3¼Q§¬Ó]2ªÀ+|fNxêWIk€§«Öá7óG2öW‹Ð»ä>6<¨æ¶ñãqjÉŽ·ÕÌØÓð`›:c /ªeAÛ² $7ªËfpާ×ïùïFQrºV=íGÂHèÔÊed¯´ŠœN©Ô#+¹ÆcVÚƒÞwd¥8³¤žôwPqÙ ¾kŠ/zìÜI¤Xü¹ºeˆ´‡‰$ˆ·æ¥½ÎªóéD,é¬Xÿˆ4]ŽKÔ¯(ýp.Cƒ7*7§(›S¨ìï›ãÔúR4þ 3ˆì/¸þÄï·¦Ïó[M„Éîæz°*§gk¶t½æOËY»$ë™¶k'ü5X÷&kpº9„ÊJ† ž¯×@é¬Þ_ÏšWö #J²¦bùü÷ÀoÙì~&PôK­É®5ÚZ,Ã&¨À™%¼YÌO’ßÌpp—eÎôEQ[ÔšM“W»C3ģʺg— 'ÅkêT¨wë¾ï·»4Zë#þMÌL§Á{:õ¤›¿? NPcm£Uy¨¥Ö½Bã©V+´íu–¼çŸ^iÚ©WlÙí1Ý{ßl¹§°¤Yì£ESÅûaÍ?͔߬2>ÞÿÚ­ÕsÏnxví±áBÝ:±1ü´"iûðMëcÐíØm}ûöjíø‡ur¶Ï!KÊ;.ØhͶq‘—}å«Ho÷9#u"9õÛI ÙŒ\I–’±ÎÞzÈÐd‹‹lH²ÆL[̉JžS%Güfޘѹ­:¤>ePíg²*ÕŸ²Ýõl“j Ë•Fõí`X®Ð“†ìEÿzÚׯ~îÙÚ3 Ó$²íOÝ಩®sþ.[N‡²5—ÝëÎ8SO†Ç\µ¶Ýé¢èäæGc‰Ö‰“Õ{¤ñò5ÑrʧïVEÔ$~ =s‡ÔYVWVS>2_:-‘hp$­ûꔆ2ŽÌÃçš5e™áÊhvIré6Ú…›6Í‹ôTûçyñ,¯Ñ>ü•àKúsð·«'QvëõïoG¿´°e͵Q RéªÑöŠ묋>ànúC\Ù3;z×òÌÞ­ç-è̶W2Ípk{)˜|v“È£„‡ø|ãZ2ÞsJÿÍøˆLr€eÎ&™»2ž&Ó17ùÑ:Ž=g~2«8S²Á ê]+YŸò#ÎÄþœœß‡oák>kž“’)‹79Ñßõ7^Í+쥘%ÎÉNviŒlÄãîÅïâ©7;^@øØÍnï| ®§÷›Pé>_[Éï.ž23üΞ%J‚bX™ëäBßî–ÇëqOOUO|á±txKNv¿=Èa½ã7»÷6s‰;ñ¬0’ùU—,çéͨe¹¤æGõLP»ÚmÞ¤^Æ™ñEÀG5¦ŽôøëtÈ©d¼ñæð™%Yç nb5(‹ßÔºgª[Î-h)žŠ®–¥W”dßGd\‡e‡ægºÉ&p¬N×8¡›S­á‹SyÛÑ “l€‰h„I¤”©wZ>,É>xž±f¾ßÕ|ÏÕzkœ¬2Ф7a:’çzÆœÂÆ™Ñé“]Í✚EZQÎŒÎM¥êÝ8­rÏʦSióPæ@*Ìéѯni:ó45ŒWM²V§©ÙÚC" <ñ°™ÃzÛGž3é‡h†Ø>4¥kÏ¡zµÐ9ûs´£7Ú*û¢°±µ§e¹ÐMe! DUð~óÒb ¶¿~ä[œÙvé+nA7„ÌdÞ.ÛÀÚÒë±LXHâ÷­U,—ƒV¼»5·=b©Ý\ÿ°Oˆˆ¹]Öb…×£ÝÉ÷kšºôÿqIÆEäN$à}LÿJGžöÞc=ÒH/§3?3¿7Ù­¤‘¥—tR¬§t¾2ÁÑ··–”-á3¨yö*˜}õ¨äˆß–Õ\#™Šû•~P6 ú!1÷yÚ\S }C;nm–Ý=ä’•j[:oRûkÀPÛzë9Á3° £3×Ö‰:sŸ™Á iMtbÐÐ¥e­ì:7·aæ¡ÅÆ×üFZVƒj‹GOɯ9E#ɳxßœÍ_÷îWˆ8é iˆÛjM‹‡¿4+;‚³Ë¦1?{w"Þ U:´‚m±ÒdÄÇ’¥†Ð2вÙï¸Õ%aÈÿ<³6MÉN–ñùó.ˆË2'qŸiŠO@1³{<ê…,ÿÄ;ÅËg3—Ÿ§Öuµ`0óðÖ%î‰î´|vD¶í©³^ɒņñ[k[óѼVœ¼ýýÇzÚ*ËR0ƒ¤Ñ½e˖˺†}Zº¦@[î.ç¸ÈøÙ½×‹þy×ÛdôX]_‚òB7áoœq^(ßè§dù©§è½.I½[“)IÉ8æ ô®jçbÌxÞ¯8ô}Ñûû¡ÝºzõqKuùëÃI³I•E-J¾|d¡Å‹;-´vñ.ùwäG|m?­?o–]çž©,;«®Ä,ðÇ¥ËÙákè׫X¯ :óRLzá*¶v¡‹¬‚Æ4uñ/;V%=-溜Íeu±&º ’´nÏm%x-pKü~¹„s#ç‘Ùx~ö{òoÇ{xek#ÌüG­ÉÉZÌð\IÇ ¹Ãê[’ÃÚpÌ,ÈùŸçfõÀœbß…$×ïîÙÌ–°zº,ao´¿Â»Ÿó…æ÷:¨ü´Gµ$|×pùœQûÅÅÙ¦ö„‹œ"Y—>Úõi‡(Y–Ÿ-Ë*hX²EYä"§¢ÚM^¨©lºŸîß o½õX?&Š’Kÿ€ë^¥IÉè3ö¡y·‡)¹–NµÊýÛò~ãzÕSlM>Üe·§úû}ó¬4öÉhè¨\ mk6&ÛÒ½vüËè¦àú±•Üô<ÆGMKN]§lÛû…ª‘ÊöŸ§»¦@úÆ–„Í£õ'ðµj’{]AêWµ¼×êÇãtŽé•·dN]ûm}Ÿ+¶wÉR\RüG;ƒ|?¸„íûº ´`óœâqè1qÙu}Ì12nNDF¨¤´ÎŽžHºÔ‘ó£õ[«Á Ïbý[ª†œÍøÆrqåßs­"žî¿Z®Åú"f¯OKÏ·õXUrÖõò¡eüVW„TÆh…Aê‹t]t”Ô:‹Èœ.sÉb ÷‹œfü@–£3^‹³øŒÿöÂ"Ÿãò¦&=%ëz/"Þü ÎÚ2gÔËç{ÿ¤EüÆ·åÙè£FOò)XBêNÏyh!q†e5½(ŒT’D¤O)ûY·\O~wËY¢P2>³Ë 3Y—iÏ5Íy&ÆlÕÍÝÐ9ªx*´«³N]ÖY·õƒ¢ÿ+TQ…º’¶Ù“Mš•ì»Òºä¯­ ‘[³oÊR…¾Ö¦í/é£ë/µîK´ (.Zú¶äØÓ&´7éC‚JËáíÎÐb‰‚ÿ«å×Ì`./‰ŒZC#5>ºdìû[W·•£)UÉ»ðöýYOZap£ØªÿýgëR]òuMf˜~y~µÂ¢ýúÍèÚ¾—ÉvÍ¥ê{þû÷È™"ÍNLºÁ}eœ(Hê´VtÓ¬ý}z)&ÅO‡¥-´`)/ÅË>? ª‘ô¬áæ¶(¬Ò¯üÑ5ÃÑçX§ËóÜÎ DÃ1ÕjWÿur?º*Ù5­oN ;<êb¥VVÑ`ž H¼°zEMâ0­Ÿ²âíª‰«füøH5ç Kœ°ùMíæF™^Òÿ¬u=ájhN ]ˆ³sçÆÎÂÏØ‘äÄÌt×Ù™¹É«xÑš˜Eµsšè”²y¡nJо§½º=N=F©ByÓ»¦]vÖØ„f5O{Ei ÿh·˜Ó¾¨3ÑÒ·‡k¹Ýý£téââë£KE÷¨’ÿ-g]\¦eÖŲKc̈ãõ›Ïåœ{”£¦qÏÀž=ÓÜ¥®wØRf1ÊäÁ]öHΤzï7=ü®Þ¦çšœ×Λ÷¯ØÃ÷œvI¢>j “ÌœYÝðA <íÄvÿûÜÅk-•vw7ÐZwqë“")‰¢Øu©zFøö<çÍ=ž$HÄ×—ãnùÂ0BìÏÔ‚N!’¹9÷¶M]ñw1_g+´²Ô“ò·5™²_äÛ3ýþj)¦iÅÇ•'¢ÍDŸÍ+Þìø°Þ:gÊZçµÇm™è}õlmæ©61þ‹ù&.^íÓÛ¿Í‘Q¾9NzêJ7ijä‰çk»ѬÖÝ®b뤀süõô&šð{m¾ºÝwÏW=×KT·J„ÜÛqä*q›ï7ãqD¯ÿ Ýçä‹ïÏhý Æ=³ÚÔGŒþó÷B&óˆ$!ô|²îTvH¦ãìSâHo»Ù_hšVãq¿\?àFÓ®¿å»gˆÖó¨û1_ºyâí£={&hzdÆèMFv|¶µ¶¹bVsËl̪äqKüì6_ü\Tñ«»§¥[ÌŽÊ·,[µåí¹Ú=¯Æg—÷IõS鞃M’+¶é ¾j‰ ùÖÌÙ‡ôJ26Íåör×òoôæj‰U­±xLO§úUÏüd¨$ú^Ó1 §l¬Ó) «Xæ˜òçÑcÒ¿sZs#]^ ×À²£RÚHǬ3ׂ}<áÙn¼ W‹äiy÷„ÇGO:jg5uŶ;|®`{‘諵\–µ4,ÃE›ZÝûµhÙêæ´ ޽åÔȲvOkùf¿[&ÛAkËñÑ£R[#ßö¯Ð:ô¾_Ý*«§Œ¿ÙD3­'z5lY%Z=!£Õ±1ôÀŒ,Žm“a¥åCë5=›Ñqz†O2OÁ‘Å•z:@òq}Hùá`Òñ‘ŒÕÓ~šëäcɬP͉¸y˜R¡…%¼ÂA'"Xô;òá€õ9ѰžH¦®ç×ãw—wD^–· žÝÚÐ3ŒÏÐ wpjY=ïˆÕ¬g.Ÿ(°Ñû* {ïI”c‰F=k$Ý­§“Û •cÖÐH?í = «±:a¥¸ Xû~0i˜v³ÕqôpÐûè®'™Xm¿¨¨nÚÐ{ӪɂvÙp˜¿Ž—oz³ô(¦Õꊯ=J­žÐÊJý$¹ÖéÑþÑ£v™”÷Ë+zÐYܘÒtšsµNè û!˜–ÎM*ÏÂFûæZŒ/÷€vq xù.¶ånh‰ymZ‚‘Å­B®ë­Ð¹ÙæX8x õŠO2‘»üu`Ý4áy®¢3Ò·¯¯å@¶Å^<Ž|ÿÌ2ma°é{•&ZÒiÁûŽù\;³ˆhåµZ軕mäËþwµ#MˆO^;Ü_ éÌÅvµ”áÇ÷ z"§“’ÀfþF¸ÑžÔ¾@rð%‰ÔÄ——VÜOZV~òdùs¯„Û××þ…ÖmÝ9"}\–û­i†è[ÎP­Œà妵HÊü“šf z?ò|”vX´’ìCœò¡uË‹l7a§_´%ËÞÏ8¿®/t¿ùþßX†O+Ómô÷Ûr_6çw`©Žm@™(k•c¥'¤ÿO:ÿ¾Gœú²•‹Ï3G™~êêû1•O<¨r¢rÐz/JAu¹KST—˜À•Kä—ïzÕ®`–[•_Ñýên[‹Ò—ξ;a©¹»ìÕH·WŽÖ5]V'zEçkZ­õ½C[èô'Wy½8îR8ô,!Ú&ôdá^ÏIî©,ÉÄcE^s÷b½™=Eûâk¥Ðö„õÀúì‘k™¯6Ñ<®¯öë[ûI:ˆë¦¥ÓýÑã¨?¨j¾d»†J´};ıœ6pÑîÑ~?éýø¢äã²VOé©Aã³)yù°:nÛ¯ã•ïþ£ÅRvNƒtŽˆwo]æ4¥Ð8~7-¡•ërmÇGOi&ZFís Ãß&ÚF¿ÓsV±DÇïàd=•Bç:‹ËG–*ïb»¡Njš)·‰±Ò3)¼mX§ô;ö†žf Ë>#ªfåˆáÒ©îlÖÅ›v;_-þ¢bÚÃ4bŸÅùx—Så´ÛùÊzëo}·ß)®¶—fµ<îô—x´»o‹uÊÃkŸ|P0y æ¸6u¤uÎÚfèñ1Î&à³]–Xí5?ïL+ïDóù»ö5¤_´›¢Ù#¹²å=ƒo›Tá«R‘+ï—ãèÔ÷d®¨õ  û!‹¬{o«2î‹o壇^÷·¾w¬Ú—d‹È͵|J˽ &|S·û£ge²ÞÝò›V¥äÿdûúGÏߥ,=š'©:­k²oÚGøl©8¶5sY_¥Ü/‡ž+ÖzÍýô°ÌÞIÚ“©¦íÖãëë:~yhWÙŽz\ééŠßàøèé‘Dó£°·ŸeÚRñi·yêP[æ’$æ>…zÀ„¹¥ †K–á~ª™v|ô„Ô‹°Ãõèß²äßÒ6—RUWêP]Û¤,ªíG=e …à‰‘tŒÞ€t>0ô<„5Ó@Négè¹ôýÐC >×'Ôë5Çi9ÏmŸ?¥LË%Yó3lƒ'j¶²ó—Ö¤°Ù…¨¨©sq ®=áb{&»ˆ%Z‡x†“˜”ãÞÒ޹é±Óݿ٣Zý»­uV;¦Kë§fœÒ4ªóD ZÖ ö$¢Ð|åù>›Ç³(?œ);YKM[¶~2ŽuM½ä>i]»·ÉsíG[žq\sæ‡e×´U¿ôœÉc9.Ù”œSâpí³Ò•½Èx“ftMçy®'èXhUáyÜo—ÎûUÏ õA-ó ³TOÞu[ Ù‘Y6 -—”TÏ#5j ÔqzªË³„c¹‹­q÷.â¬ê1µ-ç4mcdî/4’VRwmÎ)Qq)IÛÓ`ô•“xAùܦ¥5|+´%-ˆp«Ã<5?zŒ|sX¯†ûä6mùè±ómôm#¬M—U0?zR}Û½ÚÚ茊(A¶p„â }çªù¦£¦[멦·y"{@_³ç²&Ýý‚n¾<6µê­X¼¢•|õÑ“kÉ}zºV½×kÉ—ÒbÃ|š3È/=ëù¬Gåïà2®KîyîÍÛsqR×Â<­ðu€†yuË;=:)ß‚ì¥íw âÆ³ùÂy2FÛ÷ÁÏüáÕ%«W>™²—·÷ÉØk¦¤d÷q„%,ÈÒ÷~{‹Ž¸Fó f‚Š%zÖ ’¿YK”7OíÌðsï® Úk×ãÀûTL}zcUÆÛS}œ’_kæô¤pºy5}#¯“m" ©gotú¯]˜í!‘û7òоü#<_Ï}%ßçÔRÿ E—Ï•SoÊïk(x¿ìÙïÖø²Ô“ë#Ë)û¸€†û\´²$Ö›ë¯?þíÿçr}žõ¿¿~þ—ýãßýõúÌ?¯úù×ûã_®?/þ‰OùüËÏÇÚ3£ê‡Û+ÿúûÿóÿö?þóþ¿þù/凨Œ|~Rí'§hÿø¯ï_ÿËþþÃcw­ÿø÷ÿíþþç¿üÈ£5£þƒämþã?þ÷ÿ÷þ³?¿¸žŒžC‘»Ä?þÝ?Mðd¢?þ×ÿñþù#W½æ?ÞrþÓNýõÏù©FYó§¼ÿþþù¿üç>µë#3«Ï_ûúÇx þýûçÿõ¯ÿÛÿë¿þñ¿ÿer¥y>“ï7XÁdú')Í„'M²á°J?Ò,ÊT‡‰µ÷úu|]Ç]µ=P%—‡rp>ó|/mWÐØ"|Y5¥ç‹žióÒ"8wN?Ò4te˜ ž»<]þ] ~®xé?×A £¿ù„ó .|&"hšži¼½Òa0ÊPÕTCoSv_Ö Z¹“Ž+¬÷®§.†ÊãʇlÓàp˜¼í¥Ó>cÚ nr(¹RŸÁ ¡›Ó5VYÏäFé—kþäªÐ8j•B'¯¥¾ c˜YÛè…9 ‡\Z¡ö+\SºIaœ­Šþ^ÿ}ÐË·±C3)®XO÷~8¨5» "Ôz8¤Aì°MŒ¨ƒ,ErŸøLx¯sù9'O8˜Ï¤Î}‡?(¦MŽ®Éí/ZmõHé¢ruN ÏÒ@¤|‹r¢v Ür¿#%7Ðp(¢ ¯ôË´ý³GQ—¿=w„fUÉ>pßÍÿ8Âż½,4]&üð`–“ãµ\ÃDõlY\,ÅM8 ê·÷»¸¥1Fùµz4ƒ¬³›[v˜­,ﲬ bNzh›x·äµõQ˜ü²|=>)%Unr-ž¡‹šêÚv÷ (\ÜVïtТ—ó[W_u‚µ¤CC8H×=<_ H£@Z‚ÖÞÉ•H¤{Z^Ô—n4çpq“Ï„®¼wÊtɸ»‰W¦BUTk‡òÊÒÛ@Á:–d>’-ݺ£ð4*!iò´óu¼c  r4O¼/Ὲù3ò}š|äs™RúAt[{ìÚ¤ke8´Á¼Å«ª{ÙíÊÞ·n}6ˆÂ×÷ƒ‡=£ðH6¤£ð(ùzÒ ¾§žV¸HdˆjõÔÑQÝ{ (X­ ã@Ó¿”íþ­8!Ã|µWßÄÖvÊ5Lp~ E;¦có¤_OdÜ‘ð¯BÛ6kœ ŒÖ²Ê«¿’±W2*|W}%n¿-3Wùsk± šDÿhÆ ÉjBQ 뛎ìýœ?C³IáÞ¦u3rc s†UÁƒÀL[‹ÿ© J^ßÃ!Êæõ7Û¨ÀÁÕò·¼·iGsL2ö‚3Jg•G…®ý/òb¸oWw<#´Ð¥i|DYÔ} ñ–É>_î.†!íÑZ ¼ÜùÖ? g—(Ã6ZÖV€YÚ œ5Qˆºp=ÅWY¦BÃ#Ï™Å\›·sî̵˜÷ôìR@>4—‹W÷Z࣯Tûùöœ‚f.´R#…BÎÜXíT¸åu䉭´Ä½—´Šê2Д ž4h\˜^ºJŠ¢±rè×@.häâårJkh믜]­šÌµ-ëÀªÒ 3f]¥2£¿–í@R;Œ^˜2\×…m+.kÇ\ª¯´®X·„·Å~Q 5ω®`ŽÌ5(îpÏØ¯n-Ô—Ç ïÒåã¿ËuŽj§…)Fvi½¹lñÔ¢žý£ ÞápѺØ;¨âM‹áÐêE}½rYሃð=’¥ \ó]ƒ ã-ID«€X±¬UB}õdh•§ â“éz¢‡þT(âûó=§r–éâëJ¿½ßV°ù”§•Ç D ±Šyçö3?9sEš‡i¢ÜH¶ây6õ¤ .–áÐ6—ô,¿}Qé· ¬9òÔẙ!™ëÖåGº!…"»nϦZ¦Í¶\Èi4^¹ÜŸÙ–rêîRξ.XêSÏ!Hs3c Ú˜@«Hç yUñâöõµÞ|š¤1¥ Á\>³ÐukjWÊyöáéç[6ÜY£[6Üù[î«æo…‹¬XTÏUòUYcß ~¹*/æŠü]Z‘yqyéêÁæ¦tRL”ùä¼Th’Uq]ˆ&Èúæ­ ‡óت·ä¦êÞ=ÆûÕTWätS›˜C YÌÝ«!‡¤¹Z±.€ã¬ÀQÕPê“vi<´;QqÝ{Ù’DåD¦”´]Æ¡€jŽß’¸ÉEÉŠªo…¾‘=²@Ê«§bÈZ©Ë´å£øZÜχt­Øa <Ö.S­ŽÏ^W¨—_tŸ«ŽV¼'oß½¨™¶¿c¢¨×ǃ!žüäã1ô³ÂG†FZO7\–8ÝßÄÍó‹öuó¶*MÞR®õåõ¸^™&÷›Ä ‡’.pë“G³žR`ÖÆðˆÜjŒfOóè`åýÎP@Õ¦óMdžxñü¼¿„›œ¯æÓ.u8ßjïìjÃó íÒxb+P³±®Q¨ØÆÚgõV ÿ–žnØ0î£ÜKÉ A«H"Ê6omÍÓ$EÚŸç«<½Òû7êÕÍÅB˳!iõèQ~çÊ<ƒUðSÒMäT?芑d_wŽeËMÀXé½5[ ¢š~ò1 Ò¦ëó­[Ѷ<>0Sœý‡qT?´µHžÒÊ‘×%fpèòåL5u?È÷é"äÌ ‘W6gN¨ïs]´3}Xô|WÔ÷ù.ÓIY]â#å¹n} øí™OuK²Õ5KÊâVÍωnТoªi…û×Wýrúq1Ñ?½v¢Jûâzóm=Û–(í‹Âˆ`‘]Åý…%›ÐB׎yr(t±x]æ6?z””iíä.—.‰®K¶‘®‰®¼2U°…‘h›qæZýË,_5׊_Á ÖE¨¨P€ žqî~fîDõsÐR*O7f—3Ó´f˜wרs9uæ^Xp%Qæz‘fŒÊ­_~Ba3v:yDëž ö1Ùi{Ú4¿P7R‹õË™_Êùþ.)çûËDÍ%†®ÌåÏ]³á¶–/„*›"Ûke õ÷‹õc·÷~ÐÇ»Fó.^ç-jSláÝ›’‡{oïþLÍóêݪl}ó®’ú"¼«T÷¸”y™âãUÒDöMÝsK6˼Ñz:ñì±Õr]^ߨÚê¦=Âu¢yä[ö‰ +ìì´¢.éÔžõúëµ½®ê3¦øB´Ï†Öž½?}p¦K÷žNÿè°½OšW9ŸžtZýÚ<Ëõ/¤ßid«‘Çç@áßi?Ž|ôšÊ¯Îu˜ö>Z²QŽs;ûJhÿ½˜oŠÇA+ÍâQ3WyDuºx•£e©rê[’zWB×¢½Ó*™¬=PóÁü¦Âèz=$ýVæ°¶yWrèÍéfÓ›^ס•r?Íy¬­“ÞýœWÓIýÁL®×òê°ÏW‹šŸ“V6p®rmV°~ôˆ¤ÎmÔL«ÌÊS¿+oÝGÖZ¥X®_^¦ìÒ“–Ù¥õºÚQH?)~S‘\ì•jI\¼RMZ=êºQ3JÚúþ6Ñ:P;Ê–%¤zµ¯:7·ý¢óâ/4Crÿ}è)n ®-%ºÑô½5i¥–Õ^@ê,턵8y|^í¿lÉ4j¶ÚGüFòñ¿ö±Eöè÷¿þ°½Æ#¥¶äløiÂj«§kóíÞ2±¶ñZIɊݶɰ¥R7ªml9} /ZSbgbCÚ×6lc©¦·çe(¨óäÛ–•u‹æÌóµß”Ó;ßÜÞ¿\öm?¾!^T?zòZã±\¶^×¶mUúm+4iU[,Ö¥V¢×-Ý-Ësݶ<³.[t›6ÐÏíøZl‡¢¡M9·Î—å[IYÌ^Ùºn‡ÞÜÆ Ûöœù(=ñ°ýÇH꛸a£eKá/Æ­ºŒP@¤y‹w§ì×T6p[ný Z½‘²HƼ£˜¨‚‚_¦ààkŽÖ}P.· ëd‰'oÒ…òðU×¥uÐ4凞›W9oà”™¾“¿Áaì½³9ý»l7x±Zž=ŠîÝ©9‡)["öXãM­ÐYáÍá\YãÍùñz|ÎiÊ º½zÏ_.¾òø¼Î0YÙϹwΘ3:Í!×åéu#꺑Êè=eþî̵÷à&hGª™íqO鞉 yÞ¾P?yi|Õœ¹n"­uRw®ÁšJeЄg–iÅC¹â™nqk38HfXƒSVe &i­ƒÄ_ãó¦»è¨[w]7n_´uç¹×‰YOV).›Ln! !‹YÌtÇù½õñ äz{ò€`?3¾$Êúp}†ÖF¬£Ûa-˜Î¶›f -±E¦BL†͘¦ ö…ºi…ççüå} k–²dÙ–ÍS’’ë6Fæ¼Âð=Ï^º3ýZ;ü†!Ý{Ùv×ì¶a°çf×Þk¸<Ø~ö@òy¨²¤k îì:q JœÞ{ZÄ©y½˜Wýö^ÓS›qÙ‚d†rîX/ÆŸsGÿr4ï˜ÑΡ}yæà褓Ò#LPÕ™›¸Þy›ƒ1$ÔîÞwºò—Èå‹wzíf$¥õí…fÌd¬ÝÉ9¸HÍé½8õ:'ê 9ñ<ªgõœÙ‹w–Wý¹hÙ{ sïÏÀé›\•ÿA±­Ê9Ãó®ï/Œ+~cÚÿ™Ó§Òþ¹\ÛöÈ,¶d:­²ÍÃÈâ`Ög˜·È°SÎÅ[Çv_¤cóQv„í#tìh§Ž™c/òÕ/¯7×~»]‹YáÚÁ…Ú³cdů<+9óâÖ/ð?õéâ¡ý%Éœ¬$º8 :òÔþîЉ'_oÐý]ýXœëto¾jƈö¦ÅI¹Üæü¦ù‹Æèj£-N”ÝœXϾL;èÛ´Go½_UJ…iéËäW×[×õÛöŠù«Ë©6É.æ¦ø­ËÞ ·¼ÚŠœæ…àê{rMo'<µ×@þë¯åš>ÛÛ’G*ÚWÅa‹™Sáð*­÷ò{_H«6^ƒÔvÎZLËŽ¢Ëó^!¥`ñ°tŒøÆu-âU$›$ÉŸ­;íOa 4Øuåyd©×íð­Öû÷ËqBâ*‚\Ͼ5WŽï°fM í,°×Ò}[[!µQ7»WÚí’w7:h½ýÖmÇW剆b×yâÅE€DS¼Öá­<+~x ÿ­YÐDxÚþ Ÿ4þ§³x'>¨Qa&c s•@·TŸùœWáÊÀ©O[¯:«÷dÓꯜ²ur¢©µõlÖlìÚÖåv‰Rm¾ßWˆ/>ÕÔJ¤,¯Z¤}¯Åï•Q’;èKóJƒ‹DYá±ñÙ§<•1Õ¹NõêY';Uk(Í€ë<jÖÞ:=jì~UÆ …kS™q·ëš˜U[ö[cÞ0«Ö;«ò²‚p¶3.sõÍ“[B{2ô±×¶´GØ „qÞˆz‡eùs{_A"=-Äþ)Ÿ\ñwíðÿž ‰„ßÿÓÆ¿¤ÙSÈ.noXÉ>j¶'eé´mÛ4Ë’DIÒméLF¯|^ÔM+ɲL›\ÀZP¥Ôj{ªÀ;·-ºê;ᳬѡ¤'.•‹–`öUæ;À–vÜ”˜Õ+>îUÌŠ½"ýòø÷TÄžöÓyBlY˓ͳ¡ ¹Ã2›g»tO²ç˜óaà Ç¡i¬)…µ|ìQº_¾°FË¿• ~Œ¨öœì…Q’"ÕΣ¢Ð–vh8iCd\]o˜Ô¶ÐwhQ÷jÒaWVÜÛ˜9Å ø´½_¹;biðŽc‰—ÓHWàg49‘ ®Æ#i,ä>GcéFÅ«g,l6粜ánÑX<•¸{œ4ò·)?ޝjÛº«ºí”ý´ÝÊãócyÞq§i,¤YâHt3JY[ǹ¡’X_ó—è4n·ŒÕ_û&szG{p‹ê@Ý”Âóëëú¼¹LS6z³å³fpÝtߥæbëg\íA~pŽ'´Úuæ&ÁØ;Ä<¡=´œÎÃ?Hc›_lµ<Þ®C'éÜ>7û^ø³ ß|1?É/„óßqãá#îÚgiwaUóèæäü’P ?ȧ+Ô}^ìfäJzap‡f^;nAÌ =¥õà•3C— d&^´Š»cóÚ³¦‘Îv´ÍÅS:fe+îOCÔ Ôï Hûöéj»­YŸ¡ê$i^:™PË/ïÿg½d“uzH'U¤µ`§¿öZ°‚§-¶k¯o÷¤´ìkcºgwúµÞÔƒýëëxí¾+^Ý}¿£@ùqžþ\›ÓBŽŽu·Î#Ço^z§0‹Å3ö›%hPâÁ× z¥×´ç.¡U~0ÏÇYð*÷qî“Õ!›ŽžÇ÷rFeðÅüy2’øáO/¿¨™V¸|Ž_:ÇËk •¦Ð!μ]ÑjΠÑò-­ì]4÷Å*Áso³ÑL;Þ>¾XcV4’Чr§žIÌY´x¡_<Ö<Ø;/¯©f~¾UÍð'Ý4SÄ=¹}—³ê«)¹…¦Á?fÜ¢Dªs+oSªôfùv;×°dœ’’ènÉÛÖH^ˆüÁØÅøŒ[cshPtj*ÈŸ^z¸å7¸Ÿ’¸=3´ÆÍÁÍô¤±Eys äOÕ‚’‰¬ý±…N|Qù¢ Óf¾9§FîºñŒî^Góçœ_¾è>h-'œOó׬-+iÇÃ^`®ëE£áR’Ö6¢sZÎ)ëÀÞJ^ëþá8óÅã±=´÷Š·Ç˜ÙǤLu=ˆšq'aLqDîŽéõ(žöƒ{Çõ¹}3&víTÉö€ãÞÆ˜Ø³?L—ð·Á}eÍ–Á}eͤ1 ¥šKÊíqgÌ­ÿÊŸj{j²´?‡öÖ¹S:Ʊ“¹èa¾2ãýÝØå_/ç•’o¤c“Ý÷ÏíÔÑÑsƒ™Õe52‚ÝkÓÔlÞæ’´©™%ã&- ±æ„¯ÈôËZ¤ù›¤D9h‘狾à®ßp‚ú$nȨE]û+Û¦÷‚ëž9¤I¹Î¹¿$Q¤$Ñò77Ã'ÜøC¥£©´¿nËÝeZ¤ÄçMÿNÒ»›r"ë_%ùÏ2Ú›ëÖo}°<× U÷•ôâÑ*k¢C£¦Žm¸A6‹²‚š=*¯Eò"(5þ¤÷x›jPûÏͳ¬þUGÚ}ZÊê!ÙÆê[üÇ>ÑÀSyp/Œ0­9‚Ôë°$/$_\/ÈRn¶¡d5jª}„¶,«\Çzè‡k_ ²’DéùõDñòUÑ~ƒüOd™ùþ®e~°3'›¿«ÒÌ{€V“çÇ”m€¬ÊÐG?È~â’.˸@+ùˆ6ôÝôºô-¥®ì° aiÔýË„5Æ}çŠ÷ÕØ'„ø£¹~·¬*ôÅ­|uמÛ[ƒ{ÄGç9í’ä"TÛ†+#Z–#?(xJ¬œ¼S÷¢¥¤Š¤ZÃÃe¤ƒê.#]k³þéЊóùhõ94ë0n޼ƒ—:b¹…~¸-éxFyèyëÄö´t Ñ7œG؃‰–´ÜšCç(ˆûê©{b1bhf€˜o7-ãúÏÈ“Æ0ÏŠ4ôuì±ôº*|FKĈŸº¥ÞYª·xžÐ ‰4ú>÷¸5£™'°*{qRóî>MZt ÷ëìñî´xt߯) ΑCßs¦7rŸã÷ƒs/cà/Þ8\ÌS~Þà …ýuù—BÃù$-ãË~JKÁÿck^¤{¦+uL×´ÄÜe×§áM4ŠÎWgÀ#üô¤“Ž}ïÒœ'}½ïr­¨_y&pn88møÄÎQgŒÃ7øÞ†ƒÙV‘—ùTÆnoé®)vWžúîž+ÌMÎC‡n:î^ç´¸q²jZN]‡O=~œ‰6<±]NsßúrÖ;òì7Ñ zúŽÓëá=½Æ‰òHÇÇD“~ž j¦½=*'êÇ/‹ÛÆüLgÇD ”ÜÖN>à!ÍÁN]ãäàæÂ×J&%ßö#¿ÁÓØ3í@a¤yXÁ– ý^¶«•ëi¡wyûc“÷[–Rʶ~{´nÐx­îÜ¡Ö*ã²Ö.–vçVÜÅÞ€ö´|»¨.æMîåí´w¿&hË/áùE{¹6S‚lPý¼u“åÞx™‘ÿîïüã~áî“KÊFOÚó¶‚ÈUtŒ;ÜÄ=ÇÁ]žöÜD䜺È%gÔe)5‘Þiµ¼2 ÏÅUP¶pyž²7s¡S«øl!}6r®à‰¬Øh~Þ|¦åŸÊ™Î·‚RnÒí•É?¦¯¥dr×-…;õÞÝk؆e'jždRO̲´Ïb»#G¾çfÙ/ð2N4¾Pé·íëk¥u1œ¯¬‹”›=·ÍuÐ Ê|¦óäD?á1Û‰ÜÔ¸IÞ‡ìÌ–W‰ëkþò¦ô°ÝôÔh^XMÙ 5ߨ›Rx~}]Ÿ#ñJ–1Ë[6^¶®—#¶|ïN[ÿà‰.JÚÉØv(ç«:8iŸ^œkëÌîX¤ÛÒ8l ÿ¦>±Û#Ï–­RñÒ’tFf`ÛÍYË: -?}!ÎÊ rë¾¾†ùŽš/qtPJRV¾xÔ˜ =E¢g{ç$¼ásÜ—g#îî¯Í9=µ-•þÂíÔœ˜[uŠö|‘Ó²3ÖѤ½åc ´/ŸÊ1£/Ö\·ÚÞ ¹ÝSI;h;‰Ü…éºÁÀÎÉÓsÛ^»Ý“¶mû²eG>Þ#–D_¬“iõj5es¯”.ƒÑñÞÍÆë¨Z͵Ûò= éMdKiô¢yx_R+2ŸÅC޼ ˯y¡áßÕoqÒèž–½Œ[>_ùð&é¾-¯~ÛBâ±ñ~o»l€ÚgÏ›»6Zç¼ìÙõ/ÔL+\>ï/›gÊ-Ó°òí_(@šGZŒLÙÑs^Hv¬hûWOËþ¬“ìè›ô¶0“eå£o4#¹ÅÙ}P6Z_)K‚ßÉÚ Í_ëž…iQŠsÐ=-ùX6ë@:Ý/ÕTÙÝòîvŽÅ’²Ij[¤)™µwÚðqì3Ë·OFçÔ§hX|wzO[±V^§U} di—Öð’ê{$ô»‡CbùwÔÏ$ªš.™È²½3røÇ¨~Óù Ñ_4¾j0œÏàksKU·9i+µ]æ;x«·Wð„'¨ƒ ¨Yßé·97šú®Ô¸zÎrª¶ÆÊ[ãŠMß­o+V|Gscãuí°H«Ä¡eÚØ¶Ùu¨‰<ãž–³ãÛÒ‘/QR6ÒÅíJ ÷kf†äJãwæGé|ö/Úsk¯§KÕî­]P—ðüš_h˜¶€©%³>÷þIË')üŽ@hõ«¶?wûœ}^IËJå—æN§)¬Ö¾L¹-óøúzÐâYÿæZnÿ¶ïµ€kSnÿòöúc¹•^}¸?ˆØÒ½_Ù òO½NÌ’ž.o‰²ôkA+i̹Ðû´0kbº¶hGö—ZA˲KÔ ÒªÛ–,ñÎòi´çSu¾9Wã³­ö+[Ñ,6ga¥÷ávÝ ¬©'=ßžm`õl©ghyÄ øþx5Õû"½ {ÕSÁsÝÒñ5Q7o‰Þ2í|í¾¼ã@†%N›¶ý§ñüìµ@›^ ”ÏûmyGB¿e”šÒ©зÃö ÷±z†{ê@:5 œè[w»~Œu°g0Рܰxס•HJZfÍ‹æe=ò¬Î³Â5KJtú?ýALöž‡ùÂêŸ'¯ÎHU¯ªàŒ®’‡]%ån~÷¸[Zø÷çü²u­ùH“ÇpžÍëºÂ×Im“V5‡×;rsÎÖÕ.ägÕ}„)'I›çzçYZDÅ+¹´É´’›¤ÇÉ7ÁÞdl»OúlÛ)Ol±"kòwXr’CÛÎ㦅-VnHb1¦>R ¶4?j×õδäŒNÛ[g„Ö¯Æôç&U’ðì Þœ´7¼Ä+‰n¤ #€?ÙÏØ=ßrÄ™‹xývÇ®mÛ‡Û<.»# À^ÝOC\×ÞZVöÔ_Í Mo$HWê´_\V?¯ñé]—L¾ÐÓÒóþì|šmtiÉ]î©#•·6õë!Nm[´é‘lŒ@µV,`­ h¾<ᨰ^±ŠyaÄcͼ-­Ý5žÒFZ 7q©øb¯ÛÃzB¼×éµí‰|kïÈ©¶¢ê¶‡Ê;ùÝ:¬n 6î…u¢"ãÊÛ=ψ~ƒ§q¢j ¢þÄæîÜhx õçä©á]·çþvAdÏFÔ¸¸ÑVé›þÅO#ˆÕðƒ üÆ/ ¤ã[û¢l®(ӆܹ6—1¹6I™óŽº'ZG7j¦î__({Ò/ޝ¯”ý\MÙ™²D™}Þœ+¶ø…üšù}D^Õê—$ÍBh\± ñŒí—9×~ Ë—´ Åè¯×‚­äà%ÎÄ~¹|2­UGÞúåÉ¥Ý/lªM#V9ôˆöÍŠz„t¡w´vAÛpVÙx¨_Õ+)õë2ms_&RÏÊ2ÊúÄi ©geí\:ÝfŸîÚgßX?êév»œÞ– P;¾ô×zº¶Íªü‡-¯öކëåÑÀ?ªçý/0vÎÃ×›Âò¸U³ëdŸ»›á «î»á·º<x³¢s7¼áGöƒÌ™™’\|*üÏz ó{æÒ<‹¨‚ÒJª®+sƒØýŠ/T¿ioÅs3@{Î7°r­ êãtö0VÑ¥¸X{&!ÙðVëÜÞqï_òôqßéáñWøtOÕ~±âÁã³sª ѲãL4׆o¤çê‹6m€•oXF¾´Þ…u¾œºTÎÝO½…&ß.&zìÎ4§$yˆ‘hºÑSJb$žùõH_þ½—G^‰Ÿvâ1:Ç/<öéøãu³ºŸ+¨¾:ln.-Χl2-wbzYD.’ų!yU·a;ê6N4ßvá—ÿöwÜ[]:Ïè*ßgQHôÀ§]¶ELí®tréÞÍé í ,лKÓ'üì„ÄdEØ3ÏiÛf–-¾l‡ìÌF>ØtXƒ1×K›ø>¾Ý_¿Ûö©rÅÀž is§4æíÙ6±2žiÿkÏ“ 2ºx4ˆW+~Nâ ÜykøhÄ7(¹çÆrÙ(Œ t>úª|žHÜy楉]">Ò®)þÔáxó7œ‚ø¼me›Ð8ùr"8ߨ æxË'à(Û¡<ówhnzÅz‘jj||cî’ÇžÊ_Ìr¢c6ÞzPóJç†; r›ÏiMy™Ó„±y»°nêŽõ4Í£ÈuPÛºc#ÍõM9üË”Î7éI}“^Y›ÏsŠÕ 7DÂ7dÞ`æm<Å$Î.¦½S¾Ïûr’Š—gÓà«ê Ý—’ åmÉ]ÜæÒ\ßÒöçWF—œ[‚ÛÖÀ§6&ç*‘î–<¢__ã µ¯\ù¶WÞ½:d¯ŽžßæÑï½â í‚h4›tm®ü¢õ­—4ÐØ¤ÿzÊðÍ“6;èÞš>Ú²¦˜ Q"7µ.5ºÏ´åGPï½jÒ×qäº×;+×töZlïk,fIšç¿¬åBVÓí/[*F5×篤ÿèÐz†šîó<"—^ÍžM¼Û؈ûä;6ˆcÙˆ0¡9Š ¯éy‹':+Yî%†NÞ¼¿oçlïÝÞSJWŒ­«"ϯ°¾£ËŠÎòö é4d˼©éLÁGâœÀ§0róæMx,óG:„èà“tH´@íA¤¡ÃFà4ÿ@ñ…ê7íñ-WÊQò/.Í· O•®Éùæe‘vÒV^´o1fy Aïj¬™UnÔør÷¥Ýš'^ߪâ"¶›^åÖpÃg,©±¥³SΖ‡UPæ[Ïy$›¾iÜsˆÁÉ‹ìóa_\ÞµŒ'V¦­õŽ”ãÉè^™-qåËŠáæ¬m£~X\Í3^óQçÞ¬¶ÂoQ6Þ§‹>4“I·Ïžã}늰Œi¯DЩ<÷˜¢ûük6K«c'Kg/2-£§±ÊȲçeîßZ@se¼r_·ˆ¤ÙÂ2oŠ£Ø=BîKª\|ñ`mù=‘H·91GdsiÒjþ ë5²òVÑšM’ÿááçÖU¤›ÈodÛ2N4¾Ð¦•l__ (ÞV¯Vy‡4t·è³ZIg.ö9—´­ìKˆŸr_=]^ŸôËkOoVY·5Ó²ƒI¯Óº­Ü‘u[·e-4L+¼^»»Ž3½GTÒáIn¹‚™R§uêúÀgRvBpÊt a¤ßn#‘lŠG/1šæ^p~Da |ƒ÷ÚÿF,ž¤½A¬Äg8Ú"-+Jy¢‰9n½ÈþŠÇK9O,ˆ˜vÚN#™_ÔMÙÀíëkaŠòI#§]6ÚËõÚñ¿ƒó¹eôðqpæ—~˺üÒo™/ÞË bÑz`“D®Àk.A)ˆ×~Бn£Dº¼_ë‘ksª\~å7§ž)“ï44Íwß|ÍV/ZÉ\ò½°ÀÏ'2Ôk¢§¶%ÇÎMÀ“(xã3ð! ¢ÅsÓ#ФkàìZ^`Á­¬Àï+|Ë) s€½Ð nmäN郜NÊþE¦l r…¹RUâšÇ)ŠÚjˇ_ø_"ÚþgHg‡Æ¼¸ºQ®2œÏ5ß|ƒ±»¯ð ©øÓ½5x})ˆ¾¼GDœKjAöƉKs"-›*¶¸îOl§Î/vOã۰哵m7¼ôØ”¢l¼¤Øöžo“6íäžú`têZmTZ"{·ÐÊûµ…÷ŽªÖ·W÷Ú·ÂÙã]'_»hÇk¯¢cIãfXì{DZ›ëöÚ}1¶c§½{h:ô¿QûÊÓû%²êËQºn&jµ_öY3M­vh'_«ý²×ÞÅ{hêÒIOÏžcí_öz¾~¡~Ì­ë·ŒÁ™þ³y.%eó/;_×â‹2\"ߎ9ù ñ7Úu”®yökw½µþ)»ÅÝ}36í6çÁnÕFŸ·,ÛÆå‹’•£JðûÈíîžË‹¯Ž›¯Í½Ïõ¸;"ÍİloÜ\‰k®åvÓ6ç@Î2q®v¥ã*ž!¹’ÂyNç úr¬Ö8)ˆkçL(• µZßåwµ¨]Ð i>É ÍÁøìõÚ¥•×p„iמƒûëÍêQüúΗ3£Ð!ʧÄ!±¬'¸±Ü£õjÌþO]Q&ÁôÿA)k‘å¶Öív!µeq^h&úËo=/*Þzò¦]ÎGÚPrAÖ™fì²¾ÔvÙX´ebW¼ó x¡eËŒÌWËbËðæ˜íߨŒº{z[–×¶%¨Ø–ìïˆÉÒä&äªiÇçµ,ôKYóÕk¢màþÙÖ®í—m•ÉJK=Üò>Àop€ }VüÕ–G³o6K‹Š›æƒžt¡tb¯ï¸40vÉÓ+­o›%Ù6-(umÚ˜cœè¶E“8°a6jç²m?•!kOå‡kFïXã®ó k´|þj+’C(Ymúí½{db·Üô³xzÑ“Ø~%LJƒä÷˶VBºWyv4^°…Õ÷.xc§¾-,Žu_4ÝwÂ7ù¤%ÀyÀöµÍâÙš66Ž(¨8¥xv²+Ëñ©§cO;ó—ð)ÞóÍ;æ²V'bÏâó'½èÕ‘iˆJ¼=ߨïUUsL+­^8úAJçº&ç;()sŽï¯9‡Ú‚ïñTàê¡Ëe>_£Ò*æm¯#e±ÅU9¼ŽÀkŠíïˆ öòô”êæ wŸ~ìy¼ŒéIýrÀÏxyá.÷Ðâ'Ýr¯òáà.yj€ÿßÍ“z=­Äë §»`&¹Nï ôÔ¼‹ë é÷šŽ\r×­Ú´7*ä°ÏÏþeÇ®V¾Þ×:°ò-ï êú"¿µäÑvŒ‹æ>èïø 4þ•m |þrñEãè3_èq•@´GŽ *NSÉ;“ùBçÖÁß-(Y“Š÷\·׼ƒ·.ÇÉÍÃß’¶šV+üÛ9åÚ\´íØ— UuÓJ{ª×Öã÷ž•Õë`ÉÍå ô|ýyçøÖW¢Wˆß¹¥Ô|§Ärh%Ç,çU• ‚B–#’2ܚشZƒÞÌ“°ÆÐÌ8´¯Y»ùu"­Ö9>õ>CÒ„]sì õ—y‡ü‹òòfŽT{9Uc*Ç÷½éœ‡soØVõ`[‘ëîÁaÞ4ã]½1‚ì¾17¹úÁ @\}?>£žø <ÀI_¨™V¿-ÆÉÍ7H¼=AâfÆ¥°2nŒYZ‡øÆsÕ*)'ù¨WrÇí [±gH57ñjÕsîIgвÑö2nG<ó‚Ͳ'M7ꦞ__ïÏ›K3å¢Ë;v«ÞõÒÙ_ttMÕÍÐÀø¹Plª?id—Z»åýT± ‰–ú„#¶ô+n4æ|ÃO ĵ âp¶æ5ˆ8©1ÚðL6_ùµŒx¢Y>ëÁñÓÎðoö-vÍó9Í¥ŠëapR›#¦Y^ÇeôÔ5Rþ" 9°ŒˆÿÇÁR墨–ÛŽ‹¥]Ìçbô¯×hÞ%Et†'ýî¥î/Ù{Ãûªäe‰ Ÿ·a›ãÍwrŸ’líô‘ö|+Júk[ôÓý·%ˆw‡áów'»áÝ“®oß¾hïn ÷¯¯*¥¹ßEoÿª¡\ç;ø½7^.|ˆö ¡ÓÂíÕƒ¸·ó»àHìM?ù…åg§Cšÿ¦Î÷)½BAÌü¬êˆ½Ú8ÝyÄ2]<#²µô>Ñfq\ß³%æK›íM_ õ/£­çWÒY·=wTJw® ¤úT£l+‹h–¬;"ŽÙÔþ”Äå8{™»Á.ÖÇ%ù¦”’”È2%ö,LÊ‚›[ü8R"dˆŽ»Cœ‰½?ÄÓAÏLf›÷u‰¢H€­—ö2Bš‰™GÙÈJ4Qs›#YrX_ Ëó ÒI¹u'º40WB—ÿþÃ}ZcœA‰O$Úeù]<-Íh~5Æ"òïà~çZE™œçº%g0/ñ­~3&ð1!äÕ/prØC{‹k2öã>Kß³é¤Tg=:¥b·ºísJüŽ;ÝÏ¥L·LSçl×x²u“oš#IYÜÒ¤,j«¾Ñ)±û¿^º1€ë»û‚ ?Ù÷š¦}{êøªR¨š¶ƒËQ‡ëóÖî’LçöUuĘÓR"pEUmΧÍpÛt¿ÅAɹà”TðΫø–øuÁ…ÆMÜʼn‹Y#ö”fµ,Ð<ɹÁÌœ[.äZN+'!ê³w”Ç8çƒ4^ž]Þ—]_ØmI˽H£ˆS\S­ÕŽ®XÈðáö%m²GöÎ 7¬‚›¤Í/±ƒtiwéå$ïù„vwê}[‡6Æq¡}‘ýPô‹J—^Âã[çAUkò‘½¥ô ×–‘út¾º(Cþ?ù|rd†KH.ãJN­Eâwâ¥ýÙ :-Ÿ’zÓs2L çDå¥ä%Ö'Ðr<º\œI •®šÚ§NÍŽEz<锩Õ1ó:§5•Xüø‚<ò ÒÊ3W¯„Ö>Ñ8~§ý‚žlPy¾&¸ºS Øh¦ë*Ú›–d©šÓæ©sÑŸþõÏî9ÞW Wí;íßߨ«~W'r/ŠÊøA|Ëtá<±¨&²³íÍ…3½'Öó´t<ÑÐMÓúÒ=N#M'‹d‰+_;ã-ÚšgMÙ5ã*Y¢öùæSÉÇçkWŒéÀSœh~¡nô×–VÇWå4‘¾-É2WNý4{º¤e®¹xtZ´œ6?¨öÂð1®{O-Ù¿ÖqùkMPöJñÊB3†ÝŸÍ/tÑrz÷"J!®A÷£Xg®<€¥§û_XSƒ­§…RO¿\‚¦~¿yÎŽõ6O<‰v¾<•ÂôAhÆm}àØö x\_%e‡}‚Ë¥)£H²­š2ùkþ)Z¡ñ…´\ϯ¤“¿‡å‰JH)Õ`ü)Új´eñó½5$1íjšôGCÂñJöó¨²$ìSjS/#‰2PEJ­$ qOÄg,öv Ùå좤m‡W"Ê·EèOYåj}ùœ(¾Ðøí:¾*=Ü÷¢œoÿºBó [A]±šlkõi‰Ò¿Ð0Òo—+ ®Ï“ƒìgßñ¨á‰«à uå¹ä-Ãü’˜­FbÚõ‹1ånm­n»/ÅÚûk‰r×Á³ÆžXexX(-»HéqP5Ùn¤¹Ý zÎI¢ZîZˆ²“N:¬œþHäì]¬.¼K<›z±µš´×kŸ.pÊ›t}-ð¸_K2yïÆvŠ=Ö½°:ñlâr¿y‘ É³ tÃÛŒYOU¬þ‰,ÉžÁ’ö)a¤RUSZZ ˲æ<Û+!‹ä¥l^¬Iy^'®àòZº­öqS”tB9Öšfìop€ŸºãÉúÿøZÀOÏò‚qe牛‰hqÏjÁ¢æ%騡,ºK ÊÄ…¯ñ…ŠQÒVýö„/z)±+NÊöõµºÌ Бê#Úr´¥} 4¼ØNxv¨ƒh™6ñ |¬mvÉ:µŒ7ßl3ò‚( •X[=²f–;Dú¨…•b\¤:Njk•>&ÈOâü*K$÷!{“…á•"眕ÓS‚½(ŒDÛŒ3'zÝ¥°Npô6Â&e {ÎcÞœ¨Eo‘÷¦~`ݹÑç¥ô õÅý-ñŽ·Cµçðƒ³¯+ß²gÑæœ V¿}Ò¹ÃPñƒìøITvg ò”h˜¶¡uÐ0R»Û××r ùþ2i'µÝ_ûQÊt>Ó´å¨ï|[F³Ê­Âî%×V#Ìܸ‰Y7^i9гVâãƒ]/¯×dÍz¯u¾t¼X/ŸÊq‰~RG·ØM­Å«µ%n¯ìõöÍ#„‘Óö Ã.‘ï©ìÏ [&éú¢u¦½Ÿ·Ü7‡}#Ÿ…©QõNÿ¯•$ÿ×Ìþ*SÜÂÊVÖV¹6Éî¾öìÕ>w%ša,qêîQVÒE6ºxœ3ÑUüËøêÑÛûÐôî×í{»ª;ޱÙhüvùÖ¯:l$û¿m‘Ô¾´{êÅ“¯õíã…i›Çî@¤Ã2R”¬|Ä ”#0Í©mËåXa©Ýáê̵¿k$¬ðâ±ô‡WhûnÖy¼ííõ£7^ZnHƽµTÇŠ§¾©¹bkZ'­C§QÊw,ÇÅç ´¥#” û¼!ØñªuÙzÁ¬²CDüìxÑÖº,Ý/¯6;_h€ôKI®âµhJ®â_ ©Lµº=é?¿Qÿ¦|™è>rm®í´LlÆAðÖ·îÍù¢;‰Ü^ó Ž_Èþ½v?ô÷ žªõzêKÖõ*· ¯æ'šW_;:»€Šµ{ûx¿ ¬ÖþZ7u[7ª1š3àéÊ>dH#S~`­âkOpõm3àQ³ç0aÙs¾å×ñç¶=ÕcÆubáo›…Vû´sêZ‹v0\¯Ý´Ì9×wãþyKé.¥~dA ¢ÕÖ÷çÛ²ÅÖ%¢XI±õû¨€ÓNÈUDYhV"¥–e;ßáZ,žÆï:E~iž7_ÙçýˆÂ{/[eyåeá ñk¹Cî.”»¿óòÉé–—^Î诎ÿc!â liwY¨±®ˆD{ÝR|þÞy¦ÜÚWOMPníˆWj6½nʺa¦1’­`å”-<öª o¶h Uxí¥»½¬¶÷ʳô¥UÓ gXAY¼RŸ^P.r½)XÓ¨½½LNRu/îŽ/è:ä^™:ÇÙh|¡0í7¾¨léZæÚr·LIÚE.%ê=Í ÜÀ,Dåq‰¦C0âD{Ý(ZéúBÝH+Ç“¶ÑvÚ±óeL\j|Õ7Ô.çÛÜË£î^®‘bn™àwï­¬â3±ð¨k`¬ݡ…cØß{¸ÉûkÐzÌ}æò½wÅõÕû‰tNïÝÝyægd|›._3p×5çË­“?,jÖAMtí“ ÖäÜóúýjŒmËô©©/Ö¬øNWîs3§úì¿Wå™ßÆN¡_®mA°¦¹XÍ6V–òh*Yz*ÞZáy^¹÷Føcµí/$i¥å¹ÀÞkk¬Ÿþóª:^ÂʽàQ¤u}¹=«ñÉ/xCm„®dÊŸ;לÿZIKï5ø„c¦×ÕpÐǺIý­ ¤à‹Ü–Oý0Á úCƱ–.÷±ÒÚÒ?[¯¨¹…£>xWÚ–²Dë.÷i9”ÛóQZ‡ ^H+íίyÜ?^«N×­…–¹ï×~Žfmæêm 1¢Ú‰«Ãz¡|¼v-7|',zA¼7ß1eU^xKTY–'ì# ƒ É{n·°Þm7ò^Ŧ<ÆQÅ_ äÉàïÄ ç·Äk>Ða[àeYZ/í22|ÞqÄ›»p6Ù‰D\ûx~—á³^¼:Á"ýÔ/ PR†)³vqPÂ/eÚ‚Ç×8JhÎeš¶‚_ßV9­^~1ù^;­^"M™áœòˆÃRnp/7/:ïcn!un•aÛ¶WP–U¨?ö_näþ I‚[94)}n›² s {•Eg•¡>ðþši§¥Û0¶ì+czgì¦ÄåõG§Å¬ *ÒˆWÛ€÷ÎòŠh' ûãõQÍ3©Pc¬ýZHkÕE/;׋|¶i Ñæ/ûiQí"«ÕýX¿TiG=-«J'¶F>³xqûú¯­4¶mªr¦ó=zÞõÛë ômÆÒ|úÏJp¢ö…Âè/hxñu’û” <ÕééÉN?«…û‹< öƒºsEÛÌ®|¨_7‡g¾ÖÃâqâ‹ò¤I¢òÙsÃQK=säó¢ö…Ê-|ó¢uäkëJ³nîù ը«°ÌégkvñŠg¥Çç‡-ÔƒXäø´y³XúܯŒoYˆ¶ÅÃø{<ÒŠ¼ ˆ[¸Ùºå¶×–êÝRý†ç_]`¯î.<¸òµy&1i–‰¶¿3ï9ÏÝí|Ç!7*òÊÒùb»TÉÜCw¡Íð¾/ùàÆ£Íº›W.ú@/´§<ŸôS ÷ÃJ“.c6ö˜ÕCm×~ðKä ¾î…˜?¿6¾gqÍ Á¹Ü%ö)zkI» %SNž~Ð'xºí'í•)§GE§oì|”>×yjûÔ…–†ì]$Jl›Oõ»m·eNhXn¯b0ub¦—vìÌý ;·5Ñ+–ìª÷tºå¾8¾Ùà †R÷~L€´W“ß¼ÛÅ^HѾì¥îÝ™ *gok—ïEó ÝµrÚ;9ôîú”:w¾‰>Þo)ux¿¥ƒ–w’ X#*ZŠv÷A5,ItŒ¶ß€°îöWzúEã+ßjÚññyÜ®oq»Âã;ŽþºèKíÑí1×$'\Ÿmës‡Å+¿žÔ¹!XxuFk*óŒìÖæ• «¯Ò´/Çë4XëÇ ³uÅ»ÉÅZo@»O£e;Å®sß”™µ­™˜o}ËBG:†¬w´o÷3ÊBtJÄ^ ÔÙoñû”ðL×N%öTG·q[¢8¢ƒu‡ü Ò¶ì’ÎpPSäï¶Ô”ÿ·K÷lå¬Ûh®w"z½_P2BÁª/삇 Ïàe?J¢Â’,Oœä"!|Kx†ãY¸IÕy‘ ð–KŸ[ÊLçš#ÍêPep/“Ç÷’è«!Þ×bˆ÷Ðæ§žæ€gš^¹éƒ1jìõŒ·¥a…⻇Ñ…[—Ö8j«rñ;”<2—Ü·ÐA˲9ÇaÁ{ãÔIœÁ?½àÍd-¹½m´ã–Ï6&Z/g„½®µËþИöËÞmiTÑI]õ—­%=T¼’[ÖâAf%:=HÝ'=+^E5lÏqy:}R²O„‚Þ“DŸïñcD9Ç+éÚùŒ(·OŠncϸè6ÆsêX.ï‡qvYtû‚óÑ¢Ûxj]¾ÃÂc¶?8´þ§u—ÖÿŒÓ´úm3¶5si7«ãºÃ#1¯l’Rïf>Þõg-~ÝÈ4ÆáºY¹ ®Ûúk溇¿æ/ÅsƒôðÊüß{´/í½¼(L+<¾¾®Ï›µ6¥œ¥# \3÷vâS—¼éóô4ѤKîêq¥pw©óF¹ìÍ…?]!RÛó¸ýOz0²‘i—À~ /¬tNÞËÅÚ뉄_|î¿y‰Ý$N— 1:ôK±–ã»ɼU°¢y5 ø<ß5×iwiJɺ²ïäÛhwK ·Ñ:/·.Inï™ÁLô×pNYò²SwÖ¡ÚÊRÃ>ÜÈéü%Z¿È²´¸€TMÙÀÁ×ÒÅr_ýŪjÐ[Ò­ún[t·ûrÛp¥¿[1?h÷£t[{ͽ¼Ó¯MÞÜëïï†K€h5ë(Ÿ÷­sDfÚ—z«§óJH©ùÒŽ4¶¹xÿÊrh#¥© ~¦ksyO16ÕzÿŽÂ«”}Þ¤;œZAų#ó¡÷ñŸ-M ™C䇎GG!F°'ê_hÓ —ÏûËâ¹2AË´¬|;h¼óÊñ{yˆý§ÇoK 41o.v^+:åÅ˵ktõ4¾î!ù¦¦°¯Lçîe)’hq¾Åo-uü*àÈ…õD'r)¶×ð,|úv‰¯Ñ?+%”rœÈ§õRYv K¼Û9ËÊ%¹‰N¿£\¶PVJDFN-Ð)Ç©OSÃŽ|ʧ^¹góûÁi=\ÜÜ͸ØÃ©>”¥äÖúB r£s#4ªßÞéÄ%'*Bï¡<xsÊyõ”™iÊ×Èá)~i¿éE÷Akyá|ºsÍÚ"\¢×ÄV¼t*h„4­ùL9-ö¥U‡UŒò›wò@äÃ1ĉ¼–ê›VÙµOþî -§tø¯] Î 2èµ\ßuƒ"y‹|°y—j`;muPƒ3¦sIΗðΊK'PÌðkc6]Ëûsºî™x´kÒÝ3ú¦RŽ©’•~ÔÜ/îç,1wŽ/ÚêwsËÊfÎ\Å=¤á @þäËŒªKðËñ®R_º[„Ľòn2õÚw‘p—n«-æ1ç:ïô\ŽøÔñ»†åÑø¢ Óp•̺xÅ|—8­‰nòÑzëæwS–RŽÆÞF“\Ú«žúÖhÿUj—m]yò ~ÓöNÙ_ºj¶åóµ÷Ìgwî–äÔ*Ço}µ§¹åÑ>úŒ}×¾Ù5%¯.¯<5†i%ÝŒšO¨Ç27t,¬ör ‘:à!ì-øMëÁojÝ™s Ý73:›åþܵøw£¯å]Þ¸¼î‹ÞI;{“;×ís9´ÿu—Cû^:ÛÇóñº½‹—àuKÞw~ÉNÉšN'%¼ Jâ_:×$žïuÛ¼™©7ú‹Ë×-)7iUµlOÉoJ+ 77}öü—¤JJþqIª¥U=¸/4HÚŠ$M=DíÁý¹kê¬wpÛîš÷çMç¬Ü;Bnˆ2ûëÈg˜vkÑn ¢Úp«wpÏÿò¹‡kN\:·Š¸t_úKÊ+wo‹ïÈEÜ›Á¾+7T~͈ù.ÒàÎê?ÖdÜÓéððƒúî?¾×9¿2ã4Já3 â_}ë­‡3t æ¹uuëâ7_#£$uâ>_¼ËÑy©ïêHB¢i_Ž ×‰R}õ´–àèÎŽÅB~õ-ùбº;„ÝóSƒm÷\ûæNê3b¬vüZÚ°m§Ë¯Àtn^±uäMÏdþ¬öÖ‚j²*ÂÑ.É¡Û<ÚAÙk’õó=nýñoô+¾¨+÷Ƀ'x|uP€èá¯Ä\òë“~Zܯ “hAÙÈ5 Ì1_­f®h·Õ.Ñ¢W:Óum?hf}ˆµä¹ß/V$+]º;Æñz8ë%%ò¶_Øì+u:K¥ºÒ1¦?‹ƒŸ4º¾_ìk®tïî…DÔŒ =¾åJã@ݹ$eÎ7J黥+o<%í„6Lûô%þ«ÐœH,Ýè§=+¥µle¦i¯èèóŒáÚaèD ”´Å”…žËv(Gzˆ4/÷çý}Õ±§¼‚[p{$2 egéSW¿HL«w_Üø:A´@Ôæ‰€¶Râ<é¬A/Ùc¬ÅAPfùö±£·Òá-ÑíoIÎ)iÿ, ¬r¥´©C¯¥ã’Z‘”C_?³?ûb¿Ô¡œî©örwÀìÔ®Xæï´ WÚ—'_(þFÛ¾¾žùNåKºU9‰J¬9¶ŒoðÍèjFjŒ’¯Æg÷¤<ž–?h—y3ã³>ÌMùjô‹ÕåÊóý~qÇl5æ8¯ð=reXv´W"Y²Ìü%;V«Ý¢½•ïí¯7(åWu:)iG\ù…1QzþîÌ£ýYüUï]z€R®ÂWiavŽß~G–÷0Wc,y‘e5Æ™»Ô§–Ï“ò%»ÕúAùÓåKîÏœMì®t›>Q5­p9¾—²õÇcôòÄÙ˜©~?(%ÿLó¬³!œh=(û‹oý‘¸´…¯ON"=¡¼Èu@™¶êÌ ÕΑj"i©›|ÔÒ›_Μ'Ä š·¹;qÞ‹oYWäù‹v®ÂÊ•ß1F*ƒ³q÷ÁÊ蘿?èažls5µr]õ¨÷Êñ~a{¬ IŒí±®ò­‰¯bZþšœ×¸´€³•´YþÅûÎë"×Ü@ùA©¥óïO[ÙÁ]:ßìlÿ`x‡uͺè N$–^Ú¸ As{öÉþlžË´)o–u¶föDczŒUSi×u£³ß.ôÜí9¿uSöDCvÅ;CkHîhæùWçh;-EÿË*™߬ôKÎ-[žv=–"û<óƒyyÁ­²¡ þ-IÊ- j[°ªW^ï…K·Bûs”õÉoŒPZI½poi)J}bIì§|nD¡Õͬ‰‡–û¤ô×ùu÷ßÓ²ªåøq¼¦où[Y\¢ÍÕLÑìBôš•ÏtŽ Ð<ƯÔzf7(dÑÞ‹Ùö“‰ëç@oºÜ;Oãùæ÷¸ á=ÒØs+»ø7øµú qëVžæM·%{¾½½U*cðÔ(I«†êN„–•#=ÑN¡4 ö(þ~ëb•ÇmÂ¥—OÜ¿¾f ¶öB› éÛbÚ¹CíÕ¡‰ËÞeì‡ú 9©½¹¼­Ý¹)”´’îHÑÑ,E'(,—“¶Y.ì— »lIiñÓ(®[–¯5+]^/¡'“ör+¡e ê‘TËùí™ò ó£KfM1¶}t»–["hQ-óJYoØðƒ ݹnš¨»?‹çV/ÞûêþF)Ž\åu.DfM4BÓ5Kº©¯¤oZ$ÊåfÍÖÑËsfSsÏŒôyó°.ë‘iKq}¾ùŽåý­™.¸¿·d›å^ËœÝrä6’ĜລÌÚ7í‘ÏðïbË*j y­2ç–ís—­S»aÙä4¬3(e`æ*‰‡Þœô 7eædmÊ-š9Ý{Dñ™S’:áb[¶X6®GN’º*Å2/Mf¦Äîáý“'çn[ïI÷×"ìÝiÉ/ðÀFó‹òÍaï¾Ü í· ú8öq ^õÚÇ)Üš\—Wˆ]|ÆëÒØ}Ù cŒ»d#VE×~ÔMî×Fíw¾NP|¡ú7Zå :r]{¯?Ï™þL?sr='«nb•ÍVbwË+Φç@êáÃ6ÇS?öƒçðšï®9ÐÿxÐÍAo³»??à«úŒÝè´gøìÞ‡AŠÌ~[Ý Éuýî•Ös\î¯N‰…ÔmóÅ¢î >Ë_bWqsŽnΨ”ò”Èç9àæý©ò`á)Ÿ¢<«%þ¡ýy!y6í`[`]–:«ør.iÖëIKwÊ_ØÜ˜Íò{Z#Pl'w. o»xˆŸu¾Sˆ…íÛ¹x½íbNb^Zür?£>‘¸ ‹ ˆ¹¼r^Z7<=@,»¹}K+¯Ù國qÅ‹á§HOúQ”“>Ç23B¾‰vÚ.R>“u; sªŒcn1ÛðMŸòŒîûÙc­ù”ÇK‰åª$q ²Óˆ9¾”¾=/í™ä/_p6óð¹jÖ®FO=´˜Ãâ˜=&…Þ-ïÎNÍ9¾ÉSTbý´s?õÕœ÷ Ô¥%î6 Nq2ˆñã|næ6ç~£Ð?ìÕ½2 œÀ‹c¹C58¿LÜáȾæ¨ÌÕ7Ô~F;žùÄhªŒê}õclÌ}þj÷P…ß&s¨V·[iêåղмa§yTæ6g^£×ŽªŒõº-HZà  r éçoÙ]áî³SOiôCíh¾‘âÌEh¸:¼0£Eì²Q§QØ î9^ކ´5ÊFë—ÍmâæßhÌ6nÆŒ†DÅÛëh^CJ·µ!Í·ô\¤Øn>I/ /Û”îzÉÒ¸!ÝÜh­zÌeWÒ\¦0áÀÓ¶Í .¤¸õ|CåVv„¾ËëžcóžseÆì™¹é î:_8æ°g™æ{5 JIt÷"˜‘!E&¹n~làW%ê"Îùé‘c~fn»Ó;B:5sYzhÃÏà^åpsSz®à&ÎlÁ-kŸüFýg´ÏœNÿr€v‚ö4íâý¤5WXõ›{Õ•3üÁî5Pi•“ Õz%ÎrÖz)n8àÐ>P7­VLõõDù ¥7Úä|µò:ùnû˜ð0!“¿B^/ZvOGl“6©Hç¬Rð{xaÒ$óWÝÙƒE%R¶ÒcU’}µ£ŠÝ{ÄvÊx;{ üN»s9\^u=‡ÏGÕ¹FZ&šü¨Ðá;eÄÝÞ…àý%µØåÞº)—Ç\$MµjYºg)R‹=ïžIZ.Õš+~Y<×E[ð_iî×@²x6.¯ûwÌJД ZyäùìUnÛá¶ûBºÝ…ƒò S~fÔ3ó&#Gg«áø:p¹gk\ ù1Aò&“ozmiÈýÂ|D$ÃàŸ8ZlYç\yò­–(Wø'â_µÌùöO@ ="i-«<£±e‡#•ðr;J±M€d,ÌPî\ŒÂ< —V2ÔþF;Þh³KÙãîÚd×­‰Rí$í¼{*íùsš³Ú=Ÿ’Æ­ÁƒÝ#”¬ecnéD¹`¡%VÖ%ÝZ´=¸n54c5JƒpÌ=µêXßú{öÌ:o¾ÎÕ¹„îü%ƒØ‡*X Yë·Ìw33¯i$^¾ù™”f©ÖÕäQoÎÊÍü2\¶Æ²ß²¡`)eìV¯sÖ ,¡åµ&ÊFZ1îY«º†L9o½fÔ]8&z4ïc+º„öèÏÐOɵ ”ÕŸ^IÕ»§ZµV) RÚ´\•‘Àýªí¿Óúr[Ù-ë„&6]CË®žÖØãå•^Ægò…^² šNÄlUpÏ=W­cžñö­êmÉLl‰b+÷i¶€4zÌ6ŠÔÀ¯„hÛË«ÝÚM+ ‹Œûž#a‘¤&ú?#a_/eøÌ?óÞlpŽŸyA>v öå%¦†vÑ®´¢ï¨v–’¥|GÊlj–ñ<6ú e#¹œ›Ž÷X²vù¸×–9{‰þjÊÕL#.­,Ä÷*Q{€IçÀ„‘‹úe¶Òiæhí r³–À¯Š36×Už9ZîhÉ„O«qÀ‰¼'¾”uòÁ­Ü›Q¥‡H´ØQÜÊœŠnAeíï–?¹È)ëZuÐ.®oW„7p!Uù¦Ú£½ñxK}æ«5hŽ]ÆXÒÝ5`î÷v¶˜\[æ¯ægk+Hëõßt߆žîÜÊx¨ëœ¬´5Pqé·‘Oô^Ÿ“ﺾOç:@'½^¨©<èÚ#¿˜µ”㪲բЙÔ;8¢Ð¢òàÝ$2?sc<ã¡upCœ ‰±âTÔÒêÍYq¾ä›ϼƒ{ Y§TÜIÈ:Ï:lÙã9xp· ãUØs/ÂÌÑNæP&ßþ˜kÈ@¿å" âšÃ¤"×2 vø¾²ç7b3'³#³&Pÿä=¿°Žò`v­–å“1»V7ÿ³öÇc!ÃÛ$*Ç=:8¸:[ÿª¶!D+넜´«Í½ð¼¼rŒlKMû‹)¡ÉŒ…yÛöÌíS6yä¢z3Ïu.%IîôbHqɬ)Dï3Rx %Pc¤Î×S3 )t²©¾ ÿ+ù†vPF‰úPÞGFFi_?cÉKWøtËØ«›óÖYtXœZ½ ¸W¨ï•Îù¬’bfG>mÏäá›Ý™›F#KÖ¢ÕË]k+FNº)6a>eɲ´‘¤Z:]³N3“xû6³N§%±õtëÉnÚî¹Óè©ö Uyêad{Â"À»‹µßsäË)™8¸y‰ÔãÑøçfr&Ñ9o̼dé§íHN(ú‰ÜâôàºQÐ×îÔjÚ R™Œï¬Î7J-ä”⛺2×xsÞO´ÍŒº­ÙÃ}ñ~êÜ?s ½ŸØÜ4ï'ºW'ýÔ.jž¢ŽudOùFjÏÆõ-µ¿¡ázž«Ï×ìúü•ǯGµÀ ÂH¿£¢%Cš)ay 稣϶~íè&¬ü8Öü¤\‡m4á '†æ’†glf¾yx‚ïyÙ'}4¤ål»µ»XnvÐÅ/mé Uûdt£öø¥×ø¼6í³ªë»Q>ß÷l]É./|5â*³pöü $óÅ<:Í‘y”I´SÄç|Ï‚MÙ9vÏÓ“™55Ñl÷NÁt&Ê{r®Æù™úøö ïlX’Wí":%)IvGœ ””m' ePŒr!j8PC;Ÿ -þmä„¶àžlÑþÕ¡@Ñ=ò¸+¨oK¨èºïwâ níwëŸ@Òr îY´ÃåÂ[Dâ»fÍB|·ÿö!.ÌPvózÐ6óÒ³TåSù]äQ͹AUÈCß¾­ b¾à›O.Ä÷j«ÏFƒ»@æÃÎ9iá=H<{‚ƒgß¾i[öL8O#µ‚Êʦ¥”GZ¢|åšÜŸaK÷Ø6ˆÚD 5»¢M‡Ç-9ÏÄ Ò Z¿ëæ9fTïpþ]z,8%Ð[¯öI¯¢5û¼û¿OÓ­¹[in»Q{PV•/õGîpÖ]vv=ëÍMÜ.’”íÝüޝ›«Å+-öj:·n ûÈ}È‚+ìV»O[ØåæFõæ°ë+q ‡ñ—¥ÛÑáåóåo¸ž÷]þÕWϘ@'3«Rº,OÑÏÑAêMX8á´;ànŹM'<Å®~—׸Àç¶ Ë1ùŽ&¿ó9Ö^á­í¶öÌÇS²&äæ4 •7ÔžómNëvH^ž ì‡|Ú%°_⥽”«á½ëRÒ´E´¾ïÝ›@Ú?J¢ô®Ð꛼whïE›Ó®^&6»MêmsícÅQtVw4Iã¢]£Ð,¬4yRÊa]M ‰Ÿfí\Òó›èÆEÑɦóaçÚ(ßåm¶^¤J«74‹öQ²µPäÔÐPùÖéè2v_¤Û¤¹ËÖ‚Öã¥ÝZ<ôe~yÏïÚª?£Í/kZvw®ê©W¬ù*=¼õ¡°Pä1ÐÖåñ­s7=?øÎ¯w»K¤I–/û.·Þl’íȺv"h“d³ã®l ¬(™VeF*ß‹s¸›Ù}Ƕ4I,¬¾Ö­¿6iKd”†dç-EiÒ­q[x…Ðýî¢p7»x‰— ÔFûÌ û†;Á¥¡ †-ÏVõ+HÆÁ·Ú¥<‹ÛÕH- h£¯ c-ÆãÒ²û±‚’{òk±ÐÁ§äD•]¾®Ú—‰3®_ë–ª_.>¬²¨7ÚiP¢K•ls•ÑüKä1•ú ×fZq_hl½–47òJ¹T}×ø6¥x©rÒ‚’™Gt‚~zVVÙH†•7”ßiù°rtÍ5Uß%­šy?Š•­j´ò|Ú%.Îám§í’&»¤{V³·…LÉo¨Yú#oˇ—Vý´NhÝûg ¹ª¶rËàS’ ‹ò†­²vKõmÁ5õÖÖ ñìak ïZǰ‹XˆçuÛF¦ìÈ©óNXùOM…îâ•i/xP ÜÀ«t²Ãî©i«$N*;wºKgçŠsøB¼ŸÎ­íÂË…^±ÌñÌÖãŒþBì V¯hx×Ð+6'½&¾K|»ü°Ó:gûÔÞÐøíùÈ)óu³\ã=F;ZŸie´¤Óƨkì$í6jï¨t${E¾ð>«sƒÏãé;t…à­…M[M;Ÿú¬²bæ¤Éuh‡k+ÍìྙgÖ ¾Åf½ز¢tõ–¬ÍVñLL’h•*Ý”M¿Š6¶áãw’XpzƒxµÝ»GYõ”ª¬1¸·Y8•»%}£Ÿy¥¦ámWÈ?úž± M¿çHhÝôä­þxÍê/Æ;æO1?H·³ѵ2\¥ëvX’ŒÃ{«ŸF~î0 ­öi=ÞàYÅ_è±ÚåÍᵂ†Ž:2˜WNÖ_œ~tß}-œ±õÞ¤Á¸ÉÐ;#uZÛEmN­°uFZ¸§ß;<ʼn\Cà i¯û$åÔÎå„®s“·œÍ´ŒÜ©ñPÚ|mÍ~v¾U¾vÁxܲ…p£üNûº¿áòÄæø½ÜáÀ8Ë+£Ù ŠÞl.3ÅøÐ›Þ‰»cy21–H³>îq ßwVÓOœ6PpÓx¤ÉÖÂ2%ÝÍË „÷F…—`«âXÍ‚7IØÙg{„$y¶…¥u·¢KÛ¶à@µç,•ÏkTkÊvZÆü>m›GrG«±" ¼Ù *[ç@iÙRö÷C‹‡<‘T@‹·l«¾"±šóH3ÕM²-?ä©÷5µ®©Ó룆ŒÔl-³¬jħNƤ‘O±æHà“ÑíÔ¹A›“ù€Ýn‚nôVÌ_ƒþ‘–®Üfìq!ê 8JºF»&Õ)äSMÒžÚ­Ú«%ÒÐsW;«vuªVU{@Ü)®±;Tã $áëËz´jÿ)R/¤¾ËP²‹å‡µl©´iÚD­W‹ŽîMа¦ Zì.´a=¤ ƒ²YвZF®Ç´¾³Çñ„R:uR;éÔ¸±R&³©aÉpêÓZ…Wm›Y¸5ìÜü´…×læÕH÷ý÷‚÷Ã^™Ý§Æ†•5±)º_|•sØr 8v¿<"î1µ4–EtÆ7çÜVÞ´üK޽…“Ù[T>3Û¾M7­tC|#=$}û»­ gzçÄå~HáMMÏz½ZxSÓ33K§ÚIƒß³îÛ,…Wu;•Ùí_bÏfï°àµ´gÏÜßÝ¿Ržô]F è.@ÖhmTL+,ˆ_ÒwÎ׺avP¥ü”@‘Ö]Õ]?ÑNܑ٭ò¾ndôµ{éO|’nÏ|Ew r#-êZݯ$.DžáÅÚ<š«96i¼ÊzÎç/=ÒÛbw ήo¸·uÛô |§þ©ð$=‰Ææ€‰ÍÔáÂdkªØ²à%nç6{Á³±×3cZ>)Ïç\:ž¹l«ªZ¢kdcãkÂ3ûÜ2 ÛZé·^âU[祚ç@óúR·5–¦F‡ûÀeÒ3­n¾BÿÅØœÒ§!» ÚrMyDë7´L=Ú[é–«mËkÕt€NPzjtÚbù‘®:9ð[iœ˜§5Ö¤tÒ‡èk´€[ßÅØWÞZ åE+©ß^O”Ÿè²RƒäY½ëT´¬ÎRc£û ¸‚}±Ü‹:IEY¥µX&Ö"év-Z»—yuÓ z7Iûýµè[9&åóŠoqøUÐiÊ´¥p-Øñ“@Ã(hç¤Ôú†²óY´Úµ‹ðÏwoÆ–ÝçÛ*É´EvHηbí• oª•÷›{¶D²Nx*/b:~<+ïO:êá´4Ìݬ‡âúÁÎ'‰ghwzðLkì•v–e’ĬܿX¡1®ïÕB|ÿV|ÝöäÙ¥SÌ$îª|ø¦4IÖª“Ð$Îê¾Ñ‰gE­@ DvO”DI)ØIN-®ÁU×`€3©QóÌ/Ñâ){´°[\É’ŽïºÝæt÷AwR¨Ò¯'è½_iñ»ƒhŽ{´&ø1oo”ßh‘$ÎéP}àˆ·òyyÕñãµ9+ÁY§Ó†-R¥ÎÛzM–|Ërnîé(³ñ¶š_DYÌuií Zà\ñ5ú…ûªi ä 8rIž=ó¬P~b~VÛÚ¯Ô š ˜±–g‡,YäïÞ@ó»õÒõ…´ñ²€mž«mün+%½¶¶Áf±o; &ö0Ãèç¯67WÝb17Wä‰fWì >Q}νš<Û„Äù¡…²WK*GMëD$¹î=T÷÷¥:þjÒª+(e‡«ünTH“õ3d¼í VÝ"h]ë+­µÌM9Ýu_}¢ Ø~ÖcµT'GëÍúúf-B>ããce”Uƒ¦QЪJÕZðä{—”HqÞº×,»€•XœÐÖa=§^4¿´W¬á¶f«òqlÍWÚ³V¬¢ŒÑh·NÔªI©Ú·­o¨üŒ6½è‘«yXçj±ãýùa!´pÂF Žö¸‘4ñÆåuÿ²ú—ÛÁ6Ñ>M<Ü\¶‰vj¸ÙW\Í9~ÕîÇ¡ÛÞU;'Ç*G{«¼©¨‰xh¿§®NBà]ß±/ÒxýQ9«"@mPFy½PŒA^¯ÚOh»mž°OÛD3s¯Ååë Õû—²Nòe„ùžðPä2͵…š'6·jÕF'“¾…Q3}{ 'ãô˜5£‘|²ê¼ñP‰BX"¢Ýz'KgFš´¢Jvmž©ŒUŠ™Ànï·<ÛìçÞ³Hv·Ez–uˆÌÞÙ){õVèGÉÓè7­¢‚nx5­VsŒÛK«ÓS4 1ŽjÕS¨ß¿ƒS¼>ðÑ7jõNë[±fY”­¹MÁ©ìdËjíMâ-¿j/ŽøCU·*ü êœ+©ÌÓ¶XÐjo|ç„Љ\‚wž3Ks-ÙŠa·M'.²‡4›dIµlŸ<×¶í¨=In%Wí‚&Ï ÿ’þOq…î$¤é’͈†n²•×µý˜¯ûûM§ùõþ%² Ÿý@«H«ù¦³çë!ŽÌ¥'$óÝþ N÷Ü=´ î8´³] z\² ߬¿UwG[­xæèÜr“T&´ëžÝÜ’ª•À뺤{dz~¾ÃÚ1N ¹?Vu/­#Þ;¶N˜î匦©Œ@~½Ï)f™ÎƒÂ¼ýò†Wtr¤ºkŸèðÚ˜ˆ¦+ôl|ç[£Å.çZ/%rùH|—§æ;¥£4é jŽÏª€/芴¥e4<ξPóËÇŠ/,‚>*o(½Ó>òIÏGIµ.©6Ô-}|Ö›•‘ß’Ö3"—­÷¨›§‚’U“8p½Ýs)ý>NÑ*oœ÷xAìÖ¹cØjí¨æ÷Uk¦m®Å³¢G‰˜xo³•·½Í7E+¾µñŽ*ïm…ô°+,;¸‘ÖbüóW¶‘†¨€ (ƒ²~kúë|Cý²8Ry ö)yßNÙhaƒŽ5PÔ­;ת̣ R+…4'5•M6)ßú’ÙI Ó@ $içåé\…Ê£ ÝRªDgÝü9Æò–ÁC+u¤‘NMSö˜·×ÞUЉ—Q~бC–Ä7í‘ßÞ] Öcï=?¯ç+èm'@ü¨=ƒQmÙ 4G3'kobµ4ÿ2ƒ°$LY‘'i 4^Ï´ö3Úzçƒ?~—qXÿ«çBÏ|¦OdêmBjKE^—·rºgi-–á1<·û-Û=ïÇ›¼–AÒ‰’ʳ!-‹õ…äe¿k§½réÏSRA>j¶|fõdÙîçnw,˜ª}vi,ëöɬ;tËxkö/â–wŒ«N¬ÛÔ7NÔìl}¬a vú˾~ݰ@Úº]ÜâX)„ú”˜ÉÝçØ) /’»Ší”È·>,“†7JY&{æu`µuïÁ¬xnZI/7|^VÞu7ß›ó¨p{OÖ ©æí3ä—Ë(.£ÙêQ)²Ú£¶Å%&ÓR&iêY êaû¨†7‚v¨׆ ꆖU©mµÕ©BK{Z:C«f4î½ÚFÛ=VÑ[“ ¥wÚœM[°-Ò]Š-”ÓÖ‹ö§ÇÃ&X(è»9l½ c-Àeñ·1k³ÍGs'åÆ:ßh;iÑ;Ëùà;»§BÿÈ+÷w§˜íw¨Í7o”Ó͏µjëÎwm‡UÍ©æ´=ûê´õ´K + Êm×¶nú4û§nÜmD³oÜm±q² ZU,Ša¤ðdÝâ¡a ø]³$Ãnt7FñK·êÀžl“œ¤•X»ÒJÉùŽ[÷¬º[»E;¤ù”ëÖþ!ú&¹ý¾Oß²v…ôî×\Îë†OÊÆß^­øõ·G žY7*F¬zÐhÊ©ú—õ^KÙ+‘×]§¸g}éµ\u¯æ&¸ © (½ö*s¸Ÿ%Çbó`¯Uyki™æW‘^Ù¡d£A6:ßh‡óÍ ö(exî5ÛŒmB¯t­Iª, 8Z6ªt„ì…DšìâŠæñþ¶êɦÌ„ Ê^³ÉÆï¯½‚Ã[þFý^ßàHÍð{¿õ`k÷ìëÌ 4#ßåž§­¸®¬”[ñji2û潚³ÇOË|Ç·|x6&d 3õæÌ˜qâ®D Î[óù†¿GO3•“šÖwÞ«³Y´UV¼¬°†·ñ¶<:4ü7Þð´šø¦—‰> TßPÿí|ä“ᦃï]zPÊ.GªVÙÞ±gr ¤\ÅYÈÕ*®ƒ'xרº<¤´*=©k·NðÒ³ùåG#ŠfëØ7jo¨þŒ6¿å¤|ƒ»½_¥uNèÓ¥µµ&âE@Ò|HéX•UϼR2 ñ½J$šY+MÞVÀŸº(y=Žj°q 8F»õÜLn¼gË'Pz£-Î)h‹9A»ü Å.å\¼qÛðך(‘ÙÚƒ_w×w¤Åk׆§G¶Ã‚åD½qÎ…Ð ´ú8Ûl¬cBˆ6Twfsi…•¯~ùÌ—èÅc…ýÜ‹GrÑ)Ôv‘PWa߬ ²%Ö þ=o‹Ÿ›8 ¬û<Y áʶ@it@É<°ç`–˜KÞ¬4F£±Æ«PPôÆ´Õcu:5úQ{!Þû .“µÑèî&C5ëÏñà=FO´jý’´·FT‚Vô¢®ñ6¿ÅmŸ@”AÍH¿-àDjz î|á|Tìœèw—Ò]ƒ l¦\µÇûTË{+ôtñŠŸRdw!8¤0š…9StŠÔ¸ÇD5ePÔ ð ïsë¤tÛÎ74ßh%÷ ß™¨xö‡<”÷:Ïv–,x+jɱ­7É•ÐïÍ–ßìY.5ÿª¡¨î»÷¼$ ºK金6æì¸÷Ç‚vxÿl’:AãæÙnËŽ××-Ò/èÍÞh§÷ìÎ×õ7´óÕoË[Nù.Å{M§ ­º§‘×¼ÅsO4ÉÇá´]'iõÈyÚÙ{ØŽ‘Æ…$éQLÛ2Áë|Œ^ÿ®4æ‘jÐOÛ<ÌÈÐJaHwÉRÁûhkºÐ85´Dð~èa$‰PL;‘J·DÐ/ýººi‡¯27µ¨uäS»†¾íÚk)ÇÒ¶]û0øàíÚ¥‰K+­Ò0ÑÏ]{=qHÉ¥hÿ(ëÎEÓž•´Ѱ¬Aæ|jü'² ¨¾¡­y‚>ÎÌkâ¼Qf æÚ‰VíRjÞ­\›8«ý•)9Ç\áÝTãíA›’lÚ)lø–\B£qT³¾©¤“÷8x§déÉ;2KH¢O!6-ïoÀCô›KjKpíãlÎ5[a'…×Ԉ͠MÔ=ò9hÕª+þâiqðÊ_–'ÝoÚÝßã:PÜÓk£=íN¨›oK7íóâ1ºqÞ²j€dÏÑ&¬TN¾YDmÚÜŽlÃS&K¾…h×ê9¿„ ýܽkq“%a_è~ŒoÀ7^–ïTd‘²;é„·éT%UU~”ÑýKõ?½—XÝ”…ß™2¼äß•·\½Ê{ʵԊï¨ë$΂›ß캲WËí$–…w»|²Å¹vãÂîƒÄw´ñp¯¢³–Ì©‘c­¯{HÉ«{Þl6î%˜?<öàÏöÁNåÝ9Ý£l¥3(Õ¿»{m¨|ª¬“n`40$­'²ÑðŠâ¼Ç³«Ö‹™‘,¡emfú³çÚ o‰7o á9…T-ÇSZû%T‹3–‚ÅÌ}ÆíëÆÍ Ì« ì¶*=$[é1;¦q?«á?Å£D$ˆç„V›¿8Æ÷ôk Ç HRŽÕªkjÍÕœªAy“²Òõ­·œ/zibÀëHkÉC[ØJµ"j ç,“¹V–›_ÃY×!·Ì|Ç(ôcŠRçÖ´iOp}=Q~=u-ºW»ÎñŠì x˜§uPUd"úW»wÈÈ…hµ;‹ÕÛ]»ÒxAçríB|dëiÊŽ\i^»n!$­ê¹¸šŸÈßA‰ÝÇò'u7%;+;WÝ-Èò½äþMÎÏ·½ÂMX[(x!¶…r 0ysˆëˆbdŽø¶}²Zr48*¨ê“Ûï.é OŠÊ#«&ë[{\îÌsµu1q}Ç%IzvH£6®ødŽÑZ×Iàq8ÏbÚ¨?ÒàF Dó2 |!¥E]š§ÓT&iWí8þ{¢aJáþ–Zw®uÎëB'ýu©Ü†ärT ]ÓÈG”i}÷Æíöwp&5~'ÊøVŠêÕÊ™×=õ=uvçš©y§v‰ºnTýKFõ‘Ïá\ÅyJ;Í'CµG©Þ’fuzoŒwÑ ÷mÅÖ¹mÚB_%KͼûµáÉƒÝÆášF9hÅgkTÜ8@¾O‹ÃÊ-ÞG/Þ nèš3#¹5Ó(¹zFR2¥±VÁ7{#O#Î@;¼'ƒvÈ./Nô÷±6)Ëü¶d¥o{`ÊFb'Pº&q‡fö7{ ãq–«ZŸ¿Úó#.™}'kͳŠ]´†y¾zíRÞR5[ÒÃØ¥œž“Ô@ZÉHFt¬… ì¶ÇHiš¡]+4êÇ*‡È']çG^çôcX3EmmóUÿ2dr¾k¿úD÷©Šü•vÝ·â z×î}<k]'ÞöuÐuK:Yw¼ŒNç#Úó-§Ó¿ŒR¦ëÀâ}»5ïÛ­ÕŠîƒõ¼móÖˆ¬×–ø®OÝÏA)5=ÐaíÝßÒÂBcçj©¯Ûjí' !ëiÏZ7E.Ú>hÕFÒÁÆ/ýŠ7/o6VIÕnôÊç ¸ù—Uö:€78Ûî5Ù&^m®‡­ ÂêГÜz™^ñ …-A_•Ó¥¬\õN—÷½ ÛHpLQï¥f²hæ¦Ä"ÍA©ul‚²ÙÙ”óƒ2+O¾iQaõ—‹Ko/¯w»vS³n9õ²×VHÍ»…öÒ ûK¼BîE'~ª¯ût Ù–ëÑÃûì áTç^óy窑ä‚çº÷YF×y“j«W•Ñ–†K§ÌŠ Õ¹GV\WÈWÈ=¦³)|3‘–ý»ö²Ì¬ŽÀ€À«ÆI–œŠWŠê›[/$u"Ö©}ZmÈ®HÖ9aVnPs5?P%´Ã‘Ïú–åªïü B:Æç£Ûo¿Ý~Ç ÎÔê½3dÿwsôá•tÌ)Öe7ªo´É9)u>òÕêE{¿?&\Ëm½(-fPÚsŠš¯¬vp:^Á÷^Ï¢½gÓé@’켸tí¨ ­nÔÞPým~ËIù†„Ó´ŽwQ®ö/^&º"Wx[gï¼®I˱Ýâ›Ó#ΫQNµåz'WnHà¾'WûíÆ¡Î…WÍãP,W|fã,óD#æaèóuÁ2¤JÈCžªx×Q-5VmF±4ê7*çý;Ëm®pºý<0i¸²‰ÚóC”Ïšt½Òç’fÃÑR´P:v0çYƒñº€«˜ ‡V™§AÛÝÇùu#¬>ÓêæÄÎIús°bP)´knKc²Jÿг‰\´Öì–¥_áÂr¯´¤üb®ëœkÞÚn–ù~+‚ ¼eÑß2óo^çJ¾¢¡xÉ‚+Átzlßù]¯ÄX't|óZ¥ã»½9bÇw°WÂM«ëeKàß–Õ̢쒉Œ,g3u2ï»VmÖHÉËÝ¿DÙ—Í”ÈáWéæõ=øÕc^1Ó8gª§âêá rk Í&îÓv<2Öé?'p•÷1¿ñ»\[kÿV½Ûi)\Á`Ýý×î5oÛëãøz®hâ&öŽšV§ð(ª£râÞJ£PÇþjÎaX;÷{…¯ñ:¥o«¹õ¶%¼n¯Z ,b²-£¶ìžü˜ê_ónÑCFTk>µ's¹' ±0†Ò'#ž­!4³ ©¨/kx‰v #Ð&ðQá{ K¬M³Éò+!uÏ—­Âzîº"£‡ì×Órx¾l¿Õ±mäêôy¾e]•TœÏ‘""À–ÉûŽô: ž yËv^·à.2Zµ9*Óþ˜×šGÒ:Åý”²§Ø5á$¼žÃò`Ï)fÙTKVÿ¬Y†EU4Â_åÊm&\åÚÝ#ì8Wn(PêB¬±O¬Ÿ÷®ˆz¸3X¶ §A[Á‰ÔüDo”õ-ŸêßPr ‚–>—*î—-áÜ¡6½½ê¼Ê¨ é62ßkŒxéQ}‹Ž`L¹6,Nwy6(T!òáûÜßOšæÜ„2(ƒsÞ-ðhæ3ødWÙg»Ç8Pð§WʧÐâAίxˆÒp쟫c\õ“°iƒ4jwʱhŒ¤<»gRz”o.:÷|‰|=—¨k²!Z´·Pû˜÷Ì{&o¾™÷ åu Ï£¹¢¶{ÜdU…^ÂJMÅkržÔÄì¦èòh×¹;QyËÒñ_¹ܹ½QýR 7ç =¾ÇÇór¼å3ü»†š®ÁCõrk¯.MGOwïÊhöó† —y=o¸{\ßne…²J†ð=°U'è|J›ÞH‹¾€GoTÞ)?ŠV¨ï¼rÖ,?§¥E¹õ‰äÁ9ŸÒâôž‡d‰Ö€â£nKQ´Ý9RÇ#ßჾ?Ñ œq×Sœ%kT3–çå;!c2¯žÞqäÕ^åe=A½¶Œæ]S=}^ûj´æ=¾û«ðxäùËðN»û1ÓÇÝÚ¦íÖgZ{JÓÞµ‘ )ÏÚXZ™wV·F¯Å¬–N.H™fº.i Jæ›J?ÕËxi Þxö©U<{l3[ëÄFÆf×½û§O­¸äY§³ƒÎôFHÖ-fñÊiÓf¤â ÔüÚ’6ôëàÕG;[_ÀÁ÷—GˆèKЇ¼®Mûƒ=Õ÷°ÚàÖõrS4A Ô¡E²ðb”ðÆ2¨ƒ´Hʸx(=QPBÇŒp.Ý%VPmZÕ5h±y¸{FØTõ@ÐJ ´­Ý¿”ÜIΗqâmà ®iHº‘òC² <<†,IVIØFC{2~ý8ÉëÛÏÆÊo´Ý¿œši¨Pƒ­¤iìxÈL2z!¾3”p"·‡NÎâ5m qÄiZz’<³Ç±H-ãþ*(eu×5~×@Ýv‰ÚE;ã–~#h¬l£èŸÉt÷WÔèpêÊ7–07:]ÖüuPCxO냎Z«û -VÕ_ô-žßÝ6ûctUÕaÕûƒ3å…47'(ä|n„¦°ÿrÂFžåž·5aåVê‚ô— ªèâþ©hX<«×êýÖ“žå®´í§*‰9R­å𵎛´@ 4_Û~«>‡çÎÏr¶·eiew‚@µ>¬©Ä¥×•7Ô~F;9M× 2îùYƒv8§›+ú)^ôn>·Vj;,íÅQ²þ ¨<{¡±Z“fÀ‡4¡2Žo°TmŧÛV•½ŠÇ³óíæêz[ ð8ú¦å­}¼¦è¯mãÞ¨ùw¢}æ:¼ŽIp†Ú©|%““SÕâ"zÈ–£ÄŽ"¯ë67Úr˜ ”Ñž©¯­ï6M'ÜÇíÈÊ›Å>Å‹º ×ç0ÎÌœù@âxù†$§y|p£â/{ðƸ:òÀЙ=>5 ¥õY®9×-ëФ¼º5€ô&Û@›Ñ›‰Tzž2úƒgÆ‘Ì3ç-/´~ã¾Rµ‡ô®»¼¦êS’¯eämwIwz¬½¬Éºï•³ÆÒ/ñAàRú ì4¢È4Wb î±Ô>,›é•X¢XËœ´ë®Ë‚¼¦®}Ëm­ 2ôÚ´&mäÚ™õ=š¹SöÖ╚õ×Öÿ½c«t[þÝGäÓnÛ„•àCoËŠQÏ4ì!t<ßZ5ÛF¬—®´õnµró~ðö¶vI—A\ÖÊ]ûŠ®}ZfŸ¾úÝW—U‰‡©ˆ¢ûea|Åêó²2ñÝëÖ )F'÷Ÿ/ŒÏ½°(/„'§°'/¤(Ùxý»°â<Õ•¦ØŽK^¶kÐqãñB;âtZiŠ»¹l£ )^d2­¢T®~¸žôbUYÀxÝì_Xq®V‰ŠøW//T©uNñ2WŽŠ`@û†bCé=å…ñÆ‹…@å¥H—½Ø¡Å¯\,­VQ š¦]5ŠÂoTüË@¬Y/[^#ÂÛ›…Ý–ë[QS—\ 4Œâ—ã¥Ôò†Ò³OzwN«]ñÂW'*uhÝ{}ÇL- ì¾ :üVÕFEÓ‹%g òRÔVQ¦—"º^H|E¯+êœÞÎÖ˜´×7ÚiÚÀÏ\'¹V}…Ìò,ü›ˆù›àæú†&ñƒëƒ+0”)Ÿ˜Š*\<›W¸Z(£«¢ gϦÂo³çÚp$æ@'¨˜ötçz|³ò¸óIε;2ô]b÷#Ã/Q|‡ïq§.ú €­n îvòK—r>þË&{ !ažùÂÃÉôRüâOH­Å]qµ*dZ­Vò&c hñµg!‚÷â¼,Pä›TWy3Ñ(æíä—¤i#ðjõ‰4”Ïô52ó¶¸1ç õëžÿïòx­¦·” ctIhÇ=¹j™fc î:DÿÍ—bœ†,úð#vžûé¶µ[îÇùÆþå]N=9sµl”‡å-]Íû„óŸúɘà‘à–¢ø à¨åBØ\±\ -”ù–uNPÍ׎¼üÀ4$æv®çžû§¼AKŠ»DN ?WŬ²ž¿µ¢Ãé5.³]H‘1’ëèpËVß–Ý—ëwÅ|ªqˆ§ÔB ú„[„]oU.̼)ôCQ¾±‡WKW¾Š>×/4TÊún.ƒ\×}Mês}#âÂä…¡ ŽfýÂ…Í EJhNEðhÖ׊N(}½zµÂ|OFRŒÝ„&GºÄ>E ˜ÍÊQqtšZ‘·¤‹ç-u¢5ôocF8ÂùAë&{ÞefmU|xô™¢|tëô¬è¼1sy.R¬Þ=B!14&ʳ3ã…´+Ïz¼¿4fù‡ R$öÎHÖæš×—"ÁnŽì¶ñðLÌÕ—z6IÇ3¾-UéQùèoÌ“ˆ'ܰ\Å”:a':¦)|­¦Õr )¶ISô¸˜i™¤¹¥è5§ìEz¯Ó­Lw9UñãßðÅÍYßHn,e£¢`¬žS4·æ<<¤\Å}ðlU\¸A)Š;wZŠH'MK‘v÷¹$ž¢ÇÆlÏÖ k®ß[¹]+ûà•þHmÖñ»j.&WŽP™eë³9Ð@Ùœ[­ƒ¯óݲ¬ˆ¬äšÕë=ÊÄw’û ¯KôeÐ*òm±Ô˜÷ÜÍÒ¼æÊœ½ë+™¨Zçädž¨¤N¸©ßr©ÚöÍ;øÉ¼‰Ó¨i…×$vÌ¢tÏrÉ0Gú±µã>èáŒmZÑÙøìéòcP©ð„~Yv ¥ä±Mw©E±‡¤±µëÖã¥HIÁ=§ÛUÓÝâ‡Ö«ÒåÙ[ÏÙÅ|S´í¨æp¯¼å!;^7Ê j? \)H·ÂzJ>ËWò»]àn¨p êBÔ¯xÝÊl"ýÒ/(mÖo_ñ=ßoQ•G;ª ”ϲñµ€Æý²ð¥0Ÿ‘bý¥(/"µ#E¡µ[Š*¦Ÿdܪef‡Lq ²u¢c”TÆ ·ÚŸ(™6°,‹ݤ?òõj­)>Îa™Û@ ´j”l÷7EAn)BMÂþ#öŠg¢ã²`ï9žË¼5€Þ‰ný¤e ›»Éÿ¼÷'!‰nTÞP~§%mµ* —‘_;ŽtWlÈÞµ®wü®»®ò£ÏŒQdí„nv|ëf÷²04i’®T$šv@׿ˆü-í<î4źÑ.C<´âÕ%£ÇNPµ–«w«êp‹C§5÷t\z)ÚNè¸ñRü™@Å£ýúäi¼|ðž(»9'[êâ]ÙÔå¥z¢ÍÌ‚‡ÅŸÙ[sä¥n›îyÇ댞±‘¥³ùJÒ.Ãa-eµ)J³&¬ŽƒLݧo’g)J³z*d óHöG9žv¿^dGÿg°,’I‰ïU^pW˜(|!iXŸÅ¹“065óó´&8HßÐ0m»GøFå eÓê·‰TYÞÊ7›§‚í÷>S÷àm<×}èð·_øóNs{^ŠÝwçSÔ?·í52·œfe­=°o(·dúÜ1ÂhŸÎ…Òêѹeø K L–ÿÔ|Ëû™ž2T‘×óbþ]mMí­ÎiY,ÔŸ”ç´dVêCŠŸ’÷Ö7ÜEŠ®žïJO™.}ÀZ¹K#°óÔ¥Ï;i¤W_¿;rxq– +ž;7}ÇS<ßP2m`öüKÖÀÎ×癀úK1ÁVÝ_;.I´¤¾—$Rãwô^›m&u¼§dqòKq½‚«£ô ×*˜lVÆV1š—b4=Q}Cù–´hSr®õ¥ØQϰ‡Ž¯œIŠ_îøâ`OÑmf¿Âýq¸Ô[YÖrÇA¯w1sÞ#Ð_òõ¨¼[+P2’=<©Šx¢_nÿâÓ\pî2›kíRü´Í…ŠÇ©v±8¢ÞÅ}§V÷V¿5ÃÁî'/sú>ïêŠý%ЈT¾ó“›øC–Ø4÷JVx»>uä![T´²~½ˆo´KñÌ“-ˆíÓw§îºNðùÚÚ?•×ÖŒis¶ä_yêÆ¤9! »º¯bncAé 4±sÓ•ÒÝÿ奸¢´‚ÎgS³vcg/^ï>ä~>ßõB–ž„²4¬ÐÜ«EãrkÙ\Ò ÛÎ’®’Åå^ØÕì×l;‹ûð<î $Û*~Én]1Gqk™ÇžNPÔaš¶»íÕ8Ðx£Ï|Ïâ~a­È='VÀÂZƒžÈxÖ§Qci‡âS^饆VÙßw.ÒNÍ¥Òï¤Õ´Ê.Öy•4÷‰y š3»mŸn­«>œÙvmÐ÷¾h‹-âLjÔèà[¶óiÊ~øêʦmæ@Øç¯]^¶Uw¯àȹW'ŸïÚ%8r¾­B§Ö‹§uýÆ”ùÚk §UvÊLÉó+ì”é¸ë±;3“¬†Ê·ftôÂtÜõÕà@õ‰ü”§ç~¤!Ó™ûSgâÌýy Ïè¼ÒØ!ù¨x~mó o¯@Z£N,¡"Ú—×ó@Ч·ïõA7 SD¸“ïúèá©èôÿ<´êŒ1žøqìöh“ROÚ«Ý =ù.î'ímTúi‚ý[Œ½¯TÝÐ/u*ꩤòWÏè|>jw¡ìz¬Ò°•fÚû k,RñÊšÑOÅ6k#µ¾¼+±Qÿm§vÅc“(e¾î„™YÚ콆ôzçUíùIÏÞó“ž?,‹Ï—â¹êF·d~¤æ'r.·¼§ï+Æ;‰DH‹US”¤ˆ:S’VñF’5ƒb€±&ŽS;‹ŠffI:vÜí ž/Åíðj°ùÎÀ)o¦³xí¨>¿ï]ÇñRÜ;Wöe]¢×>ÞL¼¡ ÜÁ!W‡·ðÍìçwó¶ ¦Öúnþ½èÎmIÌ8Û/‚ë›_eϽÃ6HÈ­!bÖ+ödòI¶]b®É:9(!{!Ú÷»Êzãþ>¦åNž¨½¡bZý6“ªµ‰ê6â”$Vܸ"·$±|Îq“qÊÃMDk¸ÞÑ|3c*ÖIÜ# ´lሲpÍ<ÃŒá:)^Tc$ç¡hRÞVä©H’¼¹m›2;—ÝK¢‘Y-ë1ñ~Ԙᆆ4İ–wT:Ú¯•±4 ‹Ì¶°|ÙÅ2ûB•ïà¤Å¨¦„ƒV³|eŠV>7‡w¹8ûo¼õšò°8à}EåŒTUÌÚUÕ?èySŒÚ ÃqŽ®ZIÐËNs4­˜Vê² "žU‡š¢ot‚çVœïªCSTß‘#²¦ˆNñÕ°×åß7“;ŽåqaE'F*Íôø>ü;ÆIñ‹*:ð޲rÕ¾Cñ¾’v û€ŠH£ºòÒënÕ)¯Øqâ9OÆbgáú’í@Ñê8{Üi^C߸‘Z^ò„¾ÐKÓU¿ ^#©Úft¢öB²ö_¦¢ýdvGco„s²Õ®5Z>›¼Rã{  ôÚ‘ª¢ôÛFŸô—âjª bÚl¼Ðã»8Qç£Ôúȵ¸>ðýØ^Ø¥±­¼ünf×…äÉ·Øh¯›hÙ /EÓ¹¾Å(£«äñÖÖt­4E+Á²®Éy2¤ÇtþÆ‹)üõ†e4©k·¥´Z­¡)àÜEšòÖí[ªSþÀã¼L/Oýç[²üN;o[-MS‚‚C\Âtm¨Yþ wRËK~ÍUÐiÚVKb¬Ù²ôüì¬ÙëøáÞê Ý[ó%oòÛ"ÈÌ(郼­…àgæžü³gv-xÓ ZFÈ©Ø7*ÎG´äKZ”VËžÑ7– |>Ú5Ýqáá î¡?n‹h÷ª=ÔËV”šù´«“m Åîå¦ô¬š²–‹Ç«ª*û¬'dÑix—¦vÿVsfó$·Š)‘¹¥ú1ïÆ]sG‚µ$×É]èã5ƒQ÷¸ñ¸%öP¤y8æN£~7>IUâjõÐÚ]71æP¬w¬ðÁ*ªb…(bµ53´ÚŒòµþæû} ¿˜„C4^{¶ga®²ÚÒùd¬Ï]®ÓÅïXe¨¯nTŒÔ“í-uì<µ‘Ý¢½Oº*yÏ¡‚‹Ké·Œ¯¬àBp‹ØZ[¥SgUV†´°O¬¦úT©Ù» + ݹÊZ¨ÈLÙ#y:‡÷Jdƒîÿ°« £6AÃãû°Öj²Õ'›@–xª˜vºn[2¼fŽà%¯š‡b8Åžc ö"¯ž¨šV8?S_w.Šsuð‚Wbw™áúͶeÅ&Rqžó%ðKþ¿­¯ñm¦î³(ù°ºSËJÎG:zºklâXcÛã±9¨NÖ2§ü_# ÏlÚ§…çäàÅó%¿ÕúkÇ¿eyÉÿr üRdQ ··Ôñ†NÓFNåu—Àbfà'[6UP}Ç–S]ŽQzôIw+£L¬î3‘rÍDEL°ý-™û{È5ö·¼wNïƒË¿ïdgm(þÔù>xÇ– [ƽPËÉ#­¹ªˆKWiÈëƒù¯¸åG}C¶a¸Ú¸9‘ðÎwñí±-7äñÎ;¢b¡¾¡i¬—u_‚›‘sÛcH3¾O÷Bè:V†ÃÑ èÙ4>qá>HÖøÍ šÈ¤ô†B÷KÎ(ÆL'e¼ÑMç¨5ŒòÔ¦¾Õ$~©5ŒÒ20ëð)+»šRñ˜Ø}Sä©,™(kÞ;u±.ËìváÕìB¯½zËî7E¥ÊÙkF¡ú†ŠiõÛôÈ•°4—ᤤ÷óŽ‹™áõÌøÇØ ¡Í¡òúŽ¥:ä—_Ü<ÄIPö7.CCƒï 7Šãäí¿Ã ÎmOdºþR;­Þt¸w¹ÙzaJ«ž7«Žñ Õ#ªÀj÷Kñ¢‡êkÇA»åÝ–£ÄJÌ)’=ý¥Èx¡mË=Ÿ':á°¥ªx¾:ëŠÔ—Í/…MtÍ^ù,{+°Ö7¡¥dã í”ø¥Ö/NûXßÐp®¢%Ÿ•¦I ‰µîØ®‡"žÅñõ…´‚ Ÿ‡Îj’ü*:­!îê‘d1|·×íH‡¹­‘:A«>)úŽÞàm®óž8JºSÚ]}ävº”µÅË_ür¯Ý¨¢X#”ÎY‰¼ò¿nŽ|r8j–¯¯k\Ì»Ðö1ÞU§È7v_?ƒ+8Ñš"ŸsjYíÍ}3w 1@üÝü{Ñç¿ÐK¾¬cÆÃ¿ÝqlŸ}1Âs{Â;ä=U{õæ……Ï—¹¤ÆóóPíÃöþKc¿6P‘/¾Ã~jÏ›3¸¾ž¨½ÑŽËOà+¶ŸJ„78ñ®1…?ƒÏ—#)¼W<—ƒ“úëæÈòÙ9Eîï›GÞ¾¦UõÅ7ô‘å]»Å/ÛM匛Γ<ù6Ýö >îºNæM./Es JÛ\+å°m„ÇÎ)nÀ_í¤õòa·š.´#^œOÎÄ—¸f-k‚¢g|ÝKbN|þÊû•xÇ÷~%^ì½? ºõÔúøVÔ ß ˜ÛçþÜ2‘èCìPÖá[†Dˆ¬ƒó¼YM)É:á€líßÀÒ÷â—(£˜;dQŒ—üvêæ[Õ>ÿ¦üxëÆòªKκó•ŽW™Ù2Q:$Iò릱pޤ;I£~;Ö7Zw£êßAé|©ä³¹kG›=òÖÔñrŒØ#Ci­/GÙüž<¼õ)¥çŒMsG68òüFM”è^dÆòm2m~9ÒÍ‘µ‚È¥¨™Ëq ø3x‚ÛîUâ­¿uG­dÅ@ Õi!wH3¶>óÌŠÂZ©ùð ¦[Ÿœ^ß„¶™/G:Šâ¼ÉËôQ3Ú‘jÂCêQuNQrGœAnÍŠn$‰•M{"Ï”Ú^ò¦¿ü©\÷<ˆ$ϵþzשhY¢G:ñqüˆe (î¾h&ÿîòù|(úžÚÖEۣ߯û¡Ø îiòÚŒÖnòïl^RŒ™†Æiõg´Éù-½E‰ön½q£Ó”Ãm|¢º:¹ò¢Ž5†—…ð{4ùÈ-ÎÞŠ^JÖäQsYŠötà=|!ÅöÿëGÝzT´ÝZöú–O{t¬b5m ¬ØAÒÏUÖ3¯LÛЕ‰T¤­#²Ï¡XFݺQ‘Žd¯úßõGq8_Õ!¢,Šâ¦ÞÓ¼è¶PóŽK0±ÉêËQ6ê÷| Ú˜™1Îþ•ßeÛÒe{iÎ̶@‡ëŠôS¤©Š%[àÊ*[­_Õ~ø¾"ýÛª2E>¬=ìu× –íq›yÝ>íÅϪuy»F:ÍûX7î;ŸÁLW òž|ùÐîÔUµ /ÏÇòzT«yÐ5—t¡¿k´°¹MØ^vo`±¥¨÷»(éÃ(Y[䇿Þ<Õ©Ì{~÷ð..9÷,Y†ßïK«ÖŸXœ/û½·L®XÄyG(â§»·éOc–UïiJqM’V‚«µÛúeOmFtŠ#oÉQ°Tµ6JEÚa-óðµçC·vÔú&n`DËc}s€gä¸û3ä8µ,Š‹$}¤ècż–W'óËѪX%–hU¶RI¿S¼HÛÚœFÔ!9ɼÌBÇüñRR¾Oä³´“¦Ø2Êñ‡úD«Ÿ‚îÑ Š‘oZáÀMh° ¥ÖEÖÛM~Á³(ŸcäKÉmÚ¸¾¥¦Ç/›¶¼{d—z ý·FEÃŽa®¡cÇžQ«·´W‰wý#"æìY3ºgÑEÂóþ¡¨CU±8E%ªôCÄIÃïþ¡XFò̘¹HZüŠ5SÄA«ÞáŠ?°_ø@ÕH´ù™úȳ¸ ”Þ%m¦VƒÒÖeÊÒ“.H߈H§sqY±DU캂ý( ×è5P6¿Fªø‰9Q*FÕš}ãtëòKw¾Ùü…uUö<ˆ_&êŽÅP¬ÿð T‹ø m^’-”ù 6óL”ÿƉœ@›O«øi ¾ÅzÛ¸?(± s²X&Só¯îÈ7¡$ÌYU1jàŠFª‡uIÌùäևƅó+û4qâ¸{¦zÿO›µ2£Ô‹•Ý *‹&o+ûåè:‹8¹Ýöw…W»V%î];¢uI |0)Ò¡x²Dïx 8Ôx––ZO¯;ÊÇÑg.RÄZ"0îl^*¶­Ö=Š|Û°?·M·DÈêÉÎÜÑ*È­ô íÕ´‘ZM›Aã‘ëp°¿! Þ9t'ö…åþvš´BK=¨9Oé¤òÚtìH_¤ß%k:­D'zP-‘Vœn×'tm¹{oìf ¤~­âî mÆŽÓ2@ÔL[ï±¾QzÒš²˜cî\»sMæ­ ´,>ÃûËÚí÷/‰Ø³S’ÛŒuM;¶5ß_ï¶Ö‰öc-ëd:‚Ö+¾«gãBž§«”Y=oW ¦"@±—¥¸wÕ»^x†Ø©Ùs¼ÚsÆÏ¼KGJW¬5®kнú, áº­,Rl¥)ù 7)æPµ%>…¢§-Д^ûôƉ|ækÛ‹SžÒΟÑ>óÍÎw€è…SÜiM sWéüýSYâ][©Ü]Ý©âåv>A[S#U¿ŒYÙüKÕI-Ú€;ºµ  NYOÖŠ£§µ·‚kaOÙ]ÖŠß÷Œ½M+ E,.ÖíŠå¦{F7ÊOZSÂÖr®Ý¹Vvf“¢-ƳÉ/ 3§ã~É…uœ¡_ߨÂz‡|aøú Ç¸§U´ÓÏ<,ÓÜÊM±¢=ynP”I[ðFt!K±ºº YYfwïM§©§3ø|y<ËDÞp¯éª”é®Ï¥Ÿ&”ÓúzÒ®lÍ_hõÀ.HôOƺˆ4K&Ýë9¤“Ù·<¤ùAéåúFqc¦¦|¯cSuéh¼$MŠ5œÆmu$óNèã„<´*§#WöìÓ-®Ìþ„æLF**Úv¶UìÁŒ´UÀ¼µSÐöw“±¥6wéqf|¿¥m‹?¢”à±Ãedø*ß5ºVn±âHŠ—E)Ytè…4ùŽžÒÜI:'}-%tlÜB¿SÄì¤stî?¤8G‘KŒý$OÖáÔhÕûžosJ³ŒžŠ}¡A?ÝÆò(‡ñÑm«5©aäŒí¾cn¤}ò«æ.¿kÎõ¤ ´ì€ÄØ®OZm>¶®SK±:³eÎw¯ÓšÅÀCGl @b6Ë9iÙš¦Ü–ÍëaÕàÉim&9˜…øP\ÍÄ<—ÔNç-ýÓ¸µLqÄ )»¯Ý3L{N`F?/ô˜»Òš»ÄL¬9‡¸ð°õ>=â²ØÅ|ÜtnùTî=2tÿÑ_».‡æg2§Ïô†ô®Ìô~K2i¸Ã'xŠWz$ë‰ôq1’ÍÚîTÙ¡úeØÒ;WÙ–*SÖã!ûivx?·OõàlTÖšZ6i16TZoÄèÅŸ»§Þæ3-6#r9ñ…á˜M~Å÷ÒÜìHœã\(J(‘ò9ñî­ÄÝ€ ä UdâÕpé±^JD!+ÜIIxŸ(œ¥%^ùÛ œ©±â} î|‚¶Ó$-~Ö]Â;Yéâù„ï²—=ePü2ìÔ2ÍzbºÐú–L<ãÛtÁe%.Ûª d"y<åea^Ò´pFðHk?£}æš-‡;ˆösbRNÍ'N7ʉlã伜k×YG9›Êˆ§Hg¤ñ«˜å)ž[B^òJ¾×~3ãÁ¹bñ-™‹'–Åp8-lú#ËòÑš1Åf܅˳¦œø'nÅN»0¼ÄÝĦ2£U‰\«s=@ÑW1;K\w¹l+F˜?g¤j–à…JæžSåÄ»eÈõÜ·”×L9xkYäg'pyKM_ªÇ½cÈ]Ê TAó¶ÏâÕî ÅkÂê™Ìúì}Ë/T´Œ8e€œq¯HËÉ9ßlÔ¥I‘‹O$¹¹+ÎÙ¨{¥ÛAÙ´}óÕη;_ñã‘·ŒFbèNÌ¡QȼšFñKì6§fÛžB\D9vž…ÒÎÍQõ¨®Kq]*©ç¶m¾l¶tNyËîö2§J’§L tÍ?Jl¶ž;H+ˆjZáüL}|'Ïÿf ¤\óÖ?)7ë*µŠy-W/béG ù;u)ok’ÄKð2O—Шkõàöz¦2ãùåChÏ.q¦LtU)|¯rÇ¡LÛ¹œ®Z2p–]&ýË«½"?CO$Îûóû€NRjÓMdX"µ#߄҃‡SÙ³!tcÛ3êM‡¢U’3î–| Zu%BAY'ª‰†ÒµË“8³,Ä]Nì6”¸±H´Ô§ Ñ®4ÚÑ‘âvÈÃ^àb¼Ðã»Ý¿ JÚÈýÖÄYÓ.¿¡aw]¹ªU ‹nàä©t­½R“ €ÖoÒúXó­¢aÕ*ôúÀ–håÖªD,)#;Ïe¬Ñà<°p.žV¤‘âôT‹ßpZQº€¨  4zÍ¿k.žª´w µ8ç)nä$§(Òó…‹5÷êUÞ,b;Ê´·™VöHí_ró(ù£ølÞå?Üu ¶xªK²ªÑS}5ÎXvU\à ^Fvú8•0­"ÌíœÚxí>ip¡j׬‘ëêMb³'â7â¶'b(ßJ%J`ÔñÀRš,ÍîïOØ®,ûT¿›·MÚ²%º±.–|j’ëÌ—æùÂæÂé’¤gáT!áCìn® iFO=äg·-‰Î¹zmTéñÊŒF%èÜ:®„ÿ'Ö•Œò#MÚ)ó]šn¸Ë“ÎS]¶f‘ uFæeYÒÛv”TQk2F=Ñ·}H•,)¢ÞÌ–0Ò1Jmw_Kæji8ü‡¯×® dµt\?[O[ÿf}~øó××Ogk«_~ÓVeZûðÍ÷w%^ê—~§QËùIº†o×äªû¥BÏqÆ(Fé_¤ÍWm\™îº|øÇÿíëßþóϘçÊyÑTvUðªëȾ|ó1ªp景Ž|tÁ/ Z«·ÅpÊãÿýõWÕÒâ°öáþÍ?ü×ÿðÓÂKÜ~ø‡ÿçþÆñLþá‡{PÞ¾ÿß•ÇÕµé¼áÊáßü*åÿuQªJw³~³nù®Ü=1Œ)Æo±\½š¥–òŸm÷Å åÌ÷h÷‹[_kÔV÷÷’?|ÜtUhÃüðý]¡¹j³Ü!æˆnÿñ²&¢6Ÿ¯Ér\¬r ÿÁ ÇXóŒ9p­þ>üåO‘ÿìWû¿ýæ§ï˜—ºøðí¿e°Å3¯ß®—Gk %úÿÃÿ§?¯Q>VJºZ5æPÊkýý7ëge%^ùÕõþŒÄ”÷¯.A<ü7uÕ鑘ü,¬ßÕ¨ëïÿão¿ú_®z–t×’òÒPG;ãc¬’ëëÏ¿ÿê**—/ì1é.«!¼®O<%?_8Þ™z†]àœ„²®¥ —¾5~+Üâõ»r*-<†ª¡ÕÒ¨‡ðõ[jijZàœ„(çéÿÍ’èÿé’ÚW·}¼ÓW—}¼ÒgôPMGê¯÷?ýÝu̾ú_¯™ËùÝ|ýþ×_¿þòq©·[ó-ûäÒq6)½÷ÝŸ˜Võ¸¦ØçPM}ÖŸ¬7Ö4®1 .£áfÛ˜äæè߬úùâûߤ©ýôÍçO{>8ƒkÔÑßÊ`ùazdp ØOß,’ÆY?|þee–¨_ËëiÇ[^Ÿ.AZ¢äóÃ_?þ§«™—¬øEžë6ãÏ?Ë3®ŸþZ†¿ûã_¿ûþ/_/iY.ýùå9/C+Íù·sî¥_Ë<_JàÃÿÿ?”Ädt+2ücB=²øëÇo¿é\/ûãóOßì:­=ËÕØKÝÏUú/C9sW;Ç×/7æ¾Jf'¢à½„'¡‹fC ¾pì™zòZR9ɵ¯px)á·ÂÜÚ%§ðW»r*øP˜DÕCøú-µ45-pNFz‚zÉ¡¿·&ÿ+$ÌŽëœy=›•„ùówß|Ý–Þ>Îß~¼8±¬yrYÿFBYvðwk2þª´YkÒµ[~ ‹·">]ß×ì9LJÿº§ÌeæË>íG—U¾~ÕKúðù¿œÁµýËgJɱF«¬¥¾lœÃ5Y)±‘pÉâÐœÆ }úªà"Vøó…ç×ÿYädD9W]Á×j ÅdÜc³I9‚(©œâJª‡ðU.µ45-pNB”3åï­ÉÿŠ™RÖåâúŠû7ž)_¾ óúªï‡Ë¤þ9®z¿ªõòÏ'Å3·/¸gÂeTül&<)ÿôÝO?ü²àkÅÿk³q]$|S`oÙýþó—¿1›þs“{ícüJ#îéü_b0ç×ÔãÊÕ—Gìl¥RÂÄ;#[*ó–yü#|IÏãxàÌû'ådD9ËÌç.©mÌå"åÄFË-»z€/»PµµZ@Nõ­¨þÞšü¯1…שÄeÔ¯Pš~¿ûãO?}÷-«Õœòmn]Vf[Ælù§?÷í?±ýrœóAÛ>Ö¶Ü,mÒúüÈZþôKCö|.fUë2ïÙðM™×*áÃ÷ßýî—úÚžûYF×ܹš¹•g¬ôe£úË—¿|þ…Þ>öEôÿÃ,ŒkB©‡€ü²ñÀñý%d7+q1t3^žqÅîf<¼! —õº©9£®ÝOã#îN|¾1AÉIþê)fÊ«¸j¼ ]¡j®<Œt;#ÌÁ¿¦þkÌÀuhyuC\°’øã¿ý ›µ¾|,5¼'ZúØÙÜÿãOß|ÿí7þz~øv“­Ó•'Å_¾-°0%¿ûþ§_j¯«wÛ/˜zÛ’Õõ‡o~ú+ëÎV/Cð/ßýøKÝu̓_Õ]}m³>òûOßýñ÷±•y–öá?ýÈŽYí)\nò?~ÿ»%-b#¶\Mai~ Oýðݳ“ òów(Èóìþú]ú!~Ž}ýÓ¿D[¶ïÒ6SÃŒ­Ä%j1j+áyp³u#®áfë6ãÀ\¸ìX9™­…ÏóäX|­?ŒõBf½ü$¯¾Þ]¢PE^eSÿá*œªîÐŽÐÅÅ|þ{mú¿b~ÇFí¹ €ÕÚó‡kŠK#^ËÙO~=ÞíÍßI#Žñáû﵉\®©ûyÿf5ãfñàð‹ÅÓ‡ú§ù/õ_‰}¿­KËRÌçßÔ¥ßþñ›»èßÔgÙÿñ?Þ~ÿßiʆ—¡¿Y༺öiÿÓ7ùç0.ÆYסĹN8ú:3úE;:¦ü¯´ã!_~ÿÃ`‹Ôú«ûCcé{C)׿ÿÓç~úùæÐņǯ섽óCtëq„8ŽøÁÊò_¾NŽy‘ïE£õ`‰£lëHÞœìùW­¶ç_™qSQ8–Ù9QŽ}×½h\8A(§µ©›Ž£ ëdjâ?¬ucTtÿ@­PnFºLv¯•ÿ®šý¯Z/·mRTÙsøÿøé»o;û§‡­ÐŸ¦ûÅú¿¿(ºí㾓~úó¿üîŸiÿå];oÜ0 Þû+2º@ø-kl3èÒ½‹›8é¡ö9¸Kè¿/?>$;ò=d¼-ôY”äˆ"?’¢ðÝR³ÚW⹆©e,~&No„Õ’¶´Ï‹MÎ5.Cÿ4ƒ7­‘Ó¾±;a /§ã~ƒG2ÙJg­àÅq'?„²ùqÓíÎ-Chy]râi X­S ÜT C¸®¸dZXízKcXíZgÖT²Ô;RNFI?ÈQºäd‚1Ð…Þé)œŠFokzê-´:¡©_¥¾­3PNJI?,à×6åwwÍÆëVdÛ¢ +±yHåÌÝvç&Šë–ûÌéa>%í=f»½ÍðI¸…þýžá+ÐÐù °{‰X¶Λ⃎/ÂE¬±k`Lr~j…ø™÷Fb'áŠÚJDsF¥ ©S ¼ŒrzÐèÆk„Ñ|‡¢qjÌWÅýÅ‘ˆ< [Ò*Â4„Y$}8]ëÔ/ðzÝEp œTPmûr K‹ž¤’Pá[)`©œ ôƒ’+½ŽxeÓÔþ08z‰ï bHRÉY«iñYõH3¦/S!¦¹iP—€óúo(¹V·ÒœKƒh¥‹’oG`Náo=å¯tÙµÖRéRBRuËqðP{QŠŒ,†>€óE†©l Ê,’Z… ~§+œö;“ƒO‰ÕÐIº`e/µ…ùï5 ltIë€N/nZ‚ÂÙ3AÄzÔ¿*®mVKúÛ‡¿ßS/Ðendstream endobj 25 0 obj << /Filter /FlateDecode /Length 417 >> stream xœ]“An¤0E÷œ‚taÀî–¢Úd6YL4š™ SD,B#ÒYäöcþÇD¤~ˆ×ü*Û¢.Ï/?^–ùQ_~m÷ôÇõ4/ãf÷Ï-Y=ØÛ¼T«Ç9=Ž'0½Çµº<ÿŒë߯Õêü‚M|~ïvùín0 3é>ÚÇ“mqy³êIò¥OS¾´²eüïïÎ15L߯·zÒ‰Buz²k §'»ÊMz²»AuŒ#ToúMz‘½ßU#{aR|C5i¡xÕˆŠo©¢Šï¨L Å÷PâÙ±G­žµjõ¬u¥µP<öØä[¡øH•´Pü@…Õ{®>A…^ ÅT^ Å:vœ ®èJ*t%ðpnظŸ-6Jàá X(‡“L òpRÐB ØvÛïR\¢òZ(í@´PÚHuÕBqFuÓƒNœ§ŠzÐå}Q z0«c¦³:1éÁ¬pªm@0 è‚ 8–~Ä(ßåo½PÚóSe¥}.ËÖésÛly`x1œûP΋ó½Þ×=Uç_õúPý=endstream endobj 26 0 obj << /Filter /FlateDecode /Length 67 >> stream xœ“`P```d`à```b``@ Œ J Vƒ ƒ' ƒGP C#†JB€ý3Æ%ë@²y£` ¿AHendstream endobj 27 0 obj << /Filter /FlateDecode /Length 14383 >> stream xœí}|ÇùöÌîõÞ‹NÒÝé¤S9I§† éÔBq  ‰jQE3ÝÆ¸È&¶ã÷8& .§Œ÷·\âÞbçŸÄU.‰í8¶‘¾wvv„À8ùåK¾ÿï; Ï=ÏÌÎÎ;;óλ³÷³F©ÐÄ#OÏúµžÃ«^™%w!$½ѪÅË·½Å!$[‚6°¸ïüEHø+þBÙyKv÷~Õ|~¡7ê¡°p hïŽFÈ|-ä“—,_»‘Ö¿iBe¯ô­ìé¦ùŨ>sy÷ÆUÙZ!Ô‚BϪ•ýkG]èbÈ¿"ä×,\e^œä„üWÐ܇ÉoFhä4þoZ†ú¡ÿ;à¼Ýèôz-@;AíA·¢;Ñ/P=‚žD/£ãßÈùÒåHÃB2dFhôëÑá‘;CRݸ’k g–xN•ŒF?>£ìã‘kF #C2R çj¹ç¡ô/øäè×\9É’‹ä}ÝPÐ=® +â¢ÚÓëD<]B5Ïé5CPsÑ5C´fh¬&6xJQiV¦§Æç‰¯öy†ðìÖvл«}žÈ° ›-ñ -d¼^8ÃSãXRí‰à.OM¤vý’š®jhoP­ªòU-Tee¢A•¤T$Í·j§•aApi59¤Ð’¯ð)5ݽ‘i­í5Õ.¯·C(CUB[YUD.´åYJúŒ.÷ f>ö8"M1ø<_ è¼oø£ÓKºÅYŠá D$¹Ä13Áq¦ô z×çõ’¾\>B ÙÑÚNó´ÀE¡` #Âu‘#³#Ö09²ƒ;½Ëç%·ª¦Kü·~‰#²c'+¬/üKpÜáý] z–î^8à«®¦v›Ñ Uƒu‹×Z3˜„úÝ]pK‰ZÛ#AߪˆÅWI+@‡Üƒ¥míÂ)âiKUuõˆgE‚5Õ¤_žš®jÚAÒ–¯µý0Ê}{°ÀãÚŸ PéGÄV7Å_3ÐÞ»(âîrõÂø\äiwy#¡0_‡¯}a¹K>C$ýmø:¯ðÂYpmgÔf•É•ËSžvÎÅw»žZøðU–ÂÜ.!Kîhe©§»«ß"Ö ê´v çTÕ“C<9µªÞåíðÒ¿¿Ó%—Ø'iJD1®-Œõ‰~Ï9»Fk“¥{jVëàiJÅŠ­½Ÿ±…øÅp†‚ÜÎzvˆO™ e4#‘»èðDÐ4O»o¡¯Ãc(4­\±µp›Ú|M­³Û…»-Ž’§åèñbš‹ /f® Æ`mÀÅn«¯òcÙú37°Ã>Ò¯ÞAħ¡ìÄ‚V]Þi tø" >/égVæ i¼3ºª`®Ö‚»óÕvû<Oí@÷Ð莃¡ÐÀªš®%a^ øz|mí¥.¡óÓÛ·º6‘ï6¡&Ü4£šâPå _Ú:—¶Ín?l€¸ýÒíQsU]•ƒÉp¬ý°¡PÊ‘RRH2’!-M‡ŒB¨ï:Bh‡pT"ùž!Œ„2+ègˆ£eúE~á‹Bˆƒ#z$ÄjK LAËvÐÚibm1#G,$H8Hÿ1pH% )BʆÓr`RR…’#PW‰Ñ~ Öb× ´9](Â;•!×a¡¥ébÍP“”í+ƒž“jã‚ï£>uáÙíû5Ú>¡F%ùƒQèXcÖ“O/[:– tuïl0VáŽ`_Šp¾2è±LQùVFÔ¾JR^NÊËi¹Œ”Ëaäc†›Mœî@—1̘väÂt®ñ¤IÏÐèèŒvïq×p‡æÒ\Àìöˆ2‹›4¥êÕtAq]dGO7é ·“så) =0/YƒP¥!¢„”b P£V8‡Ì78©ÆZ·OP ®cGG¤#@¾´}i‡0_ Tùi›R?ù¢`ǀɗ'8˜ëª”K)¡o¨­–¸ _ÖA$×@Ï{|p¨§ËCÇHÌeºX¨\´d!ø|‰¡•K<ˆÈeñ)j­*¢Ì†áÑêlâs¤)òŽÚy!w‰X¾ÛQCüãL)žÖC ¤/ðïè*©úi¦uM÷m×I:-´$‡ÃmJC7¬nô|5”øŠÙÉ âÕbÇh©œ\¹ì.aht¯ï|ï¸?ðdõ#ã¹ÃDEgDæ²2g–j…â…öì'P{)´c,r)=dU&Nož²Tú¹©±À>XA¸tx˜>^Oo©]ž&ø²sVÂã*‘eZh|À0‰å°˜£7s ²øôì’±l-ƒ)Ù4†€K!¾ÆÊ2W¤F&«BîˆgÀcðMô‘áä:‚.¸IcÓ†?Œ:2ivôxÚÀ`‡k»jHˆÚÓ-šMü¦ÈŠÀiM¼À0x !r9‘Ó<]ž.Mqk»×ë‚ÙìYqª¯›,ÓèõL›-„*Ýdˆ#ˆT:\9,L‹ºú¼°‚Dˆ¢Ö'}”ˆÓ¹|aÞÖBehÞÓ®ü[ðu/$!ô"A/έ…î Ö!­¹j|0—B±`K0¸¾ä£g€è]°„qÀ4à)Ü «‡Äß3³ –*²"y„[Ýí‚¡ä: !ZQ™B*Ò)@z³<0Ø)O9U"ü[ •B«Ð³éí‘i¬Š0ŸˆXˆpöb8H.OŸÝÎüO7€yC0ª\älO„›Ñ.Þáürª‹Ý0z”kˆ8¿ÆV¶ÍuMÏYQÉÐÂÇT·~óõ×·*?"%ãÿ$•¤Ä•OÌ´ñ°fP]‚©0ùCÈa(þFd?í»ƒJ¾¢{‚{ #7÷¸Èo¢bî5æ^~ø‘_~øàß?üðCÀ?|? # ÷:*Ìðcªpà€-a¤†ó1²p¢j@/`-àZ€ê>Çî€1òpP:p# šL\ÈÄLì`b;Û˜ØÊÄ&63±‰‰ó™ØÈÄ&Ö3±Ž‰µLô3±š‰UL¬dbË™ècâ<&–1±”‰%L,fb ™èe¢‡‰Lt3ÑÅÄ|&æ1ÑÉÄ\&æ01›‰&Ú™˜ÅÄL&ÂLÌ`¢‰éL´21‰&¦2ÑÌÄ&š˜hd¢‰z&꘨e¢†‰j&ª˜¨d¢‚‰åL”11™‰R&&11‘‰&Š™(b¢‰ L0‘ÏD¹Lä0d"›‰,&2™0‘ÁD:iL¤2ág"…‰d&|L$1áeÂÄ›‰D&˜ˆgÂÅDN&LØ™°1ae„™ F& Lè™Ð1¡eBÄš J&LÈ™1!eBÂÏÇf‰21ÂÄI&¾eâ&¾fâoL|ÅÄ_™ø’‰/˜øœ‰¿0ñg&>câS&>aâc&†™øˆ‰™ø€‰÷™x‰w™ødâLü¿gâ&ÞfâwL¼ÅÄ›L¼ÁÄëL¼ÆÄ«L¼ÂÄËL¼ÄÄ‹L¼ÀÄo™xž‰ç˜x–‰g˜8ÁÄq&žfâ7L<ÅÄ“L<ÁÄãL<ÆÄ¯™8ÆÄ¯˜x”‰G˜x˜‰‡˜x‰˜¸Ÿ‰£Laâ0CLbâ>&2q€‰ýLD™d"ÂĽLÜÃÄÝLÜÅÄ>&~ÉÄ/˜ø9{™¸“‰Ÿ1q?eâv&ncâV&naâf&nbâF&~ÂÄ™ØÃʸ‰ë™¸Ž‰k™¸†‰2q5W1q%?`b7W0q9L\ÆÄ¥L\ÂÄÅLìb‚…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=˜…=x ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,þÁ,ìÁ,ìÁ,ìÁ,ÚÁ,ÚÁ,ÚÁ,ÚÁ,ÚÁ,ÚÁ,ÚÁ,ÚÁ,ÚÁUû‰â.Š&–¹!fŽ&Z.¤¹ ¢‰vÐÜvJÛ¢‰ ­4·…ÒfJ›(M¨ÚM¨Ú@i=¥uôØZšë§´†®Ž&T­¢´’Ò Ze9¥>JçEãk€–QZJi ¥Å”Eã«Ò\/¥J (uSê¢4ŸÒm%R.¥ÚXR6=/‹R&¥¥ Jé”Ò(¥Ò¦ý”Rh›É”|”’hÓ^Jzž›R"¥Jñ”\”â¢qSœ”Ѹ ;%-´R²ÐB3%%#=f ¤§…:JZJzLMIEII)(É)É¢Îi@Ò¨³HB‰§…ÍaJH £ô)=ö Í}Li˜ÒGô؇”> …ïSzÒ»”þD«ü‘æþ@sÿCs¿§ô¥·é±ßQz‹¾Ié J¯SzVy•æ^¡ôrÔ> 襨}&Ћ”^ …¿¥ô<¥ç(=K«J) ´?j+ŠFms€)E(ÝKéJwSº‹Ò>J¿ŒÚÀ_ã_ÐV~Ni/=v'¥ŸQºƒÒO)ÝNé6J·Rº…6v3må&J7Òc?¡ôcJ{(ýˆžpÍ]Oé:J×Òc×ÐV~Héjzì*JWRú¥Ý”® 5/§¹J—Qº”Ò%”.ŽZ»vE­ €.¢´3j]t!¥ ¢Ö0ÐŽ¨œ1Þµm£´•ž¾…ž·™Ò¦¨µè|zúFJ(­§´ŽÒZJý´é5ôôÕ”VE­=@+ic+hÍå”ú(Gi¥¥ô¼%”Óž-¢§/¤ÔKköPZ@©›R¥ù”æÑ‹î¤=›Ki½èÙ´éúEí”fÑîΤ_¦­Ì ÔFi:¥Ö¨%4-j!ßеá=5jÙ ÔµdM¡Uš(5F-àš«§TG k£–m@5QË%@ÕQËv ª¨ePeÔT TA)D©œRYÔë;žLs¥QcÐ$J£F24J(Gu@EQc;PaÔ8h=V@)?jÌÊ£5s£Fra9Q#™›AJÙôô,ú ™”´± Jé´±4J©”ü”R¢Fb¥dJ>ÚfmÓKóÐVÜ”éy ”â)¹(ÅQrF @ލa=j˜d£d¥d¡d¦d¢'é Z¨§¤£¤¥¤¡5Õ´¦Š*))(É)ÉhM)­)¡…<%ަ„B£ún‚}û¤¾×ý-èo_þe_AÙ__¾|åüŽ}ùOŸ> CùG€áØðà]ÀŸt‹ÝÔ-qÿð?€ßÞ²·x ð&äß~ðàUÀ+ÚóÜ/ksÝ/¿¨ís¿ õ» xôsÚ€ûYÀ3€pü8”=­]îþ è§@? ú í2÷ãÚ¥îÇ´KÜ¿Ö.vƒsí= x}><x@³Ú}¿fû¨¦ß}D³Ö}08å÷±pl?”Eƒ€à^õùî{Ô›Üw«·¸ïRouïSosÿð ÀÏ{w~¦ÎrßüSÀípÎmÀ·ªÏsßúfÐ7nýhëÇÐÖhëGPvàzÀu€k×~ç] í]¥šê¾RÕâþj±{·êgî+T{Ý»ø÷E|±{'.v_Þ¾`ߎðöðÖð¶}[Ãê­X½Õµµiëæ­û¶¾¾5d’©¶„7…7ïÛ>?¼!¼q߆ðîb´ˆÛ* ¯ß·.,YgY·vÿù:¼o®^‡sÖa­3¬ó¬ã5kÃkÂýûÖ„Ñšikv¬‰¬‘LЬy{ ‡Ö`ÕÐèÃû׸kC[Öh µ«Ã+ëö­ ¯X´<¼ :¸´xqxɾÅáEŽá…ûzÃ=Å ÂÝÅ]áùÅáyû:Ãs‹g‡çì›î(nÏ‚ú3‹g„Ãûf„ÛŠ[ÃÓ÷µ†[Ч†§BysqSxʾ¦pcq}¸a_}¸®¸6\â ñžxÞ@:05z‚\¸2Çr½íúÔ%A®ˆëaoÒǹã¸t½Wµ8ñJçvç•N^ïxÆÁ…陵zû3ößÙ?±KÌ!{zv-²lo%×fkžQ+py5åÜ Âµºm>­ÞŠõV·•«ùÄŠ/F<ö`Œ°ˆW@Øê®åÀäÕ‘a|šhR éMÅ´9|i$¥|†ZgGd—FPxöœöAŒÐ!üî!b!?\ò»vïF •M‘„¶ö(ë­ •M‘D‡B‚%A•ŽÀ¼þuýöÐdd|Ûø©‘·>dxÆÀéõX¯Õs!=t^¯së8ò1ªãCºÜ¢Z½Ö­åÈǨ–·…´PB®/U3mF­^íVsáru‹š ©Ë«jC꬜Úï\ç~rô›kçÁǼþµáä:ð:’ Rò¯-äIZ'äQàïþÑj@óûáo-+\û÷Ïúýÿ·;ð¿ÿþZ¨b”»õr;.ìllllllœØØXXX 謬¬¬,ôÎ,,,,,,ôz Ý€.À|À<@'`.``6 Ð˜˜ fÚÓ­€i€ÀT@3`   ÐhÔêµ€@5  P ¨„å€2Àd@)``" P (& ù€<@. d²™€ H¤ü€@2ÀHx€HÄ\€8€àØ6€`˜&€`è:€ ¨*€ È2€ ©…OÀ0¡^ expð-àÀ×€¿¾üð%à À瀿þ ø ð)àÀÇ€aÀG€Þ¼xð'Àüà÷€wo~x ð&à Àë€×¯^¼ x ð"àÀoÏž< xppð4à7€§Ož<x ðkÀ1À¯< xð àÀý€£€#€Ã€!À!À}€ƒ€€ý€(`Ü ¸p7à.À>À/¿ü°p'àg€;?ܸ p+àÀÍ€›7~ø1`àG€×®\ ¸ðCÀÕ€«W~Ø ¸p9`pàRÀ%€‹»PoÅ óÃüÇ0ÿ1Ì óÃüÇ0ÿ1Ì óÃüÇ0ÿ1Ì óÃüÇ0ÿ1Ì óÃüÇkà0ø >ƒÀà0ø >ƒÀà0ø >ƒÀà0ø >ƒÀà0ø >ƒÀà0ø >ƒÀà0ø >ƒÀà0ø >ƒÀ0ÿ1Ì óÃÜÇ0÷1Ì} sÃÜÇ0÷1Ì} sÃÜÇ0÷ÿÛ~øù_Ç»ÿËÿPÿ¸ÀŒü9æÏ#Ñ.é矗êä¨5£©è†È®@ûýH #݆&⃭ÕÕŠ,ùƒ0Š9äy €¹*¤—pÚCqqå¾Cd»yc<ø(—ï_~ò­“'‚'ß6•‡qðÍwÞzÇðÙ cI0ÿÞÉ…ˆß§=Ô§Nðê›ÀËv÷ñÆrr~HÙWâä»û Gy îDàD0p"Írr;°Ñk`Ñqr¹EæKÊæ&¤ú óóóʸ ~_’ŽÊ ‹Êøü¼DŽ·°’2Žä1ÿü·³ù–“2n›¯|f¾41NoÑʤ\¼Ã”Ušbh›“Rš çå2^ª§U&5õÕ$½&7&Xm &…”`³&å'_—ê¾þ³T÷M•¤ï›kyÙ¤¹åÉüT N"“ %:œ“¼ 3õfƒDm6m ¹É¨I«ž{òbk)aº), £òòrSII0ØÙi´—Aó ÃyÆüÜèGP à %B“š”ÏûÆ·9¾kh¬™´7/Åf“ w,•÷ò:Þ—ä÷az›ìrS`CŠÛbVJVžüÓ2^eöÅ'¤è±G%Zgj¢'#N'ÙŒ‡lsé$¼\£Ä“FžTj•©Îe“DÕ:Ï+ôêÝ'7Ã\÷è§4Æ´0ž÷Ç£I°è~nþt¿^àökþx¿Fà÷öƒÙB°¥CD^äÇ™Qs›ä(Î@PÎT΄þÂ0¾#˜ÆðÒ1Öƒ^ÇîïóšýC8ó@Ÿ¹m‚dgìï› Ì!›c}p&Œêcb‹N6ntʬâh%ãØjIäȰ&æ‘h8©Âš¿¹aÛo®ln»þ¹íÅËf׺R^¢P+ty-«[fîî-šÐsÕœæþÖ½\%ã&%=Õ5ãŽÏnºíÛ{çZ=.9Îd‰7+Sƒ©5?²eóÛ+üA¿Ì˜H~Wy×è׸F¢u{*··ØïµóH´m&°Và/‰Íh3tCÕèǬ¸Ye˜. ) Pûäætºö …0>è•Óyi'¦·+,^§#É¢PZ½v§×¢ˆShäR©\£¼Æí¥,Þª½Dz2t•­*ã´99ö`P•ípĉÝ»'v7NìnœØÝ¸!΃9W£Q9 ¤ÇzòU*¨¥r@¹"ØNryÉ…­j‡]täfËÜi­î0›6å&éùp­/ˆ ãÝ0¦Œ%“ƒùùdu‚Û;kŽSœf&Ó& öOÙ‹x;˜18ŸÌÁt²€ÂâvÚ½f7’Ï«­ k¢EÍÔa…ÅãtxÌòL×ON²C‰7HñÅê8·ß¹\ï2kNYxñ7×ÊUr^#\Úž±ò;3’5qi®ogñw&f8ÕJs‚îAÝè0ß#õ¢œF=V8*=¸ž ÑØDÖ,½bˆË òBf ž’2‚ÊKÎÓ¸ä\1¾Ë` pŠ‹Ü×xØ;°ß%Œ³‡÷;E¶P¾Oo„èK“}§¢"¤ÂþÚè)ÂE!µO1’½QEÆ"£­tkV¸¤ém¶!œ>(…I Èp- ƒ´À@®²`ÿ5¤C©©z„5ˆx4QýÉè׊¬¦,Xfâ§YŒö_£C7éጠpAAvEÆv…ôÏ&á¤$IÂÙ“ßÐ4KP,‰¨:‡äsõ¼N¶þ Ìë, R§“W’›3|VmÇö_÷‘ö’„m}( –kh3;ჾìFÍä7úH»Ž WcÍŸ× M:?D–k¿ÂÙ©E*Æ,w*Ì*“HNG­-?¯°ˆ/7Ä»âܺIW·Öõ·f•­ýùÒ-¶Ü©%“»r5 R"wUÎ\TÐ}é ÿ»«{+ÝÓ*VNvh42™F3»¼6¥vQÅ”U)µÓ&¸| ƒSïLˆó%˜3ÃÛf³g•§×¶UVÃ=Ú÷èEéj”&£ûÈ=: ŽÊ[(:úBÑŠV'yÁê…Cø«Ë0‘ßCVrd„ €S…”Ȫ*œà•Haá–ÞçotÕ¦”€”6¿Q7Â^ÞB\þÇ,ßé:DÏó“!œ¥§Jɹàš×PÖ¶—œò \ªõ;ë¡‘FFrÑÞr£ÍF|ÿb~ÏU†ÚÚT…ÉeµÄ›dr³Çáô˜iMõõi .Ÿ•vµ`fÈSªI­ÞRUÖ^äÄï®;zQ­Ñ?1}xv‰<»´œŠ„x–“L/ö¦îŒ¬«¹°w²)£2odOÛ¬ÒžÍÄÌ{ø'!ðy‚Xx0^ð¾4x[ŒÞ;@–ÇTqÝM×ÝT1¤JÍü9!uˆS‡´AÖ9ßu‡TÚzwòæ˜ùsÉF¼R[Ÿ›9„eƒÊfe†…줖>FìLž 4nç»}´3iáPŸ¹1—ÿ°4r4¢$­@ÈÕLC.!æ:{Ð%£ŽW6>äâ=œTî,mjv_¿pBÅê=Öê ¥Œ3iõ©¥á‰¶{C¥%3˲rÞntµÎ”Shóþu»Ú4É—äЙ¦T·7Í{èžY;Ûɟœ#· ¬z£t9Dü%è~Á»¸Ë'aµ«„ø””u°„ŒÆ28KŽâ¿!„‚ÔæAÑÔAÑÔAÑÏESÉV™½µê’T—D—A†ž£”d¿®Y:üî°0|ËYô*Žb:~C*v¢ƒœy ÏѨ#çèNo†ïi±Êx‘g³bÞïÌñ7ÊñòT·gNϳÒò\=¿egHnq“1¬¼³jku9ŒXÁÞÉ¡ÚT'°šg6ï\°öèEu5UœZ®%ŠV~²Æê‚-¡ê ÂØ­Êëv‚u÷€ï ô`ÝŒ`ayáÊBÞLf»Ù&3›½™$ÊÈ$ÖÍ$fϼ8Œ™¿¬ÜàÈ#ÂAâ $âP—ˆ#ZÈ«¦n\Bìíõf>¾Cr•„{X‚Ÿ•`‰$>ø†¿ÑñA—n•ŽÓ)?ˆ†s§èÁW¯a®;ïÍÚÄï qr(I’ùxßz¡ ð ð :Ç}HgÐqz^¯ü /žŽi⮿ÝI# ™Ï;n[Oçœ5µP¸r~Oªód4±vUk¨·!¨‘«e<ÇËÕ…3W‡Vî]3±tõ­=Ë®ëʺ“?Ãä¹eIÇ¥z›6Î̶ÆYå:§IkÖkÔN‡¹lÓЦµ‡/¨©îÿI»ùÂk³§,,"#eôkîbéFˆÏ/%¶Ú ÄU.Â%zdóÄ.ÑU»Äë"?çÊÉ€§×gC&„v)ªáº8ÿpN½gŠ¡žÛÃyå`¹À±üϨ7È'Ï]!c¡j¸jæø‡ûĺ$¨ä•‹½hle¥¶‘ùÆÅ԰̱ÕM°•„»â™Üš˜îJ)ðèžT¨•R“þIxZ§Û â9·ûê—7ú*“57èÍvT©V:ò['.ãÌÉžo?$!yBã­ždsœQÞ9ï’™éZ½ÆìBˆGF®á/ãŸ@eh*šmÂHµš²êȬ¯S€Yê<3žR—_>4ú1S¹8ßß¾*—·€ iõ&<¥Å%Ñçðùr9Á¦‡´ ²òå.—ÕÚö^i¼”¿4_\ùj_q£gΫ}ðƒ”ÓÄðØØ wÊf£ë£?UNÚf·'òÖq;E¤ ŸÔýxól¸À?””qæjªŽsüefý¾ø¼ÎS‹z\&{Eá‡U«¦gœwçêå{d¼¹žÜ`^Š;¹`îSÒëÜØ`4ŽŒ,ìÌ© ÚÎÉ­ÚÛæ·¾ïIw(/Zß´°Ìůõ¹“g§nlËL°™²}ÙœŠóNî˜T¶*œ›ê(ð–ç;S2'wùS:+›7ÍÈR*¼#ŸÍ]ì)nHëXä.ª?9ob9§pf¥§Y+ªrÊÈLÚ3ú5+Ä7yè&26”à ³8SÌl ™Å)dç–™7öD5YDÔᩉ‡S ÎMMŽ©Pˆ<´ÃÓœÖÇCYɵÎ)¢@b¸¯â#; i„a†3‹T†hf¬ºðÌ ÷ëôgya•¿ÌÐxÝÊߪ0Ñ`Å‘ÝS¶¥²Â*‹aê®j˜½yŠ×Éf§ožWÜ>y9+¸45L^tY7‰×w~[¥AdE^´—î^øZ|+}¼MŒ½m¢„¼Y`ašØÄ9e k;Ê­FñÈJ­iϲŠG­ÌìV0å}*wÎ$?³:à446|i8 úuqM<ú “T:ØGké œuÄLB2–aã²3mcΜ41@0fþ"9µ…çLÌH/ nôÅ‘kp/Ø"å {…¯–<²#(„_À&W”Â/²UH.-…ü= Ab½q»;ôŠÇ¶yÀG‡TN'ÊË&WOÄeûÓÜ ˆ¥‚§óóÙ“ µ±Â8'-[0œ %g@DLgþcä°‰ô´Çda¶žÃ<­‰¡Þ:O–žïx¹R.óÙ½ÁDóÐÄVI“2ô½›g*­Ñ¤5ÅäRKV}¿ï»fçÛ˜oh¿à‹5å…8=ç†L¸¢Êg3äŠÁ@.±“F`!È=Ê¥¢$¤­¥§£F4£F´ž†LÁ8[V"Æ£SÑ–¤–¦5Ä×Ù44•À4„`žè„U.ïm6’ 8P¯í«M©ø,ÓOÜf…eOŽ±ÍÆoQ˜“â\>‡^6rљà ÏP˜œIg’U©ÕÁ+´ê82åx¹V‰ÿ<¢ýîDüöy¼^¥UòD(5ÃÈ‘‘£U´(.‹ZQëØŽâJaGñì;ˆ§Æþê€ÊP+ØCHt±–^ôÙw¿3cœßí+í•ôYˆ§áDá>»LâQ‰ŸôÈvQªƒ|®šŽkÇy×1·K¼†Yôfq¶^71Ñ211î {‰Â6¢à|U0oM#{^ÓÊRÅfÇ=}zƳ“` Ô£ø+pÿxŽijL&X[ÑXV›UÜ5Å9n´å™Åò%â.¤±„í½.üvÇ5ØDÜø¾¦Æ ¡5]ßéͱáD–âàØÏåé­âÎŒ8à¤ÏR‡oVX2«³Kúkȵ{Ír[fUvÉÚ1ÿ/3ÅÛm ù”+Š;ªs Y­MuɳÖ7¸O­¾’3V‚ï–ðA ÆóJµbC¸%.X‘–[a†%b [Má®ç¡!á®ëé]'âÂzæ×Ó3GÙ*!¨³ÒÍ*aÛJØ1§ûVgÝ­j0´œs·êïoVÁ™ÿh³ê,ÃîÜ›U?œ—V]J7þ,V—Iž>¥¹5kÁÙ¬Ê6«jS«7U•uÅá÷×ß¿³ÎTà)c^[ò> Cž‡y~FYºuÊE÷®«¹ ·Ôœ^•;òã¶öÒÞ-t†s{…=[a¿úÀª دMª-©g¦Õ‹6×ÓšPÈLVcpΈØÅÅSBÊ@£_oõ4X§ ÑÍ ËràTd<*ªúNÕtˆôŒçγÍUÁh2n/'S*ö„d«3gÂDß™35¥bbI‚Ö›œ ‘ð˜_`K4*•J…%{JÑÉÈwçêÎÂêT=¯P©”:ؤut˜;6iÀӛʛZš¶7ÝÛ$÷²æKñ%0K+ÈŸùŒ—8ÂËüFÈMߨïjˆÓ_؇w2k]Gð—Â+3 o4!!ä¬Ú+×Ü«á4Ùo©>4N3vWyúbæuòö¤Ñö¬c¯dÄ2K!3.®¥e¿ÙgT}؇Œ£ÇÈëxñ¥Ìë™F©í=6ŒÇ^Ç]“å w"Þ…SsfÕäØTòÆ%P>³8£:Ï•šn ¥¦Oß<=¹~bºUÎC$¤’)“ ‚¡tkZhz¸-”Šu5}0JìNK²Û ¡¨Ëã2ù Süiî¤@ÙÌÒ Ý ™“Õ ÑÛ F§AnsÚ̾œøÔ iž¤ŒÒ$žòŽ~Â-—Ü&¢Ë„žŽŒ¾,ñ®e‰w3K¼›Y¢ïÍG~è»6kØWŸ ¶×ç’ˆ]N]çq2´óÅ]ÀãÇ„ Vhz¸êÚCvípŸ½^ž+ìrÑmÆ޳EIrö]”Ó÷Zll_Š[®0xÒ³íµ½¡„mz“T¡UleÛ»äIÿnQ=9Þ¢*¥’9 IR–ÒÔ?•ÓÑm”—äPK¢Ô€6ZFTó•*¥Tç]KöVùûÇÖy7¬îêT2^SÉxM%ï®R…ˆ,Õ „^øo÷Ñ™ï-è-ü•à+ˆ &t3çág„›< )ÍY ©j©³B*é© VâXL66€é«RSÜ8‘ŠDl­aÙr*XØ$²‘ü(¥DÄ FœjÀiRœ”““pröYîÅÉ^ìJ=8ÙƒSõx½{É– Òh­÷zÀ“xÉE% n/ÙË%9r¿¼¤} œèMkðªãÔÔm“!Ð_¯t ñ@€þ#ïÅßµ÷×AäÅ©ðEjø¢±6èëǸ ÑiÈÇ^ËŸŠìf{‘YüÉÑfÌñÜÈq‰6.-11Í©“ŒœH±Âì¶'øÌJɈ„ÿ†S™½.{¢QÎß"Qª4òoA^>J:?KcRòðhÊÁ‡òdœFÃýI©QðœB-܈ ¶À}IF«é}qÁ5O 6uátv1ì×ê¸T%Ž#xbvOrbwƒSenP5IZP“øðPF Ps³+ã+‰dXzy:‹Ì~*öŒ½ƒ5 Ïê6‹œËß(ËÍ‹ó9Ù¥yHaHNLL²(¥ó_ÉŒIžød£lä Á(ÕXt¸DbRñs­”Wèµ'³¹—Ìj)Ìb¹ÒŒ‘·p?z¹P‚°¬¶Ç#à dOq¿:Úax!î¸8YärzGŠÌc¿óê—éìÆË¤Z³Ól´«°d—Ú‘çL¶«¯tdg9OÈUOÈ5 lÞáòd2ƒâ³ú‘ßáÝüuÝQ±ð¾+Ùr”kA~Þ6T¹9R= ‡nÀÌ~áÇ 3IaHÁ8R~–`ÒxöîV:ÓÜž4‡RéHó¸ÓœJ™Ön¼Tª59MB‡wjìÉNt˜÷x2]jµ+Ó“”E8ëd³p O+Tr ‰°qìàŽŽþU¼†T”'\² q›©}ð<¡¯GåÇËgOœü}¤,¤'»åqP|ŽÞŸöºïôûÌüwû›æ¥^oŒç¸,¸»7@/WÀÝU£tÚGù5Lb™’‡i  :Ž+ÔÄ€Å`qá¦ÇëÜýGp-?‰|ƒ°óµ©ôRðg8HF@T’ nì,^€Ÿ”;kmeź™9¹3×Uçr;ÉgäªúgåæÎ\KF×®‘½ø/ÒËaîåÑ·Y< ±xò`ÀÈ€x«[½ •ÁÿПTEIÞQ$ß)ƒPÑdû•h6/Üizûñ'ó;çÏ‘b]‚ÓgÖð…Ó‹ãÝ%Óó±Òo³Ç8é‚'G:^zydöo4Fµ”“)¤‹ž{åÍÕ«ßxõùÅ™Œ—© ¤‡› ‡ïB½¨Š®Ÿ&³˜Ä(šðAÒS“ðó2µð,H{È»L Ä.“ÛÉ~ÊZhšPÀ¥úÅxÀfÂïÆ·òsœ).A‹¥sçÍ›'á ñvk¼QÁ-^Ç9W¿ùÊs‹¤ 'U5Oá½/¿„÷>©4¨ ·2Éñ‘wóp1߀´0òÊ„q‡tr«ú~¬Bd„O"/äÀžÂ8”¨‡°ê@ŸÄá0‚ìsÀ%/ÓØûaê²¼y6ãi9þ&»þ$ ¶bÀ/¡]ÿ>}‰ÿ)Ø\;+d½§¾ë¬(†ûñÏ`ܹÜS§ƒ÷¢ÖïîäýOúyí÷Œýsá–bˆ!†bøþÀ£(ƒKFõ€£œÝ ½]eWr¾] üGñ-z„[Žv6ÅÃÿï€ù0/–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–b)–þK #„dߌÜ{d¾¾ô äTÿÕ£nyšðË Z¾ùúäåGŠBÈ*'Fÿª¶ endstream endobj 28 0 obj << /Filter /FlateDecode /Length 456 >> stream xœ]“½nã0„{=…ÞÀ?¤fÀ`“4)rr÷²D*" ŠSäíofœ\qÅ›\î·#–ùÚî^¶Ëð»^Ûi^Æ­~\>·¡¶çú6/ÍáØŽópýv^‡÷~mvÏýúçk­-7Ôéæõïu÷šn¿ng†ËX?Ö~¨[¿¼Õæ´ß—Ó4•¦.ãå¸8Oß[Ü*í÷\i£X´!{W,Ú;ÙûbÑÞËÅ¢dÇbÑŽ²µX´Uv*-;;%Þ™|oÒ½éP,Úƒì±X´GÙ\,Ú,Û‹¶—=‹ö,Ë’ÛHj#³jvå¬Ê™e²Ke•Ê„ËÌìØQç®:uÕ¥bÑ&Y‹´`U¸2Tìîê<Ÿ…΂wÂ÷B÷¢+m'˪pe¸2€S€R„›„š€S€R'Oš8 xÐ4À|àŒ ŒÀÁÀÆægeægeœDx¡iYü!Þ k˜7Äd ó†xƒ¬aÞo5Ìâ ²†yC¼AÖ0oˆ7Èæ ñYü!Þ k˜—«>ñŸoY_»žÍÏ+i‡Ïm«ËÕoËoGof^ê¿ç·^Vj©æ/êÁè|endstream endobj 29 0 obj << /Filter /FlateDecode /Length1 71860 /Length 19949 >> stream xœí½ |\µµ?.Ý;ûâÙ<‹=¶çŽÇkÆ[lDZ³y/±;v¼$v'Û“Øa¼ÄKB ìJ¡Ji¡Ð–BÛ´0vb–ÚG¡´ PÊÚ…÷Ú²5-Ý([ìÿ‘te³ðhÿ}¿÷úùÌÈ瞯t%]éèèèH÷FÑA$¢æ¦ÖüBD/5ÀeCï`p„Å_¸!üíÞÝãÒý#/.„—R>´}dÇà…¯ŠKR}*ñïïÝÎò\…ÐÒGúCÁ¾÷÷Fv€Ä’~H0~7é$B¶G!žÖ?8~¾ü¼;Zõbx¸7Èâ_­…ìƒçä3J ÿ›( C_ùðoÛŠ× T062<6>ëFW TEê—FFC#¶© ¿ª!õWš¹EÿšÑN4ý=å®E7 ‡Ñ¯PºÐ-ètúŠ  'Ð è_ø›Ù«Dñ8R!B³Ξœ¹ hZ•rÄl i>eÖ<û‡ÓÒþ0sìyfZeE:ZÖ(<©Á§f?ÊI|¶„Ä…+›h‰?©¿2sïÌݧÉ`=Ú„6£-¨ u£ ô¿õ£Ìy(ŒÑ Á½pݱm«r<Ÿk¢q4vC<&ÇȽ]4>ö@8íEûÐ~t] _÷ДpgŸt!ºFæbt Eœ³”KÑeèrµ+ÑUèêOŒ]=‡¡kÐg`œ?‹®;'¾vAìzŸCŸ}¸Ý„¾€¾zñetëi©7Óô/¡¯ ÛAgȽ› åvŠÈ݇Ðcèº݋ì©1‰p¹l§2€^Õb&¿=sÒºúNúvHîéù~IT‰Ý²IÎK!'«…©å‚Ó$q=ôáù±ØM´ÿó©ÑRù¤T.[£$óe#èôÔsá/ Û`~®Dª} 0C·Sþ•¹¼wÐø×Ñè0wSÄ9K¹ ðÝè›0·¿£ï@˜Çшñ{ÐwéÈEÐ$šBGÐQÉûÐq4MÓ?éÞÙÒÈéSs)÷£Ѓ !ßG€¥ù!žò=H{XN}”¦±øÑ@œäb±ÇÐã`¡~‚~Š~†žB?‚Ø“ôúcˆ=žA¿@/`# Ÿ£·àz =­ü ŠC`³9ߊ¶Bøü)‘Ý1ûþìžÙ÷ÅZ´·áŸ\¿Rù Æ`7æ~؃tŠÿDñèèì{âàY§~©ìŸùÚì›®¸||lt×ÈðÐ`ø¼ý;¶‡úz¶míÚ²ySgG{[kËúæ¦u këëj×ÔTWU®®”¯Z¹bù²²Ò¥%Kòórs²2ÒÓ|©W¼Ål2êuZZ¥TˆF9Õ¾šn)’ÑQdøjksIÜ„„`TBwD‚¤š…y"R7Í&-Ì€œÛOË`9s9±YZVäæHÕ>)r¢Ê'MãMë;_[åë”"')n¤X‘A#Fˆx½PBªvõWIÜ-UGjv÷ªî®‚ú&õºJ_eH—›ƒ&uz€z@‘,ßÈ$ÎZ…)²ª—M Hc$ˆéÕÁ¾HóúŽê*·×ÛIÓP%­+¢ªŒ¨i]Òi3ºFšÌyäÐg¦Í¨§Ûoèóõ·tDÄ :$V:teÄâdûª"Ùû~ã‚.‡"9¾ªêˆß•­m™{Ž(ÓÍ>éÐß4Þwò÷ S‚rŠ*Ýü7D é✘à>ÇÚ-„þy½¤-×LPD"×w°¸„zÜS(ïïŒÝäÎ#ü޽Ü9ÈïÌïöyÉPUwË»û]‘ƒ=RnHŸþ¥ÃÜ—"bFwOo?áÁÐ!_U“[[G$P ”ûZ=YùƒÝЉ"†õ‘|ßH$Þ·še€‰ŒÁ@k-"‹ÄWFPw¯\*’_]EÚ%Uê®b $uùÖwÜŠf_›,–ÜGŠP1ê$íˆ8*aP2ªuômxºÝ} ŸÛ¥·7èñuú:Bd”|æHökð8/}"-};-7ÏLz®N×H‚[ì$£ R \|«WÀ 3 ’]½BêÀnijÁSä-¨"bze-¹%’¢•µno§—ý>¡In¹MÊôˆ&ª.3$̵‰=çœMc¹Iƒ²¥êPUTTª”(×vöv Dòƒ¡„† g-¿%¦ÃÌ…4ª¡Id]R5K¾¯Ó:hî }#²¦ã»¶Õ·vý¦:Ú²–´-ˆ±û¥,A^¸Í#B%è`ß͇•Æ×Ðø\´ö´Ûuü¶´ëС¾I$¦UvOb ”•×tFšü¾Hßç%íÌÍ™Ô ƒ·­»æj ˜;_MÐ'™¥šCÁéÙƒ=‡&C#ÕÝýË`^òÕõòµv¬pÓÆ·t\àÞGžmEkñÚ¶ÕP•€VOúðUë'øªÖM÷›Áo¿ª­cJÀBe÷êÎÉ4¸×q¿„P€¦ $•$’ˆD"¤¦ˆhh~÷ý„Ò» š@ã½ÓÑ4 OèwZ`ifö  ú àŽ‚Ý ðÜ HÓ°´ƒ,w–œ[wÌäÎDo²ß$"è”M@0FDJ’¦ åÈ«Å舱{êl¡ÉÓøà¤6ྟÖÔ"ç<9IÚÁ¹4h9ÉU˜NÒhZ“nGŒéuAXÝXy=¤øJya 1‚z¹ŽGYªšôÜr“0={·o¯7궃¬~Dÿû~˜¨¨óÐé ‘ÍþÜÍé©Fš|èÆxöL^㧉Bz/Y€…£ú&U“¥ÒW?)¬óSŽ)?TïƒDH'ŽŽÓÇ+õu’\ÐäfjËΙ Ge"Ë4­üy9a9ÆóPdÇÂhÿ\´†8ƒéẏ€®[ º²Ó ƒfò,dD¤C’Ù·ÌG.´ðBÝ0HsÓÔ´ŽLšƒ½RG(;TXÓ}¨æqQ{ƒ²Øä'E†ü ª„yAy "ÒÈÁf©»SêׯïðzÝ0KÛÁOõÉRÐÌúÓ¼‰º*ÁCDÅx*íÁÏ +H„X &}ÒF…FÇtÚÂGo¾äþ8´bJŽ*iohOæú„¬…¬?Aú I먑Ԅ|¤®½ÛhœŽ9/î¦m¥² ý%çÑ;dI±ZÇiŸØ3‡hziK‡èSÆè8ÕÑQÙ)Az:Jû(QÎÆb€ö‰ÉbŒjÅÔ”õ•ŒØˆœÎŸ2õ„©|FäVAÊ }*«sŒJj¾ä‰#´/ü¼œÉ–µ=Lµ†hB¿¬¹¤Uäl˜œ¹ÓØk®×Lfì)l‡ä~ SÙöМó-Žî‘Úù´ëõyÏ£s7z43imƒ´†½Tò,–7×¾!Y“IÿÙ¸ŒRmà:¢cM4wd®7¬;ä½`#´{n”‚TGÈ \Ð/nyz¡%Aúü^ùùyÔºì cEîœi¯–Ñë ²æpÍ/Z Árœ[ÓÇé3û¨&’§œ77ó3óL;¹CÖ둹ÜDsÙˆAþÕÿ7öV³¸ÿ6·ZÒ‹²è,Ë–ïKh ÕŠaÚ²qÄ^-ï.îS«–G-íBíÉ“u.ð^ªC;¨‘±Ù ©ä­ “1¯•Õ¦m -ØN[Ëì«ël::Fõ|„öI—#£ÚIŸÁ,Í^*i&™ñ¹Ñæ¹¹]è•m7™å9T$߈¬Ñvz„ÊuH¶¬–Ê69D-Êí!k]måÓGl\.ÁôgôŒ”ís}ÈùT–€­ }T¦ãòêÃæ'{nÎÜsNï³¢{ä·‹ýçÙ¹§t¦…éœb3ÿLÙ“2leÉ‚üÙ 4øìµ³6ü³²žlu—äõyœŽ\ï‚uòôÌ¯Š§·ky”ž°¾0oÛÊÑ9Ï£®½CÔŽÏÙS¦{ÁZÅìÁ°|e½bx‚ÎfŸúè:6 ÛVɦÖÿÜ:ʬø<2óµó2åUôS{7 Ë™Xu#µ—!¹ÜÃàR^¨Õ9td‚÷!î_nçNŸ Y§Ù…µÓ{¨G1@GŸŒjÒˆ„v@~/_®sÛi¶3[ž½óÖbÞà­ùGV§O¹HI§ÕÑÀë’ç´™¼½gãĵ†y'ay™×îOZá¸Vž{•##×<7sÆ¢|6ÞL Bò³˜Å’Ç=‡öyT^}¸_Áü¢ò8s=fz5"û;ì ÃÔïÒ~rM ¢ùUþt{ö?0s Ò¾¹ ȶ¾Ož«½²¯=DÛ½fPo|Œê¦ÜÆs-àÖ…ë<Œvv”Œú¢vÑóáSׇæw5<÷Ù­[ÎiÖËþôÒaº+8­ß¼]ó>Øü¬™_‰øæ ¾;#»0EiÈÝ…©¾õG­°¬Õ=´-!y¥š˜Ëh[ÂÆ0_ñ1:KÂsmàóz¡.}z©F¯ð¬—Ñ+ÍBž—Ä*ÇÁrùj0Aw—L2¡¨ôÑ+yæ¼\vBŽÞ¨µcüì1³ü}´|Å[¶ÀŠ3ol7Ågóº‡èÁW™èý_'ÎfS–£¶‚UÜﳯ¹ÁsŒèè\ïǨ–ÑÚÙ,:sçûÏj_ßjQ5½Û„j ¶VËšRiXѸ³bUZ)™£U¾ŸIGj#]‡j!_;]ãX-p]ñNjãjDã$¶ò¯ƒºHÙjÔAŸQ µµÒœ-´îFHm^-ç#%*!¥â¯¡V=o”b{ˆ:yMd-mƒti®‡ [UGŸÈ[Ö±¨¿V¾[u×ÑúHûÉók(^7×ι¥TF¤fRg%´¨ÆHj;ðfÈ×JŸ_AûÌZ»Žö¡î³¾TÓ'çÉ}eùˆ|6ÈwÈ‘ö5@˜ïU•A-mͼü*7CËIýkàn]!š díi+•^µ,3ÒÛ›ï©JÚ"U"ƒ*À@kæd×B¯¬--Qµ-”ÝFz>ë_…|­¤’k¢16•4ÖFÇŠÜ͑Dz…öãô§n¤šXMsUзÎiH Õ^Öz®ìMQ-aÏ#cÝ®ÕÒ'ÌV ¿ß.ô™r!R¯ 2!íj{ò¹j†¹ù-©°`q©Ô8Ð;:<6¼}\ª Ž åIá°Ô2°£|Lj …Fw‡úòŒµ¡žÑЩi$4Ô¶w$$5÷OŒKáá½RïðÈÞQRB"5I„-Í‘Z‚á‘~©68Ô;Ü{¤Ö÷Iµ}cä9mýcR8ºžíãÒêžð@o0,ÉO„<ÃðPilxb´7$‘æî ކ¤‰¡¾Ð¨4Þ’ëÚ¤†ÞÐÐXh¹4 I¡ÁžP__¨O ³T©/4Ö;:0BºGŸÑ„Çò*ƒážÑòŒ 48 Âs‚CcPËèÀvi{pp ¼WÚ30Þ/MôŒ‡CÒè0©µl®Ã¸ô2…ä zÈëZN%5O9ALÉ(™9}Ã{†ÂÃÁ¾…Ò 2QfAw`ø˜+Ð"Ý$yúCá‘…»ºË²“ ó¤ g`œØ'c4yû0™-¤É²¨s¤žà´uxhÎRðAÈ’u!4”·g༑Pß@0oxtG>‰åCÎm²MɆá¥jAç©æìFðlÆë9GÉñ "æÃÐ'"˜Ka0lTÜ Í$åCi46“Á£“ú "A)PlL_Ž´}Œ™"0w@Ÿ‰ŒAV0¢P\îc7D„¤†šëÙ§ïiPpll¸w Hô昬¡ñ ³§aL©qAo¥VÙRÿ"›¶¨ZC6gÍGí,IŽR·YÝHëùíðè){6©k”­Tð:‰Hsˆ-ØNxˆ dd:4ÖO',TÝ3A&ïI”µz˜ =<2À,ê9›Ê&<<’MYÒ´{ú‡?¡dLŒAcB´‚¾a°¡´-;C½ã\Áæõ”¿o€N¼eLÅÁŒíE-¸CÃãdÊ0c> Oc¦)ò­±~²ô„ÌÜ`TGGÉãÇÆA™`ˆæVžO™oµÕRkSMÛÆŠ–j©®UjniÚPWU]%eV´B<3GÚX×VÛÔÞ&AŽ–ŠumRST±®SZ[·®*Gªîhn©nm•šZ¤ºÆæ†ºjH«[WÙÐ^U·n´Ê­k‚u½f"TÚÖ$‘ÊUÕU·’Ê«[*k!Z±º®¡®­3Gª©k[Gê¬J+¤æŠ–¶ºÊö†Š©¹½¥¹©µ_Õ®«[WÓO©n¬^×Kî:H“ª7@Dj­­hh ªh‡Ö·ÐöU65w¶Ô­©m“j›ªª!qu5´¬buC5{tª²¡¢®1Gªªh¬XSMK5A--4›ÜºµÕ4 žW•muMëH7*›Öµµ@4zÙÒ6Wtc]kuŽTÑR×JRÓÒÕqB‰&Z ”[WÍj!¢–Œd!ñöÖêù¶TUW4@]­¤ptæz9èá ÈA7Û8ØÊA[8ØÌÁ&:9èà`#8hç ƒVZ8XÏA3M¬ã ‘ƒÖrPÏAµ¬á †ƒjª8¨ä`58(ç`+9XÁÁr–qPÆA)K9(á` ÅqPÈÁb 8Èç ƒ\r8ðs°ˆƒl²8Èä ƒƒtÒ8ðqÊ—‰)$sÄ›ƒD8pqàäÀÁƒxlX9°p`æÀÄAF è9Ðq å@ÚJˆ` ð,3œâàc>âàC>àà}þÎÁ{üƒ¿rðþÌÁŸ8x—ƒ?rðNrð{ÞáàmÞâàMÞààwü–ƒßpð_ü'¯sð¿æàU^áàe~ÅÁ/9x‰ƒ9xƒç9xŽƒg9øÏpðsžæà)žäà?ãà§ü„ƒ'8ø1sð?âàQþƒƒrðáàa¾ÏÁ÷8xˆƒ9x€ƒû9˜æà8÷qpŒƒ£á`ŠƒI"ÜËÁ=|—ƒïpp˜ƒosð-¾ÉÁÝÜÅÁ78¸“ƒ¯sð5¾ÊÁÜÎÁW8¸ƒ[9ø2_âà¾ÈÁÍ|ƒ›8¸‘ƒ8ø<Ÿãàz®ãà³\ËÁg8¸†ƒC\ÍÁU\ÉÁ\Îw{0w{0w{0w{0w{0w{0w{0w{0w{0w{0w{0w{0w{0w{0w{0w{0w{0w{ð(ÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜÿÁÜíÁÜíÁÜíÁÜÛÁÜÛÁÜÛÁÜÛÁÜÛÁÜÛÁÜÛÁÜÛÁÜÛÁ•G˜.›JYåŸy*Åì»x*e°ƒ,vcN¥€]ÀbÛÏØ>ÆöN%W;*¹ØÆv36Áî³Øc£,q×Tòj`#Œ 36IJ 2f켩¤j`;`¬Ÿ±ŒmŸJªb±>Æzëa,ÈX7cÛÛÊÊu±ØÆ63¶‰±NÆ:ÛÈØÆÚkc¬•±ÆÖ3ÖÌXcëkd¬±µŒÕO¹ë€Õ1V;å®¶†±š)÷Z`ÕSî`UŒU2¶šÝ«`匕³r«[ÉØ –s9cËXñ2ÆJ[ÊX cKXeÅŒ±Z [ÌX«,Ÿ±Åb3öc²{°ØûŒý±÷ûÛ”« Ø_§\­ÀþÂbfìOŒ½Ëîý‘ÅþÀØIÆ~Ïî½ÃØÛ,ñ-ÆÞdì Æ~Dzü–Å~ÃbÿÅbÿÉØëŒ½Æîýš±WYâ+Œ½Ìدû%Ëò‹½ÈØ SÎÀžŸrnöcϲÄ_0ö c?gìi–å)Æžd‰'ûc?eì',ËŒý˜%>ÎØcŒýˆ±Gû–ó‡,öÆaìavïûŒ}%>ÄØƒŒ=ÀØýŒM³œÇYì>ÆŽ1v”±#SŽr`SSŽÍÀ&‹0v/c÷0ö]Æ¾ÃØaƾ=å{¿Åjù&cw³{w1ö ÆîdìëŒ}±¯2vc·³Ê¾Âj¹±[Ù½/3ö%Æna심ÀÍ,öÆnbìFvïVËçû»w=c×1öYÆ®eì3,ç5,vˆ±«»Š±+»bÊvù”½ØeŒ]:eßìÆ.ž²·;8ecŒ/š²—»± Xñ¬Ü~ÆöMÙû€íeÅÏglc»›`lœ±1Võ(+¾‹±‘){/°aVÙË9ÈX˜±óÛÉØ+×ÏØÖ²í¬xˆ±>–³—±Æ‚Œu3¶±­¬Ó]¬e[ÛÌ:½‰UÝÉÔÁØFÖÜ ìAí¬–6ÆZkalýT|XóTVg*«ÓË*“X-ÆRX¹dÆ’s3–ÈX”¹ ˜kʼ˜sʼ ˜ƒ1;cñŒÙ³²VÀÌMŒÅ1fdÌÀrêYNKÔ2¦aL͘ŠåT²œ –(2&0†CYS‡ÐŒ©×sÊÔçùðG@}iïCÚßÞúÐ_!ý/@†{‚ø»@úÐIHÿ=Ð;pïmˆ¿ô&Ð@¿‹Ûáùm\¿ç7@ÿôŸ@¯CÚkÀ ô*Ð+ø¯€~ ôЋÆóÏwõ<ßÑ_à9¬¿Ðóm o}èn »€¾¡ÏõÜ üë@_ƒ2_~‡þ<Ï퀿ø6 [êúÔu ÔõEH»è @7ÝtÐç¡Üç ¾ëuë<×éš<ŸÕíð\«û†ç3º»=—‹éžËÄRÏ¥¸ÔsIûÁö‹l¿¨ý‚ö _Ю¿ë/p_°ö‚ý¾àW¬*Ýö}íûïkßÛ¾§ýüÃ{Ú®@Û…Ë+ÚwžhWLÄOŒOˆÀ‡'pÕ.˜Àš0OH¢a¼}´}ìðh;m=8U,Œ¾6* Q¬›ž}äȨ;¥xàÀ¨Ñ\³«}¸}äðpûÐöÁöÐÀÒíý‡w´o/íkîkï-íi–v·o+íjßz¸«}Ké¦ö͇7µw–v´o„üJÛÚÛ·µ·–®oo9¼¾½©t]û:Ho,]ÛÞpxm{}im{ÝáÚö5¥5íÕÐy”dN’’D3iÀº$h rãÕî€û5÷»nrGܸE«)Ñ“(d›peSN¸(áºÑäzÊ%\Ù95&çSÎ_;ÿèTØÎì¼ä0;$‡h'}s4¶ÕP^^Åøâ%´¯‡/£ÆdÇ&»Ç.TÿÑŽ¯@"–0FØ LÔ@ž£Øî©¿‡É,I‰0¾µù×NkPËÚˆ¦ys_Io%×ÀúMÕUÔ¾isÇ$ÆŸí¤ÿ­ÅH<ùeÒøå×^‹’W¯$·vL‰wÜ‘¼ºsmä Áų#ÈÒéß:61æï¬D–×,ïZDûÃæ§Ì‚É„M¦Y“0AãMqž8\fãÄ@Üâ¥5&£Ç(ˬQtŒBú—ihn«1é=z¡½\ߤúòÊš€>· æŒ~!ýdOöo…ËÖ±q?ýƒX'ž Q?I%cã'a‚Æ‘ÿ,°mcðç‰ãŸ\êÿúÿo7àßÿÇþ ¥³Âe¨O¸è ‹]t!Ð@€öíÚ t>РÝ@@ã@c@»€F€††€Â@çíêÚ´(ÔÔ ÔêÚ´¨ h Ðf M@@@6µµµµ­jjZÔÔ´¨¨¨h P P5PP%Ðj   P9Ð* •@+€–-**Z T´¨¨¨h1PP>PP.PhP6PP&PP:P(È $y€R€’’€Ü@‰@ @. 'Èd²Y€Ì@& 8 #H¤Òi€Ô@* %¢b®"„êÆg€N} ôЇ@½ôw ÷€þôW ¿ýèO@ïýè@'~ôÐÛ@o½ ôÐï€~ ô ÿúO ×^ú5Ы@¯½ ô+ _½ô"Ð @Ï=ô,Ð/€žú9ÐÓ@O= tèg@?ú Ð@?zè1 = ô@?úÐ#@}è{@=ôÐý@Ó@Çî:tèÐÐ$Pè^ {€¾ ô Ã@ßúÐ7îº è@w}èk@_ºèv ¯Ýt+З¾t ÐnúÐM@7Ýôy Ï]tÐg®ú Ð5@‡€®º èJ +€.G}1Ì óÃüÇ0ÿ1Ì óÃüÇ0ÿ1Ì óÃüÇ0ÿ1Ì óÃüÇ0ÿ1Ì ó À`0Ø 6ƒ À`0Ø 6ƒ À`0Ø 6ƒ À`0Ø 6ƒ À`0Ø 6ƒ À`0Ø 6ƒ À`0Ø 6ƒ À`0Ø 6ÃüÇ0ÿ1Ì sÃÜÇ0÷1Ì} sÃÜÇ0÷1Ì} sÃÜÿß¶Ãÿæ¿Îÿíü›ÿÐØX”cF~®m[‰·‹fÆÄg”qHDjT†Ñ:tsärÇCÈšî@Ëð±cöª*M®úû Å’`hÀE® ˜‚ñxbb¹ïøÕµ¢¥6þGËÕׂ…/?õê©'óO½zÒZ–ç¿òú«¯›ÿô¤¥,¿èõg__ |¢ñxŠ.ñ/U׆EK9)ІË‚úÚ0Tâ*÷'>é2ßÿ¤ªñ,îį…R|œ VÇ«|©yÂ’ÌŒ’¢¢ÂUÂ’â _jœ@ÓŠK–®‹ S1ž§¬H‹Ï|¼Il:¥.ô•o(R¦$šâ*¥ä²æ®H7·nN_‘—¬Õ*Q©Qg-]º6\úKµ%ÙîH¶j4Öd‡=Ù¢>õ+e܇VÆ}T©t£¨Z¾¥Ñ«˜Ð`sºÇ“nÓ*†Oýn§¨³ù’’ÓMXƒ§Æ„ÌiQbœb?þ5þáJ‡;N!ª Z¼|æ ­Q«PƹŠ)}œF5&ýµ§öƒd¿ƒâ:Ðk+ò /É’Ë½Øæ2ãF›Ù—x#\¬¸¸@T¶ò!Kœ}óäH 1ÉÜHù{G ”¿yr'>n¹°a*n½{gL*ÛPùÉrÐöש°želqA—{2Î5 GÃqë•$çT²‚r—S•& êMÍXb).)ò‚(ÔÅy‚Ïg!­¸nÃ7Þ½kæÎìl'Nÿæ›·­?V<üí+î<ðíÑ2áKßüè-žLÅ%™ž_ó–c—ÕlYuð°…ýèT3èT>úé÷ÑòÅØg˜f3È3È3È3È3L –@’3MOä¤'rÒ›!›^yôDNúiÁp¢€7¢€\ÌXp9Én~Üs.jI›Æ9Ó#ü´j[~×®“å8dE$ÅäUh–9Ü‘E-V>Œ Ø!NÓ²üm[»üåD·ø4ã0å)o‡4Íšx¯+QŠ×œ:(Á•¯Ñħº¼ñ¡Q/%º%j j¥RmЫNýcÅ/9:õ¡ â˜üwžAÚâã gI(ÝNä=™¦’…­’…­’…­’…­’…­"ÂvZ’‰¬“‰¬“Í#nH–à^2yÕˆ,éÓXwD¥2ø¦±þˆ}½ÈN6«LÅææžT‘ÜÇÂÝNò Ó ¬9 J¤ã‹’U:E”Ò‰ö|÷ü´6o‘Ê¢Dl_Ô80Ø}lùÆ®œÛ¿¼nGMšxCðÖ¡3ys²ùvVªÚY¾eïÆ¦Åq§>ÈZÓ Z¸fö¤Ø«ô¢:œÅìZ˜3¨ Y”›en œJ¥bZÈ ø ¶xÜP°€+L+4¸]¤¬›(£Ûl&(â&é~¶D4Ï *H40AæñŒßg" jÈ{g¢¥H‡3z‹´/ è ¸ÁBNPt-µ,µ8VÀL=VáVf·:¦qö¤r™Ô`ÆNZˆMóû»Ì'ÍDôóke7øtwO.Í#çÚa‹æúñ0­5›T{E%öVîùjWÅðÆåN½BcÐÄ5ïª/íªL+lêo)Z>ð¹6ÿÆÆ6•BUzµ>¿ªkYIsqbaëΡ­Eø¼ÍŸí-tH©®t,pêÔ,_ÊÒæ¢¥ë–/.ZÕ¶«iýErM ›Þâ²Y“lÚ$_rrÁêô’u+ ‹V¶î"ÿÅóT°5ý`kÒÐÌÆ¦i`H²Òp"á‰8ˉ3Œ8'ç¸p´¬UwñV’”àJpe¤{Z\Jk 5Ö²r‹3!£®.ÜÕÕË’ûø\6ÍGlY[ò™Ö—º¸à"ºÌÀú£Ž+â2“^—Å g:5Øš•šäµjx ãQŸ–âI3Šš²–`…R£×(¦èj£1ê>zXQNÒÉjCfþÐðrñ'¨Ð{´÷’iµguþjQ¯u@?‹‰º%-6“^Oã¿âPf¦ a"3-“µÑ~£ÌõŒSÉ,›4x‹óG¨Ø\,,¤£b\\œW±h»¦§Sqjª"ùí¼ú•/(Ÿ¬Bĸž´P»µ‹¯Iú·v•å3{QX¶¸`k—;`Ô;q±óGaR_*­ÐF©°¨CyÉo‡óê +_“z]ùdÉ’.©ÚßE-/YÔ32–,a‹;ÕÔ¢%ÅLGå5¾j¦µŽ¢Â’¥b¹9Éè‰[þ¹õkÆÖç®ÿæÀÇâue+ƒu‹ ƒV¡v¯Þ°½8xU[Æ×Võ­öt6W ¯t `Ú ›ÊkÒk¶W4ŒÔ§×7/q'û’5æSBr¢/Ù–Ó~aÛ£ÎÜòìšÖÕU0F·À=§Ü…¡•è>2FÇÊ˱Î["[âÙ•ÈR'q*õ’iü~Àm÷ÿÀ/A?E?±Ô~2nþiAÐ"»®d‰W¡,˜ÆÊû2êÝ5æ†2€“ÊFb7ˆ¥v–qCퟗ|—û8+—A ‚ÓËŠ*IY0 Ô4«í,›· B¦ý̵ùOjYÞj‹ÃAøsE½×wùëjj25V·=>ɪRÛ$W‚dÕd­­­Íê¹fcÖ=öâ iU :³ê@媎¥ ø‰/«±d,ËîP€aW–‚QQËrê·Ù¥>óºK#Õ—ô­´.Z]8sKëÆ½û‰ Ø2–Ä'Ðôcºþ%Qëk¦Ö÷5"]Dtć2å…1S^ÿ C¦,~ào“™Ó‚>`ÌÃq ox:c­üᨭ^|g19®×kçLcÕ¤}êYÿIzÁù]LÒÊ bÀàIx#Ì*°‘އmõ‹Åw¤’c¤-©e*¬¥"‡bôÂ< UÔÆ,¯Š^@Ì.Óí…$(Õ +Övä¿ZR±ë–Nÿúª%.­J°M™+Ú—í¹ÈèZQ¶¡ÜoPëÔâ×, cBz²5°ÿÈÄåï[nNLuÅÙ\ÖL7Ë{üž—vøÓü>-4·¤z«röeè!j]<å˱Þ]FlJñÇÊÈ:XF´±Œ(gÙƒøð`ó™ÌóeQçˢΗíL¾,ê|¢À:›·F_–éVÄ-"ªçª¥8רl nUßòÓÏ­O«Ih ‹Ý}b˨ÍgÛ¬'ä’ÌàÍÌe'Ó‹Œ×‚-:õUTê³lÔ™¿nïÐX™³âÊ«+Xu  ¢ 0£Ô܇Ys}ݦý Þ>sSãÖª´ŽöS×ð”hÇemÝÊíW‰¿~ùì‡x½2Ù‘ÝM¤u¼Ü×äö‰Ù÷vÈr¢qåtš8ä9åëxPØû};“¦].e—ïÚ¹Øí Êûtž”$cM0×Q>Ò/ÛuyMeÇD $Ó±0Ë¢{Ì¿Pn²˜lÄ!º JŒW.[Îòe~BsÒ/S3Y¨qÁ²EÙe@H˜}næÜ²HCè^"‹#M…äܺ_ÀÿLz”Î/r Hº–N¾X÷œÉ=G¼ÇHÐ%$ Â<Ò{د:’å©‹aRI-ÈÀRTÄw&LD G¡LVP’à³™ÿ)2Q.Ø&ÓÙzñ¬O ô­‘r]°¿ÕZµÊçôæ§Äq MdµÈ¿|ù"Sßþ6¿Fg´XÖD³ZŸ[['>Slò|;ó­¡¶ØP^‚³ãÅ+n¯òi*†Å²3°˜ÈÉ@9u?(d¢Td¥uî38˜‚‰ŽÜ\D„Ǧ¢#U¯ÌªKª±ðih-ƒiÎ*ìèè*Wø×$pôѹ]rö(mÊÄg™~òa,,{jŒñ€Æ–šèö¹Lª™ËNW3ܦ±&¤ºRíZ£iæ˜3ìcÖÖ§ l¬¨_U“[Z—Û¥-ѧÓeÏ2ûm)“ 9µáô ÷äZbƆ×ÖWÐÚâ «ãê$Ÿ`’a?—¥·Ë'3²Â)Ÿfߦ‰Ï©Ê+«&Ô鵩9•yeãsö_eMr:’Íê†ëêJ;« ̹ë×®IÛ¸»Î3¿øÊN[ ÎL/GMµzÍžö¦ÄüЬÅU‹l°D4ðÕF½MÓQ7±Q'ya=}dåõôt ‡)z³™¯¯ô =ê ¿\^b隩˭_”VLJ‹xQsk,?á•GÈ=É–Y}8ª ;ÿoÇc¡øÏ½ÐÎ úæÆÿf¡] Lb7YgÉyÀ« EÊDOP9&•gã,+ζ³À ÎÐà 5^$âl§ÈÕY¨)²ñL‘wR)²PSÈ*%_‡uñä&žˆ4žìÕâÉM<‘kü‚Žœ7¡ÆÎò]­©Þ;ùH†œÈbå‡ÄbÊ?÷¤‰96Õ+I¡¹³˜è ß*ñC¾m_]6öÝÑáo •”}g øÒ{Ü«v6Õ TyÝå;›jwVIø·C÷_±võ…GG×?PwIOYñ¶Kë/ –o½„Hï–™Åç@zäÄj’ŸXyKt²®éd]Óq;¨“壣NVÑc+zbÎέÎzZUgn:çiÕ'VAÉÿî°ê,jwîêÏoͪª¤Eé_¼ÝmUg74®Ïí9D«ŠèaUMfÕ¾ÊUKñ[»ºt9µØ7³Š[mÅ[ †¢ ¹wѪl{Ãe÷NT_ܷ–]¹xæK­+úSî­²t3Ëâõèýdšúu~ÐGͱŸœ¨,BEL‹d-’íy‘¬¸EòÑ{z~¥ß£0çù$Ö—’s#ñzÎ~¢ÂTx¹Ä?Y±¤/Ï䢞ù;ZaÇ‚•‹å]¸›ž‹ÓwGG–à “¬¶&YX&®¾&Y¯MD}­ò+EXÑc”ZÐúë3Lv©Îހ䥌º>þùÝǤŸfÔ…çsºäUê´½ýÙì!UL•p· Òj4Îä4{BÁ’e¾Ó­azŲ²d£7-Ù ±ØãH±hµZM|^ÃÒS‘3íá¥%U™&Q£ÓiãÜ “õ³'…'A&uØÌüÆüµåk›Ö^´ö޵ʨbïÉ/¨¢UcTÛi/Êè 2ürÀÃÞŠÑ÷aDmå—b䀄XF÷ø=b :âBÔ­„hÔWn¸× ò^Yª{ÇÒlé¶ŒXDöòëWä U½ãMfæ^{É/½ºÈ›Ú¨—^Q{—@úÒ¼WÂÝ;ad1[$‹'Ê/¾~EßzÕ+orS1÷Ê‹œLý3o½„'‹¶^²®`cuC§ oµüåJUº3Ííë™Ù-û[Òj—eÛÕ"x›:•6µ¤.Q Ûžhio dâ¸ê0h‰3!>Ícwß-¹­¾’ôŒâ,OªÕ†K‚u9«Ýl09Ì–³Ú‘à°ù ’2—dI©‹V´ ÷ÎþQT|-CWS ÏF_®†¼Î€Óx2ì¬U/¦›"µ¼4%šOð…_qö“ª…çY~ö' jÌRvž³¦/|¡ÉªÔ5p§ø òÆjzcégZR¼F©U*6'§šã´ªôµcë„8vTõ¼r)´ô0kF×µM«Ó*ã\ £ÉùµøÐœ/åJŸIô5“èk&y?˜IÍl¦™º·øƒûØÌ÷ÈôÈþ>µz¸ñðÈ3ÂCö›Z[n]¦^™Pn«rþ›nqç˜Ù\­\ .šÜù£kRæl'×ó›%jYK–Οaߪ¶&ÛÉUã¨Ó¤Žg›Lg~mÁªýÕêx«vΗÚÓ¾nÅŽ«{„Tn0Nýµi[ezG»0ÁSä÷«â~b6²·è¾YXåÉÖã!×tNa ;diØe?¿!¡Ü*s ùç{9Äæ›mŽÚ9{r„jHu6hÉpd¢BÚ?-ì?®Kñ%4(Mµ¨üDù â7ð>’0‘w–‰|ŽÖ/øØùŒvŸ?³½Y^–àõæÂŠ—˜ £{3´rFW²YUä›:ò£Vƒ ôÿ€ µ6 6ÐÆ±Ï‚æá‡òW­È#4¸&?¯ˆÌ <ó†¨S~Ù‘“ÖjV¢ü|òùW~>Ôá”ÇA>–VSaŒO¶'x­ •Ð¥0ÚRìà¨*”2š4 µÑfTí7š´ 'ñFR5>*ä +‘ IÔCGjýI"ŸM½<ªÐŸ “ošæÞ‰³ÖÒé‘gµÌlµÂ &™âÉÈHQY¡ÞËgîÆQ^ƒ|lÄv‘z‘l¹D:E»G9*χqcN‘¸«œt «À ·:羄ÎéDeÄÜÖµm³Ç%'Xm±¤¥4ÉSÖR„µæ$‡3É,({ž˜é|þ…™M?5XôJA¥Qnÿù‹¯ìÚõòKÏìP¨T`fͤçû …o@ ½¨’Ù+ó­òþ„ðc¤¥Vúq¤žî²Y‹ý…r“I‚Üd2%øzQb]R,dfÈk´ÃŠßH*]_"l‰ÖÄd#VnÙºu«B0'9íI°cBHØõÊ‹?߮Ԩ%Ø–Ÿà»_xßý„Ö¬ƒÖª'fš ½×ˆÛq™r4ÁM­‡Ò¼´Šh”2PÖ¨9eùñNU›\VkBœÚ©³{.¯]‹Å+æŽ,ž¢¯#´ìÝZØ‹<®ôÂLóc=·„ÓŽ#Óùqd.qfÒMBcw.Ž:h$§öñdßO>Îwô ‹’ØöN’Å+ɧC’¼yþ&™-àA“ÿVe@«“P ‘~ï%_æèšt¢~µ‰¾èg«°s CºÜ7ùÏ ˜ZÉ×½ò'©'翈„ÕÎüzWôI±Ÿ®„ógš¤øÑ°©UI*˜ûôôgšŠ¨ƒ#…øxþ`äâ}wo÷„#÷Ĺý+ Úw®t¤T„jKÛW‚=ÝôÞdpã·þ~ǧü;Á/ín_šÐü™‡ÂŸûéÁei•[G/'ºyBâíJ'ÊÃ: ii)8-§%aŸ§%â´L}'Φ£c%~PýF HFDø([ÞQgË"Ï–÷‹Ù²È³eG+›|^—â"…\zrÕ[ˆ7m¢[ g@ùKµ¨ôGHt‹¤…wX°ÅfÆåG|-Ùæi¬žTµÑuùÔ z"B~'È'&ô%œÿGTöÈ?ï?w¹Ø>Rñ0T¡"uL…Umò²=·0‚ ’ÇÁ k¬ŠùÂKÓåW$º¡¹]¥3ªOmQô*•Ö¨Áq’JD,,‹«Ë ;LÕÛš8­²Šl¨Í‰6k¢E+¾x“NaLqZ\fƒêaQ¡À µ^õÑuZjÑFaLn…¹± ý„މ1»ûSpv2Ù±ˆðDøì ³ÁAœC¢~¬{_Q:T&HÙÂEHÏD¨'û=yïa)-“¤2мûŠª¼VsÙ4Îârd§Lùôu&9Ñ;AÔš*2•$݉¸³*òHm˜Õ¢"ÕÌ‹’+åG½èä%û‡Ó>IUÉ?ÁrOl>@kÒžZg7©EÉðÑÆ2kÒ’æbúA*8´ A©q-ï!iLze=ù,ZmNqħ8F¬Ûòùó{üþÆe©©Y©kŠÝä0ÇÙÓ|®%[öU¯Úݽ£Ïk­nb‘ `÷ð e Sø½f³ÎÛ¢c_iƒè‹NÊ{¿|ŠEþùÏ ?û “çi?÷‘L·™V©GÕéâ•ú ùG>ó‡·sƒ‹ç§ˆû°WüE¼õóšxvv{êmƒÙk¥NŸQÚRrR¼‹SÌŸ·Øg¾*ÌlÆwãoÆÌ»üH›Uæ—-%Ái­òÁ¬ÿ?æÞ:µŒŒÙV\*Þ&Ö!#xº«˜W§¶ëÂ:¤@¸ºùð VþôŸc(ôÔð*\. ±Üaq8Ìás8, bâmNÓ)ƒÉoþjÆ¢˜åñd¥¥¦Îl$'é©©°þ<ÌÊðÖ§ ÂÿẢ ϧ·Å¹ƒrø\AåUýìÌ ÞÏ‚fÙYÂSÿÚ ýõ™A7AÃGgú›I0h¸f>¯ˆË^~|ö`ÚcÚcÎ6aÁò¥3ƒ5çŸ O-ؾ+öåöo,ÄB,D…ÍŽï9ÍÎåŸ2œn>GxÓø‡Âè¿OH(ID‰&>è¾éÿ|x-b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!þw"?üÏáDÊŸE*ôù÷Îh³œ"ÿÄ/ˆŠQÔ.ŽŠbXü½xRüÄßʵQÜ€¢BŽ*èÕ%ÇrÐÂßFzÝJ¯cè,?,`6ãDœ‚³p3Þ„»ðãa†Á?ÀáÇñÏà™ÏÓ'+HÏÞÝ7; W‰\!NÚóïÙ+Òz„¯GJ¤9[gù–ï]ôîìÂfȉ›'üð¯"ß¿”~¾ó/¥ÿ(õÜ$~­ùW“âJQŒþŸC[þQR£[Ä´éÓäíŽ&ñ#ÔõiHØ…Òÿ/“ø(ZòiˆÈŠ~]þÑÛ³Ïs¿2— î•T}óÏ:+•Âxü#4_¶[ø º%šD/ZÿiH¸yÿ_´óÆOKâm(U9–œNâ”-ÞóâtÊF1ŠQŒb£ð,Z$¤¡Z %ºù_I¢᳑0†ªÿ!D—íûŸ"ü(º&Fÿz‚}z-Ð=@£2Äèÿ‰£­± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±ð¿È¿oW-{}2rïÛL+þ†Ø?ˆðä_Ó£êö4}ôᩃÚßkJ ªEû÷ðÿyq›2endstream endobj 30 0 obj << /Filter /FlateDecode /Length 404 >> stream xœ]“1nÂ@E{ŸÂ7ÀÀz$4 i(EI.`ÖëÈÆrH‘ÛçÿO’"Å_é1kͼհ:žNÓx«WÏË5¿–[=ŒS¿”ëç’K}.ïãT­7u?æÛéÌ—n®VÇÇn~ûšK e¸óSw)«—íZ¿¬ïßäk_>æ.—¥›ÞKuhš8 CTeêÿ•Rsÿâ<ü\Ýà*Ó48»P€;â>àž˜Cfb X€Ûu(Mƒ¸ ¸&T’ª‰Õ„JR5©º ¸%Z(@#b„¤1ÇH!iŒÄ1Ò ·6­ŒZzšúûzšúûzšúûZ ˜ˆm(À–ˆ‰LS§2èD<›ééŒOg˜×4³qfëBvÄs(À36&#£‘õ¡{"ÞØôÎÆw6¸š|¾W—¯Ó×áêòuú:\]¾N_‡«Ë×éëpuù:}®._§¯ÃÕåëôu¸º|¾W—¯Ó×áêòÅÉÍû]1.!·ùwyëü¹,eºiåµÒ\åq*ÿŠù:ó«©¾×*Ðëendstream endobj 31 0 obj << /Filter /FlateDecode /Length1 63988 /Length 15744 >> stream xœí} `\UÕÿ}ïÍ’Ùg’Ìd²¿d²Ïd&{šn™¬Ído–6¡¤Í$™6CÓLÈ$ -êÂb±‚²‰ "ŠU™¦Â" TP¡êDAñS”".’üϽçM–.XÐÏÿçÿ?¹9ïw÷{î9çž{ï›iJ8BˆŽì'ioëtöó`<6 îòŽaúþ«áîÜ=!V>Ðó:düœÅUÛÇvìúÒï«¿AˆrˆUÌŽ‘=Û±~O3!y¯û¼C?ÏG yç!È,† ݃IÏb¼Òû&.’ƃþ×½˜þŒ_¶i—÷¢±œ¯YPÿ )Žzwù~Yý,”¡¿‚«ÇÁ‰…Dr!U ´|lÜ7öŽûAHbyøº…ùëÈÒÏG |"÷ÈwÈȳäÏœšô“ËÉ#ä×ä÷ä-ò.G8%gæ’¸\ò/û™ÿ˜|Ñ ‰#dáäÂków-¼Fˆ\¿,ç:HÅɲ–r¢fOÍ›¿n~fþ‡ 1²¶Fþ)È}“›]8ÉWÒôBMóWÒ8kñ¦ò–ù»ço]ÁÎ'“ä"²‡ì%“}äRrùÈñJrùÈâ2ˆ_M>I’O‘kȵäÓä3ä:r=¹ÜHn"Ÿ%7“ϑσ¿Hn!·Je4} „Y)-¹ÜIî"ßü2¹ƒ|…|•| Ò_éƒ| ò0Óß„œÛÈ— ÷NÈ¥µhÞÝBä0™&GÈQЦéò(¹—Üx?hóAòù6yôø(hö1–GsÂé³×Äçãäù.y‚÷p/×Å= Ñ“ÐÔ(ç&·É·’ò±…¿ré ’oXx]vráu®pám¢n¶Ã:xEÖL.q×oÛÚwþ–óz{º»:;6¶·µ¶475z6Ô×ÕÖTW¹+ׯ[»fuŪò²R—3ß‘“•™aKOµÆšŒF­ŠR*ä2爣ÎVß/†²úC²,[CC>MÛ¼á]–Ñ!«~eØÏª‰+kº¡æöSjº±¦{±&g×’µù±Î&†Ž×ÚÄî¼=?XkëC³,ÞÂâ²,–ÐA"- ZˆuÖáZ1Äõ‹u¡úÝÃêúk¡¿Ãu­Æ§ÎwÃj D5 娯s9ë9ásêVæI”Ž2ë¼C¡ö=uµ‰ii½,Ô°¾BŠš’õ%ú)Ïäjñ°ãÑŸœ1’~»vÈ6ä=¿'$x¡Ñ¡îÀ+C&{(×VÊÝûª¦ì 9lµu!» :kêX€ É36ñÀ_0o›}}eŽWÊQdÿBh”NqQLPŽà 8„ù¥¥Q^®žq“H„öoìÁ´H§‰Ûeï ñý´äÑp‰¹›–ì—,6ï·¥QUÕõK¿»‡­¡ýb¾¤Ï~3áÊÅÕ?08LÑë;`«­E¹uõ„ܵq{¥¹Ö.pA}o?LÂO۱'ä²…bmÕX2Dªgk"5 ÅÖ„Hÿ Ô*䪫¥|‰uúk‘AÚ—mcÏý¤xáåÃ%bâ‘bRBz)!K (%«î@ÏÐöPjâØçv±'1-äîñõÚz|½TK6c(÷e.ÈZÁÜN©®Lg®ÌŒ{øD¡—j 2Äzxت×BÔÅ’T£ÕkÅ.‘„«Á(R [Ñ$„ÌšZ$Ц5 ‰i½iøó>,%J<É3CQËú2BÆ"O8ÎYYÃÚ”¡\±ÎW»ŒÁÊ%¥ÞÎÌ'Oe! -¢¨:ÂEB&¬\Èã¡–EµhC¤]ì±ùl½6°!w{•5ÓoS§­iãy=LÛ’•t­Haù*L…H‡| Ø`½=1¬V–ÞÀҋɆSŠ=ábñ@”­©óíÜ&uHDXA0iE–Ç{õªèXšõàÝlõ^›hëxgö8ìv«ë^Mû°y†Ø:{Ö&2^;zö%î¥CE“&®©«:ß¾§ú°»jãa7wUçy=÷ÃYZ¼ª«gšçøšþêÞÃPÖs¿Hˆ›åò4—fÒ„H´§HD±ú‰÷» ÙÏJe,ƒ¥g8Âò¢Âyœá1ÏÎã!O†yn–G@IÖa1¸Û:qˆªç’Þáý½tq ¨~¹g[OB¼mýaŽWhCj›¯:¤±UÓüJš_‰ù š¯À½„C}Ò~ø)0¨’È¡) ´Kqfa¡«'íxâlo˜Úù@çõ„TvðýòÌF¨·R?doíôR>Hwm«Ìô ö‚Ù†;„*ž zPI=@zÖ†š#4Ý€Yûýíï õÚé =þ^fÎÆi°­µcŸò,:«÷@´­ˆ­MX êÌ+)¨€7ÒÙƒ9‰„ÁzQHJ-p>hƒ¢Á~¤-#ƒ`êèKÕ‰˜ã—(Ëò1R'J…„NKÈÔèÔ!•:„_×8é’”g*{{‘y–ºRªcCà(k™(¥ (òP^à÷J`•Výífã é°]ž…2ÍzRBqH—éñ‚óÇöȱ­ 7Ž¢>B#õq s•tæZ»Ù5³ðUÛž´e?ùݨa’ÄûÁ°IïS3B[ìùލSsu,ûÀ(Ý™ ¼¢t‹™L®¨ó„;¦¾íÝN^¡N 9Ë„?ÒœÄ<¸á®*ÀB0ÜÕ‰öïp·çYý|>V¥õy#6#´o=KÑ8œ"dÏIq8e!).#VÙR\ñ_HqÄÿ*Å•d7ܲ1Eò䟑â*"*o”âjþ¶Å±4d“ò^)®%yQZ)®Ó+¢Ê¤¸ž4Bi®\”e­çˆ2®VŠóDfýªHœõz).#Zë­R\ñCR\ñû¤¸’¬±>.Å£ˆÙR#ÅUÄh—âj®}q, ±Ç른–˜ã+¤¸N)Ä·Jq=É„:ád*`.Zþq)ŽrÆ8Êã(gŒ£œ1ŽrÆ8Êã(gŒ£œ1ŽrÆ8Êã(gŒ£œ1®Ó[ÅRå|I) …dÄZˆŸ ’q A ídòj 6NÆØÓ 9~ˆ'”TÁ=b°òva( ²”еwÃsjêHÄ ÇG¦ Fôæƒ>ºÈI3ô¼úd#Ž@lãD @=Ð6<†¸Ès)†XÖbªœ8Øø^èa êŠ0®Æ¡} ’RÝFH C.-þ‚‹óé‚|?›ÃÈYùÙÎä ’jHÓ{Íõ2)¬œ#öf*²Q&¡tÍ7,Ý)h;Îr&¡Ö“šùÃ,¯…x€'*?k7Ê了µ÷±>² ƤRbOQâ(\WdùA¦S?ðÖÞÒfOÿ¬Žxáÿ/Ü œ ’¶òr¥r‘l`V`œM@ >l5œø\P`žÎɼïJëqJ6ç‚øfC;˜QÝì\/ðŽ2÷Š}Ž0(Û·èû°¯3ÙhÙù›;J!ÜŽjµ—Þg“4JfbQÛáÚa_1(ùsºòL´Þ˜dË}÷“ë¨ä3°Ÿ”öJ~ÚǼŒŸÍ¹`|„µ|ªÆ&¤h?ã§ål_œƒãœ<îCL¦ÒŽ„ëÇu,Žsê гN19 ²õt&™MI3õ³•6ÂÖ®üÓeOÛàn“õsWXð™{G>¬l—¯ÜñEiÏž`š\±wž:ƒ¥òT¾Ö,³:œ ž ¾r|ñ42ÄöãQæG¼g)Úžw…U¡?HOœÆ'ÙzAÿ4Äö6¿ä[°Zs„yÿ³Û(zñQI3K½‡WˆÙIc˜ù;¿$gêÕuÌ_ú¤9„Oa)¯´jÓŒ—ŇHøÌuªŸ;u%äœâ|ÌOO±S†ŸiŸjÕ yTB; F¸Ì%õ¹íß™+­Þ%o±tBsóAv§sÜ Ä¤Súh÷!&/Zó‡z [ žXF¤]dɺßo‡ [åÙw9ª¹öÅ•\vFA}£ø¤±ÐcJzw°9K»Oø\g¥’žÃvŒv5&ƒp„;‹{Ù<Öâ%K»ü©þì@‹ò²¹S¹ù%_?$­ÕAéü=Êx]¾gúÙ =ÈlSâñ캅xçÊ}´»LFCËn Ë×Ã9÷G–n:áÚgönŽS¼[Xö§¶a7ÿ)óóµt[Z5K;QX‡¾±Ñ›Y8í[f!cìN6ÂìmxÙ‹\0^|ÒN5¹¨Ëå¾uè’4d«dd‘‡ðº^iKç.Õå;<ÎrùN³Ò¦—$1Åä¸ëCê1¼L²'JÆ·Œƒ!ö¤c.Éå¨1¸lï˜xŒžˆÍ ¼ã­^áÅñ4¶›ÅÏtêe{Dx—Y~g ïgò)+[™¯@] Hó>óžë=‹FÇgdV:ÊzÇUtúmøÃZ@xk u¬´ÔCj3ì–,Çy"xÑ(Ù©ZÈ­…œl¨Ñ)•g3MmfûPÔëf{öÑÏVH÷2WOD–¦©&¨ß }Ѷu¤‡Q½u²š¬ïÈm¬“êÑ5Ó ißÀ¼ Ž× ­ðá‘öDä´ òÅÅ®äÊÃF sÖ©è¿A*­‚¾=¬?Ê?¿žÅ[ù¬—8­b2¢=Ó>k€£f–¢¹Ý€íP¯“_ÅæŒÜ¶²9ÔC9Î¥Žq@GvJsÅzT>›¤ª#Ê_3„¥YU140n–äWØœÓþ7@iÛ!Ú e-›i'“^$3:Ûf–Zšjª†Í†J•Ê â-@e×ÁžÈKDzÞVÊn3+_ª…ó«’ž5Lrm,…Ú¨a©.¦+ZêtÙÁæqꨛ™%Ö±ZUlÆ‹RϬ¹['ŽÑ¶Œêv9/a«ßg`/áònIÓ§Ë…J½ŠÉ„òÕ¹8òÙz†µy—XTP¸JlñŽ‚íbM`|,0îðFbÕȈØáß1<;|AßønßS×à÷M‰mc¾Ñ®=c>±Ù»'09!ŽvøÅÁÀØžqÚB¤=‹YÊb‡wdlXlðŽwBnc`xTl˜ Òqº†ýAqdy?Ûãbµ`Ä?襡NƒÉñAŸHÙòŽûÄÉÑ!߸81ì[<]b³Ð7ô­ƒ>ŸèÛ5àò ‰#˜+ù‚ƒãþ1:=6ÆoÂë :k¼#þq?Ã+î @‡0Žw4½Œû·‹Û½»ü#{Ä)ÿİœ˜ñ‰ã×?º˜‚ª¾]Ðrt0>ê:EÏ„¸Ýç˜÷ÅqÌÂ?c bp—ä:èƒ8m²krdÂ?]ŽNîòCÍ o‚uÇÆ  Ê-ô>2˜‡A¸¢טwpBôŠTÖÀ49ŽÂXíâ€ëšð]4ý;}NQšfvPÜåÝ#N‚J‘o*¾Qò¸æ2îR‰ú¼»ÄÉ1: ô¸r‚þ½P}"ÚM§äA»p,j<ƒÃÞq`Ì7î\4¨Õá1ÅêÀÈÐ& }™³¨XÊϧù+Ä?1îòíòŽï¤saj]´Î õ1š=Œú}Agóä`Ž7˜ š7ŒÃcÁÕ.×P`0èÜné„®‰=cãÞ±á=.ïØ­ 5G&½ÁíQ:ÔZ,8966âã¡eN±70 RÛ#N‚MPƒ¥ÙTƒ Þ ŸCòÇÀˆQ©cã~(„*>@/¨Ò7¾Ë?1Ý ìa³ ›$ˆ l'0Žl§#8NŸ;ØÂÐäà„ƒšänhë mÂ€Ž¦†ýƒÃË8›‚Aý£ƒ#“`ÿKÜFÁZrü¹¸4–U‡Þ[\I`ï ûàĸ2<³Åp_k˜rü0 ¬ êNÆéê L޼C+¥çEQuÁt@}4291ž`ÈG§Ië ûFÆVJ|Ø/V§ ñ³µ2ìðOP¥ë–·芡,K¢vˆÞ ð]ôa%äH¶àuNùwúÇ|C~¯30¾ÃES.¨¹Mò+¹ ^flÐnÎìÏäÀž‘j4ÓÏR1_€9QÑÀzçÆÄ½ÒURQ®p–:];UN-$˜7ˆÀ­À°A2Cqû88>ºD`1î€9Sƒ¬@£Ð\ €Ã¥Bñ2g¶³sŸeÈ ý^j°ÎÀmNxѧúG@29´Ç³;%oýl.ãhˆyDÔÃë1_K³—™›C27Ê}¸xÄvŠcÓ¾Æq·‚Ø"¢3tPîßNÑÇ26  ³ ]LÒŤ™’•À ]0ñ ºéÀ˜½êYYÅC⢑$͘˜ìzŸ9Òe09> ÌøXC𣌗 |ƒa[²c0þ!?[x«ÑÄÁíö-ÛtGtÉ C÷KË-E* Ó=aÀ·båz—MtœœcòƒŠwŸ÷]o ubg[}׿ªŽ:ÑÓ)¶w´mòÔÖÕŠÙUÎvˆ›=] mÝ]"Ôè¨jíêÛêŪÖ^±ÉÓZëëzÚ;ê:;ŶÑÓÒÞ쩃"ˆ|Dùˆ òÁ©Þ<ò1ÁÊ ÂÒ‰|Tù¨ òQÁÿº `mâ¿A dÁJÿÁé?Ó*áUÉý6þ¡ žW äó@<‘ .24tH&ä ydIÚ…¼éU©@ò £@£iË®¿ŸE’ÄúªAa-Y%¬!ÝÂjÀ ÀU€å€e€¥€%€Å€6ÀtÀ4@* »@ÿéÑNúÖa¤Ö@^†PHº€x+‘RoÉH¬Mj^€ël¨ƒ9@ºèÐÛ@QÀz:ôX#rÐV„Ú l .   )øw¦S’Sgø¿O§Øþ6âø+Â_ÞÆ²?cê-„?!¼‰ð±æ,Âë˜ù„ß#¼†ð;„ß"ü7Âo^NQüS¿Bxe:9àåéäx€_N'»~ðÂÏ^Ä*/`êg?Exá9„Ÿ œ@xá„ÿBø1Â~ˆLGxá)„à°ßÇšßCxá „ï"Cxá1„ï <Šðöù0·1ó!„@¸aá>„{îA8ŠpaáðtR@áîé¤b€o!|ᇾ>TpÂ×°ÝWîDø Â_F¸› á6„[nAø"°ëÏ#|›ßŒðY„›nD¸Û]pÂg>p-Â5ŸÂ®bóO"\páWaƒ+®@¸áãCøètb ÀGö#\†p)Â>„K.FØ‹°á"„)„Ý“A„q„ ÆÓ ¥£»Fv"\€àGFذÁ‡0„0ˆ0€àEèG؆°¡á|„-ç!ôNÇ—ô lFØ„ÐЅЉа¡¡ ¡¡¡¡ ¡ÁƒÐ€°¡¡¡¡¡¡ ÁP‰°aÂZ„5«*¦­«ÊÊJJŠŠ  Ü´Õ )f:òv„<„\„„l„,„Ìé¸5¶é8jÐéÓq«Ò0SDHEHAHFHBHDH@ˆG°"Ä!XÌ8B,Žƒ™Ñ&#‚A CÐ"hÔ*ì3 A‰™ 9‚ A@à8€[@˜G˜Cxá]„“ï üáolXî¯lFÜ_0óm„?#¼…ð'„7Þ@ø#Â,Âë@ø=Âk¿Cø-Ž÷ßÓÀo^¶€q¿FøÕ´eÀ+/O[j~9m©øÂK?Ÿ¶Ô¼8m©xág?Å®ŸGx;û vváY„g°³ÿÂv?FøÂŽ#<ð¶ûvý}„ï!óO"<ã}wÚR p <Ž=†\;{ᄇ¾ðƒ`×÷c×3Øõ}Øõ½÷ ÅŽ L#ÆaCw#| »þ&Â7!|á®i3ø]îkÓæ*€¯"Ü9mnøÊ´¹àŽisÀ—§Í·O›Ý_Â*·a•[±Ê-Xå‹Xö¬ùyL}kÞŒðYlpÂÓæv€°ùõ×!|Yú4Ö¼k^ƒð©ióF€ƒXó“W#˜ŽíøÄtl/ÀUÓ±ç\9ÛpÅtl#ÀåÓ±[>ŽeÚÅ*qß ø¦¡.õ }CêËÚÖÔÇ€¾ô(Ð#šM©Ó@‡B@w} è›@ß:ôu »€¾ôU ;¾tЗnúÐm@·Ý¢NýÐÍ@Ÿº èF €®ºè3@ŸºV5œz Ч€}¨Jſǟ„«d*ÿ.à0Iå.›Ž¡ËñÒéhjZÁi5­q„ Æ£»Fv"\€°aÍ´‘Âj„ „Uåe¥%ÅEÓj§…Ñ&#‚A ›¥ÌpZ ‚A…… œÖQU+Ü[ÿ4 ô:Ѐ~ô¨ó—@¿z èç@/½ô3PËOžzèÛ@=ôÐA_šáö£¤÷N›¨ÉïAá\„0…°a¡¡åP…àF¨DX°§lFˆEˆ¡p¿ ü´;õއ.w<9$y¹¡µÞœmDhGhChEhAhFhBhDð 4 l@¨G¨C¨EHGHCæE„T„„d„$„D„„x+N3Áâþ<àÐ{@ïzüw ¿ýè/@oý´úП€~ ôß@¿zè×@¿z´{èi §€~ô} ï= ôÐwŽ=4thü^ {€Žú<Õ>?‡2Þ‡p ‚ÚG!naŠe;‚aaaÁ‹Ð° a+BÂù[ÎCèEèAØŒ° ¡¡ Á…àDQç#8ìy¹9ÙY™¨› ‚A† ð®Hâ¾phèw Øç€~tèY g€þ èÇ@?ú!ú~ Ë…ÌÔ ÎÔqÎÔ6ìïþÈ¡ýÝ—5ìë¾ôоn;5ûšö š}‰ï;´ïÅ}ŠKöv_|ho·loì^^½§aªû¢CSÝš)N»»a²»kòÕÉ·'…ØÉ®É¡É‰Éë'O@†òŽÉ£“Ç&…™…GÝÑ“«ÖÔv’…ržLrš6©Ñ×O4ŒwwËÆKÆù5os/s|Á8×>Þ?ÎC­#ã9õ´vé¸%¡Þ8^0î.lt t·Ë· È/ \àï†ï¨tõ£ »º¹‹#ñ Äô(¿0-¨òô/0¼ÁÏ»¸ € @~çŽîáC;º·;‡º}‡†ºÝ^g÷6g_÷ÖC}Ýç;ÏëÞrè¼î^gO÷f¨¿ÉÙÕÝ}¨«»Ó¹±»ãÐÆî6gkw+ä·8›º›5u7:º=‡ºÛ¸ Îúî:¡,v’¿c)ûSÞL‘iú“Ç’ù±ä—“ßLÆ’ÞLâ/Kä —%\“ àÁã#>5þšø[ãXDÐŽEïæÇLûM|Émú±ée“Œ˜n3ñ†k ·î6m†m†7 ÙÝîný#úé…6ý6}@/ô4-Ýzga½A—ªsop鄵.]¥®M'\£ãÜ:gQ½[—‘]_©mÓnÓ ·j9·6+·þ õ‚šw«¡à Õ‚Š_PqDàDŽ#œ@ˆÝåÌ©õ·9úÇ*ä„ã®%]ö¦åBGS(ª}Kˆ»*”ÙIŸîç…W…H÷y[zsܧzs|MW(–þ-!–¾üàA’\ÝJîì™n»-¹º·)´ŸÆÝn_ qUzí[ƒ“Áà„=h‡ÐÖ äLLÂ/ž€“´d"H Šý,?´FÂ$«œÜ6 }@dY6MmeUÎÖÇ¿õç¬3ùwüpÿ7ÿÿû‡€!S«.7Dj `§Aë¶­ø7iÈ|Px‘ý-%© -ô£‡ˆŽû"‰#«¹§ŽÖÖFå+†$ODî)«õ‹î¯KL¬´•*>)l4y*•Ÿä»HåÜ/^zÇ£+\Ç9×K³ÏÍçž0U¸fOÌr¦4£X=¯T*¶t'_šUV\\´ž/-ɲ¥ëy–WRV¾^(.Já…ØpÎzž¦9áÅ÷Ú„º¹ ~OÚšÎB9gÏŒK‰ŠRSt™Å¢¡©ÅV–“ —E)y”2»¬ÚÖ=Õ˜þCµ5;)9ÛªLNœ{L®?ù–\ÿîfYí»ñ¿«èYŸ¡Ø£ÓðrUÔsRÌ…Iëšt\Ÿ—¤Œ2éÕy Þ¹›2ãÔê¸Ì„¤LÚWæÜHÜÂIÙãòX’N²ÈKÔ7u÷ÜO2~wTcàšm3 ¿s'ÓX¦Vg³êˆ…Ó[²4j[ºšÈlœÉ–• »½;Å­!Z.ZÐj³“3l¶µÎBléVetrGt·¼›X+++£ã*V™ŠM Øm[ûŠf‹¸x×Ö>ëñ¢â}W;ÆYmíÃhA!x®Ä•<ÜC#ÿÄX…v{o¦Å‚:ËÒ”zÁ–ž•UVΡ¢â”6!MvX«°¬*,®HÑÊ6Ï'tÈtÉ¥vgI¬BË]£0ÚÖ¯©Ï6)ãîãyf¹ 2ê8Ùœ>F#SÄåÙd—˜ÌAÐXbž˜{lñ !²2°Êb'«ÈòM寻'Ac6k}×ëÈ*¦o?5 Ùpà9RX¨Ì˜‘æ‡$·Ê¸±ÄJS%ô8åVvÁüf핳v˜Ülçš-rÍ‚}FW€}&þp½ö‚IËliéY¥¦’²â4ˆ™ÚxŠÀ•8y›ÍD ¼~ûÂkòxy&‰» wXþ1ØNSà©&ñÒʈ‡û"0Ôi³¢/¦ É7-úwFp×çØ ¬ïe›¢¼dåâ‘Ç·ßòÚÍ7½rcàç®{妖ù×Å–ýýÞ¶§‰Íû½ù¿4¸¯íö“‡¾ønhkëí»wûW§ª<{¿¼å‚».ªl¸ä+0GжL€•‘DrÉ¥ÒÚÈP<È_GL$™ÿŽ[EL™ŒIØWìG ­mfqËáìGÝæÚ°¹R7 s=1kd àÞÔ.=.1;Aûeâbc¾¬M*ÊÈ(LÖŒÅÄÈ!+Ñ2µ1»>G¯’ÉÞJ¶Å(•QJSæ{‡:.'¹Ü5ç¤g?z"äŸq•'çÄ©›¶|b‹SgÐÅÓïÌ%Î_'Ü.Þ(¤6r¯|_˺µßïäR:9k'×ù§ãf.Î̳ÑÌÌæþUÂ;kòDGõCÕ<©æª¯j4láŒÂ–§ÝbÛÀ0*gûú¢+*ÙvKw^Hö=Ç€m‰îîåk¹<öÒÐk«Ÿ®æeÕœáý†ßºÄÀŠñûÂû¨ÄbÁ]++[~Ö—"˜—SËádPRÆžèiÒŠ,\IÖâI€Þ޳²³õ‚”n·ý–˜ï'ºì­fmL±ógÍSí«'îžÿÒ—)­ Õî*³ÛòÊ®êÈkIãMæùo·{2WeF·oÈZ•³¦¡òHBjŒÂw~EkA¬Ð_à´®KkÝÓi7ëu–äL>JȬٺ¶zrSQ†»·4mmyQ\\›k7Û6ài½¸;_­rÌ¿ÓÐo¯H­m³æ•ÏmÊ/àå161ÅXT—å¢wÇKáîø œ)ŠÈÎð EÃo›.Ê‹áû¤äÅÃ6nœáZÜ*w~cF}|3zdé€K} »LŸSõ•7*¶¯)M§ØÕüø3ڤŒÌÂ$mLFEVÁ@iø|ƪ+=[öµ¤§‡ ž›«j,M®¯™»;œ³ülà®\;|õ õÕ;á&xPÞ G§4R¾ÿXøGà²`†•š¤rßãŽ7zùçf—n:§ñ–C÷mj5`.ÜÞSùŽYßÕ½f]w×ÚEÎ…½°ÛŸ0‡‚æÕ«<Ík*¿ðâüuÜmÀg) }aeòLÛµ|ØÑøxRäœá.>’“ꉥŸ¢ºåhú•ÏÍšŠ‹éÁ„q}äýë-Í@&Y8{¥yæÉÌðŒ6æ®NPËx!J%ONȲjµIÒÌè¬èìdþöæk´ÑqÉqI™µÜh+_+\wú$%;|ì°„xú(-¤-<-ÄÆß{$?ߢžáïsëÝÄ’®‘çx’êM‹–]Aϰ t§›5νJÝŠæLµ–i*›;ƒÙIoÁK+9ÎbÔ$åä§E+çŸ?U…\TTlZaVfqªÖ`˜—sj5ijƒJ.£oŸ›Ï9Ýßû7¨f¹CzÌüOçóc“¥ùs{aþf²^òÆ™ƒÓ¢FÍé§‘®ûékŠzœ ¾¦`™¾Ä#áÜ3¿¬8ÍôÒOgLâA¡‚ÓK;¹Kº+×ÇÐ]2%¥HM¿éؾ>›Þ5ŠˆqÙŸnj\þ¦±ÔSÕ¸¾>•'¿9~¹à—^Tœ ï+éKGXJÿL_ÿÀ“œÍµ˜ÑµÄIšV¨¨áf$kL¶ÒÌüóË@LTL¦ô² çù‹G›*æÅ©¯k/ï©+2å´45e÷îmÅÉ›òOq=§ç—„c;ÚÛãìk3íë³cÖî8вèAEä2Iy1Tä)Ì)“ð®oó²Ú°—Õ€—Í‹Ïð,Š(š Hz[óhxnÚü<ô¢Ànîüz…P@^ðÏ pÛ•,Ny?5ÉÞOM®|?•àV_7%-»œžåýÔû58‡÷S2ÙÚ½3O…&V­Û{ßÅ…‚«æçÌE•«ºÊ-…]ë+ºÊ¸×ƺª±úÒ™Ýãß¾²±êÒ™T:œ¹m €ù¹­z£Ÿ¿AF`ŽËoôieêðþò÷»Ñ{Œmÿìþt±üFõŸíF«­ÙUëÖŠ‹vŸ›š7ûì¦ÖN׽џ4åÖÅÒ}IaÃÌÍN=rEƒ!Õ™:~Ø%É~6 ÎºÜØ–+¦§*ü…z£¡ÆS´q;½§Îß <-I0|OMÕØé=5Óû–9Ó£YgO•áù;Ù%3¡q›û*vÉ4¶°Ýð,÷ÔÙÅrK2Ñ›–,*®ôìUiÕdÐ7 T^%CŸéϬ­õ84ñ9bJ®U}ÚeuþѰԸ¯¥²×ìÂj€+7,ÆùŸJ7ÖÒ•yþAö¦pTò8YØiÜZ’`P§ª]jA'¨éœ\•:Ýj·½1Ë`=fæ2$g¼Þ4I¾Fý«Ÿr1:“saÖ¥à„[ :*6>%Úœ—.æ×b[¿jU’.E´jäpiÊp&¨éE(c­cîÄéÎ%PT•e”*µÖL? ð,¼Æ¿s÷߆ÏUU¼óžŒ¢Œ"-\kÝpú99ç«å° «k*wSZ.–óB¹©Üd1¬åÖ‚Cv'RXûjU¢<·Ñb¤/-‰…3Ê,o…WHÇN§>kï3UT¸\ÛúìÆÙ>ø¥‹4šæ°—þâÿì`KB—…?µv*–Þ4­ø KÁ¿U1ü©Î¢- ­,J«ÒØÝÝeé¥Ù±™ëZ6¶¬Ë,ÚzeW^›Û%¥6J•UÑT^$³Ö·ml[ŸÅ¥4O´fâ¬æ|G²Í¬ŒOIÐ'ä$¤ØÅ¤t‡û¼J÷ÎæÁ›š'&¥9ܽ £¸…×ùOÉ“ÕäÓ¨£ûL&Ýš\b˧'’8]~xEæÃüˆ­!YÎÐÑ7oq …ôÛ†n%ÊÖåq¶%Ï+2ák‘ûIþ‡è÷HÙ™/ñ+¯ú–ðëþSšh›«<©i´!}gL,5É 4ɸw>¦f÷üÇkbÅx“R¡QÈ÷:\1pVÎj»¨ƒû>Þ⟄e.—Ã2ïùó}R¥Tš3@V{è;;á 8=ø¥µ¬ÉÆv©ü6·!&ß“­‘Ç{2¬áóÕÊwktm2§Ç|žþjŸé=ÜÒIš9´²ò¥7rOÓ ÜWãÍçïkIcS‡Å ÇoyøM\úò³Àð'¶ó‹óQõìàÀo çÀ¬-pf:³vVÉÿÓRgø5§)Òl3|Ÿ[CÜi9ž4M‚G#9¡J.Þ•`¥ïÅŒôó½ï” ÒbQrè¶³¹e®;&®š‘ N°ÎðA·Á­OHõÄ«c<ê&Yi _Ò–Œ‹­1úu*:qíëÂÌÓô å1YYÙ\VIxÎÅ1ìm„%VÉlDÕÞ’S`å•S:³|þ¸ÎZá²%é•Ï*båöŠÄ¨ùcñ¥ÑjâìŠx½PbË4G Úø¸¹C¼7ÁeÉŒ§»ÊüϹ;¹4’Ḣp³þÔ‘hM\1ž8ð‰‚ÂLöõ®°¿ºugTt’ù ¥Éšžœaää{é%™¶¢4ÃLNÕêòäGÕú(ðJF {KzžE©´ÐSƾ…?ÃX9DCTÓ*¡™T§ý/{™rgUW—»ª»Ó}mŸ»²g«»’Ê~çü­|’üZb#éî$8q#÷QŸ8bNÕ\N*]œkî¹Ùçè·Ò°ÕDÇYb¥/79öÆ—×µis‡Â’Ÿ“”“hÊÚKËÚJy­5WÌpZyÏãóÞ^œ|ÂgŒ’)5ÊágŸñ±Ÿ?á—G)¥ÞüxŸhà'dÐoL§£Íò-IåÞ=bNP#CôÛrŒ#*@ü‚UIyYti Ÿ%ùK4PÚV&s’ró-ŠÎÍ›ºåB|~fjN‚Fá.|ñùg‡Y°tŒ»õŸ[×YôÀL”ü™ùNàçzB„<Ž8Éé}‰N•Ë©r¸¨lŽ‹æ ØçǾÅ]À $w†ÿÌ‘«Æ4³ð‹{ Ó=Ãís«l¹#§‘é×ÖÃ_²€ÅZT9†`?~¬x”(ÒÇÑ÷,nkn— Ã,‰pÝH¶õa7}}áïp„?d†í^^³””M¿×Ǿ#¨ƒ¹)/ËšjÑG•ÉÎfªwŸÕX³Ar= ¹‡ä™d=g”$§—98™S­æTœÆ ¢»„DÜœe†ÿã½Å™HÅü‰fá÷n5-ÒpA“7Ãùï5­ªÅŠDé†>8%B™[WlQ8;‹WÌÞ¥/²á Õξ·V1ËÑäí³ÇÑC‚Ä·öQa%ºcV0L„áÀT-[û¤ÁVª¥ÖÏ)Ÿþ+ŠÃ_‹S²¯Ü<‹]=gµˆ±*…1>öåš§Éœ»>oÍ–:§N¥‹’ u|ÍÀn·ï¦¡Bkóñ›¸yØ’;“s4Qq[š+Óf~³>¸­=#m#>%3U›äJK3Y3mÖâ-û*÷~¶ ˆQ|íô ¬Á¥?C¸é_T_8=¨ãYØu–ð2 š~n_ ÚAík˃nËYÂ{º÷ô_0$HáõÓƒñ£*Ì)˜üÑI‹áë1q‘ ‘pÆÐÂÂð¿0„bþþÿnˆ½Á< ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘pöÀþ‹`žþ&ð+ý_ÂÏyP$ç…ÿwáðp©pÃn ›þx¦ÿwxñGFL$šÅ²ØÓÅžëÙ³‰l~ß¶ðÃñœ3r \ —õsçq}œŸáÜ$·›ÛÇ}‚»šû$w-÷9îîQî;ÜÜ“0â 6®ŒÎëÍ= ðéÒ2Bþ#çDy'ܵDN¢þQïÒÏ)õÞ$o.¬dBšŠ~‰¸þŒÄ}`º„”­%mÿJ¾Aþ#âÓ?< œä~ÒþAHV r‰P„þHø3ÙðAIÖD.zIùÔmZAJÒx.Ä_Eâÿ7“ðI<¢² ÷7²óƒ¯Yøy˜„çAæAÙIñÑ¥±ÎH- BKm›øŸ’K—“PH<çBü$îßEÀçžs%áûÄ"ÿ+±JÂ7‰(ü€X"¡E(B:Wâ°…ÉFöý¯¤Ká\q)ñFè?à®~=鉄Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hˆ„Hx߀ÿv\±ú•á»ØfXûÿØüÁ?\ò4Åç=Sï¾0WªNˆj‡º*Âã¿5ÿ?@·–endstream endobj 32 0 obj << /Filter /FlateDecode /Length 198 >> stream xœ]½ €wž‚7(U[—æ]:hŒú‡aÒÁ·÷¸¶ß%Üå~šÃxƒ/²¹ähnX¤óÁf|Ç)”|ú Ú´Þ”Å8š—N¢9œtºJJ@7ûY¿°¹n·üÒÎ5&Z|'m0ëðD1(ƒs 0Ø¿¯ý\ðpKfߣEÒÒ®j i_ÕCj«:`H©×°ß£EÒ0¤;ždíY‡ªÛ­ËH3匡ð xźšø»RŠ©VIB|ãf²endstream endobj 33 0 obj << /Filter /FlateDecode /Length1 45624 /Length 10626 >> stream xœí |“ÕùøÏû¾¹7é¶PÚ¾%miiš”(¤é%!Ò–6š&im“,JQ&›s*^pC7ïºé¼ 7BQWœ›¨Lçç]ç¼O7oUæm›ú{ÎyÞôøñççÿûý÷û,=}ò=÷óœçyÎy“ÅÂBtd'H[k‡©Š°Ÿ ´ð²Þ=è bùü³àå÷Öˆè|¢µò/¢¸½7Ø7ø“wn'Dy>!ꌾá^ìßù8!š¦~¯Ëós·ßJÈ­\ÒÉgeDI½ÊEýƒ‘mÒzBJ¯¸]XvgRÜ?èÚësÌÐÿTŠ~× wÏõ¯C[ê«„TŽáÈx*ù>!õ—Ñö`ȼHùÐA(ßAHv.èu!ÇöÉŸ ù¹†ì%w’»É}ää)ò§!Ýä\r/ù y‡|H>ç§äfqs¹2òÿìçØ9òA¢É&dü³ñ·Ý6þ6!òä)5{ ”-+™¬O›YwlϱÑc)’H*›Ê?µG¹±ñÏø:Z_BËüy4ÏFU^wl߱맩³vì'°Æ·HéƒRˆl#ÛÉ™dù69¢á°È÷Éyäx½ˆ\L.!»ÉÈÉr¹œüˆü˜\A®$W‘«Áš×’ë þGP¾ŽµÖrù)¹™ÜJ~Nn'¿ ¿$?òä&ò3r ÔÞõ{¡| ë±WêsÔÜ u·I£ö‘Ù/µa~„ w€÷öÍ(ÿŠŒ’ƒä.‰w“_“{ÈoÈoÁ«‡ÀÏ÷K¯Ø2µþä#%ÃäwäAòù=ybå¨;B#<®þDuñ¾'Ÿåqòy"ðiò y–0m6jñŸ3 hÜÜ =I£žðÆ30ËÓÓ¬ù:yZ¨Ýhûó¬åfåW˜•߀ö¿2/Ð^hßçÀ¿ÏNÌpô} Æ> ~y’õ¢^ûíó0ôºÚ_–<÷y¼E}ö”þù{ØÍô&hL}ù©íQh9 ÷ÕÇàÙÈß!÷äiºj>yj?€>¡}Þ½Ž‚Fï?¯ÿZþùOÉ>>#ŸC޶¼-Ÿ²òçdœ#ãp+rÏ POó„ùöÿ%hs zã8ò%'p2N÷§ "GÃ%qZˆ:’Õà,U<ô¢m*VÃú“NôOáR¹4.Ëà2á΂Y“¡.Ë‘ZÔñ.ê’§ôŸE«›ÍÍ\>'r…ä1¸Éóɧßs!ÂEn´ò\øùN‘]Ê•q•\5·FqŰô•\§‡šb®„›,‡ýAÄs+ ¥žkâ,Ð:θ%pVrÖÝùü•pØÜßÏË“99Üÿ÷ó-d”Ÿƒ¼´‘N²™œ.‹Ôlݲù´S7mìêt::Ú×µµ¶¬m^³Ún[eµ456Ô›ëVž²byí²¥5K›Œ†Ò’â"ý¼‚œÌ´Ô]’F­R*ä2çˆÁ¢·v‹±’Do³UвÞ®)Ý1ª¬ÓûÄÄnÖMœÞÓ ={gô4cOóDO.U\AVTD‹^ŒiÒ‹£ÜÆu¿¸Iß%ÆÆX~-ËËJXA…ÂB!Zrú›Ä×-ZbÖ­ý»,ÝM0ßþ$M£¾Ñ«©0ýš$È&A.VªîçJWr,×Zj÷óD¥£ËÆ„b‹Ëk[×iiÊ-,ìbu¤‘ÍS4Æ”l.ÑGu&Šû ‡v]4šJzºËµ½ÇujgLpÁ ]‚e×®óbiå±2}S¬lû9°eoÌ o²ÄÊõ0Ùšö‰¸˜¼8U/îú„€òú±÷¦×¸¤Eqê'„fé'Ìíñ<Ý@CØ_a!ÕåÂQ3éBlçºN,‹¤'w„˜Må]1¾›¶Š·ÌrÒ–ñ–‰áÝúBê*K·ô»µ?'¶³G¬0€õÙo1üB»Jº{Üý”.ï.}SÚÍÑ37AÆì’öjÙ_i‚þ®nØ„ša]g̤Æ2õ Ø*Dê_G'" ‹e6ÆH·[3Yš¨^¢eWw*HçÒ¯ë{ÅÎܘ¹ Ì×¥ïôvQ/éSce¯Âr…lE6 ö6£w¼3ݹ²X%vò¹BõTˆVxÑ7¬€†Tp+R6¬;¹\ï«H=hnÚéà]¾œ Ïç^|ž%º,øüÏÞ¨’ ~¼ ì=Y*FóIf%šçI–ìY)/²˜”—‘ÙƒR^NrdïIy)’ˤ¼’l•—JyY ¿]Ê«‰¨ŒÏ£áo˜X+‰¬W>.åµdªDÊë’ª6)ŸLVCNÚ£*k½”çˆ2{³”çIRÎ}R^ ù9¿”ò2’‘sPÊˉ6çQ)¯ é9ÏKy%YžóŽ”W‘YY§Iy5I],å5\ÛÄZI¤|öb)¯%³fwKyR˜•òɤú„“©A¹tùuRíŒy´3æÑΘG;cíŒy´3æÑΘG;cíŒy´3æÑΘG;c^—œ#n“òhçÛˆHªH%YH–Bn-ñ7 ‘ ƒô’Ô5B.D‚ìÕ5>Èù‰ZêÉ$‘´C]釶0+y^è½^=ÐSGlë/|>I+Ìæ…9d˜åDÒ 3üQ¶âäú˜&"ý_j†al| qBçJR ¹’‰R œº¾ fB_ÖuÁ:t7|ZǾ«¡Ôµ´5 ú…'öã€zÛÃÀIõéevI”{ …Öº˜¦ïç H;Ù*Qhu³ýÆ­;cC¬& ½<Ìj"Ô÷³ºµÄ:QëøØ8?³ër6ÞËzxÉ ¬I­ìa¯¢¤Q¼¯ÈêÃ̧>Ð%î½É}Ðöhბa°B#ÛíÄ7±È Œ@ q?.¶†(ùÚ3ÒY]ÐÎ5 ¥!ÈE˜°¿È0BÌt¿>xí“,…³FØžpM?Û‘›iêg«„™ŸìÌ+½PCã1Ê,fóz%_øØžÐaa˜Õ%Å+õXPª¯2ó 0û%-ýP3ÈVÅ9ÃÌR“Ѓl/x6â¶EÝXÔÐHè—"—j5}]°~„•üÌ×ñ¸F›á*èG¿´¯³më9©ñÔQ«mcãp×g@ÙÈÎîToÎg³ ²†™¢Ò)jïxôù¥H¦ûG¿„X4ÄcÔË|M#78±Ô±Oê†Òviöì=´uÂK.#ô NÛWüæqƒ&.¶¾[Zßx‚ªö¸}ÒÓ€²GòT<ÖK1?K`¾*¸C¦®˜=uìÉÏE„ièaqKµ=cÂc“çøø[µO:Á‰Þ4Î1>üÐßË"íçvÖ$îçÿ3÷s3hâ&¥ìL–Ií"YÅ¢"À4‹@¢·[-¼4A{€ÝFv/O£s&ȳêcQD}3 µ.ÐmŸç`:P z™¶x+â\'ŠÑ0‹ó Û;Z!>Žzµ‹­÷Ò0³4Z&2áíxïø-â–nzz'˜ h¿ Soõ ³«_ºMp¯TvI7¸—Ý?>¶CÔ®‡é÷òLE¤?¡ãjz'ö`øZ7>C<̦éY…ç×5L¬3sxç1;¹Ùy:‘͆¤úØI`g Oþñ¶§cð9T ý˦Eð‰gG¾©m§ž|/ JOóóœ{ÚSuæ&Ÿ¡3õZ>%èNp/øÞ"~W†&Þ§xØ“ÚÏî×IwбçšUx¤WÜæ£ì¼àýäaO=Ÿt·à<´ç»ýO£x‹û%ÏLÎ?!¾)ïAúÙ}ç“ìLou»/½ÒâïGâVžÕæË{HüÝØÌ{næI(q/xÙ==ÄÞø˜÷©W]PG-Ô=âm&iÎ-3îÎ2éôNÞ“ïâÚüwžN_ói Î1Gs|1o"šO‡:ôSñ÷ø.ªOòs<Ž1®‚Ò{"\!ÀÞ¥»Ø>ã‘â"“Où™÷Ùÿ€/&,äb{§vóIw½G:«n鹟é:õ™écïÝÃ,6%Oî[ÈwL΃·Ë¦ØÈ3åóÄÔóðµç#“Ÿâ½O|»fÜnqÛÏ=À>Cøfì;®×ä{°ÉS3ù$ŠûÐ@âŸåèg¶xÙ;%B‚ìÓÚ‹·þ)OXÔº‡é╞TÑ _N½KЇ&ÉãavJ&tˆŸëé±ôõ­:õ »œú¤™Ó“–bvü†~Œ? ¢ì³(ZÆ;E{¥kNÚåtèážòìˆ|Å}Œ7¿‡í þÄ«v‹ã»±­,¢wÝ~öŒˆ?e¦~š‹?'Nt§LfwúªGÚ÷‰Ÿ¹®“x44±û0‹R?›OÑñŸ“¿iÄŸo6ba­­Ä ¥ ð´lg5v¨ám‡–õPj‚Ú&¨™=:¤öùÌSØsÈýœì‡s´Ãk ”»Øg%"+ÓÒèßsѱÒÉÖ°Àl¬g;›{-Ô6-R?:¢jœP¦ùUìÄõZ`~†°KÏDÔÔõâħkeg+Æ5[ ¥v˜ß&µÖÃÜv6ÕŸ®oeù– =­’¦õÌFtf:g#hÔÌJ´Ö lƒ~lýz¶gÔ¶…íÁ í¸ Ó€®l”öŠý¨}ÖK-ÔGT¿fH“»ªg6°1m&í×lÍéü« ÕÁž­0²‰í´ƒYÏ"ٌ•&w…žjd»¡V¥6h‚üZU¶kg¯¨Kû”Ù¦ÛnkŸì…û«—^™åZY ½ÑÈJæ+Új|ÙÎö1sÕ ,-¬W=ÛqÇD„XYô¢öñèÄ5Z§h‚ëQßNÕ%ÕâWœœ%Þî”<}¼]¨Õë™M¨^+Ÿlf8›·‰U• —Šk}îP èˆP0rE|¿Q¬Û}}ý‘°Øî {C[½£Îæí y‡ÄÖ ×ïzÅf×p }>·è‡Ct„Hg®¬K(j b»k Ø/Ú\~wÀ}Ô®ôûE[Ô¦ë8ú}aq`ê<½Øàëð¹]¢´"ô À¢b8 ¹½"UwÈòŠQ¿Ç#ý^q­Ý!6ûÜ^Ø»\ {½¢w°Çëñx=âÖŠoØòéöØoÄå]¾ž®á0!¬ãò‡a–¯Wìu ú†Å!_¤_ G{"^1€u}þ>P ºF¼ƒ0Òï„üÞPØ(Ú#b¯×‰†¼a1ä…]ø"°†;lÃ.°«Û„<2ˆø‚0¥?:è Aϰ7Â&‹ÁP¼Aµ…ÙCb?Wô ]îˆèó‹jkÐ †Àý°V Wìñõ±‰q¡ˆw[ûÎðEi›óÃâ Ë?,º£àRÔ›šÏF¹`/!_˜ZÔë£Aº ÌØ5aßvè À†¶Ò-¹DpÀ ®EƒÇÝï bÞq" jãkŠ lŠa=Xˆz`‰±ªZj® ÍØ:Í‘Ëãt…Πc>žÕ>pAV»`¿Ï66GÝ¥®p¸U\ "ý‘H0\k2yî°q0>ÒL‘á` /ä ö›\=x´+ôˆº]áÞ€<½& GƒÁDm3Š](˜pXŒBLEhôÒjj7ø:â5ˆ_8†|Ðê†.^  üê ú"˜®g˜í*Ÿ`;¤@(žé¥+Žß;†'êŽh|n…±:&¾8l¨ßçÙ,êó»¢p&µø!tJ}exN¦t‡¾J[×rfR¬‡„Þ-!z”-™ çé’)÷²°`‡‚Nsâ[ñD·Ù“RfÚã)jæÓ°'j8\pÓ1sO¿7©)§Ýœ:]uN˜'Ø7˜À £ °Á2ƒØ‚[8™}°gjc°x†‹¸ýüÔ(.vsÇãìëï‚*ä ‡nŸ‹Æœ3¸Ãü^°¾°L)qÚnÅéê~ªŒiäa×#úá„ýØÅK«§„›A 7ª}¼yÀqŠkÓ¹Bøè‚Ø!¢;4ÐËÝ×Kée FaCá~v`aêž(=¼aZ)E ìÐ{éúðŠ=©ªxàaI<4’¥™CýÁ¯Ø#=Ñ”ñ² <¸T™.§{Ý‘x€MÆ1¿ÇÇ^-†8\c[½SžÀþ@„¼Ý}Ò1ÆH‘šÂýôÑãvr]S6¢Ë‡#L>pÑÄ£è« @Ï›Í"v´ZêÛ-¢½Clko]oo²4‰óë; <ß n°;l­N‡=Úë[]b«U¬oéר[š ¢¥³­ÝÒÑ!¶¶‹öµmÍv ÔÙ[›Mö–UbŒki…½N"Lêhé‚ÒTvKl­¥½ÑÅú{³ÝÑe­vG Ó “Ö‹mõí{£³¹¾]ls¶·µvX`ù&˜¶ÅÞbm‡U,k--x·@hY±ÃVßÜÌ–ªw‚öíL¿ÆÖ¶®vû*›C´µ67Y ²ÁšÕ74[p)ØTcs½}­Alª_[¿ÊÂFµÂ,í¬›¤Ý›…UÁzõðÛè°·¶Ðm4¶¶8Ú¡h€]¶;&†n°wX b}»½ƒÄÚÞ ÓSsˆV6 Œk±à,ÔÔâ4@ZvvX&ui²Ô7Ã\tðÔÎF]â{‚Ä÷ÿ Û&¾'øŸûž@Ã$ñ]ÁÿÍï Ð{‰ï ß$¾/H|_0ó6O|g0ý;ƒ¸uß$¾7H|oðo÷½œMöÿÿ$‡þmƒãö«…QþÆ‘ÜE£üÕ#s.A„Ff×¾…"NÉY؄؈Ðd/ÌC"DD"‘‡˜‹˜ÈEä ²G²¬£ÜkˆW¯ ^F¼„xñgÄ ˆ?!žG<‡xñâÄÓˆ'O G<†8‚xñ∇¿G<„xqñâ~Ä}ˆ»GfQüqd–p1Šø⮑YÀˆ;#ˆß1‹F *Õˆ*ÄBD%ÂÄ|+±¤É7’øÏGò*Ÿ!þ‰øâSÄ'ˆ!>D¼02·ð'ÄóˆçÏ žF<…8ˆºh1Ü~…xñâ.ĈQ ÅŸ"~‚¸q'â:ijˆk×c´^„¸qØ÷±t."€!|!â<Ä bqâtîDt!:뻈uˆk-ˆómˆVÄZD3ƒ‚¥Õˆ5ˆ,Dü,„ÑŽÈDd ÒiˆTD "¡ChI ÂPcШ»£.c)1‘‹˜ÈAÈ0Ü ·¿aØüñ&â ÄC!"~‡8ŒQðâˆÛ{1–æ Ã— y#ÜLk! •˜…ÈDd ÒiˆT‡êTwñ%â Äë¨îkˆW¯ ^F¼„xñgÄý¸£û‡÷"~‹ø âįw#nÃMߊ¸q3âgˆ›Aƒ\ޏ ñÄnÄ ý"¶#†ÛCˆK[QDFôàéØ‚ØŒ8 áB,B¯T#ª •ˆn„ aDT Ê eˆD1¢QŠ˜ˆÇ6`ŠøñâCÄßG ÞGŒ!ÞC¼‹xñ6â-ÄßE¼‰øñâ/ˆ×1>+0ê ˆrÄD¢1QŒÐ#æ!  †°¡B( á¿cDE|€x1†xñâmÄ[ˆ?bD>†xñ8ââQ Å? Fül –F0cˆ}ˆ_"®B\‰¸ñâç ‚ƒïGˆs;ßAœø6‹¡xáCôc¼ô"<ˆý †h@Ô#̈:Ä÷ßEü±±±Q‹X†°#V!¬ˆ¥ˆ„ CX‰8¡@È2„€bžC4!q&Æà8âVöaéKĈϟ!þ…ø'â·øDø âįûG2/Äø耳¸|óC© ÿH¶| ò‰nuÁë ¯¼ªm)øÈa@î¹äȽIë ~ rÈý 1} ¿ùÈí {A~rÈ­ ·€Ü ò3›@nù‰¦¿àëA®¹ä«A®¹ä ƒüärõPÁ@.Ù r ÈA¡Ch3kÖ\ …‹ÔÞ‚zµÐ.´Áéa’ûéHFlú'ˆFÒ© ®GüqéHš°q âbÄEˆ » ÎGœ‡hA¬ãŽr͈5ˆÕ;†X…°",ˆ¦‘  Ñ€ÈCÌEä"æ f#rFÀ—£\6" 1 ‘‰È@¤€§G¹4óàÇ |òw£ €¼äe—@^ù3È ï=ò{@î9òSðÒeàˆQîJ4ö¦чèEx„уp!º‹‹ÐLÕˆ*ÄBD%„0"*Ð>„¡@È) ­BËÈò‚E÷ ðÑÄ"Œ‚Ê2ƒõ ˤgYG¹_Œdd ÛG2r{?ÉÐnCÜŠ¸7~3âgˆ›7"~ŒøârÄe{?DlAlÆýŸ†8± ±Ñ…èDl@¬G8D¢±цhE”# Ë¥ˆùˆD1¢¡GÌC¢¡EDB†<‚Có9¥ã Ç@¾ùäsÏ ,ÿòO÷@Þyäm·@þòWÏ7AÞù ÈA9ò(È# yä÷ <2 ò+á»@îåö¡G~‰¸q-âôÈÕˆ«ßGœ;’f|­w⻈ï v"ÎF|±qâLÄvÄ0bb±EDaDñ-D@øƒˆD=ÂŒN«C¬Dœ‚XXލE,C,EÔ  — R)ˆd„¡E$á¤A¨*³ 8yäYg@žy äI'@/íËæ‡ìÂ9ºÙû8W(.øž`,8‡3|×¶Óù½;gÛv8¿½w‡3iÇòkvI;rgîØ»ãÏ;gÙ¶;ÏÜ»Ý)Ûž¹× Û†œÛö9“†8íV[Ô鈾ý8*dFQO4½,ú4T(oŠÞ=FǙӣK—[wF/ò™ÐΓ(—B«ÅhR²5b 9Ã{CNY¨(ä ËŽ†8ÞâºCÁ„ŠJ­´sn(kŽU ™Cm!á[¶€3¸7àôÛ r©õÁIDÇA’"8ÈnÁaçÉ@p€WŸ»õûœý{ûœ½FÓ»×ãt{œ.c·s‹ñ4çæ½§9O5ntnÚ»ÑÙeìtn€þë§s¯ÃÙa\çlß»ÎÙjlq¶@ýZãgóÞ5ÎÕF›Ó¾×æl³q«ŒV§EXROR’¿ÁüùGóeIÝyÁ<>˜÷jÞÑϺbOV i­ðê­‚õË"~«ØÔoË*г Ò•Ül¹~N’©¡4]—gÒ—Ô–ÍQ¨”2…F©š_Ó0ÏÒ×4ïØ#2U²:¹\œ«ÏPÈÔ)Iº²Â9ó2”ÇJäÉŸ}(Oþ|ƒ¬éó{„´%Þ–jŰ.‰—«U·ææW.ÏÏ,ÎKӥ蒓•s æ*•é)ý)ë¾¼N=WÌÓè’Õ©³´Iyùšd­*%ëËB0ÔÊñ·e³…çH XsÏÝ‚M°“Îrz‰9;¨óTù£|ù%óK–«èÿìCJŽò·™µêåóód%D(´/ o&ç¬^o&ï4'¯šKËsêêæŒÕÕ=³—q¦±§_«N«NK[¶¬ra®9éë®\ØUw@² ™WV]••-™XÉ•”€;d³2óyêžÁ#«9¥`~Ž’Ÿ›Ò°q°¶ítsnNUËàÅ];+S¡-¿4[Å{Bï\ºÀº¤,W§Î)-0œÚvJrá¬tjêÝâªÚ’¥[¶7Ö]~Ù§×YZg¥ËÕ)šc×Ô”6vnq•å/Y0{ñ¦a ý+MËÇßëÉ r`ºõîZPU£õ(¿Ç¬Ö§ió…ÌL½i”ßmžOôiiÚªwÔÿ‚-ÜaÈ®ÈXמ‘‘œ’f(/Ñhs2u¥ígoh¼òòóûV–¯ÚÔXº¸è”Ó¬¢…„_}l`–oƒ~패LÏO+ø5¿ â5 Œ™f_a3Û—›íYYvórY …O"ZV寀Ï'w-/(J·Ù–Ð*sQ«d…Ã[_®ãL‡³áÄ›LiP‘:ЃDûug@ ʨ±˜…”h@™^/P¹)‰‘Eg^²êjéâÈÎÊÌ‚\•”¬Rd䤋¦y9ª”Ÿ¦h•69#é¦kÓ–o<³e‘U#— uR²ZÕ)´—úÇA­NPjR3tþŒÔ•›Îl™³h¨PÈ勹óŠ 2JEúü•åͳ4bqQ~ÆG;¾í,OU)’uй…PÁ |Fi]4-G#çe¸;×—ËÕZ…<þ5²’ñÏyÛ›ÈMÓ=`Înª¨0.ËΚWØ2oÓ¦$¢Y:/©cuZ)|Ø4Ï5ÛW/5fkHVEÒ¼M-MË’«WÚ«›ç6Ëñt×Õ¥g/«›æãÀô‡«ÒªÁü‡Óª«ŽTCìàLE/ ÚšŒ%KK+|EÚ_©”ü€˜•©PʯçSÄ…ÅE•sÔÂ2…¾¢t}ë)ºuXiš£æOWÈ‹ ñÊ‚ª¢bS®Š?ÀërËó æg)ù¼YÖ.ßÒZgMž,{UWuKí•jž&E#—à Ÿ]‘mª]Ô5Ôxl`JåÂlòé•ÂMŠZN/Ÿ=z{mqAÍêò"[mñ|ËiKô«ŠáöYw7eqN÷ѽp;ÝMrH¼jI|ÏX]ǘ•ñË`Œ^Íc,àOÜ>%ºãQ,ÇÇ_ü¾•ÉHní¦³oêóî驜Ìû"mþ)†ª¶:c~òdŽÙ®øÁÙ®¥¦Mç®·]qéwºi®oA}EÎü† ÝîŠ kÜàêÁØ´°³j24#ö2JÓÒòÒç’¼¹)Ú­I+è8ñ[Ì©æŠÕésÓJóæ+²çÙ³1@XxŒÑ+b bŒ&é„则çúdQ“%he*mJF’:=kNÚ¼µÖmÛdLŒðÉñ˜˜›S·ª¹8¥ w–B!Ü®,ª¬6ÀÓY¹Èù­•ÇÇûû’rÛâ|™B-W€-6¿Ç¿)ÛO,3ŸÏæ¼%†òšò•º^]_£./¯¬É®É&• ¶šú*Ü^wªË —ØRF¹öæÂɇÀ²±ª#Ë–Áù;Bßñ¤/£fIÝqÞáé `Ÿ»¾î q;é…“?B&n=~âÖc÷$ìIIM÷€C—”åÌ›®R%©t©juÑÂ¥sWlZYÀËå†V™:'ýŒR°+žJ¾ô¾4­p¹¦ ¨(/ãØi)eºÒb¥Z™’–QYQ¬V§j•³—8V$剅:î@ZNZÍâ’‡4©IryRªæ¡,úŸXÜšHÿé‰[õ ÓÇÇ'þÎ×$|Fúè«’løäI>/‘)‘)‘)‘)‘)‘)‘)‘)‘)‘)‘)‘)‘)‘)‘)‘)‘þ³ûWl9ö'm2ñßç%V¢ U@Éäxéß¿ÍçJ§ý›¿Q,w¡ÿ°ŒØØ¿{+£sŒÃ«‹¾BY/_wöï s—9Qè¯îœàgF¿£äèø´ Ü‘%'$! ù—edåÿ¦ï“å_GøóÇ×$ä¿' ?)ù*‘-%+¾©ðO’o$’͉”H‰”H‰”H‰”H‰”H‰”H‰”H‰”H‰”H‰”H‰”H‰”H‰”H‰”H‰”H‰”H‰ô–裨¨}mlßÝ[RV|BfãÔøëwÏz”ò9û6ñ³m_^¬¹QÕF¢&ÒMù_CY§Bendstream endobj 34 0 obj << /Filter /FlateDecode /Length 267 >> stream xœ]‘1nÃ0 EwŸB7°l'f\Ò%C‹¢í‰ž^Oi^]ýQ–ð%«›æ‹Ü–{ âÎr™SÕ´.Îa}ÕpsU߯üý“Å¡A¦ßǫԟ·—f› K”[ƒ”1]¤¼çaš¸’ÿ}5/ÛÄyz´¶hÕx œØÄüÐ7lñزØ*vlvŠ{¶÷Š=[€½â-Àƒb` 0(F¶£¢°(Š0êͪW+‚/™3©3ÁˆÌŠÔŠ`DfEjE;¶wŠ$“$•$‘Y¡ê¾ž‹ÑÕé ž+wá^ФÕe‡ÐÌIþn™—¬S©~yŠzendstream endobj 35 0 obj << /Filter /FlateDecode /Length1 49360 /Length 12463 >> stream xœí} `[GµöÜ«}µäE^d[×QìØ–—ØI¼$N,/r,ï±­ÄJšÔ²,ÛJdK‘ä¤i›6”n¸¥@S¶²• ²ÚBZJ[ Àc)¥¥¯ðXÚBYK ,…¦ø?3çJ–§~Þûÿ“Çs¿™3gfΜsæÌ\)u GÑ‘DB†Gjë û¹‹>v{g=!¬ß9F÷ððußü ~@ˆ,{*4=ûÈ髞òK0ÈúéÀ±)äwu’û‰ŸgòO‹W™ÇßĆ èîͳ’• õõ3³Ñ«Äù`ü*{ èõ`=ã•ÎÌz® ½+sø›€(Ìyf}Ï*/ƒ:ðo|{(‰.ÈÍ„t¼DÛCa_èÆçÏB±Ó@ˆ±ŽÅ{ ¹p’¤þ ‘ƒ$ë=ýÞHN’ÇÈ÷Éy=”ÞIî!!÷’ù<ù*ùù'þ\8&›%ZÉgˆœd²ôêÒÙ |Z¦O¡œ„Z–TX¦,–~³Šö› '— NË3‰šõÕñOõÜù¥WùVZ_j uþ(g°¿S¼÷§.|t…8=¤ŒÙMö7$‡È.ÒOö“+‰‡xÉ$ñ‘)2MfˆôuˆÈ,™ƒ%|.×¥ûÈ'ɧ ,’ûɃäÓä3ät²þÔ–Û㌒àY›þ0ù,ó‚ÇÈãÌþ_$gí1(=$¶>&¶<ÌÊ_ _(ôuò òùøÎWXþ:ù&øÇSäiˆZ? ωô,ó +g#ß"OIËÈwezN&yœ| WAý;ü;ÁDö¢·»o¾) çf‡úg¦§|WØž½î1×èÈð®¡Áþ¾Þg÷Î.GgG{›½uÇö–m[››¶ÔÖTW•—•®·®³äe :Z¥TÈeR Ï‘*‡µk\ˆ•ǤeÖîîjZ·z€àI!ŒÇ u­ä‰ ãŒMXÉiΩUœvä´'99ƒÐBZª«‡Uˆ=ÑiNs{wAùV·;ËÊý¬,-cTJJ ‡àÈ›ébܸàˆu™YpŒwÂx‹u‡µÃ§®®"‹j 5PŠ•[C‹\ùŽørÇÖEž(utÚ˜¤Ôᙌ ístšKJÜŒF:ØX1yGLÁÆüTfr›°XõøÂí§ dbܦ´Nz®‹I<ÐiAâXX¸%f´Å*¬±Š«’KöŪ¬Ž˜Í ƒõ''àb²RƒUXx™€ðÖ³¿^Iñˆy©áeB‹t‰I5A{¢L@6ÖWRBe¹í´L@%vb×Ö2aŽ{­ÍãÇiË㉖m9‘hIv·–PS9ÆÅß#3y±BuhŸý–Â/´ 1IÙø„w†¢Ç·`íìD½ŽÅìP°{ĵ:7Ö¿gá§jØ5«µ†bÙÖvd‚@màc]Än±ìŽ÷нbµŽN*—àXïDéXÖ]c‘MK/,nÌ÷o"›‰›Ê3u€QÊ c“S1˸yüsJ3—ÄìnPŸÛ:æsS+Y ±Š`º6#ëk[Å`¦+W”*…1Þ,qSkA肇µ½ `.V¥moÆ83I°Á,"-­*’ÒŽnÚ$¡];ºÍ%îüy ‘Ì¢L²Ò˜2e,’2á<— ¹©@‚Ã×™"àŠAe¢€âhkËÉS]ˆC%5gw¢IR ;h< ÃHÔŠyBŒ cVŸÕm²ѵQ]3ûöŽX{wícÖ½dtE Û›°#%М¨ðàƒ]6s¬¬¾“Õ“ÕîUÍÎD³•ʵ°0¹H$¥Ô•Í‹+È:nsÇmnklÂf-¡rVW-*‰¶dt¼öj„;k—Ç*„®Ïé¥ ‹vûBÈ1>³öÅ‚Õ9¹`k13á‡ÇŽ›¯¦sg’^®w´†âIû¢•»u×¢»udïØCpÿn‹óß1Þî^\mc „Ø•§TJ¤VèHÃPQ2~óCvBN°V)#°º÷4GM™ qÄ{šGš'*cÙ -Rl±'¸¥@S"ír—‹ÜJh1Ж‡ $„5âÏ"¡ ¶«ev¥]e×ò:TJIq < ¼*ŽÜ¯åtœyÆfäÓ܉E•ÝüiXä<œ”v"IÉ)[Ê@0.ܵ¼×Þ±ûµÆgOàh§?à…y3àCpž8„Iê׺gÆÝ4zø*ür1κƒÄxëX®©­¾ö˜ÆÚNé­”ÞŠt9¥+Àó9ƦAwaÜ vÌ1s¸×$tHáôÒÒèXÉæ³îØKW@Þ;SÙàp“•ößNšÇ¼3vÂë¡r×í«(uzݰ/‹3¦‚TâÀÑÅúÐý¼àk++BÇ wÌm£“ŽùÝl¿b¤Ûº5&/Ã1eet¢Z÷B¦µžØëêÒ[(¨@622†3Ta27*I¡ɽVhòŽ è##°—ñ°P›‘⃘/-ó±¬6‹„.KRªÑ©cª~iYSCcެTáv£ð¬v‹Èsb¨,E•bÐ49©,ð{ ˆJY?O‡Ùuš [¯‚ÐI…f#) 9¦+uzàtÃþ X›•4jÄ1Î UAW®½CH8½ôQë±’”ˆôô£þGÌÁF%î…Õ„Ø>[u•r5UÇÈ JÝÚP_J]‘/õÒS:ó7kÏ"?`cÈ1\è±ÂÙÁ—Ò W lœaÒM¹@Ø!Å.ÉÄ¥0Ñš ¾`Ø–¨qb ͸›^YIV»h†k`i Þ`4Ê‚—4Çà“ j aA0X·ZéƒuÞIó8˜'¹!ÀñÁßèv9áÆ&ÀÍaÀ®ñ…®z9õzD…‰3Åæl+†„ÁÛÀ@t9±C¸[‡K)·k¬¤Ä ûP˜‚ªÕC!\ÏÐ^vIñ,Pç&pGq›c 8’¦<>k œ1{PûTF©¸aˆyaÁºc;¶ ˜aø2ØpN ð²Y=>zyž¢wgëÛâ2íÐÑÌ+ìb™.Aqô&èû@¯æûÇm  ãBæ‚мÁw?œÒ2ïîq8¤èY$0S{ÌP%8iÍ !£ª”2¢óSifm‹û¥Ëö´!³’ ’ ņ,l'ÑÂa[ŒÏm‚FºxnxïX"BIh³Ôk¯2ÓÞBŒÍÃú;iWsÂ`Ø (ìôwVòœIœ@W˜A§—¤Ã±FääáΨïyuó«u¶’pw§~€"™¥<™÷“gˆØˆ ©…÷f¢Þf¬ƒýT­š_GY)?oÀn9¢g5Zæ‰Vú¬X–ziL,KI¡ôËbYFò¤?Ër ¿*–äˆÌ$–•¤Rv·XV~êÅÊjþžä\²[ñ¨XÖ’Je¶XÖéåÊbYOz€‡Ã5rJS§Xæˆ"·O,óDž÷)±,!ùyïËR¢Ïû¨X–mÞƒbYôÏ‹eÙ–÷¤XV’S¯XVC¾Z,«¹¡ä\bË/ËZ’“ïË:…$¯XÖ“Rà‘Nªá2e·‹eÔ3–QÏXF=cõŒeÔ3–QÏXF=cõŒeÔ3–QÏXF=cõŒe>OØ/–QÏ÷Ô“¤Ž4A©Ÿø‰—„ID O‘(Ð: &!öôÅ¥9R-m$I Ã@£ŸÒE¡­ù}À}ž“À©#ÝPšŠŽAÍcŒ’c¬$>ùŒ;Ïf @išI"@¦Ÿõƒ¾‰9„¤ÌÉ&(•%k¤ŠÍïBÀ+À¼˜‡Žá%‡Dި͕¶Îƒ|‘äzFÙ'&Á¥ä™bzH;Ô' …R=L +׈ãÅ• l–yhõ²õ&´{ú†e¸&™Ö Ï0Z?q‚LT;~ÖoŽéuëïc>2 sR-O²§ J”à=ÂlêYÖ[^m‚ôÓ½h¡ƒ­ÆÏVâO®Ãyz „¸›Cmí‡é¨ñ“ÂcP; ¥(³CÖ7å“)ÌtA×ë‡ç´¨)5ÊÖ„sαy™¤sl–³““Ye (öid˜­Q`ˆ¶ð³5¡."Ì+"0ªGôWj±HOÌ2 ã˜~B¢”s@™e³â˜¦©e èŒ!¶Ü Ý¢ìæ5ÔfDÏ¥RÑÏRé'ÛQV›c¶Nø5ê gA;Ήë 2ÝN0Îe‰SWDµv뇫>õ¶wS­¹6ËF8Æô0/îÒT}'¼oNôdº~´K˜yCÂG}ÌÖÔsCÉÕ ŒÓ"OjW‹£Gah¡#I+y˜Ð0»b]‰ÈãIJrS¯Fo˜~ó«ÿžX¬NGã™hÜ’xI9Ûb»@v2¯2ɢ웯ì‚ZH“L·´çìEÞS#ú\-”1šf^Dms ¨uœÇ 0¨SLZŒ8ÖZ>a~bkG-$úQ«ºÙ…Ž1M£f¢Ik'¸1Ã+Æuª˜(_HôŠÔbzcŽâë1^ûX´ñ³¢tLŽ„•W[,*ö@ÿ _D™J®¡ê²"ž“L§QñdÂý‰óV%çY½Œ°G™ž¼l?­¥³£âJýl§ØžÂ±îiZ^éÕUÌ2Vž$‰»×ê8·z'”¯Š >§²Û†ŸYŸZÕ4ª¡iàH´ÕŠc^¹*vVˆ»w9Z,ßÒü=§ÓežBáª1úcEIo>4´SÂkðæO‘eï~­.á•—>å¨å†’;'’rOA{£øÄ¹0bωv¯bk‹§Oâ^w¦iÑÎ ?F¿ ‰w!œ!Èîä¶Î„§xÈò)¿:žýØ"©![;Õ›_Œõ“â^õŠ÷ð9&kê™ég7õóMQÆKÛÊ#+Ïy°vEŠŽ&SÞR÷ÃeG–ßxÜkG·ªUÑ-¡ûÕ½ìÁ¿jÝ ¹–ï`Ë»fù$JذŠ$ÞÜèZ¢îKñ{7 0›I9aQê &‹O<©æ“¶L%hÃZÑâ¶KIûz¥/]¾VSOx\eêI³Ò§—5q”éqö´câ4˜gož¨_Š“ìIç\ÖËAàð¦œÑ׈Çù'Ù 'ÞÖQocGXy­[÷;#§Lê»[âœX+¦¬ìa±m5!®{í3×s ‹†“«0/c£ã.ºø­øõ€ÄùÖM¬utAmœ–ÃŒâšQtZvC­¨@Ù#bûf©=ìê>;ãpŒax@ÝÍb\XÖzÆ¢}dŒÍá€ÑFç0»¨}€‘öèŠ ê´¼“EAœþ7|‡pŠg"J: t!¹Â•R9ÙŒ Éú¡6 ãw‹­m0¶“Gå§ów±ò@RÎ.QÒ6¦#:2³$êc5Juß›¿­¥`kè‚v\‹ƒI@g®׊|T?»Åj#*_¤åUµ1t3i–õ×ÁþÕŸ›¿ZGÙ 1=;ÙJG˜ö¢ÎèjûXmyUh©¶ªUªƒN(÷CÞ™ÔÝ0{¢,Ã)£­ÔÝ־̅ëkŸLsƒ¬†Öè`µQf+ÚZ%Úr˜­cõ¬{˜':W[ñHÒCº˜÷¢ô ïÄ9S$Áù¨mSeIxµð{GI´»DK_¬ªõ6¦*×HræK {ó^¡~c]“Ðï÷†ƒ‘àTTè†CÁ°'êÎÕm€0쟞‰F„a_Ä>⛬Ñuû&¾£Â`È77z,äú<Ç‚óQ!œö{o0t,L{t䛄2 U°'šº=sÞ ÷P{‚3sB÷üd„Î3:ãÔq¦‚a¡Ý?ð{=Aœx‚0© ·½>Š{Ôö ós“¾°ñ ýÎQ¡ÏïõÍE|Û„ˆÏ'øf'|““¾I!€TaÒñ†ý!º<6Ǥ/êñ"5ž€"ì§sx„Ù óxæ"0JØ?%LyfýcÂQtFˆÌOD>!„yýsÓ °F}³Ðsnžó…#5‚3*Lù<Ñù°/"„}° æðFª„Ȭôêõ„ L»Ì΢þ 97?ë gÄeD„P8Ö ÒÂè@ð¨0Êü³!7*øç„(Õ5H]`s0WpJ˜ðO³q¢¨ïª(töòÕâ27D„YÏÜ1Á;&E¹©úæ@Éa¬%ìPú<³Â|ˆN#N%â¿Ø£AXк$˜Å¹¨óxgÊñmªæƒAXU ì©8¦î•á’ªrEÀÔ醨q"l+ÁºA>èŽ š™¬¦Âüè 9 k¦:]E¡»œ€ 7G•âa;ág—¿ *' zýê°Ï tÍE=WýÐL9qÅj…1b»‚I4É¢"ÚaM>o)9ÅݪDw£Ò'š~ðSœ›ŽÆ f`›ˆ®°ŠÆtÿESHh™a†ž˜§›7B‰¢—À kaá ÕÁ#ë%EÅ Sâ¦5Í„8:œ}5Òm0ža|l€É ÄR&ËAŸ7šp°e?çŸô³·]ÂØ_ÊÁ;ŒÒ-ƒAÝ/ncô±)2CÏ… ߊëIYh˜N‰‚3ùÁDÉèµ@÷[·CìÝÓ6ìœ#ÂÐðàng§£SØÐ6õ UÂçh÷ kTŽá¶Q·0Ø%´ ¸…^ç@g•àvŒŒƒÃ‚³¨Ïéšs £ÏÕéØ)´C¿A8ß°aÐÑAN(åtŒÐÁúÃÝPmkwö9GÝUB—st€ŽÙƒ¶ CmãÎW_Û°0äqÀô0ì€s kfqô;FáèšàØ a¤»­¯MÕæ釙|ƒCîaçÎîQ¡{°¯ÓÄvHÖÖÞçÀ©`Q}mÎþ*¡³­¿m§ƒõ„Q†›(Ýžn#Á|mðÛ1ê Ëè†j¬rx4ÙusÄQ%´ ;G¨Bº†axªNè1È~…ªZXa`¡u׈cY–NG[Œ5B;§2×èÒ_¤¿ø;t›þzà¿îë5Ëé¯þ5¿"@륿&HMþš ý5Áêhžþª`åW í¤¿.H]þºàÜ×°7é¿ó_zrý»ÿ,ª$§ù«ãÅ;,§ùcWÅ‹5GŽÄ‹·Ì#D‘%/ÞŽ·F!ãÅÛæf±CáP¼¨ à ‚?^Ô0/ê˜F˜Bð!L"x±Ãvð ŒcÛ•â…€ýW ìCØ‹àFC؃°Á…0Š0Œ° aaa ^Ø Ðµ>„^„'B7ÂN„.BgÜì舛{ÚÚìqs/@+ÂŽ¸¹`;B Â6„­#Í8fB#Ö€°a3޹ ¡ûÕ!lD¨E¨A¨ÆÁª°» ûUb[B9Âä,C(Åë¬Øor– „b„¢xÁ@!‚9^0P€‡m¹&$æ d#da[&‚‰¬e 葨CÐ"hÔªxþ€2ž¿ @ G!H‘E‚5C ¸%„ çYî¯Xû «ç^Aø3Ÿây#/#ü1ž7 ð„ß#üá%dù-Âoxá׿Bø%²üá?~Žm?Cø)ÂO^D–#ü‰/ <ðÂã¹»~€ðýxî€ï!ü¿‹ð$>‹ðïÏ |YžÆÚSXû“Hü&Âß@ø:Â×ó«ÿ†Ä¯ |áKgâ&ˆKÜã¦V€/ |>nÚð8Âc"|á„Ï"<ŒýB8ÄÏ |áA„îGˆ#,b¿Êò)¬}á>dùÂ)„#Ü‹ð1ì÷Qìð$~áCDøÂûîAxÂ{ã9ïAxw<Ç ð®xÎ$ÀÝñÀ;ã9Sï@x;ÂÛÞŠpÂI„;ã9€·à˜oÆ1ß„cÞðFúvìpÂr¾Ynç¸nÁÁnÆÁnB¸9_£Ü€Ý_‡páz„ëŽ#\‹p ÂÕñˆÉÜ1œá*ú(œae‰"Dp¾0v?ŒB"Ì!Ì"áRâ|~„™xNÀ4ÂT<û_<›úîd<ûzo<›ö›@¢'žmGâ•H<Ͼ`<ûõWijoØÏ‚C˜ÛÏ*p#ŒÅ³Ô{vdzà˜ç\ñ,8ß¹Q„„áxóÜ®xìÜÂ`<“J=ÏìèGèCb/BÝ;ã™pnr]Èâ@b'BGܸ =n¤›²-n°Çn€Ö¸q/À„íq#õÖ„m[šãF@SÜXÐ764 l‰éD›q¢Mõq#Õ`ÂÆ¸‘*²¡e©F¨B‘l(R%BŠTް…(C(EX`Åë³EP ÎWŒP„œ…fì^€‡œ¹&0!å̉2ŒØÏ€ GÐ!‹kš¸a?€:n8 Š®P"(ä2ä”"§‰<‡@ìK€KÀwð<ä¿Bþ äWv:¾å?Cþä—!ÿ1cÂòÈ¿ÏðZ~—1iy òo!ÿòY ÿò¯ í—Pÿäÿ„üsÈ?úO!ÿÊ/þò€ï¨?ù9È?„üÈ߇ü=ý´å?ô3–ïBþäg!ÿ;Оü6ä§!?õo> ù›Ÿ€ü È_‡ü5È_…üoºC–¯è–/ë*-_<£«²|h_€òçu³ûÒ㺃–Çt~Ë£ºËç å]峆üö°å´6lùŒ6bù´6jyòï‡zpxb?ù“ïƒü ȧ ò½šë,Ó\mù¨æ˜å#€Ö\kùæ¸åƒ@ÿä÷C¾òû ¿ò{ ¿ò» ß­©¶¼ò;Ôµ¼]ýaËÛß ù.È'!ß©ž±¼E}ƒåÍêwYÞ¤~åõû,oúío’”Zn”4Y^Ï5Ynpp½îÔ ×õ®ã®ëNwiŽsšãæã½Ç¯9~êø÷Û3åêk]W»®9uµë˜ë¨ëªSG]óo Sü­öבSó.é|ö|t^òÇyîÔ<×9Ïmœçx2o˜æ%Ú¨+슜 »Hx(|" K·ÅÂ/„yæÔ§—¿?l.î´_Öº»‚®Ð© knjÖuô7M»fNM»¦š&]¾S“.oÓ„ËÓ4i¿ëÀ©ý®+šöºöÚër7¹öÿî¦Q—ëÔ¨k¤i—køÔ.×`Ó€kèýM½®¾S½®ž¦n—óT·kgS—Ë‹'…†B¡Pb  ‚$Ä̵o4ÛÍ/˜_2K‰9f~Ü,ÉÌ(°ðù\Ç`>Ì¿>ÿMù’Œ¼'óx{^EUWFÏçþ6WšeÏ­¨é"&ƒI0IrèÚLý£] [;ë¶°µZLÖ²®Œ.#Ç’Ã;~›ÃÝL$œÀq„3H”Àó—cé’<ÂÑÿ^ZF8îÍ‹£#6[ïiÅÒpoL9´/ÆÝ+¡Oû®½1ù­1âÚ»ol‘ãîp³¿´˦*‡ÕozãM\;)jïŒÅ%÷ÜSÔîî e»•—h™‹›°Ê¢‰´»m"óÛ˜}‡’_0¾d”ä÷ÃýÏýð À'¸Úž}ö¬áü³g3››kkë œè€Ûìy­ÐAäßXçæŒ%F–³õ¼B!—[×Õð ›6Õïà·l®á­ëô˶lÞÁ7îlª/æ+r2*0Sªä{Ý'[+ã™%W¹}°&+£dKy¹½Ö¢PËy™R®¬ØÚ¹®óÀÖ‚ J…Z0™ ô2©B«T ùYùzé….™þÕßËôéþr—¤nóôpƒìj%/•Ë1ç–në*É· YY­^–eÊ”+²25eÛ{ÎߦÌ-ÈU¨Õ ­A­ÊË3)Uj¹Öp¾ T¹ké¬äG’¯‘2Ðù¨¾æ¯çO1 \®±ûUEÊbxz lCÙ6%¼B}†d”qY’²ºÓ|±=7‹¨¶m(*“KJœ•ç z^±ëû%}å¶¼ÖÖ‚þ³­g[3s›¹Ú³Ï\y`ÿÏn2n2œ567S#˜.£cÝF·Ùž¿ÌXPy.PУox%Àx‚ÚZ[m ¯4a/½D´†tS½)W´ˆBQVÖ“ædóÔš’*éúÊì ¯ëÜÞ6äß‘›SÛ{ðv·ûúú,iYy¶Ù å¾];ÛÙ°§£Î1³ÁÖïÉÌ7ê¥ êãBŸ½²éŠèö¦;îº=ØÑݺϠ—(µŠ_;›F…窬ŽfëöÀc éí éoÉ“jÒN¾{±¦í™cQ±E°6656f63 ÕqaQÝÜ´NªØtnCOa¦Q#ÕçvéûZ^±+ú©¾¨ºèâ[Ï2]?s¶ÖH}üýüÉä˜Æ .¦ø"äß°é\ µ‡¢å•tYV¾ ûÙPÿ°¤°76°ÝPÖÈáþPHô+JâR(L&0Tò-S]Ï¡Ûöì=QŸÉo(¯,”rj^•S’ŸWœ)å†dúŒ ¹Á±®©ewKi¶ò>uQcMCh¼×XRèÜ<ÚY_bäolyËÉÛµuÚÇŒzC†¬I©UJ¥ð¸0WÐÔX—iím­¶tvï¬2wµTì˜=¹ç#ŽöCÓ‡Ãpž÷UvK¾J¶‡ÖðþÂBb¤F(*ßüçr‹Œ“©ÿTÛ#ü©œäòyµ$?ûU{©¨¿óÏðrÛÙV(€×Ÿifñ¦ðïíÊÔŸ+Ûü瀬Vý§@mO¾ð§@~iö«ÒŠ?Ã2*§ÞŽ®MÕ ÞmÊÉÖË1LI©â%»ú,­¾¸®w«ÝëÜX¬ÛënÛßViPª¤*]^Ëàuï_Ný@ømžòž¶-E É@fY‰©h}ñW`nºlú P!dèµ%ÖâüõEYúÀö·œ\8d×™J 2é_´é=¾âH i!^¬ÉOWÖ7Ê¥Duš×ÛUV£¶X’m­=Íëì9Ä*´±±²ØhÔÖ?UÙ£}Þ^œtIµÆÌæÚ³Ô±s›!‚ä2κŒ^L“yòG"keýSÊžbíóâ•>l»$Õi•ËW¨’W¤FpéÍeÌ)‡ä=ö[Ÿ¹ë Bæ Ú§z7ªT*©R§Ôn¬wßì®ÊoØ}ôÝ£ó½ëîêi›ìo4Nùßè²ò?…C¡²d‡yò`–)K§U¨´¹YÚò‘kGÛÞzçÍS;*Ûw5nj­îó5T·Â-m¿pRR'» NÇ3kxkf±ÑòYî§ÉÜOíVgK·Ý¹Íî4™œömRR©}q`gqË‹Û,ë3»»^´¯L(ì ŽçÏ´‚–ÏäÂ)YKUšNF묿ÝU= }1œÝ-/w}Ë`NU5ía;ÓjKF‹D@@EK­V U58 ßÅX•pæMâ©›k2Iêx‰\©–+r ËrmÛ«Š5ƯjtR¹J£W|í”që蜣ºY!•J¤À¥Pè2r •ÛmEÚPkàÈÕêÔ×åZ\ÁÓÆ ‹\.—5J9¹Ùpâ* G›÷f5y¹9õ_?1zÍ® z¹L«–fQ‰D Û$õºLenž)Ss|øš¡ 2•V.Ë„Ýкô*÷[Y-É"ä][ê Kv1D÷ »Fm).ζTH×çgœæv~Zf_ïÌÏÁçúÏYLö™³4¦ƒ%>ó7x™T"“Œr}& ²¥—ß´ÅpN¸Æˆµ,1js¿ +‹‹Ê2y™<Ó ¥Ò,þŸyuvI^¾Å(ãïç ˜ŸENú °€Z[VXXš¯Rå—þ¥N©¡aX£”ܨÀ€¬€xK5ó;8sÈÁ5Î@CÑØÕD£‘Ê ]2\ÓAÁ›ê©+j.nd‹N¥§,—)Þ’ÇÑÏ–—8m,F)—ŸxùA‰e?‡È¶ü| ‰›;««kšsMëJÖí#û@ ¸©›ÖiFzŒåçìΞ¦š’\51UkÖíèlÖoÚáÜÔWØ'Jg'œgZ9Øvgà0nª‡ÝwàËP¢F·—ü½c1¬ƒ^Îòs×è–¢(ñ?ÓJ/Q ?hhØ"†9ÉkD¥*Ä]‰“-WȦ9uNIèVÎeŠºíõ‡Æ{ŒC< r.¨Õ·l:ˆÄ„EäTYEÙ9æ )·.ÃqÅlsËîÆIvצ޽MyJEÒL|UÑæ{ßöC'w_˜[&oÍßî\I”Ü.(¡7³O¬ƒó`­µ¯µ²¬}l³µs=A+Kb`å­ä¾5¬\VWP`.“ê%$ƒË–dèKsÎÙzJÍziAF]™R°9…>•h´¥Ôœ`¤M»žý 9çk0¦š‹Y‹…PùßaIL©8 /à¦ýoÞ¾%xeï%õßyàðvªuþYÐÓùo.+Ù²Õ´½÷5•\ÑAo½p/x ôšKjɵkö!¸;Xì*’gÈã³$yëéeK£-z9«§âÅ”«éYñ%â,U£úâf¦6]VÑˬEÅ‹«o¨©gÍòž¸0±óE*yª°yìèÛ÷¿a¬Ò¼u+¹+?™S7ØÔ2Ñß\šiªhÚî¡%>Òs÷›®;ÐX3vbWÏÝw\ ±vìÄÞú¡Æb›s"8ßT?ÔTlë™E ¿ôÊ…»$ß‚õW’VòÍ5{{à­cÜ 2Õjœ˜­n$w¬ñŽkÍΪø,û‹¼ë¸ó÷çåѬv½=«ÆiUf9³{õƒâŠù2¨êLsíò«¬vM>¦ÈM+îZ •ƒ;*Ø[RY(NRV–ŒY›vH˜[š$”ÊJfn¿p^žYPšo¶fòš?¾•çàxf‹QÁÍó;&GwZxMÎzsu±äCš\õ¾/}ç—¯»ð>%ø—L›­çš%Am¶‚‹D¢Ð«Ï¯ÛóÀCŸóЀ­%ÜÒá ?—<-{Þ¡š©†!9|6ÑÀMJz¿Ú Ñó×QÑkkáÚô, ªñ•dXLnbìÈdÊV”(Œy–óº N)¹WaÌr Öe(~§ËPJº,üH£Ðfë@÷ŸM§ÿí‰ ]*ñÛøç/$w^œ¤Sÿmé;Éú–“¼Uþ«Ô¤8´vRV³ôeLªw\œÔî$i¤—‘ÞšNé”Nÿ„ôl:¥S:¥S:¥S:¥S:¥S:¥S:¥S:¥S:¥S:¥S:¥S:¥S:¥S:¥S:¥Ó?;±ÿS<Çþ¤\6ûËò4‘ú È^‘r‰IàµZÿ9?ÏepÀb®œÕ÷³g›çŽpǹ7@ùvîÍÜÝ܃"ÿWˆ”> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 37 /ID [<656314be7cffab3c4ddc57dafc236341><438c8e60664d0d18176bbfa8ff6020c8>] >> stream xœcb&F~0ù‰ $À8ä¶ü7@6›(Ð Œ­> —0½‘Œ] Ò¢,"’õw‹ß‘v7Ál>©u¬&Dr0Üÿ  endstream endobj startxref 178700 %%EOF metafor/inst/doc/metafor.pdf0000644000176200001440000161472014746146344015611 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4748 /Filter /FlateDecode /N 90 /First 750 >> stream xœÍÔÀ™‚ž}R€>EÚýß?ÿIØ^½¨N«E ´HØëëÅx4©ç@ö±|PCA§Âñ_W5aÛP<='¿ü»ØžÕÕb4<©5ùéÉ?€²—Ü n¤ôçâoœÿíç\o:ƒ*Õ§Ñ)Ù£äå^Oö¦§_k|0›ž^ŸÔÐúùÁ.y~1/æ'³ÑÕ‚Ê-T8-ÆÐÃöÞ¡à?7 M¯' ¤9öjt:'ÿŽÆqÈ4¶FËg›Ï.Ÿ}ªíl>§ûŠç^\yÒæ.>—2Ÿós˜ÊXÖ2—ósSÊ*•mîß™\NíUÈíC©—Þ§yº¯E¾ïÒûµMãÒÆçs®oËóÔÎp•Ï.ßÏp¹ü\¥ç!cKõ‚–t©‘NEj*x>¥‡ å$bÊ“³5™L8)©£¤ <Ÿ3™.M¼É“ö'w²¨'ЃU™<·gÓ«ÇÓ/Ð%vb‚¡8w^ \ð‰ýtTu*øÖóƒjV#½¤Þëùôzv#´O¿,ž-JMHøbÏ(…Ì(³éÉQ½€¾ÙÁ“g„í\Â`·aäõ—vþîõÇßëlÆûË/m¬¬R¬…ÎG³ù‚ä7íVpm|È cÍ'õ|ÑP4{÷¯÷ 2(Èr.©Š›\ÇøÚ}|½ÑÈ4ÂÌÛ™gv&‹È]ÈÄ ëlÅQööp§º«¤[?],Wÿ`ìóçÏô÷9 f>=[Ðéìœý‡öx:;vM˜æq¾b„ÿÚ•T‚0vœÓò ˜ž†Âî{P—Póèúã"¾}w4ù£i§€zó«b!#*ÓdÄ”QÔIÔA‚: ò‚« ”TŽr iÕ K•T€‘NST³ƒ€j¨;K‰,$²ŒÈ"!K‚,|"¼,޲4ÊÂh•ÞÍ÷¤w«D‹Þ­’ëé=Óùz²n°*1‰†,ìDr" µÕqÚï9N‘åg§ÈRp³q¶`wßv§Z ;}È﬘Î.«1Ø{À<ìøYÌ®ëR{ù¶Ò¤š×ñ…ìùû탷Oþ•/TœœLOG“s BQ–m_T3ÔFàɨ½Áf)ãRàÌ%ƒá»E!½í·Ñéâ"js´Qj åµUú¾zîÿÊlå@¯£nW ØTTnÍxŠg¬=ô¹mêld‡üâÀÊu`‘ƒ™f ØŸ ,èçu|¦@'‘`±`ç}± –}:;4–a¤±“ú ëš‚Ú7 -ýo€‡fh¥–3š0å~(–eQ‘šŸã}4Ah^DO¹‡`àØ7o#÷CÃùó¤_„ Ç«õèü¢a¶‘>b[ì1ÛfOØSöŒ=g/Ø{É^±]¶ÇöÙkvÀÞ°CvÄŽÙ[ö+û½cÿbïYŪ“ëEͪ˫z6¯&§ì#;a'£ÙÉõåÙ¸þÂN¦ãéþ_^V씎êY=ÍYÍ"¬žœVó Vÿy]Ù;ÿ‹Ÿjv÷€ÓØ9»`]]Ô6b¿³?ؘ]²Ëêd]Ã,e6e`Ʋ+v…œ:®Ïéjß°áøñ<šž²«ñõœýÉþ¼ª.¦‹úôã86+…Ô2––÷ÓÍ›³y}9Jc›×Ÿ®ùè ›q, ¶¸˜Õ5[|ž²kö‰}f_Ø_ì?ì?õlúsT„q.IÄþ³quކ}dªÇI=‚^| Ë·'éCzþl4®qÕä—bf¿º¬»œ¿ ƒÑÉÖäÌ (îæs‘_#U°£E}ù+Áu[‹£[ 'YŽ÷ž=…þwVEKÑI·Š––ù”E‹(Z,0£ƒØDý»ùO³ã× —Þ¸ ‡³¢wðÖUºÆšíÞœF –ÎàÒÔGñ‘ž(\%Šº™À’4L+…¥ôKfÉ/Öw[Äu•T“‘¸„‚÷$œ@¿‹tÈKvÉ«3ãCé L‹»Ð×Þó×o^ÁÛŽŽÓ—]#ízËûÁôe­½u~ÓrÄjÓ’\kéÀ£+\„÷BÛÒ¤±Ø¢“dƒVl±"QäísÏv—œí9o¹qÒœwfaàœóÕ)‡±v}s2-—d²âTÒ¯Ùù—½~9$îª*Ò)‡/JÔ‚¤ E:åPE”E:¥æ:G!rÐ"‡Rs“šgÏyö¸ Îó¹r ‚ç¸NŽÓž]Ž9Î!xv9òÜO‰V”àEiQb¹¿ì©BNçÜŸÈýeóWÈÜ_Vô"ǃDµÈ=W§þ®! Q¸2¹:e‰õmä0äuÏQ¢¶×Ý(E½]¯»œj‡]OЬ)®0MT(³¡×=ÇÀlŽ]¥fŸsv9¯âÿ»ºÔ]Û£îîâP¿wì[Cµ0Kìûca` Fö€³’*Ñ Äè )º P%:ôCòœrŽ š:Œ²+I…G²uÔøûX †Ià¤ú%LÆQ°²$ÞÉ)C-ˆÀîÜ9A:¼¸¥Ü-#{Fxй,?¨´ÎMÚñçbãþª¢·ý’MÙlÕfo÷Yb@»çQo%V&÷W“CžúnNõígï¶Þmø¼­ ñ˜~NÓ}„xJ„¥ü\t9¹r4"õDÛ}z»‹4%ï¬Kâ+qÞDu¢Ã´“T`YÑùŠ#u›½d{Ñ•º„¾aßwƒ„7ïâwzë·pù¿±„‰ÛúTˆj´ã—R}-ŸòælʘKÙdQVó“Ñ(¥Q¦ëÅh|ZÃ%æ Îÿ`Õ‚}d«Y/Ùêt:Ãí&¿²$V®ÏI¹Wãz>ž€µ6“2åLÞWf¤ 1ÔÈôÔ` NÐIãT-IÐaÍ® ¨¾´æqU,àºýzìû~×›§ûoÞ»÷VUŠ/ºn™Ä%{]Û~zŠ* lÛÆÐM ßò¶…¢s‚—•·Y$7ÿJ†µËÉÍë~^ \Q/Ë<ÙD. }‹nÆ¢4.ÃqKfìÉ¥T°´{Jg»Ú8‰n˘`i:NS›%f!£î{~¬`]Œ2kÕ…]³\^¯¤Z%ú®®Â±Y‹ºæ ÊôÔã6ÄžŠ3½$—q Õph” ˲:<Øzöò¦û»§µØîÊÉ ÞT¤sÛÁãÿžtv+æm*6»&ƒ¤•=rcîˆlrG¬1Ö÷ L¹5ñ]I륎¬àtà”{Ý:c›ìû8š^Ö§8ªY5¦@ÖLh'@ zÏ,3|£Mc28Šè°ÆSîB³Z·VñÎ ôþ(è§A ñh)®ÊaeHq?´5–ú.µM`¿¡ð¨šTã¿æ£y„}3TKjÐ i4Õ)œzt¶Y€> Ý 7Üíí}zøèj6Å’q/áUuòGu^ÿÿÉôªšo8º™€7æsÁÈnòþŸ…;S‡jÀôßBÊjí@¸[†ÀîËçoŸG÷Éñ7­.ËÖ¸;84tLŸòóQåz¹n…)¸[ÚÞ,5»v]_iÿp¼R²¹£²DtAéh·áýTÛp\UÜÙ´[›&Vמ¢ëÌÀ´Ôߢƒì–dÔO]F“7¶.©Á鸲ޏïeõæ}¨–›¸ÍñCéÝåædÉÂÐY<ÉÒ¡àɻѱ€Ií¹€[—óVPèßQÚãç l¹Æïl”kKdé)x’s­n7ÈõZü¬ÄW^Ý}ÅÝ÷IRœ¸ÛHãînå~c€r%c˜3”ÒÔôS¯EÊM3u#nCû¦úéóh±²©vR>P?Ça(~k`¹{ÜQîÀø`‹ÞNjߌ1¿M⸢ø •{‡u^m®î .fm+E5XV`áPáðû+†âg%¾—ÚD†V6°ã€ÖÖuüÀÔÊvwüüRk»>LYîyÉòy‹~ú DÙ¿ÿ0ãZÛéKÏó=endstream endobj 92 0 obj << /Subtype /XML /Type /Metadata /Length 1337 >> stream 2013-02-06T10:52:28+01:00 2013-02-06T10:52:28+01:00 David M. Jones CMR10 endstream endobj 93 0 obj << /Type /ObjStm /Length 3241 /Filter /FlateDecode /N 90 /First 829 >> stream xœÅ[Ûr7}߯ÀcR)ã~¤²©µ•u╸ä8É&åZIL$RKR¾ì×ï9 I‘’CjE±$r0˜™žƒîFßf/´ÈAØdEŽ"òÐшÜc.fa\‰ÖÂÑ0ÂÄаÂ4– '¬np£öÂZÇHº†OEaƒKh$acÃÇaçÑÈÂæÄŒÎXB0xM¶…Ï"{GéQÔe02Ù îÂÌà(`0ÇJÆU¡HÖð~ŠÍ“Y’Œ†- 7•>Ê;“ƒQS˜da¤X-¤g¢¥ù)™`¨=Ej”B¤DIJ&Sž1Q^šWÉq›I…Bð ßEˆÑ³E¹FÞ]DÈ¡ä(#"ç¨Yg¨ªÎQ ¨HÎS£Yß=Ki4”d*̇žšF“û|Žêé N:Þ×¹® ûê+¡FãÙTü^”E‹£¢+Ý1wGp¾;šz´õèºc®ý¹ë-ÔÁx4kG ƒ/}ê`2¾|2þ€×XÈArš4ÞHh'ž8lß+74K×_ & (*µ£v:¾š·SÁüóÃìÛ—³Á¬„ÐÝðp»³“ññËvÚêÅ7O…ú©ý0ѯ¿FóãeKê§-NWøá*\僯|ðu¼¾òÁW>x_¡c=V¾úJÏWz¡Ò •^¨ôB¥WyG5^¨ôB¥*½XéÅJ/Þ$ð òˆ~Y1ÜAOÓ¶<®Ž~{öòû_¼:úåàl0:n'Ÿ?"Îg³Á9Þ::¿ŽN…úe8z<šO‡“é ÏL`²:,ß´ÓãÉðr6žÐ[PÏõ_õòêͬ@! Óãêpü2|;;£†`®‰Õ?×û–®Z~;ß;Ûõ[¿|$ž¶ÓÝ]Îö´#&÷ë¹¶N)ö©ƒÁåwíðôl&,‰â`ÈåÏÔ¿ÔK5PǪU'j¨ÎÕHÕDMÕL]©÷Ÿ EnÊ# •UOϧSÎv:Ã2ä'"<‚Ý)·$h`‡¢\~:á­m$é5•ñQ60Ÿ.Xß:X áb!â^@!–GÌ”×Q2ÓÙ¨¦¼ME+ <&—[âT°–!îTo¯T‰Áwo¯ƒ‘ õw+½dŒôHËVmcL’©TÊj/Ó~!Y(Ð2"§%ÃÐ{Àdú“Š©È‰©1!Ž@–×/¤8N'é[K¯Ö0î)Ðvì@B€]Íkêdš\R8Ù°6à›n"r‚Ì~PYˆI#û£Jà#‚ûGUsÁë@–o_eUÎ2 ²¸© B`ÊxÌá^­ùæ  APp»…¸-Á}ïÔ6a XÅd¨G…HRF j¿¨¼I°ßyŠ1K\ƒ*"°d©jÕõ¥Ý¯4Ñ9áž•:d2å=ò.É;9aeSÚ¨Z[XÆä 'Û¤uêd€1@¨‡Ð¶][iš€y‰˜7ß«QØ”ƒÿÍ,¯õ àµKa÷êçç0ûk×@9,¬Ûõ `à÷ /gźbâdLÅ'$,ÒäuƒÌJÂS¦+nö *™™ƒ ዤۀ:*Åíòʾ‡«¶Ï¢X:«Õ8žà-‹+Qô…Ž#–wk$YÕ®m–Ãû›2ÍÄò«î<ÇbÐ’ûUÇ #Ñq¥ØQÃŽÃK®1ìvâß ù?×zP´Œ ¤¹P[Dž m ÑÓfÏ  Ðv ™“4»Á´MjΨÛ,tÊ;#¤¼_TÞÁÅ•E®Š* Wت 7LrXO\|´H¥âTŸoj^äþùéãï¾=üâàð(nXÓöy­2ÊõºëEí6¬iGŒü¶ÏZÕ9Ååªsw:¯:Ÿ ßµêd|5QãQ«¦í»v¤¦Ãjv6i[5{?¾Vy6}á9†³º\wÖårhtyÃëëEç:ÏEçk üT9èyËÍ%æ5ñüøâ§ßH=/‰‡+jŒ¹TŒ¹A*kK ˆ6K AOTئ¸ŸÍÿúû(ð£Ebwåà6y Åvßz©Å㢷ÿã"t*K…e1"õ}®kvÝ\ÉÊYyg¹†þ”nÃYÞ†«x»#§œŸ÷Ä<¯¨›z_ý^óÊ8û>¾5Ôi¯*q ×–NºÓ¹?VOÔSõz¦¾WÏÕ¡úQ½P?©Wj Þ¨cu<¾¸¨·ªUåau¢Nø?TåêªÎÔÙÇË3¨þPý¡þTçêBÔhˆ1.óâR]²‚{ޞ̺֤Pºl'DÇãpüV]ž_MÕÊ¢Íô|0=+K7ïÔ{õA}Tÿ½6‘ˆ¿›I+«7.wWé†9Ê•‰”W'Ò5Ußp"±Ìõé™t×zŸóH0ôz*í£LØ4`;8ƒ YœÜuòPˆ)J y qGd ùa@#uZOÅ€Uû°•ü8³gPˆâý’ø¼öˆ‘ܺe-‹ëÖ²¬Ž9„ÙKnb¸È2Û~@Df]´‚ ¦A&íwjóJ–*®[Ô:‰CDæ©ù)–rÀž¢×žD·@Åe¿äwƒj]Õñ6çÖãDăÜ]ÕƒòÙuÚ«6ÕkU5ת€ÚxÍI’ä¦6ë³dyq7÷ÜXÚ š¿LÎ"šg5»b¢1…BîÓ &á–8ÏthÎ'Ÿ‘•Ò½bêªÃ4×§‡‘Ý-ëoŽ7`rQr"tÛ±‚ ˆ¦Ù¦Æ ;¬˜¬†1àŠÎƒ`ºmé›f’B‡É®†ýbòP ˜Ì“·°Sv'˜¶Y„1åê2nó\òª²I7Âjú}­U_ÌJh*BŸ-v¨6µÎh™¸Ïµ‚rQcòíˆUƒ¢5Ò N¹&Ê`vé-‚‡TËΩ ŠñAtvÏ ª9ïAõöü@}j£@Ù<Æ íP».>ÚβŸº3PÜGDÓa¼–zÓ%¦øÜþÔí””í±¯Ó_+íÔ ¸TÚqñZf÷.ñ¿¦Ô‡ƒÙdX*WR›nœ‹Öëåú)]«ÿp¯ãøÕhˆ··TucIÈà ,ª»XÒ`Y«ò„'IÄž€Õݯú³X†Ò%úØX b·/‹ð§}{u‰äqÊK¡^=›Kïx6º®ÏÎf³Ë/•:8züƒ¹hgƒÏ‹,oŸæÚüƒkA.¡òÜpÒ×q“Ž0«.êî8Rç ÉG¤Ò™¿QAhš0+"ìG³élØ÷û÷ïå›áø¢}ËjÓdp.ÇÊødÁ7*+{è—©s°2HB¸¡,nh\¶A~áwj/ù«ž.:Fé͆H÷³èˆ6Wßî2»È²÷ïÞ ®ÚIó6 c0¤ LfîTLIFÍÚ0ʆ‰å=Ì&N¦“ñdèÆtÞ©B—F¸¡»òÓª²ÅùÞÕòél0›ŽO:äïœWCm¶â¶×ÐOnKƒ[ŽÔœ~+fÊÒÇØ€ÿrQŽE ڔͣ^oXÎúKăáùlü%”øKм2dà eäeš¢×Üvw`£î:áŒÎ2òw}`¬åN7_w¼!³D~²kØ*ã7i¹‚,?U¬Új˜è{ö´„:¸ Öíqr¯½/¿‡”üñÛ'qoº²»k«$8Ï­þ_ÆW7xƒo†''í¤ñG¿wi‰†_÷Ù‡ÂK‹¡ŸX˜^¡g„:9ÁgHÈ\»™ðÿïÑÈ endstream endobj 184 0 obj << /Type /ObjStm /Length 3395 /Filter /FlateDecode /N 90 /First 835 >> stream xœÍ[msÛ6þ~¿Ûéï¯7½Î$NÒä.Î¥v’&¹ÉÕ¦m5²ä“ä8¹_Ï‚ D‰rJ»²Õ‘e‚"¹x°ØÅ> €*:&™Šžiçq ,8cdÉÒï‰)­QHøzIEw94ÓR Ó*Ð%Ë´µx:9¦}¤{ 6Hº'0M@!2P›J‰ep#„ñ¨TÌXcH*3.* 3A',31PÁ1+-]òÌj ñ20ký™õø§eb6\R’9eQ³R(xÔ¥4sPµ2Ì9Ê2ç=Ýãê¤{cÿÉ–.ÙA6ôú˜ò‘̼>ªrÔåhòñ#{“ñ¼CŠ÷õ5±7\<š|XzØ%Ç5Z­âðK<±_k7ÄÖõWƒ)2[K;¨f“ËéQ5c„øÉ—ùχóÁ¼Ê~’ox ÙYòÙ«éäè°šC¶xõø)¯«/sýé'¿^T$ý´ÂéjûÉÅr»”)G[Ž®}9†rŒåXô¤‹žtÑ“.òt‘§‹<]äé"OyºÈÓEž)òL‘gŠö¥}éãâºô“.m¦Á¥>ú }êîU/>¶õâÓ-ôòh0«òãâý‡÷¯?<úaoÿð=Æñd|49ŽOóèW×2œÎæ{gƒ)Ns•«ÙÑtx1ŸL3UÈ7½”{ÆqxùÛ ŽOGYÇþp6ƒíä.fQPΫó·ÑÛFÐ2 Æ'ÓãjZÜBfçÊ'ª>Ád×M´z÷þ¨jTàûÇ—£ÝyPÑQr  "ÈE{ix$ö§w`[&úb8þԀˣŷ1©æ¤ÁÃTTÖ)=o]‡ÂÁ=x„qKp kw Æ'ûBZxíÛg??Ü;D?ì?-§…wŽgÃåKï…ºîk;î›z»/˜rÐ+fÙ²yy31‰záj~s9bןYEÀøÜñ$4£íIÑ´=é‰x*öÅŠßÅ'q!.ÅUÛ3(ß(žºÐv ù2èoÌ•¬yGX÷ŽÕ^éëˆ4›C¼+-¢D«4ù ÝÍ7¿(I¾Æ‚3¹r†èå— —íèÄål®9CþSˆè]ižÉ©`S&ÉM™²±6Š~\ˆSۃѭ>°î. æ©"ÐkNé¹GÛœÃí)ý¾=(dªœì`*jî¦Þ(ÐYÔÚX 5‰øb¼å6Qªì8Œ ëÚhï”Õå¢^‚rÇܨëlÊ)tW‚Æ$…0±–nŒATˆ;2)€H Z &¯x€ŸnS7R¹%¨„¦ÓÄÕª;½§“âŠò~ØwDÔÕ¸=R† šìƒÕÞË×o޿ʤÁ¯0ÌÏ—1 u®‚4 ´£è¦Nˆš¼!·Â°\ƨQË€ª¯‡šÜi…út>.¦Ãóª0®åQ4µeòÓka¢•ÕabU=õú›j©îw?¿yIíÉ»5F¯×õ»”ž&ÙVõM7õ¢Jº®ve[·²­ÙÙåùù`>¤,ê˼’Юg«ùbÊ3-«z²£çUEôÇH™{jzÿŸïž½Êñ>­(Z®+Zo2ìÔ!_›,{“¦ifq×9Í·>.ϰt?6Éo³·|º0’Ob>¸ŸWÌC_o Úoàj‹¡fa«}×Ó6Â8áFv¶JÈ!ÛÄÎl5S½©Í4CmÎtž,oÎËòM‰.¯Å<‰Þ—ðÝU@V yÔ°_¯ðàpždf »‰ÈÒro˜@BA§Ô=aºŽã`:µÀdAd-Pì“#§‰(d¿ÄÐïTÿÄßzÍ¥Ub­àkš'€ñJÉl•¡ß|6"‚˜ÓêB3ŒºwêÛÞs9K×ʦÎÙvä&Xš#‡+bp  ~Aï”6ÐPÒKP.q#ï ”GŽBk‰ë¾Š)PÖ{Ptµ[PÖGäS-PIó ïÔ œÒc çÛ)¨Æù¬åQSÆ,´ìKó Úì“‚b /AYÏiþ.@é¨/óìëvž'(— ¬¡ÞS»eå´²¼Ó’Þì¶ûA¦€ZØù.A5vn×”Ù7AeØ.&ÙÁdÁO(ö¯ç^æy±Ñ#w ŠfZbŠ>O…Ü&8™ H‘&7ÝSòbõ[ÇÔõ="â\—tJš’*\@VeЛ’(ƒ‘0À­ÎáÝ•7ÐI ú/F'¨z;ŸAøMÎ.@YÜî³7î”uV¤– 0DXÊ?ï”#Bi;ºO4¯ñ ã&íà´/„–êRp;eWmPHWº PeËÊ (<@w(‚<éÚ€2&qZ]ß)(cƽåmMù¶êdÃ'­‘ÚV<¶ÒóíÚyL%›žhÇ[½òL=HÕN0) /.-A!@Ê;Á´q<×½ÓÏEyP7ëqÚ«C•ÞîxД¨¤ÌT°à1n º«2~ ªY•A?Ñ"v‡%$P:ZB–ŒÔ$0ô2´L{¡z˜72ñæàùâ†#š…¯úîl>¿ø»{_òƒÓÉï¨O¦§âbpôipZý㼚N&ÓïóÖ¢ëU¯VB]€:‰¸J[|oô7¬NX£–f ù¶Ö×OQßnÂbiæ—÷/Þ>ÿaoÿõsZ/h­Í¡Ëµð„ÎÚL3G¿\›Ñ}÷µÑÎyçð…'G›u+ë/} m™ÏÛ6]Ïý4>FÚ•^—óŽÖL“)0Ð$2z8–3™÷£Ò1ä]òrñä¦!°®þ6e#—çF.Ïi«il4!ô}aóK¥]¾Ó‰6¸|m}}ˆÐµÖ‡êÓÅúÐ#±'žŠgâ¹ø—x!öÅ¿Å+ñ‹8‡âµˆßÄ‘€'ı¨Ä‰8¡¿¡ ¿‘8gâìëÅY5.{ƒFâ\ŒÅD\`À˜VãQu2¯KSªYLÅLÌFƒÙ™˜‹KñY\‰/â«øßÊf"§6¯M=€]竉v<ºÎÚe³2»XžZ³ßÞk—¾ïÚå›_Ÿ~xŒ Vüã[;È܆Õb·¾ƒÌõ]-¶qÃZ w«{"]»¯çW“M ñÞÑN‰õÅxke~~MÑf]Ñ«zè©gÿjÞÚ:àµc,mŽ&{jÎB~íbÃÐùç7mm˜­³Hºê0%—Éb±<$zÅ)‹§wc@l¶»ëç i'kJ+Ë-yá€êNø`´åôJJg¥œˆP´Hê@w%88Í­€Ó%µ#PFR^°ÄDë~ñn mè=ÊÁ»ó*´…ž¼#rzŠxd yLæîS–˜¬³ÜÛ&0. o¼L›òrcxt]PArzGk—wl-6ìÌË­®{öU¸3pñüæV™’&ŒòÎ÷7§À:hNoÚÁ®$m³£)ÍüZ[€;î’ñPôÑ@Â(&•¿$ ‘ôúGý¦È€H´÷ÍHß îÆwvÜѽíÐéÍ›Ð_ œûƒùt˜ƒ*`ÕÙë²ô±ÍIÒJä7+ûòâ}͆&ÞÚ×Ý#|öJDÖ‚$­(7›¶¯É/Z4é”èñð䤚һ³Ú!h“)£nÛâÆÛH£}~yÏá–äÑv[’ ±ù­¶ö> [¼¨KZ¾œ‚Ä”µ_j¡¤²yQ¥~i¨¼½²%x”Ôœà;ÄwDåáfÉÿ ,Zendstream endobj 275 0 obj << /Type /ObjStm /Length 2891 /Filter /FlateDecode /N 90 /First 829 >> stream xœÅZYoG~ß_Ñ»X¸ïÈv´ ÖÎ’ã\È%¤)R!GŽ_¿_õœáeJ”(ØâôÌôtU]]gëà™d:¦#]#sJãšXÐ2?KÆãª˜R/¢fÊøˆ†aÊ9ze™ ֢ᘊɠ§ÒRgŒª ƒŒ¡¯Ó–ÞÓSoðUR4+:'ú3’~˜‘(Yf´vh8f¬ÁÈÉ£áðE Ì8O_Df!N‰™ˆ'FJf¥’h(f•Ãc©™õV¡a@u”–9­0†tÌG_y朥¯£J°Â{j$æ¢ÂÌÔE`6J1—$54óÒQÃ0¯1Q–a*Œ£ó>`R|é#‘‚ù|RÔ'² =¨T™ËÀVЃ†B#dºYp†^‚´e!ŽDI˜µgQ;P¡úD­¢>‰Eoñ 8j 3š%‰u0`hÒ4HJDŠ1D}WôÛoÑür[ÐèWn—ø’úSCªé§ºJ§?$¤t’V؃NR«ô„ÃÒ“úô(¹=ª–KÒ «tŃҥü€®°]±¡+­¡+”.-ûtiµ]¦f ©êº¢<(]v@—}]=ìê ØÝ»Û»>,öÁ> úØ_NgŬÁ!³åUß¼.æU6võпüú(àÀ˜òvMîÆcêyRœSO8‰\b ½²\Cµ <¶{¸T™¸Ó»³*ãxSN>¶˜²\?(­$p„:PÆroÍS€²f\ îà,.²Rr ÇÍéÈœk÷0šRž “ œJ‡É+'í 05Ö¦É:•‚Q¼b ÁÁVÑq¸|Ì&É•&LàÅ-&’/8šO‚I¯ ¹6œÜçPŽG Räžb7pp2­R®ø³`B8È%ùÚ-&«yD pLyR¸¶JI¼†R@dz‹Hæy e%Iu ɨÜí>˜^]f¤ùk#1BÔŽ€´¶m¤ù¿›œO/ÊÉUqj£QÎæ}E~mC^Ö& ¡,´ýÿ£~þvTÍÊl¬ .UMu×BŸ7£þHVBip™þ4)1{­ÓÌ]ãÏfKü\^T×äÑXÁl§2='ÄÓ௟(Äi®a*nÔÛîñ¼ïn Àb{ƒ)6ˆpQ·&þ$g'R;¥3lºY®[åÀíªÖ@̽¢œ„å ̳›ˆ¬P«5vGeâäbw¨é×ø¨Öl%OXÆeVË-%,Ì9„ÑDØo ÷¶ª}LÖJnC\€òp&bº'¨Ñ¼¨Åþøèä—Ó×ÿ~õöôÍû÷Ý;;br4™—‹‹­jl½m€þ|VÞVÓYÎwe»P/ïBµaË9M‘?ýÖ­Eû1þäÒÝæÑÛwË}䯝_ôw¥àq餿NoÍÏÉu÷P,âèÓUfuî!^n¿/Ê«k¼„ÿ’6¹éÿGâ¥x%^‹ïıøA¼oÅâDœŠ÷â'ñAü*Fb4?/˪_hVŬœgâl4g³Ñy1..«º5£ñsócQuÑ®_œ‹óéx:ÁïÍÍH\ˆ‹éxŒA ‘q‰âÏ»ÑX\ŠËòS!.sˆ+q5+kÌĵ¸þr{]LD)>бó¹¸1)'…˜Š)~oÅ-Å-yÚܪ'½-fĺ–Ó q;¾›‹?ÅŸwÓª¸8‹™˜‹yñ #ÏËÏb>ͯE%ªëYQˆê¯©¸ŸÄ_â³ø"þ³é¿òÞÍL~¡á?‹ãñèjÎRذˆµókŸó°¶5eÇå6É7É»üèÇÑM±f?þPÆåùÑäj\°ôàíèso5ß–ó96gïÉiUÜ|¨7ßb³õ6ªø¥Y~kõ6+‡ý¬š¤áŠ™ÛѲQZU¶w Ë&Nô_k'ÍÓ¶)‡ß‡Ñ‹iš‹¤\n?G÷ÜÏL½¿#± O·ZžÎ[jmt“0Φ'*.á¯Á§U¿Áxž4U["w)§ÄáDG,,w »žµîÔ&ÑÚBk'3{û#>%îÖ˜~„ ‹ƒM‚nKˆðC`nãT¿yb/i*ø¾Ãd%Üò•îƒiw½ÍÆ?‡ƒîwvЮÌé‡wÿ=ú‘T篱OˆKË„ÈUïE¹%ï’½ê¼ô†-£öÍ’¯ûçŒÚòv×TØY¶ö¤öì{}ÛÙ÷›r“7½-&gª–pVÞ=;&[#fËL³òpKæ+.›¯áôm—\¶URv¶ŠÌÚZ[µM“‚ ­±gD¦°œ¾`hÄL®Ášî.äjë^ÁÚšD˜Rµ+y0ìv™ ¾xh¼¸ÉuÛˆMµ£Â}dD”Ýq°§ $-SNÔÝ ÒWWó!ž‡¢µHfízÒàm•mweÙÄ,JºžÆ4ˆ‡%—rnŠ~ˆ›ò` qGÊô-‹ˆˆÜél„ÏѲ¦nùâÓGÍlíŽIGb¯ê0aq™Ôý@-YN§>­3œ.,Û3 èt)p ½·å¤¡¶Φª¿Áp†íy­½Ó-:u°ÏèˆÑn“íí´¦hodsmŠÃfMq8¶èeú‡èèÊwžòŠÛ°R_²Éreé<ãÁ`õtöã¡ ³Î~Ú·SgÂ4WtœËÐrêäéÉ«K )ðC½À„n‘N íj9¸2ý¼ž¢tº£r ¢,¿Zô‚_ké %ç yõX¾|ì vxWT3ü}1þTTåùh ™4[’r›zñr:¾r×Ñîõ  C½aM>@ÖÞÙ|ŠìÁ¡ð•í$â°°bO%]™w‰iÃ!XTt*Ï'N‡Ÿ¶z³“Ñ/pµEòÜý@íjã|›¸z·µzs`·ÙëÜâgÒù:Ò¸ƒä.la£àHêWmŸ=¨í³­‡S´‰fûVô§í‰ ÜAž¶—«ÆOÂøÑùÔ”¸¶‰Y:lîVÕV𵺎=T ¡O°u +Æ&)¼®µ:X­€.oÄwÆÔ©âŸO>ÿï{×ïß§= 5¶‘ë½ 5Ã"Çæ‚ÉÚȆç÷ÿwßBζÐ2²û—Sèå"Ý2(—œåšÇrµ£©stq.eL7Ö/¨n1(XT]iâ˰ÚT¬å áë·±ëj9¢·Îç En9Ÿ³S%"į"  ¹±” A»€ô9ÿØÞQ{}Æy˜ì¡<"&ß”úé¶éo£ÛË×àÄÙª¹o3<[²Ši5ïù„çv·WC¿Ë»|Zþ«Ñ›[s¤<öhrË’æX¥{:Kåv¶Tt‰Ž—j﹄eОÃxå<‰òOQGÙ}3,y)[~Âëòò²À²Ð:üž½8r ÿh èvÂÚÎPoþ€¶Ø«7O¶Ãu/éóú9ñýˆÀ†äâF.¬<% êIŒÇ>Þü{­ÔWÆÿ?]0endstream endobj 366 0 obj << /Type /ObjStm /Length 2498 /Filter /FlateDecode /N 90 /First 824 >> stream xœÅ[ÛŽ7}߯àP¬ o@ ¶“¼$€1ÞEö‚¿[Þ»ÿ5£î¦Ù„?»Éë»ùr:ǯ úd÷&¯w¾ºûŒÇþƒ®xÎÆnò`/Þøqúav»õ@ÙøýííݰÂäfz÷°x?½w†äÛÏËïß-o—Óf„íï Yb»z»¸{ÿnºíÉÛ7ß¹É?§Ÿ— úõטþõçÔ¨ÿ6ÅåÖ¾JßWÑ>Æ>¦>æ=û­Ýo©›û­áEûíØÍ⇑û(}Ô>Æ>¦>æ>–~äNëBü0ß²æ‡9˜ðÃüAÛ÷ýqécç“t>Á cç—t~Iç—t~I§'žtzÒéi§§žvzÚéi§§žvzÚéi§§uè¢rˆaSI^$‡H{ö×Ýoî'>g?7p÷ŽFƒ½1÷=RŨ®.;Óê¢ ŽðH)¬.à—«¬®gGrðÑH/h¼‚–Qþ7öÖ¸ü uŒ¯î¦‹Î«Ð8Ž /ÞLï—ÍáwbÿþÏ]!*•<ÁÌ>~´o¦ïÛƒE=[Ú³O–k„àT°»êÍUãÉw¿,«~˜ÍÿÙÖD,¦¸ÆD,Þr: JpÞ[¨D}-jŠ>g –:¸³W¤#¡Úˆ~¥G¿Ú£BØ£­rÙ¨@›Q¡ðs´|#ÙÔm%}Z/Ÿ£‰f¯‰¡É}-õУø OÍÂ>ÀCo ]sô y²wð¼ÂôØW¨$ÌЇ| ÐO ª‚ñŠh‰Wô–jñ4®‚ˆ8ù)bðS´WuNêìÖšs”àÑQ|¶º as›9ù`©`ç–Õ Ì ïÎ,TL>ÁP¶@qLPV”Ž˜JŒ$µ˜'=·?IØ KטŒŸÈ|.ê 5–Pi… Û”2WÅ„ÐâªØ(XAŠy¨×¿ß.Ì.ÿ–ÆR7óãßÎßß}˜ÍkEÛf‹û¥½åìÙ^ &: Èöïçáþ·ËŬ…àlg=Ã3?ÜnRZa5”‚áî_óVŸÂDºqø[šü4û°ü}Èæ<·¨s©0#­…2Òøbú³Q ñž /Äë(Á¡´KÏâ¦N£_mnQ‚¯Ö÷Š¥mk'wŠ>X“¡ ÃJÖ@`ÁÅ&Þô0%^³4]–¥ùKË3Xz¸Žˆk`~™¾8Xošæ#c´^õ!Ÿˆãëž\FP$‹ÈêJq5¾%)ZXzYò ›žž•E´’Õ0lÇi¤KÖ…‘ ž€sò¨- µÉ[«ù„UÚ*"PËN &BÜÀbøÙ:~°ë×öBf4¦{ÑÆžÒfIc}âSyÃ퀮ΰtKÌkØ©#¹T0¡hVÕf«QOBñ¥ÇSf‡ƒBùéÛÁB¥ÈÚ,xœÔØ]ÛL}²úª;QC‚‰ŸŒ ¬]ÀtePQa&#¨ˆÐ–ítä" Rø¤ì©&oÇ0AZ ɬÞT_€ÍrÅ«`bÔ„>{ E!ŠS€ú²?ãêÉ"VH²?‘Ö{JV7[*b'oðffÓûÂÍi›tÇwâ0·ƒÄc¢â bߺÉÚïÛ9Û0öæ2õæroÏØ[;D;aÆ}óECìDo#Fp<[Œ >B·Idç¶7¦„­r ɵ=¥­ñ©)ã-=©=Œ)ÕÖ”]aªÅkº&x´Ä» jõÚŽ¥PÈ}„3¾ (.X­î¤qð¼žbZƒŒ§áÔŽã£Í¬¨·ß&„¸§CZ™¬ûƒüþC@"ìóØKŒ§åUØeV$èÏ®7¶ŽKü¯Ú§1{ í» XÀ•@q ­Õ²Æ‚QgÀtDkŠÌ¹¥±Ãj:6|UrÅ®¯šF骭ÙÙ©ÿQ˜nï§C¥ùî¯O¿Ü}|T wÇü¨d¥GõéÅ"ò—ŽÍ÷Žªv0kß•¼¬¾Ì ™ua¬ ÿ¤PÈÉ>aT CêCöÁ‰¥‹å¤ýÍ#* Þ¾°a-S=Æ"¹Úu@iH¨‰i ŒUü  Ž¨<þG֠Ƴ¨«‚êgQ †ådß&YË×p¬1]©ò Ô 3X*Ú*ë‚*^Š+PlzoÁåô öÂHõu·/ËHõ"ËêxS<ƒ}v‘ãÍ'@I*¨ÌÖ˜*ûöaÛé1íÉé¢Åþ²“Óm¹ÚÀg9s=i@}½‚„!íÊ-‹Oy'`µSßØÃ µ*&DpÉòß\¯j8ëÔ5(5'ÏjÓ”ÒÜážsƬy êä®\”jFÌ[‹ÏšÔVàÔ®’|%|Û Jh‹ Vß_\Ôè B:â!ú"Ô *¤WDDCy0b‚W5ŸÓ®é)¢ÝtSa‘fÿFm—®Š‰‘çÄkL‚˜ù˜ödZ[Þ½Ço*†“ŸòYôé`L>^ËNdì–^@v(a<ÕÝOF’ù‚5&eÄ—¢WŤ¦?íKüŽ žÝ¢Ëvk×g|N ýA)ðeOï®ÕƒHLÛí(ÑÚ5Gû£ôªßgZGT9o~¸§!n½†UwaòÓlþÍü~¶¾ñföë¯ÓÅtn-b;ïv“O³ùý³?^™|z°¿Žp“å탱kàÏêݾÀc í¸½õŸæ…ÿ(וéendstream endobj 457 0 obj << /Type /ObjStm /Length 3203 /Filter /FlateDecode /N 90 /First 823 >> stream xœÅ›mo$· Çß÷SèÈ’(ŠPH.M4i_‹¦-ò¹Û$n¯öÁöɷz½Æúaw_œg´3#ýD‘)é*kH¡r¥âÚRসæ Òp-!§RqC! njÈVªCnœqÓpÓ:n$d»Ñ{±jPmUR(Åê‘ >— —‚µ-5”–íE¬ ”>ý"˜ªh ’К!bðh Ä ïhÔ*i $ðJzE=ІSG ”BS<&û£¨‚ ÏÕpÕ^¶*ÚµÖnÿ:~î%p¶&:¦dÏ+n2>í¸æ–ìFËô‹ŽÐãS|Ù ˜9åÐ2´4‚´8QhLöN MŠ=âÐzA­©á¦¢AÔ.©Úç¤4{ÔƒÔŒs bÈÙ0 â“^0¬™pCö¨M-ã±Ú pnAmPU¨ £KÚľêAUh·šÁÔs¶›Àe7zÞ©¡O­}jÜ]¡D\$ôŽ–jÑ{µ—;T+¥I’vg¿QÆ]NvŃ¡ÿF.Ií7¨^™¤DнbLP>ˆ]‡ræ¢è £“¹tè'Ú Œž›‚e*Pv®hƒ*ÄËa&fÐUÓn±|3éôÛÉ ¢š¦ßÄîzÿÃÿÎ>¿ºº¾» ÿž?…óIï—×¾¼âãå5O×Ãٛ뫻ž’¼|vöææúã׿¡û;Gè~К#ºŒ/¾[¼¿¼X{AWžqƒ C]Öv¾¸½þtónqŒðO¿Ý}ýöîân1™ÛôÂW×ö2Æz*}sýîíâuŸ}ÿåWáìo‹ßîPégŸáö÷ «ý—Šký•:úÅãÚÆuÈA†dÈA‡4kW×QŸŽútÔ§£>õiß"Ç|T9ö´*Çž_$Ç^¶ô§·?ô ?õeýã×Çøõ1~}Œ__ŽŸù¿Í~Ó1ûmž÷¾ßæ~_Ðoó¨S¿2kWW×Ñÿ’Æ5kW×Q_á-rªG•­ê»yåÇätöÃ_úÏâÝÝäÈíÅí‚;Ïͼïh9Û„¡£Ps?ç¹Å¡y¤Î ^šˆ¼TQš+!x{ª}”àGf1Ã`ÇpŒÖWDÉG5µÆ«¦ÖÚ3Tî\mzZíÍ9³µ»0m®õÂ1[`²Uæ¤ü¨ì¾¸¾y¿¸rH“bN…¼,|¹¸µŽÌ.ì‡þ šs?w‰u]}úðÁÞ<7-±7[,6sŒRRd ¤DˆÙÞ|ûé§»Iß^^ýw–Édz/†jUcZG*@j\ÍH̱'9Ò9•–¢X4Cõ†öHrêš·…ø;²E^ 6ˆ2ªA€ð£Õs,ôDIm3³g¹¬{cz´»y.ŒîZ:æýÍèQ³TErL0ïuÊ5T£p‹–4ä·„¨‘yÌèÇ+ŽBÑQ¨ Šˆßס õ„覎„YŸ2E“ r¯˜œŠ )µ”r†Œ öPsp¿jÙE¢¶ }Í\bB|[2† Š”rl`CZ/t"¦’0Z¦Rƒ o¥Ã0m¼ÜÛäÚ6¯DLt0z•"!Â0¾­: P­9îŒk=RƒSCrµŽ$«¥²R %Ï'EªµÅ,ŽÔzìðIGB*6so ²W¨q›‘ð·".:q޲)Á‡ó´mm¬×h¹qF|bë%§a‚ÚÛ¤7˜»@ÝùL•¶Ø\mxpM1MS\ÁÔ–m‘SØrØúi˜2•H¶’4CaÎL‡€Êi3 ‚ž`˜xcô¨Ms\N˜ã–‹™ â):@ßN…¨ OK|K(äËQ&Ñíµ54{Fγž¹Gf‰{xôŒ@¯­LʦI¥Õ]^Q½ ¦ÂLh)BÚb¨MË í?[|k ä®87Ã#͸ÏÎÓÈo?™í£p Í"Þœá¬j«—4C„Ò°It%ÚâÊÍ`U…ú+\¨SYÚé T[lÓüyÙ€Zw­ÝÒ¥z/¶7“yÜɉ ¨?Qò‘Ü=#|*´™‰[@SïElÑቡÁ—1¥m_èIPY[zà4²Yÿ¼àŒ’ø¹ºý’èÇWóÀ±WWóloîé«yo~½¸±–u_P­Ïm]½»~yõË´ÿ´lêòæöÎ> xujø‹e?2’Ùd±OÙ™=ùîâîærêcLy9íÜßáo/Vªrå0FÂåúïW—h}©.—°ýÔÙ³\¾¿ûu¹4õíék&kj±ª†Þ¶ mQcÇjÊý |+ìi¬°çm; zTÉ«;nœŸ³ã¶o±âQ!æHcªK¼é¾q ,…XáJm•ˆ H™é¾AÄëcÙRŒY%d°xÍrLÖÈú[,éU±Š®„\ŠHkšVºnYXƒˆìøC¥.ãù\§½è) Û io —Zx…¿ö±ÛP›5²¼(m[§Êã Ì s ôl'$0”›ºŽ©³Ô,d믂µGBR C³™Ø«bþÎ6Ý;ìUbGxasj}]eßjøô^£¸È“8‘…cXk=RÎáf$Ê–Ÿ†ôM¸»ù„ÿ<®oñÖÍÅÕíG‹Rßý>óõÍõ§ÞïÂÙ_®oþwña~|·Î¡õ7oÃÏnñìÍç,|úÆ»gï.Æ£­_åí_dض°Ëˆ}ÎÍð¼@RÎŽ #ô`dŒRæÈ]Hñ`Q’”â%;&I^ê(Í #öqÌÆJÙTz©q:ÛÙ§c¾87°³ Ør–rÄ>âkcŒ‰S|mŒ,ä,r 9 æ!g°³Àæ¥: 2©Îÿ` ®s ,ÕYÄÎ: ¢d©Îg,ÕY+KuŒšTgÁ@‰¯–2ü˜°³À•‹çø ½YÁÂ΂R> stream xœÅZ[sÛÆ~ï¯ØÇdC{¿Ìd2c+Q’ÖŽɹµñLBЀ c÷×÷;K€MµVõ áÂÅžoÏùÎm£ãÌ΄Ñ8 &MÀQ2å<ŽŠI÷5³ñh˜óGË‚28:&8þã™î&”Æ”Sj‡¹¬ÀÜYÉ„ xÚ*&¼Æ`«¢;†Iî$N,“"ÐSŽI¥è'ϤÖ'°aÇ™t"ÐzI'’ÉÌÆ)¦85N3% †3L)C'–)MØcÊ ºã±H 4@©‡Ï™æcœ4¡—LKÌJ Ð*ÐÍ´xʦ­¢1–i§è'Ç´‡&Œ÷LZ²ÇJ-0@žÖ˜™Öohž@pI !ŽÃ„ø³\Ó`ì G1Î*M?9fÉ(&xœ@:²4½…"¬ãø íâQ.™ã–~RÌIG'š9M³rØÏj‰Ëœ(‹'ç˜.äyËŽ¼˜^Á°VHæ Šyïhæ=I‡`@ ‹)‚àô¸cA3–‚&t"°@T³°Y°´)XðJÉB åJpƒ è…ø&¸„v¬48ÓÐŒ•–øF¸%1Ï)šÔãÞÓ$àžà h§3°Õ‚BBHÀ$Sá ÿ­‚ ³üåË/ÙÉi½­ZöD³“¯‹MËþ ¬ðˆsvòëoÿ`^dœHÕvµboØÉYÙ`­#{žÇ+µ»ú¡xßFw‰W¯ò¦Àä¶»jŠwÌíÎ_—íª`Ÿ½(ÚüI^å«›rÃÖõ²Xm>g_}‘Ý…ŒÈ åO'RŒDšè×·‚ÎójY¯Ÿ——Å¢í$}T0<Ó0E"IÎKŠËÛ«¥_`ù¾X+àHc¹àb¦¥H媃rÅHîÙHî»MÆš¨“õÐDãÂÛ‘ÕѳGt9^;MÎ.˶-««½ŒŽoö€4©Uÿ˜0Î ×km§œ~ŽÆ¥Tx}]°5xwY7ì&_ü‘_)83çp-™†§àìœåCp6áfï Ó|µØ®rÒ«·í¢^À|³mŠÓ¤x”·™C”HÈâ‘f$òe"†‘2ä{ÉÚü-~_æm>•ìSÉ\gÞM$ûyÉElâ–2ð’mZüÏ›eùïbI *¶,AQ̰˜ê@º ==ϼÔ)’p‰›EÒÂO6ÐÆ@uÓd˜ºÂ9|¦\”˜é@H°™H5Ó“â<~„çUSßÔ ‰ÞŒqå»{í5´S_N¡¤ü°®‹\”ºn"}ì#gJ²²j‹æ2_—£‚Ë„qéšå<õ;©cV~ó>_߬x£t)¥™ÆÝÄ­y£ycJÐ$›ÆÑ½î”T\¤Ñ!dbjùq>Ük¥rqS,ÊË$fõ¾©$#EF`"ÉÌKê§ÉÍNÒó”P ÙI¤ÎfíAÁãˆ÷r]•o· 1ɨ/†›!¹h¦žˆG—)Rñî ø1ÏN󶸪›r‘¯â¢›¼Eø{—7%E¿#0¨ 39PÁRDZîïU~s}ù»¼i·Pz¾ü×vÓ®ñhJy}@¸„áêò”òaHy'‡”wê ååA/¼ˆ+vƒç6¿>Áè&!šóŒO²” 1ŽKÂט{Wï@Eá,ß|Xƒ›Í‡ƒ6©¡ÈsO™éùA c÷xݔ먃Ësì|b*85jõŒ:ýD°8(x.O·ëØ“¼Û5Kû&}"ÜNÒ‚ö™˜´^î“®¹ïÉGÚr––Ú¦IÂZ—y“¶ë^<›ÏË?ŠUy]×pH*´c…r„haÑ€ø”m^=N»¯ ”Üí®Ù¸Cjš(òI9I ‰˜qà{F“­ÊªÈ¶­Þ–pþ%ë ¹âÔ³&k èmøt/`æ“xûºX\W1.Á¦rf—'ÝÑp`5Ñè8ÈÚü¤«þ9_•Ë:QaR}›6ûwI–ÜdN¦I߇»Eûqp;­×¨hË D¿-Ú?‹¢êeß.ûiU!’AÙÍ'»ùd7Ÿìæ“Ý|²›OvóÉÝ|o¨^@;ˆþ—6Aw >E—ú¬~eÐ ƒÒœza¦ êÂ/À«<à¿wÊì,w^lêmƒŽŸ‘†¾yß~{‡(âÆfpV“æU@›zqQ O^}}í“Þ@Á8ýpSÐìWEbl3ÙÅ0\Á‰&ýñؾ.±oµXm7#wyV7¨íºuò¨­x!vý&Ê XdqÈÕp'”·{ùç¨OÉïPåsÜ– .ÖO›ž^ãÚ¡„‰0òbû¶ë|^Vôk޼º'(1Êdv°ÉÕ’¨ø…¶hAP t*VaI¢<§ò( ÀXу‚¦4ÂÏC€’PR@Šœ˜O+—9z»ƒj‘^X4­¨$múG‚dm‚¿Åcz{aBºˆNxòÓÅËß~yý×ÓÏ~­O¾©õ’¶N~)«§Õ¦¼½{†Ókdä¼èÄ¿hÊê„è%Ͼ•ØÚC!¢Ç²ýK¹l¯)t:.£¿ïêfý6 w>Ío¾+Ê«ëþ³R øìäüó¨¸8˜ÏVùÕ†Þ,¡ÆŽ“?»U.=ýf÷ËY¹*Ÿ¸D?äëbFß·È<‹§ÕB._”› ´A#ØàÎE[¬fÁ W5PH·žsT]Èßßq G·§=°.| èCôyêm˜èAÔëÕ|¨\éÏéþ\Ç7oÝœœ÷çàíH*é“‚ï.NçBYÔ^¼1`½hÚikO;Ô´A Õ”ì{=¿ÈÛ¦Œ6@ù.vÜߟ½°$Î4¢‰Â¡þ UªG(ª/@昣‘‡n©sËêoŸýöòo?˜/¾·GRZp31!½‚s:Ž:ŠÔôÂiBj;&µ‘ºú‰ØÓZ(Aï!Ǽ¦ß˜ES$ÌÖ)³ÇÊ8’Öæ#´Ô=]ÝÁÍL}aþ¯õ·Ãú‚÷Eæ}ê‹ã¢µT}VCk[[}ª•ÈÈa< š²¿Ë¨ ¢7cN»O™@އ¤tˆQ{PNeÜßÓLT;ÂXjö?Yú² ¿@,ìû¡Q¤E·};¨‘}l9ú-ÃÀF Ø¢„“Ð £°ä¸ÎxtãOf%­&V’–úl1IóÞ¢p¤€œÅ/J¤Œon­“™ÿ¤Ä9’ú"BÛX— yŒÛGÖ„ eîã`Üg&݃RÕcø R>Ñw({T‚8£Hf¢œÔzTaÓ'4ð±øaM€ã#B-á{]ö[e2ú®)å¹ Ð•c <÷à99~ :³Ÿ–æÇcRŽšty‹)„Ì ÞxP|Zckä©ñ¸Ñý“¶ ½Û#cBçáéÛ¯“¨þíã/~Xƒ4«¤Î§oîNÁ˜Ê"q?tyËñ3}«¶å Nû  fr®ñ L@!ÿP›ÓƒRÍ òG¥bÞ»5ôÙàC˜oºa"àùôŽ)M2q<œ†>zC±âdTð=&!Q)¡@؃ÒÃÕÀ:2 » j#z#Ñ9úÜí¿Á1HäIý(˜¤ð}Á¸Ç„lG,Lså.èk/{– 'Êc\λ̠S `e>íÜ=@y”-¢¥Ò‰5³³$mMë`ÔR†ö&}L,ÌÎ|ÊźáQ@)á2¥ü-(*Îu¸¨û¶+To³ÙÞ…>àf³ a¾¿8¦«îÙ¤ÎG‡ŠöQíÜFÒ|{5³Gôõí÷{d6Ú¬‰Eoz=ï÷RðÀÌ+$ðendstream endobj 634 0 obj << /Filter /FlateDecode /Length 5924 >> stream xœ­\KsGrŽðÒ˜›g"8­z?ö¦õc½»¡ðZ¢½¯M`Ä@@÷×;õÈjLC¤­ÐAÍfuUfÖ—™_fÕðÇšôFáåÿ—.¾ù>¹Íátñã¾øpá³7S ð|מ“ÓiÊðBõÇ›‹?oî/ôæ_jšsSþwùaóÛ·8¯‡7SVYoÞ¾¿àõ&éM4fR!oÞ~¸øïívjR9Ĭýöxv:Ú˜àq¯&ŸsŒæÞþáâ_Þ^üÇÅ›”ݲ£©‚×SÊ ,rГIEŸ¸ùç# W ›NÑOÚl¢Ov²ac­sSJ“á[6×ï×€qÆy'0ÊL:‚aòÖ%ŽÏ÷óÝnotžrvÛãûúl·?<ÍO·§§ÛË> n8¾ú8?^ïP»o¾Ïjïƒ ¸Ò^ƒ–>¦Í …滂5¾Ýx’Ý>ƒ™Lò.›ía§'¥“Ñå¥3!lOð¨ULÆoŸv{ëãdtÜ´¨VÊE»Uø¬rRÆä­^û‹7øq˜"|ü_;°cT*lbô,d“‹N®þÄœR ÛkžA©¸µ0"-}Ü1Å0€Z¿ÇÙr@“ Äã3ͬT ¶Í¬‡™'2€Ô6ÔŒhçב:X¿î3Ì1­Üäœá¾aÑM6m J+•]žĘߠNʦ¨·ßˆ×òù# Œ§áqßL€¯´ÆÖªèýW2tÖ!.¶¹-?¯ˆHÃu &Ö=¤!ïqÂìÀ‡ÑS\Ž~Ü×Yå+ò²”éF¾WSú^ ñußËf£·£ïeœfTâŠæ-ù'\ÞåœrQÁh ÖqÛû«çË'Œ'9ª`¶·bÔýÀŽÜ~W°RFL¡Ò*¸Ä¶ðð¬X” Qiÿ--ÁŽÛ{~í²CGàÙuÞ~·9jSPœ}T~˜úÄ«GXñ–¦ &mïk pRoã:èN!à{v­œl*£G+¥É;]ð:€µ}ê&ºaA@lV—¸²–U‚\%FNe™B³kÆRŽ',¯g*ÙDˆˆ7§ T¤íññu}ö:éÉC¢€¨9exÁ?í¬Q!]мYãöß*Þò·]0€bKÛ¦2h ›u ­!t‡íKõ`Q˜ß{C‹<£±›½3Sp¡ß?ï²…éM‰`Vk Å?˜Õv#«K Öê#X §¦Áñ”ì ï „rímMƒÿƒB \‚yÃOàsObæw4uò°©Ñò€¹j?öA¬ß"CTÚÃÿ1ƒ°zßÑÆe Ùó|"ÙÀ¬ÙZT¶Ò4LŒÂA„G‰['Ó`ö ¤„\é´£0b­Å·ÿyO1=A¨–_ý„ca3ªÆ<€ç7ÂÌI¼¾%/2. 4ðÂüú©$™ì[ÈÓæ#Džß] %Œç ö1ýw?¬Çœt& ˜˜AÁ¸q€Å KÌù–åƒèg·ïh 8ƒ?ŸÜ ì’I³l`¶ó¥H~bLÛ*I ÁY`à×.©Ì[õVÌ{Có:ï 6-„î´}*Kz«—> Á‰|¶<>‰×³“° ¤â² ÆhsFdÀê*ôY„23LÀÍÁ;=$à{Ûù€9È”Wîc)Á磫ÁWà<˜Î)ð(¸j_]‹ Áøª Dhé¸B&‚R¶à¾}u)¾z¢hîmôeÁ ÷}Š:¯&F‹àë1µœ-?$1y•çþ–gåS*kS‚k‹l)¥‘^!Æç¥…øóž ÎF¾'J†á»n¹O ZèÖúŠ" <[˜‘eÒ`vÏ´Ä˼ý‰3ÈWÓù W9–09#ÉÄë%È„q‰r¡`œ6®àÅ‚Ì+ØB9ƒsìÊ8W†€á|‰"}‰ê A‹Ò£å„°[mÙ|Ñ…ÌÛÕ‰¾ì®µe„’ù •8HþïÅhÆ!D‹PmI¯9ÙSv’"émw6~ ñ>ÒÜELÅ7‘‚­"ºþuS@@ë³PÀrrìMpÍ:AÈá“ á|Tbûçá°mÙ ^Gçe]3VM’Ÿ))XŸG/à€€v_lÄK]ñË ƒŒ3óy_=~è Ú) H–QÑû•ü{œ,Fp—Ë…iZMòDr  5à-"[™â®[KL±PPúç¾JYp_rˆÜ;ìZ¼ý8Ô ÀZpóÜd‚[¤X$!{#¯ß-áöôwéÂE04 „Û.}憲‰*m~Ž26¢-+ Ø&À-æ>öRq;‹½920ºQQrd –·ä—"Íïú6£.3™$oÿ²íp?-âx­¿Ÿ›-… Ÿ:ò÷¤.DÇökE7šÕ‡+ÑÒ£w,F?—Kd[áš…1n ö&•4õÒpcîÀ}‹ŠŒ¿ìÊjÙ- íÚËPÃè-ZÀà¸=‰™¯» ÿﮃëšƒÊÆDl_´³ÄwÄrÎc€ªÏ{Áœ˜Æ‚îãðÃc¯Ü¯»ÕO#<Ú3³e[°Žm/¥K *ÞÃN RA1ðIj×'¹îÛ€ÐËþ"ÎÍäZk"¬rxÉ0P$9¾Êa5—d¬t‚òœx^̉c̥מªž¾ƒ V‰AZìp|á€ìËØiCucr¿fP(Ý5V¢³Ø|_µPà:Pxëš, ˜4:V·‘ß•¼N=½%a]É"Â&/Â~Yoò†P¢ W‚·Œ¶' d Ðð7ÇâºúÛ§]²X ¡3El‚ÿu—P+ppžS uÖY7Jêt\p”‰Ô€¸Bò• ™ª|üÌ&[ü7Åhp“¡qàÜÂ"p‹Œÿo³ %]ékï¾¶ˆµ(hZ_zÖj.#¤²d±Ï5Þö»lÅ(X~ˆä/×åÜlѯ¦9ü¡H”1¬2½±\«å®{Ì"£³(»†+ÕïçËy¨Âæ‘¿“²Ñ)&›b¿´-l°ÕNJ« O —D½’Ù*±DgÏ!ŽjQÄ ½Ö¸ø!¶¬8ßâÔNDÁŽâwg]E(¾V$,$¯¡©A/G‘ìÌ4PmeRÖƒt2,ÎN ê{lmöÆ3# ¯þH"X¥¹²Ë°ÿ6«Ù¹â*'*t~Õ¤O¹ž¦æBàËÛç=c8w€ã€Š{ÝJðß”ɱöärk@€¶ ã|È«0¤ÚB¯&‰ßQ@€ÍŠ$¹Q6øæ¾$y-µ—Ð%aëMAŸÄpCXH#1•—á:zT ÂTrí¸óÍyÕn»x?÷Gy’tÅt«¿ý`“>ä+¢ ¨äðšÃ¦7¹œ`B’ >JôJIZœ)+ãó06Õ¬)Ãûda̰ Ü'>%Uª°Bj1®ö2Ø KÊ#Òòð­Wøº åkütØ[tSÎ(ÆML¨’±¬æ ¾ /–ž/,Ž9fåœá,ä’â‘¢j;éÃã=ø;ºTPŽ÷ê_=Þ3í ˆf8ßsq2Áo ÏMÆ–ó=Z Öƒ^Ñ5‚íïÉIõ‡€ñœ!ð—uá[œ½2ߦïx¡ÿÍíN¢sà`t»0úÄ^‡@)”®¸*UYŸ²%Å2à®Åkî¾›¬LžÑó%ƒŒÈ©¼EîÁJ6‚"b”é> ƒ¹\@*Ý5//è('ÈkGÀ¸v¦`JçÑcÔÚÒ”LÉÖA_æ#ZÛ\J\MÁûoþµû@ço®(¼ Ïl`3&íË… ºÜôG!±S:þü7²€¶~áXÕÙÏ% Ð+¤ME¶ÁCwˆµ:·ë°y#ØÕ§ÅÄ£Ž&MÖÔªu yÀîÞþµ_åù2CYÔÉ- ”–”ñ¼} È dûv‡îíC°•ó•ÍE6iuÎ+áï½LÝ9«©~Ý‚Á-àâ<ºçðV_-ô0¶4Ð+]œ…÷±ŒÎ* ±Š‹Š¾aP¤ Ìf\6©È„é¸LË/B&(eÅÜŠ:è‘´äs¨Š,óá`ÈÜ|¥£’bõNU ^XNäÐÒ‹1>ãû 2r2Tȱ/˹ÃËhà˜Ä™‹«ß÷Ç«: 52yw¨3¦T’ªèeL:ñ—˜^g‘hÂ85NT,^Ïå覈Øï§°Û€¸×d¶/"- ²ß\yb—²:¥A™Zã¹°pª¶&šKæ•éLÈ(»j‹ T¬ˆ;SJV†«›³sü’ê²ýZ¶x?0)Pbö‹d†’ =嬳d}È»þݼÂh—À0—ý5÷ûŠ ã=¥;ß{>-j&À¬ÇÄÄ$ÕÎS*Â!^Ñ}Q!kŸï1–‰O~@©Ì,b™YD¥KÄG¬ÝtgXÌa#³Gá[í:• Û¯Ä˜[w@ÇòoÂâö”ÜþC9Æð:•Ã3Mù~ágøš‰}ÿ”•<¹j¿ÛÕ–_ ×+ û»xÝÄëóÑ´˜àl<Ë‘ß G›Rx‡Ž°¿€‚µA0¶ZODèk¶$DËr´¬©>wKf2‹/»o —âÆLQJ‘»>b~ä©£ÊbŠãC÷ìóÓ±k=È5|i„s5àL¹&“¥²<]¾’]-„äí¼¬ûŠÙE´?ˆù„+Z¼É9$˜âh4‰ŒTœ=$Äax¹;•ôBpž`¬À-…õ¶$ÜyŽ`À‚³,ýJgƒÖ|QŠôJ·t “øÛPóW¦“YOY’Á›ÈŽYÒ¿7ÑZþ¶ p›Ñka#ýn¸{ýå„ v`eIØr¤»Y¿V1çX{ PÊÉ4 ¾CcŒ-Tab“gؾ™¯pY¯Íj,DZGMUº¤ˆ&À K‹Ä30ª“i‡J\¶Š«©_XœŽîˆô 7Ò/Y”ÑѰG¢eéhÛÇ‘ýÔãT­²_$ޝ;Eº??âŠgÆ6×|âù°šù5:ŠôärM*†áµÌ“MSðv¬V¸Ílt‹ÐÄ*‰×m‹8½lpJû <I]R-ÒÃóùbà'é -*ñ€à(YNĦ crµ‡ÆÀ¨vó©žús‹eE‘f;[“ä'~9– ÒȃÎCåÍy ªWoúE%ÒÒô¿¼¢Ö%0Rãèe`ä2ü|¡º`±Õâå¶yÄM¯oVšA×k´q‘ËXבæŽsíÐIìÄ]][¬‰´X<É.5ßßšŠWU\Ù·*€òy5R ü:w}ç²Ùñű„'dåî‰7¬b$åÑÇM¯˜æ²™)A: toB¦“r#Sû~Œ´ìU$d]bxë+•y*HÄÍÜd½Eß`"}ÑŽÃê÷ßRîÜ'¾}'‚ýs·ˆû¢Ô?o$ŒkDN”{ѫܽæÉ¼ð›+–»{%eÖ½NYöæ2Ô<ˆÒkÁß|ƪR¦<ˆu®]d¼Dhñˆ ò©Š­Fm~îuÆÐyz؉êe:¡""Ói\‡æ5¯‚a¨\‚£Žz;œéçgšZ6¤u„>™¾UåÖT1Ñ(B!Ê~¾óSë Ø¢.å¦ •KtŸi\á­ú-Y#°,)hÀZ?@NFÐãGÑ䪬†äq '%#6ŒÇÌEG<p20*ÆW´ãùãqy¬¡02aÑZjýõ+þ*¹²È%+>-X×’d£°1»&(Ú™<ªÔ¥=dËæ/.²;C' S9XM½R÷vþUvé=ìl½ÃTèÉ Yé¡ëV¸šwzh w"E­W´¿]£ŸsQ/ÛŸ{éóI8®xOûŠ,;Ååª'• 2¹L=.¦]m‡wÇ«``Óg[DâZÎ"÷,:ÉW"aèB ÿQ÷bgi•!'ÑP„â oƒ2¯V½/Ñb÷™a–š•«:ô3‡ÿƃ(7Îm µ¸zoiAårE ÕÇ‘ßæW#=쎢ÄJòÅ?rÈ)ŸÕõxÇÓâõfy‰¨þP=PdO ~¼ÐZðvh 1³‘eÂØ‡*{ͳj=øãÙpvâÁ˜CÄùËpùHúÙqÙ¦­Œôª”hÚA~ÎL_²“ÕI^u“ôŠî¯@I—ìkÞ1ÅÄ ÄkÍÖ—¥±ä—-ÊèH¨”¥sˆ+pó Aú,NSçdב†Ðç½Â3눧YMN+¾·Hè8;vÐWl³Ü³å±X]»&²Hâd×ü˺Kæ§’^iã/õW:§+ÿz}¶¨4ÛŽ[™_W:zW} Fu¦óLq?¥ä–w¤BÂ^öà}ÊÍ6˜6Ö/êЯ“ýâ«¥B ù‹AüçXr+uùáqö¨ÓçøÁCjCI^rD#ÈRt±y„gûßúõ³ó%kg)}WúÅôkC+:'¿Ð¼¥ß½à=Ó{ñÎk¹©ôw^Ë/`áóÿ\Ë}I @¹¼éeÆÙN[ùõ)ºE}„‰vCOç¬Ê#¹‘¥ÝgF’_, ¨e‹ÿý/´ÅÖ endstream endobj 635 0 obj << /Filter /FlateDecode /Length 6426 >> stream xœÅ\[s7v~Wªò¦öa«§Jl7R)zãÄQlÇ‘äh+fFMÉ&9ZQ¶¢è!=ç‚0ݼDÒ¦ü ¸‰Áõà;ß¹ÙL£ÚLø_þ÷ôòÁ£Ýœ_?øËüpùÀ%§Çà¡|QÊѪ8&ø0ÕâËÏ6Wðá~©¨ÍMþçôróÕShWy ŸÆ4%µyúóîQm´N£Q~\“q›§—~m§qJ^=샲t„ò›íÑ4†i²q¸‚¯&ڤ㰻أǨ԰ÿËfô“žà•×. o¡¨¦)LPËS :Nzxe­&ããpm›óWÖÈ*§¢JíÔÉŽ°ÿ z×ÐÿÛ­Ðk4û­öcœTvo°¹dTÐÃYmî?Ÿ>•wrtÒ£‡Í˜6O_<lØ>ýåÁ‘µjsdܽÇÏ? ±˜š‚5Ù_Cã.êÃÜx²ÁÁZÁ@¬R~x¾=‚¢‹&A¨›¢wF.ë9Ì*êá;\Ý šÅÉaÅ`Äñ¯ fb†ãâûîêå&íq¡ر4üíâäMPßhœ)©¹\º8ü.GôÖÅá·ºŠb@8L?Y Åß±.l„³°)X!ÅäòÖ«5ìN.E;¼ä¼² J<æä‡“¡Šž¦éd+öy,Mòf„¨šÝ0q4NónüD ¤4”·öƃQÃÿ‚Q„áÔ¢Â+’áÉ% ›Áí§I6ïÔ`Áçæ¿Ü9›`û=¯i¾.¢è— *mBÈ C+wM«" ø‡¹èäàëéÎóÔŒ¤Î,œn:ÞãDTp^ ,à)j«›fß‘<ႈæÞlabF)ÜGhX)A [ÊØ›½¬ÉÇȧBˆ,¤yе'Ñþá`©qUA¸Ó¨‚Ù)3Âj^Íã­¶°(Þj„¤µ)­$Ý\Y~Obè`t´€pT´1íºé'0…áß·ÁãZäqúd"Ë®OÉÀZa J›FÚYSÏWؘQòƒ®Ÿ—à Æqâ ¨ “QÍ ÅnTLp h®eE`¨@«vQf8–øÇ8â¥Á¡š”V ü‘M0TÝêY׊WÁ=ÄV@Ä£–`)Nü•˜Ã \*XÊØ!I+ma» $ï®*ÞÒï¢ö‰»››¿«wœ× õÄ«}K'òë§þíŒÔÒ››ÔX\Rc&ÁoµÝ$À¿¬Å^¢TÀ~FV@‡Å×T„£àÄ—â‹Åw·ÇZ¼¬Å³Z|[‹»Å^ÕâU-^×â¾^lwÜò1LvÞåc#‹ì)ÕóÖ¦ÜlKÊc¥âb#n í¹˜7@)8ãÁn|²c Šw uPØPÅÄ͑֨'4(Ér Æ)Ú½|~èldü–Ü@*Yq"@&á#ž á›Çâ°?äïxNä™ýäÝ#Jr÷TY÷WŽ æÃñ#B«ÀrkÀå+BGØèqO J ðäùa8ÍaW©S‚‚#ùˆåÎq ßå.AÿK]*»y±Ü §JÚz;€Ö¥V,C§‘ݹ՘:€¶Ecþ –à·ºÏ+0_‚âóÍOQCa  urÞ7À/´® _èûÍ@§¹Ù¬ñ„Ev‡ˆ*#‘5rš@êäSÏj-0xV½ ©˜þÅ“j«XY°ã-¨ôƒUq1$ådÀ«•ƒú3 l·m„ÿ_gMè¢A”©qiP0¨‡S¼oã)ÂÕSÜÂuÕºåP9j° J+Ÿ—•VG•ºkb¯š‹ýî ¹Ö½Teéí¥ªñ¯Øf;ÛbÆ¿,Rz–ÜâlÊÁÐÓ­ð=”fq1}D„ir'‘•ؤˆé¸X…øÝ÷ò‡Y"l²+0ØÑ©Þø£tr’h Øž£ jãŒGSG†S(Rðv±øº¿¬Å/‹ïn+޵x]‹»Å¯¢.C9EwöµxY‹äИQ»ué‚Êzª³‹ŸÆÙ£ÔÐ ¡‚"O>NÐrMÍÁuvµâQrÈãONf•ÛBÛ”(h“O^O—Ø1üV|ÝÕ“·˜;aÆ  R~¹=ò¨Pºφ\p™ ‘áqR|€ß5¤ Ø4›ì‡Ù#1 ¦] =SÑÇ;=ÑÎ=€êöA XA‡™îô­Ã™Öwlæä@-Ï•_WðÚ±\O» t®Ï°;Gî *Ä`ø½7jE\=FkkI~,ì8ùAÅôÂÙ4Läjijÿô±]›Ð17VÊ('Ѩ€ŠbÜ¥“‰ nêy%ƒ…E>ý©×âq-~¿?¢.,u@ÁŠÀø¦Eö—Z<뱬GÙq±Ñî¹».ÖMÅ]- ¸üu±‚hì¬ÿnZE…·²±ÜlÖú›àP`ÎÕà£:k€+-ÿ=¹GR9e#WÂÝŽ\?*š×Ü#ÂeÜzJ¨Bc˜æh…›‚<“Â[óEÑt£ü~Vî!WPáÛÆLÎafÄeylw4 0ò+Sû–›H‡ Xæ>á^téøâôøF,™ €€µ`XSò™¤£èD™@+Âê‰p-‡‰É«%¬£‹J _ðϦè:úëp\ÖµöU1ÖÚt*'ß\mám$¥\ãt-‘ß«¦&šxè¯FJ8ÙmqA܆83ë ƒŽ°¸–Îe&¿y³5FJ–:áàE¼Fª%ˆŽ2§û°¡¼ æ5¡0øŒn±&ðT˜ Â µ—‚õ&gù”ô œ”^ÁݯTTƺƨ+ÎQ;bêó8Û’Óä“&šòê~U«ç4£m&ô°Óú"Þ…0ÿ¥Œêaþ8Å&Ò*Oe! \ñ]´ò‡ßÓ×Þ†t;:F9™–±¤ON޹Ÿï÷LrœŠ–“ñÀ¼º¿Ï] öWDO£i=º¥”ç>@™É¤©¾×"©ÇèC>Ò¤:?¾2Õ“ MF#%P\¤Ø'P¢ lSÆñˆÎþ 'µÉ’YÊÿ|]‹/…UÝxf…s)$²þ3yRÉ¡!X¿âœË‹B_Q3ÏÇÍÙ•‡)M¶PKð":7g£°È¯özÀ„Û38"jºìÙ½bdª8äܺCÎJ'\ÔæC<ôÈAµqÒæã`T£) ÂÑÀ(¾QÝE5Ù$=ŠbkpøTÆÝ3¨Ò:À<•µ”Çpr"¼j"ØAð¬f_‹V„ýŒûEÿø7ìßÎI+ñ°NÞŸK㛣*Auá˧{0+ D•Õl°½\AÈØNùq¶cŸ ÛqM<¬¥…s¶&H`Ÿúü.'.ÔÛâcîL÷ŒýÒÌI˜DÌ99Ÿá}*‘ã,èsr:ùÛ‘ôÈxд¶ó†1 æ4×@-·+¤/^ø4  ÑZT‰(Ä'°á)‰Ã¨ñ#MuØŸ¥·OÁL«ŽòsäWïTHd?lðó…ƒEÀ+òvZ"I¦¾ì›Y¶2n%ŠÑ%6ç ÊûyÝ<ó=éTé“âÐQrHuS©ì ¤Ú{Æ8ô¢> îõÀWCÇEi· ±?0±Æú&ÉøÉÍ«a`‹¼ŸG¼-X°rzLêEíAó ¹>dñ¦j³fôÕ)Æ8 ?¾=‡? ¶~ÁÖ1器‚åL‘àÒZ—‚ˆaÉaæl£Ã»°¿‘„8Œ5 "¯—œq¾±i®É\·ÔœÚŠ`Ü\\78TÕ{zFêÜ}z4ÀæÂH?öz ;”zGÑ9 ‰H2VU…+Œï…´‰Ÿs‡Ò(B»ó=ýÔ#•!’oaòÑ‘/ûóùaù`}ÿ*nÀÿc˜âõâ×›"½?ï“]ËãÃÔJÚ._ËHÌXW1-S$4–vo³›Jc¬‚rÀæOtí¡ä×è/ödv8îoMv´Ñ‡˜z+ðqDz X Ö¾/ú³Ò¨IÿŒ¹~ ÷.rVgŒŸ/®‹A¥)ɵ2‘ Ý<[b&b¨ÉT+ŒÕ×7Ã#]q“>,Ÿ4]bmnWÍ“Swø6 ÙÌId2J‘2;|ûÕAËG1þÈ@êþ¢Ú¬"/E2x•P Yu9\9,ÉY÷ÂëÑ{ß´h­tUúßþœï Sï3Dr¡eÍÆh4þÿ¹ ¸®Å&@pËWÑÂgï¢oFûf±úènTTåX9[@i²Éa´m3SPäÀ†A©ò1plP„ñï`Á¶^6À<¦Ú½¨}סÒ%/ë1÷Ýö¡á’{YBÃ7¸ý•Q£åêÊÁE)‚’3åÞW¥È¨n®JIÃV@.Ðà@€Û-´}_ J|Ì ÆÓ1MG;̽õ²á±aP]ÖÁ™Í#ÁUWz8+.®ØV1`dy/×áˆøëŒÏŒ)Ÿ³!¶h&â`?x·MÞÏ÷ÄbCÌ/órN¦i÷e­qÆ5¦I/éIrÿ3ëÌ·¨Èc0™1¸¢¼ëÊ0ÓóÖMLâSÙí7šYxÕ; M4_Ä’t[¤–5w«ws*°•1ÀÅ ÙÖeܼßíM i•S9Ãâfê&ºzã=ŸÕØ‹ Ú¥{Ç (Ÿ‹?wgÑ ]¢ýÇ@œ¡4—° qe!rݨÐ×U›8?'¼ã )˜¨®1_MÑuXô^%ÛóL•!Žu5Fͦ”݇ÿˆTA¡ñ#ƒ]Õ]ÕŽ½¤Á^p_6¿÷/b¤v/7àš‰ùÖ?WhÛ¿ÉLª‰Ðòì"¨“5o$›^ä5r½©—sî˜ïÂÕ›rÙÈPªpìB:´œÊÞ÷®Qçî›Qá}ã×c?¢K¹PÁ•ç_¾Äs©èÐòû$’|±›ü–yÈ<ÝfŠ·ÝXä©w##-iÛçk™È8¥Ô6ùÜèf“72 òñµå…M)ìÇÿU=5möR÷[ `¼ÔwÂá$Ê:¹ˆ«Ú8;ñšH¶p~VÝ%]+õ ±l—T4Kɺ÷‘ů…¸¾ .šÊö¬8EÈ%ÅJÊÛ9•”ïºö¹¤Íícã¢i>õó¸oßùëiˆMÁÇG°LÁ FûF°¤-FôV‚ŒB“!8ØÈ¯‚ák[)iባ;)ªK´˜É‰`Y4ƒügâ„·5}Ü»&ówN˜ƒx…jV4æÁË%ìv{>[“χœ.ú‡K꽩b]qª¿žôJRFャº3}«–î¬ïò«:4–¬dK]› õ¼Ð‡–ºK7˜XåZá­¾ðX×|‰Õé„÷K–Þ.1Gá.o—àJ§6‚ÔXÀ%QZMt‘ów³//³\K™+ÝI÷ƒ, º±ú4H]ç‡l|øÔä¬tï–àåf€i|·jÔê»%…¯E{ïòpI­}Kú!Þ7™‚`>šžls,^p·äïE—Òíàÿ3(©²„zœÀqÅ0…êY=ÉÍC'‹¾Ú÷ÜQ€%û#7’4Œ÷R‘‰Lƒï,ϯÕ7-·ŸÖŸ@)ºÖšýßÜT[zóñàÒóÍb¢‘6Zéhs휀«‰•"AYÜ6 =güf#l*'´+ƒ9¸_oéZ²WmâèQׇŸ­ƒÁ[ß'D¢õ†_µ‰ÄGþš 8t“ŽŽ|-DˆÆ²šºæßÙ©}ÛkÇ\’.€µÊ)¯ çsb»ù·¢¦xtYXðÂÛÓ\K6Àcl“ ˆÖ±_¢ ‰t9‹w½p‹)ÅõÂÊ­©‚—‚±6³‰þZÉy.îË[@= J§ÆÞj”ycpd©¸BIíÖwζãiµ>£)àüŽó‹zÙa™Ô‡äîtÜñ»] müà#¿ŒCï©Ó L¾œ1IÞ/XkmÙµ¸{ÎÏD€rÈlŽ1à&/"½‡;ÝþÈÏMÑÌfWÅ’^ŒK Õ/O_ñŽ¢×D4bEµŠÏÂÞo_ ÅÆ‚*Q’šÚ½@ñ&‚;½uˇŽWõwÑ3?Pk1½²ÛÒ² õõõn=ЇuRë¹4X¡æÒpÌ2G\M¦i¤x|ÎZ´ÚÒÁuà9X¼û&ÌÉÃQ’?‘ì¬ÁmÛÛÀ¯¦Ê‹Ϫ!˜kòjä‘Äsâ{kqý´aú‘¥T|ñú”МŒ1Ó*8ZꆳyHJ, 1¤ÏæÆ|“dÓê´ù¡¡ ŸµÀ´­0¼Õ4¶Ÿß}1«&™Ä]öÍ)’cÍÍÇU·…¬Ì9·É¢©-ø _± pËb2HÎ>ï€%ä 󩜻ýÅ×Ãl Rüø_O‹ó@«åÛ®âuØëÅÆÄã¯ËÏÇrûclÑô¯-óM@Š£‰»„¿×¢H-ש¯jñ㎠˜ÅÚlz$\Z ¢SËøßÿÈ<ê“endstream endobj 636 0 obj << /Filter /FlateDecode /Length 6393 >> stream xœÅ\Ûr7’}×Dì70ö©:B]*ÜEì%{flË­$[±;܇IQ²x‘IÊ ~ó‚*$ÐUMÒ—Ýðƒ¡"@áròäÉDý¼7ôjoÀÿòÿÏ ü«ÔÖÔøj`éá¯ãܼ,]rõzu×F»Þzom\¡%úѳ48«`ПÄäá@ý0£Æ&¼ MN„wÿßv€‰pÝjC뺇ü&Q>¯tZŠWج…Ÿ'‹+Híºhº¯ho‚êžäyQª;èèyr1USwD+sk¹Åü¸§îµõ¶;Xå…ýA­äÅÓààoÐjÔq°~ƒËbr<i¨f;¨9møbå/WNAYÁ&/[ÿpÚâ×b¯Ò\$£`ŠW°~ù+Ø70|\'Þ}>E Ks¼R´ïB4ÞTü` „:Ûí¯´…íxãèAÁŽ®Û†é‰v®cµÔyJptFÁ¢çÉLƒšf£Á …Û5³Ñã¹ J¡{%šÞœ— ÿ—ë¼|/ê_Й6éX­ææ¼}îç¥öAÑÑZ›vQ {k˜A•œÉ‡ã3‹ ÊTwZæ¼9Ö»ñ±¨RµoaÇ¥¼ã¼òJã´k;8Xå]WŸq"bžçK:?&h× .£Õy¯å§´ô¼²sK¨#NiІ„hMG[bù6tnpÛùa÷ÄŠŸ–ƒ÷¥L“\Ì¥†€ÃrøºÏ3C—ãM®×>Ú îÄimö§î•òÓË}*ø¾9\i½jÛ}\9G#¤J+ç£û+Ày õéÅ.‹- Q'@ ‰laØ€K¦Ó½ØÊÃ&´)ÂX]÷ÃËrŸÑk~ýúÁ>€öÈö^.›j|™[mj÷| }  ö?áHAÅ+Éx»ø©—â£ÙâÓR|YŠû¥ø¼ûŸ&¯z›ÜÞ@ÂYÀ̼`XÏ[›´ÖÖö9“‡›hsçâE)þTŠÇ¥xXŠ×¥ØÏ¶ Ú=)ÅG¥(ư™íâãlnÌÅ8ŽŒŠÿQŠ—¥x6[÷º7b7Ü›±Áaêe8=˜yÞµ9[+„&¨Ãg/аâ›Ãl‘ 9Þä*|{ÚÍÃàSÞñ °RÚr´Z1‚ձаq]ŽÞà#8ï~Ć&?c‰´æ¡—ø«çÌUvä+2QNE¶"XNç7ßaZ`è¿¶æVi?xâu0 @58yÔFŠ· ƒ;ð¼Ï¿‡Ù©É'á° Ë0ÔfsY,½€ „Äz Iœ„‹w\öƒªáwšBöÈ:à@Ù SØçkF¨L…䮸5$¿<Ó8eˆdÁÎPQ×}Œu%î×ô™§NáZ㾆 ökÄÙÏbÑÞNü[씋ÞPÏÑ þ!ë\4$zúTÆ–¤¹ß'ÂìÑlÂiÜ\±ý‡ÝÅ­²lSì¹y"°µ“äOû¹µuy°­3Ø“|Ü—Ç£±kȦ‚5Õ㬾ÔE’IÁí„£õ¡¶Tp&à*ú(jð¾bê ï&y Î8ƒðŽæJ…@gvä®Ge ʾ¥f£‡Õ—‹±¯fÍö`z˜ÅñŶŒ¼²@“5c]=ñía¾iXpm¦*¾Í§>À±×’3z«n lÎ÷†ö vðSèyJÏ‘BØåpGÐh©Œ±¯ç±Œ PwßÈÈi0¡ö”þ…gFêýzÊÍjÞRëüWÉ=ÕŽÜ“O¼œxMð^péhtåÞ^‹iY±k—¢ŠÄŒÍ8:pöåo?ásx¡%¼Á7PÁy…Ýâ›FKlÑËÑJGâ˜ÿn’ÿ}ô´îýgSag…[îÍÊ;òW03&ŽÙCcÍhpô‰)?nHöˆª&iIû¡f„ãt17f`—ÑŠõŽ‹‡zPò‡À‚ÕkÈÛ«²ó”¨àþˆ€ÑjË~ä&TËæŽ¼¸P9üí&Ë»þ¸ìúMý¼´ÞS?©À½qÓœ~+¹âz:'ŸËT_<[ô¨ =à$ò͘`#úî]~JÆ· ±r~Íc†Z4QÏ[‡mÄóYÍà¢ÔØ5$Oœâéd€7ó?;DÝÐ5sRÆëˬ@ÀÓoÄòÊß Å`aœò1Ï(ñ#ùxÁ$jìÝ Øâm  —-€Õ»,da‚J7Àš[ `4lHí½@X€‹|ìS ú‹Šˆ „âpý­Xˇ\ÝFÉ…?—s&Ì‹(2­T°nq—‹zòcBa>¬­ U€-ì]º?|U(¦ä£›²}ä+ØÆ€„Söòe|1Öò~øJ ½êÛ2TáƒoСò=ŽÞw«QŽöØÚ€œ`Ï"ÛY6äã˲qEßNùYn8¤T©K™’ŠŒÐ¦iš¦Àø?ÿ–6«[ V¢ÚœÜPpf©¤½kh³—‹ÛåßìK ’XȈ«ÞñÒOµ[iÉ+˜Õ1©QéñÚ«¯ɱ ÍŒs>ñÜã‰X·r¶‡gµ’¦g]?9ë;ÉÁŸ “lróÖ ËÂ<ª,TïV³Þ—]]¹SR#¥æl$ã¸À§¶'Lœ¨ŸšÓ:½dåFa{0™**‹ A£ày±uäÉçx[†zZfŠÍfÀi=,ÞÜN§Š×ÌÎxN°z'–xH÷´„_jÝv’d+ŠÃoÀ†v'ï¹G&ˆ÷j½òªaùô ^üBœl‘ k1µbÀk®¿î¶é3=^ðÇ2âá<;‰‰ÅF<êàPÚŠð0º%5„E¢Lí‘æ¸:§-´Í  EŒ¢±Ù”Y 5¶à)]Fí 5­á®=Åa Ð`ïçÄÍ(°)`cpÜŽÝI®„?p<×K Úá$¾çVa ëb…‘ ÉxÁ(h8äÐ`HŽäC1Öi‹æª€]'c£"2ËB‚­+&"£k5Iè ÙíGLë}ä4Ù9„o3¥4êÅ(£%òþ‡ÈÅIá£=p›ûVj1é²BJE!>.ÅG³Å_o+ ‰öm)~d|*ž•¢~Jñp¶ÂùjN`bì¦OK±/ÅÃR¼(E¡á>*EUжÃl…Q÷#®ËSQŒ³EÑ[š}ªxŒT×Âf¨6E#k§¨Î¢â!ù.ûMܵƟÓZ!·„©4:?ø €¿Ñ*¢iãdʳè{pðiˆI¨qOVƒYÞl“x¡ ±VЗ֢³¬-â„é¾`|F$è¿©¬Ð‡Bi™z¿Sö°Äs¥‘Ýàð’Ñ/ÒIŽ¿²àšKû¼‰w•Ð4«†Š>%ù8 ®Ê¨T‡ÐM8»º"äl൯+_°Ø&"CÊq„6+HG¼ª¶Åþ§B‹D î”É…‹¸â# ò4‚ÿ˜îJbn‹üÏ[L n#Ô¬uR@…鸯 PkÔ ¸qh%”‹¼š(œ¼ìV"( >jPÌ}Ç”yRå²OçP(·[æ›ÎVÖs¼Í+Áº®EYVߥ+£<þ[“öʼn¸*L\²‡b²+5yz¿j‰Qι%µdÖØG×{›î.;¸aba’âáyNuç‘aŽ_^È6Ü8—ýMpV<¬î\ÈÞ^HØc`†FØMÉÎ/tK,w…àÁKúÉBj YT³“Ú½ ÷1±eø†´kóç^í¡áÜ*åë úda"‹óÂĺdV¡=J0ÚÖßNdÍd ”i˜ú0:ïÛºúqIœ¬Ûª9ÉòB©5¥`šøjJŠ8ç±(RøKÝc®ÂîÄ.µeœ¶ZmÙ)0°iÊXÀÃ*GnQœ¥0êïLlHSÉÍ´ˆ‰_zŽÈûÅ$·ào< ^CÞa±’KM†Ã­Ñ0(×&\j‹Ïuÿ-è&¿YŒœ ô:ñøÊgW²z>h“Uޏ€—¿aÝè­Ë-cÅŒ» <<5J.B7Òý<Ñß_V“0±˜ðFMG`õO¸k u6&%¶&E¡IוsÖ²k•:ËÊ•/Á^ñX¼¶†c"çò/â%µ^¸w•ß'r‚–Ññô¦•¡L¶»,óNùä=@'+gÖnzð‹â[ô0÷ÖjÉ8Œî9û?ìî éAŸ%6ç›1¡Å†C1³BÑ?*;LLò5¾=¼µ¡ > j¬ >E«ÒdÉå“7­¨4œ šL^ÃñxÃïXPÃhÁït#gÑ^›û~ªÛ­* 4Õ«BŸçoÄIwt8ŽgJóð/}®òsL ìvÔÓ`»†O} Rê©ÍV@Q¯„®E_VSæBð %ÔIŠßk°nVÍ™\[²2L?Š›J>”æ”3 ‰I“säKD{[üßi7óòµ‰žì¯Á&æ+ŒäYn½ZÉõÊF‘;´®“*'¸µV&I÷ë7zvá.&Ѷ‰U,öxSßÇV¼(sƒ]Z»Þ?h ãKáÊoÕ²â:¦R½•ŽÜlÊ7ì`«†œCRZ{ÃÃíW aÞ²~µ/îQÎã¿\È„ºÑÆíP3­´¬¿à™SoÙî¸[᡺¿lÉ4Ê ¾öîÄI³xJ}jL­fžk’S|«ÝÐíaqSHZæ©”n8"äU¹bÉ\λ ³"…«>×€]£“»1Êå'è¦Ü.·‰”ÝÐ;-Æ´ý&_Êꯈt %çénœÍ|ŒDê•Óç'ž‹+#¿òC oð_Œ;Æä<£?û×^šÍ2\¥êþ¹¶Þ(Þµ­Ÿfõ!×±NÝâ±°æsåÔí¿[öµÎ¢k}UÉŸu:TéëSáÉbD:Ôä÷ó OŠ€¡kÆc ÷M‡ÂŸÙ»~–àNкçFÉnÖÙ¿ÕâKLéÉDØû ƒŠÒ4¢ã¤[°‡§>É:ôÑl3Ô_z! j”_{§ÛDuf“:ÒÊÒÒe¨óˆ2½TZË<"à!¤;]OÝ…ÀÖ`òÂ=ôµrsTý†›£#Ý^Õ‚»I±ý LóA‹uPÚºFš?ãƒð¹Á$ôDËW0äå9IŸ(»]¥P“*Î|ŠI»­HD×þ«ëÚ ¿­êLý: Ä?EŒ¯h3í˜,ÊXA×R'­L ;?³õÍ#°é~8Û€Ô‡Œ®q%ãú1æÇxLäGi…ïaz`¼ä v‰Šœ¬¯,q‰Z'ÓÆ9¯~î"4عRн¦ã—‰6 âÁJ UN+ óœÊºíš, »†…çË&ܰhî’+ød¶‚¾Û pX¨qVU<¯®1/HP·P¯\UÃ:[MÊÜ'‰tA¯Ëh¥bR¯Þ<_ÃKYâëEun{PçùÛ-'`ú’¢ðW¾Ó¡RbXÙ#7qHR~l2(&‹E¡Ää‰ P°ÿ oa]òs?ªTÛñàåËÜ"Æ7Alvþ‘ ÊdÜSì&El¿WvlT¶¢˜å lóÌ­R<áûè? Er!“­J,?Ý—s{U8àœÀ.æu[ Cƒ’g$g’.; ø9OP;ùŽ&@k 6‚SD@rÒʪQš²¥ÿðÏå{ø2‚ÿç{/KñOøÐO{WC\ÐW<Ä·yý®/ë‡êQ=³­“6 ë,{ osj¦­­´H>†a"‰,S~Sàð!׈ôí½[>¯ƒ•½·c%µÇÆB¢¨ÆâHpì?:ºS8Þa}ϪŒ­"V2¬¿awq°®½KË€ù{Ã㡞m'bTL@“ƒš/}`*™ÇÄ(nîžWx@=“|ÿ.ÏÊྷ³9g|Ŭ¹u9üϲFî&³¬¨uãóê()ÕÉ€YþœMzüڦ†F¾ »OûaAF6„´¤ð•/“I§X8E9Í¢i¬™p‘–‚_xpÖ Ã+ÁJ±sxóqÒíÿ }ý*êÆ1C g^ˆ»ÉTÛÓGØÄ9-ÇÜÌ~¹rêñÝjÒv§¾6QŸ'º;û%·­û0–\ì}n ÏÜÿaŽg,a§týg¼iè¢ðIÉ×¼õ.邽¥ÛI@ÈC#5,åw·BT¾ÕÏ÷xŒÜ¥÷òŸ•íšý¨&SJÎ2û²šÂS´­ºÚˆzKW>oÍRÙòw=þ”È9Lg€/»Á¢T ody'ùB"¤ˆ¡Í†È€Ö˜ßö9ŒâÖšÛ>ŒAY#i6D¶äàªí²·]qhÌxï]°FrÙÂÆ¼*ÐÆ_²€×’ŸÅøŸÍ}ß(©­{+!Ð7$^ ·•à$‡y¯¹üœ™4µÏ~xÁ½8 õ Áˆª£µá"ÆnDÞ‰ ÈT_Àº8Ìù vUªL9å9vžÉòÅ<lÅ»¤•Op.#¹PÛž†øHÀ8üu:v;ê¨ÛzR â`Ô kƒ×š£nDÙïu3¶%ˆ- LcЄnX§ÖO¬N­Ÿö§êScúÚVµ§oùÉ;v¿5œ>wdaa,F¡ï-wu~én: ÑýÀݘöʱlüïø-‡endstream endobj 637 0 obj << /Filter /FlateDecode /Length 6152 >> stream xœµ\YÝÆr~×½Èoø!át˜Þ—û6¶•ë–íX‚À GšÑâ;‹¬±l(óçSK“]Ý$gQèAGT³×ª¯ª¾ªæ¯GjÔG ÿ”¿_^<ú×’;z}ýè×Gøàâ‘ÏÞŒ1Àïóùwr:¨úóÍ£ŸŽ.áÁkxSSŸG寗GŸ?Ç~=<³Êúèù«G< >Jú(ú8fëž_<œÛ=ÿë`šÖ¦˜à…ç§~.v{5šœS ÃþV9¹8ü¶ScÒÆÆ8^ác›“õa¸ÚéQ©lÍðŸúœc4ÿõükÆÉaœñÓ0Ûí³c¾À×tÎ:¦áêFqÊ«8œÖÞ†;Φ4¼#ãŒT†~ ?V6¤z€ú<¼Þí­5cN~xŠïE¥\‚5a¿Ñ[G=h¥¢JÃa/–}|IÂüÍp8ÇÿHJkþãnžê5v“‚uŽw©LêÇ´ð¯nR‹­ Í ÀÑÃÿN{óC’›·§»·ÆA™£½õc‚žè¥/i;T°QóŒœR ù×¢¬qvxF{-Lÿ-mHNÙÃãÖ˜¨iÿë®óüMPa8Às4îONåìSãcÚä†oÜ>¥Ë˜!à)bŸâð-w§q2ìæ.tNád‡ÿN&)˜äí”Y‹ÃÉÉSì3çS³Ëâèo;8<¬›ƒðÏgîå-50.Ðcœ§Mý±ñì[)=¯³.xâ©X%Ü‚¤òð|—`¸Þ÷U4ù=—@¦Äìå”Ç:åÏv,YIÙ°€ÉL‚ôŬ8WU“éŒá”`²°‘õ÷û×°Ù^¶…{m†s!gØfd耳Ãsb°ó^ŠøåÀoIBœ ¶¤„æÐ k²ƒ†}жµÈT9fzY[«]û’ÔBP œƒk ¤uµŸïq¯n95êæLUÈG{mGï²Á·†ÈPÚvF­§Ž¥œÛ"ä¤ÜàMôIÇx#¬1Y“Øë8ê]íA"ÒRÉ?Tmþ}çî,‰˜ ˆÔZjû×øNL·ºg”òeZA8c˜„Sqtï9—20É7„Ë võûrÚ6B\^ˆþ7´0èŽ ¦xÊ35ù·‡ŽX»“Iä°)Nçé®5JK x#„î  5¡™Õr¬sûŒ Ø3ü;i6[Kžr€Ýûêþ­av?T!»jFœ»¾îçTÀ쬃£`ßÄ ”„ îŽË1á.<«->ˆ…‘ÅA…á‰ÐœØjÔGê."[´y´{€6ŸVØÌ®@‘Î+Ö(°Ý­ ãÉiõå²”Á*¬Äš•ÛÛzcë*»­]j¬ÌÆð ðØö1ÞYËaAíN—U ´°~•§u~/ ćºäð΋D0&_‘Ðø%ƒ:<Âä‘„»`eÛ+Ñ…(€ÜN‹5ÙÙXvwÍHª@5ê"ROéiŒÐö¬Îø7aŽîq<8-Påãq0^ ÷ìAGÀ*1úcµš×BxÅ”éq¶9;ž›+äÖ²ù€Þå<¯?ÅÓ…*+a[áŒÙ2W(ÝÙŽ!ƒ©C_W”ó#ÊÇò÷EÅnM¢P‚¶Yˆ~ëgá`^ç)Ÿ¨Ì¶%*_Îàì™ÞQÂw C%„ý}P_ð''Çå%0 ßÒ1Û‚—1=ÌÈ•%$ã㦧 œqö<áá¿ë‘¬º7"l¢7À‰íÝ|ŒÞø7BÀ×dý_¦ý¿ÝÓaŽz:7´ŽœõpõŠ÷̃Ÿpü’8†è›häêáô3ºh'D¸ÄCl…±]@ð£‡@¿„WtLp2Ý B e¾¯z Äô…8Èó*CË(Š„ï 5O´ÁØÕ©K `w«q`·+‚ ‡kžŠÓ¾ó[èE8É»ÝÌ?-Þ¼L§ÁoóyöÛPkQoR–f’8•;)µÆ_ÆW9ÝXZ´k±±Êoj‹3nÎ2ú}ËÐÚPò˜A­Õp aŠô@¸Z»‰sAµ¶nÓDcißVÏHX½â ]CÚr2ÎLÞž`·ŽÕdáO`i‘¯v½'‹jTŒðz º1ÉuŸfÍJP]ݧŧ©Ø„<s~·ƒ†Y‹UËÅÛÆÉŠX5囼ˆTÑAƒb’‚}€IÂð$ù[L†²*mš$„¼m¬“%„’£èb4šÁ¢s„s%ƒPÒ ½ØÍ ›Qå mSN4oŒ‘î ˜Õ-ðüCoÞñ1Ø 0scÆ)tk 1ÿüŽ›a\ò}Ï4ëg û ½¥†Ä%ÏNeAÈy·Ò&‹€%OEð~)®zC’ÅÀ#ê Á—ûžm!èU*hN3âÀ¹¨’ÄPŒ‘Š+ øLqjt£u3‹"Xl]Õ"@®'Åf’ÙÎL–.®^õk@Y6&U?@HœŒR7,Rãê!£ȉV¨!¹ Ä3ãéIý2»§2ø¿Þ5<@‘Õ»,ÆX6Æ8bHŽªaØÉŽ-­1ß§y‹5¦`ü¥5&­1NÑ©ÎÅ({ÿ4k<ë˜ íň2Æ&£Ï7ã&Ÿ€ú‹º…sìÖ²®ÕFÑœ˜˜MÌ5ˆöõ=MEÀ †9üóh"´†e‡ma; “2…5dmF¬!,Ñyã@‰xÈ’°^EðEÁ2°‰ðÅIQÑë×gBŸÞ3s…aþSÞžlƒfn‹–'-ÆÅBºÈñò†i5ìùï»9Ø–êq%% r@¨uÚ¥§-zOp޲Åû‰k$ûq!ý`Uâé†VŸî&Ž}£ã/¸7£ÂLµ!± xû,KezIA-œƒqÅIu€È¤ Ø¯“6í²Ð·)Ü[= Ï_Ô'ßkg±"›êI<2œ$ÌB'´Dd+fѦÒ45JVa™6œš4¦…yéh0Hp™x<ÌNI(a…èk üo‘Y{·@Õ'Ïåqá5¤ŒÖ¨V¾Ïä…Å`~+F:Ÿh÷0ëÕP䫱ˆÁ“p+ð×ägfï;Ù7»E'¢vz<Ä–êœ"Áš½­#¬FçÜSP¾‘?A SžÍ–¨Æí©MÙö)$ÀFÜ•„t»°çyi;{æú.üÌÜ pÑè¨Un4Z¸éÁäТ…M„…Æ „3÷É$yÖŒ`îI>šç܉Št³tÕd£*Ïw¤`8ˆÃ÷Àa áÂ¥àAI²Fz3|¸Œêpõ¢ú݇•¦9ÜÒzÂOÖ;™Õ°¤L@H 26øîú‘ÖkЧA„¬Cßܵ• ì€ÂrÐù't§³ö¦õª„-i33„K°ðßÊàÉ”Áq]¹‘çêHÇËÎÎ…'&}óΉãu¥z…AbÖ˜Úœät½^ƒßò&3Öú)š‚ž%1WåLÐ MÀ +‹©ã™6ü€b_ˆ[>¯z!mûa"qÈØ†H³´u·ÖìB´3.2”…õVÖ†Ò%p(¦ÏÝF €NkÎï:®xo€4éje™ ˜’Ò7ðƒáÃ:ã™y¶˜Prõ,ðã¼â‡Lí a–fͺCŠ8Ë ÿœ„Ã|hËâ áÜL´vá3¦!ö¸\#EÍ0`çç&/¨8Ïpr"Ñà/‹¹PQëXа˜d‰ á:ý*» €½‹’!xfñ(…jø鸪|úî„Å•(kºløÕ‡ eó[ŸJO@À{qg'í3Þõ>]½Pº¼,ñ…0¨ìáðï()‡Ø;¯óç1y/EÑk*cøf§QdaÓ~¬c|Õznܼn÷uæ!º°ˆRäà³t`RÄ0fN Ë0lÂ"23•`Rs—uhãrá3£yI†ûu(`B7ø«ÿs*‚Õ\½µç´Q.ç<‘ºÓàX‚ å¿ÚÍ<ÎvjszübvÂ*5*"ß`·øŽdÆÁÀèÛ€Ñ+ÖV¦ölÍË{¿#ÃM‰‘é­7Ü«¦Ð°Nöãnf€¶rÎ »ápP¶Ë‚Ïaý5¯(«p[â·2Å)r¥ÀzîRöxDze*¬Ä?Ä©‡oqJQ2JÏÇŽZ’w0æib£q.P@hÚˆžÛ1˜¡W¹²±oÅy"ºÕ­!ëS:M#ä{îú]5ë]2š HŒ±ñÆx;gœMã„ :«39•EtàÓ]FŽƒ0áXU¸¨k–’…ƒ1át^ÕzˆÞ içVM@<Û\?|ËÜ*%êþà ô2ü€¨Hïó]nÍW7ŸæºXcïóõXõ —ƒé)«ø%Â옎‘›÷‰Èh‘Ó«~²Üé—H؃?_"‰²©—ÜCPMm×1†ßѹ§/Aˆ499ùצ°ÄBð ~OËàHZë5OQÚ]²î ˤ§qV‰Üέ~Æ ‚­ès‹>ÉÂYÔヨ±’¼/ú½8U¬™{ÂBBCþ¥Â²Ô­QüóëÒKÊSá3kC“ÏSé(á! ö÷#çŠkñÈfjs&qîdö°£ º3ÄÌ*@àWHURpfU€ÿ¶½Ÿ‰Ã¯Z,Í­ø¸Æ¬Þêk{•bõ®Ü[ÝÉ{Õ‰Fkn@uzmOdBSG­VugŒzrYŠS.³˜t¤ÜÄÞfOÛÃ(P/üRü„5•Y’YŠ J]N¦ðM¹[Œö…³ÿ÷A{Zm÷ª×v¯¸ä‡RnX±d½TÏ’S‰Vµtþ«Ý”j‘àÙ„Š\Rlt[}ÍÓtJK–„µ¨Ym@¿ç±jL7÷®xcàäÓžîÀÑañz¾f#WcùRGôž{İ¡K:Òð* åßçY© æµ\ôWœ^Ì0ˆLdþB,·Ô†ÀIM ³qÿ¡`°v…™rƒSvhX*Ÿ£ÖRèèçà™ÄWˆ¡oÊ-eÕ#«ÇÒËZ^ñc€Å·% uœÖžÒ)T°·ðÞúRG@yïÍ-\f †¤­ŠNäfÏM=!ëТ «B‡¢€ â:ÌÂL@x ÆÓÆó¾µEÜo ò\œàBÃitîàÔ… SL÷y‹õ&ok˜×§‘0Ô¸š_rLR꯵¤©¤-‡@ùÃuù''ß5µ:‚ágÀ‘Õ‰ëY×sËõZn`5©ùN"ÅìvT#o8ɨ¢ÈÄ€ET¾!C¯+å!`jýÑ&^ó"ãóÕ|IñûnÎÙm§²)ìêÈ ÑzÉÎÔbL™[eª¨»"†ñÚ¤fË2ûÃeá'^r™$T:mA\ž–íƒÍ‘þÛû*~’å”󻮞äÝn껵nÓó]ÄÚ=+ç6F^ã~UA¶M¿ª`b[*O54ÚÜ™¯àòƒ8<œÁ”iuK¶:=È©½1i"Xß3gJ&¦óψgf"ðëˆz)ý“%y‡ \Ç%²6¢Qd¡ÿ¨ŽöŒûuš©üˆö?ÂBöMŒ=ãûê,H¿@T½ÜÉà€úKÓ-€eÖD(¢#é7q^G’¨r[Ø<-p*â-Ȧ¸ZIJ¨–V‘«›m äøíg款x:‘¾›OYê{ ð¯¹)×”ÕàNf˜%;ru]üª4‚^MrÊÕ9Äét),› ïsÏX –B2ˆ¿ã¶ê[^‘{§$ÿœžrF’Á×6š¾>v­Æûî„óÚ­0É¡nЛ™g,TÎaÚ¶{yEó•åÜ3e§Aà“ÛF3tòn˜µKN4•–³žU v)æ~¶ŽkàEÃÖ}‚ãuÿKŠEõÒN¦”o@FΖ³#ìÄÿ³e,ˆ:ˆC”Å ¦ÔevS‘&tK訽+—ˆ¥e/ ‡‚zÆc`\w,iFf‰œÕ'À‰’Òœ­5åŒÄŒÓÚšUÌ­¢åÂS ²çs‹&rj˜—Ù3Û(c‹qŒv¡{Ô” ‰¥´=VŸvWvƒ§êû–íǧQ©kmE96@ËÕU”М‹æÖïÿ®\¾ä.õTÌÕ‚Šâ#P"ÌÅãEä´¼‰ÅêŒ9õõ[ËM5©Á¸ /ºõÞšÍÆÎÙ”Ö{[–š/bÑ·³kö€”²GJB}BJùç!ÍY~¨CælZ¯0‡U›0Q‹ìs‹ =Í%F¯H{%jf_P.¥a¦„`c0 @a‹ñò¬rH‹á¼÷sfI>,ü\AäO 7…›g­÷ j:¶t¹*YXVWÙû‚R£A¹>5:[l 9Vñ©á܈ˆº.ƒƒ“"<%‰wÂÃÛ¨\ìk,‹½þ ~ÎÃâ™üÞ¬iéyßhŽ+çUýµé âº:—79¢ ©ãÙŒV– B‹wË´`µ§íjò §,0ï: SÁéí€ü{ØIb~½¾þî Ú"­ÍY¢{ŠÂÖÜ´/nDƒÕ„€ÿ7¢Ñ*Ib¯LXfh,;a<·ZéG©_ªçhÂÌw3îIüb_!úØÒ\w}âA™1?¤>O°÷z¥>Ïn×ç¹´æJ™Íï=˜t£mè]) bPÖÝ¢'ªk²<ïš™%KÕÍóQýÈO—_[‰¡/Ãó1‘trÒr ®%Zæ\°9ßà¨Á¹e¹•¸7Ò\Bäšà‰ _¹Ï¹ÚóâÂ¥¢Hð^ÉTW{´–ìâ Ö½®ïᘮ\´ÔÄ—5¹œœ½íBßYuÞœêx<:kÒjŒ–7ˆðàFU«CŸˆ³ȇ[¥ÝU“u x}Ëâ=W¿¨ã ìÛ4¿·£ö IŸgH¸HN›¼Åcµ_Ÿâ|ßjå\ ¨Ÿ’Íü=Jçãä^yŒYj¾½Ic3î?.*±íÕL«*F„7£­=Z+]ìM`9U§J•|Ì“ê #Eiìï;ïI8_¯5Ñ"ÇüSé[ò2mç'Šê–;”î/2áC¬;m²bÒ9á·Zs,Òêèv@ˆ÷+,/HsC¿«cßç£3[7±KÝÝ+|^’›*yÅkWòFÝú×b^—­§{üýJˆ¯þP ré›ktõÇrì:.²™ÂÃðY‘¿ÒG5ø «S{5O-.O°U66á ‚MÊÁ*Ý%¯*§¨Ùý™w+“SJv;&§^´»“Ê™Ùóm*Ç åû¢PQ–mÊÛaå”Yøx«6èоbCÌ×·EU²éÎd–v,æÖmbìi}‘,w¦š™TÂK_ÈXxc(™O½”{E¥ðà1?© +&l„KBeθ ››’Sþ Õò þíÖSjñ]ºR)B8æñ§g±h!`-¾úën5¾š·0бK‰û:<¶Ê tñd,äV ¹ñq„­W(Ÿ±_EI+y)@."DüXN„àIEÞ6ÇŒ·C5¾6R-wƒ$ŽnulÝ}+,8ñtA׋Z{i¹k¯Áé¼óš(±½Û·r牼é³&DäÅH•]øå»òM¨+hñÚ­`3ka\W|'?tC…á§S¯ún½‹2/PÌ?¤œ y[[2ðùN¤GçÙ\V¡:ˆ¢™ü–Æo|Φ&FÞ¤óöv^ðå|«NÌæawoñƒb1þÉ)€nà »W¯ß"Rê͆ ø©­•@Kÿïç¼øÚW#¤s½e2Àfšû~ æ`šº ªH¹¥mÁÐÑ ßâÄ2ÑWíò÷\zÞ:go,V²0M_ˆxòüÑПÿRSendstream endobj 638 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8700 >> stream xœµzxWÖöaÍМ`e‚ ddJ轄B ½ƒ©Æ½áÞ„»-YåHrïE’-dc°iL‡@Ø„N ´MHHHÈç:»ß•l“ì·ÙÍþû|?<Tfî=ç¼ç=ï{Õ½%D V®›8Áò¯aü?°ÿŽÐë~‘·¥Ø@o!ôî¾{à˜«v¼{_ÔôÚø&%‚#R„„Æ„ïðõ‹tá9ÒqâŒÓÆ8Nš0a†ã¼ ïðžîÁŽ+Ý#ý¼ƒÜ#É›@Çõ!ž;¼#cGÌö‹Œ 9~|TTÔ8÷ ˆq!á¾ïãµ#ÒÏqw„wøNo/ÇE!Á‘Ž«Üƒ¼­›g}]*ôw\âåLQÔæyÁ›ç‡lYºua؇á‹"G.‘.ݹ,Ê}y´ÇŠÏ•±^«¼Wû¬ñ]ë·nÇzÿ Nƒ6Nê=¦ÏظqãÝ&Lœ4yÊÔÁïM›>cæ¬wÅÃ\æ wñöÜ‘½l)j0µššA ¡ÖP3©¡ÔZjõ.µŽF­§†S¨”5’ÚH¢6Q£©ÍÔ|j µ…Z@¥¶R ©qÔ6êCj<µˆš@-¦&RK¨IÔRj2µŒšB-§¦R+¨÷¨•Ô4j5êM¥RAT*˜²¥B¨7¨7©yT_ÊŽSoQ,õ6Eõ£ì)ª?5€H‰¨Ц)Žb¨TJF9R==½¨-¤–TwJ#è/xÖͯÛ'­Â/ºïè~Êf´Mƒhˆ(Ñ-Ì&¦¬Çü•=~îÔóR/Uï½ïõÑÛŽ´MyÃá Ù›ÞŒìÛ­¯¶/o·Ü®E<ø­>oeW¼Ýóm¯~ïô“õûÉ>ßAì°Æá|ÿ¬«¸<0vàÉwÜÞ‘¾£~§öÜ8Î̽’ø;örôôö ýàñƒs‡pCö ùëÐ%ïö}wÖ°^ÃÆ vdø¢áÆáûGL¡¹~ÔZ^iÛ–f´ÅÌ/Õ êÚæ ùÁm+ØôBUvÄRžž€=Û¿¶Ùìï¤fé Í~m#˜¡UU§>Ú{ˆ™ÞnªÒiò4ZÉ!ÔÏè8«Qhå pZ¡\ ݨû öÀ~8¤nQY.‰¡WCB¶¬žÁF>E6ø¦ –ŠlùV0ó6-R£êvy_î'>ˆº¡ç,6Ð.2XBnÔ 9¦­†*²ö—Èà ­ ¼rêâ…|§uNø—¿Ýá ÞÅ õ4<s`cB©¿~-Ìg·•ŒøÆO4$³ ¤Å?ËIÛ*±f¥M`T¶­òÃø·YôÚn¬Û]÷Hã`¦½ÔΪpð„mà©#w¤÷©Rˆ„d•*M†ExŽ=f‘“J—žP`,ݯaÌ´Ÿr>xC ¬Ôøh-W•Ó'¡<­<­Àf{<§'Dm$ešm=4ÁIhTZw¿][ e«ËÈÎGƒ‘=š„Sµ ”$u³Ô¦Aw•$ºåu¢£IÐ;3wš۶ͤƗŒh¯ÙIî¡3Ïç¿è'æQ8ßEjº^›}˜CoŠž7¼·qùÖiX(y’Â>/¿|®1ÇßÅosíÝ+E7´2_I{%-þÉW%{Ÿ‹äŠÃãG}8ã:HVâ[,î+rVe×KPZC×2nÉÂM3†Jly¥ÌÄO0 jî¡]÷„|ògÑ[Ã_á>¸ï(,À}1ûãhÔõùþ[$æpvfÝÀÕz(üœ‡FØ '*T:lØ`¿´Ê­Ê Ö’Tú‚“ÔUê⼘×C÷ùŸùûlÓù³u@ò¨òT‡’¼¯Õ†i¬Õj.‰Ž’Ér ž x)ú(-´é`0eäÌ´/)”¸Ãv»µPeô§#+ C>øk{¼‰îŒ_Ô¨»Bö¶®t–)’~_™·W‚œhÛ6©¹m¬ÙîÔK> !ÜÔOüìúšÅžè=<­BÓ¾EÄäAv¢ äÉj.qœÀ¬Â›w£cñ÷¨mÚ} MÀÃôœ6”EÀ”€Î AÉt)dË HJå¶ÌóiÜ|t48ˆŸáÕx*žŒÝHº[ñF3cäZÂMv¯.£’{ýÄÏÑ|oö‡Zp~%[î*ßi÷ëj˜ÝšVmTÃ1UÃï›k6KgƵ8} êõã·ˆEâQßáîñó9àî%et¸˜Etí±#µÇ€¹z~2¶Á}>œ6ÏÓ[ß*I0€ôŒ-`7ÿ7³à²‰_iòÚ²Ùùä«l¦DQ\û‘ KmL¢ld³ëšN›(jwhÇi2PCªCl&8Þ]TŠô6á¢T,‰‹Wƒ§‹lÛ2:ËÎ=àÅ/„ msÙÀJº «]Hí&B³‡F 5h€&â¹ü֝ެ¬üžŽx!ú.K-Ü¿&w*Ì,Œ^í»5*tÝÚa^|egNG™¢ôv»ï¡ÂPwø7ϳxñ¿Ï!ZJ{O°?¯Iô¸0kfÂoã¾Ï‡!†Tà3hÞo¬et(Ńhˆ ‘F$&„:3Õ#D£^ŸÝ»v»eÊFÂI³IŸ3£úÝ4ðÚjB£M:“ ¼ÉvÅyMÔ‚òIŠÂñ¸Èùø’"‡Î†Ô?¦Ÿç¼'1¡²pÑTYà(n"Ju´>+Bc¡zC –0&Q’Ú´Ÿëêw[~@-¿ºôêA?ñ 4 }É¢n4–XpdeKñÁßHz¯æ°¶öÁaØgí‰ô"©%~]þ-®ÊÙl—ÌîŒ¬Š¾¥ëŒL)›Í…Yö|‹ìx/ÜêÜs=[iÝs¥ÌÀ÷7 Êù!?=`s+J÷_²(”HU°:"`»6¶cR6©ó#!RT …ì]œc»£:y!®Ö¡j/”p©×«"!<5AÖYI_€ ya Š‘}V‚6½ !#7# "Oj<ƒºó;Í‚fÔ| D'Ñvü–õå‹áŒ/×Z°«ª1D"Ý‘à:ïÊêG?\ýìz¾D“C–ÛÍðkèæ"¸@VtUy«Étž ÞÖÀéo!ÑУOGXeûwôˆ-;j.l°„%%aI!\´Ña5ª1ä½Té‰p®ýT§(P[@õ^Г5‚Õ›UÁ]Q5A‰*/1Sž”=§ÛAúô²±Œ®+:ò €ߎ+ŽB² ÙáŸí3t©–/%tt_ÈO&m[uᘦ^³Q 8k¥õ1«Kb‰KV«Ò“†aµ="£"O•Aº°ª ʹŽÅþž>"±ù¡QíûôÄy¢tCÈ¢åNÌZt™9#Ç%LUtId”41È¥Å÷è…æÓ§+9[~ ™`õO›L¥·éi‚Éb—z `M»Ûr<÷‚Ú·óPʃ ‘ +‹ª©Ò—îútîÞ÷qßñ˜ÂorâŸð[ß pí_‡zçå%ƒ’0¨\Å[–䌘ß8y?š*±ýeDg_9Öð•w„HÞ6’M1*Éæ<çµÖQÒ¡à<Ôjj[XGºôåP8\-á54’ÿÚ-31“àÕ!t9ùHÝÖÇ^Ó~EÔÕUMºO­^å/Ðôû®â+»:Ï…¨ÓbpHû9{’0ño-&ô1©vþ]67ßBxLa*Äpø*QìS‰bÏú¡¼ u#¢G$Âuí}Rd ‚t‡„lRtöÕD¦àž;]1C‚ê)ꚘVPwêèxþÍ“ìR ÿmfáü=Äq ÜèVåd¹Çà‘˜ÅâoG ²/ÂÁݦ:ºcwš€E%‹ Úæ"u³¸*bOX³ò4‡MÚsµ æ=õ'Q´Ä›]òcÉ>c~çÖð3j„(¾m›R ÖD“…Þ¬ƒ^]¬®PjÔÍ´—ÿI%JéÌt:CÎinŸ›¤QgSÙåþ] ‡_„ú©·ªüÁ¶jý:@ýœC%íséÌÐ|£ñÉ)—­ ëŽ2Ù,4ò¾i70/óð/ NÙÉ¢:‘Q†ïœž“îcÆÅ}%sýE ƒíA$,ÏKÕ¦§¨ä©*ÎoèDH†-à¹+²)è#¸$ê2iUÛ´*Q®/…mÞè)‹ÜðhbN—áÅx,ž‚=ˆ¬‡' Eh&#‰¿bGãþ_¡"T€†}zï!²çâ2üδñ[tÆJ¶hÊý£u¿ôô¡-à°ˆ¡¿ú裺bH+æ’1‰ÎD–DU×ë+›|ê7~øÞÆA¦gÞÂ7þÌC\G"3ÝaƒöT¡ Ó÷~)DQè2‹æˆPoDÝyñ툯ð;üêwG2Z”¨”E&ð‘M†A[4òdËÉö¨@ëÎܯ@PaWÓuÍ¿ÞÐêz¦Ÿøg G°SàEEµ¦®Ø$É)¨¨ÙÌCªˆ—¤&E†x 1^,d@E©~oH³²˜g—/ßhŠk ¯4înÌ,³=€N-S¤Ë ‰‰-L*É+Ï®(MªóŠr•{¸sîõî:)0ã-zßÕèmÚ)IŒñ?FÜFA`¡·9jul€x2 ¾Û€lQÏÝlH8¶¹†ÛX³V¾tƒ4M@ÆN36Š/³Ã;~hOÓä¬èêSnIôSÞøò² ½aäkMv§^³‹†7¿|nî'þ;…®—°NzÜý* X"Ç;OŸ£SqΜ$Ý  ;ßœz¨¸ÖP¿÷„Ñ}m¾¤9šE=‰Þ4šù'ع ÑÄM,37dåÖrâ¿ÉÆ6à‡räp,òe)êÔdµDîääξ;â"ÓqrhåA‡¢n_°ÿÿ §ëêXo½ü=AÙ¶EJ˜Ç¨Õl‡¸Hlæ¾ü¦ªŸø‰^±¨€† (0êò´µ æ1ê®Àï.Š˜‰GH^$²Ï+ož‡›Ì7Xtçð_þ½ÿû¸©Ke!šÿZBd`ÃŽ=¾K`x6{7ûž”ïæféÝš,ÈO”AJIÝB¿˜pØ ©Çž%Þ¶¹¸µ~C9±»¬6õyewýÕ‡—ú‰Ÿ¡ùU,v´øI®œ0°±+MušÚJ£ ]iZªÈÜ+ŸÁïaë !ÒаPc˜¹Æd¨#£´Ujn›Pcwª*ì"úôâF’«èÞžÅo™W{€3Ÿ8Í2âé.YœFòüN_Œ¶[gšZ”Æù­ ªõhžDŒ§pÚäAÓÏ¿*ÉWKú,–?«NÛ•VãcË#ÔÊ,ܲ`ZðÜÌ#¹µ'”Õê¼TPv¹vg«kÏÖhó³9ÐètõÇÍ;.ú>"¬ÇíoQ7‰ø*¼Xzwšž¤ä ‘&%_ñÖ¬x>mýiÙ%K1},ycÉË\‹ør¤]R¦.O„Â0®8C_ÕLUŒ>$$&*lÓ©Ó×?¾ø„‚¶qÝk#*ƒƒ#"‚ƒ+#jk++k‰®ö!YŸa@óš&”ó嘄mãÚf°íHm=+BS‹ëÑh(#°ÌS ƒH†`b$ æ<Eͺàùûš­˜ð¤CÑnËX'+*ËÈ'€.'ÅþExªõ´£C£°Á«KÂW¯¥žn-ì‚}ê}ªßå%}ñäA-ë!Æ!:VM~W£9«5q[«®íøHÁû8£ÅöjmzŒWÎåå\8Ö¢5XDs°2Bˆ=X©Mè˜xåê<$BTB±ƒ°­=ù”BÓ¯Ci¶™-J3ŽÅƒGÍãŒ{šÐ:Žïû§n¢!“[ úñ3$*åtzÈ…} ºJ×ÃAË öUoSí?ئõýÝ ¶6B›€0‰ð’}ضŒý½Î.¥_'ë¸Ö&2ÿ›~Ç*–Ú)Û¶MØ&àï²EMÕµŸj:Ï -^ãõt«ÚFt^ªR®’ãåí;íñz^+/²ZëÚÓ`²C/"¡m·®~b³Þ(¾ýûìèLe!”‚63³ˆÌókÿøìÄzqäÿòñÉÿk&<œ—ïòú±Ë×]Žt”þ—‚Ž–ý!üeI`Ùéýy{-f H¨&~–w%ð/j½?Dƒ\™J8ªÝÃOáÕª,ââw*k[Ñá¦õè¸æ4 À×ø¡=–´ÏÃSy™ZG$šî_þþ:d¤ø çö6{]Š.¹H}²3 Ñ >ÓÍlÏêøÐ¡ãS‹¬šn@÷¡Czo³OÈE±¥VTz}4$HpªAyTD'p¸×Ó ÑEª*Aä(¢õz(/"¬©ä/½¼|ñì…¹òg+£ª‚B¤Ò£´f—¾ª’CNo×H!AQaú°]5Fc ×ù ͸Ñ-'¶hÅS iE÷ø¡ì¡ìD ®ø÷æ…4¶K‰S“?à ¾§V© aî‰lDß=Ø÷ñ®ÆäH=ç¡’‡@ã_•X^QQ²ë솖yãp¯ÍXÀaÑ?¹?^Ý I›a'ÃNÔ:È`÷õ-R×UÃ^Œhöô‹ + m,)ÈÊÉã´ZF°–X޵tLvzFºlú\Üsu¥Ëþ†²ê*Ë.¤Æ6{£`ï=”sOÈ»¡«,ÜN¿íwmû73JÜa5Ìó°(}Ì‚2&6ÏÝ?ójÔ8_|]w9ó&Üb°/¾ÊzÁSÌ7²sðÎÂE¸”s¢õºžk"†êRLùˆ¼õ0VN_,[?f]‹åñ‹’Ô¹É|@/@¡×„èpÛ[l%h#¹•Ë'C0´žÜªµŠi/&]œ4‘ °ˆý‡ÄC샇b?€ž¨Ìo²Hz¸~úé{³ÝÑŸë“›%¾Á¾z‰& îÜ xá€Doc[l3oü¤õGAWÚPÐ\Så—ªµ’«øäDÓ`žìŸ9cÖ–ÙVJðì/³øÞñO<-ªAó‰éMJsMŽOK]JÆ£eÿÒš+ˆèï ÔóûMv-¨û{? YOç¾ì'ÆÚ~bïVŸùŒdèîäS£‡Í]=×ß]kÖk:Cr©°˜æ“Ò‰Iªµa®’ m;”áêTu„* RÕijHfÄí2Y6”rDw›Ä»º}PzÖOÒn6¦1Tà:áÙR$@¶OžüÀ‘¥áC  Fýͼ;Éðá$Ãh;Å"=çq;-2£•ÈË8Þ)3:ÙÃæáü6’û¬¸¥åé>×¾ƒÐ92‘ÆPŠ’ïac uû­0¢~÷ìŽ~·ÍŒ¢ûÄ;¡í,ê5㦶¹Åùùrh­—×§Õ-öÆgO ³”™ij(Ó%Q)[£–€'lÏv6¤êT$ÓL2¤ÆIð:R‹²µº¬ .¿¤éÄhÓöœ˜­laÄ¿ù¾:Â=ÂË'l;:ëŽÇžÕÊ'ú²¾ÔTYkòOðKÛ>õò(Ô]"þ1?|ƒÄ€ð+7½²«G½¥Æk–—~â¿¡±üö\ÄA·.†ÒåeŪÕh4Àh!A¶`ÅJIRÙ¡ÒÊRù÷¾@=9´ñíÿæ2kæøÁ÷žì#€yŒ¼ž.{ÜOÜŽìѶ’&²ÿÍÆc•-òF.Þ\+ã%»r÷žsýh:~ À,“ˆÁzÄ,|†„_ÿ•\'žô râöÅà³9jƒzáëì :'/Ž9 ·¡Œ¹Y÷âqÉ!XiæÊ|`3± Û`K¬oÐêíDÞZAlà?¹!8eúú©å_±¹²00X!¶ *T”3á"ìA„«®$÷BaAvÖM($õôÉâfcÔ"à%ð.) Ë¡Cp0;FÃIÝÉœE|ÜÑ)è/§Q)‰ùhäTu ò¨åéõ4~;»}—b7”2ç?i¹rõâ¦ë¼¶­öãŒñìçMGZáótÒé ÃgΣuiqæò“šÂMļ\f¸;‹Þ˜S}8V9Ìû`ÓŒ© >¾w¦îâ—‡;Òßøô~?Ô’þeO‘×c l…è @ãÄ!Ûׯ:iw‡rrjKÍÅÒ¸ ¯%'<¾D,±áQÉ>2búÓI¶Æ¸¸q.‘îðƒû~5uçÄ?Ÿ‡æ–Š3 ~ó}6¶Cà…˜&8 ¾º§°èúú¥.+`;3}ǨɜuP ÎYÁÛþó°À7ÿÀhXÇ-úÀr¥ÝƒWÑÍßÿñÕâgÑíB–èõ9Ë祥þÈÏo#¦VuÍ© ÙZÐh¸lM¾6'Û¢?×6‚錂S£u&4Óò*l›G¦UV®VYÖi•œž–&ç¶,^:>„•¦ ­Ñ¥;‹ …Ï]8 ÷À}>ŸyýêéG¨{ÞÙ*ùÄçhz#|ÇÌYµ}»Ó¯S!Ý2äòRòò´ù9œ‰ÇF--D3ѬO ÇÍŒ©M 6IøÕíÃÿð RŸÅ,¢×<\ø¿Ö´Ê®l´F€<Ð*!ß«­7››“LYLYL¼L&Wp¸7[cc9B3ǫ́Ä(h¹·ç`Bçj„m+PV9{¹¿ 8Á¦c{ß÷é¡[{/Yl€ÊI-'BcZׄC¦èp’µR²a”Ëb·‰ÅÄ´¼ãŠèç>ý‚@úPܽ…+çmäžµ a7a”Ëö°Ppr˜rwÅw_žÝ_ßÄ]^}6î#’¡ §µ˜voÔ̆ÞVž3s_]Ã9¢Z:sJDç6‹5:í_YÒ¸©Égùº•i!ÀL|~âÎîÆ­VÒk2Üi¥"ÅøôÇËb)"úݲ2KÄÈa·Opªm¬°mºÍw ÛöoDB¶XÂ7²’7^ÒþWQ|—ĵ¨‘.b}ÐÁ©<òø/9Õ²á.iƒÆX´Íµó7dú/¡éÿNÙwª³ïÎÑ}œÆZ¤Yl)î‹ìÐZ@cÍ߃æ£7PßÂΛ(tò䉋±x ·wKÂBâŽæäã>'±Í9üƃeyÀdeè²­U9e\F¿ ùùü)ÖŒ $2^Ý1 ËO>5ÚzjxµÌôüQ( iY@vϯ4TUë Мñ¼Gbjåâe;**,ºCg>~¦¸…°²{­‰‹‰‰‘,] «2Oå…[Ɖ݇§þ‘í Å‘h[Ž…›2Ôg²YÞ˜úI20r…BNdhyŒäÛ§ñdÀÞ€çúà…øMl—ØQFy†"+ïñ§H|–;†º !Ü'Ä»CÊgDÈû\zöPÈo°ü§ÚLü#zôÑáƒxŒÜè·{ýWoE:Ü´>3˜1˜Ù„©ÿTÆ#Ÿ?=y&Æí‹lèçw[>9R NMǪ¢,çrMxuŠ2R ‰Á4ÝiÅ­ìi}§%étaÇdüÿ6ÌK¹U‘ ÛâûÔjÃ&¯óŒá"Üõ[€‹{Oö§Á÷?p> stream xœµy xTU¶ueŠ bTBö½L2( ¨‚ŠˆLB‚˜y¤2ÏI¥¦Ô\»æ)óP™S!!! *EíÖ»ûu·CŸ[ž¼ÿ½ShiÛþí÷þ/_¾@’ssöÞk¯µö¾\Σ8\.wôÊ [×.^äÿçlv*—}lû+^26ÏúJƒ`Æ=ÐþØœòñìÄGQÅÃ(âËÍÈS­ÌÈ,ÊNIJÎ67nÞ´ÅK—>7ÚÓ‹-¶"-!;%.&}Ú†˜Üä„´˜\òŸÔi[2âRr‹¦ÍýMrnnæ²§ž*((X“–³0#;éÅyó§¤ä&OÛœ“Ÿ?íµŒôÜicÒ¦ÜnáÈ—•i™y¹ ÙÓ6dÄ'd§s8œW¤¿’±2óÕUÙ¯åä®É[›¿® f}aìëEqâ7&„&†%%oNÙ²{«h[êö´ðqóZ°ð©E‹Ÿ~æ×K–.›;ïAg'”3“Æ™ÅÙÄyœ3›³…3‡³•³3³ó'œó$gçÎ|Ng%gg'çUÎBÎ*ÎSœ×8‹8«9‹9k8k9ÏpÖqžå¬çüšó:g gç9ÎFÎóœ4ÎCœtN0çaÎ#œG9ã9!œ œ‰œIœ)œ©œ1œ±Ü±œ—H8p<Ü-ÜoF­u’'æýéwƒÖòCø®ÑcGcªe =¦l성>X<.û¡§ ^ŒŽ|äùGþò¨wüøñY!£CÊ',ðgÁ»c'-žtx²\1eԔܩ£¦²ýîWG~õ_ô·Ì“ÌzFÅüqZòô¹ÓßQ2sÌLûÌf-˜¥zÜÉê‚}bð¢^vM÷”ï!ÚŠ‚Ñ/Ek“õrƒ¡ ”ÎXꦛ ÍÜ ^èеÃนÖr¨u+AidÔÆ$ù¾ÓZ款‚ÆOF…|7^T#‹–Ë PVfºzÍ=Ð{uþö2¨)W‚8\çhÖ3Ñ>¾Ác0‹A(­J-§R1OЀoá~0{Jîax¸(imâ¡b´R`õØê­žò£`¬n«hìÿàPM‘ù¢ðƒ’8Fš¢+…|*ª5éð—hžÕ¥•ô%ZZ™™9oPù†ÊŠ&W³£‘©;Þ‡€“ÔÇ[=;—¾Z(¥UGRÚ£! rÅi…qÒ0ÐS XËF•®¹\{Ä T3¤ËźB­˜y׫ Р厒º²j{­öm!é|׃öydz·—úÛI!_²vXàÜk‡=@¡±ü[®Õ©K^|ó<™D¥Üòþ§ð!u%ìæÒø_,'‰s@­·Šu ×JA yðÛp >Ñ{e°ñ:N0ÝC‡Û÷u¤5*,:o–(”Iߺ#r'PÁ¾¨<¯o—‹žøŒç;ê[.0ZŒ6°P&ƒC¡×€¼”~}Eô¥MU ıX„ó° ?ÿ·YˆFላvv)@£VRÇìÀËñ£ëŸê¹gÞF3Î4¡Å7Ð(æâï?ð!Pßí}òÙ,tŒ¿,n³±ÚB“ˆðv/šˆŠ ½ÀûO(S•ºxUJ¨²jìL o+t@§Î@ o™$;Àæ²Ù›-UÌ^4Û^Ü{ „ä>¢¹hÞßB„îŒNJIgd'#˲*Ô Ve0§rŽÎ3×ߪߵY“‰L_ÏȲ£Wíj“â¶Ãl4›L°O ^×Ëõ­ù„‡^¾*P¦ÒõCmOóÑ&´¥ <4sÙ_±€Áç×':»ìF¬?òo^Ä“ÂÒqè’9ÌÎͯƼԬû ì[FyÚ‹ötr}ëºy¾—L`4™`¤Ü2БnÏ-¥7a:y~(|ßÙK¨5è3þE»8Se(Q¦3 ×«AGÉ\`s›M5ú-”é LÂ2h¥ ËWÓ…¯æ-j{ü—¢GùˆÓ”öj¦^ªËa C©ÿ)n°T-5&º­27«!„ÃIübIíPw”¥PiKó>è…>Ý>ÿ!»_6UP° N±*˜ ¨)µð×âº_pÔö@÷ÜÕ§†Ðâ!ëb§ L6‚H3åVV¤©Ò•zúܯ)}©TX˜‘žTdéÁ=C{>oºÈ8ê­PK îöF/LÆsÕ#cª°ÐoËW'r»uY9ŠLI<“µ*k„SÏžL?q¼³½½‘®Ùv@] ÝPßTé­é);I¨Á§¦%[ _O* Z*îÖ†ŒPå;lÄ"R›ó)Œ+ÀâZ&bt± ÑæX´¤Ènèl#ÙÕ“ÞbðcÃ}ÊÝ¥Ê5 Ì/…"¹]otCôÁ]o E~IPBÁ°»` ¤(únŠ U¼á± vœ KæMÏÍÎÍ•ÚU6ݘe»‘± [ðèmòÁ=';>k¹B[«l•?3;©K Baµè\ú)ô›ôŸÍDÑ!ˆS@"5îióÑMeé[wï,TÐy§w:²š³ OÊ   ŒUV¦åÓcûzj«ÍË‘í,Mdä±­üMñºüBA9P\Ñîp6A%Õœo“fgçïŽßŸ;pxOO{5]·ùˆ¼¨¯¢)uw«/Ö0™¿Žˆª ³ìX£û€£“qï¯<ãØSq¬å­C`†&¨’P÷%îç¢Ñï Ì <ô¶o±`ÄùPþÆÔ) =W)3È P(”» â°I¥Ðé¤` ç3"„Ïí_}=€Æ 'пÏLHɥкá`Aöîú:»ÚŸ±7‚©²®­·§³ç§¼d°oô]±§xìDö³Ëæº ”kD+å„ AèÞ$]cŽûyXª—ùb©lÕ×h2-nb‰«ÓÉ ºB-z:Sx‘ß×Ýç-Ù"SyüÆ€‡U'÷ŒÿÛéC•oO ùùš x銨 ÞôXΝµ¬ª¨z±»H¯ÞÞ—òÖ7_|ýMôŸXÚh3 Þ¯A‡‚Bþ®Š ›ú?•bHÀÛX^>RKÔs½dйÍcW³ "Ô$[zJì7´4zzŽDw¯¿7Í=µö·hÂ'®´*ÝJ­Á PÒ+<­-j[vÿÉã-ß6föžìê'ܯ¯Œ¥‚¿Ÿ0R w¿ÿ ïûGÿÑPù·˜Áøy®ò"üåð™É[Ø“zž€Wˆ…?5N.“lIEê…J¹¡¨Ô¦³3íÐiöúyôîXCšµLe”1›Múf¨$¸µYªmlä m*U%ËÁj·¹Ù1>.ù6ž>|öÇÐMz¸èºÿ•ypüЂå±'~A#lÂÒofK ‰ô>Ý{°þH/óó9ºÒÖÈ„5’Qoã [ú'¶u@ƒ¡&Ã%v¥C!è Z=±–~—7ºÄâå²7UçÞ6·)s™±Ú¡µ–2©°› "H1§úC׌Э“9¦w *Õ«ôJ©6ISÙ‡w N;ŸSþ#Ü~»fè— !ž;ü™AO†½Pî,©­/¯v›iKešhoÙî9÷M5uÎ^þߨî­INNK%uNËóJ÷ c^.[„¸Ÿû•“Øëv‡ÉN>: ¨s‚jíÂmÛ˜´ôˆÜÕ@Íæ£P‰ÍØ{ñ3¸J]é~”ÆÕ?þÝç¾ ‡ó¨*qøû‰WJt¥’-Œ|—V…ÔŠ!ÑÙ[íß9ìz›TjÐÈttñ–4Q*Piº–Žfs£¹™17XB=¼¼G¿·Fj"¼9MxûÐ[1O aÑ-4Sp_–Ò3Ÿ$YRJŒ-Íå{Ê»™sè%W©Z­ð­„¦Ä)xžæ)uîiþ2 ¥šÜyºªI{^º[F>„’-é7*¾1öØ=è ò; ›+h*pHò3 2²ë”u­µmĉŸÊóúµrÑQÔEžoì?î5ƒ¼”ŽÜáUc¡Ò‡1—|Ž÷l?™ÉØtu¥öˆdò±‡®ºÈ-qçAµhùœ§_~yï7 Ö³›“ÑD ç.µLï0'èUñ¥j«Öf7š\Ú]ÖÜá*ïÞv®äP¤«yh ߦêËê`²½2óüÖBkªScJ©,î€>êãwûNëêY•66H‚îÛ5øËyƒuÒœ| %ŸÞõɤat ]!ð·TAu(íÀ–¹ÛñÕ=¿j£›Îöž!ºÉ”W4²Dš?ü¨t{üò ,‰Coìr›;Àú÷NìÎ?xíÆùÛõtÈ×hŠo© 5Ï&ËÎÉÉ‘º ›ú6÷Sdã¡wP¨ –H¡¹Ìd³yˆ% ("'Ѝ­T¯Öú_9 ÆŸnøŽKÍå¡ì³¸>C´;mwVMqs§wO{à-¤¹þû-uÜ:öKûï ½,kâT(Õº’RzøàÿYIZ^ЪR—Ãf®túæy|“ 9‹ÎŸå±ÇX• Wƒ&bÁÊva~(½sa4^ OS©€4åÝ;}èñótß—=èi¸IácÃ*(ºî£?@‡»®0ÝœðtÕ·7mýŠUxoô|&oWÄŽp2z±b2¼ˆ[Çe#}‚{LïP[Ôjƒ¡DF¿8k•*]§ñ³}1EÄÜRyÄÖuˆÆc‡Ó•"¥b9•#E&3)súÍà èþ}{®1£äK¡Ø(5æ™ÕF¢ó6“Óhñÿí¼Ëv*ó }$Ð¥íhœÍ|‡æ¿/üôjŸ·-üì‹3€½üÄr)J­Õú;Ô®`N,u,U€ U8Z"!Z¤£TÍFßD3>£Ñ(´Ö‹¶ÂßHoù~X }è ¨ó“·Ð·Ðì[<ö=¢Ð7GöÙ~vy‘_}K#¯¹å:è>ÚK†ˆf¨*ÊÕBv€ç›k÷ˆjˆŽ‰IK,¤ócUIÙx"…%ü=èUg•£Ê^ÑÑ>•Ц«-‘ëÒK 5p¬¥ÁÓq(¼n ~L4ï ]0+h­ÿú=5{ex¬t4\+ªs$áÉÿZšo Iè©vz] BþjüµdEñzyŽP£HÚ¸  ÀRRÑ`­­…¦À¹ÌÜ<ÑŽ“âžK'Oõyè¦Ã•Ç]Ç©à<»ÒrLU>Žqö޽ø =öçêÆñ8ÇãpþžQð¦endstream endobj 640 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4474 >> stream xœXXT×¶>ã0sŽ€Ør¢žÁÞ£×’ÄXP¬$Ø –ФƒtÊÌbÀ¡JoŠ€ƒˆÂËEÔ¨±Ä½IÔè5æE£IŒ®3nrßÝh|)ïË{߆2kÎÚ«ýÿ¿FÂXô`$ ëä2oÝä7Ì¿ŽIÄÁ=Ä!R ™ƒ-BLI2°–‚µÅÁÁæôÃïû"ôÆ }©D¦v Üìãåj?fëXûÉ3gNŸ`ÿ†£ãLû¹þžÁ>[Uö.ªPoOU(ýÃÏ~eàVÏÐ(û1o{‡†nÓÁ!""b’Ê?dR`°×;c'ØGø„zÛ¯ð ñ ÷ô°w µWåïißu½I]?œý·‡…zÛ»zx0 ã07 Ðiû‚`çаÅáªH÷¨­.žÛ\½¼Wø¬òõ[ã¿Özâ$‡ÉoL™úioZÙ0Ì0æ=Æ•Á,gF1+™ÑÌ*f5³†ǬeÖ1ó˜õŒ³™ÏLb0ÎÌBf2³ˆYÌLa–0ÿ`–1.Ìtæ]fãÏØ0½™>L?¦?óÃ3˜Ì ‰¥ÄŠq¤Ie,˜ædät=ô=HçKïYŒ±ˆ³h— “•Ï“ß`°ç9îtÏi=ËzvX®¶l¥µž`aýa/÷^ù½D›‚Þ“{êýQïïú íãÕ竾Ûû¶÷[ßï‹þ}û}-UL·1Ý#:Å%åq³i&¯.Õì `Фª£HFÇ3[u4hÓƒÓÓ ¸(¥|î,ÔB |UšZ7²aà ù™¹ Óeµã[¬Ÿ'޲‰Jù>ÝCh‚}ðìî4À’oÄh9Ò,#±r“ Œ¢¥A‚R”àf”HŽx†ÿÞýéáäâ=ÇGÐb9™•,S²ç²ÁCA>uV²UºÏ`/=/ü;£‹Ìõö *Bf ¤æÏLXñLJ£øºARÖX€ÖR±yäðˆL&Ó§'ÈÀûq2NÿæöˆŽ,çÉÀž7À?Ë•‡>(5‡и½$°Ü Ö‚7GxÁÆÔoĵ帤Ý’s8TÌh‘šMSù*È æ8­<º¨z.Ø‘d2‰Œ$Ûˆ;Ž%cQƒÎÈ¢ Z–¤dÄ$&B‚V‘D&~ídXSJWž÷nò= (ÀEŸ9uáÚã¼£p °—ªŽÌ×%åBpU «VÐ$’5Fi6JžÐ<êit¸ŸŒçq•|wXkðYàpȳ¯q “î’A®ë"|·*޳dî˼väü1iÎb3àh{ñAà.žq%¶d¤Óº¥Jeå?ê2œöL‹‹JpÚâLð¬âUòp2vÛ,28âˆ-gäòÜg+Z°N%Ÿ“¨/¸b1:Êq"–žk‘`¢¬ãåÓŽûC•&™ÜFÜÒÕOžüŒœ=0Œ7dãì)Ä&¨w@çnر{·¡¤¹mí^··}œU±´E¤r2ã÷-rR 7 º³þSYÓZzåZúÕ}å)ôÊ–¦Y|ÇÝ.ïòZÊá´Ã]8Öù&b‡µ'Ù9[æuE0/yËxaÖâp9NÝó I/ø^ŠA´¯“4}‚ÑŸHÅ^âl¾ ²cR4#¤¥'¨SÓ‹·é½€ó'〠†}ÂêS5©†”,8”t(TÜ;޾nYñÃ@!¥\›±¸pHU–uQ¶ŠË…=exŸ€R°;‰} Ðîh!¢TáÞà£_·4ÿ½|8Ê]¼ (Õ/Ö q9æþ¨€Ì*…¸˜v>kÄÙå’Ÿh{ôj‘¢—8’ÇF2WªäÚ1ncƤsïß õìЛ¡Ÿ]m=uUhW­eûø½—ªh‹ËhŒ\ÛosŠOÅwù_ÇÎÞüî¬9i»O ø€%οÕ"‘})àYõU¸a2Þ”ã\½ÌȺ¨á B´ #9û¡Q‚ÃÑVŠ{My´0ʽ4£AEÏhðÒÑ2(Ñ¢ã!±P²ºÇÐBÏchì*ù ÷R+DÞ(“E>»(+çT³Úû‚øwÛãÄŽ¾ÙQYêJ°Ë§Í)Š¥¶OIqn˜ùO»JÈÔg—r6¢1Å€î58Õ i %r7©ó÷ç#CWËÔéª}Q5uµMeêÒù‚!·Ê€û¤Ùs¦b+KÞ S¶©#r—¿8ÖÒZ®ØÊ…6yETV$A¬bYCG$§ø‰Ó£|7¸‹Lý;Z:VÏi ï!P\G»ü]¹9_ƒ‘]I«àCÓ«„À®•U¤ª)©h4Š©cÇ`/YË‹ˆýau·ÍÉ ŠÅ£ãcÕê`§dÏêtPOG¹öv±MdøÎì ÈÈÎQUPGn_ä@Ay(à„Îdà@˜}F“ªÕj5ZEzz\ sª†»+šv¹IXýjâ¼€²Kqr=rÙ‚ÍóãÝ;úˆøÄì¤ûóD-îO¢mN·bé%9„iµAiQšmp¡Jy•îËNbùª›CYsFB2²´Pɉ'3XÜÝñlg‚>±ìJ@Ÿ·3ëL=l3:R`®Ñ=zž@MçÛ‡ŠŸ‰IνZhsôz3<=6Í{ O›Ù°²-µÎ4úa£¦{2üÑ4´;y¤ÌpP±–Eçß Id‰¤ã¯zw]EkÒ°ÿÇ”ý+›õ§Îè« Z£ [hÁóRqe-¾Ó¥&’îKÅuÄWéawúÚ¦# UËÊ]ËÍ8m$éGìvÄñ8þƒ§%E1­MKQ-YîF-FjqÐ)E­…®9ã`EcÙ¾ý•Fx¹Ä:c=gƒ:g C¨@’=¹k&D3pËÄêgù“‹ ù:­F/Ä$&í€pn뾨=•E­Í^-ó‰Ô“pÂȹʫäù_b.}zQ¶Í„ØàP)%·Ó<¾#Ç·¾»ý32n“™ŠŽ ´¨; ò4Òó j»êÀâëâC`æÂÅ08(ˆÛ)!ž!›öá÷¯íøIýM yª¿)Ÿ„?t ŠÌsvò‹OÛãóµÅÕY%ºôTª.ã¸ðÂÈ={ Ë*ª£ö©”îáQá‚{µGî:š'aÕ; üòÜ[|;"£¼)ö*«¶UD‡¤¸„ Îõâ"\†oÞ:qíÎòÚàÁ­z)L¡ v ¤f(³ã›(ÖådåïâÐJÏO…ˇÃåo¾çM›Àyªâqã?ÿ4n­·÷r*rl½N5]8EŠÚÔÜV"OGm˜ïoÖ?È_”Óÿoyjºo7â6ûuÖ£ ‡ì#îÁï¨Lm4|'¸ÇÃn¡Cö² O: òË‹‚à¶ÿ1´’‚}ñ•Au>T°/¢Ç½Íç¸÷Mm%p?Ü+,IÎŒ‹Ôªã´ŠÔõ~á°Ô—’ïsýcRÚÕW c  QΓžØH„Ó3gº®ÒN%o)lð"í±íGaîF)†˜¤|óûõî~>žžõ>Í õÍ™OÓÁ;óŠ»LW…½p¡»ñ\Äñ4Ø*šÚ;Ç%ø%%~“]:~- ‰²y.JrnãàntÜ!ã•ò뺟éèÿ‚ë]¬?^¼s¥9ÓsINýÕÅ@èfÆy)ÞFý~*ÈËϽl¦¡ Mlƒ X ¡]\Pžœ–’Fiˆ,!£d¢’ýcÍw®Ë/+ø:[\P´«²{GÛìdŠ^Z.1b%[­û˜š¶A!´tñS4D@BFlfZfB!×™5ña[WÊüÇ?]ήt:»òJ/ÜKª0YQÍámbxý®¬¼«À•å~'H¦<1ÿE$•T®îMHµ%ªoâ'&ʾ3Ê}5ãé:æ c ¸Óꋵ¿ZåFäj‹Íª&r+8›ç³^Ù»¶t}KM·isß÷8N,Fm\è-Dß^X´ÆÃZ—p7îo/b’ÇϨ ›õþ7LX›ÁÚ® <¯ÿ›Ï.Õéo™Ùt=U+(M΃îRÞX-hÒ’äíŽd¡è'ûÞœI4~0®ÛìÛL2¤ƒ!ÎÔ࿌òÍXŠ ¾0¡;E·XLú•ÓïÈ4ë,ª©²õÅ8OTÙ¢S‡JÝùß2Ø™•]Æu‚>?þ9ZW˜—ô U},®âÓȈÇ,•#–y‡ò!¢NðKŒ n[MHƒaoUÓÉͧG9™àCz £~åß•Ÿãv·^ë­ ×þìuq•¼V8ÿ¾¤Û¥xçó÷I»kî2:–·p„#?ëœJ÷ýÜÝ ~;§Ò É™ÏW–KΉ‹¥b’i¿³²@Ç•ÆæÅE¦ÅǦÖÿžšOu†Æ.ª0qWYV~‘ÞüFÚ(™ÆÖr Æ¢LŠL,_«_aîR"5©,“ï‡vý¡]\G%Q(ÙÝ/p„ž§Ýó@†˜wo@K¼€vmFÉ)´CW|M*êЗî‹éájטÄdõ,ˆ¡0ï oÚ÷í¿ŠòQúõ'mð€CKû+”eã–NXcŒ©ªo¬8ÜâWá—%:ÜžUÜýÖ9N³Ö8¹+ÄŸD$&ÑÁŒ²Û!Î0»Œ?tì·ÿ¾ÖÒ(ù{ ‹™á ñ]3`¸ÛfJ˜ðÅ™ n cnQ=Ôq͵•ÃãÕØg~õíãcÁ߇áNÍGçà+îšÓy¢ 3]ß\0zOíþ²ÃU‰ ³…–æO@Ü]pö÷OÛDUcOÆS¯Ð¦iRÒA iÜ=”w¥“Ò·ù³üÂÌ' p2ÿÐ8Nœ+ß­Í ŽÒ@L¼@v¼'SâÚ/%[«{D!¾u«ŸqT¤ˆ<¹B +Ê+Ø'~DY}(sÍËÔ$±˜oH®¡d[ Â¥æú²ãP¿ âµHM6EoHXI§É-c‰Z—®K.w(H+Ý9Êóty9BAacëmše˜ø¶ '½·-+üÐGѾëPecPÍ6ÿ÷£6Nýj:Zᤇw±ÚÌø† Ùê–ì«Tt^ ‰áZîm”A½°¿çá¿yø(óÜÞ•-m/R^nL¯öL‹„íœWMè¾=†’Ö³[?Fú’Y³Há" E˜ˆ¶?|‰öh?î*±ŠX Ó¶ (!gù¥|"-'Ö×!—ÃÞíÇÏ<‚·F·† ]ó€Ž/gBäþ8¤ÝâƒbñRruN·Yt‰%Stù­Jóß lmXtƒ'–d”±Rü¯ÓîñâŒ|J]R@a~):¾¿:9=GHHØA¥(}taÕål'„ã¯Ç>ÇÞ¥Ýw5ƒ‘iôߣ·–Åù­T­Ëjt"#ã(2ý½»þß1ëמI4˜»×®—ìÓDÕþI1á4–ðœÈ²Ž¢W|èš‹[Êó ädS6k´D‰•`i1½ÜºgC®µ5Jª¬{eXÛ0̆“2endstream endobj 641 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3083 >> stream xœ­VipSW–~BÖ{Ï` ÔØ!‘d6Ó„}_2¡±±™†%AØx‘lKF’W xòtžä/lÆòŠwa›õ±„ö&MBÍÐ[’&“ÄI'©®>Ï\gf®dә饪«kþ¨¤Ò¹÷žóï|ß‘1^#™LƇ͟çþ6]š$“^!½*¢}nW€|¼z^ñ=ýž‡cpÛXF.“éMùÁ†Ô,cb|‚Y3#æ§šùË—/¥Y0oÞrÍê11&J¯ ‹2'èR¢ÌôG²f‹!&QgÎÒÌx=ÁlN]1wnFFÆœ¨Óƒ1þŸÎÒd$š4oéL:cº.VjЛ5£RtOrs<ŸÁ†”Ô4³Î¨ 3ÄêŒz†aÔ«õ; Á©kBŒ¡&sÚ›éQ™Y1a±º¸„··$§lŸÍ0“™MÌr&œ™Êlf¦1Ó™-L óoÌVf3“ÙÎ1o3ï0k˜9LʬeÞd2ë˜EL³‘YÆø2 ãÅä0ŸË,²þ1#>•Ï—Ë?óZæõPá¯Ð+:XÖÆMâêyÜ{œw²÷‘‹GþzÔÔQ|ä>ÎÑ‹G¯“Š}, â$QÚZ+“,Ræ7æ Y¹¿—$ ~ãW”c+ÖgXͼ–kzí§á,¼km°]ñ™"r!P-vG…ºå 4°"™¤X¦e]ŽßC/ôÀ#p»—päºô–ò)9¡ Y_é]%¹KöY\Ь\ÊÄ»ÊG¦ˆt’@e(†°­¦®ƒÝÀãÈï~¯aàœß¯ˆ¨ýú8õ9Ž„¸{j¡Êz² ƒ,ûk„J”m€¿Ú»žŒ!šíÛÞ‰LniÍTû”5ž¢ú ¾‹òÎ ¥öÙ`ßl­Äs¸_E˜C4èM–©ÉäÆ+¥¾?páž¾ccÃîÛÈarÁSdÒ–0}°Ä)tXºD¬¼æ¾u2z‹ò›•Z6ü$c&YüTìªc¿(‰ R‹Ø©eƒ,‘óTiXù ‹sáÈòcÄ‹Ùd<¤l£©|JS9OgaÕÐ,º=£¥¥ÝÙû~xÓÎ]Q¦MSÙ¾`ÉŠÿ;]”})s>Ô‹cj1UÄUµ²Oý\”ã)@‰£E2·hYÛRa§[øø{¤™#ÌÇé÷Ùòà¶êºv+·u_‚>îŸTQÖÒe×ÿ,Nøž´Qùë­\pÂÆõlu×Tø5GÖÿØ…\à/ ýMïÁƒn•°–Å2…È…BZbè˜ óqÓ#ЯºÉNo DýžbsíÊg8¡òHiùoÁ_䒬Ѷ,0ÂÛvÃPTlÇóBfúý ÅEwqo[c©xïâíî€N È´ý™{¨úk¹Vûe&7¬Î!ÇÒ ûã—ßc2F±K˶ ÷ìMÐç­žˆµn¸‰Ö%Ýe'‘“K!’·²ü„½üÞÿÆ|—ýÀPJÂU8h+Ê›z 1>Ü„s êýßÿ›¸Ï (H3­;˜îoØ_ y`,±²ºcÐÉw˜ úÌXmwÄõ_^ùP¬¡¸„SkÓ+ë ã;ÇÉñ]i–2¿ w˜ùýø`uÓëÄoñ<¢!3úWÒ°WÚЫêè~È˱ØZT…iëWS#J®ËêÉê±]€Kü]À±Okª¬ÅÇU¾Ï×½ÉkR5}B2à%Ù"Ùòë‹©ÔtT+n³6SqZq:Ÿ¡eO ¢Ý§á’ÕåÁ,ƒK‡t{¡`t€u¼Ô)ph|\z ä ük¡äHi5fKßú ƒ¿ñÏ'TÅ{àSèò0|¶Ô÷L$±ôºxù¡ œàÂÍ×=µowáE·~Z8Ñí0OF®$3Ȭ¯W¡üLÏ‘Sêh×ÿ8xä;د4ÇÇ" ôºs;áµÍ^¸VÝu¬·£ñ ´+§YG_£ò±¡W ›ñ—ri&ê•婾xês‰rþBŠó´?,Ɖøò…ïœ5™P”m-Ú_¤6mÜœCóñwKÝá%\u ÷ø/L1«}ñ¦‡á˜ê’}…Ì|IŽ»©.=g|Ç¢÷o„*G ØJTy…û³a/¿»+³©µÝyælÂ…à¹S£ «š¾Y{“|ÿ·e~x—rƒõ×ëÔš1; *>a‡<Õƒßà•~Ÿ‚\—QÄ6¶‰/y¼5gOŸ#¥ã*û¯ß‡‡ü÷3?%o¨ÈgCnK›í^{á÷/šmÜøËŸ±µÐ ºÚ$0AlKyZË ”çÝþëÃϪê)ƒ³,…ûljKd†Ñ@‡¹ðFÁ½âúC—l~|NîX×¶zž¨ê”+±í'ÁÚ5¡B^¥`·R°¿½Þ‡ód_"#ÇDéåùøÎ¨Ý »ww%œ;ëê<¯"H0åÓ­?h›pÙ~–¦tu˜ÒaR [º7ý×9Ùûýhï—KÉ/6'›-ͬJMíØub3’q! ‰W¸3²yºw§«àIZ}QO^™õrÚ‰·!š'cíŠ5ħ5…*[ ”¦½ð½uß«„ºzÕ©S7#?*ìüÉ/¾Â‘·3/;ÕQ7b+–8 則sK軩õ]j¸ñkI€®TåÈ)¥">l~¾ëC%G¬SþeÃÛi7ÏÑñâ°Î¹»ù©ÿî}Áwì?r'v{ª*óÉJGÃŽhý&þÿi/ÿ‡¨ö¼¦À9ÀŠ²ç‹¤AêyöòGnýÝc±™©L,R=ŠÏ5C'œÊ%“Wú‘@)Tñ;·­.j«aë±ÕGÜY2v Ý×ÿîÿ÷ÈÒ}¥ùõàªí‡ëqŠôº5Ê•eÙ%ù à_e¥Ô(ñ3 ê—Ua[0HÙOjfr¾¹URxF8+«X²«œG"3J5Òki­wo¹2>£_†ùã73 endstream endobj 642 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2206 >> stream xœE• PgÇ{¦»58ƵgŒ‚!A ‰ ^H­â…Æ18$ÜÃ1rŠÎÌ®OTâŒÈÑhT$ٳىÑÒ¬e‚ÙÄ5±b¢¯ÉGínƒ•Ýêªþº«¾~ïýÞÿÿ½–Q.ã(™LÆ,]µ$*0`ôÑKœ*§§Ë¡xøïëà*W—öiã5îXî†I/bÔ$J.“¥fí]ššfÈHŒOÐk|b|5!!Ás5¯„h'Çe$ÆèR4«tú„¸d^zù@³>5&1NoÐø,LÐëÓÞœ7/''Ç_—œéŸšÿŽï\MN¢>A——‘«Yžš¢×¬Ö%Çižçÿ|Yššœ–¥ËЬJËH¡(ÊmqF¦^·#& ðµ×ƒæ/~#„¢^¡ÖS¨Ôj)µŒr£Ü)5™â¨—(êej åI¹Kà” •O}'³Ê¾÷Þ¸¯åóå‡äC.›]Fk¿ÒFú&ƒù·hRƒ€Þ‚¸¢^Ö9|J.¦ qÅ'‹`¤Â¾={ Ä:òËËÆ|ÓžP`³µ´ÓÚWÖ ípΚ.¸ÎsÔYËk¬Võœ¨Àú¯Ä[1WÚXþº ¾ûØÆWò“˜Ä!MZ$—VŠÉRÞ:œ¹¡ßý)ROQé¡êÁh|À¡‚!oîQh™«6ˆU“«ËµŒÝÚSÖ N¸ޱXA¸”Qݺ~•y‹Å)쎶œ––¶†ŽK[6óªž0ˆÙ¢`•â£CœÚæî<§û ‹¤›‡êÆ£À½o[Q {õG8vÓ™²¡’·æ[K€m‚ÊFõæTö™!7–O¯K¨Š6™øñˆ©O«ß¥îHpo°ª!‡ñfáZÏEó kFú`W_z° €Í£^MdL.”µ•Á¡Þ Ç•—õ&]„z`[Ñл+ǞЬVÝŠmIªz»Nªt½±ÿ#`h½ì Ò8A?gpä£ù.ë«ozùKÚ(&<)3u\kä±Exãz-c™ý®‰g”â£#YÀ5§ÑÏáÞ†ãßA7 BÚC•-N¸Å}Û~ãûèúÐÔX…êÕV¨ƒF“˜¡eŸßH¢Ü÷z´=÷Tk[ùӹGLe|sU›õ°7íºPu"£–™ˆ­„xyÎÁI†/yUö:Ÿcwa 7—™3¯0#*ÆÞ¾vðB9¯v—ªi§;pݨÆ4VâdU>î½8ìeHØÿDy$0ç¯(Tç÷ì?¿qh*ú>y€jœâ÷ñR«ò—À–”̶ŠôsXÁœ²÷µô‹J ô°!=V²c[q„Aìå݇¤Fî7vˆ/vÈœ8— ›GÄ9œ!Ïœ %ìŸx÷ [µŽ„/& aÉ”Ÿæ¢?.8¬í`ì6XÌ…¥|zÄÖÜ(`‰pvïÀ—³1™êÔJñF±CüÁ!ë‘âçâd¹xop,¸‡‰ÑBJ|}¬$¸· w=æI)¸xX¼p°ä"üýp>ßñÀÐõš&8 ¹Ç¢¼3 ÖCÀÞÍþÉ AÜA4 Ýõ2,ÂäølX·šôb3ì-á߉œÙÀæhëéÃÐoýä;r¨µLwùS8/]O¡{ìœ 3IrÁÎp ²œ…Ë‘—‹1ƒÓÒ¦œ’•{‹‹ O"M í»z>DúÞ5²ÈÌüšÌ ýV®íËojë8~á¢îp~ßÒä¬u{¿7|Ñò¸ð°ej²è ‹À 9S ââÑ”Å]m臊ö8ÝÙîÞ‡~d¢$(Ó¥ÕÏCE(üç¾l€ûì­Ð«RžÞ^ùÖöÖ4gω¶³o¬ÝgåíÍÝû[ýGùÊ…â1Ó¨Þa6[J-»-æÝ`dU#ņ8ÊwÓ(ß(-xÍLß\qz«úÃê' “íIjÖ%¤E>Zƒ†>þ—CÊ}âÕú¼Ã(Ä0©Åƒ’MÄuÀ=^CèSæÊÔl‹%¿ˆ'¿ŽüE¡ÅN"#.ZÆYþÃØHûîÿ#–>"@#àgŠ1îOqÎr<ÀIîèùÆ%܉¯x¨žI ߯!³ðG⓲ɔ¤åñe¦¹´Ö|F2²÷?QqÂf®-2Y`_±:2k“q;„¦céÕ%å« Ø(ÎS“Æ…ÇëÊ*öÛøöÞË5ÀÁëo©U,ÙÄ53¢r@Ç;ÊZš$öKÛeæo.Y½àöœÄ«žaÐÏP9æÝ.|âèÃI'Geáq5ºipš‡j#ð!wŒ¤ºl‡š„ËŽOá(œ15êãK iÌ&6¦¶·7t^Õ}6ƒL#!óI%¯úV¿Õ¹\ý&󺄢þ×·è‰ïA2Q­É’,­ e'Ÿq›!­}Ïá¼6„£,º]ú¢ÙÞ°Ø›­©A¬B7Ù5áÛQzĹšZ(;K¶Óz ³+ *²+,ÕæVK'›B k¾©««(«­º G¤´oÓVÌ!.KÉT >S®@Õa¡òo|/}å}6¡ú‹†Oìì¼xW⾿ñ&¹¹ñþè¿`«˜ÉåU§3ìõ¶Ž{v„¿›žÂwgp×­Ýð1ûk@¡‰:láœè£·£yÕPðûÑ‘‹=%/SQ’µ‚î~ã ÞmæIh8g7iýtgœÍ†­l°_^¤oäG·o_ê²×Áv5 Ûy>`šF:›kpú¨E°ÖA"‘îÌ+‹kŵո^CM-M¶ÙaÒ/ð\‚ë]ÇwØ\]‘nvhuURÔ%(y‡endstream endobj 643 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 763 >> stream xœ%{HSqÅ×»Ý-[Ë”êîVþ1#6_$Jj[Yóþ‘Ø®vÕ©sv½ÓÌ$ÿ(¨®I‚©=Ì(0ÄÙ×T–Szh‚"{@/Êï¿„VýuÎùãp·@Š0D„*=3''.ö¯–—òŠ0y%)¹‚‘A›RÒ’Fq#X K`ÏbÈ‹@$A8]‡ÓUu‚½¤Td E1l\rrÒ:6>66™Muð‚½ˆ«d39±”wpb(T°9Î";/Ö±† ¥¢X•b2ÕÖÖ9GµÑ)”lŠYÇÖÚÅR6›¯æ…~/›á¬Ùœƒgÿ3þ—t§£Ê%ò›éÜË •!*Uä¬Ù9­F»PŠC (©BXH,èú@ˆjâƒ|T4J­°­_Ž÷ò)/ Zè {æ-ÊÔk°)ÁG½Â6å,…³ÁMã&ê)˜[ýצZºtMTsC‹ÐnVka¾ñ LÌy‰£$¤ËKiX5€WATŽJÌšÄ^j§gËpàþ%÷%¦Þ¿¯¦üP¹¤+nèìÓke±q¢ûÀä'|£À‘òè¡¿§L–‚úª|æ”ùA×=÷]Iw§»(UoSáµÇp'%¨mWRf<›o0%/Ua-í—ûþÊ:þx£¤Þ]ÐÞ€õ-·šõÚ`dˆ±u|ýÄçi ágh"~½Åœáfô¸yÞòz(`à; aÏw¬ß°ÝŒUú‚Òu¡þÝApÿëOrŒÓ?:ŸHê/˜˜Ák|dÞ2 ˆ§ÀŠÊwÔï­²–7D«@=dݼy›‡‡h¸†å¯CDÿ8Ü'e>h¤s¯ç^H“ÔXŸc°y¸nNßSà;äo˜ª9s´Cðh+“ljs®9¶0îÌHs0åmǒ–Í~ƒ°§½®‹úü{e§MíYžú“ŽË‡O9¯J>µÿá£ÙÉÞ²Š.Fëj“­ ¯í|… Ï©ÃÇ2áŠ$¯fÁà fì¬fB ÄV›endstream endobj 644 0 obj << /Filter /FlateDecode /Length 9007 >> stream xœÍ=Û’·uï´+ß°•§Ù”wÔh z’§âĪr$&J•”‡!—Z1¢8´–”D}Î œƒf‡še*¥ {»q98÷þz5íÍÕ„ÿåÿ?ÿáÉ'_Dwuwÿä¯OðÁO|òó>,ðûUù‰û¦úó»'_]½†wð¥¡1¯òÿžÿpõû§8®‡'û4%sõôÛ'<¡¹Šæ*ø°OÖ_=ýáÉn¾~ú?ð®YfõòìöaöðÁÓÛ'_ï~¸¾™ösJ1.»ø{JÑ…ÝÛëiÍlCؾÅÇ6Eë—ÝñÚì§)Ùy÷#>õ)…0ÿ÷Ó¥yœœÇÍ{W§ùÇëçì>îþ€Ÿ™”Lˆ»ãk˜ÅM~ »Û:ÚîÝ5NgcÜ=3㊦´Ì0õKø9›É.qG#À}ÚÝ]ßX;ïSô»Ïñ»0M.žpÜà­£Ì4…)î7bÛŸ½¦ aýóîð ÿ'c`ú÷×e©÷8L\¬s ¥¼¨{œÓ¿šEm@³¨#€£‡©WØ|A«M1y~[îa.^ÝX¿0}óÍŽ7à™áØ`_ûú“–é¦i‚óca™¿»¾™—°Ç7¢ ï¾#0è»Ùø—Ý®ç๸ÝO×s€f»î>¹ààç4Fíwôý ä^ªc½%(/YÎaSbYvZM sœ,ß\óÀxRÇùÃ`7ÊÈGø2Í“áYâ¼$B£Œh¸DûãŸ1(2Àåã¾- –‡§.÷-—Í˃³4°±&@ª‚Hïé(ìâB¡ ù’Þ˜Ýâ$ª•à y¿««:¼e€Ä%ÐúCü|øe­ÛÛ°â^>57i áêñ9œ–Úù/´Ì%ÁÆ bvrv™åê_+1&Í05‚° óKsTC36"f¹C wiг#ººÉ[¹1vïa<ÞÑÛJ«íäá_ £˜â¼VHÐ+¼,oŒ5Â}‚àÍÏ pA>ÆãXÌâ3Àu s;~Ë¿}jH±’ ­Ú!3Üòé “ÛÂBÅêÔQ2†‚:«ë5O¿LËÏß!"éǼK@f§èûžë`<9¶BÜfk¬` Ppê…Ce Ï+:‹Ñù²pS&ƒÓDùÝN÷LˆÉ¦•<ꥮˆtßbsœü$!‘ôK!h÷ä"¶"H`ÏâXîU0ó»}¡G skHfgdÂÏìAãob1SZ “ZŒ: rA¾j²Ó³ÂVxŽT aÏ «°wŠ2×4…÷ÀgéÀz5AhÎó ­Çö2íÓ ¯ÕÚhŒÅ8Æhü=ùS·úqˆ`³ªTpèxŸ…¼OYó P‡’„)×(“oitœ#<¼œô§k3­ÎÉ;Å#ïî€k‹?¢4Jp +¥ ÞžÇpð3‹NÄpI^ TúÚWJbdÍ#߀:=­ Óç„Q°¯4#¡U*ðÀ:! ¯fKña¯¹ýóx «ŽoI¢âcàGj@9Ê_1€Ôq÷ŒXïb ¬u¼óN•¦‰Šóù)hî€&w‚[ÊOïü…7ÑÉYµÂ‹ô–à,UQ#½b6Z3ŽÊ²^oãÛº-ƒeB)Üb ¥îøe?9`°ßñx°‰<¹A€j! QJ‹yvúTÌþ#£mL{¡?•_UÆ|36t¬OÙ°ä#¤LÅ€XðF7ëäZãѸ"Pyar ´/ø;HÈŒŽRë-7s ¤íå¯"õ+äÜiA“e¥y»¬4ïæ¤ˆþðLl… bfT Áñ€n9åÊÌzK¬§I£›gɳoóò'ÍL‚†åówõx æü¨-ÆÎ!3€Bg%n¾ª›}ω ¼]ä2 à• øY˜¾/+d¶˜ç€6‘{"4æhg²Y`ƒ‘ d“ ¬TM)Æ{Siç]s­™ƒ‰>…b¢7hŠzàÖÏ!`M©ìV3œj¬Õ˳aÇh£ÒxpašÑÓDK“M^(1[=lÁ ˜6òn´Š"íäE¬•(Xi¸{Q©SëE_Ѧðs,?“å3Y¤¿i}kC, i#åžgd×CQy_óS/T(eVP~ŸWœŒrŒ|OÀ˜æ¹Õ îøC@ºg½W:<9оþ©ÊM‰gÌC¬ ê<×sq9!šs^2ë iWj/ä%§þ.›DÁÒxÃ3£A°ò݆ 2ÑàžÑòvVý]ã;ÁµÊÿ!¦‘àÞñY~lÔÒ²xž;<ÔoiSÁâInœgY]ˆ£¬çó¾µ€90¬@T2«]?æ ÇƒúGšòF­&iSNé[æYS¼£ã· ­ûYë [ÆÝb?z…ÐG6…€ѳ‘ígwv‡‘«A¢-Hж±'xÜŠ%£õpà—SjÏÁc‡æ"9l໘NYÆë2ºŠP3äc’Ì(]|ÈEÁ Ú­³Åy á$ò¼»Ösð–Ä*ÅîPu¢Ÿ´oà@Æüb·R’‹{[ýMc¹e±6fù ËD˜/ò2¢¢ù_ê± µ)+ ‹óC=ö^Ñfy|Û’FÞ‘†|Ý­h7Eƒ$+å9¯oQ|Jb:ZE±j¢íqÒrŽè(t}Œ—6Ò»*‡HJûŸ²ÕL`$z]W!=ÇrÊ\ÎsQò¼"ˆ ðA{ÀKäF>©Á¤ÿDž|+"Þ0iÔÎöL‰‹M˜}ËÝ@ZmÊ‹ÐjÓj(uŸ³#SVÄÂBÎyfÒVÛ:¥à¡­¥r—Ï MWE±ç:¥/[õe,Å“¨\Å—àD31LžŒ8ÚÖ4q¸ÇÍ»Ãj~Ž81úzÏ@¦Ü2(½VɆÎð®ÿ²J"ˆ€@r+ ¬cË‘& ÅrbqeB8Ì÷< ÛzÞÈ.YoŠ{?…ª7•±~C rÖtvA ýÈ )ÒÔᄌÝr®ãb¦~Zõ°~•&ˆ )Ÿ(ïUëJÏ…‘A>Có]Ù²òŠzV 8tˆnó`‘7º=§XþĸlÚÓo'zÈѵÐ)?¦ÒúºE–ç´ÑÐ À ýEyÆÏ`s`æÎ'ŒcTr6Ò]ÚD+ø”ퟭü¢­…¼ÃhVÊF.k2ZªÌcÏÙ= jÕ— º~_œu5Ó<ò› ßÒ÷<[HA‡N™¦[Úì:ÈŸWÞõb‹qZ”ê±±Çã=k$))Š“-s0u ¢“3N€¥#Æ)»bÅï¥`û;–ç‚”˜Ã‚Ôü™e™EJ$4:« •sp¨:ŸRˆÈPYµéú?–•8^ChýƒD|r˜‚¬H´³p)1¦¡:¹B5™M|ë Þ¿‘`B÷y®ˆ³`xEÂd#jš-áJL¿+K¿ýñé“Â;þêÇ͵A’rËråQóZ &Ü|½û½Ô 3Ê&;ÜÞÈÔÖDf2Úú¥k±‡^<èóìôâ?­êì#€-X=þ? uY¨îj³õ ÁøZÁ vŒ­™…vQX)öü{ÅÙÊ€‚Ὺ,³ ‚ñ—‚Úø‰æÊ/ -˜™AÁá+fè¼ð‰˜åSZ.³%«±E§§ïNDPf€ h{»o¾‘@æòaYlÅ4©1`á­„¾æ Ï“b€@;CpÝn2RÐÍmy@×k]6Ÿ« ²mþýP꫺lí²ÇyüúZDᙬn²{ýî»Â½¿<k«ãÏÐ@ƒDø2êgƒm(o³4¾Zu€#ŸÂÀ¾¢ûØu°³8NËÞ¬Á~ÿPVÍŒ9%\ásªRFR%e[/ÅìHÂ="Yü®Î©üX4ˆ%I1“ÝäòTx\3¯yÙÈI+‡£ì&z£YšH&©v!(Ó(mX.Ëùbp(ѦCJ¼6Jg¨ñÿªæ¶Y‰3zƒÔŸoy Xø(`KΞ siI“FÉ ¼éEIyh WÈ`#{9fØe‰2i?cO“4Ö Ú1øAãQ ž¬ÃFf]YoD' ä¥i îVáw5æø@é´¢BFFP•EGÌÏ‚•óÛ0Yë¬àô B¶N. ïfLÙR•0öa4´`ÑíåF:$œG§ŸØl°a‚ŠÝ%wçD?§¨á„ÏY…:^ñZC²ƒµ~#òEÆð™Š$B X'0aZQ¡MŽËÆG2Šw³ËˆÅJ¿^L&IýØä'ôx·ÄnRr h“ü’'çä—Õ£/û8M&©IÑ©§,ž)Såf^fÒNؤô³FãÃ&8 ¶,¦™ˆ•õð‚Gt“•#¿U¾\(Ž‚™4þAy§,@`ñ–CSºÄ}þÐ(Cecù0Êœ“¡Õä ,œÇ"™S(Áf² g+º“°“~[…Ñyš i¥>ÆHô¯O‘–!SöJø}œ‹_¯az8°º‘Ÿ­jìyÊo4ž§›&ížS¾FY÷8%ºœehM8]á—IÁw< ¼©Ú ÒgäotøÚ…‚¾2ÿâ¶Ak»Ì•ióÅ1³JçB°È=V­I™D0V`ÕMÁaUz3´\_å`Ó²Ò ¸•±tf2ó…FÑ £—°:ʸ÷•_í³×)6%GV[EI»Âê².×&üÚÄ”,¦Ýå?ÔDâSÁaü6*°¡»‘£’ T¯¶±®áHªàίÏç¸Ù”|+`p @1_ÿJ<ïG´{Å"«JÚ(“E]{“32¦ùÊO áÆ–,Õ®dû#+)Y‚Ë®¢Ò aBøï®3ø&]“ M­5œÈä>b~ÆÓZH¦Ê+fz“µ†å’’]Lr€9ÁgÈ¡Ñ?añÔ¯µù-8\9°£f—ŠÉÚ.×ÉoBYúD5êÌq4]üÁzåq«ºã\‹¬o¢±ªÕ+2Ä…J5°M”ßÚÂz0—-£0@é¡0i7ÂãðÙuqg¼–,»`Ë8Ê;z_)³Ÿ©~ßR[s .í'ç?Xƒ"×ëÃÝúý2gûý6ê„NéÊ’»GK`œÈGÒÄ ç¢ì ã>‡ üÇ ƒmb]Ê 7S„"»À:…Bˆy2c]‡ò¤ºm\††{ψ&…T€†’"_µCˆâ, ‰§éxÿI†OŠÆ&ñ \/¦;eM¸Qâ±;Îéó|P$Åbõn?ÙZD˜‹EèË/Ä(ÒMÈÁh jåoüŒ©53I¹†’ù¥2V²@•žGüՇñ²N(¤B= ërJœÙÎl@Æ©§×x@~YZ3Šæ´&¾Óê<ò}? tì#æ¡ÆÎ™{ø,P­¹nÙ|lâSåý£&õ_Il6¤½GUáòÈ,0Z01CÙC¼„=`…•×+.Èä[·ey.-ö6)ÛQ¨öM{œÄ+Úì âÒU{[YLkv$K!ci­ ð â}£Ñž\e¸ßaá¢È+k*g#>m.>_’×Wá<^-™t "¸$ÆsFe›ÈEßÝñ,m¹¬ðSÉ!.pŒ å±É2˜c"µÿY´N ¡brå hP¾}HÓà2uˆÊrySN"Íú¦SwØâž^âj èt1Ž Óß·Å52õ?w”ÌÊQ¸7±è<Â1|ìWPéŒå ¶(¥ëŠU©‚mQù¦ê7ª¬’Õë:vA¥8 ^gBá]i1ªR…_V½1Co1Ê?ÕØy[ïÎÀƒû‡*Kjåb7Ì óGx3äA/~?Óæ¨“éþCfš–F—ÅÈzéÞ—!Ö"·??yú_ïþx] H~ÙN€IéÙé¶À2˜ú9r˜r³X]£ömAý· Ø«Lt?h—4|½w5VC/Rü”8ã¬r¤Œœ;"f±}” ùɤ~­B›Šï.F½ñK…‹*=î¦ÃÔÄå¶"oÁ‚³Y…OÖµMN‹©ª-ñ–Ó¨xB»0f\'ÞMÒ.=àÌ즣:gÁÉD0‘2VY©úy>…8KãA9f„-6 x®á0r«¥¶ÉÛû{«‡çMjQûùŸ2iNîþ봞΋êùdMŠEÜåš”1f¿øtåf‹bukL~Q´Þ3õXqãÏy`žËNگĩŽ?›s`©Í¿ò;’÷ ð^åŠß{¬û†*†Òd¶ê(|Ðå[ Œ±(\¸ö¤ UÄÑ7M0jô™µ.ÎS2hEûÞ¸M4™sæ·]•b'£ÕÚ×0^ºRðMß‘%#yÞŠ †D0gÏý¢ø¤r¿e¯Ü«–5ÍƇ“ÙNΚ=¶`*åU:¯Ä½ê CÿΉ', }©ZóДÙF3œâ#h»O”¢G– ½"eä=§šb*í¨ðPª ÖïàˆVñ Ö¸øWÎŒòT{“ÈÈ9Ù$EÛº°~QBé0sbö…~Y‘xQ<ï2°²–>ÇsöˆD s6ÇÚõ¯Ù52-ò€*yHólE“Ù÷M·¯™ÑÀ|Â%ÌÇc7¶àô:›$I˜,ÐK2 ˜1̼L8pÊÒoóJ:4‘цÈð•¢·Â~1·Ú  ÔLŽ(¸õ#¨( ¤Ûy¹Â¤°ËiI›{<€%ª¬A£lO,Ë„òèKEÃLiŒ^Š`Å”âr®üä ’Š˜à¯ËÒ¡¥¿µYnúKå¨ëŸÒ¥ÔÓ¬±lCÞ˜M Ÿû4ᆰJËŠ¬Q‚}[ŽÝöfm3á!›K,*½Žä;¶6uӠÂ¥¾n÷’±m²¿VW¤ËŽKœ] W~¸¶`Œr] u[VE ˜&vçŸÇúPßÏh­/¤ä§/é§Çüß_êÏõçíuØàPKµ¼/#ÖtYä`’xÒ¨¤J‹¼ ™(%Š4Š„cnºú¡ôÅ,Òø2%U&+½:¬qSP÷=°àJgEã1µ•w ‘Ör´ÆQ,ý³/ÄØQŒkÁ7EuC—_W$Ì« ƒýLh_jÒÙªï3øs[Ùô¸úTEЂùaÌËò€(á³/Ù¨ÁÞ ®Á×Gµºb‚ÊD.¶.G`óËŽf‘†À»Õ%*"Æb/*°VêCTÛÿc‘*Z;gE_Á# ;ÏTè=HT{TÙ1ìbÔF«Áñ:ï øÆ¿1ÎX‘m•]×%2›½tu Fë‘Q”1WÓ-N:¡ÖLÌÉvA« j¾(ÆŠºI zM ð,<Ë/û¨‘seý°F’r–©ýðLÈ ×#á=`{ý*Ü1Yh›šátð l’äD;¨¿†lòõ‚u%tôêv5‰—?Li”)Œ›$/Q™Æ(6Ôxªã‹áÎQ]¾m<¨¾h²§{+T—.vìu‡¥Tö Žf?;#òåÎ\Oíaz˜TßJÑ£(ãT°¨ôNÌÎImFƒ€ózè+|zç}›¬„½€ñDq@×é"—¶ hÜì'»¨¸8Rß*±„}Åœ;XK>—`º®;»‹_!Þ’íéÍ.ÏŠ{Ô>’ç$8êΤ€#Ø•ÌcY›¶© úª¸üíz-§ÑÜL9:ol²›vP|Â` ¸¦š…O—jSâ‡ÄV—7•È{lÑžÛrlΑ•”Þ9Zl4°Ä«öYâÞÌIƒàÏRmeŸ#ðoßðĤKÛx¹+àh¼ÝœHqè€óq‘ÞWýUOÔ®bŠbòjõÜ4PtBÜø¹zèš;#í¤%»³»,úÂsÏ UKIY¼ì¨ .%¶®©F}E¬ËÊ…±…£úDÌîá–Ó¶-…ê£RX(«¨§¼çã éD2U~á1:ÝÐXMQÞ ñenÐóû–‡Ã~YÊÈåÜþ= y•ÁŒ)e¶£žf:6C–V9r,Õ’ ª_*¬(h*z‹Ê`5Ð67ÆN™Œ—d9Ï`r†`åx_oSÑ‹)ˆ¦hmÃÌ•?FÀŒÔÅiVÅHGx3çléA%¸ìø¹ñ®Õ檶m¦dµ‘«Je{<Ôy”úg!nM¶Ÿ–“›M3àš:N——6èF^÷v\³€Ò.!4nMN*ÝùË*Nö 7˜Ïl“w2’k©YWͽH´ÒmrGP¿fE‘‘ñáÌÞ‚â÷A’{Í¡AøÈúQB€û+jA™Xû­5QcœÝ·=*4Eö¼Ðhû½l7ÌÜ»{HAø‚3}µþ¯ˆ¢2Uг(ËikÔyC:(e6MV#1F„8œ6k|ÁNèn[®ÚLÎÏãZ„^ª©J 'Ò+䟮ç~<ØE,; Ò#q~6®So ­'•$ä™ A*¸Þ‘ð–ÇH%7Š¢ nÔrÙÐŽº¿zéäé:{„Â(°EdÜžhWèB+è=1&*ÝÓI´ì«!y¶ÐQV®L¢…TÀâ1K'Žƒ~ƒžQt0ó&iù5[uxáÇ\XÂoÅÈt]Ä 4ZéÍh,"˜m³à¬PÞÖ;3VZ^ʱz^«Ö3Û‰YÈ܉.Š­£ÞO¦Bï`cçQ$_—¸!u¾LÑ—°(îy Ìì—Æ |{{-‘×c6îÜ{°šg)Û”ë~Ÿ¸ï9°q4 …ÚȘæä¼h##c~²ØâWEƬٛL»ÈlÅâú°(€|úˆ·p³X5¾ˆ ÌJ¸D­ÀÜ¿;a¸NÁ~mF7p \Ó×Pљdz²=Ü9ŸEO_¹tØwVÃOD.‘bV‘qJzW¦û–Ü´}jÙÛ÷‚^ÐwÌéþ=•½mâžÂŸy¤4ÃàrÇ´ëgùÐm ØŒ:ê Há^>´NÅlB¶-‰¨Sô°wÖ‹µtoÔ:ë¢vT8ùÚŽŠê8·í¨ð±3¢&/œrþÐxãKM»‡)¯Ü««ºï—fžÜÃóߵm$7(†ä~ê¡Ü­·¢0Ëb0Kƒ¼nk=qT›oTfY†öÅý±'è,_ñú1T(ªºqFv^ZsW _15ë1÷Ö¦5<‹Ú¤86yçÔÁD¡¼ñ¡T$n{¶%Súþ±åö»5T¤o›{W-DYÖ¸v¥û q5Ñ®à´jU.0”̩ۖJ£Li'‰NÉ‹"Ì5ü)Õ¬T“Ý!VÙ–¿äÛåâ›)Û¾Ë7ØÄ—‘»¶²‹F«x+L§¸¶«É#P½›e"{ÅQÀÛäÕÉ¢{㸓E×»¹½T‘WwfÐï¤?àŽ õߟ øÿa‘=gõʺÓy/E°üÌ903vîÄ·ü+’èNAÃlùñCu2ç]uN:8Žl\‹`½öpOå~7ɰ†4¡z%}Uä·Š§‡ú“ôøõ÷u7Ùûã¶ôGëD@%²T  U~bÇ~b! kXÑ#˜‹ÞÝ2Ñ5ŽjÝZ¥[“Ñgë\4ÿÁ|'óD&}lÄ‚¼BrUѤw‚YÚäÍ„Mëeñ¹;Å  5P{º¨âƒØRš> i¨p/8Ùq+ÐMaÙÍ÷G~5¿E†Ó»v?2c^ORÝì5‰öM÷ü²£[Sül¯Ü4æÅÇè"ÿ0—>å•4¼çÚ¦ð®èUƒFu/ò:ÇumR ͧÇî¤6 ÛÝòUÙ ¶÷+Öm{ ]vÔ ÿ¤”:¢¡ ˆ[•'’QR{wWBó·ë¶F­²ã%kä_•"îúXœÏMuk¿9*æ·Æ)vÊî·Å]_6NEœÕ®ì·bÑH†{7Šq𙉘€ÛªeÙCô„<æ 呤ø×ÄÊ–Ý=›Û~:ÑvQå/(™Í¯Ë5Žè­û%íŒ0c¿ 8êQAÕ=Á_˜çN*-RšrB‰<Li\X «™Ùüÿ8µ—K®ðG»ÎtVˆËÞ—kCj.¿-þ‘¸¼sÓ¿PÃWø iéçÂIˆŸã•b‹|úKZ:x ì;¨ ¢ê›BYKïkk™ Õ&¼èu{vô®¹)äfN\=:vÓ¬l²«èºzn–GSÉE?ÅÓCý™5]þ=ÐtÁæ,-3¾~¼ÒxÜts±ó¯n#&Žë‡7•hÓ=¿Õîk&ÏóÛÓY¦N—?ÕžcÒ÷%B(*bµv§noX‡ê7u7P×~[7¥î­ì{„+™‡˜º7/å’ôÓ7/QšAtâé—…j mšnÍSEûC÷ˆ0 Nvo–tA´´q΢cܦ Ÿ£jû‘{Ñ-†<`ÃK:jŠ›Ô¼Ø²ß$/Ü Ú¶.ŠF&‘èbˆ”}Ìýð>wÁSc÷¯ìúW<ô¡þ•<Í·Å c÷ʸ7‰›°Á\ ŸœÕŠá„._Ñ0ì^>­Æ®È`Ø”!²0ìÝÿš‘ÏÇ6q ãäønÇrõûQÌ»?ñkÌæ Õb0ãÍ<‹jeóµ“vë&5áÑ»ÞÝd„lHWy…ôDc"MmèƒÌa•ðùº»·¼LßÞn=FÝÖµ8ô3<_”¯ÖÃ#ùäpÃK“6Õñ0˜F¾‹˜ða°aï®?ÍçQ¾\¥pIÉ¡EÆ&÷ÑÓÒ×m}PùcNäÚ±¦ ¦Ô>Gë dŸ•yCþ}À럯K#ÇMÎ˦¼¼‰ç¶p¿A\EµLl²Òk†|Ž·Õ¨«¯pèÞGôaîÉ%]L´¾æZ6quޤÆõÆUÏaqù϶ym[æÛ¦b=´ìimÙtª5åšd§O)¤Ò/N~Pñrl †NH–¬bä+¢mxv›ˆ¦³W@'ÕÿEæõ¼| $Eðá:ò I¢••n*;·úä>¼*Cꂽ@ø=ü`û°³Y°”Ò<ò¶î± °¹±Z]âD[X`šNܪÎ ï;眳T{ƽÛx6[1]vƒÕ)¡å÷ Ö¯À•°Ñèñ¹×ŽÉV·r”#»BÉçqÓLNùî\8LL›‰Z…êΗ‹bÒ4„ßD{ñoÝ@VЀ,ß»‘½xy4Û¶&ÂÇÁŒn–|Á/¸öþµ.Ûä«~&E˜‘‚G”ø&-Þ•N‘7bKÄíÞ0vÈ]¥ß'_ ly‹xÝPÒå6õCqU͸Ûâ†|šú‚|,]-÷^³ üï“&nendstream endobj 645 0 obj << /Filter /FlateDecode /Length 6236 >> stream xœÍ\[s·r~WªòÂÊCj¶J;ÆýâªTжeË>’â#1vN™yXQI‹äê’Y>}Á ³3$%ËIÊ‚‡týõû÷=Õë=…ÿ•.î}ñ4¹½“ë{¿‡.îùìM´ÏÇvr:õ¨Ú<½÷óÞ%<875¹Wþ9ºØûêÆÕÁÁ£>«¬÷^Þãõž1¹·:ìEûlýÞÁŽ_ºVªW9kºí[h;e´¯VkÕG¥\ê.á©M.›ÔmÎWkkMŸ´î¶/±mû t÷ _ÔÁøÜ½¦V**èm•¢IÊtgÐ6ZÙºkÛæd}è¸ ôpVv9]ê¤^N„ó+˜ÝÀüoV&¬ÉvïV&ôIéØm®p¸lu4Ýqî¿~À÷rƒL6}€ÃP{/îuή~…>Ùìi×[ öYŸzcãÞÚú>…€]éžâÀ*§¨ì0‹Òú’&7Q…æ1®Ée¥uÛûòèþRô:óöÄ «]ìZ' ±½‰ò¾dà¥öß«µó¾ÉtîcÛÁ–¤îo+x3'cº·ÜÁ§Ô=zLÛ˜³ º»ÏÏ“¶Ý÷° ÌØîn©Î9v¸HŸSð¶{oyx»»¡·º'ãÛ®;À?Ã;:–ãvJùìºFÂðóCÀÅŒC‘ôh§m(£öJ‡î¡X×ã*˜ÛÕŽ]iíeøš;[†¿\d¢ïêkùï!ùî°«Òj” ‡+!Žýj’…ICwxø ¾—²§m”Fw¿áFÁ. ëÎñð•Otêu]ØŸ¸³¡‘HP0Ä)TZYV ½âƒ^ §•»Ÿø­%­P(éñ¬Nø¢jHÑ?¯œi” 6kÜq”0®½µ¶½÷,Nƒr)k5 a ¤˜ÞùÌ óK÷ø{’>¥ ɶƒïè¬ßªñÕ/Q·‰ç×bí…gÞBáôG¡)û—]ôÝ)}²ÉÊ4/ëc)‚¸àÄ£9=k#ÈŒï¾]Á¡ÃÃ(1Žö‘šc×OG£a„—„­QÃm¯x+óãvfŸ£·®ÖµØŸ}Bè ¨oZ±x¿Jä`ná Jò5OiS.pA°5ŸDyqÃ*ëA&%n3(ãÇÙ],ûo›ÞRÚ7|†)Y„yØ)@gȳ+×}CR›=à\+›ž¾'À!þóªH¥’²eC±Lƒl}Eûe² °¡0§Ž>ôëV>×N:ºÄâV®ˆ4¿@¢¦`º`žÊ‘Ô‰·ÿhåu¯Hí†0þÖðç¥ì)þ>ÒÒî|f[@1åùñ´Ÿ"Ç‚=‹‚] ºu…„Ѐ2¶Œ±N&Û»ŒËr†”öÅ…!m캩]OFqºd üï†Òl"B}cÒàFp‹Ôqëµ¶=l‡qŠÔ„¡ÈŸc×÷²žÉÏ$ Æ'‘B@Œ¹Q´r÷/µ)ý5áK€b¤#ôvÝ9໺5Ì02Êkš@b°l̼E’gA…§$`ð¼ï¢[”3lÅ+ö[C’üd ‚ÔHOúÙjŒÞQEÃvûîávsr^!ùlT´Kî4úaÕEA“ÁCÂp¿Ì“"ù e¡[©SlE£3FßsyjãÔÇÕ¶^ñȶìÛÕ(ˆbÕ’lT¨-9ÌYEnaÌç¡á0»ïpèr—º}~ª»´ÇïD‚"Ð"äB‡û¼˜yÉÔËålÑ’€þFðW¤Ïþ€I Eþ»€ ª]#ÃGõì߈£¸æùž8ÞõÅ“«Âl"0ÏÑbˆ¾¡gUŦ1"Ð!Ók3‘wrBl›ƒqºù|•YØÑî¼›!¸”`9ìaˆhŠá$r3Skiõ\[þ·ž¶"=õªâ@_÷y×_ñ3©ç?ÃÐZ0„)Ùá}~ŠÁ´ÞÀ<â¼Ç3¸æî(ìèUOÞC”:9a8EÑ!ÈñM/=Ô2ªŸ àÛ7µÇé<ÄJ/{sßë-qð«§yêï¤è˜t£ˆQ÷&ŒìõkrÐ5¸y!Îäuƒ† :û¶)xÑ€†íSI%€“kšÜ€Sê~ct*ÃÙÀÖÙ…ä0ìqí ’ÅNP°n]w,õ  ZN,ûžWöû^`VeàgÍM°lâ–254X„Gð8Ç €ü´Š>¡¯ª³°ÙعMáú>ÁÔÇs`ë@ ÅA"œcʼ=q×ÉØ7¸"˜·´ID:at3Aµ!ëwHc&ÃÍn¡Ñ²)u˜4ü êX)ÿßð'$÷¨ÒÁÁæ&pÿos{ó©;1ñ¦6‡¬XpòéålßóÚ|_Õéº6ÏfŸ~\nï$ÉœâlL{ Sƒ&’:-[V)KŽÑ^¢êX%ìmµ›cýƹ¢CK)íJ‹ñ.ڜƧ  ”k¯FíXèÐ+¢÷>²6ø&Ì(ÇûI”Š1Œc#ÃTDIÿìz/ Yn!‰rÉCàÔb’ý22FTmÉ1BgRM7GÝò‹ðaÝþSÞ•ÒÔðÄ©á‰Ä¶°@ª”¬€µI²Êëh58g§™uªD_á3½®®‹¨q¾Í¯µy<ë‰ÀD?;‚÷D:JcS¬a3;Å«Ù'³+û×Rîh=_Mü<";òò¨¬ñumnjóús;ZðçÀ6ßZëèw%JL½a4H±$¸ÒÕb[<†T%Ò1žû>wh󖛈6?”§ÃAGì(:ÎÙñçœôpŽ«:Þ@›§•ÕyBvJÕËò5ˆÝ|Ú¸Zó™råï³V8èÞÄ|wÿÁ ܇…ë*»½™J³XNô¬œäӯŔÉãí‡e$ÛÉ wc¢m%_òÖ²b"ÿæâ8¼£—¢#òޤ\ë ²%?-G@V€¬ñðP’çíwq4ôF>Ýioâì8œj€$³ÄE›Ä›¿‰ÕD¢>Ë“Ežp…NxxÕqq8k@›n¹_²=äâp­…\&Û\W²x/s¬ªöeè÷b&ºˆaÂk1{< Lñ¿4Þ]‚­<7{ëæ¥Š¤¢:o×!ÂÏûHïÀë’o,³æ´Ó¤ÊšJ§*¦Êâø"ëÁY\NAS‰µi¯%U(ž"ÁڡĆšõ'”Z[¬b—àVð1.VëBâz‡•ËØÀÌ¥Jbt-„; 9àå}šzÇûüý噺qm}6Å""P—ä!à›$åú¶²šapÛRÖ)…£Ç¯f=Ÿ÷I‰˜ƒë‚•1¡­ w…ó¯àgqzßÃø 0m"ä·°ø·µ‡À¢•·6ümy¿*_>m[©>L!Ê\›ØþHÏäž<çB'0KNâ #@(„A&þ$&Ü©Ø_Tõ†ŠÝâç‹Kžƒ4À—”O«ŽPAÅm!F“üŽ4®Ñ9¬Ž%åÅ!È >ºE¢1"‰²â,…¡0È `%§ÍñI5úŽ» ÿ4–koŽ„ÜóÐT,±`(ŽyJ¬Á:ް/„ƒŽ¹HR÷ãŽQÝ&~ãÛëqjÆjøyÎ% ‡ÅáåþºN ¾pžßrKë¨Z[Yòw^{+îáœÍ*^ñÎ\~×pˆ6\·èA•é7bÎ÷UmÚòe|¥ ÇÓ–ÃqónX¬µD­yÇ¿cõâbjÎb Ãó‰“%¯ßëluSnÜüX-ø«€ÃËâ~’”zÄ+‡ EI³Pü&ÊùvG²ˆ.ÊWéÂß…™7äèËÇÑú¡† d}í ¶ãx9ï^®Æ¢Ç…K½0 Q®9¿,OÓôî2®eȸ¢ U cùÚE€¦ºb”[æt/pÖ/¥UF}³‹³/„W\š‘NN-dlj²çîåLKÄKÞ¯½ä#/¥ìË5?"‘âk¨¾&RâØÒóÝs?{[;/Q àt€§îœЩ4Éö/øGÛWxUGS"D–ç}Sç¿Ï=0z0'Lün†ŒK‹•W w‚#ÊgÜÄ µ‰Ã5x‡|]ó– bx;ÅÌ^›u–…ÈYe¤,õ´ª““ÃX›€Eè€pËU¦ï;Àö}?âžìpH˜¢ñ>%CŒ@p5/~§1V*Ì1N ®UŠ“H.Çû¼WâÆj¸ímÁŸÕÉ^^MÃÚ“á}bz¯+ý“?í‚~9Š](¡³±z“ŸÂ)<܈ˆ˜ Y|M×Ãó‰ix"™ô;V*´BÍå³qDaÊM—Ïf•x%&¼©Ká>,+÷©  ‚}?ê B(¥´ §¯¹7:¿27ô‚Þ4Û, pçÊõû™°èâ°øØß*Ž-!2_öSV:V$,#9‰Ð?[+“GŸ‰:’Bß9ày]¿ObÛ.é¥fA”­Ù朆w‰¦^ùøIÑ‘€ 9ñ PR_ì’Ê?À[Ó8(쩎Z/¡xÙ´H  bü‘6 •ž®dÔtè0Qy U„©Ê땎"jt!_Ê|ùß|ú 8‹‚;àNï$dh#@Èd J\}š†Bê ß@–OµEXV.yš`fî)ðÞˆãf™éÚd a¡R¥‰ÆÜ„„?®ùÍfçk„çˆj‰rH""‚uã¢ÅB~BBÆ­?^³¶.÷ÞÇÿGLåÓ|®×äžw+Mïr¿].ÿ^¾~Ü®„›<ýLÃìð5™gù ~<@ù¾ð1™çðúi¿éó)‰¦Û®Ë¯`ý$ÊBe>øßÿŸ ¦endstream endobj 646 0 obj << /Filter /FlateDecode /Length 6439 >> stream xœÍ\KsGr¾ÃGÿ„/ê‰àŒºÞUºA2%JKÉ»eGxH€ WF €¤¸øóÎGuWVu÷`@Éal{ê™ùå—ê÷uÜãŸü÷ËˣϟE{|qsô#l¸úùø .à—Šú<ν¼<þò9ô«¼…¦Mê“:~þêˆGTÇZ§Qþ8¸°IÆ?¿<ú¥ûnÕoúäµÑÝî<Û^Gx¾^­ûMè{»+h5Ñ&»íÛÕÚ½‰Ju»Wøl6¾WÝøCåµKÝ-<ª¾=¼Ï} :öº{ÏZõÆÇîû6)ç;~Þ°F¾òR¼Rur ¿‡Ñ5Œ»ÒF¦û°Ò~{ºí5v—Œ º;/Ýý×óïpçÜ ôÆÃaôÇÏÏŽ:ëVÏÿ~´¶V¯ÛDï±ù—î õh”êƒïÞcç0UgaÚ¸U)&×½¥ÀÚu~¤ÅÀè&À¼»Çiö1™î„›¼xÚÑ $S§R§+Ú¯¼ÒÝfµ¶pj!¥îôô{ZpJÆ«nû;õ¯}ïå¾]âò}Òª{Wvê’3½éžŠÉþJ›–Œ… ö—`ìjÚâÕ×$AyßíVk\„‚!ÄãáUêN~[G÷v‘{¦ãˆVƒœm_Ò4Q¸^—iŠCB¡-ƒsµãV8ðÿ\E »g ó(©´½‚þºíU‘e)LÃYô¶û ›óë»KxD *‹“†e¹èºèDÎî wΪÞÁäøaJi%*DÛ8JŒ·ñ!KØ/õ‰á» þ^³Â(åM°ò˜Æ¸ØÙÚ$ààŽ×Êl(&wš—l’ãó0 ¶8²†±xí¨µ{-I™V˜W•lÈÂÛÃ{ºÖ\ùõ᜻¿NŽV¡4ï^Ð$\ » ë”bÄcF™øQ éãÛÿ¶b%M}…bFáž[ˆ¸…«âeᣠ$õ°°h"OЇ¹'½-/#®x ‹P² „5¯6´ï[UJp¨ ¨ãçühè±v |Éw—EöPRô‰&Q g—+@wÐ#gsųáåÊ|åÄÛx@z!ë)qCg­ª¾)P8;vÞ ¯"¬:챎{ËØÌÏ®·ðÃÝÊ‘9è Wjó<€áÁ©¥ä]à9ä…ÈWv$ÁÁ¹‹³™…fŠÞ¹áÔáÛï*Æ,#Q¾í7Á +KU …z5×¹‚Ã×fx;1.ǸÈ0œ÷†5öÜèþnÅZ`8••0FçØ÷>Ñ{<àñZã¾çמFXx à÷ŒÓZPÍ ©)‚1Á[±{ºRØM €| þ(ú©±1M,GŒ0´'Wü+¦ç'B/“B÷¢`¯Àú-+¥³&T wƳAsÿ•­]qëœéÁ,U6Eâïm¡ Âáüp⯄­¹ÎÍ ÃÂòo%„°µñ (ÅÃ"ÞC|U~xÁK€­{<^<ÿfd1Ïq“´@t*ùTöY³¹,´SÁÿÈ“A*õ ÍÀ[33ZÙ|- ü§ñƒðnߊAÞ$ÿg9† ê¬ÃrNSûór:4ö…O ˜›¬rÞ‰<+g!v¢i{›…ˆ¯bD\@|ë7®wªF|ºñIòòá9äド¹Vz rN@—)"Ð_¯ ˜ó±5øçzÙ ÂoV´“aÕ@œ¨zÆ]©l!…¡ã­×pð#Ÿ~Y,…°/;9¾«} {Q~ô±>¸ ¾Y¤ç¾OÒyì2k*èøÓݱÂμÅ&㳇GLÞœƒõéΆñÑyoHÚ´Fõ‰ ýRÛˆÿ’ùˆ[Á8JÓ;<Ìî¤ò>Kf‡!éÔ¸­(7 í¯¼¯óÁýÇGÛÚ ¾)Í(½ÜNÐÅ·£xð#QçG=´ÔáÅ®¡Jk’FuÇ‹þJ äÉ^Þô‰K@É4j‰­a´Zg–½3àQÕñ²qË¿ne âéÐõL™¶e#‡È•Gçôôk’38ßÊ8ý^8ƒ`,gbã×<˜†)H§’<Þˆ‡&ý©íU±g»%aY‹gòÙþ‹h¾Ÿ;å_¯û¾ÒFrÈ­é¤Vøx¢‹†áäe}¿š›iq¦÷Ûõ¨'WRV™ië-Y»¬È7dI@F@£t…󫨀¾ÆÚn#èÉ<9Ðh¦Ó®Sc‹ê¡¤±]7 a{@x—?5Ƀë,8ÄØg†J5a•Mp™:HHÞdxÔ^` ™GòrSNdçÀ èµ;œ˜”Wg0Övç7ÚƒÁlœ&Z–]4üÑßF¶†_)µÎ³cd3À°@ôòâ‚þ­7ÙQ »KNŒ€†\ÐOÕ=À†#Ž ²ùµ8ÅÚ¡¨ XzšC. Œ‰Ñá‹|íp|’áy3Ø}†¥ÁÏHô7!ÜÄ^³¥á°R¯œŒy ÏŒ<#˜•*G¥îŽ3¿àE#p>9o0èŽ2•R‹0Åî‚L”2ˆ=Šf1&ù3=ó1ïD2-ž@«g;ް¬ZZ€c¢³]‹ÀØÉÕ¸támUÐRzy“aÆn¬ñA¾°)³jf z·‡¸áðç #¼ç b眦èƒ0h'ès+4Ó»²/@ Eßy˜Ÿ•8sň¢Á7ö¼" $Z^I½&à›¡éjœÂù,÷€%ÈòDù¥Ó£[¡–Ý «çÐE)Ò¨¼] p§œ‹|é=h¸k̡㠌€!Ù‡àaÀ+€kÆ!˜FƹG@ãÐc«™ß7¹9M0ƶc" *ÐýÓÓ*¸#>ÚK`)±Ž¢QEPê°•]½®`‚ÞÀq/(FV>×&G ß œÌ¡EÂäºJ,~7B@ñï (ƒÌ^ÝäIÔ|½š9 •gcÇKX𥓝2¸ÀÚÃ.×cÏG]z(Èå˜"#pkTx–)€"F~ 6(ǵTuœ.ž–)ùÌ‹£„QÎk`þÞ°;È¡Û I¾%XIz³Ï‹u v_pNÑ.ÀÑ 'ˆÛoY5nôèÿ”˜‡µÈ8V6”ç7@éï+Ç^I¹®#öýÙ޲3_¬ÖÞ`ê7‚S?àYCÌ׸TxŽBuÆDNÍdX“³½Àõ£ PEÏ§Íæ„ØZ@lÛuÞ6`·uÒkìø ßðÈN»/i½àr{¹Þíôdê irIkôǶiÒg8;‡áb!¼•`"»"Aí¹”QàêÖ"{+i^ Sg‘ã­í1ù._¹ „•ö÷;u ÑÁk¼²–qBצðÃÅ:8ÄêH±©ŠÊ×Ó“ÉgŽhl8ª 1¶CLÍÌYÝrÈBí^¬Æ4¨RÆìãÐGÆE©v]×süZTJ@¤LKÔP±N© ®Q2Ã]½ïd\‹ ±~à>„\ó´CÂàÚøžÄgBp¾Ïø@o‰¤ÛCÝO¯0œ/ýܯ‡kàT)ø8Á±¤èæééô`Fç{ÆV¥2bõ¬èà–x,¸^7“ÎeÒi;ƒfP™Z„6N5W‹0&$i¿Cw’‰«Ç¬ýÅN`Q#ߨdˆuÀ´ '!2>JRA€—”Ž pÆx"eäxÂE'¹}•º§â{\ð_¾÷”]8cÍU:º×f©VC¬P® cÀ 8¹CXPx C°Y¯À(«* ,²/ÅÈçÜÆveô¸ ¡RDu` 1ˆl’sˆX Œ82§@G‹âïÉ£'²m߀­Có,Ǿ—çj­6€þÃé=_ϸÓÉ6['M˜0¸óõ ’}p5™sN/³à} 7V÷IU5ì‡ØR…Ø%CUwj’Ü3 ¸žo\ð¿Ð øÎ¥`.ª’îFªé²U.TPúÃ#n¹ú#ÅxØÊoUއ0J£Qµ0°@4—QD˜î ¡vo *l¥÷Ån›·ÑUÉ…ת«ß÷ƒçTŠ wò‘q–x¾vYT<î$P“}ËVN?Ùj켿ZÝuZ’y`¡Ï0åLHá!ØŽ€_åÅÆb­Ev2ÍH1²ã›kêЭñ^&– æ¬rçB³ÂŽÊ(£eï¹¼);Iuþè›®ª˜b;¬°ksÔ)P,¢)mÑ)"„±£Âe Ufjꦻö4š ĺ…Híö:¿þÇEFp FÇvÖ¹,*zIÚâ`YïŠ"õM±ä³)î6žñTŒ&{C¯-X Õ† 6ò°}=bž´ôÅsôÙÇ’µt„Ÿ KvI§y³ªZC áz¿àÌ}äÉ#&,»U¼NdX¸qø¦þ0ÐøÚÞ甀ÁÀ¢ÈkõÀãG¾”ª„t±KýÁ“!>lr|¸!UvIÛtN•Ú’Èq³±à¬/§*§YØîoØ7¦ïŒ¬ÜzÄ­­m1—w…ò·©ƒÚè1ÖL}ĺ¸8–iÛÆàZ4X¢o…_Ù†™§¾ÕÍœRÀ„{Í,GV„³eÀI¢Œ“0,7ëÐÓíé ˆ<ˆ¿÷|©%L9˜Çº,¤Ÿcš„šÓ$c¬‡==Ù×dð¶.áæs²Ý­@)Y}ú¸„ê`æè'|l„¢>f ÛšÂ(_­Vxš =Ü%ä{‘Ž`‘ëvØy¾§p‡øg]õ:¼«Ý‰nAߥ?’­Åt¯ø‡^¹‰±ÀöP/báZ˜òìäw¯ŠÝÙÄZn5j WcpI¸,L8‚Yç°­¨·žåB :E}ï>îb«æ’goíÿjÉs Á¸ªTèdàòç÷¡ š×œW 0BiUòeè|ΘÔýL»Ók]]ZäÝJD¸)`íª ©2eá,ìñKئgXaŒN§kÙDlÙ„§¢nd'7£ã ³="t("cuM m&°Õÿ.­•£R»i<†ô=nÆòQÓQ¼*hWÙ½Òñg8‹HeFmŒop“ÆR8îIöu=–²ˆÚ+)J¿bÈŠ 1䩱¾¡•£’’àm”µ2È® °pe,ºXùbSF™Ñ`1 pžà¥9s˜Á‘¾®ô‹Âª‹_³G* %Gb…NÃR)^[~ö‘~(c—ò ¬Á”.ÿB\ö%/Å€NÜZÚŽ÷…„W÷ Æ}À<ü‡oy|<úàjñdø!‡•‹KÖIr Ô–[ԪǰO#[⢰¬Ý$—2im¦%ƒ×‰Î9‚3ðï©ûX;ëñŽdŽc6uêûw.nzk«ÈØŸE÷Ý3xŸVØiDÅÓðäç)SÄ2è4 ¸Õý*ÅKîN¥¡Æ$óú˜÷­‘|úÙjL žÈôÌ‹•ŽjþוÍÕŠôi6«XyBIúDXMmRÓR•?Ɉ‰µl-t¡âz4¼¹D±©Û†v%.§}VôïñdGgÛÍ¥Â"Taú°p¿ð#ÚÈ&ƒ&…° +~P¢Ÿ»wZ{Š]r¶òV×eØÂƒ5²æ ü1‡Iexþd„,Üe¡S€ª0Qô•¼ó 'ñ„S$ÄÜÊÞKƼ8GïM¦Õ7eðœI0g7ÚÖ“â{_‡äq§ubB9ÛHûÚ¤€wec:¸LhL_q€ À¾‰¡¤'uNJªýýÇê¶J$# ^Š’= º+u¼NŸ%“Ùƒá) Bw[ºÅ¢µ½WwR MA5•EO·¢~ZðtºDéþO±ïHå§]vÌS€ÛT¶…ò…¯l\ç¾á\¿æÇ±F¨Ü–ëa©Å>ÓTþbÀzä·QÎyþVU|E\*ùCßü©••ð¾2j)AÙ«OÒŒ­7ܦÖÚ¯ @3VT_4¸D€—Å-eöEA¼$×l§èÞïyŠN~FF•ØGóx{¤¾Ü/J—‹àèühge^8I¹ÆWIæßæƒWjÉI˜–ŸiÆ*¹*·0X8,ã"{2vBò„˜Nnø'`3f,AuâxÍæÛÕÿ” q[r `ÎúÜšä†û’E¥©ÎÔà–ëyžª&÷~s ff]2ˆµ dµý¶ ]ösíWf®Ó/5z»K=–¾Àî÷Ý¥xïUUìðÊz(FâÚ&•Œ–/ËÉÝòêø[b¸zxRùúŽ>¦“&…Ð\#ÚTlãR`± ²(QѨ|#‚bKüaYæ<Ä"Ššíîû²Œwn(lf{ðÍH\ÌbÉ”»3}öÁšÆ`Ú{×O·ïÚhÎMü[ÑïøäÚ|êÁIûIîi°l—š¶"£xYhg\C~ÃýÙá’T>ѯ°Ù‘ƒ^×ä&ùÍ»VßnzW¼ðÙ¯ŸIŸ¾6N#mÍ™p²±4ÇÃr(0ãCR(°zLPS¬ƒ‚Køsy×ä». w*Õ&h6?²}; ^VLI£€Î™ÄôÅä¾\Y…MÛ\[ÞaB£‰^Wž­Èõ½çŶ_æ!Éqx(p³P¡š?ØcÅ—"h*µCþ.†‹i!X׈š‚õ=te¾ä~é3‡’Žl‹ Éïͳƒœl|);à{i1dò:ÌG*Õ^oáïþ=¤°+Û`Œ,=®Ž¢ØwÑ…µœÌ_Tà¶ßËŒWN“,' á³å„®îûºŽsèñS È/?M¶§wîÓd‹¶Äº;7-¿ iãBhÃ#ò²Ã:lð‘«òo¤Ì)Ò·ÇÚèEŠD)[ŒÊeã‚˜Õ ¼ïL< |š”8©6aæ”Íó¯±IE&ícAP×Ú½ PQá)渓E?"dñ x‡—ôKéÓxMV„9ªÀDu7 ×~³2·Ê5šãæ˜úN­¬Ë^øy ƒr{¾Ã™ð#1vœ§]× · ÎùÿÁBL–žësÙ€8ŒKR)üÕˆjƒ•öþÏÅæuñ×û&^’ƒ´Ú½p„#a>qýg}‹l¾üòax@8¶BŒ(º§phO4Öôýb­¿ éló¤xH)¬-M4DÜg¹x-ª‡Ÿ€ú—ˆûɃÇÏÕ>â70X*¿7Ê´Ã…ÊïûÜh>ØÅd gMá2äý’›MïÚÙ¶sßETJZŠÿdU1I‡Â„}jMÕ´¢ŒÀ+c÷SñáÄgé¼°8¦¥Bâ5Ö$â- 9Ÿ—d‡ÀLÈ Ý‚WWŠ9ÎËlŸIGÄ[ËýcåN¾_õ3usìÔSNýê:âé­NÞœDšÜãl «Ï§i–R(2–b×°1)â1iìVܲtŽÓÈOª¨1WK‚ìI²vVk÷Ú  3íU¯ŸØsÈ~ÁœG"sé²ôä2ôUMæ-jV;2ðQ°·Õ%‡lÊ–¾È(®îµ×*øÊ·ÚŒÊ_Ýs3R¸s7D²Ü\ؤ üó?„¥9endstream endobj 647 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1037 >> stream xœ­’_LSwÇïåÒËEK‘-3²öŠÁAþÈ61CaÃÄC€¦60¨€Pn-*0&PZÚž,ÿDþ ùSÁÑH–¸1%aÙËH¶ìïËö°„EÏ•ßÃv]âãö´§sÎÃÉ÷{¾ŸCSMÓÁé™i¹§âŸ‘Ò~Z ^cÀ¶“þ,[J”³áµ/am–†¢~ÅÐôå:Gº`ª3——–‰üáâ(>!99)†?ŸÌŸ0ÌåÅEU|f‘Xf0‰òPÉç Å屎?|¬LM)qq‹%¶ÈX+˜KߎŠá-åbŸc¨6˜k %|†P%òYEFÿÂ^ì‹&]0šjDƒ™ÏJ æ*Š¢‚³Xd¸h¤¨l*—Ê£Ò¨ ê$•EqòT ¥§ÒÑô7'æ™&É¡’6m ÒË>zCq•Œôö«qoÌcFtÑ$Z.ÜÏ'1 þÀýøª†,‹:¾½?ˆAƒ Úñ‡Æ?î «©l$Á¦3Z1?¯º8•d?öáAZ ÃP;ñŠº}ä¾l‡µµ¾*¹â™«#³sK+çGu§Î]x¯B3ð„³ZuŠOFÀâ—³Y›O¾R¼Ë¶êSîUÏ<,À*Üu¬(^÷+^gUR®mÿòcê0!¨`Ð'Pã!¶Û¯ ‡ØiÌUèØ†¸L>Â[¸¸X=¹å¨'´ìKÙ7×g½Ýšñ9OoßOœŽµWØÞo¶4\ëÍÀéa¾¿<íZ•ô™Í‡…SxÄG?À`tÈRÒø+C7`r¨¬-:÷@ç2í7´îî®EOoÇHç4ôr 7H|19‘•£53s¾—z=V¯ÜŽpsí÷:go~ IöÊ6QaÓ;SMïTŸ=Y\,îµúŸ®lux4.»Ë v.½mZó&~¨¶ m‚]°í¦²*£¹¤E6ZX>¶03ù;ê½²Ó[r"§g0ÅG)#õþÆHN¬ROxaƒÒVKÎÆ’HB‚MÅ<úèéGƒu`ÿÀaonÕž+Îq,`èƪoÚæ`º<×|\çŒúÚí1ùv·5˜“רVájѪðOñ¶M>ZJÄ0ï??èŸøCØ!Tô>ö/¯Á¾npC‡S¨s\‚VîâTÃØôüø²O¸wœ„%d&6jê(޳2öoÙ3dû?pïä€_b|ô³d˜(\U·B'ôskÂ2¡HpVb«]cÿôòR=Ýfã\ìÀ6Iû—Ÿšñ¬¹oÃ]øÂ9é’EdÛlßÖ(ʇùqu¸ÙnKyØœWµ:rç^R5õHÙ×Q?âíaÉ…® ÿ.TîÖì LVûz”J·REQ¤Kendstream endobj 648 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3049 >> stream xœ}V pç¹ÝE¶Ø€qsi4Z'4\H¹¹¥’HCc‡b°±Œ…%Ëɶdc[ïÝýVoÉo,˶lkýÌ«ÄIÚ’´ÜfšhÉ\h‡>Rò¯óÓ™®°§íÜIïìH+Íèû÷ÓùÎwÎ!‰¤I’37lË~eåŠÄÇÅâBRüî ñ1ƒ ¾6NîO†¤$Å¿;'0EÿU| íy”‘¤Þhß /3UhÒ—Xš¾rõêUO§?»bÅêôu:u…æ@~iú¶|C±Z—o¾hÓ³õ4jƒ)}ÉÚbƒ¡lÍòåÕÕÕËòu•Ëô_\útzµÆPœž¥®TWT© Ó7êK éÛóuêô©î–MÝ6èueFƒº"}›¾P]QJÄüu¥ú •ã–ê|Óm…ꢃšlí3kâ b‘I|È&^%v¯ß'vë‰\â%bñ2±‘ØDl&¶ÏÛˆTb!‘&aA$ä&²{Æ 3.Ê ²ëII·’OÈsä÷gfS ©ÑGT³¬³¾œO!S¤ì™ÔI+h fDÈÁÉ2±i2CÁtrÞZ¨—ËV‹ß~p'͘_\¾X ×ÈZ¨.þ¤ûDà=¶Ÿ;—²ÈO¶îôŽÁÝ£#Ç{ÆÛû)ò>¼”gx+0ÊC[¡BÅ٘Ü•ñüŒÂ›pšc¥Z>äiåƒT­|°aÇ0…·Š~Åþ8å©âDe”3ß—!3ú½¢ã^ÔèÔ&¿Õê,³ÄZ§ŽfL ÇÚõȧ6m˜¿èŽA .°Ã‰Ö|Bòôz£ž88<å ?ïmêx¤zoÛhÝIkð^‡º¶R:ÿ›Oñµßõ´Óm·½1ÿQèP~˜Û¸l׺ò:UªÈ4öŠ+¢ä;×ÑédbHöÂ'˜ÀOàTLc墈’)P zR…›°]¡_F)ÇZÐ á<=~ýª·¨Áu8É`ÃDq­ÍzU›Têd‘Q˜|F qO6Ü¢:<Ã2¬Šå'ËîÚ–f³Çtñö@Þå¬È pÎÇ9Ø„·"%NAÿýáUaü§ôç7šïO…í¼“±•UÙuµë^Ú±cw–YzÖJœre´zþ ô(}öÊgwB)ÒßÙ8é÷4o ‚ܯ‡JNݹ%Cô…¢ãKœj5qË9•À¸ª¥“âÀΘè<ÜåP»œë@ÉÉ%ˆOð§ÝÒaŸqƒ ¸Ã|“;LÕÈ·7ø£­ƒèe_„î¸|òÎ@q3kí&¨¦t½ö–ÞžH|°¬»pkîk9•ðªÆ¨øƒNòæE”}Q&>%>¯p‡¤=”ŸñÙ\,Ôש¬RŽCýû ^ÂeQÑÊ×5톈™î3Äg¬§¬ï4ÀvJSñÒã¹™hŽCŵƒ¯,À1ŒÉ€¤±V`ÁEÙ½®€ç#]*¿¯µÅç‹iF-Ç%|Þ¿0ZÛkê Kãå¾]á¼Pvœ£x¸‰¾Ýy VÔ³õÀ¨¬!ÎÓÄû;@KË#A£#Ñw®ÈÄ~q»+,,Ôq§dXW0gcwh˜*º Ïuhm9û÷)KJ´-Pë¹ÑNßÉ{é tï -F<Ïe¤jK6ÔPÛ…ý¹ý“ß„ý*ž;¼ Í »¡çy¥Çí핆‘ÙàësCÀsDj+lŒN $±J 'ÐL™X/~¥Œ5Ãð iûØ|n行×C%ÁÍY%Õ°QÃò‹'Aç–©¥ô`·yÉ+¹¹ ¬‚ì€á‚—ó€¨c}Âp¬ºKWµ¯.sëå]7ïüù½¿tÐÒþ4v‰ òÓÉ—e“«ÐmEìüPó?¶‘ÕsFÐBž»–—XèÐ%{Î2jVZ'Ž–Ï2Ž‘Þ]x¥íF=œ‡9¼rðMˆ¨$U(ãv³åà€¾Ô(×öB„”»Oë­Æs±3-5IEàþGQ·™­•¸˜Ë릊Þ·#P¤¼‚ÿà­ñ8›AÙÞ ¿-AGÓ.á!¯ œ­ loÀßL%´&ŠL]hu”|ë#ÄþR&6¢'®r{>cµéjêë€2Ú£áи»…öv£y¥>ÜtnÕâM[²Ía£0ÐÝÓ3µTò*aäRS¨·â{÷Xì»\ Ír,8¼Úg¯…eÔ‹¨={ûÌÕÖ jã›–®Ë‘šUž>è?Fá5>…SçÔª‹*+‹ÍÅ@í/é?ÉZŠêÂÒ{p~T¼.ÌM™¨•@ï99Ð5î–&¬eC)”ÃîÃÓ€†]%õ¶z§•ÆcWêâ¼l¼Êøtªø d!JÇe³ÐÁ¾| ²wÁç j•7ñŸÜV^¢…$79ËM•†Í¡h€Ïá¶ostR±ê`­Qo.*)ýɉ?J M3{ÑÐÿí%ß¿ÊîÈÄÄyŠÖY*Poç‰+âø1œ‚çKò-ÿíÿˆœGsBA»ÛiãØ‡êЦ¬C;ÊÝ6‚´ð×hþ—­lñúõ&I<öu¦ }9ùŸ g7Ç—IÊó¼|Ú»äï…íUvÖÊÙèUW¥-ïIPN{ë?î‚(üœz«\¹.Ü!>H.&órôØßHOƒÛÒÊ0øC¾ úëdj/êÁζa ( =êù—®÷áóO£­’¿Rïzx¿tÜm1îô6]eT.ñ¯•W‚ «ñ/¼6¥ÏDQÑùþ5™ø3ÉzðÜo‚)u?ˆK,íš3ëA‰çá4< /Ƴ?}ùÎKo´e+Rü[EØÒ¯`j€3Wi‹ö–îª0£>”<~•½p±û$P7º×;¤5dé©ÙéºÐú(ùîu¤íǨVÑ“üNOÚÁO¡YknÀ q²ôš“~»æ¯è[?Gò‰VVë²8U¯/_Û(Mä͈ˆûGZ(Š9nT]¯JûE¹7ÌÔÚÍ+ž^üÜ9$oñfU“”q9§™QipÞôÀ(g0Àóá êôÛQé½_Íÿ3zÍŠ°çÕ§iÝhIpG›:œVí;²»µj‡á<õÑÕn!Ùø7sÍP«²€­ÙããÝRhHÀ4I’C¨E†Nÿÿ»øÜƒŽEdH ³ _:ÇF$f½’ø$øo¢äê—¡«ˆUà#rËÎdtDžxà}¤¿OÞ‘fŠhmö^§3¶W Cýñ¸êUü±b°¢µJS¦Ó: ñ!6¬J5FÅ ¨´É•ã‚æ™Â¬k³U³’VER‰†RRâï«§¦Úendstream endobj 649 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1039 >> stream xœ-RmL[U¾··÷x·•» ìLÃh/ºEP>ËFE˜ ËØ0ãKCˆq…•1h--愬ÛZz€Ê×:p¤T27ÔEçBPLˆé¾0èp Dz,&î‡nï½; Þºåýñžóžó>ç}žóДRAÑ4ÍeæìJL®·Šá´¸Y!F0˜´KJGX¬b°J9ô`(š6Båz(Ù@14mqÏ4[¬U•6!ª,ZHLI1Äú„„!½Æd­*3Ö ¹F[¥©Æh“7…sY•ÉÖ D¥UÚl–çããGœ±¦.Îl­x!:FpTÙ*…|SÉZoÚ/d›kmÂ+Æ“ðhº¸G9Ó\c±ÛLV!×¼ßd­¥(j]ºÍ¸go~AaQl†ÑÇd{‘]«Y¡Y‚«Í3°4yßO?Ï@¸I ‘È7É’Hô„±ÙÈBÂØm¨)]Dïä;6qùƒŽóß÷½?¦uMUX+obM³ö´uµvèxÑÖ< [¾ý=;­¿0b)ŒªÛ{q7>É]-™LÎ,®·¿¡u׺x\#g¿˜ÁܹMyîÛÓèqá 7)w`²™;äMýýôw¿˜Ñ¶q7´8¹ŸQ1lR7¤>ƒc®ø`à£kÕ5Ò&?{ψ2;¢Åÿé“(™¾z/è=‰=Ö” ^ •…˜„á Z¼·À€¾TC­6Þ~qŽ„èHÛÃÞe)4¨È­ï/¥¦Ç­N†—42ÈØ4œ”Aþ]`Ä·áWùÒg—ïàyn9é" Ó’c–Ðp‰…$ùÈ%ŒñžBÀ~ýjáΗ $RG¶"^·_ï^ !yª¯3â_R¼ºð\I_æHáÈz¢¨í.ªÖ}b:stêÐÕ·ú]~›¿®ÃŠë¹ŒtÖ=;SùÚêÔqã‚ù:Ö@,„Àpš¾ÒøÔÒ™0Xzb÷)|…»2ÿÓ³£ ¯ky) ˆ^¦!MR0bŸ¤T/#öy|˜ êeWþF‡sXV[åê-D4«J™/eÚ'¤ÇeÓD,3Rƒ,öôôJ¹…„>»s;Öäe»7è=ÝêÕÝËY}ðÈÕè9Ž-²æ†Avc¸,DœÕò°E“ô8 1ðxÕ¤?è4è—q“ö~ºS¼Éˆ7¥u§wàV»©ù˜ÓéÒ®|þO6ömÆÇ4M=Ο·«§CËÛâÞSðZà½"¥¾Ç¦×^[§]«4øUk¦½*Eý†ßàæendstream endobj 650 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7123 >> stream xœy\SWûÿÀÍ­Ré- ö^ê®¶Ö]WU\ëÀ­ *²W „0Âæ°÷N˜Qĺ'Ž ¶ÆÙÚjm«mmµ­ísÛÃû¾ÿ“!}ëÿ÷ûñaÝœ“sžóŒï÷ûœˆ(Ë>”H$/pqu8Áðï(aˆHÚGxË"G {þt¶BÖÈÚ²ièÁFX6šÀ†”…Hž¸ (8Rêãåæ0fû;gÌøà]‡I&Ìpp ð”úl÷tpñóö ð#þ«ƒ¶ûx†E:Œ™í<óý÷e2Ùx€ÐñAR¯9ï¼ë ó óvXåê)ðÜá°8(0Ìa¹G€§ƒÉºñ¦? ‚‚ÃÃ<¥.A;<¥E­p \??hAðÆ…!‹¤‹C? [îá,óo[¹Ý%jÇrÏw®ðZé½Êgµ¯«ßÿµëƽûžÛø÷'LŒž49fÊÔiL6cæˆY#gúpÌ;óÆRÔ0êcj5œZA VR³¨‘Ô*jµšM¹Rc¨5Ô;ÔZj,µŽG­§æS¨Ô{ÔFj!5žÚD-¢Þ§S¨¨‰ÔjåDM¦œ©)ÔRj*µŒšF¹PPË©é”5õ:ÕŸšK  Rƒ(j %¡Þ Ü)–z“²¥ì({Ê‚L ¡¬¨¡M½E‰)ŽzêK½Mõ£V’°Q–T$õ»H!zÑçƒ>uƒ-äW,§Y°l•N ›Ä´8Cü/f1SÏüñZFßÁ}kú ìçÑ冀£õÃ×¼~¤ÿ;ýUý p ˜0hÄ 2G›*‰“¤í »7ªÞø7;­ysÙ›ÏmgÙ*mkl¿³Û͵˰»koa8¸Ï`ŸÁ7†¸ùq¨ãÐCoõ«ü­[\>÷Ç_u(søêí1oG¼- +ªû ÕH÷›ôwE ‚¯è…»¬jŸ2Ã"Ryâ×»4vJ†’Òâ’’âQ P*¸_èÊZÔ´K†¼øšß¬`]3ÜÊK†üjQ%ÿ ]QšJ’ csø¤¬p¼@g3è+Xo…íhã¦Ð¡sÕÙ<Õƒ«ÞVòÌÞ`›QÙvn>­’…êQ)w¸÷>Ádº”¬»Kм;,¢%GžÝÚwòtiÐÇ–íç5æ½g>/š~¾þÐlNòÅäæ#—3ƽ¥N´Op³€Ãð% VfUM—Þ‚¢ùát´ø× ~!5FY©kЮ&©i(„ Õ£2¾†kŽíq…U8­%{בW3-ŠÂøÇ°ög¼Ö*,üïC†º=¡7ÍwzˆÖo"N`ŠpŒ…Aô7Õ.¾ÛüœÆò#hXÄ^®>| u07—ßÃŽ •êP9ßÐ¥¤%/‚Í\”NƒÕÅÎ;úMWfVñN¸˜ÅˆŽþ¦i¾ÛÆ+¦ðdã$|¡ÓCÞBð²ãøŸ±%¶?Â’Þ…>Ðç‡Á†Ãx*ëèrûÉwW®\¿qÙyÂx—yކ%âtB¾N´_W/Zrá[Žê"“㓹´”#õÕnQ¯'agɺƒ±3^ ä/¼ Ì·v‡¢8U Lãß™º 1¦þcá¿w^<»ef)Ÿ•©hBL Ò¨ ›a©Þ×ÁÕîtÉ%žº 3¡‚½pþô¥[ççO·ÈyчÞsx”åCªfÄ€èé “~z{“[¤¿/yÚ˜Vêù·äêÒþÿ’‹îI’‹zØK¼´S8Ä–¡\TÈì Gr? }|ùùb9 ßc0”; Eb|¯+2>%¡x{ŸjTÅÁ zw^A3ÿX\…ª}¼Q„Œ[€µâžÕïé¡RoqQ¶ÛŽ2¾ºKN÷<Á6l‚L…)Sa,¶ç±¸ë+(ƒU;I>¿¶Àf~ºe L ±ÚUp`MGyrÁÛêW‘ˆXŽ|KðÀïÇBŸ«G[k4<öÛ(6&|-É(˜E—ÕXÁo¤°«6Θáè|íÑãkú¯n™ãÄ™R7\îÆpØêè7“üõTÇôZ.ð¦£wö}1V‹%]¶âmHѲUWqOº‡Û8l î¶–îñèMñ®¤B®ëµÞ¢k2‡xO‹ØJŽ€–³ß_ø^ç2B+duˆ©V—7¨cN_¿4r™+/ùbi)܇î9é]Ü1³÷ J{«[tïâkøý¢‡¡äŒ0´, ¥_iûPð…¬WØ>¨×#»»”¾f‘ßëèuô˪´¹¡ƒX¿ÎVòNB>–-Ë’æfTŒ>aê›wýðui@H—•µ«»@ôbCí…¦(Ó8w;’“Ï ›áõþ‹¨ÇJ^ò¤-᫘µƒwîô°yuÑ)—\™R‚CDø±b’6”g´sm^§Ó´¤p&5}œ—ÄÓïÑ=™6cЉ °û§Òã®zݼu÷Pg%Òxû¦GDqé.«âÃ3ªãÍ Xô@Þä„N†ëÌÖ6;cvÃÞàö÷Ñø¯ëRJ{Ÿ _ï,)ao!5K9óQS¸2û%%Êá¯f6ÃOƒ*s“.¯3:\É»Á=Ú˜[ãI†gÆúÍF»›9¨ÿsF=Nz““È …­Ú^9qç ñPf5°¯·è€êRbÊìyŸÙ<Ê`yÊ)¸­Õ ÁÂ|—&3ç¼Ö{`-Eø6Ám+íßfô8¬‰1~Rì£Fd_…jPÑnS ©:ÑõNXLb3ŽXÚôÒħ^Ãîu§§ÍH–'lBõ\vNv*gjåjiXx´ß²O7?ë¼{æ;C2¥hÀQ:Q¹g!l1˜¬!ë…¢H‚¯td¨‘ý«ø6z>I¤ZJ}ÌÑØ‘—R‹¼Q<)°¸ðÔÄí˜K‘1éô:8iÕfCaHÞóv jâ/âÎì°¬èýÈ~?Ê*¨ÔÕ=Ì(ͪf2èœu­øµì„â¨JTŒZQVyv5ó2þuÏt6gõ[;Á…ä@„Ч™­ö?ž¾1Új“ñˆÏÉJàÁ_|}Í}°¤,Ð0Æj?]Úð2ðÝ­F ¼ã¨¹Ï­ê»Í3Ž„tK±ý4ôÅcð@<Õj{ï«ðš)üÈŸÿtâVA/UëÙc{wUht`ÕCþÑD+Ú±àüÏ$ïÊ¥e(‚`†ºŽ“´y R`ˆ™à%Ñ›[¤?ƒ7XÞÿC>ô–„HI¤*“\k7;ó´ÞTmíRîì}¬_²I]‚A²ÂvI¢Çr°G':ôà)Ø'fgRd¢¿}:\¥Ò$V‡D»ºW×É.†á?³ãQJ·GiÒ1Ò@W¯´èt”‘“J˜ºÈJipTdˆÇžímÏŽ€]Q6×£ûnê!´“(±Ú@”¤ˆO“%rI1òÍŽˆ™¶àÚwǵ †!šOŠÏð®RÖ"¦VSÑxs8rÃó>ÆC'cëïG‚ ð{~ªèN“ázhÒ‰®µC]»¬ØX/U`R )Žøc“¡8-7¾VŠ”ˆYm:¯5ó]J±_D÷aî½L?^Ém¹Œ]³còÃJBqÌÔËá xãEÇ7­‘'Ö7p1yÕ³ˆN@1(!ÓÐùÄ–Æ•¦«Q&ÊÎ,Í.d ¾ÄŽžwèpeAs³š¯+/@7Ó Vhªû¼­£m ¯ùÃ<faž-«@U¹²½qÕ|BIäžÄ’Õ•-wsÏ ÏÐQæŸ RÒŒ2Š¸Ü˜Ó£3Sòc‹P9Ñ“oÀJÖžˆdÚø3ª“è*:ƒÚÑ…ÇKÎV«£N¤*r.XO޵aO™2õß7‰É2¯šõ3ƒ¾Ñ¥Îñ®%]”}Qg…ꬼ3“½ŸôXÙngpdFZž´å‘ñZ”Ób°ñ®>¼sÔ"]#A‡Z†ÑÅ-¨¥ÅÅòx §‹Q‹·7òŽåðp52É˜è²¨Šæ_Î@ÝŽOÜ·‡øy6JwçæedæV€Úk¢va‚…0ƒØÑkÄuºgS2IðÓ´]Á^á9›—„R Ǧ¥«’q'»è„„Å$úÕfçfäs¿wü¾¼T•‰r‘}mas^…*;6ÏÈ`0HDŒdw:ØÖ€z?O©¿ÿΦæ}u»v,™®ù3L-:/¼k!¸ý9€Í+Ï@(Ÿ©Œ®…'FÇ$qøë-NT¤#”`Y¥®Î++ÉíhÑ =|B 4Ð Þ–[Ü[Ž6^û.ÿÛB°|ƒ$–7p:C_£ô?ߺyí<qÆ}?4ñ¬Ð_÷ M2©ÇËÝ—Êò¤ØØdÎsÚº8yš"=" 1ÒÊ䲪¹ûs]3'ˆ{É-»7I&Ð=‡2úÏ!lO\ÿ5WlGd™S·¡QoñÙyV•”Œ”Œá~ƒÇ¦¶®¾[ô˃8¬¢/œüñö¡ý—Ú^F_1`=ê6îûΞ1m§6®BSS¡-N.QåqeGí:‹˜{_l™¼hãJ'WÓµ9d^4\ùîü¸‚õÛ M<,àÛ¾W{anÍÿ ‹±õ¢M‹}ë”jÃb¥I…©YÜ®]× ýÕ^nÑÞÁá¼_ˆ4Í+mUJ4BŒäWºrGéŸO.Y¹|õ² Ûç ásròHÏÒs2ééJ‚á¶ß<~ÂIž¢ë›/85*Bˆkç+6àW[É7‚“ð9[]®ˆKJNJä‚BJR– 1Å1%2 FAа(Yt`8ŠdeŠò¢ÜœÜ<®I[_^Š ‰6(‰-‰QGìA H[^S¡.k¬F•Ý0Fé„×Ô¢Æk m·Ø©¬*†ô¯2Æ· q9˜r1*KzcéÔÞ§ wê‰ù>\Š’Ócd žÕŰ …_¬ð/b£“Û遼©D9t®ÕC:qòÐ$سÞÈ=q[8« ±·×ÁÕ´o¢ÊÇUâHÖ\™S˜Ï54¨X=¹÷á$Â:´.ÊmøëŒv´Éti¹é¹i¹ BéÙˆ|e tÂzxz^Z‘O|~÷ôÇ©N«ÍÒ­:Ñaý9Rª¯pÆŽx™F¸£D¾-E\´Â{0_wA]™™‰Jƒ‡HñÓI呆".ç=ºeDU·DƒLl!)­w5|ê`¸¹| eÐÅÎw9Ò~ªýø—wÎmZ·ÊÅ}>ÿ¥?ûUÑ6t޹7í?˜=sÕÑ _†p’_çE,]1oðØ'“aØ<~øô¶óG 77³ÓÚõºó—¾{|nÙòÅN«§êîÂ1Ѩ˜‹Ô÷~°øuç?”p™Í:擃ä(0.˽»ÛeDgEhQʩ̨0}ëÿ<Ãt˜ÐJ"§_× 1w Õ9êÙx<ðÃ1ãCyeD”gçää¢ ¦6R"•EøU.$=‘)­A°‘„’°…þ]l1j:‰%ýpÐ==…NU9ÀàÙì̵ŸÝzp½ýÆ!m˜¬œ¯÷-^oDô4”Œ’³HŸ®Y5368õ·`ùOäÆ,_æt·îƒëýH›ó——v~£ûù–¡þ¥£ÐÈ~sÈ ­GëÝ6/c–ƒ‚ÅÑb·ÜmÕÑ's³ óQ £ ­©¼R¶L??˜8n§ANïjBuåÜ>1ô¯:ù-º†Ú‚~Æ#É¿OÃñî”Êòõñ ɱ(†!¶AS[Üú…ë Ü·k5Šh$UpžbÜ'fé\äˆBs1³ý™k–« ×îE'Ññãû; ¯†0žÝÀ¬ƒV\0|òÊóKž¬è²dcÖxÊ£’R•‰HadÜêÏ€å§Íž^!A>AÞmF§tÀ°Hí€á¢–öŽößÉ…°àÏAlvaf©Û…&Ê Ûàú-J‰OKF‰öòrEUm^eQ6ßüÆÞÚyaÆ+[Wœ8Ñzá7e!+o8|¸ª¡¸¸*ØÝ]Lø{ ¡®;;Ú7mô\9ïÃOVoÛwþ¶i¦öðʦ’’Ê€mîò XC&·kwµI¬lQ^I>ªbjäÅ UjºJÉá{x»*)&ÉíQL~\a"|‹=íJUYé„Ê«ŠkªÈ«y<ÞNV¦¾©ƒ7u"­>·ý~;Ø‘#~ Ðì®^}ÿ¥¯àƒúN ^£ÙvIvæù t^ñù kÜFoÍ[­YÆ%$¬\š–.Ux£-ÌÜc >?u yß.®\~h=AÇO¯ß‚ÒBÒB’ùwyŒíDžGUÅšõÑÂ:/ƒ±lô©ôÓDJœ¯¯¯Þ“¹Déµa5'Ölž¢Ê·4¬zGŽª"tçZ¯d%bÜâ/5/*>vÊXãë®Ý»&Ú'¸Z.ðŒ-ÞMäÑN¤ä‰ˆWî$òh·A“½Àï²¥­dÄ× œþ¢c}ÉH+Ñ­dš?C ý;>ÏYâ²ÄìÈb<ðþ°G`‰žíW^”—ʘüduH ÞŠípîwtbËîôüÛ«kSŸ£Î7[l/Q&/à‹ ß–GÞ'Öޜ׊i’,!º(1'•‡éXT†§’>zôNÌã!¢II h&!WV×[ L˜nbOê ‰ünÿ®‘("ÙÔL£¦žå<[á~×fÞjûñ 8^A À ñP<Ûâ%ø#èíÁáÑýsÚ •Šâãyo?Ï8Ò›Rc‚aðÎó_~Õ‰_^Ã/Å×ÙÍïÜ?zöà‘Ã+gÎt[µÕpžGša~r \º®¶¹*ØaÙ§¶’ÃÈeu>;Õ×<™(1ê’Ê²ŠØ‚´ ^ZñÑîR .Øç•ä‘,ÍFÛ9> stream xœ•Witeº®¦Y AgN;‰KUÁåŽE‰ ˆBXcÒIw‡N§—ô’­÷îê~{ß“t–J:Ng%™"(„UˆÎp.EæŽz‡{9_Åb®·8˽3çÞùѧºút}ßû=ïó<ïS—Ÿü JÎB³‹Ù¥ª…ö:c…Ö™xÝ?³B&sÆp“F;9ÆG× "oÈ÷Àtt4÷ÆcÇÁ‡M@özЍߍ]Y ¸Ú룣û‚d7Âô¿9têß÷t¤¸ÞÄ¡Ba¬²èÈ,Þ° vâ,v©v/Zv}vÈœÚñãÖ„ŽýñZÏmþ6º,ðÑá¡Û¨ëuf… ,[Ù¹EêÐ àpÙTÒ]¥€?Ç{}ÃûÐ<2Òão„6|\2Tô?Z¼2œ¸Õ…Af©áª¹C¿ „ø“ŠÎÇ÷ÁÙ¢kÍkœ‡±“]ÇúÛ‹îƒýøûUM5 ‡ß2CB[@\¹@^(/‰ŠßZÕs¤;ö6r”ûŽ}‰Š§] u}x™¾@ï ü]—Ï‚:¡½AfÓ(@ySåtoËÈÁõâ|QJO(N¿®üá ¬@1]tÐã¹Éþë§ý€·˜òwÕ¬*csÈÚûËÇÙÜùG—}ƒþìzÔo Xm‡ÙJ,{ŒåðLŸõF]é¦ã¤Ÿ £…ךºß—¬?Ìþ ¼Í®4[ð‡ó 4fR ÞKÿI3÷^â3¯ûhñQô(z Ð[8úÕCc°»Ø*VÃÖ³KÑÌGÐ/ýÞÈ0aÏã°nÀ+à…‹èÎýhM$`ñØÍ›ÕA(_ÉWˆ¸)Z—4~‚³ùAÁ iñoá+8Ó…~þ Â&ÿxu/7%¿›|½ïÑB¶]öi0Nrþ^P´y“Æo'y ¨¯€=#»GFG[•këœN£”¤à™è7} Ýû%ï±=ÜÄšš%h«oVUUÉ«´5==Äò‚hŠÓF2Øö|󯣶¨íFÒ,ßÎâµ;ò ¨ñ­ý¢ýW‡ÐüÐÍáTн!Y[x%Ü‘ð7v甽˜Svø Æs³ †Ë¨ò$Ÿyˆ«¨µ>®TIURMcmG2Ù•$ØmZ"Ð.ß²a#ç*u  õ¸¶´á͆Ö*E¥º¼d¤zÿÙ+‡¾M—™¾6hOö‘âÍó7Ü.:ärµ‰Äñ½Çß¼±Å^|+=e2qŽ6ǾŠÒ¨l”‡ö|8q…F¦– ¦Ù®ZavÈ ³Óà®AÓ~·ÅHPvþI{=×Dk¶ªÍŠ5…¢~ÂGyþD?õ¯µ°,`§Œ½C|ýHÉÁždóM$Æ"ïÿÍ<׬Pr©QÛŒ{;¼Í¤7^Ão¤ž¤[z{;:÷Ú»çðƒ ÜΨÃA«Û N·c e*ýMîJÑÃ=ª¾í²mæçs ±°´DX‡g~?ãÖÈššw¬éÔßÍz.wtŸ?A•åçœÖ×áS.oSúÐ׿|³fj«€3,/¸ðˆ)d°X(+E°ßýWž ˜àÌ6„L‘˜'÷s~ËîjGoÐÌâ6ªEÿ!ðµs©Í‡ÇõáJæ™ö7>¡ô\9Žìºˆ>Þmñ¸ o(vp7ZÔ[5noƒ³0<ÞÙÚ>$ûG1±æuÝú·¯¢ºÚþϘ¸•]§ßl(¦ŒÙNÛ–'—¾YÙ÷^*ÐèæÄ!æÄ1Ù‹&iÞèiÔšÏla(Ái"ç³$»ˆ`uO¤Xþ×è!´ ÁcÄOµ]ù(ùÎÐáqÀßñ¯ÙPd.T>Fš*†mêg…¹¢•¢€KÔ©+£þ‰®o¸}VëÛl‚‡ö1shÙìØ ôwªAK²}³5P ;¶JÊe[ÀŠ;Á º½A?ñΧG¸Yˆ_œ½€ýØ®·ªÁžmÔÒ}¾î&×ZJÛ™þ6ÞEñ§–06AÔðAäf(Xˆï²›ÙúlÐmÃý³¸Áx$ŠD,>½Ÿ¼A#׬Læ[ÐŽ~E£èFùhÞ3æ]ÄNò˜ñâsZpþÍKóeµrñfÉ›k—³Ïüi^–Óî³!Û C“¯•<…üôççÐ3(²'v­ãÆØ,Î{™ï¸7Ø Ì£‚H„ËRÜo÷›­v›ÅJpñ9X‚~jN¨e:ª<x¾|SýtBn¿ÏM6 ÷zý\nïYßÑ»¬—Å'8Ìf¶† gÝV”Õoå€x½Ò¡pïÃÑÒÎÙ1)½ùKÀ'’c>‡ßÈQÖHq¦¡¨ÕB!¬D¶êOñÌjšÉDbHJÏf‹#sÒwœ»“¸cæ’¶Œ¹ F†ý7Àt_endstream endobj 652 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1318 >> stream xœ“yPSWÆ_x$y"Z¡}"Š/Q±ÅiT  bq¥…ÚNqÁÊ4@„@ˆ ÁðL@Ä„b5á@@AöFEÜ.2j‹ŠKµ¸L‘–êhÑû˜ë Ì7sçžîw¾ß9—G¸»<µaÙÄe!7‡Çù¹qsIÐqåãËøàI‚§ûQ?þ‡Þ(Ý IßAf$§Þa פgiSS¬8 q‘8(44D" ¯Q˵©‰²4q”ŒUÈÕ2ÖU¨Ä5‰©r6K¦`ÙôåK—êõú%2uÆ6eå"‰XŸÊ*Äär­Nž$ŽÐ¤±âõ2µ\<ÑÚ’‰#\£NßÉʵâ(M’\›FÄ”À à>þäÓP‚ð"¼‰w‰÷š˜Iø³ˆÙ„‡+áN‰«¼¼‹n>n]äzò„{gšÎ9tŽq¯ý)ª}Jr9h€†7Æ~åÕø'Ëk6öéâMÊZslu–÷»>;³æVæè‚G¶îç­–§ÐOa÷Ó©Q¥3öœ‡ð›õRõË»eõpnì²–o‚Õ ß@a£n~DŽ(—78¹#ÎÓv2Ü#ѵq/ºÑ\ÎlKŒÉ¥6ÂE¸ÒH½-&› F¡´[A§K¡ÝÔí¹À©JLå­¢‰§ cÿ:yÆû7‰Ž¡ºÊÖᬪü¥·ïüE¡©ÜÁ^Ø3,08öÄÞÊê[Ûù­``šn^«?Ô³®°kWaì¡rJá3 ù8¹8ÁÛ$njϡíP¢Û“ŸŸ“Ëà·‰|%:¶ÌEϸ’a•‚!K!ôºTC“ôXáJ“µUôðµsžp5ǧßòñAád²±ç(Âè¡r;I$æúèŠý's;€B^ƒOlÖ½–}f3ìû^”´[jØìšl¬MUž[l†| ö€1K„ϳÀPUb)*)fÊmm=Cp¥¥™‡R ¥Éù›5ñ™êDU |_·³ý–üP”£æpKkZ…>k{nBÐÝ@$D^¯GÑ D…¼Â[¿ËN•‹&{ä| ŸlàEE#$bП4<˜]Œø¿Ÿêì©cðìHZ iÕ;[ÙV×Çî>èhl¯?~Ä~®AÓ:Ë¾êØ‚ §Â$ÁÌtWÌpÒ”•T °Ì*tz Ne<ÜCìžSÅžžƒUžÓâf‰"endstream endobj 653 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2574 >> stream xœ­VkpSe>!m8ÐÚ.¸YZ.çd…ÜA.îŠÀ.qQ Jb¹H(¡IoiÓ6m.M/iHzÞ“´MzIÓ6é%¥é%¤-k(7[E•uUtÜEvTðÂ"êÀwÂ×ÙZfè¬Îèœ?çÌœçûžï}ž÷y?1…Ó¶<±kû¦Ë˸9nînžð¾¹wB»#!ZÑ}s£oÏDžH‹öÿ† ¹K‚2G£R¤Éó%‹S”¬xì±UK$/_þ˜d}–L¥H•fK¶Hóå²,i>ÿ‘)IR¦*dùÉâ5òüüœÕË–.•få-UªÒÖ=¸DR¨È—K¶Éòd*µì d£2;_²Uš%“Ü#¸ôÞK‚2+§ _¦’lQ”©² ‚øíúleBŽ*/_-Õl‘É·)2³’"ˆˆDâYbñ‘Dl'vÉÄD ±”ØHl"þD'¼‘q1R*š.újêÞ©wÈ/¦åLûhzÔᨓœ%&t ‚èAn—GšZ'¶tZlYPe W ÆoÄ•jJ5 Y¬…l´nºŽÚzaŽYúádô|‡|-02r¶6þš‰ô"–™s™Bˆ/˜€µÑ'à¤m†!hÃêZx˜ô´AT:0²%V†­t‘8‘KwãžHœ"Š QÆpÌ·Bô* Ší¾Ñ/®ydE‰{q¬f]®²ðLɤSég¿AsZ  /: 3eÌÍY² ÈÃåÐÒZ×éôÓýÃh:Œ‘—Ÿí^£Þ7Q…c‰ °T Ca®Ôf²Ø ®–õÚ)G_Ë~ ìÆü¢J£YGoÀf=TÂáøÌŽ’Vûqëi'Ã}:Añ6 v$r×P¿ø» pNY„Ç3¼û4ŠBÏßD«ÑL àZ±|wó»ƒ(Â{†ö½1Úw È£'´æâÕN:{sRú. cBokƒ!QP€V¡9Â;óB‹«\`–l,=õÈS›ßY *ˆÇA¼3XŽ·£EO¢Åï}Ü~þCúÊ;mŸA-.…¾Ê-Ôn¼ÿ.y dÀæš^Ü;硆½hû§ˆ¸øÉuïÛ@ÞxyíCYTÐúzðx­à©ï "zBƒâÛÂkx–جg˜, õ¼®%u¦Zº zm>8 ‹?¬«·C³–-+Ök ‡Ðº^eÀÜñhÍ7|f£¨U/þy람¢<ºè辦ƒ?»øßéÄV;ØXÇñ±!Wíþâm;ä8¶TI+þ¸]Ÿ rP¶•#c¸Jc+jCd Oy3Š¢7Ñ»âšöáþõÐÁxt{ÕŒ”ßKåV÷ ø{‡Ïìf^ï® ûÐ3—„ÜJn®X¦…4°ð›ê¼Þ~ÏÈ+I}kÖÊsô*]Y¸2aå¿´=¦ÓegÊ`/ÉÀLöÀ‘tÊnrÃËä@†C{Hž²ùBÚõ®7Ù³Ôé~ÏÐmþC¾ìvUõκ¬šè'YøðV]òÚy2bÞš‘Aô”G€î»)D¯p¿,jn¾ÛxÅôQÝq›³¦ÝÞYÿ8Èv­[i™ö”Pixaäj‘†XÓ .úï¢'q¯Y`Šß<¦8‡¦¾…èæ°¹ Fg¤¤‹S4¹@–—°Ýn«£ª‰Žá|=V~‹–¡¹Bî4'¿¿¯±H~(--¯±¬ÎHyŠÝjÈ"ÍR|G$_êí½â}‹ªóVÕC39º«oÇüaè*(cºæ/ K*í'\Ð$®¬ cÜ¿MªÏ2_Ñ8vö(Š­ï¢ý×_quòíÐUPŸÊ›ñU¼/Є„=“q_ý×BîS.v‚Y5Ù“× 6½Àì4P xÐRbÖg©âyZ~Íç+ƒmçüŸu¼A×z«~fQ2Q&@¹ü‚üò1_c‹*Z±eÙ:(‡|¶°Ñeïn…r Ó¡IÍHß¿óŒâ}4 ÿ}½ƒŠ¹3Aî³ àÎpˆàɱ¬Ûzž›ôŠžÆ›Ey|Äàã­qrMæN“5‡Ÿ"­fÒ'm¢zèd,‹ãSœc*­T[T@êø_̶âfºŽÙ`†,wG‡{ŠåiP—G£y\0’]ÿÀ¦®6¶A¼jêê\Ü<îË8–ÁÔøs1Ãh˜øFÇ”YpwkCýázúe±Ÿ0–áuk'×¥ Den5ñq¶$Ú@+yWNA²^¢#([|¥¢Î%Öó9…gᥘxû¯hFÏk6÷)úlëà 4ŽÂŽ2‹**¨õ.„b “²û^óÚkýtm@Üx²®Û×Û婉χ¡öœŒxl¥ï™%Ž ¸D~~] -³ÕÖ¨·†)fp¬)®”‘MjZ ¶¡…a(¼`üÃÉXQ¹5GªO4Pç‘ÕÞ5úåUˆÿåƒoWªN¾ŸŠ }£ QOõgrýh Q³îׇ„èšMó]¹WI4 Ïò?@áË?¢ñüñ‹qrüPpŠŸô'á´eäGÕ¸ˆ|q÷ܹ.ÂZQQ¡¢ É•ü%€Ä4ßÒw³ï;'ÿi‘ M”.%7;È´ÊîÎ&p8ÿIÛAÔ÷ëá˜z(±“ÄsÚÄ‹E‹o)–wͰè£O`­Z¿ð@šž\¦MH1M ¸¯;P´#C³ÅEmY‡ yŽGíë÷ûRX7Þ.6é,ÆŸ¬¬Óîe­ô稼¦ÉæWüÿïNC…Š©¤cÐÏ ®Þü¹v7MFï3çÒGƒ^¿ÇIýt>ÅÜÙ0„¡þ^œTfmé~ZŠ×˜òÊR¡âîøj¬>å¤^GŒÝ7öÅ翆Ïß+U(¨‚KËAÍ?›`ÓÆ_á²57¢m Åü wCÜÐêl³’®f¶Ënª7ÐJÈ´dC*° ÏXÈ»¶ì¶™².š™Š]ã[p;ܶN«âÛ›ÀÇB³šÞ Ï[vƒ^°£Ê‹&½nñì'S»0§âïÃȪN–G¶ñ©è,­.¥÷L"÷M ïî7l†pWŽýGgU±&´@4v FnkܱñM6¥á¯D¨c]^>›F _ ®¡¼)P‚¸X[MGU“£l$³.¦p–H L¥)Ÿ©à³E-à¢b´Íܳ$c;šExŸcjpúí(jz„F=-PÍFÇÄ8lIendstream endobj 654 0 obj << /Filter /FlateDecode /Length 7258 >> stream xœ½]K“Çq¾ÃºØ…>løÂ;êzW™¡ƒ¶BRX´L!BÒ‡!XÐv ,@ üõÎGuWfu×ì.;tаÑ]¬||ùªýëÅt0þ¯þÿÓ×~ùuö×·þú¼~J°‡á÷«åwö& <˜ÚÏþrq®áKCc^Ôÿ{úúâ7O`\=<:”©˜‹'ÏñŒæÂÚrp&^¤Å…‹'¯}³ûÃ~:L%Zgw§÷ðÛO6Ãï·ûËé¦ÉçÝ ýf÷ǰ¥äw§ý%LS² »+ZQr)ϳŸÂîN>…\,lw:„,¼|Ø_Æë3~÷Û}vðìé}áG¥$XóSx3…i:•£IäÛ@S  œSÞUºL¹À!½åç0«å…Z4ü‚ÿò»?î— oŽ@1u ÏöË|¯ˆ?àßÃîž&»ß¥‰qêaÉ#ÿ‰6–"PI¾ýŠWš§€³/G{ÅCq»?á){c“úî`à/p­%ÏôHðŽE:-l-?¤uO¾„0äHùú›JIÅL]ב}ê¶s9í‘áœ÷x‰ì›¶§0siðFžÄñ•ÜȲ„¿‡±;Ýý° ¾ú~ùêUc“ãwb9â¹ÜÛƒÔ˜œq¹—óz/;|^öo‰§'[³!ìvÒ<{äñmœ¢œêóº/»ÇûË:#¤ŽÙ±8\¼ üÏþ#î^ò~0éõüvNêm¢i†‰@K0¢:MôYðRˆ®ÄgÏšÄÝòÀôÜm>¡™ŽQ©MñÝ›Žì&ƒ¸€Ô¾ÃW,èž’Ššd'‚ho“Â-(ÊO·ù\+­É¿Ý5©}.Ùñ-ÏžŒ¢¿ç'p”üý†–1F¬³œh®Û)~òux šÿ9‹@€sšÒ,'Å÷Ëh·M74yL#¦Ø¦ØÍöyŠÅ‹ÑŽ‚x‚XêzYræeãªá©•v”¬Ã'b<0"™+`ÖTâç~’†‘ÜOS±ývÏßcçÅxÿ ŸfØK<Ï2tNO…bDØ`ú–‡Fžéù„6†T®ð¶)<}núÖÝbJy.×u“%Hãò¢Y‹g¼(ŠfËêºjtçw¥ ¡EƒJù™˜&QuÄ­8rÊi¸ÝÓwWàòlñQ*Wa×¾ofð¦Ì5Ï&X™[–W!åYÄf{Žª*ãx}#$«·Uu}ð$Šö^ˆ:ã3s¥^€áK€8¾ÊC]µ6 õü€ñù €&ç{1®oÜ2`„*x´°Y­¹ß7>îÍV•µO|!Çàj¢ûøü?‘í§yà8Հ߷̯ Ží 'îM­±åâÉY(| ¾àîô¦=Vã-ä­(0`£ÚoÇÇ®mòٌƃY„Kn[xÎÌ$9»:3óuå òõþÖ8BJ¿4 J&¯šv&."¨±Ôâ28¨·Èáš>sHGCnúÐ#¦¢#xéY@3ä*Ðø€•9ÒŒ4£1vW^5`{XŒùfœº™!)¼¬DøHŠƒãÌëÿïhî¬ ¢ž@$K‰{ÈiÙýîôžÝ?EXd XŽ…<Á¶×”Áê–àôùtîxª˜Ðù´¤ÇùÂTÀ'ñàÜ–P4Öû´òÑ^2z†¯ÛÎïÒÛ¥-#ô¹L<Þ6ú¢×©è”aÀ÷H´ò D”îl¾á’å-}»o€]˜/w&_³©EË匛M pè͈@B‹Þò¤D–V† ^ãþKƒbGä3~ÃQŒ²¹b}T :ý·ü¶§$»oùy2FíEŽ‚™Ž:àÝ×½žT…0€N1nxÙÆù4O(´Êàrã:ø;Ób\ƒãM¦lÇ¥ÄÒžóÈ0æÚ¬"#;B<•ÚïÛk_Óe+°DÕÄ4$4Š¥T7•hè"Z ×ë 4†)› $Xˆï‚ ~s nS¨’Å1ü00GÑ"ù´„Vîå3/" œ1!æ/X6dÀÕ¡ª ”Èg•ju'¾‹¾W¤¦‹e§4õÈ`ófª‡WÀGÝÚ:bÐéK èWà„Zrævf¿=<ú çú7KGÒî_ñg„ŸЧüóËöÂË~zQ.|Êb ›amæå„5x’«Á&F¯Aå)ˆÓÐÎKïû“Ý;/õÃ$âÒ…ø©¹Ä"¹3tÌIqËbT)e©Ž\*Áq9X>’˜'™³Á(¤•´Álr]œëîr ´–’*×x.¢zK)9&šQ–KÈ ËM†ÙG¦Q†ªeQÒVHš+U@&ÃWÃd¿,G²·¸ÏQãJåPŽkåÎ;ô¥ÑCdDÚ‹)uLÓãùúYÿ˜Ð"€Ãb(¹´¹i*ÞñávÞHÖ­ ô0O¹&:ÄPYçCÛþüM¸H‡’&ú$€’ÏT¼yˆ–)¼áÓ¦â"”g`Éo~Õ;Býâ àa¿h»h¤Ù^Ì0•‡­+`ApŽz]ÿr׺è§2çZÃëeM€ïZU7V1ñÒËÒÞÕ Â¶f!‰#ƒ|Ž/ru¤2<‚Î\O}Ê"ë0À³U‘°@9ÛJ—Q–·w`¦œ—óž\)¨ Lâ¶v ;Õ/Ô7ƒzy6(TØ¡ª#·‚SW<,uG}#bŸ¨q”…V:À‰”6sÔ„ÔÏ2‰Ö>2î¶h¢wüaήSÑ<œ;Aï%H368Ô.ß‹¦ )/',#©<}B¸÷¢-Je›{ò¾¹'ÂÖØ#?#Åwlß­9À'KsŽ”UÝ®øl¬#€Ïâd¢æ³qe)Ñ0ÊÄÚ¦èóGÔ>ÌV ìF°çì2ÌŽþŠåL,?_ ˜sÓFnEjUP ºhÑ!›I¼'Sæ"û¾ç·Vpf6’ ƒJýÒGœëãš H.ª ÚŒ¥ ¦<@Mç uâZO5P>XR[Ý7Òe÷>R á¸_È:3do“– ŒYÄíÚB®Û–й4ÞzªSžÆÊNVÙ§X:"ÿâ. ^̼°¯îr«JðN˜Î¦¦m¿ª`´"ç Çê‡.«I€™~P")ˆ¦¤°Q¯«T™2ìîÉ ^ˆëTÿV}*çHGf3àQœ“¬qŽ“ètΉ%Øâã”­ÞöOáÔxfݺŽgª.;Qgw¹$&"æ$ë¸yßT@•`”ñU_©@¹[ž‹Š¢Vj˜…gÜT ^¾î¼1a(äa˜Ôø/VëGA!탰IßQ†4Á Z\Ït4ÒP‚žÉB­º<°WAëÓy¾—û%O ƒ‘mÉ íb!å Tm¨÷üßösjB¯ç>ÑÊ^R|_Â8‘98ÝÔý7V0ó¶N’^ͺ¨bK"#è´¨¾Y«£H®ÉÁ…ß*Fn„N¿p2v -qæë}¬qÚ%œð¡ØÞÐa1a¢%1o.Y²ÚR8Âæ‚áüí>‡µ+>æúz<É{ÆE®y­>%'ƒö½y–’;°½Pø—T›˜ðÚ€rw‡°ä©:ƒ5ì¶q¬)ô© I¿3ViwïŒ'Ä[¤‡/2Tr©rMÏ—#XÛ#ƨeýÀªëSléþÒV=ë‘ê•qyxy[׎L¥aCWGÓ.l¿ª®< ôÜÕz\ÎëfÛ°€¯j^•.°ˆ_IuÊK´in†;.ÚIz§“J7 v,…q kSÛ?ã}¯Ó›ˆñ‚€®e×÷y×Vœí :‰qny–Zç)„º>ÖíçGÑtWÓŸ(É ,œíãFl°ÏÓŠ<4C’ÙÜ cñ¹è|…À‡Fkqeù]Z&×åõ¹²Ž„ NTʺètM³o‡lÎ ¥(ó®±™±XŠ ox!˜=Û÷[—/CBKU„ºþDšÖÛZ}t­¨Ê„Çüi*«û&Äí1õÝûi˧8_l~¸2ß·…JhÙœ9ÞÎKXÆ¡U@&@Kñ|Î=`¯åD?aYÌ:ðˆ²øM?¡•ž É\²Fá‚{¤[ÓtXwÉãóâ5¬aQÎxÉLßòÕ çèN Óö.¾œ™!u Fë<ª:·»?ßm†·h¨ÀØ'Ö]Y˜:… QƒÕ{–\+5ŸRIé]>X—ôà}³’ÌX]ôÂà\AÑÐ0JÞK§qûVy\U3ëÝU2\·ö2ªÛ'‹ë¿t°7 ÿŠÂ}8–Äx`PÀù9a2λ¹ž?€º¢6ƒ>š§Â}c z½7W'%;Ì8¿®£8à§KÞØoÀôÂÎÏ1~üôø –îcÙë¶°¹t[8ä§\@(Àn šÃ°s¾Eà$ só‹ÚCñŽã9gY³%µšDÇçêâ÷°/ÈÚД5š"Z6Èï~6?*ðs’¹Š÷dŠÃË¿CWª#ªÀ„£éÑ3©±ìYu?J¨ù/ãþdŠ™aÿÕñ‡7ð–¬Åp|ÉI§ðT§èT (Ý?>Ý\uKÔè-ÀÍUÝQùÌŒ¾¯®üÃlú{Òˆ…V7¯ðá81Ô=cdÜóÙ7Ÿ-IÎí ¯.g?^(Á õ‚)Ü„Ùåø ‹-ÙÕBã+ÓYáÍH}‹E±=¡ÛŒ¢»rû6­¥7¢¥cÄØ‹Î>®")ú»ÏËÚ™üEiªŽËMkøßSŽúÀÚ…ëd¡õf¡¹f¼ß*lLÁM1ëQÜæ$ @G÷^PçtQ[_Ѐd`‹ß~û¢9bk¼D¨rÀò§®a‘ìú•KY¬ø?í±u.ŒÃ¨.¶È±·¦%*Ý âÚµs·ŠL‹¹¼«f`~÷¡E1óÈR@×åHý‚­7IX^qØ?"M8*¶D Vñ›º_é®vÑOŸ>°ÊŸ>K%k ¤©BY˰ªÇÞ€o‘<©JhQJ)¯™„;ýqz¼<³»¶‚’¦*ª³Ð nú“*ý®Ž[´˜ð|yVÝw‘Úm­Æ8Ï0^³¬ýAý”˜ÈX8Ì©‹¿ Åv»ññªÍØîi3-p£Æ’€[ˆ ÿ} ~Ô¨LÝ…k„’;I q©Äh”+]ËÍm¦ô—y~ôu¶K|&í®¿oÎÆª‚®òpmGGbÖÿUf‡96¬yÍ ö@;“^]zßÊ1\ÐT¼®{`ÕëÏ«ã8(]Á ]r»úõa¥«ïû±õžãÁz<Ð;ö¼Q»:`,Ý]»šŒ¿X×®Úqíª9,}ùŸ¹to5HF üoxëD’IØUQSZꎗ~qãbÝørx_õëZ×4am¯*jª•s.júÇFàùˤ«šÀX^8˜«{jÈ…@¥¹ÙÄsH ¹—ê›ù°i‘Ø©c'ògÏ·Ú}Ì­H¨×0¥…¡õ\`’s©xtØïà§7^ÂÃÛè=ÅFLŸP÷ʈ÷.PZ_ŽsŃôæÚã…íY·²/[‘QŠQ@f´åÅQ¸Â ½©ƒ|ª£ÿÎ!6¦Xˆ˜.d!âà 'ïpïFA8©@xFg¢ê–y9¼\±ŒâgÇ.È»®T‡`[ŸÔÏÏË/˜É¶tñÖ¼”3e-5l4¬jQF|µÖk ­€ˆä_f+´üÇÑüç’…üSsÓn¡üc‡Ã¥úÝÿXêlƒ:FØ|¢Ër®OÈxHŠ”{\ŠOýäÇñ ££Ö(S9ðž³ó7WÝ=­>¸êX]?¿ý¸^”TÌ9-VÉvìï!̆&åÔ9Ý€Ž¤4ù^ž¿«j×5dÕß–¤¤ÅåâW!¹l„/ØÞ/z¡´É” aq¥O WŽB03ìã‹ï÷Ú= ”]]KmÇ-/§/v‡ ŠJÕ­fË w´ÇŠX/%{îoêÝßÜ—šš»¸vrØþЦτwíÔuõÍéKËú9wDÌYÙ%÷Œæ !q€Dm)ôÑËYä§ô4ä,/Poø·¦ÔõŽ-N_ç à’KÔ> stream xœÍ][—·q~§}ü ò°'/™ÉÑŒw y¢Ävb%ŽÄc=Xyî.—´Èõ.)ŠúùÙ© Ð( »C.å“£5{Ñ@¡P¨úêÌ_Ϧ½:›ð¿üÿó7O¾ü:Ú³«»'}‚/Þn¨˜ K›«íνOÑm¾ÂïÂ4ÙsÂ~ƒ3–zPÓ¦¸9ìÄ´Ÿ^Ó€@¿Þ^ã⤠ÿa;“z‡ÝDo¬e.e¢îpLÿêˆZ°Æ7+K-¼ùºÉÍÛÕÝé÷F§³qû=ÑGÌŽäbÚ¼$p¶;cð4 iÈÜÉ%»9¼Ù"?tPqs#8ý'“‚æëäS­Ûü°un¯á¯›Ã-6LV'%¿9ÈÎὟô¤*=¾c4PÁ'å­ZŠÉm½ši :NzÁ{èåD2¿5rͤ”hÖiÒÚò‡ßm+%{Ös¥¼^Îóº­Æp*›_QÏ8~dX>lŽï°1Ç}ž˜”ùuì6!M |ò0J3ïÃøí•8Y‡§M±é»Í̘¸‡E/âwY Ù á¿Ú#o&0½ùûû˜¥ÄK±Þ—A/›#µVΛZ^ã—*å €LT •µg!wµá÷Ü0‹.êÆø‹^£æ‰s¿Zév9™ ^VŠÄ%‚Š…'ÈòS¨œÒæßhyð¯ÿ¹ç—Ûùq@Ç?¬~˜uV4ÎJv¡-BCëÌïé,PU÷K]Ë X R/Þ¯é÷`$¹—ÍOlËÚaÒ>(Ð-e ¡K:ñ`î±tDùBM–c”]‘[ J‡jlÒ‘•!ØC;Ú~¯ë.ÊšÌMV¹fÇkîźé}»Óa?ñ{ôWÔb²Æë¦õ«*¢õõV{/°n]Ðt0Þ„û«Ý°ý& ¹Ó™7aŒÌåçUêÒÈ䯓­ŽüÒfïynø¤>͈Ðö½ä>LtUcv‚]°fsx^—™{Ô~jô»ç§Ûh}:,#‚|n¡"!PÊ›`;ÀyéhH[m÷ `yYiƒˆ¸˜B±ehqîZÉÁ“2žF³kÀšIÆÜäšš•o„ľ߂Lª¨u]{Y€F@PÈò:UeKÿy³0dü(Ç»©Úñ-§”¼ rÕª„©+Àf$Øš‘ïékãm°Î¦¶yÀwr,È5ƒ;Py‘(5ÄRu5o¶b£ÏÖ‚×5 å»®›eƧ¶Ý 3’;ø ÄAnrÞÙN§ =clä‹URôÖ1„&VØ4¡šÍ›å/9@&r/½®{IjµýV{Ù@¨5ãÊè!m¹†–Ŧ90f/§e}Dª7™ü)Ÿùá”ãÛ:ï½÷“Z5$ h•è AëgÂíz9i Èh–þJl¿ ΜUü [L ózÉ @’MÊo6hõq;‚· fh|ŠÅpŸTÚ|ài oÛ*+|ëÒØ²âßM2ã­Áž¨ß4ãã~›Þîb+èûÞ˜.Tx•>èШéŒUDLñ$a÷Áh4#ÍGEL`öO;·p-Š«ï >jyÒŒ¶¬¡ÔlôȶHvOü•=âiò)ûÚ(‡ê²d€ ›¾y]À:Ô´Öa4A·Q›v=A6Жô›DR¹fÓ~Á“DÕµ¾½‘‚÷5;.d²îø;˜-9õ‘Ü=»XÐ7’ŠQr¬)Y£ší!¬W»khê>µºõsEˆxfAì£Æ9j?Ò1ÅF™yYØ¢ÁI|„MK~Ô!„>ÉsÍÊ6ÛOåÞ>רà®ÐÐ:cª1»[ʧp@¥ÜZâÐ_‹Q­K€úQ•ÝñÂxG+Ê•»eriú0ÅJ{Ñä¼[H‡ú.¶b¹kÌ+ãŠwIÂ}ɯS·Î\ š±•>wAâ게nûX ¾và†5^ûuõ ~Y·È-<^~Mjx¢(fcPÔ”Mr.KLR.†»Ê õËLŠ@|Qäz¡¡pƒ-éÌÏ|ˆÖï«ÈÄÛH@çž`QÑêìŽ=’Q¦œÁ•¤ŒBÀ˜¬ÿ3&`cœ±tJŒ²‹ÿCØd1eòæné¿áÆð—^ó–׿;}*U£ø@uü2Ñ:\Ôÿ"Æ×Y£+0 gÁ˜íIØ ¢‰(¶øÚ+MÊ ­„« qé 2yæ~2ÝF²Ö¬Ú- œùµTkž°Û0ùÔa=›FK‘q#mˆ»Ÿ³P'n? zÙ¨àâ†-4mþþçÖ´%p’¦¥ÆÓXs~>M‹#™´;½ P6ªNÚÒ’ÀºM0UuXŠÍ¬êÖ`M¦DÕiºy¿êJ‰½È0#â$\Í#oÈàƒ+5ôx"¤ƒäqÂŽ¬ˆzwÁWæCkN„Pï¶!ùV®#òCö°f R²¡B %ðXÏÄ4ÐçñAéõ@è? =QŸèùŠx,sy^³Œî,6¥Í0»­+9Ú#çe—S‹Fx’Æ%ý©çÔ´ð(!Ô„Çú Å ¹k€º XRÜÃ…ƒ®˜K"¶‰mü(ÈyUÃB¶DùÀ]„nÅà'$=K'«*«(ÝUK$²dsoÏ;cÆ:`€U.xh‡yӻ̦Úìf^²”l¨z˜“ßÞ·iL šå®=¶€û…¤»Íß5þBç§µÀ%“ÐZŠQžc^:Æ0¬ qê¤ üZ$ï”@ž”SDA2±þÝ‘‚ °î=*SØÑ¡Y€(’ŸBèUr[=¹Ùc_IúD „抒ꇛj[nf•<‹ÔéÍ¥eðõßO²øšGóSnêüHitžÐ¸¸“ëÐú|ó—çUêÝÚ»¡FÎ’Mdò0ŠZÜÌ©Î;³ôH’Y‘\G#KjîZ_T¥vDÑ ¹ÚfØJrðŽZ`ÖIjà_lûôášbÎó¬è/¹1zz•&ó 5ø%ÚÒAB÷ãµ;õǪ ŒCW´L&&¡‡ÈJ®o§A²‚ÓarãØ·Tr{}Èì+å ,H‡>»&qÆŒi±úVR~ØäOYÿÆ}P+ê÷Ž¿ïB³ƒj-¯¯w•û‹Ä“ÄêLDë:ŽÀY>—ÅôúEŇBu˨jÓÂUJ ¾«ÀþWBàÎ;yÏ4µ®-¹nÊK7 µÐÐV±y+nŸÀ&€Y>RÞfmy]7€,Ö¸«ûEt1”¶B§Ó D:—…g02õv2£2!™®ïÄlâI¹JßmÖ©¾Û ˜"üÿ×,׈ã¢^qÙ¤ÀÕPÀ0˜¹' Ÿ"øÆ-öF|OìPƒYœÛãÌ1i¹n–xkäy´àd£žm¯ÌóäÜÀzE) ,hˑᕠ6EŒ0 TÛDV'–Ì)>ï¼vÂñïpD’ýyp96òy½Ò2YÐ1Âdzb—´Œß8#ìá,` ¢Aè##¿.%pPû_žç@¡Û;=ƒíŠ-3ÉSìZýpÕéï€`däéÕAT<È),2yðÏ&É@3D0Qd“""ý¥Ü¤9RÚ).«¦K¡í@µpQ†ÕMJ“#¯Gjª¦³f6em&ÖcNÈEó·/Äb‰ÿ_U€ó"5ŠýóV¢ätQ0^ÜÛò±E€Ð9XÿfE€“&¶^Éa[†ûÐíB¬™|µŠ ª†ÑJ”þQ¥SSËÕày7ðû@u†\‘Ôê±2ˆð_ªëø†ÿ®“Ù©6¸A¡¸èÌañ5}ÎKºV[>|R¡Ñí9Üx˜ciठÉLh˯™AíöÞªø0m5+“¬ðZG£†aµH[¹†¤ÛÚè0Ûì›YË|àÆaQ²…o=É“0pb“­‡]Îr‡Ÿq¾èïvyAq¢$ÇnÎè°­¦ŒÎeÖ£2õ<1Ý(~ÈYñSa_žÏ À€sBpûÛm4X3ç$Ò¸àùa¬£§Œ¼^û=[{MqŸ•ÍWÕ ±€%Û¡µõheàaÌBjCTOøAšd!Ö½u`Xöd‹Üa ð¶®áA B±*Œ/òt—‡ `e”†Åt%δÁ læE±å*²- ¶æ”8LÐyf YŽ3Fˆúõp‹þr;'0?îò¬>%ßL{_=e0M¨˜þ€Õ0ǰù#§I ï$ÂcE‚T\²d•ñÃÌs‚^îfq"l´…ïøKŒ`4!L¶Ðà7É·)#ö=ØÉ( 2¢{ â‡íZ±](êá ÞÈ{eJ5ûB® õáS“>€&²¤L¦N_ógƒm/XZ§s½2{š<ãŸ?› šHÞ´pÁJ™ü¡.»#ÄKfãn¹u˜ä) ®‹Þ? ºæÆ.µ‡ Ž"È^³~ì¬K ­)Ï…ÝÈDí†H õ.¥÷—SÊ QÕ .ýzÛÚ$ÆÄãc¡÷"ó’á¾Ü­—Õ÷' 9±ÍÏ”(K üœÔºR„Íù˜…DUîÓÒ9Çߥ2Œ ì(§¹¬µïŽˆýKç)Wa„8 -'ˆn7Žl^ÿ8Á¸Ëìƒ]æwUµ•211 ù5¤²{Ø šOz¯Ñ3øÿ” î-N¤^‘Qvþ+lþ´?$Ú`é,EQ´åà à¥ÊÁc ±ÝUk#C¦is¤OãH –j ¢Å ~]ªr/‘uÁ¡úØÜð8°Cé`X(P] «×is ­W؇ÒÚ¸,£CÝêùjøÃÞF þH!@’‡ü'Ø~d¢…Ð-ÓÌ Ú±Aˆr§/•·ãÛØµTçá[?Ùñæ.ƒäuo›ã²;»~Þ¿D¥Þ6(g7 ô‹™¸ãm/^]©¶Ú«Ypei0+f\X¨"^e6ZuJ$”î›Òµµœ<ó c(a„GÅÁ1Q8¬ ¾¨vgãü(­"è]/í”"K-CƓȰ©ý©±éƒ=¯Ú¢‹—drÈ×ä‘…|í·«Ê¼;ý¬Û¦¶sy>‹`~wùÁà2zK‘,™1 CL`fƒ”æFÞS¯éW î´ ]¡xÄø]v™ÁyL%àEµþË*ÈLubRçý‰ÒMÁû nв©ºÄ—¶;J|XDÛè¬ô½%(1w;È‹“÷Œ“ź…âÃ}àwq ü¹@š’žá}ÌÐû2áÌ­¸ð‰û"©@Er°I±…Œ ¶*š0ßS9øxzd-<>ÆwÚDrWØ–Nr†zõ ¶Ëë˜õ+N‡e‚Wô/-$ë_*zzHïÀyßGcšöŠ"Vi¡ˆƒ¡ÀŸt–˜Y°íût6îNY [tì=ž`Èž P'-Sê±L«@ý"SAÛJ,¾$ÿUjógv›uÚÔÂË#Ùt¾ ¦Òª¡ÙCƒ© 4aMx’­ÃÂÞﱟ6Óo_ª6½Ë®Ï?P¯VÜÚ$?  ¨]uq_g¨Î´íæs‡"µ%!m|½/IV¬fŠ×mÈ ª$ ¯À²‚º{n x@÷ž£åm"ÜF ~-vÕo¶TœÚü6;'1J” õùyåù€ÂËâë´N¥›Àbbv®ð•"­óÇ-”¹‡r; Æö‡Æù„Å dTŠ·{E¾æuu8f¥(zUË=Ou—Ö„uÇI%Þ‹ì‡"‰9ÃÒ¦B°2G¡>üÓgÿøgŒ+;8ÅyGß—MXº¸R08BCQÕ8‰”à^Ï|õ…gKØ È¸ËA£šüÐýíÔ]µ¤{7t7ûð\ï…sj„…¸Ø“ЉæH˺ -Ì…{ôªDI›=£žÓŒA&øù,pøeœF„-Œ¶òQSÌ®R¬V{B¥YŠÒóãÛúx Ç¨4ŠýšuØâbÕ¨]…Ãb|–\·ÃSï—õñm}Ãß®¶½Z%Êb6¡Ö›þ|D=¯¯VÜ­Óçö}Ô€¾Eôú°s÷Ö©>^·˜†Mij #ÏvSYez|[«ooëã«úøf}FÊ,£J“&é°ž¸âD—¢êë{¯ž›¦f a«¸ZÜöMÝo…Ûà^ò­y‹÷µ÷NÈ‹7g>dþ ›ÿë³'ÿý„¯Htg·{¹¡¶4]8ô§Q o8Dú+CF)¡šþ´6>ƒèR8cë=ó2Â#àß°Ô~,™xsOGä?oé ¿XÎÉ.]§ŽÇ(4? þ=£ÄB?”Ëkä:r…p&=†3vò«oéê0.ýƒ"ó®ÂEqñB›Ì]JjºÕË aæÜq»rúÔŽfvOˆã£7÷ü˜ÁÁ=Ÿ2 2èÒȹ‚R:¢‹Ý\Gá KW8½G¯…Âêã2ilk¹àu·–áÅ|¿qT—:Ž0ÌÁÑC‡8¢uÁøN ¥ñi„f›ÂèœßG¥jÛ°SÑø£íõ:­¦î'VôðÓJÏ7s8fUÛª}2R|^mki}¦ñLÌt:äé7.\«ÕJ§ÅI‰+Yø»À]©ÙîXú̶$æFŸÈç•{±Køëʦý¬ VU|XN@¢Ôk,ýTàfÞ‡Ð2NÖìÐɲ§«9´):¬©¹?Ö5ç׌ľéù¸˜°Mêѳ£rVz¤Ä´hH®µ7x~Í'i2Ü„Eýãõ˜^,éšÓMÜø£µƒL÷ÖØåy¼&æÆá{ƒ…`ǻܾ-‹$„úN2^iÏ%—”‘ˆ\ð }TL.å#5ž²î;³÷>sÿÌB( ² ø$(ÿP¢I‹«gð5FÀ¿PŒû&¼ÔŸ®gc$¤øTU kò›™}^-Žn”ŠVÛA=FÁa…ÙÔSÝ*8ã ùi]Í,ËI›lÀë˜ÔÉñ¥6)äaÇÙ ÂKÕÝy8)4ð¼ ?ÄCVß„Z”•W…A}Æ$W®ü4Ãü>ƒP Èåôh4ök¼¢ñ|_ï{_à¨]>@Þ±ÆPHqqªìÄâ VkëˆuK">ÄëÈÎÚã׈l<ÃK%•²Y!IìͧË,Ö,Ž‘‚¥cžŽ.xl<ÖÄ*µäð¹J·ÇÿIU$¢Ž’>Ä£ ^k]¨>ûFÛ¹ÌðëÍt„«½qÖq×£ßí‘Ù¨r?ÇàB»Î£Ÿ|c_VòdÁéKy–'€Föi¹Ö±Üó|} Qz/‚=ݯæsÁëŽgïÇ¿}·Šâž½y¢lýæ7¯Ÿ|3\<öä qðr𜮆õAݬX_…Ùò¯êèÉŸÅ}òÞò¯ê(‡?©þHùIÿÊ‚ ôÐ^‡Ó¨ì€ qÍ! ÌÁi¾)9( ÈÝÈ6ÚG6jJ Å=h8Š”l¤–¾ª²cº^UÏ?|L›¦2Æ9±=©˜˜8¼Eœƒ0ã)fóºJøŒç*7ðÒJøË™¬cÉœ@rcUåf >Ö¼ûñyãÖ•Ós*ذÆv`‡×”}Qi_¡* 6¨ S‰²f€uåG¹V(ùêiB˜Æ)X'«p?)žÚ.ŸH ßaŒiâZ†ô*Q ˜ªÓùSkÑa¾´CQïþ ]t‚…–OY¿§¸ùj»: ]\øi\#>Èmøcp'“@l»a0VT e¯‚ED¾x‚x‰Ëøy0WÕûLFÃ*ûf•Þ‰ˆ·šÐŽ6¶”QÀØ1ñ% ø›ñkdàq6áûÞ*æpTÎÑ5ŸŒg¸íñ"®—µíq!’“MÅïÊÏ· &—R>ì”3±Ô©}ôi&oß²\“¸·Ë~Á8º$® Ûš{ˆU&ŸŒ Èôz`J;¾Âj È|~MйÓöu;çéY4/ûô-£º¨à™e£1“•zW6ÁyE…‡¢¸RÓ¹…G+H§åámœ¯“Öžì6º)”kphÏ'“óã+¡Üiä«Qf ºshÇKå©Ð_ÑÞ¤QÇwt–6‹í+ÒPxÆ!Ö[VÏyªeg7ræÒÒÂa®£Ìu݈"K;QƒàM3™Ì>K·ÌMn3ûTK‡åöm5rAÏë~|×NaæÔam1xó]–H îÏ—õ…hÞ®/v§§òÈ4åexÎS¿M™)J©mÆ,û³kR_uz‚ þ÷›´endstream endobj 656 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2429 >> stream xœUkp×^aÛÔuŽyL¤Í$ÓhšÒ4Ð<3 °yù%KkYX–d=lɲž«]=ŽdëmÙ’õðÛØc0&ghH MÚ1é@§í$mÒI;mÚ\Qu&]Cš´;çϽ{î=ß9ç»ç[¶|Æáp*Û¨¤^¤“jëë_#%²]Z‘|ÉóT¶˜“]³,ûHÞÚœçŽûÎ +²‚| òó ybÍ}±Õwx«²_ÞŸýø{¡|œÎYZË|òé§×•(UµLZ¯%~¸iÓ&¢Ö@|í!¶“™TA|Ÿ]4“r¥ª‘Th7H’ÐÖ“DLN%ûJìÚ»“X»so±“Tj‘œ(ÕÕÊebâU™˜ThÈ'‰:¥šßÛb¥B"ÓÊ” Íb«†)–±—H½˜T-9Ö*RÝ(ÓhØ5!ÓRµH¡%%„VIÈb¹N²Ï~¯S*´„J­dý¬‡ UªÔh5bµL¥%XÄÒí;î娭i—p52ÖM(ëØ“¥X·TÍ7>­H¦ÐZR¯]©% ‰L£’‹ ,.J¥–ÝMA§‘)¤ß¢¯#Ô¤T¤–ÈIÍݸK]ù¶>⿪©TrÃݻʻ§¾Á—i5¤¼nÛpâ?ä¯Kìê‰%‚eâÿõ}ËÖÿdža÷+”jV·»E$&ëdä¶+Å`±2¬{;Œmöc;°Ønl#ööûh°åXû3gçÚ²Ëþ‘§\^³<·âàŠó\ÓÊ5+©•_ UA¶Æ˜Ê>œâ ç“¼dA«>j÷vAQ°ƒ¡Ú(R‘ã uÏ:[A¦sÔ0“¾1ýþÅàÿ‰ýN· p§ƒcÉÂYôñ¨#`nÓÙµRÁZ©ÜVëþ9„ð pXKꪷ è¦w†;¼aÂOSÍúçÕϵ›ÝFïPd7Ï¢Û³œß-"ÉbÊeÀÃEiõžcUÁZ|ï¸d~h(Ò7#¸04ÖßÓ7yiôs¸_ª;].8TÁ›ì—왩 •û¥rðÚ¦‰+ÿå¿/,@ó¶ºõçcoqøWèôxodŠ2£z´#ŸñõÊg4ÛUz™Úd³RÞÏí¡1oüx€ö;Ì?ª©Û+p©. |P 8L&[…¥† þ¡y ý~–ƒ»zþjÞômžÇî¡€ÆkFÏž˜ŽõŒ ÆOÍÁ˜p„œ”eLIÀLJGÆ{VeF0>K¶ôé#JÀ·­ß¸KלV /Ôí Æ¥•"‰®µ3c8ºÝÝžq+E1NÅØ; @16¾”Kb1Û´¯ÐjÞËU ­&ÀÍÆtWbqàïÂ.oü0éåw@Ä÷æçäúc—Ò·õ6ÊÕæp8)åtºÖL{˜f»Øî¡Á¸†ë(ÕáV“ËÍ8 ÞÇáf¸å95˹oH×'3×§>ø“€}NæTöÁçšçM¥“¡NÀCÊj¶Õv Õh%(pegs¼»'ž+¸ÊA[ÙNEÑgÐÓÙÏ’ƒn^(÷„Â.NCÐÛ´Y­f³©¦Âd0oª0–ƒ—fÔ£¦>½-°w¶@^蕦šÇÑjt¹Ð³ƒT¢5*P;ì.©1ÒÔÞ *Ø¥~±vO}Ùa‘ðSrpºûâ»è¨Pe·º¤vZï4¹ìÒ\¾M'³èGÈ2‰¼¸Õ–œN\šöOg†._Æ#+Á>Onå-”»°Ï«öâ…k¼V;8Š[Áê¢mm-•Ú­xAöys ýs†æ¼¬=ÄÛr¤ÍΊ†ƒ uô¡e§P‘0Úík÷‹ÖwÔ@-èMFi³Hn6Õ‰D¹bØŒ‹7ôgÆR£U[%# nP‘N€¹_ †“½ñÓCx®¼—WZÓØjÜh뽿ÞEØ÷f&==p‚9Eµ¼ìÐzZͨé&ã²0v\þh¾‚þ’º›Z!*ä½t°\Ù¸´yèܹÎw’³ÂÔüÀà0ôALï¯~kœïõ³ÌxñiÝ`½ÁêÔH[*ŒmºZeYósðþ³AÙ̹[“×?Ü |sŠƒæ>ÈË>€ámÙ}LI‚šŽgÜ…á7†FÒ g/IÁøI]º^gdÌZ©“©š5d¥,·Œ-¼ôDÝ܇S}$ÈÉÁK|9s{ðD´UsDÕHìXœœçjÖ>Ú8Š&.®.|ý ]ãµC¢ž3£üC^+XØé¬ð\CÁî €˜{‚ž¹ÄoñSÞØ"Ý+»”™%¹Í6/ÃÎ8^8Ô}wؽE´“vº=: ß馜ƒ÷sß÷°±!å-2î¥UúûrCÚªçÀ¯ªÃÖæbvÊj·R–Œ+ÊÎÄ øãááøÜùÁ“ø‰©S¿íýdý$zÆŸ {: X÷”1Y;oxÀç ;™»îôx©¤»ƒ5?æár9m£–„ÇÎnYsãA]ؘiÀoü«€·î°ÛcfçßMDÚ“ŒpÕE&ÙN€ép´–?¸IàV.ŒúY!( uгËÔ¶_X‘+a»£Æ5cWb06>/Hv² ûÃH€}»5Ûg³o³‚.yïóż³åU?v²bVw ŠÐzôZ… ÏÓ[ßn»bIÀ4~íüå…©nÞ¨àÝYúÍÆÁr(z<÷wmUúø[UÂëe=*¨Ä_ܲccMurD%hî¥ÒÔÙ¯»ðÕEzñx&Š­Ï]RE9Yí¶Û;»„á•á•Ðó*Ÿ@¾Žž÷œeå!â §çùÍ~«× bh0«©[ÛÌRJ£Ûl«.ɽË÷ЬxÓxcB¸íÜL £ÕŸà-©lq =—âž»ïæw_ççcØ¿,êêendstream endobj 657 0 obj << /Filter /FlateDecode /Length 5586 >> stream xœÍ\YsÜF’~çnìoèØ'ô†®ûPÄF,}Ç¡õÈmÅìhÚ”HÑ&Ù–µúó›G•…HÉÒ8&üàT²2¿Ìü2Ñ_©^¯þWþ|qðé÷É­Noþ~€.|ö¦Æçã89ú T¾:x¶º„ §ð¤¦9Wåǫώp^Wú¬²^ð‚z•ô*úØgëWGK룟áfLs·…-&xàèÅÁߺ‹õFõ&ç”B÷Ç*'»Ûµê“66Æn{‚—mNÖ‡n·Ö½RÙšî¯úœc4ÿ{ô -ãä2ÎôÎøa™Gës¶OÝçø˜ÎYÇÔí.a§¼ŠÝ‹:[w·ÆålJݱXw¤r0°ô V6¤Žf€ô¹;]o¬5}N¾ûo|.*å¼Î½u4ƒV*ªÔm7âµ/iAØ¿é¶çø‡¤´†å߬ǭÞà4)XçXJeS7¸¦…M6µ'šÐœ=üuÍ÷uI¾½=Ý5¾ʬ6Ö÷ f¢‡~]{ßX®ÛÂr6dXÐt_ïîÖ&€Dbî^ã¦E)xÛ×]ž‘rÊž¤ò6 ºÓòzÙE¼^fÝןÃ=–wºû„/G”ÝõDÔ Ä*H ÀÑÇyÃÏÁ ¿¯ª6Ì–m÷TGgš«gu‹7ô¢9°REX;9ù÷c|± n"’¶úЈҮ­¶V;ÒVpHF±EX#ôË5਻eÔg8«ÚLÓ¦š*»ä=†Œ<‡“ ‘^ÙÑã|2EÕœäݡޅQFýšÖpz~rPc‡» Mxß® ‰‡£´„e ;1ÇTúm0®çmø,™ ÊC½Ú˜Q0ÿ‘mLÅÁ–Ah©*è§]%XÕóSÕðíÝ ••C…sN÷!§îœKÙ?MhèË;ªhT¯Mî{þh¡+@à"˜Üö†'³™ý®†Š—ÁSv_Òæ@eu÷oÂHŽÉެòâ—|ëÇÖß”ÝÃ"»“²Jö÷ƒ  `¢0Iy8„À:ùö¼CŸ•Ö-é—„ˆ®þ¸NeX‹à„«ƒZ7îÙUж—¿d‰ão\ž°žíB@ø–b°¼/îaºFs­a[zÐÑÖið©d±Ä«êj„ä ”ƒ1DSÀ<%¦€d´^Q{Ðé.w$ëdS$2~I^Û&À™Æ›%Ô`½mn| ˜5<+}Éà0I '£(T,¿Xjp‚ºÂÆ7„i>Á⻊N’ª¯ !ü’P1ÃË–Ž÷BiMÆã•3œàÕ‰|úE/„ϸ«ÀyåÍ/xÏ`2Ýg¤ÿ&;] ¿ªÏ‰)~­Â¨/6t½ö(88v6ðža(Þ²gÚŒ›àLÄí0Šz݈0çVLs6Z»Ù¥rØ5í÷bÒ;û È /wÛÑo¨÷óvÏo¨ˆÎý0eÏoDœS(~Û?ÀqpUùÓÔm„©Û(h>ä<Ü4ŒSi'j˜kN^T}Ú.D6”‰¤5†}Lú ʳ‡ÅoµèaR‚éZcÜñe×WëÆÎнßò 2Í&ÊÁcÏ´y½ ¥ÖƒòÀñ98¾Èš!€ب£oê-Ù=l݃•Û‘Øñ›ÀŽŒÊPtSß’ìR“|¿ör${†—…P/è%á<Ï ÞN듺²nNA)Èãz>Û­ð·e@D¢J(ˆ¯ÃçAWÅyÐë%› „({±6ï¦fRÒµ¾(á¸Hnxy<ô"„fˆ÷yºÜË‘4:§ÈŽ©$:YéQÑ'À©Sõˆ³=Ç_Xÿ ¸ƒÇ„_|w B4Øõ2k6…¤B›9¾«`Ü‘:ûEG‰ng‡Wuø¨?¾~hØÏ^Þõ' Œãð®_Öáõì¼Ç2®‡r¿U”ïÍs‡½Ì'nɇq’‹‰OÔ àŸÏ…eï*sò¯³Ä–L=82&bgüÃ\÷gñ]â[Y™uÈÉ®×cö%8ÉQÞ”yíNÖ#7¶+o¹š˜ºùX8¬Ó¢DmáºÝ]MæhwN3qE@É—çïk¦Ýbˆ^$ûû§Üew:•’M.›ö}Ïjà~‹««  ò¦¼ËȈ”¤†“ˆÜè<ß“³lĺ*l=ÎçL•9aÌrᄽ1^¦²œÏiXíáÜ!¶räOÈߊ1‡ÎѽD D(1¿SãþqL j§uÆ¿S##ž=¢Æ«Ô5äKÂrÀmbqí×%^eÖPP56¾…÷d£Âm³KNà\î?‚©Á@~ë“Þƒ+šGÙìáOëú'Ø;d%°{ˆÑŸÍdFD¸‚P9ùIÆôÕt ̱,³¾¸H÷»#ä>ˆ3o« qÓc ¬\O‘ gÃ;ž0À€Rî®*ìPœLȲXѾvEq!0C8jM¾” ׄIíR1áL -’V M(RØUo([Ádh‰ÿGÍØëcµzæ§ñòCôÔýÌüXŸêÅ–æa’I Ú5…<Îü­W¾ˆ‰ÈaØ„-Ù¹è¦à!.Œ:H@k]xÊêv"d"ÆQ®qÙ ]õç,è ›9N Ò2ôÜŠ;$z¾"ô4™*w#\]TÀ&xMÉ…´¯ÌÆ(düÖ ‹AЧï#U| Äé^¢cžÝ)ÉI·Ô©R¸Y²¨l/€t1—Êeï›ÙÞe£4^ÕI¢‡âDmUòMF1~Â,æ”´ËDÐç(ªHã­sø 1L×òîØÀ6ÜFì¿lIï…ý&¿ jlÁ4Û»?’¤×€'ЏÀY0Î8Á~­¦l ì%ˆ?y[d†½»dW³u~T/gJá§\•†w² ó»ë)ÖÊÜ‚¹‡%TîQÈï]„Ÿb_òÑKf^`\o‘Äвž°ü¸ÈÁY÷ËÚ;´¼n‹ñ'ÝÙHm.|®‰º¼쮑#¤A/±3­0"†5ÙÕ¤u/þÛ›£›¼z·N awC›«Ìãëx]ðj¿pš!]yá€d£;¥—Âó¿‚þ…†5Hݯ‡ œ“…eUŒP˜#j‹¤Ü´|0¤í¤Ï%oGŠÀG½ò&á¶dâN~çvvxU‡êðÓÙáçuø}Öá·uØÏÞ»ÁÜÀÙ[Ɉ]$ã?סHçEâ.è‡~v1ïi &Bìa;»Ä/³7œÎîì?ëðbö†ÛÙÉN¶þ!ôƒ·½³¹Õ„)ÿ ÝÓèÏÖÉ¢®ULdl%Â:hº(;}.¢ ô  åXѰ)@tÓä êz2Üæ\[/¦¾˜̶ûL á7¼8î£ñ`ð×i× ÖÆ°oæùóöííT‚êðRÉ-S¸Ô»ow¢ÌuQã‡í9߉æwã"wˆ.ˆ`y¡Ž*Bz±Ü“õX+©6¤,Er²^ô¥¼L4Ëo5:˜(I’:±ìÇè íñ5ôA^M—ë>!ÄÔD,Æé†öý‚žTÁbL+³žíÐßæš>)‘­´…Ó±„ar1»DC¤ÞE=z¡'BoÄÞ¬GÎF$þ¯¬ïšØ}¼»²Â§õ¹6¾ÆÒuŒ ñõÃU…&j¥Å|”œÅCd³‚\?Øß”v–{,ÛùBo‚Ñú½QÞz·OB@‚&œé³‡Jd!«OÉ—DmäÞÇÞ¿…¬ rB %}ÈCH&pÓ$3c@ð‰eã\W€jˆû!‰Ä–9|ÊaëNYƒ’ÎÈ>EÀ©öUï16©ñÞ¿"²à>äcNÞðÖ#`y'²-CP›Ç Xz~NP¿À0 ŽQÏô³Qg‰§(ñ—!âÁΙi͆hCäJãšNQ‡‘Ž@…™XRâ&¿d™Y ½ˆ +òæ°Jè¦gT¤D=ˆêêBÜ)d4i¬miÏ„±@2š{õbãw{MDÜks·§ÞÚ\¶Ú†”Â~sÂNÀ«R³«–DÿÎõþ‹¤>Çc139Q˜;¬*¡6nBvNVú÷¾Æç =-.A.jÜïÀ>ŒýÞ{ÔÎÐdñÏÒH{¿Y¿‹]ÐïÂ,;3êÆ‰2RC.(læÐ{Ý‹}½ åÆ2cJDEœÁàÈ‘i ËìÓ± c3qOëÍŸàÕÇE.,<À­€ôÏ€POù =ŸðU<£ÇÜÏmÀ1w¯…ÞŸU½¿á»k‰ï+ -vÑtû³2Óø¾6t¢‰Ç™m×¶ŠãÌh8YÚ˜r®–túJ„¥ßLyÛA²%5 ž×rûšò#w”š¼]vÔ½ä=Z;†ð<²ù- ƒ7vq¤é”§C/:iyÆ£$™ú‰  ‹5½MÓ»`@rð“t_äMoFßW÷Ä·ÎÆ&“ÞrÃFŠz vþÊ3gtó”=+mOÄE(÷üù—Õ•ÿVáb¡ dÁÜE÷‚·IÅ·ÎÊ‹äÌç¼÷ûBÀZìZîÇPh\LxŠÁeÜÿ \K|› aozZ=Ötú¯á”dp %ùÉ•@īٛ_–WK *æÁ—ø|i:´‘©ÊÓ×äí~qos}ÁÈÎa>°)dFã¼§E_·¥ sKØŠnÝgŽ“Ú& Úã‘ØÏ£}#O# |¬ 0µøñ‡eG˜ƒšé‡Æß6·Á$Fi›ß¡mþ «´v³2—J£š‹K{õò×Âèäû‘£³Ø·¼Ð`NmßÀÁRzÙ›NîÞ7¡Ùc©è„ì¯Óo)™ >h|ô^LjÆòq…Ÿ>ZTëÙfLÊ7ÅðªÕá§³Ã× û:üYf·s og¯Š{wux2{o¿+Π2{æ§ñPKi‡¬é´E­ê×:´uèfï-÷ªµ¼÷ª1:Àù+¿B6 Íwƒ‚æš~¯ä±sr°‰Ñ«Gã CâfŠhKô ™‡4ذûñ`æ®xûryK*bVž-ÚåŒMsø¶ó{oˆÊí—ê?fÍ[y ý‡¨íj,|ÂŒ"׌JTN´ãiåêKÛìÖO>x"VÈËÓ´ämß­m  nTÞ®,#Ènö|Öá×d"K+ïý"@&ÄTÇ1gKà1¢ùåÀy×®›ý‚k'säÓ7CÔ˜—¾Î]øZ|‰‚•‰Ë­ÿö+¿¹qQ¼(SÁ´”Ó¿£ãßjwÎrßk~×ҶaÊùLç.ÄqVCÝcžÂ•~-gËѸþæ º‡?r^ ì§Ÿ ]"×5á)G„}Õ’èÙŠ”g¸”Bë¨Ð˜íVF¼“¢×³¼¨”~µzÑ ÒÿAôî.qð£ŠÄ}úíu)š•NäTZ¦8û˜1¹'ˆKý½ÈRþBQ§‹‘3RéÔ|wø68ýoUžA3 ‰óˆ‹< Rh_”«ô Æf¬B£,ç>¦œOí í|û’HÞŽDŒöj-û·ùóûîÛ¦¼Þ¯*0.P&m™Fj©P÷ìQ|b, %ºÖZ¸XãQãŒ>´ Å7ZÚe»»×³Žù§:ü¯:|ðÞmÞÕáË:ÁhC9–ø8¼ø×E̯ùƒÌ8\±jl‹µízµ»çõCÃþ#ÑGú,{7V¯áÔþtY„YøM·Æß2¦þóüàéý ÒÌ/<=XO‘< ú›ÝÝõ%±®:S •46ÝÓÛííÙÍíÙ1Ýê´õÓÝÉíëíõË‘àÇ®x©ÙÒ}’õOŸÌÝ{]‡§ò->Ѐm@â‘…*~$EF™?‘ Z—R ‚JÝüW. m/jàñÓè¤EÄÐÆ(’ Æ;,¨Üá´gµÐK~LT.y–Ж ee½ 'ïE?OÑ407p5™hüZÇÕÝáÞo¸Œ?˜µ1ŽŽ¾Å-N-meWû>†IåЃsjÿ>‹ú‡æÕÂ`.~Ÿqý¡ƒ?Ëf‹úq,ÒŠ<°müÄïÙ0ÄQ Ê²€%CNAÁÝÍ[„/²Ø¦_òRâ'%ÈW _$M×â “Uôåµü®ú%õfeÓ|!ý¨­iìõø{XTÀ6ýÂ?y‰*âs•8wc3Cýä+¼»ÉŸÞ‰l[ÈJ¤£È¹Ï‹ÈQȰ£Ã5Ñ Vßøÿ±Üt% ıhækñdárï ¯²Ðª‘E²0®j*zøŒ2©~ø'zøïà¿ÿ—žôˆendstream endobj 658 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1084 >> stream xœ%‘}LSgÆïm¡½h'íÔ9oï6ØÐ!n|m3› 2`‚,©´”¥¥-%ˆXJ†…(á›0°+mqÞ‘€A„Íf2™e‰S3]Þë^“­u9ÉÉ9ÿœçy~‡$¼xI’Þ±I©ž!€ÛBroð¸­|0p7ŸGyƒˆ"/×?ÓþHé‡2}ÑþW >IªJ«cÕš ­RQ g‚ò¶1aÑÑ‘ÁLøÎŅ̃*¹V™'-a’¤ú¹Jªw/ÅLš:O)×W0Aèõš˜ÐÐòòò©J¢Ö*vo fÊ•ú&U®“k r¯.Ñ3ÉR•œñ8 ñ´XµJS¦—k™$µL®-!B¾ëý"" ŸXOl ÄÄkÄFbA¹3^D 1Mî'GxŸóîð㸺u–³±ã6 .ó~î+¶›AE'$‚(™p®Âì0õ¢QXÇè\™`ºi.ºk¦Í¢·Ù\at9%žS+èDÜcÉŸÚŸð¹Q”"ÎÔW™ŽV]U@áÚðÔ5toaľÙn›„Ÿ(䇽oà×±8,bGƵ§¾í=}ò˜ãÝ?9wæ:PÏ.~óÙW{â%Ø„U&“ÅÅ›¹½·¤áô<"‰‘Ï.8ÉÕ¿‘ñùèº+¾;“ˆy Y{4Í—r$lÓ7ƒ0D¹tý…Õi⥡õ(èÑê£i7ñZ;ýëàÂܦní˜Å"ìžë4Ú‡zGGÊz5Mô¹©ûÐÔä‚.ê@ñ{ïÖJ*,šú0Yª-p”ªì€ú%LäÇr6’#–øÜŠ³Ø‡KöC‹¶¢¾ÎXCãÇ/²½eháC7Oc$]"ØXÇaÔÙ,ž%ÂHètJn £¸wÄø_<,|™“£È÷~§ûQYÔ÷˜vsSbgͨÙ'Ýߘíi¿2}T—Éj®³€¹šVTeTíƒLHoËé15™Í@UAu¥_co›µ©µ…>åw-…|o/’Õ¥–˳+s!âÏè.ohf¡“2 ×H ýmòG[õù!AèS,ÞwР)¢ÿwèëX\u:Éù¿Ëí/Ý7L4.^ÿåª}úá¬y@_[[ •Tio™Ý~âÄÈ\öD ÅÁx Vb3òF›ØkÍ—çh‡ƒý~—y!y¦Àqh4â C¡ü‚Bøº¿ èvyæöÊ”ÝP4 –A| ñõJežNUT™”ÇR7¹â!VöÏ]㞈ÛÚ¡†)Ü!8 º™5Ójl8>@å XíýÀÚ×~¹»£µyºÝD ‚êªôD]Év쳿8˜ª¬ÏÃÙ.zXèÀØŸ³Ô:·Fl7R··ö °´CÈ®YZK¯ñŠ´‰|-"ÑRè‚ø jîendstream endobj 659 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5343 >> stream xœ­XTT×Ö¾ãÈÜ+"¨x’¼;(ö®)J4&ö^±+(R•ƒ4‘)3³gè0éC¥ ìc4Q/Æä%1FcM4Å}Éá½õŸŒñeå%yoý\Ö0¬uÏ>çìóíïûö‘0½{1‰ÄbβÕΦ/#Ä%âK½Ä¿I=Iêσ»,ÀJ V½ë^zÑo þ456èÒŸ‘J$!Ê9AÁQ¡;||Ž£jt_k†ʬ`œ˜•Ì*f5ãÂŒdÖ0k™ÑÌ:f ³žÙÀÌfÆ1™9Ìxf3—™Àlfæ1ó™IÌf2³YÄ,f–0¯2K™×˜eÌrÆŠ `ú1ÖŒ ÓŸÈ f˜Ó‡±”XJú2¯Ñü2½™T‰ƒ$_ÒÝ+¾J·K?èÙûˆÅv‹wd²tv5{Ÿ+ëÒç[˹–×ú¾Ò÷²ÕX«Æ~ýûyô{ÏzšMoÍÝþKû°qÀ…–?´}Éöˆí“A}ä9¨Ž_Â4Ø×n¢Úî¦}•C¨²îÊ#n6Š J$u]«¥âø®%|rž*+b@”CüºoÛÇíTøÎÔpþlSj4B=”iN«Z9ÙÕÚh#C¶.]—~y{ÔËN’±iñZ$;¸@ˆà϶§‡h‡Tø\eÍ.ev|5G¦âZž(eh‰ŸZX‹Á(Zc ±÷Uô¾jgÛŽËQÏÿô÷ãçßÉÛ´B 1¬«ш‡tÅÚÃpò4'z–±BAcäp ŸCMP½¢Ú+o#L€mócƒ8ÌöÚ– WZø³—²7ÉIÉ ´H rë.?š”÷ ØhˆN_àåûó¾µ³1BD¾N—yHÀÁ²‡-o¬˜¹pþx9™,Cµ’ÿ¶äÃóp•»9ö3b/tsþå²k:¥·¼»ŒõV+g ™íâ0¾x÷ë;·^ùˆHõr²\ç·¨3ëäX«XäšG/Ÿ¹âÍark1GY-Ž1Hjn`à ©‰;x´súØÛŽdðÃ(´AÛGÐF d¿Ü ŠæVÍ šéFè4´Ô;ZÐÐâW²£Ü]»ÜÁV…n rupŽf›¬3â8ƒ8Ø]=ðÉU,»ag»á×|Ý™S%­À}rv2aˆlÁ˯»yUÖ‡É÷”€й½+Cêv^ûb¯ûh‡GG,×n ßî%·=pž%£Ly¾œ‘´MÞíû'y›Ÿ.bXµ¤î–]•ŠÃð ¿åúêl_àˆ%‘Œ%vÄöñ(ìÓz¬àT›œÌýãˆâéPÖ•tò)»ƒC·¹û­nÖÒ›hÜåϯ}Ò1m uÄ/@{rùÉMÌæcß’‹#Q&hXµ&&¸àÒèòÒò‚Úýµn+ÜÝ—)Ž~`ÉÐßÁÑ ]žö„ Íyój"ØÙªÜF ¤)H‡ŒØQ'AÇ[¸©Z*ÞïšÁwŸy†âgøhO=Gï ܆zs™ø±“RôrTßbäú½&¯Æ¢ ÙkJ¿1ÂdL—õàp  ǃÁ¥\µÌZ­4ˆ“Ê$uÇpÏ1)>_ç÷Av\²âöjuBBR²™ÆšZû³7øå‡”‡Ëëü›%‹ß§*‹ÎÙkˆ/îå;<äË“q‚*G“\,ì’“Al4$è3´Úâ"!-#7/=½u{‡Ê@‘`Óvåb{DUx¹|ÇŸÌYù!é³ó “Û_Þz™Ìi¡:AIyÀåCf1=' o[#N+‘üt_¨–â'â0ÞH†ãÒ V3ÕwØú©aIïÏ'.Ö¿wYè ZËÎò÷ñY7‹¬e{xëœëŒæÌž¿%E–'ç1V֨˽&”en*p¥ ¸¥ÒŒú—³¿­ÉöÔÓ4çpÚÍ9W°3ÕôÜ0Ï“ü?{K,cÿd&ZeJC,[믜&:ât~ÊÆ%s¦%·ð –Œ5ꨦÈɃ{‡oMDKâA8GÊkÎr¶‘Úi2•kad$d‘#>c¡µ(c—Äœ)F‹øþSÁ`”mW-€môYÛÍ‹2°Ÿêâ|LÛ÷QÇMBýe-©— >— Å¼±PvºZß`ªKe©ø‚QR"ª¥¸‘We¨3 “«l€bÁÈnS+4[ÁÁǘ=D% ÀG´ÏˆÉReC6dé2÷áKø™}é±z}½–3²*7PCøkƒtæQ5ê}»!â5ê¥I··îŠ~:m×*i×üŠ/{·%­Ô4ÖC¥†à±àÑ3c›&?" ^¤JœHRíG`UrU˜T‡J£®’®ÑUµ*˜?]£_ψýP¢ÉÍVæy€ ÔÉJÐ8“pûq˜—T@y-Í¡ªÙ¼7Wº7:W ìèG)F­ß<ùÉ>=.5¾ -7-ç1°ÿžH‹OS€C¤æ¤åp&â6DÔ£¡æn½a`Û'›ïàô«Wªíl7+ñÞ>ݽƧ 8Ãù‚O姃ְJØè㇠œÃR®®skñ>°¹`#pSç¹/ñ/®¬*.©lÛš®‘WUήîX§×Ëò¬m%³VýVòB¿9¾áëÁƒs~|Q s|M§ò«¹„ø1olݲµîè…Îq|†`ÝuðWˆ÷Å›üùwÎi÷™R¨Úñ&uкõKµ¦`DÂ^ÕÞäDrƒ¼küÎÿBE½É¢5eá¤8K™½”žE™óíÔ£ÔTRÞ;f~Ÿ] ±Ù~d~iOqhfjI¾˜+Å3Î'fƒ–>ºOîeeëê*ÞíÙA0=./ÊùOÁQ ÎÛKÁ“ LNZ2Ãþo³Õ:Èt}®¾Ü4ÂK¢1q5xöŒøtꎕßÞ>¤ƒŽ«¬ƒRZP›ÔwZrÏrÝÅj}0NéfíCW†¯ \°B!:O¥ËÒVgAWY¨Š vkõ>þ~Û™S.§çVµ¼§s0²~*Øó=t6ï¤:”*úϳžfq¸QløLÚåÖ%ðZE÷Ågp6õ"åˆ ¸ ç_-È Ù.H„Ä(¢è~Ïž(ij{K4º`p 3žÙ‚d66§õqJ—¯=B}Næd‡Ãá*¹¸ŸÕjQóO&}OZ‚r!=;-›l T‹ÖI›ߥG<\tâ³sMôÆÄC´@þ!S’iÕ²ŒÇEhA±Ó[F껹ºgê×c²ŠëÙ>\m$‹'Ò=ÈjúÈ~²ÁfäÒ¬.SäŠhe²ZªÝ»üÝ\#=¨ÖxT„´†´©ß¡%s(ãDåÁ²ý-ÆÐ wUyéc@‘\ê»|r†Û‰7h`ÇÑ„'¾}?jo+-¢À]ÂâØgJ'þð<Š­EWz®¾8ÓìŒU—Ln1Š/K‡Òï]îQ[l5Þ‰ô'v?ޤTc}äIyfrFB¼*1E#ß1|Šz7l†íUŠºG4g¡•ÓVðÙ8áVa5œ‚³îZ2ˆ£$^Ó5¹FÒùXT<–vEá7ÉT²•lÅId íK–ã$œ‚[r|Á ò›˜‹*tºþà:Í *’Kä/[cOSƒ:ƒ-.ßùZŠ'ÌV§/Z°·´·åä¨Sr„øj9C¹â(CUQqe“×5o8¯)v†ÿuòñŸ¸L¼J‹{µC Õxž"sè-<ûX*:áEuÿÛa_¹œßéIþ[DZ*<ÚÓëÜ—¡3^nnôƒ¼.'Ã(rÈö*\zþÓ*L¬’ÔœÆÝ×êNKq.à 1ÆÝÀÝ»réú‘ º=ùòƒ ‡@ÉTL ŠSfF–çæ”Ç=Ý”>¾Bp™g>mGÆÍY0cC­Oán¹ZäK9gG¡OUÔ†oØÂÍýv5B›O\k‰|Û»Bp©_ã(¿ûÁ^]`FdÅZazAv÷8…Ÿ˪tuû*ä%UÕÀÝ‚1 Œ™,ï 3ùýh£y}õL·ñ£g:U˜sᆼ§ë4ÃZÒcѤ¸¤k1ÿ v…áYq믊ó7g¶BÛlÖüšžÌî„0­Ïa2×Ú?ü²£ùR*5¾ÔzSQÑ®íÑ >‘úÍȘ= {)‘䆻ìÌRK‹¿Ç•ÿ™…²dÉì7ùþí;»ÙZ8ô˜*èZõnÍfØ{´.=“=†ÍÁròK^ýÚÈUÄ¢ fütIZM4#Å¥á8û4GþíÂãÁów/>¦_;Û#æëd>9zöT‘ç¼?÷/…ð—^~®¾‚ê»*<ô®06¹­‹{Ç£a*L‡Mëw¹r¶ŸiÊþ«{›ƒKñDž,‘ˆÖmÒ®uTòK¡´,bä¤ ›e…P¾ vÅ ¤™4³±ôkx1Ê‘þ'£ÇWF_ΰ™ýå6 Ü­5PxáNšÕâ|>FC@­QÓ^„#ÖØKöÃÝúÎò¦¤0ƒà™’äq\@EtyUiquçšöé#‰ÕZGXüÿþ!àÇø*{(cÏv9)ûã7Å^,=n²¶ßBF‚‹ Ôwò´iq~sNJ2µB.9#13÷³khùAH£§odpppqp½¡ @Kr—“äb•›pŽT-3…ê&2RÜp’¯ 3Ðò üµ¼)å§–þìR"é¤âú®Í|j¶.Íä+â2bR”q)yü¯™ªu ¤8ìÖ'f¦åêÓLii)D\“bg—-oÐèB…eK&ÒÞŒZåbxNVrÝ´ÙVÅMüLLð5-Ô¸õ”üØ *}£éN,¼%énÑîsɱú"#Æß’þ€ù(Pæg¥¦egµ­‡+Ž÷ÈXä&vwô„•°°1ìª2Ô™À•Ôä5Ë‚wÅyLúx"J±ß÷±?ö{õ["Ù¼)ÆÇWŽÙÚc²Ñtµqåë¼ì¤´d55H ò-‘®{Ý©ÍqËr-ŽOWS?ÃÅA|tÏêºlhËw2ä0V9ig{ ß7ñÅŠ*häÞÿ°ùµskçÍ[áê¡ 1üÑŠŽÂgÜÝñ§&u~k¢W¾OE °/2#åŒ7gûõËî+—;¿0äÇ…È ÷ðÈ<˜u8´PPfÅer÷ñ8ðòÝGý`¹ÃŒé›g¼2ûÜçWŽžý°A0/¤ñ›/ ⺘ۋï`Àm;Û'¢ ^âÃYêK¤ÛV+6¤ÒdYêæ,8ÈUF•EF,:±íòô±Ç Áög¬ V&vøÓÜ7cÑB°}òäº{à”¾UhÜ’Á‹’vLvdñ^ZZ¦=‡—‰söa`nF™Œl׳FË«}ËÞSK¬ú2¬¬®Zõc˜ÿ\’r™endstream endobj 660 0 obj << /Filter /FlateDecode /Length 159 >> stream xœ31Õ3R0P0U0S01¡C.=C Âɹ\… Æ&`AÃˆÍ ÀRNž\úž¾ %E¥©\úá@i.}0éà¬`È¥ï 43–KßMßÙÙ È °±Ñ÷VÐÊ8çç”ææÛÙqyº(¨-> stream xœ]O1ƒ0 Üó ÿ ÀP ]ZUm?eÀ‰Búû’:œ¥óÝÉgÙ×mù_ÁXÖ·$i²,Ê ´Åx°> stream xœÅ]K“Çq¾¯|± t˜ãŒÍÖûa…Ba;lKɲe„u}b(`À"¡_ï|TWgUwÍÎp)9xàl£ºYY™_¾ªßoÔAoþWþÿüíÍ—¿Mns÷póþ¼½ñÙ›C ðûMýœN‡ ÔüóÕÍï6÷ðàÞÔÔç¦üïùÛÍ?=Ã~=<9d•õæÙËPo’ÞDÙúͳ·7[·{ö ´ÕÁ4;Dãá…g·7¿ß¾ÝíÕÁäœRؾÀß*'·wê´±1n/ñ±ÍÉú°=íôA©lÍö>õ9Çhþ÷Ù¿Ó8NŽãÌÁÍÃüÃnïœ=¤í?ãk:gÓöt£8åUÜÞνm?íp8›Òö¹g¤r00ôkøi´²!m©X¡ÏÛ»ÝÞZsÈÉoïE¥\‚5a¿Ñ[G=h¥¢JÛã^,ûïi@˜¿Ùßà?$¥5 ÿyW§ú€Ý¤`c*•I=à˜þê&µ Mh¶¶†žhó[šmNÙsëvs÷ÖÀ,\Úì­?$èh±m4²²*»íwü3ø:Íì¢ê"•LVf»oö[‚rÈô£ž ʛω|NÇX6 û”ë²á§œÈi·76@ç2b´15ݽ¡ùAfûoWÌq{÷šìâw&Bc›÷î¹±ÏaûõÆ€ÅXØž–n:Ù†Ê@¯?÷FR¶L·¿Áwœ‚‘Üô’ßÀ‘‰ŠÞñ {˜7{}6ØòÒkf'í¢[Û!œŽŽpÈä;?›ùh}vúà&ø«ˤ(æ:älºy)¢R:¯Î+´Ê¶óúûÇæE?Ÿ4-ÝO«älf;­ïh_rVau_ÂÁXãcûÒÎÎR²•‹Y-‰ü)ħC$ަŸ~züyætkน ž¼9-Í4ì¾FšTYÒ;žNv9òKF©‡—@ÑÞ˜`RÞøŠ^ðY½ Ö§e:P>¸…6D/ÞS£ÝüÄž>6WØ2ÔcsméíAàá™è¦zá?=º0ç§b…Y;"ZP¸¾eÀŸžg„±2ÏWÛݤ½íW;|1+§­Å7÷¤ªJ“,tüÆ·$»•2À±¯P&˜vØ #èÌøXYãy¼¾hÀ<Ót®9Ñ ‘@¤dï›i'µ^]ì¼>–rDnØP0iÉŽT–à Nˆ7äv¶¼ñL›„bæ8?|ÓC½Ž)Е0óìºx,çõ^‘ê$9Nw=µ%&(_ÏFÜG$“ÊQ£d#2™‰¤ÊZ²ðg²ßíX9àÔÐ £²S`çö:7'”’R( F&˜€•£lË6 Þ^o×Nš†CÉj{–<9¯I€ÀûZj·õ®Ñ‰¯gøfn!šÃŸyÉ(h>¾Ÿ{»ã&Jå±þd²5ð„Y"„"Åë±Á[8 ’ZckoE |7e<íjè:É&~-¢³¸ÙÈ"öÕU¯ŸÊ[ ·G9ôóYž>Í÷¾z>VÔ,uËÝExy,;§Gâ0¯YB¸ ôjNˆÎê* Ÿü€ŸgÛC'u6.¸™ê½\˜ž•R]n%dz‘L ޲Öå˜Ñkßñi™ª}U=G‰ÅÜî×é4s퉢¸(Æ¡Ú,` I r«v¿£aBvƒU4ªòÛGî§ÉÓyðé2ô•~Ç ËäÔ\÷åYR8²¶"ò–yкþvr_ú®ë õe3ÛDמ|- üä_ Ͻðµ`–”¥/x 6Ï +laóðxüi½¿¡™¼BŒãŽvÛ›ÆYLÇ@;À¢yF`(ïÄÔfýP| ÆRT´SÆ'mJT StÞÜñ¡w(˜×.À}rê—™î-¬53Ae4NAO–ÀPMÀëGPÚf„Ç`ºÀ_aû¯W¼Ó.E\éwÅòÚ3S$ono÷/*Ÿa‘.œµ‰€—Ÿ,£ZÅç!:€/èŒ#¬1¼­ä“s8lár1.`f–p+0@"¨mnO45›IæÏ¾Ä5iÀ+®yüš–jlp+ –´k “m¬_.¤t$"‡‚ƒdq±’ìò MDäÅòÖ`·¡†qóìW7Ïþî÷ Fî4ØPâò «Žë‘¯ŸsbÇ/ûΰ¾’¬]ɲ›=Q @JëâZ5¿0{ 3Ã^_ç$Hâ—Ž"õ~½±Œ·Ü…d§õ,އ‘9èdfšêrüX5u&®Ï`j5þ$F€„Î…??óp€+Šý ´âñ™¬¹Õ ¤°)²áÄW,¹T2U;»ÃZ…,ŒD£¡\À54i@2&À9fôSže—tÕ¼ѳ-)v™ùׯ.ÒS­ÙTºîDç~"„¿£ó b g0œ}¤|£ vÍž®(ù;~ Ç’˜É€®”æeKÌŽjÉäWˆIož9u8ÉpD(é°¬_œÈk †î+ŽZò÷Q"Ê»bN{.5±Ó¢ž ÅlõNÿn–溆ØJ'b¤ÆJÇ)ÙÔû£[þ/Ómõ™ÌføÑl^ÉÇ%m Ö’åÖ{WÓÏÎ86¿G±1^ÈÝâìDd a‘¬*æ”範F 1e.uyr+MöÉ…9¸ägWØÈ‡$MF#÷®°Þ³T=a½Fþž°')ä ܸõñÏgxGŒ–3°£ÇØ5˜£&F&ü3Ô‡Dj<óÙãiÛè–l‰´xâ‘wóT¡×F§æ=äh›ñvÂÞß´¦8îâ9î„‘öK ³Ð=ÿhX¶mv ãKØkn%4X“ÈB¹=ôrŒ/Â.ž<ß]|ŃÀͨn'Ê.3m¢»\ߣ_¨o C>:ª«="e±mÁ.K~ªéô¾£¾à8ãÞ¢1±'R¯ò€ ÚVœò®0ªŸù´$/e°¢õ"í¹9yŽWnd… 7Ëæ²ÌqÌëÈٌ݂†),SÕ)ös2Å7xS`‚dùÁY™Òˆ%¢ÐÑ/Ùf¤ƒõ²Ì‡B$"Wg-<~÷Š˜XéF[÷ O½YäzlÏ#µÎ*J;âýü"ƒ0å¼iBÍ=Ö>,¡º½Œ¯âÓFî’Á¬;¨ƒ³ƒ…ËÃY'}γÛc“¹äXÑ¡A];'ÜtYå¦Dí×Aã!B®Pz aÊ´ží¥W e"d霨@û²à§B{‹Ê´ú§ψPÎç5…ÁØG3x¦(Ž—¾®$}$Á¬ø»ä¡oQ €¨2”.»ýq)xéÜhJØè7{X|-qq%€šΣ ³¤Ž%ƒ×Í;‹BPæ›|¬8‡÷±â–—ßùÏÉ3Hhj[°óÀRŠ©µÉyr9­€)Ý6j}}Nr}隊ÑHdÿÌN›ooÔæßn€ûo¬ùty{cÑù S}òææ¿‡¾‚Ž “¯­a§7΃Z›|WÓ /¤¬V:\IÙ¬£…yk'uøH¶wŽUè‰to7N÷vð?÷HHÝø«Qfõä Qtð«6ì¢Ü !A+¹Éæ nPÏ#ãñwe èn£ êãl ´°©Ñ=‹œ°z 4è÷äΠ¯qü`$ôï·»Aö‰pgÌsÎçœÓª¾'ªx(‰é­êŸH Ǫ|'&!¢\Ï+8M©‚Ó¦8N(ÝÏ<ùغ7[óŒZdÕ: ßWƒL¸;(g'(RT23eõŰz®Ì¸æ¬öIÇ£BÊÓ]ÎñÏÅIôúÌÀ6„•Õ™ýį̀ÿצ†œÓ麩Iù\ßéãgÎâ(©Ã¿!ÒGW€YßgüáSÚM“uÛ6‡›+û@RˆGd#ç; E Dž”.¶GZžäj”]¼—îf“¯Æ·0[˜ÎóD½?†"(jKÊí= §Ø:ÖZ•)Â1s,N)ÆZmÖØï½I%ƒuÒÓ:9±RZ€-°“°Ð:p êe`+_ŽT_ DDæü–5ÞOGUcý±|l™¶âõ`kJO¿¥ÕÃÜc …YA€VàÌ\"äcIê“sȧŸj…> øƒ›Á&†>QƒUopÎk$/ xÀ¯Á~€Ùg.L铜˞8ëAJÓ€ 8l¾;ÈSeZ$Á„µ_Ò}­gß=Yg¤I@i¢[œ³óÇ•“Q²s=-m>˜=æaù¯J}»$E»ø¡Ÿ–¢MrÀÿÀÁHka °Õ`Ï Mˆ-u”aÁù4ËlÝ$ãNaO~½›­ß…ÔãJ­A†Ä@ TÅe1R©ž©tŒÁ›¥R r5=pͰyëQ&·S92´Îx¬«s#§¢&[Õ-ófåñ‘»¡Ü”4 ç çƒR~¬þ±¤â¡§×^50ï;B\ö¾ƒß=7êè§Q…•ŊWHám©IÁL…pÄ„L¹Tuˆ/KX˜Î,‹|Ë•ÿ¹¼ÍHv§âµëfèŽI8~ ". ·‘‹kˆHxj:4°n-Å' ®5Õ„ø4¸ž4s}æœjönØÅ¸œjoÁŒÈTŒ(½Ó}Nœ!àü’TJ¢kaWÉ ŠY>D·}ÌÆØ r›ÖÓ‚\@wj-á:r²#`ò©.MxS•Ñ|,?“ï¹5¥ý®‡åÐ<${.FI}3„cBùs ö\õ †éá0ô†z©Ib,gOþ;جl•l®Wõ\Š~Ÿïˆ0ž hœïd¸|Òjèò ç[j´˜› üF™ Míoý9Ž´"aú¢ƒ&ÒJĉÛ.ÒZI6CÿW³ìzÁ-0bPSÜ\8Ú:Åï9ÚÊUm¥Cøx´•$&ªÔÛ¬’µQŒgÅeutál‘ìÛ†Žr.9? 0ê”r\T߉ŸÂVuá[|Ši˜ôcÐ{U+2/„«œ²sa¦˜F#NÒ±‡µ%HÝDxD~è¤0E^ùÅÞóœÖê2f©;©¹æõIaDÆxuR’1ÿ‰a¨fR·¢>1LEò×ü§ÀKl©ùÆÖN/UqèZðx—»‰ kuæ‰Ù@Á`âxcÝ"ÎÏôõUþø&ƧÖc]ÇYfb&*µjnÝ.+¨œÊ (¤ö¥Š›‡|FÏ`ƒ¬'èCvUS+Ì'%º`Û(e=ºmÕ®IÑ7ŠuIý‰î3+E€$~(ùÍc‡ív,‹Å –×Eê ¥êóGuîq\ÀPÖÚÖKÔ¥ ðžCž9 1>º˜kpŸ]Í<Õ— `L™“Š<Å_¯v\Y#ôáèÂF°Ü–M®ÁŒÉ¥Xj~×î@7:„»Ÿ–- ‹%µ-1’ ;û¤D.qŸÊj€öÌM(M3¨ñwe—#ßw•û%§«!£¿Ï²ˆw)¥xð¬Æ3GäJð3em`Õ|£;=Ù–¥ö®ŽSqãB4rŽ}ÑqŸç$‚!mZ4ìóòr‰æ¼ãˆXˆ>:ïu¡¯¹ `{‡zˆ.:´–$X–µO§¥{Ò@ÄêFõ;ã³j3–ޤF¿4+mÔË´’´5þ :U‰Kœ¹zdÀ@ÆY_$"-âJ§¨›Ã#êÚîç^åÙ)*‚æ `šähQç; u6"Í{V.xȨÏrº±žb MÎáí,W yŠ~MèÓ×u¯íyïÂ8»ãäàë̦ҢD‚žš›‹ ƒ®5Tkî ˜Ñzf ¢3Ê:OÛgóíóµ3}5%,3– V5IÞ' ˜–Z¤_¯Í¹oŠ"§{SŠSF SÌ>œ/ö",&s•)êƒÂÙš[‹¨-hlµi±Ø2ûrÎäÉDÛõ;O^pLõy/ðá§Ê{moxŠ‚÷M(ÿLªº|Þ'ª;Â+°“‚ÛäFwŠ ’®\­<;Ôi“²Ù¾»+Ëg{áñÔƒiˆkSh´¸†» ºû¬@<º©æ,ý5:, ˆž²æ¶Ÿ…³rÉ R™'ޱ´vŽR—ô˜Â"¦ˆ‹”÷ý4éVWü@ÕdÓ52$&vXÀâWz¼¸›¶©q!®„F‘¶z‰kô¢ß½XMŸphÔ@«iL­‡ÕlYWWÒÔýùì@#Rk“ÚÛ[˜²šÆÅêuÖï~,òžœå­?¦¶õQ­}·X›ýñ¢³Ï\U•ts;ÓiªµŠ£›+ÙØÂp\Oy|Š5µ"°]ÎpMyt-\»Ûc¢{]JïöGwêñ̵3oÅ=`‚_›Õ°*šd¼äQm;mO{©.-Ë™p¯k™ztUÖ´>,Î\‡í;IÍÜ8 ïE¦FPj׺ÃIÖü4¦{\È0ýÓL–SñæØJƒ\T4»ŸVÜ ª&¶ÿ‹ÝÇ`£ÞÇpîÒmxÑPô«wHa¾opƒ\Ýõ;î"^361€Œ¯ˆ°ËÇV­Ý›‚hŠuôФØqMbÎJTÙY’4HŒ‹-]Ø ªt±Á,qóÔ>.Ðä¥mŸÎ-kÉbòîù>=oê¼Ñ4²nò’;ùNÂIØ]¦àƒ'¿ç/çý¹çQQP„Ñ`G~àæŸÓ'šC~;£ï._²½Ú‚*êÃlÿ_g «›õuªBc&‰Ú˜ ýH½àQÜн> ï®:¼[¯te’²Jý>sW&ðås÷€ÒLÊÃm¾ÌýÌnøÊΗüÛ?:ÀÕõà¸MYwÊ·÷go(¢4=8F¼üy§NÜû”9¼Z5Ù3&K«Á¤ÙÚ¥SDL#.Ô‰æP¯ ¬@{žû¡É{ßûj¢Y–h¯ Ûëo+Œœy×y øtnƒ£YäiOø!Ë´»¤ºKcäÝ•ÜSŒ,$íÜHO%Qî¾!ò}ƒÕÊR¤‰—§Ê¤ßÔEßòs4l$U ¥»€Òªî›à[cµáûúÚ¬IÓY×Y¬ÂDu×ù_W /Ò…o*ã›'z` ÞŠoÚ{ÅúÂH¼ŠÞÔÂHû= #ù“œ¬×‘­Ü¨Pù%TÊú,¦"_îSMŸ¨¨z ˜Ix6˜°EîoðlS‹*¹:Ÿ™5ÁÕ{Ë·•&ÛKë(,ñèD[ܶrˬÈÝ”ÅÓûuŸÞÍî¡Ù«-§m•cýjâB¯RNS²èhÛõ0p}uøÑ²:” |öèR&´0³“¬Üà[ñ¬Ä‘Ï‘\AE'eG‰Oðª.½¦½äßÿoÎ}ŠÞ”îÉ;Üe“M+¸4 gE½ÝN9Íé:íêw隀]}‹Ðþ÷ ’“qš¦»äO`ŽAfûÈ+Ѻë«?TC•JE('}ºå´KJw*Ë0!sF °EMý+ûWœ…9µŽcq+¿¼ÿÍtÁI’þäÆmTÆ™½~«Ÿ/Á&œþÞÙ&“HÁaº\Qg±Öò)u¥ØÝ9Õ:„¦®Ÿ”„KÍòšÔöS“×ל:•¾à;Ø“v l^#O“@ÅwJ…lßœC»d}\ˆÈ¶³4;~äëcV])Åj§8N[Xäb‘öSf~Ù5å‰/Ǿ!nä±k¯ÛØãw£R‡‹¾«Xûˆ#q(ÏÍ‘²jøsïOæ‘\`³í«~_ ›½¿E¼¤ë=‰;—¾˜òIŒÄ™ƒÛ%8 IAçõïk,  U×KÖÚOI² Å6/ýu;ñµbP§l­ªYÌ«ÿ›ø.zâæß†6Ça­Ø¿äKûVÇHçX'C4ñ t0|†ñ`¥åXŸœ¿@ÉÏ*Nf*œmœ¾Fq0€5:èÝT_6éÈòÇ©ð³&xã`­”¥Oñ*0Z"è¹&ÌÆa‘gøÇ’yãtU'z‡ '=•Ÿ¯™5Þ¨ˆ¡˜ Ø %/Ûè¬éš°:ÎÑœnv‡³ªÉg‹°<$¾1Ë`9„‚Îh¾ËÈX³“SúÈ–Y '¾,U,ñån¢Q4‚ѰoMÉ ç×( ´â£j“è†Ý¥ÙZÝ”¼+X#LוR©òݧúÂ[XçK’„a;â[2ÑtPº!íGf¶©Ì/Q …> 8àaø¦ghb¦{ÂÊ0hþ9,€jžâF•Ÿ¢¿2%§}Óø=)gëcnWÉ[l~³\úÔï •O_É>Ĭÿ2 ;Í“~YˆZ.ºL|Bʹ5FBÿ…s¹a$̧„ç—r’?Œmi•»Š“pb3'5-îå›|0c2±9DfåóÁ¶Cч’ÓlÑM¼'¹úÇï`†ÅB² z}ž‘™ÍŸÜbðžqlnX‡é;8 €ë2dh5}È"ã7µ<9¯@Òã§æ~/{Ï$>¼›=©äZº ç.5ó‹U®ãÿ÷ÐÂhendstream endobj 663 0 obj << /Filter /FlateDecode /Length 8866 >> stream xœµ}ÉrÉ•à*ëãœæëK'f„,ß—’éP­žµL#M—8­ƒzÆ,‹ ÁI€µüý¼Å=ü=Ï0A Œ:"=|yþöÅãû3³·gÿµÿ_¼{öå7%œ]Ý=ûþ>x÷,Öèö9AûíÒ.Á–}…f4_?ûëÙ5<¸‚7-yÖþ{ñî쟟ø6x´¯¦Ú³ç¯žñŒö̹º÷6å˜÷Õdzçïžým÷‡s³759ïv7¡Œ+о=¿0ûlL(»kxêK¨®ìoÏ/¼wûbíîæ¶ý>»û ¾h“‹u÷šÖ˜l 7¶MÉ®·ûÚΟÊîÇöµø˜vÜz/»¼]ƤQN„ó˜ÝÁüÎ]†Y‹ßýxîÒ¾›w‡[®z›Ýîåîÿ>ÿB>J¹êö Ü=¿|¶‹çÏÿþì"{vá㾤„OÿÆ«Æh¥¶zãA'Øìs[tëñ×n¼ÅZc©»×£s[R 9îp¥0˜uË{Ð &Á#¨¥Fœ›G+r¾~Z«‚®èðŠN.ÛÄ@죽ÅÎ&ä¬@þíxOô]Ö³{¿§š%$8Ûî^ããXkˆÃÚ.-ÙÝ%?HäXïåS9òNhs}h~ĶV ë|Mûs©n¯hAÙã–‡ËVÍ­;ó®“ìÀÇÀü(6Ú»…e»_#¢¹ö!DF¬¿©/Îqˆè*N À*æå¤ô÷ñ*JñZ‡·„“.¤À̧ú3¿Xlû»yGoÑ%8ª+9Îõàò1ñ†å`Úýî†øDªÅ‡¾è;¾°~gðÆ%ÒJ¦ðëó‹”›kØ )a,飓^¬ˆ{ˆ0´0©È"bìku8Kç[Éœ+–èœîÌ[¸š*!xÙ^„§—ëè$™”±xPº7Žá+°ÍknG åMä뉯ïxŽ$ßi%ØVqjÜWmÄ9&n@㾚A¢˜tñh,¨Ý-óÅ-XÈ£b.iœÛ˜„ ›aŘÏ2Ä#ïÂ>eß G.ý†Æ²9*9ðO4qB¬"®UŒj!~ ¢Á–.Ój0AkLsÅ‹«í˜L-!oœÒ¥xí0:h'}+L¥ðŽLg!ÒëÁV”d ‹+0æ™—&ä¥awCLÉÇÓ à=_ⶈéó¾!PÔº¥¼Å× @ ˜Ê A…/?¾”Gˆ`2°¤MP*~T< ŸºÛŸ_dc§íî_ù¡Ë40NžìÄ£\…H|认Û¶òes’¡ CðŠuܵAGˆ"ñ4·ŸÎzeF¹dD‘TA‰/æÞAleo^’s8&ŽD‡Ù‰ãª<¦”Ðæ}©ˆv‘4}§Æï¾Ëùið,Mž ¸h˜”zBƒQ½-L3¦ýla¦ƒD‹ËEzßÈ£¾ Š­®*ð+у7Hžw?’ѰˆòHâD}­¤6Fö뮀†QD1)˜ÿãù³Æê~<»ÝVÔµºèéÖ¢âx–ŠÝçXOÿý|4 ~ñXv·Ýñ:hÄ iÖŽ/ù1r‡ÿ8/xš×ò©Ï5×Zædçb'Ý‚ÊöUïà?wƒ,$oâ>ÁÐbŠaAåýs PØÿóœ1 úÞ‡úÜKLûh¼žùfÀ‹”9¶œfÞ:äÿu>øæÌ˜¬ -És~+Ä"ã?¨œ &ï3¡bØÇX~Iœé°µ`Æ óœ…äíRt!¿Ðc˸oÑá0À›èý ãÄÊ,Ñ!"¡‰ÒpZÀ•ÂÜX Gƒ%8Î J&ƒ¢õ €1ç…‡è3ØÀ¾ÀcÞæ&౤ýÀCïÜîújü±jC4–ç|öü¿ým÷om~K¾€ °0PEiRRôŠ)²‚\Ð&.K?WIÉ_j.ë’Gùµ­ÏàäøUŒ ±|ê6RpÕJ{™=,»îÚ[`ì½;";í²¸]ˆÞ=˜°¶4û¹‘ÉÏç‹ *ÞÕî œ6©µVäŠßÒžÙ2‡m»±l7‚}ä¿ Æž›.ÅCo´›½zÜ,8ÿ-“TìwŽS–qtlpŸt·xámVæÑذC_Ú™V²úήØ¥Hjs®ó¤¶ÂHf¤<¦ï7»^‡7Zô¦‰ÈŠ:QKëø»q$?‰±{”ºÄÅx³)ÿ¼u­u¬GGѯΗ}ÈÇ|!û樀c95ÓÕU`þ$™2èé€ãkHf»½zänzÛ^uæÇsÜQLÉKòa¤NÞ‚}5WG“j—à Bb±ÑÂç6Y“ZÙd+â Ù /%ëè Wå‹Fw²öxÎ÷âPÞ=}ÛØÃñÐm¼% 6¬¨N’ƒP¶6sÇÃÁ~6 ŠÃ‡v5+/ÆË¶/à臙©Æ *OJg’Ig\')‰°“…M§×]ŒÝ7üvN–Åp%t¾92”ÁNE3”ð Zäƒkƒð£Ì1 oîž‹¯GIM¾èÛжñ †/Ç© þi™ÀÊ#Z•Ò€éêØÒ 7ï³4Œ#ÏÜléÜu9˜¨ùë5?ŸŒÒmnØQháÊ+^ï-û˜ › ´§Â6so¸i/y™¨J¿èÝ`÷¼FçÎm@Ø —×påߌŸï†dPëa¢p{ëB'Š÷caÉÞ”–Räæ@Þö•¸žqdr?±† Žé tö}-ó ÎÐ|FBqÙЮq•Á¶|;)lJ†(Ð…é ¬?œ^Š£3¦>BC‹DI9‰N7¥!“lLd@ö¸ûW¦`‚(¥À^>Þš)¦³Œ@nâ #T­JZ¸¦”0dŸ.DFÀ‘Háì]ÐùƒnSK8ÅÀìë߈HNÃl‰¢,‹—šÊjžqVyÖ¢:T±„†n®˜¶Éù·¡)!N1±dÑwŒ“ƒy/w(`?Þâ)Øðtéð륛 ¶xe/$ ·xkÿ+ ¤÷îù,ïñT±wÚƒ†/‚Q ÇXºEÔ™°f‘„}Uʃ%_`uS´ŒaÓ1MœÃ&Ÿ•÷W уè¢U=D–ÔãPMÂñ ¡„°“¾â¥ïªàc0+šË¾¢‚¨ß“h­ä¥«qzà$/ï1‡ šu¶‡Ð߀öІ ·áÀ”t%ás#&ƒoP*©>°^$>¡Q傜QΰƒC‹@º@× ƒô€£ÆI#Q««ÉU¶hTÒáÑsôäZ$Ù8 0œOõØŽ#¶rÕÂ(†Ø£‚ÒUà\ Uö‚£2,À€ÞI À2Ç2VÝÍÂÂ욤EoA§Ý ÿ¶íŠ÷Bc„a¿ÐW¨+'£SD6¥növr‘JÃ"ÚMš+€!r+͆¼ôMñä]!Åc«LÅžïÛ‚µ˜{‰ôh@›Eu`Ëíñªƒõ`—8³pÖ¦ææ>†o²Êbdø¦`#…½3»“^MÏ#àÄ_Äc¥M°®ÁÛ øG« û‚¨ñ"»X!ë-“jÑèQ¿$R-6•dZ áâ‰t8½`”…Btç~|À\ƒúÔð ±p²G;;´ ÒîÏBsüâÍù$ð†˜Ñ#Xvø÷cŽ;T pÒúÍXËhßLn?Ͱ¡} D佫Eïìai죑¢³+::¹¥¸t…˜ìRÅA"rì3X .r„0v€cRí=NÖŠ.·ûê`—ðúœ®$ù‹‹jMÖþ(áEÕ~”‹»À_‚M垨)M.˵º ¤ëSÛxèóKÓ(QÚb·„þ1(IòžJ<3L)™Hƒ@èP%UˆÙÑh7=Šv#Xí)é]?-ñ¢éì'¸jâzÂ`}Oj:ûü˘ΠÚk­Ç¦3RkŸ0|}BfÞ“0‰ˆ7´ A¡ÌÌ}ŠŠÓQ6¨5¶`*cR¤ÎÔ`'W¶ Ÿ“‡ &e6µfå‰íÍE[`Âe;划°„Ÿž&]Âx´×Þ 8áwp|ÃKË%…]S$¾ô¡ÕJJ V̨C´VÀ£ø¸x{‰gPûÓVûcµ L|«iäs×^Ã>E»BBËÕ1d+ ÉɆ§40ÀHë´@@g©Ezkä{’Ö-¸7l¢ÍË…ª$ú®%r•¼8ˆS .þ¼˜ü‹¨¤7ÉØðzöSSÃzÂVð–Ô‰ý`Þý‚Û+ˆÄ®LÛÛT«Å»óEà +~Y¡¹1s²iEhM{ 1ã]ZÚºE¯RŠK®ñ°¼Jb¼›WÇHA:‡}q~Æ$LXÙuð+vÀÄ“?‘FA 9‰Òâ@å6M8ý™,ÂjUÉ\•EÉ$³*¯6}û½ÃûñT& tŠ´vXPÔªJ§»å7“Á¨ôkI‹#c:¢Ì›ÜÊÀM¥)›m55óšå:†¹n¾®r™>× Ž¨öZiEßkLÝý‹kà­Ú‹q±Q‘t,ÉìœE ½Y‹úqJu´’s l‡kŽï{Ìk]ŠÅ.¹e ¿”D¨/Ηô¸O3€)–ÂZ”~ Öû7aËc±AÂoæ$}?Úî‰MÈJ~7ˆVÕ.ˆÒIJ©Q¸ŠxAÿ—üø”šýkî:RRùUÖ®ðméŠl|Õá†Ñ(µ¬U,âæ7²¼.yLM%þÂp]—’ ƒÖ«,à&&­Š6Q´%rÏà˜4`‰€aϺAÊNõÒ/iˆÔuC¤†. V 0Ö ‘J€>ŠjݶD³&YeGRMá¢Ål$JIîü~ú _É ¹NÕP ˆs)Ù‰&†¤ËªŠ&r9¢äŒ½,˜RH±$ÙOµÂúî,éî±S«WF¸x·_*#TýÏðÃÄÌZ é?7¼ °+<]xùvÒ3‹ÅY+ÚØJ»™²g‹Àbª˜FÉêñ1 _ñæâkõŽÂ¯`;«N•òøL’@z!‹ïqR3(K2ø¼%ëÄÞÅ:ædyZ“õƒ@L×ÕËJWÒÉÃ>0âþ—ÛÊ…Çáb°¦=›nÞ¾ˆ©šåB ½ûx}NI§q‰R ;+^ôj­\y}™]D`¸Gîë¨:9€'ªŸÄ¦â?Ø´€VZ@Ø-:ßã” 9綉eU@ q‹ú™MtÍ€òà‚0ÉE¨A‘µŽó(6‘WT‘Û¤>¶ x)qdpn³¨bá»_¾ó¬×ylälŠÝSºA§eñØùÇuèJ€x#Y½·‹¾é¢“>à¶Lùšo %srÃH‡ûÚ„GIŒ–£•›¹Ô 7ì}át…\ô]i­“Å僊ÔÐ ¥í@7Ð`ìM_ D ²¯AÝÀ$ÌZ&Aæsx}‹Us«÷ç0ˆ©øö„ðt …4ÉpB?UJHvñÇÿó¿âÊSãL}T¸[Ö»;Z_Á™j/™ë}>ªƒïJ‘°¤¤©u\ù Š–¶ ×+_%ɾK:áF¨ÞU´º¬¬—+»¨ÌêB¨ŽÀrí¨á­pÃççKÙæ܆Ù%—&*!ßrß"É ?òZ KT¹x6jWT]ÌÕ6iÃû•Òf÷{vLjó À"ÉIr böfÖÛÐqН˜£ï|Õ¦H{“L ð÷¬»Ö¶>`zU >¿Eø 1lfª=tL«-ÉVŠ!鲪éúzÑÛ£þm@­x~7hæ§ÑܾFkm\(¤Q{•ª´‹÷»q+‘;±bÒe®?R1÷ÞÌ•­8aw‹-rð“Y!³f—9Yë¤xú²3¢un{49õ‹žÈ»5v+.9Rg÷O’¨VñØûòi‰2þûlÞÎîÞäð2‹Ö[û¥Öî™ïÀ ryê„v` {ÐHÏ|M{`G'$´o:›3 ¤…µ¾q :žÚŸeGè"coÊt÷œ‚üØLwæÀxê&•®WLâU&hî~ÍKEar"7ÓŠÃŽ8ÁÃvÍ–:¶qÝæ½ŒÂSZ# –ËÃ|RÞÑkû‰•ƒîÄÈÀ£6\—´šgຑ/NÅО™Ô %õ{FêP^ºU¨_v|©'†8©s¸G}EÐèë)DùÔF5–æ¬}’û®ïì{©/_RÆ¥yÓfê¯ì_÷‚<žWLã¨{£ÓåL -|‹±YOérKñïBgBá>Ù:ÆJµ”øûÙeäjVK~ââ°€¡S1f±åÃcrӳD޽fÍ£dȪâÍTƒ!«~gî\ïÍÒOC)“BFßÍ€nÂl†/ã3o ˜:Tz7ƒÔaû*Iîš/.M³3)PîAx°µO/bÞIœ—«•ÀSõ¥3èu©ÊeŒ÷®§œ"b´E×êùå>/B_=%4â6hv71NIß`ÛUØ%Õ`£`ôr€B%­ '¤¸à:«Ñn6NZ¡,ñ£¬•åb‘¶"= L”>\Ä&NwÑ7£õü>¼ìkÑ€U·ýÆâpØwPTøè†{b’ù–ÆÀFuúÖ¶(@÷U-árjw›ÚÓ‘—§×§…6¿ç¤ó¿ž/÷¦¯_òº¯çÓ}$¥ø#„ã+²µ„G¬ëÚ÷@„êXõó{7œSMø=Î0ºäµ7 }ÕÔÙm'\4«>8x J[ž¼›ã;!yƒZœÅSÆÐðÛµ ˜wQá>>]’Ø£çO¼¸HaÞ{B».’+öI˜óãå‹”I¶¢u èÍìi˜Åjû‚Vœ:ŸÁÌ›Bá9y»ê1BP5žFó¾æÏ6#œíå~¥•£Šóíov<ì‰ppLÖ8æ„xe•TÌ×Uâ-^Gpa³i™ã” ˆ> &…-ôq×cè;ÖÞpã·É©ãÌJ$Äö“­¾†mV¨|Z#k»Ö2F~ŠÙd*©Ê‚í)V ô=…Ö3 Nã”=ÙUß~#òeYÁwt’/B;ù‚õ€·X: €MÃÙ؜ޚv¿ºÇAKra!^¤€Q=o ®ðøõˆÒѶ°mMrÜè°E_°Ë½ 7=XL®½=¦ºF@=¼Ç•"  OYÛ# @;>­moŽ‹£ëý°ø{EÞceÅy“C¯ýžÑo´£[Ü(·‹w­¸¡ÜÈŒ7‚ò‘z ¤ÝÒKþÙÙ`4 5O”÷egÐtŸ,ûÉ1°Ýxð+:n æ™åd§J »G´X #”«à9`OËåŸs‚ÏZBLc?)´Â%qý€°È×""è/@§®¼OW\¸¾aß(N´¡/ÐР?]ÕKÏñMuïàé«~’ùŽ>¼Z÷>㜷5y«™‡ò»€w Èf-%ÏÀì÷š:-n´lüž?…¡ˆ¹KŸ¬¸ÐhC•º\²lDMòè ëÓ/B‚u]×МGvšÐ?O,ƒ {ºlêNHÔ°— òBûÀ›uì»ÀÏÔ ÛSü¬ré†â>9£p`Œ¥$ïaS¨V»} î]Õ¯Þôµúì/4ÆVïûðp¥äu»P6¨e#añ¿­wþ(v¿¯]S%fU§å–$žï¢¾ArÇOñíþ|± ƒLí6hІL"u¤=Ï߯æã³¶µ!eánἩmß uÖ"êÐָ޾S.oÀ½¯|ïþ¨ŽU&ò‹’¶ gêt¡æ·ëÏ)|à©Kí¾~J,Zù|8Õ_êχӚ­Õ™‚ ]+¿æ}³Î‡uÆ-ã?Þâ¿T­è=õ¥j~ÃQÙ¢Ð{ãz²Prºöf&×ðVu«´ÙIGôûZÎ~Uñ>+ "Z¬Üiõ~ËË“·Ïþ²©L:ü2ÀR}ß•É Æ¬Á‡¥­^¦7ñ4{á~:+ûšRàÂ}1C$Q¯Ï¡{#€î=Qà]ötÙ ë0ÌòP€•#xB1f–.ý‡Íçk#GÑC5¶C÷>æG­; _S~ IoA湪GÉËq”ÃFçc›F2z÷õЧr¦Œ7°s©8š+`Ć®¯å >êmI>¤^™‡WŒu¦Us1#ʉôÁ²wÅY¶æ²qNý.Û´ú@ß[ïÌ-.WvpЇêG«"GGNw‹·×.q܈" *´k¹Ó˸<îϯylK™LøÉº0¯h€–uXW"&øu}½ ðéÅ!9GàÈ~!h|’¦€f—|E ê}à7S òH¾gÀá5Çb··/»0­m³- c-l ²8Çúð46®\¾pùÀz™ -1Í 4¯zÛﳤ}«ª5TJ r±÷–7êÀd˜ðþRþ!ˆƒ4€ K†s› uÖ$ß¿ ØÎç'R»ã°f‡yçt²Ç¯Ä,ò9‘ 31Ê£½Cß1Ý!VÑé(g½9Ú‘fäà¨ÁPËî÷4 –¢½Œa+I{ܱò(oZ@¡†âè¢"*uf/X˜hIlá®\Ëj{U¼¢u±dN‰ç&; Í/HÇæÞxcÄbÛVtCßÊî< ØÅ¶}¶ÜÓ ‹q@õšÇhÕ<ŸØƒ„/;º[®ºw–Äu5ðPnÑ ŸûI BçcϬ^v4Œ÷>ÄäRÊÞmÌBä 6a¨›Ìcpír•QE«%KXá¡°=ÂDµ¨\aâ±M·›Îh\±ib¤°X‡ŸéìÓù#ö¹/k¬¦YÎ"³µ±ªÅ´‹`•¬xÇaœ™˜F0³›¦R•ÊqClIö¸ãu„žÔ8`³pæd!ÑáíÐ~n#:…¯7<{)q’¸ØoÙUħhå p ÌzºdPâiœu\\–ËüÀ«LÍ)v £wL¬tcÙgT;×ÒÂqÛó¡ÛJÿO ¥­‚HNL¡Õ OqŠgíÇ*¥ÿý é¶endstream endobj 664 0 obj << /Filter /FlateDecode /Length 6929 >> stream xœµ]Ks$¹qŽð‘Ò`èÔ´‡µ…7 $[Rر²Ã:È>ôîX$›’»;úõÎ H  MrFŠ=,¶‰‰|~H`ÿz:OêtÆò¿/ïN¾ù}´§7'=ÁîN\rz Ú·¥­ŠS‚æÚüîäO§÷ðà |©hÌÓü¯Ë»Ó_]à¸~™ÒœÔéŇžPFu\˜’q§w';vñÐWyÝtÖv ÚÁW'ÞÝÏ“N)F¿»Æöœ¢ »§³yŠJ›vûø³IÑ8¿;œ©iž“Ñ»Oø«K)ý¿ÿAóX9Õ“­ÓüüìÜZ3ÅÝ¿âg*%âîp³ØÙÍawUGÛ=Ÿát&ÆÝ¥˜)š“×0õGhj5w4¬Ð¥ÝÍÙ¹1zJÑí~‡ß…y¶Ö„ãg, æ9Ìq·?Ëþå=MôëÝþÿg¥`úÏg…ÔG&zc-s)õˆsø¯Ž¨k|³°õ0õ›ßµ)&ǽÛÍ=7¨°ñôܸ)Â@ôÍžYg*$ϳO™ä8?˜d§µ[HN6¸J²¦#ó‚ ±ë1O^yë»?B.ÍäG®õýÙ¹0I™ÕÑ;ƒÛ‰“¸d:¾àm¼™ÉÅ´ûNì<öU1)ˆGîkbØ=ˆ{øí¼¨›ÄM;ˆ¿š’sÙi ŸK§ßž\üóŸw9€Bø3 Û¢ÔNáJfe¬ÁŸÝŒÿåAtéߤjO,‡¸¸»Å1¢ŸuØ]>Ó^ÀF­¸Èè‚OŽ rna‹>Š.÷(´ÁÂ÷ T«þþüT)¸”¸;+ÍküÔM轫Ë`¦Ì³ÖïIà­², ~Õi÷üIŒ‡{æÁð(ƒ'1rjSA £Száܯ»ûãtò»b¯´) ôÞ Y:$6;˜›Ur…þìX7=èã@ÃPïqèÔú"jžu ¹·S×I›Ž4)î¡`pAÂîV‹13ììSÞeïZ àT2Á{T>øìøLÚWŒÄgb²ñÎ23³lòÊ´õVš‘w0}BAu‹ÔÑЮ"`Ó€*à“Ý‹X—KCpó‰Wž”Þý´ÚÁOÕøqß96]ïëlÍ ™Nfä:uÃYÙ›E‘œY–dyðãØÝáégÓèçO£| ?øâ ZSŸ‰M’abûÿÖ‚Mg؈\³Hö6±*-úĪ:[mzûNƒÃ&eÙR¸3LŠÖfÙB—) ®ï|Yà¹Chcäuf'íùnÎÆJ?¡Œ¨ wDZbR,ÁT-VÙûÞÆ—ÍÉsÖ~äo…Õ½¯$ÝðÜèNåp{d@!¥a¾­ƒ Ý3çwߟ9GŠ²Û aåu÷B!.›½.†FÊ"Øh«Ä+a÷ï^°“ÿÀ3zÐRáú¥¿!ë§ ¨o/Ûø!„Mïý02¡½ø5SÏ,,ØÕÎì 7<“lßWŠ.«gšÞ,ö™xvÅsIcæ0€,ÃB›pËUæ wÅ“¸ÔŒLŒö)j›— ²ŽŽL Âç³hpYSšB4ÀE T{¶(w,ªÕ’Ë,û;v?Öx âQzÜV‘ Ži\p ØHîésºXwòRIw¯W¨Ë^ÚŒ5<Ê9Ô»õ*_ÁŽéöW©•ص¿×Õ¬h·UWòÔŠl ~.nw`ËÀ¦ë<iC»ð—±1w‡ÕÉ®˜~²”¢wÖ©&bjâlTˆ’Õâ­.:ˆ “”.'óò6q«f›ÉM ä5 xÍ%CÌJÀŒ7ýM|xÍÓ€'Èv)b–)¡ÜDcMÖ“cKy®ùK«ÖæÂ[ÞBþ$C?Û±ò"-ždzÁ E¦•‰Ý8`*#wó 5aD.më’®dšÉQm4ÁG#©ÃìD‘{É&¯ ô¥6]£¨ÉAnc‹×²hïâ"PÎ6N{œ·õ‰9å\`1²ä¤X•„rŸ…+ÍsöÒ¿ÐÙæÚ—"«>PÞªæÁ’)‡ûŽ+ä(0!1JAJi_ÐyM ±Š²=ÜI¿nàKÀïmé½ éÍ€t=0+6aB.^4¦q‘¤~zÍd#¦ÝåËÏOè¾À.#à6’€þÙPÀ-¼—àÆ†!Ù˜Y$&”’²ÑÄ1©–¹Kî(”q0®Ìö—¤wÞÆ^,iôêXôÉúûEôÉVán¦%3§p¾^3€Ži|¬&¾PádÞýZGÉPÀØSˆÉ°qÆJ“WØfý¡@Ö&ÇDŒzžÙ.͸%"jÏé&ÀÌÅd¤i9 Ø/'4¶‹N‹oºCÉòI« HØ’b- ^I•ú a˜òiðþ7‘Qô0üÂV¸E÷öÏug„ÙYXø”ôw7 ¼Ô¨ÿšb{Ò–ÑfBdåïœWi„ØßöòäšÎ=ñÐÞ­5·p‘:Ø5êL ©ZôȤšqÖ†&k2„RyE¶}8ˆëÈË´AN ŸOÁ:‘Ppe¢IGía,Xf—tÔ[ͫѱ©†£w<5›PSÑýûÛ뺘«ýÓ¶9;EŸ´ À:¼F­ þ;A5Ï®IåeŒ#u¡åêA︽³Üµ†`þNÆðW—z›Ñø5C£ŒÌ‘¬aßö߬J´3Œ÷š6XíÎEiz.O/~pàòþø)¯¬ —õ‚êø\†òòAå]æWS-YçÆ×K̶tP@ÎÍ•?1‹tr›lZ.Q|&`Dz&»2yHÅEèø} ô››'¯0n8GJG0Å¥ÇøMŒó…ò¡[T}HY*…FT¦‡‹Î¨Þ0Ì>mߦ¦D#rÙ©4À#hQÃÉX¶3>4Ú¸Ô”¿é’r£\sëÞ¹(Þi;™^®Ö_Hu)ùÌ×"¿±z‚|¼ÿýöüÑZÚ…:ÿòËWÌŸ@.nç•ñÊ­` `ÓA˜…ˆä_¾BDðüFzµˆè q³›¼”âÙq²^’I×åq Y¦oE拦/"§¿:. eúFb¾lúE>äô£Òíµ|¸Ù@Â'å#ÿòvùˆÀFmñ)2&âï^:š0&Y#Rƒ"(5Y@;CÃóD_c‹÷¯ý-ƒ»’ý\¾rºO7ï6‹Ù> ˆXÛ">ÇæiH•»ƒ»2"‚?tÉ¿ †NÜÇ'­¹ÃkN[èÔ.$» ÊɯþzV*VŸ›P@Â¥[·Rš¨½E.¿pÖ]3=Êl|<±½•uÞ8ÅW‹¾ðÖ‹'V:Ÿï guEÄÆ2,»<¦’@7nêRÖ™K'𬣾uS8Û'»8D[}qØlCQHYð,Ît)ËòœôÞ<Ôš‚ u»d:ß@} Zz†Eæ ²œ[ÔL­Þì¹½¼ï™/­)—¯-ZzBJfí?VaßîÅ–¾|ÇE%qV=si¹êÄMTÜ·yGõ‰ûæk`Ðr "[ÉrÌÜÔ­$Œ3ÎZûÑiç“áU’f`»üH”óA"T¼(ÌÎV}s~$0Î̸êFÔlÈjȇ…‹Ñg.;8Õ‡}ö©ZÍÂð‰Jj%ÃCí¢Ëh2-Ùc6ãª?g)Inˆèœj}»h™:§õ °:t'MíÆÂ9ƒ¢} ­5ºøœ'¯Ê= ¾eØÀÂ#˜‰OòU9F·~A ~÷òñ‘ÐïY~¨ÈN®ý}-=|#ïlòŒQ·²RVp¸å±¾¼“…b‘%@Õ†ŽtN^œøXÙöXŠV3ÛF¶D5¼|œ Oö!¨BΫe›†‘ŒüóŒm%÷¡=ÇéÑ!6ÅP|Éb ÷ÆóM²0'o¯gËBLè0õuÏú&­(ýYi»Ð¶[eL.ùaºÆ+d:ÕÀãf*îê¯\è@Ê{÷õ2ªC%Ð]}xY½¶ ñÈÆõ÷³‰S_ôGVT‡n+Öº:T|Ï'Å¡ô±ë¡êßšF•¡o©{ê»0òIÀ{¦Ó+¾IžI>ò®%u™ó›nøe¥ìã¥$I?Ï÷°QD«Yžhœ<ù"dj:”i}à +ìk@bn6žÍ ÂM=9êŒÏbCTåÓ‘€ñ|!¹5üÇ3vK`8a«ŽîÆ­Ë®`•Ÿùï¬m\N2Y/Õ¯NI-æêý͈<×ø’Á“áãN:“Î@¡£¢à×HÅ#wG-XV:®ÜÈwtmì+¨Ú,Tk½R9h+B‰ÿËysã|Šž—~YI³Ýò‚C§ýÅÞÖ0ʇXCœß–%Û¼«o˜É£‹w52c¡ÍsÈ‚MQôÌï]&¬{–Çà?Ö“ƒ¥ÚâC1ƒçPûàyF^šÑ€ËûÖkô R¿~ÀȺ‡Gô™öüîÀ¿b©cçjÛ­SÌùÖySüÅïÚ øK~ 4ÉyxI•™é Î.¯%^*õ5¯Ò ­à¥µO¬ð#>\ý%-¯p?V—"ž? /mÁ”bé ŸÏOÚ‘²4€ÓòØdœs´Dó;üíqT˜”©w=_ª&%£6TÍâ#ŽužÓF2øzìaÐ*HDÄÒ÷•–Mª]ŸXÂgx¹ì¡¹+ ¿š^Fû3fŒ#Ôxéߣ¼ óÄ#,Pc›/¹“fN¼@%õƒøVNºfPÇAš=8–“OvÑá5ù©}SLtŸ¶]µé};6¾ÇÞÆ¡CÚm’„ýeÐMÆŠa"ncL·ê±ˆÇ\¾¢'gJ4_'{ y™ææ‘²&¾-‚&…@ïFXÅT#…VÅåMññB|é4Õ­l¢ƒ a7z×>Ÿ]ãÃÑòyÓF#cpÖgª9–g9‡mïÜô¡ —zIgÑÉß.Å©ßûªë1â«^l?^AFÇiûÂY^¼ø——Ÿ‘Ù|˜rcŒ£Ãhõ¶r^™(©Þ¤-ùåÛ>mÍ,íÊcZÀ#ŸãŽÞr%ˆ-øÇ¥€ÉŒŸ -Q¿,€¼qS_+¬‘ A-/¸f›ÿo$2³7A5)írƒÖõõåN±¸Ž²‚Ü`yŽ¡@ÞŒnÐ’çþ?B®¹‡¥ûÜøÖ²‹ ¨‡ÆõŠx@ÀSæwÕŒ¶é ÄSn7 II7fü+ªñ;TÄçÜg3»ÈÌØNÑ·&KoJòâbNuC~J¨ÃÈaKƒ¢­š3JË…ßÍÿê‚÷i¦z ÎjݤôKQQ—¿Áúš*¼Îælñþlj³t¸uÉvvu¼þ*è’Þ±Gðx)Îta©ãg…1ô®BØÉ Ÿ(ÁúæH’_Qô -)„¥^+oÇCæ|ÏÎÔ¿->+ºÿ=Æ AW‘vHÈý–‡À×·o¼óuædM[Ãûª×N ÍÞ^™B+KíkÞxÝ„ñP9è¿Q¨$‰Ç…;<.Æóú£¯äÈjÍX{Uàþ ®3·‘CþJ>$s0‘–¥ša(T‡;ßúD¬…Xf9o¯ÉêyuŠFøÏÿ8]endstream endobj 665 0 obj << /Filter /FlateDecode /Length 6983 >> stream xœÅ][\7rò8þ¿¤Ûë>æýbÀÞìÉbãMlFàM€ÖŒ4Òz4-i$+ÒK^ó³SUä9,òÝ=’À¦Z<¼ëòÕ…Ô«K1ÉKÿåÿ_½¸øêû`.oî/^]à/.l´jòÚ·K;¦?ˆÒ|vñãåüp_Jó2ÿïêÅåïÁ¸ÒøiŠ"ÊËGO/ÒŒòR©8ié.½õSÔöòÑ‹‹Ÿ6ÚŠID§´ÚÞBÛ ýz»“„Íüªƒ‰*lö·ÛÖj RnO±­''äæüP:eãæ 4¥^@ol‹àUjóÚJ íÂæÇÖ1hë6© ô0šw¹b]ʤ–O„ó ˜]Áüo¶ÊìAoÞm•›‚~³ÃE-½Ú<)ÃýÇ£?!å-'ŠjrpâòÑõÅÆoýíbgŒ¼Üi;çðן68œ^ÂÔ´PƒÈ{1Bm6?owg‡uþuCd6D\?z×swÍæºC§y»Ñx;w×vs[(òš6gõæ?ô“ >/ʹyólIK׿Xðœc€Eþº¥Eã:äæKøÒDú’é3ìncô‰¨8¶/c… ó*àw\û2®Yø5l>ßU„¦Ë;¥˸쉔>˜ŠMx—¼x#ïï ›\§u e«=-<õ$QÖS±Ÿ·å¤wpRl³IF¼LKÅI@Ž`ä6¹IJ™¸ë'.Y{ÚŠðZÔBñ´ü|H˰p"/¨Š«zÙw¢W:Œämaˆ#GËS^†j–4ôjòÓ‡$ØÍ4ØI=YP%‰$%p Òä¹² M$_ ;js3‘48ØÜ— ¹qÈ?>ºø·‹¤Qíåë±.¬%}V… +€Óí%œÿdUÒ„ÿH³ }-wE4Ÿ—uw«2úN+ì#3³eš}µŒð§Íï+î.㥳 ÀL|Fvrwih°XYܲ?tÇ (o‚¬vLŸ¥`ÆÐ(24ìSyä>Z€—q,1=Ñx’¾3R%¶­7ŸÔzRÞ¿ed#¢£Ôhì/ql0ÖÇ„ûI"·D6¦¥ðCø›ØÍ·Ëùñ-Ò1æ“vÚÔË|‰òQù½,Ô¸Å`}$üü>­Ç73"=ƒñ#‚’ªp1(£’Ù’.TvKû ŽiÖ,û-.8H8¸çÛž“r2rÿ/Ëj»ÃƒN+hæîÏ^«‡ Â6w¿:kxØð3d=JÀ…iµî¬; ó¢Îª(„4Ú5ÍîÀjŒf·“pf™$@‰—šÊlÞ0ÊLöbÈ8kî¿É@[^„þ3 ~ºÒ·…oÞ' ábw‹ÞMN[U³XœáÖ:ç¶èÙαÁ†¢¬íÔèÕ±Ýè¹ó n(%YšƒyZÎx:Ñ·à(sáƒíL®Î™y)ŠÊÔè)lá„ {@Ñë É8"g`‘Ã˹LûpT–x€#Mß¡ÒyZGaEsªÍ°»o`¼)Êeù/ÊvŸ”æ¾4ïKómi¾æŸõ¨$qÆÅ…1 ¶¹áª§wQûîCh& m†Å1™èª ¯tk×pAüºÕTÊW(‰ür+ÐÀJä'üú RNÁ‡E<>/âñ}·ùy—R¨Ø˜¶ùºâ§ Rž¿la(ÉÄá&Ó)ú’nuÊÈWûý)‰#ÌÄCØÔÕc¸¡ü9­'ˆÖ1Át°Õ¹¾Ú."ò¶ØÁäõÁR·v·ìdÙêRÂq¿±¯xÉfц„Q×ð¼4¿*Í‘¾Zš„¸ÖßñI®ŽLBÖñ®4·™K&éñTÅ8s:ÉôèçéÕÎHø(¦ÿËÿ'Ó³€ÀÂ+_çš›ƒ…‡îq¸p^ËÓI%3¿õUÑßoiÁÂXUEOÎ`éJ}“à€Ä FÙ©:ƒ©Á [{>SQš×ËÉO¼bõcììäžÏ¾ßÍ̾æ“uö~;ö=#ŠC8dí´G x?©açy.{ZÏš¿Oèl†ho îª8¼:¬ž„þÍíÎ*¦ß•湊¶D&é‚Ap±¬-C¼-£Bžø4=ûmiþðpF ÏLaUë©É=³ýWÄh"¨ŠY‰+Sø2qš×¾‚1ÆÙ±0+ü £ˆÜ(¨p¦q2Ž…ªD¬—äŸÿ¦AIÚvÔÍ2ðW“¢g!ìí£x‘#ðÂÛYr-1á8&ÓøîÌÁ½/Íç¥yWšy±mçW¥ùº4ßô¿»êNòUw>ÕíËçP‰€”FÔˆ5 ƒù>Ýúôø¨Òq A]Ú±IÑÂïqò©pü0á¬ê?K&µõß”;!1õÀ„ì¯~â<}µ¥€5¥š`G |‘^H¤‰¢N×Là÷.ú‹\Ôc Ç0" L1¯–Ða|S5ðG†Rµ°“Óº"ðâp0¬ÿtòkðAÀ€³Rüˆû±kÖrr¡Y3ˆ—vzO€Ÿ`Ì=6B •#¦t|ý,×{o·<¼ZGq…Q¦ q¤ ÁÕ£¬bnwã£ÏYˆõ>õEíÚ„iÔ’ Ì[˜S"y»°wÌ€–.eú]1I )ÄIM2ƒçðÂðÒ å8Î{±2(`(#F‹ùLþBPÁö}öÙီÝ•“-ƒP•û)2KÍßµø¹U?Øœ;«®‹²\"kÉSN8(à†uÏ¿<‰Þ%¢÷OEÿZš,ÍG¥É¼Ó>TÒ4ÒÇpÒ;‘bµ›fㄈâ,‡ÔÑ©ž‘¯M}…¬u'Ë”ô#ŠÄ›)ÁW Ýà(ÛÂþÞ±æórʵ«š:k 8Å蔯FK’”j þ~;çóØ^ׂAåMÑ©Y€„Ë…ŠJ–uê_[G7‰.­U°cŸæ¿o ÖÜ–Ý7joÁ­M¨¹¶aSåjf|²`8eǂѸS›j°}˜Œò9©²‘ ±Ÿ`4Œ‡Ã´±&B²ÐY¶~b>Ì6’•uá⟂r ®Ñ¨‰m¨†bèAN¾ä¿8F«’Dºâ º).¿~Qš ÄÉ#€¯õ"áí{>Èâ±~QšoNuyÅ'úÛS«ïoû?ùȽ©¹ÃÀüçì/Mæ%4®Á©€‘6(¬,#€t÷»¤»%ˆo£»OÔ:t9Ðh¬ÃYŒOådkƒÆÍ–]›z}S¸¬Ï§¿+Í“ù5+'Ã’*'òkŽ%&0D±õôl};BY_¨£ƒ½õ¹ÚÀI¶>ƒhk]šs43§Ñ—X–}×åîo ¿;- Ý $h$xÒ; ^™dúj i Y‘¹ëàÀˆ¥H¬ªçIDpxÊY7{V° †™ï8|ÕØáê•q†Óß§é@S§r ‡XALÞ¨@é¾–¡Òar¾q♲O+§°ÑþMÎ?èÁà5ë°€§·Ýž‡-Ï!Ù}7Ù•à±u•ñ{XjµvÖœ9]F–ÝIîÒ$È1ù ]Êtâu¾íh0~ºÏ)PÀthßÒðF¸Tó# ~~ì0áУh³Ît`¡’ô«œ~Lí{¦Î‹0¤rK )ÈXyMw©+àâäaÂ:mðGRˆ´‘uÚ”(s^Ú´„5Vƒ#’¸H,+mTcZ»<–ÊT«°ñ²£–µer Ïam¬¤žÊlÞRq%¬ól^³®´œ UDRôNð[銴•º<ªë¸sÚe2cö‚—1—1¸¶Ëî98Ϋ°Ùn^[ Eì¹/„¥õ -­f5j^>Ȫyr僗J¯#Üy–ÄpÑÊ º u•'™«+Œ ^Å5î–£CβÈi7›Ä8«PŠÅhL# Ë`ÌÑ¥Š¸ŽXvªZe¿"–à»ËRÅö¡="š¹C:Y[Þ«P~\Ìü¹aÑʆTA€«°9™Ñ©á#.74¦ãÐUGæ]œÅ¬•YÅUè ‡Ö6×UÒé¬ë*±aÍóy¥µE¾Ê\‡¹L娋Y“ͶvܲÕ2UÅÍašŠ’ “°¢&o&3"òzôç‹G_ü´ùI"–¬Z‘%´“í¨+`\Ä`Â`ø‹8šB:nÈFr|›zû8³Iâá®ÚŽâÓ’KÒ*øÀˆM«\hþƒC‚«-ÿµæ³Üçï@m‘¶‡¶Çð"t<н+)'íÜù±w0Z’ß×»ß+,%Ðq-jÉ ÚÏGj8uü R"ÝÍTp¸-‚ÑØÑÄõ,‰8}áŽLꑌÃ`Q›ó!AtªÊÇÃðˆºÏ—ètI®` 7‚ÊÍÚ8#˜ª¢ºúЄcjS³Ú¶d"¯î“É6¶vâ”w&ä˜B¤JÔó¼0èL(±£ S”nt¯sÏêRæÞ€4+ =I#a9Š=Â,0–Tž[5›»·á’H H`ù]v3³SÊ® Þ—WÀêh1jýEBzèæR>/X–ïiiŠÒdÂÛmöU™8'U¬°ŠmëäÛ0P$í5™4Ç4òMœ5ÙÕŽh¥S:yÍ›#¬R Ò5FLkÎ…*–n shœ(x@·mˆ†_šFÅ}¤KŠ úS¡<àœàÍU±õÛÔS¤×è»cÉ–€÷ããH­a•¾rªQkåªâ »ha+µüâéÌnàZ¯u]øR¯À mG®À OÖØÅÃzu'° ºj¨ÎD¥ÐžlÁ¬¨tÙéqaóº 6ƒ7Weuë™ ý>muÄ»-RÝ:7,zc´š0V!W² éüCëQâ¯(ƒy™qhöu„6õ†ÕXì„M3t¨øÈ€È]6«+ŒÈq]¾Z|N胴HÕ˜²ŽI’Îr GBI‘Sò»=˜ 퇾€.G#$`žÆ|ŸîïòmmHŠtP5̾gÍÕ˔ոᨈlù1öäŽ÷íýÊ®Ÿ@0Þ€/Ҷr¸]«ÀNAÕÞªEÿF«'».f¢ö÷é¼1ß$†ôH»;¹o2?© Wõ½„nеدa :Pôí»Cæ» 2¨Îþm»Ô ÛR 5ŠiË”™'•&©ö‘ÊŠWvLY3E[W*á¦ký5æ^¸`¡Âö) -@šÁýùk/,>ÂiÛ2ÏΪl»¹«[óòYò¹{7„½ј2\¨M5ýŠÉõ*ÎÊjGù ôšGºiø‡í#®o›¤È=0] —Åö+¾ÙS77‰J"ce\  òͅ¦z•õÊÂÑÉÑj,`_ÖÌG},°%Ä´*NIõ]Í=q"&°y±%ñÈ0÷œŽ¬ô:ëÒfÖš„_ÀG_ÌÉÛªA4Èû°rCZI y÷ ×Ì.皸ߧë\KP¡xY®k,8QX¶à>͇ÄŠI·”Þ°”ëÆÕ‡Ö[6‚j‰ö'WÑ:ÚHï$ÝÕúe»d–Ùàt/*œ(í=)ƒÇ‹ÚzŸ~Äb®ÕÁ,*Žå˜–Õ€³«<ÙÌ5ð§!Pë.ÇzÌáñüž"KbD©D67g«9éZ·ë $RªŒÉ–!ןQ$9ÓpÉ÷¶ÒÂNç>/?žìbA—ÁÝ.´)­ì¹âÉñ:9û•v_#6öžw£˜Ôrø}[¸¼ÂIÜÙX:€Þßò¥x🷽`àÓQ Ì—òÇUôŽÞ–«^^%3ßqç%!½ëÇ0Q×Û×\…vƵ_a&e—dØwy}{Î2Í£UõÕZÀÐ=Z|á o‘tÖ–jÖ¬Ë*ôû­‰TƱ‡î¶€Ë7ˆÇAi¿?,Ö›‚ƺ~þá þÔWHþ¹ ¼ç‹ü«LÌÐç0æõóÏžä=Ðóî*õÂÊÍûÑÁR¨<—5¹X‚9;ÁŸñCÅs¢·G 1tS‘C‹\¸rÖ Sw¬â‘±ïðù®SÈÄyýªp[e[¿&ÔúÕ½Zb¢²zl«rÍc¨„_FNÑJù±m ùuNBޝžŠÉ‘É9úPÙß3oÝÍBû`eúyˆÈùØO3™±ïnÓhm8ò³-GD}7"§Ý-?žÏý°åÅ@óš.ÂyØl ŶuÃóÇžwkª²N¿Kę±’tº•ÀÈ›=»î—8¯.’&eû¾à îÂ3L_z\/âsTi-Bַ柳ó&õˆ"eWiåQ×¢±ˆWúÉÀzãu!ÓìZàhBåû_bß>ó“à¸-̰‹‹&‘æ;lQÍÝ¡ü5ó^ÿ«@ΗUASO‚ØF‚ÊÝÎ|»M ïnªÊ€· ^&¡±ŒQ©Ñ[jôª«å€ë§)óËýôY]¶_¸è¡¾4¿Ô¶Ëëm.À'õˆÉÔl!ÃTRéñ,øƒîFŒ·é3¼^~S×ί/p‡‡UÒm°@8½UJ£øÂÕ‹¼‡Ü5XÎDU uÿ!È*z[%ªpÍÂ}¨LlMêÜÊÑ$ºaú™;°5e–È%¿˜Ï–ÞºœÊD7,eBÀ’PíZI-ˆ›b¶k·uŽå2b·¬•µ ÿ0_œÂcK*’cVóVüÄcíÕ”žëû’ŽÆËu@í¡ìPÙS­s¦#­f˜*¤¼®Ÿ²_±(ùC73tu¾ƒHéÄds0}¼O¯É íç?s²®C;«ÈßJ÷V/?·§d<>±1€šßlž~ÄA•æ•/‹$wŠð(UØ&xQÖ?¾„zéËÃgEµ2M\§é$µ‡8t)º|SÓsž®–‘òH ñ¶’“·¦ã9•ÇÙ~ŽäÐÓ›Ú0,}¹$ß0#Ñ<‚úi—’—0®£‡Üíü€;\8?‘#¢‚ÏQT—í…㻦f§£ %”î§¾LAÈp©¤EÓÀ^&ÎR4áÍM ÆUÍ/c Æë”:òõ½¯:€Ì+¸Ò¢±––™76FóC­TèKó€|9p¼ë'7 À£åJ ªF.±öBçɇQÖž–œÇÞÊEÙ ª÷,èÉ‹’iÒEîZß&ÛÈ¡o³˜ëDó”Ÿ*öô~²¦âƒªÑŸ. ä}έŠ#µÚyÅ#Ϧ®f¦áŒŒ9¥î cÊ3;fÌä+3žÓ&xÏØ¶éÿª•A_.vŽ3䉫Á:Lª\¦g÷ã¯K³º ß=w‡q“ØpJØÌ&C©cìϯ8ÿ‘J8-‰è#kWËÉ ä@£Ø84ãý¨ôžsr Þ›’½»—þ¡Ukûæiº­zß°}£C-u=˜êÔMà|áhy[¦_åø1 ÏrÍhf;J¯A4jëkhÇy­R{=|ýÈØ(²êËc}{JßÒíMæ4;=%®Js<{P]níÝ[æÒ¼gï¸p„Eª¾¨õ{¡oP~ÀbƉûT. *H9-ÐJSÖ7 Ì×–oxþ„;â]#pò‰ CÖUòÉ~!è_Jóÿâ}Ï:f«©Jcx·4_íÆK¨êªd;7AÛtz¿ö«¶}ð=§S0¦÷tçCÐGó&ÆÉ8±îÏ}ÚK±?|$SaÊ\1žò&…4ð•ªn ×ìŠ,ÏÒÖ—¦ œs¹¿3ˆgØòY˜×F3ºQT'¤Ҝŧ,¾ÓÅc6ÅIСoÞÔ jT+¿£i¨ÊžÁ§ ã¤fÁ¯üÕ›ó™Öæ¾Çßê^Úì™LöŽÌËSŒF¶‹L}™J…=EƒJ$g]ÚGÀ Àé§/1.SnN>d‰;|NËúÐXÊæ$¥tG0õˆ Ì—ž¿äq`Ñù¦ð¿Ã¨ÙGI a¦eÍyœ3Ý/…é΃z4 ÖQ_v.v÷>À[8Þãk‚”»9 Wy‰Ò~ù÷—pºÑã‹ÊOåÅ4þ³BŒÞ Ö××ùË2ƒ€l}I·¼×Øj!šsf1z_ †|§J/ø¹á`ˆ‹ñ-«yî8hu*OÌKØXØê¥…”LáAžlªK1f_ Ãc ÒÂG†ð_ ú˜QÐ6œ×qgG,ñ8A“~±WJï걫Óж<ïÑÏŸ‚“LNÄ' —n«ÉŸâJtlë~prÊD÷KÍëÛïàLû”F—›’`z¼MV¯±8Ü ¹Ù)Ò?°„Žq;øLâ4*ÕÄB¬S²i3'÷™1š»l/l»7ÏP¡@—*Ô²\ß‘¾½?ÎÕpë_äJ²~­LýŠ\—Ìuïm]/£=ëÚO¯.í®”^è@„=.Êhžêƒ[¶lkªekåW)•×ôïÐà#¤XÐN±ÒªÃe%uÕÜîD* ½*Íðx«ËlþÒO8ü¼íE0‚ÆôÄä§<¦ ðE¨zGM‰Ï\ÂþcÒKÎK•o¾-ÐóqúÆNÑê¾ÿRpË›Ò|ß6O ¨û¦4?/þ\š?”æÙW7£¤'$βADjüïnÎendstream endobj 666 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 778 >> stream xœU]HSaÇßw³¹l­XlXÛ¹ ‹ti]„}ÙQF¤T¦‚cžrÔ6;;vœRÎΚºÇ³/Ý1u6cK/"†EHAtS]FYÒµ¼çt,:Ë’â}žçÏóùè@ƒ0Æ…UÕ5uåùp£TŒ¥õiƒ~ÖÊs²}´`(¸+XKú×+«»é0ö¶A«ò¶ú×ù–ÚäÜLUTVî(¥¶•—WRûÜ4ãr:—ÛuÑÁ „ [uX³™£bPºƒû‘^ÅFÈ…ž¡Ï؉ŸâYÍ^©×(¿ýY;þ½&ßÈãZÉòã›I9 Y‚£!èKBàK«ÌW»UÙ«E®'â©áшâ©[8hNtÆ`F O Kg¿ï5'†! ‚>É'»ø`¨“·å1È‘Û92ÆÒ²œV*#¯LdB—ƒtÚ6e‚du£0Îqàï´*“Êda‡8n R62©ÜV&uKZšû·Og$wIÝ<þ8¯%µ$bÊú2Ïçñd|Ùl&“Íï—ªÓ˜”Hœ H&LJ©ïêx°tw_ …>1`# J£¢Z Ð×AK y-9 CCVR¯>§â‰P,Cƒ¢ÑÞ˜-,(ÛIEÝcr”5Çâ#7bñ~!…„^仸žž@ ¿ý^ŽØóÏÈeZy¿´Ë”ºùçü…¹E¬4ŒÚ¤¯ fÓo°ö|æ‹®“[&§LKÈ{òu:éÈá÷ÑÊ%¤ãŸ¢ûÿYfˆqfñ€sä“éÖõ$âƒíakÏ–#µáÔO:3}zú0è|BÑ”_¸ýb$±E‰æÝƒð6=jzÜø¤ñ5è ~N4³6£/#ï¹¥SŠÅÂ\Qn…µ¨`ݹ.ÃòܨÁ ÚJ„~1Mendstream endobj 667 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1944 >> stream xœ}• l÷ÇmœºWHÃVæ5nÙéVJ×1膄"(……• Þ¼póÛ±}qâø¿íûݱãGb“8ãà$ІBC[ À(lP -¨+ÛÔ—&MÛßጴ#mš¶ê¤Óô¿»Ï÷ÿû~¿'Ì…BqIiék?{p5?÷¬07wFî"-Wyïúä†Ç P…™¹˜ÿ)Ôü]T=mûŽ@$*µ¶U£^S_[GÊÖ,’½¸råŠÅ²åË–­”­QÈ5õ5UJYiY'WT‘üÍÙUM½œÔËþ¼Ž$W-]ÚÜܼ¤J¡]¢ÒÔ®^´XÖ\OÖÉÊäZ¹F'ß'[§R’²MU ¹l nÉÔ¹D¥hl"åY©jŸ\£3×®kj.-«oØ/lÌ,lì,¼$Ø Ø(ø¥`¯PP ˜¦f´Šæ‰þ\pö±Œx…øÄãí9OQnÛ–E?N爴0·é¦è]îI‰}¿×^˜É-¶ËO„ÁÇÞ€kÐí ÂDá}qHÆL`Ù P0ñQ=ADÉÁÚ÷C³Ñ÷Ðsèùo6^zåW»«JB÷Ñz°B-hHÃroÛð`¶ »=JûúƒxôTâì(`}ARkuk½vâšAâï&ž8:>–l"¹kïM2Åë„zëîŠrÀ^5Ü 2LÍE“IÈ¢³Y”NZ‘QÂø˜ø0†Š˜Ú(O“ßÈÍ/ß­ŒÛ ¶1€ ´3íLà ê/þ§øzܲŸƒCEx]”“Ç¢hs,º|ø{HN³liØîw˜)G« oþE£ñeÀˆÏ#{h„fFAŠ–‰QáQíK:—ZKÐÕ£C] ž@«i?ÿ1¿4f=žï·ðiŠB›oÑíåalàò:)÷L>[l“{ík{´ŠÈ÷ í ¬hò'¼ÈãY46"DWЧ’¿‹oû JXj‚rSöÜ`ŽGØp”å¹h†-õyÂf‹×fñðܤ~9`/ˆ/"ÿ#îb4kHó²Î¥þVî°Xo½1]ÁØ47ëågé¢Üž6Nš?ôŸÜnÖíîe¡‡@¸8Ix“€ñO%ù7étv`H¢‘õ°áe|q¬(ÇY§‡f^åf!¡ÄÕR^²°]­#ãç†ïöœ!Â}lØéŠÌž…ÕÜ<Ë´kaïÿÓñì0`ñ•$m¤¹Ž¨šg«„ZlÑ õ¹ß>ï÷áåãú8©·‚ñƒ#±x[ÜA‹ÅëR;qóN}Y5`¤-™î úˆ@_ü¼/qð“âÀ@ä°¾æ€ÅÔdÓ:ð¢Iö!æ¬ëhí5´åo¢œý^èí{¸°Î©ÙcÁÍÛÝ-Æ2›ÜRJpÑvpaTãª×jövÞx'uéð-<ÜÿÕÜ™V£³“=±o~T`Ϧ¼Úù.\ÅÓ[/ZÆà.û,1|øÒ0zÎa7÷‚[«R«M{Ð…wX3ØJÕbÕvÕΆº€UÔ§>ì¦cgˆ¢{~Èæîg…÷*rßHÂo2¡«€¥"üløéœDÜ07çŸÌÿ¶xyî‚»b åž}0ý~ì̃›¢²R4ÃÐ1âCñ_¡—¯,›¢mõèi%tŒ—…ø™íç2ªK;²èdÈ>•»ðù¡¯ŸžcÌç&%¡!šåÛå–øö§ºUäÚ= Äîú²¶Í|!Ì#³A‚f~ù1ü»³èGàÜÉÿ¥ø™üб%S }ø5ÏvÈø6¶K¨³xÎ;èûâ»éÝÕ&‡Ê¥#ìJk è±Õ—nÜý:ù ¦m››Â›ÖUꔀ½áNg³ã¾,áË@Âp~ßð¶n¬ÝŸò!’üEøÇ+Ù«"tj²@Òcè$ÕJ­¢©Óê?Ô›Á¹ùy‘d+‡»Œ. ´Jw­}ï«Q$‹†í¬ÃâuX=8ùJu5_ì‹ 7˜ˆáð@ÇÀà­âP*2]ØDÍðŽª8™ùßMñö@°XØ¥²R&«‚(Ê­á*ӹϧpŒ_ ’ð‹ÖÿŽc§¿i2pñmõ˜½&>˯¯üàXÿ`2Š÷é<Ï'zGz7n.W¯çÿKjgÏ@”ŽøSíóuBÜþQbGðHÏÐP$zúýñ#'! O»u«ÊšºŒ=™žÑ!íÈÎÍÛ+ÊÊðÍeš6ƒ+ÒuçJ¨±[ÌU†?<óæ,|fÁŠƒ…O¤}……Á¿Q:mendstream endobj 668 0 obj << /Filter /FlateDecode /Length 164 >> stream xœ]O»ƒ0 ÜóþƒðªVB,tahUµýà8(NÂп/ СÃY:ß|–]íÙFàðEŒehvK@‚FË¢¬@[Œ;Ë'å…ìnÊ¿?ž`5Ùø]M$ŸçÓ%¯Ê-„NÓìRP<’hŠ¢mŒi±þ“öÀ`vg½:ª¢®²ÿPR4•8n.!ÇÜ47I,Óïï|JÁ ñ38S2endstream endobj 669 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 298 >> stream xœcd`ab`dddsö Ž4±ÔH3þaú!ËÜÝýýúì=<ŒÝ<ÌÝ<, ¿/úž,ø=ÿ{¬ #c^qS»s~AeQfzF‰‚F²¦‚¡¥¥¹Ž‚‘¥‚cnjQfrbž‚obIFjnb “£œŸœ™ZR© a“QRR`¥¯_^^®—˜[¬—_”n§©£PžY’¡”ZœZT–š¢à–ŸW¢à—˜›ªvž˜tÎÏ-(-I-RðÍOI-Ê+(ÊÌMe```4``ìb`bdd±ùÑÁ÷ƒqÓ‚ÅóO|ŸÅüýÜ,ÑI³z§uOäX•¿4+¹>£¶]î·Â‡ÎÖŽæîvɪÍÍ=Sú§Lî—ã+^üÓ~ ÛoÅéìû¹ösï_ÀÃļ 4liŸendstream endobj 670 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 361 >> stream xœcd`ab`dddwöu041ÕH3þaú!ËÜý¯æWu7kc7s7˲ï…¾ç ~Ïæÿž!ÀÀÂȘ_Ú2Ñ9¿ ²(3=£DA#YSÁÐÒÒ\GÁÈÀÀRÁ17µ(391OÁ7±$#57±ÈÉQÎOÎL-©TаÉ())°Ò×///×KÌ-ÖË/J·ÓÔQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU€¸OB9çç”–¤)øæ§¤å—悌ªM­(a``` ``ìb`bddÉûÑÁ÷kó¿šC¿d73þ°ü³Jô÷÷?ÞÍ]Ýí’ SºçÊý¼Èöð{/k[‘ƒ‡ŸY^u›[ñoõnŽ?¶lßßÿpœ4¥·¯»_²»¿«§uÊï›?‚$~(°}gëþ^Õrñ·?Ç6Óïu¬/²tuåÈó•Ïg“ù]9Ÿ}×.n9.–Ê|ÎÍ“xx€˜—ØÈ‡8endstream endobj 671 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 675 >> stream xœPÝKSq½×Íu³aø ÙõÒ)šZ=ÈB$DNìR[åeÞ}`ûðÞ;çt›s¶íºŸknε!sN¯¢M,±ÈR„E©å³ÐCPÿÀïÊ|hùr8ç<Î9(".@P•ÈŠ;²ÿì‚pÊ „³"0$ÌÜ-RŠ—JNÃîøô$l?…ˆQÔÀ¸Ür£ÉJë4Z–¨TUWd²†âj}½ŒhÖS´NEÉj)=ɿŠâ¡Q¥£X+QÙ¨eYÓõº:‹ÅRKê™Z#­iªª!,:VK< Šî£º‰[FK´’zŠ8êV{„r£Þdf)šP»)ÚÀ’fAD}=åòiA}Gs12ˆ¶¡I+¼N^¸Ä£°pvý f¡°tGpѽ&Ö ¹ñ:Üz±ç-9&‡Ý;ñõXvå7>•L‚i,£^é¬VåÎ ¹B\(2Œð™Ÿk™4À‡eÀku1šjæèÀ.ïölÃÆ-¸ý /RNnþšâ¡:ÂÌîç?"¸vPYˆ?`a÷¸Ë~mdÔ‚ûœ>0€9"`j¼tyÁ¨ÇŠçÎþðÚÁ(àÊ£Žørh11ŽoÀûßÝYè(nàål>/gN¬í=ùqunv1Žó«±­|ö8væS<¸£¾­˜›OòÁù1…?è ^ƒ› Má¥éäL*•ͦ×7óV”›p=ó:ÕÀŽõÇøÙTüÃ2³¬líìì"ñ'J†QbÅBûÐ <üŠÂOùa³$ú¼7ƒþŠ\ZÂ-P*M&Í#0‚9#àÕ„ß?Ä3{_@`û’‹¹}-¿ÈSf ;’‹“sӼ؜ä‘H“’9ö¦hï^$nHHóA©Aþ%äendstream endobj 672 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5718 >> stream xœµY XSgº>1ik›ŽérmÕª­[kmí´¶UëÒºï+Šì²‡Ù—“/ Y! A@vYTPÛ‚KWµ­v±wZ§Ó¹w:™?éaæ¹@»]Ÿ>ÎõÞçáyB€?ÿùßï}ßïý~8ÄØ1‡Ã·dõ¦•óž};-ð'ðð˜À#ÜÖüC\Pá\[ÿ03 }{/‚»Ñö{.‡“ž­Z’ž‘'LJHEN™9oáÂ瞊|zîÜ…‘¯¦Æ “b¢Ó"WG‹ãR£EøMJäÆô˜¤8Q^äôE¢ŒæÌÉÍÍš5;]˜°hÆS‘¹I¢ÄÈ qYqœ¸ØÈeéi¢È5Ñ©q‘£O7{ôeIzjF¶(N¹:=6N˜FÄÜ´ÅéK2„˲D+²WæäF¿!Þ·*/fu~lÜÚøu ë7$mÜ¿)9%5ü©‰³æLŸqWA¬%'ÖSˆõÄFâ b±™˜Al!f[‰mÄbâ)b;±„˜Eì –³‰ÄkÄ2b.±œ˜G¬ ž&Vϯó‰7ˆg‰UÄjb ‘JL$Òˆâb<13s1ÃJŒ%ê9/rìcówÕXþX[ö^Õ¸Éã¬äòËñ_LðÜ5ý®–ðÍá=Í‹"þp÷²»½÷<ÏÀ½Û&Ñ“NÜWz?uÿ5~Ü‘|ÿ»¸É+”`ǃË,z°ë¡‰íz8ý‘î€."Ð+÷æx8ð~ï[\d@Õ|‹÷ºÿO@öÀöüÕ{Øðü´B¨U@¹ó`jÇõ4ÃlW€Vª×h)ERƼ@(­¾jçA›‡®¹ÐtÞ&‹Ž.Z½+!j?¥ëNiÞ "È”çìÇ­†T3v§Áà³Pe•M@Ö@šT¬ÍÖÒ‹Ùnm!èA+Ú¤>G…ÛLE—‚}àA~N`è*•_æç)@,·Bå:¨AǨiö‘á#ŠDµr F~iƒr}ÈC qˆ÷÷K뎾ä ÿQõåUø’üpÓ;,‡bÕì9þid¶·Z¡h<ï²{]ôü§±<š]Éþ?MopšÁhvÑ¢–0ô2ï’wõ¶Çžñ(Ðâ†ÆœE%g¹5jàÿÆÛ¯°ì$öQv:K¼·ù<Š@“ÐãhÅëåG'5¿ßSÆ4¾E·œí«o²¯f׆½YlXò&zßÒmÂD #‚ërüÁ9~š~™l.âLI» F õúï“¶Õ¿6ŠMdE¬œ]„ÆÌB÷!ÎåKV}í‹ò/C¯µR«Wè¨(v;þ¥Ù@Î]x=\çD/‹¤û>øê¯Dü–ÞSÀˆt´bœÂÅ£¡Cб[ühÎ(7Vœá~ÉÞÏW¦¨Ôq@Êä VZ™bºüÆZ¨‡ÆÇ·”@…S yÙ™Pf7X{Ñ*Ú!<Ø‹wáàÌFS¯í~gÙª­o¨4´âh‚7é¶H‘£- ßÌçÛžºzÈæÊø-“Ø{s£éÄ×ö¥§¹ZýG ‘ÉhÃ5™+¯B/¸ðϸÈEŨo*éFwÅPÞ­¸„dN¹²¬¢¶´¹o¹5}w\öÖxJ1°·,ãMÑÊ^ÁI˜¢Çð×AD—ùŸñÎ8 Ò%ê ŒÆ•Óà”Ù¡Øi4¹LÔÛHæƒK¨PK‰_‘ŸòEÞ;Èe?d54`*Žãý­:u¹P—§ÑL!0 Y^¦ U^|`0 œJȧ†_çåßàûIPÊuÀà‡dnÿ¹`¦[ ÝØ p˜iÕËî„J‡$´š›žQ¢G¦È=§>BóÏö{8]Boå&Æò´L*hI™µÐãsW4õÄ´¾Á†'NÝ_™c—SnI¥æ°ü€¦O ›ÈŒ¬gØ1 Û]½2êˆog$«òlEÊXí¦5o%~€"»÷ÄKËw:© K‚ ºÉïûW:ü9ÉV*]²zØceM8ÉEöÀ4þ§<·3Kùô‹¼v4Ï`4ØÁ(°«ÊÄBE6ö Xv^ØÞš¿Â[ÂvhrAŠ+´»6ú䟡éÅ!ǒ陆’¦ÄÎx;V¡µ±Ìì3—ÑÁý¸vïøQ‹ŸónР¦|{“ÅvH·ï¬ ñLÄCœ1!„Rök÷YÅZÂØ:Þ ÒŒ.ÜþÒ_W¨V‡ ÅØ ÍÐÆ -²Öª`#Øì´±ìj Cu¼¬÷ßXg3Œ¸ÀÞÎ5ë­Ê~n€ üŽovÌd™Ô^”®ê¨%l'&¸œÑr£ãw¥èn<ôï,m󗂇lÏjÝ17‰}B­ÑÒ`r™)[}Í7oYâÔd å™9ëéä§‹¶A,9o ëhç!O{åŒ=˜sÚÀã/õ»•¼&r´“èEj*÷yqb:ÙšªÊu „ƒ?æçœüžˆù¶&‡uÈ*>”´t<Ä2Wˆ5Æß@6Of÷¨d ¨µ’ Z jÕrÊo „±1¶@+´3-?"¤qz¸-`4Úñ¾[n 4û­Š~4ñ*7 Lä÷å–æ‰…b‘¨ÁŒ÷e˜âABfîfKØñÛ »Úßnºî;EÙªo–«M€trêEI'z¡ý³»usç·ÝýŸ¿…–ã½' E|Uª> ”daÊs›×ËŽ7u¹¿¦Ê:ÌŽÛÜkÿ<Ù.H g|”ÝWÓdl¦¼kO©ká"´½W{¾¬£=ƒä­±É‘ñ9›“wn2tÌ:kmi?m­¯¸`ó[8» x”6*!v²Ÿº"qšHL⛜`ÂàT–æ%«bÒëŽI%¸yqØq¸1M{ºwÕû5Ý­´sM·ÜwÛäØXÁWg®]°È-Ì¥’c hBy;]sº»ï0ƒÖ§Uz ,må(…Egùh šûù¹«ß$°ìp“YMeC&#‚TH6¦Ýԧ¦7Ó¥z‡Š O*S©uŒ^Ïè´:½^«elßä+hèÿ[ç6[}Z@ã1ñolk±w• 5‘ªäú¼ÐbªšŒp\Œi¤ãÅv•AJ§ŠlÒr„Èeç‘üã§o¸È Äžäg«‹ò ÷Ç>ػə¶=e_F%kL9´È'¶³‚Ü›œcy1í»xäH>Ÿd§H£L¡5ÙIìCŒR–$ÜȆ<—ßf­†²²Ð‘Ÿ™›Ó•×ÞÑPÛé¥lY5QX²îCÏH9É×Ð9ËwmÚd´º§¢ÊÖPr”¶xÖºÊ!ÏÐ nÖUPQHÞ”!Jªç ^?Ê8ÃE}ÁgøF«Á„I…*Ñ?¡˜\¨Wè!ÄÎï: ¹†Qé5Ô´áŠÈ™à©#›N£±( ÍE‡âÇö}1 Å ßÅ*<ÑÙæl÷þ69Œ“ÃÑvjèø­vž$šøßÞbµ_Ò:Ú”” ¤c š‰Xˆ1ÆÝ^ÝCM*0W°¸/¢ÔÉ8¾X0Ý­j“J¦× TÚ½ì]ì òBÔf´­Ø—ÒÙ½ž¾ Ç~˾Gt¸˜=¢L‰Ù¸wêÛ‡ë½åå”|t[â¶ä¨„œDÈ€ôRUË£!ÔØËd®\U ³~[Ûþ¾ï¯ýý›jj¤j¨óãÞÑhw‰XÏê³ÅE ½»£ÅÒßݲæfRžzjí'èž«qY•65˜BImYòJzÈo2ºnæ¦Á£M‡ÁÇÁµ“Œø-Hð_¿êÔ¡ŒÀŽçå€äöúð‡“7Î0^½! ;ÎDÞ-f††=ù+v2©Œ@ƒU5¢û:8hôãX{ðF¬ ©JiPÓ©†t+4Ãm@Z'xoÿ`u% ÀɬØV‹Ì>6üÞ/…n¢› Ùx ½eTèÖ[4æ)òÁ2ryÊ9h1šÎ_¾<êUìúJ\)J¬TYumk8 ¼Én¡+ï <îóÙÔF¥L¯Sèè¬årÓ! ,¥ÉåRœt ÓÖÓÙÝÝþÍç_ *H›ðiõE**cWAa.¶y¹5ï€ÄWèIrɾÙbL3¿ÃL;ë›*ýà·Â¥nËÅý2S ärò¦×È3d÷]X›‹Ñü[ÚTêµÔ:VQØ ôsPZ\g*¥7UòUkŸ½e8e™­£u…a£|zÐK˜¼3HÓÄEù¨€­4©;¾uÝã,=•]:­Éç¿d!}ƒ…+—º¬uŽ6Úâá·£gþ쨲ݗžɾɸÅ(r|Á½4íj á7è lࣩ PK±»Ù=¬‚•°S¾`Ç" í@ѨI©ádž×ñŸ^Eœò¡ç¯ qô{¼ÒyÈOß_ÉþŽÝÊÒl»’Ž@DZà+>Èýhþ9¯‡“1„ÎqÑŠ/ýŠ_æÙ[šÝŸØ»œÇZ0ú Lœ¤Rg€Œ»änŸ¯¢±-Ö·ïI!û@’ŠÊa9a«~èÞÒa®t-£¬È¢¥»@ BCQE‹Õ\¶C‰òöǶˆ:®ôâiöÙƒ8¥<‰órg5ŽÌœàÝW¸hã£YjƒÿìÛ6%Pê÷wùvÂzØ‘’°ýN.ÛKÊ­+et´¢™–Å^KU±×Ñr¿zÒm’\¼$^ɺ1:`2[ÑÍûù@ïHN¹2ru7óBýHRùæä©K£YmÿÙ\Â6ß_JýVÀ«0W˜Ýôet>Ì® ÅJy¶ƒÓÞíù¶ô še0ÒR4ò ("‹ì®vã9–Y,oi ûP%žñË”³xx¼tUÑu¶@™"Ýy;){Çæ*ôÊ·4ö;.ÚXÆÏ_µvwŒ?+–ŸÖ¬.v£ (óªã“3ÒSҫ䕾2—Á€9ÿ3@æ_ð„ pOrƒÜà|¾±4Ì®‚ª€— z½&O™põ6à“b'1jµÔ!y•ü‡ÁTõÃFÇ¸Æ |Œâ›ŠÍÖú•™\£’k¨áŽ-×…ô¥ÁAît[ÅxáÖ\õÃ&ö¦÷pQ«åãj{~mÔ9@4|Ò˜…|¨ÀíÔV¹|cÔÖ¸a²;¶°uÀÒ°Ú±®,Ú·âðjæbCh¸þñS?íæ"PÁWãážÆ*£O> stream xœcd`ab`dddsö 24±ÔH3þaú!ËÜÝýÃç§.kc7s7ËÚïW…¾Ç ~âÿ.ÀÀÌȘWÜäœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*€]§&ós JKR‹|óSR‹ò„˜YŠtðý¨í¾ôý×Ëï¬+÷¼üžuù‡ÏwÑR¶ŽªæÆê–¦ îÜnŽß¾lË8½tñwï ‡÷w¿ãøÎnpã7Çow ÓˆíÝ} –ÎZ½¼b^~SgwW‡Ü¼ówžéæx°ßEß,Ê1È[þwÜï2ÖâŒì|e ~8Ïúž?uò¶ß‰ÓØWpá–ãb1ŸÏÃ9 Ï™Ù<¼ ©h…ìendstream endobj 674 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ @ ]ZUm?eÀ‰Búû’:œ¥óÝÉgÙ×mù_ÁXÖ·$i²,Ê ´Åx°¥`ƒøJ—Sƒendstream endobj 675 0 obj << /Filter /FlateDecode /Length 5904 >> stream xœÍ\YsGr~‡ú ˆ}qÏ®¦Y÷±~6¬Ð:䬅bÖü0$@‰! P+èøg;3«º+«ºz€Àµƒ,ôTב•Ç—GõûS1ÊSÿòÿ/Þž<û>˜ÓËë“÷'øàí‰VÞAûÍÜF†1ÂQš¯Nþzz.áMIcžæÿ^¼=ýò ǵðdŒ"ÊÓ³—'iByä©·~ŒÚžž½=Âæì¿¡¯tªê¬Ìè•…ÎÎO~Þn¶bT1†à† l‹Œn6b Riï‡ÝK|¬cÐÖ û…ˆZ ð©Ñ{õ_gÿJó>Q£)Óüq³5Faø¾&c”> û+˜Å+üp^F>np:Âð‚ÍŒ+Ñ)˜ú54•Ú…F€Ú8\n¶Z«1;ü¾ç…0ö„ãz« …ð" »-ÛöW4!¬_ »7øCRÂô·›y©×8LpÚ˜D¥¼¨kœSÃ_Í¢¤qÕÀÑÃÔm¾§ÕÆmê]îVE5oO·ÚŽ¢w®ñ#„fؽÝàn•—axÇèø—¢ò.(æ5l (¦¬†¥èá—µ£‚ÃîC!½& vå¬ò©Dãm&/ŒçqIʤ ŽÔÕVq‘&ÑAVǹ£ÕEeœ©ž¤åÉ ­?/zG§¼ BUpžFwÂÏ +ì8yp‰N8|1õFΣÅ: üM<UÍÈÈp™÷`„ጰã²C„wB ™F6Äjó»wD@€ù)©‚Q dK9d_5üJ#HØ ?9šN £J‘Òiox—=c½a™“˜Ù _0jßlÍ´ƒÝ{9ñ`:Ǽ ÜI Ä$#˜¨æ#°Â(ͧüW-ãÌ 3ëåßo7AÁf€.ŸÑÂl§%l¥-Ì‘V’ä<ù†W…U/’ gd¡§W8·‘z:|zÈÖÖðAaÛó¤+lÕc<\'Õ -£=‚|âü:AÁ_ÃþeZµƒÍ3åóª0ê¼­#ùêN òl…*Q䔹*ÜÈů»‘ZBáUzîD²o•‡uÛ´Pù°¿ý󲿴m ¼÷šxÐÁpW¸0Ó©D7üHÀEÀcò© zµÔ±«Mmž~âï_àE ¨TÉ´åæmi¾+MX’UÌœþ¹4W:üPš_–æï6=õíî'Nëkxö½²Ð]ŽÑZEÚ¤{4ÖŸnÁ~j£' a"rǰºh+à Vð0­n>l,Ð3ÔÒ×/÷É2 ¯o/ð7¾ÄóØоÀ‡@s8«ÜY04Žx*ov7¯Q™Ls¼HÃhD4(Î‹ÏØ»/^_\Ý\wI äk9=ûæäì÷?NÖ6¡ ®ÖÙ‰&-5_TGÆùÙæ%i#Ö”´¦ÎUâû¾Øk¦$xP•H%ßofû “¹Ñ‡j„…5‘Þ%%‚цì?vYþEшûhá›:è%þš¤ìº—]s1 4zÉ:ì?äeP"0pÑ«ÆfPªB»t4¸s²ÏHöÛBŸu„S6öê:œÞ[Õ~Ó¸‚Ù'•(ÓTÆè".àýY j°E®ƒ,TZ>²1Nˆ»:R]B*Ymå3fdSoPsT˜ð0­žì´ŠbZX¹¼ÞdåBHËÎú ØÄE²‘M€+ØWáš“ªÓæl¨ °ØÒ¯³jmðîFsÎß§1`V¡÷* JÀ´†ˆ•üá:Ü7qÔAqîa}ÐJ¤5ÊTz¸¬FÎÄÈæ5Å®çæz„zÀ ? ¥ “øDQ‡¼b•’ù5øÓ& B\¨ êÌlt…Y-éŠD‘`C­þˆy,ý´ßç‰ÿn Õn7¨ÜDô¸ :újm©«U°«t( éõ[„uá :µp~:a¡î’&Y¶ës)IâQQ@Ž>!C¶Ê$3y$3v²àÌCAý`T”Ó”B8@ýÏ»¾C ð¶}PvÄYx—±œàåHJ$ Eü¼rÒþåìäßO’·oO?ë§KëFáÃ)XŽ1ƒÎú€$Š"æ0ZpVW2qÍÏÔžð~:c‡:·vHqÛ€‡ wܰ-»v…xpIµv‹Y¶á€úª‡¯9÷U†k~ dà'¨§hAR´ pÜF¸5©dÌ|^‘…vjD¥Žöi8„>L½càu€¢×…ô¸­8a<%B+=Ëçˆ6ÑCGþŒ.ý3A<ØÄuF<û”­Q¦ˆ&¡x˃¹¸¶žØ¥ ¸Ù’ %w³ûÊ&Hâ,ö"4ŽÞ‹lY0ùÄð0 饭åòžš5ù[“¥'±™,½¬ÆûŒ ž´*T væwGn?O¾K†¤™TŒ9ûìërŽ]Ï.8­þ ìxq{fÕº–Œo%Å¡Ér•”rÁc&«ï‘^s“šCJ*CžWî^kí¥güºØíß6sT§^õ ÏÇFNUˆU\Mªn—;ö… :üÏ3­ lŒs°$¹‚Yâð§Òü¶4¿/;WSƒÍgÁQ@= 2ãpÖÇ…(pP–Ã¥$qPQâðw°Uãsôœ$Ì;Xpt cÜ@g;ö¢À›×›Ö Sï,WaM: õ!d  ]7š9‡³ê` òf´ÆÕ(#p5ÿ¾pG5orWákóÑ]Œì) çßSÓ[°˜zê¾›¶kÙHÑoj2ÉXÆuIÔV¨zž†¶Qq‚Z> ÕiAÙÚEŒw~,kàjíÅfvЙIÚ˜ A`ÞúÑ´6Zé¼Ç3þJ§+µ±M©ãÃZÕIÐÄ^ÕÑ’ǛҼ-Íw¥9G\‰þ„,òt¸ß”æ_Jó@ôÇznÜ5âUuÀ#–’<âõ€àì£3gšñª@•Ë4nkŸsDp~-GIxêˆà '®ÓpèM5þiÑL=°Âj|¿LžOWr1%FFNÃoá•ÝJ"w·!{ý°*[Á >©ë°?îËÂ2.[¯Dj|Y70æÈL Mà€Ô”À”Ê»ÂæL¿ïgýžÚÙ*Ú¿®El6×(a1‚™qM>]¨õ<[6ƒ.¤;ƶKOÜ»Ór»  +…‰I"ÙºÝU¢…CÌTeGæCZ#€]| 1æ ï½™xP*!Š#Û¥#€"–zZd:õóÈ/йâÈwQ ?†MS¸F{çê°×EŒë¼j ½¬õåvš»JÝ™zyLÖ‘…s(ÄèB›¦È>=OS46‡Â&ýtËÿM’"œÓ¢@Ò Þ‡ÒÁ®em§ÈžÜ”æmi¾+Í‹bœúvê‡Òüò.;åÕ¨çuü4®{|¸Ã0AÊžZtT¤K!ƒ¯kšNÿËÎÑ¢3ÈöQa ãàLš%PÔ"Ù…eZ¦q´ƒÍløÅJ?ÈWøáÑnƒa)uÄc°l׸ µóç-â…G¤MyúGCÖ_óûŠ÷@ÚD@AÁ\h;q(쥸€H?’¼3ÚÀM?­‡ƒ“D)·…ôýób f©T?Ú³sy>g$nñ!FÖBë÷“ñ1(‹ï²ei–™tËú›é*g?ÙŠûûÚCI ½î×Âï2º¥_›ú¦ã`+-ÂÁmtŸØ­…I"˜C¤pÅÙÁ…JöåÛyÌÁø™%,Òj¤ W8Ö#y¥Õyyú;ˆº“Ø0÷Mê‹{iãÂü"ŽRÅzCM˜ÀÅ©¿¸Ü5î§‘À;²É™,,%¨ @bê“€ŸcœtrÈ,ö®áìã7ØŸ±þ“laßT™4[h‘0r…“„±^!¤Â´( s—†e•Ú*»ØúÒûÌm¤`ÃÓ |ìi:X7ô%&%ÍÉ>ôҾȴV_Gís¶R‡*Ç9[†&F„Å4nNQfãS¼°ÜFšN€\‘Kêâ‰N)æ`•²2³ä±5À¦ã+ÿêÛjO1?².¸uÎOçXWå~[^ASéëÐ!ÙC”*ä”Èùtˆ­Ó·â 'kî` þÝÓUFF{8”èôjܨfß<w>Uunʘû¸ÉýâܲŒëïLŒd&ù:tvþóéãìèAž¾Ú̾³;IuI@¨*É&žÿ§Íœödg•U|Е•  Zm”“Ëß[³7zîËK«äÚ7óÅŒÄÑfö~Kt¯§‰˜ s*¡*¦ÉQ»]¿Ê¤©ƒÎ ÒÜWÃhƒY…PÓžbÒ›†2 ‡êÉ)ñ| Ç( ·-Ú±À ºT±ð¹ù[“3Ê.A“¡Ìkæš$Ñ1•Z³•r-õ’{-Bh#} e‚UœÕñL ‚½ƒ[Æns-AéøJùtK#ï›=w¤y+-29DÖV#>Mþ'ĸÏj(­É«ÔËøÖŽrÃî¼0 —‚rË0æXÄ|¸9SÁÿcy|“Æ@G•Â4^ä™Î/XTåÐ56k3®s(΂’YšEÐëÚ®Ë÷!½ç›:ÐØ´µ•p¢ÓF²J’nºª@™ˆµÐ1©@¤º¿Ðwdï#¯Éêæ•®EÈñmðÆé¤ `n0¥YZkÕ½5a®3I¡ÒT}õ~d L{ ê@Ev»*{ÇãF³q§c¯Š>çc‡e¢˜©å£üA#Ç`]½°Ö4†R›gL–_qáË_+°°ßüö»à±…5õv^ÊÊ€—Ú¤# 8Õ3>‰—‘q>±¿(¤ßA‘Xiön¾º2ÝRÄ/¦\O7SÔ½®ÂÐ{o‰A@4:Ol 0ä¯.>ÐA1„ùªËË{ÜgIÅ*³ê+z‹²ÎŠªÖ£àRQ¼µÍ¥ˆ ¨"›iR¶ŒËðó\æ ê`êÊ‚¬Z²Çï¦w£‘çµÉªÜìR!Ú‰*,\SüÇj·¸]çoçIÝpÉò;û›n 庬ñ^)Ùtv­îq-¼ëô:+B{ŒmÁØ\jňs^v›(Q¡À-К K›(‹¸%×Bh¼¸õ±CºåÕE€i+àMÅ5Œ{¾Æ¼LóœðvZ} Áž¤L«Z Vµªu‰áq>¼ì·ˆóU FP!ÄZ’ —aµ'S/JSå— 8ȺŽ}ÚHð|#©Ñb™Bc!Ù?ƒó¨5œpÀ=ÅO—%òÂ.¼‰†~-H¸JV4c¹=«%kHЉ§¥|¤¥ó‘;îô–kXw«FÏ2/R¸3ßЫ®§ÉËç~xËK.¢¹š )ôDH’ªB²!d’¬œ²~ M‚È`•ËÁ·¢‹ë_¥,¹T{‹X!cŽB·ð´sX¦Ô¸0L?“7(mUi{›–€ä*fÏÊnYÖ° +ª;âÕ†\û2]Ý/€Ìc`µ]ÿÆY¦%üªôÌs¯]ÖœŽA61öÉÞæ›&ÊÝ—C~q*Å­ÁW+Å@)¢¯Ry\ O›Š’‡ØôDn‘™ù|“OEøÊªr¶-x=ºÓòÜâ P·´xO)•v,]ŠÒv®‚9YaOÞ뢡Fù:íÔíûï}žŠà0Ñþª !ó£®ák듲^§}é[ƒ/R.ìÁŒ¶\dêj¤EÕœ„4£üʱûJáy(WLŽÊož̑—Sª«L2Õ'­‚‹ç,KKë@ØDäW£DÒþ·0y‹ÖF¬Dà>¤0PF‰ ‘’žübcÒ.±­]éñKY=ÛëÌu掙ý…OëÀ핪AXLâ~%#ÁÈÌ`µI˜&© ‹6+ÎB¢°ŠB­r›¤”KŸŒY79ØKzø,)”ÑÇ¡ºÐ8¢Ýäqñ.ýËÔFÜ^1”B¼«`y½6Êøðø¹Y;OÓaZãÀª¼%.ó<ðJaèƒ*¢¬”4ñØT{€÷hi :ÉAb¡•«WÄz‹ n®7–@ëb^ÊW–VâÕܼËmï"â^Gã_8!êðEØgY—Mõ/1.kÇUiZp:À Þà%l§_Š­˜„âØ»rËT©­`ºI[Š:×¯È /Ów¤§zû·Xô¨K42i_ Ýûj TØš>Üš‘¼¤Žê¥q탊Y”ú«u#¨[žu¿Ë()¥|'Љã²1=ŠÅX(±¾°‹[k.uµN¥§™¨Ú šJta?}”À8Jõ1ik5R‡Ç œ{$ ÿjw“·ùhûô°¹®¹/}™œ³¯Qu Ǧì>ñJœ¥6l,^û7¤œ ºr+áH3C±äœ±£B~_^ê˜ÕÅç˜=e3¬…íî(µX´ib¾‚ªThñ]iÞ}í¬Ÿ3UM}”oýÖéDãn˜c‡K¿*aî›Ì¶»Â&ùÆFU¦9}a/Üóúfº„-k}²rQ?ŒÆ÷Qt/ˆ~'ú­/õÞUe£°v0ÆGÝ(`gÿMi~{'´·ïË•õ•TUا÷²ƒ¬V²§ûd 7ßz¿ûR>‹xì§’¯¨ò•-B¨}ÏÌ«Q¸Ps/Uˆ¾.Íg¥™S@Ô¾âçœmK³?ÚJ(}áLV|ð*M’(“_>ìÞ=ãü/Jó/Çs~¤›Â‡xŒ’©ª˜šxdVû)©±n!;ÀSjçIƒ·»–§%X'˜„˜ÚºìµVLm]º¹›V„ ‰GiápBW«æ–oÇî²°…ô¿¼ôÛ†93=ÌtY½ž+¯j<(ÓI–{¼yzÏ/iN„¬‹´R¸:ŽÎÍÐ|YÕëŒeúȆÃe\À)£2þØ+óÓÕǰüæÈôuËžb«°Qþ¾ef’fÃbã²âpü&»b(¯»F•YRž™fß—&ËLßôß;Îr“ÜŽ€%™þ¹Ó¤‹0Fÿtší«Ò<;^³a+†á?0TlW×ãáU¨¨b·ˆÂM^úJÂíCzÕÍc4ˆJ—Š?]™gÙØeš«ïþ~å²8#^hln~õ`ç+—îÎðI¸ýÀùP”»»éi¬‘ûÊÈesçvºpåƒåÎyš»½bÝ8¨®róÿ4ת$3عîÈDVÀ˜(]ƒñ†ÊG[e‰Ïñ#‚g8rHš°tÈY-Wû·Eo>êšÌl\½Á§½}J T Ÿo‡ TKþ}+²Yu{9ÌЗ&V‹‘蔕Ì_‡f‡Ù½ƒT‰ûb;/ÒKiIYåÅ~î~›â IA®g%ËsöÉyéIJ¦Ö2ÔÆ2õGñˆÝSÜò(t²¨åÐ#…k~â¿­Á­‡B'[Üq(‹ßÿÑ÷@X#öÀ:¼Œ¨Ç®4ÿ Þ¹B-½@¹Šex»÷æß¡qç³ò-gó¥)K‡¼•ã}Ù»‡ËˆO™qX§G/ÊÎ>•1vìþû_\“TÄendstream endobj 676 0 obj << /Filter /FlateDecode /Length 5717 >> stream xœÕ\Yo$GrüHÿ BFµ¡®Íû€a’ ÙXì¶DX€%?ôÎhH6Å&5ÁðowDfVedvT79Cíz¡¥JÙyÄùÅ‘üùTŒòTà?åßç7'ø6˜Ó«ÝÉÏ'øáæÄF«Fï`|=ƒ‘aŒðAÔᛓïOoáÃüR¦5OË¿ÎoN¿<ƒu¥3ðiŒ"ÊÓ³×'yGyªTµt§Þú1j{zvsòÃðÇ•EtJ«aûc#T€ñýj-F/„ Ã-|ÕÁD†Íõj­µƒ”Ãö5Žõ脾ÃJ§l`(…ðfãX¯‚PÃ[+)´ Ã×Ö1hë†<fM§œ“)uSK7Âýì®`ÿ‡•ò°kÐÃû•rcÒ›{\.jéÕpY—ûï³?"å-%ŠjtÀ qzvq2ÄÕÙO'kcäéZÛ18‡_¾¸Ú¤ ¢ÀŠ6F«ç3vuÃoy£h¼…Mq†‘Þx-œ¶yª®ˆÿ;8«§ã¥_]§=lˆjÀ{àBPe­4ùoh¤¶™v1Âܺ¡!]u——2RM¤MŸ7·HÚ8â¯Vk ¢ xð4YG=ÜUz×;¼ª„O§•ÊÁÕ ‡øì¢´jOPªbˆùúð3û«µqî†ïQz¢PÊ oêÖtéÛyóÌIéBÃJ£GoBfå‰DH!¸Þ* ¤Ã?×águ¦¯Ùág+Nx@™à”qÚ±ƒÈ8jˆÑY_nÊ%)yYY›$ …oh]N|³EÞówöê@B­¥š’¯¤òò ç$whu5¼¹ »HFAÛ(|NòäàFY:ƒñ@yö¼k(­=]K=Z°/yó_Óa1ÎÁVÚdwfñæ6Y-­.ŽHI0“è&mVîàVN1tAÅñ ˆhh2ë‚°(-“€—ýƒnö£ƒŸLë½ëÛítnšœ¬¦ËMc5“Ñ–^û˜R†DÓ.“¦Yí|cyAë¬E­‹­ÖQáà j#5w,a½NªÑºmÞ²Z÷¡Å1]té$ÕEÁq(ê–ÞtúåQ’ݤ‹ÚÒÅ2—ø^ýèµíT1û‚YU”°µ^ÐDüÕOÖD˜nèßmõë×uÁyÉ@L˰½/¢$ì‰+8m¨:?ö›GPdÆñ¤cìZÏ»ÖJQš¢ó!äk¾ÇYJ³¥,p㲈¼Ð¦¸ ö:6–ú†ÁÏRðëQ-7#jÇ4[±»¼(¢Ì3ŒH»|ËR ÜÐ6Îúç$~Q‚SZ#&ðE\ÿ¿ZP+5ô¤àăðŸîI#`Sué9:ý¶_³Úû‘®¬Œ–Zõ|·ÕÔ;Xê'©÷4÷¨zë1‚Ýü(õæ[uPÌSõ§£§mÝRþJo™œ`bë•ÀjÂFú‰^)Ž€÷¢mÜRæ…uη”„î¢ßÖ£¿ÈP7‹|Þžv Ú1Jߣ„WÕÕQ&>de 3Y= ºÐ=Àë¼~¿Â}à°ú€×ÃÉÍ$…{S·¦Z› €a“E ÐX³žÁÝçc KÏ–A~ÖõÖÛ§Ù å¶*mÞÅÂ.r1¢j˜P¯ø¡,†$YÞblÞV0ßêNvàD7ù¢:iÇ|n«¢£aãvš¬ž¨{6ÁÜÞárÊKÞ«hÐ?µ–¾˜ %Slµ|Ž¥‡;¶–þÐòr4©Nó“5ݺ¸•p™YÀP–d«Ðó¯xm ÜÀwOÂú³¶ÕNÛb§Ó„[:—ûzY‡¼E¤^eå´”ª.ÆÈcE˜ª 6ï_TWz1ØÕ³;p!Ü! äsÆUs<êQ™¤Ã˜¥°må¨Ô»Å-DRµ]ž­CÜ×øÄTÝ”Œ¦ÉlóÑn.*Üú‰Lyl¶aõuÿ„ÅSƒS7* e÷(„'×pò›4¨àT&á|°&fi=™¡­‹À6Š£õ§˜ÅHña†oV0EµÅ[™(’ùñL™¶@x ôÛÛ‡Ë$²€¦RÃëÍùÊD fD¨¹àÄÁ­œžýéäìÎŽ‚WÞvˆÛ=Iíe•ý]ž×᦯٠?d¼âs(Ó½N§õXM­qJøÁ4šdQV+Á7R¢K2TP6 ƒÊÖ6ÏÀƒÝ‘}R‚.…Ú‚â‹®B$‰² ¬¹h|ÅìŸwy] ÛmæS4¹¢$TŽˆ¯¦J¼!ÓÉî¿ ú)¡R䛀÷ïý”HÈ6¿Á«¸:G8ùM^HÚšù¤á&>áÄtçÍyQäp4÷2oG‚¹;’ë›×¢9×l@S2 ID\ú! Ä`£óM°Ÿ÷êw: `sÿJ2Ð çݬrDcÒ¦ßíªö ©µÓ¡ÐÁKXŒ$>–Ä”L!È$O-UL.(æ&Ï–à`¶P(cd«Ç¤$@wŸ-—?&,|äµ³ÁÛ“ ô½“YâxHB§¬az蟶SúI"4+þæœ Íé²€Î7 Áæ)K¦Ì*ˆ‡ŠA¼¬}W‡çuø,SFâkb#ÉÄ\>Öá=û³Ï+–x]¿nÙŸÝ°ë’ •Ä}Ÿ×8ø}ýzIã<¼ªÃ7uHâë»î»ñÃÂqO ŽªÐåZžƒ·dð‡:T,=(=¹Å>c ~Ë’v)éÇæ–d…;Ê‘#©‹?ÕáwìÆ žu=;)CÔ¥h„.ÊÆœµ+–èf‡çLë\f#×3K?ºÅ¡­Å…ÁÀ–J—Q ^QG¾o˜R5Ц5^Axï 0áÖ1Ð%+wDrëðžþŒðvs¼ô4.¡‘ä8m€…$X ¸Dœ¤+»Å ­a¢Ÿ—Ëhœ+ªQ¸p•—²M` s®«Ùpß½¦B"1Å(ö™­ýmP6Dg^2¦i :›j%Rú™k ¼ÕmÓƒm) '"Ö~žÃý ½÷c=F‰1MÚ×^× b£ ¾³JÔß'¦f‡TNœŠ;µ¶’bÞRä²%¦h|)¬!æèŠœj ÊD¿gp ¢h²âM½’ªäEލÁ#jˆÁ?-8ï)„ÍÖS ¾_!zsÃ*Vã‹"cokn€–ij¡È™¤vöÜêÂNX+îUuB!‰d››i :½â×g'ÿq’‹ìéýrKP—¨,AÚx`¦?µ2Œnêú¯zÁF£P‹$Œ¤j“ÖlÔ¸ËLÃäô†ä¬ /ñ"_Fâç--ìVsRŠÒc“,“ÚUÑ4¬•óƒ…&Ï%št! -íÍë“ úê²Óv À,VÚˆ;,!¯Æ–k ÙÌjéì$èÒ”LU A£³ü¿gC¤·uxU‡oêýÝ’×Üw^‡ƒ§½ÛIúÞ¸¼0æZ‰ÝÆX9Ñ!*ëã #üpE|Å?w1[ü—„<*–û7Þ9í¦µus’s~vÛΕn#éeöÒFÁðçŠÛ2 ×A}É¡*|1 ©*áRñçŒ2xQŽ1¢}´oq»Ù‘æ"Òrô@¿²9T;Fš´Ïl²†•í[†&YFZ—¿Iµ;9^mÛÚf§Æ©¡/ˆ÷¢”v"`å;+b£†Xîò*%”³³JÙ œt:‹8͹d£©¬¶8Q^¦ž¸Mb!4ø48uS7od«Ä/›6LËåVÀš€JA¡Ž¡íàÌê€Y)RˆZ Nò1VãÓΖVˆ~éÝ,5ì˜W}|†_÷ BwŠÜ ù 9ÜLîT0’â+ÈJs)Ñdäörå/•Ÿ@Ç­^"=̉¢IElÞ%ƇN6nÃéTq^Œ!q1lÊ[ö³;å³;BÈŠm¶,qH®ú¼·,MIÚúëXýû:$uxW@þ§w¬³ ?#àîoú´ÄiÚ’ç±½Ê.e(÷+RS®ñ GGâG±×–IŠ÷u¸­CR¹¹ãm$j¸^h}0b!Sî9‘Ìä§&àÐéS“íšà«ëŠÝ)äKy~ýÔ”Þr\çu1ÍO+¥ªëhj‡h„Òtñb0®ØÞ§¸U./j NÀòhÓû•Œ/˜\Òd7Ó3õWâ¯l8¸¬ItT£ãéñòÊ%PðñZšÔâ†b3ÖÆD†rIÀtŠR7ù¾"ì$`^î XQRÒ›³ HîŒi i½<œÈ×H4*º+î6È&@Êa…ñºAæTÀQð$ „? x€€²qÙƒi¡“™¦Iý-Iö÷q¤_a›]vÓ"&?g&áˆE™Ä ¦m|¾Lj={y±ƒÐb0Ô–ÚtË ([R,æí6˜íPÑJ—Ö‡[‚µž}v×.,±$dg‹y¤]ØȈéìYJ DTTdY¸vå#+ÇÎt•‚û| Ÿ*sŸÞõR’K™i;!ÛJBsâñu|Z»týaι‚ †¡—ÑpU­å–îUY°ðRîå#g'J:ÞÖáÇgñmå§%eÎüJ3†½&küjÚ7 -ÛXOØ3žZ•*³»ª”Ì–ûŪRÒ$I_6C2»F.×Cw[xHò)iÄL\Û?…Kt9”øIGúxâgûØÙg™cJ¹ìhµH…„I’®+9¯yhUÁi¾¸ÍGßÕÜð×Õ”ïÚ$ BëÐ4-^Sœ9Ñ?v\kÐ)¡{¸Zú’±wM‡s¬XŠè!ôÀum }©:wøüi¯Yœ0¼É‰òyÎøÜ|,§žiœ0ÇßÇ{Û$þÌý'TÜRoõ^¿Û3Z&ô»%»Ì÷$_ÑbTàK¯ìÜ Ý©D¢‰<¤¥­°‰2³xšÄg;IÊ¥µ%±ä”ÖXx¹Ñƒ¨Ò”NÜ`kæ^Ž*ÂôÒù„MÌ~÷5ˆ5m¾žŽº$kÑɤk\ÿÀ€Ï DË25‘Y!54¾Dø_nøº0Ge]Tˆ.1Õ'¥Å“_(ËÝ%)]ÛùVBö{¹–í¶|¬0¯U.ôÝU¹•ù|M¥â¢‰¯Ws#KyvR“ÎAâ ÐZ>»«Êº\AÖ.¦žR2y/‹¥Wî9íÕ¸®9(ÄØÍ#]³m£Þä5z÷H^<ä!æ¿,`Ñ(CðóSw&@¿R´”Ø4ûØ&å¹–5‚ŸÇ:|ņ}WK˜åš«gÕ²¥ ^ØÉCò3zÚ=²ðª6{Œô—¸½ªÌ•‰ÔÎÔL0v|¥Ýà8Rg†âC’OªìA“[TÁÎÇÎ-n‹½tµvTêÝœ½¤.ëï;,ŽOx¶À÷]fk—š¼ègÁMÝ׈ý^OÖŸy.Ô;Ý/+ ýŠÈÈ¿–bŒˆ B˜Ök½ŸÜ¶â’ýëüò©La!-ÿ„ˆ¢®’hŸ;¿÷ýéy'ÅAÜR’e²§@8ׇV?±•Å[|ÞsªMññvo|U¢-y[ðO:òÛVg 5~kÅh‚ç0JRïIáê’ÿHP“éǯ׫¶:V,{N @å¯Ð€xüC4ÛÌâ4è…jÈñãj¶ û©bÿ·9TúýgêkN7ý¶Fÿ2e‘=íá'Í#¯ê4Õoد¤¨E[ÿIÇ8ÿ à]øhg?Y·´s—WFü-/ؽø,\âè#K>ò0âŠ]—táß±[öŽõ‚äMÂÑy¾ œˆp´±u¿³~NBb¹&á+‘¾[–¾”//Ê Âr"}ïûuû¿x²9FàË—oê„/êÅðõ­™œxn<(ĨÄ'å’j^ò¬}Àý@¿ò©tòùZXlعdÝ;v] œÆBÒ¹·ìWuÝóg¬{þŒuÉ-ÌÜ{WTªr˜bÀ<8ýzÍIQâ5‡¦!ä¿×áY¥éŸ{7‰›lžm¡4¯4¼´u±Àò*°Câ {†øŒuÉÏÔ’ }1ßHøþëÃø„Õoì„KÖp~ÙÏí™ùË×wÏ€ŸaÝ®4ž£¿`ýeW [h–WªRÚ¿¯ÖvôÒ µÏ´»Ñ{Ö)9v±ÈZ={l…6@äà ¦ÝøCòMÈ—”}GÜy s>«%á«Ä²–Ã肆Ⱥc™Iæ’à»ßÉ›™cÈÅÕÅx#lØa`×%d]—æ—ŽÎÙØðW`|‚6ÂL¾“È€ªâý{É1Øß³†‚¤ûøÎƸ?]ù›øïHˆIVÐmÆaÿgšú3êQÿ*Ü&H‰p[ÿi¼c½¯gWhœö‚uà]9³Ÿàüÿ…Û©Šÿü`Ïk‡endstream endobj 677 0 obj << /Filter /FlateDecode /Length 3546 >> stream xœ½[KoǾù #‡a¤÷ûÄ’À`("QðAÎaùfLîJ\R ¿=UÝ3SÕÃZ.i'*7kª««¿zu÷~Z¨^/þ7ü{rsðõÛäÛƒO8psà³7} @_Otr:õ‘—?.Ö0p_ê"s1üsr³øÓÈÕÁÁPŸUÖ‹£óƒ:£^“{«Ã"úØgëG7ºïU¯r0Öt›{ 2 èÛÃ¥ê£R.ukµÉe“ºÕõáÒZÓ'­»Í9Ò¶JwïðCŒÏÝZ©¨€i•¢IÊtW@­lHÝeÛœ¬]eg9Ë c¡I=ŸçW0»ùïM„Y“í¾šÐ'¥c·ºEqÙêhº3÷÷£ïÑòžÈdÓØ µ8:=è´><úð˜œ8ÓÒ9½XZß§ïC÷&È98—»?.½±=¬»;-£`ºÜ­ˆ¼#²'òœÈ"Kä†È{.l˜-t¿§Ñ%ž‹:œˆêÔ)|J¹»%ò§N>#ò£Ì|"Eä+qôõ¨}â£Ëðþz¹?Šßý¼—ãZ´ÐçB&m"Œ" ©âìÃðUùûv”å»oˆSúŸàSL¾QùæàèwlVŒR&Ç!yAzõc Ô;/kê*yq‰rTŒ¡`Ði¯&&Ì¡òéoÊ`´1tXBÍ”ü8;P²à°[>§à1gbžÎ)ûîâ³ ÓʼY1YÌŒð‘kÔÞVl CBGeÏâ—ÈíÁ,5"‡uX€êå <é2ŽÕºTÑ‚¼‹3¶¨Ó*0”¢yV¼ŠÖ’|Á˜OÁ:×hUW–S,ÞŸ”ÁÈÊÂp’ãÃ%0šB „_£|Ê£„äMµÎYÃ6ôHC-¡Sª`С©4Ôˆ¾%Â"ä\a¸QƲ7Cä® 1ô}$†¥€V.öP=#xï™Ôn¢»{ivÎHj5Ê<"òZKÐÔ¹"hr¾ê fŸ€%‘š”bdžÄúQ¨…þ¹ÕJeßC…ÙÄõUYnŸ,YACd*bQ–'YfŸµÂôUØ÷ÓÀÒ´Š“£¬(Ê’-cž´qÚ'‰iÅ$E"dîžÂqCÅê§?¢÷g!(•°ªr2…ÕÑû«¸Y­ŽBätÀÜ9*«ŒY’¸†ü¼òüß/pðÉ’)Ë×÷bMð æë/bngKó—âl[ö ‘çb æø$ª³·¼Z‰³½¤*cšÝPÉÀJa6ÊÊŽU-V`˺±XÙÒßå¤z•ÕoE²­»%OXŽš,§Z¢¶vHÁNåQÓ1T"9S´Ý渤`>Pzn4X•Õë¹SÍÒ]HXèYº{ ,_KŒ}ϸ’r¦O›‚MSîZŠÑŽ•fI$3‘,^ÊÙÅrrò4y6ÆË"žÉD«uDF"‘^ ”F4ƒ{4ï|Ôî3Yàä3hÑÒnŸ´H>*%úgÁŠº°5²ÕDñ3Í—°ÇnÇg’\¶Õ y¨ˆr/0ƒ{Ž^dhöwبGÕ\nY¥IËa1V4Pn“ÊÚô1ØJޝRKB·”Ð÷FŽGz=–Ûæùh‘¡§Å­ba‘#ˆ¤zN?úÝa²P-ißm ù²€£¨çM$·M™Ÿ÷^µcLɦҞÌ7¥i„äEÙÙ#‰ÙcwµÂÍ9@χҙÌÚk•Žó¡6x×hV³V Ñ—žÔ%hÓtɾÃy/?5Æ:Fgã ™]ÇEÕT|ªRŒ! :®ÐGÆ[æH¥=:I§Z Ó°Ö“åT,`l‚]Më‰vŠÊeï»sÞÈÓk åxcïÚë`£Ãº¡®RáÃÒ›£ö١ؽ©¯¦÷—n”±xâO³ßÕJÈÈîz¬„Ê¡þv‘Ï÷Dòe•áÚQCÝe½®gåZaØ<ï(Ç!'ã¦þ;c_@J5cm¿K!ƒ@LÃAQè’Ö?;à_Ž«h Žj°rÄÒ¬b•],ç(ÂP=õª‡Q7·•#¤4œNxc<¯°¸…  è0Е®Ìæ2¨>:VA'tÚ6^ËŠ>ލÕ=aa\W曺ÆMp`Á¼§5Yì<ç¼,DغÕIk»¢œ ³ûðT<ÿÙåuÓ>2×Á–+¨à’¯áCçŸ]Ãð¸–Í^V%`íÉÛ4¶ÔMUƒWvŠW@+o ö^Á‚¤ªdaÇ’ÃFפáË‚ÍáÒì¬ÊµDW§ä Ÿ½/Ü*Áò [fà^]L;ÊÑÊðI?ÿƒ¾íÏyC4¡$t¿ ¾zƒ›’ X‹ÍSÖ*–€aV5Ç zrЪ­o`"1Ú¸qf„áꄱ`<Cg€Áùœžy÷Þò]n5FS=#"ÖtQˆa)F Ô]ÛùàwAeŽÅéä´Y3è„\ŽÉú(:G_Ñ!nßÁ‹’§¶¡¤¡ÁXÂ$Ï%k˜œoXxÒÚþa/Š†Ù¶Ùa×Ýë ÐH&ü‰ã´ÎOÈG^9'#|4?À%óDpOnÃը̈™¦$`• WiK békG¢ºè§Øòº=ï]Ž«n“È_”‹khpOðdy†!£“{Ê©;ĵRáw±Í —È ¾_<õѶGËÚP&…³®B‚r,ө¦þÏÐYDÜqÆÏSg["j-صÉ%U2øÖ»¨•GuÊê2&äj‡þS®)êzž3”•›F§Ûîª÷Æec»gÙüñasæD03”a!Ïá6Ñ%—k@P.×)çk~¬^”±lœ’s~æ}׬êèŠçÐ$ÅI*y‚Kñ°Ûó#Ñå8ÙÎ Àcýš ““9¼ëÛ¦á†ú†KÇõ¤ÖÅ8™öåa¸´RnßË¥Sât¹Êâ Ul{kYæ©eÈ=:4÷jµËHº™—5›éÍqÇ,ûªL„Õ󠉼Óè£>h؉ª‘²±­žx D=4 ¯«1Ç]ÀeÍÇd¬Äý€Wóåï j®ö¢«¦j!@bðcÉ0×tõØäʶ.¨U€áFÔÎÒ&Þ&ß.ƒW%ÃwÙ•ÚŠ·“·4a‹;®ãÔZ÷o‚ËÉé (0—NN±wˆáX8<­×+^i }06(ü¿ ôpû§jFt)b ¹>´ªÖ:ÇÅð©5àAØ|FðÕrüLìalQÚµŠ¥4D£ë"â_¬®×Ù‰=>nžžNˆŽX¾˜™ zfØ (,–ãe¬3f¸ÿÞOþ[âm.†a«í€0x u¶÷¬']Sêsˆt™×õ,5u}Ñsë]<ú1zW[ÃBÍvXlÖó:‡¡0/ž 2'øá†}þJm§»Va¥µ§;ájGÉÌu+³Ûí í´ÙÙ:ž{A¸Œ]­ÜÉ®@ؽ»b:ØM:´ãÖÁC§òn‡³®§ºqWiÖ&‰i3Xö…µH•œkzšÉ’¬ëc‚WÛ=¦„Þê[Ÿçö,G‡7D®ˆä—z;ldàizΛv Î:ȶæ aSÁ•p­´&æ­r¥'Zµ5Pöïy` ÜÌŸV°0Zmíxß8S·Ëwžµwl¸çI³µÍê³½“—ÿgB-2–‘¸gßüí >³õ‹ÛÝdÛßÇâ³·lìBgÓCL¯ïc õõš{˜ãÅÂñ4 2U#|Žœ!È\Nñ¼˜fÕó+V‡ÖÎÙ`¤‚„˜ ]ÊëóÑø3ïkÎJU=¶à'JlæÍ0‰ã'x›5M8,Å;=Œ€UÌÔ–­WÓ&|ž/ÇSh¬TÇR帶¶áôJ…,ÝöÕÁÞ ÁŽùÙmÿšHö┑ã5]%|ÞÇÀž*œíãeY‚%v/?8”ßúÉ §ûX"Ò/à5ûxo^ ÷ærÙ}ÿ)‘šÈ+"_ïy0À˜¦ÿ|b†rÕü ›ASÞö¸DfËØÛ\öÀ…=[Ûï7Dþ@¦}Oä‘üõOC~álò[6{ʪ°‘á#— )yD oE}¿ÝGöF|Eä±øüäbx_AuïÃÔº½¡¿3rDÛÀÛÞ-¡…¼c)2Ý=ÂðžÈ7")ÑM±u¸wïLÜöðÿ/âŽ0ˆÉ?(`x=å¤4‹W_‹‘I~£½Ù§:{‚ÍÍ~ÀÞ‡©§äù/îˆ| ò#‘Í(mì­CÛ;"›,<Æ ï€MäåŽh%!ð+bxKä·DþU#ûŒá’ýÔàQR~Þ;JdÐüÂøñÔÏQæ£×âÄìÉŠßµå_‰+–:19‹`¼Ûú¾¸/ô‰öŽ€Çb ‹‚æ¿ä~¦Q–Ÿ¶Wâlß‘iÿ(¦¾wû°Â2›JØîÝŠ¼2‚®E(È[ùÏZø/¬†N¼t\øßùû×endstream endobj 678 0 obj << /Filter /FlateDecode /Length 6424 >> stream xœ½\K“Çq¾C ÿ6tš±9íz?ìд Ë Ò“ó@ùÐÜ P\töÏvfVuUVuõì0ƒzkê™Ï/3ëÇ 1É ÿåÿ_¾yòO_squóäÇ'øáÍ­š¼ƒöëÒF†)ÂQ›/Ÿ|{q ®à—’ƼÈÿ»|sñÅ3×—)Š(/ž½x’&”A^x맨íų7OvRíŸý:K§šÞ–àÏŽO¾Û½ÙĤb Áížc[Ä`üîý^LA*íýn~Ÿu ÚºÝi/'!¢V»wøÕÆè½úŸg¤i ŸÆ¨É(»LóÏûƒ1z »ÅŸÉ¥»Ó5Ìb„~w¬£í>ìq:Âî’ÍŒ+Ñ)˜ú4•Ú…´qwµ?h­¦ìî+üÂØŽë­64‚‹°›lÛŸ_Ó„°~µ›_ウ¿Ý—¥Þà0ÁicÒ)åEÝàœþÕ-ju4®¹¸zøër6_×)S÷övZÙÉ uqÐv 0ýè/´!Tô»—¸þ`¢ ip…O9X…Á¿ÓÉÀÍïøÉÐW#ý²%èkw?×M¿¥Ãõšt,>†hwsšÃx¯óñS>Æq™Ðî¾ß”‡£Ó1_EpVÃpå°N¸LøjÒ–òÔS&Ê¡È)Z«ðPpL‡çóå“gÿðÝî›·{ ä!…‚Y°%ŒÜ]¾zqûêÉ‚¾ØÝû—Ïó?¤Úç÷ó~tÞJL.İ ýl|Ð8R¤Íïˆ?œ!J¢]#T*egsÉÎ&ѱ•RKN3À 4 ƒu×sšë׿ ËÜê$78‰}FCGí¤wù." Ø‘húótÄy§ë´%äîÏ´×h„I*s^?€9ëž\.Þ§uNCBK‰%½QŠˆ4D˜Æá®&`è,H_ƒˆ»Ó‹<špœ•_²Å=O½Ûßì™d©Ÿ‘ÓÓЪaé_5»[kjwK¿Œ2¦CÏŸ_ç(¤üW¢,$5狨Í×´;½KC¸ w'¾ªt(ùµÖÂh§Ê(pŸíç²Ô$ÜÒw\ÆaYÇAê Øˆ³P‹Ð&-Î;¼^á¥éPr”sÆNxíGÛ³?ô¶±¹ëëôȲS:8†Œ@×ióѽ7zNDG‡<3I”ä3PUÌòÙ*eWòÙ )ÉÝŸv•fž×uO•\¯˜ÐÙ}†¿ ð/ß««´ Ø'.dH%²Ñ^Ç Ëä°ƒt¬–O{ ^!ÙqVáÜ›çöÑ5ô•~ ¿4:I4|ö¹Ìt¬š‘ÍóW6?¨reap9ZØDlÇ ¼`"o ÜäBÞl––‡ê,iqŒ^³H©ë¿$Á¥A ô÷XÚåtž<áØ d¸^ˆ8šAèa+ ¬ó5Xa”î%W݇eÄ: øÓV/k,d`-WpÇNà²R8cÑÂjçw$îŒÔ–s£è?íëg Qç I­ÿ$òw@0­6‰Î7 !É& êî&Ž ¯ (øzòx:Tüm#ÈÆ¾zÞN‘6ÇFÀQLh.¡Oi¸#7£¸y[xf½"8­VÖ´gD?Nbp¾ï+oÜt‹ÎJ±pÉOxô@mžä1…”~b ÍÜP^ÃJªEñýÞ䛀æO‰_À޽_ù¥šTi{1x¦^~1(7YÐŒó¶(”‹@zRy˜ddâH4$Mé?'Þ±`3]ñkI”¢½k¹ÈÕÃÊРʄëÞH‰‰“”Éx†¶- $mÒÏÐCûéÈ_ A¶п™òÖŒŠ²#ÿ…O/‰Íé¿HV´„h¶Yä1¹yc‰l« zqSYáù]\î£1ò0EY7¨ÿJРÿ ˆ{tˆ¾eæêËr~­a…Ç`ƒå챈GË»òSUí¤HXÁK¶·Ã“îðvè#À¿!Nä–»·ÎWÂDþä÷✠…›Ô×Ç ªŽ„@‚¬‚M {ÅøY 0Ú-Þu:*ëce‚K4ŒŒ—㹨ä–ûý>á!Œ“Œd„÷c¹¬(Rb!@jεyS›jóÿÙÁ* ƒºÝokó7•šÿ­6ŸÖæÔæo†äN¬ö¾`YÜËâxNBN”kœ‘ŒPÙP*ÉÍ¢›¡2ç~èÖ±ù\dÅ î}¨äÌœº–ÕJ{* !‘VÃoÑp“KûýœÄ`>8nÐpß9 g­Œn¤ãœºË úJ PÝ s]2 ›$ur‘Îm)ì€çÇyæ8à‚{cT0 Í¡Í?àšå"«/€}Ñõžs±¤ ]Q=¦ß§ŸÅsbTÌö›Ú¼¬Í¹6_;÷-íý_ ò«+s&ºxʇ42& yÞ ÀN&Ü× (üƒ£û$æEÍ1Š?ñûÎln‰mEM¥î9ñ,9ÃL ܦyYàãÞ ™å§ÅL¡ßé‘(]goLË^51o!MŽ>þ‡±|+ãªFÔÀßœÚóq9\þ~ZáÉ\F[®#´Öò¯ÆLÔæÍÑmÔ´ìyuËV¼\a¥äU›€ªl!ès°i>ÿ-Ø”¯*i Bú¹«°,+qZ²DÎÒ|^\k®oÒ<´à_öŒç{àq-‚ŠåÆÞ%âÊ\¾* þ‹ˆg¬uœ>7ÿ¹9ˆãEPY[ÞoÅ?Ò‚Çã:û¿Ü¿4ˆa0‰õ†‘ÑÊqZˆêÑðÛašâ2\³ˆÔW­£¸ÄWÏXxý ~6A·„"úQz¡÷ ³çXçkàáj@ψ$F°e€sŒK¤]Œë¬þò°w§bk¤’òaªŒ)-¦Õ>Ôæ;þ³aÔ zÛœ»’ØÊËΆÊú\’ ‚ýMÉ•áÖ&~5çÌ)6uv‚ãèV@déÍõ~E;<4ÔXØ!ŽÓJÒ lÑ/ éÞ¦9ü9Ó¡%tØ0J¹ÞVhŸ¶‘ÒOÁ˜ÞŒ5ð•0£½^Ó ±q9\çª&´"?Åæ€;dñð3¯4s1oî üc!FèGÞBg`/#!çŸvÎèj¦0!FTtÜû:üi<ú.£å¡‘Lûá´•Hcª“²SP.È&§Ë&cz”ôPR)ý—’Áƒæ,'aMþ¾.:K‡à/ü";¥0&¿ƒaÁ2Ê•²Ñ ãC“ÖRY7?bðÙ8¤÷<ÂuŒŸî 6‘S¼ —ú2ur•ü×X©T{›ËÝBNq'ÆÔ9 ø#ª&ƒ’¥Z#ýYJáÚÍo«zäú=YLVcRJqr~¦!´³†ßCÜFpò: D“{ø%íH‰Ã£Ä—yïR2Ú1 ‡Ž}g .Ÿ¬«þ°›ð²FQÑïtl‚Cmz\½¦„:Ó4qlîœçÿvžŒƒ$¯ÎÓzúìÉ=IöâÝCk+4ÅõÃ…1ü¬¯øn÷ß »n­´xáX_Žþ}•P3‹B¥+ÀÖ»|Ôp· ®gÏÿÐU!â\ͪ»§’`?mc€Ëýe³YšfyUMPPœÛ7R3WDGÌKèR· sç2±ªR´åÖÆÝˆ-1çu#d{ºja?<P]m4ŸeL¼Ç»‡½jâKÊÔ0M_–¨ÆŒÚ{¨ÁC¿n*â±'Ï9!Š&•œ²xµJóTQ@­jrÃcE~½µÄÉÔɈÊ#“ÖÀbÕe`V*CNÞ׿ËÚ<Õæ¥ÓXK%?I‚[ºŠ.ñŒUàljÁvóZ6…DÐ ˆ’\”AC‹ýÿ.U_-¬Lâk²öoª+ö‡Úü¦6ÇÙè±ÄÑRÕõ‡'ª@{!ð LƒÛ¦ßT›Š×. mÚWU1!Áh~ ×Û•gx®\y\õw¨˜R8#ɸyO}­­‹§`0÷úª•BÕpêOŠÏÿÏ“rêQ'õ»Úüò±'õ;"Oë—[ôùÍØxâîþlÌR9‘9§a¬o¹‹  k‡³8E<>PY¬jéÎÞ‡Ôu0ÉñÇÇ^ÇÆY«h\VÚ”àUÈ`ŽFKš<+ôæb~¨ªª9²ëtîNô‘°_üÜ)1¾ú|ðÑ»D(eþ™+³Æï2à¶¥MðV«é="&+Œ¡¯Éi0†š†RÑ´XC{eq]jÊY–¸?ÆðK‹¯¯‡‚þ!—© ¬w}—Ù[^éܺ¢ŒXWС6,M5´Ãü”bÖð)ÊfoÜY¸5nÃ*’’xv…O%‚iñ©u•Nƒ“—Ù^V#â é¤t²_ÞF0v’H2#j½|ñXŽºº /£n & ´¾P—\¸ã/ø)% ]¡ï'æ^¢÷NxäŒè=XHûÈíäïrýœ㨠aLÁzÊ“À!± äÔ\ŽyëýÒýܦ 9W1ÈÈ؆•Ñï£äµ`LÀ† ßèœ8œÓšP´¼&9s£¸’1çÊZ¼Úçz`ºDì“ÇÒ×sÙÙËIŽŽFoå¡`|Ä:JlÞô±C¤¤ëŠ‘&µaàLïN½•9qà66^!K]²—Ÿ0Fü)êèx€Î&,ß{Ù99ǰ$cü¶6Y6á÷µÉr8®‡ƒñä;g–µÉ2Bîü™zðÏÈžÓµ¹•âådJê»Îgãdùö“ó†¨IAäAý©6ÙÂå¶ŸgyâÔÙ|bðhÀE–÷žTÝǹì+j †O|_ª>׊Ú{daRÚ öT›ÇÚÔãU‚ 2®ìõ“?*¡½!±Ý&öã“1hþµ¯½ÂºEnÁ÷éÊޏIÃav 7ðK·-Ëß]s“^I¡š›Öšh¬*oÈûìSœ=¦8Ÿ-Ëõ:‡'‡þÙ0k´¬Þ<,ŸŽ•¹¬Ô….x]iõ™Òy¤”Ïæ<…‡ÆßÈJ<¿Íƒúƒé˜‘pÏr𔹏”µ¬“JÚWJaqÁæ˜a’^ ¡b0N¾)?VEªhÉ‘±>åž/ ›Ua÷… ¨„¸KK^žìJù ·pF-Y¦@ôC3*ñg¡KèÊá÷KèÊÅq&ü&ç)gÎðlÚò=r×Þåx=é€T„¯Ž¨*$YúK›¨z¾æÀSF=Ék­ØY•w±ê-VˆÌ:¼­Í÷ÃìÍß×Ÿ×æ—µùMm>Šøè'ɰÒü3"LàɧÊ}÷©z$VKO\¤ØG>&!ZÐf÷lgí½ÊeÖLïl>ÔÈ}H°å °´m æÄ>Ú«Æë{½¸Dª‡Wbz=‰I친ç®q¦ùü.»`]ãfB1.ÚQuηx‹­)Z©.åŒþªªÒ1zžžÂ$¹.\ÏŸ%ø9ýì®' {·³}¹ ¿¢GûèT8<’Ö#Î<’êXJ=ëx{©ú9ÙUÇ|G¤WÅ4]P αD‘Á4ªrõHh=¥zx1_¶W矜Xgb­ËˆÐÔÂ÷¯lÌå%aŸLiw00•(èÝQžæ8®­%U™úu5'™½™™Ô» øFo°µðœkÛ§Üc…B±Ý¯ª˜eõ\Ì¡¹G= ªš¸ÄQÒûåJŽlqV²·N³bë};^/{oæEm2m\pða8Ç<wãHB˜,sV:{©Å‹Mó‚K•Š?1 •¤ Õ®vé•F¦×kûÇË«`Þi«Œ«ÂïônÅ>ùÕQæ½§?tKã¡bœlâÞzUs×{Ô´‡Gëû±¥= ,ö–#ùTgÞ‰=”¨ô|ØW¸¬y_'¥ ½Ý¤pœsy‰sZ‚Ïñ†Ò²2;3×[º¿±Í×Ùà¥þƃUy|×Á¡ùãÆ»äLšŽóWz”Ô[zùá‘9˜.<`ÚrÒkÍëG%ZÂN¢lÒBR¾:yc« á}ŒLŸÒGd¬¹6O×`ÈMžºiœ@c†soN_þƒv<Á¦]j"AĨé‚m½þ Ö„©´ôØ–ÄOœqÒýZ™êñña6©š§ÌÉBÓÒZÛD¶‡±Ò¶ê°¿ÕÆÎ¡6ký1,NÆú¾ªYÛwœï§6 =åðüG¢£{\)kß|Êù¨Ÿ1‰qTS­ƒÁpVÑ£×ÿž vüJü¥#ORÞ;çUa8=ùÞ—pñÒý³¤+1’ÁJ†«ö»­,Å4èiõÖ9ŠѾu>Hø>½äÑ wcˆ%E„sî}qßð ¶üèFkñḘžÁjN0w¢yè¹ÏëÚ¬céô_ŸµÁ7üBfB„Q¦É›a©U·y㘣s¬×±-ªh;²ÕYyþ¹Yì KHëXNôÖs§RéL7ýÌN§*ÃZe{6~H1mX ðPtÌ”œ0''¯ŠŒøv_¼­—ãõ³•>âY—ìb¥w]¨#üMžÝ°´ÒpßÓû9¢Oaº3?‰œ?dHß[Ë•'H u€`¯†惵¬Ã¦nZ4F®À1a/_?ÖüÿŸtü„¶~–Ÿ¨ò±)J_IqÄäz'êrØá-at wËêŒAF7 Û³gŒT÷Âiþб${f¹E¥ê*céÅåFWµ]ĸ}æ"¨¹±»a§Š<üïÿqô˜5endstream endobj 679 0 obj << /Filter /FlateDecode /Length 6429 >> stream xœÅ\[s7vÎ3íò/HUXyšI<íÆHÅ©ònÙë]§j+ SûàÍȤ(9$GI¯õ’ßžsAènr(ɕ҃ —ƒsùÎøùtÔéˆòßç7'_½ˆöôêîäçüpsâ’ÓCðо.íhU|kóõÉ_NoáÃüRј§ù¯ó›ÓßÁ¸Ê[ø4¤1©Ó³W'<£:Õ: FùÓàÂŒ;=»9ùqó§í8ŒÉk£7‡hÛQGh¿ÛîÆ!Œ£›[øj¢M:nö×Û1zˆJm¯°m?ªÍâ•×.mî¡©Æ1ŒÐÛc :ŽzóÚZÆÇÍŽmR4Îo¸ ô°Fv9]ê¤NN„ó0»†ùï·:À¬Ñlþ¶Õ~ˆ£ ›ý;.ôæ²÷ßgBÊ;I ôàá0ÆÓ³‹“2Û³ŸNvÖªÓqCô?ÿÈËS‘$0žK)ÀØçðÙ+£RÚ\×¢Çݶ4ßYSLns¸¥½¨í櫼ÀdƒÛüŠŒ>úDc»½3<6稱aép6@2:'gÔ!j§äbÚ¼ƒ\r ¬<ƒ[$ªUÏúÆ”¼ М±$°½oNKzó–ø) Ç=/(>=Ø ötƒé8†8†LZ6ìæj¸® t@’©ä“âÒà”~ô6ºÍ ‡·yYöúž?†fÌוí.óò’gÚGo¬…î`)^E$&²˜öÒ.2KýØPˆùH!µ?oÆ-=ÊÂÂæ _²£Ý˜¡U@#œ-&ä…2mX_E=&7õæ¯:ôhC3Ç@«NЛ«¡êË: ŠòQJJòƒµ¦lë~˜RT:lµyQ›ppN›aÝæk¢ËÎŽôŠ>Ý)38P*<ÐÿNýBÓ[8 ´PÊcRSM}ýæŸkó¦vXþ™þ°Ÿ™Úw75#¬aI( ÄÓn¢NÕER³ A¾` ê’`yF¸8Ÿ”Í{À±Rtzó ¶@ÛÐq¢^´$^‚W[Á†&hŽQi#vYåJè~Rn£Õ6ΛU×=O‘àäŽldà£ßüuK\‰*O/NâI,2‘q§üàF˜šßÀDÊ#H+‹M0!‚²$†…ãIr ‚;ÜC £+v€Ôìgb5üK2L’J]X]:ÚTB©ò±øeä>ÀšT3ã¥4 ô³½Tæû[þì’Õ#T}5p¶B3ˆCjΫÕ µ}žÛ¡,'8›|ä´Ý ,ЏJH}?1ñ;AÉÞÔæ¾6I¿äöûÚ|S›_V¹ùå©‹sÜ˯¥ï×Ïø™˜B(­ËÚ¼¯Í×+ZM¨²ÒüÇÚá»Úü¶6EàùEô¡Â µšÂ`MP¶¾—‡LÚ?zëYí6¨×8Œ6tꕱÆh" üá ÀÈ`VÊöˆ²­±È£¨·Ëåö2#ÆŠ4¼ãÑÒȪ9S®Q6~Dû¡J¼°å¬J©5™m9€èHx]F¤¼¯˜·µì‚Øy¡IhqAv¡M¯^/¡V!Å] hÂy™cc¹«Bþ a¹š7ÂV¿®¨—¡ ¶.xXÝ ÔÙËsÊÇéø „ù™&1ÞYXA´3QO|¹g=£i•ÏfàÔ%°'Ês³µ~¤äU{¥{%H j%‰äÐÌPÁ'7z¨šŸ{a]–˜¤eÚ"KKŒ¼Ó‹Êl—™l#Ø1æFìøÆ üZªY€]@ÙgþÓ~QãZY5¦  ø¸¬Í7µyU›¯kó~ñg¾|]›gµÃ‹Úü¯ª.¿]ÔTÑ pÙ´P²á™ß‡¼s°Îß\íÄ•®Ò—Ø)P'‰tø‰ÔÆŠ4"çmëS„‹wLjÙ¦qoya0bÇcÐÙÀé5¸hÝ«›{^Äà&ÎM±cžnGfw,3&‚ñÞ§àå] (¯ ]²}[ Ì5Ï¢&ËšI.&Î~À8¶37±õŒ;ÞÔðHHÏüKŒ³ÃØ…2®3KÙE·6~%iË+ F”ö {¤ÊKG¶_½Ð¦VCrNÓÂ``öÓ³?9û§7¾¹}óò˜F_ÞÝOÿòì,Û„€\ü¨0ìñ›NùÜß\Þ_@vðk­W6¬a_ +¦Y¿ÛFƒ§ãظ4ÀÞe@¥u$ٸÕQl™¬¨-i\¯«ñ˜³¯E¼&W< ÂÜç ^á=°°‚!vÀù°F¥àA±€5"aõd´6IÛÅž x(ÒxÇ6ì›,9$mü‰z£Ææ@IÂ^s±\pØ# >-ÑI?ê '¤6€2ý|A²ÃVF“~AîLÒi!¨@§,D–˜Ñ ñ/ÜúKþÚ†X:–pâ´´Ìç 5«Ùí´¢ô9vÓ–Z»›É«ìD^âå}6ªiT2 0£¼Uv/ƒ¬ÁmQ`‡|žÝ)ËšÁMZp “zˆŒÜ»™m”NÍâ[zbÒ¬AoH øéð?Ÿ9o1œ†ì7õ4ñÌà·,ÿhd›2ª tVà ™Óæ7äÕͽÎYÔP“G,¼ÕâíϤ Ð5ÌUED2ËBð©wŒ.6ætë´4ÈuqÑWhâ!µÍ‚x£·ä¿%F€¯™àƒT3&x¬šad&Bo§P 8nª ¡ ¢7OøEDÁŠJ>´ºðê]…郃 „ ¦÷Rñx‚¢¨È÷Û%þÖ ·š–ø[ƒèy³Ä߀ù,l¯åïéPC't~.DÕˆÃýãÅN=¾¬8XZ¾]Ö×5œµ¬ 4ºe]° åy½Ô„e—÷{ë‚” ºœ+C7cz„n™àíéGo3+:Ï¡ÇñÔÁ‚'ÿgмÿS˜‰~\uèâ&*)$:VÀ2àƒjh™Ù “$·UÎøUÖV’!‹18ᣴé(§ OVùD•p®W9° ÛOýiTN)!Ôá-EEôˆŽhõýó<6a…QwÄ‘tÇš Röt›@të: „¾Ÿô”n·-z f"ßç8ü—+ÞÆ6ÖUÆÎ´ë Ìç—8 û¦Ì\†¤qäT~ƨ2*Míâé=MˆØÈtòrÂ/˜ªjœLõd|»¨’3>¬dËš{ó†_½òë0šV™ÂsYöȬMXVuÙÉ:¤á¤å¤ f„A¢T W¸ ôŸ^|ƒ… ä¨*F*Å›ÍoKÀý>gm½=B×H.ÛW™„ÿI£ZÐ÷윂óþ%²„R†ø‹Ý ø¶ÏGŠhJ ãžØ;Kß }%šï»øõDŒV¬¦†á8Õ L¬šè/ @E£^‰8…ˆ9š È`v0¤”;NŠšÆ¥ï¼VÄgZQãpv +@Ûç8ÝòÜjî~}j„\ØéŽçkX -߇”ŽöœaKè–qì‰BÇ]ì ;¤°.4Çž¬œ/ŽïËíRbç~-þâthB×9ôpõP茣£¶9Í5À Ü f,LÑ=Åóá\;sûk‰ìiŽ8p]ÕŒüáSùwp‡`MK’>u¿˜©:¯rÊŽÚ¦6¿ä =Ø oÙ9w<‘Ý–¤üJK9LÅèÕÜ·CŸú¶¨aJ\6prÊ¢k½–‘’¦ê‚;º’2uà¯)‡¡Š˜?ôb^‡¥˜ã”õêsøïy¾Ø9 ÌæÐ½njÝ“6§¸Ï…@j™¹lZ³n›ÅCµweˆv¶i´cÔK);xfˆ‰I?†fm,|cý  »è¤;j3ÀCÆ 6ÑíùQq:’™I°Š-Ë1õÚ|§ý÷­2†…ÆÁ@®/k™¢(ÒШ)UΡŶëšÐ6M€©òþÜÛÈæ§Ô1tÞ†Õ¸Ü>-eµ&ûôÌ(òSaµ‹i$+»^µØÁP©Á2\‰p”Õƒþ´Ô׺?#}…EN¤R­ÇÁkXMòÕ1¦òɹ Ó ‡Vv…N+{m,0׎P¥Èêbi Í¢o”£í¸gC8Rü?$ÀLsô‘ÒBä£òO»iï-þ[bÝà±Ëe^ÍeFG'Š´žR6¿ßß_Rhaº¢ówhÅALÏ·”!R†KS©“ÛÜèsD>½|‡m§(ï{ øODJûœ;Òàý›ýËëËGHA•ÕÆQcn‚)9z”Œ:ã"Ú¤d¼Ê6%©±-iÂëd 㢬çád~Ù:G8p\Xª(dkÿ’d>{)³]1Žÿšeqi»4.LBŽí§—Ð|£í}Xüúˆ¥ÇÿGoý™ Œ~{ML»¨úˆÓ™·/ê8öÒXæ FÂkÕ¦¨‘.U…ïóV£4˜†Á Ž`ÿ¶*5igD‰ÒAtÉlI8›÷g#,tWI”M(¯²ý&á/¾ÆƒЪ(CÜ$ð’Úÿ¡øŠ<.ŠÅ¥:BJDTej9`²nöLÔTO܈œ¬qö,¯‰œ×TiÔÚ7>ö5‰ÙÇ™‘žÅ.ÄZÞÒbUˆgɼß·`.Ó ‘ë¢DGì÷UB“E¦!àg„³]yFDÛöQqÐ RºZ†Ý‡D£¢€T‡é ­xe‚ÞHúaJÏNÏ”4Ë/ C'2?#¦dAÉ›’Ú• QŸ'?380Úš&˜ˆž­ÆÌÚüYH¸ž€ŠÏ#ú–±où»‹¶±¿*¬;’¥1P„9?ð×ôXÒØJ „ bz”c¹¼³¤æ¢&/~ ÌK“sLQ/ÛTöµu“!,«`ó‰\Ó#.ï´Ó=wÆâ”g‡H#_ iï°qÔQÃY#׬G„+öíѰ¥8\1=mV‘ž|æš‹5›º%² ‹CG+•áäh-—æ_)u¼«ŽH›\ ·¯ÍóÚ%vâ²À»ÚÌn/ÇIÞ IrÊì¶Kr‹z—µzt¡’0V ${V»RÆpàÏ)ºV+K¿°+=G¹Ö€X¦&¾èt'Ö×D¡Õým ¹q 䶆Â*G4ëÎNî°R*#8½œ ÇÀ*¯½(H•ÞW#ÏüyûÐ]L+‘ú&"DáAKšÕ'.ú¦œÑ#‘ŠÛÞnÛHý"²èM§Ü@Õåhûzw³l$8ÏÀŃÛÔ#ó% ÀŽ*á‘FH†òËõ³ wÉu™_ÒÈ6cs[fV˜ï¤T­U¹‚W™Ãþœt@“}uÇ÷tº* ò5ærž¶þEÞØáñb.ªè÷°Ä "ò"ZJÝÔ9dÑ»¨Ü8ÆÓýNÙP¼›ÛýÛ·“K‹‚{QË!¿ÇSQÙ{Yyÿp{E?Ùì/~z¸»¿¹¼]Ƀצi'Ž ¢ÅKwfͧ¯Wö½]W\2ÔÀ<–×gz0¹`R`+ Ö•Ëãâ’Ê^–ÓÚ5z¶‘“†A»3<Š-¾ãY¾W‹ó¹h7«Q,ê1»¯¹„î›L`a>ñµOÂß»æI°"õ· ËŒT¦@ç[¾¢yŸkŒ€y•©Vf‘*ÏFG–#"¢@jß’S,c9vÌü䢆ú^½=Q* ªË¶4\¤œ9Í”‘^Á¹P¶òÖŽ¸@·â–¬8[rP³C¢ãô-ú`iòXgQt"x’Ñ^ã1AÏèC´¾æ%ƱdQÇžJÉÏYô†"á„pže¶>Š¢(î/«€Dʰ×<6bésÑb»j€ëÛ[É­ãÌ0÷å²ìÑï·¹lɨဘ•ëNËP@ìu\ãe ”û˜R¤•‰æÈ” QvfeqÉè{ jÑÉgwã‘“o=‡¼+é9Ð?ûi^ô‡FxÚÿ?ä°jZ©¹Ú…xj4"i¦ØzÉ-^ø±§»æGMyAÇO*™¦tà1~¢Žâ§,‘Ê-³Fñeîb‚v­õl¨9'ur@bˆªƒ¨+9ùe|%-ò{Ë3fTT_Äuú”®Ôâej1‚Ôy”’„!Lslq‹k…™ßã €V±sPP¦S2Ø}Z*ÈS-½jïÍÀWøß*žÅÿÞñï1Ø )·zû üð ¡Vž2hÂŒò~y½t0â‰7UËvp¹ó …£rR{PU†ÑŸ‰HëAz²¤ó[¾=;ù~ˆÅ¾[B¥;Öü‚JT§_a±†Où¬X°ÁÜ¿-zÑ´·ÄÏi|,„¸à;/˜^øžïU*ðv +²¬-“ˆ];´7»æ *åOظ6Úǧ³(ým°ïà•®,Ûÿ³-%H·µùº6—/ªŸÕ/jóÉ›—àÍî+“óîœÇÙ3)žßà«T–ÂÛû‹ùi[â«Á€¢{ÖËÊg4TjÄëpmD?¦â]-TZà2c_P†Ç5:ïm_òR%KÀhqxóâHRU¢óA&¡îZØ]Þ÷·IEÏ¡+ÞÄ5Z… = ÚWœÇÅ÷æ‘&åMhÃèÓôv9 uTÙnŸŒ™GJDÝ.þÜ2¾“‡¹|à’'áåù–Ê1Ñ‚×î\ËÐÅÛ†ûè‡vl*ü×{Þå7kõ°•LY¬•¤Ñ¶5Rïx@Ÿìº+^—Ÿ‰Ëù‹WÝz–äämœJÊ•ÃhK©?ääN,K¦a½)€ë£éÓ>DΨ×ňW+lïš@õ¼'C|•÷¦S8º-ß ÁgJjdøï«í]†È`à‡ÏÈTm©=f¹ÇŒaJ×—,(6e¨ð}žtäÕEuy︷UójA3ŒK‰Ÿ @°X»Ø³F³VŠºV’¶­'NûY\:…DMÀJ€·qà>Е ‡h,XÊ$þ‘ÔK˜<¬,u¹€xž¿§$Øu½ä³Š\edŠkìý 2£b&šY(æD»Y»;û98Ý}vÄe:çÕ'œ&´,~1v9{ï¢LFÎ,`¦ ÉÛù”‘O´ñ§Sº”CG;–¢5Áz3³s¹;¹¤1‰z±¥:ùùBD)‰Œ«ñæ`Ï'ƒ‚ z'W¬>èé¥V«‚ `«³ï>ê6ŠøÔýïªíXÑÙàfL¯æKy¼°%ý›†`ðÉOâ®ÇD…Š„¨à¨1Q¹R!|œÇ^êÖ°Þs4d:ñÙ2vmGh™ÖJ0­t§ÿÿ¨‹fyã‹BúX9±Ægát_N,sgÌÄ| ¥‡6¹Îø zŽê%öfñÁ†Î^:§rŽî期uÀßÁ’¾Û–8Óÿ³Ðâ‚Ô§‘Z˜ÍL¯‡.‡…0MX³+ÞÍòè µ,× Îcdñx0ÖÛOª0£þ4*Á&r›øÁ•ðñ*èùtÏ©Û0&ùØð³Ãy†^vzäé’é9ËLâþº=<º‰«fwãjö¥‹â;›Þ·×k€Ý,AR Òø¼’àk"’ËYúsr¾öÊZUoª>½_¨¼ãù°ZàTû®W‰ -FõXº(ŽóÜëⓚ}T"_Ø,Pz´O‚੽žÉµé[ìôm.éN´Š¡­M˜R¨±rõÊñÈÚâæºÇ¿¦ Âõ(ìDµ¶Õž…L ¿åÎ.¥y6Ÿ¢¦Æ()?ó*> stream xœÝ\Ko$Ç‘Þ3åŸàC_®ÖN—óýÐz ØÆØ‚á9H&àƒdÍçP&Ù69šñÁ¿Ý‘Y•‘ÕYÝ$=2° &•ÌGd䯬ˆ~¿½\ü/ÿ{zsôËoƒY\nÞaÇÍ‘VõÞAûzl#C¡C”滣¿,n¡ãfJZs‘ÿ9½Yüö×µÐÓGåâøâ(m(A.¼õ}Ôvq|sÔI·<þK§ªÑH 0áøìè»îf¹½Š1×c[Ä`|÷°}J{ß­/°[Ç ­ë6KÙ µêî±×Æè½úëñi÷1ª7ÊÛ|µ\£ûÐý§É¥Ýæv1 ߕպÇ%n§CèNÙÎH‘ˆNÁÖWÐTRh:Zhcw¹\i­úl÷çy!L€3áºÞjC+H!¼ÝzÅŽý›[ÚèWÝúÿ„”°ý§åHê— N“¸”‰ÚâžþoBÔk\upõð×7ß–-Ópeáze­U8|¥•íP‹•¶}€¥hÖ[:“QvWÏ—¸›wg«ó/òÿÁÝ> …&Âv®»Ù,±‚îÎί—i¯I Øf•^ÿéèøËïºß,•ï…´x·Ò¨–¦»ÆƒJDX·ÝYä„QÀt­a´ïî肼®ïqf4 Hfëm.Òh'†KŽ6Äî]™xžè &½ãæiž•R˪wÔBIÛ\žÁ+Íoˆâ`bŒp‡ˆ›"®GGþ ˆÔ +YY'ÖÍþ~²\)kUH–í¢Õ¶4ÍɹÉ|@=,àâ¬ÏÇ6p¾r[¾¿oÊRêä§?-§g+—;ñpjHRG§V²XÆÁ{‚•6®7~øšŽ…‘Zwºé=Ü1“ª~¹í=°ö÷Ë aÊãXb‡Èr±ûH‚é¢éÖt'ZFXË#® køÄWµ¨­BWR÷Ö„èÍ÷!É5ތŕLæepVw_LõgFÞ) ©žƒšìäˆ/6Ë-v!`=lb Ûá%!E¸yÁHþ-ÝbP ã¸ þCZÎ ?,­‚@‡¬OÙ† 0ZsêIeŠ6AŠâ¼|ÐÐÉDßÊÉ ¡îN˜* ¢-T¡Ñ õlð\pÞUK§Sk06–‹áÙ( ŒN†ynÖÄð ¬sø’@JÀéô~™€;ã興z’ö+Ê·†öö]­Ò€9£Â…–„=_ìyÑÀë-#–õ3±Íˆ®`}B†ÙXYñ*ÙIÒS‰ÿ:Aó)Ô' cR'ÊÐýñslØLn‘ï º2£½ BU\Jú܆`C½(òL€)ù¸-,U«?@pWä!ÞÎéd4`ït…`y…ÌZ0³™cÐa¤°•ºF/Ž:îwsQIr'ònJ›“¢¶*ÉK'·pqš“_œ›D´ ïuÚøW-žŒ5¨`ضØ?~„û|7ÁN Q^¯’²Ú€Á<3ª0ê}ŸdÁ½K3ÈѺ€žÔ;lâBÖYgÝ7ð)íá¶»"àé‚ÀA2»àò)¸Ë⸱Ël«œ„ýLdÂ~Tû }׌jò]8 K?» ¼tœ‰`¾ã#4ñ%fMJpÝ\:„ wIåÁÊè!]Ñ(+ßàßÁšDW«¹ñè'¤Ål°5ò|˜Ç¢t¯‹ºOØ‘ÖhÏ™»Mû¢ûû}WðÜ}s|ôÍQЇìâþ¹‘Œò`Š|\8ÛzŒf¾Sûgl˜S‹Ûr¶ý¾î8v CÃ’ü\JÁ´Á)ý~Y.üðSo—£‚Û0Ü$h1frv$uôfÑ hßã5q#RÙ@‰šÉp4œZ8!ÐøI«1&@Âdô¶›ñ"§ÎJ ϼHrVóôV²©Àù3›$³á =8(Þu;JP!Ù!gÉ 4<n>¥¾Ž/Öé6À¾W·¡C“vŠ}XêJ'rSxÉeü,m€<|Ë4Ô…Êga·Q‡ì¸· O4Zs`ö_Ѓ†È½–r 3ÓS ÿÖdð‚²ƒ&Ú·¼6€YÑ„Å8ÑÀèÁ3ëxWâ¨ÍœùŸ]zÃ6["èÐj°D'É^›X.Ýv?+8,àäöüªXÑɃz(éŸä hï*~}dV‰1š»O«bù²YJ×.Ù9Cü_„ د]eG€=J'%Í‘³!&GtIÏ–Í ú:M'w7Ò¤Á§Õà‘E»î5¹Œ3(ºL»QSÑ’þ¢`”Ð/²mñþ6üц0†JZ$>dÎ}eÕ}m#Z‡¼™©di ê,uÛ¨¸¿Âr2ÆŒ¦·H› g–sÔ¡;€‡®Š[*d}Ÿèp)J$994ÈÁlä4p‰ u*~ŒÍ« ̳›¹Mëé() ¡kªòõŠ9W-[½är—xÃCŸmQýÎsZ Ür¯V ‡àÁ•^á¾’AäÕý4)¸¥ÀÚ.Nd'77·Ã×ýªô®J/›vSšëÒwil*Í«Ò|UVûph@Ú¤B­Ò<+Í‘àн.ÍÓ2à¤4¯Jó¶¹X¦Úëæ×Í¥ùªñ©ôž7§Ý³—Í%Îm·ngZÊçiÔ„íAcxEŸ”æ++á. ®Ó38FÛ“ð|» E«åËHùÙ–æó°7NûŸ—aï'ÀÛtÇÚýφ·5UpJ*Ÿ›óC—ð’û,Ô>íhÚzÏ“=  µUÊæ×Ú€¤o'¶fì-”?z©É‚ÒdÜšïñ*-[=‰¯§.se™ þ4®;|²iÞ(²oË\•æÇÒdwrÆ¥ml¾)Í‹f“­pZšM~[z7ÍÙb×eè¿7!+ 8uiþoP~l>–æßJS•iLÚ¶MQ`F覹ËÔ“ׯÊnß–Þ7¥ù¶4ÿ´#ƒ( qÁ‡r±ëÒ|,Í¿Fª6+!m]'Ó’mõûÀ÷`÷}ÑÔå;OùËÔÒc“Õ×M•ÛÖßl…[~Yã lìEé}×TÄÍÞûæÆ—Í±·ÍÞ«æÌp?ƒáH”Þ¾4%o’«­eŸn³«f‘C†µì€ êþsi¾)#^—&[¢/Íjá±iJÓ–f†õj m÷ƒW ߣµáHfð}_š q‡ÐÉü® êç Ëõp~|÷|lK/½PXþ/ƒZO›„"•ñ !§Ë$½ãW©|ˆ8¼¥O "5·¥É ÂLCÍ}ðí!eÊ@ÁLßcS™2+øus݇iïêš¾jù€ß–½)Í,•Ôf'f’öº4e J@ѬʈPš}ijnðƦ-M¶óœïÊ9W¥ùá$½>WÑl2ÍìVý9èl+²çø]LA¶ú¦9vÛv'N§ó¦8»h6úN›½müò…ÿLE… ˆ4µ4J­‰!6ƒ;ó´Ÿw†ÊŒ3„²Á}³—IŒi  lÿ³W¼Y0‘Êfʾi¤rý eûȧµàÌÆ¦;¶²7ÆÅl"ÆgíÖ„—»ÅÚ9×Ç šø¨é0³2vÿxÂ}(m/¿Æù±yݶ,õ|ìØ<)[¤idY¯J“yx¥y’ü·‘‰•ÿÆbÐ[®¾Æ&S(LsÜq.®¤õ²’© àL.˜–7Í^ ‹ ƒ׸ ÅébS(ÇÒ´¼w\lÕœÖvÅU³—-Ö^!6·Ð¼·EŽ;D;oiʺ¶¹1ƒsñ™ã/ù€†RežýIi^—f%TÛÃiÁ¾ÙÛvDÁÖÎ {Lv¥äZLWMNû&÷<ßâÚŠÖÕäT²çâY¯)ÍÐ$gßbÓˆ¯ü1t~Yz¿á`0|š€iðw_téÁkgMfTãË®ÝðK›¬ð4y¼yà®CsšãÍݵj.¶Ã’=¬›½¾áǮʭUÍFñçòwf3.§æcjyYlÖaÇÝãýVÞ»“ôت­¬rk„êCÌÙcÝ/†*†êAÖöN;?>²|YÖ¯šíõ}/Q1î[_Ê^ãƒoõˆóÔ°£¹«6=~Í9t(/e}(Zsî$àhµÑtùä“̯BoÃ~žUw$Ó˜É2¶÷ÒËøY)¶Ÿ‰âþ§¥xޱ˜kÝ0÷IÀ`4Ûß"TïEN®‡E‰žúƒÏJƒ|EáÀ×>ý¤çü "„Š)÷J‚”%îLNl/ßxÒ'ugmõg&‰¾ÌK ð­ÁÄm¬#ºþ³¡Â„à@ ù¸šrhqtˆ©©²AN?å\¿’!@¿QÁð™:"JÍ„…}4sIDu®H+ånsyÎ>IÕ ð)9 †*H€k†2Ëq÷ày¦Ç6õêè«Þ/Çäü*m6!È*ÇshÁLÆˆß 2Z‚®Ð=fù ðúyIþ†ûŒð‚F;¬"’jDÙ¡)*¥kMëë"4Á¨-V| ³ö EÅO¨’±×ÎŒT}5ÍÙ¨·{û5kRŠ€ ÑaZ…tçÔ¼¼älM¹¡˜eÉ3KÖJºÏˆ9i— yXðÒNÐçõ,ùUÝõVÛ*[‘'ÄÎq!baM.€m¹Ði©UÖEBM>UJ§FÖþ×þE¡Ô 3­X“i{¦°¾,ö©´Aepü®ðY`•6FvXà–ç¼Þ¿CèM`ÕEĈ•òszàQTi¡;gÿÓÇ#è›Kbo'ÉŠ<åÿ^eUÙ‡)©?/u•¹y,ù_¹ÀSõf8´ã[·3^ymãO¡|õn(åÄNÝqaͳÛMú¯‚æ…EN8=gikLz½à•÷™$i1sÌÿ¬TÀ*Ú/¹øp¦ †•'>;¬}o«rê„W†Ò ü ºûOt{*™ð ¡óy‰–ìž«œ¿M*˜Ô2Ù;Ú»¶!·iK[';ÎÐÜ"JÏeݱ|Ntù(óîë ZÀÕ—SóI”Ð,£¯*BXª;æf„TÎñãoÛ:W'P³âº„ad½oîÛµ7”™k5X^3:òŒ°&ž@.«‹Ži5̤þzÙ²—àÔÃ8p´$x’ šƒÿ·×bºÞ/ªñ;æo¢ÑÎ.èwÝϦYbSƒEœÐ$÷Ób «Øš®×è’ªW,^y]¼‹9ºÐà Òd˺2à2+?­å9)ò¶ò‰0SšgM£’ƒ‘ª½´ÇÂBµWDÊxßpiº]Ö:8¡–íÎ5Ñ6-¢CU:ëyÓ`ÜdZa³{ÚB{´‹ßìÞ†e·GV:hº XÞUåÄ©š~0.aQÍÀ»°#ê•jÆÅ»QúEþƒ¯¦ Œ¢¢)P)ð0ž€dŠ.FÅÓ<‹…xEŽDÑ1HµtjgÇéy`*Øáaê]š*@gýj¿«d﵈-+Â3˜U ™K¢£ZgIÉV…ŒI­*¬%û”ÀåÁ äŠO2ëÜŸÞ¤áTbÈR¿+{? ¹N¬=äž¹ÈÝéù´úAÀÖw…¢»ÊAáiî(‚"ê*_=y«Õ´°•UvS£ì1õ±òíÁ„M ~ ÞÖÈ¢aB•ÒÈŒñ%+Xfj€iE“÷XI¾¢$+Ó.´h”ô“'3S-Í-Øx€¬à`¬ÂÝWÓ))IŸ¯]×µb‡ž£]áÄHü˜/s'B°úñ"Á‰°ÏuWôû³EìÓס”ã)¢l úÎ<–]¥â XTº¢¯<“qᾸL¯RÝ*F§%°Lޝ¢²Œ¶;a†Á´Ì/Oq'@ë#Í¢šsØ¥€ˆ+š§›n‡Y=5]\ ß{§B¬ébñ™x5TIû‰_—/‚ÕeqG}'I~r4ð1ÁN¹úWº´ÊÀÂ}fP˜£CœZ‡ÖRö|øÐãT+³%ëÔg­½YRÞ¦ üÈžö’üi¯æ™&×4¨ÝñQœŒš h"G£6wL…ûîøÙ^¸Q{•Ή.Æåù*(5ö8 °H‹âÏ1b&)ÔŽªÎÛRˆ_h”ŒÏ“B(‰"²+…<«|*„à³I÷ ÿYLuÃ÷œd¤°+ƒ]6—d ‰ÃDCI‹àÝŽª‡DÐI,Ìžªž(z#M3O†€t@Ñ“1¤˜W(õ *¾‚ÐUq†Úñ‰¢‚SU4n&‚‰lôú¼·Ñ¢¢È. 7ŠBw®)°‰²Ýw–,ÑæN]óý!ÁlçÔª uxé5n_øá5Tä˜-=rx9¼3äðk»¬«·“žIÏ5©|›• ÐœÑúïýTùC](>vï¾¥…ôSO"Ò|ýDéhjÇpÔC—·µ¦Êˆcæmò„¡<}xH ‡`ŸüáË“°/ þ<Øhšô&LÒøÙ‡þ@ ®Laæ\…™èΨÉ­Ö‡¢?à”sÏþL¯Øçv ¹oNÏC ïÒ\°²£? M›ƒvÒ”ãÿ{ÁŸL?§u7þÿ˜™ïg'“õ/á%à‹8÷zZ~G‰ Øó‹I³O°p@0fí_‰Øýð"ð½ÑN¢¼ÉÔz"ëûôkØg{¬ß9·iqMOõìáû!ÿD¡~rƒ*Ý6;¿a’ÊÚ™Š9k?ø3ZêÀGOŒ{j>ãÞ6Ê}Á_¦ú™OÅ4¾‘T¿kBÝø;W3×ýýýšú—ñÆ yæ|t©KkŠT•¸'Ž:Ò“±I?ÓY>9´ý"sëE¡2ÂI6be!Ÿ+³ß¹à!h¥è7mð¿_œÐÞendstream endobj 681 0 obj << /Filter /FlateDecode /Length 5182 >> stream xœí\YÉq~ïOðCC0àj›]ÊûX` ¬Ɇ°‚!z?ìꡇÓÒÛ3̓«ù÷þ"2³*²»šC.`C……ÄdLTq|qdZ©Q¯ýWÿ|s{ñë×É­n.~º Âí…ÏÞŒ1`¼ŸÆÉé4fÔ<|wñ_«;nð¥æ9Wõ7·«½¤y=(cVY¯.ß^”õ*éUôqÌÖ¯.o/Ö—ÿ fLÇm±Å„.¯/¾n×5šœS ÃŽÆ*'‡Çµ“66Æaû–È6'ëÃpXëQ©lÍpOTŸsŒæO—¿çeœ\Æ™Ñß–ùz½qÎŽiø }¦sÖ1 ‡;¬â”Wq¸žgžÖ´œMix#V¦© –~¡Ñʆ4ð 8 ÏÃÍzc­sòÃ軨”K8ͽu<ƒV*ª4l7âØßÞñ‚Ø¿¶{úARZcùçõ´Õš&ë\‘RÝÔ­iñ·£Mˆ&t€êñÓ&›×ó’ÄþÛË‹?⿟.Œ2 ‡•W>&€œÎzô3e?QBöa„Þ÷ÓW3¥™ýwS¯ÿíŒqApÚxçW?î~ÿ‘ ÙàW0WçC”gamÐÔÊG7ê˜ÉêÌêòþbØË£Ïìh\6|nÛY·Ú`óÖjC§—œfô.è@œ› Ç ë1dÑsÂÆ½a#óP3~¾É°V‡M1úѺ'¤)uòcPd£Žç>bÕ:‰‡i-ô³ñЙvú˜Õ£)“jìØ„8úãɬdx+ñZ7*Pð‡V'súQ»l-1FhÔ‚ccØ]:ætcpž„Íœ9¶61Œ.æ“ÕY*ºí4Œ)û¤°t&3âÿoÊŒV“Öø¥õëFa¶Ð¬ƒ|7ž“˜u²b¸ŽaVÎgÜÛDœ(û‰­%¯¥}5SŠÇñØ8's6ò2V¸‹MPŠÂ]þsk¦h;†Ê1J®‰2sYØ>D$Wœ(‚ëhr_3×äžç ß: »jÒ…– V—òè5yà÷ƒQë×ÉÆ vÇÁ‰±Wë l& Ñ¶vE\drÂ¥«£™)W4it’©$OP‘ðZ05JÇeunH®Jé¸EF%wÕ(WfTFrUJÇ•Ü|£t\U6‚KHë Õ¨°>ïµ Go˜=ù‘Zy$Êfv-Àa!D\H®C!kœ©)§ä¯ "vW¢]öX‚1˜L%Ö…°ë­¯Ä0¹öq˜¹= Wû…põÅr1 Ûó0oxŒ a†o¯û§ÇÝê»íãûǧë]ÝéjC_i² X[Bd0Å^ïöàü¸†|rF²±[½~ÿðãú1Ø~¦²Ä¢( ó ‘’ l “ñë­92á™Rb„´Ú‚‚-dæIÅ”ƒËXŸyqŒ˜ØE ³dDì@¸È|åÉf‘ü ’9¦x;bïöˆˆA˜¢8üRÕ̃`EЬw£e¢O °ö,S¶,<"2g£… =3‹EÌ a"wCÊL„”H†Hñ<u?!s0°ÂBxi½ :á(h‹¤Á"¨ñ_cæu5&WÌL$Œ ÿ óx+v¶ä˜'–O@üóD²7̬pŽÄAÞ†y4äŒéÉ›LÄÒN2–)XƒVO$óƒQnIèÌc‘ÚxJØHèÌÓ"V„Ô-ó8Gä# Y(¶ÐâRÌâ¡Z<à™ÇC3(g| L€LÄ$ã( | Ág¦$E°íÉÎÙª-Å‹ƒ’æ‰He°8™9µMðZ…¥<ÉYZô$3g;Aãœdç…€t Bñdæ(°eO*ñdæ™ Ø:q(CY97Î ¯ñdä– „¼X‡lÜ1‹d #ÈÎÙN0›#¯ñ¶ü„RLˆ‚ËJi˜ÇzªQ@! Œ‚ߨF„ÿ`ßvõ'€ÃõŒ N©%4òl4õòÑ&hPÙ%2(zèAUƒ¢r1J`þVÿlÀ€ØS´>ƒ¢œÌJ` ô0°™Ç ”R'*0ø ›ŠA œ&UªÈàI‹Ö h@Ñì«Ë¶¤-£ª,îX±Æ•]£®#aÌØÀ~æ4xE¸ PéUwmÐÇ3àu¶@lß(|:‰ Ñ"v¸c‰ ѹrè ¢ÎÕÎ.Hk‰ äv&\@eZ}¡á´DB¸àÉo¬ÄÕgm¸€`Çx=Á^§,à‹ó6XpÍ6'X°l˜&X2v#1)ø=a9’× W°¥b*LPÇ” o ï+Ø×0A…¡&LP¦zE×o{—á•É PpY¥2oCÇ&â*8Bb#Q%™ªWTpÑ#Ÿ Ál,™åTôhèÎXáÿQM¢þ)2±P›ÿGrX%düÄ &ï¢@€ÏŠZ"@ÂÆŠÃ4H´E/ hYÇPø(< BN£šsä;â§Ü¾KKðjÔnÉ ²Æß–xí«ŸµìbF^'ÓGÖ-;0(­D¤.Õ¦ìÀÀxKÎTQ e*ÐU:F²Õy± 4üÄ{ ±Ä sh ¼Gm.0€á³¼†€w]CxÅ@7ö©ºMuÎ9×ÈÕ@€<¦$ rt™' Ãñ1'È~òúŠj.‰IÃlkܘp Sl0µ*;Á:÷&HÀ—r¨ )PÉ0$Ø0+fÊ R ÎHô[3ÿš$ C42;HT€™$Û¥ɘ &-5 ÷Œ8e ©¦¨îà9 ^U²‚Ów*DD‰ûY ¬â•3]/ãÐÀ ê:Q…ŵßFSr€Cc?Ë¥¹éG\Z¢¼Û…ÒvÒ\E’0"¼þò;PìúçëÿªÌu@²c.Õßï¨1 qæXz´*'•†›'êº"/© ÷ÔV)YêsG Ì×ë Ù\L®ôhUΰ,n)#Ù, û¹é»}ä6nÎÁ—…4¢ˆ2ÊN¤© Ìbê²`²kü@ß;`nvÃ¥—“oË6lç·hf?‰ÞùÕz¥ó=÷©ËzF×õÔŸ¸{®é€â$¹“²A,cJ³›*T*5Ø‘ÃyîÀ“ßá0oç¡\ü´‹¯#ªyöÃ]™ˆÕ léG'8êÅ'èâŠ/‚›ŽûPN‰0áêÙùæ@jnW6â4$B `)ä<Ýclù‰œÈ)Ô»‚¢èŒ‘3Ëk:3üMè4tû+“+äw®Óêõt#ò\>^tƒÖÚèNØ[9ß‘´§¹Çþöáׯ ’.áY–0cCÂU1Aü3–TÙ#©þŒ™1—R™÷T‡Ûy£ôˆ¡ ›þfþjføVòNÇyxX\âi>ÎÃݼÄwLö·íððq¾_¤>ÍÃëy¸›‡¿š‡¯Új庨R÷‹ _ͼßÌC1ÙëÅÕ–'[>ÅG9ôÄëEÞ‡yøã™³‘E ®A©mÒ/ÿ©Sü²¶µ­g†W3õjQƒÏ/ÙËþ%U†Ã<¼yIþÏ‹óþ°žäà›ŠD©6üK›*J¼Ÿ‡wÒ6—¬û‡a«yøõ< ‹ Bfêýâr׋+ÿÃ<ü0ø~Ñ ¯%âêýÕÊä͢ߌ‹®yõ’! ‡}~É…¬…Ë ‡}÷’ŠNí÷ÿ©Šžþ*TÔEÓ#ü<ÅIm½ûˆk¼ÑçÄsXðã—‹¹ ˜ a_¯ÿ‘h¡nô›íãnŠ ‹ÃÍ,Ê+Ëù꛵£&¶üÂÃ2“nLFâ?\ïîiìµ÷È›ðíÆÒ_•>nËSd¤”Fm¯ö»‡º¾¡{˜ZûÐnþ°¦ŒUÓ:-?Óþ(#¤6²Õ9—×4åÅÊVæÈ|“A•‚Àê¨&NÈìyWÈò?Pî4 _3íZ°pNˆz„Òuæ¦Ôž\‡*yo[¦ˆ’[™.í.R´©mW¬ti&™ˆÎÆA<0‡*Ÿ 9M)¼°# —wgeA[ŒgÞùœÿJ¾ùA d}‡rÈi$ëb]‘9?ÓZ‘ò_uYW»VFédŽ*ZÙ¤íÛZ?¥ëã ä wQF<ТÅìΜïm©;,µ»B«;ªb„:ùÉ–UÎS§Q‡Ç“ ŸVcëÔ¢Î=`PHNq °t ×);Õ¿xº.óŸ|ñ´i»ßL)OÂj«tP‹µU%΃ .uõ4`òº¸ƒ–®ùdÑÆ¹Òçxïïc!ÓUpµ]ÔH¹/¨X:0蟉—zýZ–·l+˜"Bû·´åL7×Lž°¬ òW³„ž¥Tås´›"%t[ú!;)aiõ×e• û¾‰#„*$^qYaà JÀlà´8ã¥xž÷ŽÏkB¿UQˆKòÛ‰¹BŒµwŠ)– Áž«à¯ä¦¤­>—Ô)7Í%>ðŠÊùs–Hù¾ËˆuÊËÆwHx6û/¬Âߟ˜fë@´qñ‚ºáÍTBѾ¯fKܶN‹²Ušu µÚ˜á ¶´FŒ“˜~)Äí8#˜3½ ñ´¥ÂÞ±ŸAù¡¬AÆÊ½‰¤Ø¤¶eâœs³.þ°F  gI´àI#ŒZ>>=0äf ÅË>" ¯ W«ûàQ;­Éò1’Þ ‘UÙöVüÓz²þ§å]Ü‘(b)Àò”Ÿœ@,ünûFtÑú®Ñ¢\veº“¸PΦöÙ ¼£wõݱÙfR‘®ï[[Œ¸[«£XMˆò<ãþC¿aвMä“ö?D”(xÆÄݱõ—ö!àC ¬QÏmF2x9~?+AøŠŠ0rÑž|$Í(2 j’Q ÏöØ (4kS~™ÒD¶;"SRû•0ÇB¦ÔÌÇä±)E»ËO—%$ãL‡éR¨·¦áÃ~V—tÚ¶þ2wÙ7!´üääñò‡YwÛãüSÃ.l¨¯§ùhBèM¾)"<’)Ð…´ì ‹f¨€Û#³¦ôDÇnGð¶K0=qÔF,¿ù3K–Ïð¦s<Ào#½>G´ÎqøÝ:Y‚ÂXpÃð31yÎ? ëÞ²:Õd¹Bô„gMòËWÅN(Eû™ÎIJ?Ä–m3ãö$]ªgë}å«Ùøkãæv2*(s8Ìûîò¬ã̾Ý@,Ù’Î2¥úD¨à[Rþ¦¿ZâŒï¼«¨ßëPÃ6…øŠò‘D;V>·ÇõBøI•×î¸-öô‰L¼5äÇrщñäw&ºØ l”úˆ+\¨ˆ¢KKûYOîG,v»|sîû÷ue© ÜˆŠµ9 Ÿ«BS]&{*pØè² ÀX5Z‹é®DfOG¿Úpr[PW¥ãaÜ~Ãa©§!:>·óPt:dËây½Ôê}Š/1\/®ñ(©K]‘å>è^ˆV’èþ,·ÃNN¶Ôkª§?^y¿8=Ñûfq(+÷‹KÜÍÃå6Îíâd?¬»ñÂÝÁßìà/Ô–ç]nÑ ›¹{I&Ëwf †ò7ëø ¶±ŸçEê²Æo_’ÉûÅí|ÚPNš®fì„02%)ý ÀO’?J–‘K,s–RÌî=CI8¸¢¹G©9/’¯#d¸žkƒ…fêÔŽ¢2Éö•¼L¹ˆÁ)}nÁ]Ù3R*ÎpˆÛç>ÁYªÚ¯!¦þ×éÝúÔbüÅf¹¤ì ÈÓ³ ѺSQ.-²é¼ µ=,}~¦QêënÊ”ŽKÇ’˜W=û4ë9ö¹Ö]¡ãÓÏêUŸiJ”¹Qj^q2æK盈¶¼Ø!©.‘=ÜÈF+·-Kµ¨» Jf{Ü„BêY²zMêX0®…ôÅBûœ†;3×­ ò@ÑèìD͹uá­—+÷Y4­ q9­È@ß”iñi×Ìš.0Îü¦ð¼s· ×ç¬g®K¤;/?|ºi'ÕŸ¨5xÿÊþâ}ui:üa€x|å íµÈ•Þ™‡Q»Ù…ü?®½‡¤W‘¥GUë'¯>÷¤è¡ˆÃ²8fŸ=4)…32JçrVŠƒãDó*ö­â"ðßÜRÖtù4Û¢—‰Æó«ÙMk^Îß×馥J“ ùöoêtM¢¦R:0u·0±Ò*ÊÎö×§-øzµGs˜¬L×­-GÃäQ.xTŽƒê?–ø3‚—®oÀ½{núË{60Gè<–<&ž½ë{¦×{¸iÒóÙI§;‹ÙÜä'o›º>ÛþN¢œFwì²piØYÈR‹ ¿Bày3…éûº îÝL¸z¥aãhM–!¸®ñAD“ÀÑ]9Reû¡ìîǺ0Õ±|GxÜ ®f{6R7O¯W€åhýåÇBËH‡é5+ݾ[ôØ(=a:}â„8 Xš5¤_¼ÉD>Ï›ødš•i<§6}7j >Fr”DÁ*¸WÔø |A¾ŒÖ}Çš¶}ðTt©Içç†õ]a ªCÚ3bJ:øKºðù0çf&çž2ÛCmÐ*ÖåkÖþa qÖšt&ÛåëÑÓ¿4Ð,þ4û{¤Þ!*榙³+ ¨»Â­)WJ·úÌJóÐüjÓ}tæÞµwþÇ&¬êD,”t('†C½ ^W_ÛÌ!pñ>Q¨ãÜ5þ‘3!ûsáZ¶¥·Âw»‡ÊgÚâÏ}x«Oõÿxñ?’Å4endstream endobj 682 0 obj << /Filter /FlateDecode /Length 6259 >> stream xœÕ]Ks7’ž3wc~Õku-Þoh#f7½<ø/ÿ~wòïoƒ9]?ü|‚w'6ZÕ{åÛ±Œ }„ QŠ×'ÿ8½‡Š5|)©ÏÓüßùÝéa¿jú(¢<=»:IÊÓ O½õ}Ôöôìî¤SbqöK§ªÖH ðÁÙÅÉ÷ÝÝb)zc®»Ä²ˆÁøîy!ú •ö¾[]aµŽA[×m²"jÕ=b­Ñ{õ?g¡a ƨÞ(; óåbiŒîC÷ßø™ŒQúÐmîa#¬ðÝEé­{Yàp:„‰è }E%…v¡£`‚6vëÅRkÕÇ`»oñ;/„ 0'ì×[m¨)„¡[-Ù´ÿtOýª[Ýâ/‚†ÿ°I}Ân‚ÓÆ¤UÊD=á˜~šµµ4®ÚØzøí°6oË©y½»K­lï„:]jÛè‰>:£ ¡¢ï®‘þ`¢ ‰8#„€ù>bµÐÊèæh¼í®¨µr±Û` вjñ*$„‹H5=,ß©êƒHÒÅI÷c欠+Jeo­átÉÚ~ßý+vç„€Š¼ÁŸ›zA_¹^z)â)|í´&}$ÒÁ|ukQB?òö¯kšaQs½ê•ÕrXó?L›O»7 y‡:Ñœ­í5š18°\ ѶúÓ=l”‹CãèlÎñÈ­8gø”øÉkàèŠ[¯ “_æ 25 Kï`óØw¬ã» „òxŸ$)x„ª:¹H}2u«…r(Iªûe¡<ð™ÒUÓÄZJ*Ó­Ö™&øUw[„`³Î3Œ:aE‘G'Œ2Uc  ÷#ÂÂx’$ Œ(&£Oƒ;ÇEî‰÷SjêÃÀëä™=UKÉ¥9Á BÞ ƒ ‹‚ØSÁÇ9‡Hp•w‡S‘f¡Œ3¥àCX‹<4Ìÿ~:xVCð¬…ÑŽ dH–Da‰Oü´º¥Á\4iQaB°ý›ÅVpÅ@JÒ÷¶ßh>½ § À¸Ìcº_Q ‚ŒXZÐü@¤aCn·ÖBz —µòwƹ;`ZN@Û)~'iˆû0TE!*g–w Dñ $í”6]H®÷j‘/cøÄõªTÏ륓 ºŽõ²ÚŲ^¹#ýt$¤“N{ÃÙ˜4+Öä;›¤ÆÓÍt¿¦ßØ@P颒&œ#9)#Š6µ 69†%mjìÖ5VRk/=›ÒÂ*Ø…½»%0DŒõe²¨ŒÔ%œPV?ÚŒ!¤uMx™F …„ÀxªVlU3=‘ÔŽ–†Ð~ˆóýDá‚#dį €ïª¶:†Î~­ š²ì¤0$ ˆCÅÖ-®×¾1®¶ U§  °Ä¡’iÊÝÆûXÕÍÙ…GWA+R DŸ«4™‘Áz[Õrf{<Ǿl‰ÏÙèÜ\eÛ8@?°ðù¢žBÙÜÑ8Èv8°®Cà×ÒðWZ¹J+h¦F+†ÏætÔµ·`û0Þ¿a4gùÔ&8휦û¡köÐÓÂD-«>zÖâUš©ó’0Ñ»^y°¾ŒkƒÙ³óëzo•×§Õ7_ÔŽ˜°ý€ß—p¹›p`§ mõÍë©G31Æ—5+íÄŒùCÚ¨hŬQn¥Ûk”ƒ+Wiy3ŸÔNpµYL‚`X}0_ÊÐŒ†Ó¨”ïE»^;­?³÷bÅGªgÄ«D|ºöT8p$ L9.˜sx˜ç¾ vnc˜ñU˜ÒQŒ”æ@ÓÄUQõƒûL® vÀž ¶D#jâ©P5x•§RÆMêO",^K‚Ãb"°^ãˆ4éPû8O‹Ê–ß>»èÖéCØÚ©ÚL0¼­5ÑOÙÖšCk²L$ò•qIôígö_4`¤E¶©ý© ö<ž$zˆ"–,KÓCÏŽ:Ìph‚SW}óE-ãþJ‡É±ÿ“ÈV»ÉFè×*yäI&H6wöõ±( 'Ä—€K.¬ÈÝâƒ/¤œú§&!¾ß«" ñ‹­õ™ÖÉ”3¨ãX"Y†ˆˆ;O¯9œ:ð±o´ý·_È9(J‡SjìÖáT ¸WÅ{ÙvŠ,è=qŠÊð4J¬NuæQŸïåR¡1ääÄWË Ø‚‰ „Ýr€ d?Kg§4I'gI#`¸QGkQQÖ„|¨½&}lôÃ\"°Ö ÅaIšAX³Ã½™l¥ó–Äà~:ô"t„ëÞlÔ¡Æs…L.kõF[ þxœ1-@8¬FM.çnÓŒf¼ÎJH¨)¨úns•ÊÐÁ›E ¸µ’=š  }3o³‡>PÉ5p¹H5|DXW.tð%„oËÍ“%q1cSÌR…g NêéšSsG“’ÚãÙípV-ìI¼êSˆ YpQ@=éÓ%ˆw¯´ŸxAƒáÉL>ÏÊtëä¤[ Å&L¢k!oÀþ.6°nÈM*Jœ zÐD€ðÞ5WÓZè ¨Òï¶WÓ²Õ ½‹DÓj†(òÅÔ·ÙT󦩩Ð@#UÇ¿yòÈ™3‡‰€ø°u¥¼¼5iEÕ7@ŒÍ >@\ˆÝÕ(á͹˜ìãq¹Ø,Ô«=|«4|Zæó€Í*ÌÜvÁ¶˜Æ@sg¯Ÿ°\FfŒ. Aw)ÌáJc½¾,¿8À»›: [À“b5²ïl“ËÔ ž!>ŠÇ¬‘Œ"Me74ÅSHDV,;Ý:E¬ò%ê¤Õ‚Éîm*˜OßF‹ÔTÇÐãH‰.¼…»h6Ø:Oåä\è^º‰)q_lÄ ¼%à9®¸WUÛl’Õ¤œ¨\æ¹aæöö2„¢ƒ¥áÆ ¿gNt©(Tåà]¦Ku˜yö5I¯«>RyüE¥FN‰U›aöÈe9°Ü|Ðò¾øæs7O‰kŠ|ˆeKì[<ü4]#Ò†§é€€ÐÈÖ¸w£ÐqBo ÷ÞW22ª†~‚ œppÊ¢ŸɃߘvöד³û¾û†ØÂ˜›î~õ²¤­ÀP1h’›H§&oÈŠ*éÇE[JuÏ/÷kú¤[]¼yz¾»¼^´0HÙàY ÃÎG7èhãïÛ,õÛb Ù@NÅl‹·Dµé?Þg#²g¦hj ˜¤æî$¸dB³—ðOi@Œ(™ Šæ.ž/KÄ\°‰¹f}6hžË7 ˯ã ÇCê§5½øÈÕoèzGKð8“cJŠ·ÁÛõuÞ#¼½(Vú{ÚòÖÎÜ$Óòá­´™`-]TØVÊh«&cH*]x"N`k î†./95€{–ègNÄ~c'f£\'»/“WÛ}dë´õA¸R†9nH•Å cÖ [ü›> BרYkTê»öÁ™k˜ãïQõrNfìûs)2Ž{ÞÇŒ“¯›L}¼°ì€‡Ë}Ì÷ÈÛ¶pé#…åÿ3S3´…‹Dæoß«!HZž½G¾JuËt–§†|‡‰B¤âS)2VaªqÍciðv˜2¦`ªï¥ ¦L ¾iöû<­ý½¶éKZãQ<“ú®,ÙW¥˜¥’ÊlÆLÒ˜]KƒbV-TiáJ±çªm,ŠRÔ¥hJ‘ÒerËRüeŸø¼ÞÇ£¢Ydpªü–l£×1ÆCŶ&ß4Û>µmˆóéwSæºjË7kÛLËØ“»! ¹k¡Jõ«&Œ°Z3JçÛa·þ¼‹Ù©È`C6¹š±'ãÉJ\ƒœä°iöÍi²¢o²*ó«>]\Ž‘WŠ–7Ø–æólš[Ñv2öÂö ÿ¬%#¬mf£Ð=ËÊ&Û0ŸÕ¥H±â˜Å;£ĄÚÎîŒÑöBñ ÝÛö¼(Û›RdFßm)¾;â³þYºu‘û0_öž#âXdÅÀèoÛR ãã ã1”ˆM”Pé{¼›o÷À$‰‰OàÅ¥´^Î÷À°­AÄ>ló3FŽ+=,Ë·­xWж™é®Ë„d³‡¶ÅÏFó-“âªì*³ùϧ۾CKqÕT™V­"ë‚qN†ÿºò¾/š½Ý¨:çP(—Í}i³Ã=ÆvßÖëf¬_3Ýúäøf¿Œ—åÒÀ:«D«Å‰m>bÃlþÄ<Úƒ}FŸVO…lÚ—m§êìæ~ë[•:Þd*èC³vË]8ì §2ÍF4ß«´^{8ó2Qu;±³:ëhu¶;C³Xuv8v†Æñ/ã±ÈqÃVm[à<0l> ®ÎO“¾+ÅÛ)RbÊÕ^xÍ=ª@cÏb·õÛ.ÛD+µoç\³ §­»Ñ›¢¹a?ª3V´¼³fD¾Øÿ`„ÄT½œžïÕx¨‹¡ëÂtÇV‡ùæ^† ¾hÃ×:„³èj.k)¼]†¶‚2I9ïYb¸[jb‚©Q¶ö«%U²×96ÌJý˜Ä©ê>8éÙ­fÞ—¬ˆŒñ¾NÉ*áÆûH»>tÿÓVó:³%ôÞ`Õ\.ã”y%F¼Õ‘² …ÚŒ¨¬-ù=8Uc)g%¦‡7ðÁ•™Øƒ5ÅÀVI[Õ'd„|yö#îÑs)Ž'ïµóëL–1´ªq µ °SÂï~rƒxs¢–_FYåÇEdKx$«a*l.Œ3wrº‘ÚM9I‚uHœžCïRŠ*m¦µ9ÍD`Tóiœ6“ N›É>€ÓªäLΉӠ']Lj²èÓ‘Ó,ã´áAŠŒ£Ýq1(£f5ö’ŒV#È'îR²(ýò)…wbd  Nàìh;µ Ðzj]ðØÂQˆ.RkGèý"¿Î‡÷š@ZaKš´T9*?éû´d¶¹!zÔ˜ÛF,CbÄÌËD;–½•ÔûŽuQž/kG|‘HàRHYE¤ÑEPïJ[°mš†dŒiôӠűÌsGxL‹Óœ_ºØ'…E^¦Vá–9¤mç ¤AYXƒ`àÑ~O‰vŒ#l-«^“˜Äiæ=åqù÷Eff’¥)»Ã6Š5žDÄW8²¦_;rçÙHÁ4ž!fÑZnfÿ‘ „ŽÜ>JllµóC «¶\hl[¥,Åmð¹‚îO“Í1ö³IÍ`¥{Xž7{ǽNî€n]a„*bŒÝöT×:ccv0†MMß;ãFó‚ñÔ“S,EÉÎÇJCC§1,V4±½Íu›šxzfÈü£ðË,H·œ!¨­=úÀ0™ `D1Ë•8*åŸTU^ KO Ú†ƬèW¶);0äç<2/{9xd‡¦ŠTG¥:|›Dºq2ÍÄ|séÕ‘ ‚˜o^"h>&mqGÆ_@ád)Z”89T± [«­¼Àˆ,/wªæ[ð!ŽÈlDOGE«jr>P'ˆÌ)-JÖyJè‘Ü|ÓÓ@">½AØ•iä¦ëuÉS¸á8 rÓÈýà£-±iæ9§™PrIýÐ)­yãÕ¨ž¾36„Ùˆrä^l¿¤úÃãgL¢½y~߇±g[íöгó56<ñ޽iÒL¨ÈAgi&µ®e†l'§úí×S(·jƤ{­‹goÊÞª1ªàï\Y†Dæ^pâb- A¥Œ1[Ù¤¥¬Ü 6½  ¼ #蛑7˜!¾â*ˆr#š¼[OŸ õoVÌ>N,ˆ ž,K`ÊbøÒ¯Æ¼œQ¾/ì6cò3ÞÞzYxd4…ö@6˜ñ «D«ÔX؉¬ȳµµé½)sÁK°ññÍœP å€:ØÍ¬©\çWf8[Ñœšgç“)økíÇE,Þ؉ÿ‰OÌ<ùAê&·ÎãËêÉ„— ZyžÎ8âCk¬ÚoüptæY)뉯¾ÔÎÀzN•VÞi÷ðnÊ™’¿°•B¯´L²W±1°I·®lò´›\gÊ}¬©¿†·ý/RvDÛÁ>¦Úàs*=÷‡T xEq ƒúfœTy|#뎩F¶Ú‘Ûâk¢lb×ø8m¥×HÕn;öI€pôJß×å˜b [xVöL&(ëv˜šž1¥7/Eí­¯GMïÄZIùáóiQ@)zûg£}²³éȳÎΚ~š€ÝCdj«åB²W(y ×EJ^]I$es5åá<àvHó6c?øúÄ·(ÅÑ$šcœ:Xív¥œs]ߌ6Bó‰â<}¼ØºÈ©Ø¦wjt=*(^¥Æ1b¬Ã ™Ã:TÀÎe4i ‹MUÖO gñ3¦q?L9>ÓÉïÀf^â¹£‡ ã$+6õM/mÍ=D5}’XàÑ—IÇ? :dï´ÿ4ʲ°´Z!뻺9UŸðBzëd:R…þüF4ú»û.  ^§™àËl“¿d@AvÆÅ˜{hsì!в-'Š=;9µòÓ"îz7A$æçÇ{Ü/Lî:ý­Mí½ÐôŒöã´$FW ¯ |È‹ýÀô°Åp‰ç ­<ƒPiÒB 娰£ýìœ"âÓó<žža™‘–J³¦“Jgl˜; ggåù%ña.‡Øõìa–ÊFa«#‡Ï(=Ð àŒÍüyö¤s ÖmŸŠNÆ¿<–J)?q©´«¼ùŸêUšúÖ£ém9‡Î¬‡ûÔjþÚ7>ØsÚsŽÄ,ôpß~ø;9;Þ¡wrêÛÉék)ikØ íûâÉdh•¤Fo€W'(N2_{ùÕ›¯9brŽP¹Ëñ*” š—㵦À])®¾:;ùŽþýqÁ[vendstream endobj 683 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 ÜóŠü €T‘±Ð…¡UÕöÁqPœ(„¡¿/ ¡C‡³t¾;ù,†ñ:’\<‚ƒFn,逫Û Ÿp¶Äê†k ±°£i[ÈþSIÑTâ¼Éa )榹I*` ÏxçSŠï`_LrS†endstream endobj 684 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6423 >> stream xœ•YtWÖ!4 %ô ÈŒÁBï5@B ½:Ø€ÁÆE.r‘,Y²,Yå©Y–,Kr‘‹ÜÀSl²„‚„€²!¤,„„tò&ç‘sþ' ²›ý÷ì±}Àž§ûnùîw¿+ñˆöí×qî²5K×®76ðË®?ÐŽ{‘Ÿƒ$Ü¿/€.|Ð¥½oÀ@OnzØÔ nïNðy¼t‰n®(M’‘¸'AýòÎaÑã¦M›22züرӢg§Äg$îŒK^'NˆO‰ã_’£×ˆv&Æ‹%Ñ/ÏH‹Ó¦“““3:.%s´(cϬa#£sÅ Ñ«ã3ã3²ãwE/¥Š£—Ç¥ÄG?óoô³ÿÌ¥¤e‰ã3¢—‰vÅg¤±pvêÑÆ¹ióÒçg,Èg-ÊΉËݱT²s™t×òøÝ{V'®Y›´.ù”Í#Fn5zÌØ¼q²ñò ù'Mž2uдé/ ž1sÖËÆÄ bC¬$¦/«ˆÁÄjb±†J¬%ÖoÉõÄb±‘˜KŒ"6óˆÑÄfb>1†X@¼N,$ˆÅÄDb±”˜L,#¦ˉDâbÑ•èFt'z[ˆžÄV¢±èMl'h¢Ñ—ˆ"„ŸèGô'I¼H0Kt$:‰E¸HD{BÂðļ7ÛjWÅÌ—ðmokÿ‹@A -tØÑá4O}Ñqgǯ:Íèt¶s¿Îg»ŒìÒòÂàT/üÚõX·EÝþè×£WmOaOÐóF¯É½~î=©·½÷5º7=ÞDÛè;}6ôiéóUßÍ}EeDÝξÕïµ~uý{õOïÿh@Ì€G/ª_¼Êtg62u̬‘«îÊUÿ/~î…*7Žû”ÖûtÎx@©H)Èù{Ñî'¾¨LR–öŠ@û˜tÕƒ}™@ÄýE'‘¶A6)KI©õÀ…»}`C&HfQ?®í:è9VRO“H$FERF!!¼^õó¸Ñ×ø\{?½=pCRª›€£HO¾"ÈÙ]ä~¸ÍvÄX *…··ì{}ýölÑn˜L6`¥'˜9»C®µ’Ð%Á¦Kã#-ÕÁ Ňœõµ§ÏžðêxInªÚoа!_²ýpvgÅ5>œÄAú¹Ñjrú¹ )¨†„ÝÿñÛçþo/v³ßؼE}°éÊË b—Ó°y×¾"gã–¹CØÁäft„>³ðEòkëTÙÒµ‹Ç®Óøám?ï~l¾ÊçÌÐNÃö³nŒB=PÔ±ˆúdáW°ì ;Ã)ÐVzávÿÍß>»{çƒ7×Î5+f\ÈgNŽÞÇ¢}¤»']òÙ˜gŽºÙyˆ¿,=®0Wh õ^ƒ=í«(ˆj¨}~Ržö4¤rò;t!-¤’yÏê ;‡*8šC6Ã%|§ÒÏ•øyŸã’}Ìݦ£ ˜(w+GZT¨T3E¥T«NÜ[¾Ph4ˆ–£õˆ¹HΠ/`7¿SãIU屆MCüÒd@MÞpï'8‡:¶k½œcbƬýÞÒbŸ…Á7¢ ?BÊ6\š9§éêŒæÔ €‚/À.°#Û¿vsìê­é¹élpíú3&\_ÚìF`¡js­²$½|»šQxÍř캢ŽüÛ¯>ºq樻‚M@{o„»¾êÊ4X,‰fâÀ–m:sûñ×÷¾ú¨òµEª…9›¶dåÚ…€ Á=Ë·ûyp/l¥aÒP¤“€"*ë-k°–Uš™òŸLìŒIh×U&%ëå±jõ![àvÔ‘º,õ. ¥2+‹ÜM¦² 㼆]7ãÓÁŽ|Ò1œñº`‚ âXò 0ZígLeÎ6PL‘¢—e1ÊùTù”.aצøéɺp •n imö<2;«ïòÙc`ÜÙ¨uÊWéõŸ #.•ËY“ËRóŒ!P»ðõ=½`oà›S` û“Ú *µØšLÿGSi0ü€{IzéÎ"õ'À½hú¯á÷#°!~|>Æ„»j+ùœ `?Ì÷ó¹…Üd:¾ú ÃEŸ7sôûyßå±ÇÕï€XJ^AC¶n,½®d´^½;¤}¡ê }¾bPSR§¢¢Â\¼¿Šys×àÅ òê¡ïNΩO©b“ªEÖ™ÎöÕv°ªi8ÉÏŒÉ2#c(Rí:šÉY|ÐRWr ˜)‡ºB,ÖÈÔ:&äÜUÿÏU<øn½CIÃá*  ¤ëÓ”¤èód:&oŒ`l8þOÉ]H©“âì*„Ó/‹.ÿ|ýÃk”fh2´ŒüµyÚ|@-ûÝÅÀd.gŸ]Ƀ$n ×ãYKü;Óg#Z6R“'Û³e×b@-Ö{Ëm%oZ|¬µÁÒ`mpÞˆÂñœüËWî@Æ GJá°ACËñâÆcŒ9µxu3’Âm/Ä áC‡Ãÿ9Xa$ˆ(qk8G/¬h½ð1¶¢Äùk u*P°¨cx¦Öh ºµÞì {:²é#ϣŠ• «@ð4SÏ Ã¨wøœ'`¼æ)°Pç0µŸ"‡¢·¿¨LuSuÃ`O‰@[¼x#Dá¿;Œe ìÀߺĀCà]ýAê\x¢`kA?ꀗ5‰ «ŒbÓRð:XJaÔu{€ÇÅ8ç!m?@¥$(9ŽWlo ZTg ªêÿ~Þ-\ÖTxžöÉ MC|03Í+÷–´ZÎ0ÕÖP¨_-+eZ}ŽAËÎ×!{@é%g×<|ë¢Ów„©HÛ_tPõ¡&Wæk»úZ“¨ËÛ““ž¿£0Pë÷Ô|v={˜ÙçtÂíÄ:Azž5¢BÜâ•ìØ!+4ÕüEÞ’_£—Ñ4I°-\-H…’“rØÇ°Û5ÔMý¬ø <Ëg÷Cà$A(úýPðt„•qç°6áfûwpN}¢Õåapj…zq{ÁióŸÞ[èþÿ4À` FòÅ€÷O<9”Á6¼ƒ”‹žþëüg¦Æ¨Õ¤èåé!¦VGX.ìÉ%ûy÷ø‘ðæ·cØt5‰:£Â”eºZ`Ò4×A hüë“>òSÍJœƒhc§¨ä;–îÖK V›Õì”[U•*MTnÝÑ(:zçÒï40Ïôñ5hý'ŸË…<Ú¥redi5y*F›µ PÓ7_¼Övö€Œ³ è¬Ñ`Ô% G=Í¥G®Ž›Ñ¢‰hä —¯Ã9ž}èeÂÝÏ)h{Eq™µŒ2’3Ÿ¤ ¤áî¿ó ÙìN.(wþ† |–‹¦ Qâ-©«ä ”Ô½ K´6U¥äjÅ3V³ÔÿµÙ9‘ÀHš“KK6;_-N´¤ï5g7àqSÜÍTßeA;ŽPGÕæ€<="SA¡V“lP©6âÙžÚŠ›L%ì aO(ô®¢ 0ä 3«›áx¸Ö&»uŸ¥¦äfÍŸä\k}!Ыc)TCFùî㊎ÿšžÓФ¼ÊÝ+€kÚ.¨ŠAíoÍypú„·ùk(2耊 „Êü‰rÑF ½jÛé ï«~v³òõlmQJáfV>mþëÏ„K°$UƦ»*r®ÊiÕûeæ4 œù0çû8<ŒsÉp©8Ó?<)²fX‡ÐFâÌë¾§ü5à"ìíçÝ»›qì±p Ýäÿ€F¶ÌCQ¨hQHðå (€}.ßó!¨+’°é;6çÆjÙ¬Cß³eéÚ¶¶ó7õLÍT½Aýœ °àÁ«Û3bÄv$-^£ÃRU| ¡õ#`Žm@¹›œÏÍÒÛw*”,Vgʼ1TL8ûß× ˆ¤Àº°ÉÁ¾•\„³ß}ç"Üz‘ç:äÔ^àÃ?]ˆw´B¥Ì½e•&3ëQ6ÉŽêû{_>¬ÕT«*Øwµ¹ÌhÍð:åõ–×—+ZV‹ãŠR¶°éÞD{ O?f'Ù¤esÅò½X£h@¦[Õ•=áoWËÛúö’qá;ôÇÇZ®‚w¨ëkn"ƒý?pŒ\¹rƒj³×™»äGŽ-MQ†¡U.*O½úfÖáëŸÕb~PËd µˆ1TÛ²ñÊ®¶Ô;­–:ÖRk­eT/¨ÖܽŸB‚z^Ðâ òó– qëV/özw¼°Ä;ûŸÊ]¦ks«EÉbQFº7Û×XW×È QOL4ê‘3a8 %ÿo†rR¿hPĺEÏwFØë Ô^ás­Þs5Š" @/íh]kß……o‡‘‡¯¯Ue³ i>ÍǹïåERTïñÔòs'ä .à;·É lL`QRÉ€¬Ñª2Ðx  Šà*‹ýp%slÏå[xhÒ_@â«÷ä—±iõ¹–˜º\k²McJvfÖCÔ…÷Ï߆ãÄÔ<ÝRgsT[˜‘}}ÿ«ÜïOfâ¶ÑìQ¾Ô•ºÐQ³¯QXXï7¹),õšˆufvXNn}¾ôÀÎ8Qwa §|ÁÑ0ÐèðŒÜG¢hÄ»ð›È´/—çDð®Èåptärhrš«KN=ø0ê!ùÆ ì®jÚÓºés•ÏƉ8²d¥>‘ûÝjô|Ê‚¹‹pãŽã–›ÉÉ^€ÿß Ë& Q»› ¾€üûøÎ‘÷þÿÒÎh|¸Ÿa÷ÞîÇ;Z¢{ÀóB/ׂíÜö†½x)dÅ|,ê‹®(Ó¶ Žêl!–Àµ ^ý¹~U©ÜŸŸ~óI…yw9hÂj|´l_ÄÐÝzŽU~:#óùz4 "ÖڌɥÄWóþ±–€r¸ {T&ü8äüÕùÒ›e7œ7mÇ@1ðPx´¼¶fÇN¥ŠQI*Í ± M¬­Ï l†Oß‹ª l€è³ÃŒrï¿_}Ÿêÿ=û>ð÷h86¢J @6%#ê%QX…0êƒ3.ŒÈð@†ïxáÌ68«Šw[ˇßÂZ%À ÕfY ­˜#MÂryEvJQjžÉ@#h(©H €“…ÈL4‹ Ð ¥.‰·ÉÚè0ßôa½°ìÁƒ»á >Üo¤EË7Ë¥!Wr(EiŽ÷MØþãŸNŠZ·Å¦ïIÚãËn.1£™ G7æ÷hÚXl´bž haÔ‡ˆ÷GŒ@шqkÛx¿qcù\2Ž,Öõ°ï„ìɇ÷®ÒMâú„ÄÄ”ø”ê´ƒ--M‡ƒžxWñþÆÕð¹÷~ïF[mpP•yžÜ\µ¢@Í×Èõ¦!½ò£øk5ŠCQWþ_„ýáZ¸Anô%½h×g?Ã¥?Ãè/oš4 – Uþ-ð̓rÜÆý¹‹´¥Æv²&ªÔglÆyÉ>$c´ŒMCÓuÙªhN¨Ê0$‹j n×/ú-ùt]>«IP­rj4좸ìÁ0¨5LŠq´6g›Éå85£ì—Ö§•_n.yÓäz*Õºúªâq#Œª„KåΖª•-#ËØ:{®FfÈÖƒJY,õj­¨nb<™,ÑíæðÂ6™|žR(‚+ùܰßûÑF»Ñ„íršR”‚1†È?æè•@‹÷‰K@T‰ñ)µèCè>t¶ñ¹Îp; ©ÏÞ¹ >§¾yõoƒf öË3ª¤ÕõÞš:‡Æ©µ25GϾ ¨>Hzm(ê8Yб_Þ)‹ \ê‹d9¨Åµ&Gñ!P|ãNž¶`7äŸÒÿq0ý˜ÖÊñÞg§ Že ó0E †b¦ÉðÐbèuyéh\hŠhÀÞòôzÉŠÔ‚Xm–^%Ÿ¤—êäz™N¦Þ¡Ù†é)ež2{᩼aª>;×\|Àþ÷jÈDáˆO—͔¥ÆÜØi”åǘN™L%ÀÄ¡Mïs_¹[±rºߦ¿Þ¿zë‚Ù³†J'˜ÞÎ`-f—ÔP¾wÖf°¡`ÄãÝßÀè_ÿð–èìŠ}Ì×o—|Ô…uWQG4bݼ ÍêÒšÚÊFg‘ ™ƒ-mF7 .MÛ•šŸÊîNKÑ'êWjå\æ`ΰœváÁ9ð Ÿkæ>¢Ëò+%EZµŠ‘)v$‰A!ÐØ y•ÒÊD°ìÎP&e‰e@BÉË$Žâb³…q•ž!¢ ò‹ä ï)áR‚Á¢)ózØÄ²+£ä*ôƒe„F%löÃI~Þ­¯`-N«) t:ÞKf…A“‹ÊBåÕR2»¼Æc6Ûí̩ӗ¬M€jk^·vĨ9cã6zNÈY‡ÍáÁƒ B^“º¬/˜pwÃ×°ìñ#ìýpñ혴íÚ¬Í!®€‡.Ái˜.>„ÕøæÅðú ìõëƒo€x n…¦H¥bJì–ÔWûÊN^ܸoŒáŸ:4ìöÂoaØý[8èÖš‡ˆZ±.3%žù¤E ÕžÝ(«V¶^9L'þ·ùÄ«õxëU@}Q3ow̸¹3‚òr‡‚[ò)Z«:~ê7—"¯œYå O“¥ÖcfZáÆ_à8 öqØËݳÉl)Á\bæOHµG‚ ‘ty:‰^¡Þ‰—À†rUƒS¦§Qšüp«Ÿw½ žÅ­ ïÒUß< nQ·æ_AíP¿aÃ_™þh¯MÏÌÈž°Œ¢Æþcl_ú ¶xvÏ;3|Ìì&zÙêýçηýôöñíÛWÎ]7OÏËôì5'Þ»ùñÕ÷®Ú4ç•Ág oŘf¶AÁ{PÀ‡ïs~Úh6Ù•*ϯM‰ÕÆ) LÚ¤— ô ­¹ÎìñX(†±ÿýT(˜i— Îìr ú0­„Õô.4`ØÔ‰8 {A®Ën·:±z÷Ê«DYéÊ-ó®f_Cát8ºaÌüëÃð:MACf©¿ý½üÐ )¡'fÝ8Û}ûÁÇßÔÍ Õ+ ZV¹¡(Éü ¯†ög¼{-Âs‹ëËuú÷™µ]øƒÌ‘S]ôã”D½óßçs}¸·é·5MYÅñrUaQ’2qãiÓ[m[Îq0ÖFs0~šNš®eôJ]®A¿ ùzÔ!gî+`Xqd$rw!yÔD¸ˆyÑb4™M®2‹ #×åÉÞVÉÆ¿·é®Š)aŨ¥$Ne…ÏRe72–*“Ã\Û•~ý%x>Y~aŠ‹Zá¢×ØãñTz÷ý“—J)j¤÷i.ˆÁ2°rõºyò@üS/ÁA— îŒ¹Äƒ=Ï}p΃øÜA<žK\À†}Œ’ìB™gá¯ÊqItÁñì)-uÚø+Œ¦ý)Çb×­Ÿ5iþ½‡.œ¾û 3p]¨ªðÝÂã²$)×%m“°ã9޾”r4nÕ¦éS´$¾púÓO™ƒiUaeÝ»-ÇÜeÖTÙI[%ÀórÛ1U5py´£ØåÀV-)“j õê|=Aq¹Jµ )SYµð Šr>Ÿ *Ê]U6µ•EÎÐ'tp}Û§m¼¸T>g‚?Ð¥-X¼ÄtÛ÷d^@¼4Æê'h$í ÈšäÀD*ñ“ÃøIØ—XCW–ÚJ Tä;ŠÌè Œ’9”XRy¹ ±ÄYh+b¡SÉm´´@#/aVE~y‰Ýl-  fš÷÷LŒ˜Tܯ¯­£«°Xa|;¶ÃËüF¸¦À>Å» ¸(g¡'k'*C¯¢#qÖ &0 ;/¬hT]qU 6õ565ŠëBƒãš/Wý3­u…_¨ MN¡¼DãT±?ͪDíÀ<ðŠmD©¨¯F‹©ONZs|‡pçÌ„ÇnÝ÷rýªx¿pÓoY´³¸ÂŽç]•¼D®Òé5Ju^\»&° Ë \’‚Œ¢„"F‚º|/ß^„a–4G"/V—©ÙïW¢Î«©d UÖ܇ ƒ˜Ý®f!J'Ç<_$”–¸Kkl VÆhµ1ÚíW¢¾]‚ë¬xŸ(¯ªð¨ŠUVvèEAWe)7×_-UzH$±uðwºÖ™éÔ^"êÒ‘ þ·–œendstream endobj 685 0 obj << /Filter /FlateDecode /Length 5050 >> stream xœÕ\_o¹‘îQ¸!Á¡çâéãß&i\Ø]lî.H€;G—}Øäa<’eÙ#W²ìø>}ªH6YäTk$ï®±\â°ÉbÕ¯ŠUìbÿp*Fy*ð_þ{}òo/¼9½¼;ùá®Ol°jtлB{#ý ATòõÉw§7Ðp OÊ8æiþo{}úõŽk¡e "ÈÓ³W'iByê婳n Úžž]Ÿ R¬ÎÞ@g9©¦·=&CÎû˜Å+Üp^GîW8ö~Ø’™‘#&S_©¤Ð“â°@†ËÕZk5o‡?âsNãaM8®³ÚĤNøa³&Ëþê&Nü«a³Ã¼¦ÿ´*¬Þá0~ÒÆ$)e¦îpN uLˆfj4ª‡_gÙ¼¨S¦î­v×ZÙqêt­íèa¤øÐ×Þp:«BdE*¬÷*²¯…2 ^“ÓÎÏìãldßø+K7X†×M_üÝ€ÄH‡[—˜&ºd”›¶–1ÁòÕ#h5™‡ºÆÆ)(9¼\­‘”N6¼¤Q•nŸÁX¬UÊa‡ʃډþ^¸ì ?j;¢¥¿¬y¯¼0ºü¦~žø·Þ ïX,¾$­;œÇ;>•Eëæ=™’ôÈÇy&!^ÊJ(Ý@jƒËQ VÐ&áµY|Á|QДU[arDT“óMã Ä—û7S˜ÑwÑØXê+LŒ®e à…TEs^ÖÛ ¬ý´`'몊¨P¬‘É;iᤒH¥œ´3½D©µ­çõ­¥­ *-s“`gù>2< ჌kö ¤¥06Ž ƒÆ@ò‰ÈŽ3@—aÿ*ÑÖ›Ö¢5 -U˜1äDª‘æyPúòVÖ‚J4`h›Ý,·QZr B©‰ªõ‰°ø?ƒ6”ådÛJIX¾5°4í†7D³Ñ;ÁÞ]ðçwIÂf曬¤;ÅG7xK—Ý^œ£`ìš}Z뾎…JrÀ]x~`”Á§’½˜QÚi¶bûû»N´JoLZŠnó]†„W‹½“ pÓ½"{χäB]EE -ƒÀPURí]®«õdËH+I–á}¶ ªýÈp# É=nFƒh[ãÆ$œ›æÍÓ½JËÑ)7²¬pdàD!÷•L©ßñ`^mË 6J`§Wj–™ü¦’•¼ä'Wq“̓€6•¢ê¶×î  ~ò¬ãÌijD÷LÛÕß?EÀ6láÁu{6£? qJDà€s½Bt+'=mM“€y¨¼é-û¹ãÀ:£ÖÞA$ƒþ95 »¼-aQ#€}ôŸ:8úXë~—W[#ukÝÔ×ë¸(z>@6šäf[Ð;¾¼[:> æ®r|ÈV ²¥;^r{“€]áMrÆ» êËr”Ѐ0’Ô¡FC5Bç]·…%ëKÛ: 3¶¼œ'ÞF¨OÆÌÖÉ}%—­Põ™æçU;ýOaS‘‡ìo² ÐÙþtÈ–ä'«g‘ÇÎIäVJ-; dâ0ß´&X€9®Ö“w êá¿cR3Ãàñ0lΩÔLvà@ß]HSž#xÀÖL 7/S\£„Ì`õ7ž¸e…)´¸MáÄéƒXÿáÆÚ›}u!ò›‡Ã€Ç Šƒ" ßsgx’XíËOñ) ‹œÑŒmŸ p`;È4ß‘Ik:ùžyC^ÊéÖ:€Ç‘6™¨MõYVÎÃ.“sÚÙ» ¥ð€+iÆk1Ò’ãxݶv‘c'Iìâá²5:u“ž´G8øÔ0§qJÇ«MÅAÊ>šž?: µÀþp8¹£[Ìõb8½‰%¦VOŽÎM}ëMjž€Ñ—5í)sS ÿ­Žû. H{¸Ã磃aSü^uœ§õO²;·È€èLšKúR€ŒTY›'rõƒÊ±Šª•0á)!Ï?=|’—ȹ³ªç•ôdòe5Æ]/ýÉøV ÏÒ^Úáòªx°ÐÙ™p^ fê³kÿÔr¼v0¹…ÀSc”&£gäÈöë"¨ß€Šqô²ë°.~’²âàßžüŸ~<§ÿyÀó£:màÓ§×'´ Þ¸´ìNþôÄpˆqDÈ‹¥™ð¹ÇS „8 /ÆÌé5Ýï#ï[G¾¬3~ÔÀpiAc¸‹• ÇAÎ…–町Bø6Gî‘ÜW2íI à[Ga*S¥áó™ÒFBP³ÌÔM%/*yI˜r“š,LÍ „©YÿÎLs—†ÏÓ¾=µF±>1ݽnˆ›˜îòÏâö»ÖZ¥CÐ6Cµž÷c”NYÝ~ŽÒ S ~ŒÒ˜z¼Ò+S- ¨Ò­À÷CTë¹åéj‡Œ×*ð+à·"Ïyûw*U„0Nâ}äwå&lJ'Ä1&ÀÇ,x^ò’ê"µB¢òšàc»Žco<yWwTvçÿ°* ¥aò=›Îuç3ƒÌÅ8šñò ©fwÄœ–ײ‘¨µg¹û¸J¨¸Ä"ò´¡1È}ÕNÁã!ìÝ,Æ6µ¸I NR5'º±ÑtiȮƺ´=…<ñg—âoê×å1½F –¢é) R!„ 6i“Rh|“Q'M“ôr§´)rηç=ÇÙ3 9L C ïQ½AøÝI¿Ú)KcëK0)) ›ÿFÞ 'o<ðM_‚‘t!^Å8DXŒUšóy˜ÐÇ—£ Ü(ïRg/'2žK¾Mœwi´Æ^Ô”S“š3ªˆŽ¥D2ó†(¥Ù#Íi/1ÁÁN0;#¢î¬¤Ämô? C²ïOiP—WêSö–ù\L‰ÉJöù……ÂSÓÈ’¦åp=¾)Þw©^dv$¥¹tß¼ôIî3í¼2ŠZíˆÇVw¹á»•×ø:"Ä£ž.ohV2ÿm¹O±±E§æÙ\ü’wÑ'#d!1M"t‘CÞ¡‘è›xŠþõy|L¾šA>jCì¾'ov¥:õe¾=èïÒãøŠ/‚  ÛÔçаû÷Øt)—)íëEb–´€œ¸¤·hªKAŠÀgÂ…‹ç}^`mÒ0)Â$çüûŪqÿÇj±ˆhåäySÉ÷s‡iø÷Úº®­äÀú®’[v°Û!:˜L_Wò‚‚Ìq_£¬[{eÖüðÛJþªvxÁ’¤Ã³úئ¶^±ã>"áÆ}ù„q—âJnÜíÃãÚÜÁKå2¿‘ÜWò®’Ï¢·Ìç· 9˜ÔŠ`G¡(\®*~[ÉG¼ß(ä³úØ Iëál>?WN”FÄ8V’H{L¢VÁïXM³Z=c¡÷•ü¶’°»Îâ>þ!Ó%/o©Z8IRÃ;*öï©¶ˆ#8fѦ’Ï+éHçU¥ÿÊê€X7±¬¬n‰ˆê®Y}ݱJú]íðU%ÿPÉ?=¤¯Ã—~­ï}_x[É«J6îrí<ÖyÚJÜ÷kVF·uYŸXlؾ¤•ØÊnÁÄÖZ,Ø£­;–$œmãl!³ýÍUnú@›P¦ñ•§ñ]À#A:ZG_ô‹2Û U:ÇÎM]¼¬­¡’¦’¾:AC;¬Õ„ªÍn´ay8gy¸®<¬k«`aîY’ð«+){2ŠVS²ì¢¶Žl_UIË’¾’¦’®’}¬¸8Lê’…¨Y³)öûQ1ÙBî+IbRKsS÷©$1æ«'ø‹£ $¶¶ÚŸ $„‘ÎÆ„´j¶ƒgu5 ÁV`1ÀƒD²¤¢­D†®®æ«b¢x‚~ó{]ÉÖå¶íìã׸;‡‰Z1ç3Ô…ÑvãÍ8WãúÇzÙcp0 qN…ÀŒ8ŠÀv°‡Q©©Âý/V«Äc¼À ô~„GË'z`sä#B-Ž’œóø²h1,IúZ–äÍ9C iUl«`Çå;4Û³Ãتx²Ãð‘3IH‰£!Ñ2 †ÿÈ>¶cÉP?¡ûil¸J6­R,LYÝH|IØ!àã£íæ±ÇÇ4Š…Y™é;*þñˆ#N©Ù‚âaá$FY yì‘V×°žGh£×©îeÄù0T4‰ç¾¾@üÛD ñï/ L6d‡#;òATL–Ù£â)î‹áðH_‚&_bW£â?W“=ŽD9ÍÑL!?°­|\}ñEýPø¢Áñ8E|BEBVEÉ#ÈP,IÕ#ÜH!ILU‘é¨u“FÃ;«üŸJžUe’miÃÊ”—ÿÑħ "¶š¯âÙ¿ðOZyÛæ½¯•£)ñÑȃ^ùP¸ zÂÛPMÿ›Þ»÷6L6ÿg;\°È×}ß oX¥½}BDNMˆÙ¹/zjbXÎøþ 9LD>+ #sÖlk““qc\aG'ãµ×楸¬šÿ¸é²\J—çHC6ï(…$œ‘s>Ä g@ÛÏK­ۗϽNôûx`ñÁ/ŸM5Çq1¶Å+ƒ¡\6§6)tÍúƒ×¢‰p'¬8_pM$}"h{Ïö%/ÞþLñ‡a7'ÿ Àï°4KòǼ§}=®ž²§ñGqü™âÈ 1n*— ÁógoU©mÑqKë$nõ?ªÈÞ÷ëÉ{£Ú¿}‚g#çÂr¿0¥ø³Ë®íÀÉõH9êÎø3AþEƒÈ…hr´õÜÑ·6»³üØ¢;Óÿ`îlúe€éÑîŒÑΚÀÙ£ž‘m’8.Ãö%­ÍëCw–¿Ó}ŽÄü ‰9]§7¿!¡ìwX奄´éʘ`œîÝüíR›µðZ£”Ц¬Ömoz—sé¢b¼gœ`e)Á%W]HÉé|S«-ÛÚ°Å›ñjtSÆ÷>ÕA†¶Èö.±¡3°r+­ŽM“[üÅžð”)b…Y¬^—–ÎB‹ûö¹9góéî†rbúÛ¤UÜ›fð¥oŽä1šrIln %I™Y½CE¯=_årE¬Ï.QZsyež(ê½îåJŠ&Éeº"îåE”’Å4‡pMIb½ ¸X0\/6kZ¾B²žÚÆÍE¸µÆ¢k¯›ïø¤Oàäoy uÖ߯/¼`a¯Ôd½›T<,Çž.ÞƒŠÍøù†¬Q+MR9ôðÅ‹ôªÞóô0+µ—¾ú+ZÛöºW;*ÇR`|L¸È¸iEÚB½ãâÓ‹4¶‰g´©Z%ˆör¹ƒ*XÛEÉkðÃV¥zûccýø½«öžwµKcý»)WŽüÈÍ\rZÖ@ªr«ô2B㲚OŽ”òô·©¯ îà"$6‹Ùw2±“>Ý\ê‰ØxÌ÷ï1ÝBÂu¹ ßöÙÓKŽäàØ]ISV“Ñ]TómD‰ý¢)a'FL±š¼¿ BE牲 áW©^UÌn7^"ŒÕñ6sðÔžösa­ÉsÄêùMWEÜÔÆ[ï̤ç;z®¿ÉÞt%W+» ëf½m?PF † vɳ—"g³dWlQò8‹Kß—²ëöÊäq6þ™4§o°áµËG9g)¡÷>qîªþÓ†Óëb«Ý­Òù{nRg‰†æËÇ>L@øY(íîñ=³³Ž·ˆçxª^[ŒšÅ˜Ý6SÞ­Z‘ºøu­>  ]ÜæZŸP®fׯXwO7îÌE_*>ê­ êŠ}gçÍÙÛ¶V“X“=¯µÍëjëÝÍ™ÃËlÞ/(¯3›â&ÒsáÿŽíK==—@¶¾ß„Ìsß³?þM î ZãÅÝ^­I·Š‹r×L… ²l .ÅÕøå‘Ýq\^Ž„\‡Ÿ§ƒ¥ë¦Ksÿárf/øf¯iBÈÌ>µv²{Ìp 7¥É°é“k%ãÇ»àŠÜá¯Ã³×ñ~X•» ÷¼›f›¯};C$šÃ®Ñ+‘RüÐ^’ñjÙ*kŽ@¿õð¼&Ââç.ŽU“¤¿ùÀ—pãsRÈŸ¤?©{¬äËJnûé¢%þº’$k'oXHÏ›8)?·Ÿwo„cüU%¯‰÷ŽLqËöåk;©ãÏGHÝ5yõ‰­!ÅŠwËŽ»gDù¹e9~Çw&ç&Ï+ù¶’¤°ž/'l¾fWGÎsñ>¥ãq ½½P ¯~bò׬Íõ¿;¶W,[–ŸXa ›)¹tƶ=~fßo~t_ª~òÜÛ£=v¬„HåEaT“§ùhþý®žþñ×›²,#ý«Jž±­Ïê¤õ¶/óx½ÿýD½uendstream endobj 686 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O1ƒ0 Üó ÿ À• ]ZUm?eÀ‰Búû’:œ¥óÝÉgÙ×mù_ÁXÖ·$i²,Ê ´Åx°> stream xœ]OA ¼ó ~@»ÕCÃ¥^zÐõ–†CPzð÷µÆx˜Mfwf3Ãúá> stream xœŽOkA†gºén±qÕJ¥šÌA¡’M¢‘¢”oiÁžÖ´ rºÕÈ9ÞÒ“ì Lfç´A½UºHž96#³ºEÉÕ¹ÜËŽåúŒz¤ê,RÏv\j/øõ:e®gZ!$!5Ðg¼‰%0NdëßEK~ó ÄýhBŠæx:èÂñ±ë™ó?òºŒuá £Š/?Bþ/Ä¿Bþ7”Ä2ßNqEÄr,kZ¬ÄÊ@ã2—®¤ã…øAªXéõzý~¯R(T*ÅŒÊOOÄÊ!þÊ›ï;õáãÎ.ì|³ºNíñª™ŽoŸ—›¯¡›ã°Ñ~·×ê¼Ý‚-؆6ì~Q'ÑÓ#9Nï+áµp4ì$“»ŽÐH¬gendstream endobj 689 0 obj << /Filter /FlateDecode /Length 5295 >> stream xœÕ\KGröyì³O> Û-«kóýEöBe¬Ëx»^ 9ïÕpšâÌKýzGDfeFVeuOS”Ì©ÎGdfÄϪOÅ OþËÿŸ¿9ùõ«`N¯N~<ÁoNl´jðÚw¥Œ C„¢6oNþpz®a¤¤9OóçoNÿã çµðdˆ"ÊÓ³«“´ < òÔ[?DmOÏÞœ¬¤YŸý:K§šÞH 0àìâä«7ëTŒ!¸Õ%¶E Ư×bRiïWÛ+|¬cÐÖ­vk9µZ½Ã§6FïÕÿœý-cø2F FÙq™¯×côV¿Áa2FéÃjw«a…_]ÔÙVOk\N‡°:g+#E":KßBSI¡]XÑ °AW×ëÖjˆÁ®¾Çq^`O8¯·ÚÐ R/Âj»aÛþ÷{ZèW«íþ„”°üÇu!õ§ N“N)õ€kjøkBÔìh\spõðëx6¯ê’©»Šwßhe'ÔéFÛ!ÀTyôˆÎ˜¸ú·õÆ* ÷âáVð)l=ÒÎsóaìàVßÔ§›ú” {S›ÛÚüÓªûø¶Nñ¢6k‡·µ¹£¦ !ÒiææWã°°z]ŸÞÖ§/jó±v¸¯ÍËÚ¼îÎ{~h^Öámm¤÷âˆy¡7Í ÒçóQSó‘?Í}m]Í.Cža¼t‰ã`-À…Íøl#õ`MT‰­þe½Q"ÚA(Î —ÝۨͧÚlX°Çÿ\;¼ê6Y‡?­‰~"1„ӳߞœ}y,ï'¡j!S©A„ Ç QÒÈ®5IŽEH’n„wôØô‹$ô6ê JpƒquCHäµ§qØÁH™qÃ*eWÛ Ô"X!pìžö%Œ’nîmpÖC©ò Nâ£Ï8H§ëÐlL[ÁGB6È¢ªAœÉokó¾6/¦¢=…Mm~[›WÝ&»°óÚ|ä×XøçûîÂÝÉîê° a$m?tåUÖº6ÿµ @ÛÚ|ªÍ?צªÃ˜Ä3$a“ÝÖæ›î¬/ƒ¥wµùu]íU}úmm~_›¿­Í,^Ê£Ú/âõؽú§Úüs=`5;à¹öîóöÆyä“•5Ø…_uÎn:Ãô(ïêIm»ÇΘÝì=¿Œ2ë{UŸÞtÁþ±ûô]wáënß¾¹í.ñ±¹äŸˆútè2~__Ã…“rÑ~P®X”¿¯ÊçÛ®¢µÃP›²6]·ij3³íf\¹UaKì[gTÆ?vuØãÌwÓåÙãeaø_b¾>T”…¿ežµÝf¬Mß3"¾›â5UŸM¾ø94…6¦”Þw;0ö»ívxÝ=Ê»ÃÜ3^ŸøõùèoŒMØÕ«.Ǩnó bä—ÇðÆÿÇÕO;ÜuŸ2ØÕÿº6?:ë›nv[›ÚìÛ6Œ»Ï1rÞw¡é]wám—æg1æ™ð†´^Br­ÖçP›®gU†¸¬Í‡ÚdƒY¸Œ5ÞÕ/¹ÆèÝÛ%Ö›ìºÛ÷¾ût‰5Ø9 Dmš6ü»ºµÌöÌþ§&ÃAæçɺ„ªM¸–mwÜÐ}ª»MQ›Ì¯f¾=ãÚ>û1ÍøMm2.‡š’ñÎx’ß×#Ûu²ï¹¼ê^fßû¾ë^1ëûu§—¹44×µsþäëÂSå0ÀV?=ãôSß& ³Ü7,š@OO´™‚|}İ'> OÏbàrݹ©Ç%j“ñ­¯MÆî†s~)ÆÂCw›,Öf€„ñ8s¿õt²¹Tš†7 9ßtæB0!gêXô'sÝfìNvÐa34j£¥Á8ìêKzJŽEÓ$£\5IŒ÷³«nšôüýTˆ¨y]› ª™”]ñ++HÀb#CÌ—“9¦µnBÒB !š üÕ˜8h¢BvpÚy5úy_Öù›f~?H<”}óK9h«ã8ÿb÷ílUmŒ¥Ú”—²Ý͹´9­öOšv"Ÿ½“òUlØfÍÉÔg2 ²°—ñ³Rl?ÅÃ/KñÒÁ³;ëÆ±¿Jc Ù ˆÂ/rÂ&%zÚ€òFƒ|Eá(0´ìcššE“YVˆ$VG'eà=rº+oW[ -„Ñó„z¯×cII6aèº Ì=¬Å.—iŽ’Õ¢µ9œt¶dÝh#‚G˜·) RÔ¦Æ.ÒÌ€ ­•üœ0ª„ÒMW4lµPR™Õöz¤HØsO+îh³@PåîÎ5s°ø|>:gפåÞ#ö]v-MŒu|`óþºú6Ã÷žê("0‚”†O뒘Ĝ"öÒñ$zÕ:&ð13×…¾à°Œ6#›þ#Ý›pT½”Dˆ®Àç‹iV ¾Mï¥÷ßM{·sÃY[òG" d˜­ô–,ã»oFÐgZÖü°—ÆŽì,“›‘ÑÑ~‘ÏZÊ”0˜NÏcÉL' ÂDºÿ'hîÄAè%Òƒ´sŸBùJSÚÆh\-ë_ÊÀŒi:` ?É%Y² 4`,ȸctU==/HSI)¼'gÚDÀcé) ¸ìœžcšÄS;3ÛÆµ â©ZñÌTeЂåa&B»\)Rffºë²ê+FÙŽºH­eFˆÌkÓ˜Õy}Ík?8Ð?®ÉY Á6*"‘`!ÉqÀ3±…ŽùãêÏ0 µIôî*µiÈä1‘V©Di£1òI߯YeTQ^ÔXè‰é_¦Ke¤0†Ö&•=ݧ,£l.r›9ˆSÑ ç0BsŽÌÒÁ^¥ø0Sº’qÅ–dÔv=N‡®ÜöaœÚìá{ªìâ‡Aå£ÁK7ZjÔÜË- ”¬“3n¡ãð©´ÖSù*ƒx&æ?¤¾hŠ~`õ´©³rÂ-Ydè ŒU0Éèô¾ïY•äÁÀA…¢Å¶ç {DBr¥ÙÛN¶^ÖD|6¶†ø\5Ö Ñ ,œ«ëà’À©¨þ>^Á›Òy9 DÚ@«‰nÒ4p!«[UŒ!·Úq«f½§@#C…“^‘Aù²¨6 ÀçE²*@y å8dfQ|%€jê)8jƒÒÜŒ™êĉuƒpBºI,A@¯Þ øù†hßx ` ‘«¬ £³a¼eÂÜâv—ó5ó[º†^ÊÀƒâvöÇZãØûü¥øF­ÀárVE·ä)^¤ym¤ºµ¢€úÖ‡¶`ÁñŸzá?Š{ùìà‹¬´êˆè‹ñcøQ/zó¶=GYHÑ5£7LÃ÷Ö©"øo?€=ƒÙÑ}¤+œ1‚µ'ñ©”ƒ¤Ê‡H‘Ò¡%g£Ñ7X!æ; I–‘E¨è'È(@ÈÒÑfÔ³Å&ÛÉHKø‰† Ž [‡ûVJ-¹GÉ ~wM~–4Z¶Š9=ÖòmàÑQ1/‚!†ÖÎ@’l¶=»º,íVñŒ §ÎɨYP 6ã’»HÑcæq‘ÃF%"¬M¸‹ƒt fOÂÿZˆÄŽÊË05²R¡#Ú±Å¼È—Μ¯]>`šI´Çµ zyÁ5pÙ6–Hï?UÍ×Õƒ tå ¦aVbŠö ò»Þk0pºiƼ@r=9CËŽ—9*¦Ë„<5•G<°òÎÁ¨ÿ{P£(5ZfFEÉÐ]$Ûh%É`k+ÝKg^áh!02yI!Z©=Æ'tk­OlXÒtML´LÖ—×eŠËzd¨*¡“C‡§$ì>‰Š{µ­;ÚMt-瘘ǒœ4;Ô\^îêÜ1ã¡+Ú@/ºn@/…49lÍ5-s͸o`³çÊ=®S1A±7«ºJ{iýµH9tò3Åá"r VÖDI3>ä"sMªÅ‚ÇTc©ò³çBq‘¦Dåñºg#±ßžüî$½ñhOßû®¢@”J` i/,þqõ’,ç(Áošo ȳ¤çR†/Î4qìB¯Jº=;D7Å8Üqvz[=]Έ,äÉöwìÆ` íÆ¦&æÏ;;Ü |äK¬ÐšAóê©Ö͹)Õë*Óè—©ˆ³…f¼ÞµjÚÿ(§ßµ¡Š©Š³ƒ[É¥â`´TèÜ5ƒ– f ‘ŸMç£À…}ÖE²¦ˆ6&a²æijÝ&A[³nät²ÂQÜ9&&X A·o϶…-¸Ý’‚Ù |$‡Á]Éb±¨3á”òØdÑ}ƒý]T’…RN&òÈtVÆÐ6–ß¡353&pø¥a¸ û á›SLÚÍMˆóyÍðJ˜9Û׈ЀÓ¾5¾ï3ùÁï ¦ »œ¿oì•w•F¡xÀ‡-ýS{«i•ðÙ”kÊ)¦›”͇FúGÀL1” :Çó!¸©Ç4 "Õ ÐΓ—¸©ØÕ;.(‰ÉaˆÁ\\ nõL|_ÉŸ©ÏËJ‹žX2·Há:ú<ï¬UèYs+‰vg)"¾ôªhÒVµÈedÖIü‘,\´!ÁÊÂ_H"€xŒ qC;À[Ù)ä ÓkSôŒ£}÷sž)}]ÍræÛ×50ŒÚfÅÓ¹,f®Y1À‚ñül®HT7L‹cùÏ–j‚²¾17ê½qÕÑPšÂ¯¨¤‹œÔž<]ßzíãyó=µ(Tg¤NBòg‰ôÖËÆb¡¨[L©:,®u*Çx²êYZ> Ú`&uÃǼÀhVY„ìÈ‚±¢°¦æ‡e§Qšü–wºn­&æp-ÀØ5~ÓØ’p¬ÖR³ÑéåkŠ ÏK^¦ä~6¬jðý“ ¨å¸rÑ:D Q%ÿ².ÓÛ[òŽ„Ä-ÿ¶!1E[Üðžê°'7+¸å‰Ñ¤_‚v©/’¾ ¤mOÌñpfG É „Ö“¨ /½¢ÞcÜSGŸB`É̤o¬™ª›â®qå™ÔMøì¨›Ž‹,ƒ¤7Ó³ÍimxLb.ðØ?0³ã:0)`oÜbò±Ÿ¼È Ê±ÜÆŠ¦êˆ—õî¦!+'AëÈâf¢´ŒÞ½¥Møn¬e®‰xô¿²å¨ÕÜÀœXE1±²ÚŨ9³6(¹:³6ª­ø|ó©õÉMÊÇ,×Ëb$Ç5º'!Ñ’î1úÈ ªëx˜E5hDåS®lo36ç…~¤»wUˆØUsÁa±ê¹¢¡ÜëBmåÃ,N¯Õ«©Õú PFåqÌyJÂ9?OKu^j5&wP–‰JS‘i®`"ùBîŽ ÿi jÊ&,jg²Ku›,d&¸Û$ApÜã!Î$4¦W'å‚©þž§¢Yüï§5³ë½à«Š˜ê%±à„×8`E˜$£ï1Vžƒü}(A=c©RD-I–Â"2ÿ Jˆ¸ÆˆµœðU1§ûÑ´Žá‹HióyÈOt„œ®ß“¼7ê#çäIŠ)õ‡ 8VÎΓZªVß2©ãqï˺ ¦>bŠÔ;û²‹¹óRuü [ ErÀÐðÜÜ&5j¼×íz´ ˜c€­“‘æ÷1V,ì«×QTÕVu?s™k|n±¶.mL'2í¨¢Cr;­Ì­ÃT;¦÷êœDZ[Mñ5nY“b“Kê·m1O¹ËaüœàÈ,JaÄ€|d!ëeõ‘7¬Àq"Ÿ³ïìå±í+\ýõßÄdïr²8o»ØÓükK_1«×Ïù¢Y£,è”E–Œìên3?a¤¤1ƒÓÓ'ȶÉëÀñ•ýZ{6Uí€,Iã‚Ðìf¥‡A1 ²Ö VâÆñ«zc9 ¡üC±{/ú6×}¼Id<1a“å<&«ÊlßZ„87²Ú7 @'Ö£´¼ö¹?›5¾¾}Þ½XÞ¾ß;æÍøMÙ׬Öûˆ/Šoæ÷_‚go³ËîSÅ_wîÍ »Íæ}ø2Cÿeuy¨i{ï‚/~™j|½O®í6Ù[ÿþІÙá°Ï °7ãÅ¡ 7ïþ–&ûX€.¶‡¾°Tší–8ÂjØ.~ „5›ï+”×çC·ÃÐ=ÓÙ§FÆè|dÈwÌu;°ÏËÈÞg©?=4~£ÿY¶ ¶Ë>ç°DØî ìéì«*ù²Ë14,p€sú'’¾ÎE‰kü÷¿ÏpПendstream endobj 690 0 obj << /Filter /FlateDecode /Length 151 >> stream xœ31Ó³´P0P0´T06P0²P05WH1ä2Ð30Š!Œ‘œËU¨`aS027iÆ`9'O.}O_…’¢ÒT.ýp .} *.}§gC.}—h ™±\únúÎÎn@n€¾·‚.PÆ9?§47¯XÁÂÎŽËÓEAmGTaý?ß ÿ p«ƒ¡ËÕS! B)Éendstream endobj 691 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O1ƒ0 Üó ÿ €T•±Ð¥C«ªí‚ã  8QC_B‡gé|wòY×Ë•mù_ÁXÖ·$i²,ê´ÅXXž8+/äpSþýñ›ÌÎïj&ùlOm^Õ{¦Å+¤ x"ÑUUßÓ bý'•Àhг9÷ fÿ¡¤h*qÜ\C ޹in’ X¦ß3Þù”‚ â FJSsendstream endobj 692 0 obj << /Filter /FlateDecode /Length 6171 >> stream xœÍU$›,v³g$?Ç—"«Šõ®"µß/XÏ ÿIŸ—·gxéÔâêpöýNÜži¯Eo Œwyìw½‡ V†×g_/î`â vòs‘>.o/Î.7 ¦zÏ<_œ¿>‹ùBßKnVÛÞK½8¿=»è>_²žy#¤èö0VL8ß/W¬·Œ)×ÝÁ¬tÊ ×­wË•”¢wœwû×8–½a¼û 7r#´ï`ȳ Vã˜9+Ý ŒgҸ¥wR›..JÒ%—dIAª)"ÄÏ»üKa«“ÝKazǸíÖ÷ÎKnE·-à¾9ÿ9¯)ƒ„½a°Åùæ¬ãzyþÝÙŸÏϾ„¾?³^÷Œ‹…Zõ  „Ä©<³Ë3Èï%L ›òDší5cÌ-~™|ÿ~w÷ò¯g߃jxü_VëXV•N,Œ—¬w2“`òÌîì«Å— ØýÕ™tÌ¿ZZ×+¤Y:ë{8­VLõi–^ópŠ´fWÖHP>†3¯Ÿ&+¢Ñ ÏhtBÃ3š²fWÖ4<0©ŸÓf©äÂ!bP]V¤Ç%vXŠÒ~xèt÷òÏ‹/ö›í®£±Q"ÊD„FJ„6ÌìòŒ•2JmØ”'~ž¥â¾×:)òKI&/ÒL”ã‰@ò ÷G±Jõ²2Ì\…êyuœaæ #™ HÖퟤ&R]T@;‘\x½\ ιCX®¸uU¦C*ßЇt ÿ„žÃ÷¸Å þ_qѽÜîÖ7ï–pnï¥ï¶‹—7‡7‹WÝnµ8\®wÛW˰óÿ•?‘ÎŒ,Ö`?Áp¿)ËÌ1:”‹¶Nf °™'þŒw’gŽ"A¤½Â-Ρ#:”fNb9„É™±Ìôz¢ˆO8,bYakÜ`aCž @ÃÌh׳Nv|” ¥+Ï$Úw \%Q‰…€ý9¬ìm™9N-«²ZÄt´GJ4ã-@ÒÌ @ŒbA~¬ÇG‰¢…•™“€@üŠžr˜ñ\öZ§[Þ d˜9ˆŒêˆœÉÝÊ ö4sÇ{)‰3Ç™#yRð@†™“€0ÞØÂ™H–ÏÐ÷–™S€0p[B,(XR:б/2Pr4©ca¥±Nbv4Ìœ„ƒÕÚ$ƒû#õ$á-@2%'ŒÙ(™‡ˆ€xDœfN‚ ¶ˆ@°°ÉØ/2Pr †ÞÃ(07El<9ä´c°ÇØŒ7)” DkƒVh0·(ë½ßßöw¸NË õ¹‡z+á¾¹ÝoV_ìw»íýÓÀ/º¿­a£D’ŒîÍW×[†%7Ýè Ûíø0M¾²Bd5‰¶¥@A*Ñmï¯á ˆææv¹…ˆq«j ˜Z9)…£Yq¨.˜“a•°øÄ7‰*û•c‘ÄÐŒZ'…JÏã7ÂGª:îLÚÄ=ø•» _Ù|*ðYž˜ YÀAPdâÝyÚ¡Î[¤œð¯3btºFN5½˜—p`ø8ìA`ùÄ$r *y‘8ÅiƒÊËá¼å«„>£,¦û8°pJ•U–M¡EÙ iŸÐÒŽ½ã²2ÝL’4 ÿ¸ÔñÛ©$„pS`’± VŽ¥DOlô‚hÆT1ä }¨½d J @S|´Ô,JËè)=JϨžòSÔig3{¤cµÈRv¼G‰ô•ÈÏ»ýâEe¹Ÿêa\'°ã &U+¢uB·™(¤tÓ“ úaÁ-µ÷qS qPD!Å _@½˜3dÃýŒþrf ¯mTÒ OVG‘À5Ô‘UŒK“$¤)>¸¨¨¸¡-vjjÌjñ Œ7Çõcã–´ënøOÊ”–=¢¢Y¬p  ±×n~¼7fñÍľzmÂia鵬Ö$¶2¬–$\´úö*ÈÁq W)9ÅÇz##>hb¬)4ø/""\Ép’`a s›nBbxEñÁª&$!i°Á)Ú§SñtŸäMš"6ùŽŠ¬ô°PiR3ÜT‘\Fª’ô8dŒüÚù?ÂO§$‹<ø}TN(<‚ÐÚ*p5 !ð&Iá'v=÷Û³×gŠ3Ý›ÐÕX`.¦÷ø%c¸8,’^ºØ´ºçvõöKðÜ¿O‹¬4Ø"ÒΩÞFtØâ>$n:ïྔ½Žÿ‰Ô``õ¨š‘@úƒŸa„a`/¨#زEÙC6Á'Y„y5 2Š:XEHŸàtù@ ]-£­jþ?ÀA¼1Z÷Ö/$^â‘áá¤EJ"‡á~g G>¹^r-¤\À,€8Ë®Â<ìeá"_«É%Hòï¸èâ“nÜ4ø˜Ø:n܆™ç|Œš÷1"4¶ùÂ2‹öñ2âüÅG²:à$ãð‡ä´à"†üé­ ß`’ 4dGžTHͱüp¾[_^ÞÜ­¶›°´1 ¾ ,› †»‡û¥@Ï«d·ß…Å+È{žbåϨÄaí§¡´`ÑAz½¿Õ^-Y/þµtø‡’2q„ 0,%^§¦’t1ráõïŸýý›ênÙòKÞ×·»Ãõ·Cïö~ pü/x?Ì€!6Þ<3(w\wõ¯•™ó¼Ã+dÉœ“¯ö8½îøAL!—ˆ“°•ënO®Ì·K´8æD¼ë{Ô^uB]®{î±­„Bm¶Aù Ò $„ÓBèîWhˆÂVtû¥°Ý8öiGº4†™pQŸ.ǯ"µ€—^ÈS@ÛˆJqÕ7LA¶TÝÒãÀ4$äFÈÀàâ ðá½<âÖNAâšè€2,È€e #0$y£m D0Á»M¡ÿ¦`‰$åtÄ®‚ÙÄáp’ËÚõ-.†\ÌúšàŽœ§¹ƒånÂ/¼å³ñEx ìÊßo“bC)‹&Ahø10qgècƒî2,Ñ`t.¡ì>W¬)°»JLp .AØ•@ƒ6&v X¤çH¯Þ>¬†C¬ðâA¹tù‚à³%FrHM÷W|zNªýwK­AÓ¥çRD™jxGˆV¤! a®ÏÁ-½OI,7&˜ NÛ` euxµá´”™òû]xáá­OŒrFKÀÜSP¥“{À]Ë ‚ŠH â‘ þv¹h&ZAátt`aªz”Õ PEd„{jî‘›½@ÚÙƒ¼T|ÍrNìø:°*øÈ/léCr€ö㜹¾6Øëb°{d’OR¹C܇æ?ï ±E˜Zµc´”BóÁ$æžüP=ˆ™¤ÞuæuЛ¸ØqŸž!u¼[×ÂŒ*ÿXx…¢´è=©U¦ï„Á,“›£*°+¾aKà$2:#²ÜUÔEkJçÖäS¿ˆÄj ¯£Åð" …I5uc=Þßa6€ŽÀRϘfÁè¾ëZ¶qX]0q÷høZrÔò6 7óÑx†j±™˜qˆ žT5üPPƒccÙ[º/ëâ~wAÙÛ]‘3í#bé‚_‰¤›¹Y4,®ˆˆÉoÚv…[œx›õnW¬usDô ¦$ *€(™$JI||–<&bS14G ª—e:°œë®&Þ¨qå‰]M¡’F áüÇz÷”}¤CûÐ-ëÀ7„ÚËA\¹± K¬øÔ±‡SîzÈI€<‚•Vt]ÕJò¬‘ùQÂV'>>‹’¦C¤¹»®5!žV‹Ê‚[S”$Û!«ƒÀ›Sˆ ë8^ôq}WÞBnr Ùß’ ¾ª2”¿?Oš2z¢_ˆæs¹.dZòd .¨=T#|N IÒØçaÐy-Öàçÿu4¥ä×åÕ)Ñ—KŒ#Àü~¥˜ ni]ÇCœVÝ÷Q)FzLmz©²Ç¼EróŽæIc´ËÃ+î—Fe±)ù¾+ÓH’‘ôº"7zÀDdoÏ{;X®ªøúã2G.šy?àZ e”ÉqËÈMÎdðæ†ÓµòØ×qÉtU9Q²ŽKŒ´jäë20nÍ1·uÝß°RÅÖŒ¨Ô(«í$—[ÆÇ@³á¸¯Z1.†Š ùf¸›·¾ ‡à‹J^ERã‰÷ ªÏÅwõ+ùÚÁ ÓRi—•û±íIäà8BŠ ;AÀU)T]‚50^JϰRB]6Ÿ´|ÄqÊŒ°…ÜPk Y¥Íì:_;züIbT›Ez´¯„R|Èjpæ9šS6’à;òæi‘5 Wa f?*…Î"CÜŠyölF=À®1¶ÒÁ‡¸xRöâäÑÄÛ1ƒS†{5“ß‘iR&¤G€xmaòUWz0ñ'ÜÉê7\¥Í½Ž/ šÖ/(@ˆûÁiõ'Ú.×bÙFòš„Ý«´` ^öX¤dG/äÇ%åŒë=«ÈÚ•òÃú•D•}ÙØ<v…oCLPŽÎƒm–·¾[!;ùÓxßè·'  2±¹ 7~ÈøÛÖ»ºª•x•}\̼æu#±å½ævTý^’Ú6B!:È| SbÖ(·j••ëosžER‹mL„ѯÛF05Ñ1äýý"þÒ 2%]­'}­`K Im)– »Ž%JF²¸«’©?ÕcÁû$U—¸ÙÔKœ+¡ŸÐwL€Gm(ªEÜà£7dâŸbB nøŠ¸äõÛ,z â‡i?Ë*„‚­®jMäå$‚9VnŽW¿£âø!B€-4?a¬ýÈaW,×R^ŸÚç®*…ÂAзPØ‘~ö>qË™è_j 98o÷e‘Fœ0 ÅíT…IH#»ý·¥š‹¸ýK”D™¤ÒuÒš¸aðPÉ¿OB`º‘÷NjªX˜m¥§]ӃnjÜ÷ ¾gO³‚ÑHv‘:°­·ÍцÎN‚V¸@ W?xóyê}òØšp ‘l¼úÇ–¸¾Ô42~ðWB™i&\8c'˜jC¥CQ¬ ÛÑpôÏHy¹+å%MNÞÄWE•€}˜ˆá¯Ž–äȧž•à$YØ®ôx1Žg aAºpÝ4S÷ÖF5œbÞÔ_Ÿ"¤qUÃ'š>‡|ÌŠ@Ù—á}nËðP†eúPÆËe+âÕw †$£yä]Ngúu/6ëøPkdh}ôƒ až1ôûˆNO~Ž:b”“½”â×áÓ³ûfi,¤ƒ™‘¥^ªë~Úi‹Ú"G>šúN*‡ÿX¢XÈ *Aø[—/ÁÅ1ZsC’¦ð¢ø½Nå· ¿&«ËŒ*`ǯÕ6¶9” ·"$Ô½MÅŸåUJÅMÈafz3W§þaÉrÒU‚õyT¼Ü¬‚è]œÇFWÍÉðh¢qw†÷±UK.»UÊëº\…%ÃÂQ-s<Æ )w¡Òë éi´ŸuÜçCKn¿g: ‰ªÞHw¶¥,ËB–é öP ^=ŽxšŸüAGAíÕBb¡ÃQ;žCœîØ!¾ô^y /8öÁ ÐEY4U[]ñ¾Ã,‹èÇ´õ?ní¥^?¹ÿGP°@VŸhzñpK3ŸÄù¨RV™Ùë¦ö}Ô&Â3ÌÑ ³‘)‡ÕQ»€”*ƒ$ÿ9aJ,/-òIL“¢º’;â`.ÄÞI«!ÜSèxY»Y|Ú¯Ë\ᨅBƒpì~áÏ«s^9nP¦þí´A™ô¨ªz”w¡Ay3žprÙ@X3SP”ñ½‰Ã%DÊußÍ!Ñ_G!z\µ²•›ùNì 43Ít§lªq§¤¥ z §a9È v>}}œ@Ó›&råQ3¹ZM--ðíƒÝ!ëÖ##¥jÑÖC¤¥SE닽›õ[»¸ÏúêÂ$CSèÍZÕÕž<½bÈêŸ „Ë9ÒÙ$-‰÷òn½)>s†Ò, zÛº\ͦӯÿä™ëÿ¢!Ñ•Z-‰x·ÄŸ¯!È Ê[šþÏ\!Ý.Ï´¥bê’øÖ'çuºPƒ®?á·Ó‰j­ouægýõNêùuJ´â £×™}®§•D)ÄÕÉy`Ðh”2¡&º#ãÏü  ~Š6të·¤£þ\.`È;‹É#=Ñ[^§XUx!µAÝÑC€àðç˜$ùÏ\¶+Ø©’&{ÓL ùD¹’ÞÑ»»lL¹[Ý]Å,ø.QeH©Kþ©ðߟÜi#§"Ï>ž¨Àê»Ap~&ƒ¹¸‘[Í´G} ÄÅÜÍhQäHƒrJMžVÆ6wu™jµÚ]RŒZÐx)|ÕY C@Šùô7î,Cj«@‡þ{¹ÒᕳMM¨‡&IÞ—á¶ eøP†©Irܾ̆ÎîÊp]†ß–µŸ”áÛe—ÏôoH£†¶r6Mdßo› ›k¯Ë°ÝeÊGv'!~ß<Æú9‡æ¶·eÁ'eø› ³ñÉvðŒƒm„ðš ì¥÷ÐqE›ÚËÂo@B¯b*à›2¼m ø²­Z«2äehšªEfáõ W³¿Å›]S¬Wm…ºlO³2웳º)Âö6ñÜ6ÞœU„´e{<Ç––¦­‹ܕᡠ_Eú¤ ·eÁeø6jšÃ`›.€üõä0WGz¢[D‹Nq—tAK%ïÊpÓÖÃMñ‡¿mò¸-¢O‡¦Nqdö®iúW?Å寊ËNQ«n¸ƒõR¼=MIò°/Câ·Þ6£ãá'ú-?F÷„5¯Ê¬{nynqmÄ3îà²)‹›³íµìºAn!pDɵ”=•FföŸ(ƒG¹ÁXÊ÷mÁy‘\åǦlYSQÚ‡#ükß@ oÇ1áÔ<{fNÑòL3§?V[ÃP7©¡ÛÜs ~5måωc&L“4è¼ _”áG͵ð³V?‘4„¸zÞÊà^”ïWeHvÑ/©Ý(Çâðÿµ&•šXßqJ©›ÄxÁ‘ÚÕÖàçµëŸÍˆxÙÞ4ýE;ß¼i"n+ÚgÏ{§<¼o®Ý5±òÌ_ÇRmMùM™ý´ ›D<[ïQá×ÏZi6a÷¦,øWS¸íâ¯-ç¹L­oÔD^UFõË îç‹èes;Ã#D‹zGÙ›Ùð²i}D„oÊÚ‹2ë›açwe-±³¿—á7¿¤§CvØOÉð¤|©JÄÊŠêoiþòìß*"Œendstream endobj 693 0 obj << /Filter /FlateDecode /Length 160 >> stream xœ]O1ƒ0 Üó ÿ ÀÒVB,tahUµý@p”' aèïKBèÐá,ïN>Ë~¸l#ÈGpø¢Ʋ´¸5 ÁH“eQ7 -ÆÂòÄYy!û›òï'Ø dv~W3ÉçùRåU½‡ÐiZ¼B Š'mUu­1 ÖR Œ¦8›SWÐ`öJЦÇMÀ5☛æ&©€eú=ãO)Ø ¾CÖSoendstream endobj 694 0 obj << /Filter /FlateDecode /Length 7336 >> stream xœ½=Ûn\Éq~¦|Aø`C[<îûe° Û±‘ˆM#Öy DŠRLr´iµò×§.}NW÷ô™Jkc¶5êSÝ]÷ª®j}s®&}®ð¿òÿWg?ÿcrçw»³oÎð‡‡3Ÿ½™b€ñý2NN§)êߜý÷ù#üp_j‚y^þ÷êáüWWW?MYe}~õúŒWÔçÆäÉêp}œ²õçWg_oþp¡&•ƒ±f³ýc§L‚ñÓÅ¥š¢R.máW›\6is}qi­™’Ö›íkÛ)(½ù~¨ƒñyó†Z©¨`6ŽUŠ&)³y c£• i³CØ6'ëÆ§À gå”WbJ]ÔË…p}«Xÿý…‰°j²›&LI鸹~BpÙêh6·Üÿ^ý1ï%‚L6Sb¨ó«›³ŽWÿwvéœ>¿´~J!àÏ_o®ˆQÊä¸ySq°MÒø'‰´Û Ü›Õ&óqR>» c˜†÷õ´„„œ}¢É ÖxKÐrʾÐä77„hc’^ÑrÞ†Øb]lN,ò?ô9G@ L‡)€ í6×<;ç°Ù>V^X€X½~IGÔVç¼¹ãº~%qW°*„µÄ^ ÐÃ_6×/ë®%—mÙ.¹B‚=^g¼¯he\f›³ÓrIñ¡×"‡·ª6ÈsÖèI9Ã<öõfK¼r2Îl{9¥öì;ÂM ÑoÞ¸8y ¿$ÌM]{á›"R9¹¸ÙVz^*g û“ˆ‹Ë÷×’(w·‹ÿËŽVF Ïå|²Km'"Áüc1{•G"—&—¼EäJ@NVÎñ“ó6ëe_!Ĥ” CˆvRV¥0ÏV´â_6•ï³ÿ þÍÜæ×Bœã2io™î¼ðâí²«ÞžÓÅxôœ^¥æœÄ«Ç¬“•æc éÞ^ ÷mÒëšnßZ§ô%ûîésò¾ý_.˜ô·"ɇ(q:ÈFâv…†pÔV à¯À×0\ï#))Ÿ£·®ê—¢<ËÛ >#ƒæ('—BrË“X¿k¢œ¼Ù|‹#Ð_óZ´óe­ë»[†Šš@¨üíÓm¨ôhžZšY›{°Æ@~‹¸WËMIò¶j<© ÿJ(µ^›ÍtqéRˆ`ÚØW´ÁÛB@ùk2:Ù:®¥=&ªdãBcÃ:íÈ ¨Ù}g„/µÄ:_ôFJÌó°ó‚y2u¨BFÈ x…4Ô;m½dÿ²Lv 6»Ft66ÓÄšã²}ämx°È-8€ÉÆ´Žö,ð´[2-‹(y-Uü/6ŒJYÑvsz $4‹o…Ñ~ ],t "³‚X¯qÇ k¿”>ÎdS˜E˜ì‚± B¡moÈõ¼}ÁWÙólX‹Î\‹ïؾ‚ß—ò¬_ö両‘Ï*)$¢x"’ ÿ‚™Ã×ðÕðÝÔƒ69ãÏ™’Mkþ¯Çç¤àI7„f>fkl¿½ð·aözÉš±È¦©øöŒ]Ôy‘8 ¦ªnÑßð)º`ÙaÒ d@¬b ‘@Ãщtås/DdÊ«lámÎ_Bh˜Jæ~Aï‡fîâ3JT¾@VtRgoï«¡kYL˜Že6jåîLêÅ 7ú‰IÞª6¤Íˆšx·|¶}¬’ÂxN¨Ed´DÚ €4~i9T‚ 1[D b³×P­}GøÊpÀÍ5éptl0$zÒ¶ð¹oYpœt³à, ’ö¦U04R7Å©"³ 7@©1ˆ÷ö—ägÖ.!ÖöEŒ+Ì€SŽV ƒXÒUÝ—½P¬ÀHöÆxɈ75jíÁ 9ËøJ؉-)/•½C=Ö{(Yƒæx¬"ù˜²kQ×-ϰ¹a¢”=ñß= ³ç æþõZ&v\B}ÐÌ/p@ä(áÏ—ÀþÀKšVÑvÞG-éžgîËÚOUrŠ5¶w·"È㿈ΘnñΠcƒ93"¸3^ƒøÃF~ËŒí "VF\ŒƒÐÛ7CÐ+–`ré á½ÊÏf'’TöÚÀª uaçα-ÃÛ:¼¡!pûÇeøªß×! ò<¾¸9îÞ·,~»PBR%S‚"P²@ò¹½îìü($·©AÇ#ƒÃ¡mowÑˆØ qp‡K‚½§uv=ˆÞ¬§`â|®GÂhå•4üX‡u¸­Ã›:Ü ±çì¤ÁyYÜásÝ}¨&¥¼x•…Q98­(¦¡ã6rƒ¿eP­‹ÿŽ4Fk—Øy“ƒTˆDÏŒ>ê'^!B ³ŠP\ÎÜgšhú d†|æ„®c^‰y ƈ!œª÷fwŽ}ິø¸ÞiÞGb¯G2Ò SÝ<K`¶w°V£’Ù$ YLc{¿ÈBîžêðºëpW‡¯‡Œe#F玱Èﻓ”Øç,’ÌÂYšt¡qàÆ6‰À¿‚6•8æ-Ðz·q•–æÃK  ®yˆJTΩѕ¡`Ë>(ó$ô..‹.ÖÀ|ìÉóXpóukñ8µÁ»ÎudŒÈà>Z‰DºOl”ÁÕ0±+œ±7ÇÅC5/ØL*PzÑP…Ã%0*Z·p¼‰Vœ7ç tdcç¥Yñ‚«É‘-ÃwuX¬ÇÖêÒi[MÑ,ŒÍa³UÜK> ݉tŒfmš˜MZ_~eÕH˜ðÅçì-¸{Âô±¿—‚·ãD†XúPB‚·TÒW¸íþ %nyj{éÄ’êHèp TjZ‘‡“~½@Sû!mNØç»l¦èáÄœ×Þie¦m9Èì`€í òWö˽&Âƈió«ª-?•´`Ï.j¶åþE^%¾W® M1¼k²ÂU¨¼~3~¯±¨ÌÍ/êðªNøcþ¹3”›`¦R/£@@pZ"˜Ã¾+H]ž´wÕdÚD=PÄë ¢£Xª½Ã[FÔ1ÒÆÝòϘõl2{ûÌp4IxÃ׋>73JP"Ù’Àèíÿ””$øˆ?Ñ瘠B—Pà%õAQÅó=7œÍ›„»-›ã<Õ³\7Æ}Z· )ox²ïb;^9£‚—s2ïñV$hYè¬Æ´Òoq`AP“WºU]&òZý•937•N€7‡±Ôâm  Ÿúk“» ¯œ L©F>2‹.…sÿ:Ëöl {ò¶?7ôC>è‹yA:©bîÇ:|¨Ãm¿µ)`©*®TvI^ÖáÛ:!šVŽQ‚¸oÆ“_×áSŠØîa¸M]'¨:|Q'¼—ÀFÂ1âøŸ†:^Wm®X`À|i»äðȺ• /†Ÿå:Œ˜t¯ÎÏ•EZÿ3ÐIâC0òùñÍÂ[¿¨CÁ[ßÕ¡Á’b‰›~HhünHˆ«:áuøç:üàœ‹±Ñ6`71¾oÅ÷A]6¿“.µr¨á¥Ì Ižêð¾_øŒ6?Õá)eÝg½,ˆÏî?ï³vµïÿ3œ;–ô÷Ã%ÄÂïäÜ#K\UÌýpÂ0…©?Õ¡\„×öÄb³pH#6ºjuUu½ o®C[‡®}e¡ÿ¬¿þ²þª†|ãë0 —°‚BpI¹cÚŠ:5¤ƒ€ ‡r…`†Ü4Ü@pàx"ž!|$·šûR{ºË8E)"ËÄ¿Ÿ]ýôkØÓâÅ:Tuh¾˜xº'Háš#ŠÂ‡áñìŽF’td,Çä÷käï‰g¾”x” `òÙcäh¶Ãaü<ò¹!ù„¤‡cÂ_!Ÿ@dí1ò©ág*Ø#Ÿýò!ÍÜ1š ܪò}ÍÌPþ4<î‡X4Çh¦‡hÀÒ1‚Cì %÷hæ¾”fþÍìf‚’éóh6.ý š¹!êÜ30®‡oæ„£²>3ÿ¥4 ÇhfŽ‘ï3åL—P’’§ÓÌñuÔ´)I#¦m alÏB¡§Yøší—²—0„MÝzͺ³‘ê{ûd,¥»8¼§eèœ tO ¯Š(WÃÃ-c‡©1\X§¦Þ®M©Í;;Z±wJZg¥bŒv '|^'í,íãì ìZ0ÄÇôÏK`ãGNQUó’°Ç¥°l–¼µˆ’D%’$7cnÂØÅ‘W Ä àý™¨C§ñÍÃÊÕ×|Ü—|;M—³¢ß¤½‘ï¤Å‰ñzc&ÚZBp^£)>5.¢ORî²ÞíqÄ–2 ¥OtÈú#q Z.t`Y=`ÈQeóÀpf.F°#½ZÅô£úéJÆwå®ô–a÷w” 7¶Œ¶*’Ŭ¤‰á€m mDà(jPc:,9\±M†axám&ë—zŽýº…NôdmÌ'oåñ­ºl²m™TSm¨ñJܼ©wÍ·Ì…»‡}P+gãûR7 DÜdô…Q2¾ý%»yy[êÝ‘×%ŠxH¥¿s޽)4ÞN®­ü¬;‹\x4eâøúÕIŠº^î-¾ÄíîZOÎ6Úî6ðc|5%n{EWѧrU”ãðîªZËoùò€ xYŒµKq­În¹¬Í ›}ÚÉu²Ô Û÷ó™V/ýEùW8[îyÖ ggµ6V¨uo‹ez‹%t"I(òþ«Å2Ùª¾Xæsª°¤¤‹n—ß\ý×÷wúó§™)žÃ^¢j3C&í2üo57fZÚRšñUVXݱjô9¨ëIùÀP51:8ðÒÙBì×zDTªÐzDø¶ã´:é—hÞ‚p‰\¨xD43¦Þg¢Ý(·ÇÑ I§”âß }+VüÑÅRãÑõ?˜H š‚D¥Ã§º;!¨î/UÙY=PÞÔ¦q ÐMÌåËÖªÚxÀ¿ÕޱÎ,­t½¸Ñs¸L/8¼¡Éùtn§Œ¤ãŸZÆë9+N°/ôŽä7§5^^¶Ž¹‘¬7h$Øk{ªvJB«c&ª¢ÈÓBÔKþú5ªÁÎM8ã«ö–B³€Ú¼1BjZLO½YªŽkkæ ¦ãÌ9O¦þ ¯ØCW0Òµ€<„•ÊV> %íwD“‡x½Ò5ÝÕÇÒ1yä±/.™ñMeI*ÐhQ·5LŽyµg÷uõOWŠ›J½e•í²wBÔCS±&gù,?·íˆa—F¶Z¬…§SåFÕþ5í< LÚ7º•ˆNXº¦ÿç¶~yÃÁ éëKù†6O©–‚ x[9ù’e\8öz5§mPø‰UJÆ]å:—wÔÊ5Ýuë<É3¾½X !Ç=¢Ùçú^êrðò¸½X²µˆ ·}Û·7T8ÙU¨¹.r܇Ÿé¶×㛋Å5úÐSµÖË,…ŸèÑkªˆÜüÛu1€¦©’\´Â’‹eÄZ÷€Íu¶«²¤]Î-+D徉f Ë>®'“,±bE®wÕSß{W€$ã®zÖŸxAˆý¤F–>“ì×xZêäDý˜\û‡5¼–~ÿ~%!;»r\T\»™ò¾ëK,“=NLs›'˜U”l©¿ßÒñ…I¨f˜õ'ny†­úwŸ±;m •N&Α …)ÈØ4ìæ— â„óïÆþ¦,a]ör:Éa_0e‹Ã0ô¢A:íÊ1µ?蹓-®wsü¥Öê/_wä{¤Õˆ!ÇÀ–j[O1`x¾='u®¨“u}ûLßa»Ä ^®—ØM7/8ÈFGB“Î>t`®Ðë½#ÚœjÕ=š`Q¢ mc™I.µÃdcXïä]åÒ*o`B±ô:0¹HfÚaCž—Áÿ¾$Æ?d ã‹æf~(`Õu;`‡Œ]é‡Ó¢­œ[î[©CäèMXº Nºõß“Ðy®t> tôÂ)•Õ45¦\RI‘Þ"ötØ€äWLP|­ÿØË7/öH뤎xóÛ…[t÷fÁ«Jƒ¢7NS›T)9²¶Nu±&}·Hàèi1¹ÑÑ÷Cs>La Y쬌ðÂDÆk[T>aÑÄñ­ÎìßF¨:³ÍXɘÿ:a­ÝË’û¶aNà{ºª¹°š Z 1„+±rC#ª©¯wUŸðGfµJš­@ªÍó{/Å>þÕ\Jà|UŽ&“6åm(#j™ÅdçJ8?·Y!ð3f¹ÊeÜÆ5–bÎ}ýžQŸ¨¡ŒBSs.®Öè&ºôj%Ãô~1·ÞêÍo/–¼àÇ»Þj¯GpÁ礷Æ9(’¨¿úüQƒ/Ê|fN õ¡NYÂ+ª Û­ô£¥jã¼jN‘Š•‹•CæÂ„3 ÑoénÙÃòž)…/ÖÆóîh—Ä M>ëKî ÷€PËè½+öŸétÜu7Ÿî`¯]oòé1¬²4*üç<ÀµèÜù€ßOhYº«À¿ÔšîŸ;}z /jfn_ðÝ5·è€h®Ïˆr!užCÏcxëþ\Ž˜wv4]º8.;þQÔ=ǰ¤}’o °)Éä<Χq{·CË› l)´kÞšYoãœóðè>¼{ný”-ÿzøŽgØìZ×¶}úîFÆ}ˆŸ:|Ïá.ªv¿\Vt]žŒKùúÇ÷üÚÛŠ+rW´·ˆTsÝÝbuXå÷2Eå°2*û¹Ö¸™¯©ãKÆšR`ð¯é Éu¡Ãäú £û±¶w ÿÞäVJÖž 軾B"ý-þáŰ]ºÉmÖDÑŽ8}bÏ-hõ À yp‹Bùš•Þ~)0…˜W"Þ;Æ(Vu5k³Ê§ñŽ*R†Ge¼jÅÏ…¾/5à†ãˆÿͲ³Vt@P1=ÐVŒtöŠ=Jyù¼›÷ãf‡Ýÿ OŽ7efdðw¹Ü'žê@È¢75óIÛ¸ø·ÉbˆâK_ž›B²+7hÍó—[ArŠ=²»À~2ª\`¬År!í( ¶R¡"W¡ÒÊ‹+æï†·“VŸ„ZÍ‹âþ@Y·í÷ªŸR©_¦×l|²ò§¨E¸mŽÀè³MÀ xªÃÖ›Xlô †| F°ûØ7y;¼ãbù’+ñ)›X“t€°¤t옷ÈOW-‚“1ZÕ–ëðúÏ·ú½ð–ñHB½d«ƒLÝ·[VB‹ø‘µ¸®Ï²’›7L§–¼)íÿ™/lÈ4²ƒ JfÜg‡½Ê)Œd•§ˆ¨6‹¹øcÈFw4 ¿v¼ »÷¥ KìJú–>K¥¼‹Uôøñea0y„ü¦}W[$ê;0º„-àÅN´ÞfÞYu®NQAC‡D‹?tó‚uŸ šOÚÚùr…pÅDàq½Wz•L¦B¢’¶Ò¢ßí[ZÖ×oÛæª'yß*ný˜p.FÛwy ïK&KÖ¥ñ]J/|hÊ,ö?ñm×yM•ÒQÏÉ™/ï¸ÞÕõ©¿^Ö_ÿqíÛ}U”h.þ>ºú;µo‹’ú¯êðh»ô¸;&?+mÍ=ˆ‹Í¨î~Wž(€@2ˆgÑF}ÚÇ´¹(­ÕZ+Øc–öoqœhªø¹dÔeøÍ‰VØL°çõpòëðÛž•gô/ýxhø‰Þ®‡@ÿIV?rúµv¬eÂÏêPt­ü´%w y[9ç²ä„Û¯B²§ÿ| D¬(xõ»g®ø9Ë^íQ…+:ÜÅ;ßoŠ /‡Ë!ˆ=N°‡ž›!•„Êùq~:ŠJ¡µÄzBû¾9ölE„]?œ°îòoC²P¦ æÎ?ž©óß%­Îµ·zRæüáÌø—_îÏþ´z%ŇÉ1È+ ž‡ñçËÕ½, ÕX=]nH çàƒ§Æ7¤ÚãõhRËõèU¹SM±þàçëRf8'¨Ø<IÁ`FœªTüVnL0õ)­Àe/‘–¢ð¿‚@löíœGù‡›µ¯Ÿæ«aŸÅ!"FR}gƒ.—·e8Õá}Î -R¨j y‚JCbò²É”9‹tRf´#I·[§5”-ÑpªÃuxÊ–nä>n9 JàC“nRÚCI]@áÊMf×øI%&byl= wN.¬Ò#s)ê<ƒƒás–Ð>ÈÕ{”Ô?JcëEýö5ÿk¼Ò¯ø«£§‚ůï$´æOà:§ «‡Q6Éïé!1„¨;Ï5Q"ýT õ r]Ò×áOÊö3ß›ñ9‹Û9Î/Ñ x8ÎùP²Ñ/6 )Ôò|cãÁ‹·¥¼Ì¡Íf¥5ýÃ= ïD)0gé0 ¼G:®î I <å tÇà%þî너‰éfä/,Á~«©{–ó˜L’ùY3ÐG1ca 0)=/wï^§ewвœ G5RËê"y+…‰’›` çÊÄEA`œu.à¢ZÎõÊ«ù݇VSxÄ=nªÂÁeðß´ù¸®Ù`8:Öðßò| ‘Vº9#zo3p†Ã³ñWUòÝe'o:IÅ)Fy‰©'–'e¢1ÜÊ4OZ“9_°¦˜-¸_j‡½ YT$œ0øÐ,ZK~$§Ò%¡v½×ˆo•œSí”BKWÒß…ë0 \‹b>dÅúÆŸ8ñf%ËT¹Æ|?=$nW”ZååÄ8Çû˜ÐÈb´]nåeaÈwCÅ×è †"BÔ®å‰˦ð/8zIB,±ÑÒoDÿl D-…›C+P/µCI²‚ô<8Èm¹vB;hZñPĸ §®h‚ïQxÌ"íÊÏzVÀY§Ü~·lôg9@bÎÍrR­º¥ï@ÜCXSÈæ~Ï+A‰ÐÑÇC> ~·ük KÎÓñ(:EÉ;ÁâBë5ô’Ìܧ@I¥òÀfYJ"8‰Šaˆ·{W#+ “o©¿zå”´vô2keÊÅÇË«rS[‰½„ó—ß̧¶0¡ ˜:Ù*³oÝÖšÈðig|l¤°QWOR’§zŠ%E„ÿý?T‡endstream endobj 695 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2448 >> stream xœ•U PSW¾—„› R¥µ×¥ÛöÞôå ¢µÔú¢Uk+ñÝV!$I ‘$¼~Pˆ<#’B€ ¸"-­Ò.>S꣑jÝmëjÛµÖquvÏíœÎ¸7`Ŷ;;³3™;9sÎùÿïÿþïûIˆ½’$©°ˆyþMçŸ$ù§¼ø§EÅØÀÛ ÷?ø‰÷=5©â1Ôù(ʘ‚¢ý Iª2 ÂÔš,­2)Y' ”;´hÑ‚ iðܹ‹¤¡ér­R¯’FÄë’åéñ:a‘&Ý –)åº,ià«É:fñ‹/ †9ñésÔÚ¤%3‚¤¥.Yº^ž!×fÊ¥+Õ*tM|º\:nÎØ7L®ÑëäZi„:Q®Uñ¤J­ÍÐé3ã²d‰r…2-=höœàœgŸ-pADk‰ ÄF"Šˆ&Þ&–aD ±‚xXI¼A„Äâb21…˜Jl&D„7Á>„/ñ”@ !&tD?ù8ÙáEy¥y-5‹ÃÄMÞ>Þ Þ'))•@Ý“„H¶Hò%?Ò«éŸu>Ÿo}CøæÉ|3¸Ðqù7ZëñËÑæVÌ‘Eq›Œ)rÖQÖ˜À.¥²ÕšÒV®mžX¡ùTƒœ]0s›Q(õãèþÁÁ†Œµ,ÎH•d«„SÏ©™¢„|%.4â"?v£&!Ÿ¥1Èö-ì½gbìc&#ñ›ÈŸÅ2<—YùùõkgN=w:"ø¥Èå˹qÈC.Ít‹­fn|ƒv‡ÂQTt‹½ÑÑ”{dáúÕQ±\§¤«°ZÉb1e‡½›û…L¬Ðª¡C€§àaѾ .Tãñ¡ü3ŒÚSu%¹Eï±ò¦0ÃÌsÕÑ}u…\w¦£äŽ©mûåx‡NS%ÏZ#³7°E¶íµj  3ps%fÐ8­ Ç.öÃäa°·~wp0­3ÃÊÉöj+g[ã«VÕB/Ýæt|ûí¥¾œ­P·Ã. {¡¥‰ÇtÜuÇF¢Yõ¼ƒ^ž ¿|…j‚…'!²PbÒ@Jª§G_a3õÜ…äóßœ=áÞ¿òL†ÒÔ2¶4V¦W C­¢?Pÿ3ÆÙ¯ú® ,ÉU.ŽN5K~¿¿“š=²õ‹ý}•û³;Óm°èÑßöÝŽî¸ÈV^#â— ð;(ëø¶‰Ã¾Ô¹´QÏc×óÈåÝöP_|'úÕA!/|µNÑvx¢ öB]=^ÂK®ï\ä17Ò E,A=Ì¥ÈKXºi:,S5gµîî¬ú€uìØÕ@_HYÃáR3è¥g#nÖÂÁ!¶U9]@;Z¡Ë)À2g‚ez–dÊ IÆwa;Ðkºúow#ÿòûÌq!¯1òÊ…¾¼Êú{ò~ʺ^¡—6¶3ý`V¿ ÑÍè14é•ÛXoT%sxªøøñÁ“g¿1/8üÍå+¯e…Øàâ÷ºÈÃîqÒÁ•»*,ÐL;Õ`d1E…L9UÙÖí\e©@Äà™êWò”%ºŒ*ê0Ýz. qV¬ªŠúJK-Xi¡À,Ï]“Àû¶º‚ê÷„»B×ÐÓøn@yéÎ\(ƒ2Ý«f•^¦ÊÓ–ZšJ÷kk²€VgmÓÈ:·=7tê›î]λQÚ÷"^HÆn®Öçdƒ¾€-2ã_zþʳW?êü7z¼±¡ vr¶Òò²ò‚ÊöüÝ@·Ûlí_€8º?ù2žüc š‚žë¼eý»Ýcì Òü/ìâ Jß$k‰l)š5 ?Ч\Ÿ‰ˆ#‡{z¸40þ™ý•CÑ4&êÝÅËV®ýìê5×Èç'>|;ŠOÅœAº„jFEüb´Ž±5ÃD‡ÿ€<9è< ûß D£?¹Þê©1;G¨‘ËXÿäÁ:XÐm¸A—Ÿašþzúà_àÚdYFÿ2ªŸ0­Â}T{|ëóo}¨ÏO–ïcwhì&;ÐMm ÎS‹À¼dñ–¹wfMøø&š>aÔ1aŽéÔ/Y.ÿ“DB?Ì8t-jµN§V·èŽ–‹#ñ4fbêyã!<ù¡Q>4ðYô5ÆòX\^/@,…ŽþB>žO™5½6Oœi?ëñ´‡ÖW)k»g«ÇÕÓ #?:(ÏOÄoF3Í€ÄÁù±ðN[ºsÛ@”`°”BÕÖí–2®ösxH’¬¿ÏÀõñÈzHæÐ ÉW‡úlõÙ,6J T÷«8ÿñ¸‹³#_4•D±(P„œL‰>Kþ'cÁ{YÅ §ÍÖ¬&çcH<¬8—¨MOQ´kz-–òò 5È~‘ü„Ÿ+â ;S{z( —Ã#Tžò^¨{¨ÆƒO¡Ë§™Þ´öT…&-UÑ©qö¶w:ïœç"~ªÜ¢‘SLaQQ˜iOXôwª«zW7×!Ÿì™ë©cH|moKoÏ…¸E£I—„GÓ'$d¾Ì™oµµ5î³ZJ*ÙÆþþ¶€þÒ½é•×£"e)0¼ ù“ü*ÞÍ4š9EE¬9[•± òa{¥qwnÁ®„ Ðäª3ã¥ùOwë-–êjÖÚÐÑÚ5°³¤ÑT—kËì†Vh¯sØßï­¨ÒÑ;ª²‘÷ó9â‡+?ˆî_Þ#øóÌ~U½1;© v[ã*´Õ¹-ð„ êêÊ[i´)þ×¾u¡ý„ )®¡H× 9üÙ]×ÏDè~€9PÜglH(.),„L:m¯É^ßmé?-ûÿ¡–= ñ¼Ù) 1± &Ìo…Áˆé FÏhi¬—$UmÙc>ZUY]{è¶L›Ö”V¸%l`z,W8oM—Ú­B”ÛÖs£ð5œL¼†ÚèðzfCml7|=Îþ õ´ ;˜ÓÙ}[ 6%nz+gŒ„¿¸HöòÑ"~5ºÉÔöºH„lߤ²A®èZÝÁALÃA8Лy橼$A1¡«÷'ðÎ/ÆÝªhvçWXpÀÕÄÂ]µ»šôz¿ÓRYU µtM±M£[°nÞ6z¡1VÀ› AŸ †]ŽÜ+ ×*[Íý˜k†Iä\ü/4ÌÀHöU7b.¼vb«0ÏKô…¦š¢êbÌ;„Yx–f†ëß•-IˆK+,.ɇº *³½å«á«Ÿ°ÇþÖx ÎÓ“ójù°]hY-…·UI\¾îI¬¯8Kíçãòósû=Bÿ7„§Gendstream endobj 696 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O»ƒ0 ÜóþƒR_b¡ C«ªíÇAp¢†þ}I€ÎÒùîä³l»kÇ6‚|‡/Š`,ë@“›ô4XeÚbÜXž8*/d{Sþýñ‹ÌÊïj$ù<Ÿ.yU®!tš&¯‚âD]MmL#ˆõŸ´z³9ØdT\ý»’¢©Ä~p8榹I*`™~ÏxçS ˆ/v³Tendstream endobj 697 0 obj << /Filter /FlateDecode /Length 4482 >> stream xœíËŽ·ñ¾ÎG ŒzM‡ïGH;Ža/ƒ“Ãh’‚{v%G>äÛSÅ"›Å^öÎÈ‘â TæÉb±Þ¬žoVb”+ÿå/vg¿ý[0«çwgßœáÀîÌF«Fï¾™à`d# ˆ ¾8ûûêžÃL™Ö\å.v«?úÒ£ˆru~}F;Ê•RqÔÒ­¼õcÔvu¾;ûjøl-FÒjØ¿Ø>¬7bôB˜0ܨ&ª0loÖ­Õ¤ö×ëÑ 9|‰¥S6÷J!¼l„Eð*5¼XI¡]îpmƒ¶n À0š£\0”º©åáþvW°ÿýZyØ5èáÛµrcÒÛ.µôj¸ªËýóü3ä¼å RQ.C¬Î/Ï×çÿ:Û#WmÇàKÃ"J}&˜iË%pêE¢ÎkùC´À¿ °otÀ³LG4ÞÛ $ÚÁ]Á<À°£ v¸©<àȯÓ£Íè ­ì£žÕ­·‰¿F ãý²â†ýmÞβÍ"ÌõpÏ4ZC{»ÄœCH†Œ RwŽ“°™’ˆÒ»iâð lŒ.l‡×è…µp° €N¼Åéï"ßEGr˜Ž¢"ÀNÃå/|‰Âu\Ú8i¸„“Þ¿þ±®kŒë"Éà_;ß²¥is#E–ê 2Nk3²€}5l‰Š´ß >¸C]?&E¸¢¡[E(’ÿ+¶ñ= 8Ô–f ©›ÛÁ³Ê¨ ÈÚmÕ ç7ˆÊ"C˜«È¦¼‘z´ üD9¿æÄ@¡HÙ¿ tv.p¸—Š þ6ïÑ £@c>h†ëÌ‹tÕ Ð>ó2ÚñHZØo²O"ƒŒyǤsE‰Ê–Û㨉Íè ÆÙD)¨yŒ ;¯2Qæ ;s·%”ä}»F&[ç4· $ŸÞ(•Ô_ þñYláV1Ð,G£%鈋JoÊñ ã*²Åƒ((¤²{¦Kš‡šsŒ¼—ΡaªöƒÎdá¶ô°gôÁ€„©†Oê¡^NЍZ8Ô§¤2ŽÎ«¢Üê£H‘VªÆ;s؈ÈO”œ e¢-'’ͬZØÞi¾<Çu›ÚѪè–,†äg´ÔZ¼ˆ¢P¤DùؤD!Ðé™>¸Z‰6¯½Yt}€9¶fDg—›Q ~̈m“ Vøá¦Þ±Éjç“ö€¿Ö!ö\™WvA Ècª— „kX~vþÑWÃß`fŒÎ€ÿÃzc•Á>¦ƒÂB dOà}ÝE+xè"ÜVm±¯à®Ðà†ß×ÑM}YG¯+x•@pm19® ÞU!üc¨ðe·¼¯à¯»7]p_Á‹BpžÖѧuôÃ:zènqÛ%’m±« [ìIÝBvGcÄ:iø$áïW ØèMw…«®ðÜÛøê4‰I'¾î ÄONbúëÞwigÒu{Œt6í‘¢ðHŽÖNÞ„ ‚/µ)m4ò¾„쮂oº£}yÛÛ˜Y‹Çå-ü åQù¦;Ú—¡Ý1Ò_rrú¢—„ \8ì"d² Ù$š¶#zó\qSÖÙ$¨³OߦXB›‚-ô³U5µ™Þ’ƒ·ÉU×aŠ5œMòwÞ;_!W û½;¯hsÉf›N±Ë×,ä ØE„ ÃÂ2<éú`Ãçaž¢ÐS5a 7.÷:°—¦ ®0Æ4O§`X"OJ§>΄œ<+AÁá´c©*EáÄÒ—´P¹œÅå<ï¤pHñ~ÌõMEÖØ¹áafãI5¯!°=XhĬã]Å}ZA¦CϺJÖ)¸µaz:v}È÷ŒP˜éoñpiGix;3×q»jƒ¶¼¯àË ^4öŠY´G¼æo /ÑŽ¹(÷0B:M]t¾æ+ô$듊ðÇ ~^Á/+øq—ãGÝØ–û£Ó§-ØzTåR푹j »³z2®Bk¤µÓ­mß‚'€$ ÌPHUªTfäÙß¾©â0X 3<§i1,ed¸ .–,'«ÁM%áoóýTû Q‚º­[O{ÌJw©§£iSÓ-«ã1ðÍ:h0¬&Ý‘p ¹Iâ‘JôE,‰Ç*VâDªÌM ø¬¾BÇÓ­ îeëtoÒÍÌ1öÉ×_wïÿ¢+ Ìò0 Á­Û‚°˜0FÈûùžÙuqN¦bzª?.¸M–Ñï§j-c_oŽqdË+‘©¼ Q³l¹ŽÅÊH+U•‘H¬@vCSR̆GÈÑ«yñ0³Ä«hpÚ. A’J²Œ“nt=îOÝÍþ§š§w+žo¾s©žÚ,äj?¤þ8I‰JR5€íuå¹)—Q»v 7MÛuª;3³aˆý#f1À<ùñI€aö7I´•¾í§=Êm­9Æ•A%ùË«qróøjÍ‚Øi;f)Yè½Ú6ö|:ö³¤êø •OjÐs=ãïl¸‡Š<½)¸h–ʨ—Õ£Íuyf®p[…˜S*åÉ\°Ð¢Ÿz3}<šzã¤ϲårø¬‡ïêèëešÂ¦¯ß—©‹¡ÇuO3ŸÍ§Íý±‚¯*øŒŒîÄE4º6§¥ÕBŽX³ˆVc@ô¼n_ ò¶Î§*÷§{< ·SùèA™<§OxHL’Yl7 q®[Þ¤zeërAFzZ•xfò¢¦쥢_ç ,ÚÛ‹G Eˆ`fÂ;)Y^aMS¢Zh\L²ë±ËSXð“¹ÂdžæÑ`_È“nÖþˆ£¬Àâ£+Œõ CŒÄ¬m©NAÕe¬ùL½göa’Ð6}˜¼X»Å¨Ã.ZJ°ùh¡åìP»¢kLôšúâ¬eNÚV˜sàúÂáËòâæ‚sò…U~%Ó‘ú½22+ð²Ã>|h2¿¸.ˆÓ×uÝ-ï„Ú²ž°«ù•RQ±íœ,u&€‘üîTË­±i›æßeÍ£DæbŽ·¤ÝдImé e=P¼’z·îɵçëŸeåð½=Ðýô^Ï&ð{6 ä7³GË›:ö·­½O+xÉ&M[l.(/vSpŒûñxªR¶æì›õäL_ͬm’_¯­MMºÅ£€ÅnÛÉsÐ'GÞ>÷( žüR›ïÈØû¬ÍÓAï¶ O=%]{³žZ¾©+ä©I#œ–·eÿù£*¾ŸœåñâûäJǶøã󳿞ÑW@vuxäûàW~ }¾ù°RmIü~¾c(Á2¶ÃcŸ…Þ§A–7àve¤eÏ«ö^UÕuØ ?Ó¬ë:úÅ1Õë û…Ÿ}—)/7óysgqÝûâewæò¸Þ0Mg‹¿¬±ÊÍ“ êy‚×+ËþµÞÁÌ['ø²{̼±"X¥­Á`eUVGótÝQV˜eF˜½–°bÔâÃIÇb-âö«`TvªK“‰ðËãÒÿü¸4åV/«ÔÝrÛ0ý¦¡¶SÈÈxB÷—¥ÇЏ?Ê¥æ)©\8þÀ@fÂŽ^›í^…åüŸ•Ëç+~+½QõÏ¡KC_tŽÈu·Põ@¬iº//¶‚ƒ?†÷¢býŽ>*ꮩ9úHÔÌqaÆÈG,[¡oÞæe¨‘¸Ó%C[ìÁyIŒ]K"×SÔªAkWßBðúç³A«´ µÚAÞoôÓÈÍÙ—‹á­feÙ;ÝF=¹Œq£±. 8B%dªIàLd.ì›>uQb•‘##M¶É ²ðß±¤l <É+Ž’d' c3Ô÷4-ˆDia@ª‰Ç@ˆw~8Ð!D€¬Éz>™¢¬ÞPˆž ²H—_¾JW.xºp‡ m2dAâçј§ŸqØ4«I8¼$–ÐvØðƒÒÉb %=^™%Ã>¸T™@‡LGÁeñü®²k¢Â/fTêAƒ oë­Óc…Ó©<¬ÈªÂÄ„í|—™¯s¦?‰)WÄF(‡Ä~HãÝpÕ kÍ…+N“¹+¬1`¸ 3$zxpvÔéá®ÑFCÄ“žç¯i&³^Ù`fk,ˆU¨7ø`™¸ ’pÊíƒ7ù ,EùQ‡e;` Ø=U+™B_Uð¦;úúî &ÁØÑe3£˜>wªæŒ8e΢—¬ÚÑïN$WÓÜĶ‘ í ¸ÜÇ}Ì€rĘهI'¹"àKÇrŠö´þŒÁ´{ÂpQ}?ýÄ=MôïH‘N0°ÄJóà”ptn£^¤«‹ÂRµ¹pòò{yªö”…ø!iÍtš¤#Ö»òŒÂ{“U¸!J­Hâ˜<¨‚””¬øs¨ð6-\‰“N‚ĪaJO‰ð·O¼²­9kKØ™ÀmKá7|YAV¹}½€@Ö$àÏôÄbMøGAs_}YÁR “SáDNulùþlÀ» 2¶ÝýÔA—Zc/*˜‹f .\–åÐiôª‚×ái?¬lÚ¶‚·¼ìÒ³«à‡GI»ìîqÏG{T.M“)"7KY9b›e”#Z…a§IÿmH·žÒïЀJ©ÆÄ½Æ?;ˆÚ ÏdÑ:é¬ýäGŸ'C–,³i‡Ëu±€š‡Á\CsলH‹%ÚXGÁ>ñð°ñóÜî] Ý ›^^䉹I£‰ƒˆêm¥šalò#Ä’I? 7è§yÂýzzR‹A§Fƒ ©c ·1!ùýG­¼÷ÜI²y”º"ÝST†‘®Á‡T~9(çuF>]z[ï^‚è6›` }–½äofò8ót¦Ã-~j‡ÐÖÇ*jz¦78*–Þ¿âëд1KšØ6‡¼ÌŸU+4âêaúæ£J펈 Q2ýté=ÒÆÉ9ÛXÒk-“K}Êmd¹„TŒ¬Q9Ì®$’çËh”üÀÕ'ÿÜ—×óì>ÝwtFr±€dªxàÿ»¿Î¤endstream endobj 698 0 obj << /Filter /FlateDecode /Length 5491 >> stream xœí\Yod¹u~—çÙOy?T%]×—;™ÄÆð‰3 %~hO€j•Z-·¤êÑÒêvÿž³ð’‡·xµÌŒ æaØ/—ó|ga}<êxÄÿòÿO¯Ž~ùm´Çç·GßaÇÕ‘KNÁCû²´£UqHÐ1Öæ»£?_CÇ9|©hÎãü¿Ó«ã_ŸÀ¼Ê[èÒ˜ÔñÉÛ#^Qk£üqpaHÆŸ\½^ýn=còÚèÕþÚvÔÚ7ëÍ8„q´qu ½&Ú¤ãj{¹Þ£‡¨ÔjÿÛfð£Zý~¨¼viuM5Ža„ÑØcÐqÔ« hk5W·8·IÑ8¿â!0Â9äT ©‹:¹®?ÂêÖ¿[ë«F³zXk?ÄQ…Õö§KF½:«Ó}wò;¤¼“ÒI.c<>Ù­´ZŸü Æèå µêxcܽÇq¯WßÂ)ykÓê×§Íç^} ^ ]Z}¬Ímm^Ö¦š>󫨽›Úû’ÉôS“ÝP¯‹1AJóCmþqUÛßÔæ—µùjš-ÂÞKïø‚æ×k¼e,u|òõÑÉß,‘òm=ƾ6oê‰ò†©û¢v_ÔÞëÚ«jïßÉ+(ÍñM8F™ø¿èDxŒ¿]oô˜Üüþ©»³Ç.&ï·äÒ¼{Xuaš]v¶ö2-Í×òD¥ùÝ wÕ]Mãse”‹.×}|jÀUíÝ׿®6oëØ_Õæ§§æ3lkóNööæ}ò³þÖϺcß-œ-ÏàêÂnõ×4 *V¿©Í¯kS 6)í_ǘ¨¡#±F|9†þþ±6·µyY›¯kS׿w4ífšwƒòïxòÈ™úÿ9óÿ>g¾’úË(‹Ü³zßU—ïä–;þUmžÔßÖæ¿×æWâ,í_ÔæÎÉwY›¯kS׿wò@j´aøòߥ³owžuUAòì†"¥),Þеƒ®klþ÷Ž¡ªc`Dx<† °|³g kGï^$³LŒx×ÌV Óˆ¥¿‹ ~CFo‚š`k²Á‘²2£VÚfL^LO19¢nuPqµ¿Æn ðÖȰEg€¿Á!Ä,úÕ×[¤"L%òßá¶Âà%~-¨[{X¿¿‘ÆØßð)}²3o{-ÈùŒî¥@«[Pð!j-“¼‚É_ᇉ܂7`B<ì*6P¼¤‚Ó Ž~_½<£ãÑLø(·”o+ư°ÑëºÑ†Ö:zPÉ̦‡òà,HæÕÂnÝd]ùjc4Ì(ÈsVžB%$×Gôoô8*¹ay›»LZ2æ°hCf0Ú¥¤ /go‰…`;»y{vœUsÏi“w¾)øÀŸ€Î·ù²Fc3x3š+oŒ'Bá*õvܲq~/ú³'çá"ñ …M¢$go¹…gLàí±W Èì*‰˜,Þß—Rtš´†+tVò÷ŽO«çå€íêõ£jÁ[‹ƒ6,à³L·° h°=c(^Ž˜h2z Œ( Öe€’Ч~kdçÓz³«­4!Ö­x•k/Ýè,j Îb˜;z°LR¾n<œ%Éé¼S¾‘Ñyogž\EŸs¸ˆ¬&© Ɔÿé ‚‚?0âËDlŸ€vmA{Mèã_ŠxK^$UR)¨ƒ¡¹¹’à~½ú§-#^&/Gš6²äŸóò¨Œ¶»‚ÿ$s~‘ âO_È™]¹b¯OYôãh 8µ/|ræ{É…»2¿åÙÐ:´Ò€'q±qe½:š"¶GZ£†š€‚Þsf„œÜò–Pw¾ Áy^Cé¾¾å#Æ÷”5@Øk4öÁ¾»ÃIP¢WέääïIÀ¿ÀÜÝ2åF§\7ŠŒ­Kêöd –˜Õö É·uª£…üxN?DŽÑaˆäo¬([ÿý…6&D1Ýë̤Pç!!o s3˜¾± µKd/Y¡Ä¨f6òôõ<>V0o¹³ªx Œ8bA¶]LD`p„>®ECÓn醊brÝ8wB/ žF­õ<Ü:õ<œ‰½à#d‡Äƒ–o]x_ò€¤ 0y2Ž›Ìõ´ÿnt}x2‡+Ø\^g‚&?‹0c/\P€4ª‹0Sû·kIï²ãÝt;`ÞÒÚ Àí‚C+ô"Cò”àŽÃ |QYU iz8ð0&Óú~k€p+µ)Mo¦cTéÀýÍLzÉ¢>N,_³ ÚÍ ¶u‘¹˜‘JK˜šâ…Áy0Ïù4‘™i8YȲÏÜ…¦)ELéÞ Ô}Và¦00  ÀMÝ”,µè†h@žIr†ïíüžÈ"wbÀ\EªXiŸZ°û”0n§K ü¶ÚîçïO-Qä–ˆQRqóhm:¹äÁ ¢ô‰ŠþÀ×p”~ꇄFÁebãÇ6Þ›¹ÑçxCÍSáÞ2ä×iÔ Õo+Ú”"±«£‡¢¬™÷4¬/Àh}ï‘Ù„þ6Ï­QbïîÎÖ6¡D‚ü凛µC»¯Q?@ ¶ªäâôŽÿG$·žÚ~õq{yvÛÏ_¢NP±Zí¥ÀÓtø®‚Zç’”šÃ‹»nS¤|wµ)ó¼ ’êHs«gI*9"ψ9ì©.ŒÍq¼*ýaÆYN£Ê_ôÏ*ðÜñ€±U¼çnªìzSeŽ¥R'Û³¯åK¦G )ÿ¢nI.(-‹t黎+¸\w23•ƒ_YÒ mtûƒ²}ÃzPw9OVEP6¦°Óû:w@€Âh„í;áâ »~sÁ“°"cô0'ñ 5£úì@­|æËÞè®_ jˆ›Ú<«Í]WŒN»bô-hó“Ë‹ñøÆ¶¹xଜS.„: ’î9 ç#±lù`*Ê4|ÞK6ÎàmxÄPwô²ûI,™ÅõOnÉv¸Ô$ƒÐᑊöoª*”z¸Ag8°ÿBư•ßâë/dL…;Ù"µi‘—!5ü qˬh»Ãè–P«P["¼ô¢möfÉ,Ì_-Óáj>µBƒú¢c¿©#¶,å¤zL¬ÉØâ½‰ÍW¾haû»z}‡&+À®fëé˜ ÏEçX·ëÁ¿8öRRÈÂ4}³_«aÂD\Á׬ã,"Ó§Âpöç3Š–ï¬/Q´~°b–¨˜å×AG¨Yˆ{£UÂd9°…¢Áêrœý·\»…|‹F¼‰0+8<(éÉ«>ZÒC_¾ÊRc¯¾Ïx;¶Î¹± 3,>G_¥ùíÏ€£1:\¿´3J´\sXFýX]?m1óÎ?‚9®° !¼5gÜ«CÛžçL²}:z鉾¬É+»íÕ›‰ÄÉ{‰I›7«=~ž: µA¨©¾:—N:Ðô¦ØÌC¬ö^:ÖËenø{ €z·µ)ë³Ú¢§q*´lJ“Å#)Ö}yoËõ÷?[K€Vºs| ”Xõº-ÁP\ýÅÙWü0ðWœØ`‡ÉÏî¦YqÖÛ ¡ÚŸól˜î–/3LáƒÌ•‰—0TZ/˜R¤ùD”ó}ã)0%Ô,àIÝy.ö¸æÁ.6ƒ¥h°…À &~[ ‡ôäp’bÚ3}M„KĵˆàmÊ˰ Ã©†_ô6¨qÀƒåB¾¹’hŸÈ0i üý‡./D)-«ƒÊ¶å,Ó±[§YT‹ˆ¯ôÞ³Ñ p·×Jm{á FôôžDXîj¥ÛcùX‰loñgÍ4>íÁÆ@çÓhüEÜb¢¤tõ®Oׄt9C-á>ÀüŒÖœ1ÅF¦<7¡'/þS=š(©—øp)<Ù«5Ü>#‡ÕžýBŠWTäñ†Ë>ö+)ýðáíú§²?F¾ª³}|jÀ_êi½ø÷øO üÅ"®KÐ#Ã]÷³þÃm1ÃÛ.q„“&~Ú@8týŸ6^Üy·W·ÿC ú€þ4Ü*¥ÏHÜ–Ÿ®¸•ô,”;íÞŽxƒ.ž®¿yÁg÷Ï¢to…W<Ô¦øy‚—|v/?+¿ÞK1ÉX)2Ô¦­ÍTéôMÝù—õúôÅ/ÙØ§Æ†Úçcçç?]äêXÕëd³[Ìc: UŒmâlÙÕåè@ç+z¾;øç–kz(|ñçn!O®ú1€¿o/v÷ÛËGŠzj)îïÉŒ*ü‘-§K9,àAi»Ni½u/MÑVþ(ÀVdy·"¦‹Z5ûá åœÖe¯‹ÒâaòЧ¸¬¦ú2ï/Æ%ŸX䌛Ç3ôNq—3^ñ-Eµaæ¤zÕÈ|*QÇ•G£k±åIÆYµ«xSöÀ#Tj³)Ã=§¥q&quÛ>”ëWüŠÃ,Ì’Üñ†±˜õÅfdF±Ê5!°¦.—ïÐàÛ•zØö ¡Ì‰¿2gBùX ±*|Ì5u²8àŒ{Ñ} LˆÉL–ž[ÕR[\"¿…=€û…ˆXäàq‹Q:Íã28¡ªÛ²£ë¼Èh–]>^ó^¥…Š%å5ûüÐæßþ£UÔ¼2ºŒfO^BËÅ›˜MϹ¸ä5°Pa!g)Ybû¬J Þt“ç’5LW™¤cË–€QN$hh$–”/¸I³7B8_¶TÒ-×ÌM÷³kD¡zZÛÙÛ–Í´¹6.ñбøEúR¢nŸêc”¥À|ÃDÝ•éNlšF¼ðï?;¦X·rôB›C^–Lä#™e)ó!5ÜV–Jò„ •Dj²º¿ŸùÏhõZöÄ^,ÜŸyIS÷*;~ËÒ›«î½ ;-¤Bš‚YE~TFò`_é_×çå¼Â°\—(ÛBQªxþ6]ôì­vSÉ<ý2ÍhU¯Æã­ ‹ÃIæ›W l}ïòMxîðu.Ù¨[>eÍ.`÷Ÿ†mé…¿W*Í«]èåþ÷?é¥(%endstream endobj 699 0 obj << /Filter /FlateDecode /Length 4780 >> stream xœÍ<ÙneÇqï´‘/Èß|n0<ê}ÉØŠØD&à‡Q€Ü!9Z3÷ކœ‘©/Èg§–îÓÕgá%%'ô0­f/UÕµWûý¹õ¹ÂÿÊ¿Wξú&¹óÛû³ïÏpâÙÏÞŒ1Àøý4NN§1ÄjÃwg:?ÀÄ-ìÔtæyùçêÃùo.á\LYe}~ùöŒoÔçÆäÑêp}³õç—Î^Ø©Qå`¬ŽŸaì”I0þ´»PcTÊ¥á³6¹lÒ°¿»°ÖŒIëáøÇv JÄ:Ÿ‡j¥¢‚Õ8V)š¤Ìpc£• i¸Ç³mNÖ‡—À gå’+±¤]êåEx¿‚Û Üÿ°3nMvøag˜”ŽÃþ—­Žf¸iÇýçåò^Èd3x u~y}6»»üóÙ…súüÂú1…€Ó¯‡kº;Ú˜ðl¼;çlxZ%g¢DàG¾1»èáv5ú [#,†#ý´<«B(NÁ[¦ŒS VÓaž ºÆiŸsTðlZ—×ðnŒÙoé‘¢†óŽŸxÀö|ŸR¡;[Rýs#©¼ç‘IÚÈ'}× š\Œ6®›f LÈ“| „ >ìŠØ …‡ËÉO7ÇÜ1 ãMÃÛÛË=‘Ï*ŸP†9Ï`nXí·–H´*ttr Ö9¹ö³8²)  ¯‹îÛ,0P†¹ëuG {Þå@œâØã¥~)Ekš¥ÌÉÅ Ð÷{@Ù³[Tü@ÓÀÁôv @à/*ôÚŽ”#A›MÎ)¿í.è錗"r#  0¨o‚<û”¥¸Œm(7Ò4¼,¼Ö+>#æNÌXe à’—‚£g¡›ÝðÀŒðž– ³N€ªóþþ¾]wGZ1ã ܃K^êÊow´Ïëäøº ©A-yêæßÎ.ÿîõð»]²€¨4Wã4À®¥*ø îN $€$Ü’K 6> >AÈtÊZE¹(Ü0Fxšßý”!¢M ß²Èë˜:-4‘ÁýíåÙœ±Áò矶MM¯H«¥UØžJcdhƒJµœúâã’³sò¼×’ í Œ¯ÚcuFi&‹ø N¹ Í€ºW¤œ^¤î¼=¿/–'Kƒ6u¨-òæÄ×…I€Mµå1ÜÙ7)Ð/h ѿᕥôM3— }òÉliñîˆiAB/D…u‘´ÚGäÙ¨Á å§È¼Pb•Ê"•|!»Š…,„-¯ê•ëA&¦•#öa–«0Á4ÇÞQi‚7ñM'ÃþÍn2?B;€²qYÎHs“þÑVƒ‘ßtNˆŽdÿ_ø†JÁ ý€#2ö=!ÑiÊqÓ”+:“àä°eN`•ñ•:+î‹q €Óe5ü9o8ö µ5aì,4)ëWg\Ú:Zð‡<ôŠðè¤3Pd"d£¥—Ó»Ÿ´Tï²bA'Óà´ÃŸ;Ï‹¬¹ó£1՘˹e\¤Ÿp Ú‚¦dÓ ¼g.7®2oFæÒ’©‹*Ý#¡96ºm¹È{Cþ±qŸði™øÀ¨™ex]Ù"plŽ7<Õ#˜S“øÆ46˜¥m~Ç€uÆÒ"•·†“ÍR­{¢¼ ßGà€¸¥×[!ëVü‚d2׫ͫæ<=ð¶ b2sÈŠ8÷¥;AÂ(Û)Qr›ÁÉÊaA—ªM§gøÈ¬LÀg–cº†^*ñªÍ$F¹åËáÄÍЬ H ´C³RåàÝ. Ú¯ŒÞÆbÈâ>Ûá*€ʳR\%ÁÍûïÚÚÎÞ ©ã}álIA=w/]^²`%¬= C8íÈŘs>²Ì4{ÓA¡¯3 ½â†Ôlr›ÏUžÁ?é¹bÒñü-˜öx+ÿÀA;¼žïÖ ¦˜Yá£?–ÛÖý¡y ×<:l;TrÐÔ…´5 `ÒbÜw@¡Áµä©Ãi l[#_¯ÛÉÍeí¿ôrOðž·ƒlCd`EÿKOAøAûÂá'rÚ¶-uñoçñÜ k²ÏÞ=¸.ZøK¾¦Rm5#ë’ëõ[¡X¢™[“ ›¡WíšbQ—^: )à|©ë¥[…>`¶À"~–¢ÙšS©û¦#xŒ•.ˆUoüEDDºØPh(„çÈ—ä,ï8–¥ Îo˜a­ÇÇÉDÁU“ ÇU¯ múß'ÿôÀ'øìŸTû A½º™d¡ã¢Ê}JƒE]9ßëz ˜‚”¶Å—.×=ü…àÏÀ?r߆¥Vd/]š÷MÏ:nY—} Æäôšoµ^” É÷?Ǵᾠ)©UÆmx׆¯Úi_N-à;À8¢¶š†×m8œ†jë¶àMÞµáaõ°;÷«G¼_]ðІ¯möfuÛ'qónõˆëS×íWÑ_lKÚIJ†påájôóLF¹oÇ6ü܆׫LuXÝ&e‹ÛbË9=«'ðœÀè¿€pdqò´; 1È?“’\€ª „€¦ñGºø¢^ÔŒzw¡}‡[ªmÛМæÆêë'Ä6tm˜Ú0ì0§OÁ@ÌÛ0¶a" ‘L;ë¢pµ´1{µÐ†~aÛN8 ŽkøØ6Tr¶bi_€¥=…exÁúÕÛô °ô ½Š¥šäÚW©v«èêÕóÅ­yuV½Ý(©´Æ'Áq«8Š÷5M¡ÇÍ£ÿ©Á !dÅPˆ†EžÇ‰â ãV©V_ñ©§›¦åak„1O6—é ¹£bù\jè¦ü…X§†–ϹF wŠi•ž©;áiÜ*ÞQWP³§´¥`Ú¼:kN¡fW·¹î„ Ãúë Ñ^×ef·Z¹G¦ªZõ[1YÉ ra× Æ: u;µà¦—ìFsO)dð^Á?>f¡hI.<–%ªÏ›.l¥„µš+Éã{ Ë:‘Æ4ά\„+<Ä_X.¢%pãérîÂ\Ùj¶QDu[½ë¹Õ>¬´ø¯¶M”0J‚¢N©síW ,ÚJ…b`Cì’ ËÖ ,ÉQÇAú}ÉÊ 6¶†ž¥Jq› û$„þ^N¥Wƒ½£ oß1öab§e¶²¾€¶Ž·»’oa(û| S#êš.(üÿ¼ÇB„räB¡êøF\ˆ ‘ùŽWÆ<”þ•@Ór¦µ{)‹?òNl)҆ǹO•.«”X–ÿ6ŠºžrWíÍŽ"Ë)j¡l#"VQŸ*5Àhû§zä Ÿªâß­¶Ode7q¼°0±ÿÇÒéàŸ¨p¾%ŒaJáÏ ÎS$$± Bp>Í2,S¾q£ƒKÖ·ú"^ƒ æ…6â¢×jâó¶’(uÒù ‘%Ó=h:œ¶¶$[ˆ}€#ØTªs®çSßUŸ€ZcóF=\ÅÊ{zά™hè9Ù¦ä‰ÂUÄäûO.c!&q†¦³\}öî˜fÆåTwžLH‘èilÈ.úÑp:’´=£¾4 ËÆ\TŒ±³¯SLD~›gùG! D3ÎlK\º¯GµÄ8wSQ¶ðW'*¸Mg|j•sëôšvI.œWQ[uQ9–„ÐQA5bÝÄJ öž7ÆÄ¶Wä´è^cSóÒ•iÌM@Ûœ¸±©•¾úÆ@ä¥õ˜½7è”]T: ³¿g&Çïé½]t (ß~ú|sx¸ãÊW3>=V³±tsS§AßíoÇû‡»«ûu†ÀúÕü5&:}’ ]³Ì¤‘džøz;V–|® ]2Uš¸¾»:¹ Ò‘öž[Ó˜f'4™áà¾óg)‹ü–ÇxÅjÃNzÀešV¦ø #'øûfL?wò0­µ¤«žWÎŽnâ Ã¼E1U½K(Ê BùËÂJt÷…ÄIoÖé&ÁÜâa+• l÷е?|˜É÷û´ê2¾Œ*lj õ¦£WzFYB´mJ-'òãBÚgâyQñëÍ\ßTz¦E @ú†Óääy`kfÍ,´12@镆›#©ë®ÕQQÉÖOä,…ŒIOJµu¿nLs‘|wi Ç[°¼¼çÙ©ÿù”ééÜR܉-—#7ñ'ºr¸Â>eXÛÔÅfBu?Î\l~À¾&ŠG`}fË6]ï¤ÂFˆœZÔ£3>už×£W5ýVšÃ$;ºÉc”NÙ›Eä[!%Q³NÓW- íbmí Td¹ìP9l»ÛcÖóD÷ÓÌ+µj©8J?tòäˆÞÁžÇµ2œÎÛžØD¬ÄfGß/lŠ…hÜ(÷=±Ø&SÔŸŠ´V¼)<9¦UCå¬\ðf !nxrÑ™ôBîY­Ïê´Œw˜ó. «DÕ²˜ÉÄ>ÑÂlÓ}ÏÒáÔº¡ºÚ¼Ðe\çe­ÄC ž†KSÿ×»©d¹ŸùqD°´EJÎ ŸªÖ¡çz-Ê/t…ïûÞCOVã(Ô£<°ÝxÕn\Ÿ †½¥ø®¢ûH(붘‰(š±Ë p6ô¸å؈ÓoØñB1~nCgçõ†õá–CÓŒ"&ç9 ~›IlP;œõ™ú&@Zÿp;6Z¼š¦~¿¼ñ ‚ÁC€?ªh¹Áý7]@Û$]0¦0«Ÿ&å5·ËaPÛ÷iqÝÉ \`§ ‡;rá꛾Ö}Í>!—VåÚÐùa.vϘ=ÒaÕªú±‘ˆ³ŠkGQÍ£ÓUÝs_ú'µ››¼Ò>Ø%$7â³fÅšûr7Å=ÂuŒBml”ô$nžEø‰ºLº«4$bÜp‰Ó…VïŠÁjý_‹6g}Ÿêrnp VC¾mÃ÷mø¹ oV·]­.(í²d.k$ÅLuÑ&Iv˜H¶•%yÝyX À¾ç4ò)¯Š±÷—ÆŽ ¶Z8¡÷Ü™e«_¹ê„–¾1™écö§ž/Y¾˜>Çûd«~† l4~ÑËk-y|ë] Åß©^û;Ñ[·!Wõc¿´)Ú{qˆ|'ö*0¼îó£D›´èñÇé¨ãÑ ‘ìt2׌jê†À· ÿºš‰:JB}ï›$Io‘¯Ï¹û`´Æ?jS3‰è]ª¿¿Ÿçád)?àðá‡ïÜÐG©Ãá¿Ñ{XX58'¦¹¶ öµ°.­Àâëvðžc¥Qa_‘$œ¾JÊü¯½æÊë·ônªM†¿ŸüueQmþXô‚wÒToÔuÁLj?Æ1Q¯—×›Ÿ`¨žŽCvhëd%°|@5Çþ¶ÉS]Ïã˜áÉñröÜ¢§Òï“ &[s½Òhe/ºM?tnfý.©÷¡ ŸgNÁúÖ@"GþpQÇ/ýMˆòã}É’ü½Ìe´ße˜ÒŒ¤grÞþ »‚ÞgQ*¸Œ¢ZYî•òú ƒà€ÂùÅÊä$[n”À;%<ñ»ÊMÅùÔͬ¬_¶*Ì9zÞß‚ó!›.Mtò£L6Ïʘ0<ムÆÑ­¬v!ý^ÏFVõx+’еî# ú휠%¿þ‘òNï€ â‹¹êwŸVÏ$hrTkêF6–È” ã\€7ÝÅ‹ŸÍ ›Ÿ!ÊÓàÿñk©‚endstream endobj 700 0 obj << /Filter /FlateDecode /Length 6102 >> stream xœí=]o$ÇqÈKhýBH€Ùä8éï;p±Ï@+°N‚@òÃyäÑ&wO·Ç“ο>U]=ÓÕ½=Ë¥Èrèáš³=Ý5õ]ÕU­ïOÅ(Oþ—ÿ½¸;ù§×Áœ^ïN¾?Áw'6Z5zãÛyŒ c„¢ ßüçé\Û2­yšÿ¹¸;ý×s\ד1Š(OϯNhCyä©·~ŒÚžžß Ê­Îÿ“¥SÕl xáüòäÛánu&Fcnx‹cƒñÃÇ•ƒTÚûa}…u Úºa»’£Q«á>µ1z¯þxþïi÷1j4ÊNÛürufŒÃð|MÆ(}¶ØÅ+üpYVîW¸a¸`;#D":[ßÀPI¡]Ò ð6׫3­Õƒ¾Â÷¼&À7áºÞj“VBx†õûì—›´!À¯†õ-þ„”°ýçÕ ê— NCXÊ@ípO 5@í¡ÆUÒïn^—-izMÝ3­ìè„:=Óv °Rzi‡/!|Ø»„Fa£ú(‡(Ãé …PÑãdÌñцH¯I¯=b)MÐ0÷"C87}g4Þ¦ÏwÒYøä{F©[DPˆ²^wÚMW¸VððùeÙí]ÞKª˜²l‚ÆÂ–¸Œ(¹&nñèwYȾå|VqóL²_´LžÉw‘˜Ãªè8sÌØŠ•tlá1âVóÝùjˆ %àcÔðæF ¬v[ø‚x1}â:ÓI ŸÒÆí2_#8B ùÀ BÀ I€º,F*hUi‰CfáAÎÒÒÖÌ¢_öàâ÷9/,ͰΛD™‘ ÕÄ “–»RJy8ß +®ShÔ{s–ÀÙ?ÄQZ=+\è!qj®ËpS†»2¼ZuEˇ0ŸžI ˜‰ŠöXãÊ*åpÍù?ÑEz±’ŽÍJyÀ¤DÌœi'Ǽ}Á&ë¦çNÊa}½NtQ™8äPtß$þrÒK\\;•à¾)'èÛ$ÞÁâ—Ó–3ñ6CBò8¿÷ž6µ±$Œ ¯j®Àõ|Hœ  d‚ϸ/Zˆ)À´´“ô(í²ÝÐ×"r~@³#¬sºâ‘›¤g@HÐ$üjÀ ïžõÌšIÇÀÕls¶L¹$Ê/lšŒà NçËE÷5R‘zÐÂÀ|@x1¢òÄ­‹š"-„ã:¡XØ9aÂp\ñ ×é«¥ÓÞp˜Öù—¤/Œ2É´LL˜ù=„"S€>iBcж_W¼œµM¢óeöe%Ò3É8­])=…fC[nAÁYÍÁ§•µ CA&‹v?€ºf"´år› |P.r‚ptÿ*¯!+^jÔÎÐðÕûtRHRqGÇzæÉKZÄFY±ý®¤2ü·¤…¼3aö3Púè1èò(°.‚Ý#EWѪŸbÜĺÿ‘”§ @‚—]å)ß´š­Éw«Á8Û4zQYx”‘µŠ<ïúx Vb„Ï£þ™Ìƒ¸ÝnQ“šˆ W÷›‹7Û "ÁŒ`˜¾®=ð‡(Z»/¦ßpöæíí‹üz@ìÂ&j°—7ëò z—Ó.nøúìëi 9lH7˜¤î‹¥iÃ{€lŸÚCˆ’£Rúôü÷'çÿðípÎü¯w‰ÿÀ¾¢;ùm´F¬\C,¦ô‚wÃ`ª¥òtM>{Rm`uå¤Û jP ü&gR¿/b¼&ý€ÿL"¦akd4E›Ì™5ù3è'|JÆM;[)®õ°Ëë‚9Z°nŸÐ¶*¡ô’Ä$âÀô5ó7÷ÄÿÈ€b[› :nè·ZøòX-ȀⰮ¹ŽX]úV:£7=ežã–Öð°Hւԣ߆Òh€“ ) x ˸ŠF˜ x:T€ŸÂyŠ|†LÈ*Ç4²™u(EIUQf·êùIObÐ#õ°êLƒÂIÆÌöTmÔ‘[¸*ô[kn‹'N‘_ÉL`a•²MDt6›APwÆBp Šã›Ê~γËècõ´åbˆï|Õ”Kºæßö>Á ¦< ì$74ª%‹.¸Û·áp}3Ó÷J/lã¹;²¡©m4D˜žVÌ73ÈMg‚!Ä¥ø¹€±%’s¨1þu­w«]ÒÛ ¶Ûîpß*ŸqŠŽŒ×“Øæ­“mìS·s÷ý¤¬ôØýŠ})÷[3 »·Ms:r]³žè f§'ìÅRgÓ'ÕáÍK ‚hjîh­“… €^›Y"¨ê,Mmãa#i}xØø—þ:  ø¨ Ä‡íÍvÙ»éf-&Aéz4ÞuÔDЫäЀ¹BÂÍÃeø¶ weø± S,;û>øÞÚÈ÷|ºA"4HÇ—C#”?£ ÂõP¤šmêT¬ÒxÀôÞ‘–+Ñ?Ö‘#é'1›“¦@lqVË*躘yi ±ŠÏ1ºöŽ26ü9%—ü[zó4[#k0W(‡?5³³æÚ'2ŸäŸõŠ9Ø‘A51Bì2I|²Êý]ò%ð ÿ’ëûâ|UŒWaòÕùÉ×'”j·§›$WàÈ eNmð˜ãI™r‰‰ò¼ì£×¦ÁX†­· R|úrCu§_–\ÞåŸ2dp¢PÆ(€?ÄýStp9LÕqi8Êi`YÉD!‹$•‹ðLkbœÄ\ÅmíM.) ØuQ%äUþpGO1Æà˽+6´²·3ÿl&.=ä+‚Á ˆ³J|&+•sr¨ ®s–UˆÓ÷}ãÉÜ< ¥7ܺS €yC6æ lÓ)|½o«3f†ž²[B9Y­“«Ë]^Uú=ÏÐíè 0ÆÜ(g"9CNr¢¯xyKÐùbÅl@eg(g5Ù-²oó~){œ…Ò ¢w€ó=û:¼HIŽð*}–[<¿Àß!_`8çdÞÙ„*.ž•æ%wfa¡h !š{äGc¤£0Üåf`ü¥ ³3BQë“ F¥féi Éê ðÎs›œÄçNÆãŽ({©Ûl=wgsÎLè9º*ætÿ(ë}òlÐqé(’Ïé€kSXOdœNGA< ÜÓµy:S} “4ÿÛ)±©ë°½G($»‘2ªiÔàWÃv“’ÄÇhÍŸ%f𥮉”x>;Áü¤*"RÇCñ®NÚ&œluBª¾Q¶üÒÉpºÑ—3i:4JÎËîð}nËðv5Ÿ*}.ÃÐx!6\¨ ëØ YÕccr7›àñƒŽoc¥W~ö3¸f‚ À.W+’¨Y9 ;GŽùÐyòàR…ÜRcå’Ä0W³¹$ªn‹¬)ƒ'šó1UJ䓃œr1ŸÉ]<¥ëmÁÔŽÞÄã¶)ºÿ³j¡SvNU市›œÙi)‰ˆÚáŸU+æ~¤IŽ‚Þìw½+BJi€Ä89Bv&žÝ°­¹ô÷=Af<÷Ïä“Yãk0áþLP`Âôˆ\ÜÕì›Ö»­ê“‡ã/F¶EàF•“±–gòñ^•ÄL–LêdÌ-ÉáÆ:ÆáÙÔxp‰{Û`mŒ'PÛXpBFmɲ»áy5ÊÌÒÙåŽ1‡®BK+W†2«õ¢©[:®ž…¥ò´˜ƒ’óï„b›rib©ú¦ÄÇd‚’Þ†]ŽÌÁ¯6GDæKö¥ Æs[Y¢èûþz3Dõ#9=^Hâ½)wÍ?JÅ“`¾ã„!O«jŒ^6µNîÎkŒ$],ûœƒ?gáQ~#VÉ•tg£PG;>H_“ÔHKÙI;%)âE.µÏ:“‘œ¤€¯c3»Àj`åú¬:Ÿ¦yá½ËZÁRH<2s23{ƒR¶´ƒÓÐúk¸2úk$î)Õ11õ"Oï‹ÆÊ=ÑráŸ_'‡Â‡YY…ûùgÎb^–áº;ùïÊðsޔዠ4wìbɉúT†7e8/¸sö± ?”!›°)Ã]^•Å~]†oË„»žƒásëôµðÞu·¸(2®Óø¬ uŽeh»@ÈòÔU.æ<~‘4@>#ÞùG`Eí(TMŠ™V¿.ÃÛ.G]÷æ¢ÿX”áØ}j»#ºxP@ {jºOÙbl·Œ¾½1{‘qÇó?v·óKM´MŠqºLÄÍßtiþ¾;·¯/ÞöIþig²zß•ëweÈ"­]L]v×e‹±™¿í¾Ößb×}í}—à_vWø²OÎ.«÷%E>SîŸËÓ³ò”½v×¥ §ÜƒŠüÓCîºäb„Ù=$oº"µé.ÆåhÝ]â¶;ácŸa¥u÷;|íA23ùëSœI׃ÄÌbŒžL•/x{«µ&–¡’‘ŽÍý«Ë§ò çfDýÐÛð(a]wQ̆Œ2Ì´2Eý¹øÇ±G£q½ÂƒŠï¦Kæ3}è¾VѶ§û»ý<œÀC.S±1º ¾Ó—e(ËP”÷~Û%àuKá}‘}Ð\U‚3OømwÝë‡Xà'Â`ÿWaèÈüœ–9Šõ}¤T«ge;Rè8ôýfÆ2/Ëð¾»ó»Vµ¨âjuWa¢'‡•‰ž'üWÝ}?«Oý~®½oúžþUwïÇîbªúäà ÿ§RÜ?™Ì¯»;÷µ‚ùVŸ8‰æ¯͵| þ\æ~[ž²†Éêß—¹¿)Oÿ­ ÿøœ\ º+<‰ øéÍQfÿM—ÌÉÚtéÆyã]×V°Ðyá4‰²E­6oOÄäh}}$µ¯L6}ÎmÿË7a´¬oà`‰\ªUáÝ'” ¶Rêýs0ëRŽžO?¦®=:µÔ(¹ØÚ4çf7ý,ß-­E9G–(,{©Wn>èy†B§˜JkN1S¬¤ŠßÓi”ñ°óõ»t RÓ ÁêóåKzŒÅ·Ø;¯±Þ.œsŒRÒ_ZU?þW~1˜ûÜÇ~§x‚ìëïüU•j}"ˆ£R "¿é—'²ì7¯”ÚT"‰ôîÎ'T‡á À\_³¼ùzÕ5€¨Ë§ Í♥­?)ùAt^õ¢Ôe¥ ½y0WÚª-¢:ªº¶(êÄG,_žj˜á± TÄœK1ÞÒS¬¯š»eø‹§“€ßt({Åj¹Rã,íçâ´4/®¸fÜ¿¥ÑÔ;¾\¸aÏù¾±ˆ‡üh¨í±Îºg>I«›,ð5éC]:a)Ÿ°%ôJÓœ‰öJ‹[õt„u½Ð´ÇWµ‰Ø®é01ðp¨ÖøØ50§£*0ÈYÿÓu:F-ç¥ëÒ›°™xg¯Âa–.jÞ4¨qwÝB2´T¸ç|òf5Û±¦:’Ê@ÖgR·…¹+>/HÙ²híô^“+…‡·ùqõv4ϰÉÐÖ3”?FéN56;cÞÝtéÀT(Aˆ÷ÚJ^ÉÇy;3É¡!õ¼ïõFÑTÆ[ èDöä>ÈO£TìÔË6÷+3—v›îàEŸ¯R@­hŸRÊk"*àQM)¯dz@ÈïVA¡ú#­XJÅ6?õ¾€‰öÁñË…b`Vñ´eÓi8×À}ÒÞ+O•tZj-«JÂH«:—— 1ìHý¢<­šèë3æi6Û£©9Å6ŸÐžNØZ¢®¼w!ѵ®¶Ø&9LLü2 ^zOuÎØ°ß‡˜Ø+ä¥ÀÃD [>UÓé†i…j/×H‹`WLR¸`¬Š3ƒB³«®+^K2™ÿÿR”ý6uWëª>üTB.±{tÕ ¥ª¢ü ÖeÏw´_ ¦ù±¶ˆ] `‹} ·\¬Ít‚8E·d5‹’š.7Àú™…^lVjÔô¾oˆš×¹8ðFÁËÜ鞘3s1!7H[DS›Û™ñùä-³€ ×ìâ ^%?&ÂD\¾ôXÈÕºnœÇ¶üç{'˜¿õýj®\ær¼®™îЬPz.‡Øæk10¼HVëx…¬9¼‚Öz º¶m,`Å2›U^—ë*>­¬AÑxJmíì¤a‚Œ.ûù üªl?ÝÐÐí¶œÑö`±ßzº=BYVtfÁHzð_fLÀðP[u*ãáw¼×†ýûóE„auÏÃ¥ÎØÜïC{taà,¯»¼t8ºž<Sm¸`äfÃ|?Δí…?“{{ë½Â9aA<“³,Ó_ÄH2mz ªI&æîz2án`ѪvÉiI€¢«P×®1¯}ÆÿÒä°MKp m™}±š"´Ç_"‰šõ!X»h*1[¸ *LHó¡*,d&¬º`¯™Y¦OæÎ­ÃØûë羉|¹SômŸQyV?ÖÔ\Û!ñ¯…[hšÎ)MNß,ÍrId#ô¥Ð~¹ô/“&¬ï\™\ ýv˜”ÊÛÑ{:ÔnÝ4 §YÈOTóÌÙ¤h%g¥¨¯µ ›ÃÊ¿%ü`©x/l£„NqƒÌå]E,£±V̉Ê_6Õ{M:vZL“‡8]½×Àˆ©?Ç@spE ºD”K:¾)´ŋי@ð„÷2%²Íõç“Ô-Ç[Â-¦y*ë>Fr6愨¦e9¤s-~·¾õ¸ÛqSí§ÑH^)$‘ÂS±.îˆwp«ÎY¾²¼ùK«;/˜v—Á—½Ö’”za‹dÓ)zwøì™NÖhÇÒÏ·´¶„’'·lÁ+Nê8J·ßË4bÁnð΄`›ˆ½k*êˆ×ÀÖœ}õë$sbxAmÿò—½ÒY›ÜÂÇ™/~YÏŸo™+DZöbºPãP÷Î0‡.bH3ƧEúfäÉÞ n=U÷ïÙ#þ%¬„á¦rÅo+Ρ½u¹> stream xœÝ\[s7r~gü#NåiNÊg<¸Ùlª²UÎŵ®¬eVò Ý‡#’¢´&yd‘²­}Ù¿¾_£1ƒÆœŠ4©T’R¹ â`€F£/_wcæÇÍЫÍ@ÿÊÿÏ®O¾zíæòöäÇê¸>qÉé>x´¯¦v´*ö Cm¾9ùïÍ :.ñ¤ÊsnÊÿή7¿;żÊ[tõiHjsúú„WT­So”ßúdÜæôúäe÷Ívè‡äµÑÝáÚvÐí÷ÛÝЇa°±»A¯‰6éØí¯¶;ct•ꯩmz?¨î{zPyíRw‡¦†0`4µ‡tt÷m­ãcwKs›óÁkä31¤.êäB´þ€Õ5Ö¿Ûê€U£é~ÞjßÇA…nÿž¦KFÝ]Ôéþtú qÞIé¤{Ã6§ç'NÛÓ?Ÿ|}zòþÅ*mfã\нW8(0(·Æž«©Ç§èúÑ3>U{Æc£ï/KãÅ¿­"˜ï†Á„ÍÏ8¾oðߟAµñnc{ƒ=ky®*©>Z¿ñÊ÷J[:Wüþþ¤»¢ì4Ä&âØw6õÞi“7™Ò`ŠV ‹3Pâ‡Ã3J§Í|‚rõ'5è^göY0_ü°ãMRëðBËŸœÂ©¡gçðPÐAL‡Ìà7 O+ãÅ3>ô΃ƒ;kqP’ì±}Ð Ôݧ`býÉšÞŒÓAŠ X(Ð̰ƒ’ë( ¦ ´gxf²!)NÈv‚˜A¹~ÐSÏÕÔŒSÑQž™þæãÇžf§:É2X)gÞC.…˜}¿0¨ö8?r1õÉÉQS¥ë­—£¦ž: êY’¬©GŒÒ°6ÊQSe!)ÉQSÕn[𡎙ÔhÍk6]0Û5ª‚Ó ¡rª`ÙîTï¶;5$ý1Ô?†ü‹‰¦W¶ò/>Ø^Ó®üa:5ý@m·%“eg2qp½ÓÄáÑ, | £`¡žzä(?€toĨ±§‹Ôà ˆQ¥§åtö2bTéiFZÅ(Aý€˜¿SyXê#öä‘£§# BCû0±ªÍd¶ëA;³à Ræû¯Gƒ{}d¸¯ ÷}ôÛM$úm#?`|ó&(X“˜úû›óÃõîëׯ·p*ÐÛ]œÝÝn¾=œ_\mÙáÌåQõÚÀzî0òŸ²Ñ9}sqxq÷ölµùîÃþæîíÕÅ-¢‰yÉôƒƒõ‚Ï…ñ5´|÷ýþúÝÕEûÀgr^÷Y¯q!ÈÞÕu‚JØwʼ~‰±‚üšç0^ ۷²*Wì =N´xëŠåÊ=ÁÁÔ¢'ÀiÒ01õ`‹‹„šrðM`£’Ç/¤£ÕòÏære*ÛŒd ¨'¢¡+°4.÷訉Þ@4áõÐGË[C>šz@+íÐ;¬i‰fB Z}Pä>Y›´ÇÎIËÉŸ±U¸óÄ{õ 3E+öê5ùG+öê dÍ9±WoÀéää^-heŠÆ½ºdÇž²W 5zZì5‹ú(ö ˆ£b¯Aërª€b©wÕÏ}ŸåΘäˆ;Uî$?ï’»±§JÙøÔÿh²ÆcûùÁ7MØfò`ØN+!`¤ pXŠ ŒXŽcX˜R‘ZãˆáKÎa¦s°ù! Äâz®Ù€œhZ`¢`ÿ­CÚ0NÇ4«ÀœôƒÇô;¬cà r B8e $ž¦_Fp£H?àœ¡Ð{ Ú0Ò(„S œìl›Êæ`Rl&‚ È4öL¢3>ôpÌd`È]U1³û$d&Lüñ¨ÚS!… VÚSGY˜pM±âÔ#Fi A#Ní£,¿4vˆ1æÂ*9hê£f»–|x:h2)ó2hzj2+ I»5M¶#s ÂËõ<¦ìÔƒ,ÄN|wFyÓN#¥‚Üi"j¢Ø)p±g?Ȉé¹s€m†kÔJŒEáBþ+åÈ \)pöml‰ÝåN­ÁDªŽÒhfˆ€ó”F3‰p¡ ÿ¸Ý%ø…8„î;JùhÃÐs:¥Ûó¢ÈD<ÚDbñÝ#(Îñatˆª{G#€*CÐ@˜:LØîÊ„Iw¯sJ2(ïó„Ôí±äž›)Ì])9l)7•¢éÎkúP¤»²xR÷3u#–Q •ó‘Àí^f5߈䙂䵱æ}%°Ïæ¥aÄ€ ±vÝÖPëÈD+çK±´óŠö5¥/oin‰ä»?v•>ð`S·r™SbÆÈ£‘{ÿ»--¯K5ÝgG9ZèU,¤Ð/Äb2Ô¤œ;}9ñä­2›äÌÑ1þq;2-Ì÷@ÝØŽ”Ù«V 0‹‘[:d ‰ó*neádƒëÆ4ò ù”¥Ü+ð ó?6œr Ú÷¯Go1ÂÅ`½éY6±SŒù †dQQ01™Ï”!·Jñ®9·½–«Ëùh7`wdõM–Rë·ejHÞ£DeRm[:²aòÈ&eLNÎñ”í~ÉR› Y–'R+Ù»¬Üapz&nR i´ÓiAܸ"qËDáô«ÐRƦÍôÕYr)IúýÉé?¼ì^å9=£<Ázc¹²0$›De鎈÷ùº±Á“9È M˜’ky–¹›îÔð%þˆ&Ï?Pó“šÓ„o«}¼|S¨=ñüdÈv›±Ê¶vM½`Ê< @¿9Ta ny*’E!·7‹ÂºVÌY)øÈI.yXMŒ˜äì¦Úü³e–»Þ“¦úÁ)Ü» gWÔÆ®ÈÙAêŠð7l °ö£ Ö]–º ÷¬"Û‘#KÞ» q,H)ò„“Q}µ%§•†™¬Í[ÙÜ9m€]÷ÛÚ¶KÅ.à4€&]çeâ#ÓG{ÅW ’­²Å´Ñ¦b•rå‹s§ åŒM ²1HÁÎúYÚ­~*Ð0UôóÑHeÔË)îáò«»/^M ØŠVÿO9öêÂ3<ƒ)í(˜î%Ë LŽˆb=ÎÍÃ6ËŸ·…¸ÍQ¶çFóÔ>ü3¤KZªl±#Œš‡Kcäe#Œý Ú /çzË_Ì t²ùð{T¾@>FIÉHíʘðĻ:\xÊFë¤*‘é þèdvÁ4,óEíS[fvÁ“Îa%í5eT™ùÄ53z0h.#.šÆÍ.0éôë< ‰¯ª‡:9÷ * aÔå{àm>³†Y›©Ødg«°Z[Ø;Â*£Ëé´v/<ò|È–;‘Ù*RXwÄlꆿÞsüYÇSS.É›×iÐ3¬;ù–óëN§ ¤é–÷f=Ð_ñH6L~ø‚39˜`®F„ø3³â*­Ì4¦³r’ ž„„ýªúKö˜…îdLî¦0’dAÌð¡ N»«<±E\”'µIˆ2gVYLÂRVW8wØYˆ p83𠙇 ô<"Ãî”íð´ÏX.¢ˆ-!]ú‡ªŠ·xVK!÷Ñà¹Eêf—Fvãž²‚8ÞØ(çùQ£­‘vw/™Ÿû£N‘5Ô%2ÝtÀÎ{#ñÇŒ"ia£Ž%ÎZ%„± Á¬ø:E´~É §èû4*Y19­'ÿê¶Üà×G*Sßþ"‹ª·!ÿ<Â6¶8ÖaH™o¥9AßýSíÝÕ^ñØumîk3‡7¥ý±6ßÖæ—u¶Ÿ>5༪Y£q¢·Œ›ÅO?\”AЈ¬îãÔ•2Ѽ©ÍCm.³GòdïK»_æð[IÄ4ö·µù÷uŸ/qS›‚S‡Ú¼®Í]m~]›¯›µy¶ÈöÛzDß..|¾8ÙUmн•3ü¿.âןbÄí¢ˆ ¿ªÍ·Ÿ:äBû\"^-2{Uw¦ö—й§«ªûÿ«¨ß.žá/‹ê Xö¿^;áœ\.e'çò º ¦¼Ðé68¸:Ö‹Û;ˆŸ¥ 3hµ¹,×½þpssAÀÏ ùœß]åluº¿ýx}}q— •ƒ´†R.ÞC¥&"òô¿`9K%ñY>›Ñ…B€@Ê(˜&W$òÆûn3¬œ'ö*6PE¤z0h‡™Åtr‘xœÙHÉ{:Í‹ëÄ"¼Y…ÍDRÔh‚Á ÂfQ&dÊè=OGQu;0]æ²  ç&I¶€¼2s¸¼®ôhH ½‘íþ]…ï TµO÷]i¦Iâ°šÂ$«Ü„G“”}Ù‚ù’¥ðä=Ão%1q!.sí/o˜äŒ‹·[‘U¬!ÇMü²rïlÎ2Ÿ‹”òqEº}ÎRæl8|ÆÔ…Ð6è¤Cñ¤GœµÈ)嬈.'†sVÂÚ|è,9ºÊÌù“<ö#³ k“ !&5>¬fç7¼$]wU—‘ü”I aBÊwÖÿcK÷C¼6]™‚tTȸ¼¨.b²#ò<•Éç µ’®‘sPrþ¡­ðÈ«yî£&c—kÇÊ?å21ñÿaA.P Íâ³\Ж^ñhÊ ­Õµ¾bÛ‹AªI4•l¬½Õj~r@a0—Íê,“Ú"ºËHÑÿ¢Š~£¼9N ™;¦"Á9ˆ,Ó'óáMº -ÎQ¨osªllƒD 9r-ÀGŸI ÚÌ¢*—}W5â!ŠÒ¾ºqœ§œû–¼¶c°RœÒ¼’Ç q&'ËÒ’t“øz2±²¢|ÁóRUlöú‡¥ c ¼$Ï´\ðÁeׂÁTe[æÁtüð¦k“lSÉé#Sb³»ÏK‰ùÖ7zoB¯ È™t‘ÓˆÕáDOÉÃÐu kG]h× r¼²Ù+Ò†Á4)Æ‹#CÁ%àýN Úsroôj£ÿ¸²6+J'»¹S &èNSÉP± iS»ÓƒGî¤l÷!9Ì·"!žÏœ’¬VæúöS¦ä#ÿ¢9’Æ,óR->,êÐÏc8:„ü cCVRÅ+8!S8™³RÛð W¯„¼ µà-8C†,ïtˆT‘§›IœîAj´¥×Óö<"¥£R×Ó*1”œÝhzc‰jCT;ù=K• pØ—o¶ù5$NzZcÀqSlc³sî&7þ±?6ž.4bÅXó>gjß!Ì+íVl÷±û¤{ t)¹Ùçoªkz:'I÷µi˜½ÅÇš·’½ir©c#osnûëí”·¾¼œ§Ç$mÁƒžÈ’úÛi¨îSÊm“¸Ñ”õëm¿iò“O,šv´@q}%r Æ©ÆÇ Ä-¢7iWÞV§23u_½Hüª‚‘%hX.¨q).PÌ‘?"_bW‚Ž~²‹Ai +W%•O‡ážp¼fg1»¡a-Ãæÿ\ 8ÕmûôÉUPeM®a“åRëdó3TºE–« VňÖcSošE&KØÖ`VîN1A±¹d ííwQî9¾öôPË B_GÆ(5«øÓ›&Ê6 /+¿3À.ºñ`“¸œØõsS´™³.£,éÚWP_k”Ž$9\|ì'ª“6¹>ÇÃ+—·V?݄͡hÇ/‡£›^ Q(IˆœE9´Ó€š† ŠìD'pˆK?„aë p*‚Âsé¾k0)Ë…eEàdÎËL7zˆ¾!!€ b‰W:2 L”ëzüíÉL~²‹™—ë‹ÜÝZ›Š|·u4],¤½$Bqµ®8 ñ€ëç©-SŠØº²q/3Oíu7šÎ5ÉŽCåâ'e\èÑ‘#,”µHV–K½t0“×ðp’8ZÊ;Ò»b M’9AÉlF@I¡{©h›o”k£Ç7Hò$÷ܺ2|?é§­sÙ²5ÁšÌ¨ÜÆ9j­¨Æ—}÷ ,șЅbÐÉãbvD¤ÆîÍ®kÂó›Ms©(ZΛ$¿â XÆÉÏÓi¯éµEå ~kìe÷»­¸O´²KÄÇG/1h¿üüKÖn«?»„M#’5í½²±$G.à ù„|2ùv?Ïœš!À¢ƒ\¢ƒÀÚ'‹ô΋µsª·Ì×÷-³{ wåvBÙG:z)€ñzrx)™9ßãÔÉüÆi–Þ8—ÞçÊîDúÒIê­+oërþœR£©-ŠT5})©`Àx\“ šÞŸÍaÃ’ ¿6wcàXœi7#ƒ§gÈÞØ\Ë•KÜ>é‚·7ù]Ó–êöž»U)g)ÄɈ{­+é #ùŠëº N1Ã¥:ºeø€Ë¬â¥QÖzÈ[²ÅÖ²zˆG¯yA¼È³5x„éL<‹Wp$q+Å€÷eº¤×kêô™°ÒQ¤W®¼«ÎîøÂ… /\hÝÝòÂT1"?’â²%Ç«%O^þù-9˜Ž5b»ñgF ð©VËžZ: ËÚ̉éê/ŸQ4¨ô¬m[þ°âÊ ó˜1ÛÌ¿ïe‚³XJ8ù²Äì5ž¹æïè; ihÎ €Ö”µ¥ ð”O¿Êe~içy ÜéCVJéÞ8÷Yœ¢¯"i¹ÿ$gl¯f4 ÷œê¯èz ³\ì\ªÑííMöèNÁ“É4Xû¢îè9q=e(Ó„'–„!²0”>·0è±’^”†ç2š>kÖòó©Ò  ålæT&w@HAÝ.VªÊs´@¤¯·PÃYGPÀåò¿æ¯}eë`b7ñÛKY):#€ãp¼+šî 5@³ÎDˆ°çUMP=ž JŸS€€Ìû¨Õ\€âSð}}ÔÞ+?på uß‹šOÍÓ°›‘4zh‚‘ùâí¢MI0¾Æ?R êËbO$’u>‘°ôžqs‘HO KŸìrsª·SÌ–_…¤‹â¶;ÝN¯ ÎÊœÕ7cAMÙ®Á œUÎÕxù‰oùpÜL&¥½y:+‰¿ëx+º95TÝUÆü0¾@n8â¿çMÆßël®uRRÖ,Áñˆ.ÞÀkn²·)æ|ãÑ?4Ål<}yz-7rü"÷X0¤e¨ì7+HÐâƒ]¨-7±Ô·™‡‘uC)õdúÕú¥Ù2:<þûGx.ŽWv'Ö,ñQ’ÿ¦f¯ŒI 0a4{^ƒÞëžIåèºÅG¸gp+ً󑛟+—›ù›‹,"e±˜Ù™Ì ýûYó#endstream endobj 702 0 obj << /Filter /FlateDecode /Length 4706 >> stream xœ½[[o9v~WÞó”‡F^R¸ky¿I€ÝÙ ^dÇ£d< -ɲw$µÇ²fâŸï¬âa5Ë­ÞLÃE‘çç~aý¸£ÜúW~^Ý_üêU0›ÛÇ‹/hâþÂF«Fï0¾›ÇÁÈ0FLˆ:|wñ§Í&n±S&˜›òãê~óÕ%Áµ˜£ˆrsùö"#”› 7Þú1j»¹¼¿tØ^þ‹¥SÍj#l¸¼¾x=ÜowbT1†à†‹Œ>mŤÒÞû·4­cÐÖ ‡­…ˆZ iÖÆè½úóå7 áhŒ²šÚîŒÑc~CÛdŒÒ‡áð,FXá‡ë mxÚ:ÂpÅ0Ó‰Dt ¨ßc¨¤Ð. .hãp»Ýi­ÆìðÚç…0w"¸Þj“ H!¼Ã~Ç®ý뇄çWÃþŽþ„”@ÿy;õ‘À§ÉT*‡z$œ¿-uD×p¬Ç_'Ú¼ª(iù×—ßâXo½£ÙXܨôF…€ó€ÈјQØÍÇ› ɉ­Bm~†|ƒÿ¹È²òê÷?BqÇŠ„€u+‹x*0rrcƒŒàÕ¦ÎxéÝhB_³ÝÞŽe}ÉxìÔ(È|ˆò#ä7¬;9Z>k¦ÙÞZ‘ךÑùhló7Á7xhGž´Ù`•ÓBÓaU~Ù‘¤ÃŸ¬Ý8—ö’ûzxy¸Ý¼º¹ÛzÿÓVAi¢ƒ5Û¼zÿøÃ¶Q)Ô%Ñô@5j´ÄŽiænžñJ±{ÚUg²…îhÞèŒ@ÜN«#L‰ÌµÃÙ´×r„ uÆÃœ=S&(FÂ4P”²`ïyP¤‡uã@´ÙÏ„ûXÃHƒöLó2Añ0‚Ñr(Þ$å8 ŠñaÔª¥mÕ3MÃL[PR™–¶q î<(QÊÑD%BÎì3MÃÅY16rt”3HXÚ ‘šÉ"%3g‘Ô£8Ñ^O^ŽCÁ홌Âî9”¦é¸´˜ÕWvM'ôÎB¿a“ 9zTÁ!ô:¶ J¶ &9zÈ(ÁÐ~¼îŠEK»÷8vSd…n³Óˆ×Èä^/ÖJü0k˜@d°l ˆÉV³~Ôˆ.\B"¡íZûÍB¥õ1’†®‡Ä` x˜8ãÈ­U¸UÄ‹Qà}ÐÇ7±PÔµ›(¢™#¸u„D#”‹=w¥ÀPD©à¨'ǰÜh‰¶>arÐo³SÃà(`ÀÝuÆ1qÄV­ X”ïžì‚ö8˜FO+ÚóP¬‡u…Ò‘ÍrÎbŒ+ÜñÄQG" I=´É¡¾Clq'°ÉS龜ÁðJ—/iâÈÉÈU l ¼"×jÄT*'â‹SEG ƒLŸ®´›îkŠ&¥~S¥¯\'Þ|D›%&<—x¸IjÞø±­.9¡¥ŠMë}âm”ƒ14‰ÑÝI}q¨""HÍ‹`$ÁÐ/Ã÷C*wEÈÝð!A˜‚SÀ!04µ¶õý6Ÿ”û–-9|Ìó^~AÅ€SÇAê¼TˆØjzȼќöÇ÷õpzËê4¢¿ÿ®eµý=Ý ‘y" ‘Æéò²ÕÎmº‹}‰¬•œõåbÉlÝdäzq¦¿iêÏB®žQiü)kŠ’$铦pÈÙ°áVËá,ü3a&ßN’% >ªº.•›ˆ'Áÿzäßlgü}†æ™;‹XZH3쯪mäwz_­ØCÃüiEÖ™r»¬3S|ò6sëdZvXœžÔˆÆ,Î*õ@³ “[чÖ?28­B£¤OŒHÅàåÌ\±é,½*ÂzsÀ=Yf8tD¥Ú.°cCÖÆ¢;?³v^­„/L4m„\×9Z@n-ùe0¯¸µ`Ö³uk-EÓ‚ë ÎBõ‹ hG…l:¦Ãžº ¯÷óÜÈ3Vî³+‡Iü9IuŽØ3_îCwס¸Êüµ™]JòIQK0…»”S *Ãü‰©Ça’‡ØèL®˜dwèŒm-ÁUÕþÌZTÁÌ¡ÜÛbõج6å®­«)×”fâ}’é›Ü1À=‰ÍVÂÙÙü$Qg&‘ ¥ʃîM²„üÁ¬\ã &;{d\2¥~—ÿøzŽãpâp“­âÆ6ÁÅÝžùEn¸Ð)Ø™ûw-á[ñr³º-•V«õšå¸ÎøÀ³"° ÉžÛÿ}ÂHÑÂ,mdG…ÏNõûeÐZœ ßÔ| °}Moé‡^<ÉIô÷„…jÖM›©ÃVAƒT’fßœéNKƒß,’”Ò5 šüTfPvî¨ýmºJŒÂ™¼¼M ªžjúeu+Hlâ—‰…-TE§E—Û@섟?Ô^ÚuÃÏ™ÉqGiURÜEL¼qm¼“gGâ;‰H_†ZÕLͶÔ;škYKaž(TdÐt11õÉŽM\¸É“ËÐyÿçhMs§yû÷³a}˜R~!É×+A\PFqóIÞ°éýJ’3+Ë6‰ZR¢~fØò/’‰fÞi5¼Ú†I³¹Y±™üƹH¡ò}½áåÂòCbWJD™È·YÖlKJÞ(±ªpßcúQR–|ý]9ÈŽªô¹·DMVJå1qø×íÎRAdû˜f=y”›:|œ¸áŸëì®Î²m÷u¸¯Ã0”ñç:|_‡/*´ŸN-¸N³ &iø‰Ï–µªÓðä68 "àìµ²CèSêM=Ù]>Õá‡þí×(\o'sç.j3_ãŽ!Qæâ‡S€)asTQ $MZ*Iá}¥ÄX‡wuøf¹-Íö·=ñm9*(h‚ ¤jîžDÔáX‡¡»€ U‘>ÓÝùp†ÀŽ#»À\½¡¨C]‡¾ÞMti$NAP‰r$„ªK§þÁTÚîZŠNº Aw)}ò8±ÞÇt‡¢ªè®KF2Û6(&’é3D‹‰“2׌“¢¥»³á ’…®4°[ª3H&»ÀýÝL2s†”é.õü$“]`žÓÿ¯ÒF6ô\\z$“§H¦ê°áÊD2{†”1Å Ý ›S$S]24„쑬ŒGtïnO°>'ÙäPíäNG ì!â§–†šièœ;ÎΘ*/ywƘœ±®ÎøäU%§qO¿OšDÕ… »¼;y×¥[£ê'(¯»C¶Öl{YP üDÌ_ ¨Õ¦yñêŽÕ©Á¡½Ÿˆ)ͧ±›Ë ½üV¦$òËo>·ìOäSÇssñ àË @‚Ës^e³¬ã‡ºÿ±lC µH*èdG實 “4esMzB“aï̲rÌ:;Þ"±ùR[â¨n|›L);¯ŸRî5W™óñÌ2É,W-Y•ôî¨d5©h0=…­É}ÍX&šÈEé:³V—þËnÒ‚[^Õlûs¼B›z‹ù•±ýRµß*´T¡ðù ©_8ÈÚ³<¿÷hS¤Íὦ¼…¿fÝzá² ƒ¯XщÉo.®¤fÉž I^¡,òúÏÔ²c¶IiY§ˆ?h>ï3P*)S|d…Ô`¦­ ßÜp¹©™õÅ Mæj›Þ¤8;¼{HÊ]ö]íÝa0¥LÕ4oFKV2_ÓQ'ÞÀ ˜T1J¶ÎÚL=paŸc!àתÈ%â"@é†V©%$§›]2iÈ•õTCgÒšž9¤ÇR‹i&+ïÕe1²F³‰jžŦ¯CfoÑ” 3ûÒK—»jþraB¿ZÒžkûÙ®¦RÅ@/¸8[’ºu7y‰^”‡Ù)Wd²a?› é¡o1XEÝ1:©n­žÊzج`Í´qcŸ}K:ÇችÓùCøâóŠ•4·×·S|—46#J­Åˆ÷ŦÓÛ¸¹]8³B?‰¡·sº1Ú¬ß綾ús ~Ñr™HðÔÌÎTd²ÉP¯é³›®Á÷jp2ØÅn´Ÿ…ÑX-7ݯ´¦â›M ]ìîÛD1 í™bíjžZ%6¤ùqFò¢}–Í LŽH²ílìõ‹’+‰e,¶Œ6´MØ= j›ð¼‘GO5¬a*L1aŠ1„yfžŸ'eÚNoé'Qf¸Þî h±Åq(³Á¬«wîGUn óõ3¹\ÔN í}²ê})­óòý’§ZÒËÈØÆG)'â®>GÆÏûÈŽ'^TÎ@¸Oñéw+=¥›LzöÃûû,V|\°zV7îmjöõÓ¡NÞkÁØã§Ixÿèëó*À j»œìÚï¹óÊw‚kmŸ¥¤ˆE kH ‘øi×!n©L ÎT|H}>¿ˆ¨x€žC1Óæ<¥×¦×¤»Úí ÄŠKaïP˜N~®79ùYæz¦1´«#JzúÚæ—T…ƒZõ˪HiÛ&uúÌÔø¯.² ¦ Uså縢ê%ó®Ïѹ',Û@h\¤âÊÀÛÁ-宿óùöÊ üzk–‰Pú„*.}®)Ó‚ãâÍ{ Åü׉°†^Œ¾ÈË=Äõ· žpÚËáå´<º&2¿ÎËéÕÜwUľɋCŠ”»ûòÉÑ—ßÔðÕcÆHåšüî'då†ygÃûwÕCMËýÆÑË °õH$,u5ëÝG‘*Q»fÇâ©K¦½yîS"›“©´–¶’]õmì!¿‰–&vvÕü1Áâêü뾜‘×Gü£kæú«>,4mñÚ$¡~¹4”“¬&ÿMš­ =CÔ óÿ‡dä *6É ¦÷ú ç+]}]‰ôùô4w^>¿¼(¶Ó,Å&_oçw!_Ѭ)f5¯µÝž[ú}v(PÓ¼¯{Ì(Ë)¬‰Àø´¤Úä“ÒZz6ÜV˜h¶¼»ß|³f”ÒÅÃô,G5!­‚¶R–n“ŸšÎ07@NzUšhÜH¿Ks”Öæg«8L´+K´Z™Ò–¬Ðú#ÝþÛ‡ÐB…Öe!dòÅe¥á¾‹ËÊãU—e±tª^ÏuYµåÒ<{)®|{ñ?ˆ{ò*endstream endobj 703 0 obj << /Filter /FlateDecode /Length 5611 >> stream xœÕ][s¹u~§Sù |œIiz4€ü¶v—SÞªÄQâ‡MF¤DÉKr$Q7ú×ç ø€HI9µ¥b{ºq9øÎýûáT òTð¿ùïÙÕÉvúôâæäà ?¸:1Þ¨a²Ô¾Lm§¥<=¹ùöä/§×ôà‚¾”¡ÏÓùÏÙÕéï^r¿†ž ^xyúòÍIPž:y:™ið£9}yu²Qjûò¯ô²´ªx{¤):úàåùÉÏ›«íN Ê{çìæ5·…wzÚ|ÚŠÁI5NÓfÿ†ÞÆn[9áGµùÈO÷Ó¤þ÷å¿…a4£Õ •Y†ùív§õ8¸Íïù3é½œÜæpM£haÄ´9Ͻm>oy¸Ñ¹ÍŒÌ3Þ*ú5•£u›Ð-ÐøÍÅv7ŽjðÎl~âï&!´£5q¿“uèA 1 ·Ùï`Ù?^‡iþj³¿äœ’†¿Ý¦©Þp7ÎŽZG*Í“ºá1Gú¯jR+ÒØbhëé×…6ÎCÆ×ËÝÝÒjò§»Qó4ãGÿºuã „4D®Lº¸K]-´óz23팔£ÄyýwÆÍìæŸÃÂŽ“¬(+'Kàf|äq„’JSLkï¼Ù¼ç§n¢Õ"­«©?Aóæ•þËË“ÿ8iÇN¿Úÿpâ!ZûÓIz58féì`Ìòàòä?»!­k±„§©ñtžHd™-~ÓôÞÒHasó]hh| âÜü”›ÿ³övÛÚ*) M7þ†W«…0>‚O8å„7ûˆ{E¤'à'ï?fØžG0[šlÞ]ž­rZU`Sõ y®‘ˆV\LD[%Ú¼Í#¶;êDH%‘ì„Ý-kÜÉq0Ú«e©‰Ÿsó*S šûÜü˜›·O¡4±-³ª#R#ô^·! ü¹Ù·‘ú…©ª„¹fq-nf‚ÅÎçåFXú>én: ãpŽoa2¼–Vî¦ÆËÞË{f^¿% ¤:d‰Ø†Ñ§L?+Z/=£e˜‚¡Ï3CÇɇï¡Gò2I>ŧ^*œB”<¬Qö{Fh¢Ð;²ámÒ†ÞÂÛ@׳RÞ.퇠ӹ³ ÉCn¾Î({S€¯8åhIÂ/€#XÓàü‚² i¿e•Û–à²?[‰„H¦©'ø_nw"ïëøÂH»RnEÅÛQÂùì’¤|©ÆlÞ° /^ŸáèF”RøÝeün"¼â.-⤄Í?BÏøö»L2x¹)Ñ€õ‚ )iè ‡nÚ4Ò÷AœZïéuîÙ¥µ+hö>¬Ð 1κi=_hÓÓëÁÚ ¥{?vàÞ鎄<˸j˜d’_•Ô%•O,¨e„±‰ï Ì@˜%lÍKe…‹Q 8iz¢±ÔSñm’;ÕºÓ)âl" )”7MévÏ#¾H}Ì,íÆRÒ“Ù8é…RAÅÎ[lêRb™M¿l r %$LdyߣÙ>Û,I(Ó ‹fWhƒDç¹æÏ scY«¶!г9Wè7¢/ñ#¨·ùÁãµñâàÌ^ÉðÐÛd8HvÀ;X‡—ÏdfÛ/…é¾F2+¡ÛÒ9$ÆU„R­Äü8ç‘¶ôÇšZµYt¹nÒ° ~’Ýp”ÌNÞ×uF3ˆm Ñm$¾¶)B‹êA/ÕPØ7±šø[Û†Ùó섲âv+mõÿçvnnáë&ždÝï:·ËIÐßfWùÙwýøÂÃz{pÜÏ0xÈ“"hæ‘(\2àˆr+°Ù¾oŸü­UFi±ajyšIé”áªN–3‘º^‹Âz¯Ì¤£p¼˜/o3x÷MCĪ-Ùè€î_W4 ƒÓýE´7¢ýƒ‰$öäˆ; ²wr•ïrθn4?Í5#cðúùh`ÀÃ%朾' ‡Øú–ÛÇÀ¯MC¬ƒ‹Ü|Ûu¿.ˆ|å#2•Fï», .Þy#dÙ[¤Y7÷*ºÚÅ 2)"Ùì´$Ã{ÑpëÈ–ùIð“[‚±Ìî<&[3®s2Š÷J ЉgÍŽJ`† v»E3ÝmÑ¥GzÆd‚„ì%Dº[Ñ”]?gª! ½]À臧º¸çþœÓ1ªÜ[àxP _š[&sóÐÜÿ'Y?kª‘°‡C+f y “D‹’[X…R´9_B ô¨c–ö*- ò =ýÄ+!€¸ÅsÄø%ãí6÷ЛÜÍß¾€Qñ-³IǦù!‹Ù2r›»Žkœ¬-¨ŠÛñ›°j’%oœeÛ°%RýÑI™$¬oÖcCrtðzÖó“Ç»ÖÚKb½ CíÅÇ&Ó´/dzǛmª[9ÔUÆ Wg9RPJ|0EÛðp½ ‡’(õ×M\>ÓÂ×e,߯{R:9=źÌFá‘4hyŒ`i·£ãmKû)“ó,ä †Œùqt¹þÀ¯8«+ŒWÙÎ]¿Kò§cEa¾ëYp•TÒ‡LÈMdÆF»z M£G2p§ƒ”s“0ªp>d‘Œž[pˆë|GtŒP[EÇÚÀB è9‘:ö<1ëƒuûÌX‡¤X °Ojµ¶Í¦Y«ÈAÞ‡_¨Ô¥àH/wÒ#øè ðžG㔩0wXñ`_´«Ë`Cf#þðj»3š =¹ùkžg©2kÓRNÆÊdžV’ªZÝ€í¡õ¤jÖ{¥øƒ2i3p»RIèıÌ9ÇjÓ÷Á»2ì”7M¬˜Ã2à9ßAÝé>7WJ ôŸ¬“ £FÓ¬é‚åÉŒá¯Vé€ à_š<ÿ,´C“ªûËp >\ˆ}ÂÉj×3«2¿{ùæÎ>Vûϸ™äôÉ“qß©5*’g:W$;Æzˆ0òrFÄ2Š£u䪪èDCòöqÑ£všéâï¤ãELU:ëëTRŠÉvü9ôÖÛq÷^-„ zšŸÞ–zo ‘£MÙ%jX9n3xJd°ãUéVÜMt½Mòémó)C¡} 7+Á —Íæñ‰kòÎi•{]ÍÛ&ºU±àDƒ¬N[‚Q¼-ûÇ!°@ºöd“Ò*ð¼ÐòäñÒž0ªŽƒ¸o¸¾oWž+Õ…'¹ž«ÔXÓúX?.U:G V¦æcBמ‡˜îç/SØFa¬)àŒZQûÌcÄšþ¬Î•uráeR ´Ü™SbÇ-Œ'¦jÊ`yOäŠD³Š8\t6¯^:$ yô©ü½:S˜ÔÊŸN^þSÇ ÈÉÉ’xGÖ´•üz¼âÇVšBø½ËÚò[nvŠZÊ@Wª ýM'þUº0-ÄÑÂ{â\© „É÷¨Ù¤ô¦ÏHÑxX;i!z73’Ôe¥Xš}­ O5ëuÐÙa\}š§a6æl ¾\žæI‰>à4@ûäˆpgöÉÂôUòæEÃíÀù¨Az•q™{LBŠóŽ‚åãÃ~ ,Ú'!!ð$ejJ+¯}ÖÓv|³¸w~gÎxŒ<äé~—u:JŸyëB~²¡[É•ŸÀÅzŸÏH©O'U8Æöøý.K ÂTè+Ÿ «µû5˜µOÑ?5bIÈöœýSP÷ûxˆOÄiÁøP¾)õdãÜl'F†IéUT#Ô'\×I°âdwÇk~À9Í*U9§zªc„imÝ“–8j*òVÅ«Yþ½Í†Pï¤ÄÃ…Ýw·‘ngF¿ƒü¾][\ ¢!AËeüS’ ª tNZ&›´.„é¿$y\õÃC´8÷+*ñõ÷––ÝUµKÂÒ ãpË“»<³îå&jrƒŒ—›ü¼y¹u!+LLµ½6²J (oXXläo·»Iñ…&SqoFÊhtãÜÉÆÊ °næA¼[ôÌ|™ ?eññ„óÿÈ}q[Ã#Œâï¯r©Ïi„É*þ޵X/ß6ŽÒR‘Á»‡¥8ÛÅ­…,í¬àU2,où¡æ;kºÖqStZÊN"#ú“i1 §ÐÜçæ›Ÿsó:7ßåæ,œb»-œˆŒÖº2ð?;§ üGË£sV`(Ô;ú2Ü´3¤\¬Pk•¾ßD‚Žšû)ØØœ£q¨Éo—fŽºþÉgÐ_U!·9ãŠE*WYæôlѳy”€pÖŒEq{”âôƒ,úÏn\fû³ªç¦Q¨ ®êsÂX;VAß%È÷ø\ú:3ìE$(G »g›vHoó€Oð‚yΣ—åŒø  9kP#™žöE Å2ÂI"5ùúÄ\BˆŽŒÚÖ© ”ÃT%q’n*^¹Wa{ôGækŒ.²kVˆ ( –ŸŽIhš4Iï±ld>ÁmõºÀª¾—áE¼°crõÈÛÌ4¼r§CI]¬õ6JÍ9Ob{Zò!F.ý᳕‡mF}iîLV!½ôz‹€°p:„>=÷×f6)R¾1d_ Ò> ¼[\¼µ‡š±¢ž+­ŠàKk:.v,ª‚r,mb‚yKHu¬îy Á­Ä-•éÇ€‰ÁþTdÒCSÒûŒ½8²ŒG˨Ã,á/2ÝŠeæ—ÿ¶MI«úÒ174Ló‘´=&1åýI€¾XqL\ë:yA #µ«°M@ \R{_z~éõÞ ¾¼ ‹Ø!"¯J[µò…\Ï&@ò9Adԛ؟±ö\OºNc­"kEéhuG‰aÀª·y•Ëëæ”$ÿ$¢ÎH²[K„ìH].eÄÁ’4•–¡@ºÇE£â7G^oV¼ŠµñÚ9Ýß9 °Ž,6w7I³é¾ ž£‚isîçÑœÍùi®dÃÄÊdK¥m"”¾,Ç›FÊ0($8г qqUã:`1Gsê¤âú‚‚ÀQ5±mÑÌ˽…¼ÔãÃâº;i5‘ªÖ]Ñg Q¦…åÄ“AÍf\¤µrDA»ù‘Ô.ùiBªÂ7(ìszƒùFErϬ”î(ÉÍ®î%¹Œï;ï¼ORa:¦¾û3ܤ|8ÛílÈF”‚?ŽÎ§tóböÛÏãë,˜ÜŽUh¡o“4{Š)ÎøÚ× ùåîƒqX®„q\ujå1¿K¦ý±çûJ Gß Œ•óÈZÔ)¤HŽ‚'¢_Ä—Eè|+èºd¹·­Zi$cÆíaF°˜›*¢ `ÍE]3O§Ô5g€ë墯1Y]$Š|%ããÖÌ÷|ÍLçÒÑ(ñ¼ZMéNQ}ßeŽu{ qŠÛõlE¼Ã+áà¦`Q¨+à+˜&“rÿÍ"ZëÃ(å ¢„Íf’K3©-úRMc¸!à:è ¿J¼ÖtïþÏ+»/ÜܘæfŠC^pIaoúNãéŒ>;§E̳´t»µŠ ˆ©…v±Ñyî£b¨@}ƒó‚*Ù(‚ÅÁŠƒ]a\>:ÉÎsp«îÊI«o<àc¢|qÞŒ°Õ¡2¨Š÷ç_ ¨á'4KaS†<ë pÇ– àì$smG¼IÙœ~<öd²¬¾ïØ„ô` â¥;³g)Ƚ:ü2SWø^–hŽšî²”Eá8¢ôÙ6d¡ ÅÅ«v°ÀEŒ^ñm‚Ä j t8–R{æîS9Ò_3W°‹ivAÙ1\#cB ¡ü4çBf¥ˆÄ°F&#àmŽiF0‡LÐ¥áæH]ebcìµt\æ*¼ ÚÚµÙÅÃÚ}0îŠjê0Ó²U…KïÒÀóDïÔÞå»f4ß"÷vΤµÆ<2K˜ 6ßF p~ÚæÞª"Ì€.¹¾4µ*X*¾ŒÎ|ŠòBÛA™$/æb{! èøÂR'…D¨’µ Ù¸\FÆø'&Ðïºc >{÷ý®”°Ó0’£knhù梔"Úû2¢|G ëW&ç–ÏBs^ClwÖ@Î"©õœùJ°B«;ªW?uNâ•`ä*h¶W;wTuó2@¦ ·hᲕPæÇV–6{"Ïr½Ç2p7½Û©%(½VœéŽ[â²|i“7KhtÒw|Wn8Æ]†MÁÑÉ]LC(šlåb¢_YàçÇQ7èi´õ,/ÖN6\R#U´MùàÆË c,´Éi†L+ÚŠ§µóÆ—K|,ù]Óèž“éŠÈgtêŽHU|cʶyy}ý*ýw¸>HÀífij¬œt,Æ— ÎßÄy°ëˆPH7©0¬{ÿÉn¨~‚ªãpÓ—"Þò-†Ž™Nøû6~é¤+|ƒx«y‰nÙ A÷üÜðûÑ…@Ë5mDËB/"‰¦2Ê”‡­2ðÄëjpµ½Š¼)0ŽvLikNžC’¡ü_¤càk Y<˜Æ¾®–!èq¿s˜ö*–ª’”-ÒòáuÆð)¢M±˜4²¨n9 Γ²`jU ú€!Pš1èÙCïTø<(‘€̰2ÇAñ8Á(i¥w¬]ÈÎñ2Ô±‡ôB• £ ÓQWåD&¹Iyòt«Jú ƒrY+e¤brË(XLL ‚ Ô…V€ÄÊÅëyC¥ì²5Ò«RmÁ«âÿ¦­Óendstream endobj 704 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O1ƒ0 Üó ÿ ÀÒ ˆ…. ­ª¶Žƒ2àD! ý}I€ÎÒùîä³ì‡ëÀ.|D/J`›H‹_#Œ49uÆa:X™8ë dÓáý ›ìÎïz&ùTª.«z¡7´5O$ÚªêZk;Alþ¤#0ÚéTWÐ\.Xü§’£¹Äyp‘8•¦¥I.à˜~Ïr 6ˆ/IúS‚endstream endobj 705 0 obj << /Filter /FlateDecode /Length 4763 >> stream xœÝ\Ûr$G}þæÂ=„§©û…"lc&¸„0³ÒjV°«Y¯¤µÅðÙdVUweõdÏh´’ˆ}ØÚVUÖíÔÉ“Y¥ýn!z¹ø§ü}öæäçß³Ø\Ÿ|w‚ÞœØhUï”_å`dè#|µøê䯋+ø°–2Ù\”¿ÎÞ,>;E»¾ôQD¹8½8ÉÊE o}µ]œ¾9é”Yžþ*K§šÚ† ÁéùÉߺ7Ë•èUŒ!¸î%–E Æw7KÑ©´÷Ýú?ë´uÝv){!¢VÝ;üjcô^ýýôw©C»1ª7ÊÝüb¹2F÷¡û›É¥Ýö z1 ßWkÝí»Ó!tg¤g‘ˆNA×—PTRhºd&hc·Y®´V} ¶û¶óB˜sB»Þj“,H!¼ÝzE¦ýéUêƯºõküARB÷wËq¨×h&8mL^¥2¨kìSÿ&ƒÚY×ìl=ütX›oj—¹ºžV_i{ßVÚöLA«îßyo'@;>ÈÁp^²hCì^¥uòÚ㊤1)aÕǯ—iÉbˆ¶[oÒÆèàaÜiEp]ƒˆÃÔ£ñ¶{ó`[5ŸßÀga†¡ù|µT»tt†Õƒ¥Þ^ä^l ´Æ+‹—¹†Ž¦ù¼¾)û(¢`^'3Òio«0“!›ôC¿vÖtŸäq,2 U’{„µ…†ß·a;VÊôÁjùx÷ýR9„Œ/øÎjº…›Wy½…¥¶ÆõŽÝ·]ýÜ"7Oºû)YÊo—e‰%X¾L‡ÂÁ.¼ÇAÀù‘å*÷kB—m[Ïf³˜ãáçÖm_Ô=¸&G ûpÒ;Ó»z¼ßã<•pŽá¼Ža{[­‘ž)±l²^jÐÌÙ>¯½­E2Œ¼„&=ðŒtÓ »Zí.,m Pû¼Y£qpã¡TÝGKDŸÖ®·ÞRI`”rœ2©ÏðfßòÏJ;8 &l}TÙâ—Ë a¥[˜¸Šà½¤oÎø•.×ô$¾]’a# -ñ ÄnwQ‰‡vsƒ•#¬Ÿw5V&&Æ Fªæä_Ö“M9í//* ÔtÔÐþ‚B˜hmóy×#IoD°àPðhÑ¡ ©÷ì#¶ pP¿'ž1ï”rÂMƒ•-rôÌ)Ù¾®H¼%@Ëx0R»ºj’nG¢K¼BH&ÉÝ{£…~;ñäš)}c}›ª"ÈHqÕÉ¿ ÃÄÉ= VºèeœÂ:ghpY©C'Ðo'R²YêuÁ“ƒ]_—ý‚ÁÞãàŒäR¦²’@2&„<£Á=8­Œnv‹?PѨ(ó¶e÷‘=À‘R{úhÀñžð® I;à«í‹é h¶ÌÒ°L‘púì)"œ7’led²dÁ×›$sœNè¶×¬Ì"8:&#'’ÛiÐiOƹ­<@h6ùa”i´Ã½N+ÈT Ôý&¢ó‹Óߟœþ õü$:cb÷ëåÊ* Š×§- "É ±x=TpÝ/ë×UýJš½©Åu-&O\ÊwµxY‹ŸTkïUÈ}Ø<´­ÅóZº_ÕâY­ð¢/kñŠ5VÆžÊkÖÄk¶ÂM-~RqW¿¾d›½#=/Y燺[³Óßi¡/ÍRºCà¤óÕ~ ¹ªÅ‹C@™k6_×â-‹EÒ쌭@¡¶ç‚ºÂÔíÃ&œZ+tÛ“öU:¹@Ô¦(! d¯ “föu£[ɰ>',8œM%ÄD¶ ¼õDãÁ‚'l¤ñŽ4JŠ{p¦•äTÀ!aj`Ÿ†Ï_Ví8ÆD R}KÕçvIèYÜ„‡yNÜD"ê³Úúèp\â·[A= _8RDõ·oïß²øÜÖâ ¿ƒh'œvL笱Õ9õ§ìßÔâ_jñ‹Ó°ÎÅã šAH uqÑ:#IÎEqï Ø¨ëWco+6‰vÛR‰1‘&"¤Ü|H‰ÿ Œ˜œ >ªwÓ0ž÷r¹hÙÍÇ{¹côiÖ&‘Ž …–¾‘ %†‹Ö¤  ÛaÀôX²çd&ɃF7#·ì"M¢F4¨ck$ÇF5Ÿ5G0)c«{ïÍ Œ)ƒ•%B’0n@¦ñw¿Iˆ°¡ZÍa}†ƒ2 à¼åÓé2 Üô¾ûôÏ­8Z ÃiÕ-Ù¥×ã\ng™pÈ3¬›_ŽÊõáüFæ<«”mHÿŒ`;稢WÚ×\M&H‡pW{e'ìÍ$(ØTD]S kŠv%ö3”/*4ó’B‘–4û¦ˆëf°a»ll,HÄw?"4ù`à £ìÈC©S)^ÙÜžÉN'„Öi¢­/NO¾>Éyj»xwl†YJ× k&¸„L3kLh³GÛS–ÌS{k,íKÙðe Íœi6±MŠ+æQ4¬Ê.Å%m@ûÃd"D³âñ¤* ¥“{Hl.rJ=dMKæ:Zp@º°y2µ—ÍKÈæ"¢0‡b`ݰAr)9|>Ã!úNLŒSB%0£;6¢&”_Ye\鹃³1¡ÒÁ |q¾„½§ù·Ô_è|*î¤gqsàˆI]hTöÚ°KB‚)û ]Q%G£~Ø'©ä=î!È3]F×K?MP ›ŒBI›®÷ë¹>§Ô8ÙÃâoFŸnÉõBÊÎÐSæ€(ÍJ™—ÎZGÝ^Zü»b ¥£’…Þ=sr Cô, Ñ·âèHÉg2™zBîrßAê‰XÇ<¶‰“lrº*ÛGáy•e¹Z4sÛLVæ@Ê$±:ê…q<=Õô9_†à)ÕÖ0²Ò¿Í¦ñÀÁx_Rd²7N6Îû•ïc"ž½MÞðÕ¬$hC’Š[l‡Âd÷xætZ“àcYeªtŠÁö¬¥Ï¶ÄÝy|»ºÉl™^”­†X•¨W0gÖÆ6‰K$!‘{S¡d{ÉÚ夑ÕÎÏ4£Éµr%Y‰°”³X×vÌä¾el™7„°Áäl›Ò,òø.÷飥A]si•E‚PŠË•§eWg#Jʸºs—c­´ õíÅ(£ËfÐMäJÀG5`õÇ5 ªû Ô‹TTƒP^/À90 Gªœxr@[`z"j±jÚ¤¼O9–éÖÀ£äJ§ñ‚¦‘Ïx¯åÀš9,à·„z²,5¬î—”N^jÂnc v™ä8z™Sh‡Æ_Ë|K.؉+¢PȵÓ5ÆÄC¥]…³ÆÈ¢)„ðÖ—¹¦–d^ÕÞIåt2LͪP¼¦Àp7’D²xŠ$c&FÃj×´u¦?›j¼ÒÉl„œíÅrÕ µ¡§=@27y®-0¨ÿg=§×n®sC¼Uà£Ó¹cJ•M»•¸8VeÒlS+¯ªŒÛލ¥áyi§cœ™í%;~ºYSl·-æv_ w.HöÙŠlÇ]¹²´Ž’ŽvvþXÀ$Dݟƨéª`m¼Ófba¬€‚±hh Á®žsŽïòd½l>Õ,Y&ÇIn½½$-ƒoe_v`26×AŒÓ—)—?z«¹ìcrCc,Lá®”†CŸǃm°˜šìúPg˜B×úPÖ‘­Û5Öy7"Ž[φô$b™lG¦íÍË<£Qq Ú(}=ðr$]Qâ½4X Ê•lo«é"3‹ËÀ YXÀÂôm=ùv´uºº"‚*=£ÁÁà4¡ß<`úwE6ê 9qýõ¢2Ël õ¼Ì®ª,él)œ„ N÷øÊçxÒ'ÅMKõ5%ž !N÷4>ÂCùL”)µN‚ä(è@¿}WQKböÑ~V@³FÃg‹˜ñùÖ×â©n6üW‚ñ`õ?h#ª±›üxuši<ѶÝqȲ}zrµ$`ªß³ÚTÆ™¹ñ‘ˆ«<ðzçd‘ð4¹K¯ hN«MߥN¢ûm™p43§šÌ>& ‰ÜͰÀCŸ/Ç´QKàL+P?^Ï•½„î…‰Ã9iüjmv]eÅgÃåär„ìÆ„î3˜¦I„„8fªñ¥ÃÁdÞ®¿ÈÓhý9xØ &OÈ7ôÇp¦0=_zL×ÔoK³”YŸ‚mIííäÝFP‰ºÁ´ ®õ>Ɇ9l6á|ø¹ßi•mÍ *œ(R¢17„€Û„%ö=„¯³ \}š!'/F¶Ã¡%îÆ‘î}¾‡5FÖ/êH²» ÖhËgºÛ·4ÃXÉåÝš8nfBíI}ØûÍú²:Ý«’ígYsÓЗ¡Mp›At‚/FÐxõzÚΪïYS¥5“¥*× yÀ4¶¿£ÑÕ¨– {ÒWé9ºüÉÓ0ð‚é)ÏìÅlª;#u6‚ÄßJYš™I~&GZ’Aͼ£¼Wšˆdøñ‰psù ðšõNˆ{QA^x'ôQÆÁ÷?a+<ðÇ1½ù؃KHƒ¯~‰Ò–ãñgåZŠåeô-QbMÎö:[Ð{rk#ª«–›5ò.iݼƻ*8ü\3#~w59£.{¨]·jMÖÂöRÁ)égÐ^ùrÌ5¯.^èz©ñj¼®›?Ž3ÑÍœÐDs[æC½-£ïVµÂ·¾}¤)g¹˜ìBDÉt}Ÿ»Æq-¶Ó¼”¼Ôü8æ™g…IoMnŒ´R)Mó_/s÷¦£éɈ)Üi~ ‚„9Û2ðÖ_\7Ò*%q垇Þ·;ħ@b=jB?µå.G¨BØQlwèÇ_DÁÔÁzx8Öƒ™dþoŸÃ>Ö{Ðθ÷ãÈ×ì:‘ ¿g+ÈZ$ÝȻϙwusÛÂ-Î ÛŒ <ú%C/Ø%#äûC-ÝÊëDòÄxÃ~½¡cà:Ö {OÅ4( ¹W<Ón㇬ÁÔºÒ+i½ìKô¸ûõ_ìvh9Ka0B—Œø¶¶.ól›,YOëMÿf·M3íÀÿËÿØ\àÓE²ÅãÐɃiòŒú¶ú¼¹ÝWì×ßÒ¯É {GÂF94ˆ¨ËÙ×¢©ÅX‹ºnÈë×OëXѺœ]_‹ª®€ª++Øå3ÅͲÍÍ<+ƒ\mF¾Z¶nÏVtd>ã´çš-ŽC·e7§ˆ5è6ø0¦‰-Y«Ö–§C˜âr°ÛæóÔ!dÚ)‚RQ|02‹ÌƒXùpd:Š•û#“Z²È4Ôî1fá‰IpÕ`C&©Ë[°2 ‹LÞéŒÔ2Ý®@&©`™ñY9ÓÑÌÓ‘q€æ9“7FêFÚÅ“s&‹<™  dÚ#8“T°SÀÏp¦9™š?™vZ|*™"ÓÓâý‘Iiªè"s¬ËVx*N Fœ&O”‚…VC„ ™ø X™y„-Më–—»ÙX G{„¸t´ø¡p$J•H-óôpjÐã9\—e*‘–lÐ3øòpc6‘ùý‘iÙ}Úàt ÒÛA¶"(6ÔØ(-ygO,D:7b÷ÉáH<1c`+ðÔF873¦32yž¶šX Z¯À §ÅGLV:ºeÏ©'ªWÏöƧ„,ÛEÏ~´Ù“{mfD–&+Y¯ÍëɃÉJÒÙÞÀ;ÛLV¢¦öŸ7oIìz† ç˜P˜wá¼´$]DÖ!J^§>ƒ çA:çÂ2½ïUЙäç÷wá•cç™”ø˜%p m<ôýAªØÎ$R»Qõ0ˆ†œ$®"}‚$ßgŒàlÐú ,{“~zrm²‡v÷çQÇAÔ³¶&H–ÀR 2Î^? ¤Ç8ûƒ %¾ñ¿—G;H>^ç=Ò§º¤äAjŽ©æ@jX[AJ†°s}žþ»üó›)J)endstream endobj 706 0 obj << /Filter /FlateDecode /Length 5646 >> stream xœí]Ë’ÇqÝÁ‹»sO„§]²e…µ2EDxic@€Ò0ñ %}½OVWVe?†¾Å¹3$ƒ }ÏtŸ®ÎªÌª“ÙoNjÖ'EÿÕ_¾½ú—?$wzýñê›+Þ^ùìͶïÚvr:Í€ê›o®þûôÀk© ç©þóòíé7ÏÀ«ƒ4g•õéÙWWËõɘ<[NÑÇ9[zööêùôûk5«Œ5ÓûÏØvÊ$l¸¾QsTÊ¥éP›\6izqw}c­™“ÖÓû¯hÛÎAééK:Pãóô ›Z©¨°7m«MRfúÛF+Òô‘¸mNÖ‡iÙ{8+wy)vé'õòDt~…³œÿÓµ‰8k²Ów×&ÌIé8½ø@tÙêh¦WîOÏ~O–÷Ò@&›9 3ÔéÙíÕdüõ³?_ýöÙÕøï›«äÝŒÝtH'g µò䃳u§¯NÔqöÊ9{úÖþ=þÿóÕÒ%øÝÕ7èôœ³ K7ÌJ)ïxÀT~FŸúáÔX'ˆèð/O_Œ’äg‡ƒ!q1ÍQK’ŠŒ„¤gc%IEFHR²sô’¤"$lÆN²6ìÒMîw&‹^ÄMóÕÕr"ŒµÓ ùUÖÚÂÐvÎ8{ñ©s}£#<òF_ßåÌœ'…-k¡ºlz´g2×4$Ëp;Ï*Zc¬ãz0¶Ólø÷ÿŽÚãHš vH;†, ¹O9ÏÚŸŒðb z‹ß>ñ ?ÃVî”Ðì¬\±®&eÃñGchj¡a[}¸Ö8u†ŸüôùöÕ»OÝOá}p(LšB˜ýÆ>C ü[áZm:‹Á?§,(à°Ñ#Œ 8¼q³–—ÂÀGˆv†Ÿt8’13~v8rÔs°‚ƒó9ŒÆPKF 8LTäyƒ§3…ðÎÁÀ‡ b|4`€#âX'…޵ `ÅqvLŽËü½3r!š“§`–ë:Wûˆ”&S6ݬìdË&Bwœ\ßÁ÷Bß!öRß!cÓdDr3ix¥í¬uÙN´‹6e;Бڮã"²›2 .·Dõ0ÍÀ]ÅÝœâÅË1Y–„ÏO–WŒ'Ѩӟ`Û‡¯MÚdÎSÎj.޽ІzÂ3+É«“.¿‡¦v¬KLì p»–ÖÓ¬Oûsç‡è4R›}v_ïz¤õ‘:žŽ›6‡9B8 †6sLKàYöi!ËûÙ’Z¼‰tU´†kÑ#âhCGµXà¨GÊ*€= BŸÂ~šÁãË>Õë¢ÖXøæ•×ýj’Iî DŠÖ¢ßQ< þ„!™|ò÷Ä#O>Žàu¢x„Åχ«éŽ„-LXN:Ðaƒ4Hû‹F[n`MÃuõŒóÄ ›?€]â°ÌÝs¡œŠÛ#@E1.Ûª€…—Uþ Yˆ²*„.êì}{Á«{ˆ³=äÞSÑkd/¨JäÔ—é„IŒJ ¿é–'ZB‡ÙÑj!´¨.F"ßóYRçˆÃ–-FFHlƼ$IEFH‚+úATd„$¥<§UK*2@R­Ø9Vf} ø³ ñÍÐäMy“TÅÖÆÁ£-BÛ˜×Ò")îhGJÐB%Ñ.úLù×;¹.¼Âò¦¯ÇîÐå^7ÂÙ @«´§Øø¸ Ð)‹°¥œn¿úêëOŸÒåŒE·%iI!ÊTߎ¢篅­Mq¥ç0Àá±6”z«!ùÕÀjÀG²n¥·0À‘“]é­œÏá4&’,ôV8 FÔ[ àpV¯ôV80SRšªs00ÀM^é­ p$Êþ‰ñÑ€ó96&€Kê>k°Pé÷ë¾¢ålp;ÝWv}‡î+;4ÝÏÐ}f§ûˆ±Ü³]÷!zc]mºîc «<>æ±uß~nsÍj~ÖÅL‹nA[‘‹é¶ޱ¢¥á%‚k¢ei€*S(ºãNDBÖ-ŒQÞÙЪƒR× -ÄDèŽ@û´€‘iþ¢ËjîÕÂìh¸7gŽÙÕÛ<“L¬ÈÄÍϲ«Âн&*´ñš_M²3ÉCõÅO>šÍ¼,V¶²$ÇôÒ²àµ>ï%ÍM,çߪ&D(`{ Ù`Ë­,,FNîIã/y±1µ'iÈùëJN* FHjR02@RS—‚„‘’ší$Œ Ô© aä|Ωv’† Ô4¬ ad€¤fn #$5Ù+H © bAÂÈIÍ) FÎ'Ùº›@.)§¸Âõýrê§UáêrŠ+Z]N1Òŵ—SSãjÓw››äô}ÁR”ÇZžæ¡½Ë”Àuo]¤Ù ×]ºà¸ãMç¢ìâmÒµ:ÒB<)kQvñÁ£w(»x´§UýΛœf-ë.>X»¨öÈ›D èN xÖ5㥨_I.UŠò´LÊḅÈcw:e¹ÐÏFŽè€UÚÞÛW«ZXAQA¼Få·‡è 8ÆnÅȨks:V8‹wúH@AFg•ö’ Öw9•¶l‚žµG¥-’ä¥|„‚Ôª¬8A„¹ƒT¤(Had§Å{ήát®á02B0 ÚIEFHbJäO‚¤"#$9xŠ(‚¤"#E:í è,ÒUd„¤ö… YõÎUÇè3¾÷èNÃLϦMtË]ù…9_Ó/7X³¤$ë HZeÌY˜ÅzYÛ!ý Me̪T¦…^cäî V¶)§]¬23:jv‰‹§O/>›ùöÕÓztÉ< ƒ×¼ÝÚxc ˜¨—,ãÙµ1ÁÁÈIM’ FHjbU02@Rs±‚„‘’š¾$Œ ÔŒ¯ aä|N‹QÂÈIÍ+ FHj*Z02@R³×‚„‘’šð$Œ lœM +’Š9®Ñ,Pn±ùÔÆ`’Ü+•0Fzm !ßÎò9µ<îcj6¥rSXŸž*pñú˜Â¸ôYV„¿>‹’Í>R"²×„l¤úH”5!¸Z}bŠCH\̈),ò¢Õ„ŒIKª´Õ„ ̪&dÄMÉc·šU.VÔ„lrU$õñî¨Ðòƒjd¿ “\¬N†MŒ÷=†+SûRë¦Õ3Qí¹+œÔïT—èñªm¥ªP9Gfß—ÉòõîÖÂ@/$AÇ< †©}Y¯P!Ð@ï©`Y¸îa£ ªv·B²–ó]%³å†Ë³J†Ö "4´íÐT’d),12BÐQVV§!IÞ’ ’ŠŒýTÀê<Ë¢_EFHªÉʰ”a\l³– Aµ.dhÆ¥{ª­™Œ)Û˜õd\ÅM˜Lû¤Á¢[_©p³ …V†kJ¬™b‡ìµÙVŠõ¢[gû2Ü^®]¨èFoñ‰+uöÅoŸX›qöRÚ|Iü ˆ³=ICÎ_§rÖT02@R­‚„‘’š›$Œ Ôt® ad€¤¦€ #ç“pÖ¸“4d€¤&š #$57-H ©élAÂÈIÍ€ FHjÒ\0r>ÉÖÝrIyƵ¶ï—g?­Z[—g\Yëò¬UßXµÝãʳ>Û@ rÛꌴ ¯µñÊ^Ü|@ª¤,ÚƹŠp¨ŠXø- KfY£´ â1´(,u웤Cy:¯•ű4^®³ù]ÆÑå·V°Vô>:ùŒ½¦a)#µáíÑ·^¨üj’I.UkCëqR{Ïs_‘^åq¤„(¿»÷o/q†ÌÝ?¯åp æPèa9¨³:*jqì÷78’ÒCï¹àã6ìôYyŒ¬¼0q×% ìR:x KT‡ò Âzuå#”Ú(›`¶[ž¸Ô¦³SKEˆ“R:ïu{.12@b¨—›Â™„‘§ËÇ‚¤"#$ô&/Bcd„d±¢àf} 6ã™NY{‡¿h\SûHÞûOËÞ {Ð×𜢔L\¾©—³OyzC§ñ9Çå#x´7|›„¦àíô×Ò(ØÉO÷‰æÕæmÜôNн-›«mRqúHgI ÷ÕWßõïöÝ–O šW_ë»g!›éé¿–—Òšw»œ©- aõwjfˆ½üÀ <}öÐb¦KË5é²[}¤ðŸq „6,¦/ß+Ì^']»V;äæÒõZŸ•íœuLÓ—Kå§o¯!CèúÅù>÷/¾*S¸u45Ò@…Ï<——Q›“TžþNPOüž¾/@klþ¥›íŸV^,#ã¶Ÿîëër¯¹F¤Yº ^‘ë—1cí±j¬—ǽ°1Ò…Üð•@ÏξçË'ig‡¦›€™Hg2/ã‘G„3°ºè¸]cª•Ñ©*Å> 6 ¤/Z"nøéýbḺӗékã|v÷}¢òm1=Qª'Ò:Øè¶V¡»üÑïòs•Ë'(5- EüXSæîþÇ>rxwº##GUöèg¬·è¹NLŸË!¦œX)ÝÑG.3&v̵åXý ïú7?oÒ½'ˆAøiÙ9%ŸŸ_æëŸ—ó8¬s¿*Ñ"bÍ8½ÿPÛšÍôÇ©Ÿô’à×ýßHïÜ´?[,°t=…®|<•^uíÌôþõ«rz‹Î\ÅO‹V•/™ªõHqv3}'œüMÿ«lÈ»e D] ¿xIt«y9§ÔÒ0¶:e6eºS.cmÀ¼´D§hcª‘£lþ¾náTqÓÁ„Rk·Ý‘úàí2N©ZDŽË՘׾¥-ƒI7¼]¨|ròï:*¦:ÑÄÝÇkƒrÅÓ Éšœewb˜‚-Ð!ÿ\>S‚wãMK+½ø(­¤X–hº™^¿¡«G˜Xy^3¤ßýbu•äΛ™ž.ÉâÔÚ.{£qÇnúYwÛÜ@X{ψ ~ž¤4½ˆÆqÔúk±/Þ’…’‚¤ØôÝÑÜþ®[ù5º¶Úb™‚ÖþW¬¢ôªiÿpÝ\NÂ/wцæîU@ª#o÷´áwÑ[¿‹@¶LsÕÅ£übå#ɦ-Ë`tívE{XŒµßˆ)¥Îìeáø»e/9?¾>Å“)ÍWŬYÃQ|âÕòµf\Òv0uÔvú_Ѩ2÷¦%±ºúb*cÞ˜Š¯^O÷ôùë¥j=x…“ýyLœÌ}‹PÙ¥Ÿ{/ÝÏï÷Ì<ózREÂWÿG0»Wendstream endobj 707 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O1ƒ0 Üó ÿ ÀÒ ˆ…. ­ª¶Žƒ2àD! ý}I€ÎÒùîä³ì‡ëÀ.|D/J`›H‹_#Œ49uÆa:X™8ë dÓáý ›ìÎïz&ùTJ•U½‡ÐZ‚FŠš'mUu­µ 6ÒíáTª+h.,þSÉÑ\â¼ ¸ÆHœJÓÒ$pL¿g‚9ÄNLS‰endstream endobj 708 0 obj << /Filter /FlateDecode /Length 7450 >> stream xœí]msHqþ.ò#öK’U»™÷¾Š« ¶ *uÇaíùÌ­,åƒÊ¯Ïóô¼®fmKœ ¤Ê\Q’žéî™éééîéÿi£öz£ø_ýùòæâßž%·yõöâOn.|öf~?öß“ÓiŸ¨ñë7¿Ý¼ð =µÐÜÔ/o6?yº:8@û¬²Þ¼øú¢pÔcòÞê°‰>î³õ›7_ny©ö*cÍöö~wÊ$ü~w¹Sû¨”KÛ7@mrÙ¤íÕñrg­Ù'­··_ów»JoŸ³£Æçí=~ÕJE…Öü]¥h’2Û×øÝheCÚ¾%m›“õa[š …³s“—S“ÁÔÏŒÈ_»ÿûKÁ5ÙíŸ/MØ'¥ãöêŽä²ÕÑlƒÜï^ü’3ïç 2ÙìCm^\_lM¼|ñ‡‹Ÿ½¸ø5þÃkïöÙo¼J™?o.\Š~¯rìHTÎï3©õHY¶¸÷Jé¼ù3Vå—øÿ.ÊÒ=ûÅÅŸ6z¯ð¿¦(™ÿóM[ A· 1Å}2] Û‘ãÅóMYYië™;¶¥½ 9v$êÐD®½ò=E6ÞŠuž"İٹ=Z7¤ˆüT*1§’ßë4SéÈã©XãâÞåyDyò~¥O ñ`&gd¦R–êîý¶Â:»IdÃ@[1ñ„ÅÀà,檆íS-6¬¿Ü™h±½,þ2üK%2ß²»üë•·®üåhËüÖ(þÉý= ÛeÒØq_nŸŽW÷¯¿»4PÀ·‡Í³×o¿Ý|µ=Þ¾Ú¼}yu<|u)ÿÑ6¥ÕFïVß'Ú®‚ÅæÑyÔZv*Ó¶™‘‹  Ò9w*y…SÆ£OˆÖ“TB²ûاñžÃ˜‘¬öé‘TãN¤O ¡uädøŽ9Ù°:saò4*.q³ÏEz$•ιSéÈã©à¨ô{c‘|â¢rn½Y*ò4*NÅH ûðÈenŒ‘<ˆ¥²Ç£÷eR\U)ÀÓhÀ²ØÍ À°úÇšöʶÑèÀh`Û¢KP0ÅIhDY’ <\³™ìk÷Hm§Ñ€GÓ0Üv6m‚¶Ðt™Óä¹¶x C¿wøó‘kÛØVx :…`k ^¶¯22§x mŠžvÛYëG’Æ·éÀˆ¨,Ö"Xcá Ëòæ,Ë[‘§QÁ¾OebòXm'Ñ‘G’0 'N=< qË`:â@žD.þ> •NJ~$•ÆyPé²Ç°Oo~‡_¯^» ¬æðú4ÇñWm])w² @Ú@ȽOˆ¾aó»e ¨õAZÁüþp§ÐN­ú (žB‹­$B9ÛÊxi¥½´rï¡lá˜E.¥f¹ªV0Ø.Si¥Ý{8*i¥’pôê|+G´z­Thy#1–3r£+c,aÕÎËU8ª2_°º”¾ÈåÞ3«®Ì„¶E®ºŽ¢„pŠ EÏ$ ÖÝæ8-Z®ðÝáâkØ\g¸~>Ǽ+|Yþö³4ÒˆHl‰ßRØ0‹AMÃO_˜ óŒ‡"ç¤ý¬D C#Ÿ±/tÜÀaó sŽŸ“4ÆÐDÁ]Ç™æ˜è*œÚÏÂ,J¿8Q1%¾Žãg!¤x—ðbd¬ígUâÜà³áVÓ™bÊêU1-C½àÙgéðgê4¾ßžGÈâo{¾è]ˆ¢+¶jTßñ¿b_4Ø9Ñ:± ÿJÜm„'Úh/j¦½¥vXx^‚ c:²ŽÁ°¥{Žqµ&ÇÞÄFCGŒóËÇYJ23¹’Ja—»©Íq´~Iò_µ=í.Å4·èÿï‡Wwœ}÷)ïdˆÐ¡Xc/þ Ù‚L7UìŸëç†^—ùh•1‘@j1UΕGj<Âhsm„ϧš ìDãËLØu&LJ%ÛcTâØ_†ÒžQh»$&{‹co¡S(IÍMGa’*‰Ô˜„T¹¤Æ%åÞæ8ÚŸO5Üã¡L‡?™p3tƒ:U?äÇ—’†¿/çöî«íÛ¯.7pp6ÿ}™èM$8(pˆè…DhÎðÒL’G®ùã/³ÿçÍOÿsœ»añÌv»4ݰ4dܰ°Ë§¼±;½j3‰ÍÁV+8>’yÿ9o´”BXZîÊÜ×´}õ®\„©”õ–—^V¥d/½œ+~ë~OQ9†| ’`àoo§K¾úù NåvÎÁAÍn{OØ(àòG¹y‹6¦íQºå·µ t¤åqvm¿a Ÿq™íí¥‰Û?À¡¡Ñ½\ó™ ‚\-Öë¼WEZ:ÆÓâLèPX9í¶Êwz¯È«Ìúë$n¡Œ0@†)ÔÀ7‰äs{«m•NpP€®r"èfA£†ÊèíõÿõàRD .ùÂÅ‚K¬3,#ùËh{uÃÆÉøæûÏ7Ó¸ ë„æi™/^°Är‡Š£+bºúç‡zÓ‚dLÙ_Î2ü€LÕ0_n_J‹0Ñ$ûެˆ3üLìÍÉ2a@Úb±OämÓÆ:Ý8€´Ÿè'·µ»6ˆÆ¹TC¢ŸLøé%=S¸°ýâ$ìãˆyùîÒ{hº Û«—c)ëÕrvBÙE>eS§VôûPHpã|-wßQ‡ »ÅâÔ ˜™?Nã•kæä­í‚ éïäJF¬ÎS ˆÜÞpòœ¶mà¬O—}^_ Ÿ÷û‰ñï/wt%Ë&],6˜«k)çŽÇ¡P·ón/‚Äbú|í/w^1 æ·/¦]üÌŒ ¹LWVŸÈqjGc.Ý<Ú›i¯¦&“b]×9G ΩË0/MóÉ–*£Æ2]½jË—Ü@ën€ê¾Žcñk¥‚‡±”=Òâê¡v6±ï)jø¶H ƒ ŒßiB-¼£òŒ¹Œpä„?Üöêͨ¼¸+U´¿-Êï‹ä^•ŠÎÁõ‰Þvõ{UÔ2³hbÆË”¡íµÔoX¨àÕï…¿WñdÙnC#f*k=ÓAIœÊe>Ëd\ÍöRì˜+3ký»!÷õ©‘'=¸¬ 8(«Óï3’×bïmJï­"™+Mf=½.}e±Xi’Üé!4›¦*GÝ}Ss;vÖ¤Û›BëpR.ó1Úÿ4™w£Êåälï#ß s¥uJ'WäÉKX§Y,a|¹ƒe²¨#ÇŽØçÃ2þ¨Ð\—&«?çfÿEûȳdcY¯ájùÀ38r·7»Ÿ}ýõ¥f¶ s}xyÿvóÅíõáxYÊsè_2rS¬R=XÒ 2ë¶² ~uûjÓ /S+j~J£äÈ8Í=‡@!fñGŸßCŠ«»ëÍÏîî`ØOë}2§ ´-D`QRA\d²ÞdH LAÀA$Ê]“Ô¡UÊ…»¥… <q)Jh5ìb,–¶›/qÚ³lgÀ8Ï!>ô¢e„ý”adäXÜaõzN¢yÚÜ1 Ø/U6RØ/K 2föKJdÆŒÁ~Éé2fÖJnÇÌÃZ‰…«#ÖJ§ia­téÕVY¬låÐ Y¸wmý*Ü»FÁ~EE×:Ø/_è4Í4¶ØÜ¡½°_Zèt "™õ¾ `Ðx;8¶‰±å*¢o$1g.­@Ê`ûf„y“¡oWX7#4Ú† ¥{}ËÃÚyÚÚn cÊÑÌ€ThTÃãçJ—jz`û”ÈÑŒ€@sÝÍŒ¡)-š…3Îx(«³z:«7´zL«Wµz^«w¶zp‹—·8‚««¸8“‹»¹8¤‹Ëº8µ‹Û»8Æ‹ë¼8׋û½8è‹ ¿xùK °† K0±„kD²F-kd³F?k„´FQk¤µFckĶFukä·F‡k¹F™g"чÑêÑž‰z×Èxž×{Â×H}æ×ˆÿLV`ɬم5±f)ÖLÆší8“Y²&kfe;¬š3Yœ‡™ž5t&c´f•Îdž–ìÔšÁ:“åZ2ak¶lͨ­Y·3™¹%{·føÎd—LášM<“q\²’kæò4»ÉƒðÜqù9öûû}Žý>Ç~›Ï±ßçØï>ö{þ÷¸Ìn£7ËëñÌëóâÌÉÞ¯a#ŒþX«@9Z«”¥*tjÕ‘Ñ ;Úq/M;2µz Å,×hõÔ î^«!¾(¤çfw¡Üoï`/w]nwZþ /ðdV¹y~åoy—ÝÕ÷üèXFý@0`ÄgؾAs2`¬ƒc$ ×Àe) ÁçwÛ#ËAv,–Ž ‡ ‹kŒ”Ë'šfqûÎzÖŽvŸ­ÂN¡ï㜟@u5lÿf‡í€Ý”§>|ƒÄÁ~°Pqæ²ÃŠfØÃÍŽÖ*[7>±g¸x<*q.ÏÄ`±GDv§çO,«ÜÍfç v[?°ŠV7h;p,pÄyY >dG«›0x÷OúÊË\ù¾½= ;£ˆ±½2vsëõ‰*$º€œT}ñú/Rr¤¬Ù®¥‰ß_dîG+ø]ä¥éÙáíëëwWÇÍo.£$¨ôöêøîpZ~dq”ÁÖ>¶üÈÒÅÃ"?EªÐÇÆiÈØ&­×ÓÊòzoùѧ]ÓØì&ѨL#5 çZy;#'­zýJo5Õ¯ôV­~¥7õ+½M¯_é¦ú•‡’ŽVŸ¤ÉŠrKR´'Hé¤ɦ0 eûÁ¤O«{(@Z°‘ýðöVZÀÞèC Ø}pÇ`Ï Y¦Àd¶Z’•PÀOå÷ì¥Ms’ ²†Ä2m7-ËèÀùÉCt))æá®ÙšÚTz5§Ïz&5üäZ& Ë »Þ&óëiû´Œ6e͘ò>ªõ0xqvcÈ—Ú†§k%˜aËH„É[$yÝjËh˜iñîs[æX™pïn¹õ5™Þ=wœîº"Õ¹·LÞ Òü ¹ -D@¼X)·(Â2)L¤6ÀPaŠE€EWl(k:"+NR˜B ò­Ñـ߄r œ€”ä~­°¥ä[É#øJ¯ØGäÛ»#„³ü«ðjažeÒ2÷HÐò='®`m¨ëÕ#J˰B¾ÈÚBN QÆÕ£R0wòµÚ¹ZÒ«·6*]zµø×òjAxµÙJð¦8HiµñË·7G8ÄÄô^¶¶±2ïâúÛXvÓHX¦Œ(OO!ØèeW4À=3R6Cíé 庨§4, ´|Ñ·§=€ˆu虡6ŽÜ‰YŒ`Ï®ðºå_lâ7㔢"{³gqàÙÒ¤æyˆ]è™ ~}CØ´\&¶¤g“,=téRóMÞ ˆÚ2R6ÑÄÄ‘³²|…JºÔ¬–eær´¼œ #-Zf̦T†Ûrg¢ÈѲk6ñYŽ8òo6+#£í):›µ|õ~¤ñ€”yî©>Ëh…Œz:Ðfø“”¡<£G:=­ˆS¡LdO=ÚL 9§'mæ*Ï)L~»@²{=ÍÉo`”^-ʯYœ¦Kbâ~N©:ˆvN»:ZF5§f¡l¹ -}ëT”4çHñ:U¸4°Óå›Â#U Þ¤¥“Œõk€ç$º>õâg‚tÊVR-sfàÍ,¶;³LcPú(ä#¦‰à†™çŠW#zžNW2(K*…H&Ñn×B$/ ×B¤O\Oñ7(D’z~+Õ¡0UK!’æ¿~¢ä5ÙNj‡øˆ£‚Ó´ãK´‰/)¶ø%_•團¹DÆÙðiÕæ#mjªì¡K[´ ?Øa`Õ7;ÇÐÌLeBbl ÿÝ¢½Qó;ž Dvš/·é©Lˆˆc ÔŽïíªYhJÀO4ßùšêùj#©%®’;%Æi€oGrTk1ÒÿÙ;ÚÂNh÷W¾Óhùʵ6[ÿ£ËO œU|§GW>}*ëÍüëÙ7÷Ž…Z:y£®¼ø–µŠòX•¯'¾n7’çíø]7>JXšäNÞh»•'¯r²^ìZy¿ç¹Çóï^ÝNO\Ý |pRF„Æ+'Œé,Ê‹‹g9çßæ·¸nÖŒHäµ3ºø˜Ï¯¶CŽÑñÍ⺿mw;wòdb ïá"ÝüøXy÷ŒY6= "ÄùFsà3™òB¿k”]{¢îúäu°éEËþrÝW—uÆ =^‘#ìÛjÒ{I–ÕTéýlN^Û5áæ§èd¥g]Çz„þ„§vò„gy_¯ÌÅ+/ ¤[>3×ßÃ,º®c}­>ןFÓ^™;ûï ž¼2÷ð‰¸€áÌô®Þ¶çò{•ýììLï,ž" Ä£Ž'š6éóôVè_†Ø§Ïößwò@h„ÃwÂ~Õ:y³sÕ:ù§û[OÜWÓlCÓúXö}ÓYûë‹ÿQ¿×endstream endobj 709 0 obj << /Filter /FlateDecode /Length 9257 >> stream xœí][\Çq~ßø'äa‘—ÌÆžIß/IÀ lÀ"?È °â’K:»\‰Iô¯O}UÝ}ªÏœ.%: ‚@0|XS§»ººî]}ö›Ks°—ÿµÿvñ·_”pyûöâ› î/bî=ßçl9T˜åñåÅï/_à–Þ´<æeû¿g÷—ÿôãF‚ª©öòé‹ ™Ð^{™c>T/ŸÞ_ì\¹zúGB¶ÉMØžH,ôÂÓ›‹/w÷W{spµ–’vÏñlj y÷îÊŠu>çÝõ €}->¦ÝÕ=S½Û½4Öš³û÷§ÿÂÓ=Mp‡àbŸæï®ö!øCÙý3^³µÚ\v¯i–`¢É»›e´Ýû+LçKÙ=S3ƒ"S“£©_Ñ£³Æ§²ãh±în¯öÞ»C-q÷[¼— …Ö„qsôG°ÆdSv×{µì_¼æ ‰~·»¾ÃÅXKÓ¸¤¾Å0%ù„K¨·˜ÓÓ¿VD±&M;@[O¿vÞ|±L ô_>½øý÷ÍE‰á@/D›AÉ76Œ»Éž6Õ ½3þÝE ÿ½9-O´®ËBk‚–' Øy™Š?Ô˜!T_î~õêû+Z‹±ž˜{³ÿå‹W•°ˆ »çÏÞ½½üíÃÍó»+Y·þ2cXHä‹ ˆ‡Ö_îm(‡‚o.vß‹5Õ1ª?DB;¸bLa´W‚ˆP=â!{`hÌŸ/*ÌxÙx+<ßYà0£ó!J¾üŽVý/ô¿?6f}ñë G/R¾$ÙqGüw J€`¡åwOäÊÁ'Ñ–3ŽÏ àX™ éàð…F€Øê1Šq¼GÎÚ Ã6À“3û4-ªo”3é™ÒHtA÷¿ý®³\Ã% H–±šýøçü3Ç ºø ¤‰Û6»Ëã’ÁñV,•¨î³$Ò'Š1‹#IvQÏJ:ÔDçvmüVÛxˆ‘¹û%aaRœ§Ç›£)î×4<ù8ÕO>³Î>b‰zŸl:„ª¶êÉÖ!;Ù±R®X€Â…UIfsÖX²`9ò¤áš®QX+Z5õ Ö#LqŸUa2Y´éÁÑÉÄ£Ådr>¦Àï"l2A´É;K`Oj °ü)윹fx ²ò1*&ò"O¶°<ñPAf¬XyÆÈŒU⡤ K ³4Zw0VƒÌX],ÌX)ÂŒ%«’Qœ±2a%ÚÑ6@ÆÞõè6ÑÞƒd[^Éÿ$¶åöOÞhŸÂø=i’è ô‰úà9?˜`é DE¥‚ð@Û`y%6Ø6€åW›6²‘7¨0á¥--S Ï[­D (b®]¬•‚߃vºF ú—€¹%©ÉcЊX¤ˆf@B ®§Å,$>uJi-$ècZ ‰.xù4(Î6 1€û †¥ÂÚÆ0,P ö¸(…ÅÜ7 ¯×² à¡r0“3i*çK, DÅþ â@èc@  :Bxƒèè¯X°îÀä.¶´–Lo¶YÈ>!M£ø|ÚaUq4Þ‰ÃB¨ya#ía ªÃé±!b¶Ÿ¬×=ìŒq ƒ’SRç “p/šÇ€ Úûd-Ó„“d¾4y}"› î’©çÈÒe², ™L4­ô^¶9+íwÉ? ‚ HÆl!i#Èñ›%‰¡ôxÊ!h‹:p~Éfpkå§gí£V±­m$Åëê) q‚dßKD>Bxd–RdÕs#þeOC±ŠñúÃIµ‡î*$ïÀ_Båh[,R®ñ ªÙ°H{G?½C E$gèyîêÊ¿¿.Ðc’'¶Ë+$·6PdCT§‘cÝ5 .œîÉíPØ—Ÿhƒ'WDÓÍ?ì¹ÔNïPÐ;Odaµ‰$²IyžgÔüH¬-‚Ò¥bÉp ü[*V2*Tý¥ÏSfö$´†÷TfþâúõÍÃ=——Qmv6>¦¼Lk|ly™móç.1sâü %æ`)‹Je)1KÑh-ºÄ,)>²)Oû!80/ € m¯K9XŠÎæG>¹ÀÞú˜óãùJK$n)Ì/w?½Ú[ Â]Ù½S{¬&(8c¡·\+RŒ*É"Д†! \LY@ NNv±f²˜¯þÖ§•²Ç[tÝD5û ¶ýcöBé-'Ìã-ãZ>y¶ =ÐЏiÿ*!ÖQM{=Ëý%Oµ‚'ŸÝPyÈceƒYh%4ËGjÜg8×ÏšF5ÅMŽx Õ>„©ˆŒwÌ[šIËä4®CØd¢¨LöƒËÖ\ƒ HEU!ré‚c™Bl¤ 4Ý \fæBvn¤Ø(d#íHBÙ› Iª)¨!ÇÂBÆr—ÉIi»½Å4ü£»F sù,è‚ãÜQì&H–‘)êlôHÉŸk$\(„ó*(sN âeœÔªÌØv$É[y¬"y‹B¾FFdH–’w(”j3ÍÕ÷Ù)×f ké#'®Þ°m ™cqgƒÈîTÚ¹Ò EpP{ÑÊ8ÄCß LY¬~Ìže¿ª/R"H`š+q·Ñ“…«•¦Üf©S˜™¿±¢Z,bä-¢«ÍU„Ï5)¬ÄÉ\8`l/R Ù!rD_«í+¥Ø‡i&›Ù!LO"]ÂCÆÔá½Hfá˜Èp¿ÍEs$ïN2¾ÕFvŽ!è$È[!õ•Ö(^í'H’ÙQ®i8Y(L­Î žO†Œ‘év IRÌ 8KÁÁÌ€0=¥ÞÄÊÈ8Øh8ŽÇ¡è\R’ÇÈ|`•ÐïÒGò–3R¶gHaH«%„šÈ÷;©P„¥… uŒ“˜â' i^'.ôd¡0µjA„?ˆhÀàÑâø­AªŒL’U„ß*툃!LBÀÁºœ±ý-+|v¦tš­’:Û÷ ÐìP8ȬÞ…­+HUoAZ\H}¥‚Øù-®NLsõšÜBOÎê-¦¹õ–õRt ±¯½r®`0$qSN+™ ¢ª¶¼þxÇ[l(žnç NÊf~@ø-ß*k¼ËX…'mª =Yî>{zÈ*‡aœÞšÁréEÜX„çÊíô‡¥—é![ÕÇ]¦Ì£·xlù½ÀšAu_,’Söj™›ïŒЇ=í[[¼{Ñq¶]áŽU‹hp惾{ìÛ{‚ص’u`9¶‘‰¢{Od=︑Êd€õgÉ-±5­›±¬p %úø€óØi„¥U)žl•­´ âÕ( ŒR¼k•ºÔKg£oQ¶CÀˆ“°V²µx 0:×Uxtbd~ §£sÑ4ÑÂ]·1_Už6×È&¡ì.Û]ƒÔáþ @Ã Åæ¤Óp]1‹S\^”à§Ïn j5ÃÙ;§–ŽÀE°3K}äÄ] ìÌú8Y …ð=ÔÅ¡twíb ຜ2‚?³£Ê#Dµ1©›Kôð\y8Eì:;!7p²ŒL.Õ†"¤6Wåaw2Œ,‚†ì仄4°[rÝ™!h—Ó‚vTÁ Eèáb…ò¶=”ð¬ú‘œ1¯™³´Ó +‹Ñ2= z"ëµ<¾ ÷(ô[Àüg(o}þz=J…déÁòžŽ¨z=™b.Êïq˜×§ÕÞÉÉdJÉ6ÎõzDJ•¶auêªØkü¢»8Fé™#ÿ‚”Â1jIÓ<\Ê$^ï‰GdåU)Ÿ~!;AI+Œ]KQ[ÁÃÑ<{õ†­Fv#ao‚hà\øâĬØ#6®¶àÜ0xMvÇ¢„Mú=²×¹`ÿßs•À¢‹™xpØlzë7ZÜ)¬Yw»ß¾W½ûoÐJoH[ÐyϽñÁÚ]ú»«=ú—ȽI·;)(e#»ënß'ŽZ="šðñj±~÷õÒà·`<¼“fÿB¾PÓ?¼xªaw½ÜøÉ2È÷¼ݹ‘_± p¿¾ÑPþâ g¯¡Æ8ï(³LV®PlNÓ_ó…²›Æâ¢À¼ú…@a[J+T»Twú–ÆžÀ‰’†º¢NS †D ·6¨ó•|θ¸PÊîãUŸnwì‘ [g§ l!ùW½‡ùÚÂ]m¤„—¨ç´Ó—v·ÁcC»MYùz·Ñ&ŒÝþÃîjö‡Ù†Ý¯N>*2:ªÍ”ý×ÝW+És”U{bì«åÝ2àK…ý‡+œ«&b™b¶•ˆÑ›%S˜ãÀ.èi”ï®ÐÉclnlVbŸX`€¡«X/WZøñö–·-¢.Ƚ2¡±èë)³d2¡äói¹8¿±Îï>4êMìú„K;¼O Ù“˜ãL¥,q”{årRœß=¼_œŸ¬ÝÕ˜Žîß®+.+Æ(D‹¶£Úâ_¿JÑ79Xvø[<Ñb³pXÓn9I Y±co;»WC'ø†¢§$ˆ ·ÂEc ùœµç Îé¡´ãfgiÐõ<9ÙYRè›ïŠ DÊSàKYèe»cÈŽuû–¡o<B'Ri‡Ú,ÉÌͪ÷ËãÁ²Ò†¶<Íx=,¸šáZÀaÃ^ËŸ .¬âp1“Ò)‰QÑųµ¦5¾ˆ¦U'ìéÒk< zÏž³qÞ&Ž;(+3ùø*+&. :´·d’%ÊÔfî®ß,wQe]ôvÍÑJ¼ ßÈ`(怛´þê Y)%è÷¢EŸƒJ&¢üE½¨n™2Ý,†h@Í&yÒãÝ-rø3YA.yVå­÷úõÚ¢M¿CíR}ˆXÇ÷x¼Y_m"Ü-¬<ýùª‡ÍîÍífÜè}±è¼NŽ^ÂÅfÒhæd¬³-PÊ¢ùw-öÜÄ”‚6#o…™ˆG•dœIªl“gÑŠõr ^†µüŽw—|“íê†Ã²ÉÜ2§ö®¢…ªù¶øÏæQŽ4~6 8\*ù„ÿ†8ëÂÚ!n£‘ÙcaÜXí©t ÍŒ­‘›Þѹ¨‘¯õÂ$1Co.ÔB\•ÔÓ”¸aÞ˜Àáä5Ьe‹°jeÓ™ÒzZö…ESø,ã5Ï3öóOúÞ¾p±N:Åy6Êsä访gëoœ›ÆPÄi¢0Ëã Ç….øœ@ÜÙ¦<¶x­=$дٮuεÓz”zš5nä§É4»ýõbcFðÉ—¾£Pñ×§u¾\´*óå-Šš z0:ä\zE¤®=Eï¶qR~;¬|_`$J+®v0í®P¬…ów(!^dœ” ‡-“ÊMAƒœz¡+äºRˆt};eVhK+»Ù-Ê V»êm‰Úþ„ˆ;›-…ð­šY§pA_*G7,Žrð¶x2D;yäçêùÍ’xžŒ'ÑPÊá©&AäÞ7{Üöö6—¦aXðÖ=[á9uÎ1×ÍbÄ´Ãg°É~Ö­—ªTs#3"ž}¬¦I<תðJÍñFËôžöbwH[jšj[9Ê×\ ‚5{˜Vº¯¾ÃAS×’õW3´ÙÙ¬q]+“¨XqÖ’r‘ÖÄ/ËÓðúcÿR³ª±¤l špôó\°ƒíBE¤Q%ÚŽ2›U dïr³ªÂ¢ÙªÎAi£}J»Áµ#t¬dšeåG­³Á…²“ꦹu¸.Gnða6¢ÇÆËò[Æ+UR¿mÒ±­ÆkëuΰûÛu‹†TÚ Ž‹Ü÷ãŸ?À’ÓˆDFÄoáGZrÍŒÇYò)¦GÿºìŒ0î¶$³*cN¥€‚sÚ­Ó Çn_^q4îá÷sþÎ¥i™ÎiÅŒû1™¬›T𢵧ÔÀ>{.ÕV¤ŸhŠaêdäÙ®>kë®a¥UÜz­åúqôÚ>íóz˜ µ ¿ÀXž\”×TžpÛ«{#BQ\pÈ"ºØiûþÈÓUòr«„j8‚í,ùF¬œGƒ‹Ÿ L[Ä{¡ž2’©º3'Â/|dùVÓßϾú(Õ9¶ Û $aý±ž¥вgWÌzÓ5ÇÁ[Ø•@šä–bÆå˜„·"ëJ½¼•r¨¼AÊѧ<…"*‡Ha–̾.ÁñÙ݃:Ù’’¹êVüÉ2ØéÞÆádG'Ýqkÿ®êÏÅLÿº­lÝÆ‘ÞqÕ[kz\.*Èçj3ܨXW­”w‹kšOçžO™7ÈFuÇG» C¥Åý¸:ðVnö¿|ú›‹§ƒCœÎâC‚»¼ÚG'µ9ö%ÆW¹=¾íi÷ t¿@Õk÷Ëãõò؃ùùÃòøjyüÙ2Ú·CPÇÐêìù†6ÜBqÐxüèk?[pïèóMÜ—ËãÃòx³9ñ_-¿Z¹<*„vT>ÒàGî–âõÍ&ûÂÝö¾œÚû­ØÞe5Ýë÷çËã6#T+Á÷›lW·ßäß‹ÍG5³Í=|»lÑoOlçÖ`ªÉáxãþ_·þÇtë‹MÙP;û›i\ü¿«o_lnÐëMYWLW{õ¿^õÖ‘<<Òâ¶§§c˜^MÜnŒ¢0%öoà¹ûfáù7šýãñas‡Õj8AyDlSGýölq-QJ6EFFKQÁQyÍV®¤z ¥{£¤¬ø»«^SÖaìï0Iák :¦YZmt,ŠÌ$åzæÊÊ”yÈÔ:ˆ’ÄAÔ”çâ"4 b6^ôêHÿº1õ_µc i<ÔîlæŠpBÞ^mUžÚ±<ÍÇ&Ì ¬ïD Àõ­œ¤I~ñ¨ÎÌ^õœ{H[løÐYZðšä¸Ðº,­þÌÆ>ðG'Ö=%sU/Øê«.ÂO äZDqÔzj) „ëçªdÕ1’t Ë¡›ô‰|†r@Lør³ã¼rîþ{Tèmui.àÝ‚(¤?*ìžvÿ¤ªz­Eøo¤èÄ@ú`k åc!£Åá –¤µ\©U}êrp2‰¿£ÖÃgá-5¡Ø_–<ÝTŽçBŠo…„¡ic«pJ†õ6ãüˆ>ÆñG^däz¦jÕ§>n$9ʼ[“Ÿ©~ªè7Ug·Jؘ$ËeŒo®Fewj¨j‡8A7U+å:]Wõ\Wá-eG,šÆñÎè„[õ7ë‚3ò”l¢PëqEÙx‡¯‹o÷¶šõ•®÷‹W˜Žxç&Ù˜9ÖÏ'»%<•¬Þ1ÝŠ©JI(£ãÃÒþäð½Ö2UddÙœïŸkžÄ„(KÞ^«½~½m†ß þ¹ÞÏFÿéƒËѾ¥ê­ÄšÊn.E1»h"cÜ®N«®çe?^ÄØTG´à†h>•Å×aK>}øÁ‡\%öK€ëˆï‡—þè5Íßë»M’?,z% Ëm±}'~v$º#Q¤ØûäK¯“ád÷l`a«=÷¨ïƒ›ö6µè5?ƒ=N1N£ÿ-Ö}[☊U_Ë$±¤3–¤Ê¨+ôª6–'D[ÂÙ=¾ô‹j㣠ôU"0ŸE3_j™kjã’È‹Iœà£ƒ5'úŬqïß³I¦Š°Ç1KkORã}T7è$ÛÜÃ|À<Œs³± e*cŸ(… i°s”Ôé9­M†µl=»ÜJ’p6žêåŸ]\##vgÑWuú"ˆäJƒ ‰·ÐVUg~å6Å!=úÀ)x½}X_ Ñ¿ôºnPíD½Á^;Kî&âiNuÅ šÒ£¦läËQSÔ*WnôK-ÈÜ/åñ¥©Gß­¹uhÀ¾iß¾ÐBZ‘øÃaŠã>éŦS/Fèt­‚>äu¹¸mB!èugö”Ñœð6šÝK{ÐÃ2„®ÿjmù GÖÓ"ÿ´ªbl_ ›ygâ‰nu$0„2Jl€Ïè·và•£4 D,×Í­âÑâµâ$ÍàgIØ4ÍçÏ=‰¯m×Ì%L™oýŒ¨m°¶…†xóüý¸Pèø4út¸aG_SïOéлÖð†o5í-ã–!쬑›šòý¢6S{–ŒaìtÖ§¼è‰¦Û s[+Zœ¬ã´xµø‡{rºUS ôúº¾ßCŽIÕ–T€€¶:`xÎhw¦Ý­j“Û¾^òz™O5º=æÃÒ@jót‘êèã%„ƒ^œ°…ªÝìzñJúVGÚ´K¤¢ñ”Ä­:Ž~ìg"ði¡r‰¯ò…غé§?÷*L¢ Ø=ügc‡qG_G)’“¶¾û¾Œ©{u|9ã«qSeë.ö­l/‚%ÚY÷cJ-0®–Øù‚!pÅI¾ž^!ÔŠ)ùãæSËÙâåµÌß_ñç\½_óôy>³îUIOK\"Ó§ø?‹Æáo+™õ…KeÈFõKîádnÊ×¥Úk¾“S¸M÷«¥ùú¹@‘>[Ѫ­©ÎëÝmiÂÚsаˆÿ¾[öE “ ›qÿe_Þ9gÑW½]fÇG ý(y«ûǪüÿõ•:@Ø,ù'ú}Ôêuƒö­ŠâÄ5¾½“¥SzôU”#‘ö¢Ëîñ„ocYF@ã…ÏÛ[ëM0 q,ø«¡Ú l9àr$s½–æ& Kš´R׌š}"k3<݉jÞÆuž˜·÷ü—‚ÂQÕ`¿Ý/ëG>By·<¾Ü<{º |±<þÛòøËMÖfüÕâE õG–N߇|_xªih+0%ýSw›¥«»È/¢á$ït‰•ï5„S‘[ÈTÉÕªMmõµNšTàFFŽ¥hÓª¿9²ÜR‚ö¶±‚p¯ç^¦Óz€m7¨OÑø ñêÔÕ“Wë§L¿¯d©¨î$˜žøÚÓÙŠeúÄã¯U…àm߉º{ÒîáS飱Tqÿëm¼Ä—ê„EŽjð…äèWÁá“EÔNôy­8¹i¡Ï:Dœ\L’~ÂW­7Ô÷FË0‰/USÝêTüëåQŽþÕò¨NÅ߯ßkVuëÈúýòøñãâpø±uèúи“J:©ê·¾_®2g%ñ«£›ŒëT%Ÿ κNü½Å¨ÀÖIÿ[ý¸é:ñMÔä>‡ï¯ƒ¸‚‡˯N\ñ7Óì:ÜÖá;¡¾¼?óx–vǦ=êèp虘>ÚÙ3Áa_Ósñßu™°endstream endobj 710 0 obj << /Filter /FlateDecode /Length 5723 >> stream xœµ<Ùr¹‘ïô|cžº7ÔíÂY€¯šÝpÈá1~˜Ù‡/qL²5lR‡¿~ó@ ª)fCLU£€D"ïLÔO§ÃVø/ý=¿;ùõwÁž^N~:Áw'.:½=À·V…m„Cßœüëô\Ã›Šæt_»~nÀ¡ Þp_Àû.’bÀEw‰Û5·2[ì{zöêä쿾_½-ôО•8ÁöTÎ øXÀ}ª#ftýÂXñt'™$¿vèüò¶å­´÷L§>Mÿ#Ç"q@p†&Úügz\ý¾€CYk[À±€¶ûT¼ö¢ììm_Àþb^ׇuWž¨®|Þß’ôÛaŒ%R¨àƒÏšJŠ{Cje4c˜TE´£C%hŒ‚¹ ë)$\¬FÒÔ.ZB£CTD{œÖnõ„#  jèúú’~.èæÕ¢¬íL&Ç|,ÚÙÀGÚÀ j¹‚—Z.Í šÓ ÞÃŒ!hÌÒïF láSPIRy¿x_ò+»€{ñƒÕ¶ÖèoQ½Á@4‰Ðy‹\T£óJ*ýw¨Åõ  /¨açTÐBú’”d”¢ lž’Iëݦ³‹(*å½[:ØxXí¥y’;x‘Ȥ4Úd0£™ Ù@|¿D&²ŸÑÁQ¿á-øÁ¥í;&>›p¶Èç‚ Õ$JOy»·…^eÞÌ3©À¸<•Åj‹Ë»N~ÍG…<ÒXÈÍ´ã *OWm†QÕDô$];ÉÈRN.pQOÔxO; :Žéðͨ0"݃M%${d{ëQ¦ÞÎŒEËìØƒ)2Å Ûߋۮ7Öyà¿:ÃÇ*S²60AûX–qEˆä]É‘ù)ÕJÛê13*,`+a •î^ô|Œ#þ°º&E=l¤ 1["RL3ÐŽ¤Ós[Dœ üªåàžbT–¬Iâ!á{ä%˜`ðÌŒwVó¢aç1q`QIû–í¶0á$?bðE¥f@¡(§ X{WAå¥B`RyÒ’„°A[-uÒõNþp‘Hà/yášqTX”×®dÎ'm•dž0)/ÚñèG'GH¦ßæCdC§A•ÚFç4Y:àtGÙÒ­GX\ Ì­<ùÎ ÎÃ8Ø‘ZíîQmDGgõzøØR–ô Êåã›ýš~0xÂ]û Çœ.ˉfÙ¡`Oˆa"úç|{ÇI:¬ñULpǃuKq,ü܃‹ðU1Ò‚µum-ÜÜVÖ•m¡°ô{Ð~xàª,š0Åÿ[XzÇ Ú4anös¼$mÌ.ëŠ]¶³f”Dˆ¯mƒ%Á´[ý°êŽÝñÚ#ØÕ¿‹pnÄz¯‹å¬ –oéûaÍkF"HÞdÄ :ìD°xMÛL‡zYxúõ‡UÚHyæù)F|¤ uc¶®¨¢¼x¯ö%`^Ao s#ÅOå@…A̼Y)Ïà-HÄ~S¶Är¬å:9;j„xø [ 9r—COÀ‘AŒCW Q×7âô/ÏNþ~Âùwú°Ù×r8ö „r§ÎnZq`ÿ"Ýà àöT¸þÝÚÙ-ÆÌVc–!NÌäÀÕ'd ™)Ö)¬v*Ùà]mŽ.Šq"Ô(Ç´ËÏÝž†Á¶ÞÈR4™¿œ‚©©(¸‚­;Lü\´Ðq5Ú¿­ôù"íÁ¿ ±^±~Í™4ƒ_Bö·ÞÍñ‰V°s+˜õ ñz¶»ÚdgŰ_ùîÑü»½¿°¡Qhž2SÏ;Ò‚éRÊ­¿€>&Ÿݰ庰%o7J\%aR f¡˯j%Ú儾›Ì—VYh%)&+tÏO!Ül}|ŠVy!@¨Åºâ¤"íy“s*wXát0Ž8:s¿\J2JæbfRdÇêAÆëÓ€{t”aC•¾ãx(•^Á\0Q*±FxT†3š "xo¬•ÆZF ]²ñqf°‘Õînе>T£³çZÅæÙ†_O”eL,½õ;‘Ä® n]Íà»d‰OwJ(˜]…û’VÝQ´ÌAÑÇ>Úìkëí´_Çʯ(¡k>*äi ÚÛlø Ò‹!sz_àbiËßæeâƒcÄO‹<ÀCbŽKì*Qn"Þ]í1TѯË쎒G2nþP@°‹ÒФ>€S>ÇÙõºcY½suR…“#Q •°p²Húœ3˜àPÖŸz¥'?5mZØP¬Ë%uÀÇh&ÙC”Ä‘,Ô4ú’Bݰò6QYùOJ a~ °±³5r…óÞ,áô rƼ §¢íÍ;_Þ8 êòì%ßç·vUŠ‘rƒa0M2)éFÊF„ŸÄE‰ÃCš®ö¯‹¿_[‹¬Ù¥ ¥¤…h1sœ$„·T[“‹¢¼gÁÇ0äìxʯîÅ¡ÎÑJòí&Ù qÙ†ð6Ý*•†0ÙGÞñ}|ŒµÀŽ“’))P-™§„FŒÔð‡IbB›8ɱˆ8IùĵŽDÿçåƒ nÛƒ\L‹MU‘ì|Ú;‰!ÄNDË“ò0)ª'n«£z:2ªy,ÈUáWc·£±Â–`î*†QÈWUUL䢮“‚âÈ>òq–*v/%ï°îY‚²º[È<±$$ìÒ­¿ãPd]•ùÜ“€ÃK•)¡9"ð ™5 mc•¤á²r=‘€ùP¼:Í‹#4XÌDà{h*ö C Z2#Â͸Ȍµ—‡½ižíý¯fü@4Ÿ×¨¦}à¥MPµx1{€°Ö9̪|d}™‚»]÷rª%_Ge B[ki½²Ÿ‹ÒŽ´ÚÑ{!79Ñê]U¨˜;*²NñÈ¡R’ñDŽЖ2´¢hQ¥töÒ ÊxŒ&\0,Ò@‘ІE2u8Kªâ¶–])>MS×»N}¸(##cÄô©ÖP‚G¡•Ò{.ŽÒ  bÇÇXs©b zš3Ô²hf@F¦uªhp8¡GhÕ£)‰‡°Ud Œ@XÑñÀéz8Õ #Å~«˜å„¿³>œ¸L8tޱ PÎW?ü@I(ð¸üb`z¿_XøšßËe'Ïá¢BúW¦§Ä4Iµ›f&oj$ResqUè<÷Ø(­uÉtDïrŸ ÜœA­êºJ–€S”\$C˜«µû#Ãæ_­EäRs”oGÃÕ<·X£!5 00”ä_a*ƒ1OMƒÊT¤µFt‘W¯gAq§X9a¤ zg#UÞ#M¨X1$¡S” ° uRWا]/+°(Ú×)ÞÅ*ŽTÈ8RË&”Í’+çF]¬(¦¢ñ® ¨ÆR‡ð»4¨ð¬bÝ‘«. Ì òOÌÒÖn½‰KËÔ¯1ZÍæV¶J‡}>;YÒ˜(-ʃUUMz• ÎäS‘ áYÉYXòµ†¯Sêù„X¦È:ÕbQØ{¡Å€"z*ËëÅrÑùšTøXGz;Ö|& ±)åïxn¬a‘ϳ\Ë>¥ ŸÁPN¾= cðÌêƒÈ¥^©²8¿ÀµÉÀy”OÑîî!­ÆáJÚJâ9Ж*íÊlä–?xKLääTtjÎ×¹ø´ÔÈg„5ˆ‘¦›K|UÎ"Ç"1w]-U`õ8U)ÿxEµNIAòúÀðÂÕú³ŸºlõÕÉZåû祽̱¦#˜Â§, rù•XƒeЈ5¤›¶á÷Œbw §ÁÏÓý?øáEà™ë¨ŸA¨¶¯m¿ÀñEÙ°Ž\òV8pæažý†Çn¹&½ˆ–`Isñ»i5Vm']lØ‹Òcj$ð¦€w¼ê¸í‚¤A&xÝ-Ã{Ç ΉEàð…œØ–× d’ëîÑÜ ŠÛš,Ôx¤;„‡Äx „õ'u}ÕdÐJc«»Ht_óþbLDF©KR]Á¾JúX E¬|‘bhKâÄu›ø™Ó…”–Ù Qº©ûD¦ER"µ Ø„êè u¤ÂsüL¡®ZªÂ‹kßsõÏb£^I°§ J%3áòï¥Ĥx’£e!é nÔŽã~)|¥b9¿@ò~ϳarüý:÷;UÅŒM¯™©N†âÒÇÄ·ƒéî„àý÷³‰Ü eå—<^nÑw¡¹¤%ncU•Î¥´.®2(ÎîÐewøLLÿÒ˜°S iyy±oªêÇRÕ'OÎiÙ$"+¿x9ª}îât£š{"ë\ `¢Ý—ÜwJÖšá™Ðoöj“…©Ÿq™ ‘xì §Fï1“öË‚=¼fÕ¤)›ÎËñGåˆr>ß8¥¥¾C£?b¤!™äŽç0ÃøóNœ`œª96Òݪ~qsáRcS¸É(§¬<ø5liQ¾•:$ë³Çz§Œ(=ÂŽïޞžV 太e¦—#–¯›9JQ·}i´JŒ ÁL÷ä¬[Ÿ¯1ÙíèŸë½‘)ãŒ{㤒Órëð]%L±‚ÕtRÎåDm­39ÐzWÄ@$ôÄ ^P$éòµžôX Î%ˆê*.µ:¹”ö”]1ÀMÛÚ¶‰¨á‘±ª¶íû•ï·À™iù³uÎ |W@‘Ú{Ù÷ÝývtÅñ©Ã}lŽ”®Ú_å'NJò÷ž1Çkô V䪹½(Þ.E¥mIÔy*/ì5µª/¶dÊ…e»„L6QÒZE,9—^œm%n"ôG“ÓÒ¢áçºê.kw!p$# » GÓqó£¾FÚvW¥ZkVjUÛ§h“ÚÔO8]sF?¶y½JÕSÁ^É¢d%Ô<ßÜÜüÞ+ B8¦‹¨UàÈþg º*èXéül4wôÐ »Åü”¨†Tµ4qݲ«à+‚äP'6|ƒ¡žÓ#5Áo1ɯU !Š ßÜÀRð‘,ÆûÙ›çr'›N×…¬M¿à;#Ø3R%öxwvÖŒÏ=uÚJñ£Ç”%}‚y?„1uÍRÜÈl+ø©ãó+øDQ+«¤õ=†öÊ‚‚Ÿ´IˆÿX· –Z®ôñYÿI ügÎ;Pcݧ‰U¾ê$Ú7[JfA9—Uä>v¢<¹NÆà=3Ízô$¹‹Ü&kƒzt[ÄÂÉì±h±3`©Fš¡½ï;a»XÇcü´âøÂõD^#6çŽO)¦úãÚ™¢¹©Bt¨òêŸð¥±#«b žÒ EáºvËÉYªŸÞ`ä<›J®Ñ÷(_â˜Mí¥æVï~8¶¤AÝÞ^dþÜË‹Õ}úÄBøä~í´½#WßR¡J»¥˜kúêÛÔ´€•* û"??¯T¥Þ?6ϪýêÜT²ßu»c÷sV@®*Ñ|—.çÝëK#Œ·M7³¸¹*]̲Aµ_…)³–›>4ùYu¿ÎÖv7éÚþ׺õ„Z ©N7 UÏöìÚ9Knj%LÛ¶­Ôû7»áã" FSù)ÃaIÌ_XZøÈC%HóOUôo®±§$+ ˜Ý« Ü ÑÍÔÄèrDBÉÃ?””¢ÁªN‹Üñ»òtSžŠ×ú)ÙØñqÝK‡ˆwÏ ýªì®Ûæðìký¦Šþ§ß°úì_oaÑ%òÍZD½6’Ô¥Ð|#ðÙÓ]-WÏ–ûÐ%õ/н³ÄHí>?s‹y¸ò…½—eÂCEÓÒç4 UŸ¼Ì4¼/OŸº“½îÎ ÚŒöÝ›}óÓ>My_Àën’àÜ'É®½Éª‰> stream xœ½[[o$·•~×úGôcuà®ð~I xïbç!3òàä¡FÒhäHj[=²wüë÷;$‹<¬®ÖŒ,m0ˆÍf‘ç~¾sXýÓFŒr#è_ù{qwöû7Ál®g?ÑÄÝ™VÞa|[ÇÁÈ0FLˆ6üpö·Í=&®ñ¤L{nÊŸ‹»ÍžÓ¾3cQnÎߟåå&È·~ŒÚnÎïέ¶ç?`±tª[­AbÀç—gßwÛUŒ!¸áŠÆ"ã‡[1©´÷Ãôž¦u Úºa¿•£Q«áfmŒÞ«œÿ9cø1FFÙù˜?lwÆè1 ¢ÇdŒÒ‡aSŒ°Â—m·áqKÇé† v2Q$¢S8úC%…vaH;€A‡ëíNk5Æ`‡¿Ðs^Àíë­6i)„a˜vŒíoîÓ _ Ó-}„”8þÓ¶’z m‚ÓÆd)¢t¦Æ§QG¢q z|;ËæM;’–{~öWüƒê½×£´ð,Dy™F=ª:q;Ox j|ž©³)Ñ¿‡Óö¤Þ(VHÇ J9jpŠɪ¾¾Û_oÞ\ÝNo~Þ*;\mÞÜþ¹%Êé‘=+ƒ£µ‹¿~²Æ·§ûËéáróíÃÃþ,³2ª ò …ŒÁ£ÔØ&nç µùÈüL›)¬ŽA9éÕæxþ—'ɨÌ'•»½y¸:{ÿʲ÷œÀô/êŸñÿ‡¢7ÿݨÑVL|W®‚w°vlòvu›éVyGíùª2ÃW9úN¶jžéV™è)T°Ue¦[Uhe«õÏ5½jCJXH6¤°—vÙöàÕZlwJi3*ÖøùcÀGí,ÿVÅ?âmça¯ixÇz–ú·ªçù˜'8/zR3}Oªo^ô¤öæELy™ò-Õ¨H.)Š8ÀD¤½Úò•™hÒh~êöì}3þåò¶e[þöì{,6IsaóŒ/¿ˆ”·GG¯¯ú—{úl4wG¦w{lzP’2’ÆÍ>µÇÈÄϬj3VÖUÞ!u{¾ªÎ´UZAvÄN¬3lÕ‚ NW[õ›³Žt8ÔCÑ~Î:;5Âñ•È,nØÉô)@¹6yövg‘ÚG!úæÿÍÉ+KU³ë¼!N-mì:X¿è@›ò ÂC Î#|¥\©6çgÃ-åÈΗF¸ ¢`ˆø Ä¿p´z³ÐR]¿Ù!¥>4£AÖ«Ó9"Etõ££'Ûð 8Šßà¯7ü0›¦™] 4 †êWÁŒ>@qHñ€.žïf³¿íÊ þ•¡, ZwnŠÑ`AиŽM8¿÷’r‚ ”Õfv ›vJ²g`‚N£Ó|¡}¥Ggè\ˆ2í a sÄiØfØ `ÏÉÆ%K¿Éu$}ˆ*ÝI=Ú$yòc­ÐqõX£Z=6z|l2ì™_l°¹‘HsIùaa¯)¯ê‘ÿšjHʈb@n J"+u#ÿE(]=ì׬üx j@„ ©xHðÞH9T0™ÃƒMòÄ›J#½öèrAA9y®¢ñRHJjø±Õ-©âð1D;ì?–FšáªÀ„uNƒÒº"×0Þ(5|Èká5ÃW«»Ý&Qî¨R%Úx¥Å« ›Tì@©D~Ý™¯žxÕŠ­wíðé@Ë6št¦Î`Ée–#ÍîËæNX^}h›T¡óï³Rœã²¸Ë;iì4qé_žL)ìŠ"<†©þÕÂh7K ia®6©þ²‰6€W²–³{ÀJW T¹Ö#ƾ£º/pËÜéü4²3ð9bÞì/Ø!FgLľuxÙ†Wiˆz6qa•F|u(ë,[phÃGþX~\]û‡Ä¥òÄôæü»³óß}_vMÚðcÞ´çïÚpZ=‹´êÉŒ{Er$?ïiÖ†‡ŸÛpjÃÛymLÞóÙµ""©á¢ÍÞ´áÈ×Öá»g<öÈ#áÙÑK'(¿R¢ÍªÝ5a‰6›TÆ6”md#­—„lD›ù‚:ÔmøìXÀÓ»6ë—›%N\Š6´mè9ÿ¾*ñ¹¡\’³\À6Ó«”uD~ùfŠÓpb3- áwi6Håûavë>ßìªâ‘Aƒ-Ným È&ŠX!!ì`‚f¥0hõ”J¬ ‘bz cûÔC‚Š®)ØÛˆ¨)ûå5ý\åý ‚!O9< §p*ÔŽç>ÞÌ^:íÍ"edZ}×üú·®uXCgß´KOFá‡ýû²K4}ào4yµµÈ° tº`S:êÈu91eÛ¸&ÃÊ,ÒøG1ËKMÄM}v Œùvyó!oâ Æ_X3KR!ѳØ>n}JΉÙ'’ô hÈ@áSrK¹F#×h7çšC-§>çkeœY6A±¯¾[œl&¡ S0KZͳ{Ú/@`s}Èûi ž.—Vóá‚Ë?x¥¹ÉܰYU‘ôóuŸ,w3×)|š2óEzÒ„…± | ϨÀ ·z²gÁ9Gv·‰ÅüÄè@›ÙÄâÒ[ w—žuzÐÃÂŽ:Ò‰Ìcñ¦³/¥?æ*oh }ÇVƒÕiE¤;íC‰›Þx{WmvqÁOz0ŠŽ›*½bO™ê‚W„kûGW׳%ñDx•wÑ¥gS»ÏŠ%ŒïÄE+P:åÒb=G–”K„ò ´Ÿ 6WRWzð¸[¥CXZ íáƒí›U•&2Z!¨®ñó‰„mÉòèEƒDKѺzΧùð@¿ÆíË™/ÙYo{aàݺ…‚'` õ¨è›jûÊ;ÏS†˜ÞÁµ¿®"-õŒ4ØvEN!ê…JU*UÜŒºû„Ù÷$­‘]~¯\ŸèV%(c$pw{ªç§Š¹R†Ý…ì!°P¿ @©ïu:òðÿû7±{ïîØ©g\ÁX û›mN)êdÿ=,wìC{º¸¨2ÿ±Q‚²„Ú ÌðÏVK^S0Räæ–äŽ6Þ»WÈUQ‘ëo]2*•sKz×¥$Ï)kÖ;T2°]EÖe9DïuXØ_ÔŸxÊ»DšF¼xÛL5sõ@;*E“Ȭ¬Ð¢%¶ý•ùwˇ¬j}€ƒ¸e"z®l@ 5ö²ä¨\~Mgx{_ZHÁM¹Øûoã¬r~ÑÄ”p"IÐ’â£íòåaËoøÒÖfï¯Y}Ûyçò¯ê*˜Q¡†•sö2Á˜~‹™“/AõK·BtpIÀ}éÜ\ºÃ¥ â#o÷ä÷½È‹W ò’B=Ó»á’×ö.«)No¡õå*ç-üÅ6ÉOR4Jn¤©šÂ\®PÚû`¿&ç§…Ÿ‡L¹ƒy@Qâ%Ö®¨ÙGw©œVX{Rq ð¶ôÞ@‰¤KhU]¥¾AÁõs ÉÚÙ\®[ß!ïKhtºÌP|%HuäQ,ܰ‚¬ä ¤¢Tš§íº|~”Ãó»yÌl÷)Ì ©zxVhÓÑs»/*ð *Ԏ؉=ú»fåÌ[\öÄõÄä)ÙO—mú‡õZÿT7íÔ»ˆ)¹Jc“-ôɵpíUá"(H£ÆuÓ©TêëË‚ }ÛMÜ Äê*ñ ±¦]Sá´µ5Y}j¶Æ]nºèRèçz(œ0LvAxèRL…M'`ÿñ;ŸÒ['—øl¾Cä<—[¹ ù¥\ikg—1cUnܾù ƨê‹'ïfyüþPüM¹š…ªî}½çKÄ8ºX4=Á‹¶óËD‚Ô1:íø Dµ|A“‚^Ñ3ÖöD'°”aÁѳÂb)éuÛü Ì>m°ClC*+×Qz¼{L¯ìRŽ61‡‹«ÓnºŸn?n« •^ö®ÂÿS€9uãÉ#5ý^×QÒ-ZésÏOEÃwÛ%ÄY#½© ±HvŽþ3¥pH"µÆé8Ü®-áÉ l2à˜ƒ\Ê ÇA®˜ë2Èw–ÙKß0#¨â/HÐâäò¦äsíîÓWm…9›oÉÒæO6T°‚n &†š¤xÉ0Þ ÎÊcϾ ©Ô—¯‰æ¨³Ú¨kvÊ’t©Û*dê„ëŠ'—€›¸./%¬¼iÿSÝ챓EÅŸ©‹æiƒþv!ñ&çwWXï|&·OÞs>zΫZ;žßᆛυ˜Q‡©OæÒ5ÔtÙELÞâ©Þu™—ϯѴþÍÆ9鯷)Ë)÷ >×/ò&ÑA p‹Ô|.¦ûq›Þ*™ûBycÖQzöuÐ,Є©µ£´]UXwfæ_Ð¬× hß,aÍ{: ›$Ä«]ê~íYµ|ƒ>”ÕpÚ×Ȧ#½%+uDP7][!Õ“–Á­— B÷U}m#$^¢âdWjønzÌ,’1ØÔ/IÆ–ÞÜñ¦ç䯙Œuøé³lžÈï¯b¢è²¿ýB)]£È,5ìŒNP——ÈÉ Qµ(]²p2­S])$¾¼3IξäÖÂÒï \Ï[‰,Ðâèw:²‡Tì’¡xGî4 &Ì5Ï3ó"Cît),‘Jàx¼•tU¦…<Õcy<¶Öå¥ú§¼ á?ÖÕÙ³XÕŠXö&É_Š-r ñN¯$°ÈòQ¦+„yè84?_mÜ}þGjŒY+F Ó!ΣÜ5®WJcÛ€à‰–Ôí(?×cÙ¸\_åŒdæ|ÍÁù`@³>A&IQ÷ð­XÞ8wp¤O›0I…E3êµÒ¦± &ua®êz¤hòK…%TêñXåô{¹ð§’åS~ŽînÞ5ëÈ/Âyö½Ï‹-"Ä«[i½õZ¶HM ö9¿‘xìTf¤Ù:œ™Ò¯]0È£I\îÔ… Ï'^s¸,â‘gößîDÉRéí ±vŸRt-äî”95¯ŽS¤z È×–_¦ü­>N¼ÀÁX>Ñ8žŠ0a¡”:üË’®qlOïéb1D§õ=ä=g×¹'¯ºïã¶`ò’lâV‚±Ååz~{«ý€îÁÿmÙˆ9 7ëlfÂ9ËëHv7Ì®n×ð¹/±¤(]÷×7H˜šžÕwåþÁÞ5jo¡,ß H¦{²¨–°wê¼õ:³.÷Þ©Ó5wWöc 8, Oµ1ùD¹ø¤÷B'NoVj½ä¾2ÒÉ[ÊY÷iöóêý²ÔMK»Û1"WÈõòïÄÅéÂÊ/TþzöÖV` endstream endobj 712 0 obj << /Filter /FlateDecode /Length 5420 >> stream xœÍÂ÷’›™Õ¶÷RÏ.ï/^v?ÌYϼRt›G+&Œ·óë-cÊu0+òÂuËõ|!¥èçÝæ Žeoï~¹Úw{rÆ,ƒÕ8fÎ ÇDwcÁ™4®Û!léÔ¦‹K`…’tÉYR6Õt#ÜŸÁîößÏ……]ì~ Ó;Æm·Ü"8/¹ݪ€{}ùR^S /zÌ`³Ëë‹NÊùå/¼¼ø3üs­z¯gZÀ¿Â£”³ºgefg, ßK˜Ê‘i¶×Œq?ûxòüÿËEdÜ‹?]¼ŸñžÁŸAL<þу¬Dxjf<ƒ-eFBæ™õÅO³„0“a­r°·Ð¸ õÌä™už±R&„ÓCyâ ÆÉ^¸D#HH/x¯yž‰Ÿ %Ïp2É ï}…Ë0s©\¯<…2ÌœÅHMA„çʰq2Lœƒ³-ì«Çý8‘'΢<Ç)X.Àôžxœ¸q2`r îmØ×wHaø|ú=£àAÅɬ‰Û0†Ïg€?ì‹E²‘€¥Ïç(tBENäJÜu1|>Úƒbhì4„4dâ<JÀ¶tÂÈÏ1l:@ȧBàÊâyãSüÓçó@$->Zߟè†=“†¤O§?Ï™EµÁ4nÜЙ󠀵u‘ÃŒ7½=U´†3”¿Úÿ-PZp×­VçÛÕö—åÛð;Džy±Ù­ö·ËuAÏðbL,d-êþ´_Ý=ÀÖ϶›‡ÝæjI!f|¿ ‡´Fw«íÍ#¬E–ßݯ¢´€+§UÕi}Hâ:\¹\8y R‰òH¿†áõ)Yq¬NØ!+® ÿV(ðvŒ)ª©‚çôz©fOgXãš½>$¬Òq•«Œ¢«A/°ôqX¦‚¥kX|X%Â*HÂ*q/WÙ X<ÂraÄ0MìÁÓ„U&®Òí¥Œ«"öÊ·w”6®ŠTÕvVÚQFìy/añ¸JËjU’»|ưŠã!^gñ“ì!D_ÀxÛƒdÿƒrøw»ºxs!…s¡p¢$Þ¸ÿ‹_I¡Ä½±ÞÙê+,ÂÖÚ‚pK@ßkA´vàÊõøQŽÑ(„î)Q}¥âb„ó|ôØ0 䯠‹õWÜpt$ÖõÎ5PèP1X9¶éÉŠ Ýø½–¡Z@!3Èh $2Ÿ)?ÂÔãù5!‘%_Më¨ú¼ç²@iî|ô\Ï¢=»~g³}Õí^Íg`ùg;´*Ît+pQ¡¨^"¹Y¬Ý¦ŠRª$½ôú÷³çß¿®ê¹¸íoYl¯KÉñ ¢UÚKe<ÑwXŒfLxËÜ |ˆënc ›9Ï;¬WCÊá¤ÃzµÂ›™Îÿ81Žu8@°ø Þ»ÛÄⶉŠÛ^YKëŠ1íÁo#_çºw8­=¸kÑ­çЭuZ  ËAø¬—”Ûyn°¶®Pt¿â!…u©j/@r»²ÍM<™^ Ü’éÒ‹ttch¡¾Âo&$øCð¦ërK@ÒÝ›p_a9€Ëp7÷ñ{á|·L˜qS]3„Ë'RÝ=ÔxÁ»ÇÂYï¦o6>à=„`BÆÃîj÷ð½ ¡Ôj|ó/^–‹0Ï ‚á¾%_} ŒÃ _ñ—ݧ ?åê&Ñ€¤SE‰·$xZ lå2J„X\ÝÁ0mŒª|‘ÎÑ#p¨\«,ž Lt•KEÞUb#¤6ÝÇ€#„]¶[²8¡-¢Ž—M§étÙä N6 ^;\$z L bÊpÀ/aˆ90pÝï„ðÀ=SiÌUXZ ®æ© HSh•£'ƒ¼ÜWTÝÅ[+ÅduUV)C¾ÌÊ8wß<ŸÃð°8ð§Á!BÌ6àÖ-ò΀­D9Z8‡!0’ OoÈ4Ø’0o`þ]A‰Ü†2%ÔHÂó†8«xbI:ÞWƒJÞÄÍÀŒÐµeߟ£Ès0ëÊ2IÐ%x]¼&u3Öp¦N¡†dÂõ¸"R9 qÚyüT#Ï[¢,¢ÔRd$ B÷Þh›4TY°…²xíÚ0AB£XjH~x²IÃC™ $ÜÄïðigçN”3ðZpR€©'–x”\GÀÚY¼†&»aÚ„ ŸS;—€lCtZ „êÞF-çª[Þ$ú¢§$Š2aüÊŠ›øã¢AàéÂÁ~T1ä„È0aŠúç"ê@Þ7g×eøª#ãx£7&Édl‚ùŽäÊ­0•‚?”hàŠxâQ‰”m2c@Õ57¡{á’èómÑg4‘:j㚑ƈ‡¢çWJZoBöIÝËòmhXpÎý).–Nb¡&¸SYù"ÊÅ´$»{Bh³Í‚Z»ø°ØsSõEÜU‹ÖDOLšö€] p€bõ¤ÙøA†#´€SS‡&%㸠åU×ñ9 ŒØ€ÕÑ)yË»_Û¼ÅUWÑH×»ÉÎÏ|”F¿•­#>sŸÔ:¯ÝFhh+ZìC c=:éšYóñAqu‚g!TXΣJèuHešhB-G;AÝzÓœ0>D¹Ù6-B|å…¯ ÿïF6-…>S¢ŒBæT2 {l?h´OG¯ d]È *@ U!æ WÓ)B‚‡ˆ ¤ÕíláI!mDüå‘,W€•¡AÁ²¶ýi‰:[nS”l«“•·1º÷F "ú¶iYHc—"Ð$ÎÊöa„ueX€Ò]ÖuQù"9Gbm,Žç6ãHáy{$‘ȪCÉó)ɱÒÕc]:Áeí,%Hô`}$±±<mônäF¦ýà;šÎO€lêlB6Á‰Aà郦áu®è‚¦ß‡€?\’þ†º·CKT*Ybnbfo!³ò;°EÌͳ ºÀ*ì>-D†”µWE~Û2†‚€»îbÇ€‰¡!Úy=ì BV JTk‚µIgQ4È_BXJlDx®>í&΂oÉ=ÞCש 9^3G¼ø5d] Ä2¦0)‹ûYô¬·ÍÅ”â4Sç«°îäMÌÖ1ºsÝÍ]Žº?­«MbAÀõªD7åüÔwU"P%êŠë^K•ÔħglÊSXµ#ã€_,­pQ4é6R†–¨& ä6®ŽÑs‰¶6iÞ$l§ø6J1Iy­CÀ|ËBÄü—pâ&â Ð^‚o«z]‰YP—kÂÈOóœÂgCå]ŽÁªÕ½-º$©Ïm¶Ù«H%àåD®N5ŠU­Ž'-œú@­3¸¡zDpÞG‘k)Š:9!Çù(}]Õr9´’G’Hú8Æ (‹”ÐkT¤É‘}<s‚ŠkŒÆÒÙj¯b{¬›°\€ƒFc *’׃€X“¢y•‡7ÝNèBÈIè›âUÚˆ¸]îË0¥_qÜN¿”ïÁ³zºg*×K»>›údÒ>Õ+Gm+µOwE/c Ú)š‘4%-®‹ºQˆuް¤mçã@)”ÈBD’êT'T‰3NçÖ~RÕP|Óî[Ì->3àVø°²ë^ñ€ DK¢Rÿ»¹ñ\󃸉jõGb«R–A*2µ yòi’+á+Y^øPÓ€ [´N7ì/‚D¥|÷`æ–sí¤P§¦û÷2»(³ä±û2\¶àSÞ•áÓíÃçĈO;7ì†{:›Öºî›2üìcOËÚ]™]7û¹¹Å»æÚ]s·U&òŒŸ{l>w[†›2Ü6ñ©¹]Ü"ƒ¶e˜Ó á0»Š®Åà-¯¢õ²ôý7eøU™Ó7®B-ÈuôYé¼*ÃÇÏIgµ¶%¨dvÝ–ÙÏ{"m¦\79±mJÑyšRôYYÿç2<&${Ì«1²0{äÿº¸ü—)Öý¶>tJZìøØd.1,÷eí7c¡9 ë¢ MSãd›VdE›Û&åšFäMSjï>–á;ŠÃÀ.=0ëk¾‡$¨µÞ7)²n²ð¦Í¡«ö4+þ ysá!+‡èËP”¡nRºýX{-oΊ67§´Í×1- âLäý#¥|“l‹24M êæ‚¯Ê쳦ÆoÇŒ>fhv%ZBNdøº,øëFç«&oˆdo(>-ÝPMoš¾û&°Z(ù¿=Çå³ùEsg¢ÄË&wåp(‹òé_”Ù;Jö<|[Ö¾,³¾©€¿/kŸ—ÙïËðõo)¢ ዤàØZŽ·£I —um''‡u’Pæ!˜P¨ò¡XÝí‡YÃÄt±HÏÇUlcÔZ×eΈ’Ñ:Õ9}ŸÉáíú&-ð¬nh 5’áºճ”q¶£^œõ©]+ôØ£ÞÄš©×Ê4/!ò»Š±ÇUkçn· §b†yZ„n8Þ¡}íü64îUZKá½Ä|Ðz¬Á›î¿71µÖ<^GFMäÛKBîcµfì_?–t»ºÈÃOñAëªúÔ2U’}]¦%µÝ€´N 9v{OÜ’ü]È›IC(žåz{®ž-G×=7*\UeUìÔDj×u"Z?}†óðJ S’•Uēа¹jŠ%.+þæ¹LNžÃÒ…±ÓÚx´úäxoðÕ_V.ON®'LÖe@àή.‹ôã{uƒµ1H²xŒ ¡qtû+TS7gñÒ…IKk¥MÂqlÓUù”'äðM³-zgÌ$„zéhXC³ ,Q-Ó›HüŃi­ÅþXóY‡÷s«Îö° Œôöã­ÁÛ_Uˆb ‚Qø4¼®[¢õ ×yDÝ?Ex¸yª‚iuäò€¶ËÒpU»š÷V‰QŠÿs¼K3<ì©`‰Ï}ªXÄm\žLjŒT  ²î‘ù¢|ªH+ñ âÿ¢H›šc” ž®{ch'j‹ íѺ¹$ÔS~c¿GM9uØŠ®Ã>¯üS=ˆ­®&á`q{r‡/Aœù<ÒæøÛpÒ“ú-k"Üë-ßKó®é?Ã’¤"¢Øþí«šMœf¼¾`мž75úªv›Zc@`U¾<¤.o¢[²j)Kˆ¼wvÜ®5[,Jnn‹Gw½åS½¶‡÷lÜË/ ðK.µ:µúÇe¾Í†æ¤°€tmQsB®3ÉŠ›ˆ&ý° -“í붺ô_.ÇmŽøÂvÝ$µ6tÓÂövuçî26À¤8,{xÄ„~ÊS¬"é°†ö¹T§M4˜hÂ!²6ÙC6`¹‹ÂÈâ+Z‡m-çv¢#\äzù  ‡CˆI•xCºi‰*Q4F½ÍÛǽ4i†Ú{„¢!Gøå 4V¦]hXë’QñZC³7Í®ÞÏsD:–+y¥ ïsò“®wP}I[l˜ía³!Çü1`b8&wsïk P·¶ïaÖ§úðXx÷b·_îïvû»«];â¬dËùCÏ×Gz®”Áߊ’Uø¼Óž§{w-DõúÀÑŸªÊïÓû©ª¡­·Q¬î¨ ­10ÝÍuoŒÁ·4¶5fÿ@› hÿÉ„»ŽP ÓÁ¯2X58!ük·A øZÉúBz\‚!Åäö…S»ðL x¤®7Á9?ñšZºóˆLxu‡—Ô@ÉïñÁ¨ÞëêwI¢ÏfÃÚÄ1õ4ïÄ—¯¼ Á×T÷)2k(¤u"&­(1v€¿6£˜¦¥Q´¥4‰TŠÈ›j}Ö䕪¡åsNš »Í͇YJBµ·­wmª¥Xìƒ / e«@F¤—éil½­;œ2¶ Tª7D4êέpˆ±‘㜉*'ÄŸ`(¹Á?un‰7ø/§yNþDÉZÇ‚¡›x±lŸSl×¾WðJ 3{øÍ߯¨ÎÔb(ñ,vÐÐT¡ôÉV-³y K>]`–ÌzF´0¾ úFžF,ot‡²ˆ«Þ¡ @€-^áûTáQ}Ö%¿Ì å“Yl."F[ê‚É6ÇFÚÔŠN1ÊãÑ[FémÔ?_üs—>þendstream endobj 713 0 obj << /Filter /FlateDecode /Length 7310 >> stream xœÍ=ÛŽ\·‘‹}T‚ý‚; {á>9¼“Á:€lØHÎnl â‡x´f¤ÙÒ´â‘dëï·.<‡E6Ù3#ÙɦÎðZ¬{«ÿ~6OêlÆÿòÿ/^>úíWÑž]Ý>úû#üðò‘KNOÁCûÅÚŽVÅ)Á‡¹4¯}}v®`¤¢9Ïòÿ.^ž}rŽó:ø2¥9©³ógxAuÕYpaJÆ¿|´1v{þ-tV^W½ l1€óËGݼÜîæI§£ß<Åöœ¢ ›×ÛyŠJ›6ûgøÙ¤hœß¶jšçdôæ{üêR AÿïùÑ2V.cõdµ[–ùÝvg­™âæS¦RR!n7°ŠÝ6—e¶Í›-.gbÜ\ˆ•qGsò–~M­fãã†f€º´¹ÚîŒÑSŠnó'æÙF8Μ±4ƒšç0ÇÍ~'Žýø†„ýëÍþþ!ÎJÁòï¶ëVoqšèµ ¥¼©[\ÓÀ¿šMÆW7W]`óUY’»×·»3ÚM~Ög;ã¦3Ñ s:À<ë6׸ÿh“ÆãîŒR°!‚¢UÁ„j?pm0,:=òA’ ŽÎç•w+ “‹‰ï˜áÈdzp!Æqg§”QÔÑ;ƒ×‰Ûðp³/ \WüyVzCp)&—§†kÑ›ï¶:À©´©6GS̰¡ Ê×åêÛŒƒi•l®›ˆrØ-µ³®ÐëðºelùUúHXVQfóÍF`ã¶Ž€¯b#oʦoÅ$O üÁÃaEçgb‡ïñ;ÞFªö½AHª­·Õw^P×ÊØ¿Þ"Še&mü‚€}Ô%‚B<Œ N c¸2²Á2°ëõ\ŒÔá­ &±ˆ„ÍEä‹Éo>©Ý ÿ±°¥Oë,Å]p©Ö’övËQwð$Â'þD?M·È ó„#À^m¾Ù:øˆYKZÝBL °g@V·<‡‰ >OýÑnÔ ×ò)¯6_`o°Î'Èôy¡%ÂâYEw =bÐqÖ² p]šÛ­¤·ÒíÏÁËÁn·òº+¬‡Þ.yIþ:«ØpÉ»Eç{ìZL’i4’5jkqs ÿªÈ–¥{8yfêíArYsf&Zä!šV€ËO¶Ç{ãd\±º«I:¯i‡a¢6?)ÇÜYû$û^lµÇÀ?¯£. ¬÷Äì<»D»ØYU„((.ÿ=2Çö)j«™©ÌVÛXñðì

 #!4A$ÿ§6Âx)y÷ŠÒ‚9ðÜÁêJúÏG¥ ×Aþ,e÷žÑÛƒ”¬Õ\¼Vg ª¹ë%HMñû¼o@b±‘›üu¶'ä!t@áôA"éÓᚊy}¸³ÍáYiË3\—)Þ $“€9ø¸~¤Ìj8ß¾ÒÌ™? ÍŒÕyœŠ©Ë ¥™çMÎú|ÛL¶òz~+ÿA‚86›©e¼³ Š­'ÞUw\ºü‚¤‹MÎUŸ/ж!A¸ÊÁXÙFÈN<°5S«:e:¡¤Jn;µÊ½v@„À Ó$ÂÂŒˆï‹GçÿñW”û$ì Öóïž¾x~}ØÚ뇭›Q³t'Ôö\hظ¼ýå/õ }zûúvÛ#{ û²Ï >¾å¹i‰.‡]äD’L*#L]U¥ í™`UÔAâÃ[©Úã*&Z9ó¿Â?6_o£A‚ñÕ.ò¡õŒØM_Ï·Šœ³x¡Õ}%ƒWpÔô|`{Q !ƒÔš.h'ø5âN }OÀ¬:³î<&¢(¥Îs /a½­¤ÄŠMµº–ak6+óË`¿-ÿ&RÑ< ™GR Â9?‚OËlâ@k ‘z»UHn ÏÖîrZ á·ÛÕ0Ls¿e+ o¶æ~L²).j7³‚’‰@mÕu•×Ey_Õ Ñ˜¯PèrC­û‚v“üˆÜ*݇ô<‡@v.b³Ò™] <´«õ¼!# ¤Ö$…ÛÇJ)±íÁåÒ÷["ØSß”æ¡4ß–¦èKúóÒÞv™(ö(sYh@9Lˆ÷óIz¦ìƒÈëÍùq”aÓŠr†ªÿ‰Ö¦é\íì‹AÅæ°%áâtÇëêZî~Ò3…$ ‚üYi¤m@ämDNŸ± ôYCkªäA1{Þ?!áGæÊAÂ@Œd#™ÉúÔèçÕPÅ 0B¨9Õ/Ë××øÕ­úJg¢𱦥 šItúW†ÍJзyy T¦pQ?#± í¢˜ÿ¯ˆ4qO)ƒ-ùÁY9šú¼OîWó­³gv)ÕôXã!ô8òV1êDØKŸÏK`¼¢Û¹é+"»~^DPíQ僄‰\„ýdðOž»à E­ó¢ ˆu+3mcõ¤W L¾Ñ@^†³ébtâPÃr¨QÈ Qèsà„:Â}p—OYSÌÿ °x‚hæ2g Xîâͪ©Ëë`½É8@äw¨MROn,Ђ‰íõRÄ6Ïîì!Ÿì©Å*I}~à¼Eðšù%Nê“V#gÓkîÁ{B7ä¢ãý±nþDj ïü%wGùKÜ ŽæjGn-úøìJ:ûѺ Ç`°â²ëÄ&¯n+RÛË0OˆèÛ²¹Üižüº¨‡Z$r[6Ú }l™£ ¿›¡Dé:аÖ.Ö¼2á°«vÐÄ«v ãà¶C£‹T\zXeÇN£ÄÊÄ=“·Z¦98!MSÞ› Ϋ–̵®T.á)¸m.æMsëÆwì¤ôس– ´¾A< 𛢴‚ÀU‚Òöx,¼ •ÞŒÔoQé‰÷òI^z äZfŠ·)¿Æ„ÁÝkȰ2ò¤ÓEÐÛŒBf2"trì±\`+þ¯ Ðð%ûȬñµƒ{_ô»QxDèV"¬ó¢eðùTµé!uõ:|G,|6dS#Q£#ÿäóÂäoJ+‡Ì0ЀGVˆ’gH‹‰¹(Fw©Q’'2;SÞÛj¼´{Åî¾Åex¹JÙ0vÀ0DA°Jñáâ‡èbõÔYÕǵÃ/_a±½qé låÞçÚ×T½œÓJ3ðÈ/ Ú\S^å bY‘ÂJ…€Ê(@°Îú¼Ðóz"Upêüc±@Z_¨ŠðÕ°ì}ÙÑ ¿Øn9[­£Ü+™0sùSË&NŒº°®œ¬Nªêü4hà‡•‰L¨Ø…¶Øá’@¨wL¦‡ŽCl‰•8âØÛ­s¤ï!?ÛUax¾°ÊVA w£ ë‘ ´ÇýrZw:Z³:CºÑé !­~¨^ãb麟Ü]¶ö@wâ°û ©ä»F÷ÍAp£§¼†Úe…4¦aˆ~½jU}þa‹cÔ ¤.bÈÅâÓ5߯ÊXÒ]Ž)EÑþG²ÈŒSºæ¼]Šq%Ëgÿ‡;»²¿ŸÜ;™pª˜ö7[îÓÏ#pVÖ]#@Èí‡÷ù6ÂpäšÚ-÷6Ï~”Š"| ~åfû* 3í‰þ†f÷ ~2º/SPÐs”OwÚ}gf™”õ3ºïó¼ÿ™¼wèĤcuxU˜å̯֙_­¶ÏØÞŒ)`¹]Ð'†=ðˆ? Ó%¯w¡ÅG}QtË|WsºG\î¦HtÀÍqØ¡ìu”.ÇÂÝó\ƒ{ÖúSÍà»Î–6Hxð^áxc(uà–AN껯8fþ’‰…øÑ)«“"}…~ÒR_ èê8°1åS_Ì‚(@ä^ˆ”¶½L›Çè&øeS ?Š`\˃µÇ±ÈT±!ï52øQ¹·6m~¿Ý9²a­;3Âäæmiª¥¯ßügùº+_Å /Ks_š™¿Pû]i>/ÍÊloOwˆy–³]–æméûqi^”OJóy—cŠÉ$oÜw§xÑíðºb©k[œãò®qûî9îÖßmT:ä¾Ô¼.ÍCi^²qâµÍêZ·à6¿.]ÿTš_”¦èåÉn™­ÖaÞ%õÿ3”üg\eÛ÷z@½…]:ü©4¿(MÑ!_à*Nñà›Ò<”æÛ;/ãì¨wE÷@™²Ü¢â4Ê”uS0s:Û-l“Ý®ë¸gȲ1£?n—¯,ÍOK‡O ÿXšÐA¹€ùÒ’kˆëºêÞ†`RßÁ3˜ D‡¯Jó¼,ñª|íë}”eåÑÓ·ù²|ý f˜-ŠvÉ)ö¥ù¦4ÿVšºìì/åëãÒüœÁ åŠ|^ðéMi¾Í¶¦\»îâÅTš¦4C·o2ÓNF™KÓw›º€nW¾†ÒœºÃbi:9lMD'PÞN»‡©»„é6UáÞs¹’©4ÅWSšV6ñúÚZš—í ô.ºtyYऻðOw]¦hÎ]¹Ðï @f»W1w@åe*yÛwÜ«hºî¼©;Cꋲ¹ÎÐG‡yp ±³uÕ]­6ñµf³D³%æ ºþ¢D„Ó¥»h(æB{ÅW½¿éš²»eOÌ畾óýÍl( ‘³c}•^,ld§3Çl®×®¨\d7Ýbº‚]xý±½ß¦59¼°̲øÃ"ƪÄa ,؆'&o|ȧ›ÙôˆÞ›LÜ”¬ ðIŽù]åt9ÊgöÓ Æðzµ¿d«yŽIõó™U˜j¶¥ØÓ5JhSð:¦z[³× SHgƬìˆ0øèúYßnOríàn]ìÁVô%OŒÎPYvu¶wš«;@-·>døBľÚL½QQN>+kò:ý¤ÒB_ζÝQ Ê}y=ÑÞ_=;€ ¿¦û%ÿQkLÖ'Ra2Un û5ž­Öhoe'íMèA-×>$ÇGryè+ V?¨ü»SÏë4lm1[CøÅd=·›¬såì¿;=a)`ù){Ð{5£+ÚoöW{¹aìt1ŒÜZWWOËFÐÑãH6« ÖeIþT‚úÀ,º¦ç“þ‘•Ÿ‰töÚUƒ“˜åÈÝþ‘ž¡XΜ#`xú‹çíç­ÉÓÅó–k{b,Í­ŽäÜ«|ØÝ'€UÎwïmÝ8ƒt•Ø.=˜”-‚ˆì:™¢ôj7§Šz;éHÕ1ÇÕGùOšiådºÅ½ƒ3M O¾ @ö—÷¹Â¤Pÿ3¾{ÂgYI·Ÿª¤ÄÕeJi‰¸s%ó¨}ŒoõÃŒ0xtN–(Ä2uŸ r8«×G¨àò“þ]óÖ‰h^ F• ¹ð›øïÞx‰¬Ç'ݾÀ¯JUÎuD…/x›øyæÃ,ßqj0v°YmÊYWÌâr¢N7z(òaŽ$”š*ÉŽ¢‘@2Ò©¯Û%~\1Y£†9uÕ[6€•šIѧ'p!™£'f‰¢Fc™€›Æ§*?ѺŠðÐtê'_·ùÞ@_cŽï¥Šb½YÕél ÙꬃÝ=Ëbjrj_Ò›ø@»Ú—g·šÆ2fa•ÃUz4Or𢢯ô yÏCŽ+`”#â`J³–X+_h”ÞÝrþZxä~Ã;Ô®Ì%çªæÚ®úø¿–ˆwW ‡‹ kg¤Ag€J€6þÖ7$ð¡ª.õ,~U„éÃX¶48쩌3PÐ Îv€—W*gÀJÞvO§¤À„•@lÖKcþåŽÃ«i^­(8pÏÀëQ•@ú=NÜ}x~ÇòÍ?ÏÌ)ôí'è *B¬Œ|na¢ãëSÙ£‹Ž\O '0XßåN¨øäÌCð ý`°à OãA»ùWUÁ„jGx`ºêd&æ±rMO|QAI#b0a (ô ¿t õ—@0èš*¸añ}舨-cƳÝ×Ö(ñž²MC9ýS–oW«¾ßš+Ò—£qÒŸQK™C¶Ý8ç4wø©ËVp9MØ3–ô¨½Ì*èꆷ<Êb8ì}™rz¬úYë(t ¸aø-Ï »õ)2|ï'oáèî£:¼†x›3Ô|Öµë{üˆ^°»FWí)ôÚÝã© &ÛÏ\W­šÖzk…ŸW蘣"K£Õ½Mg²¬fƒ¯5HôÙTÏøsƶ‹v¤{ ã6§i§ú(k‘ý–ÕË™WE¤ª®ƒ‘¯Êµßõ\RTx IZÁ‰ƒ(ão8=õy²T¿a8‘­n¦¦<Ô!§kƒùý*©J¦[ÇÑ“Ûa±aúdƒƒóØNk&ª´8è”Ger¢úPY–9…»åTµ* 9ÞlPÍ“x‘Ø$Ñõ8Ù+ Ñ)¸vlxäÚJ{9ò¢pðCyH–G4§r¸&³ºMf¿¨`ƒÃàS&ó²õòŽ÷Ûu}|7VålWs˜*¨¼š`^µ]”ç8®r”5W¥™Iw‚pUæÙîá²èUhÓÖWa{*õV¹áJ è {U¸éÊ++›xÍ;–w+<çb‚cî²äú—¦ªäàSÞIõ¼ûug¦ñÒ¡%ê´v\ªÂQÜXVƉåÜ9by–»]sßó‚¾-™´B Ÿ¢ù¾9ø´–ºgî%3Üû-;oyt% ¯Ú!Ÿ3Tõ³F¯cˆÎß«Ë2uùaÛ ìÆ^@…Ü;d¸ê†Ÿ5nÚöÙnÃlËDá‰Áƒšüb)0³u\aàŒÄÙüè?óã $ùúRpcùTæX¡UvM¦üwAkøø[a°t9¶h;p„¸ö½ÇøÖë©UcîƒnôÓZÚ­7XkïóªAãééÀfFLÂ$Õº™@Nzâê§në $Édw<Ì({ôæW™Ö'–û±Pyc^Û˜vLdvµr,aÉï;ȹ¿ÍÛ‹êÁÁe{üzÁ“ª1ÁÀpˆå¨$ÞS^®”ª¸£:ÞZíCWÜÀÕžº{>¨–,G: ›ìµFÅ€2ÔšéP=¿®T)«ÖilŽªÆJ¥ï}t¹´g¹ß«ü‹ñjr V1°A¦|çéZ7)2º)Èâ½t®×¥y]š"íó²äe=, µËrâ¤}±wmÌ R}‚Ÿ>V¤`~ö~çŠ ‰s=ב/‘âD­ì€AÖ¾ü½û}‰à$b¹ªJÔ}‚žylÆ]Qö†Tá®E2¸¶4§ëk£¬®‡g²ƒ!êѯÓÐåÇ%q™/’’?/hûYiö¯ÌD…g}¥¶Rðÿ’ÿƒöž(d×}¿'‰›ucæQ…j®›M%æN|Ä` ³u Zº k%i©Ba)樊!ÝÿÉBvØÃÐcÈ"z«jÒ‹Q(X¬}ñÇ!q/8öZ/˽jgË%³¶Ê~J9vÂÓò¾1"9´ÁúÇ ØÄÉP¬B“*?Í “ý´-‘’ëhá/C¤Ä„°tÐR4®zz uIìÈ‘ˆŸâéAa#¢BS*¸IÆîær’ÍF Ñ^ýfD§âˆÀ ™™j}‰ý¤ ¸†¾ÐÖ—­eÑÊWȲR¢¬1-Š| ¢g¬f9¨*òF`O—ÊÞå«*nà&óWb’·Ýò8“*z;ÆsR¸ÇlÎ*ÄxÕ"ÀdÅT§J·iÆ/*³üŒ'á°âȃ²lõ|ÅÆF2_Uû·Š ¡ü*“®¡[åqP(H„¨HDÅ@9d£øÆSî‚Ü3iaÁA/‘÷kvî»Cû‹A´l¬½¥Œ3 álAìalªH×½Œ*W¹Ëë}q¦Y&ð» ßs@°ãøYùsÆ,€ÿ·êfe€d_¾yîÉ‚O…+î? 0VÚ솟s½TTkŽTw ’È´)¶Q 2–h»Íâ^¾ÿ™H ôЪ—¦a€gt[­jÖp›_{O”Up¢_i“Ç•9ÖL•ð“KlàX 3ßs×Z“QÚìzË@E« ©/ØÔ{FÛ0)ë•ÿ ÂWW¬îP™.yå¨G¬Æ1˘Ž@¼ÿCqaÕÒ¼fþT0.bÙá&‡ÌòXt0»j ä~ö0ÁD;é0F„ª‚Óv©IZ¥I-·R½°+¯äªxoVkéæX NŽEcMÚnrdftµ,¡u‹· Ëkôø¥ÎUC'`WY¿;æ‹øé<…ÝÈ”r.'9õ=hÔÙ¤Õ8|ÁÓF¥«ôŠe\ù1úüo4³r:Ž’oñwö$éüLOª;*…›÷GIik¹ l\ß *`Ò2Æ›õ7ˆÐá%ò8¥£©:ʉ“1š¯±r`åò£4ØÕ%,óé»ýýÒ¥Ùîï‘ÓCüúÆdˆ}"«šdøóv ˆPÿ¦]k³yÔT[§õ€…‹oÒä©Ò<ùRf­+Ït©!ü.Ÿ[qiöå‚%~q °[Ý2É›@ÿäa»'Êp Ê龚]ïé*è.w ÒŠö·59xÅÿþÃëˆæendstream endobj 714 0 obj << /Filter /FlateDecode /Length 10426 >> stream xœµ}]s\É‘]„¹ GØ~òC‡Ÿ¡uë»Ê¿Œ¥•W+{G×û íF€†ährF³¿ÞçdVÝ›ÕèÆ3²&ìNÔÍúÊ“YY·¿Ù-·[ø_ÿ÷õû¿ø}»7/¾yAÂû©%(Ÿo×Ï5ºzh ,ÛÇ·/þiwÂ<é„ç®ÿóúýî‹—àëréЖæv/¿z¡=º÷í\Þ•T-¤ÝË÷/þ¸ÿÍÅrXZöÁïï?ás\|Åç—Ë¡,K¬û;PCÍ×ýÕíÅeþPÛßÅÏá·ÿtÙ§¶ÿˆnYÊ‚Öü¼Ôâëâ÷ïðÙ»%äº ïÐjHy¯MÐ"Ûäµi²ušlGìAïý¼ð½Ö°ÿîÂçC]\Ù_} »\ñû›Ý?¿ü W>ÙòÍ26cÙ½¼~±åâ忾øÕË¿ÃXâÐâ¡Ö]r3kب˜C:¸¸RnWJ ý€0Z cӸ߇ó;bØÕÂu—ã§%Œí+ضÒvÉC4ð¯lßÿ½È Ô°LŸnv÷_í^^85uaóðq÷‡Wß=||÷úB'¾v¥ dÃÿÊî’Râ»l;,ðÁy‘ý/oîÞ}ü~]“rH^Û}¹ú þÿ¯}V¿ÿõ‹ov:bßEœ±Ò]Þ½ ùPÜ.¥±1\HWÝÁÇ•rûâ»ß=›ËFYògsɱj´\VÊçs .A%‹á²QžÁ%SŒìŒ6Êçs9^KK™¸üÉ[†N¡RÊEð.ãÅeò±JÚ_z|N½¥ý‚0 $ûícñùyz®”*Ú–]:ÔÝF(.…Cù¬¥8ÁZ¸žÃ#£Å!xÃdPžÅöË`¹tʳ¸èº+–K§<‡K_Èɼ²?$§íF·@©Ï0žÚ(j~ñ{<µûå½|ÈãCêøÐú‡¼Œn|ðãCâø08çÁ9Îyp΃sœËà\ç28—Á¹ Îep.ƒsœËà\ç:8×Á¹Îup®ƒsœëà\ç:8·Á¹ ÎmpnƒsœÛàÜç68·Á¹uÎШñÁ~|ãCÒøÇ‡2>Ôñapvƒ³œÝàìg78»ÁÙ Înpvƒ³œýàìg?8ûÁÙÎ~pöƒ³œýàìç08‡Á9 ÎapƒsœÃàç08‡Á9ÎqpŽƒsœãàç88ÇÁ9ÎqpNƒsœÓàœç48ÌCóÐÁnθ!ü(msƸY¾ÓVû%ÄC²ß!‰JÉÏ5 ã«sN€R¦ÿBÇ‚$!dO7!}¤çu‚°Ç3‹H(‡(À˜6ª26<$!´Nhðn$iÓ‡{,Õ! Á+x4 hôïpE¾Öþw„ž“f`CBDïUUœ±Ã"!ö©ÅŒa‘úºDĉ„,a?¿b9åiƒŽÀÙ8}ÞFâ–â£öë|($$¯¾ÔsÄŒð¤)¥ãâêB/¡ŒŒ È)¥ah 4,@#Ï. ç°úXT¥$ />Eô h4¶øC6 ÛÁ‘Ò¥˜„sÐ=ØËxȲr•c%`cƒ,nEp`°X¡SÚ‚O $¬ ¢×\QæòV™{ƒ˜ÃAéÛ!)¥b„ TÊ—4, FX@Á:5¥GÀ•€WhBè-(üKVJÅIÁ¿‚>‚[ {-ޤDÎYœUÓ\l"¥ÁaýS]ÿްa²eàqbßM'>chÕÄW ­ÚÁ‡¡U;¡0´f'r`ëmaB¨]3‹'H&z[à#ófB̉ãØ6*Dl«kf3CB¯ÕìwHŽ`D;¢^#5`ã`úäMò<˜XˆU:×hj•à[+±Jy€3±jB(˜íÄP–PŠ;1Ô)”VÔNt… Ò Éœ‰Z‰®°¡rÞ~SéÐJˆ•èJ«ÔNt³"r±Ýp„V²Ú 1,fW­D7Åpžþ°’lŒ<+Od—·ùP)ƆÀN:A|æsÈP„-<²ÚÊ# !æ•G,Îà!I¢HÍÈÛ¢¹XÄ Á)¡ òÞ/åm•\ZD# ½ã\+v9YoK‹šy¤ÂUÕ™Ðú#ÒiÅÖé}P5§îÑû°+4£43Ó KÚ9èâTXßÌzÒ)YMlåPti{ꄬ„Ö9eÃ1–em›Þ¸Fï¹ ÀÑõ§åMí6^¿øE¿é_a¾“ýÃÜ:¹Sªs?™Ë,ßÅG.0+~50 ”|×çkÓç[v+:%ˆKups¾ä ‡±3ꦑG˜R,ÎG{Ô 2`/AbÞuà…µNP¦0eÝ1”Ð:¯pÄÁÖ+Ðy”Øy„Þ ¼òˆ͵¥óHý‘V;•VåS¼ç ÞS}í=‡ìÔÆ%´ÎC½1¡úÄf"v'“CŸ-Зò~`ƃþS«úµàG0¥H- DÁBH}pŠÊ¡#W”Σh‹£›ºûnYxÄE¾ba…4\Q'&$îEÁ}¿<û£ïJFà<”CÓyÒ, ‡äõkUIa.œ“<Ÿ:rf–KžÏ]&U³¦Žœ[ë>³÷ÿ¤O!¡äŒø÷’;P¦´Ìí{¹)÷j ,‡pÒWäŒi‰Olã‘”°„,mÌNy´>ñ˜5ËT–ñúoBˆ*W±ÆŽ®û\# =y×!}¢wBWê´¨o.>èä“ëÝwÅK^u ¹#tâMbì ž{¨(ì•ðÈ¢^¤ÀÏÐõ–"rM pe(ÒÄ_—ƃ¡ÀÕd¢zZ1¥ÀÛΧW Ök‘X xs”è"Öã¬G"%­ýÄ eP ¾Â‡±¡R0OáOí¼RšðiX4)‰OƒÍј‚ÈŠ|´J2c¦D*-JÀ%ÑÊ¢|T!…R¼ÐÚw>ʧŽh…’>˜ž£Î1ZÁ§Äø»é:¥‘O^ÂàÖ'¹Þ— G¶á1t…ˆlÓ–ã@g/qg<'¬)¯"0RòˆŒJ•%žå~“Ãu×)Uø@%8?Rꈧâ1R°âäCë5¦d|êOUÌ”|=¨Rè—I)q´Akòde[R°.äÃä®S fJ>QÑžPªð‰IVWâ»,|"R~;Æw–þf*úêOÔfF|K½c]$ô²HAkòI°°M£BÌ”|æÕãDZÂ}ö6t³¤ÓôX2Kœ⿤`¦ä“a¬¼R IâM7øÐ„’‚;%Éó9c¦Y#Е´  •D©Ð³¼F©äS¸ËR…OC+Ja|C Œ…†p –ð¡d)˓¤}§4å“%6%ÅKl› ¤¥S˜›JsÈŒbS¥0Ò'’ÕŸJ2²LÛÒ#kØÿHŠ“I6’OÅ,’¶ÁL)šÜ)Uù0E¥láCÛ"F3ÂÒ•‚™ Ÿ6zgM> Ô)½’Os2K„ž4Ò÷©÷Ž @ø´à%ÉÈ@)+¥*ŒYgÁ³Ç6qfÚêÔ†’]”Oí”ÆÖY$K)6Oí#h”C  ×¹–éxÖYþpιiA(Uljй3•P{R ·½ ÂöÎúª®j èm!…VT)˜©ðÁÞê:3ÐO¤`ÿûSpÂz¯s—\)¡©ô‚R”OëR>@j:ÂÀ¤)Ω„ ƒŒuM¥ÞC2ç{Ê´íb*J²2ŸF›$ •LÛù`¦ÂÚÔ)6áèP)€sÂgzGȇ £§Qð‰|ð˜Z P*C€!?+zV›Gjb3•ä‹Z&R0SòIU‚C¡4áC«µ(’D>< =A…ObjEÓ1IÂ6ØÕ¢V4DøHòΌSª¤lbXÓ:˜)ùÄ% >˜©$zJQÛ+‰ò ´uQ)Ì>dn’- çøê˜eÉ¡E žø&3”iðtnËx$HfÈö)!9#Œ-‡ ¹#¦>èE×ì¼'x8,roÁœ*|1“hJ(^™!WUL±øø<@LŽ0 «‹¡1Üb4˜4E ¼¨=eÅÈZHGñ Œ†=)JÁìé4†R%Ähô)=³•%Ö©è°h vP2[´½J!Ð&²çº€<$†eÉ=V$V©¡‘‚ç…5®gȼòŸWŠx §ø°vJÕ„ÚêxŠÓ ° \¨!’EcfC)Ø$™¶&„¦l ,1œÔ"”E³`%Eå|ŸCÎ.=î â¢Hpu¤ëª2a,+„ª U´çï‚òXަŸ%|imz¯ žëy|V Á÷£ª±t`Áƒð¨=ÇGï%doéúz: Y'è#%t±?‚‰•NHJ¨‡FËÑÁ:*¸£_‚&„}_`©)ß[0=¥ùŠú¤ù$éÃcjÊASPÑGß9,=) x&z^ „Ú“Ê­·È¬H®Ly`jÙ¤£'ŒL[¶ „Öy(Kf Ò–¹‹a™lÍÒDž¹Ä‰àGj[s›Vä˜ÐF¾ZG­è‰ßN ÷ ûN˜°$K@/ƒGPB]yÈŠ2£>xÈ",=Mίɭ 즄Ö9äž“ò&+ “±Jëšޱ-+07IðÈr5›‚XÖ$8P‹ôkëÏwùM1ö惜ÍÉTk.&I>ε¥—ä°ÿ³Š5óAêä—Ìñ< rAgÑ’¨xõpóáâÒ3lmÿíõ§„¼¿¹Þi!'\Á(ä”B(8aX¯´»d|± °xy >ßÞ°ÌB Sx¢Ìó¨Nó3« úa\¡"F©´"ò̃p»$Ò° Ÿß­„·G5£°á3j¿ˆ¶Ê¢ø‘•UÐË è^}féAç–éb’å6(G;ÿcö™ùÂÃ^øœêú>ÿý}>b¸½l7‹Þ°Ýw7·»^L»ûöêýÕÇuŸ×íýí‹—ÿU7øË †Ñ>¦‰Éû r®¸ý'nùýÝî—Øw4àR#pÚ¿{uáD"Zàïže›‹ƒ=¤åîúêÃõîÿÜÖ®ìß_­ã›‹ðþÚåésñõ¨Nw’µj»HT픕ü[Öp/:±­:üÍ'Ösq—ÂJuXû¥ÖPYæÍŠt8Ž[þÛÅe!˜oyÿ%ËÃáË(o°SýA„Ì«J÷Ø×‹^bšËQlòzyÊ*Ì•°nšiN¥ÿ@<™\¢† Ä×ï^#>\œ¼Œ ;@ãß^°Ì Áˆ,~d²¥¥Í‰d *ÅÈ®g ݤç×âÒâ'mù‹®Ì²äf%Ó²¹äÔ²$?éðßæú$$° É”&*ÉÁƒS®8nZ£8÷¢‹ƒ?>ã÷oOâ9¨>óäu©OHºì]þÉå:ù=}ÄU&‰}hn*{\?~Ú>þyû(.}|¾8¹¡ynƒ»Ñ‹ T¡Ã‘Iú¸Ý 5EÂÊ¥è,®n7ÑîtåŒ5+¨ZѸ=î…ŽÍ9¿œÒ:ýªƒ¬:ûÎÙ°1íÆí6ƒÓÖÕ²¸Z…»Ú Üi»>eЯ¤oÂâ0ñ3"%¾µEKmÝ·Õ:@ãê0Ä g²]¡‚¾p#Í-¥¯vÍ)L¸mІZbY” ü;Â/DZ”ûí?~iºyØ 2$ ϲL0‹}çgúÛ§ßãy£ BKs̳:šOëâkº~lž³by¯$´¥í»ôÈ©½¢ã‡ˆ !,¤Ö{AßÅE¸GlÆyž±öoȘÚ÷”¤Ê @<ö(ZÁ(ó™HìZW"<|Q>‚•OVf5ÆMŽuè¸Ylñæ[¿Û¼ÝÛÓâû𫽕äÁ £_¡N¢¨ëžZ¸2AߑԫŒh¬º¶7ªøýq0Õ§2ƒ>‰yˆZšÅo7u¹Ñ¿Mül£žw)lœy9zӜًl®ãõæQ |PqÑ+è2¸:ÅÓ£{fÜA3/ºfaÉ®î¶ðáZÉyiO-±Ze6Ú? <'ħBËBŸ“+g;Zù±ÙŽõ¡9ËBÃ9ÌÛêW³úi€ªRœÐÕbÝ…4Å+V0¯e~µ)­}ìa€·\^{XW<Õµ®XBdö…‘“\ÔÈ›gõû¯µ±,nú)‹ËS)þÿ­­gáOÎ'×–’|ÿj3DêERIR=ÌFA¦]Û3âþ)g”Žg.‰—n7 KY®=Õ㥜C—|E*ù%Çz;nòý´Ó3\èUñB‹ˆ$Þ¨„0ë0%CǪ³8ÆÏ^¯Bv£úØó0.Ð8Ýo™åV”Yª,ÓìL»ÜƤýHÒØÏØ³[j«#:oÖJ>N8¥'çø(X$& %—ݹ¦Ñœ  ³RóŠý‹› 㣵eÐçˆ/^ ;ëQôb„à^›`€SN˜Ôèá'.ćcÿ¾Ý4ÜÌôL0iÉ?ÒðeF‡j°,¬”]ˆ,»í(iN‘þX­c½®ç¿93e=§5)Ì>Ï(ÆlåMß ¥3û€ÍŽÌ/L·òdöÚìªIô­ûar½ƒ¦%*óõ„@ÆfõLô±ä˜f+bƒÛs©<ÕÐdIECÓ£ çŒ!M²sûLT“˜¼mGŠ2TT¶'N fΘ¤–ì¥ÛÿJc}ÝÚ °¯6^¢çüæiå·ÃP,ùŽ¢ï5‡„µfÞ4'y‘ÔùC+ÞZòäW¢®³zÐ6'„Š C‹lŒo·æÞº<¶~=’Y»;ó~*“+yø‹‡ì¹Ÿ¦ì+ÝzBò¥Š ‰›Ž³Ë{¾måß²!©9†¼”“笅ÿÛMÏœ‰+Oš*³¾s(,^¸ýðÎÍhÛb¦ãvÚØ_ê“ØêcW)JŒõ^홨㻠BÿeÓø3›w¹ Ñê!a Žò0V×þæbuº–Ü£Âæ£2®o$-§#=72ÛJwU2¡žð@ø¾ÌGvF5¿Ù<Ý3 ÒW}9rÁ&ùcåë'¢CVP:@{ÇRX¾$̯¯ûX–5M>oÜþxNXþ #M’ ÛÈÃO9+–`G.Ñz]äýø¼¢JÊùó“ųÁà½â0_ÏËòhˆè£Ô5ù{.èŸÎ¼OeÃ4)犫tž8ê’ǬQ4Rýd6L¥,Ž Çv†Ô¥=eÆyC·ù½±"çÜñÕ¥±ý k¼`pÂ9¬-ôÞÇ<ŸMÉ/_fÒÆéôÏ”¾ïtè°»}–'ÃßÏÀÜz¸c|Â`Xò¸ø)Ye³+0Ëv%µ¬Di*kËD[ƒûÜútòËlÏ·'¼D±£û¹N¸º2'Äæ¤ëb9¾Ø ìqæmœœŒOç¤wJÏKx µ“=©^ÍÇÜÊÏÄ7´ysÕ龸څTÎ8¥TêÆôHY&‘ŸðÅ ±Þ@WJNl*õžÒ¶VHGï5Mî󓦻8˜e=H2½o˜Ö¬Ìt„läÕ:×®"óf×åM›Kƒh=Êßö1ÌÕè–Å®t‹UÏ1ÏŸ!T=P~ž;µ¢-Ǭiš«õbNÒ¢)}JL¬²ð 9Ø™²ö'ãë}?ôët d³îgJ¦LÈaø™ãŠÇ%Pr¨ðØõhÉ‹™ÌfžÜùU©Ç¸•WÄ]~>n…€(n-|5àgàÖ|ˆÑ·²›žy&nžŽð~¨¾«oXYš‰Fßèi•$xV©ÌçbÁyÿMzfÝ»¾.œ­\¶urjŸyHmôÑó~‚?ÖÇ×GJHž)Yþﺩ€‹9 $õs§§maÒ)•j–IkN’¥é¡®e¨ÿ$û¸0§cÕåo¼DÌ95xÙÓMg÷VÝÇsàg pîm¹â•=¼ÒÃ(O]¸QæÜ «WÝ!BÔæ#IiR{Íài›/<ÒÓž Cš‹D;õ‰£œuŸÍs”×ÂQ¿ÿÓŸŒ™zûH6™¯:sšù5ËUB”7ƒîÿ‹2gIà™Óö·[tuõ¹°{›Âdá/{´q0))ÚÏ9˜ä*eÇ¿«×ã«m²Á¸" K›Ù½Ia¬’5ŸV^c½>ê§N+{ß6}£ñh«Kr|¼\"Õ”TV±ZohùVPcåvÎÇ^ò}F'в¬Ž{ yµ$(Ô è‰]\Âì‰Õ d6þ˶£ëú=}“ad©åÝá5âßêÎÅû¢½&&Ÿöƒ‘wYbô‘']\IÙ õÑÐûYe=ëêñÔ€·´*_1nÑÕW¬¹ïøšr²?}C=ç[maïIçÊËÏèÿ,ë#áÈhn¿\qàè¹&ÖÏ ßÇ5±í¨ö²3XùîfN`YÂãü ·zª«¼ÙL™ÉÁvirÉêš¡ª=¼I\Ó½Ö~ótÂ$B¯Þý¡ç||~?û€q¢=¸7ëD¶¥Ÿø”2±µsÖݙƧ£^sh…ßÚŸ?oîçÌ1³™—­.y½-ÃIárµßßø\à¶<;ßÈ+µ?)Ý8…Ö1HñÎÙòé5èbñd%ÞØ®Ï* ò*ƒ'nIœ—²?MRfûébFçÇ7P‘ǽ]c–®·‰™å»íãƒtΓ!5Ôù æ³ê›!:‹šêóù‚k†å&…¤ÿrqZºxÓ­%ÿIÄ«1-~úzV;æõrÆØ”üd6‹¯ºq~Ç·$@ÂxKà_Æ%ib^# æîrkÛ…]Ýç)öð|­Ô ñ /¹/Ùêöøôz“_±ˆ³šã›©öþÍ|Š2Ò³vÇLZ»GÛ’˜º”K¡K;gÖä C‹dÌá‹6æ[Bd™# ç+Ø„£ÃæüŠG}ºùx×md:¬1Áû;«åBŽkNFÈSMÜÚ÷-Ü!p¼7ä÷ÿ°jÎòM­ ÙŽF¾|eM¹Nwgή›Ìî&œ)øù1­ Åë‘ýNAƒÜ™ÓcÙQh¹âMÃÿtŒ_™4=B!dø<âáXs8í)й?¾™3Ë‹ç‹áÉ3®YГÉÌïµm™]?ŒAä¤sÌPÊÒ@'“Iã†qÆìñÕKniÇfoÉ'=$ä;˜¬üVÎ]½³2hÕ—3¦6}{”#>¾Ó!‹Ã»@áL´ÕªM¸MÛ›­³Óiÿ£»|kyÊ9ÌuT#Bæúv§ãJ`iQMÕ”/éã3£6èÿÄUFœç")²foÙ¸®$Âéòþd™ÏSÐOŽŽÏ"]àkrŽ«ul„xœ¤|yy³ótÃpÒf$vÉט‡£*Øçß±XÁøEîÀýɽ÷Y”¹€,D°Þáø¨»÷‡ÎÏIÕšÁ‚k^O Ïޓ꣸õh_Õu¿Û-Ï2ß¼îËÔöOBçG øyÐy…è\aŸªMÇœ¹$hRû&ú³âlXGÝrÙï¬È¯”}ÿ²…ÙJ9ååk–j:”𻆿ãtvõaTø›(3mUlsX$}Æ®ÓèÚÜ&í&¦#³Û1ƒd·úêXúú1Øä:.OÜ”x£#åÕ9ñM…\ëcW¦œ{¾C¸â±uâN !ºj~7E‚?\qÆÆãkñ³Áã»Â°¶žUoñš.ÔhŽÔž§²íœünºhKIe³ô òø2í?Ê Ã@znÃÚr?þÔ6W?U·­Kp”å™n*˜áåQPÈW„.ÍÖd²¤ÏG©Í³Je îç«R£õtñ\ÉËRg”6mžJÀX3†ñÖvhòÕ'áâ9ËiP¯58dQ°acV†-áž¡èÍHN³ød{1­íúQKbƒ*J¥ÇÝÄozNÞu—øy¿%Ǥ:„Iש¿Ûm«¯Î¬ºX@¹Úø ³ ÍOdíXËz°;xÛµù 2åx€9 [òe5…¢1|›­Ö2v&¿í¶)Áþ£"&µ¾Ta/8჌º%¾éëÚ‡˜(тͺÁ~Çõ³à:¾xççz*”¼›š¼“ÝI)•³"cÓ æùc"<ä;üÛ @ðùVñMêw°ÜOh»xX¸Šä“œ¯lk¯{ïfù?z”üÉ'bøè»8ˆZ!ùt4®•G¿Ý]±O~èC÷^Êð ²ÓUL­Çeølã½5k/¾º¶ëø®M^]ß3Z[K‡Vaçv4ȳWg Š÷þœ _JU3¾>%Ã÷"§ŽxUìtw=Ód²¶¯å—×kÔòÜû ¾iÔéíÃ61püQ#c[5•»ˆá,52Ο“ä²óyZajsòžÅç,Âd‡¹§Íë{ NX±ž’Ìu6%«ÈÉÛ èŸ9ޱ¥=¿zÎT‹.ô7ãœèò£F}ü !/ ÓÍR>Çߌ‰Z`Îij“¯9cpï¹¼œewЮ˜Šð’bx &&í97,fi`‚o€­ j;` ã…˜=vj}z"”þ&òµ*±›vP²i“•Ÿl“ïâìÉ ûa¶NÿKv„uh8Gðá[#R"Ê9ñìb“ñY7(O/ ßn‰¡ìøNKê7(µØÈ2ýÓW^^ÛÜ…Û,[Û>Öí£ÓÍoX¤Ÿ2=¾½¤yz›FHD†-† JÙCY´†š`ÜÁŽ~möä®Ëo‰`‰\™ý‹mA„½ŒÎnÛ%/×å&þ0À¿?«¬³R²5³qO¨¶L ´©Ÿ/Œ ÿVc+ïCê¾[>~))L@ßËÃ9bZVø;o&¤&;zÇ /Œþ'fÕûjs9çcÆwŠLÆŒf¡b¦£M’š3® /M_>Ü dq™e †Zþvãx›ý §êüÁ¬Òp„Gð‹“ˆ°½Ï†_'VÜ,Õ÷*¾iN¶ûºi¶Ödß›ý>ƒ š€ïÊÜZŸï/ä·tjÕúi¥šWòþîÅÿÍC÷¼endstream endobj 715 0 obj << /Filter /FlateDecode /Length 5769 >> stream xœí\Ks$7rŽðq¼?bB§n[]‹w–#Öí†Úµ­ c+zHN“‡="gFýzçUH Pݤ+s ¦…G"Ÿ_&êÛ—jÐ/þË/ß¼øí—ѽ<<¾øö>xóÂ'o†1@ûnnG§ãà*Í›yyð¦¦1_æ?—o^þËŽëáÉTÒ//^¿à õ˨_Ž~’õ//Þ¼ØXµ½ø:ë`ªÞ–á…‹«ݼÙîÔ`RŠ1l®±­RtãæÝV Q;Ž›ýk|lS´>lŽ[=(•¬Ù<àSŸÒ8šÿ¹øwšÆÉiœœñÓ4¿ÛCÜü+¾¦SÒcÜïa§¼7We´Íû-NgcÜ\Š™qE*SßBÓheCÜаAŸ6‡íÎZ3¤è7Â÷F¥\„=ḣ·ŽFÐJ*nö;±íßßÓ„°~³ÙßáQi ÓÜÎK}Äab°Î1•ò¢qN ÿkµ M¨NŽ~hóe™’»×§»³ÆA™—;ë‡#ÑK{˜ÙyØ­…#4aÉh \¡â.>&­ÆLºäc’«|K¤-ìŽ6=¦˜|î42@},o7{"Ž&*ÜéÜûÃÖŒƒQ ‰b]€ñà$çaÅdøŽSÊ'ï`Á0²žh™Üè¡ ©Œ6®ê}K‡`=lø…f ÊÊÔ"yí6›ã·Gí'¦3iZ5 r|Ím žû¦ð—è¼É£@ ÔSp*¸p³'Ž€3T9læ*d0ôñs ²]öç<ñì¥Ü «mal:üBy"¼v»Eþ²& Þ»‰û§“³$xy³bW<îàŒ®J¯¶Ä¶)?n>ÅAhŒF ˜¢&s *–GZ/i¢¹{³›bÁåP‚â¦Úó¼NÜÛnÚÜNÛÁ»dx´(xYU²I»±)€àñ8ÀqÊÎü}¬ø“UIÊH¯{€48­q±;PLjxO‡¼Ù#sšäLÒR†ö¯h4à'Ï횇°ÉIù•{ßÓ, TAUU,[‘#Û_¾_9݇¢6³`‡(ìŠGÛߎæ¹ac!« ê|\IèÇicv¢ˆÕe©øø†éèÈL&>•€¢u”Ú¨–P©™¢Œ ›¶=Ö);ŸY\Ü8ØYW¿‚UŒÈr½¬tb´µ.¢ÃTpjfÒŸ^9c—[˜Ø#ÏÌòtäÁçwDF¥ñ q¯6[×5öf——Ì2#¯\¨{i&^¸+R"Ø4(oÃØZ™UQ/»@Ê 4}[LÐþ‘»8ÝX|hÓ(—'ؘS OÕ.„¤$’Ðù4$ åWAL¶ÝN«Píüp¸.F]Jï6éì‚û‰ç‘…ƒíDgLÓ·¡sÕŸ9 1˜IV< >…š—;»š¨ë©__u"-_D+Ï!˜!ÌÑâ5?uú„­ñvÍ#U$ÚÄfcÍþ̽ ’iØàG!‚ ÍÒNk~Ç“ª]ÜÊÙáU y/ýþox`»«EäàA%°LÒ·¸.¶UxFU z+üdÂÖ`xˆD ’ì¦H#jkˆ¾ò „;À[š ‘I}ÍÔ‘æÿÀäK¨ƒäsV6Áw£øZt¼ԣ¬+°”/ÊxN>2& ^Ô¶ÑbíÙƒb³‘\qÜÑ '·Ô³DïC kt1 v}Ðæ64ïk¬NÁ¶ý85«ó1§üš¼ê½Xö¡ íKcÁmAWáAS9 y4rWiÑú„#OŒP++ÑMŸ=”S¹£C-C\°¯Y¿ºq7Í æxÜ\¡$ƒs“¤æ¡4¬rÿ¾4᜼±øäç§ÇÒ¼êÎqW^û¬4?)„‚S´ó¾4?)Íy œÈOºàª4oKó²kŽr°yŠÏJS¬á±;Ûí¹õÞ˾½)þ\:üwi~ÑmŠq‡ò”›Q›Q6WìóOšÜïκYZ©óºlj5¦à²ñ&¢d^=B÷@ÍþA ­YB~"¥ŠÅù¡HVµÓ6¬èÐ+Â'ÝM>è´†ƒßM@ÃÌ0²èz]频[±üžG·nóÛ)fºoÔÌ!þ (r-„àÕ'ðެƒ!˜¡³°0¥Sú3O¸–ŠéºÎ31žè}ÅÇET”0IßA,~9´+.†,ÀéH¡ÃA3Û¸ÕYOjY`_JøM¦ci^•æuiÞu…mF&M0&C°ƒ$2££6•¨UYš™íÑ~†4Œp¢Rˆ™"Šg »óq¬sºÞùOWô¤žîJS(úOº “ié…3Kéû-cbZÏÁØÓ1Œ­$]‰mõÖÝ¡]ŽÇ±$S ¨µï¸H­ùPrÖ”»HQË*vFÏ}ÏëID£’Há¼9`Dø~‘oQEé._ÕѸÔs÷8µN#¶Y×I%ÑfÇ3-rž ŒÅˆ¾iJr=yœU{õ˜½M¶AÂ'Œ>¥>£k783Ö|NžÒ/àдñ÷ ˧AéâO6,ï@'!˯;öØqÕ\ˆÀ› ¹ûW<ráß²H€– ÑË3‹è=ˆ*ìrÕ‡Ÿ&YNâ¬{Æ¢â¯B‚ [VÕ`ìGÄÊþ s—û|^:¬ÚŸiE2á³—Ñšà‹cã}H4ú:§~Áw±s¥Ä§5Ö ƒŒ@Þ*þYlÑ#GâXÑÂ{¹y¹¥†Oï€UÇ ìJk‚Õo:fI¦anVìVOmcEª“[¬o ¶œzw.8”æM7ô¨"–Þúø’V[±>Ìýˆ]çvNƒj@iïgíòM™õ¾»Â}?hƒ-\µZtSNþŠSNÂ~,3&“îòyJ©SÉ6è€ù§~yxZ©¡Ù”bé.s$݇ìnÇÀjhÄT>¡‡pjÄ.~Sæ+¢[Zç7'²ÑbGY†Œ»dÅÎõ;c±¤14^åûÚLr…á› åP×#bsŽ ´x¹'CƒûQº642Vr„_®õ¡Fjd¬D…,Å ÔÕQ] ¯–/u°BÉ1hžÏÍlåV²»òñë¹óqÃ<¿S”S‹~ÍkÆ*¯&ÄdrÂGݳÊTºZýcîZÃ_G>ˆ”\˜2Ê4¹®ÝºS%Óȱ­ ¨ÌP^åC¶JFTrûÕ®¤WN8w|®áI1í»ªbz»èšì Îæ>—DäÕ׎ ô+¸˜Î* ê÷Å5‘ÆJŠ*åd­ þ~éÑ›Lx* ¨ "͹ rö—&ÅrJ¯Lº ù:õ— ŠT½+ÉwSØC–¹‰Üè¿´TXB”Y69b¢ž°‰z§à?†ªü‰ËŒ©ºI¼øé¶ PUé@"øWš7¥Ya9`ð%vð9v _–æç¥ù§Òü¢4ûaD¢”½nònSÁL•!†¨op‹j»ÕŒÈl=2xÍžÝ24åOÖ–“"Ê<3 ø³e/½ÇR“^0ö²€3ä¿’,éæ¿bé´pLx>Ò‡)uP{|zÚáæë²mÙ›UÔfX8Î; þ”KÀ[˜ÕY¯'µ­Tq¶˜rYŸHUš¢â_VÛ<ðÈcí>æùt¨â‘yæ^1½ç ‚œíG]G XBzyT.‰“š^ø.ìE, 1¦9}Ë88P˜¯\r’É!!¬W³äÀ©´¦øa%S<ñ}{'H0LšŠi ~*pׯ`\÷7ãµôá‡î¸+¶Ü ÙHP#äOh<, ~f jU:OyàÑhVEd3+°wM»äEi›€ª®ÿkÌ"Ê6ÖFÒõÐ?‘’xÙõÎŽr°3Â~ÿ §«D˜U­c|p`sú}W{Zuº.ržÖ««Éà"Íü¦­¯ˆê“Š•lË«GGpê3ê´àäðöǯ.Q÷ÝqÅS!rkŠ9P a-Û„ÇuJΦ㪫Ìs鉬2ï–ˆk:>Üÿë<¯~ʼ|ÏÖy5Ú™çY­1ï&y1µí•]ˆø¼ñäòÐË„=¸jH?Qà ?xÕ¦K{.­Y5$w©F‹O —>í2|ϯ^K¨ ]™£Y$É^VÈî»Ô!g.‹áw«×*0ÿ®œƒ˜èã6-"D—ˆª@b/ó}÷L‡ ÍŠboØ}âKŽšÁÀðu½9åÁlâFŒîyQ>r-6¹Ò>¶ÕƒF8a§ Þâ\\9«î©’^rï?H?ž.ˆ+“›®Ç<·J?â²Ú#ˆƒ‚æ4F°ïº‘ïW¬[¿˜üHPâUúFÀŒôåדª0| 0ÆTêÖ ‹ÉCŸ"ÌÙ[ïªÌ48‘O¢ôívv󻉨ÏTZnqàh€ÈLËìêKóóÒüsiöU<¥OçÌ…PÏÍES)žªUÄ]"7?!QK•Q^cBY¼_ñÜžèÝyÌ`m{CÁØV¡tœÄ¦¥Ía­±nr:ï·8™œ*.j¥FÈAÕwÃ+#ùjE)©î,„ñó\Ä0Ó®Þ ©,ˆ³Ë#ÈØ 0 Î6jlÂAàë«ûíü)ˆ‰œYØ©ÑU]j–ŒÛ¾ó4 ¡‰ù×ÒÀ2è_^§•—‹¿æin*>§KGð™\h ‘ZR‰ŠªÌ÷+Žè7ò¥ùyiŠªÌ¾b‰i°cIÿ”,§å5C‚^á{3ý¢È§€ƒg“œÒí˜ÑÃP‡z;ƒ5Zgp0[°ºÝá7fT¦|_ Ëú]ÓV"§ÇE¯´ ׌çQººÇ´Åýòn- 4ãQ,ÝÜÖCLæ”ãMβÕw Df¯büˆÌš7tña®2¦ÔBê§!qØ¿*€yo)[µRo7“ëí0ü¬½æ"zöTÁ¸r¦â޳–~H¥@b¦J ÏNæÓÇq­²Aо‘]ä”üF‚w •]>õ‘W,8™ªç(ÁÚ`çÏxuu×1ùfпæù ¯Ë|ÇWDÀ·Ð!ßÃk§ÐºéâÅò»Ó%×&wJ÷WB›•ˆ Õ-Ǭï¾CCWEÖsšL€S÷¤ò`ϸæq”Ž…;Ž[Ò—­ÈQÿËNUÔ–™1„5¥[gS~û¥Iu9Vï›qªÞç´!Õ/þódÜÆ•¤Ùc)Zü§òtWžž­_”ù³Ò½˜›â®È‡s,$ìù;ù´g¹Ï¾–3{³Ïõ|Jý éŵ#èâ§[ǧ[·ä銗;ôêß,:»CѼíîð¾ìåâ<™ç¾¯»ƒ=”(O…Kxßm^KÊÍôüÏ.=6ù®ôý}×ýØ=†¾7+x÷AŽ€ÇD·À /ê•©yÕžUf•¹ù;tõè6h.\l)-H0ÿ¤ﵫ®ò[;t·Ö¿®+š·]¢ß¢×í+ySú ¢ v¸ë¾&{ÛíÛ°ûŠHôý 7ßSe·]:¼íÒì¡íÛæ(¦¯@¡ýÉÐïâkt@øÙò;K•T·b/t‘à”Ë.{T2)9p┾òì_S¿êvxæq¯Û-±ip®Yã½+fá³ÒÜ•Qui¥éJSuûÚÖž¾î^,ÐÝÁÄo»æQ•MŠ‚º4c·9öË~Ñ&øYûü#5ͬ #¥e<¶§Vhï1jÂQ» ÖŽÊ×Ù©#wainK%-Aéø{ÒqSÁ†ü”ê#çœÖ‘³.ª.;*Þï¿…¥g èÃÉÑa fûÑ÷W⛢¢³FÛ/M)Q¦!3B×[ûߌ;[p!«QÄ~Ÿñ‹Ð¡ÊX«´ÕL’¦ÆŒ· ë Š4~“( Ș@ÿŽÏÒËxmqï$ß‹àïŸæûD{Q+*¥? ǽ[‚}Ùd¼²õtÓ¯R9 ƒQ¥Ä³¯°š˜æûô“Àdæ—`ëÏÜÔ,À£¨Ø Êtý§Â5\­U”® -?N xxåÃxu!3™ÅàšñblS ª¸Ä}$ßü¥™£¼„'F«?^°`á}>ç¨B'8η˜ôÓ‚s²c¹‹@).àZÏùÖ”7-Ñ Ö(£ž¸,SU¹éïh0„™ÝµÉ\¬ÍxB2ãxÝ~Ã1÷õí‡[Oõø³á}¡¾6ºRÊY±4£ì¾pªŠhλ€X%û°'N£æI~pâ׆ÄãÛ®Ë$ÜÉ·­CÚºÖâK ¯¤Þó©„OßÝq/Ï+:Oÿìz¯ž1îsÖ+ ©D²ú|Ú+™Z{ô`Äýœd‚¹(ÉϤšøG!•ü ÌÊ?qö"~xߺüùµ3u¿ì6E‡8ÓÌ•<£3GP±Wï`Ä`ò;UûîwÝïºú±{øâ5QEeA‹=Dèÿ‚ööÜk§ØŸ¿í©h›ï¡“ÿ¶ýzhÛç/þ‹þý/M² ­endstream endobj 716 0 obj << /Filter /FlateDecode /Length 6109 >> stream xœå\I\9r¾× |ô¹n“%(_s_c`3ƒ1`w—áCÛ‡¬EËŒT©VIjÉ¿ÞA>2È$³²ZÕ€C±^òq ÆòÅÂ÷Ó¹Xä¹Àùÿë·gß|ÌùËû³ŸÎðÁÛ3­Z¼ƒö›ÒF†%ÂQ›¯Îþóü¼„7%yžÿ»~{þ/—0®t-QDy~ùâ,Í(Ï•Š‹–îÜ[¿DmÏ/ßžý¸ùË…XDtJ«Íþ#´PÚï/¶bñB˜°¹ƒ§:˜¨Âf÷æb«µZ‚”›ý lëÅ ¹ù_”NÙ¸ùM)„ÐÛ"x„Ú¼†¶’B»°¹Ç±u ÚºMê=Œæ]®Y—:©åáüfW0ÿ‡ åaÖ 7?_(·!ýf÷‡‹Zzµ¹­Ãý÷å_ò–HEµ88 q~ys¶Ñöâòog[cäùVÛ%8‡dCßÂÈ6gõæ Ž„.b[ »ø¨6»{l; ¦N[ŒÑ†¸yEË÷Ú\uM\3ß5‡S›wÄ<Ò#×Åè¬ßì“ ëœéD(1˜Ú\e!´DUÜ!oǧò©NÎÛ \ Ê(ÜÓ6oj+õbA5¤½%• `{~ÕÕozè˜7AUøõ̧“1BØÔ…$NécaÊryÙqJ$F4^¨Iïו=¯‰ÜV;ßL¸”¸Ké¯@OþõìòÙ›ï.‚FÒX¢¼ ôð. {¢s 2ópI/I<#`-‰‰a |ò3!„Š>]ûv圄¤¦uÐAD" ‚ã $a*Œ¡“’ŽÒ['qcEgr yÓxÐlÄzE¿÷犻‘øtÈmIÁ(© ,;DÔ2$[0‹ ¡Ä=ÞjÓÙè ç!?ùLwºëª£vŒ$‰ÞA“MÎ÷r“ÏyÍrDN5"H3)*ÁªU ¥I{¢Q€U64j¹=³Ò]íñ—àæÌ>Áø,èôûíº{Ù*‰Ž2 B^Þ±cͲ»KbŸ·‘ä>&÷^äsarßX;è¬yÕŒŽïxãt#$ŒS>!€c›{“sd‰ëk¿¹X5Tó82¬ÃÓùx"`#ôióÚ|øŸ: ã>/f$Ù÷È*®;û¾Üjí³§Ý0 äÄ¥c-¨óË D Êõtyz0V›:ÁІa“ý¶êÉ O”Œ&qå´„˜dÐ dòq‘F3~^W5Xq±Z‚&ͽ?]X ¼« Ûá²l¡GW±h\¬̃fŠ Œ»M£!“¶êü Ò#þ àIûÒ›ñ™4«ð g—3ž½K¢4´|€sk°ÁG÷Òqr̘\ç6r³»æÜX–Ñ©—rN/„˜]¬Æ>yS‰»ƒ£ÂO¨Œ”Pú€sÈ¥p‡œ³ÂÅ%9á ÃÉú Àzt´í¯ë©Ó°:öEÅõ+crpÞ`ÛnÂ'·iTÑÜ2¦ ³a„F#ÑNCä#?b¡sˆ¦“q¢-ÈOöI"€~Õ†ÁãDòx€Çó|'vˆ§’PºY\E5§ëº6¦R(ˆhœ uK„Ç ]#@ãn^¼td\è¡£À 5¬½c&€Ñ™ëŠIõcÝ-SÔ;6ÍH1êñÞ¤÷‚ð܃fá7Þùðˆ@…¶ÂÍœWÞù.I)Á¼´oà“VUàSGŒö׎–ö'W{ ,“Dõ`™‘­ k=Ò`…0š‚ÐáT­,©ä9„¦ò8„vjµ FÅÝ÷ÊF³!Ch…«¡a #ü1 #‡d·ZzO…ÐÐ;Šþñ)zÜ¿ ‹ÂèèÅ0%šP<÷â”]4~æ{çùØWá”  õY5Ã)@d aŠò†Ò™7â‚:"#‰Éžã·6)o˜{¸Ìà4gˆè_"{q×­£K_"ši<ßâoK8™m€uîQ6 N#½Â7x­AêÐe ág–' Fs÷¬Ö"|‰¨*r²sdqSØ ?{X¨‹þ#áůƒø]öÉ >í–³tŠ„O"ää"|g,Ș†§L˜u†¯Ä„ÞTsð%ù ÊS¼[FØ`Ìv9šÌ‰S\çFb˜$ ¯·‹–æ clçjÓ y”¢ý@W`^SøàÆzdOÁ¯Qó,$iáV>Ä…°D¥[”Æž )µžB  l<ˆöe­ ƒ¼õ^Æ/ÒãZxÞ¸‡‡åeÂ.ºTKþ½GdZÀ;QÖôd¬úœ(Èq±À] ²ÄÔÞ׺\'¹LmY\ƒªùµg­ÑÈþ=e¡ˆ»Ä«<÷Ôûƒ)æK¦Äµ_Ò{0 ÏÉ‘´ÐE“pm]’²®%l0àkHt½yË8â¨ƒšƒµæbRy„a­pªæ”‹eÔ¶B‘ÐHØü!Jdå½™d&Ÿì/S®5‡Ššœ Ï+ ‚“*Ï(…2©Ú* #µNÔ l“¬ì!—áEí½o”;·Z¸}¼.õrŸÂÚÊîÖL.ù¡Rž“ªè2_¢öÉÀ<¢—¯j2‡ó\¾ÃêsĨw½‘ëÜmÙ\TKp+¨`{¸•sTÇA\·âž7.šÃ%šêxí_)Tdé¥!¾;r'¦\œQ¾¨‚ÙùŠ0Ћ€ÉÅf¦Öè¯Ì·µ%Ë¡ÅM$Ò ¶B¯6¶€u)CQ²pÌOìaCÂJ‚A¬ákÞ(G"·åžqNÒ½©éMÌrþb³µíSÅÃû/i— E"dөܓ۾۴ÇTJU3—eëŽ'§ù,l±ãؼw€%üÓÅæ¿«þ@Í€ Ì¿Öæµ9Ó{°³Ú@›m‹ŸÇJ¯)V£úK>cb­¾RZªecå¥ ìSc^`kQ-ð˜Ò…öeÂY&’ê¥{¨»œËx‘&É]ñz³¡ÌV’ڡα~’½ü"^0Ó»¯T=]°8°ÉØ2eÀÅ‘† ”♌ˆúÇð‡œrV]u9‘I‰±¤vïM0¿K¾UPŽZäͲ ãzÌFA÷‘Züì®HÞݑʵ¶¢€z•2áVe½ýnkAt§T e·´[º±)~ÚMô@Wkx€œàÌ©¹±\³ °pøý‡¸(g‚é*–01:+Ú.lÀÄùà“À¨7®PFÒÅþ.ÂbT7Vb„W½•À[ƒ mfÌœ*¬Ö‘G “¨(èK;#.B¶EC6. é"”8 ^©éCœÄ‡!Î>*p„ˆñ_|®;5vBŒ9Ü¿½"Û›4¶íng§…-^^É469Æã]OÎàG $Þ­„ ¦-bÂñöKV'r˜?¨.›@ĽEt<_ÔÍs*ìÃkÑÔ#BCŽW¾¾F¸5’˜Aª;(€ðz‰ªuí¸û?< ³(]£Æé$œ1ëIPó¶6߯fÞU‹ï6’:x¬d“æ0·B1óWE, â°Éu›Å8ìªÐ²ÐD:S§û{#j’KqÉbίÊhs·®óž°ó¾õð¸÷”–ÏnaM¬c-9rJ‹cEn‚¾˜ó4µ?[­â’>ER¯U:±Ø<î6½G…ŽwiIójßuÁÌJíxýqî‚cÓÒæ|9 ›î9­ž‚Žåa`Ç ‡MÀàù>óõ…£R[ÄñËw ×ãÝ&IR™#ê‰*ÏË/‘½"kˆ̆5Aײ T`8 Þßã±Æd£)™|i|˶š*–^¼îâ‰W¾ éaüGÜùš}" ¾’â•í·cVW%·Â6Ô‘Aàe¶øµæ*ÀBDQµ|©^=ß©§“ü<*’ž¤›«/Å%ML‡aÃ/‰|ìjù«¡D·ÒÇŬ…»Ykð¸(«zêaƃ<'Nhd+c­7’tþµ\.µ+”·nÛ#Âñ,c:io”:4’~²²Ã}V9Kï5kSQ¶— `YqñZ œ¿šT…zGóƒô7ad‹4…º›×ùò<ï|<• 0K@5YcP4­÷¿h@ù뛾¯¦þŸWûîs]+YòÛÚ¼¯àŸêÓm}Ê^{[›»ÚÌ%®ÔþR›¯kóyíÓCnª²pÅþt®xðµ\|[æ¥Þ )5&ÄÇÚü0!ð¨'Úì`Fäa>Oã)Š.+–¢M3~ûX›w}³?uöôeÝa¨O"µ©jß×ÿýF†ËÙ÷+ËeÝ…r/êÓ=·¥Ã/Œº}}ú˜å_×{W'~L!{ºˆ–®ü®çþ¯õ„÷µyS›ì$ÞÔSûþ!~ÿÈ_ëû-­ËÊżpF ôžGAH!;ý±nk¸j«%¸±¡Ð-Úü>i¤Ohå§Ÿ†G$ÖË%‡Åè[šÏ` -¸Éœ^ó£½vuÚkÀýX›W)#TÊÜPæW2Ùf.&“¶ëÚ|ÇÉY(°­O™‹¹Ô¦êS›KI'#ȺW_›±6Ca[Ÿê!eãp0ÛÝrúİÉi‡Ë‘ æ†Í8l¼2Ý@œ x³ ö¬>}v±æ‘¶•šf±¸±ØŠê^>d+^ð.š„qÓÞ7é—oùQ%g•o=…ÞWþ0îïð»¸FÐ.N”\]guüg“AA¦ôzûh2(VY]¼”ÇqÒpVmO:ÜIÖ=_¹yòN&ËÇø@P§/–L}ºa,€q'ŽóXÚÛ'Zñ2]±uúá×ÏöŒW<#,p¸3%ðú»$Uð4'×0Q‘×#ÓzZçx«Á>Jð±Ñ k õ‹U9¼ÉOew¬G“ÜâWÛ[ëd¥Ë^q9šÿÊnV+³8ä›<˜@—…7Kbz »õ£Ä)c5 KæÅéÒeWvó§õ‚?÷ (•\Z¾+ìã´^ÂnB®aú¾F ®ˆçÍ;ßvîd 6ÓÿHëæžD” Má¢ÆÊcKà іAìÖ¯ÙFÝ¥IÖ/´/®¤+n}|·¹á¶Ý©)߬•§•(ͯI…͉2üT(Ú¾i&…O˜A-”ÿ¶Í›õÃ;À¾«ÂÒVŠïxÅ‹¥ôW1<}1å¤Kf,4[Ã4é+ùT«‰´‰KÔ}Eg{ÿ FY¢\«>•>œvÿ Óú!þÊ×ÏÖ%55ÃàU]Q_áFcÄÐrW!“é+åü ô%áuS¸}ÏCEé3òøU).þм‘ëWäë‹'\=-ap,»Žšª“›‘Œ’øŒ´L§îX­‰‚×O‘¤RNº/Ð^Ž._cÀmxüHN:àÙWP>WæmS£%·íh˜‹*ZÒNôÎ ž«JÒêÛ8åˆèÊÎ’dŒêÿ¢€,âÁB,Èw?Œm1G÷ª6™Ï{7Œ_Òß ‡x3ìÀÂ#Ïë"¾Ô§·Ã×Xd‡Òš‡C> stream xœ]O»ƒ0 ÜóþƒRb¡ C«ªíÇAp¢†þ}›:t8K结ϲ.Ûò>)‚±¬-n H0ÒdYÔ h‹±°> stream xœÅ\Ýs7r¯Ê#ãÊßÀr]Õí*ÞÉàsW.U¾”]ÉÅ~°ÍKt÷°$EJw$—%Ùº¿þº ð³KJr®üàˆi4ПènìO§ã NGþ/ýÿâöäß~púôúá䧸=1ÞÈa²ßdØiáOc_žüßé \Ó—"àû MVV³‘è胳˓ç«Ûõf¤÷ÎÙÕ †Gïô´z³'¤š¦ÕöЇ•wÊØÕn-†qôJ®^ó¨ñ~šäŸÏþ–ѸŒ–ƒ–f^æËõFk5¸ÕògÂ{1¹ÕîŽVÑ£§ÕeÁ¶z»æå”s« X™)½•´ô+¥•u«€6hüêz½QJÞ™ÕwüÝ4ŽÚÑžïd”Ä8N£[m7°í¯î‚D¿\moøn‚–¿Î¤>0g•Öñ”Q¼¦¢5Dí­8@¬§¿ÎgóCY2N—Þáô’f°£<Ý(38B•¾¢ÞjíWÿ±Þ©ˆ/Óê>ŒÒÖ}Øy_ð¶; sfdvõïetSFŸ²ÄÛ¾YXAã܆ó} ºŸÓg£7Ã(ÓgÁ'¿*àPÀ·<>;hÖ#>ÐW…µà*ßÌ Ø“{<Ð|›®Øƒ¶˜®Š7bÔ#Íò-²VÀ} Žfd›îg€ ¢:Ùd} ¾û™Á…{äØc”†©K¤.xa®j‘YÐt8!›ZÖ¹h¶EÎ xSÀJ¿’l;°Cw¸ípB–­= í‘õãrÙ=tÙ=é©{z.qDú6·áU¥,?âgt]r! |» ÃÑŒìYfüûÖð·“uÈ&ô(‹·ê?ŒÅÔ`xœn{ðÕu?ktûø äØšœ¥ µTÝÑ©¸ö¢Å›Â¶ ìÄV?–¿ƒƒ¸n}Eëq¯98Ø CÀUL‰@£êÌÈ(çÓ=uõÛ9U]Í`•ä|—}Vð?[@JnR)y)ÍQFùéQ6W"Ü]Uéó8Çv2 Qï$…Ë;‘‡‘ƈGïd|éãŸYÅ"9ÌiИaœº:J±V¦Ø|"Ї£ø˜´,,I¸5Y|µŠ¾!°Ÿ‘Ã4¦d!! ôÔùß¼Ž#kN ÈY?p^Qã¨ôêå:€ÆkÒXi9KêV?‡$è8J?…L¦4G¥L+mÂÇÏĤ&BkÁ©NH5Z;§B½žLÐs+¬1–"Õ’Ìå‚Hã„xój6XåèÌé¶ý:[¢g{aãìj{ïÃ|i}!cÞ‘\ý¿Þ‘åkƒõvõjû&$[Éæ™)n‰©à”Å8D¿“U~7.!…Ô„„'x)B žrΘRÛs“tc• Þåp.ωé‡*ÍM³±ÖFö¤üsD(íh+$/Ó µ"2Æ1þs)"÷÷¦••3ífÔRÑ—1cHŠ`sþ>¦ê‘¢ óL¼›ÇŠÁö‰ËpêIxK‚·½èíÓ%¹`Mj}o²P¸/˜‘R˜‘äú:tWDxÇ‘¬§@–„Ä¥x;+ k úyÁrS(à‹¥÷A'jMÉø@€"ÃI÷§ ÔhXPÂL“Ìä,½Ò‰vÌZJ‚çF1­vAòB½ä¦L½Œ,m 3ëËOef(¬¸Q›J@_c±$ R¤s 3»ýU1åeÑþ; ÍÙX•Ÿ¤RƒÙvþS[ühJ[´ŠÉÆoLÖØM§t6Ó8Oñœï #j&'"Zx0ŽÂëZúÚ‘Šnª°¶ „+„5i{(Ÿ7‘CYŒÏÀ<…sZ¨Z‚Cîktd´âHJ+A»Ö«¯#í$â·³¡&¶K§äêúe9àÚdõœ™èEU?ÛÅ*W€/ª}° £,Ѱ!í¯‚Kmõ\± ¤´ê'-y¶)©Ÿ‰'ºe‰”^K"†­í¤™ÊÊAD², ‘EGNŠ7¡6mK‘ð5ë2¢³)HEBÓ0üX"#«Ë*vßÑÁìP 6ñ;I'¼…SHd¯T"¯W‰WÐ?R?£ƒL Ê×eá(+qÊ?¯Y-µ7¦Þ¯šŠÉXì6QB'Ui÷:äã96,¾î\‘ûAƒ‡bÁFÌi’â LTÙíBÅ4OÐ`÷Ñ‚¤t¾ñ|³•èN-kôÞÁÃEïíÈà6Þ;9¯ K~$½UIÞÙc¡¸¢·IÖÞüÄã¯Ã1' éT[>Gð÷±*ÏrÜ3edŒÉÊeGýnmL'.eó>¹²Jဳì{ìÄê×jj&ã¼ß‚¸ŽHÈŠÿÁ³é"3‡AåÀà •ÇÌìŠåù‚…Ð:UF8å¬6®%ÍڂȦÓ!¦ûçR´önMÊ G2ÀˆK Ò’ˆÓ‰`Tö2› œ}'³C®(e¥›„ò1ÜÌüضátRÿŒìÊ.Žz/kkƒÜ ǤI³/JÒ-¢»·ÞIDÜv©"«x=V’ÚÆ6&² $pÆu$csDGWs?Þ&;™Î}⌠÷"=KñŽjjÕ÷EõÒù˜â)0õ«ZóêwlHñ+‡ÑzE­7ÕpÔ2)´GP“W{ÂÞ‚CŽÈBž†Ø)Õœ¦ù=Hÿ{ÎÄQ”èfÉ6RÖ$D‚ mFâyÒ½_:Äbmúõz(±<¥ø!È)UežýÝÜÉ.Ñ?ðüzÝ!yô<ø':>'ÄÏLʤœÿô׿s‡ë‘a…ÄH²I`Œ³Y€¹çÝ6) W.ç…RðéáwUhÛ&ËÅÙ»¦Y=°ÛßÔh¬ÕíMóÀ!Äù0å¢^•Éb+w{ ѫ̸]¼h ‰0¤ú®½2ÆàŒ ¢çFJ¹£“5|¹˜Äê/ )ÐÙöY¦;™ÉГâ쳘æ£K©MËÞq€3nUdÞSíl1ž…$Èã^ci’Þ;ްôh1UÞ„D\{cô:ÜdQ·ñö’"˜ÊO·m—•£ó~ð¢7+nè]¡î m Ö}D#TÏ9QT>“E£¹B¤[¡Lð}Yê»~<…šNZ–ÄL{ÉõÑO@P2~4lbCñŸ‘iUX÷°FùF5äÉVè&Êe¼v.docz'\í =ÝÀ/"åÕòå1ýýSÜ»Nm×4o$³Ò´ —ÅA¼ŠÙ0Ї|:2EŠ5Ÿ ™4m`^àÚ‰§ɨš¬Ù`¶“ë{dl&²f߬b‹aR>…W¬\Ó/@gTG§ÙÔà½2ÿŽä¨Œoz$J߬³Yê®ÃìÈ·´þÕò볓ïOb»½9}ýÔFyI–‘ÎåTYA2ïC·|L.&¼OFHq$""|Ž×Q´ï±ZáÝT]%CDÃîñ GNûÇÏ‚˜Ç‹ÑRĸ»Fa„ V2 Qbô0IÆÛGÇÂ1 AxT4õraéÝU£–™À=Ì\‚ÊÕÉCé$„Ã鲘ŠsøŽãž©.[JC,ͯÃaé;óÓ-”-(,¯JVé¼µ¿nÒ–¤jÑœ…$c]%Ѝe•ÿY¸áÄ'-«l!kΉ/B¢§‰»ê '„ýÐ}5ïQ¨å"J9ïÆŽs&4ƒ Z ³´&gȃa¤zi²áÒ‚AÁ™¤üÐf—ãWt^|#[qÓRúõ®eãl6ù¡ÊÖH1ZÁ9ƒ sd‹¡6‡sïâŒ9JÞÏ!!ñ寖×w¡ÍüAŒÓfë(‘,™&kÉ×û¿Ö‰µ:Æ3QR+¬ÓaPÇ7¦Ñ§óéΈJ?ÊU[¼^§âñŒ\ËyŸ°Õ (]WY”,â!s7ÊI4Zð"îO‘†³QaÔÆébÆ3Øß}’|CϸWM$Cèðµ‰Í{Ù+¦ñpX0<*¬˜W¢—3˜Œâã²Wf01o“â.aÏŠÓ$bó}âË•ºv,ßp"{ìê³²Þ5”Ójä+WW¿¾ùñÛÜgð3,øØšìËþ…‹ IYâë0pÑãDÿªîõ[`(kˆ°¡Ó\žJª2Nñ¹ÆP/ä6ê¬eøpÊ—ÕTM«…šéKf!Ô‹=¼ Ñ÷áI´|`çë\.ì“ѤïøìžfzøÝßá IÎÐìil¢¯ªl>ïHÚgrmGìÕ·ø^±¬a” ™”Åä\ÿR:W(Bøu)¥po[P_h½Û\ÝN-‘ÒÚM´†=9‡ˆ_i[ ;/v.z³›À"ÔBW¸ LÃÅ8ŽæOØ¡±XFŽUöV²^7Š”$£[òR jšª’_“~É‚£rSß+ùñ¹®ø¥ÕXcn`°£[rXõ•# ¨ËJU·Ìž#„Ån‡êÆ—u,d’ÛMò}ü}O)rK§j¤ IÉ¿í)£kßs(cGÏEß½j»—uä³lîꕯYÊ("#»ª?ó?¶Jxæã® HpßÇÁºm•»”š§Ús:ÛÚ…k@L†L’O±v‚säÀ^0æC’ÍÂ6R(|z_*CòûlPlžz“^Šî€WãÊë¥<}m³xî(i;QÇ$êüweçáÎW²1ePШ0eõYl9ú2Ïï>1}£ªóî^ý¾\-æeß,~Š×ÂüMŸž¿rfG3ø¼€ð¤ZüÿŒrýò¼‹Vƒ7d-àñÇéðB¢ÿ ýêØÂ?u—ø¦Løª€ßðÇ~ ÇšÝël¾æÆ—ÆáÉÂMáEÛí¼®)$|ý–d'À›š~Q¾ƒÑô¼4ÍHµ‹H[nükyt÷¾+-Õ‹ÃÞRxÿ€’¯]àahÿ <–K„×ß¹…×Ùð¤ð®ËÌÏ˄ϻBoÁoºKœÃû¿ÝÏ<‡'äP¾êû—Þwç¹?âhfö¶€0 "÷plHßç•@uÒô#˜óc2/mÀÈ¡ ½ëJݯ`[+wÔ´Ág?ð²+1òx_þþ˜ÌÁb€Ì˜¼ìÊ|Ègÿ±ìì[ Xãç^v0T|tG`²àåök$òØ6.»{îÿ~ÁmwsWݹ;ü¬·Oxô@¦@v]Aê‚t‰àò¯«ìIú¤ú2[3ÛðZýçw7ÇŒÆuW¨‘â˵CníÀ‘ÂÖ!æ5Ý>á§àÉ.þŒÄSLôS´÷¡>ýŽwÝïú?ó¾øé1ò‡ù›>âçz§ýkÅÈȺO¥$ÿ_ºq4¸ƒQÑÝæ?F7Ú$FóKߦÚв®Ñ(n;ð†Â˜P÷øè€7bÛÐnÛ÷q2÷x´%¤8.Wÿ3ŒBŒSU‚Ù' ÐëH\hÂ5Óòûuìý,圮õ•êÒfhäf/ñ°DÒÉÃM¡ëðc𩔸]`¿¦ß¾fjÍk [ý.Â~ þΤ\O4QuùRbuÀk(Û|k®Tì7ï¾*ˆ»¦@¬n;ÛbÐqÙeDGÿʿ ¸}¹êê·íý˜p|ë𨮶yM“–Ôl,*a Âj§ÁM9?ÿ¸_€èz> stream xœ]O1ƒ0 Üó ÿ ÀBÄB†VUÛÇAp¢†þ¾$„ÎÒùî䳯ëÈ6‚|‡/Š`,ë@«ÛL4[uÚb,,O\”r¸)ÿþx‚Ý@æàwµ|^Ú6¯ê#„NÓêRP<“說ïŒé±þ“J`2ÅÙ´}AƒÙ*)šJœ7·ˆcn𛤖é÷Œw>¥`‡øFêStendstream endobj 720 0 obj << /BBox [ 1366.23 5611.96 1399.33 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 721 0 obj << /BBox [ 1391.83 5611.96 1424.93 5623.26 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 722 0 obj << /BBox [ 1417.33 5611.96 1450.43 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 723 0 obj << /BBox [ 1442.93 5611.96 1476.04 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 724 0 obj << /BBox [ 1468.44 5611.96 1501.54 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 725 0 obj << /BBox [ 1494.04 5611.96 1527.14 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 726 0 obj << /BBox [ 1519.54 5611.96 1552.64 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 727 0 obj << /BBox [ 1545.14 5611.96 1578.25 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 728 0 obj << /BBox [ 1570.75 5611.96 1603.85 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 729 0 obj << /BBox [ 1596.25 5611.96 1629.35 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 730 0 obj << /BBox [ 1621.85 5611.96 1654.95 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 731 0 obj << /BBox [ 1647.35 5611.96 1680.45 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 732 0 obj << /BBox [ 1672.95 5611.96 1706.05 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 733 0 obj << /BBox [ 1698.45 5611.96 1731.56 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 734 0 obj << /BBox [ 1724.06 5611.96 1757.16 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 735 0 obj << /BBox [ 1749.56 5611.96 1782.66 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 157 >> stream xœeŽAÂ@E÷œ‚ Ì æ&îZÀhiMZ^_Ú‰5Q ¼ð?ì:Õ„ý&œŠ :¡ 8BÒXHâF†ä J\œ|T_rƒ>€ÉŠ¥høß̽«4Rô[«²`PjXdœ/p…LÊœ ¾@ðàuÆ%»=L(ÄaLÅÃtÎcõ V} Çúžm`øÝXÞ=b -¼ö€5endstream endobj 736 0 obj << /BBox [ 1775.16 5611.96 1808.26 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 155 >> stream xœeKÂ@†÷œ‚ L‡sw­ `´Æ´&m^_ÚÆi¢øÂÏãЪFìfAR2ʂꄂàQ«LRÒ’‚(qvòUíä|“e‹•á2uû®ÚUI0(Õ,52N7¸C"eŽß xòxãâíFb·°¦ìfº×a›k¶Í5AŒ#ÅúߎåÜ36ÐÀÿ‰5+endstream endobj 737 0 obj << /BBox [ 1800.76 5611.96 1833.86 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 158 >> stream xœeŽMÂ@…÷œ‚ Ì æ&îZÀhiMª ¯/ÓjMôøÂÏÛtª ûL 9AuBAp„¤±Ä• +ÉA”¸8ùl}Éx&+–¢áqïAŒ©ÿj|+ ¥†¥AÆû ÎI™SÁ'î<¯ÀX£Û„Bì 3`*.Ó¹9ŽËÝdË]à "W[o0üNT»{l¡…òÚ4ýendstream endobj 738 0 obj << /BBox [ 1826.27 5611.96 1859.37 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 157 >> stream xœeÎQ Â0 à÷œâ?ALÚfmO ø¶ùàD'² Ó¯o6q‚&Ú$dÓ™%ôšHs.\æÂA1R²XYã*Ã*9¨±T—ÏÔW.tÀ„K-)ü?î=i‰Â`OeE0nDî':SfIORì¼®$˜³ÛÒeñ WbËç8úÞPÞ{ f0c[aøí˜ÏÝ£¥–^õÀ5endstream endobj 739 0 obj << /BBox [ 1851.87 5611.96 1884.97 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 156 >> stream xœeŽA Â@ E÷9Å?AL¦“Næ‚»Ö…­H+´.¼¾Ó+èä‘ÿÉ®5‹èž4’¦äœVÅ@ѪÌZm¤ßH j,¹ëKntƒ„={¬ÿÃÔ‘º×VWR„²‰ÖLºRb‰/RJßI0W»§ÊR œ‹Ü–å<¬¹–×\Ç \Y7Ðÿ^ÌïÑPCoúÞ5endstream endobj 740 0 obj << /BBox [ 1877.37 5611.96 1910.47 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 158 >> stream xœeAÂ@E÷œ‚ L‡8‰»Ö…0ZcZ“êÂëKk¬‰~B/|›N5cÿ€ ¤V#Ô ”GÈÚ8I³’a%5‰{ëK.pÀ0™[n ÿ‹{b&$ µ„« &¥ÂªÈx?Á*)sv|‚à.ò Œst[˜PˆCiL2]šãøÞW,{-^çBeÃïÄ|î[há÷±5endstream endobj 741 0 obj << /BBox [ 1902.97 5611.96 1936.07 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 158 >> stream xœeŽM Â@ …÷9Å;ALf&ósÁ]ëˆV¤ª ¯ï´¥ô…@ò‘÷È®5 è^4’¦”¹(¬vŠ‚ùÂê7Òo$95–RÉêú’ð á\rðÿó#-99X¬®¤pÆQ4Bð¼Ð•›H(x“âPûN‚©Ú=P–*7áR•m^ÎÃ’Ë’›1ïØ¯{ÿ{0}{DC }Âç4Üendstream endobj 742 0 obj << /BBox [ 1928.47 5611.96 1961.57 5627.16 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÌA Â@ Ð}N‘Ä$3éLN ¸k]xÑi…êÂë;mmLÌ<øטElŸ0‚¤”É­©àÑ‚“„MúM’Š{‘5õ•Nx¦ì9†ŒÿG âAI­*©$¨FK…‰‡Òÿ¸Àst|à¡Ü §mö0¢—ј¼L¶ùs–vñ¥=ãVš7è@Ù k䱆Þóˆ9šendstream endobj 743 0 obj << /BBox [ 1954.07 5611.96 1987.18 5623.26 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeŒA Â@ E÷9EN“™ÉLrÁ]눶H+¨ ¯ï´¥Uð‡@þ#ÿïZÕ„Ý  ¥¹ VBAp„¤ÑIâF†” J앬©/éá„w`2· ÿgâZÈj®©"”2KÆHÆ\êË®PH™“ãuoÀ8M»‡ qU˜“W™Îæ<.íÅ—và X¤´úáÇ;åÙoôpÄø{9Xendstream endobj 744 0 obj << /BBox [ 1979.58 5611.96 2012.68 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 158 >> stream xœeAÂ@E÷œ‚ Ì æ&îZÀhiMÚ.¼¾´Úš(„ù?°kT¶ 9AuBA°‡¤±ÄtÉA”¸8YU_rƒ>€ÉŠ¥høßŒ-H±HÑ+WeÁ T±TÈ8^à ™”9|‚àÁëŒs6{Pˆ=Â˜Š‡é2œûïÛÖüƒÀì×­s÷³Ÿo=b 5¼Yq4qendstream endobj 745 0 obj << /BBox [ 2005.18 5611.96 2038.28 5623.26 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 164 >> stream xœeŒM Â@ F÷9EN“™Éüœ@p׺ð¢-Ò Õ…×7Ú*˜a ï‘ïÛµª»'L )e*‚j†œàA}!ñ›6“œ(q1³¦¾¦‡Þ)—|ÆÿåÑc¶”5GK%A§Y"zÊÌÉN.p…DÊ ¾@ð`ÿŒók÷0¡Û¸*˜ŠMÖ çñÓ¾”gœÙÒ•‡.+¯÷ ÷pÄx ¢8²endstream endobj 746 0 obj << /BBox [ 2030.78 5611.96 2063.88 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 156 >> stream xœeŽM Â@ …÷9Å;ALf&ósÁ]ëˆV¤ª ¯ï´Ú šÈûÂ{dÓštISÊ\V ;Å@Á|aõ+éW’œK©dq}É…¸‘p.9øŒÿåÞ‘Øjr¬®¤pÆQ4Bp?Ñ™›H(x’bWçJ‚©Û-P–ZnÂ¥V¶Y‡Oî;6cÒQXÝÿܧ_÷h¨¡Og4Iendstream endobj 747 0 obj << /BBox [ 2056.29 5611.96 2089.39 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 156 >> stream xœeŽM Â@ …÷9Å;AL¦“ù9à®uáD+Ò ­ ¯ïL¥ñ…@ò…÷È®3óèŸ4‘Ƙ8+¬vŠ‘¼5™µÙȰ‘èÔXr!«ëKntƒ„SN¾Iøæžœañ°P\Qጃh€`¾Ð•"›ˆÏx‘âPúN‚ZÝž&(K‘[€p.J¶,çqÉý„&Ô-•\]Áðs®ÑRKo±ë3¹endstream endobj 748 0 obj << /BBox [ 2081.89 5611.96 2114.99 5623.26 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏ] Â0 ð÷œ"'ˆI×´é ß6<€è†l‚úàõÍ>ÜS ÍþÙ5ªÛ<@r6*‚êBAp€¨U!©VéWÉA”¸¸|S›tpÂ;0Y±Xþ?ž-6¥Q“§²`ðŽ%aEÆœýË®I™cÁ7üÞ€q<Í(Ä^a¦âe:5ça™.ótóE‚ˆŒ ,ÐÿB¡4™¡ƒ#ÖPÃîõ9oendstream endobj 749 0 obj << /BBox [ 2107.39 5611.96 2140.49 5623.26 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÍQ Â0 à÷œ"'ˆIÛ´é ß6<€è†lÂôÁëÛus &Úüé®U Ø=aIÉ( jr‚#õ™Äo2l’œ(q.òI}¥‡ÞɲoøytàD„$ Æ’J‚N)²DôdÌ©Œ\à ‰”9d|࡜0ÎÝîaB!.å*0åR¦õq×í²l7œÁÇù›†_È+l‘z8b ¼ä9Zendstream endobj 750 0 obj << /BBox [ 2132.99 5611.96 2166.09 5627.16 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÌQ‚0 à÷ž¢'¨í¶®Û L|<€QˆàÁë;ÐÄ6M¶/ùÿC­°™`1K”µ9Á‚úLâwév1'Jœ‹l©¯´pÁ'0¥œ‚Oøÿpâ#Y@%e‚N)²D42ö¥¼ÁŒ”9d|à©Üç­0 —q 0å2I—ϵ_ÛåÓžp†èÈïÐý€ó¤ l‘Z8c¼ëÉ9fendstream endobj 751 0 obj << /BBox [ 2158.49 5611.96 2191.59 5627.16 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÌA Â@ Ð}N‘Ä$3ifN ¸k]xÑi…êÂë;­mLÌ<øטElŸ0‚¸'Ê‚V„Tp€h!“„MúM\ňs‘5õ•Nx¦”S ÿT*%hUI¹ U,:9‡Òÿ¸ÀœŒ9f|à¡Ü §mö0¢—јr™dóç<,íòiO8ArJô? l†5²@G¬¡†7ê09lendstream endobj 752 0 obj << /BBox [ 2184.09 5611.96 2217.2 5627.16 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ Â0 à÷œ"'ˆIÚ,í ß6<€è†lÂæƒ×·›s ¦ÒþºkÌ"¶AÜeA+B*8@´IÂ&ý&®bĹÈ'õ•Nx¦”S ÿ—©•ä”"ZUR.¨FK…NΡôO¸‚“1ÇŒO<”{Æù4{QˆËèL¹L²åqÖvy·§òU 7è@Ù [d…ŽXC /ò49wendstream endobj 753 0 obj << /BBox [ 2209.6 5611.96 2242.7 5634.86 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÎQ Â0 à÷œ"'ˆIÚ¬í ß6<€è†lÂôÁë›Ím ¦šþ]c±}Â’R¦"h.¤‚D …$lÒo’TŒ¸¸¬©¯tpÂ;0å’cÈøÿy´ *‚¡UžJ‚jT±TèSd ø¸Às,øÁƒ÷ §×ìaD!öÒ˜ŠW¶y8ËvùlÏ8Að#u…þ‚ΰFèàˆ5Ôðä>9Wendstream endobj 754 0 obj << /BBox [ 2235.2 5611.96 2268.3 5638.66 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 164 >> stream xœeÌM Â@ à}N‘Ä$3™ŸîZ@´EZ¡uáõ޶ fÈûàeךyì0Ę( ZRÁ¼¹Lâ66‰*Fœ‹¬­¯ôpÂ;0¥œ¼Kø¿Ì¨ºÒ2´PZQPK@ɤìç \!’1ûŒO<”Æåµ{˜PˆËh¦\&Y çñs]ß×.<ÙÃ8«q-ÔØÃhà ?8¿endstream endobj 755 0 obj << /BBox [ 2260.8 5611.96 2293.9 5638.66 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 164 >> stream xœeÌM Â@ à}N‘Ä$3™ŸîZ@´EZ¡uáõ޶ fÈûàeךyì0Ę( ZRÁ¼¹Lâ66‰*Fœ‹¬­¯ôpÂ;0¥œ¼Kø¿Ì¨Ofh¡´¢ –€’I٠θB$cöŸ x(ÿŒËk÷0¡—Ñ L¹L²Îã纾¯'\ 3ÉÃ8«q-ÔØÃhà×8¦endstream endobj 756 0 obj << /BBox [ 2286.3 5611.96 2319.4 5627.16 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ Â0 à÷œ"'ˆIÚ¬í ß6<€è†lÂæƒ×7›s ¦ÒþºkÌ"¶ARÊTÍ…Tp€h¡„MúM’Š—Oê+œðL¹ä2þ/S ª…‰ ­òTT£Š¥ÂD‰ƒ÷O¸B"cŽŸ xð{Æù4{Qˆ}t¦â“myœ‡µ]ßíÙ?¢Á—jƒþ4ͰEVèàˆ5ÔðèL9_endstream endobj 757 0 obj << /BBox [ 2311.9 5611.96 2345 5657.86 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÏQÂ0ÐNÁ hYÛ˜ø·ùáŒn1›ÉôÃëËæ6M„4…—BÒ]c±}Â’R¦"h.¤‚D …$lÒo’TŒ¸¸¬S_éà„w`Ê%Çñ¿x´ Á_W†VùÕ;– C¦Èðq+$2æXð‚?7`œ²ÙÈBì¡30lss–íúÙžq‚(¤ô?0ýl†udŽXC oê9bendstream endobj 758 0 obj << /BBox [ 2337.41 5611.96 2370.51 5638.66 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 164 >> stream xœeÌM Â@ à}N‘Ä$3™ŸîZ@´EZ¡uáõ޶ fÈûàeךyì0Ę( ZRÁ¼¹Lâ66‰*Fœ‹¬­¯ôpÂ;0¥œ¼Kø¿Ì¨óBÐBiEA5 \²dRv‚ó®ɘ}Æ'Ê¿ãòÚ=L(Äe´S.“¬†óø¹®ïë âÃ8«q-ÔØÃhàû8£endstream endobj 759 0 obj << /BBox [ 2363.01 5611.96 2396.11 5665.57 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÌAÂ@Ð=§à33œÀÄuጶ1­Iuáõk[M„ÀK>›F5aû€$çB.¨U(4:I\¥_%Qb¯²¤¾ÒÁoÀT¼¤Xð¹·¢eCµšÊ‚AÉX “‘°*ÞÏpLÊœŸ ¸«sÆw7[Qˆk… ˜¼VÑé8 ó÷ðù^ð (®Ðÿ€ ùKd†¸‡=¼õØ9‘endstream endobj 760 0 obj << /BBox [ 2388.51 5611.96 2421.61 5673.27 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏK Â@ à}N‘Ä$3™Ç w­  Ú"­ÐºðúNk3&üìZ3Ý&eA+B*8‚7—I\•¡JT1â\ä“úJ'¼SÊÉ»„ÿŸ¹uYIZ(©(¨F¥ÌŽûˆó®ɘ}Æ'J߀qyí&âRºS.•lÎã¶Ý½·§rˆz‰”* ?2…jdƒŽØ@/õÊ9™endstream endobj 761 0 obj << /BBox [ 2414.11 5611.96 2447.21 5700.17 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 164 >> stream xœeÌAÂ@Ð=§à3ÃÀœÀÄuጶ1­Iuáõk[M„ÀK>›F5aû€ÄÌ©j ‚$…$®Ò¯bA”¸TYR_éàˆ7`òâ):þ/÷B#Ϩ¹¦L0(e–ŒÎdlx?ÃŒ”9|‚à®ÎßÝlaD!®&`*µ\§ã4ÌÏãç¹ãR¤´Bÿ%“N°Dfèà€{ØÃ ¼¶9dendstream endobj 762 0 obj << /BBox [ 2439.61 5611.96 2472.71 5700.17 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÎM Â@ à}NñN“™Éüœ@pg]xÑi…êÂë;Ö¶ & $¼0›Æ, }ÐHšR械*ìó…Õ¯Ò¯’œK©²¤¾ÒÑ7Î%Ÿñ?Ü[r!xök*)œqÈÂIîgºPb ORìê»’àÝÍ–F(K-7p©•mZNÃ|ÜŽg¼!Ö?®Ðÿ@‰l,‘::`O{z»#9jendstream endobj 763 0 obj << /BBox [ 2465.21 5611.96 2498.32 5692.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 164 >> stream xœeÌQÂ0àwNÁ ÚÒ L|s>x£[Ìf2}ðúÖ¹M!$í~6jÂö#H)F.¨U(4:I\¥_¥Qb¯²¤¾ÒÁoÀdn)þ?î-„”k*£æš*‚A)³d,‘˜£ãý (¤ÌÉñ ‚»:W`|w³…¥.2‡ ˜¼–éô9 óõø¹nøO¤+ô?`6Ù¡ƒîa/ÿs9¿endstream endobj 764 0 obj << /BBox [ 2490.82 5611.96 2523.92 5727.07 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 168 >> stream xœeÏA‚@ Ð}OÑÔ¶3¥3'0q.<€Qˆtáõ@`a'“´/ùMzhÌ"¶oAÜeA+B*8@´IÂ&ý&®bĹȚڥƒ >)åCÂÿæÕ‚ÆÉ­*)T£ŠÍPا_7¸ƒ“1ÇŒ<•ÿÆé5GQˆKé L¹T²y¸¿íaÙžÊ!jÊó! ô;¸Š¬‘:8c 5|ó9yendstream endobj 765 0 obj << /BBox [ 2516.32 5611.96 2549.42 5742.47 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÍ;Â0 àݧð ŒÄur$¶– h…Z¤ÂÀõqK±,%Ÿü;‡F5aû†Ä,ST ‚$…$nÒobA”¸¸¬©]:¸à˜rÉ)fü¿¼Z˜ØP+O™`PªX*”‰ÙGnp#eN? xò~ãTÍFŸc30?YçÇuX¶ÇßöŒ$ÿ`ƒ~‹y%²Bg¬¡†/åÏ9pendstream endobj 766 0 obj << /BBox [ 2541.92 5611.96 2575.02 5742.47 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 164 >> stream xœeÌKÂ@à=§à3C™9‰»Ö…0ÚÆ´&Õ…×—Ö>2!¾ðshT¶oAÌ2Au¡ 8@ÒXHâ&ý&D‰‹ËšÚ¥ƒ >)—œbÆÿÏ«… I©2ÔÊS&|b©PB$f_¹ÁŒ”9ü€àÉûŒÓkŽ0¢øs˜©xe‡ë°\¿ë'0¡°A¿ƒÅ¼ÀY¡ƒ3ÖPÃñ:9endstream endobj 767 0 obj << /BBox [ 2567.43 5611.96 2600.53 5834.77 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÌ=Â0 àݧð ŒÄù9[ËÀ´B-RËÀõqKIEr>å½C«°{Á’R¦"¨&äGê ‰¯2TIN”¸˜üR»ôpÁ'0å’ƒÏø¿Ì8MB’Q£¥’ SŠ,—oýó îH™CÁ7žì>€q9í&b·S±Éº>®ãÖ¾í(‘R…a‡ìí§¬²eªôpÆøb×9áendstream endobj 768 0 obj << /BBox [ 2593.03 5611.96 2626.13 5857.88 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÏÁ Â0 à{ž"O“´iÓ'¼©@tC6azðõ­Óuí ›ƒYÄî HÎNEЪ Ž-’Ðdh’UŒ¸TYR«ôpÂ;0yñÿÔJ¢ìh©¦² %–„œ¢D|\à ™Œ9|à®Î ?}ØÂ„B\Kg`*µÜæÏyümßí^ѤJ¡Á°‚/—µL“ޏ‡=¼oþ9ÿendstream endobj 769 0 obj << /BBox [ 2618.53 5611.96 2651.63 5892.48 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÌ1Â0 Ðݧð Lìĉs$¶– h…Z¤–ë“–’8²?éûЪì^0§d”µ ãA}&öU†*IXÉå"¿Ô.=\ð Ž,[ð†ÿŸ¹‰"$†K*1ŠRtQ’§eÎ7¸C"u.d|ã©ô.¯=„L®”¬à(—2]—ë¸]ßë† „DVaØÁÌÈd•-S¥‡36ÐÀeÒ:endstream endobj 770 0 obj << /BBox [ 2644.13 5611.96 2677.23 5957.78 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏÁ Â0 à{ž"O“¶iÓ'¼m|Ñ Ù„Íƒ¯o7gw0¡|ðzhUv/˜@R2Ê‚Z„œàA}&ñU†*ɉç"¿Ô.=\ð L–-xÃÿaîÀÅÈ 5–TtJ‘%¢÷FÞá|ƒ;$Ræñ ‚§òÀ¸t{„ …¸”[)—2]—ë¸ßㆠ$O¡Â°C.·Ê–©ÒÃhà6h9Öendstream endobj 771 0 obj << /BBox [ 2669.63 5611.96 2702.73 5996.28 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÎÁ Â0 à{ž"O“¶i›'¼m|Ñ Ù„Íƒ¯o7gw0!~ð‡ZÕ€Ý &”2™ !'8BPo$¾ÊP%9Qb+òKíÒßÀ”-Ÿñ™;p1y*«Æ’J‚N)²Dô)Rv8ßà‰”9¾AðTæŒK·G˜PˆK¹˜¬TÖõq·ãá{<ãVþXaØÁÌQt«l™*=œ±>:9ñendstream endobj 772 0 obj << /BBox [ 2695.23 5611.96 2728.34 6046.18 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 169 >> stream xœeÏK Â@ à}N‘Ä$MæqÁ]눶H+´.¼¾cícaÂ@òÁ˜Cãnؾ`‰1Qô"¤‚˜W™¤Ú¤ß$ª8q.²¦véà‚O`J9Y•ð˜ZÐK*¡‡’Š‚êXšŠZátƒ;DrfËøÁSy`üvs„…¸”ÎÀ”K%Ÿ—ë°\·ßõT>¢QÜWè7lJ®_Y2»tpÆjøwK:endstream endobj 773 0 obj << /BBox [ 2720.84 5611.96 2753.94 6030.88 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÍÁÂ0à;OÁ °Ò–'0ñ¶yðŒn1›ÉôàëÛMíBšÀ—üt×™ìŸ0ƒ¤”É­©àÁ'iªŒU’Š{‘_j“Nx¦ì94ÿ‡Gš49Z,©$¨F‘%b¡ Š \!‘1ÇÊ»ãÒÝfâRº“—ʶ.çé{Ý>×3.`LRa¬Y•ÿÆšÙd€#¶ÐÂb@9Õendstream endobj 774 0 obj << /BBox [ 2746.34 5611.96 2779.44 6173.09 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÍ;Â0 àݧð ŒÄyœ‰­eàZ¡©eàú¸-¤Ž"9ŸòÛ‡V5`÷‚ $¥LEPMÈ ŽÔ_e¨’œ(q1ù¥véá‚O`Ê%Ÿñ¿™;pIyù­ÑRIÐ)E–h›> stream xœeÏK Â@ à}N‘Ä$3™Ç w­  Ú"­ÐºðúNk.̘|ðrhÍó‹l™]z8c |l/9öendstream endobj 776 0 obj << /BBox [ 2797.44 5611.96 2830.54 6496.01 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÌÁÂ0à;OÁ ´¥´O`âmóàÝb6“̓¯o·iwB_òshUv/˜@ÌeA-BNp„ >“ø*Cs¢Ä¹È/µK|SÊ)ø„ÿËÜK,$5–” :¥È1Y$ †ó î`¤Ì!ãOeÀ¸t{„ …¸”[)—Jº×ñû]·ï p‘¬ÂP!†ìÈÇU¶Ì.=œ±>læ9þendstream endobj 777 0 obj << /BBox [ 2823.04 5611.96 2856.15 6434.5 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 168 >> stream xœeÎÁ‚0 à{Ÿ¢OPÛmݺ'0ñ|£&ÀÁ×w€ÀÁ.Kº/ùÿìT«l&@R2Ê‚Z„œ`A}&ñ»t»$'Jœ‹l©CZ¸á˜,[ð†ÿËØ€3)eÔXRIÐ)EVE›K‚ÇñOH¤Ì!ã/å¾€q>õâ2n¦\ÆtyÜû_»®í†3¨#7èvˆÁ—oé"kæ®XA_p»:endstream endobj 778 0 obj << /BBox [ 2848.55 5611.96 2881.65 6469.11 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 168 >> stream xœeÍÁ‚0 à{Ÿ¢OPÛ±nݘx>€Qˆðàë[ ÀÁ.Kº/ùÿÕˆíFœŠ ºP jUHª]ú]r%..[ênø&++Ãÿej!˜òâä¡,”KB‹…RTœð„LÊ ~Aðâ÷ŒóiÎ0¢û„˜Šéò¸kyеÝp†œÉÒý)&%ÿ¯ß3‡tpÅjø8ò9êendstream endobj 779 0 obj << /BBox [ 2874.15 5611.96 2907.25 6492.21 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 169 >> stream xœeÏA‚@ Ð}OÑÔv˜N;'0q.<€Qˆpáõ@aa›IÚ—ü&shT#¶/AÌœ² ¡ 8@Ô*“T›ô›X%ÎE~©]:¸à˜<{¬ÿ‡©…àf”QS ™`PJ, ÝYL8ÝàFÊ3¾AðTÞçnŽ0¢— 0åR®ËrÖãžÖë^þ2W7è7HÑTgùfvéàŒ5ÔðAG:endstream endobj 780 0 obj << /BBox [ 2899.65 5611.96 2932.75 6611.41 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÎÁ Â0 à{ž"O“¶i›'¼m|Ñ Ù„éÁ×7Ûp;˜h>øC­jÂî H)•LP](Ž4IÜdؤQbsù¥véá‚O`ªVS¬øÿyuŒ#%Ôì¡"”2KF3!K†¯Ü¡2ûðÁ“÷ç×aB!ö 0™WÕe¸Žëò˜×íg~ãÃ9s¡’Y3»ôpÆø9p9ëendstream endobj 781 0 obj << /BBox [ 2925.25 5611.96 2958.36 6565.21 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÎÁ Â0 à{ž"O“®i›'¼m|Ñ Ù„Íƒ¯o6±;˜RÚ|ð‡:Õˆý fœ ™ ºPœ jc$M•±J¢ÄæòKí2ÀŸÀT¬Ä¦àÿgé!X0Ôä‘,”KB‹Þ*.7¸C&eކo<ù}ãzº#Ì(Ä^a&ó*º5×iìû¤ïð‚+øòZa¬\Öw¬™]8c -|ß9`endstream endobj 782 0 obj << /BBox [ 2950.86 5611.96 2983.96 6772.82 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 168 >> stream xœeÏÁ Â0 à{ž"O“vIÛ'¼m|Ñ Ù„éÁ×7Û°;˜Rh?øÿÒC§Ú`ÿ†$¥LEP](NÐh,$±ÊX%QââòKí2ÀŸÀ”KnbÆÿë‡P¼Ñü-óT JÆb(¢‘¢áëwH¤ÌMÁž|?€qYÝfbŸ°Sñɺ^®ÓÖ®¶µg\ 3I…±‚%óÿ¤U¶Ì.œ±…¾k»:endstream endobj 783 0 obj << /BBox [ 2976.36 5611.96 3009.46 6830.52 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 169 >> stream xœeÏÁ Â0 à{ž"O“viÓ'¼m|Ñ Ù„éÁ×7›¬;˜Rh?ú'ôЩ6Ø¿aÉÙ¨ª Á …$V«ä J\\¶Ô.\ð LV¬‰†ÿ‡W¡“ø¬ä©,”KB "Ä _7¸C&en ~@ðäûŒËêŽ0£?ó +0/Óõr~ݽËÚÝü#‘ÙT+$ ‰l‘-³Ëgl¡…/^Â9ðendstream endobj 784 0 obj << /BBox [ 3001.96 5611.96 3035.06 6684.41 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÍQÂ0ÐNÁ ÚBÛ˜ø·ùáŒn1›ÉôÃëÛu±ûÒ/zÕ€ÃeA-BNp† >“ø&S“èD‰s‘ßÖ.#\ð L)§àþ7¯<³R,™ÔꔌÅPØeÅ× îI™CÆžÊ{ãšýâ®S.‘´×y»nq»žp/äL ÌS´*ÛÎ.#œ±ƒ¾_9ßendstream endobj 785 0 obj << /BBox [ 3027.46 5611.96 3060.56 6734.42 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÌ1Â0 Ðݧð ŒÄqr$¶– h…Z¤ÂÀõIZ‘8Šœ<éÿC¯pxÃb–( jr‚3õ™Ä7™š˜%ÎE~©]F¸à˜RNÁ'ü¼ðì¥6j,)tJ‘%¢ˆÊ_7¸ƒ‘2‡Œ<•ûÆzú#,(ÄeÜ L¹LÒõs·v±­=ad ¦Ñ<×=µÌ.#œ±ƒ¾[*9Üendstream endobj 786 0 obj << /BBox [ 3053.06 5611.96 3086.16 6807.42 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÍ1Â0 Ðݧð ŒÔ±s$¶– h…Z¤ÂÀõI[‘ØŠ”<ù;‡NµÁþ 3ˆ™SÔ"'h4f’Xe¬bA”8ù¥và‚O`òìMtü¿¼zˆ¬‰¼ü•JʃRbI(âF9áëw0Ræ&ãOå<€qéî3 q©°S.åº>®Ó¶ÝlÛŠÆ É9.“cÍì2À[há l¡:endstream endobj 787 0 obj << /BBox [ 3078.57 5611.96 3111.67 6892.03 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 168 >> stream xœeÏA Â@ Ð}N‘Ä$Ó4™îZ@´EZ¡ºðúŽ­¶ ’?0»Ö¬Âî ˆ{P´"¤‚#T–2IZeXÅUŒ8ù¥6éá„w`ŠU ü$¥¤huI¹ Õ,5Šº’9>.p'c®2¾@ðPÞ ?ÝîaB!.¥30åRaór—ëêËõ(IÂN±Â°B”fùf6éሠ4ðe­:endstream endobj 788 0 obj << /BBox [ 3104.17 5611.96 3137.27 6953.53 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÌÁÂ0à;OÁ ´¥-O`âmóàÝb6“éÁ×·[cwB_òsèUoX@RÊd‚Z„œà A½‘ø&S“äD‰­È/µË|S¶|Æÿå5€Nd5–TtJ‘%¢xˆ¾np‡DÊ ? x*óƵû#,(Ä¥ÜLV*ëv\çú=§ú=ã ÞSh05ˆŒr•šÙe„3vÐÁdä:endstream endobj 789 0 obj << /BBox [ 3129.67 5611.96 3162.77 6938.13 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÎK Â@ à}N‘Äd2™Ç w­  Ú"­P]x}§œ.LH>øÃz3ÃeA+BNpošI´ÉÔ$:1â\ä—Úe„ >)åä5áÿð@E•¼C %Q` (*‰BÄ× îɘ}ÆžÊ{ãÚýâRn¦\*Ù¶\çz]c½žp+Ÿl05Y=ù*5³Ëgì ƒ/f:endstream endobj 790 0 obj << /BBox [ 3155.27 5611.96 3188.38 7026.63 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 169 >> stream xœeÎA‚@ Ð}OÑÔvfJgN`â\x£&àÂë[ ÀÂ6“´/ù͜ՄíF³LEP](4’¸K¿‹Qââ²¥éà†o`Ê%§˜ñ˜Zˆ¢…8 Vž2Á T±*Jb#1œð#eN¿ xñ÷ƹ›3Œ(Ä^a¦â•uYîÃ|ÝÿdëõŒ3äDš7èw0Áˬ™C:¸b 5üi^: endstream endobj 791 0 obj << /BBox [ 3180.88 5611.96 3213.98 6845.92 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 169 >> stream xœeÏÁ Â0 à{ž"O“´iÓ'¼9>€è†lÂæÁ×·sºL)¤ü?tטElŸ0‚äìT­ ©àÑB! «ô«d#.U~©M:8㘼x ŽÿËÔB”jsª©,¨F‰%¡¨&Š §+Ü “1Ç‚/<Ô{Æù4{Qˆëè˜J·Ïã2,íæK»×&Y¡_!yTÒ<Ë7³I'<ÂÞdÏ9êendstream endobj 792 0 obj << /BBox [ 3206.38 5611.96 3239.48 7011.23 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÍ1Â0 Ðݧð ŒÔM|$¶– h…Z¤ÂÀõqS‘8Š”<ézÕ‡7, )e2Au¡ 8C£ÑHb•©J ¢ÄæòKí2ŸÀ”-71ãÿã5@ Â¥¹õT J-K‹M(%|Ýà‰”¹1ü€àÉï×ÓaA!ö ˜Ì'kù\ç­óÖžq…è *L³o±"[f—ÎØA_]Z9Úendstream endobj 793 0 obj << /BBox [ 3231.98 5611.96 3265.08 6826.72 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÌ=Â0 àݧð ŒíÄù9[ËÀ´B-Raàú¤HlYJ>é½CoæqxÃc¢,hEHgðæ2‰k25‰*Fœ‹üR»ŒpÁ'0¥œ¼Køÿx àÔÅÒJ* ªQ` (Ê‘4àëwˆdÌ>ãOåÀ¸n„…¸ŒnÀ”Ë$Û>×¹¶‡TÛ®„´ÁÔ $uÄUjf—ÎØA_cR9ëendstream endobj 794 0 obj << /BBox [ 3257.48 5611.96 3290.58 6907.43 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÌ1Â0 Ðݧð ŒÔ‰}$¶– h…Z¤ÂÀõI[‘8Šœ<éÿC§Ú`ÿ†$g#Ô"'h4:I¬2VÉA”Ø‹üR» pÁ'0™[ ÿ¯bHB¡4§’Ê‚A)±$”`™<áëwȤÌãOå>€q9Ýfâ2a&/cº~®ÓÖ.¶µ.`‰r…±BrŽËkf—ÎØB _kH: endstream endobj 795 0 obj << /BBox [ 3283.08 5611.96 3316.18 6822.82 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 169 >> stream xœeÏM Â@ à}N‘Äd2?™îZ@´EZ¡ºðúÆVÛ…f>x²kSŠØ=a)Ũ & ‚#Ĥ•DWV)Aquù¥6éá„w`²jQ ÿ4X&óæì©"e–ŒXI3>.p…B‰9V|àÁï ?§ÝÄBìf`ª>–æÏy\Ú‹-íæ‹¨J ]aX!›ø>³|3›ôpÄxi=:endstream endobj 796 0 obj << /BBox [ 3308.58 5611.96 3341.68 6807.42 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÌ1Â0 Ðݧð Œ7±s$¶– h…Z¤ÂÀõI[‘ز”<éÿCcƒýf3§,‹Pœ ‰šI´ÊXÅ‚Dâ\ä—Úe€ >ɳ7êøÿxõ *´4§’2Á)±$q£œðuƒ;Eæ&ãOåÀ¸lw„…¸LX)—ñ¸~®ÓÖ|kw\@¼ÂX!9+™­²evàŒ-´ðgb9ýendstream endobj 797 0 obj << /BBox [ 3334.19 5611.96 3367.29 6769.02 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÌAÂ@Ð=§àaN`â®uጶ1­Iuáõ¶qºB/ù:Õˆýf³L.¨E¨œ jp’Pe¬b(±ù¥và‚O`ÊžcÈø¿¼z!yDM%e‚RbI(4áëw0RæèøÁS™0.ÝaF!.Õ¬À䥲®ÇuÚ¾gß¾g\ ŠÆ É’R°U¶Ì.œ±…¾qŸ:endstream endobj 798 0 obj << /BBox [ 3359.69 5611.96 3392.79 6715.22 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÎÁ Â0 à{ž"O“µi›'¼m|Ñ Ù„éÁ×7Û°;˜h>øCjÄþ 3HÎ…LP]¨œ j0’Pe¬’Qbsù¥và‚O`*Vb(øÿyõB #jòTl”KBaó9áëwȤÌÑð‚'ï0.¯;ÂŒBìÕ¬Àd^E×á:mÛƒmÛ .PüÈ c…”EHó*[f—ÎØB _o×:endstream endobj 799 0 obj << /BBox [ 3385.29 5611.96 3418.39 6669.02 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 170 >> stream xœeÏÁ Â0 à{ž"O“µi›'¼m|Ñ Ù„éÁ×7›ÚL)4ü!Ýuªû'Ì 92Au¡Fp‚¨ÁHB•±JnD‰Íå—Úd€Þ©X‰¡àÿãÑCň#jòTl”KBáh¤Š \!“²÷øÁƒß0.§ÛÃŒBìÕ¬Àd^E׿<-Ó}'ûL/þ‘%’V+¤””B^ä›Ùd€#¶ÐÂpó:#endstream endobj 800 0 obj << /BBox [ 3410.89 5611.96 3443.99 6588.31 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÎÁ Â0 à{ž"O“.iÓ'¼m|Ñ Ù„éÁ×·Û°;˜PH>øC™bÿ†$%§,hE(N Öd’¦ÊX%1â\ä—Úe€ >ɳkãø?¼zhT”¢¢Å’J‚Á(²DÌÑÉ-àëwHdÌšñ‚§òÀ¸tw„…¸TX)—r[—ë´]·¼]w\@™¤ÂX!š—ÄU¶Ì.œ±…¾nÕ: endstream endobj 801 0 obj << /BBox [ 3436.39 5611.96 3469.5 6507.61 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 168 >> stream xœeÎÁ Â0 à{ž"O“µiÓ'¼m|Ñ Ù„éÁ×7ëp;˜Ph?ø“:ÕˆýfœŠ ºP#8AÔPHÂ&ã&¹%..¿Ô.\ð LV,ÃÿË«‡#“DÔä©,Ø(%–„fæ¬øºÁ2)s,øÁ“Ÿ0.ÝaF!öj*0/Óú¸NëtÿKn¸@òŒ$å@E«¬™]8c -|i¥9þendstream endobj 802 0 obj << /BBox [ 3462 5611.96 3495.1 6380.7 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÌ1Â0 Ðݧð ŒÄq|$¶– h…Z¤ÂÀõI[µ 8Š”ÿ”ïC«š°{ÃbVȵ Á’F'‰» »X%ö*[ë'=\ð LÅKŠÿ¯bÊJ¦¨¹¶L0(e–Œ–…Âüåw0RæäøÁS½`œO{„ …¸NX€Éë]Âu\·g_·œÁ…â–‡-çhF¬ ¬ŸôpÆøü9¥endstream endobj 803 0 obj << /BBox [ 3487.5 5611.96 3520.6 6326.9 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 168 >> stream xœeMÂ@…÷œ‚ Ì á&îZÀhÓšT^_ìïBÉ{_x$Õ„íFœ ™ :¡ 8@Òh$q#ýFr%6'kj'\ð LÅJŠÿÅ«…˜L((jå©,”*VÅÌ™¦•Ü!“2'Þ|Àøëæ# ±W˜“yÌu˜¯‹Í׋?U*‹ïW_Å)¤X;éàŒ5ÔðøK9Žendstream endobj 804 0 obj << /BBox [ 3513.1 5611.96 3546.2 6199.99 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeŒM Â@ …÷9Å;ALf&ósÁºð¢-Ò ­ ¯ï´ÚvaB ßïíNf͋Ҕ2…UÃNÑS0_XýjºÕ$§ÆRªYR›ié‚' ç’ƒÏøƆ¼iäl°XSIጣh„eaóŠñFwJl"¡àMŠC½ ¦=íi€²Ôq³.ujÝ×þ×þ-Ϙ88 w G-‘}˜ÅØDKgéH’9(endstream endobj 805 0 obj << /BBox [ 3538.6 5611.96 3571.7 6130.79 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœe1Â0 EwŸÂ'0v'ñ ØZ€ j‘J®OZH;`Ë’ÿ“ÿ—|hUv3L )e2A-„œàA½‘ø IN”Ø ©®ôpÁ'0eËÁgü_^x ޼¢ÆâJ‚N)²DTò®œÜà‰”9¾AðTæŒK·G˜PˆK¹0Y©¬«¸Ž¿ôoxÆEÇDVõPu—–g†jØAgl }&9endstream endobj 806 0 obj << /BBox [ 3564.2 5611.96 3597.3 6034.68 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeŒM Â@ F÷9EN“™Éüœ@p׺ð¢-Ò ­ ¯o:ÚvaB ïÁ÷ZÕ€Ý &”2A5CNp„ ¾øÍ ›IN”¸˜YS»éá‚O`Ê%Ÿñÿ™;ðE–J‚N)²D †Îyœop‡DÊ ¾Aðd÷ÆeÛ#L(Ä6® ¦b“µÂuüµË3.\<éÊÃÊ‘½µ¸*j`=œ±>…\9$endstream endobj 807 0 obj << /BBox [ 3589.71 5611.96 3622.81 5938.58 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeAÂ@E÷œ‚à0 3à Lܵ.<€Ñ6FMZ^_ZÛºBÂáÿ„]«š°{Á\J%cT'TŒX6rßH‰¬ÌÉêú‘Nø„@Õj’ŠÿËØ¨ ¥ŒšÝU£RœQØã¹àx+Ò’á>78u»‡™‚WœA óª:‹ócIÿ†WÿC2Ûªî‹2Idq’Ëñz8b |¢Ù8xendstream endobj 808 0 obj << /BBox [ 3615.31 5611.96 3648.41 5938.58 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÌ1Â0 Ðݧð ŒÄI|$¶– h…Z¤¶×' j;à(’ÿ“¾O­jÀn $¥L&¨EÈ ŽÔ‰ßeØ%9Qb+²µéá†o`Ê–ƒÏø¿Ìø(FQci%A§Y"úÂ" ç> stream xœeÏA‚@ Ð}OÑÔv˜v:'0q.<€Qˆpáõaa›IÚ—ü&shT#¶/ARrÊ‚Z„‚àQ«LRmÒo’‚(q.òKíÒÁŸÀäÙcåø?L-T#™¡ZI%Á d,†Á™LN7¸C"eŽß x*ïŒs7GQˆK…˜r)×e¹ëuù^wœ!ñüú<ŰȚ٤ƒ3ÖPÃjK9ùendstream endobj 810 0 obj << /BBox [ 3666.41 5611.96 3699.52 5815.57 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÎÁ‚0 à{Ÿ¢OP[¶në˜x>€Qˆðàë[á`—%ë—üíjÄö#HÎ…LP]¨ j0’°I¿I®D‰Íå—Ú¥ƒ >©X‰¡àÿcj!¤Ì$ 5y* VJ‰½K$>eºÁ2)s4|ƒàÉïçÓaD!öª`2¯¢KsÖéò^p[Ö¬ÐïPDæß÷{f“ÎXC h9ïendstream endobj 811 0 obj << /BBox [ 3692.02 5611.96 3725.12 5800.17 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 168 >> stream xœeÏÁ Â0 à{ž"O“µiÚ'¼m|Ñ Ù„éÁ×7›ÚL)4ü¡Ùuªû'Ì f™Š ºP#8AÔPHB•±Š5¢ÄÅå—Úd€Þ)—CÆÿÇ£‡Š’jò” 6J‰%¡döVðq+)s,øÁƒß0.§ÛÃŒBìÕ¬ÀT¼²®ÍyúN—Ïôì‹ÿ… ãVé²YÍTàˆ-´ðmí:endstream endobj 812 0 obj << /BBox [ 3717.52 5611.96 3750.62 5746.37 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÌ;Â0 àݧð ŒÄqr$¶– h…Z¤¶×'-} 8²ä|òïS­°™`1K”µ9Á‚úLâwév1'Jœ‹l©CZ¸á˜RNÁ'üÆ|Y'g¨±¤LÐ)E–ˆâ"eŽ8>à FÊ2~@ðRúŒó«Ï0 —r 0åRI—Ͻ_¯ËïzÂB¤´Cw€G¶ÀÙ …+VPÁñf9„endstream endobj 813 0 obj << /BBox [ 3743.12 5611.96 3776.22 5707.87 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏK 1 à}N‘Ĥmšô‚»@tDatáõíŒóX˜PH>øݵª »7 fNEP«Pì!i,$q•Ç*D‰K•%µÉ Nø&/ž¢ãÿðê ZÊ䆚kʃRfÉèN‰sÄ×®`¤Ì©àõÝqìv q­0S©å:-ç~¾.¿ëŽ#X ´Âcãú³ æÈ78b |þŒ9˜endstream endobj 814 0 obj << /BBox [ 3768.62 5611.96 3801.72 5704.07 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÌKÂ@à=§à3CN`â®uጶ1­IuáõÖ>2! _òshT¶oAÌ2¹ ¡ 8@Òè$q“~ ¢Ä^dMíÒÁŸÀ”=§˜ñÿój!šІZ•” ¥Š¥ÂœÊTÅ× î`¤ÌÉñ‚§Ò`œ^s„…¸T˜ÉKe—ë°\—ßõŒ¸‘‡úŒ™Ò Kd…ÎXC _üO9›endstream endobj 815 0 obj << /BBox [ 3794.22 5611.96 3827.32 5692.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏ] Â0 ð÷œ"'ˆIÛ,É ߦ@ü@6aóÁë[7‚-ôGþ®¶ªÏw@ÌœBP«Pì¡h’¼H·ˆ%Qâ¨òI}å{¼“‡—ìøßŒgÈFa¨MM™`RjX´LÌ9p< Œ”¹>@pSë Œ¯»]ÀR™ÓLQëô8ôïíiÞîõ#ÙS&] û÷–È.°ÃZx§9Èendstream endobj 816 0 obj << /BBox [ 3819.72 5611.96 3852.83 5704.07 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 162 >> stream xœeÌKÂ@à=§à3ÐaN`âN]x£mLkÒºðúNß ™†/ù9\Ìëô )9eA+BA°µ˜Iâ&í&)ˆç"kj—nø&Ï®Ññÿ3Ô=DÒ„V•T F›¡ë<‡> stream xœeÌQÂ0àwNÁ ÚÒ L|s>x£[Ìf2}ðúÖ¹M!$í~6jÂö#H)F.¨U(4:I\¥_¥Qb¯²¤¾ÒÁoÀdn)þ?î-DKNl¨¹¦Š`PÊ,•‰9:ÞÏpBÊœŸ ¸«sÆw7[Qê"s˜€Ék™NŸÓ0_Ÿë†o(‰ò ýä–È p{xù 9§endstream endobj 818 0 obj << /BBox [ 3870.93 5611.96 3904.03 5665.57 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 168 >> stream xœeÏQ Â0 à÷œ"'ˆIÛ´é ß6<€è†l¶¯o7ç&˜Ph?øCz¨U6 )eA-BN°‡ >“øMºM’%ÎE¾©]Z¸à˜,[ð†ÿ—±o)P4ÔXRIÐ)E–ˆ!’°*Ž7¸C"e_ x*çŒs×GPˆK¹˜r)Óåqí×éî3ÝÊG|f&·A÷Qh^z¬ÐÂ+¨à ù9•endstream endobj 819 0 obj << /BBox [ 3896.43 5611.96 3929.53 5650.27 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÍ]‚0 ð÷ž¢'¨í¶îã&¾À(Ä€ ðàõ-hb›%Û/ýw‡Z5`3Á’R¦"¨&ä{ê ‰ß¥Û%9Qâb²¥¾ÒŸÀ”K>ãÿelÀf’Œ-•Rd‰èmˆCÂñwH¤Ì¡à OvÀ8w}„…ØÊ-ÀT¬².k¿nwŸíg°ÒÝ„Hq-²B g¬ ‚7ï:9endstream endobj 820 0 obj << /BBox [ 3922.03 5611.96 3955.13 5638.66 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 164 >> stream xœeÌQ Â0 à÷œ"'ˆIÛ¬Í ß6<€è†lÂæƒ×·«® ¦òðgשì0ƒÄ˜È5 9Á ‚z#ñUÆ*щ[–­õ•Nx¦d)ø„ÿËÒƒ7§j“[Q0§†¥A1rì— \!’2Ã'ò¿ãúº=Ì(Äy\&Ë“´„óô¹îÞ×® B¾Âø^KÜ %pÄZx)8Ìendstream endobj 821 0 obj << /BBox [ 3947.54 5611.96 3980.64 5634.86 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 165 >> stream xœeÌQÂ0àwNÁ Ú²–˜ø¶ùàŒn1›ÉôÁëËæ6M¤!)_øÙ5ª Û'Œ 92Au¡ 8@Òh$q“~“D‰ÍeM}¥ƒÞ©XI±àÿçÑB4 †Zy* ¥Š¥BŸ‡ˆ \!“2'üoÀ8½f# ±W˜É¼ŠÎÃyX®ÇÏõ‚äŠÊýDßœa,ÐÁk¨á ôÙ9Žendstream endobj 822 0 obj << /BBox [ 3973.14 5611.96 4006.24 5642.56 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÏ]‚0 à÷ž¢'¨í¶îç&¾À(Ä€ ðàõ-ˆ`b—eë—¶ÙµjÀf‚$¥LEPMÈ öÔ¿I·Ir¢ÄÅäÛµK |S.9øŒÿ—±_R´5ZWtJ‘%¢ó$ó9Þà‰”9|àÉöçUa@!¶p 0‹¬Krí×éþ3=ϱJ t?àíõ{Ë -œ±‚ Þú˜9¡endstream endobj 823 0 obj << /BBox [ 3998.64 5611.96 4031.74 5642.56 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ Â0 à÷œ"'ˆIÛ¬Í ß6<€è†lÂôÁë›Ím ¦”´ü¡Ý5ª Û'Œ 92Au¡ 8@Òh$q“~“D‰ÍeM}¥ƒÞ©XI±àÿáÑBb µòT JK…!’Lýq+dRædøÁƒï0N«ÙÈBìf`2¯¢óå<,Óãgz™>Â!“mÐÿ@ô×ϰFèàˆ5ÔðæH9qendstream endobj 824 0 obj << /BBox [ 4024.24 5611.96 4057.34 5630.96 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ Â0 à÷œ"'ˆIÛ¬Í ß6<€è†lÂôÁë›Ím ¶Òþ?tר&lŸ0‚ä\ÈÕ…‚àI£‘ÄMúMr%6—5õ•Nx¦b%Å‚ÿã…Ä!“jå©,”*– EH9>.p…ì3'ÃüÜ€qÚÍFb_aö*³¢óå<,íñÓ^¦°FÒ úð—q†5²@G¬¡†7ó§9„endstream endobj 825 0 obj << /BBox [ 4049.74 5611.96 4082.84 5642.56 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ‚0 à÷ž¢'¨í¶²õ&¾À(Ä€ úàõ-hb—eÛ—ýͶkT¶OAr.d‚êBAp€¤ÑHâ&ý&9ˆ›ËšúJ'¼S±’bÁÿÍ£…Ä)jå©,”*– C$™ÖÇ®I™ýÒ >oÀ8f# ±W˜É¼ŠÎ‡ó°tŸîeúg#Þ ÿ诟a,ÐÁk¨á ìë9‚endstream endobj 826 0 obj << /BBox [ 4075.34 5611.96 4108.45 5627.16 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ Â0 à÷œ"'ˆIÛ,í ß6<€è†lÂæƒ×·³ ¦Úþ?tשì0ƒ˜EJ‚š…œàA}"ñUÆ*æD‰S–Oê+œðL1Åà#þ–[*¯µÉ)tJ KƒFÆ>÷/¸‚‘2‡„O<ä}Ʋº=Ì(ÄyÜ L)OÔõrž¶vÿnå#š ã8OZ F6àˆ-´ðñü9xendstream endobj 827 0 obj << /BBox [ 4100.95 5611.96 4134.05 5634.86 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏK Â@ à}N‘Äd&™Ç w­  Ú"­Ðváõ¶¶ fL>ø9ÔfŠÍHŒ‰² !'؃šÏ$~—n—èĈs‘-õ•.ø¦”“ú„ÿŸ±VŠh¡„¢ 3 ,ˤì<Ž7¸C$cÖŒ/<•~ãüê# (Ä¥ÜL¹T²e¸öëòà×íi¾C<“Û¡û/äØ"háŒTð©9endstream endobj 828 0 obj << /BBox [ 4126.45 5611.96 4159.55 5627.16 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ Â0 à÷œ"'ˆIÛ,í ß6<€è†lÂôÁë›mn ¦Úþ¿tר&lŸ0‚˜e*‚êBAp€¤±ÄMúM,ˆ—5õ•Nx¦\rŠÿ’D¦€ZyȃRÅR¡‘qôúÇ®`¤Ì©à ¾oÀ8­f# ±O˜©ød/ça)—´´çé¢þÌý„H:Ãù@G¬¡†7¬ª91endstream endobj 829 0 obj << /BBox [ 4152.05 5611.96 4185.15 5630.96 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 166 >> stream xœeÏQ Â0 à÷œ"'ˆIÛ¬É ß6<€è†lÂôÁëÛmn &Òþ@wjÂö #HÎF.¨E(4:Iܤß$Qb/²¦¾ÒÁ ïÀdn)þ/’¨’¡V%”ƒRÅR¡)GÇÇ®ËÎÉñ‚‡27`œºÙÈB\*ÌÀä¥LçÇyXŽç´\·ébBqƒþB¦8Ãù@G¬¡†7·$9Pendstream endobj 830 0 obj << /BBox [ 4177.55 5611.96 4210.66 5630.96 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeA Â@ E÷9EN“éd&sÁ]눶H+´.¼¾±ÕZ0!ðóà’]£±}À’³QT'ˆZ’j%ýJr%.N¾®éà„w`²b±2üS QLȃ“›²`PJ, EH¹*8]à Ù5Ç‚O<øÜ€ñÝÍFb¯0¦âe:/ça qI·÷Ù ú ÙÏè7–èàˆ5Ôð²*9Dendstream endobj 831 0 obj << /BBox [ 4203.16 5611.96 4236.26 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 157 >> stream xœeKÂ@†÷œ‚ 00˜¸k]x£5¦5i]x}§m¬‰BHà ?]ënØ=aI)SôJH0…$l¤ßHRqâRÉGõ%78á˜rÉ2þ'S¦—]±ª’ :E–ˆŒÓ®È™­à 5îÀ8{»‡…¸š.€©T˾ça›m›ç4(ÙúߎùÜ#6ÐÀóé4üendstream endobj 832 0 obj << /BBox [ 4228.66 5611.96 4261.76 5623.26 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ Â0 à÷œ"'ˆIÛ¬Í ß6<€è†lÂôÁë›mXS éGÿ”î:Õ„ýfœ ™ ºPœ i4’Xe¬’ƒ(±¹|R_à„w`*VR,øß> stream xœeÏQ Â0 à÷œ"'ˆIÛ´É ß6<€è†l‚úàõí66S éGÿ”îZÕ„Ý  ¥¹ V¡ 8BÒè$q“a“D‰½ÊšúJ'¼“¹¥høß<;HA¸¾•kª¥Ì’1’1—zåW(¤ÌÉñ ‚‡ºoÀ8­vâZa&¯e:Îã4½§eºM Iu…áœò [dŽØ@ö9¢endstream endobj 834 0 obj << /BBox [ 4279.76 5611.96 4312.86 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 158 >> stream xœeKÂ@†÷œ‚ Ì æ&îZÀhiMZ^_¦5Q |áç±ëTöO˜@r6*‚ê„‚àIc!‰6’ƒ(qqòQ}É Nø&+–¢á2÷‚ERßÕ¸* ¥†¥AÆùWȤ̩à w`¬ÞíaB!v `*n¦Kq×¹I×¹V_ˆ\ˆ70üvÔsØB oõ‘5endstream endobj 835 0 obj << /BBox [ 4305.36 5611.96 4338.46 5623.26 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏ] Â0 ð÷œ"'ˆIÛôã‚o›@tC6aúàõÍ:¬‚)…ôGó/Ýõª‡', )e*‚jBNp† ¾ø&S“äD‰‹Égê+#œðL¹äà3þ7‚g˱·¢M%A§Y"zÊÌÉ®\à ‰”9|àÁö ×ÕïaA!¶r˜ŠUÖz8Ï[:ë–ž×x(6˜~¡P¬ÐF6áˆtððc9ˆendstream endobj 836 0 obj << /BBox [ 4330.96 5611.96 4364.07 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 157 >> stream xœeKÂ@@÷œ‚ Ì ó9‰»Ö…0ZcZ“Ö…×—iã˜(„/|w½jÀá 3HJ™Š !'8AP_H|#c#ɉ#Ÿ®/¹Á À”K>ã° ¼”lW´.óN)²Dd\.p…DÊ ¾@ð`vƪýfb·¦b’uMÎÓ67ê67×|dr Œ¿õÜ#vÐÁôy4ÿendstream endobj 837 0 obj << /BBox [ 4356.47 5611.96 4389.57 5623.26 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ Â0 à÷œ"'ˆIÛ´é ß6<€è†lÂôÁë›m8S éGÿ”îZÕ„Ý&RŒª ºP!i¬$q“a“D‰«Ë'õ•Nx&«–¢áóè ÅÌjöT J™%c$c.~åW(¤Ì©â ¾oÀ8¯v ±WX€©z™.‡ó¸N]§Ûü‘hþÌÃ/TÊ l‘z8b ¼ñ¦9‘endstream endobj 838 0 obj << /BBox [ 4382.07 5611.96 4415.17 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 158 >> stream xœeAÂ@E÷œ‚ Ì 3Ì Lܵ.<€ÑÓšT^_Ú¦5Q^øv­jÂî#H)FUPP i¬$q#ýFJ%®NVÕ—Üà„`²j)þÏ<)Y@Í®*‚A)³dd|^à …”9U|ƒàÁ㌓·{QˆÝ ˜ª›éÜœ‡eoÑe¯M/$ŠyýïÄtîhàúò5endstream endobj 839 0 obj << /BBox [ 4407.57 5611.96 4440.67 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 159 >> stream xœeAÂ@E÷œ‚ ÌÀ sw­ `´Æ´&Õ…×wÚ¦5Q ¼ð`ך)v/Arv*‚V ÁÔb!‰é7’ƒq©dU}É Nø&/®Ññ¿yv *B1 ¥ªÊ‚Á(±$d|^à ™ŒY ¾AðPëŒS¶{Qˆk„0•nópß`‹¯O/hLäiýïÆtîhàïË4óendstream endobj 840 0 obj << /BBox [ 4433.17 5611.96 4466.27 5623.26 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 167 >> stream xœeÏQ Â0 à÷œ"'ˆI›´é ß6<€è†lÂôÁëÛm8 íGþ@w­™b÷„ $g§"hU(Ž  IÜdØ$1âRå“úJ'¼“×èøyt •€–j* £Ä’0’3ç:r+d2f-øÁC=7`œ»ÝÄB\+,ÀTj¹-ó¸n÷´n÷ù#šéÃ/J l‘z8b ¼úà9¨endstream endobj 841 0 obj << /BBox [ 4458.68 5611.96 4491.78 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 158 >> stream xœeMÂ@…÷œ‚ ÌÀüœÀÄ]ë­1­IëÂëKÛX…ÀÞ ìZ3Åî #HÎ…ª 9¡ 8€Z¬$q#ýFr#®N>ª/¹Á ÀTjÑXð¿™:PMÔ“«²`0J, § \!“1kżîÀ8g»‡…Ø#,€©z[†ó°úÆ´ú–ù-™êúßùÜ#6ÐÀ÷Ï5endstream endobj 842 0 obj << /BBox [ 4484.28 5611.96 4517.38 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 159 >> stream xœeAÂ@E÷œ‚ Ì 3pw­ `´Æ´&m^ßi5Q ¼ð`ת&ìfAJ1rA­„‚àI£“Äô)A”Ø+ù¨¾ä'|“¹¥høßL¤dF\sUÁ ”Y22N¸B!eNŽO<Ôºã’íFâaL^ÃtÎÃâ[ÈóÛ×Ö$’n ÿÝXÎ=b ¼ûÜ5"endstream endobj 843 0 obj << /BBox [ 4509.78 5611.96 4542.88 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 156 >> stream xœeM Â@ …÷9EN“™Éüœ@p׺ð¢i…¶ ¯oÚÒ4!|ä=’C«°›aI)ST#äê ‰¯¤¯$9QâbdW}É.ø¦\rðÿ›©3ñ¤æM•Rd‰È8Ýà‰”9|ƒàÉê ŒK¶GQˆ-Ü ˜ŠEÖu¸›oˆ›oÞ_à úßåÜ36ÐÀôf5endstream endobj 844 0 obj << /BBox [ 4535.38 5611.96 4568.48 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 155 >> stream xœeM Â@ …÷9Å;AL¦“ù9à®uáD+R…¶ ¯ï´Úô…@ò‘’]cæÑŽÔ“Ƙ8+¬vŠy«2kµ’n%Ñ©±äB×Fnt“„SN¾Jø/†vÛŠ+*œq  ºRdñ/RJÞI0E³§ÊRäf œ‹’ÍÍù{±„ÏÞ4¿<‡¸€îwb:÷ˆšjzø³5endstream endobj 845 0 obj << /BBox [ 4560.98 5611.96 4594.09 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 846 0 obj << /BBox [ 4586.48 5611.96 4619.59 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 847 0 obj << /BBox [ 4612.09 5611.96 4645.19 5619.46 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 82 >> stream xœÓ255QH/æ*ä247·Ð³4T0Šè*är™˜[êÃErà"æF†¦z–@˜.„HW¸B—ž…¥…‰±…&£(+ çL©endstream endobj 848 0 obj << /BBox [ 2174.59 6938.33 2744.34 7176.54 ] /Filter /FlateDecode /FormType 1 /Group 526 0 R /Matrix [ 1 0 0 1 0 0 ] /Subtype /Form /Type /XObject /Length 161 >> stream xœEÎAÂ@Ð=§à:3'0q׺ðFÛ˜ÖD]x}iµ#dóÂ'ìzwÃá”2A!œÁ¼)$M•©JRqâ²¥þ2Â ï ¸ôs•h ÛbJœÑ[%5Em˜’ÄȮș­à;r‡x7`\ºßÃ…8JW`*QÙ×Ïyþm—ïvÉq´&cr«2UI’”– ·P…ŽØA¤ª5endstream endobj 849 0 obj << /Filter /FlateDecode /Length 8719 >> stream xœ½=Ë’\·uYÓ®|AS©,zN ïGRYÄ9ŠË.Wl&YØY49ä69MqHIôä³s¸À˜iŠTJ ]ÞÁÎûþöBíõ…ÂÿÊÿŸ½yôÕï’»¸¹{ôí#|ñæ‘ÏÞìc€ç×õ99ö^¨öøòÑ_Ü‹øRÓœåÏÞ\üâ Ì«ƒƒWû¬²¾xò⯨/ŒÉ{«ÃEôqŸ­¿xòæÑv¿ºT{•ƒ±fwüÏN™Ïï.¯Ô>*åÒîÞÚä²I»ÃëË+kÍ>i½;¾Àg»Jï~ê`|Þ½‡G­TT0ŸUŠ&)³{ÏF+Òîç¶9Yv<F8+‡<CÚ¢^.„ë+XÝÀúï/M„U“Ý}iÂ>)w‡w8]¶:šÝó6Ýÿ<ùbÞK™löC]<¹~´³ùòÉŸ]9§/®¬ß§ðõvop“sJÓŸiÅd"Ì­ö>§à-n̤î“:ÚXvë”òÙ!<Àø&ù}Љ‘³Oy÷Gûœ#C#ìû—¸¥LŽ€%<™œ²‡©q¬Îvüð¢­Î‘%½ÙE¿;"ž¬JÉ&y· Ó7 µR| ñ«SÚÝð§Z«ä§‚$Xo.‘¢²³z÷fÌ€Zñ=ŽPuÄÑHi&äžàDh2ÆØHM„S…»Å„°;>m´ñ¡NÚÓÍ•µ„öØ6úŽ¡·q¯´Ñˆ+  ù)Xç:š'Æ 9gà=R›µðuôL]xÇß]z‡­]m&)@““äÌÛG"ѻíÀöuCÖ‡¶ŒD!¦±X]è5Ñ£Ù}l¯q'WÛV®´Ý{¼£g…²”u»ã-2–…}À“QÆnð¹ñmÜîF¾§}dü×î[ÀïÆ¶#DœN¨m£ wnc_7Ä~äÉ"LöÇN‘át"ñþ×OýÇ#–ÄþâÝZ†öb¡:Âá†tG½÷†%è7Áß1Æà7"Ö.E ›xDψº°Ó°ÅKß§f@m;Àþ©JŠÏ߸±x6¡›_¨I‘·P …ÂxqÉ¡ é鈹3rTF:®zèšOÒ/há@¸ÐÑÛ¶ ¤o Eú%, 7|zmÔ{Ôªrû¼ll¿¿¼r† î—•ÿ?òžPý]7LH\½ºUh_ÉŽ,\¢3†ÅfEh‹ÊHÀ'j¢c•ÁmZÑ;-¦x%–cmŸr$“|¥™„ò:äž9 K"ÂXR¤$d¬©Hl;ïPIVÍ„òƒuW Þ󈬬Ա á€Ìy»©S§GžCƪ EjU“(%0`»e6l{”åq“¸†bDõúl{}'™g¶»oä‘_“ص¨?Ÿ •\ð…ÛÁüM3ê¶ÑñœŽ¨h0Ú9¾³{ØyA¦aP:»™‰žö´ƒ\|Ò¸)4¬%Ëtø`»…g¯‚EÒ$ ¼,}ØNÌp­.Np0ÄÖ’CÒËÝÖþŠN›2à(´ÞPçÆØ@="X‹D‚T³Ç7 ­EoC¨Tqªs£}Á¥ÅóÊ™îË£ÀJã¦#¯¢]5£­Û)ãí~¨$Ù&@=ëÀ3†¥žÐÙ‚JÒ¡8¤FOhn˜šY×O<9Z&9MÏIhþgÓ¹rˆÐ ‰Jf.,­;ñß‚cvOÉiðÉfÉÂïx‚BžÜç ÖDO¡Èƒ…Ñ<8ÕÕ,' šd!.ƒºuàXä3¯â!À‡ªA—õ#@ìÞk¯ 3uøÐT ó“ Šü*œ‚ìîJP+¯Of`P X^2\(„ƒ%Åø‘:弑Œ|Ý>|Ú|·çÊÊéä‘ý5y¥œè.è ÔÐsV=>ÃvòƦåü•¯;îc· ©ÝŽErI~Ø…;ĉz27UFŠÐȽcV ëÍ­tÍåËy #ìg‚z2Ý„)MeµA¥ItbyËœç¥J*V&˜ÄZ’´8q63a¸G3¡„Í BrÈÓƒ&cå‰ÇøY$¸…´>Ù¡Tª‡—Í>6x-¨£,QPô^ ‚ìú‰,±^ß+K:”%:bàe£%—û¿oõäÜi+€MQ‚&›³úL”•ƒ‡ÍlT~”…;^ÃQÏš…J:‘VÏUèyâ;ÛÇIÞŠ¿× \÷ó¹å&0ÿÝe•ÿbÛ‡Kfˆ²‘Þb+8ßs0·6ÿ£(hðð¥m"1˜ŠÜ<À¥ºõñ¶=¾oï¦c__ÎT»£ÜE»-#yè¦W2ÕÁ”üP¨H³ ¶æM›lžýX‚¨ªw’;«Œx<áY23n.§˜º …¢¹@Š5(Æ‚sèñ¶=ž±+o,…Çþ¹=¾n^µÇ»éI>:}}hÚ£iûé »Oi{Kï7ÐRƒ2–‡öøº=~hÏÛãã6Ãûööe{|7ýìn:ö8]øú'‚÷Ít†8ÃǤ)’¾…K UaƒwÛ´¾Áè ŒôÕ¡=¾nä´õtèŒó®¶5‰lA5òÒß³…IQ÷ÑÂ,á t$•ÆðtS/êË‚ý'm”Þ>¨ }ƒ“¢è¥?¸M=e»Î@Ö c•LßL ]²Â#(>ÚÿB "’É2œ·@QÁÞI¨ÚŒ—à5‰¢'SËð9#cÚó(»Thoy0êŸÎ¯` T÷¹ >;Ãј$(½0&H¿œê…]1hl\0ªÐ~&Œ¨ã¥Þ£Åâv2 ¦}ʧËi‘–±,ýßb ¾áY,ì¼³B eÝO~×ôÅ‘5­F ÓçÎÁÚL–HÁ$ Ÿ;S©ä ¢4ïx%V6ì­»Ù-/ÞïdÇ*ØŸØÿPà ïDète’ óöšAbWasãä"üw¥}g +än°Yt6.¸–êã}41˜`£Ã³0ٯƨÁ1¸M|ŽÅÅš¥×¦‚Áà)$Ó[.£BºL(šwÓ±¯§Cè!Ùï¦óásÏ!¯ßNÅüu{üÓÿƒvÐIƒrpiÌGgDÅg$ClãTÜg7†{Æ©jF¤äŽhÑGGäaAòk ¨A\§´˜h€–}Ÿ€¢Á1l "CôKå^žµ½<ç0V½ŒªoîçGšù-Ú­"s"¥tso湇l Huàe·ûwâ!~}ÛF¿!.WÔ1Ü• ë ñ¼ÔŒ ßmˆr£:Ç,O‰m^,÷°\ûEyNvK4ƒo„:BaIÜN"ú1¦Ij¢(p9“≢`ÂÂSe¬ÀÖ(ŽOéHœ×Ò5;¼ITqôcÛ2¼?/ª˜ŠÉ÷Á´ì—pðÖîʧ‹Ia {[è§SY}'?›‰í'mÀïÚã¶Ç¯< ÙªÊUÏx_Õ7‡^ÖpæaŸ0hÍA)&@…1LÚa‰ hZ2Á,ɾµŒÀâ\ØÆå;¯AJ­Â§Ç›Þg®Q(ùZ„!¨²˜¬„5¦^½ ƒhî5sÙ‹‰z(ˆ:ŠøÔÏ Rw'ý/YŽE§7™Œ_!2h’¬»z¬_ñM²ïà½íÑ»%|ºdÕïÉÝ StÃSô‚Ïä5™+0ÆÑºà’ï¼ìº}Œ- ;Rß°è‰à:ñY*R”–0Ü›må¤ù˜a“ ‘>ÃVS‘xš`¤z¦šô¥š†örfˆÊ…LS¤Ž:Avm1©“BÀвc¾ ™$e1]ˆ±æ1^©­Ù°%VD‡¤{µJA@Ô5Yׇ#’Ç.%.âMÏçV¸Æ~¼ýþl®¦½à¿9Ò߸ßãS1gØý’éW{öÑ>Ø¢üå|¡„Çͪÿækz B<É×c£˜ÜÿJ¤Z3éݯ7?"¥ãΪAi:® *;RûŸÃU3Ãú^®"™Álec PÉ{3»8$L‚w¥Ø °~ˆÇzÞÖ^ÕaÉ \®¯i¨‰Bføiå ±TL·Q¥J·ºÀä=!‘€A '©søAQþð/mìʲBjF!«O¨æw¿aTdXi÷ëÇüGÿß3¿n"ÿ7—•¤x°†Áñ„Šƒ¢¬¯ÅÞÁ¯MÎgQñƒ–Ú"ËN@EjQñüœ±Äß?>hHøSq¶8ÜI¨×éC…|*$âŽ0•¯.ÏÍÉ$ rê}Á.w Çaõ`mEñ+£ªk^¹Ö“‚y.¼#?ç‚ùŒýVÊY€àUf(ßò‡–ÅY"­ü´=WqyœÓ=S 0ñ ‡1Ù•}o±MV&Ïsž„y:Ý­}d㇪®„t]ØDgÉKÜ Æ—©/”ËcYŽE—½²¾‰\,–ÜŠAŽBï ŸJ×£©åù2¸«€f›ßRFLæ,"Géqó²§e!ì±ÆÊèãVñPÛ·åòå¬%ÂPÊ@¹Þ}mlå€?/†2y Xñ ÃÚ©âxî³I:ùåf=?Æ+M¡³sQr94Ï ‘æ ßb›ïëqÁd¾åˆ¾©I˜ÑÃðŽºã¬#¿… שmÆ\²÷ˆê ás+ɵ¾¢1£ƒå!º+:’}TCKŽî{—¦6»Áš¥Áf?³œòl›ü=­›]îíÛË|e)Tg]*b:¾™À±/U`×Ò›™WÝ6ÌúO¯=·m˱ö|Z—¼&:L®çÇaGÀ6XDíµôZ™­Ð×@š=¶7|~2y<ó)¿H.G¼9Q*`Úã¾=¾™.wû% –i8cæ±Ës›ezF¬Ý"Þìµ³Xgïw‹„ždJÒ(*X˳>dÕ—(8j ³»oD›—¬àúcV÷w…¶°6ØN!ûn¸PSë¼;éìãÃKS™ú8¶Šâ7¹ýàý²=¼ï³H÷@Zä·u—S•¯×IüÄaÖ1ж•HýMƒsiuÅ „•´5?Ad‹ÖFÛjЬͫµ¬Ÿk…­–Uåj/]ó @ KøóÛÇ\À(O»Ê4²X\XZÛÉbGJïÿõq Ä“î ¬ß79>m×dðªy©‚8?ƒs@&Ä Ôj*|áæD“ö6f¹ÄdƒÃvæ µG…;B}‰5 ÄÏ]¨ˆäL´W­€Þú´R|\-Â]P2§p¬Õ" ‡JdJ°ú16¾ÅéV5r9!û ‰E¬Í•„pIúd"_ÑT÷îzIÙPîT›;2<’¡’kØýDÚ¼Þë†Êúj> Ó÷–×Àô¬daJq†B™ £Á)ÆùЀUÀ]ø€- ”ÀƒÃ àÚÂu_SIÇÛk{£®k=.}ÚÞKö׳ 0õËŸ¤›¼ q® E°C\–Û<±¶> =Ì¢À`Õ½ñš>ƒø‡û£UFTs DNÏ+±œ;‹lôÅ2˜´x>ÉsÑÇZ¥.„€$÷yl×öð3Ñeï×l×¢Á%¾ë`ZS¬®M£° A"À¢ŽvÈä ¾ç÷X¶ÿ£ëÞeV”¹L“`ßÇ…9òä0á…8e‚ðmSwožSGºð³Æ;ÒÉzÝ|£e(Z“|ŽVt+FwÃÛ‡^™À¡óLMHc–Åg (Àþ—f(}h†R—°¤õ]¯]îÊ[Ï)Û“x$°Rp¾3€žÎNíšáGqúSÙJè¾¢¥N&ÆXçþ—µË1dà©ðÜS‡ƒè›<í‚×Ïê÷ûàB3[7Ìs_-ÃgI.Öÿ ë† \óu_H4Þ<3töÍ},õ ¥I¥ùNÃ-”û'ORf•è>®Í¦|’”ƒ’”Ꭽ»,©(#ޥė*®J§HÌÝÝ6?ˆ&Êd¨«¦ŸU[Cš©„Iî1 )ìâVûí±/¾­áß/f±YKùöO6Ù¨ûÆœ$°`º­ÚB4jân“_ha™[~Ýô»\u¦öf,¤lm‹SCºžPØ:ÂÕDÑmƒx©Û%Iž–$ƒ„ö¡v9qhŠÊoß´GQµ[bL÷è¼vÚw+Ð çv+pSåº]¡ïµ rƒÊÚ~Kò9ºœguœ!{©XoN©n‹/â5_–n²:#bˆƒ}Þª$IÅw.™$úr¥‘Â Š±ÎÇh8Æî:‚e) Æó馕jÞt±”·ó»ÎáªÖEFÀ(‡¸Š@ÜÛ%ûúÄ\NÁŽŽ´cw€ŽCo,ðëEE[©A%³sQ~,˜é0Vh87e¤/ô±ÍÜcY}ü‚áÔ‹‘dü]uЬª™N{Ì‹èÖW¶ ÕÝ/'ÅÝ}&ĦQ&õš¦@ÜÛŸRÓ”üÐäØâš<¦<ª€ˆ „|N¥Õh*jy8IuËS÷FnçÞÑßÁè’<Aº7ld1§ÐWHñ‹6¡âÝ-zÓc¦”™þJ¤“&ç)zÜg "Ñ ¶©`| ÙÕ`ì6|“†[ôom¨ùT]W™:Áé %NÍ5LRÅÐuýÒ gx(rHêä‹ÜØ¥œâ¦Oo¦¹n|Zq¨¶¥À“7Ö›cçõl•˜ZÇ:ÕâGíPÐ!èzî\W:` dNöÄ.ëúï[|d^O)üXÄ2ئ‰¹X=)‹òpŒF4Í4Gι=0¹OþİJÄêÞ›¼æO®|×üQÁÿOgöšgµ©¯ç9òJ»ŸÙÙQ î +îÊO{ÑŸ°¨o”òËKìÔÀBg’ ˆælºZŠy}‹µPuÜWãµL…ÆØÔÖ\Iò©]܆í–üì²ïi/¯Y-¹hûž£T>#bC[üO¯ÜÑ]Hµ[vŸdpo4Êx‰Ñ>9«Ù½gVûóÜéák•°¡ÞÔhéOP¤Ç3 —§ZŸölOWi+ï'f zA‹Õɀ³îìâÁ}egoÙ,õV޹~øVSQ$=çuš¼”e­lok‹uNŒcaË5°j$ °G}xG na˵FŽÓ8!ØÓðàÖn%çϹÕã’ÖO @ª‡£ÓXǽÈ~¨‹ þhÄݬTÁR(`ÔßA…Í[ÖÕê/vG^%ó»Ò†FeJÄjÇ @¸qå…!gw‘>f;ó_2÷¡²Áû‚0{³´¾•ÉïZ…$@8c×½J˜Ëi°@·¦öEö³Z_çmžé‘<èâ_¢§²=\¶5¯ fù^DÙNªÖð³î2à­{Zi‡ðÊDðÊŠ™ümlĸ¡t¨›¦pˆÚÈ:¯ ‰D@èçm„XdîŠwFÛã-P·,ÿ”ăÈö7éâ‘Ïчp€{À°þ”Ô2߃u CþQž­HóÍØ#ð ”çüvu\”%„õ:Ÿ¾¦´ÄLýpë’Å»R—ÉŽžLÓÇÀ^ƒº¶b®—ˆQ©öXÿ‘Õ Ø4vI•œf°Iuñ Ê©HÅÀ«Ó¬*BL-Ã΋hŠ/‹^7%#–›ß>×Ñ¥Ž˜…ñ|dz¹ñ†Äiû°8'é5·[“O"5†([ö<ß Š3ÒœãAb)H‰cö-Œ¸NÉäÔ+ßt–ÜöóÚèœtÍ“<ÞÒùµ40Êxå‘×ÅláÁ?¼!Íp²%­_+âºä‡µ¯A—æWW¨Ã”¤l%Aj€èÍ£‘[;‰U“‰)R2ñíÀd§ô]̃҂‰¬í´ ]™‚¼=`°€R,ÕVß­õg¸ƒ4¥=ÿ†L¼×cf©’|ª™c·ºqj‰#L W*¾Ê¥èhöI]‹çB&.ªYçüzÃ(AãC^ó:¿pSR^óJë ëo‰ Рµ “Jqi§²n,Ø‘uz‘1·ÛF,væëG5ÊöEÊDúróËÆÄQ‰<¤`³£ˆ”nÞá¹ÍËdïêïnŠ™‰qŠ[9zª|Äe@‹D¾ ›ŠûxŽcñPI‹Ô/õ2ZÚ7ù²}¿â‘+Yýƒ¶¯v]zœK{ðÇJž¯ü¾Â"Ï×p:ÇÕ$þõ£'ÿ‡þ÷xj…´äÝ4VäYÝ‚¤¢so ®-É8ÛöUª?Ì„ya‘s>œVjÍú«ø'"ÑúækO½‘{»^K±Æ¡©7L7ñ9掋)1ï3?ÞJQZª$ì"Í¯Ê A*ó›7ÍÝzx×ËJB®½wÒ팋>QÁžàÐvÎÜpò+Wøç>¼/“/'õô5ÿØúW¿‹*—c&T3åNWÐëø#Yÿ‹eW'uU +´jžâžæ”ˆö~×Ç;)"h:jQD°] ÓªÄ"ÒP©’Åm:w f§×Iìç‚cß)Þ‚%cg—nj̫W~WUê6Ú‹0lqªc,°Øö³ôvq§ë©ûfñKS’|L·¾D pÆœŸq'¹§÷#N®$¨Ý’‘šHŒà*C÷ü ~»]Úyï5 y¶˜™KaØ9¢;vÓË®Ð+1 @Ó“7róóI”>é=`kPýËKÕ·âÞΔ£© [Sq¹Ì‹¶F¡ð¥éûœXÈŽ]¿Ó9îx0ÿ~„Ô¿=_}RSaÈÀ‹Dç\=)âÊáO´E™ªác_³·Òf9ï8§¿ÝT _ØP]žéÓcHa([­'T»CPÞ\|ÿH]üÛ£¤Õ…vFï»xóÈø‹õÍëG¿_6{€{}áap ²Ù#ƒçdÀÆ›³Mù³KÅT6*\¤}ÁÑ/rìµÇ|p’M›Oƒ}àÉ•ò°¡Z;¬p2Eg*p­]*úlÿÀ“óÀÅ–½rœ[.2Ð`Þ›\ö0\±hrðDw³ * t—[p8„µÊ£û(Ÿ,8qH=$×òÇqßäл¯èuÊÔ§…kçŠV@ü¡X_p2$)“ÖŽã;49}zÅÅýŒxÍÏÄ$„DÍ·e‚ƒG—YDe…‡”²)ÌÈœ‹naÿÑ?´óšÁbp¶¿r¦-™Ê#e«v¼A rŒ„cfpå=H 3r”8ë#ã=Õ¤vŽ|‡ÓtHÄ9t—×îÝ ‘ºÉW’":zÇIš\:(Ž¡³;tôà“&InÀd1±ŸK@7Àùj!*ÒT®âÀÇrs™] Ð,þÎC £o@ÍŠ~H¡ ã`Tw ™ ZÌâ²SçJX¢”޽{‘bÑ1ôÓZ˜+ ¦ŸïÕåÆRâ³n:!¬¤È»ã©mù Í™03¾çÑX¹%Þ"¯àk=,É¢ÂàEW7 7ÈÄr­šAËÇI,Yãc ²Xc<]x²Æ€ÁË•ÔèþÅ‘=’vf÷‡Ç±:-JÙ›Ù0H%XIŒWÃ{öe·Ì]cÔÝ«&ñ8ØhÐÿ\ê¶Í²Hî& 9®RHåçrjg¶ÕÉWa 9‚⦞MùQL c¡GØMMeòMA6ÙPú¼èñC{4í‘o 7l»)ˆ_µÇÛË©âУ®&ÏŸprµþ>hô”…',„dº×¬9¼÷±ãÚ›&q^"‡+¥;âÝóqãÿcdŸŒ=SfUI2¢æ‰M÷â ÉrEÈóÅvù’.þvy¼mÛOø|Ýíñ}{ü»öøÝtâÚ¾×–Ø–\U"¶Oa‚öù í‹©vG–­ž’° K¬S'޾ã_tðx‡e˜(öT+ÍO¥sÛeé~Q·Öâm½ýNÞ'h˾œìm ôåÐP½ê¾ H׌£W;ÈÉÐLø7-ˆFê`öð„^J›üVé^…!•(墎¥)€Ãr«NfÞ2ϯï>׃@™ðÔR4Ë]Ò|øK׆%vQï äFã:°ærJ *fÎaY¡yBÅDr¥cc÷Ûÿ¾.8‰ûVéNÚp#N†QƒEOR€̘Lƒör1qØ0´Õ—ЉMB 5+§ºr³“QgS¢üÜ FIr/ŠÞJæ{'Ùù…üID¼•Ú †—Å’H'@ttÂ~ ±kþ(—»… …«¿—СFN'% ×CúdMwðO‰9‚J›"èUsñ¨¢Çd€#|NçüÛT´kbmT6bG£U¡DŠÚ‰;› gF3lEj3òûwrƒ‡Ë*»z8„ÅR¤Hèù–ŠÄÑ¢“““ík ¦1æð FíÖ<–}›¡†ð¿ÿ˜Eendstream endobj 850 0 obj << /Filter /FlateDecode /Length 7739 >> stream xœÅ]IsÉuŽð‘šðÅWpS·CݪÜ3íÓX^$[aIŒP8F>4 C DSI‘óëý–¬Ê÷²*A€ ì˜Ã4 Õ¹¾å{kÿùb:š‹ ÿ«ÿþúÉÏ›ýÅÕí“??Á¯Ÿ„ì1Eø|½|ÎÞäcSûøÃ“ß_ÜÀƒ+ø¦¡1/êÿž¿¾øç§8n€'Ç2sñôåžÐ\ds‘B:.ž¾~²óvÿôð²‰V½í`‰¾ðôòÉ÷»×ûÃt´¥äw/ðóT²O»wûé˜u)íN/ñ±+Ù…¸;ïÍqšŠ³»·ø4”’’ýŸ§ÿAÓx9·GoÃ<Í?îÞ»cÞý¿fJ1)ïÎ70‹ŸÂ”v—m´Ýû=NçrÞ=3㊦-Lý >Z3¹˜w4l0”ÝÕþàœ=–vßá÷Ò4ù {ÂqSpžF0Ó”¦¼;Ķ¿½¡ aývwºÆ?äɘþÓ~Yê-“£óžO©.êçtð¯nQ«£‰êàêá¯óÙü¶MɯëÛ=8Žq²ŽF¢/ÑtpWÓÆtEÏæáº§2Ïö–ÖéL ÝÝÃÇì­…cjOOL%ä²µ4›.;ý‡ý~~{wܲÏ@Cq÷oûì`­&ìÎ@4>&¸šÄôÃwtb:(ÁG ¼Ðä<äúÝZëeü¤'ßz1ÏéÚƒ-Q^û-Nk6jïçýÁF Wg'r’£]Óaö¬$„Ÿía2psIÎñƒ dÃOS(~ófpDHÛ¬8¼žgpÙµ›®Çj3°ÌåÝ4bí1ƬIÄÆ)>~MÀ¾L ‰¼i|z¾‡SÙúÝŸö!À;íªc/$o/‘cñ;É¡g¢`ܿ𫦄žA•1ðµ’%³¾†±¸arÚW™¼qŽ^á ALÑØ¾x~¹âíì4·IxÜjÜ1øbyß_Åöüµt¢:Mô­B$Ð…;"ódþŽ¥µO“™©GŸlÁC(Ä‚üR•©®Ã'•J†3ù„[ðÇ4þˆÙÅàå1œð…ËUÒÿиñ¿àJÚý ½0E—L•¯9'9úw(Qsœ@“¨£<ÇB—.F.ƒ„H»ÉËÃpdgÙýúôJÜ:ÑgŽ>d¤kÜW4®»vĤ˜‚dÍWí<ðÖÓd“Éxë°œlž,I¨yÀß¾$˜4uáä!F§ø›h$È™EïᯠT3J.%†TÏøÑÈ¥nr#|ÛÚòEra÷rÑ©¼—±b m]L÷bMã™5‰r’/ãm¸)g7³#h„Jd^ÙÉ›»$º(~Z©Q<1oŒbØí?ìm‚'uvujï¢VܸYК°½4óa®ì1Kä ðÀšHŒÏR±Êƒ?±ôš÷t°¨ö“AEcQ2$MçWM„>oR×^.ë#ïT+o FTÌ)Å.Cr)s'FÓlÄœ.›2aQàžO×|¡©›ñº s¸ $+@&? ÈåZ`uLOÁ¹~)é„‚L"Nÿ5kzdò¶nð ü4?¸'ùçÔæõ’È [v‚p€x…¼[áUf‡-½„Ö(äê¥ %^6\R•ì̽+½dX`kÛY‰›zÓ‹_¶¾ž6 Nߺng Hv÷tG|ÆNHþl~è¾î´º/$ m zæW@Rih°p|…€·ñçÀòº§Þýú§$i,…Ý·ÏÄá=ÛÃ~@/šÝßí}‚5†`“%@!–#0ËÛ@¹eX<«bFlב>§ã*2V(µX·e§Ïˆ×/zNœ”­¢Çï!΄÷P½ÛÓ+pÚ I Ë_ӬɺTõ(ÞЀPÙTNÜÀ$èQúB7§:xv¿èôœ;¼ðìiAJðž- œ]SJÙmLª ªHe$Û¬¾Æïºdƒ¼øk~®cQ¢‰…8<)£”ÃUK/vi>Â÷‹¢;óÓÉôªòÞÞÇð…Þ€‡ ~$tïÄý¸1W¢4 nø)@¶G*læ ›HDŠï½ïdF,° +aBõ-¡ Dy:yÒß¿ÒèÐ4îoxnVzËÈg94™ýÙ#Z9]·×Ç€@‰ É•ë|:×YüÏÌ$èÚ3ÂýtT‡þRçgË óû¤7 Ì+»à’GðÆ€ø•9__Þ½_Z0þsúßX’ËÿÕ)þøeJ·· @îÂCh„*Ÿn‹a °…³æ¡6ùØÄr z›dŒ·iÉÓ¼øÂGeB°/ ô ðVÜâ×вÎk·Î̦8.è?`ÂFû·ûV«‚ÞêD>:óý S:œèÈ5+Èûå~vúâÑ\Ï© ,m›Îˆi¸âð®I@æBOr£[<©‡yƒ…iµòÑÊÆI—ÕãøBæÍMVÀû 4Þ´¿‰YÁñ©sóß ›(pQ?~hOíãÛý¦¯ÖÍÍÜŒœ+IÂcº6VÌâ@Äí z_`?ë=49£íäæ]šŸí¥ù½C‹F¹où©«*fÓ•¹ÈO4Šmí3ô?K[š}¸¶dà(¬áÐYÉ~T‡èÍÔsú÷DS5*Ò%<2«6)D#Æ.Ê9Z…Y韢–ü÷ªÍåH,‘É,Qo…ìd]}^vIþîz>q*mkv÷Mäc›\ƒ¤E]éÐM{å'¤°} a$¤ûô–‚·*Íå™['4!Øh/Gç%5〦`Ká©ïöËê${~l¥ý$ËçCƒz[Z5Ô½¬c™‹³G¡‰yýÒˆßO6ÈX™$R­:€^"‚D×*VI\ ”öÙ C»³P0ÛÖšts]álúhº$+&B@œ 7Ù•Ð[/x©í-ÉCÊ£X#Á¡ò’6X8dãÖÞ2Åz¤íhŽ˜äLÖÆ•úÀµ&¸ÛA¤m÷s¹!ùå3;ÆR¶·q³ƒbóç÷ý—‹ R+1ÃÌ€¦~jÌ åMÅÂõJ@â¹I})LP’Ó5O:,2 Ÿãú$UˆÓÿÔËýº(m¶j\ìS#&ù¦ÑŒåâãJ:grÞ ãËÑôOïë +ö8ÅAŃawÚk%8óÅ€8ʼn¬Ýo/›¯áÃ>ø#iA¸òV…ܺœÏ)­öXý[ƒ —"ÆeÑ·õnÈW4£:ÀòA!½›6ÜO2™!slêà뺈œ4³Ö/Æ(…Äß %$ß~ÕОxû¯Êƒ%ÀÑ-O‡æ_p˜Í^6cÀÃv8©ZŒ>(oî'¦X¤Éx‡ìN™Uø¨‘‰„ŽMø¼=~ÁcãMk}ƒá‚fâ­ ò&ꬢÿ·<*ºÛ%Æ3•Ü_î娴"%n¸g{‡«†fôŸËÔ•pzÓDñ|¿©ðÙåòô—'±'ž¯) Á¾y#=Q sþqÛ…Ò§7Ldöù1Dg¥k ÌÇ3ãz=†Ñ±ðFE›¶¢¯¬¬1³Bl«QúIºO$È:w¹K‡ymZ7ÿ|W¢r/¢‡Îœ=/Òš–_=Ó+£ôÃSŒ¡Ã ñ˜`{{ƒ4»‰Ê#²Ô.yiO–ëÐú”ö4õl=oÛ!'DåíLör°,ÁÖ_?yúßï¾­ x¥Ë®âtR’ç>¯L4Á ?ÿôj/›§,Ü_J€QøÍ„ÉFUÉ Úbl÷^}u !ÌöÁõÆÉ uÙP5[x!Nͱ'&»×ÂS$¯äv…UÊé†9×¥Y2ÒÆBŒ3 ü‘ÕŠ®Øüˉý›ó,rS7óY¤>üÌÀêœr;ÎÒ”f½ ŠÊ¶Û2J T±”aiÁªO÷™hÜÍGسAçyd¤¦;á"w«Pþ¬}D°Ãô|9Þ÷Ì=é.7þè<òÐË'0Õ˜±‚oò‰Ï!âæŠ $† ÿ•v¿À‹1 Œ3/hO67ϯÛëïo™´àˆ–$|«¿ ÞÙL>5¬dÇÖ#·Ÿs¡ºÀٰ¡¹ û;cµ¨y>À`(¹³’Ü5Î!اSG!óz4³ãS?­`0Á*GR·ð K£®Båxžyˆ‰µÿBéoÜß'B­£šMq=†‚tó¸W"ÉuT"]F×¼N„®rnJš²nCm“ûr{qòå¿ðŠ IøŒ–ÀXWÍl) ‰½Éÿ´x¼%S+ÁØÄ?.°W%ë¼åý£££­Sz"õ2ïʾK0 Øʰ[r3–ÄÃ0Ph¬–]rSþ¬ew ð˜]¿ÝˆÀ ô¹’H@w6>N:mè¬M |$­öv Ô¾Í_,óxų É0´·óì7ܗ䜸/…T¸å96Ü+;©ËÐ&ÉB ‹Aý[iú;Âø}h!¯#.„4œÃS±ÚÆ^ðÈÍ’ÉE¦¨Üãó¶Ç÷yàÐ%”RRûÙT5åíLE]gŸaI’1T×çÞ>_òn⦠#>èññœŽÉ"{*ÎØûS;K¹›û±l 9€¾C>èld\D)ÑûBp¼~<µdBžÐÜ[a3(‚Æw І[œacy˜Œfu"æ Ñõ†ÀüIÆÅ.#…Â'5%‡ùôº±RS:èKÁtEoy´ôñxÎ)¯@ÊQ»\†®„B>nÞ¾fËÊø„§¡Ìê*ެçJw¤Ñ~Ž÷‰Ä#eÓ«v*÷YÐWòê׃~ÍÚî„ÅLE÷òE‰<+,«»”ZX ex•ðÀÖubs§p6|¥X¤r[QÎ{E lñu…"³¸µ5°òî¡.Ho1CFAˆÓ\ðÕÅù6- x• DÁëy¨¶Ê€AÁ©×Vyß³Û”ñ-œr£ptÝA6ªøƒÓXéÃRiÁoëÖv«­¹ˆ›ÛÇ•¼l7Œý-Ù<÷,ÛZü¤* A;œ [aÀÏÕpuvØ¡®žÓD’ãM|ËeJ9ŽüO|òÎz§$!— L`+¸ªÐ¸+LÙ"F<ò‚Hæ«bCK Rú+ñT‚:ãA¸S0t„H–ÞúMXÝ•TK©ˆwÐjAÜ­5ÇGÒYÆ&‡Ü× –Ѷ!f+@íÅ,Õ6ÜòAúéÁökþ^^!p3HÄîgì¨jgA.]lƒ¿¹à#Ðô@OÓRϵqš§gMzt¶k½ÔËž¶ªSµ ×¥£5#$5ÿ]¾O5ÓœL¦FBщ¥‰«cö™àÌ’ï´Ê/O+ÙÅD,-ÿþÕlÊ[Ͱœ>2”†Bd÷_ìGµiÈ7gN´»øE¬¨ØK~óÀÂÄ`—àä ãR˜¼© 1öF* b9…Õ=ËfòWÎ:¶ ž¥|Öö1$v=îzsw×¼²lò ”Õ×Ë] ÂX¼?lŠz¹¨L å1eBŽój§ÿ¤ì¹Gz1¿zÒãÿ7ú%a'nd?qù:}\‹êümgŽ>´@Ì‹»bDÆR3KП^ 2:j`·J.,¤[ÞvxŒ+3£e Î KÆH+³SPAŸW)ò[ˆ„úÏwû…ùØù¦  TÃå¡äâ_ȱ†X(k,ÖßO¯99RÈ“,CŽ]î⟫ —½oûµ×Â…¥’Ž&/,å$N½JõYžÞ7C½3³-ÖT6o›×!çÙ¼¦§öñ¸ùÂícµ¿ùó¶ýíÁ°¿—ñ}¿†2¦†Uc £|ñWì£yW)"‡>þ#èg„00Bô¢^òÇî”…ì.õ0ù!曞…OTèy*aR+:g€óÐ)Þì;ÈW©x¥"· ÃTÆd²Í‡é•ËË섈~í‹^Ù:«G@CLBÞÍD„Ûy¶$\Ò¦”—ÿ3xÙÒlËË‚o„t9Ik~ˆâû‰û˜b¥?íçâÃyS­"“#ÁÞÄB~,`âO¸ ¨ÑltÆS']ÒêHžõ^83î±tb</ôæø u¹Q™Y5#4}.!v;³ë Û;ˆHQW»-.Þw}ªóÍ6WÅDÁF±d° u–Fà@ SÙâS7ÊDµ÷g£WOuy(êW•3øES´CÁS¨ÐßÏ¡à)%³ÏžŸó´æ9FEI›~á š,{Jìi>†M”¼•Z÷ˆÜ Âw•6:.{YOÔÜ €ã¾Ø‡p¢_€Œm»ÞÙŠdàÅ»å/z²_ÕýøSìcó]˜c!øÅµµŠr:ŠU[WÑsA[âëÀ"Ž?_—”ã”<(Uw4Ê•ní}¢ó"´9ò¥Ãåj_úÒÅzÌjÐÞô%aç3=P&§¹ðÿ±¾të –ÊCâkë¨KãÿƒË˜ïÝv]>ði(q,JîLÌ2ùwá·‡xŒß´/ÚÇwíãyÿ?rÄÎi©Ëã"xr_WòÊØù’cÄjPG ãIØehPž#§ºÉ´áŽb¥ôio½ŠŽk¶kˆiÔtªƒî—lÉùpâ…ÒÄ–—?²P£Š3EPË«ð*ŒÖà4ãó^^U£|^ÉC{÷·ÐåÛ;bô$ÕÑ=`»ÎŽËpµ>„ŒsG}òºËù!yÙÚƒƒ3äQ=egÕÏ+û¼+»”7šv¿ªŽß| faÕ,d/}'£bš.”)F݉ª[(iè?köý`ŒUcËîʺ£*«œ÷+½^ïѮҦYYèèÅÁ–©&\·ÇÌ0ŒjrÍô ¨º¦#díó’˜ë‘'ƒ_¨i:™—É$¿î¯ÏQAÜÑ|hÐøÏÍ‚~¿-\6]ç^NÇÔ·²ÖøX6`epx¥$E…îVµ²ëý4ƒ|qNO¦ä¼FꢹŒÐ†B‰wèg±k΢5‚È3ÿÊyxSc’À6š“c’ø÷ýR:#2´w§¦\öíTf] Sòæ¢ïÁãß ôÔP¥>¢¬$Ûô8ÏôDE´jÃwtí¶Øµ;„®?ßœŠc|u3ê*²Tnù)Ì¡™|°ÜôÜA°%Â'£õ4œî+sæŽÒ­Q s§_ðWõÉ€eù¶ƒô4_ ŠãçxW×ÐEët ›Ï =ØÂï!TIá"ûé>•>Îð :{´æöÐ2±Ü¬ÑñVö aC߈.M $Àyª6vù±‘Íe»¿ýÂr­V%d \°2BQµWé ë&ݼƮ› Ÿ^×ÍEö=÷¨E+,ÎÓ À¬4Á‹ÖÀJj~}õïTWŽJQYDÕ!ß 'ó®¢JæYV7ÊnN—Mb×-œëô¯ÈÍÒÛA³aÇlþ½¬qu.!1SÒ°f÷ü¦Q FÂì~ÍH¶-vÑÐbMwIëuªò ¤ž/ºÏˆºp•¨QÏz[±=ßÞÇûžÄVyq˜è~Ä«NyuË÷õ·Vª½W§yz™ñ!åÕxYk/‘݆Dìý5sóÀdðWÑ-²¼Ajw·—Û.ÈÁ·«fÇÆ¿hè¨7¾×SͽI¤+ÍD3?(ØPðžÝªÈ~èE‹¯c¶Š<¾¼qLïvœº~WAG¿{¨ÒÍÙÜ^²Åˆö‡ò~ãßÈM_»~K´Uès‘·QÎ×ÞSìý–ȳYöÞÇuÃwœ6<´T@«û½åÿƒvRáͤzF«£ê†iï8t˜çˆ\%¤šÎ;÷56]ò71ëu‹ÃduXs$óÌÀکê–ª’EÓD¨ÖýOí*Ãõ^-[25®|³È÷sûXשG±j@ÁÕaˆTƒ#\½ëKî:À«uáþÜO”ï kû<Õ~ìS€A­ø°MÿÃYBÈÏ븰¥`­r×Z]TÝè>q›ê¹CTŸëÇ3šÕOùæmÿõ4j¡Ÿâù«öJÕ•üúøßÿ4Ëðëendstream endobj 851 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xœcd`ab`ddätö vŠ04qÔH3þaú!ËÜÝýSñ§kc7s7Ëšï·„¾§ ~Oæÿž ÀÀÌÈXXÙáœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*À¨c8çç”–¤)øæ§¤å1000103012²äÿèàûÔ½àû¶ËßK2>û®ò}þwyæå߯ˆžšõjc÷wŽï‘¿s»ãä~·°¥×7¤ÉÿyÅž>­~ƒÜn¶Sg¬“ÿ>û;3ûw‹ß›gOë^Ø-yŒmþœî•ò̾ý^ú]Œý;Ç‚XÏ€ÚÐßüò|¥ ÄÍùž¿íwÒtö—\ße¸å¸XÌçóp~—™ÆÃÛÃÃÇÀç`ˆ:endstream endobj 852 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceRGB /Filter /DCTDecode /Height 196 /Subtype /Image /Width 269 /Length 6121 >> stream ÿØÿîAdobedÿÛC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKÿÛC $$K2+2KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKÿÀÄ "ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ? R˜P ¶#8éCBÜñÛ½oÌŽöR„ÏAX‚}EïÞ# S,@.5ÚǑʹAÅCª])#FsÒ—Ë#µk˜PtQùP±¨ì*}ªBölÉò‹u¥/ÙØÖ¶ÁéHRj?fÌ£nè£ì¯Ž•©åÑ·Új„à̯²?\Rý•ºÖ°_öhÙì)û@å2£_²µkÿdQ³Ô ^Ñ#2>Êô V­ƒÒGŽ¢—µCölËÄS¾ÌkL§Gp)ûPäfrÛûQöjÐÀ‚4{Q{3?ìçÒœ 8éWÕA§í\t£Ú ÀÌò¥8Â}+CbúPTv§íÏÔ~”ï š¾iÛaKÚ”Î0i±ZA@íJW¡Ÿ´!’Ð7¥'Þ•¨Ëè) J= ¹ ï%½(8 W=©vƒÚ“ª>C<@çµ/þ‡ò­ ˜»p1€j}¨ùTQZeªÛÈDz“R€1U¯Î,¦Àþ\ÞÔéTÎzÍ’XçfÁ.ø-ßÅu®ã:W§YÈO\“ú×jNàÔf²©&ž‡BŠkR3JL¥#4Ò+/hÑãÚŒ i¤wH£.ìW’Mì|ˆéFzÏY&Ô_äÝ ?xŒ<ŸOAZ})J¤–€©¦8££É§sQíd?eÀ q íQ~Æ—´‘^Î#Ž)'CŠ{FÍ)6Jh8§ƒÍWµböHaAšB‚¤â€ šj¬‰tÕQOÚ4åAK´b©U‘>Íìȣ˩0)ŒU*¬^Íc¥8 Í8 p^Ñ“ìÈüºvߥ9˜(Ë£Ôš¬Ú…¢Ë剃0;yëŠ~ч³D¬€Óv­S»Ölmƒn”»àE$šŽÛXŠã£xŒå¿Â—´r"ñAž´*j¥ý­i¿nç¦â„ žKÛh"2É2÷f“¨ÃÙ¢}¸£o½eKâ |…·ŽIØú wöËŸ’Ð(øßô‡6·²l¸­L|ÈÝOu"” l¬ž€O’}ƒž=ÎJÇäó£nÍ]…œ›¬ -×`®Ú.¦ášë´9Lúr ýÂVª¬بI%©}›ž”›Á…çfÞëv#ç˜3u95²Ÿbý¤M<Ö%íìO¬¬7…¶€#±z«öK^cš›ko⑲ ükJÏÃV¶ñâLÌç’I<ÖŠŸ.âsL´5+FRVæ"?ßVç^³ˆü¯æöMfx£Oµ±²I!…RFp3“\›‚{ pÃÅ«±:¡éVwðÞB²ÄÃ±àŠ›Í@yeüëŽÐî6BÍÈáIüð¥iÍuÌXê¯àjÖR«4ì]½×Öí!—VÆçÝŒ~)Ö­W©aíÇø×?ªî%Ç c¥u– “ZE DåAéQR„RÑ ŽÚ²€Öþhígqê«‘SYê)w1‰RDu!Æ+H!õ¥òÏ\ŠËÙ?å4ö«¹ IÍMåÜRyMíQìgØ~Ö#©¤Ï4ÿ)½E3ëOØÏ°½¬{€n8¥Í&ÆÇ$TsH&ù¥T¦Ÿ±Ÿa{X÷$Éæ¢[Ër¬ñ½~aÅrú¾¶ewŠÞC°wŒýj;!¶ 2Hd gš¯dÒ»)Jæÿöâ’Þ\E€<ØÈõªÒj÷r͈äŽ$ÆJíä~5Œ©'$pG¶LüÅøçëE®Ÿuu‰.$ò`çw÷¿T 6Yº»Žé¤ównqùÔ «Ã sŸî­2ém-𠌻÷¤9çéÒ«i¶?k½\„æB0µ§$R»&íè‘¥ûLI[wdUÜ]Ž03Ï$V¦ÙÄxmß´®X’úûTñ[Ú¼±C a"„ùŒ:‚=Ôÿ*uô‰tΊv†ã#µa*ŠÚ©»êQº³"ÊT‡e#8­djvi°Ä¼·l;Ü×G{r¥UGDV~–é%Ä×.74gbÐqÍM9É{Ï¡n ÖFœ†ÎÞÒÜ/–€GƲ¦Ô%ó¶·óûÇ8Å2úñY±œàãêj º ÅrÄw#¯ùö¢4ï¬Ü¬¬…Õ­Owð$Õ-']Òr¤}ßjÂÁ§Á>ƽ^DyW2`}°ûŠ–;ë«we¶•ÑsØàU{oõ³IŽ•ÐE¦¥¼A¤ÃJÃ$ú{ ‹jlådd™/o1ç]I·ýâÿ^·t½?F€‡’Cq/ûCŠÍ¸Î*ž3øUr¦G3;Õº…,*Tb˜·Ð4«ó½Îc­q/vmT–—Ç ž¿ZŽßREžIÙe_»·øk9%\“:/¡m5tY*ä ‚µ§s«5ì-—,êÝ×µgÆ2ƒEè]¬ih£÷ ?Ùqÿ š¶ùݮꡥ·ÈW¸,AVåg[….NOàjŒå¸ÍCpïòàçë]–Œ¸Ò­³ÿ<Çò®þpÒùyàVÜ~+¶†$‰íE|µ2Mdudzi5ËBãÆ>†œ¾)‹þz¥O+&çOº“Ì÷®px’&é,tïíø»H‡ñªåb¹ÐïÏ4»…sÃ[‹3'?íSLj-Y“ó§ÊMÍüƒXÚæ=ëþì+®8 Äbˆõûû×(?²šÅ‰ý&/®êm®qz«iò"\Aå†ë´æ¤±¼žÞ2-‹ydô WO¨¾“©¦%š"à`6êÌû €Ïï _÷XóùV3šÙ›Â-”þÛ0“Ìu2q¸·éL¸Õ$t1®äcÆvÿõéò$hÄF[þÄŠ«$GUcž}iEÅëbÜd*£ ý¥Ž{mZ¿§Æ‰ºDãÌ žzb²qx„mŽF #ŠÔÓ®%pë<>PÚ1ŒúÔT½)Úö±p\:#mÊî8éÚš'(x9>”ƽÇ# e<#šk2©” Ã##±®{>¨è{‚™Î03RYbÓL_•ä%ñßžŸ ª“a㺊–Y ¸ò¦—‰P`zJ«+[¡÷Ð¥t§z*äÊÍ”}ãÐUëë3äZı'šˆLŸ(?1ÿëƒT.n§æFÀº€ãÇz’[—¸Ù)t.WæÔëMEhrII½H­`?ŠOûæ›&±lѺÂy‚±ä…dúšvÃ0=Gº.aÈ !þ+Ë6+Vm~ÉãUÌ‚€NÞ3Ypü¶1Œ`¹&©´J‹Ù–áÌ7Ôl˜äÉ'ýñL{Øf×s7«ŒY» 8aFSr‚A!2±,I$òOSLØ)Ç­)úÔ–4 ¥\@Î2QÿCU3K¬„€äàúS@jØ#FåÈ; SƒWÀ܇¦JÇžãKÊ1„€µ¢·*öÞ`À 1ØúPg$fÜÎíøåU<¡ÜÕ™OȾç?Ê¡éI³D´zPUGju‚—4˜¥ï@ÅüèÛõ S©Â™¡A^„Óéh %u4äõ ŠZZwÜQs'÷¨ûDž´Ü 0(²ìÒîH.æþõ<_KžqUñJ;ÑʇÏ.äÆé›ï*ŸÂœnݱœñUñŠ^Ô¬ƒšDßi~àÓ~Ô} GLlSåBç‘cí_Zi¹ö5_"š|¨9äD~”à7m^ìi¤f§°Ì¸ ßuy­ ‹· °Åà"ЍõbúLÜ=?¥Tg¬ú–žƒ{ÑÞ“4Òiˆu!jny¤ÝT+ޤÍ74™¢À?5bÚàFŽ0F{ö5S4´X “ÜFëF¸$÷9ÍEº¡Í(4šmÞÔg54íÔXc©EFZœ•€’€i›¨Í¸üÓ¨·bÔX.Kš\Ô!è E‚äÙÅE¼Q¾‹Çîì)A¨KÑ»4XD»¸¤ÝíQ¤ÝNÁrmôÂÕh&‹“4ÒsMÍ@Zž(£„w±Àæ’Ë8qíš’HT$”¶?º¹§)† Da¹îÕôäoó1Ü=©›SÒžì‹zö¦ŠEÈý?ZO*?OÖŒóšPhžLyïùÐmãîçJ´îsEØ ðú7çMž£ˆ‘»qéÍH*¼ÒyŒ}š»bvH‚ŒóÒŒÒZŽ¢“4P1sKºš)G4ìÒƒLÍ¢À?8£q=ê2}èÝE€ySBœ÷Å$q¼­„RM^³ÓÖY•$Œñ‘@+”ÉÅ&ã[W>¹Œ…ÖUôʲ'‚X%ÿ´1H÷PZšzÒsLCòi J  Í¦š(Ù¢Ði€ê3IHx  ÙÍÒ¡’m­ØÖI\ÖäþQØXœRCjòc äô\«Kncó"¶@e_7' rHíŸj\ˆ””UÊ_a)·r¸ã'œRÿg33*º–^ U݈֕ØÊ1Ç”LÒ°9Ûß¿·³‰ƒ©'¹Uläl€0W®E#[ºƒ¼/å¶¶ºfš#ó¤É¡Â"I3ìÆXeØvH‹üCØÖlc"º­NÌiæSœŸð®zî³ÞÍèŽ@úV+FÑП2¹HRR“ƒGzЖ%-!¥ Í:›W-àÂ4¬xUÏ®(TæƒZ1=®T ™Ôž ÛÇó­Û;M–×|Ò<„ð¿å@¬ÒÜ1X‘˜Ž¸*Ͷž²Ü¤‘£n˜+×Ú»«5†ÉØF€ò°P7}}ë+X´Sœs&á@¹µ3ŒImŠ$ÛŽz“ïUàm“ƒèÙ«SKæ r~oºÙö*¦Ü6j ޲)7F¬Q"Ç:çE‘fª:lÛíñžA«FeP2@©ÕÑ•wá«iIkiZÿ |²®èï~_î¯ÿª¬y3Ïl~¹¤•W˜Ýã>‡š°š…Ò&Væ´Sò2t»3i¢œgý!¸ÿd…>ÂÎa¨ÛM,„†r=ª6‹Mqw?"9Æüp+£/bÏ$ ¾ÔÔó)h'¯‰$Y¢JõöÍsZ™Ý©Üóœ6?!]½D2®rߦ9®bä0½¸Þ>míšÏíÓøJ’”ÒV€fŠÔÒ,–i”ȹïƒÚ† -¬.n¹Š"G©àVÝžG‹—ÜHåGJØØ£ qUoHQN2j™V#—G³š[†ü³\M¾ñqÐ^jÀÛÆ˜*UAçÓüŠ•ñ‘="SÕãó-˜W+© )'üö…\ýqƒü«¨Õ7«nÏîñÈÏJæµ_øùŽ<çË…Tÿ?ëJî³úRRô¤­X×|Š£¹ÒèCsÌÞ„\ý vO`Oé[ž =Í) `òG¥cë2ݽŠñùÖ”™¤ï‘Eå¢^Bcc†«z‚¶)A.úõrX Ë€´,ÑÈ0ÈpjÊÜ`Œ~gšL£P®ôÚkÚÆîEaÏ\r?Î_{éNV4ÜÇ¥Sº+f¾uÑó%n‘ç¯ÿZœ]‰’›J’NäSBŸ0 ƒíšÉ:ÕÁ|ì‹g÷JÔ¿Û(”³T”¼à\UY‹˜Í¼Àº˜ÑÏó¦;qM9bI9'­.xéTH¥²)´b’€ÚŠ´”RÐQKI@-%-0,8;@àzúQ–\`œõ« J UžxïLU%ö¨ ÆsY\ÝÅÜšÊÞ`1vèò¥ÔÇ‘L~u~™Î0zT°ˆy‘I²E#;}j†¡6ù6Žƒ­B»‘¤­•*ý¬>\~c™ú}*µ´>t ¸9cZ.C£ è*æúAu(Jv\oÇÅwš ¿h°óOÞ8SŽœóù×r™\×Aà»­°]ÂÍÀ°{v§ŒÎ¢Ñ—õ¹¶”Fû¼³}ròHÒÈò9Ë1$Ö÷ˆnnzE޽ÉÿëW?Àž€TKY3JJÐFiûÆPzš+c6>Ù ?…hé“n ·CYu,O»8aКΙ$žfn?­iDÛ”Œšç-îP²œà`dVµ¼Á!$ZÅ«hÌýQü½I€î£4ß–8Lîrª9ç­:öÎk‹¶Ÿ•‹»M¼ò#E´ó%f‘1n€vÀõªH†ìT›T•ÿÕÿ²9üë>Fi³1b{““Z"Ö8/¹ñ‚¿…Qšˆó÷{ƪ"dFEB—t£¥ŠJ\P¹£PKIŠZ ¹¤êy ¥¢’˜êqÛ†5RÏœgµQ{ÇÈ QKq$¼1ãÐV* êubXžäG•Œåä*–I>¤Ñгey7·Ý_ÔÕ¤¢Œœ™n¼ˆÀþ#É¥ä¶iÄçÖyõ5K É†QºÔºÊZÜ·˜J¤ŠQˆíÜΚø#]Skæ©=œnijrd`Û³Ïô›vûaÀ?{Š™›yý8Jõ÷HtQDºŽNÈ‚ŒÑElbÍÒ€hË+ À9†´4ýFKv3ŸT= fÑC@vú” Fÿ#ž6ž*޹n±ˆf#-Èyê½Gõ¬×9ÇCÜU™ïÞ{)ÉbH9=…M†Mç[Èlz¯q:˜¼´ä ª æŠlŠJ*„RÒz ÒPÒŠ´RRô ’Š(i -&i€”ÓE€+NÕBÀ˜ïÍTOb¡¹"ŽiAëE‘Ð2N´ÃEÉbZÍ”æF'ÖŠ+HÏa(ÇQVf%-PAéE SE”v¢Š¥ô¢Š1Á£4Q@1(¢ŠQKŠ( –Š(”Q@z^´Q@ÿÙendstream endobj 853 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 ÜóŠü @2 º0´ªÚ~ 8Ê€…0ô÷%!tèp–Îw'ŸÅ0^G²‘‹GpðÂÈ%pu[äΖXÝpm!–',Ê31Ü”<òÝ€æàwµ xJyÉ«úÓ¸zÍȺªê;cz†¤ÿ¤˜LqJÙg4m Ù*)šJœ79l! ÅÜ47I,áïï|Jñì K6S„endstream endobj 854 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 399 >> stream xœcd`ab`dddsöõõ4±ÔH3þaú!ËÜÝøCä§kc7s7ËÊï¿„¾Ç ~âÿ.ÀÀÌȘWÜäœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*€]§&ós JKR‹|óSR‹ò3¼˜Yfüèàûظú‡øêï" Îgü.qcÙuæï~²ˆ.®œ]RW˜W4·fáê%+—Èùÿþ(Ú?uÊâþ)}Sú§vÏá8¹*R5ê·Di[ÓÌ™}§ôÉ-s`ÑònŽù“êJÊ[k:[äËÔçuwÖeJÖå¶ÕuWqDìL?ôaïw‰…½]Ó+k»Ú*Zåª#’ü#º9*›¦/ž?qÖŒUò|e ~8O6í{Á¶ß SÙ×q=à–ãb1ŸÏù®Ÿ‡‡j—¬endstream endobj 855 0 obj << /Filter /FlateDecode /Length 4388 >> stream xœÍ[Ks·®Ê‘ñ-`OÉlÊ;Æû‘œ;‰íÈñC¬òÁÎaEÚ¤ljW&)Éô¯O74°3|I®¤|04‹ÁýøúëFóç•åJàùÿ'/Ž>ø:˜ÕÙÕÑÏGøàÅ‘VÞÁøb#Ãá¨Ãó£oV;xpoÊ´æ*ÿïäÅêoǰ®tQD¹:þሾ(WJÅQK·òÖQÛÕñ‹£o‡ÏÖbÑ)­†ý+¡Œ/×1z!LvðTU¶ëÖj Rûp¬G'äð_”NÙ8\ÃP áÌÆ±^¡†ç0VRh†+\[Ç ­h Ì0šO9aSêG-ÿ~_À×|ÿz­<|5èáÍZ¹1é‡í%.µôjø¾.÷ŸãÏPò– HE5:P†XŸ F®„9Ññ9 ïWm`)‰S¿^àÂ*Æ|†Á(Û©O·8Îù!É× ?ìA¾Ú©0†û-a‚“£Ò‘¤ ÆÀkpø¨½st:ƒ2*ÉÓ…¨bù°Š&ùïÇG_é1†Õ°-Çÿò`,£±h20…éÉÅÑÓE ‹bÎÀB¥ +Ø üäɾ>Gëèa¿¶ðŠ„Ñ)nMÄhC„ÍËQˆ&‡j¶n´! ï¥Ó ؼϒ`c£ô¬…´cSÎÖsvb Î&HmIÖC´8yS~ÝÈâ 4çëiÍô)¨ð|3!\LÚ²1z0°t¢<Þ$xa'»‹ÆÛá÷žm4ÒûbéiJr†h¥Ô^ßXÈ~½;ŒAFø&ú‚× þ‹´Y­Â5Àò\Ípƒ¢ŸùN°.zøç½&8=|ûªu,©G ¸òäèøÏß_gË{¶»´Y+M#ª=Yq²ÜM#Ÿ zŠÜˆL´¶9æ ›Br“Þºw&·>6®¸Xø©-ù=ņ¤º ½Ü`‹ä>)çšF[ÎjŽÏû3|î¤Ñ2+ämÒc þ¡5a%³†­%Âñ•¯zÁ¢3ì–öç´7ˆjøÜ¨˜ô¯EÁëµµ íLfëAà™ õ>N_rx‚…ÃÖg ž¡ìP` dØšEKC Rf³È(3ïbòýä©^Z¡ÜðÉ–Û®šǯI ÞyÛYÅ'ˆr=˜Û(£Ž„[‚€wÃùä h“  Øé) +¸Ñ©âfÑßÃànùýv{C™}‰T~è­­Ð?¡fõ Ø^‘©håâ'aŸs'¿‹.9¾TN™Ñ½4Ú5ߘ\‰jNI‘”EµòäñQM׉Ô¾d2¸HúTQ`„«qíö°å¬Š÷[ [«…¨•ì‚Vа$0%î‹ÜX[÷&ÃzxY-þ‚9&gpMàwý¿‰&õd¯˜ê7NÊÀ}vÁ9_²ñ2D‰\ìàVæCþöž˜?„Ù˜y:!ÃJbÀÚRÝ[iètïBi‡N‡{~B8a$„ËŸ±)ÏÖ@pÓã?¬ ±pܹÀ»ïΕCMìë‡Ý@Ô|ìv¿J»õ¢"§_;1Ü’ö,Î&®‚ôò1J€’÷QB»i8¬ŸwáU£0ûòäÑxg(Ï뇲øËµ• SŒÄ hÈQò’8¿7äÓ32JPzóœ°V8g‘¼0§C§J@® q>깄ëç°r¾ ì¶ælýˆRÛ(€öHN.ÎÈ`\Œ¸èó 2œæ×„¶¤q ¬¥s$ŽÙâ–SÞžvy‰–†å|±AL>8ià©:˜C”L“ÑyM¼ŒçïéˆQ×xéÙ¥I€Ëa8H¾aÅ•£ãDD¯[AnjÑ”“¬ezp0š9Ý  ‹‹ó—˜ iamg@…`÷ŠÜï ¾¡‹LD'!& ¯,¼j¬/gæÇeb­ÀKL[*á CúT#® ˹¨dÞH:'Cœëjî9a ²Äõ~.)Óc‚3­¢lb1£Ûÿ¯©ñ¬1 À°iƒæüA2È7Œ`r’Ë“GC²Ñ`Î&VŽ×>¦n1ÍHG[ÖÙ”ó€Å)0׳úâ e?jÏ;Dz3™/М²)Z{²¶ ƒ¢àððöi"m:„f*éD¡VQÉ‹üºn7FRj¦€W”fÉŒâ=jH`Ì™È/¿6˜ÿ¯J¸º·èV:è "â%Z#xÊ )ÐN&ç–ýŽ Ã¾Þ½™òשHøcúˆ—Î -ÞLCîó}A0Û1á›èB`Ñ,PÞIm Œ¼>y^‰àO½Sõ5± ùb³ˆ 2ëkËSJ¿Ï’”z!ý_*o 8¥:ŠöáÌ‘Íù$›N¡|¶GõdlçÛÖA¾cÄŽdQ°=(Ïôøœµ•÷ª _|4¸§VÓýòäѸ$kô*çÞ_$@ðX âqÞ°QÜ'<¶£c³•Ð(øÁ$”_3$dLxÂU¹MÕ4PÂëÎj’±ñc¿«ä•«iCT'EÓ|ãµ%9"UOö¥Cߤ!à¤iìšìDÛ@f-\)e¾U>;ïþµjù)Ë]Ó\p]Áw—ló¯*XÖÛ kPMÐÿžDA®‰èŒVoϨ <òàÞ·AØàf3÷J¥бwQ€‡"гËt\º:›utFH–ÛÕ”>³¬‹‘“¤-·½-I©\§Me½Þ~I=<öä<¤Ôý–µp”áñ:¤T\ß¹Kmò‡1Ó ãÉ7…lf`wœÜ«vÜ0y­8Eôå$Ÿ9àR[¾½›:‡3ÔƒÒipÚž‡MñíïüÀÊü»û|lªB¦¯zicWåOr…,•®o)9¥§6j sB™dv#=g)öòÚ®Lü¨Ë—Ã7yÌÓ./˘ÎXJ{ã4e&MªX¹Ç®ð÷vwvÒ¥;»…ð»xêb~sY6 ð×fÙêö,Û©QÚpg–ÝDpI~—œþy[Üïz‰ûr¥¿—%×)¦º}–,ÑXÙç³0…‚`ç ´Iô¹F^RxBlزâ Ó%‘ìt³‘Ô «;á¨é!%wÛó*“´ŒY&LI6å†+é9w›iȶAßðØðœ·)>À~üêÞT»7ž wFÒö8( f-\aCoÓÜPª?³·XŸ®5ÞoHW¿'ÀÐÔžfŸ*éÙ·A ˜ŒK‘±Y9‘¼DÓ“‘üÉ€äÍ9cÃÜîJWÆhÔ™ùÄGYõf{‚ÜÑ@n•îS—Ï: [°9F#Ln5g’®i«Ù3NÀ¸B®›…1(ÕÕÍxñ|ô¤X²Ù!dFL D­mJtñçî{ÄÛ(Ì´øMe3ÉgƒUª%ØWôMÝ×õ:þ(‚\ÐV_øº3ÒVm`¤£È2yÄ/šAÿÞ“L¬ ¦Ãëé.Ë Âôï†ê¸ò»5­As_¤cºØ”YfÜÐ!1~¯Nø¥ò;þmR¤ô°¥M§9úŠ\}“ ͪè8ÄLÆþ+^tÂí)ÄÍðPv¡z§—«ßè[!話Ì2è¡TÜSÉ-®cã‹emøúiƒÔÓ¹XåiƒªLª*# ß18/A?¡F[viÌkÉ x’ÎURI– ”ø„“‘\ûpm?Ãþ¬§T9×aŒª-5†ó Ф!í•募Oå–ù¾¶ð:J ‘؇â <åÚSàM™•ð¸KßžÖb¦A+~±“øõVÚÕårWä<ÕÀ¶>íJi3ºrÝõ³âL¬Á[Kä¨1<ç ¥¹‘³ß/‰{aúCBÆîI¦xi#%j¡¬;ßÓøëº ëÙð˜¦AÉqÍ$ôPÑ€]€—µ’Inʾ¹)Ú¦EMáÉŒ‰èPcVé4ºçà[¸øÆ&øf¦’í>µ†åæœæC úžÒlY0y–U¦›"`íª²åîÂ.!v5ßi\dÖÍXÉmÊÖoâØuÆÛÝ®JÍÃtÑŠva–­ŒßSO—G”‡Ü­‹öÖÞÑAÀ&%_ïlOy8{xUCÈ”³²=â2¡ñÉtÞŠç{ÅëdÛ©Ú'6¶È’§÷†XØHÈ–”¦e>¤"‰ð©Ág£€²†Jù‘ß0 88·´GÀ׌T³ŽôÀQÀ{Ò^\x¥†1žý:UÈ!}~CS•°‡¶YBíA.Ý tг½hº¸1xjŒžŽn}êÕ>ŽÙµ±i¯8ÈŒïâ<{öTóé—InXÂ]ªî0 á•ÃZ/ôt¶IýÓ±!~VõÇeÌ‘þ²fˆ¯gK:§ù²í¥cÉatÿ¢÷P`Mïo´øm…Œ|š&m¤mp‘Šü ‰MåKû†ùÜö5Ó¥š~ê4á}$´Ø[#Å-÷ƒù‡ùLÔ€ž¦t%c]ý7Úñ÷˜ o)]oʡڼ¹$u60[Q>¤lœS~^Ðn«­³Ìç”VAV²ÐQ2é¦ëšì™®9Ëì™æãÚaWFênsÑ´0ìŸç³¯k2ÊÅL“»~¤[‹Vx%È骇Գþmâ7Âé0 ¯ëp[‡g³swu˜ö_ÆëÙ]ˆá&ø)÷gW‡ªÈĸ31ùñvøÉĵ4è bѦ]È%Þ]•ÌÞMW—·å™™üa¿W«/ˆ³ÞÛV]A–Þ=^×á¶Ç:¼ªÃWuøbvÈV¸¬Ãç³fëfÝÓx^÷m 7ÕÙámc^ÍY@ºa:éÁRþ ‡ma2%÷÷´"K÷äÁNöEØã6#dœ}üÎûçä÷rú6‘XXrZ¾•Ö€ZUÊëªvü)ƒï.7±*1¹&¾°æ›|º(—b ¾)ódùùÒÉÌjY5HÉ·8®§ÊÔÙ¸.EÀ÷áÅ`ÒŸDªu©_ª¶ÎmFo&Xú]ËçšaG¼à™Z£ TˆÒ‹‚vË8M{÷‚gÐ` M´b/sIhºöÜÏ}„ioÄó[³¿w8³ÑZ¡/±e&F,{ë* ] T‚C¦`©Ò"é\rÊ…0²+g@öcÃÙX¹)jÇéTŒå·Åg¸ M™Ô|hmÛfû›2S$›‡ÝéÈš¢þÆö§Ä­lùãJ÷i;R$b°°“Ž+kÛ_Ÿe(cy)}ìWuN™”DÝýw`|éV!:ÂE:9øûÞ"Œí¯Ã]æØNã^3n¢•ý-e·Y;BX“"¡'u¸Ÿ%¡ìµûðQ¼]U|ßÊâ çAù¹»þjÏX éècŽó²/gOöòaÇÁ«!gê{w°!)±ö7º7þë]Ö»ò_Ïq?®Ã§uøäA µ߃L€*yoIÔ?¯ÃOnÝyº¤Àÿþ µ‰Jšendstream endobj 856 0 obj << /Type /XRef /Length 577 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 857 /ID [<56c577c7ca28943dd532144d90f4d889><05d0980cc2471b847a2896b41ab8f883>] >> stream xœí˜MHTQÇß½:¡¢:ŽŽŸ‰â¦M¸\D-„Zâ×ÂQsôÍe ´ìCÄEm\Ö¢r3 Ý RID„6mmj£ $„Îÿÿ†Þ©÷Š\{gñãð¿çžsî½ÿ·má§•eÉ#KCP††¿ñÌ ©Å\˜ƒO¶O ý}rýÖbÎ!ŸëŒC ýró²µabèï®,²öÐ8ÄÐß!Ý«pÈÊãC‡ôÞƒC2AãËÊ3+ú,“‹#ix öy›ì[úrTóˆ+wÁ²Xü,è¯=aþ{°îX8 –Þq°áX¾^y –Ø`ã[Ôo¾Oe¬nà®0Ü ªò+xõ#;~ë‡Xù%'áäEÇÌüN¾õW‚5ËTÖéö,úFÙñ5lå)FÉ v¿ VÍRùÀšYÆSÔ Ý©Ô)+soF}ùµª"ãŒy^þ{P’u«UnrÖ€‘f’z(ÃÕ·WhŸgéç)X¿‰go}LýXÁW¨žfGÞj{€«;¬Üævw»³©ð…¨ôÿçð~†ó†5 ©l—y…^ÒQ‘Ÿ B_)RÛnœÏ§KUL¬òô¤è’J\ÄI1ƒ\{ö:JJÄŽžó8JRd&D¤È·Å´r—·²ì(ï!å™Í‰ÓnœWbž3:}'Ä„ñ?gð™ÇöÔw¨å‹Øž½‰Æ2sÄs'£Yuô1%ï¢a—j:¤elš¡ò >¯}Î~/š_JEÚ:uÏM endstream endobj startxref 464508 %%EOF metafor/inst/doc/diagram.pdf.asis0000644000176200001440000000014014513444713016467 0ustar liggesusers%\VignetteEngine{R.rsp::asis} %\VignetteIndexEntry{Diagram of Functions in the metafor Package} metafor/README.md0000644000176200001440000003103414746146254013204 0ustar liggesusersmetafor: A Meta-Analysis Package for R ====================================== [![License: GPL (>=2)](https://img.shields.io/badge/license-GPL-blue)](https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html) [![R build status](https://github.com/wviechtb/metafor/workflows/R-CMD-check/badge.svg)](https://github.com/wviechtb/metafor/actions) [![Code Coverage](https://codecov.io/gh/wviechtb/metafor/branch/master/graph/badge.svg)](https://app.codecov.io/gh/wviechtb/metafor) [![CRAN Version](https://www.r-pkg.org/badges/version/metafor)](https://cran.r-project.org/package=metafor) [![devel Version](https://img.shields.io/badge/devel-4.9--x-brightgreen.svg)](https://www.metafor-project.org/doku.php/installation#development_version) [![Monthly Downloads](https://cranlogs.r-pkg.org/badges/metafor)](https://cranlogs.r-pkg.org/badges/metafor) [![Total Downloads](https://cranlogs.r-pkg.org/badges/grand-total/metafor)](https://cranlogs.r-pkg.org/badges/grand-total/metafor) ## Description The `metafor` package is a comprehensive collection of functions for conducting meta-analyses in R. The package includes functions to calculate various effect sizes or outcome measures, fit equal-, fixed-, random-, and mixed-effects models to such data, carry out moderator and meta-regression analyses, and create various types of meta-analytical plots (e.g., forest, funnel, radial, L'Abbé, Baujat, bubble, and GOSH plots). For meta-analyses of binomial and person-time data, the package also provides functions that implement specialized methods, including the Mantel-Haenszel method, Peto's method, and a variety of suitable generalized linear (mixed-effects) models (i.e., mixed-effects logistic and Poisson regression models). Finally, the package provides functionality for fitting meta-analytic multivariate/multilevel models that account for non-independent sampling errors and/or true effects (e.g., due to the inclusion of multiple treatment studies, multiple endpoints, or other forms of clustering). Network meta-analyses and meta-analyses accounting for known correlation structures (e.g., due to phylogenetic relatedness) can also be conducted. ## Package Website The `metafor` package website can be found at [https://www.metafor-project.org](https://www.metafor-project.org). On the website, you can find: * some [news](https://www.metafor-project.org/doku.php/news:news) concerning the package and/or its development, * a more detailed description of the [package features](https://www.metafor-project.org/doku.php/features), * a log of the [package updates](https://www.metafor-project.org/doku.php/updates) that have been made over the years, * a [to-do list](https://www.metafor-project.org/doku.php/todo) and a description of planned features to be implemented in the future, * information on how to [download and install](https://www.metafor-project.org/doku.php/installation) the package, * information on how to obtain [documentation and help](https://www.metafor-project.org/doku.php/help) with using the package, * some [analysis examples](https://www.metafor-project.org/doku.php/analyses) that illustrate various models, methods, and techniques, * a little showcase of [plots and figures](https://www.metafor-project.org/doku.php/plots) that can be created with the package, * some [tips and notes](https://www.metafor-project.org/doku.php/tips) that may be useful when working with the package, * a list of people that have in some shape or form [contributed](https://www.metafor-project.org/doku.php/contributors) to the development of the package, * a [frequently asked questions](https://www.metafor-project.org/doku.php/faq) section, and * some [links](https://www.metafor-project.org/doku.php/links) to other websites related to software for meta-analysis. ## Documentation A good starting place for those interested in using the `metafor` package is the following paper: Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software, 36*(3), 1-48. [https://doi.org/10.18637/jss.v036.i03](https://doi.org/10.18637/jss.v036.i03) In addition to reading the paper, carefully read the [package intro](https://wviechtb.github.io/metafor/reference/metafor-package.html) and then the help pages for the [`escalc`](https://wviechtb.github.io/metafor/reference/escalc.html) and the [`rma.uni`](https://wviechtb.github.io/metafor/reference/rma.uni.html) functions (or the [`rma.mh`](https://wviechtb.github.io/metafor/reference/rma.mh.html), [`rma.peto`](https://wviechtb.github.io/metafor/reference/rma.peto.html), [`rma.glmm`](https://wviechtb.github.io/metafor/reference/rma.glmm.html), [`rma.mv`](https://wviechtb.github.io/metafor/reference/rma.mv.html) functions if you intend to use these methods). The help pages for these functions provide links to many additional functions, which can be used after fitting a model. You can also read the entire documentation online at [https://wviechtb.github.io/metafor/](https://wviechtb.github.io/metafor/) (where it is nicely formatted, equations are shown correctly, and the output from all examples is provided). Note that the documentation provided at [https://wviechtb.github.io/metafor/](https://wviechtb.github.io/metafor/) is based on the development version of the package (see below). Therefore, if an example from the documentation does not work as intended, try out the development version first. ## Installation The current official (i.e., [CRAN](https://cran.r-project.org/package=metafor)) release can be installed within R with: ```r install.packages("metafor") ``` The development version of the package can be installed with: ```r install.packages("remotes") remotes::install_github("wviechtb/metafor") ``` This builds the package from source based on the current version on [GitHub](https://github.com/wviechtb/metafor). ## Example ```r # load metafor package library(metafor) # examine the BCG vaccine dataset dat.bcg ``` ``` ## trial author year tpos tneg cpos cneg ablat alloc ## 1 1 Aronson 1948 4 119 11 128 44 random ## 2 2 Ferguson & Simes 1949 6 300 29 274 55 random ## 3 3 Rosenthal et al 1960 3 228 11 209 42 random ## 4 4 Hart & Sutherland 1977 62 13536 248 12619 52 random ## 5 5 Frimodt-Moller et al 1973 33 5036 47 5761 13 alternate ## 6 6 Stein & Aronson 1953 180 1361 372 1079 44 alternate ## 7 7 Vandiviere et al 1973 8 2537 10 619 19 random ## 8 8 TPT Madras 1980 505 87886 499 87892 13 random ## 9 9 Coetzee & Berjak 1968 29 7470 45 7232 27 random ## 10 10 Rosenthal et al 1961 17 1699 65 1600 42 systematic ## 11 11 Comstock et al 1974 186 50448 141 27197 18 systematic ## 12 12 Comstock & Webster 1969 5 2493 3 2338 33 systematic ## 13 13 Comstock et al 1976 27 16886 29 17825 33 systematic ``` ```r # tpos - number of TB positive cases in the treated (vaccinated) group # tneg - number of TB negative cases in the treated (vaccinated) group # cpos - number of TB positive cases in the control (non-vaccinated) group # cneg - number of TB negative cases in the control (non-vaccinated) group # # these variables denote the values in 2x2 tables of the form: # # TB+ TB- # +------+------+ # treated | tpos | tneg | # +------+------+ # control | cpos | cneg | # +------+------+ # # year - publication year of the study # ablat - absolute latitude of the study location (in degrees) # alloc - method of treatment allocation (random, alternate, or systematic assignment) # calculate log risk ratios and corresponding sampling variances for the BCG vaccine dataset dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) # also add study labels dat ``` ``` ## trial author year tpos tneg cpos cneg ablat alloc yi vi ## 1 1 Aronson 1948 4 119 11 128 44 random -0.8893 0.3256 ## 2 2 Ferguson & Simes 1949 6 300 29 274 55 random -1.5854 0.1946 ## 3 3 Rosenthal et al 1960 3 228 11 209 42 random -1.3481 0.4154 ## 4 4 Hart & Sutherland 1977 62 13536 248 12619 52 random -1.4416 0.0200 ## 5 5 Frimodt-Moller et al 1973 33 5036 47 5761 13 alternate -0.2175 0.0512 ## 6 6 Stein & Aronson 1953 180 1361 372 1079 44 alternate -0.7861 0.0069 ## 7 7 Vandiviere et al 1973 8 2537 10 619 19 random -1.6209 0.2230 ## 8 8 TPT Madras 1980 505 87886 499 87892 13 random 0.0120 0.0040 ## 9 9 Coetzee & Berjak 1968 29 7470 45 7232 27 random -0.4694 0.0564 ## 10 10 Rosenthal et al 1961 17 1699 65 1600 42 systematic -1.3713 0.0730 ## 11 11 Comstock et al 1974 186 50448 141 27197 18 systematic -0.3394 0.0124 ## 12 12 Comstock & Webster 1969 5 2493 3 2338 33 systematic 0.4459 0.5325 ## 13 13 Comstock et al 1976 27 16886 29 17825 33 systematic -0.0173 0.0714 ``` ```r # fit random-effects model res <- rma(yi, vi, data=dat, test="knha") res ``` ``` ## Random-Effects Model (k = 13; tau^2 estimator: REML) ## ## tau^2 (estimated amount of total heterogeneity): 0.3132 (SE = 0.1664) ## tau (square root of estimated tau^2 value): 0.5597 ## I^2 (total heterogeneity / total variability): 92.22% ## H^2 (total variability / sampling variability): 12.86 ## ## Test for Heterogeneity: ## Q(df = 12) = 152.2330, p-val < .0001 ## ## Model Results: ## ## estimate se tval df pval ci.lb ci.ub ## -0.7145 0.1808 -3.9522 12 0.0019 -1.1084 -0.3206 ** ## ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ``` ```r # predicted pooled risk ratio (with 95% confidence/prediction intervals) predict(res, transf=exp, digits=2) ``` ``` ## pred ci.lb ci.ub pi.lb pi.ub ## 0.49 0.33 0.73 0.14 1.76 ``` ```r # forest plot forest(res, atransf=exp, at=log(c(.05, .25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.xpos=c(-9.5,-8,-6,-4.5), header="Author(s) and Year", shade="zebra") text(c(-9.5,-8,-6,-4.5), 15, c("TB+", "TB-", "TB+", "TB-"), font=2) text(c(-8.75,-5.25), 15.8, c("Vaccinated", "Control"), font=2) ``` ![](man/figures/ex_forest_plot.png){ width=40% } ```r # funnel plot funnel(res, ylim=c(0,0.8), las=1) ``` ![](man/figures/ex_funnel_plot.png){ width=40% } ```r # regression test for funnel plot asymmetry regtest(res) ``` ``` ## Regression Test for Funnel Plot Asymmetry ## ## Model: mixed-effects meta-regression model ## Predictor: standard error ## ## Test for Funnel Plot Asymmetry: t = -0.7812, df = 11, p = 0.4512 ## Limit Estimate (as sei -> 0): b = -0.5104 (CI: -1.2123, 0.1915) ``` ```r # mixed-effects meta-regression model with absolute latitude as moderator res <- rma(yi, vi, mods = ~ ablat, data=dat, test="knha") res ``` ``` ## Mixed-Effects Model (k = 13; tau^2 estimator: REML) ## ## tau^2 (estimated amount of residual heterogeneity): 0.0764 (SE = 0.0591) ## tau (square root of estimated tau^2 value): 0.2763 ## I^2 (residual heterogeneity / unaccounted variability): 68.39% ## H^2 (unaccounted variability / sampling variability): 3.16 ## R^2 (amount of heterogeneity accounted for): 75.62% ## ## Test for Residual Heterogeneity: ## QE(df = 11) = 30.7331, p-val = 0.0012 ## ## Test of Moderators (coefficient 2): ## F(df1 = 1, df2 = 11) = 12.5905, p-val = 0.0046 ## ## Model Results: ## ## estimate se tval df pval ci.lb ci.ub ## intrcpt 0.2515 0.2839 0.8857 11 0.3948 -0.3735 0.8764 ## ablat -0.0291 0.0082 -3.5483 11 0.0046 -0.0472 -0.0111 ** ## ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ``` ```r # bubble plot (with points outside of the prediction interval labeled) regplot(res, mod="ablat", pi=TRUE, xlab="Absolute Latitude", xlim=c(0,60), predlim=c(0,60), transf=exp, refline=1, legend=TRUE, label="piout", labsize=0.9, bty="l", las=1, digits=1) ``` ![](man/figures/ex_bubble_plot.png){ width=40% } ## Meta The metafor package was written by [Wolfgang Viechtbauer](https://www.wvbauer.com/). It is licensed under the [GNU General Public License](https://www.gnu.org/licenses/old-licenses/gpl-2.0.txt). For citation info, type `citation(package='metafor')` in R. To report any issues or bugs or to suggest enhancements to the package, please go [here](https://github.com/wviechtb/metafor/issues). metafor/build/0000755000176200001440000000000014746146344013023 5ustar liggesusersmetafor/build/vignette.rds0000644000176200001440000000040514746146344015361 0ustar liggesusers‹uM‹Â0†Ç¶º~ þÜ{ô¾léE{š´ÛDšHñæ/·¦6q[Ù=d2ód^æÍüLÀƒ ðÀóMê/M™³h9LšœrÌJ,Â3MCT\9^0©,y_÷µ:"S_D¢¹ŠpAô‘«%;LN˜1+YKA/¦Sddk:V_ó«bOÙžT\ÿT÷Ï:†êx}ë†× °|òö:÷?7_:Q|ÜÕ§éMá·}îŸØÛú¦clcŠñ[E?q^]Ë€W‚¾²å¯–±¿š2K}iÿïÇ-¯ôî¯Zø/9uòÀÐŽ–÷–•‚U4+Ó-E |yIE/NË×.ß_ÿ†®Ÿ´üÁ ×dàêå*“h5}°ç{?ؼá3_žiýæBIwüoîñ‹yü؉ƒ§ ®_WÞn›åT$[‹hû†Ýrux‚ýshbfº¼xb²f–Šº¡'·l)êc[ƶ — WŸ²ìá²^nÕkn¢ØÂªg®ØÂäöL¸ì¾ü+~ÚòU‚^Ã^©ŒøEÝ­o-ÉóÚ {~Úb]þsUé½^ö^ßO/–m“±t÷‡ÈÑwrÿé“!b\-  1‚šçŠºÃÄj´Ä&±HÑËkA¯•+ëÒ¼^2u'„o7pèuék…د"­„8Í‹VN/Ò Ó].kº•Ó …ô6ÛlÚÊ!ö׈G‘rvíñ•£©•\³Z2´ýSSFÁÕN˜OŽfÙÚ±š[°˜;×2ݳ¢pkEÓp"–£ª#ÜzB5º¦[ ò|}Pá^Ð{ÓW#±ß' I5.‰+û‚®Õâ‰Y+_Ð4í@­RpM«¢¹–VoùZÙ7.ƒ—ã—åפQ²*Ó,œ ?tg Ía=™æ0[›×2ìEñ·%cÖ(iÖ”æ°?Õ,ö{[+”jŽkØô³ºmê“%cP3+$ãV™f¼£I³bE!rZÄJô{4Â/€þBÜJì¹3oNŸqË¥ çó'ŒsUûÛpXõ9ãv1ËbªicÜ6*EÃ~ôü‘='ï;´çôÄã§NìßwÏQíÎ!íļ“›6\£2›hùx`ð­þ«v¯ã]sJËÜ\y²0£Ûñ³ÁÁ_30ãºUg×ðp¡XÉqŠFÉœµsîTË,ÂrgÎèçvo6œ­Ã®qn¨@嚪•Jìí;´ãìûè{œy¦ÃrŽb¡Ì@Ñ*øò‡Y­ªÎR àEÛ¼â‰Mß;¨mܨ-(¯V”Mù|žÀù;‚mV]Í,Ža_vH?7Ä5 éÎ|¥ 1­ärÃìŸÛðâ2Þuç0ÿš».lÒŒ’c0™Y!G2Œó-œó"ëüÀ¦lSÅg™ìM_?xáBˆ¯`Å8²gßı3þ-à×A=ª7Gõe½`[-¯¯Ì—,½ˆÊ|ýaP×ÔGÕ(Ñ"¿!å2E;ËÞ É&“·•ˆ1’²rs%;MŠkëã &˹³`U*†×­Üò=4b[ð}—çÙ€È,(y£òUpÒëÛ¶—¹ß$˺ú§ ‰×—‹¢}£ñ(RþÊ|ÑàFÉj?$’ç.ð<*†Dê¤7Xv±â,™Øwìžýò,~$å ó›‹‚Cªk…ð¬k`tñÅZÚ~ð×F¦ç¯-5ú äº,_6Ü«¸x-èkcÈc™sY?RÍj4I–Õ¬I'«=˜e¡®]+¸ãûN°¸Æž±Xp3cf#}xð0èñß¡Õÿ›3Ìé×(ŽŸœ8µŸ•fÆ(œ­ú?MÕ*Y­¢çì2ÿEdñûQׄ;@ïˆ-þΆøz±xvüÀžÃ'˜´NmÒ1\†F‰õ.Y­hN›.Ó@ä¼)ϬUþË 3áNÐ;¥ÛxWû|Ñrƒ&-ˆí.à] ïŠ]}=ƒ‘õHÜ Ü z·Âá~Íaaˆ¥:_Ù£;Šßõûãu=Û㊳ ¢øˆ'f­ô²æQÕP ¡0Á¦¸ ì>'!V¿€x$»¾Þq.×+ÌËŸ¡)kJóV9êT‚95ïM’Ì…j#7Ëò ÕÁ¨–¾ü >”¼¥¯uÞúþô-ØOú–¾Ö½6QKï£q‰„d0m¯oêç(iæ­Cí»-oöA/iÁöNkUˬ¸Ž–±*¥yÍfý¬^qµ¹£"SÍþs´Š:Û•õÞž‰È.½t øÐ/H¾Ã¥—ŽuÐzìÐ:¼j§™I`tAa´ïÄí²Z9|ôéhÅß•bƒ¶ckeI–ÖÄ$ãoã™=§T1·É*æ…À—~Y:Š9|9è—Ço.‘»mzçg¯ýŠä»mz©øJЯL¿Û¦w^% žô»makO‚Ýv¯5uO Ô\ ZjZ pØû3½vÑt\–ÖLg†ÑSS†m°NšInØ³Í óÍ»ʆîÔlö†î6¶4º}½>UÂà«A¿Z™ [Ó˜Þ•òd$Õ€ïýîä=±ûீþ•x2âÿà{A¿7yOFìú€ïý¾ô=±¿€xÒ÷dë¹e{˜àô݃bõ ¨vú®\÷cº=]+“ÃjxƒìJÁ*X>©•u×6ÏÑ„üUµDãqö-ÛÉi§´Z…‡i³¯–(ú*à<èye^k)÷ZQ ó"àË@§v»'/?ìÚ¦™ŽVsXßsZçõÅzª¨ŽdþYà³ ŸMÞÁ»>àç@.}Gì?/ žôïrpí›U;Ùú»q˜V”ôr«ZdªÑþ8½à61öa^´¹‡ø9mŽo®‡l˜™Ô2†éíÚ”¨‚õÀ—7Zº"o×7pðžÈ}ѫπ~&y_Gì~øZЯ˜Ež‘!þ¯¾ôëjdß )ü"ð—Aÿr:yðí ßÞ!¼øNÐïT¦‘%RÓ–ôMï~ôÓQÉ»€ý¡©äÃÀ_ýëÊT"=mI_ö à³ UÆm´ò€Ÿ?æš¶$>ü"è/*UŒÔ`Ÿ¾ì«ÀoþV:ŠùðÛ ¿[1ËsÚ ÃQÍw€ßý]eªYváêf)ê„}Õ_ÿôß*S̲¼ó@ÍrÃTó=àAÿ0~œu”BìÿN@ª"qž¾ ´Ôz`tÅ\þ蟋­˜ûYTµO¯hzɱ´ICÓýE6òy˜¯ q–Sì-C/Ìø~1j@ùyàŸ€þ“äƒb×üSК~@ì¿+ žôƒ€+xÛð0Á  :cJÖTj²k½æZiTž5ÀÓ O+sk±¶…‘HÏ€>“¼k#vÏž}¶‘ñ/Ë ËHxôùt´R>Z®ûmb' €/ýâÎG$Î+€¯ýštóà3 Ÿ‰­˜cÑ"V7 Â¼ø— ÿ2ùh€Øõÿ ô_¥ û¿OúÑÀ•¼}x˜\4°Ü?ü)!]?PØt&´f¿9_²¦Í‚^W,Yï-0Žk–u×X83V­TôZŒ`º¨Õ(UŒfVfÙÆP}“›>ÊP*Sz­äÒÆ‰Šxð@ÿ‚2‡ØGgn£:CåÀ·€~KòÎØ½øVÐoÝrV z[kÃÛ£#¡œ_¾ôû”)g‰wèXF;~ôGÒÑÎûýÑØÚÙÕjß…h:kdú4k™ºíåfªÖØo£v?$àÇ€ ú“ï~ˆ]ðO@Kãu?ÄþOÄ“~÷#ä”Lô O6 !\?pmWÜ3x­Ûßܦ÷a¿òDf‘6.‡n,Ў狽R{©ZŽéš³^_dV˜•Æí™®Bñ ô¯u¶g"Q~ø1ÐKÞ÷»?úã±Uô=ÏÄÿÀßý›É»6b×ü$èO¦ïÚˆý§Ä“¾kóÕ&8Ï6U«HÖŒ?ÏÖ*Ðï×w=—LÇõ“¶aPŽ/—ãýà™üÏÄè9¦œŽŽYdHž)ôhÇ‚¹9úÖJ­l0Ÿ8lV\cZüάÇ.—ý¤WŠ\ŒR ìÝù*½fäŒÉE–¢Ÿw¦*]üsО|Ó»Íðû ¿Ÿ~Ó#ö! žô›Þ5hn×$Úô–xùŠ$Dë®îªgQ4¢½®ML!!è:àí oWÖ¯÷ݵW'AÆ€›AoN¾W'vYàÐ[bõI>¹&Î&ØFÙ¢³l“óKF“Ä» <^¼ÈJ´ø ÐR§<ÕEn$Êk€¯ýºttüJàëAËmF?}iû Ö9«ÞqMN™6ë0«†íê,2o$4ë³<è7 VÅ;cÒèÊê½^äŒjà »¯ât·º¤é¡±í[tfÝÈ™Nì¯i ÿ¤ß ™“LØA9í$$ë®êŠ›°£µÿ:Ò~LÌäóÔðDÜ:ØjcNHYþ¡Ä<©DÑÖó óêz¼³fToH‚€EÐÅä½!±{h€–ÚÖTþ›}VÔ]&Zcv_$Þðå _®L]r³®$Ë«¯-uº&ºÆ~ø:ÐRÝfÌ™âÿzà@¿!ùÞƒØõßúé÷ÄþMâI¿÷¸ŽÛ³‡IFô² JÈÖ\Ó÷0b«LOÕ'2~OÒ˜ ÉÅËA“¨¶5çЧf…õ0Eƒ§ƒñváXÔÆB5°øjЯN¾±\‡Bø  åVc5bÿñ¤ßX®G¹>áÆâ¥ –­¨¾±<²Hv4/“±¿¶Ð˜œÚNè ëàèÛ£¶…ëaÿ„%Ð¥äÛÂõ°Â2h¹ý_±Ú±¯ˆ'ý¶pìÿ†dÛO—-![?P}[x[½-ø3Ç­¡Vžd¿e­¡È~Yf/VKz7‡¹³ÀwLUmú󢆛wÄÙ«V)²OZƒ^Љõ³†°ßjʶÊÞ<õoä ì´Â–:¼­-Ý€öCøaÐN¿-û_OúméF´ŸmK+ê)ç%Äë®ïª§ÁQÓœºo©7§FvˆÖÉ/Ö!Râ'¨Ûiíuø:xÁªÐÔ˜ƒÖ±Xî/Zâ ýÂú&GoO£Sµ*t%ic Ý_d÷÷|7%ÝñfëüûÊt—5ˆ*Êax«õß.YfA#MEÌk“:å±*qÚ5iê ŽÝ;8Ý-uÃA´v}#Ú2±ÝÉi´Û5±ßÕ@ÿI¿]ß„¶|“òvMتž‹nBÛ%Œ¿žÔê^Öòùd?ÉTä1Iµ¨Ö’·Ù›`³„7ƒ¾9}›%öâQTúþ|]-¼WÁ45 ž´«@ƒûˆG²µü‡¸âÜŒâ£t·&1þœy‘ƒ­¬Wæ5º¸yHg=ß¼C+4‹ß_YÐ+ç\¯Ÿ,6â¿ÆE–9í`Ñ Ž„®ža¡f=}RÓndbúd}/2-kŽÙ“í…C6íFœ×¬BAw¼À‚ZÓÖ  ?—Ƶ®'½‹æ*n#ÜC;ñûQ±Ü6Š«Öìªå¹¨þˆ”óÏ{VsºGª÷Žç7 ¥ú¨¦³È0·HUhVª5—©Üq¹›Š{§Í-0:ËLjoIßiCâ ·Þ–|;'vƒÀí ·ÇÖÝJnýÞFbýìî½Oy°o¿'›Iý®[˜É±š9pêèà®FJÔöóM²”M‡Ú|–wkËŸ€‘Qñð  U®oµQñaàAK­o²m“=ˆÞ|èø+Z”Vdc×ÛáÉÆõ:ë'¦k%Ýö¦YDN}ŽÅ$UæxþTqÄÕ&k.÷»E‹}GÅrµ9Ë>›ÓŽU Ï?³Ð¨ü­Ì!,¶˜SŸŽ¨hf‰¢{[HÝa:‘co’ðw€?ät·‚ÔxQŸ•k½Žjbïeˆ½# ³ús/SfÌ‹\…Ú'‘4«Ïý¼ä]±[¼ô±5sº±ž/%ÖŸ·Œ‡†‡ýô QíŽJu%° ºkß›`e>*1ÿî¿æ3r^U™žÿtY`è|é& zl­·h^ÃÛ¶]µ™jð§¦ÝzÈrÐ;UÉâT6ä(â/XxkT öOÅ¥aS³§éš7+¢³o˜Â_Tù’£yºeè%Ôà“UÝvÍ‚YÕ½[jlfLâYZ˜žñçAjÓõNujÞ56ÛÚ& ŽY¼˜Wœíð =\ŸÞ8@¸¬— ~„ÊðH§æÅYŽæLnöMUº´nt.•Bt¿:&ÛVž§CÓî,„÷´ÊÑÌ„y‚î¿æt·\¾¶É%òÀgx·ãáÑý8yçFìþð¿sš0fóÿ¬gٽІ¶ ±?Îòó 9>ƒí¸ìËt»Ø6­†™3rYüA=C@ÉÐYƒwž¨±oe-”v^ðv#´:64L­}êŽ*î_8öü:§{âo4ˆì?aØ>ªñŸäþS©ºã6¹ÏÉ( ÈÛ·ëV×4,¸1Ñ&]a>Ó¶U«zS¿¾Â}µõ÷Æma4Èâvp+Ÿ/f^“7_n¬Œñ à¾šå(™g™wC¡ü„HFÑKâ™XÁ­Ñ¾!UÒ¤áÎ ¾Œú„ÊÙŠ5Wix6kÊeï±WJ%æcÏz³¥F±VðöÖM× ‡OL”½øç6Ém¤fxB©”úž°MîßPH’|øqN&í‰Ý‡€Ÿà4aÌlð)×ÛÍ•EDg:ÜžšÛDÝŒý“ÈUÝ´½-—áé‡d2R“cϵœ&TÝûI¤"&‰nÞÎé©S¦‘ußs0Ëi˜^s?ƒ®{¾ŠöûiÎ|¹lP’ŽÆ’í`N;"Ù?zÔÒI¶é]ý,¦9YØ*ú#oÆ’Ü‹ò0ˆnêG§ û}É|rAWÚ˜bõ5ú£]ð²õ¤qÑm´gˆcïNNvÖ/õîîå4a ¶Ù» ¸Ó½rË'â§Ó öi“óÞ»·YÀß—i¤’¡uÕÊ´;Cã’æ°¾/¬û:¿3ŠEQ!ï~€Ó„iGQ·s“©£š(jEQJƒÝZšp{9¢ÓõVá'i[…7kâÞîI O#ŸPP|Ò©hh鞤£Ó•õÅoXÝÆê91²Äá¹Ô,aÄGQ-Y¨"K•Één©ôê3ç’HW7pš0iç@ìÖoá4aÌö²½ÑqUX×Q³jΧNÚÅjÓÌõ;”3ªÑ‰eeá$ô­ÀG8M¨ÊŇgœn«ÅI`‘ÓÝ)œ°%vy Áéîø'l'üÙÁÖT­žr½-×õN “4šº`?†`?îXG0”¯Î˜ª5ØÑ†´Íà)ÿ®ñþè)"{Õ7ɧd{ÿΑ¶ô}k_gz Ú èËííŒ,·’^C½Æ(ë5¢XˆL¢Fü¨=ŠBÝ-Ö£DldªÀ@Ñ#7õNé9´ûIkûîGQ«?Í&¸ç[”¸‰+Êüˆä†ÀÞpŽÓ„Š”×n»X¯<Çi˜ª{Žîù¦BÎÿ’Ó½ñäÈ{¾‡¸ÉÔQÍÁû/jZs{Áy lº^p.„†õa»l:Ç“«Ñ&ñú>rq"¸é¼åEäÄõóÓ6íÖ&yÆ^‰{Xr¨;Â/‚þ¢²F¼¦q¸èv™}Ú$ÕW Zê¦ãh šØ} ø]Ðßm\·ˆö«‰›B%ô÷=àÿý•éOjÓ.¥»¸ŒÓÝRi(¢+í'`»œÓ„qÇoíÔÔX'-æ^£«¨{ð:Nªê'%ÎF‘$À[8-w!²†º¯ÞÊi˜’š\%6oã4ac’d¸™Ó„ièävàNÆÔÉ`R;ÕIÌ­ÀG9MØ¡¹E;Õ©0Ÿà4ás~>ƒäµ¹m¹ãÏg(CñNuerEš¨P«”dvª«—±‰«ÄNõ¤u<Ù,×6“ êšLS •í‰}Qf!ÊlÇ<º²êTœ9àÏs:zîÉùôW r¿ZFn5>]‰ªwª+,²SW§•„vª«²ÉTdvª'­­p·ž×EܺšV#~*½S]çGþf×çÎNu*Ï›€â4á%áÛ?,Èýa¹Õøv%b$°S]™l‘Ý»:Å$·S]½œâ[;Õ“VW¸OŽë"þ]MË?U¸S]ð÷ àïuÌã'±SJöà9=ït‡|ÿß rÿŒÜj|¿1Û©®LÂÈ=€:õ$½S]½´â[’;Õ“V\x_×Eú5-©©áÊNáø¢ü#DùÇŽyýdvªSÙ~Ä‘¤$šðRðû=ër]n%~_ÉíTW&bTǯP?‰ïTW/®ø–ìNõ¤UêúäÚÞõ+jLâ§ vª‹‚m€`:ÖÜ·g,ív-3JÛf=¨Éì]Zø5·iJ÷³SuÝ|+§ /‰¾å¹QFn5}‹1‚o*d}K<;’ꉔ(rO¤N›‹õD±g‡ª4d»¾Ñ)kïÜ’ãºH禦5‹ŸöDÞç,Êñ6Èñ¶ØrDÞç<ÌÍ­Žjö9hš¶§ävEwY_O÷ýÄLö<Ù@(sÂÂ>âÛdö“TƒÀX×ì†ôL!›ëˆÝàÐ;b+ï¶E÷{»T%ìHÎÀIГʔ(µ™˜D1%Ð¥t4W–A—ckNjv…D¨mж2¥ôZ“ŽŒNæçA«ËÔÓV'ð)ÐOÅÖÉóê¼éÞ$Ñà3 ŸQ§"‰Þ$É›o­®ûn«¢×ô/v®Ù¼ øÐïP§‰Þ$Éû€¿ úWÓÑÉ;¿ú×bë$±Þ$æ€ßýiq•ì<ãŠûÏH­RqþøCЗº!Éûw‚Ü'#wü1¾21Úí<#±\¨L°HcuµZ¹¨ý€g"¯ª²ÉTÚ5ÅNi+x,,×6cieŒÕtǾ(ÿºsk„˹EoòвŽýG»—pšðRpìÝKr]n%Ž]Á—DùŽ]b=P™dQ=»Bµ,æÙí Cuv¨¨Mk씾B}{‚\ÛûvE GüôZ ŸQ‚'¡L1üËMï&e [rÚÂ;óK˜á4a ã¯n 8ÈéîÁøŠÒ&knkGVQ·÷qšP‘¢d'ýºpš0 MÝ<Êi˜šR°®Nêœ&ìPð4¸Pw&`¥îŒ¸Ž~¸ v¦±"vFrÕœ*cø NG¿ºC×o rÿ¦ŒÜj/%b6ûÍ!Yà­D*>SR€Èñ™:í-ŸEnjªÂ@á%|§tÛ%Çu‘ØNMÛ?̆Þ{ʶ.ÿ±cÝ“Ê)Ûî¿þ § /‰æ_¹ÿUFn5Œ1˜²U#XäŽCV’›²U,d“©HNÙ&ª­pן×E\¿šVÓTó’S¶uQþDù_së|ªj“Û4e»IÚ±ÿoŽ´E™hÂKÁ±÷¬oÈMtt¹•8v5b´²Ý$çÙÕHÕ³+TËÅMÙn’q튥lz«mk씾B}{‚\ÛûvE GüôzLÙ*š ¬K8 ‡”5mÉIÛž-Àmœ&T¤¬vS=9àvN÷Hmmª€«½I[%së=;€Ç8ÝsL™šd§l{>ŸÓ„ièé8ðaNÆÔ“š)[º$ÖÃ2§{ä7öàÓl„ਫ਼–2¾p±0©§|’Ó„ ¤e,Lr’“Î ‚Ÿ—\Mœ¤DŒÀVºœŸK’Š‘”H9FR§’îFM“ïT½„Ç"Éq]$Qcœâ§CYo ™Ø4c]ä÷Cä÷K‹ü\šfìùUàç8MxIŒF?/Èýy¹ÕxY%b$0ͨF°ÈŽVV’›fT,d“©HN3&ª­p÷Ÿ×EÜ¿šVÓTó’ÓŒuQ¾Q¾Ø1·¾Ó+›ÔÌ3ö| øçœ&¼$<û÷¹¿/#·Ï®DŒ@Ͼª>Ï(·7Th‘}»:½,æÛ…–СÊQ<Ó˜¤ÂÂÝ{r\qïjšŽø©ê™F_ƒ„ÿ¦¬qËÎ4þ„#9S¢ )«í ÖÿÛnN÷Æ?à­×+RToð:N÷ª»½Hv®±wx+§{¥îЬ©Þë9MSSjæ{7wrš°CÔ^2”<)Ö Îé²èVÑï+šS¨¨Ù1Ú» øNN^ ñXﻹß%#·’xLžànäY’3™NMa¢Fp 5¹X«%v¨: "ï:¥þÐx0A®íãAEMWü4zR%QŽwCŽwÇ–#rR¥QncuT’T©{µ¦iÌŠ^¢tJæ”—–G/¸5ú…v¶bÍ9 &Æ3¥±®¿àß0;«Û¦Î~¬Ï™{WuӻǷ>y®eX$7£SÊM¯Vmëýž¾Ò»qÖšldtjºø™Ø°€Ð´iù™ój°ÕØ—Øæ9 w 7³+[ìª6ûÇËÅÞ`R9z¹Z¢‰ Û¶è†áYS—É=4=ŒQMršPQïÒý`Ô “丢þ“tIìÖ¯ä4a̲¡q‹iÆlÊÕH~]_ÝWwrº[.è åó„_2JÛ ÜÏéîýé(mð§ ãº×È+dÄÿ^à}œ&ìäXD9œà4a9<ÁiÂŽhä$ð§ ;8ÍA’äqš0 …<|œÓ„QÈ €:§%RªJÕE’ÌÏpš0 …LÏrš0¦B–fe–€H†ð N+¼ÁU&WIrø$§»ÕíËh«xžÓÝR™õš*àÖËš9]a\q0§µ\Š7uW2Në~ øNÆÐUàîlA/$D{/ð×8M¨Li,Ì=ÂöÀpš0 [y+ðƒœ&Œi+·iSµJÁIÐØaÒÐjŽQÔ\‹ N*<(Óœ’è2†ó!àsš°£þ÷è?i¨íO€Ái˜jÓý‘y_6œ5‹lÔfÐ|²7l›*çÌI³dºóÞ"†ƒ4n£±ŸUccÓù*û6ò+U£RdƒRÓprÚ Ãuÿ‘cÏ]œ&T¤íåûÏѰÓ‹~ÚHÕƒ¹ç(§ •MÀ8Ô˜o a|7ð§%wl‹ŸÞÂÚgÉšó4Ê«Y¢{Ül>à áM'ò IxèpºÇ‰-iä)šÍ\ëuT“÷úMÓ27fèEª šC À¬Ì¶c Õ'Aæ szÆ¥2fÎÈeñ £8Å9Y¢ ÌIÃñúÄ&E2e±zõfHY¨£OOÛÆ4ûÀ x<=q¥²Æ>k”rÚÞyÖ;Néµ’›Õ*µ²a›…a¦cš½Bý§ÀP4‘¬V²¦MÑâ×Ä®n>™yÓ(ÉDˆ!뻫–í{ðˆÕ¹ UHøUÐ_UæúNNœŠìH”oÿô&ïˆÝ×€úbÖg±br½n—™åÙZ=~ŒÎÈM³î£0£ÛzÁm²Gö§SìwÞŒ9é½l±ÎdÊ6ž¨Ñ$mÙà´eÏ{vGlíÙ£˜ÓŽMëëZÉd_àuú6‹Øü Þ‘Ž§ŠûcŽÝ¯á4¡ª!9“OÂ’¼[· ßÂi¹gdKê~øVNÆ´¤{òžÁñøñ8· î*Óžgð¼‘× ‘v=S‹ìó©¿ü N+yDöùÛá˜|TãóWÒ&~•F”h¤ \ z¥2[_RÑsv9ªµ“,—¯}UòÖNìV¯}u\åt¯§pŵ-ÖÿͰáJÙtnéÞ¦4‡…E¥"õ¿3Ì«–Èljý,…Qþ_4G`S¦Í|žm”­Yƒþ~ŠFºbS"¿W±*C- °y+«èày6{ïT®^­–Lz‹¶dµ~›ÕV„zãYƒ|;riÎYþŸZ»„;&}\ÃÑKÖx ÇN›h÷(p+§ S0ÑîÛÛ8MÓ<ÝpÈ<º&s½(k 6ÁR+¯4††-Eu¤TÛŸæ4¡¢ú_ž/®n–œÎ7ÃIîìRéÂ#÷$ľG@<’by\qvñ/©#ž˜µr%ull00y†¹ ð %݉¼Z´Dx%è+•ù« ™áûì@QwõÜ”Í\éÀ`T—BâÝÜzKò.…Ø]Ü ZÊ“5ÕÊA¾ÆB¾D7+|ä™qŒÓ£Q‡Š‹ ;£"cð… _˜~ó¼væ£/1ÂÚõÕh¦×¥2OKµÇ'¿i@^l¤±Ž(õ8$%=«¥ö¸ž˜¢}\aëh¬oÕ¹b¢ø¸U¥‘dKV{%Èñf/Qÿ9Ø@¹‚,øæíÀ@?¼!v£À бMý²ú0>² ANý¨²zXš÷‚¡>ZÌ]] ˆ}€ñ"ƒ¥qŹ›Z’€xbÖÊ5Ì>d•¦¦uP>h…wR¯±^#Q¼ÝPá5 ¯Q\57;¹»ÌbI槇ª¶En;gÙÓBÞ ÜZÝžKóF™»!|¯îÿÏè—ˆÿNà.л”)é¦×­:»†‡çæær”²½~·ð<Ö@EÊêË×ì0UÝ|ôã±UÕ}u…xpô¤²â/Ëë5wƲC µÞ=]u¿Ä¾GÀ̘…zY>â‰Y+'˜û¼nV{(§eÆFFGsÚ>«R¬¼‘>5¦!½¢—æê›m¢š¢¡iU½pVŸ6rZĂ탊 O€–ÛåèY5› NƒÎ®îšŽKsXÚ kÊÓí°­Àí„}xô9…¡YÈ©5bw8z¾þ›ø? <Znk_®z6o“ç%À§A?­P“V©Âö)àKA¿4¶:Vf6fµÑ¡¡-;¤Ñˀπ~F™bnõ;Ö¢eRG:<:’ݱmóöá3Ž“›Ù¼-gŽlŽØ½’¨o~ôgênÖ°'Cؾø,ègÓï]ˆýçÄ£¨ô—åÙ;th¾àï.[З›½§«£=,±ï°ÃœýìéOÜÈ‹õ°9•ö‚îÕ˜O'IÍzÀ{„W€Vy¢,d{òèƒðJÐRS¿Ñ¦Dˆ]ð*ÐR ˜-y-¼åòÆ&eZ¬± Ý<ÏGr] =ªÌí··Ðùofpôx:ºÞú®ØºêÇmô•-’ãnà} ¥Î±r]žw ƒÖkCùŒ{»:êÞ‰}€ñÜûö‹'Ô.I — ˆ'fµÜ¶aí`Uç5Z3âû71r“7‘oœÓË´›–>‹,ðAèŽð6Ðrëåâ§71Y´;‡H¤ÜY:¡3‘«V­d9là7YÊCŒð&Ð7Å–rõŒ¡3LFFê~B¸ôêäš@¨‡ÁÛG5MñÙ\}ÁMX¦ÇÊ[‘rm³àò¥·¬¦;N­Ìw‰ûç"Üú™÷Èe:‚ri¦c–i/•‰¿÷ºÇr­äšt:BsÜZÑ4œa§0cÑîì|©g ÷K¹ G!<¡ï]ÝL1Ô¾êúáVŒÕÐq_Ú¬Æ"¼g€©¨X<;N{S£Ûú1ˆN¸ôîØÅècòGå8Øöîë@³{¼}TÓìtõ’P«¿Rpõ:m:Ë<ü¶È ³r1÷]ˆŸŠ~gt«? A;éáO·jLm#™ZÅr]°0ÓË’²‰Gä›”FöAH¸ôÆØÂ^æíæ!UFWãC‚ð2Ðñƒ²èj< Þ>ªQã ©‘ö¼ûZ$—¡k¬_¨•t›»o—QdyŸ AÆ™ÂaèN®±JN±C(ÂkA_ÛQS{R<ÒaS˃·jL-[7µ†UÁÞâûG!&at6¶È[am\¸LÙКmŒœ8BѼ9>ofµYs|–j\JíA^Bá¨V ñqHñx‡ ñàí£C<Ü<8iÞGŒ …ôó F'º¶ï¢âšíÝ)¹H:ŠA(Œ½bi×¶øxCÌæE0Bák¢zSr4kJÉE¹&!;¡¿¾'v9rí‡&žV²š=c3™£Ûu‚æ@ç:3)‚=a'"xû¨¦‰eÈkŽ¡y F2ƒþ}5|Pü`ý@dq§ "at&¶¸w† NCjBa¿xÜ‘ßE5œÇŒ.ð „$T7ò“j4&Ø›n4gÀÛG5æ¸ßhôvoÊɘš¢ÝØŽù$óåÞ;NÕªgù|“wFÚšŠ\¬³( áqÐÇÕ«h°^‰Ÿº4fôYÓË¥Q *êÖEйX%¥¤´X9¯Ëµ„ìïBj—…,t‚ªëªhïè¨ãLzÂp·WÈ0{Ì’¦£{“ ÊB(L‚=wÝŸ! ;ìþª`OØI÷÷xû¨Æý QƒbÍ|FgÞ‹f#r&£ÏŽŒlǼÓÆ9”È2Û“pôPl™¯æ/ëÒF–Í<„W€–Ú²Ð$Û)Ȇ*Í4ÉÈÚ´iÞâþøÕ+ÏšÅYÝð ûq6Wa‰ÃšûÀ¼9˜5³‘Ëæ¢<„ÂLdܹÖüœ²lSz†L!3–Ý’Ý–Ý1È<@fsvkv{vç „¯ªA^Bus­a3XvѰ3¾÷5ËÆ`öÑÈbÎB4B ´[Ì«1o6f ™ySF¼9ˆDx5èØ‡Ý»®´­9Ï>½ôè©Ã‡# wª[9XÕX9ØÝìæ!á*Ðñ7RGwóO‚·‰, G›}Ù3súå<ÊA¨niø@¤é—Ц×\kAÜ»3ražB€>»0÷^T,å¯ 3• p×5NÿdµêŒÉÆëePBcÐ½Šš"+KVÛ]¦BŽÆmŠlW䦋 6»ŸQÚú"ï‘"ö=â‘#p_Ùbèù%_ÔÅ÷W®½F™V–çÏós¬gáÜ \ zmúJ!öëÄ#W Þê™*ºÿß‹Qì.{¤7VÓ~cZÏ'„^°- „ûÀc1ü1JCæUhpiÔaÞÕ'½[/ZßY‘/Z—u@®ðâòVÑòzÉÔá¥_eT ÍS/öµ¼´œñ+œdƒìæwD­Ôß]–Ÿ2§k¶øêóZ^éÍìæ¶–Îp ¶9)~Ǻ–—–ä+^NÕVyZ^*òû·I…¾,ïÔ&>¾^¿¼ñzÀŸTŒ¹‚U.ë•¢ð'Wµù“eyÿÐ|ýõ•RÏpô_º¢ù;ÿƒ9U)6ýéÀ‚º%«±*%!X#Ëiû½K˜JKb]_ø?ÛÓúR@-øÕ_½r”'¶” wÆ¿ïòÐïc}»Õd¿á¬ƒ¾µé•~Ö(…£Þd\k¾ly¾`U FUlƒ­ Gì1ë/-YÐPqn¾þÆš>5Ò6B÷å«gÊßÌeƒQ)š¢mlXð-lXº¨–ùfñVÛi©™úVê¶ÍsUÞ6ÂQ‹Þü³­¡5½4_sôiQ²%!F°4_*Z®¨ KehuËB¾q%Vkãn•‘Užé´£€>À;Ê,z‰ÿO3¹‹h‚9ÀEmmi›ÃZZK}°n‰öØ\D‹ìÏ×ïj6ꀂz7⵺ÃÀoe¡Djz©¹Ì Êì¢çÌXs‹TܲüDñXµIþþ6²õå‹S¢æ/ è@+lRi#Ûª|Õ6êYkÚ¼HާµÅµÕeù"/jpKó®é–.¦{_ž§€§2_^„ùRÖ-èŠÚè–5Œ²ùd€Ï x·ï.*mO~¢ñ/ÉÓø7ØüZƒ ½,ÊI5ò¼UwPœäéza)ZXSÍ/­fmÕìÂÅèoI^Ÿœ ðò!/ó3ŸmÕ~ÖT(Uz³ï ª¡z:EíQH3×¶vVzÇÛNlñöµiþ1¸ú «¾lEÞ™¯XUÇl‰™[ÊpÂ8W+pEÀWõæ›zÚÖþÚ?–~ÁÙÉv® ùXjÛªÂí“A¡pÛ‡œü !â]žGŽ‚{Äþ¯ÇgqMÈ0±9tn6&æ3ÌŠ‰ŽTü£{xÅ?bN­ä:ãv1브õødÍ,=ïÒQ†]»vM‡P ½rf`ÃèÀà…€qâ\X…Ýþ8Q·Ñï–,˜‹9uòÀR¿,mý°‹ÿ~91¤(£{Ï÷¾úŸÿm·ÿûúà³ÇoÈÇ8xºàúÆæýè6j¾¿•ÁÆášc;3ºm OøXæ£ÒagÞaÎ#ç/kýëÛ‡Ýrux‚ýshbfº¼x«LÝЋ“[¶õ±-cÛ†‘Ž¢Ù ›—±a3F a¯,Í4›ãRö3ÓúÊm ¬¥ÉBè³ÇOd6ŒÚ„°¨%æ«óm¼èùŠÎö°~Ò8-ôjù‚ÞêßÇ]b#–sÎ{7qŸç.\¸pžeA¹ýü\»”•qy~Òœäq– uöl (Â8Ä&¼ô52Eh骶5]ÒiD©Bö@ y—+;StK:Sû7 xÛP¤mÍE•ÓÐBíð±HrÚ=ªÓNOþ`’Bï„ „˜îº<¶ÐËóû&öõÆè*DßæM÷sˆÐwç&ļ\ÃèÇ™a§¹ÏΊ»E$ X^Šab,$u˜†/wmPz!k9ZP©„UÛ dÑ][ÀÌjø$6©Ðê]ÑoÐÚ\‡² §GâÕÃEÍD®ñëç`¥hz±©ŠÚ½†LÎ?¼Ž„-RâÁEÝ`#@ÞbßÄÁã';ª¦.$ÂaA†ðúØ„: ‡%àj¿ö`OEܽ ø4bxéoF‰ …SE üa_¾h™jÊ=t±-c^Ê!”Œp7èݱu¼Þ×ñÝôr[Šô¼/ºžËuÂkᔜP8Ý Ø;¶ ŸõœËòå3Ž7RWQuY¿ßœqË%ÖmÒ´Ãù <eƒŸüàúå•°ø@8Lt _ùàøÌÞ·ßò‘U Žw ÏXecxn–çc¶Kæä0™ûÇ9£Ÿ³‡gŒRÕ-ã—ÏÙárË ²|¦ÙL®•7“‘fr~ÃX ©,ƒyúùrö7Le^IsZÐTÜæ:¸N¾ö³:¨‡—~“ ßÖÉÕ }Jã8ÿ6VÌ:T¡pbV¾bZ†¬ŠÊja·X Å€jðÊÿ+ÿ£Må/¶©q!œN^M_™/YzmVÉ(£çN¡œ!]ŽM¹^ìGÏÙsò¾C{NO<~êÄþ}÷¥ýg'æÜ´á•ÙÌ@Ëǃwhõ_µ{ïšSZææÊ“tC\FülppÁ× ø£ÀB±’;ãÐQŽY;W1ÜáJµì»´Ý›‡ gë0ÓÕPÊ74U+•ØÛwhÇÙ÷Ñ÷`ª|Rf hü? ùìŸv|À÷¥¾àOlúÞAmãFmA9x•°¢lÊç=sº“ÏÒjfq|àû²Cú¹!þ«Mwæ+Âø@.7Ìþ¯{îÅe¼ëÎaþ5w]ؤ‘{c2³BŽdç[8çEÖùMÙ¦ŠÏ2Ù›¾~0Ðð…3=ršPQË'÷WTÖÜÖÒ R;ox‚0ç¿%%Üݵ ¢Tà㜢² hãE5¨˜Â5pA3rjú8™Rz ¾$oœ5“4+½šÜh”êAµ×ƒ#Ô@kÉ“ß}búû»ýßÇ&÷Dþ˜cªÔ£Jþ«çlT2Zef¡Æ*r­Sw웩Õ5·A²BšÍ ²!ckÐÑýÇs.^ (©)ëÜ—Ìx3Ÿ·ÉåÀ"u Ï`å‹”¦‘q8« ê£6§úö~\.ToPn¢jUÝööÎx.àîîòÿcbôR5ܲ±{…^±féºC=DûaI·ý!áÐkb8µž°—µþåòý»?Y8”þÁæ ŸùòŒ*ïwgduùõùœu|jöwú´m±kèëùeÝbãí¤÷’>â‘#ðþ1Ok[5ÁåÀ• Wʈȵ¾‹½m8ß-žuIK#Ä~µ€xiDÚ/õB½x¹¬½FÔŠØY †š¶Vˆýzñ(ÒÊ¶ÃæY6О±¬¢6AGâ¼Üé¥â’ÐNŽË“®nbšÛ¤ã¯#–¡j#=®P…ØòÙnØZ¿±í®ôUHìï¤ Wć¶“¯P¾‹ŸÞ¢iÚºüyÎÒ2f6t(?d&}««ßO´,r¨òHÔ©×*æ@Xv8‘žÛ›AoVfÏ¡iì鹸ô–ØŠëÓ˜Ö$³¸ôeŠYî)¦<+¥—»ºê9öÓÐËNའ𧻓îî¬w°¹~DÕ¶fÍ"]§«Ñ¼ F;•kŽÆF µ‚QäMMc£:6p0ö>åÁ6ì²×úø‡S¦«9þEW²•€íut¬*§=äÝè­ÑÍà%o:¸Þ4ŠYö¡×Mx)èoˆU1ÈšÊtQ½/15eL:BA•ÌŠ¡Û$ç¤YñÎ`{Ûûköýݶٷklôù¢#zîãØ}§»ï‹«†ÿ*ýÿŸJ;•¾ðø9+îÄ‘=û&Ž›q÷AàINwŸŒjÆôÆÊÖ7Zšêþ—þ ?ÜG5½vŸ¤?%#½Ø3ôI6™¼yD¥(+w0W~º,®³Z+ï,X• ?8xWÈ·xÇÕýoh=\Z~¢$¹¢ /`E;Õxé¶åÌe`¸.ÎÍáy.TÌ28ñH6ö%+Nhü·<ø‘”'Ì-¶Ÿ[ ©ª³ªÑE ©·Í´JÖ׃–šWäÚ8Ÿȸ°1]rsO†ç/Ï"ùXV›tÙO§Y Jø0ePtè2•35Ç¥$lÓ¦Ë~fßhºãö>±?ôÊÓP{£Ÿ|ôCÒöÖ:îàGŸÙŸæAçc×dOôd=ôá£ÀÇ@?¦p~âÛ;™OW ×ß ûã¹Á¸âÐÇ•â‰Y+—UŠ› .«T䎗ò/![?pMׂLFýqk×u¹^’žû"ÁÖoý\˜û"yn¦8÷Eìnvvî‹$Ø |Í}‘8wSœû"v;Êæ¾ººsJ¹O@<ÊJÏS²í}0ýˆØOú_X½LÐã/Cˆ'!\?p-èµÒ.Y‹P72—ŸáY±ôÒ`\ï¿ \G@<¼?ávàÝ ïNÞËŽwƒÞÝïO¸xè{:ïý ïN€žHG/û'@Ÿˆ­—‰œv¬Ršgc³’1«W\mŽ# V¥X+¸<í‚ÕZÌYÊ8aD¾<›ð$ð½ ß«LËËîñSÂDê×ýqe:n$ý dü>à'@"ý>žð7Ä“tOØü$èO¦ßÇ~J@<é÷ñ«¹E{˜\ß;éFÒ‘@ý@ax§hH÷j¿o×fYÇÎ:Z°äg²Y¿O ›Žë¯dR:m¾T:Ïœ—Y˜i^uf¬Z©¨MÒ-|…R­h5ÜZܼ¤šÓöQÎê’cÑ»:¥~Æ3U³ø6Ðo‹åÏ׋¦m£*!Ù¯?úƒ 5Ï–ÈöÝÀþPòý%±û%à‡A8v#î§ ZRýÉñëÀO‚–óm û9æ·€¿ úwÓèçˆá§€¿ú÷ÒïçˆýWÄ“t?Gìú€_ýÕôû9bÿ5ñ¤ßÏ­áíarý\÷i ±úÄ#ÙËõ¶ˆóÊz/çå6 õÞÎÖÊ:ë~Ή]›¸Ý'hcë"©SkêûÐÑñÞÑ]¡7t½mƒRžŒªcð ßØiOF¼øÐïIÓÃ7ß ZnüÒd«Q=±Ÿ€x’ödÄ®ø~ÐïOß“û_OúžŒ¿Ã1Áˆ]±Ó;˜…S±·ÎȽ>^ÄNg³ŒÇíka>„ïý®çDÜNïü:ð# ?’|ܾíˆð£ ?š|ÜN/½ø1Ðë`ÜNï|ø9ПëtoGïü.ð ¿‘FoG¯}øû ?¶v†[g!éLÉ*x±Í÷8ßqäTøÀÿúÿ(oÚË0Ñ]8/4áNûW9$ܺ»qÌ«4a­ûÿ‚í:Nû·´ÄÚG5\"þë—sÚO¸d¸D/õíó8í_t“f¸Dì¯h ÿ¤.‰§Rø=,!V¿€ñ~­Ó›¯IbàB%4ü£JY|èxœâ[’" óà@ ‘þðƒ ¥&UÓìIØÿ ôŸ=W:Dêoÿú“ï‰Ý_úGÉwˆÄîÏÿúŸ:Ð!ÿþ7Ðÿ-ù‘Øõ úÇéwˆÄþ¿ ˆ'ýq=oGõcè ÍØ3Q, ÔßÕØ'oþà²Î×»Dòmº×6f¼›ÎøÑxêÐlszÆš¡mŽY4ü°B'5gæ«ûÁ1¾“ú9¾Á1ø!±‡ÌÌšºŒ†Ö_ ú•ʺ¿6k±¡RH’g€¯ýºä=±{ðõ _»ÍÈl" Þ|3è7«SIød[[•¼øNÐïLG%o¾ ´Ü–øéÆÁÅN˶£w´Ü `¤µž¶*ûñ¤¡²¯¿ ú›kEßþ!è?T§°1X[…ü™€xÒPÈÿôŸÇVÈ©ÁœvpJ«U„Sýî 륊ƔNGÜiȧ }Þ“†mÕwzµj[UÛ¤»äKFeÚ‘¹Q‘¾Ï±{„Ó„¹‘0;wsš0ù‘1îæ4aÜÐ3jàMì÷4Ð’¼ÉúÀv/§ Ó¼‰ý¾úOú·p<2ÉTüL¤„lýÀ5]ªP½¼{û°ŠÓO² P ½à6Ö×i_°wêÔ‹Êy©¼u7æ­ªCØ™÷j^¬ã1|™ù;³Z2üà\Ê—]&|sW=öS<…±¼š“ÖØ{€ÂV;b÷và‡@§°ÕŽØ½øaÐñ·ÚÝçKÕrs’ ·R‡¯÷ÒRïä¤mÌR—Xl].YÓfì™Í)Ëúuà¿‚þWe½dßɉSû£†BôEÿøSÐ?MG¯ÿƒ#¹C¢½oñôºÉK¶DöZ•)ö­ŠÉ†¶Í3`Pj¢šÃ”]mÝpàÝ›8M˜t?JuÔ¶N¦ÝûÁúOúýèó¸Í{˜`?Ês HÈ֌߶Êôz?jV\cšõ•B7Ê'¨Ê“†ÜÙ/ËìÅjI§2ì=¾Æë=múó¢†ÔWšmÕ*Eòv †?Ž ÖþÎÕÏÞ¯½žX›²­²÷#?*µiQ}­~ôg“oZX õðYÐϦߴˆýçÄ“~Ó/˜M®i-ñÒtHˆÖ\ÝU?"Ù²ZwÊþ¶ß¡7m3höÉ_c"S£™3Ýmbÿ‘Ã…–eošÊ Šæëj(Bå«¢¦Íþäû ƒý¾ÐÜÌ ñËš¿jáé¸ÀƒpZ¦¥IJTç:à·A[Y²ÄKÁ5!Y¾ ü>èï'ƒ»ïÿô_Än}Ñ×Ljÿþ%è¿LÞ»>à_þ«ô} ±ÿkñ¤ï¯äöì¡ZHتž´@$F?0¾ßkm¨k-ÏÅùÃr'ªÍ’Të€h-y›½vJx3è›Ó·Yb? E¥ïÏ×ÕÀÛ¿ñ* ž´«à*ظx$[Ë•qŹ-ÄGémUMble^䤘½·À'hÉ{{Û0ÐäÖœ>ïìŠ*ú5P"áVÐ[ÓWèµ`í£»’ðÃâ-Ññý°·^HŒ5âI[=×£&|ì˜zn󔨧+j@lû€þerÉ!ÅOG͔͢ëÓØ•¶¸´ºlSís§…†Ý$ÌÝÀ{@ß“|ØMìv÷ƒÞ[ƒ†'Zšá<Ë·´šNh.Évz>|h¹ ¬k½fÅ?r"ÿ‹á<݃zþ¾ œßu!‡–Ÿ4\ýñóg´<ë¶¼]÷ü¤ë^¸ k#Ù®®ÑŸ]wßã#»ïþ§W¼‚Òoú¯ÖDÛ$ØT ¿ügÐ?ŠZôÆ‚$ØË&ë­‚œQà´¸Dþkø¿ ‚ÿ“ŒàMÁwd›óDÔSþѰ‚„$´VV`®! ­“©>qH%þUtcïL¶/Ýä:£ë%yÞÞRf» ¾/IÆÍ{Mh&ÎŽ¼h, óoFni>õ=ô‹Ðùß]Þ`w똜¬ƒÿŸ»™¹zËx‘—¨|ý>ù¤ü{÷PCnoMKji­ Ži‘`–ô–¤ÝËùL¸ä£{5²FíI*j±ž¤m³éLmvÝx;¥ÌО"A®í{ EíLüô+ÞŠ( ØÿïZ³pZfr¾¾dã¯.…ý! :Íé tôŠ[𦗼µVÚ½™Õ&k®7ˆ¡ )ÝJ^勳´¨kž`ˆ9˜­×æ¿ 6ÿY™×js€¤ÝH¶ûßÿ—=¬îþ_©Œd»ÿÈþ¸›õÿÝÿ;¶Yõæ¢NÝ€wötóº zH{ŽêF®Î:ª™£úeMÓ²ñ¼n»f¡VÒí¬·{Ëx¢¦—†hoë•¢Uò—[ýËfÎÈeýŸhÁ•õ0Þ¶îZ¶3ˆ]ÒìÚ…çµzÀk›|&Hh›þ'|Âß±ŠnBµþ2è_î`˜Ø:rbåsu|à5|xÒøµDHe};ð[ ¿u ‰$ï·¹¿-#wü Q™¡Ab¨D•É)HT«¨ÅƒÄðFÓ¡Ú ”ó"›n§T"&˵Mˆ¨®•5Sâ°”(Éþ£ŽuW-°örMèVr#Ãï$;‡?æèí±ýcŽ—BçÐÝÓ›èèr+éÔˆØ9\Ð9pUËô jÚ3(ÔÒb=Ch[éPU y1-¶SJ íäÚ¾OPÔ¸„O»oÌyW¬cdÂsÒŽÏÆØ$«ÑÍSåŠ9Ysêƒànc¦ë–ù®Q£È×-s^VC>7A;¾í‚QÅÆÑ)Ófß&|Á c1½¤­Ù=fÞ–ðŠ%|OØ›8{áíEÇËŽW€ð,Bz¨Ëy,(¬'Ëéžlúã`7»:ª?ÂÆÁ{JL tD~Ö(Ígë3@e½ÂÃ¥ù¦3~’Ì ô½.6Ó4}±€7£P„€~DY¯#“¨‚$™A•ùˆÐ b— ØšîÑ2 ™NƒžV¦U4Û\7 ѪÀ§@?¥Ð{‡Â&†3À  /ÄÖ̓õySîÆsz¹Z2²|O¿Då¼ø6Ðêžõ³†4^ÈlÎn ‹ÖÚ¶§w?Zå)Ó6íé—€-uÊ´©Çí#OYâ^Ñ1í¢wncʪÙnË•õÓL¼OÒí…9‚ù! Öi2¿{Ñ¢éòcˆN•uÕ¼%uÆMJi*ŽkèEráðì~ÿ(þ?üåd²x*ú(”4ðaŽÝ¿ÁiÂκøîO?ÍiÂL²û#ÀÏpš0¦YKÊåáZAwŒÈóÈ$Íg_ãt·Üý í6(ɤ”&‰þøgœîV™[%ä|:±û6ðÏ9Ý-•[%ºu|ø}NwK]jª÷³Î„ËþNs:›fèva†gDh£µŠ^öb}fJeÝÅQO4ü 9:æ€ FÃ;°¯ÔlcšVRXçUeNÉá—,æ*Æ[«X¬óô¾˜¾¯Ã|Ó)Ç÷Eò{^ÉiÂÎz–žg€¯ã4a ¶Óó*àë9Ý?ËÙÿ­Ç' •O5â¦Õ]i¹`0ÖèŸä^–Ü´)ÝËäL>¦Ào½<s3ûöæÕkJ5Ê%ð2(4ú%/i#‘ÿ0Ì*K nÚb^‰=0öõþ† 7úØW*ÕUý8ö>ÃiBE¶¸|?¯ó¨‡ÉIš·ßÉiÂTBæÞ×ßÅi¸ÙÈãxâè³÷W8M˜ö8~€ë´ŽjÆñCl 4ç®x@X¹n€˜„C ‡”Ç’éwI¨]ÀÝ w'»-À= ÷$ïÞ‰]¸ôÞØÖs]ý„Cs.i+û€‚~T]G,‘Û’$)§@O¥£©Ç€Ó åfOÄO… V&e `ÿë%kÚª94_WY˜Ä£eÂ. íºßýÊí=¡âÍ¿ZêF:% ‹ wíë¥ê̂͗º¿m¿y¿|ý]Ú©cÃ|H}´]¤Êø*Çîë9Ý}mÔJ¡7R^$yohÈÝ}ŒÜñו‰r@fáúc{+‰¼.©¬Á\CÖ%Õjo±uÉèM­3UØî€L”ß)]/_&˵Íò¥º¶)~º<+w@F”æH3бÞçº6M†·~¡ÍIv0Ý·aáC—H“ä>-#·šF‰ÌM¬ƒ 7©ÎD‰°‘;ušZ¬3ißr:S]ÇÅ·ßN©3¼¿HŽë"ý…š¦&~zûÅž’‰~ìAøåø%±Ž­LIÑoô 9Oúy>ð _[?+êmGB+:ÐmJ‹ÓƒO³Bz?œïylT&6'ÁÏ]Ю’Øœò“8Éç$pM¼&#xüà\™Á¾3Ÿyl4r ®L¦H1¸Z…ë.&nàP6Y®mBYu†)~:/ÎØë×Vîµ]ü®TÖ+òŒ¿Í‰ªäÓP‰ÅÿGÐÿ(]|ù4T·,<*g–ŠÆùsxƞ冿»Î›ç;'~ éÑÄÑ;£þ#ŽŠçA˭вLÜ­F´È]€:½,Ö C•(VhSì”®ÂÝzr\qëjZøé?Ð$¤®elknP¸]Ó›êÖËþmš´9Ö»ËÖ;L>0K0Èxîgˆ*¼g3§ ¹)™ Q$É.àœ&La®g pœÓ„1-o÷`èÆê²îÚæ9²Ã K•%{’ôw/pºç‚2uJ;ö¼´þ“†2_|§ c*s}ÓݘÞö> õ¼øfN÷ÈÝWIŸªíŸퟎ?Úïy ðO9MxIŒö{¾+þ]ÁcŒöOÇí«‘>j¨—@Eퟎ7ÚW\ñ­‹nRQk»Ñ~‚lÛ‡…j7¯vb´oè…ņÔÇðÁþ¾ã#ÿÓõ‘X‡½¨¯þàO8Ýó“KcäO?×åþ©ŒÜJFþjÄXdäZjä¯F´ÈÝ:½\ìÈÿ´ÄÈ_±˜â[¡M±Sº wñÉq]ÄÅ«i5â§»h¤Î†WNóÙ€¡zsèè† ò÷îÀgê6'I¤{ïîáto ‡éˆÝNà^N÷î«Èîeþà4X›5LoÆ»ób1½¶›Þ.`np7ïo¤TZÞŒ¤›ÞQ¯)šw±õÊÙ¦¤_ ¯,âG ŽéiŠæpßQ1§x« ÜboMº:{Eþ))aǾƒœ&Œa•AÖ¹¬jE3tï\áúŠÀ3œöP•6™®ùi‹Ä+Ç!rÎ.ëb?Ô9ݧˊ½à›Ïrºïl*-¶ï°Äé¾Rl×{¿pü•' ¨ßóÕœÀ `U¦Ø¯+¤À›eÖÏSxÍ@ÎêûÊÀOrÚCÕV¯›Ìzd¬þËÀ¯qºO*Ì¢V¿€íç_ç´‡)ØÖ§€ßà´‡ñlëEËã(a³ ǵë·q7fVICs¦ãåžpmRTÐûä¨ý”(%c–ó“Ûf®×5¦-Û»e¼žâQÓ§™¦„4Lô.ã¼ýJÿû—æ´‡ñj!òö÷ÜŠëx dIØ1 ‡@Ë­ó·mÊrYH¨]ÀÝ]©eI v[€)fI v9àÞ®ç`–lðÑ.ÕYºŽ€“Eñ¤¡§Ç€h#¶žÞ%G‚ig­äš”É((ÏpÛ0åÒ*PLÿèÿ%]3qgëÂæ­¾€3ÔBòv>cü°øÄÄ•ûsìÞÁéîÈcÔL쑼;r]îø{ÊÄY ¸Þc¡ADžóS&u¤9?µ*“]jnJª·6K@Ñ ;¥ÖàéÁd¹¶™T×öÄO%.ð¹‚Ü‘~(Ÿá6UÇŽdsœd%¶}@u'Ywñ“¬b&ß9«>¢ñFœåªn›€6iudªop/h¹ Zá™Væ ð(è£É®Änðèc±u¹ÄK!-¡–ãÀ“ O*SË2®–1½<ÔAKÏê]ëg4frêÓƒt^ë¬Q2g,«¨Ù4\@.µÃ'ý¦‡é›F»Ìi'›~f£ö7lÈ0©Sf^«ÒX@~ƒ¢îêÙúkâŠA¡¤;ÞÕEaèQáCo‰½È„¡!OY?K_XqŒœ¶§äXYúÀñ¶V,W+z…É:U+Ñfƒ ÎMì?rX£I¨2_|"FÍ¥ÁöOo,dØe¸dÚÚ”yŽIá_¡˜aeñæ²$ ¼ÀÑK^èR™4¼Ÿ½bºã''Ní—°q/w8áoqš0÷r‡þ6§ cÚø­š^s-RrÁ»ôë§UÕÜ&š,bÐ7&žß°ìy¾¸äõFž‰Ñ¢TÅûRï»õjµÄØL²Ñ´giv6ÞHzŽ6¼ˆsrG·XcVs,JìX¬%x󢩖 w†5Ë9Ý©g¼f_×R$.·m8µ+®0zg²Ö9XݰoŒ‘Š¾È±çœ&L;»Û};Ý愱"°@®ýy£ÂB憃šÍu]<予'm]û%âI[Œ,jßG5&±Š™Äÿ_T‘„9ó®U W¥_39°ö±cėã6–N%ÂF+#\ zuÔÎá%œƒ^#¾FFðø“xÊÄP˜C™L‘¦èÔ*D}"Œ¤k%x†+Y®mf¸Ô¦øéÍlTDûŽüµ?f£ûXØhD‹b ´¢öÓ}8êxdØ& ž¤Ç Än¸ôöØÚº‚¤àÚ6è¶OWÚ< Zn³š3`$Ç ñ¤¡¡#À“ å¦pÄOWjÒ²I(æð _Ðá¦3- ž4£g@Ï(ˆ’ÍŠV-éCâ‰bk kn2O ˆ' ÍÌ/€–;=*~ºFs\ºhβÏ:Ñ\H˜ôϧ?‚ክ£ô&ëò|Ñpu³äp¾ÜFãrŽWľG@<’m䉸âŒuññĬ•+éæÞŠÆçç½=â4¬E”m3´Dx%è+•¹“ËôŠ5«ÓÎ娎…$º¸ ô¦ä ±» ˜‰­¬‡r‘p–¦ÙøGÓ+óÚ]#jØÂjwQÚ4Ïá »E‘ 5üÐ?£LÛ2·ä‘$/¾ô+ÒÑò‹€¯ýÊØZîÓ¢_‰J¼ øjЯV§‰û’H’7ßúMé¨ä€o-ŸpÀÿô@½a þÒtü i¿µnVêwÄ[¥’5Ç7û—«V…ÚÞ®¨ŸÊðà_€þ‹Øe‘˜CÜÂmÂÃø[¨ œ0yàˆ„\ýÀË@_&#W ’~°Eì ˆ'}[ß ûÞš¨­÷=p¤8%!Y?ph©•@‰nn>£T4¦mƒ_ø6ň¢UŽjÏ[ñáè‘äíy+l˜pôhúöLìÇÄ“¾=oƒ oKÔž{8R•¬¸ôJeæ|e³9W‡¼œbQm˜d[¼ô-ÉÛð6Ø-á­ oM߆‰ýFñ¤oÃÛa·Û“µáðG;ÁúêmxgË­›Í×ÓðÍY“óAIT3ßÓ&¼ô½É›ùv˜6á} ãç>ŒlæÄþ €xÒ7ó0퉚y÷Y ±úÄ£ÈȳôVÍe£%ƒÎCJµ"³nŒ¢“WóŽ9¤&‰W:i»Þ[&Ü zgúvMìw ˆ'}»Þ [Þ™¬]W%ÄêP­]ß%¦ÝͬÊ-ÝŸ5𲌪;ÕÒwº >”¼¥ ÖÝu?èûÓ·tbX@<é[ú.X÷®d-½,!V¿€j-}[¨¥7{ñx1Ê.X5á^Ð{“·ð]°jÂ} ÷¥oáÄþñ¤oáwÀªïPnáí7·-7h©ðX3ájЫ•Y6ß®‹&íÛÖKšQ2¼e”ao49!)×G@$oÃwÀn ;8%BìÇÄSŒå̆½E±ˆÒÜ ã%\Zn9UÕ"I²¸ô:…Ö²bBìV׃^[-2‹X$ÁåÀ+A«[E–YÄ"InÞú¦tTrP­ÅVɈ·ÍޝW!©\àR–ì&’öfàqÐÇ•©oí —“ß @b=œ=•Ž.Nƒ–ÚsÖœD&+¦òE·äéPÊÎ_ú%ÊÔgïIôJàëA¿>= |è7ÄÖØõ~Ccm°h8Ûœd¡±>iÍ‘wˆ‘doþèßH¿Cçú®£š}Zëü]ö†» á:ÐRý¨¢½$ÇÕâIÚŒ‰Ýzà5 ¯‰­{šÒ’¦³‚Jp-ðQÐvbðs7¬‰ð¹´‚äéªßq_ð>ˆÈé`£Ž–¨4«§@ŸJ~´Dìú€‚~0}çJìOúF¿†¾;Q£—Ù±¦Nx lˆØ÷GºRÛ±6LØÁÑ?±PÍè_ž÷À†÷$jÏ"öÀ„ Ÿ«"H¶5À7DìÝvpC±ß(`Ç6Dì…ÝîMÖ†gæ£Úð^ØíÞDl8ÇNUñ>ó L›|oDTÛÞ {&æâ’¶í½°gÂqÐãéÛ6±¿K@<éÛö>Øó¾Dm»çô¤„\ý@õAö_QhcÕQÍ™ä\ =œ¼9 ‹d^”Ó×%åÄ3gb?* žôÍù˜ð=Éš³Â>’\ý@õæ|;.VŠº]Ô Û¶l•v}l™pè6õÜ[&Ü zgúv-.wtSÏ~ØòþDíºïIæ%$ëªÞÞ<¢Ò²÷ã½ýÐëZYÝF³ìý°fBa©8mË&öw ˆ'}Ë>k>¬eW£[öXóD,ûªÀbd+>€÷7‚–$E³â°\ÂM ¥úƳbbŸOÚbÜ »õQÍÒLÞ_šr9RÞÏúéãîC©ó ópÁœ09wqÙ”éæ¨×qrQ§II°~àó@?O™×Ø]²¦‡ék³Zј5õJÁÈj{îËj{éJ÷Ê~*ÔsÉz7ËyÕ½P)®>Zjz>š{!v}À‡@ÇŸŽÜ®‰ýiñ¤oõ‡`é‡Ò²z[BÀ~ z«ß'eõ¶Q¬Œ¢œá‚±>ôó“7üC0v‡A?œ¾áûGÄ“¾áßc¿?QÃ_VÕírtW? ý~¼ßÏQ‘ÑojlôfâéeÃ5ìúy~?Øî-5²ŽfØÂyq—wÚ†MìïOú†}Æ|8 ÃŽêÍØ'bØ·µ3ìXNû08 Û[“¶íðg®)û»ìØšÂØó‘Dm»÷ðÄI Áúê×ËB®•¨O^Eµf’r 0:—¼5ƒNßš‰ýˆ€xҷ棰ࣉZ³ÌÕQ˜0¡ú *5[Žâ=Â[AKí%ˆfÄGa¸„AKM‹Å3bb¿I@<éñ1î±døý‘ƒèc0Üc‰ñáàÝ”Þoiœ˜ankziP›¡8Äš6*†éÎkS¶UŽiÃ{„€–DE3ýc0wÂ<èøSu‘MŸØ?* žôMÿ8Ìýxâ¦5Ì>s?žˆé‹mú±bñãxð1Ð%oýÇañ„ƒ~<}ë'ö/OúÖÿ,þD­©«×Æ"»þ`ó„k@¯‘¶ÿå-2õãV©èw<ë×¾NZyq.qYšgûØXˆüm/r!á¯Þú¶¨… 7Ҿȅ¾]üvÁëVÑÓ%y‘‹21‚o°£Û˜Iµ‘/sQ&W0×Ë\Ô*¥»Q+ÁÙwªf‚/tI–k› ]Ô¨øéõš7Ì Œµ-ùèÊšPÏÑ=am:ìl rxôQ…1IÈÙ@bw/ðèc±5µÄ‹â$Trx²KõųË첞+ÏÈ(æà$èÉts X]ˆ­˜Ø’y/‰Q–@—’™‰]° ºœ~ÈLì+âI?džà–íaÒ!sÔ!#ÉÔ|.…Ì$Ïzà%2“ð×/©™¾]¼C!³21‡ÌÊäŠ2«UJ2!sÒ52'˵MȬÎ@ÅOoj ™›çÍ´ù 背šIã@!~L:8#v‡€݉¨™ØŸ>Zn;¢Ò¨™Äy h€6ÒQÌiàè©ÎEÍ$Æ4Ðm%5»>`t5ý¨™Ø?! žô£æܲ=LðäÝDh×F®~`ü“w—µÈ3­—­ZÅ¥ÔÂZ•² WÜA¥¥yU%hûÎwî ô5ì÷äìñÓ2…^ tA»ìCHóÀ§@§pã$±«/€¾Ð™>„Dx!ð% _Òù>„Äy%ðÐϤ£˜§¯ýÚØŠÉú}È`ŽßK]Ð+tµmLë6åFö22V£VŒ|í1Iú:àç@®##ÜÞ ¹á-IþyàWAõRÞ’À_ÿšŒàñ‡·ÊÄlÁËò™ ‰±­2¡"mÕjd±±mƒïTµl“åÚf`«Î4ÅOO»G2z­hT&kÎLVÙÉ\ìQË5xCá —õy­b¹äug {ž"›š­³÷j•’=Ë­P°îë9Mدz‘Ëb>·ûàFN^>·{“ ø&Á•ø\5búÜ%ùÌY«F¤¨W¡>ó¸á·u¨RBým‚\Ûû[Ef)~z+ Kº=mh™ÃVÕxrÈûW3\M/åÈíŽn‰|W(êýUêÒ˜hÓ#ä¸ûÀçcºã_yz„Øi ÿ¤?=r­PíôH{¿r“‰Ñ\Ýõ\¿Éƒ¤\éJí&“°aÂQУéÛ0±OÚbœ‚Õúˆ'¦c¬)ôæÅœZÉå .¦,»¬»4Fgº«¶é͙͌îŒhF”ûAÈú ª®[ºúZzÎæPÂSB´€þ>•9—KfùšŸ¶È»vܸqÄèw‚>*+ú‚oÞ he•2#E¬6?åÄ^mªV)Ìi'-X6&‚að4%UÔ]]›¢³°YͪÞ¼UÍ1dÍý4ð­ ßªÜÜWéNŽ„ÎyBKˆø[Ào€þF:fõx“à±Ìÿ}ÀÏ–š üæwôï§cþ¿üÐÛü/k˜Ôî†ù&ð{ ¿§¬–æ½H$€¯ßE<Ô¥²›‹ÜÛûñH6ãËãŠC^d™€xbÖÊ×ÑùûFâù=½äX4}D×^h®E鬊5ºÉ%ä|uæðÄÉÁzÒ¬ÇYSáç›Ì ûóJÑ*yñEÙÅóÞá'¹üDâ§¿œõfúÔ+ZѨhG-Ëv§u×Èjyë¦ ñÖ6ÂÚϳžÒ8g…Msg®9ËHkŽßUG¿çûSiÕ¿yÓxóPk—¶GsÌr­Ä¿ÓqkÅùÈá!UÍ“»©k¨u©ÜКÞð‹ä¿ø`ßþú@òÃ/bwð¡.¾ýu¢Ã/âÈ,¾›"Ë;§…Ã¯Ðø½œ\:X¡ÉÅ}’°nî°7—xŸQœ6êY˜NÓ‹zɨP´©eöÜ`d·&,^yÙ캻Tf³ÛBÛØgXñ&-ë,uM¬c5t»0£9óliô¦AÅ:‰¼ø,èg“ï—ˆÝÓÀÏ–:8ÚTaãÌXX}EçT«9mlçÖ¡¡Í£[)I“1§=ß²Ï2{©9ŽQ*i'ôiC;àí%•:™I¢ø¿AK­QÄkŠ30;Õ4ÅGXS ˆG¶³ª¼¯±¡–ÎTðm¡U«êz Ž6ÙgäÊD¡…í —\HòOßúmÉ·4b—þè_ê@HüøvÐê-{¶HÈó^àû@¿/ùؽø~ÐïWŽÑzòˆTûUàÇA\™f6-2?²õô¶-#[¢†$ìg Zêtj´0Ø}øŸ@ÿ§ô>±ÿÏâI[Œ3\ßuTÓ÷œî{FG)žóö…S(ô*†·ð;Ñ8e€ÝZU/œeÝ|ä&q…!<ú„²&q“Ð׈]Ë kÊÓí¨;•Hȇç@ŸK¾c!v'ó ç;бÿ'çAŸW×±lÞ&!ÏK€OƒV¹q,¤c!vO_ :þƱ•™Í|eWbf$yðÐÏ(SÌ­AýÊŽm›·ŸqœÜìÈæm9sdsÄ^…D}3ð³ ?›|¯Bì^ |´Ô ,ž;'öŸOÚb”¸¶ë¨¦W¹ra¯Be+CÂ+A_)mÓìMõ+½$ÚõÀ è2"ª^é%nneÏ`——^LQã [c!nW·ÞÛšvb¥—“±1˜¶ ÞèwÈa=¹áŸ€ô–Æý’ØÛ*®¬Ì‰^;áÏ(¨Ï(ñr|DG"ùf¯éâ×m¼:ù „ØUÏtñ]Ú¿?‘RÓk¯C<£. íÈÚÈóV å0£Žì-É!ÄîõÀ·¡JÞ[Ø.½sûÐÐöÑ­Rºù%àPRÇ ussØvé3¶SÎnÝudKb~ømöü‡./ë[Ò1±û ð;ìù5ö|+ýΟØÿ¡€ßæ¢Ò_–gï6ë)ü㺠áP^éRyD®bß# Iƒ]WêvúijV$¶ÙU¡ÂøÛìºCô2JP«˜­^ Z*2 i¶!ÙªPáU ¯RÈ6$±ë^ úêØ6±Ä›m—¨øk€7€¾A¹UÈ¥ˆ ™nƒNÇ(nŽ€IÇ(nŽ‚myQ´Ÿ&ÂË·5eºb„=7c²vAZL²¥‡ôRqȯXªÂMXõô‘Wý¨lcÀ×€~Mú]ÄÜDëØ±­Ï6˜&ç“¥ÒŠ“HÀ ¥‹6>åiÅm¼Gxè›dE_ðÍýÀM 7%ïˆ]0:Û^¯­gÛóª[ãé)e:’k¸ô^åf+]8‰fk k阳ªtá$ú1àè)ef}8 z6³Þœ=Û¬·×Íí^LÊüÈ] }øë ]Y-Ï;†AéœBFÔQ8]gûñH6úÉ‹'4 +Í™]& ž˜Õ²oÆ ,î)hŽ¡•¬iÍ6³ª1ÞA2ÞæYÿTT³ÕF–÷E‘pô`lyWz±:]2ݬ^ 1W‚^ÙU¾¼}T£ÊR¥^r »¢{gÜæt/§°S5 æÔªQîR.]ý‡#È™Aš±&]ݬ4¼òBMk/€4Y<¹ï`ôJýy€ðè± 3à‚k¾bÌQ4Èô/¯ýWC8ÂÐÐþ/€·j´¿yaÓv¼žÙð’è=z¸õHK¸´Ôn´&ɇZš¸×9fã Ö-oÉNβ^ZRëÏ@NÂ!ÐCÐúkÁÛG5Z¿Ã‹Ç¼{tøÆ¹ZÉ5«%®ê®ëÛû÷Z•)ö­Š‰aSä¼RÞúŽØ%¸3‚ö³(êøÀ$+Ęïõ›ðNÐwvÀÞÞ>ª1†CøÁ ]Ìc°õFJ˜‹-ô!¦ùÍ5òg —JVAÙ À›PÂC )™ØY–7ƒ?a'gÞÞ>&>°ÉÓé&ïî/ËŽ,ï[!#¡ºñ×u§´9«Mºîø–][£Û×/BÂ+@_Ѿ ¼}T£Ó{H§fÅq ½0P°˜2 ¦QqµJ­8ñÓ›°±€¶œµX W\«jÕJ–CÙÇ#Kù«ŒPkÝÍ\¹òl}||ç4ÂÕžÂE¶wØ)ÌXV©1Àˆî"~ ¢î½»füðöQ{ûbWüpޯʡ’1ËFž Í:rI>é Õí‹y€ÆH ËÈjŽ9]ÖÇÆiíèè‰XâC( á ˆ]®uõÐ[‰.ׇ! á:Ðë:`Á¿Þ>ª±à=‹Z0×´:ûýpè=Ï%û=º'+3±ú(Ëo<Çì÷#å#¶ß‚·jìw[û´X€Jx9eYmX5§4¹,ƒü„ûAï]–›ClX¾÷ý8d#¼ôÍÏ›üdùD‡mò7ÁÛÇÿŸD9;9pøxû¨¦nµ ÌR‰`©Õ³Áƒ®ÍYöÙ©’5ÇÆ ³Vi–~Y  {ȶ&i oVpx7r>Bª›¿R7èŽcVβá¶ÈÂ}^ úÊhý³àí£­ö´î85ÚF5ƒ3 b Wo*Æä ÂMö£î mÛ ýê¸:Üž±ÆGrÑ«öYƒð0èÃñ'—$­Ïz»ÐÉÉÃLǽçYÍštÆ Ç,Š ÝÝ~Rª›\ŠnŸoÕÇÎ þ^`šŸãq*_ç«9|örÜÒe”ç(7½¡=¨1°Ís‘åÿd&Ü zglùw-“?¸ põÌb¸Ù"¢ÂoAhÂ] wÅ.@Ÿ-q¼ã·Áž°t_lò‹àí£›Ü–:âV߀Ð4r¾¡¿¤T§÷Ä¢g•ñg¾ŒRª› ‹µþd!Tµ*©iÉ1ëû«é߃,¿§´¦£;‡¯€·jœC}cbKhÊ—Žx>‚z˜Êº®I«Æ#ž)ÚËâg©\˜¯¢„@ˆ]˜­Ž>ëY¯W®ô–X†ý8y‚™óœY˜?9qjtƒøä%Ü zküŽ‹ÉY”¯ƒ=a';®o€·jlsŒl“Wt£9¥mbqíQÙ¤Q¥U-—n;ÐKS‘ÿ}K8z,þ!0ŠªoœB1Š«þÅ T7DH§i}ò~³óMë[`ÿ­7­oƒ·jšÖIjZÖ€vyÎNš¼07 WE«à¶n²AÍx~üIö2c»(%ôÄøèÈÈ3iÃ(ŽŽmÞ¹0‚Þ ú^™Âr]ž/Zf½•õ·?Uê"¢»*âß# E5°"yÖ L‡.ŠýÝtª ,ÇwQj¥k 8gßdQ¦ïuñO¸ô…vyÖ˜g5({ê÷ ˆïÕÿÆÃ´•Bì× ˆG®¼Õ3Ttÿ¿?C±»dì‘ÞXMo¬êjòkéw}üK×ÿò‘ÁÜÐ5í‡äZÕZš;‡Ýrux‚ýshbfº¼xb²Æú ÝЋ“[¶õ±-cÛ†q·ÅpY¯ ×1åüZ})}çjúλÿ¹^«Œ_/•÷ú°†2©×Îè¡ùÕB8Õð2àJÐÂép¿Æ»~Ì·d_ó噋éÁß.;~ìÄÁÓ×/º÷£Ûø¢þVf;£*…Wf]#—µ~áí¾°Ù`˜ÿ2fþSfÉhóÊÅf¸ªÔ3’-P²ÿ¬j ¯äŸMÉ'uûV Ä#!†:û§Îj9ph©ª äº4¯—L=¨ïîA=ô4×IÚ*!ökÄ£H%ýhEm’Ì…¨¥ª \z] j²_çi©…Ø_. Ej¹q¯§íxÉÂÅ›˜†6iÇ&ÏмfDYû Â[AߪPU®é–‚œš0?áeíîjÊ š–ªˆý&ñHªjY\qè¨Þjå}¬øéMÓ y/ág¯Ò:.ì¨Z·#‹[ÍDJºãh¥÷{  w(³û%ÌÌ¢ð蹸ô>eöš•’žÀ{@ß[‘Ñ/Å g?ðèqåè¹3oNŸqË¥ çó'ŒsUû̧ÛŬãêÓÆ¸mTІýèù#{NÞwhÏé‰ÇOؿ4{bÞÉM®Q™Í ´|<0x‡VÿU»×ñ®9¥en®úgÞqrŽB¾Ì@Ñ*øò‡Yÿ¼ñ¼hû‚W<±é{µµåàUв)ŸÏ[5÷üNÁ6«®fÒ eöe‡ôsCüWšîÌW ÓÚø@.7Ìþ÷¹ /.ã]wó¯¹ëÂ&Ö &3+äH&€q¾…s^dØ”mªø,“½éë/\›+aÅ8²gßı3¾8z"ªÓ+[ßX™/Yzõ#x ©‚¼PÕœD#ôób[ËAjÀçJf9«Í{ÿž+é“DÓ¿ƒ}èÌ—'­Òø€Y¤XvÚfÁí“`a­mMOêöø=‡Oìî¨Wýhz^€Ø>œ=Ù /@€EÐE…ó/5‡=BºÕ ^«?Ü[ûãõ–7ÅgDñOÌZ‘¸ÓGœh¸ÓG‘Sî>'!V¿€-»2"úãÖM"—ëÌAIOA­†òVskðè›â µLA‘,·¾MF¦hSPÄNÞúöضܓÐHV@<ÊJoºF9„mpôPúþØçÄ“¾CYÃÍÙÃäJÅ’aƒ‡×\û»$×ð%zäÜ~Ît4&—é:9íà”V«ðœS¦QÌò}áþܸc¸Ž÷›¦?¢)sÇ*ìãŠcN– mV/Õ 'jKXƒ÷Ï€>“|KXë'< úlú-Ø—Ä“~KX ë_›lK˜ÞÖÂú×&ÓæeZÂ|-a­ð¤ØÖÂú×v¶%¬…õûر–  J¶OÐ'%$ëªo Þ¢t}¿8wöÓ X|ê„­Ú&- z-Ãû®¨ @˜ïéÒAëÉ7€u0zÂIÐñG½‘±/ˆ'ý°F¿>Ù0½¬‡Ñ¯O£̧ßÖã½õé6€õ0úõmëaô>v¬À8껕’i½#êDÃå°y• ¥&b೚ôޮèq®ª³†Ù9OÕž‰Ëàè‘äíùrØ0á(èÑôí™Ø ˆ'}{fÆ´ç¥Ü|$dë®éZp¨!¢I·n5»Ù0™»¶ÉC›טf$ëH®Lž\BÜõÀ1Ðr: t ÕÂL˜±‡Í£‘$;w€¾Ca ™G#v›w‚¾3¶qoàC'-cæŒ\ÖÛ„çå`â¦5˜ÕXß,¡±qàã W¦±¥ cd”6< ZjÌ]i/–@ÇcÝHmŠTÅ3;ÒbUŠQrdõU¾ ô«”ék‰·d'£®×ßúé¨ëç€oý¦ØêÊj/‡¬1¥×Jî`€òÌ¢™@ÔŸ$}3ð‹ ¿˜|‡Oìú€_ý¥ô;|bÿeñ¤ßá ÷`$9‚£uo ÉúêGp§KÖ´YÐKb'?7cðÀ[¦×œ«F§ÂÙ0­X4¼ìÉð©ä´}4’+9–÷±V°JÌ}Ññ£¨Íà ¼G8 z:ùfpLŸpôLú̀؛âI¿\ Ó¿2Ñf° {>$„ë®íªOqK¶„ÖEãCm[IlŽ£1±…Á¨¹JSï@ùY$Êu90:¯®ÿö6ÖDí¿I–p´ÊöÒ»G3 ã·ÇžÁ¨îèJ4BÂ3 SXX v}À.,û’€[X¸ŠÛ³‡jÝ‘Ôf/£¸º«¾ƒEQW¼Öâ¾WEŽ$Iªu@ ´–¼Í^;%¼ôÍéÛ,±¢Ò÷çëj àíïû¾Ø¡=pWÃÆ}Ä#ÙZ6Åç´¥÷x5‰qó"'g d–­/2h³¦®EðZ¨Šð:Ð×)ëwC÷Ä…ö¹×Âl}Tk¡}.±»¸ô†ØzÊheÊ¥è ¸®¦L·ž“ŒÓ‰$å-ÀûAßKi*åá¨UL áNý˜B –ÌÊÙ¶ÀÇA?žŽá¾ô âk¡{ÀÛÕºœ=©Ü$–z Ã&›ÛÉf]Ðn:ak kéXD8 z6¶E,‘™%æ€çAŸWnËÉ(ª†kIH÷ àk@¿&³x ðÐϤcO_ úµ±Íbe}O“‹›$¯þ2è_N?b¢…ãXˆ„œ †«é¥œ–¤IŒªå°>X׊¦>]±×,`*ÛÒŠ†ëÝã`ÕlJwlMi3ì7¶5mTXw=ï]ûg¸ú^ÑKóô‡”§5çcÞWÐ\ˆƒ;v+®mNÖ¼ýì{ ½0ƒ‰rLZ³†­—JQõõ¨#€þ€t}ùi¤²ysŠN«û™ŒruæüïÀz>³a4?x~ùDåü†Ñ |U?"zÛãç$÷ýñ¨òÓ ŽŸ/Ë—Ï8LÆ®†Ï¢³ª“ç$ð'Á?!#x}äÛ³èœT¤Á3eùÌùÁ°š 9›®L¤`®!gÓÕêCèÝ‚÷„{§*Å3ô”¹.ƒ—HÔ,…O»§yÚaÇÕ]ÓsÔ´Í®Ù%SžÆ)æS÷ÀfeªT£´õ-î7S4¦Ì õV/õJQ·‹æ“ìwÎ5ÝfX4§ôž ßÜ9è4ùlºtÙ»¿eR§¾„É@÷@±¿- !%>|ÞH}¿Gø¹ó±^Z)”j´˜dòïnŒÍÊô _.?!u1ŽNwÍW½yýM±eÃKÖ©köU“óì lº#šM[±ä ‚²{®ãtO¼Y…P*Ìqº'—|\Iì€Ãœ&L:®$v×G8M3|Z®exRl‰ºîàtº¬U—ñÝãû÷„ÕSØÄIt7ð § ÓPÏNà!NÆTOï`ä à~àN>'&H¦‡sš0{øN¦aG:§{¤¶kÇŸ &Sœ&|ŽLTðIN¦aeàyN÷HÍšD7‹iàSœ&Œiw4&¼0„uöÊH†Ûè Fš‡80Žª„º.?ÉiBE¾¿}Γ¶nÿóÀ/qºGjWte~ øeN÷ÄßÓuY]™‘'{Hß~“Ó„iOöÜÀ5[G5“=7RNNæýx~ü¦E ;¾rÝØL?7‚[èvà(h©C Ñ|"±»8z,ùfDìnn½9ö ò}ƒX™¹“ é†6Œâ÷1Õ‡JdQtËYcìDS¶ám‚ò<*7¸A~ºË,ºV£L¥ùú]ŸA£5¹²Q¤7ÞdcPžm’Þ4ÂŒË|˜eÆFÆFwyC? o=÷í]&ëT­JÑñ]µ?l=nè¶ÃÊeÓ-RlØG¬u 4±²– ñ rÐE WÙgf5µa´8¾ ß? ÇG¹²àÈŽld Çîïqš0mw<†j<\…¦³çýýuÜÞª]gÃO;%ÙFàfì¬6ÉjݪžùyûTwÝ“õ9Ÿ5ˆXf å$¬€®(ëùWùi³¤ÎLL5à‹A¿8yÏEì,àK@¿$¶LisªYk¤v}V7Ù¬qãêéFkâÝ ù2ßüzëAoÿˆD‡Ie|øCÐ?Tøµ= ÖVïÿüÐÿ’ŽÞÿø¯ ÿUA€ão½âWŽOÓùaŠâùVt }ýŽÝ—sšP‘¾dN£‘$ׯç4a Êê~ðNÆTÖR-ã2¨ûFàNwËí@j;?Ã; ÙF€[9ݽU¡zB‚Nbwp§ Ó°Š[€Û9MÓ*®ö⢪åð\/–—׌æT;€Ç8M¨¨R–ç‹,Æ5ýKÆìe¤žýæ.•‘M䋨÷ˆG²¡¬‰+Î@Ïÿ裚”À7³xo·¹@›²iÕÇ £7³ïŠ*æ(lƒ Àø;”%¶³ßæ„É®‰œŒ‘Äé0^2ÆVq¶ +”ËbëŠîòý%B$ïuísl åÇô9‰B¬î½O¡Ã ÙýNìú€÷€¾'}Ç@ì÷ ˆ'}¿f}k²&>/!V¿€ ˜ø|â&~+ÌúÖtMüV˜õ­5ñ[aÖ>vÌÄ7¬7&jâ½f1j¨º†M¨>×Í*N»“hk€@KEúÑLx#Ì–PðØi›ðF˜¯xÒ7áM0ÛM‰špŸ=_Ù&Ø-áª.Õ§Ý×µNüEµßMxP­%o¿âÍr³T¢p,)§íѦm½:ãe_áÛ\½ cã(Û´F׿ ’c8»´=Õj‰ýµ/­.~nzãðm[5×6uñi«+Ã!ü5п¦ÌÓ\yÂßÞïP¹ŽÐ®³bHÈøÀßý; ÃÒã8ÄîÀßý»è ˆÿï¿ú+ÊTÔ36*!Ï7ßý-…꘴JŶ_~ô·c«c}ftÇ`VÛ¶ethhlÛÖ1©ôàýŸ•©Góûê¢eRß<<:’e~eØ1˹ѱpå…tÖ$åßsì^Áén©è4Dy³†=ÂöoÀ¶ŸÓÝR3”ñ:bYý'm1†¹¢ë¨¦ç>Áú(adÕòú ÑÖí³*ÅZÁÛÒÔ¹Wžhì§D0è_ƹ-Œ 0„'@ŸP·²ØP™o}«w,ìÇÖ”;§ÛQ»òaà9Ðç’ïVˆÝIà<èùt+ÄÿIàyÐñR4ɳy›„ úéä»b÷ð¥ _[+3›Y¯Âº”-;¤Ñˀπ~F™bn êPvlÛ¼}øŒãäfG6oË™#›#ö*$ꛟýÙä{b÷Zà³ ŸMßûÏ ˆ'm1F¹¶ë¨¦W±‚{•±QÖ«ñ6"fŒÂYêYšG.ÞUÝ—ÓNfÊf1«d¤kž©*Ìi9í¡Ó5´Ìþ¢“‹~øm %´@[ÊË5÷é•â¤e¥.§©lbÎô/$ß×»*ð5 _Û$²Z¦ZÍic£;Yȼu 3„½VA×&t—ÂïÒöMìÓŽÓ^úÈÎ$}øYÐRžäâ ‘†wnß1ºytëèèÎ-‘‰úEà@ÿ yçGìžþ-è¿Mßëû ˆGQé/˳wø… kC\ÇõUMûñHíʸâÐY‰~Õ¤&”XˆÝ •Æ_ˆU|Þj+Þ#¼ô• ›mÈÖ×­P¡qUÛ­¯Ä®x5è«;0ê þׯ}­r“;¬N2mfA«¼ƒ·EÜ =”ŽE\ÌÎŶˆ%Þ‰0‰Šn-w0‰Ãê$ÕnའïMÇ,vï}_:f±xôÁØfq·äÑ8°îZt°~¬—}Æk"±m!tüC•ìkuÚOµ¤¾ô«Ó¶qS¬£šE¢7Þæ„ÉõÆ+êÉ™$Ä»˜Œ÷]óÓÖE€ñºÐ9¹`b;Þó7+¬í’ÜÂøÍýÀ!Ð)ôÄ®˜¿w¸Ñkê<¾ôϦ5§Áˆ,ñ½’PØ8×ÔÊÌB²ñÑÑõz$ºO©©] OÐ]ƒŠP]?Ýò·j,oYžwÒ†õ %J»â%£àç…ç©ZlCÛdœsm£llÂYÉÈâß‘ ý!GüméYGŸ¥n#гڹ’Y/dF²c#ƒÑ5bú”¥FóÍ=3Dfð{n9§Ý5®ŽhOÑon™§Ÿh{\öÑÈòŒ„êzæ!—©>ãIšå"r æ”¥”ã£Y­`œÉíˆ^ÇG!'¡¿¦nj`EÞ8G±vàÂÛN°;¦´AEûã €[§²–ÌPÿQ¤ã]|ކpuWŒ[ôB&%Îós–´“é8ô@¸ôšôurïùˆG®¼Õ3Ttÿ¿Pì.s¤7VÓ«ð-ëùïÖÒïúø—®ÿ)ä#{¹¡!kÚɵªµ4;‡Ýrux‚ýshbfš<'&kf©¨zqrË–¢>¶elÛ0¶x—õÊ0÷ü9¿J_úSØl÷Ýÿ\¯RƬ— {}H#é›,Õªa&²c‚*w°´°@íWv×ùï–,ðˆ§NB¸ô§­­VøpÙ‚ö³¿R°Š,"lTãr’Ì+õžïý`ó†Ï|y¦ÅXü‹T–?vâàé‚ëÛŽ÷£Ûø¢þVfÛ#ëƒUe]—µ~Ýí¾®ÙRØý2f÷SfÉhóÊÅÎÓuØ!*öŸËè«ø•)9# uêˆGB U¶O]Ôràe ¥*&ëÒ¼^2õ »µÐÓ8LK!Ä~•€-dzb*d¥×‚Y QL/”á_,´œc⊖⺞úyé+†Ø_! EŠÙ¶—.{9lV ÝÖNU&Mo>í8O3ëØiah4·I;æ%·ŒºË²j#=®P…®é–‚œ]ÔF(Lݦ­Bb·€x$U¸,®8Kºx4á#ž˜µòï”ÜOòìZ^æ´]×CVâVó ¬*XfïáSÇAdîåÉ »͵k†Æ³AkŽù¤á制j.ûzFg&ç‰Ñ¤YiI®ï¥F¦‡ùGçØ~fi¤æÖ5Äûãê3U€m_ðŠ'6}ï ¶q£¶ ¼JXQ6åóÞ•ŒwRÆøª«™Åñ#ìËéç†ø¯4Ý™¯4¦µñ\n˜ýïs^\Æ»îæ_s×…M]ôFI†]c$À8ßÂ9/²ÎlÊ6U|–ÉÞôõƒ.„M)µ»=’Ì÷1 Één3ªÓ n\™/Yzõ#x4òAa½Ä’$õAú32Ò‹¾¶7H²ÉäÍ#bÔ¬¬ÜÁ\C.ˆTÂ5peå¬{®ðIü»ÚÍA…Í…–¥—9Ô$‹$H¼NíLãQ¤Û•y~=†—.9$|'ŠZ¦˜;Y1Ëà<|Ä#ÙØWÄ^ÞZüÄŒl–Ó`:s.t‹¨8+P×+ J·´8T=]¡q^ÑrƒÔ+„gUcÖFOôõúp5p è5É Cåè‡|”jI‹÷ší&ÃBÒe¨• ¥&¥%’<tÔExh©™@®Ëò|CNc¾ôJÐWƶ—jÂ%cÖ(eµ¢9mºN–võŠ3ÅP·§è œ¼ ¸ôŽô¸¸Åt´Ô4OÜNܼôÝ ç›jT„ø{qf[¾A‹ŸFî‰}€ñºÁË㊳ ¢ø(?×/~*qÐb5TBpÐB‘¿œŸÄé°åXhDgÛÛ"ÎåzÅ¿dRv¾j5”Gxè›âŒ¡ÍW‘<9Ð9eÍú¡øÍ/ªó!ö§Ä“´ó!v}Àçƒ~~ú·Ø?, žôìÙoŸ ÔBýQ?0¾Ãim¨kyžŸº·‰j³ôë€h-y›½vJx3è›Ó·Yb? E¥ïÏ×ÕÀÛß,ãGèÐúâó`ã>â‘l-×ćö,PÍ.›+é>ðØKgÂv˜[Çn%Óqé\Í@Ôn—„¹¸ôÆä»]bwpèM±uugN;YŸt¢q€®QÅx;úuál€U*YsôSŒkÝIò °ºÐ‰>KÈ,‘`ÀÜG’!}nÐmª1»¯u­S-Qû¯«ð¡ZK¾ÿ"v}Àö_Ä~@@éþ+®ý^ ›½:Qûíq¢®ã] ‹%¼ ´Ôq”@yn,´;”Õ”IÆÕÀÛAßž¼) ‰ª½$"}]MIDÒ2eb?$ žôMù˜ï5‰šò’ª™+MJˆÖT?”Ȱþ” %¼éízn§…ëü‘횤]ÜZj#c4»¾¶L¸ôÎôíšØïOúv}-lùÚÄíºÕ®¯…-_›Œ]תÕ$ìúZØòµéÚõµ°åk;k××–}ì˜] )Ïž Ó=×Á~¯KÄ–y>½X41Íl” o‚aX.|¾vK8z$y¾vKØÁ}‡Ä~L@¬IǰgëÝW@Çú±!ž RªK»…$< úl,'!¾µÎöWjÉbºá†ä²/ý’ä›±+Ÿýtl;Xʧ%TôRà+A¿R™ŠÖ»óUc|@0Í=|h•¾¼Ž^|7h)Óuÿ_¾ô{Òw]·råÖQëúæºö?ÁüÔEã’Û¢¥U¬ú^1T륡õn¾½ÌsNÞácæªÃÿû9³T¢ß0Öt©Ì¤¡ÄÆ;"Öš6Ëc|Ó#,‡|#1õ§Ô#VÔFTÎF誻K¶ËSÅ“LŸ~ôŸóQ’ó³À¿ý7黾A®ô:ªq}O1×·wÞOb’¥«!}Û¯P㢋ïú-þ‘r~ŸE…}P+¸á›¹S­ÏÌksºã‡ÿ2áým(5áS ŸRÖ€–»†ãޏ‘É$ÎÓÀW~Uò͈Ø]þ蟋DÎÆAüøjЯV¦•˸VÎVf¢é"‰Þ|;è·§£˜_¾ô;:¤˜wßZjò¦bfÎ:g¤ó«À‚þh:Šy7ðc ?ì—¥©[ Ý|ø)ПR¦›•\7zqÆ*H)ç À¯–Úo]9Ÿ~ô×c+ç†,ÛtÍjêÈdûŸoú‡Ò"ú·5fóæÝsâßac”«3ç/xWä3Fóƒè—OTÎo½pÓ{v¨"|Û«KHò¿þ è‰ZzcÁÕ%Ëòå3“R°JÚHœK2ú­%$ð¿ ‚ÿ«ŒàÞƒ ê‹lL'%$)FðTM>Ãôš «››M” Ì5äfµf¯m¦ÁwªZúñتêŒì|I€'AO*ì}ôš;cÙ!Ž'w;é~‰}€ñÜïqÅ¡Sª«Ä³V~“¹ßûéc;«Mä´£¹¬¶Q»O·gÍR‰ ¹îÉi{rZftçŽÑÁœv '¶*†Ã7ßÎYCÞÐþÀÈ€5_{Íš_Á(Ölƒïl+{çLpŒop£{´ËåZ… Ñø¶^³¢p;³àdiÙ²ç½ï=âÝ ~q]XÝÁŠ´º€»gtDBžÏ?úó ãšI«T aûIà@!¶ ­ÏŒnfƒéѱ-;‡†FǶF¾Èœäù-à·A[™zý^¡h™Ô ŽäFGvŒ lÞ6:²slûa‡÷oÄþÄý.G2(¢ •iqÖ°'CØ~l»9ÝÝ÷Hì{è?i‹±™k¼Žj:‹û™[œÐkE£2Ysf²Ú‰œöç÷Úóg³äOp·¸•¹Åý &}žù9Š<†ôŠ^šwL'rcØ‚BÞZ*ÝB`c¸ùU³éTsßû‹5îrÙ ‡+!îÐm+l!S(Äî0Ðít  %þ.°ºÖÁž…äx xô…ä{b7 |!èÆVǪÌëX¶oÚ¹Cªý ðç@Ëíç¸ØNeóèÈÃíÛvîܱmdtdddldûÖˆ ‰û:àg@Kï¿øN…Øý<ð³ ¥nFŠç͉ý³âI[Œ­\ãuTÓ©œ¦NÅš4+ŽUÉj÷æ´û½>d'…Ö'i!ƒÖ%xváiˢг2½ËÛ@)Ä×Ìq7'FˆÜ2¶¡D„§AKÝ Ø2.¯w%Ô­L£Rˆš5†{øhé³Îß§»çmÐR]YÌ>…ø;@´«L?ÝÛ$Ä9/ ž¤»bW>Znw¢øéªÌ(UX—²yLªá\¾ô+•)æÖ qÊØè–aÇݾ}dttçX¨òBºõàÇA<ùî„Ø½ ø ПHßûßOÚblçÚ®£šîäëN„ ó,¡h™1w ÒŒJ…÷.mÈF#†7·2ÑH¯‡9R­J3@ÓFä±…!<Z*[ðt®0ViêT¬)wN|. ù0ðh©Ûb£õ*Äî$pô|zâÿ$ðú™d{•Û6o>ã8¹Ù‘ÍÛræÈ戽 ‰úfàgA«¼G5¤W!v¯> º£bÿ9ñ(*ýeyöŽaSØ”Ëw”ëØ[9ëàâ±ï¤Ñ®Œ+­%ö ˆ'f­Hd~¾*!ŒŸù9ôrû!í„[ ¼ô• ›mHʹ; BáêelCvÀ»> p¡DL›Øë'hhº«wÊtýt ô1¿›o7¤¯”³áœkë´Ã0ò:,É ðaÐr¹Ôb5±;aÍ>ªq<MlÌÇ“mbrçüI¨·€¾%‘&¦ôœÿ8Þ#¼ôu²b/øæ~à­ oM¾ñ»>àFÐc[«T^ aðvÐRwè$E…dÚ<úP:æ#‹ I»¸ô^eÖ:ÖUÏqîÑҹΣYkxôáØÖú°×ùÝ”Ã{›â›÷¼·d ],9¨d8|è÷)oRixI¤? ú“ÉÇDÄîÃÀOV¹³µ¡½øiПŽmh÷z†¦7ED¢¥ñ@h¡]µ¬cDH¨Ÿáèí¿ø GEu¸<ï†^r¬á±º««£ƒ0bß#`¼AØ+NèQ×»»øv>â‰Y-û6lØÀ¢èR¡VÒ™A•¬iÍ6³Ìz˜­qwÔrç^®–ˆ˜ÕmS§qtä’ì†R ÷Þ»$G‹º«Ý9¤'S6t§fãYM7ÇݪådµIFTŒé¬V0Ç ÞoŠŒð~C׌³r“…éÁÈ…Úƒ‚}49« •c/xû¨¦õ 3iÚzãŸÚjµž•H‡ûiN×¹0‚ut} van ý’ÌRXl”™7³Ú¬ÙP~tÅß¹o}C¿¼}T£øQR<ïb p×®M§îÉÐÙÜ˺YnA¯õù·ÑØr_9YªU3¶—´ÑK¾4nœ«FWðJÐR“:1•+\¯ P¹GH¹f©TsX1ïïÌØ, ¢-ÇL×\é®5§ÛEÇÓ|¦~BsP«ZUê1¼=ɳ†Íþ&r™¢„G@yŽ5îCëÒÆ}5§'¥o¥ƒ·Ð€!²xÂFñFÞ˜âm­–,7stOV£ç\É,2¹ٱܖÁ¬6ÏËŽä¶²Ÿ«…™ñÑÙȲ†¼„– ˜²ïÐè¿sú9w| Â:þIwžçJúäøÀÉOÄaÖmM› #ˆn‚ÅŠ+µ1Å¿Ë1¦½ëý˜QT3£Yoó7³Ü[È”éWcüWž± Æ*uûì´­ÏKBTêáö]± 1PµÌ"pc‰.è1G8z ¶ 7 ‚6W¬¬œÇ!áÍ oŽ}éçL'ã˜Ec|”Ų.k~£YÚ½ÉLÙ(9ìÇcHÓž¯<èM40Cð<ø½6W‰^˜PBuÑ×–º‰I;·L²°2«åF·Š?—¨á-š;‘0ì ˆK(ìùŽ)zÞ5ι™±ÜfQP§6ɺE— Ç33º›)×ÇÇË5F²2˜ý‚Ñã6%lÌøõÈ#£>ÊÊ<8È´S0ÎF/¢°%Ä»h§›£¢úмqŽFzˤwƒÝÉ.•ÑHä:±ï0Þ}Áœ/_rŠ(]4Õ\zÂi“³Æüœeí½8Eœªÿ‡i+…د\,x«g"¨èþ¢Ø]2öHo¬¦7Vá[Öóß­¥ßõñ/]ÿSÈGsCCÖ´’kUki¶»åêðûçÐÄÌtyÿðÄdÍ,uC/NnÙRÔǶŒmƦ´á²^¦¾.çWèKéëVÓ×ÝýÏõ e¬z©¨Ù6rYÁªLÑí§m–Bv¹P /®-؉_ã]?æ¿[²À/ž:y`×ÒŸ¶NV .[ЈöW Íe5êr9Iæ~Ï÷~°yÃg¾<Ób1~.˜eÇ8xºàúäýè6¾¨¿•Ù]Q•"Ôh]7—µ~ëí¾µÙj´e¬ L™%£Í+ð¡~…éMûÏúæ¶Ešþ¹”±s—à‘#pEz‹Ø ¨ËZ\ zµŒP\—æõ’©õà=¨Â5 ×¤¯“žzóâˆG‘Nbx§^è¢6»\Öf#êEØr!kÚz!öÏ"½¬}\›V!ºéƒ>¯}e ºéƒ>¯}UúºÁN«:âQ¤›Õ¢nÊ3U³ê ¼ô)¨f Ô±¤+pš6-Õ,eøx•´…©f­¨šªáZ•³ Y É–ËJQ9~ç»´+p’2-åÐs€x’PÎt©\ލœePȲ”•ã‡àË:«œePˆj•ÓìÔf#ªf¹ð¤éÔ–Cèß:åÔ–7[¤b§vuK,sŒ’7ñQI+ !áM oJAI+ B ´–¾’¼Ùlñ$Ñ~§ÄBTÓuô§Ü~ú¡Žþζlȯ£Úö³q©¦HZ´ƒþ]&Þ’ü&¦¬MÚ±IÊÏuó2¨‰pôB•¹¦[ š*¸ j"ÌÎ¥¯2b?, I•-‰+ÎÊ.>9à#ž˜µòótpÐöÕBâÌ&‹jÜS°Œ©)“Ò¸N¶¾Ìû«ÂI;Ç,ºXS«ê¶^6Øyd›ˆ\³POR±Fü)ZŸýóqk¤çμ9å'y>aœ«Ú؆S+¹Î¸]Ìz©ØÆm£R4ìGÏÙsò¾C{NO<~êÄþ}÷¥¥üóNnš³2›hùx`ð­þ«v¯ã]sJËÜ\y²0£Ûñ³ÁÁ_3àŸ@,+¹3«MsÖÎU w¸R-—uwæŒ~n÷æaÃÙ:ìç† T¾¡©Z©ÄÞ¸C;ξ¾Ç™w\£œ£™ÀÌ@Ñ*øò‡YÿTóø^´}Á+žØô½ƒÚÆÚ‚rð*aEÙ”Ï{I´ït ¶Yu5³8>p„}Ù!ýÜÿÕ€¦;ó•‚Æ´6>Ë ³ÿ}nËËx×ÃükI£\¼LfVÈ‘Lã| ç¼È:?°)ÛTñY&{Ó×^¸bÁmS}¾pûÅ™1½± Õ÷Ê|ÉÒ‹¨Á±w•åû&|« ý[e¤;¶Þ É&“7ˆñŒ²rs Iä­„+½±`ÝhåÌãW ¯#¸+ä[¼u·°U²Ð²ô2‡šdQ‚‰×ÕŠ¢½µñ(ÒíÊ|Ñà6Ǫ:¤£§¢¬¶¬«w²bH¤ñH6öM+Nèî‡5]<*õ¤)¯E_µ¨Þk-m¿ ÔF¦õÀ«@«›oã´ÄêæÅ‡‚Vˆˆj]$ë5Àý ÷§×Úé>Ô‰ÖNÜ< úpZûó`7>>§Z;ÍÄ®ªoíË[£l#Õzà5 ¥b…¨íý è‡ðZÐ×>ÇÛ;Ézð^Ð÷¦×Þ‰í}Ààã73‰öN}´í]Xdxîµwê=Wjïí–½ÛH…>=Ýö.là¹dÚ;Éz°íØÞìh{'Ž;ÙÞ…¸ð¹×Þ©5­&͇î¤h#ZxºÑ¼0í 0šßwSŽ9]ÖǨÉר¿öŒ•Õ¦õ²÷«êŒ}>âáy¤—È|„ài;1‹Ù<ìè| 0ìä|ÄuÐÏ)v}÷Z„ê=ØÚ‹ÝpÔFºõÀ›AKí¸‰êË®‡ž@Ķ‘‹ðe܇±ªrõ莋ÄÝœ=qÉ8®PÑ„p\Äv°£Ž‹vÒqÝøøœr\7u5ö!&zE>—J²¬¦zÝíª ½n»w¥—ª3ŽŠ½¸ôÞKÆQi¨bÂ8*b»ØQGEŒc9ª@¶Kó5GŸÚÁ¸u~sW\Ç$~y¹žØ÷ˆGÒ vŇ┕â‰Y+é7@%„éõK¹s’­¸¦kAê€ˆÝÆš™.×+‹’;JºãÈTÞzà- o‘®¼ÖJ[1€ˆ| j['ynn½YY[M÷Iìnn½%¶QG¿{„øon½M™Z–ð…[)­Œï}O:ZÙÜZn4¾Vï-?YÛª•þMJ/G~(½Ü< út‡ôò|ààVÝZf¥´¢g@Ϥ£•G€&h³CZ9< ú¬2­¬hì‘Ò |ôÓéè§|)è—ÆÖÏ’¬fÙ2*zð• _©¸á”)Å<|3è7§£˜WßZnó»øé9ïBR>˜¦ËJ+–«eæ wP3)åM3ŠÞaË9±‚¹·ÿô*îŸhAXJ¡üÏ ÿs: ý#à߀þ›ø·œ„Zþ‹€x”•ÞtrÛ>à@ÿ ýa+±ÿ[ñ¤?N¼…Û´‡ÉûhòJB²~à*Ы¤G‰½-íugèŠd{ºF®†<ÐŒažÃ¡Ã}ºkNš%ÓoÜr9mT Û,4®'(ÏZà ˆå‡Îä’P‹ ‹ [cÈýÄî4Ðm$ï‰Ýp ôTìÖwCV›¬y¦”)Ôl›™UižugÓË6ŠQÝ#‰6 |´Ê0,Ä=»>àKAÇÃ"»Gbÿ2ñ¤ïoåMÌÃäÜão:_B4\ƒåVêï’<,(Òc%kÚ»&×µ4§jÌ)æ g ïœsÄsÓš3cÕJEº¾Î6Üš]‰Þ¨Œë€Еä[íh„h+ýÖ@ì«âI¿5lD ؘhkXÊO3IÈÖ\ÓwR¹U&«MsЃD½=èe«Vñ¦¢))²Y¬é¥Ak°·,Š((Ĉß>¨Ðë/ý¢äÛÇF´ ƒ~qúíƒØ¿D@<é·Mh›m}tÀOB²~`ü`zE‹D¯´¼ƒ¾Ìê)ÝOjkŽkÓý8B{q~?Ì®ywËÓ1›P†ýKmQ¢ZÖß:ÖÉþfE ?Jüß|/è÷*ÓÈÒ{÷}@J'~ôGÒÑÉû€ýÑéäcÀƒþ¸ÂVrü°”F> ü<èϧ£‘O¿ú ±5"5KM"üðË ¿¬P)÷”RÊ×úÒQÊï¿ ú›ñ›É`Ô Œø ømÐßN>#v}Àï€þNúA±ÿCñ¤„e¸9{˜à …Ÿw­Ò×:E‘Ó4‹‚„ «q¼„¨ë9Ð9i}ú× dóæe¨ò³åêÌù ^’ª|fÃh~ðýò‰Êù £.ào–罺~,¬²Ûfž"ñ‡wƒ¾;j1è™§–åËg&ª`,½!Æ"“tŠÞ-¾[Fðº©ôt-¶Ï‘4‘¤ÝÌÊ|ÆWn~0¬‚B²S)“,˜kHv*µjfñƒO›.búªÏìSæº ®#Q#?ÝÒHè2ÇÓ˜¸±&]Ý”˜¸%w@;ÉÇ Ä®è‚vÓˆ}M@<éÇ ƒ]¼ &9q£×¢F $Q?0þÄM¢à Þ#Ì‚Îv$bXšg5-/ðCÀ;@ßq)Ä $ð‚àwÊ?^P&Fðn/xª-(“+R´ V)‹E í;S5+$˵M¬ Î@ÅOÓˆDÉ-ÐVò±±ëVAWÓˆýâI?V¸ -0¹X¡×ž±$ë®-uö(ùPD\¼ôí úòáÝ6P ѳÀ wD-B'x§ øNÁã ÊÄÞeͦØÈa‚2©"… jU²X˜ÐÎä;U/ÁAB²\Û êŒSüt›$„­yÇDÙ+ +ɇ Ä®h–ŠNâ… Ä¾* žôÄÛÑ \†à9–$dëïjt½Ïáeq=°ÓË^]ËM+øÃÀ»».¡ex· ønÁãG ÊÄ]†€r#G Ê$‹1¨UËâËíM¿Su5$˵MÔ ÎHÅOÓ˜Z%Oq‚Øõ;¸ Aìkvl"ÛÅÛ a‚S ÕSB°~às|jD\ìôÔBxE· ²ÂsIM- ;Á;4µ LŒÐ©¦ØÈ‚2©" jU²øÔBßÒ¡z ’åÚ&HPgœâ§i ¢ä%Ð¥äƒb×,ƒ.§$ûŠ€xÒ†Ðþ<’èe?•­¸º+î‘ÄDÃqP ;&,Í·«ê¶ žÞ :rÂN $ð¸ ø¸Œàñeb„nVðT9TP&W¤PA­R߬ÐÖÃt¨f‚ƒ…d¹¶ Ô¨øiÁ‚(yt5ù`ØõŸ—@ä`ØÛâI?XÈ¡&,xˆ%Dë>ǃq]W£¯íd°Ð®ªÛ 9Ṥ‚t\¼CÁ‚21BƒOµ‘ƒerE Ô*eñ`¡­‡éPÍ Érm,¨3PñÓ4‚QòjWjÁ±ëv0X ö¶€ †Ñ  ¼+ $DëÆz[D:Z©•½ÜnÌœk³dwÎ0*Úˆ¦WŠÚèÈHk‹ Và•JË8†!Síë€~LYÇÒGyí$$rs ç¶ÇF6¸5?mwÕxÙt C<¡ˆ#!·|´TƒüæÇç@Ÿ‹ÝF{!iÑ`^³ä æ´ƒSZ­Â Í4ŠYÏÖŠÆ”^+yi嘺úYÃû5·Ô)Û*{?ò$©Qý.•føÐ_IÞï»>àWA5}¿Kì¿& žôýîo¶&¸UŒ_È"![?pM—ê´Zï®' ®‘]3Ç<É~kM±vP0ËìÅjI/^[àC9zË6ÖDšÍYµJ‘"©7)ª§õÀþXòMj͈ðã åR´ÄjRÄþâI¿I¢&Û¤øÝF²õã7©%-2M×›T=¹­Ð¦ôFúZ2}O|Ë.‡en¤ø§áLR›r´Œ‘›ÎEÎ!4ж@x´\8zæ%7ÎUÃZNXÒèg€¯ý … 6$i ±›¾ô+c·”ËîÐ(ÕKŽ%£ Wßú Ê$ßRÞ|'èw&‡.`ûFà»@¿+¶n†¼ŠÐu¯U²>©æDA“¨ïþè?H¾Û!v}Ào‚þfúݱÿ–€xÒïvƸé{˜àÚ»JOB´~ úô®½Ž£U ƒ…`Ú$äêýNÝü5 Ñ"ç=#ù×>”’Ÿ íDH˜€‚~0ùN„ØÝ|´Ô Gñ®r ö§Ä“´ó!v}Àçƒ~~ú·Ø?, žôÏfnÏ&ç|–áO áúkA¯Uôþb›ôÌVÍ­Ö\alè]ä Óõ23×Tµ­i6„ô®˜¡Ÿ™½±ÏÍY ¤¦-ÛtgʼW¦¯çsÜaÓ€,ü$èO&ï݈݇Ÿý©Ø k ÃNDŸ¤%!> üè/(Ó˲{ø „P_þhuQß²¼ó@ÍrÃTó[Ào‚V÷Eíxˆý·Ä“tÇCìú€ßýíô;bÿñ¤ßñláía‚®Š–®¸¶+nÇÓ÷N–L‡ß3˅㓈Û0‚º’…Ã@¿»Àë¶Á2Žj $%tAË© \M:Zw‘$º|è¥á¥ˆa øbÐ/NßKû—ˆ'i/Eìú€Oƒ~:}/Eì_* žô½ÔVnΪõRí·…\ ObôãÇ[ÛéZ‹_MâÆ£Ú,Iµ¨Ö’·Ù­°S›Aßœ¾Íûñ(*}¾®–Þ0Ím@úñØ:žò±(¤rèfY>YsjzI{H/‡è2qøÎW•é}oÅ™±æ*4—PѪ6{Í¿¯fÊt½o‘x0Õž©Œ/þèßI¿•ï„Ùù¨ÆÙè¬YóúŸúÖÁŒ3(l¿œ8imXE£jTês4¼%òêÞµ˜»P4B´ž~mßÖ>ª©m‰PèN0'Œ ÍÅ­c•€xÒ¯—qÔŸ’zéŠýÛ>àrÐËc×ÕÚ·h“L+€7‚¾QYgµÂ¿·~ j_EòÜÚÕ8ktk—äÑŒh}±»©«±kù¦®8i©üO/ox¿úµÃzî½'–žçb . áŽO‚>©PY!ëùÄî>à)Чұ‘½ÀAK- 6Uý‰úJj6þÍ“3gDßËCzøk Mº`JôNÂø)БWè´C‘ÀŸÿ´Œàõ‰ƒžE;«ãPÊÄPœè]™\Á\CŽC©UÊâÇ¡d½']3ÁÇ¡’åÚæ8”:?½aPá €(âƒþcemè2~²ÔIô}à@ÿ .óO€ úoãê¬û:TO¾«óƒ9íäŒÐo²Oë:­¯Û”æ5\-;kêÞ_?0Tµ­)³T¿ÌÖj|Æ·”Ì'ÙW<0ä¸ì+×,øofîÓm·Æì„¦$î¯èÕjVÙz‡ö ifÜI½fØÞ¯¶ß¡Ò gêåÇFF7×Ô WÓK9ï·[P‚’îÒé<&¿^s-ÚHXÐKLpoË‚7uÑAÏéŽ?wá…˜ûCŽ==œ&Td±«x=ËÝÒJ2aˆÒs§ S°Ùž^à•œ&Œégú$®% ®^ËiBEÊY-*爔vnæ8Ý#5bŠ®ë€Ãœ&Œ;ÃÅ’ж]Þð¼¦fVXÓ,i|饠;†“ÓösçÀ<Ç, ×ic½fœÓ nh/¡úà3œ&¼äBòž×ßÁiÂK"$ïy§ ø;eW’«C}H®F®¨!¹B¥$’'Z3¡!y‚\Û‡äŠ Tüôuäxy¬;äEVeZù2¦¦¼O/îqx¤äàQN^~ò˜ ø1ÁÕøI%b„ùÉû$ý¤¡"ûIuYÔO†|§ª%ÜO&Çu?©Æ4ÅO·6¶"aò€¦Íéi³âhYPk•«˜%££-&E£1÷Ó]~«p§âÏ—_ÃiÂKï>#þŒŒàjüª1TÇŸJ„ŠìWÕi$¡ø3Éj ÷«Éq]įª1ͦ– ú¢¼¢ÈåÈXÛÕ¹øóÀwršðÒð“ï—Œàjü¤1TÇŸJ„Šì'Õi$¡ø3Éj ÷“Éq]ÄOª1MñÓ/þ,[˵*f¡%]·Ÿ4FKþ"äübGœh¼¥ªÞ/¿ÍéÞÈG€;åG¿#þÁÕøQ%b¨_ªR#WdWªN)‰-U%Z3áÞ49®‹xS5*~z¹–2¾f5‰lÁ¢`Áþ&VË LâvŠ.ZŽOô-á´‡j”Õ6mðêqOàœô¾ôÞÿü §{"+ø‚oþTÉRN*«’ð]/½ÿl—qš0¦õjƒÙð¼7rËž}Ë›8ía†SòÓN}àfN{x)„}[Á·È®$ P#†âi'5BEj$™i§D«%4Hkû@‘i6µÉi§º(; Šü•¡švêÛ ¼‡Ó^~r¿ ø~ÁÕøI%b(žvR#Td?©N#ÉL;%Z-á~29®‹øI5¦)~:ÐXöôöIç´cÃ;yó2®£%OAÎ)eMh¥‘8~x ¬i·ÙßWÖ8íaò#„¾ià,§=Œ§¶B†L]óÏɔ̳FÉœ±¬¢Âíî}sÀ_ç´‡é÷ˆñæûþðsœöð’è?/þyÁÕtŠJÄP?‡¨F®Èý¢:¥$6‡˜hÍ„wÉq]¤kTc â§×kC,Û6œªU)ÒÁÓ}¥g`| ¿ ¿×?gæÏ€ÿ…Ó^Nô‚à?\U"†ê%BEö ê4’Ð L’Õî>“㺈ûTcšM-AvÆåï!ÊßwÆOƘñ"þ§=¼$üä¿ ‚ÿ›Œàjü¤1TÏÀ(*²ŸT§‘„f`’¬–p?™×Eü¤Ó?Íf‘­qο8£lÙÞâŸc:.Ý+WÏQVs ÚtäððÄþ#‡5ÃqM¾?(«MÖ¼[0*–‹ï27ä %\2ÁiÕ4>™œæ$É#ÀÇ8M¨LÙ¡9͉á àãœ&Œ©ìs^–@~VÖS,kûÞ¶îZ¶ãg Ã1Ûæ³µÌR¬ø³sK^ü N*Ò0fçî;9æöÛÌÎ-ù$ð œ&T¤çv³sK>ü-NÆÔòó²tR)XuÇÌ/¸ä·ÄiBEŠZç2ß14©S6 ž2CB¼¿þ#§ Ói— ü§ cjì´–A惒òBOþÔ“¸–ç¢]»œ]Dvž`É?q\z€Ó„ˆãÍ·.½xŠÓK#§ìP¼ôAAðeW«Cý|«¹¢FÁ •’Ø|k¢5'ȵ} ¬È@ÅO{dò£ÖåxrÈ_ËØ¡YÕ¥§N^®²(^”\«T"†âYU5BEö“ê4’̬j¢Õî$“㺈“TcšMŸf%§U벘Å쌣”ŸV]zXãôÒÈ»7:å(gÁgeWã(•ˆ¡xZUP‘¥:$3­šhµ„;Êä¸.â(Õ˜¦øéÇø¨7O¶×² 6R7L1«ïÈάV˜Ñ«”ÑwtÛ`N»Ïš3f)-pÅriÊFwÙ?l´‰× ¬ulÔ?o¥À Vÿ#ÚPçZ–VÑmÛškän\Ð|7cQÒíi#òÝFBÅ-Ëpš0fÅI\çr쟰t¯´sé õm!×¹Û>àsí:’iðFÐ7*ó»Ë½ë\ʳaU6ÝJâÜ Ì‚Î*kì¡Ó­Äî&àè¡ØšRp› ”î½;–š'¸¶$d;œ=¡PW!—¹»{'@ŸHÇDöO‚–ºº¦©æ_+\æè¹Éi‹ ø7Ó.åšžÕmS§?©o +y oŒ.W­Šwc!zk59mO‰}w¹í 75¹åªŽSÀÿZÝö¡¥Ž9]ÖÃâ”¶^ä¿ÿèÿ–މüøcÐ?Žm"ѧŸˆÿþ èQ¦“>W¯Iiäß?ý“t4ò¯ÀŸ‚þig4B±‡‡Ýœ&T¤‘^{Æ’PH÷r`?§»¥îS¬îàeœ&ìˆBVWqšP•ÛšÖËrn«ûyÀk8M˜†NV¯åt·Ü­Mì²X×oâ4¡ªvR1et²˜át·ÔX&ºN4à §»ãê¤û%ûÀiÀèT‚95/ÜËêGÃb$Q¿Ã5äº9gÆßä*tX«4ï…<ö`±Eƒ3®Oò«iXª¹fÙ`q‰æ˜•éÿâiáV AR P*µò$ûAM]8žßݦm\ܤúÏŽð•NN;èm^Òµiú;ö7:IcœÓˬ˜H… îÂ`V-Y¬Ìÿ‚ ‰qÇžršPqü¿ rG®ç«Àorš0À‚tkÆ!rNvèÒó)àïršPNòßüQà·8M˜‚¿èùðۜ­æîz{$»/ëg Í©ÙõI(ÿ3¡>Bñ®Ù6*Ž9YŠ>oD‡cïZN¦?ot7o#v`ÞˆØöÕÍmôæ£dp)^¨-?D2®æ@ç”õØëýksLnOà¨8 ¶xôä$±Þ úÞØ:T0£DÝ|ôÃÊ{”å¾¾$¤›V@WéR°Õh+#yX]m$wÆ™S’Ð×Àþt :´/„ÿ0ð³ ?µôFÚk¸$ð³‚àÏÊ W™Š÷*“+˜kÈ2®Z¥$³/0éš ^ÉM–k›•\u*~úvžËÑ?21cx±Éo«ø‡`˜‹­(½Yzš¶o ÃÄ1gÈ} 'iŽ^ȯ4·hä-éÉQGÝÏç4á%çÉ»Îpº{æñäݦ ¸)#¸O®F õž\\Q=¹B¥$æÉ­™POž ×öž\‘ŠŸ®Œq…»(‘ ‰\eMf-¶I]àNòœ>Íi†4Ý5àK9MSAÇh-:µÆ”r›.ÔÓ&Ÿ1&…š®ãOKÎÂRa^üCN*Òñ&½«Ëè÷Ï€ÿ‘Ó„iè÷€Éi˜úýúòÀÿ›ÓøT[űç5œ&T<é"9OB}ø9N&0ç²`ÿš¦i|qžO¢ ¿ü8§ åʰà›ßü<§ Shg=Ï¿Ài˜í,å }þ·€?átÏObBbB7o-v`BŸØöÕMèßîMè—¬‚·L;äô’¡hVŸ]Ü z³²ï-9Qû<gpè=É·Eb·¸ôÞØêS0—Oížï@n`·"w§ 5 œ­nŒ:•Oìò@´™Ž<<úLlùvÜí¡Ü)¨›]jÁ[¾^yäMÕy–c÷œ&Tyë¥êLäÈ›dÙ <ÀéîV‰ÝÀ{9ÝEñÿõÈ›jë>à¿qšð¹y3¡z®^ÇiÂ4"ïæ 4%GBrD4=ë9M¨ Þ&Eýß|=§ Óh]ÿloà4á¥o“ð7óœ&L?ÞÞÃÛˆ‡±âí@®Ë½8Û|2Hä!ûÀ¹¯ñĬ‚ öKÄ“¶{Q÷>â‰)†Å ‚ú ~±±KsʬDè”Ðm©wù,"¶-Ë•î)àK@¿$ù¨˜ØÍŸÂl0±«_ :þlðPݫ洽õ˜—_MÆ"fAÌ 5[/Ìk ½ øÐQqöºVØÔVh¼I’| øПIGw~tüEóõ^¢2JÈÚ:P0·!¡ g¿ú÷•)èêܽ0úâ[ŠVú`£ê<6’Û*£µ?þèHGkü¯ ÿkl­mòܳwˆP?g–kea>\8Ý,ÓÖþ‘c÷åœ&T¤Êe$+NBstþÅCÓÝZ*šóNÿÞÌi˜š[2(×ĺ€9M¨H/}£###2JŽpº{$¥lŽrš0¦RnñÆÚ,ÀaÁQͨŸˆÑ‹gjŽëÏJèl xŠÓÝê’ómdak[¥ñ’é¸Ö‰{¢g5´1þã ŒVóÀsš0 ­>| §»¥‚°æ}·<Ù1B¼ÄÎFéEêð\Cã{ÆW«Öìªå4Iùu’üiàç9Ý-µ*¨í•³†=ÉD“Úx@"ýð[œ&LC§_~›ÓÝñOÀüYV³jn•ç°¦Ä(¶·£Ïâ™Sª¶5mNý„½0š)M[6kÅe‡š:ßhx3£z©4Oƒ›©Z‰§`á+6S&ß}BÁQÉškMÔKC+ú8äö]¡žÙ¥™/S7%pfqÌÿGÞÀÉqgÃøí!Df†’Ø#öö2x A @,ÎíÎÝ °»³œ™½Ã%JT¶$J¢¨l+˶’•s–­`[Éáµ’-Çϯ³ýÚ²?ËßËW÷3»½w»wœžžY@þ8xênç¶«»ª«ªS5²¼Vé¼]Ø¡$µëò“h?èP=‰&zD{‡P×êÑ®d#ÚûIU/hå|í/„+A¯<_ÄÔjà oŒÐIÅ­ÞZ)Œg ¨¸K€kA«ß*OS¥¥Z)1W]ÏvnV˜-¨¸6x‹…ÊÇ–2oÔº) ņi~ÏtócÌŒ`Zd†=eRžÅìƒSªÏÖ]Mðeõâ‘|ßgNzÒc,ò„O˜x¬}'³8|Ï0·ŒÁÍÎ`zžÏåœÐkóL½æ°CÎÈ[._(*Ú%VD:ØùL†*Ϥ-Œ$ì';.Ù0V”J|CÒL LMšP“Ç£Õ”pnŽøx¼ŽÁ“€r§ÎŸ'hˆöo®ÂY}âàùÀ ZmƒaslWÈË뵋Ð}L·k [<ˆ èÄ5 Ž%îÜ`¦…s£–}௭3¾k•¬Ù¬˜ »X4X°C«Ë¬g—l»Ê°C~j¦_ع^Єš´¦sÿµéܼEз$¢6€C‚&Œ¨6Vw N¿!pÂtË Åš,yŸ&貕g1¬éN’àÅtŠ#a¯—«\uT.o¡*n¾SЄºf.oÙ%bWŽ4¡&™ÏpIø.à‡MQêsºCGóÄÀo?*h¤£ùÝB 5Ôͧö²h~·]&…ÍPøCÈ|²Ñ¶ˆ™j”Å3”Ö„)z•YVw¦¡ßQSO·VK¯Æ>gÁÌm¶áñ‘ñ¨å:Yã°MoñÏð¼»ñ÷XDDã²i)L ¯bæ­LË®_ªYírµXìµJŸŸ`h¾¿‡ÏA𯩸²‡š^‹-><8Ï!Åy'DHÛSö šPQœQÎÍ;Ö—é;Þ‚ýïwït*tî~z#é#dÄðã¨0ΟHGÈ´±Ñüèèv,t0CÅW%Ä“|—¸ÝàžX»Ä¼¼-+°¶¸ôRmýa­˜ëžèMfʪõ=輄›@oŠ_­ï*n½9yµ¦â·Hˆ'yµÞUÞ»ZWêõ>¨ò¾xÔZÌqëVë}På}ɪõ>¨ò¾öªõ>¨r€zÔ:4û¡Èê™8l‹ÇÓ(Òky¼§T-úv¥(­Œxb%cÚ€Lu$}õ"<ú„¶à~e1—2œ&Æ,à8èñø}*î$p´ÚÎùÓ«2Hih™ù± ÀRTÛàk@¿F›Ü¢Í€Oo¾ô»“Ùkï}ØsMÐ×LÎAå]{˜NBÑ~­ÐSœÄÙ{_ý•äíÚA!ñê±k8À(¶³ˆ“ˆÌ†±!mŸ¡y‡ŠKÖM=3ǽà•pô@$odp6X; ¼´¾¥—¯â ËFVù[ATe~Ú7o>úø-7|ôƒ‘üvé„äºÍõ¸¦òdÈiñáQzä{àˆÿ‡€oýí ¿Äô²|ņ3­Àâ×ßý½dÿª¡Æ#v€_~´’]núÍï~´ÒŠðà­À€þAäpq½„u9ÄÈ ú§ÚÚa~ŽŸ”jRî^¡ïü*Í6.íQñâQìÈG¢²CÞi„x"¶ÊÕÁÀ†+U¾^o;÷ªäÍ>Q^ Z)‡K;ófó×ozEŽÞHzÓ1¼Nb| ãÑ7=icCsÞlm|5/µÅ®'½B™mדZÞì¸[¦ù¶§xKaÛ“>•?½\䃋˜lRæí6зië<WHuµêԭ戟;@ˆ? ¢âv‚>YT+Ådœ¼Ò§ ¦{à‡/DG—>ú‘ Åѹã® ãz6bptZø íèô %>GgË´vtñ•:‹£Ó£ ò§O‹ãoUOœ‚â§8hjG\ÙÈ&5“çb¥Oîí 2ZŠdiYc3a[n¦vUÒ­š®Yö-:mw‡U±Ä‰-dY˲V3áê$5OÐ)õ”tí³ß©/4áa¿S—IŒ_¦Â¸û­‡ ýö[_aí·F¡Äf¿cm™–ö;ÆRg¶ßšTþôuµüevÁ v?ìÜËÏÒ´÷Ô£Õ̤×ÎP›y_Ø}J‚dÂæf8kÜWËÂ:íÚy³hÜnNÒÁj×8hV‹VÏ>V¼U þÆqÕÂïZü ó¾ Ñ|ÿ:ð“‚&¼0Ì÷§$Æ?¥Â¸ó­…Ì·¾B›o}B‰Ï|ÇÙ2­Íw|¥Îb¾õ(¨üé"SV#«¾E9mg­lY›"téƒÕkëK‹¨}¨k×í]­zù O©¿þƒ SJ9×ܾH¥“Ò[MxAD*[%Æ·ª0®%RÑÆþHE_a#B‰-R‰µeZF*1–:s¤¢IAåO¯âsƒÞ”ÉÁ´Ú¾‚‡ÁßamhqÝ*9Á·€– ;­Dœ`çàˆ  #JìšúLl}¶;+¶‡(ÈløAj’Ù’@fwîÚ¯’Ð^|½  “Ú Ïš0¢Ðž4&LùÞ)^>IN}ƺ`í‚à)‘Ì·h?Ê~wo盾ÍBž|0ÛÎFÑæ}¼ÆÈHA9Þ pÎU‚&¼à¢9W»=§û ‹æÜ,1~³ ãZÂ"=lè‹ôð6,Ò(”ØÂ¢X[¦eXc©3‡Eš´áSÕ¨ÆK/xéÕÖY–ÊîT)š³¸SЄ øÓ9}À;MQ>£3Abvmß=½‡ví»'p<6ràO½±‘"Þúݶôžå«$Å¢Jî¾_ÐsÔrÎ7ÝæOV,ߣ$û?+è9 ÜÈDÅ}ø9Aω~#ÓºîF±SDÕl¡Km&hÎç#h /äù€ÿ!h #äù¹ÄøÏU×òha#†G _¡C}B‰/䉳eZ‡<ñ•:KÈ£GAåO;C<’ùøOð¡vU±üiè7÷AŸÔsI㉛£`Šð‚=qCÌ_¼ NÜÃë$ÆÛtâFš½Š6¾By½B‰Ç«ÄÝ2ͽJ¼¥ÎàUô)¨ü©ž72o·uœ?'nˆŸ;:;qCÅíìÐuâfwfê-Ïñ6¨únrÊK¡ Ú{Ï€VŸoâëËô÷©%á'îß|/è÷^(Þñ}ãïSa\wÔÂFó 4< ?ÉVÉ=ja,´{Ô'•ÙÜã,Šß®¦iíã+uÿ¨GEåO7iÇÍÔL©”ñŽYcÚßm—,/ê´–ÌúA«í¤OÛ8ù ðï@ÿÝ…bbÿ^büïU×cbµ°ÃD _¡-¬>¡Ä7‰³eZØøJÅÀêQPùS;#®%¦3Œ|ÝÀµ˜u»Eò}9Ãhýêë¢É/ ,;Õѱúõ×t¯1®(Õqÿ¹TÝÔaA§ôí—º¦ñþs³:-™go='VRÊðz˜“:4aD…èÍ:Œï™‘.i”k U±òë^ ß#è”Z¦Äç*V»A¬~CЄIˆõ½Ào š0¢X÷gjЉùÁ•¢9Ɇ¤¼s#/"3¼­ {Ęd¯Ÿ.;Ì>˜>ÿ‰†¯&ùÑÐSáT—o ì¼\Єëz*ü~¡25Ô3~%]O¨açpDx%è+µu…|§4z‡ØY ¼ ôMñw*np-èè·~ÿ[¦ñ²lœï÷šo{¨_ÂÝôº„Ú…^p76ß±˜åÚ0ýfIäOžjEg™Eb]’.$g¿í«zn¹þìCþÍä—ùYÔ~ñ.µJ#$ѳk‰ÂÁ•àVª–7¥‰øåͧÛe§Ý[ÎpJºÚ•A¥ÖÄóÝjÞ¯2c’sØßó¤h5­Y½öý’_šê’X]{Y%¦ü±§ä HßÒ;W šPS/L78¨ñ|Ý=e úI9!v à‚&L —v^Ü#hˆ½ôjºöÔs¦(¢»¤‹½Ó>fI±É­Ùâ4”']–ž2©KNŽ_ÌZrÆY÷Ë™ŠºA & -:ÂfßñYG.WKâ;ú®m [‚S½¢.µsæõâ¹!±ù Íe‘È”j{ësç^sò‚&Ô¤ÎW7¨³UáU×à9§€O š0 žS¾HÐs”nsjh˜5™zªéÀ2[$ofšy+…Ž¡ˆÁ]ЄIÇP 5¨áùC=ŽõÇP+ƒ•°¬g¹‰ Mc«} ûâ×r*n°td©©œ&€@oÐå=%¹ÜÜ :í¿TÜFà £oÿ}lªç¤<ã<§dM‹Ùêan”ÅÍ4þBAv¿ úËÊ-ЦÉwbþ+Àï‚þnØJÐIO¾Ãß“ÿž ãÑ'ßµ±¡yò]_ÍKm1ù®W(ñL¾ÇÝ2Í'ßã-u†Éw} *Ú™1"ô×ïƒþ~›¬% |SÕZþø3Ð?»P¬åŸKŒÿ¹ ãz¬¥6ZZK.Z%k©…¯ÐÖRŸPf·–3©}»Z¦µµŒ¯ÔY¬¥mø4£r…´ÌË߀þ›6YL³XS¶˜ÿð?@_g–ˆáŸKŒÿ\…q=S --&­’ÅÔÂWh‹©O(³[̙Ծ]-ÓÚbÆWê,S‚ÊŸŽÕ—¨Ò^w·´‚2J§A¥uy‹Lõékרéé÷v+­±HµMt긶î¸é9®±dŒhÖÄ}øfA&0e”:|‹ Sj7³ÉŸ†?ÞFå¿ø6AFä#ô|ô1¡5Ô2º7JÖó½S·˜9ÇŒX;vX°Î˜yߨ– –˜%3=¯ZªðÕÕ`bÍe_è”zø÷–ì3V¡Çásß|bÙ ra–é®?JZS`e±žW¥Õ'gسÜqÜmé»UÖùãç)f–?ïÐú½AÛ8ʆg–*EZ‚Vb=föÒ8cÖÎ[,ÉÌR‚¬9|ÓˆYa r†/‚±Ÿ¨högU·,Òòx*çÿrZŽÚ]Єm‰Ð”g‰ù!àÝ‚&<ÿ#4bø‰ñ{T¡icCó  6¾BEhz…Ï `Ü-Ó.Ò†¬ãŽ*0y=pèMÚz>s¼¦]lQîUÀÍ 7GO„^Ú ò··‚ÞªMH«Ç|¿âmí혘ȆV çGLÞ<ú„FçWu[‰jP¢#ŠjNwhãK…? =¬Ñ ›U6 r[š l£ù¥â;%Œf~wGeÇdÏ ñDl•}ÌüÞî0gÎ|¸]ÎûØhtU%ŸOÖ8J?Ú££6í¾‹…+YãûÕMÆ!6ÆŸìÉé¾¾-l ²JÃ.á>Ðû´Yƒk÷Ò Q1‹½È"ô˜e³8ÉBV+ +#‘#&*n?ðÐD÷¹Yc'?Æ$èfŒûîÞjÜÏ‚ÐÉÐ&‚Ør/ýòä{jº ƒ1ʺÆÓ-LfŒCY¦ü¤öGÆœRÅ£4Ї³ÆLñû·lÙȇhóßÌMÓ9"‹I!Læx¡;M$=ª­Ó\~8ðmÊû¬‚·Ë–eà A¿0þÞBÅŸ­´»8b”Cå¿øbÐ/Ö&¢Îþ ü¼ø*ЯÒ(Ža§XhQìK€¯ýêÈâX–ÞØ16öoééÙ8°E©û<üUпªM6G‚´àØqöö÷eûûúzÓëGÝý}[6õô lØÌíFßà`_wÿ†­oÜÉê³u«iz<»Ô¿y󃻳}Ù¼³m 'ìªÕì=Àÿýߥ=n¹Ã-Šý5à/@ÿ"y_@Åÿ„x’fÃÊQC=.é-Â%ùÕòhéî2s7î‹X¶¯ÿѬ̈]°è V°··¾ÿ×,9åÑžQשVêçµp¶Í)[=æä…“6Ü{UËÖ#U³hX®+€ ïÆFÐ(„o­¶ÂÕ¬öÜåT]æuiªæÑØ‹f™/cÐÚÞòMcåÃz7*üÀï€þNüÞþð­Àï‚þn¼}Ó÷€Ñ¶'6“ÜœþM ý ðG ¿{£?üðÇ Õ3ÊŸ®H÷÷ 0׿aSOOÿ¦MJë'À­t]SñÜÜÔÁõoì=•=åUì,³AÌqmÉö „t[Tòÿ˜ºFЄq»-úÃD±× š0iAÅ_WÇàIš i@¡Ñm ·ÕlaÚpŠ©Ïsa÷VͲoL’¥£-­ÊÛþ$ù)³qPºƒŒ¡^„ÁT“Ò´^Œ(âÍ> úÑø] wxôÙ6¸*ÿ1à9Ðçô  úø ”/­t~4œ‡¡â¾´Ú8Rþteº¿Ÿ;˜A6„êß°a³Rz ð ß¨Mú }že å”Ð ü¼ø2Ð/‹ß³Pq/¾tôíRKÒ47¸©§gÀRçyð  ß /@›i*o`C눠…_!.øÐ_ˆß¯Pqo~´Ò b4ƒNÅIBú)m‚¹±™CÙ¼qpSï)ÏËŽ÷ nÌÚ¡G+Äꀟ­tEw8¯BŽøyПOÞœSñ_OÒl<"¤]C=^åòé^…fÚBòæ‚ÂËA_®¬ÓìÍ)'t;žÏã¸{¾ö±Šõh¯¦AߤÂbÓÃÃßãpÎ5ÆÖ)l7{µu®¹96ÚlQêÀ ×GÖ¦-|÷ʘ Ð>•{œžŒNìž}¢M:qøpG-ÇI,žc\·Ðí&££@´—ŒF˜@´Y#ÔÒ‡W¥çÑ:ê¶Á}R ܽøÐïˆE/–=;…åCÏYõøø%À7€VZ^núÍOß úɨíYà»@¿+²Úîãs†ÁUN%±}y>‘ßßÝü\7.â¦û )olè$.T•wÿô¿D®Rèç¸è25Ô3 WpN pœÈ9¬ÀÜuÀ@ߌ1X<–É(°½x5諵ØúÆEÀAß¿ âæo­´ÞÒÐÄÅév€½M9›\]\):¾'.õõ*ޏޗýA“7›™Ðf‚jºøZЯÕÖÐ sžeQšÔ&%ûè„g:tZ†ÐŠŠï”¢]¸ö¹²Ó25ý${.–OÄfÙ¹fÍšÚ)ºƒwÔpmï´È+27ªÜôŒã¡kò(„J¸ôÎÈ5Ù_0}ã–âŹ|ºd™^Õµ†ºêbQ¢=äWJlˈ²5š1òöPžÿ¦Àþö÷æû';œí]©³¨á~ÐûãÓÚ–|<†²ÔÓ{v“š4 2OÑqnÒ rá7¤” ]™s¨ánÐÑç2LIS˜_KOÚcÜ® ?ƒÄÿLoví»§+¼<6 3 •&#êÁóPv€zô`;7ÓýKmÛ·¸&»ÅæïЕx>'Üz{äJ,á(ûi¦áüø \zIü” ßÂ;úô»+ĶKsØsŠUò¬³ûÕB-‘”Z÷~!Ø&Ä-ê·DŸö4éÞ%:P7d<ÎjP¤Nt÷ðâ|ö€Všy(þ¡ìõˆÇlý»v´PW1x'ÜzG›»øKÀÇKÚÜÅ_вÔ#ãx¯}6lg=[‹§~Ø#¼´Ò@µ1¿b½+gKãµÞŒÃ«ÔŸûÇp‹NÞïõòlüS”"¹Ót‚YöŠS-:Þ@_xmx9ªCxô‘6hÃ+Pv€z´áNÒ†`)Ƙ"èŸálWí 1MB9e«ì‡ü j@x'è;•‡W‹žóh¯Å†œWŠ/©¡žý++¦›.¸ÎÄP>=éïn©}­øzš†p%è•Ñ]$Næ1cxöhÉêg”oU¼¡õ}lxÄÆxÖБC÷í Íò«Á&¡>ygŽ“) {óÐ<>¾¯}]dç2Ãrò”N8ôÜÈœÜÌâ&Àôøcéa/õg¶ÏEr¨«àø¾Uh=ÀiÅïkÁ#áÍ oŽG!4)äëÀæëSÈÐ<> ¾žn»B¾¥¿þQÈgÀã3Q²ÅDenž¬–[ø *í :røÀ€Êï”Oâ|¼m žöè­…«<ì ÉñàTûQ¾?˜ŠR‹\ßN {A÷FæúЬ‘«V¥ðUwÜúfT†ðèCmP )ݳFµ8ª%n­Op¹*…®Ü[Q!£ ¶/Œ}›ø’ž/a쯢iõ…±ë¢߬ê b L®½.2Ã×4‹ß¡9|;¸"¼´RåÈÃ;P:á…1¼<ê aonPFwÌѦ‹ïïÒÊïÕÍt‘³šÁwƒ)«A+-÷GVÅ÷ ô÷\ ªø^ðøÞ¨¢ ¼¾ ¥½¯£½Á+•ß)¡rðÚ´Ø‹rÖq§i“¢'Qí_O¦ Zm4øuÔ:@õð½éæT±«,$O¿Ñ!bÂe —iÔËÓÖä„ã6;]øÄoÔþ†cÒB¡âWHˆG­¦½Õy¨YÕƒÿ~ÕîPÑGzc)½,\ ÌZN¿›+¾tå³à;S^“~ˆ¯%Sk³½×/Uz±î:46ZÚÕ{h¸j ¦e†×¯/˜ë6ö"÷KoÉ,÷Âñ-«A»>Iߺ”¾õÖ©µ++qÕøª]e!û¦ñìÀ™FœZyp)è¥u¹­Þñoâwó¦ÙÆûŽìîÁõ¬óŸÂ”üá‚iiW9ïжœz{.$ÎxÍwüðo×|öëcS´¦»ààÃ{Èûñýú-šZØ6Áðæ¬Iåâ©_¹.ÄW6ªÍ´N°€u±Á²å+Ïu`Ù,5Û(¹n˜_™eJu4ÆàQ`Cg §µ¸ ´Rã4-u~Î,Úf3Þ‰–èìhê.’ ¿BÂ)î"¤PæNaÇ8dÕ.„7vZÅ¢±Ûµ©Zå¼mñX!¹®½V¹ÑæàÓ¾œ=Â" ëì˜_*ž;˳9œ=—sªþÙ\zM®ûýò‘òÙ5ýçή8w·hÀÈùv‰Õd¿™ÓZÿ.ºïð®Cûvìöew™gzįº Ó›,ç &µ¡®l¶—ý”Ö;;Ûoé_³ýÜZƒ4ŸñÌ*Ù—nRpnJÉ9¹è\×ÚLCÃgï _ÏbU‡?|ôZþâ\Ñ1 hŸŽºWke»UÝþ $î_ Â½ìoç4ãl8~õPpZêÚ—G.•Þ˜¶¬±ø¡—-±ooñ-|Y¨Õ"N˺Ìa5Ϊ4c$Ú˜HfíõG“lç –Ð9ÖÔ-Fd©ŽisúçCÃSÉâQììs"/ÎÓJÖB ñD YnÖÒŽK{"Ùsf€ýS¦§Ÿþ¡Ÿø®¼¼Ï·Ìˆ­‘Ã.ç‹Õ‚• ]‘…áí o\‘=Fð߸É“EåCùt—iweº†éŸ<ýS°»º3†Y©°¨µq­JÑÌ3·n”M…CÆ¡ œ Ð{´u ù¹ªÇ‚Žú@e-ŠÒu¢w“EèFë&7Fe‡21,–OÄVQHe³"!l’Ê&d»´Šbæ°^«ÀØ"©u©¶PS†v8ÜÔ›Ecœ Êž\ã ^˜`Zæ~\² ÕY<ú€¶î7/g³AB‹bç‚>˜|ï£âï•Oòê.ÍQÝ;Ckûh8áÅ /Ö¦í»[j{eÌfZnŒØy›ÎdêTyÂ¥ÀàǯòK æ„G@I^å ï“Oò*¿j¾4V•ŸÃÂ1Æõ[ø#-u>íÙ£e«ÐmäÇìéZÒ”—Î@5[=׎ò óÉ÷*¾ !žä{À2hý²X{@gèÔ—Ë:j»dc0úk¦ê½È³Ã“q1…· ¯Ï.öî‹_Ÿ—A‡ ûA÷'¯ÏTü€„x’×çåÐáå±êó6®V`lP¿E?4U¡K¦;j“…ÏS^™ú™=§êç’E Øü@Ÿåù´ÈAØ.ûêc=¬þ/‡ô ýpüú¿:Oh‚6“×zgXB<Éëÿ èüŠ˜õ?tD³:¿"ý?¬Aÿ=ÚôQPî+ ô+ ‰ËT51\X¥_­›«EóBw*>/!žä;ÀJ(ýÊX;ÀL§*0·¸¼£æ;ÁÔ é§ka}Ñå·ã¦™Ö£gÐ*¶åŒtSÔîU¬¼=2iLŒY|q»y°?Áþ –‰(4}Ë[ë³É´]Šzë8¾]®Ò…ôiêJkĬ}ÃöTÄw ð½ ß«,¾i+†4_ܪ‡µš&V>ü-п¥±c·È‘LŽøÐ‰Ü£:»ÃÚ5*ÿ£ÀþXüvŠ› ü8è'oרøOHˆ'y»u:~Lvm.- )p¶(ÍÕiòìwÕŒ±fŒP®noL»Ì'!‚D|×Ψ=n•ƒ‰ TK|æÎvÆC;ôKðრŒ_ñqb…ãC J^ñ©øcâI^ñ/…²_«â/ÀZ¨s‹€Ë;¢:ô©L«é~:ðèÌÙ–™R»v¾»æÙ뇱ÕaÏâ™D=¿Z ÍÊõ0šîeöÆœj±@—`HÛž­BØîr)*AøjÐ¯Ž¿»\Š.Bøè§’ï.Tük$Ä“|w¹ ]ä²X»ËEµzö¥hXSüíÚ3™öº 3Û#NÕ5¬¢%œÁ”þÂk伪{’z†^©OLï<ÃÝˤçõuÔî^Þ|÷Dؘ˜z+ð# •"Ñp0÷ ð£ ?Ú†˜Êÿðã •"Ñp†Š› üèè‘ghÃFÅRB<ɶ˅‚sŒÏ°Í‹x[\Ö1-¿GH«6o OÛçßdèÎÍO=0®¸Î¸]`†jÜ6ùg Y ¼ô=ÚìÑL£‹–Ö‡X9 < úhüÖ‡ŠÛ¼ôý‘õþHmPÒvùU·Ì„æ;£BªµiÌFï3n«Ñ}ÕèàûA¿_ŸŒU¦Xˆ•?ZÉÖ…—ñ€Ÿݶ…÷0Tþ§€Ÿýéø= 7øПIÞÃPñŸ•Oòæ ¡Îcib·ªs‹€Ë;¢Ž4/šÂÔ†zàLÙSË£4ÐlâvÆœ‰À Ùe•ö½x'hõ£Ä¡‡$-­ñ³xt†ŠÛ¼tt3ÐàX¸¦Œ´S.N²‹Ö¸É\ ʘÐWˆˆß€/ý²öÆÄÊSÀ×~]2|9ðiÐOG–àuõÒéÚ#Ò¨T­Ó½øQÐj£(ýî3À¯€þJ2"ûð« ¿Ydë ³èZfaÒ°ÎØž\ãTÌ»³ÆaËRím_þ#èÔ&¿yGɘ+°ôsàƒþom¢[óî­:~+áýð YxWÑÊm)³ä¸\û¦] ½Œøú©ËMwGÅÎE±ˆé“Žã¨ø+ê<šj¿(W[ÎiRöÅB·;®¶é$ ß)!Åκ3*;«:Dœà”ôåÊþÉ0vSO©ß_)Ÿ—ÉãUáu ¯SæñüÉ‹BõY ÜzCØzÑ çE!~7J|oTá»6ÎèìPÌ‹¢ò¢hã­y©-ÎRëL|yQôó)¿¥%nq5Ï‹o©3äEÑ×säOGóÀÁa~<ÊuØ/J†3â³Ñ$¡ðÇLßðhƒe°ø\pŒ²ã›ö‹ñAhÅq›gÕÊGø÷Z}‚{ÜYh]t&¼©Ó¡¸¨Æ«Ò²ösMÙÖÊmù ÐÑÎÐ~\º@ctsŒùñ½eºþ‡µMµhºÃôX£YBеŒ¼U–"dSú.æIƒvb•½QÚ¶‚Ò…|£Iª£M›M®Eá„1Nóü?æ–ƒÍV—([ÖbT­$6.—OD¡­2Zý’=)˜äpJ ¢(;Zšf|Z”„´×‚¾6ºåPi„&OD6²At]4}ë ‹¤™m¥(»1æf¿;wÖPË2DŒ®vîÒ>Ï%Æ$ɶ žçñÊ)´÷‰í5*l7DÏò[—‰̘W1óÖÍgû²ýVI½y#óÙ´yçqeÚwj».›ÂÈhN[ ‡ ¾õÊ55‹ê©ŒÛâÕ¼Å\ón²J^eÛù¨pc3(Ü|ÁöÿŸê™ü–’ûˆ¯fÄ\øëkø5õ'ÁàåàZÐêŸ^Q[Ç22µƒxëTš& ÜÞ¡x+A¤¦¹x;èÛÛ£;%ÄsaÄuwïz@{âº=Û{TØN(®‹ÌgÛâ:--Úßê“k\q]|š§%®‹Qáâ‰ë~ôL~KÉ}Ä׳„WvÁú~OýI0xÙ ¼´ÚînùÓæq]JÓìæAçmšpôh{ôcLB<F\g‹ ‹F\W’Ø.©°P\™Ï¶ÅuZZ8´¿Õ'×¸âºø4OK\£ÂÅ×ý2è™ü–’ûˆ¯f ¯.ì‚õ5|©þ$¼”€~$r#,FVDÕÅWxô9íí1'—w[þ8ðù Ÿ]'®SñOHˆ'"«Dz|o÷G˜G]Í߸ ôªÄT–J ¶H¶q}|uGãR3žó?Þ^-=]Ìú8±¹Fbû|]×Âg[âmm-*Ò+×8âíx5/r¼³Âé·YôL~KÉ}Ä×3„½~Áú>ùõq*õ ¾õq¥FHKˆG±¦ål7íü´<ÓIŒôû@÷iÓÊ–g:©¸n`?èè9ЗDÙ|J¬ ·ƒÞž¨~Þ ¼½£m›¨ø^0›ˆá;€Ð&bwÄöùºIA Ÿm ®µ´pè GŸ\ã ®ãÓ<-ÁuŒ OpýË gò[Jî#¾F˜%ƽ° Ö×ðÉoR R÷õmRPj„}âÑ\+×G€÷Vº4-|p½x´#Br$½ÁõýÀ<èävŠP©`wŠPñc^0;Eˆaxí!vKÛçëN-|¶-¸ÖÒ¡ƒ}r+¸ŽOó´×1*\<Áõ/ƒžÉo)¹øa–÷Â.X_Ã'¿S„J-õíQjWB<š‚ëngœ1ºžž}6™èÚ>ú±öÈ㜄x4+e‹í:TèãÀçw´m»ÿ„„ñn× ½=ÞŠÎqèU‰Ù *õ*`·ëPñ×IˆçüôP,Â®Ž f»±»Fbû|Ý®£…϶ z´µp¨`T¯\ãôÄ«y‘=1+œþAÏ/‹žÉo)¹øa†±Ç…_°¾†O~»•z°Ûu¨ø´„š·ëäCyˆ‘^`_GbÛu¨¸này²]‡XnïHz»•z+ðö޶mסâwJxÁl×!†ï^@ÛuˆÝ=Ûçëv-|¶-¸ÖÒ¡ƒ}r+¸ŽOó´×1*\<Áõ/ƒžÉo)¹øa–÷Â.X_Ã'¿]‡JÝ lãv*~Ÿ„š·ë”‚ë#À·ëPqûçÉvbå~`òÛu¨Ô°Ûu¨ø1 /˜í:İ ¼€¶ë»%‰íóu»Ž>Û\kiáÐA>¹Æ\ǧyZ‚ë.žàú—AÏä·”ÜG|0KŒ{a¬¯á“ß®C¥–:»D æ\๎„»P¡ŸßѶ"TüêÛ)"%ÜQÑõü«@¯JLe©Ô«€mÜ)BÅ_'!žó?Þ&†W»:.˜"Äî‰íóu§ˆ>ÛokkáPq^¹ÆoÇ«y‘ãí˜N¼ýË¢gò[Jî#¾F˜!ì½ð Ö×ðÉï¡Ro¶q§Ÿ–PïN‘9åгÙÄI/°´ÒžæÅ¶šÍ¦âº Ú:þ!NÛAoOT?oÞÞѶ"TüN /˜"ÄðÀ h§±»Gbû|Ý)¢…϶×ZZ8tУO®q×ñiž–à:F…‹'¸þeÐ3ù-%÷_#Ìã^ØëkøäwŠP©{:oŸÑr[41µ˜ïHúö*µlã&*~L f“1l/ M ÄnIbû|ݤ …϶ÅuZZ8´¿Õ'×¸âºø4OK\£ÂÅ×ý2è™ü–’ûˆ¯f ¯.ì‚õ5|ò›¨Ô2𑎶å¡â] ñ(6ÂÔÎÐYVš3> úQmZ9㜩< Z_&“…¤Õ¢é6)™–ûç¢äÇ@kHfv{NB<Ù¸ˆ)&Æ,× «—]B›8^ú"}z>K{^$\zEüzIÅ-®½2²X:3*ò¸x)èKõÉ#|bObäjà5 ¯IF—¯}£Žš<®ë¨ov¹N .y„?MŒÜ\ Zi0¼<  tL<¢<æg ³\P‘I70 :«O&áOÓ#€AoLF&½ÀM 7E–IÞ(XeÇ· Ì2òV±hŒ¸Ö#U«œ·-ÏHÛY+›áŸ•«¥aË5œÃ.ìq»P5‹ž1b‹vy”ýÎw Ó¨˜®oçÉ%yÓ·Fw²[©n¾ô›µ \%!qòà»@¿+‰¿ønÐïŽ,ñ…TÄòà@@›Xæ™ö:5wõ1à§@*Á|øiПŽn»UÍãg€_ýE½%üþ âä·ßýd„ò%à7A³­½å[ÀïþžÖÞ¢Lü/àAÿ8Á|øÐ?‰,˜S¬·¸Âm•LwÔ.›E±e9%Çå¿òrŸå³á’çN™4b»ìênž•wy3{­bå}{Ü*N*,?˜Ú-hÂö þ‰‘}Àý‚&L@î©;MQî×¶ÇE(Î'xf©R´ Ï~ÔRï©©ƒÀŠ  5‰ëbî×Xg]§h¦&€Oš0 ¹=|  #Êmy7õCœçW “Ù°3)ÄÍ ¯4aÒ:k„Œkˆ'"¿0 c7³ZÖ®ÎÑ2µ"Dgj?á{d„™²²oŒºNµÂbt+;J1ºk±ˆ›2ËõªžÁŒšï:ERÔ¾j€ïš{4Ĥá6FíÍLæ˜éN>_u]öõŒIÆKPh•9–a…1®ékm§ìeØ À.VÉ6;†]ª¸Î¸eTËKeÎg‰ñßÍÇå°Ýõ4:á/@ÿ¢­£ÆIª8WЄqwSj€ÿA±óMQo­+[ËAŸ]n”¤ÐÄŒ1\õ¤™ ðA¶1z%Nîî4aÒLíî´šn\Ž%g© ’ÀCp݇4ŠÄñzxLЄÚ$b•*c-Š= Ì š0¢D~eö~Ó-÷ªz¼Óü/'Ææ;*–k[å<³Ò3D¿u_UÑŒãÀ¿4¡¢f\4¥eVíÓP¦¨nÉ2Ë4³ÄØW`óŸv.4a{mJçRàrA&`S:WºSiq¥¡z€³7æäëñ_¢PÀ¤@9cxÙu®n4aÙ5ÝWayy³˜Wà ž¡ó   µI±h—O·(ž¡ó^A&¡<· ºSÍ ÈŸ®0Fªå<ʼnFZi“ØUîÌ ºS}o¤®Î} Xt§¾ 3ʧ, ºSmŸ…üéEµðOA.eภ uÍw)Ÿ‰—sÀ'Ý™Àø™Š›¾@ÐÑÇÏ©n‰¼°ŽÁ£­öÃN±ÐÂûþoû¤  #Ö¾3ô|•ÿ"à‹M˜ô|ÁB›k¨g¾`Ò0Œ½#lèÎçRŒ‚Ã:, Ë]«â¸~Óµ<HÚÁ;-çÐ&Æìü˜‘7ËÆ0ûUÅÊÛ#6M+ئŠ?¿ U&œ=©Í,(Ì…#Ï>:›@Å= |èè6áÃtG«õÉ>AT› Ï;Õ2“s }!ðw@ÿŽF~þ…8ù}àwA7‘~ø=Ðß‹,Òy*+ÄÂ÷úÚ'?þ)è?MF& ü3ÐY&¿]ëf^·XòøÀšOŸz¾éÛžoçYsiíÈaãr6nÅøÇ‹J|¦“ß’9I½°âxžMƒpö–K PžïVóÍ wÖ8Â~[a_Mƒ¬ZøÌçcË~qÒ0‹Eg‚ì¹,}¹–<.Ë›žåm 븨 &0õnA§¢o>í?× …¬¡ÿ9'ü¡¬4 'œzŽr»6j»Ë$Ä“|»t£-ºµ´KGËoûV©Eñs A/ŒÜ—PtÅ'Ñ ÏpiaC¥].^ újeÆæàÓ›§œTã§ªŽ­éÏ?Ç~*X”Ï®é?wvÍÀ¹sø‹k2†ŒÜˆkæÏš'm£pÒ>wv˜yFà%¦}sÁîMÛ7çíVãŒÉP-¯} lméi‡däJ§¨^’’è<|D ”?¨Â8fšp2rÇfCîx+®[ñÑÆuóR[ñ‰§­:[HsfÅmS{5åô9uŸöˆr^Nô„‹á˜’¶‚DàФôé²3QF¬Õt;+Æ@RÄÅÆAéÛ²åûc ¯oSwÖ8P3ùž¶A“\é/‚þ¢¾ÝqCèÄÉoܤGÅ} ¨o“Þŵ=ô41ò-à€þƒvÄQ7 ÁrlCEÅÎê‹£® â¨Ê³ÛŽ52b³ŽX½M€¸ºh€6ÚLÝ“£ŠLñJF¸¥³9ï×?[>y¶ß>—.Ÿ´{ÙÍ` þFv×¾s¾3ͽHp"F¯¯ê·oN—Ù_õÛÝ7³¸øaÀînåg Ó¨ý®~ô‡.„0þ°Äø‡UŸ5L;˜;¦SÀ¡Ã:mµ ÖÅÓ¶­Â:½]¨MíÛ´fš;r{”¤eÀo±3ŒÚ nÖcÏ9`4GM»YØÈþÔ(X®=η=²Àñ`£Ó=J-M¨)zì <#ýÀAÆâÇ:Êaæµ8É=jµ|µè²Æ!ú™þ”8«Ÿ°é O¡Ê"S¾¡¨`{¬É*¦ØöVPY'KÍ+h¤õ¥l¨gÃνÁ†×Ƴþäñªey‡ÉÜrés9/[Ó-&giÔ²Z}¨ á½ •Na4uh‹F™šøv©fBñõ0Zé÷ýˆ6 ^ÄØË–ÇžŠøÎŸúùɈÏ>Zéœo£øêƒº™Çm¡ý)ñùàûA¿?y¯¶YȾ†zœë|áFBò²åoÁÏ)ít!ÄÊàrÐËãWf*npèè‰|.ឣî5C+7€¾A›ˆ.†Û8rè¾Ð^ƒ8ZÜZiE-¼¤nn½1²¤z¥©ãÚb +y>;åWÝ2íYQëh›€hKŸó¯¹Žc§ZmˆžQŒEàh¥­áÅ8<úŒ3˜ š“ÀÇA?®ÌKpö¡oÊÙJ‚wöœ8‘^ÓŸë¦#MN@¬ÎùÖÿì©sFÎ.¹ÜÙþŒ‘+ßËës¹àµK©¢§(£½Í²¡çz¥ Tëç¿ú+akOoL;±0?W:ßâ÷«ß_Uá»6‘ÒÙ1ÛÎÌI µ±Ñ´k_ŸK7ªC£6œËu·jµÓOÚØm^j‹ze5ÛˆY{P›š¬)³aúq»„Úü¼B¼¥Îp^A_—“?½¤›ÏS×ÓwÚ¡3'ËŒý!è?l<ýcàŸ‚þÓdÜûÿ ôŸE‘RêbágÀ¿ýWÚ„²‹–C]öHÙìRÏßÿ ô%#ž¿þ¿ ÿ_ âI«_ÿ ü¿ ÿ¯6ñ, Ä£41Æx≿ W:¥4* /gQìJAF”Ϋ‚ýý|q¯d{|×)ôí):ø¦«Úz|mJ&X‘/4.‘ˆ<£Á&‘Ÿçnš°=öUFÙš¨³ÚäµÅ%À· šð<A¥Þü¨  Ð’Ô;€4aD-¹–;ÁB¡ž_¸> =åF¬}ø=AFd1ô”ÛV!ñ¶sÊmÊßÖÇ”[ÍÜu±NÚOK€«@¯Š_‘©¸À«@_ÕgD,\ \ zµ>+HGeºXº غ?áÀБ…syà‹˜šJ.HAZƒÀ= ÷œ>X:|ôCÉHk/ðh¥‹ZbW!›3-ÉL{Âkg¢ä"cX´CŸ†¢d‰øFò/\üŠÒÏ¿ZßÄKdéø •RÞ„—þWцŸò§+‚—CGÄÎÿô_kkù9®@MÊÝ(ÄÚqK‡N·:ú â;%Ä£¨§ó£²3Ô!ŽPˆ'b«¬bÁÐýNqdÔdcŠ£¶•ó‡Íªåéìm‡ WVŠAšöê+&Ƈo+Y¾É ‘¼©OÉë›@+âj¡ÑVÉ´‹-ʽ ¸ôæÈ² ‰7•¿¸ôVmBZl¾œ˜˜È†V‹ÉQbò6à Ð'´ kn®ê¶Õ6àIÐ'#‹jNøm„ÄÀÃÀaÐÃÚª¿ gVý1Çmah¨÷ÞÚÑVóKÅwJÍüQÙ!í["!žˆ­ò03¿A’Å;²ÆY#\‹G\³ìÑ9-~4GJ¼Èïç{_ƒówœQwë1Ëfq’ÎþQFlÓÍ…¾Çjä½ —¨É@\¶£d¹6…›½Éü˜StFmÏW`qxôY1Z‹åB*Î>Zé4EDNåŸ>úqmêÜ8 ÀÏ‹€/ýbâhq— ÷<àK@GΩұ,=ȸÖ÷ô lØ Ô{^ |ô3Údssà^ ŽÍ4ô÷eûû7õöõõ öômÜx&»q ;˜eì‡ô´ÄïÛ€¿úw4ÊpÜr‡[ûà7@+%ZfÙ©øoJˆ'i6n"¯¡·›cfêAˆÂËld^f·Su{FX·1L?EaÓœ€8*ÌFúäe îe<Û Ý=v¢V„9Ðj×F6ë—Nò)©}VÁÎÛå°‡†‰·<ð h¥íMá¼ w8 z² Þ…Êx´’smî]6(ðóà A'pS÷ðIÐOFÇÊt?w/[¶0ÿ28þšQâçEÀg@ës0FSÓ7ÐëÙ¥ìÀÀæM!Ý qù6àçA>~·BŽøÐ_HÞžSñ_”OÒlÜ!]C=n寙[ NÐeŒYöÆ8hŽíݧ¶ÿä{NÅ©ö‹ý⛌Ãf‘¹!ö7b¨Ã:DÖ8TŸœ¦Á΀q†="÷Ö(Ÿ öÅ鞪D ‰üK4ÝèâÈO9…­ì×tª½Zôù-oòùxZéf¾’“À¯õ~FOìOÂû·]h^¿­4_Ú´w^uƒ:ãðd™Õ™8ÝÇëÙêàÉL|þƒ@¾Kâ:¯Gçã¨Ø¿A±óR[A•? ïã¨üÀ…‚N©l&¦TËà{v–Õ1xâvqTÜEÀå‚&Œ(%é~æá6mîéÙ²^¥ÿÐ.Ž× šP“`®oåÝN¹^‰QûCº7bóà‚Né;çÛÒ½Qq×A§v%ïW¨èÝu ž¤ÙØ-$]C=îí0¹·úbHƸ_x«>æ­v:å<•ä6Ä:ø¡úŽ+Ì'ÚCw†;QÂàÕòÙ4ª¿‹ ü訌3bÔÆMìÇÃΈ?aºaGMÄäCÀ3 5QqG€“ Û1j¢òÆ0jܨÀÏ € Žš¨¸Ç€úFM‹ùœ\OÏúÍJèEÀ§@?¥M076ó(›7nê=åyÙñ¾ÁY»o0¤W!VßüèÏÅïU¨¸×?Zi¬ÍœSñ_¦Ú_œcïÐÍŸùà°ö´%2³{:tú’Ðm@ÅwJˆGQiDego‡HS žˆ­¢øô.ˆ„0z&ÿT‹N=ßò(¹¥oË—VÊdÑ¢×íòéÅ.^úrŶدDÅÍ^úŠÈ*±ƒ/dšõn|“ïIã›ÐªgX##"!ø£a™^•Õa“29¡7¢ûWý€r5¢]4`ä|»Äê3ô‘3-ª4ãÁPªÏƒ@´¶^ôFÂC‰ßŠÄwE…oþD:ªæçŽr麠CŸÕÆ[óR[œÕ+˜ÙNÊ¡M­Ó”¯ºc»ÄÕü|g¼¥Îp¾S_Ï‘?]‚µI:Ïz•ÌÒc õ%Á\˜ó,‹òÔµˆ›(D¹»£­Ñ$ß)a´hrýse§åë{:Dž¯ñDÖ¬Yc¬’˜áÑåDž’ŽHº[„ufèÕ„ãžöB×cDJ(횊X=TtÙñ­­õ=ö|jÉ¥›R2Æ ÈÏ»^J(|9ž…÷ŒþîÐÕÙ*ãµ#ò§'XŸ5né]—EK›öP>=¸1³‡øŸí‡éW›~•§_ ôÉ¿*Я¶l–~º’P1 OD®ä^cÚ´HÅÕpˆ±J –9ò›98U¿(÷à í êpP27{#×§À¤uC­ÇŽ“yÚþ´u¦’ã£4¢ï¡®‡º˜JÚC¦Í%9l éÙ\b&ü!öO÷ “ö±þã´¾ª÷¢z„ÐÑsª?DUeâ96(WrJîÙ®†J<„J>ZéàQCS¹Þ[/U‘ÿ&K·Á¥K¦ïÚgÒù´ŸfïëÏôo]¼› ©Ì,É38ÓDÐÉ·îî¤LÝ u”æ±ù—”ÀˆuÜBu,ÛÇãÕ‘æà©2$4&c“šÀ<°À14ÿGÀ3áÐ["óßÍùïGZóžßûÀ#a7ènMüÌÄo^ߣàñ¨V~)ýFhVîGñ„sAÏ/zkÉÇ(;@=QäF 3ä|ÊÓöýÑTÌÔ#4ó‚a 7Ffþ>Œûñ, ãÒ®=Äl8Ý„cÕüVÆ8ü*7tÜß–máoÙ#.{$˺n’–ûY;tõŠ?Öf]•ötjÔÕݤ«åò³Î˜¥ Ø)…7_g~kÅüt|µ¿ÏS¦gMwÔ ]É?É‹Ì+3Ü2 îk÷5 ‰›ÅÄ}Q‚b)æçŒRŠçŒÎ“ ø$ê@øK?ŒêþRÅ&*EøËK}î‚ Šóà™ðBŠ¥ŽrAÅx´´ò{~Q#¨¡¾ ªŸêÆb†¢=:FÛ{k7šazl_4F7ŠàîÁÐ|‚WÂ~Ðýmˆ¸ÆPv€z"®;'Sé/Ö Á½Yüf³ÙUd”o¢~ùW!tmlÔ€PÚþ±6ë[º®þM¹ïXÏ}צî»ú6‡WäS`—p=hµK"äO÷ɽ³/»a=ï„ëY È{á'¨›»™Â×·Ã7»'.tN£„ÒlwÄ:{®uêë£:MÑ0–ÖÒ DU¸"jE( ¢"Ö0÷k¸Uð¹ÔÐ.×oÎ ]ŪEíÌ]4KUFÙê±TG§Z*>¬÷ùùÚýf­î·KÇõÍrø¸ƒ JsX+w„ûÝ™ãÓõ}™üÿõ}ñD§T‡PšþŒXµ=µ.BñEO=ÀzIÐKú…$Ù¸˜º:  „ú–¹ö6Tç9Ô†º´–ú¸¨¡¾Ánøîí¡ìõtïìÔî]õj7®E ®­ÝöšiŒfAg#3=à›ÃÔik}t`s¦}¦ Ó¿¹y ÍxÌ€ˆÌ¸ÙÚÞ°*M1$Ô%ëv”^Sr21ykqz¯jû“AÏUÑîqÔPš ˆXÏ;ZôVŠÿ¨³®}u½NÃ3ö ¥#™«’ŸQd™€y‘DyºIbNÕ×+´3¨]pzsQgC M›}DõÍ~Ε™*B} ù(jCí|‘üixÏqe¨w‹ üªEòMƒ¾ÚÆáJßhšùÇÀ0¡¾®›+Œ›Öv¸’åÌ*…sçÀ$áÍ oŽî§kfèN¥©l0=2ÔŸ1ŠÎ„åféÊRèph¦£„úüôºçnQBsü6Ei:ñ· 8¼÷¼èÿѯÑ¢©… )É…7hM2OýÒu!¾´Qo¦õ‚¬ŒØEk†WžëQ.J‰ÝBÐÁ³¢Ž _iB§®!6ôör[ +@+5OÓRççÌ¢m6óâh‹ÎÆvIZ,T¼|T&±œ¬å85 {–;΂ñ]â€ßaûQˣ˺Tý¼Ã7òÐ>÷1ËvÃûÐ ïQš&§³¼r" 2òℬìÈ—pôˆFYû¶_lÖ¥³¬òÂbÒ²¦âÇ$Ä£(ëyQÙ!³TB<[¥bÆné|©_Ó@'Ð@éˆ)×@gºzŽ7Ñ@nf*t‚y?at%j­;oÉÙ#ÁqÔÃÖ™Š{ )®†ÜB† ‡G­!×*,÷øÙ};Žì¹kLJNÞwx×Î;öÓ˜î𤗵|«<žîšòqW÷6£ö«™^Ç»öˆ‘¾¾üh~ÌtÓògÝÝÓ¾¦+H®/”³§<Öªö¸›-[~o¹Rb¾Ø;ež¹m°×ò6ôúÖ™ž<Õ¯g¤Z,²·»¶Ù÷Ñ÷x“žo•²äEÓ]'üi‹?Ì [†ºð¢0^ælÓ÷v7ÝdL«‡hV•µ¹?î{‹—wíŠoØ…¡®}ìËî2Ïôˆ_u¦7YÎLjC]Ùl/û?(­wv·ßÒ+¾fû¹µÅc<³Jö¥›œ›RrN.:×µ6ÓÐðÆ{Ã×wŸ;×j:Ó dRßG€~,¬ÓÓN /γ€ö‘ìMࡦú•sÈÄõ9‰ûs*ÜË^oN3ΆãWÁ޶z7/µÅáb-¥6u-¾…Å}e1½}¦Qk«1f˺Ìa5Ϊ4c$š;•Y;W4Évq®` cMÝ™§:¦8·† ÂÜñ(vö¹‘çÃi¤½PB<㞣õPzÒÎã´[÷2´\R¬¬ ¡ŒQ»C)cð]_¾P™1ïLm™'«eåBr„M6J„l쎖ƒ]º2ºEñ÷>¹m;ÃÏ9àqÐǵõÆù¹ªÇ"˜ÊEm~Q”~½Ï]„~`´>·:*;4¼XB<[E!ÃÑÅ a“ G!Û¥UHÔ9i+𵨣~^tx¾šò30Î\4hÕR'Î:Ë*ð¿x+è[µu·y9›0Z;xèÛ’ïmTü ñ$¯Þ‹¡Ò‹ãUïñ°ê-÷}ýêÝ?U½ë‰hÊ`ú\BXí^ &Üz{üÚ½½j®j§Š¦Ý‹Ñ¹¼MK'SÐî *]¯v—Ãj÷hô’X´{šñöß, ­¶Ë-vìy~µ`‡Wï%Pé%‰ï%Pé%m5Þ„;$l›ñ^ •^«zÓùç–k43p¶HR(»&¿ËáƒZ¦ÓõûÔùN9Ó.S¾Á~}ϵé¶\\ÀlLõ sØ·Â*þR¼Gø èãW|yÒý!Ð%¯øTü1 ñ$¯øË ìËbUüƒ+0·¸ôrmº?YÓý4]ÕG ™©/Wù-~ÝL?Óv¯båí‘Iaæ«,|÷ÉèÃàóƒcv"Xriº¼1§Z,ðû§M×µi?^ÕÛU–¡„¯ýŠø»Ê2tÂ_ý+Éw*þ•âI¾«,G÷XkW™/4H7ô¹×hê)›¤´µBÕëz]¥M¦Áá£Fí«çôÎJàÐ{â×óåÐm½ ÷&¯çôÎ]âI^Ï¥21êùEµYXöW‚^©¬êOaë‹´êiæ}Ë5bÿ Ç°Š–ˆw¦¸ªD0 ¨mœÖ#žÃÚûÌß4ÛÀÚHÛ#*¢¾ øÐ?Pu˜p·åä1±òCàO@ÿD£h‘ô›ŠûàOAÿ4rﻂN^šeæ[ÂI´ù¢éy*búS࿃þwmbZØ%Îw©ˆêS‚&LBTÿbç:¥fŸ>Íð^^2©¹À‹M¨I2³ÚÈ™DC÷]q¼RЄ ˆ&ÛœZ%hˆ¢ÙÄ“^ùæi6øä·ä‰itêRÛ ‡ýàNØž…íI#&mýá¡ Ë«€M¨ËvMÚ*=,u?ð!A§”F«áÅx/ð˜ SÑG§ó¸ŸSJø°  µ e\M(£ÀS‚&LB(&ð´ S§# ¥³;l”Nå%A§JñGédõK[4aÒQ:ïÔ1x’ÒW uæãhTlPà a¹†ÑèÔͶۂÙ)Ÿ³ÈPŸÉ¬¸Î¸]`¡÷¸mª¸÷•ÒsOÛ ‡GA+m2 g}¨¸}ÀûAßYïÖf‘¥×ò«nÙ¢Äï£Bªµå—Z2œ u|Zrúk+È÷àû@¿OŸ|i[‘Š|?üè$#ß_~ôGÛà]¨ü?úãñ{*n.ð ?‘¼w¡â?)!žä½ Ô¹#¸)¦eì¸S`npyGÔe‹¦0µ¡>äù.M±8®ÑÄåŒ9Ò Už;ëØöq#}Û~àQÐ x*nð~ÐѽË@ƒSášV0ÒN¹8É~,Zã&s;<ß_ýx‹‚¾ ôËÚÐ=|è×%#Á—Ÿýtd ^Wø•ö#Òb´Z§{=ð£ Õ|œþN÷àW@%‘} øUÐ_,²u†Yt-³0iXgl”N Ê»³ÆaËRím_þ#èÔ&¿yGɘ+°ôsàƒþom¢[óî­:~+áýð YxWž8PÂWJŽKÁ5%7 ½¯‰øú©ËºL£N·ˆãpJ{¹  “Žã¨ø+ê<ÉÇq— Eç¨7ŽS:¢@l,.혖¤$â2uŸ –6&5_–®­e‡Õiâzð6зůӗB§ w€Ž¾I.´NSñ·KˆGSíåjbkRö"¨îeÀ6ì¸ } @<нisTv.ï¨Ý‰ÜìîjÅVYÀ¬Ì‘ðÎù ˆ…08ˆ³ ’sn:©tõP[ÂU Wiì¸-â–¯}Uüq·x5è«#«ÅÎú ¼Y®íü‘n±6 » 6.Xþ$-vOÝð  ¶k€'@ŸÐï-Çö‹ÚMÛ ÜÇA'úQ' '"Ë÷™¬±·lxÔ yÓ£³‘¶o”ÌI’tÙÊ[žgº“S’J”™k¬ð-+hDzÁ,s?œåV¤Â–†o5åÁ”¼ÇÔeÔ*[®YD6 î­ ßÜâ¨NØS›œ˜Z"è”Ònéç­n²7Xåì„}Ú®XÛÌ:îh/ýÔ˳´œ,͘¥¥Å!uâ–*5$hBMÒb9{Gø–Mݼ[ЄڌÙ©i±°¡©{R[‘?Ýn¤­ìh–Ž—ÙÇ5Žš¦ëgŒþ-[(‹±Øã8ÌìØHqRÜ KWm8Å¢3á…¾¥™xß|¹  “Ž^®QC=A… ÷X~ØŽº F –óŽ*>Íàöî ŒUªŒ=dz†äÒkúsÝç藔Ϯé?w.UMž´[0?câ|!ðЗ„­½1- È‚\é”Ç/?¯Y¢9-z´J)âßy© ã5Ó9ëX„'M½û‚\šÉ5×Òþjcªy©-’„蕈;7Õ™¾]Í•=áRÀVĪšò§w2OCwŸ·<.í æÁiT˜W²)dz˛Lªì ’+óhõO‘,í¸º¥==r¡XÚQ‰ñQÆõXZ-l´²´ãŠ–V S¡-­>‰Ìji[+|»š¥µ¥¯ÔY,­Õ”?]÷\Lðñiè5D™á×€~M[¬éüŠpZu»Y êkoýö Å ¾Cbü*Œë1¨ZØhžÏ7—¢U²©Zø mSõ e6›:³Ú·«eZ›ÕøJŬêQPùÓMÆ„],Ò„à 'Û¤ –&R¬ðç0dæÿèÿ¥Ìü|ÚÂÄž]3P3³ GÒ¹|Áñ»®GÒYe£û'Àz÷BS£;ŸÝxmî?I|ÿ“ ßzl®6šÚÜÅds…œ•¬®ÎB[]}b ¬ng Å©÷‚6µMsuž¡/¶KZ­=A|¥Îâ ôtùÓ5´×žœ@mYG습ÕZHŒò“‹ÿ$PSÿž9«BËyÄ SךP“ØZ®àRq+€× š0¢ÐÌÚα47mD=ŸÝ³Cüå`í· Žh„yê:àã‚&lÃXêR6P7r¾M‡ñGÖòóÄ€¢“O=øA^#«Ô[%ÆßªÂ¸/¯‡¦VàJ>U5MÐ*_—a=¾FÍ6Î Ó%ÚÕN-}mŒ¥Îìk5)¯üéBõaT›w›wµÅº.€þ¨Ôw?&h à~\büã*Œë1¨ZØhjP/fæµÊsUz mCõIe6:‹â·«iZ›ÍøJÅlêQQùÓ«±Úê!/ˆk›¾=΃Ü]ù;`ð;Ê žOR©ïÿJЄ„Tê¯%¾ÿZ…o=–U qLHéá,´iÕ'–'¤4sÙPªÚ„T¬Òjmíã+uk¯§ÛÈŸ.5,:‹ÍSC˜*›k<ýxú·¶„Ê6#¦þðÿ :õ/”0ùY‰ñgU×c̵°¡y3¢¦BÛq}‰g3b¬ÍÒÚ`ÆWê,SjÊŸîjq<ºÓ¢f¤Å6‹ÅIõt RU:w š0B/kj†F]3ìéâè!àqAj’®|BlÙ³S#Ö´wPC+°|x¿ ;•rf4ý滀'M¨­1Z¯ztÞ<)hˆŠ~I]·k¹#Zúa +hBMÎa6ùÏ´8Õ9 |¾  ““|BЄÅ´(¸™6ôéâãÀWºS);~´Ó5W ÑÖPÏé‡qy¢¡`}n¶½ãõ¬7|‰Öv=¿žGßÑbá6d¥¯FE ÐŽ¶ž¡¸hǨς>¿ â*ÀÇ@«Ý«+ºOøé†³·c&sÈf¡`ãúŠÚÉùàäèF^“§ªœ~ ô·”ÅÛѲE[d‹ b¿ ühõy·àÓ7HËà{œ kÜr3F¡j÷Ú”ÌrÙr)oMíV¯ysó$õq'Ï=Im_v|!#ž ˆýÚ¤“´>û.:1‹XÿüBA6ߘ²²Î‹XŠ8z ø¦r±òeà×@-á|øuÐ_,œùÝ*ùoˆ‡ß~ô·ãè:J]çûÀŸ€Nà®K*îw?ýÓöw?þè¿ÓØu®y#Vþøï ÿ=áü=ð?@ÿGdá<Ñ]Ÿá‘÷5[Jl~7íì×ÏÖΚ4×ëå]{˜~vÆ­ðÃEªþϦÆO~Ðv½Ð¦ê;Σ¤¼t¡ü.üœØÎ±²¸ôòøû·¸ôŠÈR¹„Œêƒ"_C ­Þúm"º£"•kň£uÀ  7$#©AoŒ,©ÞŒ8}Ì'¶\{Ô¦eYid{µK䲊mÐmiU~+R°M, •r?‡ãð è3‘Ÿ’ߎ]¿é<ü>ÄÏ$ðå Õ2ëj5‰¯> úéd$ô àëA¿>²„”®ì%ž¾ô›µ e)nòê²GÊf討˜zðC ?”ŒxÞü0èkO:ü̱ð[Àƒþ¸6ñ, Ä£4uG<}ø ÐßHF:Ÿ~ô7#Kç½ÝpSüƹ’íy"`® ä«´5ãG{‰j—Ô)ÆêiqP¼â°¢ØwŠárý‚tÓ([õÕf¢¨¾%ßÃü­Õ{˜ãpŽ©*ðù‚Nb¯ 矴†½6ë¸s,ÄW¨eÃvÉ.š.í±U⾆ð‚N©MiŸ!–>ü¢  “á_4áùߤ¾ ü¾  ÛߤþøcA&!¡"è”ÒT™–ø&õSàŸ šð¼‰oR üA§”¦Â‹ç/€?4a›â›Ô!è”Ú͈±Ä7À¥‚&LB:ÿƒb— š0¢t~CC|Ód1Ø×t"1©‡W”ðÓ‚&*Gvw)á»×º¢ëQ9ÂaÐÑ+ú0UtÒ¶Šæâ<Ê„gó$ôvH˜3?Çì•G»ybUšt ™®†Œz¼!hõ:H­'b™tøjn@Õýpôj#ÊP^¤æB‹¢3jû gP*®Sq\Ѥ[Ìz*œ§7œp‚,ˆ¡k¹ 5#< údäZöBúˆ“†ºÞs +cœ±‡òé ™þ6ª.½¾/³¹¯;¼Žl§„Rlž¸ŽlAÙêÑ‘ûdqÍ E­ ãM4c+êCxèû"×mCÙ‰[zŒi rH§~l¿ÛíIDÞé@¼YfTy@²ŽÙ2Å€åBÿ–-[Â[Á{P‹{k—x–æ¶4öçáiýYZr˜¥ÛRÏwªÁ¼SÕ,Ã6‹ ygà³ÍüÔfèŠJ!‡Æù¥{0‘V–† <ôŸšÝÁm3T=t•¤^,ëSÄ*mm1†=¼ïÝÝú ˜&”äQ'¡Zukµ¾ TOÚßÕïEÍO‚>¹–{Bnß)²ñZEŽß¡ „R4¸å’ön]ñÛpHØÎøMšëÒØjÜ ÒNbA:Ë5ÅÖW ÍÓ–×ô^´ÐU:Šjê3ƒá›ö~” ž¦=6sh|èàíÉÆ V„Ç@G?´y,b`\qØ=ög¹6S$þ!nB×ðAÔêA­5œêK™ÔtûÒ‡À-¡´h‘ó½m ¥Ö—d‰÷êÊð—6@–Fº¿,ò Tƒð‚ ¥pñ—8@~5{¸Cg€|$\€ìV†ë‚ªW8b°l¢:„R˜¸“:´F+ÖÞ-:ÒêW[·èPv€zÚö^R%‡n .šÃß‘ØÞ˜ØµÃ@,=Ö¯xnïfÞ¥ i‰ÌH¡ëe¡.„Ò6b½Q½*¬[™®°üžoUoÀ¨ñiIC×áIðM(=Šê§¹,S1qL9ŒAû¹è0G…9iB}¾Q©¾Å¿¸Íð%(;@=ðHCË‘¼ÖÀ›u¸ZGlæIÂw¹—¢:„úÌm·ÜåDÍH™¦ Pï^/„Ý »#ó»{z¸6å€ cÛw Ø'9åð?ú¤ÒÕ^Ž î½»=]í(þmîj¿‚²ÔÓÕ¶QWs­µä}ªL‹ŠÌuq}¬U=:³É:\yÔr²e¬Bx¡¾\ê›_Ig.9³Ô¯ößwÏ=¡{˜!\ z¥ÆD3ª2öj0ój­Œ…×½§Pv€ztï¾™G ;YŒ5eŒ0í`;­w»¶dç7†®ÛkPB}§Úµ1°J±ñ‚ËFŽëò3í´h!L¨ËM¨«dC_‹Ê}¨=6ôu(ž°6ôi” Æm'³‡+ÒäÝ̱Jx~=êB¨oÛɽÓc—6…¹3ì £X@_ð êòŒÖz)©ðPüÚ¬ÂoDÙêQáMSÂfSyÀPkð&pL(%š‰Èýrò´ŒUe?ûf°òæÚpÔÁ5¡*[o+oÑÊVx{+ÊPÎí&+;Òå‘üÌ¿íq—_´|«žÀºf&±ë­XTÎbó6T€°ÍC‹_Eñ„í´)¿†²Ô#_žÞaÄöù!§Gªf±G$ÌôŒ’ü‰1Õ†åÛÁ+a?èþÈ|¯qKÍv?‹ômC]»v)ìi~¸#”.¬L\ÒïDÙê‘t{÷4¿ õ lçžæw£ì5—mÝÓüÔ…P_¶;Ôžf9vÎ;ÌŽØy[éàã{QB}Ö?¼²¼e¨GYôîcþuðE¨oóšÚD"‚ÓÙõ ;_Õ6þ¸#Ôg^ojºSwó†ˆÌþ&$¼ ôM‘™½±Æle¬aËj_v`“2¯ï„7‚¾12¯7Ôxå9ý¶ fú7ˆ}·ʬ~ìJ÷0Gm±Ç™ý¿±¿ÙgöÿàFµ|\ƿǙÝÒl3mÿݤVƒëi­Á {œùFæÍ[ìqæŸòÜ‘Íö8SdûûªùaTðaÐG®f®¾!¦¿. ë³ýMxÛ´7m™~Àê¹1³iƒroú-T‹P:Ϋ¯ŠR-ú³›«(}¸QìSŸr¾ŸmÈlŽ„É?‚j}Dk•‚Eñ„í~ e¨'*‰¾Åûãà…pè‘ùZ?e‹÷ÔIZ)Ьm% Íú'À.¡”¯;"ë·<§íÜÁÎm@ïéÛj¸cŽ1dô…®Â'Á6¡”¼6ª-À¶í†=À”*¼év߯í÷r6ãÆÄ|‹møaÁ§P­Oiµwc·,%ÉŠ•1J¦;j—yŽ*ш§¾ã³ßx䱦 ]£O£„úv¦ßÙlãö°ãIÓÄqlCÿ j@(¥uŒX›½Ø£ý\k£oÏùgQ»@ßÕƒÿ9” ƒÿÐsÞŒ-›Û™7eóBWð󨡾ó Ûg[Ý¥%2ZÛmØÀ¬¼où `œp;èíí‰T¾ˆâ Û©| e¨Gqϼ#áÐí{OÝ’Ð,‡’´–þÁ—QÂhwmÊŸnk¡±T%Ýg¾® õÌx†à¹¥`‰¼û«¨a›÷` Å­Í=ñë(;@==ñ–†=,pN„¹§ìùn5/¶a×"ŠH‡~lê p·ÉÛ'¨Ì/°è¯æ¦'ÎQ÷¿®Gk—SÒËo øo´Y/¿‰²Ô£—'fñGv™ê!|ËwM`ÒuOÍœ…7ëyx~“ò·P1 ODwƒ­œ«]R§]¾ÚêsƒJý»(þw۬ѿ‡²ԣѱŸv ¿í÷Q9ÂaÐÑ+šìi—ï€o ò´ËwÁ4a›O»|ůÍðû(;@=Ðlµ}4¸îsf/B3}M:d”þ÷ÔÐmF®g|G_þ<vƒîŽÌï=Ïíè‹Ë$“­ˆóúúv¾þ!ªA¨/ §Rïû#ÿGmî}Œ²ÔÓû’<ó¿À5áyuæOÀ áJÐ+õ0íÌÁ̵2^÷~„²Ô£{{B쀕StGÞûcTP_Ž!%ëòOØNëòS”  >·=°‘ò¯ÿ)¸%Ô—Å<Ž]°îÛ¹ ög(;@=²nï.Ø?G=#í‚mZìE¹à®ë&E÷£¸¿ÐÚœ¡¯x§â;%Ä£ÀÆ%¢ ìÌ+™e»’¥¿dÏ"àRÐKµ eaî´59ḅ%§€Ë@/K^&‰÷Ä£ÖÓÞê<Ô¬êÁ…jw¨¨#½±”ÞXÒÑu,§ßÍ_ºòYðGúrmפâkÉÔÚ õú¥Jï!öÏ]‡ÆFK»z WíbÁ´ÌÂðúõs`ýÀÆ^ÚgÍb‰^¦Û½õaY6hÖ'Ÿ…Þ¦ný—Z³²çP…¯iÑQ.ªÍ¯´Ò•£»ÝÞDnÔÊ êªÊiIeƒVïø7ñ»yÓLã}Gv÷lÎvj÷•>\0­#í*çÚ>RoυįúŽþÍàšÏ~}lŠÖtâo"õm¿Ø¬£Í ÷ƒÞŸ¼H©øâQ鼨ìY*!žˆ­òÃ0v×.j«¯žpE£]¯ô›@Ñ욢¥wîõºÅŽ?Ú¨YÛÀÉ>ÁÇ)÷võˆ£’|~xZ6 /k„lŒyP B)—S´Æè¼%gœóKÅsgs‡­3÷˜Øè ¹… «ã¨5äRnW÷øÙ};Žì¹kLJNÞwx×Î;öÓDÑáI/;jùVy<Ý5åã®îmFíW3½Žwí#}}ùÑü˜é¦åϺ»§}MטïW¼­½½ùB9{Êc=îfË–ß[®”˜öÇN™gnìµ¼ ½¾u¦'Oõë©‹ìí®mÆAö}ô=Þ¤ç[¥,¹ÐtWÁÉÚâ3FÅÌŸ¦é‹nÀx™³MßÛmÜt“1­¢IXUÖær9§êŸ½ÅË»vÅ7l6>ßǾì.óLøU—az“å¼Á¤6Ô•Íö²ÿƒÒzgçqû-½âk¶Ÿ[kXEÏb<³Jö¥›œ›RrN.:×µ6ÓÐðÆ{Ã×wŸ;×jʪ{hߎ‡´Pã—_úuaÕ˜ÞX<õŹ¢cÐ>’"ÿÔÌÃÌ¥–Sè„OKÜ?­Â½ìóæ4ãl8~õêh«wóRI5ã*µékñ-ÌÆ—Å}rÛg²¶`¶¬ËfPã¬J3F¢yY™µ§ë&Ù.Î,¡s¬©[øøTÇ´áÆùÐ0A ž¸£¡–ó†4Ê^(!žˆáж†MØa½ãQ¾ºÂÿ-‹Ùå ŠòÅjÁ ¿ú»â!l²ª¦XƒƒõUߢ5n‡¶lr±zŒYùÓCGÝ·KZñÍÐu,¬Áïk·àÙ#e“ùù°ÕºUáÌ€>¨¬(-GéÇo6¤ïÞú¾È­Ú~Ñ€>< ¼ôýGOUE_-:µù¢Ž6$º½ â;%Œf/²QÙ¹˜=‹%ıUæ°^’‘Å ¡4ÐUl—VáÜœZ бERë,Rm¡¦ Œ³ø‚ këÂÎ°ÇÆ’VÁ ‹â"ƒ½Á8Ï;Ì,eø_¼ ômÚúÛ¼œÍ†G-Š ÜzGòÝŠ¿]B<Éëwt,‰U¿çqǬÀÚ"`“U­ˆ~ÛT çû2a§Z.ð\0ÓgEê“,;÷†ÖwÂÀƒ ƯïK ã„÷‚¾7y}'<$!žäõ})t|iìú^ «ï’Ž'¡ï|ëq|ú¾:¾4Y}—§\Û¨ïK¡ã¶Mß—AǗŪïsi¨¥ÀÙ" dê5©ûÍSÕ½®ÌS¦ÀÃ*ö2¼G¸ô–ø{”™p+è­É+6¿MB<É+ör(óòx»^±—C™—Ç¢Ø}S;X« lx£¢‡VïåÒskãVïåPiÂÛ@ß–¼zÓ;;$Ä“¼zË[âSïTY­Eâ‰kÔ9-?IM˱%9¬v8ávÐÛã×îÐèèTsU;U4í^Î žäµ{%4ze¬ÚMÅMÎõ﻾”ÀtšX3xêL~?§i—)â&Í®µÇ­r°wÛtG«t9§g˜ÃθVñWâ=ÂA?¿â¯„²>ú¡äŸŠ?&!žäJÁ1>Å_€Eæ—wÔ‚Mº_­é~ºèŒÚyF0S_fJíÚùn¦Ÿö›T¬¼=2)Ì|uسxf±à;I™³óÁqÚÿâñľcA*â¼éº6eùªúa»É%Òó’:ÆÝM.A× |)è—&ßM¨ø—Iˆ'ùnr)ºÆ¥±v“y|ÅMµEÀè³4s¦°tý—µÐî,Ñ1º§öŒ&û¼Ä bÚë6Ò< ·5bV‹>óÚ²a›áY–ŠVË ËÊb˜¾‡ÅrÚ(âäIàK@ëìŸE»|Z|¸ìÙ)ì.*Ù^¾GX±°{3‰ß*ð ÐO¨ò=í›àKAG7K¹-X,0)zÝa­(ñò2à3 Ÿ‰ßŠRqsÁý9oHÞŠRño”OòVô2Ñé8ÆgEç‹Ý ¼-.ë¨Í*šÑ‹¦ð´¡ka³l>Íúõ ·g)Ta%p7èÝÚ¬ã KÂ-÷0'û€@ÐØïòN¡Ù*îNàAÐ#+|g˽,3 ä^à!Ї´ dÆ5ÌEò ð8èãɈä0ðè‘E2_dUËI`tA«XZ.µÍ(–Ó@´“ŒX,`t%²Xi+;šUê/Ï€>£M0‹ê)ƒT¤ó<àKA+Å4á¥3 |èèߞwĨ–…ûaÓŒQ–Ünjôø :a#-bõåÀO‚þdü‘7ø)ПJ>Ò¢â?-!žä#­Ë…þsŒsWíU`mPÿxõ½ÁTŽ^MŒYlø)ŽÕ-ÌÎÐÔÌ$M̰ Œ×†' :c–ì²E§Qø‚–ôµ¬Tž1B)HÒf¥â:gø¯Š“ÝÆ˜Y™0'aËŸ°,qíÔνÁv†©ã_…6[ü$h¥^Õ|ÜKwÚDbå À/ƒþrü&ñrtp¯€þJôÐ.ôˆ’Êÿ*ðk ¿¿£âæ¿úëÉÛ9*þ·%Ä“¼»B¨3ÇøìÜEµ½î ì-®ì¨-ä(Úº‹§°õ9:gæ}+˜“Ã:å³`EK¬ÍL™¤£J+–µäKÁ­³n©6gûšÆ=[ÓkifWò2àwAWŸœa]®¥$VþøCÐ?ŒßRqßþô"w½+È)Ñ5çHòtó`ÑôBû)bêÇÀý¯ÚÄ´°K$æíRÕŸýl2¢ú7d—ˆ&Œ>æ¥^^2)ÊÔ|Aj’̬r&Ѥ–/4a¢I-^.hˆ¢Ùd˜®eøæiKÊO*ºÔ6átÂöDºEÄ‚ÿ Y^Ü'hB]ÆÒwªˆñð~A§ôVšQŒûš0¢ç©L*  :¥4¯ÖB(ãjB)GMF('€c‚Nµ!D§òmà)AÆ¢SÏœ‹bO :u:ùŠ/Ö1x’ѯêÌ1ÆEqU·EÀeQ}¦JÞ6Ë\„´åªâ:ãv…Þã¶©âÞ©+÷€¾G¹‘µÄÇÄÊaàQÐGã·>TÜ>àý •<Ñ”Sѵu»ú¶×ò«nÙ¢[ëF…TkûDƒÉ¢‚½Ð'€¨6ßú}úä«2D¬|øÐIF¾¿ü(è¶Á»Pù~ôÇã÷.TÜ\à'@"yïBÅRB<É{—UB9ƸI ˜[\ÞuÿâES÷Ô§<ߥ)Ç5š¸œ1žh›[!»¬Ò¾—ï}§rûê7?ûGA'à]¨¸=ÀûAG÷. N…kZÁH;åâ$û±h›Ìí°À¡lT½`S¶‚¾ ôËÚ+O_Z_¤%øràÓ ŸŽ,Áëêñ¿hDÚ5¯Öé^ü(h5§¿Ó}øÐJ‹/áEö1àWA5²ÈÖfѵ̤a±=ŸÄÔ”wgÖ¥ÚÛ¾üGÐÿ¨M~óŽ’1W`éçÀÿýßÚD· çÝ[uüVÂû'à/@ÿ"²ð®2<‘oŒ¯:”× ö††ãˆ¯ÿHDk€lÇQ±sQ,õ4L@†Žã¨ø+ê<ÉÇqW Eç¨7Ž#ìh)žY ˆEÀ蛦öàå|.¸~‚*¬ÎW+€h#~½ :Kx=èë“×Y*¾KB<šj¿(WK“²/†j^ Ä“t\ bo¹!*;× ‡¨|·qÐŬȑðÎ÷Zˆ…0Èe¶ ’óm:ß(–"x»¸ ô*·~ZdZ±KE»*þ¸Š[¼ôÕ‘Õbg}WÞ,Ó‰ö)ʗϚƄ],’³§nhPÛ5À Oh‹ç–c{Ep™nØM&ÄÕ(pôx¡x8z"ª|SïÊ{œ kœ®!¥ØÛ.3¡zl üHÕv·\:¨\k¸`þÕöê:R2'²ãchM·j׈M9ºoÜG¹¹kßš·Ý|µäù|ÓJF¬ß2nê[dÓ^5?f˜Þ´ ‚4lÜÓ4 :{­—öÌ4¦éæ,3vÍqÏò5þ˜éʎ묵+iùNÄ nú|ã7õ‰ŠÒÝUfY6‹“žÍjI6µRu+ŽWÛÃSa¬ÒصÖj6ß94bæí¢í‹«8Ù¯X1¬)¼lXÿ@ rF`çU‚îT²?ÑÜÔu¢óÕPóÞ7U?Â3Y¡)¸â$ß ÀÄÜp¶ž 9Ixµ•‚uX ¾ ·ƒÞ~žx7âénàAÐã÷nTÜ.འ•2l…ónTÜ­ÀC EÖ¦«ëzdzÂö©® c‡%Ð%m^KiÎXñ •_~ô÷µÉG}âœøùàÏ@ÿ,1ýøç ÿ<²˜Œ Ó« ºÌ©*‹_™ò¤½à¼•Äš•¢çú ©KM¨IŒÊÛˆ‰«€× :¥4ÿZŠ©K]‚NuE–â§wEÂDTÚ­p`¶Ýþt!­Dûö¸UœÌ»Ù—x4ÚŨ+ƒC|}Å{rÒ)Œ†J¶G‹Ÿ¡ÇÔjk€?t*ú~ùÐcC(b õŒ=&Ú¯Gá„ñm˜Ä…s¤ ùèxWÃè¸Ùís Y¼ôí*áx0ª€‰]âIZϺ ÒõèÙKÅ… {ËMº®d!jS ÜR&¤6½Å:r°ä*ÍÆðÃÈž“1øl &;¼j…™õm‘kЄ/­–‹FWF âäÕÀ×€~Mü>„Š{ðµ _Y-zw=ðÃäò)IšoûÕ`® ¶[Ez¯~´ÚYOM bä›ÀoþV2Âû*ðÛ ¿Yx/F_Ë;Xøfó‹|l?p·e‹fúLw²1# õÁÚ4j°µUäz¨ýÚ)<Ã¥)R>‰XtFå_ug£¬3«FøÔ¿+0uPЄštbæÔA3évá˜4az‘ºx\ЊGNäOwPN•†9å)™!¦.¿ÔÒH(fý öOUЄšD!ë1ôà‡M˜„X øaAFëŠnºj ™*ó¦§âKS¿ü²  Ù ®ÏäìºZ3¸6Õ*UÆÎžã·kæÒkúsÝç藔Ϯé?wsÉäIÛ2FÒ9ß:ãŸeïžënQ™oϤš|øA†«½1íö̹Ò)q-é%ÅÚMçQ.Î$†*1þSÆk¡o笛dH(q²Ñ´ã^‘K7‘s®•¤[]¶©É楶¸lS¯„¤eš¦:¢C´«™xgH¸Ô°-±ªnC4ãþ<¯ÌÌ_‚™¿TffN°<²ž]3P³® ™å Žßp=’Î*›×¿þ¿‚&Ô`^ç3ó¯uýo‰ïÿVá[uÕÂFSëº8—ä¬dRµpÚ¤êK`R;[(N½´©mš«ó }±]ÒjmÙã+uË®§ÛÈŸ®æ;bò‡ÕF=47¥nb:¯4aÛG±«7š0áNç*à‚&Œ(°ÎÐ TþMÀµ‚&ŒÈGè Ü„@k¨g÷5bwŸãZßYg6Íמ޹Wl?3Ç-6¶·ÊõiÖ‡œÅ–²Æ‹ûvîm:‡[¿4$d³Üˆ¦ | h¥yS©t‰—7ß ú­ñw*îµÀ·~[d QÚA,ü*ð ß©U*á3é/¿ü è&#•w?Zi²¨¡ nÉ`ƆæÖÍ¢'ÍÅZü˜¡Ù°g3’S"Î? ü;Ð×n§DÌü+ðç žŒ4ÿøŸ ÿ3²4ïÌ;<@±£×¯[Í 6:ôaŒÖL(w”ÙpÝi`WUòÂS%þK`j»  Û4¾¼š&+r•’ñèɳy×öÏ9ï×?;~Ò>×Ññ|zåJzå«aoÐ Ÿ‡†R­ožtêÑ `Jü>&ñ}V…ïèÃPml4µ «Å$_ u=2ÕÆl¨‘©^IÍ62¹ÿ´§¹¦0ªÖ‹Û%ÔæØxKa«¯ÃÉŸ^Gù$Ä–RAûàxšë¶éMàQíF½¡Bêí@Zªû5ö¼;‘P!õfà{Ñï‰,¯Ë¹îŒÚÌ2ñô>àçÁßç”y‹²f7‡u|Uïýà7Q‹ohñÞ1¯ÑÃß’ÿ¦ ãzÜ·6šöÔ¹4“«’›ÖÂTh7­O"³­ÉÍ ðíj–ÖŽ.¾RgqtzTSþÔ fj§mEž²U‡'ŸóöÅ4 ¾iئn:»E5;Óm±Á‹"¤:oÞ"*Ó¹í1ÅCã·¨0®Åëa£©)^šKG8éá-¬EÖ(˜Ù,òìêß®Öii˜c,ufìIQåOo ó”#¾Y.˜nÁ°\—n•U›…®ñ;~-e~#ïŸÆåA)bü«jqG£rç´XÜØ§®:Ÿ'ñý¸ ßz ®6Zí $­dnµpÚÜêˬ;(jý MmÓi掇·-zêÖæÆÐ²­âo½¥M­Û´^Ñúl{4b^®ÐÒÝÄXìÌîFOÁ ²ywpm8Í®›ùÓ=”h¥Z›ÌÉ×ö‹¦¥eéò^³YùZ¯–CD÷)t©¥æ.-5w‰¶¨Q!ç1rðrö\*~Ö¦ª­×¹ç.^!Ú‚Mc®”®& Òï{–z÷6qu%°f#sz÷öMBÄ5Ô³{{\ìÞ¦Ô9t5y¥hehû¶g‚[ÍbÑ™ åFû‰nåZ–qhçtÉZ>Á&YAéý)õ·†­ûZÔ—pôxò"H£èÕE@ýuñsf§…caÃA~µ\€x"¶Êj&gã–.î,Ï,š¦¤,“Ì1öoÌ„eòf´ájЫ#3¹Ë˜ö<÷²¾ë3FóéÁŒ±GÆXß1ʵßöoYŸ1ú7³ÏÖoì]•u`Ÿpè]ñU¥RÌs¦7‹ªlâU ~;Ð×OUaŸ­_¾*°ŸÑZszU¨×óNÏ™¦jôe7®§ ±Ú0ìLýƒÁA|P­T¤ú³üƒî°ÕìAÕMÐfäj>€"r½¥‘"z¨ëÀ¡®ŒaÚC5Mdò귇ʂÌ0 ²èNRGbÿ„®]5"|tô+j)ûjXNzQ:á\Ðsc´Ï-ØèCÑêq‘Ö0=&°nc„M©wTÑ1ëÚ.T[è1ÿoÒæ0n‡­T?*Bxô•êç õ=u`~Ú²>øyp3ý²¯öùþ ÿöôe7lèëc½¶osÿæ°•@EtWj@Ô¥ifð§ü¼YüD¦ÈàvÇàFF®(ƒ°•DEµVjÿC°_«„Áe´~cíçMüçšä¦KjãfVѾìúõƒ›BÖi=êA¸ô~m#‚%¹ {‰§ÿaC©!NP¼¾& øQñ%Ä“4Ðê±o— ­»€kiVC²¶ì^Ziä¨+¡1r ðÚŽÚ%qe©¸Ë×¾.²ˆº‚”ßb•sÊpJec ñ·xèÛôÉ+üÔ1r'pè=ÉÈkp/轑åußsÊ_KÃfÜ7‚ƒy⯪tˆ™d:ê:Õ äOªˆø.ூþUm"^ˆè·[EÐï~ô’ô¯?ZéìnÄ\Tþ‡€ýáä]É&!Òêq%_®ä0–Œ‚×nÈ'ýeõNS®æêȈ·)U£|÷ï°÷iÊw«yþG%6$®Š¿¯Û=‘tJ/£ÕÈ–é 6ûb¿8™¡ž7j[eêVÊ·(lF»~ ô—´u°‹jƒ‰°=Œøùàw@'þFÅ}ø]ÐßÞÃBoÇ¡ò¿ü>èïkË<>²SÉŸZ_6²EòàOAÿ4²HægT"âáO Z-YS±ð¡¶ŠXþøO •¶„Ë_ÿô?GË{D²”{i¥LÚèÖpÖŸ3™œÝ¤˜RœÙL“p'Æè/9…_ø²Î0CË ¶ÍsúcÏGÓk¾ä ôLËágþ©‰þE`êiA§¢ß©Ú]n*WÃh3ÿ £Ntmí³ýâ‰Ø*1¯I÷Àe'˜Ö¤ª?TsC±>Ä ÿ¡:<Ä»]}3cÔs↞Ï܆†%<ú`äZ©ÌgÞ‚Ò Û8Ÿ9„¢ü¥˜ÏÜŽŠ}@G¥Ú9Ÿy+*r«îJE›Ïì¡9¿ƒìWýýýƒa+u*r›ÖJµw>sêA؆ùÌ­Rñúš4´;£âJˆ'i6nG ¨Ç¾] ­q&Ô‡v;Á ᥠ/Õ¬*Lg#W¯}Mü‘*wðZÐJ³¨Ñ ׻@wéIøKb¤x3蛓Éà:Ðë"‹äº)»¤ø^7#-ß =ÉE¼e€{AGŸU m_î‚®¡ûrŸ°/{kÙ(i8E³\Á^øŒ+±‰T+“ÓÎ'­q«¨zý´i£ã(è£úFÓœ·°‚x94A+í¶×!¨¸ûà‡#KùÄÔ+XI”í,µË<Ÿ+j¸ÓÞ1‹EÏHsÓx†ÿª8ÙmŒ™Å‘ ~a”?aa’‰ÙZÌHµÌ8&î™´Ìü†¸ô£Ès*Vèî@8æ“`œk¾å;kì`¿rË´ˆÀz»íyU‘Õçëâäƒ.-VÊùµõ¶°üü«Yÿ‡© 4Çv¹`çÅæt“š¤bº¾MûÕÝF—ј‰Ó67gÊ6EÌÏ5ÞµÃS}ÊûáùßÃθeLðÛ¢‡iDrwVŠ„§Ýqr îK˜¤mXôŠâ…&T÷G_4¡¦ádŒšÃ_—ÿº ãÍF% œõ5»Ð¤µpB_Y¢­aã‰Ú®U<N½ÛÔ~M9ÑÉÚ#à–7Ä[ìÌA‡ž‚qã 7˜ªW€È¬þ-Xý[m£ …SíÄÈ?ÿEЄI8åÿ üWAFÙ¸û1â ÄÔ¿ ì\(hˆ̅ž^?($\C-Óë©EAºŒà¬â”s’<&ÝŸÓÔº8(nä,ã«ü`f~ZÔnJæ9Á©EÓóª%Úƒ댙÷k,°ï %fé~p”Ä)¥³$øÓÚÑ‹ŸE,:”1’±cr•`•sŠÅ{?ï… î²$:iÂÓý *Æ-F¶¯_%ø"î/^%hBMÁWŒsùÄðÕãW«0}¾HM-øÅ¹4dzšHc¡Â:½R™m¢~ÅoWÓ4‡â-u†xHŸŠÊŸ¦ãêöLn@ò#Ü5БvÏ-Û#vÞ,ûFOOp"²B4³?³É)„OÓ$W¬„Š•Úi7¨Zà2𜠠/ ü¸Äøã*Œë±ÀZؘÙoP²ÀZ mõIå9ZàVŠß®¦imã+u ¬GEåOt#ÕeA/•(ïåÚ0};4ZåfXÁµ)pß©gö@ðþ°ž\©ßC¥~øA§B§æn—õý©ÄøOU×c}µ°Gü«…±ÐÖWŸTbŒãlšÖÖ7¾Rg±¾zTTþô*y*"0Ä|îˆГþ~Þ.C:Åþ§ÀÎù‚&¼ iç‚:ãD‡g\‹!ÕÃFkC:¤jHõ0Öj”Ês0¤3)~»š¦¥!±Ô™ ©&•?}/e!æŒé⺲‡oÑH{6ÝâÃ3§æýªY¬MèÒœ‚˜Ïùõ¸ÝE8ÊQà9Ì W˧Ë|^¹D—‰ú†€”¡Žç÷q(£ŸUk;–Q¢sEËóŒ 1]èE¹­>€¶Rºç*Ú¢Á!(}€Z :þX,ÜÇ—¼ø½émKºDœÎÿ8¦‚øÔP“Û›žKÚ‰æYŸÒcI®É}xH˜Ø0çÄŠçßó¨å:Ý²ßæù!ENªÐ">Œö$ücМ¼ˆ èÕEL–1òµä÷uˆ IıU4_K~íD¸ôêÈL¶åZòûÁ~9ÕqÁ^K.Ýb­±*wN¯ÊŒ×’ÓÖ~é÷ý›Ô. ”²G¬ÌùrùøC¨ÑCí¾|üJ'lãe=9 G»;üU=\}ùÊwôÿ„»AïŽ^•z"_ÍsüŸÐ[—ðó%‘>T¹aü$ø?©µ.»Tîã‰zÏÃ`Ÿ0’©oZê¬ñÜ'¯¯%C‡nTüâIš - ÛÕ'Ô¥vG î»‡Á)aè¾ä/¢Œ~G¾i;¹Ô~ï˜ín@ò:Cô¦Ë-´$áÐ;Ú_Œ tÂ6Æ£(:@=}tÊe€"Œ1Ô€PJu½6m‰1lÔÀÖ]Å(Cº÷¯oCèÚœB Ni­Íj÷þE3N£„‘FajqFA*^_[†öQTü^ ñ$ÍF- öP—†ÌS/™¶ïXžù ò€Ð­ñ>mIÃŽqš¿œp‚IM/â–¼lª¨ßFCS™Át%]^Â/QçèÏ VÞ¦C„•¢™§/Á\wÙwB•ýFLVw ämfuEÏá{2†ÌH‡lçÚ–ð/@ÿ…rH2u­d¿¸K-/ÿø ÿQ[Gly°€ŠûKà?þ§È*þVz*ÿŸÿú_´Š¤ª$’ÿþô/’É¿ÿôÿDÉ’nÞ-›/ (Hçÿ˜ºHÐ„š¤£”gŒXY¼DЄ ‡f ¼TÐ)µ›OZ€ö ‡—Iê2à•‚&Ô%•4cÄÊj`—  “É*àAF”ÉfòzµŒWÜšÂ!b3KÓ˽œÐÛ‰ë€ÇM¨È}”Ý-sÆOÚ-˜Ÿqg qžŽ š0\ è¤w¶Ãcãc*ŒGßÙ¢¦=yA.ÍäzW‹6¦š—ÚbW‹^‰Ì¶«e…oW³4ßÑo©3ìhѧšò§ëj×úæò*òàû´±¥Hf—F–ëZ…Ð{d†_ †_›üH® ­ PÏHNá*:…Î=G›æÌr=!ÝÙ6…·ñzB*~ž„mºž°‚æPN¬f:q B “b™ÚµÚÁ0<$“€1ÂÕ WkóE©rØ’ø¸IB>cžýh4ºv©.nÎã÷â®U´Æk“4âvÝZêÒañÍÌ’zT^°¸$.·å3* ˆË…ÖÐͽe1mÇ:‰0üŽÙ‚kNÐ4‘IX¶hÖÆñë—$)h[Z`j¡ Sj™fJ3_°ž7>¾"¼JУ¶ÌúDÅ-^-hÂžì ¯tJ-“¸üéuõEMš| ½4 §ªžï)jKêZàVAêš#š4ÏØž‚}JíîtJß:ýŒâÚÜ-èTôõùS ö‰¤+äT„‰àÓÇ•*Ä×h¯\aUj¹¦…íàÛ‡Ù·à¼ÉjäîÐaÕóNào šPS3/Ì,Ÿ ô½&%_#T¥ÃíÐéµCT|§„xukTv¼¾_C<[…r­ìQ1 >$Cˆ\#j¹FšÎ-Ð’}XË@¬¬^ Zi¦0œe â.^ú2 QfÍ2L˜b1¨vI¢ÂÜ%1w9p=èõÚĵجT¬rah÷Ž{ïRÛ6ànÐJ–5¼Ø6ï}§Ó•¨‘ò|K8™ó|ÑôB'’ ®öO‚>©M^WæÓ]b¿nW¦«¾½«Õ”ÕŒ²ž}.Ù= |ôã‘ew5¢ê G¬É™—¥t VèIˆ±çßúMúºc/[fóŽõWÙÛïýþdDöfà@G?}´ÄH³aWÁ1«E_EH~ôgô¹°®I»KE8_~ ´ÎĈ3ç³À¯ƒþzdáÌïV¹Ì‡xømà·A;Ž®3 Ôu¾ü h}çÅg”Îï ú§íï: ü;Ч±ëŒ«uþ;èOF8üÐÿY8/ì®Ïð¤¥Ë„º g˜N£2dŒXy¿>tª~Þ¡4…ÍÏ1NÛnäiö>ZŠ=ϸö0ý@Ié~.0uFЄIÛªBŸj¨gô8_Œ“Bò2ŽòÇñsJ`;ÇHÄÊàrÐËãï%TÜà Ð+"Kå‘É­6,Rð6ÄÐJà  oÐ&¢‹1.:rè¾ÐÃ"âhpè ÉHêFàFÐ#KªWÚÁá¸ö¨]¦; êÃ$~Ú¯ºeäPUâ& Ú:?Âmb©œ=‘ŒG€g@G·Æ+ùÚèˆ6¥*HjørÐ/o¿I| ðiÐO'#¡W_úõ‘%¤t&±ð ð߬͠M(K]‹o4ê²GÊf踎˜zðC ?”ŒxÞü0èkO:üܱð[Àƒþ¸6ñ, Ä£4yG<}ø ÐßHF:Ÿ~ô7#Kç‰ }!O$ÐÇÂ|>35ãÇ7Ö‹¶+HÑzÅa6LËÌáÂvžDA3¾%0µWЄš4cNmÇX(}H4aúº xXЄõa#ÏêÂÄ ™ZbBƒ/ãOØݲP¶&ê¡6WH<¾LЄçIð’z øA&!Í—ß*hˆÒ\ǃ—Bp×/ˆ4k¶KvÑtiCOøÄ£ÄèÛ€ßtJÉ êŸ³"–¾ü¡  “á7?t*ú5kZâÏÔÿ hÂ6ÇŸ©ÿü¹ Õ’-†—Ð?ÿSЄmŠ?SÿüA§ÔÎßÄvÎ.4aâùÿPì AwFŸ1Q?;1GÒy¹  Ï—ø³óZ`·  NçÀ›MQ:Ò6™çzòtúloRqN'&´:ÿDЄ牓ìü3àß ºSi9#¼ýø÷‚&Œ¨E×Îç„N'ÖþAàœ…‚žÓ†›¦&„ÄkØÎYý3(ÿLG³ú5sØÅ:YhgE<-®½*~E¦â¯ý>%gE,\ \ zµ>+HGeFŸXº غ?áÀБ…syíª‡bQrQ Òî­–BûØ—X:|ôCÉHk/ðhõé‘Ârb!|ôÃç‡Ã&–F.h7á˜@´Y8ý ¡\ưÆY·¢s&<á‘!B³ú­)j½Ì¾ô»ÏŸ^ö~à'A2A¾ø)Пj_/û4ðó ?þô²¯¿ú;Éç Àï‚þndá¬rê`\:&v¾üèŸikù9Þ»›”ë ±ò¥Ò6ž‡ â;%Ä£¨§s£²C׳/OÄVQ8ï{"!ŒtÞ·iÿ]±Ã˜pÜßGnVë§~C±·xh‡ê†b¡E±sWƒV:T'·Fêù[]gòVůóò§ƒ³NµXq JôxÌjØEÛŸ¤qÁò-·d—-šèo–R¤ñ úÉÈâXœìÎý==ë7+u¢Ÿý”6ÁÜ8Ö‚c“#ííïËöoÞ8¸©÷”çeÇû7fí¾Áî•X}ðs ?§Qvã–;Ü¢Ø×?Zm¾Lþ4´9§â¿ !Mµ¿8çR>6JÓÖ,EÆó…Œywi£‡¥â;%Œæa#O ‘Y$!žä§„ž„HõL 5M²$Nð+ð¶xh¥l-zm‹$KOB„—ƒ¾\c±-¦’ŸzÅñ ÐWDV‰-ÈM[›òg)ù&§êÉû¼ ܉~þ„ؾxôAm­¶0çY–Yôœ}‰ÔöEmµ0T|§„Ñ,ÌÆçÊNË‘wˆü.â‰Ø,W­Y³†¶µZî$Sžâ þC3øÈŠð*ÐÑwbÜ=ý®KÇʧû³ƒ›2ýÙÍ[XÜã¸Ùâ0ÿ]ß ûÝÆ>ñ»ªøÝæÌ@v`°õ¥…-kôRÔ‚ðnÐwG®ÑL÷î´dåe(žp.è¹ñuŠ–|¼e¨§sž$-—ûSîÆsÕ4ïl—™­k¼ÞÖCÉÙŽ›‡®å+P3“ OF®åÞæ÷F¹t%%)0WcþC•ÿPyTËúü ê@¸ôÞö(ò+Qü+۬ȯBÙêQä}k4þºN¯F=÷Þ׆¶} e¨§m· WU¢ëÉ­¢9ìÐUä·2†MºA«q·ï¼“õþ|žVÚ¨yVxE} 'Üz{äJ\YwgÙáüè±L>=°uS÷ñÐì½,^ ZíFˆÈ]úu(þumîÒO£ìõ¨Ý©Ü iš/T*cLÔs/ãân\•Ä~W5‹Æ„9º¯ß„C ‡´Qý3Ý”ìWºÑ‰ekT\‘ÌS`ÿͬw#·¬Ñ3¨¡¾ jÕ(4/o@ù„ó@ǘ¼%oDÙêÑÔ,i*‹ N©GŒ=f- VѱéJ6ìÉ÷„‡fúM`”0 :™éÕ,rãªé–Ìô¤1Æíº¶õ‡W·7ƒ3ÂÕ WGW7â24/oAùoi³º½e¨GÝŽ’º• žÛÜñ¤ûæÎ >?®ÃЦÚýæZÇ%=´ÅÖm¤;Yʃ?]¹·¡B„GAÕS9q/ %D0P-è¾^Óó¬Ò0Eªru¹ªRf÷ЕûUTèWµVŽònLT{ÕRÉt'Ó¼×…ïv¿æ»@wEf´@Œ˧)ŸaÆèâÃ$Õá®îã3Ô¡6`²ÎTº»gøŽÐU};ªGX]ˆ\Õ>¾S–Xè>ÆoELK¿1†† ª€¨r—ãv…fû`•°t_d¶æbQ,ñ” Z›é¢‹ÅÀ4¿2ýœ^§¸cÔö½¡ðŠøNTðaÐG®æZâû†q 7pƒgÕéG9¹ÿ¾{î Íí»À!áZÐѯžäl•}‡5(våíκ³ÓÆ:ƒ‚<yñxáÛùÝà–pô`dÎ tøþLÿ@7S“Á­3[¶ö÷ Ú¿#4›ïk„h#2›×‚Íõš~lnVæñ½à‹ðZÐ×Fæ1 ¶f6lÝœéïÛÚÏšušuS”&}X$LƒNGfwMMg]o{Ù²Éù¿4V™Ó_w„k@G¿+†¡yù ”OØÎXð7Qv€zbÁ…K,ÖAœcôóYÛ~frÄV-¯ñíÉs¼-ò†b/rè*¾Õ"ÌÎE®âCSª¸žs½%R ·l¸Ñع7t?€Jý ^x]ú ÊP.]A Ý0«2b»^øi©#Â+@G_€½'ˆ#O¥(7F5ï}O› Úo¡|Âv´ ìõ(á­|ügƒÛÏk)1¦.@QÇÖ°âôQpNx+è[#×âD ¬­–œø¿Á’ÿ7cP>DÿdŒò9dIe£-C} #<úD›Ô÷ã(ÿãmVßO ì/ˆ©ÀO‚QB½S­¦¬å§ÀájЫµL†W·O£üO·YÝ>ƒ²Ô£nÇøÒ\y’9¹‘`ï 1lù–Esaž¹xùQ6")õ?ÝØ"X¡ •ÌûfSC×𳨡¾àˆ¸| CLêqÃJh‚Nõåí’I·#š¬ÞÛø€›™Yñ:«?ˆ*{ÆD0…HWáò å¡«ø9T‹0R€Û´Ø‹rXSm¶ýóÅ(îóZõ'ôæ,*¾SB< l4½°d–íJH–hî"àRÐKµ eaî´5IÇq[”œ.½,y™|ïˆG­¦½Õy¨YÕƒÿ¾ˆjw¨¨#½±”ÞX‚oY)~·œ~7W|éÊgÁé˵u^“~ˆ¯%SksK¯_ªôbÿÜuhl´´«÷ÐpÕ.LË, ¯__0ÖlìÅY›^¦Û½µp0´ê“ÏBmS·þK­UYys¨¾]­úI¾Zª¶¼jµÅÞ}jàÀ‹AKûƒïø7ñ»yÓ¬â}Gv÷àâüg§r$}¸`ZÚUÎ;dëM¹8ãÕÞñÿ\óÙ¯MQ˜Nü킃ï} ïúÃôë_´hja›C˄ڲ&‹§~ߺßר.Ó”S~6´±fxå9Ÿ‚6KÍö>Kž¡cq¿.!‹DÅ.‘pʹ·lhÓ~rT ‹A+µLÓRççÌ¢m6óÛh†ÎÆ&IZ"TüR ñh’ÈчØð![-Û!%3Ò ¼ô¥ HF:¥ÁOE¤:NE$%*þr ñh’ÌâºdJc!3 ÄqXÂØ#meã ‘RUˆh‚™ ½ð2eýhš¡¸.˜Šå;!E3☾ªòR4Òš+jJYY#‰†Š¿BB<šDsóNéÛã–±Qïà‡¨m‘De-ÙZãÀ0%(hu‘y+¾çCT„ý û5ŠÍ·ýb³° ðÉ„ ’=ƒâQÛ‚¨ìP¼TBuŸ(zµa»åCb¦ëNÒ•†i„dp!DEx5諵©ù•ùºšK¹ì°JMÜÝÜz›6¥^óî­6OùC^¼ô-‘å·'CY \«bQâìâ$Ÿ¸­%WªÝ;'&uÍ_N¤ÔQ´<9i˜$fß.…O©@µ> úɨµé¼%gœóKÅsgs‡­3÷¦Ã†ÜBÆóÍQkȵÊË=~vߎ#{îÚñÀ¡“÷ÞµóŽý4|xÒËŽZ¾UOwMù¸«{›QûÕL¯ã]{ÄH__~4?fºiù³îîi_Óœ\ÏÊÙSkg{ÜÍ–-¿·\)±!›?vÊÞ@xxôÉó£ã-Eg[KÇ›?ó¼ñ <-6I7_¿[оF¨ov2ù~Gü_¼ôýÉõ;*ö`t®ýŽ8<úÄùÑï–¡¯-‹¥ß-œmY`®–¯­äxÂö¼eèm„M’"\0=ø_|ôƒÉõ<*ö!à Ðj ±ç'ƒ~X›"ÍÏU=s´Ù”î"èÎòލ!®üiè‘!½Ó)a´‘᪨찡%úıU’®„H›$9ÔdSgØZ$á”$!ñÔu¥K̲áðå>~#GÑô<•v[\ zµr»Mm¯‹º0>ê Û͉Ÿ›€YÐYmݼe†F*Îö‚înæBgF¦òû€ý •–c›Šea—ˆž•¤²x+è[“‘Êð6зE–Ê<òà*‚ÙÜz—6Á,ê Â+%Ñܼô}Ɉf7ð(è£ÑÝbVA,÷KˆG[ímß*µ(v.ðÐjÓ µë…©ø%Ä“¼†NsŒÏ Ïã·k‹€‘æl›²ä;|•Á,,ø¯–¬²O,Äšü$%S .«®¥†áù<äD0Æ-¶Ä°‚½T»TªÅfˆ°}KŸ­´Œ® ™6Ç~Qò}„б„x’ï#Ò¾ÁûÈ|1*UàmpèeÚ:ÉoÖ:‰]ö­QË•ûiz¹Zf¿e±lãù)z¯Þ_*.ýy¡vzÊ ŽOá0V–®Ñ®–k;bÄa«‚5bÒ3›ož–o1åwšñóù<œÛµ¨½V?úsñw­KÑ?úóÉw-*þ âI¾kI{¥ãìZb¢G·EÀè]kÞžFgñ?rnxÁ¾ã …»ÅòŽ52bçmö‡âü:u1—Ÿ¸·¦­ìh6ô0æ2ôÂ3 Ï( dZ´\Oç6Z&†ž|)è—Æ-Sq“À—~Yäžrñ6ó,ƒrç«èåÀ§A?­M@ê=å-À·ƒ~»FÙ´¸‚Š{=ð ßY6=ÝÓ½QYêƒ"7 óIU†u;Äê;ßýøÝŽ|ôà» ¿›¼Û¡â¿'!žäÝŽ´ 稇¯+(°†ËM4ŒzæLaië4¯ãeË¢óðS¯«­oO¦-ô´ ñ¿x軲S-1s/ð(h¥¹pN„Š»x?hµ5XùÓÐS.Tüâ‰ÛøPqs‚Ž>×ÚøPñIˆ'yã#íâ‰Ñø, V3¸[\z…¶¨w{Ñå×/J±îĘÅϪàbI~û´í9â¦m…º\ ¼ô½ÚlÐŒ“Z-MÐèx„‘6D„3ATÜ!àqÐÑ÷?m©O“ÕÇôf܉g—ØØÝ,[NÕ+Né)zIž>ú}’ä+ü*’|ð •ÂÏð’|ð ßY’Ýa½ •ÿ.à»A¿;~o"ÝÂÆóÁΘ´7¡âß+!žä½‰´C&Fo²{a˜[\z¹¶`ö®œ‰Éw︖çŒmÉ:1j¢Õ] Žs Õvµé3GÄK8 z4~sDÅŽkƒ9¢òmà)Чâ7GTÜ\àiЧ“7GT|QB<É›£UBŸ9ê5GJ›àˆE@ýkˆËak‚¡tX%®V ÐFü:» zJx=èë“×Y*¾KB<šj¿(WK“²W@5ƒ+.Û´7ð*èx€x{ËUQÙ¹=$@å½o±%1¿o爅08ø·@›UßçFü,“t—Çïgƒä„W€Ž~¨ ˧^FZZªÏüÛ¡óLW·€Þ¢Ml-·sÎ(®Û$Ä“„¸¶w€ÞY\¥ªçóA6d¤)¥Ÿ\Ó§öi;ke3†e çT6¬Gªf±ÇàWN7K'Üú^iªÕíÀ7~SòæóZ¡!5ÔcÅ—1{µw¤¾,’©ëÀá2ÐËô ”&ˆ—ËW¾*þNp^$¼´ZÎùÓc4`£«È¦l æyrb>eæó¬¹x¾ž)ÛvÅV­ ¼ãÚ£6-†àf°Ðýà:ôÂqÐãÉ÷ƒÕP³õôƒX?¸Ì*Ë›áXË×½ÃHx§n€;Â@ßÐæÎA¼¬ë¨íçtoüƒŠ»Øº/²ÐÍ`T]`¦ç1CƳÅ×fÒùÜzÑ*úcì…¦½AÜæ7aŠ•îÚ µôÔ¯Ò|ç‰Òä<Õ»ø› S›*и¦Š&|øqÐOFÞüèODÕ„Ô•u6U†5Iׄɵ¦Ü¨:ÁîVÏ2Ýüú;Åü[˜bñ{!ù¥}âr—£%§»˜ƒ„à]Ýa;=ñw-pè ñwz*î àFÐ#‹î–¬q¤vFˆ j%ºJõ¬r0À¨ßŸwJV•}okXå#Î7]Ðnä(¬ÁÞí"Œ1³Âi¶I-³ÂTvÖÕ¢ÎÙ.ç‹ÕB}Ø«z “^Üz“ÆÑb™–Š› Ü zsò&žŠß"!žäÕZºZ=Î}³–ÇFSf$<w‹€Ñ÷ÍNåêÚ€«‚‘6Ùϵº)<3WVh}&/öî‹_Ÿ×B‡ ûA«eȈ¤ÏTü€„x’×géÚõõ¹3ôð4´—PÊ›ªI“¯k¼<ÛcÁwÁt †åºŽZ•‰Ç¥Àu ×ůÊi¨/at&yU¦â{$Ä“¼*wC}»cUå¹²¶g‹€K@/‰K™}f¥I£}bÚùÐÊÜ÷º!Êåªâ §ÌÝP`Â,èlòÊLÅ÷Jˆ'ye¾ |s¼Ê\ ¯Ì7CoŽE™¯hTæJX™ «Å7ã=›@ß¿ß Í%”"¤µ˜ŠOKˆ'y-^Í]«Ïã·>+°¶¨£î°õnÊíf#y6DLƲñþ]Õœ·jyB+6±»¸´Ò@(œb¯ƒ2n½5yŦâ·Iˆ'yÅÎ@™3±+v5¬bg Ì™x»Z©Ä¢Ø(s&YÅ–çv*vÊ`Û»ÊÜ«b§îU`k‘„z§í²SbæÚ5ÿ=Sò1‹iµ3j•-ÛŸ «ÙÄóàVÐJ*N³{ Í=P§¹ZT*´fSñ·Hˆ'yÍÎB›³±jvç½¾õÏthЧ‰¹¥À@+m™ §ÃÒH¯h̘´Sñ7Iˆ'yî…ÞöƪÃs}³: ÀÙ" þQáÎú̳Yb¡Çt£l¤2]mÉ w³Ó^補½xðèCñk|/´œð0èÃÉk<DB<Ék|´¼/VïÜVßû ã„Ñ­öÜ)ü,Â~T¦å |-7®¨ŸÐêħ™œ=B—s¯Z¥ÊØÙsü~Î\zM®ûýò‘òÙ5ýçÎÂÞ{¢U£Îxß&q~%p è5ak@oL»osA®tÊc\J 1§…B¨\µI ß 1~ƒ ã5•èì˜í´1 !N6šnñXK3¹æº[µM‹ë8µ1Õ¼Ô×qê•HªÞ$Muf…oW³peO¸Ô°±ª¦üièd27ÔŸ¸];7·£~ΦMÁ,“„m fû;D_"ŒÑµï ëÚ‰ŸEÀóɵ?Kmví{Ô\;q~%ð‚ríÄð ãmríÚØhåÚ÷(¸vmL…ríz%2«ko­ðíj–æ®=ÞRgpíúTSþ4´k—ÙHеK;ÉÚéÚ©ø›$l›k@_"ŒqyLåBbi0úòØœ),-­{w…ã7ÄÓ àu ¯ÓfßÕŽß @¥ »AwkìQ-vâSq«7ƒ¾9²*¯ª¿IÛ#õ‰¡g‰­uÀ wÆog¨¸¹À;@ß‘¼¡âwIˆ'y;3(Ôœ£^;3s|Ö"ѱ±ݶLí¿Q½W+€FGb‰Þ¡§„׃¾>y¥â»$Ä“4ë¡¥ê92×dI©'* ,”¬À*ˆó¡!ùÜÞ6t4œ»ÖäŠÒÂúP—ßÖ;ÝÀ>Ð}ñ{#*n 0ˆp£Ÿ¿'•?=¨M* ©œ.™J‚Ù ¼´’g /˜õÀ] £{"5ÁìÞ úNÝ‚;íRÌ~à uÞ·0ƒ`öý`dÁ(ݽJ,<<Ñåòf²Y,dcÆœ¼’p,`t%áœ>ú‘ÈÂY€´ âqg@ë»ìk¦ã3ŠåyÀ€~A2b™¾ô #‹åb:qL鉬Ð=ˆ‘'¯ý*}¢ñEózàA¿1Ѽø&ÐoŠ,šþZ.,q4œ§ŸbÒr-¿ê–§_‡:5±ûfà·A;ù w£~ õ½},èm¤±Ôïº[öì~— q†³Až·€wƒ¾[•óiß<‡ë·e búG@Gß)u{½ÏG(6WâàúZJR'%¿Ëð<\y³L9öTµý>à3 ŸÑ®íKL/KLg9Ó ,~øMÐßLFë¯j`<Šö¿ øПѦýo~ ô·’Ñþ7¿ :ºƒ)HÚ¿ƒ”Ÿ¶áWŠ”mwLdH‘{BíæV7žónAYG‡)ÝŠâ„ÕðwÒªÑÁê”Æþ1_T6NÅ]\ zud=cˆKEæ÷é÷”OÉŒ]?Ï“w¬‘;oó[ iØ.ˇւ3Å8u,²éMÉÙÃÓiЬ¨–/.¡²ôÄ~¢£– ]“žtîß¡¢#Ÿ~ô’Ñ‘O¿ú‹‘uäf._”S+“µÐ=˜«qª~¥>7ñù%àß‚þ[ÍTvüfÍ´E™¯m£ â;%l³ ¾Iˆ'b«¬"'àGFMfŽÚV~Ì6«–k¤C²7A®½J[¿bb|ø6}2ë×SqššÌ:×wÔ§Ê®ïЙíq~Î*™v±E¹W7ƒŽžî1üzêzáVÐjiš iõ˜ïW¼­½½ÙÂj±Õ—˜¼ x´ÒcóRsU·•¨¶O‚>YTsÂßÃE < =¬­ú rfÕs܆†zïö޶š_*¾SÂhæ÷ʨìÜÚ!N`ˆ'b«gæwç˜Y,Y®—1ŽdÙŒq“qYÍwetÿ–-ƒÝYc_mÞÍ·óyÕbUäÓÈ1ËÍây6$w&»6¥Š1BVñ6›ð8èãÚ¬ÃÚÃA"Æ!«Ð˜Sà\ï³ üW‡,qÓàËA+ÝÐ"Fiqf„Š ŒÒ+@¿¢ Êÿà+A¿R›ÌR ì<-!mÒvŠ…ž øzЯ,eéîŒÑ¿±¿§§Ó€RwzønÐïÖ&š›g[plr®½ý}ÙþþM›zû¶lØÜ7°e°¯o€þ_Òï¿ïþ!è?Ô(ÃqËnQì{€ú’w;TüKˆ'i6v‘×P~%s7ð-ãp~¬d2Ìå{¸×™âˆ¸÷ÙÀ¼ÏÎV @üº„Ÿc Wí"³ëÖ8—‘‹²Î0#Z4ÝIöçÂÖçÙh5tºÍ@øJÐúLq—SuËâ.³A¥vUX5J¶StF'¸}ø1Ћß/Qq¯~ôÇÛà—¨üO? ú“Ú„Õ¹~³?_~´ÒÔK8ÇDÅ} ø%Ð_Š,Ž%é~æ˜ÖoèéÙ°I©}ø{ O›d2ÍÜR_ÿÆÞ¾Í[6ô¬ܰ1½e}w__߯žGC:&âø€ÿôÿß1Qq¿|ô³É{„Û…Å 0x’fc'ÊÝÙÑÀGD63Ç$Í>eŒû™û`ZBîÇ)ªy~=¤ä~ÄçP}&ŒŠ™?mކw/w 2„‡A+­ö7Ÿ‘Ü‹<:ìŒøÌ*0ûð h¥Ý½á¼ w8 z² Þ…ÊxôY}Þep£?/¾´ÒãpÞ…Š{ ø$è'#‹cqz†===ë7+u¢Ÿý”6ÁÜØÌ¹lÞ8¸©÷”çeÇû7fí¾Á^…X}ðs ?¿W¡â^ü<èÏ'oΩø/HˆGSí/αw,—FÍvÞ*d̵q¦‘Šï”¢ÒF^èÙÝ!ޏ¨œ”7ê1à;!ÂèÇ€õîÍ#žÖÓ •rñ·èµqîÍ»ï  UÞ§}ó"`wGívm­Òb]›Š› ”îjˆ¨±ëùäYÛ´J ®9!oH•6±z*—ëÇë€'@+­1iß¾G=|èç%£à·ïǧ“ •‚ĦßlŸúùɨ÷Ià •ö#6´òV¨wÁá.Ò¯mÝ»{‚KêÊ®º™ø~ðs õE8 sžeÑ.Ä®Œ¼ÆžŽ¶:x*¾SÂh>ó\Ùi¹ýho‡H žˆÍ²sÍš5t"1OúbEgÔpmï´á’> ë8å~6³T)Á³·PŒº&wA¨„ÒÌ@ÄšÜV0}ã–Ãò¨:é’ezU×ê:t¨+c˜ö_q¼Œ1̈²5š1òöPžÿ¦ÀúMèjÜ Ö o}[äj  ÿÑ9—!öOv8ϘöŠæðPÅô|«/-–â3FÿÒ2ÝîîÐu¸|J›qâêk-ù؇²ÔÓç¯%å±ý¦iÈCó¸|^ úÚÈ<®e}‹Ô–¹Ìô¤aöºÔQðExþ¹Ô1pDx~»TܶӥžBÙ^.õ4'¼ \j̶ӥ–Pv€z´`w©æi‘ bÄv=ʪ€Q²=îKiq€fW¥DÇLcœªÏ5hÒØºNeÔƒPšŽX§T'?ÈÉ\K;_K9oŒÛ¦±–«ËZJkT-R'°‹Ež©h¤ÞŠVyÔ ]+5!<ú€žiÓÃL's¤´Sü¯gùÛ ¯:ÌÐääZ%g\ì$lèÞeè*UP B}Ó [¨J¸¶T}‡ÒPÆÌI£@YÕ…QôòîÚ2hþÏ„[@o‰ÌÿrÖü7LÚÇúS<·Gh¶\°âÖþ€cT£8ãƒÐ”¡ž(á˜f õEÙ‰Ë$ymË:,K²%ß^ÛôÎôî¶53=îîÙÕJÌ‹#H ¿ü„÷ƒ+'!Ü !ä¿ð¯Wõ홞ÝéYuuu÷®ÿþÐ|Ÿfz罪÷êÕ«ªWU†^žØ¹³¬î½~;†ªzmH$9y5úú½õô{·üs³F¯^*륭ä<.¹ºh*A†{LU¼ªe§œöÙ«Wå=?Ÿ­Xàï½çà ¶B­üÉ<¹ü_®ZЊÔJe´*s5IÆ ¿÷KßÞ±íCŸ˜žg2Þ݆«î:vâð%׳ þO·õCýó™ÝV+¾mêæ¼ù¿zmˆ_m7›`k“fÅèòÊ9ŸiÓ<€u¦½gc{ã"M¿*!ÏDlý7òá‘CqK Žk5p#h©úéÈuå¸^1õNýx•‘m¯˜¤õBìŸæC<ŠôrÕÞz½"¢íÜ6Ð7ù¸É5òÚ~RNc)r/´DX]P¨1×t+Z’/½gô`ò#öEâ‘ÔØŠ¨âPO±Þ‡x"ÖÊš¦ô¥_ë-;ª¶Ùoø˜Šç/òóâØÕ;‘.üi$+ [ÂÃR¹eo7'½;yO°ˆý0²jÇìrÁqõ)cÌ6jlHòÈ™#{ï9tÇÞŽ?vï‰ûö¥Q׉9§8e¸Fm&70ïëü­ùQ·×ñ®9©å®¨.MëvÎÿ]>¿àg¼mO¥r­ø¸ÃêÚœ±‹5êի¬¿t§×OݺcÈp®rSƒ%*ßàd£RaoìÑîb¿G¿ãÌ9®Q-RG—([%ïOþ°àm¥À‹¶'x‹M¿›×®¾Z[PQ%¬(ÛÇÇùÇ79%Û¬»šY8Â~ìýÔ øh@Ó¹ZIcZ(‡Øÿ»]£;T5,Qt`<>ó¸ŸõøÀöB[Řìm?Ÿ?{6h Øírf2ß#À@?ÖŒé—3¯¯Xzõãó%¾®¬}‚Ä Í$õƒ>锑Þß/õv’l"~óŽ(+wg®·/+áÚq\´ö¦’U«Ü‘ßÜm\4 ,K/s¨q¥“ ѺJ¿h¶Eº];^6„ͱªè¨3= K¡b¼@ÔC<’=yU„Fë}ˆ'bLã\æN´™’5S Ùç‚V1fŒJA;4<6ìM †Ÿ”\ •R7Ö%ÔñZŰ¢ÑŽ‡ÑŒè¨âÐÜãZâ‰X+›iσJ;l¦ ߸:öñ™SbõûpÞfãs«ã½Ý†).×ÕfXßcÙm#o«¸lŠ\<;m–¦ñyÛ1Ö¸oÄ8åÚzÉÅZŸDy×k kÊÚ«HÞÜ©|XŸAÒ4€g@Ÿ‘‘*`R*`c#±³€Ïý¬è.£(¡“³>Ä£¬ô7(»>à³A?;y‡IìŸãC<É{¨µÂ 9Æç¡ú¨¿•Ìsàë@¯“vR«æÏ“ÏJ\¯¹ï> ´º »@7èAHŽÍ>Ä·!v·€ÞÙxïãúŒB‡{ ¼Ý«ƒÌ°@jìeÛ<¥åÌ©šeÓÕT’*Þ ´AÛ)«x·x’P±< útdû{ÿè%:ÿ’Œ„ä;ü? ÿºžÜ–DÏNÒ¼ø #¥ý ð­ ßYi;IiÞECÃZyX›`>l0@ÿ&ðk ¿0@ìú€_ýõäƒbÿ âI>ð&ã zÙ°[B0ôÿþ¸@2X°RÖ~Ü Ö;Ú/×qš4áàÐ;â7éu0c w&oÒ„×ùOò&½f¼>V“^Á'‘$Dëïi­ÜV4 ?ZkT Û,‰tL6„vg  ólÒ‘áa2p‘@‹ŒL«6‰ã››wDñRi9ÇÝ/Sy.> úQeýrß´úðL’Ä΂žUØ»­´n¬j:¥Aq©Wؼ:’×>ú Y¹üòcÀS OEn£sü„£²áêfÅɵÓZ£ÖÌÔ¦Pž…˜!*“:¿v–Ùâ®ë4Ú]dNjuËq̉ŠÑ9ì'cn^uå$Ã:h*öð_@ÿKüšØyëõ?ýÃä4±ÿ‘ñ$ï 7ˆöÍ1>=4,!W?Ð7_ª(äx²Ý;ÏóÅâÃe$ðוŠ6=W·Ø?h$µ0úü~½RtçêìXœ’sòZŽ>F³¢¸¥ì»0Ô_‡m,`*„/ý’øË4—‚~iò…ؿ̇x’o,磜kcY)VÁ$dCÒ·¿ñ(j0Ó¢÷dA E'SÔ0ÚÛ kPâ° 2û°Ê^¬Wô’Áû1¿à¿Ñ»ï›…X˰é>L£¶aÐ;s UÎÏ4ŒóÑOƒŽ>?ºaÐ;g|ˆGQéûÇu{ŠùÉšg‹ ù¼ê—>/@Còd“<Uœ¨¥—öÚ'Âè ÃÕB ãO:öVªWI Ó‹o‡ÇÍIÊúò2úèØú3gyâ×xnÛÈxþ,}øDí̶‘³g¶ž=‹¿[;>­³W˜puﳕâŸåêšãE…Z Üz[ØÂÑ r¼VŽWgòûÌ¢·G]výΕ>¹¯”‘»é§³°'ЃÜ* LŒŽ#ÄóÇs~mM᥂)“®3×€T0µªÉ,ÒÍ··‡”ê§sÒµU¦¥3Þ$æº ¾.Öäÿöi,|¢šÛVâ"x˜@ß -™·©Âí{î=S—õì7÷‚ޫij¯bžÝ‰×µßæü6ÁÕ¸v%bttí+Æsu)®D¤Ðþ\>2­ éœdìiUJ°ÃŒë"SYú¿½Æ—Ûæ­cóŒµöÓ)hð¡5Ÿ}RY3 ŸŠ@¿bû²¡nÀª6±«ÐNdµmÔ¼±%_©È n\à A¿0•^nåø s*ðƆE»ºô/,—®îU>Á_%#¸š®N‰Ûh?ÅpÕJõwJä Ýß©SÊbý]w³O«f‚;½ø¸.Òé©1Pÿ·—z£„…+tÚñÛA¿]Z¾¨SDýumœuæ¬+¯{“ôõSuYÇúà'AR‰cvèS>¹?%#·¿ªDŒŽ~u=B4-å[•ÈÚ·ªSÌbsCþ†RítÎ nŽi©+ØáÇÇu‡¯¦åø¿½©K¶g!†qJÉ:#·°ÓÑ)vÙŠÐmè“Á\æ¸Bìn}8²ÂÎo†+1|—PÏÀA?(-UòùS$÷CÀèГ ;ߘ•Ià²Oð²Œàjz_%b¨ËŸR&RènW>”çOÅ])Á½[|\éÝÔ˜¥ÿÛû4³Vo¸ÎPs¯‡–ó¦=uî¶©­áŸã¤Y5>çɤ˜hÏUWühZþAp™¹Ü?úãËÅå~Â'ø'dWãr•ˆ¡Öå*)´ËU§X\nœ•ìrã㺈ËUc–þoGóÞ’­m¸ »F‹Þ~äMŸê®U5Kyù~¹ÿ ô¿¥ãNŸu§ÿü èŸ,wJm͜ӡWâNÕˆäNŸq§jD ëNêcQwdìiUJ ;‘kwwªÈ,ýßîÀÕv–M©ïî‹{,Õ—¬*‹u G“oÖ™QAJ u–~ÃdÛæJo²~ û˜";cŸÙ¼GЙ{”¸ÜØgì3÷úä¾WFn5W‰=î…|ÆÞ¯s)ÿ«DÀÐþWv›¸_Ð0Rª¢ŽÂ-Ú<ÓÒ\p'×E: 5-ÉÿíƒáópqqÇÎEkðœåæþ›Å{Š÷6iGÔö{·µâ¬yÒ¬eS/ZöÔýkˆß@ö˜¸Ža›ÿr²Çʾo$ìô=Àÿ4¡¢æs‰ÿî«¶«¯$ðß³M¨È°WŒOó—:²};Ø^(hˆf= åŒâT±À츦ÑqU÷éºí´‘]»nÌË.~dŸ¼NЄCkæ…:<Æy˜Å8PŒSîä<6î§Ü3÷éöÙ‡ç¹õG´1m¼¦OTtmÞ7Û5¾p«‰IÞ?:¾ÚÓó$ƒ‡›žùýôß¼ú£Í¶{?åÿP2¼Ê^üsAgÿLÙˆ¶k|•ý ŸàŸ‘¼ÓªM²ÒøÃ1ë{ü‘ðîLMÁÃL1TwP7#K§ÊçVySOÇfVŒ—cµÙvÕÔ0ž—J7KÌj<Õ— ÌR¤oêÚí¬UÑŸüµÀÞŒþKñýr®÷®lÉM?^n%Ãu5btìÍ.ÏtBEœa;!…JZ¬ l)éÔTǾã\ÚkZ: ìbäÚ½OPÔ´üß^‚ïsOÙz™vÈ-5Å»Lˆ×ûôÔz • ×½—w²çö—IpOî!¹ÕôJĈ#áZd¡{uj‰1áZ±”m\å®cÕV°¯ë"¾^M³ñ»^3èvŠ¿¥Ö/ÓmI~—Ñ;ô– µø({ÆØ£æbóøÝüc>¹”‘[›W"F,‡Þ*“.´«W§šÅ\}”CoÕKÚÞd½[gÁ?>®‹8|5 Èÿíž«Ñ!M£-ÖGŠœ^©ÌEZ~kà5(À+#y€N¶Ô_f’Îè®9cHÈ÷ÛÀ²ç­ìy·2Ív½&i5«ÚR£Òp$D~ ðmìy{~MVä¿ü:à‡ØóZö¼GaeïJ"V?Ìž_`Ï{#ù…-ûnÞŸ$QÓþ{ÞÇž?TÖ}-¦ÿn›Çz¿ü {>Þ¿LFMŸ~•=Äž/FVS¿V×K'õ)#ôöv’ãkÀï°ç¯ØóÍÈò„ÞÞ¾I¨¶‰j¶·Ó´vÍo4j:êö›Ä!n´k]²P£ „Ç@“.Tò Í$÷]ÀA?¨$n9¡™~È'øC2‚GÜ•‰¡.¡Y™H¡¢uµúPžÐw¥t‡ãåÚ%Vg–þo·tIhÖ"´ß膺†ÓíÞÕÀxdyðIÐOÆ/»àsA?7²²nmmŽÄŒÞ]ݬÿsm«Òýv×ÐQIÿ<àïƒþ}e•·z7‡và¼Q@ÏÓ{T¡ãbŸõ!I‹¾(ª8—ôˆÓm<ıV6±pkoÍ;´ÎšÔJÝ ½máRh‰Ð*jüëx¦HÂëH¦­À<è|üNàR4Âk@_Y]7 ß uñS+¦ãr ›5o®bÒªT¬YúÎVv[ïkp$ùµÀIГ‘K qæfXa/è^ië¢fÜÉÊz]}BB°~ úÛê_ keÝÕÙ ž™¾H± L/hŽË†BºÍ>³m˦óCÙ—ô©ËìÃ,±êƒüºYFñ‹0¬YÃjÔë†Ý±Ó˜ k2¢Dl¾ô+6¶€[2‰]ð• å&Ûü߆vÑÄþ|ˆ'ù³­dK¬-¦Ûy…Ý$뮽NY“¹I\ª,µÓ"¬©oÁ{„ÏýŒøM} Ì›ðNÐw&oêÄþˆñ$oê[aÞ[•›z÷ùƒ²Õñ²Ú­°iÂõ ×+³oͱXW —Ë&îH6*?JeH¸ö°6LR^=¿ o…ÝŽ€IÞ†‰ý¨ñ$-Æe°ZÕ wF1ê]€­ÛÚÌÕñlxWd7#‹r_Y/GÕe¤«¯Û × .¦„h'€÷ƒ¾_¡]wYÜÚ8Æ.ú†,Âß¼ ô]²Â/øå]À@«[Í  »ÀAGŸ¼ÚÞ\"(jÄIÑ–ÝüÌa‘l©Ò(KYõCÀ'A?©Üªûè$k É^|#è7&cÔŒ‘¼mú%À_ý+ÊlúÅÀ7~S26ý\à›A¿9²MKGO"¼øVÐoUo±Á>IôÇÀOƒþtRKòF´Ø÷ÿô(³Øwÿ ôŸ%c±¿ ü èÏD¶ØlèyeâÿYàç@NYñWŽóH¸ßK„Q÷h=*ìÐѱÏúdk]Uœ+سƇx"ÖÊ%,ø¼ßªLNéµ)í>Ó(M»zðµ\Hñ ¨Ÿ/‰äÛüo]<;3q+ó: Œë¶E“ªtv„Wo-u z€EUݬð½x#裷è‚&Qþ]ÀÝ w+SÒåÞ ³³³ÅÊ X8&!o> úQeÊêoØAªÚ| ôc‘UÕþj à™À ÐÊŠ¿j\o°¾Öp4Ôz·õ¤ê~‰}Ö‡ÑÜïÚ¨â\Ù#¦A=ıV˜÷NÇÞ¢vQËñã:ŠZH)¯‚¾µžf7ª¨_´×™«Ö]Ë5K¾õ ·÷€Þ£0¨ Hº –Mxèè7Í µ}zuÂ6ËSFA»÷»[ÿÔî­™3†í˜îœv—m8Nh@¢ŽMÐfò ñjØ‘‡jüÁ fù¾x£À~txd˜ý>«Vn”\Z¥ndP¯é•9Ç ™íxk ]L3;3lcَž}B]ox‡Õ°iæ×šÔNx…ýó„5éÎêvØ,pò!à)Чâo6Äîàè¹"âxôeºÊî¸^BžçŸúù Õ1aUÊlŸ|èDVÇÚÜŽ|AÜy£T#z!ðå _®L1Wy!eÙ2ùYe#ÃÅ‘¯ßqÃÐã̡Π︾hïX’¨¿ü0è+ÔóúløÐIÞûú¢ÒŸ7ÎÞ1lÊPè´èv¥ÐqO®'ÕØ’Øg}-¶ì‹*N¾G,?zˆ'ê˜#üí5P aô%ÚÀ­P%«† ? ùÎ^Zj’! å¶¦)°í^ Zê2ɶó€×ÛâèË›‰h§ù†‹ÖåU”—ª×ë•9Så5ïDÅ|Û‘Šôš5áö ¥bLNRV›cžfAGßpK]xŒ5M[sôj½â?N3|üKåÞ|èW)«öÕãŽaЖ•€I¶mOªnŠØg}ÍM8Wq4 ì9χx"VË‘m ÿ ]¦A¨—ðèèé1áë¶Þª1¹KX•h%«>'ÍkÅÛ¹=´|C‰0Úü®ÿÛ‹˜,ÚMƒ$]±dë“îèððŽÐ² C‹@_”‚GÀÛC5::¬9®ÍÅ\‘Ž!®-g¾•rçæ%ÍñãŒ+:_\]†QÈM8z,rnt«uÒ³MJs¶©=›dÑ®%Õž¥9n£öˆì“æ$RÙpL›…4–Ms°ü¶²£¾ÝÜá o}[䂯¾²U¦p!®íóBhi}MÃ? QÚ‡ÙˆCTßX)7 —¬©bݰ' Ú€îXÕæ?(‹½õ ½F_7ÿA_7ÿ†ÿ#ÞìB©ýp ¾¼=TcàW“·n³þÀªŠÈÜѪlHQ -ìHè›ö(ì„ÍFäü«z±:“›cþ¾Ièhc¬#½Láß´ ¿ÙAˆNplàÞ£Qº‰›P8 Ð‘ ÚÇ Z_'ËGx‰êÍàí¡C½™ •U W[Ã6šYüe6®Ôkm±Šç¢wžÚ‰ˆ&t!nà·´(b!ž~œÌwÆ(2±r”`—cE’pJ·B$BoϤüI“Þ··ÚÖlMgÃïÜñ< Z²*mÿÌ ø}­çY=G<¾{!úÞö"E,Æ…6mdÊgíÚœ2]glGxÉ|=¯—–O˜xcÚÞªiL7ñ‘À´Q:)n]1‹É¢6à&é»ÊÄá36ÞÇCa?Ä&ô¹ËˆEØ,”ܸ©ìá•}Rúv&®ìƒàí¡e?BÊž4]æ=§hù˜¦êx¯.b×íÔ¦·kºãM¾ñávjáÛ Y ß.ön§VÎ߬³@פð1|/u;ÊEøèG"—ñ róÆTn¤ îÞYÐŽ±ÖßXÓ:ÂÛÄ!ÈFè%²\‘‚MoÕØÄ dŽÎ•MK⦣M4\ßÑg¾,Ú\¾9ÅZú; 1¡o`Qúý~éš½hAó9&ñ˜'uÎ)°€ÐÞQ°wìë öõyíLè¢<âú\ZÔø›tÚƒ‚Ò†·Þ;! ¡ºøû Ö1Ü£<&(å«2cäŽ?<8Ry$¯]uÍUÚñ‡©ý±4ŒÜ ˆdG`¾ÙT³ŒX˜Þ³á%9 î„Ñ–µ¢9…càí¡§0JNA¸ÿª®~’e¼[ƒuGÜìZð» ,¡o‚0¢à;Ãú™ö7Ä%ôMÅEUç·;¼U‡4„êbÕ”»/*åÆ~¸ß“rc¿¼=TÓØÓ],»å Ls±ì~ðöPMÝÞv¡Åt­ÁÓm‡DZ{yE!¼«§ér#KÍÛƒ‡PÝÛ>¹u¡‚f»Öé±{Žß{ ¼ƒxÒúÆéKe‰È7?½„–ˆÆ! áÐRhì¾á¦ÂÆžÂÑ£žÐ7Q± q-= ŸšKDÏD©žÙ“î‘Þ.é%¢ Hø”^"*¡p¥žÔ—ˆÊ`O˜æ‘Þ*ôÄÞ²p¸æ$rˆµ Ã5Œšfç¨ÝÈ#äyDÆ>`m_|º “žP'ÞáÏÚt|[ÛðõôHáôháôŽÂé…Ó×NKMgMAZB_®KDɯb^YD±ÅÓÔuœÉkƒíŸŒ†¯åiÈGèÛ˜–˜ÐwÂ4Ç„ƒ·‡Ëfè$„%T7´m‘#Ó@*ŽÐÛÁº-²¤ùù äašL™×D}$¼iV!#at>•FR÷ZÊÄoŸ 'u”ƒ0ÒÄIG¶kÆS”nßqËMìžPZ¡sÙ‰}Ö‡x$ÄèxSfÃnE¶{Ä^  ¥F¸¹®?iÌͲAcç ð|Ðç'¯bñÈUÀ‚·²Ç;ÝûÏA±{dì‘ÞXOo¬Ã¯lŸOŸõ‰ÝøÈG³µ%kÒɵn~inr«õ¡ãìÿî8>=U=0t|¢aVʺ¡—'vî,ë£;G¯Â硪^òu•E¯^_@¿ºž~õ–nÖ+ãØK%¾4 ©¬2ªÕºmÔƒL%`Ó$Uò*à:ÐëZjó*½ç‡â³ \ã½÷D&öÊŸÌ“Éÿåªíè@­d•YtÓªÎÕ$/øÞ/}{Ƕ}bzžÑx×¹¬ºë؉Ô\φø?ÝÖõÏg¶;¬^P›Mœ7ÿ¯ ñ‹íF³  ¬bM`Ò¬]^9×-g”  eïYßBOË¿˜_ÂTcñHˆ¡°Pµ¸´TÝtäºr\¯˜z§<‹ŠÈötœ‡MJ'ÙfÓˆG‘NF÷Ù ÿuí¸·X»Ý6ËÍÛ¡¶3¥,ØÞ®Äø ¤ü½Pá.лªÏ5ÝJ§&å ¥ýÉàI«Øïñ!Iõ­Š*N‘‡ëeSû6#6L;èÛ×ZòŒª¹)]›òŒªáÒꮀ ;ì2’h A~ŠL^B¸£À{@ߣÌлžåAâÀg€~†¬Ä ~ùའïUX;·‰Ý.à} ï‹l݃®‹ÄÙ7ÞŠ4Ï ¤¾=ô9$êýÀçƒ~~T‘³7›“ÞUz'ŒSuûaœr=f— ŽË$cͲlØœ9²÷žCwì}àøc÷ž8°oÿQZ 81ç§ רÍäæ}=ߣ5?êö:Þ5'µÜµÓ¥iÝÎù¿ËçüÌ€wæH©\+>î°ÀÛœ±‹5êի,æs§×OݺcÈp®rSƒ%*ßàd£RaoìÑîb¿G¿ãÌ9®Q-RÀ–([%ïOþ°àérl/Úžà5.6ýn^»újmA9D•°¢lçWÞä”l³îjfylàû±;ôSƒâ£Mwæj%iml Xbÿó¸ -.ãÍ7 ‰Ÿ¹ùìv.@c2³Bç:0ŸÇyÜÏz|`{¡­â Lö¶ŸÏŸ=4ÛÑíVE2ß_úea͘ÞXp«âÚñŠ¥—Q?>ïMñª«Iê—û¤¹Œôþ~¥·“dñ›GÈÐZY¹;s ¸8Q ׎£ûµ7•¬ZÍà¾úæn³#Aseée5΢t$Z¤çíå­G‘n׎— asÍÁ‚83Ó³`p»*ÆTyˆG²±Ÿó!DsÔ4£³Ú‡ó®­“ Z.Å`;wª ÑÁX–cŒÜ{ç‰GÀ ¸µOx)èK¥+¬'0¨ ¸0†Øn^úòÈõ“ ¿PChÀ+@_¡p$ÛpX` Tçk¢´¥èíf ÚŠ‡ÑÚMTqhÑÀw¥œ÷D¬‰Ã»|™ƒÖïBÖKPX“9%!V¿çnvîbqqzç‰s¡ùJLlðrÐríºã­8vUÛÄI–«×€¾&þq+±Ó€×‚¾6z /JhÄÖe¥¸ìŠØõA&ï߈}чx’w(k…9sŒÏ¡¬BT !œçrÏ}¾2·òâŠ5ÅOëu-Í©%srN›6Üi¾›ZÜÎEó0ìü¢·œ!î52ÊyÚ}CG;š3m5*eºÿ¹y×´Q“’Þ†Íy“9‘o<©7*üÒX‰JÁiç=¯ýu®ŒÇma]Éò:à›@¿IacpeÄîµÀ7ƒ~³‚h-¬/#þoþè_‹ß—»>௃þõä}±ÿ âIÞ—y#7Bµ¾Lj,AØ\ß³àòɈޫhqGåÝBïˆ\ÀY³RáΈÅH´›¯H,~^¼ôÍ‘œLÇé³'Ê¡¯w!¼x?èû¶5õ+„ÏÞ únY‰üòà PXn—ðàƒ ŒÜàû[7JTðCÀèRüî—°èeí—“w¿„†ñ(*}ÿxÓÃtàÝß#¼ìz`J³Ä>ëÃh³£Š³¡§™fm4Üî}p…lHa·Z½ÉUÊükšëi¶^+¶Ý5ä-y-â=– ·^ o}ƒŒü&r.ÞÙ ¼ô­ =Î4©#ÛÕÀ½ ÷F6¬ç7˜MÚFP·êŠÞ¼qEÄ“zɬ˜.ÝÌŽãg«õ†‹ñѤ¶Ýwâó&]‰"2yŠÜf›kڜì­×ëü"è/* Oèí?~ ô×âOè¥O¿úë‘[É…3$júÀ‚þa$« ¡þÀ±;½ô_ÀŸ€þI2Zú‘@ž!þ#µtAËmYÌ”ÑQÝeæAg.P¦#¹‰b’åéÀ-‚&L@C™À­‚&Œ¨¡‡0•ïð>„õ _Ž^Ew]Ã.j÷Ö*†ã°ñ«¡Õ CœsHcZM/—Mj„¬ƒñ }¥Æ¸T®Ë€³‚&\Hæ%À— špiw"™FЄj:‘̳?/hÂ$Œÿð‚&Œhü;šHÛ¶cVéRºšÅä‘‹üw¶HZõ+Ÿ4aêìOŸ4a:üðs‚&Œ¨Ã‹¼µH܃S“ÕÒŸ¿-hBž'Bcþ±ÀlVÐY©át¢îÇ &þKЄŠÜÏP½‚ÎJÍ)‡7Ýï€mŸ ³}‘M÷Ö–sÉÑNµfN±˜Lö¾ÅdrI¯Ñ\²ðNür¨ðjÉ®îtv$+÷¿µf€ í‘ñGÙgOš0¥fïtV*i¿­Ž{UÞë1Dú5­>ÂSñk½\ݬµu4f}‡•ç^à[M¨¨:W— &{¥Óüãa|y"ÅùGbŸõ!I;|5í«}¨&Éo¥¦i{kZHY|‡^6ó3W.@¿¶xè‹âwØWÅqèM‘Usi3$q°ª¬MÌÉÄ%$×ÅÀaÐÃKbLD¿sxôá%”¤cÀ} ÷ÉJ¼à—ozÇwß‘ŒñŽŸZj —ê‰5èN࣠Uædd'Öè· àIÐ'“ÑÒcÀ èJd-õ7o`Û‘Uà è™äûè§ Í6QM¨p;å„\<ëS‚á³0ºA &݆S`Á7xÙ½©¾ÃYý·6,á# õ°Zår¼zOM’Þ|ôCJ<5ýâQ`´TŽ@8@ì ÐR9íÇß¶24¶>dX]WV+ÇgôJ£SElDãØÔ“êØg}m€°;ª8Õ­ò!žˆµòfæ ï_$ùµÀ?kvøÈ¨u0.² ºkz’†A§òƒ!Ø8Õ¢ó_Í2ÿJ³µ™ÂV¼ îÌëÍ™“¾gYLÐïS¦•ó„VNÖ¦ÃOu“Dþè?HF1ïþ!è?LI1ücЬZ1Ó'Ç¥ó9à—A9Åü ð+ ¿Y1+ óŒºù*ð› ¿©L7k…nôò´U’RÎßúGÉ(ço€ÿ ú_#+ç{Ätú¬éA›nS?6iÖLw._Ôc‹IIwè„TúkžU³\íñ†ãjºFG¿V :Í“þr_¦³®µæšìGp(lÎ(N üïÄ)ŠQûĘy³ 3ÑúÄNµRœ^¶Ì»€ï4a ƒlÑg> h 8ƒþ8óAAF4àW‹ä«Ñd‘"hsªl$ËÚ8LÐÛiÀ‡µ9òúèZŠÌ\sÆÐ,¾[ŸýÒ±šÁW’ø5+Íc¿Ý¡³kÖ3hY Í|H -î•›©êd™›¼íîÅ"kSåÉ1^†¼„ÓËN :;•ˆÍdïN :;=T=$$þ&ðqA&=4»D(¸‰jFˆoôÆB F'¬‘ÐJœÓ¶ÅPŸ°˜×æ ±¸è³jè]¥ìÍÑwÍû s³ÓfiÚ·÷§ä²–ªaècMPC¤ @âçm–z‘µ+éõ}§1ô¼ôÕ{}ák‚$dûmà{A¿7~¯OìÞ |h©aH¸LìÞ|?h©>nÞìóÁ°‰êÿðc ?¦ÌÝ®B[ë_Iš?~ôg’ÑÎÇŸýÙÈÚùV3Ý‘ÏhPgÊ7SçMµp?“/ˆ¤¤ÎîE¯×m«.®Š™ÐK'›÷š‰7iîDŸÑÍŠ>Q1ò‚²Nš’èfaÝv›·¢t­9îÕX¼0É"X(tú]Êûo°îžýKLˆ{I%b·4ûˆ !avŸ˜y 3r³1Ì‚“P ü¬ •漩Ÿ'Iø‚ÎHO],øå?'h¹D¼Ð-1ó^àŸ š0bK\)Û{fþøW‚&Tä"7¸sucl@Ü ï¡Çß$Õ×?4a úðM˜x(Jüÿ øÏ‚&L:õÝo¯0ÃesÒ]¯8–æÚ<áØò¦à¹çne„‰Qsö!‹°bŽ“.‚wÂ{aÜœ¤“(½SFj}úÌY~åxnÛÈxþ,}øDí̶‘³g›kB®Þxt4@þ®çK’ð7ï}gØBÐ Η\5^}Üa‚úš2TÐ1GFâhIøˆOð#2‚ó{=9ø€ô§}]ÿxN¨v[À7ÊŠ;‡ªæ)£Ü~¥cžöÕ²w„Ÿ6i§ ªi«T3¦æc}Šª™0eÛo›K§9³h âUy/“étF.7½“oôd€à¡£ì< è$öË«À­‚V°_®fÂkˆïl#¼BЩÃ#»Œ6@?EäàJyð€ 3–ô‰$-w šPÁ‰~1<(hÂ$,vx» 3ridþoæi&‰{åÏyÓ&­”i=‹Ïc`V³ó4Dï”9|•  y§ó©EQ~5¹Œoú?Àß4aš~5ð·M˜’ozð·M¨Ú79jU·ç"ø¦O?/hÂ%î›> ü¸  ù¦÷¿ hÂ$,öÀ¿4aD‹-°Àé óN|µ+áXw§-Lj²,N’~Q ß6ùÅÉm“1,‹“L€O4a ½€íàE‚Î&°Ë†Øõ7 š0¢íXyŠæ½´Œºå8üìך7µÝiFeþ‚º…Eñª^kð?¢ }úoq]Êü²_(hBEß%mkÞŽ9UÕ%—½I¾Ÿ¾IÐÙÎ %v/¾YÐÙèg…^®å˜1»Å⊷BÃÕ\©0?"¡Ã·?!èl´sÚꆫMF_üŒ  “Ð×'Ÿ4aT}QT¥bÍzAiɪÍPªmz–šîÌ~øO‚&\rÁL/Æ¥tU Ñ„K;˜ÉþgÝ+Õ“vüåÇ/?Mн*ûÁ.ÆüÏ`{‘ {¥úÁö`†AA]I•r¶D®VkÂÉ[±•0šMÀ½‚î•?j.½‰üÞÛ€w š0\!è&ò{ïö ~·ŒàJ&òÕˆ¡~"_\¹Oä+TJlù±ÖLàD~Œ\»Oä+2Pÿ·k›a{>ôR²_¢qH4Y¢ÐKÉ[aYªYJþ°¦i·Íyw:]n`úN н#È)±Wwu‘ÌH©¾þ¬%Ë6qø_ø@n#ûÖîYÞ¥5Œ·¦ù_ZZÙògã_†1çÉ¥$FS—¡Ò? úÃÊ\ß¼ b&ç˜5ñxè¡ ÷1àAKÝyîÑ ±ûð¯@Ëå²ø¿]Íç{íБ Iñ%à7@C™¦z™^dÔòàwA7µ|ø=Ðß‹¬–GDpIç@‰Fú±Èªê ?ö$ž œ=¡°+Ôî´e8j½Wö¤ê~‰}Ö‡ÑÜïê¨â\Õ#ŽôOÄZ9ÁܯÏë´û‹Zntxd˜ †÷Yµr£ÄGÖÔ˜ņAÑýo6…†Ö<ÑK Y°«¡b O¨ó wX ›bkR;AWŒ8|aU;aMº³zà6°nÂ><ú”ˆ$`ê”ØÝœ=—‚ÿ&þ§g@ŸQ¦«ìŽë%äyðù Ÿ¯PV¥ÀöYÀ€~Adu¬Íí`áúÈàà봄 /ýreйÊëXË–É/a.ŽÜxýކwœâÌðŽë‹æðŽÝ+‰ú‹Àƒ–š Ð]Àöçý‘ä{bÿQâQTú󯛩N@_Bnv{Oª=,±Ïú0Zkž«83m”3{žñD¬–}Û¶m£ŽR£Bûd+Ö”f›ÎIͦäT‡/º–,[l¶+SgëèÕ:ßÀʧ¿H…¡K’‡R ÷–:,¶=·¬»ÚMƒšØTŸÃFê±ãÇ šn޹uË)hŒ¨S­dŽ•ø'eFðOøÔ4û¿âDi*ºP×  „GAÏj帼=TÓzn#3™4]kÙtr‰ãÐl ž£pKŸp¬JÃåÛ˜n£lðÔÞ¤]è‚ <ám o‹\&»CVbWõÜœYÐfØÃÊàhcÚ³Y ˜è-Coƒs°Ž(sŸ-ÑÈŠ`OØ:ú­ áíq¼=Tc—r·Åßæ­Ê…pBúÎýˆ(à€£Ïpo„Å/›ÎºÂÍð<™>¼q@8Bo:‚FGÁÛC5½4pMƒ–kß8!.èà+²Í¾J#·o„¯Õ(a´ã…ýßn2'5¦ó'¦mä–/ÜND¸ ô¦ÈÂذ2嘙ø‚²360Â:Êy›ëË|Ä$ô¹ðÄ­ôzðöP•ÞBVÊWÿt±ˆþ®á{5Ýżƒ^[Ø#†.Å œðзD.ÅýZx¥š1‹„Îñ½ÈZ¡mž/èNyRø¬+yIË6¼)ާê@M™®3¶#¼­ÜˆÞZê~󈶲 ¼=Tc+×KÌT©X%±lR— “vCÞÝím/Ö0‰„Ž&휄)‡I7=ašaÒx{¸ä¤›!¡º0éi äðæäsŒþ«×á­àí¡ÞÜ-0ëØtΕeãªÐ’QaÎÅ0§¦irÞ ö¾Å–ÃkÕr<%ƒ„(¹f>$’0ÃWòˆð>Ð÷-c>*5æ1)cæÊ°b߈IÁHòV|¼=TcÅw-í SæFÜòÿðàÈ#ª,Ï@AÕMòî *TndhG=Ê\wBfBß 'ñæz¼=TÓ\ËMR×Êþa˜Î:¼ÕûŒ¢ç8èãÑG’‹NZk×F•ƒ¼„êF’R£²»zš¾.ÕQÙÝàíá’•ùll©Ê|Ù2©ŽÊîoÕèð¹7´ô÷BbBßdàÒˆ`}!õr™žöM3¦:=ýx{¨Æ*Ž6=Íû€¨0t D©ýpä^Æûx¨ÑgO‚`„—¾,²Ý9ϰ«Žü|àù²™É|Ùˆv?Þª±ûÃ=ªõQŒDû#…]»–62\Ðv ‹c®ö.c ]žGPBßh-by†;­ëîXÅtÜ/Ì X®ÎKxîG!*á0èáÌá1ðö0þÎÙñ\ Ý Ëà§û„Wþ3!1á’ëœuD¨®s¾±Kç<176ÀëSEGísRþuÂÄ-´Þª±Ðε£.ÑImºja²ó{ìÐÅ+£H„¾˜$bñ®¡âušRŠÞc’Зsµ ê±'ÌZ9çóµÊ;æI”P]ÞÎ}Û]Úù‘m ÿ ]¦i”ƒÐ7å”xÝšàí¡šºå¬dÕçÄ^u³Æ¢šíŒÜ΂qJ¯š5ÉyçÇ!äãJÙÓ‘¡K9¶ÕRY¯™Fed×®¡Å; ‘}—G¯ÚÐË9©©³ „ ìÝŸ‚¡UÁÛC5†v¢=GÜt­ÁÓš?§ˆWt,~Ä‘3^Ci£íÃò{}@ÎøCûŽQÖ¸mŽÙ&ë̱šefÕ‚À„׃¾>󨃷‡jÌãz2çö‹¡—8âÞ4fyHHáŽdÇÿ~Bi%îí6µ.$Í‘àù–þ šïÎìðÆ`Cv½ ÷F.‡Ô4»ö„iN³»àíá’›fo@(Â%#>á@¤ ÑYðöPFIåˆû:'Ù$ñS(¡/Õ`i ôç á2™…? 1 Óœ…?Þª1Ó}Áƒ{¿-.X%Š2Ûþ,HO¨nOÝÞsÏLP<Í:Ì(Ãá³P]ïÞ2ž Þª±Œ=]'&ÛónÚ§ðñHMèK¸^>ëID¨Îg ø,ª@në¹”pôP Æù<ðöPqn?'·ÞŸ ½=ÝÛ#K{O€k²1c7\fΉ9*àpa$¯Ü[½Å!ôå$n/oÕßÀbV* ‡U—ËÏcóNØÞ^žÓLÛù9ûÛ›÷„7A^BuiGûZãºbuf±¡¸|Ž1¢=KsÜFy®º$/†ô„êúà­í¿ù£PZl)O2'‡*%ÜÚOAVÂÐ#éŒHì Ó‘þ x{¸äF¤? ¡ÕHo\lDJ¶66rÝNïZ”áâÈõ7Ž„7¹ŸƒÈ„i®î½¼=\æãÔ—¢„Knœú2D¸LÆ©/‡˜„‘Ʃٮ§Ešz¥ã)89°ûy¥–úbŸõ! 1:ÞÒSÕkf=¤H¯è‹,„ëA¯W¦”Õã'¹YËît²Ö+   7$¯“Wà=ñÈUÀ‚·²Ç;Ýûï•(vŒ9Òëéuø•â³óé³>ñ£ùÈ^¶¶dMú!¹ÖÍ/Íî!·Z:ÎþïŽãÓSÕCÇ'f¥¬zybçβ>ºsôú!98Äl{iÑ«ÓüF›¹åŸ›uʸÑ%Eü朎×cˆå© + 8ÁŒêwp-èµ-yõÝóCñÙŠNñÞ{¢O^ù“ù ×÷åªMè@­dÑÂ_«&W“d¼Ü{¿ôíÛ>ô‰éyöâÝš³ê®c'?Pr½¢óº­êŸÏlWh•ðÊljä¼ù?xmˆl7—Æ¿Šÿ¤Y1º¼r®çÅÕØ¸<@ÉÞ³®…ž’_“GÊxV Ä#!†:û§žj5ph©ªéÈuå¸^1õNwõm¯“¤UBì7ø"•\»¯™p@ä«0O#íXÃ-Ñ•£GÄjzØCî{¡+ÂQУ õæšn¥SSê…®}‡%­7b¿Ó‡x$õ¶"ª8}°bå[¶ÿÛW³ ý wà?þ´’K(CÄj8^¤Ã­Ê²5 F… GË‘©5‡M]RMòⶺ#ŽýBÕªUæš·u´úXÓ°ÂWƒ~uÔºÉÞ4nNzwÆ0NÕí‡Yñ׳ËÇÕ§Œ1Û¨• û‘3GöÞs莽ìÞöí?J#÷sNqÊpÚLn`Þ×ù=Zó£n¯ã]õ]Q;]šÖíœÿ»|~ÁÏ xG°–ʵâãNÙ¨˜3v±f¸Cµz•õºîôãú©[w°¾÷º!×85X¢ò N6*ööÀí.ö{ô;ΜãÕ"õ™¹²Uòþ4à Þ±ÎcxÑö¯q±éwóÚÕWk Ê!ª„eûø8¿“ï&§d›uW3ËcGØÝ¡Ÿ hº3W+iLkcÅâûŸÇmhqo¾iHüÌÍg·ktµ“™r8×ñø<Îã~ÖãÛ m_`²·ý|þìÙ ‘f·›É|øÐokÆôÆ‚›׎W,½Œúñy%ê“T]HR¿Ñ'ýe¤÷÷s½$›ˆß«¬åŒâT1ôUF!&á Ÿˆ2ªm_½8qdÿ@X§A²œ> ô³”9À«~‰ < últ§)¥’gŸú9ÊT²Rì9“ÑÉ‹€? úg“ÑÉ“ÀŸýs)éä%À—‚~©2ô HjäUÀ_ýKÉhäeÀ×€~Md¬ÊµFèkÊIˆ×_úuÊÔ²j¿áêf%ìº óÀw€~‡2Åt¹<™¾øÛ ;²jÞÏ· Ô-Ç1'*¬;ª·6ßN[³Í#Gµša”EŽë«êt„¿ÀܨþÓ&éÒø-ͬ_Ý¡IÝšY4Šô‹H ž´*k–zÎf60gOÌqs¾(¡µw ÌL :3¥°9™®Q `Û¶Ó‚ÎL'¨{³…Þ“´h…MT¶K¨¾s¨óËÕ÷LŽá3ÞºaSJ5Ù/ŽX` h·„ÌýÀ!ÐC -8àRΧÁ‚ ‡A'o:Ä~ćx’ã"‹‡©Yð&0ߤĂٛ‡XYÝ”«xèódäâòôÍ“çüƒ¶[´®å•n=p+è­ÒêëÅ·Ããæ$­Èz«íԒΜ勲ã¹m#ãù³ôáµ3ÛFΞÙ6zö,þ®Twͪáh£ž!Œž (R×¥W*ÏeÀ C'{Ð –^WŽWg¢ûl¥7ÀVd]IÞë|r_'#wÓZ²‹Î§ø8ebtìÖçZŠÏUQÀú¬2Ù:s XŸU«˜Ì"nÆßRªŽruiŽi©‹·Å„¹®‚‹µåø¿½JsuŒLÒf£V2)O«Qga”V1&]¾Ë=ôÀ/ꃠŒ@ìú€~(ùÀ…Ø?ìC<É.‹vÆ1ÆÀe"làBòô—^àBR­>•*ÏeÀ帼×ùäN)pQ&F ‹2ÙB.j_à¢^Nÿ[KÜêê¸Ä˵Kà¢®åø¿½:8p±éæ¹ÈÅ/ëC ¥Bˆp‘ ±ë> :zÈ:r!öã>Ä“|äâ;!4ÎÈ¥6r!yúK/r!©ÖŸJ‘ •ç2àrŠ\HÞë|r§¹(#†ÈE™l¡"µŠ‰/rQ/§ÿ-‰È%nuuŽ\âåÚ%rQ×rüßvœr©X³‘¦\ü¢&8åBìú€)N¹û‡}˜Ú”Ë%¢qŒ1p)‡ \Hž~àÒ \HªõÀ§RàBå¹ ¸œ’÷:ŸÜ).ÊĈ!pQ&[¨ÀE­bâ \ÔËéK"p‰[]—x¹v \Ôµÿ·§\DàaÊÅ/k‚S.Ä®˜â” ±÷ajS.¾ cŒ\zk#aC¨¸´ÔV‹ŽÝ4?táw§·±°)1Órõ 3õIÓv\ñÂû<´¥S 6ï}Gü–~)¬›ð Ÿ‘¼¥û;}ˆ'yKß ëÞ³¥†µôͰîͱXúXKwŒ’U+G0õÍ0ïͰ¹ ²6ÎÔ7ü7þú”ØXhS'öG|ˆ'ySßóÞ¯©Ÿ íÔ·À¼·ÄbêCóM½Ö¨N°(ÅšÔŒž&ì÷å¡{ šp ôXüƽMx3蛓7nb‹ñ$oÜ[aÐ[c6îÐ~|+ zk,Æ=¼¸qûÝwhëÞ ‹Þ 3Û kfá¬{+,z+LªO‰Y…¶nb«ñ$oÝ—Á¢/‹×ºÝЮû2Xôe±X÷È|ëæ! mëp¬Ú ˜ˆä¼/ƒI_;Û kgáÌû2˜ôe°©>%vÚ¼‰ý^âIÞ¼/‡I_³y‡vޗä/żGÏż#¹ïËaÓ—ÃÐ6ÈZ8û¾6}9ŒªO‰a…¶ob›ñ$oßlZ‹×¾«¡Ý·›Ö’±oqM–ßcÓX“ ]«[fÍ mßlZKÖ¾5Ø´–®}k°iS³oß¡G±Úwhÿ}lúŠXì{G€}û]vD¿F},mƒ¬¥…3ð+`ÔWÀªú”XVh'öû|ˆ'y€QÄjà}t°ž„dýÀu ×)³ð[ç[¸ãêµ²n—µ²1câ¾p…þ|ï},~s€‰Þú®äÍØßíC<É›û6˜ø¶¸Í=´Cßß‹¹ï='sWèÞ·á½m0¼óe /œ½oƒoƒ‘õ)1´ÐöNìûOòö~%lüÊXí={*¬µ_ 'Œž¨5_žëæ[»)GÂðIDú¿ÍÖpܰN¢¯ÞZ*’gáWª ÷Ž9„¶pb¿ß‡x’·ð«`ÕWÅkáÕ°~¬úªX,ü¡s°p:U©bTaæm^ýÎÂãó ?l3¸ ¦O8:c®‚é⤞ŽA"ö¦ñ$ß ®†é_o3°Ã6ƒ«aúWÇÒ ç7[Ÿm»­²d““&k57´e_ k&Ü zwü–}5¬™pè=É[6±¿É‡x’·lßÅÜqZ¶Ö²·Ãš·ÇbÙ7žÃ :9ïAºk™¢y×t\³Úȷð €>¿‘o‡a}0y#'ö·ûOòFîÝ©š‹×È'Ãy†‹ÅÈæùÁ¨æœƒ Šßœs0aÂaÐÃÉ›3±ñ!žäÍ9ÎÇkÎõ°æœ‡ ç“1çœcNÕŒr^«Î蕆Úœó0á|²æœ‡ çÓ5çaÍa ï>úÁø ÆN˜âY€Äþa¦vàŒ}$^ç ã%$ëª7üBÓðýîIiT~¢X1i”ÍðñÊÞ#ÜZ*(œiû˜¼+éëQ‘óÚ´‰ý˜ñ$oÚ£0çÑxM{²bÖ%$ëª7í74M»bM™%†Ìc›,Z)鮡ÍNÌ´múŒ$vnNÕšY¦ACRmŸ^ÓôŠÃïÜÔÑlæZc]‚m–¼Få»éZתŠk²¡€a‡mP£xð ßƒE#"|èw%ß ˆý»}ˆ'ùµhG¬ j¥Ó˜p WB¶~àД5©7›TÎkS̺aìùÖÎ[/µ+ô#ìSÝeM¥BŬ•* ºB—.õnÕ˜m¸ »Æ¾š¿4Ù¨•ˆØvC•±øK=Í»£ãn7¾™{~gtŸÀ¤Û ±­ñ$ßnv¢­ìŒµÝ¬‚AI×<ôùÒ §wžP§Õ4 ÈÄ•ÐØÎì¿Dšµ%ö»¥F…uoeq¯¸DrÀN”€ðç@Ë]=ßI9+î£e8 ‘^| h©vÔ‘k—›Å‰áK€¯½å\ª9wc\U‹i°,n\ë×H®_¾ô{â÷kÄ®ø^ÐïMÞ¯û÷ùOÒb\'̼‰x’w¯×ƒ9at÷:¿åèry÷´^+ó©mæªN¶ÅÏv†JVƒ½8äÛÔµ[¢HýÀ£ *4ð€ô˜ëaÔ„Ç@KÞ²ˆý]>Ä“´7À–à³A?;yEìŸãC<É;¨]¢9ƹÉÏ’«}Ý{Ý úÉ””ò\àó@?O™RV˜“òMå§/ýòd´ò|àσþùÈZYÁã] żøjЯV¦˜•,’7¤Ôò+À7€~C2jùEàA¿1²ZV奯$Ä›€oýÖ´Ç$Ì»ýÁ$ÆÄð7ý¡äÇÄþÃ>Ä÷¸ƒØõ?ú#É;ˆýG}ˆ'ùqÇnaÑc\,ÛV}xXB¶~à†ž¨ ’óçFÞì[Ú÷ 8xèê-šðŒ–š¥•tÇp†¼khIŸE.âÓ<->NXì=¾·Âñ…ÃTè: ˆù0Æ[_ñRÂO`—quTUï-7±­ÐÕ‘0¿ ü$èO&áêˆáûŸý©ä]±ÿâ‰ÛÕ»>à‚þÃä]±ÿ#âIZŒ=ž›˜ÚTôM`N¨~­¥Ðe­Å;¯áŠ£ Â.©ÄýÀë@_§ÐŽ–T|‰xþ啤 ˆØßàCÄwÇOìú€/ýâä=±ÿ)âIÞSÝ",šcŒÉc|SS)lÖ% Õ<¿Guò˜Õe£k¦îh›’Š|3ùuÊ2.{QCÐEËñ´KcRoT\Ítd4s!ð¹ Ÿ«ÌkõÝsüÞA'hÂìX*áÏ‚þY…m6`ÂŒØ=øs årçüßfC[Oü_|)è—Æï²ˆ6‡ö¼ ôË’wYÄþå>Ä“´· cnbj1Þ^0'L6/Œçl[vUw]d‡ñÓ½¬îV¦wØA ¥x´'±¼°½0jÂc %oYÄþ.âIZŒÛ`K¦fàûÀ|Ÿ Ö°ð¿XcÆ6€Þ%Üz£tp°bžXÔÆ´mОµ4Cœ›ïÌØP!¼Æèmjmîõ[tJSÓkåÅf±³Ú‚ö›vèÁUçEÀ¯‚þªº°c`Îv(ß~ôwâ;ˆÝ×€úï#7Ä\ÑJù.ð  P)3rJùWà€þd”òÀÿýŸ)Ä‚Äÿ¿€ÿ ú¿ã‰]ð@ÿOò}±ÿ±ñ$ßGíæÌ1¾>ê<½\.b[„€ýÀ§~š²^êá®CØfï1? 1¤oK`Ž÷nÞ`•wA½øè'”¹¨5¨þÐ~Šä9|ô“ñû)bgŸ ZnôîÿöX^lòô¶[;m3ª%šØÄzmZ»ŸVYŽX_5YÜÁ·Í…N¯¢Â<øYПU§ãÅ"Á®:þ"ðë ¿žŒŽ?üèoDÖñ ZI¯iÓú Íz3mÑÙ?¸©‰æÇ§õÚ”!´ØlßTia;0ú›3 š0îŒØöíÓM˜tFì/i¡÷$ß cŒ9&z½nÔÂî¿!™úz¢æ˜Ìï»öt黿õNuÛš1©ãš1u™Í·T€À;Aß©.|îrìR Ë"QNï}_ü.‹ØÞúþÈvÿ¢æ<•/ÔhÎG¹Ö”Ðê¹PÉÇH¡ÆºìT¿ ZáHWf‚Dù0Á‘.±ûPÝH7ü Šøø=Ðß‹¿O"v}Àïƒþ~ò}±ÿâI¾O:(Ì™cŒk‚¶Q¯è¥°*ªx~OÔ5Á ç 5Ô¥S2NѵSÜñW“áÓà‚-á^Ðêö[LèpHCÀàÇïpˆÝmÀ;@KíòŠ>µF"<x ô1u* õ g΢%mÚšåëÐl¨o[•ù-‚·gÏ ™iÖn؀ʱx\Єq÷Tža4aÒ=±¿§…Þ“|pH4XŽj{ž@õ”-¯CX N?p}OÔm‹ó=Ñù–H™ò²íÃÚ,IuP­Åo³‡`³„W€¾"y›%ö>Ä£¨ôýãMµtà}Ló0PM¶|è*8 ÷dk¹=ª8w …xˆ'Z­dþ€y‘ÛŒIŠîu­Êº„AÅIs V(ei‚_íTn”\/šiNè{QФmU5Cg1"2§UŽK÷Dƒ½Åà ê;œ{A×fõ¹Vð#~Á7׎^¥OMÙt’+û‘;P­³@‰EYû š¸çûdjZNÏó_›²têÍ&qÞ»¯$-7‘G(Æï-áÓÝsuÃñï]®Pà_çJâ/ؕ̚Cã fÊ Ig˜5šihKë·NPúƒ—Àç %Ûœ «Œ ëx«¬JÄDÛb&]¸âí hׯO'" Pú^ûg Y=ƒL@Щ#::ŸÝÅŠ¨WJA®/hʃ„ù3à_š0î)b÷‡ÀÏ š0¢»9¯uGØ–N‚|øuA&íÿî„x¨Æ ¯bçžð{®-5Fè¼ß¿{"x Å’4ëO-• Îb‰ÝjàE /Ь™Ÿje|‘·YôЇù©Éܯwº`CË9l¬*¼çÚ(Ö`ˆV¸#•ÚK¢œÖM˜€íðÕBKЄm§ä…‘ó-G¥kÝ6f¸µÆÙ’Ý{¦üsA*R¹Ì¡å$É—€_tF*Q"¼ÆÿøÄÁ_‰¬ñð§.ÿ¯¿&hBUÞ;ð\þ®úø;à·M˜„>¾üâq©ìíö’¬_Ìü=ð‚&T5hëzfiW½ü+ð¿M˜„^þøß‚ÎHíÕm«ƒßñõg—£÷äé‹eCçÛø¨Û»fŽFùüÖá=yL忪WZ—>ñ_q¬Öa¾+fš?#–ƒØç"e™_N3/‚ÆÜ}¾¨4kz¥2W™ ºûÙ:+™„>É®›9eøqA&`NY„ÙOš0¢9lQÍïmùª Ý]¸pŒoåÍôäô)¦œ !ìàž úI½C‚&LzŽá¨0œ&ª™cxœæ,o¾Ž…5lÛ(¹|j…›­ã­Ù›ukheçÝŽ¡Œ„ƒ~\ —›w#ažÎ€ž‰¿Í»“ÀYг‘u¿·9ïVÐf ®º²Èèk˜Î4S£;k0'Ü®`r¸hž»Ãš0‰ øÐ)¤™Ükò0µ#†îsÂøÒLz+•Š„`ë€@oŒ ´=ªÂHŒ>Ä“¼ÂŽCIÇ#+ÌÿmqÜœ4*Žq†橳gÆÍ’S!ŸN»ÕŠøpúìíìÙ™×Ü{âÀñ#{÷? xpèÐsÂôÆÚUE‚ù¬°7À WðÂIÔ÷jŸØ«eÄnÚavžH³>ìÌø´S×KÆ5g†‹#FU¾z#ËÙ±zWpcè îÈ6Ì“?¨†ï;pü¶8k¸3WªáØõšYÄôú¨-)Ë[Ë-ïj£êÔ÷,Eƒ›îbp+…Øÿ?µ3ÿ[--£êÈu:Œ§$cu¿ºõHZ=VèêÜ×ׂ–ºÈwÞž¶ÜH^¦"Ö/}A¢±xè英ŠlLÝqùù”fM¬ÍÐT‚wߤqªnØ&Í.Ð Æ~ŒMÙ(¶¦³±.ÿÐ*•6-Þæq]Oè‰`*Ö&` ´ÔÊG×Êí/ÙÌ-à å kkiaCuboûOò¡ú‰ž.«PÙ·—Q¨Nâ®ö‰½TCu%r¦ª+«áP!”Z½ÆªÇky‘Cõ˜ N}¨þT±3ÿ[¡#Æx+¡Kļü««øäCu⺨4T ª“ë€É‡êÄu#P]¨~¬™Ò-rÌMïzZâw\Û¨M¹ÓÞ‚¯î8VɉYÞZøÍôšÐ:f° Z>[*¨Jtbj§@O% ûiâI>@¿§Gå„Ë*@'û€Ë(@'qWûÄ^ªº9S ЕÕp¨ÀI­^ãÐãµ¼Èz̧>@ªØ™ÿ­Ðqb¼•Ð%N^þŒÕU|ò:q]T ï “ë€ÉèÄu#P]€~@sÕ* °O"ù²¹³‰ƒJ4c®». à.O̤›fÌ2å_z“æá…¥"l>ú¡¤Ârbú0ðÐ$–ûG}ˆ'ù°üÞŠ.«°œî.£°œÄ]í{©†åJäL%,WVáÂ%µz#,×ò"‡å1œú°ü©bgþ·BG‡ñVB—èxù3VWñɇåÄu PiX¾3tXN"¬&–×@uaù¸wDÌœwíª0k´_ìMU }k81ÀÛs\2Ú&Ϋº[š6ÊCuݤãóøf#ôaOT²MÀ'@K%št亚êµQÑ;…ê”þíEx6h;ùPØ;>Ä“´÷õˆàÜC5»裃âP!:Ç´@ûðì¶#wš{Eš§ãÓžö ³Äïkã[ûÄžyÿಠ‰ûŽƒ"[Y\Í‹ÞtÇ1{ŠpÊžoÚ<žÈ ½3å~T !ùé‘;ä'’NkSÛ™ò ˜.©)$Ð:à†žÔw¦}ˆ'y…=%=Yaþo¶“À}Àe4l'qWûÄ^ªÃv%r¦2lWVá†Sjõǰ=^ˋē|˜þpÍ —U˜N÷—Q˜Nâ®ö‰½TÃt%r¦¦+«áPá“Z½Æ¦Çky‘Ãô˜ N}˜þT±3ÿ[¡£Åx+¡K´¼ü««øäÃt⺨4LŸ¦“ë€É‡éÄu#P]˜~ˆNs5KÓ–kU餳܄YÓí¹ü‚pÝ6ª¦ˆÑg ÛaoÖ¬Ögá#s*ŦžfʧåRÏ$"sbú(ð™ Ÿ™|dNìuâI>2ïÑ8ᲊÌIà>à2ŠÌIÜÕ>±—jd®DÎT"se5*bR«×8"óx-/rd³Á©ÌŸ*væ+t€o%t —?cuŸ|dN\וFæ¥Ð‘9‰°˜|dN\7ÕEæwÐÝ:Þ¹1ïӴfÕÐ5Óõ"óÖœUsÊÖÍš!^œ3t;/³'…ʱ øèÇ’ŠÍ‰é3 '’͉}ɇx’Íéñ8ᲊÍIà>à2ŠÍIÜÕ>±—jl®DÎTbse5*fR«×8bóx-/rl³Á©ÍŸ*væ+tˆo%t ‘—?cuŸ|lN\×•Ææåб9‰°˜|lN\7ÕÅæ—Ò-Èæ)ï´&qI°>aÍE‰ÚÁÜwÏè!eͤێ’{ZñÙ0èáämb?âC9ÝP`æJA*Óý¨.£û̵À¢ 3ÅDtŸ¹ 8$茔o«»yƒl×{sd·;¦\J\üEÅ>)h¤Ýò3áWØ‚jqB`6/èl>rm®iºªâL£±®½Fyo¸ªRâÿIw!ðЗH ŽGíeHŒ->ÄQuhóÿ )– µ^:¹¹l⺨n.;ôʱßäC<ÅH #¾x)èKà No$›‘@ânö‰½YFì2”ÈÙ±zãÎHPVÃ͹óJ±Z½Æ‘‘¯åEÎHˆÙàÔg$ À!ÐCéŰñ,`n¸ôÎåÌ]çû:± æ"Ë™Z0§¤†Cw²êôW0Ÿå) æb4¸x‚¹§‚ùß’ê>â«„EbªåÍX]Å_×z ^®î½+r%<­Óê‰D½ì}$Ñz9 ¼ôÝéÇqâYAÝ à} ï[AÝý>±ï—;¡ .²œ©uJj8tg«N¯quñYž’ .Fƒ‹'¨{*Ø™ÿ-©î#¾JX$¶ZÞŒÕUüý­'ÁàåààŽ\ k‘Jȳ%êc8zJy}lD'¦ÓÀÇAËÛfaW‰ýIâ‰(Fk%\hg$¬jçïL~%œ¸n¦¸î;Rxy­„“À—ÑJ8‰»Ù'öR] W"g*q¶²ÿ¨Õkqv¼–9ÎŽÙàÔÇÙO;ó¿%Õ}ÄW ]ÂÝåÏX]Å'¿N\·/ïQµ.U šñHVÂüÆÐ[1 ÜÁI’læAç•™e`Ò5±»x èkÒÑǵ>Ä“ Q€C=©¥#ûaâYõp¥#¸×ùÄ^ªéJäL-¢VRá#uz+¢ŽÏò”DÔ1\<õSÁÎüoIuñUÂ"íòf¬®â“OG ®×wõ¨JGª„Ý>Ä£(¢îsÊr!õ^à~Ðû“ ©÷€>Y!«%wm‘G@'—B\SÌ !öÇ}ˆgyDÖ'€÷õ,›œ÷~ŸØK5'D‰œ©EÖJj8tÄ£N¯qEÖñYž’È:Fƒ‹'²~*Ø™ÿ-©î#¾JX$À]ÞŒÕU|ò9!Äõ ºœ©J÷!E‘uoM.°. ÐF2õ#ÀIГéècʇxe@b1E2Nš‰9Äú¤ãIÌ «š“ÂÀ9&Ÿ˜C\7SLÌ!ö›|ˆgévHà‹—ö,›Äw³O쥚˜£DÎT;Êj8TªV¯q v⵼ȃ˜ Ný`ç©bgþ·¤ºø*¡Ë˜cù3VWñÉ'æ×-ÀË{RKÌ!öšñ¨ìTGCvH’íÀ|Ob‰9Äî `Љ9ÄþZ&›˜C\ À¡žÔsˆý°ñ,ˆz¸ŒsHÜë|b/ÕÄ%r¦Q+©áБŽ:½ÆQÇgyJ"ê .žˆú©`gþ·¤ºø*a‘Àvy3VWñÉ'æ×ë»zRKÌ!ö»}¨<1G.¤Þ L01‡Øí¦Ÿ˜CR&Ÿ˜C\SLÌ!öÇ}ˆgyDÖ'€÷õ,›Ä÷~ŸØK51G‰œ©EÖJj8tÄ£N¯qEÖñYž’È:Fƒ‹'²~*Ø™ÿ-©î#¾JX$À]ÞŒÕU|ò‰9ÄõàÃ=©%æûqªNÌ‘ ¬KÀsˆÝ#ÀÉž‰9Ùv»Ç™üj?8O–ËÅi³„°é0'!Їx"б¡™3;mØ¡ª£â¸ôuæ)±Ç™$Ù|:è§Çož¼Hx èK"kg¿&JB'—/}™B„w$ÉUÀí ·'£“Ë9йÈ:¹–ß ×ºpÎ(ãF/ï®úæ\Íå'@ŸP¦9©ýM$ÊCÀG@?’Œêî> úÑôšÓcÀè’J¥Èµ§ÇUÐÕd”RÖ@×âhOîÅ+ȪξôkOrÍéuÀ7€~C2š{-ð ß˜^szð×Aÿzª-Iòà;A¿3üð] ßY'#¬ÍÔ,W4¨Z£:aØÔ1µ.nu­ziZtR¡oa&qß ü[Л|4\Êo¢š[˜¥¯ž¬AÂ5 ×(³êBÛÝËûÍÉIª×J×å>ƒî)¯h÷ð |Ks’ŸÜzB런*å¶ýÀ›@ß”¼û1âIZ &ã¡kþ~ÓšMºtC¼Ys™á8ü2æI«Äo¦µjZÙgP†;k .Nž›,ûÚ´µLÏ…é‰kjm}V\ÕúÝÿ=¯[7O#fn{ƒúz+W±¦4ö³5‡î¤5Êyöƒ, /&âìsb–VÒ+CüýAÈ ¯£’ ¿úûÊÚëúæÕÚ\t ÙþU`&#茔1täºjܹ»Á:ˆÆÿÆYAF´ÂCyà1c›lT4«á–¬ªáÝîдCýËÕõš^™;M×{w‹ó]TÄ£j gàÈþ°ÞDÙ¼´Ô|q8ïÖÀ‹„—‚޾ elÏCbln½M™b.ì‰Jx ð&ÐRÔ5ÕútÛ+c £K6k9£8U,h·Y¬.×0Ù˜`txxW¾ÖÍ‘`7ý@znnFhŸc nŽØöStsÄ~ƒÕº¹'$üɲ x)huîýÜ ^$Ü ZnŸ[»}Jú9c ðJÐW*ÓÌ–nk I¯}0~‡Gì®ÞúöÈúº@Ë2ÊS†SÐFvÝ8ÞÍ‘8‡€€NÑÍÍ åsLÁÍÛ~`ŠnŽØoð¡Z7·’ÜÜ¡Ð~Ž„ÙÜ ZÊá„ós³x‘p è-éù9c+ð*ÐW-I?G€·ƒ–r8áü±»xô¡Èú:!æg§ ×°-§d”uÇ5KZݪ7*â’×Ý6uoÅ`ÞÜnî6«f¸.o” ©@‡¿ ú—Óó”§„ùpLÁSÛ~`Šž’Øoða žr$´§$a6ô”§ð"áð”$ÆVàÒö”$a˜ §$vWÕyÊ‘æH›W-´(ÆÉYM̵-XùnËF’—c”¬ZGˆå$Ò ¨X‡¯ýzeú_Å›fø(†¤ùuàÛA¿=™¶ùà;@¿#²®on¶MG¯ÚDÃ=÷n2|H²ÿ6ð ^8'¬‚c  ±í¦Øû >TÛ®8~ìHè6F²l&8#2‡ —ÀŒ‰±¨~Fä²y9óR$d½x´TW®$vWƒ>Yc×xs"šájz¥HS#»víÑîÔ75Ãq ŒŒäC/¸“œwÐNzð´° Ž‘<`G®«¹çcáUδö×Îý­'ªó «bžñ$-ÆÔ½‡jÖ‹¯mK€è°ÐCáœcV땹°†ó,Ix-hù €^|; ”]w¤R À{Aß¶¨ôÆ‚©+Ç«³Òô´|´Ê¾$ï}>¹ï“‘›?ÞFßîQN€‡V&FÇNlóx.@÷ãAÊÚÈ«LÐÎ\6òªÕ’·a<`G %¥ªê(ä¢Í5- ò¶š0×.[Õµ,ÿ·×Øð߬‹f£Rç1eÎ5š ˆà›~ôϤÖ} ´Š!A;eÓ{s]Ó4‡Ø§²½ÉÏ?úãˤ7ù„OîOÈÈ­¦7Q"FÇÞäêÀÞÄg R‹™Cw,ê¶XÇr.M(¥Zë(ï95ä´ÜÏÄÇu‘~FM›kû¶¨´l-‚ú#Ф¬ý¯Cö˜TÉôYàW@E™‚'­ˆÝ¿ ú«‘Õ“ ½1›ø øuÐ_O­O¯¶6¦;OØì&m½tžªFžj$ï½Æþõè¨v­æ};Úöí(}Ë5ÿòZßk-¦{;Ƙår9öû‰kè·ÅO³·Å£ìƒ¼6¤Ñ+×Ò§£yé¡é7f~^ЄË!˜È¼¢%7ÑáåVL¨££3yb<—¨ ÊÄ%jŠ6.Q¨ûÅâ’„Ý@J èXôœQZ–Åȵ{@¤Èo´ù PÓ »nY•Ž<,<=EËéŽÓ¨Ò~Ài«ÚZ¯5Ý9ïåŽ+·²±—WìlVЄŠÜåzì~Už„ZÜ$h‚¯l/ðbA¦|eŸ¼DЄ)_{½î|?;ϳ¶~â ¿÷jz­–·• ˜²—Ÿ#hÂå0eŸôÉý¤ŒÜJ&5btô·t ˜·™ðGMa†? 5¹Xø©!¦T "íÒÒ~`È#×î!‹ÆmZ©y!‹óDƒ¶lÛ–åzq‡>cØú”Ñ :èHŠŠ5K¡ ¥ÃœS‚ SÌû³¹ÿ›Nó(³\¶Ù¢ñJø _ê_öfݫñÊ?‚mVнr1\;™C®H„N½«M¨H=ÚÔ#Oö®nt¯T*thýô®n4añdïeÀËM˜R<ùôön¬ÕUáû~ôÁÇ.öjÀgšp9D…½wúä¾SFn%Q¡1:§éÏ [Ú— ùÔH6äS¨¦ÅB¾à¶’R]u”rñ›–·¹vÜ5.ÿ·kµ€¸[2¬jJt?$’?r^}XÕû(𤠠“è¶VÝ[‰¬¥UͪIåföVŽ {årŒ•ÆK¢œžtïÙdÔâŸ-hˆjÙ¬Õ £ìÐlèS7Jæ¤i”ecàç_#hBuª ú.‰ò:àÝ+u nxU½ø&AFTÕz šS5Ë6Êá“õI–7ß%hˆ2…N?+TÛD5ÉáëšÉáKφ„ë@¯Sf·ÑÒ0H¦§5ÐZüLìÖ¯}Ed-}«€EÇtÍC›0õæöô®É™9³hé4SM×öYÓFm»£•µ½Ò0òÔ(ô†kUuפ#Bç´’eÛFÉe¿CíÉF­D“2mÎ4*eš½;c¶kSó)j'̪YÑmš®á3@5½bMY GH 4ÃCüëõŠ ~Æ7 0³BЄq áç H¨µÀK‘Zˆ m}/t&ú™e´{°+zÄÙ ¼Vйm"1ÄŠ$Ô(ðA&¡ªðVAFTÕEóñ‘ GH¤½À{Q·W#ê”I5|\ЄIèë>àIAg¤†í±}Q»Ÿ6ZKh¨´M¨ªã…;¸÷Îdô3|¡  “Ð|‘  #ê§Èû0ǘßw1šu´÷³^²4M‡ƒON†Ž,IÖß#h¤#Ëçhâˆ,Ÿ„„qF–2»ÒI¦§µžÄ"Kb·¨.².4Ï…§E<ý¤ÑÌ/š–¼%%9¼ôÝÒRG]AØ<Î êÛ£0´p—èZzƒ}7$»Q”Jzø<ÐÏ [bz#áe’÷ù>¹Ÿ/#wôeebtlù—纘@è•eÂvæ°’ VS‹­$tm3)UWGAϥ妥ÈÎË ñrí²œ Œq›~-Ï7–¦µ*ëGq!ż[,4g®Z5\Û,iºm5Øàd˜QlÃiT\GÌT8zµ^¡I†²é°W'|ºÀÖùu,¥Šå6Í»Ö,»ªWLw®¨òîNa/x¬XˆV³\ŠÒ˜õÍkð+4äc&/èL^™G’¹¸“$Ž š0$s p‡  #ZTÖ‰°x£  •é$üÚIr p¯  “ÐÉ.àm‚ÎÜY'/צõº,…Ï8²FkNñ°¦Mê%w^3£FNëS&ºXá÷%Ѥž"’^iººÚÃ)àt¹ ‹~E€éL[J™þº9Ï©×æfõ¹ðSöTû€.h¤V϶ÕÄ%0°zÄ \jSö$ÓÓ€ZOb+b·¨l`•9PÐÌÉæá‰wr.ë>ÕNÖ¬Ùo0u–¸Õ©À“ iꜵÖå™5Ö‹5§xcÍÍ6JÖŒa/ºàµÃb:¿¤;†èNý-7oÙÀwT•Mš a­^ŸÑÍŠ>Áš7nL`?9Ç_±ºeS§Ë܆¿TyþN +Þ(:/áªÈÓðElq='lÌñ»«&ÌKØýt¢ŒlfoHùODª2³ºŒ™õ>š03ë=|¾  #F]gµœ˜ð®l;Ú”uZÖBO„_ a^ëjjù¢vÈš5XäU`öIÉúBƒÓʳš…(é¶=Ç~šD\ô «± -hÜÛ5¥fOó\Žšarñ|×E¾|aÁO7êî³fLñ.˜'„ð Rwµ:/ô ßz_ 8ˆ&TÔ† u–rmC’‚V7LJ‹Ã#7´Úˆ96:Ìp”0hʰ[ÃY± x½  h8+0‚[qƒ  #úç"³‡µ†¦=tÏ,bv^Ý+n>.èR ÷ÏqgZ½áúëwÊhñ ଠ “ÐâIà)AFÔâ*J¿2BŸ0MBÌŸ#hBIͰ7;ÎÏïvݺ³{hhvv¶H×3W8X·­ÇÙ@²hÙSCeëd£XŸ®¹&{Ow£:AÓÀ•uWÌ©–ƒŠ0©OÅyðS‚& _¬€56#ð¦ÞnýGÀ?4¡2c›æ/udû$ðÓ‚&ŒhlC|¾BתÍ0}št^…Y©4×nžTÑpx þØsöÏ€?4aªñøÊ^`Ÿ  “ðÿlWz¥\žc;™YwÁÃ~A¯”;­[]ìºòàFA& ’•ç/4aD•¬mŽ)œÐÞ$ ¦NW^.è•R3Ñ&¼Ÿ/ÔÚÄ%0áýˆA¨~Â{m3º”˜ï&‘ž¼´”ÒÂY/±[Ô@k‘•tIkÌ\š¶h°ìÍJ(ì à.л”)¬Æ«3uÝyBJ]·ƒ>œŒºvï}Gdu]¨å¨O.“z£âæezèÀG@?¢\Q‡ŽI)ª ¬‚®&£¨G5ÐRsým3Wùµ |Ãöï®&‘&Ѻ²ölÐì@ðy`HãkÎùvÃðý€Õ\³j.Õzs)ân(³†Iýn3‚õ6‹ziš¯óÌåýˆWt×¥™ ’Š1Y(”ñDË#£Åëø/3bq›w/PîŒQ™“;ÃŒTd ̼RЄŠL7Ú*(ÉôZà[M˜€õf~øk‚&\B½Bæ×¿'hÂ%Ñ+dþøYA&¡®ß~NЄÕuj^¯àÝXÕpz…µb{Ê‹4´s˶N™˜Ët-Ï5y¦f×n¤VíÛ¥2~C•úÏf :+Õw´†óšÖ0*cÙ»€ š0sÈÞ|XЄÍá¾sЫî0sqJ¶9!Vú[îZË‘»Þ£5Ï<úÈ RÊÎŽß)hBÅMÿÞÛ¤týàï š0 ]¿ ø1AFÔõý~]7j´ß…)Ô`=4kâ­À kËÞ5¯eïSöÇö^"hBÅÊÞ{ŸŒ²ùé@„yA÷æQvï¥ÀkMQÙo=‡†Í/='çO×…Ö+©)o¦O¼5蘧 mÖ0§¦) È; †ÔÚ?ŒE©æª›gNR{©ž®~^Єª%ÃRöóeà·M˜„ý|øw‚&Œh?¿röÓ¨•‘”VkT*Úô\’ØÓ¡Ã?øè¾´Hƒ²ˆ ±âÉ­Á?÷+æƒõ’m9Nkƒ\ Ï—½®|–½Ÿ£Ì0Ö6 CÎa¬|ðç½RêâЦ±òIà+MÑ4¾«iPŸÄ·xᢒvÃÐrŽahGõ“ú”>«7=ÉèðèqÔ·È*¡ýeþeºøÄªcûL6uΉ]'HhÔË3zÍecM«á„ß;FÕûJ«A¯’;7Ñÿmè¥ô «m¢š¥ôÍ¥ôýº«;†Û!#š²­„b)›5>cÄ Ïl5C‡ƒ/‚ø„@ˆÔ”;ž+Ää.òÁµ2õEB> 4A› 5kRèÝ7üdžä«(ŽI/!ñqà •xÁ/ß |t±;< :zDþÔsâ_VAK­wµ×õd¯¥†íš3×%d|>ðå _¾äÍõ4ðIÐO*3Wøó è‰] ø ÐÑûã•RÑÉðJà/޶y)Ðd§Ì ǪJÈøvà‡Axɛ웿 ú7•™ì¯?ú#ɘìk€ýÑè6tŒEüø» 7ùëÅÂÆ›¨&ÆZÓŒ±BŠóSp è5ʆZepÆ7±» ø èèAD¶ÖÓÿ‡€ƒŽ¾kBÚÓ½TèŸc žŽØöSôtÄ~ƒÕzº¾ GG¢l^ú’øÝKñ"ᥠ£ßæ$íèHŒÍÀm ·)SÌóÝ‚É+ q¯ÞZjßt8ßFì®>tô›ZÃ/±ÿ;G@IÏ·½L¨œc$ßÖ‘ëjîÓÌÓZ…±ýàÜßz’sûó|ˆ'i1^Žº÷PÍÐ炦Y`‘)¬yüŒÞHøÖ ’÷Ó>¹?-#7"ݤLŒŽþ㬸5(s }'‘²ªèÌ5àN"µvà% e,5ÅÖŸ’2:VCx”–Ñt¾ÿ(^®]î?Rç.üß®ö޼‰àC?ZÝže©/‰òeà×@-™Øç À¯ƒþzd½œÇ³3Ì*m–PÍ7€ßý½Ô‚ž­¾«ØüŽû/ïÃõô÷ ô±t0ò}™ËM¸‚šnòä&:¼ÜJ‚5btž(i»Âp¡È jÄ 0(ÔÕbÃ"-'¥ ë(깵ߴ”Ø‘Çȵ{G®¨©ù¿­ø™&µæ…ºæT(œ 4u,t섉ÛÎøV·æ¥U/á6 ÑNkÔ*†ãh¼ÜKPæ—(s/Ñ.ÿ&™~ø:A&7d^ |½  #šÁ¶¢¶·âX… m‘“áϲ ßü„  Ué®y–…ä|WæO€_4aºû$ð¯MQwwóM‹Í /Öj§Ì£¦MÌùÏ#£ÍŒóÚ&ZÆÚ¦ðÞqš«%Tœ/ ÌæÍKk:‹âeñV!DéEëGÙˆvÚbCß²å¥ú/Rv(ÇC‚Ÿ Ø10\ÅC'ÖÈr›‚–\Id¨FŒŽÍãx®]Å2¡ ù†‚ •“iÕNçøêœšAZ5_Åȵ{|+cçî ²_Ó€hÉ¿?¥¹†]u¼ ›¨wHWæZwM³î‚oÇ-I³Î-ÖèÂ|óJOžFì➦æò56dÐuM†5)î/ô]tz1—jáàçM±6B/¾ÍÊC5‹‡Òkʯ„„k@¯QæM·µí—;áZ¥i~ì…v¢Q7lÓ²MwNBàó£ GFXÛåˆ]?ph©]zѬ‡Øïô!ž¤ÅøXЇjŒø¾¦ï­‰Ëzgu~¡¸ätR\Hè»?«¹S®µ]ͤC0…‡ò¶y…,Û«PÂû@ß§¬Elfát•Åͽ6Õ £< Vš’«9ÍÄ‹P‚>œ=—D¿B ïž-wý¢ÿÛýZnßNäµÜ‘Òí¶>«]­ÝoÕ¦ø¡X£üÀJß}é8I…ήiž¯+q•à ðw@ÿŽtI¢ ,Vß•{@»Y{0(Úì:¤ ñøПYC ø³>Á?+#xô!…21:Ÿ“5žó”z0¡L²Pƒ µjYl0±˜é§U7‡ñrí2ŒPg¤þo?„kLL±ošë„—1Ši[—­*‹îKtoMc‘›CÇ’ÑåÓô'“¦í¸8´Ž…wì/ø¹™¶8”ÚÛËíÝM޺œý|í~Þ1JV󒔜EWËj%Ý‘ê×Q™Ÿ4a ¾>󀤓Ïü ð•‚ßJJNžÏg{‚ÿ‚ŒàJœ¼1:§GŽçñîjD ëÝêc1ïhìiUJ [‘kw·®È,ÛÌQfƒ¶_”_‚(r`ßÑC>(ë!_|ƒ  —‡‡|£Oð7Ê®ÆC*#ÈC>(å!•ˆÚCªÓÇ¢2ÈØÓª”`×E<¤³ô[ôîLÁi>®i” 4Q]6&Íšá?lˆV>#´èÏBæÏJË5çíro„¥]«OÚzé û~ô¬FÑÀK¼v±ïµ‘¡ÑÖ×’¾øs©D*ðÅñ¦¿‘¼´ä&:¼ÜJ\±1:OË·f$,BÆQ«8¬£V¨­ÅàmF)UYGaC6æ´ôØ×Äȵ{_£¨Ýù¿ýäüékZ¥ EL³$îd¢ÎF· ÝwáS©aÏZnï½ûò¾Om£d˜3ìVÝ  ½µ)­4­3St Ûä+k¹ãÇØ_à¯âTQœ¯keSŸªYü—N"dV-&Ë„méåÊÞš0kº=§•*ºã˜“¦a‹kåÖQšUùT唹°‹KV­dÙe¾pì›´’òkÀ4¡2C붆’ýKà¿ š0¢¡ð ²Ò ã2Û U í1s+›”ÈÔl–çauõõï{¯4aCÄ{%Ã’ÞíÀaA.‹!bïˆOðÁ•Ä%jÄ"Þ+y¨)lä¡P‹ƒŒ=­J ì¶cäÚ½ÛVd–þo‡´¦m-GÑkµÁû§M·fÌi÷Š®÷ÁGhÒAèÇR#ˆÍ´–Š÷jCZ®ö؈6îštÝ|í±Qo˜¸‰Þñ¿rJ|+鎟 |½ {C眧3Jì}ƒOî7ÈÈ­Æ+££7¾z<·¸MH¹k%2‡v×ê¶Ø@ñ\ÚRJµÖQÞp-:-Í÷9ñq]¤ÏQÓøüßö†¿lË/È› È›" :'ðÕ°š¨&'ðW[Gè‹l>2Õ!6*ö¦où1,í÷ouºŒ“ ‹šÇ½¶mÙŽÈ(>Y³fk…¶«ÏšC%ºðdP¯é•¹ÓØ›fœw6ïšî•ô‹¨Â_ý«‘KЩ³Ê•sO’<øBA&¡”³À š0¢R.lžž.Ü c¸2z1ð5‚&T¤¡õ­ ÄÌkÈ(ëuÀ· š0 e½øvAFTÖFxO4LÖñ0•…?<†äyð÷M¨HW­ÍÞ¬s•RÕÿBЄI¨ê÷ŸtF¶oÅMLêùð¯M¨H=ÞÕãwÊ5£o¿'èŒÔ¡Cáuóeà÷‘»ŠÝÿí´¸T¾lLꊛ¯åØàfÚ*k;±K_Œh$´ÿ³'M¨Ê‘æX28’ϱ.„ð›L§M˜€dïN :;Ùvk¸ç¬lÔ¬ªYÓ]Z­u4§15e8\ÓsÚ¾iËÃ.Ù5o4¡"ž×lÑ£2M:ûÀw :›Ì81ûFà{>NœîÚˆ¶ßCz­bÌñˆçHé¨aV´ÜÈ®G÷4Oâp´þí(kÐú”ÎÌE¶Ig1ÄëÝ"è^©{cjҽۀÂV¸¾ÔÍz·GMўݩIó-ðø¼QÃßíÂç°C‡æ¼ÛM~Ì;Õ³±s:Ël&6Š þõ7¯ o½£ÀwšPÕп*3¨é}ðý‚&LÂ~øAF´…|ŽHœ•mš^~¼á¸âž(‡Y‰S²Í‰OÏÑ¢›+q’VøYd*Ðö'è¾ÎVÿ%aMT3‹üÃæ,ò½ÍT*~ ¿,­Õ¶ø™oån¹ã9<4s¬AÜ:aŠ·´*3 J¾5ÇÕÓÜ«Üi*»¹ÆLGc`tÛáŠÒw´z—Ò>âÆ†Ä¡–_ƒº&ü!è*kßÚÆÄGCwý$Õ ̬4aÜØþlW š0õA1ɳx© 3r—štŸÀ`¶)¥«ÌÀ¢  ÐUf3pHЄu• t^êøš§¿7•in™aàý‚&T5IX ?sK’< |¦  “PÛ@]Ð’K mìd&nI„ ठ •é$üÄ-IRZ‚&LB'SÀº  £6¥Bà¥Û‘›ÒÀ_´ä®ÅŽÙA2÷a“(¿ |ƒ n•ꪷ×ß(h´ÚÒ›€¿.hBuJ‘kLï¾KЄI(å7€ïtFjÖ¢­®,tZŽÞÞü¢ åÎ.U¶šH’| ø A&¡²¿~SЄiµ£¿~[ЄÊt"׌~ü'A&¡“ïÿYЄQu"3CJ"ü ðߑۺ¡x̓ú±Àì A&¡šÛ•‚&Œ¦šL!úšý?ŠfÐi[z½n[§Lq´$ûiÛœÁ´˜`Ua£¬‹äš'ïÐr<ÇL÷Yî~Éçã* ºcªFS8l/—EGßLØ:‰ëL[J™æå+V0“•§$ÑoˆáF“÷NúËÛ­2˜®Ö™µ ÃG¢ GX·!M­HyD*²à|ŽWÂx{wÇM˜€ñöîÞ,h”|}ï-À}‚&T¦•QI­Ü<*hÂ$´²xLЄµò¶3îN¾¨íãžÃËèì”k·h~iÙ¢¼nËmskU-§d”ùi§t–\Bë/Ì0úògÉŸIXÏ]À šPq¯tè˜L¯Ô× \+hŽ ˜ÐÿÛu‚&ŒhB‚èlè—æß¹êù„°IyÉ• ¦äÅ Ÿ|S¯^)5*zsñ¦ƒ¹±ÏªŽQ™1È2÷J]@E^|ž 9ª1…VÎ̉#û¥¬á§¯4Çø­¡ïùÀW šc4k¸mÞì¾—këÍq˜”7ÎϹnZëDZ†#ùøW‚î“»è¡ã2\Yf8Ð÷uà7Í1}~ øMA÷E¢ÝÂZwkï4dôšÿØqáü©ò­Q•‰ÁÝ MÐ+4uÊte”¹b;0'h”¹++ò‚&Œ¨Ì#|Šdˆ6~°Àšv¼ÏZƒŽYfT}Ð;û§­_Ç–x¡ÙÈítÅ5ÀAªRm]JµgÏ4aª>GЄUûÞÖÊuÖÇ"Í¡dÕXìDã?³Æ9¿[͵.¢âݳÞp-–øz®èºÝ:ë‚ù|skçéÛW{pjBO \¹SÐ+åŽzW´Ù‚Ù¼IЄ ˜ÐÊë€c‚^)50l?ËGËñ᳸=ŒÇfm¾ ¼²VÞ 4¡"eÉ.B¬,'½Rj9+¼ºN z¥TÚ¥’õÊi`EÐ+Õm‘]„Xég½Rª_¯,$®œ4aD¥Ô›Cd:#¯ó“ôÎyº®Ñ)#‡ Žúâ°¹DTÚSÀïš0b©C§4½VOÕ¤4­”ºîå—Áÿ—ñïŒ@EöwÞ¸Ó˜pÄiæÌ2{VùªÖ“´>ˆýjâIZŒÿƒê÷0M³øðÿ•¨fÑõX„í¹‘‰¼Öv%Ð~ÅY,³Žv†w$„¿¸ ô.áù_¾)ª^IŒ›|ˆ'ióú¿P£‡JÌ+ÓßÚŽ_ã^Ç~¥Ìó™Z ÝfyÎiPx."«iC¯ÐJ&CÊüÌ;§dòɬë,¼“Le6&†›3f¹AÒ&±u š`iRNbÇ~Û±æåvŠ=ÿó9Þ1~4ò›µšS4®—ñ‰…qªÎÄsŒrÛÅBzØ&ö«ÐÁ¯ ]íé4…Ó~úG½ÃHF½µàÑS£Eêz„•ç<à‚& W.z#á#|HÞŸÜ2r7½F¶GòebtNåϵú¨e²uæpTZÅ,vT¿!¤T;åêÒÓRWçówâåÚåüu-ÇÿíšKýë:D¶;l¿ëkbFKú~Ç× Ûâ¸ôå‘ݪJ‰ÿ'!Ü…ÀK@_"Ý„ŽG ™HŒ->ÄÙ¢æÿR¬×Cm„€¾@Z…=í›~÷À‹@_=œ•©„M>ÄQŒ¢>Ñ™¸§X¨d– £Úƒ*öáôÙ3 ž$â#øbॠCïÕèõ‘`=‹GG+xá$ê{³OìÍ2b·…Gþ·.ê´S×KÆ5g†‹#FU¾z#ËÙ±zWpcè ®6Ì“?dw­¬†CEWjõšYÄôdóx-o-·¼«ªSß³ nº‹Á­bÿÿÔÎüoIuñUB—(uù3VWñ›[O‚ÁËàå /\ çiÌæKVÕÐFdªC^úšD«ãZ`t1›ò!žåË w€Þ±±wʈP,YÎÔb9%5ºU§×¸b¹ø,OI,£ÁÅË=ìÌÿ–T÷_%,R-oÆê*~gëI0x¹x#èÆr£2Õ± ¸´ü~™êؼôíéØÄ!âY±Üaà ï\±ÜŸØGdÄN(–‹,gj±œ’ÝǪÓk\±\|–§$–‹Ñàâ‰åž væKªûˆ¯ ©–7cu¤õ$¼Þ úîÈ•°Vs-W¯H/²>úåõÑ;^²˜? |&ègF·‰°ëßÄ^÷!žˆb´Ö¿ÅI5¡çLßÀßxè 3U⺘âú7±ßäÃe³þM_ \Fëß$îfŸØKuý[‰œ©ÄÙÊj8Tü£V¯qÄÙñZ^ä8;fƒSg?UìÌÿ–T÷_%t w—?cuŸüú7qݼ¼GÕú·T%h>Ä#Y óƒÄVfd;0:ƒˆÝÀ<è|:ê¸Æ‡x´Ék)&!û!âYõ0p%!¸;}b/Õ$%r¦P+©áÐŽ:½ÆPÇgyJê .ž€ú©`gþ·¤ºø*a‘¸vy3VWñÉ'!×ë€ê’¤*a—ñ¨ ¨'¤ê[{AïM& Þ ¼ ômé¨cŸñ$h“û)f‚ûC>\6™ $ðaà2Ê!qøÄ^ª™ JäL- VRáuz+ ŽÏò”Ô1\<õSÁÎüoIuñUÂ"qíòf¬®â“Ï!®Gê2A¤*á¸ñ( ¨eî¾!I> úád"êÀqÐrYFÖÇ#>Ä£Ø(Òqˆé£Àgö¤–ŽCìuÆ“Ž:íýÂÀ9&ŸŽC\7SLÇ!ö›|ˆgévHà‹Ë(‡ÄÝì{©¦ã(‘3•Á޲„ªÕkƒx-/ò`'fƒS?ØyªØ™ÿ-©î#¾Jè2æXþŒÕU|òé8Äu ðòžÔÒqˆ½æC<Š;ÙRè± ²˜`:±»˜ïI-‡Ø_ãÃdÓqˆëµÀbOjé8Ä~ȇx–G@= \Fé8$îNŸØK5G‰œ©ÔJj8t £N¯qÔñYž’€:Fƒ‹' ~*Ø™ÿ-©î#¾JX$®]ÞŒÕU|òé8Äõ:`Šé8Ä~—ñ¨ ¨ÃßÊH‚Ü L0‡ØíÞÖ“Z:±ßçC< Úä~`Šé8Äþ—M: |¸ŒÒqHÜ#>±—j:Ž9S ¨•Ôpè@G^ã ¨ã³<%uŒO@ýT°3ÿ[RÝG|•°H\»¼««øäÓqˆëQ`Šé8Äþ¸ñ( ¨{ká/î$I&˜ŽCìN#¥ãtd»š¬ QÑíœ_Çž~p~´\N›%„M‚!öúOD164“`f§ ÛkžoFÅqè êÆ{á÷3“ ›€ƒ¾8~ë|^$|:è§GVN¶ £K€—‚–[\ì¨ðÛaH+€ ’ÑÇfà6ÐÛRÒÇ•À«@_¥NáIpô`2ú¸X}mmeAæ2l’a¸´üD‚9*dð&Ð \'O쮎‹¬“I­lÔ,×7É•Š6iO4ŒZ‰n)Í™E£(n:­5ª†M7ˆ¶n3u´I½ÂïÉ6k®¥éZ]·]³D³VÒ]cʲçò²:¿øFÐoTF…Ïj&IÞ ü-п•ŒÒ½çm-Œ¨t©Ké‰õÛïý®TC[’äƒÀƒþp2:y7ð# ?Y'ƒÞ óšmÍŠó ÛÚŸHzvÌÓ†þByõ£Àï‚þnò1ñ›…⛈'š½_lÆÄ-[3NéÕ:݃iÖè¾dÃå×;3{·ª¬îÊZ‰ù+~“³k›¬Š ÍéIx™åU}Nc ™¿s-^û®mèn•îX¦×ê½dLXC%«æÚVEüY_MwÈÏ•¹¿ÿÙwßw³ä*ú·1C¿Å©ËâxÇÕrFqŠ©ºÌøLø Ï&&]HÏdœÔÍJƒÌÃÒÌjݶf ­Q+“x~Ù„«m oºŽø!ƒ¾-j'̪É\3 篜’5mÙ®w3up…4; Ë1ØðÃҌڔ>eðßb¯¶>/[{ÓÿµVgYsY…Wæ´iÝ®N6*Ú„1­Ï˜Le(ºSµN² ÊW¿ ›U]ŪWQm}NÙt ¬4Øß”ôZɰóZ¹a{?1iU*Öì +XݰM«\Ôš5m^½°ŸôT¼híøÌ…×ËëÉ$š2ý¨“÷Uën âÖé]ÁÛ ®‘¿‹¾iòÆ©ºåÀN„™ÕfLÛªQe1‹·Mç$3¥’Ëþ7“×uÇg55«6èýPQ;*T®»¼jXx Du «#Ü“ãÚÌX'MÖÂúœ[zišYž6iž2œsôlÚÙ™cNÕBû¸·À¡¼…\‚  “öq¿1RÔks­hva« T3 fÜM³99×y–lÆÔù< üS÷OÔMl†_Œ!Aþøyöü¹øwÜó)ÄîÓÀ/ .>Yåá'ÿ‰ÿ_¿YþR>Â/Æ _~=_ÿNBüêâë)éã›À¿,ßT§ð‹1$ÈwßcÏß‹'¡¿~uñ½Èú[Œ!þø/çŸÕé$üb òŸÀÿbψ'¡“ÿuñ_‘uRd1ÒTƒfk-G=T…Þkº7£H=…y ÇíoþG`6'äÎnO¹¿É‡ÙSÿN@wÙ¹ÈÈÝŒ{³‹Æ3®Y™{««Æs‹Bè­ÊDÎ;oýS«¯Å¶þCûI©Ò:Š{.­8-uvÞ/×.[Õ58ÿ·R§¼øE9 úpê]ƨÏäK-“õu£dl%fl‹vwŸýä2é2žë“û¹2r«é2”ˆ±H—lR]†‘Cwêôu®]F—ö“R¥t‹·â´ÔÜeÄÇu‘.CMƒóûÿipuÛâç‰ÐfòöSßæFcÖ:ŠÓ~R‘Ҩř3í9cš))j4‡ìò0Ó'h”z¬Íã¬x¾w¨Õóž•Óì»!öaÓZ¬¯Ê¬^'hÂåÐWe®÷É}½ŒÜJú*5btì«.g}U° ÈôRj„ ÛK)ÔÔb½T×6“RuuîŸÎ¡å¦¥ÈÀþ)F®Ýû'EÌÿí¥…fÒšï–í5šòƒ|ÇRë5~–ZÀxUw§­ºQcQ1&ÝþÒÖKgZ­ã왑Aß¿ÆmsjÚÍkãU³\®CZ‡¿mû«Qÿ_ ä¬K‹Iî‰D•œãÆždÏåØŸò1ëÏK÷\w Ìö :º¯N§çÊ®hÉMtx¹•ô\jÄèØs½Lô\KÄ ezJ5•¶§Th‹õ”KÊO¤¤žŽ#ë­Ò2¦ÀÞ:F®Ý{kEŽÅÿíæŽ‚Év×M/‡€—§Ö]_ÔjW¾ÆâU3û˜ŒN²ÌjÀ‚ÎX&ýãAŸÜeäVÓ?*£cÿx‰áʧw©žJ‰˜¡{*u:Z¬§ h")UTç<Àî 5-íw ñq]¤kPÓ¦üßÞ",¤l÷áâ(Ä Rë>ưvËŠ}67î‹ýôvG›ÖrœäØ7zÇ1û/iÃLwÇ8&?t|F¯4 ¾M—‹9­*?÷•jG«èö”aû׬©²â”IB¬]‡Î '›:,pÅe‚&Œè>Bç ¿W4Ö&ªÉA~m3y}ÍjÓ±×¼nuí´a[¬5×;ƒž©c¢bT™m— Ïÿx.¯kk`VXæ¬kN•l¢ÄìÖÕÙ¯ã*&:~ÛñVÈúyê„ðµ _›Ú8@Ý¥&Tž_¾ô;—AàNò¾Ë'÷»d䎸+#†KM”É* W«˜Å¢pùKMÔËéKâR“¸ÕÕ9lŽ—k—°Y]Ëñ»Ã»Ô„õ×:õÏUÖ³;V…1¢`ß ›)j÷KÈ~Á¿ú[Êš|¿k XµÊÜpèà˜ú>ð_AÿküÁ1±û;à¿þ·ÈŠÜªåÄ}“:‹'qaŒãÂßHF¢ý»ÀÌFA*RY¯^.Kè*s p³ 3 ln%v·:}sëmº¢¦^?™­ÀAAªÒÏÈP/ÀëM˜„~ŠÀ‘:¬Ý§ìÑØ(Ns ™¨7s#p¯  )¦†¿Ý<"hBeý•sw£)ÔÆ· š0¢j®Èóžª\ƒHCg£y~K¥Ð-Ÿõs h šð©0NÉÔ/4ár§d^ì“ûÅ2r+§¨#žqŠÙÂŽS*&ÖqŠb9ýoÉSbUWà8%F®ÝÇ)ŠZŽÿÛaoœ"¦Â\­bÐ}Êüž>SöDCL|KRšRƒ&TÔÞWÓ E¯Td†(™?!hÂ$ª÷?)hˆ:ÜyP’ùðó‚–¼¼Nå äËÀ¯ š0 í|ø5AË]V×V—V47,¡¬¯,h§DXõÿ’ }%B:aUöi-¹‰/·’°Jñ„Ujd V)TL¬a•b9ýoÉ…U±ª+0¬Š‘k÷°JQËik1«¤ƒ¦¦LW@¦+”µæó(h2'‡%ã&ºl㨠å.ü Ý3g€;•Ëñ=nÊbj.{› ³·¥7ñ›æŸ!hÂ$´³x§  —ZÜ”=|\ЄO…¸){ø\A.‹¸éy>¹Ÿ'#·š¸I‰1ÅMJd 7©SL¼q“Z9ýoIÆMqª+8nŠë"q“š–ãÿvqS/Ñò³Èåcý´Í“ñÚf¨"øœ·Cä·?Eú€w?)èlèY¥”ú€Oùäþ”ŒÜjú%bÄÔ(‘-t N1ñöjåô¿%ÙÄ©®à> >®‹ôjZŽÿÛ+DОœË"ڈດWÁÏ|b~[Y_CÃéëŽd†k?þ› ³R Ká‡kßþ»  #j­O³lÅüð¿M¨H1+ØàqlXB)½È¯î]!hÂ$”ò?`»RЄ•òmZçû1h3…¡““FÉÝ­µØÀúñ†ãò»¦‘”nM8†=C£mÞú&m㉆Q+™"‡±ª—¢¶ß¨bs†%›·É£™ _Ö]½ r«ú…l|O»J€œ˜í:‡è޽g•J ÛÁy |OñÁ† ‡}D5Ç%¼•õ®~YÐ„Š¬,{t¯Œ‰ý ðoM˜€‰õ~ø-A÷Êå‹ú¿½8ïmºqÜF™oªà±º„’¼Ùû?‚&T¤¤Uº9V2¥œ}Æqµ =Œ[S?Û5‚&LÇC÷õ× š£"µL˜ceIµ`~¼ïRA÷I]"Z-}ë›Ý'•+ÛV ïärÂໄ̲m\ìƒFͬѶ4oÓ'˜³¾Ü¼­Çáz–h¶zðnA*¶Õ~n«&3Õ$ä›ÖM¸ÄMõQ`YЙ²2S}ø„  “0Õã@[Є©˜ªtqãd1«(“c• ~øjA.qk}.ðÅ‚&Td­˜ÏËü¢  “°Öð—M˜Šµ¾øZAgäNbìf­µÖL£2k˜Ž!é_ø{‚&\âûkÀ· šP‘žøû‚&LÂb1+—ù˜  #ZìÊ‚ÌíØ$ÃÇ(hÂ8|ìMó®"zÓï :£îí¸,ö À/ :#5ïÓñ—?ü¾  “°Ø?þƒ  £úØÐKÚÄÿÀ4aD9B/iP˜xÕ,iŸß\Ò>,uð‡ ɇšïs””jéìg¡ò\Üz{ØrÑ ïg!ys>¹s2ró'Ò~ebİŸE™l¹ìgQ«˜øö³¨—Óÿ–Ä~–¸ÕÕy?K¼\»ìgQ×rüßÞŒzÓÑj–«é3ºYáä,›R,éà ƒgeÖ×n”\£\à |Æ)º;a$;¯.YÕ ~1%­¢žáÓñ£ü¦Œ²ÁdZÂO Ìäšì=ÝqŒêEF‘ù?fÙè¯f/4¡"—ØG»:Ã×söRàVA*3¹iþRÇŠøs°½LЄMvM3+•§ñû‡Ê¦Sj8NóêCÓ =ÇIb^¼]ÐY©»£Íq~X(½‰jæ8WŠ Î²|ü?‚g*2œóÆÆ„cp÷Ñù¯°g˜¯j=IëƒØ¯ö!ž¤Åø(ªßÃ4ÍâwÀÿw¢šEW¿}Yn¤”׎x×VR«?0C%ì£ ™/ƒ–öÊÕ¨ê$1vøOÒVõ»Ðž‡J¬*c¶TjZÕ(óK;)>0êfÙ¨šVÅšâŸy›bŽ™|÷à¬Õ¼öÓwh:ZÎ(N škºk”µÃvŽÆŒÔYÀ^w šqªn9þW¼|7yæ Í»Ni[bkS¶7×B]îò«! nrüRJÇÛJ±p­Q0ìæŒ·˜1qX¡l‹®_eöZ³Jº]6i.§6©ÛÜÕ9yÍbòÑud†íêŒYݰM«Ì;.&H‘ï¬\¸’‰NÓ.¬j°5]}¯ÒïAÅ¿GJ4¡¢qöù¬ŽU¤Bð¡Cxé(݉ãsQy†^àU>ÄðqàóM±1î(j{§Qõ]èëÙ;&Ïø>YSœàBSy»Ã6_øùÀ÷ :}WΚfó )Îïü×€^£¼_XQ)±ÿ$D»x1hù |WT¿Kb\êC<w6ÿ¿b} J#¼ôÒ ì â>îêÜ7/-•&ß®™JØäC<Å(zsÔÖe:{fÜ,94WÝ>sÍ>œ>{F;{6@殓Ѓm u±ŒQÑ &¡ûH0Ÿfƒ¦ WðÂIÔ÷fŸØ›eÛBsÚÿÖEb`Ú©ë%ãš3ÃÅ£*_½‘åìX½+¸1ô÷¬æÉTÃ3Êj8 9wžÂV«×Ì"¦'³ú¯å­å–wµQuê{–¢ÁMw1¸•BìÿŸÚ™ÿ-©î#¾Jè²°ü««øÍ­'Áàe ðrЗG®„ Æ™2µ¢G@$Z+£Àë@_—Ži\ïC<Ë#¤»¸ôîåÒíñ‰½GFì„BºÈr¦Ò)©áÐ]­:½ÆÒÅgyJBº .žî©`gþ·¤ºø*a‘Èjy3VWñ{ZO‚ÁËMÀ[@ß¹.Ô\ËÕ+š²\¢Zn}\yµôŽ—ìæ'€÷‚¾7ºi„A%ö÷ùOD1Z3¨|éI «šów&?ƒJ\7SœA%ö›|¸lfPIà‹Ëh•ÄÝì{©Î *‘3•p[Y ‡ ƒÔê5Žp;^Ë‹nÇlpêÃí§Šùß’ê>â«„.Qïòg¬®â“ŸA%®[€—÷¨šA•ª͇x$+aÁކS#f€@Çë“$ÛyÐyef˜1Nì®^úšÈúX%—™@B\ Ü46q¦8Mì¯÷á²™Æ&o.£ilwOì¥:­DÎÔâj%5:ÞQ§×¸âêø,OI\£ÁÅW?ìÌÿ–T÷_%,Þ.oÆê*>ùilâzð–UÓØR•p«ñ¨Š«]¹¸úvàaЇ“‰«÷ï}G:úx†ñ(6Ê€Ebz'ð(è£Ñë ì"±?æC<Ř¿ˆ0V5ŸÎ1ùE⺘â"±ßäÃe³ˆ@_ \F‹$îfŸØKuA‰œ© v”Õp¨ T­^ãìÄky‘;1œúÁÎSÅÎüoIuñUB—1Çòg¬®â“_D ®[€—÷¤¶ˆ@ì5âQ5Ø95z°C’l&¸ˆ@쮦¾ˆ@B\ L~¸ŽS\D ö×ûpÙ,"À7—Ñ"‰»Ç'öR]DP"gjqµ’ï¨Ók\qu|–§$®ŽÑà≫Ÿ væKªûˆ¯ o—7cuŸü"q½ xKOj‹ÄþVâQW»rqõíÀˆÝ^`¤E„ŽlW“4*ºÝ3YÒÎÏ-·nÐf a§î‰ý>ÄQŒ Í©ûY:g1¬y~RÇ  7(ö…_ã"I6Ÿúéñ›ç'ñ"á% /‰¬2‡Œ’—/}™B„w$ÉUÀí ÕÝ«ÐU'—s s‘ur\+5Ë5:ŠÖ<ÜÊ´·yð½C7,”Åâ?‹­Ng@Ε9©›´¨|è¤×è^üiÐ?j?M’¼ø ЯHF'?|%èWFÖI§ $ì*t4ÝÕlÓ9YÔŽMºFMœ[èßvh:ZU¯ÉÏ<œ3t›Î1´Äu*ÿà€þÔ›áÿ ¤Ž˜hÂ$TþŸ`›t&úI­²Í®pç¸RЄé6ÃÌ:àAg¤"¤Ð:ɬž/hˆ:¹Åß÷‰ö×ê'­JÅšlÔE»òºB:àTkú€jþà1A+¸É:täý)a MTrflö ÍÈû:õ”ßlÃjQ‘éÐ1óe½Êb ½R™ó;i[U«3w5«;LNÉ6'p„+y;Û˜1­†£á˜iæÝLºê¦¥°–š¸K¬êÞ¯ó†Ÿ:ŒSh-q9 ÃÄ`¿rÚhÆ3¾³eqÂg™ÿŽqŠv5<~â$Yö+ü~ƒDÕFÅ5éb)Ú!z·à+ÕpKIå‚̳(˜U3Ρ¸ZÍGÅNPoQs̲A¾žmj¢fé\Ù¶co½º×Ý"S],Äê«Ò((i wÙºkˆË„ ¾ñŠ@Åi†}O48;Ër[·q¶ªånÓ§,G»Z;jž´*VÝjT,ÖAïÚ£·Üé*݇ÄËJ‘zc¾¨ä‡ÃÏA[Lþùu(nR¢Šq¨f(ø4'ç:6a±3¦.sýÅ müY7ÜçR ’$¿üMAÆí|‰Ý¿%è¬Ü= mìd:DámÀw š0ÅÁ Iòà‡M˜„NÞü°  #êä6æP¦UÞj:_s¶ðì \\&ßȲþ?A¦u2Izû€+Ý+s…Wèÿ‚í*A÷F¿-A¶‘õ®®4aŠQ'Ir!ð"A÷J¥´†Ö § 7 š0¢NÖ¶Yè’$¹8 h¤CÈ?zm¢’²g«/„dý~¶Ï#8 ÇòG‹p+è­ÊŒx¢‘°†LÒ\ ¼´T:M8C&v—¯}md}=­iÈ<eJª…>Ÿ$*o}KòýǰÕ´ôAü×€^#m¼G­ãBâI«vþ5ò§Jj§'°1™®Q `ß\z}t“•©… >Ä£ÈÁ­8|üø@X÷F²l^ Z]îl {ûS¼H¸´\Êj»}Jv=$Æà• ¯T¦™§Ó]ÀòR^ ¼ ôm upU,±» ¸ô¾ÈºÊÂú4â¿xôô|Ú§…¦9¦àÓˆm?0EŸFì7øP½OÛÚ§‘,›€ ú´OãEÂ%àÓHŒ-@õ>í’À9D 1¯î-å]Â95bwp?èý)85âxôÁôœÚŸ UsLÁ©Û~`ŠNØoð¡Z§¶’9µá½ ³ ¸´”{ çÕþ /n½%=¯Fbl^ú*eª ½b"!~8z<~oGì®>ú‘èÞ.ôdñøèÇÒóvŸ&À1’·ëÈu5÷ræéN­ŠÆåýàÜßz’žD!öçùOÒb|u¹œuM³¸Ó[ó9ˆA¸ô:i‘zñíð¼ÝYÔ\ÏœŠrÛFÆógéÃ'jg¶œ=³môìYüݶq×8åž1íó¬6¦‰bÿ¤ËH¼ºž^bï°o‡‚×Rºn¡2¯}(lÙéÛDVŽWgÅëiy`•»oHÞÃ>¹ËÈÍo÷M÷ &ÀÙ*£cµ}®‹tjšÿÛ)¶²5áöÌ‚¹ž¦lè¥i‘ôÊs@EjiЪ%ç–¬j½A¤³¦;­EpuÿúŸRëž¶Ž³‚úcÚ!_KË{ÆLïзCôqZ´cúg™+ =žNÇ”¹ª%7ÑáåVÒ1©£cÇt똺™L—¤Fܰ]’B]-Ö%-ÒrRª°ÎÑ9µß´”ØÅȵ{g¤¨©ù¿½j‘m²]ISÔÃõpj]Éž¶0èk ^÷@_ Ò'’ýGæ #hÂeѸ>¹]¹ÕôJÄèØln›óë^ªçP"hèžC–ë9JJUÕQÈE›kZ î.âãºHw¡¦eù¿Ýe™lWâã=(Æ{RëJ®wž°Ù;­vÂJÛG¬¹x/_D_ðð&?R~’y/ð?M¸,:™ÿòÉý_2r«éd”ˆÑ±“ɳNæ\¬BªËQ"vè.GÎërαA¥TqEÕ¬ÓÒmpg×E:#5-Ðÿí»ŠÚQ1¦»­¹1Gsõ“FÍÛ&Þy«ôì´YšÖªìEG쵞·;YsæªUõ͒¦ÛVƒuyü㳠§Qçéè´½^¡Í”eÓa¯N4øVo. MÆU,ǰiksöqWLw.tfŒ¯Þ²o4aÄz ‰ñç¢4OD1>ÛÌÄ8Á7ë;"@8mØ–ïØ"Ú$nÙÚ„åN{”ôm¤¯ÛÖDŨ2…– ?¼Èä‡x9d4_Ôö–ùþW¦=¦“ ßïê5—ôÔùä$‡½ËL£ÊTëXèØVŠÚý4=²Vÿ5IøYПUÖ-õ»ÖØ€U«Ì õ—A9…$Ðßý en"0§ð/„¡sü&èoF¶²­ZŽôZ6&uÖróbºƒïu&%K¨ìo€ÿ ú•©¬W/—%t•Y\%èŒÔvãðºú Ø®4aD]]Ц+jzáõ“Y¼DЄªô324*£ 8 èÌ@"úÉ\ Ü&hˆúéߣ±NNsŒÐ º$Ç•ÀAA*RL…]Ü%hBe±sw£)ÔÆEànAg¢c»>Ï{ªrYœ3#Q{€‡Q—œ&sD Ir x·  “h7‡ÇMQ9RéB$ àý‚&T¦“ð§7$Ÿ)hÂ$tòP4aDÜ®QpäØä åÁû´>c,†J}™ ௠šP‘VWSÐÇÂZ™/óàûM˜„jø~AFTí†ÈA^æÀO š0å ïÓÀÏš0 íüð³‚&Œ¨uQ;*Œ2_4aÊÕ·€ß4aºùð;‚&L«£ú{à?š0åŽêGÀ4a:ùðßMQ'›ødS¥âõQòýÎÌ®tVÝYPçQ¿cNKv=ü7 · š0ee×/4aê]Oörà  ³ê†I’]Ov'ðzA&¡ ’²7š0å®'{#p¿ ³r{Ãv=Ùg:+µ¡ ¼n š0¥®'{ xBЄév=Ù‡€ã‚ΪÜÊÛE'÷t6úVޓ󺞟þáã¦Yä#Ûüôr6hªºãòa½k²Q=ôMeš”‹Áû~ø/‚æ˜f Þ÷ŸÀÿ4Çô÷Cà šc4ý…?EøÿðÇ‚æMŽÐ¹¢ŸÊl¢š\ÑÍ\Ñý¬Çbë,¸ÏD\¤Ä=åÏÕ ~š}ݶf̲¸U)dQ¾ñ €–;ZآͷôµLîâ´n»#»ví’ðaà$èI…&_1k'Å—~2OìU¬·Ð™è>úY‰üòÀ)ÐSñ7bw8 z:²½K͆“&° ºªÜ^/ {­™FeÖ0ƒnû’óùÀW‚~å’7ÚÓÀ'A?©Ìh]à/€þ…dŒ¶|èW¥ÐgÿWô/&ßgý¥0ó&ªé³VJ>úEðÿ"þ¨È"Îw¸”°óß¡6æ«ZOÒú ö«}ˆ'i1þ Õïašfñ%ðÿRT³è:MTÈ”óÚ=Þn^ ¬NÙÏïg¢ÚU\šH]< é¢NÚåM踉j\¾ôý _‡„k@¯‘6Þó£Ö‰q¡ñ¤U;ß@|CIíô6¦€»xˆm?p}Ojwñû >Ä£ÊÁ ì=vüè@XGÒln-u+N8÷ ¼H¸´T½šËxHŒË€WƒV×ùäügMu %¤Þú…º HŒ!vÛ÷‚¾7²î4`8 >~‡´QℾŒ¤»ØÝHÏ~SØÇ| ±í¦è‰ýÆáï íIšMÀ}à7ñ"áð$ÆeÀåãIÚA`‚>Ømªó-X±¦˜û3Kí^0ô Éwpôlz^ðo„epŒä;rívO…Âýàœâ=eÄþ<¦tOÙߢî=T3|úQÓ,n£‰L‘Éå­Y2]Ì ¿AcíÞ`6^¥£®öÕ>G&¦$&MÛq[-£ytš7}+¦\1%ꛈ¥1®%*s­fd”ùQjÌŒ%«V?îÍî¶ÿö¤U©X³ªÚã·PÙ„?ý£äõÿw`í¡ýïkêoÅ5ìŸe¯Ì:èÎ?%îMLóêBäÛžpè}ÒY:¹ûTžýÀ‡@?¶\ôF¹û$ïÃ>¹–‘»9›]4Ü èž•‰Cî¾2Ù:s ÈÝW«˜ør÷ÕËéK"w?nuuÎÝ—k—Ü}u-Çÿí[‘»OûnKnƒ÷È­uQ> ˜1l¾'@«fŸ±@/8Tæ¨i[ÃuJzÅ(h&?zO¯8–V·Ç$f®Õ /ÄIÁ£mBwاVè„K_}eúMøTè€ø!„› }Iw:Pf‹Oî-2r+é€ÔˆO¤F¶°BÅÄÚ)–Óÿ–\«º; ¹vÿ·¿Ñ¶y¬áP?b˜<³‡º:Ùl¿Â6“þ²YÕ>’õúªÖ€5ùœu}Õ%µ‹;¾œí)èÌ”µ¨(9$Ñ—€tÚ_±çoU6­Ž9Äí“À¿4qháêr:&”åtP ¿-0{X”6«îŒVÙœ’æ.à}=⩹ۀ `ºŸØÝ¼_T±¨v9$ÑÀ“îñÈ’…ž”úŽÐqSÎéø{ˆ@i®šïÅQk‡Ä¸Ð‡)çt|5ò]%µÓؘÖ3‰m?0ÅõLb¿Á‡x9¸•wÝvøž°þ„ÙÜ Z]èèß¾‹ ·€–ZEU³œIbl^ú*eªX›N©áð²R©pµÓ0EØ$Ïæò0eâÜ&Ϋްë–cµû ~‚4 ¢Ø€ a:ÓÍ’69òß§úÕëõŠYâ?ϯá‡9µ*ƒ^iV+ê Sèø‡Í?¢_ðí›)p­x—Í«z¡p­jž¢* ¥B‡lÿ “üO2*xŒK’o%ÿ1Ä“´ýt顚ù§'› t¬yî.C·JµiÜ_n”ÜÁªE~./Î…† ,YÆä¤Y2)£KøˆIáœóÇ96f,òš÷SδYoóÌm.Çç+Ø™Ž¸ó޶ñDC8kÞ]àî¦ùÈ‘a¶ÑWävª·öþµ¼$wÚ„©;ƒ¼°%wá– Z ù2ßkØÛÍt­ÁÓm3+Úáýšÿ1éNЄIãÿƒªqx£óN³£™PO;óNé¡saãÿBVÂQУÒÎq¾SÌÚfÐÜGЪýÜ.ànлãŸr¡?ÚÜzOdý݈[ZYËAð$f~õÙ ûG€ ¡Å›€hGkRZ< <úL2ZtÏý¬ÈZ¼¾ÐòtÍ{½Z¯ˆÛOqFÄ´kâ|ø.ÐïR¦CÙ´kúÍôï&£ÈwôïEV¤Š´kúÝß~ôç“ïo~"tÜÄtÓ®‰;ïy ×@œ5ÒÆ5íš‹qa SN»Î@9™Œ’Úé lL³t8Û~àúž´²t8û -Tœ¥³b`ß±ã!Ý—eðRAÆìÞ8»ó›ñGÑ·ËÉæèp1¶¯4¡"ÍlîîHz-ð€ å.Ê PWçDÎî*àAAFTWètkÎÿvà!A÷D?ÆUÚ­e…²9¦àÖˆm?0E·Fì7´Pùn’{eü ³ ˜ÜnÎî|`ú»I¸[êw“(ôk$`xPÐr&œ_#vWo4aDu= µ&‹Hq¦ëhNÅœšvµš1%¦˜hNIË5ï0žhˆ*-î ´šc•“ìÿ¯Öî²u×¥=Ö×ݘí-©T‡€¿*h´¼%V9¦à-‰m?0EoIì7´P¹·|HÆ[’0›€ zË^ñ"GuÞr…Ämê\„­À+M¨H-;$&‚% >$h…G/zPb7|XЄUx–5F®ot$vRœ‹3¬º§’žëë6Á1’ëëȵKÆ6Ÿèçô2¶9ûóZ˜RÆ6?*ÓBE“FzÓ,w_2­Q;Y³fkâž`Z–BCA›ÀuÒî Ck]”Í"³h aÍ ‹¼uS—.fßBœîåìu­û˜©i6ûÿqç Û=ScÔ 6zVÂ#ìŸìëGGϲÛy_¼„ÀW :üõŠôÆ‚ó¾VWwb;ð‹ üjŸà¯–¼¹¢]4( pßÊÄèØí çBè?ì‰`ê„ï̵ó‰`Š5çKaïh[ PZÕ×ñ„®˜¹ŸÐ¥ÐÔýßÞ”I3ºYiæh¹Ó–ÓJPËyƒwo†æŽKé|ÆçP‚ÏI— ê¡—Ž»Æ)÷Ì¡³ ŸÙ}v|6nO[ÜX‡ñƆC ïö,éàÿ\ þ¼Gâ ÊŽ>Ö3ˆ6<¹9-••Ù¿«££¿l<l2î\¬aݹBEyî<`JÝMJµÕQÎslºi©2°k‰‘k÷®EQ+ó;˜N”Ëë%7‰žeF¯4XÇ2cê­õüþiôˆ2ÇuÍ O4EÏÀ] w)S^à=£ÀÝ ¥²­Úr(·ñݯ¥éf–EÛ„¿VuaBMPB”ÿžˆÉFM¤Ræx@aN5ÓÛ†"/’ý‰~’þŸŸ8ÿ|ìq¯U«ÌyIÙƒßáY„­µ‹ ùÝAŠdDš$ÖÆl°{f4¡*ƒ­Ël¶ 4•: ´ÁfN š0¢¯ùqQ;dÍ34ãæ˜tp¬¾Ð ´²Å”X³\¦aÛžcvÜ:SVŸ°0Ñf”è6íRËQfß4?—¶†cl[ç³Ç|aÁ/5 1'ÙØ„Ñ\OÉó¹_Öo€¥·7,{Þ³S{'M¨È¯6hWE)‡tµ1žÕQÐêæØàpqø†‚V3Çv ÅVݬµ×¾TЄ Xko ø2AF´ÖmÎ4þ?öÞ0ŽâJI6Æ" NsF2’<#É–e0`ðln‡¤5Ó’¦‡îÉ‚r „ÈA6÷IîlNrmîû¾6wȵ9v³›ÍæØìnþýÕ{==#ÏÈTuM·ßŸÝÉ÷YÓÒ{]¯ªÞ«ëU±t<Ñ‚Z­‘•†V÷2¾ƒ8P“M¦\5¤b´÷1~˜80 £½“ñ#Ä1Ö!?‹>Êø1âÀ˜ŠHÏ/"“†¨iÖøÈº­í’*Î*d•ŽÔV_¬ë|dk-t:žÑ ž1Z_k!î(Æ3‰+®àÕ‰SØ.TXƸœ¸Æ”OGU­£´3Jõ1®%žÀù!î\Æó‰k8_prqæ'„šáÉ!“]À¸›¸Ú…Œ MÖ9ÃŒë–]±KÉ\70ˆ“0×UŒq )¯>Mã–‚5nVŠ~Ou[SÅ«˜E£Œ ¬>>W`–Ë®³Ïæð2pä©r%¼Ï` "Žƒ‰¼4¼RV.V&&Â48ÝØec¢³[MϬy4(«nÃÉ ô c#ÎǵJžoÙt ÂHj0NØÖ˼W{åZµJåjd¼€¹Ò wéÊÕÆ]PÛ:æëbW®?†ZR=tÀ‡åغÊDOõ‰³ç3vsa´Œ˜Ì‰jæ­îú£‚ªnø•°Êõ+†m¶gˆ–0 }ãqÄÛ•Ž H×­vŽŒÚ'ŒY·–D~FÜÖÅÎFÞ\í'0® ÔÜlÉ*Ù*Ǹ–x{21AûyŒçoÜüúº4_–*Å¢19[vD^ ŠÓÓùn¥~–LÌs¡½!áËuzT[m;Çío&vŸ™÷£àÎF@gªajý¾ü$JáW„eâÀ¤')SÕ QÓ$Ŧê$Å%”k²ÁJ€¸§I”%–‚º,úIõ$‘xuñ*ÀMü*J‡œæMy4’DNå fɶй‘‘f³sóiyãMÄ3J×5i|ÚÓD MG¯%TÓx¿¿|ã^♽­ïˆ n3c‘¸†]¾JS>PaŠñfâ@ÍuV$6B²ÜÙlN¥Æ>‹ñ~âÀƒ¼Æ>™ñéÄšjì>Æ׸ mÞë2>@³ÆJ'6òd|q`ÒNëªã!jrZ·×ͬ×åú ¼Ñ´Sœ†çšª}ãþî‚U¶‚ñÀ<)¼ „ð]“Nt¹ÎT‰„³½Bb*œÒ{—ðv.…Ûµ÷ ]¬+*¨ö\Æç¶ ËØOì³ï#lu넸§2¾€80fu<¢ºkCº™B‘ûÿ80éfÊ+L!jj¦JÉìÚŽb]Ž¢ ]ÓV5k ß±ðôò ñ‡G˜Rþá¶.6E×AP-Žf]ŽŽ[-æÝ¾y^÷ÀXƒ‡—Dé-US Åc\—©&*”ñ›;ãÚÏ\aøIºŠÃf=Fk{s5@¸&ÌC:á˜â²¹éUm‘[®6½lÓ<…5IN£4…5W£¶Xf~R ˜¥I© Óû˜ÊAuBîX1\ýwŠô‘,±c¹Ä€oæS›\Ä·q Ô^hO?™ç*ùyà}ÞÂøqâ@¹÷ €¾Ÿ¨Ñû*zWÛu{Fñ €65K÷tG†–Þø¯M·ÆR›lü×k˜mü¯m)•NC½æiŽi™«ñæþÖJgs¿¾–SómÛÙ†Héݸ–¼Uö«—"!ݶ9+6ÙŽan¾h™.§òÎ×'-‡×rJ¹:Žãg˜ºªÍz~Ñols\Ë|Åâ–xšŒ›¸Š)Ãáä]Çóú8|"ï«£å’3e›Åžê¼Èü-î*U—ÀÃ?ìNØ%ì° _/øÆñƒ¿W“6’ŽÎ‹dßc³|D®±`aû®ôh©ÆRm¿d®´/fáf¢¦˜¥æyÉ(›®oç+E3°&]«ݪNÇÛHEý×”5>ú.dε²y ÛŽçׯ?d^TS,œÀêÃ5ÅÚ‹ŠyñŸ‚rÇ1žÌúdå>|4n …§E~bšî cþÿ$•\žÁ=CÙ ™¦î&è°šH7Ï"ŒÛ—¨ÂÙ†Ÿ˜jô‡Ñ|0’±ö‘»÷Õ×ÇøÁ'o»Õ¸M)1>‡±›8PC¸¾ŠÕX¶Y°¾P¼œBy÷Ԩݣ¢v]´^ûÔ 4`šôÊfÞZqk¶?gM©ol=ïBQjÊw¿£¡sô—Œµ•°T°¯×®m¨z*ãÄÖּljš·ÜšòÊçŒnrž w©ýÿh=«}JÉ}´®æ4ú‚õ|OôI0xYÁØG³NŒF™½Õæy*EÓÏx q`‚E³‰q q „•êÇÖÃÏ¡×]Ƹ8ðPˆë¶×¨½]Eí„âºØz¦×i)ai«Ï®­ŠëZWó´Äu-¬p­‰ëþêYíSJî£u…p€ðêЬ¯à·GŸƒ—Œ£Ä-‰ëúTŠf£M˜`ÑÜÄ8E˜Fý(E~¸Îat‰…¸Î«QÛSQ;¡¸.¶ž©ÅuZJXÚßê³k«âºÖÕ<-q] +\k⺿‡zVû”’ûh]! ¼:´ë+x/ú$¼øŒ3Ä1 áq¼ãBuñuãÓˆ5—GÇž¼ÛDøÓŸI·NÈ®’Cü³" ?1ÕˆVÉ«Qw.Ælê‰âÂ3ˆ'¸J©cŠ«äv„‡Î*9>‡ñZ%‡º=5j÷¨¨@Ô­EÏT¢nm%, éµk+¢îÖÖ¼ØQw‹+œþ¨û丹Õ>¥ä>ZW󿇾`}ß“Iz•RW0ê[%W*„þÃb!ì—ØÚ´›èÓ4« YŸš8PS­lzøâV2Æ4Ç‘q¶ B•5Œ—Op«¤nbLq«ÄoðÐÙª…/c<„¶*@Ýí5jÇ[jlmp[ÏÔ‚k-%,ôè³k«‚ëÖÕ<-Áu +\k‚뿇zVû”’ûh]! Æ=´ë+øí™¤·*@êÆÑŒ®­ J…°+Âð£+¸S ®¯g¼¸Ú}ÉòÁõnÆ=Äi×g´‰'¸_RobLq¿Ä—"ÚJX*$Õk×V }Z[ób}Z\áô}þ^êYíSJî£u…0ÏäЬ¯à{2IoÚÔŒ)nÚøþuoÚÉK| È*ÆÕ™Ä6í@ÜJƃdÓTYØü¦HÝĘ⦈ßᡳi _ÆxmÚºÛkÔV^óM ¸Ž­gjÁµ––zôÙµUÁuëjž–຅®5ÁõßC=«}JÉ}´®ãÚ‚õüöLÒ›v uãh&µM;¿+BÝ›v JÁõõŒ nڸ݌ɦ¨òxF;“ô¦H½‰1ÅM;_ŠðÐÙ´…F7sÈlÚº^Úë¦-z¦\k)aé GŸ][\·®æi ®[XáZ\ÿ=Ô³Ú§”ÜGë á1î¡-X_Á'¿iR}Æ7í@ü¾µoÚPŠ®ŸÂ˜à¦ˆ›e¼#cÓNC±‡£à¶’qíJ'K~qÅ}:u5Av« Ä?=ÂðS®êЂTêdªT»ˆuýäOCC‘%Œ'¶ºvžL <‰館ÆiïU±ÇÉŒ§겇ü(p&ã2âÀ$ìq*ãYÄ5lšR³ÇÙŒç겇üÂ#éeì#®¶ +oåŒýÄ`ë¾íè)Ød%ãq .›ÈÏWA‘ó/ LÂ&«×W»Â¸îýÇ‚Ur|º|7o‹Æ¸kÝ\±JyÛòÂë ñ]©25f¹tõ]Áž¶ ³èãfWâ:<§þ¼¼é[Ž;Û£jó _M¨-Œ’ßû MÞÄøfâjÿÊý5Œo!Œiô…ª6y+ã;‰S m¡Éû!LÂ&ïbü q`L›œ ®ŒW`;3”[Ò“¾£*}ˆñ«ÄIǾ§C ?1Õ¸±ûîJ©bßH˜¶\/p; ‰±¬å•ƒÂ/•Ĭ” Ó… ›+KµýÀOM[†¨‰ '8¼ÆªDâÇb1#›Æ˜-~èãeÝ©À ìÀËÚc¸¾ž^vÒÁ@Ú1ÊŽçÙìž-/hGf8ç帮U$g9fù3–UªŠ¬Ó0’_ñH¹à!+pêÁë»v¾îÕL»w~ÝsJpÜÙìùÆå¶»|x°Gz|_S“:vïPÛ»Wû­ôøþ4êBÔ>¾ß-fi–+‘gUÏ‚‡QNoP£[V0Ö ê•­¼=>ÛxsÚ6Å’︔ßo|¯i© ŠXŒãÄ­ží‚¸'0NÆ´µüÒ äO2ÚÄcìÔ°TEÊŒ7&a›]âv{¨ÙÃcô‰g|}ö_*ƒ"·2>‰80 {To#ž¹-¶=ԖʠÓŸF=ˆSࡊ¾å–Dp€ )o–i©ú›ç2~€80]óOŒ#LÂv0~œ80•þ팟$L·û㉓°Ç§¿D˜Š=¾Ìøâ@MöPY†&ßfügâÀ$ òUÆï¦æp¾Çøcâ@mF‘_†&¿düq`Fù 㯉cåÌÈãðô´SöÅðÓºŠNæ7„mG0?B›½ñðLÁfmÇ2žÄ\i7ž´ÍÚÇx2ó“cÛìøªÍÂýÒZÙñ54:…±y_òÃüÓÉÆ!jæ/V=w«\Ìê,V®¼çÄ-¨q\„á'­Ò1¸t -¥“iÚ˜lßšj"¾“ñ(âÀ¸UV¥º" ?š:¸ËvŒ.“íÝ ÊÆ“‰g”º¹ÞÍ žÂ¿¤¶µ¸¾z*z¨q*c¼¾ WŠÎDÍÎÝV0WK³ÓÄBMÔ îlÆ5ı#kÙŽ òGצՑIö˜BG±Œ)vdß¡æŽlá²[¶J÷dÐe ã)ÄÕº¹žìLzPà©üK§¦×“AÓÏ&®˜YµáQã9û”;q„8°Õ]Äø–¸†.D¾+ƒüócmÍ×Ó•-# L¡+ƒØNÆ»2ˆïŠP{WvÝUWJweÐe c‚]Ù2zP ¾®l¡Ê./¨p£A„ÔBâX‚Á&ŸB¨É`ÓèØ×-Û%ïR¡Ð3ï!LÂZ·3ÞKÓZ µ¦ô|Æû‰5[fã.%˼”ñ5ÄIXæ…Œ¯%Œi™÷!4¡d’φ³ž_)à°œ:ªy è cMâ‚àé¼ëx^Ÿgå9ñ§›ª}»äLÙf±§šß WœÿÄ£8"<Úø–;Mɲ£Dn‘×’ÎÜE/a,W±5<“éÔšS…qqµkšäMç0Φ՜na|2q >£¨µ§g0>›80 £<…ñ9ÄúÛÓþ¡¢§”tŠÞÉøÄºzB…L(ÐäÆ&a¹w3~˜80­æôÆWÌZ¤+ 4ù㈓°É'¿H\-KQ]l¨¶¦Æ×Ð1Ÿe£3á¡´dJþ_"lëbޥ͠ª™R ÍÆÓ˜+mR–6*æù.e¾4¶QudJF§3æ˜ç’à ‘CÔ4ÀQÞý»ŠÕ.fu+WÞ£ã–Ô8.´3¥¬æÒY­¥t2MS“³ÛÉxT&µ³ß¡öƒl£;7,“íÞ ËÆ²­¦  ÆiŒú ,lÓƒ :ŸÇ¸“8P›åšìÑ„¸s¯$®áÔ…|ÞÈeÜE\q+`} Rìá†ÉîSèá ¶“1Åâ»"ÔºmÃVù ePf c‚§Û†éAÁé6¨±”Qÿé¶NÀ+hÛËx9q`«;7ˆ[Îxq`ÜÎMzò·1n'®v²OO綆,.0VçÖPê|GÛ¿v²ä¶Aü¦u´m„íÀ¨iÌ£ýhÛZV¨ÿhÛÂe×+ĹХ›±—xF牖&Nâ–1öW;P¾ *ô3jóÍ׫øfN~'ðBâj9 äÍ2ÈxqµuÿÿɶWº‹ ER‹ 5U:…“mP¤‡ñ<æçµ>°€¸³{™+u?ilƒâ}ŒÌã3’ö€çS-Q“œ¨zÀ­ÕD%¯Éf#:ÚV)í-93T´b[o°ö Š›)¢+,$_ö~Y࿬Z™7j< w‹@‘£CØêÞâ&Ëı§Tìq3£K\ñ †öp•ì1Ëx q`öðo%LÅOb¼¸â=@ íá+ÙãéŒÏ LÂOf|&q`Ü ³WáT!Txã]ÄÕnjl’²’Iîc|q`&¹›ñ~⊧+k¾m»¡vƒ]è™ÄöN±9–Á€gtot‚È1> |5rOï<»T·å÷Eoéöäà/Ú¥‚U¶‚ÿ)ùtÔ {‘û|ËóEåðì l¥-÷ñíËáÔTøHíQÄÞ†§Àiã©Ñ3{Œnß™ ³’"¾Å‹Ë˜[àX)‚óõ*Õ}µJ㨤ؔî í¦7î9Ðä”±8ö…„m¿cþ»äã¡uÔJBÔY‡Îè_È*d•ŽÔÖDgôUV» ÓñŒqµ¤…r½ÄÅx&qÅ ‘ÚouчVËGˆkÜæãŒ>º˜q+q`ÖZËxq`Lk©œÑ‡—3n'®8 ¬ùŒ>ºŠñFâj7µÊ[fãˆcZæÿ•3ú(µ'¶ÈüDmµIíŒ>t9qs¥ù!éŠ$®½žÅ\-áRí·©ÑÇkœÍXdÿ °t0rU‹5#j'1/f].¦g= »2Ct/Τz@â0­ºëÙëµV‹ù:±v°" Չ̡ _}’6Ä/Œ0ü$­ÆF6ÅÆ´ëÄ%¬È%qëļ'¶Wtö;øToÝÁí­Õ-ÕÆ¥â¬‚þG3Žðï(ïBïcâÚj\aøIºzqZ•õT¯¶góŸ æ¶Þ»ÿqí»XÄ^4Ý13iç'-í‰Y'°>NH|Ògñ㬇cÇt r¶„™û–(¥#ÖÕ£×øòË.µú³õ[õù Y?Žš ÅèÀ&åAIÅö&«'lëÏ›‹}å tÉ‹ÃÅUuëÏ|ã\°åá´4bØúÓÃáIÝÞšÓȵ–Å$R³¿ëZå@±n‚xa•È-(mæÚ°6d®tÊ)^¥¼”E_ªµÏS ¶°.[21ãy»½îîAsN¢Š+këG˜¯B¶ÓÛBò®eÙJw_‰ß<+®a¡ÆºÃOÒõk+Ût«ÖNï®ÚÝAM»*îق[Ú¯ ³PÔæ èÓòE¯Í;W³D õ5<ì¡ Õ6‘¼aÿ|"Ÿ§©þe‹)í0]…PÊœ¡ÉôppÖ°Cƒ J[Áøè(T/÷õ8[ ƒW(1t¡„º’ì¯9Y÷Lýe\!.ƒ™k\Œ™’^Œ"÷1¾€y‹1w7ãýÌc/Æ(¬WBþ `þ€6{txò úÐäeŒ/gþòd ò ã+˜¿"¾'T:Ú ^Éø:æ¯Ó×HJJ6y ã[™¿5›¼žñmÌßÛ&ûšä8è}Œç´«ógV¸ X;uÚoì(ÕåOŠ2ò(Ô‚·¶ŸK¨©œŽ ã¢ÕÇË™snåumÏ2n#ÔTAíñ®¬8~“*ÒÞ͸x»ÚrDí·O« „ëY©(»&gijò©[ŒÆm×Cê¨1Ü­#Ö}…ÏéÐO+øEŸ–³…‹Æßï%ßL™<ÅÚÒ¾ƒñ«ÄšjKÏüµ¥f™_Aíïv´&Sq¾Æ‚;ˆw¨M²Ô|ÛöŠÊ!/îçLUµÀ¨Á5å5;^©¹Ošû]m¨ È¥4VTÙ°#aÌ6=ÚB þ="ê=ϘEcî „E8Ù½ÝÜŒ²gLà †ÑÅ~‘KjUHÞ5îä+¢ÞyN«?N©º öoÒð}n6³jÝ_é†m£¡ºb€Î“aâ±ÆªžoŒš• ú«x“Ærcƒ;»¹²Ö s‘ =LßÇÆaq@)x ájǯ&L7k¹Õ.fu+×Ûsâ–Ô8.´‰ìàÒÙ¡¥t2MÛQ“cöÛÉxT&µcöß¡æcö –mÛ¾L¶cƒ*KO&luǶƒx ÿ’Rú=‡ì¡Æ©ŒgϨí+jd˜ÃÃÉi­V0æˆg”265±M“3ow6ãqŧµßÊg üAÆ!â2ª*wa;ɲSè ¶“1Å. â»"Ôž i—B]–0&˜ i'=(ð È…5NcÔŸ é¼LnuG³[= ŠŸÇxq`«»9ˆ;‡ñjâÀÄ»9È¿†ñZâj×ßèéæ®$ã L¡›ƒØNÆ»9ˆïŠP{B¤mÛ¯ïç ÌÆ"]I <"A¥Œú"ßhÞYAÃ^Æ‹ˆ«e©ëÐ n9ãÅĉwh¿žqqµdïz:´Q²²À:4ˆídL±Cƒø®µwh¯VèРÌÆ;´QzPàAСA¥Œú;´îǺX¦ u/ã.âjyå:9ˆ[θ›xfw ä_Åx5q Ñ£r'·‹,/0…Nb;Sìä ¾+BíÜ®K:9(³„1ÁNn=(ð èä ÆRFýܲ/®+èÛ˸xFßf¦ÝÄ-gÜN\CIùõJÈßÁ¸“¸Z’b=ÝÛn²¹ÀXÝ[C©ó%²„:Yrgô‰Û³ÉÚâˆ0­D–W±ÃOL5Ž«V‹íÕdv’Š]ÍŠ¹ƒP\îÒµšœÂxqµþW®Û‡¸ã—W\>¯ýö“؃^`nj¼Á¯z Vu“('™™sƒác>=P* Ça½4Ëuq¥S“õ­ßX_ôœÞú“Ûa’=Ú P§Ng|”8PS:ªšEiè¥~ÅøGâÀ$ª×OÿD³z])άñ6`ÜXiLØÓ8†1kX7WhoÜÀ0ÎÌÙõft‹ z½ÆXÅÙ‡œŠ¯àuþL(Ný™PÑÔíüzíüTï{Ü*zÖ­“þTñ¶[…ï¿õ¶=®·îé>+·§ç6üðæÒ­gån»-¬}ÆwÒ1ö Žßì Õâ«vmݶ~ãèŽÆ/…9Ì¥Óâ‰ÇÍ}bÑž©›¼@ášwÆ܆‹Òxgyk´MÖ(>©¢¸ø„Ö˜PÓ$Ó¦FÃöìžîzïéiVLWoÝÐJýKEýl¹qÚ¢ÒiX}[3H«„DHXê"îLRÜtŸ8n­Q`+aL¯ð,#ˆ ¦z Ï<¸pàt/qq6º™8ð"ñO7Þ›±èºcËÀÉ„žúû§Ã`€®E®Oµ+ޏ–3Þ#\QMþ<é¡ Áfüóß%ª_C­)DM¡ºÚ©åkY—kéß™D“ºÀŸ/bá)&uøÃ#L+©ËulŠë‚jq=ër}Üj1ïaös»Çæf¿¤&§êYöëIœÀ=¢ì·Æµ+Ô¸ ´xÜÀ&½Akõz¤:A°¾Áùõð$OÞ)*yŸ©æÄ„kM ³b]ò²ëà€9 s Ã…ýκSS>¯(þV]ŒýǨ:Ï~ïá>¨v`¡áÁ}ÒóPäcŒ'®v]«Ü@â>Èø âÀ˜Ié, Tø$ãg‰u™Dþ, ù ãW‰g”Ž1Ê›äsŒ_#Œi’W÷-ªäTsÿ6¾µÖÚW¶\Û*åÃÇ(¯Líá½ðرïøASnügвà pÑ/ÌÎ=—¼µäù–YÀïq†@… óu¶ óJʦíIŒ·1¿-‘ Ó6ÍødæOŽ]aŽŠ®jÀ- ò¶i{ ãÝÌïÖgùÜPäŒ÷3WJr!o›ç2¾ù cÛæú¹óÛ¡pÅGÌëV[¶Õ¤]sFV;?Àø;æj£°†;ú§ìu%»OÉ›¶ý‘ñ™ÿo2ÖþwÆÿcþ±­}b–ûÃ÷гÀöˆ5™JõÄ´9qq`–j_ÂxñöønuÜÎf&Lz„ñx²qˆšFÊ+Ó7²:ÀŬÎbåÊÛ·t Æq¦}ìï \:OÐR:™¦©É¶$ˆíd<*“Ú¶$ˆïŠPû±¿£Ëd{7¨²„ñäLbÇþž@ <ŽýASõû; ÇþÛÓq6 A§ŒÃÄ3JÝm 5Yô‚¸³×Æ´üþJÈa\K\Ã!såŽì‰d_)tdÛɘbGñ]j?ü·Sa#tY˜àá¿'Òƒ‚ÃPã4Fý‡ÿN™»½R¹Wƒ~ç1^BØê^ âÎaÜD<³)…^ ò73^J˜V¯f’­¦Ð«Al'cнÄwEØ‚^m‡t¯]–0&Ø«™ô Àƒ Wƒ§1êïÕN z5Û×Ó¯AÃó7¶º_ƒ¸s/%®¡?9.œsC·ï ^tG…¶0^O˜VG7Fæ˜BG±Œ)vtß¡þŽnôz鎺,aL°££Ô8QG·4èÖÆtõtPñ<ÆK‰«u9r=Äø…xFm‡ní·òäoe¼Œ¸†K•;¶<™[` Äv2¦Ø±A|W„ú;¶õòW-B—%Œ vlyzPàAбAÓõwl+L7ïÙ%Ëðn®`]ÃuM½ô=q7qµcÆr½ÄÃxqµT8uÅtNÏÁ€fi¢R4Ý9û_å#<¨x5ã-ÄÕî°×Ó¨zL¡#„ØNÆ;BˆïŠPG¸Yþ6`貄1Áް@ <:B¨q£þŽpp³kYSf©owe¯5kœŠ8:ǽ£–ŠŸÇøxâÀV÷ˆwãÄÕn,®ŸÐ4º¹ÄŒå†(3¤I_••¿Âz=qq`ZÝ E•C`¬n°¡ÔùJÃ8,9ŃÒD„i”g;0†Ÿ˜j\Z­[œkYüѹ–éaÿMÁöò•ð¦­]ùÉÓ½ÅrkJŽô¨l€à—†—à©Í25Þ§Ÿ¹]<=úñ÷¯¤ Û6ÆQâ™+Utkxvà°QÇRÓé*FL~!€¼N[#\°Ç*å›HÝÂxCF×”ÚìÚVÁBè¡8{/ñÇæjhkXƒk2±ÐÅ]kSØR_î}ñ®{?Ëïý™ä[û$7I­­ýÊjk¿Þr#o‹¸PÞÅaì~7‡¥>/Š8o¹¸ë~¿›Mûkp ‰äkÙüZ6µ)ñZJm«aÌÒé;ë–á’¬tH …®e4‰[RÚÔÇãþf,¶™—ÝhOkܬ}n]"gÚ—‚ÉòŒO!Ôd²³PP±Õ3ŸM<£t‰«¼­ng|q`L[Sg+ô` ö¹“ñ%ĺì“[9 bŸW2¾š80 û¼”ñ5Ä1íÓy¾ÈáYÒã3èñZÆ·j2Ì‚íÕƒÓR½—ñÄ3únÌ™ç47¾ñâŠGÐj¿=Šî±*è|žBa|ñ³ÄužÁ’ßÈE¾Â˜à,ˆûã×2ºÎ`)‹ƒ _gü6q .“ÈŸ¤"?düq`&ùã‰cšä$º› A]x€•n[T°ÒOÿL˜nÃù!âIÁ3ÉXé/,¶yü}!ŸV ´3.d¾0åvÓö8Æ#™™ˆEÚB<Šyü)óàe4ª/“Uø´u1žÅ\ß¾ðÃ1ð1‹E•aOÛ Æó\2†:›q€ù@lCuÅè´ 2®g¾>ír¼Œ¹ÒÎyël`¼œùå±­sdÌ` —à ¼–¹Úú||"ó'&cšëMæJÓZ‚5lY8Î|ÀüdŒÅSGm2ð`pv£S)5¿,fc̲ĬŠÎáUñÌ 5# ?Iת2[²¬µV½´:žÃõ ȪîTw¶‡—ÍE—ÄÝb5JÕÏK oŽó<‹NÃxAp™…ó¨:ößÌ|)ÐKcÅ0µO),@‘W1¾šxz!î!Æ××°¡Wi±*¼–ñĺLâ+™äíŒï LÂ$ob|'q`L“øMö‹ÆÙ½ÅÄ£‹ËüêÒò—-×sJ}¾=e‰•;×ööÎÍÁ¯!¥4Þø]„mË™/×VTSJC›>ÆAæJ]ºt5h;—qˆùPìj #¥44ZŸ…yü¤.Ò>Î%‡¨ÉÇ)ŸáõXàbVg±rå==né@ã"L;¥´Ï¥ãk)LÓÆÔ$ÑÄv2•I-ÑÄwE¨=¥ôVù”ÒPe ãÉ™ÄRJûô Àƒ ¥4Ô8•QJéc‘RÚ.å킸0Ã5¥OA¯Œçj³R“4w6ãÄ5\O&Ÿ¾ ò×1^H<£¶"^_[;³ ÙX` Äv2¦Ø™A|W„š;³Ã‚ÎL!¯4”YÂx*qµü1rÝY…xÿ’Ò2¶žî j,e<‡8P“iNŸ›W:V×{·¶ºkƒ¸åŒ—×P¾kƒü˯ L«k›&{ L¡kƒØNÆ»6ˆïŠP{B®­£ò™ ¡ËÆrMÓƒ‚„\Pã4Fý ¹–7ËH«‡ƒ®ç1î$luqç0^I\1Hí·ò=ä2î"L«‡›!» L¡‡ƒØNÆ{8ˆïаÁ›BÎA(³„1Áàm†xoPc)£þà­»>ç ¶NÚö2î"®ÖÊå:9ˆ[θ›¸ZÆ×%„^W1–ˆgJéu~û¨FŒÕù5”:_¢AÌCv²ä Bü¦•hp–íÀ˜Ñ3w}lµZTW×%õº…õËz«­ïQš „*'3žF\­w–s wãRâ™ø;Ä•F¡ÂéŒËˆg–iõÕ -P¦‡±Ÿ80 ³œÅ¸’80¦YÞ-ö/˜EÏ©nb[¢Ì‡·`ÝÔóë™n!èáæxKÛñŒî][G½ž^NøRwvd¿ÅVÛç?°Ã}Œ®\Æ…Êy¿Á³¸ÝœvÇçMÏê­®ß)µí,ãψ5U#…-Pä7Œ¿%L¢ ýœñ_‰ÓjÙÿÆø{â@]&‘ßòEþÂøßÄI˜ä?ÿJÓ$ßKÜá–¤ÚûÍ« 6kÚòpøD Óì²ÑÜÑÌÅ_FTov*è$\;üÄ©-×kØ"Å`Å«˜Åâ¬1åà,XiU];ˆ«¡KM¿B=ÅÜU!ƒÓÿW<ô=á©2…ö?„m_fþåƒÀw´}‹ñ{Ì¿—H-kû ã÷™?v-;Stùv~RÔ‰ýêCVzÈõ~Àø¿Ìÿ7ùõV²wˆšBÔOTCÔ]a~4œú ¹ÕíŸ$·×;lÑžÂQõü‹ýÆú‚8bfÞòäÜwõ\g#—lÈiì” Ï)V°“‰¾aeÔ2„<‰Kø .ÉOhkƒ1òB¡Ï3~ƒ8°Õíâ>ÉøMâÀ˜5KkB^¨ö-Æß×è˜UÒ…@“¿0þ•¸š‹”·Õ2þq`L[ÅNÈ uþ—Iï?RŸ}òB“ã—0_’ˆ}D>à‰ÌÕ’kÔ~«žzœÄx&ó3õM ($ä…&+û˜÷i3Ì< y!pc?s¥²Æ„¼Ðe%ãÌÕ6ôhB‘Œ—0¿$™f³ŽqsµCâµßæ(ÑQý°6VOšÓVm”£I´mfœf>­Í|Ê.¡ÎmŒOgþôdŒ8Ãø æj™×j¿™h Ê<“ñ~æ÷§9´½”ñeÌ_–Œu^ÈøÌÿ!¶ube¸„*/g|˜ùÃi÷~ïd|ów%cš73þ#óŒm=é¡Ó»?ÇüsÚl'"4ú*ã÷˜'0kq¼ÒãŸH¨ÉÄê©û Ï£C˜„¥MÆ2q`LK«¤îƒ73úÄÛ}m†QKÝ]ne| q`F©0ÞNÓ(ßPIÝ×h®÷Nâ‡}*aÇnâj{ž4%ñƒ"70î!L †u\ÅøxâÀ˜5L!‰¸‘ñ‰Ä1‘^±¹¬bFÏŠZ*‘'³.O¦gÍ0¸‘aæÉ™T3Ì@üᦕaæ)lЧh­òuâvVØÁŠt$U'.b,|AôIÚ¿0Âð“´OeS<5í:q+rGÜ:1oÊ¡l÷P±ƒ]{]æ¡“fiÂB¤·Íôó“?ÞiÚ®l¢;è9ñï\¤òBû#ãZjlˆ0ü$]ɞƶ}šÖJömòGH7R®¸e‡.4ž{K1‚´1±×†ò ‰(ÌœB!<ž'³c@ çöOPÔmõOôC;kÜá Ð÷-\†ì»–IQfPg*¥BðC`‰º"ø ðzðˆˆ –YDð'€S\ÑʨhÁWž=Qò¤cާsá¿Í…«v_,?ƒÕx†V«ÅÏd]ž™‰sÌÛ—tw™sÒ—]Y1K¾í›H…#Rc!‘•lòL’'p-ËVÊ?/~s_\ÃBu†Ÿ¤ë׳ئÏÒY¿Ú^WÝ…tM˜‰Œ²R{ÂÌ›•Œ¯é2Âu>»š­`ˆ=D¯¹¹¶fxy³hñxМÁÃ%îˆzë·O[®'ò(‰É$gœ~‡÷&ƒ_¨˜áØ×ðb­Û z°;³•`àÛÓkð^©î9›¥zhÏ2zBháÑÕ"_öÔåt Ýso'7º7Xù½–‹£1kÖœo\jAiË7Ìb?~:2x¾q…y“U)¡ìzl.w¾±Íq]Ûÿ²Ù9ÝžÍuåÙq·à¯Ó6.î˜ÊIÏ|B“·0¾-“Ø?÷zÆ·gtÝñ£´Ã*¼ƒñÝÌß­Ñ&J6ù ㇙8›¼‡ñ#Ì?Û&ýõ3]ÔšMŸr·Í8ac¥€%Ÿ7E¿"¥J”ñÌÿ¨ÍŠ ¼‚ZÓú_Bxjp`fü‹m#Þ?ÞQmZb}xñvõp§Q”ÚVû‘ŒG&`”öEŒÇÆ4ʪêVãúK+ª-ôÙA¼0m›¾jËÂm`7j2b»«dÂmŒÛ‰“0᥌;ˆcšpw½ ‹ÂHALãÏXöÕô¥ßTl¦;_M¼])±kc —”,ü&Ƈ‰·+í‚‘·ðkßLÓÂ+ªöÌ©r¨#Ö’ŒzrìÖþ-â@MvSMF m~ÀøSâÀ$Œ÷mÆŸoW;;Xû­Žd¤ÐèçŒ&Lzœú²qˆšæA”ÏùßÉê³:‹•+ïqKjaÚÉHïâÒ¹KKédš6¦&)` ¶“ñ¨Lj)` ¾+BíÉH·m\&Û»A•%Œ'gKFz=(ð HF 5NeÔŸŒ´kÎÜ“‚r+×j3Q“”Y˜`wø\zPàAÐB¥Œowízì!n9£¾î0ÇÝ!ÂÞ&}aí:¦|u71VˆÓêŸGC` } Äv2¦ØB|W„šûÀE¢Ü"Ý B›%Œ§O"—ÝóèAKù—–¦× BÓ—d ´ëc¼„¸Zo$× BܹŒ›ˆ+^_^ûí“Ø Š­i“–o¹Ž—· ¦çÛy£ì”+¼h"v”òÖWI‚þÔ)Y¾/vx(ô§xóÍŒÿD˜VzÕ1)ô§Ûɘb ñ]¶¤?Ý)ÝŸB›%Œ ö§÷Ѓ‚þjœÎxðö§Ð®1ÁþâÎeÔןî~lýiÙqŠ7 Ýü ˬ ŸÈÊ÷“x£ÍŒ/&L«Ÿ¼—êŽÀúIˆídL±Ÿ„ø®5÷“‡S?)xB%ŒK‰«õXrå½ô ÀÓù—NO¯£„g0žKxu”ЮŸqqµK®£„¸nÆÍÄ1mõÒØ%¶Üq) æRÆŸ¦Õß>Ÿª Àú[ˆídL±¿…ø®µ÷·¯Ø´k£|†[¨³„1Áþöùô @}ýíB£[>T8ƒñ,â±-[ÕFE»¬`Ì&a—³sÄ1íÒÙ£ê¡ÇãùÄW±çÔyNª((ºqñŒÎÌM|!Ä]ÀøxâÀ˜öº²É1cÌôèÌiŒÙ¡ùÈ.îN™Ec*¨QEaçèTmuô¤=^çFÆ·¦åÁ#0±Œ)z0ˆïŠPûjÝè…XPf c‚«u÷у‚Õ:¨±”QÿjÝ~ר֟ÉSе—qk&±kT!n9£¾kTO0ºçž”ÏÊ•.g|q`Z½Ý ¨ ŒÕÛ5”:ßÕ[ØuÛÉ’S¼z âˆ0­«·îg;0†Ÿ˜jœ[­»÷?Þ‹£Ážølé#­/deç²²j3ø¶ƒ¿Íî±Ç­¢gÝ:éOo»U´í[oÛãTü[÷tŸ•ÛÓs~xséÖ³r·ÝzÖÀm·…ÍroíóoÊÙ·õ1°Ã/?îk~sñU»6n[¿qtG“×ìfÜF(÷šxâqû=±gê¦àM2Q7Œ,# 7,£0̳½Fïí*z‹g8@$Ó¤Ö¦FC?uòžî†vßÓÓ¬´®Þ4º¡•j6–ŠúÛrµeæÏѤ‰¤TP U<@CMËz¢•&,uw„-mSµßæÄ]AE‹Ä7ž/†»˜°§-‘U0FôdVûÉ©9Œe{Žž•ĽBÕ{Ù͵²geðSUòÆ÷>ä}5z¿OEo=>D‹/VßÓ}ઠäP´è,íPôì@å±4¡”J­¡¾©!§eÐæ>¦uRàcô´¹ºoûÍòóõµº|ˆuù¶ö¯È­S;K¥>ÁøUâÀVOGA܇¿FÓ>íÒI" ÿëŒß ®vO›§>õ<Æ:cw³üÿ(è¤n0Î3ˆ÷{|{ÊòèÇnÐÕ×üSüVý‚_ ¥õr1Ò'ÅŸÇôwW¸ö üx~ÔÌ0nø&a[™yùЈÚnŽô\Zo-qƒ5ö7…cÏV×6•ØCÏ{ËÆ~ Ø#©–žRÉ7|gýMZu¦ixÓB©ó‡7šº†ÚoWax\;|Ž6 aíD,«Öœ|ôzÅêOŒÎõµÌ_ÛšhHþ(”z3ãû™¿?‘hé~€ùb›S)õTx„ñ#Ì?¢Í<]uæ‘ßl ­>Åø æJáš¼}>ÊøMæßL'Z7z¿Í\=3qÜhõ¤zù!þ¾“ûûæ)=¶}‡P\6ôÂC!zl_é .¯·–èQ òis£Çš(DÁwëÑT6ÞÓh¦Å{ÍÛJJeÕPË·Ø´lØ4þj¡Ôùã/M«®ø) ¢ZPUÕçHÖçÈymù³dÐêxÆeÄÛ—%âµÛb<‹x»Ú>Ù:qŠQUûÙŒÝÄšìst½}”ªö•Œ&a Æ‹ˆÓ«Ú/f\O˜RXu~£©q×ÌÏ?ApÛ­ÑŸ8³f¤=w¨Ýc¬4T§óÚ70¾ž8ðÈÞP£÷TôÖiQ£apQãé¼ÇXo”b6-/#³é³äb¶X 1¥âlø"ÊÝAZÖoíµNê¢==-·öÛgUgÛn® G¯ë8~8ÍfN[.Žw„GðpmðÓ¢çð"¹ÄÚ5‰$;ÙìX1ƒßv\§21il/_ñ¼š¹»ð"¥¼U—§[½7íè'ÔÔ)f„2«×ïPºáG:€éษã|âñSVªF˜0^L¨Ó,JÓ©—2^A˜„YÖ3n#ÞƒÙGëÓþ…wõôë‹Enb^Í>hÒ¢ÁšårÑ΋«ŽÐDÞQftã†Å¼k—}ÏÈ ûˆ¤Ýáææ‚Ur|ÚÛ6üž/ñ¬¼€¸X-øÊ¤\ß|äal–²ðCœ]šßäÒÛN¸àHâ ÔÆ”µßJo*€ªcˆá'¦wW7•o-åÀ§ûvžïJrÆý Üq²iLÙû`Z»„B¥…sÚ´‹dM×™jvc•ïàR©r…læÕV4Ý@^¥hº½†=.ÛÔär–Z ¦¦®r4yã ‰[ÝÎ!¦ÑýB…_J¨Í&òÆ@ƒW1¾†80 ›<ÄøZâµå½Úoó¢g«”ö–œ™R¯1VñÝõ†€ª`»VÞzL×*;®O×Ê™5-N4ÑÙ^ê]ÑÞq›gù*aÛáÌÕ® ÖØ Ûºa~L"o[Ìx,ócc[ü8ºjÞôùZwµ6Ùvã9ÌÏI»M¶õ2ö3WŠå-´œq%ó•±-t,”5º§Ì½HCïFkÔ2gwÊQÜx¨`Ê,ã^æ{µ™òÇ6æ5§Ë¸ù¾dÌYdœe>Ûœ›Â+{… E')]wÒEx¸13°cðÓ Þ,zøzí©F½ v½…ñÃÌ?¬Í®Je@•O2~†ùg’1êG?Ëü³©Å2mŸcüó/¥=‡2ßdü.óï&c–/3~ù÷â›E1ìoû>ã™ÿX_[Q¹)ªü’ñ×ÌŒQ~Âø濉mùu#Èÿ-ã¿2ÿWQsI`üó?%c‘cü3óøW…¦t+ tø ãÿ1ÿ?mVQ¸÷1P¤}!ãaÄÕn•·ÉßXì"âÀ˜6±ÄãŽÑ†#4-c±öËÄÛ‹©wíã4q`FoŸbœ!Œiô“ ÆÆ‚€PÅNûï!L¹Ãl€ñÅÄIØé^Æ—¦”ñåÄéö—<³"–Û^—ѹÎ7¯I^Áøâ@óY:7È£$½‘ñâ@ñ¸üÒ”ù㧉“0Ò?C¼]itVWGôF×¥*糌_'L»Kû.㈓0Í7HÓ4ë2˜y¿bƒ“%Ë* h0½9©(ìwJÁ£ÕÌ ýaÇÄ)Ç<×ÑC˜€A; ÆÄ1 ú¼úKÎç "up¶G$ñÈOŠl#—]«Ï·<¿QœÙmS Yv<¿éCÞ¤S)AKºzÕˆS-Òì8ñ}Äi׎0~Œ80‰Úñ~ÆêŠ4{—i—P”N™A«O0~x‡Ú¼M ÎÜC©GG˜„Åx©ã߉cZl[ouä&¶;T‡w^ÙÊÛã³Ísñˆ±„gM4Ž÷íøÂëˆuÅ®M³lÌgÚ—0n"¾`S"¦]p!ãfâã™vÂàäž~_`DßF‚x¶=˜bÿ òÊSÂ\ƒ»^þ…`°ŒöËN©€¥!Æéóì6½ôé1ú‚KßB\ &£ûJFÿGÆw˜€ÑßÊøâã}¡ÔÛ.x/ãˆ/P;¿ÚÐ"e%‹üãLj/HÆ'.x„ñãÄÄ÷‰¿é5И‚^Õž¶‚޵›B$S¬·bgM¢[»$üçÜx >¸ºôgã•R!Sà€‘oÛÓ©¼jëe ÐçUÉš0¡ZEm´ÀëÏùÝiÐmõOô«ÌÀ/`7¿ð­Äê©xÝ–—7‹ùîzoßk”íu}ÙþlnM¯Q²×­Êö(TÏ…ïfü>q`ÕsáÛ@|¡ÒÀpNÖ€YÛ*°].¬ °6ꄼ¡þð°c‰5zQ`ÎÁ¡ì;v2ãÄS+JÛñ0ÞØr˜Aü0#¶;ä·ˆB3Ï"~XüvÒ[D_D& 1üÄS£}¤ºE´: zWËE˜3…mˆvǰß6_ᩆh‡½gpw*vðÙEÛŸ »Âš+tËÕ:;®Ý®/žä=Äbç¯ôÔ[©bPktÏI}Þå>'·`Ûy[È'íh-^'èîpYмOŠ¿×vþ&züñJ±:¹Ù½ÝÜkN˜3fõþólnU ãÖq**‘²Ù)“9©Œx´þÞ®ámps_¬VZý»36Õ3ǶEÓ÷1{!ö c¦ RbÇo8⑬¾/æê‹å‡îF´õmJs PåbÆÄ­îØ n-ã%ÄÛ•.2Œ¹°ù›7oWNi›Ô…*Ûw&a‘K¯$LÅ"£Œ»ˆu0JJö¸žñâÀ$ì±›qñv¥[{4l´€g#Ôeù…C(b3ÞD˜„MòŒ{‰·«mN­ýv ¿œ2¹1Å{V S‘ñ©ÄºâfvÓ*†z6ãóˆ“0ÔŒ÷WÜ~PûmW4‘ É×ʯPæ^Æ L:†~ ™7D=1´ú•./eu€‹YÅÊõö踥5Ž‹0ü¤U:qé<¤¥t2MÛQ“ë½ ¶“ñ¨Lj×{A|W„Ú¯÷Úxõ¨üÚ”Y˜àõ^у‚ë½ ÆRÆs2º¯÷êŸ{½×ücUÝ{¯#ÔfÁ&éA n9ãõı#mÙ®òo`ÜC\í^H=]ÝËÈþSèê ¶“1Å®â»"ÔÜÕ-\¦ÒÓA—%Œ§¶º§{=(ðTþ%¥VOO5Nc<›8P“eΜÛÓí7y¥ îyŒ—¶ºsƒ¸s¯ žQJQß¹IOXCþ6Æí™êõCiunÿ@&«sk(u¾‹ Èv²ä/.„ø#"Lëâ—³õ ~ÚN«»¸°`Û%›ó³…ˆlsÊÂò)]Re—Œ9³ÑHö“[Õ#Î]àw&-׊ÖŠ>lÆÁÆ6!$º×¸v>Ë¥<¯ÐïÖØ[:°jfâd&…›*¤`…ÙÜkEËÌEúõÚUŠº5±(^Ü.X¢Ó*I7ÜW°…^re?¾•®(¯dѯÔYQ2‡)u¯b]^Eÿº¦­ó8b2ÒXb+@áÏ p _}’¶ÄaøIZW³)^}T‹×°.¯‰[-æÍwn÷ÐX±-ì¾Ðñ\bç'ß™r*žqµSŠ–§ üqŒ#,zDEyñ›Wǵ+Ô¸ Âð“tõz-›ôµZ«×ëݓ雜BŽÎþ[ûÌ©Àan L®‚<*…#O³‘…³ò ×ZÐÑW·J¾åëø-Oä·|¢ò[ÆÍÂÚ9`Ðu*Æÿ¤c`ß@“Wš7m*ÞÇdœ!ž‘>’‡'N› }÷Õè½OEïj[l?à¼ÉÐA›wrïéŽ -U›n¥6É‚ª×0Ê‚ZÛR*†zÍÓÓ2Wã´¥­•:OÚR}-§öÛÓƒà?èôkêð°3Ò«_µ:¾uTʧg@þzªhãÏ66kR ‹ùà?ÕŽc<‘ÿð‰Ê­i$nL5N‰0üÄ4ÜÉF³ÿ$Õ{x2òäØêõ‡ÁD0âµöƒ÷TÔ‡Á'o»ÕhšzÞhá \®À¥\®KµD  XæÀ±ÂBñr å}zÚ§«¨],Ô>uÅk“^ÙÌ[+nÍöç¬)õâ­gÃâ](*C¦y¨Ñ5GI祭„¥b ½vm;@ÕS S[[ó'jÞrkÊ+Ÿ0V¸Éy*Üa¤öÿ£õ¬ö)éõ¶ÖÂ<1Û¡/X_ÁŸ}°LÓZİM¤ŸÁ¸Œ80B8+Âð“`!œÍx.q`ÌB8Æð]ß0‚æŸw¦,#§R(ÝŒkˆgÖ$Z(#Œ×1¨Rë" ?‡FX{!ãzâé+–Ò k7Ô¨½AEí„ÂÚØz¦Öj)aépCŸ][Ö¶®æi k[XáZÖþ=Ô³Ú§”ÜGë áÑå¡-X_Áoˆ> /7jŽèT åRÆkˆ5JÇž¼ÛDøµŒ××°ÝVzâoˆ0üÄT#šF…‰rêA÷Å3„‡Ô4*>…ñšF…º§×¨}°N£jÑ3•xS[ KÅzíÚŠx³µ5/v¼Ùâ §?Þü{©gµOI‡=­-„y¾C_°¾‚O~RÏ`\–ImâÏŠ0áiTH=›Qß4ªR!tG~ a¿Cú¦ÝDŸ¦Ç† ÈJÆ,q ¦¦ÙôØÄõ0æˆcšc‘Úî(1À¸†x‚sÙ:˜â\6į‹ðЙˆÂ2BsÙPwCÚTÔNhl[ÏÔÆZJX:æÓg×V-ZWó´Œ-ZXáZ3¶ø{¨gµO)¹ÖÂBüC[°¾‚ßIz.R72ê›ËV*„K# ?ºÂê1¥°z;ãâ™É„Õ[w¦aŽ+# ?šëd“¥eÜM<³;~È.%@üU†Ÿ˜j4[J^íyÕs'?4– ð)Œ‡ÐRÔ=½Fíƒu)A‹ž©„ûÚJX* Ók×V„û­­y±ÃýW8ýáþßK=«}JÚ÷¶扺}Áú >ù¥H=ƒqY&µ¥ˆ?+„— õlÆ— ¾;BÝK yé1YɘÍ$¶”q=Œ©/%@‰Æä— u„1Å¥ˆ_ᡳ”…/d<„– î†µ7¨¨ÐØ"¶ž©-´”°ţϮ­[´®æi[´°Âµflñ÷PÏjŸRr­+„„ø‡¶`}¿!“ôR¤ndLq)â/P÷R‚ü¦Pd;ãŽLbK ·…qg&ÆRBC±‡£TЦÛ@2r˜t²ä+‰+®ÔUÙ |ˆ0üÄT£«:?#’…J*õ0Õ)]Ä5fžVØ?E–0žH\-Ž\í|˜xÿÒI±#äŸÌx qż;š¡È™ŒËˆ«ÍÐÈÛãTƳˆ+ÎÈÄ·ÇÙŒç×xÓ¤éeì#LÂËû‰cÚCíb*è°’qˆ80= EÎg¼€¸Ú4‰¼MV1®#®aZ¤Û(X%ÇçüÏV±hŒ»ÖÍ«”·-¯ßØN_™Ò×zCË -âK›Õø®ŸSШÄx3q ¶ðÜ»²VÁãŒ.ñŒÛp UÛ’Ç8C\cúMXe@A£ÛŸF˜ŒUö1>80¦U®—Éâ&Õr¹hSzuÓðìÒ2ëâ‚W$Xô*c7Yyduwñ@x,2ízµß÷닞£äÅžÁøÏÄ)·½GN˜Œ•¿Ëø âÀ´ÚÞ/C˜rÛû㟈“±ÊoÿLÓ*o1¦ì‰Ißž°D»Âå á%ξ´·FÙ±q‡ßO?f;¸ !0¦9î[H—í»–éã¢Üq\ ¾š5ò¦Ç×+PZm×™ Zh~²š\›/~Óu‘\»@w$˜AÃv'pÛ4%Y•ZEõB‘9ü/„1‹L9µê›© \L¨X™ƒ'õ¥V}3ý1AjU¨qJ„šR«FóJæ{ ›ØÅæëR6_¦™ô&Suo¡çÇ¿s\ì"‘žªƒøã# ?1ÕH` ŸÀxqùÙ <‘ì:#Ô=¹Fí“UÔN`Q‹ž ‹·ÕëŒÚJ¸Isn¼þ£×®­XglmÍ‹½ÎØâ §ñ丹Õ>¥ä>ZWó,÷ú‚õüÉÑ'Áà寥ÅûÂQ5YÔ¹ÓÏ#L°DzW¦Q-²†ŸC#œË1—ŸàN'œ[U£ö*µ çbë™Z8§¥„¥Ý¬>»¶*œk]ÍÓε°Âµ&œû{¨gµO)¹Ö¢ªC[°¾‚_} ^V3ŽW»£²®ŽP?Y EÖ2^B¨¹8š~†ÐMŒ—WܽVW%dçL!~K„á'¦Ñœ)~–Tê­âÂ.â Ι¾•ž˜âœ)Äá¡3g …O`<„æL¡îÉ5jë¹ÒdkÑ3• [[ K?zíÚŠ »µ5/vÝâ §?Èþ{©gµO)¹ÖÂ<±î¡/X_ÁŸœIzÎROaÔ7gªT§Góðû~þÝ´Ï“ßp ]Îaì!ÔT1›n&…¸3W¦a‘ó" ? VË^Æ•™Ô&®!>á¡3q …sŒ‡ÐÄ5Ô]U£öÁ:q­EÏÔbj-%,ëè³k«bêÖÕ<-1u +\kb꿇zVû”’ûh]! ´=´ë+øä'®!u5ãHF×ĵR!¬0ü芩óöyò´ ËzÆMÄ3›’‰©ÏgÜL<èi„1O 7«–M t ãeÄqË@vâ/0üÄT£~AzeçmTÁvOpámôœÀ þø(|ã!´€uO®Q;Þ`ë;ZôLe°£­„¥‚P½vmÅ`§µ5/ö`§ÅNÿ`ç丹Õ>¥ä>ZWóŒ9}Áú þäLÒ z cŠ z„-X@Ï]ÎaìÉ$¶€qg0¦¸€ñçE˜ð¤ö2®Ì¤¶€ñÙ(œc<„ îªµÖ-z¦Sk)aéXGŸ][S·®æi‰©[XáZSÿ=Ô³Ú§”ÜGë á¡í¡-X_Á'¿€©«G2©- @üÚu/ Œ©, @—õŒ . @ÜùŒ±Š/g*’“t²äK‰§±ïâ·D¨ißwMÎT;?iØ^˜‰Ç3§(az†)[sßNõM`7qÅ4ðm›`[SåÉ[o£˜°û¬ÜžžÛðÛK·ž•»íÖ³‚È~¯sÀ؃Gž1.Ñ ìPñâxŸÆ‹ˆ5xñÃöLݨ^Ó^uGÐ÷â½/VÑ».8š¯[](,ÓJ5vhGíéŽ ½§G2ÞѦ›T¼£×0a\ÝÞ¤êÔ6„”J§¡^ó4Ç´Ì%ÚbÂRç Ë´ ®+÷+9ûšÈb:ãTŠÃtmÏ2ìR”ÁÍ™*?,M¬Ì;%ß5=?à"œ]*Xe+øŸ’Où½~Y¯VûZ÷òkÝ›¼s}ÕÉÃOL5–VëîÀ¡:eßvJ|ªp°’*¾“U.eÕ¦y5ÀES–éU\K6„6g3® ®6Õ) BÜéŒñ’zÔ~»=¨ü•)‘Q4»XÕ¿â[ÕC«\Pž1fzVÁpJ˜s²š®%ÅïÒË8K˜tSx׳wim ÊÉÿ‘Õ.fu+Wûã–Ô8.Âð“Vé¼›KçÝZJ'Ó´Ú¾5ÕD|'ãQÄI“!¾+Âð£©kWAɵŒ;‰k¼¥éÐ↯$®áj–ö^ÙòGw¦Õý‡ -0…b;Sìá ¾+Âôp;ä{8(³„1Áî=ô Àƒ®‡ƒRK[ÝÃ9…‚§ÔÃA¹µŒ;3‰õp7Ęfù£ŒA÷^2´Àz8ˆídL±‡ƒø®[Ã]"ÝÃA™%Œ öpï¥t=”Zʨ¿‡;©ÚÉø-¼¡ ßlbb>-×2^I\­¯‘ëâ nˆq”¸†‹íÚ¥§Õ ãnâ™Ýéuqï#K ŒÕÅ5”z¸èÚì[5%ŒÓ;YrgôIzRâˆ0ü$­ÆûÙŒšæv­V‹]–el°ò{q[H©`l0‹æ„ozFwndd°§×ØXq}»dX¾aûîlv øé¦â˜SqKÖÜŸo6',·ˆ?}‘ ¾ØfΊ¿™3Yòœ’øóÃÁÏ·[3ygjÌ?Xü`—o¦ÌZ¹\]´v½S‚†{D·X°½|ÅóÄ--€zÑTŸtóû—3ðQ.çG“7÷#¬Æ#ZÍ­uVûƒ¬"ðà™Õ†6g3&8« q§3ê›Õ¾B}VîéRžÓÆ›ô2ÎW¼S-VCøײimÊîðì0~ÄtÜÒÇE˜öœöG¸t>¢¥t2²ã!ˆídLq<ñ]j-3>¥DÐf ãiÄÕF&rãGèAKù—âqY¬ê´ ÆéŒË‰5Ùæ”¼S*Øðªqçy _ãfâ÷Ì5AܹŒ—×°aN~žò·0n%L«_û(ÙZ` ýÄv2¦Ø¯A|W„šûµÃƒ~mç¦Ý;¤;6¨³„q)qµF®cû(=(ðtþ¥ÓÓëØ ÆŒçtôëg¼”¸Z#×±A\7ãâ¶àžaXžoO™ÁX5ˆÍýIc§å;çzAHîO:é±'”ÛÊ8A˜V¯÷OT&;õƒp¶“%§8õñGD˜ÖÔÏÇØŒš†@»ë¦~Mï´~²åãüfÀÝüfñç:¥ ø¬Æ'tp[t‹éÖñ`T^œ³ÓÌðÜ0§M»ˆŠ«xq3¯ k” ”Çì¢íÏbg¿ïTÇýu{Öêûâú9€À24ü/Ø®•÷‹³ýÆgÆš¶ÜÞª—É;.¾ã?Ž¿Qª9EP.b¿è´éÚf)oy½Ñ¯Mš;ê.OÚÁO¬ñq;o[%ßë¡‹„çNA}bÅóqðÞ’3S2ºù’Vú$[铺nhópGLTª}¹¼bm=ŒƒÌ•–UJç¾i<“qˆyüó^K{úÝŽQAõ™ ªžY.»Ž™Ÿì5¼ {P(›UŒW2W[8nx—{žubL¼M:t„V×2Ž3o}èq£ŒÌãûùcE ³U' Œ5É8Ë|V›±Ú][Å>·3>•ùS“±Ï-Œw0¿#¶}.F'î•­¼=>;·#­ëBqC»ç[f=1ÿúak>ñcÌ?–¶5?Ëø9æŸKÆšgü<óÏǶ扽— lh–b7¹/0>ÊüQ}F*+éWŒ¿fþëdŒôSÆß0ÿMl#s›\àÉÊŽË¡‹RÒö[Âö#ˆ·« ‚xòеÏx:ñv¥É…¤ýqŒgÆ› ¶œñtv©`OÛ…ŠY$£‰½/=´"fí+[®]&aàpQLüšü èì¶û­þ^[·ŒñvO›­gEs Z=‰ñiÄÉÚg|:q`LCwá´ZÍXA¡4žÁøâ@E¥ž£ÊxŸûßD(÷^x"á£ÊÐ÷á½VÑ[|bUÖ¦F Ž*kÓ­±Ô&G•õ¦uG•õëYû”ÂQåV›«ñQåÖJ稲¾–Sûí94ÔcTJË5ÆÒð]Ëô1{1üs¨ê—YÕ/kkäÇ•íu¦½²[\~tžH×Þ¬¥ÏJ·‹ñ_ˆ¥Û¿Âø+âÀ˜6üqO¿±¡~r±&˜Þof°n@+&:Åìæ˜™ßÛ—7‹ùJQ,šðŒEaîüf8-¹ÿd¿±ÝñùÔ;žœ6‹AÔ†sgXƒ?ü­`4íš6 7G‰ÉÕbõ·Ç•†í¿&ìø,q`ª£ë6{ÇW‰¨mŸcüq`ÌÚ¶PÔ y“t|ñÛĩޥ;~Èø#âÀ$LòÆÆ4É©ýXÇ0y8mmV4ŶÓñÆ¿¦ÚvÄ/;ˆ‡ØjCý‹]@ÓP %‹,XÈx8qi6]ŒGØz‹,XÌx qñ,2м’ãã–I~‡!Ó˜°§¯èW×ÿÈñyeì¶¼Þ~îvIïÁû˘'.P“}·¯W±ïMŒ{‰ LÀ¾Æ"ñÅØö•?äùSŒ%â J±õ^øþ3ÄðSÔv›|šuù4ý[èr˜¶qį2æ!e›6þš±ðEÑ'i{@üᆟ¤Õø ›â3Z«E‡|ø,+ì`EôùåÔ‰;  _}’6Ä/Œ0ü$­ÆçØŸK»N|žù|Ü:1ïVo÷ªc‡Ø‰³ƒ—¶…çlñn³|³o}0Òœõ¤k>OÏ <Ÿç|•7šŸײPãÂÃOÒì l×/h­`‘/"Kîwb ó^ðš¬0îŒk²qiª¡àˆ.ÜIeŒ›Af—|‡¢6Ó·&ׯŸs¦­~œ¯«Â–Q°¼¼kZÌQ‘ w9ÒAù„€q =”¼¡¾Äj|I«¡Ô‚†/³._ÎÄ æï 6ºNiÌÌOžØ·Xž4ÅìÄn×,yȲË[ávÓ’¥ÂÇx!ËWj}â7—Ç5.ÔXaøIºŽ}…íú­uì¹Õ™Ûª-Ü·ó¼]Û›9Ì¢ç`€ÎJš®5´oc¿JNb¿ãT¥èÛå`d‡Ä›6¦)w£©ÛèU*A_1kjY®ËT!-óW¹H€Ïå"y®¶!\·km“÷›NX%Ë5‹ö-4•[ÓÚ²¾Ú>Àø!â@MÜ<ëÕø<ÆƬA9£ûê  ˜}[LÓ †ìâ°z¿±%hù´¨dY¯v׉By}„ñwĺê¦ôD ù#㟈[=P‡¸gü3q`ܺô*äÿ…ñ¿‰uÙcJÅmÜ ´µ3oOÆe±ÌÕ¢îºo{Uæù¡ÃÆÅÌë³IIÉ&G3Ã\iÖPÚ&p¬e~l\›´uWÏ8ÁàØÆ*]»£iÊRej õ¸C<ÞJ×*í<B+˦ëWï"àX[ì´±'¶I’Ý«§ °oÁ߯Ü'¢ãi §vðKËá{5ø¾èZ)tÍ™¦žï1'Hã}eF÷† ·ö=pÒÿ›Ëžol1÷z¾\n\3i­:øáÕ=ý:ÒeÀJǶ¯%Þ®ïBÕtÐf=ã¥ÄÛuÇk^uÛÏgÜB¼=þq¼ã£m¸áгtÚ h´•qq`Òð×ÈÆ!j €•~Õ.fuÔ»ÜØ©œ¡Æq¦öâ\:ßÐR:™¦©Éñpˆíd<*“ÚñpˆïŠP{Àõ£ë¯Y&Û¿A™%Œ ¦ü=(P_À…*‹íPa)ã™ÄšÌ²þW8]µº³ÄÕ.÷lb˜&[C!ncŽx&§¡çààH¶#ƒŒk‰+ÞV¯ŽbGöM²°À:2ˆídL±#ƒø®5wd —­ß"ßA—%Œ§¶ºû&=(ðTþ%¥î3~?Nc4ˆg mV9©:P˜3ÞQÐò\Æ ‰«MçÊukw&ãEÄ1ítšÑÝlH$ÝÓA³‹o L«§ûÕ)ôtÛɘbOñ]êïé6ì–îé ËÆ{ºoуSîé ÂiŒFæ`íé Ý¹Œ ötw&£¾žî˜ú ¡éµY¨s1ãNâjyùõtoß&à ŒÕ½5”:_ê É;YrŠ©{ þˆÓJÝ󶣦iœ‡«Õ¢þ,ÄÜÉNS«˜ Z:æ=i¿CÑž˜Ä,j˜ Ý2¶MÀ«Ù°06M‰b¾–"¤h"J- ç BÞ“¿6Žwp’Éûg.0àÃ\`§{C—w2¾‡8°Õ âÞÌø^âÀ˜uç„ÞUEÅJïcüq ¢jqÏÝžëëÎõíñ­}þ­¦}[Ï·æV†_%¾4íž»ƒŸö4yÑyOãâ-¿Èøâ@¹·Å ŸÆ…¾ÿ]£÷«è]ÝZÒ~ÀX·‰ÇÖ¦FÃ&}òžî†æ—>˜«MÍÆR›ÌÕk£¶Ìü™š´”” ª¡Š­½¦eÄÆÇu[+užãºúšVí·ÇÓ¶%«Ð‹›å‹JG¼j4k;’ù‘),¡ËñŒ'1?)?ÞvãÉÌO>hüxÛ)ŒýÌûSóãÇöí):uÓÙG_˜MaÈ·­dÜÍ\:Íd:¼íª½¯RÑ[‹×£Fö¼dO÷þvWñÞzt”õÞ t ïݨ}¤TJÓ~°•¦e½¦n»…RçwÛšTí·Ý6ï=¶JtÈaÿéðì6€˜rJŽï”ì¼Ø¦l—¦‡C§ã•RÞ3ýÆèºÞÁü©y–ÅÕÃ?h¾ö€Ž„gpfRðO"ŽäÓ5zZEo=ŽD‹ É‘{º«fVòZT“öúìr ÿQÓ R*œ†j5o‹i«¹»hÔ¸ =ͦ®Ø¥×8jõø óÏÄÖCzNý»T‡BÔ4§¾©:§¾Þ(˜¾‰\×õÉ|G|A›‘’}¶lÁå–]gÚ.Ðù>ÉWù¿ p¿Ê¦XbÃ)•@íþ11S}Î :ÞÀ8I<3©qÔ\´Kœø¡ëos_„“Gò 2^K¨¦ñ~ù F›xÆÖXMf n3ãMĉw¿—±H<?{†tð}n5ß×Ú¨@ýëòúwFùjC©ÈPðå e­øA&Õ¬x„ie­ø!›â‡Aµøëò£¸ÕbÞ€îœXl5‹b)v—5e÷…?ØXsG‡‚êÇ1³àaå`o0®U¡ÆÚÃOÒ•ëÇlÐë¬\m—EAGѱhEî`Æ}ǸH¹úóÝ“ÎTYܘ|3È7!‹oéjåê²½ê#%}§”kꇇúþ i¦Æúô·ˆ¸§¬,¯Rôù¬³kMÿöÄÑàÀa!+÷ ’;âÁq'_Çžƒ/M¤tœ HÍ/Ô«ËÑmæ]ÇóÂÓÓtIMBÈšK†ôœ³ý Ûó'°óË´ EÛýfCš¦‹PäJÆQ棭- îrÆ]ÌwÅn^Ùê!9Æõp±çÛùj®W¿_x=á)Ay뉉3àÓ˜+eAo¼ºTbSvŠªÜÍx/ó{5Ž›t‡À§3>Ÿùóc[ðœÇÐh¥SCÅûßÃü=úüÁ](ò!Æ3ÿp2aþ‘Ø&[^mtµgj«·yQϪd³2þœùÏõÙLþ<ù-ã¿2ÿ×dlö Æcþo±möœ¨£tüÀ/GçªË®U°ó¾ãVs7p»y§RòC-z­è÷ê[êXÅ Œð øiÞ*ÿ²Ü©¥3ø(†ß¶ÏoW»¾a¢vw@¥^´?™ñvâÀêEû>ƧƬÊ×ÀB;ï$TT§¿í•Xw —X:Foh¢ü¼k,Ðü.ƈåÞOì·Æ²hÏÔM^ëY ðƒ5Š?¨¢xüEmj4Î3°§;°«ôòŠ6¥Km²¼¢×"5Ó«o—h^áÓ*–Æ ­•:ÏB†¾ªYûíújºñf~?F»»£¡iqV qk3®1ú·ù5ôå™î´ÜµsãŽÑe*~ð‡Œ¿%LÂ~‡ñ_‰·+…e±s™Cƒcüâ@Mæ9ºjžëÕíógÂŽEÄ;”&måíó{{8ñŽø“´'êÉ¥3žA¨Ëg)æÆ6Ë{‰°T‡ÁØGÓR:rã@£~ÆõÄ15“ž‹}”l¢ž¹Xõ³v?eu€‹YÅÊ•÷ô¸¥5Ž‹0íÜ8?ãÒù™–ÒÉ4mLMZCl'ãQ™ÔZC|W„Úsã(y"(³„1ÁÜ8?£êË£Ÿåó¬°û¬^¼;ˆÿ7.à=\(÷èsÏ®´{†"0>HØêÆq÷2¾ˆ80fåÈÕñ"Û/ðxã•"åc¶ö‰ÃA½J;_¡î‹?K¨¨vœÓ‡ï±|óÆ'”›¼Á¼G  þç¿K(÷x"é#Pø{5ŠOEqñ‰uÄ@› [ñãöt‡Æ•>g M³ÆR›œ3Ðk–38PÕO«l6h­Ôy諤5ß¶Ž©CïØÂðn®~µ F‘s}lCíp %\°ø;†ëÐA=qQ)./¿ƒô|á€Úóœ"NÆÓx+û4ˆi»Íb0´®LLF#œ¼O£áæƒñV±¦ƒÆyG\Óš÷k§õ1 «ÊÉÇe5{¾—Q=IZû­t\ö;jR!jŠËRIõïü*ÀÖ¥zÒG™EÇBâ  o`'®¶w¥‰ƒÒŸ< šŽ2êM…¿xãq`«CMˆÛÌ8I\-WÌ•.È·o"®aÅMºùÿ·FMÍ_-KÐïY—ßÓ¿….‡i«Hõ£ %ú}&ÕäQx„i%úO6ÅÕâ¬ËâV‹y“G-ÝX;Çx¥Kx5ÏŒ*Œ”ÊÇ1®d+•#àÇǵ&Ôˆ0ü$]©þ‹ ù_Z+ÕUÕPc¯¢‘CÙ ¢HY?Ì¢çÔ¦p²ê'³Cj Ƴ’¯öG~5àUüjW¥2 šgš_Íhü“Px¬Fñ1ÅãOhSCgžmJIÿõZä@ã…<­.–ÆCÿÖJg误jÖ~ûâp}z¥1ÚÇC~þQáŒù¦Ø#2䙆g¹6¥$†(–é6ÊJ0Y]JµhüŸ7§-Ó70<‡á·UtfzúÍb:ÁÖ”û®¶xþ›‹ç¿µµ\•Ü=&mìMÚ:˜w´~h„ø+‹]À|Aìz¢¼oj,d<’ù‘‡šO×OÎ(^u”’O—…ŠŸ¢¢¸ŸªG Í>UR²>U£EZãS[Z,M}j ¥ÎïS5UÍÚo—(wÊÀ¤ªçùÌÏ×Ö„rLB‘ Œ™oLÄ·µ]Àx óKbÛkÅcË1©Pznb,1/é³›|žI(Raœf>ŒÝÆæj‰k¿V¤$3LŠm|µY&ç$Ô’þïºñçÌõåUMÿm~Ëø{æ¿O¦ü‚ñ?™ÿgì  #ý4úaû"âí)Ìÿ‰l¢¦Y5å#3fu€‹YÅÊ•÷ô¸¥5Ž‹0íô?áÒù‹–ÒÉ4mLMÎRBl'ãQ™ÔÎRB|W„šÏR.X6:°L¶wƒ*KO&žÑH6íÝþB <…Iig±ž!7Ô8•ñ,âÏR®93wßG!Æ* ´\Á¸•8P›ÍšŒJ!îlÆËˆ«%šJÎØþdM¾j ø®eú´Cß âHgJú89ô¼œÑ'žñÓëÿ›j†Àº@ˆídL± „ø®5w —]¯ÐB—%Œ§WëŒäúÀÿ¦žÊ¿ÿ˜Ã‰Õ>°~ß‘‚Nc ®¸tÚÈN+*רABéÆ âZ·Ø4é !nq’¸Ž-6ÒäÛŒú¶Ø(w|¥ 0…Žb;Sìø ¾+BíßèÀf鎺,aL°ãû+=(P_ǧüAÓÏ&« ÝBÍ+}âiÆ~ÿCC` ] Äv2¦ØB|W„Ú³ß^¯ÒB™%Œ f¿ýzP ¾ì·š‚?(µ”qxfðP þ ôZÆIâZ/*nÒABÜ£M\-QÌýÕã^♽éõ|ÿK@`¬ž¯¡Ôù2 a泓%§˜Iâˆ0­LBÿÇv`Ìè™-?znâI­þÆZEÏ TÔ*­.xøÆÓˆË÷ãx"é­.xniâKU¿ÕE›:·ºhSª±Ô&[]ôZ¤[]Z],·º´Vê<[]ôUÍÚoߎq°þzàäJ›ûjoÍ £;gªdU<ʘ3o:'¯G2§M»hŽáÀËr.Õ–×§¸¼>¥­)·Û²¡=ü"ã—ˆ[ÚãÁO3~™80f½©Øò“ÕuûºøÙ.ñ™àXq?žû !öÝ ®´ÿ6MwŒ­»»˜w"î¸íèÅVQ\‹;Ö£†fw¬G)Yw¬Ñ"­qÇ--–¦î¸…RçwÇšªfí·O=&"yÿÛx¥$NËöcT#WÖå”k˜Üps‚É kKâÌ_ ÏÑÊ'7„"/a|)ó—&âhÛîg|ˆùC±kĶ0iàü޶.0ÃFWñèxÅå ü˜‚i_Æø+æ¿:ä<ð¯ÿ‹ù*ø5ŠÿQEq=X‹º=°¥¤=°>‹´È·²Xš{àÖI=€ÖS5k¿í OJOu×êSÃcê#;µÚžáÊĨijõÈêÔêfé»!ÚYG²JGjëDWÍ6+¿ÙJ¨t<ãÄ-Ž„¸£ â#¶‘ÖDQ^~ÒAx¸ý¼3U®øVt<ab˜øœM{žÉx-qµlD íÙ9$Të–]±KÉšO`œ$®u±mk^Çh×°Ø6I7Ĭq³Rô{ªk©Å P·úø¤“Y.»Î>›YOØÓAÔ76kX7Wè'ÃýkÖà$ÍåV©`‹"6ÜåWL×7ºs#Ã#=²gÙÄ[ÞÄøUâ@MÖ?¢j}µÆüÆG‰«¥Y—7ÿ×JÓü«|¸Wþ‚z¡ýÏÛÎ"Þ¦oÓyب×_­bÕ¶ŒƒÄÛ”–ÿ¥­Úv6ãq`L«.T8…(TXÅ8B¨¹Å­¿Z©Åµ]Ìxñ6Û¿æ±ÍZÆË‰·Åßþu-OiW¼ª·œÓÞ<±R.V&&“‡Ô,ûpâÔ˜±ì‰I±QlÚr͉jLs_ÁøjâÀCgÔ-4 ãÛˆúQ·Pøí5Š¿]EñØ£n}jhuëSJfÔ­Ù"úGÝ-/–†£îKm>êÖX5k¿5‰èêLeÐxýŠ#Ϊ–_f-¿¬­Yq*œï:}‹ñQâmÉD©m_aü)ñ¶øQêŠ^¾NíÀi)˜ãÑö#™«MàÛþ6+áo=k ê ó{Æ]3kðÃÛŒ=EgbOðV“NÙ*¿]´Æýn~à¼=ÞÍnðÇ|kŸ«;`ßüÁ\ßþ?Üã"Vè&_ Æê·†¢VäV„înþcÝ£O°oèéYÙÍ(üA³ü@¾¹§Ú_Ãü5Z|óaon©knmÞ¯UÑ[‹kÖ£FÞebOwMÅõëyiYׯÑâ¡ëooR'iá){ÃŽßϤU]š†D-”:H¤©K¨ývmõV¸ndbÜQÜk—ŒåÆf»Tê5r##«hWž˜¿×/ 6ü¬Y4bô¬?dþÃÔ<í5í0ŒÊƒšªêê~ÄøGæAOÛ©ýöcÜÄÁÔžÞhªÒ3Ô{—Ž#ˆw¨ŠÝÝçVRÐT²Ã-È­lšÐð@ý}ÇãÏ&Þ!}t:þ¾ãœ½ÏQÑ[K¯Gfý}©Uú{=ÊÉö÷-sÀþ¾¶-¤T<+õ<-2-ƒ5íð[(uþ_Sã©ù¶í”ðJèyÖ€yÂtÿ½”³:‘Jƒ ^Tö,ƒ'1=cÆr±ÍÀµ§ƒï+¥€Ñ€Âó*Se^âZŸ7h3yÇ m<­Mâ)þ8é]MC?U)ú¶ø%ß2J˜ ,Ûó];Ñ@ï~¶ÌÀÅá Òl0 ùö6<›Eü-õ>vÁ…Äš:·ã()Xßµ5çžä\p)ãuÄꪹޕÇoRs\Äx=qñB•|×®9ódæ[›Eï7¶9®åˆëê¨2ÖÜ&컕uÕ70~ˆ¸@µMi]uÁ‡?K\`ü§õëª >W£øçT×áèQC󺪥d#iͺjK‹¥iüÐB©óÇšªfí·Kj÷–œRß-–ëÈîl®ÓíG¬Ûbë&½³¹+cø‰©Æµu;›é› :šÁM·õÁLmYÎM ?@éà·^Ëo§oSí±BË8ñ ô2]âÀÖÇ'x£GÓì'õD›¥+µÑ°B±øŒwj2›R"=¡Ë}Œj2UÓw7ãƒÄ1 ¥´c*¼ˆñ!âµ³xúr{ e^ÍøâÀ$Ìò2Æ7Æ4Ëò~cKÐCö6;W ¶õ:¾‰ñËÄc$+H#DçD¿Gxð‡èø[߯Qüû*ŠÇѵ©¡3Dצ”Tˆ®×"-Ñ[],CôÖJ'D×W5k¿}]mXɇµ Ƙ‰É:‡2PV×*ÒdȤ]6Æ,ƲèkÄõy«ä»fÑØÜW7‘×iû^í#¶?k”MלBRÃðp9R Tܶ˜Õ„a®2×RSVmO%<´:ò¶;ŸKxHtämÏ«Qüy*ŠkéÈõ¨¡¹#×£”lG®Ñ"­éÈ[Z,M;òJ¿#×T5k¿ì BâðòÜ’ã×ÌVÏM1K 7¶Ê`³ªøGYñjkSÒ }šñ³ÄÛôM—ÍÛ·üãçˆcpuàûËFöq¾÷XLIO¦Aç϶g˜gbë.=™¶€+£¦É´¥ÕÉ´KÅÉTÑœ1Ïr§ågIJŠÀ¥¬âÒC*†€æ§3öÏô 1^Q£ø ÅãÇÚÔÐChSJ*†Ðk‘Ä­.–Æ1Dk¥ÎC諚µß¾+ æÍ.9 FwÖDàv¦i¦-"ÚÍeÇól8¨`47^sS…ƒßÌ[EÚ;áˆì_A…ÁI+ø&âOLT‚!`É·¬š%ú²ã`ÝÂò|l-’16„c²/øå^lÞ°|³Ï,™ÅYÏÓ|1º–ïsÁ}ÿëÕÀø/ćF¯þ«Å¥¢¸ž^]‹º{u-JI÷êú,Ò¢^½•ÅÒ¼WoÔôêzªfí·/Û¿W{ñ°s)³íñfýoÁ:ý’O[ç°zotS>6kä’绚¬3=£èƒÞ0ݨî² ~Ç«„‰¸‹³´ãJ:ÍYmµ=ƒ80éñËa\¿5_S¹U×M ]Ñ¿….‡i«®Gìñ*Á*]>S—vî¨Ñ,¼æ“´= öðÃOÒjΦ8ü ¨‹Y—Åq«Å¼›ÆOëÓ–±i_Þò¼ Róƒnâ–Ù Än³ :ǘe‰Ye‡t\\sâ»ÁÃOÒµª“˽Sg­j;©:Yr½mMƒÞÚ õb¿Ñ=ÍåzŒ‚åå]{Œv!aJЙGÑ·oçñ¯I§ Â~kŸ9e—°{Úæ=³Âeàw·˜na¶ïË..a»jƒÃ˜kW¦ 3ï# Ú‘-öç’³ ­ãnX³,ªY“u5ËèÝ´¥n…vI9Á`!p_¼‘†.‘¨ qqý!<º„7cµ+^³†gù¾ü=íG°up¯ÑIÄšâÉ(ÙGðºËšÅºÍö|@§3Ï#Ôäšîù€¸“{‰ãÎî…{>°qªŒEÍ ŠË[­­q+q &«µ›¶Š©v2^I˜„©.c%ŒiªõÕìQ h— ö´]¨˜ENû9éL‰Ö\ M÷Û•Ðÿ­"®|Q0ç.Æ×™~LÉœ/aL. ¼w?£¾,ð>&sV»çÀ U;*잃î/cü.q .[æ•lùÆG‰'‘2 â¾ÇøSâR&m”lš®ç¸áªQ¥ÇlxŸ¶/g¾<ù0êq\5ço«†QÛë]‹Î„N̽Vu+KàÂy,†!SÁ×-ç…ÇÙÂÆ› "7ˆ³LשÍ(+“kyA´„TeAhSÝùX·íFè€B¤}qá$é”[5IÛîH.4àÛ¸ÐÞ–¼íŽb5ŽÒj»MUÛ­7 ¦oàþšà 2 Ì9[¦™i× Œ¸C¶{ëâWnâWÙ«{k7j÷»fiï@6»FAÅ'ˆµuxA•å[X»þ6GïEˆÖÝ4e¼–¸Úñ…†ù ÆIâI$õ†¸ÍŒ6ñ4nÐòobÔwƒ®tû?º®Šëjÿj+ǰ.Çd’ŸoS‹XxŠómx„iÍ·˦8Vkµè¯µ]q+Ò‘PÀžàA¾ ú$m ˆ_aøIZãÙǧ]'N`ENˆ['æ€Íu¯î16:¥i˳W¦q –ÍØbðÅ,çZ^Þ,æÏ5vŒÝT"…×8šñbþ‹U^C¨L\óB†Ÿ¤kÙ6Å­µì2rH»kîÝ3•ÁÀÌ©]·Ë“½c»ÖD¥hº¥Ž×]ò}Nä÷^Æï£”J¿ñ‘5ª :íb¼–¸zP'sæ/g¼Ž80¦q—ŽhýÆŽRQC71éì©Uƒj×3Nj²×"„6‹Z›Í”@›ÛŸFØê`âfŸNÓ^ÃÑ”A“¤s˜x¦L+á IÁ0ÇœiËèvÄ`[Á’Ï`|„8P“%£õƒK7m_¦bÏ1~‰x—F qdü2q —F;bæË4&¬’…i•¹.Ø^YI« ¶U <2eÓó,j§ÕíÄÖøxИÔ2nøçè6SÅý¶ ‰5ÕƒöYéiO(²‰q3q`Æo»ˆñRâÀ˜Æ??jÌaš¨ú™ž‡ˆÕ Ù¶…ñâ@]†œV2äsï$LÂOc¼‹x›Zn‚ÚoWD†ìæ‰lÏLjºA“t]$ýŠa·»ßM¨Énž¥d8îÛ>L˜„áÞÃøâÀ˜†;­j¸ž0i\õniÙèš}”ñ{ÄÛ⟅•ðrˆé 5OfE€IO?ˆ‘ØžâôÄ/Œ0­é‡Sا¤]'NeEN['æ~èÚ!â¥õÜ´=%f<çt%õlø‚gF~’®C§qAŸ¦µuñRWè>%•â3p»X©.mîqW4Çdý#TYÂx2q`«ýãR®´ÀSø—N‰mž¿†{ÒÂIžpgS·ÈAÚcd½êò}³ñ‡Ø<çYáãÈë †/”ÏÁáS9¡ëõD8,DšžØU…lbVÿD¯$þJõ¶Áp/7Öžƒo±{¼\tüžþšÅï)Ûó(Žæ+µª¿:[«F[f±èÌXi÷‚?•°íâÀ¤›éé\O×ÚL;£9@I}Î`}€á^ÑN}-t¼h—e[(T9†ñxâÀV·Pˆ;‚ñâ™øäÄj‹íV “w >gp¯ìå^KmwdC3í½j“Š™W&a¦>ÆaâÀxfj»¸wnOŠšK½=QÝŒ3_ÿ)N×GÓî&vóØy³hL["cð7±g*s2è%i3OØ=V%y“N¥XÀ_€å §ͺ:€­—Q ~ˆy©HFèÌp‡´žûý?ÝÛ}ÀÉ ôÁfᦊ'òHæƒçñdqVþH¬·†°m†80éÞØàÆÀ˜zo|&ëÔß&†dÍÖòš6t(s ãâÀV7tˆ;‚ñDâÀ˜¶yF}Kª ¬"ÚFmÌ"b“»XÄsv)_¬ðö-qË}´zæZHEE'êæ(Œô,ÅO“AØÔ«2Ë„"8‰ñ!âsC.â7S©¯f|#qµ,òõâeŒo"ŒY/f¢zQ]eC}ðšôÕá@X;ª‡BºíqX§n¼t®_÷¥XL~ÜÉ”|¿‰—~˜°y[ ƒÍe\Ó›°8‹&>‰…ÿžâ$Ä/Œ0­I¬³ÙgÇ­ ¥¾§`ù¦]ôö—î=h?Gkm”.ˆo0ü(öÒqÕYž¡ívŒš¶Û-ÁlP‰w% ËMO:+عl1඘RHÑС”ï^F›G–õ.ƒ›înzY¬‡ƒzK‡ˆ[íá îDÆUÄ1-·l9‘6³&„É;¥ y•ÂY›qÓ,ø|—SÂ4íZÙýW3ÎÏÄò¼D7W`릵›/—ϧW'ãÄ3J÷Ú5Ôg€…ÕûV¸ ¡_Aÿ£/"ÔÖ>lßšj"vãÅÄÕvÆë`!~}„á'ùêÝÃÆïimõnº‰`>½:õWïÜÜê} é ÙÚÝõx!×î [_»{¸v÷p£Z Ú¨âÕîjT!†Ÿ¤ÕXÁ–gÔÛõlëx½œ1½h —ê~óX] 7Kéÿ@]Ù ªd‰«%¤ b nãqµØ©®Žªß’¥`UŒˆ5Yç³\¶J…u*“éÐh+ã.âÀ$Œ´‘q7ñÌîØF:FLr•ª—,J ÎUŒñŒ¥ÍN Û¡H‘qŠxf*óŒ3–ˆgJ±Í£t= Tp=âŠWiÚ Ena¼•80 “øŒO"Œi’,-­ˆþƒ³¬a=)òNýsNŠ+Xï6Æ7j²Þâ ¡÷—-›íä™×ˆïb|„¸Ú>vy#¾…ñƒÄ1xQoÊû³ˆId(8Ãʈ'½Àš3NMÙ­`Ó1þ•8PW¨±lÖ^¦`ζvÆ…ÄÛ”f"åÍù?,ö0âÀ”ºÉ¶EŒGoSò41Ê´šQŽe<¸ÚÆi£´=Žq ñ6µ)¾Úo§« ±üf›Hj!¿†Nd\A˜ôȦ— ̨id³‹F6s(Í¢k™…Ùp–Ï›Óõˆ!4uNuƒ ^Δ|±>~1à.~1¥XV³³>×3޶º!@ÜnÆ<ñL>¶/­ÙWTsÍytWú\ Ó2%.ªžqmßÂs±IÁ¶Æ7W\|mdÛǹV¹hæ-¥!Tz㉫9uyó>Ìø!âÀ˜æ=»zÍ•WÛÛõô”“BÃ3þ„8P“íŽ m·yý»”Œ÷/Œ LÂx2þq`LãˆtƒAðf¸Gз¥`¯?Â{‚u ¹¶¯W0RÛqŒÇoK`c&ÄÉxq ;w«ö‰\qå·÷QH#°›Ãœîä‰~¶.£¦@"Ë;Ø¢õBºNHlýÃñV×.W§ß%µ^ÉZ³¬u6VínTË 5T»‚q'q ¶z>O*«#× …û•r@ßuŒ[‰ÕôÞï/3^IØê–q9ÆQâÀ˜5»«fžÂM(³‹Ñ$ž1µWÜE^ejÊtg”{ ã3ˆg”RÝËWÝ®u¬²zå-1>‰¸ÚÄZÿ<ÉøLâÀ$*ï㳈cVޫ듼Ôì_uÆ0´ÃoÜ.н9AíN›5碤5[×wYJmàÙŒ? ÔÜŽâdáêê׌"lASØOìÏÿL˜Dmû!ã_ˆcÖ¶”/ÌBÁFµ ª™¥æ8R°Î¶E¨)¸=<Üÿ%âBŒ9âÀ¬×v6ãq`Lëurð&Ÿ}z 2^@˜td›eÓ2jŠlD¶×(F­9ÖæŽ7&k8ÇeNL¸¸D­ÙžüùÔëe"®uÃâ<îÿ˜uU¥Õúkè|2cqõ{ñöûËÇ1®"®¶ŸR®QCÜ‘Œ«‰««+ç·Vû]ºÔ@œ K>º£éI¯1 w.qžbqØÄtÔ¶;ììé¼J¾ˆ“^nuÕXÑêAPá ‹4~‰“ cv©~Ka8éŽe5Ìø3â@M¦:l˜’i w9·Â­=t‡ñíÆÜB¾,®:Ø.´(BM‰c—óÌBX§xå!Zv¨” –t@1IJ5š õUèÓǸŠxÄ˸š¸†ÎǬ9žêÍ–|3èˆòb¡;hXvaŽIû±UwÃB±N1[†Ôsª[Ä7ÒýÅ÷À¹¿x0ùv»Š«Ì*­ÝÇ2œµ(±veb²v€&–U¢îÕ¬çjꄞ˴5’Ž`Œ Û< Ic¸i2Û† î,Æ^âŠçéëŠÓ¤ &écÌrÿÕg’ÜÊ“ 3Žp›IÆ$9ƵÄ1MòTJI’·\1;ÂÇ6½Ú ÊøÊ¯1Ûôh9M¯Ð5EÛ÷qɘU Ƽw´Âþ­Þº3¿4ëR¢Ý?HÔªPÎg|„¸ÆÔž ƒ&º.«R#>Æø)âÀ$jÄ?MwNƒ“5˜eäFðªyåª'žB»®U1Ýgÿƒ8P“é,[¿k™ŠåþÌøWâj›Ää-÷{Æÿ!Œi¹vé+¾ ÿÿxø2:Ó²[¶ª˜›â.&LÂ$c±ÄÃ0'i“`GœÀÇ׸ª}زëUmrãIÄÕîc”¶‰XÙžL˜ŠMNa<•8P›MFwoÚ­d“eŒç&a“Ó»‰kXÔW³ Æbº'£ºK±I;Qµ ÇhmÌÛ”F•ò69q˜x[ìœOŠ6YÃ8B¼M)2nb“­£».Q²ÉÅŒ›ˆ·mJÆ&k7¦b“K·êsñjQWÛÆ]ÄÛ8Íq[wo‹šKÍ$W1^M¨Ï$›Õz®Ç3šÄÛ”vmÈ›äÆ1âÀTL’g,o+h4IÐs)™d/£C˜„I,Æ2q`L“¦tm-t¸™qš8P£CQl*·1ÞA\í.y»Ì0>x›Ò=0ue°ƒnÎÁ*™çcÃç¸ãæëî§;÷36kXûÊE;oûÅh¿µÂz1^æéŒ_#Ôd`Å ×¶füqµ4øòÖý:ã÷‰cZ÷‚ºëvÄÒeÉ)õÝb¹O’‹CX¢¨f¶Q½?šÿ€Éû×9F,5¾Wjí>L˜Ñ³´ ½ÂñíÆ\™<,®:AäïC ?1Kådì qŠãfPY®¶­ü¤?fV,Wúlæ x2Mm`ߨٟ83=v1î¼ ú²¾²ëˆ ÂwBAÉ3‡‰«eÒm(õ°=Ö”i›È=…q ñÌšb"Èa\K\qÁ¡‘‘Θôý²·våÊ™™™~ c]½itCe/f¼‘8P“±쩸ÍLu>ãˆcšªCþÌ&x"ãqg÷í1+þ¤ã6éh`Úµ™T»_ˆo0^÷ÛöïqÕA=82Âð³T\±ÞíX½Æú~c[¿Ñ=Í õô#ß 5U¶]‘MÛ.M[A$7aŠ@-ˆßʦëÛÁu;žÄRŸoö™%³8ëÙâнˆïŠ&obye»Œ ¸6]® ®¶.céeN+‡PöR\8ÐÞl~Ò):³ ªÎ2¾8P[¸Xd²‰XñâÀÄ;wÈñEĺïÜPNA¡—3¾’8P›=Æœb¡‰Ø3¾Š80¦=ŽìÎõôCÃ}}«‡”Ñ«ßF¨É4½¡ß-86üìÊ\¶?—]“]™Í ä³#ýA¯2Ø¿fÕ`v © ›8ahüÆŸW;AÛĆӖ;ÖDìÛ%LÚAüO# ?I«±ŽÎ¨É#çë}O¯±ÜØ`å÷Zn¯±¡ß¸ŒœÑ;£š½®ØâZ®åyðGe×*ØHK¸¿ ’n'ò‹óü¢j‰µ“l³ÙT¨äC¿ˆY¬ Ö¤9m;ð?»üà‹Àßæ›m|œOû›_LØjÿqÆ—&î ÿ¥Œט²¿}pXAŸW3¾†8°Õîâ^ÆøZâÀ˜æèêÜÏÀðš¾¾‘a¥†õ:Æ$Ôd›îh0—pxõÈÈšÕ¹ìàÈꑬ¬ó¶0>J\Í È9ˆ{7ãO‰§ÑëCüÏ" ?I«qœQ“ó¹rç³{Ò™*{8䱱߸”ÜÏ`XÆÎëI‹G5†?Ò-âb~-à•üZJç»¶ˆÁWƒ)Ø]NÞ¶üYá;Áƒo®qܽÂõŒZžeºùI…¸–ñNâ×7ñ67ÊxñLüëŠå½ äßÍø\â@MökRPçþÃO« Ä=ñ…ÄÕ†¼sœÍPàlG²}}CÙUJMëÆ×Ws¼ MsNg³j`hpåMž7ãÒPg ©ùšx¨ú0ã—‰[íi _!Lº‹‡ø¯F~’Vc=[›Q“§yUài6˜Ž×kì„_«ÙnïuŠNÙ©ñãÀ×\.ÜMv$p7Ûì}V¡|‹gìtl/ðIµž)§^0ºß„m©î«”«7'‰d1y§„Û×}œœ6ÝY¬Ì*®€È»® \NÀWq9©Mp4j_+ào·ÒŽ~ Õ8³ ¶ã©Ž ï¿FØjq¯fü:q`â ò¿ÁøMâ@]k•‚:ß0ü´ÚcAÜ·@\1F¸î\R;ú!ã£Ä'™dy?50€AѪUÃ}C«‡Gús¹Õk$týaÛQÄ­vTûSÛE˜´‡€ø£# ?I«±‘ÍͨÉQm…£ªŸ€Ë¬YÔë]<ú¹EÜò8’‚é‚QOwJ}ùI³4Î’n—ðë·òëlÕÖÖnpíÀ_LÖz‘m&î4ÅIZ1ªÎ¹ÅYÿþ;ŸCØjÿq—1ÞI\m Ó¿@þ]Œwj2c»ôòôxãýÄ“AÜs_H\Ãèhš zî¾á5ýÒA›_K\qV°‘q­ÿ­¼) õ­Ì ÷£3é÷Ç‚(7›ëß'éw ÷›@\ÍmËùˆ{㉓îð!þG†Ÿ¤ÕØÄ¦gÔäw®«ñ;ÛúƒA’X 2‹æ„ozb2n£pE#˜ŒÛfº¶Èˆ…QüQÐ?qg¼ëx^ò-«m5ØÌ¯¼Ž_ï:mm¤3ºã5W~Ü}žÈh¶Ú¯@ÜõŒ7&îW /c‘x¦¨Ñ¯Œ(èã1úÄ­ö+7ÅX!ŒíW0Õ62ø•\Ð3+µ™iÆgWË~9ÿ޾Ú1Ì`vxåÀªÁ¡I'%ïf|qµTêrNâžÉø0q`Ò½7Ä¿9Âð“´—²59‘'‰8%Ë÷{KÂå›,vì­„mp­›+¶ka÷:gèÄÆ¶À‰` Š1¸Õ·ó¶¸X¦Xž”÷%[ø-Oä·|¢¶vÑêÐz‚ñâj[Êä<Ä™Œ×ZHÞã@þ‹_L\m#Ec3 »“z¼‚ñ•Ä“ØÈq/a|q ÙxqgpU_ßàPV©a½šñÄšlÓs Ùálv(Ð^Òõ@Ý÷1þ˜8°Õ®âÞÉøâŠPÔ~+ÝçCü£†Ÿ¤ÕàÉ¥5¹žëºÌ›ml–ºn-ÅX¦+. rMÏë8˜W“ŸH»Œßx=¿ßõÚÚÆ Õ‰11M¶2E+¨h2Vˆ«E±ržân`œ&Lܳ@þ ã>â™}úÈøâÀV;ˆ{>ã{‰“îÉ!þ}†Ÿ¤ÕØÁ†fÔäP\áP‚A…ç[v©— ˆ‘˦ڔ"M¸SòíRÅ©x¼h¿µdlÁÔ™SƆ€+'Ôol± Èú½»Ò6Â/-üšeto*xý=ÒÝØN~o Ëïíjk*CØÂ<Œ´Æg/¦ó\>bSsŽ㱺íÛ o0Ëøfâj«yr~â<Æ·Ƭ0ë‚ú¸B¯Q.÷1u1õª Âl·fŒëwïZc´âyV±hì2',c³S ²JY¥ ú[M˜tÓãC_!jjz{ƒ¦·qÒ.­nµ:Äqëƒ'VAÃ{ä¨á]$¯~N!âĤõš{ÜyÛb®åîåÞ«­Í-‰;¡ê6 :]Ægqß tƒ¤\«‚¸"㳉î ÿ9ŒwWÜJÚ8ºk:èœGŸç3ÞGØêèâîb|q`LsÛ=€ùéÁÜÀpßåsJ-è~Æ×׸‰óІžXûîˬZ#º“\n0Û“Y;0p^eíZÓ.ôÝËðš¡ û³ýyçü¾)É`oôfÆ?×zsh“`â^Çøgâj7‡Æsÿ—ÃOÒjìâJÁ¨É#½]x$§7ˆêz±ñ>ˆfèÐÛeb§çӵнÆšu™oÙ'™ƒ§M¾® ÿt­¼ecÇ'ÂEÞ¼3iºf·èÁùŠ;-¼/#Â2{¢ä¸âê¬)ÛóÄ‘8•]£»¹Ô€oçR{»¾QWýI¸Ús £Ö´mÍ(hû^Æo¶ÚÁAÜ;¿M˜¸ƒƒüï0þ3q .·Fvgôø1ãOˆkMoÔÄÁAÜw%®a?F—HQ•[5Ð×—–Ïe~ÊøÄ5Þ峬Ù»ä¹ý¹á¦¶kâ³ çŸ q…¸ÚU"r> bÏbO!LÚY@ü©†Ÿ¤Õ¸ŠMͨÉgŸåLZÁ(ªæœ¤jW³jÀXµ´ÕçÕµ® ìÌ.°z<ô•cÑVP“÷ù¦wiÎ÷§1^I\-K‰œ»€¸%Œ£Ä1­º¦:Ës‹],z³hõÛ/[k\aΈEpc“[3+SÆzÏCžß’¿ÊZïb¼“¸†yÒMã®5×hmc¢iTc¬}“‰†Õ ú¼˜ñ%ÄÕrØÉÅa÷Æ—ƎðŒ4”[Ó×74 ?Ëeb|qµS2ÛS£#=Ù‘5+ý›§Êý¹ÕýCýå@wÉ` ʾƒ1ÖC.ƒ¸‡¿C˜tWñÿaøIZëØÞŒš<Îráqö _3*¦ v•¬b±×ØTMR0"ñöËY×åÚjù‰ëk’òðñTÌ.((ÙǸ‘8°Õ^âÎe¼„80¦Ï® ¿®pJ§´ÖØ8i–§Ì’˜*¥C-h¸‰q’xf2ùŠW´Vü»Pñ+X¢é56Sq Ǿ,´4ƒõE?(º¹çݶÕå„Ê;SAõC@V6ƒq@Ñ¢Cb5G¥óÅà{ "‚PÍ,âù­k TeŠü…¡{¸@€wq¨eékÝZt»ñõÄÕößÉ5.ˆ»›ñ ĉ‡`ÿFÆ7×èæÛ›gúžGŸw0¾“8°Õ!Ä=Ìø.âÀ˜æ8¶;· {CsCØš[%úü#ã'‰5™§ñfžìÀJÏžêÏ d›ÆÏMÂ/hùÆß¶:ü‚¸O1þ–80éîâÿ5Âð“´gC3jòB^¨Öóˆ¬Îõô[ì‰ »ä‰Ù²ýÆîàGµŽëÇÅHÂGrÝ-ØÑ÷uµiEúÝžKÜ'2í§Å‚Nä¬ÈG­å1xu+§íy/u#ØÜîÛ2ªó& mšÄpSÙ.XS¶Ê¼T}'ã·ˆ'±~qofü6ñTÖo ÿ;ŒÿœÑ¾~3(ë´ Ç\¿¸ï2>šÑ¼~3”íëË É{,(óSFýë7g7ôX#ƒ+훬•ƒ¹þàÿ†²’^ šþ™kbGi CÎkAìïYìiÄI» ˆ_aøIZ'°±5y­§^k³9a¹Å`¸#v ^8+f –ëYbs\Ц¹×yy˯F­`À3e• VA$¡šùf;ʦíOC,g IÕË®SœRZÝ'rAŸÆñ´ƒlÌÝîd|9q`«ÝÄ=ñĉ»È%㫈kÌ|Ü>({|z¼‘1ÖNÎý@Ü«&®!¡Q0fZ1ÓšUX3,ú¼™ñCÄIŒ™Vç†d§¬¡å'J\íš9ïqfüñ4®õ€øŸG~’VÃdC3jò>¼íMâÃh¿ãäF"zGIåNë1Öh°–†¶Š}TàµÆÄF8ËuÃ+9¥tëa\M<³Z[5^´§pe¥ñ5Íx&c¬Ëtë ãB Ð̺õYAhPÉNÜu¦‚'½)³X4<‘eLºÇ‚îk+Ä“ú52ìaÁ0ÙuJ :=‰ñ©ÄÕζÉùxˆ›f¼ƒ80qùOc|:q &“´ÉŽ0¡Æ]†ŸV»xˆ{ãÝÄ“9×~»8^öõ (µ“ç2ÆKªÜÔ³Ž}²PìDZ­ !—,åÀÐPvenUnõˆ¤g‡–1>BØjÏq0~80i— ñŠ0ü$­Fž ͨɳßÏ^´l&;¯àk+Ý¢Í{›s †[“ŽïL%|бÀ¥¼Kávm '‰ƒŽÐüYŒ lµ;‚¸§2>B\­ ÏÐq ÝW ¶ä cÚ¿À?sŸÂé‹+Ž¥µ!Ž£!º–%–!¶õ‹u†åÆîÊ^kV4ÄkD̽ w»fÉ Ú ¥Fò Éa~Ç¡%¥‰JÑtEEÅ¿½›+¦k®ãøÒ~jœßȨ©¹¹¾TÂÌÓÜ,”ó¼Bàãs‰«¥)’k[øÅ Æç&êá/ÝÃx/q ä—ÀñdŒuƒº\¬‡_|>㋉+¦»­ý–v!®ÎâÆòœü.DüÙ—0¾¸â6‰Çº 17Zi:SÞÊ\nxxx`dxÕjÉÀb߯øMâjWlÉ~øÅ72~‹¸Ú¢`¼ŽèÛ†Ÿ¤Õ˜`{3jò7÷þæR{lÌÁ2÷h¿Ø‚Dk–¸¶¢º3ñsÚ¦Èp[tgŦ(-_Ðs×­ç)ËÅU}ør_ Ú”ŸÇÔ$¹²c‚š0¾‡¸Öä0MÄÝËø^â’ÃÈ;&Èãû‰u9¦æ»«çÑ磌ÿDØjÇq`üq`lÇ$Òö #ÅȰü27”ù8ãW‰+^Vª–€<·&› ´—tMP÷;„hûàÀV»&ˆý‹m#Þ¿3–ö ßaøIZ ›-ÎÛ5enÇ·wÀ59äuC!>Wo—Æ,w¢×ØJž(K«Ûµ§å‘¦þ°|÷èŽ=tdžFî%§ôèí÷–0x*Šy‹µÆú’tŸ¶+†¸fV>ÏßM\À;¸n×Ö†ô,uC·ç0þC†æj½ ‚¸§1¾7k˜ùr†Õ ƒ¤ÛN‰‹ûUQ jýk£¶³xÔ,(:Ïf¼—¸ÚZ‡œ·¸;ŸO˜¸·üû_@\1¥c#«tä†d·îB‘—0>D\ë𲉻¸û_F\ÃðòHqrd ð6ƒ«•Ì?0¾‰¸Æƒ¨+æýZ³Ò R`¼þ\ÿpvõàðl0(ýÆW»™[Îó@ÜÃŒ?&®v`¼.âaøIZ ‡íΨÉóµîСý:˜X[µß¡ûÀéxÁ¶ªž¨`›%G¸q¨¤ß¨¿ŠbC¥X´ÄqÉ\n˜Na­ÆÌÃò·Ê”¹,€Ïä²x¦¶Öt^³K²ÙÁÁ¾‘ìHи†qkµlK‚ÂÏe|/qµµ¹–qÏb|ñ4ñCüû# ?I«q3Ûüf­-é&´¤¹íf ¶Ã_R›!,ÔwVÌ\Z Þ¹^x£Yð“9+§hUá>žêCòÓ.¿/'¥ï¸OdYjÞÌø|âjÑ”\q{ï#®˜­«ö[ù ò_Àx?q &kµ­VP祆ŸV‡p÷BƇˆ«EŽ f rØ®“w;PæeŒ×x”þÀ«¢Ùàÿ‚I:¨ûNÆï¶Úé@Ü›¿G˜toñß0ü$­†ÇgÔätßÐé ÈíÇ©®Ù›#Ý<|~Eàãù¯­y,iM*èX`œ%ž™m½s¸o!Lܹ@þ­ŒO"Ôd¢ö‘}žÆë’œw¸ÛŸA¨Å» dûú†Fä÷Ü@™g2ÞO\£ã_qàAÍÈ@ÿ@ ¾¤{¾/eüqµ b9÷q/dü$ñ4&„!þS†Ÿ¤Õ¨°É5¹— ÝË XâtƒÑIàHȳxÆ”S°ŠbXSãkä}È4¿p¿Ç†ƒÌ‡@·­Œ7¶Ú‡@ÜFÆ'&îC ÿ‰Œ&ñŒ©Ñ‡ÈN2CIF›8°Õ>âÆo"®8ª®ý–|ÈàÜŽ9"ŸÊìeœ%®Þ(ûÁÀ‡êKúè{;ã‰[íC îÆ7Wœ•¯ýVºó†ø‡# ?I«1Ã&gÔäC&ú]_2*¥1ÛôĶ× ¼†+ð!b÷ &–E²lpœ6‹vÁög «d¹Á?n¡Á öfÚ Žf¿,0÷3¾¸Ú1}9qÏc|€80¶¿Á.Í¡Õ#Á˜Eá:#(ó ãk‰k¼¬o3ëÉÿêì’N^}ßÌøMâIœaƒ¸×1~‹xgØ þÛ¦u†m–MΨÉßÌÌõ7½Æ¥ך¶ýüd/y[=‘o­oŽT·ÖÌYãt-¯ì”<‹î{í£9² ƒ·ò´¾.Ûrná—†wF[ËY´)¯âi Ì“ŸN\ëtLOqûŸA\ÃtŒ¼§üg2>‹¸ÚŸM.ÎË*èó<Æ{ˆk½?§‰§¸g3Þ›‰±‹ªîõG¥s9$¾ þW~ Ôy>ã+‰5Yç¢F¾fÍH6ð5¹¾‘Õ«ÖP7‘]“½/±v÷¶õ;FG?Пí߸ãüI„—xã/ˆ[í€ îUŒ¿$Lºç‡ø‰0ü$­Æ­\59 ›á€öϾ{Ò™2=ò@)“ËÿªL•=‘6|Ò·Ú½âùæ„UsÒí«ÿu5%ÚyrªwÉJ¾ö“øµáˆ›µ5¤‘N~Ò5K59sĈnÖó)—‡áŠ;]yé ‰f‘ý'ð± ¯±ñíÄÕsVç2¾ƒ80f¥9«öÞ˜“v~Ò Ê+¨ W]¾Ö¸Æ.Zò|'ã7ˆ5™¹z‚ÊwMq÷Jží.zÏÐö’Ý"tý¡8Àû=ÂVw‹ûMÛF<¼ßaZxocs3jêŸt‹—™ygLÄÝânÛÊOúcfõüJO=¼ßÒµ¸ãÓÆjumצ¨Äî(Û÷¢¹¢i3xç¬Ðß`_|«×ÅóÒMèÉ\‹’PЇ6¡SFÃDb»ª‰ÄøÞE=ïb| q`«»Bˆ{ãk‰+Žþk¿•Û!ÿuŒ¯'®x€µá–)ÙDPã­†ŸV‡í÷Æ·Æž [¦V炨}MV©½ñÃÄšLsf³c¼7¹®ø‘¾aj~’ñçÄÕ6Ëùˆûã/ˆ«âuüÿËÃOÒj<…-ͨÉÿœøŸË­RÁÄ­ŠÛèŠE¿bº~/§®V¥ogUç°ªçh«Þ—³¾çz†Y˜†k+„û‡±û¾ºÁ68Å~c`­±µ4nÑÏսȬ'í²Â‹õ2N¶Ú£@ÜrÆ⊳bµßžitù“\G)(·™ù)»X4å“NB½}Œ/"®–Ã.^Cá“w!jj(4ÛÝ+2~m ¦1eu/U¦,J‹bFwa׆j" óƒ)ŸJ·oC„ü¤üRO]Wsæ]ºáÝÁ¯ ÷¼èË)ëÈ;Tz㳉[Ýtî *ð9ÜjŸ“B0ùw2Æ:bÞäúÙh zÜÇëP¤\4qw3ÞO\q7_í·|ä}޼¯–ßÀe^Èøjâ@M¶9Б÷œt8=ßÄøyâÀV‡c÷Æ/&ݽCü# ?I«Á×4…¨ÉËÜx™+Ì›¬JÉò¼p¢SLÔÜ rÀÕ81³H;@Œ;ðñ¡ "%‘“»Rôí¾ ×©”‚…d,ò“<ðÈ«vŠ{·5®ÔA™§2>‹¸ÚR•œ“¸[ŸM\Í·Åt2ÿÆ;‰«m‰Ñ´z<Ÿñ>âj‡Çäœ ÄÝÅøâŠþk¿=¶;'Nºg‡àf²«ä·!BŸû_K\㶆£~,Õår}Ù¡Áþœ¤›šofüqµþ^ÎÍ@Üë¿H<þâ¿aøIZg°¥5¹'p3ÛÌY1¿L÷X\æL–<,¶]ƒüÆbó&76»ý°`ó˜Zlþ¨q0ct|œëŸÉ/ tø¥m EOŽHè6Íxq­9£š¸ˆ+3ÞM\CÎ(yWùÏe|qÅ<þÓ¯VÐç…ŒWÛ(çj îÆ‰㻚5"‡×®É)$V>/b|#qµã Í3Úl‚¹{×Ö[{rÙ‘á¾ìí ÎŽ f{r«×æÖ\€Z»výÖKúvmݶzpðÂAÞ&Òw¤oÂ{½P,M¾=£¸4)ç› öM,¶xK‘ßaøIZgqÕ`Ôä›®„oÊ_êš3½ÆåÁ˜‡öy8¥ ÜÜ+îë jÕ€8l…ûz’QÄ5.¸0§öÁøIâjyäÄ}˜ñSÄ5ä œ“9 ŽäJ@•O3~8P“eÞ.68´&pOÙá\0HÊæVäVe%]”ý.¡Øú]ÂV»&ˆý‹m#žÆÐ;i˜bZ;@ïb{3jrM÷ÍuMâ21k×$fãFiÄøª175&v×9"ÎGqõI,þìç“hh”ÞˆV‚<奠»¹\€÷q¹Ü§­EP?`RÛ Õ^ÌøâÀV{#ˆ{ã[‰«íyŒé ÿmŒo'®v( ñVЦ©×æQ罆ŸV;#ˆ{ãûˆkÈ÷ÙEÎ(» ÙóäGKPæýŒŸ&ÔdšFÙóÄh)—]3Ð7²fd_¿HÙš•½Ôê~‰ñÄ­vH÷Æ?&í þφŸ¤Õx.[œQ“CúPà¶›{Í sÆ„Kê5v:qÉ9nwÙf!×Ãõ.—ÿµìRÐ9è_›J7OC‡^±ªt…9a{·T·•Z%ÛqŶÒm´¥¡aödÚ' ÆÖ´ :,±¦¢¦ayÉDúˆ<ßêŒoǬY§Tn~Ïã"~ˆ‹P_œz+xfÞÑ ”Ý¾Š‚¶Ÿ`ü)qµ;äÜÄ}˜ñgÄ5Üa$ïÆ ÿ猿 ®¸!\KX¨ñ¯†ŸV»1ˆû%ã¿ÆvcâDÃÐ`àÆV (µ£ß1þ/q`+GUÁ+²C¹¾\v_n`0;"éÄeÛ0® lµ{¿)ÄžG˜´÷€øÞÃOÒjÜÃöfÔäÄ~ºŸÛîŒ-±{ûºK¦Ö=í*›{-rpsÎß5t]œìÏ«x>*0 vqÖ°q¿™H‚HÃh,èþÅTácÚ¸'Ækøs NÅ7¦lÏÃx/œ‘ ÆhÓäå‡i÷rAÊ­v!^£&Úú·+,ßå~Íøgâj•œgƒ¸Ÿ1þ…80qÏùÿÍøWâ@M¶iumbÆØA\m…Yεáõÿ‡Å. ÔâÚúú††TÚMÛBÆãˆ5Ù¦á¶=¸6«hõç†rCC’N jžÂ¸–8°ÕN âŽg<Ÿ80ioñD~’VãùliFMNí)pjÖLÞ™Îʸ”vC¬ ¼ÑÖ©²ëL‹œM¶ìÁEÛö‚“?cY%ì×s¦pмfÇž1&Ò:%£lÚnÀpý³tù ø.„§hk8z¶ñA·g2¾”¸Ö‹šøˆ»ñ!â.r÷;ÿ2Æ Ôåwr²3ƒÐ㵌¯#žÄ]Ï÷rÆ××p×ó±ÝÂñ¬\…ƒI«äωCŸ70¾Ÿ¸âÕ@q·ñ­Éå°oxíÀÀx¡ê6¾‘UCÑ6¾’¾ ïõQ¶cˆ[í« ö,öXâÀ¤Ä}H„~’Vã\55ùª—6òUÙìêùv•›¥º•-^°Š¼\Ø6³Tê»fÒöKÖlí.¿¦ëã°÷zovªì;H©4ųo4{h+bä$Ý ïç¾” Hß•¸züt{ã{‰k]RiâÇ î!Æ÷×°¤"ïÇ ÿýŒ ®¶Û¤Éø©éòÈ<úüãLj[íÇ îÆW» yÎø 9 WáxíªáA¥æó Ưj²Ñ̉yöT0æ“>AËfü3q­M\Ä}ñ/Ä5LDHûˆÿïÃOÒj¼ ͨÉ%­ \ÒŽâ^¬dmóz›íRI$#¼$ºÎsc”ŠÁ3‚¡OeŸt…€µ®aí×èóZ6C·‹wÏìn½¿€¸Æ«ˆ÷5ã5Ä3×h3QÇË $M¸fAüíõÒMö!.yà¸äÿ ­Évn°s³BŸ¿ŠmWÍ(n»’spû_,v!q`âòC\D¨É,Ò§£ ÆQ†ŸV»7ˆ;œ±‹80¦5ŽîέÄ&ˆ‘Õ}}¹¬üñ(hs4ãÄ»îÇ<>ËŽ ®Miåp®o dµ¤›ƒ²Ë¯ lµ›{ˆý pû—mÉûˆßaøIZ—±½5¹¹›5+«4Vñ&ʼn]Ú#¾ÁÝ+vˆÓÕ‰kÄ•-ûÌ9n΃”Bàg\xéæðüRÀüR;´5‡3k²Bl*TèxUœ‰?¨y5ã4ñ$òåCÜNÆâòåË;ÈßÇ8K\ã½ãí¹¦á÷<úÜÎøTâÀV{ˆ»…ñâÀ˜æ ;z†0ñ·Z> ”yãó‰+ÎF>Ös·ƒ¹ì@€Ã«GFÖ¬Îæ²ÙÁ@{I×u_ÄøQâÀV»ˆ»ñŸˆ“îÓ!þc†Ÿ¤Õx9[œQ“kÁö„QÇŸœ2i…/uƒQ1øÐ¦åÆ&¼În¤mÛéÖÈßÎò Ö¨{ÂqÛœ‚å– «l¬)[%u»ˆñJâj øä¼Ä0ŽÆ´êˆÑ=è†Wbî2=Ë“¶¹Ö¸Â.—íRÞñ}ÜeX´Í)©m,3zÒ·¯@í]Œw×p1½tÛx%׉WjmAÛTäU¬°ƒQK’‰jÞŽª]WÝ3·‹§G?þž ÏTÐm1ãQÄ3Gªè–iÔu,5Ža\¿s‚¶V·`UÊ7‘º€ñDâ®\]È*×õi‡—k[Kt˜8¶‰$:—8Í4ݼg—,ÃǸãN‰UqyO™nê ¼=zû½ÊW%âµNb,ó+Niëkõ]•ýfï >~F¤tnu— q73"+eT³H×~+¨Cþ}ŒX²º'£¸"Þ$P—ÍÖ=^ˆiZìeQºIK.P‡¸ûb“¼XC ¾*ÔW­êë[=$;”yãÃT.8£kÈ;ÿ]‰«Fdt¨ùNƯe(ÕÒ—[ CÜ›±wøÁç+É{ˆÿF„™¯Ò'i5^Í–fL/y +l]²hôãÌï•öøPj1cñŒÒDsÃ(dÑhÅRTêXÆÀs"$×lqi O&é1+ÌÛ‚’Kä'gL÷ä“À?7šnÙ*ùá=÷Ë£}…bD‡E³k&g ³€ËšfýIÌúÂЋŒÝ“QôRsž×ô¢…3±µL™(Â#U³j9FÞ*åƒÖ)ŒŸá‚Ó—ºLϹ(èöeÆŸehßR“ ?çâùY äÿ‚ñ—Ý“Úd·¹Ccü]†R&ý[ëˆûÆç¢ø¦Àfx ××7<(Ø@™ÿ`ü+öÚl3﹨ÁUÍ3Ü7‰k-ÛB<'CY0În}\óò™—SAµ©]%\û­t@ñçF(Vô–'¯ÆkÙÐŒéÅ5¯cE€­‹kŽÜõñW–ò“Ö-}Û¬¼ì¦¨¶˜ñâ™ãµE7ÛeÆÒì$Ƴ24)°¬å!¤-`<›8¤Ç¬;‡Q£Pç0®`}z´WŸ£·™îÇßRê ÀкEAË,ãEÁgeðQÊ%Ó°¨e“r¶šnw°~ú¶ÌW‡ÎcÜɶ‹¿Ãàð^c³„ÊàJF\ÛžQ=L8_-êÚ8iæ?þ®ÀRŽ—w‘EÂ.#+¼¶0?éøÎ”¸ÙéøygªAÞtéP¯òdÆÏeh…ûSÚB9-СÚW1 À¹‘Ÿ´~ qŸg "Åõ£) „ ÿ—ŒØ3Žˆj²†{üdÇAPãwf~CŸVƒ îWŒÿÎá·ÆAÈ14´¦¯ohµüFv(óŒøŒ õå><`ôkû×ôõÚKˆ^Ç"`†R$&<öu< " AŠÄ’ÇB|6´’Ǿž-Ψi@„s'ípúÊö­bq¶×Øü`ýX¥oÔ,Ì’óLž¤öo`íñwb4 `g‡¡Ô…Œ—ÏlÔ¸(ÎC™KƒÀ3³9“DØ i#ŒÛ‰k{ïéåœX9LùâlšSñpôÎöŠÈ&\š@~àJÑ÷ŒŠHl—°mTLînv­ >–úvWöZ³F¡É’6«ØoÞ7ø}ü½à7â\ÒŒÂØÁø.¥Sq-^Ú†~?cüß yþÿi}àq?dü?.¢ÿM!ðü¿¢{õoÚÌÔžËÊëƒÃÏÄ8l!ù@wµm‹ÙO®!òÁÔ¡áÕAä³F>3ÖÈã <‰SZëRYÚ”Žx æŒeÄɽ¶ [ñ@ÜÉŒsI]”|¨ñë#ª\œ¼odK3jŠxö"âqʈv¶£gq„!7ÔS=;8Š1‘ÑÞrÝ`Í­Çì>/p[Á˜ÔÚW|•w¦n’ìDº‘¼‰_¸—_x¯¶F¢~hú¸Œ·¶Ú¯@\‘ñIĉûÈ¿ñÉÄ©ùèñ ÆgWKö"çW î)ŒÏ"ŒiŽcºV³ ®êë‘O užÍ¦QÚ@&1¦ŽŽÍÿèì´—ô0P÷匟&®¶£@ÎÃ@Ü‹?C˜t×ñŸ0ü$­ÆÃlqFMæð0¾U§¶õ‹«V6V°öA³ÿ›Šc8|F7´àËËb'-{ŠÕÑ);ÇÙ;iº¾øëiø”«¿GLLèN;ÅiqðÎu<¯Ï  ‹Oå­åaDu:Õö¼ŠÂ=ÍoæR¾‚KéÚZØ9[±A¨À«=—§~®ª¾žñóÄ­öX÷JÆ/&î± ÿ‹Œ_"®˜¾¨¡ÇÊ*èóMÆo¶ÚcAÜ—¿MÛc­W2ã’•àå“>Bï0þ qµ¤. ­³¬™Ç²o²Vf˃C²¹¡çïq(ØjW±¿b±ÇW˘ÏG@ü±†Ÿ¤Õx ›šQ“«š \ÕnÓ§´õ›)»ãP}jàš\%Û þ–o…éIœRàÓ*NÅ£«,ƒAÓZc§c—ü¾1›GK5C#évòV~e࿲¾%ÚS?BMŸñ~âÀVûˆ+1¾80qŸù0>H¨ËçH祇ÿÀørâÀVûˆ{ã+ˆ+KµßÒìÛêì`_ßê¬üº#”y%ãÛˆ5Ùæ1¤~X3<˜•t;Pö=Œß'®5]·qogüq ¹è¤û{ˆÿa„á'i5ÞÆöfÔävî ÜÎÕf~ÒìÛbšZäÛ½F­bàJì"²RMX%Ë5‹ö-á5ÉûÊEÇÅ`G8ºU%< @Ĥ)öĈÛ$dnÍß4Å8ÉðüJÁV ½ xˆÚÙã†Ó µ¹Hàeç¾©‚Ú÷1~€¸Ú­!rÎ âîf|„80qçùdüqw_·¯’Ý=>ÁøIâÀV;'ˆû0㧈+nÞªýöq"/ñê¾¾ùÙ;hòiƯ×xcJÃø?Z™Íæs«‡†FÖdW­ þ‘ÍHz'(üÏ„¸.\뵡M¼Ä~Å. ®áÚPi·ñ # ?I«ñ¶9£&ï´ Þ©þjd1ù–¥û¼‚Z¸–©9ópÆ(3 ¯?ÆêPÙÌï5'ä ¿“_ ¸‹_l—¶fqFÍ$[u¸#òû3¦+{ð J^ϸ¸Æ½µM} Äífœ%®as­¼oü[o%®¶:ÖØ· ®VÐçƧ¶Ú·@Ü“ŸNÛ·`àƒ´Áò§Î É3ï%®1ÕÁ9|ËšÕƒÃ+oò¼þéìàê~;Û4B¯Ud|„¸Z¼$çU îùŒ$Lº;‡øE~’Vã]lmFM^åšÀ«\W)Zb+ÜU´í` Úv^àtÉ4ž‹1=ÏÉÛõÓpþŒc˜>%ÅW¿ü#¿ð~9}×Au×x–šüôu>FäªWÐúFÆgOâZˆ»–ñ™ÄS¹VòŸÅØ‚kU†eçÖ Ç=Œ÷f»VâžÃøüŒ¾kU°ž³jx¤¯oõª¥uã+2º¯U9£—Ì¯ÊæšÆMü ”|=ã'‰kw6ñ/÷JÆO×0î”îØ!þÓ†Ÿ¤Õx7Û™Q“y•ð/^eœò'î´|§Wì.¸Âš±=:»ºÑ)í’G?_nì*ZöĤ}FÛ¤[Ö{¸œ€¯ârz•¶–µl§ëL`'†nñNδéå+EÓ5.±½ÀËŽƒ ç?GØj'q¯füÎøIâI,A܇?E\C8ÎW! c!HÞEA™O3~“¸š»–ØÇŒ£¼\vÕÐH_6—íË Œ¬êkš¤‰{‚ºß' 2ßÏè½P¨‰{‚Øo±Ø…ÄÓX€ø ?I«ñ~¶8£&÷t'Ü“Sv×QÂa1a'6ˆë# ×öö8«ZñÄÌœS(xÁÐ'yk­Så¢MËù^5Çr£­ÛeÓÆ`èÚ+%þǘ]2ÝY£`ú¦t[ú—ðN.;µµ¥®Á ’¯¤ÄÀNA¹ç3¾œ¸ÖYMœÄÝÅø â6fÉ;!È%㫈kÕ¶5=‡2:oŒ0ü´ÚAÜ«ßDÓGÒ É$É; ¨ò0ã{‰5¦»ÙV„ÜðPvxxhUvuvxÕêÕ²Ã#hûaÆŸWÙÉùˆ{ã/ˆ+fÛ¬«½²?Äÿ2Âð£éíØ7Üõ·¹]ä:¡p¿å<¯ ÷ÑŒ§ñª÷~¹“ñl®5gk,‘¼S°šˆ]ÀxñLüœ« E$§P¶ËWÏ(%Yš·º.ò*SSA\© ÜÆíÄITØ®u¬²z•fÜD¨©ÊæwW» P¾ÊžÇ¸“80f•=»šÌ@t¢s¹‡[¤¯i‚†W2úÄ3~òþñÃÜ 5¹i‡ôVØ:‡txÞ)M÷ìPÐîhÆùwôÝFPÛÄ÷ÛÉxqµëäZÄ-`<™x&þôþ°hE¦1^)‰…Q\f€kµKžïVò>% ±ŠEcܵn®q¥M·¤*˜êÆÄctümv=n=ëÖIªxÛ­b}ëm{œŠëžî³r{znÃo.ÝzVî¶[ϸí6þ½Îco#¹è@Ø6š×¾ÅWíÚ4ºmýÆÑMÞëJÆ â@¹÷ÂÛï‰=S7ª×44ÀFÍgÞ^Á“5zOªè->œÜNh˜iZ§›ÌphS£a¿rÔžîÈÐ{z$‡©Útk,µ´å† {Üö&U§¶!¤T: õš§9¦e.Ñ–ºˆû·–¶œÚoÏ3|œ‰öŒ1ÓCæ’áÀ­ÆU^õ¤±thU«ð}¬ð}ɇVåÚÆ˜^hõO¬°u¡ÕãDh5nO[¥Ê”‚†G3žÊ¿sjëÃ+ˆëd<¸úˆý±‡W·€q)q`ÌŠñƒáLb¹¾«ôf«i`Óf±4¿à©)Ë,y4¨ñƒÿ5Ý‚Q°¦m^šé.YVûÔðç¦ÊßçK‘Ø€/”ÙÕùœ©×ÀB<zf° ü›b³DÕ\VERiEˆ7wW"ßi9mñW=Ò]ŠötÆÿ&Lº ø·“¥Ý|œùxK»€Å¢ ˜1ÃE )õŽf<‰Gç8§Iûÿ8·àÉÜþ•Æ9ríÿãÜþ§pû¿mÉš§ý_˜¤ÏŸ-#ciÜ.Xt8Ü·Üidù@#ô-ϯqºømÏÄmÍyryWŒW<•ñ)ÄI·ÃOpeýDÚíð“¬È'[Ú;E;,XEßTÐïhÆ“ùwt¶ˆ& ñ“Ü?É-¢SµEÈ5ÄOrCü$×ÌŰ£®ôý 1º]Úó‚V¸Âç)¶ÛUo!­qÒ²Ý 3€cªD˜—§¥Û%Þø4Æ{ˆ+î΋Õ.?Å•÷Si·ËO³"Ÿni»\8­0Gÿin’ÀãùwŽo}“ü47Ià Ü$õ]ß´I~š›$p 7É%±k„ÛØ7òÄ#¾Â}ïûì)Ü÷ŽÆ6¸¾¼SM¦|éÚû¦¬²U*Ô\©º_#–nxߟM\ñ[¬ù®µŸI»A~–ùlk¤«Ð ?Ë ò³É6ÈÏrƒül² ò³Ü ?«µAæçm2-°IzqùøYnÀYn³É·ÀÏq5ý\Ú-ðó¬Èç[Ú¹Sf¥d+(w4ãþ¥Z)×?Ïmðó\?:3z—›´ÁÏsžÄmPix#T8™q)qŹ«ùjÅa¨SÓ º­`\I˜D¥8›1K˜D¥81G³R<›¶b"‹Æ¸í‹ƒDa'í³ô¸fÐ]›{)P‚ÿ¬Ýï|šnÑP_™=q©Ñþ£›LÚ¥rÅ—î½Q Œï'®vx'^ïý®ÌŒéõÞ_dE€­ë½©N*èv4ã ü;:#™&íâ:—×ê3š´Sˆ[Àx"q5Ÿsk=äŸÄx2qÅMón°A([¾£ ÝrÆ>âÀ$ê„ÁØO˜D8…q%q5OUß{U<:tÈ2®"žYÕšz1Qœ’]„V·&Q/.`¼Œ80‰z±šñrâÀ˜õbøÀ>]øsÏž²‘àAx`ù”¾‚ñâ@MevøϲÌbx·õ~»êQá¾”Ñéu¥?Ä·Gó¬ÁêǪÎÂÑ;.ÙÔ@Ÿ/xD„á'f±l;KãÒïô65p›z[ëLÝT¯²_ÕZåP¶âP£1î:SÕd™Ñ•c³HSclÿÃò ³H©¡‡z°‹ 3?k8ãÒïô5~§¯i-Ûµx§ / Âü|×’ÚáUrÖ´Uó6HŠS³Ü`$áà-ƒèËOH¿À×ù€kùÖÆ~ÃUÕù«<œÕ‰פ|]ý&ëñM­uu#ìZþEg‚ÎûònD"ïI¿É·øM€ùM6Æ~“í ú :BÑÍ;YÖ-]DTö:¿ìx½ÆX@JÖD¯‘·×åÅO ?A‹]ǵ¤Gú¥¾Í/ÜÎ/µ=öK-ô‘Vå;¬ p«¢t^?fýgÖãŸµÖØ­¨±^¥Ï¢°‡&¡Ë¦ëÛ”Û éOf{Y[Ôßé\ËØ[rfJF·Ýoõ÷“æ´%ý>ßå÷nå÷QŠbëÞç2¼Yt-³0kŒ!ýe4ÓcŒUh"}`ßmµ šc¥ä{â•JŽO¯u¾HË,ýBßã^Æ/¤×½Ð¼k•‹fÞZ·yý»6õŠWˆÌÁ›Öè8ŽIéjf«oÄ¿Z~ïóë·ðël‰ý:K‚&xCnmn 7—]›Ë=}ÌöõÒÊý€•.aåâ¯À+”ìZ;¬ªØY1౬رét\?bU~¤µãºN—cè­¯Õò>âÇü~Àëøý®K§¨ªüDkQËûˆGYFQ],V<ßEXíU­æ>׫Œy–®è“εKùb¥`ÿr'*È:%Õü”ߨ/ªÙ¥%œÁv^¼íºÜÚÕòÕögüfÀx™úk¿Ý­éÍØtj¯ös~5àn~µÝ)4ƒ_°¿ÐÚ ºç4xásƒ¸½¿dNY^TÙ¥Õý%« ìfu»c«;¦©FTßp]¾{Y±äºËz—?[Ö#_?þ…_8Æ/:–Býøëñ+­õã¬FõÃ+šc1ªÆ¯YSàY¬©RÞ‡:M/ŽéÃ¥_ã7üÀ‹ù5.Žý댺ÿætÑAÁ¯+›žoe»ÍŠ?鸽Æ2ñÿ³–é*TÞßò;×ñ;¬K'ÜøWV˜f¸ño¬Ç¿imGG; †.ÖZÑ„œŠ_†mEÇÙë‰xAgTÉÑ`'°µU¤Qœç;"3f[¢kªíüܽœÇy6~¸;¶» E5.‰“p¸ÂNñ(R”d‘E‰¤ú‘ÒØ»[À‚»‹+¤©fÙ’‹JÜ»¸È½Èv·8Evšc§'.ñ—Øù§|qœÄv'úÏ;ó,°ÀaÚÙÙ…üùçåóè‡ygß2ýÐuüÔ‘ð(êxTMýG…(G)í´t´´küØ_ír ×rõ¢˜+2ÄÇ‘2ÛËLZÛL0Á†ñåÐuüêø#¥u\Ý\GÄ™ð®÷¯p5ä[Y¾Ìõ.Ÿ1CKócHC¸Ò,hƒ÷ýäø7¥ÞwiÍ0iÓ mÎÇ.BOPÓ¥"Z•Φæfp6µ¶hv5Ÿ0¦…•štý/û ©­ð1îßQ;Âh׎ø»Jˆ”ªç]Ë'ÍðùŽp¤‹¾!¼ ürüD© ´w9맨a;—³~9~¦ôÝnåK8ƒ¦k¶1Î'Y±ÀEM›kQÓµAtÎ6hVî8‹ ¡¥ÿOHO¸ÒoÞåòãØðW¬ÇÝdVc†ro›E‡E JzJ9ðéÕ­Ù¡ŒVÑÇ mhã`è:üê@¨®Ëu+z¿4´™ÿÇ ÿìà Dý~Žúª›™»ový&Eý˜˜Û6qi7næ j5¸Qüp+¯Éøáêµ}£ø¤ø¯-[%ªù?¨&á}¨æ}‘«¹sv5ÅÍ(¢ªLÜÆÿÕþ/Q…ÿEw¢ ;#WášÙU ƒµe‡®S¦Z0M°×ÏþÝÌÿeÿßÄÿÏþs‹ÄÐì9Ô‚ðÔâš¶ Íh[)ÏQÝÐl4`À~øÀu4 5G¨/3iŽLšþùõú8Ý{˜“ö]·ƒ}Þ,ôÑX~Üt‘¡ßvÚAŽ£¨âh{Þv'DéTú¶Cwº°›ØÃÿºa]xŸ#uÃZ»h#…Vyr¿†¢ç)}a÷®ñâ;ëqïZªÅð“uŒÊ!…bíÒæ¸\pBEjY8z˜™²ì¸y‰)à heEòZ¡âWÖÑ{ä^À¬OujQuï]Þp¿CÆ éKéKð-z9ý¬[|éÊç YÌ¥uY“~H®%͵Ù>à–*‡Ø?ûMŒ—®8”«šÅ‚nè…ܦM}xÓð–\d=PÒË¢¹Êz¯ôúÂ¥ô…×ü¨öNYa]TÙt€›,cÍ”«»—´NHÖYŽKÁ—ÖUæ½ðŽ‹ŸÍ›o;rC?®g™ÿ\“Pþ_.˜åC×—óíʅ$¯ùž¯ÿ`ãºÏ>;Ñd0^P¸åàá}wæ]Ï~øºõ/êi.ìê°:ñ^gM+ç4åU!¾²ÑbfÙÿfÿcfјã#Ïww8-A¨Ù{–ÕÑSó[“ J¼Øå>Ä#!†J k!p¸ÔËiYêüQ½hê-ÚïtË8úÞJÒJ¡âWø"¥,®y’]ÒC*¦ ÊðrŠ.»b|§Þø1ýTGÃ1ý¤CÅŸïC<ŠÓS´Æo2OH¨¥ªè†±,”5˜jñ ]ZmKJ-ݰFÏ•µÊÖþÂóç•ó†„bæAóöo2¯½þ2>â¡ZY°gß^ ̇—‚/M@'^sKØÆßyˆG•N®•ÒÉèaAÂ:ñ-ƒ¶S' ð9ÕêdaÙÊÉ4ö }O’½0ßñšvöÂЈÖPm/lYa,kŽY¨êE Ý,‚`„€_€nA„-Ö“Ò ýîBâQ¤›í7˜®v¸ž>“v©ìóm*Øk›®a›|Ÿ€¶ýtƒv/vŽsªÑÍîß­P‹®é[ >{ 9Â=à{’×"­ñHjqATqèHíRâ‰øVÆ4M»¡~@ÛÒŒi×Ö‘‹õøû‹æ £hNXV!£y]ÍŒÆú6íZú‡¬ýW¾v^†V¯Åâ:ϳœ/ꎣ…¬ëbhp |L™ÍëeNÑ RÐÄ=—¥< ~R™7ÓçÅmp;²Ú;ÃÞÊÈËw€.¸UŽÎ£æ˜wÏÉacºbßÃZjÑuFìBÆ¡‰ü›²¯ÙGOØsäÆý{îŽÏšcZzmùT~B·ÓþßõõÍúš^ïÉ|¡œ=î˜{LÚÙ²á”+¥„'ŽëÓ»7ÎæטîÏSýúǪÅ"ûtïÕÚ-ìûè{œÇ5JYšÈK÷¬¼÷§H>ò'èô⃶'x™‹MßÛ§­_¯Íª‡x%¬*FGù=2;¼mV\Í,Œô`_¶_Ÿî?êÕtg¦œ×˜ÖFz³Ùö¯´³Ë¸kç€øš]g6htǃ†­Â- m*yÔ_ôhï†LËÏ0Ù¾¾ïÌ™ žëjn¾Uàƒà†5cúĬ«m-½€÷ã‹>쳪.¸áR?ä“þ!éýq±«•d¹øÍ#dRY½[—ÚúÖ5¥Ò'f-ù,Þ™·Êeƒ·º»¾…/™-pÖ¥‹Ô8«ÒJhý¿hÕEº]`\Ù!; ¤nëÉrUGíîΔùyàÖ*î à ø`t7ÏJhdȇx”ÕÞtR@±ÝÀaðá䃿чx’* sæ¨6ªH5Â$Fp)¸üÜ_ó/êÅâŒV²lƒ_fA—Êó›-¼íMi«Ì~OÛì$Þå à5à×( 2=µ%µ¾°‘†ºxü`ü‘†ŠÛ ¼ü–è=ª°ñòo?¤.ø³!½œJî?šŒJ‹¬©{ƒ¸ ÷ àuj¹VV-'€¸•ŒZ `¼¢`ì¶Q¦òOmp;þFÙwu:ߨ-0éF™Šw}ˆ'ùFùaÏãëêwÓĵ„d=À%àK¤ÛçEMýfÑ7óz‘v,;#oŽÍhS"¿#í\öò±¦™ÓÙfžZïú^æúmÀ΄U-j øØ÷Y9WÇÅ1¬!ÕœÆö éû°Ó>«]gŒé´m•þWéL°RØ (éã¼Üí ñ6—¿þ5e°ûȡۮI”¿~üëñ@*îßÿFd×ë¦}´:ù&ðÛàßV¦“¹‡×sjåï€ÿþÉhåÿÿü#ke…6¥;^×›§m•PÑ?þse*Z"¼|¤—ÂcèA=“)Õ\&8ašú»\pˆš’¹à™‹°x¾à)uçoçñõ­\ÔOi‰h%up­à)©™ÜƳá"™ì”é¡;x$I/°_p¸;xôî»QlVpoÂ(É?PGïI¾ƒw©°lŽñuðRaw^‘8=>Ä#Ù»›×$ΞrµÄúU8SæïãñÛüŒ²^tgÚtŸ–΢°agµ#ìWÑ ÓÒÕY<~@Y$ê:126‘$G€·ƒß¢ânÞ~Gd»¿¤O3E’y>%Ï;î”A;l2q'Зú§ì¾ > þ°Bµ¾>˜w øRð—&c(.ððG"ÊJ\l“+³QXÑ Ûl‘½nèÌ™š©¹zõØp€üsfÓ#á3Àà;ÂV‚>1+›Þ‚ÑÒq‡ ê³ZGh¹{M"‘ |µOð«e¯-tvœíé!N1ZŸM ÕŽö½ž€|{Êäj]j@¾=µJñ-í¶>¿6§Ù·ëÍp“O¸Ô±¨ÿ·  âöÍ’9múÅ}æŽ×늰åÏ/ñøX$—j¹òh—ôlµlJçgÀgö¦öPq%à)ðSñw⨸qàiðÓ‘ç/X'ΦָZæsi¬^(˜â´V‹~8]•V-Š Ø˜Ž›½¢Õö+ƒ=ßÌ 5Ï ›Š’ü~͘4Ê´ L›Àiô@;F}[ÃCw>镾D`êÁ •i´l¹­4Ú×Q먴³ïIÅwú0Zßs~Tq¨×³È‡x"¾•Õ¬ïy‡U×™½Ünù 7§WÙp3옲Š"\ ¾ZY'cÕÔdn7®­ë¯Ø-`d-{\BȵÀ­àêÖæ³˜nʽ¸ <ú"Aø“‡Tþvàpu=Á5^Êò©©©let‚HÈÝÀcàÇv‚ªvª®Þ ~odUu…_n!îæÀs {czÕ ; [òÞlG[Ã/ßéÃháwaTq:Ć]ñD|+‡iè_º펬–ìËj{­r¡šçÓ€äLý:ëzÌ8ïªÏHÂѼ¼ý¡¯\„Š ƒVö[U›úL¬×R»M†ýçakÌbÝ aïNƒO+쑌 ©¸#Àp©uÄøM埞—ëë¶œ¸Ý¸EBž‡/W¹-8g[eŠ¢â^|<ú¶àÅé}m¨¿Ó6)'zð)ð§”)æ ¯a-X&5¤CƒÙ¡m[6n8î8ÙÉÁ[²æàÆÍ+‰úFàçÀ?§Pw“† (ö—€Ÿÿ|ò­ ÿâQTûsFÙg Û(çV{6„ŽyŽ™6¶°T|§£µ°Ë£Š3Ü!6I{(}Ú'ê¶òP aômåŠ'w6âs„€K-‡›ÜÙ…®—ºó.Üä× ¼<úmá^*uG=GÒêŽ(¹ƒLb>™DiBB¶ À ¸TÆÚð±èW'a³àÙ6YÄp|P¹E,$‹¨®%!Ýð:ðë’±‰­ÀëÁ¯OÆ&†€7€ßÐ&›xðFð㱉ñb©$!ÝmÀQðÑdlâ ð(øÑdlbð¸Ôì‘‚ÌR$ý@5™¥‚[I ÙN'Á'“±ŠÀ)ð©d¬ÂNƒKÍ4¼yq î˜ÿ‚SÊéã-3²ßMM˜ù‰ç›èGËëåÆÓxa»ÒT½à×Á¿žüc“°ÒªçHôè7£pÂøzôóô²5©KˆvIG=)ù%’;ÏêËžk’·g„ <×ÍÛs½¸|µ¬Ð³¾¹¸|müqŠëö‚÷F¶ÔÜ÷õz0òbVן%Ì&÷×\ÃqОN¯Þ~›²÷µpÔ1 ½èX-J†méPéÜ¡c ßéC<’®½úùЏ••º¼çøOÄײwݺuµMüÊlÍ6Ât¼ýÃþýÅŽ^ª‰Lbc¡º&Û T½à{#×äæ‚îҽĆCÕI— Ý©ÚÆHï¡C½¬oeޏËÉh9FÊÆxFË›#yþ“#ü'´¹z„ý“ÍåÇÃ'³ßŽŠÞ ~s|V(Ç”í¡ïYMf"¶<5nv -ßÕéꎨËùþß^Å,tˆ´ÏšœôŒ™Ñ&ͺB3š—éìÀM½á5»RFßê*¯Ù”í¡Í"ͶØÅ&Öõœc«XôtßéÃhÓ³¦øÅ”rH™níóh„Ë:"܆0Gt˜™²ìVµn…"nUêK¡•Bůð!¹0ëS‡ZUÝûŸ7Rê±GúÄRú„×+Y)~¶œ~Ö-¾tås æÒº¬I?$×’æÚ\=à–*‡Ø?ûMŒ—®8”«šÅ‚nè…ܦM}xÓð–ì`(éåohõ^ê#ô•¼ßqÍj/•×EÕ½$ÀO–²¯37‹ä‡Aæ°3Ž^´—ñâ°çÈû÷ÜyèÞÛ_¿÷º›ižøðŒ“7\£<™îmúuoßÕZíGs}Ÿ5Ç´ôÚò©ü„n§ý¿ëë›õ5½Þü|¡œ=î°^¸9igˆ;P®”XëèN×§wo0œÍ®1ÝŸ§úõU‹EöéÞ«µ[Ø÷Ñ÷83Žk”²Ô¦¥{ VÞûÓ€?ÌxÇzFzñAÛ¼ÌŦïíÓÖ¯×fÕC¼V• ££<5ÇN'o›W3iÞœ}Ù~}º_ü¨WÓ™r^cZéÍfØÿ½ÒÎ.ã®âkvÙ Ñ Ê‘êƒé6•<ê/z´wC¦áÅg˜ì _ßwæLÐØp®"d¾#ÀÁo kÆô‰Y D-½€÷ã‹ÔV¨Ê"BRïóI¿OFzûÓÕJ²\üæ²Û¡¬Þ­K H¢¤Ô–c¡Å;óV¹lðÀ½k®±dÐÈ/°.], ÆY•V‚Dký¢í«?Št»x´`›c¯: aNuÌêÿ¿^Œ×áô¤³/Ž<“Lcß…>lJ¤Rž °8_ô^B¾+’ep)¸Tÿªõµg,Í!Ô à*p©ÑBËRŒŠ•SÀ Á/”Ò”ÿ·§§Å’¼c˜´'[Ìq¨æ2¡m‰$[ ô¨‰(áMüO/—-—õ„ùŒz†.µ˜š2Ìñ Ö­äw´e´ CgJñûÐÂ/Â+åE‚o‰,|ÂOÍRFÓù¿ÿwFüÄe5qŠ3²9¼È=“Ð;ÔŸ‰,r"I£8²}3­ŒͲ12H»´ÆMö‡oÊhSfÁ/ô9”0 ž,ô¶Ú{Ö™ý:ü_³öo¶Î¦ùf3N‰…1D&ôm ‹(þ&ˆoÙJàTslT—Ñ\[/;cd% ®n3ñ)ßhxÑ}+ßþÛE‚è,˜æG†Øx&?ÁþqÌSfã#ùô`vsf(»¹ÅŠáå^ Y ‡À‡” ³éÎ \2°¢;“aì²Ë^tÞ˜æÿ"¢O›N๡À*,ƒØ„ÑÆÙs',X-ï¡bG€{À÷D~ƒá×I€k{Á÷Ê0UuØP: —“ª}Z²C½óGŸéôa´ÎßÃQÅ¡®Ëbâ‰øV$Žo¬ì¨÷°[ßPÔ MMKˆÕãæë!ûŸÝM⬘dCE‹ç}.åñð9 I¬%ÀK;jWOJª/Jî×À‹?眵!¹/ë¨'<¿L ‚Y›˜Ó¾’ÀiŸàiÁkvÑyÖ¨´F™­;¦O„ÎøªL¤PS:jõ‘ª¿·Ü¶é¥´Nöo©s${Ug–þßfê ±,Ö9¶'kÙ55êk:”YGÞ*¡oûôK|ü°²Wx¹!× <~$ùN ›ñ$ß ð;]|½€ÎISB®à9àçÈÈO7€¾tiGýzÎ¥ [_ðÝ’{ 0 žþEèÐ÷ôùï“Á¯””÷­ã~)­ûÖñ–:GßZYú{cPߺhM6å73 tóf–]ÞԋZΪ– NV»Ùry—Á(Ð –¾î€;íì_“ §€-.c‰«3GŹÀ—€¿¤-ýk’à ðAðÛÚ¿&I¾üɨä!à+Á_Y%çj¦SïUgµÃ†!£¡Wß.Õ³n}ƒÅu†«›¡ÓQ0ï~üà ã¡skµõ½’Tà;€ÿHôØáÿQâ‰{¸CÅu?þ±ä‡;TüÇ}ˆ'ùá΢9Æ;Ü©†îH=Ààp‡ÄZüEîܽÀ_¨á œñ Þ¦áŽ21Ô w”‰j¸£Vʇ;q¿”ÖÃxKc¸£Î,ý¿ îT+•8‡;þÚ¼ †;$È)`‚Ã*ζw¸Cœ>ØñBî$îPq_PÃèUÀÌp‡„y0Ñáø`‡;TüG}˜Ðp‡Šë¶q¸CÅ܇x’î¬Í1¾áÎBï¶„t¸R’'z:24†ìIu5Iu¸hó[§] fF›š0X›n{ÇÆù½M΄U-h1S/P«Í>Ní>åTÒÒÄ€"•DÏŽ) MÝt¦=lëA¢”€ðJü­7< ~2²Gt†^u¦òm .ÕÁ —¨¸n  î&—¨øªñ$—|©*bŒKçøÒAHØôíñTšŠs„&Š8-ÂÝÇÄù"ÝóAŸ1Ë“†íµ­Í*5f]û |üae1kÏÊ6h‘,¯>þxüA‹Š{)ð ð'Ú´¨ü'O?Ðò]½Ì/lï˜tТâ_ãC<É­Õž9Æ´æ‹„5²õ—uÌÊö1^Ý1G¼Ê[Åj©ÌÓì˜åñX»ST¹•À ð‰öv§H hƒÛñG&*Î:àróDþßÞ×—ÕöêeÑÖ5J.I—‘Ú–|@º,c.¿¦¶§niZi íµµYe#tÜ£Ú¹À?ÿ³øã× üsð?O>îQñáC<Éǽ‹„³pŒ/îuS6, Éz€KÀ—HG½f‰NOX¶yÊ*»,ð1ÙLÖ·ÂNqÌlcœuвھ1­Z®Maeøjw:û+ú‰ï»ø_ã ÉŸ¬’Á>WvÌ\ÑÀµ*a=å"|Žð•àR“sá<å"xá«À_•¼§Pñ¯ö!žä=Åw[Zœž¢‡÷”‹áÇâ)÷’…O÷S,öóu‹†?Rå ãs„eðrüÞp1<€Ð·’÷*¾âC<É{Ã%ð€Kâõ+¼7\¸$o8¬ÛãÕ’Qvý½%‘Ÿ„é’$ÐUÊ–çt›cÕ1 a=à|Ž0ž‹ß.ÕæÁóÉ{_ð!žä=àRXý¥ñzÀLx¸Vi,ð'ÚgB»¯çô|Û†™çÕ64X6þð~ÉÿÆpÅ „ïSæ‹ôZzjÂ,ŠY4±ž/~L+‘®Y,ò¿Ñ«®UbîÊF½Å™Ð#—Kñ9¿ÿÛøýïRøáwÀ¿“¼ÿQñßõ!žäýï2øÜe±ú_§îJÈÕŒž<¨Yž×W,Çä®§C'‹ó ­¤Û'Z]_ÔsFñywÛj_¥ye9âTõáèÕ,þ ø¯ÄïA—Ákß þîä=ˆŠñ$ïAkà5kbõ y<Ûµ„h=À¥Q÷Ë6Oy–ÈÌËÕRÎà{f}¾C×ìø¼ªyNsss¢ñ²eš#-‹fÏóÞ£«¹—6iêü÷U_<~FZ+Ï?žNƒ’ _þ2…Þ0 JÅÝ|9øË#»IæuàÃ-’ãQàSàOÅ´¨¸n`j¨ø×øOòAKFÍ1Æ ÅsáKˆÖT´t° ÛÌ£û›3Ü)ƒE AÞÞ 6Oß·ÚÇÊk5+ªmß|5kÑC*ªæ àIp¹m­wÓvØ=G$É£ÀW‚«œ)-šeìØ^ö\“¸KFJ¦“ï·ø5a[;’wø¸T6‡–ßl_}w)o' bódèñÉòjà›Áß ¥âºoKò”Š«ñ$H×vˆàI_ ]`‹«D$„ë._.J›ï}ÜÒJ›×=­¼îaM6Ÿ*yÁçotË[C±°É»„X·ï¿K™ûͱ{™ ܼüîÈ–«Fæ5«Md=õ#¤Lúe^/ó|6ÕJ…ŠÖ7ÏÍÐx×¥Á±;a:šVWâ}Þüø‡Ôõ×oÞ¶¿N‚<ü$ø'ãï¯Sq~ üS‘ÕÛß<Xß«  Z‰©Û¬…žCÏC¨Ÿ~\jJ-\KDÅu¿ þÝä["*þ{>Ä“|KÔ+ìžcŒ{¯ÄMV²õ—uDÝ{µ¨I¦'¨g>nÌÚzSŸ›(°–ø¾=o𠸩 3?1k') êw˜®kœ"¬oÞ²iJœEÁˆ[¶è¬¾üê"ßðMa# ò>àÓàOÇù¨¸wßþþÈŽôÆY¶ê§¼Ý)Kƒé8˜Æ5mÇ}ÞfäMsù,H|c°ac¡y æ”æS^Fò©k'Td$Ëý—Êìñ#±nÞ&xJ* rh“IíÞ.8aD“¹-û:Üb<; 9HÓ. «ë)¯Œ™Ø¤S|˜ºCìï½ ”6²ãÙÐY3©Jw?$xJaH**¤ž~RðTý!*îÃÀO žŠÞrúø%&Ï|~ʰ-úÇ\-𼜷4]°­JÅðçº×FòðiïTwKQjXBÿÙ:zOúïL'Œ¨ÿ5-ôÏmÓ\L9ü^nx³à„q÷€©QèF±'LºLÅßRGïI¾¼N:Ç'µù®¢õ£Oj7‹ôQ1aÊb–¯'\ÒËUÚ™ÁFxÇ«ŽØâÁE÷:´âXBËn ‹Y¦8êíñ¾Ø²»PÔÛÑi£–Ș£;M]¦ú—zå…žé¤w¶øà¿¿w­ƒw~ü‹É{ÿ›>Ä“¼w]ºÁs Áä=”x9p#øFi¥&Ÿ•äÞ +?}"é¬l$ð.Ÿà»d¯™Jg‡dV6eb¨ËʦL¤Ö¥deS«åYÙâ~)­³²Å[êYÙÔ™¥ÿ·û5Ç­Lãl×6Å<¸1íÒñUþg3µHk[%-‚·? þ¨27 ¼ƒ þddµŽó• ‹†dS¦Ã†\f‰/ס/h³Áœm°Nf7˜f¹AÙYíˆU[µÅßd°ë?Ú¢-Uò)àOÀ¢Lç‹¶$Èÿÿü“QúOÏ?½û¶ó~…ˆÆzOÜwªu7ŠM N˜tçŠï¬£÷$ßy_÷NcçÝ ßy'‰z€êʧ›:ï­¤³vf:C“FÝÕY»BSElHe ÷\¡)°é&QÆÇÁÇßtSq:ðø‰ä›n*¾èCQñ§}ˆ'îøDÅu_=ÉyèøDÅŸñ!žäãSŸ°fŽqw˜Â‡'’ª¨¾Ãt'– )°xËÓCm8£mä#ŒM}ÍJ/šãe>µ¡26QíΞ—ë1(‹M$Š ¬‚K%­ ›¨¸"p|2²[Œjéa­dèeG¤ÌËh›ðŸ"•)•.Óm9Áéۆˌ!o”½M]rGì©fSÀ?ÿÓøÃ× ü3ð?K>ìQñîC<ɇ½+…£pŒqce‡Ï*J"õ—v¨>­úd‹A¢ãÚüÀM=ÖMXS ³%õ‰^#º4¢iÃâ –ÓéUöm‡÷¾dŠÒ¼ø¿BâÞ z)+€ï§²P)yï ó~àGÁ?ªÌ§ç8¹E¾ ø1ð%ß•£â?îCÇS|èRÞDBõ—w¨NñqLº=j<óJmQãñ™æ¦RVÀ+Ê¢Ù9º|{CM(þö†Š; |üáv¶7$ÈKƒ?Þæö†dyðÍàoŽ¿½¡âž¾ÛÙÜÚl›ÕÚ8Þ=ѹ™¦V ùA%j±x#¸º”RsG©À&„„9<~$þ&„ŠÛ¼ \*sCã*–Ä5Ò$ÁíÀ»ÀïR¦•³t¯æTË}À1ð±dÔr7p|Äw‹@ÅuMp3ùŠ?îC<É· 9Ƹ£Ø¶¦Â6$QPýŽâ6lš&ùEj%Ë6´q£lØtâ=Ó˜Pºï¤ù`dª3j“dg½¡±0oHäÝQÂó?ÙFI7Ëôýõ 8›_ PES#fùJ¿EA·¹4ì[CÒÀçþ“ø½ržHøSðŸ&ï•TüÏ|ˆ'y¯„'Æë•Ƙž—¬¨Þ+ÿ –Ê“”Y›Jý1&#ù'9Zˌɸ«‡¦lòZ‘VÒÛ­!ü9×· SuDîŠ)Ë>ÁÜ­<×™ù) ù&’x‘({÷¡äYi¹ …Ä{]ü:ø×ãw¼A8á7À¿‘¼ãQñßô!žäoÎ6«ãuUòa³¼ Á׃/–ö»YûskM˜3SÊYüªY6̯ ˜µ”Õ®ñ|,C³uf±È~휬RÓäMÈlì  .šàr´¦£Ä#)‘ÙBB¶Iàip•‹¸ó=T\øp©EÜp*î8ð xôEÛܨøyS ÉØƒ°ÜÖ:ø~àÇÁ?,¥âºm܆BÅ?ãC<ÉÇÒaáwcœlª8æ©°)¶I¤`ôɦf‘~cöi‡V½~‚4’Þ™+жڋêÿS ¸¾åïª7›ýãûá¸fIwgL¢z½ÃÀ¯‚5~o†‡~ ükÉ{ÿÇ>Ä“¼·m„‡mŒÕÛº+áo;Ü#Œ>dhžÙ½¶éD³c$ŒæÇÆ,ŸI›þ;¢$ê³x+ø­‘z( ?W< œK$YÆßE â‚lýçñË ½ˆ×'Õ$‰ŽO‚ŸT¦$ÉýÁ$Ì)àƒà*ÓÒûƒ©@ø¸Ô"r´9_*þa≻© âº/iòMÿˆñ$ßTlÍ1ÆAnÞ ›Ö‹êFä6 tìyx@úÒzÒ]²V¨°¾@u\,‚'p,{쟰^JÞ¨ø²ñ$ï ›aÿ›cõ…y΄^;HÙ  Œ>Hižò9ì <ï\èi´B5Â*CÓýÒ­5Uq°.g• [kføpuÓ.s´Ö›á„gÀ£O¼„n­©øû}ˆ'îEÅu ùEÅ?èC<ÉG¨-¢9Æx0›µy2AФêF?˜Ý,ÕÖ97‰Ö›joúA)¬¥“ðç÷ƒïßÒ·Àº _ þâä-Š¿É‡x’·ô­°î­±ZzWÑ‘¬¨~ñÅ9«‘ó;òÜ™J}A¦ÅJèó¼>^_—xË€Ë[¶Ï½ŽU4 ½Aþ4éAÒ<|ü …n0éAÅ= |üÉÈþ²˜6"bE-lü"Iž¾\êÊÒpñ‹Šë¾ ümÉÇ/*þí>Ä“|üÚ&l›cŒc‰1+üÊ%‰ÔT?–8ó¼GÖ${½µö%Î4^uÆoË£U Ê!ÜÁ1mŽEÛ¢K¯`ðqpu ¤’¬(¯¾üñ2*î à›ÀßÙq2gÉŸÂM@òIúfà³àÏÆ訸nà—À¿”| £â¿ìC<ɺíÂð9Æ9h¥æžK° ú Ä-Â*ì™iÞ²¦?¦³ÿd›óvˆ†u ªð2à øLüޱÎ@x \A ¹°ŽAÅŸö¡t ¹¨Ž±ΰ#VÇXÀC"éì8Ä|>ÚyÎ`çh¹uÓwp%ç; 2áp©ù´pαAx?¸ÔüY4ç âð!žäãj8ÄÕ±:ÇBr²3 éz€ê'²ŠÏÛ;¼«?“sªñyÀÀ¥ $œ{\ — |üÁä݃Šȇx’wp‰Ê݃°#P=ËMΧ}ÄØìËÅÐÚa̰6»^J¨kñÛìNØ)áZðµÉÛ,ßëC<Šjß3ZSK‹²WÀ4G€x’~#°qñHzËLTqvÁC<Äñ­gQäÖUéøÊ”Ó¸#Á3òÞž6Ú±àK×çéÞÔ†ÝùNŸ¸ 1SÈú^Í—;¿ØrŠ«hLA›GgQH–“À*x©j©¸ÀIðÉȪË-çøµ4S§/K:­ 84Kf5òëµZîZéãw5Ñ¡O"£YeÃ;埨›ô+Msm—$Ò{™˜Z!xJªc¥èö.’ãÂ:zOf’Z \-8aD3yQ­ ¥ÕãoU¹{‹U"¿‹;z©Âo%ç9Z™YEÒiê"à}‚*Òiç¤)£Ôqà„à)•§ÉçPª4O™‘•ºË§T+X®^.è6klÛ²£éò8ðiÁ é²Ë1¤”ùQàÇ'LB™ï~BðTôó;[ëÊ'S[†u~ÏžUªT½‹öd´ø ðïOɧ4ëÂoC\E{zÝpí:Ú‹gî5µÑJI;uïé¼mºg´Qç¤ížž¼×<ÃFyô‘ é#¿ý ö ú@Ãï[V|΋l©ÖÿŸÀÎ+ï¼ËoŸ8ÁÁ "-pÔI‰…Þ‚†WŠX8 ¹?صLT®k©’û¬D×òºÜü -·’ˆ«FŒ–wñhÚÓ´L¼U#YØx«P-g›“¨ûA›ÞMë{+çôÆvé+°ˆ±Ô¹[EŽãÿíÍ^  W*¶Ua=k—µL<ÈÊ7÷éõV¡L‡b‹ZÁ¤³¶¹ª8+uý™¿NGQ'©ô‘ûáÝCÙí[$›ƒ®cÀ㨆ù Òï:áü¸ŒàjÚ%b´lަI±Rm©B·êTr¶¾÷\&ß®÷sã+õ,1Wqú{¯¸¯AÛ¾ù mï¾¾¬¶§èvYwÍIƒ®z¡­Ñy½Ì¬mäÝâLSâ¡Àå7bÖ*ù¨äï+óÀyy3[ÌE…9¶bvý ð/ØóÇìùseŸk+f×ÿ¯ã/"ë{žäø©ë¯€ß„8r7di¥*¥•ïÀžï°çï’ÑÊ·€?ÄëøAd­,ö {ì†$ù{à¿AªG–(ôéŸÝB³5Ts&j±¦iwx{¿CJ´R.—J„ òBæ\à…à œ¼ â–Wƒ¯Ž¬/ÔÌ6p`†‚Mã|Îmµ39£~Ûª· Ü¡í(NÕtu:ßëÛÉj7°–˘¦©x##²˜×®p)ZãšU`ßiSÆqAQY4f¸IÊœ.þ%ø_*3§ùÛ‘I ¿þ\*$…7©¿þ<ú=æ·Òin+çêf™nt°˜å¸õ³µ æêª ì±xǼ$Ôü÷SÛO)Ü(yO&Is ðzÁS×'¢ãÔvà ‚FÔñî†$ñ_lNÒ¿ørÁ ©4ÊÅæ$ÑãÀ7 žJ é÷(ðM‚§¢'½ZŒ[ dn6'IÞ |à„‰´ÕsÉô!àÇWz+à¦+*î½ÀO®àÖã"a5µ¤"í cÕbóÕæ^ãêxÛ?YsMÇ(»µ®• Wï×ËzqÆ1qÇ Ú_·ošÅbÕaßéŠØK1XäÅfD¾‹K¯â»'Lº‹{­0­ªéâN².®ÿ"9/+ ‰{,»`Ð5-âX³U¡˜™cÝö_i3kdý·2Šl‚P]AwuÇpYªX¤~U¥¨çÙ÷°ßÒ]«!ë¾õ%œŸ”®{”ÙÑÔ‰Ñçœ%¹§€‚?V~úDÒS£$ðC>Á’<úÔ¨21ZOŒ¦O„žU&RëRæEÕêãló¢ÆÞ®—ÒzR4ÞRç˜Ug–þß^Ôp¡m-¨J†MO¾·€¿¥-a³ëDÿlà|+ð}àïûE œOûZFp5S‰Aûe™^¥B§¡B‡Nu9ë~Ù`ƒo×k žñ•z–à©Æ4ý¿-Š-Zl H©uªe×,Šþº×A¥É:3?A«ýõ>i½ËÂ,ÒDxÝ`L چמ’œöÕ˜'¢yZ ª^ /ìɲx©à„qÏPqç/œ0¢òÏ©òv„]‘ k€}‚§ú’ä]'[C5ƒ<‰\ˆ×£pÂ.ð.i[]õ½K|ˆ'ù÷rÞÅ JÞKG ß¤?¤b» ÁF7S™·°È‡xE²sx$éµrNoØxv>HxøEñÇ3*®x1øÅ‘õ²iGà|L. I\&¬g‘Ä—‚l‡g½Þô¢öxÖ‹àM/j¯g½Þä¡ZÏZ Ï¢»ÉC»Ö‹ðÁÁÆ—ËÚx8×zÜéE0γõl®eÚ-Òõ…ž;&¡/?ÜïºucTïjYêBîUµ[³g5ÝÝ(¹»þ$ݳ¢âçùOÒbìû÷PM¯ŸDÓB´É¯xá«aËÉÉé* à k:û!&a?x›‡-$Ë&à6puÉPc—nßY{×kÆÉª^™äy¬!eåt‡Úõ2†«þhå­©x+턿𕪰xGíŽEZ]x=Væ$¤zøøÊô:ǯTàÀ'ÁŸŒ¬Ù û²ÚAìá®(¹-„¤z ø4¸º ¡Ýtƒ°Œ~ø p©…âðø~à3àÏDÖÓhàÅürå´ek%‹uƲaëEНü¶eË1ùzu_ß®íÿâ=sï®ò°-Õì“SK'Lº¡z±0”ªi¨î¦†ªP0½[œ¬bµTvÄŒšÿŽ9=ÇÞ_CÌÃ,œ^(°€Gw¼¬ì’{½oBï¿[KÉ\BG¢èÀx!~—¢âîàFdM¿¦æR4›j &ßýAzÔæ)ü´wt€}¢ìšÌјØæ´6À·hc¶^2´4·Ýa¿,ÏÇÔù‰-ÛàýwÏR¼éÜúî=LèJXÈð§à?Uf!‹ÈB²Ó,„ȘÉÿ LÍœ0 3ùŠ] 8aD3¹³yáát+asöåÛ÷b®wã½g?N´;)©V ÷ NØæp‚ýñÔæc’©ÍCë™2És<.xJîb‰†ßʺ íAàXœPU'•» œ¦¦€÷ ž’ê;‡×ÌIà‚FÔÌþ³zà„5Õìj⺠ŠãEs¼l¤µû ð÷'Tª]I¿ûcà_ N˜„vÿø×‚FÔîæ@í²ž”6aèléxý)tÇBwYIä¯ ì\"xgôÕ™Ð]Ö j¨¦Ëz-ë²ÞbYt}ëO˜¬g2Wo”õH*VqfÜòzµ]Ó›!;áµà×Fò‹Ö‡ UB¸ƒÀÛÀoSèû’©¸}ÀÛÁoß)©¸½À;ÀïˆlR{|LjhÏ:ß/kå¹›b'4¿’PwëŽÕ…wPÿNà›À£o¹í a̪qЋ¶0{Û’ù‰¬òÝ™/—Z™ÕöPta~çÏa±Â6Š|¡މˆÈ#H‹¯ZÑ*¼¿À³fÔC"ƒÿ+¼ Á"‚SeqD÷âÀ¾±ÚÔ>Ü †cÚt9²wîUb}‘^ØA])Á»äzŠ­¨k!p©à ³[ÍeE]Àe‚F´¢nÒ{xµðŒT„ç Þ¥.wÞ¼GF#ˆÄ] Þ•Àþ*‘¸ëÁ»¢ï?¹ƒ:0^Ë­cU{WÈv¶©Ù—Pò¥@Gð.ç…Ðæv>(8ašv NQÓ§Å9òbG_}J†ŠõðÁ9Ư‘îeÀU‚sŒ¦‘Ûe"q‹îsä@Ü}!°$xwé…Ð êFDì>%8Ç]žœc4EÿaÄ@ÜÔúú#1ÿÿzÃqh ›Ï$˜eJ ʾ®j:"{w9x«ïHdëÚàÍô%ϧ„JfÙ,ñ5k/J„ž¹%!ož|^tW=s{«P{ ÕÌÜFɯvRªÏ¯69l!ô\-Ér.p¸TΠ©¸%À Á¥²º5¼‚²/½Z­OIoEl½ñ¦eù¼(-þ6¯3R˜¢lZe/ ‹6f‹"‹V~B·õ< m%N.;;dÔ¿ørð—«‹h½§Œœ­÷ÊÀãÀׂ¿6xø:ð×E6€-íо+=ô¼ Éñzà;Àß¡L9=Ü GŽºízý¼øQð&£Ÿw?þ±Èú™×G{æ$Tóqà§À?¥L5 …ß K9Î瀿 þÛÉ(æÓÀßÿÈŠáYi§7ýŽ;ú~d´úÒŽ«Û|—06CbD!NŸS–,_Þ®áðƒ ªÎ³Sç N¨ªmìe½[ §.®œ0 §Îj‚{gò"hø MCFêý‹ ©¶Ð4íˆjš—qƒÛH2†òk˜ºËì¶™g‹¼+´ïíÃòrê°¼Ò$ö_Ñ;Y üUÁ UÅ‚¼U”íE¥¾|VpÂ$,å×€_œ0¢¥l Þ]g¸Þ¦+¦fÖEšäú =L ¡¿ ü¹à)©™»–¥.-®n%ïªç§Õ BP¨øNâ‘´eúë–ûxo®zÞ’±Ÿñ3«„KÀ¥6Çq‰.Šú¢Žàs≨¯ÇØHŽ"Pm³n©“²8}ȯPq°µ‰ *ØáPË̘ÑrU—.bj¥l°a´£Û3b»âñªã"™#‹¾yÃæiz󦯖h“…ÌùÜÛ`±„G¿´1´RnGѪq¢÷4+… ¹ÄÛp«v j}î&?a1ÍyJ3Ë“&iq&«ÝÂl8åd: Ìþy=i#‹Vëèˆé¦Ã<Ó EÇ„ëCǰoê¼Â÷€Ë¥j¤°;Q´‡J–ºƒ)lŸ+³^@ÎÍ‚w¬ÅÑNVMsÏÞÚ%*Îø³#ÿÑL)Çš_xíƒÂ×g*Í’ÿ\°mè¬qØe–‘Ÿ¨mp¢­lÀ^°¦hž“ß„D;¤ô‘Ѽb[“fÁà[øL¹^Óœæx•ýwšÆþè©Ð_Š~nÍÇy–í1šÎí‹i¾,Ó4ëΪ; ê†MhTiË”a3ÙÄ7~—ˆced¦–î‚Bï"•ž’ÛôÙ23XÞ˜Û%"IŽïœ0î.w'Pœ0¢³u†N¡Måç€yÁ UMö0…Èœ iŽ+‚ËN ¯”ð¤à„•2_êjK’ÁN N¨lÁC Ùe4s?ðe‚&¡™iàË—Ìôîÿm=_½^òÈëåÏö÷‹ôÅ?ÊšÍ#dè–¤øeÁ “na}grv‰>Roa±?X+ºC­—Qç”ý¹î64¬éå—„Pªq_ì-â^ÒŠ÷ûœáNLAýC\W e|Ûy[tr¨/òå÷à5~ü#ʼ±Û*š¥°žH¢| økà¿¿'Rqþ:¸ü­æÞo݆,XçcŠbe½“9hz®‹hf-ùòî m‡7¦óÍ ð¯Â}4äç}¡½—jü©Œà„I{ï(ÌÏC5Þ»šÂ…„ ÀåN.·ìÏÝ™°nA’,._¿[Pq +ÀWDÖJ¹qŠ‹ïQà'ü1ƒI«SÌ_ŠFùõén~+„˜Ýô.í‚ÐÜ™ŠQ?GQ0Ù(ƒäìÝÇX&¡o’ZU'3›Í† _÷ÁXïkäq‡/*êN }Òp½–ž ±SFfŸ‰º™¹œm0}Ñœoè¬ï$cø(ø£‘e•HϪÃb£'?^ÕSIŒ¥>Ä“ü{Éá]䔼—  ÛåZ Áz€‹Á¥¶Ÿ¶è=HŽVÛ B«pÍI±ô’U-ó»ñœŠž7´4U7ìß›Y_?¢ý}ô·ECgm¿Qª¸3Þ¦#ºÐÍ·‘Ó›Ýâ—²øv%dˆA5/Çë©o ŠGs½±eÀgÀŸQŽòzSqÝÀO‚2ùÞÿ)âIÞ£òð¢|¬µ€â³34_8—p=ÀåàË¥½ª9 ÎÔ'$ŠFyÜÐ6Š8Eös1N5ÆX£bëù†›a¿¨èüšß²X±é ´÷ëÚ«7Æõ­ÁÎr‰×p.ðUà¯RÖ—X™O÷j÷ôf4üÿho_Ø® öà»ÁßׂŠ{5ð=àÑÿOfµ½Þ¼•YΫ|E{3LY5-³-ë„5Kf¹êÀ2þ=ÞPKÓÞ'ÍñrèI ªî{ò½Œï(i].;¯ÈúPA+ÓsˆF÷öpì<Õ+í°)ÒýU˜óž9’ÿ `VðT6l=èIß3Gø¼A„žpÏœ21‚.èì}Ëœ2‘Z—pËœZ}ør·µ¾ 3ÈØÛõRZß1o©sÜ16fwz:ä½±ï>ö ÷ÝÜ&8=ІÁæ1‡8W×1µ]<êÌ£œ(u¸SðÔŽ¤ÌãàˆàTíˆý‰RëF8.8‰{Ë'f*F¹_tÒý}-»›ýÝ š ò¥Xã»þ¢y¢¶Ç5=tŠ;ªê.àñ¾ß¯,P/4ÊBX ©> ül‡¸y^j½>À¯} ?ü{>ÀžÏD¶€‰¾Ú‚ßUÂæüªÉúÀœî(‹ÄJƤÎtÎÓº¶XµÄ¢XµRû411Û¹¡ÞÇ ½ŽjùyëÄ«–L*ÖJùYŒùFf/Ø?£Õáá¡a°ÁÁa©1Gç•À;ØÃzÑ*9:/ÞÙ!rœÝÙBÖ#_Ðg*qîλ€÷ã5½ä…àÜŸ`ÏËØ£n­{nçî|ø${ΰ'új÷þ¹Füyßyÿú!çZ¶`±7YöÊ ªÇSÀ¯ãeJ%¦n©Þù«îuF^Æ-ÿøwìù6{¾—Œ[~øöü5{¾Y·+ê[Y0À—PÑ?ÅùH*j9»&VµÂ.2¡ºº”ш„’ºâ0@U©›é]ü/Š=‡qÊ,µ( ùŠ¥ûg"jÑB®¬/æ ºb¤ÅvQtÎ$´³¸E¼ª®Mʼû\˜LZxùHoFªîdë*wHD‘][·°g3{nެÈξ° Tþ­ÀCx·(¬~ÀÍþy^{Xp#bõC/`PñGêÈßÀ¡ÈbH,`„usŒoc¾«çÆÌq Ùz€ËÀ—Iç/n’i¸åª`ÚË#  e´á !ߨ'yÕ#ɽ¸|¯²t–E¡À¸CÒìÞ®ÒñâwðVðèŽg7íq—>â¬? ùåŽ^â]~½Šï@`ív+_ßSŒ«d”†Üòfp:/ôêÕ÷ðw:jÉ1Á2æXÕ¢nã`Ø> õà7À¿‘Ä`‚ |øMðoF¶†5YívîÅCÍù…>%Þη€ÿþ_ê€Þ(^ÂSÙüb­”À$ø¿Qì"ÁSRÏFÖÒºª÷É™+ˆ¶—ã…‚§ä’uªˆ¦WdT´¸^pÂT”Z Ü ¸ÜÛÆõ"¦¢Ð“'$B˜\òäŒÊÉ’f3p§à„‰Ä;Z>à8"8aTÍÐܸŒfv¯œPe¯dFªW’Ú<(8a³x‹à„õ’¦” ΄5ÅS@L^³41­-Iy+pZðÔ´âh7´Q*Ú=|¹àr'uÃënø¨à©èÛM¥£ÝcÀW ž’š”míS,ÚtgBB¨×ß*8a2ÁîqàÛ'Œ¨˜ùÒ„·EpÂBáÀ N˜„˼ø Á Ûå2ÏUp•éÒ"t¾ü²àrÇõe|æ×€¿+8aDÍ\Ôç5=4=¿üŽà„/„±ÐßÿEpÂ$üè»À NØþ±Ð¿Ÿ<õœêP·UFE.\î:ÓÐ*b?¸Tpˆ*ê&…×Kç2àJÁ ée1ÒCIF»Î‹ëïT7L;ÚñÊâbºÎÈÕÔœ«Ð+´À¦SL˜ÕkÌt"Ú[,ƒ"¡å]oÏ~F»Kš¶„ÐÒïm¯^4s¶És¯nM×ÊhC4?<ìí.š²ìWûþä°U¥”‡õ²Ãâ/ýá-:e9)[ÚMì:ÁÁ43ýr£÷=”Ü«þ]{­R¥êöÀMô§Úfî¶ØÒpØ· í¶}™V"°O3Y9‹>~ÕX“¦ÿ,é39CÛÃ^S±/S/œ¾!«ä“࢔ Œ~Jƒš)£X‰E¾:G«–]ƒ–áîÿê1AÐõÁ •……€õšÅêF±ïœ0bX½þCÅ¿¯ŽÞQ ‰õC„Žñ­ÿ,  JÁWÃÏ%\pyGÔ,óš„z¶)7pý Ëpóá0¾ßÌ¿‘ç“FÂÀÚ-sYÁ†YÙxžÿ¡1ÛçGdÄ%„³ÊÂÙZqx†ýÄ=ø—à©n :-w'Ió7Àï'°ë…Šû+à÷Á¿Ù /oežÞø‘(9µý@šê'.7å?‡ÚÂßgDÒ,ž/¸ÜIšÐjã „N5„‡mÀ¨øUuôž¸02…n{¡à’+ µÛ€Qñ«ëè=É7`c 9ƸÁ¶¦ôÂq Ùz€Ë:¢n`hÎñd`ûÅbúRÌúŽÛ±FØôß«ío\2ÍQ+S e¬ù¶õ†ôÄis¬~ï¸LŠªÞJà»Àߥ,¦u›9HéKŸ~üƒñ4úÃ_~üC‘}ÉîÃ]íõDÒ|hb–~·Z®_»î3Ês)ÒDMÑERsl̰©Ûã}ŠRÐ& ‘û£vS2Uða©K'Td]Áý͹ u9p½àI¬ÛRq—7®`Ýv¡·»%¼ZøÒ-á€à„ÔÒÒAÉØ$$Û ¼FpBeê ØrKÅmîœ0 «îœ0¢UœSÛrzË& r-ð&Á ãîñÐv£Ø‚§¤6ÊFëñPñ7×Ñ{’ïñŒ oâ©ÇÓ²ÔE£ÃÉÛf®•IêPÅ8OÒª âçù¢70Wö´{ñ¾'€mÊžFÅwúdˆžU“ìÆ‡x"¾•ÕtŸ¥U×YWåvÓÈO¸9½jØ¡3>‡¢WƒËUZ5d«¦&s»K†«³ÞUŶŽ3ãÉZvØÍÎ$ÜZàVð­Êlzþ¨QÒÍb@¹·Ke"Œx+•¿¸\êØrK%­™pÝŠ³c``jj*BYÿIÈÝÀcàÇ”)«{´j©êjà½à÷FoÂg¯$îæ:j‰ßUÁ¨^u',; Ð÷žèhkø¥â;}-ü.*³~–‡x"¾Êy“1e:í0ä­×öuû„‘Ñdµôðàà8>ͯð.Z®³C;R;píbª{ʲ µ9×6 '«…¬\ j&TŸ rÕµ6×:Ú£À¯ ÜoUm6Ê•òÐwöŒòÄPqw«àÕ6Än*8®îâ’®ÃÃÝ|üA…úÈYÅB@±ÓÀ‡ÀЬóÒ[7öe´¡M[·÷÷mÚ6(åE_þzeêóZׂeRk:04˜Ú¸e W:žeÚËR²$~Èv–Ä}ðYðgêqÒ°sžø%ð/%ßÌPñ_ö!ž¤Å( ×PM£{˜5/¾N}F»ƒ7+Cƒ”ÑÅ*ªy~ ˜újý:‹È3¿8O;$¦&yº8ÑÓ*zþ„>n„v •!< ~X]—M M¬¦ u‡OÇk‡­1wJ·ÃîÕ!!ïNƒKíý×ÄPqG€3à3mhb¨üSÀÓà§•éªsã y¾ü¥ñ·0TÜK€€?Y‹Ó©yéïß´Mʉ^| ü)eй¢U˲mËÆ­Ç';9¸qKÖܲU!QßüøçâoU¨¸_~üóɇs*þ >Ä£¨ö猲ÏКQÞ;Œ:k¨Ba¶ÒÑÖßéÃh¸ÅQÅ9Ù!Ö†=Äu`~jÙ†J£/¦-ýÌãÃF Ù–ÏW¹Û$`ñdž>/¿@a±‹?T\7p¸Ôî’†7¯‰däeÍb1jÒ4¦¼m“ºmZÕЇÛIº [Á¥&-%ì$p—„ÙÜ .•v!¼Æ¶¯¿.²Æ.ª-׉}†ßsÁwuHèêzà1p©9Ë9}»Gè,k—t ùN]p•s(sø·¬‚KÍ¡„·–{“à“‘­EdSÓëY•\K+Øú”6曨CžL‘à¢bYEƒÌÊ5K´_¾bgÆ­rè)aªÇð7Á3ù†Ý&YC5ý ‰–ÔEá„ñµ¤ ôB4&!Üràà*Û´W£âz€«ÀUî˜ p5*®ˆ“ÑwLµp5¦ ÏøŽ_¿×…ö(w5pø>eo‹¹ ÊšÐ%{­*u¢Ð¾LÅwú0Z'=ý|Å ìWP˜>LJx"¾–½ëÖ­Óòz1_¥´¢5®Ù¦sBãWexwÝz'7)f;t4‰õÙtg…®É”J¸\.1•ÿ·» º«íìgm U'› GzêÍhº9B@2ZŽ‘²1žÑòæHžÿ¤Àý$t5¦!:ánðÝÑ«¡5üUJaÿdsy&´SÔs#Ýq´X¤Ìh3†nóÛMF(o__èjÌ@ô¥Õoß§P¶‡jÜ~Ù·wƽ‘Gízç&Ë-þiˆL¸ <úF†UBä4³€ËgÌ ™Ãå“fx%¿®>ž ¯ä3(ÛC5J^Ç•lÚO³æ?9µwnà-éýŽpøºÈ’žgUyrª¥’nÏ^Ã+óˆCxøyÑ{M¦–7³ÅÜ“÷rÎøªµTsáå~²µÁBÙª1Â#d„|×éN¤ûê=3$Œ®ânJ}Ò2 Ú„>‰Í ¶ÁïR¦×žÍfùÔov‰„®Úèáð#Ñgx•˜„„Ð4‹Cámॊð"p¹Ë£ÙÀ#(ÛC56°‡l`®VÆß·J»¶^vèH‹Æœ*o• 'üû|d'Ü}—öÕ ÏhBæcº’¡£t?À`f¸õ@\£âŒlßz9¤&¼<ú½ýZóÿ¦…´ýÃÙÍ™ML`ö·t1ÃÈ„? 9 ûÁûÛ`Å¡lÛjÅìÓýú´)aů€ì¯PjÅ{­Xo0cw„uþÒ̳ƒ›3ƒÙáÍ™¡Ì¦Ìð`__xk~%¤'T7¶YhÍCƒ™m}ü*ÈF¸|m,øÕ(ÛC5ÜK\ÒO<™¿ÁÁç õûÇ…²=Tc«»ÈVù¤F‰õùÄzÏò«ƒï‚_£\ðB±ü¸æ— 8á.ð]¿vüHÿ¥v<ü<í8£cz~dPž_ a ‡Á‡Û`ϯCÙª±ç›Âôøf::n23·ì‚a³äÄØýСðÖýzTƒð&p©3‚m·î7@ú7(µîìÙ¬›ë`¤—)Kf.ñ”0 žmƒe¿ e{¨Æ²oWaÙzαŠUšjgŸc¿ßy3*Dx;øí¿6þHÿ–vظžc°ñ·Bз¶ÙÆß†²=TcãÃdãt~†_i‰Dtõ{ÑëÛ+jó[¡;„%ŒÔüµ,vѨ't‹¢'QÜ;”¾³ÐK‹T|§ñHˆÑjU~Þ§"½³C,ˆ._ªL) GO3SÌïJN—/K^'ïÄç<Ä#÷f}ªóP«ª{ÿ{ªÝ!cŽô‰¥ô‰%ø–•âgËégÝâKW>ùÈ^.­ËšôCr-i®Íž·T8ÄþÙhb¼týÀ¡\Õ,tC/ä6m*èÛ†· à°Å@I/ aU/ë½ÚGžƒí¦®ùQíÕ²B»¨Ò—Èo ØÆM¯zp9¸Ï`¼Wßñcñ³y³âãmGnèÇ áüçš}Ø÷˳¼éúrÞ¢ÅøúK]H’ñºïùú6®ûì³M¦Ó‰¿]pËÁÃûîÌ»ž%ñÿtë_ÔÓ\؈¤vØ ­iæœæ/½*Ä—6ZÏ,_XÀ|aÌ,s|äùnà)ë¥Vx| EÇŠ:zŠ~gB ®]C<b¨õj¼W€K½ž–¥ÎÕ‹¦Þª-ïÄ»èl|/I«…Š÷§nãH-pÄù¾s2}Àp'¬ïm`šÚ ÌQ §/¤Ð]Ða<«PgldSlåJ¾­ˆàÉ댊ô!I5'Æ -µK}ˆ'â[ÙÆ>7øvæéjS£q+.’%Lˆ³ù¢î„Þ„?z$l±ñ%¢ÌëevÞvˆA²\Ü ¾W™}nõ¤â¶¯¿.²";CŠ£ò¯Þ~CT9:wŽšc§'ÜRñÌéÑÃÆtž‡Yë€9#v!ã¸ú¸1be6´>zúÀž#7îßsç¡{o;|ýÞën¦/‡gœì¸áåÉtoÓ¯{û®Öj?šëãø¬9¦¥×–OÑ•Üiÿïúúf}M¯w€/_(g;£hNÚÙ²á”+%Ö]q'ŽëÓ»7ÎæטîÏSýúǪÅ"ûtïÕÚ-ìûø~Ç5JYêh¤{ VÞûÓ€?Ìx‡‚GzñAÛ¼ÌŦïíÓÖ¯×fÕC¼V• £££VÕ=½“ÒaU\Í,Œô`_¶_Ÿî?êÕtg¦œ×˜ÖFz³Ùö¯´³Ë¸kç€øš]g6hFÑ14¾±p0Ý¢àѦ’GýEönÈ4¼ø “½áëûΜ ­³ê:°gfü"à!ðCa͘>±¸ù‹G‹–^ÀûñE¯oŽBÝôæ$œð°OúÃ2ÒûãbW+Érñ›GÈþ ²z·.•L3®R[OïÌ[å²Hɶk®á}Ð`<°.], ÆY•V‚Dë©øE;\év1rÿU²ßu£*Mƒ²‹ñFâ‘töç}¢7°D“ }ˆGRž °(w’–dY\ .ÕÝm)SWø£±r<\jײÔ£%>j (8l±‘W²¿¸'=ñÒh#GÝv}†Ž™ný?*¶Q¹aÏM‡ÙwÜ™"ë¬ÐvƒÞðë8$ÿùÀÛÀo‹\ X½¡›,§ ºqÂñDž0tZÂáÕ -í"¼i^ø†ÈÒnö­5‰­‘ÍâÿÎðé-‹_¹6Kö@^ÂÍà›#˾²I£82}9ÇúÉA:$3n²×?|SF›2 îDxÉÏ´„Á7F–|Wí­ë9q<&£•ø¿fíßlMó?œ ]‰Åœpø®È•È |]ÒÛb[[we?Ðíq&¶mMIˆì5s„ðLô‘ù˜!fÝù ìŒa€mÁÙÍ™¡ì澌–·Š¬ÓÆ1£åD-C×c)d'l±ET²;k1†.!XÑɈ ¨ØOiþ0$"´Ë50‡P`–AlÂà;¥ª@­TGàìDÁr[M˜R±#À=àÑß`gøtàZà^pu³3óG«ytŠRµOKö£÷é3>ŒÖW|,ª8ÔÛYìC<ߊęõ•õy‹3ëŠú¬ÞÕ¡ÄêñaSvœÝÕ®&qÎ¥l(|Vz–[\¾&ÊDƒ‚ X’e=ðJð+ed q°Tœ¼ üªèž•ÐHƇx”Õ>à¦*®ØÞ½öa Ÿõ!žä ÌÙó»˜ÊBo¨%!]OG}ÄÙÓ!¹nÚ2®.Zã|¹ï*Á© ƒß«é¿×næ \¼ƒ‹âøöÆ´Ûx‰ DÏŽ)‹KÝ4ø –è‹JÀ x%þ°DÅO‚ŸTÐó —¨|è€;ñÇ%*®舒t\¢â«>Ä“|\òMõÄ—æ‹9 Ùz€Ë:fÝ2*Ík’ésD%qXc:¨4-P—˜Sņj:=Oÿië®e;}¿PÌué8ºhÙ™õ ŸŽ1ÖÑëZ ü,øgÛëH”ß> þ¬BgˆuTÜç€_ÿRd/[ЗÕ¡ï#!¾ ü øW”©eÁu†«›EGB¨¿~ü›Ê3ǵçTà¿þ­ä{ÇTüßøOÜ­× ü6ø·“o…¨øÿãC<É·Bç ‹æ_+´‹ ÂõtÔ3­öTÔ Ý{¶fȦë8øÆ)³ì6k\âl<·˜„';jÝDUx¾f¶õ Y¦/Iü­gÏ€ŸiWëABÜ|ü‘v·$ÌãÀׂ¿6‰Öƒ |ðuà¯K¾õ â_ïCüø§âmTÜŸÿtd¯’œK#!~øyðÏ+Ó‹ä\ ó%à‚ÿ¡2ÅÌ1—F~øp¹u)ÿoC·:TüùOÜ­ŽïB±Ž¯‚5ùV‡Šÿšñ$ßê\(,šcŒûÄ¡ Ùz€Ë:¢îhÞ¥tÇ NÞ*VKe~Ôƒµ ±îT¢Ê­N€O( NR«÷$ŠÕQ¿ÞÎw›AÅ™@\j‡PøãPÞY jõ ÔI#ïRr±Æ Ô¢1护¨Ô›¨A𔋾Ye#ô>(ª ü3ð?‹?îùnêøsð?O>îQñáC<ÉǽÕÂY8Æ÷ºéD–„d=À%àK¤£^³D§',Û´Z©Ô~ÌÊr\³XäÓ°šzs >Gø·à¿ÿ]Ÿ#üøw’÷?*þ»>Ä“¼ÿ] Ÿ»4Vÿ[€äÂõ—wDÝDÛ~Lúµ7¿î後(R›H,è‚Kx 7yCÅÝ ¬‚G?àzV™ŠŸô!ž¸C× œŸJ>4QñÓ>Ä“|hºLX6ÇøBS§ö„ÉÓ<ü¹ZÊóúŠå˜<® ì` ÈÚÙZI·O´ºÓº¨çŒâóZÖ¾JóÊrÄ7¨gÒ«Y üð_‰ßƒ.ƒ×¾üÝÉ{ÿâIÞƒÖÀkÖÄêAóx2( Ñz€K;f]×±i/‘™—«¥ë¹’Õ}Ç»^ռ9ÑxÙ¢»nx».uÂKø`³æ^Ú¤©óßKT}ð øemp< líIG€/O`{-w?ðåà/ì&=µÞ\Ø Er< | ü©øƒ× ü%ð_J>hQñ¯ñ!žäƒ–&ŒšcŒA‹§ˆ“­¨>hÝÌ–a›yŒÌs†;e°4ÈÛû¡ÁÁæÑIÞ*™£œ7êÇ2x­´´~ Õið¸ºI÷„a‡=C’¸À)p©þp€?Í2&ü–=×$î’‘’éäûÅ1lÓFòÀ“àR§![~ó½Àiðè]óݼQ,ˆ H¬ý;ÒØ$Ò6ºˆ–_ëÉ-s̶JØGyŸÂÆY’~øë࿜¥âºŸÿLòq–Šÿ¬ñ$g×vˆØJãÌ-rpJ×\Þ¡úøô–ÆHÛ<ëcåuÿ¬v—­DÎÞ~£²ˆºˆ}„ÅTý%ĺxø]ÊÜoŽ=ƒTà>àÝàwG¶ü[ùó:òƒdü—yq„Ä©V*lÐìˆ{,ÿÿ  Äû¼ø!ð©ëÎß¼'lwžyøIðOÆß§â> ü¸Ô&á†ú÷7¯^Ô·[é…‚Vbê6+E¡çÐÓ$ê§ß—Z ×QqÝÀï‚7ù–ˆŠÿžñ$ßõ »çãöQ‘ZB¶ಎ¨ÛG5ÉôuÜÇY»ëSöÃߥç Þ›š0ó³N3С>¯‡Ù¼ÆÄúþS›óXŒ¸ë”ÞÉJà;Áß©.ò ß6ò‘ ï> žÀÙG*î]À÷ƒG?ûøÆY{NúH«S–Óq0ËkÚάõ«@3òfÁ|$¾Æ1ب²ÐçÝ,ÒGk{p|=á’^®ò záxÕ›Ó¸è^‡Vœ¬jÙ©%&ªís󾨲»PÔÛÑi‹©Qg_­;M]¦ú—zå…ÞãFïlð7À#~ïZï"ü"ø“÷.*þ7}ˆ'yïºuy¬ÞÕMWøHHÖT¿Çô üã¦Æÿùl¡>d¥Âú6å[Ѱÿ„}×#’ Û0h\â%2¦öÁ~Úæj0ŠÐ…Cl˜Q±˜s6SŦ»Ð¾v9>Gøp©Éá|írøáÿQò¾FÅÕ‡x’÷µ+à_WÄëkNx_»þu…_[Ø$Ñ嵆 >Á“wÃä=”x9p#øFi¥vâ·™QsŒ²$y7!¥ÊÄé3üÂÜÑôº¡Ñ¾3ôÓåÓë†ÎœñìñD€ès^KroŽ€„•Ÿ>1ëúÛ£¥ã“Ñg*]A¦"qó- ¼Ë'ø.Ák¦ÒÙq¶û®HqŠÑ:ÈhúÄh_Л ¸W™H­K ¸W­>RõÒú‚¥ co×Kᆞp© %b5Kÿo÷kŽ[-˜ÆÙ:(®mŠypcÚ¥øüÏfj‘–¶&DðöGÁUæf×uÎWOøOÜóTÜcÀ'ÁŸŒ¬ÖQw9f‰¯Ñ¡h³œmP&?ÞJšå gµ#Vm©“Á!¥h+µT³§€ÿþÊ-±RK‚üøoàÿ–Œ¦ÿ øïàÿ½Ï¶ÇNÅÿ‡ñÄÝc§âº?ÿIò=v*þ§>Ä“|}½°eŽ1öØKá{ì$QPýèØ©õØg%Ã7'Åt8>µD=wû<¯tmu•SXYÏ> þpü²^AøRð—&ï!Tü#>Ä“¼‡øîØŽÓCÌð²^±!9Ý4¦ÍhÌîmsšçJ.è®Îº[4ƒZ±­I“ŸCÒ ³6ŸËF½%1ªçèÞ+‘Wž÷ñ(C¯;WB¬°ž²Ÿ#L0ÍËxaÓ¼Pñ¯öaÛÒ¼¤áéX=e¡w)º„t=Àª/¬<Т=ñÏ¥Å*B_ó¤Ð¤n›z®h¤>ä¥sEU;xø}ʺ¶s…¦ÀÎ-‰2<.u½A¸Î-§O€KåõˆÖ¹¥â‹>Äw@¢âº%ðRò‰Š/ûOò©OX3ÇøÒ"¦+VØÝ…$VpeGÔ[^š#Ò=µˆTÛÖÑ2W¡?Ž:R0ò¶¿«ˆOTÁó¸ÕÞøD¢LgÀgâOT\x \î~• Ÿ¨øÓ>Äw|¢âº/—º•-Z|¢âÏøOòñéJaÍãî0…O$UP}‡éNìÌ ÀâíÚÊhÃm#alêkTzÑ/óÉ?•±‰jwð¸\AYl"Ql`\*J¸ØDÅ“à“‘ÝbTKk%C/;"nFÛ„ÿIrI©F¡¯õ|JãAļQöö:Ê%¦ šMÿüOã{T\7ðÏÀÿ,ù°GÅÿ¹ñ$ö®ŽÂ1Æýn–>_8‰Ô\Ú¡úŒ÷“Á“޾X7aM5Ì–Ô'Jx褦}8ˆƒZN§Óm<)•wJÄû’)ÊÛæÿ ‰K襬¾üÊB¥ä%$Ìûÿ¨2Ÿžã@#ø.àÇÀ?–|WŽŠÿ¸ñÄÓ¨¸nà'À?‘|L£âŸñ!žäcZFX4ÇO±¹6k9Ç$dë.ëˆzŠ­ù8õkæL¤§ûÖî-MˆoÙ^¦ku2Í«,~¯Žó+ì÷"ùÕìÌÄ“| Õ/LŸc|-Ô]Ê›H¨àòÕ?ŽI7QG`©õi¾gŒ¶GºÞÕÓÞ¼ÙYïxi,Ì[?Yƒ¼Ë–x:(Û(éf™¾¿vÕ5Øp)U/š1£ÈW(øu0ºÍ¥aßúÌî>GøðŸÄï•ðDŸ‚GßzÚ+©øŸùOò^9OŒ×+1=/!Y0ºW6uÓR_¬eöd#eÖ¦RŒÉHþIŽÖ2¿2?œža.A.+f£…gÆùÙ%ßšµð>æjCÞ ^Õ‰-¦,ûs¾ò\ê§,$£hÈðE‚íÝW»üŒ¦# J‹ô]5©æ<µÖbf}·¿H‘]*¸D³œ/V Tì˜UµÝ Í(Þü‹/¿ÇOHÕâªïÕD¾sgŸc˜úªà„Šúe‹jwî„홑<üÁ ãî™Qq_~[pˆág!ÙË–+¡œÔÿþ@pBUC™^ÊÚ+£™þXpÂ$4óCà¿ ž’:­ÏLÅÿ{½'îܴ֙Åþ‡à)©cÑZg*þ'uôžä[ç!aÏãk»*ù°™¡H àbðÅÒó¬Í˵~®3SÊYü^Õ©g³™µtœÕ®ñšÞ 57f‘’“Uê¿z3‰2»^¨‚Ë€&¸Ü(®)ý@cŒÙp$d›žW¹7`R˜Š«_.µ7\d¤âŽÏ€Gß·»‘•Å7 âʇà.“ܾCø~àÇÁ?,¥âºmÜ£CÅ?ãC<ÉÇÒaáwcœ‘®8æ©°iùI¤`ôéf‘>1û(H«©‚4’Þ™+жڨëÿS ¸¾5UtêĶ‹^æYÕF¯mð·À+~†Sþ6øo'ï`TüïøOò¶Nµ1V뮄¿Kv#|ŠPùTBǵM'¬˜#¯ä0÷±¼ŽÛ”ýn’6ý7ÍIÔg9ðVð[• ˜æ aã%’åNà(øhü½*îð(øÑÈÖ¿íÚ r}R=G’èð$øIeJ’Ü/Mœ>þ 2-ͱ_š ´Km.‰6®¥âö!ž¸› *®øRð—&ßTPñø°mY56 ‹æã~é¼U¬%• %[pYGÔýÒÍ2{^‡@踞­¸EG¬U*¬;PW-p+~wØ ¬€W’w*þ¤ñ$ï›á›cu‡.fQ‚õ£Oó4 ´Kμu‰º,Þ~Sü¶¾öMxü@ò¶NÅßìC<ÉÛúØ÷–Xm}~Næüߘø–Ž8BÿõÏÛÜ…ðJ¬žª²x;øíñ[ýX:áàw$oõTü>Ä“¼Õo…¥oÕêç9z!ìäÓV:aôɧæ©ü£ÁFÏ/eH­q¾ Ïþ ãè>o M³PT#l1©%‹çIÂd†dTÅÀx©ÝC2føpuÓés ɨÀ2ð xô õÐC2*þ~â‰;BQqÝÀÀH>BQñúOòj›°hŽñE¨…¬M“ R$U0z6’f©¶ÎyB¨Þõ¦Å”ÂZ: p?øþø-}¬›ðÅà/NÞÒ©ø›|ˆ'yKßëÞ«¥wÝ Áz€êÕ³9¿/Ù©ÔÚ[lƒ{^—Èðí¡á“tSÅ——›$lÙ>÷:VÑ,ôùOÐÌ6Ióð ð'ºmÀÌ6÷0ðIð'#ûËb:…‚aãIòð­ào?~QqÝÀ·¿-ùøEſ݇x’_;„msŒq,1f…ß‘B"õÕ%Î<ï4É^o­}—Dd¯½õ¶ðòû$ҧͱhç³è¬>þ¸²X&•YŒDyðàoŒ?QqOßþ¦ÈŽ“9KÒ0n’gHIÒ7Ÿ6þ@GÅu¿þ¥äÿeâI>Ð]- ŸcœÓâFÐ5-s ÖT?-~¢E˜£@…½ÍçÂôÇtöŸìosÞñ °ŽA^œŸ‰ß1®†3žW75¬cPñ§}(75ªcì„3ìŒÕ10ÇÈ´¾±Ÿ–Ì#Ø9ZžÛñeíÀ¥•É9ÇNˆLx\j>-œsì„CÞ.5Í9¨ø|ˆ'yçCŒÄê É9ÈÎ$¤ëªŸÈ*>oïð®OÎ=¨Æç—2pî1— |üÁä݃Šȇx’w]p‰]Ê݃°#P=ËMΧ}ÄØìËÅÆþZ&ް6» ^J¨kñÛì.Ø)áZðµÉÛ,ßëC<Šjß3ZSK‹²WÀ4¯âIú\÷¤·|5ª8»á!â‰øV޳(rëªtZyÊiÜsfŒyoã2íHð’¤ës‰šî4žºrúÄÕ7yËfÿQ±Ê|7d}÷@ó„ÇÁå’W´œâ*“FЖ¨ÀY’å$° ž@~v*îp|2²ê¬忖fêô] B+Í’BüªÕ–ûûÄ1ø–_Ê/ÿ´J•ªwû§Œ9Lÿ\þxh~;âRìÓë†kc_òÛŸ`Ÿ 4ü¾eÅç¼R›jý©aÁSCakOŸ˜u¥öüÑÒñønÔ&y7ÖåæOh¹kM|çY{7j+£e,Y3šžÃBßµ­LØÖ¥ܵ­VS^Ÿ0h5·ÿ´çu5 *çÅíRjë»Âã-uŽ»ÂÕ9œÿ· 3tdʽ÷Ë/ÍH³]ZšNo"DÛáµ]Ìœ$ãêjà ¨ÅõJâÿÿx€ù¿AFp5 €1Zï.à €T W"Tè@¯N#©ú+i½Âlðíz-Á¡2¾RÏ*Õ˜¦ÿ·W°ÁYÙr §eWuÌùÏ#8ó ˆ*ŸO0j¼ÇuÙ°ä´;Q‹®l\!]‹À‡Q·Ðtmê]¿Ô'÷Ã2r« ®JÄh\—Ž¦ëŠ–Š±Jd cÕ)æli¿#´éí´ŽýÁîØ.uÇþøJ=KìWã9þß.ÛžB_Oà—æ•æíé&OÊw“_|jñú_”nò}‚¿AFp5‘\‰AÝäIÉn²¡B‡pu9k79ØàÛõZ‚Ce|¥ž%Tª1Mÿo±ÕÝ¿Náè¥J‘¿]‘¦±Ó´k‚ÏhGðë/Cjùm}QBjOä èÔᅫÊüõ/Jdý†Oð¯Ë®&²*#¨qÂY‰l¡¬:Åœ-ÀžÝüÛõv‚ãl|¥ž%Ϊ1Tÿo¯â9ϵ.‹¬º]Ð Û¶ì>±)_ÞÁ;»…Àr›Zè·Q'%z ^)bá@2ävÎ^"*×y±’û¬Dç¥>¹/‘‘[IÄU#Fˈ»x4íiZ&Þª‘,l¼U¨–³ÍIÔý Mï¦uj9½±]ú lb,uî@‘ãø{³×蕊mUXÏÚe­SÏ!²’ò­%z½U(Ó‘¬¢Öp€ÜÍ‹þ:G̶ôû‡²Û·È6ØÔ9…jLþ‚ôÀ;§}‚OÉ®¦=P"FËö`áhš+Õ(‘*t[ N%gë{Ïeòíz/Á17¾RÏsÕ§ÿ·ËÅ­-ÚöÍWh{÷õeÃn9õKõ¤z4²T¡w¾^ ÛòOD1Ñ4íz=eÍ8YÕ‹ýâVÍf`•úÅÆWÙ«ÓfÖ`­Î¿ª«@7ÓFæ\ü?mݵl§/ƒËnú“®|DÖ®ŒæX%Ã5iÓ,kêh—,k⪥’nÏh!ßÄ^Ôžðp¹$ž-çg ¦^b#3 ¡¾üµ &0‰ø2àëÀ_Ù.¾—¡žŠ^ Ò­Ð<'›ë²ž‰wyšÅF°.ß1á[¦½KÙ*–EÚe¿4KÔ»Éé-¹—}YÐÓ|ë+´7¶)Ã[ÓðÅ×¾Ð;²^4ÆÜ›_œdÆ™]™ìóy½v;\ð VØ¢+¡á× LM N¨ÈìæÈM¸›$¹ø à„Šl.p#67 |Hpëuód¦=H„‡/œP‘NæÎ¡8§Z R¯œ0 µ< |­à)©Ôð¦}·øæY+‘3xB¦ ÌÒâMõµÎب]gë<>Ô>>C~.¾Ï©²Áá8â‚`ÇßHXÂëvž#8¡ª‰ ÇLwä†=7¾^Â:W/œ0{è\ ¼LpˆöкÿDå¯j‚wjÉ÷Ÿ®j­¡šþÓåè?µê/‰ ͱ°¦|=¤#¼ür¥¦L·õ9t[hS&‘®nß¿)SqW·‚o¬»7RWµ .u噿š{<^djÂÌOxÝ l&ÌYÕrÁ™ãÊF-}È,3šájz‘õš‡‡†XÇ#ØXØW勺ãȘË6àWÁ¿ªnHßk—ôli²WÆTþø-ðo%c*_þ øßD6•ùZÚ Ÿm•dø6ð{àß‹¤™–½¡ Ù~üp©“dê ¸:ŠûàOÀ’ŒU|øSðè—/Ç ÏRµèš•¢”}üL`jà„’RE™?êêÕcÃòÏ9#KÂ/^ 8a¸JÐ'’ž‘%Wù_%#xôYeb´ =£i¡ÚÐs²Êäj]jÀœ¬Z¥œmNvn³o×›i=+o©sÌʪ3Pÿo—઻ŒÌ ¿Hë Ò:e>³=d‰OêJà à„ ´m©ËC‚+8eøöz’ܦa¿—f’¦EϘgðºÂf¹lØ^Π¾1n„ÏÑo­I>QœvLšª_á˜/˜¬lk£‚s÷–Ô‘z5ÃÀ¯ .yù9ý¶ -z¶ü¦ô¯uHܔޮ†öÛ>Á¿-#¸š†V‰14´Jä ÝЪSJ| mœo&¸¡¯Ô³4´j ÔÿÛ~ÑЊd±õ5~qZž’›˜e'ÊÆ¹³GðNùtŽÁ Ã¥û¦ÙÈ£ù–jÿ= 4 á3ò9ËhÒ8âÞ-Þ|Jh{+ð—'Œ í–ZÇxKB¸ŸœP™ÒëóÁËžkŽï#9k—t ±ßü€à„rbÏúæ7?)8a^ðà§'ŒèÃoË©ã‘ˆŽ Þñm‘ [¡WyIÞO 8aD¹C¯òÞ <¢†jVyoÓ4m_Ùq ½@A¡a»S‹Ù ÝiZXL‹—_ß×$s7ЋPÂÛÀoSÖX,§Š8îLÑé%™{ö$Ö(ðø‰øý…Š»X/FVx¦/£YLq4õ•Ÿ°,‡n˜“Q¼%¡÷ÄïD‘hôIÒðMàr·´Ò㢚eøNàÓàO'£À7ßþþÈ <§ÖìïBH? .ø£E²…rk¨&’IäËއ »À厒½®ˆú^HŒ%>Ä“ü{Ùw±_É{éô›€ÙTl7p!øÂèf*óù¢h¶Ì×*åt;t£´$¼ ü²øc×\¾&²n®ÙØã`Ý:ê””E׃½)6À)ZSþ]L™°ŽFÂkÀcàÇÚáh/†s½¸=Žæ»1´Žöb8—‡jm…ÏÑøõ´¡]íÅøà‹a*Ë;ÔÞàj/†{®_Y;cÂÕÈ‘¸ké´Bi–±½™Ü®ì˜î ýHϳn}gH©k(à׳wúOq†öHªc/ðQðè'‘$<ò&xáMíñÈ›à…7µ×#o‚z¨Ö#ý2²šÐy>H¸\ª ç7Á 5p-²rþwVÛ×pºÞþápmŒÓ—¬œ±ð£Ví&vñR^þº“ÛúÌÕ¾oA[J§ärÖ¤¡2lKK7ìI˜š0ø=+­@1Ù* &ûSöec\'ÞÇ·Ó4b½d]+Òy&ºÕ“~Fñƒ„ =Cï~­ÀÔe‚§¤º=QŇQEËRòažje†ûñ$=Š£âçùOÒbÜŒwÁd…O‹1#ö6ÿ84câx‹!gq8>Ï ¶ˆõ^+ºízí¦ï¦Z±q>d­¢¦„ðÊ '@“XSÀ—ƒ¿<þMÅ> ½1ZŸ0ó ³õò8cb‘Ì·gìyEsÉ6ªÙcÀïGÛwïÿ_`)š%uÿðGà?JFÝßþ+ø¿*p}o~-«ÝlñU]¨­™×—ôy1-¸Mšâò¼Y»ùŠVž{ùûÛŠáy¿ß$B·€TÛ Lé‚§ôäãî-Â~j¨&îþ‡ÎJ†«÷³M‡'ÉopÇôñ_fyÒ*NÒÛn8¤ÏÏp›|‰igØ:óLq[xí,ŸQðNBy£ŠÓûµµ»¯Ä×M™6þi<ûé4/zÌ}2»vI£_4‡%y.ôV¼uŸƒÿ\Y,ˆt˜Ž‰”ê.œ0î€@oâPì2Á #Úän¿ °ùѶ n€ÐvVÛ3®›e©­$ýràAÁ éUæ4>Ir;ðNÁ Pgêà]‚FT§Ôi|ánà1ÁSr3† Oã“0ð¸àr×5„W˽À‚§¤–CÞÁÉè§ñžüÂñGh…Çð©ºEà·OIúT ŸDúðÿ N˜„!ü ð_'ŒhááSù?þ«à©èýÀÐ=¢CB­5TÓ#ZÌzDwx³¯!%: )ƒ/Vµ\6rÆÂ+ s.ðBð ã7V*n p5øêÈÚùa-jeZß™™iž4Ë4v3-»Œb.A¤Ëc®áMèÁ²KÞÕ›”Š=ÓÕiPâ]ù-&ŒiJnð›Öʼ»ËƒaÑbc–ûN›Æ+†¼|W! Ã2†w‘@²9ℊ ¯GTxĘ®H?|ýª0¾1µBpˆÆgSãhåèœÏLVK[UÛÆåÓ¨0ËUOæZ³Ý›([å~Ú$¥ÛüžX/«³îˆaTx;H­¾Tp†¼øZÁå2 …·ƒG€¯<=£™…Aosx˜2‹EŠº3SbjÛÌ{Ûõ˜Z'M§ª‹b ñ(m«¡Óµ}lìRd_TæsùÅ™úì¹Vˆnr ¤ÄÝÄ%x·Þ .Ý ÑyŽËïL&P¢oŽ+ïŒ Õ·‚ÓD„çÕ\[Óýú4ÓwQÏyy{fM>7¶ UG¢wLõ§wæ'T¤äsôH®N¹t9º‚wºÉ(º¬ NQÑC¿N¹ƒ×g¡øX‰·äN^/b;¿„'ïœ0‘.ã\2}øŒà1màŸUìÓÀO .·M¾á<ÎÛQÞC³øÂ*‹ªcÕbsSìuÚï*G:ÐhLó$]Lêe½8ã˜bÔëù°ƒ%]flÌlëb<ݵ…¬Ú@;ôH‹^ŧvíœ0é‘ÖaZ5T3Òšd#­æ‰_š16 ±ªÇgX›g1w­ ¹2‡b^ZLïÚŽëÍ4 Õt—õŸÜZ{\)êy±*n3M…¬»o|Ç$ø¤tÝ£œKõ&}ÂH%¹§€‚?V~úDÒRIà‡|‚?$#8"HU&FË=o4}"ôITe"µ.5à$ªZ}œí$j ±·ë¥´>‚o©sAUg–þß^„(lä©{S ª’aÓ“ï-àoiKØì:Ñ?$8ß |xèžY»çÓ>ÁŸ–\MàT"FÐÝ—L¯R¡S‰P¡C§:œ-tÎaðíz-ÁÁ3¾RÏ<Õ˜¦ÿ·E1ìX]RP-»fQìIѽªïèl½OZïIJ0‹|ò^7ζáõ…§$W&|5æ„O TÕ‹‘ZN%YV/œ0î‰*î\àe‚+ØÑá” ²Ø'xª/ùAÞíB±5T3È“Øé{ 'Œ~$àŠ¨ï…ÄXâö¼ïâN%ï¥#ÐoŽJP±ÝÀ6• âù¢Hvd#½VÎé ÏîÄ /¿(þxFÅõ/žŒfÓŽÀù˜ÜLÀÒkXÏ"‰/?ØϺ ÞtW{<ë.xÓ]íõ¬»àMÆãYcføííwáƒw%ëYwÁ›îRêYƒgõ¬Æ a½ê.xá‹Á_ܯºžtw{¼ênxÒÝíõª»áIªõªÅðªŠmäC»ÕÝøàݰïå²öέî†+Ý ãìQ1[ÏæV¦­9´dC‹­“ºmÒ9ÛðÞEB_ < ~¸Þu<êžöx×=ð¨{Úë]÷À£xì|¹¬‡s¯{àR÷À:{FÔÌŽ³¶ZŽyÊ[ód®Æ_YU/†÷0’û2ààw´ÃÃFáU£íñ°QxÕh{=l^å¡Z[áy˜wGuh/Å 5p-~/…g®íP•,âE!½Ì{k쇅.G•èN€O´ÃåŽÂÍŽ¶ÇåŽÂÍŽ¶×åŽÂÍ<ŒÇåôœ“•kØŽâƒG“u¹£p³£J]noH—c¯Í*R²Kyw; #,€ÚánÇàbÇÚãnÇàbÇÚënÇàbªu·óýî&ÝÊà /¿<~—;7#¼üŠÈºEÖåZ7w¡wÕQmÖ«àÑ·ŠJøß½ð¹{£ú_ËRçÊirÜí^`›ršPñó|ئœ&÷áÝ{¨f髟DÓÎ~Ó­¥ê©XŽÈa@ à 7¬éè“°¼_YÐ’[Ð%Y6·o‹?HQqYàvð푵w»fœdÑEìñæóE¤¬ÚôõÔ#^óv›"”eµƒ^R·äYªÓà“àO*Ss·mM92Z~ðÍàoNFËOß.¿¡ÌûíhÃAâ~z5ZšRcX¬}7ʆMÇwˆgá²ÊNß]^;ÕÇ×ŰºY¢š½øðŸ$ sÂPj¨&ÞMÁ°PàoM§CÅj©ìˆý,f¹¾_ϱ÷×àWØÓx2º“Lé“G}Kª\Ê,ê¹°.•‡Ö àR‚p.EÅÝ4ÀÈš~/ŸÏ‘ S(Ð0ùÙ Ò£FÇ(ç¹S)ûDÙ5™£13°Íim€oâׯl½D9ïÉJtÊTžŽ©ós’¶!òíÁR¼ÍTõƒ™ØN%a!cÀŸ‚Ë]ñÛÊB‘…d§Y‘1“ÿ˜š/8afò3ýnaï·wžõVHÒå„e›§èj±b-æzI(<ûqð&-™²^ÙüÒaÂ{'ls8HÁþR¦à„ è9uð¸àréM Éº àXœP‘Vr”óÀÔð~Á “ÐÌIà‚FÔÌþ³zàò~û\­vÛª^4ÇËÔÍ•ÔîƒÀßœP©v%ýî%8aÚýà_ NQ»›µËzRÚ„¡³QŠ/È_عDðÎè{#CwY  jض­« 'Œ>¡Ê>©ìPI´xø92’q‰–4Iôоmi¼ÊzcÍçaZ1ІÈ75+†Î{r<Åg¡–x¹dèežTC´÷â/Ò¹ÖRW9Õ<ïJ¼Ž¥À'ÀŸP×êOK$õ$Q^|¸Ôe>á¢÷$ðÍàRÃùƤR¼øVð·ªÓˆ.©‘_¾ü½ÉhämÀ÷¿¯Myø~p¹ë”Zi¤Sweôñ1àÇÁ?žŒ>>üø'Ú¤g€Ÿ—Ë l¤B¢|øð/$£‘Oü7Ú¤‘/ü7•iD~¢€äù]à×À¿–ŒZ~ øÇà}™‘I J2ü ð/Áÿ²ýC ço€ßÿ~2šù+àßÿ]ô~zVB)?ð!Eµï5Ç íþü‡ÉQ¨ø¿÷!ž¤ÅÖ\ö •ÆQ8á k¨D-F*¥Î"ábÔáŸ7¯”ǃd8ÀM²^¼ üªH2û?µÒªðÕ®")÷ȶÁA ù²ÀkÀ¯Qæù FÅØ3 à¥ÀÝà»ã9TX7pøžä}Š¿Ö‡x’cBXT ÛrLNøÂ 9$ÑB`ôÓÙ$QÖ7;Óâ…1«XéK©÷°Cæ­.^ ~µô[]Ð$ûî‚îj;û5ƒRìåÓ%CwX5FzêeýBsÄ­PòÜ#ec<£åÍ‘<ÿIúI ±*ªÅ~à+À_ÙXwk ÿsXÏq¤¢;®‘Ö«î„eg´Cgÿ:Fe„Õ«·/Ã×?GØ?Ù\~¼/l-ŽÃº wƒïŽ\‹K™å.ì’žž13Ú¤Y3´ˆ' á¥àÑ©Ü(ZÓ´M™žý7jd4š“ɧû‡¶d¶²÷«»#Žq2Ý¿13œÉÍŒ ±ñûfħÃÖ¦ˆú®[ŽX››`/4ÚÉçÌr!-ìÆÎ9™9¾6X¤:nÏnÎhýÛØ³…=›²›ûBר„Zú.iŒX£Û}5ÊòZ¥{\{Ùü‘kûÔþ‹Õ*oL f·²Úˆ‹‘Þ=ÜaÒNÞÅܦ7´í•QÂÛÁo\·ƒ”/2ÍÞþ6.pÿæì0{ï´OõòW g™6Xeo×óy³¬»Fj¹×*»¶Ul¬éûáÈpèJY¨áAðƒÊz:KF™+‰m:Lö€À¹³£~;ÚÎÉV>LG‹ íF¡àÉ÷p¨ø.âIZŒ“xõ¶­£e£p»#ÎŽÖ¼"s£i уK]ÑÀE:ï}Œ^Ã2à“àOJkJÉ:‰òà›;Û_JÅ=T·¿4üœ2•ÿVàÛÀߦN#2ë`$Ê»ï—Z ¯‘·ŸºMy?ðàP¦‰u0äãÀO€K-H…×ÇÏ€?Ó&}|ø)ðO©ó™u0åsÀß—Z ¯‘O¿þÅ6iä7¿þ[Ê4"¿FòüðÁÿ8µü6ðOÀÿ$²ZäÖÁH†?þ¸Ôž6µë`$η.µ ^3 ü¸ÔT£Ã„Þ7Gåÿø÷àmX r„Jkضƒ‹Â ã0´\j)ŒÉ0Î&ׂKCo)ãyMK-›³›Í²„„—·‚oUæ\s,¶PÝÀmàR£™5¿Ý‡x’£ CöPw 1ïŠu>¢Iûb»ç󩻀?Y IÏçOAS¨Á p>bþâÏçÏ „ÿoÌçŸB-ÿ_›Ï?úþ?3ŸÿT„ð øAe­øYçó)`³ç Šîl½Z0ŸOýánÚ Þ™|ËMÅwù°Móù÷ãÕ{¨¦q ñ$vÓu¹sœ·ÖúEß²÷<€j?i8Úª½€Z &ª„pwï¿Oá 4àÞ;*îP×ã Sq7sà¹ÈÖµÇwý1]‡Èïc³ò|•7íY¶¸×û ÿ‰w^è¡4‰Ÿ¾üÝÉûêƒ0fÕøêBºŒœî )ÍC€p!¸\f­V®;ž2Ìñ ×áÝ« Ó šý!±–/¿,~‹§â×€¯‰¬£§EJß%¯"ŒYΫ# »^Ÿ6nNÒÝÐVë”úZ¡j{yEJ¬REžœýDÜ#ë˜ä3â7Ž–öÖY‡Ê©e—Ôô’4à—Á¿¬>R³7“­–M áþ øuð¯Ç©©¸?~üÉØíï¿ þÍÈv›©`qµS7ÊÆ+n%ç[yʈouȦŒhe4šåIÃvŒ~/·'xx)é2zŽ'T6OæÜZµÜ…òœ„iÁ #*t›–ÎUÅU̲V1ìÎÇØ">ˆ>Yíf‹_†¬û%¹’Xè vi‚wiÊ”už¨ÞK©óª%Åumîœ0Åu­^-x—ÜÁ"ÿo—ðWÞV\ eíÞ(x—ܲP+e-cúég ’ÎtÝ ¼WpÂD†3]û€÷ NQQ]}¡çIô‡»ò‚F$ô\àÃB·5T3x‘¦i×ΰ}L¯]¯K<%1;øRÈDx¸Ôuz­sGWœZÎñçcH–µÀ+À¯ˆ?ÆPq׃¯¬ªoQ3NŠZfÊ>/o0kÙyv{1œÒë“àÞîþ“Uú…m±¿ÆÄÄŸ×k9U§t‘‰˜²ãÛ†.¾­b[ËÆº&njv£5eLvk9l¾Ãà—W×FlN‰«øÑ„Ú§©^ƶA`ªSpBEƶ R4K÷ •0·Ô"à2Á 0·Tp¹à„ÍmMm|[ÔíqK­N¨TcÃRÛÜ)8aŽNQcïÎj{˜ç‘ß±Xîy²mùMpLDxîß},œhE«%CÅzž)±@¹ígfG÷¦–¹¤ÏÐÖ›¿É6ß-wêÀo Þ)·\¨Ú¾ ü{LšIyo ßþ‚¶'wþðŸï”jŠFâÎþ‡à„Ihäÿ"8aDÜ.‰[t—#âΟ ìºIð.¹M¶Š;A]ˆˆ]w N˜€¢»ï¼Kî¢ÿoÿ0b nj}ý‘˜ÿнá8t _W4ËÓ¡…˪éLð KÆl«„´éå1³`Ð>c?ÉÆÝE³Ì¢ùKÓ'-Ó•¹.¼£NÓ‹¼G`÷‚wKÍ‘Ìa]e¬«;œcüÖÕ½¸QpŽÑ¬kC1Ä ][yi%³l–øNY/J„ž˜$!7ï¼;º+„ž˜|D¨½†j&&Ó&Eɽ$/ƒ„‹Á¥Òq´žŠä'@Â4Ér.pøªø šŠ[¼üÂÈÊ)×r„øú”ôVÄ=J˜b¤ýÝâ&æK#(L±vþŸõ/›Ðm=ÏBmé`?pBŸ5£º®¾üåê"Zï)#gë½2ð8ðµà¯Mƾüu‘  GK;t‰VøÜ0$Çëï‡2åôÔOgÉèç½À‚4ý¼ø1ðEÖϼ>ºMB5~ \] Œ…Âo†¥çsÀßÿídóiàï€ÿNdÅÜJq®íä/£ßqgX׌–B_Úqu›ïfÃÍvQŒ™6ëZÒÖl#O³t5Ý ×pøÁUçY©ó'TÕ6ö²Þ­Œ†S×N˜€†Sç5Á½k¾#hø MCFêý‹Ûm¡iºÞªi^Æ n#u­hÓfFRw™}Â6ól`‘w…ö½KµD¼œúmZ^i—iÑ;Y üUÁ UÅ‚¼U”íE¥¾|VpÂ$,å×€_œ0¢¥l ¾*Íp½´˜šYIh’ë7ô0„þ2ðç‚*zg G±°EÉ»…êy'LÝÈ ô…Šïô!I[¦¿neÓÝ7×ö±©«lXìí'éJXÌ«¥"Ìht Á¬M­” 6Œvt{FÜ=Ç·h‹ã&,úæ ›™$CÓÎWK¬Q-ç%Î>‹}¬‘'m½¯@Ѫq¢÷7+… ¹ÄŽwÛp«v j}Ì,OGÁÊžÒÌò¤IZœÉj·°®¬6†?æ[ê±j‘† ºVëèˆé¦Ã<Ó U¢ÉÒÚÑà´~ƒü+ñ†ß®îz©…×ã@©„TŸþ:ø¯+ Ásl¢£?ü øg"Ä&:à³Àσ>ygzLÂC5δ‚9„ª'N )Ö«! á ðʬ¶Û‘È¥F¢\¼üâø{ZTÜJà%à—DË$¹#.®_«N)2!I”4ð*p© YÂ+¥˜ÏDVÊU\)|«)F1Ô ˆ¡è Dò§~ààw(S]W%?!£¹cÀûÀïKFswup=²æÂçò¤òsÀ<¸Üju›ƒI–ãÀ2x9•€¸Õ&•T€'ÁOªS‰e [F%ÓÀ—€¿$•ØÀ3àg"«dO­:~–ĸørpuëóiR¡:=4 ó8ð5à¯IF5_ .µjÒðÎÑÒµ¶GB9¯¾\Ýú…ÜÚ"Éò^àÀ?ŒnÞ ü ø#ëæmü´bmÖSôpÒ§fȱñWý „8ñà8¬£À§Îrµ%E¾@U4Êã.ò—<¡fÙæ¸YæcÝ ûÃz>ª†\(õ‘17sLf!šÞ̇¦nœPU’ª#a+©À['LÀVR/Þ*8aD[ùY}uJwÄô©)ÒxZ®k•›P¹ÉŽxR>Û®Ûù öçÔï¤ük˜%r“³É–ø2L_VÛSžÑœjÎ1„¡yØFÉš9 hqÆ4̬d:ïÕbª„YvÕµhND¤'Ð+•¢Y·ÀVö=iê˜Ùªu‡C¾é­عOp¤Gß #®¡’Ñwê6úÞ'ܳ\-å Û¯öÆOVM»ò¼]³9£H™?ëÉ•Dtg¦”³Šæ)Wþ¸¾‡Ë,U,GÌY2Ù†^Èj‡]Ûpó^J%>w5e– ÖíóTM_Ê °b[“fŽiñÃôôb˜È½›¦]Xá¿+€µiºqšØÔÇh„˜öôŠE‰ÔÎ4íGdÕuÃñ ,7ÐÑ.Ã&3äßdȸ‹Ž•‘‰uO@¡OJO)så/å u$É1à}‚Ë¥” ꨸;ºà©vŒ¹¨ü0/xJݘkSˆLŽ~’æ8°"8aJ)O ž’í4üVêö’ÁN N¨H1 I1ú´4G=§fî¾LpÂ$43 |¹à)¹ÑŽÿ·»}“GÔCä‘+ +Fúâ°£1l¡[X’þQà—'Lº…}RD ÕÌo¤ÞÂ"‡ †ë¢ËE}&öçºÛв¦7gUË´n6²ãÙŒØ_D:Cžø ¿Ïî”ÁÔ?ÄõpÕPÆwì¸õGù')!··±Šýù!_ÙSxM„ÿˆº>º%q5‰ò)à¯ÿZüžHÅ}øëàR«T oàz9v@#›${7&sÐtë4•¤àúføÊÒnŠ^·/ž÷dèH¼17¨Í¿•› ð•Ã/TQå?#0µUð”Ô5Ñù—`‰ªqäõXõE4¢Ðš.ý§­Ó´»TÏï5p=øz…=?+èâë@"Iúàñ;·8>YiïhÜ&ÄÏyP*moMwLYµû3¾-ƒÞ~ŠÚ>"q~‰§ÛÆÁ±£°åéÐIí7-¼O¤”0–!àWÁ¿ªÌX–‘˜|SåHoN·{e ç/€ßÿ^2†ó5à÷Á¿ß†!•ÿwÀ€ÿ@™rhæYâ  óÏÀƒÿ8üøoàÿY'}Í[ý|=Qf°p@‰A‰ùïS—ž’[8o¥ºE9¾ž#§½Ô:àU‚§X²¦â.fOE_²^%ôÄß…P•l L¡yJíœP‘®Vøb _N‰‚©ýÀ»OI, ¯³ë€÷NØŽ(˜{A8&8a 9œ0¢Bk—øz0ÕŠ˜· Ãד™¢\º2꛾Qp¶7b©wß-8a|ð=‚FÔ Ôv*á½Àž’Z¤ VKøcÆ$ÌÇŸœ0 µ|ø«‚Kž®ðÿöÅµÓ µ®|}K5%l7ìZN/ƒFÈÞB)ŽÙÆ8¿aE²Eû5)Á;冫­”»Üעѱy™­s!p•à ¾¥â: Þýð­TƒÖ¹x‘àêR3J6hkë'LB!/œPUŸ~vƒ6fUm_{&¡·+€'l{KÖyx—à„I¨îfàÝ‚wFOv°ªé " œ¢îž¼SÝ^:ù¶­sxFðN©]máeïœ0¢¢Ö6MQé9kÒÈEkJ;eØ–”ʾSpB•*Û$¥²÷?$¸ÒæPÙ»€\îž‚†w°Ùwœ«b9|í{H»¶^v*ºM3š¹Zîá>©µTù#Àï.—¨_ý´%"ãø#Á “Ðäwÿ*8aä[àü°Cט`~þL:Iûc”x—º“IÌH4°Op´×Õ ¼RpÂÈm\I?A[¡\Íçy¡ÆH¨«€{ïÚY¸Ð c¯®¡š…±X )Ìë ápu7’uÝ™°–K’,._¿åRq +Àå°ù;yö•¯ÖóF+`¾ÓEµe-w¦RÛ(L¹Ø&ÍBU/j{÷9ZZÂVvԳ묨Èô:VÑ,ôÊÂ@O¾üõ‘ áEý„ —³”Úb½RJ³o~ ü[Ê4»°·`Ñ•yRªýðÀÿ!Õþ ðÁÿ1²j‹³UëN˜öš°ló”Uv‘Ñ;]ù1€Æ½Õ³îš–Ñÿ? ä[Zÿ©Cå–ÖžÍgå ‚& ~¾­•Ðõ_íå¼ ¯&Z á8#xjF¡šrE½|BJM_.¸Ü¾Æðj:|Tð”\käÿíJ±Û½ÄÝäN¥ðûªH4 ©7 N¨èu,eíû%?*”Ê›£6f¡¡â;}ˆGÒJé¯[Yë¥{ ÉSzYTöx[aCŠLí]p=øz‘¹¨ ¢¾A£Ï‡x"*òÑõ§æƒtÑæV½þgg¢Íw‚¢áYí”Ù Y¹7Â2 q|Bå‘õl66€‘$Ç€÷u$vdŠ»¨îÈúz-=A»HycÆÛ6Jƒ‰\Î6˜¾èôËŽ°I2怂G¶]Ì"C ò&X ax—´õ¬ˆê©$ÆRâIþ½¼ïâÍJÞKPÐír­Š„`=ÀÅàR)Š[ ô:tX4êùéø¡?] O8X²ªe~˜SÑó†–¦#†]âëÂõ“t”s®þ¶hè¬õ7JwÆKLÉêíOöëíóç¹; |MyÂÐ †íô‰$„Þ5s¦£m ŠGs½±eÀgÀŸQŽL×(Û ü$ø'“ï=PñŸò!žä=ê-ð¢·ÄêQ (>;3A''殸|¹´W5‡Á™ú´Ž•oÉq½76cŠ­çOn†ý¢¢Ûº¸òœæwŒã׵æÞ8×wu–³H¼†s¯•²¾ÄÊ|ºW»§7£áÿG{ûÂv-H°×ß žÀn(*îÕÀ÷€Gß u2«íõf'Ír¾Xåg{71óÀ„dÓ6ߢe¨ÝÂh–«LAÄMCd˜óÒë8¤ë}Ò/‡žÆ ê¾W Ïwû^’æÐà²óЬtFwÑR—{OõJ;l'Dêħ2£æ˜QtŒÓn©xæô(k»&NŸµªîéÑôº¡Ñ¾3ôÓåÓë†Îœñ"s@ÝvøúCöì=t0 W³‚§²aëAŸXÜü‰£¥ã“ñyh ›ª)¡€Ÿà2‚7(€°#Ð3IqŠÑ:«Êhº4(Huß~ý¡kã©u©£µ<1ê#U!--&ÐØÛõR¸¡'\êD‰Ä´1»ÓÓñ ï}÷±×H¸ïà6ÁéQ4Œ69ĹºŽ©íâQgå|@©CÀ‚§ÔÝ$ó¸8"x*ú]ò¥>Öp\6p¢^‚®MÌT&Œr¿è¤ûûZv76û»4AUϯ‹ñ]Ñ ü,{>ÁžDòëR~®CllÿLd ˜è:4ë)*E¢×楉—ï“:¥?â©l±Èm‰E³j¥öi\ÖÛ'6w£zÏÕòói·.½êNuût²óÌ_°F«ÃÃCÃ`ƒƒÃRcŽÎ+w°‡õ¢;oKdÌA[Œ9ÞÉÖ»í¼=²…¬×¦¸{ ømv2ÎÍïV%¼¯I*ý¢jçî|ø{^ÆžW'äÜ|‹(á“bíã‘U·®Þw'\ý",o{9²4y)ÁdÔûðëx™¥L½óVÝ댼Œ[þ-ðïØómö$p⚊ûðìùköD?q½¢¾aÉ’JHâüøS¼‘ÿˆ¤¢–³kbU+ìr ª«ØÃj¡BU±FëDÀ;ù_{ã?g¸( ùŠ]ÜÁo“íê‰l!WÖ sÆå›83 í,n¯ªk“2ï>&“^>Ò›‘j»F€ÙúÊ]RÇYB+²k+ðölfÏÍ‘ÙÙvƒÊ¿x¯à…ÕXÀ Ù?Ïk Þ=ófè *þHù8Y ‰Œ· ëæßÆ|WÏ™ã²õ—/“Î_Ü$ÓpËUÁ´wל6”ц3tÍØÆ>ï* ùW÷‚«Klp–E¡À¸CÒìÞ®ÒñâwðVðèŽg7íräWÄy÷ÁÑ ‘g´ÅxOÓ‹4¨§Fu¼ô¸¾¾§;Vq†cÌòf§4ôêÕ÷ðwÀG™,cŽU-ê6Ò¥†íÃP_~üI &¨ÀgßÿfdkX“Õnç^<Ô|ǼЧÄÛùð¿ÀÿKÝÐÅK8p !;µPð”ÊŽçüß(v‘à)©Žg£ki] Õûd¼½U´½/<%w¦Ú]Ò´%„þ~çh{õ¢™³Mî˜{u»hºVF¢ùáaowÑ”eŸ¸Ú÷'‡­*%÷?¬—éoÑ龇²¥ÝÄþ¡SÜL3Ó/7zßC×Õ¿k¯UªT]ø‰þT;@ÙéÅ–†ÃƸeh·íË´}š xÈÊY„ôñƒ¬ÆB~‡[IŸÉÚöšŠ}™záô Yí ŸÕ «šè§4¨™2ŠEqù¼¸ÓÜѪe× eø°ë?¤zLt½Gð.©Ýça!`ý‡f±ºQì{'ŒB¯ÿPñï«£÷DCbýçm"¤pŒñ Ý%S±ÂNO“P=ÀåQ°ÌkêÙÚÊOóA–áæÃa|¿™#]¨6ƒ«ÓjYDç:³‚ ³26ð?ü‡ÆDÒ½ŒfflfvY8[+ϰ¿“x£çÿü/Õ T§Y…î:¶‹@Òü ð{à ìz¡âþ ø}ðè»^.oežÞø‘(9µý@šê'.7å?‡ÚÂgu#i–Ï\î$Mhµñ 'ŒÂÃ6`Tüª:zOÜ ™B7нPpɆڇmÀ¨øÕuôžä°· ƒæãÛšÒ Ç%dë.눺¡9cÄ“í?ˆé»lÓwÜŽ§ž¤ýV-²LsÔÊÔdO»¶®™t]UI÷›cMײJ¼œ•Àw¿KYLë6%nc$Qž~üƒñ4*î——ÊsÚ¸5‚†ÐIWýñ¡‰Y6úÝj¹¶ÇÎotãŸHÅïë-˜ccOLê}ŠRÐ& ‘û#-:)µA•„|X ¿äÃY@Wps.H]\/xë¶TÜeÀ ‚+X·]èín ¯¾tK8 8aµ´tP26 Év¯œP™z¶ÜRq[€»'LÂ*{OEO1zNmËmè-›$ȵÀ›'Œ»ÇCa¢Å<%µQ6Z‡Š¿¹ŽÞ“|ç›8Fêñ´,uÑhÁpò¶™ke’o‚*ÞÄ“´*¨øy>Ä£è Ì•=í xßï¶){ßéC<’!z~TqÞEvãC<ßÊjæwXűquUn7ü„›Ó«†:ãÃ/CQ„«ÁåÆ*­²US“¹Ý%ÃÕY謹b[Ç™ñd-;ìfgn-p+¸ÔM«-K?j”t³PîEÀmàÛ"ë.ü­,Tþvàp©cË-•´fÂu+ÎŽ©©©leü'!wS¦¬îѪ¤ª«÷‚ß½ Ÿ½’¸˜Ï)«þ‚Q½êNXv@ !ïý•޶†_*¾Ó‡ÑÂï…QÅ¡K|ˆ'â[¡L7S¦“ѳAÞzmoQ·Oí@VK‰ãÓ†ãò‰kg‡v¤vàÚ1ÄT÷”ejs®mÐ !+÷¨™P}&ÈU×Úl\ëLh(?6Ýî·ª6åJy è‚» {Æyb¨¸;Uðjb7•? œŸR¦£®ÃÃÝ|üA…úÈYÅB@±ÓÀ‡ÀЬóÒ[7öe´¡M[·÷÷mÚ6(åE_.—ˆ¾•†ú¼Öµ`™Ôš f‡†6nÈ•Žg™ö²T,‰²%qß|üY…zœ4ì\@±o~ üKÉ73Tü—}ˆ'i1Þ+4^C5î Ö¼2‹ÆLF;”Õ®c-Ìæø¸I“Îû³Ú-Yíot®3ŒâGûy³3DÍÎ>ºÂ bbšš§ådŒUÒŒ±1Ö¡s4êáõë,ŽÏ8MÎûPIÂà'^hM g,þ&‡Š+_þŠ649Tþ+¯W—Ô±k㦰M òàëÀ_“CŽøzðè7Œ,Ìh…Í›¶Ky΀o»2­hs53$oÈÖ…¤|ðwÀ¥Žf†k]¨¸wŸ—jÔ¢…u*þK>Ä“´O E×PMër˜µ.¾)£Œv‡h=)_˜U.Tó<ÉDC;AË%‡ÄÂOF*f ´Šž?¡¡}áý¨ áaðÃÊ|a Z jüS;èðÅ^í°5æNévØ $äÝÀip©“EáZ*îp|¦ ­ • xü´2]unÜ"!ÏÃÀ—‚¿4þÆ„Š{ ððG"«cqz# ^úû7m“r¢—ŸJ™b®hÕ lÛ²qëÀqÇÉNnÜ’57†lUHÔ7?þ¹ø[*î—€Ÿÿ|òᜊÿ‚ñ(ªý9£ì3´#!ï¥:˜5Faö*Û’Ðïô!I£<=H;Yz|ˆ'â[‘X¸üTB}«VÐÆ‚ùc|RRB¶åÀóÁUîe ØZð!èƒðð °µ€Šë®—Ú»ØØ?W]°9‹Q“¦1åm2›ÔmÓª†Nò!aý·‚K-‰IØIà!fp/¸TRŸðÛ¼üºÈ[VÛ âÈœ8#a®ÖÅm¥¨¥BQY즗ñ>` ¼”Œcß ,ƒ—“1“#@ ÜŠl&Û„cדõ¹–V°õ)mÌ·þÃGNVÕ¥ ¬VqfÜ*‡^W$©+À§ÁŸN¾ýþ°0ªéFH4˜Aá„ñ5˜ ì’ž­–M á–/WÙt8×\®rÛ}€cQqÝ@l»ïˆ¾í>üH•Ê_ ¼ü"õ}(2‰RØ„$Ó`\*çOx‹X ìïOÆ".fÁ³m²ˆà ø r‹XHQ1\KBºàuàRý–ð6±x=øõÉØÄððÚd/Þ~c<61^,•$¤» 8 >šŒM?šŒMì?Ù&ægd:ì$ýÀx!¦ÖcRB¶“ÀIðÉd¬âp \jïJx«0€Óàr©¼ü¿½Vñ©éX?}Ìtµ“wëMM˜ù‰Æ~;òéS‡>|—äŸ~ü³ÉwÙ?*̰†më² …ÆØe× dI·˜`—Šë&Øe§âºêºìC-ÆÂLÞ˜WøœÏ½B{‰»¸|Ÿ²·E‡ º-©EÉ„½~\©…öe*¾Ó‡x$]hæùŠ8ã÷ öœãC<_Ë ëÖ­ó¯?›µ4Ek\³Mç„ÆoKuj¹¨Å§þÚ' ê¡+ó ôJxxôê‹™½k;û5Öð§K†îTmc¤÷С^ÖI1G(ñGFË1R6Æ3ZÞÉóŸá?)è®>ÂþÉæòã™Ð5ú$jAøbðG®Ñ€VÿŸSÔs#Ýq´Ø™žÑf ÝæWÚŽÐ%L}}¡¥þ$%ˆÏ×åø4ÊöPÏï%ãö²Ÿø¢a‰SW¶bYE£ ±š%Ý5B×äW!=á^p¹lûþß.Ò§Ù?á•ükƒp1¸Ôµæ•üë(ÛC5JÞOJnÒí¡±­)­èjžZÀÛjèÖtíÄÈÐF¦}ÛªŽOhì÷õ<8¡+ôT‚p?øþÈ:H¢»âê2rÓ£dq¬…ñvNx)V¿Ñg!=á ¤[ô%ˆA¨®[tQ]¤ %©¡›Sû7f6Jtο ¡/—[dóÿ6$ Ý2U0ì‘ÞŠmä%š‰ß…ˆ„iðtdq7œU\+çHHû{pxôd7g•VÏu7¼´¿ _©´áÒ lÕ¤! H^Œ™Ògøì]\!RCÙtB‰Or™tâjR¢§þ‡•p|H±¯ $©dñ+ê+J}ýR¿€$ãΑޜnK¸ÌA.ÂKÁ/,ãš ½`HHùUHF¸|Md)/ ²`:®„_ƒ`„—_Öþc”í¡ÞÆÇz"Û%õé¯ïH¾pl_¦\§Ÿ#ëlhñÿ"ª™DêUü)Ä T׫¸žK½U‡¹í=C;†jëDæk ’tW Þø¢§ ºÃ–´ÜŒ7z]—?ƒü„׃Km_h¨Ë%~WšF94œÚ"ÑGúsˆEx ø%1‰¸-34(!â_@¬¿P*bx_ÿK”í¡ÂÁDmÜ` ņ^vÆê Óe ¿Ñ™RÉp)]èÞ}ZΪ– >öWžPÝ`b‡_é¢ #Æt…µìîÈàŽ­uC`v0Ì:tì›h²jd(|þBî—Ë2Í$¾Ž²=Tc—·0 ½É&B‹ú ˆGx9øå‘E½®¡פô¢5žÎ§³ƒ›3ƒÙáÍ™¡Ì¦Ì0‹~KØ*¾ ñ ¯¾‰>¼ö¿…²=T£ýÕ|vµKSe‡wäUþ7‰p5øêö«|[_ø9õoCüo+Uù¬ úÇíÿ»—ŒüHHØÎÑæß¢lÕèeþðT04>зÒï@0Bu]ù‹ýVÊ%é=eäl]b°ñ]HEx1øÅ‘%ÔfKHËÑÚ®mhûÖÁðb~¢jàšÚ!°3ŸÊl–ëË}rª‡÷Œ¿CÙªñŒ äþurž…@¬6úìBKûHH¨.žð­+Ô³ÜÁï*FF˜SfzH|>‹]0&ͼÁ·GMZf ,ê• ŸáfU ]™¢„ê¶®\ÿ<[%7Kt]Ó&«4´%³E¢Yú{ÈO¨n€w š%Ê}?’Ï™åBZl¾ÁÎÎiÏ «}&Ë?—î=ríU½öo?ÿ×ãÕúÿPÂ[Ào‰\­›|ÕÊNÓú*{ñÛ³›3¬Oп%Ó¿)»¹Ï[pÝÆtD«ÚÔ,ïá›uÒ¸Mï.CjîíP ›À¥’^7Téf¾„L½šìVVÍ̶øÀƹüÄUÃÙm¬6éÞÛõ|Þ,³~|öíµÊ®m{jJt ‡¯Ô?¢"„7ƒß܆húO(ÛC5Ñt'ßZgN…ÆÍr"ªê9Ç*VÙ舮bs«Ô¿gC&Ë]…†Ø„;Á¥®o¨ÂHêXmmD»_ã‹áÝøÿ¢„ÀD®ÓˆoK]Ö¿X6Øý ä&iƒ‰ÿe{¨ÆÄ[v¬œcØ“†H¹:fº.ÝÌÂ'&C‹ý¯•p|0²Ø{ZMïmÏPìk=쫯6²úô†7åCvÂ=à{¢wü ­p2_ëD ’¯í½ ¦·±ƒº.ÿù Õu.G]”¶šÿñÕM…÷¾ÿ@Ùªñ¾6íÝþ *@¨®ÜνÛ?E-qönÿ ’€´Á¸ÿe{¨Æ¸÷£iaFJkYV©R4óÔ [•Ä%a3´æEñï’­íNâãÁœû¦BWè¿P BuÛz#­*þ7Ä T·ªx¥¿œA;8ÌF—[úúø £!½tøsIx%ø•‘˜¦h™Àb¦Bl‡6ËrKÊÿa ‡Á‡£‡ê`Á3ÜxiRjëŽ!ÚïØ’Ñ6îâUrŒú­gá»Oÿ‹ ª ÕáCÄs(ÛC5!"Ó²÷éTsã¶Uå<´9^lÿ+2IHÿpÌ@d©,/€9«Þw*¥Ô¸¥JãÎ߆ )mˬþtÓìU”nhªu"T7:¼Ckø_»¦°R8´Ë1Ú} æ7»vÏg&˰†$*ÓÊt+5¿•ÁþÊbÑÊ×CêŽáÌæCC™¡M;†¶JH>’n„ä•NAÌ=ä©/YlÌЙmáû‰©ù¨¡º)ˆUõƒ1d(,\Î0¼t á*H=àþ–›$䌸dºŸE¢¹§7%'5S8’ÂQ]ïñ^!V™YÓ¾©˜Uàð UÐm¸ym?_£¡º—øº2‹P™EJ=w·ð¿Þ=E×°I~±=el©¦ð:éA5w£»#WCöSêˆCØÆL)Œ$µDo „u­’YáÐ5:5"T7-š¥íÝçhSVµXÐ&ôI¦¨J۱X+2UqYë0Zè 4aBg# ½‹½têîN^/æëÔ·Ðõ´92mf´²9R6}SÑÒ×MèJ #Ìq*±+z·Ë7Å>Ã$ôIë_ýLÓ¤É ÍJk4ÿ·%ŽD´ÁQ^Ž»;Tu»Ž´šo`ÕÌP–Ï8øÍ¿â˜§Œ‘¡úfmr%Ú3~? _5OŽGPµ#m¤8+æ¡¢@zP$k¨uÎXÑgÚxoOS4âNÌbjµèšEcÒ(j,Wón•zHåBèZa—"ǃ¨ÕÁȵº•j5źš:kX—l‚×ó“4¹­6mèZãÏRáåqD¼¥ú:: ¨yjbŒÐ»4R8þÁñVÔëÖÈõZƒàDAç„Uv\V?«Â¢«åÐMu¡¥ÄÆFŽk å•Ñ'[š¬ \™GÛD†´—htžÎ6óŸ°¬¢/@…®Æe¨ÆeJ£Ï#VÔì½ÂSÔô*’¡ÿ8Ì+³ƒ¨¨—DÄ&8ÞˆêÈ%Sõÿö²B”Ba°`ŽQçârOt !5Iˆ÷¯`3ôòBá&ç.mð( Þ¢1:à¸b-îw|Õ‘ ”ÚÁ÷ÌõiWiùj‰ bÓ…Bø—× ){•úÝöúD›?1ÂZÊAÖ–Æ+ÌçòiÖfÒ.— ­C±‘7Ÿhd-iFâ,^jä'Üù·G–›¿¹sÒ›1ÁKÿøg§Kútš~Öw•Dº…6ˆpTw˜t»ž£ŽGz‚½n’íÚ}Î]KÚ§ŒhÃGµ~Z)º3#½‹6L…ßì’B^Žê^¿ô$×zˆCØÎI.l8÷PQi·è!!™U¥b[z~Ý"ôÄŸ¿/Ðr´®ñ?9ºȨÁqw‡ªÖìE³k‹·æ ;Ù22³– =¦ç]Ënj´+®Ð†É|ßõHõ¡6„ûP›}2µiYì¢Qt\[ÝÎõ ííJPcaÓ‹òâ;ë1½hªIœyÔM)ÒU<).Ç¥‚*RÊÂÑÆÌ”e·¸ñ—˜.ƒN–%¯“«Äç<ô¹0ëS‡Z]vˆÿ¥¼=2æHŸXJŸÀ,xÇJñ³åô³nñ¥+Ÿƒ|d/—ÖeMú!¹–4×fdÀ-U±öš/]?p(W5‹ÝÐ ¹M› úð¦á-¸ u ¤—p &¼×úÈs°ÛÔ5?ª½WV`U¸7ÀQzر…ë c ¸`‘^3/ùç4‹÷ÚiË/ýlÞ¬ØxÛ‘úÑ¿˜ÿ\³ÿú~¹`–']_Î[”0±þB’d¼î{¾þƒë>ûìD“ÙtâoÜrðð¾;ó®gEü?Ýúõ¨Ð ^hM3ç4éU!¾´ÑrfùÁæcfјã#Ï/>Í-³¡}€¢½gE=Eÿr2ÁÉsëâ‘C­Põ¸\êõ´,uþ¨^4õVíx'ÞEgã{IZ-Tü¹>Ä£H-Ýc%·R!]P¡·Â|N ñÝ3Ðjí+)…PñK|ˆG‘Bæ‘B†Cj¤ZèÆ›Y(ûfBjû®8z=¹WI#TüRâQè"Ó!2J˜—°‹`;Ç6ºÈ<؃‡j]„8ôPÈ|(a~ ñÖùíUÈ|(ÁCµ 9÷¯m×nðîä )àè„ð"ð‹êÇ5Ýb«¾—×Á&l‘º")ýPñ—ø¤~æE‡ÞþRÊTÿo‡4­n¸?†™M-1§;Sùæ­ª[©ºNV )ö"(>UìΣæØé ·T•ŸÐí´ÿw}}³¾¦wÂu+ÎŽ|¡œ=9igˆ;P®”Ø(Ê8®OïÞ8`8›\cº?Oõë«‹ìÓ½Wk·°ï£ïqøÞÏ,Ò½+ïýiÀf´Šž?Ao¤´=ÁË\lúÞ>mýzmV=Ä+aUÙ0::Ê àôN'o›W3 #½Ø—í×§ûÅz)Ë[9¯1­ôf³ìÿ^ig—q×Îñ5»ÎlÐŒ¢chX]kQðhSÉ£þ¢G{7d^|†ÉÞðõ}gÎXð"VÝCöì=t0ÀŒ‡#à#a͘>±¸ù‹G‹–^Àûñ ol1«¥¥7'á„»|Òï’‘ÞßÔtµ’,¿y„ìa(«wëRÉ4ã*µåŒÙây«\6x´Þð-|Æ1h~0°.], ÆY•V‚Dký¢íª?Št»x´`›c¯: 5¦ª`“¹÷¼^ ‰ÔéC<’ÎÞu-Îßµçˆ'bÇåÉÓÚs1nºüÚ“ Íåô²Ï8YÕ‹#7ì¹éðõâ´5¨^( züdÕr ñáæú† ­Î¡E©Ó0U*_u­±±~‚np(Ãþ¥]n¨`¥WTŠòü)¬“o²@aÒ4ROOûõ4VÔǹš|â^3(îRˆHØâæfÞTühÁr[ "©Ø>`?xä·Õ^m$@8>Yϧ'õ"~dVÇô7FÏý3ÌL‘ÿª¦ÓÐR/ƒÆ–u´Ìc )õ¾=Ës“~&co#ÚZwšËËëÅ¢¬.‡ì„{À÷$g…ô¡k7€ßÐ+¤½ØâÖïÈsU‡`ÿT;½Í¥â;}­Í½1ª8ÔXìC<ߊĕÄÞQÂWGœCYº§–üƒŽkIÈÖlq5pŒ‹8^D_tp-øZe^x[1w!°¼7²¹Ì“¹%žDXܾA™Ræ\È™S+Yà0øp2ZI7‚oŒ¬•Ô lò!eµ7J•‰€b»›Á7'Ø©ø->Ä“´¾ $6sÇÃ8Fè­ç¸R ±z|ˆ'¼X-ÅY7iÐVHšçJ\k“34oE!+!ðà¸Tÿ7À«L×(Û LÞœ©ø!âIÞœ/€ _«9Ïã$ Ùz€ËÀ—IÛtW“L÷еjüÈ¥¥Ñu£æØ ?êT®–r7õûaI/j•¢ž?5aæ'ø§àÎ?ÎÉÁ¦cœÌ ´ÂwĨ‚+Eð¢ÊŽX)he:°É'Qà$ødüM>WNOEö 7Ãï–ÍÑi½z$+åqwBccù` àf[O…@'ÊïPâêÝñK¼DHä)¤éÞZsÒ(΄‡Tãià?‚ÿcüñŠëþø?%©øö!žäã¡/OŒñp^¥¾ë2”h¢µÚ¨26%¯¡ü(M¨RZnnü3§éG>3×ÒFv<+ÎØ»ô'Eó„!óžW‚Tò`î+lÔ#inŽ‚Æõ¨¸[€GÁF¶þn-|KDêàº2µtõV¤T2<~<•ä€'ÀODVIg_ØfÊ/Kà¥ø›*®X/'ß,Pñ–ñ$ß,ø®g³YàËv¢õ£7 Í".Zãfžu‚}}¤© ‘'€R%Àš3SÊYE_g˜.ã¢þWil;Øß–5ÓÕÌÆŒ'ôÞƒ¦öD¬ý…vz+€¯Uü®r!܃ðÕà¯NÞU¨øÇ}ˆ'yWY ÷X««t9FEB°àbp©5–ÃÉ«çrdg®;ˆH –3Ü)ƒùƒDE–÷ïSÖHÏÙ7 l¦I–[€GÀ(t¾€fšŠÛ¼ ü¶ÈV•ȳ΃Û@Ñp¦Cã2̓¾°Aнø øƒñ)*®øøCÉ)*þaâI>Hy‰ƒã RÝ´5EB²àp©Mñ-£Ô9£Ôà\Mxm6Ì2érc‰õÆ‹ð9ÂQp©Ñ•ºõF%‹?lQqGãàã‘ý`oF$u²ÊÅÊÎP4éRtêpù»`”õÉ(òËè£÷¹¨À‚0þpFÅu?þ¡äÃÿaâI>œù‰Ä9<ᛆ$D몞¼xŽxV[šÒÄÔ–¶ž×¤ œ£bÓJ@è,ªÐ à=à÷ÄoúÃÜ GÁå‚h$Ó§âúOò¦ärc\ÀñQB¶ಎ¨ XÍ2¥‘§Æ[Ò7'ù. ëBZ,R…5l’v%p;øöø û3áðÉ6µñ$-Æ¥0eÛ¶ßá2~™ÿjo`á›™³DÏò28¡®)íYµìY’(€W‚_Ï’Šó6Î]~Utó »gŠŠÏø²Ú왢âºýàÑ÷¤‡v^*>ëC*®¨ƒËm‹h¨}ØØGÅç|ˆ'i1z…Õ°mýŠu(œð;6!áz€ZGc“Л;q¦„c‚c“u0]Â6ŽM¨øŒ›PqÝÀ6ŽM¨ø¬Û46¹\Ør ÛC?œcŒÛ&Cïë!z€Ñ·+4 tEÓ^f±6qdB¢.n—:°®u¾ÞD¸ \ê€V4“¦â7ûOò&½f¼>V“žçJìa^C&T¿´iÖÀÄÛ¹O¢âB°¦]üamœ$_¼üºøm|=ìšðzðë“·q*þâIÞÆ½{ 6Äjã…°K>`Ô„ç€K¥tl)Ïn‹§ãÑ‹ˆ×žyŒqÛiêÆ¡«…”û¸)áðñû8áÍà7'oìTüAâIÞØ}Ù]âì£Ɔ$ëªï£ì°v>ªÓÜj\vOõY¼üÎøí> ['¼ ü®ä힊¿Û‡x’·û>Øz_Üv?,!XP½ÝßåËV‰nmÑòû`í}Ðû2Y݇³ü>X;á=àR›i¢Y>?êC<É[þ•°ö+cµüîJøaé•0wÂè‹ Í úw*ò{‰Š%v(âb4ó¾Ÿ#¼üšøÍûJ˜4ánðÝÉ›7¿Ç‡x’7oÜ|Ä1ÆM[b"CB¶ಎ¨›¶šÙ.0L¾9QB¨•À Á/”~a³V΃ú}3È$ÇâQæG3ÈTÜj ®ýÿäý œÇu'Ž0ÃkxS)êbs(‘€„Á\¼É‘DQ¤HŠ—f¨Õô šº¡îƤi;–äC>$ùˆíõ‰mÙñŸ²“ØÎa;‡ÄN;ñnÛÉn~‰íìn6Éfõ¯×õm 1ƒ²« 9Üú~ ô ^Õ{õê~Ù€EÊúæ¯Ý9Ìe)$¨C2¯BšPö¨r°ê¶dða¼Øúzíêàzüõ€’?ãC<ñ׃^Ø~¯ôz@بž€­½0xBù“þ«p­·XÖfIªÕ@\i½Íú–€ýÛKâ¶YJ¾Ç‡x$å¾;WSK“´×À4³@9kÀ¡‹ ÷`mÙUœ>Ô…w¥6Ž;˜9U ¦§j!ôÝJ$©›+td“DY\ ¾ºõ=]Jn1p øšÈjyBÇÝCŠ£ž¥®­¡QÛ[f ´^)iõp‹¬iÖJÕq »Ç6mjÛËÞ¼H¾hÚ¬ÿ;;vGWÚXT~Aw™µò^ô £¸ øfð7K3Šeý§z¹ôiãx'ðƒàŒÇ8Þü¸Ð1؆’Xì…ÚÐϳÀO€Bš~Ò ý¡g H˜Ïü7ãÑÌ'¿þ[‘5³@d# ‰ðÛÀßÿijYì]E ¢˜?~üÛñ(æwþ'‘C—„ÔÂsÒQwÆ€®u£QwðÎÀ“ PÁþ”cb 焲*Ø^Ñ –X¼‚sÂôH]×rNQ£é¬r‚5…¶s¼j¹=ü|Õv̲~ŽÏîL©¬rNQÇI‘z—˜Nqž‹ÛT%óE_›W%/¾ŒsÂ8T2 |Œs¶¨äqàœJRÉ ü<ç„% =ñ3À5[C9Óa‚?ƒ€PþÄØ54$Ë àð5­7XJn1ð2ðË"ëå'õ™Ö[eÝ\µäh–¡RôxߤPí>jo 'ƒKft­T°½î¯;¯C Gg…ýI¾ÈzÂûNîSlg¦¤)Un\64;«Üã› j±¤uËv¼24S„ðH4eWYÂ2©µm:¬ëM–þAeÊ[Pòý€Ý]ü7ð“7H®({IØÐƒ+&NÕ!±˜ó„ОáMïß‘ìΚþo¿ÄÉ“³-@7jáHëf@-­åMÍ-B›VóuÛT¦t§Øü …‚Ƭ»ì›™khÍj`Çà$£rǨ„_çœPžQ »ÂŠÕ·€Î9a F•øà÷8'ŒhTŸJóŽ,lÊ 0fNò{«ì¨ñw›ÒέC²¼Sâ/8&_ÇyRhlÑ<7¤v”|ðmœ'cè_SrOßÎy2zÿº7UŽÓÆ×5ÍU0MÝÍPP •ö0„×_òÀ¯qN(k´šíß.¢»o¿Í9aºû:ðO8OFŸ}½ÝÝ€Rt{¾. µ-n°QÕ˜@…Ü6à: F¶º®€» öÏÐwÊÁŸrì\Çy§Ø%–þoCwÞ‡¸=Ô°­÷­€°5«¶¡Ã¡‘(+€1®ÚRr‹k:d­Ú~êb«¶³> ®ÝfÜvõð•ªMm©×©Oq( “¶*²ôé½· –Y©¸[å-Uw[ßsšeÚJŠÿ¹€aCCÇïƒÿ~$#’|‡„úSà_€ÿ…Ds ¾CÉý1ðûàßÇŠ¿ üø"[qg:´³%þøCðÆïl·qCªa[ív@Øgt‚!ÐÙ’(+€1:[Jn1Pž³­Ìv¶ªBî¬4gƒ7ïï×|mŠ¹ÆŒ¢óHèyu¬¤±ºCˆ9»Èi‰Ð›?ÑÿeÀ—¿LšþƒO Ï«ýWŸ2í?|5¸Ðõ;1í©]%­ÕýR“w‘£~}†äQ^ücð?–7H>e=¯F¿ü3ð?‹G£ßþ9¸ÐüĬ½3ë'$Â÷€ þ—2u2(¢“¿þüÇñè䯀?ÿId<š®ÝkÓxèÒ›E¡oyOͦۻh÷“;‹ÂÞÉ*§¦LÖc×èpMí5wX7É:¢äy•ú¸‚›1(»Ç1qç ¡ùÍwÜÌ{Pp>Hœ8'ŒÁ÷5ÎZd8_s˜éŒ;žñ…“oâaCœ³"Û¡ ıTÖ³Nß½fi|Beµö]Ë1µÊ†ˆ©âÝE®_/­ú®›š»µ¬9*s,½Ë<ðYÓ {› ·¸\蛀aŒVVõR@ºWw‚ïŒ^¡Ch ôwwƒ‹Ý ØLIŠŽS±w÷õMMMeC(ëž#·{+ðað‡¥)«+Wµ‚TµxütdU ¬“ÇÀǤeQN­:EÓ p4 ”wÝ/%Ÿôa4÷»8ª8û:x´!ñD,•Qæ~}^7£Ü›URƒýý鬲ß4 Õ¼Û¢ÊÔ«jiÆæ[ÀFêsw¨hJEÍŸU'´¬2c·AÅ„£à£ò|“ WÕÍwz³Ô쟣æ¸3¥ZacÞ“§Á§%öHî¡äNgÀgÚà¿)ýsÀóàç¥é*9´]@ž—:9 Ž1³THöEÀÇÁ¬Že©¡tFèíݺS¨=|üiiйÁkX ¦N iß@v`çö¡}gl;;Ù?´=«÷…l^IÔ7ŸN¢î&5k, Ùg€_ÿBü­ %ÿEâ‘”û¥9ö-áæµfK_û¸Ž;öw´µ…¥ä“>ŒÖÂ^u©â޶oïà÷"Éw2F›aô»)@¾ŒB·E÷(=á%½ ÒnßÔ†2‚´=lY qjˆo®Ab I¹Ò f·2§Øs®'£ÐµÃýÙþ­ƒ»jÚ /î)ˆHè»CJЏCsÅe^}{qwK·Ï_º·0>LÍŠ'õààÐ`©ï¤„}à}’¤ ”ºp`g©ï…¤÷J•zW(©½ `"òß™ åu³y©oÝž%¡{îBvù%’…ßIïoA©_ªÔQJýÈü€ÔRßëÊ¿3»ƒ¬æ +þÉYÚæ÷/;‡jùȧ3CéðYxbú6EÌÂ]âY¨ëƒ½F þÃ=ö;‡¼úÚòˆùÊIÎŹ»_Ãgñ!dë¡ÆìJšÿZ’ózÓ<”ÜÃ2{%¡g¿(ù¤£Í~ÍÙoRV ½R¤Óþ<ì6qËOkÅÊì¤ _PQ:Çm#ÈJV.¨|½ÓÁKÀ—Ô5æ•wÇÏùg æ8Å»OìÅö‹…ÏÏ®¸¾/Í©BŒ¼I;hë%¹˜$s3½ï{?ÚôÜ‚ŸÍ²—$þvÑÉ£‡ïË;žù¸ÿtê?Ô=;±í¡Ub5],ýk7…øµF[™cù‹˜åë%mžW.yXmSÞ {Ow= ¿7&wDÉ.õᬉbH²|j£»Á…Ê¥iª sjIW›5ÙIB²±@âÖ%¿Ì‡x$é㦃ª^êUÇ5帲ÏÝl¡ÛJê ³tåvKÒ¬Ú§é‚wBW„ƒµˆÒôæèN©Y=ò]X䪷Þ(ù­>Ä#¨·Ù×@†‡Ú‡>ıTŽ)ŠrÐk2o–+U‡ë'˲¹e¥Ô’mº4(lšBŽT)póR=ó ½ÿ`”Kè›–¥äÞœ>~¾è”KÎçFµéŠõ ?cb[…Œí¨Ú°¥Ízèü±}§ÙwßÈé»Gì¿ý¸²·W±³š£“©žY_÷¤÷(µæ{ïêãJj£qŽ0¦üߥÓs~¦ÇÛ+‘/Ù36…霴²†æô•r 8£Nß:Ô§ÙÛúmº7Où믖Jìíž=ÊIö{ô;öŒíhå,©'ÕS0óÞŸüaÆÛ5܃-OpÛ~7­lÞ¬ÌÉ/–•-¹\ά:ç÷ÚyK¯8Š^î9Æ~ìˆ:ÝË?êQT{ÆÈ+LkÃ=Ùlû¿—ZßÅe¼yoÿ™›/lQ´’­1™Y&ûSMÎÍJ9çO:׳%ÓPð&{Ãϧ/\²ìŽÛ·äD€Þ~X3¦7–Í~cY®dª”Ï™PSÒôÈ•œ@%|À'ý"Òû›§Îf’µÞξRlýE²è >&r®ì=:*EG%ò%Õlò³xø=Ò¦GôXeµ'¬g Yªàª4Ïx‚–’»8>Ý1d4’÷!i¹¸™’ëÀ ÑsÖQòšñÄŽaëüPrR«¸\hZµ£Yrx¶j GgÓ-‘IÕÒU:© ¤ô ô˜ŸÒÇEŠxðøi¾'ÐÅú»|ˆ§Õ~‡ðNàøHd“_‡km"¶„£@\osû@X:àN®k…Ð-‰U¾ü•­o1ü륯Uü-%ÿ¤ñÄßb¬äFîbëZŒ…|ºU@¶n Kj4ÎñøjII•Ì 7˜ó6¸¥%íÍ}ÐåE®ãb17ÔbØNµ {·åÙEﱪ­¹Q±y3¤–òÕ¿”%˜„ò¾øjðW ë(ú˜„äx½ñ´Ú¡Qr¯¾ü /”1 õFà‡À?Ôæ1 Éòqà§À?žž~üÓm“PúŸ~ü³­oa(¹.àçÀ? CÉÞ‡xâoaø;[×ÂtÑBž€dÝ@ß–`û2[¢#µö…DSÆ-µLÃQuË]ëNYÑÄ }R3¼»¿ê×”¸wà…5üU¾çþ:¶ÚðWÁØ Zbføô΃>Ŀᯆ±¯n­áÓÚµ€dÝÀ膿z–D/ª~=P?å>»7E¢S‹Ë—¶½ˆ¼ÍzO¢ûöf•“¦mëtOŠ(‰UÀWƒËëZ-í¡ NX±ºñ&‰^|;øÛ%Vâ€Æ›’{ ðàïˆ\{.SRüÎ~ƒÈ $Ð;ÿX;Á$Çg|ˆ'ý|øYp¡NMCöw»àðë½éÐf$÷ç€?ÿ¹45.ê9aMé†PeûWàóàÏÇ£ÌæèžØúgŽQ{Ê"JI ¥J$9'”ëÇ4kBD1î%÷„—qNƒbÀË9'Œ¨˜ùLá àzÎ %éfIÏš¡YbíSB¦8O¤âÑÌUÀ4ç„/ˆö)q#p/牽Òô$Ô>%ö×Ñ{âÐÏ0ðvÎ _“4$Ôàƒœ'Ćò&iH–1à8ç„qè)œà<1YOWS¸_~[‹:6fi“ºJ·4)£šHÏß©¯”´I­T›.¨ µ3J­¿™q/þAÓ vc[Ï–lÿ¶Ð“Ëk`–„gÀÏ´¾&¬AM < ~6þš@É—|ˆ'þš#ñ60·¨&,äf' [7peGÔåËÙ2òªÂ$³í Í?D÷ÐkµÃ7« a ÿ2¨ð~ð&—/ƒ±¶qr™’Їm›\¾Æ~yk Ÿ‰€lÝÀ膿d–L·]òôr™u}Yû ;ÞÝ4É,p£×å0sÂQðQi]Ñ4 >,<¿‚p\¨#nü@ÉÁ‹‘+Âz%¥+U£¶­(£h:S¥Êtà/ÿ’4•-ì9p쨪^ |-økãQÕË€¯]dUíPÆêW+£‘ñÖqhKÌ”jóÍ0¬Ùñª À%ï$ôSÀßÿ]iв“,ü&ø7ãÑãï¿þ­Èz\ÎÝdZhN¢|øWàI;MëLIÙª¡ ÷?€?ÿ™D5\†IÉýøsðŸÇc?þ3ø?K°j/±À¶«H¢üOŽîòÆÿäØê®"%Û…dœÆÝU¤ä“uôžø»ŠWð*åb g Üsé¢uåÏ\ðöuúú…SEÍíOPS4Ñ0òmâS©á2 ~Ö^IUÙÀªdNiVÚ=áZ©Xæ´^V7NágØw¾ ¡+ Öx\|-¸ÌÎA@e¹•…ðuàÑ;¡+ %ÿ”ñÄ_YÖ¢‚¬mieY„¸ ÂuWuÔ6¯ V—Ù¢ž§ºà’õzáuÇáÕ„*«–fÛÞV]t­…”„ðÊ eÐEBM¼õm<%÷(ð ð'"×’Õs&DTõrà/ƒÿ²¼>ºÛDDCïþ ø¯Ä£¡7ßþžÈ ¿÷™Ò/ð}àïk}kBÉußþþø[JþW}ˆ'þÖd·g[8KÇÃþÈÖ \Ù!{zºX›¥Ó G›Ð朤1ªå1jXÆ™ãɳ¾TI©”T:¼ÏÞ›*êù"Zúó‚‚x¾È2«FA+„­”Û5Àð™ÖWŒu¨ „çÀÏÅ_1(ùó>ÄŸ•áJ郰#P=¨®„ýʇ¬2Ý>TmWX›%©Vp¥õ6{%ì”p#øÆøm–’ïñ!I¹ïÎÕÔÒ$m/Fôz ž¸‹`=lÜC<‚µesTq®B ñP8îTƒ½Ì‹œ¢=þ^ìá<ßHäN";fm@¡‰L#_ åö‚÷Jë¢.õKl;ðVð[¥Y÷<;Š(Á,pø¾ÈJ42|ö_·3|E@7ôrµìkí½s³|ÝšVŒj©TkàùÚÛÈÙ+8f® ÜT”Â!\¾ øQð çÙ»!“ÓÇ) ±ašî^?Á DœKmÈ¥/Їç7 \¸àÕ¹³¢ÏV˜äþðsàŸ +?½1'¬ð¢\ùŒÍdô95ËM D&?ïüó"‚×Ú×äE›yRA+Åh>PÍ¥ÎæÒA%sXšHÍS ˆ9,W¾u›æ ƒŒ½]…âzÌ©.‚—h©Yú¾MLÔC˜´U˜ÐÇÈ—ª6NÕ©4û­özû³Êaš¾ÓmÏc3f³ÁYIIésÒ8ŽçSÍ;U6p›ãÜÓ®ó7øéFAϳf¾þÎsöµyö†ÃFµÂb£DÓa#½±ªíPš•êX‰~‹DÓU[IyçM«¬¨¶Í:rZ—®/FûÚ£)Ö g2+³84DLò²nÛìótÖí—`•€6¢7\| î “ çIEšº¼Ù5 á%L¦{9O dè’$7‡9'ŒX®a†¡èÌ£n…ÌÜCo—fEÝ %ånf¨•°kT4UA]U“ý¡Sµ¸1ënè)[·ÌòÜJvŠ›¢ÅO€›UÛ= k×ÏÂBLzƒ*_CE±é 9MŒäõJIóD Wyò1¾é¢lºŸÐ6wÖ§¶Ü!è˜V2§²ÊqÓíE³LãfŽ÷sN(Éx÷Ͼb„Üs¬p5Ûáëm¨ðu—ƒJêé/|†:¾‡sBiCëàŽHçÀ÷rN±óý@†Ç4+šSJY5fj6]&ÿɺÑ͸¶G´f´¼Óí´VȆ!R¾ÞüÎ ã7_ì†r†ï'Ù@õ„¡¹•»Ó*tI$^rjRÝ‚\‹œž?)­†?iFrÜëC<ÒêPÀR %wð>p±Ð{þoûÒî&éK 3+¨»û¯…4Ý Ä $A^| ü©x”÷JàÓàOGVÞµ¬CÈ]Ù삪zøðHS•H A’ä7€Ÿÿt<ºúuàgÀ…"4@*í"j~R‚Ç“”Ÿþü‡òÆøBFI–ÿ;øGqÿø?ÀÿGdŽ4«ÜKƒ;jóȪØgÏõ–ñí¼÷ºÞÔ.²–Ïý—¥:n(V=«ek›¼©A}”({]SP,V‡Ír/oØzOLÉ] Ь·¯ï8uç5Z¾Üâ›P´´B5Ï'S¦¡õÒ4ƒVHÓm¡cºA³xú„¡ëyê*ã¤.œ}¥wR-Uµ4O ¢ZŽNy°ü§zý+þ0ÃnGN`ý ~+G:ôNÜ;ü.£W0ßIéùl1± ¸‹sÂl1ÑÜÍ9aÄY¶£µí J*Û¿Íw8Ó§þhnºoêwÔ1«¬·¶ØþzÜŒÈ\a-¶;,cØ0ÇUwW©];v¥ýS[NÜmÅÒËlàFßÇÝ-I¬8nREÝf]wã«¥©¶iØ…6u»x·[âMÉÕ“vçÑÜ)7w–-_br°ŸVKÌèÙ×µ €)uÆ?õ‡ImæÄ(9öy6¸¬æž™ fÔóZèirÇäË9'Œ»qê»÷°m=œMHœ0R§iªKsnè|ÀUÔCèBâ]õ'nePò |ˆ'n1®Gñ{Ø6›¸‰ßÕ&æíõ.ãÇì…z¼7à=«Á¯îñ®ª9ã:â‰Û€6CWÊ1 +ë=^®1ÁÞîHDèÛÒ(©[±Œ÷vÅB’H€7‚ߨúÞ%·xøM‘õõ£HO·jLiúDÑ=öb)O7 ÂÑW‹Ááþ<Âu¸%¥ÚÑû´TÄމUœJ2¾ùcžÌgv‰uÀk8OÿB›]b5ðZÎ #šÝîZ§v΀†n(÷!¬ ºs(Ù±ðºL\¼—ó„ÐЬuäaàiÎ ãÐã}ÀG8'Œ¨Ç€JT Æy¢½ ‘$% ÁyˆG'ã@“sˆ:y6í-ïû‚}4ŽÙv=ø\¯çm± aqµæuí=|ô6¥ÛZÃWm4!ºÁ~ÇÖz½=evØ %☎ɫ8'l»cv7×nÆæšÍ±Oòj 8aDãùn}¶¡©q“ihr§tÚG£ñoé©¶@?^Ð'õßY6¨¤øÌK—%¯[î¸ßÓKµfÜI 7%µÄÆþ¶RÒTt/üûZÐiÁδºHáí,™þçIñ]ñog&¹ÿÇÎEœ†“ŸÞˆ{;3 ¼¸.8ñð‚׆jÉÁíÌÒÄ·YšHÍS ØÎ,WÒ·3·ºPšognmªólg–g–þo׳ž5íºÂ PKs'Pi¸¡ò*Oy´Î[€Î ch;Ñ)èìå¼SìX”ÿÛ)Þâñv×m䨻%w ŸVø›‘ëÃó1wºÍZ\‹ÍÇ4onÜÕ¹n±FW›T Ç?ÝþZ=Êtø>Î;…ÎÈË6„gãœ0Cx?ðãœF4U)ª¼¯mV*¦­3]Ѳ ‚ùñZ’™Õ CN§ßô>íÓ®:fYõL`¼¤W*ûR){Ÿàص†sˆ٠=©™âöRö͊§‘8aì+%4³Ü…ÄÛ¸RBÉ/ða›VJnDñ{Ø6›¸ ‰ßÕ&.aÅè[-¹ ïnèhûþ £Ç‡xâ6¢ ôåakö¹Z\1é…T„­Ý$t߉µ 8ØÛþ JîZ ´ýA‰]/ŒU“KØ „™¼ùgahÑÄ;T¨OÖ66îsw©m+Gw‚v+GYq¡ÝE$‹ œâœ0KN”Óœ{'J"Xrâb»‹fêî*5ØO·<ÌÚ¤¿«Õ¿iÕϦE1Š :…«âJoÃvh‚Ï=Gëôú¿ÌP'×®NL0‹å3‡¾K)\Y껌 :m€Ò¨zè¶ow¡M”ô ºâ2tG—Іcr†s¸ۣ,<¼‡mëÔô!qÂØ;ºÔ)èBâmìèRò |ئŽn?ŠßöÙĈjóvtWx÷musðáµàBëÚR"ÿŠñÄmBƒÐ–‡rLèE^7W·ý‡ý½0Áú¹†«ˆ½M¡Ì³×ïVñµ7¶¦)÷èZ¾èŒ©UÍ"§?¸•5@·Õ£æ£$rÛàrMø"ðIëqÎ]‘0_ þÊÖw9(¹ ÀW¿*r—ãàœ•EÖbëÎÿ_ô¨•|‘ ¹ =iÒá“ßàœ°­=i’å»À¿àœ0³N|ø}Î #:¹G.Ö“®ÝÉîÙ󖨽›×êû†üg¯TÚÙIÀX³«¨¥ ÓbEZæa?<‰‰ ß¡™Y3ͬݭT•ß1TšQ´éŠfØô‹šÛ ººã!7Œl‰1ÿâËÜ#a—t«#_´2ÎÚâ%ü¸¼É“n÷ÆÊáS#w‡¾1úàÿÿ_­w”ÜÿüG6½—ÌÕo“»<îëtíÔ·cLs¦4ï$Ù”¸5ƒÆusOu…^ΣÌÿ ÇD•sBÁBˆr’«k ÿáÒÏ{˜‹DŸ¾ŒsÂpY 7â>ÌE?æü1ÁkKìÉÁÃ\ÒÄhêçR¤ØÐ繤IÕ<Õ€ó\rUr±ó\ó™|»Ê¥ù‘®Ö¦:Ï‘.yÆéÿ6íëû¶ßÕožàs5t X¿¸ÏBÜgånÐn겘ùÚ×Ä'€Ÿá<Ãú%÷aàg9OD__J†îéRúŸ~žs¸{º;áéC<‚þò¦¨âЈÅ>ıTÖ²:º/rxñah‰p-¸Øxóµïq;|¨/’åZàÆŽZ¤ÙV·,”Ü:`xOd5ÝÅbP“»³¤Û fµÈ¨Í ˜%6ˆ£ÑL€iОJʦÙx¦Z>UPVghª@@Û€6¸-MÃÉãûDÔ{x\èÒÞðêu€/Ûbêÿvˆj3ÎÔ®÷R+ºÔ‹ ¥½¨,Þª‰;xOïë>Hà À‚´MüÍ\ÿ.¶nƒy-<HÖ \¾<ÒËÿÖ• Ë!µ)˜Ðwuߌ÷·€ Å 0ü€{)¹.` <£Lɧ}ˆ'~3¾¦{KKÍxkùªeѺ+:dßÛ}õ¬©o6:¬)“€«7 …Å gÊ·À| 3àBaE¢™2%ßëC<ñ›ò­0ß[[jÊš´^>Ÿ`ÝÀeàˤò­ßÂ0ïUœa­r±xüxë­ýVX8á ðñ[;%Ò‡xâ·ö}°ð}-µö.G­ HÖ ”ßÿ¸Ý YÛ£–ÍªáŽøŠš£Y&çÒ¹&¿ïŽ‚ -ä†3ù}0sÂSà§â7yJþnâ‰ßäoƒ™ßÖZ“¯Lªa—™nƒ™ßÖ“¿Þšg¿j&Í aMú6¼G8.´—*œIß3&Ü ¾5~“¦ä·ùOü&½f¼¿¥&=ïѸùDëÊï~ot:ÖvGbã¤ïðaXƒ&1WÀZoÐûaÄ„ƒàƒñ4%?äC<ñôí0âÛ[jÐóï[O¶nàJð•Ò,:í‹JG³aJ~Їxâã0¬ÖC9[·q^¦vþÈ¢­.ëA¸]£@ÙŽÿŽÙr¬G:⨠Ö<ßÞêÆé$WLÑîž?!Ñ®ëÑ!V>?KÞîaW`a { ð¸PО¦¿¼ xü¤ÄâØ÷CÉ ï¿+²a/UÆ«†»5ôÎad˜ÏI+‡…9× 7Iw/jÇ2kxhGCÉ'}ˆG¼©Œ&EˆXäC<Kåy›! ¸Ýì ¯gH»K–¦føAl¥qÆØ7ULÑôK ‰w IñË¿/u*ÏwÆÁX-îð96 ]%ŽÁ Ÿ^¢k0L§Y8Ф޷·FG-ð0ZXUjª–øOÄRYÏjĽfi|Beã"_ ÑÐ÷OBQ„ëÁ×Gjðýo­›š»•®¸g½”ÞŠeҮݬiM¹¸|‡D¯•YÝ H÷*àNð‘u—Ì(ùGûîNàïêœÀoª¤ Eǩػûú¦¦¦²!”pø„¼ø0¸Ð`¶yª¹ª¤ª=ÀÓà§£]Ó¡/ ðp |LZöåÔªS4­GCµ÷®Ž¶º_J>éÃhîwsTq¨;¸Ü‡x"–Ê(s¿nL-§¨–2ÊH–®wÞ± AR{|3PlDfޱ};G-µw“©Ÿž¬W€Ó¶e—O“ÝŸ&»?md+…ñî’²ö;WrNØjwIÉþ&’]Ï9aÜ~Š’¿ªŽÞ#)÷KsìA¼ÙFó¸Ž\‡L'º (ù¤ñù²¨âÐAŒnâ‰X*džJ£KÚ½ÈÒ&œð1‚Æ{„kÁ×J¬¶—ç= …®_'1Ù€mÈ”NÉt\ .䤊þ*·-u{Ú„¥Ù6õH¡Ç/$×zà ø tSYÌ:/gmåàAðƒñØÊ.àà1\œKÉ G¿8W©Û Së_Z–†Û›„-æ0°^”o1Ž¥—ÇõRØC$Uø"p¡pŸá-Æ^¿ÅèÀƒ¿8²Ål¨Y )ÁÝFšÀŠŠÁ¼øp±ù ¦ÓÑÂ.Г@~üÃñØÊû€ÿH<¶òN௃ÿzd[¹±n+̙ЈO›f}F»áüCƵ!í|øçà.ßÏØZÉJ H÷#à?€ÿC<¶óCàÿþÿÅc;ßþ#ø?F¶u®í0ðÿ|J#üåc$Ô?qL,àŒ6œŸ=áµ (°3ÙÁÌWtD,0ÅrV›™2­fË&¡•à+ã×É$ÞóXÌy+9Ò,ëÞÿ¦ís¤7VÐËñ+køg«è³.þ£kž‡|d/×Öeû!¹–ÏÎÍö>§\éaÿ92Rœ(è«ê¥‚ª©…±­[ êàÖÁí}ØqÛWV>拲^y>þ< 6qËOkåÉRꤜ*5dáxÕ0‚'„v£PÙ..÷]}ã•uÇÏùg æ8Ä»OìÅ¡¶…ÏÏ®´¾/Í©>Œ¼I3^õR\L’¹ùÞ÷½mznÁÏfÙŠw·ú¢“'Fß—w¼¬»ÿtê?Ô=;±]¡ÕáfM#KgÿàM!~°ÑTæþ"føtNhžW.9rZn6îkjjy]ÉïÉ%<«âCžýS+µ¸\¨hš¦º0§–tµY£D9$Ë$n•Pò+}ˆG’JºQ‹X§4¤Z:¡ ÂÕà«cP‹oÛ‘Æß×ôÄ©Jþ2⑤–PKAW«¥ÀNU€jº Â+À¯ˆA5]Pa“ƸTCɯó!IªYvÐUr²T •{É’-€2À`‹M€bÝ)5k]@„—ƒ_¿bÀ=¼BÔ.]Å,ˆ*=+|(ÞØù¿½^Q”ƒåI³ÚìUZUäZ©Õ„Þsíuÿ¯¿>ª¤É½9}ü|Ñ)—.œÏjÓëADb¶ ÛQ'´aK3 šõÐùcûN:²ï¾‘ÓwØûq𯱳lD®“©žY_÷¤÷(µæ{ïêãJj£q._T­”ÿ»tzÎÏôxûÃó#{Æ.h%}ÒÊšÓgTʬ[èϨӷõiö¶>G›îÍSþzÇ«¥{»gr’ýýŽ=c;Z9KºTOÁÌ{ð‡ïÈÝp^´<Á WlúÝ´²y³2'¼HXV¶är9³êœßkç-½â(za¸çû±#êt/ÿ¨GQí#¯0­ ÷d³}ìÿ^j}—ñæ½}ügn¾°EÑJ¶Ædf™ìO5I87+åœ?é\Ï–LCÁg˜ì ?Ÿ¾p!h„ew䨾ý#'Ìø`?xX3¦7–Í~cY®dª”ÏG$;¢þSÉ TŸô"Òû›•Îf’µÞÄ#hjTqh›ä2â‰X*qG|^§YÜIœD`´ÎyÄêöᬸ,!û7³Ä¹L5°ƒ™N?çKªm‹”Ûràð Âå6gÇgUV{ÂVq’e3ðFð¥UñÀ“Æ”œ¼ ü¦È¶¼“.ÎS•I¦$Fj:k×ãù®)°éU\zúJ[’:̃ç%ZÀ•¶”\°^ˆß-RòšñÄï‡|;í[臒“º€\Ý@oZ|©ˆ\MÑÞÙæ}±ãÐJÊд3}\¤„Wƒ–æ±=| ·"9NúO«½%wxWGí²Ùˆ¿Ë½¦3¼·J‡uW$öðIð'%–Z€»¢äº€¯uüñÄï®®ãUÀÅÖ¹«N[ ë¯H nà2p¡ŽeG³`G.â¯0®h–eZä¬LGÛ­˜Fi†ý§vÅ­3e†ŽHDùY ¼ü>á¿ôv!Ð}‘ §€?Òz÷EÉÝTÁÕÈ5 ‹|’€FÆ€¸X×!¤éÏ«’Ð7âQÉ8Ð7#«d}F¡¦Þ=¿?æ»[:t‹AbU€¯eë[ J® ø*ðWÅßbPòOúOü-Ænä.¶°ƒk„m0Hžn üî©Kèàj¼[”UNP;ai%mR5eŠ./¯°¡9½XëZMêªHɯªàb.SNÇ—ä(úO«Ý%7ÔÁõè2¬;¢äÏøO«Ý%×< ~6~wDÉ—|ˆ'~w¤pSv±uîh!_1­¸²£¶M’KzƒYÁ5‘)ï b÷¾ä²féù´çgX«Ë›Ü×mñ|PÖvª âœ¢ÊÆsE³Z*Pû¬ùRÕ˜ó0 t¡e f ð}àïk£G#9žõ!žV{4JîýÀƒ8zëÑ(ùøO«=%×üuð_ߣQòõ!žø=ÚFnÊ.¶Î£-p×þDë®è˜‹!¤C[7K¤EšN—Nˆ”×j`¤Ý+´;"¬#!Y®ö€÷´Þ‘PrW7oŠlÃáo¦¢ô¯Þ.¶Ý¢éÑœžI1d€}à}ñhd3°¼¿M‚JÓÈ"ª$ƤRvo¿%¥ o¿µMJÙ¼ ü6iJYȪ‰ NƒG'û'ÀO´I''w‹-«4w]†˜ëºè]žõ`<æÀsmÒÈCÀ‡Á–XK ÑZ¢Ï€ËýÏ£“ÓÀ³àÑGÿb:)Ëàei:YÜc?j9‚5Åž?V à‹À_Ô&­\¾üÅÒ´Ò ­Ö–'€¯]ü0¸ÐDPx¥¼øp¡‰ŸÆ=Aþ¹Ç)šeœTKUÍöM6VJj¾~ËèL/MId•QMÑå¯ÿüïå on×U/‰Ì–üøÀÿ4m.ÊÙwUM'HŸÿø¯àÿYŸ¡ç)ùó!iÖ0ŸHÉuÿüߣç>ì|"%ÿ}ˆ'¢ó‰=Ü¢]lÝ|bج¸|¹ˆdM%zpÚõ' “K§ˆJ‡Ç•ªQÛ~q]θ†ÉÖÛý¤á\f–5öµaëc% .,lMèÁ{„gÀcX+ìõ¶q­’/ù°mk…¾ËIZYfÂׄM°þM­© 3"5a¦5aÞÛoMØëßÔÞš° ÖïaÛj‚/D\kÛuL@²n üš0âÆ?¬Ý8çÅ+„j(j¥b™K§X}nÍp+l¸ïªàB›xÂU€ëaô„càcñWJ>ïC<ñWß!àÖ6¡+À 0úâ¨3ñW€ðÞ ñV€`ô7´·Ü£÷°m`3Œ~sk+€¾l†Ño–RÎ’èúÚ®)ÿŽN÷̶]«¯‹Ÿöâãgrú8éô°jåJñü7Ng.µi —¾@>jœß4pá‚ggDŸ7ê&ɽ8 >V~zcNÔÍE¹ò›Éè3•Î S¸IßìüfÁk¦’ì¸ØÙxRA+Åh>¿›KÍ¥ƒJ& $§4‘š§’S®>õi~;ÈØÛU(®¡Çœê"x‰–š¥ÿÛ#ÞÎÑ‹ôËÝ]j*Ú´c©tfýÙLÍÓZfY‰PÛ_þ iÕ,ünQ’ãu>Ä#­'0[OɽøøSÑ{2aûq”üÓ>ÄÓê~%×|\l-­!÷aûq”üë}ˆ'þ~œ/~M+w‹º!ŽDë®èˆº[t¶H{ÈÛÕò˜f¹ç1õüY¥¬ZgíYƒ%EÀètó¶Ð'Ï(«w‚ßÙzSßó&< ~4~S§äùOü¦î‹,ÙÊ“gjØc)Ø6aô“g³åySÅ´u·EÅ©c¬Pø ~îý󼕽ԙÞÚO)^ZvÚiIÓ¾)¸Â÷€¿§õ5(…ZCø^ð÷Æ_ƒ(ù÷ùOü5(Z“ni Z„xÂuWuÔâf V£Ù'þׯýª5Q-k†ãßž úú­¦ÂÅ7­rÊ ¯)-;‘ ½( ©DZ×u) |X›®„íÄ’DÀGÁm}'–’S¸¹J,ÝÕ¦¨%ÛÑ ¼~Aš† ׈ǯ•DÝ”tãl@²/> ý¨yoznsdøêšêÖ>VѪ¶VÛ¾¨¯~ü3­o_(¹.àgÁ?ûBÉ·xâo_nä¦ïb #ndUѺÑ#³ÏâîœÓºØ \ÍÌêuyæ/r`–¤_ <~H¸€C6ÜmIsx7øÝ­oC(¹ÃÀ{Àï‰^ûÂúJþ^âiµï¡äº€÷‹jÈ}XßCÉßïC<ñûž›¸A»ØÂ@<œ³€lÝÀ•’$VÖœn8Ú„6çÐ}–¤À>,«%¾ñÖÝMõ|qÖ(]ÝÚxÓ`b6¥¾y×2«spYe?­ S—‹}X‹@u97˜á|j03”ëYI¦-À!ÎB+‹á<+%·¸•sˆ•z¤I°ù’…¨ o†j¦!(?Û€/眰ծš,¬ ɾ‚ó„ØÂ…ÿÛЮš’e½'~WáõÄÅv݈û¢u£wÍ)è,Ü|™¿t¦4ÍPú];Ðß?Û5º9ðüpÅÖªSaþo\/hF^s«Å~J±´ ª?);üÉ Êèj  nKó~]EÍÒ$zð5àB±1/:ê]ùülg=\Öí|/oOÃ6ò$ï9àËÁ…Ëœ_v€¯mäŠ{™ÛŠøÑæš†?BE½ønðwK3±àá$˯Ÿ!†%÷+ÀƒGásáÝÑûñ­bÑ4¥zVs?æÞÄ]RçÁzéO²Ê1u¦i¿ ǰØ/˜cLù†Rf¿©Sü:îGÄŽ`QÆ?ÂÑí²|„£$[X|`Ú ±'P)ýÀœJ²†yÎ`Q‚)àNÎ ãœRò»êè=­îñ1t!ÙÝœÆÝã¡ä÷ÔÑ{âïñôr“v±• /üb?ẫ:¢.¼Ìîó¼Þ N×pTs#=¹}ü2Gº騇šeNh†¦;3¾¦šÏÓ+ö¹Áç –:E뜗Ø/šå;Êç2àûÀÅ–ïš¶rî}@a[9’åYàGÁ?ÚúVŽ’{?ðcà‹\¡VÑÀpÂ0-¦bW½ ú8ð·Á[š‚Âo #9~߇xâPΗ€_ÿjdåìá7”Y?±—Õ'K³mªSe&CÉ·°OôB•u4ØpÇ‹thVH  A‚c¢“󄸗”tŠ›„Y\Ã9aë{”`ð2Î ãîAPò—×Ñ{Z݃ [ðrç„q÷ (ùµuôžø{YnÑ.¶ð¼Ý, Y7pyGÔóKf×Z± Y¼G¸\LoM7\ønKÛ8D×·€ “Â5”Ü:` <úÍ+”úUi,$K¸|»4%u“’ª¬Gèéhxü`<:Ú¼üŽÈ:Êõ¼«v•ÇŒf-¹FÝëzK^ï|Ón ŠÍP¯ËͯúuÛz¡eððCàjc‡äø¸ñÄ¡ïgŸÿDd}oœ§Ã&Ô-#ñ> üð?iw·Œ„ùð¯Áÿ:Žn%ø§À¿ÿ›ø»e”üßúO«»e”\ðGà?Š¿[FÉÿ؇xâï–õq‹v±…Ý2º¤Y@²n`ônÙl‰îªí9ÈU:ÞÅÚ۱ܢq +o–°· ¸­ff(_îF‚°ö߇÷¤õöß›'TÁ…N¯G³J~̇xâ·ÿ~Ø|Kí{=¹€hÝÀ²wü=,X.6Y™UîèPQW pCZ=ïJz`§Šd©gÀgZß©¢äLà9ðs‘«ÆHý˜µE´ŒRÐÇÇ5‹ö¨’ú]}ÛJ^5î;s'¯55_ô- âóÀ?ÿÃÖ;lÛÆ¨Ý°úÝ­­%mB3 ²u£×€ÙÝ£“óÄxP.°? C£R ˆÚ_Ú £'TÁÅvåËë/‘,E` \h®¿DÉËàåvõ—H耋µ‘ûK$ÌàcàB[1Âö—(Á*ðqðÇãï/QòOøO«[ „rñåà/¿µ ä_áC<ñ·{¸E»(·µ ìTOÁôÖ¥çˆÓ Œ>~ž]UWñÙZpì°6KR­*àJëmvì”p#øÆøm–’ïñ!I¹ïÎÕÔÒ$í«aš{xâ.‚½°qñÖ–'£Š3Œâ!žh¥’xó"…{„Ýà:M6 Ӯ߬–Íxÿ2XJ7&ÍÒ$ !èCKuLËNgê,Öùš²÷âðßTlýœfÓîàÚš²iøï=Q'Tݰ&ƒ/†¢Yx‚Tn˜f–‹BD›Ž73fSü>ú³IÕÒiTd§½”¼[ˆ÷Õ·Ìó½Ó,¼êh\ðÚÖè1•bàoq¬}ß%ìù¬oÅæ“ÖN‘}Âwò»—ÀŽÑ§6/}ꆴ‰›Q;n&MrN(hø¶?Ä-°ç7 Ön‚]“«”•ì®íJÎѦó£X?ç¥ôÍ’/œ>¿1°K;ï]±”»§€Ÿä<ñ‰°¹¤7æÜ»0W>Óº«bIÞßðÉýI¹kí[ò¢ÍlÀU±ÒÄhÚ#^›KÍU{è»c¥ÉØ<Õ€»cå*È뢛Vö”Ò,ù.±’¶KyÍï¸mmªóÜq+¯>ù¿]œÁ™ Næ9Hóù¶5Kê¦Í?HŠ»ü/¿‰œ}ãÄåË'÷7Eä–ãò¥ˆÑü~ æò#yz)¢…öôòôr1O¿$Šƒ—+¦ÿ­àºØ.e{öÖ¥zÏ.§Úø¿Ýážê¢áHÃàevuïê`Õ¶«e´ˆ»žä".|r¡´:¿ØÇ1¼k[+ š“&qV¯`ûm‹´r¤ Û:HTÍÅZ‡ÆúЦòi¾ínÞZÙ.ºú¦:¿«—Tüßîñæl‚®ŠRíÚâpí`2_»®ïÏÀ]ÈÀ‰È½½àn€5”³éâß±½ UÖ§µ‚·§ ZÌ¿ÉàÒ7Ôãn$Эù·d•ú¥\S€«îüh¼ê(•ªU1mÂ49ʤ®ŠœS¿…Nøïàÿ.­%˜ï–•ÀÙ&J" \À9a«g¨þ/’]ÈyBl&ÓÿíªÚV0±¥$Í"àZίå™/ŽÀ’š¥ ˆ7Üùؽƒºšç ÛÃ5¡³VY|°ŸsB1ÁçüòµÀ½œÆ`¾‰uÀaÎ #šïLkZšw®çëêá yD/ÖVÕõ¶ ¡o:œ'ÚpÄh¯5”Ó-c­Ñ½´íJÀ=ß)— …h¾¯\u,Õ°ÇÃzh’æ2àzðõ­7qJn9ð*ð«"«çu5©tݤ£ýåÅeZeº¿‘Tj›eM±«º£Ž•´z@¾¹‘_ä›™a¦dN(f¡`+Åе3,%ÚoH'F(ð€\ üø¤H7Ïð°6]±‘? þÙxläƒÀÏ.²ŒùîV/…ò*6îšže6 }?œò)Ÿw ܘzÿ<ÇÄÕœ'ä­î-œ×/Ì#S¢¸…s±‹±/Ú˜“ì5Àç‰è¾ñP—nýæ[úY寖ê.€GÀöª<°sØ ‰^jq5•j¨¥[ß*R†ÒÀóœÆÝ*îçRC9­b‰µŠ‡Ù(IS TV•’š÷.]›½ÝºaótF±µI6,+5†¾sWæÔIÖCq=1³AQí·9¾¹$,‹fizÊn†òÖŸ’,6p \(ør8JÉ•ÓàÓ‘•¿Bñ$ÞÖ I–àËÁ_½8ËðPN½8`u‰F?`Õµ\HŒå>Ĺܲ¸CJ¹tV€3U”lp1øâèf*R K|ˆGVÑufÃ=“áw•Ü ׃Ç0Š äºWGE\[‹X9÷øO&l "Ñ®î¨_z5ÇøkÐ!ÔšCí©A‡Pkµ·B­ñPn ZŽdkº1º‹„×€_ÓúJt‡ðZðk#k&]«D¬(4‹†½#u=ÂЊļxü`;*ÔaT¢Ãí©P‡Q‰··BF%òPn…ZVk’êÓa¼Hx5¸Ð¸:\}:Œ:Dx ¸P5n(‰L`}ŠÞF‘¤×=/ vwSÄ*uÕèH{ªÔT£#í­RGPçÚÚž}÷ýZZž8ÀïÐÙw‚gð¨ÐŽsL`Dœë45à‹ÜûØÄ‘8Kk8'ŒÁ”踟‹—qNÑ”®¨í8eM\@Q‰Ë)Îwš7SÔ<7…Ϋ£>àç ¡•Äð:J9'Œ¨£nÍÐÉpç‰h­€ÿ­à;+çU ø÷ãÑÉ·?ÿAôŽEèŽ0¥ÿ—ÀHãŠháû¹:kØþ°\@ Bùa¹¸!¨ÂÚ*ÉrpøºÖÛ*%·x%ø•‘•sÄ”ËDK@‘u,³T»o½bê4|AÜDc*•¨?à V¹6…ò±8>&MµK]Ɇ{ÔR©GDÁ:зãQpè€;‘¼@I™–ˆnªÀðiºé溹Іz)ðUொG5ç€O‚?Y5Yš*cõ¨uõëÕÀÏ‚ Å…›·~™UG¨~ýðkà_‹G‰Ÿ~üë‘•øÆŒ§¿q¦Kê$³"¡ ZÁwÝ`“ÔÔ ö3uGÌ»ä4ä¢{…}‘œU1·ô<®KiΔ¦ʀȚJä8&æÂ9¡$U/4ÇÇYODÓÀçI¡Ð©¡5TeΓåèšn2 ¡ÎTùÝJA§¬çìõr}áÛïèáú=G¹2€¿Ëy2º? =÷ 7“Ê™‡[£(´¾!\o²®_#¯"”´ Í(„­$ÌzàuàB‹²á*%wpø†È:ZÞ0ÊPÌ€‹8l:¾™¯!Q†€ÛÁ·Ç£œ^àðèq=ϳÖGáFJ`9ðÓ kit¸AUÎj3S¦å]&4kïߨ[1m'²¸ã ¡«)` ;Ÿÿ„4SXÅeîqÌJI?Db}øUð¯ÆcŸ~ \hâ©Ñoía>UÈ—~ø ðoDÒPxŸ:Ÿl?þ7ðÿ&Q=Gª(¹ïÿü¯ã±Šoÿüo"[Å!·Æ#h~Ú7¹×èjÞbŒœE‰ut0¬d}V¡]c”‹¿å˜¸‰sBI5?ür’c°ŽÞƒRà牡ÈJ ¿eŒÒß ÜÆ9¡,ü¨co½'uls.áÒ,1uÜ ¼¥#™¡æ3º!0’#YpN‡JnÞÉyBèܬ•ãÉyRlŸ’ÌÀä3À7rNGE{5ðMœFíL¥;SÉ_¾sBYZ¡{ÒE´òàû9'ŒC+oþ*焵²„µqürwÅüð£œÊòn=•IÖ‚öˆèæÓÀ/pN‡n>ü"ç„u³Ûmh—…;ÇÝ‹Û[›Þ×êžÃî8[d™üMà¿pN(khß“×ÅTùÿ8v&9'ŒC•ÿÉvrÞ)(Õÿí‰Uúö3ꆣYL±¬›¤%ÙKQnø=É”™.à焲†¤Ç÷ (·ó~àœÆ ÜÎQàƒœFTîµ5åÜ—Fì†tæ€ÓœwN¿üjçK€OpN‡¾f€/çœ0¢¾:Ó¡77¯¾Šsˆ‚„ÞÜðWi …774MuqQ$›¤<ŒÔŽšr´ ä“>Ä#X;nŽ*ÎiªR>ıTîPå¤X¸Ñ”žÕ²¥j œ8}j%ôÝJ+ÉóD¸‹:¼\hr7œó¡äï¿/²rÃOòSú÷j+åßüD"©Àx)Í<,ƒGßH'¦h‚›Ò4ñ!jøøcñè¦|üñ6éæ àËÁź-¹†Äz-ðíàoG;¯¾ü‘µ³@dLB"¼øð÷HSP”;MH¢? .¬1¼nÞ ü p¡†‚0Ò4q7õWLÛÖÇhÏ>…ŸÒqÓ*«nÏB3«Îܾm¶É;UÚ{£ØŽiiw ¦\›†Í0‚OqLôpžè‘f yý»c ³œÆ ÿÄ&`ç„õoû"”¢Ô8‘£V“´Ÿwµ;ÆåçUÖqia:§4w±¬\©:° A#HôßÃy+–Y5›å5/ ÛG1.³RrpAq.³RrpA—YßæÂXÑÌ ®§ÌÄ/)ã:ß_7ðøewB»¨lt ãV…F;0‡ÏpLÞÅ9¡dS]Äür¶bqá’ œ' ±Øjò> Æy2†í%”Üpœsˆ¶z2¥Ú´ýœZ´ ¾Á¯¹ÇŒ_Æ9¡¤Æ-9dó5lÉWŸä\l‰3¼¦¾šs¨N‘åDá5À§9'”¥’ða†I7ßÂyR(Þox•<|+ç„Ur™oÇ•w¶L@AÿøaÎ Û[g> ü Γ2;ó(è#ÀOqžêÈ©3Ÿ~žó¤X¬c‰uæKÀ/sN‡Jž~…sˆ*Y®`Y×íì¨æw€ßäœP’j:YI@ ?~sBiª ÂAÉ} øœFTÍÊYC²ø>ðï9'|¡ k’ÿøïœÆÑUü)ðÿrNGÍýïÀÿàœ0¢yÜ›Uüš'OdÝ]ïµÝK…¹Çä·`\Ât‹ðŠ»O‚aç)Î;O½€†$X èœà¼s";ëÄAg‘óNyaW泳λ:çzd;»¢>|ÆV:+ ˆ3ÀsN(©¥P`©=£L²ÇЇ ÕQ‡ÙÒM|'fï;ßÇ9a | ðýœw míkì»WHÒ%¬8”qK- ©ïWŸå¼S^@ºN&˜ˆ†~ ø%Î ãÐÐç€_æ¼S¨ï7kÔ=ÞîmEt‘ ¹nšÕDºË_þ焲ºËá/Þ A~ü1ç„qhê‡ÀŸpNQSëë³1þ¶3üŽëï8ÒÎ8â„Å ½ƒDå:®¡œ}57QØ`šÞäAª¿–æZY÷„÷Bw‰ŒAH›À呎p…: 4ܾ§õfNÉe€{Á…7”Ã+ù”5]:¬ùãœRçÑž‡¡wUÝpéš{úMàÞµY—Ú„^u§Rþ¸P,´VXÇÿüO㱎ß~ü;‘­c 3´G«ú¤Z wCò|øp1ç<ßž¢I‘$Ò?ÿü_ãÑÔßÿ \,&ÿÛ­E›Îk‡}W»gµi÷Æ~·dE³òtõkØ&„$þwŽ´LM\l¹:ZK–ç†PC9-Ù*Ö’¤»:½ !¥*@’Bí}%z—]RÇÂ8‰²xøU­7pJn5ðjp¡û§fõ4hFÙ]JÅÉI÷.H·á±ÝSµÂwx‘ ×‚”7æ©ä‹"š;<~"ÍÝ< ~2²æÂo©£ôÈSˆÀÍÒ$ÉýÀÁ…Îs„WÈ(0ž‹¬%µËôòPZ€—p‚)ËàBûsëeh€‘ÕÒ]÷pz1ÓàòŽò„'Er¼Ä‡xâPË ð¥à/¬–uîîDÃÛ…hŽ+ùͳ èè—€oºæ7àä£UVC÷€I–wßÓaglx=½ø^ð÷FÖÓ‹p*&ÕìYQ4˜ÊXïÀÝ>:V»öÁ¦R\âŽÀ.îÔiãVÓæ›À”UW}\d)…rþ>މ œÊê,Rl!±˜æ<‘ŽÅ ðFÎѯ¨ü?õn|m—•·™ØÒ'(Ê_]«~Kn£ñx÷~Øšjå‹ ZÛÈ<‚oŠ}\·l'Uö3Š]ób÷’yXZÙ¤C·ÌÞ…O’”u>u‚%yò0 ÛdÕJ¥¤×-°™QÓUÍì;Ûwymè•úM“=œ'{$*Ýh¢ã47Z·ÑÆ3~”|Ò‡xkᲨâÐ.ö!žˆ¥²‘k÷ù­Õµ?Úo`d3»ÃŠ9…nßYÌN&fHAŠHœ°\ì=îei~ÿGPïg>±º}ˆ'¼XMÅÙAî`šŸÁÌ›¦U`¾Ì¡¹UÜcÄgoÝ9 wŸ…Ór×aÖz¼&®Ã¬õöš¸³ö°m&~f}¦¥&>ßüé|’u—ƒ/—få«ÝñëÎà’Œ°ö{ï*àJëí÷ l–p#xôæ?´ýRò=>ÄQŒ!f¿ÇYŸµ¾ˆâë81wdiNÕ2ÜÁĤNÛîfBw¹ÏÂÆ ‡À…b^7MuaÎQô.)­RG[ûÜ”|Ò‡ÑúÜ £ŠC“†K|ˆ'b©¬§]fi|BeC¼{t-_tÆÔªf)©âPázðõÂ¥5Û­›š»µ¬9*ÛöV,“æ·²¦4 ;Ÿ;À…îñ°h­¬ê¥€t¯îßYwáW+(ý]ÀÝ໥)iCÑq*öî¾¾©©©leÜNHBÞ |üaiÊêÊU­ Uíž?½·~3 ðp |LZöåÔªS4­GCµ×ìh«û¥ä“>Œæ~¯‰*N¥ƒw­<ıThSÚQÚûQF²Ê‘lFÙ¬œÔKÙÊ(·g•Û²Jj`×έé¬RàG¡:Bù›ÒzG«å²»®²Û òlçu7xúXÚ¤®MÑ—–Æ'%D> .¯æž˜¡ä2ÀÓàÑ«þMYe¿Z³ô„–QŽíÛ­R­IÕ*(wú¤fÙº3£œ¤-/¡] úðIðè׈‡®¬ËC9ãËñKsXeXÅP޲º1ZuÚ€·W•#¦¡Ùn-aÿÚ7ƺ¾ìŸwònVFªvÑ}ý(«Cƒýý;YÚoŽYµz5£Hj¦zUC-ÍØºÂÐJî0ÝVŠZ©â^È,¹ªÛE¥R+éy~\eLWÙë–YÆÁú¼ZµùÀ_µgÊìW­™Ð5ÖFÙ~üËÒj,+.6 àüûKºá÷>PÑ ZY7KæDØ™’òkÀ¿ÿ»ÖWRJî+À¿ÿû6t¥(ýÿüàÿCš²’Ûäù9ðŸÁÿY¢:ÆÌR! ÙþOðÿY«Rý録k×@oï®]Û…jÒÿâ˜èâœP’r²^?·`êÔ¯íèÏôlï;“=“§ÝÇ=ËüÍŽìÀ@¶ ?d·—d^ ÜÉyBh¬ HÖäŒ$»¸‹s¸ÛJ~w½'n1®öÊiÒfX“6ÊZ4Cs›4ÖŒíw[ªÔÝ;ÆÛ©ºÝÍßÑznµ„yw­Ömyt£±åÚ­ÜQežœŒÏÝŸ/š:ïŒÑÜtèúSE– gÀg^°-IùRà»ÀßÕú–ˆ’;|7ø»ÛÐQú¿|ø{äµDÛ¶ ÈóAà‡À?Ôú–ˆ’{/ðYðg#«c o‰ú·nïíèß¶M¨.}øEð/ʇµEvÿÎ]Ûz·mÛžb¥¿hÇŽÞ!›"ùw€?ÿië›"Jî7?ÿYüm%ÿsâ‰[ŒI®õÊiŠFYSä›îÍ(÷º3vwT¨òÆÆ×Èhn«3R?9…>¥¢æÏªZèŠ1…ÌŽ‚J«|̨Ãm¶»aI5Ç)ÕÒ„}8 .´o5\CÉ΀‹5Äþo÷1”þ9àyðóòÚ˜¡íò¼ ø¸Ì@¾m %÷"àãàGVDzÔ51½½[w U¢'€Oƒ?-M174k]vnÚÑwƶ³“ýCÛ³zÿPÈV…D}3ð9ðçZߪPrÏ¿.t N4wNÉчx$å~i޽£Y4ÛìÆ‚ ×±ëÁÚ8µOÉ'}ˆGÐh/*9Ön ÁäTB}ƒI" R †­9‡÷ׂ¯•XmÂÖœƒBׯ“˜lÀfoJ® x%ø•mhx)ýõÀ«À…FÎ0‹L¢v™†dÚÌ€gⱈÀ^ðÞx,âj`<Û&‹èöƒ÷K·ˆÅdÍ1¤Þ.´g0¼MìÚ#Þ&€Á¶É&î?Ô›˜(•ËÒÝ Ì  o'€?M> .´xÝè¡…®]'N à…µ“²= œŸŒÇ*ÎvÔG³g9Æap\ìÜ«ÿÛÛܵªf\wøy1¾nÀï…oXצ›¸Ç4¥`©SFè-$ÿ ðóàŸqž›a å dºì/Bâ„­ë²/v,½<®—‚‚Ì'Ý*à:p™ç€:FÉu¯ê<‡«c”\p=øúÈF±Á­G4áIJp½0i‚¦?‹f!tSMÂ]Œ¶tþ1ž6áh¶# ÜààwÆc/·‚Ç^v‹l/×Õì…逶uÑv!Ò…P N²ž?Û‚žjœ´—iàKÀ_½XÀ—‚¿4{) ü—"Û‹R·¦~Ùq‰o2#„n¡Iº—üW¤Î✭ijÉ6›¤<Ã-«ãB‡ÌF9t߀’Oú`•9u©â†+x1{–úOÄb¹aÓ¦MÌX*3ÊmûïP&Õ|^7pH7X?p £[BËú¨ðð"˺’É¢ìí%é²cù‰ÐR½’®_Ù:à ”ã—¶‡r |¿«Iµ”¯²j¯)%sB±tû,sÌ ðKCo@wƒ¼ò –NÛXíÐ9y¤'Ü.t¢´!'G g~?UÖT»jiÃ=##=¬ñÓ‡Šig”1F m"£äõá¼ûI÷“ZlìÐz ™ <~¤ &ò8ÒöPމ\K&B#;ÖDÌr/Ujó^hŸ€\„ׂ_YÆ}ÌBIùVY­…<÷ô™QèPëpEµ-Åžd”MeÿµµÊ0³Žžtx¿²îß׿i{(Gç éœ銪ØÓ;ð äC‹ùJˆF¨€+‘Å\ÆEJ1í‡×à« á2ðemÐà“HÛC9 ÚEsÊçϽ0:¬w‡Ð)røä0µðå÷jÈJ8>Yîõu•2·í0ŸckÓ•ðò½2®>"¯ß×"måè÷6Ò¯{"¾ŠºêØz¡³«bkÕ‚ÉZocœ}J§£Ø[šEQ–ØØõðCgäužð6ðÛ"gds€Â3EJwƒpëN1•® Ä:îýTÔIS/(Eu’LšýÛÒœ™Š;â¼>›Í*æ¤f¹fO$tÖÞ„ìž?9kW¹YrûŸ0Þ1èkþ2„"¼ \lF4x3ÒöPŽ ìàCPCQón­D§kA')à„26£xÑÙïPÍî-ý[ 1áp¡ø Më¹Û|Õ„ ¯ã·B¢·¶¹žÿ¤í¡ŽÕ™ªí 8•­óû§ygÝQá'£Õò«ÑìË‚>¡;6Ÿ½F¬«’^f…ÎØÛÂð‘è 콨Î0k˜SùTv`p[FɺÿaÏ@FL§3ÈÙðÐQ6eYΧú3ÙÞáíÈÌÛ¥f,¼å¼i{(Çró©ÆY'§}Cц@¿’²5 G·ÍQÔR–•7¿Ÿw"„‡ÁGÎÏi¿Á”´IÖÃͧvõg”]ÛèÌ)3 »¨4öaÏTQw4šž˜°Ô™mÛ<¶c[OÚçjèW&4£0|jäîásù.äŒð4øé6XÏ»‘¶‡r¬ç¤; f IF«:óŒ‡}NÈí>›¯¶j¹Çë¹ßr#džÎÖ¯ +„'ÁOFÎÖ#’Œ(ÀeBgó=Èá#àDw® ÿß%ûÕŒ²5£ìLK¬ïEfÛé\߇´=”S=ö6©Í& \³½Ðм@Cgáý›p/xô‹¹^pUáW‘µ_•Z–YXÛI‘²‡{òº-2ûýkÈáÃà·¡Z|i{(§Zl§j¡—JÌë[ªåЉRÔ‘ΖJ¾¸Åm.¶äÍRøõÎB`ÂíàÛ# ãüK!nÜõáÁÝc”AHÂÁoŒ,𨿳"ÖÇ™³Ñ˜ðÊÍJ/³å]Ìž˜%³Rö¾´µœL³W²C¬"³þÕç1Öž‹Øó³È a´ã ÑìùÃHÛC9ö¼¯6Â.hAGc>¾Ö‡¦øø©ªQ0ónp|­®_ ×1:ì„òVÇT¡Áó„óŒ·jþqPdÔþëÈ¡ ®¶Án>Š´=”Ø=(ëÓZ¡qÑ—ÃVÇl³T¥M¬/íT š×?[þÄ&”×=èmâ ™|¶2¬¼˜å D>Q|áÿã“°\è4PDõi{(GýÝ…ßH“5¬HõBU-… }²nßYÎH«À¿1Û¹ ü)¤í¡ÄÙ[/óÝ=*«ªÖ„æ ¬àèy×üYŸ@Iùvÿáú«h²ŠÒŸ _®ŸFåÍž¤ü¸¢¦R¤Y“õh5ŠbHÁ fÅÈÛƒk¬Ze-À¸»x~÷Âgƒà#gÆÝdáa¤G劲Éâ³PWÚ`ËŸCÚʱå LÓÌDÉ›{ËD)f Ì¡¬x>´”Ÿ‡d„À7Dwšl6=à69†i•S58šjÐðË. „¯IÏA6ByNÓ•sP¦œ_€l_*ç $ç+'Óõ¬hoRÜÎÿ@/}ðð`úÆéðýÓ/B>B‰[M™¬ÌBSÓ¬Û9=¾’®_Yªä…Ђü'L‚'ÛàH~i{(Ç‘¬d­]ÖÖ´Bj`phkx5} ’|IªšUÈÊûû•ùÿ·É·<æ]–昵V>tv¾Œ,ÊÛÿp¡»•ÖdCË”•/êö£©³¬¯=><˜VndÙdõx°?MÙ©õOÜM+ ôs,K)û¬6¥Ü ¸–>V%^W_A†ï¿'rænµÜÌ•éú¹™o—h YI±¾Rælš7IJCæü½«ÐÙøˆNx+ø­m¨¿‹´=”S!s¾AZmßöûOÐÎmK¶Ü&~˜·Ptîm¸çÀž4+\š”³z³÷œÂgXK¦¢õï![„9ðèw ‡/êßGÚÊ)ê†í•3´Þ5ÜckºÀ»¯B&Âõàë#Ëweù&EÄûD"¼Ä# FÓ;Å‹4YR¤?éà‘ W€¯¦”ʳÚÌ”i5 #ù'С¼ÑKhü ÞóXÌy+9Ò,ëÞÿþÙî1Gzc½±¿²†¶Š>ëâ?ºæyÈGörm]Ö¸’kùìÜìêsÊ•¾öŸ##ʼnò¾‘±ª^*¨šZÛºµ nÜÞ‡øº}eÕèãŽ(ëéãÏÃf·ü´V¤,±NÊìu•¤k´C¼Äê¤Â]ìﮫË+l/.ò‚9ñîS½°Ó ŸŸ]k}_.šS°w­ãb’ÌÍõ¾ïýxhÓs ~6ËX’øÛE'OŒ¾/ïx¶ãþÓ©ÿP÷ìÄv„ÕeMKgÿÜM!~®ÑRæØý"f÷ãzI›ç•Kj`¨åfQ |‚{4è©ø×brFXô©!1dÙ>5Q‹KÁ… ¦iª sjIW›µØI”B²£érX\ ¡ä—û$…,vkUVC*¥Š \ ¾2¥øb;á/Úʸ”Bɯö!IJ¹æŽ£‡”“µKG¶0ýlQNŒÑŽvHI» ÂMà›$*ÊÑR3wÖå^~}üŠ¢äoð!AE-Š*΂Þ_ðOÄRÙ®(tS ?.æ˜ {•¦Y]+ª_]crû¡¹ò|Iµm%¤ì^ë@¸|»4›_ÐÃŒ¼'쀎žaà>ð}Ò¬;0=;€·ßYÉÐQçéÙ¼üö¨r$÷æôñóE§\ºp>7ªMW¬ÙÀ»Zrìa«±uB¶4£ Y?¶ïÔ¡#ûî9}÷èý·§™ëÑ;;¡9š1™ê™õuOzRûh¾×ñ®>®¤6çòEÕJù¿K§çüL!?_0²glº‚iÒÊšÓgTʬ«èϨӷõiö¶>G›îÍSþzÇ«¥{»gr’ýýŽ=c;Z9K]½TOÁÌ{ð‡ïÖá¼hy‚®Øô»ieófeN>x‘°¬lÉårfÕ9¿×Î[zÅQôÂpÏ1öcGÔé^þQ]fh䦵ážl¶ýßK­ïâ2Þ¼·ÿÌͶ(´cTqãô§š$œ›•rΟt®gK¦¡à3Lö†ŸO_¸47²;rlßþ‘f|xüdX3¦7–Í~cY®dª”ÏûPgªiÿ”JN Þå“þ.éý~±³™dc­7]@iùnž*™f«Rm:°loÞd£{·½y¾É” ©À¼t2‡Úʬ4$Z?Å/Ú]õG’n—å ·9VÔ½$ÿŒÇ¬¹Òv ‰”ô!Áʾ$òÒèâæOÄžˆ;*LMU g Êz DI‹CÅÓØ/+˜N³Ñáß³¼ŽQûeáèËÀ•àBÃãˆæÑ x(T“.ÞjÎ7«P‘–¢t— Í®4•¨sžyZ \ .4¤ošê¢߯°7é·¦£æ«"Úʪ¾üˆ%²Ì‰1ÕrO~RŸÕRK% (d˜¬ kä+U{x Æ…áküRh€ð0øáøj<%{xüx;j< pxü¤Äy–ªÍF €ÎV¼†û¿ Ý.RòIFk×Fg9DñP|Ûÿ­@\úP a“¸ô’pbZ@¬nâô¾³Ä¹L50Û$<Ù´Ê#ܾ!Ê JÂdɲx#ø"2…›l¢äàMà7E¯áYd|ˆGZîuG+$Ûìïžû°…’ÏúOüe%7g[çP¡ç \7pø*iºAÓ0ª%7Äf¹{½+Z^Ÿq ù6ƒsñÃÚøJ¤Lx;¸Ð|j8_ »&<~ ~§äúOü6¾ v½ªµ6ŽN±€p°k 6>»éÄÓêŽ%×ü3ð?‹¿#FÉÿ¹ñÄß[ÃÍÙÅÖuĸË!¢u}s«’&>Ž]t¾í5?þNGªIƒÖø×@õ„?Ôzã_ƒ'|üáøŸ’?íC<ñ?ì›4h‘ñ'óaÇ—ÁÚ½5ÀîÁÝùM§C®®Mùå)%¯®}‹à ` <%­Y]Y_Sê’Òoö‡Á‡[ßï¡äÒÀ›ÁoŽlÞ÷g•ÃãJÕà¾J× E­)¦K&Ír•Õ|Ñ»¼ÄÝ´\¨ÝÂY¨Zª?.>{½ÖwQ¶n¾üÍ­÷]”\ð-ào‰ßwQòoõ!žø}×å¼Â¸(×w í 1ºòëU&Ÿ¬EàÐÐkÞ<¡®´Þf/‡nß¿ÍRò=>Ä#)÷ݹšZš¤ím¼ئ­WÀÆ=Ä#X[.ùÞÜ qÖ¢†x(¼U ±ag^ä” U©5nÞú®ˆi<$bøµ"°)_³õP® 6å”Ü5ÀMàB½²ŸRÊtQÍEÌäº×j¦ÝÈ“˜¤æY@i×ï¿3’Òš.ñYe5[5táî> .4öÐ`Àuê”Üð4¸ÐX#¼á>þHdÃIn%œ¯ÔUàø˜t“XH&Q»[•d2¸ÌÙþy,BVÁ…fûÃ[D8 >Ù"dfªI„)àyðóÒb1EEsLé^ | ü©xÌâeÀ§ÁŸŽÇ,^|ü™Èf±¬ÂÖΆí›$¯¾üñ÷Ø|¡„$v¿ÀºH'Jgu—w)©ÁþÁ4MåUL÷2È"Îø¦&,µRt·t»RRg¼€˜3‘¡Ó¸Jtн\¤A÷˜J?ÄÙ¹H7Ü^ÖœÎ{Ò¯¨ì»G«jiVØ{&Óåu¶>F*ù†+7]ý\èîÀz”¡/x®` zñG29~E†w˜U+WŠç/¸gs©M¹ôúðQãü¦ ë©»÷S²5ôô3^×|F)T5Z5e5¥¤ÓUÀ,Ñ>6§ÔXÉ9ÔuŸ`ªØ¾bɺѧo

$ÈØÛU(Á^²u©^ÄKÊ1Kÿ·ŸîµÕ¡A}>Ío8/Ùt1l©B£K›ÔÔõ±×öVU‹N ÜËb'çŽå³î6-[eÃ}g¦â~ï^€L)ŒÑ„Y¨æµ‚26£Œë–í¸ûƒhÞ `á0â¾!_Ùu9ï,FªÒ÷ ‘PUàyÎ;…6+¸¹€í”œ |ç„Ò’ Ø@ÉéÀ œF4ãÅJªêž (ûŸà¼Slò¨™A,õݶTNAûI¢×™sÂ8Ôƒ¹¨Î7sÞ)´÷½±œ±v¾ø_8'”\eÅöu‘L¿ü0çBGrÃר_~„sÂ8LâmÀ_çœ0¢Iíë"> ü$ç„’Bt_IõÛÀßçœ0³ø<ð«œw ü o¿üç„ÍbO}_—» â®`TT½Þo$æÝ„‹c=±NAç×9vuqN(É÷ÏÝt>§ßµ¸‚s[¯Ê®À•œ»M•éš*}šô¯a¿Xèý{$æ*àNλvF7ôþ=ß”òöï]G·r0Ïè¸Ý°o^ÀÆ}'šÝüØÞŽ/ up| õþ’’»8>ØúJFÉmE5—Ä‘z%Kñ‘YY¡!–ÅêœY® £È¢ôi­PWÑ‚·¥¹Á\oË .Í—¶õ‚¦*Uº­£4ë«n7ÉÑxÏRKú9 ×s®å‹Î˜ZÕ¬Œ2Ø?8¦^ã&цåjÚ)Z*Á™çM&›ž×éœU¦ÁS”k ÈšÊrè.ƒóõò …eºôS/°qdzö3_öŸ½DM#`½[9&.pžÈD™&\˜sԪت ÿbàk8' — z#î¹Bøµ>Á_+"xô¹Bib4õ«Ý¹Wmè CirÌ5Ÿ0”«”‹MÎoöí*™æ³†­MužYCyêÿv-µ':kEìG«4h™¦“ÝóËöÈöžøûq¾k»%öãÆX?Ž‚&±fFuÜðèÑQWŽU÷Ÿ–ê˜4§ªV*%w*µ¸€O±>ò£U5fõ R6ÚqÔ’@ƒu-òF8>Ö–kÑàÃg•^e@¤Å"éó@ ÜúEh±H`Û'¸-"xôKšÍg¤Ÿ§hu¡{ÕÖ¥z¯*Ç,ýß^CG\—ÉcÓdO¥¤eÜo„úû-pñcqQg×Ùá~Qßùmà_ÿÕ/Šïü¡OðŠ.ÇwJ£ùÂóL±BîSŠT¡Ý§<•\Ì}Îgòí*—`ÚºT/âAå§ÿÛ~wÆÝÒÜ-U¦Áz ýƒCsb$d”±ª#êU!ubç ¡5E^u0ÈÄ.æU+Wsž««M^5qOðkD—âUåˆìU…¼ª©ÂzU‰*¹¯hòí*—@¯ÚÂTç÷ª’ŒÓÿíî _³Ä8^-YšZ˜Q&,sÊv=éߺ3³mÇ6t['Ù8ßíÆŠø×šüwCþ»Ûâ_…‡û‰{€§9'üÅp®øDDp9ÎUŠR‡ûrD íYåé£Ãý–J°[m]ªq«rÌÒÿíÛ2Šî`‹Ižö\°ÿTªŽÊí³¾«nŒk*ï¸2/›7 [/¸þwnÔ/в`;Ì-g”)ÍÝOânãÛE4%¥²½ !³çeÍñ4v¸Ô~-첟¿€þ ôo‘ (ôêãu°qå¬>nUå¶ïî¬ ¾ŸuõÃìlá¯×Úi ·‚omK÷8Ç22Ðÿðv‘öÄß<úÍv´$ðAŸàEÞþI£iû·,—ò”º”&Y¨fP®Z.Ö ^ÌôÛU6Í[ÃÖ¦:Ok(ÏHýßÞÊ7KÖv`Né¥Òümž»iÑÝ¿8¥Û¡wóúsñx{BÝtEñ¶/¾üõ¿(Þö >Áß "¸o+EŒ ©aO+EªÐžVžJ.:•#èe[Y.Á^¶u©^ÄËÊ1Nÿ·g÷ô•/ЕN‡"üb~<Ú)²†ò˜A5;èìIóyàoƒÿ¶4­K ä~ø%ð/EÖÙþÚM6þÛçT¥ k}\ŠxM£o¼èÞ% Õ/sLtqžwœ+‚VK«9'ŒA«‰À5œFÔê'h”X¿u…ú2º{1³šwªîðS¨N‘æçpÖ‚úúOjÕ1˪C!ÉÙo¹kažE pa³îTÁÔlÅ0×Dœ òº ø;œÆ=) p ¬¡œIÅŠ¢Ü+°¡m#$ \ ¾XZÍ Uɱ҇xZ]§(¹%ÀUà«"+å6·þ4zaZ5´ñ WÃu:B1HþÕÀðiê¬Å<¸ýhˆbïæÁóñ(vX/DVì“ s2©óÓuEuRSÆ4VùÊjAC£H¬øBÉz{üqžyRµt7ö¬×ï¡•ªfæ`ÃÜSpÙ&M®PCM¹JiÍɶV—LóÁfkSg°)Ï@ýßnRRšÛÃu» ¬]Ö:¥åƸb£Î’~6ôpÓ'hBá<¡H«I˽öväÀ1¡7±8Ä9a -nb#p+ç ñ¥#ïÛ^÷­IÚ|NvL« $T nn—Ì)6Ê Û-'1·5Κ´ÒZœ+hŽª—ì&)¯åšwo…”7 =.¡ä“>Ä#hÊ—EgSxˆ'b©¬eä}†[†uŸò%Õ½:z=´t½O{k嵟=^&k•ÕÐUžº¸|s뫼wm'áð-‘uµ—„®h$Å\´í¸÷*¨õ ãf‰ÕxúùæÈ ÇÞÖÚHò0.4:‰z1ö 0'ÂNðNaÓJvÄ-¶´ Ù®ùë._©—äkZU ª£*ã…•¬EÄñn£­Ñnx>\òGúðR¡@j/k‘¦æ"IÙétV V_þr‰,à*nJ® ø ðWÄßDPò¯ô!žøkÉfÔŒÍ-­%]de’u—ƒ/—VMnU6ð·ôéZ|VVø‘Wïê›)ÍÞZ¿ÿ_»'¬¹oÆ{„'ÀO´ÞÜ7ÃÄ O‚ŸŒßÜ)ù»|ˆ'~sßß"ÝÜçŸ>  ÿÄé®_!ÍÆùL—Z(è|ã¡¢•4Zl²û&ÕRU³ÃÚ0I¹ØÞßzÞ»%ˆß†)ùAâ‰[Œ¬ÖC9cœ-¬*òuj¨u#J`½4Lw4T½Ýû¦»¿]1D;< ~X¢1×Ãê­|~–¼+‡]³ÞàD@ò­ÀÛÀo•|Î/gGÀ´~Г†9Þ ~gd“ÞÐXӔєπŸ‘nÊ]$¦€d¯> þd<–¼b˜äbÈSÀÇÁ—fÈ_ þêx ù,ð5àÑÈ-­rè©8äµÀ7ƒ Å)ošêœÛh’î&nÚ7vÈl¤B·•”|Ò‡xëìÚ¨âPäÖE>ıTÞDWÙÓ‚i¾¨œÆ¯·¬”hB×¢‹8Mìs¬™úªªÃþ`¦ÅÕ1:QÒ&ÔZÔá9K­¶VQ-Š:eZg5‹Vm)¿åS¥Y¥ ý 9«í á›ÀßÉ»úßZI¢—JZi¸Ç6Ì©ž z4HR½ø!ðµÞPr¿ |\ü:ø×#ëhÛePÒ¿þ iJZ`ä+ÕÐûH–ïÿü/âÑÊ7ßÿ~d­ìwý ©Ýv¯aß@V9 +ö\#¹Á²zV³Ý-wb·ÎS~À1qç„’{‹½ ^:w¥p/ç„qô<£ˆ|pó„Ð(¾é/ßæœ0SOlÞÌ9aDS¿\©¨ù³ê„–Á¦)1ÛMÜáœP²í®¢*vrôÄþ;qù–€”:pšso¯å Ù†OÇ9'”dÃ÷g8'ŒÃ†Gç8'lS#š8| ç„’v ÓüQ g<# º„‰wrNøB·Ö×ßÀ9¡$k}9ð]œÆa­/¾›sˆֺÊw¥HÄ·C\Ó5”Óþ޲–¦áÚà{yKÒÏZ’ý¦Q¨æÝM7îmŪ¡–fl6ŠÔ e¤¾Ý]:o]/teðÅ.uC?$8Êê}1«–Á/lõN±ŽšãΔjiÂ>œ—¹¨ЦPr§€3à3mhS(ýsÀóàç¥é*9´]@ž—¬õ %÷"àãàBûKc­ºÊ@oïÖB•è àÓàOKSÌ ÍZ”Û‡vô±íìdÿÐö¬Þ¶U!Qß |ü¹Ö·*”Ü3À/€!~wNÉчxâc×v å´*fóVep€µ*ÇøO𝤖…µ%¾ÆEw£’+û³Ê¡¬2š/–õ‚;¾uô3†fÐȇ F²Ê½EÝєԂM‡öbÛ‘QBÜ”VYÖR˜iž¥&§!obN_Ãø…’«Ÿ>~É(©J%˺̻X—yÛVf·™yUQ“©õàÑÝÊþ‘ýÊIKcEDŸOŸò$—îüX©o׎CÛvm íüHÔ/ þãÖ;?Jî ÀŸ€ÿ$~¯CÉÿñHÊýÒ{‡¢\æ½ôs¦l¨ÆïèéòB—%Ÿô!A£]Ušîö!žˆ¥"pvTBý mÐN†EVYÍV ]@¸UÀµàk%VÛúF†9Évׯ“˜lÀª%%×¼üÊ6Œ:(ýõÀ«À¯’n É$ÊEÙ¶3à™x,b#°¼7‹¸˜ÏF¶ˆ…‘ •$Cp+øVéV±˜¬¢¢9¦€tû€‡ÀÅc{€‡ÁÇcÛ€GÀ…Î÷6†ÒpƒÊÔw/:&óbnÒwSÈ(^¸ÚzÂ[Ãm’ЋÀpc¬ÁWÁ$ZÃN²ê`<€¶†u8›Þ"–Ú¾mÛÐ6tDÃãí™ÐkÄöý‘^|ÉBÀ\$(êö¡œ©æT'É )„KÊ Q±Ì‰1Õ>¸ïèèÀR ’ò ŠPW"KÙŤ +ÉH° ¼«…my€‡´‡r*ÁnÛiiÔpÖÆUaE; q¯¿BNý´´«ºˆ£µË‹ÜH!<¤¢ÛÀÑ9zþbXé@â#‘«§ÿÛ]®w™-²6ÍEæûò¶óƒhlÜF(tE¹"{#YL¦F툓¤XmÉ(fÕØžQƘ•œµ‡úûCËxr^~ÄŽxÁ4«j8;Jí˜ÔZ¾ £ô“>î‰7MvIŽ®q®”š.€ wÔºí‹G®=Œ6™3Á_Ú3z¢ƒ·'ð~7Gi†yV›™2­f{JN@„«ÁWǯJ~ñˆÀœ·’#Ͳîýï$²Ý!bôÆ zc9~R¯¢Ïºø®yò‘Å\[—5î‡äZ>;7;úœr¥o„ýçÈHq¢| od¬ª— ª¦ƶn-¨ƒ[·÷a³]_Y5úÜàx^>N?·‚~î–ŸÖ ”%ÕIYí ¨$«g±Ê“!Ý8ó"àZpßr˜Wì?çŸ-˜ãï>u°MëÂçg çÿrÑœštÀÈ›40«èb’Ì-}ßûñЦçül–Ùx7!-:ybôð}ydz"÷ŸNý‡ºg'¶?¬ffkMKKgÿôM!~ºÑ~æÔ†E¬6Œë%mžW.ùžZn6Åçk,ÜeH §îÆä¢(Ù+}ˆG@ŒVÔ jÆ× RÓTæÔ’®6kÕ“(‘dcéÄ­J~½ñHRÎyÓÄ#¨²EQÅ¡îñ â‰X*ßQå ¿­~©YuJºfñû¢yçÆÑÕæœ|ë©JŠß`:Ž}¸À„_ò^ëÑ÷Ó×=Dñ'øï¨Ž¢*ŽNo4ú¥ Fî-P}–fë…*KŸû¢4_áåæ-|Ý—ï^äŽï€GZå\ÜëaOP9h–‡ÄùðoÀÿFZý \‹§ä¾ ü[ð¿lhÉг)ý þã¨r$÷æôqïÛQmºb=ˆË%†­B†u '´aK3 šõÐùcûN:²ï¾‘ÓwØûqZ±³š£“©žY_÷¤÷(µæ{ïêãJj£q._T­”ÿ»tzÎÏôx›Èó#{Æf5CŸ´²†æô•23:Å3êô­C}š½­ÏѦ{ó”¿Þñj©ÄÞîÙ£œd¿G¿cÏØŽVÎÒ8/ÕS0óÞŸüaÆ;•7܃-OpÛ~7­lÞ¬ÌÉ/–•-¹œ{Kð^;oéGÑ Ã=ÇØQ§{ùG=ŠjÏy…im¸'›ícÿ÷R뻸Œ7ïíã?só…- ]6Êdf™ìO5I87+åœ?é\Ï–LCÁg˜ì ?Ÿ¾p!À‚ç½Ë˜Ì÷'ÀŸƒÿ<¬Ósî2^–+™jåãs@4zjz‹ƒÀ…Æ$õ?û¤ÿgéý®±³™dc­7ÝUiùnžjÀMÅRRm:?¸loÞ4 Ímçoøw~5h640/Ì¡¶2+͉֓ò‹öÏõG’n—å ·9VÔý8ÊÊଔvŒk>Ä#XÙWG^æê†’<œuElHy‚ÜâŠÆi¡e¶åE¸\hðßü2ñùÇÚóÈ´x¸Ð$MÓTåøêX@ àð ‘»ŽJÊ ÌÚ’QY;Ú®H<x ø-‘ÅÜ«4þÏÒ460bí“6|jäîÔ›ò"K&ë\¹7 P>µfaJ—ÐÛºW¸jtŽn¤d‡ûÀ÷E#„ß EÜܾ?² á]•ç‡=òêuU‹0?ÒÐTÁàJð•möQ$Ëà:pyóóø¨Ð¡¼ Aé>ŠÄ[Ü ¾3²˜ÛbqN+Q¬„¾q9'Jv;p7øîÈE'àœH€=À½àbNÚÿmxç´ :ð°5ÎiIm… ¤+  +K€>ÞV÷Dr\\.4_Ö=ùvï¸ÇU ÇUmf½çžœ™Š6ÜCÓ¶tõnOøºMr] НnS²[;Á£»EºMì6 {yq¤j«Ífg»;ê¾huÙÿmè¡"%Ÿôa´¡â5QÅAƒâ‰X*§/‡J›œz”äj¸µY@´nàŠŽ9·z‡t³³DºL5°#¼ ãù[ÂMà›„ËNÚ2 ‰s#p|@ZM\†¡ä®‚F¯èY¥ ù´ÜÜ®NÉu·‚ožû°~…’ßæC<ñûßAˆú•E½× \Õ1gßsDÏr¤dN¸Qù ±y}|†î qOõªîx‹â>)LlÅ.šÕRÎð36eðóm\­–è*X‘B¿ ˜ÏIsH Ü!bXoD²äà­÷F”ÜCÀ"xQB¿+¬;¢ôuàð3³àŽ(9o[ÙYð³ñ»#J¾äC<ñ»£µÜž]l¡;»;‘„êî¨ÇXŠæŽf õ Ó]Ù¡-(¬³C»SênIõæ{jÇÁéà'{®Z¥*|wwså~Ó<»ÅV¼•›öºÜ~ð¶§öbKV9<®T þûºV [­5›Âæºg¹mEµ4oËNÁMï¶)è“|›Œ9fkÖ$ûŽ6VlýOǬ:ìïX …{ð¿ÿ·ÖWÀµ¨t„ þ×ñW@Jþo|ˆ'þ èÛAß Ø]Ÿ&Æ:íP°.œ%Wqž.…¡ÏÒP¢¨ †[ELC£ƒŸõ>‚¥õz¹+(ê8ÝnÅ·¦±?»yLƒðøaóèÄ·ý9}œ¶¶xÛ–(ôæù îî–\jÓ@.}>|Ô8¿iàÂùMƒ.xÚÓsŽ6íœwŠÞ'º¢lÞ=,”Ÿßþưù¢7æìaY˜+Ÿa¢ûl±3ÀEv¯¼oòÉý&¹kV˜¼è¤U@PTib4ß4ŸKÕKQÀFi²5O5`£‹\Å$.æÆ|¡M¥ÓT®yªc»ÔåÖŘS]ÿÖÒšãÿv­’WY'*âèÐ/Û‡À?$$[SwGËra‡$ÊÇ¿þ­RrÏ?þ©6 )ýO?þ™Ö÷Mý‡n> þÙøû¦”üç|ˆ'þ¾©ÿxeëú¦¢wó’TÝÀÕàâ«KfIu/íƒVóÔ—´wؤ‹êIN“WlØçF…ªwKÙX±Õ7Qæ.žš&iî›h@XßD¢< tÀÖû&Jî,° ^\+nLg•ƒfSMf[sHëšî*[@s“Àw¿KšæŠÝ“NÂü*ðYðgãÑÝ»ÿpdÝuÑô‡€V>üøÇ¤iei„«¦I¢Ï¿þ¥xTóqà—Á¿Y5 ³Ê¨zÔM2|øUð¯ÊsvÇÍг$É·€ þ§ûËö]Õæ×S‚_~\ì$›ÿÛЋ†”üw}ˆ§Õ1_˜ùŽ?ÿ³ø;b”üŸûOü±õÜœ]láfw¯ €hÝõ-ŽÑ6#Ìé˜n8Ú„Ö07ßx·9ÚkÍöfçu~î´IƒÖø)KÞ¶±‡Àj½ñ¯‡Á> þpüÆOÉŸö!žøß·y®…Ɵ̇\k'\ ¾TØòg/–_][ÂJT;ÇE p0ž’Ö¬®¬o8ê’’T}ÀaðáÖ÷{(¹4ðfð›#›÷ýs×ùjK‰Þ‰ø’I e5_Ô †„y7Îf}Õ¯PµTÿÚ{½ÖwQ¶n¾üÍ­÷]”\ð-ào‰\ª¡}%ÿVâ‰ßw]Í+Œ‹­ó]]´X@²nàrðåÂÞkÁ,‰_Êì‰i”xkîíbö žB¢–UöwÓJJ [«€÷ß'Í×u×7\‡us$Ði`\hßM87GÉÝÔÁõÈ5áš´̓‚ˆX‘5vøøÒ4¶¸‡‹%¤¯×ßþ†xôõràÁ£¯“\‘nX-wª–¡Â6)$Ò›€ÿ`ë›J® ø!p±Õÿ·¡›JþY≿I¹†[¹‹r›¡s$F7Pþøo¿óEµ&ªeÚôÖfIªÕ@\i½Í^;%ܾ1~›¥ä{|ˆGRî»s5µ4IÚ¬…8lÓñ–kaãâ¬-WFç:Ôg]² X*˘9ÅcÖÝ*+!%ÚÝú΢Kj~»h}^@¢+€W‚ ëmšê¹?+"·œFDŠ-jD¤Èº‘§˜Ö6"råô¿%؈´R]ÁHëR½H#"§æø¿ÝÈ\ÎXpÃÐGöûž˜.¾9ë…å÷¿ü'ðúñû?õÉýS¹åø})b´ÈïK‘-´ß—§˜Öú}¹rúßôû­TW°ßo]ªñûRn(÷-Üïã†ÛB}®»a^;ô›OØÄZÎ # zŠ­‡[Z åL±½ë9 !$RvZ¡®î­-¥™Úµ,ôyÑœRʪ1£ÐØ« Z¥ Mê*î‚¡Xíx|ÞÔÆÇõ¼Î~‡þ2_T ÷7ø¹y®'/®EÈÒØ„ |%ø+ÿ4É”ŸWßþ®_€&™ä}·Oîw‹È½I–&F šdi²…j’å*¦uM²|9ýo 4É­VWó&¹µ©ÎÓ$Ë«9þo¯ãM²¤–Ø/ãÁ¿(­pç š£ê¥f[L®ã6åTlãJ>éC<‚îmqTqnà?RCñ»6Œ]’Âl†Z½ûRÉsý—táGà*5 µx5¸Ðòc@s°J½J!ŒtñlcÜze·ÿaƒ§­¨l–ÕܵÀ½àâ÷RÌÙX0ÿýóªl?ð0øáxT6 <~$²Ê®o¦2ÚÄ\³ZÖ„Õv'Ð7¤©í¢‘áçU\xüB<Š3/qdÅés‡^•«ÏjÖÎ6h%ÍÝ+ÙäCÐ^úÐm1eó%ÀŸ€ÿDZ)/̹ºhsȵoéhkKLÉ'}­%¾9ª8tÖn‘ñDî½ñ–XÎþ±4´Eèõ§®“çæ÷¥aS„7ßÔzoAÉmfÀ3‘v„vª¶]-39&­¡ÃØÌË+%͘`¾Ké®û7-}B7ÜYž ûCþgó1”^à$ø¤4åÎǼº½|øËâÑíð1ðè»=×Ö[‚”{±²P´I’éqà[Áß*MO]dS"Zz7ð½àïGKÿø>ð÷EÕRâÊú†é)VÏü»«½ªV»‘yÆ-ºSz©ä#×T+_ÄQ]jâÝ_¡]/µ^û ËvÒYeMÇVÇloÜ&ë°´²9É9ÒmÙºfó~BYç¡£°Æ¡ ªV*%òë…ªåÍÈ6î'ÇR²ME­:&ë2P$Uæ3¼?ƒÓh(íôý_àœ°ýEâ+À¯qNƒ©&¾ü:ç„ÊÒš©†îü‘ üç !cŠq#Wm åô÷³^ÏQMÔzMƒ=U§áÆz7x¶Z¢´Æ16C§-PGêµ&dFn‚ð„ûÁ÷ g$‰o3!V3¼u‹ÄÙÑç]µ ¹o?V~zcΪŢ\ùŒÝºe ø¸Oðã"‚G_¶&FóK#r©³¡W+¤‰Ô<Õ€Õ ¹úHÔ ¤©Å{» ¥ùš@kSgM@žYú¿]¡8z™õ=è|™ºcà—éAðÁ\e¨k¿(®rÜ'ø¸ˆàr\¥1äºJ)"…v•òôÑWÙÊB v•­Kõ"®RŽYú¿Ý®4Ãt4{V$:ZTµÙÀïv­¢îÓpwæ”X—^È¥z²¿ üm¿`.õíÀ÷ƒ¿ÿÅ¥þªOð_\ŽK•"†\—*E¤Ð.Už>ZâR[Y(Á.µu©^Ä¥Ê1Kÿ·(ºQtZ÷šQõ¬¦¨Ê¸6ÅÆí|ÉÌ1•qÝÐí¢ÏéÓîF½›n*iÓ|œo»ÓcZÏ­E¨ýσ?©Ú…Ÿ:ŸG¶Ä2àjÎ %)}A®¤g’õp ç„Ò’ ˜_»‰WR/ãœ0¢¥õfø„-?ÌH§áÖ5•GÛ,Í(Ú4k¿m}R =G¢^¼•sˆ"‡žËp‹«¡œ¸7)ŠrÂðâVz3×îœU=…Bž³*lüœ¨cÍ âÍC³?˜°•j…&æèb® Õi>ŸM¢Qð›œÊîΕó%Qçòà?rNøBw. ü[Î %9—?þç„qXì·€?åœ0¢Å.v)?þoÎ _`£þÄp¤'N‡–þÉ®æ<)4ãÛP"[ù¥¤%Õq¼[8h²â°)wútßQݨN÷ª%ý¬» y¯À<:I¼x€óäi:]çét÷î‚æhyg?M?¦ÒjMŽqNƒZ“yÎ #ªõŽúôk¾¨åÏz÷ ÕW¨ÕIU/¹[ÝéÚ¦…žô¦L€â<Ù†û²ÜLj(gÒû.EQö•X51TGŸÔXMI±6Y7µPÐÝmÿî­\ÔD7¹p.]׈»M›â†ÌV²Bxø]ÒêÑ*Kó"ƒ Üwtô@Ø DbÝœŸh}¢äF€Ep¡ËtõeH³SE=_ä'ä)¢Š»{ÞÈk}¬ÊX_ut—Œ˜fii²!J;íC¦Øß–Ö[¸Â«Ðº‡#8ÃAÙÔßÿ–pv_8qU(?ßþøß…ͽs\’÷ï}rÿ½ˆÜÑ·ˆH£qU¤ÉÖ<Õ€½"rÓº¸*òåô¿%W¥Õêj¾‹¥µ©Î³‹E^ÍñûêYqUp›GV¹Ý$ÇÏ:n_{F×J[¡NA…õ¦©™@O‚þjVl}Û]lˆ†bú„áöâètcœ}Aá4ÅÖ|’°9OØÿ9Z˜„|’sÂ_„&ñjŸÜ¯‘[J #GŒÖ´0rd ÛÂHTLK[ÉrúßkaZª®À¦…©ÎßÂHª9þo˼…1}Ç“ƒ‡&e¬ê¸÷ ›†­4‹üg”qÕ½‹Ø=­n²‘‰áµG¶^ÖÝ ©4»Zrìt艖ÿYþ—ø'ú¹½ÖPÎDÀ>EQóý©4ÀÓ”ŠÉÆø4—ânNuü£@߀¯~‹sÈl @tÂ}àûþ´È”ŸÛ€÷‡¾ · -2É{¿OîûEäŽÞ"K£-²4ÙBµÈrÓºY¾œþ·ZäV««y‹ÜÚTçi‘åÕÿ·™ 1ß)ÚeîÆ á *MFp9ƒ?.­®'ï r>A³½$È«¯4ÝÎöRrO_ þÚÈš[ç ¦ùåul@Mš Ýë!¡^|¸PÄš€21šßUšâuoy’×Ë ÝÙ¢ä“>Ä#h¢ £Š3Äž%>ıTÖ³¾ß½fi|B5&”{t-_tÆÔ*u¢CŠ·Š"\¾^Z…^759vkYsTfнË<£å¬iM¹¸|‡4ƒ^È:6ª^ H÷*àNð‘u—Ì(ùßÜ ¾[š’6§bïî뛚šÊ†PV@NBÞ |üa‰mxÕ RÕàiðÓ‘UÕ~ÈI<“Ø™P«NÑ´ ÕÞmmu¿”|Ò‡ÑÜïuQÅÙÞÁ/ÍöOÄRÙÊÜïm¬SWÒf2ÊíYe_6£ÜY-f”ŒlVîe_åÙ¿F²ì%5°kg:«„”|t¸££ÁKKªôkG´ ‹¶˜†?l•€Œ{€'ÁOJìiŒ8wÀ¾ïÛàÿö²¬r\›Rî7­³»•{u¦ÛЕŸÀ ñ×Á0市-¸eÙµëÛaèº=¦Ye”Ûù`x;ß ½`½[¤Ùù #š­ªj‰/ZÕ¥t ”ìU‘³Àð‘Ö›=%—Ž‚FVë5Yå¨iLc·²¿¨VÊ´ÈJêZ*…¶’ìÐ7ã·ÿÝ0#åØÿ(³_W;£ÜËl~°€|û~V‚Õ¼»™†zP½ª¡–flÍÝ‹3R¼Þ•wÂ(t]ÙƒÌì$„- iGðˆYµ  t”NŸÛnøNeÔw¦T+è2ƒù„}8 .óxQ@-Ù»#œŸiC§Ò?<~^š®’CÛäyð1p¡hÃê3K…€d_|\lÆÈÿí²ÔP:£ ôönÝ)T‰ž> þ´¼ÇMLFO}ýÙÛ‡vô±íìdÿÐö¬Þ?rLE¢¾øøsu7©YcÉ>ü¸Xp]ÿ·¡Ý9%ÿEâ‰[Œ½\Û5”Óª˜Í[•ÁÖªs×îÜÓnheÃ߸èvV9l(û³Ê¡¬2š/–õBF9Ũ£Ÿ14ƒºg‡³ÔU»·¨;š’:P°³éÐ^l%4ÁÅZôf•eý!ÖÕc}Jjrò& æ$ðuà¯k}[CÉU€O?Ù$2JªRÉ*ƒ»z{·me†p›™W•Õ1™Zeµ‘ýÊI껆v~$éÓÀçÀ…<É¥;?ÖEêÛµcçÀÐÀ¶][C;?õËÀƒÿ¸õÎ’ûð'àB—Dó:”üßùOÜbÜ̵]C9ί0×ù‘ßÚ_ÔªTcÎ+Û{´ÞÍ>QuJ:ÝiÓ0”ó‡Ý¦Þõ,'2§· w„p±1|³rºû•у ˜„Ê1Í)š…°.ä; |\¨cÎåQrð ð'Úн¦ô_|ø+¤©)1 Îë|ˆ§Õ½kJî•À§À£7@+SƒÔ»ìíÜ&Tƒž¾üòF©ÍÚ˜þþÁ¾3–]Î*. u!!ßü øWZߺPrïþøïÄïÖ)ùßõ!I¹_šcïh9i»IâÛ¹vÝ¢6®XPòIâ4×È Æ´³®Û‡x"–J'kiC rTBØ Þ©7=±oѽ3šáH×Lƒ§%ÖÛyNì¯ödÎ ͼ ïnß *úœ_îÞ~£ÄB Ø CÉuo¿)²ÉÞävæ´i÷¨+EÁôn’×Ïitq‘^_@à=à÷H7íESš>QtÂvìH(x\($PxË^9 ‘Å ;|üQi†ýð<¸Ðdjxþø"ðE6ìkø(¥!̨Wîa[ ’ìð-ào‘V0‹s¶¦Ñ9ñ€vŠš„ýmm½)ù¤£µÞW\ª8ogÏRâ‰X,Û6mÚ¤äÍÊŒw­›YVî4 òˆŽY1«%ÓvÉi6.vLe {mKhÙ@„Þ6’m‘eßÀdQöö’äÙ³2“Ä¡¥<É7€ 5Ÿ5}ÒöPN¸ž4íF…)i“ÌAX¬y3Ë½Úø¸–wlî5B‹zâ^~}dQo¥£žL±¼­HÍèe’=\beXy±2 ¼È=5jéy§ÏÎM³”q-x˜ý':‡!:á­µÁCÄl\Q±XI¹Á¢ ú„îØÃCáe;y¯¿¢ Vy'ÒöPŽUfÉ*gæÝ35_TÌ1[³&Y§Ì¬:¿<´ÐG!(a<YèõÓdy&µõ„&5‡Wî1ÈD¸|}dù’Ó¡9ŽÄ “àb­ÿÛ;+%ÓIMgg¦¢ ÷˜=¥’/ìÊ(Ó%ul¸ç„§à\Áì…÷ ˜Äí(ÝžðE{¹8Ñh»±×›“HÛC9õfó¼õÆs¡…½ nß}ÀP_2 âË{‡Wó¤$¼ <úQ ù¶ÍH¬AÇ.VƒnGÉÖö¢:í ÷uèòAèsUó´GÖíÓÈ(ª3lkžVK¦1‘šNg– ­d«vÖ¨–5–·”¡–5›}—Ÿƒ»!5¡o“Sì^à¤í¡/°’¼çáÇ{BKu/$!\ ¾2ºTL".X£x$¹/ªTM“]’Ó¦UºB§ÙÌñíHî~©j =ö¤ä“>Œ6öœ=}´_R&Úe× \ .O+‹sgµ™)Ój¶õñ@ío\Œ[)”üjâ+€9o%GšeÝû߃Èv‡ˆ=Ò+èåø•5ü³UôYÿÑ5ÏC>2˜kë²Æý\ËgçfŸS®ô°ÿ)N”ôŒUõRAÕÔÂØÖ­upëàö>lí+«F_m ÓY¯p§Ÿ^A?}ËOk…Ë’í¤lgêËêÆŸ«zå,R™/®_W×¢§ƒŽŸóÏÌñ”wŸ:Ø‹óa ŸŸ%ÿËEsªÕ#oÒýŒõÒ]L’¹E°ï{?ÚôÜ‚ŸÍ²!ïþÄE'OŒ¾/ïx&åþÓ©ÿP÷ìÄn¦&V®5=-ýÛ7…øíFkšS7±º1®—´y^¹ä«¬c oï¹²Žž¾ŸÉaa0YC<b4·_Ó^ÈÚ@Ùbà*ðU"b5MuaN-éj³¶Ý×)w}w¢£ÁÇ¥J~ñHÒÊŠÆQVHÕtB„W€_ƒj|«ÀkÁׯ¯J~ñHRÍ¢ÂøsPý®tA„+ÀWÄ “.è°I/<.tá=ñÈrbµ¡JH­,€&tÄëÄ@„mtb”üÊub‘;\ ¡Â+Á…àÚñZ]Â&Ó¹qi‡ž«|ˆG’vÖ¸ËYÒ‘ zA%‹PL‹E‹)¤z¼>ø"”IB¸\"©‡’¿Ú‡x$©gmc@PE‹}ϵul¹ŠC-„×_¿Š(ù >Ä#IE+ÑÔÍæj\¨·R7K ÂuàbÝ£Hº¡ï®ô!YmO­G ¨nh¤»#Þ¶§!lcÛCÉ_åC¹mÏ~ríöY3¶@U[”c]&ìÜæRè‰0 ž•¨3GwJÍ& –BO„}à}ñ댒ï÷!A-*Ýû¾Â‡x"–ÊwE9X»Î1q:-kVmÚc0û £«%…¶äÎ4œJ¹Öšã¸?C7 zž®ñž¼v]ÂGuUqôr-²mm»žâÆfÓÜ{Z¡ÏÛ‡Šµ´kè&7oúí|Iµm%dÑz3À„ßÿ޼ÑTêaO€XK>„?þ-øßJ«€Û0 ¿ üø"[ÚYå téF+¶+¦As°JÁÌWË̪xôâñðw†þ˜cb%ç„’Ô·¸‡Ï–‹h/±x-ç yÅù´—X¼ŽsÿE΂Ú[áU²Œbk¡C“,€Î #hHlîuñŽOqž8%QSól_=<{UF@ö]ÀÜŠÉ>ç—‡€wsN‡ýöïáœ0¢ý&C«£ôïÞÇy⾨r$÷æôq/ôö¨6]±D´õa«acÓ mØÒŒ‚f=tþؾS‡Žì»oäôÝ£öß~œ6 ÎØÙ ÍÑŒÉTϬ¯{Ò{”ÚGó½Žwõq%µÑ8—/ªVÊÿ]:=çgz¼#€ù‚‘=c³†YŸ´²†æô•r_YuŠgÔé[‡ú4{[Ÿ£M÷æ)½ãÕR‰½Ý³G9É~~Çž±­œ¥U¦TóúÞŸüaÆ‹Û3܃-OpÛ~7­lÞ¬ÌÉ/–•-¹œÚ|¯·ôŠ£è…ážcìÇŽ¨Ó½ü£EµgŒ¼Â´6Ü“Íö±ÿ{©õ]\Æ›÷öñŸ¹ùÂ…Â3™Y&ûSMÎÍJ9çO:׳%ÓPð&{Ãϧ/\°ày£­“ùÞ,pž(„5czcN´õe¹’©P>>÷ÌÞ•s¤Ö|Òk"ÒûŽÎf’µÞÄ#-÷º£•’ínÞ{ íX(ùí>Ä¿cñm£o¡cIL ˆå߉:+ÖiH§²@¾S!Á–7€oæTVôø'=C{j3p\¨Š‡ó,”œÒQ¿SéíÃ5|«¤vÚ‘ Û€»ÁÅ—/BM“Ï«–}ÀHSáÕ²xü „¾mXOéß<~¨õŸ’ë?¿Ç§äøOüß7úk¡Ç_ÈW'dë®ì˜£$â˜ýC¦»Õ@-Q(LmB³h¹]ÑòúøŒ»Ûר–ÇØ§îÆï¼^f/VJj^sw›ó­âô–[÷y aÚ§ØE³Z*(cšb™U£ ²Êáq¥jð_ÖµB†ß¶®«îÝêîÏ9êY¾ßÜÛ¨ßÉΛ¥°U‹Êk ð9ðçZ_µ®Fu"üøâ¯Z”ü}ˆ'þªå[ékaÕZ„ùKáº;ê‹úÝ%ÓŽ”Ì ÷N@_•š*j̤-Eug\éV"…‰í«/ŒMJjVíÈ×eÀxN^KïN‡méI–ÙçDéO§Á§%f?À9Qr]Àð™ø%·xâwN×q{v±uΩ‹¦$ë.ßÎ6{îé0ÿPósDøÕ˜˜×Ey+j4&¡S¬Ð²ÊþnZI dkð>p±SBÍ º»¾øÖ‘@§Ep¡^K8DÉÝÔÁõÈ5áš´w ˜+²ÆÎŸBšÆ÷p±„ôõàÀß¾^|#ø#ë늴ü®9UË`xE½ øAð¶¾I¡äº€ÿPüM %ÿ¬ñÄߤlàVî¢Ü&EhO‰Ñ \Ñuatvõ]eò±µ5áI·ÃÚ,Iµ¨€+­·Ù °SÂàã·YJ¾Ç‡x$å¾;WSK“´½ˆ¢ °M[-ظ‡xkË¡¨âlD ñPxůñðó"§Xc̺[e%¤D=Ð ¡wMlóGÓž)8$ºxeGmc¦$«]”³ïªšN³¶—\\¾>²remnÉœbÍî¸f¹³âªRQ-GÏWKª¥Xì«Ú¼8Ý dkŽRµ5ŠîÒyÅ Ñ’B0›6£ÑØŸ.œ1Lc¦LÑa¦t§(bWŸRš,pʈôà›Áß— ¼øð·D6Îtè‹íH€·ßþ¶øÝç&®ÑÊñâ‹à¯B s= ôI”d¨=÷8T yVׂ¯mýP’[ \=ÐÝQeá§æ]ÈG9´4HŸÌócä„Jš:©õš{ªÎœûçÝ»}Èïïkm”“+yð|üFlËC9F/ÐÕßŒÄ £wõ/ùö|â,÷!žøËe Êb‹”réÛ»§d»€^Ìk±sèþo7]ô®ßLX…‘€K€7ßÔ…¥ ¤T{–‚’RR¶R¹ýàÁçFùæ†ÐÊIA!„ëÀ£»o夡t{”“†BÒR•³föµs¡õ“†N¯†Y@?7B'7¶G?7B'7JÕÏeJÞ¤– ­ ¡«Á£öPïB¿v(Èwå¼Dípû|==•1 w7qÊk“ÒJQc­–9¡šîÌ„V¢¯Yr#`,éC@‰(.Ó%f ¸ŒT%m¢DÖw¨áèÔe÷–ÜÜO©÷.M³h“ðø©vh¶Úìmf{¡Í^©š½Œu>n;pjz);üC/”BØVÿ™…R²QÔ4ÕÅ®bXG:`DÓ…”»êOÜNJ~ñÄ-FÊÞC)ãÞD/&{j‹üZIs š¬öSPkúhJÓ'Šì”n(7¤• }R3ÜýÄîÞa\ÆÌï„Wl¦Z›–£qû6ëòUùŽƒ9“§ª¥)jÉ6i§æ¤^ OÚt^«pÏÇÞ×-ÅΫ%ön¦&?–íŠæ‰E¿C_Ûj™_g̯ªtg_ÉÅÒ?YŸÆ´ìŒ2Æþ=¥—J,ÿL^‹6?¾ÜßÒ|©ÊÄ _‡û¡&† T#ïŒZœ–31<”3c²‹b¡³Ò-hŽª³â5‹‘ÅÂ!BdÂ]ໄ[ˆDGÀV‹¦ÂµÐ§Hªû€?"Í=^$²'³`h*’ù ðð{DeŸóË·UpUb©LºRr»càc‘-=ºâSúy`¼ÅBmñPNÅŸA“áŸ_Q4Ûæ»XYÝ÷î2°•¢9ţ˜ÔU\ŸàžcÑØ»î&WÖ ¶Ô -íµõ6ÃóÿJÈìoE– gÀg„³ß‰oûsú8Å.öâRkåJñü7|q.µi —¾@>jœß4páü¦Á ðwÝzÎaò¼Sô>éd R@–æ RLù9|üé°ù¢7æ)^˜+Ÿa¢wÔÝ%õøš. „'&yŸñÉýŒˆÜµÍ(É‹vùI3­£ù±Ù\ª®è\:¨ˆ"K“­yª‘Œå*Æka“¦ã¯m*¦rÍSÛ¥.·.Æœê"ø·–Öÿ·=îr¤’/ªÆuåÇi_2ëù³N·7Pˆàh>þ‰ÿ$Žÿ“À¯íÄñÝ'÷×Eä–ãø¥ˆÑ"Ç/E¶ÐŽ_žbZëøåÊéKÐñ·R]ÁŽ¿u©^ÄñË©9þo¯ãŽ¿¶¿®a:(ô˜Ë/ãOÀÿ˜k7°Êsgc®YK¦¬ð :0@g-6Ž¢A”ÊGUÇÔ¢ZR sL÷½>¦9SšføÏ…ÐfFsÜ7ÃlšIï»›ßíÈ4áyðóÿ _ÊÏ‹€¯ý/@ãKò¾Á'÷DäŽÞøJ£¯4ÙB5¾rÓºÆW¾œþ·ßV««yãÛÚTçi|åÕÿ·yãë-n¸+(‘ý¾'æ'Á?ùŸÄïÿðëà_ÿñûà“ûDä–ã÷¥ˆÑ"¿/E¶Ð~_žbZë÷åÊéKÐï·R]Á~¿u©^ÄïË©9þo·p¿Ïçטߗ4úò û3ðŸÅ?úÚÁ-­†rF_Ï`Åkö¦H:èUÐÆu£>ô*Ю¬²n¨|'®Æÿ¦×÷çØQ7*ª¥–5wÚÓvô²»t6¦Ò)3Üïí<m›w¢(Ÿæ?AÛLùy=ðàøh›IÞúäþÿ‘÷pn\×½ð6-›DI¤¨:ZJ$VÂb%q%‘’(±hIuHÔ˜ÝÀ@3ƒ-¤i˲ä^äw;ŽKb'±ØIìD²“؉æ’;N^ª“÷{)NÞ÷Jâ|ÑwÏÜÿ»3çÎ@Ì'{ø?‹àþçžsÏ=·J†wüºYêfeÜ"ÕÍj“\ݬž§ø”DÝœ´º‚ëædSmR7«+9âÝ/ñºÙ6JM¡+˜|\n!Áª%o•*Eö€_Çd´½˜ÒÁFÒSŒ²åÍ„ó'v¸4÷ÎãYßHÞz¼~ªKò`×—_Ô=|— /„:©ûœÀûœ o%u’ÉÔIj¸E­“*&Ñ:I1Oñ)¹:)Qu…ÖI ¦Ú¼NRTrÄ»wð:iÁ4Ї5moÒ^Þ¤6d­FA À›y˘š2ó¦·#PÔœø/à%¤v‘Ž×ŽÜÉ-°†jÚ‘“hGF]·åm(2SÏp ÔÑW"¾×.¼ á$äIé÷êÁÝt„J÷\­2sõêc25,‘?Ô!Gž\Xî`5¬“\‹éÈ5â9âñ«Xe4‚wa̦¸j#W¯ÊxEª^Õ*EX^|&AS³ïTÎ×dɦڤ&Sg âÝëÔö©‰$Ÿ†üôö ½Ï«ïyw§´_ˆï{Þï•á­Æ¹*¡‘@ûE·ÈVb’k¿¨ç)>%Ñ~IZ]á^?¹T[x}5%G¼»¿¡O-ÃâoL³ÿëÅ9}ÁÑŒ§ª|‡þ¾;ý9ÄW 9X8¹ #¾Èw!·ým˜Û¸ÖPMæ¬ sÜ,™EÝ..¤Õí`à·qj-›Ú·$~«¶7ZAm¿ÙHø Èßø/PçÓû|ø7ÿæ¨ó‰ïß ¼ÿV†wü:_ê|eÜ"Õùj“\¯ž§ø”DŸ´º‚ëüdSmRç«+9âÝuu~ÔŠS$õ?!ÿÏö×ßÜ¢j¨n.ËAÓÛ¤×Þ‹wª \ÊMŸ·\Ì]€é›|iI ÷ÝŽ¬ ü¯4—…ÞçÀ i. ñý”ÀûS2¼ã×ÁÊh$P+ã©V«˜äê`õ<ŧ$êà¤Õ\'›j“:X]Éïª]Ü'rü䯵¿J¾ƒX ÕTɬJÞ˳«¤/К¾<«RÍ‚a³ªÔµèƒˆ<÷€áäeÎp•ph¡±›·@¾E¡‘‡@ nÞ ùÖØš»Y3§4Ý¥ÇÕ¬r­ã¢¾;ukØÕè»­Ñí@rü1È¿Ö㣋—؆p'ì…Ü+mÒZÜ|!kÄÕþ|ټد$_ºBîý3)Ù> ºý3oò¦Iè9Ç*VÝE;M±UÔmïät֬ɮ‹€cÇ:ÖzØ8®eY›Ép´¬ó”íž­ §NUýÛßä}žÂçaqgÓv½é809´+ˆoAà]á¿]¡ŒF`UzU6b‘ʈFjd¨ÕR«FFhyéPVŸŠwž¥¶SŠ n~$›j“懺&Þ]™¦½\íÈ‘³Èæ4dùóÛãLë®Èzû"° 9òÁÚÞ>á¹qDxV >+C\»WB#ø¸µlª"娕PŠìØÕé£Õ´¸PcïT¦„;ÉäRmá$Õ˜¥xwÐt/WK9:ò{*` ··3DŒÂüaÈîŒ=-ëEøIÈjúâÛàE?%×—Ë‹*¡æEOKyQ%”"{QuúhéEÃŒ½S™îE“Kµ…Uc–âÝ ‹\(uäFŸ4&rû2ä/Çæ&Ñ¡t' Œ°J”lP]‡Òv¾îÆš£n#Ý,ÒÁ:)K×ò3æóT•Nz ½òl3WõÎ×”9¬—H_¼òPëxïÞùž ¡Þ#‡â‡dˆÇ¯÷”ÑP×zPF)R½§VÊ[IgJp½—lªMê=uf)Þ½K+Ó¶Á—N1¡`•´|•V2Nù{,Þ³tQçý-#7F®(Å—y;dùù?1*ʰHÂT””lP]Ey­WQÖNVŠ9ÚBÜ.n¼EšcÜÑ–µµÞãTeøô _nÆoâJÔ—ô^[‚¬ ¾Lvl…¸x”ῺTF#°º\/Œ­xŽ\w*ã©îT«œVC*‹ E‡r([‹¢Ù)µ×îɦڤvWWŠÄ»Ñ½yÜù®NT̹)yØŠ™’íª«˜´½å…ÆÉÚ1+gâwP8­¹ÕQ™Ê—xß ÜyÛ…ÐX%·Äo‘!¿öUF#¬±:¹ÂUF)R…«V-«aÆÞ©L ®Î’MµIu¦Î,Żѫ3‘Ç­oíDuvŒ‰0Vu˜j³˜÷uñÚë. ®˜Yy®%%¿LÀÀ|7òÞG%Sa»/§“]hÄ@››1ó3Þ‰ÃÂôoaª5ï‘¶ §BÇcº–Fk±ø|cš9nèNÕ6ø‘Å%Ý>;ì}ºã¶éœÎhG,×à›7z{?ÎXŽQ¦>›!kjŠ5åX%cŽ=1ÈþÌ™®­Û íx5G=8®9kx«Â¦,»Ä8U-LÓiÑš3cU‹Q}ÎЪ´êÚ;MÙ˜×KfÙ_ì…÷É{3¥ ½°7ïë³ÿjQb×°{ Ž{(C¹L¨¬ˆàŒã€”¯GʇTEtÛ¤ä{Ä%Y—_—ν]<ôõWÌ\Ù@ë$Êš•;å;¥å‹ºãh¹Ý-n€¼AYسv€,Ü?y ,&›ÜôÎ!ä®ÞY*& CÎM¦ä6o†|sl}mOçÑvZÑt\òl¬$Õ¼A}™mCk•i¾Iä•D: ÌAÎu¢¢> k"Œßî¤"da½ÌÀ$ˆõWC^-à._Dè2VÃEëd %1[€< ¬PöñQ¡Œ\ ‰Ð p òXò’’Û ‡<Û¦­úÆ'Æ< ¼UàµåÜ,,hþŽ*NºaÕûsÑPûdñqì£Æ­`$Œ`ð£?*ýÒÚœ’È ø³6êKt¢W‚N þ9âñ{%”ÑP¼9¥2^‘º&Ô*¥Uׄܿ”IçLpÿD²©6éŸPg âÝ××wS^ìECw¹jÜ‹}¯6lËä9Üžq™@ÓwY <,›Ze´¥?M}òN€sÄFfFÞktïä2¡²ú1¤’íC²»¸LØîf%[ý«ý¡ç”jÂäBϾÂTΑ`Ö\y´ëM ö<‚ç7CÞürˆ=‰ÐMÀqÈRA`´Ø“’»¸ rüØMõسaˉêqˆÖ-ÀÃ'ïq(¹>  ·ÛãPÒGÄÕ~s”Ûº‡j=Nó°±`¹AýpD£¸òÚX’ø”F¢š^(˜45X/ú>Ç–³aby pòHò6|vK8 y´ý6LÉ ˆ«Ý4ŽÁj}TÓu«áŒte{}ê›i/HM)¿Ì5Èš²Úi™G-jÅD\¶o†,Õ]­b¢ä®¦!§c+l½!WŠ–GECÀÛ!ßKEÁQ”`v˜ƒœS¨¨¢YÆ’£u/-ÎÖ â›{Ã%Èß ÌBÎÊ’_òË€yÈùöØïÀäBlûÝ™ÑNX´r £z5ÏC½î´ã±6EgÀ¥½ý‰ò,`®:†ÌÆ‹DÛ~ò‡”›ùÝÉéŒGZ‚âWß‚ü­öØûƉâ?ê—xƒŸþ ä_Qfô~ò·Ûcôþ.äßmô«´©j9OÁXä±b"ò{ÀïAþž²|Xžõ"€tïåÆ^;v©C#Å”|€¸$Kñ%qég× qÅÌ•ý,»¯¡­`êÓeËë'ãS,„â˜ËÄÆ„ÂV…_äTJ¸ò~éiÿ’wâ}'ð0äÈÍjz¢ÝãDøˆ@üˆ ñøãÊh¨[ò®ŒRpª!CjõÑr6eÔ%ïIgJðhE²©6­Pg–âÝë4oÉHF»Ó¨eo'o«ìmîÍG×bá"äâæ;KÀYȳŠïœˆÏÉWã;•ÐPë;•PŠì;Õé#ß™d¦„ûÎäRmá;Õ˜¥p·ûFÍtÒšéz{=»úiƒµÒ§Œ9uz=Ê4±wÊ,›+ñãT:d¯¢-í(~uf,ÛÍWÙótRí)æˆkÛ{}ÖµùÁ¼£Úëߢx8(âõ¦ã’cOk¹ª‹ïyÁrÕ¶·â‚V¶\ͤã‰+‹SÔwF/B7Œy3éÅÚ©ðÅÐ0¼1÷¦¢M7¹Q'¨ªû\&lwãê”6Õ´ñö²ÖÌ=n-›s†V±ÇÌ n,® C~À“ o(!âk<ê„{!ï•~—Ïô>û€C~XI=ìrmâûˆÀûÞñ«ie48bC·HõµZÅøõuOˆéȱ¡ž§ø”ÄI«+8’H6Õ&‘„º’#ÞM/:b§âŒË9“UÂ|,@3#/? ùYee½çÈÞ0ç6æHDÞ|3ä7+Ó]h÷5%÷ð-ß[sýpŒ‚%o9i2rÔC¤Þ ü8ä·?êyˆk¸†jÆ]M ã ›–‹03F¢Ò0¢Û'%ß# .I_¶<.G»ø^ >⊙+›XqyÈ*NMë¬M÷ iägÜœ^e†•ŠHï1(ŠpäMÊ<ÿƹÙÜ*¬| Ul‹–òe,{Z‚äõÀí·+3èåY*wÅt¯#¶îzÒšÄûïî‚,7ÿ9HI×͸nÅÙ5<<77—‰ ¬`Hî>ù …Á^ÕSÕmÀ“OÆVUoô¾ "ð$09§0êÔ«îŒe‡8*½Ù®Žº_J¾GÀxîw .Ç»øDtqÅÌ•mÌýÖ†;3ÚÞ ¢‡1‚˜Ì°´ƒ-"ó' CÂmå&fú “´›£ãP·‘GIp¼ x ò1…‘FH×%w ð~È÷ÇVê¥íˆ1§=bÙ§wi™L·‘ ?š ÇŸóÙèOÂ\|Tã ¶RˆÎ¢aϮûQñqnçcÑíüI$Ü y«2;¿q²èS¡¾!…×Îð‹€å pòdòfOÉ¥€Ç!­Ö«3Ú}V¹`•wiûgôJ‰va9u7k4E¶bvhA¶Úoÿ:ÌÈG5ö¿…ÙÿÝFašÖÛÝ—ÑôJÀÑâi³œÖîáæKtóÏáÈ[Ô™ÿqÁ ^¤êŒUp5V3ª×'ªC@a6tÒæOÉmNB–*u 9t}F;ÎLþNÓ˜¶ÒÚþ½»´½y½`”Xþy‡Èe ‡ÒIè@vÚ_ò°%Ք㬠ÍÍ´ö3ü±‘QŠoö3/RÍ{£Œ‚u´àT›¬¯C C«èùÓú´¹Àð2…®z—ƒœ l ²ªÔaDcibÙ9nM¹sºuŠ2‘|8y>ù¢BÉ.@^è@ÕÒ?< ù¬2]õŒß*Áçàk ¿F¡:rV±’ì+€ÏB–ë^ï®N¦µÑ¡¡m;¤ ÑsÀç!?¯®Öñ{ –I=ã#™Ñ·Žo>ÅêìÈø­sd<ŒrH¿Q}ðÈ/(ÔݬaçB’};ðEÈ/¶ßSò_W»i\Û5TS«XÁµÊØ(«Uó#ÊfŒüiï€írcè’Ñî)kû3ÚݬÏÏ”ÌBZ;ÁD×Zu‹&mèÒÐ!Ž….ißE.!3x;B!ÞVTB®œ4C·ó3Úñ…2Í;4í0o›Jð< |²T`ÍåQrð9ÈÏu ¼¦ô_ |ä×)SSøÖÕMè¼U@\IG×”Üëoƒ¿Z—£èztlhhtì©ô<ðÃ?¬®•TÇŒŒŒ Ÿ²Rf4Tq!µ ‘üð«¿š|íBÉý(ð× ÿZûÝ:%ÿëâRôö«²ìÃ&'´“Éã\»]f—Ê:%rPò=â’4×þ¸tNñ©!®˜¹"±ïÍi¨„0þ¾7a«àe6{ F7·B–6 )³‰nöpÏ^ùzYòK~¹˜‚œR˜-!)¹>à äÁØ{'_^Ž{šFïõ¢ZK£@o×xoލ F7¸ X‚\j¿C*¢°ù¨Æ/Jx€'Lά´·Z0B7çiÆn³ ©Í]jwoâ.™ð9K:ž#Ô kJœýb?ðfÈmرˆ’ë¦!Çß±èfÏ ´ÜÁÙó>ù!å¶½›“J›¾ò+ÚcÚO€r Ë.ÈRC€¿üðäsí±ì‡¯„üÊØ–}5ï©ð:xýõ‰~ÆG­/ˆÙ«€ï‡ü~e³2ë+dVH¬J•B¹«£<%ß#`¼~ýùÒ ]ÁÁ²ªk•€¸bfËþÍ›7×—’jEkZ££n°#½çó–M§æX|£G/UŠ$ø›×;‘ߤ¥ÆßëÅ¿{¤ »Úî!ÍpèuR8Ðgb`rr ­éæ„[¡ösL(Ói-oNä½O Lð>¡õ?ìŸL.?=ù¥žÂ‹|$9« åa#mÕ”žÉLh©lÉœ7 CÆÔ”‘w¸~NRαŠU2!f9Æð}«¹"í›M³" ݦ]ÕèK6m¥Ýr¼áƒŒýrÛèÜ'f9¬nJ-˜im–]%š×3¡½’½{!íf}ÝF¢Û‡ º„ñfŸÆ³*ÒöQ}\í¹«T©º|s<¡Å™â,hb¹M—Ôr›Æ º¬UGZ®uñÓÆðÑõ8B„ oˆM®±ŠLeÉöAîë€I- mÕ˜ÔedRµæ9_ð™ÚÐ!¼ òe±©õ­SYtó9 „ýãwÄE×Ù+¶jt6!º¥'Þ4î\ÎÏV¨ºùÎ7á䉸v—g¼ŒO[ÎK¼t^©ÔîÖ¦r†«;rœ^„k Ç_¹±Ž)ëOŽÕÓ`B¸ò:e팋²t~b¥8T`!¹W+-‘”|€ñ‹; –óu³9=ÓÅÝÓ3ÐJ¿R­¬Ìž6æ,;hðñ(â™ÚwpâàVÂ.i1#áæŠ%eé@9oQ˼ž¥+‰™÷Ú{¿óýñÍ/,û—E†ãoñ·âØÑã÷<œw};òþtë?Ô¿8±QuãåeM«ÿÞÍ~¯Ñl–‚¬L™E£É#罿¶söû×ê:ú:þt›<ªíâ’ ¡Ìú©ÆZ \ Y*gS]žÕ‹¦T÷ zº#švi„’_+ .E¹ˆ—¡&{¡‡h¥šèÅó+»jÒÄ´" êyÕfwWCÕÙ.­PòëÄ¥H+×Þ·u/S‹vŒµùÁ­LC[µ£ÞéÊQí>¨‡ðFÈ7*T•kºÅ —&ô­•k—ª(ù­â’TÕEqé,ëâeØGùò,Þ¥ã·b‡FšyÀ¥÷ˆÜü€0 û)bV‘Çj´î®§½ÊÔ³î¯~J‚ÜÕÀÈ×Ë >^“9 N7i@Ÿ¦õ *+Z}Yx†¤ºèŸ~SlºÚëãî†ãîHÛGWxXTF ÈœØG×àdßqû~eº Œ¥ënàqdÇdleõDžâJ× ààr".žÝYsÊß3ô¸1_±à 7v!í¸ú´1aå‚a?~öðÞwÚûðäÉŽØçê-?¾àd¦ ×(ϦݼM«}Ôìqt9T(Ÿ‹Ù5Ê’ùÓ˜…œJK7ûk»–œJ+˜E¤òº€C¾8¹vr(aÄX¾(µ¬6›÷†¥UÈžU¼ x²T_\ðÙÑ\…ç×C^¯Ìé­Èò5! ûãÂù!1eˆÊï|Ñ,¥µï_ïŸy¦*ú€þ*š•‰ƒ{ï;~ Ù°ˆëeÀ=÷ÄæL»ú±ÿò&hi•š4m³Èrјf YêBW|ÐÄ*Iꃜº^(LÌßÀþMk®Å$×b‚­—)†º=íDç+öÝB–êX²—û¯’Ÿ™eí˜g ÌH&ò©‘Ì-éñÌ-ƒÑÉ®ABu„—Á.¬bZËM3p¢×Më@g]Wà‹¤ë&Jörà&È›:Q7+WA¾J™Ÿ[ž­:¬A«tמŽS‰w#‡pôL€ñB¸ýqéЀÇjqÅ̉eVë»êqrÀ2+E¡B÷¼­~-D&ô.¢s©^FǨt¿([¼òuqÚÿ úE‰ËàM¥z“C\\H¿(%§o†|sl[îÎHh$- .eooºF)$Ù>àä¡öû7J># ®ö;ñ(¼äJ…¸Ìúk «kz<6?¤Ï›ÅÛ¦KÛcMiÕ²S1òæ”iP\(œ¼¦9AÇ>iø ÷yÇÉ9F™<ÆgLF- —â9ÂSO%_.…õ ë²Û](ù¢€¸Ú_„h3É’°½$\ë¿,™’° S’( —á¹ËÚ[.ƒõ_ÖÙ’p¬ßÇŽ•„Ëaý—'Zz£„Ëaü„«!K…á¡e‹.. …€Ýbÿ¯:?Å(g¹32ùºxä;”¡ÍêØÐ”¨ÞùžäcPJnðäC±M}™Ìâ~¢p/ð(ä£ê”ÒÄÝ7UʃÀGºjÇεC)Ç€B~´ý Jþ1q%] Pr}À,älû+Jþqqµ¿ØÀ­ÙÃDzN‚Y?P}84éͪÄ„~Ä>QQ©ØVÅ6i W™x¿µlÀs„:du㺡`Œž09×þ@ÉçÄÕþ°F¿1Ù°½l„ÑolGXh؈ç6¶·l„ÑoìlØ£÷±cà ýÉà”`ÖŒ_w7EkÚ;Ì‚ZµžÁ/hs3†w )Yý´mU+Nm›9«ŒŠÂ‹>Ñ.vf¬j±@”ÒëUX£!åíŸ`LéÞÑÑ;°¯Às„.dWY˜ºÌ¥§—³ÀWA~Uòq*%W> ù騤g0ª›¢ô_ |ò3É»)J®øȯi¿›¢äŸWûÝÔ&nÏ&ç¦zò¦¯~à*È«dx:©©N*o•§ÌŽps {V§sϧ½Êºæ›˜4W¦³"èž3‹é¥è]×ÈŽ´.Ôx)ârøJȯLÞKQr.ðU¥œcãZ:@Š­¢ã­Ót ©ÑâÖ¨þ‹˜= üä$ï¿(¹>à!°ýþ‹’ÿ€¸Úï¿®ä–îa‚þ«ÕŸ~`ûýWÅ6 &o\´ÑÑ»®¾\üq9l£ÿ¢ä\àËÓ³§mô_”\°ƒþ‹’ÿ€ó_WqK÷0Áf"M-•`ÖTßL<ÒăéÞLXÁSé…‚áíL®ÊS]…ç‡,×O¬ÎS—Ð?g&yOEÉ=4!›/+OEÌNŸƒüœÂŒ ñT”\ðµ_Û~OEÉ¿N@\í÷T®“ zªå|â»·~ຮ%[sÅÚ>ÖÔWqÂIz+z«õ@²T®BoE\f€EÈRÓ-¢y+J.,A.Å. w.ñVØ‹MÔ¸§MË1½¨Úšòþ†îSŽyÓ zƒ2ðg!ÿl,¥ª-N_~òW*·¾+þ’d¿ü5ȿ֛úð×!ÿzl›ŠÞ#Jé øuÈ_O¾ž£äú€¿ù7Ú_ÏQò¿) ®ö×s×ðbäa‚ó·X-!A¬þÖâ€üšãv©¶òÕ’QvuÑÑIP]¼²Ü,ù¦Îok/ÁmpòDòÎ’Þùöä%—ÞùŽØÅêªúà5?]æøÆÕÍbäY«DlðQÈRó¦¢y=J®ød©yRñ¼%ŸWû½Þµ¼|y˜`?ªkIðêªïGUêôˆâZàMåö·RïôˆÓvànÈ»“wz”Ü(p²J_âô(¹›·C–òµI9="vðÈ$ïô(¹>à£ÌQêô(ùÇ”ž£×é]ÇË—‡ viðÅñÜúëºTwiÜcy;ÓèEM·§=Ï'6uõº¥S7†Gß²Kþ™y«d8ZÊÈLg"Ÿ&M¯³ø(d9 Êê~Îu˜¯„•° "¤OAV¹z&ÄU]û'< 9þê™U·iÔ%áõgH(¨œ…<«LAòeáðÈÏ$_{QrsÀ×@Ž?WhhpétвPÊx‚Õ2Q+¢ú,ðg ÿLò %×üYÈrYâÝÈ %ÿ9qµ¿bѸé{˜\ŲÌÛmE‚Z?pmWŒý£ê]KêG+uˆçÍzöÍŸ…‚aËdñ%ÀCåAE÷S¡•‘¹ø 䓯D(¹{A~(~ñ‹ê|(ù‡Ä•´ó¡äú€@– ¦ã9JþQqµßù\ÏíÙÃ;0+ù bý@õ˜OÑP›w¼«³PÊYÞh«BkK1üÀ5£í[ðãè¸-ͪe-oÚù¢Q«v Íy—ö—žò—fkÇ£øÐk¯¾ ò«by¬@ÏU±ÌräÍö‰Ó›o‡üöä#,JîµÀw@~Gòþ’’{øNÈïŒ]T/å{{üŒÜ/@„ÞüqÈ?ž¼¥äú€?ù'ÚïA)ùO ˆ«ýt€—+ ß¼ é$¨õã‡o‹)ý|-|+³àÍ6ó¾ç[2Î|ŒFôÿ´ØMü†nbz[+6û‚#|PÿÁÎX" /þ:d©ñÞh…l‹ðk¿ÖþBFÉ]@\í/d›Q°6'ZÈú*Ñ7ÊØŒrEæãâ®·}‹Š³ã¢Qžvg´1¯˜åõ¢±¤È¤Ìé²e³¶ÒÜ V$ÞçbàýïWÖTjêÆB[JÄåa`²ÔÀW´šŸ’›>Ynâ§x÷2ŠkoP*:$FOŸ‚ü”2%­¸“TH:|òÓÊ´´"ëÜ_µÜ0=ÙÀWC~uû[´”ü3âJºª äú€\¤HÉ?+`Ç)ÞÀ-ÚÃ[´y+êÁD¨¿E»˜P¶ѹ*zÞe ǵ©‰»(Kå,»`؃˜eíGT^K08|ŠZè ×OAnÃæb7Àú ;¸¹%_°c›‹Ýë¿1ђГ›–àÕT?M£tÞ!§çOÓåB½(xý;Þ${3—»lеN£äÓuô¯ö×i[¹‘{¨¶N#ì UOȱ,D£¨~Ìàb>âU›ïÕf‰Õ%@­«6©#i›ÏÖÆ¿Úm³”ü€€¸½}¶¦–€´/i¦€¸Ú)ظ¸$KË]qé ¢„ø(}Ë¢Éãšv‚…O^d%Ì}š5u-"Á› *BaûE•qèé5¡ÕðM0[Õšph5LÉ] Ü ysl=•µRÕqy¿×ÕœéÎXU×ûËÖ]˦јŒ‘Ik†É=_Y3žªêÅ!Í¢õà¬EZ°JC<ºvø ú5ý˜ÿ=‰%&ô®7ßYjšFÓ)$+ì’ž©–M r~òÇÚAÈJî½ÀO@þD{ÌïÀ‡üã±Í¯'ò„zJÿ'€Ÿ„,7i¢é¬"2‰RÔ _Äéç¿ù—ÚcŸ¾ù…öXħ€/B~±Cñ%à—!Y¹E¬$‹¨‘ô«ßþäßkMü:ð÷!ÿ~{lâ—ùbÛIJ4U5ÿ‡Àï@þN2f1],EsA¬¾üGÈÿسø à?Aþ§ö˜Åwÿ ùŸc›ÅmµÎ9'£¶lÚ5lÞkÇC/´™Ñg ß冘DB]?àØ Y®£!8)ºSµ#O*!6£Àí\&lƒ6½nÂ\&Œ©ÍµÔÃÊ#K‰Vâ²xË„ŠÔ70y瀌vq™°Ú¹ x?—»åf?‰w7i)ê–·Mç´V0§Ðï ÊÔÖÝ“ÀS\î–XSÔ¤”¢žº\&l‡¢N«\&Œ©¨ËEÙ´¶NRG³À7p™P™ŽŽÊéèyà;¹Ü-5…=ºŽÞ|— ÕèÈ*œX:úà'¹Ü¯Ô¨£½Ç¥t„vH÷ç¸LØ¡Òýy.ÆÔÑN®#ÝÎ;4²è°zÉ64Û²ÜúÒUL¨qˆ?ü.*Rä²{$=âÿþ.¶C“ÿü¿\&Œ©Ék¹&Ír[ÜÛtàLœr÷o{6p™P¡º¤"žk€×s¹Gªo?²ºz6¸Ü3[][ÕÕXĤZƒ=›ws™P‘Ú–3µ—ÓÛQà .÷œhÞî>ÀeÂØ­1Ooa޲‰>3Q‡,ˆøƒÀç¹Ló"œÜÌ-¡†JÆ“zþ#'µ‰'´ýQµX›Ð¢Û¥¡¢1Ëš·µ­Iü 3îœåŸ7„ÝJ\ÛÐ]o¶îM,»¶Uôþ ¹eÞ/–4}Z7ˬ©lèù¾ /£ÝSÖ*ºíš”´½h*Lí«L—sâeÙ^3ÜŸ‰+YúÛ|M‡^Ö‹ ghnÛâ*”'V´¦ë+¥ê ,únŠ=6(»Â—)º |\ˆ»ÒÈÒæ•|Qãƒt-Û Ä’//Kò§Å/ñ—¬þÒµéSçWl—üvôÒžñŒ;bIK£t¥©|Àÿþ:ï-·ù‘ùÀp™0iïMÉý-ð_¸LÓùm¯ÏËËëeô/^¼’ãÖ-¹‘þW޽).*RdŒíˆÐ0p—{¥ú´"+³w¸“Ë„1•yïÒm¬BÜ)ͧ‡ùqùí”èEvŸår¯ÜuÛ)—7Ÿç2¡2݆ôµSrÏßÎå^¹Ákñnoôp‰¼ø..÷ÆïĈ. q…ÖPÍô›.íu´‚áäm3WÛ]gé&—~‘uL G Ä2è@ÖÚå’8M÷AÞ—¼aSrÛû!ïOÞWRr£À;!ßÛ~ÎÕÂÚ´vư--o‹ŽW  Ý«™cÌ‚?§ð§! «÷÷ ^d¨9%½X¤ Ûqu>ßÝ;kÏû}¹-WéÕò¯JgA¯_„²æ”QtŒ³3n©xîlÖ(UfΞ˲7:›MmÍž£Ÿ*ŸÝ‰¦á×ôRÅs³ºmê¼#qnÆÌÏ0eÛ†S±ÊÇÿÒœaNÏpϳ Íy'}±w7ÌYú½ú ð†IßínkΨMÁZ¬Ûkâ0ÏäX|¦çÕ(Df/$<-q`™ÚVŽ^ùÙÊQQé[A[*=6ú¸Dù빨q¹GkKùë¹ x=—å2áºúB[ÝžV¡1*ôp†÷(ÖØ˜”Æîæ2a;4¶x„Ë„15öù õ‹èTîüÈ‚ù Û ¦++Æþ>[žGô<È ­ª.ZåiÃÖŒy=ï2—Vw ð âOøN‚y§Êüˆ.¬£ö öðbwP0Ó¦EÖVÙðZÛ4ûOŠŽrìíær¯\T ØŠzW×r™° VÔÛ\Çe˜VÔ'1“\ ¼”˽êܱÄ!Dž¸÷*.÷J­ ‹®xâÞ«¹LS#Qã×ܺ#챞]TíK(ù Ãå^¹†â:·÷ ði.¶CÓ.ðÕ\î¿}ÛY¯Î¥>D>n.(*ÖóL‰ÔÛX\XêíÕÔ%}†õX|¶Àï°o]Ã.{þ¹¸×÷>ü.vÞúzqÙÃ6XÃÿ‹dû¹ÜE­¤'î[\Ëå>©ªH¡'Ë}R³ç"k¤op#—=Œ§‘eßžØüð{¥v(‹V*)¹oÿ òŸÅ¶°žYputû4mŸ9£Ó¡L¶1í6Ö ïºõQ÷hÞ*Oaî"+¿†=«K«ùÏ9zk4ÿœ£2ç+­fZªéáí\&lƒš»Ç€wp™0¦š'5©+*’ž+¶ÁnòÃç|=Guô{€oçr·Ô¯ÀTWf â.æKví!Ï1Þ¥Ò5G®!(ùqIZùUqél£\WÌ\¹ž¦˜1GâêÚ”MÃ°Þ rV/1S¢­¦vE¥y Fx=äø]ô·ÝŠÄ “ÛŒ4t‹¥f´ú”Þ’*ÎvòóCú¼é0%za»ç"vç ¶9ÃÆ&¼Ñ¦$òk€û!«œ%²Ï%×¼rüYr‘K"%@@\í7ñí0ëíÉšø‚­~0ñ…ÄM|;Ìz{{M|;Ìz{gM|;ÌÚÇŽ™ø˜õŽDM¼7oDõã;`؄ꋸxÑ,ƒ¨ÖK¬Ö¯…|mòÖ»KxäëÚo½”¼& ®ö[ïNXìÎd­7úñ;a±;±Þ˃ö÷jÂ;a¶„›!Kí Í„wÂl o€|CûM˜’¿Q@\í7á]0Û]ÉšpôózvÁlw%b—Ô°wøHdóÝ“%¼²”+Œf¾»`²„d­ýæKÉ_/ ®ö›ïm0ÙÛ5ßè‡ìÜ‹%ŒÈÎb>‚ÎωlÂÄm-p3ä6xàÛ`¶„ôÀ”üvÌï†ÙîNÔ„{Í‚#A¬˜Pá¸Õ‚fè ݄ۜ‰Ú:`ƒˆÝ0ÛÝ5áÝ0[;fÂ0Û‰DM¸Ï)ê9 fýÀ5]qχ Œ"¸ 3jFô xÏjµäíw6Kx=äøÕwdû¥äÄ“Æ8³ß#–kÔç­Ýߦ£Ù†[µËÞF³¦cæŠ ‘ÇNn‡ú£ãÊÔ¶<ëíSî6¤u°C#'”|€¸$‹ûò¸tö°ë"qÅÌ•MÌŒ²ŠSÓ:kã>hù7§W [KE¤·Š"Üy“tn-vAçfs{J†«OYöPŶNy7cÙQãU"w=p;duÛñ.Ï%Ý,†¤{%päøûñF߈Òß Üy—2%]7ãºg×ððÜÜ\&‚²Bºî…±>ù eÊêËVí0UÝ< ùdüh#úž DàI`rNÙë¯ÈêUwƲC •Þ}]u¿”|€ñÜï•qé£'â’Ε®§é®ÅÜï!³ôÕO•3ií`F;”IkwÑbEÚÒíûc‹vX·Ý¯~º üäÇg”©æF¿â-X&U´Ã£#™Ñ‘ãÃFÕ®TsÃ;2£™c«_¢úàŸvñ£r¾£P}³† Iög4Íñ³]Þaí®}(ù?ðOùÕn¸¶k¨¦.–èû8ˆÄ “èûàÕáŠû¶îÍå¾ú) r×A^+C.°ûc¹G*ls‡fœÖi fš,¾Aaôj”ó!©ö¯€Íñ´v/‹4X4r§á:§ÒLÖŽ{ÁÉÑ­“¬î>mxO°˜dÅ$‡Å ƒ&†ç‹fÙ‹PlÃ1t;?ÙÒ mžÆË©;”⪽eÆÖ›}sOÙ[qWd/Q0ófYFï6ðÍìzŠ]oJ>¡äŠÀ· ÞÜ„Ò+ðmàòVezꉅ‘w) ¤‚¢hQ%÷<ð}È‹÷*ˆBÆX26¶mhhl|\ª½øIû eʹ9 Ù>>vëðÈÈÈøÐ¶£;Yè´}hlˆñ‹áÏY B¡“ÂݧBcJîSÀï"ϤB xA%ÿ§~·«#!Ñ]\ç5T‹g±ˆÐï˜ÖbõÈØÈè«Gö[åB5ïM¿Ú±|­Ñ$Ÿãíí›Å»š´Šž?­Óªéˆ/v7^†ð8äãÊŠÅuBãö8ítêð…SÇ­)wN=R¬ÙGó瓯_(¹ÀÈ ¨_(ý3À³å–΀¿U‚Ï3À×@~MòÕ %÷ ೟­ŽÕ©qjä1g-Uˆž>ùùd[¸;nß>|Êq2³#ã·fÌ‘ñˆµ Q}ðÈ*Oe ©U(¹·_„ÿTÖÈÿ’€¸½ýª,{ $¾Ÿë¸ëž.•uIä< ä{Ä%i´«ãÒ9ÔŇî}”^r·µ/TB¿µßR¨%Oõ¾Ïn€¬®eº§ö½PáFÈRMëdCfRr}@¿EE*^JðJÈñöÏ ìk‘:Õ›8m¦!§Ûcׇ µÇ"®f g:dÃÀÈ#Ê-BöTob5¼²Ô¤è6±(,=j‡MŒB>Û&–óÓ‡$rþ.à}ïKÆ.$Žõ&VŸ„üd{ìâ8P‡¬·Ç.ss±íb«7´\ßÛµhÏ ¾á?ëŒo¹"¡š<ð ß m8Ë)c Roþd©±e…c Äå½ÀuñÌ•UØ¥öFà‡!(¶M]Ž3ëp¶UÁÖçÊ‘çÌ¥~ô>§,CVfà­žBBwŠ’ïëêhƒæ>¾ñ4—œ/ÐÝLÈ߬WÌlÙ·y󿯙-Ô¹V;RŸœ§U~È‹Íê0«Ô¸vä9/ö‹l(è®¶{ˆ¦îf zÉÌ[c##;#“; B„ KµˆÈíµ ‡È±Š6U2t§jt08 ̉y7­•G͉2Ã<û3Ïþc2¤yÈìŸÁÈïq Ü …ù¤1ߣ½Gd*÷#yÂ>È}É•çP“HÛG5~e ÿPò»¼3½V‚°‘Öüÿñm "SºÒkSº·Å¦¾ª¨³Š2ÅtݾN€á*Èñ½Qt¥>€´}T£Ôƒ¤Ôº2=Eâ(È }z¢c• -_u\«džñNa‹ü2âBŽßô¸½¦fÏ¿ÐNZi­â Ó¶Y€X4¦²ÿGÎ]˜(¤#¿ÄC Nx;äÛc¿ÄÍû¯~æeZ›gïż(é&µŸö«ÝE›Þ 2¿º Üëã?ºþ¥®zË5u®í¾ˆ×šÅo³cØ-U†'Ù?‡&g¦K†'sU³XÐ ½Û¶­ m»uóZ†KzyØ«2~Ž>ûL¶ûŽÔr”¥E‡xÐÚÒÀ2rQÑÐgÑÚqŒç=NN¼¢n¥ž,X«Ÿá]ÿÊ?[¶Ä+>pâà–»-iqÉn®XR†”óíZÏÊ•ÄÌ{õ½ßùþøæ–ýË"ƒéÁwW;züž‡ó®o?ÞŸný‡ú'¶;²Nüü¬éeÕâß¼9Âo6šÌ’°‚€)³h4yä|;‹Ëz)¨³X¨ð…wðÙ6y%JöqIÐPZ ¨ÂZ ¼²T<«M=¨þîAVô4fK»µBɯ—"­\R/K-&„h§!¼òmÐŽ0;"hÙs»´CÉ_) .EÚ¹¸Q;áãó!ÊéƒB°Á“7¶A9BÇgݲFO9}° 7IÛHrÖ7*§ÙPyˆz–A%ËÀm¥,¿ˆêY•,ë <’µ]ê¡ä¯—"õÜ|©gèh™]UW»ÓÔ§ËMæ¥[™Î¶jGs´F>êÎEË¡+Â1Èc õæšn1(Nð+i€}AÚ¥7º¶ ˆKRo+âÒ¡¨x­€¸bæÊÕš¦Úóºm/Щš®Ed¸º"¼òÕÊ }ƒç‡†,fè;ŒÌIp¼¸ ò.e6½"ëÜ_µÜ £¦¯Þù¶Øê{2­åèˆÍŠA§•Îû®”ÌÇ$5Ê@ºGÙG' ñ-—RÌKä‹U‡ÎN(³FqPÓIùtœ}äYÚôv»€ü¸oÙ³;kNqKÅsg³ÇùŠý?[É™° iÇÕ§ Û( ûñ³‡÷ž¸ûÐÞ‡'O>püÀþ;Ðøâñ'3m¸Fy65°èöÀàmZí£fãYsJK]_>“ŸÑí”xoppÉÏ ø3Êó…ræ”Ãòßœµ3eÃ.WJ¬yçΜÒç÷ŒÎ-î1?”§÷šª‹ìéÛ´cì÷èwœ¦™R†Zf©‚•÷¿òÅ´¿JebÚ>ñ²G›~wPÛ²E[ò͸7üüà¹s!|{ÝÉÃ{÷O 1ãòOD5czbõâ'Vg‹–^@þÞŽš=»µQÎIÂO ì?)Ã^ôýAÌrÉ›GÄ8SÙ{§š­µéÕ§؉·zwÞ*— ¯n¾=äW¼Nа.ËÐwée5ÉW "/ú©}²~)ÒíêlÁà6Dz:$ö¢W¹¸hŒ£“〸$ {üYýP’‹à‘ŒsÖÔ¡©ùЉ䡜„¹µÌ_#G]aÉg –Ô¥d××C^;Kz¢K—A¾,¹†U(ÕÐRÅ©eÕÙº'6¤H­AqZà ï@”¡HKrUÒèŒðJÈR! —’áÎXAjBñº.º»d»/Ä»ãTŽÑìHksÚt4†öêö4û³b[Ó9Ýž8¸÷¾ã¢{«G i_±'< <ùx'Š=á àxù·µ(bk)nr+¾Ö¢„n‚¬®Ë²Ii[‹F¨®Ï²¥_< ùpûJ%{8 y²¥ž€|âåSÚÖ¡„­K¤´É®¦[‡2¶†sY—d%µ¼­C#Œ×gÙîòFŒ¯…|´}å’=<YÎÌc–7"ððAÈ*3åÙª£OuèöÃZ.îŠÄŠw#·ÿè™ãµÿ6Ä¥C.eµ€¸bæŠÄë¡€-¹áÈ›®‡åø¸h †ˆîwñ Ò¥zY³¼±>Z°”/êŽ#“ok€×A¾N:ß–T[hý D-æÄg 09£¬˜‡.p¥ä4à0äáøn.òbxJ8 yT™ZVð(YJ+;€w@¾£=Zî¼'¶V–¥5Ë–QÌ^àÈ”)¦À¨¤TsðÈR­¾èª9|²TuÜèg3jyH@\ÊÞ>äHJ®ø0ä‡ÛPòˆ«ýµ0lÚÃäjáµ%Èõ/†|±²¦Ð¨å&èEm–ÕÇ̱¸Fä4ÝoÐpü¬n›z®hD5ñK…k“6ñKaÖ„wB¾³ý&NÉpÑÙËí3ñË`Ö—%jâËy#R‚[W½iÝßÕ0³>¦…ÿdÍÂͲkL &NPøqtŠ؇%ö`¥¨ç ožßÁÃ;?Ô¦¯4ÌéМ«Z,Ð& Þ±ŒF!£Ý3¥U˵é,i~–›ÞϹúiÃûØ[¢§MÙVÉû“GÃQ‹å×zà _H¾h]†âDø"äÛ_´(ù/ ˆ«ýEër§Ë“-Z¼_F‚[?0~ÑZ¶ˆÓt­héötÕ[ØP}ø{ãx¦ïÑ·lnð|ªWÞ2¦¦Ì¼É¾ÈW¦R³YÙÐrT¦-ed¦3‘[!—£,ÎCž—VÈ’`·¾9j°K„^|=ä×'ìRr À7@~Cì’²ê6Í1 v‚‘QÐï‚ü.e ’/)~òGê&dG,JîG€?ùÇbëfhpimTÊ ·è›ê¤ªÃ*.‰œú(𛿙|µCÉõ¿ù[í¯v(ùo ˆ«ýÕÎnú&Wí,ó†$¨õ×v-YR±Öé]Di×’ZÇÑʆÁB0šeLµK­Þ©Ï-¦-r¯ ñ¿xò¡6ù©ÐJ„ÈÜ|²º‘„ÐJ„’ó÷š}²TWE¼Jþaq%í|(¹>à#ãwUDv>”ü£âj¿óÙÈíÙÃ{L0ø(Aû+è1Yì~ÑŽttêÎÍÌïØ,ä%Ƭ‰èhŒ¶ÐFdÒ\YK-jJ¼×¥À,ä¬2w´ÌáêˆK8 y:yoDÉ=œ<» ô FuG”¾ <ù”Â×qG”œ¿Œô4äÓíwG”|Q@\íwG²VÅîHjÖÑèÆ–¬C¶¸¯ñƒŸ¨6K¬.jµämVض=èúvÙ,%? .Eoߟ­©% mã‚MÀMÆØ÷—diéKçJ”¥'4Ðø æEî)³9xA&ïuô’ßŪãE ©Ñ¼QXy¸oA+Xô„c¥µ9ÃÛ¸WwŠX•¯•ªè>ö»uÛÐÌòT±Jg‚x Cg˜å‚9kª,¬ð’`Íw/BðzW*–㘹¢Ñع1—…IÑ]ù/”-ƶBÃbówÀ„üɇ”Ü_ÿ ò?Å6¹½µA²4ÍÅÇòºcp7,_%å)׳,ö°[µ£oôLôÿ™c÷0— ÛíO„‰ ÝÚ%¬±\/aåm*úœ‡k@…0Þ–1jçŸ+€ZW­NÚæ)¹õÀë!ǯ0v‡Ê}i½Ûe֌쨈ßp?d©ãàó»Ã¦Â5U×!qµC]wýÓ;î­®‡Yä¸Ô"Õ¡+Ú6”|ýeë®e;ZÊÌ™´f˜<Î,kÆS¬b¢iGÁûˆFö\ôV÷?ùcÊ2ue¶`¸ºY ŠÁüå ×vu4£ä{ŒƒíŒKçº.¾ÒG5ë!70¾7ö\O Z":½9„þ¢éx›EväZW݉o¼%yÏ@Émn…¼5¶®vg´µ™^è©QÆhy«ÌŠRÙß­cÊ*­9ú+o•*,$f-]Q­˜§€yÈùNô\s"L®s¥á°Æ‚îo¸‰]?ðÈêÁ\ã³*h)ÖB²õic¢Q¦W#rŸQ¼ 8y$ù>¡Á›oÜ×%;ßX¼Ù{Ròcâj¿=À†µç'ª%Àz WA^¥Ì’¯Í[6k_3oTðZâ. Qt» ¶Í™¨¦L×o†|sò¦<ó%LCN·ß”)ù!qµß”7Ã|7'jÊ}gfõ¨×l†®¼&)cv™—&‹æfG6æÍxn3Ty±¬:£óf0ar¦ýÆLÉ ˆ«ýÆ| ø†d¹ݘo€߈1ol4æÊ?š"ª߀ç·@Vh‡Xñ °\­ãÚ‘­˜’O ˆ«ýV,Ù䌣¼™)æ$¨õÕ¸ ²&aû“RY;–ZB¬a4e¨¿6m5²aÝK€;!ïLÞ°o„1c[IO–Ú^2žaSò· ˆ«ý†½Ƽ%qîF5ì-0æ-ÉvµRIİ·À˜·´×°·À˜·tÖ°·À˜}ì˜ao…1oMÔ°»ï— Õ/`¼åå‹édÅÌÞØ¶÷93òƒYµ5m” Ó]ˆjÙÄy pdu[ó†Z¶xæÔ§Ä¤"[6%¿[@\í·ì¬9•¨e÷Ü_‘àÕTßÓ¡(ž&rk»êQåZŽIÛp vK(„ í¶aJ~‹€¸ÚoðÛÁDm¸ÏÕ«cÌúê[…ûë=Ïz‰…K²–²Ê4 ‡9î ñF'ò<ÍA{›íÞ ùÎö(fðäø;Ê)æ ð.Èw©VÌÌiç””bކ¬r‹&йøäGb+Fj·^¢ð(ð ÈO(ÓÍj®½0c奔c++íQÎIàSŸŠ­œÞ¢µ²Œzlàù™ö¨eøȯ‰­–U´ü$¯‹,PͳÀ·B~«:Õ¸’ªùà{!¿·=ªyð}ß[5£ÞZåú:!om®·tž0/Ý+òÂ@¢û~àoAþ­ö½®ýª zGXÐ۸ȊoÆç„– µ=f½ð—²1"ëa0%<Ëúç±y4%¨NvÅ8ø(¤Ô·W\÷Ò"¾ë&<Ÿó ཥâþòvàqÈR£ÃÑ<%7 <9þhð¾z™×NX0ìÆ­/hMaAwumÊÖKFÚÛPƒö˨:†¬µ?|7äw+·ö5º“!Ò´Å¿ù7Úcõ'ˆÇ±þò/*³þòo¶Çúßü-Èñ+˜Uò5ùmàBþCeù°<ëP¤{]W­‚PXÅE®i)ùqI–âµqé3\! ®˜¹²Þïíª:þBꈼƠ!Âõ×+ l%·"%2›€×B¾6ù"LÉ] ¼òu±uônï+Ë72YºU²^©iKÚËœ=PŸÃ¶ds>‰^œ¨¹h_s¾Ô~Ñ:Uok(¯9ê.ßrƒÒ’° øó^™ôÙ+c#/¿ùKí±‘_~ò—cÛÈMž~IQV‰÷T׎pðcw«êVªnäZ€xþ2ðï!ÿ}û½ñ8Wz ÕT ×¢Ýãooƒ màEx-d)¯£t'3bs#Ð8R¹l<ÄÎ)¹ë€iÈñ——<‡ç8Õwx9Ã_äí˜W4ÊÓ¬…ÊzoC[ é-Ûœ6Ëz±¸ Uhÿ»šŸäc;4®Cް¶3wÊ;îaJ¦*ô{Ï ß×UëáPÕÇC¯#£ü?ùcíQþû‡üñ¸Êï¾¢~š Éѵ^h¹®Uô ºbéž3‹EoÓcC·ó3ä$-ÛëÓð~…YV½È~ÂvÜÁŒ¶·¼ 9Õ«ú<;!ë°’Eu&³<ÚÑ4Þ1R2‡ŸHåM½ñº ˆ¨_Aª¶d5Ÿ¿Ÿ¢^u-ª×óž¹.ª×C|”¤~‚c÷‹\î–;'G±Ÿêþ*ð7¹Ü݆f%÷%àoq¹[E³Ë7ÕÈ.ùmàr¹[]³kY¶l¹Aù0ÊUÙuKWG[]”|€ñZ]ËãÒ¹•] ˆ+f®l¢V—UœšÖYáÐ4ò3nN¯¶–ŠHo;E¸ ò&e%yãÜlnOÉpuæ&‡*¶åfÙÓ$¯ ²²~£¤›Åt¯#¶î¢hSú;» Ë­ý RÒu3®[qv ÏÍÍe"(+d>‘Ü|²ÔopªÙª¦ªÛ€'!ŸŒ­ªÞèÛ?'9È9e¯¿"ËjøËq4Ý0Ôº_J¾GÀxîwC\:TTÖˆ+f®gîWðºií¡Œ–aáÞ~«\¨æ½¨Œ Óß–›Es,Dœ¬¡ ±&Eþ´>md´ˆ/¶ *&<Yný] O8dUí2PûËÍÙŸÇ­)wN·£ÉG󥦄D$!Ó)¹ÀÈ ðß”þàYÈg•éªgüV >Ï_YjnCˆ:rV±’ì+€ÏB~6¶:V§ÆÓÚèÐжR…è9àóŸW¦˜ýе`™T‘ŽdFwÜ:¾}ø”ãdfGÆo͘#ã«W¢úà UžŒ:kعdß|rNF¥ä¿$ ®vÓ¸k»†jêZ+¸VeµÊa~ªèŒ‘?Í{ÝÅÊÅt2t ÄþŒvwF;žŸ)™…´v‚‰®yªl”ÓÚ힌6™Ñš1]CK(8™ÁÈ^l7^”Ђl)+,›îÖË…œe¦*§áÝ$hÎß ù­É×5”\ø6Èo‹mi-U©d´±ÑCCc·lc†°ÏÊëÚ¤îÒhÎÁûviû'÷kÇèX®ÈΘ>|²”'9çÇB¤áÛwŒŽÞ2:ºs[dçGT¿ü>äï'ïü(¹ùïÚïu(ù¿W»iLpm×Pó+,u~ä·öÏÕòtZ;ÌœWfè¾z˜}´êMoÿBýÔ­`êÓe«¾7Ò"'ñMoÇÛ ”•+' Þ¬_(³&c¨6Xë®Õå¿ÓÀg!KVÑ\%gŸƒü\ÂkJÿµÀ×A~25uJÐy«€¸’Ž®)¹×ß9~´.5FÑõèØÐÐèØ-R%èyà‡!X]+5¨Ž>e;¥Ìh¨âBj"ù àW!5ùÚ…’ûQà¯Aþµö»uJþ×Ä¥èíWeÙ3†MNÚ H|'×n×]*ë”Èy@É÷ˆKÒ\WÆ¥³§‹/ê÷Qz3Á¸; ì…Jãï€6uŽ’ w1pä ‹mÈñö{¡BáX^eɆŒ6Rr}@áÜɶWº”þ&à•¯TnËÉ$J3ܶÓ¥fŽD·ˆëC‡ÚcW33±-byÚ ­%r~¸ ò6åV±’¬¢b¸–;ÿº»Ží°‹Û€÷@¾§=vq ðäC±íbÒkWù“š[2eºØ¼O‡ñ‡l<›Tl—Ѻˆœá²TuBä6zŸ{„üAeÙ¹2ëÍ¥ ©©êÛ×ÕÑ(…’ï0^”rÕùÒ w³¿‹ï?ä#®˜Ù²óæÍ´T2_-ꮡ­iÍ6ÓšMÓ–ùläE‡ãè¥J‘Ïž²MÍÈor'”z'Þ¦»Kö€Fñî‘‚îj»‡4á×I• Ý©ÚÆÄÀääs²æ„[±œ´–cBÙ˜Nkys"ï}R`‚÷ M*›`ÿdrùéÁÈ/u/Bxò‘ä¬6”ÇA¤í£šÒ³‰Ì$h'ÕÈüî'ÂM7Åæw ³PR>«²R fZ›5ëúŒ®Ë»Á‹ðÈ×t@—÷ mÕèò*Òeð¡Ö‘+Bá€è¸Ý!»QÆ,Åô]÷‚ á:Èëâç[«4VxLó•è ï«û”æ[t ;Œ´}TcaãáƧfèµ³¬ýÙ²‘™ >V\t“ùµ‹t šz±h士ù(ˆ^ ùÚ¨ùÒöQšï#57ôýû“üS,Žl$êëÖëe×(Ý­eçŒQ¤˜± ‘_é~¼Æý¥)nQ¯GXƒ¸íAÄ$^d²«³A„0ÕéeZñœ+—OÅó˜¾<+žÁêA¥ùÝÂBÚ>ª±°;Zx$«Pp=Ò1õ¶:²Nèa0'¼ò±ßbŸà„¨ÿ%•¼ãyä ýv÷¾˜Å£HÛÇ—Ÿãy ¬SZ€â:ž,˜¾<Ïã`õxÜ| Lö¢¬1OÃ^~ÃJ*r‡%ß#`¼¥%Ã:%©I '»ø˜ÊI<ßÏQY7ßicaβƒFÒOB„—@¾¤ýZ¡ä× ˆK.–<Õ3ôêþOâµ»d ’žXKO¬Á¯€õÅôYÿÑõ/YÌ5u®í¾ˆ×šÅo³{Ø-U†'Ù?‡&g¦K†'sU³XÐ ½Û¶­ m»uø‡Kzy¸æ2~®>K¿¹–~óŽÔr•¥×Kï{EØhW±X)Z¡ûO…L[ ^\ yu]g~Žwý+ÿlÙÇøÀ‰ƒCXÖ´ü¥E”Ä›+–¢å¼E}¯õ¼\I̼÷Þûïo~aÙ¿,²;÷ÇŽ¿çá¼ë¿º÷§[ÿ¡þʼn팬/3kYµøoŽðƒ³ÄüW0óŸ2‹F“GÎ{qem+¦%Jö¯5uô•ü³mòIݾUqIÐPgÿT[­®,•5©.ÏêESª¼{=yÒn•PòëÄ¥H%7c ¡¦Ê}æi£hÎX¬"÷Fùî)ÌY³@[¹çKØ#òî…ªG!*T›kºÅ ’$Ì_·j·Ú(ùqqIªmY\:}0bå ¶x÷5š¦ô÷Åp-J·×è-Ö¬‰lK×ò†íêfY«è´uu¿6Ží±ïêeïhŽy†ök ýhòV‰–Òy}aÚ´9‹ýhS…¯áyÆâ2˜ák ¿&nFôìΚSþÁ%ÇY+Å~ [NØ…´ãêÓÆ„m” †ýøÙÃ{OÜ}hïÓ'8~`ÿG¨¹}|ÁÉL³\)ϦݼM«}Ôìq·yÆš«oA ¥zûQæ„ý3Ù÷.àïCþ}eÙzê að ÿAû½0á ˆ«ýnOìAOÎíõ,˜¼ú Gôx‹ùŒÍ2?†íRqÐŽcسFAtqŽà㜨æ-t\z“^€I›·Øoºòžö›7%¿W@\í7ïu0éuÉš÷lTó^“^—ˆy.6ïV«S¢Z÷:è–ðvÈ·'oÝë`ÑëP¨úd U<ë^‡Âåã%…Lº/†E_œ¨u÷:FT󾸫£z}—dTH(Ó¼O|ˆjÛC³„»!ïNÞ¶/†=N@žh¿mÓ3· ˆ«ý¶-ÌvJÒsëQMû˜3a|ÏÝ·ˆÏ˜¶Ðü’ظ­n†¼YZ‰½¸;‚“ÌýÁCÚŠçì9oŒ)›Ú<šU>»yôÜÙÍcçÎá{ýcZÖ5Y ¥ùæ06?òJMG’è}n+ê{ÑKF’–gK§¼ÓákÓb12cHÄ÷6÷m2¼k6ÓÓ² .d“$e4›Ñk³©º¢³ƒaY2ܤŒ[pª!ÃMjÓÝÂÙˆ¡C¹\Á‡ÇN©Ë+‹mNuü[¢%G¼{£æzg`LÙÆS´g½‘ªV*†­)WËÅâ`ÔðE¤z²kÉîãI…/”\ðIÈO¶?|¡äuqµ?|YÏË™‡ †/¹¨á ñé¾\Ãâ¶ø_)|¡÷¹x!…/Ä÷6w‡Âe4_”q‹¾¨ULrá‹zžâSáKÒê _’MµIø¢®äˆw·„‡/¶9=#¿ˆ\Ÿ„üdòñ %×Ô!Ç"Ç/”|N@\í_PÐüñâ¤â—|Ôø…~¥ør_è—×ÿ+Å/ô>7/¤ø…~ç6w‡âe4ˆ_”q‹¿¨ULrñ‹zžâSñKÒê Ž_’MµIü¢®äˆw»_ŠÖ\¬î‘êÉ®¶u¿ 2óðIÈO¶?|¡äu;Öýr/g&¾¢†/ħør _ˆÛZà¥ð…Þçà…¾ßÛÞ _”ÑH |QÆ-Rø¢V1É…/êyŠOI„/I«+8|I6Õ&ዺ’#Þ ì~ááKŒî‘ë“]më~¡äú€ì~¡äsâjür9/h&8³«<5€!Bý@õ3»ö0Ó¶U­ÔçäÚ4Ýrõ"3ø)Óv\þÀ0û<²½Ó{¬ƒ|,y{¿6Nx?äûÛoï”ü¤€¸Úoï`ã¶÷±¨ö¾6¾!{ßÙÞ#o• 1 ~Œ|,o¬åE3ø 0ò °²>%–Ùà)ùãâj¿Áo„‘oLÔàûhÉŽ³~ °îL‘Åâ ‹ô"_M4E{¬h̤iËóc»kÇßFÅò>ÖíéjÉ(»Ž¦ç¬Y#ªáoÄs„@~$yÃßc'|ò£í7|Jþ1qµß𯀱_‘¨á/ç«Ô%¸õ×uÕVh(2ýS5Ó§}v½3ì™s/3›¶Íü \ð÷ ‰¾µûTw…¥•f9_¬ :yÔû‚·ÑœÄ{¯ž…|6ù¢!œæÀÞDZÝEƒ’?' ®öM(›’-|ã nýÀøE£w§i¿@Ö?7c0{¶kvï­ö([Z^w¨¥KkóÊÅþç YÎbx‘¸ô˜Þ¶"¹îxÊá<äyi…(ZwLd^ |ä×)+¬MÖS‚ À×C~}üâÕYQòoWÒΊ’ë¾òÛï¬(ù7 ˆ«ýÎêJnÑ&笖y[¹HPë®íª­#VT7Ë®1mØ‹·H Uò%½¼ LÇeµ²ËâØbÕ«°6¬»&ƒð6ExÁK€yÈùä‹À•0{ÂäBû‹%oˆ«ýE@Ø¡=É6í`$Á¬¨¾ ÷Øü>o:̨K¦ëd´{¦´j¹¶DÚ3xÿTFE¯¼4|É+<´wˆc”ù†¼°D- Wá9ÂSO%_®‚õž†|ºý%’/ ˆ«ý%ájXÿÕÉ–„…è%ájXÿÕÉ”„™’°DI¸Ï]ÝÞ’p5¬ÿêΖ„«aý>v¬$\ë¿&Ù’@;ÙI0ëª/ “Þ×^ TwöçS ô²¦W*¬‘f›t¶ªW2¼ßŠZ®Ás„:d©!Ähà=ar®ý€’Ï ˆ«ýàZýµÉ€…èàZýµí( í/×â¹kÛ[®…Ñ_ÛÙp-ŒÞÇŽ€ë`ô×%Z–yû—JPëªo¿¡I'Þ¢60ZÆõ¦°÷6¬x8ïߦç½!OM· ¡ûCÏÏhùª=kh¬Œ¤¼R3o–X©). jÆSUžöhÔ‚CÙq ð}ß—|Á¹……ðýßßþ‚CÉ@@\í/8 ‹–hÁé-º Äúñç,_Dh7/efð êÙ6L¯Èè½è·h¨H÷Lj¬)­h”§Ý™,^<ù´®ýó“Ò¦öúÓz»O‡Po:…—xß <ùDTþôÄ’)¼+²¥SNrsx‰ðñdˆ×L¨§Kr¯2˲©Ó‘§î*£œjÈÔ]µúè®gH Å„{§2%x‚l²©6™ «Î,Å»³ƒçÛ!#x_=Ÿ·lÿœ¯_¦¶52uëçkgå ÑŒÿƒRcŒâ»ÿäßRV$%ljÌï¿ù; -!tŒ‘ümàw!7~L5"¤äÿT@\IG„”\ð{¿×þˆ’ÿ3qµ?"¼ž[´‡IF„s býÀøaß"B5Ÿ4gÜ™dCBz…uÀ{!ß{…„Äû>à¸BB"ü @üAâñCBe4Ô…„Ê(E ÕêCyH˜t¦‡„ɦÚ$$Tg–âÝ÷ŸwHÏÛzó1—ì­¥ÄN+ÏmS?Í\6õ—,ÛÐ*6KÑ1jÓÙè`…Y3o Ͷ£GžÆ/æÏ?Cþçä#J®øÈ?h„BÉÿ‹€¸Ú¡  ˆ&¡ä­¨µ ê&¡0f–l„B¯°x!F(Äû>à¡áâŠP”ÑP¡(£)BQ«åJÒ™¡$›j“EYŠw?Õ*B©Òìw >¬*  éÃë’š¶õ…hÑJA·)@ÁOè,Da?]H,`³ë?!ÿgò %×| òKíXx9óѿڰlFÊ„ ŽN{‡VJPëïªï9£vtúXh…È$g¸s†QÖF<»Y¼ðŠÖQ¹Tt0MÊ…7-tüò`¿¬¹†]ªu ç­ò”Y0XaÓh¦¸=K ¾¼ãÓŒ)½Zt©uàæ¹QÆ\üä%_„6£Ø~òÇÛ_„(ùOˆ«ýEè›-B+l~Ô«¹~àÅ]qOŠ\¶ˆÔ­…hQ‘)ZyÝ«£PXEázB$ÞáRàÝïVð]Ä1l*Ÿ´î>ù…‘Fè %xðQÈñ—ßÏÝ×b×4µÖÎy¬VX4àPx[ >—/Õ6Ú¢l²‰ü| øSJ™š{Žì sta'‘Ï?ùó ýkÞ*„©÷§?ùçâûרµ %ÿóâJºv¡äú€¿ùÚ_»Pò_Wûk—¹-{¨¶viÞø9¶›hôÕe[¼×ÈßÙ!ªÍ«K€d-y›½vJ(ôˆ¶Ûf)ùq)zûþlM-i¯†inéjhÑ´; ¶ÀÆ}Ä%YZnKg+Jˆ¸bæJšy‘½|x¡d‘Bu xëàYÛߨ°vJDÆ)èŽ0 9­¬^ƒ£Á'î:pd j}LœÆw@¾#ùú˜’î¼'¶û¨3\B9{wB¾S™rV×”stRJ7÷„ü`{tsøä‡bë¦'µ Sú,Õˆço¹Zk¨Æ ¯`þæ`tk½ W@^ñ2q%Äi-ÐßàÊäÍ•’[ ¼ òU±õsMš¹|VT·Öþ®oŽ%¡µ«; ïP× =ø½©ªîî¼§=ªÚ Ü yolU ׄµ`rEòB5oª¼9à¬JÓ "·ÃˆÎoÿ„Ë„ín‡ÝÌu[ÃŽ¶Ã„nœÚa±z ˆÒZà&È›’7^Jn%ðJÈR­¿äšaDí*àvÈÛÕù=²Ÿ!"·ï€|G{Tµ¸òžØªêIËèc/pä}êôznwS}Ü<Yjévt}ìÞ Y~òm<}Ü< ù°:}„žCÚT'€X¯ªpÞaS}>YªßµqOà´Lïqx˜…œU§“ÐÃÕšê$,@.´G' Èñ7¤¼9­Í͘,2*eË5x?„Q,6øƒ&Ž„â¦€ÏC~^šðËç„7zŸ·òOD}/z¢Í'¼ßO ¼?)û6ÈÞÓ%9Ñ^NxSÆ-8Õ÷jãOÂè 1ùÞÔóŸ’8á-iu¯H6Õ&kÔ•ñnŠŸðæd´½Eװ˺kÎÅ…¥Ý˜1ÜÍ· «Óm?þ1ä?nO½ýmàŸ@Žßy Û~ø]Èr›^(ŒmÿøWÿª=úøSà_Cþëéão€ ùo•é£É¡{MòÀ‚üOíQÈ÷ÿ ùŸ;ØØøðAþ_ •z2\S¥üð?!ÿg{”ò¿/A~)¾R¤6/J{9Éq— c(%H9Ë Ú2/Ám=p#— •©§h–O‡$»x— Û`Ý>nâr·TÏjCΰ>ÌV[Xà;JI­iÍ*ͦ…"õÑ7z l•‡òFÙµõ¢6³P1ìiÃ*.­6iŠ«HØÃ•ÀŸçr·Ôüö—_£·û€¿Ãe ¡ÑÛý ÷7dx+iôª¡‘L£W ·¨^…ŠI´Ñ«˜§ø”\£7Qu…6zLµy£WQÉïþoô²pĤ¡{©ÓßfôYCÓµ©¢îŠ5E´Î½l¹ìS4߃ZÔtœh•O¯¯×MÞûïqœ G“üur)3cddÚ~†õÌq™P‘«YÅÏõ›81ùÀ‰P¶ç•À×s¹Gêh·ÈAKÏ<ð \&ŒiA×Ö4=ã-Ã&}l}®Ìô6%¡´ž7‚Ë=ê:EWCi÷Þw\JkŸþ"— Û¡5tõü—{äf)ŠwÉ+qŽ:ò])ÌrÁÌÓ)i^´\’hqª3˜ñfG4œ‹Š’MˆÎ6óVÕ_1sø¾~8*D¡¦CÞÀ,›tú3œó¡¡;3>ÈsV(ß^àØër¹×U¦¶•Ù‚¸åë’åIÔFvhÑ%ß# .É"µ<. ».WÌ\Ù¤iÚCVqjZ/OkšF~ÆÍéUÃÖRé CQ„› ˵ì‚ÐÆ¹ÙÜÖÌÒYu8T±­SFÞÍXö´ÉëÛ!KM_ Lu9 Þ™I‡¤{%pd¹Õ âÝè]†”þNà.È»”)éº×­8»†‡çææ2”§É=À' ?¡0N­Úaªº xòÉØªêŒì‰À“ÀäœÂ€Y¯º3–âh¨ôŽtuÔýRò=Æs¿Ç¥3ÚÅcòWÌ\9ÍÜï¬^ÖsÍç6ÊiíŸ…íΙtžLIgÝ›aŸ¦µ-Úq×o¾ò;ª#g !ɾ øNÈŽõ©±mƒimllûøÐÐØØŽmR%è]ÀO@–Û *H=[üÚ¶`™T»ŽdFGFƆ³”Ù¶}ÇÈèØØ¶‘["VºÄõ§¿ ùwªpÖ°s!Éþ8ð÷ ÿ^ûëJþ÷ÄÕnã\Ý5TSguá§µ‡X262J[)í·Ê…jÞÛ/I¨5 Ï7Oò^-o_Ôi=ZŸ6"—ˆmxÂã«‹?YU›§Æs­za·¦Ü9Ö8– û(p²ÊE¢!• %w¸y¡• ¥xòYu•Ëø­|ž¾òk’¯\(¹WŸ…üllu¬N³ºethhÛ©BôðyÈÏ+SÌAÕÊŽ[Ç·ŸrœÌìÈø­sdÞ®G>ªÙIbµíP aü}Ô¦¦¬`­ÈLµlJ»¸ò…Å6dnÊv(„p#d•SbB (¹>०Ä4î1,3‹Œ(l^ùåV±’¬bºX*I°» 8 y´=fqp òX{ÌâZà8äqÁ8Ÿ©T0ŠÚ”Éw*õg)aˆ†sjS·ö8Õ/ú½Ð6àk!¿VY~®Ì:†¡+Äû’£ÛÑÕÑ:‰’ï0^Ô¾tBJ©7~•€¸bfËþÍ›7k41±Z¤BšÛf›Îi>ªÈ·óiµoLä7Ù¥?ö›)°R±{Hãó,SµÞ““iM7'܊夵ÊÆtZË›yOØ÷õ öO&—ŸŒüR·áE@>’œÕ†òØ´}TSz.'3¡éârdnàCx9äËcs;Z,ÒœÍTÃÞjimÁœX0ÓÚ¬91kÖ•›ÖŠs…‰Ñ´fóÉ'ŽìMkóE³4‘O §Ç£kþv¼ áQÈG; ù;¶j4¯ç lƒ¼e³–:hN³lÖÆ¨÷gÉè„8,!ŒGxc‘ßhÞ‚ð^Èñ×mO.¶—£ð¹Ì|ž™JyÔœ(“÷>ré£1ö‘+˜Q&oÙ+;£;wÜ¢§#¿Ø^¼ á$äÉØ/v«ÆÿkbáÛÒÔk-Î׉®•} Lè×Õ·*‹ .ÊóTÅ6WwvÕj‹N†”|€ñBƒÅ÷²2ψ”hgÕ~àÚ®[\‡„k§…9Ëê»z \y]ûur'žó—\,yªg2èÕýÿൻdÌ‘žXKO¬Á¯¬çŸ]LŸõñ]ÿø‘½\SçÚî‹x­Yü6;‡ÝRex’ýshrfºt`x2W5‹ÝÐ ¹mÛ úض±[‡160Ì*†aî3~–>ûl¶ûŽÔ²”%ÖK/{uH!Y^Ò]Ûˆ:i»y¸òêºÂüì¦íÞè³eK|â'ajÎò——[áæŠ%%è@™µ Y%YÏÈ•ÄÌ{ï½ßùþøæ–ýË"sñOù[qìèñ{λþ«{ºõê­ž™5¬Züƒ7GøÁFkYbû+˜íO™E£É#çÛ$/률&¹P1ÔÊ”0ãómrHݾUqIÐPgÿTQ­®,•5©.ÏêESª·{=yÒn•PòëÄ¥H%ûš®6iLÓ!3´Æë0uß8âîŒû©%]äÇ QËz¿UÛÝï0S§9ñ}z¡BÂ{ ߣP®éƒJ˜ÐímãÔÝÕ°S»ÔIÉß+ .Iu.>&*2>·ò^¼Kãòk -êd‘}ÍÈJKŒ,¿ÈÈòu#+yFyHqTL0./÷b=»³æ”¿àð¸1_±cïT-ºÎ„]H;®>mLص%?{xí}xòäÇì¿óõò_p2Ó†k”gS‹n Þ¦Õ>jö8ž5§´Ôõå3ùÝN‰÷—üÌ€?ü™/”3§–õæ¬)îp¹R¢Ztæ”>¿g|Øpnvù¡<½ßÐTµXdOܦc¿G¿ã,8®QÊP=˜(Xyÿ«!_LûS*&ð í/{´éwµ-[´%ïÁ³„½ÊÖlÖ[йÛÉÛfÅÕÌÂÄs:3‡ôù!þÑ€¦; 弯´61É ³ÿû© ·æxûîaþ3·ŸÛªÑb+Æ™½äH* á좔³bÒ٭醌O3î ??xî\Xã±ÙS2ßÀ“OF5czbÉÓÕÙ¢¥?‚K¡zFÕJSbý¤ÀþIöbÝÕÄ,—¼yD Y”½wpª!ËG•¤ØZZ½;o•ˆçÏooÖÚ k†¾K/s¨I¾J‘x5¦HíÉú¥H·«³ƒÛËêúº»kI›áå1~°ê#®¤#›Ð.?j'¯WÌÐfoäÒÚ|Z›Lkå´ö`šÞ5™ÖJ†^vÒÚײñQdê+¡Ba‚aLê[ÑÕZ6t»RðézOì¼…•¦M× UÊö"0ôÒ€¼UZñ]¡Mçƒòèf ˜îª¨3³z¢÷1ÓÍ¡®ú’¶!ŽÊZ6U‡ES!†NyÞßÃ'Ä/ÿ”|€ñÊÿqéÐPójqÅ̉ùP«¡€ùPó%,<ë^ Õ/à¢ùbçO+Î4¢6ïm@=^8@w¨­Çb}=ï´€Ø6ËÓƒµ•Á8ÜÁkúÑNo´x ò1eå/ôLJJ®x?äûÛ_ü(ùIqµßÞ…îË$í=j¿Óظjíý·JdÅ;Á&?Ë‚hË®™|ŦUb쓚ÑG>‰UX¹çíK LÚê×ÀÒ ‚üPû­žðaqµßêÅ^ó­~R‚V¿€j­>+öÛ1#^ÒmWß/†S?ÇŠ€KOLW‹:-º±iC˜|±Zàçš,Õ§­²^ŒZÖ g Ï$_ÄÎS²Ùþr@ÉŸWûËÁ:ØþºdËAY‚V¿€jËÁcÞCƒrUëÖæ›È“QEƒŸMb–ë§Úñb3¼´Ì°BB”*U×(D-ë`ú„Ó§“/ë`úëPúúdK_¼b°¥ÐGSIi”(Ãô/N¶<(A«_ÀxÅ`Å":¦oÉCKÏ’* V4ð@Ó¢‘ј޹õ¯½X…\•ÖÆyk!´§€z…€¸”ÒyÿôÐ,ðäs±K‡ÌùÚôÌ+¯†üju «š*äõâj‡Bž¾òb+äÍ™±ªÅ‚–3°Q½iÒÞfl´WŸÔ~ÃôÌŸ†üie [q§¸sV$R¿|ò‹Ê´¶"ëÜ_µÜ0½}ø%È_Š_ÛE­ëé™/ ˆ+麞êþ2ä_n]OÏüŠ€¸Ú_×_Â-ÚÃäêú^VJë Ý}’µý♫ŠÖ´·kÕÎØ›1dêg"¸8yP]uÖh­ˆÇˆ€¸’®(¹›€«%-:Eû,êAms¯½UÍÈ'Ë1à#Q¦´eRs—'È…ö(îQ Ùˆ­¸žÈ} ”þpr”\°ƒ?JÞ°c¿õÜž=L®BXæ 4KPë }ƒ’UBïâ^pË›·ÀêÞÏ-V |³ÆØoéÕz¼µ”×CÈš}Ƭ^v©)Ëdù%@¿$>ªÌ­¤á}™í‰Žœ¬²S2ÄQrMÈñKBtD韞†|Záë‡ø#J®X„\l¿?¢äKâj¿?‚IûE6!ÔG3^$˜õ…:Iw´¸?Ja„Š 7=¼ òMŒPéWFÄ•´c¡änŽA‹mÒ ƒ-›‚¢#Ÿõ¨ŒXpª!‹õÔj¥»…{®•‚eM°ómZ;¥®à³“MµÉYêŠxWó;[òzÙ›BǬÍ6M8”i€‹,ÿò?++Ü}Gj ÝHŒþ/ð‡¨Pa¡­oJðÀÿ€üñÛŸQ[ß”üÿ+ ®¤[ß”\ð?!ÿgü·Úú¦ä_Wû[ßÂŽ‘Iz‹8%¨õÕêåjÉ #ÄgõbÕ`Æ3X<9âõÝŽŽŒ,Ì[å)³àõéše×°Ù×øÒÔ%}¶;o¹Ms¢»(zÍK€OA~J‹š1"ŸÆAL^|#ä7*,¢Mík&J¦“âõQ;6‰ï<ðYÈÏÊò^òË6ðM߻خõ6¦Æáœ‘Ç0‰Ë›ïƒü¾ä)%×|?ä÷·ß‘RòWûé^èÓþ‚AÉŸWû ÆF†Ê Fóf~Èn Âé ¢ŠÅeábËë½×í骷j$ªÍ«K€d-y›Ý;%¼òõí·YJ~@@\ŠÞ¾?[SK@Ú«`šW;´IŰqqI––_ŒKgJˆÒë±{{˜¹Ïpµˆd®„Zý=EVH“ñ7‚MGè¸õ{iCçÃ4í %Þ+—@¾$*zbIíŠl锓\-^/_/C<~­2Á³[²©ÉÈ}³Ê(§Ò7«VÂHoÄ5ýÊ”àÐdSmÒªÎ,îRä«k1JêFÈ¥¹ÄÛê¯hYפ½F*~üX™¯ÈºÎ+€È%®3Ù±-â;,ð–á­Æs*¡è9×fSuEK¹P%Ü"»PuŠi5¼%„åNðš½ðâØ)u…;÷äRmáÜÕ”ñîV­ÕÆ4ÙÙ'ûä: /Èzù'!Ÿ¼Pä'âOÊWãæ•Ð ¤¼»J‘½»:}´ ÃŒ½S™îC“Kµ…Uc–âÝq­`”-×ð:mkn8o«¥rØf2gŠÄßùñ§aS[úÓw?ùƒŠ?ý@üC2ÄÕøS%4Âüé¼”?UB)²?U§–þ4êܤ3%ÜŸ&—j ªÆ,Å»wùŽ4å —2)|#Pºémg:qcVÿeþò_K¿ÌËg6.½Ïßÿò¿+ñ½É÷XüPàýCÞj\¯ªgã*#Ù«ÓJB³qÕ“lxJj6nÒê ¯’KµEÕ ¦Øˆw—ÉÏ>•— ¿ÔaǾÐàØd;.nà2á…àØ»7 ¼7ÊðVâØÕÐhêØ¤»bQ»B­œŸc_pìŠI6<Õ´,vJ]¡Ž=ÁT›;vEÅF¼;(ö¡x]ÒNÅ*{{;ÕœÕÓ<=ÖˆálîÝ;¤évdªF÷à=\&¼ zNº ÄÉWãå•ÐP:UC ¥Èþ]>’˜ª‘h¦„{ÑäRmáEÕ˜eC‚í„Ä–p"™c s,v€|Ó"é9Çǘs|œœc! 4¾"§Mhhñ=qvhôœÖ+oðî{¯'RC£ƒZ¼Øù~à¸L¨È­’u«oˆ¿Q†xP1n`vuö±0]deâ#%Œ#»;õùΆ[n‡ò*e´òÓ}.ËÂ]urɶpÕJnÐÅmÁ4ŠÇ xW/t»`ž¡óPlo76áð¼eLM™yÓ;ý!U0*Œ½“S¤6éßéñN|EÅüK.^Qñ_ ÄÿJ†¸š¨X µQ±J‘« uúH$*N2SÂ]mr©¶pµjÌR¼»àoëÞ|¢[šüUèèîY£¸0Èwõñ½0Î\[2—Ã*‡JfúåCÏ£\&Œùú‘—Ú\ öQÍ$Zjs"úIWƒá…¸Ô†x¯^PKmˆðzøzâñk*e4ÔÕTÊ(Eª©ÔêCyM•t¦×Tɦڤ¦Rg–âÝmþfC%}VÝøGÖOJÔ5ª‹èE~Žbôq‘ùÈ:ãP˲õ ð(䣊C=&?&C\CUB#Ì¡–¥ªJ‘ª:}´t¨aÆÞ©L w¨É¥Ú¡ª1Kñî=4zHÛ«:íLÌ3_šf¾´¶§¸Cˆx<í¬©×öOÐbö÷B~¯²RýØFâñ£âR¤×н~)¹÷?ù#±µú„7Ì¡µ>Cµ¡_-¬CÍôúàÊ8…>· £êþ'äÿ”~ǸӋ2YטwÏ>¨ÛçË=®MhüïÃÇœóWþ‰ýÔøÖ•ìyþ8{P»Iì$–­£_âHI$GP ¬£“™D|ï¯óöF…"óVRE«¡è<Ʋ©h6"SŸ«áµ>W¨¼V#>QËY‡r0{ôÒÞ)M‡) ¦Ú r9~ôŒq™°Cáÿš†ö°ŸohJ:îžqàQ.÷½0Âùžcïc2¼•øm54ýö%‹ºd|¸zQ}¸BÝ´ŠÚ•ˆePðB·¦å²SJ ­cLµy£¨‰wßÂjÃq©êpMÇ5óŽ–2F¦Ü¡ú½A/f_º&®2äB_)óGœ- ;´†N#Õ¢n‹#:«t“Õ_I,³ä{È’ïu¦50)[©üðû\&¼ Z='ÿ;âjj%4”NÆRC)rM¢NILÆJ4SÂ=ur©¶ðÔjÌR¼›ò§ /™',Έ¾ÏÀ¶w-— ¢•ŒïĉÉ„•í&3z/B&T¤½f3zׯá2aLÝ]ëÕ›âÄŽ’¡—¿ù]c½×oã2a'ª½Šdµ×»x€Ë½‘§üu¨Úë=(?(C\Iµ§†FXµ}¯je”¢V{ õÑ²Ú 3öNeJhµ—`ªÍ«=Ef)Þ½¢ÞÉw\Ýã`÷¸ºBãùs™:®œárïL{ê¸'€&— c**G§–Y9Wgm½f FÍr¾X-ø+˜¼##óFÅõjÈE;­4vgF^¿Dïw øÛ\&Œùž‘×/]Ÿâ£šõKë5MÛ[d™WÖù ±tÔq-¸®‡¼þj=ïKWCŽ!v"Œ¸Æà¿F†xü0B u­ge”"…jõ¡¼õœt¦‡ɦÚ$ŒPg–â]Ý_Ãäíåë¤I­/ö±áêC~7$}$®Ë+®Å3öé‡jÃefä¾Kñ5ÏA>wyßW_ùuŠ÷}½@üõ2ÄÕx_%4Ôz_%”"{_uúHÄû&™)áÞ7¹T[x_5f)Þ}­7¡bYE£ê`kcK-Ò8Âo ߯ŒÌ{ÚLö@œ&£Ýk¸L¨¨ˆv?µ¹H<.«£%Ý\¤äÖ/ç2aL“¸ŠOY±ìŸÔ¯*¥-?=á2aGõ´½ŽþÕ=wp™0¦žîó‹U½mN }7Lwt£hÍÑaçTtùˆoE·]‰)Eô&;Ïr™ðBŠ‘ºŸ¾•Ë„DŒÔý6øÛdˆ+‰‘ÔÐP#©¡5FR¨$b¤D3%4FJ0Õæ1’"³ï^«ñ³e†æLÇÈh-[3æ½åßiÍ”r>ÇŸÇŸ¾À\ç§¿Àe Ãu~A þâj\§j]§J‘]§:}$â:“Ì”p×™\ª-\§³l¸Ë§ÆÄ(©/‚Ë‹Ò\b ¾Í_§½ Ÿôn›ß&ë:¿ü}.*pÉNU'¾ ðþÞj<§aG‚×-åB•p‹ìBÕ)¦Õ— ™iwZ‚ί£IÒY¶Øßùs§,»´K“àöÀã2¡¤EõáîfÂg‹:SpðÃ9ú°ñhˆ1:‚>&%ׯUÙ¯Î)÷1-›3¦ÍòYݶõ…sgóì¿sÚ¨¶Åû_6«Ù'ÏŽžcò¨ðɸ÷ cþ-~c›cÛ˜/Œó'²F¹€D´¬mNϸþº6 øÁDóbêɇ§>ü4t—l„òï{û¸L¨ BYÉ"wÑqaÍ2Ï¢[dï²:u’£S?ïæÄËÀÂ"×xj²'$f 9Œ!Ùd{™H2ѦV*I'c¤ ÌÜìcá~G­Mú D>ì%YÃh0ÿ—5G¹€'AŸÙõÿ/g!”ÿiÉ„1ƒò|•gÃ(=ú–aDÊÇ«¹,·È'v/õrî¯$£™^Ìä꽙˄ ¢™ä»ª{Óñ´ q%.jhÖRýÙW­Lg‹^‘ëuJi`67ûNåL¸ßN.Õæ.T‘Šw{d&ì×x ÇPǼ帼·Ìws™ðÂð–ñ âj¼¥M¼å¸¤·TÂ+²·T§”óñ–áfß©œ ÷–É¥ÚÂ[ª1Pñ®œ·ôyÜ·wÌ[n“÷–ws™ðÂð–GâGdˆ«ñ–Jh4ñ–Û$½¥^‘½¥:¥œ· 7ûNåL¸·L.ÕÞRŠwå¼¥Ïã(xí\l9&í-Ÿà2á…á-O ÄOÊWã-•Ðh[ŽÉyK%¼"{KuJ9¯Ø2Ôì;•3áÞ2¹T[xK5*Þ•ó–>'ÁãÉÎÅ–òÞRZ\&¼0¼eE ^‘!®Æ[*¡Ñ,¶”ô–JxEö–ê”r^±¥”·L2g½er©¶ð–j ´ánZfã~‘K\ªó˜ãÒsø,—{#¯Gë”Ç|N þœ q5S fs\Îc*áÙcªSÊyyÌP³ïT΄{ÌäRmá1Õ¨xw•ç0g Zǣྠ„Þ¦¬ÄH-mî}wýK‘fš-mî}ø.ÆÔËaÇ™Õ#½ï~œË„’”b¯¹ÕŸ4+>é½uþVÙ:îÀ¸L¨ ŽK|õHï‹ïex«©â”Ð[=RW´T5§„[äjNbZ® B‡r'xõHxq씺ÂëÞäRmQ÷ª)9âÝ·×n2XÐ>`´µ…ÒcSfÆÈHu4!Súq™°CµŒêCuè­îNsÙà  ®é›xÏÈðVRר¡‘Ì¡:ÊèE­nê&ÑCuÔSmxJêP¤•Zé$˜jóJGQïÞ0H Ò½Òâ!8º6U-ç½}ϤöBª1}˜¾IYa—j ö½£Žµ+ù–`ß›ï䲇ñöAROÁpò¶™cºbQÀ>#Ú°µÔèÎcƒZÕñ÷«.U‹®éÅ®Á¾Qt½Dg¬B‹øôiÚ»çðQμ‹ã²a.{ø_&dX6¼Ë„BȰì°Àû° o%!ƒ‰… jèE ê&éA1Õ†§dC†D•2$˜jóAQïη<‡ïLìsø°;cÕ©²¦¤—ˬ‰õ0ñí oÿk±ß>ò™ ×që­¡š3VimòMù­E$¤á*È«¤ µ¿5â½x9äÈ›¼Ö« má ñ 2ÄãW¬Êh¨ÛoM¥H•©Z}(ßo-éL ®¬’MµIe¥Î,Å»y4o›¤pÐtfXÊr­¡3škëe‡6i¶xJz T|ÑyÈólW ˆ+éæ1%·|òÓ±õ½PëÎXrDج½Ñêj\r„¥ìŽíôÚ¯þäSfq-[ê0K{0W"ZYÙkøw${— cZÃÞ´æÐàºë™ƒ^©ØV…wˆäôü顚šy÷M‡=W¤ù]KB« zxˆËÝrƒ ‘ª¦Ú¼¿ŽþÕmvß œä²Ï=†6—s§+¡’ãÀ‡¹LØIwÛ}²ŽþÕ•<|’Ë„1U²qP›3YË»[¿Ï8rSHéÀ9.¶»©v=Wp Õ4ÕV³¦ÚA“Eß €ájÈ«/ ¶ñ^ÜyÃ…ÐV#ÂâeˆÇo«)£¡®­¦ŒR¤¶šZ}(o«%)ÁmµdSmÒVSg–âÝÏùßÏâ5‡Ed,H[Ü|K™é θs\“=Ng)µœ Ã"¿‚UÒXhoäùl½qĬÄêÑâàâ£ôâ`/æÛo@þ eÅYú{¢ó-àAþ£äCJî7 ùc[Ñ2™5DáO€ßƒü½‰Äã¯ÄÕüðo ÿMlì÷K YÆÉ–­‹hŒs¶èþ–c÷V.^HqSw 8Êe "nêˆÉW7©¡¡4nRC)jܤPIÄM‰fJhÜ”`ªÍã&Ef)ÞM§µ\ÕÕÊÖÜ¢ëý9:ínꨖ9œIdü8?~9Ò'€Ó\îV3o· ŽtF >#C\#UBC­#UB)²#U§Di’™îH“Kµ…#Uc– w¥g¹”À¥$Íåås8½Oø,—£iè:“¿H|Ÿx?'Ã[çTB#Ù”q‹ìBÕ)¦åò:éÙÔóŸ’8œ)iu…;÷äRmáÜÕ”œ†ågɼ dä3„ú9‰³ ˆÑ»€ïár·ÔJs5‡3÷×Ñ¿$é¨=œ‰8}ø“\&”´(Õ‡3}¶ÉÑ9YW¯ž}b¬~Z‰÷ ,ñä1ܭݯßÃé%ž<î=W{j›ðÔ¶1A¯ÉÛØ7Ârú±ÅGª,áÚ”ìy²•¡«âà'2•ŸâØ{ — D?‰üD”×ש“úy7U.8ë\÷ªÉÌè1ää—d“ 9ùEY¢Ê‰J̤˜}té1Q/ –>T*Y3jèÿ—5^¹@-AÜõÿ/×"Ó˜xsÉ„1Š•"R—¹Ü;(M.NïúJr8OŒ•Œ•zoîâ2¡‚X)ùNöÞÛâ·ÉWÒU¤†F`­¶š–ºråÊt©a¹þP§–Vl+ÓïTÞ„{ïäRmîH©x7ú†Ö"Ýà!hKŸyQ-”ušÀ#\&¼0œæQøQâjœ¦Ns wšrÇñ)£ÙkªÓK+¯ÙÒø;•9án3¹T[¸M5f*Þ•s›>càq¬“nSòP>â?0Çe ÃmæâyâjܦÍݦ̹|ʨEv›êôržn3úÑ|IgN¸ÛL.ÕnS™Šwåܦϣ…NºMÉÓùˆ¿œå2á…á6çâs2ÄÕ¸M%4š»M™ú”Q‹ì6Õéå<Ýfô3ú’Μp·™\ª-ܦ3ïʹMŸÇÄe Ãi~X þaâjœ¦-Zèçõ)£ÙkªÓËù¶Ð#Ù—tæ„»ÍäRmá6Õ˜©xWÎmú<~<~´“nSòŒSâÿàÏr™ðÂp›ŸˆN†¸·©„F‹º¤ÛTB-²ÛT§—óm¡K¹Í$3'Üm&—j ·©ÆLÅ»rnÓçñyðø|GܦßL—õš?ü5.÷FÞä¹S^ó×â¿.C\×TB£E }\Êi*aÙiªSËù¶ÐÃL¿Syî3“Kµ…ÏTc¤â]9Ÿéóøx|­£¡¦ÜáÐÄÿëÀ?á2á…á4¿#ÿŽ q5NS ¡¦ÄùÐʨEöšêôr¾¡fä#¢“Μp·™\ª-ܦ3m¸›–Ü`­ÆåÏÁåÏ;nÊî‰Ðû߀ÿÌe Ãsþ@ þâj<§-ÂM©-Ô0‹ì8Õ©å|ÃM‰ýÍ›p¿™\ª-ü¦#m0Nî7¥ŽŒýŒ~¨¬ØHmOIŸù(^ TÓl{ÊÞÿ@²½\&Œ©˜5þö”ÞγÑ5Ó×¼˜ËÊQŠ»ùÏêÑÓ“Ñ?7GGæÙr•]ß%À›¹ìaüÊ.ñ €úÒï´ o%u…öâlJT¶L}§†]ÔúN¡jZmÔX:”?Áû:4+”RYh5œ`ªÍ«aEåG¼{𼎷övÿ¶ì‚ag´½’§ýˆïòÞå)e¾`YÉÐËŽL%>|—=L¾ï³ç¸Üw.¶Z﨟#YÛeºêð3|œŠ‘7§øIÆ^Nù{ yêÏ 'ò%Dþ•À¹ì¡š¼[™-®n€”7qýwm⊙}‘J¡ä{Ä%iЗǥs嚀¸bæÊMÓö–5+wÊÈ{GÇ勺ãD-û7BK„ oPVöWï2¦¢¢s ðÈ7$_ü)¹@AŽ©©ÝüLshÊÛųh:®–·Ê¬ •ý ‘§¬bÑš£¿è¤Y«L.~WT[#Ö[€:d=öô2[‹Hd Œ‰°²\s¨YÕëê9 býÀÕ¥N- $ô9]+è®®MÙzÉðŽŸZtø‡wrGñ}éŧݧ5·ñã´V0¦mÃðê†)&Ðá )«\\ ç4wˆž§ãÿüs‹ykžY“aW+Ã&[›2 ^óÞ,»†ÍžÓrVµ\p2ù·ø+EaÑ4]£’lðW!ÿjû«Jþ+âjùÚŠ2µ5ÑòÕ3µxmE‘"\Yêç@>ûÏópŽ&Å-ª½Ó‹¬ƒ|,y{ß '¼òýí·wJ~R@\í·÷l<¥ÜÞ›÷Ÿ,7(ÒMÁ´S°ˆ~ŽŠÌ\s,V{è…‚I'2Wí7ù†¹jÃÄòàä‘äm8»%…<Ú~¦äÇÄÕnƒ°ZÕ4ŽÆXQ:Q;BšoôÅ%÷Ga@Ŧ¿PF"ò¾ \oBÖuKgߢa Æn¦µ#ÀIÈRÞ)Ä®‹fù4¿¹î¥Åóá oàHð¾x/ä{ey/ùåÀã'ßp¢äÆ' ŸˆmÛ[뇶jæ][Ï»,Üõ?sp Œ”A?< ù¬rƒî£ C‚Ù»ïƒü¾öØóê â+oί¾ò;•™ó3À÷C–Ú·;º9¿øÈˆmÎR‡ÿ…?ù#êu–ÅÒÌ^~ò—Ûe¬ÄWÞX? ü"ä/*3ÖŸþ2ä_n±þðW ÿJlcí‰ÜíLéÿ*ð+¿¢ìõ—g½Ð7 ݸ=wÝÜ¥2®ŠÞQò=â’,¨WÆ¥C:+Ä3WndÑæQêw¢8Òë_Ò\jOW‹º­UtÛ뉎HuJ#ú£c¸¸†œ› +PaÏCÈ6q%]Ž)¹-@AŽ©±åZJ¢Ö¡ô3ÀqÈãêTò ŒJv ˆ«*Ù¼ òm šlæ”fz#|ôÏ4 ƒô—7&hò›i  J=À,Ð슉ïn` r©ý.1Ãu_C5žy9óA÷Dv2ÃHws”äw.ÔŠÉ“gçÓµC@–O>Æþz<䕚΃¢÷Y¼ò5Qß‹žhó<(â{­ÀûZÞñçA)£èèVeSPtä)Pʈ§2J­VZMª•‚eM ©æe±Sê žþ”lªM¦?©+6âÝcT –-V3–g Û5sEƒF2ù°¨6g‹4sÆtœªQÈh÷`öS^wØcVÙðfÙ8†«é’¡Ä·*A–«6AÙÐíJaâÄ䢯?ÄȾò+“(¹2ðU_[Í—¥)È™›1ó3žòd:¥‰ÑÓÀwB–êrjÚ-²œTvìN nŸ~ò§*«IÇÈòÃ2ÇÑ?ù²„—üòûŸü™öØí»€Ÿ…üÙØv{i­ëY›²­’¬Ùþ ð+¿"m¶aõêàŒëVœ]ÃÃy[/g졊mÑÔ£ŒeOWôüi}Ú˜hn(Mj¹ßþ äQWóJïÿü7Èÿ¦ÐÄfl¿I²_þ;ämbÓ ŸZmçÏ2Y+ž,Ž\MªXŽéš³«ñJæPÁ`˜®?" ÷Z_D\öï‚|W{´2¼òݱµrª>LÖ ÑL/?fÓítÙš+Ó#Ú°ÓÚ¾Œv(£¥FwîÌh8T«ûÝ8^‡¤mTŠfÞ ·Z0 ‡zŽüÅ0ZѤ¾#¾$ÆÉhßo;4Mø(äG•¹†ëYU›V:°˜ä@¡š×±ðáxmœ]øjȯVš„4ì)¹Ç€Ï@~¦ŽœÒ ðYÈÏ*ÓVÏèv >o¾ò›ª#g !É>| ä·ÄVǺԶÁ´6¾mthhüÖ1©’ôVà!P™njÿËôzüGG2ã£#c ·ßºsçŽ[GF·Œlcì#V·D÷cÀ߆üÛ U8kعd?üÈ¿ÓþÚ†’ÿ†€¸ÚMc×x ÕÔ½§k™[X-³ß²mË-X]2³Öˆ\Xvâ% OC>­¬°Œ„T;Ô ²Ï˜ÑgMËŽS køc,ùZˆ’+? ù£¨…(ý?ùãêj¡± >?üiÈ?|-DÉ}øiÈRÕB£¬bî]ª`}ø"d©]b$k¡±‘‘‘QÆ>b-Dt¿ üÿGòµ%÷%à?@þ‡ö»JþÄÕn»¸Æk¨¦zËâZ(­mÑö-#­íe5ÒØÈèNV#¦Šd(§Ó¸8õ! éÌa/84ÄÀœ¶my‡h¥b[z~Æp¼‰bwSMfUè—ïËhf´»Â4퓱…*»ýì#½h”]VUi©'3ÙÕ݆l | d¹H3¨8m£!ûö‚9Ë:M•«Y­J#ü eÚ ¯ß!oð.à×!=ùºŠ’{+ð7 ÿFl[šÐRãÔÏ]`FT©d´ññ¬3:bÌiXöé]ÚdÕqŒ"«ÞiÂÅAÚ Å«ÿ#÷Äõß䨽ŒË„ŠrnU–=cØ´wKÐN·ÂØv+-‹‘]%ß# .Iû_—¼ô ˆ+f®Hì[q;TBߊЉŠvIÏ”f%¸] ¼òå K|}¢â’dû oP˜lÈà%×Üycl“È{[0éõ©¬íS÷Âg ­ÄZJf¥H+zl¯v¢‡Ä i4wFw½¹ËÂt/oÏ®æ]šÿ,¡Ö+€g Ÿ‘~ÑöO."ÞgÏBŽÜwEO´{r~N þœ ñø“‹”ÑP7¹H¥àTC&©Õ‡òÉEIgJðä¢dSm2¹HYŠw/Âd¢ÈA›HG]×pä@åX”jÂ7‰@e'L.PYfçõb^‚ÚÅÀË _–|œBÉõ/‡¬2< ‰S(¹>àÈRáQË8¥d´ÞV¯`TŒrU…Å1‘K ½àFàäeù»2ë†^t¬ÖÙ÷^¥….rÙ§ä{Œ×f²Î—Nè¬9VIy{6úˆ+f¶Þ¬ð¿Èï´ê%< ùprªåq'ÒöQÉÝ˲D›2mÇk'óz‰ZÕ²ß ÖÐqLÚkÖd,°â\ò ¿?7Pw#¿Ñ¼á½¥61kx£ÛèüÅœVŽ6HæSi?݆q§b)5È;½¼m€Rƒ‘ßà X ýwm·»¶jlc‚Û³ –oÓ,ëòØ|CToæµ—ÌB({·–ܼn;[½Ý‹#º5Ü Þþ´×nŽ1ßáfF[Û=DTK•ií•ÚLE»Y›sÙ?z)í‘àÌ£kÿ°$ô÷Š„Ã§Z*éöBŠ1Îéx®Qt‹ʳB‹¼‘,2tÓ^YË»üãm$Þ½ä8Ù#›’µ/¡¶ñ6\íæØv]AÚ>ªÑå¨ï]ç¼ÈÉT½¹ÒÞù(¸ŽB_¿À£€ÖÂÄs,im~"Ÿ˜© ¤æ\ö^Lk“ÇÓdÞšýtä78Ö„êê—[µ†ÿ¼Åy«x˜ßZÓZy¢l[sþßѳÿ~&ôÇní°{œÂNºÇãHÛG5Eêw•…À™jê­LÞêÅ<þJóŒ¡éÅbý´˜Èïrü ….滬eL½bæ½DdR€áZÈkc“ºŒ‘zìq¢åäõ¢‘bF·ÁA‡ð2ÈR1mð!¤í£|â|ƒF„æ‚Äo4 p¤¶æX#ÄÙ=³Æ‹>ù‰Ø/™^Uްx2 ²”²G@“Ð_¨$µ{ B¿)Ì×î¨ß| iû¨Æf·p¿Yï•RWfAp ä-ñãÊIWÚÒqåãàBØÉ¸R(T\y\ ÕÅ•{£Å•“ñ´'ÁÐïÈÜÛaG£ƒa'Miû¨Æ6’mÒšÔ]«ik÷yu¿¯ íf8¬¿ÿžèQQoB(´ŽT„:MC02ý|J‚·ÛL•—3  “ÌRwìòÞðä)mBñ¶-e/dD~—øª ;£[Š´}Tc)·ò*iÑ𠬕“PeygyNF&?„êÚh×?HŽÌ¨K‘Ÿ2Õ Fæ9 n„×C¾¾ÊžAÚ>ªQö¾¨U––«ºÌ3ÌiNµBñÑ3ÔyÂ}÷Å·ÚÈu؃F¯$Nð)¥V¯â––t´â*"mÕXè!²Ð *‹ï2íï:Í|ùœ¾à¼uÕ[‘_¨„— z·ãF[ôB¬ åçÖ*ÝÔŒa|Œ‚9…I³TEq?;k°Âæ”ôb1º”ÁP]´Ý@,¤í£éìmïAØÉ1Ú§¶jòvS­[Ï;Ô,ûy‘ùÙàD¸ ò¦Øü.GWƒLÞ֧ܱ‘‘ñÈÜð!¼²Ôd™˜:t‘¶jt8ÑÏù]²Ô»4®ãÛ÷×c»ÈïPoBuc©;ÜR¥ØÙ¦öJâ>ªÝL0¦½Â[½¹Àã=3NØ,( ëUcÒ_åE¥ì$âÏ9° \9þÄ–u(8Ä© 1bL×A^×"³€´}T»U»ìYYƳ1Ï÷éÚ?È­v a5-mhXvÁðv¥*¬ªŽ^n΀<¡º¨˜|õ õw` çüS ŸG< †„Âi¾1Ù>¦iÈ> Úõ¼5©ö‹âtÇ*Õþ ¡ëwè1º]ûƒn×¾ãý!ÑCõ ¼¡ÐõÛv?‡´}TØíì­îðß\ÖìcõU2Xä™wÞô‹Lö• H¨®Û9‡¦_'”Z`þÁ41t´ €ÔM/âÝ©~­‚à•àÄÀGâT¯ÂË ýu1_´Ï–}ÉöAî뀡¾iû¨ÆPo'C¥=£ImU»áxlC//î‡ò\ô¶ùmˆh"¿Ä3 Nx;äÛc¿Ä޸ɬ‘c´R4¼è5ô£›Ýk@‰ð ÈWĦ·Ç¶æÊzÉpR“ƒ|€§Øðgj@ôµ¾gõñ@ô×xÔ ÷@Þû5.µi,õúÌiÓu&Æ£3{l…õ2m/L¯EÚ>ª)L»½–ÀŒ‘?Í;ÉyÌb²(‡æŠ‘IòòäT¬rÁÛ ¥öDôþÝ×6¡¿¾WnkUñîU\É5Â5eo‹®ì׃áU¯ê€²ß€´}T£ìÇýžÝà¹[©Lo¥±«êæ½#ÛYƒp+•ð­i†¬„oMóϨ”{OVX kRø½–z#Þ‹PŽùŽ×£·w4­íÚVë×­YGt›x¸v²·ÿÍHÛG56qƒçXµIkK°3ïBmþ•æyýÈTßz„7@¾!6Õ]P­_÷ A@]ø^僺G…Îß Ò„Âî m×ùÛ¶ò:§ªkõùò [âù|_6棚mÐU Òê9kÖð•<·d¹ÖÐÍeQ¼3eÙ%çOwTØ;¼ÙH¨.ž‹ÔëFí C¨®Óq¿\Gk6¹Öoªphù {‘w‚<¡°b)ù.³0Bï ¶÷˜…‘ú!\y]§ûwÂȾ /èî°|^ŠP]ïNç:*ÂÞó½x7BuýQÛ³aìÞF„/ÿælØ[¼Ì ÷@Þû-Ò-BÛ´v†•s9ý°$Œ5Í70Õ•Ù‚UfÖ[‰)(µv© k£‡Z”~€¸ÚÎãCÈÿ+ŒˆïAØÉñEÚ>ªÉÛ;(~ÕkS4ÜÚÂe¾«ŸECFeín«:gÍò4câ²æ–·àÈXôÆÉGÀœðÈwt 7 iû¨&7¼©wLm`Ú,kE«ª):£¼×°6Aól¬é”U(8ƒ'™ó£¸«þó‰‘y\ G!Ææ}_m:úME¥v{‡î–æ×VÁ£M««è™é wú¬B.å2§£[çgñ„ÂFm7‰ŸAÚ>ª1‰™õS/òñþäE­Ú*.á¥)Ô´’©6]<Ï…(’·2iŽõÎ"Ô<Í GZw4s*ò«þ,^PX%óUóôª¬Þ˜Óé,ÒE“6kïÅ´ÐçøTÝZs$À”´Ô„6:>ȬXfÙîo>‡·#ÖvµÝ¸>´}Tׂªª½Ñi#lU}êOPñ–Eyù~ïA¨®Ýùúýçñ.„êê÷ç[¿3Ÿ;;›Ÿ`zcj£?©ŸÊ*NMÇMÑI/•ïP‹îk¯C(ìJÑöâð¤í£šâpçfoñè­©ñlšå#–]&W ¾ú„Âtq{‡¥jä'ðÖÑ-ãApä=°Œ_BÚ>þWèj|ïAËQ&{Q}{AGìCr/*ÍÎÈÛpRò=â’ ¸5??ù*"§/uñÉ„ë ¯S¦••ÙÓÆÂœeVô%(âKµïxØn¥Pò—ˆK.–<Õ3ôêþ_ÆkwÉØ#=±–žð—‘®çŸ]LŸõñ]ÿø‘Á\SçÚî‹x­Yü6;‡ÝRex’ýshrfºt`x2W5‹ÝÐ ¹mÛ úض±[‡qzïpI/óÚ ãgé³ôƒkéïøA-KYb½ô²7„”’uµã€õüi}Ú³–Ñ8ÊçÀË! Aü|ïúWþÙ²%Þñ‡Ð«ºü¥EÜÄ›+–¥å¼U0ËÓõ]I̼ Øûïo~aÙ¿,²ÿH…ÇŽ¿çá¼ë›‘÷§[ÿ¡þʼn틬šÆ\­éhÕâ_¾9Â/7ÚÏ’Ò°‚•†)³h4yäü¼Ô²,9‡hÛ¿6ÔÑ×öÏ·ÉEQ²Ä%A#A•ØJàÈRy˜êò¬^4õ :½ÒÓ˜9íÖ %…€¸éfE­$DÒI/ô@¸òÚ6èDØÎ?hÞT»tÒ‹ç|Ä¥J'-ÊI)ªúC–"h¬ü‰…Jz˜ƒöñj—V(ùõâ’ÔJï":[QRvi{µÃ´ù^ÿ´¾c\]Þ“ZDÒËPz33qó®gwÖœò7:nÌWìÇ°áø„]H;.cËš°å‚a?~öðÞwÚûðäÉŽØçê:¾àd¦ ×(ϦݼM«}Ôìqñ²G›~wPÛ²E[ò͸7üüà¹sa àf']‘ùwAÞÕŒé‰%']­Î-½€üÊ'Õ‡ªŽ»"Ö· ìo“a/úóÞ f¹äÍ#b5®ì½ƒS 9ÌJIª ¾Õ»óV¹ÌOù¾½Yƒ9¬yú.½Ì¡&ù*çMdyÖ5ÝbP-¼ ßö9uw5ìÑK¼š™(í—dùº4.ºÖ ˆ+f¼²BÓ4:Ü6"¿±¿¢QnS|ß„Ôà¥/•!â*§§CR] ¼ òe±õò¨_ÁkÛš5  ›Ò8©mÌeÇœ¥=nŠEî5hÄÂ?XŠïÉÅÇ2Þ[[h¸ ”É|k Í1ϰ¬dÙì¯;ÅÔ=~´^,Zs|`‰ý¦M¿IðÆSU½8”fò¼QâëRƒv¬pp&ŒÃ§“f´} Lkùb•z¹øæ7^ßt^KIèô)ŽÝû¸Ü½OYñí§÷°uZdW÷½À\î>¡¬¯È:÷W-7¨¢÷à2aLC{j°qÉ1ßæ4Ë5ÖR%Ï`ƒ¼°.^íìÔ×»2;e¶ä…ŒvÙ_cÙf*‘ß¿ÆeBÉ×îÅÝ‘GÕžÝ_þ— ö˳¥SÉ`K|ÿ\àýç2¼k#=-|nè ¶Êhº‡µÙT]Ñ‘²UÆ-Rô¯V1Ý-ZƒbAèPîòjR;¥®àCv“MµÉ!»êJŽp·û¿k®Wϧ)¬X¶ç¥)*`ñ Mÿ³iš )?¤LZ¾á W“ÔÂJo ½è ÂgñŸFÀA_<¬—]£8t·Î"Ï3,ðॵc†kmujzÁ.9UÓ#®Með4Š&MSÒ*>¿žK™#“^t¯hM›Žkæ½ß?f™ŽãM \TGò±l•‡Ìrý´TüÈ0"5–„‘™fIªßX×öÏjthž½1ß›7-Þ£-ÖýŸâ>öýÁ²Èö–úxU0Ë8Ç5löKƒéÚIŠz{•ñÈÍ;6QܺŒ¿Cä#\sëý—{åëoé¦éJî+j¸h"‰dwð5¬iú ˫ꛋ¯mf¾³ºYôÌŠ¶ÊrXäû¡\NÓ‡T\Ú„é©h¶—[´ ÐT±J÷ô¢I›~©YÔfr¨‰Å´c2;®…W°œEGî8fÅõìgö[ÖiV &=§.ú¬1ÄL`ˆñ¨ý3Ô½…Yz„Ù•‘Ÿ)›OU Þj6úwiöcBäøY?ô­îEé6Y‘´gõb—¿3KÓ¦R޶ŠÐJ±ìÚC<¿N b±©j3ú¬á FY£3Lû{¤N?zoY¯T<Æwë¶[åmOÏ3T »Tuùé0ôfTºx1²­H3Ø.ÚWõ°†[µó 1!ýÈ`ä’rÌÒ3,Tm×´¿¤ôƒ†JJJ—Nœ`¿¨g€¦‰›|m"ËÐ4Ý.Eš0[ b‘ºK/ælÝtgh?­_,j¬åZ&×5ä i-â{ {XˆÛ(KF”K㦮§½Šù¾­{s¹¯~J‚Ü<ð•Ï) š–{¤¢Ž‹—W_ÛÅ·F|NeÜT·¤ê_ùµ±Í³’ÖöéÕS´EK®šË‘ù“¸ëèñ»µJÑrôÇ0{ô<«D+Õ\ÑÌs‡‘3ikyjí2‹¥§ò¦cÐÒn¹ÞOÐHD‰y{¼œD^¿øðæÿ[YsçRoÇû!¯ãÆ!¢ôæÃ®gÈîuK UGí¡ù¿HøRž;D ¦=|—Ÿm²J‡Õw¨ŽY¢SuÅ›öOšFßMbeacA›5u~_/Ÿn8sŒ~ðÀô´aouÄØÐõ\}õͯêÍb=‚õî°g¼Î½ù<…Ž9]6Y­HU7ÔÜ­!..xõqC|kø°’ñåëeÀäyÜýÊ»:ËÜ¿7ÄÆ(¤îO¢ZÝ¥²2Š\'Rò=âRV7 žð¦ôSï®v5bD¢„ýÀ«!_-]O¬Œ›o„× ˆ+¦úúX,ñXD&ka<„ 7%h`Eʵ'ÁíàÈê&â-˲&ãédW7B–š‡’lž9œd—¯€,7ïN¼û…ǵ}Å‹~ A÷gÁ?£édÀ£2¯l°Ž[sãÞº>CÏÏðñ Ööu¼sÙx<9eòpœ*{@÷ÎÀ©€Æ¿ö‡w§~Ö•Ã×Ý5~ÒÐa´ô6çéø]µÔïÁf}Þ"¾´·"šÙ^óEzs3ÚaLšZýp´^ëÅМ@o6ïZei™,¯f½Î,¾`¶öö4hi s„º¡½~µ†žhÏ×hbg{r׆55˜®–SoéŒ^ž6jÍ^tÑñêþ&ùÞs´ŽÑë;~‚›Eê«Ãψ!3yåP_QïÑË9þÌ ï]¤¾“Zc䈞,zÇÞwr™PQ‘Z™uŒ|H4ïÏ}Z×ÕÑhž’ï0™hþ2ªÞixµlʆóô ¦›{‹Àú9J†ó7ãèM@\ç…Ùð †ó+ > rþµ±ŽIB”Ì*à¥ëh%· ¸ ò¦ØFñÆÇ½ðx¶>¸‚:ª’_?º “¬Å…ZY¡šÃdΞncøET˜‚BÕ/Æûü±¾%³\( ©òáJàÇ ìådš?üÈ¿ÐÓüIà ¡=¦ùqà!1¶in¨Çè)o7uoQ•Œ™ü"𛿩ÜLz™™HûSàŸAV71¡©‰ü!ðÏ!ÿy{Lä[Àÿù¿Å6‘ Šsb}W3eë%cβO{ñ.M’ób]êR@ç¬ço[€&Ï¥œYæá ·»òBm#V³>kûÕŽÔ“0‹¿àØý — _=ÄémÀwq™° &Ûýàp™° &Ûý໹LÓd¦nw–æY0\È"[£mc©¿¡¶é w­²d‹N•ôfÌYÕ"M¶9ͧIPí~Æàe l¹õAT÷UZWLJ8äì·û={r™ðeS-÷>ÂeÂ6pÏaà£\&lƒ÷Ü|ŒË=Å6àëêLAŸ1_)êÞ€\Î(Zs‘[ÉD. <ÃeÂv·U×s#«¡š&óŬÉESÑt¿LGd%Ú†ç=”dåov‘Ž0)ÛŸ}±©Mh£i-[,X4gçtÈ›4‹})׳‡ƒ£¾=±d.öŠl锓Üdlú›â7É?[@ŸzY6µXÉ‘§d+cœjÈ”lµêêœ@:ߢЩ< žlªMæA«3Zñ8µ·6³ÈÜlŒ²½ò~i~q|lïÂɰ€¦¥[½xòÑ Å­ˆ“!®Æ­*¡ªfSL¯RžT ©ÈžTFZyÒ&ß©l wžÉ¥ÚÂyª1MñîÝóš–kxí;+çö,M¨£YýX½¨Å(ïïüé·‰½ÆÐ̺Ƽ{Ö©9`ÖÌ–uÀï~òg”8àd×Òï|VàýYÞjü¯ak 늖rÃJ¸EvÃêÓr¡P:”;ÁÕCxq씺«‡äRmQ=¨)9âÝÕ|j^F»O.šöýä_êH4½2Ëj(W—©_þ6äß¾PBê߈ÿŽ q5.] @—¾:›ò•+åЕ0‹ìÐÕ©¥U\ÝÊô;•7áÞ3¹T[xO5F*ÞÝ/×c6©jùtÙš+Š«ˆýõÈi>BéM¶/ôÝk¹L3®¾i‘Óõ¼ícÌÛ>NÞ¶QSCW˖̂栖uÌ’v¤V\ÓÚìIs0ƒçèùWÔ~eÀ“rλ{0Ïåî¼2ç]HÔywââA^¢ñ,Þìcç«§ìãÑ=ˆš7ˆê]È·°pùü­¼CyÈZ¾¬uF×˲…Ðê"Ád›WjnÐ˯j÷”±oý9j2!N°ýãTK|ÙÍ_)ÓòX¬~á˵‹ Þ&¶™óæ¤Ôg —§±z·¶¨ï’áÍ=˜màmbFIË;¹ž¸LØBï¬tã çFà— /ˆÆAϨ@|T†¸’Æaýí³rí5¤¢Ö\ 5Ò²¿=Üà;•-¡>>ÁT›ûxE¦)Þ]©¥æhÉ‹£¼î›Òl:å*wïärÏQß S®ò€@ü€ q5®R Õ®R ©È®RFr•IfK¸«L.Õ®RiŠw'è€[ M^ÚµáÈEóZ—œË8(µ„D|…Wã^}Áù×g€oá2á…á_ß*« q5þU ÕþU ©ÈþUFò¯IfK¸M.ÕþUi w»_çož±´ÿÀëšÎhwz³ê¨­ ˜Ïý u2iMç›qáøqÓ*û[Ä™gL:©Û,Övìcœ–aŸá âzp­¤/Púeƒ6]Òíâc”½´üÍ?­ðäD>Åî%—vd²­y¯"(. o]Ø‹°h-I‘ÖÑâýá†åüôð¢—òžl±jÿ éÌðͦ-ʯ§%¬ÍwnÓCª¦‚1ô]Æå>¹“šõ Ë­ "N×·pÙC5%$tQ%wp+—=T•lÈ¢ Jîr`ŠË}©ØaÏF¾T ;Ù W7iÛ¨«ˆÔ ð.{\äÅ—qÛª¡šÅ—iš¶7ÏŠהּdf ]6—7²TTß_tˆƒë€È…f³Š…dýk¸Ž1UvIZ›ó«©‘M¢1Üy4­¸3¯^2àSª¦µ¬«WŸÄ3›GXÄ$â{zï½ÀWA~•’ø>Ù™…Ä÷i÷Ó2¼ã‡÷Êhw­> %È "ÇýÊØFŠûÕªªÕàió"Ô¡ü d¹ wJ­Áí–dSmÒnQWæÄ»ûÓ¼þ0× ±JjŽ|zƒ˜1|ØW EúEbõ1ë“­=¾ ü&äo*©=î"Â߈K†¸šêC °Þ!¦W©ZB ©Èµ„:´ì 7øNeK¸—M.Õ^ViŠw3|õƒ~DÀlEo’IŒRýÿ£#u9¯Ée}êÿ˱{— /ŸÚ½ºNœäèÄ•øT54‚ϤœT+ãVÕðŠêV*¥•[mnöÊ™PÏš`ªÍ=«"ïò¨µÖŽõ“ÁQlÔ#i¦ñÜ5Ï É…K=Ë€÷q™PQ¸”à7"|X ~X†xPÍÜÀì¾Æ­™j"¯mSÆ=ç`°/Q.°ï³güohõ?eG1{¯>ÍeBE.9ÙQÌÞW Ä_-C¼å(æíÙÇä5'3¾©æ"ûQõ9Öý§$t(7ƒwó”.Ñ~³áÏ“mQY(IXÑðgÌë@æu±+ é>î9oX}t8ÅK =Î=1¦Ý,öq_Y†Ý&S¬?!Y¼øu.*¨ïçîý ÷oÈðVš+¡ÖÏÝÌ"¤v%l#W4êTÕ²Ÿ»iêP~2^’;¥×ð$¹T[Ô j ]C—쟩QùPùŽÕ«E“¯5ïkÆ%[?|ø\&¼ ê‡xÿ£ o5õƒõÃÅÙ''U(a¹>P§šVõAc™èPþ2k]2;¥·pŸ\ª-ü½šB$Þ½ÇÅ8Ìïׯ2å†2}v}}\ß¹.ú¾eÀK¹ìa|7Ÿ|=íÇW#~™ q%~^ õ]ôjxEõð •’X}¢9êCLµ¹Ud âÝ×kVÎÕͲ¿ÑU®m]ÒË ¾[¥£½®ü}Ö`n×ÉÛfŽ}ËΊ¦kغKÛŽNy‹ÍLG«TíŠåZÊû‹ýß±Jû1æ®óz±HK ÅÝ©cx 7> .,3˳†íCòËÒú>ü<—=Te$Í–¥õ}øs\ö0ž‘ jLs3VÁSnÐÚ´K û~øg\öP×ðý¬†8HPû>ð_¹ìa[TøçÀÿÉeã©ð"®¨èû¢ÿø\î“ßyÆ¿y_Ô \¿5T³/jšöEÕœŠ‘7uZ`éÔŸ7SNÏYÌÝa[ýˆŒ7‚%arZ™m_ê!k»T"6<ù€2 Ý.•’„|0¶&j)oml`%“·J%«ŒÌJ9ƒ( ÚÜŒ™ŸÑ˜‹wè°®£,£ã»€o†,µŒU¢­ö±JÞ¾VÕÑRfÆÈDž$¾Æ_@þ é׈Ûk ö»¥9\$SÌ «›kŸÖØ—«æ,þ®%zž_öEYÿþ—»r¹û¨ÿžì ñ=VçMrtÞJÜ»î}gm3ìh$S¨y¨5B¶-,‹ÊÈÀWPå:e¡U^‚©6¯ò^ñî–Ao´y†N²¡“hwÚ•Ç›‘wç¹VÁµ»^‹>íÕßÄ3¯°­y®\üP¼}yèg_à2¡¢6H‚3Z‰ðâ_”!ê60»¾¶/O°R"OZUF;rm >³ÂjƒvÜ¡ žL¹4uF±¡óQ“M¶…ƒW’°Šù¨"™/ƒÌ—¥ÉÄLŽÑ\èþeà7¸LxAtuS þMâjÚ Jh„&K7”ðŠìòÕ)å<“%câ$s&Üe&—j —©Æ@Å»Õ&äÄ(¶:¤¬¼ô2ƒ ôgÀÿÆeBeUh¿ñÇÀ¿à2aLµLžB¡{Ú~Õ¤³8ù`ˆYßBî袎ž¦žk¸LØöÌf ’/^»w#ÿ~Ë÷({®¾‘Ë„Dc§çMñ7ÉoÙØÙë/ߓԟLcHÍkE­Ḛ̀ÆPÌ"Ñ¡ |•X³36Ьݔ`²Íƒ5 +j7ÕȼdÞ»ÞÑYå¯ì¡³Ö>’ôøïþ,— xüć`z>'ðþœ o%M*54ë›uõuzL½2í*5ä"×ê4Óªö8ûO<{^¶Ä¢¶úLµ…ÃWS†Ä»×j)}Z7ËiÍŸégb¯Èñ[àø-eå<îÄ^bõ'À¿ã2¡2Õ…Î ¥¿ ü{.ÆTÝÃþÄ^ÝY:©»D–^Ö‹ ®™¦xf´#–‹CÉëÓëŠ CU‡&ÜvIFéÿcï.*Rú¥Sæ¼Qˆ;W²÷àc\&l‹Þ{÷³\&Œ©÷!*¥eËÕÍo®{iÝÕ%ÓÉñYò´Ÿ~€Ë½RkùÀr™0¦UõDž\Né øq.ÆäyrùÜÎj¨frù°¦iÇép£¡¢1kùG¹"RxÖVDÒ›@”pò°²bÖOk{ $xíî…¼·®’/¶6¼d–óÅjÁðjÌ Ó™÷ÖF±*³±ºä>­ ½à LSÓ‡0']"G÷ò¨kúxÄmcÚ6‡ù| rþ4äŸn—ºß ü4äOÇV÷¯ú šRLcƼ^2ËuhÐ9y^°³dB++É^ fÆQÔíiÃvJ¤f[«–YÒò†M ìX”T.˜T©z‹¥ò¦¯–(H΋¨¢ÕܸÈ\j¥Oðì7ôÀÕWišÄ—ñ±'$ô÷ŽÝe.w—•׿RcèÕhjR¡­ßÃeBe•yȲJξ—Ë„1Íí:ÚžÛOx‹u¸‘{ð \Ž1B~𥀹,9š§8B“Yr|Bãüɳæè¹ÚcÞcÞ|v£çleë9ï&aÓâ OËmHÉ[šNe+Ý`ÿ*:\Žrþ‹{^ÅeB½| ëá§ëÄIŽN¼å¸ÎLm[¢¦yøGÙÛGêÀK&Ï{B¬¢=…²CùøÆmw 1¯Ð‘¥d“mÒѨ,a#K"™×‚ÌkcWŠ/çòèM_ü—{Ô̤Nv¨‰ø~QàýEÞñ‡š”ÑHö€¥æ€¼¤u^o$—j‹zCMﮣn¶œ1e±†…d R½+¸LØ¡d95ÎOùõ±æë)Éš¡w%ð*.^5CïÕï«ex+©ÔÐ[ýõ,S¨áµP¨”Vu€_:”3Á¦Ü¤vJW¡¾=ÁT›ûvEEF¼{em=ÜÍêÅjm·žåð»¥cn¾ÿTÖ5æÝ³îLí ÔS§¿x— /OXà}X†·O¯„Fض_uEKy{%Ü"{{uŠiåíÅ‚Ð¡Ü >¡5¼8vJ]á?¹T[8|5%G¼{uÀÄ ìH,åò}†3`8Ó9—o.qù¦¼Ë7¯â2ááòŸx?-Ã[ËWB#Ìå›ñ\¾n‘]¾:Å´tùf—¯–§øT“âØ)u…»üäRmáòÕ”ñîÅÞ ö-U4\—¦ÎÅp+o«·I³Šµ…oE›Ð¼é£²~ýyàG¹}Nw _OxÏ"ü1øÇdˆ«qìJh„9öºz¥»n‘»:Å´Ú·¥µùw*wÂýhr©¶ð£j U¼«£¯„oÝk¹zQ+WK9擼eLM™yÓ(»Nmy˜7eµ>eYüÌ5ì¼Qqiv«a{ë‘·ø^³¯—Ë„pÌ+ø|0Ù®t:KÊÃK¹|aËD„/ˆwèX&e4½òªl º•qÉjˆEuÉ µÒÊ%·0üNeM¨?N0ÕæþX‘‰ŠwõZßõŒ5§•ªùÏÃ곆­O;:Lö·íxØÖ‰/Òå7´Ü‚w¼SµlºLÐb8¯éJ¿æËg¤³‹Iú^Ïeã»çÄ;CúÞ ð~ƒ o5ÞY õ#jxEvÎê”’ØH§bŽ ©Êt&ª«ðÚ"¹T[ÔjŠŒxw“7w% ×b8–=©¥òª¢îY·þQàÏr¹OÍ^Kmˆº?'ÿœ q5~] æQwô³Œ”‹ìØÕiå<£î0ÃïTÖ„ûÑäRmáGÕ˜¨x×m˜1Ò,ØöŽ‹«M+q¨—D/nÓ‘GÞq}´LüŒa[^·H}>мXv#—=l¿‹Žq\5‘ßÜÆe ÂC/»E ~‹ q%Z ÅÇU+ãÕA+TJ+-w\uÒ9êŸLµ¹Vd âݱZïóÒ-½]wɪ–]9ïZã=ÞSÊ ÖÛpÌU3‹Ð½SðLwA‚£|–˄ʔÚlÏ•eÓÀç¸LS©è+5øÄ@œبU^»šE–yÍ¿íu€a·3=Ÿ§ïü ëÜB­ÁÄ7:ªoî#q zg–t×6çéW°1Z½­%nkëŽe¯å¸üQ.Æì^“9ùI›ÐöBPZøÞ¸À¿~òÓ’‡jOÈË~Ë„Š‚d7ÍXþ!ø‡dˆÕ;KN~j¦™Ý.ÔÐŽZI'Y=!êlaÇʰ“Ÿ¢–¦Î(¶Ù> &Û<ÈP“°¢}&jd>2ëH»¬;, hé…?ü4— /ˆ&ÙòÏÄ?#C\I“L ÀJ`Y6µ ÓSC)²£W§V­±PcïT¦„ûÈäRmá#Õ˜eÃ]Š©e6¬qù<¸|>v+=§þ´–uMj$Œú…ì´6/=ûrùχ˄ œgâÉË¿!ðþ† o5¾S °É—uUK9Q%Ü";QuŠi9«^( Ê@^M d§îà“Kµ…ƒWSvÄ»·iy«X-•µYƒ¶8ægÁQ§‡•s {Ö( «EsÌ3†·¥­ßå"3ÓÓ+¸¼B~…XóÃ’¾¶KXq — /ˆÀyÅzøzâJœ¿aóÃ2>_ ¥¨>_¡>ZÎaÆÞ©L õ« ¦Úܯ*2KñîJÿ€œe2aÇCçŠXSWdÝç•À1.^¡óŠq÷¸ o5ÞS –¡sEÊ*áÙªSÌù‡ÎaÖŸxΣÙÅ'—j ¯¦ìˆwa`c†©Zè¯èH$½ÌέÎßÈåêNFN8š~“@üM2ÄÕÔJhÖaî¦TU „Väª@NZEÔM¾Sîr“Kµ…ËUcž we»£k\ž—ç;SW–tGWbtG¯x;ðS\&¼ bêŸxÿ¤ o5>T ð½âtG«áÙ‘ªSL˘º£;Z1σiV ;¥°pŸ\ª-¼š²#Þ ëŽÆ¾5Ößëït$r¦ÍäþwÍe #jþøßÈWãñ•Ð냮J9z%”";zuúhÙfìÊ”pgš\ª-œ©³l0GYéSù{P‘?ÕÐ>¢¶á0 Gª†\TGªP3­"æ†òСì $ÖªTvJi¡Ž>ÁT›;zE¨¡¼zkOc¸”~PéWB K‡²*äyÙNi1¼NI.ÕuŠšÒÕpWv(µÆå}àò¾—A£á´£œ–­Þü— /ˆ*àóïÏËðVS(¡Ñ²ÑpZÊë+áÙë«SÌù7¬?ñÜ o4tŒRdŸ\ª-¼š²#Þ½R+˜ú´UÖk3kƒ©1\ÌüÊ£8ƒ¦½³'MY玥G+ÿ„Ë„ œ{òæ+¿#ÿŽ q5Þ] @ï¾"›bz•rëJHEvëê4Òjà´‰Áw*[Âgr©¶pžjLS¼{¿ß£ÎÚ'üЋš7•T­‘ü? ù:6_!´«kßèN»÷/¡ÆYã IŸû9^t— /„€ú¢›ë¼IŽÎ[‰ËUC#Ðå^ÝЧҠk?¬†iT?¬PM­Âëð"Ó¡¼ dyÞ·Sª ­;LµyÝ¡¨Œ‰wWÊ÷¹×ØŒÍXGÂìnY‡Ñ8p7— /ˆ û¢ ø„ q5_ °¹‰r®] ¥È®]>ZÎM”q’IfJ¸“L.ÕNRY6Ü•í~®qÙ.û:G+î~¾h?ð1.^ÑrVà•á­Æw*¡‘L÷³n‘¨:Å$Úý¬˜gƒÁHv?'ª°pŸ\ª-¼š²#Þ]¯™£ìÒÆÝ¼û9Óõ”À«¤,CVf#O{|¤ÌŸë꺈+fŽtGÍ€+Qà|Ä%éÔŠî¥tH‰]Ò3¥í`µ,äÉy½Š<ðjÈWK—á‹âæѸN@\1Õ×§iÚc™\ ã!ìƒÜ«Z Òàr®= n—7@Þ ¬x-ËÍòédW7BÞ¨0Ù¼Urr”Ü2ைmïyÜ;âç°^vâÐݺQvÎÐŽ †;c´ŠmÍ2'Hóò4½èvYwÍYCÓ+쎞Ÿñ¦ñM™ü<{oŸÆ“.~úPÁн }Þðà'ÿmú¸ »º’ûÁ’Äa”)›€Ÿ…üÙÎ…Õc~,1悌ÍÉÕô>?üä¯]A5ñýºÀûë2¼ãÕÊh„ÕuEGª•q‹T«ULË Z(ÊàAÉðâØ)u‡ÔɦÚ$¤VWr„»ÝšËOšcÕÆ"‡o̲X[󎽩¤S1lÇ*‘y•Ä Ÿ6>giÓ¶U­°çx½¥mÑüš+­î¼eç ?¸µ˜É*ÝvÍ|µ¨ÛÅM/̲¯éÓ†UE¥OOÛÆ´îUcºÆžš6´rµ”3l¢æ×X¼ú*ÑéyÞõÿ½?ã8ÎÆa,”xI”¨“G D-¤Åâ"A"$Q)’â%‚º,HÔìîqwf53 ¤©Ø:|Ä—Ûñ[vòÆ’OY>’ØN|är;N|'vÞ/ñ‘;¶¿ï?‰“èëê~fwØ8=½³âÿûüóê)bªéª®®î®®6PR6MÏáÚ½yöŽQÐ\ÆÌ‹çd ¢»ôÓ®çÐóºk@Âq—Ilƒ’Á/BSÉûàöA¾XB7þ+„kM˜@è֎оý"A·«ŒÃC·öNàÅ‚n—ŠëZþ)m“¬¶×ã·;å ­â ƒÉÛ¥œiñ; „á:¦{\sènF³ ·úþޏzݰòT™Ù,Í}ót>Ã3ª¤¼9o¾yzLÍq ðý‚&L`z|¹0ä¶+ÚZ:=&öílÎôx­?=.ž-;A¾²MLН¬§[5A&® ^-˜ ¯‡ù6o‚¼Ìן„tç/-5iŒæg‰Ýrॠ/m¾Ÿ%vK€—¾,¶UÜ~¿v¯á1çg³AØñ‡h~]ߟKƒtÞ¶(Ñ‚_³KŸÕ{uK/κ¦+1­¥ñ×€ Э;ĦnZKÏ3|)èÈå?[0­%yOä>-#wüi­21š0­U&[¤i­ZÅ4oZ«^Îà§$¦µÍVWãims¹.0­U×s‚ïîÓZ,dºÚa6P_ëú#EÚ5 íÞŠ[a“\6Œ³4GÙÜ“Q0Ç >Ï·À¥:úøð/@ÿE2ÑÇ— ú/“‰>þø]Ðßm[˜åÖ4‚+ó†ËœMÆX€A6”.Ú“=)žV± ,pÑ­FKôWJè÷ÅR cÆ«€3îô=GwŒŒ–«x™;O7·ó2n1…lþÃð•×.±€IŸ6t/ú쑚ù{S¿'hÂfWŠ.Ò¦µµtöHìÛØäÙãd±T’=Òôìܶڔ-ÞìqeÜ–»ªñ«³Çn˜a“g¤? éÎ&8{$vË Î‰Ý ²ÙcêèýÚ­f~Êöì9Qæ.˶帾hˆš'õ«ß9&”´p7žÊƒÏ4óz‘39zqƒsÛº[a?©¹ö9Ý­_× YÅcCGÙv¨7\Òs{x-.{B\ï2^ Û˜¼Lì Ç.i9Ó²K&¶M×e²L×sL6°S ”ÕTg¿lDñ7„ù¼™L‡yX6ÈTŸ–?DõgH>þÁøQiôr)KÐ)ëÅÔËR§€ š0^FEM9>&hÂzYÊ>.h˜¾÷}õQ’køæFd¸.åqéEflnÙÈ“åÒ _‘™4,ÃÑ‹æIf]¬¥ ÝÑJæ £07‘[Rõï±@‹™+3î`GpŒIÖ%] rÄw{²ÚníH˜ÅÛ¯4áY¿öCÏ“Þ(hÂýÚÉ{S@î›d䎿ö£LŒ&¬ý(“-ÒÚZÅ4oíG½œÁOI¬ý4[]×~šËuµu='øî—k?Zò¯ ò¶U0iXbCNu°7Ô¢<Šh,ÛêͳQŠ EÚÔlÙpØœ›MÊöñ`DÔÃ]ŽMëf‘8gµ#¼†^_Ãa‹oý(_£ªxìÁ ÇA„çjò>±c¹  9£Õ~œÙkÙ,¶’pØA*34÷ŽŠí…ZÇ àAÆ4´²¯RÄÀ¥ºèºhz,ŒñØd «í`´'™²‹³¾Î˜]ÀNy¨ßc/h+¶-t\ |£  U Lˆ®äMáÀgM˜Œ)¼ ø¬  cšÂ9P]ä53ãÀçM˜ÀšÙUB§m€-Z3#öíÄKñšYí@´ìŠõ¤sñ$,Ûn$ÆúâÕ‚³k`<„Í>0-!ÛùÀ‹Ú;@ì–<@ì–•HèüÊýÚ˜ÇÝ)Ìâü=_’b£`Á(–X·ÊÞŒÝ ;çÎ4ÅD$„M6 bÑŒÑ9Og3ý‚XÌÒ5×ðiž´€`‚M™oUðÔ –¦M›–ßø2TÙÑY¿Î³áöV_Ê¥u:¬”1–:_æ3¼Yú}ʵ-W,'xi†‹<§â1­&ôQ¢«S1üÊÈ}UéKú, Öy› ÕUiJ•¢gRFªÇ¸x´XVÍZMÙÉlFìÞ4ø2i)"d¿_ÖiüçA£Nÿ.ÙÏhqìbxsóï ˆàëy|»‡KÞ¢~Lƒ/Q[òl™š$|.Å"â^ñŒ3Óa2ˆ«?Ã4P¶Í°Ç¶ú]¦ZJ üf`ë¬úÛ$bu¥µ ÕEéLQ†ŸûKSÉ=ăíS{ú{:zkž`\üù«¿=Ym'4I¦¦—übM•ÏÍ‹‡ÿÜÆÀW$&Q&5_ÒÊ+.‹É *Þ¯؇§ýþP}N½âMÙNFc³Œ „7t‡©\hvÈÛÖ5Kl2â, ñ_˜™Ÿ>ê›ËÙ¹ øQKíe?—·Yl;ËÜ|ûŸ0bÁEWšâ\žše3,ƒëΞíÌú[¶3©[¦ËÚJØJÁo¥rQç·²MT¬I“–Æ™i™©UùœJ¾Öõê6÷AÅÆªÄr©ÀÎ šðÅ2ºuþðßͱù£[ç?ÿCЛ?ºuþ-ð?Í1Öè–º¢¶ÌdýfÂd.©bŠÅ„9u\î1<£ÿ£ÈftÅꎊ1³³k.™êÆILçõIïò|~HÝÉv²ÚA6¢ÚÎñ`#9UÞ pÎÁ÷'bá!0¤ˆqĤÁ.ÐyhÌÒ‡úãë—òdœ«+÷QƒRRÍÏ.½XÐKÕÅ= Íf®ªmc[Kg3ľ=€Í™Í\²»Bë ÚaæÅnååmF”öÚ61! $HNiVÄm¼k¡GñŠ©Ã.6¥‘ðûiaè.e‹']Ô‹Y·–j%y„ÊÖ‡ËÇ'C¸.^úÂØzy¯VÖóÇõICTíá¾Gñ6߬ûà,6å–Íã=6ò(ŠB@+©–1SõWâK6Ÿ#`´/_¶ËÜ NŽH|òÙÃíO0gËÙÜfz{*9yl í¬~ô'•™Ì†)Ï+»Ûúú&ÙcWrYæÓûf¦M#?ååú1§íô3À¿ýW Í©âC¸~ ø¿AÿïØæ´Žëº4-×C"ÙÈ6Eþ€?ýó8^¼^RH—…ºénÇ(ÙÌ}w÷„ºÌp ’›åx  c¶åõgÛ6ˆzLØ\º{®ÁuGÝì–ÍñzÐ×+3¹•ãeö!Zö˜ÏÑì}t&v{-Õî&WÑÊH†^à èAeîb4”eÒM‡©iÉ‘‡nÝ"ÜVànл›ã»!àm o‹­Ÿ 2Ú¬]áÎ…Ä™„%hð% _¢LYwÝ=&!‘,€.(ÔЛӄ°½h€–?å¿K5KŠÆÜ‘YŸð ÇwæºÈ%Úi—Jâªö Ã(äØ'EÊœ[™œ¤µ#Šh¡Ï,QB6ÏRkizqFŸeAƒQ¤Vä© =ïð[ ¿•ÈÔæZa0m×µµtjCìÛØœ©Íš&?óOfpX˜AD9iT9("%)çò¸ÍFb\@¼bjo;MjؼßÄò,z ­˜º+ÖP{ɵÞ*úÔJaÜ|AfñÆ_ãîk‹1k “&^c‘HíÄKñ‚Žv›!гɧãù©lòË;ýx|ÂÐ=Ò~k]ÜF$12Ä+Þ˜ú ö¬Ëz™×·²ÈºXÛé9{û¥“¶]Ð\jSjÜrQÏ‹GoÊvj‘‹Xqý%µêÿõŠS¶Ýêª+/3Qä?ïÙ~9 â$ÎcjŒµ3m3óVii£–NÖèe=gM'ûé<ñÍßrÈnê¥%•ƒ6Õ[)έ=Q·q+Î"nÞ1sµƼ)D9 ÊË™âG$jBV\c¢R¤çvl¾hCùvƒgæ-êoù:†QœÕ öŒU´õB0ßîÎ#ûµIsš\ó6·«_ªž’ÆWªöLÉ™÷8 OÞM¨(À¼`Úœ´X4ÒÝ‹mÙ…î‘d_~CÐ„ÊÆà½ b÷Yà7MwÍ'òÊ?ñÿðÛ‚NÅ¿ 4²§„ø¨fýóæiö2#/ˆCqÔgh‹¬æ/x¯Ë³.ɺ3zìŸñ²4èûž_…fÊ(–ùŸ]x¢È»lCx.Â@?«/4L¶d¾E/æ%d;,ƒ.+ì!É–ÄÎ> úáæw>bw è€vb[Û9¾ÁȆ <:Þºkì,Ê­X¦„p¯¾ô등ŒGoý†d,ã¥À'A?Û2.Äiyçñð} ß§ÞyHU×&™> üèO$c"Ï? ú“ɘȯ?úSñGîÈ»5Äÿ7€¿ ú7•[„l->’ê÷_ýådlâsÀ¯€þJ26ñ[À?ý§-²‰¯ÿ ôŸ5Ç&$*‘Tü!è&cßþô’±‰?þ-è¿ddüãzÿwÀŸ€þI“i Ùþ[`ª]Ð)©Åšè†ñÿ€m‡  “0ŒŸ‚m§ SrGŠƒïþ c˜<%ÖI,~Ú3Õ:U}¢§‹kAæÏmÜàò…¿AÍÈ—OJº5[UéÅÚG3(!U—…Çgž‹L;#;…ñh„:h]™Sè]dpí+ØÇ+ÙòT¹ž;¢« ‘'oýƦµÄ-|è7%ožÄþÍÄKÑÃw‹Á&d¶EFr“Ò~ùù‰}{ãÍAµ¸âÜÜ&²­}Ä+f«Ü̼ÅNÛæ9u{²ìe&i1jV»‹ýs£v—^¤ýËÈhû²Úά–ÞUp³=t$¹kOäc‘; Ïx’”@EÎ`ßÓ­Bζ‹zª¨éÎZ´CfŠ·º;w%žà6àIÐ'†!çw^§jSý}LtµT!K©ÐÆŒv¯íߦ©¸®Q,jcäúwÓx KUß#!_ |tüãY‘»Î-04Õ8”¬ëÌë.‡ŠÇM+£íeý„_ใì„|„AoTÖA® ¸Ç~2ß>ŽÓ#HÔ^à ïh~ v×€>[«We™Õ[Ú­¦1ig´;¶i;òzÁ(™yí0U‹ÜH¼1  ÚM¾Ü [òQM˜e}à€nyF1£ä`nXîIú÷ݼl¦A"hu:]¯å¹Õ3›Ïkå¡ÃslþAsÚ¨Ök¦˜.•‰Ü­vá‘ gAÏ*ëVé@I z¨ƒ:öxvêVÞp´½{x¯â_ÿIê—ô¯7¿g»“À÷ƒ~l[‰žGüŸ> ZÝIçöÁA yž~ ôǪ#¤¶±ûðyÐÏÇVÇêô¦žŒ¶e`koï‰ú$ÌÇ_ýuãT£Æý[‡ú²òfßà`vS–Iq6G¢~ øÏ ÿY¡úB~ˆÝÿú_’ˆýˆWÒbìÚ®¢šqèEP4é6< áè1eBqÑ$ò%À‹&»£ÀÙ¶ÖMœ㋡hÉñ(ð±¶ÄŠ&»—ÕMZ¢I2U“H’'€O‚~²¹£Jܲ$ê[€Ÿýéæ*Äî)àg@ËÒ ¾Ùûϯ¤ÅØ#´]E5£Ê{Ù¨roÅ­Ld´16¹9lxlJx„QûÓ¥16C´‹E“’¨ðéÏXÑ0'§<öáÚ À-ldÑrE›+º…ߺ³½x–uiÖÎëNÁ©kºÃSsØ´Óšw¾Ýá—8òkˆ=‡}ÞÜ¿ö¢mß ú½ÊúW÷a¿T:ZwÒ3ÙÓº›çÒo7 yŸþè?jþ8EìÞücÐÜ‚qŠøÿ ðË ¥d…L€¢–ž"9¾üh•çîCÆ)b÷à7ASÁh3§††6÷ömêJßþ´ÔÁ¨…·µê&@Ã}nÿÐPoÿð`š9—‘~öÏÞP5† Y$ò? L]"è”TÂX´!‹Øþl/4aÒc±¿¬†þKÑÓ/wüº¶næ7 ]·íkS9PEnbß@¼oWYªÎím¢xÎíøü¹)fÙøqcvÆv9˜Û¡ ÂóAÇ?LY+Ä~Mñ’k€Æ­æñôÿ·Ý&cô‰ºrPèOçÑß:Å®yò‘Å\Q“5éÉ5¯"Ø-}^©Üw„ýgß‘©ÉÒ®¾#¹ŠY,è†^ÈmÚTÐ7 Wχ•t«¯ši€Õ¿m§_^E¿|ÓOªm˸ò¢¦ëBúË’Ò„]­jâÄ©™ýk€–ƒÜ«í7{Û¿Š¿-™ç¦ï<º»yƒK_˜+QàÍ®y=i—•·édC­A—‘dü±w|çGC>½ä§sÌÆ/`ÛuøÐØÞ{òžoEüŸ^í‡ÎËl$²f¨-«úX>÷÷®ð{õF3¯ t±. î$ýÈ™Ž˜–^jtŽ(0BÐeV>ú:þTB~‰Ø® àœÔƒb(³~°–W€–j™†\—ŽëESo4~·£Úë›$iûUÄK‘F–MžŒR: ÂÕ W' ”(¢£úºÀ!)¥ûóˆ—*¥¸rJé„":VJ'ÑÙZ¥tB>ªUÊ¿–$-çŒFIí¨Qà%Ðáu ¯S¨/Ïô^£³:"lpVRú"ö™Î)_Q_]qšתÊ;Úà»×ÐÑÕê9oÚuš Ø‘ :¢¨;!ùÁ)Š,]ò~È.XáèeÖv?$qÛ=[kkªÙÐÕ %Zcx+è[ãÊÕ¾}Üœ85啊§OÍ»"ãzt‚Þ¡Û}ûOØqtϾ÷9vçØ®·Ô¶÷jc³n–YŸaM§»ç¼ÝÝsƒVýÓBÇgÍ -}•u2?¥;éà{==ó~¦Û_ßʬìCnÁ(šÓt3œ×g•K,Ž÷¦ÒOÜ<Ôg¸›û<ãDožž¯—*>²Owß f¿G¿ãκžQÊRžî.Øyÿ«!_ Öt|Á-.6ýn¶q£6ï9D“°G¹v|œªÑŸÚNõ`ËžfF»°Û§ŸèêÖtwÖÊkLk£ÝÙlû¿Ï­oqoÜÞ'~æÆÓ×jT›É̲?Ý€ñøÎãAÖãÝ×fê>Ãd¯ûùžÓ§C,xÁk@È|wƒ>ÕŒéó®Y1N5lÑ>oDqn#¯ÔI-'Ñ ïH‡ŒôA?ÙÑH²\óÍ#b ¨ì¹C\qã”pm¸f©Šû¼ª5 ‘Ñ Æ„ÎFÿуwîßz}o¨€ç¢õ /}YlWù“×t6›.ÔrB¸ ´T2'ª¸ÕÝŠyÚ ®½Iv|#^ÑV[èŠoÄçÆg%Dñ¯˜­ÒÁæD ˜Bp H²]ÂbŒTÔÛ¯V¡ûøˆWt±Šs3q¢õbÊ Ñ-ÌE²ÚÞ ­bQʼ9a…Œ¸Ô pcxÇ2 Y‰§Y Üz¿²¾·dÜdñ{ÛNàÐ’ïzÄþ`ñJÞÖWþW7ÕÖ»0xHw.ð¼¶y;·1-~pZ/V qÙ0M×xBnÝ¢/lÃ¥BZšqÂt½¨6¾œ o-5/fã«aׄ»@ïJÞÆ‰ýî╼Ÿ»>O¹/T«`ÉxÁö­`,9èÓYõÛâ—¸”l§Î”Ýj‘Íú*r¼ðJ®¢\+¯þˆ[gr-FµzúÌùÀè\ó­þy«§Ïˆ—¢§?w\w&y9ÜF–åOqü\“ŕ磗ø/®¼8®8kÐÇ|”Ž›ê‡4Ü\QtÙ6ì"´ae]²m­¦_Û¹ žVd³a«éÄiðBÐÆÖËhu5Ýõl*«Éëc²˜–nt±X‘èšQ4¨7iyב‹×’èkw€–Zi¨ÍsªjÃ|aØÄ–~íàƒ Tè‚CêÓ»#@´[£ëüŠÅbQ¾ªÄ´kHu¿ð4èÓ±Ö°ÚR[´ôS¿|ô“ µRúžØ=| ôSÉË#À_ýK±åÜž¬¶‡²d#'Å“o¾ô;•õås«Ki=2ù}À‚þ`2úyðC ?[?çñ[©3ÓôŠùa -}øYПU¦¥ ™–DzEŒ[釸-ÐßJF_¿ ü6èoÇÖ×YíeÔng`ó•}ø ÿQ™ÊB—ÑÔÏ¿¯$ôóOÀýo±õsùç¼¥»ÚÂFV»›N#K¨ígSWšP•?tãøCªÙͱWЄ è/u%0+èT6¶þnÈh6úu­ù“w 6º*ÖtX*¦ì‘+Æà}@SЄIÏ/ÖPE5“Ô!*8VqËSÝ~~ç®],Š{0‚ëÕn¥\¶é~æmQ_ a ‡@%ß~µjÚObYíb0'Œ¿¬vaÜv!1V¯˜í²Tãÿ‹(K \zu{©tÓ°OÖ­8ÎËtÏOùãQÝè%øÕKÐfXki¶%v+::[ ¥®)*Ú“¼€sšbÓjV›™2èâ6ã÷/éæíXäÌëŽc2ÇJ—zÌÐ%¿”-4·†išþ} b%Lâràã —6‰y KGܹKÆ^|=è×'cOßú ±;jÕ‹¾ @B< üeп¬N-té•„D~ôGš² °ú…9â®-™n¾Wnõ‚ä}ðÐÏÈÊ=ï—ßü(èÆ6˜{x‚´¸®Çe³œÜ4Ý“%‚Ó_*ÔJ×Ã>ƒ ŠË:#;™Íˆª?íöœÀÔ2A§äRwY`7”™Ætv”V=ÓÜŽîÞ±lWOäø›] ì4an#up@Ð)©”ïúb=Q··ˆÿ pHÐ)©00äñC¶·ÈLºÀv“  “Ž>‰ýæú¯–DY— {çØü(k©kRÉ⨽åRüì¥mu!W³{ ±[ Њ¬ÉÃ,×Ó¯RÖJ†ëò˜j eºn…î lRŒEºø(èG•¹Ò%Ü_ÊèÿÕÀ×~]2ú øzÐR±]]èiá@Iòà_‚þË&”¢ÏRt} $AÿF ¿SøoÚêîn¦ê¿ ¶‚Þ),©úÿE•¼mîÖ=¿k»¸ Ñ1®ð¥)¨ÙŸ¢õ½âÙtk"m°Îr“ »Ù”UE‹1TØÉ¿ôÐdØQ[£3 ³Õ7yÊáŸâføOÕß%!gSüV`Âgz6–M5²­+ýGÁÎ1ñ0ð,2 øuA6a‚0ísÀo:õD¬9õà7M7î‰õûoÕÐ5;ꣾܶßt*þ¦N䍨§†þ«%Q_àô@kk.s/aSøPÏ~•0Áµ5b·mmÉœ¦0 ú,Í(•½YßÎ^ øô¿ÐVĵڄ»¾c†|ô¨—ô/( ¤–ÕH”W_ úÕÉ(ÿeÀ_ý‹±û¨ä² ñàS ¥rJ”-«‘$¿|´ÔH¿è¨©vYä}+ðWAÿª¬Üó~ù—€ýس²nYMâa?ü пÑüQ–Øuôo&?Êûß ^-e/ÝŽck+sÒôºF¨§½?ëï«$´¶BìV㯭tÌi‹ çr´i#ï±®mé½iÝ¡é÷ÜûN0šÖF^‡®Wb¿’®X|J>ë²ržuðå _ÞR‡N’¼øvÐo? :Éû*à›@¿I‰C§_|øÐïh­C'QÞ |?è÷+TRˆC'v]Àg@?“¼C'öϯ–8ôu¢ÛqLbÚäÍ#O›ÖáW œ6»•ÀøÓ¦åsšâNÌLÙ®áŸ7p«>çÂRc‰‚M¾{/ëÎ<çΗͽègN|¿MX]T¢úà§{ª¥wÝÊÖ_–êWÇaoÍú¥θÀ‰íßZÊ­5{éÂ2-Ф¿|è÷)´Ô)þ¡†lKÀ_-5¨k‚‘ê*›û+´4Wר\½dÒõ0ì ­Òòe]¤ÐEž«“Ô¿ü.è懲!vÛ+!Ñú±kܽ£b{a.ç{À¿ý÷±Ù§åí¢íôM™“SEº/B#窊IØÈë»ÿC[]}÷Ä€$I8 h¹œ€„c@’w=ðzA§¤Š"6üåKƒ‚&ŒmXu¹2;ýӴ§ùË‚¨1H‰æê‚NÉS·oK²L‹‚NI š‘c‘TXtª[×òYäŒéå§XL1Q-²¸ƒ6hc) ø&A§¤¦2™TÜ;€ï4aŠ{3ðiAÆTÜ󇿍S0è½À š°ÙS0,ºÀö‚&Lz Fì?YCÿÕ’)ØÂÈ9&0cºy vE[í&…§`Än%0þìü9Mñ•ÜÔó´óäzüš¬9‹jå¢ÍÂYöKºç§"Ôò jkj¼E Y~î_~ËŠžñrà Ð'¤Í`þ¡qHÖ-£ú_¾ô+“Qý,ðU _»‡NgPϤdèÒQ‚;´!9É×HyÜ’cºÆ?yͧÞd¼brÁ˜6ó†8?DÓ ¬¶£ÈŒÉÒù5ÒÁÓE¦ðê¶Ú½%¯®5 ŠjÝ| c<)†p¹ SË“1„Àv… Sñë¿-áú®—ÜQê|Aª lº ºs\J-—AËÈŒ¬–Ôà•‚&Œ©–£~ÿd‘º–ðÀŸR}Æé\´vFóXš}°6 ôÓŒFEŒÄMîÅY©ù,=Ñz #hÂÎgI’W_#hÂý|–ä…O=!hBóYúEøZAÆ´¾­|>;QqxòJu^{dÌ«L›|<êμóT×è3[ûuÀß4¡2GBÙ•RŽäO€&hÂ$Éïÿ\Є1U9™¡ò0—äuªjîÚÈiXÎÓÚ»Å]6DÕ3[Ìw}…óÀN¬p¦É2xÍ þG7Ãþ,qk=ä×¶o4¡²‘?(£ùö›»M˜€æÛ·o4aLÍoÖJ|l`#Æ´éVx~1?8¯—ˆN =sŠW0Kè±}ð¥‚&T¤Çþjnl£ÝùŠëÙ¥îŒ619ºð-W¥{dþðc‚&LBá§Ï š0¦Â'ø´Íðpº‘ž}V´&õ~¾§çõ|T¸ùžÞþq— šPÙtN<„T_ïЀiA& úŽË€=‚î艭ú gÐ×£ë­ã:à~Aw$P€˜f9]`{@ЄI¯‹ûƒ5ô_1Ũ"q¥0zޱªH4äz®È52UZßêëÎÚ+iUû%Ä+i1Ö£ñ}”®+Òë²qDÙ 8¯7-.çx @ìÛˆ—¤#o+ÎUm¢$¦j®t8Êzè.³Zƒgò™6 ‡¢ 6À|pA3Î÷ÙŽ_2SLÌkeà#"ꆎ ‚>ªÌÒ–ŽóÇiQⵡµv¶¶åc<;[W*¥uNñŠÙ*—2;»Û.NLê,¢ºË4òS^N¯0«KG/på\ðÀ·¢ðêâ™éÜÍÕK—kKB^Üz‹B‹6JÌu†ð½ 8z$¶îÚ#×Î$þ[Û@oS¦¤õ~fÙÌÌL6‚²BòÉHÈ›€~@™²:Ç+N˜ªn},~ÀÕÙû’s sÊ¿k\¯xS~êyކzïÆ¶–º_bßÀxîwY\q®m»>â³UƘû xÝŒvwVKöô÷dµ¶U¨äùu¦^ÝÒ‹³.››–v¤  £ùÛ ‘/¥LCÅ„c ÇÔù„}vÅ¡ÌD{Bót&< iÌžðfôÈ ï$äK€'@KíɆLRy*„íQà,èÙøoâx ô)eºj–çQàc S¨Žœ],„°})ðqÐr5Ú‚ï®Hõd´ÞÞM#Rè à“ ŸT¦˜küµ`›?£÷Zó"¹æÝ³=Òç•Ê}GØö™š,íê;’«˜Å‚nè…ܦM}pÓàp&¡}̶û¸ãÉú-úø 0ÙÔM?©¶(ãÕáoÔG–ó§’]0üˆ3k©‰ý »ÎH ô›Ü¿IbÉ<¿xçÑݽX›[úÂܾx³k^/ÚeåmÚµ®5æ2’Œ?üŽïühhç—ütŽÉ´ûË1‡í½'ïùÄÿéÕ~èܹÌnŒ¬•Z‹Vu³|î¯^áWëÍf^'èb`¤³Å¡9Ó™•YÑ´ÿZSß¹HÓ¿™g"¶/ 1÷¶ü{Ï×€–jŸ†\—ŽëESo4Š·£1Úë&i½û ˆ—J½“ÒKtÑ‘°^»ö­ÔKtác<½Ì­Ê²u·yÂ(ôàUW(åèû]ªþé×-¢ UÕ|U5úéNhŽðfÐ7ÇmÍöíãæÄ©)¯T<}j|Ì8Qvîs ·RôÜQ§q=:›ïVÁpî?u`ÇÑ=ûvÜsäØc»vÞzPÛޫͺYùÖtº{ÎÛÝ=7hÕ?-ôq|ÖœÐÒWY'é@N:ø^OϼŸé®(XÙ‡\ֺ洓µ ¯Ï*—ØØãM=¤Ÿ¸y¨Ïp7÷yƉÞ<=_/ÕeŸî¾A;Ì~~G\˜¥A#Ý]°óþWC¾˜ñW¼G»ñAÇÜâbÓïöh7jóžC4 {”kÇÇÇíŠwj;åž”=Í,Œv`?¶O?Ñ+þÔ­éטÖF»³Ù>öŸ[ßâ2Þ¸½Oü̧¯Õ˜ÕÑa%öýéŒÇçp²ï¾6S×ð&{ÝÏ÷œ>6åb{äÀŽG…˜ñà~Ðû£š1}bÅÜO¬§shŸ@ sòðYËItÂéÈHôñ$Ë5ß<"!Êž»1W2Ífqm8ÇX±=o[±­š£…ͨBŸ¥ƒ9Ôf>Ê ²tÜ3½b£8¶ßöeJ T#K¼±šD:@¼$û׺¸âPÆÝªâ3‚™¼Å¶‹PAw<3_¬–Ël»Rõ ŸMyŠüóV\qQfÁœÀ’¿–3¼Gõ]»WîÎbnA8 zRYüzÁ“ E<•° |ô£ÊœÐEYè5| ôc±Íà®Q‰ê ôzøZЯU¦¨ ¾ÆÕÔ›ïýþ¤4õ:à3 Ÿ‰­© ÿv‚¶]6Íð4½Èþ9Øß¿µGœúž°Õ/6œüN—l×+Îöhú´mx}$Ç®LNQ'ç}×ÎW¨Ü—.R('dÍàYüÚg*2ÉãI˜µÀËM¨,Ph|c èöeVx{Ò’mÁ Ón¬!ò£€„‡Ý~(!Cl4aLCì$EK4ÁÀ£‚n?ªLM—Á ™*PÕýÀiA&£ª;3‚&Œ©*ÖAõi'ºY§õLê¸9ЧáIxW/š¬ïé^…uQÖ1«QyÀ9ˆ€Þ½·ê`ÊTˆ r2.=â àwÝþÝØyäolù8gƒ\v`=À\±=Mé§žäÀº ÂÆ[[nÒd…[Ì‚Î&ÑIˆá…À>Ðr!GðÝ_G$6¢i96˜Ò…ò4˜²Щ”²ÚÝT)Ndxóu˜f3µ¡ýõ o¶Œ[ŸxÒš_w‰L¡A@ÃÇ=‡×9›²gŒi~©ˆ?Ùñ«íùç22145R?ð› ¿©ÌŒ:é%$úßÀ¿ý7IÙÍ·€ßýýØvó]­AWBÈÃ4ê¯axÚ„c—ÂL £åؼɲg´ƒMTtË2hRe3çí ü2w/ì£ÜØ„¡™UÛ£‚Üÿlº Æ¦qÛã—>³O–ôãÿ-×cQ$ ƒK-ªýÀÔïšP‘±­ 6´¬ËJý!ð;‚^æÔTÓK}ø‚&Œiz—ii:³àO¹Ý«zd\H®¿þLЄ/ªÁ&õßÛW š0ÍýŸ¶êi¢ cjîÑáy?u+9¯X·ØIñ/?míÉYò"†î²^¯QDQ´íãF’Ox9¶;]ÿžIÉ £ý|à” Û§^L³wìaàc‚n—Z˜”Ð{» |\ÐíÇÖ{¿X.s…æYt1QqÉçR·å.›Â‹–Út© š¤}øqA&TŸ#Œ¡Šj‚ê/îÑ‘ˆƒ®.¯< Ì:'j¹ÚŒ¿nAI£‘™š™ øv„Xq(Wœ2]PÀ)Mº€@]`DVlËst×£…—êɱ£Xì=ÎÆq&QƒEæÈú<GøEÐ_Tfþ+Æ«8¿Øð¼Í!ä*+Tcdk"öíÄKÒI]WœЇx%Ý*þ®¤j”#QÆd˜6(cQ=¤Ü†cI}Ò‰±d>GØ º[FP.àkã*ĸ&€x%mG«¡2ÕØÑ•¢LôZn&·ˆ(^ÊùÙˆ2ž¹¯}¥´Œ~†pfÜœ  "?;ŒNªž:Í“ˆÆÓÆ{NÓ¶Nm8}ß9ÏÔFµŒ6^,Øž›Ñއ<É‚BôÁõÀ- ·D}úļ ¡®ñÒC.9С¹‰±“ƒè3#ÁGd¯ö vHØ"EèÙaeb4ÞOÏUòxOXC…d)“°1×l"µêIÕÚ§¡iWhUñn0×.¸”¦mðÝ+ØtAÔö£… —jz"ñ¦È Ü!h³brÐ~K@ð[dW29P#FØzû´Ü¼@PQG.…Yt½=Üà[Õ,¡>¾‰\öñŠL³î]‘r£·ÞYn“–¥UŽrpLЄg‡£<ü¨Œàj¥1T;J%BEv”ê4Ò$GÙÌf w”Í㺈£TcšÁw¯›¢[¾p9•8(¦1ãÇì‘Ó Ï‡­ù¨&Ýp@¤ò:s¾Ù´´Ìæ“æ´ai¹Y-¢Øk *áh¹æô®üºÒzš»ŽÖæ®×kãlb”]³h[lúŠ­›ÿ±Àg$Æ/zîAà èÈ“[±DŸ~BFðE’6ˆ…¤yýH™à‘—æ4W{ˆBµæ5YCaeúTk”º`Ô\¶ Œ‘Ê×WŒÕføÁi‰ü› @‚~´%3ŠX›³$þcÀ7‚~ãÙ0­ ßüM2‚ÇŸV(Cùæ¬2É"»ujiÖæl³Û&Üy6ë"ÎS‘ßÝœ`Móȹ'dí[®‚[Pô?ý‡-q³)©“:$÷—€úÏÏÿúµ€à_“\U"Fã{_ÆÓÑæ()²cU§Åk¨±·ªQÂ=jó¸.âQÕ˜eðÝõþùô™°CìaŠUˆ]ø§ ª¬ïœ›§­N~‹¹„\ÿ)0Õ!hBeZ -É@ŒÿŒ;MSk½š¨!VÞÐ*heÇž6 ¼2Tô¶J-:%·lÔH‡k«:Ô‹T6B”‘q¸_Ð)u…ÏRƒÀ‚&Œ=#e¦åB•ÔAà=‚&<›B•Ô½Àœ  ÏŠP%•ž—\I¨¢F ¥¡Š‘¢†* õÑŒP¥©ª4‘롊"³ ¾›®6­|±R¨­+Ðy“)(í/BÚ_Œ-mäM¦9ç¿bϘùÿx!È /»5c˜“St2*G”æÕÏ ½Rô¨Q#Š~!Ä%Ü Z.'l¡ýŠ.§¤g+VèÂËÂÝÜzÂX¡hZÇCØnî½W!Û< ÏCØ÷–ª^ŸC‹ÖRfq;ð0èÃÊF§å¬×OÙ…ÑîÝ»ºÃZ)ìr[’èn ZOF9ws ãûÅ{2¢Ô훼p:ê‰M˜ut1“«M¬j&©DY’=|è÷H?ƒü¦ò­ã9Ý9%cO›¡M® GÏŸw+¥c§ÌÑÓ×f(¹ëµ§ç½uÚßyöW¼ù¯°Õ}Oë«þMjšêi©‹M¨(Æmâ.4 |IMp¢£ ¾è.ôžñûTh2òVµ²§‹§6§MÛC´®¦´¨]ÞˆÙS[c ¡{ÛÍe»@„®ŒqýY}¿‚´TÕï L×@&¹Úr,ç¼jÜ«OŽ>uɉ¤Êo4a³—œˆÝFàvAÆTÔ5þÖXãõC¹ò $â(PtJ*¨jÑbÉ´ÿC/îÅ(¸¼(#xüÅ(eb¨[ŒR&RäA^>”/F5»Q‡ºæq]d¨Sc–Áw51*#N؉ÑEþX]PÊ×@Ê×´Äy.Ÿá)ƒ}’§Fè ^ |·  Ï7úž€àï‘\U"FC7ºz<Я”CU"\d‡ªN3‹9Ô3è­jžp×Ú<®‹¸V5¦|·=ò ~Pާ!Çӱ刼‚¿F壚üùU©ùÂÝ :Émd¨’¿kèæœ¹ûtPäÝš4¯÷VÇž±\ÜŒª¥ûû7õø©"ê§£%†ËSåfÓ3­É^Ïî-ºc±i€G§Ø-žpA_ÓózÁ(™yFL™Æ´Aw¥Š³‘ÝÓ©Lv:b“]„f"üèÅrv s˜xÙœh“oj Q¿üèo)œÖöV¿0wçƒÌžABâß~ôçd%ž÷Ë~ô·¶EÈú9±û0ð; ¿»ƒÝÜão(ºõÅ\O· ºS0OÒ"ºÁº_í¾WKóZ ¹bäy2IÿS— šPÑß>6h…î† ð*A& ÍÔeÀnAÆÔææÚ}Rõå1ÔÀˆ£ÂÔàÝ‚&T¥Âi)><&hÂ$TxðAAÆT¡ÕCÃѦ‘ê~?_Uä—1ÐøgZÔ7©Ø–^?Feµ»™ÒÙ'L6à5MüUÄGf‘ý­g6g¯‰*ÿU™ðÐR[guòlÐöÔäHʤ¯õj0˜‰*}7$&=Ò+ØÞ”ZÁe´£†ëi¶£í Ú@x\"ßÕ‰00‚Ä”ïÚ ÚéÂuà-=´*׿%;Ð?<ÑʽÓLïÛµlÿ@Ta¯€„ׂ¾¶JÝÞ•*õü ð|G ·RôÜȺ 4I°øIâÍ“ï´ÒæÚPK€ãÿs9ž${bÿ+ Ì›ÙbN`%UðK8z(¶àƒ˜<ýÙáÍÄýƒÃ[5¹äM[nç¿?08B880ºÈ"w 8áåRRÍ#WŽ—ù 3ÖòžQ‰Ñ»À~tüf‹<·"ö›ˆWÒb\ø¨&HÊ×ÊÝÑë‘ïw+““ ‰£«`8ÅÙjUÑ…WÂè0v-~°+®ñA3x8Â<è¼ôƒÆ½XfcúŽ´¸Q£0qz40ìРã8Õ"ØëÓ4>-ð±ÆM±à*µCø1ЋÚô‰„/¤!yŸÈý¼ŒÜñwP•‰Ñpuîºñô™HäÍUer7æ²¹ªVi‹¥¤žiçjQË5®ø$×Å[¥æÆ›ÄÍåºÀ&±ºÞ|wwð¸º9A·õæŒ"mJг¢ê ^qÙ: kâŠ4wŠ®:çCœÃÁý;èWæY–ùQi˜Ã [ý'q^˜Z*è”ÔúkˆŸ Yý'¶ÿ¶]‚&Œ©ÙGøm÷õgTHy¦5m8®ÑëoßhszërZŽXÄ'YØØdH›Y#›‘°ˆÔ2à‚&lQèrù8‹àN³þEÚ?›lñWÓŽì3½ìõ·åâ”Ô+€Ÿ4áÙ§¤¾û 2r+‰SÔˆÑЛ¬O/` 2Á‰a£' 5µXp²`÷iQs54b'n•NC#‘&r]8QÔß‚ïvôDÎW ò»äw“__è–UE5ë »ÅúÂ!KìÅëE×Ö˜,Ú³4ªW¬FçÏÅÞš–ÎÍj®áQšñY²Ÿp7èÝÊ|é*_èÑÝ;ö튟‘P€/ý’æÇgÄî6à} ï‹­ßN‰$Á8ðèc±´£°@ U: …Ú )@ì&€.h7£xèöbÅ5=mfÊÌO…3—8PF"V€oý6e}zMÀÉ $¹Þ|ôs 56»·?:þ„º)GIÄçß-•3Û¢#$÷· ú¯•Lpš|–…þ›€à##xüŽ21Ô T&R¤yŒZ},v‚%ò‘Àf7Jã‰@s¹.0Pg–Áw»kG«ÇàãÕZ ÈÉ«VþM›dÕʘµVêêHTב¨Õ8~Úß»¬øå¥އ­›/æ‘yMÂqA*òÈM¬¦Bßü~Áy€úì÷9ÕTÎDW‘K§({”¨.´ Ø¢b “oQ#6_ªãµFß¡ÅQšËvááA ãxË3A1’£O˜WÕ¬eÅ*Ñë8Ï3±Å©Dÿ€ãŒ!öí&L«ùŒF?äìo«[JºéÀÚG5M'wFcüñï”@ÉPü¼92,ܺ“ Wþ¢æÕ‘ôkûAK~®O…>ÓÄÿŒV¿9¥< ض ô¶ØòËØî„-<(ª°‹(>0 Á׃^[Èèé°[À›°t{|ëOì @ }þ,<°omkíA€€ßxQhöÅ`;$låA€QðUªÔØn„(„­<pxߤ´y8p3„%T~`póVžèß?4ÒOF††‡ëŒl"Ú4Qî•0:*š|-z€Xv} ûMlÑA€[ ÕI×V8kbçHî„€„ñ<ªÒI' Ü ZªF}È"FÈv+±K‡AÇVK9’–=Óh“uþ¶fK#é·ŸýŒôƒ7#1²Â“¦‡ñ‘¹9UÕ·?÷‚«ÔôÐÏú‡Qž>‘pb$Éû£€Ü?’‘;þ¶¡21"$Fúꎼ¡¨LØÆ\CVÃÕjJ&1r‘þÑôæ:£ÄÈV ¢ÓÆ ÞÍåºÀ‚·ºþ|W"12(Èßþ»äã­[…eUQM¼µCÄ[»Ù»ÁJhF³)cÒ® "g2?eÛl öìÚñ1vAtÂ@<ߢ!xUýe~<çô—féÁnê õ³`˜%ys¹s2rÇf•‰Ñ8¿Ž ³u<²*“/ÒȪV9‹¬s{E‹ZhÁ«Î[&U¤Ñ³¹\=Õu£à»+(¡ÖÀ5ç1üK tIZ¢8i—3rEÄIr 8 zV‰gorâ% |2 øIÁÕ¸v%b4N´çEÄ¥ü¹¡"ûsuY,õrƒoU³„»Ëæq]Ä]ª1Íà»}báR#©¸†Ó[0&x¥Pÿf†ô´©³w'+TµZ‹Ñ­ßúýêúd ëåakš$ÍG€Ÿý e: ]Ó$vÏ? ú“±5(s®ˆ$øð·@ÿV,µ(®F¾¨ñ›Bå4}>®XÖà§bÌÇ›ª·Ð³‰\0u£à»{yY¾cÊÆ¡‰JQ+ëŽ^¢L©º5Ú´cLêN¡ˆKUhñ‡$6˜¢¯‰çxœoÄ~œÈkâ»…AVQÍšøþÚšx0ó[,ƒW\±úÁ“ø˜'«;ÔÕÍi6Ê£y#'‰ß†§ Ü:~.qä†ÝÖ>¶2I|/øïÅ¿Õ&‰ß¸x’øªT©±ÓÄï„(„­L¿ ¼ïRÚ< ¤‰ß a •§‰lج?4Ò?X_/~+ÇÁÁM#å¾²‚T6É[4Mœb».°oaš8±ßÀ¥‰ß ø¨&Hzƒ°ù»ù\LdŠkvÎÓM«Qö±Þ{)xqh} ‚ð  ß Ý(gYVzè' ú£><}"áY’÷Orÿ‰ŒÜñd•‰‘DVe†¬ò5^U«)™Ù¢N#ZÔ{®O–Z/hBEžd-“,]н«-3£ ô5m†ùÐl’m#p› SRµ BœlÈÆ1±Ó€7:¶¿L›5b!òU4$ÅvàNA*RÔ’þìÖ­[e³xPЄI(æVà!A§ÅVÌD8g舩&ï_z±d»žfèß¼î_ÓKñ´ü‹p“¶ðu§hιì­È›,ôŒ‡ŸtJ*“&^Ÿ°™*ª‰à;¢oŒƒ9ah©Ês ¹.w+9×ÈS.Fæ«H00﬽’V±_@¼’ã~4¿-³‰Àü¸6±`ˆwá6(Û¥ú%y IÏn½A:¶‹«AccñJÚŽAg>ª1¤ûk×É9BsõûzÛ £Ê‹ž¬‚É«½ÛVx¡á¬¶×r=C/ddßÄc=Xßo$1ùzÃÂJ'AOF•¿á|½Éiï$ðT@ð)ÁãOØ•‰¡®Þ°2‘"MËÕêc±¤÷Èõ†›Ý(çµÍåºÀ¼VYÞm׫+£lr[¬X|Œ*í%ZzÐ-½8뚈°]·Rb×¢épÕþdxÂa´®ug’×e»\)Š{9ì Ÿùeö-Ç™²™º$œ ½÷¼WÑ‹l-øæ0ÌÛŢ렕fo¶L3‚âl†ÍŠ4\Ø[¦ôiºðͰ´’.òr©N$ŸÏCþq6]7¦uË«J*n' ÉƒA·ФAϱ.ħõ¹€àÏɮƧ*£¡O=—âuR­”[U"Wd·ªN)‹¹Õ…;U-îY›ÇuϪÆ@ƒïÞˆ2¹Øs>“[!nÔÄ‘à3ü žá_ÎFOûcà šðìð´ÿüdWãi•ˆÑO«D®ÈžVRšçi›Ù2áž¶y\ñ´j 4øî-«’Î'<ÃÒØ? Ç[º+‚Û’]±<‰ûbwfM¨¨_­¬;#]´Î-À‚î”ÊC Q¥{GÅöBTÙÙ¼UÐã©ò°?6'{²áùÕ;äs†6ã˜Ù€9­žfðM‚æ(÷Tò7ij³ÇLº’¯TÑ®×*Œ¾^g¡„QvÍ¢m33øÜ >øÜÜùfàwÍQÍÜÄ‹3IàïÿžŒàÜ}dWß·˜j"ß“©Lò¨ÃcÚ«=D£‹t‹Ú¬ñµ˜2ݪ5ê ½³¹läÕ0®_;E™Ó^áûæû±ºì^óÚJm¬î&óš ¶¥úãî.wþ@à’ Í1¾oúîò’µ5¹‰Ž.·’9”1—ާš€Ì”J˜QÇ …:ZlÌé--j¨†"žyŸm•"C‡&r]xpPÔ½êz³äæDU”K!Ê¥-ÖÕ…C³Ÿ>fú#ÄEµ Ä7:þ®Ü(±ä2à‚&<+F‰»rß%#·šQB‰¡9H XƒÔ`¡DÚȃ…:U-žƒ´PÿiQ{5”4Z/n•NÃÇæq]dÜPÓá‚ïbAi‚–‹ XH©¿†[-YáÊ­VÅ}â>"-n‹2‰–üðM¨h¨¹{1K^ü52‚«!”ˆ¡8“HP‘uiN&QS›%Ü—6ë"¾TiÖõÙÜå å -ñ“ñ¶­—< üAž®òÝÁß-#¸W©D õÛÖjäŠì-Õ)¥iÛÖMm™p‡Ù<®‹8L5|wsVÛi[¬{W Ë£ƒk^ØÞf5$Õ#ß|ýkýkÊúÖÅ«z\[/Òq5Q˜MBÈ¿þDЄŠ» ßù:ð§‚&Œ©Ö£“‚ ¥Ó.x¬!ÍO>ÎL™ù)ÉóíKþUàÒ]‚^º«%êôùö¥»‡½ôÐY2¢.=ü°ŒàJFT5b(=ß®F¤¨ƒ©B}4ã|{S%tm"×…ÇQEf|÷vUçۣ߹| ·ãÞû"WlÑa“>ª©ØâßCmzüxˆÞ86A .ÜÊÁï8@IµÈmä :áÐ;’oÍ„' ÜKói¶ñ§ÑÒîÃ«ÛæQ{4ñ¬üW~mˆ&ªÑmŽ*ÿqÈL¸ ´T Óø7ŸŒd‡¶D¾ù¤™ [}óɦþ¨Ò— 1a+o>±ÀÛRÚ'ÕÝ|bC&ÂýÍ'eHØÊ›O*5öÍ'D!<ôù-h¼]¥Í“ÀÍ'„%=[pÜ|28ˆ›O6 ÷kÚ¦ìÈ`ÿÖº›O†¶ F”»Y A*›l/zó Ú]`?ÔÖ²›Oˆý¦¶èæ“i(ÀG5¡ìºZiS›hî”=CWJ G‹(á ¤"\zô„oîÕ2¿—†HZZœÄÙ¼ôuʬ8´´8±»x=èëcëë9šÅZöL£{iêVìº{¦®ªßBKùsVòÕÔ/W1™hÎJ•þxm>¾I w— 5Wø]Ðò'0âf¶ž'.ã(UNó ó âï«ØŸèÒ ÿ¯ŸqÁ}zÀï Lu :y†LŸH8‹•ä]R“›èèrÇß&P&FCgs¡oMMó‘w ”IؘkÈ®Zõ,–¹:¿´¨B.:?“^Ú*ý5Þàh.×68Ôu¨à»Ñ7&‚‚tAøõú"Ç['„AUQM¼5‹›æ¦ 7|ToÃpNC0å¼myÆ ¾Ôx[ä]ˆ%o6#˜—ô/d7®ˆËF">þ,y¶ž–|ü8ÛðÍð­}È…Ò®—>9BrøVÐoU2æ6yož~[@ð·ÉÐU&FÃA÷²ñtcUGz•ÉièU«¤Å6ì£u‹VµTãA®¹\äÔpÃŒTÉÖ 0ïýî–¸Ø Ä$ü{€ýá³Å¥~$ øGdWãR•ˆ¡8X™\‘]¨:¥4'¸Ù-î2›Çu—©Æ@ƒï^§9F¹¨çY¸š›ÕL¯vdMK’4(ŽÑ¯¿ úÛ±:TÃCLNIÏV,SB¸ÿô?*Óâ’ñ¢iaû¿ÿúŸ² Y%vßþ3èŽm:K©šŠ”Yü ðß@ÿ›2?»Td…5PØÒ4 óŸÀ@¿Œ^~&\#ÑhR#WÔ I¡Rš45µeBƒ¦&r]8hRd ÁwïíÉj‡,£V/’¹TÛ5´Šuf‹ˆ¡‡´¢Vl>Þ¯àñ~EYÿ[å?ÍèîûÇvI ª©_~LЄ ª©wŸ4aL•_ÛC›¹e#oNÌj×pzYhÌ/ŠöWxÓÓ¦®I(ðãÀ¿4¡"vA4Íý5ðoM˜„æþøw‚&Œ©¹¡ºÎE…•I±{^Ö½DIuþÅAìP¹½røï¶_.hÂÄB²•:HòuÀkÝ9ó®EP{: xZFp%1TVêP&TÔ(H¡FšP©£ÙÍ5‘ëÂ!"Ó ¼›ú«Í1Jºi‰³<.ó¨ì“ºS(®ë9(HLÌy}Àd£(ó¸:ût™MNʼn:~C¨yÂ( 2ò÷WEáÖz÷]sÛ”÷„¬*‘4]æ Ç­¸!‘}°¶\û_@6>X¸U$q±XŽ~Ðè­^ɲ€p̬ý»ž ß“û&É^²]Žv›y“±Ïh&•*®¸ÈVœ3¤MQŒžž¯QôÈ"™)³X=>¿ù}º¬- ­Taó:ûÍ ±`±©kR¦!k*‚¯É{áÎ%‚&”´±¸Éb«ÆsºsJÜÒxúØ þº ×6ÎHŽ>^#hŽñÇÇæ&‰‘¼ro”‘[Éð¨FŒ†Ãã6<Öi\f¤T#_Ô‘R¡rK›Û+ZÔB e[¬o¶Jo¡Cy¹.<”+êFuIã` ¿ÒIz^$¿2Ǩd'D×÷ šãÙàð÷äÞ'#·‡¯DŒ3røRS#5òEvøê”ÍáKÌ’ËüÔb}³Uz wøÍ㺈ÃWÓ‚ïöûJtÕIaÓ6®ŒÙÕÙUôÄá Ô 9Æ“:râðIawUT“8ܽÇ)0'ìÝ¡Ì|–»•œËæxlªÙ€ù$˜wÖ^I+ƒØ/ ^I‹ñR4¿-³‰Ó`~:®M,8\¿3PYK!wÖ•ÛÛë—Û Û$XèÎn-Uþ€ ~u\Å’£Ä+iûzªôQ}͈à L™ž£;|Eh[â¢B×Ë`bá§h2®{Çð—’ÌRÙv<Ýâ9!Ž¡Í“†Øý˜»PäïDl#òÅw¿€& œAUôuX¶'!Ð#À—~™2Çü»À—ƒ~yl#؉Âc5½5¾˜ÊžLÙ%^1Âfý[Zü[í÷(ðwAÿ®ôƒÄÙ×òãE3ä œË‘ø¿üèoD}Œ†s¹&on‘Àß þMÁãO攉Ѱ_¯ ,¡ÜÈÓ8e’EšÆ©UËb;\‹™~«Ú¦ñT©¹\˜*©3Òà»ëyz€tÏ¥ãôÌË–l UbtèŸþYKêRaU²îôÿLu:9tm‘;å'ü!8?]+sÇv§jÄOš$ÕÊ8S5rEu¦ •rI“ ˜}«Z&Ô•6‘ë®T‘ß]FÓ½XÔbôÚåfyK|¦\r’{p­  ÏwyQ@ð‹dWã.•ˆ¡®¹2‘"{JuúXÌSF®CÞìF w’Í㺈“Tc–wS«ýÂN=Ym¯¥Ù<gÆv n&t©¦z³GÙpèïÅY NÍBí* uÄêʉf4ÝÕŠ6Uåvù9!é:†ë9fžŸbì\#øÈ΢“Euu«¬—nøocÍÉ­-^–™,Ûóbn9-y—Õ~µ  Ϻøºýà  ÏŠ£}S@ðM2‚+0Ôˆ¡>¾V#WÔQC¡Rš_7µeB‡Ž&r]xèPd u)‘Æ”d $‘¯lÞŠƒ $ùp§  Ïgyk@ð[eWã,•ˆ¡òà‚2¡"{JuiÂÁ…f7K¸›l×EܤÓ ¾{NFËU<¹Ø²*Î~ˆ³_ZœaŽ;=Ø`QÐíE%®´¹)$o) wIFn5žT‰MÊqW&_d§ªN9ÍÍqW/kðS²9îÍÖ[¸×o×E¼¾šnT÷˜’Á±/I’”_$_IŽ;=ØÃÀ'MxV8ü§r?%#·‡¯DŒ&å¸+“/²ÃW§œææ¸«—5ø)Ù÷fë-Üá7ë"_M7 ¾›ÑÒ£lXZʶ­ÓÈt9z~{PâÏ@âÏÄ–8r®éË„ÍUQM®é×D®é{Ƙ6œŒæVòSÁ]J/ &£m«ÛØÈj{=3pèrC¬òNÉD2ÏÖh'Âñ“Qíú݆œ1˸,¶ã ÏÙoH³a¾`“Î]Jt}¸b:ÑóX_ŽÆ$üè¯)sìç'*S¯£à~CŸæ÷VSu q¿¾*†ØŒ×s6ëÔ¯ÌÀζcˆ«¡Ø§éV ‡vØy \‚co6ó¹Ê×óðwÜ©¸ ÝëÄFcß[¸†ÿ!½Pp¨äŠiMñê%ä\ª•L®PÐc[ÕcüÜÈŒîÖ]T…!¦_ì~>ʯ‘ÊwË…JžßË&ó™w÷TýXŒóFþI•p†E60ïÖлÞ=<{ VðéQЄIæãÃÇ–5{Ì ?~Hç±:Á¼…ljý’¶èøá+Ðü>¶Ì&^ 毌k ÎÎ/ØE™óõ—sKz°t·ôý¢¸ $1® ^IÛÑ« 2ÕØÑ×Å ·ÃÅ•º¨u&gÎô¼'êUÕ>ãónnþØF¿×#ÐM€¬<‚qo††™3ÙõrÙÐ×}¦tÓt݈±e_Ö$ü:è¯K·lÜEß¡ñREÕêw5æþ¡¢ÓDwZCîøj7¾ŠM‡YûkHÓ,¸fLíò ©!A§Ô$§5w͘äÝT“›èèrÇ_3V&FéОnÕ`"/,+{ˆH Ëj5¸ØÂ²TÏkQ36|ùþß*µ7^—n.×Ö¥ÕuÕ໘¥;žÅÂTF3'xvtÎ(šÓÁäè3:ÙÍÇP‹ÿ-;±é%Ïž®lQV<ô†ÃžÚ”’MÑfÌbuu IÚÁ”q2³ƒ­ùs´æÏ¥[³E™Ù$ü l?WÐíç*üšœlH/¯ NttÁ•Œ~jÄPœ™­L®¨šB¥4'3»Ù-êó›ÈuaŸ¯È@ƒï¾BK[¶‡I”9±ˆ‡§£2sfQ”°8crÿ¬éñA`ЦEVm ‰ç±«mñ$ÚâÉVylÙ ~Hø§€ïtô­‡Vyì÷Œàj<¶1_ð£L®È[RÎÀcK\ðÓì– ÷ØÍ㺈ÇVc Áwo£ ‹ê‚ö'x5øþ ¶Ðxì]4ôߦѵ¢-ÊÞûÑr~6úÎEða~„‡ùQ쇉¼ºø‹0JÕ¬.þlnb‰¿•åo˜Ñ>kož‚üÚcCXµ,}ä‘Óvh'Žg®¡;yúwÊ® ZÁÈÓ< ,ÞlÙ)È"`ï»&ÕÛω,ã„^2-œŒåÛq|W?ÕŽ´êù¼íPÚQq6²¼­Mø3Ðòõa¤ »fUTc›…¬†Bþ†hجUæ.ç×A\ÂÍ 7+°– »íÞµ«;l( »T‰$ÚÜ z·2z©±Þú¶¸ºLìÑfM£XÛº¬kä=±MÍ:d¹B&5í6:´èþ\÷bº‚K@(Ð{ÜÞŒ]Ýç&?Q0,ž2•­ù‘ÀâNÙ1¼êö1¿bÍp+EqÃFuG<«í¨ÆÒ íNÜ¡ÂñT™²Èžh´:3¯Üó |]gF,ë0ÅÚJð‡ø…UXlNy;¹W¡>n×ݘGâIï{¦>/hBE¢ƒ ] ÔÿHЄÊúAH$Kì¾ücAÆìƒAc K¹öDÙ†©€)8ÆC”ð@owªjFÅ‚m–Èýäx> ÐÊúÉè^Z̶tßgW^®`B;jä§,}fµ,.q]z3÷tÚ[Û©;Q÷4èJÀg@?ÓüÁˆØMŸ?Š>ÿ?úƒê£PO¶€8ϯfFÄîCÀƒþxlm¬H°ÁhsoïP¿Tûðs ?×ä‘h`KßXÿàðð¦áÁ¡~ö¿‘­QG"÷€?ýãæDÄîóÀŸ€þIòC±ÿiñJZŒw WQÍH4ÆF¢ÀªlF»;KSÿ{vŠæ4¾f/¼à‹vD¡÷ ÌÓhTÖóÇÙ|2r§ø< áè1eb}`  Œ£cö„7}`!!_<Zjºm`!vG³ g[0°ÿ“ÀS åV)éª}(êÈBr< | ôcÍYˆÝKƒ~\ÁÈ2ÄF–ÞÞM#Rè à“ ŸT¦˜k,#Ãl’óëf§û‡†³fè5dT!Qßü4èO7T!vO?ºňýgˆ—¢§_>Î>Swð¼µfr³ïnS9–Dnbß@¼íÊ‚çe¬ôZòÄ‹öö:xè‹”©gÙøqc–n‘ áœ^ úâäuCì/ ^Št³T,ŒF”éi(‚p5èÕ‰(%&ïpLZ)Äþüâ%×ó>Õ~¤Ñ£ûÿ{/»­MÂWÐ'VÑ'VâWÖˆ¿Gë?ºæÈGsEMÖ¤_$×ʹOscŸW*÷aÿÙwdj²´«ïH®b º¡r›6ôÁMƒÃ}ˆ„ûJºÕW2Ý|¯°ò¬ß®Ó¯®¢_½é'Õve;è‰/ é*+ø/Ù<)1´Ã„ ±ÔÒ]µçôššîü–oûWñ·%óÑ;îîEÁÒæ|³k^gÚeåmJº¯µé2’Œ?ýŽïühhç—ütŽåøGÒºÛ{OÞó ‰ÿÓ«ýйs™Ý$¥4iU;Ëçþìõ~¶Þ|æu†.Ö&Ì¢±ÀGÎ4¬±ôR£´òÀ0î^"ôUýé„«ÍPº ¡ó…‘—7ü¡…P­Ç}Ìöíãæ„î}Ì8QvîÃÖÙ¨Sȸ{üQ6….Îý§ì8ºgߎ{Ž»sl×Î[jÛ{µ±Y7;ix†5îžóvwÏ ZõO }Ÿ5'´ôUÖÉü”ïõôÌû™n)&_°²¹ªTãd-Ãë³Ê%ÜxSé'nê3ÜÍ}žq¢7OÏ×;Q)Ù§»oгߣßqg]Ï(e)(Iw3%û_ ùbÆ_ÞíÆ_p‹‹M¿Û£mܨÍ{Ñ$ìQ®çu¶»yÇ,{šYí>À~lŸ~¢Wü©[ÓÝY+¯1­vg³}ìÿ>·¾Åe¼q{Ÿø™O_ËmÉ̲?Ý€ñøÎãAÖãÝ×fê>Ãd¯ûùžÓ§C,xÁêôÊK KQ͘>1¯úÁŠñ¢­Ð>ãG;sÇ™ô²Ò[2ÒGªŽF’åšoeÏݘkHm%\ÎeWlÏÛ–%ÎݸÐZ@ØÌ=ôY:˜Cmæ£4$Þøͪ½évÅxÁ6×øøÖ’¶ú9úœuØV6 ‰Ô@¼$;ûƸâP”ynñJ:ú;Mì£”Âæ‰!qêð\0'lpê0¢zÂF‰õcü.ƒY¿ÈÂNÛš #ßyCÛoLG®|.>G˜•ºÍ_0‹¥Lc €x%mSË¡>ÕØÔzQÜaŒÎäëEm¢"Ž'º~÷ˆBúGæ׃^¯l–ÚU]E‹,Ô5ÀëAKÍÅBæòñÉ®0:[_çù¶¨ð¯Ë(¨¸ôve ZR\ »‡VØ Yvo}›2ý„VØ v£À= ÷ÄVÐïT¯Åá¹—n½gÌ×<#o*ªciy½˜çW(°O>‘¦ùrÙ1 &ï“=âœÿ´^ty1Rº‹FgÓP\Rqɶn¾¿ìM9t‹Å80›Ü,±˜¦Ã<¶• Tua¿[‰~ç5Þ^©e‚&”lÄX7‘ß8: 3Ù"ÉÏ^(èTäõ½†“­&—š#×_+#xu˜lo“,5§LŒ°›È™^#×™S&T¤¹˜Z¤jMÒø&òpƒoU³4.2×\® ™SgšÁw_ÇkyŽ¡óKu\æOQG¥l8yJ$ágÁàOý:ýÙÍ|ýs þŽ]¶q‰²ÕoíñºŒaÆî¥›Œ¨dK±<¥ãSº,/†ÓxMò´²ÞºŒ=£[7K„©÷?"hÂB€Ô{4aì ×&ñÊZºÌ˜šzø9A*ÒÑ9BGY9%ýðOM˜„’>üª  c*i ïnšù3à7M¨X3ýRšù.ð‚&LB3ßþPЄ15³TKSád Õüø‚&T†ÕôË(æ_ÿ.hÂ$óOÀÿ4aLÅdyuÕâŒ>ë‡?]ë¿fÞÄ&z ’õ?¶§ÝžŽ-säeuÔÇ–-Ý­sÂXKw ¹.R0ŒÖº:Á¼³öJZÁ-ëÃ’c5šßÇ–ÙÄy`~^\›Xp97»“jÚÅ¢¿jq°Rʹ՜4½êâà!^4Tâü×h %'I—ÇÕ-}ææâ•´‰mú¨ÆÄÖ‰Õݺ5{iw ¤"\zºVni—„é¦AK !ÚÆK»Äí `èÓ†xK»$ÍuÀ­ ·*SÐÒïúQ 5èR„»@ïj~Dì¶wƒÞ[C]]Ûõ«ÉSàœQ-€œŽ“w/«ê4EˉUVZ:(˜n¹¨ÏúðV‹/óµà²cZ|!˜}ßpÌ<æúY^[²DÍ}&´†à—•Äï‰ÊTï–ryIXŠÚü5i^óžrƒ Ú4ýmǯMÉú^i[T¯EÍ{›ÀÔµ‚&LÚyÎY%Sä<— çQ–`VóRÐK•õ½–FóiÃõF©èèP†Û§•™±Ð¿ó&ýkZwè®bÂô¦ QTéqÖï}¿²~¼r¼ìPµþ’î±IEû.à HÞЈý±â•´kaW>ª±÷ãÂÞyæ¥(K[4DJgЭ՜Í<Gû]ÌÔL^N6¾¼jå[ß1‘ç)ÎFö3á! ƒ>ž|»ÎÙµÜÏ\þ—´©ð3}q›æ|ÎG¼ZÒ4—¢9.UÒ4m¡±‡é¥ö]Àå —Ç7V™VX@¼ Dlĉ ’$ׂ–:Â-$v+¾(¶>nçîÎ/®ïji#;™ÍøUô]ó$íψòvõ*Nö7lèþ^OO&j_£¹¨ƒŽå.Ù×.Cÿº¬5}í2ô¯ËZÛ×.CÿòQm_k÷77ϼ«]†îExa[5®Ù]í2t/µ å)ß½HdÒxºUЂf8Ží¸‘{ ÉtðzÐr'râ÷šËÑS.oM¯¹=åòÖöšËÑS|TÛk:=‰!êò¶ê²"7 Ú$ÇŠhýærô‹A_¬¨ßð‹Øª¥£÷’é`/èÞõ›Àºc+úÍ:ô•u­í7ëÐW|TÜoh!j¿Y‡¾².Ù~³}eÒ~³š÷›r/²l¢v˜uè$„AolQ‡¹äŠÖt˜+ÐI®hm‡¹ÄGÅáYÞŒÚ]®h«•/I0<»]„P]x–A‘Y? ¯–²\ÍXÖrT=>z_"I/î½£E}éJôŸ+[Ó—®Dÿ¹²µ}éJô/+LëNÔÎt%:Еm‰.+\‰te›Êe…1×ÑKe¾ûNË©:UgCr¨øUt.Û_OˆÚ£HÜ‹·–:l¡ G­G/Zßšµ½h}k{Ôú¶Úy)õ=j ßþ‰Ú§Ö£­‡…\Ð&XEëSëÑ/}Il\Ùhý@Ü`mODî@$Û¥ÀaÐÃ-ê@:Öš¤¡Óh­í@Z[ýi;ÅCÒ„yAC—!LpHÒÐeÕ Iky÷¡-1VH¤‹×ƒnÕêÛUè)Wµµ¤×\…žrU[K{ÍUè)>*î5SFä^szÊUÉöš«ÐS®RÚkÖó^ÃZÁpªw6×úOäìè«Ðg7ƒÞÜ¢þÓ>Ó·ÿ4二÷ód#U]‚îÒ Ä+n׉ª b¿,€x%-Æ´½jÒö ›Ø‹»Åí Ê"óD*p0“Ì´4CÏOUóJés±–zFÇ‘#>ÏÕxÂ} ÷)óH±Ç(MØe/t•Q-›ÍöDuR$ÜÀ ÐÍwRÄîvà$èÉØºÞIù€.î/®é„åõÐüÜžj^Pšn£–PòðYÐÏÆRrÃY×´„hŸ~ô§ª–Í臰}øПIÆ¢>ü,èÏÆ¶¨n-“ð´há{?¹Å{DF«q‚–:ŒÈ7LÔ¿ ü? ÿ2_qç|_?ãRÊÕü—ÀÔaA&aÿlï4aLÃ8¦åíJ±@ÙÒ:k Ë5sE6RLÙfÞ™ÏüÞ˜“þª9o¶lðBî΢‚B0ÅF+ºKÕ$#ÇSôpG€´‚“¿‘‡ðk„ñU±e'‹6‚9aâ§Íè£`ÞÂÓfÄ~I[tÚìZ4¿-³‰4˜§ãÚÄ‚§Í®óf‹¬[Â!ÿ¾¨¼£Ï²¨ò°6$D?¸ ô&ѹÈ{ãª”ÄØ@¼’¶¬(ÑG5–u®˜0~¤,PŸ9X©N±Uï»ceeÞ²c?Ä\¿ È¯V+Œ-Lü3$öùmÕƒVœÞ*mdó\-,ÓMº¸´Ô†iHÌ0Å?Ôírà- o‰mYÃÕ ‘élÚ,Ð6˜6£Ïò£Vü: *жS=ù”•µÂÀ OH[¡¢ƒ$Ì#ÀÇA?®La‰Û,ð ÐOÄV㞪M—Ï2'-q\N¯xvIçígµ’~œŸ¤gFØGQ*\D‡'Vé)^ü2è/+SìÂý34¨'a¾üèï4?¨'v_þ迈­Ù‹ƒš5-¦i(OK(ê/?ýSeŠº ‚e!«›îªëŽ<##ÿ]`ê|A&¡¼Û5‚&Œ©¼U=|~NÁåt–º¨ Úß‚P ³ÕE3çèÎlZhJFQü@*áfA§¤–Ë#+*upXÐþ-È1µ¥'X§‘»FÛbsÆvŽ©y†S2ÙìgŒÝJ™ŠŠiÝ, :UR¦ÑÎÇöJH4 œ4¡"-v»wTX³†0¶€'MS¿$¢•¾)srªÈ^žFfT=:DaTè íÈm“ôz·iì¦bö§¬^.ÓßJzþÐXFË¡¬ç‘1¯R0ùÉs×.¼G3_ÇO9AËp§øò‹odEÑkôP{œؾBÐír{†Áw#Ïc®öUE5ó˜·Öæ1~eU®/Í¥ ªèZ¬ëñ³þ ®˜¬K–‹ºi u …©WŠY¬® -³Ÿ(èì~¬šcãФC ‘Yí¶K˜¾Ì‰YÔˆ­1忱u2h·‚~«²~¼¶º4*$”ÛE!ÙÞ |ôóÍ÷ÏÄîmÀƒþxlÃY–Á¡i E}øÐR ÿwà™^dÔòEàïþ½dÔòYàïƒþýØjy%/WÆú K¥5l7p U™E‘F2ãúÃëeÝ™{t]ìu‰²œ<›Œn9Âæ…HÎä[hÁ«dý°Š?˜: hÂÖÎZH˜£À{M˜€a¤_"h˜†1Vµø;›î,ÓÙ ¾ ËVÑ#&ì"Ó;íLT-ˆê¸8FÞž´hO"rAz û€4aÒi¯°*¶² Aü³m1³J¸Ýß·i²øœxµ¤iúÐ}Jš¦-´†$¬Û.` ÖˆýŠªMX[:e°y°Õ1’0( Á³“.h“ÌXŽæ‰ÝJà¥mÕú1U2Tuˆ¢1ø¦çh„Kó™IѤ•»Ü¬ G¯]@_Üz‹ºU?ºRkºU?ºRk»U?º’ŠäìÂì@Ô^ÕžD˜àñƒ~ô$BuDz¼WÙ?³Šõ ‡fõ(þF Tëh‘;Éz)p7èÝ-êPèDm-éPèDm-íPèD>6¡C FíPèDÉv¨t¢¥ªO”Þ™6¬¦ô¨ô"ÂÛ@·ê„Ü zÑ`kzÔ zÑ`k{Ô z‘ŠÏo[zÔî4ˆ.D˜àùíAt!Buç·ÅI…’éº"÷Ž_@B]I®ûp7–J½QÐ}†Ðe†ZÓ}†Ðe†ZÛ}†Ðe|TÛ}ºêòúμ ¡ß^ÚV­ ×ì>4„~C(WS'i±((Z³'6iÊÙÅxÓ%’òrà- oiQgÚ„´©5i:ЦÖv¦Mè@>*/Zu"ò¹¹Mè=¾·M¨øÎ&ôBuÅw®á=©zò´¡Q“ÔWÊŽÜHÄK€ÛAooQ7ÚŒ®³¹5Ýh3ºÎæÖv£Íè:>*^Ìs —ùÛ¨i3:Ïæ¶Dó6£óª[Ìë®.æåm‡µGÙ¶ à‰¦IKÔ%ù.Þú†õ¢aôœáÖô¢aôœáÖö¢aôF®g—£ö¡aô£aôBuƒÑ±Ò †ˆhΉ¹N^Üz[‹:Ñtœ-­éD[Ðq¶´¶mAÇñQñôhFw,æw£ö£-è;„ N¶ ïª›‰~„–`=iÖ  õXýˆ¼8 z´Eýh}g¤5ýh}g¤µýh}ÇGÅý¨d¸nøA°Ð~4‚¾3’l?AßQÚDL‡–`ýhÒ¡«…ãt£tÂí [53ÚŠ®³µ5Ýh+ºÎÖÖv£­è:>*îFÓ†“³£”ߊ®³5Ùn´]g«ÒnTËsð×Ð*Õd¿ü¬¯_mE_"<Z.‹/~¿Ú†¾´­5ýjúÒ¶Öö«mèK>*^q(“†UˆÚ­¶¡+ù3„V¶¡+ª[qÐx· Á'}6؇"Ÿ6 é.ú`k‹úÐ è77ÄíC ¹.Tó*‹.sC[Kk^ûelQÍ«íh{Õd¬êÂ&vùÙ½tGd›tǵƒ,qFæó¶Ã—Ñ<›ÓñÍÛSφ×ÁâB*®9?xF¨ƒÖ“oíÁÚÇVæßþ7ÅíÜ/›#ÓmóŽµÐ¹4ò ©þ]Ê™–qL$†§»É» öwg´îjfd÷aBH z˜µÀû@ß»‡µ†ÿã©x= µO"dS¿„ì7C „娿É>¨Nöw‡RÙ76–Ý‚{Õh1²¬·@> 7Æ–õ–Ʋú[Ø ~`3<=…D›ï„ì;럩9öÂû†ö²YÆ^n…¼·&aëb‡¦‘ìC2²ï‚¼»’]DdßÂd­&ûnÈ»;®ì ¹.zí,¹å.°¬V'= û‘â•´·A>ª‰Î†c;QÅÙÏ}Nò­²¬}leŒ¨šúb‰‘FbÇHô0k-Œ‘†e|ïíPa c$)Ù÷CÞýJeoNŒtò¶8F‰#„ì„g[ŒtòJÂÖÃc¤-2²†¼‡“=*¾1Q)¢Äˆ_–7òÕÐm$ßâGÁÚÇVÆ_w‚ÿm͈¿î‹¹–=ã —qìY½˜+VŒMìÜäèÑ#wîê‰î/é×mÐvìF¿·±¿¬Åd ×$úç<"ýqëæXwtGx/è{›ùxƒÑo$ÞãÝGº[éãílüxµÈnîãÙŽnMrC” —îð„奘ò`ã ûrEæ|«ÑÀûc©+ ¢¶A?˜|P(µÐúÈK¨.°ÚÔXöÆA!y; É„£/gŲÙ8äÛêr!! ]`ßÂØ°E!áýP€-^6{"¶pÙìXûØÊ°íÁ¶ªSýwØF¸Øâ°mk£¸f Þ@Ø)ouØÖøñâ…m9Ö>ªiÉWˆ–¬/ÒII¯šk™å²AÉÝùb…ßR,úéݵ y£ì MXâ Ÿ¨ŠO5™s†(öL©~†ëÑ·™¾òTJÖ Vi޼rzÏOø ЯH^%E°ö±•!x üKm*BðsæÈ´cÝNš¯éʘ¢=©9¦{\s¨L¯(Þ[DÚ¥Nÿ":ÝÊnÔˆc-0°V³i³ÝÓ¶÷j†KO“Æåw£ÝGްHE7G½²í²…–1yдÐì„YÐÙØ2oo­Öm2þI¦Ñ¡È½ÇƒÄ„­1¥_áVJ%ºÉ…=EÔP¸)W€–:²# “óîû• W&?LûUÄ+i1¦¡[-Ì€ÿL›Šh}²á |S^©(!Ùrà*ÐRÊâu͑Ȫ;bRqÅ­ìÕ+CòS,®e.Áž6´tpv1RÑ“ ^n€«Kж}œ}ã¸Á¯‡‰ÖÒ3Ÿ|ô#Éê „­4ÔYðŸmª¡.—: dË¡u&Â\, ¶x)èK¥íu®`kpÙ÷6mÆ,xS£#ýýò­ö‚îU6tO˜“,„aÜÌ‚Ž G6fbß@¼ZbÌ'aÀ'“0æA c> >ù"5æ“0à“IóIðɸÆÜqǸ92øLûÚªWH$݃ˆ}ñJZŒSè0>ª•¹v; ¿þƒ›‡ÙÄšMhÃB €«Šh·‘/…i·’ŸÒtW \ò@Ÿã¯èÃ=øöõ¼c»ní^¹ÈË‘/ų> úÑäÕq¬}T£Ž –#mÍ1=Ö¦öÄD5Æòfùš’ìm¶@JÂÀo’Þw®s“¼Š„Ž€–š36fV¿€Øõ·‚Þ[{—o³×¢fø…ÄšÚ¼ôÊ4ua}:ÁèîûÇvÉèíàqÐÇ“ÑÛ`t1¶Þ:¢—– J@´¼ú¡ß*ªñBÑC»—9aèeö°|Ü­äêÊ„×1O“``ÞY{%­ b¿$€x%-ÆËÑü>¶Ì&£s<›X0Üï?b”ìiw•ÊÞ¬¶ŸE®v -̉ÛlwL°`ƒ˜‡ø@*ñço}“ôœ`u\í’·¯¤ì1èÓG5Fö:þÜMNÙ1-\¢d7ß_妸R\¤[Ñ‹ÅYM/Ðý㹚ÆõªÆÅwEeœ])±1Ú«þ(¿ {µú:†K;¶2׿>Žf |è×)µ׿²À¨¶:l“lo¾ôû›?l»×ŸýLlkY*îT•PÓ³À€þH,55¼e‰ëJB´Ï?ús µÃ:Îñ¶Ÿ~ôç“1Š¿ú ±â(Ÿ¹NbbJÞÀíÇæX…é™SoÉ©X–¿^Ÿ y›žè‹S š0iý„°Ë*¶rûàÿŠ6Kç¶:=ƒc-ðlIÏx%š0 :þ‚t’鯂ԄêÒ3"§¼¬}TÓ¯®iº’D‚_„X„W€¾"¾ˆ  |…FVæk Ök”ŠØéDï̯wÂf§bF…fuQø1ªl¯‡<„Ž?¢u0eEä `N¨~aÑŒò÷]`ß º+ Ä~I[´Òð$࣋]'ÆwŠnä¤hÌ߂ȑ—éž‚T„ë@¯K¾¡~ ¬}lÙ’ÌÁüMé>‹,Ó=ŠNóF`‹–éÞˆãc‹:Ï›Ðü>¶Ì&Þ æoŽk .Ó]p+N8@™õ4A;\´½Pß¿€ ç»AwËÊ쉫@ãšâ•´ý2Tæ£;Ú œð-ÕêÛ­L*ÓØwØ$«@5ï# úG¸ôi;k áÞ>~$„÷ÕÀk@Ç×ÕÃÚ”>mPšö”É&žµä8>ç¤?^ØAKÓ?m6”‰’; Ä^zm™ÓGMë‰åö÷¬¶›çaÔ›/GJlùÒãnþ2è_–nò¹]º«dx:ëÌB½ø^ÐïU6uŽ—O†põ_ï«aL ø¿ÕU%½èÚš^`:6DioÓÕ\)^w Ym=cLN†"ªj{¢bñ±²zñxõÇØ ל´DOéÚŒ>‹$ ž€*âº8÷°>ÆÚÐ]³8«±É·k抆Xë"¡DaqäkÒ1žþ©[ÓºÛ'Ò‚¿Tûy‘!š6²“ÙŒŒþªÀÔÛM¨Ê Q>%D¨Ðµp’æ=Àÿ%hBEvºìIìÞüuAÆ÷R=¯èjI½øA*RË2ÿ ´Œ^>üMA&¡—KЄ1õ²Eœ‹ÊŽn%:ë\®]býÍ©åXË÷°Ô§?4¡RUn•Så¿_tê…dTù¯)%š0¦*Ûe´ÒŽˆ§½]Єjµ²YF+íçÏ4aZiïž/h˜ZY’‘ó|ík€ º]n9«ñ€ÄãA)½\Ü èv©9º^.^-h˜zI÷dµ£Íu$tÿ m¾¸S’»ì$å5Àý‚&T¤ºÁêj©GGaF»ó׳KÝmbr´®0 ?ºõÈhy ø¸  “Ðòà‚&Œ©e¹-x’áÀך0†•mÁ“Ho¾SЄʴ²Oì~ ø.A&a¯þŠ  cÅõg¾u±ƒ}7ðK‚&LzÍå­Âܪ¨fÍågbÍÅŸüó™U„á+ öå9™ÔnzÑÏŧv¦=l»âòYe­0ÅŒÉ&šµ»Ó(µøïà›üÇu?!Ê£9bm•*jóÀ9©õ)ÞŒ­M@fÆ•9L‡Ÿh¯[¹gC€7c q¾!j(EN­xZ›ðg –¼¼¬}lejÅ;Àÿm*R+(PVu–•$Z\Õ÷,ëÒ¸J#1Î ^-QÚ;¡¨w6Ui«ùšm/?Ã+qŽ„[ ¼´Ô}“ŽÃ‘\pô€²Qsãpİ 8z0y/D쇈WK ú]0âw5Õ W ƒ¦I {~l˜ph©Ýà&Ù3ɵغ? {~lø]èH]J;RÈñÎw˜¶°½ ÇG5(²¿‚>ãc+#Šwƒÿ»ÛšÙ——P¶æ Ñ–Wƒ^ݺ‚ÄX@¼Z¢µ÷@SïiªÖêCŠÂDD÷èP}Hqá¼9»Ù´$$Ô€C ¥üAT'L »€›@oJÞûÍÄ«%&ý4Ìøé¦št]PÙ¢Ÿ†ª*TX4I¶8Zj jÑOÊŸFWêRÚ•BŠw˜¶°=®ã£šnYŒ÷¢×ø¨&¬8¿šä¯ìEë}…ð|ÐrSñF梹«øÔµ£¯Ô“p—{A÷*3ßÐEYb·˜­²\-÷¤–W”›­K;዆zųKºgæùÙJZ2DDÈjGƼJÁ´é GlîðÌÊ$‘°>à“ Ÿlž ÐsÉÙ€Ÿ2„ìÂ$là)à‡@(¶ <œ¡d¢™)3?Å4çÎÍ;sÅ‚°Xü-eCœ–²Å¢­¯xÞœ¢®1/ÇSøÝLÕðô'Ï–1‰ L])hBE&ÑÅm`°[ÂRׯ4a6ZÌ:%W¯%øîÕZ‰g›ä mÚÄj~2Z/— NÅEß•! {‡M˜ôX÷«BçUlYFõ¯9aâYö”ŽÜ æ-̲'öKØ¢,ûÿ…æ÷±e6ñë`þëqmbÁ©ÌʻبL—•ìœ2òÇ%D<¸´üL檸ª#1Ö¯¤-èýP–j,èâ@¥ ªåŸ<(Ü3ˆðbЫ0å¼I˜+€@«Ëc Kð&n—¯?iu­¤—EH$šâàh¹Åå…2]–›–g8:¿àCBÀ›û@ïSÛ„ä»»mÀÛAßÞüŠØmî-—<|÷4 {]òº¼FMuþÄ"iæƒ5žç8&‹—éþó” GdHLÃ_[•RÎp(˃þjZ®Ç"3ö•ÚÔ ¹”½¯OëfQ§” [Ê"¿úKÊÇ¡ë¦<¯ìnëëË;º•uzËŽý‹X²¶3Ù‡G]Ĺ„,f‘Ü_þèÿ¤æe9ì<²ã D‹þðÐ/(´å)þ¡†lÿH y}¢ cÚò§³ÚÞ¹6èÛ(³d»Xà••t«±1Ró‰ü Z oX¶gNñ‹Œ#Í2f‚?Xý¶Ÿ-ÊûÌü‚L¹ÙÀÜÒÐ kÚtl‹rDâ]o)Œ<_>%PÑØ¹öÀ®£;v:rŒÙñØÞCíܳkçíÑ=õyà7M¨l$eÍÂõ3Ào š0¦euJ¬ßþ…  ©h‰TåK’å¯?4aCWê/?4aL¥¬ôϛȤb“( ü7A*Òεc³n–õyf£é†}I²IûŸÛ5A·kÉèïg`{•  cêïÜ:ý ©¼önàõ‚n—ZÔj¨¼nl[¥1Èòk¹s‡ÚdôÖ>4azkÏ ºýhl½]å—+ ÎýüXO&¥žÄ»X4¡â‰†TJ=‰ô(ð‚&L`ŠÑþRà+M˜„½L_%h˜öÒÄ”zôÕÀçM˜ô2˳Âܪ¨f™¥wÞFehô=:ùÄ$ì-µ?²[Q0¦bwT?IÒln-uum4»'vYà  ohm|B¢lî-wÿ]#ýô,Ÿ@‘G:’÷pôL2Ü <úD #’cø(èG•©ïê"_qRš{5ðƒ Ø-&v?:þnñµ™ºªêj–S±4}R§õ™%kòÃÀ¯ƒþº2µ^ÀUg—…o¢Kø=àAÿX™»ÆÝ;*¶¦Æoú'±Õx…¿¨X-.cõDû©ÀÔJAJ*¯½­ñ*Üõp’¹J.›·K}3Ó¦‘Ÿòr}rˆ$ð…ÀaAF¼¡ÀKo3½=•\ôÆLmÞ(hBeÞ"dáØ­Þ$h˜fÖ9ð$þ7wš0éÀóƒBŸUlÙñ‡Àœ0ñ¬Údíóf û%lQÖÀ‡Ñü>¶Ì&>æ‰k úÛõT–¯¨í6Å©O;ìØyCÜF}Ô,EÝSü>G˜•öµâ*“Ä ^IÛÔG¡>ÕØÔ. £@ ÁyÁhª%=§ÆXÚÌÑ+ =QŸCË¥¤[o¡…¥.§¤g+–)!ÜÀ[Aߪp YZ"v#À] w5?Ì'vƒÀÝ wǸ¥Lâ6àÐñæÕ c*2‰Ò”„lw_ú%ÉXÄ!à} ïKÆ"öÇA·È"î>ú屌,¢lx¶„tÇh'›0€.h7›8ô@{-²‰ pôtslb²X*IH÷ðAÿb26qøÐR•¢ÛÄ ðµ _Û"›xðõ _ߤ‘cZB¶wßú=ÉXÄ›Oƒ~:‹xð½ ßÛ"–føÞ”DË¿ø~ÐR—’-ì)\£ÈCc é>ü èÏ$c~ôg“±‹g€¿ ú·cÛÅ5¢ ª?C¥°3©š§$âï¿úûêg&yÛš0­¨›ÞL¨¦M©.A6ÁjV¿0GâÕ£9+íüÐÿ#+ù¼_þ´É2A&aÒ?ÛsMØŠÁ 8.4¡b{]’¯”*>.u p SR'?"û¸Ôà‚&LÀ R+€W Zò”a|ƒXÔÒ”Ä9ECŸ6ìÈß’X½ÀÍ‚NI`nׇ-·SÝ(®n4aKŒkK|ChD êQ­ìØf1êÊ. u7ð~A&3ªAdéQ-µxTÐ)©4¾†¿|3ðA§¤Ö>¢Ûë6à1A¶Ä^ê‚&T>Íw½JÁ Ã>!è”TÕãè»jÔ1\³PÑ‹.™¬„àð”  Ùëð‚&LÂ^sÀW :%•ŽY×ÈfÏœzÇ £¬yݺƒ´‡úí>­\ÛÛòÌ’îĴĵ8–âz¶cèzTÔ•é¯þDЄ1ºEW/|W.49‰Dù€ÿ)hÂ$ÿSàÏMSñ{´4Ý‹c°©NÁíñïϱstÊL5¢L%ë8–QÈj‡,£V«„×4q&+²zý/í;M¨H¯ç^G¹3ò©’gðˆ  Pnû­À1AË%å×5C?%ãZfÞ Œ6“õD}´® uä"Ò$íQàc‚&Œ)uäá ¨"^1Å«´ö<ø?§JÚu×™ÆÄÝÆlbê±nšùã’yÂ(Ôî86<½—nÇçhá³iÉÈW¿1×oG½Á–l-pôdìÆ¾®v#2‹I«—"3ù]mT{D#÷Äk¶G¾­ûãPáu ¯‹-ïáúû¹ÅUÓLRžüúˆ6 ½”yF6–>ãDÙpLò‘}ü¾t£Ï,d4ñ™²n:T)&òS}OBxôáØOµ»þ©ªwŒ—òùŠS˜ììÏhnYw\á\é>òIÓsG‡2ZÕãF¾ù“Ÿp7èÝMô"!b| ¬}TãEîÛÀ¼+ÅQ ;Ÿ–Ær]O@ føÅwº¸Þj ¿w°ßœ)ËTç=Ú±´‡ïŒÜο‡"¼´ÔÞúœ…á^½@&ÍoBÂe Õ-b.z5¹¯.°?tüÅÌÈC±?7€x%-ÆoA>ª±}‰<½Oƒ9aâ¹›!ÁÀ¼…¹›Ä~I[”»ù4¿-³‰Ï‚ùgãÚÄ‚¹›kDîæ!1ó3O®„œç¯}•Œœ\¾+âêĸ:€x%mF¿ ù¨ÆŒn¨¥kйjm’J%.ÂR7‹æñÈçl~BÞZî@^7I¨=Àƒ *œ®†ì-»[€‡@jþ,™Øm}8¶-E_«%þw€–Z$hBâ&Ét X]HÆ"î d,b 8z¢E1 œ=¥Ü"d7Iª ð¥ _šŒMØÀÓ O'c&ðдÈ&~ø2Ð/kŽMH$n’T¯¾ ô›’±‰Wß úÍÉØÄË¿ ú—cÛ„\šÉðà;AK]Ù„äM’éà‡A8«xð# ?’ŒU¼ øQÐm?§ÕJO7­ºÍ0/Å2Œê°QÁosÍð¦ìB RåGù6½\.òÊo¶æVòS~Ä›Ñr¯öÁ¢¡óøñpõfJÇ(êTѲ8«uGTàtÙü&«íp©ÐbÝu”"rž÷yº×]­¬;ž/6¾ªQûòÊ*æöœÀÔM¨¸+¬äk˜vÅÑû¢‹ÈKÇ~YЄMèóv¾yÙX&»„Ä¿ümAÊI<ï—?üŠ  覩ÿTЄ1»i‰6ë[Ž}Âd”úÇÀ`ÿ[jýã¨Í:O¡’7‚›¢ôV†Wl¤^¼W–>”®X;Ï·DBôö(=êW¶o4aŒŽQgXvÅ£Š0E„mŽþŽØ¤å¸WЄ è¿}¸OÐíRµu롲¢j´äÍ+$ÌíÀ{M¨HCçCC£Ý%ÓbÖ½|Éõ °,hÂ$tõàÂ&Œ©«‰ÁÉ1\Úù¤»4D_Ä@K{#Eq š«nèÅËÆÆÚ.(~ -.ñ?ì¢6õœì3fèöªkèacgÑ3 kÍHÜßBMåì¸RЄ­ïëׯtG—u»õÀŒ ;â_Öñ&R¾®¹ž#J—1źe#Ou]m†þñPÅ%dÅ4^UÔ°…—3jKiš0£1Ücé%2šºÛ¿£›IG/ðs‚&Td&ëª'o£9yd´é¼==:“ñ=üA&a;Õ:¾/蹃,ÁwoÔf¸~M«`æÅ…ìd/U‡Ã‚mÂÌ›l¨O»=Ì­P.RºŒ– °ó*AwJm"4Îw#9%´Ù™^/èÎd$hŽŠ´IýSF›=AwJkŽ®ÍãÀŠ ;åêªÞM½¡§¡÷m+xì™0¦Ö ém¿wó49Çx¸bR^ÒqËž)…IäOÙ3ÕÁbñ±F2œB†M÷©|Yì>ûÓ—ÍJó˜?³?éµoò;ä¸ÌìÑ,ƒ²Ftg–â׿Ñûe^^›¬èŽÎ¦}ÞRÿ%×£ÿÎØÎq6"QCXùb×’Q{h|gÜ«]œ0å›-#9Y½¦U¿\¹rôÀ¥‚^Ú‚ ÷ω¾UÅ–ítÌ Ï~ }âN0oaö±_Àe?|ÍïcËlâ‹`þŸ6±ðÕ½ûm½ Ý¢ٸǜ‚„Œç¯-uþ˶6®îH -€x%mB¿ mù¨Æ„֋̇1cÚpØ<·ææ1Eò÷ ázÐë•E(’_‘0ׯ­.â »øê÷`*„ÐñÎMÕz¡s— ËlØ.ÙðH •;ÁO÷ý`,%*<ëHB=|ôã Îæu$‰KÀS Õœ£_œ>Zåqº œØéÀW€~El ¿£‡ïL• VÊÝ¡f¹æ´ÁïçªxºpOtAϳpÙq³8Ä 6XÅØŠ+±KóJà·@K™[í÷ÓÑn—M"/†Tü'Ðÿ”Œ®¿ ügÐÿ[×ëÄBlÁ˜Ð™ú4q91ù3É¡ç_òzÿÒ&[ObÁcûL}ûiu6ºxTE€cZЄIø­e¾ÉIˆ|ð AËט÷Ëç{M˜€óR„× :ÿðεYö„c—$m—®®æ8*hBŶÇŽïtJeÅ&™î>à‚&Tdº·Ç’ªíÝtoÞ/h¹uÍûÆj4IÙ|™ª\qʶkdµ½–H)¡é©ßáàë5|ÅG”®Ê1O²±ºnxæØèýpÅôŒÚe.zÉ®XžË—…è¼nÝ,žÑ“‘­©®ÇŸZá‰îUt”–“œÈ’Lÿ!°}©  ÙÊW㟂q— Û¥Ê\Õ5Æ ¹fµ)£X®Eh´b9é’ª'*¯–ÎÍB“rް}p› Û¥nÉYøbÞê ¾ÿ ïÞ'èö¿/l¿ xPЄj|aûภۓñ…í7ït{|_xMuïñ/=ùr†E¾« uY‰ïÄ/X{@ "ï´¾œãV¼m[9çߛâçcÅœ8:+1·h5ð×M˜„>¾_Ðír…&ƒï¾Ë¿ËÏ©X–‘šØÛ`£”»Àú ŸEr§†>ülö¥¹Þ¯`” œª-éÖ¬6¡ç=Ûqùî ûê”î cÄ(˜y/òÖ5Í3;v ºcWì&мùû«زeì?sÂÄ·6h!¸Ì[¸µAì—°E[ˆæ÷QÚ&r]6^0<Ý,º 8û缿¤Ô#7±o ^’>~i\qèòñsˆWÌV¹”õÑ»íâĤÎ<é]âÎ'½Bá^DñþŠ"¼ô¥ÊFÄ‹g¦s7c— x»½„W·€–ª:ØëÒq£ÄL:„ïeÀÐ#±uý¬ñß Ü:^üÔzÿ±™™™le…”~ !o>úeÊê¯8aªºx ô±øCaô‹bI€9Ð9…“L½âMù[nó õÞ?ik©û%öíŒç~—ÅçËìµ2€xÅl•1æ~^7£ÝÕÒƒýýl®²Ó¶ •Y-âƒ}*&-WS¬¡OØgW&8Eâc´ŠäòÒÚ˜=áÍèNÔ]Bò%À ¥.M ™É¥òTÛ£ÀYг-ðßÄÿ$ðh©­Æ†ºj–çQàc ¥*»…¨#gUå!v/>Zj¯¸îñW¤‡z2Ú@o囹NôðIÐO*SÌ5þÀZ°MHûú³#ÃC[úrÝìtÿÐpÖìŠ8¼’¨o~ô§ênÚpr!lŸ~´ÔýñÜ9±ÿlñR6ÑdŸ1ÃÊ&8_:nûÓ¶–ްľ=€ñFØùÇ)qÀM÷¢_ üÕ6QäŠð"Ð)œ|7fgl§‘où*ôAx1è‹“× ±¿$€x)ÒMgÉtó%ú3¨p%h©(²Jþ j \zUò*!ö«ˆ—\ÌûTû‘FîÿïÏñØmmž‚>±ê¨~eøÛyô·Nñ£k^€|(*åËšô‹äZ9÷inêóJå¾#ì?ûŽLM–võÉUÌbA7ôBnÓ¦‚>¸ipØ¿¨º¯¤[}dÞ½X9Ïú ûø ¾ýÜô“jÃ2–ôȆô”søO9F>´ÌWÈðJíÜ\ :`-~»·ý«øÛ’yèGw÷b`é s¤ ¾Ù5¯+í²òvïjú-ºŒ$ã¾ã;?Úðé%?c7íþ´ð𡱽÷ä=ߌø?½Ú;—Ùv)ÕP{Võ²|îo^á7ë-g^?èbý@$#†~äLã:Ÿ¢gÿu^ }=6!çDlÏ ^b(íR,žZªur]:®M½Q„ÕŽ¦h¯o–¤µBì×/•Z9&¡•h¢#a­vtZ©•hÂGµZ¹lŒ²kŽy»Ä¢_:Q~˜êúšùÈ•";¡«@_¥PMžé¹´N¨†°twòj"öˆ—¤šæÖH,mí ^1[eÏH(Sª–?_rE~–° ²oA"G‹ÎçѲ`u 0â£øá.л”uÉÓôºxè;”Y{Øizí}$¶VG«ùwüˆ‰Ò& ‹ŽâøyvùÕÝžÈkOô¾ôâ>BûöqsâÔ”W*ž>5>fœ(;÷¡úŨSȸ{¶Q‡ŒÓ¹ÿÔG÷ìÛqÏ‘cwŽíÚyëA*Ð?6ëf' ϰ¦ÓÝsÞîî¹A«þi¡ã³æ„–¾Ê:™ŸÒt𽞞y?Óí¯“å Vö!·`Íi'k^ŸU.±èÓ›zH?qóPŸánîóŒ½yz¾Þ‰J±È>Ý}ƒv˜ýýŽ;ëzF)Kcº›uKÿ«!_ÌøÚíÆ_p‹‹M¿Û£mܨÍ{Ñ$ìQ®·+Þ©ínÞ1ËžfF»°Û§ŸèêÖtwÖÊkLk£ÝÙlû¿Ï­oqoÜÞ'~æÆÓ×jFÑ¥$OöýéŒÇçp²ï¾6S×ð&{ÝÏ÷œ>bÁç°Ç=r`ÇÎ#‡BÌøIà;@¿#ªÓ'VÌýÄŠqÊöDûEe WG¨å$:á;Ò¿SFú Kíh$Y®ùæ1”TöÜ!^»z¢z® —VlgŽÙ)B7.´T¶°ú,Ì¡6óQ /â ŠöÎÚK‘nWŒ as³±–´Õ/¢ÌY$oeÃHíÄK²³_WšœÀ9·C$¯Ÿƒ&öQJaóÄH"<Ì $FTOØ(‘>bP¡¨³$€sÎR'%F03¯¥6±Ì×ĵ‰—Æ/Û[¢i*só{-ƒÐðà j Ô|ް´ÔTŽËyS\=’™â•´9¡Í«ø¢] ¿Â¾èÃI¨~`‚‹áÄî:`‚‹áÄîj ºÅðÁ¹%‹"ù²-eM›õοö ¹W!o[ç ^Ô™fa,/‹Ÿ›­®vb:ÊÓ§$t½øQÐU6óYF>Ú}2ò´‡Äùð·Aÿv2¶ððwÚªwëÅœölëÑr| Ò¦hš)XtC@‘Mdh5\!+~›ÖÃiÒbVÇ1ñty3š¼°iÝKÀè’iñ¹L‡-Ú^ÍpÛѺ©…,¹íÖL“ªfOÕ·Z'q+Ó&}¦Z 2OºeqÚ(²ÉX£êzV¥”cS'ö³X޼ÂBzûœ@^‡îs%õçŸýÈŒ›”ægýÑYèS§yrØxzÃÀxÏiúãÃÖ© §OûC×ñÑLõ"¹ÿS`{‡ Û#G!ô‰y©^]㥇\&c ³R˜£*Ë‹î¬ NttÁ«áH;$l í¿!ÇÑ•‰ÑЛ-Oï k™<0e"5æ’¦Vø¢¡Å„{«…zÂ\»à%šj–Áwÿ)CÃBÑžá~ßáµßØŸø`1eNNÕo– MãŠAìѯBû¤[·nenyÌ,˜Ç¹»ßg[ÇKºEE7ú{ÄEÍ·[z¹Ì©ê÷Ø»C=âÆ þn¯ÿŽàqƒXuㇾ!_ü2ü_èßâ|{}žâ»=ü’_¹Û%ƒ-þc´ø•9‚å"¬9nMé2‘MûÿH˜è޶D"›öŸ€mJÐñgFhiº‘ïáŠÉ~ÄÒ.gtMu´AªÕÔÔq÷!Mu\¼FЄ hªc-p£  cjÊà5>)Ðj0™7 ŸtÔ‚P¯7{J ¥G¼øAwÈm»Ð»qµŽã½eÉ€­ãµÀ·šð¬Ø:Þü­2‚+ ØÔˆÑxýƒl½e™MPQC6…Y,d[Àà[Õ,¡A[¹.´)2Íà»ØÌxÒ1DÒ# v)tÖï‰+] rÊÚn5þÖ¤à‘~КéqIÖÛþø/‚&<;¼í‚ÿXFp5ÞV‰aÓã’”¯U"Rd_«N‹NÃŒ½Uîi›ÇuO«Æ,ëÌQ&=(Ê¿A”;ë"ÒŸ_tÇ g‰¤»/8ÑÑWâ#Õˆ¡8"U#TT/©P#͉H›Ú,¡~²‰\ö“ŠL3øîe "R\Ù.߃;/4dz(¼ì¼ ¸AБ7å[å:¯~µŒàj\§1”†—jDŠì8Õé£áeS%Üm6ë"nSYßígnÓ²=ÿžÚÞuÝb*Mã‚d$Z•z RµÆ™–eéQàý‚æxV8Ó‚? #¸gªDŒ0g*…*)²3U§Ei˜±·ªQÂió¸.âLÕ˜eðÝßç>Ô³=½ð¤ósäÎà¸(N’ÐÁ ~‡öº©2œ«Mά6c‹tvC弚äÔpã‹ÇÂù"?°aû¹S~.?É)wí| -—lôùx©}žE·½Œ>½rì‹O[ù)ãdï#¯GqIp³ —lŠÕù‚ŸZ1¦Ç’l¸“½¶°×-*û•áŠQyÉ­‚&î1Í¿CÛ(a;Kvoƒ0»•ÛÎyt狲zx “R޳×~öºW™ù¬bb™B8SN¶cÀ"ä31 =Àt÷PlÚÀÔD¯?þùÐ hŸd¯ãìõºØ‚FÎè_+ô^E5ý»EFÿŽ"sñD¦ ~>ß2ÄÁDJYBJró%ÜòŒqBú®ß‹ ?ánÐò}6,éÿ!1UB¼1à} ïSÖ!BÓþ‰Ýà8èq…lCÒlˆÝmÀûAÇdv×Né!›“Ÿw]‹?xùS'ìñŒnÃñtF¹†å‘ z†€ïý>usㄞ—1¦? ú£ ÔЛÀ‰á¯Ÿý\l½âGOFËU<ž ¸ýg±'ÊLwÌ“Dö´$éÇ€ßÿ¼hdO¸ÓE¡§U^•ãˆFؼªrçœI¦,pôPó=(±K7– Ò£yPb× Ü ZªHüm[a¸ ´\-¾…ŒbÅd±ºÞº€t·‚>˜ŒYì}(³¸xôáØf‘Ö Ë6ç¦3?`#wM§ŸôiÝ,RҬ¶×r=C/Ôb>—EËj½ø<è畺8:çu‡µXÚ2‰ó[Àσþ|2jÿ8ð  ¿[íÉO PÅÏ.ôr ×g±…þ¯}sY„Ud6Q™œë@ü{²Óš¶‹Ó"ÛN/ úÑØ¶ñ–Ú@V»»z^ªuÍ/z"nQÉQúUΞ®FÖfÁð«NF©Œ–ŸÒ­I¦™4SœÑføçsŽ¡×rzþ8ÕwtùÂ/‹çrfÑôf#‡gÔ( L]*h¤ó˅uW±eu×Ö9ahu5©Å·†óÎÚ+ieû%lQ-¾+Ðü>¶Ì&®ó+ãÚÄ‚µøöÝ&*¹jwÛÎñ‰"ë蘒+wàÊAm/_+"§°u\o5ÊTNÃÊÏjcžSÉ{'òõ¥Wâs„÷‚¾WæùøsmŽ«wc<€x%m~ë¡i•˜_ê+bÆx@·f믓¬®ÚÌA84‚Øùv^÷[Þ×\ªò[»8À¯ÖK«ˆ9Zés+%QÓ$ǯ)€i°±$gäuZ°ä…†k?0cT7Ù÷ªµøº£^âÿaFÆ `UrñÒÿT_ƒq-ºëi:_ZU³¨WQ/—É8]Ãë¡5m1tåuÚB¬%£_Á ׈uSj—²nò|»9Oê7Pšî›¥ ªÜ{êÙCجv«ÍÿmÓ 4›y>´ÒžéŒXg·'˼ô{4áÙá¥?üƒ2‚«ñÒJÄP륕ˆÙK«ÓGS¼t3%ÜK7ë"^ZYÞM]MKìb1ݶØ4KמëÈ8ÄüΔ\ï‡ìúXÕûAÄJ^/ó¿²ù[uæ–7ù– ÿ™ ûƒSœå{åNŨnœôá‡é–ÇÀ\މD?Z¬¸žáô:v®BšÌÛ®Oó”×ãßg£>Wݨ]ùÜS7’¨]×ò5Õù§‚&T>äO]¶ÎïÿZЛ?ìü&ðoͱùóÀί¿/hŽñ"›{ó@‘»ËMŽz˜ÐóÁ„ÒJLÚ££#ü]I;ëüÀ%7š£œ±O6ôË}SžWv·õõåY·Ï:½ìh—.k;“}e=\Ÿ4FY§Ì1§0Ã#º_r °,hƒLðS+ÎD²ðæ]â4¡2›âjÈv;ðMÓfwiÐ9=;Ç ó}Üzwºp“¬D ¾ ø»‚&lA$ÝþÀ€d(½ä÷€*è%‘=y‹Bé%_ þUÁ•„ÒjÄh<ާ‰¥ÕÈ5–V¨ÅbépsoU«„ÓMäºp0­È0ƒï¾KÛ-®Ã«®~ÊLÙ1 fÞ f‰Ò¨‹_ÒØ#r™©Ž¿kˆ+WêN ÚŽÆ‚.CwˆYδpƒ9]un°ÏJW 4ÑÒ¢ —ªO…îBËDné+¯4aÂØÕ/Ì )F!rÖ)E-6EâÎ4¡œØó~ÁÊÒ× š0{i øAÆìGRg÷I„'o4¡b{]¢[ö´ŒÚ?|NÐK¥zF·ÖsG¹À’¶ú4ðYA*²Õw?&hÂ$lõÍÀç½Tîœ}ðÝ©ày‚1ÃÐS@ý=íŸåf|Ô,{6¿ÿnp°GäJ²X¼l8þÁ‘úH³H^]°šB< …”‡ýü&=åÇv].h˜O97PZ¥M]2ø]"÷¨Í®TbítÒÕ&‘‹]mHÏ¿ÑÍÉ‹Å@Ú¨éúgë)¿Ö3Ø7ê³uãyï}WòM¼¬}TÓÄKEG”åjð¿ÿN ”tÂçÍ‘é– µŒß¾à¶©~þÖRƒìµÐ¶ ‹é9Öï_ÅçÝ¥mïÕx^Z:›ÍöD•ê´ì5ÕÏslšá…ˆ±¬}Tcxû6ð¬…svxìÌ- ìˆû¡i·°¯~a:êó\‹g ÜZê0nÝó ±øžÔ-ÒvÒ³fF»+Cáj£Ú#ÓÆ_PÇ¿#ÛC–ªÏzÀÚG5ö°{ïü/°ÖõY®ƒü„»AïŽý,7m íc[õÝ9ÅÜÀ=ç…Kí.êC\Á o}Sì‡ØâêÓÜ yk§º_ºaÌí¹NøQíè‘;wEÖ@n-wn¿Ž>ª$½àNØ º™ÇûBÄÈ‚µjº×Í¢.RìÜKk®fFÁ(D}Š>HNx3è›c?ÅÈžfêÍHùÐ~ÈB¸ôšä•<Ö>ªQòö , õ5\?’Vð ¤&Üz{ì'Xͧ±5õF*0*¶­½ZÙ”såx™O2ØXÃzOHÙöç>/ù™±??€x%-Æ&(ÀG56~®˜°ìa“¾ˆòl† „ç‚>WzÒ¢ô ‰t1ðrÐR³øEWŽæ±=¸ô:…lCVhˆÝrà ¯ˆmR«‰$•mµ‚¤W Tlr¹ü$Sph•uZ0Š`€NÂ(6‡AÇ6ŠüCÍ9ƒ‚ñ‚Hq ìˆS¤Ã'¹¢áŸD1D56 um> úá&˜’L:Éôð1Ð%cJ'€ƒ–Þ‰fJð ÐOÄ6¥¡±¶(–›ªñqx©Zú“&±fžGW‘sIàWôo$?p »«¢Ò›ÖÎ#ʘ6qà^Uн¬îºÌ”û†%dÔ€½ {›ÒÃæíýtQ¡ &¼„į-5 7üåóYÐÙæw{b·Øº/¶ÙF/;Güû ”›ëJ2×ãT.˜Yë oŽ{Ñ[ëÀ[AߪÌZG€GAMÆZw‚¾3¶µ.ÍÈDÁ$Ã]Àû@K]å² Å^@ëé–e8nÉô¦$½¬[=º9qŒJ»Z -ev›>:àŠØŸ?¸êã·¨t‚—5r5l±H×ñ‹!›nu»7r`E¾øqÐO>°½¢Šj+‰’i[Áœ0ñ2z4Çîó–Ñ#öKØ¢2zÛÐü>¶Ì&nóâÚÄ‚Ç n8ìØTs¿yÜ(šS¶]ÐmqÞs甑?®Ö9[ÃÑöÒ®>›]é¢z¦ÄÜZjŸ—?ÈÚ¸Š&1¯¤í-°V¯ÐÞþSLîîF1Od¹Šˆâ"§Œfò[/èÜØd…©Øò ª†G¥ãèäXÙ×zu&“¿ŽA5XaÌpÒfÖÈfü+[©DûU]«XæÃƒßÀ¾?­+(YG?øqþ½’~Â,™' qr™ö6=‡o‰õhÅš]ú_¸€CÍ…T£hsÂÿýŸÊc-¹G&Sª ¸BЄÍ^&"vh’ÔJA6;’! ülW š0fO˜ œãAKYÜÕçj_+âUnp"ÑÏ`è«/sS*Û–ÈùvØý n©­UN›º¤!¦V_)h†Xo€<×%L'aW0¯¾QЄ ˜BêUÀ7 :%—Tx7õsæ¼&+tö¯‡_ï(2}GÈ\ŽmMÒYÜ´éŠÓ~^#³‚­•m׃ò«>•FH>V–ôãÌÛѹ[ß]{ƒŽ(2ì ¼ìï;²ëÀþ@xã fxµð;°;ìÛ_Õ{¾›'"EÍk:ã8[“#PçÁ¡¹ä½¹ÝëNÎd½3 —ŠX¿v¯V™… |²=Ùx8ü}µ–U"Õ™( w&ÿìeµÔœöã?QFlÂ¥ ›Á‰Q¾H›æeªêç«Ï“˜Û®\Õ2ñÍ;Þ hBÅ£B0ºpÏ?*hÂ$fÝt ƒ‹,‘ÙNâ¾øë‚&T0õ¦_üeàs‚îP™èî¥:ž~LЄ1¬çk] §âùF™hüª8Ì"럀>¢³@K\Mùîý[{jîc¢âPP¦L7_q]tК1ëCúê”)GD¬õvîì¸Û«ŠyúO ö¼ÀNCÐFò¡÷¢KVQ龊„Ó¹ 26o_EÒéPׯ}ý‹ß鸻Aw+q:ô‹ç3 3Íw:Än9°´ÔÆV]ßQs:Áì|ç£O¯ðƒž¢-öS{ݼ^4üyX:xyýFÛÏýˆÂÕŽ¶—ñMšý_|¾lœì !âãÀ'A¿^zýbn·\¾ßæ’Ùr‚½ø.özŠ½Þ¡Ì;Ç +Âõ€¿ú± ñüŒ&NlÉÎçIœw?‚ùz'*wï õàÚÄ実kþ„žØ}øÅ6±äþùd\ÕG¿Ë^nSq§ìpÍUñ²uu®É5ŠbÛ÷JqÌè÷€ÿ‰fûwåf´ŒÉË._ºI,‘¤–´%²0Dì ð¥ ö^ C¤ƒŸƒ-}á?ÚT, -¯ÚQäø•ÁПº\´E+nºYXT[¶U±Ì ß¾¢õûN0oáö±_Àm_Ý‚æ÷QM¬d6Ñëÿ/ªH;!áJÐR^#^ËÜ Ö>¶¬·ìó]q{K«Ê3íB/#\:²?¦O$]ž‰^|µŒàÕ¾½M²<“21–gR&SÈ¢qy&µ DYŠÊ35»U—gj.×Ê3©3ÌÀ»©ãtµ™[¢Måº+ÜDéˆtÁ°ìípØNO£ûÕý=ãºÂþeë¢pæ5 t'Ûl£êzó,—ÌÉ)~ Ü´áÌjE{&Cûb …ê~ˆÝùoûµUé¾Q‡ýÚŒíxSb”_¢6Ëk#PÍ(ϤÛÖöÙÕXÌe³ÚTrE/ò¦“¯”\_âVÛiáÅ1ð)õÕ?Þ;cÒ‰ Ûö(ýJ\Ú–ÖU”² (<5+hBe«.âÓןA)KzD²Žè4õ2ೂNIUËi(ø²Å¤ oÖÔ‡€tJ*½-d\ )aIìN?!h˜Î6ÿÅ~ès?úÖM9€ n1m&ŸC—æiûì ?êÚ vð^Ð÷*ŒCÖ"ˆÝàK@¿¤šøß-w‹yÙÿ¦Ð™ÿòäÐ…êÈÙÅFKˆÝý@tü̘Õ鑞Œ¶µ ·wëÀ°Tß™z =eº9äžÛäSÂþì@ÿ`_zlïν=›z7õ s10سi`ÛÈvö,Û¶íØ{kï-{ìcÿ¸q(ÛŸÝyè†ÁÞ»#¶ôP§€_ý%…Šž6œ\Û ð@ÿQòc ±ÿãâ•´„]TQÍÈëŠ1fÚ,RJë­lpáãÌ–-lœ9@'*¥`Ž._`ÒóSOq«V³«¥¬ÖêÚ‰49[ãy­F rE£}X:ˆ‡%tA»ÊºV†"?qxGÉ !ÊÒÆ<öìih¸ÚáºvÞÔk»k‘„? |?è÷7È"vðÐÏ´`È"þÏ?ZÝ…eí[%äùðyÐR…–£ YÄîƒÀƒŽ–óüôÐf´†û{{‡†F¤zÖ'€¿ú÷ÔÏøƒÖàPÿ–¾ÁÁ‘á-[‡#B$äŸÿô?4"v¿üGÐÿ˜¼÷'öÿ@¼’ãÐsÕ BϰAˆï d´ÙL°L9Ÿ÷ìbÛ¨Ýb8†7­»m,«Ì¢jyVÛ¾ÀFŸ)6 `½e^€WsùI:ÓªŸ2¡x/vb¬J)Ç~˜ ®W)˜Fô¡ë0šˆðÐrn¸Q»ìˆáº“ŸÒÆf-Ú8ap@ìÞHÈùQà—@« ðBF)b÷,ð@Çð¢RÄÿúOÔRCò| øuÐ_oþ(Eì¾ üèo(˜XmbcÔ¦Í[z{7mÙ"Õ…¾ üè(ÓÍUa«‡·”ؼySÄQŠÄüG©å‚&lö(El¶+-—ìox ö+kè¿’ã¡é*ª¥f£ÔíT¼(£ÝÆG¤ºµ¹Áþþ!6íõ«f‹qq§ÆœKIùãÐ.¾8lä:lÈ*Ò\ ¥å#w•#xT‡A?¬¬«\Tñqó56­¨GdH¶À×~]óGbç_úõ-iˆÿ€O‚~RÝH3u>Dr¼øVÐomþHCìž¾ ôÛb«cMz` j‡·õöna®\F=o~´ºéª6ظ&k6„*/d¬!)?ü3ÐÖü±†Ø}øç ÿèï¿çR$ß?Lu:¥.Ñ?t„#¶?ÛNA§â§øGáˆÿàRA*›KõKȳ¸ !éªæpÄ® ¸ZЄ1ÕÑ—`ÜÞ¶ŽdC‡1wŽêËHØó€7 š0i—z'z·j\êË™K¿²Ä<Ÿ¸übuMéÀüE¡ð |¶i»N0ïZð/3e^o’§¦Ré?ú£8fÙáÝ…G'|9è—+ëIk;Æ4Õ5`ž}Œ®ÛÈG åI®WßZ*ˆ‹æèˆÝ£À·ƒ~{ ñð åÎö6å£.‘ïþ*è_m¾£#vïþè_‹­ŽmÓàæÞÞM»$Éÿ>ú9eй®±×ÝÒç ôöÓk`pÓpo¨CÂy’÷7€ ú¯›Î»ÿôß$ïô‰ý÷ˆWÒbÜ-T^E5cÏß±±‡*ÐdD<îïdFÛÉèº9£ Òߢç§Jº…8~,?e‹&-0Ñ®ÈíD²ÈºH!û|ê(‹Ùé_ûüš6YmŒß@Y¡‚\´ÿ^vô¼ØÂž_Ä£›(uƒbWvŽŽi°Ð½0ké%þEÏÍjƉrÑ6=œ›_÷&rW½-Løw ÿNYW]u‹i›–¸üÈÌGãI¦ÿ ô5x#vüoÐÿÝ‚áíüá  _P8¼mŽ.OÊÇ.Ì-ºš?¼Ý#Œ’ã2¸ƒe±Õ±&=°™ò[Y(Ïþ»U¦ç¤Î^&hBEêém8ÈmêËÕõ¨¾œWÚ<qœ#‘¯4a³Ç9bw9ð   “`ˆý¡ú¯¤Å¸Wh½Š-;éý0'lF g5ûâÓV~Ê8Ù{ÀÈG=ªF¢\ úB [1¦Ç’ì ]>«r×W5"nÀ«Aoˆm;]<މ\‹„¸x=ºN¹ýœw@w¾ø!«—Ç0rù)’nxs›¸_eT™ ­bb™B8SN¶ÀÃO?^Ȉ2À; »øîøXFÛ-‚áJ ²­ Š{ó†fZ?.ÖêkÓÉdÊò $ÑêuøšµÄ‰ z¸#À¶‰´©)¥×vgóSvÑžäºÜr5‰ö) å½Pzâ6?Ì%vÏ)åæÃm’G1Ã\âÿeàWÚD’\r·šÔ’ãÀo¶‰ 6©]­ha.±ûSà· ©Œ£ú’8|¹zh ·wSôeåÛÀ U¤–Cj¦§a„;´…áÈ`ïÖ‘­'²CÙìP衘è–ÄýG)b̦³´ŽÞìè–ØþlYlB+8T~+鰒د­ajx%-Æ}BãUTÝÞEWšóxF»"•}¶u¼¤óÕ$¤öòMS—W rs‡§ôÆñ<„-EýBM–Év?Ðí4P!vw]Ðr'E‚ïFTˆ¿¬€®¨T£Ô#9^ < útób7 |ô#±Õ±&=(F•ÍC½½ì¿Ñ×NHž_> úIeêY8Ëgpx0â€BR¾øIПlþ€Bìž~ ô§’÷äÄþ7ˆWÒbÜ/]E5ÊØ€2/[§.¯gNžNF»…Ž10úÈœ¤Ÿ@bêí×Íh‡æe eê2Š6jczQ·<“¾Ä~†ÅÆ÷ê×ûwCðÉRÎðf ÃꥃÄÚb0Ù,©ÂþÁoŒñf穈Ü=@ûþô”uOu‰>$ß? ä+ÓÿÜ&™ém#¶ ¶]‚–[9ÈÿeÀsM¨HM©¨×Ã> âlýW³Ç¸„3áx¾ ÄÝbâ´ysoï–èÃÛ"ææx%bð+•)f‘ÃQOL˜×w :µ«ùã±[Ü-h¤b[ ýWÒbš®¢ºs3Mi–´™4·˜¼RZÖßLž4K[ѵ¡ƒMAÂ2L‘eU·NG»Ô‘»ÊƒxTBõ'&úGËw*âBlÌßbLéÓ¦Mûôµ—„ô'€¿Zú² 3€ˆ|?h©#í1 âÿ ðYÐRu ϲ†ú%äyø1ÐkþDì>|´Ô‘ö9§ö†øQŠÞÞÁ­CRëãÀ/€þ‚2Ý4Z¼`cÐ@ÿ–á­[G†û‡úûû‡˜ôÇ"÷KÀŸ‚þióÇ"b÷Eà¿‚þ×äbÿoÄ+i1t¡ñ*ª‹ÆEýbŸˆ¹gžØTwFÆš#µë1PµÎ¯õ¹Säð0„c#Š:ÅúÀh¬]2fOx3ºu „| ðèÍ\ˆÝQà,èÙ .Äÿ$ðèS —a y>ú±æ.Äî¥ÀÇA?[+øà"·-D’<|ô“ÊsM£ÙÍÈðЖ¾‡\7;Ý?4œ5û£&ö’¨o~ô§›?ª»§€Ÿý™äÝ9±ÿlñJZŒ¼ÐvÕŒ*ÎU"»š¤!¼´TzQó®u#Ñ.n}µŒˆª¯u#z€¬[¶]ÛÆólu­°Üⶸ ô`l[:‡¯Óî3 ÍÀQ4Ä ê (N ‰¶x¨­ZNS‘ÅI¡#‰Žï‡tRÅ=#[Ð@ZÐÝÞÆ7«cZÐ2±9‡Ž¤8¤ß¦Í–¼rŠ›CGÒ’™m|KQ‘ ÅË¡#™¾¦M„®¯HÄŠ&¯¾2¶Mù9t›/;vÞ(TQ’ªœˆœ»`8Õº’yÂ(ô†Õ;‘<IO÷:àÏÚÄyÃ+‹ü”$Ó‘h?È/ÿû¿µ@¥™“&bûÀ–¾ð“6É¢C1'MÄÿ|àš6^H²üO㼇~ y.Ò! UQVR³'MÄî 2XÅ^ÅV‡X‘¦Z[6ÉôžÔ:àuìuqßjQ¤›î°t:Ö÷ûéáÇYC&M$çÏ©L["§DˆÝõÀ1öbÑn+N‰û£5lÕ)C¨ºŠj&M5š4EZ& áE åzYÓ¦MÄd0 zã‹aÚD?}=f4…jz¸Bß»8 zSlkÚŠiSµxÃþ†W¯ÇO¼$¶m4\I™U——Bœ¦ohÙ‡¯k~B_,Ÿd/«MI‰5)5=ü¥6å%Ö"gôÓ/¾ Hõ**±F_|#ðmªJ¬­N³ dxë–ÞÞ-›¥tóNà³h¹­c™bž‘S/‰ásÀ?c¯´ñSÍŽAè‹þy›ØØþjòƒ?ýÐ×øgm*ËË-gŸÁ-x ˜ß.ô˧·ê"Èm@ìÛˆ—"ƒ]Y°óºœRæfæƒÛÎ^Z*þiÈuÙøqcvÆv¹–)èƒðbÐ'¯bIñR¤›Î’éæ#JdB „+AKÍ#«Ä„W^•¼Jˆýêâ%×ó>Õ~¤Ñ£ûÿ{ÝÖ&á)è«^h«]¾¾Füí<ú[§øÑ5/´Õ‚ñ+j²&ý"¹VÎ}ší}^©Üw„ýgß‘©ÉÒ®¾#¹ŠY,è†^ÈmÚTÐ7 ÷!¡¯¤[}dÞ½Ž‘w³~«>þ‚o<7ý¤ÚªŒ_=ï%!ݤ«¬›T "âÈJMÜ\ :ÐSü&÷³`–Ì;ï<º»…'–¾0G¦à›]ózÑ.+oS­¶Zc.#ÉøƒïøÎ†6|zÉO瘌|×áCc{ïÉ{¾ñzµ:w.³mQµ‚Ö¬êdùÜ_¼>Â/֛̼ÐÅ:ðYà#gÈXz©Ñ]Ù»‘Wú„¼±]À9^)‚ {EË€«@KµMC®KÇõ¢©7 ¬ÚÑíõ’´NÚ«]K ^Št2¼Ó¶\^ KÓµÃL?3¦kPš—çè®§Ð=Ç<Á—®eª»V;”£kH£N´; 6ÂQУ Uè™^±Q· ”Iᛈ)I«Øß@¼$UØWœNt$WÉv¨:1jš¶»bå)@ç;^ù€e•„ñ j°±ù‚•}È-EsÚÉZ†×g•K,šñ¦ÒOÜ<Ôg¸›û<ãDožž¯w¢R,²Owß f¿G¿ãκžQÊR(’îf3bÿ«!_Ìøù·£Ýø ã nq±éw{´µyÏ!š„=ʵãããvÅ;µÝÍ;fÙÓÌÂh7¦öé'zÅŸº5ݵòÓÚhw6ÛÇþïsë[\Æ·÷‰Ÿ¹ñôµšQd~¡Ì|‚ÑŸnÀx|çñ ëñîk3u Ÿa²×ý|ÏéÓ!|{Ü#vì³2®8´¾"€xÅl‰j£Ë¡ÂÕF#¶KXH“:!!Ö¹Ä+ºX\œŽ9â\ [˜‰JOD— +à¸ôúODI–Àë@_'#S´‰(±Ó€×ƒ¾>~ÏJh$@¼”=½Éæd!l;½ {“÷oÄ>@¼’w(+„9slžCé`Á€„`Aw ZÒ¥,™#Ðô4ó&6¿Ù´ f^dƒ»e#oNÌò¥¯™)3?¥åm¿¼ƒç6Z$s§ì ]ÛlÔÖÕŒBVÛÉ<–^tmzCרßq›³D¬>úñX^«ávÒ1Ê’=|è7)ì½EÓ:Âö5À7ƒ~só]&±{øË 9vo=—ì,«†Œ]¼øÐïQ6šuÝjxºYŒº›@Â<üè(ÓM׸{GÅö´ó4ð£ ?šü€FìŸ ^ÍЈ]'ðc ?–ü€FìŸ ^ÉhþÔ°yZ'Ín%$CFM£ìšˆ#Ú\‰,»ì—çq&yRVpDcƒÁF¨DÇ5oJ÷ü‘̵L+_¬Œ‚_®Èò°gµs¬ÄçOƒ>Ýüα‚ðÐ$ß9!€x%ß9V¡C¬RÞ9¤V[V¡¬ª§õˆólf¸Nµ;¸Qm–$:¨Öšo³Á=à«@_•¼Íûîâ¥èéϯª¥ïsaš«-Z„Z ÷/ÉÞru\qè3˨dÝ6õ2æEîžúÿ’÷€q×Ý8pH±I"EÕ(‘ép(ì)Š”H‹RÕ°¤½»°äÝíiwEå&Kr“ä*wÇvœØNœÄNs";Í)vâ$¶å´/Õ)Nÿ;ýŸ|Ÿþóv~{vÜÙÙ=ñÿw²ú=Þö½™÷æÍ›öƨÒv€ s®~Oà°uט°ìƵjÞYžä®P6´¬™7ò9ö»qW}9ê9l֗З±ð²ˆÓ‰[êT(%MO^3åŒÐ+±A û-]ú†ûÚˆUw´²1EbX/FŸr^ZÉgoq̉ªÉ^¡WÝ2ÇÙVE3t6Žó\A^;å]ûæ½UÇ®ˆ¹‘›Ã¯…kåùÛ$CV£K7À¢ÐxQç·ÐëeÝÆ×9ÉFƒ¬K­;¬;u­ ^ÞFV¦ˆV°íaéŽÓ„ŠÇ„Kôª55‰ô~à‡9M˜À pÍËÍc©Oà¼]‘úíÀ÷rºSjløæ§á4aÒƒUb÷zàG9MÓyÞ0×^h‘nÛ³šUgac8µež SΠ;¿øUN*6èe¬Ù—ÌbÔY(ê/ÇiÂ4LzÕD–4êß~›Ó„ŠŒúëÀ¿ç4aFýëÀà4aL£Þ=Ϩ­egnßf=DÍâbÜáä£öÜ$õ?rÌ\Çi´ã™õ¼]4PMXµŒ§¢7{4ÒììÀŽzEsX¡+X¡«1ô–ÕâIÚ°‰ÝràÐkbëddn€_<„É€àHOÒ_ŒßÞúešl±tÐR—'÷€¾']Þ úÞØº¬ :“Fc¹áï¼ynÝâü—*ް¿1ftºð'ǃR õßüUпªLý˘úG†÷n—1ß¾ú¥tLà×€ßý­Ø&ðý9A:QÑ ¶¬MtjÙŸ¡ã|4æ2mԘǭºíÎ[ÄòÍéÆ2C0ô} çà¶Ä¿©Ö+ÃvrŒ“á f„YE¾´E†'a6¿Ã‘œ5ѾÓnŸ×è|-ðõœ&LÁd:goà4aL“YKÊå3»Ef%‘S!‘4o¾“Ó„Š£r™¥G’è£Àsš0|Û÷?ÁiÂ4¬ã]Àïç4aLë8Ê<}¹,LJhÈÝáÍd°oæ5½b`‘ ¢»E>kÁ~äH˜ŠñIà?rš0íHøn‹ T ÓTÚAÖK›¬¾ršIÕ5‹:¯—©–1—Öz9&xÅEËV-WÓƒv!ä´BÝû*b-\Š’¾ô딹àUM!‡ž„do¾´ºí-Ö’‰áëï-µÁ`^U\ÙGS,ÇL`‰:Ò)S—‰¶I²÷?Zj™9Ø!·X× í8I”/_ý¢2m…ºFb÷yàA1¶®V6ÂíÈÎùð×@ÿZúÎm×kÕ8·íþ:AÝñcÄ3éfÕ[$({¾N¶…d^^âÎŽy ¶Ú9·M"Þ úîD¢…sÛ$ìAà1ÐÇd…^ðæ}ÀQУÉ7yb·xôÉØ¦Ý­E¾§€÷¾O¹©JÎZ“P6p´ÔØ*º±Æ™µ&qK@ ´¥Ì\΂žMÇ\ï>ú±ØæziÃá²È¯17$Q×gÏ~NY}ú•äx¯€xÒÐÐóÀ@¿[Coe2QÀ^5ĹWÓ ™¾ÎÜè5½¡˜ë-Á×]‹Eû´¾^žNê æÍýðù[œ‘¨éu’]ðû8vöršP‘]´ìz[ÙFg°ŸÓR{ö#ÛFçf`žÓþ¦Ðô;›Îà0§;‡•)e‘N¦¥Zöoæ4ajÙ<Ài˜jÙÜh|GvÁ([ÓÞt&Ç£¯ú‘€ˆ¾:‹œ&TT?KǦôr=¨‚ø¯x>¹6îž"öñHíÒ¸âlêà§ }ijV6ѨÈ*OèlL$ä„Ö²Å»Šº"vrTÔÄ7NO «VͶ¨Ÿ  £B^ Üz—B‹6*ºYáë?»ç0¦î¢ß@|÷÷‚Þ«LI×øùH¦§§ó”’k„<|ôCÊ”Õ=V·ÃTµø0è‡c«ª«/²÷%@”Ù‹Õ&)E] £¡Ö{EG[Ý/±ÏÏý.+_¿H@<1kåp)æUP1áIÐrS>Aí¥˜$äƒÀ€K1c‡l!©Õ‰Ý)àlÇ‚K1SóßÄÿ1`À¥˜1uýRL’ã À7v,¸3¶:BR«»ÇOv,¸SRq.Å$IÞ|¾cÁ¥˜1“È¥˜$ê À€K1cë.$·:±{0àRÌ´zbÿ%ñ(*ý"¹Õ¯ä:£­=,±Ï¯‡]Wœk:øÁ¥spÄ=d¦A%„ñ™…NÛ=_¯š­n½Aa³ Ù=¢A!„AoTÈ6d®„Øu/}Yl›ˆÞñÿM@„{¹r“XN&1Q®T$¤Û ̃–šè‹n×@¤cWAƶ‰¥|Ç¡DÍw‚Þ©Ü.–’]T¦$d;¼ôíéXÅð(è£éXÅ.à1ÐRKÅójþou\Ì?úZn T¹Hôѽ`N˜\-µÓ‚Dº¨Öiw wZôâw„›@KMß¾¹x-èk“÷Ä®»cîè7蘖zGeƒÏòc„Ø¡à$:}3°Zj &‰m$ÔÀ'AKã[zœm$n x´Ô,Jà›OßúMéØz øè§bÛúÞó8S8-ðÍs²Ç Iî§¿ú”UÛò1Ç0(-LȘ³ͪ#qbŸd+¿å|Å ]¿®ƒgöóOÌj9´yófÚ]I)\C+[šm:g4›n_ãÞq¾9´pM„—¡&S"—äz(•ðèC±KrgIw)s¾A7œ³Cwê¶1Ò;:Úˆæˆ[³hS;#ªÆDN+š#Eï“#¼OØßë#ì?ùBq"znÝ-(á ïLÎjCåØ Þ>ªi='ÉLÎãû¹%½\Æ•³ôËI«D[”ô¹ û"—,‹ÒÆ[¿=E%+Ìj¶Q±¦üMÈžÛ,5 ìJN›6|§KßR’‘ k-¬HS¬0$ðzq2rÑúPÂS OÅ.šFE“ŠðÜ%½]‘ż¢j µØb1 ¢†Ë‚†ì¬™Ó¦ØÃäs´í mP»‘›Ò\ûŒÞ6o„¬„C ‡bËÝmKø¾Øvƒînƒ›èoÕ¸‰=^oÒr‹!µú|«§Õ­°ÏÈòç!3áÐ{bËßÈ7oÓa+:%<´w[t{€@„@KÍÏîòÂõzuØ]ÀAE(lJÝ …ƨР=¿Gã>ïÔáÂ1_d1‡!¡Ö¡Êï]ãÍ pmÞ?â+×7ºèJÝÉýúšØRn•Ò·¾è’ ÇpQþæ6˜ßðöQù “ù áÂâ¹_" ¾Âîœoœ1¿G®ìª1M½°"•ï‚”„BwœºÊwƒ·jT~ó"GÓK§ë<5õ•zÙ5keÃÏW¹B×q3è›ãî¢M=‡‚Œô˜Kt<{!ì^¥†Ý ö·jÌ`Ô ¸Mø°2âl~”šÓaìãG5XLÄþUeC‹­”b‡}¹`ûQÂQУ± v¬±}ƒ ?³Ï‚l1[mö•UÙêýb+¿ÉŽ °ʶ¡—f#—j%!¼ ô]±Kµ—Ê?qÐl1š5æÂG.ÁMú¦ùƳý­†N±‡M‚gÇ í6{Âv›‚·jüÆÝdˆ^´àç§Ì*Ó†6­ótÛ~~ÖÖœ¦ÖV2m£HII›Ò;D.×-( áÝ ïV3·âgš $#Ã,²å‰%(%¸P²€ ©~jTömÅûsï¯#M˜aT9·²`0Æ„ã÷“ɉy+D#Ô:T1²acFˆ*=‚<  …‰¹Ôäðöñ:‚¼ ¢Ý¦T»}¡Û|cŒ®ÞÛ!#¡09w¦o±³É*£Ë}²ª›é‹n–ÇÀÛÇ fdù*K¨.@ßs¾#ËØpd&T7/ÝŽƒ·j à ×¡†/¼lÕ eÝEà VÝ™[t‰nÂR–üÄ,ÇŽ–q+•AÅ´¿0R§zÚ¿ž{ÂvƯBl§Ð,_½Øô‡Ê5ìiî³Ó“f¿µÊeŠ–]é ׻†¾“ã+¾çV4ö\ÉË-„Ômíqïo/˜÷^Kx!ö¸÷AfÂvö¸÷ƒ·j ÀÛ£Wý„ ´‘0,Óµ×W,Û¿>Ä¿T$rI€ô„êöÇ\…ý1Þ½:aØnɶ¦«ÎðààöÈ2>¹üƒŸ’WIÏ·ÚŶðšÍNØzÉè‹]ƒB«•Š ÆÀž°±ÁkÀÛG5 h_¤ØÀSìVÙ†ó¤&T7ÉÚbÔWÆi> éÛ¹úxûxÁôš:„%T×kžÇ ¨´Ê ’°+ EðöñÂ\-Ar›Aßßpmê±W@ kÄ5Ü@¶+ÆüÌR¬¯»q¥š¼±š^”„çòø¹¯ˆ2MtðC0„k@¯Q¦•åcgŒÙiËÊ›0EL4þÆÃ´•Bì× ˆG®ü*3Ttÿ“(v‡Œ=Ò/VÓ/.Â[ÖóÏÖÒgÝü¥ë_†|d0WÍÉšöCr]Ô\š½n¥60Êþsltr¢rx`´P7Ë%ÝÐK…íÛKúðöáH(3PÑ«pKy¿NŸ¤7®¦7ÞüÏ:eܺ¨´ZH3YQ3ìJ¼o˜¡„¤¨ *ö¯VZZh)~•w|¶dc¼çÔ‘~äÙZúr“Tâ—Ë´¢ÃÕ¢EÄ\e.'ɼ¢üƒïlÛüâ’ï6™L»ìÄ]'Þ_t} òþéν¨§™ÙþÈZñ볡—•Íï¼1Â;çÍ‚&°Œ5q³l´øÉùž_¢›Bôì?kçÐ×ó/¦ä—ˆí:›üR1”¶ê³–×v4®P.V ×¥czÙÔƒºð ª"3¿ZÒÖ ±_/ EZY7×–ÉÇ¢.h„ð2З¥ áÐsP¾Å´´Cì/"í¬¯ðP+D9ÝPáFÐSPŽ0µÒÈb*eñ”Ó Ûðq“´)gë O9üÜÕ)ïè3ß‘ÇÛÑVí./sÔðx ôD˜W¨3×tËAÐè‰pô@ú:#öƒâ‘ÔÙŠ¸âгZ@<1k倦iGÐ×›r6Ń{Gë‹e݉|Qp?gÇÐÔõì½0ùÞ°À'l€Nòܼ ô]Êl=ô¼8±;<úDl¥.‘Éo@"Ü ¼ô=Ê4³¼—wRŠAÓQ̽ÀèRlÅd"§3$þpôx\92ûÇÌñ³“n¥|îìØIc¦f¿Ú6œzÙuFìRÎqõ cÄ6ª%Ã~ÍÙãOÝ~ìàý£ßsòð¡[ï¤uš“³N~ÂpêT¶·éëÞ¾}Zã£V?ÇoÍq-{mõ±â¤ngÅïúú¼¦×O½X,Uó§’Q6§ì|Õpªµ Œ¹“§õ™Û gÇ€kÌô©|ýãõr™ýºwŸv‚½ÞÃw¦çi•í-YEÿOCþ0ç§séÅm_ðª'6½·OÛ²E[P^%¬([ÇÆÆ˜K=»ß)ÚfÍÕÌÒHïqö²cúL?ÿ¨WÓÙjQcZéÍçØÿûÜ—ñ¦ýü57Ûªe‡öÕ²Bf5qYõnÍÍ«ø“}ÞëûÎ ±à¬¸£Ç½+ÄŒ'€6h;ªÓ/V5ÿbÕXÙÒK¨ÁÑ %ðZ2ª9‰FèÒ;2Ò‹®±+H²Bòæ1hWVî`®dšIq œt[µ¿hU«†ìÜòoÒ2lŠ1´,]Ì¡&Y” Aâ…“¢hÎÜ£H·«ÆJ·9VÕ!Á,e9°iQ¢ãOðøˆG²±¯½r·²øˆ'f$rQc<Ÿ ÍÁ*S*¼G¨ü‹¤ë¨#48+YnРžØ®®½>~p}Y¸x èK’©†Ê±:ðQª9-Úu.>oÒ¤VÁ| ×–š¿ K2}ï*èŒðrÐRóe\—ñü7!Œ;þÍWÄ6š­Ô޽èŽ9xÇÉÃtk°a ò#@3×±ÿæ"›Iy%ðзĖv—ÖøUÑô…®ÙÖDA·GNÞs˜²4M˜t)1ö GwT‚s£§å¨w÷ƒÞßGE8¼ ôMmpT«¡_aŽjMwN„êÕÒÖ3ç-dº¸ ´ÔÔqT?µú! H#i3Ãçç§4Ý#u—E_¼ô±ï\–Z'µ•Kغ/='E?º˜-5Í×IÑ€ƒ •YúÒ±º£OÍõ­@ûK«òNIü6òÀƒØgŒ7ð¸&®8X¯OÌZ‘H0 Wêa@‚iE}Fè=³­Äã<’}Å’&q.Ö«þ%¬²K-ôÚ‹€×€¾FºÞÔ-µÐÛ¶ó Õ-+†Îèc_”‡»bڳ̬$Á pèmÊ#½ÒB/Û <ú`:zÙ¼tü†½n$¥²Ò³(§¶x+è[Óï{ˆýañ¤ïì/áíarÎ~‰€JˆæOôø³OR ðÿÕek»¯qÃ÷¬6=ÉbsÃÆI´âÂ5yÍ™´êåÝfA ÷&]ã]wµ,¿(ãz½ìRJ)‰‚®ž}F™Zâ…ýQÉb§@O%]8 z:v»XÖÇo†–ÐË ð ÐO(Ó˲[ W7#OI˜§oýv…ÃSçîºå†©æµÀgA?›~¿AìŸOÒý±ë>úùôû bÿñ¤ßo\Ê-ÚÃäúnš«¬xQGcÍD²Ûèj’ȦÃt¬º òþÕz¥À>ecYçw&ùY˜t#Ó”‡°j¹ZÉ¢³ZþÆû2for)~GøzЯW浺iâ(jgB¢<|+è·&ß™»7ßúm±K¦/ªË"þo> ZÊsFsYÄ®øh)OÏeûçÄ“¾ËÚÀÍÙÃä\VWÁè’@=ÀU ¥f~=ÖÛ-oS‹t§ ï’òQÕ’Y4-Kw˜Ž—JÕ6¬ñ¾ùÑ0Ýç6/â\ø‹¤‚%?'â}z¹ÔïÎÖøYÓ¼vˆù4/û û­®9®í¥dµdt¶øAÐŒåÌÚ„mÔ$$ûð‡@ÿÂFrÇ ±û8ð‡Aÿpò®”Ø}øYП݈—PÕ›’?ü<èÏ'ïM‰]7ðÇAÿxúÞ”Øÿ„€xÒ÷¦y;ò0AoªGö¦Â½ xÓwÅó¦tk’ÑfŸJ³ø1Ð{EøÔh΄Ÿý¹ä}*±ûðó Uz”ŸJì>üqÐñ=Š”O%~øÐ_HÞ§;ÿ€ÚÏ€þ™ô}*±ÿYñ¤ïS…s úÔ¥|„l=À5 r7Ät«N‹ÙXaôÜ_У˜ÛFË:êôùÞÔw“[’Ø_ÅWSÁןýd,·9¯HÍÒ’,o>ZjˆÍs»7Ÿý|ìcõ5wq »XÁ<殜ž×êörè¨ÐËòŒIF)ª¤Â¾ø2è—“÷‘ći½ìÝÓö‘ľsý'}¹‰7“ó‘˰åHB¸žŽ¹{¤{8*r’ÇZ-Yy›¤(U¢ÆÄÌQÓÕ¸¾o$"=¦Ì÷uÓ¾®¨®D)ÇA'ïúˆÝk€ 'b·ƒèsŠÄh‚6“÷FÄÎ?Sôéô½±?# žô½‘°O3Ɉoy”­?bk–é3ð¢+"%öa…ý°VÖчó~Û[ñTJÎà ŽË¶êU6ÎkGǵz•¿Ù4J9­É•±×¹ú~½ ëÆÜý«|CWÔ¦Eõµø"è“oZ—£9~ôÓoZÄþKâI¿i G5’ì豋XB¸àÚŽ¸ýEMB {³H´‘ Ç횯'²feØ^P´*5Ý6ZiÌJÈ1ðÖŽÆv(Eú2Í ­ÔÐ>¤yðnÐw'ß§»ÃÀQУ±M¾§ÏË 1}¿"Éq8:^´¨¤zÕ´-+êô* e-ЖB…ÌÑ»"°º–Ži¼ø(èGc›Ær-kæ|èÉ…VuogAÏ*kµ]’-öuÀ7€~C:jy øFÐoŒ­©4.$“Àg@?£Î“Vô™{`Zêå9à{@¿'½¼ø^Ðï­—ëúòÚ)Εu—UÅ|Vµ<ËBƲ1E·÷y»i$ÔöðgAËÍù©m%YÊ lI¢_þèßHGu/¿úk±U·Tjã%Éð›Ào‚þ¦2åtßÙØàI¢?þ è?Q¦”».‰áKÀ?ý§ñGQÇDÄþÏÄ“ô˜ˆØu¿ úÛ鉈ýŸ ˆ'ý1ѕܜ=T;&’:ÉHbôWwÄÝ¡ßÜN×Z|fÓž`CžªëDµY’jP­%o³WÂN ¯}mú6Kì{Ä£¨ô=c µð^Ó¼ ئžWÁÆ}Ä#ÙZ6Äçj´¥0Šbt~„JÒ]^B~ïz$:’2wa.x ²wòÜ–Â,~â_î˜U/í$ŸHs {ŠýÔ§#’Žù˜áÐI<ö§l¬o8<@˺ÓV¿c–ŒRŸVëç“qxCï6vãÑ:_Ñà³VͲ½Ñß™š.œÔùUïzÁ±ÊuןåËù±z³ãšEæ ÅM×Lfº¾ˆØéŽf̸¶Q14¯¾l£ñoÆ£*ü©^t™P,Äl”›ÞÁC™#V¹\Ñ«Uo¬p¶œ"ýmvhÏž=}üÒ zq‰ŸíÈGµ‘kÐZ®!Írš0í–£A Õ4`w¡©Æ·SÛšn˜)¿!Ì¿ [jˆ}-JKè‚v¥Kî'ÆÏ™ã”'ÐÏiTj“gÏy©Dz›‡ÆúÎчVÏn:wÎWÚý!¢·LüGr×O€~"ªüô‹‰ÿ–UN;LFÁ%RaKäü#_+þZÁ±DfцT¤Á»<Ʋ÷õ…ÕLHV@e"s É ¨VÂ$dp6€0coW¥x†ž2×eð‰š¥ðmç/õ…÷ÛÔ•éZMg½q±^ÖáµÅ½6Iuáþ©)‘U²ÝºY1Y ˳¹o«R5 uÇ ê…ºu1C $¾ô|$–Ùª2…ùÑ·&ïe38M¨È½µ8û:ÝE’Ü<Êi¤§»ˆÝAà1NÆŒp>Ìb•*-^×iÛ™ÜY“Ž,ßnNL˜,§hóÔ¤U©9Ìâ²t™(_^º×4Š“nA¯37èZ¸<};´CA,JUó*à_sš0íX´—ZÕÄ¢“/›Áœ0¹é{'A§ Ûa®â`9š“…´†¶àÒ ù×÷€Þ#Ý£«Wc¿€xÒ6¯ë IÕ˜× ž¸ìèxT#»"®½B™ƒîá‰àd–%®Ç 7Þ”¼Ÿ&v=@aCSLõüÞ§ûqL›eÀسóoäM’׆f±Y4dÒËã¦Û¤ò؉½ÜÐY7P³Ç,”ç vóÚíÖ´ÁZ}®ióTÐê2lCw[¯™%x£éùêOÎ 8n½dÒ%©!1Uý;7rºSê*¡øCâ32Cb’û2൜îŒZ]ªÖ•ül­Ô=>$ÑsÀ÷ƒ~¿²z¸–ؽøÐˆm߯eyºJqAwù ûûHÙeÚYjëÕ’U‘é!`‘Ó„ÊÔW»û%NÆTÏôüm;¢ë·ëÕª̽ÑÝi³ÈFK|ƒŠ£3wïeë!¿=kå’–uÊæÄ¤[žíÓJæø8{[Õõ[µC™OøÙy‰:7€ÈiÂv·Ò?þ§ Óh¥ü§ cšÁiNÝO`SžÕʬÍ2]u궘ýȿʽãê^'OûšÆë,4° æåKõ¢Y0˦;;×¥{õëžÕFÉÅxôýù„Q墲Á`Ì:ÑóNSmý5ÇÌ{9M¨jzëðŒ^©•¨y[Hš€Ó„Ê¢íÐÜÓÄðàrš0¦­e1eàæcÊ8û̧€?Í錺D1£¸ÌÏ¿ÂéŒÔžÈm=óàW9MSMR—!¿ü-N¶Ùg~øûœ&LC)¿ üNÆTÊó^Lí§„óü¯=—+nn+'U†\ÈGÃW|ZŒ«¼L~ï½T6^V½îZ, §‡Ê³Þ•ªsÙX#‹©6þÇ.“Ó„i‹oàÆÕ@5Ãâêùíß É4—èßm±h¡ˆe¾å$¬‚®ª‹‘ëUóѺ!!SøèÇ’‘‰< úllõ?0O§A“HÞ®ë¹FÊ«lþ‰×äèÖN a½¶-Q«¿Z~wNöZ“à¿üSеô‹´WiIà?ÿ3Áã¯-(Cá^ke2s YVP«õ{­“®•àéûd¹¶˜¾Wg˜â·ÿ—_µà” ]ž¨›^T¬³˜…õ¢”,žÜ°éOEóDÃtšÆ{‡×÷òt¬ôó¢î¿mq®÷Óèët;¹ÓçÄá̽[ɽPjV{´®W]“|û”!¾`~ÂWÿ/iì à]gJÓ¡¼XØeøÓ$÷I\|%è ó9M¨È9ÄH0Iý%ð9M˜t Nìþø¿9MÓ&?×4³íúf”˜²ùjz™,ˬP@Ç"=f²E!{4ûÛû (Pˆ/rÈ2L–]ñoÄeìüß ‘½¿ôÂO†ÉÜŸFÕõOiB‚hÂ6rI!Iîï~šÓ„DŒ‘ùŒ øgdWc¨C]RHe"E 1êCyRȤ+%4ÂHkëC‘YŠß®¤io¶%òŒ‡(ÐO@ ŸHÆ#›òQÍŒÇF>ãqWóü}Dáú!áFÐr †ƒšÌ ’ôš½Q#’çjàÐ[’HˆÝeÀ­ ·ÆÖU™‚M\C@ñî¼ðÄ1+5oÖÉ­ÛU'îdbäFB%Íßú]é7’C[žÖg6ܱٟԬjÉ¿Š…Å—f•]ø5'Þ°GŸ²Ì’ÓXj»»e0²ÖPE„Ÿß×FÖÚ Xû¨Fk÷C 9aè.eîbå˜S/8†gÌ7“``Þ=÷¤­ b¿D@Ûœ^òœ®±ÕüD²ÜbØPéDÓô3vÑyZçïWõÞS°pQ¢oÞHƒ[!Åó×Ö…{«MëAq§ã%`¿Ñô)&'yðØÚyä…*ôÇÎ-œî”ZŠˆç.ö£yùضîhÌ SQÈgwƒyCb¿DÀ6…(‚Ëg\—¡Ýp¾ÜnVj‘+€ØgÄ#Ùÿ\WœTkâ‰Y+X=XeCjšØ!Y,ëNäqðAh‰pè ±ºjñW÷rÇLKè­{Ãz°°1Ivpô@ò'±Û=[iûùô”FS{ZÙt\gdãÌœU.[ÓÞ†G«R³ªt=ýÞ¨fG’Ë Ëíèn]&7Ré®MéQ·n‘D=À‹@_$=i–¨O<ï%8»`y^BìµÀÝ Õ%tZ2fºF%„m7Ðïq÷¤ï݉ý^ñ¤oׇ`ˇµë®»×$ë®/›¤ø«£0k¬O0oV©š…ºÃ×XG$ì«VjöTœ5Àû@K%ˆfö‡`ê„÷ƒ¾?}³'öˆ'}³¿¦~k¢f¿â1fdy2 ñz€ëA¯Wfüwcm#RÏä²iÇ5‹…uG«WKo(SºmZ¬¡ÌKÝ Q¼Kh#ùFp+ Ÿpôxú€ØOˆ'ýFp†8ÑF°´ ÓÃê ×€^£¬ì \"Wmæ‡Ñz o}[òf~¦Mx;h©>ñÌœØOúf~¦}$Q3_v÷q;?Û>‚ß÷pTdç§úwß½·xÔ¶‚#p´”×Ö ŽÀò '@Ç÷²‘[±ŸOú­à6Xþm‰¶‚%E3_.HˆÖ\ zµtèjéž²5mØ|ÛÅ\l°Ê Ìë² gåe¶QÑÖ ÐRòít$Q8zJaó ™š"vãÀiÐÓ±ÛE¦/ªw"þ3ÀYгÉ{'b× | ´TŽŠxމ؟OúÞévnÕ&ëêQ½‰ÔLÀ;Õkµ¶{'*Ú:à+Ë;‘De`ŠÞ‰ØÛéˆÿ 0Eï$ŒÚéˆýYÛæŽr«öP­wj}Jºd¹A+”$F0¾Gjn®y¾Å»T2ùöiÍ(”BÕÀ´íH¨éŸjÑ$ó:àM oJޢŠ o}súMìˆ'm1ŽÁ†}T³Ä=ŒÍY~¦N²ÖkUt×e¦BÛaj6õg%¾UK"_ò« +á0èáXýT`”à‰)!ÚÀ×€~B»žÛ‘µæå&y/ñÎ/X¦–(ÂÍÀ{Aß+[„oÞ|ôCÉ÷âÄnðaÐÇ6ó+»óóϨSR‰*x´\×Ê »)f”ìcÀïýýéØóÆ’W‰9?üè(3ç7? ZêÜEts~ø  ¶9ÿ²pÐÌ›-ôö6<ôÂIòœp&œvw8.síº]Ò Ûæé(ç¯'åÇÂùq£>üáÀç­°–LÊ`T¨Ó?hµµûIÙrãö#?ȱó4§ U7;3ºdÏßÅéN©œ2ÍŽäUÑì:§oç4¡šf×ù(ðÝœ&L¡ÙQ~ßÃi˜Ínå\/5z#AÞ ü>N*ª‡¥c^c à{€ÛxÇ*£ÆÈÁ+±ÏˆG²ñžŠ+ÎñïÜFñĬ±t#£†êû¼æ](yFÚ%n{I|™‹b®šßÊÆ ²¾OfŸ:æDÕd.]'?ŒÔƒK~'l€ÐíJ—³!Ö ë†vù̲>óFàNNwî¼P|æ.Að]2‚«ñ™JÄ÷™;¥|¦¡"ûLu9Ÿfðíª–pŸ™×E|¦Ó¿=1ïžÚ #†z·lx+iÞ=ÞIižÿº\Ö&gkû‡CG§#§KõJ%?ÇåöŒéåÚ¤>"?íÚ‰)Î÷sšðÂð¼ÿ€Œàj<¯1=ïê±ìœz¥°Ù";`uŠYÌ/nþíªp?œ×Eü°C÷­tÀêËòQÈòѶxOéyWZëõðÓœ&¼0œægÁ?##¸§©D ¥ó®jDŠì+Õé#‰y×D+%ÜE&Çu©Æ,Åoù½Î^mJÌíßɱ³u~ëóŸnõ®k³/Ø,ÆgdwoÛ&í¬Q+™=œ&lÏìÂvIwÙ <ÌéÌá Ä]gŽ‚‘\‰»V#FøìÂv‡­F¨¨[¡FÎcv!ÌàÛU-¡.;A®­]¶"Ó¿]‹Ù¡»d]fCª{ Õ=ír™²Ó™{:§ / —Y/È®Æe*Cñ"–¡"»LuIf+Ñj w™Éq]Äeª1MñÛ§µ¬î8õ Ï;ÉÂ]o ¬mMÏ¿×w›.>îkÿÝ‹e… ìdo£„(¡|Z½ö8ÞIࣜ&¼0¯-nË®Æñ*C­ãU"RdÇ«N‰8Þ$+%Üñ&ÇuÇ«Æ,Åo/#ÇëÔýÕ,æ>˺=aD>±-J÷fH÷æØÒE>ª| ÌG5¸Ÿöo˜æó"•‚áݹ*¦ŒÕlÖI™6ërü,vÆŒN3)˜ea“W±t*ëØXe8`ö.ï¥Û[º¥¸n:“ü,Ûª°ÇͪéÎjY#?ýôò TáÓ ŸV7ì×éòYV€ìðà`˜G M{GB= ü è*kG¡©ˆÝ3ÀþPlÉ÷5]rÍ/Ró®ÇÕ]äaAŠ—?$rÛ"Y? üuпž~Ûº&䣚¶õnÖ¶nÅMÂ4¿É"6V“´êÞ”Ôy.e3òw”´’îê^àè4îäöVým£ñow’UûÜŸ2“­{-®q¸÷4^G«ègHˆˆ53ŠÚ |7h©´Á·ß4µq¢QÂÊ?(kåѱ{ðà?ÛBºI©ùðc ?¦N#û¥4ò)à§A:|øП‰­Û»ïJ·M‡’¥k§,MŸ²LJ~g±¾«âh¥º·šà¹DêÁX›µ¢ép×È|¡/9ÝaoØŽ6aT Ûk˜¶Á~J=#:Z¹«M©¼?ıóJNJêŸý20d-LºnÍÙ;0P´õjÞîgå§å“¼eO ”¬âÀ‘ƒwŒö³ÿæi4´ù¾ÉÙþ’e8Õ‡‡w¹ý£ýî¤Y=ÓO ,F?ŠÛ¯ÛF¿7f¿Ú61&¦òn>ÉiÂ!û<®L^'º&¼=ð„oá4¡2ßô~Èö*à[9MÓð÷kL™â¥ªÍý~Ý¡ì¡dº†í%¡q­23l/DŽ økœ&Tä–ÑUv¶6DoåÇ: ø-N¦àÇ:¿üNÆTgÆBò:e~•ð/¿ üSNªSN¥æÊ)ç;Àà4aÊù3à?rš0îÈ4‡^‚FO†0)(¡ªÿÍ1³„Ó¹Û^ƒTµ1\/2/n\W²ê¬óË5ç¡Á|Ø:[+ÕeV{9M˜‚ê2>næ4al7Y˜er\¯—]$A`í]@-þÈÖ¬:®¡{éᣫ7sðaNªä:Únv[ßCÃÚM#Ú6­ŽNgœt´úÐåtF>mÙ‚YÑg5ƒöGÓÐVªAfêÀ·qšP‘Æ–9xÇÉÈIøI–w_àtF]:’–Šz;ð}œ&Œ©¨LQ†L®^ãýÀq:£nԔߖ´~M¡ïÄØ*óÛœ&LCy~Ó„1•w…ßÊœI«^.Åmhßþ=§ ©³[æ² å{Àã4aªúà¿sš0¦ªºú"Oå‘ÿü/NÆ$òTÞI®Ïª™Ê;äO“óåWêï×k›ÆL,4`ƒ&rWÑ{ÿSžðèC±L<0¯WMÛŠœé˜„:¼ô½ }.Óñ¶Ç€÷VyÿnH#v·ïÿþÝmyí–F,É §d8ÞB‹^,Öm½8w€@?|+h¹©‚ Û¹,¸“ŽÜË‘xï~t 3ˆÄîmÀÏ€Ž?ƒØçñ¶.ë3f¥^–ÕL—êy‹jrÊü!àK _R¦Ì®¡ÁA½ý/àþ£tôö-àƒþãØz»‡'°_ÐÏK›Hm¯—N×8¹í©H±s˜Ó„ê&_¤fÆHš=À›9M˜‚ž;·pš0¦ž×ÍÍŒÉeÎ&qïæ4¡"mŽFʦãf]FxÇusžý1ƒãÿì“QáýÀsœ&LC…£À'8MS…wõ嵃eÇâfã ÇÐí⤰OáÐQÜMáë 4а´ªnÛÖtŽöãy7`H9âÎדӄРsçAåÂ!zSÈßêœBŽ®Üßþ.§ c*w'Ó=ÍyÙFii†yX‡5 Wö¸”ŽÔp]‰m’ö÷8Òœ Ñ„Š´wżæK[_Æõ¢|›Í\ÜÊiÂÔšYÌr:“­Öb§ˆÆ³x;†l¾‡aˆÚ 1ãèi :Ëo±ö’ÃVKfQ÷ô­k0›µ²÷Ány»uhb–O/ÌÛ´Yb|q9ç_Ñ'±OÓü2§ YÐUó,ˆähÕé5œ^)úuàw8M˜† ý2ð¯9MÓ†zHµz¹lM˨ìo€ßå4á+f0ù¿»º9M˜Â`:óŸ`»„Ó]R«GÑMã{`»”Ó]rþWü¶æCJ³U½BëÕåYïUýí¬7añ»×—L굚·RwýnÇ‹¨a/-Ùæ¸+%tÁzûÔ—q”,g—ß;FØkvó°pL´VÑÆÌê¸;ÛÑñ:údå/}®± 3¤h-÷âS¹LàÓœîz*jùè öâ/«œNn+>ÉûŒ ÷Ó2r7ö‘d:$·â+#ôàhCá‘÷ä+“-˜kÈž|µŠñ}t&Ätæ5ˆöÔN“\çÝ,Û¥¶àSÉrmqj@] ¿•Xùy y³ÂŽ´j¹Aå?έ¦ã š•ŽÈ .÷ ‘ùˆGÒ‘-+­F¬OÌZÙDë?Vy|Bg{M£8éô:ÀDÝúvE¸ ô&enãôTá@Åpu6„·lJy-pè]Ê z)ëu³Â÷rànлcë.y†øïî½W™’®ñ·ÖNOOç#(+Äë“€~H¡×¯ÛaªÚ|ôÃíp¾$À#Àè‚ÂîG¯»“–âh¨õÞßÑV÷Kì3Æs¿ÛãŠó{.OÌZy˜¹ß#V¹\ѫ՜vk^;˜Ïi[´¶å'uöÑqúHËíÙ³§/¯Ý«—ÍEQ†›Š5[¯–¬ŠfŒ³VæhÔìúõª^žuL'¯E,äƒP÷ƒ0þNiãŒLo1-&Ÿm£nH'yÆhKa 2”yÍŽ°ºÖ·MüÚ mejÉìÍ0ÓBžYàc S¨Ž‚U.…°u€gAË]K/~»&»­/§íÚ6Üß¿kÛ.©&ó8ð- ¥ÎJêfÐïRK–éQ̱ÿ œÎîìß¶}h&OÎý“!?±%©ßüп P“S†]aûVà/‚þÅô»bÿKâI[ŒWsÅ7PM‡»‘u-·YV)§ÈkGY2<8H}HDáÆ áFЕÙ÷Þs›Ír”³YçDÎÛP°,×qm½†Û¤­ñFr;#jBò_ ¼´ÊV!]±» x?èø;¬4-»Í.iF)Ïz§1­=`Ùgöj'k¶Y0¢ŸV&é΀žI¿!¼ö壚†Pc ávsb¬:9íXžšÃ)/Ê:5iUjÞɼvo!Ûû¼ô5´NUæ© Í63ÞE嵺mZu‡ÎGÒ »ÃOü{!—mL؆C‡%#·°‡PRÂèš²¶á¤Û¡pñ¸Q2‹fÕqø6ÐRûÿ£µb÷(ðí ßÞ†Œø? |ôsê°á°C*­äy/ðÐ*>„`Äîyàû@Ç?ú°>;4Ä"°¡;·õ÷íÜ=,Õ‚Þü h¹ýŽAêÑ‚b°ÁÁáǬä‡víŽs‘”Ÿ~ôד¹ˆÝ¿úéûxbÿMñ¤-ÆÃѭ®æ$ëj„IÔœvŸ×« ò^¥T/z=„Aºáyåѹ}•˜7c±PñŒ>aDn  0„‘EmášcVÝf‚SwØèXØ?OZãî´nGíVHH=Z*îˆÖ­»SÀYгmèVˆÿcÀ³ å´Ýʶò¼øFÐoL¾[!vŸýdlu¬òÆõCýýÛwK5¢7Ÿý¼2Å\Ô¡ìÞ¹m×ÀiÇÉO nÛ™7CC‚^…D}ø"è“ïUˆÝ;€_ýÅôÝ9±ÿ’€xÒCçÚn š^å’…½JdWS€4„—€¾DÚ¢Ù/×ø/ºãË?^3ëç !âåÀ- ¯“1p[ÄÊ;,O2KN°> mÛßÊž!eM«{̨C¸^ Üz8¶-­ð†Àå hp±O½üòǪÅI¦¨ãFQ—ñð.öÐY†;”Ъ“z,ÉF¯t¦bA7)ÜÞßáÍ1Æ´ ådA4}"QéÝ4×TTn@këö—?[ígà2”jëe …d&{¦”ÙÐj&–É…3åd{H3æº>•ŠMiê‡Ep’)Åo'sÚ>6ÚAg^„ü"^–NÛ*¥:e÷£”d”TpwòûiÐT1gŒRÿ¼…ϹY8Ü#9ò£R¾ø¯<×ä?)‹ü.=áÌ'­²5ᚎî¤UŠ:“M¢ý7ÇÎ5 ÿ}.PIrÐDlÿ léþ™aü$âÑMÄp={V±Gn!>x.nPBžM@²t²¨ªóÒäMÄîbàìYÍž ±ÕÁC·íìïß¶k»LëñR÷ÞÀžì¹^™nz'âØ°‰µýAú_ø>¥L7׆­ž¶J~hÇÎáˆ1‰ù9 ­Ëý({~;ù„Øýð›<=Í×Óïü‰ýK~£CrU2ëÊ1ö¾WÖ `þ×o‡Ñ¡2òˆ\Ä># Iƒ]Wza€xbÖJ‹Ç" 2•vîŠÕÏ6Û=_¯š­n-†4Û³ÍPáFÐRÛñB؆œm&vÝÀË@_Û&îl$4i$–s-mÜtÅxŠŸkn¾·‘™¨È—ÕRäMoT–MÀqÐãé·þIX¶jœDs3ÁÜL´¹-¡=Š®„h7ó ó‰4¶5/7É{Ùˆ'p˜8n^Î_˜øáVÐÒ9O¼¹8z y—@캃 cÛíoã¯DÝw€Þ¡Ür»kåÈ0H¢WýP:†»q„äUb··ï-µ9ðÍûƒ~8»Ý |ô#±íöºFWæ¹ ÏŠ©þi:€†×²f­Ÿ-·/¦¥Y-c\B²Ï? ú³i™5ɫĬßüAÐ?¨Ì¬ß üÐ?’ŽY¿ ø£ 4¶Y#g·b¤¢±½Kò&1ë¥Ù†S/³€Ì¥Kð"Ga$ï¿ úÛʪkù˜ctÍlÈ8‡bœÓmýûŒ€ñFWœ¯8¡‰µXÃëX) ž˜ÕrhóæÍ,d/ëeJŒ^¶&ø± /Ï(÷ŽEËf¦T³¼³š£WjÞ Œ)Ý6é2'rIÊP*a¼DÓâ·w–tWÛ߯4ó[ÌV Ý©ÛÆHïèhoNÓÍ·f99­Àˆª1‘ÓŠæHÑû¤Äﺽn„ý'_(NôE.T!¼t‚kG¡rTÁÛG5­g™ ?Ò<·²O^&²|d"ÜzSlù®¢- Lù¬ÓÉΚ9mÊœÓgt]Ö áU ¯Š-c·-ÑV{ÂnÐÝm0+¼}”7+ò†KÎÛ9‡LÎÒãÕÌ…õ“•7ÏhhY½V³­³B’¢wm¨U…‰ì¢ÖûA÷ÇùzÇpó¬/-e‡†·mïÓ6{]üg•êE³`–Mw6ª¨uˆGx=h¹íâ·k±a–µ„Èõ7A×€^[¨+æ •ãº¡ë8" 8 ¡¯}…ˆ©DÇëÕÖ@Üfb7Îój”¡N‚øg”™âÉ1‹:ðQM}ÜCÞ¡is›hó3BÓ–¸.««\§Š¹·^⮣V/ð,²Ì¹Ìº½oz å!ôqÝ»lÛúÏ G´'46~`¡ÕžÀqºÕ³—p;èø[¤ºÕÇÁž°Ýê9ðöQ¥ K ¼6`ÞÍêt‰¶w±zs—¹O@t Ä.Æå¾¹×ìnz¯…P„—ƒ¾¼ ú~xû/Œº(nõú:ù¨&ŒÚ¿xeU˳û`}UËÕÆÙhÍ,”ÈîP‰„ûAïeFUo„x„ꢪ-TÑðÞMíÅ»½aˆ6`F®Ö'!áÐ[b˺²F•æM€p9èåɵÞ01žkÕ8뛽ÖBSÒH/¶Êço›…º÷Ïg7‡Q ñ4'¼ôÍjb£’îÐe“–m>ÆbU½¬•ͪ±×+”Up {Š}˳루žcpüóÊ^ºì‚EÁ”wtÔ¢=ƒâª NRÑXT<£ë¬{IàjI·KÌs±x©¬•ŒªÃüw{€eüäucƒË@µ^.ÏSd䂽…!Œwv\üöv^0¦ ”ëŒaW¹â0ÝÀY·¶Ë¨¥y J@x;èÛc—æ°óX.ì,HÓmC×êÕ’a·nX¦ƒë!¢å­Ÿð0èÃjŠâ]TÁe×Ã-n’,ŒßJƒ .jýüî¨EyěҢl'Ç–…ÛÏiƒ†sZyº4RÌç¶±ÿÛÞ—ÓfÊf…}п#·£/²äo‡´„±†‘Çݯ·g;TvÑ£J⟰]ãîçP>ª©Û[Ž»u § Öç×¥1¶®=Z׫¬wä—µ4å‘‹ó<Š@¨ÎQí8Ÿ¡6Ý9RŒ3Ö~ä%ÜZnëż&(3Ö~'ضs¬ý.ðö1ÞØ«;n4ùî>ÞòQÍØë@àØ‹þãgMóL‹‡{Œhá~Ü,šFÕš¿IxôWæøë½PÝøëʦAWÁuGz½:Ÿ¦“ðHEx%è+SéÉÞ nï‹Ý6âµQâŸPº' d»b̘¡åëÀMçgPì÷§SaÛÞRû(ß—m*ZÊ7ðF”‰Njô×€^£Ð.ϳӖtåPÄãaÚJ!öëÄ#W ~• *ºÿ¿¢Ø2öH¿XM¿¸oYÏ?[KŸuó—®ò‘Á\5'kÚÉuQsiö¸•ÚÀ(ûϱÑɉÊáÑBÝ,—tC/¶o/éÃÛ‡w 7Û@E¯Ìm@ókõIzçjzçÍÿܨUƯ‹Ê{YHCYímÒ,Ö+õ2íd‹èÈ©¦—/-dõñk¾ã{ü³% üã=§Žôã"Š¥/7‰&~¹lAc:\-Z´Qg®N—“d^ùþÁw¶m~qÉw›,'ƒ¿]v⮓Gï/º¾!yÿtç^ÔÓÌì`då̫Ԇ†V6¿øÆ/žo@ šÃ2ÖÆÍ²Ñâ'ç»Ã¯ªW‚vø …— è+ûË)ù(b»A@<b¨oÔ‰-^ ZªŠ¹.Ó˦Ô§gP™ŽÀcâi©†Øo"Õl>A“Çü¸°'om¨i«vWny‰ÚáwAG„7€¾A¡¾Øà¼Ô”„ã-ÞõNŽië‹ØçÄ#©¯eqÅ¡Þbµ€xbÖÊõtʼnp¼‹/Aps¡)ßbYw-¢¨K 4€1VLK_ÙÛ°ìÞ¨#‹%Ð#áNÐ;•™tèöob·¸ ô®Øº‹~0žøïî½'®™ýcæ¸1èIc¦f¿›ÎGìRÎqõ cÄ6hû5g|ÏÉÇn½“fÀNÎ:ù Ã5ªSÙÞ¦¯{ûöiZý¿5ǵìµÕÇŠ“º¿ëë[ðšF¶šb©š?í°á9e竆;P­UX”âNžÖgl0œ®1Ó_¤òõ×ËeöëÞ}Ú ö>z3ë¸F%O±E¶·dý? ùÜŸ9x¤?´}Á«žØôÞ>mËmA9x•°¢ló.^Ýïm³æjfi¤÷8{Ù1}¦ŸÔ«éÎlµ¨1­ôæóìÿ}n‹ËxÓþþš›ÎmÕèD&3+ä`6€ñXç1‘õXïÖܼŠÏ1Ùç½¾ïܹ°Az«;`É|÷ƒ>ÕŒé î€]5V¶ôêGðAÔg«º –¤>"HDFzÑ;vIVHÞ<"†ÊÊÌ5äzW%\¥«ö­jÕðºÎ›Z êÆà¡eéb5É¢ /8E;2÷(Òíª±’ÁmŽUuHhÔÙ±`öJ¨?ð÷OÒAdhDsËÄ#)O¨[”8ŒK’¬®½JF²@‰V,:hm!ÖàFÐR£¶@®ËÆøÙ½ÆØâä%uè옗ÔA2fÜœÉi³úŒéðõvöï¿3e½@4ûod›" 7÷Þ[Òþ§»9͵õª3žc4W·'¼3[¦Ë°h•èR¯@z¼@Ä–z‹'õ„Íz]:>Àâ½âäÈÐ&¤132Ä÷< ‡fÕ ¶n½EºÙv„Ž_J–4ƒBl·oDž‰¾ Mä€ý û•µÆ¥cu‡Åæ!n“ê|eGŒ&~oBì3ÆëM¶ÇgUð³V$’£ø]6a@rE½Zgèý-Äê°iq?b—Ö|\îb½Š™鉚‹„çš9|LÔn‚L~¢†PŠmÑk˜ž\ݬ%¾[IBKÃÀ ÄÒR`êOY¢Þ ún…j ɳExpôh:ÖqxôÉØÖÑ™—¨ôSâQVzÓ5*!l»÷€¾'~é£v:„÷ ˆ'ýNg5oD&×é,ñ‚u Ñz:æÖ @Kv<+šDZf0'fØ2õµ¸´ºõ¯¥½®^ŽÜÏ0W7ƒÞœ¼'!v—¯}]ü€:rº~â=p hùqÅ‚i€Þ£ré‚LG#[C ®’ÔÈ’œfI5”aàNÐR‹T!J¹]N)#À ¤£”]Àƒ ÆVÊ~ZètjFÑŸÕ¦'u—Gr4gÒª—K”·²VÖ‹,Z£5ÑIC›í'œ×N†Œ.ož}N™.—Ýjx‡¤$„z ø6ÐoS¦ÍecÎÝuË ÓçÀ·ƒ~{ú±V@0›~Xß­O·¬‡Ñ¯ooX£÷±m Æáar £GÝŸr1Lžp%è•ÊÌÿ=5Ë1=£Fž „û®Y<£UtûLP^Ö†½[TÏ/lj¼Jóy9ü ªb(*ØjàÇA<ù„ƒØ~ô'ÒoAÄþûÄ“~ º­æ’D[ÐR¾GB¶àšŽ‡Hc.‰ßmy[)„=Q¯UWœêÓç]dÃÅ·ì Ï cYe£ÔÈvãhY#?ýv*Öz`¡£áÔ%«¾¹Ê{¸Ì#ÆL-¬„Mà’@&Ðm+lš!¸Ä®t@;±ÛÄÊ}ÌSQÇ’Q |ôÊ$ß&Þ| è·(ÔMÈ":±{-ð­ ß[7ý} û£ªÐÚt?×RÝ1JQ;õmÀ/€þBò ±ëþ èŸI¿ƒ!ö?+ žô;á|k‚Ì2]ª5‘P=ÀµÙ+E=ÌÒ=Œ?Ë#.¹îåRHEøèG”y¯•º|ÿBMýhòý ±Ó6h©nMUÿB‚8Às Õ­÷Éõ/$Ë“À7ƒ~sòý ±{øÐRÝZzý ‰úVàOƒþéäûb× üh©n-^ÿBìF@<é÷/¸é{˜àÎ*ï„h=ÀÕqwV5÷.»ô.ŽV5Œ™f›†õ¾ùkS¦.SÁ뀷ƒ¾]º‚£y©Ð.„„¹ x ´Êm!]±; ¼tümÝû~H‚{€~@™V §Zªåà8èñtÔò pôD|ŸµG ö“âIºG vÝ@´™~@ìO ˆ'ýa#7hœÒâ'Ê$dëé˜;oJ«k¾Lk]‚Yu Êí+Œ7¨G˜»á¡Ä>¤¼ÀÞæ5oR—ßÎ<òÆ4³7¯Œ%õ¹ p¶EY‡Kyí­¯P Ì>Ôµ)ÃËIØ$=bшš¨‚êÆ÷ˆÍ]GhÌÔt6Âk\9ÕŠIº5À- ·$oÅWÀr ·‚Þš¾û¬€xÒ·báNŠ$­¸<5º½–{e"V¼’®±c£»’;Õp¯„±n½)yýÆJ(¸â´ ÷J­xÒ7Ü«`¬W)7\ÂŽPõ„$Õº &J)±Ù\×ò€¡±ŽÕfIªu@ ´–¼Í^;%¼ôµéÛ,±ï¢Ò÷Œ5ÔÀ{Lój`›r] ÷dkÙWœkÐB|”Î¥5OŒÓÌ‹œg©‹z•¦h0F7ÂÎð¦)0-§ÛV…f(æ&ìèŠ~½ª—g6”Ó¦„OôÇË«Aó„§AË-½µÕI%}"‘¦gAŸM~PGì>úñäuÄî ðh¹]â·+&—ÚH'€Ï€Ž?Ó¹A^ £ôQ›úy4HïgÒšægWøU»h³fÞÈóõ%ÿ³’fM¶^.脆fÕÝ¢U1úü,Ø€IËÞrSÅкí]l;i¸†mMUƒîS—õC3«Í³óófí}Ÿ€ŸE¬Ä^TáσþùX­|ž‘ÅHÀGý*ðë ¿ž|k#v¿üèoĶªK‘(qþ$œ„®¾ üèïH‹æ_·”3Ç)ɾ‚Q©Mž=çåÙËnë;G>Z=»yèÜ9ÿc®^h8Dþ–©óIø¿þè‹ZúÅ‚ÔùËÆ*§&¨`d.]HdÍ'ÿ]üßeoDË™EƒvÒC’bðËrÕŽõ…UOHr}ers I®¯V)B¼=§¥Ù·«f<“O™ë28D Tüv—ÆwMW›zGššÖ5›uªV¥ébfêhåygŽÓrW.Ñ·q\l×QiÿÚÙÜÍéÎ݈íÜ#¾GFp%þUÁ{`DzG圫¡¢:W…Y̹¶0øvUK¨gMkkϪÈ4Åooà+{Ó¦cä´BÝeþÕðf!¼uGØ'£E oAYSj™—¶Õ¨¢ÓV8ÝYIeTÑYV9ÝY­ºƒÍ›]CG”ÞÅzzÑhJ(uÈMâ[Àå4aÚ#ÿÍp#>ªù#¾ïgÂÖKt½?Ìæ»h †ÆÚ%³èÒ?MtZ¶ ŒùÊæÄ¤KoŸÕt¾ µ`L˜ÕªYÈi%Ú-~gTK}yí V2Ydc“8´y•²íó=}˜-,NZŽQõâHÌ\‡*$ü*è¯*k§­6J†6SåëÀ—@¿”|3%v¿üèoÅ6¬5 *µ½†„ùà_€þ eêY~xÞ]ô‘¤úà¿€þ…½`h Wbø—Àý¯±u”‰ì ‰ÿ¿1Æ!TTËÇJbfÝ+ÔFý›MÛ´>Cì3â‘´Ë¥qÅÙžâ‰Y+›X§pŸUŸÐ«Ú½¦Qœt z¹ûlDñ¶BQ„›@oRÖŠ7NOà&òþšmys–=!!äµÀ] ¥®‰ 五¹˜I‡ð½¸tüÈ6z6z⿸ô^eJºÆ¿òuzz:AY!£òð!Ð)ýÔí0Uí> úáØªêê‹ìI€G€ÐR£‹H¯»“–âh¨õf;Úê~‰}FÀxîwy\qú:øŽ~ñĬ•“Ìý ^7§Ý—ײÃCƒ,*>dUKõ¢·ÑYXýö¢smtnÙ Í¿÷8ò•Õ7@Å„'AŸTçŽYu›W²˜þ¤ËÆ Žë`8i»ÓºmHû p´ÔNÓ¸9dÒŒØ΂žmƒÿ&þÏ‚–Ú¨«Ì¶ò¼øFÐoT¨Ž‚U.…°}ø$è'c«cUv[_Nêïß¾[ª½ ø<èç•)æz¿c-Y&u¤Cƒù¡Ý;·í8í8ù©Ám;óæà¶ˆÝ+‰úðEÐ/*ÔÝ”aBؾøEÐ_L¿w!ö_¢Ò¯c¿¡ùŒ¢4Àéã:önúlcKì3Æëa»ãŠã_;꣚ hÛXû¡ÂøÛX•î #‘4àu ¯SØhçv†­y¹IÞÕ#½.ùzÕ”|-ð*ÐWÉ ¾àÍ=ÀëA_¯°JB¦Òú¹É{¸ô–ØÖº§‘›AÌsWä‘`‹‘‘G$öVàÃᎢZ[>æ­¯„4sjQù޶:?bŸ0žó[{¾â„Îtð¬×>â‰Y-‡6oÞ¬±x»HVchekB³MçŒfS· Œ×M–1¥Û¦NýWä’ B©„‡@Š]’;Kº«íï× ‡Š“ÅJÐHïèhoNÓÍ·f99­Àˆª1‘ÓŠæHÑû¤Äïö÷úûO¾Pœˆ~/ö Bx'è;“³ÚP9†ÁÛG5­g™IГÈòmƒL„ñ¦Åo¯bJÊg}OvÖÌiSæœ>£ër;ä"ެ¤®Ëàí£]ðš|ØÎù,¶Ñ6ÖôjõB™Öú¨«™5t;zuî„è„@ˆ]Œ«}ŠTî•$ËôŸã2È ¹ ‚^ úê6è|7xû¨Fç¤soG7ÓhÓVnòñÞ¶>oÿ¶Æ>5"K½’€ˆ-uIœezŽ®Î½‚°tü±BtuîoÕ¨s+©Ó,—ëŽk“ ½Ýôü¸W2?¤YÚýPX¯‰)í­¾sš·ee„.¥etÙ¬Œ³ƒ¹¡ÁÁ¾œ6—ù8§Íà«üðŽÜ`~ÇŽ¾\䢌@|Â[Aß»(Û4ú_yº4²ƒ…ÆÌÈPž«LÈz'lèöæz åºÁÀ6J½}ÑM÷&HK(ô–Š"ïcƼõî1&±»Y©µF½‰}FÀx¡÷‚qõ$ÙcD‘tp?B¸º#ÆQÑáÐcvšu_!œÑcŠ÷u¦­“øxä*`Á¯2£AE÷ÿwÅî1GúÅjúÅExËzþÙZú¬›¿týËìåª9YÓ~H®‹šKspÀ­ÔFÙŽNNTŒêf¹¤z©°}{IÞ>¼s‹<½:àårš›‹ñ«öÉ—a»7ÿs£jÓ.*ôe!e÷2³:¾è¼NÈ,2Õø2àFÐÂó¾:¾Ç?[²ÀMÞsêH?–—¾ÜÜ”…/—-hT‡«E‹Æ¬su»œ$óªàà|gÛæ—|·É‚ü ëËNÜuòèýE×7(ïŸîÜ‹zš™Ý*¥$±^zZÙüî#¼{¾--hËXË7ËF‹Ÿœï´å Ñ·ÿ‰}}ÿJJî ÃÊâ‘#‘VA=Úràe ¥j)ëÒ1½lêA|U’é}§¥b¹€xigË Šî¤ÅSÙn5µU»Ë;‰u¿_ÔDغ_¡Ê¼Cøb¡1%šO_eÄ~@@<’*[Wê6V ˆ'f­\Ï‚û#¼:Lqsñ6—uÇÑ"ŠºJ#ôw,^¯ÌØW÷ŠÆÝu°ABå€{@ïQfÕ¡‹#Än p/è½±Õ—‰¼,Oü÷÷ƒÞWŽÌþ1sÜ?êv’ híWc'üˆ]Ê9®>aŒØFµdد9{üà©Û¼ôá{N>të4¡urÖÉO®QÊö6}ÝÛ·Ok|Ôêçø­9®e¯­>VœÔí¬ø]_ß‚×ôú[Š¥jþ´S2Êæ”¯î@µVa‹;yZŸ9°mÀpv ¸ÆL‘Ê×?^/—Ù¯{÷i'Øûè=άã•<ÙÞ’Uôÿ4äsþ¶¤‘^üÐö¯zbÓ{û´-[´åàUвulÌ;J¸ß)ÚfÍÕÌÒHïqö²cúL?ÿ¨WÓÙjQcZéÍçØÿûÜ—ñ¦ýü57ÛªÑÑ$&3+ä`6€ñXç1‘õXïÖܼŠÏ1Ùç½¾ïܹ°q{«3d¾#ÀÛAßÕŒé Î<®+[z õ#¸!ê¹U|$© Ò•‘^t]A’’7ˆA ²rs 9Ô¨„kà@uÕþ¢U­^ïyS«~ذ<´,]Ì¡&Y” AâÅ'¢hGçEº]5V2¸Í±ª‰Ž:; È^ ã‡ÿ>â‘lìKcOÐÓ|ÄrñHÊê%¦I’ÀU WÉH(Ѫó½¶l PÈ}¬È¸—U¼¡[ãN Ê5fØxSv&ç…ú¬JFNÞs˜ÿ«4^pF޼ã$û7ÑUcÚÿgÙš(ZSü·‘-Ž„¿øèbb—·2á”õBÞqgËÆÈSwFYaŠ“#Ã쟅 z¼i oÍ"_ÕC7‡J¿Õîñ½Kº½t„BR6Ò—»ûAÇØ;2ÑWièËàM oR8PwXP⯰˜)ïÚã»qbŸ0ž¿>®8´j•€xbÖŠÄÖP?u$aÀÖPEÝIgÔôÒB2Þ ­³û’æK/Ö«˜%‘ž$!Á.^úšWÊ$ µ¸ ô6á¢M’; ¸ôöØF½¦)3¦„¢v>KQA [AúªÓöx ñJÀ2è²BUµØÿ¼~¤!´d\EBŸê uYá¼ù°º’Žß ¬‚®Æï¬òõj ˆGYéC2)»n` t-ý®šØ?* žôûFI˜\߸ ‘¼„p=Àµ .­ÙC>Øâb&ÚmI›©­:¥3q ­dêU‹ÎAŠ÷Az—Ú0§¥ß#› å„“(çÅÀ2h)œë„†DQ»WB8z*yçDXNƒžŽÝ.Nô…ߨY¯‘þw7níœo tQ()Ùû¸dëÓRÉRg€¿ú×”éwÙ­bRŽHB}ø» W™†[äJ!ü ð÷@ÿ^looÂá—«:Mg$p§šß¨=¥Fí³ŸcçJNw®TØ(Bú,Ân°EÿÕ ¹Ï"öÍ¡ÿ¤ßg­æÀÃäú¬åþ|“„t؉è]ÑÃQ²Óêjve‹tZ·¹åð©ƒ'qY¬ú®ŠJu °º¨Ì•-ñæò¢öU$Ëi`´TD­¯"v% Z*‚WÅ}UPE^÷SEË7‹”.ëô5¶J,´Š¨n X~ô7“w{ÄÎßJòè—b×od·Gì¿% žôÝÞÞ`&vãÀ*èjìæpÜß cVýY¬…ÞLÇ ¡Î¤^òV†T ø"èÖdˆ#vÝÀ/‚þb욌ì߈ý—Ä“¾ÛÈÛ…‡jý›Ôyb£¸ºcA^ϘáÀZ>îó— #üHªu@ ´–¼Ín„^ úÚôm–Ø÷ ˆGQé{Æj སé§0lÓ1ëË`ã>â‘l-{㊳ -ÄGécÄów¿Ó£ýF”ærè…PÈ ¡¨³^%f„ˆÚm Y1ÈÚm«À+@ÇÏñÎÜü gpH‰}”êÓŒoµ \žeÑš^-évÉ|ŒõÔ¶Á/u6\d‡û´[9zÊß Ë>ÚÖ§²¬3[­dÒß½O·÷-ܲÆ>Þѧ• }Êè·ªì©GÞwAõq%ð³ ?+]/~’ØÜ˜9NéÀüTot7àÙs^F°±ì桱¾sôá£Õ³›‡Îóß8æ¥Ú‘¿e’/þG€_9’ _,Hòµl¬rÚa‚ ­ºæÀ xù½Hà/ ‚IFðF›Y´«¹£Q™î¢g,ËU;ÖV=!iÀ”ÉÌ5$ ˜Z¥ëÁãÍ–fß®šñL>e®Ëà45PñÛ¹›>È“îlö¤YßO÷i“óäÖ„Q5L— ´ÙŸ‘Gç7²Òßîb?Ñ݆ §ÝÙÝ}Ú´Aã5>«+ïh' Ñr;j›äE,N’]xçp§ Sè½]>„û9Ý?ÁÑh.è@ ­Û{g¿ü­àLñÞxeœæ^ŠVuÜ´+þa–š>aÐÌL•AÖ”QuçðYNªRõ¼]2ª~ðcœ&LCÕÏ?Îi˜ª¾ºO£µÚÔï5Ý»'–$Õö à/pšPUŒí«M¶þð›œ&LCk¿|‰Óñ JÜÿN| ø»œ&L{ˆ*äáS8R>ÎÆ„y:Œ,?rj²!Çl6ÑHc¶jUg+tºÞ›æõ6x÷ù[¸……×;رHW¢„ÇAWfô+…Å Áî>ú…¡Ihbx'P-µ%c^MÜHyžYDÁ"k°ˆÄß²8n•ËÖ4õ<¤u»nìj•$hø6ÐoK¿q\ëñQMã˜v½Ì ãO»jqë…ĸH@<é×Ë5¨‹k”ÔKGhg2ÓJl»ËAËMa‰ßÞàméÔ ŽU®»Æ¼©ÍÛµi{'qX,'S]+€Ã ‡¥åí·ƒ&RÎnnL¦lܦÑu…Ž6æÿëµÛnð>Ïâó°yËY*é6`tä$³.KÇ*§“›t!yK‚Ü%¹ãOº(#°+½b,b‘ga” iF­–üY˜Lˆ…¶—6UUðšÙy¶Úv)2xÒ(Y®-&Ô50ñÛå9ÚdGŽœEi΀>#-Mœ‰öΚ¬·/ë #oµ ôö ϱ“ÀS‚àS2‚«q÷JÄÎQ2–­I9v%"Evìêô±Øôz¨±·«RÂdr\q’jÌRü¶Ï6²Î]­-dÇr¼iòù# ?Ò/zFÖ‹~ø)ПºP¼è§Á?-#¸/ªDŒ0/zFÊ‹*)²U§E½h˜±·«R½hr\ñ¢jÌRüvC“ ¥9_'òd¸(ÛÏþ¹Ø²IL(i00Â6L(Ûn º ¥]Þ„RÙš¦i#Ý,ÓÊ¡NÊÒµâ¤Ùïz!ô{$ð1Aðc2‚Çï÷”‰¡nô L¤HýžZ}(=$])Áý^²\[ô{êÌRüö6­dL؆á],<Έ’UÑŠuJÛ1NǨWlÚ!Ù¬†{»*%¸;K–k‹îLYŠßFïÎD9v‚ÞÙŽîl3Œ‰0VwÈu¹×™©âêÞ{mâ‰Y‘÷Zû%âI[ŒëP÷>ªÙ {ŽÄ!Z1ÀÅD4œ7‡ÏHÓ-mtO1¥fßoìZÅк31fµd½|â1áH#IEãú·ˆUp=ŠMxô9e]Æ" ‘BÏQ4OßZ*}UHÿrŽ‚Ø=|+èøéª.ŸËÍó" ’ëmÀO‚þ¤ºþ½—™g¯Œª~øc ,Uýðs ?ß—G?òB|ø "}W¶…+´J\YçíÌ•Ñìa±îö[ãã³]§h›æoô‚5e4¹&ÜKàݻ湶IË6³ª.suŒ s4cì%HÊkG«š^*™´2—£³a¿Ä‹ó8Äþz!ÿ¯îjýCù=;sÚ ? JÿÈkw-äpÌ_çAí·ÁahÁ c%Ø n%pš° ¹ÉHø£Àû8Ý9Iw;Fs$ðý‚à÷Ë4§L ÅÉ”ÉiH§V)É$Hºf‚ÇuÉrm1®Sg â·»Åäçë%"_Qúç ýs¢}øN^>ö£‚à•\U"F>V‰\‘}¬:¥$çc“¬™p›×E|¬¿ýÙ†Õ ºƒ ËeltlÊžv–ó ω×ü?Ê Ýu™HÚ¯¿Ìýœ&lƒ—ï:Ó_“tñ™€%N^.>c‚2‚+qñjÄžá£2þ]PQý»B,æß[|»ª%Ô¹'ȵµsWdšâ·Ó<±RÀV>ÌsÌ÷µS!ó’jg Ã=ü! ÿ‡íñ̵©3E$ùÿšÓ„†gþAð¿‘\gV"F˜gfz•òÌJ„Šì™ÕidQÏnðíª–pÏœ×E<³Ó¿Í絓&ùNïšáze¡·%‡j”UIºRB]i‚\[»REf)~»Š¹|×dŒöz#$ºñB‹<»rÀ]œ&¼0\ånAðÝ2‚«q•JÄPyª*²³T§‘d"ÏD«%Ü]&Çuw©Æ4Åo¯kìÒðãK!椭c4Ï£-¿’¾º=ñ¦´œîŠ|±V»œè¸ ø¸Œàjœ¨1Ô¥Q&RdªNÊS‚$])á49®‹8P5f)~{·¿6vÄôö¤-ز†+’œ.më§P¬Ÿj‹·]248(¶þ4ð—9MxaxÜ_ÿÁÕx\%bzÜcYO³R^W‰X‘½®:,æu[}»*&Üó&ÇuÏ«Æ<ÅooÊiE˦C aùÍ«sCŠ]y@ ¬eͪv}_œ eèîât·ÜIÓµm j»»qÚà ÁÅv¯_-#¸«F ¥A­‘¢ºW…úH"¨M´RB]k‚\[»VEf)~ûû~P{§åÒ¢‹JÉeúžtÚdÿÐë®UÑ]\rR0æ–§ ½8©ñÛd½‹âëyçz•ÿ¹QBæÑqÓ¥k°óÚÁ²cåš×»<â[éû†+7fŠFÍõ϶™¶æ01ØËú訉÷z~Ù íK£ÚºkÙÑ3õ‰µûW¨Ý¿Š]»‘ÏðdÑ@|TsñcþžIËaZjå¡-xYǪÓL}ìŸÓµu{6¯¬èÄkNLåf•U…©ót½4ábsX}—KÌT¦õY‡”ç]ƒíÙ€1£W̪?Ž:½KTA'€ó&p»A©‚"Û ±ÏˆG²ZWÊÒ°B@<1keÝÀk•Ç'tfL÷šFqÒ-èuæk²ÅËAQ9A›”õè§§ *ÌbX#é¯ÙÖi£èæ-{BBÈk»@«›n^Ê¢fÒ!|/î½;¶î29M¢ü{€{AïU¦¤k&]·æì˜žžÎGPVHìAB>ú!…±GÝSÕ>ààŽ­*‰¯$À#Àè‚ ˆE“–âh¨õöw´ÕýûŒ€ñÜïÚ¸âä;ø]U>â‰Y+'™û¼nN»/¯e‡‡ûòÚ!6¯)¨Ó¨1õëU½œ=£¬Q„W‰Ý)à,èÙ6øoâÿð,è³Êt•Ù¶SBž7ßú ÕQ°Ê¥¶Ÿýdlu¬ÊnëËiCýýÛwK5¢7Ÿý¼2Å\ïw¬%ˤŽt`h0?´{ç¶]§'?5¸mgÞܱ{%Q_¾úE…º›2ìBÛw¿:þUבÝ9±ÿ’€xÒck»júÚÒÂ^%§mÑMõêDN;žgôß1×ÓÜUwË&Ýþ\- ƒÉ’©OT-ï™75 tB¦¹… ¡t„%ÐêÎ]>j8†n³¡ïÉÙ*åõ1í¸Áœ’#!çà“ ¥|K´†ØÀ7~SzâÿðiÐO+SSx ·â<+ ž¤;b÷ ð9ÐÏÅÖÆšì0u0CÃýýCÃ;¤ZÐóÀ€þˆúÁ›ØÇ œ¶J~(jî=ò“À/ƒþrò½ ±û(ð—AÇ_‹ìÖ‰ý¯ˆGQéWŽ5ö;MŸå¹v½[ZÛ8~#öãߺãŠÃ£ŽñÄ×GÏJ¸*!ŒŸd·3¤9¯hôãâ]ÌÎ)l¸e³ŠE¨5/7ɼ~¤!tÞ®èùzÕ”~-ðZÐ×Ê ¿àÍ=À~Ðý «%$ÿÚvnúæAçc[íþFÃñzµè]ÚãZZѪÔê®UÛ´êÖ–„H0ò4I>< ú´²Š[>æ†^v¬OkGG[ý ±ÏÏ^v¾â„fdcüŽ•â‰Y-‡6oÞ¬õr±^¦tekB³Mç 2¼y#‹ùÛK½R£5FÍOçD.É.(•ðèC±Kr ¤»Úþ~Í EÐbéAGzGG{sšnޏ5ÊXW`DÕ`ƒ©¢9Rô>)1‚>‰\ŒÝðèñ‹¡Íû+”>Âþ“/™ÐNY/ŒÔtÇ5²|8§Í²áû¨°bööõE.ƈ¾Gi1¢Û÷^ðöQM³¿—ì{ÜtµŠ9c”úñq£èúþÑ›‹Õ ŽU&ÿÉ€éÖK†gôµz¡LÈÇRkº#,¡G.Ü>ˆð^Ð÷Æ.ÜvJËLžuºÙY3§M±‡ éh#Ú¬\¬@Ú0ߎ¢ÛÇ~ˆK(Ä@©ÛÇxû¨Æ>®ôüŸÐƒ }fdo‚X„W‚¾2¶ˆXtEZnY”b(ºo†@„@ohƒt4|ŒB=^Bzô6›76?F×ßAˆCx èKb‹ÖCbe™ö¢ëìAØ:þà'ºÎ„^Z¡Î¶“ΜIkÚÓ™^(ØÆ”éeÊu˜že¹@;˜°f¦_Ÿ1£ëôVˆK¨Î}]nÕ¨IÖt;[Ñí‘bvwn;û¿a‰þ÷0„"¼ôå±¼Æ7:4äw¶lŒl˱JuF¶E—ò$#¼ô5±¥\NhÕ¢‹sD \:þ•3Ѳ7PMøÆkF™ÒÞó$ù¤M‡{Ô\"Ky’Uª¼s&F#F†ön®Ëcˆp#èmÐå«ÀÛG…F£cšwQtgvÄ"T`d*òÈÁ;Næÿ,œ‘S£÷Ž®Ùã‘Pؽ©haÅm§¬•'Sw‚ÝJ•yØgŒ7‰Ðù2Ì·óænÔ.ãÛåO¶µ—K½÷ù¯b¬7 f>!+dTñË€W€¾bN•¾":¾Ç?[²À[ÞsêH?6‘.}¹¹E _.[жW‹MÂÍUñr’Ì«†ƒðm›_\òÝ&CòX-;q×É£÷]ß®¼ºs/êifv»”®šë¶¡¯•Íï¿1Âûç›Õ‚F²Œ5’q³l´øÉùNçWõJÐt¾Ðƒõ»¿–’ç"¶W ˆGBŒÄZupËW‚–ª©@®KÇô²©õ÷TKf~¥­!bµ€xihàÅ‘|Œ·´5Pe[µ» ´w;êš.è‹p'è uçšn9¨u «©âÚ@Úº#ö»Ä#©»eqÅ¡~dµ€xbÖÊõš¦y~n.´×·XÖÈo-Ò¯}½2«ßØhå½QG#$]x è[”™wèR0±Û<úPl=f"oC"þ·ƒ>WŽÌþ1sÜ?¶}Ò˜©Ù¯Æ¹µ»”s\}±jɰ_söøÁS·;xÿèÃ÷œ<|èÖ;iþì䬓Ÿ0\£:•ímúº·oŸÖø¨ÕÏñ[s\Ë^[}¬8©ÛYñ»¾¾¯éõ·LKÕüi‡Ù’9e竆;P­UX,ãNžÖgl0œ®1Ó_¤òõ×ËeöëÞ}Ú ö>z3ë¸F%O¡G¶·dý? ùܿդ?´}Á«žØôÞ>mËmA9x•°¢lóŽÅï§{Æj®f–Fz³—ÓgúùG½šîÌV‹ÓÚHo>?Àþßç6°¸Œ7í௹éÜVÛjÞjã`6€ñXç1‘õXïÖܼŠÏ1Ùç½¾ïܹ°}«üd¾G€wƒ¾;ªÓ/œà_5V¶ôêGðGÔ—«:ÆOR ÒÊH/zÊ® É É›GİPY¹ƒ¹†ÒWÂ5p$»jѪV ¯½©ÕL@ظ=´,]Ì¡&Y” Aâ*¢h£s"Ý®ã—*Ö¨ªC¤ΎôWBÅøñ$P†@4S±\@<’ò„ºE‰9I’dpèU2’J´ö|Ç´-¤[¼´Ô .ë²±Š7  aŒ•­ uÉÐq(;“ÓfÊf%§Ízÿ­Ž ²ðÄ6Š›Ì°P…6QXˆlh$¯<úDl¹÷óQEÓ_°šÑI½dx«ìãú(½T’- T·ÇôþØE¸‘¡ìÎŽ³½ŽU6K½9:º®QêíËiåéûb87Ôz$Tba@ã(ðÒ­»#t˜Ã¤ š€!¶9à èÁøÃœè‹N$Àpô°ÂYŒºÃBøïJu¾²#FG¿Ó!öãu:7ÆgUð³V$¶ïû=;aÀö}E_猄X=6oˆØó-içb½ŠÉé¹á̼×Íí¬ï=­C¸¸ ´Ôìa´iB ¸´Ül¡øí¦.W7«”0ˆ6§J(kð6зÅRVÒ–KÆQ„§€¯ýj…šš;¢²€íÀ1ÐcéÈíÀ×€~Müþ /Qé ˆGYéMר„°í> úáô{CÂGÄ“~÷³š·#“ë~º)¬— {@ÄÞHÑØë#|Û¦Æä2]'¯v£êš^¶PÑ«³sΦxfÀoóšÙ\_‚3@%-Ëo‡×ëe—n$  ¦¾¨íe-o÷>úùäÛËZ´Âw€~Gúí…~óNñ¤ß^Ö¡¬K´½tÓÄ©„d=ÀøÅÊ&‰²†é%Ö5ZGÖ‹.£צc»Yo\iyË)‘'Öáw„»@ËíÔ ÜÎìÍ=‡Ù|ØøŸd¹ x è[’Þ»ÝÀC l눜ø‡øß Œ·­#D%fUJ%wO€>‘ŽJŽ¥·(RÉ(ð$è“ÊT²´·bèr:yø0è‡ÓÑÉ)à# ‰­“%9uýjÑhC™Z–3µ”LIÅ”h'ÅŒ]ÐnlÅ\ÞGŠÑµy![^;iD¾…”䪟ý¬2m-»UÌbI¨€ýaeºZ6æÜ]·Ü0m=üèÄ좆µÄþ£âI:¬%vÝÀïý}釵ÄþcâI?¬]Ï-ÚÃäÂÚ%Þ Ñz€ÂÌ¢d\ÛÕ$R©lMxiˆ…Aàô¤áź GwŽ0¼³½´0lxÇþR× †0ùØ<à“(ñ: ÛÑp¨ª0oÿBÔ>…d9 |-è×&ß§»:ðu _?‹<ú&þ¯¾ô’wSÄ®øFÐoŒ]üÈnŠØ?) žôÝ”x£Qrn*S4%äêéhŒœ=z¥Œ\ÞV4ÉcµðQlÈéN©\‘[]ç«€¯ætgüÜIµºÎ1àë8M¨HuÝKªÑ= | §;¥D¢7º×ßÊi˜:Ë-htf5°Ñ™e)Õ½ øÓœ&T¤º•hu2çbI¢Ÿ~…Ó„i4»/¿Êi˜*\âM/Ièæ×¿ÅiBEº¹È×ÔáX’éw€ßæ4aÚùmàŸsš0¦vž×¦ÍryîÆÓ†côý!°§A^[s©Ð)í-…®®É¾›ÍkË®aWuþÏ…ÑmÓQ\•?= c(Á1csšP•ÿm‘E£•}dfs:“Â`‘Ø9ÀsœÎÄ,nmÞ_57áÊcCÖñ½™'€ßÏiÂWÄ8#óCÀŸà4aÊû$ð'9MSyk56t¥¦iÑÞ_¦H -ýðW8M¨HKK=- ÉhèkÀopš0 ý*ð›œ&Œ©¡Ížk4'hæÚs­NÓ`_Ji/ÿÓ„íöˆÿ|™Ó™—ÓQÙ¿s¤Å¢ cªl½»`”Y§9Ôy:äÁ$K×zN¦=¦qõ6PÍtÚr:-¢4×B€۳㞎*š#2[ Iš5ÀKA_š¼å»À  7ÄVÍÅZ–EZÆ£u“Y0‹µ(6“ÐÒF`è>eZZÁ´$wê“äî-•ù:ºžnî½'¶žÞÏF´Á§²³-c罜øa½‰;Éþ®ñEk80d”´ºãm¾Óm½bÐäõÜI£š7}í– ΩZö¿ Z®ÏŒz𫥡üð@ÿQ:†òðAËÍ«‹ßVÉH\Û*—ý£_ÊOŒa¡`EOüNeýŽÞlÞŸpT¤ýЄ ­Tß9:‡þ“‚ê;ïžä4a;fUH„SÀû9MØæöØù0°ÀiÂ4”ò°ÈéÎbl¥öœk™¹K#Gmе¿z±e#£iW?ü¸U14׬‘£I*B ø)N¦Mör‹h šhr„®†eþÊ[¶w4>׺P;e•§¼EZêÔ¢Oo†Ø„# G¤‹àßrž3ÇéÖJÿFRš??{λ¸r,»yh¬ï}øhõìæ¡sçü7ޱâºzˆü-ï¢$áoÞúލ… _,¸‹rÙXå´Ã\ §]Ä5”$ðqAðã2‚{öª-²G-dC™Á3ScY®Ú±¾°ê ¹­R™\Á\Cn«T«”ιZ 4›Öfß®šñL>e®Ëà45PñÛ«ü1€aÏMØ{§n#rÜ/Šh‚6ÕŽ¥²Ð<5à h•‡QB‚ bw8 z6¶Æ^“c=v uÇ1¼/›<6ìkìߣ?ºÕe?ÐåãE©®ó1àï‚þÝ ±ëü=à_Žœ”¥]]çwÁ¿##¸š®S‰ tJäŠÜuªSJr]g’5Þu&Çu‘®SŠß~l®ëÔ²%‹†{¬Û4­Rg®ùѺY<ã…ejëÙ¶>š¸cÇÓñѼXŸÒͲ^(ó…rÇ5jscŒ‹²Æ”ÁþÀsݳþ@ˆñ/»fMn„jê|ŠÓ„œ3÷¶A¾‡Ó‘³µÉ™w¾Wü½2‚+qæjÄPïÌÕÈÕ™+TJbÎ<Ñš uæ rmį́øíê9gîD_Ùeúdú„²ÊXÎÌBÈñ¸à°™ÓuÀ6¡"öñHz¥qʾƒ¯úˆ'f­l¢%n«<>¡³Îü^Ó(Nº½N½Dñ¶@Q„›@oRæc7NO0KÖYØÐ_³-:¨•·ì¨¹ŽH¸k;w{´º»Œ—²þ‡™tßË»AÇ¿Ì8úÍ9Äp/è½Ê”tͤëÖœ½ÓÓÓùÊ éHÈÀ‡@?¤°¨ÛaªÚ|ôñUÕÝÿ’   ;#½îNZvˆ£¡Ö»µ£­î—ØgŒç~—LJùC/gªxbÖÊIæ~¯›ÓîËkÙáÁ¡AÊhUKXr£ÆÔ¯Wõò¬cÐöm”ofà›š½†Æúúâ}ÂÈk Öž-·¦èŽYu› Nsq']Ý¥ I”aé¤5îNëvÔdœ$äƒÀÐ*g=CÄîptüYÏèþ›ø?< Z]º̶ò¼øFÐoT¨Ž‚U.…°}ø$è'c«cUv[_Nêïß¾[ª½ ø<èç•)æz¿c-Y&u¤Cƒù¡Ý;·í8í8ù©Ám;óæà¶ˆÝ+‰úðEÐRYþCt7eØ…¶ï~ôÓï]ˆý—Ä£¨ô+ÇØo ›Ö.‚8Y®co‹]{XbŸ0^ÛWœ;x^ÕäˆÈ4“ƒJ»@wÅjÌAz¹ŸÁABºµÀ 7*l·e³z&„mPHt¦ŒmÈzcŽ[–‡›@Ë +Åoh kÌ>»–6nºþ$ô\Ò‚EÓ‡ çOTÕæ©X—mж²Z]>æÍ»‡´62ìþ޶ú bŸ0žÚt¾â„.«ç;øU>â‰Y-7lÞ¼Y+ZµY­¤»:-g[ÚVFnõv>3z…’›Ñw‘€îýþ䆨_ÆdÑö÷“HùI6°p&õé¡={vGo" ‰“2³P9†ÀÛG5澋ôJnÃfz´*ýÆø¸—AÈó"X!ór×YšU*9íS¶œÈÒCbÂ] åîŸg•6L2%Û=;kæ´)ö ްÿäh\9i•FzßÑÛYàmr›R«ìfGe;ØvƒînƒîoÕXàU¾zk©sÝ“g‘eÜ ¹¯}Ulocb ‘¡ùO–é1ç¥1é%¹Y_Ú›óJàŒ³ƒùÁ9pé¿;؇òƒƒ}ÑPh)·¾­ šß Þ>ªÑü•¤y/Óô $²ˆ{ ¡¿ürel7’xYÒ>Ó.]ë[‹®È½ˆPHMžº"÷·jÙï7áª1áå`AͪUפË+c6éý“ÐõúcË|=k8¬I³r°HôÂFõÆ,ôõmÐóMàí£=’žõRà ‚ÅƒÞ@CÌ Yì›!*á`G#îŠ)öµ~#Αô^¦!å‘ÞB¹nH¨ùd#¼ôµmPóAðöQš¯ká—ù¬ý¡£‘E½âúËâ×ÅuƒàŸ‘£ëó"ÜzCôy+xûø Öçaˆw8}ÇÒçt$®>Ù®£ñ.â ~#LS¨ÂȳÄ>#`¼Y‰æ™¿%“¤§ˆ"ÝÞÁçÜWwÄÈ72StƘ¶ì Õ–Û¡Â5 ×¤¯“Ûñ;ñÈUÀ‚_eFƒŠîÿï(ŠÝ!cŽô‹Õô‹‹ð–õü³µôY7éú—!ÙËUs²¦ý\5—æö·Reÿ96:9Q9<0Z¨›å’nè¥Âöí%}xûðÎ,CTôê@`¢â¼_ÃO¾ î¼ùŸ5ÌxwQÙµ6C)èJfÑ{m˜á„,tQ•/®½nN‰¾ :¾Ç?[²ÀOÞsêH?vë,}¹¹- _.[ЪW‹ÝÙ7W¹ËI2¯ðÿà;Û6¿¸ä»M&äo1^v⮓Gï/º¾Eyÿtç^ÔÓÌì¦ÈZš«Ñ†nV6¿õÆooF Å2Ö(ÆÍ²Ñâ'ç»XPÕ+A‹BALll¤é¯¦ä©ˆ­¸%„A-aô±P¶¸ôj¡¹.Ó˦Ô£gP„½GZ:É4šW`ïS'1¼StÑ›].k³õ",lŠÆš¶^ˆý%âQ¤—Õ¢ ¿O>D5ÝPᥠ/MA5Â,uPü–jˆ½x÷Eªé=ÁUc”´{y2ZsÝʵU»‹_ÄQÞ%Paè>…êrM·Ôë,ŠÖ:ÒR±¿Q@<’êZWzV ˆ'f­<»àÆ«R«Ómµ†9ñ”v9!_¤wŒÍÕ«%Ý.i†m[¶÷õ‚ãÅìSZÅ«x|ãYgÜ Bü(”ðYÐÏ*kQKzYãé ‹™Âû$Ë{€ïý~e­&t_±{øÐˆm™È÷ˆÿý¡¸rdö™ãþÙÀ“ÆLÍ~5³ÄzÙuFìRŽYâ„1bÕ’a¿æìñƒ§n?vðþчï9yøÐ­wÒœúÉY'?a¸Fu*ÛÛôuoß>­ñQ«Ÿã·æ¸–½¶ú]4ž¿ëë[ðš^“a±TÍŸv؈͜²óUèÖ*lÀàNžÖgl0œ®1Ó_¤òõ×ËeöëÞ}Ú ö>oE`ÖqJž"ýloÉ*úò‡9ã2å¸õ~hû‚W=±é½}Ú–-Ú‚rð*aEÙ:6æ½Üïm³æj&-[³—ÓgúùG½šîÌV‹ÓÚHo>?Àþßç6°¸Œ7í௹éÜVŽp1™Y!³ŒÇš8‰¬Çz·ææU|ŽÉ>ïõ}çÎ…XpË¢d¾~ ô§¢š1ýbÁ ÑUceK/¡~ïC´ªc¢$õ§é?-#½è»‚$+$oLeåærþS ×À‰¢UûY§Zåsä7…¼Å›h › -Ks¨I%Hxñ(Ú§çEº]5V2¸Í±ª‰¾¨(~öÙ¦yôvVŒ? á#ÉÆ¾*öªÑ Èâ#IyÂÜâb³6!•ÕÁ×€^##\ðE¯-¦+Z´x h©ñz ×ec|×YãNॠ¥ãó³fyLŸÓªÆtÅ*99òûÌÕëÃyžÉ<§M蕊>÷O½TšñnQÏE69*Ãàƒ Œ]–þç‰Hž®;.dÔJæ„éÒ [¯:ãT6{‚ýsªhMù?‰ZŒ•PáФ[NGè"äVb{xôáøCˆèë¥$Ààm o‹-HtOæ_=꣔ÓOÊ“®ª÷dK[Oðµi=p#h©®¨ÎÌïP vEKZÌÍ-™à°è{o?ž÷éc²nŒpð>Ð÷]xnl5@x #u7FlÛêÆH€#ÀXn,íÒ±ºÃFù!V…bº-ñÛÈq)±Ï/.ÍLJ~³J@<1kEâ4Ü:¨„0à4œ¢^e)w]²õ×t4ÂdÉNeI“LëþÐÒ3¾$Øzàu ¯“®<53¾$ËÀÐÊÚyèŒ/±»8z0¶Awk–-£”!àvÐÛ•)ey/E¤ô²x è[ÒÑËà!Їâ»ß¼„Rn²Ò›®Q aÛ < :~ïÙÛû#âIßÛ¯çíarÞ~T áü ˆµ ×J»û®&¡^ÏsUêemй|Zî³µŠîÚæLó½¸4 é…iw›­ÓLÍ-dÏn^˜.7g!x±^¦ƒÅyí¤9·åz„ð] ß¥Ì-»ULÐI¨?úã ÇTÎÝuË òcÄðÝÀO€þDü–ÕûïOÒ~ŒØu? ú“éû1bÿâI߉ûï’óc+ãk ñz:æš/¼š"O6^¶&¼,K‚ßšž4ÜIƒ'=hH-ø"³Z,×KÌKy—¾ûžÉ?À¼À‰G»HÒK~L»jÝ¥„F]ô®×ŸýtòQ±; |ô3±Êé¼vt\«W¹ÒM£”kÒ7åa®»ëÖÈ>ʳ4ÿãëœ~iÙæ„I] ?ÁîålnX†^{ST·Hå|3ð{ ¿—¼[Dbÿô¿¤ï‰ý¿ ˆ'}·x o9-—ɸŕ‰„€þÚ’@K:Æž&ÁfÙ5Åss—ÕòÖRe~r\÷~ɽ¡·ÉÌ;—°5,¯ÝUe-É6Økôªë¹F¤‘‘6 ’o> úYÅ#ÔÊTä*‰óà‡@Km–Šæ+‰ÝsÀƒþpìÖ³TË:Ñcn’á#ÀO€–‹2[å†ZÊ$!ÛôO*TOHf(b÷àOþ©t¬âû? ú§c[ÅPŸ·´Ñ!ò~] %vñîl£û„$/f#q¿üÐ#-v¼ ˜›~h8Dþ–ÛÍHø¿þèÿˆZúEÚÀÿ)þŸ2‚7º—Ì¢k>!ùD•‰z!§ÚÈ(“+˜kȆ4µJ|jÈ…­Ì¾]5|!A²\[\H Î@ÅoWñÑ£Ôd— Qg§;å#WE“]$Ì*àzNwJ ãCô:ÙE »sºSÁé­¨£:bÉúOÒ£:bé—þRNwÆß yTGì7Ì¡ÿ¤?ªöÃ%8ª»hÞ8 ý­{:[àþ6®£Òo>úùöëHœ€ý‘ä#xb÷àGA´Mã:’áû€Ÿ-7®~\G2}øÓ ¥F:ÑÆuÄî‡_ý…t¬â€?úg^ùã:÷gúïÚ2®[>æ9j¹‘‰ÿ÷ÀÿýßÂÈŽþAðÿ‘<þÈN™þcÙA¹‘ÇvÊ$‹4¶S«–ÅÆv‹™~»ê&xt—,×£;uF:Ï8cŒî‰:—qš°½£;f-p§åâû¨£;bˆd9Ý)—yAü6òèŽØ_6‡þ“ôè#:í&N¦=º#ö—Ï¡ÿ¤?ºÛÀ-ÚÃäFwÝt>@B2ÿ,ÓE /’vîÍ»*‹ìbß…e›t۸ӊ/s#˪m¸u»JwÆ{›{¥ÖüŽðqЫÉž—"1’To¾ ôÛÒðXÄððí ßž¾Ç"öÏ ˆ'iEìºÏ~.}EìŸOúKÈÑ ÇZîŸb’®( ôZ͇>-¹‹Ô+‰à»¤6‘.œ°*[Eºr¢ÚÏßïß±.1CâïG ü"è/J+5l†dÒFJ÷Uàoƒþm… ?dŠ„Ø}øuÐ_WÈ6dŠ„Ø} ø Ð߈ÝЗõIõ„$Ä7¿ú÷Ûº“0ßþ5è¿N£#$†üÐòËûÒ!±ÿ[ñ$ÝŠéâþ´ü$˜tGHìÿ^@<éw„ÂÙÞ„C÷Ç$$Ãn B÷f‰J‘B÷æ®ï<Ãv‰¯: ä›Äeh„.h7ý&AìëâI¿IlB3Ø”h“Xâ-ýIˆÖ\ݱ ÅzÌáìkªõŠa›Enü̺ÝièjƒÞºÄÐà`sx(ä' IJÈ×7¥‚9*â:`tEY§ÝÍÚyÔ¨œ$y#ð)ÐO%Á­y¹ya{¤b:Å~¸G46ñöìáë@¿NVîo®Ÿ-u2a^aOxªú‚Ï ”Œq½^öN ïÕÏs^[·­ ?+ 冩4Ïôï%ï†1‘èá‹RÅo#»abÿâIß _Λ­‡É¹á¥Ä®øèÒw>ÄþAñ¤ï|®æöìa‚+n”oVB² úÍr-ºâf›zµhô3ÁAúÛR° ¶ÅÄ‹£ Âò[Ìi¬«ñ;Â7ƒ~³2ß%7E²<|7èw'ﺈÝ[€ïýžØ­&ú4ñ/ðÐ/$ﻈ]7ð} ß—¾ï"öïOú¾ënϪõ]­²„$¦&1z€ñƒ¥æ†ºÖò|S#RŠj³$Õ: ZKÞf¯^ úÚôm–Ø÷ ˆGQé{Æj ས©ñ¤]lÜG<’­åGâŠs-ZˆxbÖÊ5Ì‹±lJ½f[•+1‘„ŽnÞú®¶|„8{NÑî/ÈÄT„ÀèÒ…À† ¸!#xüØ@™-'I àÈá2é"…jUs~“$­›@»ê'8BH–k‹A±Šß.ÏÑv;òAEQš2èr[¼hçý²®³œ=u¡¸ÎiAðiÁÕ¸N%bïËÞ/å/•ˆÙ_ªÓÇbþ2ÔØÛU)áN29®‹8I5f)~{V2ª–k8BŠZlÒ’9ä- ùÐrÛ‹ZeìYåÉ™çrJHø“À_ý G -}¯åÎÛ]Bö?úó²²/x󇀿úÓ?½øK )¶M/剗%*÷ËÀ¯€þJ{º}éÓWßýÍ ¥ÛIü%ÁÕtûJÄëöå†IJDŠÜí«ÓÇ¢Ý¾ÌØ(ÉJ ïö“ãºH·¯Æ,Åo·4-WñŽ¿hããfѤ£‹²½¿/ë‚þOå½7‰]2/¯2áÅœ–»¼&z¯¿b„ä•ëí;—/ât§Ôîý@=½Œ7_Âi¥wè´èíÿ l/å´‚;tÆûr4¿mVµiË.9¹Å’yžËL¾Y§oZãÀ,Çð"¡¼ À³œî”?+š8#Mt>|§ /ˆh¢ó)Að§dWM¨#,š8#M¨)j4¡P‹FaÆÞ®J &äÚ:šPd–â·Ãç¹¹Û]$Ý©/÷OCn¹›W·:Œ›îÜ)4 Ñ~ø5Nwª;Þ"ï+1üð79MS—+¼îQRE¿ü]N^P=ÞïÿŒÓ„F÷mAðoË®¦ÇS"†ÚO‰H‘{üÐ?[“«æVtõü(ðgAÿlÛúéupQÚ˜kÒ‹ ù=ž›Ðf4ùÁÑ‹À?ý§H·ýg‚Ü&#·šn[‰møÒF·=§v©\‰ˆ‘;puúY¬hmª¤@ño£íR^xž×Eús%ŒçUÿní´éNâv%Û6œšUõ&Ä‚‡væ¸&ï“èÂn¢%/îVÜ¡w^ ¼ŽÓ„)tèÞõá„×sš0ž*;7ÐQ—«zË—UÍ¢kOu._)/HdI¿/Z•ZÝ» ¥Ê†òâöjïO±Pê̽cá@ÎÛÔâå1(êN@ºÌùEñF¹ÌSoò{`ýlò¶Ñ‡'ÄñÎ[ âT…ÔY‡6Áèî½á“zäɤ“-3û8M(©›8SºKk[µµ!ÉÈ%³xŒÓ™ÈY#—ä§u3¯•ŒàJB5b_G@Óº¤Z™xE\Qã…JYlj·µÙ·«fBƒ¹¶¨øí0ó¿åz¥êô¡û0]0gMùeê®E—°Q?u)þõ£1Ú÷ãûñWBy#ðÍœ&L! Èœ¾…Ó„1•¸ÎïÊ)£‚c¸2=`æ­ÀršP‘ŽÖ4úí©„Ô$ÕÇ?ÆiÂ4tõ!àç8MSW—ìc±«Ž*kXSFy–…R2‘uæóÀ_á4á+ I} øMN¦¡¦_¾Äi˜jZÊ#k Å| øœ&lÓ$Ù¥MÓ,¹q¨_®öáøT2äü_»–ršðB˜,ëZ6'7ÑÑåVqª#°oZ0YÆ-€ª3jªPG‹M˜…´”6UT ˆç×^Û¥ÄÐX9A®­ceEMKüv=æ)KìDåº r]¦¬É¯hÄY]w×5À­œîÚšJ×ݵ š0¦šþ{î–CÊ…9Qµl6p¡s×Þ­S¦í¸ô4Yñ©£’Áª¯bV™o‹f Ç¦ÉøÜ•7ÅtiŒekUËÍkwZ®Á§«ôê¬6®Ó˜ãD°ls¤{²ø4Ö„áj¸[†1¶¼ŸèµšmÕlSwiº¬êÚ:+Bc3Ž7kJÛcÇî͜—-0 ´+z¾^5£ ×=ÜÉiUeÈ]Äîà.N{˜|[èÆ>¨îÝœö0^[¸¸qËZNó§L%Ô°ø*Nw«Ëåc°Ñ= ¼ŸÓ¦ ¥;€pÚÃxZk\/UtëÞd Ü n«òœ‰øe¡˜›8ç~ln7Æ”)3„é~ø“œö°ýêþ"ð—8ía êþ)à—9íai¢­¬ŒrpÏâ÷u—õ?yíðŒ^©•± Âlišvå”­éÈG¨ ¿ÌqIžÓÆ+pä#}Üt¨æÀ$Žð„×sÆ(ÍO{Ít¡û•íݽêßtL“tõ[cí,;j–YuÖz9ŸÓ†‡†rZ¡îjÉ n@ 'AO*krÝw6éE’èQ  ÚU¸‡ž$†&°º[ñZ%F7æÔéÂwäòð‘tSÀ÷€Ž—KJüÕ’²1e„Íi„zH’åCÀïý}É{Hb÷^àÇ@,¶Â~þz?4wíº¡ñ6ª9æc<¨žË—@ËÊçŸ~?Kƒæk‹ôÞÌaîÝôgzc¯ã,ÏÜï¹âÀ7£ÿöå‘°§sìÔ9Ý©·ßž:'eNwJ嚌lO”wÇà § cÚÓº†=Ñv‰£q$NøZN¦Ý/ÞÈÕÛ@5ýâ®yýbSÈÇ ÓÔZp½±m(¢ð9L¸ ´ÔÀªå`s) 6+S²Ý < ú¨Bkk»›€Ç@«[LmdÄn7ðU ãç½ß&Œ5Åm9³ ‡5•zÙ5YÀ*cBwŸý„´à±vꌹzý¡áù[.›ð¯¾ôÛ£‚~‘öNøYAðge¿n¢LŒ°:\µ‘J”ÉÌ5d¡D­RÝ©ÓÒìÛU3Á«Érm±ú Î@Åo/›ÛŠë媙–\ƒ¥û$èO*k>Ky5Ú$a~ø9ÐR{-¢w„?ü<èÏÇÖÔaBؽ*¡§~ôW”‡Kkž`2V [{œF>†-£¸ßþè¿JGqß~ôwÒ˜  †_þ5迎m1=­<Éä&9þø]ÐßUÖšW9lt\tGzo?t²WÆ4þ“cg§ Ó0ïm7§ cj(ùZ"⿸”ÓrkЉÁ|ÍÜzôàm2ª¡„nâ4a ªé\¼œÓ„mQÍÀ+9M¨¼Ñ•ÒÌf`žÓRðÑ5sp€Ó„15³ÄË*¡œAàvN*RÎJ_9÷Ü)¥›}ÀÜîLá*/b·x„Ó„1uóA:oSå³;4)ÆÇìþžï¯ÙÖ”Y2‚VDøz¤¡'5ozÑŸ_ãÁßâ e“æZ…¬ù¯(™ããì×%£fTq#œdDÛyðÛœ&¼àf:ÿøÏœ&¼ f:¿+þ]Á•Ì ¨Cý¬€¹¢Î (TJb³‰ÖLè¬@‚\[Ï (2PñÛ,Ÿ`ÎüàüSt„²sÔCÖ§BÚÌeœÎ¨Û©¸’ÙËpÞë8"o!‰®öq:Ó—J/œÙ¼Ó„1ÕçÌM¸6îÌz]+?]ëU¥~éCý…Ç‚áwÖ¥¦c´âq^£hI037?ÌiÂWÞÒ”Û H2Z -…Z Ù HìJÀèZ:ÆôðQÐÆ6¦„ ‚fà…옓ä´-—¿„¾mÓ ÿ!àg@æBq’À?$þC2‚Çq*Cñ €2¹"7Õ*%™€¤k&x´™,×£Mu*~»†k‰ã:}¡~ôÏ´ÅuÆš®#ñøë ýBqž¿!þ2‚«qžJÄP>]§L²ÈîSZ’š®KºnÂhr\q jŒTüVëkÌ×!.Pq\Ù¹4QÊ¿ýwÊšRœ¹4’è»ÀÿýßéŒ&þø? ÿ'¶Ú–ò~OB9ÿ‡cg†Ó„Š”o2dZ¼”Ór·GV·?—p§ cªg´/pi›ÚSøD7ͧáxƒŸÕšÏŒW'ÜI U{yÇ '9Ý)w¬ž¾}ÅÜ,EÅ1OpšPA¤“lÖ=’÷µ‚ܯ•‘[I £F Õ7K),jœ£P+~œ“ ±É›¥Ô 9ÏTdn–JZ[¡‘W‚\[G^ŠZøíö>ꬂ«#‡ƒ˜è,`M%+qr_”üóüó±%¼†2À ¯jÖPúqr¿l½õ¨~§¨ãÂZhŽ7?1 …% žRar8j/ðè c¥ùxb·xôÁäC´AnÀÞú–ØÖ³Q˜÷H¨âðÐ(ëQe—áHšG€ã ÇÓÑÔƒÀ б5uusí'˜—mØ“À7~“´Œm¸Âš ø<èç•„À Oö‘Ààñc`eb(¼ÂZ™L‘Â_µ Ylš/úÖI×Jp˜™,×a¦:ÿºÂz.“/bO¾-1¥$ ýó ^YkZÎú?/ª“éø› 3ð€¿ú·^àoÿô?´§|TºüGà€þ ¥üOAðÿ”\M¨DŒ°ðQ¹P‰L‘;@u Y´ 5÷vÕJx˜×E:@5†)~;¤ñyE:¿¼·Ó˜2"ŸÙÄîÌrºS.‘¿â! %1ðp§ Sè;û€;9MS‡?O9ˆ™½›Në#-±#$ŠÆ&͹\©È>—¼9èNóÚ©yÓqóoñ :Ì›[-õò#‹]ôü¿ŽnQ»€ÿÆiÂW@PÕù?3]œÎ¤Ó†Øþ;Øvs:?§Íº†ÚŽó»_£+)³x)§3R –Ê•”¹¸™Ó„)()³x§3R7 7M҉힯yW­È·8P×÷qZòŽ[Å:s ðvN¦¡©ýÀ£œ&Œ©©]}a^y~ ÿ²5ÑïÚzÕa¹bÈ 7éÞO_ÇiÂ6 ^bìu&á_|ŽÓ„Ä&ó¼ øó2‚+À¨Cñ^gerEÄ(TJ2{“®™ÐL‚\[d¨øí«9P§çNŽéäQ5Z°ë rý‘tn™¥ûq]¹€´Q ÿ…ý/u-Žw#ÆLM¦ý6ðï8‘Ún½ýCàßsš0¦‚¯›[‰ä{1ç#s¨„æþc×N^pf×ZàÕœ&¼ :LïjA_ðkdWÒaªC}‡©F®¨¦B¥$Öa&Z3¡f‚\[w˜Š Tüv…ßóEݯ$ŠëFÐxÛ¦†`V>ªÙ6µÇ?z>wgãøTóUks ´ˆâCdÂ= ÷(ó:+õÒéºãŽœ½çpÔ¨$:<:…›GˆÝ^à«@Ç¿yäCÂ6¢U7KtÇÓ@`ö•éIË1´i³äNz·ºyUÈ´]ÐéÖ=öS]»…½Â°m«jò9LþЬ‘ŸÈçØ›ØÏõ­<îÙq½vè¨Ó4êG¶£ öï0™;€úo¤kè³kŠó·Àÿ úÿ*‰_’ݵNò¾,Èý²ŒÜñÃeb¨Þµ®L°Hñ‹Z­$´k]½óLEf×zÒÚ Ž©’åÚ"¦R×jÄoW÷ÁíKÝ)Èä¥à™ãÿü{çjàfNwF^siï¼Nû:¹•øw5b$àßÕÕ¿+ÔJrþ]±óLEÒ¿'ª­Pÿž ×Öþ]Q«¿Ý¦±áƒå¯ÛUë•‚áB]p ·tôCI¢à÷Bð{•ÕØò±’ÁÆBþäyœ¯å¦Ö± ¨f@y\¿ ÍÑG<’þn ®8tŒg¹€xbÖÊMÓÒöiïnáq­XÖG‹(Ûh‰pè ʺ†+ŠÙ^vޮ轹޲ép2¬«S ¯î-uÁk´9b·¸ôîØÊÛϯ ‡òh¦@£š¡ùšgðSŽ[å²5Mÿ"o`U)yäÞ¨æG’ﺠ¥®[ŸW‚.f~Ù û"ì-µ½©eÛM'!Yð"ÐRas D7ùv:h*!àZ`/è^…ÆoºF%„m7p3èø]`dJì¯Oú,\, gœ°Mi­äꮽR™ý6íµt\½ZÒí’F³˜¶„1“”«ý ¥ŽþF3æ]0`Â<è|úÆLìÄ“¾1ï†ïNÔ˜—Í|¹ !Zp5èÕÊìùÖ§² »`Õ«%ÿŒÏÜÄþ¼|r¯î½7yËÞ k&ÜZnûe,Ë&öûÄ“¾eï5ïIܲëQ-{¬yO2–]¯Õ’±ì=°æ=éZöXóžöZöX³m³ì½°æ½ÉZvMÂgï…5ïMIJïðÙÁ9\´¬wØ€öêñÛ‚òŠGn‚Ñwè õäÀ^=at!ý@ì‹âI¿ìƒÑïK¼Dvíû`ôû’i®=Õ°F¿/Ý xýv6€}0zÛÖöÃè÷'Úzæò€JÈ×¼ôÅÒ­`i“\ûÉÐon?òTÉÎŒR6O€>!]Ñ ŽŸõò‹"zÃÚCØ4(‰sð!Ð)l†!Ó ÄînààŽmÿkâ]HÂ<¬‚®J Õ¦½×$¼<ú\ÔBÐ/ÒÞ{M?!þ„Œàñ·•‰¡xïµ2¹‚¹†¬m«UJ2{¯“®™àuäd¹¶XGVg â·þÞëÈqœ(ÎS ŸJ>Ž#vÝÀ§A?~GìŸOúqÜšarqÜ*1e¸„„=ÀKAK¿ow$G¸ 8 z´ý‘‰óðÐ$É»“@´Ô8Ne$G€5е¶Dr±î‰!ñ¾ôë/„XŽ~ƒ ødË)Cù=1Ê$‹Í©UËbÑœì=1I×Mp<—,×ñœ:#¿•ŽçDqÞú-ÉÇsÄ®øVÐoM?ž#öoOúñÜMhX„ÉÅs÷KˆÕ# IÒÕ$ÎQ?»›Ÿþ”ïn¢<ß%:5WÔËÅz™òíÏ?cïçYð"FHµ¶ø[ +ýöuv죚ö5ÈÚ×üX”/U÷®4£ú¯Ù´£Jþz³[!)á èÁX-1xŸ‰)!ÚÀQУ ãÜåfk^n^%ñÎû§%$¾ ´T~ŸÀ7ïž}2yE솀§@ŸŠmÛ·4Òy)×¹aÃ]9õ²ëÓѵ’îêÚ¸­WŒù´IZû=À÷‚~¯rk¿Hwò$tÞZBÄ/¿ú+éXýÆ‘y‚DZþOôÏ(³þ¿ ú«éXÿ À_ÿÂõ•sÖµ«!A~ø; GY=,ó:â¾Û¹±wîPÙÅEîi‰}F@<’­x_\qŽtðˆÍG<1k嵬ã?4w$†÷õ™ÜtÛ;:ã¸v½8/ƒ›w¦Æf#¸"‹Æ04n[æQ'#«ärËZ‰5tØÕy†7~óxÄJ¸ æ@øZЯ•®„¸ }–Õ*ÚP~ÏÎŽŽ×y\~ésü_ej¹TNzðБ» úEÊ)}HÞ÷ r¿ #wü•reb„®”CÓ‘WÊ•IÌ5d¥\­Zü$b8B;hOÝ4Iu>­±]ú ^½O–k‹Õ{u Güv‰73Õ|¢|PY^îm®Ù³#̵„MÖ8Ÿ~†=gϧ“‰Ý‡?„ùLlÅôöñ{Ç„K8§õù——Kh퇿 Y¿¦Nk®á¸#½n¯ŒÖ¾¤Ìù/±GêèZû-à¡Fþ0¶Ö2RqÒÿ²ü±2­¬äZ9SÔ¥óWÀbÏ_²ç§£˜?þ3*åŸÚ¤˜ï¿Y¾«Z1“gœÓRŠù/Ž!Òµ‚RÃèŠù°íæ•Ò)·â5]N“ê€:—Wpq:å“‘\7ziÒ*Ê(§s-ð ö¬aÏå©(‡Æ©^‰Z¹"¶r®ÂŠ®¹ýóÆ„’ýOçUÀ=S>!Yœ­Ò]gúk’C¿Î½ÀÃ(Å­J†~ ï’&‚–\ÉØOÁ·íe™^e†}j„Š:ìS¨‘Å6H·0øvUKèè*A®­GWŠLSüv³V2&lƒßÈ>Έ’U¡%;ÚÞ%™([t‚JíTŒíE;ÃLjQjm”áÑ Å‡:‚à¶Œàj|¨1‚×eDzrT‰H‘=¨:},æAC½]•î?“㺈ÿTc–â·3órN»–«—…ÌÓE«\¯Tߟ$Á^,Z­zÕõ“Òzk$E£æj ™ÿ 7¿;´ =qµXú¿Céÿ6vé#/<ÝöQÍrÜõš¦ac4YyæçãñÞ…x„׃¾¾=ƒÚÈLGF’o޼™° <,>,#xüŽL™aƒ¦×È]™2¡"uej5²è` ÜàÛU-ÁY²\[tfêLSüv}ß¼Ù{‰ÝJ¢\‡@ŠÕd›¥¨WM áNï}¯2m‰û”°=¼ô} ن̷»[÷ƒ¾?¶‰T[€rÅ=ÌH¼ plÈX2Y¯k;šS6'&]:QB[7FͲ1«®¦—óZvxph¨Æ•–æÔ'& Ç¥]·´5NÉ•õூþÕöôÙgú‡eûì_~ô7/”>û%Að—dWÓg+#|/z†eBEî³Õiä<&ð ¾]ÕÞg'Çu‘>[iŠßžšÀ£vþà2`/^^»Ó`nÖ ¡ßXG^ÝVçŒQÞÎýœî”ÏìÓË :G€·sšð‚pÆGÁʮī#ÜK  ÔÕ+ÔÈy8c‰T¢ÕêŒäÚÚ+2ÍyÅ”Ø) Jr$¹ãB‹Y;ïçtgä‘F»Üä‚àÈ®ÆM*Cq̪F¨ÈnRF’‰Y­–p7™×EܤÓ¿ýåEgï2¬¢»OÓËe¬™Ð̀͞ZͶfÌŠ—Âá7üñ[<ù'ÞJtÔÎäûQ§õÙæÃ¿9ͱüéŠÀh˜D ³+üü NÜñ"•ÎD¨ÉÌ•œ&”¬É¸§MÖŽ±z8K)†Ï=4¬hƒø| ûØËÊ܇広ÌUÀÜÎVÒ${ü„ä="È}DFn%½1{ƒKƲͪ—éÔHµkP¨žÅŽ¡,l mª£@éγ™¶K¡X‚\[wbŠZ”øíWiÛ,NÒ ~¹¤¨£š¨³ÎÆä{ÊÖïG&ù ëwœIï§“¬73ªyJBÖ‡¯fã%£qõüD…Ùà9wo›¬xÄõ²_Èûɮ՜&Tä ÖÔ̼;[3Fz½Rô†¹Ï°ÝÍ$Õ¥ÀÍœ&Tde­V[ºÖ¯ã4aL»MËÒ)Z/Q÷ü‹† Wï·)ˆr2ž©+dz¢`†kœi:rVo*ÄõÀ3œî:Ó–!é’3ý5é¹»®2p–Ó„Ä ´ë1AðÇdW†¨#8ß‘·ZnöNXQc…:YlXÚÒèÛU1¡}z‚\[÷éŠÌSüvCÀÀ4ú^;Q¶ç Ûs±e‹¼×îLÌG5{íþÙdú¤¸ŸÉ¡<ë§s§nKó»-qd^»…–ÿËfÕÐm­^-˜ÞÏECŽ–½åŽ{N8}àànÇè€xX]PVüeczÝ´ìGC­÷º_bŸ0žû½:®8l`æåç÷O쿦Ýn”& '§Ý‘×îÍç´-Ú]å3&‹ÉæµìОÝ;úòZDYOBk„[@oQÖ̯?Iw¾Ó†5óI«äðe.ZØÒ«zyÖ1 ‘ûwƒ¾[a¨²RBì¶GAÇ‚_›×NêUíVÓ˜`ã—C÷j‹zɨ˜Eí­úEö'…Ǚô›ä)Ø’j<ÃÖ¼õâœ6š×neMàvsb¬²&q,¯`ãG¯UÜjgøGÇü…ñ¼v”Æšl\Ê·’Ñ YÓt°`“†¹!݃Bž-·˜ÔÜBù’Ií8«Yc:fÕm&ª„6ðÐR—Ek:Ä® |3è7·!¦!þo¾´Ü›ÛL·m–èÀwƒ~·B}¬r)„íÛ€ïýžØúXžÓJ;¶ï‘j9ï~ô‡•iEó#Í’eRd904˜Ú¶s P9'y#†š$å÷¿ úË U6eØ…¶þ2h¹©*ñÛÈnØÿŠ€xÒã^®èªé]N²ÞE׿´ûxï1ÈzCVµ„Cvóú Úˆ<:wŽC­¦ÏèFä¶p C(„fªF]è5¨ó#³“Ö¸;­ÛQ/!!΀žI¾7!v§€³ gÛЛÿÇ€gAŸU¦«Ì¶ò¼øFÐoL¾3!vŸýdlu¬ÊnëËiCýýÛwK5¢7Ÿý¼º1MP‡²{ç¶]§Y¸>5¸mgÞܱW!Q_¾úÅä{b÷àA1}wNì¿$ ž´Å¸Ÿk»jz• {£D”íÈC¸ôi›f¿ ¼ÿà¢;¾üã5ã±~"^ Ì‚–šJÜ-·ò˓̒ìFàöô±g›²ÆÕ=fT‹!\7w‚ÞÛšöxÃÚƒ^`2<Ì“;‚îò]8ÇÙ‰’Ø»€*®¢Ì‰^>j8†n'µ“³U:ÿe:lhëÍIÈ9|Ž=.{Þž|BìjÀçÙSeϳñƒ)5½øNTÁóê‚¡ÐŽ¬…<ï~ ƒwdïK>!vï~UòþØêX“ÝÉ‚{võ÷ïÚ!¥›?ƒúø”2Ý\‡ œ¶J~hÇÎÐɈ„ÄüðìùQöüvò1±û!à7;¼‹R:¾ž~çOì_ðüQTú•cì7†MçKæ£\¿Þªë(Ä># Iƒ]WœWwðëÃ}ijV$®XƒJ»@wÅjÈûOøvg Ù®ö‚îUØj[ló]9Â%–¸‰s ¿#¼´ôå ÞÜÜ :…ƒaÄ®xèøÃvà„àÜY/KËÒfß>͘qm½è.Ü'yƒD¾øè”[·Ìv’¨œ­r‚)©-ì$ï8Ðm+³îG€³ gÓ±î~,¶u¬‡]5ïHÈb'B„«GÙ‡ó—órÞ·Š; ü#Ф¼),ÓK¥šUž•îeŽÞ»—;Ôn±kÑ.ÈyT·¤Ëÿ[àÿ€–Ú°øæ¿@Å,å4aâÁv§ c6Šj¬¶5ªî :¼Ô8÷´`S5ý’Ú°ª•-7òf}9ðVNwª»ådù˜czÙ±Bb; £^ÓÑÖˆ—ØgŒñî=_qB7?Äž•â‰Y-‡6oÞ¬õr±^Ö]/ef›Îæ1™Ûåntþ¾|G¯ÔÊDLé¶©Ó %rI†R >»$w–X‡°¿_3h¶«˜­ºS·)‰Àh/søæˆ[³˜ç/0¢jLä´¢9Rô>)1Âû„.‘aÿÉŠ}‘ õ Bx'è;“³ÚP9tðöQM빊̄õ° )"ËX€\„W¾*¾ŒÌJÉXÿ“5sÚ”9§Óèú,B®¢R£ë³Þ>ªÑçvÒçÜ‘X}ʰõ‰ææÏ×®÷ì¸^;ttàÄÑÈ¢—pè±E߈¾.k^ë0]gd8º‚Ç!áFÐR‡`c*x¼}T£àÁ`«Sî$D%=[ìÍó”ËOÝŒ3µ8Š6!áfÐRÃþ˜Š> Þ>*Ú™BЦ#0{5ÊÖ\¤3¿NÍÐϰ>šŸÈó"¹£ìHN4gVãzU0È%65ÆÜš² d£¨Sª"fV•óÍ+d¥®ö#yÀüS‡û´BÝÕ¦y¢#¿ TêÈ%+£4e¥%ÛO% h’…Yábœ°)}Ô¼²E.Bbî-Ÿ„Ûÿö¦ †Ê!Ït•gÒ³u{Âa¿¸ÎÕëÃqÚp‚Þú¦6´a ¼}TÓ†oñ£«¦OüFuòÓzÁ±Ê4ùÁ¢tÓ­— Êø¥{¿`¦cÙ‘ Rƒð„·€¾%vAúB° mìÑž`e`ÂÇ É…œ„ý ûÛ`6xû¨Æ“Ì㺾t?aNÑeÇ ìû#—Åü„‡AÇÏŒw]h7®—J3ÞÁçèêw!áu ãÏ£GW¼}T£þ#ç§þ¡ÁþƒE Ì ra¦PÂ# Ä.Ìmóô_5¦É Œ³Cƒ9m˜=ÛØ³=;سs°O™‰L£„·¾­ &2Þ>ª1‘|®†µþ²cù·AÞÉ!mEÅoÅ…“‘‹1 Ñ €>»wGÁ¬–²C9-ÔJÔ™Éc( áÝ ïnƒ™œo՘ɭ^tY«±€®ÝbUÇ)YFÕôskSøÌóÑ€`Þ½£sé6"åqˆOx+èøwS?¤ØTˆ<]w\I»9‡‚>ú¡6ØÍàí£»¹W& ¥e¶z¡lò†Ú, Ætg.0nI¯Eï}oü ¯E#SíFOú8êë .ávÐñ÷uF·×ƒ·jìcô|#Ï*„(¥a-¬_Ú³ƒ?´g÷`䂽…!=»`¶ð2ž‹Ù9˜óþÛ—cÿdÈá?»ùöLoD¡ý_¶Á‚žoÕXÐÃj,h× –µ­i­ªW(¦¯ FÙ‰^ÛoBÉýpìR 4'Û3'Ýäq0ƒÙîî¤vâƒy–½@O¡„BòÏÔÍçiðöQù¼jÑʶ„®‡öCt gi÷æ Çõ"û*zÍ>ƒR ‰=c–hä|z%.rV/—­b_œîéÍ›pôH¬ã-àí£ë8î­xÌèÚ4É܃·)È«;mšfËŠnÕá¬F{6xFu×K)W/™ü°&ý“j×1ÜÈez+ÊAxôñØeºlž+‰Ñ¯¼ "^Z*¿iLÕ¿¼}T£ú;ïWXKÚ6ןøÊw'Ù?}#)S¬‰\¤gQ B! ¦ _Ç—upëWË–ê•Êlß}Q(³²T ž[Ñ©Esœ-²®ƒä&­Mvô9¡çP Bu¾îhÈœ ÝèÿûD×6ó €e6*­Òâæ¹?¹çQ£ &Zž¡ò`"ý/FyÞ2¼#µòP‘‚ÊãÌ:®AëRÅ8åy'ÊðN¥å‰îœÞÞ>ªqN§æÍÚñ‹Î)r-iS¡5‹Y ·g5Ë.Ñm¼Uº³¬`S¦Î·õñö΃ÞÈE{7ŠC(ä߉Y´|ˆÉ0³a&쀉=²…¶‘…~%̃Χ!ôP ¡ß Aß›šÐCñkúúB\¡Ù®£°¬V<ßäÏ£½Oi£‹¼Û“ØgÄ#!Fàù~ö6¢LïïàgT×€^£L+ËÇγÓÌÛ„p6}¥ûuâ‘«€¿ÊŒÝÿßPì{¤_¬¦_\„·¬çŸ­¥ÏºùK׿ ùÈ`®š“5í‡äº¨¹47 ¸•ÚÀ(ûϱÑɉÊáÑBÝ,—tC/¶o/éÃÛ‡w £Í@E¯›ÿó~½>Io]Mo½ùŸõÊ8vQ‰/i*k¼ôÝy½jMé­Ž„œT¥Ê^¼ô¥sêó+¿ã{ü³% \ä=§Žô#©êÒ—›d¿\¶ =®²‘¥Y˜«Öå$™Wÿà;Û6¿¸ä»MÆã_ŒµìÄ]'Þ_t}[òþéν¨§™Ù-Ñõ3¯V:ZÙüæ#¼y¾-hËX“7ËF‹Ÿœï9 ŠzB´í?æÐ×öo¤ä§ˆ­°…Ô$ÄH EPO¶¸´Tr]:¦—M=¨cÏ B2ûkÓÒ ±¿L@<Šts ×MÙtäÔ¥^úŠ$Wö²trL[AÄþ*ñ(RÐÞ¤ ?ˆ7hÝÚPÔVo˜µu¾ö¶jwñ›r"–£ª#<ú B5º¦[òÝPá- oI_Äþ€x$Õ¸"®8t rµ€xbÖÊVMÓŽàHªwÆÎkþ±¯Vòû­ ·*k+{¶Ýu`HO¸ôneFz~’ž,pè=±µ·DæÜ/={7¾I™nÖöÎw>R : <úT: ºxè{b+(zŽ#zîÞú¾¸rdö™ãþµ'™šýjÛpêe×±K9ÇÕ'ŒÛ¨– û5g|ÏÉÇn½“óNþ¿ìý œÇuŽï,×âO€ÑXÀ,1;{à>ˆƒˆ‹HÄ`ïLïn3ÓÃîž], H2Eê°“’Qr¢ƒ¢ËÖ;‘eKò%_±c+vâÛŽã|bÙŽÛ‘“übÿó ÿõº¾=S»Û=‹®®î~Ÿè£æ÷‹éÙ©×õ^½zU]õjÊÉ®QÈö̸ÝÓ»Wk|Ôêëø®9ªe7T¯Çu;+Þëíõ3=~Οb©šÑ)esÂÎW ·¿Z«°!€;þ¢~õÀÖ~ÃÙÞïWûŠô|}£õr™}»g¯v–ýýŸÒÍSÜží)YEÿOCþ0çç3îÁm_ðª'6ýn¯¶i“6ë9x•°GÙ\(xgk®f–†{N±;¡_íãõhº3U-jLkÃ=ù|?û¿_ZÿÜ2îß×ÏfÿÍ&Êdf9 (¸0£ä‚Xt¡gsnZÅç˜ìÓ~¾÷Æ nyT1]O‹àŨfLߘuTñÒBÙÒK¨ÁQ8¬ê¼bºJ‚ô%éE9/H²‘äÍ#bà®ì¹ƒK 9‰XI©“>K÷­j•/Ýò+Þ¤YØWè³Ìc5ÉG $^ü(ŠVj^Št»´P2¸Í±ª‰^Å™¬“âí¬©S@\IÇù¡ТàKRž0·8ß ô#VÕbáZÖÄ袊´xÎù†b­Þ .5#XêÂ?Ì%¤à p øšØAã]Ù«…Wä$4ÑU¨Ñ͵Àþ@lÃY+¶©K—Ÿ{Nºa‘`ë»À¥fä»8 >ÜŽ†Eì>þˆ2 YP¨;lÒ?’Q,éˆJĨøNã… ÝqÅY|Ŭ‰ü¡~lF?T‘¿Í\•«[ÀùU#úÚ…3ĹC¯bÎTzÊt™p­o¢¢i¹8S¦„›€àÊz茡ŒmÑ]še˨f¸\>„P>cJ¸ø8øãéègð$øÉØúYÑÌëâ-#”PÕ)à%ðK±TíyÊ’Í^¿ªPM-RZvˆ„ãÀ—À_’zÖ/§À§Ò±ÚðZG#ËkÜè!/Q¯×Ä¥ìéMר„Û|ø;Òoˆ+ý`eyP“ V𡆄lÝÀ³KÆ~ÈËÆdØÍSÞ¾Œj½2Â>eQL‰}XÑËZ­¬yþU¾ëŒ¾åv) 1‹¤9ãV½\ÒF ͦÝöìNÖÛ{dŒêì¾—¡ËÒ\ýŠ!äïµ­Š÷O8õFmBT/«o¿•|ZŽfCøiðO§ß„¨øÏˆ+ý&´Íf…ò&$5<ZŠØ‚µš•3X[Óí±zŨºNT›%©V5p-y›];%ܾ!}›¥â{Ä¥èé» µ”½¦¹ئYƒ•°qqI¶–åqÅY…â£ô¨xšŸ¥EE^¶û‹z¹ÔçN՘ߧ¼Ý¬Wñ60ÛZ…u fÍ?ÃK+ZÆè¨Y4Iy<Ç£Uwku×Ï Ä3ªQç_tÄ„n{9‘I ì/î T䞨òß ™ ÷€ïI¿ÅÅêêªQ"ö¢+‡Œ[/$Æ2q¥_/kPk”ÔKGÔˆŠíúkšå^ª‹w‡g ™XSÓ+†kØì ´$§á¸l£T/R~bj†‘‰¾xüH;T¹ê[ÛU®…úÖ*Uå㞆?”Ó¥ÿ0Vä]NÙë+›WŒ²9nY%¿WS¨Xÿ-=áyðóíPì}Pæ}íQì}P¦¿eDb·Š)ùîmò4ÕÓƒÈ ¼J#Ü ¾· 6½´C÷Ci÷+Uàý ƒ¾û¡ÂÁl‡¦ÖA;ëÚ£©uÐÎ:¥šÒƒFihsÞ§´Y‰6ü›¥º^îÕÆ©«´ÆŒ* ú§)lzÖuP1¡ n¶CÝ@Å´GÝ@Å(U÷ªi£>R´D­, ѤXþÖã\Á¥5ñþ~:Ôúú oY|!»q°Ð{ƒ>|©z}ãàþ/\½þüPˆü-Wº“ðkYðlÔ‡ oÌZé¾°PyÑa‚ š'ÛQµÈî1SÚ9§m†.®LŒÀ7µÝ…,Wm¡7¬zBÖÂ+“+¸Ôµðj•"¼¿~1ÕÒìÛU3žÉ§\êB8D T¼ûxóýW‹O;_¯ÕX‡é ¿Ÿñë8§ç‰t"÷Šâ9àN;zÅõ0MÂ6ôŠTlP]¯XÒôŠU¯ºZÖ¬j5Jb_u{©sœí`~`šºù°”Õ³X¤Ÿ€ÒÅ©þ½¬DE/–ÁËÊ|lçéƒaU¶di=LÐw•5æÐÅT\X¯ÇÖø|OK*™^—[‡¤’E=”¥2Ñ#£˜ï¾üýé(æ:ðàˆ­˜œ?ÕÝ›×.Œ³vEIëh‚1¦Û´HÁ;r¨æõ’%£¿ïþKðÙ–ØuÞ9¹À•$ÿ*ðçÀîv\IàŸÿyÁã®ÊÄ>7»='µ**RÔªV#sE­- ¾]Õ²&[j‹UiŠwÏ‹ïiÏéõ’Q©;ãt^ÉÀnæbO[Þ™„,„iθVô)JúK^w°§(²©Û4[P¯–è‹ä…ËàÅ-a¼n护ÏÍÜ|€sÂÛÂçfÖ ‚¯—\‰ÏU#Fð²îBöŠŒÇU#RT«PsyÜPcoW¥„úÛKmío™¥xw ˺=fhÙ“V͸ÖçýW3\M/çÉínë<úe= YÇ–Ubô¯ÁàcþK]äúÍkAê¢Å](¹«yŬ‚Èk3¨øùâJ[Œ ¨{Õ,ÙÁ â½k¥ÿ´öˆÔÁ†[¶áÅ5Ûš0i69}•RDÙ{ /áðÊúéQ4‰3 < .ÕÆ¢¢©¸À#àñWˆ,–g$1ŽOƒŸVØÀK†«›~êYËZÉ6*5éÈ-‹Šï—¤uvƇ^x/P>±ˆxw ú(²j%‹Îð`mÜ6ܺ]Õ[c#ÐCPáð-Ê hAÁ¢„T•µ©½æ³ &ãc<óYWÊã¸X@\1ke ­TµÊ£c:óþO™FqÜÑë†yŽ; E®_£¬+¸grbä’D÷±Î˳gË“rp'øN…mT˜G )/¦½œk;dsVˆw;C“g´zþÝÀ=àr«…ƒ”´ÞÏ899™ ¬A yø<øó 1u;LU{—Á/ÇÏ£H€€#à# GSzݧŒëކZooG[Ý/ß)`<÷»6®8wðÕÛ>¶m%·Ð'²g¶ãÝôíe'¿õãÞ× ï¿CFÄÀÙ%Â`\B°{ßÝ¡rÿ_WÁ¨CJín¿ýoqN;‘׿#w$ƃÀ*âaå´ò”në‹Õ>.C)U vðÌ'ÃÊlhù)ïz™r²>ÑÁ{¦S©˜QðPj<7} RN;*gCç”[öL‡d–èÖNèü·Þ¬ÇYc?eu Ÿ¾ØÁO?6”ÐÒóz,É*@ÊDBI=¤E6Ÿg€S<˶Ԛiõð1òB9í)6Ê,Uí´eÙî˜î9í"ûx“8¤ ´,Ÿ5ÕŽðe«4`Å eøcN0jMò =ô9_rcVgÒËâË>›Žßtö+{´ƒšcVêeþ›tëTääßT5×8f¨k¨3\¥,<Þó¨mº¦3®°Ø¸\/ÓRÚa~Þ¡Î× ÷_ñ±Ÿu¦ŠãVÙ›Šþ™uÀ§ØÅº¼ÌÊ ,ôíwð"»V³ë\F9TþÓ@fñæ¨2òÎiÖr«;%äyÈ|Eæ» Õ1b•K!Å> d‡ kð™çb«cY–îÜ:Ð×·m—LË»˜μ¨L3Œõ%ˤñfÿà@~ý¯¤âÔòƒCC‡ $çð v½Ä®)ÔÜ„a„[~¤Ã{ý—ùÁôG`TüG›˜ùÇüJ[ŒWuÕŒG_f#/qÅù<º'o-ÅA柧®ÑÞß°¾åšáìaá·;c°v¼ªËk‡,6$aÝÜɼöT^;f”ÆèlÍM¦bée£JѦ–=Rrò½‘ÝZžðeð—•5žm4‰<ÎoIJ®P×Ä:VC·‹ãš3Ue”CëbYåõ»:UûDâ >üø7’ï—¨¸÷¿ þÍØ4ÌŒ…Õ‡QbqN­–׆voïëÛ:¸Vâ“Ú3–}…ÙKÝqŒrY;OLJ¥ÜL^|y2ˆDÿià?€ÿCúM1³óQMS<ÏšbPœ8ÐKmªZª½”‚åÞïsÿ¿Í°×Õ³gκèúÆäýÓmþP÷Ì‘S¯Ò†v–ÌüÙ-~vº Íj Yƒ sf[|åfûЪ^ êC…ÞBÌë«ú×SòRTìâ’Cu[ >lQGó•þ"Ù ,uAA/›zÐh²µÑ9½fÒV —€¸)f¹S¯Tt{JN5ó Žyk‘¬lU#ŒÅtµi«†Š¿G@\ŠT“?Km†¿ÂçJÒNyGì9Þ€f3רfí –#ÊŽÔ(nß®Pu®é–ƒÜ]ÔE¸|Gúª£âw ˆKRu3‹,m[. ®˜µ²‰²¶ c^Ï ûƒ+écÍüÞ‚pø&eV¿¨‡ÛuOÔ!°ÿN˹û8*2èÐ!0]›ÛÁ¥ÚÑ´Z8£e½ôQÎÎÒ̪?ïÙ˜Í0«%sÂË»è­M2 §ß¶&½×XN½8ÞÜ¥ÓyÚ}'á+à¯Ä}¨Î}sÔßÞ¸Z³/á°™a»”s\}ÌfX2ìç®7°òü‘C‡Okûú´óSN~ÌpêD¶gÆížÞ½Ó޼ý:¾kŽjÙ ÕkÅqÝΊ÷z{gýLcH±TͿ蔌²9a竆Û_­UüCÛl 9¶}¯v–ýýŽ3å¸F%O¡d¶gîóÞsþkÇáÿ”x_ðª'6ýn¯¶i“6ë9x•°GÙ\(x ’?“þÆf¶Q3™ÙCd .Ì(¹ ]èÙœ›Vñ9&û´Ÿï½q#Ä‚[æf ëUàë³ÞÝœÓ7fåfXZ([z õ#x3?FéÕd4ÐõAAúÊH/úÙyA’$oƒJeÏ\jHú%¥ÎB,ÝW´ªUÃë…÷·šÅ ›s }–yÌ¡&ù(A‚Ä‹sDÑ>ؼévi¡dp›cUe‰3+3&iÛY1$R§€¸$û’›'4šZ|IÊæ¥&” ײ&F-8jëp ™VïW7nq¶úb!¡º‘ð:áluÝumöÏþÏžðE†¡¶D7ïnß*mK¡zÈùqtspø®ØU$q¼:ÝÜ Ø*«zèÛò˜÷Œ€Rnpζ½3K[ÒTá ðmnÝ$Ëjà=àRóHxüxzNŠ=< ~ºN8< ~VYÛXP¨;l PûQ˜¼ïJ{Ü)`¼¸í¡¸â,‡&|ijVÔŸ!«¨É\•«[Àká"ö.ógˆsGcÊMzrul‰p=øú8ƒ~5“«$Î&`xŸ²V:¹JÅiÀ¶9¯À¤*å*£Õþ*êƒÇR‘ºH…d:<~F¡žšëg{xül:æ±øø±Í#“—¨ôsâRöô7qôyðóñŸ^æè âJ¿Ëáßá˜\—³€;x ÙºBtëô;ôÕÀÁl¿C_Úêh¤ðHڱЗn—›±ïÆìwè;þÂGÁ½EúúÎà…ŽYÉ;’êwèKÇO‚?™Žy>þTúý}碀¸’îwèK]À§ÁŸŽÿôQûúÎ3âJ¿ßYÕÁûÂû>a!![70~¿3S¦™U×3lZ§àÔŒ¢9:5ãøäû°¢—5o&Æ¡ïMŽ›Åqdg1½‘°@sÆ­z¹äæB»šÙ,}­dŒêì>eÎfîêW á0‚Ɖ[þJ‰úY | ü­ä›Ð*4ÂOƒ:ý&DÅF@\é7¡Õh6«mB‹Óâu®¨½Aë7ô¢ËZŒãz)³½è`ÔªÛšQ6*FÕuf¶° Ý6õ‘2kjô8%AŽ«WKº]Ò Û¶lšÝœvr«ã=iØýõZ•X´ª£f‰iÔmÖ¬´j~NÔ¦DsðGÁ4ù¦´͇ð à_H¿)Qñ_WúMIXBždSj¼ ¯¨¾)ýbpS¢dõ[’5â°ÆÀú 1Y‹Æn2R´è›þñŽŽ^©•©(ï—¼z‘û-ZØU³Çd‚DîÃî@c#ü}ðßO¾áÝÆFøà~ãâÿP@\é7ÉyF*PN”QJøçâI*å)àóœÆTÊš™­©ái%Ô„!3É9aÒ#Wj½](ö*çþü4G®TüTý+ý‘ë=ÜÆ)€’¹Î÷v.IˆÖ \Þ1+ébÄqë¼"éÓ_úŒî¤Ábƒ/ؘù(h‘÷T³&Õvoß«9Fä™PzÌUÀ—À_Ræ·ºØx<êÄIò>à÷‚¯Â&Ú"¡ð²áŠéû,o|Ô÷ó$ïUà+àR™_Ù~ø÷Ån¶Ë½‰œy dù~àGÁ?š¼#¥âº€?þCé;R*þŸ ˆ+}G*lmMБvÑÆO ɺËÀ—IûÑ™o¼N&_yâéÒï¿#g‚›.LÕ«…9­já–÷B©îD%îÅ÷GÀG’o÷Âê ‹àR³ñZ_Wú-` ¬~M¢-`ßì,![7pE‡ê7ä• 6 OKÕÎ¥¶ìJ„•Y33jY#?ýLRzäÕÀw‚¿SY\ÑÍlظZ‹:."^þø$?.¢âÞ| üµØíe ù(³ºŒ‚^þ¸\Oª¶½¼ ü,øg ýfûOŸÿ\lݼ»7°×i4I~6*‹Ü½ÎG;XW=ømÛѪ†A+úgÄÐ\õBA¶VÔ«40®éŽƒ…0•ÿÃ3›9'ŒaRé¨øØ¸¸$[Ëp\qèªEÊ'àï.d^äBô•†ë B?yâBeaÖÍ ¯ƒ®_“|O»*Y‡F³ˆcLõ¼Õ ŒxpÅ3^ý83Þ½æ4.{‹Io~T°W…&šû-­™û7½M§Í(­7ò‘LëФ¿ þÍô[÷°ZÕ8Éæ´¬O¤9ÝÜ‘¡ j=Ñz(k9ǤÔz4"BÁ÷ÅTйfƒ*z¾9Í´è¼ñÐÔ⊬d Fâµ+›µÊx_Éš‘_y¯‡íVÁ«Êt½DÈx'£è:ð]àïJGÑðÝàh­·±!oÔ*—­IR s|5«JaÇž¨þ‚¤ûà'Á?ÙŽ ^ãZ÷0ÁmeS¦„\ÝÀøÛÊf¾aš»?Ë6æ Ø·¢·K’{9ððG”µËÖ3G¡M’„9 |\j¡j´&IÅž?ÛØWo" ^¿”ü€ŒŠëÀãç)¯PñÏ ˆ+}ÿ³[·‡ úŸ‰¨þ‡äÁ±´ lkÝP´lÛpXïAGáÄÍQ­™Ä\̃瓷faJÁËSØÅ1mk¦âÄ•¾5÷À‚{µæ[#Z Ö \ .•¸5P f˜óô4!Qm™d\Ìç’·åØ/ax_ú¶LÅçÄ•¾-o„ýnLÔ–Ãw•´’«ß3/˜!Ïý3RÚðWJ_­,!ér`/x¯´*çáî@Á¥ãü£®ŒJmüú ïD¤Bvã`¡÷}øRõúÆÁ×7ݸ¿{°àWÝëÇn\¸¾çFa¯V`£W¿ljÃn øß]}ìòÀñ ¡i!ZDþ0Ð7£V}cÖI •Ù3 6/ÄÀdŽF"y_ä~QFuÎùFƒT˜¤cˆl!{3Qè «¼ó•”I\jÈùJjU–™ÃkÝ\[jS½J|ó-º]zõšsÊ¥.„/M´ñ‰wiY3oD_)$Jó¸ºÈK²Sfß±Þ~‰=·$ÑUàËà/+ŒÖBæ¨8øð÷ÄVOô]þTþ+ÀWÁ_M>X¥âº€ïoúÁ*ÿ>q¥¬>È­Ú×øÒÁ5’uÕ/ñ½gúÈ«ÖÇ·Eµâñ=ÂMà›’·âa¹„›ÁåVSŲb*>+ ®ô­ø!XîC‰ZqËã­Dë.ïP½ãgÐËÚ"[hÜéx{𠸺\’Óñ$Ì1à)ðSÉwTÜ£ÀÓà§c›{Ìéxæ ð9p© éhˆŠë>þ|úˆŠ¿, ®ô=Ð&nÝ&ëBs$´­˜€š+_q\Db¯Þ2ˆ„9LÑQqoDœ¦è¨¸.`=Y@5(²›¹m7PÍ:ª¥Ì^ôÓ‹D”( )…CÛÛnI˜;€÷‚KÜ­ÝRqË€kÀ×ÄÖΆfÚK±çš9µ%T¶¸\]ðwÉ-Õuø(ø£é¨k/ðø¡ØêŠž‹Ê? <~D™>dÅ‘$'§Á¥: è 9 <~¦M 9 |ü u $z¢8äià3àϤ£sÀgÁã§ñ•ËJF2\¾þ‚2´š¹j©•1à‹àR‰Ò¢kE^¿[+ÏzKÑ«ëdªÅrÝ[î˜èóœb^>#½VcÿÅ2õzUŒøÃ F_²NÏUþ"ø/¦jõr3i šPk/ µN[®ÑÜ: ݺ¡aè#Ö¥f¡åÅš%™= ¡ ÷‚ïUÖbæ<Í'´Ù<O€§…”ŠÛ|<~ÒZV™‘ 'O€«ë`æ<¦¥jž¾þB:ª9ÔÁõتy¦WØŽH»¨çJžØLï¥GCBnÉDñôX#ÀŸÿ©[¤!þð_ÿ«t´ýuூÿjlmj(;×<û¤q ˜3(›"Ï®)¡×_ã˜YÆyFêÕ•úL™$ÒÀõœ¦ ÚÌr ÆyF‹­Úµ,?¶ÐÄ&<¤ÌÌkNiŽáʬ=# 7sN¨HwñRa’L/ržQy°h å>Íy&þÁ¢÷ &Úcãø }=´8'T5$‹ž“™Nr®4 d %Õ€W9WòŽÙ91£†Ë$Ððû8ÏÄÏ/9jßµÛÀ¶n4ÍAÂ[lß6‰´¸¦#µ}ÛTÜ" º}ÛNs›©>ÆB¹›Ù½ímºö·™ê%ï ‡͵;ró ¾øÀÿ‘²ú^PðÜk@¹÷Ãìú”¶‡ÈÍ’Šï—dK¸7®8y4HJ7Lñî~æ%Ø0á”3245ìsœ'F([ksPá'eŠø ýÐ&á~ðýÊœ‹ä‹æðx c{*îàãàñÇö+§)"Hš“ÀKàR[(ƒc–Ð=Ã-µ3,‚ÓÑNXŸæ1ú´>•oGÁG•éCî¼’¥| \járt•Œmp;¶JäföIx\.¤¼–¦¥ZÞ|¸Ôòéèj™¾þJlµliD÷ℽ^,Z6E@婼vÌš4& [ªI½ ü2ø—Õ¹¸è¯’I¯ü'ÒQÜW€_ÿZlÅÍ—mN? ü&ø7•©Dæm2Iò À_ÿ¥ttòÓÀ_$e‡ŽKMŠ}­ÌSÙDîå|š¾Ù×?áeúË3¬JÆÒ“ý ÇÌFÎ Óî¸4°­cîA@xË%w"¡–SLîDÅ-ªKît‡ÜɪÔê”ÝIBYë€ýàýêºþVGw´ÔÑàp©ÕQÑu4Ü .÷¶V¼û™‡´‹z¹ÔçNÕÏqrŸZ¯èSôÖž€ÖŒx¯ýµŠå¸(ÔmÝeÿ2Üq‹W¹Ây’§Ù?ÚÒÇ-‡9Ë£ç+†îÔm#²Û£*ÚüSð?Mßí q“k ·÷ŸDð’ŸM¯'/Ç3½ñóò¤êÞ§²7ÏÀó ú÷ýƒaú½žhË`N«ÙVͲÿŠ3dziÒž§ƒf…ÊÌNlE…¾þ†²–Ýê,‰Ð†M¢|ø&ø›É7l*î#ÀO*¶™¼_÷UÖâ¼¥:–c´8‚øÓHî5-9e`Cf@îÀ¸Z4èˆuïç±ÞŸÂ è‹{¨Þâ˜y˜sBeJ`Ò)!ܦ´­FvT|§€¸$[Å‚¸âP–îÅâŠY+kh5¹UÓY÷ð”iÇݽnØZ6¢x; (Â5àRï(}È=“#X—¦³¦ÓÇü"å¤Ì[ö˜„€;Áw*3裢›år×w»è“jTþîŽF˜äqu‹É×»nÍÙÓß?99™ ¬ $äàóàÏ+SVW¡n‡©j/ð2øåتšÝù’/GÀG”=þ‚^g=„âh2h mt¿T|§€ñÜâP³]& ®˜µrž¹_Áëæ´‹y-;408Л×YÕR½èÅíÔ˜úôª^žrX`Vµs|Õ›öó†¦Õôâ}ÌÈkl7TLxü¼:Ÿpª۔ØÕÎû‰¨Ø?Ï[£î¤ù¨@òYàUp©éçˆ$$yw8>ÕÿMå_^¿®LW[wHÈó2ð=à*gÞG¬r)¤Øw_?ó¾4»• ¥ûú¶í’jD¯_]™bò;Ö’eRGÚ?8ܵcëÎþ'?1°uGÞØ±{%Qß~üë u7aØ#!Å~ø ðo¤ß»Pñß—¢§_R`ß1lŸ9!} ¹Ù=mía©øNÛ<À¡H«[@\q#¯èyöA%„ñódBõ‚–³Ò­d[ ¼ ü.…­6äÀ´}ÐáÝàw+,6d:†Šë ÁÆ4‰ûg­æZ8ó@ÆVînߪÌñ·¶‘ÐÉ3fððGÒÑÖ6àð±µÕ#(¢¿q#9O€«[ß´¨àÃâÊÈk w´ÕÁSñ¦4„ µËý<Ë­¸bVË¡7jÔLêejÀekL³MçŠfÓ¤ª?]Ú:Cyä'yJ%<7úé’îjûú4Þê³x•0Üsî\ONÓÍa·f99m„‘ª1–ÓŠæpÑû¤Äˆ÷ ­™fÿÉÇz#?Ô<áiðÓ±ª‹ÉY”ƒ(ž° ¼+¹*Ç£(ÛG5 ù>²X¾=¯¨=Qd ëkœ 'õ–zúžÈ•eÊ‹nH‡!á2ðøs%k™rZó<àèòL„kÀ×(댫äaCÿý(î¨RƒŠÜ3PñÆëf½Ë÷–ñGé±V.+¤·¾bLMZvÐtÂcÐá ðéëä1|ÏG\r0ë[ç‚Ýÿß1ëâ?ºúmÈGö²®)kÚɵlæÓ<ÒïVjýçØNœ«é?7R7Ë%ÝÐK#Û¶•ô¡mC;ú1ÏÚ_Ñ«ýâfž¼_±¯¼ ËÍ<ò·ŠeEÎówA5••ü§Æ‹y»¢çëU3ÌhBfq°bÊûÁ…™_ýßåŸÍŸå#Ÿ¼p´¯¢¼=³ 7ÎjQGªlÀ¨fÅ."ɼ8øûßÙºñë]›a>þÛ‡³gκèúÖäýÓmþP÷ÌÂÉi¨Y­ --™ùÓ["üôt;šÕ*²V1j–_¹éWãz%hˆ%tÞ€è«ûÛ)¹ª ·èâ’#‰6AÙ"à=àR•Xê‚‚^6õ ¾½5Ò9½vÒV¿F@\Š”óÐYRŽvª¹¼lsSQ›µ3|¬QäyС°ëP™Æ\Ó-5'av¯±é®/}QñyqIjla\q¨ÏX. ®˜µ²IÓ´£Â|›×Èý¹z=X,ëNäE©ó¡5ÂMà›”ûÒž¦m÷DėQîߥ̨CgᨸÍÀÝà»ck¯3ò+1*p/øÞ¸rtî+˜£þaAçÙàϾdN½ì:Ãv)ç¸ú˜1lÕ’a?wýÔÁ ÇN|úÜå'Ï9tø4M¬œŸròc†kT'²=3n÷ôîÕµú:¾kŽjÙ ÕkÅqÝΊ÷z{gýLÿú®Xªæ_tJFÙœ°óUÃí¯Ö*,ZqÇ_Ô¯ØÚo8Ûû]ãj_‘ž¯o´^.³o÷ìÕβߣßq¦רä)ÂÈö”¬¢ÿ§!˜ó— ÷à‹¶/xÕ›~·WÛ´I›õ¼JØ£l.¼Ã˜ö9EÛ¬¹šYî9Å~ì„~µÔ£éÎTµ¨1­ ÷äóýìÿ~iýs˸_?ÿ™ý76ktx “™=ä@6 àÂŒ’ bÑ…žÍ¹iŸc²OûùÞ7Âì­Ž}"óÝ| ü±¨fLߘuìÓÒBÙÒK¨Á Q¿¸ŽVâð'’ú˜ ý1éE÷8/H²‘äÍ#b¨ì¹ƒK 9·II©#Ô¥ûŠVµjxçþV#ü°ñxè³Ìc5ÉG $^x"Šv¬y)ÒíÒBÉà6Ǫ:$8ÊtÌÝ ãÿ>â’lìócOžÓ\Ä"qIÊæ¥&I”ÅÀeàËdD ©{î¡k ¹V×€KÝK]XໂB Ît4r¼x|­”®Ä»we¯æŽeøêƒœ„.z µ#’é>`?x¿´u„Ô%Ë ÖS±ÀmàÛâÔÑ_[Û;Àw(%×,†´ã ‰´Ë‹ïÞ¼Z0ž{ëŽ+½ŸNö¯˜µ"±\i TB°\I‘›õ—E«[À˹"ºØ™½ÑzsÒS$Ø2àzðõ·ÆÔ‰´ 8>˜üÔ§‡À‡b›ô ¦(ÊÙj”ø¢u 5m?KMkŸÇ£®Ä#y. à…:j®Ä[ñö a— K$íiàÓàOËJ=ë—Ÿ.›}ø<øóñ;§¼D½^—²§9p‡Šë¾þBú]3¯ ˆ+ý¾P8Ô&Á¾pd%dóƒ…à+”9>Dû€Ç ›¦Öyºº©™iÙ‡½¬y9C½´‰<›}ËC1ÉTÍ·êå’—cÔß¿.$óõrûZš«_1šé›µQÛªð­ð^¿ùÌ*ª—ÕÀ·ÀßJ¾ -E³!ü4ø§ÓoBTügÄ•~l)nBR£¯ecfƒ–Ål5+-f°¶z^¢²V5p-y›];%ܾ!}›%ì—¢§ï.4Ô2üÊÀ&Ú8(]÷±ÍƒR¡_‰7èš&Ædw²ên­îy]<›oE´X_1éð„þ£¦í¸Z¶¬e#rV´•Ð'áðÊFfóXäu@F_ò×å?ž|pK_: ØÁ ©Îgzg,ˆGe¿óÑ)w α©;tàá¸&²ãò)D®fÇ(²Ÿˆ¥çÇoKõø‡t-Õü#ÀÿÑtÔüiàÀ¿[Íf¤‹™ÒŽÕŠéíš8dÕt§±ýÂôYpðÏÕ=j•ËÖdcK¥åÞÕuÑw¾È1³…s´ú*nI TÓ¯HÄa«Q8aü8ìþ¸õBb,Wúõ‚¦î|³^:¢†^ôG]ÀEàr/µÄ»ëÄF襣DQÜéFÞ“H¢->þ´ˆþšÝ\Á¥þêJ•pý†·H£Ý8Xè½A¾T½¾qðÆÆ;W¯??"Ëu$ü&à6ðÈo]è³Ö],,T^t˜ ‚ÌëP·ä‚~g» øvÁ–Î9í4$e…21ûÖîB–«¶ÐV=!+3”É\jÈÊ µJ&‘ƒç‡Zš}»jÆ3ù”K]§‘¨ŠwkY½<©OE~$Š3 >¬.=|2j,J?sx¤cÖAÃIÅ¢TÜ~àQð£±Õ2ß[).¡’Ç€ƒ?®N%чô3ç€çÁϧ£’“À àb«$|B+}< | ü©v„€wruz؆Šíª 7{! ó•4½bÕ«ÞÛíqÃ5lk̨¦;Ui$äb`?x;”vuW{”vu—R¥=8Si†­ÑÙ õFJ਻ Z"ÌKm†‰«±»¡¥»Û£±»¡¥»•jl#Ïu==!Ä´´ÿ‘SŸÞ %n—›¹ì§¢wH‚ ·‚oM¾ŸºK¸ <~D·@ê¸W’a;pøe:‘ÕG\±;oEiÿ€¢èL¥3ÎR”öŸ„Û HûÛ¢ÃÒþ?«& Hû/;q9m4•¿ö?¦’§ý'!Ÿ^™²ÂÒþSi{—;f¥ý— c¢§ý'^ŽtÌJû{>>4íÿ:®Zo+DÝ/ß)`<÷;í?kjÅ}ê^{ßiÿ7@Å„çÁ¥æ²ÓHûOB> Hû{àò•Š»œê˜•ö?5ÿMå_¤ý;Á9í?Éñ2ð=³ÒþÇVGHÚ*îÀW:f¥ý—TGœ´ÿ$É«À×;f¥ý›j)‰´ÿ$êÀ€´ÿ±u’öŸŠû 0 íZ½ ÿMq)zú9Òþk\ÇÞ2é6ö°T|§€màlìàË”}T³dYbéA¨„0þôŸº†$Ï:àà(l±Él4|ß#\ .•P ð—»ëÁ×+¬Yt*® ¨k±íTåY$Ùà>ð}Êz£¹“Z„¾÷ O‚ŸLGcÃÀSà§bkLþ<’ã4ð"øEeÕÐê<‚\ŸÞjÐ6öà9ðs±=¡>•xüB\9þoBýÿ›P?Ý„úd¾O_!ªÓ7Ú’PŸ¤ÖéuéEy›$ÔWöÜÁ¥†lÛVRjàä[ê õ•=Šú¼ñ¢hzǬì1u;WB}vÇÏ@>ãÝD;+ÆŸÖñ—dc_u³â„@‹;¦g®Ÿ±¢<¢7ÔôSQ-ˆp °\Î’¥Z4áÃÀІ½¶ác2-Z*äÚp!ÇM¾yj!ÛJà:p©™ý¨íztDøø·QèAr¯^¿[þB•¨\Â6„ô¥À¶†ô¥,0VèXlø¡D‹Qç«:â:&ñ®TºÐNã ïˆ+Åbý‡IÖŠú,ŠúȇÑt 8c±yÄ>cæIË %¢Ÿ]\ß1ëP¢v½£ÛìïSÖÊ[f>Ó€yðøáX—&—‹®8>¤L/±_Ñî?–Ž~¶ƒ­ŸZV2[à àð3Ê4Ô2Bm©–§€Ï‚?›ŽZÎ/_Rä%TR>þœÂÇ¿‰Íσ?Ÿ~h@Å_Wú}±¸n2¹¾xïù$dë®è˜u(RÄ9SI°ÕÀÁl‡LâlKõGÑ< ÷p+øÖ69|’ap7øneš™c’±¥b‚MG1{€?[1Ñ]>• x\*"ˆæò©¸.à ð±?²Ë§âWú.Žd«ª\¾Ô9x$“ÿJ.¾ËŸ)ӛɞƒ—׎jõ*ÿeÓÀ98QÎŋڢ¨šV üÇ’oQb¾Üÿñô[ÿ/Ä•~‹Þã&Ø¢–Š“’úoœ…6¦hnãpÙóR¸íjrÜðŽÏ«õy–.6ƒ¶i±†4aÒùQå)©£éIî^—ÇÕõj^×ì¡( ¦l—€u𺲦¹°àÞB‹Š-&5Θi%0Õq†Ÿþ‰PÝ8£mþŠãàóàÏߊþJL™ÙEÅn¶Õ_‘Y`;ý•Ÿþ,$ š"5×úøÙÈW€¯Pæ±æµXzÜB ÕÀ;;Ç2&ï®ÖA5„êvë­Êò…™MŸÕ|Hž»›À7¥×œ©ØÍÀ-à[ÚÑœI€°¼¯ Íù؆·Pø±¾ƒ7`BõáÇÍìöh!ØJ $ߨ×CA„B¿Óh ŠA.œ{2鄞â~àøÈ­‚h¨jÂ6„ TìF`[C Œ‚» Pwô± Ul+Pç:âú(ñnäWêT|§€¸$Íàî¸â%.WÌZ‘ÈÝæg^" Èݦ¨ É\•«En»ˆÝÇŠâ(8¦›[ôû¸õÒõ¦n ɳ ˜Ï+kæ¡kU}GØÞßÍE^ÝMåÁå_×)Û£Bâì>þH:Z?Ð&­> þ¨2­ÄØ£Bž?—Ž^σŸo“^.ŸR±^¤öB@ n¤£—§€£à£mÒËp|\µ‹¾‚ı€àéhÅN‚OÆÖÊüœý@á*ðàïP¦˜e=°VJ;ï¾þZ:Ú¹|üõØÚY e%Îh$>ü0ø‡•©§åÐ&oO2 w€ïP¦ÙóøHšaà!ðCé(f'ð0øá6ø{*ÿð(øÑäý=×| \* D<OÅWúþÞO¤N˜ ¿ç/$dëÆ÷÷ófÈô£tâçßÞ<ÒŽ.¨Ö+#ìSÖ”؇½¬ÕÊzÑðÒÖLŽ›E~)Î ×°Y8QܦóCéDñã£Z½ÊÙ4JüÀÊ?eœŽ8¥sÆõ+†xظmUøÉküÐ+í¼ah”_F©«ßÿ†2‡×5n؆„D¿ümðßVØÚ›§k¬x{æ`i¸b:Å>Ë{©%c‚ß~üÛ²rÏúåoüwb{€^:®Ñºíɇcî4«ª[“ÞYVÕµ­òLC÷Z§fV…CU£úszŽßå˜Ñ8ÏhÉûs*¶ Ånàœ0mNÅ÷4Ñ¿Ò÷ç›xƒõ09¾/%„óϨX ¾RÚ¡/ž!”Y¶ÆÌ"óׂCŸ7¼–àIcŠGA{iGÌ*k.Ý;©¦h3³M]p従ÏÎpÝ}ð:øuuÃo!aÔè“dyø^ð÷&}Rqï¾\.qË´â4‰Q‰ð~à÷ƒ¿:­HÍ‘,?|üt´ò€¸…iE"³‰ðQàÇÀ?¦.t¡/2Jù4ðsàŸKG)þ0ø·¯©|øEð/¶}MÒü àOÿT:zùðëà_oÚÊÿð›àßL>à¢âº€? þÓé\Tüψ+ý€KÈ;š`ÀµT\Û&!a7ð.p©Ežd gHv¸EÔUëó¶âèØ ÃXH5a:u½\fß5Ýq™:÷·]—KÝT׫y]³‡ª M¶ÆKÀ:x]YÓ\Xpž¨[no¢ À ð‰Ø­bu^;̃_>k1ù0G’gø~ð÷+SتY U£v%$×kÀO€"ù®„Šûð“àŸŒ­®ÅšS¶¼—ZzøyðÏÇÒR`w/7CB}ø p©9­…œÏJÅ}øMp•½l ËøàOƒ+èe£ÆTüÏ(ÝËF‹1¨¸.àÏ‚ÿlú1ÿsâJ?ÆÈòfäar1Ʋi«é%DìÞÝ1ëã˜ïfósLíp‘§KȾxüè-N\g€/€¿F8A>ÔÁõØ ?{†mv€7"ÑǪ$ëð5ð×”)ófâðÐ(ƒDú0ðMðVøPq¯?þ©ôû*þ-q%Ý—Pq]ÀOƒK­+Š×—PñŸP:…eܾ¤—[µ‡jûÂŽPõ„l{"1ºË;f[±ß˜Ù\WZ^¡ÛcõŠQu¨6KR­jàZò6Û ;%ÄK­Ž6¼Ô¢â{Ä¥èé» µ”ÝÓ|ئÝ`ÃÆ}Ä%ÙZ–Æg ZˆÒ»¦‰q/ó"/~5³Z,×K†³'ªt9è‰P]²ŸÈ•Ô‡¢}Tc:®6 ã»Ú×âÖ ‰±L@\é×K?ê¢_I½tDõ®TlÐ?ÉW.I±x÷(ˆXc}eóŠQ6Ç-«”ÓJÆ„IqN;xüPN{”þCoÅØ¿Šˆq³l SÕÃuÍê˜LU.ž?­0Úö‰GvI¤'/€¿|´KÅêàñÇ,wБ©Æ"‰ 4tÁ]eª’}‰FÒ\~ø÷¤£¥:ðeð—ãû¢Þ|T§H¼ø*ø«ípŠ\©¶Á)R±]@uNñn¯¡Ä=ædZ |üe-G~ 5Ƀuí^°ñP‡dv—hm‡Š[̃çc«Jjµ‰ÐÜ ¾U™fbì %ö§°¸žŠÛ< qý_;¬W¬zÕ{¯“µ Ç,Õõr¯6n¸†mUÃt§üœ6S¥U鯘WRŸ1:êµ¾ ¹¬eͼ‘ç¿g8®YÑ]CâM=ßàgÁ?+ýœ¸›+˜£t"Ú“Q©_¿á TÈn,ôÞ _ª^ß8xã†ÿ‹W¯??"Ës~HøÏÿ%ø¿ŒúôYçü,,T^t˜ ‚m“K^Lýˆø«‚à_•¼1gÒ9g—AzHRŒàÆ_ÈrÕzê'ä$ er—rZ¥/Oƒ7T´4ûvÕŒgò)—ºN#QïZ|å0íùx©®Û´áÃr{óÚùz­Æü²cð÷P»Yžî|¼7Í’Õ©J͵\³ØK%Ý.i†m[Þb|®yóŒÜDºÛ>לAd•ÙÊy&r\Ñ&לÙ&¾MFp%®Yê]³¹¢ºf…JIÌ5'Z3¡®9ÁR[»fE*Þ}6gxæj¶5aÒ:Cš]c>ºf9Ž9R6¢Oˆ’^„¤cK*1A0›#lÃÛT7A°ræD¥,Þ .÷Ê!¨)K'À!qÖ7oJ~øIÅ­nŸCRÏiºæê¬õ YÑ<µ¸sJa~«6loº[+Z•šU¥w{^´T´lÛ({ßnl3ôB¢¼v4úL*=^ø~p¹Õ¤t7Nˆ³¨à˜c].È!ñ?ü(øGo‡ ‡þ!Að’<~£LŒàw,Èr#‡9Ê$‹æ¨UË\aÎ\¦ß®º t’-µE £ÎHÅ»¿&8Ø“yƒSˆåÈÿꥒé¹n¬¶knç6úËÆ{ Ü´E–"µIÝÑFir‘ÞŠù%—ø›MïçôŠáeÇl«^£ÃëX'Ò?ª]Ëöò#H,Ö*4Sâ‹Ïýݬ–Ì¢î-þ¤€Ïðí@zUÂ*2àÿàœ0†UYÇŠw2©«¬9¼ƒÖʶ„­t"†î\Í9a¶òPìœ*s~¡ë‡©àÿ‰‚ïäœ0¦‘~šŒ­ÂŒLc*¨äfy®"òEž’B=çÇÌ f˜ ÇìñËŽÑø ¿á07Öt§9>ó§#ïh£º ø5Î o¯Y;þ'¿Ì9ámÐvþŠ ø¯È®$ U#†âY;erE g*%™Y»¤k&4˜M°ÔÖÁ¬"ï~ºYFŽe§;mÿm M)Õ]ö«ã#ŽaO°8Fw¹gö\úô¾"´‡ÈZÕò”Ìb/¡¦æ]á|žTT².ϵëEw¸çØ¡ó=AÈ<xƒs‚yeà;9'Œi;ÑSfSùï¾›sBEšYækæðñƒI©æ}Àäœ0 Õ|ðsNØÕüà‡9'TÞhž“ÒÌÇ€?Ìù<©d,Ñ5óðóœÆÔÌ‚œÌZ/’áG€_æœP‘v–øÚyò´”r¾ üYÎ ÓPÎW€?Ç9aLå<Ù˵eæ… Í*eÓÈi†Ùø«‹è‘~žc×Ýœ¶a8ÒU°Ç-ÉÁH×=Àœ{x; FºPFp%ƒ5b¿Ycƒ¦X™¡ˆ©¢Eªd®¡H+“oW½„D,µõ@D‘qN»+•]\”¥²ôªïå"ý®àÎ=L¾_ìz¸—sÛNvísî¡bÅÈE“]‡§9÷0Åìžá¼ëL›søç*ŽóIjæi`‘sSÐÌ9`‰ó.¹—Zñ5ƒ·J]£œ{xkŒÀºð†§ë*ç]WÓÑÌpŠsãiFêL)áðœwÉÍ $1§Ôõ*ðuÎ=LA9ï~sã)g¨WC!6â2íæ@ªôâS6døð[œ{xK ¥»~øï8÷0Eþð·9ï’:@¬ˆÌ£½ÚˆáNFI¢„wysÍüšŽ0ˬéf•¿š×½ùCôiï½EiµN‚ò[£.“Í›•fCü6†÷þŒIIV*¦9Í]´-Ç xàÖ/CýåÌÜ齿EKjލëw8.¸‡så ;¡×ð 6·qN˜‚‘/ЀÛ9'T6Zjõ~Á½ÀœÆt“ϼ†wè5ü´¥¡ŽV2œ¢mŽiŽXkFå2Oýå7¯‘º«UYsLßFµøç„m˜¬ZTÓ+1–ƒ.xøIÎ o‹ «o ‚¿)#¸’ +5b„.…re&­ÔHuÒJ¡Zæš´šËôÛU7¡W –ÚzâJ‘‘Nk’ïs¢|¢Èg¤‹7Ç_7e]æg?Æ9áíá2\üÇeWã2•ˆ:ÇÏ+å.•HÙ]ªSÉÜsüá&ß®z w•É•:‡«TcœâÝeÂÊùÈ{E‘~"ýLl‘$öÁ´Û°ŠíªÛ 8_&ø'—/kK/6ï¸\ÜO’/®_s;tb$ðZAðµ2‚ÇïÄ”‰œW­=.ò+*R¦V#sõa- ¾]ÕÜ…%[j‹.Li w3Kš§æp"­?·èhY³ªÕ »Èú·^oޱRg÷1èZ®^ÆÌŸYF5fù ZÍ1¯Ó—ÑfyA¦ÃûOÚÄ~tzö©Z¹îÐP­Üœ`ôŠéÕŠz•æ|t׵͑ºË·Mÿk½b±¿òĴ놿–—oÒµŠáê}¶1FV¼ÙwÚ.ùý– /9ÊÚŽv%G‰Ñ[x™Q8'¼-z‹Ì  ø ŒàJz 5b(î-Ôµ·P¨‘dz‹D«%´·H°ÔÖ½…"Óï~Aèföõª^,RRA:M肽Ÿt0¦×þ~Øy ŸòG¨±?RÖ˜»N7^§D’èÏ€Á9¡2ã }ÇCþ1ð/9'Œi<‹½w2d6õðŸßåœð6ëhÿø8ÏüŸÛ¥£}[ümÁÕt´JÄPÝÑ**rG«N# u´IVKxG›\©st´jLS¼»Üï/©£‹<µ(ÈÔ¹”s˜2IL-n…i¶aj‘Ší¶yj‘DX lóÔâ1¹>Œ$_¼­¦IൂàmšZT&FXvL¢S&T¤>L­Fæìà¾]Õ܇%[j‹>LiŠw¿Újj‘g–wMkútb3-½ÔÄ"2P5%h(©vP¬»oƒû¶sìÿø‡àx»8ö?ÿ#ÁÕ8v%b¨vìJ„ŠìØÕi$!Çždµ„;öäJñ«1Mñîû[ùñ°i@Õ>\b†O¨L‘sBE Uf†$)-Î •Fè XÖ8'ŒiÒ3|$ÆKÀ)Î o¯N4s ø*ç™ÈGµ©ͼWü½2‚+éDÕˆ¡¸U#TÔNT¡F’éD­–ÐN4ÁR[w¢ŠLS¼o†O”é!ÓÆ–Ib†oL‹° 3|TlðV;idZ |üe.Mþ¤A’ç!`_Gj' RqëùU' .ÈÉÌÆ’ ý@·#Þ8'oÔÛÀÜñ |Pü Œàñã eb„Åç$â eBEŠ7ÔjdÎx#ÜàÛU-ÁñF²¥¶ˆ7Ô™¦x÷æšm¸g,¥l çGù±Õþy+lØoÙtK±\§Ó‘Ä£XøA-|ÅŽmŒé6}A§½à5Ǩ—,-†×ø ð߸íö·þ·‹ÃþCAð?”\ÃV"†j‡­D¨È[FrØIVK¸ÃN®Ô9¶ÓïN6¶–=§3[©;ã9mh``wo^;CÙ¤GÓMÒ‘£¦ëÒD©'Ì]3}Òô×tl(?8Ãiž1š%wí.M¾Ê»‡Ìœ*j—]§Ÿ9nU&R¤¸U­>æŠ[C½]•µ&[j‹¨UYŠwïk¸ÔéoW¼~•fk‚æêf¿R‘x×->ÐgÁ?Û?;ï‰ËGd=íç€?þc·‹§ýqAð—\§U"FØÓ«”¯U"Td_«N#s΄|»ª%ÜÛ&WêÞViŠw/4½mHž Ïí Ž–õ_dóýAqG±Â“epNØþQ, ´ x7ç„Ib©¸…À{8ÏÈesïžËM¾ŒÚlœ©kõr©Ïªa C§®•Í+FÙ·¬6,ð{ °ZÖ‰þr„žç^ É9a =é{‘¯n é&€78'T¦ì²Y½Rl øNÎ Ó°±ïâœ0¦Ý‰pÌRJ†«›e'úIônàrÞžõº;¹qy؆9 *¶ ¨l#Ó4‡aUªæHÝѲ oÐË›<î-ctÔ,š”¼uz åÇd”LšÁ ú6ý ­gb¡—‹—NãèÍkç›oÕ§½–EïÂ~¦Ó¬ê´ŸÔ²F~,Ÿã÷Ä÷µ9Ïmùâ/±ž¬Ïóg|N­Ï?¤šOÃE·KÒÃbŽ™Õœ¦o—»`‹»Úc—»`‹»TÚeÇ+¬Ûqé\~Ü‹xŽjišEåøI/NͪzC@ÇeêÕí’fØ6 OrÜpëAص¾ ½\7~þKÑªŽ²¬Z4¸é°{ÚˆU¯–¢§%Þ‹ ü~ðïo‡Eì†ìnEì†ìVj¯yFpÈ*޳ÜwJgÊ*÷ÓªsfÔýhå‚n3±ÙÑBf „9y½ª—§®‘ÑX¥’ÃC3õTÖÌ2*†;n•rš™7ò‘7»ï†A¾þ†² v‘ÔVÆ#‡´$ÎÇŸ—:} Z¸AÅ}øYpù™•FS‰îÅI€Ï?þùv´Ù=h§{â¶ÙÀRymÕ¼¤‹<šè ®˜U‰ª *~¾€¸Òc/êÞG\1ÅXÊ ‚–y1OD‰öA Â¥àr)©‚'ç ;ê2’¤øøC‰ V¼=CÜeÃÓ)öY5:ÖÊ‘ûàzðõ²rÏúåeÀMà›b[ÍY¯ÿÂȉE¸<8÷–›²¿¤cåwªl”ú‹V™³J”  Vw›aÓ¸Q®ù¡¸D}mN€OH[^gGðT_ï¸ëÖœ=ýýEÖ±çí¾šmÑüQÞ²ÇúkzñŠ>f ³[SV5Lü Aûð3àR}[ Ø ZËÔ¢JøEð/*l:ãÞ—‹~ üK±í³[ƒ~"w»$Ç—_ÿšÂÞm& ä-\•Ã*ý{änf ÂG\’MkQ\qöói ®˜µ²õz¢»G Â…à •uxók6èE“I–åÀÕàR£ýhqò#Ð!MS/Ym´^-z=¨V²¼w¨¶áÖmoÁ;Ÿ½ÏË*îNà^p¹çß–9õJE·§dT÷(ðø±tT·xüxlÕl¨*sˆ”ÆÜ±7{ÆbÓÕ²^ —J&}]/˽Œ!ñO¿ü{•étY”šgã×ȃW’éƒÀ,Í~ðãàoÇà•øðMð7•=ÿ‚‚7OÒ[S>ÐÑÖ>”Šï0^ú£qÅ¡µ ijVzXJ/Ug­¥28< ö€÷HËÙŽœð$ùF`<õ èi¯j!ûÁûe¿ªE™*sÂ+*¸ÔU-j52窖è9á“®–àU-É–ÚbU‹:ÓïÞ/löÀðI’møø i çáîÃ3ܧç7/1¿ùùÍçõC çyˆÙ’6¬   …‡´‚kR Ȩ­¯Æuöç®^¿ñüÐiÿÒ¶Ð7Ë%ãúÄ9ßw7ê!}9K_îeŸõkYñŸ[´‰Þœ¬Ã~ø«à¿ªÌa—’uØ¿&þk2‚¹‡i’)\5 ¥ÊÂsŽEÉ£Eö·ê+´3DåJÚH›ª5ð¶4Hº¡¶ÇæJá=MrÅÎÑÓ()xÆ”×$½PÑbø™ß—ßðéw*br±kY*¶|¶D°/Ù.à·€ßÿ®’.`ë’íþNûïdäV²+#°ZYÈŠ*—ŠÝ•H¹/Q§š¹ú’é¢Mõ(ÙM4Ív).Üç'Wê>_M+ïÞçoæl®PófÎè­«¼·ñVšÿÇ6ÌÍ, ƒ’võ™åÀû9'¼-¦g2ëÁ×É®Ä׫#xÿC!ËU+ãåÕÈÕË+TÊ\34­Í¾]5êF,µµUd ÓÚƒ·~3F“ÝQ6Äœ£ÏÆ 7FŒlxƘÙ+}ƒ½ZÁ©W´ÉËæëYŸÒ­¯qƒ>ýy˜­ì³Óÿ®—Æv¡*=“éþ3Î o‹é˜ÌÇÁ?&#øœÓ1 —biSf*FÍcEv¬ê+³3DÝ1H›*4ðQ6ÓöXD«É˜‹£GQR°¢É˜†0oA˜·Ú„/cÖCÓ}̸&.›²®þÓÀŸäœðöˆÅJü§dW‹+#°§YUÈNÓ°TH®D¼È=‡:ÝÌ’ßT#hW…ûÑäJê1Wñî€?ÁaV' Û1üåäÓ—£-trëÌE©ÿRÿeì ^vö»Û,¸ÆU÷º;ÞX§bºã²Î÷?s¤°ˆxg‡ç›øœwg¦)7ñèr+ñ½jÄô½Ë Ù¦¢e¯Ù¢:^…Š™+dB›j'xMxsl—ºB»KmÝ (j9âÝEÈU™áNAùÍqÝûâÆ@Pf)ßÞ¹x?çj&¹“÷íë¹×ÉÈ­Æ·+#xY9ÍqCËR®]‰h‘]»:½ÌåÚ…FÐ¦Ê Î°ÖÛ¥«p¿ž\©søu5­F¼û…÷” ÅÛV²›R¦3ÇÆÌª£mÒ.Œ[•šcU½ÃS†ra§SÉEý‡)âaŠÊ\ÀBwªfu÷XÚœ*SmèñT` èpÞéÄVíQo‰«Yíã=÷ÌqÚœGŠ÷Jí£gp?Éy§ü(´gR“ä‘vþ"ç‘O ìÝ“Ÿ6ëü%Að_’\M÷®D •gR+*rÇ®N#sî0ˆ~&uÒÕÞ‡&Wê}¨Óï*ÞaÐðO!áŸÆ/E§=xÌ[l<{¹ô´Ò×›4ïWÿÃYK’i7/ëŽÿ#Çy»9'T䎓}a=oOSpâÑŸó…õö¥Ȫ’yI­æQ¢zÏ*°3DÅߦJ _¦ÝµGÝ­Þ@'XlënAMÁÓ4²K;XÕËÖ˜UoްxÊ亃c+æU£4c_oäà¢ô/Aú—bKy ô!n” T³1<ÇÓˆ°/X¶‘ÓJFÍ๑ ËniØyÁíaHI˜ϵe¨cÁ- ßÜ 9ïF;F+$ð>Að}2‚Ç­(Cñ‚[erEêrÕ*%™·I×Lpç”l©-:'u*Þ½Ëë„x žWÒú¢?Û*›M‚$X/Ü.Þó9AðçdWã=•ˆ¡2›„2¡"»NuI ›DÒÕî7“+u¿©Æ4§µ™ ¢(:¸Þ?)9'N’+à•ÛÅOVÁ«2‚«ñ“JÄP9'®L¨È~RF˜OºZÂýdr¥Îá'Õ˜¦x·W›4Ëe­8®WÇŒ|«,f1ô‡Á?|ÛÅœo?þ©ÛÅ—¾%þ–Œàj|©1TÇœJ„ŠìKÕi$¡˜3Éj ÷¥É•:‡/UcšÓZ‚lÌé‹ò9ðÏÝv1çüÇo?ù/Áÿ…Œàjü¤1TÇœJ„Šì'Õi$¡˜3Éj ÷“É•:‡ŸTcšâÝ5ÞË5kÔ5ªñaˆâýkðÝß¹Šç|Ë>Ñçm9îíBÖ“þ:ð;àß¹]<éŸ ‚ÿ¹Œàj<©1=é]^Ä9]ËR~U‰ˆ‘ýª:ýÌåWoº1´«’½lr¥ÎáeÕ˜í´V"ú¢üø_µÅ£.ãëdžè÷lHÖ›þŽ™ ç™È ÚäM3MÁ‰G\‰7U#Fضúi–ñ¤jÄ‹êIêfÎmõ7ÓÚUA¡^4ÁR[{QEæ*Þ]”“ËO"J³Ò,n‹#ÍȆ¢´²ÌÃ;8'¼=œç‚àwÊ®Æy*#ø|¬BV*ôT#Rd‡©Ns9ÌPcoW¥„;ÉäJÃIª1Kñîn­dT-×à[ ››,°ƒ-ä”g¹ð´!þIˆ²=^õЬW=|ŠsÂÛë^¿(#¸¯ªDŒ0¯zEÊ«*)²WU§9½j˜±·«R½jr¥ÎáUÕ˜¥x÷šç<«õʈ᭚§íÁ&ó±Y~¶ýÜû‚5³Z,×ió·ÉáW WïÓ«zyÊ1¾k¸¹áÁÛì€/ÆðÿÏÿo”5Ë…$6ë>$„úàqN¨ÌkWÆBJýMàsNÓ^ðñõŽ”æSæ¤(Gèmù–•ŠÅþC=¬­—½v\Ÿð¾ªé¥ ½êz¿1®»±gþ=ÇÎaÎ ÛÐÇXÜѹxœsÂÛ¢'îþ·ÿ‰sÂÛ#~þ3Að?“\“W"F “_â/”–óíJ‹ìÛÕie®zÃoWÕ„{ÍäJÃkª1Ñi-Bv×å/!Ê_¶Çgòõ ƒ²>ó?ÿžsÂÛÃgþƒ ø?È®Æg*#ÌgB·R>S‰`‘}¦:­Ìé3[~»ª&Üg&Wê>S‰Šwy>SnÊÒÌËp>O~A¶Ú)‡ýÁSû¥ÃÑyÀ‡9'¼¦æmäÞ"#·ϪFŒ›šrØ/–ª‘0ª‹U¨žhSá-!ñ:š{Ê¡ÂEí,µuG ¨EM+PzÊ¡!Ì „lOø|<žäœð¶Ÿç=*þ¨Œàjœ¼1ZM9Èúv%‚Eöíê´rSSr^3ɪ ÷šÉ•:‡×Tc¢ÓZ„ä”CC”£åh{|æ1Ïtd§æ=|ŠsÂÛÃg^¿(#¸Ÿ©DŒVSûå¦ÔÙgªÓÊMM9„~»ª&Üg&Wê>S‰ŠwçõF>]CäòLlA"Ÿ®qå#®˜b¬å§kh•ŒQ³jò=;Ñ—Ï…L„kÁ×¶¥c‘ݹA’ßܾévèTHàÍ‚à›eß©(CåÎ eBEêPÔj$IWKpg’l©-:u¦9­%Èà¢([À·´ÇOJîÜ ÉsÀà;o?¹K|—Œàjü¤1TîÜP&Td?©N# ìÜHºZÂýdr¥Îá'Õ˜¦x÷ ¦ݺ^.OiEˬÍ’A¹ªZÝ¡ƒÜhûÆaÃ>oV¬ª©WûNê¦]Šu®›øWÁ¯¶ÅÇÆØÊAÂOßþ¾ÛÅ;_üý2‚«q³JÄP¼•C™\‘=­:¥$³•#éš w¶É•:‡³Uc âÝŸó·r[-ZæT™ßõrpL?ƒ´á“šQ4õ²VÔž³ÁËè!¦{gÆÌ æ¹õkÂèÍ‹'sš£Ú”U×jì߆Ýü¢Ue@;ã‡xAÓMäHNMÞÝdŽqN¨¨/©î¸Uî9|²'Ì;tæð‘`É2g€Ïpž‘š9 q|E«bW™ãÀg9ÏÄß~¹ƒwÙ£¦ëú6?Ï¥?à Ûæ¾ÌèÊÌ\¾Î9a eÆÈvEÏ׫¦„p¾Å9¡2}–Íê•bß~šsÂ4ÌèƒÀÏpNÓŒ^ÔFëÕ"yž&(Ô=x.ªìXš^w-šEÏYyŽlš%êUϱ•㞢LÏùYŽ+8'Œù¼‘çyãöÚ@5ó¼YMóŽ` :ošw5Ǩ—¬¨íõ$$Ì‚gÛiÏ;'f“ä½ÀmàÛn‡0›Þ.¾]Fðøa¶21Âf3ÎIÄØÊ„Šc«ÕÈœ³áß®j °“-µE€­Î4Å»ýBÒì9½^2ª#ug<§ ìîÕL'ÞÑ#¢ÐEð¢´Ðþâæ‡gxTÏ•^b®ô9r¥¥€eÍGÏy ã £¶^¼Þ\Áyùú¹#´Œ³O?;EŸÝ˜ýµ9üÚnþkYa±ååsGدˆœ:Ò«õkÓ¿’“õé%àÿ¯Ê|z)YŸþׂà-#x™&Ù‰Â%5Ê-<'န<_d¿¬¾V;Cô®ªá´©fŸIyómÌ/”»¨äŠ£‹RRðô¨IîhQ˜ÿþßcw=²ûjVÍj¸±|º‰Évÿƒcfç„ :ˆd÷Õ¼4å&]n%1¿1ŽÚ¥z™€£ö4 õ3WOÐBÚTIâÝ\;m—C;‚KmÝ(jRâ]mÚù ñsä‰RCÊai)Ûôb•„ß<Éyô³Ú4ããòà ~JFp5Þ_‰Š_¬*“+²ËW§”d^¬&]3á¾4¹Rçð¥j T¼û„6¢ÓË«*¼üšñÚKxõêZ.%ʯXõªKžvÚ5½2+ÅÇúëc·Fx~*,ü%Î o‹ðü—¹YFn5Z‰7žŸ’Ï•ˆÙW«ÓO¤ðü”dx®V\ñ[7×NÛ¥Àð.%¹RçèRÔ4)ñná¹/åw åwnÇðüÏÿƒsÂÛ#<ÿŸ‚àÿSFp5Þ_‰ „çJäŠìòÕ)%¹ð<Éš ÷¥É•:‡/Uc âÝâôðUR{s™hÍ„»ÕäJíª1Pñî/xI (Íe4ö–²x©[š»IÇðw›fµX®— ‡Ò!˜U×°‹FÍÕ²ŽÅß\†®X¤íªeC·YAUæÀ±iÕ -ˆÏÏXuïͨ7ËB [$ò|5Ù5Èy×`¬¦dÔóõª5¡G­ëð4窱.1ËÇŠ·gº¨aOà¼]‘z?ð1Î=”zÖ/ïžá¼ëŒÂêÉ>BÅ Ïrîa¼¦vW#ûM¢eIØn×@ƒó.£-±JŒ‘_×(ð%Î=¼•.[Ü–\I ¢F Å#?5BERj$™‘_¢Õ¢$XjëE‘iŠwj£lX§W§¼Dñ¯–t;rQÎËà—o;'úð ø•Ûʼn–ÁË2‚«q¢JÄPíD•Ù‰ªÓHBN4Éj w¢É•:‡UcšâÝÄ„ËÞKg>á¬;²Q¨/ãÀ? ¬ùÜ_´XälMƒo*.ѦâŠYõÎ]‘ôCÀ/‚Q¡'ê–¦Æï~ üK±Õx¡·¹”¡±U{Ò0ÇÆé“²¡;®æ¼T×mÃñ—’ñS"¼÷ 5Û(šŽÁŽÕG§AR½ç—9f:9'T¤üEzéÅ:½þˆ.Uf p5ç„©(:3xç„qdzZÉÜÙDÿº½bšÌ]@s¿nù˜&³A|ƒŒàJb5b(ŽiÔ5¦Q¨‘dbšD«%4¦I°ÔÖ1"Óï>0}`X³­ ³d”rlˆX-ÊÄ4 ÷CÆýmq r¯vHîG€Ç8~„[»ÜçqAðã2‚«qŸJÄP÷jG™H‘§:}(µ“t¥„»ÎäJÃuª1KñîEoeô¨kT5Û(3':aÐ!–6  ôÃÕûôª^žr gfB <ð ½B4öCì'Œ ½êF~$>Ü'ðpŸPV«ó Õàý ìñq šw?‘_AQñâ’ô8 âŠs’]‹Ä³VÖhšvÑ*ŽéÕ1í)Ó(Ž»#zݰµlDñNAQ„kÀ×(óÏ÷LNŒ ³µì>I¼hݼeI¹¸\Ý¡ã Xߥ›år×w»Îœ&ñü»{À÷(SÒúq×­9{úû'''ó”Ò“€Ïƒ?¯°'©ÛaªÚ ¼ ~9¶ªæEO¼QØ¥éuwܲC µÞÓmu¿T|§€ñÜoO\qXLß±L@\1kåyæ~™ccf•õã'òÚÙ¼v!ŸÓ6iÆ­Jͱª9í|^{,¯e‡†zóÚuÖ‘›£S´'uZ6GŠt120¼ñÏBÛgÑâ2²-.Ð=Ü}¾q6 {Ê(™E³jHÈh¯_S“„ ?¨¸ËÀëà×ÛàÁ©üwo€ßP¦¢Î¡A y^¾ þªBuŒXåRH±ï¾ü½±Õ±:;8؛ӷoÝÝ×7¸}û.©ô>àGÀ?¢L=šßÁ–,“:ÔþÁü ó ýŽYÉîÚ±‡%)?üiðŸV¨¼ à )ö£ÀŸÿ™ô;*þgÄ•¶OpE7PMw;u,9‡Â çÏ“¶]ê®§ÛpÇ»éÛËN~ëǽµŠHˆ¸x¸ÔËœÀ¹Ž%Â*J Áî²P£ãnvi cU£Z )µ ¸|ClÓYìE"ó‘û&ãA`ñ°rZyJ·¿õÅj—¡”ª†€4Ó0ÐwUšø­åL,“ gÊÉvHþà@‡ÿ§`F}@º¶txQwL3ZÓŽÊÙÐyàÓ<ܾ Þ ÿÖ›Õâ8kì§ŒbÔ}è$ÚóÀÙõl‡…*2 ¥çõX’U€WÙÅÙ'óy8Å®'ÙåÆ6Ÿ‘ÊiOéU:@D;mY¶;¦»FN»è „¹*úˆH´Ü];ÒXVAkS¼™64hU«Y“†íî'•˜™‚†P¶1fŽÃ~evÖ4ÖËü7·^šŠRÕ\㘡®¡Îp•²°pÏ£¶ÉVãÚ «n³±=à)="ÕC‘¨–´Æà‹ýû¬3U·ÊÖØTôçðÎ’%|Š]¬ËË<‘üà‹Š»x±ƒ/ 9׆Á•ÿ4Y|†9ªŒ¼sš5øÚ±SBž€ÌWd.±«üà‹Š{Èâû kð™çb«cY–Æ^[úú¶Ew‘(E Å.æŸ3/*ÓLOи‹ý¯¤âÔòƒ45qäErNß`×KìúPò#/*®dÃRz¹—ùÁô‡üø7’ï—¨¸÷¿ þÍØ4ÌŒ…Õ‡QbqN­–׆voïëÛ:¸YÏicR{Ʋ¯0{©;ŽQ.kçõ1C;jÕ«%¾”4j Ñøàÿ~S|f磚¦xž5Å 8q —ÚTµTgQ!k‰Ó^§S@xŽo ô‚DþK«éÅ+¬ª#wLOáažšîoµ­õBÄ'xç­QwR·£Î­“ϯ‚_M¾=û#œŸjCxGå_^—›ã ﶆN϶çeà{Àß“|xGŽø ø+±Õ±4»•¦Ö¥¢;’äUàëà¯+SÌCAÑÝ®[wö¿è8ù‰­;òæÀÖˆ‰úðëà_O>À£â>ü¸TGÏSñß—¢§_R`ß1l£Z4œ€ÂÏpw\ìPÙ—D®*¾S@\’F»4®84níWÌZ‘xÍð TBÿ5C&¤Q/´+z¾^5%„[ ¼ün…Ͷ™sV±ÝÀ{ÀïQXlHJ*® x/ø½mèx©ü5Àµàk•›Ä2‰Ê¸„l›9ð\:±ØÞ—ŽEÜ̃çÛdýÀð屈,¢f¸–„tÃÀÃà‡Ó±‰À#àGÒ±‰AàQð£m²‰Ç€ÇÀãíµ‰±r¥"!Ý“À¸Ê¹Ø6qø¸Ô\lt›8|üùØ6± çÍIÔüe` ¼”Pï1!!ÛKÀ ð‰t¬â p|2«0€WÁ¥æ¦Õü€—˜•&cŠ–mNÍâGrð÷w£¦ëMâøI¯ÈS`$íð‡ÁXYe-*8†A;úCbr ŸíhëH…Šï0ÞHeÖÖªšmV݈"]êàA0árðå urŘš´ì ÙKÐá ðéëä¾ç#.¹ ˜õ­ÎsAîÿ¯€Çî1GúÆrúÆ2üÊjþÙJú¬‹ÿèê·;š Ö5eMû"¹–Í|š}ýn¥ÖŽýçĹñ±Ê‘þs#u³\Ò ½4²m[IÚ6´£ÓÂý½ÚïÙ7g÷kõ•·a¶™Gþ¶Q«¬¼yô¼Ùv²¤f[£fÙhu2BÈdUóBà*pay_íßåŸÍŸåП¼p´ûQ¼=³ý 7ÎjIGª¬/`þ·Y¡‹H2ïáþþw¶nüúc×f˜¿÷váÙ3ç?]t}+òþé6¨{faû£k¦Q£ Ý,™ù«["üêtÓ™Õ²†@¶øÊMoÓ+A=¬ÐKPÃiú·SòNÂnQqIˆ8w½ElÔm-._.#T`© zÙÔƒæ;Q„=FZ:él4¯À#¦Nbx§yÐÅ<Øì"Y›¨arQ4Ö´õBÅß) .EzY!ú¸ó!ºé‚>ï¿;ÝtA„÷€ß“¾n0áÙ@\Št³\ÔMøÐ1D5ó¡»ÀïJA5ó¡Žù0‰Œ¬IÄSÍ|X†÷H[HjîÑlòŽQöÆ“•´Š!\¾>%ù0¡®¥¯$º6ˆ+‰öS]¢š…Pǔۈ/loûYˆ6ã£Úö³Šz䃂EÂuo×Î"h„p øšôµCů—"í¬¬•­8ÊY ÉÃnÉÚNDå,†BÃ(2²FO9‹a>®‘¶‘ å<|–ëE;i^1Êæ¸e•´³L_Ž7͹™ik³vf„r&D]Ù U‚*T›kºå Ai7TE8>”¾Ú¨ø­â’TÛ²¸âP¶ËåâŠY+§èª›Î#C+÷æÇ³¶á¸¶YtR¯V¶ÆúÊM#㲸YÑjÁbY~¼ÎR(—ðø)e cq‚±ž±æŸ;tæð‘¹. àe†úºƒŠ; |ü¹ØŽþb”Êxü²2µ,êáÃ)­Œ+à•t´ò° ^m“V,` ¼¦L+«{fŽ\¤ô3 |?øûÓÑÏKÀ€ ¶~ä^“ ß | ü5Å-§ìHiæÃÀ,ͼü8øÇã·œÈË}©üO? þɸrtî+˜£~šÏóÆÕš}‰õ–õ²ë Û¥œãêcưmTK†ýÜõS/;qðés—Ÿ<äÐáÓÚ¾>íü”“3\£:‘í™q»§w¯Öø¨Õ×ñ]sTËn¨^+ŽëvV¼×Û;ëgÏŠ¥jþE‡µrsÂÎW ·¿Z«ôWtwüEýê­ý†³½ß5®öéùúFëå2ûvÏ^í,û=úgÊqJž…lOÉ*úò‡9»Ãp¾hû‚W=±éw{µM›´YÏÁ«„=ÊæBÁK£ºÏ)ÚfÍÕÌÒpmJ=¡_íãõhº3U-jLkÃ=ù|?û¿_ZÿÜ2îß×ÏfÿÍ%gd2³‡È\˜QrA,ºÐ³97­âsLöi?ß{ãFˆ·ÌøJæû&ð à_ˆjÆôY_—Ê–^Býˆ}WYÚW’ú‹‚ô_”‘^tó‚$IÞ<"Ž}•=wp©!I]•”Jߘõ:{é¾¢U­Þ€aȯxËü_˜ùò>ôYæ1‡šä£ oH&ŠöÅæ¥H·K %ƒÛ\ãŒYÂŒðH3Vû´³b;Ä%ÙØ7ܬ8¡ðúVœ)””'Ì-Îõž9¤²Vtð©¡Óytá‚…’Û¸°¦@x/¸ºùÔ……ŠáŽ[A‹†VÀ ÕM¨æ²´®’Å_-›•œ6åý—õï5gxh §•Ë®U4ú¶æ"[‰ºxüHl‘‡5üYÕØˆn_8÷äФl:Æ¥<ÜSµX`U-ÖêÎð`N+–Ù½²åâkQŸa%ªšp|Xº…t„J–4SK_Ú|üÑøC…ÞȺ¤/?[èktࣔsOÊc‘3XÜÑtj=–ÜÊèÕÂuO“wX«;š§º— 'Ë1Ç*úPNsõ:û¯=nå´1½â}T7qhô(k€%ðRìGJס‰ËÉÚàÐèöÛêÐH€CÀv:´;¡o)‡æç~$TïÐVÞì¢Ò­n—ZÕµÝ=ö€÷Ä¶Ý ×Æ]«WOđܗÀ/Ýf~LXòÑ?FÅî¶Õ‘‡€íôcÂêÂ[ÏQü±˜P`¾nª…L~l”j`&c ³­ 綾kãÉø-’v ðqðÇo3¿%ŒÝÛá·¨ØýÀ¶ú-à°~k-tàc2~Kjs%X \¾L™×º™-[ \ .µª.ªëº ºo:i4]Ù«ÑÛ1?p=øúôÚ1«°í˜x¸ |“òöÓE7¢•Þ&C¸|é­Ð|H À5)Ýä›Ïýh2„‚ß‹i4G¨ùˆ½}­8><¸›>ÓGè3úoE7«9ýHÙ¬è:‹?zðäy‰~Ôo{„—Á/§×þ¨Ø€%ðøSAí0€£à£ÊŒiA¡îècA‹X–Ã~ÖuÄí7Å»‘ߨQñâ’4ƒ“qÅy ƒûqŬ‰ì_ë¡€ì_ŠÜòóKÈÖ \¾BÚ1/ž!Óz p¥×ß’`«‚Ëu®j×ß’<[€[Á¥V^‡øºõjTÜCÀmàÛâûºÈ+=©üíÀà;”©Ezý-‰3 ÈR•¤Vv²T¥ª•£ÀÇÀS¦ëoI°ÓÀËàR‘Btý¾þBlýÌÏi–-£"h€ŠŽÄò[§ tÀt3 tÁÝø‘K^B)uq){zÓ5*!Åv'À'ÒÛ¨øIq¥(iÜ¢=L.PÊ\•«[Àid#ÆH ÕÇH$Ø2àzðõÊ|ʲaxÙ±L›€CàCÉ;M¸¶61¦M/в£Ñ]>•½ ¸|·2õ´šŽi©•ÀCà‡ÒÑÊàaðøÍóe¶ÁG€ÇÁ+SJË9æ–Z9 ¼~!­œ> þdüèµ7j/Lå?¼~1ù^˜Šë> þtú½0ÿŒ€¸Òï…7p{ö0Áé ¾fLB¶nàŠŽ¸Ó]3dÚdyëØu:!Ï5Æ ›6;5£hŽNy›‰'ÇÍâ¸L}®îß)­X?“\®`ŽÒ {3rý†· ¨Ý8Xè½A¾T½¾qðÆ tPð*ýù°Zo¹µ‡Äß<~,êcÐ7fmíYX¨¼è0Q«òWÅÞÕC?.#xÃf:眥9ñE™ÎÒBÖWn¡7¬‚B¶ÿ(“,¸Ôí?jÕ’iÖK áÌeúíªÏìS.u!\G¢F*ÞíópT ×à9… θU/—´ÃOêPŠ5ˆ"×ÁS»Sq]À6ŽÝ©øIÛ6vïAã#L.jè¢å˜’u—Ë/ÝH'fèÁ÷·ƒooK̰ Àª\.b áwƒGíµ#b ‚‘<~Ä LŒÀˆ¡›E žj#Ç ÊäŠ/¨UÊ\ñBk³oWÍG É–Ú"ZPg âÝD£Qä—À_J>Z âº€6¸~´@Å;âJ?Z؈¦G˜\´0Ï·$ë.—_¨–N°@²®n—_'Xè*„×xËPDß<~ðvHàGÁ•<~¨ LŒà·Ê,T`Š((“*R  V%s ­L¾]õ&$[j‹0AqŠw D‘«àÕäÃ*® h[é‡ T|M@\é‡ ¢á&ø*‚ïU—­¸¢ãöx!, lû«¯Òå&Hü]ÀÛêU |\<Þœ·t´ LŒÐWPnäˆA™d‘"µj™ûUDkÓoWÝG É–Ú"jPg¤âÝD£Qä_EPq]À6¾Š â'lÛ«ˆ‡Ðøœ\¨›‚uo—É’uEGc£A['Âk¼e¸@¢oÞV“ $ð£‚àñF²Òá‚21B'˜b#‡ ʤŠ*¨UÉÜ“ -œL›ê%8LH¶Ôa‚:ãï&&ˆ"§8¹@Åu-p+ý0Н ˆ+ý0aaraÂ|/u”„hÝÀ峎‚¾%’upøŽ¶ ­ê¼e¨@ÂïJoäkG¨@?*#xüPA™¡K<ÕF”É)XP«”¹—,´t5mª™àp!ÙR[„ ê T¼›h¸ ŠlƒÛɇ T\пV r¸@Å»âJ?\ØŒ¦G˜`¸àel“­x»„ $ë*`»Ã…VuÞ2\ áwo«p>*Þ¦pA™¡á‚§ÚÈá‚2¹"… j•2w¸ÐÒÕ´©f‚Ã…dKm.¨3Pñn¢á‚(rŠá×lc¸@Å»¶-\È¢é&¸‚r½IHÖ Œ¿b¦D_hD Fѵ¦ ž­[“ÌêiÃv½VcŒÉoz™èf³YX†Xx7¼Æ`VÇ„R²ªF^;>ªÕ«¼ÓË×;=ŠÃb5ÇpúÄ1x9ަ×]«¢»fQ/—§¢6­,¾Gøuð¯'ß´²hN„ßÿFúM‹Šÿ¦€¸ÒoZ½hN½É6­©èM«Í©7‘¦õÁ9šÖTŸ~Õt|KŸ7ª^rd—šM³%¡¿I·ýôâ{„Ÿÿdòí§m†ðMð7Óo?Tü§Ä•~ûymæáDÛÏ|/Ѹ„hÝÀø#ÙÅ3DZS­WF¨sÕjÌ:¬q' ÖN$Ä\ìïU6nYHú¥ÁçÂì<,}I3Ü.5¤i^!éC®MŒi×RI]¨è]À}àûëeHJ/‡€ÇÁ§£—aà ð±õòZÖ¬ËuÇœ0z…éŸÐqŒ1¡—ëºËº,}§dŒêõ²«±Žjh 7¯Ò«š^v,úª®±jØfÑïàXC-Õ1w\¢T{e«:ýÔ ©<ù)Ì*û“¤¨;Fäd‹T¯sÌ<È9¡"ckÙ·²´Ì`žs?^––yØÏ9aLK[C62-Þ x„´]Q™à1Î3 —»Ú:³Ê¬×Û…Í3µTØ೜¦¡°ãÀKœgâ:´ŠNË‚ÉÈ  Hœ°Ìy¦œ||H ¹ ÅV8ÏTÒ©øjý+ýøp ·rŒ½ãg$DëÆg °Ðý°Í` »hhu‡õÞ`ªhUX/C£)t1þ¬Ec\eõ ]Τé¢_œþ9þŒçëÖ¼Dº³úFïTžÈ ˆªeðMp©‘N´´ ˆðSàñG6‘ÿ–€¸Òo@94š\¢ h!ÎH’®¸|¥tš7C¨ÌÖÑ€Ak<̺mޑĶá°q—n c“ÕYM@â¹îÀ êÂ1:&#jïN¢£à£É÷îTÜsÀ1ð±Øí z>G*h‚›É{#*® ø"ø‹é{#*þŠ€¸Ò÷F}Üœ=LÎ-òÏh“®¸ |•´;š9ãs±8ÎÄ*Ò°Ðq½®;À/ù’“{*2ï4ý5ƒ×ÿÇôMôpw_—3É@ßD§âEõM$ÊK@\êEY4ßÔ‡–@X—Ú"5­îÍkG­@MæüA£azÊ–ÐÜðàŸP¦¹=NÕš”ÒÝg? þ£éèî“À/€!¶îº$Q ¾ü øW”ieIO…5s³hÙ†”j~øsà?—Žjþ9ðçÁ>¶jäµó†!£œoüW”)gáaÃÕÍÈ'¼’0¿ ü]ðßU¦—…牺å†iæ_ü÷âG#Qc1*þ÷Ä•t,FÅuÿüÒŨø?Wú±Xž[´‡ N­xäJˆÖ T?µr*`í(ÅTÂ9ÞeÓ̽EA—æMÎA}zTã§GZ|ü¹ä?ƒ'|üùôŸŠ¿, ®ô¿ߟ¨ñw£Aúaí„KÀ—H[þÌ‘û«6譙˛€gߣ2¸˜Ï*ëYW4OÙ–ŠJû…k¸‰I‡>TL/p?øþØæýÌì•1zCVÓº4ÑUÑ‹ãfÕ Q!û=ï½"½•ôŒu[÷ÖÑ`Æ—^bEõ]ôXß#yßEÅu?þ‘ô}ÿQq¥ï»xƒñ0Á5gG+“DÝÀøkÎfz¯ñó¹Â»o¡™¸6ÓÖ'«š>J­¥¹v“5‘Q³j:ãñgTð=ÂIp¹d#Êf{I”w¿ü{’÷TÜUàËà/Çn"Ñg{©ü÷_%yGEÅu_5}GEÅ¿W@\é;ªAnÎ&™ü¦8.!X70~ò›™~ê`c¥«3U±Ê²òÚ£S¾—¡œ9"zQ[4íbÙë²ivWj–ƒcð ø™X(p‚¯S”­ÔÁu…M‘9ó+!Å>IÞRqgEðbì¦w‡ÅY^GÇ#x'ªG$JÀ ð‰ä="לŸ‡+²G¤â¯ ˆ+}8ÄÛ•‡ ¾g_eí®¸²CõÛø¯Î½yëXfo¾1׬°‘ŒЙÕû!ÜŒL1?Z²¼µ+†í-ÍÓèɽ»´G`Ær^ˆøgã–m^³ª®ÿ‡1cÁ!<=ᯀ«›p–ŠI”o ü·’w…TÜ¿þ[ðÛ†XÊÿwÀßÿíä=×üðßIßóQñ¿+ ®ô=ßVnÎ&8Û\”ð{$R70þlóL¿÷³-W! î‡ý”a´ÌÏsDM§—JÌQ±?÷<# nÝqÝm¸A'h]wtE˶ §f±oòåôÍÝÛj •‹VuÔ,y…Ò¤¸Íþ,®¤Z\üMðßTæç=xò|dH²üðÀÿ(yHÅýðÁÿ8vã{6|§ïݰhÀëf¾çRzÙ˜0"ÏÒsý{Ž™œg¤vÛDs­TlŠÝÅ9aÚ®•ŠßÝDÿJßµnãíÄÃD·wë#’uãÏΔèœkºÌ‡ù3ÜW½-§7³‹”O¹ÀšmRdéíTõ~+j؆ïêà*·! `á¸Ôà6^ â‹âJ¿l‡ÑoO¶LEoÛaôÛÓhSé7€íøÞötÀvýöö6€í0zÛÖvÀèw$Û*ºY•¬¨¾<>½Pl,aþR–¿ß#|\ån¹Ëßk'¼·\d˧â âJßòwÂÚw*·|ÂŽPõ”,&|–8ÝÀøCə澒Oëö ø«näI`’jP×’·Ù°S àÒ·Y*¾G@\Šž¾»ÐPK@ÙÀ4wq¥]»`ã>â’l-+⊳-ÄG\ñj%³†y‘ ¢Ï5¯íøÒi†¸^Öm1¹Ÿpæ;iÀìúÛ+ëþÔJ…ÅGó-° ÚºQtRﬔ˜È¶ ê'iÂ¥QŠ3­ïE ª‘ GÆ‘³RhЮkÞ~nú˜ïòÌñ}kÞÔ ~±•H´ Ȫ²Ûuºªž=0Ô=T©œ¦m´{!†jÚŽD_³…&e=tÞ(ÅF¢¤³¾qd^²‰³\ý¢¯ ƒVÉ~iq\•’;Ä•¶e C‰>ª±¬£š÷¿ bËvø”m‘EžB:E­dÔ ær°†û käE¦þ=QŸe?ä'< ~4ý*}Eû¨¦Jð*(Ë”ÿÎp”l¯{âVÍ|ÏG\m©šƒ¨ŽƒJª¦#jDHÅ..—Zå<­*îööÝñöãõ¸Å²îD~A2-n—‹Vƒ¼û⻢çëU³'¬ÎÂÞap+D´$Ð ðø!åí®- ÙΟ2ù€–Š;| ü©tLä0ð"¸Tø>­æ_ÚiÑèôZ”ì/ºóâZ½\Ö&tÛôÿÑÄ´·˜¯Ì7qÒü4û£ª;sfù`Ù5ì*ûÒ„QžÊiôÃ4éD{|%-òiàïƒÿ¾2DZÀ1Ç*zX$ÐÒmüàŸÿY:6ñÀï€'¶MtFNõKåÿ9ð/ÀÿB™NºXp&¥‘¿~ü»éhä/þwmÒÈþðÿ¡L#óìqKF!ÿøÀÿO: ùŸÀ·ÁßnB(úó0ÃyFn:Ðmé9·•Y\ÆyFj%Ldd:Ë9'Œ©“ù9‰LY$ àœªj'áÇ“·ÔÉZàýœ¦¡“;ë8'Œ©“o6†ˆ+¾…Ó‹¦Ÿô~ŽÑ™jyÊ xlÁb‡æ/ã–—‰Pw5]sÍ û“ƒ%Ã)s±Ÿ5<Çδ7ß‘GžTuÿ€óLüdNr#ÏCÜ=lÃÈ“Š]T7òÜä<þ.šEœâËIù‘(ɸ´£9¼YÚ!û6!Ȭö_®ä™ÜžÀ=Q= ¶«£q.†Ç'器!à ðøçc(“’@ŸNù˜t‘¯/ é^¾þRò£R*®´ÁítŒäy îÄ6’¾H£R ¹ÀO‚RZä6½m!áß~üËQ‚¾‘öÛø+‚à_‘<þÛeb(~Û¢L®àRCÞ¶¨UJ2o[’®™à·-É–Úâm‹:ᆰeéM ·B[~mƒŸðdz;üÄ¥fÜëÍóÑÄß̸«¹,tН8nY4Ëg5WˆR/ï22Û8ÏH-l³ÃÎl‚g"O¤·Éag ‚–\‰ÃV#†z‡­F®¨[¡Rs؉ÖL¨ÃN°ÔÖ[‘Šw—R´ëG¸v=Œ5ô ,u‘7ä1¯©å@éâŠY ‘·þRñ‹Ä•¶GQ÷>ªÙœ-‘Iá1N8|ž2ƒXRpê#Ÿ (œši ïj^i+ƒŠŸ/ ®´Å8†ê÷±m6q…k­³k§ü*5Ûð&y‘LC;ÙÌ™r¶lE>ãà8¾G¸ \꥙'òª¸*%1v ئì' DÕXV‰÷@AïF<ø‡Îq×tUbÍЯÐrEžþVLŠ|êdÿ¹#§N6^Çzùã">éãx:ÂxIY´ÔæÙü¥æÿI¤+À ð‰äÃ!*ÎN‚Ç>÷!sÿ´ÜÔ½¹›:7€^¸'x`@^;F™”¹,^ò&ô<Íųî¤å}Õñm³i¬ÞdŸYÝqêžø¶Ê§R'u:¬Ê+Ý›¦›a³¬°è[7I3W9f~s´ÄI4•8‰ŒÅÄEJåÕœ³Ò›û©û§´,­rµ*ŽW—Hó„=´cvÄЪƘ7î‚Õy «èS^nW»fØ––5Gù¦~_Á3ÝÌ,ƒíeާŠ?רS#QÐ «rÃ3aZU²ä2MƱjѽcãùf-¶ÖΛ³¬Û4†œœYGÛ̺oÞÇmŒl{§ èS¤*Î Ó¶½ÓÃG5¶·ÛÞñÑ–gMÚ;Ù»†ÞÉÉaqÕN@T|ÝÕ‹žS#»¬WMæ!ô²g;N½8îÙŽ“ 69ÒÜt×£ãÜH:T¨R¯hYÏB<™çÇà¹;ƒsܧÄuô4ÑýÑ(à U!l¢ #µ³ÃG56q#È&¼#YCc.ÈOÈZši‹½˜S#mÓ+6Ýc7,Û;ýÉKˆNé±Ú÷g‘\­ÌÜ€ ×6kRhzÖCV$é‘ÎpÍQSaÂe‘ 1 KušoèOi‡•b\uÉ¡êöˆéÚº=ÕËÏ2;§³Ô`Ÿ3+Í ìîõx2Z·=¯[2bÝq`kÍ›1ïäNùù½í¬ü˜æ! ço‹ãFñ ’›NdK|j‚K¼‘¾%žƒ>ª Ÿßj&§kô^}9ÍCIªS¡n‹‡C´€±èÖ½Ç3L¯·ô¢ž“¢noٺûœ[áR6l¯g¶"GßçQ9„o¿¥,úž_.3ᢆÝ$Ë¿þ¥äÃn*îÓÀ/ƒ9¶Í¼Þë Š‹ÒNêv/M®’p¸ª0ÿß<•¦Ù}y‹yÍkæ%ÑÑðaÜ’æ6¹ASm|…cæÎ ÓnÐ`›>¶m¦åIN˜úìMJt¡ð6ξQñólÓìÛS¨~ÛfQøÅ¸6Ñrö펳8ÖfÞŠ†Cý€„ +=à=Òsm=qHb<$ ®´íèi¨ÌG5vt– g£CÛx©ÎT‡‘šw¼< ØŸ›n#]±×Ãç°ß{…²5ÉÇ™Ÿê< áÙŽF`.ùTqV†d®„ˆÞrQÉýðYðÈgDÐ7Ò^B_¿$#xüE!ÊÄŽì Ù+‘׃()¸Ôõ jõ1×zPcoW¥/I¶ÔKAÔ™¥x÷…Ô|˜Ï†¹ý8Ò†˜¼9ÅJ­l\å3àeÝårZÍá ÃôZ­lÞð7F[ÿø§”52éäp$Îç_ÿJò#(*î-à?ÿç±u»®±šoðs,ožÂ°iEFa?ü ðßP¦09H°ß~ü;é¨îÛÀ?ÿóتë’HtCüð¯ÀÿJq“’XºNâ|ø÷àŸŽ^þ ðÀÿ!¶^>æ7©^ÊW£Uôâ¸7'í½ k̬-›¦Ãý…r®=…„4”™†ýÁ˜£Õk|sÙ{Á#†±Z#°ebÐD„kh“–}…OFÐø…ϵÓa¼ŒÈùÿq̼Á9¡"ƒYQèk¸Ç©Z“2v“ù8𠜦`7™¿Èy&þŠKÉöœùðŸsž‘ë‚ÔsgS=žÝ’ÍJéèkÀ_ãœ0 ¡/ÊükÎ cêh¾×MJ(é׿É9¡ªÁBµX«‡­ j©•ßþç™Φâ~ øÇœÆÔʡƛþ@œùÌk©Zcj‡yå+†ã¿­‘X`Lðï9vjœwj±tØ¡ú 0ºt;û9'T¦Ýæî¢o+¹¸óN©•j¿¼øç„)˜zçàÎ cšúZM/^ÑÇŒœÆßUÉÙnçAàÎ;/(·Ý•ÔÄΞ?sèñb¹î°A¡„”W€×8'¼ÕmXŽsÞ9®Ì†1î¼Î9a6ü$𜶩í¼üÎ íb¦ù“4c1%!BÂÎOrNx«[ëÿ 焊¬õýÀ79'LÃZ_~Šs˜ֺ²±Á‘}UЉy›ÎãœðÖAuþ$ð—9'LCU?üÎ cªª›FP¼[”PÒ¿þ焪ùJ±,ë\þø·œÞêÎåO€ßá¼Sz¦mÖ/ÿ>ð¿qN˜†Åþ[àw9'Œi± ¤]Êßÿ焷بŸþM8o5î­NGKbïàœ0¦–¶M{·á%¯£É6‡ŽG}²j^í?iVëWûtZ]F³~i¦/ºNçÝ |ŒóyrÛ4ƒtz¯Ó={J†kÝC4ý˜í•Pë¼ÓÀçó¤ö“DVë¼c@ƒóyFlµ>&¦(¤…™8í¶™ \ŸÐͲ·èÔ›®õ¿À—&cb7ò¢/zˆQà8Ÿ'5ioaƳÜLض>—P8aꋾhuL oã¢/*~¾€mZôU@õû(m¥.*0ßÔPòn”öœRkŒ\T|§€¸$½p_\qžïà;²}T³;ûnÚ¥XÅ[*é,X—¡%»ÁïVÖa-ëÁ¢Ú¼]Ñ#G$Ó:`/xoòÝwðað‡c«ëBÞ[uÑ w­l:|˜G˜½6ô§—uUUzyïOŽZå²5IÿjÍù wz¢-Àw‚¿3ýæùìÌG5^â ÖÎ43”4+,[2jߌ‹žÆ&<ÚþØØoà¯ï\»:…PØã‘~W<‚ “[kÛútµV²uW€¯‘Í“©kæÔ÷æÈ‘ØäAò¬Þ~Ÿ´òâ,]Tð*V.35‰?0ž‹úô´W„’À}‚à}2‚7좳CrE¨21‚wÚ²¾r#/ U&Yp©! CÕªe®…¡s™~»ê&x}h²¥¶XªÎHÅ»Yñ$¯Û‚©‡llŠÑ²/€K½§ iÉ!ùh©¸. ¿Hê@Ùx±ÿ”€¸Ò Šhw„É­Ž÷l%Y7pø²[ $(â{„kÀ×´%$ˆqT ¿˜ÏÞ Ü+Þ+#xü€@™ŠªP&W¤p@­Ræ 䎪Hºf‚ƒdKm ¨3PñnRÁ€(íYð³ÉT\ð ðøCóÈÁN@\éB±ƒ'K·¬¸|é- <+€÷‚ßÛ–X «^«-#} ð!ðÈ;‰Û À›Á7É?P&Fð¢ 0ÅFŽ”I)P«’¹â€V&ß®z Ž’-µE Î8Å»IE¢´§ÀO%Pq]ÀÓà§Ó¨ø3âJ? 0Ðæ|O0¦W¢¿' ™º+:n÷$Ïj`»ßx+7-@âß¼­ÞÀ}‚àmzO LŒÐ÷Pnä€@™d‘µj™û=AkÓoWÝÉ–Ú"(Pg¤âݤ‚QÚßPq]À6¾' âŸ°mï FÑ›‚uo¥©úåÀvO „×jËh€„X¼­¦¨èM‚àmšP&FèÔSläH@™T‘"µ*™{j …#iS½GÉ–Ú" Pgœâݤ¢Qڧ軀mœ :# ®ô£€1´9Â䢀–‡O·­¸|ù-<«€kÁ×¶%XPhU¯-#þ>`/xïí À ‚?,#xüH@™¡Ë<ÕFŽ”É)P«”¹— ´t'mª™àh ÙR[Dê T¼›T4 Jû¸Ô{ûhÑ×<~.ýh€Š?/ ®ô£q´:£–§·­x+E$Ï*`»£éCÇIøû€·U4@?,Þ¦h@™ŠW&W¤h@­RæŽdOºf‚£dKm ¨3PñnRÑ€(mŠÑ×lc4@ÅŸPM4Y mÎG5›7wÒéeUM/•LÚ⟠ÝóêfV‹åzÉ(EÞ¢ù"&Ü ÿäZ‰ˆê 'L.¢ê,Gí8Ižnàð%±|´ø­ãYÛp\Û,ºF©7ðè/'øÝæ†]þ­¨žƒg9ð)ð§’÷T\ÐOQq1ý&KÅ?- ®ô­¾ K/'jõ]#FäIÅ2l0þ¤™=©kÙýUž=Ü;‰ÇùgÖ-ctÔ,šÜÇ%ÑÊøa ¼”|(Ãî …wíi·*~T@\é· ì¾’h˜_4óå ѺñÇÒ3Erf7Ö»3s.ZÕQ:±¯ˆSa™yk#V7žvŒhòM„|ð=àïI¾‰TÐ,_%ý&BÅ¿* ®ô›HÍ¢šx©Gm"U4‹jZM¤^«ÝRM¤ŠfQM·‰TÑ,ªím"U4 ÛÖD,4 Kyi=ÑU²\'Dœn úfÁðdžÌô²Q!ï—³a vK8>¼ [°[ÂAðÁôm˜ŠWL1ú˜ Ÿ¶Äcy½¤V&åèÖm:ËÛ¬N˜Ž9RžŠœk± 'ìïS¦°ÏŒÊ}e½lS:;*¾S@\’}A\qlv-WÌZYà è¢UÓY/õ”iÇݽÎú©lDñ(Šp øéÚšé‹î™œ9À:P}Ô²ûj¶EÙÜò–õ”Ynp'¸ÔDTˆEÝ,‡”»¸ |WlÝuæ4‰çß Ü¾G™’Ö»nÍÙÓß?99™ ¬—$äàóàÏ+SVW¡n‡©j/ð2øåø±FodïK¼Qöø zÝ·ìGC­×íh«û¥â;Œç~ׯ§ÞÁ§¨|ijVþ‚¹ßsÌßæ´ƒùœö¸mÔÝk9íã§tsR/—rÚöGõâxE¯VsÚ ö¯óÅq³L7³oÑ_­ÔËeÃÎiO²6iÌJ…þu"¯e‡v÷æµó®]/²€Åqt€HÍÖ‹®I™˜i€ãš£¦>b–MwŠÝÕËSŽé qذÅå‘Z#ÿ°p¢4UÕ+Þzc‡ŽÇ3®ÖÊ–Ù8e/š„÷Oy-bmOÀîÿü/”9ªåš–YeÞ‰ ûÌ¢#!Ûßÿ7øÿVdž¼Õ¦âþøÿ‚ÿ¿mèC&ðK„oƒ¿­L5Cۣ˓ñq!ç„ÊÔ1b•K!ÅvÁIÆÏ.¼:;¸½7§ îÚÚ×Çþ»[¦åd×rž‘[¤ž>¿‹/Y&uéýƒùÁÝ[ûG¦µ¨þ·¶uû®ˆ>‰¼xŠóŒÊEè†=Rì}ÀÓœ¦ÝßQñgšè_i‹1ɵÞ@5½ÿyÖÏ £‹œvÑë™XÏtȪ–X×ä,È‚Æ>Þ¹jçšSr(ý#Ü"7Œ«xÂóàr/òcßn³^‘õšç]ÖÞ»ž·FÝIÝ6$„}(ð¤û*êp |ª } • x\êĶà>fë y^¾\åôkHCŽø xüé×¥Ù­ÔÅôõmÛ%Õˆ^¾þº2Å<Ô»ìÚ±ugÿ‹Ž“Ÿغ#olØ«¨o¿þõä{*îƒÀo€#}wNÅS@\i‹1ŵÝ@5½Êݳ{ýD”íä!¼üni›¦aêtÛîx7}{ÙÉoýx͸ÖÇABÄûYðM2"Nô/9iy’Yr‚m²ÀÝ[͸UYãê*ÕbH©÷w€o‹mM»½ñòA/0bÉI«¨Ó«>‡õä†?Þ¥DˆSL'²%±w-T\E™]{Îp Ý.Žk秪,p¢¡ü)÷JQº$ßðµ>ó’B¨¸ðõþÖïâ!Rjú ðC¨‚×Õ!ƒ¡Y y> ü¡Þ‘}$ù „ŠûAà?E•|4¶:Vdw° dÇî}};·KéæŸõñÃÊt³!p”;0Ôÿ¢íTòƒÛw EŒAHÌüMv}™]ßN>¡â~ø[ìú<»þMú?ÿoüM~)zú%öæUAïÈë\¿Þ0¢³ÙT|§€¸$ vi\qh$Ñ- ®˜µ"±¢âTBEE&¤A/´+z¾^5%„[ ¼\*2 i¶Í£cgÛ ¼ü…ņÀEÅuï—Ϩ#?ø§ò×ׂǛÁ ܨD&Q™m30®.©XK‹ØìW·£¥EÜ̃çc[Ä‚œÌö$C?p¸\ÌßÊ*9FÙ‹ó%¤»¼~)»˜uÈôªa_æ¼¼—;|\z׬_Þ ,€Ò1ÛíÀçÀŸ‹m¶§½‘_ó8{×ÒFMWòw³ß~jµ²å:ÞQ¹#†V²õÉjäÕô,ÏüGÓcÞÉÛLÕDSqûP8a‚qƒ·¸êJ÷ðAðÓñK‡!29 ±Wï—J²øËÝÀ‡ÀÕeá uT\p¸Ô´Ù´*~b¶# ’uwÖ¢ïÙž `E¹ÙÐãlN‚O*«ÍEÇ0˜XVȰZÚ»;Ú:˜¢â;Œ7˜Ú|³â„ž˜û=|Û¦¸bVË¡7²N£\¬—u—víŒiV©äh6MJ:^ 5ÝÞ½R£µ@Ú„n›:‡#?ÉËP*á!ðCñ»Î’îjûú4ƒ&R‹ÙŠ¡;uÛî9s®‡Å‚æ°[³œœ6ÂHÕËiEs¸è}RbÄû„ý½>Ìþ“)ŽõF~¨÷àAOƒ'ø‚?TŽWP¶jZO™ E"6³«ÒgŒŽEnð­)u‡ a6zݽ 9 c­Ÿ&ó:fµdL®ì”™Ó&Ì¦Ž£Ëø^ÈE¸|]ôû>”í£ýÞCúõ»/Ãwzðäù#ÑùˆEx?øýmPä÷¢lÕ(r%)R/½Xw\íjÙ¬Dëû Ê÷5þÀØbõ†k0çÉ9\Ìä{£«óû!#a/xoÔùP¶jÔ¹ÔéÔŒ¢9:Å›¤KIX¬FÞ%ò#üÄ&ܾ/ö#œj¥zÇ5jÓ½c¼Äô?Ê•ê˜;><4Лó>ÌoÍ æF¦†òÌ:¢›ÇkxÂSàRËýbšÇë(ÛG5æ±Á‹ÞÆõê˜áumï[,ˆc½1_&YÎB6 àbË9Ba•'ë]Ë£1#4öµšQ-ÉvÂÃŽ€´Á0~eû¨Æ0F<¿a¸ZÙ˜0ÊNYñ'Æl«^Ó²=l”Ø£ Ó`ѵ­rÕªöMèÅ¢Y¥Ì9­Ç¸Z£û Û¤-™z¹¿ù…èþñpÿXi…Ÿñ-ëAþ\̾Fõ¢kÙÙé7r¨ æk†X?ÃþéÕû§W9ïq%üË?Á“ž?Ó3ú0ÊöQa÷0:LdXøÄ&T×ý]Ï̱áÙ“g˜ë¹j[uw0§U<2$8úÃèFñHO¨n€»Ø(²<… „‹Á·ÁHeû¨ÆHwøcÓÓ3>f¨sŒR+ƒÔ w€ïˆ-|¡9H%±üq*“ØaÎ÷œ æ'Ú;XèT/MQE[®†{ž<ÝÛnÿ‹°.õ*ezÎ&[Â| ÅvwµÁd?޲}Tc²[‚‡Û—™âdˆ¿¾´Ç­ÈRnߢ& ¨Z®±Ç "˜`9˜ic¦UóBò'£Öf:ZɪZvó5‹Ù¯Yݬ±¯ê¶¡³ÿP’“F²¬èÖúI<a¼€"ÚÖùåWovðW>ªYí²º¦ÛÙʨmMz‘ËPxˆ&×§P5„«ÁWÇ–ë®i£:f´CÑE{ âÞ~W¢ EíÓçÓJEËN5¢áÁæôG~÷@NcÿÝ]ÇŸ„„YðøÅO³½ÁV³3ar}²|6®í–º¨P¢ÁK½Ò©´Ïu¨ôÛÑû*¿S@\©ËñèÕÔÇo¶±Ê‰þÌý6Ÿ†ªú?•¸H}žéM` D~ŒÏCtÂà” "ƒ†ç³˜ª:h³‹‘!F†LoªB7ùü„ðJ!?nVÁÝ»vGïÉ~OB¨n©öýÇB.Buï?”ÎìbÆšÙ,vqV´ø{PÜ•6¯È﬩øNå½M`V½qZcQ¤/uðPˆpyGŒôa!]ÀcjÒ²ƒö| z \¾"}| ßó—\ÌúVç¹ G÷ÿ÷eäDXðöÌ,Ü\8«)©-šËkÖè"’Ì{öƒ¿ÿ­¿þصvãŸ]²ðì™óÇŸ.º¾yÿt›?Ô=³°á¨ªiVhC3Kfþè–?:Ýtf5„…¬!)´øÊÍ.«ê• ecB/á%)úŠþÝ”¼ÚuqIˆ¸þ«-b ^kpø2™K¥ÃCL=¨ïD=._ž¾J¨øâR¤y×4ª˜‹]$k±Õ"¬¼ D¦¥ÿ #q)RËrÁÁµX]¢š.¨ƒð.ð»RP03´«=-ÕPñ÷ˆK‘j– ª©ŒGÔÌ|hƒðNð;SÐÌ|hc~GàüUZš™Ãðñni ÒÌ A35õ"êfô±‚-’.¢nü~wAGà"¹´tC×½âJ@7cåJÔ`!ô±0eÝø±÷Âöêf!ôá£ZÝLóh5³H¸Òôh‹  ômíòh‹¦¤b¶á4-Û*kO<¡õösÑ˶Íì£ÍÚ™Jq5½Æbˆê½}Ï*Ô–kºå áÍbhˆ°¼7}mѽ‡Ä%©­%qÅÁäWqŬ•½š¦ÅN!o£mÐ"ˆjÔj S²¸ÑÌ|±¬;Žñ–@•„{Á÷*³þÅ={BÄ ú%yž?¡ÌÌC÷~Qqû€ƒ?[ŸÑw³Sù'§ÀO)SË¢úJiå0`Ãr’Z9 ,€bkEnG9Éðp|D™fº{üÐWJ7&зÓÑMè€;ñ[LäÜ>T¾ ¬ƒ×ãÊѹ¯`Žúç7Ÿ7®ÖìK¶áÔË®3l—rŽ«öQ-ös×O¼pìÄÁ§Ï]~òü‘C‡OÓ‹ºóSN~ÌpêD¶gÆížÞ½Zã£V_ÇwÍQ-»¡z­8®ÛYñ^oײַéñóKÕü‹NÉ(›v¾j¸ýÕZ¥¿¢»ã/êWlí7œíý®qµ¯HÏ×7Z/—Ù·{öjgÙïÑï8SŽkTòÞÛ¼ž’Uôÿ4äs~ŽÕá|Ñö¯zbÓïöj›6i³žƒW {”Í…‚w>ö>§h›5W3KÃ=§ØÐ¯öñz4Ý™ª5¦µáž|¾Ÿýß/­n÷ïëç?³ÿÆfŽÙe2³‡È\˜QrA,ºÐ³97­âsLöi?ß{ãFˆ·<Å›Ìw¢£¹1t‚c43¦oÌ:Å{i¡lé%Ôà‚Øw•åMR¿,Hÿ²Œô¢sœ$ÙHòæq¥ì¹ƒK 9£[I©ôY/Ú–î+ZÕªá ûC~Å{QöZ1ôYæ1‡šä£ /ÄE{¹y)ÒíÒBÉà6Ǫ:d€A²8cB;+†Dê—dc_w³â„@›%qNCRž0·8ǰº¢qáâŽæ<ºl2I&*#AVï—š ,ua¡âå )ï⼉°L‡ìd˜xwkv*§¹S5€Ø,4«–t»DQIq|xh0§­rNËic¶‰Mf¹È6F¯>|xQãÿc‘ŸQ¶Ø\8÷älpžzÐC&»U5lÛªšþfK›öZ ä4§bYî8þpDwœáèO·º ¼~1öÓõáé¼ Z¾èÖè¨c¸Ã´T«Yì)–Ý©Ðr¨Ì+!'axŸt«ïþ„¦H_ʇÀ‡â¢¯•£/mnß[è^XXú ßa%ä…©Û[ Tï…´~ŸØB¦UÀ»ÁÕ½iá„Ww4cu/FÒpÂ$ñ½ÀàRsƒÓ—ò߬›Š*.lÅÀµüI{(ú£^`¸œƒïJx( ìïoƒ‡º:ðñVòPôl1P½‡Z4×{õR­Þ .¯EõQÂkÁ ãAoaE¯ž?yëú¨»Q¹„mðQTl/°­>ŠÈÛ飄ù–óQäòQ­Ö—´ ~)]% `ú¨®¬ÄXˆDX \¾.½VLÅ>ìï‰]ôjÞFe­X·m£ê–§4“víP#zN$n#ðø6´pÁTn¹Nv³˜Ô8iBB¦UÀTÇIk¡Buã$©öí·mÂûÀïK¯}S±÷5píVkß$Üà~ðýÊìdA¡îècAïÁý©õû:â¶gñnäIy*¾S@\’&²-®8d"KijV$2¯ƒJ2+r·™) ±ºœ‘c"¢§¹œí½ŠbÒëÃÖÁ´ ׃¯—®7uëÃHžMÀ þt:::|ü™Ø:šè¥=H~ÎúÉqÃkO¾ýš×X eŽYªëe‡”ˆJón”Œ²áNû‚3nÕË%:Ò¬î°f•ïn¢¦ê¥+[n^;o2¶ð,ðÛàßVf ®n–£nÖ#a~øïÁÿ½2;XXpž¨[n˜%üàŸ€ÿIúÑÿÄ•t4@ÅuÿüOÓ¨øÿ( ®ô£õÜ¢=L.˜W+F]üDu—‚KMú‰<¦ ô,9ϳ8S•«LnŒ9oXH¾Æq {‚9!«î­ŠáäµG§4ôG´9L³jóO¦]äÉcI9'z¾ÀqðñXÎ)ðÅJÍ2«‘7“Luà5ðk ÛhÈá´Tœ¼~=ù.’Š3ïGì6yŸjð:FË[ÊïDu•$Ð àkà¯%ï*©¸.àë௧ï*©ø ˆ+}W©ñvåa‚®²hEÝZEuã»Ê™åV«—µY(!ö#§™±ì’a÷Ò2)²yž–{ž¨6OϲxüBò6¯ÁÎ Ÿ—š góTüSâJßæ7ÀÎ7$jó#cru—€/QfògnÚäGôâ•1žÜ¾aô^d@ñb‹È¶OµX—ÚÓÍö7ÀÞ Ÿ.}Û§âŸWú¶ß{ïIÔö»h)©„dÝÀøe3cãÓekÌ,êå ¡½î­|Fêz©Ä¢döM„®e‰!R¦ÈXâÙVŸ—³ÂÀ´ÆÞÂØ°–6gC²”€ãàR1z´€´ÖOh‚›±[Âý½yíÀЉ̞á¹(wiTOE’½|üÕä=×|/ø{Ó÷TTüûÄ•¾§ÚÈ-ÝÃä<Õ"¢„tÝÀU૤½ÕÌi}»¥·ª9F½d‰§¤û!ø0Ǭxgž•¼¤/Ê==÷ÀWÁ¥I Gë¢}Q‰òýÀ×ÀUŽ(CÚF´WÂ×Á_Ý`v¶rhÚ™jyJÉÛ~úƒÀ_ÿeej”_îDòüðwÀ']þ ðwÁ7¶.HÍ¡‘ ¿ücð?V¦É ~æ;Àÿþ_”é¥Å?øïÿü¿Æï£ÆTü_ ˆ+騀Šëþ øß¤Pñ+ ®ôcƒ¹E{˜\l0ßKD !Z7pyǬãBbc ÕzŰÍ"?D›u î¤Áæ^'?800s(ï=AcÒ*à/ÿRò^—Šëþ2¸\p$Þìu©ø_Wú^÷!ÞL=LÎëv7ó¾HÈ× ¼üi×;S®'[ŒÉ¼YSš0u|_0"{´ñ\üèé"œEm ôhw_1ù–ð¬Ÿð ø•ô[_Wú-a¬S¢-¡‹òIHÖ Œ?‹:S¢‰éáÇŒ`ƒÝ1¼·ÌŒlÝë ½žs5O-â³”ì©7j#Ù„ï¾ žÂÞ&4 Â6NàQñï°mx›Ñ06'ÚHðL`²uW€¯P¥??GWœºÍ°Èo VUœÁóÌ(Ū£g\ ´À-uqºÌT‰2œŸRØBC¦w¨¸ð¸ÔÒŸi7¢:(*ÿ:ðàR‹r¢9(*® xüFúŠŠ§€¸ÒwPBâ—${qÊN(!Y7P}/þØŒ^|\w©3vm«ìhÜ׌نA9÷AÞ¾‚N(z·,l+ðÖ~¬ì\ÿÍê³°t‹àñ“ ü*øW“VPqþxü$Kµ‘ƦȨ~Ž$ùð[àßJÞÏQq]À_ÿ…ôýÿ‹âJßÏõq;÷P­Ÿ#ìUOHI£Zcf^É·aú®-rßLR­jàZò6Û;%6é¤m³T|€¸=}w¡¡–€²ï‡iæmJ¡™‡ûˆK²µˆ+N?ZˆÒ)"§‰ñ)æE.økßqk’Ït³Ë² ×{Y÷R]¯ºfÙðÖpèþéÃ4þ³Í‘:‚ùðoܲÍk,H¦ˆâ*ëÓõ1ݬ:îôMöÍŸ£˜Yy¼—}Á™D²ëiCø)ðO) VÎÈ9a µn§hØ•„xÇ9'T¦·ëb—7„Î3*!8Ò½fösž‘Àþòà Î3)œ·NÅ=|œóLüóôv‹ëq}«fÎʬŠs7ŽÑpLÞX×éÍGí›Iì“ÀW8'L;bä£j§Xˆp”Õ#û†aÓà>Ç¢oøO]ü¬ t“¬Gg_p¼uk¬†sژŗ¸ÙV}lœgÈ ôòéâÈ•=„'#|ü…ô+{+ŠöQMeߋʎ»m$"Œw´¦Ú l$ÏzàfðÍÉû*n 0 .—ÆQ¸›¹#§™Þ+po7bÍrs¤ì-ÿdÍ¢õ†T¡Åð};ì犔 5«RãÁoM ýy3†(AH«×ØÞÚXD7fNU­Â*¦¬e‡˜Ó¨G?dYW´MÚEÃtF {,§ îÞ5„½ Í…«^yÍß.êUZ‰‡ ñ2ûÄkõTš„örÌìåœP‘¶Z)ÜÊD3pž‘JÝÙD3û€G9'ŒéOV6&@òÚÅqfÑõ“y ø焊ô³D8®VFMÏÇ8ÏŒ¥£¦‹ÀqÎ3r)ÜÄ»åÄõ®Ôôù® ÝÖ»zmì¨m¥Š^Ýìhçë5Ã>ÏïÚRñ9=„ ü2焊ãóN½æTê²}øsœ&œÏ*ö«ÀŸçœ0 ³ú ð[œg¤fÈg-º å”3¿üUÎ U9å ?[¶ößþ;Î ÓP˯›s˜j^¸¡'eý«6ø]îÌ ¬9ÞøÇÍ1jêüKŽfVKl|îí1«48^’KÏ#T Çñ^¾Ièþw8väœPÕL‹px¹¤Óï<|ŠóN©î(²t"$è¼Èygüµ²nnú–8Áçí‰cñšÅ%Oû+XmŒé6ÅtÇKŠÑ9Ù ëRà§—ËæÐù4ð×8'”|òNÜÍÌQ£ì×ÇÝJùÆõ‚Q©_¿Q°êîõBvã`¡÷}øRõúÆÁ7üÚ•Ñ?yþȹS;"ÿ¿þ6ç‘0}céÌo,,T^t˜Œ‚µÓ;µà=Ûì1%*þwÁGFðÆË±Î9ßÑ‘ ’#xµn!{¥ÐV3O9÷h’"—JV˜¸>„P)ø±0coW¥x†žr© á%5KñîÐÌ´«W «î”§¦ïå·& ÖG_ü.È=o!çó¤Þ¿œzW©uð$Örà:Î Sè^ç->À9aLmfAÓ¸Y×*úÃiNPV,TUZÀ7áÍÄ”Œ Óß–K³&ü§éNEž›¤'Xáœ0æ“Dž›Ü×⣚¹É¥š¦]”œçÙ)—‚ËyWM¨µ“,wï—:Ñ5šµSqË€÷‚ËMÍŠwÇcŠœfUyXè/Xõ÷Øby¶YgëYL8‚õ«´§ÖÈåsÔ(LïðŽÑ)ÊŠ_6Ùp£Wf8A¹ø.ðw)ÓûOìáØöÈhÿ½À×;bä§‹®ýw?þÁØÚŸ¯e£›C"|øað+ÓM7×Ì(úð³àŸMG5o?þ¹ØªÉ÷æ¼×ÜO¶}ý0ð·ÁÕÅç~ûb.@ª}ýð;àßIG‰¿üsð?­D3çëo”éÒÛYwY¨høëÿƒÞñÌò­¥§Ô't“}R6”$ª¤Çü Ž™³œ*Ò¿ü{>’ç"ð2ç„)h?óðÎ cjÿëúŽšÞ‚¦fçê½óóæíhùº¸‚Þ›Å6’gýÙ¼Ao6/º†3:ð‹œÞ630$÷—€?Áy&òjôvÌÀÀ_ÿšŒàñg`”‰¡nF™H‘f`ÔêCù LÒ•<“l©-f`Ô™¥x÷boN܃4nM²Ñ{uÊïe+–ãÒêRÛ¨46›65úYoañUN€Æ‹ù¦ß¹œsBEmn!ª%úÔλ€÷qN˜BŸÚ¹x?ç„15½Mó¢¡`­ÒÌ´éMâ” Y5v®žåœP­·Ê¨¡Qçsœ¦¡F„FÏsNSOçf©0רè,,.៦] l¿ôº ºfaVŒù¥ÎËÀ¯rN¨HÕ­wæ·Ôô7?Ï9ašþ à·8– 0Á¤—^¬cG`>¾+:$Î “Y @Oö iŠ•8¡"m·Ø…ÞJÕó6³œÏ“Z`YÕó4`/çózøæÆpÆt¦ow÷7òÚÁÐqÔ$ñÃÀç8Ÿ'åU˜‘é\畚è_i(ðy Áù<#¶;s-jÞ(pŒóyR«é‚Õ1$£Žjý+ uŒ-Î Û¢Žð%ÎçIå= V‡LÌ2ïjý+ uØÀ)Î cªcANrfÞ5à»8'T¥’m2*yoý+ •¼ø>ÎçÅO£ûBŽ^½³¾…^ɲaV¶5;‡Åek2ç/œ/£.2MŽX~ÈÉoÙæØ¸;=gÝ^e¿øçœÏ“›ERvç TükàßpN˜†¶1½<ïo9'Œ©mû•õ"ÞÉ#~ðÔ+&‘¢øÔ[ôFï·»‘š™H$ÓÄ»t]æÜÃä•Þõ4ðÎ=Œ§ô«JŸÞ˜çÔ>Wpˆö§·~ߢï壧Æ|{×ïqJ_T(‰‰gíð§éÈÀ6å= â;Ä%Ù ÇgÕš€¸bÖÊ}š¦dÆã`ÃbѪ°q)%¤ØUÀÝPá}àRÓrqÓ»ìAá„É¥±Ê\•«[@éÄâì¤FµÏÛ¢^´,»dVYÜàÌp'ž™d.Ã{ñ.qÀ ¿ xüBW’ †Šë?œ¾K âˆ+}ß ³Þ›¬‰OIˆÕ-`&>•¸‰ï…YïM×Ä÷¬÷¶×Ä÷¬}Tcâ}ÌÄO[®ÑÜ·áu9L‘¶áÖíªQbC “ö G_lº €°¼O™Â¼Õ !=2•5ÜÑÖ8e-ØÇxqÊ‚¸âìïð‚âŠY+khÍ­UÓ«cÚS¦QwGô:m÷Œ(Þ#Páð5Ê7÷LNŒ¨°È–Åí}5ÛòN³³ì1 !7w‚ïThÑF……Þ!å®îß[wѧý¨üÝÀ=à{”)iý¸ëÖœ=ýý“““ùÊ Yð@B>.õB1¸ÔBÝSÕ^àeðËñC‘èãDààøˆ²Ç_XÐëî¸e‡8š ê»î—Šï0žû]WÊã´L@\1ke3s¿”!#§Ëk‡ó¹i™2Îçµ,²eDöQ¨P8LQ;è\cMŒ˜ÕQÖÓ\‰Y¥Ý ¶á8¦U•9<~Nat²úŠËσŸ­ÖûóÚI«Z²ª{´Cãz­B¯²YMÓËåÈ~€$»´À­ô›ã!˜‘j¼ÂyfÿBÔ‘Ó.2›`6ˆÕ`½èí>§Î¤O¯êå)Ç𖸟k&„AG£Õôâ}̈ÜVãaÃ2ÒØ'ž°ê”ªSç]Ýeѹ—òî¼5êNê‘OZ&!Ÿ^Wùž,¤•†ÝNOµ!~¡ò¯¯ƒ_W¦«Î­;$äyøð÷(TLjU.…ûà+à¯ÄVÇÒìÖÞœ6Ø×·m—T#zø:øëê:?°,Y&’ýƒùÁ];¶îìÑqò[wäͰW^aá%‰úðëà_W¨» à )öƒÀo€#}wNÅS@\i‹q„k»jz+¸Wd½Ê)/OYqÜ(^áyMÄÎŤ”&UíP^;–×ÎÇ+f)§]`Ô5_¬U ÏŽç)T»8nº†–=RrhûUć>Š%´Àåzô Æ²æ 5F(ëër¦=›„˜Àÿäû*®| üµØ&‘Ó²µZ^ÜÝ×7´}3„G­¢®Ó]‹©õèI¨;¤µ½¬6õ:ðëàRžäæ ‘úwïÜ5¸upûààîm‘‰úóÀï€'yçGÅ}øçàñ7ÏEö:Tü_ˆ+m1ãÚn çW¦=½ÊƧX í )­;ãl ’ÓÍk'¼Aåî]¬<éø'ƒ#纟’ïu-͸ʘmn„E¯ZIwu/ccä–r OIX—;H>¨¥ÜuÖ™*Ž[þ!Ч wÜ*Eõz$š|¸Ôú£h^Š«ßþþ6DØTþ€ß þ½Ê4º0°•8WÒ6÷}À(¶6–eY°°mG_ßömRMçŸÿ„2Ådƒ:™`ìêÛ½k÷Óù­ùÁü¶ÐRH?CÒ~øë࿞|?CÅ}øà¿‘¾ƒ§â¿- .EO¿¤ÐX¥´Úç WsÇñ•½Kä: â;Ä%i·‹âŠs¢ƒ¿=÷QÍ)'+ ‡Jã¯4È„´ë…Ø_/!ÜJàÝàw+l¶!¹Q‡BïO!a×¼<~œè}/•¿¸|­r“X@&Q—m30žKÇ"6ûÀÕ-Ahi÷óàùØ!·/€dènߦÜ*‘UÔ ×’î ðø±tìb/ð8øñtìb;ð¸Ôé%Óêþˆ·Ù?³Ò[µ_©ÌóÌa”öÄÞøÌñ3³–l}²ùµÒãÂõZÕࢂc”Á$¤ ¦ÞîdG[*¾SÀxÉŠ›'t1þ)v-WÌj9´qãFf(増÷]cccÍ6+šMùùûÛé»fJk@dB·MÚpëD~’ÓP*¡ðÚ0擜.é®¶¯O3zœlÅкm ÷œ;×Ãüª9ìÖ,'§0R5ÆrZÑ.zŸ”ñ>¡i‹aöŸüHq¬7òCÁƒœ™þ€IYm¨gQ¶jZÏ:2r:6³«ÒgŒŽzi£<YÆ' á:ðuñedVJÀœ`vÊÌifS§ÑõyrS*ct} ¯œêsé“:¿·ˆ,×ÈB¸ |Ul¹îyé%êŲL•9mÌ6K^þ¾èÚ{Þ.5Rˆ©½§P¶j´wÀoóªQšÞqþÕˆc•ëäЙ§S)-;Ýg~ݲ#?ÆEˆNxü@ìÇè h°LFGÖÞÉž€‰§? 9 c­NŽiÏ lo•ü,dyö–lÀ— Ñ¥¸ 8°ØÅ¤g š;…â J9þ¤â;ŒÎÏÍ'£‰(Òs|Î…pyGŒ³CÆWŒ©IËšpz \¾"}<‡ïùˆK®f}«ó\Уûÿ{Ý!cŽôåôeø•Õü³•ôYÿÑÕoC>²—uMYÓ¾H®e3Ÿf¸ß­Ôúϱÿœ87>V9Òn¤n–Kº¡—F¶m+éCÛ†vôc©_E¯ös?Dg›æýj}åmØmæ‘¿mT++p=ð¡ÓazÉÔCs7†¼× *^\ .¤÷«Ü?Cxþ,¿øä…£}ذàí™mW¸¹pV+:R-Z4RkVæ"’Ì{ÿ­¿þص&ã'å\xöÌùãO]ÿѽºÍêžYØî¨Zá•ÙÐÈ’™?¸%ÂN·˜Yö¿Ùÿ¨Y6Z|åfg{ªz%h¶GèíJXòýû)9¥ŒoÕ@\b¨³ê¬—KUM`© zÙÔƒúîNÔCçô:I[%Tü q)RÉâ1½ÿ*Uü+jz}¯ Ixü¤²Ø˜Oéõ;ƒš=A]sÒåàýà÷+óûÀ¹5wp|$²ÛB/´"ù0ªm{FÌ1/þ°1]²ï· §œwA;—v\}Ü´bΰ¸plÿ©;Žî¿wèÌéáCo;N#hÃ3NfÜpâdª³îëή[´ÊGsÝŽ{Í1-µ¡x>;¡Û)ÿw]]³~¦Ó[–Í3gœ‘7'íLÑp{Š¥kî»gõé}=†³­Ç5¦»³ô|Ýcå|žÝÝy‹v’ýýŽ3ã¸F!CõTgÎÊzð‡io+×`'n´=Å‹\múÝ.mófmÖsˆWÂeËÈ?k`“µÍ’«™¹ÁÎcìÇŽêÓÝâ£NMwfŠYYm°3“éaÿ÷¤õ\Zǽ{zÄÏ콸E£ æLgö½©‚Gê$øEtnI×¼ø4Ó½æç».^ ðà9E ÷=< ~6¬Ó³ŽEX2’·ôÞ¯ô¡Æ°ª³Hës>íÏÉhï/ç5Òl4~÷ÙTTöÜ¥œ| DjÃa%{²V±hðúuoÀ¯ða± A¬Àg™Ç Ô8¥‘"ÑZ0~ÕÎU/E¶]2’3„ÏUö^Ïj?Ñ£,j©j´¾8^Œ7à!.É`_yFç èâa]F8É–ú©éÀu uàmwÔrÉÔØ2ËYn£~$‰\ \¾lCæÍ125‡B+W‚K Í4”ºp¤À·`ö†Õ¯î-7Qg¢kØâ|â´67 ií<ÿït^%ÎþÚ­¯îßYáMüOwϧÙfÒëD”œÁi-oLùÁéMiÛ¸É:‹ýá5÷O €Ëãø¿Ý Í][/:ciÍÕíq‡õܲƒý}ÌÓytœ]¬+ÇÍÎfXw°¯·7ü,‡Ò„¾¤`= kpŸ™Îpç ByÃ×+ ázðõÉÕt“ܾ©õÝt#p3øfeEÊ‚‘²£7>ºïÜ›/÷ý߆nË’ø6FkËŒª5 –øWÄ·"±Ý ÇÛUË¡sÓtø°n;XÈy^:WêEŒKÓÏzµózpùbEÍ1ýÒfàMà7) ñÀb§o¿9z„g$,’ö!.eOÆÖ?ƒÖ ÞýéÃ($>ãC\É(¾VcŒÊÑš”Э¸¼¥ÒqVTªœõø²œš0èD‚êÑßÕS+Å9m²ÍóVÑ¥c†5d KŠ Ç5 4ï•â'­cz9Ï“K<÷*àð Ò6™UXñ&}ØÂŠtyøjðWÇ_X‘¸G€¯Mä8ië [Z‘ü'€O‚?iEâÚ¯mäÇ]Z‘ø§|ˆ+ùÒêjáÏã+­Ú©·+¡YGKµsÛÑ"9~ÕP£ûqrÓˤ|1GÆ´rÑ;ã/'Îöô6>ò”2šï¸ñG¼˜³ tÚg‘ò˜âÔs'l$\ûÏ‚«›Z Œ„«áý„çÀ¥Fý£E‰ÏûWò‘°Þ¿:ÞH8>VÃûWÇ Ÿ8/ ç/'´T±æ€Ú?¢óoéS=ë–Y£aÒ°ERþuåŒ:Òv}ÚÆ8S t5³÷~ü«ñ×já×À¿–|p‘ø¯ûWòÁåÛIo5£Jh†t1×_KW92VÔ—c”˜¹T²­’mRû—Ç ÿ­°p î#ÔÁõøà8=á(øhò@â³>Ä•|\ §¿6Þ8>®…Ó_›DœO>®Å}×&¾|=Í €káô6-ÖÀé×Äót÷¼„bÀ%àR#Ñ ÊU¯ æËÙsZA·Ï‰\â\ȆáTšSÔbbÁ¡ÎÔL؈ ']´Áíø#b ¢€Ðw’ïúWò±Q°6‘P¬˜DDÌ4="Ö" Ö&kk›k6-"|‡ˆÆóùR Õ:€ËZfí@8r>Äs— £†Í;¾ÕH¨‹‘úqð],@Æ‹ £OM¬Íd— FÑ•yõ+£àrÍ•…Pàø8ibÏ«[•8>Nâ²ÀbÖ!JÖÅ1 ÄòC Ý:€Ë[¢Nƒ×ëôJ³èã4ç]Õú=Ç>¤„™¥¼ž5xˆ<štW¥îGØ‹%4ªÓç¶U.æXµ_ß$è=FN¯aðà DÌ:DɺæFÌ:D‰‡M‹˜%7Ä1ba¬„nÀè3¿N§C•V«/dôê€ Õ\kË.øƒ’22ã™ÐI­o€§Þ ~·²o‡PxИ.…mø’BÇÀÇâoø’¸{€ãàã‘ã`ñ-¬nh|¿º„&€6¸T§¼qzé8˜¾ üe mUšÄ9À—ƒ¿<²mº»f®}¡¦óà“츪¯~ ücñW*$®øqð'_©øOøWò•Êzáúcì¸ð]ªuÕ©ì´ø†SÖÊò*G+µ˜ê µŠûk“¦.ó‚Wï¿Cú‡+¥«Ræðø©ø«wxütôà [ôø»}ˆ+ĵï¿'ù¢‡ÄßëC\É=šðgŽ1Îo”²a !…:€Ñç7ê ž]•%KÎLaÔÊg´3^ÿŒÎÙЬ’QÔ²¦Í•ÊUf$‰ÇX¼üöH%Oèd±þlزt:¼ü¾øÛI$î8ð¥à/¿Ü#qwï—JLT»IG$râËçEezi))4,‚ã/ I\;з’/ I|ɇ¸’/ 7´ˆÒ0Æ’0k…;&…:€êgz)’žu™ÿ:®Íô¬KZvΰ»hW®eW–|ò'¬«Ó#,o©Ê´\`Ü®¾îMx'øÉ»:‰?æC\É»z'Ü»3VWo—Ыè¥ Y¬ÌÓ_ÊÓi·ù8±­ú:oˆ=Q¼¡ÚåéY–‡Á‡ãwùN¸9á)p©ÎE4—'ñ§}ˆ+y—ß7߫˷“ IhÖŒ¾´³¾¡{QÆé§ë¢tÍ™Ðsý͸­Ïø[Ê|˜XâU¬> þt¤Æ²ÿ®¶ãûƒ¢(¨‹Nм øfp©i‡pMU÷:à[Àß9j6rÓ—K%:¦žŽÜ憅% öVàÁ¿áFâÚ_ÿRò…‰ÿ²q%_¸mÞÎ1¾Âm!ò°H(×\ÑRIÃ¥¨Rö’ó¸¬JËÇÅèbÊÌ™4\žŸ‚D–IJ,:0Ç;Ó“W℻☙£ƒ’5fOòáÊììu^}½½¡§u7á¹?þø#h¢†ðƒàL>‚Hü‡|ˆ+ùºQsc¬4/k„M1r#"†P}çïZѨՌé’^tør_ÖV°ì°^LÚ-o©¤ëá|sü^|#<—p ø–佘ħ|ˆ+y/Þ ÏÝ«/D¾+ å:€+ZT×7WÛ¹õÎÌGè|KÂ:÷æ–jÒšAðÁø{3šp/øÞä›ÄßêC\É;÷8ô–X{‘—ÃMB»àÊ–J’QEÞÝ{9Þ­‹–«K A“ÖW‚ŒßÅ}evËmà·%ïâ$þq%ïâ)¸uJ¹‹¶š' +` ~L¸¬Eõ¢åbÒ¤2ñÖgSˆ4B \‹ßgSðSB߸rÒ>Kâ;}ˆKÑÓwŒTÌÒ@ö*¸f°IÉ»àãâ’Œ–î¨êÜ„ñP:`1C%|Q3.ëùÚã|Ó5)»¦DÖ³8iØŽáì8.ëÄêvN å9-ÕdWóy‰Úã}3ÌOh[Ò=Ï«îFÌ1:Ã;òÄ(”&.\ä'cŒ¤6öt]¤.^ØØwñÂÆþ‹ñwKúzFœ‡m÷Âä³þ³û¬+àéæ< ƒ­|øÂ>"Ý1ë(Œ#…³ì)|NH…~Ãqe‰C0Hß7úô~£ŒÞ•һ풕)N5Žé®Iùm>dá 3”i×XjÀ‰jMãÕïAMÚÚ¨hÒû™S³¹b³Y–ã™°Ô…(÷b #ÿ·‹Ò4òi‡^Õä׿àïÖÆ;`6¢Ø÷Š÷yÌudKõw? þa%¥úBVª;ñëñ)þÅÕëJÔhX¬/¡"Aª4W¢TèÒ\E|Kü!;|³^KpQŸÔK•j\Óÿí7ø>XjOë…Rž¦‰&uÛÔiV mkÔ1ìIƒ5´y]sÌóìC[c^“µ F—¦ëfÑqov|w;•v;ûÂ[ oÚZÖ²mÃ)YE>yж¯d鋨²Ç[l5o5šÖ²_6sƜݶ¯~¥uß:|JðÖÐ9^›Óºo}Ú§÷Ó2z+©ԨѰX5’ªµ»L F¿°5‚Bã\ª}_MzC—ÐM²«õ+®¥Î]q) &ß·­ŸîÊhÃ&ÕS³«†jm"ÒÃú«‘¼)­™|mû}VǰÙmzMvÙ)Ó0©Þa¼’ÚI;!j"ÛŸpµ ZFá˜9ß0–o³Ðí,ý:­¼(j©Bf‚…tÕU†´ùrjÖŒ¶_, )Ùå®`·òl©Þtoû Û*OhºVÒéU•óº-V;W•À›Uä"iê…ƒi‘Õ]Ãñeɸ¼–ò鮓 ;òèó›yƒ‚Ï“š Œ6šñ_A5ÃÂ}Þ¨f3/² @+›ËŽúØn¨JØÞ×´†ÎÕ¾ÁífmÄÕËö×™ò)Õ졇íà¡[wMhö¾c>½ÇdôŽÞìQ¦FÃfÏššAͪ„ný(S3TëG­.Õú ˜&½¨9U¼¬°m–-·…â•:G[H]„ù¿Õ*©úꦿ$ÇAýZ¾ üUÒZF] ¼J¶.x5ðÍࡹ7c(”~‹Oñ·È(®¦2P¢Fã5#)aZ©Ò_‰^¡KuF¹ÔhèÜn߬7\–Æ'õe©õ{—7 ª¬r‘Ÿ2a¸†mEÃtg¨ç –ÓFu‡ý㓼éžáÍújG2ô¥ÿ±~þ“¦5ܯ©…™Õt¿¦f $zãý§[× Nø«Ðxo½¡ª7ñðz+)¯Õ¨Ñ°¼¾®nÌ2Zó]¢a p…VºTó=0lšôª.¡dÔ&|¬ö ¬vb”:wµ£(Îüßy›Li¼/kJe×h4p9ר[íp`Øq.ÿsYx.+òs…nËG­ šá¶ojOþëY«˜ÓRf±hØ=NAÏç) tò‘ÊÊ ­Õx ·v4´þ PŒ¢Ì\._%e¿ÝÅ7ÜÑ?j‡vmÁKá¼2ƒ¯}?Úž=xy„ßÿfòöì…hÕØs¿gOÚ§Ã6_Í?ŠmÖŒæ×î÷¦ZÈÇð ¡¶ì߯¬v]ÄSWîÚTéíä&uîž?¡¬ ÜÉMâO‚ŸŒlÔ«µ3Œ9&&¦0U"a¨»€¸º1Ì9³¤Ïi¥<°^JÆJcÀ‡ÁŽl¥ã˜â{‹«¥ ™kÌtY§¨+- X7 ‡HD5ÆW}KäR g±_ÿzÓzG‹FJ­/³k{KË+¸”ßþ”øWøÞ=Ð7€þÃ_Þéû#ŸÞ&£wôÞ25†ý’‘”géÐÝeš…êî¨5Ë¥º;¾8hλ©Óêr¢±Yöj܉WêÝuãÿö‘Œvº˜3Ä@˜î8å‚H"èµhyñßÓhêÛI‹³§y›:?£íÚvcmv6ï‚1Öx¯YAæ]Øªï ´žo u8ù†r¿ðÜ ªi(/b å{¨¦©Í4 \¾HYyº8kPgðÔÐéCaS¤Ñràš–Êi‚q7¦HÜÀµàk#›çÉtuYMe«—¤ÅfýEþžXG¹¬f÷:3Ú~‡V‘ÏñêïÿTþ¸:+Èâ ý˺_ ë­ô®~¼ ™V¶Â5=T4_eAs¤&_O±àÙ'oŒáø KËæ-ÇðÖhá4ñó•$;=˜  ñ…š²NÞ,•p¨ °¬^¤ÓU+?)G›E¦¥îxÙ{ º=nÚŸ‚®TÊ ŸÊw^áWÁ¿)Ò®ï/é¶„bß~üû = /‰ûðà?ˆ¿|!q_þ>øïGöäkøÈ« }«þ$:Õ¤Ôþ\nNª¡o}#° Mþø3ðŸ%c¥ŸþóÈVZRI~˜4ùgà¿ÿ[òñva× ª)ˆ³‚ø¸åbpÖÖs&?¹ÊryYYdÕ+.Å€-­€ Hqs–ê;æøô™­»–~D|žƒð8øqe>¶h$g0 óRÜi;•¾ÍÐF%ñm>Ä%öË£ª³«E´E=Äñ­l`>¶_Ëé®®ÙzÁà] >c)SÄî°jî†Á7€oˆ¬¦DÞ•[ œ0¾ÔB­as¿‘:>”Î(ÑPT½Mwc€eçÌ"Ÿ¯©íBò"bŠ–ÆñÂ1DÊ/O µ‰k61µ‰?俥Ú·Þ¯‹ÏH¨ÕáÃ\|&vß·Þ“¬‹ï[ïi®‹ï[{Ø4„[ÆêâóÌ\ØÜpƒplBõ9<¯I~Ê9Ö Î!ïmèdZ¤ÚràFðñ»ð ܖЗ’6i&ñ7úWò.¼n»7VnwÂgïÜ ¿%\Ú5K}½F+«>,—£s/î#ÔÀµøýw/|–pxôlhÿ%ñ>ÄQš>%Ïu]mûóY·l 5™4s4?ºãx+|œÐ7®Èl Føpq@‰díkij·‘Ä·ù0Z·qATuh¹Î>Äñ­¬¡‰+?6®ǵ»M#;áŽêeÃÖR!Õ;C®—šÏh8¶vÍÔä辂áêc–ÝÁË{„ )·¸|‡B6 º™»¸|gdÛµ…^”ÑE¸|·2#­ŸpÝ’³»§gjj*ÂX3Ø{„‚?¨ÌXí#e;ÈT·Ï€Ÿ‰ÞÚ?"J <Uöø Gô²;aÙ EïÁ–¦¿$¾Í‡ÑŠ_-ª:Ô‡[êC\ßʬø½]ÏÚºéN¤µ¡Œv8£¥úvíÜÙ•Ñn·õÒO‘3R^Ÿ¡®±7Õéhú$ͨå̱1Ãno(£…|ÄC06áà(+–žb•KÑbå‚mfÃvÒH¥°^RØ‚ XŽEâ> }éaør›äÛ@ÜQf™¶^ }Î/€_PhŽQ+Ÿ ë$²9–§ºÒZÿ޾îîþ}RQsø¸º$K¯NÍY&Õ¡=}½™¾Þ½=½½[{ûvônÏPaÁ>ÚºsçÖÞ@;T±¤ó_ÿºB;Nöh€Ø§ßÿFò5 ‰ÿO>Ä•´‡…Ù+¨¦¾uçªYökEê:ZE:u |…s;žövÄr«@E¡³z˜†=EÖ¡¥ÇŒœ™5‹†„Ž€Ï‚?ÍCâÊÀ7€¿¡ 5É#ðMàoRf¢Öê¼Ó‡¸â®xHܛŠg'«xvîÜÕݽs×V©èy7ð7ÀC™i67¬xzû{³ÙºcgoïV Ú/ Â!]?ü!øã¯pHÜoÿ üÏ’/éIü|ˆ+i5îæ® š gïì ‡ê›][)ÃåQÓK¥<í:ôPû×Á„vþ#ЛÐ7.¯Èù{ŽZe»È”Ã\äþëaѲÆJ•¾Ûï8VÖäÏ#¡ü! ÓRiÖÇ]§¸[.¸\uëÿ6|BòËÀIðIu½™»$ô¹|øËâ¯THÜðåà/lŽ+S[û©ZéëèïîîëßÚ/[¯¾ü ôhú¶÷÷mݶ+C…õhvlß¹}kÈ †t~ð;à߉¿‚!qoþøï$_²“øßõ!®¤Õ8*Ì^A5Ì0«`|3iíÖ¡éïíëeÌA«˜+g]£çnÞ3”n’5ü‡ÄR8¾ò\ Jk%={N7BGÆKð0„Ãàr{lŽŸûjE3l¹Sº¶çBJ¾8 >-CâNgÀgšPËüóÀHcTcfÛ%ôyøøcñ×2$îàãàG6Ç>fÖ×ݽu§T½ ø,ø³Ê sc£êeçö=g'3Ù;°=cö„¬UHÕ·Ÿ>þZ…Ľøð¯$_œ“ø¯ú—¢§_± ÍwíJ¼ù3Àx.¦ÚcRB·‡“àR—á½âp |*¯0€ÓàRã5oþßâê ÂSj™®·ç•¾›š0³³vÉV¶È†^HGúÏ¿ þee¯oшczÞ±ZéÔ >ÑÒÔ¾ ‰oóa´¾Ëu—«Nà¦÷“ìZìC\_ËÁ72GÉSv×ÐòÖ¸f›Î9oáEuÇóÕè„~’»`TBo¹¤ÔÞ²Úíâ9ÝÕötk†C“*ºS¶ÁΡ¡NV¤šƒnÉrÒÚ(#Ec<­eÍÁ,ÿ$Çÿ„v ²ÿdF³ã]¡j2Ôq¿xí¶¦OhU|c¬¼;Ó*0® Ôãd{¨&¯'¥Â¯ÁÙñ¡U< µ¯¿>²Š7±x!WdÕejÆLk“fÕ»Ò4œ>aå;ê ïfwCIB/QÀMM°í=í¡Û^M¶¥úÊ_‘…Öí^èCx5øÕ‘u["TJ1Û†7Û}Pƒp ¸ÔvɈf{)d{¨Æl÷“Ùxr$:‚ÎwðŸBÒ5'o•ŒjÖO~gME#þ†>ßÊþ@lš;™C?áýxªûkyÄ'¼?¡Õ ³ÿø;W¬¤}Â1µÝ}™­[Ã;ÍÔ'ôt£o†Þ¢’™Rú`/«©HÚ4cÞ¿õ´–wg;s|»¸DÉä[ûΈZFÔ¶£¢_h…„„àÑG{ÃÇÜÈöPMÌ&ôÍÚš•õm¸2O!Öø¬ÁÐó€ð0xôusT˜á=Q‡^„ëÀ×5Áð£íá‹©ŽÌBÂI™ƒ„ͬ# ÈöPÙzyG‹'eôg} LíZí1¨JØ ÞYí5U‹¦5_âÎðæ‡N„kÀ×4Á¼í¡óv“y kÊߪ Èì™ ­³ = »Á¥fBjt¾Öo[—UÎØ 1] oÚ³P‰ðZp©9´†b¯1¦iСáD÷Iˆ;§Ôš¡‹H|›£ ջΟ 2>¤JtÎ@pø2eFY4rΘ™²ìF‹gò°árðåÉÛ$û<Ä%÷fÝÕ6ÔèѽÿðØ-2îHw,£;–âWV‰ÏVÐgíâGW½ýÈ_ÖUuMú"½–Ö?Í®·Pêbÿ9:41^8Ô34Z6ó9ÝÐs£[·æôþ­ýÛ{°ª°§ {DA”ñ^éã/Àg[oýçÊ+eÂæÑÃÞ$¬£7ØØG–(ÑÛ]\ îTõÞvË/Ägóg‰§OîFN‚/Ôkäûrá¬:TÌZÔƒ¬¾ÇE¤ìý?þéÀÆço?_ç-Þaª Ož>roÖõœ‡ÿÓ­þPG½°á ÂÞeÅ‹ëïæ¿Wë+³<!óü13oÌqËåÎÈõB£_µÐ¨]ù G$v©qI¨¡Ìû©–Z\.õfJ]0¢çM½Q¥Ý†×ÐVûJ’¶‰_æC\Š,²TÄÐ%Ö`Xf¬AxøU XÆ·­Q·0)ËøÕ>Ä¥È2Kª– žÌ0L;ŒAx%ø• Æ7âUÖ!¢¦~ááÕÒþÑÈ0°Þ¯v§Y4t[;]5ù»'mÚƒ,æ½i¦{ Bj ŸÜ"̸E;1Js¦Ș?ªÐž®éæUJóaCBßþˆ¤íIâïô!.I{^Uº–ùP¾Dö›×4í°é„wÄæ(¹[^¸[Ùs·’ÏÝRî<}ÒéòFVŪ栒3ZÂëèŽl^w-ä{OB_¿IQ@]щXé j4uéIxü‚²¸\=Câ ÀGÀ‰ìóe–T‘ ¯¥2Ë,êå–”až>þL2†yø,ø³‘ 3D{ÐjV—Ô&câv«dõ ÔQ5§äÐ*"v5iæŒ\èm5ô>ØHék€w‚Ëc…6{ xø]Í6R`8 >¬Ì{Œ”ÖQ ¨CýÓkRÍèM ßæÃhM‹ÕQÕY U<Äñ­H¤X“6H7 ¨ ^ B]B7,Má‹E:Zj‹„,„ç×ét¥^Ä­ô-)¶ ¸ |S”Ω¢ZÒçfàø€Œ^áIÜÀ­à[#;u»fÙ2†ÙÜ ¾S™a¤hI[‡Á'c—]ÀÛÁo^g$Œr‡q){ú€C‹H\;ðø‘ä+ Ô‡¸’/ñ— æ_‰?Ÿ7ê$TC!ßh]bÈ^JÇ‹ežu{qF wÊ0ŠZ/ŸIèëí¥é?§ddͱq^bƒÉþTRÇ©Ó3­>þ ²"©}ÂÎŽ4qSàS 㱺ù~ù uê.,˜N¶ÛâcTaçåI_ø0øÃ²zÏúå3ÀiðéÈ1z’ÏãP箌vdL+…£™F.-Ž3ÆôrÞ¥sÆh+™~Ψî¨î€Í•°å.=Í ðwÁW¡Ê]×ü=ðßK¾Ü%ñßõ!®äË]qÀ[Ú¢-¡›7x½¥]¯Óoˆ8gÅ'•£ã´Ë¥¶¤§xR3<Ç>,ðKzÖà± ’Wˆò˜þ<§a¾”¶T”ó9JcÁ7ÊÐ oÒ¡E÷¬>þ|ü¡µáDøð¯$ZtÏW}ˆ+ùÐZ‰pZoh‰) Ý:Zªu¿ÚN¬Q -ÝgÍ›¢ë-½’†»>Wß² þÖ ‹'o»Y17kEÊÈŒgBg¢Z‰H œŸTÖÔé¨nG Ûÿ"…._ þêøû_$n øð×DޓŷhÔ åk\$ ôðàoTf ù8yð9ðçbiÎû&à{ÁßÙ6Ý šyE_Š3LÚ€þüuRõ}Àïƒ?þJ‡Äµþƒä+ÿû>Ä•|¥³J¸>ÇûÑ|DBµŽ–êØ¤Ú~ôîYuŽ£ ƒ5À´QÑž«Ô:÷רzÏ«D‚Ë™„/§+Ræ.àÝàwÇ_‰¸—ï¿'zø…-|Hü½>ÄwáCâÚ÷ß—|áCâ_êC\É>ðg/>c*|bîUB¹àŠ–JÏRQñs6o‹3òª Ý© ƒ•;¬YvKe××37І-ÎÜ+¢Ùk³d%#ŠXï3”RuýE‰çö®Gª¨¨¸šÏ'ÀÖVôK_.Õö WZ‘¸‹À'ÀŸˆ(m]a‹+’ÿ$ðµà¯¿¸"qÞ6°§ÀŸŠüø¡‹+ÿ´q%_\ù¶¥).®¤eÀèí£ú@]añ²¨Ò8 볤ÕJ ®Åï³WÁO 7€oHÞgI|§q)zúŽ‘ŠYÈö³zÛ[›´Våjø¸‡¸$£e}TuV·ˆ•¯ʯ‚õ{-í¼S°KηܳQ‚™¦­Á¸F¼zŽ[À·(óãÀŠ—Ä­¦ÀS‘u5eºZ†Tê‚*³TGgÞt\Ú¹-eªÛ€ÇÀ%cª½ÀãàÇ#›jOF;U™Ï F¬®Ñ‹a Ý¢«›EÚIÇ»èV>oMÑ¿¨l©Dܶd ÍO_ .ÕºŠÚ¾ð~ŒÝ¡v3—ÐÌ[ï½´¥²^_QSceý(~ضƵ¸P×âokøNÓif[ƒÄwúPº­Õ×Àg×Äê¿m¡{òkౄ‹Á+óÞ²smð ëʤã2 ·øñæø]y Ü—0 žNÞ•I|·q%ïÊká¾kcuåù%3“•P­¨¾Û—bõ)ëöñ™Sot©Á²Ð~MÚ®î—ZËί×— wïJÞ¯IünâJÞ¯¯ƒ/_»_—Ãúõuðåëâñër©‡___¾.Y¿¾¾|]sýú:ø²‡MókßÑ/†¡¹ëá¿×ÇâËšc MÏåLÌ`yƒõÈ5Ÿ¯‡ßö‚÷ÆïÃ×Ão ûÀû’÷aßïC\I«±^롚Q»^Jµi±pƒúZ"õŒXX9 =¤Ö7@ÓZæä– i\Ÿšª)ôê9†/ä g¼± Í/—JÖð—w‡ÁÕmŸ #"q}ÀSà§"ûöÊ ŒvÊ‚c‹4fX[«Ó¸³ ÙzÁHkVÑà‡Æ•CÖÛOß þVåÞ¾Tw2¤t†+-¡âW€¿ ®r™ü^Í`âQ¼ÿƒÀ/I™÷¿ø{à¿—Œ÷¿ ø]ðèk÷W½?lUCŠ|ø§àš|·^ø~ÕÔxªfd4hD¨~FFzó¥†F¸|sü>LâÖ·€KÍÕ¼…Cio\Ÿ6MTÊi§ÚqØ?}cûT¢‹¼@£Ô€µ&ÐÞOæÁ¥R6”º`„·ÁÈ] 'Ú ÔÝCG‰oó!.I¿ÞU<ƒ”‡¸"¾•÷ ¸dþSwB§I¥Â(ëÆg”L×·›`”ÿ]™Óì^nT‡ÚxÇÙäøÜs̲øå†UӚĞËpÂ÷€¿Gy«£}4_.Ihö%àWÀ¥vð„ol,$}/•||½øyðÏ+ibÐ/~øUp©ÍDáŠg÷ðkà_‹Em¡ËV’ÿuà7À¿‘|· Q⡚¢ö¥(T*³•=µ…/K(a«Wjäg(øqXR%Âx&—‚Ë-à«DX OB78>“L™°xPh,Ñé mǃ?¬¤D _ÔçÁÏÇ_"¸ûÀ¥Ò[GÏ3M*<|ø+”{ëB„¥„rï¾üýɸë’A¨,鯯¾üíÊüõ5À€ }%ðƒàlB Fò?ü0ø‡“¯Á6 ¯ š¬Àj°C³g}*K+Z•ÕU^£USŒ[Å‚,~\ÏÁj0Çðþ~ÊÌçé&Ú¢ ÐÐzC¿yß‘º•ÓÅ É¿ùD{¨æÍ¯boþž £ˆ³j%Æ»  á*ðU‘JÑš»äv‘‘2k€7€ßaAâ®®_ÙFo¬,v)fïsÕK¥@»n;º¤YçØ¼ÿYdÍA·z¸„hÀOJ™´ß/ã_~ \z,7œ|øeð/Gö›¸}ÉPVA4ü+y7¼i4±s+tÑGz>üð¿I¾è»I½‚jоGXÑw`ÆÛF#~ß/Rp嵜éTN¼íäâ›"û¢œuƒWkˆBµz¸ð”îxC8| 1ä¸OMø¸º½o‹\Ãq;ÝΰaDê<|-¸Êý_aDâ.Ÿ¾ÿ«-t&’ÿ4ðuà¯Sf•ÅÂ*çŠá×Ü“Fo>þ\2†y=ð½àïm’aÞ|?¸Tçi.ÃLœsÎJæ£ÀOƒ:Ã|øðÏDïu§%’‡’ Ÿ~ü‹Êl³DØFÏMXY)ã|ø]p© ÑðÆùð{àß‹lœuiÑnÓ5·»¦"“­¾ü;ð¿“VÑ;M7=bŽÑ¡>ÞMF¡4qá"?×g$µ±o¤ë"}øpñÂÆ¾‹ñ7óÎu—”ŸóœÒüï¿ÿeØ' ;fÓ³p¤pÖaZú¼’Vú5œË8¢‡þWŸâÿ*£8¿°‚ð+ÉqªÑxl$Åì:ÒônŽñQ¦Tc©Çø¨µˆoܰ¡ÏÌáðÍz-ÜÙ–ºeE¬®éÿvëŒÛ†Á§EÆ¡‘'/§TØŒOÅÖ•‚&Ý‘JÃÏÏš·e´ý-Õ·kg_W¦rF}ÑK66euóã}½ŠŸ70jÏ0fá—5reÛ…¾ö‹ðÄ|!Š\(”‹¬ "Ë™Em˜Ò—±ßÌ:iš ±ìþ»Çøq^ÁÇÓ½»xáçÁ?¯¬Øiëë•Ðç«À¯Ma»fÔÊçÄ~øuð¯Gv¡U©¾ÖXìëߺ«»»¯{_èS©IŸoÿü•™§Ë«r–Iµ@O_o¦¯wgoOïÀö¾Þ]ý;Ù?vòÿ†¬HÝ $‡"N¨ÌŠ”©0@ìAl«à­M(I|[½+i5¶ ‹WPMeñV,éåœQ-;im8£ÝËÆö̹4•‰Ã¢XÜÆŠÅCÕ”>ÃÊ9jytëE=?ã˜Nè`؆‡ | ¸Ô~¯†Á°á¨U¶i—(+¾åÊ¢Èeÿ¬¸êmp[aŒŒ‘¸;¸Ó„-ÉweðrkÒãàEð‹ñ×,$nø2ð—E6ÇÒT?«XvlëîÞµS*Ž^| \n¾òr+•¾Þ~†;¶ïÚµs{o_oooïŽm!+R÷À/ƒK­VW©¸§ÏƒKú­4'ñ_ñ!®¤ÕØ.,^A5•ʽT©X£fѱŠiíöŒö^‡ì¢¦õ)¨£q7‘ÞlܲhðÎ,Žïæ „|íkVp×n# ;ðD„÷‚Kå»nWVªªV²¦Q̆ݶJŠ> .½þúòëwЗªÊ"Ö)$ߺà®2û´n—Pç‚qÅ]¥¸2ðp¹Õ7þo—¦ú¨¯Âª”~©À¹|üIe†¹±Q?¥¿okãôôõíØÑÛ×·«?ÐxÕ ©ú,ð³àŸ¿:!q¯~\jà>Z9Nâ?ïC\I«±SX»‚jª“ݬ:6t›ÆiXodˆõOꎑÏëT¹PgåXö`9Ÿ·²¬suSDmÓßÚïwAgŒÖr®nÔöÊ»gÍ…í„bûÃà*3YT$îà)ðè™,Vg´;¬QëœÁ ÇîÖî1óÆLèÑ[Òé4ð,øÙä]ßç. ]˜¹¾o®(Í:çZªŸ5¹»h0±Èúµ.­µöuÄ >¬8TÝKŽé­DƒŸãF蘸s \®UÖåÏdøºé5í)kÌÒC‹JJ¾8 .uh¸ø¸Å3à3MhP‘üóÀ àrÛßvÒ¶¨HG?‹ŠÄ=|üñÈæX’⣿ÝÝ[Ã÷ÑI“WŸ6ÞÕÎí;zÎ:Nf²w`{ÆìÙ "Uß|\åñ˜ *÷àWÀ›Ð1&ñ_õ!.EO¿x„ÝcØÔcl”G¯_ظeO‹Êº$ô; ñm>Ä%é´Ë¢ª3Ø"2 zˆ+â[‘Ⱥ¸&!Œžu1pg¯\’‡½¸p5øj…apã^„ððkŠ XÜLâÚ¾¼ä}Bj¿7©°¸|r¯X (Ièv°¼'§ØìïMÆ)nöµTòðEtŠS|Zß[ÈÏ£3]o+0}'N»k æÁáIøF½sË$zÒõ_þªä+†[…cVPMý$QïƒpÂKb¹ ûàzûàù7Œ!è”æX؇û¯¿NVíY¿Ü¼üÆø‹×Ü ¾¹9u©°x3¸Ô11d°!‚MÆ]#d°!mw€Pæ­ýÀ—€K§£ ç­iààwFö֗ή¼P Õ®zïiœ.(¥“d~ü#ÊC@&­iôÛÀoƒ;™ˆ”Öôý ðëà_W~ü;É„À¯üw"‡Àƒ<|[9|1 Úl—ÈŠè[ïÉ>¬›šÛ„¢gû]­7 Þª®.\4↞w¬’E¸ð©ƒ&.ø6â’,®¸\uwçR屨‡¸"¾–ƒ7nd­þ|¶œ×™Ÿå­qÍ6sÌ{˜ —ª;GI/”òD¼}ENè'9£¬åŸäxŽÇžnÍpèqRCwʶ1Ø94Ô™ÖtsÐ-YNZe¤hŒ§µ¬9˜åŸäáŸP¢ÛAöŸÌhv¼+ôC݆!<~<>¯ Ôãd{¨&z“›Ô¬¦ô:õ#)é(~jZ…~˜Ãx€Ãµ<âì£%ðÌSXm–š1ÓÚ¤Y5~xÃß½×Ë «D3üí¡Ãkdø9F B«yªjàZd53­Œ±3lx…„‹Á¥ Ö†b¯1¦©Èl8Ž~â¼ÕÅMªêH|›£Uu³z{b*¤NÔµè._®°ýqΘ™²ìF“swÂwVþ†cÒF!ñ+}ˆKî̺«m¨Ñ£{ÿ;†Çn‘ñGºcݱ¿²J|¶‚>k?ºêèG³®ªkÒéµ´þivö¸…RÏûÏÑ¡‰ñ¡ž¡Ñ²™Ï醞ݺ5§÷oíßÞƒU =½ØÃ ŸŒ÷F§ß[F¿wë?WÞ(“5žõú€ ™oS«%ÈEf@éå.l©”XœûJ.ïe·üB|6V‘xúÔánìµYPßåó¹pVü*²¾«é«¯qiÆ{ÿ:°ñùÛÏ×9‹—ödáÉÃGîͺžïðºÕêˆnz—{,®ÿ½›Cü^­«Ìrü…ÌñÇ̼1Ç-—½¾r¨Ì,{×’*z6þ¿*HìRÖíy ¡†2ï§Zjp ¸Ô›i(uÁˆž7õF•v^C[í+IÚ"$~™q)²Èí+}Bjôy »Z•|¬=x›Q2Š9£èj©“˜ëâZ¬qhÒzóÐËçÁŽ„ÇÁ+´©kºùFQæ››á猷 LÚ¦$þ¤qIÚt~TuÚáVÊ»˜ÿÛÇ(_¿Œ«ÆÓ<÷êÎV=­ »¶9Í ò¹YÖçf•ËÚ£Aø15|Ä‚»«S‡…^5.AøøcQ_DÛžsÌËý5lL—ìûq@Ú KóÝ܃6…—ýÀ…cûOÝqtÿ½CgN:xÛqê½Ï8™qÃ5Š“©Îº¯;»nÑ*Íu;î5Ç´Ô†âùì„n§üßuuÍú™No%W6WÌœuXÃÞœ´3EÃí)– ¬òu'ÎêÓûz g[kLwgéùºÇÊù<»»óí$û=úgÆqB†êÎTgÎÊzð‡iouè`'n´=Å‹\múÝ.mófmÖsˆWÂeËÈÏ­¶‡Î)*¹š™ì<Æ~ì¨>Ý->êÔtg¦˜Õ˜Õ;3™öOZÏ¥uÜ»§GüÌÞ‹[4ÊÕÄtfÙ›j x¤Nòˆ_ôHç–tÍ‹O3Ýk~¾ëâÅ îæ\IàÈ}>þLX7¦;f%[2’·ôÞ¯¢ÊIU&8ÒúYŸöÏÊhï¯ðæ5Òl4~÷ÙÎQöÜ¥dyS"µa÷jÉž¬U,¼üß;W÷4¨3ø,óXç£4R$Z ëWíÙê¥È¶KFÄ¡l%zÕõ{kˬ~Æ‹áÅx-\qI{{äÑUêZ/ò!®ˆM¡]¼ß“šNkEŒA§5ÛµÎÞçð!öéX¹Èj<³È*@§¤ÛŽá}VÿE0á.ð]Òï³%°pð6‰Ý Ü ¾7òëk ?ØK Ü Ü¾Oa£ì°FJ€ÿÐ;¿"J¨E«+JF «ÕQÕ¡AÝ%>Äñ­H¬Óóû7Z§ò½µzZ§%ÔêðaÝŠòËW«¥QpµÎgf}/on‡þ)óê–;Á;•C\k›Ú˨SاÝLЯ="ο ø¤^pø>e¸T„ÄmîßÙÃwf´ƒzQ£´\W¯é{½e[áÊÿ±Æ2Úpøíüë fÀg”Ùvám†«›¡g†H™GO€?¡Ì’ Gœ»Ê“‘’ÀóÀ'ÁŸŒ^†g$žÿµ>ĥ̓MÖ1Û| ü©èO¶Ê ñOûWòU†o0>Æ*£-ôj;}ê«?$ëŒz}îšd7:fÌb R#kŽÍxm4Ææ˜çý§óŠý•“—òÈ*8Å ¤ê‰Ç[|üÁø½ <žð ø™ä½ŸÄ?äC\É{¿.(>ïo§.‘„f-ÕY*pEþºzºw,Ÿwp®ͳ‘A'’Mšz¥aEí¬”w™?`ºÂÆÀRÜG˜ÏÅKá÷„¸‘| ŽùWò1° ~¿,Þ  Í:€Ñc`^Fù¼5Îs ø*© ƒšü>ï|¾Ù%?…ÃaÓa7nq4»ÛµºÏ×ç—¢?¡d”KâÉW/€_¶É¬yj>ú¶ëAº< |5ø«ãïz¸G€¯Mä8i ]Z‘ü'€O‚K5›Ã•Vþ‰ËׂK5“£•V$þ)âJ¾´Z.ü™cŒ¥ YJh†å} J«Åumf½ã ÝÖ³.+žè(ª®«ׄ5%sìërÜG¸ |›²rfk,™÷¸xü ²@›£cL·o¿-²ßáo$ñtAfQ3tÖ£ WOX©ô%´“–㘣4Û_5Ž"ñŸ—ëa6¬Bøp~Ø*„tyðmào‹¿ !q¯68Î\Ò°Wi)œT­±waÊ…®Ð‰„H£w?þ1eFêèd% @3ü!z¤Ðg€_ÿJ2–ú8ð«à_l©uUKy/D+z±KæäCRíkÀ?ÿsuEf')&e®¿þü§É˜ë/€ þ·‘͵³j.Öu' †ë¬~ÀØÛd(5,LZÿÀÖõ‚*²¤ä°0)“f÷†Vc¯ýZ5`à„Qša›Ù$¾·ŠÞw3›|¡bû'Lº™Mâû«è]É7³Å=ãkf/«$tëh©6\ëöÔD(Í5,0÷ÊÎjSÎ6ܲ]4ršNÉ·ÅSzwE {V_ þJuí:©¡ºé àÓàRmÍpÕÝô(ðuோ-á‡èž×Ÿ&þ2‹nj> þlòeÝóâJ¾ÌZ)ü™£Ú2Kj±©ÑôdJSõºÂâ%’n— ´t<¬Ïúöâñ ¬À¸}v%ü”pø†ä}–Äwú—¢§ï©˜¥ì¸æ*`“ÖP­‚{ˆK2ZŽDUçJ¼¥×Õ¨ñKVŠìŸ½ã?pÿEAŸÑÌ⤕ŸdÕ5«ŸM¸ ¼Û˜vù€\N³­‚o« ìd´{èàvö¡S7} ûæ/k£΀gÿ™áìΔ¨…’Ÿ¡Cy™¾9oÿR†ŸíòÍ_$ü%ø/Õ5(æÚØ  ]þ øø ñ7(HÜ¿ äû†ÿU`4'l]QÍ…ƒÄ„tú4ß3d´aHçkfífô¹TIŒ ÎTgœØoñ¿›{JªKó&mk3¡·g…7yªÑ_ÏÑö¥'ã^:JgCÛ¼rªÆÝy¦£H©!1HMÖ€ƒÒ{m…‹EpPu?I§uÀNÁÛÔU$?IÜ5À‚&m+›oÛ¹^\Æ [k"7{'Lº.½ZøSÕTédM!%* /z|±7j¸SÕ SV`‰‘Ö¦ 9Êù_/³RBü kgwØG]Ç#4À£¯žhí_á„Ñ[ûÝQ]€ÔXîC\É¿—kñ.®Uò^ZÂ6ð}Ù¡ùî„ö;L툗Ñv\îºiÖh2¼ßÕEKh½åètúf®Ð Ñ¯Ù•Ñ[¶†$7iúk‰÷~ð¸Ü’ úÖË2‘1Çh¦·Á–Ƹp‘ïÃImìéºH>\¼°±ïâÅJMvæB_ÿÅýçÜZIÊ?|-xèÕtǬ­• G g¦¨Ï·È;Uíª$…Ÿò)þ”Œâ•ÎvÛ%½?à€ej4žÏI ÓŽt½ž€Í—Êôj,5`ó¥Z£øn“çtûf½îò K]ˆB#V­‰™ µ~Už¦yæ€tù,ð9ðç~U Ì÷ú¯Œâj L%jÌU`ȘJô ]`ª3Êe˜n߬7\`Æ'õ¦õ;š®4Yµ>j†Š•r4&4j¹-V’1y»Õ±hYDÁ Ã.òyCŒì¤Jºíš42إɗ|èë½-²C_\m±5iØy½Tâ¹ÖÂ*ÖŠvuë•‚*³|à‚ˆŽT+† #Z~(¡µF=ùKtYB¯0#í¯ž¼õ”ôSÌ÷½!jÙ û+5íÚטv/´&/Þ/škiM”BàŽ+Ùw³¾’«˜[OŸ¼5ô‚å†óV1ÇZ/·>íÓûi½•ÔËjÔhXÜ0’ v™ºZ®aëj…†òêê¶Wš+pšô¶ê"|›eÎÀFŒRçn`(Š4ÿ·Ç0g(¦o‚1gŒÛ†Q?êU>ÕQ´~Þ¡ÐRfÆÈHÕ9Þ#ýô£¦õìú¥{v­?þ­à­¡×¶6©g×úw>ÅÿNFq55ˆ5æèÙõËõìÔ躶Pg”ËéÙ»}³ÞLpÁŸÔK¼jÔÿí¼®Ð“˜~EþùÑ ?u´.EØ„©#ÛT7uôfoêÈ1²Ã玊 '°2çòzâ5óE.u˧¼å¿|š–ɡ̞S´éd²n „a®¾üÝM«P%ç–Hù÷ü7*TRøc>Å?&£xô U™Šç–”éªBUk”xæ–â~3+Ôx¥ÎQ¡ªsКx™[ò«ò[à¿Õ´s`«tù)à×Á¿þ«R`~çø7dWS`*QcŽ“™VªÀT¢WèSQ.§À vûf½™à3>©—(0Õ8¨ÿÛ­Õ5å[«mÛKÌEˆðÿe¡µœµÎ»ågŒH©ÿ-–ño•ÚJ`ÏÀ#üK^,x«Tκ¦Î‘öK€/¼õ%ÒOÓŒ+[‚fŒøWrÕmëÀG'TPÝÆ;cDú>æÓû1½•Ô¶jÔ7cDÖ–©Õè¶Vh(É£9¢#ö·uY3FÍT0l³!F©s7EšÿÛU³gŒ"Do†^onZ§KrA)ÿà'ü•ètµ~ȧø‡dWS (QCñ‚>ez….òÕ%ž}q¿™àÒ3>©—(=Õ8¨ÿÛ6©f¶§Ç‡¡Ç‡›WZJQµ~øYÁ 5JËÏùÿœŒâjJK%jÌUZÊ Q©Ñ+ti©Î(—UZÊ QÅúf‚KËø¤^¢´Tã þoåJKOÏCÏ7­´”\RDÊømÁ 5JËïøÿŽŒâjJK%j(^R¤L¯Ð¥¥:£Ä³¤(î7\ZÆ'õ¥¥­ù6-9ZÑå{Ðå{Í+1åÛ—ßþ¹à­¡“­6«Äü Ÿâ!£¸šS‰s•˜’íK%z….1Õå²JL©öeœo&¸ÄŒOê%JL5êÿ¶-ôL¿ÿzü—ÈzH¬Á\ "Œ´³¡ÔŽ£X.¶Þpþ’r—´Cv{õŠøB§R!ñó}ˆ+i5®ÃÛ÷PMR›¹Ä¡‡ËXJ9ÀD&¸J¢8o‚×ñ’…Yåb.Mg/Õ¤'v sܰµTß®½"¹×‰ü9ö±Ãf±Hßìê ¿ùz<+¡ n'ÿú×A´‡j^ÿ2öúOY”€MfÙà Ѓpø2eÕ©\ª<Òåjàð5Ê ŒÀT`$n9p-øÚÈæ9]I&Òû #‡():®]κH–‡³ËÜ Ýõ0ã™–ù‘&åB¤“ËXt8úŒŒ•¯Zà–:+KûJºLσŸOÆÊ%àpù¤FÞ·ºÒ|ÉJe |Õ`޴ž\n}|Ãö?Û+c°?þ‘d öà¯ÿZdƒI­Á%> ü¸º³MÈ(ý2Fù ðóàR£ˆáòqàÀ¿Ù(]éé<ƒ‡JÆÕÿ\ngR#¶Ù¦Œÿ'ðà¿HÆ€ÿüp¹åŽþoïéJkÒ¼Äɳµf­9…VÚÈ¿ØzTpBUF<ùw.#·Þœ0#Ó:GŽÃ‚F4ò-]|å¦?{¡—Üw^„’#ìIñSÀ× N¨ÈÊŽ°'õÞü˜à­RõBxó>ü¸à„Í»8]5§„¹>ü¢à„Í»¯¿!8a†ùð? NÑ0ñ¥î†«¬³ÍsñoõÔŠ N>ö—ÁÕ’9ð¤d§&íh£ã’%â·¶Ý&8¡ªÓ‡PÏåm(ÛŽ N˜€K´žœ0¢K”*¡ŠÜüÕŒä•í4ʺ‘ìó<òø‹Ž(Åä ÚÇk•]á-õ]ÍÊ(ÊC¼ÐÓž~]p¤^Ö ç© š—•^2kÙâRƒ*„+ÁWª‹Ž9ާŒRåZàuà×Å$nðzðë£×d^ÉŠJ Ó¬nߢÎ4§†N‡>‘ŠTÉûÀû’1M ØÞÙ4©2û$‘Ç@h)ñ}ZëÛÕßW=bŽ£DzBÑÁðfôKÔóeà ]ÜÑ;þ\>Ktq·A¸\ÕwÇXqw¤È÷Ú‰Dûéú&?k†ÎoõÆ¿èÐ9œìd¦ŒÌxøüKx ÂcàǤ©Ié"HùãÀð‘°Aw$=õO ?àSüÅ£Oý+SCqºez5–0õ¯Ö(ñ¤‹ˆûÍ4žúWêSÿêÔÿíV^®òŒ;£FåìÿA[}ý½•“µh„-º£æ×üYðg›W¾Ê-F%åß|/ø{UÊ×÷ùŸŒâjÊW%j(Þè¤L¯Ðå«:£Ä³Ñ)î7\¾Æ'õå«õûmJw•ª};«¥j®lP7²_+˜Ž#™£.-[©ŒÀ t‰j•™}o,&¸'²¢%ôãºã” 4r._|ðƒÆß×"yÀxãSäDú¸ð:µîîœP™f¬ }À['Œè#Gjú9|H-ŸŸc Kôy*ƒjm¿ä=Æ>à‚ªˆ(Ž•ƒ,8Aª<|£à„qD¸'oœ0¢aÏh%Ûšd½U‘EF³Jb‚Lÿ㸆ž£ D`P°V–zUðØ)±-/ª½$Ì¿aíJMHÉ΢oÂN€O(‹«Öé°AEzX>ÄwP‘8X/E6úbùž+)ò0ð¸ÜB{E‹ÁH‘G?–Œa>þxdÃ|LÌŸ{+´D%%º(]5Õ`ƒ¥·FÞ(ˆÓ¢gÍÀ{ZSÃÖÕ‰ˆë¼é¸õçîð¿¦j;jD¿J ÏzU‹Êñ,©ˆnÝQEïJÀqøHáNÁ #:ξÕNø?Ð!‚•øá]‚65¾[ïÞ'8af¾TpˆfÚ]³”mªvý«ê±²š{×òFqÜ f„ï¾Ypɇê¢í]Uô®$Ìøà»o•?¤âÆ¡Û$ÿ=Àç'Tôø‹Fr†«›y§dozêÆ•ÍÆÐ­WßæC\’þ¸$ª:›[ÄÑ=âŠøVzXcz¿¨Aë–lYù¼5%ö=J¬=ÍêéÝa•Þóö€÷DVZbï  #íýŸ31ð¼œîJ(Ö\¾DF±† ý¸fK/_ÃØhuº’ê¼Ñ¾Ñ4üÞç%Ý´gýeðθ’˜‹˜ »–Ò·«QcÒÉH¼æåÀ¿WwZà¹[$®øwà—|QFâÿÞ‡¸’Ã.„^W¬aØz·„Z>Ä%„óêÔ¹£véËSãæ$­ãçûíKºíT¾™¢N–ÄS-ž?¥¬AµX(8(³„œ4ºh€ñ7­HÜiàøXô¦UWØÂˆä'À¥FŠÂF$®h‚›ÉF$þ¬q%­ÆM§+¨¤•ÙÚÉÊÄã–‹AU—¶kfËyÝö0B#V‘ÕŠ¾y{â´š½©ÀJÕ,NZùIö•Q“ÊHçüÍb6_ÎU€c¸íÈe¹‚ÅGW|?Nk€|›„vÕßĪ#ß® V²•ó®h'Vôà³*|Œf´ò7’'ß ÛÜLoWpBUÝûãûÃ^¤Hð&Á ã.¼HÜF 8aÔ:<üä O3‚·f”=ÿ‚>çÐ"GH« Øðå‰oóa´náÒ¨êt³k¡qE|+§Y1F+m}jŽÓBlnâMþ–‘ OƒŸ–~´(kÁ练²Ô̹œ4¿¨ƒëaŸ€îHz!8)<êS|TFñJƒ¸­Er!¸25–ý GRÌ®¡W+Sª±Ô€Uàj-r©Uàs8|³^Kã%àñJc ¸:×ô«UÚjFÑ*˜EFÛSfu¶;B¿\nµ}¥m-Ê ŸêW¥}Ú§øÓ2Š«)@•¨Ñx©+@¥ŠO%*….>ÕÙãRÅg ³7륞ñI½Dá©Æ-ýß~›Μòø¸á¸¢×‹D®´!goÚ—Èu3OãJŸS×Êù­è“ýBÑ­˜—ÊtSé]ñÍ5Ô´­IpãÝ£ÂZj;{ ÃxÙ)Ñþôü ¥N =kê{•­''üÕj$óœd„#‚·þJìF'…ð)þ€ŒâJÊx5j(n$«Q*l)¯Ð"ñ4’c}-å|ŒRç.繦ÿÛÕ ÉᇱüºÙÐÍŽ¬[èñ›8˜‡jFµžóßðuÅus¬¬z 5”#VÉ7±\ï‡|_bªÙÑt—²|9®¶-´©zñ^ŸN™ÿÎ)6ÞÁÙ Q}JMÚCH|›qI–ï ¢ªÓÏ®+|ˆ+â[YC9̬üظÎÚPw›FvÂÕË”e<¤z0áð5ÊjÃk¦&G÷ WgÎÝ]²-Ú“±ìq %7w€«[ȹ€µt3 w-p'xô•œáœ#ù»€»Áw+3Òú ×-9»{z¦¦¦2!ŒPg“’û€‚?¨°Î.ÛA¦ºxüLdSIL÷GÁG6ô²;aÙ EïÖ–¦¿$¾Í‡ÑŠßµQÕÙÖ"rxˆ+â[Ѩ½€äuCm†N8éïã›Ðdö˜m‡½5pMY€/cÁ<ÊW£¶íùN(ݺ€>®Ì¡sA!HØ`¤R¿æeìõFª£ u{!rF®œ¥9}Ê¢ÊZdZd ZjÃî–ÁËÊ »à˜áÚ¡S|._ .5È®ßMâ&‚?Ú„Ê”ä?|\n_OáÌÀ.îê<åC\ʬ1jåsb_|üéÈÖ¸"­õuwôKÅÉë€o‹2£hÔÂa œ‰\>3Áúw,‹†ÛÓ¿ukoOß¶¾í»B6qHËwŸ^¡Í& {4@ì[_ÿJò5<‰ÿªq%­Æaè ªiïb5;óNkG2éÊÀ÷ÑŒv[Æ;ÆL;E›ß}'œðáj2ÜÐÞ¿ê?¤ÌûWŸtf²VÞçy]”óyƒ©/¡ã@\ÝÌq`­AâGÁ¥šÓk ’ŸæÀsÊL4¯¯w§„Bç€ðBüõ‰3€Eðbd{,Oõw¥µ^Vy Hż~Q™qnöúÇ9ˤþpO_o¦¯w`GOoïÀ@wÿ®Þ]ìŸ;3ý¦ÈŠ„~ø ðOÄ_‘¸—? þÉäKpÿ[>Ä•´»„Í+¨¦"9É*’Ê|*«>îÈà|LQ}8•IQݦª¤²µ{Ö<¨R»ñ$„'ÁO¾ÈêÒí`<BâîÀ¥ŠÎˆu É/-pK™‰ÚvîÐg8>•BâJÀiðiEUJÿÖmÝÝýÛú¤Âgøð×(³ÍM—®Rvî`5 S?dBú¾øp©þÂÕ($î àÁåNòº('ñ_ò!.EO¿x„ÝcØå·j |›04znâ,‰oó!.IÏ]U=-b ‡Ò{£î¥„I£ï¥l ˆìvAÏ&%t[¼üj…Q›7‹çÄvWƒ¯V(6`k‰kz½GO·•Å z Íkc¦Ë»è•TUâ|fqŽyÙ‰›i²«[/êù™ó´:¢di£vàŽÐsAô€×σK•-÷ÂÛ=TS0I„à­~k¬!¸4§»™¬­¹ý¬:•Pq ðFðc‰Äå/Ôé½Ü1|F„[qß­âQ‚xÖ/w7ƒoŽ¿x qíÀ-àrgxù¿½AEÍÌçËŽk‹ü–Æ´˜× R¤[ x\jÄ®¡ÔE#ŽaÐb×€ú”âf_KS[$¾Í‡ÑZƒ—«Nà.ÓýìZìC\_˱ ÿú™À¼„ÇÀÅgê@=B¶‡j\n{%¬z-͈”+f‘UÈ[ÝÂWàQ`šEÃwVq_¿f[SNhíoƒÆ„¾9ƒˆÚ_Í4Õötk5uMhÝ|ƒý¼Ý×Ú"Ùî«ïŸ0ô\Ši–f/­+´R‡¡á2ðeMp»Û!ÛC5n7(Ü'}x›ü¹ÏMê6­åôqÎÎ+Þùî€Þ„¾HÄgØéJä|vVÏgSA§a§µ¢9X4Óüٻ¨Lè›¤Š¨þâ»Iyö ›î­ÑQhA¸C {áöð^8 õ†›ì…§ ÛC5^ز,ÜZo_êŽÊVоÈz¯ž]îðû¡ájp©Á†ån¼ti¸#¼#Þý½Ü¨RC9ñ^ÈöP#6·kzžƒ°™]Ó—B¶‡¿Z]Óû¡1á‹­k:}_4]Ó a3»¦B¶‡jÜn¹¬C=Ó²mx¹h­‚W›Wl´>$ô#œÚ„Þ˜âžèöêã®gêã©­áíûyH©}ÓC}÷ç­)Ãΰ7•êëzá±É6ëêÄð5¢5 ½TkéÈ*ßÄT.—Ju*»Äê>­ð(”$ô%uŒ¨ðVõ‚áR¤kÖÊ×þ;ÕÉÔëLkzÖçèX¬Uë ï,Y(Oxü@ä™7¾ÿšƒtÂhóZþoÃKd{˜P±4 °XƒÚ„*‹¥(ÅÒ8!TY, ø‹¥àbi |”ûNTRZ, ø‹ŸJ±4ÐU÷yh…M(IK±4PW, ÄT,…ò„*‹¥ðM¸sNØÌb)Ùª)–n¥bI/zS¸”]Á6[f:üì#±èC š‡·kšÞ ~kä§X%Ôêã£õ}[%ÅE(C¸ |UÌlA¶‡jÌ|$ÀÌsžb¥Äà%<¡o"$ê0fÍÜ =Eª³¯s9@çƒ.îÙs…ôÀŽ®ðj? U {Á{#«eÎÆ†„/ž9š._Þ„°q!ÛÃ_‘9›2T-+u³UÞ0¥™“°™„2„êŠÃ uC”f.êlÍt#ܾ¡ þ7 Ù6ÅÿÂ7nf êLœþ7 áç¡Ìù$ýo ¼ÿ]€nšì@¶‡ÿ†Ç/â9# 7{ÅCv!쇸—)}¡×’ø6â’P£a–E*QÆbH¥^Þ"±¾÷wTd–E#猙)Ën´Çéå°áJð•É[…įò!.¹0ë®¶¡Fîýïx쇤;–ÑK[jJÔôY»øÑU/@?ò˜uU]“¾H¯¥õO³³‡µS{†ØŽMŒõ –Í|N7ôÜèÖ­9½kÿö$ßê)èÅÞ?Èxoôqú=>ôtë?WÞ(“5žU ŠÛ/å­Àå[Èèõ.._Z5˜÷º[~!>›?«T<}êp7V‰-x¡N'ÿ— gEСbÖ¢C¿ª/riÆ|ÿ:°ñùÛÏ×¹‹—‚wáÉÃGîͺž÷ðºÕꨶ;´EÄÛ¬Ødqý/ÞâkÝe–ó/dÎ?fæ9n¹ÜUö4Ü`eïj0¦ù— •HèuU—„ #€*«EÀeàR說Ô#zÞÔÕÝmxm- »¤IÙ¤­Zq)²Éb/Žì‚Ò.ó` ÂUà«°‹oð´rÚî•ÉÛ…Ä_åC\Šì²¬d™´ÉM.dÚa«Á¯NÀ4í0aƒII™[+ˆK‘i®Îê®kØÚIfGëÑ”G)ÿgHMçÃ8„Á7*4”kºùFõÍ|‡°Á²À¤ Eâoô!.ICͪ]Ë|ˆ+â[9Eé)+_-ݪ»†æÀ‹Jð¢QáE⟣: —Ó :mŠe…€m8T§ý´ásZy-HBßRÌhOÖ¶gÄóY6¦KöýâJ_Ñi·CÎ7Y/¥ÿÎðáU„{Á÷F~ˆï!Ä!G¤%ˆ«ÛãNZË“F~pzÇðZûÆ”ý‡6EÔºßÓº”`ïœNbÀÞø`6Õ›Ù–¦åSY+ŸÖFÇ™çÐÛ­ør(KØÞYñÛ<ÅÇmÖJ†k³Ûóf‘=S”½k|j9†KKÀÒ}]ü;zÌÁ¾ð²êúÒ`D|”nïQòüMç§XçÝò˜qÖ÷öczRÏ;áëhßìhåD©îäêh›öƒG·¾DM ·‚omB½ª¥ÚD¯Ž^ ŸCÖˆôKW—Kž©l7\ £^.5¶šöŸ½x-øµ‘=¦]¦¡M*¬^~}rAì- ܾ¡AL t7‚«l/;úx£Áö+`þ«Z¢­ÿÛÐ=RßæÃh=Ò³QÕ¡¶ëâŠøV$ò ú&ªmÌPT¦¶NK¨ÕáúT­!‹ÓÅuê\©5k”•ãËöóºúðfRl)p=øzé÷Vÿ¾®è¤Ü­å¢Ù6ÌIŸÍÀ xFY˜&J$q°5að¨"Ot{Ü,êù.Í·bÆÔ«ëÙjÁ™°Êù¡çrb8EÖæÑRÄrƘÎZo´…\âU¬> þ´´‘f‡fÀÂVÿ¤Ê›€oküÕ?‰{ðmào‹77te´ƒ¬M‰ñ¹+iž‹FÂZo~\®‰2×Y )¤ÌlØ1dRê€?ÿ¡B»Íq Å’A¨<×úü9ÔþmàÀ «ö¬_þ ðÏÀÿ,Gþ<ðGà?ŠìÈ 2Ú°úŒxÒáÇÀÿ þ_•/ o3\Ý̇!eþøOàÿ¤Ì. Gœ ÃáIà_þ³è-„°í#ÿs⊻}DâÚÿ þÏÉ·Hüÿô!®äÛGk„GsŒ¯}Ô–5%ôê.n©,<“lÍ«ÓǽD눧ÆqJV1'«.Ž™9:¼ŽÒµö$ûÃQÊ àÄÙ(¢'_|%ø+›Û("Už>þTüu ‰{ø4¸\ó°Æ'C‰ü×_þúø‹,×|ü™ä‹,ÿ¬q%_d­îÌ1Æ"«¶È"}:€Í.²Ð¥>]‚E=ù2 ú"k>_¶Ì"]ž> .Ux„+³HÜ£À׿® eÉ=ðp©Â#\™EâÚÏ‚?›|™EâßàC\É—Y× æ_™5Ÿ¯ø•P­¸ |™²bkü’Å–×¶êiTfÙÆ8å+´ø#梖Tô°+SàSÒöPÒ¸"U^|%¸Tá® "qÓÀGÁ"¿]?⤹SV·‘7 ü˜ØÊHü¤‘¥±Åº‘ø¬•§y_žäŒ™›Õ×ø O‰6—¿¤Ì±ÊŸZżøYö{ÃNÓ¬û<9üh[OO¡…iäB´ôþØz›à­R+†Ã´$¶b Þ*·PÁÿmè‚–Ä®¢w%_Ð^/‘cŒãý´AB³`ôñþzîŸîÖ§Y9Èô2]'£ÓÊÅŠ7§…ÿ{ÛÃuø'5Ä£Ð*° 0ŠŽIsh,¢Ê†6®Ç}„gÁÏÆ ×#ÏŸK>H|Þ‡¸’„uðþuñFÂLøHXï_O$ÌÈDÂL‘°÷­K6ÖÁû×57ÖÁû=lZ$Üï¿!ÖHXˆ}lÊuW´Ìʬ1^¯ÛãeÞæªkbÁѱÜ!x6¸qüà¯u»n¶ØÖ‹ã ×PÜ€§"|øûâŸ3„ï—Zº-~Hü|ˆ+ùøY˜Ykü´[áƒg=†P}M2Ü(x¬Q‡ºT{ôXe7KÕDPUS´ü‘Rf6Öã>ÂQðÑø#`=¼ž0 žM>H|·¸’ ^¯Å´õYB³ úâ9ÉxG¼Ú]¸œ&u©K%Û*±‚ßeÝuj[ñß î#ÔÁõø@ƒÓk"Þ8—Š»h@â³>Ä•|l€Óoˆ7fÂÀ8ý†$`&ùØ€û6$àôšàô6-:áô±@›v½['\ž0ú¤c½>o©_hn²kfÏi¬ÏpÎá#±µs<%Ãew¼+?UYÔíôˆ_PÕ §W³ øp©vt¸êDÔ~<úèÐDâ?äC\ÉGÐFDÍÆX#hH#¡[p9øré(ªÏmúšž7fMsË…Qö) ­û° çµR^§C¸Ø}Sfv¢.@µ¡X㇚°.†vÏ„QôQ@êb‚„4H™ñLèmªôZV?.×mXèõß[Ase¤È¯ü7†tÀ\ÙF„2áo‚ÿfäXrºÒ”JÈÌ“­Î¶Å Õ1ó£žgp ^d޵)JF®®IR)tgÙž¼Ì°Í¬(<#8ÀÇ¶Þ 8¡"hí—°ëUô®ìߺ¸Ypˆö_ßÀþÌÐ6-+.†2 å¶ .7#®º#i‡ØÃ‚+˜ ]Ý‘øÛ«è]ÉWw›„£sŒ±º©Ç$t몯î^ÝhØL¯6ýhÁ×Ú² ¼Cj4Š,ÆÓœ´7·oäÐæK£9çb,p“+âè]¬¾ \nçM#;uˆ'4¦KaË:Rè9à¯ÿZüe‰{;ð£àr›²ýß.¾…µæ ±ÜBÂ@¿ü øg”H>¾ ü:ø×Ú¦ºÛh–ØÏ¿þȶéîj8‚]‰UqR,kkÈ d“ªÿ øOàê¶»ÖJ$®ø3ðŸ%_+‘øŸûWòµÒÂõ9Æ8ªKE)Õ\Ñu*´¾Z:¶ZªiYKÖ*7BÂ{ÀïQVh-Öå«ÒèAàøDüÕ ‰»h‚›Í¬VH‘³@ÜmrµBº\¾üñW+$® |%¸Üò}ÿ·±V+¤ê£ÀO€"þj…ĵ? þÉä«ÿ[>Ä•|µ²Y¸>Ç—·óüʪu—µD]Þ^_©ì´øq¬óáÕ.ŽV4 Z¡>:S7âí¹¿6iê2/x%ðp¹tÜáK©À*„”9<~*þ*„Äž—JV;÷(‘%Ž4¸xø}ʬr‰VÔœfy8>–ŒY^ ^&†­Hü„qÅ]#¸v  ½]ºF ñg}ˆ+ùa‹phŽ1Ö<ž„jÀè5Bý†§ûjÇÛG wÊ0ŠZ/Àêëí½×eÎ1-þ€ZÊ Ÿõ‚o%ЗóȆK5& ;ìN3ÒäåÀGÁ¥Y;+7ËÒÁ‚éd»Em¶ Aú–€€?"«÷¬_> | ü±ÈáºOåDZÖú>U»UŽ:ºú9ƒ{ŸpRžHŒÄRV °E.iÿ8ð›àߌ¿È%qíÀo+ù"—ÄÛ‡¸’/rS"L9ÆWäÎ+e'$ëFÏX_àž§ë.Í93…Q‹ï4e]ÉÊé¬Ù…Œv`Æ‹‡4Ï…UbtÖ´³”6ýк݋اhykPdòÑó/>þD¤¹ac^ê@Òé-Àw‚¿3–²y–Øg€ïWümU÷$ðÝàWrŸ³øÞfÔ4a‹RRè=ÀO‚2þ¢”ĵ ü·’/JIü§|ˆ+ù¢´KÄÇ[¯ü& Õ:€êÇ3þ ¶õ:+í*+Y4RÚ™«xm´ðÏÿ§´ºÁ7ðîÛ.”צ s|‚öR\ªü­ý~Vn×2ÈJ¼Ý•À¿ÿ+eæ…ŽaÃçã'mþøO-ªsÅ–’$î¯?>y&3ÐBüø ð_(3Ë‚ÎIY«ü/࿃ÿ{2Vùà à/D¶J®‹‚½àõ üáJ«Ø-ÜÈÄÞ—a³F–ã²n­nç4ö)e3må+½PâKšøî?Ö¿ ]v‰‚—cVðV©Åßá*Cz±í›¼5ú®£Ð•!‰7ªè]ÉW†7‰áãÞRøí¤Q0úÞúº°P© +•OÞ(Ž»Z?¯³z~v°¤Ìñ¢e³êpŠbÖ¯¾´*OhåneB@âÌ„›pá#àRcSmÍÕ2 ,I—Ç€¯Mü"‰»|\®[åÿva—T”xø ø3êr¹fI™·ŸN™aæÈ5KŸ¾ü½Ñ‹Ò° ‰ŸqÅ]‘¸v`÷‘“øøWòÉÍ£9Æ8@•µÂÎB@õ‡Y _êà‰Ô¨eç » ù¨ÐÃ8;Ba€l9PO`áÍpzÂQðÑä€Äg}Ø´M„i8}:Öh—Ы¨~áÈ¥üTÏžç»—ªÀÇdyNR1ª«(è —Mp3þ@HÃù Ï‚GŸ– $þœq%ÝpþîX¡Ý ¿¼îO½K± N£ëÐúŸ2Y/ K½4 EW}I[¶áÛôˆ9Æ”2.L¸…üÅ #F¡4qáâˆUv/Œ¤6öt]¤.^ØØwñ¢ç†çT¿âôð¡¡cûÐÿfàVð­aõ§;–ÌnÎ:LGŸ‡Ì òzL‰¿Í§ø6Å+ÒÖr©“šÉqªÑ¸8’:7Òôfî>4t N•K%/ŒÝ¾YµÆG9{³^ wô„¥.D)«[ú¿=ÊZåœ4¹P]Ão›bû´1íR“ƒÿÙL¥¤•8ìÈÿ}„)tóÄ?éC\É7ß2•9ÆØ|·Íœ„fÀèÍ·zŒ9’™ë©;×é ³æ,y_‡Ÿ:éµé'ÂÆD÷ºàRXÂÅDq@X/'$~Ò‡¸’‰ÄAO¬1±ÝJi9%”ë®hQdÔªl‚˜sõ@ÞÊêÞ„¿®MX¶yÞ*ºÄ•¼‡À«bõðö|ø…9piBõÃyÿ©2nQ]á™*—˜ŸwicVÙÖp^Óð|:ÏõëLI{ŸŸ]¹%8‰Èw‡Û‡JÂÆÛî#üð?ˆ?Þc„þ‡Éljÿ#âJ>Þ¶"ƶÆoóòb@õëà¾-nbTp¦dü †½ÊåÀ?ÿãøCn+ÂŒðOÀÿ$ù#ñêC\ɇÜ6„Ù¶˜Cn*ì„Õ6„Ù¶XBî;‘BnÊ̹¿‚1· q¶ ο\ÖùÃÅÜ6ÄÙ68z»gs$þ‡>Ä•|ÌmGœm5æäq£6ì¶#Ô¶·Ä‘ùäœóÄBá¹f¸¢NÐS­êàR˽N.À<¸ÔiA0@âFðBäh¸mÖñÖ猙)ËÎÍÞ1]{~ l/“χž ü¸ÜæøºunŠÂékÀo‚S¡q²G¸/¿þ­d|êÓÀoƒGÏøÒúÈq’ÿàï€ÿNüõ‰kþ.øï&_Ï‘øßó!®äë¹"Œ8Æ8±=ÍšMa‡ÐI¥`ô‰í…u*½oöºÑʬ+EʆÙÇÂÒª'qÎM}º_嘵 ¥²KyŽFŽ7TÙ§Õ½³|ŸmIg-SqÒHa%µÖ“ÞÒJàoÿ–òv!VB¹ïÿ\jå’Eìòê4^2•3vA—Pû«Àß—*,þò€.5œ®ð'qŸþ1¸T‡¾æ/òš¯÷O€þÊZzíd÷° =Rå¿þ“dìò_€?ÿid»,¯äõ•šW%eþø¯àÿªÌ<’óª;ð³ [Û'Td 9æUIðÿ Áó'ŒÚpÛl"ñ>ô®¸›Môôí»Pp¤›M$~Q½+ùfÓNáÑÕ6›æÞO•³¼äx³ÔéFo*Õ‡ê ‘®’$<¬Ï’V+¸¿Ïî„Ïn߼ϒøNâRôô#³4}5\sWÒ¯`|ÜC\’Ñr4ª:»!âŠöVZGX)rÊ¿Ÿ+gëSަS®—öóÁ1ô#ª½ Ý×§àɦè¬X“²ïXÙí¹9æRVÑwœy—¦ëfÑqkÓÙccÔY}häéí*-އAzݺÑñjF]Hä~k—kœwÑßìAÁÑJÖR.Ósbü Ð÷È«G#RÖ˜Ë:E|Ý?¢‡C¼¾~ ÙEpBEM—%£åQ²W<¼f<1aIpÂøÛ/$ðà·J-–­y&Ç¿¸Ï憥ñãü š6ÑræŸñ\’•ö‚²?6mêCgMîÔ­æiéï*N˜ ãô˜6ðÏ'LºäÛGôPM|'+jŽøOšÅl¾œc/¶ÀÌ,å}4“ÅbºPfe„7®AgxT–n†|¢A<áàw* ­yLï°}6Òdx\êHp}6w x7øÝ‘Mû ¹?kàSº#Ò±R¦ì·ã›ïÄ7"5I×ìQªJÂ"ŽŸÏ¬ÕTËwBÀŸŽLÇž^É=Àÿe>²¨À|×,êa×c‘6¿þø¿%Qô’ÀþoðÿÙS>ÊL”ç{Òœ ³T³Ò:;a9FÑçÞšëàv™12iV瑺Z~hÆtÖ(¡Q¤%ÝÔàyËYõLþ„‘çǛҚoWÓ½2½`èEÖÄ[dÒ[ú?[?$8aÒ%÷^áyTSr¯e%w5»÷Úù0pHýn…N„kÁ×*‹1¹ФËàà7Æ_“¸ë€›Á7G6Õ_QC¶h¹Õáú®ô¬¥ÃhöP“wVNhçá2? Ûª6ûëÒDŸš`8¥Ï¤1ìv~«QÒÚÊÝaM“†Ý835+Ç)³gNs,±•+R`qm°ú¿z·Ä¼<½Ý-ùÔ–É‘§€‰…¼Y¸¿ï —k] ¼RpÂ\Žƒ^%8aD—[_)¨ó¬ŠSa±Ö«‚*µX¿”Åv÷ N˜„Ŷ÷ NÑbÌhû)öYÜñ9D‹ŠyÒ¨¤Õ•+‹nÖ=.ZZÞ*޳:Ö˜Ö³.ë&U»ÖvÿOTâž5ø½?¨|Yþ¬ `Ú”X†*ê¬^Ô#tŸ^ÐàßNø"ðšþOÁ “ðšŸ!8aD¯i';K˜å_€ÿ·à„ŠÌÒv|¿ŒEþðßoý÷d,òÿ_¼õ…ȹ'Mà b>?«;Fý˜Æe׫ÕXväŒLc£ïÆ8©\ŸRqÛö0+8a–n»˜¼-ÙÒx[íèøŒ ëYfDåÌÏÌ.Ýëjæ‚>C+:X{lF|Ãþ"ïv‘—Ïù™¨%q›üKÁ _ÞðSà? N˜„7üðŸ'lNIÜö3àÿ¼Mª*RX·ý¿Àÿ%8aùðÿœ0¢Eî–)‰4—£Äÿ&pÞIÁ ›ßš‡qÞ‚Ï{ CÏ» ø à„ ýšˆq]íë/‰ùW¬{miú¤ez=*š„«–Ç|®I®PžwøÁçI­šÃ3¤<ã¿|žT;5¼g .˜÷/‚FôŒ-iÄ¿Q³ì,õm´‚Y4™U}z`‘”ü¥Àöµ‚·Ë˜ù¿ =°¸O˜½‚j¯Ò4íDD×Þm¯—ÔP7¤Hº\\¾>~Ç&qW5pM‘h6›oº­¥ŒÌx&-c¤ À­à[–?d¤Á>3Ýôñ$Ì´ xü@d3½'æUhbøª§ iíL]>XЋe>=>:S]ûíÛãH÷ë%¶MÝ5¼s›Â7bè­þ9¸Ü¸ÚxþkàOÀX`KâþøSðŸFv”ë3Úašˆô÷ó¢¾+°µMpÂf«õ àRÁ 0Vë<à2Á #k1O­-u°&)²¸FpBUe®äÁš¤Ü,x«Ô´Wxë¬nœ0rG<ü1r¤A x³à„ŠÌ"y°&)ÓÜ!8aVIw NÑ*¹ÎÕ Û~¦'Ü|·à­Ñ¿ÝŒ? \¦‚jšñKX3þZn)±êæ ´ \.•¡q 2WnÚÀh ]®^~MüÑ@â–¯¿6²qŽVÍU«{/§˜·CÞ[P¬.}2óyšà/ö“1íà(ø¨2Ó.æš v²†LèâŽ42¸Ê¤s8 tÁÝÈž¯¥Â×B¤B8>£Ì6Â6§†N‡NZ@ ½ø$ø“ɘæ<ðµà¯lšL—X_|=ü"ø•Ùp)â+kZeW*¾üø÷’1ã—€ßÿ~Sšy¤Á€þÊS’6Οÿ;øOÆ8üp¹5¾o[ûÒ^x±Pã¹ÝË®cæŒÙé’z¥EšˆsL…º´ôÍŸ>X×¼¼3t®Hà–|l¹jV7ÚWDžªäóäC5|ÍsNÓG­Éš™$¾â’ý{†?ªïûúµÐ<ÅÕìS¦Ck_óÖT&R í'Û®œPU‡eÎ Ñs¹pÛõÀ ‚·Im“ íÂm«‚·uFuá¶] šhzîl¤æ¥öÜ¥a^jï [¾T“~ #±M³õ"-½8"¦]ê°:VÁ #ÕXBJñ®($c&©Xy~Ù,Ém7 l¿_ðv¹ÓÔ†rû(p\ðv©Lè¡C¹}8!xûDä¦Â=Õê¡vª¿¾p·ùn±¢1íz|'¢nÏÔŸFÍËíð†nG§ýë‚sTcèKdΞÓÒß~_ðv©ÖYxKøÁ9F³ôM³»Ó)ºÃÒž¿üç˜ðXÑmÂòT3V´©~Ê—&“"f:í7oŠäí ³‘R·}\™ÓÇ”EˆTíîß#«ö¬_¾xüpü¥‰»x;øí‘ÝY6‹iqðø e´T!Rånà}à÷%c—“À—‚KTUÓ+ÜàË"Ti³æ/k$Ž•ó•žT@º‚Ê6RÊs`‹Œhyc:xïbƒ½«—Þ½(VRpUÊŽh¶çgŠVµþøM:¢E\U[§'­ü¤áˆn¬Î»´´Û¢(º¨´QTO¼ˆ-ziÜü“û{¿ÀÖ ‚*rØ9SíÍå±­_-8aÛúð5‚·J‰«2ï)óð­‚*²Ï¢CÓ4f„MAÚ¼øÁ YhŽÝË$ðmÀ_œ0¢ÚB·åHþG¿.8¡¢°h$çÏG6+_ 5„·¨l¾…nE’ø6â’ôËÕQÕ¡š¡qE|+ϰFíaVJg Û¥±ƒJ–^Z;iÍ}|Ú˜;Ê3$8&òв¬K¤l×Ræ˜(×M‘Ø@ïº6¥ÛEª7¼!LÓqÊF.üæõ;à„Ï€?“¼«hÕxì ØF6uÈQhr´r?GU-5‡uÃÖ{¤Ê5ÀµàRk‚ÃÕ{$n%ð:ðë"ÛçfÞRâí4OøJ >î'º*¹ÂdLw=ð0¸TO£qÖ—RvBÆrÇ€'À¥šýá-w;ð$øÉèµaèeÀ$ÿ.àøºF¤ÔrAÒå>àà lO!qÃÀÁl’IÎH]Œ@6§AÆ&¸™ŒAtàYð³M2È9`\êÔ†ÆõFÇeìá]p©U+áíQ–ÁË‘íq?ÿ¦'ü|>©1 |øËÔ]RëÔH—WŸ2˼øZðèkeÞ¤¥xe_™QM¤¯ñ†U_zž|‘5y "áâheÜÝ¡cØ€€L9ÝÕùPs5ãI3]—•<8)jŽ˜c2c$ôBžغNpBUMEz iÝÜ"¸ÜºçÐ.Òz0%8aDù«ø)¾XSeÙ&Ï®VµjZd„«u¯§äº`>†Ée#gÜOÆlr >±Ü•Ñög4§<êÂQÈ=l£`QÿŒù›ã–s&ÿeælSlŒÁ,--)»VAw‘ZR/•òfÕ95e9tyªÑjæâ°)zë]Û4ÁÛ´äûs/N\A5ý¹WÓHb(•r¶9eÛAe®scU–Û1SðÎ4»ã®|ņsyQâ}ïëv÷q[ßL Œ*ëÆßÚËïìëªN –±<ä+óå¦lù8øÇÕ• VÞ,„-AH•Ï¿þ…øK÷ àÁå7ú¿}yÍê-ìÔe†²:÷®`²>fª&'qe´ž <÷J2>Ç@#<”z‚œÿ*†p¨, ?0Cÿ%´ƒ¸ÒmÅÆƒ§·ÃóŽ) ÜÐå‰oó!.É`¸1ª:Çٵȇ¸"¾•Õ¬8Û_™ýfJ6Oâ!u;+®_­¬Ü¸¢Ó6Æ©í [x>ë€7‚ßáAâ®nßÙT«4ä/”X1Ï*æÝa]ˆôÙÜ }¿“ÄI'á#„óÀçIû fØÁ͹4ë.mQ}þø Þ=`M¶,ΑÐnp=øz…þp(‰kjàZò2‰ßàC\É»ï]pÙ»bußyf.¬Ü%T¶ðÒª÷Ê©¶x¸Ôè}8×½ îJx=øõÉ».‰_çC\É»îÜu(V×m›6%ôê._¬ÌswT³·³ú“çGÒÝê‚h, çËe§ Ûðug$bð6ðÛâ÷ñ!ø5á!p©%~Ñ|œÄö!®ä}|~=¯Ï„õñaøõp|>>»õñaøõps}|~íaÓ|üüúT¬>>Çó\ŠuÕ7A¶y#j|xÍ™)ŒZyå.Nª/?¿‹Ÿ‚[ŸBdµËFV4?…óð’H“pñÓpëÓ±ºøœ³ös©Ö\Ö¢úèÀÞú bŠý›´^ ܾ/~ÿ> Ÿ&ܾ?yÿ&ñ|ˆ+yÿ¾>}w¬þ=Lj¹ëª/ÂoûEó<ÉZÇ&…—wïŠß±ï†3îß¼c“ø[|ˆ+yǾÎ|O¬Ž¼”d.½:€êÛßÛù&J={nܦ9—˜\œt_<ž@Ûä¸5aÛ&$þ›Ö6¹n}o¬.>粜¹Tëªo›l¯]C[ÛùîtZŽlN:Ú.´FÂK1!ñ +‡Á¥ºYá¼ü^x6áíàÑ÷è…ör‡q%­Æ}ðkÕLÃncÁvÜrêætÌ=RFÃ-ÛE¾ªfÒ¤- 3í4_ÑRõ—B]Âmàۤó>–ak¥óÊÐÒœrɰÍBɪ=³€ÎÛ´Jü¤çâŒÆJ±þ¾Z{г’+Iý‡&§œð»×è¼øWà¥Ì_dw¯‘6ügðVæ(sì^# üŸàÿ3z5~ )ð à/Á©ì ,á åÈ=.¬Èwœ6q ‰oó!.I·\UJWr…qE|+k({§•×Y9·id'ÜQ½ÌÚ©ê=C®_£,ˆ¯™šÝGÛµÇ,»»d[Tge,;l„”ÛÜ®nIÕ‚£ ›ù¹k;Á£/ý¿½€äïî—ë+72Òú ×-9»{z¦¦¦2!Œu÷¡¡Êî>þ 2cµ”í SÝ<~¦¥/)ðp|Taý£—Ý Ë(hZñΛXü’ø6F+~WDU‡|a©qE|++~OMX…’cÓÚpF»=“Ö6kw˜ããfÑIkG3ÚÉŒv*£¥ú{{û»øQº^ÁúìzQÏÏ8†Ã3]s´ùe!£ ´JµÄøFîV-äƒ? tÀeeÆêa—õ_×Ìò ©Çha­Y ;#@º>þŒÂF½Q(MˆuÏ‚?Û„bä¿øFð7*3Q[Ÿ„>ï¾ü Í1jåsbß|ø»"›cUªÖö÷mÛ¶«»»oÛŽŒŒyÞ ü8¸ºuýšWëæ,“jÙž¾ÞL+,z³éëÛ¹#dµKZ~øÇà¬Ðx“†= öÀ?ÿ“äkÿ§>Ä•´º0tÕÔÁì¶ñµñÓÚ=¼béëeËA«˜+gùP"¯X*µ +•‡‚)“h“MIÏžÓ)eÈÅÃúV ©jµÊvQìͪT,ìŸÃÖ˜;¥Ûa«Rò¥Àiðéø«w 8>Ó„j…äŸ^W—õ©m`»„>,þj…Ä=|üñÈæX’ Z¥»{ëN© zðYðg•æÆFÊÎí;zÎ:Nf²w`{ÆìY«ªo>þ|üµ ‰{ð+à_I¾8'ñ_õ!.EO¿x„ÝC‡ºe½AÎY=*f³-MíÏ‘ø6FëÏ-Šª‹t>9ç!®¨ýüð“™LB}2³5 ¨Ú=S.šÊ­®_­0l«ùKg‰í^žÀ<$®x-xô3xÂW¼$ p-¸TЧ9]b¹Äx¾PÐn 0žIÆ'6{À{’ñ‰ë€½à½‘}bÏD"ã}ÀíàÛ•ûÅò‹Â¤„nw€KM›‡÷ŠAàð#ÉxÅàQðèÓ¹C<—ŒÄ¹ÿ]äÙ*øA N–Ÿ Îg\­G-RBAñOäºå'¾†t¦çy ðÝàR'Õ5”ºhÄ1 JJPSÕ7ÖÒÔV ýP›£µR^~¹ê.W üW‹}ˆ+âk¹qãÆZÖ*ÍhÞ®MêYséOÌ"óº-Œn ­ëÌFx#¸Ô~ïÚÔ¸LmO7i—ÍŽ‡ÖÊ„&„ËÁ—ÇçXzœ…lÕ8øAnI=Ÿ-çùÁËÖ¸f›Î9ͦÜ&^â ÿé0³³ ý$ç =áAp©U5Orv6è¬ñl i];‡†:Yeiº%ËIk£Œñ´–5³ü“#ürßAöŸ®Ð”ÇC^š‡w‘d{¨ÆEŽmTø¿ÐÏTÄs?Ö„wkA¶‡jÞí ?^G›ÓF®[¤{w‡Ššê£Ž•/Sh²ˆtË9g y9ãC?H Ê?ùAºYAÑÇÚ~©3­M²‹éèhƒÚËØ30壨ÃГ°¼;²Îí¶DáeC1Ž%¾ÎãÌ÷B?ßE<á}à÷E~¾Á`o*™üpê9Ü*ô3¼ z‚F~†—høße{yšŸ^ÄŒ3È,#ìÁŸ5¼÷¿OAèË噸÷¿²=Tãý[Éûùވʦ‡ÚsƒDDhÕ_ u Õ5I’uìG¡÷£/RÇÿDá)SêØ›¼'ª9›;­á°ÌÁÞÌÎð1ø8Ô#ܾ© 1ø*Èöð?¸īñ„Í—x d{¨æÝÞ-3.AG4—GÅyǬܛ1t›+*Cá»Oàï¿[EòcÚÍ\û(COB]Bu…·ÔÅk!ž°™COA¶‡j\u¹*ß;È×ê¶Håî?m1ü+{êª+9ÈxÔ}Rǘ­:EÓªŸôEþ}ôMxÍ_m Àšà§Ï@¶‡ÿª«gñ„ͬ®ÞÙªy·Û¼êJ×.ë9¸ÊúDm|PkhÝß} £íK÷»ûrj£#)ÎìïŠR'½ JîžêFªNz3Ä6³Nz d{¨Æ»7òùñB‰Êrtéxq²Îë§Â›ñ­Ð“PÝlÈuÓÜ ãaÞ{J‹#p·÷ö…×ðmЊð:ðè‡ýu»…©è½9^)Š–Áì¨YÌ¥¦Ù'Ó “ð:¿z¾]é[ ï‘ï€lÕxäƒÜ#õ¢V´¦øQF8'†½Ãr^ds æÓz·[ªç\ðú¤á?š·¬éÙ,OS:žŸ ÿ²ß‰#|üÁè½–9†6Øs 2ÿ¹ü±`þ”ƒÓNø‡{ˆP]¯%¼'½²=TãI»È“æœ1ª éÖŽ÷†Öÿ=Йpø®§“„FzôœR'Yï #5ù ïÊï…f„ëÁ×7Á•ßÙþGh’¿ÏAØÌ&ù ÛC5ïöžj“Ü?j„áp] {G`ñf{‘Å‹³I1’¤³ÚÊ5Æ-›oÀC•/±Üåƒx"B_jCO—¢vkV1?çFÍ|¾ì¸¶è—Ê6åErnGÉw@Gp[oæi̧âà8ÇhÑOô!¥O·íÒ]’›4=Ÿ·²Qz#†¾„êºSR½‘@ÄW€rÞsOFxüLÜå7 ÛC…s› \¢ºþð CZÞ˜4òá#î7¡.¡ºQÊuþ>¬Æ:±8Èu°¯·7¼™?½ׯ‹^¸’:—Ñí­ü_¢7ûqèK¨®p]Çý€kÇŸbý—½ä©Üà@x?½>¡ôýn¿Ü÷ÛÇ_.Ó/ø“P˜p;øöÙ þ-èõ[ÍyÁ½Õw,ñ‚?…?õ"~ÁŸ†^ŸVú‚ÃWŸlÕT¼ŠK\¨Ó_—¬“ÿc†k[ÍúIßó×þ…~Ê?ùA–ˆH±fDx•>5—€KåÓhãÏC¶‡ÿºÀ_Às6³ üEÈöPÍ»=È㧨",¥Øfq2EÁ£gYûIc…ç„åZ«ìTŽóæqT9ï,ô“| ÚªÛ[þ~²=TóF7óž Þšy^dÞbëÅœUØRy…¡•} nßYÙ~Ö+Þ$t£ÊÒcíd#EŠ–óà Ö)¾îeø²é+P–°¼¿ Öþ*d{¨°þ™s’<) 3Õøñ¯8 ý _ƒò„êêŸÌ\ã)¢ ¤|ŠfÀ3ÍHùÄ6s å?A¶‡jòêF)¡uûmèCx5øÕ‘u»nöà —ðõMhE¨nú6¼¿Ùª±bºápXuBÑ̶lýûm¨I˜OGVùÎ@ãzC_Ç wÂÊQëû”mè.Ÿ¼ÝOÕ ¦Ûôiw°³(á ßÁcÞ ~gôAIz½)Z2O+²u—ÑQ¢Lqâûgçq«Ø=ä=f'˜DOòw 4¡ºAÉðîü»íá„üïá9›Ù‚ÿ.d{¨æÝž¸T Þ?GUið¦IÁ²ù))¬5?eÉŽ’~OBxü„š§ªéf`’ŠSü€>U§9ÖPÕ\ötçh¹Ä V¬ÐÚ%¾ÒVº‘õ}<É÷•>ÏIÂ÷ÆûþE^ó÷èG¨.'Ixÿþ}ÈöPo¿d [ƒýÝܵ1]jö?CaBuCys§ˆ:;ùГPÝr0©FõB"®ç]æC½yK‡&#EŽý³ÿÓ™q\£@K—Ñ’hêü …ð$øÉ&¸ÊŸB¶‡ ]¥RU§"kJ'Q4^.UüúÿP©«ÜÄ‚Še>6¤;Æ VÓ¦ÄCT‡‰$œàÏ $áMà7EVøð\Å-½ä= +r©Ê5ûÉ¿§Äæá(åðð„‡Á7§þ1Ä6³þsÈöðW¹þ èÿJƒ‹§;á˳*:†·üž&«Xƒ>ëÒÑsLsG/ˆ¤J£Ö¤ÞAÿ ´&T—îä6zûs¬åb‘)âQ×·{ aÐIÿÔ'¼ <ú9±óéBëò_!Ÿp>øü&Û_B¶‡j‚íÎFcPiÞ­ôúW4ƒªÛÙ·KcM‡Bm—­:`ú‘þ A¨n@‡ÏÍøÇÎê– Ivÿ ª››ypÖ€Z?‡‰õb]w–¿üʲ¾´ø_jV[ÓÄÐ[¤!¶ÿ†#|üÁȹ£~ˆ_æhÐܯý‡Æ„;À¥NÅ‹ªÙþG_û žƒ0ÒøZC±WŒ5‡›Öˆ‡¸Ÿ*}¡3ê’ø6â’P£á!Ýs¤Òß¶ˆ”ò„ËZ"ÒÝPꢑsÆÌ”e7:KäoaÂåàË“·Éßâ>qɽ€Ywµ 5ztï‡Çn‘qGºcݱ¿²J|¶‚>k?ºêèGþ²®ªkÒéµ´þiv÷¸…RÏûÏÑ¡‰ñ¡ž¡Ñ²™Ï醞ݺ5§÷oíßÞƒC–z z±]Æ{§¿§m½õŸ+ï”I›GO{}@”,d¿âN`œÚB/x!p)øÒªÉ¼NÓgóg•ЧOîÆ9§ ^¨\ß— gÅСb֢͉ÕW¹ˆ4ã¾ÿÇ?Øøüíçë¦Í{Ø“'†Ü›u=ÿáÿt«?Ô¡Â&ô6+6Y\ÿ‹7‡øÅZ‡™åþ ™û™ycŽ[.¯Xš?B}Ž+{ײ*zVþë„Ê$…Ä%¡†Â Êjp¸Ô»i(uÁˆž7õFuw^D[KÃz")›´UB«a=Ñ&]CÕÙSÌ6¼Ãq˜õ¼v’æô÷;3%öLHµçÁR„½à½ ­æšn¾Q$ùŽïágs´ LÚj$¾ß‡¸$­6?ª:íˆ—ÉÆP£šF¾"ö!º––Õm{†²øi)šÈåK2 ÛáçhXc]Ú¡ñqÃÞâøg]ÏçÆ„Ï‰u$žÏ…>•Í7Êá?æ0Ús¶í1Ç.L¸…üÅ #ÃÆtɾ[þí\ÚqõqcÐ6è´ß.Ûꎣûï:szøÐÁÛŽÓèÓðŒ“7\£8™ê¬ûº³ë­òÑ\·ã^sLKm(žÏNèvÊÿ]W׬ŸéôNËæŠ™³NÎÈ›“v¦h¸=ÅRÕ îÄY}zß@álëqéî,=_÷X9ŸgwwÞ¢d¿Ç÷ñ• U©Îœ•õþ4àÓÞ©”ƒ¸Ñö/rµéw»´Í›µYÏ!^ {”-###̉.ìq²¶Yr537ØyŒýØQ}º[|ÔI.RÌjÌjƒ™Lû¿'­çÒ:îÝÓ#~fïÅ--(¥d®Ñ›j x¤Nòˆ_ôHç–tÍ‹O3Ýk~¾ëâÅ n#{Ü¡cûpã,°^ ëÆtÇ’ú;–Œä-=‡÷ã+a¨viT?´Ó›“B˧½%£½¿Æš×H³ÑøÝ#dCEÙs7–J®—Ô†ý¤%{²+”yñ¾w®~fP¯0ðYæ±5ÎGi¤H´ Ô¯šU½ÙvÉHÎ>Ç^u@õÝÚ2««ðbx1^ÕC\q7tû¨¼È‡¸"¶t6£ë’š“¶ŽÁþS$Ru œË>É"X‚°ÁÀ¼¤²ƒ^>W?Øit$fáé;™ö´ÍeÕºëmåΙã¦ëž“ø W@o.|PÚZ{Î9ËmÔK£/÷€ˆü ÛÂàÓ—·ß¦¬„X0RvX«*Àáéw´D(¢—$¾Í‡ÑÊΨêÐmK|ˆ+â[‘8ZַݱÑѲ!ßKP3­uZB­â ¯Wg^:GuÖñã ‰*‡Ö[¬œ´'«+ (#·C2X«&k׋쾳ôµ5¦eó”bMâ¹–ï¿[ÙhÉ|^–†-H—€:¸®¬d<“ÄÝÜniÍHX$ëC\ÊžÞdÝÓ±íÀx.ùb‘Ä>Ä•|9ä5úã+‡Ú&M ½:€‹ÁËèÕÒ¨ý8X_ ]ê F-eŽ-Z7dŽÉ¼âeÀ£àG••=E|`¹Cx—qÅ]î¾8>Ùå¯Ñøz¨õá0Ð7›\?–€.¸›ŒÎËàe-ç°á$p |*þ ‚°8 >|A8ãC\ÉW¾iÇ+ˆy¬ï)¡V‡ø›­Šjˆ£—¨!\½˜ÓmÖlµmËvjòÒ6/¬Üu§¬Àžó\ϵx/ø½ÊŠ¢àš8°"EÎ(þrˆÄÝÔÁ¥šÇµ×ÔŸ°È(Зk¬…tý9M’ÁÕ )Ïi’1 nE6ÉZ|Mi¯\K5 Û4r¡k R«|ü‰øk çM > þdò5‰­q%_c,NÎ1Æ.E1l…Aút£w)êõyÊâ£ô´YùÒ} ã)^aØFÞ˜Ô‹.í.âìžðßjÓŽQ//¸XíÒ¦išB×ê@nè¸ñj·ƒ¿=þ¸YŽX!|ø;’ÿNâJ>nV VVÄ7 ÄÔ„„n@_)jlMVb'•·ÆùŽæíض×å”ï˜ü9¨¥å¸åœi8b?’3a•ó9ªHÌb6_ÎQ—]lîàkJ"ôãéžUÀ×€¿FY3 |?žnz½qÅÝ ›ž>þLäxQÔ§{ž~ü#Êl$×§›>üø§’±Ó¯? þéÈv ß§{>ü,øgã¯]è¦vàçÀ?—|íB÷|Þ‡¸’¯]V æ_íÒNÞšu}þŠÚeG+u ©¦Ù´%5k]Ý,z -/½Œ£›“FÑKÄêÕƒý«a%î#¼ü¾ø%œð¥à/MÞñIüý>Ä•¼ã¯‚³¯ŠÕñçóEªu}ÃY’ž¿°N¥…†Iý™÷µx ø5M®BI—€àñW¡$îZàFð‘}XfŠ4ØÜ¾E™QÚ;ó)›d€}àR+êÃÛ$ìïl“õ½ w¦ÄGqE¾&öeÙ1*»®ëªg´añèЗšÝi¼§æ6ƒUpyGB©‹ÀÇÀSfÓ…#Î]eË ²jø8øãÑ+­°U6‰•qÅ]e“¸và«Á_|•Mâ}[ïJ¾Ê†G{kˆbª²¯¨Œ˜I¨×ôUá’Õör5Õ6ýÔÕÀëÀ¯“~g³«mZ¶ŠÀ’=Ž›Á7Ç_E`»-Ç-àr•eM8ÉX$åC\ÊêìI9ƒôûÁ¥*Ïðé€D6H[è©U’¿¸ |›B‹å,²x+ø­ÉXd;pø¾&Yd?ðøeYÀ,Rœ”²ÉàqðãÉØä ðø‰&Ùä$ð.p©õa m²¨ÓyØv%#å^àð3ÉXeøøC‘­2?-Ñ $t ®nB #0y`\jÉXxÓŒ'Á'#›fo}W°ÒLŒ£HºO? .5:®²H?õUà7Á¿™D7~ø-ðo%ß $ñßö!®¸»$®øðï$ß $ñ¿ãC\Éw¯Í1¾nàBlx“P®¸¢¥2;.Ù ¬Wê¥Þ<¸¯,šš0xǧ-ç);Ï6 ÙVA|jº”STŒYa"\Ï;|Y{ʲ]4racá*hHè•ñùøcá*ø?a¼|,ø¢q% WÃÿ¯Ž5ˆÝžºu—·D]R¯ÓDeŽ77f-)– £ìSkL˱ t¤9!Á×NM˜Ù Ôâôç¹JÐT׉ØV¹˜ ô´«€3à3ñÆÕÂóàç“ Á‡¸’ŒÕ†Õʃ°%Ð<ûŽWÃÿ £OéÕÇ ‹×•‰é°>KZ­jàZü>»~J¸|Cò>Kâ;}ˆKÑÓwŒTÌÒ@öb¸æ5À&mǾ>î!.Éh¹=ª:×"B<”ÞnìW£õC¬¹‰¦¨cæg’Ò&ôIƒUFQsÊããìæêzÁ<óf[g­&#µ„Þz[/žËzóX‡KK Gg´Æø8Ï}L?_.äxŽé]»¶vñÏtéoxö+Í`Jå3üö]íдky†,žBÙ3EFdöOú©±²Í ‚e¶Jb‘ öœÔ‹ œì"È({¶”^°ØSðrÄé"ùÇô¬îœ3óù´v?HCˆ8bO™ãZª¿·—N¦6 þ…З¾ØÆ¾¸C·G-;—‹?ÅÍtËvvËIƒýÛ© é)k3kȾ‚*kÿ´¼‚÷†¾ù•ì9ï\ëoKðÖO*+ô• I¥>ü»>Í®/*+íÚGŒb6@ê‡_œ¤G‹è¶m~ïÙÙ%Üì˜eEËÿÍ.9§°ž«.Ë\ÃÐ`q5Æ|™âݰ •ÛDÿ)…y8]›2Ìñ Ñv¬=òÊ;Ç©ÀZ”f)Ïc”'9“5Omˆ¡äòô#ct TOÝaP†«wÏúQÓ¡Q¦\Wz–bÕ‘¨ÊhÞ —‘H ‚‰™…>}™Ã~^ˆ‰ñý¥òh¥6jêüè2ïX˜Tµ¬èâx ­Åªìšqéê>ÿvêt¥<ômq ]k·78•ý âê_žŒ½FÝa¥4kÌl™ñLš—øó¼Ày?î;ïgÒ®;ßöŽˆÓ‰½DF¡4qá"Ï'7’ÚØ7Òu‘>|¸xacßÅ û/^ôšýÚˆk’Ýú½ÆqÿtÀ#Í™5ŽžçŸ¶/ÏÖ>?ìsѳ²Æ-)œeªû Öye˜L¾8ÒwaUo~…Ö»Rª¶]²EO–‰S†#´ËFRUCt½¢€ÔrÊt (ã§–Sk˜ÖÀ:yv 4éí4Þ²ŽÍ2Å„¥.Dùkäø¾m½SsyÍÇS«ñÍÖº#6ÚMXf–Zóî5è½V@]5á ‘`æ Ý;a¢*š¬é1˜Nõ#wÂ*OìÖŽŒ‰ ‰oUѼƿ3a–*2/³&†H¦°C5®W•òê²( -;e=ŸŸÑLª;éo*]tO|ý™4ƹ蛲ÍÚú Õìz‘}’óêrViÖWí™°ý5ŸEç ‹Î—›öºÛ¸V„cÕt¦²n#9FHe|§xW’®-TV?\"9zà”,i³ xøUÊ‚>pJ–Ä-j©®@[ÔRs»¤eÞAÎ.ÒIg™S¢©W“Zú2Ûüí+1èWм/Ñ.3™¼d©IS—ñ•ÕÀO€B™¯„ßBHz|·¸’ð’O?þùÈ^ÒSf¹d:'IÛ}øðŸ(³D^RäÿþOÉï§ÀŸËw“¼o×ñ î³{Ò¦ú¹ÀÖÅ‚·JíôW–°ƒ4Y¼JðÖdŠãÖ%À«o^§º¼r•bYI’FÒ¥cë à„ŠÌ&·óˆt¹ x‡à„In/ðˆà„ ׺ÁGò_"8aÒ ¾ë…=+¨¦Á· >ìñ¡?K»¨ÅÆ:GnøVâ:hM¸|:ßžk÷a o“.·ƒß¿o“¸AààR!U;5Z™M‹Vœ„ŽïW—v«9·%öÙ‘Bg€àÉXé>  nF¶ÒQaJ†Ô%ì{øðÏ(³ïb_Nuø-p©Eá üYà·Á¥9Ö•©ÂÀ©š™Ž®€©Ž•¤9cLgÖî ]9‘æßØÚ*xkæÔoþPA5•S/*§êœOåÌ_%ÒzhJØ Þ«,.¹·.0HŸÀ[Áo?H\pø¾ÈF\\©”v‡õ*Rd?ð%àMhyip Õ8·Ä:¯ N}—õ½K}ˆ+ù÷Ò‰wѩ佴ÆMÀÒ.Û\ý\•Ð{-Iü>Ä¥¨4[^wHJØ2­7Þ~Cüe‰ë®_Ù6©JE4+ ®¿6<õf.jÀÛÁ¥z#Q#j#¢hcs"j#¢hcs#j#¢ÈCµµÌQû˜7âFÂuàëâ¨"ÂÀ¥â¸nè³P³ªCG©¶x ø-͈¢MˆœM͉¢MˆœMÍ¢Mˆã‹"‰µ›pã¦d£h"g“Ò(º¦6Š67tülBÌn—K1~nDÌÜØœø¹1scsãçFÄŒ‡jãgEMüHl|¾7ÞOYÑ"Ù A7"j5p-²q6W"ˆ½ Ãv*§D (Òqð0øáfÔfÑææÔfÑææÔf‘‡jj•¿£$—æa3nÜ _YÑ"¹W(\HmFúúMÍÓ]­”.Óúk۲܆a¥YvØÈ"U7O€ŸhFdmA4miNdmA4mindmA4y¨6²®šYÕÕܸ¥¥¦ wlmA0¸‡€àRK^jž?]™Œu”Œ¿• BÂr&ðÍàoVf¹ð »IwùW†{ ðÝàïŽl¸»Ä†›ðKôù¦QQ»±JeZp$³6Œç=À—Zi]±nÃä;†“ÕóY Ýþ?à à/(´tÞ,ž ûKTJ'LÂÁ~±­‚+Xòs´²ñª®ü÷rh•]‹ ÿ,ß‘Egºü )Y¤»®mŽ2ç¢vPxëµ¶_"¸äúZeåFëP½+³¶Þ œ0¢Yçó@Â"§€÷ ÞªðøU©:¸õ ð!Á “0É}@]pˆ&y@ËY,®Š¬‡Ng~ÖùI;3M§>ußÑ£³&•âî=Ú(ðk‚6µûAº|ø{‚&aí¯¿+x«\OÌÿíí³:ŸÞ-³Èjcï[ѹôú¾­~¬3ÌsJØõ{ÛV Nøb©®Ûnn¼Må\puÝv-p“àmRCp¡ÝªmðFÁ #ºUøm,$3p‹àm N«F·p£ ªéÄnô:±êJÆ ”#ô-‡jjÉHºÜôñ¸]˜Dmö€÷D¶Ù¦ú’1í;mÎ)g'¨m)a´^à0¸\#ªaqW0Ü +'cµ—Ï€ŸIÆj§€?½à ¶ŒäëÀQðQe6Yäm£‘±Š ,—’±Jø0øÃ‘­² -ÓÎ'làø”2Ë´Ëäl U^|%ø+“±Ê4ðQðG#[åiÍ›SÈ•mopÕ,š®Y™NðZ|4iÇÛúsÍxd~«çmCÏÍTy¦¡Wö—Ö1ç·Ø:å&CÇ^Â7غLpBE¾!›Òƒ´¹èmè–:á)´{´.^/8aD÷øKmÊÌ33ægÂñw ¸%SN×l›#÷t§ô™ê0<Ÿ) Îý©¹”ß/›µÊEÑõ0müpÖ±|Ù(f ^ÀËT&lË^î:à¿ N˜tµG¸kÕ4P‡jöYW‚¤, —åÍ‚éjLi³ {çZ„Òí~ฺý½s¶A½v¢ nF5vë+¼hIé“,ZÆ.͵ˆ7H_žg:uYl×Ì–óº£; ö•¤­‹§òÖ}¤| ?ºjpuo}ö\]µ.¡ÄðvÖ(¹ÃÌy̳'Ìó$tŸgZ2Å“à1ªÉøÏeMrY”>4vÅM¤«Keõ²K9‰ò3]B»Ý­ W~ó2ß—˜©§™ÜÙ2OÁIA9¥Yÿ¬ÀÖ¿œP‘û-ÉùO ©‘|-±OiaºÌ#ñm>Ä%Y6lŒªN‹XÅæ!®ˆoe5+‚÷G€•Wƒ¯VVŒ^щ†Qè¡ÒgðFp©a¦p-#w p3øæÈ¦Ú#ÒÂT|æ3oR}X{fý˜•Ï[Sô/šÚd-ž¢ë„ÞdLšoŽ‚ËuOýßJ¬pÛ o"T{ŠC%ei'•:€ËZTŸè°ÅÝ0jÔû‘Pz%pø…°—ĵw‚ïL¾H'ñ»|ˆ+y·ÞWÞ«[Kd¼ îL¸ª%êAÆõjÝ\›²\¥{“ÂWo¿5~÷Þ—&ܾ/y÷&ñû}ˆ+y÷Þ—Þ«{·ŸŸÔÃÚÛáÍ„KÁ—*óìê*[¯ñÎ{¬¬ßⲚÚ̆uçí¸°¼'~wÞ&ìïMÞI|Ÿq%ïÎ;àÂ;âuçRxwÞÞ‹;¯™2µÔÍÝ[BÍÀ¸Ô‰çáüx|—° ¼+y?&ñ7ùWò~¼¾»3V?ž—s$ë._¢ÌïéGXÃÂàÙŸÇÉY…ÆE´–2}³^Ö¨îðYZïÝc÷ð5}|ɼÄS.ŽÅ¾ö6_«ÝÞ"¹V;Zø âJ> vÁówÅáOŽÝÏßKl¹¼ãaÃ:õ.82á6p©¼áœz™Ð×\IÚ©IüâJÞ©wÑwÇëÔÁ³“s)ÖŒîÔ‹ëJ‰óøü³,ZÊ*ægÄxõ(* ­—·ƒË¹WãuN2ÉÂH—Aà~p©Þ]@¤ fî†[?=Òd,rЇ¸Y¤]&Ù©rx üX2¹ xüxdƒ„_ÂDòOO‚ŸTf‘r‰WH™{€#à#ÉØä.ààD¶Éü´D>cRáAà(ø¨2³tÈ' …L  n'cš,Ðw"›f_ZV™™õ•- ˜’a÷ÌÐJç”W—Ý"cUøðϨ+þŽŸ¾óN{~øUð¯&cÏÏ¿þµÈö\"N¾2#t¿Ž4ù:ð»àR{$Â5I\;ð{àßK¾ Lâ¿ïC\É7oŽÍ1Ʃ¬™ÉJ¨ÖT?U¸7oM¶6j•Y‘„A V™9¾`…¯0™dÅ7ÇRÛ^ëíô +ÇÁ¥šá¼ýx8á ðÉ{;‰?éC\É{»ï¬˜½½ÖÛ÷ÀÃ÷Äâí·–K¥ËðvG‘»ï‹ïß­”õ»pî¾.¾>Ö®ÄÏB»;‰¿Ë‡¸’VcaýX~ê‡Ñš@‘̓/Æ+ÒYÖäN¹jjzï…®„ýàý‘Zm ƒ”«)¡Ú à0¸Ô¦ ¿®î7\þB¾Ë¹Â™¹—»Ï¥ø­À;Áï”U|Ö/ïž?ƒ–Ä OƒŸŽìÜ‹+;ÈB¯ü$Eî>þ²÷°`Ä7ƒ8k…c+,ÚÄuŸ$¾Í‡¸$ƒöª¨êìkÇÇzˆ+â[Y‰²/÷¤üZHµöÃ@„+Á£í¥ößÕqh|œUòÅ鳸\Ý>ê9VÍ“ÀUÀMàR;©k^ĵ4)v7ˆþXRV>þxd«>®¥N:ÕEvõbÞ˜áeÝmV9k•ó¦>n9Täõmíû†êL>Õ »©'%ùAu~ÍþEÊvgäd½äU[ Þ*·‡­‘—l˜å%Õ§¥œáCáÕm] ì¼5©r õ `¿à­‘ËÖ{Éc êÒRžÇl®ñ—´ÙÏ xoÚ²d[Y#G9¡§(í6eTòØ6r*æ•ä/4ê˜ãEsŒU EWK™#“žåw5[zkœ®«’Œkôs:nWJ~u‚<šÝÚ-äUû¯+lÝLVEYÙöZÁ “n"Ü&B¨‚Jš­ß¢ ¥ù¼¿ íh9‹»CÎdêægªùêw)§µÑ²‹“‚m#Ï¿p&Ì’6j¸S&Û//¿k£ìÄñ­¬¡–¿•×YQ{·id'ÜQ½L½ªêÝC®_£¬ pÍÔäè>:Rœ!ݬ§­ÒË—Prp¸º]² FŒë~È] Ü }›lø¥}$p7øneFZ?áº%gwOÏÔÔT&„±î>4t @Ù}ÀÁTf¬ö‘²dª[€gÀÏD6Õ¼ð­ Rà!à(ø¨ÂFª^v'¼ ij ŠÞ#-M-~I|›£¿Ç£ªC‹€—úWÄ·b³â÷€1>žÖf´¬¼Y;¦Ÿ/r”çXFKõíÚE ÷%Z`È“?Lè¶žu ›ïjâãZ: zžúò8²"¨!–ÑB>÷Kà„6¸­n,ç€Iu›=‰„^3ÀGÁUØ61 ¥‰±ð1p©Á†ˆ%9Éø*ðW)3KÛ¶^ }ž¾üu Í1jåsb_ |=øë#›cejkWZëëݹ³»»¯¯·O*hž¾ü½êëÙœeR½ÚÓ×›éèÝÑÓ¿m``ëÖí!ëYRò#Ào«lå³>Ðh€Ø÷¿ þíä«ÿâJZ;…+¨¦Ò}9«^øh9U&ií6}Ҙц ¦;‘Öng g'Šë[â{Vù˜Eþ¯ƒ¢êÙÁªžÔÓ¤®*kÐuëE=?ã°Þ,B–uÅÔµ.N&3ÒÚ¸­—&øŒÈàò%þüåêúlÓ5 í0Z¬Czk>)÷jà»Á¥Ž¼ Wñ¸Wßþž&T<$ÿ9à{ÁÕmóú¶I(ôàGÁ?ÍCâÞüuð_lU©}½»Xå³½Ww÷ö­R1ôÀçÁŸWfŸ®UO_ßÀöžÑÂÙ ³]†ÔÏ0åÕ¨„HÝßþðÿ%Dâ¾üðH¾ô'ñÿèC\I«q\X¼‚j*¡çX%t‡nZv.­ exMã«”6cF?­Íhû3¼êéïíÝΧ+ VŽŸSíÐ8=ŸïvÜrnFó–wÔÖNb²Ÿ¶jÙ–þ·MZ7ÎçŠFÍ¢n³¿,æJ–YtÃ÷‡Nà½>þœ²øZ=ìå«àOÅk*³6- éöaà—Á¿EâÞ |\®èñ¾Š:@&ü*¸Ô¶Æ}£þ°5éñ-à·Á¥Zºáj(÷5àwÀ£·lW±àdõëg twlݶC*‚~ø#ð)3Ö¨†êííïamTÖKÚÙ²b"-ÿøïàÿÅDâ~ |ü…äk„¢€óл’Vã$äžl©Ñ#¢çYÅtLÏêÎ93ŸOk'Yetžw©bÎh·ñºéˆ=eާµ;E¥Ô‡9ôBI·MGLü‰cRš|¢Ùótõ½§Ð!sž™ð<øùY¥Cº½øVð·Æ_é¸ À·¿­ •É;ðàïPXéôJèó>àûÁߥCâÞ üø"›c9Û¾µõ‰¶…ï‘2~ \jqìeÇUjœí»v†¬pHÉ/þÃø+÷iàŸÿYò%=‰ÿ‘q%­Æ°sÕT8CŽeE‹×0|®ìºtëøeÿÜŸ££Ø?ÑwbuRZ;%j£ý£¶^`_¿$úQ¬¾bµ –ÀºMwòºê e•¨ò:N¿Åë«]T_9¬GäðS°YmUÍÃÛ-àùª/qÎ@Ãi#Ͱ­ò8­¯¡ÚÏ6&Œ¢cNÒ© …2æœxŸ,tlãíþ øß¨k 8v°2Þ7d8†ngižÙÊ[ã3Úþƒ@ò)âžoÅYɑ؟@ìbÁ ¯äHþàRÁ[å&A«u—„:WUÑ»â®ãHÜ2àÕ‚F´Æü´Ö/=|7áZÁ 䯆£};·÷ômÝÑ×Ýß¿sg÷®îþõ©ºxHðÖCñ×o$î:àaÁ “®XHüíUô®¤Õ8%¬]A5õÛ»XýVW+ÕÕoG­"Up·‰¬®BÛ¬ • ~ûÕAÀƒ5½-ÚГDë4^ á»Àߥ,°nÆÔ“·švÁ°iùr¥ªb•¶•5ùI(þà÷Á¥Òö„«¡HÜ»?ÿAj(’ÿûÀÿ þŸ•Ùm^ÿ®°ƒ¤È?—jІ«£HÜ þcý°íÔÛ±õÃvöJÕŸÿüï”gsã~X_ÏY½ g˜å2Û3LõÕéús¼­ñsÅmŒ€êŠÄþ=Ä^-¸‚6Fèzâ4Ú@ïJZ»…¹+¨¦º’ÈÎt„Æ‘©åt÷¡o~%{ΰ%”»¸|™Œr ó3-*’J­Òp´ïêeñÓ>b³RÛkÀ¯ì0“•U3Sº}žºÚ·‹Ž·n—Œ"8FÇ{'u¼í¬c൘³ç-ýS”Þ¦—Ð¥,=óZà3xþ×++eÕ “noþ&»ÞÒÂW*ÄÝJ!qÏ?†×ó›Mh¥ü?]>®ÌDmý;$ôùðó-"÷æçâo¤¸O¿€Wñy”m¬‘²c+k¤ìØ> >_~ŠÉ­K ?=¹kG_Èæ iù ­¡&¿Ô–pÍ÷;À‹j‚ÿ3þ“¸’Vã^aè ªiž8¬yR?\¿QõŽLe/ø1ªI|Ǭ饒mMÓþ]Ú IeÛÈ•³FM5ätæ­ôæ€û𰄸\æF±²¶2`; þ¬2Ã4œÊß¹}`GÏYÇÉLölϘ½!Ûƒ¤êۀσK-ø×$qo~ü+Éç$þ«>Ä¥èé°{ ›Î>p?*lÌc41I‰oó!.I§]U3-âT qE|+óDÁ$„Ñç‰Z‚zå}Șøî#¼\ÝœŒÿŒ€Yb;€×‚KMʈ ÈQKâÚkÀ×Dv ­rIÃä¡ëeÒn-pø.õãÚfaÌ̇ÝôLZ?–ŒÇì?žŒÇìžh©œˆÑcÖW<†ŒÀû~d ô¢¥æ$°^Tî0ó\#l·”º¼~1_)_þ²d|žüå‘}esÕWÝטf ªË¬!å2¯~üÃê]fÌ)J(öiàgÁ?›ŒË| ø9p•Óžs¸ÌG€Ÿ>í¹“†áhq~Ù9\Çt3ßíèc†v\K±’ÆÐr¶NÊyãR]i™c Hë/þ3õ•cäy¾v íþM`k›à­R Òðžô¯;OðV©ö^xOú9Ķ NÑ“®í+Sƒ"o~èQ7Rj>ð:Á ½“E#ŽaèyÇ èP‹[oijçˆÄ·ù0ZçèÀåªxFÄh ?h½‚¸"¾–›6nÜÈÊÒŒ–Ó]Îé³´-Œná…‹1­h}Zá,lGxøM‘¾šé¢íé&•2MoÐÆÞкå áÕà1.Ð ÔÀlÕøúܨz>K›» -okV.çh”„Ðy˜yÇ)Q>ñâøìtÝŽ–¢”϶Q°& íÈð‘áî­"GWègÃsúÆš#>ãüÀpèASCwʶ1Øyb¨“UŒæ n¦µbŸ9È®´–5³ôï~öï~FÈŸÙÒšSu w°»o{øÇÃ5Á‰& ÛC5N´ŽœhÌtq&Oå4^Ÿ„ÖÑ„^„ëÀ×Eבù09]ÐS3Ì®“>Û†·çYèuV©ŽíLÇЪœƒxÂvðèMƒð®•‡lÕ¸Ö^>UΧ©žZ¿t"\}th ÎÀLÙ´Ý©zŠZx—*B§¢RýÂÛÑ‚lÕØqÙ±ö¬®BÝ:¶º³»"˜ºµ }Ç,G|„¥>S‡7ïÃЃp)øÒ&˜×†lÕ˜7Cæå§ñó"Ä)%ŠZÖR¨œêàZiߒÖ x&úØ‹gÐúú Z »Pp3øæÈÊ® R6¼‚e(E¸\n/q4Wœ„lÕ¸â}äŠæ½ŸM3&ȱœV`WZ4e ~úë͈ƒ£©¢“e\Ëf`5ÝemYæÍ5óž‰ð>ðû"?ßBñ`¡µ™†„ Á£CÞê3í¡Â&hõà—)o§AmʲυÖÑ—zIaóî¦àòÆwÆgÑ”(s.@IBuèðÆ}²=TcÜݼv1 f^·ó3âD(¯rÑEY­Y£gù±r–wÒ ý¡4ánp¹ƒ3üßv´£þeБ° ¼+²¾7_ž¾ÅI _- o¿YE÷ΧqÔ·ú èõ ¥ñ¿>XG©7ùJhF¸|}‚þQÈöPMÐPÐóeÅS¦chú¤AÑí”K%Vøên֓Ћüœ¯Ðš?m À"k¾M=ÝZ6%x—¶QTLb˜LœÐ¹¥hn©¶/´1Û*h[fÌ-¡ãq¨N¸|_äÇØDªM×rYÇ›= µžR¼¶*ö™ÚÍ4DÞg_õ7oЬêöúšµhBs•µì«¡0ávðí/²‘©×@/BuE×ÀÅkã·^ó' íJƒ1|qö$d{¨¦8ÛËÛ0Þa™¾Ãú´ï–Ôž£él­ÍtëÓ¦ÄpÃk¡8á^ð½‘â¡·ðv[Þ,ƒ½áµ{ ^.µ.-¢©Ÿ†lÕ˜ú%djßÀ_Ù‘ñÎ7opnª£é6?”5W{úiè'zž‚Ðw¢SÄ'ºŠ= /¢¢Œ€½ê^.•`¥~Ì|<´*Ï@a•½4ZZ=^^si)q6k•‹•¯©€6‹cù2m[GÓÒ(±­³·ú‘Þ‡Ç ôñ‘Ò †U ”Ä`P{™6cй»òc„iðtd•Õ-&ùt"\¾&²~ÑV@|zFZÑPì#´µ”o¸‰râ>¤4hB¯&ñm>Ä%¡F£•ôó'$vÒîà2ðeÊŒ²häœ13eÙ6fv TWA‡¶É‡qŸ‡¸ä^À¬»Ú†=º÷¿à±[dÜ‘îXFwx±´J|¶‚>k?ºêèGþ²®ªkÒéµ´þiv÷¸…RÏûÏÑ¡‰ñ¡ž¡Ñ²™Ï醞ݺ5§÷oíßÞƒŒ=½ØƒÒ'ã½ÓÇ_€Ó¶ÞúÏ•wʤͣ§íˆV†9f®¬ç «‚œ%`<½foíÄ•àWV ç½ö–_ˆÏæÏ*OŸ:Üsb¼P¿¾/Ί¤CŬE °«/tiÆÿ:°ñùÛÏ×¹MþváÉÃGîͺžñºÕꨶ/¼e|ï´bŸÅõ¿{sˆß­užY¡°…mušã–ËÝrSÔ ¶Üøê‰FÕÿ=¡ò‰Äú¶x—„¢áŠŠåBFU]‹€+ÀWȨÕPê‚=oêjò6¼ •à+“· ‰_åC\ʬâÍ„´Êh¦UæÁªµÊ"›>2ŠM¬£´Ã„ËÁ—'`ßÄþBÒ¢¥>ááJißP^χ5¯—*âCZf>¬AØ`KYR–!ñ«}ˆK‘eVV 1Þ((ÍÖY‹^ ~mÖñj]Â}礬C×ZâRdµÖ)L„4ÎB„ððk0Žoå2wŠVY§ˆfœ…ð ×HûÈåg2¤qù®$³YÔ\ã,‚A©Ü%ÌÝœC·Ç€O€?‘ŒG\> þd21|-øk›äOŸZ¹G,ºTCgíÞ|øû’ñ‰7ßþþd|âuÀ€ ²O,JI÷|øQðÆTRvNæÐísÀ/ƒ9¯ø$ðyðç“ñŠ_~ü+‘½bIeS}øãã螯üw£jÔ¶gÄ»0áò/Œ Ó%û~Öl*ç]gÐÎ¥Y›iÜ´bΰ¸plÿ©;Žî¿wèÌéáCo;Në‡gœÌ¸áÅÉTgÝ×]·h•æº÷šcZjCñ|vB·SþﺺfýL§w”=wc©äšqI¥;f­›[²'k‹"eïÞ€_áë½_¨_%ø,óXç£4R$Z·Ü¯ÚŸV/E¶]2’3„ϱW0(€¥.- –7óÅJm>Ä%ì©ËU'pñ7=Ô"â’Ô'¨X¼ôr¶€×E?vp%¸Ô"•†jÍ›ciÊ ]\ ®n8}áˆ8‹"@°·¼UÝxúÚ”ÈÏ”ÖÜ™k„ˆ„ÂŽÑØý ô$RìZ`xŸ´'µ6®s–7d;K|?p;øöèÝððÛ)HÀà;#+>²}kcå ÁˈìK-‰ $Z_uP}dKŽe^÷E¸\j>"ltûW_.7÷îÿvCŠ?§µœ9nRöOäÝ7‹z^"ÈI¿ë{À÷$ä$v¸|3‚œ8<~ðÅ\«P«c .¹Qa_mɧ¯jQ¹ºfŽØZx"T·¼fE}l…u!Rç:àMà7%J$öf`xO3B‰èöË·”‡Ò5Ÿkb %Ùáôk@×Àq®j‘¬/“¯éÙ(‘K³‚‰ÔYLƒ§“ &Û ì—óáˆÁD ôÀ^<Át-èÚX‚InâZ„a¢õ’o5¡ÂziM}(eóeq†{X_"½®€ËûRè˜"±[;Á£÷£$bŠØÜ ¾;²"á;tkà#ÆÓ¡»änª€0"¾¸|E³ûskñskñÚ®lI(¶}ñ¬0¶××ÇvɶÆGu{ððþ;‡…pÒ캖ÊQ·œïJ.Â×" ÷‚ïmF„“·÷ï{ÑD–M¾úÈ’ëÌ]‡_óê þÅX¾Á… WU–T„;Áåê.©ÀBslF`‘{·‚ßú¢ ¬ëL×ÇX²]»ëñ{×·ÔÔ_ñ‡–¯;§p Ruh]ï»vW1©Ð"q·o—ó舡E ìî— #´Ö!œÖÅZr½u-Õ|;‰ÖYëL„êê¬Ô%Ëë÷…ö,Rs-p?xôAöí•,€¶Aùì ºk ž:}ˆ–@Ùz>O9ÕŠe­Ï–ÊÎ`=Aøâá¼_ÂíàrÓ€Rʼnݼü–f¤Àà ¸T ¡Ø#eGo´ÆqÞùú–¨Tÿ·¡—Yø6â’tƒÎ¨ê07æ;Ð<Äñ­ÌcÁR‘ 0 ¡/9ŒâZcXT ¡[p9øré:c~NWêEï,*kLœ\*óòV7o’~yõ/m~'«Õ:ÃÆ9ér3°§%Â4N@9°”™ÄÝìïìÐ ´mš’0Kp;¸|‘zéÒœ¦?”ŒivƒVPe$Ìr;ðð;>¾é…±íÀ#àG’¯€HüQâJ¾Äï>Í1¾¿V–HhÖ\ ¾Tº¼¿²N£­´Ï’´¢â¾ºmsjÂÌNh΄UÎç´QÚÐé–í¢‘Ëh‡Ã—<¸ð ¸ü*u%O'Žp|(þ’‡ÄÝŽìóצù–Y=Ï:3EÝ5é”6Ý6vËëðø9eÆê¨.”±– ¼~!kå€?ÙZK´NSê ½ƒ‘4¹|\jßhC -î¬ÌZK™èà;Àß‘Œ‰ž¾üÑ«r)ü ønðw«  2IÙåƒÀ,»¼øqðGoýJmï$>ü øgÔÕA%C·«(eš/ü·“1ÍgßÿftÓH7¾ü=ðßSfšËÎã8§‰þøWà•Œ‰¾ ükð¿~Q5þðÿ/…e]eñµ„µ¨íÎñ Á “°Öÿ±‚{¡ÖZ^m&Hz­‹k'Td¤¥Y«˜3is™¤4`ZðV©¥ˆ¡íÔºØýÿ“÷&p’UþxWuÏÕÌÅ!÷‘ôÀL7TŸs4ÌÍÌ0=á6`vUvw2U™5™Y}Ì8\‚ (‡‚€÷… ¢îzâµ»Þ êŠè®·î®÷ºº¿•¾ˆoVewWÖ‘‘Y=þ÷³é÷KWM½—ñ^¼xqsN=ðíÑBŸWC:t—rž_96e-ÐFÍQõÐ[ÉH™óë9'”d—Yýö%%Ó ²Ì2àÎSb½Dÿ§©°ã1$~c½'îñŠM»‰ó”Ð(X´ñ¿¹‚Þ“üxÌ"îÑ ã™ÁæTkÎo˜rçLÈ™£åÀ/â?ËÐÇ%űxÒã`xGüážÄìïŒî…àI‡.àrðåòº ÂÃ`¤ÏùÀà2#^ Ó¬nñNlSèú7)uh3ðJð+%öѪG9`<ŸŒ±®À ‘~ˆ…ä@Ü”f–Ù-|•§UF€‡À%c•"ðZðkëd•ë€×ƒ_/±3è-²Ë-À;ÁïLÆ.7ï¿+²]fd±FçuÀ7€¿Av…2Ì[€ïw2†¹øøuLÞ|?øû%¦‡Ù{VÓ4?.󰹦yø8¸ÐasëŒÈ° ©ððÓàŸ–Wg³V´¦aþø5ð¯%c˜Ï¿þõèLè…$ÿÀ§ÀŸ’øús×|üéȯºcNâ¿éC<ÉwÌÏâ.Í0¾Žù,,ËP®¸|¡ˆrL©ÆIJÝhù`§2¢Ñ=Ütâµ]Ô²úยz ‰éŠéº¶{ ¯ÑJ¶ÆŽ¸æGcÓ§øb{^ÑòJ¡”wtömâIÙ•Õ­¦‘WÚ˜³ð&„wƒß]ÿÖŸÔyðàïŒ?’‘¸{€ïWä:ÔŒ®¦:¢‘ï~\h~4\D#qMÀ‚0ùˆFâ?äC<ÉG´³¹k3Œ/¢5WÖó è× <üXá 6{’^ÃysHϺ1ÍÌF‡5:ŸÇ1#«ufMËÒò*E?ÈLÃÍ_ì ëÃÚ½·Ë)ê Þ”œ–ר?0Eó§·=x\¨KÍÞ¶Ÿvõëƒt6«wî®V(<ÄŽgío]ÔÝßvˆþ¸ß8¸¨ûÐÁE=‡yÖÓûmÌ9è {iÔ Ý 5a¥÷¹x7xèLߘrëÌþÂ5®ê>_l ðE‘ãWIß{|zß#¢wÙ Ó ‡Û9B–‰Sª-ÚüþÖŠ¡ûÛ‚Š(à¤ViºU—pR«\äÆ|¡N¥SýŒÊàêX/s±º˜°ÔYˆo±Öÿ§ç)YÕÍpÝÃ𥸮‡Ðò’¼›µ¤´ɬÿ¾.Ö•šÌ’:ÿ |üÙø“Y÷ àsàÏE6çI^2«´R›Å'Šzþ„Ôú!ðÏà–f¬&Ú)b¨¿qL¥8O í¹ o¨ÿØ4焉ŸüF`ç„q÷6èõ› vç„I÷6H¼½'ùÞÆbîÎ ãëmÌö6 h× <\üä±9“´ºœ®fP³Ô;°6RR¥ÓáiNµ³šmÓ×*]M16Ñ˼üy±‰¶g‡M¤Ê~ îÄ›HÜ>` ¼¹VœÓÆ×W±dF±5‡¬®éÌØ–¾ ümÒ,7³Å6ÌQ!Û½i"'¼íÞ|\hQÿDï˜c$ >|üiV9ª… ‘fM+üž!Òè£ÀÏ€&Ó< ü,øg#›Fl‘)éð9àÀÅî.ªìvš¡Ç³H“§€ßÿ–ÄPà SøEà·Á¿= ›ˆ‘øõ!ž¸1×üøw’OÄHü3>Ä“|"¶„»3ÃW˜²cZTkÎoˆºÂt²J;tÃц´ ÓW”P¥Â€ûWsÐk¯5Û›ÀÒ ö* zXç§W:x%¸ÐººpοOxøUÉ;?‰¿Ú‡x’wþV8|k¬ÎŸÎ†í´ÂÛ ?JØó'OàžRžÀÅlÙ¿E p>ÐÇ%5« *g= ¥¤¤Q'°¼7þ¼‡Äµ/¿ ²{¿¸CÙ:¨” «t-—©Ì¶Ó-å™ò&MaÔì°nhÔ%tÍEÑ8#ë-–,Õ?å~=6vÑk]¼üÞøc‰kÞ~_ò±‹ÄßïC<ÉÇ®6^aÆ»fòóâtk.hˆz8Ód*ǯÃ6á9÷÷‹Å¼šåí8?Òƒ5ãýs6O×ú§qÍ’‘£S>&W¸I.îÏ9ê>ýyDÍ—4eÐ2 ì?ùøqتEåu ðqp™WÍT­6T'Â'À£_5ºj‘øOúOòUëT§sb­Z³p£€rÍÀ… Qw͘¤ÔÆë Tvh¤[]lÅUÛW_\6jˆ/Ï:º^~™´$Bx¡)©s%0ž‹?{ q—5p-r-8¦-êp1é3•f¥ìR] ¼üÆdL4|ø+"›(ü\É¿ x3øÍñ7$® øJðW&ß\ø[|ˆ'ùæâ\îÏ å6µ×œ*Kj4å›,4y[` • ´ú-¬Ï’VGp%~Ÿ=~ê~ÙÄ1iŸ%ñ->Ä#éí›ûËf©"[kf€x’.‚ |ÜC<‚µe[TuÚQC<ıTÚÜ(²—ulÍ™´Š}ÀQÝîyNÕa%¤º0¡¯(©ß=MútW Ýa®%&qØCÏî­8§AôNÿ§'·Ña@Š­ŠnF«í/ñ|X`ù.鵸|4s]v¯vePwÜά€zýÀ<¸¼mÔ5æ Hà^`¼Ùngñ^¸ÝAuϦÑ-ƒº'‘+œ¼ \lkU –+®Ön©x÷ßþ¾d*Þ뀂?Ù€Ç)­%¶ÒÅßU0ØCÀO‚‹"T’žt󹈹>|üédÌõ)à7Á%ì›këÛÜ’ßþ+¸Ð¬o´V¿“›¶Œrr¡Oº­þF}DÏy.\¥ùàC”ìÄvj`t÷cou°¢Y–iÙÞè|ùŸkƒƒtЇ­ÐlZ™b–œ¬Ypù¸®ås¶²›»èæ–bk½Ý¿Ü¸­"]f`ìB±u¡ž¥¤Ö³3'Fï:rï„Éв µð'à?‰¿æu¡¶þü§‘=-ºâ‘üŸþóä+^7<ÅC9ï®\ñtÚ‚jñð;=¹ê¡FµÒÜ_»ß°x_feêAQÞ./ËXX>ߺîZ÷ß þÞøë‰{ð}àB¹Mäµ}¤ÁƒÀ‡ÁÅVV³Ï¢ `W9ƒZÈd~\h•Wx“}ø¯àÑÛ÷ðáŽäø xôõU¡ÃÝRní2Ê w³Ýpw¹@”Y gƒÏ–—{-‚A†´Z< ü´ø=–ÄÍž~zdÍ`¹˜€}Î._$Í>-5¢ ?P]Èdç/¿8“ܾ=²É>Þ–QLƒ·ç¼1g©Äá7ñµºÿc²¥4¾Tž}‡mþžð]×)Z+¿H©+ú‰¿ØÆR‹ÃJ.¯êp³Ù^¤ Qö"MŸ=åô>žÊ9a¸÷¢o$¼§œô=ͧ÷i"z—'lÒ‡7 ØS.Mö”KÓ­ºÔ€=år ßžrùzú¿%°§þá‚ç'©;¯—ô=Ìméµô^\Ê¹ØÆUùLàÎ ¨v©S€çqN±Ú l Î^Ày„9LáÆ}5wð2Öµq_å7îÂG‚“:ó/Qü®JâfJ)&”ÂêJÛî-«}éQ«ÛBˆ ‘Ú'wï’fÌÃÜ(UÓ–—ûÁû“±ånà•àWF¶åÉåíëmìŒß ?ƺ 8 .ïPŒÈëöI­k¯m2VÞ~{d« ]bH*Ü|=øë¥(ê’gÒêÀ÷'°y“ÄÝ |üÁÈc _ËéZ÷»ù6×Pî:q=lõ­64’ÏWÒ\Úd£¾ð¼q¯ƒ3ŒŒÃ_,WžÃ(ÿTðˆIvXo·÷—¨à,ÚóC¥ÿÇÔƒœ§Ä­Æ§™s åÙŽ}W%¸5g;Hsï þ‘sÂpo@ߘ2Û1«¿pßt)üŸâQ<út‡45ª7õý­®]CÏsHSªºÔ€y¹ñuA«Ï';|½Š¥ú|B¼RkÌ'ÈsMÿ§§(9mˆn¤¡A—äÌÍ.h–Hš\VðPðG\ô| øÎ%-7J z>ëS¼N뤩!;zJQ*tô”g‘˜¢gœÅ=ã“z˜è)Ç5ýŸ.w£§aÒõÄCn''ž\6üøšOõôÑœFT=ôøÚyð?匯ÍUvy먄Ôè|hA8|n¤pSõ@ ÝÌ—h–àÈ3©w° ¼Mb—²2b>Eì±@ßy®q÷dIÜ<à¹àçFv¡‘R!ìï’î 'úGaD@Ë^àvp¡é³ð|G2îÑ Ü ¾3²{˜lÄ€Ÿƒ™×Ô­Ý4ܧä(9]2LÛѳ6_ÿ@%[,ñQ†œæhY¶ftt•/Ó´ér6va{‹4Ù˜‚À2½ì.à'Á?)Ýg‰‡§/¿þdüïóÀ§ÀŸJÆÿ>|üéú…§o¿.vïQ-¯˜)”~ü%ø/“qŠç€¿ÿU2Nñ ð×à¿–Ú – ¾~ tÎGšüðÏàB·ÔV•:»ß {ªî):Ar;÷!Ö ÕñLZŸö!ÁÊqvTu.hà³–â‰X*ëÜäw“Ž“üGÜvÈmÊmŒï„ŠAüaI³©¢µBJ«À¹þ „ëÀ×E 9þo‰ŸUKúlîß½'që—€_Ùª'¶Ñ ;²„¦§É|Ù¼j‡>ÞŸ´êêàº4c5·äuÛ¡”µEÄZEà8øx2Öºxü@dk­ô’é¶[ ©Lh½™ƒm›l‡›|b›8ÍBÑM, Ç^6€Ò‚?Yy£ñ×r_`(÷hü Fd¡@@µfàü†¨ÇäO¾GåÄj' ÄPÒîh`+¸¼ Öæ”„­•¤O'p%øÊøk%‰k®:f|B1œÊbèÔÚD ¶¸|¯4ƒ _fCê¼8>Œ½.fÁ³‘íþ¦’ŸjàB—ê¼~À­$® 8>˜|zKâ‡|ˆ'ùæÀ—Æyߦ7&J¯f`ôû6'ëszÍgú2é8è]ñ"4äΕ×Á} 3à™ä]™Ä·ûOò®¼î»>VWNP«Ù‡Â×™TÍj–€è[Ð5á+ (i>¸|í4ÈxHŸ‹€»ÀwÅß‚®‡³îßÙᕉëî¤ÍëÓÁ‹õÏzHQàµà×&c³ýÀëÀ¯«CÖCò¯Þ~CüM‰kÞ~còM‰…ñ$­ÆîÐe”3ÄÙIG@Ó×ê›t»²¨]¤>o„¢„àòê³èŽRg°¼7þúL⺀€_Ù„›+;Jø€«S²èG äUFˆÊƒ´ƒº·›J[”VC¥ Ô–½xøMÒ,Ûh„Ž%Mn¾@çæ ˜#›¯S[£½¥ìwðIð'¥ÙOt{ióÏÀ¯€%~øUð¯F¶áQm£è¤È׀π‹]; yú!ðà¿HÆ@ßþü—‘ 4‹…ÄУâ¤Ä¯€¿ÿm=úŽ›¸mÆ8 rE€^Í@ùà =5vlûÐ>ðBð ãÏwI\p-øÚäM¿Î‡x’wïÍpéͱºwjŸ€ZÍ>Œ642Yµ¾õ¸‡= bêBÝоNo1¸\æB¾_ß ÿ&Ü.´/𝓸>Ä“´Á»=”Ó·Ë”/ö:ƒt>[H™dÑ¢á6±‹Æ¶@KBï"h±aÜZËÀf0TÛÜ .dÓ®qÖÇ‚^¦p‡—^ h¾xøE¢šOùå¥À]à»âOÛH\{Cye ã»#ûõêe¯ _ö¹I€M=&•r­ ZnŸ¨rÂB‰Ÿ.&âä—_þ*éN>Oµ;H馴€Š>þx2Î~BïÅ£8ý€ƒ ]‰Wõ—ï>þD2Nÿjà'ÁÅÖMû?=ª¼.3ô²LRäSÀ/€AZ9Ììg'øV‘{wö†­ 2[µÐ+‰Oû`-5G³|ˆ'b©¬B[ÿn‹tÁèŰ#¡ï,@IÂ4¤Î…ÀÍà›ã¯ê$n50Rƒ=¡ZÛØ~ïÖ~_ûõ)·6Øn Ð7…µ²Õ9°ÏUs£3é]Ž7®à¤o$½Ñ™>àSü€ˆâåcºAp£³45ªçêý­ûBos–¦Ru©ÛœåÚ×ׅ`¨S¡Tßä¯Ô›œå¹¥ÿÓùŠ£³s,…N…ðët ø-GX¨¼xø]GJ¨|Oñ׉(.'TJQCn¨”¢RèP)ϱ„Ê8 %8TÆ'õ0¡RŽ[ú?]pÛOÜÖ¡lÔŠ_rjʰ9ŠóÜ#Ôìÿ—#,¤~øøSGJH}Ú§øÓ"ŠË ©RÔR¥¨:¤Ê³G,!5ÎB ©ñI=LH•ã–þO_¢èvù Gݧ)ª2¨ºývZ²ãZSÔ ÝÆÍ¸_‘6]³ƒ›iÏ^^«v’ƒxíOËyJìdùûõI'ûŸêå<%s^À~}×¼€s±£¿C¥2À 9'Œèií´êO·Ù4Ç€FÓÂ89UåwäÇmÌm¿m}D =rLª®æ9Oå#«zÈt;÷¸2ÊH¾GQ”]†[C³ÃºÉt¾šÄ­zn!ZšïŒnǧJk5ÚÉîþƒ![)½‹´‡ÔI#så±:÷ŸhEÕ¢µ)£¦µÏM¬Š–™Õlv¯*;Ú……û3¶ÆÿEÈ¢Ùâ ¼üi­êR=Ÿ×ò½-¶a޶¹|а,iõfàCàÅ_ÓHÜ€ïdiR¯& ~üCÒÌs\Å<ÌoÉg…lôàÁ¿˜Œ~ üK‘m$t¤ ©ðeà×Á¿./35²ÅRèÅ̤˿¿þ½d¬ò à÷Á¿Ù*«X¤¦‰_öÉútV¶X»•VÓp)v_Ç.¼j–´þÇÔ±œJ2¤ðnRçdà™œ&`ËÔqÀÎS-‘mÙÚÖ¡ìFØñÚ2j· n’k³…8ø%¼íR‹€Û8'”œ§Îö"¦€v*p˜óÔp,™ê”eQT¾xç„b*OùåK€:ç„IøóÅÀk8'ŒèÏÇ)E5»OÒ2®ózIœ@Qï^Ë9¡dß]HUl÷ž].®½¹¢––÷ßÍ9át÷áÛ€¯ãœP’ß |€sÂ$|ø:à{8'¬SÖ“z/ðýœ§Ä’äZN;ǵüvµXÌ ¨÷Yà—8O å‡ÉzëÇ€OrN(É[~™sÂ$¼½—ÔW8O íÆšÇ*' *£´õT ˜¿ üçÏk—ÐåMýø;Î “0Õ³ÀßsNÑTÍÔååÍ¢€‘þüœÊNç n?A,¸°ß#<™sÂi\Òs€ 9'”\ÒÀS8'LÂcÿbOåœ0¢ÇÎ )éÓ€-œ§ÅºJqÓ¤Û€çsN˜€•Òè–¥{9O ÑO<ÿEi¥4;O{QÜn?õÿitÔ¦ æK }¬s»n”ÆÚÕ¼¾Í@_.0ñA_ÜÏ9¡$›žàÙtÍ~÷/nm1ëðvÎ “0«¼ƒsˆf½¨2^žÖ²ûÈœ—¨#ªžg'K°ñuï y3«æ½‘øÐ³ôwÿ•sˆ/z–b'w“2Ê™¥¸DQ”uy¶¨ÛÑG4·¦´ºm2]Y—ã×KÓØo¢‹S‡eÚ*awUØš¶í«^~‰´z´nqrô‚êh½›×mß³)l"µ® I®‘¸>à0¸Ð€Ð„ÒÐ3dY~²+­¾qûuãü0#«u²ãßø4±ïPW@ùÄ-7LG±´v¯\sŠ:Ha–K)8ÂA¯©ŸŸ%oħ]!ï\ÔS^ÀÓ¬÷;Ú˜sÐ.ßå6¯TsQ½ÏÓÀ_€‡>΀¾1eQÏÌþÂ5ñ­é!}éÓû—"zG_Ó#Mª±a~kÅС÷HÓ­ºÔ€Å=r ãõ{Ò®ã¯u*ê7{WÇz™«ú²£x¥ÖXv$¯æø?ý'Þj ZfEyÚé6ùÊF“jò\{\×ò9›{w;Ï–9FÍ2 ç…í!£ñFß©/ü(Ž6,z2XþG¿Q¾‰HpæÈW”©pNø÷Ð6¥>ü<ç„GBÛ”ú'ŸÞÿ$¢·”¶IŽñ´Mrt Û6I4L¬m“d=ýßk›b5W`Û£ÔÚm“¤šãÿ´ÀÛ&ôøÓ©É(%vbIÖ4Ü–C³ÔZ#¢²{ÕYëcº}ÃkÉl½ çUË;"üm•¾WNwsN˜ôÂnî¯e”3„@ölåK‘©k8 )EÓ¶u…aëÿÑ×Ut-"Ö"û† "^ØCŸNŸ™Þg=ð ð+Ž€™ô}±Oï‹è½E–¦F -²4ÝBµÈr _‹,_Oÿ·Zä¸ÍU½EŽWjY^Íñš ê-î¥ £z>•†#„œ›ÀåœÞ¹.(ø“"·_þi¶ '&q7_ þÚÈ–[ÄÒ²Ýx‡šY’M}fÝŽ»À„=)x;ððG¤Lø`Rç£ÀO*³= |üÉÈfK‡ÎKIþ§ŸÿLòyi7iåä¥óØÔ–mfDN–ß5çϓ篢k½I〧€'°˜‚ÄÍž y1E*]^‘ÏöFU¿" |?@y¿c•Nß’¦ 2ïPivÓÑi›¤åý‚ÒªzÉö¬9â w,}¬ró¨7\‰cRËúSÇ’”t¿8X¢VN5öµIiö¨üOã˜:sÂú5{¤ÈÙÀÅœ&à©3€K8'Œ0ŽõµwÜ’¡*)Ô \Ã9aÒu/"–‡rêé8njÝTFt5¬/_ ½O—çË¢76gÏ—ymY€C“¸3€ðè×–mc·sØv‰.ppÃä@yÄV š’׌!Š»v9=WLKÒùÜLÑý‡üŸ ÑÐ{´GÀG¤·övðš¶=¼üÆdl; |ø+"Ûöøò2g>`© ¥‘N7ï¿_ššÈ§D¬ôvà»Àß•Œ•Þ|7¸Ðö• )ΉŠj •Ø=*£*Û¿–óÔxU­²¥›]°ã¿¦Ëò·ÞÚšje‡qKRù\v·zWÎ#æ÷Æ:c\±KÞ–oòK+˜nŸŽª?õ”ôò~to¯Cµ}¤(­z¦¸ž+YÕwžS`¡_jÉ1iz7Ëb†÷Ï4 A?}€cê ÎSBgíÊn,RŸ~‘sÂ\5õIà—8Û»2é`ÏUCg=¤È—ßæœ0é¬ç2nÚ2ÊÉzNt³žÍv_O?Qvr8t’Ô9¸< žÄ\=ƒÚ©F*´3àÑî𫙦¨9¦i–ÏO`M>‰kö‚G_“ŸÎˆØåà…àJ³‹ø «¤ÏfàΆòåI˜e-pø®ÈféUÔ¬Sb7Qle·›kØ”WºQÏÖ z»ܤÍwïQØMªï¾\æ 92XEì6n~6µ!¯]Ý<‘ø´ñúǫ́êДÉâ‰X*'Ñ…Ÿf~pHu“ÄËt-;ì ¨%L ©ÞK`(“ÀO’VûOX[ÐÕM§Û‹–IM{‡i (y&p%øJi=³_+¨z>@îÉÀUàbÇäû? ¢Iþjàp±á®jF:cØqŠöšÎÎÑÑÑŽÆ ˜Ô%%ׯ¿Jš±šúKV©Î^ ~udS5†_ƒD ¼ 8> íõgõ»=ÁaÓ 4T{_ÚP×ðKâÓ>Œ~OŽªNŸXòOÄRYì†ß-ZnˆŽÛÞ¡\Ö‘Q+»òût#£líPZ»W¯ZÞÖ¡„ÔõJXp1¸P¡j5?{&h³1Å­æÃfŽÏ7_.4]`Ž3Ÿ ûràMàb+ªüŸÎm]Ú–QºÛÛ—­ªD7ï¿S^«ã%—9S§d²³»«£{ÕŠ¥+;¯qêH×Òz×Ò)&©z/ðqp™×åhÖ@€Ø»€O€‹Žû? ÎIü'}ˆ'i5^Æ­]F9­ŠY½Uéév[•lj„IÀæFŒ‰©K‡²ÕP6t([Üf<;\Ðse¯KýC3(As3³¾åòaÝÑ”ÖM9»£-tSñ¢„&¸)­²œ´E5r¦¹šœ(i©7¼üöøÛWÞ~Gd—È(­Åb‡ÒÓ½º½½gù2×Ö›YUéSÓ5ëæík” }¡‰ØóNàãàB‘ä…?7Eê\½rU÷ÒîåÝÝ«—…~¤êg?ÿYüÁÄ=ü9øÏ“:$þ>Ä“´ÜÚe”ürSƒÅ­ ÃZÉÊ(;ÜàÕѾ½’fï*9y]³ØlLeÿmNW‡ “’Õ*ý»Ð5$‹·#Ìç¤Õ“û4>å®ì7Ü.«¡²ƒ÷Môܼ \(± òHœ¼üæ:¤×$ÿ•À[ÀÅ®:«f¦T·€:·ûOÜÙ5‰»xxôhAke×Ý=ííÝ=Ë…jÐÀ·‚¿U^/µZÓÕÕÓye:º к’?þ¹ø[÷6àçÁ£oV ÖIü?ù¤·?ªßýŽfQ¶«ïo(GW‰mJè2 ñiât×c¢ªCµÙ‡x"–J£ÛÒ†Td&!loŒT«®‘¢e %CPn!ðxðã%VÛ€;xaÂÀO(6`ŽžþaðDp±5>þOÃ7ºôK'O:€ôÜʸ·²†nK€p¡å6á=âL`;x{2q °¼£NÑ ìï’î³½µNÚõ7‚oLÆ'V7oJÆ'º›Á7×É'.nßO å í.öƒ÷'㻀W‚_™ŒOl^~UdŸ˜™YI¿v50­g~G-ÝöGÀG’ñŠ}ÀQðÑd¼BŽ MÍM(ùËÙèKå”|œÒâ]I Ø¡Þ~³ä~g¼¨±µÏ•müJ@oÙ`.ô$4©7ü:ø×“ïV qß,£œÞ@? á„ñåñG—Çã:Ä2úa|PWâ¯$®x&ø™ñ×@×lo‰ìBëÔI…EÀ%àbKækùljþ:@“vË€À7$ãÀà23ÈîÑ Ü.”ANÚhË®«s㯅mW¾¡óÐq–tÛ Ì‚g¥Íì~[Óh+XÉ÷/vœsŽH|Ú‡x+΂ªNà‚kÜç(â‰X,-ZT¾ê™Î¼R,ÝÞ§XtøÍ; Ï.šFŽתŠùòY 4öúMöÁ¨„À…*û„7Ù™SåüvE³éuZ šj—,­·¥¯¯ÅÍgõ^§hÒ ~.1´¡Œ’Õ{³ì/9—°¿ÐžÈ^÷:²Cm¡_*!Ü ¾3>¯ Ô£ÙÊ©=§‘›Pºg¹aÚµÁA¶­Å™Ð:Ћð4ðÓ¢ëHg÷ºà6@­ãzFÑ+6 oOz™Ru oÏ"d{(Çž‹Yµ÷‚“&ž‹ZÙýPp1øâÈÊÎ÷Îiju5 oI ŠÎŸ_KÚí¡K®õjfAÓr+&NȰÍ<Ù™4¥‚¤³ès7Æ›Vè×p :áZðµ‘_£½Jå-Ð’î^åZ÷ \Õ£Tæô$lÆè#íᴮ̣Ppt:Uæ1(2µ2W;§_£ü¦ê„æ57.Õx¡óRŸöa´¼tÊøÏ ©­~n._ ±³°O5½=·S$§€ Á&o´ñˆÀ”o¥ûª½º÷ñÚ "þHߘOߘ‡_9†ÿm!ý­‰ÿè1ÏC?r˜Ó*º&ý^ó&¿ÍÚN§Pììsÿg[ßðPaSgß@IÏçTMÍ ,[–S{–õ¬èÄΌ΂jtV6"ÓH…W²7Ñï²€ráoË%ëÊl¤w>]t’"`U •ó¬†rðbÜļroø=ÿÛŒ)ÑñÒ½›Û±ssæó“G‰|ΚR•6Y“úq•Mš±7_÷ÝŸ-]ôøE&ùMÿvÖî]{¶^‘u<7bÿéT~¨y²°óB›ÅY¶ÊQ“òÜ?9Ñq¦TƒYn5ÔóZ¯¼àäj¡Ú0¯‘`Qè™ù§ ŦTÄÐè=jȬÔlÍ.*œªRgö«y]­ÖЧQ醪 FRF!ñGûpRƒÑ(çí E²ë°H–Ÿt‘f¸ žå„ÛuCS-¥uë2lâ]†6¾!!lÓßÛ®_/ÑŽn—%_­rùæ:ª "%eG¿Ñ‡xí8+ª:ÔrÌ÷!žˆ¥ò fäçÍû•—a;zVÑö»-j{Æý„<ŠÏW*â#Š­úªmü·,mˆö<|•_ ©*C>×ÍÃu'ÿ?fŒ4£;[;”=š¦ hysTñn…Ò Ç2Ù6ÎÊ¥R!KwüŒððg"UÚj•wAùоT@ÉŸþ{i2p*…Ä=üø¤‰mê/î ú]àÁÿÙßñ¦¥)9×zÞ»ÖÆvá÷‚â˜:óÔ QMŸß¯z7ìÑÆŠÖKqÙL¯•ËØŽë<½–fä4ëʃ;ÖíݲmÝ}W_ºgÓ†;i¬eϸÝ1¤9š1ÒÚ2éã–¶ó”òŸj}ßÕ•Ö3ÙaÕjõÖÖ6ågZ¼ÞÙœÑqí–¦>bušÓi nè _£Ž­]Ú©ÙË;m¬=Kï×NG"»ßn9OÙíþýŽ=n;Z¡ƒR¸Ö–œ™õþiÀ?ÌxÛ²{[ðEËSÜ`jÓï¶)‹+SÞƒ‰û*KúûÙÍ.çÛYK/:ŠžëmÙáþØ6u¬ÿ©EQíq#«¸Vëméèètÿß“Öyx/8¿“ÿ̇–(të§êh]­U÷O’ÜïÝß²$3¡à3®î~¾íС 1Z—Íûž\Ä9a87¦oL¹lfnÞTs(_”¤©ê)¡WÎÖgù´?KD{ün¬¦Ù@üî2×–öÞ±¹ú=2R¤VíóÏ=?k†Æšò j™p¾K£Pã|•jŠDËøüªUy$ÙvnNã>çu@¾™j˜ÒÝãõ²<Ä#XÙgGûŸÅ¥Œx"¦*yÝïVU§ÙmšØ¦9íŒbtÓÿô¸ÿ3FlŒ˜CÌa£ùúú’ž ý6³a*‹À/Šü6Åû?šûq5䓸|ê'£Øyu ƒCŠÃ«<j2Aà™È*ŸWVYÍåz»;{Ü25{[èJÛ.7éÈYf±««woߥ›èuG³²ZÑáÿú š¡5áyàçE~ƒÍþB×ò½-—îèØ¼§%ƒS•Ü6l»û|Ø¿`Ö´z7¯Û¾Ç}%G³Þ–-á_æ(¼áfðÍ‘_fmùeØM½«—»µÂq\'_wÑ%½+3 íØ3mÍÓ?§ét³£Û ¸ÝÃ|àjøÀט Õ ×‚¯3 Ý®œéTÎ"±ë€›À7E.Åtø‰¹¹0ã\„Í¢!`¨d—»ÂSÂ*•¹×vµ@Ñ[´£µ6cQÕ™Kxˆ'b©,O^“VYžqœsñ^Ö'÷Ž ·•¢f¹ýu6¾Ãޏ×bÉY# 3f0ÙŽ§fŽÒFPöÞ“¸&`xWòžLâ»}ˆ'i5ÂY<”S¯<øh?ZŠugÓª. W3ð(ð£Dôbú4NÒg‰=eÕí ²Z¦F¸„—”\¾,R8¨ºˆ¯Ðmp3¸PBPíNIÜyÀ‹Àå5œkÐIÜràð-‘ë×)•ûe&¡v˜c+0 ž•X.º£Ä6sà¹Èå:ü‘x͇x’ÇðúÅ0Æð76ü‘>ÍÀ#&ü‘²óÓ-ü‘Në€ †?w0ÁðGâ–§eø#Ŷ $® XÇðGâ5Ö-ü¡~yA"®ð— þèWšGLø#QóÓ-üÑ/­&þHÜyÀÉ[œ–áÛ L0ü‘¸&`É×|X·ðw¯_ c ¹°áôi1ᔜnátZL0ü‘¸ó€ †?·8-Ã)¶˜`ø#qMÀ:†?¯ù°náïE¼~1Œ/ü5Ýaã)Ô œ .4¾Ÿdü#e—ƒ/Ÿ&ñtZ¼\f ˆ$î|àp¡@.þ‘¸À­à[§Sü#ŶsàB(\ü#qM@ ¬[ü;™×/†qÆ¿Ðù)Ô ¬Ûò—Syýbcø+„ ¤O3ðˆ ¤ì|àt ¤Ó:`‚áÄL0ü‘¸åÀiþH±­ÀÉkÖ1ü‘x͇u §ñúÅ0Æðç„ ¤O3ðˆ ¤ì|àt ¤Ó:`‚áÄL0ü‘¸åÀiþH±­ÀÉkÖ1ü‘x͇u §óúÅ0Æðú*AÒ§xÄ„?Rv>pº…?Òi0ÁðGâÎ&þHÜrà´ ¤ØV`‚áÄ5ëþH¼æÃº…¿3xýb_øk¢ƒî4kΟ'š¤Ñ˜É{Tóåc•è4%ÝÈæéê(Ópøwù)[ÑÙñÈü¹eB'wç}ßð®ýÒG4ƒîŸR•-K¸á4¯Cΰˆ}o¿EØQ¼K.2ýú ¼ëªLg5<Äßío]ÔÝßvˆþ¸ß8¸¨ûÐ!ÏÇ÷¨^ó(]ÒûVà]àw…ÕŸ¾1å(ÝYý…klWGŸû5¹ŸÀ)º¤ðë|Š¿NDñ²û¥wò]ÀqYÒÔ¨Ú’ÎèoÝ×ßT2çìJS©ºÔ€svåÚ×ZTõ˜@g¯W¡0GOXê,D‰XÝÒÿiV±‹ZV§ø ëù¿ZÝ‹»,Îv(;JyG/æ'DgÕ ÖüßëZN§0̯V(¨Ž¥ñ{#„?‚ÿñ‹¿þ üoGJü}Þ§øó"ŠË‰¿RÔ¥¨:þʳG,ñ7ÎB Ž¿ñI=Lü•ã–þO÷(–9Ê/¯¡ËSUc\ÉšùRÁ°é¿éÊuEÙJÂË®ÇÈk¶›çÍ2TÇÍ}ó㊺ì¶ñjŸº„sBÉ#³ÜÞk¡”WÃ+—º ˜ã<%s½JÀ‰»¨qžê,†B q}ÀAÎ #úد“T²ÝVÚís¡É÷÷¬èZ#Ó _Ë9¡¤8=k#äPê À7sN(-<Ø—”L'Èt·ßÂ9aÔQްc<$þ­ôž¸Çx(†4AìÛ8'LzŒ‡Ä¿½‚Þ“üÂ=ša|c<³p€rÍÀ…à …óŠ9“{tÇ‘šu[&ÅvûÔ­˜qÜd'k4ïúØ Llt“¤òýo¶î¶q»MÛÖÝæNá£G¼Ï!ðÂÇKà%i‘ª©eW_KP… :ÕžTy9ð:ðëâo`HÜðzðë%40žñZó¦koK5ljîµ\›bær¶bÑ GàµÌvð½àï•×hÙÚ'f·,»½øaðG¶[w »éFVÏiFV#ãi,øÀŸ€ÿD¢woß%dÁ_þ›d,øSàoÁÙ‚™ Ô‰6,ZfÑ´(lfhl]Àx¿ã˜:•sBIÆ›éV¿í;E¬Gd1låœ0ë¥N¶qžj‹l½s^pý ›’žç÷pNwH.Ó±{9OíM> $ñ—VÐ{’OÏäŽÏ0Æ©>º‘D@³f`ô©¾É­+Oõ±ËRØõ¹ì&$U7¼fö‰]*ó:ï•Ò½¹î°þ~&¾G¸|wüþ~&üðp±¡“HþNâû|ˆ'yo·Äëït]›€fÍÀèþÞ4I£³ÊþŽÉg6ïájI·M{1^@ã…À¥àK…šü4é½ Ø ÞVúFÒÓ ¤ð>Å/Q<ú4ˆ45äMƒHS©ºÔ€i¹ö> w¡TŸ‰WjiynéÿtŽb;¥œ®…^ÓæWg3øæø~×¼<ú-¥¡~¿Å‡x’oø¡FÆ×ðÏä7´ èÖ \ÐP¾ORª»¯Üô³xÖ%n{o” š¥gÛ¼|`Ò(Zd·wÿª:Š=l–ò¹òL—8”C^üàËÁ_ÝX„ú@xüPòuƒÄ_ëCÄ’ø/úOÒjœÃkWë6ƒq.„ÊŸ¢»°Æ]y' Ò©dÍB±Ä ߘj–÷a'çè%š[ÀeŽýLÎ w&Ü }ì'´O‘øm>Ä“´x‘‡usívo—âÚAIÌÝp4+«îi‡ƒ~Œ´<æÒyŒj(e¥§ 0N¨™­,?ÑÕRÞQt[Ä/êິàÒ´·ïÒMAu5¨ËNª6¸V@â®:àNäJ‘n Ûø“üp|$þÆŸÄ5GÁG“M$~̇x’MÜÆšf°J, Z3p>¸ÐÌaÕÙ¶n§îfh–¶xüqÆ‹ÚÔ5iÊ&¡9z££ýàýҢѬ–KwtlÞÓ6 ‘6Y .#Ã$w%ððk"W……ZŒ¶ÐÃï¤Í>àðrMÔ'f¢€·€ ÎÞD·‚ß½Í2Ê«€¯µD£lØÑ±i»QîÞ ~o2F¹ x¸Ø@Ëq"S"¤ÂýÀ·€¿E®]Ö‰ÙåÝÀ‡ÀeŽöÔ°Ë[ïí™8à%tJ éð0ðQðGåFì”RæÀOƒZš]jœRC~ü3Ñs¿°™/‰ÿ¬ñÄù’¸&àçÀ?—|æKâ?ïC<Ég¾Ü£Æ8³Pp{ºfØE³¤S3pACÔ™…Y“tzåacy]smIÍ·S{ *–jäÌB;_ùj#)®ôØuÇ¡™„uÞ¿šøE·ÃοÁ×z•è c{¼\¨™­ËŽâvêmÙ´)tCC½ø>ð÷Åßиû€‚?¹&uÐAÓU­]1âÀ¸bkŽ#hć€ßÿŽ|#îŸ-FÏþ‹dŒø ð—࿌lÄã&ö~„rÒèWÀÿÿ¿zç®2)çržÚM6wèÄ?%Áó8[=-w ñó+è=qçôöM»€s «§Cç$~a½'ùÜ¡‹{4Ãs7f¸1V@·f`ôÜaÆ$îÂæN…æßÕ {m†ÍQ>pFë Ê'µú’ 9ïRÞÄ(^ã&"¥¬C'âÑ ÿ°³ i¹‰­u&€Šåà;Áß)-¬5vwö„myH“ïO`y‰{ðaðèËf‰56¤Ä€ÿ°4«4í,õP=|üÉ$ZøÀOƒ:ù–†ÄƇxâniH\ð³àBãh- ‰ÿœñ$ßÒtswfã¾Î¬i (Ö Œ¾¯srõ5&}­­ƒ¯´!• ä|ÞåSȬݱ,-¯²î'-˜óýo«¼8\ÓÃ:¯å´ø>p¡ÎaÕÈ6iÖ+8@:}ø8øãñ·<$îAààOD®\GGÍ HO¿ þUi–š±yÝö=¡ .ß>þL2úð»àß­Wn@J|ø#ðÕ57 M~ üðÿH"7 ÿüOðÿL>7 ñÿåC×ÎÖéP‘p«oØÊÏÌ7h±¯–˸9œžfPéœ)ÓPTò#§Z9Å0­ܪ“c ”Øi¬Êåi½Þ[ÿ›l£;"FOÍÎå\âøiM£?±ó8—0zÚJ·þ8í~cQÚÇŽÓ ÛÑÔœPÂAZÎ.çœP’íG¾I™ €9'Œ?ç +€›8OmŠl»f~ëSÞ6E¬³¸‹sBYé ]:% ÑPã\ê}I•mE žŸ\Œ½Ýζ[ZVÄŸ.^Í9¡˜ÒS~y7ps ÷8)¬±¶éî÷mÍBA3h4¹H‰€ž v&i7|%ç„qç° › öÎSâ÷ë ç°$þÖ zOò9ìR^Ƹþ8¯„^L*5ç7D] ­ØÄz#éòàýà÷ÇHI\ðàoL>’ø7ùOòt¯t cœ(pÂŽBÍÀè“磯›|ù€9ÈŽ_ÌÒ±Âþ¹êõeM·‹¯gu¶ÔýT7²ùRNó¦¤Í‚áv#l>|àþNå®çeƒjðl•f|Ã…±øZð×F ²Uƒí¥4{#ð-àBýòÃÛ)bï¾ü­ÅtHIÜíÀ·¿MB§f. èr’o>þ ´ÆW°ËIÊ<üøÇ’èr’À‡€ÿxôضe#ñŸð!ž¸[6×|\hV.ZËFâŸð!žä[¶åÜ£Æ8Ìm¬»è͚ч¹'÷ž-š¶ÎÎ5¦„hêÁÆ8îØm©Š¦Ž3 uLçãÚu,*‡«9µÈ~ì"µdÛí[4«àúŸ¢‹–9¦ø‘/Ør7‡Úóú>-¯›f®CÙ;±ƒ±’Bœƒ_ÖYKÚÍ'Ùí¢iälïg¶«Å¼šÕ©åôK Ëñ=Âÿšr“6 Hšü ø?àÿ“Dt$ÿ ü ø_’Ž$þ¯>Äwt$qMÀ:EâÿŸëv@Ö îΠ㋎³F4kÀ´ÃÖRª¸°!êeË“sÿ}5 ñc[|Sy|;·Ãg|(:¹ÉM“íò¡í|“íp Àq-É ¨Lxü´p%¶–„t¹ x+¸Ð˜_¸T›Ä] |ø«"×”-m“úd†×Jv(—ñc¤/p[%Ïêüœ*81œC¨¢·x5ð)ð§êÚ‘&ß> þlí |ø\C„“#£µC$þ‡>Äw;D⚀?ÿQòí‰ÿ7âI¾ZÉÝ™aŒ["rúî„íÈ’NÍÀ ²j¼»<uØ<=çþ‘ÖP^̨øÀoèŸç·MrÛÿ*ˤñÝ<|ë R2ø/ë´–aRµŒG4‘IU*™c€€? /¬ þ“&?þ)‰Õ:®ÁÒ÷aàÇÀ…M¦üò{€O‚?¹ªocÅÁ’ÅÒ&LPŽÄR™ìâbËÌOvdV ˧¼=(©OsLÍáœ0îÀMb› ¶™s/ê&¸IüQôžä÷*^aÆØ€ (× \ص19r¿¢¹ó:ò÷¼7‘xë5Ûñ†HÔüiéÎpÁž½XŒ­²£QiÝ­GÒsÚÄk¾EòÏUxÂ{Àï©kþIš¼øðw$‘’À7ß þÎäóOÿ.â‰;Œ‘¸&à»Áß|#ñøOòal5wg†rÃaC yr¦—ŽNQ§8¿!êâ‘ÉõôEj.§#t•´ 븤ÚÑÀ³ÁÏŽßqWÃY ƒ/NÞqIüâ‘ôöÍýe³T‘=þ¹ˆ'é"XG÷`•i‰ªÎy¨&âIºT·A<”cˆÖ á„ñ%fÇîá=Uožh£ê¨Š.¶€·ǺyQ HjœíCîaÝÆð·A8a¤1üªRê·K¶Æ _E8 €7AxSåIÚ$~†ñ$­ÆÅ(~ëæÛ!|{TŸ¨9¯sܤy7°mÇ÷/Ñ”ixMT ’‹}ˆ'iGÚ›y(Ç‘Îçû:vp¶æŒ{ùÕs|1‘:¢êyv¨6;‰”]Cw@à†ÐšÐ7Ý)øø´«_Ôò¶vpØ)ädwÔ<Ôo–œƒý­‹ºûÛÑ÷u:¸¨çÐ!/­éQú½à¾cW©zÆz^iÎ¥{6õíX·¡oWÀ{õ÷€ï û^ô¹S¾Ñ_¸ÆUÝWïê]½½€=öúôÞ+¢w¹ž¥Û%¸=XšÕû¢ý­C÷·Ñe›úÖÇ©[u©ä¥±&u˜í¯u*ê‡>WÇz™‹ÕÅ„¥ÎB|‹µæø?=QqX°§$Þû9‚Ú¯Ý>ð}Òêu¤ÉFRÉ?/ŒÄåׂ_Ù^™6ZOጚí8V|Äít)Y³äþ¯ ^|\è2æ¸H§GŸÿd2F|?ðSàŸŠžÐ·…^C < ü øg’ÏKwqÖ±ž `vCþîƒûÇG-šÝøž‡xêR4— 8.‘R4 µ&`ÞƒÄÎÖqÞƒÄÏõ¡ì™Åòµa“NÇÏhHlf‘ÄÍ* ²f/gÃzª¡”Œ¬i”Wãvsý€–Sòº¡©–RåÊ ¾~ŸŽ=á®Ð3ôRgGÁ£ ŠÕÀ>Ôº¾úÔÀ>Ôº¾úÖÀ>Ô:c«“ô¡Öõ%[ûPëú¤ÖÀ+¢×Àj×Ý„®‚}¨v„càcuª‚{PíöÔ§ îAµÛSß*¸ÕÎÃxª Øíé{Píö$[÷ Úí‘Z÷ò*¨Ô¿ÖÊÙUšR9+üÚ›=¨r„¸S§ê·Uno}ªß^T¹½õ­~{Qå<Œ­úm _ýö¢ÊíM¶úíE•Û+µúíŒPý´15ëø+^è9齨l„¸Q§Šw)*Û¥Q+^U©µèìF=»´¡® tHülÖiÎe({¥.ÐÙì:{H}.‡„rèø¿iˆ–T:x*¸Ìõ9‘ˆÄ< \h}΄’˜“ñîr0ÐéÀÅàbsÏÕ 4Kp¤‚´i._šŒm–—/‹l›ìê»,®_-×.ýWÒf-p3øædì²xøE‘ír[{ Ù¶f8ºšÏ+­Zê6ZÎnZS,©HëÐx5c÷måù¥Þ–ݼüv‰ÙY”Òéà;Àß‘Œ}ï¾ü‘í{iÆ[õÇ##Y{²…w›ºm»Vb`¬»_´Ø"jï"k¿ øgð?O‹øú7Ž©&ÎSB+èÂÛù vç©è+æDãkÊÃfÎOË’_SÈIR'pN˜€]RÈIR'rNÑ.OÒÙ}tÚÞã—úÐ*0u@Ïëθ7m\©dìà5ìÛwëkÖ2m›ýk>bçpӢБñ¹è‚FG·ÙÃz±Ä±ÊKG î24v~@Öí[Ù•Ú[²iYY•¥•ŸXè†Oë‰<ê$àw8',Ä4>Í„X|æ-ìàOÀ*3ijT?¹¿u_èÅeÒTª.5`q™\{ø6eTõ˜@g¯W¡T_¯ÔK¸ä¹¥ÿÓ÷+¹R¡0Žpž÷ÖñæèêBÜ’ÀB1[9Tm–§J¼Å×¼/T.^À•DìjDÊG›ó_TÙI „VóXú5œ&=’s|ÞC9#9§U¶Zù-1&RÅC-ÂÓÀņ2ä3“Ng»À»âϤHÜéÀnðîÈVoSÔSϹé”:‚ÚÀM”Z ŒWìKÿw8¦ãZ›wËjQVµ5»“-ècÉ—¦ºu’ýh‡Èp½vð!py«ù" ÷‘JŸºö'¼C¼øIp¡5„þ’H}>Ão¨Ék*¿–FU ÓhϺf´\5kHs³h‡nâœp‘´wô+[¸I“ð¬ÎºRüZNôåΦ³½wt¯øän´?–”MØ?rÝH÷]©Ã{Qâ¯gé`Y~‘=ÝI¯ò_É» ÅXQ3l7ÙÇEåjfŽ;ÑcI?»àþ[·7ŸWY7-ï*°“Á2nUà=ÿü'; wÒ„ Õ!UÐ ³ Oº:Ý»mÝWü–6TÊ«Ö BжŸâ˜¾sBùÑV`Rtºx7ç„ T®ôÀ{8O‹ìÿtV›hìK¿øfÎ §Å¸éô.à‡8'LÂ>o>Â9aDûü(ã]<)áÕ1§[nÕs«—Uëï ‚üÊ‚ PRõj°F=7L¥úZ‹Ê¯šF‰+]'>a¥ÒEËÖx'ç„I'¬/á^[F9 k+OX/Ÿ¸/°Êá1!µ})4$lo¡¶ŠœD:uÏ?/þÚJâڀ烋ïžô>=•u'FÁh½À+À¯f´ˆ‡ÊRWóàùd¬öb`¼Ùj7´yè¹-k¡ÊÎøn£í»,"æGÕq»VHtí4Ï’Q*ƒºùòˆ°þ$z}ø_àÿ%oô­Pc—yMøð/àIÆ#~ü+¸Ð†ŠàÌòì¬Á2ʲµÕýo±f‹Ôû_Ž©S8'LºÙêçæ.£œfëìzg—c ZfODx‡`‘˜¯&ñ~ɰʺtRN+ßùçþeP§N’¢íwëb»Âñá²IËÊÐ᡼¦CYz¶òJá-à·H«EÇrõ'h, àíÀ·ƒ¿]b• Û'q·ß.4/>¡<ާšD3j¬³iãîY"y'ð£à•f³£ ®š¹Þ–M›B·ˆ¤Ñ§€_ÿBüñÄ} øEð/F6V“[ŸDLó%àWÁ¿*Í4ÇU‹~ øsðŸ'SŸ¾üø/¦Q}ú%ðoà“_Ÿv„eq5bË&pN˜D}zbrNÑXWO¸Š¶­C¡+šüAýÚæ†rºÛŽ:fÁ,Ù¼óN³>æ £Qj9¨YŸþQC¯ƒ¤—;hrN(Éê ¼aˆvô ª@-M_É9¡$Ã×¸ŠŠ·pžËüŸ=“âš=·J¨í¬sO½…¼îÐÕ¶nGŒ2ÕíE¸ÆÎgpùûÄ£2Š]¢YDþ{ÙòÍ’‘}­}êÏœ§ä­Ùš¾°+¸â8sÂd\á x>ç„]aŽ·Ü.lÚNj,žÀyZh¥T´ÞÃUÜÀe”Ó{XË{´†ÉõyvÅ3“[+LËöfOt#›/åøÕ(*Òÿ]é<_ Í ×‚¯•æðM®nvضŽT¹¸ |[üm‰[¼üâÈö¼¤Üw¦$’zyŸE=ƒé#4ÈɆR,s”LŸ5ó¥‚ѦŒhl‰ƒ9¨ä5cÈm ¼øfp±¹ ú4ùµi¤÷[€ïOXýéI¯M#…ßëSü½"ŠG_›&M ykÓ¤©T]jÀÚ4¹ö¾6-îB©¾6-^©5Ö¦ÉsKÿ§cÞ%åÞh®­Å¢±rÜíPvÐì^1?¡u¥Eùü`êFºa™~È[1P´tšÅãímAu,}Lp6Ã÷ö©Ó9'¬GP¾B0(§Î¶rž =…V§ œjó)Þ&¢¸” ,G  |…HP–£RØ ,ч ÊAÎ^¯B Ê1J­”%¹åm|'BUí„2GVâšê®æœðȈ‘k|НQ\NŒ”¢†ÔÄUŽJ¡c¤<{Ä‘¸ÆZ(Á12>©‡‰‘rÜÒÿézÅíöÛlõ™j»¹¥1Ž›þ›¦‚5–žVF*Û/ZµŽ!¡´üñ¥U¯ÓiàGéU²º‘kuÿ£›RÐÃþwiP½«5$”ºø6Î J½øvÎ #Úz6;.תK½ø>Î %YŒ†êºEìò!àcœ&a—æœ0¢]ÒBuè€ÿÈ9¡D‹ôˆXä à“œ&a‘?Í9aD‹Ì̈ìï&>ügÎ %Ze©ˆU¾ üç„IXå_€OqNÑ*·øvˆx«Ž µPf©4M|±µ¥Um¸ÚøA ºáhVV+²ÅeSwñy-ãÞ„±R2Üzj áiŽé+8OË[Aº ü½›×mß³IÀCÒW œ§…Ör†öô‹çi#z$ =§GòM`‘sˆz„žÓ{·låÌéƒy×C •¯w­lF*Ù´›Õsª:ԩБððs"ùtÕ#-è^ÉR^Pn%°¼W¢KÜ‚G⺀_M"qç/¿0²ët)ö¸á¨c1´] ÊVƒï­£-qBk§IÛµ@Ü”ÚV†žþ%UF€ãàãÉØ¯<~ ²ýÖU–Nûî(Ô¾œ—ïSrA;-f·R=óÚQúOƒ>þ¸4ƒÎG·îÚš+kšö³À¯ƒ=Ó>üø7¢wã;Þ¤ÅSÀgÀŸ‘f¡SüêVÎe½n¡³VÒð‡À¿€ÿ%s}øWðè›îh£pIëËØÝ’vF)šùq¾4¯Ó.Òy­ŠûiÁæ}~²DyŦÚz~¼Zzª#TÃÐ,lXöÍBzës¼º-¸N‡ ã9¦^Å9auêNàë9'LÀ=R¯ÞÍyJhÃñÄü½¨EÛÑÔ=ÀwqN(ÉÏ'úÙ‰2噯ª Çw6(äbºót›4W8£ß»xTãÓ]Àœ&à és€»8'Œè MJø½û¤ÁnàÎÓb÷ÜÕ6×TS)íJèWÒò%À1ÎÓB^„7×^à8çi¡œ|Bát(£,%¦Íû^£jisÄÍŒ'×Ùð› I×À÷rN˜ôÂ÷Š2ÊR¸£9 á„àÒ\ç0÷vÓªÓ&oªÄ“´Ÿ ¤Êñ³‚ï\ŽAœð¤*EÕrèD'ºô‚oïw{P%vœS©È£;Íx'¾:þ£™±q§±°¡’ÁBIè‹+‡ðš„p¡qôh%? ÑÊ)y± :tÈ×ñß)Ž‚•üبE£ã{â©KÑ\ƒâ¸FJÑ4¦U—‘ØY@y—-ægšMÝpﻬ7üêÒq.°¼[X×(Ëñfö;j骞ýk®É#å{€kÁ׆} úFÒkòHáu>Å׉(^nßÒ‡uØ€5yÒÔ¨ÚYjîoå¦ ½0Oš^Õ¥,Ì“kßì[U·©íöõ*™ê«óâ•Zcuž<õº€/©9”Æt…¿&ϯÔ.ð]ujñöÁÃö5Ô¥Å#±³€òZ¼u|Ïë]Llí*Cõlºªä´]¥óÈÌA²&õDÂZ”ÔŸ ܾ½NÍÊùúX4+æ¥Z´ñþaÕKô"¤2yXŒpøª#-•!åW/}1R=RRx‹Oñ-"ŠGOe¤©!9•‘¦W¨TF®QâIeâ.™ê©L¼Rk¤2òÔÿ鉔Êh¶Ã¤Íµ)­¦‘WôA%B-¾üjiÕ'ÊQI¤Ñ °^”f°À)÷2à~ðý‘ÍÕ~Þƒ°€¸S§ÜÄ7-7©*µÖݰ4º4 ’g5ÔínX?Û‡uºÖ@Ù{(g8ò •E&çÞn1U7øüºšcw x[›&_ 3aAZ>Û6ù¡`•ÏÊ©;1oÝÍ2;”Mt‚ÊèpøkúL”áÀß0-"iôà{Á…f0ÃE2w/ð}àbûŒüŸ~"ã–d³?“|÷åmól}g”l¾òŠßÁïmp܆ŒÖN;ì°a»|¶ûåj>×Î)&9¾S×-ºc‚ý3þåVK³Ù!Çmʰæ¸~D§³²ûélnŽË›£á0•ÛƒSœ&]ç‹ðeë6ɸ Ÿx¦¸&¯ãÄ3‰ŸáÃ:M<[(~ëæ6„ÛQ}¢æÄóÉ» †>P²•½(ÌA6·Ì{Ðw!° ¼M¸tzT;’âIÚXÎC)î”zeåÊùòa‘tÞw7 Û)&ìëÀ¾tî25ºaHç·[±õ~¹R––R°Å9Íž´0K:¨[¶ãÿ6êé|Ñ¡ïä=ÿ>ŒAÅ0'.0¬úÍ ¿E‰þ{‚êø²Í^`¢êÆ„µÆ^9”õìÚVä&Z|öÝ¿m„NõÏV6êMäð†Qtr ö/5°J‰‹TZ5jpB¯}%M^ ¼ƒs¸Ó'w ðNÎ #ÖÍtèK£Hþ]À×qN(É ó4G-;€jo¾—ó”¼Ä¶ÆI¦$ðõÀ÷q.¸…ÞÿéÉm•…ÉÞ¤*“@Á<ü,ç„‚úE™îèw´1çà–CWw\s¨ÿ<¥Ÿ ~õÁk”~7$±ç [+Rz•®€÷¬9‚M/ù9à_8' ÷²ô¤G°Iá¿úÿ«ˆâÑG°¥©Qµ‚÷Ðv=Ò-MÿêRFºåïp#ÝrªQ½J°úˆx¼RkŒˆËsxÿ§¢Ç±ø´I§8O‹'¿QbõÉÁN%—ÓiàYœq9}¶Oñ³E——å¨Qýd%7.š[$ËÑ5l –h¨ÃÅàðÕ£^¥oc”Z;ÞJrdÿ§½¸L˜-¨¢ë|'uBø¸®–Ã]¬Ú˜Z(浌Ð!’þWPñ ª´ºØì:Qo¶uifYP½«Õ9M÷sžš. Ý9M-Î #ŽØ4ѰCž18ú•ã[¨Í’åZl‚}Ù}h¾¹K›2PÂúM­ú ï¼àÝñJTžPš2’3៶•·Ž’N:8ÚÿpizelÅRQºXÖýƒá÷’lŽ#œÖw¼¤ñð:Î pÉÆQàõœFŒ2 q8Šêàp”ðæi¼x'ç‚7ëÖ:Y§iÈÒŠš½øvÎ ¥™)àXw/ðœ&áÅj|'焽cØmLòyjj¼iE[S­ì0«È“Æ`q¶s¥‚ê¸_b«øü³‰C¹tfÛW.6ˆÚø.ŽMÍœ75×¥OÑxÉÕ;;MGçœá‘Ðyh:Á§ø "ŠKé<ÈQ£úI^ý­®]Ez r” ÛKh‘Ãõj8|½Š%°;£ÔÚÝI®éÿtm; ›6ã}úß±±NŠ(hʨ:Îõ}w»æÇ•V¶9­M!s®½+þPÓ èühïè3»ƒÝßNßÒtº»KÉñùH¾ïÍýe¶”Ý[ í:Ý1ù hÇÒØ?fÝ5A¿ºœ#»döòÑKfkMaÍä'e‡×-u.°‹sBi0‰EâÎvsN˜€_³ër {8'Œèׯ(Ÿ’Çî(9&íéÆì5s±V7‰Õ¸“óùªÎì°J kþ˜æzïdßc;ñøb6k#šåðÉ2Ž>C¥X üGÎ/Ìòº y9÷ã2Ö-9ᄉg¨ÔŽ7Ax3T?ÇuÊP¯Eñ{X7Ÿ¸¯‹ê53ÔÓ÷²M°4í²Á4u·Ã›Õø n75l¦z¾GØÞ.œ©žÕ–¤F—ñ$íR×ÃzÊÙ×È3ÕõåûÐ2ØÐl²ý]#lCs]d­dtÞJx+¦¨±ÈVÜ@÷Ü µ*-’0 ¶Þ UnKáJñOÇÑ:j=¯UÙÝfû"h2m¹VÌ­­CYG®©¨•­m¾ÅWZèm57 ðo âã<%^¥&W¥Ùô’½-NKØ,ûîS æœ0îl„Ä5áœ0bí(dÈË\ȳW‡wJrÃjN7ÙçœöÈ“¾ôªÇ¯ãœPð•#­«Ù×^ P¾æüi~=ð6Πý}#éù Rø5>Å_#¢xôù ij­«qízCšRÕ¥Ì`ȵÈa×Õ;|½Š¥úF¼RkÌaÈsMÿ§;ªLý¶Ðl uÉÖX«»YN¼õ^é¼’Øg ê1[LzøïœÑöÇ>Å,¢¸œh+E y³ÅÒT kåÙCúlqÜ…iã“z˜H+Ç-'¸£È%å~U~U~~Äe¤¿þsÂ##FþѧøE—#¥¨!;#•¢Tè()Ï"1e¤qKpœŒOêaâ¤×ô*o1¢O¿ô<Î ë‘^î éùÀ8'<"BgúDŸâ'Š(.%tÊQ#(½Ü'8å¨6pJ´ÇaÓË g¯W¡†Í¥Ö›’ÜÒÿ馉‹ÓQó¾%‰ÞYÞS÷G«†š§eˆbéiùUúñ*ýõ‰°EÑ{%psÂ##ÂùQ\N„•¢FP„JMå¨:ÂʳÇa#l³×«P‚#l|Ra帥ÿÓ+«ÖjçˆN8Ów8…wŒmz^ÁÓ·Ÿ¯0'y…o”ͽBiÕ:†:2ÆM93çæ¬Xþ×!Ëêµ(Â÷€¿§.Ý8±õQ¤÷{€?r$ôâHáG}Š?*¢xô^œ45ä­’¦R¨Nœ\{H_w¡TïÃÅ+µFNž[ú>M]ìÔ6–‹çÜhuòãnR¾ï^¾ìRËç;)K§!J†ãöÐ^¢Y&û»Í?¨ôÑT¥h™y­àFé1>Ço(Ú˜cimoµ3Š]ÊÓ<»tœv'CõøÊáßpØm ²Ù’ÅÚ…QÜÿI˜L–Ét ‡1îý†÷J¬é¾»ii¬1(†–Õl[µÆÙ¹9º(´r;ŽZ™ ›ò¾“e˜üö¡»'>ƒ¦þ—s¤SƒÛQ'=”“ÜÄSƒ-æ(™0Ã:ëżé°Nyš—0˜ì”¯Ch{vš`%/uÐ^`Öà „,‰;ðö„¾‰ #¦á'½oÞ~û‘Ððßá{n¯`Ò ¿45ä5üÒT Õð˵‡ô†?îB©ÞðÇ+µFÃ/Ï-ýŸôZÉe‹Fíã”Í;¨ m9MfhŠÌm3Y¯´™ühÖÀ–S3ì’å]C§·Š‡‡Ôœ Iq™TBx,ç„GD\NçSü8Å¥Äe9jHËrT —%Ú#ޏk¡Æå¥ÖŽË’ÜÒÿé<š–£o9÷Íñ•ªp”ì‘Vwݶ ¨6Me‘&«çqN(É^SY$n)ð|Î #ZKh÷:©Ð \Ç9¡$›¤SÄ$[€[9'LÂ$ëÛ8O ÕOxÿÏ”¬åå;êpíä(e!GµŒ/A Ì`ÈÈü zö¯³º•-(÷q;©|` <ºí ‡í¤òÚœ3³LÕ Ãâît1ÇôQœ§Å®¯µ`{¦fÓ;†×í„»óÖ'Jž·X¯M⎞ιؼuh‡NÏžÁ9aD‡>¥2]®óªnØÊ°9*è*i¸†sÂú¶éuÀ œ&a©ó€9'¬SkÞÜÊyZ(øJl Ò»—pN˜„I¶û8'Œ\y*­Á¨ií‹°·ŒÛ,pž.H3ÔÌœe»ºDŒåÇ9'LÂXðçiñ ­¼O¢‘_Z¢ë6ÄÆ9¼™sBIÆiÚÛwé&Ó¼N˜„i^ ¼“sˆ¦9“Öӕ̵uZèçMŲIƒÝ|”sBI›¥ê½Y½W¨:} ø)Î “°ÙcÀ'9'Œh³&%üÅê¤Á§Ÿã\âÚYzoNÐ,_~ƒsÂ$ÌòyàSœ‹mÛPÇY"×§?æœP’‘æŒuë½c=‚fúð÷œ&a¦ŸÿÀy:úKݼ÷hèÝëÀŽÑ¦¶KØ÷ìöçÊKšY/ôü/©ûGŽgqNQíÐó¿wr(cÝ–"Þᄉ/O¥õyM^Çå©$~†ë´<õu(~…}¢ªÔÙý9ÍQuïž„ ’σ´×KõÆÐ@âÓ>Ä#a·GUçn*5â‰X*Ç»ut¡˜×Ðm‹Ë«vè£î•?^Zctl¶µÅÛ4Ñ’!ÚÒ¶Y"ÍNv‚wÆß,‘¸€]à]‘v>8„ѰÒ¦‘JíS†7þÈoƒç;( EÓ ðš°nGšwóàùz4 o€_Æ·J½iÀ Kš5çÏѬªFgœ¼€Äƒ-¶îÐx!p)øR‰µAw´B€Ø&à2ð:ìÄ&ñË}ˆ'y—¾n|o¬.öf.CéÕ < \h6¡ºCœ0â÷î°MšÎvƒwÇïÐ÷‰ {À{’wh¿Ô‡x’wèûàÄ÷ÅêÐMFÔ°ËXîƒÆ£Ù6Má¹Á:+Å¥ïÃ÷îkH4Fß7&¬cŒ&ñË}X·}?Üøþx]ºÞ¥ï‡ß‹KŸ0ñØŽb;_’Ö‹ïÇ÷ƒ/Žß‹ï‡ç._’¼“øVʹðYÀ‹ßÏ}c¬^<#«wäTkΟ/Í{Ýf)fÉÈU¢r•+Ó¼ýQB6½ÂÑÀà;âwö7ÂÁ w‚ïLÞÙIü.âIÞÙßSìÎ^ ëìo‚ƒ¿)g/‹‰9û›ààoJÖÙßS}ýMppëæìo†ƒ¿9VgO„õô7û å÷!W³“Ã\§nÏšU ªcécµ¬ ëåoFE%Ü ¾9~/3<›ð"ð‹’÷r¿Å‡x’÷ò·À³ß«—79j©G@³f`ô,|Æ$–W¼X-Ð:Tòî Cý:”uùQu<ôèý[ð=Âàb áªn!è rþ ±zÒãbâ‘VçÆêIÜ&àvðí‘}&_,`’À>ð>i&9ª 9Ãf®·eӦ㼘Ï&cœ=Àx.z@ Ûx͇xânH\p|0ùæ€ÄùOòÍÁ[¹S3Œ¯9˜iëC5lƒ@:5€/n'é´¢Zƒ@ ‰Æ•¼6¢åq¤ªž§C^[M#?Î’}w8x¸XúQ­\ç±9«Þ–Kwtôí €H§À—€¿$þDâ¶_ þÒȾŸn H~?ðJð+ã@$® xøUÉG µñ$ÞÆýša|(xûe µš}ˆGR¯ëÜÊÝ.ÞÚÅ +³Âº5)<¸|eüný6¸2á*ðUÉ»5‰_íC<É»õÛáÊo×­‹j5ûP®[_PqëI—UVX(­W…ào‡wnÚñÎÓßï&¼\¨SÍÓIüvâIÞÓßï~G¼ž^P«Ù‡r=}} §OŒâfÁÐJ6;vÙ;UÙRÓ ×ß'Ü .4\ÎÛß'ܾ+yo'ñ»}ˆ'yo'<ü±zûÌK6u\žÚÿYK·fà‚†¨¦).?ñ®ŠÊ"òasô×Zwe„uyzc€{À÷Äïòï„›îß›¼Ë“øK}ˆ'y—Üü]±ºü¬K6|þ]ðówáûÍ%ùüñU×n„õãwá× [Á…/„óãwÁw ÛÀÛ’÷cŽñ$ïÇï†ï¾;V?¦Ð½½o¯€nÍ@ù¡{kÕ[}ˆàô:Ç_.sˆ)Àóß o'|)xô!¦ÐžOâû}ˆ'yÏÞþ@¬žÏ"xx×îþ@Ãôàà× ŒàÀw ëÁIü9>¬[|÷=±úqú’z5å/Ñ讬åu-IíùÀ À/ˆß»ß&¼üÂ佛įõ!žä½û½ðè÷ÆêÝ—ì( (Ö œ >wšEhÒmð,ð³â÷á÷Âo Ï?;y&ñ‹}ˆ'y~üö}±úpzk€^ÍÀèºi’>sø xnPk>ðxðã…íå0ÞÆ­W•iÍãxIó€-à-a߀¾‘ôq¼¤ð"Ÿâ‹D/{DºAð8^ijT?"¦¿Õµkèy¥)U]jÀ¼r-’ªIõv0ØáëU,ÕäWj#y幦ÿÓÐ+Åüj,ªÅëÔ²KS#¨eß"вKS*TË.×"‡mÙƒ¾^ÅR½eWj–]žkú? ݲûÕH°e'qMÀ:¶ì$þlÖ­eu‰0¾–}¶n8´ŒZ@»fàÑàGGŠþomÌ›Cìþsv†1ÝŒšU~’$»J­²l‡2*«ÕÚÙŠp¡3ƒèMŽ^~yünÿ\ð ð+’w{ÿbâIÞíßW¬n?g\Ï(#îs…€zÍÀcÀ‘æ÷{ȱG´¬c²5lÞ= lföÈÚj¡˜'âmu¿E'³Wªß.¶Ћ½8.´&\5x?\Ÿp|8ùj@âuâI¾< ×8Þj0¨;4…e ¨× ”_ 6⼿QÝfí6í•Å%§0ŸÏ(ë¶nÈ(ëéÈùÝÿÊ*b¹< _'¼\(‡óû‡áë„/wCû=‰‰ñ$ï÷€¯@ºß×î-æL¯LQ§8¿AöyüZ^ºkNìuÓ-¯±k:Å|˜´<ØÞ¿~KØ .t8]4&ñ=>Ä#éígö3›T‘{7Üôƒ@„ºó!|?Új¢ÙQËêCø!ñD4Ùf7Üѹµn–VÊWN0uÛXÚÎÊ“2:oŸµÎ¶¸ºmVÑ¢ÞK®ÒØ…|—Gàr„›Á7 ÛÝ7Š3ñ4 ¦¦€j9à0¸PR*7c-x~’¾ z™Â޹ʚïªàª¨æS~yPÊ0Ê$`{/‰»x ø5‘=~eùÚ®eë yºÿH\=§æm“îŸÒG4#CwÕ‰¸ø>à;Àß!ÝÅgÙ¥BAµÂŽ„RO? þÙdœ|n/T&7PûƒÀƒ\š‡¿ø9ðÏ%ãáï~üó‘=|žÒêöÅÉgCó?ŸJºßÎv«HŽ´úOàÁÿ˜ŒãÎëõtôÜ瀿ÿ•4Ï}ø'ð?%ã¹Oÿü¿#{î©•+SÑÆKͲ{] m¡¯q!ÍþÌ1u ç„’ fvð%âßðhC]“kŸöa´äúá¨ê<æ>³|ˆ'b©Ìvó×Ësú0ìB8\ìæŽjámnASí’¥õ¶ìêk ªZA‡©J €'ƒŸ&qs€§€ŸÙ>"w‘§Ï?Cšmæ•m³µOÌ8‹=à=ÉG._Ù8錈i–—ƒ‹^Ý4åCˆ6‡?„ˆt:¸\è`Äð¦YÜ ¾µnõfpøŽ8Œ#pBé´ø2ð—%cœ@\¨Oý쌚ÜÄ6Ä$…0h)`Ãÿà˜:‰sBI6l:WÌz)¸ˆó”Ì%OÁÖK <‹óTô%OB7´“ gÛ8'”e”vA£t—ržÊÓÂåà2Î #e›Òªwhv‡¥²Ëì(Ö¸•ktXÏÓB&Ýàk9¥dä4 5¯hyÅvkZvØý¡ûîôË×rN˜tú¸[”QNG^´ËúЀP~—u¶×Ž„uyRgðxðããwy7xø ‘m£d0ýe¹ÞÎ}Ùurñvƒ´;¸\èÅêÇx ëâIÂX«€‚_ÙX§”Ùš¢r0˜¨Ö_.¶–¤ªºDì¤úOvz)p| ²v(›uCÍçÇ3B¯“6Y nI|B6^~}26²7€ß0-ßÀw€G›þŒ^¡ÞçCÎ “°ËmÀû9'Œh—npeQÔ»µbBK«–;s^›;¥E•ãVÀÀoþŒsBy¶z÷ö]*Òz¦þøGÎS2WuÖ0ðÏâ<%´trB)œÜFÍbÉ.±FÑr;è…‚ævêr¡»o¤×sL/àœ0éîÛǸ©Ë(§ûv…Û}Û¬;ŽW ¨I1K,ŸÐlïÒ¼íàþ’n¹²µÍRó¾Jwè”R}„’Ò!ÓróÏ‚½&ìÛ}oDxxö²¢=”SÈ›‡pÂè›oZ.¤Æ<âI¾\ž@YÉ-ϰcV$¶ Xç1+Ra0Ö1+E?¤Óq@¥!±1+7(oÌ*¹þ éÝ|)¸ØÍŒÒû7¤’´À­éÛ¿!5‡ûÀ…ò몿<´Áíd\»è€;‘];3u|Æ1ÙùQj>?¡Ý°C7¤i øvð·×£Éø¯ ëÐdØ&`› Ra0¾&C¬×I:Tk2HÜ|`§9H… üiŽHç·JíÀUà«’1Îàjp¡QªÉí9…5·ñ¶õöÚ¨ãF?>–«˜n+_Ðh–œöœô^´Á…ÚŠšíùL#_ÐÝ®Þ .seXÀô‰;|%ø+“ñ$x ø-‘=éÅS›ÏÊšàg:èµnþüGÒBG”™ÒèçÀßÿ.{ÿð÷à¿lïË20YÁ·>Ç3½û™9ÄW›³±ÅrŸAv/ÞéS[8O  T3ªÌ¡ãp‡È3ë—ºx%ç„ –Ô.àUœ&àh©­À«9'Œèh?¬–Vo™²gú£9‚= 9ͰugÜKÕ ÓhÏjt²A^/jÖfº•×Ò³JN·](Ñ¿oëPö8nR­œ¢Y–i•ÇˆŠªå:·ãþºf»M!»í…¶H˜Žª<¾é†+½Õ¶h¶­«†ïü£äv/½ô´z~ŒýPë;Å<>õ2Žé 8'”ìñ³†ù«„W. O¿”ó´P§=|Ïx¶[ÔݲPùb`ç„zÇô‹›€ýœ&P Ó¯ä<-s&ﱕZ8h™AÏM_,rN(©a>œýkµÊéQ൜&a¦ýÀë8'Œh¦Sܨ•ݧiÊ.CS²´i‡Îº¶5GÄ\×ßÈ9¡$sÁ1ó½t«J+ER¼·¥h©Ù‚ÚÒ&bÅwŸäœ0 +¾ øiÎ #ZQdB‰4ø ðóœ§åíô>3À\nË–-åK¶˜Á¾ ü5çi¡cÂÂ쟀ÿÁ9aäè¨hô³ªØÁܤПç<ý¼°ýÒ“£#¯WkÖ˜©ÑÃyœ7Ê&O3O¶pÞØ’Lš1“¤€ÂÐk<‰sB9IFã|à"Î8&îS|ø˜áYœ7F?&N0î5ž låœPR½iöœXÍé®â¼QhœPvÍA­q焉$è^Q ¨Œ|¶q3ç„’êÎjànÎ “¨;mÀK8'ŒXw®,'èv%C§ËéûÍË y‹ÀlGSù*äJßtR_VìLTzµ>à9'|Å(wšÏìwԒصæ¤ü‡€Ÿäœ0ÜKÐ7’¾Öœþ”OñO‰(Î/$Öžì ¸Ö\šÕ·ø÷·rÓ†¾Ù\š^Õ¥Ül.×(¾q›ªnSÛíëU2Õ/7WjËÍå9¨ÿÓ3iÜÏ1ôR± j>ÏÆ)U¡`ê©ùÔ|NXÍF|Ú"˜\ÔS¨³º»®:ؾÌÿŸ­íË‚êàaìÿÍ9¡„;Ó °ñÆ×?ûôþ³ˆÞrâ«5ªOtõ·ÂÒBVŠb¡¬<«x6à7åjP§¢ TªFe¬—½‚Ã~|RöåÔ› Ù|¨Pp÷”ù?(óGb¦ü7ŽMs9'<"2å¦yʼn‡W\J$—£†üLYŽ^a¹D£Ä–)ÇZ2!3F©µC¦$õúA–)³5@|“½ci,gVmå€f™ld"kŠ¥ò¨„=iªÕ kù";KI1õ\eÖ])Zæ@^+ÐEÁcm´‘‘ŽC.9æà ›4 ;Я)٤͈® è—Ëì(³OH«Ô³\¯íqÌ €WkT² ÓDMÿÂ9C9.TkÌ«éqà8gÍNR0-¥¨ÖP‰)­ZÇPøëH­/ÿs†rlu„É3®·+(×´Ý/€ã¼éoÉØîßÏsÞô|dÛAÕ•Ÿ}¬P­s¨hÃêˆnZá7e¹ÊÍhžÎ9aD%CŸgô$7åœóÔ­(§ó³ÃüÖ«ÊaY•Õºlð7¤ÚŸ†ª„Ýàb§OÖÜlÔPíàzðõ>` ‰[ܾ!þºFâz€Á7FöŸ9¢m©± ¸|‡¼6 q1l$mö_.t›GxÛì¾\lGšÿÓ££¶]¤N?0ž—f£Ó'´]å(ÓÛ²~óE{¯ú %mààw&cºð.ð»"›Ndºš4xðð{¤Yëì kíÔò9Íjß¡©91£½èãIí ÀÏ€&²ÑŽr³ýõš­ç4[ÄvŸ~\ì ù[XH§ïŸ.™fò›À‚ÿ0×ø*ðGà?Šì§±(tp¾·Û“íõ°…Sªþ¸ØÀ^)%¶ çsN˜€¯¤š€ 8'LÂWþ± 9'Œè+Ëù þŒœRrŸó”£¯-¼bšT>¸‰óÔ&iÅ 7ÌìZÉV«1Hmîæœ0+¦6/á<}ÑÌBoYŒàI÷¤MPå<¥ÊoJæÀx ¥jéVàœ0†Z>e©WMϪ¥¯´8'ÓwÊ/rN˜„Ë_Î9aD—M 9é!൜ Þ¶Z;mÑFK¦ˆÑ‘§îåœpZ;émÀ;8'”ä¤7ïã<‰[HÜuÀû9—p ÂŒŒX׈Ý^@øVÎ eûé€h0} øQÎ §µŸ¾ø!ÎÅOÀ›òË?Æ9a~ú6àÇ9<ÌÎÿé²¶Œ?ekÍÑ2väsû ¥im¾›"%qŸþ'ç„ò{nÂi…×-Îâ\ì(³ðn-¬pê¯Àç9O=/ͯÿˆ¢˜ÍyZèhšð~ý_;‡sˆ~½ÔËkù&}~°G;wçß«?q÷½€ë ™>ŸsBÉnÝh„>«œÚ ¼˜sÂz·é Àíœ&à?é^àÎÓb#ôþO3™ —¶ø¢`ô#HS £§Ç9'”Ô©•¬5$R«[›¾øJÎ “0ßà-œ§£ŸÅÒ\éÖ çVà]œ§ÅÊkÖêákö (ö^àƒœ&ÑRÆ¥jiüVà»9'”ÓT¥ï>Ä9a¾Š¾ZúýœFôÕÊwn1Í}Zû6MÑl‘Nnúaàg9'”ÞD÷à÷8'œæŽûuà·9'”ä¸_~ŸsÂ$÷sÀpNÑqO.;®or-#rØéõ,ð¿9'”ì»M5g‡×¬q.pç„ÓÛys8oʧ«ZéÿðË 9'LÂyÿ ±GsNÑy÷–w‡f+ë¼ó¹6ê––u”=šje‡5_æ×Vå @ÖŸðMs˜ê Æy£&¿c\ÊtcP@7äe×qN˜HÇXXa 8Êy£Ð»U9¼žsÂü¾qxç„ý^è0RRáFà+9oêÔtÔÙùÁ!{`iV@»·ßÍy£pžrK•_|#çBG Uýå×àœ0 g½øÎ #:kGå`ÌÒ¸£µÛ,0³‹»YO|Ì7ž#`ô¨¿Å9¡d¯žåªNz (÷+ào9'L$ñ×ë=Î9¡$Ÿþ>ðwœ7&pl(‰û6ð÷œFôé—UÆÑË'R`ô%j¸ÿÃSõªu@Ï«zûzÓÕtC²ÔœNë$sëèSy³ñ›ú8'”] Ö¯Lf›²@s† Ô‚ôúõÊ^ |ç ¥T€¦¯áœaü ipçMb÷’Mø4#8hÚ„$¬i?ç %çÊ}Ù!7÷Ðí•ÀÛ8g˜D®Ìj•@¨nºø ÎÊñÔ1àk8g˜€§"ùoz-ç ë“+7Ý|ç e;êHAÌQ‘ñ4=Ì9Ãií¨o¾›ó&iCÈM÷?À9ÉÓ9gÍQû|ƒlá‰wzs>¯åÝ¿æ”÷vV4Ï4¶·Óî…öõ2'C›>Ä‘vžg(×ëç±×Ü ¯âŒS­œÏ:'/¼óGÖ{ð$Î åÔ³€mœ&Pf`¯ÝŒs8'ŒXΚ’WOI«Cï©$ Ïîäœ0¢¦¡÷T~†W…2ÊÙSy“¢°ëk+'©Œ”BÉvh÷÷>¢´]U²Ã®çféx:5Þízc­°&ö—LG³Û:”u¹œNgï©ùò–äòññ¶·£œÎâÓuñ-åŸÅÛÞ~S¤0ãÿÖ,·(68Vèíx¤ÍmÀ»À…æŒÃÕ#w3ðuàb™†ÿÓ£·ån©€^|ø»äÙHpË$ióððG’±Ñ»‚?*ÁF·L’:}\’VNÞ„G•Šÿ‡î†ƒŽ‚:ÖÛÝÕÕ•Q,-ßAGtkí«ÚÚDlúEàóàÏ'cÓÏq¤øCœ0¢Mgµ ]öCJ "¦fqž»‹µfwCh­"ét*ðLÎ én+|ð$ÎSrR-úÅùÀÎ pÕÔlà"Î #ºj!ƒëføÕV:;x¦„Sß×ïZÿâKÖUºªÿÊ Õ)'güZ$Šl¹1e #tE‘u¹Eqýž¼“sBI¡­‰"•@œ¢= ßÈyJx¶'œñノsˆÆß¥˜|Õcù:”5_*ïË›Cíy}ŸÛí6Í\[F(9ühä€n2i EÊSoþŠsBIæSî‹ØøwÀ¿pN˜„ ü+ç„m,4ðE*ü/ðyÎÅV¦WŸtÌâÕV`ï¹–aÒÎãœ0øâ8Ÿsˆ†9¦œøÙâ™_zPá<­H³Ò‹ƒŽ_àÍqKF™ –k[oËÎí»vï½zûΫ÷¬ß½ý ÷‹®½ódoÊ Wå†é%Àë8»](¼ÙÏ^Ï9aÝrÃô À[8\[Û ©ö.à‡8'L"EŒ¬÷ÝÀ·sN('SLß|„sÂ$÷Vࣜ§£wTOà™â”CêJû1à8O‹žWÍgÙbà¥5Ì×ßäœ0 ;¡Ï›þçi±E+þOû¼ìÌ»õÔó{$K…Í¢Tš¯Žá¡_—ø"„F—`Þº,j¹ó|ˆ'b¹ÌTØÿ…ÔåK(Ž/á¿S‹¦!°êÐÐM€øYÀ£ÀŠî©"¥0ׇxd…³¡|Ad%+is,ð$ð“âg_‚Kž ~rd›,§¾•ªÐ? „Òêæœoþœ7òEÕ¦ÞŠš"Í©| p¸X$–Ù,‘6—ûÁ˜Ž q»W‚GŸŽð­v[‘Lê\4À éýàÆ¡Ð'õ‘B‡ÀÅß &q%àµà×&ã&ð:ðë$$-ÞB´LØV‘¹øjðWשUü2÷(†uhIì,`[E?ׇr[Å9n Õ,‘v‘ô9x xƒö$nðTðèƒö‰´‹¤òiÀKÀ/©{»HÚ\¼ üªdìØ¼üêú·‹¤ÎË€Eð¢ôvq«uª½x ¸ÐҵöŒSÖ…5¹ê.P÷ðzðëEÕòË£À[ÁoMÆc÷_þªz¶Õ¤È«wƒß]§¶ú+ÜËÖ¡­&±³€ul«Iü\JîÁê†Ð^LÒæX`‚=X7(¯{ví–ZìÊRñà…àʳ¶ô‰Øm3p;x§‡“¸µÀà;"ÛMhY©°ØÞ'Í.síÒ@NÑéˆÐk]I¥sà¹dŒ³¨‹­'ôzR›¤—Ô^ .Ô®™>Íq¡6d©Ž& ÞmÀ׃ M:‡\ q7ïj¨ÃûÊuÀ{Àï‰ì+ * Ué°I )óà»Á…ޝ‘´|•ûÃ:$-$v°ŽI ‰ŸëC¹IËQÚmëª!’¸FÇO?-þzCâæO?=²]b •Ïî[‘UcmD‡«uèö’4z 0ž@{Iâö5ðèíeäaRg8>"½œ…º' Ük¯§•œzx°Q*l¤û¶T~ðÕàBÃÖUùðnðÚn7 ¼6qÈPäÂ`RáýÀ5D¸ä6È&¡:"M>üçI\ŽKâ~œs —ã6¶…^óM |øç„Q ?Üó5nP†ÉnŒý"iÉuÜKâgø°Nc¿Ž²÷PΊäy®C¬ËÛfFd[Ø7 á<ðy‘¢†´iRIž~–Äð!yÚŸÔ<x¸ð˜Ý”_>x6øÙñÇQ7¸|qdo»ñtXÌ€g¤5nMƺ‹. Ûº‘*K+ÀW$c•vàJð•Q­’Z[IÞ½=¨¿ì/©9KuJ–¦MÝpìvt´×%ç'º¿²Òë¼ÛÃf)ŸSŠ–9¢çèú¦ÁA=Ëî®Q³Ù’¥fǽ˓5úÇüä /NÍ9aæù4𛜧„6&G_ÒC*| ø ç„’¬e÷6iôCà/9'LÂ6ßþŠsÁÓ{ýŸ®a!°6¿œ‰¨%Ǥv=ËŽ?ñ&phû9óìÐÝ{Òû×ÓgqžêŸDëT>Ž¡Œr:•óÝNåVÃÍ|Ôœ@ñ4ô œ>z¤7¤Ò™À³Áev¦$§7¤æ)ÀÓÁO—’ÞÐ/¾¸\¨{®Ö“¸À%àK"»ëi•£ïÔ¼[ÿ³noΠç§S ”y+p#øFéÞ{TAÓrW³Ø# àÕ@\OƇç^´}Ǥ ¨} °\x#ê”_¾x xwb’¸MÀ}àÑïÄl®\^%PÀy` ¼$-Åx!¦Ì1H¥—o—¹‡§†…F€·‚ 혙X•[ÅB¸’&¯Þ m.3hÏaïŽõÊ=|¤AþÅHµ.š×øÀ÷‚¿WZLyðQp¡C°Ã{ì=ÀÇÀ«sLù0ð p±I,?­N>ü"ø“1Î'_~Ôíªr8ñŽÑfI;sJ7†hxÕí¤¸ÿŸ£g€õ`ØÈ¦€)¿Ì1•æœP’)'.{Âõ¶ø–6;§æ3œ§„ÆýCÛ9Õlçœ0¢›Äš‹T°›óT·4›QÝf¨”bæZ¼ŒsÂ$ÌÕ¼œsˆæZHWÒѹn~<ôøispˆs¤Ç¾Éí^F9ã{Ùø€¯0_‚“Ä‹–9dÑ$ ¦oF¼Sá¼Ë]ÊGÀñ“Mµ\„xö-¼ á^ð½òÒÝÍp;‘½{û.ݶ"J/‚Æ_HÜ¥À!ðè.÷¶eNW±¡Aš`Y•è]èeŠ%~Íkã³rnýÉð‘6:Öu>Ç8XÊSð· ®/(ÃæèÔæ¾ì¹k wù;ú4˜'à6ÃS39'”•ÑÀm<&5x,ç„ x ]Éð8Î £†N¶Ôµ3mW¤¥ŸáM”zð,ÎSbC«UwQz5»GÄHç—ržJàHpw6pç©e‘Ô¢ŒëZ>g+]î\0-Z{]‰èS¤ßràeœ‹5ÿµÍ¶TÄlW5ÎSB{¡Â›írà R¡F`òÁœ|¶ˆ}†€û‘•ì—fŸù<¸·Žª–ÑÛ:w$¥Æ€7sN˜„‘,à+9'Œh¤Š£Ñ#·‘̇_9JÊܼ‡óTôMP¡SÇos+—QNê8ËM.°ûW(@8 <ÚåÆþoE»Çƒtš<\èÄp¾KâfO:‰,úì6©p*PWäåâQîñ •–{À{’1ΙÀ¥àB¹Â„’ØÏnͤËx+­#f~D³Ý®jQSéHí¬šÏ–òÑå(wƽÿ4L£=«¹5¯ é¢e³ 9–žUrºíâ@‰ï”¹n‡^wðÝàbÇÈ^æ@½øàÿ˜Œ<üøG¢úAã'Ñ¡b¹€¥í/étŸ—w<³½›.1sÛj¡ì•±ÄlÉ¢ÍYn­|;7?ß^UÜ [$¬’£µ» ¡Ûó+¨†áþ‰mÉÃV=£TÐ,oU…C÷Še6b¢³?±5Lè²¾‰»?nZ®Þ–w¦¾Û¹tÿ©ž'E/ÒÕÈrÕçcîÏ{}Nß¿gŠÚn=È«–§6ƒæLc‰Ãæ}ÕÊ¿à«4é½Ý¿ä”.ö*Ýl…jÞý¢ûBôÊî?²½•qX’ÚÝÕÕeãÊUÿ» wãNÑáåRV.3ñJìò½;®…Ü—qº•j`®T(Œ·±~4•[‘z Ýæ³åJ–ÿ¥+áV÷ÓRÞá8¤Sæ®:d-5»¯…UYƒ¥·n™ºµÝ°‹ª…ýyôËîÛZSß̤5µ¾—ƒ£é|ñ A³Ÿ·™Cé#d6ÕíìSÑ‘RÃúÐ0{Ù¬Yp½ŠJÛ-ZMiu¥ºÿ†– 3[ÞËäLþãn 3rÞX’gyD­Jùº:óýú kbJ71L Ûv‰V.{?ïú¤‘S­œ¢Y9 ~i&ÞmpPË¢ KFÉæ6² .ðÅ(;Ú¯Xõe™Tv9–/’´É:ÝB-ßr€ñ-»<¾/S?Ê±Éæ¼É–S#TBÞÄ9Ãøcj“¼™ó&¡¾‚”ħé•ÀWsÞ$vnpÕÑ$G-õœ FÚܼ—s† Øå6à}œ3Œf—ã¦Ül‡îQ‘F÷æœaÂ=ªïp—QNj'õ¨t6âÊÚ‹¯z¤Ô •F`- M͟٦إ"|QŽDƒ&­§ø‰Û}ÝÇ3xÂà;“/ÚïB´‡rŠV`·å÷ œ0úuÇG-Rcžñ$_.ßGY|_J¹4Ʀ€CÇHlp6¸Ø= Ì!R s|ˆGzG¹/|Gùûø"á)à lNâš§‚G?ؼ……¸¼9Ä3_×v31K·÷)¬ƒd‡>u˜ô; xøõ¨H?@åùA}*ÒPy~PߊôTc«HCW¤à‹?H¶"ý•çR+Ò)¬"Yê(¯<^‡'«…¯A?@­!\ yïªH zµæÙúÔ gQkž­o zµÆC¹5h^¹íÞ¾3tz_|¾¼PÔ—ÃU¡gQmž…w67nâmQÑ2)§3˜C×$Òïtà…àÖ£&=‡Úó\}jÒs¨=ÏÕ·&=‡Úãa\mÑîðIÝsø"a‚mÑs¨<„òÚ¢ãËmQ”ÊC:ìï©Gåù!*Ì£VžªRkËó=Ô•ñ$Ýg'ñ3|X§sy~„²÷PÎÐA‹ë­|¼™Ýæ>j*¦‘g.Œñözþt#lo‘ffÑÖîÍá·v“6mÀNðÎø# ‰[ìïŠl4¡1`R¡¸|¹\»l¹'mή_ŸŒ]V7€oˆl—×¶Ñd`‰V€²DЬ¤ç4á)ÚVT™\Ð ³ «yT²e‹9ªÐ.§ÒØüûl­<öéþ-ŸWÌAG3”Ìý;w®2Ê s'Óå߸ƻµdäÌl‰O&·…­F?†N„'ƒ‹Ý›Sõ§Êæ³^‡H•3g -D W‡HÜ)À³Á…6©O(+}Ç*OØ-Ó--KK|GëRiUæ°½Ùsv2TkåæL¥ê{1ðFðå[d¡©ò*àkÀ_“Œ±_|-økëÓ‘ ·_þ:iF™Ñ²{û.!«Ü| ø[’±Êëokd«Ìº»¼ øø ·EÕ!Ë< | ü±d,óà‡Á?Ù2 YÄ‹Ïþø9ðÏIŒgó9¤Ê—€_ÿj2öù<ðkà_«_<û:ð›àbÇ?ųð#›¤Ë÷€Ï?—ŒU¾ü!øëÏ~üøÏ$ÚÅgBvùOàïÀ—Œ]~ü=øï§E4ûG¶Uü 2·Š7‰Lª‘*s€s9O ÝÖÚ>l+8á<ÎSÑ—OˆF³Ô|à1œJ3ŠÀè2©rðTÎS LÓ¸c§qžŠ>M3›³ÐKÞI‹Ógsžë­U³Ks‹7Î!d p9ç)¡q©ðÖA×.µ‚sˆÖ9!­µk©•ÀmœJkw¶Šei©K€—rN˜„‘.^ƹà^Í âDãÚåÀ—rN(É*3]«ˆ¥iì’Â!ÎÅNoo–~à0çbWIJÓèb †&ç„õNÓR#Àœ&a—"ð ç„í2—Å´6:«<ô¦ÒäåÀ[8;øºæAb3Õ‚žÐínàýœJ3RÀuÃ$ÃW©7rN˜„oÜ |ç„}ã›lBCÍ;še¨t ϰ;” ê1„ýAvùä}¶G‡Í0ú÷ÞÐÐF:ÈÞµ¤®Zå‰ZVokûKl1 ÜôG¶ñ§hi΄-„|§ÉÔl‡ɧmL|ƒ—nÓ¨pf†ž¬·íÈm©iwœ~4è›9¦ Î ¥ÙÓ0jö|Œ×ƒ†ŸåÌ“„ž®!ñiâ¬àÍQÕùi_×â!žˆ¥r’¢(—›ùÁ!×£•Ët-;ì ¨%#C~Cž~’´¶ê„Ñ‘µ·N¸Õ©½h™×hY§Ã´†”<¸\hdU©3ûµ‚ªçäž \¾*²íÂßGòW×€¯‘f¤3†§h¯éìía¬Ë6õ­Pv-ð*𫤫©¿d™ê<àÕàWG6•Àíe¤ÀË€àÉGÁŸsC—QN0~™v6¸­9kù¡UÞ~[±Íòô#n“(zÊæ/ðf¿@A§8 V j)ªUs½ ’µT£cBÝèôÿÛ±aÇâ!+ )>¼ ü.‘¨ªøìÃiU£Xï¾ \(3 H †Ù—ªŠUosdŸ=Ï;&´|)²¡8%‹¦6 Òļë†ÛuÕd©\Ÿi»ÉYkOWWwøºOŠ¿øðïH+·YýjÉ6­€$ƒ|ÿ—Rk{è óKT"£¥^£ªó«¾mÏC<Kåº7ŽÕsôŒ²®ƒùJÛ ©Ü¯a&ÂÀOÖ¦Ÿ´ÁíjÐÙ‘´+§:*ößë¶€š§W€ J„­P{"p%xô-/Šk,#סh¹6ZÞ6`îÓŒŒ²sÛår=¯…?ª”´[¼<úª¡ýü?à>Ê©ýïtý|½:dÚew‡rQGFY¬ìÔ÷™y³èöRéÏu(sÿ_í–ç:¢Ý;b·©Û¶X-Ÿ@i–4aëxÝ,³ÝóHJø~êöRQ±RN÷މ ž¶£Ò)ø1NÉF®ÄOj±CW¹ÿDÙ¾üÒªÜ9t›ßVãt§²ÍtÛ•VF*ëuÓ¦¡7jdÃÖAÒ÷AàÓàOÇ_IÜ»€ß[àÿ4|ï‡ä ømðoK3›7³Jø4k ˜ù\€Ø> þldkÌhíßt‘ Ïÿüߥd±—mçL¥ØÝ]==]=ÝË—¯l_¶båêŽîîA·j%Ú¤ë/9²Éà_r”f5:d3@,VH¤pN˜t AâVÐ{’V㿸¹Ë(§¡Úç6T#ªá6è¥QŽ>¢F}K‡²Ám²^2ª9Í*¨îŸÜ¶j kÅö8ú5}i¯Ûzu¯^½”NFRtv¦”£ñ+MU·§à˜[ªÐ5å7xIÂ}àb7ÝT«)Çï)·(Ô©Ù¡åô¬n„½^ˆt³€·€Ë¼b& u!qyà­àѯ˜ ߺüW_ .ï ¢tw€>w_þºø›wðõà¯lŽcZ{–µe”žž•KÛÛ{zV-ªAw—·„·Z[Óívç:m½Ð±l媮e]B@[Cº> | ü©øÛ÷àÓàBib´ Oâ¿éC¬;ZFÙÚ¡ô±>S÷*ÖêÐ ªÛìØ|ÊÐfgŠ[ª‘3 å®Tõ~|H»K¼yE~r_©Pp»IŠ™ËÙü¼–Ðîw(+ÂÇÀ›fMéöqà×À¿“Eâ> ü:ø×ëÐd‘üoŸŠ/Õ›¬¥+ôyø]ðïÆßd‘¸§ßÿ^dsݺÒm±º»–¯noïîZµ\¨}økð_K³ŽR«ÅZ¹|UØ~iù{Ž©£9'Œ»­"±ÿ±Çp.¸&×ÿièF‚Ä[AïIZßsC—QN[u›ÛVѼFFÙæß±ÙŒ²«Ã›áP6«6?‡—Dì¿qhâûŽZ(²³eËóu†i¼ #±CÈP„·ß&­½hßšl(åÖHW _|ø{âoƒHÜk€ïº¸1bDòß|üAymÐò°£r¤Ç#ÀGÁ¿ "qË–üŸ.h¥^ÓÒ+ÚÛ—®X-T{> ü øg¤Ùæœj-P÷êU]]]K»—ºaeåò¥=+{–/ Ì#Ú"Ò÷ ÀßËÜJБ¸Ïþûä?T’VãÜäe”Ó]ï¶E{ôBÁ4r6õ—ØàÜbe‹>4¤6k¡vw°ñ8·g´‚õŒ†4C£veÐR Ú¨ií+ŸTA‹²ÝÎí¾¥Ø]eŽÉíZD¸ûÞœðzðë¥U¡%åvÇ}¿ìj†JwÈýSŸfkª•PúàÀ?“Dân~üƒuh’Hþ‡€€?"¯Iê Û$‘~ ücñ7I$îQàÇÁ?.¡[´‚òV-_ÕÞÞ³jåJ¡õ à—ÀÅî®fÖªÒÊ•]«Wôô¬êêé^¶|é²e]«C6I¤íSÀÿÿŸø›$÷eà_Àÿ’|[@âÿêCM´ë@N+è[þ@ÍR—Û,õ±¡¹ò%SÖ1Ðø£˜%‡Ö5zw¡TZ0,ŽDÓ¦Ðr´“E£»XØåü¤%~QJÑíjeùJú!º„„6-¨Žºîý…Fø8øãÒêžœ1=Òí³Àï€Ë[;Øx‘¸'€Ï€?S‡Æ‹äø=p±Á¬êW`à«¡Ï¿ÿüßão¼HÜ÷?ÿqdsÓÚ³š:T]˨GÕµ"|ëEúüø'ð?I3OÍA½e]˺B¶Z¤åÿã˜:…ó”ÌÃKZ-ûß{*çb»Ú£5$þ´ zOÒjü7tå´Z¹­ÖÞ’eÐÄR_›yÚUPù¼Äý«týù"·†Ùަ³ÅÔží6 E6qµ‡ÆÙ`ëjhZÞm»òÞYú\SZ¹¬Ûh±ŽŠcéªw³×€n°©'Þö…ïrýeDøøCÓ¬‘"Ýþ3ø?ÇßH‘¸÷ÿü_êÐH‘ü/¿þEyTwØFŠôø0ÒDX¸FŠÄ} ø4øÓ2)6ê·¬{¥ÛH-[Ú#Tƒ¾ ü øO¤™g{P#Õݵze{WÏòU, t÷,íjë^½¦gÙùô*kÖ¨z®ÝmÇVt/»`iGWGÖ<¯§=èb® Þè×éH âbGc„kÐHìO!v%ç©è«ÐC·$$~U½'i5þÊ¢Œr´=ìÔ Ë%ʽ­ ¦‘+e~Í–åƒÁû*û±±gÑÛçºÞü/^†pøiõæ ß*pÿ¸ßsÐU­°M)ùàøXüM‰Û ¯CDò‚‹(Q}íà }n¾üñ7A$îåÀ›ÀoŠl޹­KiíC{û²UB•èfààwJ3ÌÙÕŸU+–®ì¼Æ¶;Fº–®èл–†lUHÕ{ƒ ‹„kUHÜ]À'ÀŸH>œ“øOú¤·?ªßý.<ª"üWÜÆ¬—ZÇ ‹$>íC<‚N{rTuþ¯ßøá!žˆ¥"pÃÆß`ÂFðÆH•¹Z¥žeÔŽ’¡ (·x<øñ«mÀ)9ƒAOÚ° 6à”úGMÀÁO¬CÃK¿rðdðh§ÌW=7‰\¢vâ“~y 0žIÆ#ζƒ·'ã§;À;êäÀ.ð.é1›<¢¨9¦€v½Àà“ñ‰•ÀMà›’ñ‰nàfðÍ‘}bfFä\Bú¥‹€ÛÁ·Ç)Ft{1ð*ð«’ñŠ=À«Á¯NÆ+v_þ²È^q6éÂìIWÃx÷^„¿ê…ä¨À›À£÷gB'`ÏsG+£œ´4|Fr鯗€SC×ò£šnk=]]!Wþ3õN¶qNCuZðüää‘F}\ý4^Œœ fAWóí†é6S^O³•u5iÎÒá׳+½üT«ò¨öÄṵ̀/t.^ˆðb¼ÐÅ‘_h% ¦»FŸÚÞîÞ¾ËmpÇôÞ1=£z¯¡WšÖÐÍ*zÍ WBùè' ,*ZtމÓê¾DÆÍ^UÃìåС3K„V´Šz-Ϣ佷jtHõÞ ƒ½—9¯Ïö;[”V̵»É:ìKtâ%/ÄK\«Çî”ç±]P¾KªÇžTÍcµ±bhõº¡¡7êpRò~Ú5z¤úéÆì§}e75=§]Á,ä¬Kñ&„ñ&Bûå&¼ÉŠ`gí“ç«Ë ;á è¾"²îó|¾Z¥åP‰óqîž íŸ( %ùç¶ÃenÎ;˜àC¡$‘ˆá6¼Ï¶Èï³Y( Ȱ÷ëmáï~¸vÞ…PÞrSªEØ"Ù(´‚«¡ !Fÿ„ŽŒæÃk Æ©>¼Š|Ø[ËL†¬ì^ä+íLƒVã•ò9v ­\-ÅýªVûó =!,Þýð¦‹"ylV-e‡E\ö|¼ áEx™‹"¿ÌiU]–)9ZÅ^¨HˆXÂú–·›Bºÿ¾¼/ÀË\ µ¼Ûª•wëX›ÒÝîæb­ìÆÚÚB«‹$—!ºÁ·ƒÖ}ÃëŸÃÿ¶þÖÄô˜ç¡9Ìi]“~H¯y“ßæ¼N§Pììsÿg[ßðPaSgß@IÏçTMÍ ,[–S{–õ¬èÄáÕèôZï¯Po¢ŸœO?yáoË¥êŠk¤×=5¨žÔ>£(à°9*`,Ðn˜ >·b2¯À½›‡fL ‹—îÝÜŽÄqæó“Tò8kJÚddÍœn UŠr6iÆÞ{Ýw¶tÑã˜ä0iüÛY»wíÙzEÖñ^ý§Sù¡æÉÂV‹Ø¤0\¶ÈQ“ðÜ?8Ñ_¦xÿ,×ûõ¼Vã+/tË¡ª¸âkªõúžLHbbçû€òüŸÚªÙÀyàBESUêÌ~5¯«ÕNL£ÒË$i“ø>Ä#É$™4ë¸Î›uÑU¶™l‡j8Z¾}‹ªöÍ»j*¤æ0áRð¥ çèN¾Z]ò{Ó€>¤ Gâ—û áš£ªÓ7öP¼jû?=—vÁbøCqLZ©hûKj~òŽ÷³ c§CLáùϧ ©p#>íê×]}´ƒÃN!è ;µøà¡~³äìo]ÔÝßvˆþ¸ß8¸¨ûÐÁE=‡áß5÷(ý´ŽÔVzð—Æž±ž .Á¥{6õíX·¡oWÀ{e€ëÁׇ}/úÆÜ©U¢p«ºÏkÈ÷ªn¦¥·°ÇŸÞDô.§„ihØØRœ'-Mªñp~kÅÐým!›*iºU—J^»aR µ7û+BJ§ª^5ªc½ÌÅêbÂRg!¾ÅZsüŸ(¸ÿÙÈÑærÛ4ÚÉ=ØPf`>Áwuv({4MÐòæ(ûçôMÝp,“ÝÏ”ð‡(LxÏwƒ¿;R„¨æo ÐuhÇNJ%~ üSÒ¼ ðÛ‡x"¦*ËùÈg«ªÓÚ{CÛn2ŠÑMÿÓãþϱ1b1Çe¡uÇq' ±ŒLpÄÉÿi›ÂÿoâUœu–WÜÿ- Øš^ß9БIo“¦¯šËõvwö¸eiö¶˜F~¼‹Ô¶ÌbWWïÞ¾K7…×GŸ0”§ï è›5-Ë –\7…]ªÙ»zy†Îù0m­wóºí{6‘Û éŽxfm òÞ9)„U–:†¬h œéTM'±+矹ìҡϯa œìgö—ìrgpJ`ñ¦ð„cpôxKâÓ>Œo/‰ªÎ<¨â!žˆ¥"pq‘֫ʹù‡ïe½RÕ*4ƒ–²j–Ûce#l D7Š%g€ÎÍÀNðN‰c#°þY„.ð®ä=™ÄwûOÒj,€³x(§^ xðB_(Ńƒ:tiUЫxøQ"z1}fNÒgáˆÛfšVåNOíæO?MØ|Óg–‰¾x:pxèIЪCñÎ2Ñw–ûô^.¢wôY&ijÄ0Ë$M·Pãr ß,“|=ýߘeŠÛ\Õg™â•Zc–Išà‰ ˆ1Ë4HçXjFVw=£µT,Ò mÐQ²Z>ßVm>)gfYÊÅO<:f~Â+Ý~C¤`Puu”fgÕ|V@·Û¯½Ä0`‰¾t+ðnð»%Š ¸—Œ¾t#ðð{";×)åÍÀé— “VóOÉ0½ÏéÀ#)&}—ûô®S2,M’aiº…J†å&¾dX¾žþo $Ãq›«z2¯Ôɰ¼šãÿ´êÀ°›ó&20ì¥é60L:ÝLp`˜ÄÝ Lp`˜ÄÝœ–䨀4$60L⚀u&ñùOò¹0êWƒ—Ä” çÂæÂØâËpúåÂô›ó*gyü½äÂô>§¤\˜~g¹Oï:åÂÒÔˆ!–¦[¨\X®aâË…åëéÿ–@.·¹ªçÂñJ­‘ Ë«9þO« ó\8aÿ;ÝØ0½†é—î&80Lâ^Lp`˜Ä½8-†I±{  “¸&àcàѳÐÐÉ0‰ÿ°ë60|¯_ ãK†î°Ù0)Ô ô.ÔÚàåùzÙälxÈ2KEÅÖ¸ñÒý»åFÇtÔ¼=uËvøb œô– €¸1M'étx=øõñNWÞ.4°.p’8x#¸XæÿTbà$Å^| ø[âœ$® øVð·&8IüÛ|ˆ'ùÀù"^¿Æ8{ÂNR¨(?pª!§­Ñ•²1GNzÍ@Üœ&‘“tz9ðp™!, r’¸ààB!,\ä$qEà+À_1"')vð­àB!,\ä$qMÀ·GY¡#'‰»ñ$9çõ‹aŒ‘s,tÊI 5åGÎË'GN£Tp»ånØÓF؆ÐD2Mz¹@ \›&ñ’t²€£à£ñÇK—ŽÅ/IÜ p||:ÅKRìðnp™#&ñ’Ä5ï>:^’ø7øOòñÒwd¬ñ2t¦I 5åÇË+/I0éíÁ§IÀ$là¸ÌÈ0I\8.¹ÂL7<~`:LRì ðp™c½“Ä5ß=R…˜$þ^âI>`žÈëæ:Á$…šòæ‹'LÖ÷ÈšPŠI¯·8>4M"&éäÇÁe†®€ˆIâ àp¡Ð.b’¸aàAðƒÓ)b’b/¾\(t…‹˜$® x/xôP:b’øû|ˆ'ùˆy¯_ ㌘¡SLR¨(?b¾ä…DÌD’Lz¿Àaðái2I§ð¸ÌØ2Iœ <.»Â…L§_þòé2I±CÀ{Á…bW¸I⚀÷GU¡C&‰¿ß‡x’™'óúÅ0¾9 'n (× \ØP>{K0l5I©,º­f·3n;–n ÑvvQËêƒã,ø™%'k4ï¸Pú¸dkÌóéc:5¿]Å}CÊnÓ¶uZ³dù ºª:~ž U Kà¥Hñs‚Ô–¾¾–  tÈ$©òràuà×Å¿HÜðzðë#W%eãµæÍ!\ûjZ-צXº½O±¨õ <‘´–Ùn¾ü½ͶKÌl> .s]R ³½øøc±šÍÌåìfû0ð»àß•YÛ6 ™íGÀƒÿ8³}øðŸD6ÛÉe³±º•Ó5K3²š¥~ üøß¤YjFËV±À˜šœÃ9a¦zb›9÷²¦ZV£†éFVϑ٨ši^]s¿Þˆ©£€pN(шBõ] K¸•sÂŒ˜º¸sˆF\T6â$“Uj^Ø,¼XàY£u<—VóühéAKuÓñ¬iÐÓ,aÆí\v©XÌëZλgË릆õ÷Sð=ÂÝà»ã÷÷Sàï„—€_’¼¿“ø>âIÞßO…Ÿ¯¿Óš5£û{Ó$Î*û»HÏÕ’îõ‚»€Æ KÁ— Õ»;bÇ£·Û1µ/@õš;IïeÀ^ðÞ°úÓ7¦ìlœÕ_¸ÆŽok#)|Oñ D/»JºApk£45ª§]ý­ûBïh”¦Ru©;åÚÃ78]Õc½^…R}ß`¼Rkì”ç–þOç(¶SÊéZèáh¿:›Á7Çßð“¸&àEà%ßð“ø->Ä“|Ãja| ÿL~Í“€nÍÀà ¤¥ºûÊM?õÀõ¬KÜöÞ(4K϶yùÀ¤jþ4Y·wÿª:Š=l–ò9e@£ñê\9q(U ¼ø1À—ƒ Í%…«§¡>?”|Ý ñ×úOÒjœŽÚà!žä«è~†”*:¹lªq½Ð°jäòÔísýý€f™l¸Ý™5Kî;}[ÅÃÞ>tj3áNð< 3;NM¸ |WòžEâwûOÒj(ð%ëæàgBø™R<¨ jTs9ÅšÒW‘¤F Óh7´!ÕÑGÊ«”'µ7jêýÕÕž R ©µ¢Í ¯ŽÊè0q5Ÿ-åÝ_ÄXé6WÖˆÛ$iƒƒnƒæí·Ä eNÑs%·åó’8eƒj(jÞ6©-S½F¾?jBE;C¢hv–†}ز@è®Û¼ùÓÙMÚ]*«[ª«ã-ˆÁŠ™I¿ÆÞK-óãÞK½ðáe,±!ã/à˜º™sÂáWÞÒéuÀ{9OÉ\ӰĆĽxç)¡5bñIÜ+÷sN1`I\bCнøœÆ·‘‡6Aì?rN˜t{Bâ?RAïI¾=iáõ‹a|íIÚ1ôjF?¨mÞ$}zj­®aA”‚߈š/¹!·dä´Ðó‰¤÷|à…àJKDk´Ï³‰¤Éfàp¡nt¸@DâÖ·‚oìé'ùº‘nY¸M_«¦»6²Ó6àø€4;ÍÂ…È"¶Ò&¸™Œ­²À"x1²­Ò¡WTüý@ Ü’f”-j>/d’qà!p¡x“ØÀkÁ£wðÅLrðzð륙dv‹>Ø%j•[€·ƒßžŒUnÞ~Gd«ÌY¸B*Ü ¼\hqõT»ÅíxiBfyðíàoOÆ,÷ßþŽÈfùYÛä®^%{ྩ½vÓ|¾Ö£h™C–f—×ûñnÁ î°drpxñc‡ÀÅ‹WmÖ6¯Û¾gSPÍ ˆ#]nÞ .3ó › q×_=óI‡ŽW$ÿÕÀÛÀ…bh¸xE⚀¯MòñŠÄ¿Ö‡x’Wçpf眄>¤;apÒ©¸ !êœÄäpuwyK %rCS—3WŽbι,Йyy5ËÇŒG‡õì0âýóœâÆ.76ù§$,“®å:”­ƒJÉ࿬k¹Œ2)–-ãÂl [ „Ž>þ@]“EÒäqà§À?u$‹¤ïÃÀ MVýå÷Ÿ2rU߯’ÅÁ’ÅšW$Ô–³»iX·Þ2ó“™UCoÍ;o”ÃnzOs¤mˆK=Ù& p“Ø&ˆmæ\ÂÉ6¡7‰?ª‚Þ“|à>—WX†rwí}ä9Ó‹ãSÔiFï¥OŽD/Rs9Ѻ<ÖqIµ£gƒŸ¿ãž Ç%\ ¾8yÇ%ñK|ˆGÒÛ7÷—ÍREö<øg(g88tdàèâ¬2ó£ªÓŽjâ!ž¤K¥ñ°ncõN_*zìžâyÃÚßjԉﶀ·ǺµQ HjœíCí qZØÁE=åÚ{”~~A—uôŒõ¼RÍSÄè}¾üøÏ¾}cÊ)b3û ×ÄwˆéûsŸÞ?Ñ»œ‰¤Ûù Xü"Mªµ|~kÅСO“¦[u©§‰É5Œ×+Êiý¡N¥Sý‹àêX/sU?ç,^©5Î9“WsüŸ¾HqÔ|åì :«yMØ|Þ¯Úÿ‚ÿodÕfò|>¤.=ܹΟ)½k8+Ÿeÿ' ÜBàñàÇ ×¡¾¨ý0Rã$â‰h·ùÊ„ÿ ©ÓRØŒp>¸Ðè`Íö©©ßñNl"}ððc¢wE áX≨F‡—<åUGs%=kS51¥rÿ8|è rèHvD <ü)ÙQ)ÖpøÜh{9ò>ѧö‰"jOHŽüßzÏO‡í¢šÕÎ9ØÕÑ­Ä‹7²žU‹ws††àÔjÁ$ýC6ÖÒJ8Tn%×®©Ã¸žHZ¯çÍež·X+ØÅó¦£Ã ×p¸™\íÿŸú™ÿ[BÍG|…P#G=òË+ø+O‚ÉËIÀSÁO\G•Ò»EŠã4àp¡‰Dáâhž ~n}|"ãCâ+„äTG¶`yí¬ÑäåbàNð‘ a®â˜ŽšždÝ| øK¤—GcÖ þRà•àWF÷‰°“ß$þ*≨&¿Ù¡ƒáL—±ïpL~ò›¤.ÓP·Éo¬ñLÿ$›>xM~“º'úÔž®“ßRô¬K’-­„C%?ríG’¯çEN²cv8ùIöß‹Ÿù¿%Ô|ÄW5rÝ#_°¼‚O~ò›¤žÔP¹áû¤“ßB…pšñÂäÊVõ}÷®"gÏ—¹•9`ï ‰;¸|q}̱ćÂ[™…}²XÇ$>ãÃ#f)Üìj8bV ºÝ>µ§ë )zÖ-¡–R¡yv+¡ŽÏó¤$Ô1:\< õ߃Ÿù¿%Ô|ÄW‡ÉklÁò >ù$µ(o‚P!¬ð!Y õ€PBÝ ¼ü‚dê•À Á/¬9ÖúO‚>¹XÇe $~“˜e ¤ðfàÖ†#f©»Í§öt]"EϺ%ÔRJ8t¢#Ï®q%Ôñyž”„:F‡‹'¡þ{ð3ÿ·„šø á0yí‘-X^Á'¿ „¤^ ÜÙ kˆP!ìò!I u£Ñ-”Q_¼üŠd2êÝÀƒ¿¸>öx‰ñHvÊ€µ8$ô¥À:®Å!ñWùOD5&¬Å ½à}9÷n†óÁç',Hêà1 u[‹Câõ᳇>x­Å!uOô©=]×âHѳ.=i%*•k×8z:ñz^äžNÌ'¿§ó÷âgþo 5ñBÇ‘/X^Á'¿‡¤ž¬ãZš%¯ÅɆîè"g\‹CâN.n¨ÛZ¿Ä‡É®Å!©­À:®Å!ñ1kqHáv`Wó‡Ôíö©=]×âHѳn µ”èȳk\ u|ž'%¡ŽÑáâI¨ÿüÌÿ-¡æ#¾B8L^{d –WðɯÅñ­¿©çZ½Â‡xd%Ô9¡„ºxACbkqHÜJà… u[‹Câ×úO‚>¹Xǵ8$~“˜µ8¤ðfàÖ†#f-©»Í§öt]‹#EϺ%ÔRJ8t¢#Ï®q%Ôñyž”„:F‡‹'¡þ{ð3ÿ·„šø á0yí‘-X^Á'¿‡¤^ ÜÙP·µ8$~—ñHJ¨¡Œú2`‚kqHÜnà‹"¬Å©*v6yA)¯ZU$SWj$¿\lùÍO»†Ä¿Ô‡x"ª1—¯€¥ÛÙÃúæ îQ ç‚Ï•×Ù ¿“™9xøqñ»&‰›|ø‹"[&±ÇñÀÀÅf%m„!ENž~F2ö8¨€+u²Ç™Àðyö?»HŠ´Ï?'{,ž }bmfFQœˆM2ÀnpñQ: T¤È*àjðÕÉØ¤¸|Md›œ©ä4Ãt4vQ\VËç•AKÛ_ÒŒ,»GTÌ\ç_ .ï†^‘¥È¤É0žKÆ^ý@ \‹l¯¢6^~M]SRÒd?з“±É> îDµIz#¿|Üå§7ÚÊfÓR´1µPÌkºpWUlÍ¡ë-×zfA? å”l^7ô¬šWKwÿ‘ÒÚ·a¯ÝF·.gÍaÓr¼Ë|3åƒÉòÞÂç‚:®¸ÑÅç&ïXšê4ÃéÔÆŠ¦í  ¯ójV0;³¦áXf¾Ó0vïsöS÷W좖uô-?žQFugØw9 º1¤ØôßÚˆûûôºá¸Ù§í(­ZÇPGÆýšê ·1‰•ÃÈuÇv_…Ê€ÔêP¶úÊ!«ÚZ;” ù¢üüQÿÌÕ|— ]ˆY1+ºKÞý}ö–ìÒëA5ë¸ßšøFåÒs¿ÎìJ¶§ÜJïŠ6 M14-g³_uËW¯bGt•} P¥KÓ㜰®™|úIà§9'L F§?ü ç„õÈÓŸ~Žsºfòé/¿Ì9aöø<ð+œÖÅ_~sºfòéoÿ•sÂ$ìñuàw8'¬W&Ÿ~ø,ç„uÍäÓ?þ”sÂ$lòðgœF´I‡¢ZC%jjÝ\‚š®¼ÛFª×°S‹”U ¥dk‚íMúçã¼Qh Fb{Óx ðTÎ…Ö#‡¶]ã‹€§qÞ(¶þxÂû‹Ä·F Ô4žÁ9a]ã[ãbàÎ…V‡·‡l地.öÀ@Mã9œ7 ÔÈìö6v—rN˜„AÎ.㜰^ N#Ö55®á¼QlÈDb¿·qpç„Iƒ29oŒ¾®g^¥Åië;9Bªl^Â9aD•BÏѬä†-#žˆj\ÌçhÖMl‚G‡5ƒµ½“ú‹Šn³?ënÐí¤fÝ.¨úÿ±÷&rWúøt÷ØÀ0„ûæê sÛØ<€16lƒlFÓ­™‘Ý- ’zƃ1!@ w€$ä 9É}ÝÈMŽÝÍ}mŽÍæØÍµÙì‘k7ÙÿzªOÝ53­nT*IL~ÿìŠïó¨»ë“Þ«Ww•çÿÇ´µbÄZ‡ ¼ü e>$/Û¸mÛ²¨ÞOš¶o¿!yï§ä6wƒïŽmãÓý¾š&v+›cc†ãÿ[Æx7ï¿#ã]"e¼çï¿?ãÝ |9øËãgÐîßtèzbÌÐt×eÁ¬L=6“Ž=ÅLª•uO§þ;–«.u.yúhÅàŒ}{ÌvªçE8ô ¯þüGñ H©3cÎå^âãbðÅÒþÆ>2'±Äþ'!íàSÁ¥¾¤sã–$ãqÅ´v³þQÓy°ááà‡K[¯#,õé6”êRàQ™ífq,à‚ÙÍâ<8öy j7 ’{¬ ûɺ›…M_oÒs…•½áìÜ|§Z»&1W8YÏ‹=W8a‡S?Wø¯ÅÏÄOIɽ„Sv~Âê^|ú»YPªÇÕífq(!we+s'‹àr™²ï£Ø )§èרÌõÁ#OR˦27$È’‘Re.¶ÎÌ*sJÞpäBV]“ªÌ%çyJ*s :\2•¹¿??%U|$÷ÚÔ©vÂê^üPãJ±ò²¸|eì—p˜6i8®mõzf5òt ’² ¸\jœOf`Jôàð ñ"j—)%©€¸bʈw÷ùþg8¦ßeJ©.Õ‘Y—)%ÿL—) ~*pu™’ÜcÙOÖ.S%:3©e+{Ñj?jíšD-;YÏ‹]ËNØáÔײÿZüLü”Tñ‘ÜKhQÙ]ø «{ñéw™RªÇ3ܘ’?I@\’/aÞœ¾}Ñ'Z’’Óg‚Ÿ©Ì-C'ÆPr'Ï—Ûz7¶=ŠâJÑ)»ö[Sò½.˜~kÜ\@ýÖ$wH=$#;¥ul™Õ¨•¼áÈ5uvMªFœç)©Q'èpÉÔ¨ÿüLü”Tñ‘ÜKhS±]Ø «{ñCi÷[SªË;Ûe¨é·–z «Ä¥ªFíÉÕ¨/^~Q:5êÕÀµàkcÛ#y*¥1pxjƒ”è%À (ùKL`ð òék¸{û˜þॺxTGfƒ”üS\0ƒ$ø©À4x@rd?Y”è̤©£ì Gª‚ªµkMd=/vS'a‡SßÔùkñ3ñSRÅGr/¡E‹cá'¬îŧ?x@©Ìpð€’?I@ÕƒÑ7 %§S< äNf8x@ÉLwð€Ríf8x@É÷ ¸`Hpp Ü!AöŒì”jÔ±ufV£Vò†#×tÔÙ5©urž§¤F Ã%S£þkð3ñSRÅGr/¡MÅva'¬îÅu¤=x@©.f8x@ɯPõà\úàE© Pr«±š&Ûê´“s;ø '”òÅàÇ÷„¨=ö”ü:qŔ紓aîQ>ª?íDfª)y ðiàRçŽDóMJî0àÑàGÇ6ÔVô$áà à'(´IôxAJ–O?=›œ<üŒØ6Ù&ç`Õª£†C›UaYºÉ·Ÿ3׫oœî%Û Ù ^ÒÀg§Á§r™îVàmà·¥cà}Àg?+»Lw;ð.ð»2-¤IÉ /q:6¹xø=±mÒÏwö·Ê<,/Ñy þIâ BWÓ=ÿhÈ;e’Ø{ÿXúåûÜôuÄSF!úN"qÂxA™ï,qk£.…@Ûj’x? Câ+mcPò‹Ä•¶Œ‹ðúÌÌ'Ö"ñµq}¢åF†GoÖ-Ϩô^¦–{³QÑ6Þ„]–Ðzð p©’ß׸$® IFQ@ù>øX2.†ÕTâJ¹û°¯¥é““Ž­—&üÃ_ôñqÇ×ý“mü=>ù†ž´5þÌ$ ÕÓº«¹µñqÃõŒ²6:£qÃûeoÝøÅÁsÏ9—zCÝÐt¤ŒgXeþ…)Ý1í ú5æ!Ž«]ÃàçØÐưnwŸ¶ƒ•sý©êûS°ý(û¶6m˜ã$‚I1«´½l%AÓhÆM5½ÒkŒ±`åjUVâUø¯âWLW›ÔÏ,Q»±2£éå)–œ>n./bñ5èì!œq±Òìê£ãVõJEsý3s4×¼™ý½è×í޻ú,1[¦²WlZÌ,ºëŸä9ôG:¯'ú>Ñëà ëÈšœ¦íž—@F€jÜó îž»|cXzeæfz_v¹ìòÝŸ]¾Kí:»4áèVï\w)®Û|Y·æù1á3=óÊç{fÝ]ýp׺c[ÆY.ÿ*eˆ ƒ9°=nX†éÍhEþúÊêsºù渷¾-nY+2/cz­âAáæËø¹ÓÍ\µDîG§?ÕÈy}â•$‹y[ñëK~1{>»EŸf>=Ê<Š}¸4Á¾dñ/F4Õz˜g=½`xŒ\˪YptoX»iûú¨õ^ÒÔ\Í9aÒõ^JîL๜ÆÌD÷°(6Çu›ma'žç¼ ßÝf{UŠh¬UZéëцVwû~)nÁÁ7cv红>®›VÌ™&ô6Îþ焊å 8ŠŒ‹|øMÎ Óp‘¿þ#ç¹øý¢~D@ý\6*z˜±œðxàyr²båùæŸÎøÕ¬HÉ 0÷›tèк2up°¨Åwü7§Øo2É7ûxů÷8ú4+ué8»¢r+Õ ‡Ÿ7éðl+zÁF/ú[é´0â„il-̬ )'L½YG•ßN$ža³Ž’_$`FͺËðúÌÌ'6"ñq}¢e³îü+™g8S,8¬÷+ÓÚv¿~˲ú•ü ŽzTØh•MVì°z·¶×Ž%èàåà—K·ý–Ç54ÉØ, ®´ýír˜6@5þö^¹nÑÎb!ݨŒie›Yز=Žå4œ…¬W¨áä—G°¾¸ os¡„›fÃ5‚†GõU*W„R+øvÄ&ìÒñðwH¿°<îöÌ™fT''öà󙊧 Žt ?Þdí?mðÀÀÖ{C¤·œiBºß ü ø£ê§OÌ›irÐHuË4 Ù^å ü7‚ð¿‘>kO«±ÿE¾ ’”Ñ´æºh¤¸w¤;ìÍ„ÌÅQ&©yª!sqÔÚ#×x!Íçæ„9{V/Åwô”Sm11G[Šw *ï¼(›ÔL¨ÌhU}/ ²tž%‚(­ÜÏϨ.Ù5Ësû´gŽíÿÝíÇ(Õû)ÖëÔ„­U¦÷•ŒIšÆ>Ï1ª?ZºGsk¥ MGg ‰„¼i;8Ëì‡Í.•jŽ?ª[31¢:^_ÎâgŸÍ9¡‚h¿˜EûDƒ}î.A÷]2º•{52šûÃGŠ CËD}5Ú¢F}…† ¢~Xó@̽¦ºZdǬÌZ%˜jëòHQÎï~²~ œS?Ò‘zÈý‚%˜jCEsJ †ÍÜ"‚ÿbIÚŽÑÚ%ÔV³,£d¸®îÌБtz¹¬¹thdɶ\µgèMK½¹¢nž[FîªÞcþRÎóñãGn&nâ™ Žjš‰ûx3ñ2{š òÞí\±=>*Æ*ÁPží÷ZŽÕ,¿É ì4ËJA«ÑhÑ`ñ‘Ÿ~3ž˜pø¾Ôæ#Ý3ÀÛÁo_m>|‡ üáñ«Êd¨kó)“©ôWkåm¾¤_Jó26ÙT[”±êÜR¼»?hóõi—T&Î+Ä‚áb´âtÏ,±›_Nòé õrrJ¯ÔŒðÒÒ°èL\:Y§áÇŠ#<ü üO ,.ÿ™cî Î D\ÎÜN<ºp%qY ¥qY¤¨qY¡=’ˆË‰¾”иœ`ª­ã²"·ïžÂ£i=úÖë»e>õ,F>"ÏT–w ¬,ËÍa³/HI/°ŸsBEö }AÉàœ0¦µ¤ „Aà9œ*²IÞ³eL²8Ì9a&Y ¼€s˜&ùV}B ¹üÄyZucŽÍ°¶»ÔXÜ »V)S.c~Ì?Õ¼CFæ³Býo—L§T«Rݧd 3 >˜I+B¦ô;|^èäde&øló±Ó>m»Y5ý‰¥Rs¯è­^È14焊¼lqÙ±'$<-pç„)xZþàiœÆô´ç6¦^™îêT¯‹~Ve†ÿµ›º­ü‰RèÅj8çs›JÿËvÉOrÖ¸yt×ÈŸ|'ç„1\£©‹.å m?Ê9¡2©˜ÖÞd?üç„i8滀çœ0¦cžPïCÓŒ}“Ý´\ß%]åÀïrN˜mý!ÿ#à¿rN˜†¥þ øcÎ cZ*ß#cŸÊ9a¦•‡üÿ“sÂ4ìñ3àqNÓ‹¥Vä’†ÿþŽsÂì‹Ú?q,ä9'LÃ.ÿƒd œä& ws*uÓ¶³·OÛ8Æ O]£0U:tý»†ðV8óBÙôg³»4ç=X\Ñí×­,|M¯zµ1bÕ΢α=5×ó롵I¦§ª—5ÁµÏp,=X4îõ ÿ«Óv ½Éó÷KÒùKâS¿#×\…µìüwžðD‡"çéäØùIÎ cfîÈÃa[xn¬£šá°#øpؾ‰kNDTu%”\Yÿ¼ÙFs ðDp©í'£EJîHàIà'ŶÐ?d~–0ÎÉÀ"¸ü~‹ó:qwl»:òŠ(’ÒJÇ4ÝÀåàËc›æ­±0nÖ~ëÑàzCLf—z‚Àipun¤›Ã%sX*ÇÝ ¼üÎt̺ølðø3>:iª‡„Yî>ü¹êÌ2j—%Írð~ðûÓ1Ëó€/yl³¥©È;¯>þ2#²oÐÞ7$i¦÷?þ¡tÌôvà#àÄ6Ó¡~U¾Àú0ðÓàŸVמܲVÆ2Ÿ~ü éXæ3À/‚1¶e&ƒÕ•í+ɘ ä¶`5uà˜%“¦cSÍl’š05«b¸îüú¸=&cý/q¤®wâ’]ðjë’¹õÀË9ÏI-áŠì~‡9áœÆô€ãfuû+«¥3jn°Ìy®œyÍ’‰}´8—›NÝPÐæœ0¦¡>ÒÝ£Ö<¾Síìáè%Ϥ­7füŒXŸ…ØC XÞcÒæ J^Íÿ˜i±lH‹£ýEÍX]Ô]·V¥Ìÿû(ëGê ˆ¾4š^Ý$Ç|çy³G•q÷Ä:f¶ v+'L}iôF†Ä3\MÉ/0£¥ÑÛðú”ö‰¦©/ªÓ‘ò~àð=Y ;áU„ÉíÐ9Ê‚’„².àaà‡É(kªhw°sVÔ76…陳¾‡ß+›cØz ±=Œ¿oŒÿÏÆgú$ö ®²¦izF5$ÙN  ¿¦9Sò“âJ?7ìBØ•hnÈÓ-#éê._¢,/œE3½ÊºSÖ Ç±`ÒCüæwTŸ&±‡W€¯HÞ§wÁ Ï—›}˧)ù•âJß§¯_“¨OwÞÌ|DBYP}„/ÎÞMÐUåÖ×às„«À¥Î«ˆæÖ×À• WƒKíûÏ­)ùsÄ•¾[_ W¾6Y·žŒîÖו¯MÄ­ž½Kød¯”_‹ÏÆÚA8š_ Ç%<üÌô˜’?K@\é;ñ3à¸ÏHÔ‰•̾ʨ„´.àáà‡««r°&”áh£vÍ*×7_±­1ì½èïŒÈ;ª[“Ø#«ÀSˆÍÏ€+f›)ùsÌ,6_W¾.q·®EuëëàÊ×%ãÖµÉÉÜú:¸òuéºõupåë²uëëàÊfæÖ#på‘DÝ:¿5lœª•®. úÖaïœ]¹ƒmGšnüÕ³G Ï?/yÏ7ž~~úžMɯWúž}=¼ùúD=»°uý¤„°.à¡àR°µ¬K›±êÒ¤m)ðtðÓ“÷áëá·„g€ËmRˇ)ù3Ä•¾ß¿½!QÎo¾LBW0~t^4·—#ìd‡9Q»(¡úpà9àêÖðZ5tÚ3cxÙ•Û–…9~Ø IZ¼\j/©ü2èDÉ­^~YlG?£›F0ÞF`¼ªÌx‡Õ·q›œõ<àmà·¥c= ø,ðgŶ^¾;jaAéßÄF7„I”\'ðNp©ÉÔñ JþÙâJ¿°ØÍýÚÇ+<›/›”ÖL®Â¯ó´-¦XáÙ ¿%̰ÂCÉŸ)`fžá·7&êÃùa3œ[éêƯðæèžßm{•¿ÒŸl(ñ(‡/—š©«¾D’¶GÀG’/G)¹+€×ƒ_ŸA9JéßÜ ¾;ùDÉužv ¢¤uq¥ƒtîÖ>&XŽîX;)!¬ ¿„NmZŽÆ4$s)°¼ÿÉhHÒJàZðµÉJnx1øÅJððK’4”\'p=øúô %¿A@\éšQîÖ>&h·l!«K@\ŠªëgÏ?JÕ´J•íåeZ|6 kçšnT·&Á‡W§0¤4 W&ÌpH‰’?W@\é»u ®\JÔ­Ϙ=Ú”)¡­ ¸|©2ß^CÞ;e”<>á°~ mÄ1»tõ &BÛ¨û[ÒEuvz‚£€›Á7'ïì%88áð-é;;%¥€¸Òwö2¼œ¨³2fz}Ô>t%äu?J™¿×°š ~qÅï­˜{Š9aÓêØ²1å{w¶vãºíbúeö¯R°û ߣ‘¾]³Xñ³DóécÂ?¿5£Ð£? ø\ðç&ŸQÊÈ„Ï^ú…’¾€¸ÒÏ(2‡¡<£v„š§l™fžœ.àáªçÌð3IhÓuZ>¨W4£bøû:õs§êäòHàø@ò>lÀo ÁÓ÷aJ~H@\Šž~ñˆo“&éŽ3Z[8—â"æ Íþ²ä¨Ì8òÎ8>ßÅQ2­Œû®ÆñCâŠi² 805XŽéB¬P¦¢©Êûø˜íTu/(½‚³µë¥cÄg™€Ën—k§Š‘rÞŒC_¦„´Qàø˜ÂxÔØðué_æŽÔû‚ûø"O ÝÛ»ÁwËêž÷Ë›ãàã ßHH%w)Pà1ý}U}/ZÏFæçâšlrìo‹1Šãâ{ü'%¬a@¹ƒäÖªUÝ™‘÷aàÇÁ?žŽ‹: Éää²ß ü[ð¿Uæáo~üéxøëŸÿdl?ÌßÉ›|V20 ø%ð/)÷ÛƒY¶“iò‘ª_þ«´bs YÒsÿ ø3ðŸ)óÜo þët<÷ËÀ߀ÿ&¶çžØØ'ܳý£yõm€cT£ï(CÊ~Ë1wç„iWpMîýuTSÏ>•¶ˆbö@áAàñ.jڡê’f¹¦W¢æn’u:°\j è¹ûðáºh‰ìM‚Ÿ <üT%Ù›~ñp`/xoòÙ›’;ØÞÛk£o./lµá÷ ôwHö ´qØ`A½„¼«€×€_“ŽÃ9\-×\ ÍÃÀÍàÒ}ìó~yðZðkÓñÙAà3ÀŸÛgå6à' ×o¿Q}-Ê¡QF#r —T=xø]é¸íÃfy¯­o¿E™×Žï¿;¯ÕÏNl¯mZ\¯F9ú´ïÊAØ0o6üQ”zÚ&CŸ2zm‹]5O+›ú¸eóF1N~³Gi[¥ ÓGÂpÏþø¿©äzˆÁúi…QäQÕÎÇ£8'L'’×EËç‰ÿöƒ8—?ppÞ/ÿ7~ù)œç¤z£ç‰_ Ù§rN·ö¹ Aé? x4ç„i7!örG¯£š&Ä ¬ ±Á¦QÈ –Qéa!‚eûJäZZ¢O?A:o³OÎéÄï¸Íoól:kíèè§’w*ð,ð3eÄ5Ÿ©á‹Šº=iy:ª´Ý’Õëæ©ŽV)$Õàý±ý¨È+Hëµ=º§MVlOMA*×@ñ.åÆâ1? Hhs€tÃMìšJ§´X2ÌK´RI­´;ø°¹¥¤œ _Ü ¤ónè<"Z9AÉ] œ›ìË •Jéß Ü-7'àª~”–Ðö2à«ØõRv½25WõKºês€÷uð ù½Ê\õvà«;øÚÂW¥ãª·_7yuF®úZàë åµê]•W$$´}ø‘>ÄóXZ®ÊKºê;€ìà'h<¬ÌUß ü(»ÞÄßK®úðcp“fäª~Z>®ÜUUt¹úÛw€ÿÌ®o³ë{éxj×°/XÒQ¿üGv}¡Ã-R䨟~Ÿ]Ÿå¯% Gý$ðp’ïÇvT¹?ÒðCàO Gî4Ö–quÔ¯eG×F-2i}v/×™V\åŠ%Ýõ×À?uðáÞ?*s×_â}пÿ¿—4Üõ§Hö î&”|\wí“$ ãzrR«íZ»ëM7Y¶S•ІÆq®Ÿ]¬qœS×8n3 ÈËõÑàãg±ë8vIõ44ýå§:ü>8z5)xlîpà à-àÒã¥Q'Ìù‚åâ é55ðš’xB¿X?|<¡ä®Þ ~kì\}L‹Ò&ð6ðÛÒ 6²I€j‚Â,(\É« zÛŽ0Ž¥ØZD©“Gx¸Ü6F-ë %›>YÙ0ð"ð‹ÒÉ܇ “^‰fiž.½ì¼_î®_›|ƦäÎ^ ~qüŒ¹»ŒÒ_ŒµïEk7*ÙSÊF€»Áw§å¦¤WÒM·¯¿V™›^¼±£¾9Snº¨ƒë¹é(°^R+öø&3êæ ¤éðvðÛÓqÔ%Ã\±¤«×Í Täª{€w€«Üû²…«–w‚Ë5Îã»ê³wߥÜUöP÷ ð!ð‡ÒªÙš%Ýõ%ÀÀPæ®/¾üíé¸ëÝÀw€¿##w}'ð]àïRî®…µ×I{øðϤã©3¹’Núaà'À¥×Îû凟ÿl:NúnàçÀ?ÛIåÆÊHÃß¿þEõŽz±”£þøSðŸ¦å¨K;êw?ÿ‘2GýðgàÒK£9ê—€?ÿyüh¹Ÿ„Òÿ7à/À¡ìñ ?}}œ;³?©0Ã9(ù¼€¸$séâ¸rv" ®˜oå8MÓvÙ•±qÝ×všFiÂÕk†y†"<ü¸X1MüÔ1ÓS£Q÷˜íôN:6 ôÙθ„ÈS«ÀÕí!¸xĨêf%$Ýã«Áão"½†DéŸ <\ªï©©‘N™ð¼I÷¼þþééé¾ÆÚ¹~ÛÅ!b/Þ~ƒ2cuŽÔœ0SÜ ¾;¶© Ñ—o“€£à£Êÿ ½æMØNH ¡Üëud~)ù¼€ñÂï•qåÐÌaâŠùV.aáçáôh»ú´Kû´âà¹ç¬èîÓ¶Ó&cU¾m“¿E¼ë9†5îMèñƒúªU;òÎÍS°)á%àrý¤Gø&áw{FÌ1£âû'¼jåÀ~ ''ö±kÞþ‘âiƒ#Ýè7YûO«7ã»|Ê©„ ‘¨ƒŠwöOÜpû´¹ö:ðëÔe—‹Mìi3Ô¨†žQà^ð½ Û¨-¢Ç°^É >KéW¸¥Ì,ùÁ =5 À•™cÔ®”C’µÓàR«Ïf=þÒâŠîmÅàªÞÞç Je™}À»Àã ˆŸª·5ʶIm‹þÁ¾¡å«ú— ®\)\_|¸Tvˆá¦ g4$Ù»ïgúUmJþ]âJ[Æ4·sÕ4<,VžÔ1 «¢[åm{_v¦¶Í5-·G»¼OÛìW¹WŸÃªÜë]Ϭò rö˜¦õkclŒf'NêŽ^¥cš´1Ç®j.û·K»‚V*ötomR+ëž9—ìÃsSÔ0‹.ó‚…ôÔ€·‚ßš|ÁBÉÙÀg‚?3ƒ‚…Ò¿ ø,ðg©+XV Jèyð¹àÏM¾`¡än><þ6ç‡YÁrÎ9½½+WKe˜ç_þòä‹•¡s–¬\±¶ã—5hø8–9¦»7r>¹ÏH(컫ºi³7êŒÒsðfpéé¢O¼h¡äö÷ƒïÏ h¹E¸4PUѲrµ„ž;Ï—:a=ZÑBÉÝ ¼ \®{J¼»´8DM›!Ö¶a ©,s7ðeà/Sf›³ÂŠ–Q?+õ³ÖØPÓ±p!±¯~\ª<ŒV¸Pr÷?þ©ô£:%ÿ¸€¸Ò–q€Û»Žj —׳¥ÑUÖ£]ìnÅžZ<³ºÕü‚ge£ E 5 x;©7h ÕEdåŒÅ@žayt:è¨íMÝj~ƒˆ¦VVtgÜèu=‡þP1«¦G£ßþ²áèÃ8·â;üõꋤȽm¤ç­À÷‚¿7ù"‰’{ð}àïË H¢ôßü¸\5¿yo[ÔÖéø0ðQðG“/’(¹‡Kõ5)’–öö.Z.•e>üðPf­EÛàÀ9C¡jCÊ"RùUàƒÿwòe%÷yà¯À•~!@ÉÿZ@\iËx&7tÕ”E«ý²È›¨ÒT©+úüòhÞ¸Î&ÝèÑvôi›Xy440°º;²ÃßÅ„«Áåæj6sø§lf%—ciƤY6ª¦]±Çg$^Ü ¾5ù‚’;¸ |[l«ž«—;eÍ(÷1K]5aVtV°ON˜úyÚ&srÒ´J¶çi»ÌJÅÔ«.³0£{Y}$òtJ’½ø|ðøG¥FÎÏ‚G¨&oL³¼±U¹Èõ›äŠù£Ô5}%߈¥^«wø³ ›ÕÛ¨@+›cc†cÐÚ·¨Yëv<0¡0Ø›yõ‹ôÜ ¼\åÉ!9Š’ FØ‚Á½ø'D¯~QúÏí¨îù\n”¯yõ+´AÙBϽÀûÀïK¾úEÉ=øð—Ä6Ç‘~gó «zõö²ÿ®Ê4/¾ üMʬsº8gËr¿_ s=}´bøµ°U«WD¬„‘Òw¿þÅä+a”Ü›_ÿRúž’ÿ²€¸Ò–q7vÕ4kéØ5ݱ-£GÛÆšúîfVšà\Ë9}Éñ:‘ï„tµàk•yÿ Âèåº öXfI»„³F-CHàeÀQðÑäËJîb` \n7 ñnô2DئÀßb¿ÌQU²<4µÐSVÁ«É—!”Üзb›ã¨â¹½ƒ4s%+EVHÌš!=6ð6ðÛ”™§§iÇòàÊþ¡ÁÞsW®,²qîÀÀÀÊÞˆ… )¾ø~ð÷'_˜PrÏ~<þÈsä(NÉ?, ®´e<›½Žj “+š&çðÂd‚fZÚ4Viz3|Ö¾6ÊârYã32ýMOsKtHäüp‚ð ð+Ô·D"M’žmÀëÀ¥ÖD+E(¹MÀp¹ýÅ»ÑKJÿzà à7¨+EV Iè1€càcÉ—"”Ünà8¸ÔqóM¦]ž;ØÛ{î9Rfè{Ê,sf›‘ÉUC}ƒ}ç†Nš ):Hë~àëÁ_Ÿ|ÑAÉÕ€oCú1›’P@\i˸››»ŽjŠŽí¬èv+àS.‡X%©O[g[åZ‰6¶Ä5hûKmßÞ–:·°@]›ÔK{õñèYÏÁÃnW·‚ò¡e"Î!ÝnyÓºu:%‰|FG£›é’EE+W(¹Àð™ ÊJÿfà~p¹¹7Í['+%ôܼ\å¾r!å %w 0˜rsglsZ\N=\¬a½]BJž ¼üe†i:—rõÊå«ú÷¸nßÔÀò•}æ@Ô9ý$õåÀGÁU‡”*”ܽÀÇÀãGç”üGÄ¥èé—Œ°ÏðÁ·Iâ5nc¿ƒ:Ã)(ù¼€¸$¶+®œçñ©#®˜o¥ÀJ؈Bž“À ±2s³L}m§^³L qG?Za¶mlm6/Ù.à1àÇ(L6d1J®x,ø±¼”þqÀãÁWî“KŒWªU ugûÀûÒñ‰SýàýéøÄ ÀðŒ|b8>”ŒOLž-¡îBàð éøÄ¹ÀKÁ/MÇ'–/¿,¶OÈíŠI6·€oQî‹ýÓ8¦$´]¼üÆt¼âj ®§ãWGÁGc{Åéþ¼Û?‚ûCgQ3½~BEäY=¤°¼ ü.e/ˆ6©4舭ZUp^Бi]”’Ï ¯.ºø‰ÊY´mÝ•—¬o¢ç…ìZ" ®˜¯eÓi§6ç|#L-/VìñnÍ.—]V2Ù®VsƒíÑæN_⛩E~¤Áº„›À7Å~¤Kù©@Ū¡»5Ç^vå¶e,lšÃÞ¤íöh£ŒXÆxV2‡Kþ_ÊŒø¡©ñÃì?}£¥ñîÈOób<á¥àRMLG¹i¨&ÿ´s[RŽr/ãÞde[:Žržà¾¸ŽÒ4ÙCFŒ}zu²Ò´ÿB$÷¥¾9¶RòyãÅÖy¾†%¢&šýÕ\ ¾Ta·×˜™¶f‡/…!^ZÿŽi…’?R@\r/`Þ§òÛš=zð¿—á±;dü‘>q8}â0üÊQüoGÐß:ùõè#‡9©¡5í‹t6÷iÎí÷ª“ýÛØ.ß61^]ß¿m´fVʺ¡—GW¬(ëC+†VöcT¥¿ª[ýþx¬ÌÚ,Ó.­ŸGÀ§{Hˆü2ðŸÁÿYYæ íÿ£äþø}ðï+K¶sdrïxHªŸþü±}û4¿û¯j;†Vf¶0™7ò£À]Cv9? ü!Ç\ó\!®Ðüšs,ØÅ~»±oÒ¹Î1\–ÓÜa§ÜãzÌy†Ãbùæúý›×î¸ìòµ×lÛ}õöõë.Ù¢­éնϸ}ã†gXSÅesn/ë>_«ÿ©ÕÇñYsL+žjÝ\šÐ¢x¯»{ÞÏ, f:”ÊVß—½MsÊé³ ¯ßšd¡@÷&öèû.ZÞo¸çô{ƾÞ=_ïX­RaŸ^v¾vû=úwÆõŒjUÜŠËÊv)øjÈ{‚ÙSÃËðA'nù²éw»µ3ÏÔæ=%ìQÎñO Xã–sÒÓÌòð²ÍìÇ.×÷õò?-ÓtwÆ*iÌjÃËúúúÙÿ©õ·×xÁš~þ38K£ÍÆ™föÅ& ÌIyDLzdÙY=³^|Ó>ëç»ëîhu–¹o'p)ç¹ÈÕúļ³ ©ØzïGˆ’T1Ru ©>BP„Œz1~š)MÞ="Ö±•=wHln~R’T›6ï]S²-‹ÊuA«î‘°ÎŒÐg)°€šä£4¯v'J;¢q)²í¡#eƒû\óóÏ:ñ(s¹O†´®Ä%™ÙŽ=Špÿ•:âŠYU9›7º‹3f¶³GÛÕC—w¨÷hnEeÿ­º†×YñÁ0áÙàgÇV|¾ÆÿÇëþ=tV«”/[·•Ѭ’n8%cÒÞ±íêõ=Þ^¶mýæMË¢?Á!Pí§ ~~ì'ÀÐJŸáe73Ùå1wx«z™åš^aÿö:ÃçžÓ£z/¾ R ÀbË^ ÙÛz´mnI¯°šPÉv˜ZׯêC=š§×Ø »G׫þŸ&'Ìèò—@2a“mI$寅üÒÔTixÃÚMÛ™{ð¸‚ÑtT»ñϲ9nz,+°²‚µü*¡“BŸãPh'l² 7bémQ•m¯Y%{1pø†Ø¯1}x\ ¼ ü2!!Ý95·ÞÊ1ÅS©Â%~AB˜0^ArC\9‡ÃâŠùV$æÐ.…I›Ì¡Ùuy濹­;㵪ay®6i8¬)îwÝø;î™ÖdÍ;OB3Æ!ýùŒ]³æ3Æî Y\BÉuÀÒ÷dJ~P@\iË8Πš|-áÁG"ñ#•xpXK5?cJèê._"£«£ÙL©#§Xˉ¦·±z Ò(óÚž ~²´ýâœÊ˜Û"½e'é>X/Ê4ZÒ>‘w »e„×ý"ß¶bÍ”Éhø÷F>‹Q™¤H=jí!Œ4õ˜PgÏê¥4?†1ÙT[èÎ-Å»ƒe¸6kF;SF98eË5o¦óNX$­y%»j`Ø)F¦¾üZe¹é Kø†„¨Qàø„B#º[k¶fÄgMp3~¥Oâù÷ˆKY=ÑôŒjH²À½à{ã?}Ô %_Wú´£¸Gû˜\-·SBV—€s–1FŒû‡¨®Ÿ‘¬Ã€'Ÿ´€êg¤ûdàYàg-„ú . ‹2Âã×Ï”ÉPW?S&)RýL­=”×Ï’~)Íëgɦڢ~¦Î-Å»úYÉvô-šÔª¹4gŸH°k°_UÓµyzø.iÕ…@u„`ºÿ´¡z@íÚ«x&«jj{ƒRuï>é { з”ÙÅ,È&cmA·-£[MŒU"£iŒ=œÅغ¡¥‚­m‘ƒ­:ÃÁ6¬Î&f„ŒÞNS]-²cVæ /’KµM1 &çˆwW×Ã|oÉ®ï_Õ=Çܬ««—†ãØŽ\k]Tÿð·(Ë÷’­uóàÁ?¨Ð–¡­uJð­À¿ÿ›øíÕ¨­uJþoÄ•tk’ë~üCñŸ>jk’D@\é·ÖÅÊq‚­õ]²ºTÛZ°'qŒp0TI#”t*²96ê›qó”æaÀ5àk¤­›~cžt7€GžÅEcž~çRAø¥2ÂãW4•ÉPטW&)RýR­=”7æ“~)Íkqɦڢ§Î-Å»oÌ×\Ãé-c¦e”µißðäï¢Ê1ð1i•OžÆ;=Ï8ðø%A5ÙÆ;ýέ‚î[et«‰©Jd$ÐxW¦-rpUg˜äïêuŠŸ’h¼'m®ð°Ÿ\ªm¾šœ#Þ=µYÄGã]ª•.Ê|øë”epÉV:ýÔ[ï—B£…¶Ò)Á€ïwüvjÔV:%ÿq%ÝJ§ä:ïoü§ÚJ§äß' ®ô[éOåícr­ôNZ†"¡¬ xøaÒÁ}ÉEûš6ÔM«T©• Ͷ -Xó+¬47ùÁ“þ¢ß>m­FûpU„Oh%ÝÒF mÜœ2,Mw4øŸŠÏÞ ~·´£¤ßà'ÝÏÞÛQß üÉßà'Á÷ Âï“¿rªL†º¿2I‘ê¤jí¡¼ÁŸôKi^óK6Õ5?un)Þ-=¥Áþ†Sz¥fÔwB¬ÇÙ>¾oÍdeVtÖY°æß7Yµqt†Â0ý üø½ 1ÂÀoÀ³ÀâïoÿóB‰¿„ÿEF¸šø«D†Úø«DRäø«Î‰Äß$_JxüM.Õ6ñW[Šw·kŽ=íú{$±ÊkU·f´’]©U-—þMû_~”mTxý±õÑ Mv_[ñ ÇòOÌ­ÌôPÔõ·Ê–Ïö¹­œÆÈoMÛìc¶S­Uôèâr7ËœçÊ Û¬!›)Qr× Îs†ÂdC6S§ä¶Ç8ÏÉw—wÏ I5:SZV}<$røBÎ ³íã!1÷_Ã9aò}<”à‹€¯åœ0í>Jþu ®¤ûx(†t"Ù8'L»‡’}ƒ+ý>ž§qö1Á>Z‡-¡¬ ¿g®¢µõ>‰ø˜£W ÿÝ´‚†Ç­MNVLŽèÁ±QýýiøáUàW%ïïOƒ¿n—+3cù;%¿M@\éûûÑðñ£“õwÚNGBY0¾¿wÎQtzÝßÑëè7x™JÚ@“ö0”Øäòh|Žp9øri£¦ßþ%Ý+€ÃàÃQõgÑþ%ÁÂ/¿ý«L†ºö¯2I‘Ú¿jí¡¼ý›ôKiÞþM6Õí_un)Þ=ª¾v»ßõje“5kcäÚ+Á¯L¾@Éu¯¿*ý%¿U@\é׎AÖ"L®°˜o¥'¡ ‡i6;%f÷¥õ:äŸ¼Í ~«V5³ÔT æ4»ùsP7;Ü^+£Ÿ“û˜ë÷èø}C芧j3ûJ7û‡îiî„]«”ëú ªœd5Ñ›9 øfð7'Ÿ‰ŽAÆ!| ø[ÒÏD”ü[Ä•¶Œc‘mÄ•~^>‰§$/ÏÍ/¶ØX¬Þ#¥õ³fcu²FÇÙÛï e%…ÄŽcÇ!Ã^®nó¼ÐZÜqpgÂàÓ÷)Jþrq¥-ãxxQ€™¹ö Hü%®ZLñ½U%´uãS…9šn6Lÿ8M=˜Cc[F¯k–yéA]óTlUL×/•æÝtç–`üë‡Fð]dk¬ü†Žå:–éùêh@|GEáG²c™Ä¼ø*ðW)¬w‡v,S‚/¾üÕñspÔ%ÿq%]C ä:¯WЭ5~Qò¯WúñëDîÑ>&YÍös³„¶.`üøuÚMçÒ™zÉc!Œ©ó;“g¤ú¢ãY¡H·d^ñQÀËÁåŠÌf¯vé­šiYì!n¡úŒá„eˆ°½€IÕVànðÝ óaÈÈ$%wðFðcg€#êEæyJ˜JN‚O*3UëR¼¥…¦·€ß’Ž…n¿2à¨z=½O[Ï+6ºøbð+³Q'm[/c¡û¯e:ºø*p©*Ĭ7p¬ßø§Æ’]c$w¦Z5Ì9¡ºú¡¤á~ŒsÂ4 ÷AàÇ9'Œi¸UÈ`skˆ ØñÀÿáœP™×IÚñÏóyÎ Ó°ãÿ"Ùçy¹Î4ñîù°#M{4­š]s{i¯…¤Õª–ß[Ý–ùNàœ*²åA˶_µþš«d¬™_¼‚s¬™¿¸‰s˜ÖÌËd°üfàÎ åÒµWKåjàuœ¦a”+#œçåêeñ‚:QþÎ eÓF©&YÞîåC¯èÏJ5ÆôZÅÓLWÆOšàr½TMûèøê¨% I™ºànò% %·è{±3ÅÝ}ÚÆq˦~qfÜÈÓ HM x'øêìÓb{ª–öy>ðEà)Ô(¹g_ ¿p8å=˜µ!-÷_ .5/*Z1BÉu_þºô‹Jþq¥_ŒœÌ]ÛǧcUYl¶ËÚº€K;âNÇ:hަ]­¦c…I£°h”$c¦çÑPI›í3«µªV1÷s¶ËZQâ!N€K ±„Œ&lÞ¹BRl î$¥(9è‚K^³Gº©ýHÆb­fçÙN‘Ý<à«Áåfµ6¯Û¶^Òrß .µ$ºå^|øÛb[î¤nY̬ò¦dÌÊI{øiðO?ÌõyàWÀ¿’޹>ü*¸T vvïYwÔ*¥ÿ5à×ÁShIRr@´$;2hIRòßWúU€S¸Cû˜àÖËÌʺ€‡uÄÝúà9ŠžÙª0aOk¤˜Ýbñ‡†1ù®’mÑT’Á[™Sº°O˜¹¯~¶³+ÔøB0£Ü§]G³ö?ä}ó%U µûø@ÉfM}³dúkK%ô`àè7g>Ð!ÛœQØ@ 1GOäœ0ù%x8ð$Î ãVi¢Vè(ù“\IWèÈ:‘,*w„iWè(y­Á•~…îTîÑ>&W¡[T1¦ŒŠ„´.àáà‡KWéæîr£×ãcÂB”7m°šØ€ßИ»iD“Iͪy#&çžs¾æFRô˜Go¿)Ó†2)¹ø<ðç¥ÓP>Œ7”ù†yQC+éݼ\jBJÓ_v€Ï—ÛpH¼{¸_à•y1yt‡´¼˜D•.$RrÀWǯÒE¤”ü«Ä•~ ]Æ3 ¶ŒG½¨ƒ;$¨ ¿e&8~›¿g„¶.àÒŽ¸³áç–+WÍIìñ»“Æ Ç_Ûd½ /Ö ˜ØÅ=ÕQ@\W•B ñЃtLˆ+郒šàf유5¬oŒõò}«¤ŠR·ø\p©âTeBbî¾üi!”à󀯗+Pg¹lÔ"„’•€¸’.B(¹Nà«Áìä_# ®ô‹3¸Gû˜`âšãU}HB[0~rÄM{í’ÙCªÅ`‡:K±bXãÞΦOŽ~ç¯Ø KwU6JèÞ.7Ca£„ÄÜ|¸Ôä©hE %wø\p¹à-Þ=½^ÄtS%aÌ܇–¥Øð”°Úó€ï—´Ò8ç<âç·Â2\ËãIþ»ÿhÔÇ O¤}œ þ˜ üc2Âëá"ß!yœ 2M3ï¡#ÅÀ¸‘OT¦¬yª!§ ª5‹0VÐÔqÚ¹~Vï¦ùá‚ɦÚâpAuN*Þ=šÏ(ºÝ}ÚÚ ,i1òñ×Á¥ÖÙeG¿ü1øJý‰ ü'2ÂÕÄQ%2‰£J”EŽ£êÌ’dMòÝ„ÇÑäRmGÕ8©xw/fS•t‹ïà@ë4Gg4×ð¼àT÷ÙUU£bøý%~Ó…ö9 :P°ƒPÙpM¾a;ûݸÁœ»Šsœs[:ç¹ÈýwgÕU |TF¸’à¬FFÁY²¨ÁY¡Y Ή¾›Ðàœ`ª­ƒ³"'ïn@pž6+ŠÎØôƒVߎµˆÌ,(ÓÄÆM5>.#ß¿Ï"wdn3‡ÊoYZtåÐM{ç„)tåÞ|/ç„1mºXj\4¼ø7œ*²‰ä¸‰Aë)÷iÎ •å¶ÐqJðoŸáœ0¦e"+PòŸm`p)óËqªu"ÙÏqN÷风+Pò×ÀàŠ)Cb\áLîÑ>&¹K‹^ -[(ëÖw—–ãç(:qþ¨‚_ZÇ¢/²;Ÿ#<üleñe ßíxXæ@?R4\žÂÉH”\p|8¶wGßGÒ¿x!ø…Ê #u¤IÙܾ1‹\¼<þqçr¹¸ \î,Š¦ë®¤Y!-Û»Àw¥c’ÍÀkÀ¯‰m’süy5zëmÓùÞ…E• x×_oYø©Cƒ€'s2&Iz)ððÒ1æ‹€¯}Fùë ÀÁTñ$μ$)ß .5 /ºEÞ|¸ü(o=9™c#H»ï¿Â 'sBiyø‘ŽÔN¥ä>üh‡ªd7Ìš Wíïb-Gtãð°qÃ2è0Å`g=E«5!aÖqÌurN¨Ê¬þièfÍ-.åœ0³ú·Á9aL³ž¨é~5oAôÃëIÙ‘ÀÎ +îáõ¤j9p-繵阭x1ç„1Ív|ýðúÆ+¹cìI×:àç*/•›_EbJÀ/¥ä®šª/í}¬Ó¦á,Ú‰Rw<“öo’)øü#M _Î9¡¤æ8ƒP‹G<½&7Eâ_| ç„Ñ‚>‘ö ~« ü­2ÂãA)“Ñ4w¹i#@)ÓÕ<Õ(µFi7ÕÚí³z3͇Ÿ’MµÅð“:ïΣ¨¿¥oEªä 4= M+Ë4ÃH$äQàcœç¤–çF/õ>üç9©fʬçïת†nÑTqÝóë%¼Àk,b©J7‘ØÿsBEÆ“o"1¿þç„ʲWèx%øKà9'ŒiÂÈãM”üŸ\Ê8d¼‰‰HöÏœçþÿ风7‰Ïƒ+¦ ‰ñ¦³¸Gû˜à¾1΄-!¬ ߘ$‡›HáRàÓÁŸ®,¼Än"EƒÀóÁÏO¾ äή—åŠÙùJé/¿@™aIõ‡“–õÀàÓ1É…ÀËÁ³o¢ô¯ªo’$)Û;Áw¦c‘ÍÀ]àR£\ ,r ðZðkUfI“Ü,ƒ—Ó1É3€¸‘‘IÆ€ãàã M"3(KZ, î¤c’   îÆ6I*ƒ²$Ù¾ \î´´–Õ‰@Rôà#à¤cˇ€—ÚOkÖ‹X>!*,ì©{`‰? ü%ø/ÕåG©%Òòàÿ‚ÿo:6üàïÁÛ†*–HÙ8æžÆ9¡"cÅX"U'ŸÎyNª­Ùlþnß„gsž“›'ÞU7°Dºz€ë9—<5HáÀ‰ÙÜÊ9a¶ÚÜÆy°¯Í“v`‰´¢»sBIÍq–:G»Z+‘ôg_Èy.ò*úDÚÃJ$øE‚ðÉ?¬¤LFóCaFŠdØÈƒJÊT5O5dPI­IÚ *µrù¬ÞKó!¥dSm1¤¤Î9Å»ñ†”DM¯†&u'KK )‘oäœ0òî5À7qNÓ6 )‘Ø7¿Æ9¡"ãI)‘˜þˆsBeÙ+tH‰ü:ð_8'ŒiÂÈCJ”ü¿60¸”9pȵ8:‘ì9ÏÅ_ËyH‰’ÿIƒ+¦ ‰!¥"÷hÜm\¯Fß4u—vÄÝí¹/K|`= 9 øTð§* $­Öy…–$åàÉà''_PrOž~Jlÿ=±ÞîéÑFkž?Ó˜µW’m•el¥Ï—NK¤kT] ¼ üªt̶¸\ª•œP×éÚÜ ¾W™Ñ$»HŒœŸNÇVà>ð}±ms£r3¼üR$æàýà÷§Q•¢Ÿ|9¸ü]éª%ÿ q%]•¢ä:¯eúU)JþUJï±·*ÕÍ=ÚÇgçLN˜º€êÏ;–¨G‘¥À#ÁTEZÌ_ ñ¤äXàñàÇ'ã)¹£€'€Ÿð¤ªF‘²«ÀW=iªQ¤êà&p©*ÑͶ¸|ó“¨Eº¶ÇÁÕÍI¬F‘ è‚K͈n«  îe]"15ààwd]"1/Þ~_Õ(JðNàKÀ_’~5Š’©€¸’®FQrÀ—¿,ýj%¿€¸Ò¯F={´ nªSšš*I(ëÖwSƒæ(z~“ó\¦' þú»C£½žrÇÔ­’Ñ[²Ê~ÙL› þÜ/β©ïß_ïQwµbI8.“vo‹¾oÛÓñ9ÂWËUÁ›'.cÏžsYÔ‡ä¼ø6puX…–8”Ü«?;'uJì@ Þ|ø»TÛÅ‘²ËÃÀGÁ¥MŒn—wHâAÝR5ñà§À?•u €Ä|øUð¯¦Q ~ \n„N¼¹@É]@\I×(¹Nà7À¿‘~ €’ÿ¦€¸Ò¯œÍ=ÚÇǤÜIÝ & DÒÖ\ÚwLª0GÓ[ÕX¡>V³J|â3¯¹†Æ£^úî1JüÄlú‚±Ï£Ò~Òv]s´bðžý2kZÖ&ýC³+Ú˜É7Üvk£®§[4ɺÂwy) #ÿœ+èèE|\ÝbÜÎ-õ€IÑG€ÿxQŽü ðàŸH?ÊQòŸWÒQŽ’ë~ \®Ä›õôQ£%ÿ¸€¸Òr=Ü}L.Ê4e8£vä0G¢º€G€!æÍµ·E˜³kÞdM<‘¶rü­§mÞ6éØãŽáÖÌŽbE~À˜^«øûQK<øS€À( W‹6¬Ý´}}Ôú2i¹øð%£än>ü¹±sÊe¬Y'´8Å¡¦}ÚNšöåjhƒu«3ë:¬1ËÎ!UÑS<øð¯dZ‘’ï¿þ½4Ê!Jð«ÀÿçôË!JþûâJº¢ä:?ÿAúå%ÿCq¥_õrwö1ÁÚvÙ7½¨ RÒÔT_Û~i}_D ±<š}f™ý±Ê>8YÑéheö¹é ³4òˆ¾^ÖX™ÄÊW(º»f•iÒêÆ1­fÕGuz´9eÔ Ñü(ñ†Ž¾üÍêÂ+‘£†5Rò(ð£àU˜­+¦…)AKÿ2GîaÃUÓ-õr³ÊøÚ;ÿ¬îy¿üàÇÀ?;«_î7ÑÆjŽ_m*óª#Ñ!àÔal[žcWæ:²Ÿ ƒqE”§oêãs‡pN˜tà¦d;‘lçAÔM3pSòK\éî>ža}L°?’×<¢#nbnä¾£¹+¦ëïVxû¯B{Ôb˜ƒºLôʸí˜ÞDÕƒXŒo뎞MËwͲ1«÷EªþÙ‡G!|¸Ü0Ÿªú')yð àoH£þI Þ|üÁô럔üÄ•t£ä:o¿„&r£äß, ®ôÃX?wgÕ†±ÖK#ËvP'§ x8øáÒkn>}š^.›]Á 7ªã’´#g€Ÿ‘¼ãöÃY Ï?3}Ç¥äÏ—¢§ï©›¥IÚ‡Ã?€¸Ò~pôqIf™§Ç•3ˆl ®´ßÊ  ãHD´åHœ0¹ŠÙS¶ó–jpVê%º§K=¸ |™t¬{Z\’Œ3Ä•¶­€ÉTâGùS4ÿ;ÄQ<}[sùLÏ’]5-^[f5UM·f‚NîšKG*ccFÉÓ\ófVKµýÎrö%ƒ–Ϻ5‡ý-ø©*köꬔ™qiŠÑ7Þ×£UìqÍ1ݽšCi¸üv¹ìÖÿàß-›,ǰJû -Ìý#,ëN™i(7¹M¿é9ºåÒdVêñšÃ_ãËÒЧµÙs’ØS™%“BnOèY¿é¿œ ¦Ë¾g1ñ½žÝ{sãþ—»iרÞ{Ìû’+•™ÿÒ'&G˜åÿÞìíl\½:Y!Ì£r»YÛÚЦý¾Š¹× 6vã5ßl°Vɾ33«Éu gŠI±œ«M™ºÌßsà˜çk!:œ¢¬9‘Ÿ1Ãjaƒ$äLàYœçÕË¡ƒ”œ,rN3fœß8[š9{“Oç»G Cæ»%Îó%e†Ìí”±ãžWv,÷rž—[ù'Þ½W˜¦½‘â­Ë[òuóŽc;¼ÁDôÏZ~vÇt‰z~f¿d:OdúåÜbxGøGÎórû?+óŽB¡Á•†wü ÉvrNÓ;–4¼#j„,.åœ0íªÊJnÔ:ª©òv5ª*õ¬‚Â.p¹–Àœ½tf%.͆–ÐvLGcÓ1•¹nc\b^²GO?)ùCÉ-ž ~rìJì±Íë®þhCu²æšÎ*ge ϯ½¶­³ŸhÛ­ê.ŸâÖªUÝ™¡Ê¨g²Š\ÉíÓÖßTó«~¼÷— GBœwšœ¥ùJ9A|PµõÚ?^Èùõø¿d죟7z¨B~iÅ`5A¿6qee/ûCqh`à\VKݤï1j–á²’‰ýip°»ÇÿÐ.Ãôñ2s|ÜdD÷–w÷iØïR šîñð¼ú/{CB-šÕ©ƒ‚lÌd_rk¦§ÓT@#x]óÅn÷ “†C‹ƒç®`‰R$`¿æÑ°Òª¹þyïÒ ÔÈ+Oá˜_É9¡â8±È‘ ùuÀK9'L!L䇗qN˜B˜È¯näœ0fòÔ9C%2Û¤äràõœªv‘)IÙ´PE¶Òq‘2ÐFÙNÇEnNrNÓEÞ‹X[/Oü½¿æ*ß9ÙßzrÒ±÷ùMö'°ªlLV¹Eà‚ýÜâªd:¥Z•:9X‰Ï}oâXÐ8/hÊ*î2ó2HÉràJÎ R1·­×Λ—ÑÅçe8F)ê¤ {p€sB9Ñó~ùT xAna»xw¯ïU.U ØÓÚUVJ–Q)¡!è +J›¶½c{ÚÿøìÎ:Óš²+ST)¡*LÅØW÷åÒLcÃs7r“…r5ðAÎ Ón²¬æî\ÇÌzéÏEℱz雦ºd„–S~lk’8eÄN$ÞÙ¸Ò6%¿H@\iË8¯?ÀÌ|â|$~~\Ÿh9rs¬0r³ÁÜÇʺõ~58žÏž.ÕåꫜŠkE’ñtq¥íLk`·Õ8ÓÞ'²‹F " †Â%àrÆš9ÓaNUï«NgÌmgwXéÖŸGšŽž .ÕM­NIÉ <ü”Ø6º°‡*””¡zy¥ÏÅÚÓõ—‡ðJ¥?÷V÷t­hÙžq^c†Œ]5à à7(³ëb^ÔËÔîO¡ûž’Û Ü ¿û>úi<”~X¯*´‰9¾iK›xÀð™tlbo¿9#›ìÞ~‹º¦Ì®©$åà]àw¥c‘À»ÁåvOŒo‘çŸ þ\e‘ܼٔü¾t ò<àKÀãï<$g—_®nrpëÝ—[Úä5À7€«›ÜÒ&÷ìP5;XÎ&o¾ \nžnÓL¾cKƒ¼ø.ðw¥c7ß þîŒ òà{Áß«Ì Á±=ÑÌñ·âJÃï~\jÒìÁ‡$Lòð£àU·¶Ñ8oX?gK»|ø÷àŸŽ]>üðˆm—+ü7ÖRÑ£bLé–Ç'§±ü±¸qËvŒ2éêÍÿ3.Ÿ6nN±ŒÎÈ÷óýóÈ>ÏQò ¸;ᜨý§ ÕÏŠzÊŒ6ÂHÛRaçé~k—ß:bF»uöß›?hË#¥è)®ãœ0ÚÓÒ'æ)µx¤º'¹¥Hï%‚îKdt×;ò’'J)“Ñ43RlbþÈL)Ù<Õ¦ÔZ(É̇øPÓ|’Ñkj*ð‰æÖ¬ŒØü4¬dSmq–ºŒ%Þ=˜ÎÁ2œÈ7D5W@ÍÒj✘›‘ò›€WsN¨ Ê'|p Þ)ß)#\M˜W"£ùl 楂ºI‘ƒº:{ÓSšzL¨³gõRƒdr©¶ ’jÜR¼;D5i]+–ìJ­juç‹û«Ef-È4iëºï†nùÁ8át1/ec*zs÷sN¸0bêËá/—®&¦*‘Ñ4¦v ª%X•èŠXÕ¥]`míöY½™ðèš\ªm¢«~ ­¨OŽ>ntkžS3‚`*ÛUWúa(ýp6ÕÓ²¡ôQàãœç"oN™U(ý´ üÓ2ÂÕ„R%2ª§;¥¢¨I‘£¨:{´­ž†9{V/%<€&—j›ªÆ-Å»74újÄ¢9Fë\x}–}¦ÉrVöÛ“Ž=e–YýVrñ¢ðØùs8'T”£/^$k\Šìßj`À_äBNÓúG‡|ù½ýÑ“¿¸™sÂ…TTæ·wqN¸ ŠÊü5‚ðkd„+)*ÕÈPZTª‘µ¨Th$ŠÊD_JhQ™`ª­‹JEn)Þ]å÷ä¸n­Ê瀎ZÙÔÇi®î>öÎã먫ïü}ópQü‹ þEx/k`p¥Qà½x?çùøíÅÅ=þ0¸„IÐ"Ì¿†sBU&™’1É\i˜äµÀ7qž¿é`^+J˜s‰òoáœPÒ!©çG¶…¤ýVàÛ8ÏK6ëMqÂßXÄ5,×ôÌ)ãÔîÈ‹³HÓCÀrNS[äµp¯£šµóµWZ­¿ô·d¢‰*ŽîQ[k>M«T©•+ÊùTÉ–Ç…ÐNx1øÅÊr}'Ó¶V'4ã“”ÀMà)UKÉ­n—¯æw· ûê¬Õ\Ör¬6 LÊ'éþŠcOkþ® ³†RXÓ³bXãÑ×ÔÐãl¾üuÙ´^öÊ´^H÷À·GŽEY´^HðC‚ð‡d„Ço½(“ÖzÙ¹õ¢LR¤Ö‹Z{´m½„9{V/¥yë%ÙT[´^Ô¹¥xw_°Y°› ¶)Î?òãnŸ¶¹VñÌÉʬò•f‰6õçƒÒÑ<´¥Â¤còsv¨¼E·aÑì3ú"f OŸÓ8ÏiÙåk$ƒrîTàÓ9ÏE^ÀšQPÎ-?[F¸’ ¬FFXP¾F&(«‘5(+´GÛ æìY½”Рœ`ª­ƒ²"·œ•`7Ÿ#«BÌસ憀çsN¸0bäAøájb¤J+®j$EŽ‘êì‘DÅ5Ñ—#“KµMŒTã–âÝ‹5ÖìwùZ%—Õ-­tPg<Õ]ïž6züñçÑJcÏò¹üžã€²ìu2uühÃZiÔ´ÊEöAÚa¼<äÿwyX¾kÕ%”»øÎs),°¥än>È9aL[Ë®( o¾sBE£®ºA»¼ø0ç„iØåÀrNÓ.Ñ×ÙRúü[ÎsRëZC-2$c‘?Á9aùð“œÆ´ˆÜR[Òð)àç8'Th•å2Vù𫜦a•¿~s˜Vy¾°ýp°M¥WÝ,¢)8\ΛpŒ¦…VãÒ± Nɘô‡’õr¹±ÿЬΖљúùs5«B[K¸Æ×9ÒîœÄ ¹ÆÒúc K^Mª  ËyÞMÅKò»çy/~4<²Gé×€Sœç§bëˆ<²w·lÕŒì=ì­­0¡ƒk¦ :d%ØoºFƒ¢8-&ªO¯…F§ƒÇëKjæÛÑ~ÙµJèüÿâV‡Á¥fô…¸tÈÀ”Ü ðð ’ÏI”ÜÙÀ Á/Œí:š;cyú¾¹g.û¡Ñ?­Ã›ÀÈzÌðZ8;¡ n+-/#“”)à øL:ö›Þ °µ‰R¯éh%ÚW¾BVÕ)ôºþ bä³ ,¥Êt?ðQðG•ôp4ínå(cÚO¿þ¥tLûðËà_Žß”“l|“Н¿þ-e:A´Ð v¶ßòæ¹æJ ¿ü=øïÓ1×·ÿCls½¸›Â%+õÎs˜´+3–]5õJ¿KóúYUÕpª.owŒé%qÞ¡»fe¦YõÔD®ê–e8}Ú.O™ÆH¤ŽÏy[r®½Œÿã˜{.ç„êÜ=À—pN˜‚{äž|)ç„1Ýcéì…æÉ½ øFÎsR›šçzãBÆFo¾ŸsÂ4lô&à8'Œi£©Y³Ž±§åj×3t~Ÿ ç² Þoì ŠÓY Mœ„^áƒýþêŸúèU¥ã;õƒÒ1uÄóÝÊ\á”z|àQ=~ŒÏ·pN˜‚ƒäŸ¼’s˜ÒI“碛+p;ç„ÊÍ5ßTZ¯¹Ó•T>¸sÂ4̵8Ãy^ªN>ëåìÎ e¹7(T£jO±šñÜ<ËJï+Ñ`ö)›ŽQò„sD…¹<òElþfà·8Ï««˜IJBPÿÊÿ€sÂ4ŒúWþ‡œÆ4ö‘à-Wó?þŠsBEæYVß ¾i^•Ù5ž„þžcáxÎ Ó0߯‘ì œÆ4ßÓºÑÛàŸ?$ßÛP88À¹Ü95J+±tRÎãœ0#ÐIU8ŸóBü‘äÉf¤úÙ¼O´j¤ëþ1Ûm+H‘{yéi×ßÁ9a̧ŽÜË{1wž:ªéå=_8ûB(Œ‚=b›[Êî9º¢ …ÃX$ O­ï¥x62:{ÓÑ#ù6†âæÚr:=çàðÈÇ5Ð'RÞu”ôîtï•Ñ6•2MÃî±Â®£‚#O°R¦²yª!¬Ôš(Aɇ8Qó¬’Ñ{jªð gØ¬ÌØ|JX²©¶˜¦.o‰we§ ‰jpGZMúk H· ¼<ò!(M}ÂófIðAøáj"½êÖ(“9¬«³‡00®fmAÒ/%û/ä[²…Á€âœpAtÿYF·šÂ@‰Œæ FŠ {K•J´E.Ô¦] 懌ÞN+]-reVV öÉ¥Ú&Ø«É@âݳƒã¦ s|«o}FMæ¶ÂL©NÎ9Ï¥g2XI»}âœpAt¸ä— —ËWñÕÈP:X©FRÔ@¯ÐI V&úRBãh‚©¶Ž£ŠÜR¼ëÇÑ=5×›×ómiƒgÑf»‚ñÈÙùz¾^Y>Êí Ë×aSjIG¹Á¥Èr¡Sj)¹€çy#¶Ý®Ö…Ùâ„`ÝAÍ5œÞ²1fZÔqæ’®VdvÕg™Ñw;§¾—s˜y¶ì%ˆ%ª™-[д¨~¾‰À ÊüjɈ[u qh“Äišm'ïl\iƒ’_$ ®´elÀë03Ÿ¸‰_×'Z¶ŽÛÞXÏ»M·ÊvU[?6Æ|Å•{°.Uå%™´íU<3’Œ³Ä•¶7]èƛjó(h™žæø¶ë¯šûŒr¯Á-È‘Ý`ýYY÷tš‘?g/é²áš´–‚ÿ‚|×õœZÉ«9†ìš³x\ÂxMYÙ½˜ËZ€“˜[€ÏVò8%7¼üöØn°T8„a‡œîÞ ~ï“Á@¯¾üµéè>àëÀ_Û@¯˜µhÉ0iÃKVyÂqM6G¡»“Õ¤YÍyÞm—¯ >ìÍLÁ¢5#‡Æ"&žci*Š|ŒWè­<À1·’sBEžr$"-%ÔnÑ̲„Ó䆛9'LÁir«€[8'Œé4›û´íµÒó„ÀÒz¹L³Šfè9ÓˆâÇ»6Y?Æs´"rW_Í9¡"KçåLû ðœËí>Ý´¯¾‰óCþÁÝå³öWaÙ™Ÿtí6æëºz§;ùU€oJÛ«6à?¿Ï¹ÜÐXt~ øÎ c°ÔÈXŽQ2Ì)#Äj³ò* *š•úÁæ0wÙd7 γOó0ø9æ×qN˜©Áó—¯àœ0ƒç/nâpbw¯QÍ/~#ï¤MÊ®ŽqN˜A‰Ú„•Ýa;iµ+S ãÀÎ D™Z¸Y~³Œp%eªas¶æ•)UÕh‹Zª*4L»Rµ½ûgõvBËÕSm]®*rTñnôCCDû¡cÆ‘S¶5RÀAáEœ.ŒÈùbAø‹e„«‰œJd´œRí5Ú"GNu†yâ‘S¢E’èÛ œÉ¥Ú&rªqTñîe|“m×Öl«OÛb¸Þü±U¿§ÏtùXL}Ú kŸðM¸k4@¤ÅÈýßÄÓ|SY¶;zÞÍ`¿ý'÷=à¯8'L£ÝñÀ_sNÓÒ—øýºÔ›—êøLá7;WqN¨ÈÊ3úYi¤äàEœû˜¼I;W×rîc<“žÉ*lgÊèFë¼8ιʌ&“;-à$ç>¦`´ àMœûÏhû­Ó’1‹œá¼S]O6/ݼsS0 ªîwpîc<³ìœ3عƒŸæÃÏœØçѸ‰?‚IJ~ŽA›†VmÇÐ*ŒVü’Ò¢ÅÛ,ßI÷ÍuÞ ü6ç>ª1òñÍ‹Ev-—±ý€¿çÜÇlÿà8ïŒ"I!ú”`ðÀ?qÞOä {—s+×QÉ„½Ü[ø„½m-ª4¼Xs±Z¥ž)4ÚÊØ3ßû©`š0¨wÓ²­ÞÆÐcÉè¦ÈZ‰ êZµVñL?ûsøü£\0©>]f)LÑ4#‡i«gO꓆ӣUôÑ•~†î°šŽ_é¡yJ~OºAgÃÌP†öó¬kVÍŠî~CgŸ¶ýùNÞËóÍk û©¹~rîÜô\1Áî>m»aôøû—ûôêd…ýã Û¢cæ<{Ò®UlW+ ò˶è{õq}Z÷ÿ±>Ãouû?áë.žnVÜÈ.{üã ²0ç„i»ì&ÈPÍÓ.î²ìeG ¹›¡° ¼+VÈmza¾Ü·w¶áÉìb5àJð• Ãnã$¿¥™óU™ß±§P| ð$ð“dÏûå#«À¥ÑŠ Jn p5øêØþ½“Ò?x¸Ô~ù-ýöòÛQÛ±èT­¡U*¯îßý¤wØKWä°k7‚ߘŽÃžÔÁõŒvX/)wØÃÉaíQÇ4È]Ãêµ­4Îï¿ëIﮓÀ)ð)eîºx7øÝé¸køðçÄvW¹CÌIÃs/78ÐÌe#—eŸ/¬F0 !ñMÀ÷‚¿÷Iﱯ¾ü Ê<öeÀ÷¿/}1ðýàïí±g‹¿õ%4•èÍ÷ê–^™qè-úà÷À¿—~K` Ï uTÓXË[-êè6=ÿlGÓÅ#¿…3œ©±J«‰©qE¯w2z'÷•N¸\®o·é|=ÙU&$ç2 À“Î ”ÔÅÀ«À¯ŠmÔCƒa%¦œ“’­Àðeö‘\8FbJÀ ð‰t¬s=Ð7c[g°±r«><ˆm„…¹ã1Vt‘Ü=ÀW¿J™ —Þª™td0Ëfvù™Œ-ß|ø{Ò±å«ïol[ž™È:Òø>à7ÁÕ ÷.’6Û÷€?ÿa:fûGàÀÛl;› ÖºÔKëVô&ãúMÇ|#’fþŽ¹ÕœçäúFššÙÏ¥fÎ]\ÇyNjÅQd3çÎ^Â9aL3_4ß̉.×"õëwrN˜u¾õ÷7&|1ç„iôÙÀ{8'ToÐÖK·´"-¿â+©% z/ðËœfžCsßåœ0 ƒ~øOœÆ4è9 ;ÒŠöšgWY«£¤W¨Ùá~öWsŒé´éT·Ô^$EWþHÎ UUiù@œ„óÇOâÂ9¡‚¸›x¿â¢ º?,£[MØU"#töºµ¥¯m‘¯:ôíWrCFo'¤@h'³²Yx\ªm 5ÙG¼{¢ÐÐªŽš/¤»ë ¿…ßÈ.ø«OZôMà¿sN¸ âþ/Ý¿”Ñ­&î+‘‘Ìx’m‘ã¾:Ã$:ž¤X§ø)¹ñ¤DÍò“KµMÈW“sfeT™òD)ÿ )ÿYl_²ç¬¹Á½sÏYòÑýWwq¾8ò¾ÀÙD÷ÅKº‰G×­$º«‘Ñ|Ë&ÝÏŠÞÕˆ‹ÞZ¦]xŸ•2z=ͺEŽÌÊ`¡>ÁT[xE™G¼{Â@]ӱФnÚ¥ô„ŧOãœP‘Z…,>x:ç„1Ísh}Â@wŸŒqÎpN(iœÐâˆâ‰„²sk8_,µ2¬ÅPÎ^ÿ¹A<`š®zävHáZàÎïx8øuÀÝœ¦áàWoäœ0¦ƒ—3büQº1»æ`”ÖߨÓöÒw§£i¬¡£¥ÆÞf´³äyF×s¾XÝ’Œ6!~øiÎÇ_”y^Jþ3 ®´e\ÅsLÕl¼˜oQËV¤¿ÿÎq”ÔÒ‰»1WØOÛ0îcM—r0ìKDÇoÜ\wÚÐÈõüÏkë]4qòÿ5âVõJE5ÆMk¿î8úÌý¥R逿W÷J„‚¿ 7çÝjú¹ÖŸjò•Ã*C»oŽOx×ÓÍÖzw6S¼{ˆßÃ|÷òÆGfÿ)´{ùÜçØ½bþwV4¾3ûO˃ŸY¡îÙvï<ðp÷þåøÜì§d:ÐöQwï_o¯˜óíCš<4ûûòQž\øüþcó^¿ow”Ï&™çå­Üü ú¹”£×õœÙTá,Û?Ç–òle®ýiž€+Çô夜¹ñdsݘþ½+ŠJ¢ƒ8.ú!ç‹"ïTÜ´+êà‘ê¯<»3*¬Ca‘_zE/Lý¨!xtéOtÉÿ_8þÿ…ãÿc…c´n4e¹1¤9YnÞ–l²V[N2Ñ–AQ¦‡>±˜8+>2r]RU¦v5¦LB_” Æ“<ÒE~”…ØšU”F®Rµ°Áœ¿æ˜&ÑÍ›l=¯ãÿ±G¼¹/M”ñ£Æ•¶Œm°_€jºôŽÄ9¿~∲¶C á‘àG*ëå¯/ìÙxɲ¨}ý¤èXà2ðeÉ÷õSrGO—C‹?™„$œ,‚•Ùæ°À6—l\{©”uú烟ŸŽuºkÀ¥†Ïæì@IgŒì©¹žV1÷F &1ÃÀ+À¯PŸ‡$vØ"EÛ€#àR+¹¢[iðzðë³ËC7GÁG•Ù&Öög$Ézà^:Æ)kàµØÆ9±G£áI£Ä”ìÑŒ}%cÒãóHØl x/ø½Ò 3YËOÒï¾üuJº(^{H‚„? #<þt9e2”®åW¦*RÓJ­I’XËŸô{iÞ¨I6ÕsÔ9§xw;­Ûv ¦w ôh®Ícç´¡¦7a8Ú8»§knI¯eͤÃÏLo&XóMS|´²©Û–^Á#„,>؃ËÏ^–n*í€{¨¦©´”7•v‡xFu5„._ª,"ÉýGZŽ~|ò5ˆ«ñAÂÀOˆmŸ ý3çïØÇ\Þ«•gàñcf‰¯½šµ›¤=O>üêì)5½´è@\ÝŽ\-íyp |,®=ó—r{úlœÈÌJÄŽþ €þ©rÞ̤ê8·µîTY¬•&ØwgÒÊÜ£V)ÓÁt†ë™,ÜÚ„=Móålk¼2#l{ÒH"8ç•¥2ëpPÓjê$?ëœX& Ÿ}izÂðã0}X¯Ú5ö“ö¶ü7,ƒ¢1O×Õô’c»nSô¤n?{B·OÛbxÓ¶³wöùõZÑ?1z¯eO[´½jî£G­ÿínÉÞ§k[n7{€J…Ÿ0Í~ç*:ÆM5“=BÓX4úÆûz´ízEgÙI£2¥Âþ=40°‡/6ÄÐÆ£¦o<ö‚«Ì{*Á÷§tK»Ì®MfKÃêÑÖ²Ç,»=Ú™ÚvÏÜcÑŸØou7ŽÀfF3=z¡þg¥]U÷Ï™.º†á¿UÌXuÙG+ö´ÜYäÄãóïâœ0ë|ø!Î SÈ×ùwáœ0^¾Î- â4eDœm.NMmžÛ…œ@þO9§ž «†îú{Ý4Íþ¾äÈæ®?™™Üˆ~´Z«x³ÝÇýú7&+³r1²=ÙI#7ðé‹ g¯1Sσ瞻ú|í –QLæÂgjÛô+‚Fkî„oewäúâà s^š]¯~µ“;vÕÔ¯ºÐmDβ» ° <ÞÚ¨¦+`˺×7ꛘ,+¡Qö‚÷*ÌÂ,Œîå7—þeŽðƒ( 3ñŠž~’¬ây¿|$°¼/ùpFÉ-öƒ÷ÇvÛ|Œ»Á“qWÝu™_ ®”Ðx)p¸ÔâTÝõà%à—(s×ÕÀ«Á¯NÇ]‡€;Áwfä®ÁuM»ëRr×½¼¬¤ÂQB¤¼ü–'½¿À½à{•ùënàðéøëµÀ[ÁoÍÈ_Ÿ ¼ ü6åþz$ùkY·YóѲ%+÷ßþ–'½Ç¾øð—(óØ»ok:û,àÛÀßÛc÷ÈŒ3’†‡€ï·r¯=Œ¼¶äèck[/—ø8ðËà_~Ò{ì£ÀO€B™Ç~øð¯¤ã±ï~ü«±=ö2¿Q\ï9ÉêÁ«¢KÌ ×pžSyg">Ÿ; ØËyNº¡9ï—OsN˜‚ÏçN^À9aõŠÜ…À‹8'L¢\-•jNyfh`h@BäN`™sÂ'¹¿nnçœP‘¿¢ ›38Ï¥0BÉ­Žqž‹="_«È+œçäÎÆmå³O!Ÿõü¾x·Êйþ†ÜíÀ—rNø$÷Ûà39'Tä·.ðeœ¦á·UàýœÆôÛݼýæøC_óêþvý¡ýð4TU1öiÌ<º¸™…?âãHXíåÀßrN#CÌJ•=£]Qþ`àÎ Óðü®áªé–z£äJ¼Æ?Bô"ÎóÒ‡&Ìûåßá—åœ0¦nä{ØhÁXN™=wÍu±+ýyZÕ°Ê4ˆd;{Ç*ö´ÿ´¤³Šo·l7ðjÎóR}‡íûz÷ºc[r=ù½À}œç÷=Ùco~8Áy~B•ûåG€3œ¦{ó¨¶åoæœ0¦×ïvnBØÕjtfs÷¹cò4êJí»› Í5,ÿ¨šŒ@š’K“fØ¿¥3À~à9'TœŽ¢ 0¡»®Q­èeÉLð¯Àßrž—*RÍßþó¼ôš¬y¿ü àï8'L#| ø?œfÑÐËÿ/ð÷œ*vÙ#Èe'õñŠÉÂ6sØ¡è* K'sNøävØB€‡r^*Ú›þrðÎ ÓpØ? Yó‚–ÃÐ1SXÆ9¡b‡õûÑ*ö¤q3kß+!c¨…K8/HΦæ­ýÀs8'Tä­ÝÀõœÖ§â­…Ó€8'̪_¢€®™Â&Î {ì¡ä±¬Bc1‡•ì( ŠY¨rNø$wØk»9'Tä°Ûç„i8,z 6ç„1¶8o°Ãj6‰6òÜS=ÐcŸ‰ïK?å˜ç„YûRþmÀwrN˜‚/律sÉuqâÝ‹…u¸Ì¼–íÑ1¥[U¯™…™ÕLGc5zÃa.Ò§]‰:·ßv¨IÕºýEm„ÿÉ9¡"“66t‘«vS?;a!ÇyAªíݲÿ…dóœÆ´ìºëît¬zuYÞÕ]Z%Ê‹ ¡m&sî<=@¸žs¹ŽµlÏ¿–wÌù¸u;HÝ»°K¾KF¸’º·ÊÏW¦,jí[¡YÚÕ¾eÏOúֿ݄Lµuý[‘“Šw‹ZÙ`e¨Y¯hÏëÌ®ÕÕÞ µ·J«}ò9LÏóLàË8/Džj×4Ô&{(%é½_Ð}¿Œn5‘V‰ŒŽV¦-r¬Ug˜ ÖæC\GþÈaõ:ÅOI9œ´¹ÂÃr©¶ ÿjrŽxw4Ø ÃßçÅ.•tšâHC¦EÍeª’³–ºÐZ®·ºŒ)ê·§ùÈF•ŽG`E‡åš¬ñ…Éc1Õÿà9åæô´lm­“kmþ̱óÎ ShmþÉvqÞÿ,Ò­˜àʬÅJÿš]s{ù`XÈàWí¡ÃÛg4»µI·\tCw.^ǹj -ÝSÒ9 ãÜÇä-Ü9çÜÇxÞ<¯×Mìp3öéÄ„Œ 36 näóPéQ&€suCkBå“¢?ιrYGGrç¡’ÂO¿Å¹Yçïÿ…sSÈ!ßþ+ç>ÆË!f³óPgõ gt(*=æ9.Ú̹iÔ2:?ˆ„·pîc¼÷yN %eƒ+mÏàÙ¦Žj¶­’;õ:¤þã(©Eõ¡¨ÿ÷ÄÏ}c¯¦'…ü}ÿw¥¿Ý0ôÄÎ?ºaù¬ÏµùZzÇ¿q!QEâO3çä üT‚‡ÀÍ}¾ößâíêõvÞr •ècËç~L¼1Ôìûâ·W„}{ÅÜo‹7–ÏÿÙ'v>êß·?ìKÒõú\^Úç“9&5²“+õò6Ï4ï‰Ú{uL·N̯U•JåÓAýç‹"·ß›v&~T*Iþ߆tâÑ¥?Ñaÿ¿Èüÿ‹Ìÿw‹Ìh]½Ê2fH£3ä »d“ 9ÃNY¢ÊOMM,<Î ‹?‘SS¥b¼cSŒ‚IžšiÐ{â5¨ã” šl  yükoýÂÉÖþ:þ+|Ä»‘ûÝDÿÛ¸Ò–1û˜õ®õ×Car»Öûk`ÇLË<÷ܨk`I™<ül…5õk`Ié1À“:TîYO¿x$°¼'ù‘Jn °¼7¶ÓJ„Iú€CàCÊýÕßeÀ¤…™´SBâeÀàOî]ëIé…ÀõàÒ{ÌûåsWƒ§°k=%·¸<þ¼ÆîÙ‹¶MkÊ®LÑt®Æ€^äUÛ$sð™õÍÃÓ.›nà9¡Žjʦ·5Vm×—Mû«ª'ô)CÓqB”;©{¦^¡©#cæxÍñWkõÔ—ð4n7–r #¨4È_Š¡Oéf…_ƒ…Ò³‡Z{꣧µŠN' ã©ZÄ·µoˆðmàrûv7ë? Ò†µ[é% jg 1Ë a£ë¤ï=ÀÏ‚VZgGxÓöÜä?ü<øçc;ÕÁÚ-šÔaƒ$ã À¯ƒ=ù€DÉ=üø7â¿*¹ÒG*¾ üø÷b¢³R%•±Ë¿ þÓtìòÏÀŸÿ,¶]¢ožDéÿøoàÿ¦Ô"C2ùoàoÀ“ŽE~ü-¸ÜÞ¨âÝùA¬„ 5ÀŽQŸ¤ãÒ”¾½à ?²­^ÒøûwèmôÊOV«ØÖ¸éÕÊü´N*…èÝÚ¨N§8ÚÁTƲéz4k‡}otF+cz­âiëk¥ŠY6t §Žòõ,†•û´MFä èýüŽ£¿—ìï8J¾§8ËÌ‚­½£é‘îWßÀy.ò¢VúDÚëËHðƒ‚ðe„Ç_õ LFó‰|#ÅräÅÊ$5O5¤ËQ­=Ú-, uö¬^Jóž¾dSm1ÙO[Šw7òe|†x_Yõ¦ ZI0móý†k·;FãüMF¹ä„rñqþ £®\–;/›´ `öwÿïÉÝÃ#Ì9Ì´6q˜–½®1]¶hŽÑ2í;mù‹¸ùÉ£õ’º2#ìÀÕ£¹&kÏøGÐKØú8æ·rN˜µ­ó×G8'LÁÖùmÀë9Ï_ÛÖ/šs°®ŸYY#Ü_0ByÚã‡%ó³sŦ~=§‡nÄ6os-ÞôBƒŸÐXÍ*yØp=º{äoþ‚sÂ…TáÊÿ;ð·œGß[:£ Wþw‚ðßÉWRáR#Ci…K¤¨.…öH¢Â•èK ­p%˜jë —"·ï>ÅoâR¸ÔV‰¢‘ä³má`Î 3ˆ—4ëB2d>sÂ2 G –®$dª‘Ñ4dïJ|S@\ŠK½±JJt°^‰ÿ¢ŽURòUqÅ”±ÊKõšëšº¥I/¹)ó|æãqàÇ¥V1¡Tf8VIÉŸ,à‚«$Á§—u,˜±J’{š ;ÞXÃܶ­º^%:3éUQö†#ÕTÔÚ5‰^•d=/v¯J§¾Wå¯ÅÏÄOIɽ„Õ¼…Ÿ°ºZGÚc•”êéÀ Ç*)ù¢€êÇ*/]{õ²Q¡c•¤¦˜âX%%× Ìp¬’’_%`ºc•”êj`†c•”üÌX% ^Ô±`Æ*IîZAö“u¬R‰ÎÌjÕJÞpäÚŽ:»&U«NÎó”Ôªt¸djÕ ~&~JªøHî%´©Ü.ì„Õ½øôÇ*)Õ‹ŽURòÌv¬òH ÊÜ0ÔÏBÆ+—ÖÿŽ?K†ÇK“à“JÂc²c–¤÷&A÷M2ºãY*“Ñ´yZ}̲aûÈã–Ê$F.OÔ٧ݸe“,’ÑKj*ï fÔ¬,Ø|ü2ÙTÛ”„jò”xWª¸I@\ŠKÂñKJÔzà^üwuü’’¯ ˆ+¦ Œ_VLËÐM“¿4üÏp<ü¸Ô*+”êñÀ Ç/)ù“\0ã—$øಎ3~IrOd?YÇ/•è̤§EÙŽTcQk×$zZ’õ¼Ø=- ;œúž–¿??%U|$÷ZTó~Âê^|úã—”êéÀ Ç/)ù¢€êÇ/7mܲ,DTèø%©é¦8~IÉu3¿¤äW ˜îø%¥º˜áø%%¿FÀ3~I‚‡u,˜ñK’»Výd¿T¢3³Zµ’7¹¶£Î®IÕª“ó<%µê.™Zõ_ƒŸ‰Ÿ’*>’{ m*· ;au/>ýñKJõb`†ã—”ü³¿<¶8¨õjXS¦m,–µ5š¸ìòhÜnË®À¤¾x+ø­J‚e²£™¤÷™‚îgÊèŽ?š©LFÓâäÄ‘b˜'DÔT¦4r!£ÎLí5ÃóMF睊Êh¹7+{6âL6Õ6…¥šŒ&Þ•*'ž) .Å…eÈ'%zðvðÛ㿃¨Cœ”üâŠ)CœŽ¿Ë¯^ÑnªéeúG)ª‰ÆüÏp<ü¸Ôê3ôýãqÒ,à‚⤤O.ëX0Cœ”ði‚ì'ë§™tÆ({Ñê/jíšDgL²ž»3&a‡Sßó×âg⧤Šä^B‹jÞÂOXÝ‹Oˆ“¾:0Ã!Nú¡¢€ê‡8·­Ý±,DTè'ýn?0Å!Núb7peGfCœôC«Lwˆ“¾¿˜á'ýÐÌ'%= ¼¨cÁ qRÂkÙOÖ!N%:3«U+yÑk;êìšT­:9ÏSR«NÐá’©Uÿ5ø™ø)©â#¹—Цr»°V÷âÓâ¤ï_ Ìpˆ“~hƒ€¸$eÄâ<•Æ@Šª¹aHë׊ƒÚÙÂ_‚±ÎSðÁyŸ >&>/Þ~’ð™ì '¥|¯ û^Ýñ=•ÉhZÀœ1Rlë‘G?•IŽ\þ¨³W»ÑÏ'¥2ziMåJfì¬,Ü|<4ÙTÛ”¬jò xWªP¹W@\ŠKÖñPúú}À—‚¿4þ;ˆ:J?ô2qÅ”ñPwrÂpÌRãpÍÈK>ÇýÏp<ü¸Ô*?”êñÀ ÇC)ù“\0ã¡$øಎ3JrOd?YÇC•è̤çFÙŽT£Qk×$zn’õ¼Ø=7 ;œúž›¿??%U|$÷ZTó~Âê^|úã¡”êéÀ ÇC)ù¢€êÇC·_uÙ²Q¡ã¡¤¦˜âx(%× \Ù‘Ùx(%¿JÀtÇC)ÕÕÀ ÇC)ù5.˜ñP< ¼¨cÁŒ‡’ܵ‚ì'ëx¨™Õª•¼áȵuvMªVœç)©U'èpÉÔªÿüLü”Tñ‘ÜKhS¹]Ø «{ñé‡Rª3¥ä7ˆKRFÜñÐ^Ðk°ïœ`¸F;[hüë†åÍÖ>]øÒ¬ïÌþŠìÚPz3—ß þV%Q5ÙaRÒû6A÷ÛdtÇ&U&£i¹3ˆµ¡OÔe"™*“¹ˆRg»vC¦s]F/°©ôøy?+Ã7IM6Õ6err L…`­¢;MRÖI˜ à Žq ¨㗔üCâŠ)ã>X¹Åö Í›Ð=-¢ª îó>~„´ª<îöD(žƒ¢yIûв¥'8x:øéJŠÑƒX1ê&WŽ’à3ágÈ_Ž*“ÒaPŒSJ*©”Tk™\ãÕ4?HZ¾ Lúõ4/K’MµEY¢ÎUÅ»‡i¦«7ÕôŠæÙZŒL<>˜IÍ ÊFÏ!àùà‘»º³Šžkákd„«‰žJd4ž‹FŠƒR1S‰¤È1S=ÚÅÌPgÏꥄGÊäRm)Õ¸å¬ÇÔÌ1-F>½üÂLäÁA)+'/^~ÕB‰“[á[e„«‰“Jd4“‡ŽÔ«PRáR‰²ÈáRYÚ…Ëv®ŸÕ» šÉ¥Ú&jªqÒYyBÓ­²#Û^ ~u6õÊÙx¹¸|÷B‰—7 Âo”®&^*‘V¯ ”J$E”êìѶ^æìY½”ð™\ªm"¤·ï~U³½ Ù6]£OÛ1ah“º£W ÏpÌ›ý ë4{LcŸÐ¦tÇ´k®æzN­äÕÃ¥¶û¨îe}ê*Óš0LÇöîźÇn‡ºû´–ëz™~h}­T1ˆnieÓõt«d¸=ìÛ†VbÒ+®­Õ\ƒ+ªB«ºë§7:£¹†ç™Ö¸V$I5«l—jUÃòŒr·¦;ã>×ä£5mˆMÙ½“#,…M@$)«çsžS×v €HÉ¡C"·†ó\üIoK¨kÇ0}›F7Mnx)焊LsȲª¾Ï¬ÖªËd쳸“sÂ4ìspç„1í³V³?‹ãu4rÞ¨áM†¥yÓ¶6i›–Ç2µ[›t ú”e;Õî¹~»Ü5ÀWpN¨ÈªK˜U­ ÝcO e×€qN˜†]_ |;ç„1ízEÝ®ú¨kWjžÑİìnɶ²i±­M%Ïv˜‘7 楟²ð;€¿åœPU jÙx©,eÛ?rÌwpN˜†m‡dsœÆ´íWê¶w Ýë-™N©"Ø·¸ëÒí«WhF¥bNº¶Yfe¨7a—ýÂØÿZ…eK¬ø¦¸2ãçq*ãõÑ Ê«Ð_é³¶5nzµ²á—íì›üE“•âFɬê†L}mšÅy­jZTQ0Ç-××¹Ëp=ÿ»ÛY=s‚9UµÆþ0jhî$ûþ˜i”û¢ŽìÒëÌ¿Ê9aÌ×y€ÙäîYG\1eTùóÆ1MjAºç˜û´ Ýe%fôò {ƒ, —ìê$ËÛå9õ¨IÝu™õX _¤ïiökÌ+ ¿žÄò5™7â#ïÁcVÁ«ÙV—HŠœŸN>kSrpø¾ØÆ¿ ^‘Efe& ²)Ë1v­RökÉ:å­j­¢5tú§Œ5g€þ7ʬù4‡åz»ª k·j,Ý¢±üo82æýð+à_IǼ ü*xüs0‹‘¬&,•í¾üøw”*o–e¬òCàÀ”ŽU¾ üð‰m• –騠+ñ&/k¢ZLNP¤•l‡µ@'m«L­OÇžî/±*UÕòËIÖæ¥êÜ`]/ß´)S— ¶ÿÊ1wç„ÛÜ6àÕœç¤zG#Û=· ¸“s¹&ל¶i=ØF-ú÷ðÆ—:dzú5½Ü®uTSéâ5íFd­@axW,m湇•u¯¯ª›Ž140x®„D ØޣЃ+¦µ—ß\ú—9ºbõpi—P| ð$ð“dÏûå#½à½ÉçfJn °¼/¶×nô[¬lìÓ«“¬=dS š^y¯né•—U¥üh®³ÈÌ"=k¸øq½Â£~½g3r, ÇèNƒKU@ãÅ¡:®0ÂcÁZK‹(Ç‚ÂCÀQVx-eUJËbmXÉZ¥…ž ~ròžOÉuO?%¶&ëmz5¯kÔ7ÏZyz¹¬¡&nŒ%Ï Ú~U&²2§rC_ ~vÊ=“ŽQ6©O¨Ñ5@ÕW)WЀ/±2W8”çÜáe—®~¾3Iºøð7¤ã÷0¶Ú§]Æ=2uMRòFà»Áß­ÌF‹üÌ*cœ$ã¼øaðÇ6Îy SU5 2&oÌø-{–ÇXöL*·™­hô÷õȘòQàoÀ£Ì”' ­z¦”ö6d0'ÿÇܱœ¦aãß"Ùã8'Œiã§vû³#jtëåŽörž“ª“5¯:ÃznÅž4\ i+sN¨ÈV¸[k¶b­\pç„1­uŠßìgÅ#ÏŽ±HFÔe w p”sBE†;†3-–ÉJÆdÔF©Ú ¼™sÂtlWîçœ0¦íž®Õ,!]ßjõwBÑÕ1ªö³è˜ÃÞ–\A˜»øfÎ ³.sï¾—s‚dî-À÷qNÏt¹Ý~AØÍç›øeU2zKv@ƒî3ôkÏ©ºòìjZÁè†ß`LwÝZ•gäQê7Ø ÖÄ«Yõ†]Y+ŽÖm{­DÍÃ9IÖ€}n5ë±Z…DÌm_RÓ“ý&Õ£©CÐv^^¸ìAÐÒt'ÌÉú¬î‡G+Ù~BßwÍ›à50 F ¨Ÿ•´%›z‹.Ï$ZÒ+C2l½ŸcáÎ ùû ³ßÁ¬·]há8àrÎ S‰`…#+8'ŒÁ Ý‘;HÀ9ÀUœäöæïFîh°¹ë˜u§ã$4&×éx8u:Ú£ŽiXCË%4jÀ^p•=mê{Ié1@µ½Žô‹GûÀ¥ºÿ¢•f”Ü`?xl·½â ô:6J½E™9Ѓ o—ªÒÅ 7!˨4ìˆ^s PM8˜õ)^9ˆZƒsàç„Gƒ¼Ï;ðsÂcÀ‰m›ÕÙ¶õÇ’myº_#r ÆË*¦'êcW‚_©Ì’q»IÕN`¼œŽI¯àFl“ÞÂëÆ–Í꣎q*«¯mjHÓå–œ¶½~`+y•V“vKŽ9JÕOVeí¯~Îdµçzµž¦*Ù–AÓH©Ý]6,VÝ*Ó´n ·þü‡Òo ÖÂÆ‘q½ZÕo y‚– uHþ€¿ÿUÔÇ O¤½P‡ÿZþkáþk¡Ž2a ãF^¯£LYóTCÖë¨5KÛ…m\?«wÓ|ÙN²©¶X¶£ÎIÅ»§ù]]Ål!ÀÊUÍ=s ‚jçÈä„)PsG—qN¸ jî4Aøi2•T52šÔƒY@e†• ¦jTE ¦ MÒ.˜¶rù¬ÞKh M0ÕÖT‘sκÛ'Ù¬k)BKQ] “÷7K4GrýÀœç¤z)#7GrÝÀs8ÏI–0ëÜÙhabλGóNFýa{Ú8†î…Œ%4úîƒ%3c¦ƒõ(hßÔ‹ÍúeŒ Tf"wÇÐX |„s´»c\Ä™ÕtÇ,åÝ1»&°l,¢(B—‚/U—cäúdHÌÑÀÀOH>Çxø á‰à'Æ6°]1®š5"$ó$àzp¹]­›Ö nÕµ[´è HÎ&àvðíéopøŽØÆ;³±|‹Öö©Šö$UêõŠüÒvÒx5ðfp¹þá¦6l“1ٳĕ†Éöo¿=¶É¶‰¥>gÊÏ^Ëž¶fµÍ0¦B³F˜µ¢ÙgDŸæEÏsðëà_WfÞ£¶iÃþ‚Á¢Yflí„UÜ[Úû»Àÿ÷tìý à/ÁÛÞ²+·HÅ ®n1tÙEÆ,þüÏé˜åwÀ¿€ÿ%¶Y®¤¹|ûÜÌ,wÖ½`e0kÂ_àO°Ð«Tm¬ÔêÓ,¢[—ª2>nA]k‹2ëJ¬Ë#!ˆùþB©«;RÙ›‚’»¸‹s{S”Sb£dМ9VkO)§š4;ËÞe“Ýt¨õ¿êưø5ÀG9'ÌÖâŸ~ŠsÂ4,þðqÎ cZ|r¾Åa-?Ó¸QÑù`Sc¥i5â@½ nR³µdWdÒÓ~šc~çy¹©@ʪTùó\)?p çùø[]&¬}ßá›’ÖØö;ö4ÖÙ"Ç&`Ôü0ðNÎ 35êó\iõÙÀpNÓ¨5š/þ¾´”Á¶˜SƒÙ×5˼©fÄŽÏù?Ï9a¦ñ9ÿ5à×9ÏKUÓ£[ó ÀopNÓšO­Çç¾8}AùoÎ9aæ}Aùÿþ–ó¼T5=º•þ ø;Î cZi°I_P}uº„ܘ}BùÿáX8‹ó‚ÜùÁªû„ }Às8/HõEG6b¡\É9aL#înô Ý !Ý %ƒo´d±Ï÷h4#Ü߸K¯T¸mêR2œj}=™_ŽnrškìãË8'TdòÓê‹Êü.‡À{´€Ét?^ü(ç„ixÃýÀqN7ðÂü±À$Løqà×8'Td§ Fƒ¼ÇhPÊfßþ’ó‚TßMt›}øœÆ´Y'åB ý'ðWœ*²‘ÖÄF=”¹8—Ëc¿çØy,ç)¬Þ¤ddãœ0¦½btñu<•sÕØ¬“Œ$a—NIgsîcòvé\ìá¼Sjo•øÛ¸“„^à ç ÷õ¥Ü"c”ÕÀó9ïL§±Þ9\ÃygüÆú¿3¦isœê#ó6•à»UÚµIúwc…»„UÑTï¼sÕXµÀ¢¢ŒQŸ |>çé4Ö;1øÓùÎ;ã7Ö¥sZÜ÷rî£2›He´W_Ź)Øä>à«9÷1žMŽœ=-%úªA’ƒzpç;9÷1ž¬ÈóRjܸuT2/%· «›,Ü 6{â­¦"µˆ<­bè4ûgrÒ±÷™,ZÑ.·þº›o…ý:êË})rÞ 5¬¨imìóÜ>mûm,ÿbí/.¥>«ÈoÁ‰Ûñ”X%žý9º’¥˵_átLè´lyrb¦bÓ‚fÏ,i¬úf;3š^µY$µqÝ2ÝFÛn²¢[žÛ£Õ¬q³‡ågÚ¡×7ÑxS0ؽrÎsr+O›nJÁy~³&tSŠÐÜNš.^Î9aÒ¹’[ ¼‚sÉÍÅ»½Í6ˆñ]¿?@ËN!©›€û8ÏÉmY«¦£›t<³Á•†åf€·qNÏrùÓÂ,7+÷6»@?\``׫•…ñ¬Y+Iƒq±n5}Ÿ+ÉB‰YòO☰§µ*E¥à£ýt‡¯Éd±ŒvOð˜”њ缡¶ÖZ ž`¦Ï_ž½Eß«ëÓ:ßÔ›…Û?ícp¨Ûj´€L+3Ùf… ^K.Ëô¨‡H?’odöRYzúz¬²é²PmоvÉä/Œ~Ý5¦ü}\ö!¦Õª•*†í™eöžíÊ K{r‚‡Ãí[®r»{4Z­û›³7ÕÌŠ9꘵ªVÜtI7B(=+}ØÔ<ÓzÞ&e6:çÁ¿aÇÆÏÌÝŸ!~ÔÍ=‹cáœ*ʯ‡ êZ“ù¶ðvàû9'L!ßÞüç„1#îYèTŠh1÷úž!Q+&‘¿ÃyAÝŽÍR±¶ðÃW6û.ðGœÆ´ÙÕM†ú7]ÒjÂoFÓ*Ujå°ØµBKô/;WqÞ™ÁnÓÜ=ê˜õòû}Ð@˜ÀòûmnI¯Q½ŸÄ <º#µå÷”Ü ºå÷C³‡÷»‚2>è|‰½ñ8é=¸|c†Á‹t\% ®4Ìw9p+øÖØæ;¡a>êBóý¹Ü§í’”#aÛ€ðŠºfÏkÃËh`q™ŒÍ\à3ÁS¨ÜSrUàmà·Å¶Ù"¿ÿ@Â:Ï>üÙʬs0¬3 c˜_þ’t sð¥à/m™16Rð2à+ÀÕ@v(ì²aí¦íëelóðíàRgE·Í+ïGlۜȚ_–í8ª ¡y,éÞ ü,øg•Ûl«AJº/¿ þítlö9àwÀå³’“ tß~üûÊ]ä¡’óà/ÁS˜L@ÉýøàÙL& ÿ üø¯”Ùe ì²cÛÕRqî÷sÎ Ó0ͯ‘l'ç„1MsP·ÔŽë$bp ç„1¬ÓÌJ•ì©¡Rè*¡VâÐÈÌ9¡25ö+œ—ìQÀS8'LÁ/r‡5ÎsZl¿¸“aJüH©F×°aÑqƼW»ŠV›¸¸aÖXzÑßÛ›ÊÎhÓ†ÿÁÙÛåÒçü­oÇMËøê–.gs§ßÄ9¡ê{Ι‚Ö?W”ðo9'LÃ9Þ üç„´´¥€áœPqA;$c˜ÇÿÀ9a†ù(ðóœçä¦ú‹waÑœï!aœ/¿ÁyNnÆ}BñüGÀŸqN˜F<ÿ'àÏ9'LÃ3¾ ü7Î czÆåõ0Ž ºy/2Tõ'Ôzi¢Y7t££Gjò5=Ç/8úËÎ~Ñ!»ìŒîÆÙœë¤â6­Wa¥Qq[w·Ö¯…‡ƒsÂhÏFŸH{×.| ü:áþk×.e2š†›SGŠ--y;/er›§²—Z[µÛÎK*“dõšïó•lª-öùRçÎâÝOjEïZ^ùVÏŠÔ,zßl86ŸœÐnÎFcèÑmL—¨˜ž†J½cÛ´™nY8¾Áà34Ó Ž‡f|Ô—6ë%¯¦W*3š?&y³A'¶o0-úSä¹Â{,œÈyAn—¡6ù)©Š|á4`?ç„)Ô '8'̨"_žÃ¹ÜJµ–ùå2†Y\Ç9a†Y ¼„s˜†yZ·f[,3±ŒJoÕ­yÖ¯åœ0ƒš×¡L‘¬gž¬r^¨.zVÁ„[2•ԳÔÈh¾ýˆXg©U©µV¥Ð2íjUO dõzBëP ¦Úº¥ÈUÅ»;µâô„ÉÚ·s*QsêJsñ¢#Ùl§Ô*ö´áz¼¾}5ƒølŸÂ³ImwoÖÕ 5@¥³®$Î@º“>xÝ®9úÐÀPØx\+‰pa¼NJžÔ¡ò$úÅ#½©¼NÉ-öu¨:x]jÕIè._®Üa—ÃVÌêÐÀà ÛÁUn0šŒ»^ܾA™»žÜ¾#w]ÑÑØ¼tǘîºÑŸŒÅ~¯­08h&„vÔW†EŸ0L±ø:ð×¥_tíçù¤ŽjŠ®­˜0Ì^š¿Ø£¾Çbû>]²uŠŽc;®äv¨·àQ·‚ËOÖŒÓR 6\ŒÖ>#ÝÛ€×_·Úg$xD>"#<~ûL™ŒæçöŽwFn•)“©U¦ÖíZe¡ÎžÕKiÞK6Õm1un)ÞÝ„)G™þ¡g#Èò“ÍMŠ´4×D›ÔV´Õ*zä¾Kñ‰Þ þVeíàªîŒSŸ·„ª÷ÿ\Ýä§S‚o~<þô[Ÿ@¹iº†CGc½;íÒ4ÁÆòÃ+é[¬µí/c¬oùÖìH>ºr›.Ò³?ÂÑ?㎔½¸æ¸ì‰|$ðRÎ Dœ»L~™Œp%E°¡'òÁ¸2%±eQKb…fiW·sý¬ÞMhœ`ª­ dEN*ÞÍË´Wê:6BÇÆLbæâO¯ÉGÌË×pN¸0"浂ðke„«‰˜Jd4˜],bú¦•Š—JtEŽ—êŒÒ.^¶vû¬ÞLx´L.Õ6ÑRƒŠwå¢e ãÐ!?-(Þñ¤Î„-+¯ŽsN¸0bå„ |BF¸šX©DFèñ¤Ì°R‘R‰ªÈ‘RIÚEÊV.ŸÕ{ “É¥Ú&NªqNñ®\œ t˜Ðaf'ÛÞ6VîÞÌy.òÑuYÅÊý‚ðý2ÂÕÄJ%2B[â0®T¼T¢,r¼Tg–ö-ñÖ®ŸÕ» ™É¥Ú&fªqRñî!´ée¹?úœ\QÎsGFUÌðãÀÛ†Í;÷pN¸0Âæ½‚ð{e„« ›Jd„V1™a¥B¦U‘C¦:“´¯b†»|Vï%<\&—j›p©Æ9ŻḭnmBŸ2´Qð4{”Î 2ÊZÑ0ýÉ5ÍJUßgVkU­bî5*æ„m—i°É1\ZN<›|cO¦maÄ2Œ¢Oó¾V#]Ø;¹d[|@“4• ËŸN:ùá æ7qN˜A„Ïm– ïùÍÀœçw.ðžß%ß%#\IxW##lŠÈf™Ø®FRÔØ®Ðm§ˆ„9{V/%4°'˜jëÀ®È-Å»§vóÝ¢ùÄ’mŒ™%S둉§!s:“è¹hdÔðtÙºølÎó‘·äË*‚Þ%¿KF¸šªDFó©Y™,+E•ÈŠEÕÙ¤]méôY½˜ðHš\ªm"©÷ïßœud ÕW™Õ¤¢¾ ïi}܈B÷Ÿ6T£OÕ†µâ5gíºæ¬îö÷ПÁͧÖovßPììæ÷$Cîë_åœPAÈ]ÌBn²÷k‚î¯ÉèVq•Èhq)6u©¬Dfä¬ÎFA·xQH~ÉèE5•%×feÊð2#¹TÛ”j2˜xWö,IQÍw F~W׸%D×.æN›}_Ÿýò-ÙÂà»ÀÿåœpA¿tÿ^F·šÂ@‰Œ¦…Áá#ņ½¥J%Ú"—ê Ó®óCFo§•®¹2+«…ûäRmìÕd ñ®F›Pçö´aŽOxè¼Æ¬rË)•…c9'T”Ís»ÂÂNض@¤ã”—"s….ÿ¥äŽjœ´ØÆÚT?~GªÓY_ãºiÕ}ª¹†Ó[6Æü!nR—Ÿ9ÛÀÑ7¯ '9Xá¼P‰ýD‘Wà^QG5+€ šÕÑoEâ„ð‚2ÇZ2âÖF]Ãß¹Iâ—’0$ÞÙ¸Ò6%¿H@\iËx&^€™ùÄmHü¶¸>Ѳ$?sƒ¹Æ4wG"®Öø¯«/‹“Ð~ðp©mÝ|ÍωkS’±Z@\i»Ö³`ÅÕ¸Ö|õæ‘¿Jn¯ÞGE…ìb-ÖPÔ’–Ä<üÄäKZJîHàIà'ŶPôÙ«”þÉÀSÀ¥*MmÒéé5)‹œ ìïNÇ"ðéàOÏÈ"g{À{”Y¤>¯¼¥A–Ï—Š±Ñ Ò \ ¾2#ƒ¬®—‹éMÖ?qU*“\¼\jÏè69¸|}l›,î‘ÙÏŠ4l^.wxÓŒ>;®¥Q¶w€§°i%· x5xìM›rWSÁ‚cTÆÌ}âõ£­Å½š„í ü ÇÍ)ÃâóÝhnk´ó ýÇjœ-m¹¦gNÑ¡Øõí ŠFßx_²b{^°{³cŒSÊýÂü·Š=Þ+Ì}ÓiŸú0öØì]7Z+öO®®ÿ’Cw5¥äöМ;c²OúÓòt­l¸¦C§}6™H'lÂ+(ëž¹áJÆÜÉ‘Žƒ!.y,Œx7rMòž5ꨦ&y4¯In°Å#ÊÇ¢€;¡‡ðh𣕀Ӱ¿Ë0s ×+ò£»Íò`С°®¿ÐAJO^~aò‚’;xøE±(s>)X ¼\nßéf&;ºn²ºµú™™d¬tðFðÓ±Òz ®Ç¶ÒA=|…„¡FàY·ÕHŒ ôÀ½t ckàµØ†9K«Ö\ XVNU kܛІ´âì#ÖY±+a¸)àkÀ_#-6ΜÁ®`w”݃!ÏÐrà’àµÀ÷€¿'êƒÐ'Òž8H‚ß+¯Œðø#—Êd„\6ÌyäR™¶æ©†Œ\ª5L»ÙƒíÝ?«·Ó|„0ÙT[ŒªsÔYùB¦I)JyüጃgX)Ù6x~øYðȇ7g¿—£R3‚î Ýe¦±p²._¬ÈÚ£6«¾6Ùå²OÛnðœY]1õHÖpñȹœ*Ê›ù-k%š%¹ók8'L¡Y’;8Ì9aLÓ¯Óª†n¹Ó’¦š6+ò€ÆŒüÑÿ#õ7ôÜE7hîàmœª ¶¼­9\*ôlY+Óe“»øRÎ Ó0î³€/ãœ0¦q—hÓv­Rö»r%Œt?ðõœ.Èveî ÀpN¸ ªF¹‡áËWR5R##™v¥mQ«F “h»2Ñ·Z5J0ÕÖU#EŽ*Þ} ÕXüêQPj12òg ì3 ´•™û,ðÛœ.ŒPúAøwd„« ¥Jd$ÓÊT£-r(Ug˜D[™‰¾ðPš\ªmB©Gï¢Oç…ü„üSl!‘GÅŸ § PͨøÒÙó+µˆ¢î‚Â¥àK•E©©|$åhàqàÇ%ßxº $<üøØæ9æ®à|ãŠ1¥S‹˜FV%–›°€ç€«;Œz1—1ÖàZðµék%ðbð‹cëèúšÚÊŠ6×rYMÆNë€×€«Û,~é­šiY†£ÝBçÇŽŒÁv«àÕt v-зbìšbU­Uô>m£Å{ŸJºËçIæ0øBðf _ |9øËÓ1׋€¯Els­lä/>£¯Ì,åÕ§4Ãõ™ ƒZq,út!ÒüJàÁ¿¨ÎŠËÖm_&cÅo¿þ­t¬ø%à·Áã×À¢O†¦ô¿ü.øwZdã%RùðÇà?NÇ"ÿü øO2²ÈO?ÿ™B‹¬Ý&e‘ÿþ üWéXäçÀ_ƒÿ:#‹üø[ðß*³È¢eë$MòGŽÔ. N˜†I~‡dsœçâ7”*þ”lZJœg;©{¦^ 96¸Ûÿtýä[#(“t¾„ܪUGyYU³Ì›j¶g•<˜ž4¬rž“ª”57¾_a”0~Îîãœ0ãç,à 焱[Éþ0óhÅ­RЖç>>‡sBe™ó2¹:EîÅÀ—pN˜†}ž |)çrC›ñã%múx?焪ZÃË.Ù¸öR)›¼ø ç„iØäåÀ7rN˜‰MÞ|3ç„ÊjWo‘²È;ïáœ0 ‹¼ø^Î cZdQÄê ’ð>à9'T»ä*¹Ç€çœ0 «ü ðœÆ´ÊñÝ}ÚZªŽY´'S¶‡/÷Iàw9Ï)l'Iö?äÐNÊý˜ó\:í¤ÚI¹Ÿpž‹ßNº²Ñÿà/o¡‰j.æ+‰ (æOI£ñ[¿{É7/mgV¤Ì‹FWþÎóê:p%æ ‘tÞæ‡9ÏKM‹lÜüJàœÆ4î%æ õiÛͪYÑÊŒßW¨Ëžä/ÞÎ9¡"‹Ê,»'%¨žåŸÏ9a&½øÎ cš´7ánÂü pN¨¬²"W¥Ïø)Î Ó0Þ‡sN˜Eõ1ÿiàg8'̺••ÿð+œ¦a’Ͽʹ‚ÝNåLò5à×9'T–IäêŽþÞ¤„ÿÌ9aA~þûœfb‘È9aÖÕùüÏ€ÿÎ9a&AÝ4ÿKÎ cšdX®Ÿe‘„5ÿƒcáéœä÷ŠuèåÅË{»ûÃZ-çô‘ü³çsNí1èiÏé#Ákákd„ûW¬9}Êd„7òŒ>eÊš§2£O­YÚÍèkçúY½›æóù’MµÅ|>uN:ë®lå½®e-´HM;RÚÓX¸ xç©¥"‚…‹›8'Œi•Cº%7Æ'›Ws^ßV*ÖÙ}—Ë–d;»9'\%Ù‚ðe„«)É”È;»ïr©"L‰¤ÈE˜:{´+ÂB=«—^v%—j›²K[Šw{4~ÈiBSꊟÅRyj§îÞÏ9aEÜ €/ç¼ 5rÖ+Ø\ŸЧ­¥å{4}Î(NØø€Ð” (¼ø¯œ*²®ÜP@áÀç¼N¾ðcà/9/Äo¯?Ðhº7 ˜µ¥ Ìq$ÍøÎ>Î ™s ïm–ìRî<x!ç>&o×Î~àEœûÏ®RÛó„µÀõœwÊí>Û4:öð€ŒU6¯âÜǬ²¸•sãY¥ÈO oq<¸t ع 8ù—€·ïäÜÇ ‡ùgÏæÜÇx†Ó“â‚ X6õq›{—Œ‚wßÌy§Üôº§í·xÄÓk7 …èo×ì| ðaÎ}\ ÀÎ Â?(#\IPŒ¦¹¶k¤ÈM+Ó T£+j+P¡QÚµ[»}Vo&´)˜`ª­›‚ŠT¼{œ¦Wll9Q^±Œ‘¿y_P–êUI¹Îίÿ™óÎt^;¿ü>ç>Ƴ×IA¥Åo¢ó#ÅL£ÌšîeCÊf?þ‘sÕØLrТpç„iØêOHv1ç>Æ³Õ Íðw b~6€I[ðWjU«wÚt ÍvÈh R‹vpç„1Ø/V6YÝrÌ®9ZŘbQšgEnÄéÀÐö»XãœPRtÜyayv÷þ¡úy¼ù’Ú{Œi øbÎ ÔH“=Œ—ôÞ#è¾GF·’ ©Msöa¬BØZ¦NªFZÔ:©B»uÒ|ˆçY!£—ÓTV› ™•ÅBëÊ ¦Úº®¬(ïˆw¥&½ÕuÜ ÷fݗωîË¥£û}ÀwpN¸ ¢û;Ýï”Ñ­&º+‘Ñ:º/—ŒîJ¤EŽîêìò£ûr©è®V¦ø©62+‹…G÷äRmÝÕäñ®\tt¼ :Þ•ut_1'º¯Žîï~–óEjŽTH>ºNÐý9Ýj¢»­£û Éè®DZäè®Î.O0º¯ŠîjeŠŸj“!³²XxtO.Õ6Ñ]MÞïÊE÷@ÇßAÇßeÝ—Í©»ÉF÷¿þ ç„ "ºÿ« û_et«‰îJd´©»ÉEw%Ò"Gwuvy¢u÷!™è®V¦ø©62+‹…G÷äRmÝÕäñ®\ttü:¤ö‡PZwŸÝWHG÷ŸÿÂù¢¿,ŒèNè&]·’è®FF›º»\tW#-jtWh—'Zw—‰îŠeŠŸj“!³²XhtO0ÕÖÑ]QÞïJE÷@Çâç‹åwbTݗωîË%£ûâ<ðÎ Dt?QÐ}¢Œn5Ñ]‰Œ6Ñ}¹\tW"-rtWg—'Ý—ËDwµ2ÅOµÉYY,<º'—j›è®&ïˆw%F…œ !'Çù`”»¹'ÕQÍÁ('ðƒQ„¾‚]¾\-¢Àç@á àê‚Ýâq½ZÕÃjD¡³ÃHÌ2àYàg)sßÐÙa”܉À"x1¶±¤Vö„n`/x¯2³&'L›¬®_™ŽMú€«ÀWŶɉ,Êή!e«ÛÁ·«ËArgטgwƒïNÇZ;€7‚ߨÄZóήÑ\ƒýC*céÀ[ÀoQf­¸'ت;€÷‚KMŠn¶ÀûÀï‹m¶ 'Øì`ÙªQDù”NÛÎ^Z™ZòX&Ô]­l¸%Ç5Êš>jO‘ |Òþà—Á¿œ~ÿ\îuTSàXiQÈó8a¼ Ì•–Œ¸µQ–iÙq“Äo#aH¼³q¥m J~‘€¸Ò–ñ|¼þ3ó‰ ñÄõ‰– ¸ã¯¬ZæhÍÕv®G d7³¨ãèží¸zvƒwK·èNŽkG’Ñ# ®´Ýé…°\€JÜ)woSв®*³WÅe%Y©Ró7…¨Ö ØCëOlØ×ƒ}õJ…‡ÏÆØ˜Y2ý0oºT\—k%u¿cý"ö0-V@–ŒIO+Ò?ÇLÇõÄè¦Ý‹Mÿ8-®„ý ö÷ëÓ6Ži–-üNØ'{x‰ã¯Ä¥ãîÿ³¥ ßÞC]gŸ¶¶ÂRµtÏœ2¨ýE{*–Ø«©êVýÚ –]ÍàIËf©±[ʬ”hómÒ2eê2•ÏÁþ/" rN¨ª0êyQ«0¤ä…ÀsN˜t†’»xç„1óf^+F7Hî^à}œçäªRM;G O¯;„´WßÊ9¡²N!wkÍöÂlóàÛ8'Œi›ã»Í‚¢ÙgôõÔ3“Ä‹yøIÎ %õÅYÜß7âû¼ý—Ø=°ÿ¼#çk#dðÝû÷h#,$ù7=o?Ë•hÃÚ@Ès¶ ‡üð÷œF{XúDÚ›à?Âÿ #<þè€2M3ømÅ"!(Óß<Õ!µÆk·Y€šl”ÕlÞ¥Ÿlª-ºôÕ9¼x÷`ÉM85ùçyùÊoœX}|¸SIÆå|x:ç„ ".çÏ„Ÿ!#\I\V#£i\>™ÅåPsËÄ`5Z£Æ`…†jƒ£g¬ÞVh¼M0ÕÖñV‘#‹w‡©uìoùoømö¹ÐQï:ån{Š ãtey±‹9Ñp©¸¼gEX¾kÕ8ÍOoâœ0…Æi~èpN³Ç¦³‡`‘U½ Ó)û´ù³Ø,ûŽ9vUèР±¯¹%~»©HçEYO¼GÅô„ÝCy³´YOά¯vÓyöÌÑô2¹!ºI‚ÎñK|ÏY·Ñ·t©ètD}Cbsu²€Ë±0Å9a¶ý%…ÀgrN˜‚K¦·qN3ÊAÆå}}%Ý5"OÊ#5ÏÞÃ9a ó4­åŒ;Ƥ„²×_Ï9¡23ULkoH²/¾sÂ4¼½X…9'Œéõ½éà3 ®¡;¥ ¾¯Ñì>XÍÒ«¶¹­êû_xùŸ'ÎîÊu™ÃU*~G³L›¢ðFŽ]œwveÒ¦(lݽY²ñйx4ç>.„ÆCç1‚ðcd„+i<¨‘Ñ4Þ4Rdv•i%¨µ• Ð"íZ ->«×ÚH0ÕÖÍE®)Þ½¨×›¼ÂX©ØÓ®¦»3ÕIÏöÌ’?€¥k¥ ³×½©FµÅ²I‘w´†]Æ¥Zõ§Ø‰§Ø™IˆÍ…Í¥j`woäÜÇ`uA¸.#\M€U"#ì씪TxU")rxUgvá5ÔÙ³z)áÁ5¹TÛW5n)Þ=^+¬‰ÁGüÇ)³æwQ6lún†¾›XØÜ¼“óè{Êg6Ÿ-¶Œp5aS‰ µaS‰¤ÈaS= ›I¾”ð°™\ªm¦·ïÞÍœ úgNÍî«æ½ÔØÍš°RÑ&f&mö×ti:ÎÆñœà¨ª`šZ“Ÿ¢¾ƒUs+Ô!1}¥‘ð2-áÜÇx/#ò¬ÀßÌl’é=Hœ0õ‰Ç45³‰g8ñ˜’_$`FïÅë03Ÿ¸‰ß×'ZN<>zîã¶C-XùIÇ÷ás„g€Ÿ!]Ô׆$£( ®´]é%°Z€j\é >éX´[}®q}Su×ý?fÅG³$gξAx¸Ô™¶Í‡˜¶0Ç  ")Û€WƒK0RÉ éì§ä6w‚Ë÷Íw?ט s¹zÕЦõÞ©¯ON:ö$³°gTf´b¹V­Îtk$±ÌìÝð‡–^P1-C&¬÷iWb¤Ð`M-V9(óñHÿ§é—ý©ìÁmæ`5×Ðtx–*±:À¸áÙo®IúÕ.޹“9'ŒáWM—Žé%–G¢kË àœP™ƒ… bQrg9'LÁ¯s§‡8'Œé×whc5˯~P}Q¯y6´ˆÑkßÅŠtn*wr>^Õ_šÐf/CŒiÌ{çúõ´âÑ [²­)Ãñø`7¹½†J/`9ðƒœ¦]„¼Œûq3«ÜÄ S¯¡R9Þ‰Ä3¬¡Rò‹̨†úr¼þ3ó‰W ñWÄõ‰–5Ô“iIœë»¬³­1“5xK†¶‘æÛ°fjÔšê+ð9Â^p©M|­—ĵ%ÉWÚ.õJX/@5Ëã ¼¦zñŒV6ÆôZÅëñ»ü.^Zß5e–© !|Y‘ŒÞì¼åº˜tû%Á¨N“$lËŸïľ¬;eÍb%KEŽ Niž¿ºÍ"l0¯è_qÝݧ­%×ÔôÆÒ6aò•yYÍ«ðò_E¯óœ|–𛕦‡^æ-‹ZË~÷)äœ0éÚ%× <Šs˜¹£ÚC^Æ< 4áϸjï”ä†Íœn®Ïy½±}éQŸ|&ç„’k^ÍÞÞÉñ-Ç/HùmÀçsž‹|R=}"íñ üAø d„Ç¿P&#l^ ³kä e¢š§2‚¡Ö"mçÕ„;|V¯¥ùF²©¶ÃPçšâÝÍM†~CKhuÍ5üRwƒšx<Ò·ðHßÊ$ÞÊ“îoÄ9ሶÿ"ÿáj¢­êF‹•IŠkÕÙCùhqÒ/%<Ò&—j›H«Æ-g¹£Ì¶z¢”ŸBÊO\ôgÀ_sN¸0bäoá¿‘®&F*‘¡ºFªDTä(©Î" ÕH“|-áq2¹TÛÄI5®)ÞU7QЗ?ŒsÂ,ª—{%Cgþpà1œ.ˆÐ™?V~¬Œp%¡SŒ°êå^™À©FRÔÀ©Ðm«—aΞÕK › ¦Ú:l*rKñîúÙ“=ÛÓ+”DÖ|7iÜwþúhÝÒ+34 Q®zZ”<ÊH6vR6Â^ãœpaDØqAø¸Œp5V‰Œ°+U5U#)r„Ug¶6ÌÙ³z)á6¹TÛDX5n)Þ½¾i`m¶è¬ý7…Í)‚íA'Ã¥ Cû´-õ™71À§ðˆŸR–óâŒUæÿøÎ ™¼ÕXeþqàW9'Œið§’­X™Ú˜ ¨G>®‚} øÎ Ùi ·Ó^kB—2Õ/ÿÃ9a¦ú)ð9'ŒiªNªÍH˜æ÷À?rNÃ4M{XœªÞW³Ìèâ ‡—rN¨Ì:!3)¹ðÎ ÓpŠ?!Ù#9/HMq˜õê·öP†µlM/啕ž?µ[þÔ'¨Žc;õŽƒZryÞÆÐU½}‹zœ£€£œÆ|¬ÈŒ^ÍݲŽjæ¬Uø#ÚÙ¤jxvÙߥ¤WJµŠ^o‡©UR5-š ßݬggÎ1 ZsCfoÓñ‰_ƒ§$¬€W”EÝÃËcîð2&ÏŸ­9ð’(xømÉç1J® |ø³b{Á›»)wÜT3Y=Æ5«““e¡’ß–¬ê3Z…¶ÍÂ.Ç.#6­±ŠŸÅvÌLÚFž5Ço›†Îõá3ðª~Ùš¥³¯Lû³~¦ G7TO£Wt;ÇÜ™œ*rŸÃ|÷ÁÁ02Þ“ëžË9a Þ“; xç„1½G ²ûìYäÌâ´ÕRôÃÁHÝùÀgpN˜u­˜äèÀ ÎséØì: ÉyÎŒm³kºçMá£5+ó#;õúh9«6©;ÌĬxpæ7›"o½FOµø Î 3è{*ŒîÞ"¾eï)ÿ$ð œ>ù{ŸHðá_”¿÷I™Œ°¡Qf×ÈýOÊDEêRk‘¶C£áŸÕkiÞ•lª-z Ô¹¦x÷Œ¿T6X5‡Õ©YjtF+M¥½TÝžžà cdæ_A꯲‰£ûäãè¯æ<÷ç…Gÿ"ÿ‹Œp5qT‰Œ°8ºO2Ž*9Žª³HÛ8îðY½–ð8š\ªmâ¨×ïö÷4]ØT©U­ 'ˆ×OY“Ä1÷iòÙ:ßËy^j™[üQÑk$ãi¾¸Šó|ä#l3ЧùÕ‚ðÕ2•ÄS52ÂFE¯‘‰¦j$E¦ íÑvT4ÌÙ³z)¡±4ÁT[ÇREn)Þ}m¿GuÞñ²Š1å·ìÅØJˆ­~F´ÆÿFiönûþ!‰nº„æ| »iŒÙ5«,ؤãêÈÔë'Õo\E_Ç+úz6uáŠÜtkRþ à8'\±û‡‚ðÊW»•È« W$¦[+9z«³HÛºp¸ÃgõZÂãwr©¶‰ßj\S¼+{®™¨ægPó³l*¹a¡¦m ü9ðWœç#w{d(-ÿµŒp5R‰Œ°JnE*L*‘9Lª³GÛJn¨»dôRƒdr©¶ ’jÜR¼»‘O®ÆAàÉ5˼)ر“HLwN½GýúGÆDž£$u»©ªÔØñ·ÅÖq&æÜÙßMĸv­BGéz¬xh2=xÔðhßašëØ•à©æÍŸ*ìÿJ©b»tÚ†­ñG §çs…1Ó˜o#IóLåãä¢9÷QM€ê¤®¸èŠ}ø!Î •Õ4KE–þeŽÜ®áªé–z£äJˆF•mÑû9'”=ï—ß|„s˜5 Bô]¬IÀ‡qNSHäÕ¯ånVG5«?Žá«?‚ ìƒÛQsÓë ˆðpu[4Êca~Zo'%'5p-ùz;%w,ðTðSc[é>òÊZ[†c–´)ƒ6doœP6\Óañ¯`ÂvØ\nZ…ÀÞdÕkÑèïë¡E®®]eE•?QXÌZlQ6L뼊ž×èµ-~ü;éçµàÂf¶;øë‘8a¼ Ì‹ÛìOûiw"ñ wŒ§ä ˜ÑŽñoÀë03Ÿx‰?×'ZîqëãýP°“:ØŸû×Ñ,ª/ÚûtuÒ¶(”H<×À­à[¥ÛI‡Åµ7ÉØ! ®´Ýî°p€jÜî[¼Ø¿Ä˜4øÌ›7fu¹tŒH­äÕhΤQ2ÇL£Ü3kZåL° ¿L¹DµVñÌÉŠÁ;šÈ7J‚o”ê¾Ñ§]åØc´;mÅÜkTÌ Ûi£ùT/=Tö(-½c_Í J£ˆo÷Mx£„ß—Û¹¶åÚqÿÁ,OBÜï€ÿc: ‚¥ÃÜGËÞ«SÊ ü5ø¯•´ è¿üøŸ’¯ÖQrßþüϱsáåõ#}ú´u³&Ú ™Â¡¬ƒ–µR¿ÿ ÇÜeœ*öûEºeOéÑ¥ù‹, ÎsFZÍ`_0ù¼„è«7pN¨ÆásWÇ8'LÁásãœÆì$;«q†U‘–<±ˆ®;¾ OÛ8L ³˜üÍÌ› ã¨ü©%4jG¨²@ÅŠ)žØ=¿ÑâŸÌÊÏ_E¿kÕJì~"4øá÷’ùÍ]½2­Ï0®SvcåƦûtZš¥MVl¯>žUdYÔc-0ÿ ØŠ=Þ+äS~¢þxøB›RpöI-qr3­C&Ì¿ˆsBÕ¥Ø$/±£‹Ë¿ø~ÎóÒ=DQK1H–.Åò¯>Ä9¡šL𜦩ó/>Ì9aÌRl嬃éüeŒ~¥em½J”§,ÕõQ³bz3¼ÓVÂþ焊z˜:i/ E¿þŽsBEF8> #Û—»$®9IÆrq¥íUÁ€ªñªÇygÌZ>xëÑ©qB4¢_g}P«î8&Vóhª<6Ú”»Lo‚nÔ¶ž]áìáÓ\ƒ!cú;¥ãèVñ.÷OæøU²+†Î>ÁñsYÅØ3,uÜuviÂÑ­³"ïðóv¼=ÂÇÁ—~“±–l ‘Þr~éþ4ð‹à_ŒªŸ>‘öü ü%Aø—d„ÇŸ¤LFزƒ­‘g)“Ô<ÕÙAjíÑvÙA˜³gõRšÏ J6ÕsƒÔ¹¥p7·Ó|ø^[˜$ƒ]^ê½h!@Û¬¦çмÌɤ¾—:Ø™•ìªáofYÑqÿ'tËïŸö§äû&éõ#5]¶ó³Æg%S?vÜœ2¨K"è©`LÕF7Dý›|wÍnM¯°dúXIåšãkЕtê¡òíûÏåïðçÏDrjF0Ð_WMkzEš]sY)EL…"Š>2ws{±¼BQ%÷òË8'Ì À)lݽ^²ÈÉŸìãœpA9ù~Ax¿Œp%EŽaSR™]e 5¢¢: -ÒvJj¸ÃgõZB‹Sm]ì(rMán®§·Þ Ú³›ŠK$?ôc«u½T²kµ(y´LfµCšø Ë´¨-AÁb…gp^Û¡T¼¹Aúd»3ëæx''L½ë‹z:‘x†]_”ü"3êúz^€™ùÄ»‘ø»ãúDË®¯ vêNï:{JÛÌ7ùÂÈ[ë¹IÚúà%‰g:¸|³tÉyz\[“Œ«Ä•¶Ë½Ö PË=ÈûÅ6Z|P—ö(vù~àUê™Ò¦u>̧CÌoímÿ`ó·'4"+œ¯5k9,þžw¼@Ä÷ô^¼ÂÁ̤rðkÂUõ†dZ"$ÿÀ€G¾Ì¢%B‚„?,#<~KD™Œ¦-‘CGŠq#7G”)‹ÔQk–vÍ‘v®ŸÕ»iÞ&I6ÕmuN*ÞÍGÞ^ÔñAðf3xzM>bþ ðqðÈÃYEÌO Â?-#\MÄT"£iÄìbÓ7­T¼T¢+r¼Tg”vñ²µÛgõf£er©¶‰–jT¼+-ŸÿL&ѲsÄ™°ecåg_ÿÚB‰•_„]F¸šX©DFó½¦X¬d†•Š”JTEŽ”êLÒ.R¶rù¬ÞKxœL.Õ6qRsŠwåâd ãàßÈ$N<2®Wã´Ä¿ ü øOJ¬ü© ü§2ÂÕÄJ%2B[â0®T¼T¢,r¼Tg–ö-ñÖ®ŸÕ» ™É¥Ú&fªqÒYw{üŽ1òí¿ƒÿ{FõËÉ S6fþø{ðß/”˜ùAød„«‰™Jd„Ö/™a¥â¥U‘ã¥:“´¯_†»|Vï%ÿœäúz§i³RÑK £NÓ»' Ï[ÅyNݹ3‡”¦¦JÃ;¶]6''tKÒsp焊Œºj’[ ¼”s˜&=V+ÚŽfÜT3™i Ë«ø³a¤Œå¯ &ÜÍ9¡"cækÙ”î”lg™ŒÁÆ€ç„iìF ËyÎm°ÝØ©Žý™GijÒ”áÔ73ºÌp]S·‚YM4‰o˜Ä#¦ îöaÜVz©-=“ü;Î c˜»éd þ(â~ü ç9u5Ô–Kmf¯úö®§$$£›ûç„r’çýò—?åœ0 çÿ{àÏ8ÏÉŸ§Ü}J£Ìs쪬çþøœªª¶µ±«•Ïáœ0 3ýÉvqžïŠm¦i“zi¯’=-(®O†wù5ÏŸnâúçÐ,ÉQcVˆr=Úš¹G3üÝvü?Mçc5&¦Ðüx_LÇÍ Ã—ZÒ¦ÍÁ¤úè’_|焊 ü ç„1mõï4?™W'húY»9f¬ÊÁç[0Ö?À·¹­ÿSؤhZ®GûçÖw:i¶SZFŨÒ4µY“ÓìÑ=49Ú6´ß®Î~›ž¸´W0M:T3E©Élù¯r,|„óB<'lºx€ù¢„ >ü"ç„)¸`á3À/qN¨¬Ñº!%ß/|™ó‚T–›ÝAاm¾Oiø ð›œ*öŠÅ伯¸„¶þŒó‚Tݬmýx^²ßþœsÂ4ÜñÿÆyAnÇñnop@ mDýUuÿÔúšëïÕ„#?yl‰¼ª‚¤þ‚#¸@¼SnañnäéÌïãWÇÌf¾ªâÝ$ ‰g¸ª‚’_$`F«*>€× ´O4Mõà‘²ÁÊíŠÛ$åA¤ö°RoŒü(ù¼€¸$û•qåÐTЃÄó­MûpXAŠÅ³REw#onñ7°áÑàG+«žY*.ãû™-ë!²¬;jýˆtìïM¾@¢äŽö÷Å6Ù^3†Éhƒ­bºõšpÐÏ7fW*ö4ý«Q©>/ªÓ‘ò~àð=Y  ¯"LniUç( Jʺ€‡&£¬©¢ÓKofmZ/¶‡ú$\¾\an0=£’l'pøŠôÃ:%Ž€¸ÒwéÁ?”¨KçƒQÃHºº€KÀ—¨sh×Ó­²î”±¹Ñ Ððî¨MJ‚&ïЂ¥ïДürq¥ïÐÀ‰IÔ¡;ožÒ£N$ynL˜@ŒæÂP_7 Ö%%.ý>÷HGª1ú¸1a†1š’?GÀÌbô‡áÆNÖ¥'£»ô‡áÆNÄ¥)ÍÚ}²—O‰êÅÆçÏ?3y/þ0<—ð,ð³Ò÷bJ¾( ®ô½øQxzñ¢’ÙW•Ö<üpen<ÌZ@Áa#*‡œ¹7dÓ# Ü ¾9ygN¸|KúÎNÉ_) ®ôý18øc‰;{-ª³?,g¯MN¦æìÁÁK×Ùƒƒ?–­³?03gÿü#‰:{~*ª§ÞM¨¾ ynû]Ošw›Dõò £nß¼—žMx)xü  ‘½œ’¿L@\é{ùGáÙMÔËû»d Ihë._*íés4uIï¼CzŽž~‚´ñ2Ûy‡äŸìï‰úô‰´×®à^Ax¯Œðº_ä;$×®(“¡|çeÊš§²~E­Y’Úy'éwÓ| K²©¶XâÎIÅ»]| KÑíŽZì‹zV‚¯L¾Ø§ä:«Àå–Áˆw#û”üjq¥_ì 9‹0ÁÎ7O¯E-ôIQ0~盺BÿcøáqàÇeRèÇØ:ŠÄ,‚Gî6Ë¢È'ÁÝ‚ðnáñ‹|e2o¥LW¤_­Q’Ù:*é7Ó¼¸O6ÕŽ:å˜Òލg|(ùâž’ë.?n¹¸§äWˆ+ýâþãÈW„É÷…;µÖ<üÐ'AiOz–?6“Ò^zë3’~ð ð3BYO‚Ï„Ÿ)#<~Y¯L†Ò­Ï”©ŠTÒ«5I[Ÿ%ý^š—óɦڢœWçœâ]ùr^ÔÓÞŸ|9OÉuÀÒ/ç)ùAq¥_΢ƒç*Â{óý¶¢6ìISpiÇ“§7Ÿô̺7?Æî}$ÿDà‚êÍ'Á½‚ðŒzó•ÉP¾{Ÿ2e‘Š|µfIj÷¾¤ßMób?ÙT[ûêœT¼+_ì‹zRìͧä:öæSò«̬7ÿ“ÈY„ 6ï[l×BXðÉÔ¼'=KY7ï%wž$éÇTóžŸ)Ϩy¯L†Ò'•©ŠTÖ«5Iûæ}ô'“~/ÍËùdSmQΫsNñ®|9/êéïH­yOÉuÀÒ/ç)ùA3kÞ ¹Š0¹r>·WBV—€¸b„ñSë­ZuÔphöé8È|ÎQ°º¥Wf\3òìTz”À[Á·&ï🂓nß–¾ÃSòÛÄ•¾Ã?'ü9øíçõáüÖͺº€êõ`ó@­®B²^~AòÞý9x4á…à¦ïÝ”üEâJß»ÿýw‰zwaëæI a]À'k„&mK)F迃ßf¡)ù3Ì,Bÿ=üöïõáƒMËë³­ÊŒ„º.à‘àG*säK*ö8wÀ·+7™;—üS ¦YõyÂp„îÚÊÑjô’ôÒ£ÈíðGOòTà.ð]É»ýßÃÕ ¯¿&}·§ä¯WúnÿpõHÖígÌmgv„º. z·wüÓŒ’gó^qt~÷4¶ü¯Çöö»9¸´ó6}”ïÈrldl¾-ñüO>üÙÉg’@Æ ¼ ü®ô3 %·€¸ÒÏ$ŸGÆø|¢™$µòþyäˆÕv*^7{’ªîŒ›+#Úg…¶ÃKQ³=àaÀqðñä³Áçáú„àégJÞWúÙà pý/$š 3½>j3ºòº€G¥®Ž„-¬§Mïÿ#ïOà㨮´qXÝ’ä•%¬ l Z«7l#À66¶ñ.³+@©»$•Õ]Õ®ª–,a‡$ȾIHBöe²ïÉdß÷d&ÛLÖI23ï$™ùÏ’ä»çÞ§ºKR·LݺU-åË/Åó¸»ÔçTsÏ=wæ^Îr¦ö¼9bäÍaÛÎe´œ1Ê CFÛ¸}sFÛDÿ¡:€ý+«ÉíMHOò,àuàRÉJ8¿ÿ |ðzðèÉIh¿'ñ7Wò~ÿUøúWcõûiÕ™N±f`ôæíœI í<~¤÷?î¬z@Rà|´V‰'[¼\ÎöUûÉvo¬U&jmÏOŠèÀð…E±Æöü$îF`<¹ Ì•:U•tÈMp¹z¨šMšùg[7îì }.)TŽƒ'c›ƒÀ#àG"Û&zæÉ? ¼üÖøk ×<~,ùZ‚Äß@\É×_NÍQm-1ý¼ÜœígJSÔi.nP½‘§æ²<^Ós9“B>kà<·S.Ó!-OvwÅïÃ_ƒßvƒGŸ‘Ú‡I|Oq)zú¹ýÜ&UäþÜôë@\I?þ×áï>âRœ_ÍÛexÃv.l«â(;ßÀýÍ%ËÑ%QßÕ7ðC>âŠh²­,Ü(NY>€µÄxÓŸ÷`Ñ·ƒ¶Ãò9úŒZ6E‡:‚s•&QÈgù&\Žp+¸ÜD‡IÓå'nƒÌÕ”Pm8>¨0Msj÷¢^®p‡8NJBï>àÍà7Ëê=å—w‡ÀUöÁÔH²HÜ•Àaðè}0kËGwwhÛÉσgc¸Ãv)ŸâôØ ?LQÂ&ðqðÇ•;ø<·T(èθ„r~üɸøÂ^¨LN.¡ö[ï¿2 øIðO&ãá¯~ üS‘=|‘Öj;Üg%ó§_ÿšr¿ÏŠL?iõ[à€ÿGR±Ù×YÒsÿøkpé“n§üòwÿC2žûuàÁÿÙs_PŽÍšgkÆaÏÑùAÚF¡­CÛZÊçµQÃqK.KVr¥l9=¡^'Ý1]Û3ü §Àó˜I±ò–J¯­æP—ŸˆäòÃßhô‚Ž(ôÓ ÿI`깂ªNitË•p¿Ô+¯œ0‰bÓÜË–+3©‡€/œPM™IÝ|\ð”Tݺ̤î¾Vpˆeæ«Úµz>×î x3M„v ‘Ëû%$x8£ÃŠeèœÓâ]·ü„zÇ eÕʆ¹@òt€Ë¢BUõÝeÌJrk6_rÙ§mšc0¦DcLU¡K=!0m N¨¸ÐÍš‡×-ý<à 'L¢Ô-îK·$ÒG÷ N¨¦ä¥KÀG'L ä¥mࣂF,yéÐç©“ü_,8aÒ.ß.^F5}?]š¦íe³™õŒ\'úD— ’¢þmhJØÞ¥¾EU ¡ÜUÀ}à*»NÛ¢‚Êu,©Û Ü.u†JÕ_^ ܾ?þ’Nâº}àÑ—ÝÎá՜Ļ=¼\nºá´U“(hº9À1ð±dÜuA¯ÐXÒ[   n+óÖ›‡Á'ã­×ÇÁÇ#{k†µ•XŽ7@K,蕬“çc”ðeXŽº{€4=|øÔ7rÝ2%Tû$ðïÁÿ>Ÿ^ÔË–˶Hßw?þ1e^ýVàgÁ?›ŒW?üøçêm‘üÏ¿þ…ä³­ï/£šlk†mB*ó](@8|žòò{‚¿ 7lÿ©u>0®nWÀã5™|¥%ª&Røàyàç))Äô‹‹íàíñb7ØÞ½gd¶ØÞƒÃºKñt'l"Ejí^®ršæ4{boYi¹Š‡tîîߥÌgׯ¿>ŸíÞ}ÖèÜŒLöO:ܼüå~;Ÿ¹@)g„ã&­nÞ ~o2n»´××YÞk À[Á¥§¼Mùå!à}àRkNÂ{­¼\ª·­Æ0·[Hqô1îÊ~Ø0°A¥ÖÓú·Hé€ÿ¸úðlZƒùu0K¨÷à¯À•Tx.+-ïè_þ#ø?*sôÏ .=ÎÑ?ü øo";úËùpG`:¢ñÈ™úe‹¿V£c¨#CCŠ9Ú¦ÀÚÄŒã™ì/(™†Û&ÚÍüï]ÑEYÙž SžðÎÿTLwÔi¡šîMz+ÿ"þKCÇ£fØv5)ôrà+'L¢ ÍïeêÊeã|èð%‚ª):|èðU‚&PtøÐ!á«'L¼IMò¾Fp¹ähMêï Ï.£š&õkRo®6”ÉŒ5~œ%/“vT¾g#PæññÛÐ9$)uð^ð„rÈ%½PY®f%mà1p©å UÙÞž@ Iâ²ÀûÁ£§áÃÉø øƒÉ‡‡ ¨ø¨&<´²ð@ùÃ’g»ÐY0¹v±ÌÙEÒ‘™q÷ChHØ í@Ôãšö ™›@“R[;Á¥6÷”)äPY®“Æ«›Á7+)äô‹À]àÒý&ϼ“¸6ànðÝ‘½ú•)w¨±J4NÄreQsiºVÌÛž¿,€öWô>Äß6i´¦»ìæò¯±?Ð5·hdÍA3{¼Õ¢øu±›Ì´Y¸„ìþüÏê —c Ñ[ ¯\êtà9‚&Q¸öBe‰ìú‡"$s|–à„jJVª x®à„I”¬¿@¬&xJ‹\²^¨å}ÌÕÜ,-›qx1rµNm 407Ä?3´à`ÌߺÕßh£Móˈ;lY¡ôÆ Ãš¸ÁFy¿vêÑa%ÍÈYÅ/,Ú cÅ*l-Joã<à;'Lº2ÿQÞʨ¦2¿€Uæ{øWè£÷Uî0ÃæÉaƒÍ?B= À£‡R-Ø4ÑdN Íz—ƒ_žL¤9¡—ô•3¤kp=øz%a†~1ܾ1þ0Câ–7oŠž¥‡®IþfààW¨wÓѬ6g#ú7ƒßœ”›’¾’nºx=øõÊÜô*à-à·$ã¦[€:¸^'7fÁåö¿˜vþKbwšak!Žï¿3G]Ð+4–tÕ"ð¸Ô®Uù ð.ð»’qÕðnð»ëäª÷ï—ê ›~°×ßfJB»'os2κ¨××YÒ]_|üqeîúàÓàO'ã®÷ßþ–:¹ë[o›rwmܸ}³„bŸ~ü³Éxêü^¦®¤“~øIpé•ÃS~ù½ÀÏKM£ ï¤o~üóurÒ/¿þEõNºIÊIügðNÊI7I;é÷€?ÿ±2'ýðçà?OÆI¿üø/ê䤿þ \j~ÉôÓ_†uO,¤ ¯^jp‰à„I¸ê‰½e¥åúïé•þº7 N¨Ègÿ¿¼TpÂ$|kÿS' NÑgåf'’'OœP±ßÎ3Ì¡áЛl†BÚüø p©>”ð¶ùð—࿌l›5ÝO±ÚCÂF¿þø)³Ñ9°Q/%­å(ÓÛ²ië•}-m2¦û‹ÀÔY‚&aºÿbŸ-8aDÓ5Q*ÞZ©³šà’3¶ªYë‚ZÖÚmäYÖ×¾ËÐsRFK­^%8aFãÓ¸w ž’šÁ;qº¥a´reò¶Û¼Vð”Ôéñ¤`©Ðœ0j2uð à„I¸ÆuÀÁS#‘]ãlÞ!IÙ½?«ûýI¦T©<ð~ÁSr+âH©hQÇWN˜„¯< |¥àJ—ãMã+_%¸Ü· /~u†;J0#§”<à<åèëVæ³JêÕÀ¯ N¨¨²˜ÃÂÌ¡ZrÓVßþƒà„IXñÀ<%µ¦xâ’~Ö:ÏŽèC†ÖjvR¹WêGÀß N¨ºF(Ùã5-5nì#sÐï:'–R>e0bZÏšî]þ7ðÏ‚§¤*¸ÜöÒáÝZ^á{€ ž–Z§]õ—o¾HpÂ$üzøbÁl¬½ÒÏkÅ ànc̳-±Ñ~Ù£5³Pã„FŽ%,Fdús‚§åöÊœv–£•—hݦ¿ ü®à„ ´nÓ_~OpÂ$üçóÀï ž–ë¡~›É”OʵKn0 NrÉxˆnôÆ&Á¥¦ÇUSÈ N×%2]³¶qðDÁ 0_ãàI‚F4_s¥YÞ8'Ÿ-x£\Gù´¥zø`ØuK¤Pp•à„IÔTÇq©é4nv N¨¦ªj\\-8a¾Š¶ZãÁ #úêiåñîm¶=b´ï0ŒQ#üv ¤ÔZà.Á •WGÇÍ Áï¸7oœP‘ã N˜„ãî Þ(u ä„·{fÙqƒkRsšI/LŸi|®à„Š}·© ‡>G–4zð•‚7&´ƒ^ç}øbÁ¥ò骿|?ðU‚7&°‰»øjÁ£o w ì¼» wXÛ˜Ó‹ÔêÕ®0i2¡ÖgèNvØd~m"#OpBÅ^¿ˆ?æ^<˜„Šo¾GpÂ$œ?²Þ/¾^pBEeàQà{'L¢ <øw‚F,çOÉ«§¤Õ¡—ö’†ïþ@pˆš†^ÚûO¢(”WD5îÆ1”•…“ôŽÊ+¦‡ÌQZˆMKƳÃ:í³Ëî  ÄYÓs…Y˜8T²=~üÎÆÊ)>X‚X÷ëïOŽ=Å)É-Çûg<=áÝàr»ª\ŽGÚ<øø#ñ—#wðQðG#»Eäåx¤Î‹€¯2µMXàe2ïê(è‡{»»ºº2´õv‡Ç¾ë6Ú/n“±âÓÀo‚3+¾ø-ðoE¶â<œˆ%a»oþCõÉ«ÔÌ7Òé߀O¨/@^á_.µ6¢ê/ÿ ø'ðúHÜ?ÿÔ8èÙÅ›šm±i óàO'LÂ0ßþLðÔÏ"æ¤rªçÊçz©þApBEVºªÖb~Q·d*ݽ-»wîÙ{àæ»oîÛ´wçuì;fâ<™˜²Á52Ù`êÒ2 ârË-Âú»Eðô–:fƒé­À‚§åöˆ­S‡Tz‚ÎøNÒ÷z !xZzRä”_î–'LÀqÓ»€£‚FtÜÓDnè÷(è’; ’RcÀN¨(Lͱ²ÅR­‰…ÓZçÂñå‚&a§‡€¯œ0¢öO>NôôŒsëY¥Â€áPòµ£œÞNé§ɽtM”~%ð·‚§¥_«š¸«VM4!°J‡»BoLu“þç N˜„7üb['Œè óYus­Ä™¹¤Å2à…‚*²ái¾£­_Og‰g½Íä­2¦jì^)8a¦j¼¸Mpˆ¦º²²‹GvØÈŽøÍ±J™ÕGu3¯Ó±w¢ô↼MÛ>tš‹¾cb;ðaÁ #>LèŽõŸ 7)£’ŽõT'í…ëaLª®D%æzºÃwÐ[«³ÊŒ½fÛ[Z?¯Ó3Ç -Oóm¢9¦óÆSÖ.ås_u2Ê`‡¶ÑåÝ.ßIsÂn+Ì(ã¼³=oQ¬õ»Bh\¾2¨_Èð˜B%fpÝ£MaaÍÃf¡T¨lµè^UÕ ºUâ;³ú1Ü_'ê˜mÉ6û/`¨_ЫœPQ” mÖ/<‰]¾I\°Wp»|Ÿ_É´ÆýºÜ?êrÔ #COv' /ê‚*2Û×*è=¦ez2¦:‚&aº +xÊlºð»£|X<%Õ`¨Þæé%y³Ü ¼[ð”ÔX_x³Œïœ°.f¹xŸà)©óè«w€9ö´U¾DpÂ$¬r?ð¥‚ÖÅ*/¾\ð”T«­zÒ Q¢ØãÀ7 N˜„a^|Zð”Ôyl£_FؾˊÔx ð=‚§¤&ùT/5ÅaSÚ8~RpÂ$Œó^à§'Œhœ—ЬË0r´ÿž”“AÊõhQ†8>£™|@O׆è”y3g蔑zÎ8m·ؼ{r‚Én*è#´ìÃ1Ä@_y"᲋EpoÓ«·;t×9)õ1à—'LÂH~Yp¹Ù4Ô<£P´Ý1óãm¡PRæ+À\néh 诅•˨¦ üg,½vØ`½Ã’ÿ"%÷ÙR^wŽÓAÌÛ YOô-³Ö‚噃&{ æoPÂ:YŒR½ÀSTžíTÏg:ø$÷òô²œÍZ®] ƒÂ &-váã< a5™#r&hÐ<\ÖÖõ[£­¹6G ÇÂÑÐ) ÝqE“Å´ÜÒà ™åKvƒa—n,ª°_ñ›4_Uyú¼˜»AÏÊ‹5©'Þ7¨S,Ëñ™ÞÃ|¾>åPì—i!ï 3½]ö’s¢‘…S×&¼xÞÙok]È%Åp?qŸ%…ìƒ=ˆ1¤›ý®õ›>q‰wÚËM`ª–Λ0<Ë5ïéòœŽîÞ­wöm ©HÏ_ ¤í¢‰Æ©Hì?Aì ‚KîT,?g)ÿ6{ŒF”ü¹Ë^s’qMÏš®Xò5dXk)ð|ÝÖŠ¶ëMÊÒù‹­Õ8¯LÓ¤/˜S2wvìöoص³sÿ–];­w¦~ ²ÒÄ{x™Dôìúû[džÍì0kÜÐHͯȞØ'À9xAÖÓc!z¼mR)òG=‹y[üF++ tú! m“æŠU0å”4t¦ÊñbYp¬kê;ã?Á=ƒ&+ª\ —µør›¼AÅßÐùàÜÔâ;ù]о@òm¯6þ^p²jK ^9Úa‡ã‰‚Ëí7S£ôM{Œ0T–;F˜^çÿ@óù‚7IÇ)¿üGüòI‚ó]VâHÿ ±' N1Mi­”¦àÄ¡AÿlÏbÉañ'ü¼ÒòàÁ›¤ÎŸŽ–Tý‹( eTÓ«÷–Tm5y‚’¡Ø¾SzS(´òc:ù´øÇ©¹HA·,JÌ&ÎQñ•^>Ë-(tbzŸ’ÏÛcôÓ¼×±]²Ö¤î!1O!éüF YvtYϱcø»æ­ŸU°,©Á'#‡km~zÂÕ}[öïÚ¸yÿžêÏ•jnœ0ÜsÑ §ÜÑ_8ÈTøqcƒ8°zÊR#zúðöH]Ðû ½ùE¥¡aCM'ËÄ©Fõ.þÖŠ¡ûk5š®Ù²SœºU—J^»aüä-]Ãu‚¡No§ª^ÓÇz™‹—Å„¥ÎC|‹µä¿ý‚ÖZ`µƒy¼ÃÜýQÆã!¯µš–ë:õ.ð…^•¸¸r4~‚¼+r™‰§Ékâ`xÖªš\OMjº¢ƒæDR“×iF¤|F©ÓGyEnüÖ ôò†š?Ï{r´/Gà ½÷.kEºF†Ï-çMH·hPg»ˆÃCQg–Ÿùn<³º`í¥&–FϾDðt$IÜ=À— NÑ .æ›üˆž,kºÃ¬å~à hú;èÀi•œÓOZ¿ øUÁ %ÍY+‘mö¼¢»¾³3ëèV‡Ó^tlÒ¿Ãv†:±‘Dï.þdç;À? N¨(Ï;½Nµ_)UÁçN¨Ì‡ùMU_Å× v®à„ýðr£Êòò®41Ç+¾Ù~ª—‰^ç· N¨(¼Dš¸F*í^'x£ÔœºÐñ…V¹q¼^pˆvÝ1qš˜˜r8a¬”ýÿM ÛEKÏqðu‚*{Ô?[Eì…;ðý€Ôõ ‡î &ñéâ’ôï¹QÕù=»N ®ˆoå š„`ç‡tæ.טFvØÐKSÕþ†"<ü eÑà´±ÑË †§3§VIJž\ ®no×¹¬M¤›ùrÏ^ .µ‘jÄ•$p=¸Ô¯Ut®Ÿ:Œu„0V„”¼xøM [(%§–©6o¿9²©ÃÏ}"n€(l*é%oØvj*½ÿÖP×ðKâÓŒ~‡£ªóïìZ@\ßÊS,ün2œc<£mîÐú:2¬A©åM+£]ÑÁ>Êh-/{Dißd—²#vÁeŸ°OwÙ®gP¿_FÛÊþ¹\Ûlçs¦w$£]ɲ¿­µ{ݺ‹Y"¸‹ÃvÝÒóã®É×4JyÏ,æJÏ"k`:†Èh´Šú'ŽZvh!ßÕÿƒ×>þ”²0sjM¬w=3Ë{;w93ËZÊ:¾ ø)ðO)Ìmjt‘¸7? þé:Ô$ÿ3À¿ÿ{e&Jw¯•ÐçËÀ¯€E¡9Xñ¨!ö³À¯‚˵©ƒßžÔÚÓÓ–ÑzV¯\ÛÞÞ³zu—T úð§à?Ufžý~E³MÞ°ïîêèîêêéluYQjëîZ·¶½«gõÅ<ˆtw¯ìjë^»¾§çz õëu3×îš…u«W^º²£«#koèiφ¬Ûé¹~%0u±à)•;ËS㱆؟Aì:Á “®ÚHüú úWÒjü‡p2ª©èïbUÚ•yÃ¥ªig‡¶ƒ×N{ò#T¥mgSOW×:Z^åÙÙa¢8ï ÍEâÉÌFÀ:´í–¶Õƒ¶]Äï]Ó¡m3rCtøëröãTk^£çi.…eh­[rnG[è`ø<<á]àw)+m«hæá0«Ql{„ª`VÕòº4wÜbmvª˜i^P!XUK<ÁƒÀ‚4þÚŒÄÝ üøÇ"{P/sö>Œsb±C[¹š…Ñ•k×0¯ÙmŒi×ÛÎÈzmÉuY¤õÑζ[i-ï f“êþ/øÿ&_ÿ·óQMY|ˆ•ÅQ!»4f°¤rÈ`…pòJ‡8——©ý¼ŒöyæA‹n8 Jiß±~”Æ/r8F‹'\üt½¶‹J>ÐA“󋬽G“vË]I-CW‚Â{ |ü¡–F’n/> .µ´?\Á#qß.µ’+bIòß |øÛÔ¥‘=Ýú¼øwàIâÞ|øû"›cIë*V—­¾x]{ûšžURÅçýÀ¿W—âkµrH–2²ª+dFHZ~ø[péƒážyFHâ> ü¸ÔþóÑÂ?‰ÿ}q%­Æ C—QM-4F;-¸ÃúHF»J$„{óºçeX½£]ËþµÃvâ0ÕD¬rÒ­¶“ø/WÒjü°xÕT1U1¶åzºåÙE»”·]^«°Jw7­¢çuHpÑçÔí$\m:ß킦;†ÑÎ÷£ˆXÙü/ž“з”•—3÷ûÝ×}åîk¹‡ô+—êß Wã8ø0¸\["ømø‡ä¿øø#êjœ u^@\q×8$îQà+Àå‚{ðÛE­Ý¬ÆYÓÝÞ¾vTùy%ð)pu-šskuœtÜBÇÊÕ!kRòmÀ/«Ü.ªF-CâÞü2xôí¢B‡wÿ•âJZÿv.£šZæ«evê’E»µd´]~'¯cö`ë”É}ab×ЪZ\±oŒè“{üýX ÅGi¨ñÓ>䨥¢–cÑ|È _ãüÏLx\nc¾ª¤lÉRÛf\B©çï—Ú<\õBâŽï¿¿Õ Éø ¸\*_uhf]Øú…ôxø(ø£ñ×/$îyÀ¿(²9Njí¦ ¦§kÕ:Ö¦éZ¾QCú¼øð7(3ÏyÕ*™‹×uuvw·w­êYÙQ³=Z£š!5ß ü2¸ÊÃ6kT3$î)àWÀëßIüWˆ+i5þ",]F5ÕLžU3»õ}HÓ3| êr­6¬M³…æ¤òù¤¬ÖéC/,Ó/w5™®[;ÿÑ&ib@Ö–0ËwDkÊüOI˜Ï++%§lµó%¾I³3®ÉÕ2tŸ ¼üÞøkº±¼\îä‹à·ákºï~ààRýT5&¬‘Ðç…ÀHªpµ Ýø ðQp©ÊmÂãŸÈGfº{V¯loïîY~ Ý÷"àëÀ¥p…è9ëZÛévw­¹¸§EŒöu«W¯nÛ¦¡ûž~ü›ñW6tãëßÿVòQžîûvq%¬EZúŠ*›VVÙì5­aÃİþf^ßl¢)ù’ãïj ëé)hDZÚ¶*óôówQ‡^»ß¡‡CXE×Ç«¾¾ö½;¯î“и¸_p˜+.® Ø'xC_d³žœšÙWthª¡v.&×éМ0iÏO×ÒJ=/óü>Ï0‡h"3süm|òbòõ†ë¹å£atz{š‘7ġ㴳`pÏ@ì+º„4â©÷â©ö*+!§N‚ÜTÊç Ï´$t¼˜\.Ý W&HÜ>`Ap¤“).ßÚ‚ªJ¦.¹(‡ë1 \nFT¨dŠ‹+ Þp8²9–´ò59«VÓ’œn©â3¼OpÉ„»šm.¬5ÙÕµre{Ϻ®u¯íèé`ê‡Ë¥¸¾ß/xƒÔY¡r).î~à'L:”“øVп’V£I˜ÜGE5ÊQªQô6éUö* uµ¢m²öÐúÉó5ý%g¡ËÐ<¼Bõ«>£Í÷çJ=|¹àJgcÔ¨{HÜÝÀW®`6Føº‡ä¿ø*Á ÙÆ_óJ'+è_qW=$îÕÀ× .Ù};Á3y¯òšî.ZVzk®Ìëïœ0îªÇŸïßÍš@+{º/Yõ¶þTp¹ ÂU=$î=ÀŸ N˜tÌ'ñÿTAÿJZùÂà>*ªzúXÕع,Ãçö³º†zÖ6ÛV®”å{á"Å åþÊQ جÊß@1t™8ÆÕÁƒÉuªV1¶Ã.Ñ™kTW[:}ö 7¦;!—,s%o\®{%\ÕB_Ž N˜xÕBß\aS4½2äˆ%×ãNà]‚Ë¥!áêúòVàÝ‚F4ÇBÞ¬éno_u±T!ºøBÁ 悪3bÖ¬\ÛyÐu;F»V®é0»Â6hè»—?,8aܵ }ùð#‚&Îé»Vп’V£YXÛGEµÊí´1¦af´ëy3fR×Õ/+©Ï SøqƒiµÓTËq­²õ·Ø2c³ íq’øäMÙBžx „·ã%Ü®¬ð(Ù+ƒëv/ðU‚Ë%õá*wðÕ‚7ÈÆü6|ÅCò¾FpBeO„>o>%¸Ü4÷p‰{øFÁ #šãÄÖµTñt¯ë¦©2]¡çcruÞü€à’¡wËX½fmÍiЇ´ü8ðÇ‚Æ]ñ¸"¸äqrÁoCG|ÿÓ ú—¢§_ÐÏî1ƒ‚÷Tá|PŠ´ TV7¡ß‰OW0âö¨ÍQÕY$~ÄGÿŠøVY%R‘Å0!¦<F(ÇU—$ÐÁ§%Ë”Pn)ðTüÍ© ‹måÌÖ)b›§Á8§)[};|.® xºà„‰W¼$ÿ à™‚*v‰¹ü,ܰcŒ¤Ó `Fð©ãÃ{ÄyÀvÁ “ðˆ³€‚ÖÅ#:]‚*öˆùäEó%´ë^!8a>±¸Eð†-ÉøD7p«à„}bn†ÏÌ”xóWw N‡_ å  í®Þ"8a~ÑÔ'LÂ/v—Ûÿ~âL^>ÍÒö† gÒY)þy½nèi«¤ax¯à —€Ìïw CÏ»v¬‹’% uÍEI|º‚sѳž©:µŽÿIÑM *è__ËæeË–iY=Ÿ-ÑâY-oiv.çúëlËG{ÓòÛy”«Š´éjyó7ô“œn†7G~’Ý9ÝÓ.i× —§µ`ènÉ1z[öìoaaÓìõŠ4„?Àˆe e´¬Ù›åŸäáŸÐå½ì?Ù¡¶ÐuŠp7jwä‡jbú„Vᙣ?9¯)¾TSS Ç)J r;y,‹o˜À7qý•GC¦5¼Ÿ Û¡³T9±«‘)Ô:nf´Q³âgá•;Ê‚˵´"ö4èqšRÃfž¡a £v=*f ²ü óþ·»He:ðk½æšCý¦±éékÍ Ų ih:ãz‰Ý2èØþqÑ1FM»„›C?Óx&Â]x¦]‘Ÿ©ïØwW›Ò«Ý¦uk·Š¹²QœøLhMØ ­;ëàÄgA³”:ñy¼>Ö­!ƒ¿#æžÍ·rÕÄÑv¡õ|6ô$<zžYϪè¸Z¬ÊôlN#Ö™~£•ëݺqgß–ðŽq6”p=7>ÁÐÐúœ}O€>'ÔÁQÏ…ç*uÔrT×ð4¾9—Û™×hù5$Ķ)­-YÛjaåžçØùN˶ÚGõlÖ´h›•ŒÖb.Ò÷ Ǥu]z¾³rCxÐð šRØã;Àù⹘¿êYÏvZ'~‘Á›èͶödh ñFØ?ù‹ÈðÇm ÿT(³÷à©öÔÑ­[ OKÝzôX¦Ô­/©Ñž‰¥!s>ð<Â%Ñ›dÁÐ<¹5³wçš›½vÉëÎhNz˜þ0¼“^€'!T×$“wÒåÐgytôX¡ÔI×ø™î@yþD9/–Œs\å×DV¾Ÿ•!òÌIib–'Q’ˆ`HEܽ•oØ5žÁ±ñ½-Wïn‰ì·mxDÂ~Û!•m„}—ƒ/Wh+ÏôòÕ P`öUƒß(X‘¼­H|kqIÚ*êD9^;, ®ˆoå"MÓ¶b[ólÞb2•ôüä=«Øw!ÆÖ ý¬ù"i…ñmW¿9Èô1Ž{…ü±£|îöÑcý¬…~´¿uYwÛ1úðutY÷±£ËzŽÃß5÷hý´ØÕzðIcÏážZ-«û¶ìßµqóþ=5ž+ܾ)ìsÑ §‰ÂA¦zÀkÈ÷ª•ô&zz {lè½YFïr&˜†† 5«ÇP*S£j\ÜßZ1t[ÈÚI™nÕ¥’—ÆnòPº†ë BÞNU½¦)Žõ2/‹ K‡økÉ ~»EóôXÊçÙÝ-´½ì÷èwÜq×3 Ô*nmÉÙYÿOküaÆ_íÞÛ‚_q‹«M¿Û¦-_®MyñJØ£¬èïç)Û%nÖ1‹žfæz[v±Û¡nµhº;ne5fµÞ–ŽŽNö_Zçñu¼ô’Nñ3—[¡Q8e:³‡ìj­"¸’äþ èþ–™ />ÃtŸðó,á”Í"?ü&ø7•d‘ ûó¶žÃû DÉZ l.ù­€öß’Ñ>¿«i6¿{HdJž;t‚YjÕþÓ…—dmË2xU~i_áýϵz‹k>K# ¨q>J5E¢5°ƒª}«r)²íÂþœ!|޽êÍûTÔÄ™ðbüŽ+qIöyQŒy¿ùü⊚ªø=š­ºIó±h*ÍÂÊhV7ý§ÇÌ„ÖÔ߯†ÐŸƒ±,²¦gkþÿ(gÏhn^`ÿ- ¸†^Ç ÿeð³#ëxQYG=—ëíîìɰ–Bo‹måÇ»hHÚ±‹]]½ö_½%¼Æþ~ „Ñ;–üo/,kÌç(õ®[Ñh5³íb¶9Ãé¹5ÕT{,pÄ6¡dj¨Ù ÈÙ^µ¾ïxO„à‘ßW:ôL®@°¼[Y„Û_r˼)ƒÞy•×Iu(û+®k¬¼é—EUgTñWÄ·~åµVYy±GpùÞÚÔ¡’Ø¿h8¬%Ê{.0{¸XòÖKèÜ ì—*S5ŠrÎÓà@xWòžL⻈+i5–ÀY|TS®%¦{Þ@\ÉçÂ'6ˆü—0Æ\x l.Lú4g^.LZ-þ-åÂô<çgS.Lú®è]§\X™1äÂÊt • «5L|¹°z=ƒwIäÂq›«z.¯Ôirau%'øíîÚ¹°c Çœ ŸéNð;gH2L:= |1¸Ê¬´F2Lâ¾\*+ — “¸»€/éLJ†I±—ß.••†K†I\ðÝàѳÐÐÉ0‰Oq%Ÿ Ÿ$ÊÇ“álØd˜ôiμd˜´Z ü[J†éyÎΦd˜ô]лNɰ25bH†•é*Vk˜ø’aõzï’H†ã6Wõd8^©Ó$ÃêJNðÛªÃ,çM¤c8øH3­c˜tz˜`Ç0‰»˜`Ç0‰»8#;†I±—ßÙXÇ0‰kÖ±c˜Ä¿;€¸’Ï…Q¾üì$¦\86¦_iμ\˜~sqCe÷¿•\˜žçàlÊ…éwVô®S.¬Lraeº…Ê…Õ&¾\X½žÁ»$rá¸ÍU=ŽWê4¹°º’ü¶jǰȅè>Ó 3«c˜~éa`‚Ã$î`‚Ã$î.àŒì&Å^L°c˜Ä5ß = “ø÷°nçˆòÅ1¾d¸Ñê› “BÍÀ…àR«ü<‚B·LΆž•®y„ÅKö¹Ã£g{zžEÏAÓq=qCl“žr зfHà$Žï¿#þÀIâJÀç‚Ku¬„ œ$ÎÞ .W…¿U8I±»€?à$qMÀ×€¿&ùÀIâ ®äç³Dùâgàì 8I¡f úÀ©‡œ®‘µYŒŒ7rÒc.Úàö ‰œ¤Ó­Àç‚« a5"'‰Þ .ÂÂENWÞ~×LŠœ¤ØÝÀ×€K…°p‘“Ä5²BGNÿÚâJ>rž*ÊÇø"'¦¥KhÖ \¾H:tNÖh£Í÷\Ðób¹ç CѺiÑÞï<"Ò7n©XÌ›FÎßÓÊ/aýýTÜG¸|oüþ~*|œpø¾äýÄï ®äýÝ?9ë´xýv_Ð G)+ð÷¦I_ö÷`Î8{F¢¶? ÷®_)mTkéLˆQ"5RCõiGHïUÀ^ðÞ°úÓSFæõºñ 7—¿TFñèà ÊÔ¨šåÍéo =Ê L¥êRkŒ2¨µG í­ê15½^/¥z_~¼R§éËWç–ÁoO২˜FèD7¨ÎVð­ñWü$® x%ø•ÉWü$~[q%_ñãJŽñUüsņKº5—4L9+%bª;R®ú[óöÉšÎÔ7`±Æ¾cfÛü|€¥·nÑÈšƒãâàLþÔ ·gŸêžæÛ¥|N0´’Ërb?qб»|زA|ðVð[ã/§£<?–|Ù ñ·WÒjœÒàcÝ6LÁ¥£ÑÉÅ`Ë4[þ ëVŽIÇüýˆáØ|`ÖíÌÚ%vcg`ø6ìŽ@g¢4îß­ÐÁkdfg© ÷€ïIÞ³HüÞâJZ ÿ ÙÎ&çà8Q–cŒÝÔz.'¡X3Py7uêF:ÀÔ2†tÏ5¨â0¦Ô7zÊ}Ê´'¨CmlذÊGKú36«ŸœQV‰#)üNïAlFž3GÍ\‰Uu~Ö¦mÖ-MÏ»6U^º_ëÑýc6tr3$Ê1D?h„²¦+ê;~Æ´QÑ¥ÒQ^]¿oï“~?—^,æÇ顎»ÃºŠz2ð)Sð”)Īë 'FG'T+ktГ¸"ðVÁS*sô$î ð˜à©è9ˆÂzRì6àË'Œ;7#m‚ØWN˜tAâ_YAÿJ¾Î8[”/Ž1N®}f×4z5£O^4IŸÚ"^Ïz,ZºžÃc~¥¾àq“‚ߨž/±([¢-øeÞëbàeà—)K6§©ƒkn„Jšln—j*‡ D$îràvðí‘=ýŒ@S‘½ VÛµ&³™”vÀ”Ùi6–±• ´Áídl•Á‹‘m•®¹yñtF9tÀeF™Ó¢çóR&—ªPÛÄÞ½/g’Ûw€ß¡Ì$ó[ÌÁ.Y«Ü|ü¡d¬ò\àÃàG¶Êœ õœIæ…ÀƒKMu®žj·°Æ•!e–W_ þÚdÌòààOD6ËÚ&·î*ÙƒhçMmØ!«Ð‡¨HçCüᚬíXò²vaj+?]‡Ö½Ö'¦Žž:2CZw¤Aêù‚ÆÝº#q©N˜€£SÛ•ãC‚§¤Â^\­;Rìaà›'Œ»uGÚ±O N˜tëŽÄ¿¥‚þ•|ëîQ¾8Æ8*%NÖЭ¸¤!ê¨ÔœI:}Ú‹šØ°ãMȉÏQ±l’]Z9E1—eëâŸmÔ7`³ø”V7ÐÞ §-úýkáÃy+¿Íÿ4·”.+¥;é=‰³oéEžü6ø·•eéÝÃf¤È?ÿüãŽ$î;Àÿ(réûú”,`b/ü­J'¯_ýc†ß3îÝ&¨CåOoóÇSoœpFTþ¤Ó‡€œ0îʟĽø Á ðïÔÛŸœpæTþ¤Ø§€ÿ(xJe¹¯Qù“‡6AìOE/÷¡+ÿã úWÒjœ+JWë6*©A8¡úa÷˦v§(Ç|Õ:5F‹%E4e¡Uâzˆfà6p•¨5Ü5¸6ávð訡}ŠÄï ®¤Õ8^äcÝ\»Â[”¸v­ôz?NBµfàâ†ò¹Q’Ùõ”•a˜Þ%†HX¶á,#éâ%«»«kòð;KZÍœaeùAÞ,×a‰9*‘ çŒA½”÷häzÝê ,É Ðcž<~HYi¢ŒNB£û€‚?KN²ä¯“Ô]Ô[0Ýl»˜—çJè}x7øÝ²zOùeø<ðçE.¶‹yº‚L¥-lªBº<ø ðWÄŸª¸&à+Á£ÿ†¤$þUÄ•| ]& Çøé<­)¡\3piCùp3E¡tdšŽ ‘£º† ËptµʼnöZѱ‡Ã-ÏLéΠéñ‰ÉÁUâÁO—›CRµZãœÖ*9µúH—»÷ƒß›‹ÄÝ|üÈ%%:^‘üÏ—Š¡áâ‰k>\ªw=Z¼"ñ/ ®äãÕùŸ9ÆÙ¯ÊÏþ•Э¸¤!j¿êäpõâòlJ䆦δÄ$Drìû±˜×³¢ûklØÌ#nÑŸç4»Xl ö®:6Í·ÉuhÛµ’%~Ù4rmR,[%:ºxwœÄ: øð7Ô5Y$M> üøÇfA²Hú¾øð(IéŸ~üã‘‹úž,–^½"i¤ºt˜oeÁWh;v~²#óbèÏΕrØÀMÏñ ©'Œ;p“Ø&ˆmܺIn¿ ‚þ•|à¾@XŽj÷ôK\kœ’Nj4£·Ò'G¢g鹜‰h]î 븤ډÀÛq/€ã._ž¼ã’øÄ¥èé›ûËf©"{üs9PM7WèW°Žî#.É"³8ª:+PL|Ä•ô[i…A|¬[d„Æ—ŠžÜ'R<˜ûŠð®´á>ÂðéXwzT’WÒ~t!Læ£?Z¯ñÿ ãÀ¼ÝuY´á럊Ž=jæ° e6†Sà½!õ¿:®_/­ÿÌÙ*œžgpxèm莄· '}÷ôÞ/£w¹”¥›ØÔ°R¦F […+Ó­ºÔ›x¨5Lê8ñZ~«põzï’Ø*WyÚ3/Ÿåÿ“Pn)ðTðS¥ËÐþ¨9©qFqE´ÛbmÂÿBêÔ›.—jùN[?5õ{þFiS¤/ž~RôäOæ%œ@\Õèð“§¼î‡Y¢df]J¢&¦TìÃácGµcÇd²#Røàià§)ÉŽšH±†ãçFsøÃI¼ïÓjŸ.£ö„ä(x׳D~:ìõ¬qáÑ®Žn£ ÿz#ëYõõÎáÎÐP;µZ2Iÿ•µ²7*·Rk×Ôq\O&-×órÏ[nÜ↙èpÃÓ8Ü\¡öÿŸúYð.©ê#¾—0MŽ:û«{ñ§W®“—3€Ïvä—°À_l uË¼Ž³+À¥:É¥_G+ð"ð‹êã™âš¹œuUp6ärݵ»eÔN(—‹¬gÝr9%o8t«Î®qårñyž’\.F‡‹'—û[ð³à]RÕG|/á8)Õì¬îÅwW®“—àjðÕ s¹™×±x9øå‰¾ŽÀ+À¯¨Ol ®Ù‘Ëmnß>;r¹µwȨP.YϺårJÞpè:V]ãÊåâó<%¹\ŒO.÷·àgÁ»¤ªø^ÂqRªÙ-XÝ‹¶>Y6y¹ ¸|wä—°P±(=Ⱥxø ÊßGcÖ©!üFàsÀŸÝ'Â~“ø›ˆ+¢üb†î0íà÷L~ð›¤.žÔP·ÁorgÍà7)| p ~“º§Ôž©ƒßJô¬K’­ì ‡J~ÔÚ5Ž$;^Ï‹œdÇìpê“ì¿? Þ%U}Ä÷¦Éug¿`u/>ùÁo’zPÝà·ÔK8;€¸$_ÂäÂÖÍúÔÜ9x¸Êez5öE qç—ƒ/¯9VPz™ž´O¶ë8Äg8kf ÂíÀ®†Y3Ôí¨=Sg (ѳn µ’7:ÑQg׸êø8‹æâº§Ôž©sq”èY—–޲7*Uk×8Z:ñz^ä–Ҿ¥ó·âgÁ»¤ªø^Â4 ŽÙ/XÝ‹O~.I=Xǹ8$þì*ž‹“ ÝÐ!EÎ&8‡Ä\ÞP·¹8$~E“‹CR[uœ‹Câ3œ5sqHáv`W왋CêvÔž©sq”èY·„ZÉ訳k\ u|ž§$¡ŽÑáâI¨ÿü,x—TõßK8N^;»«{ñÉÏÅ!©=À:ÎÅ!ñkˆKUB“J¨{—6$6‡Ä­^ÖP·¹8$þòâJÐ'7ë8‡Äo ଙ‹C ono˜5sqHݵgê\%zÖ-¡Vò†C':êìWBŸç)I¨ct¸xê¿? Þ%U}Ä÷Ž“×ÎnÁê^|òsqHêUÀÝ u›‹Câ÷—¢„ºÑê‘ʨ¯&8‡Äí^ßa.NU±óÉ JyÝ©"™:`çAò àrÓo&xBØ0$þÆâЍÆB1fŒNë›]£8._¨®±~%3)r2ððSâwM·ø,ðgE¶L:#cS§Ë,*ZCŠœ<üÜdìq:P×êdó€-à-êì~t‘i^~a2öX¼<úÀÚÜŒ¦[9›d*…™†(½t :¨H‘‹ëÀ×%c“àzpùÃ7ýoÏÓr†e{?(.käóÚ c*V–Ÿ#*g® ÀÁå*=US‘I“`<—Œ½ú¸Ù^sdm2<~°®))irè‚»ÉØdè{Qm’úO^x{LìÞèvh[mG3ë…bÞÈлºæÇè0ëÙóˆ‘Ó²yÓ2³z^ó“ý‘Öºó·Mc™µ‡mÇóóÍ”7$ËûŸ ú¸Æ42:ß—Ä{Ž¡{tºx§q¸h»LÝ^ÌëYcÀîÌÚ–çØùN˶ÚýïùOeد¸E#뙣F~<£™Þpàpèh—þmŒ²ß§Ç0-eŸ®§µCv›î ·q‰•ÍÈMÏeBï€ÔêжÞCVwv(òAÅø ¢&~,~Õ­ù,:³bþ:J,—f¿ÏŸÒ1ÝmPÏz쮉OT~{ìöް­ò¹’ÀôAÁÓr…0ømèFI·(ÁeÄQ ‰³Ì{ œ°¼QYXÐï–\òkÛª"œò¨&oª\IƒÄÏ ®¤ÕX‰×ïcÝ|b„¯ŠêÓôºh¯áÙ+\m—á Û9 —Ÿ .5’«6'ªéHsˆ+iZ cù¨ÄƒÒ׈®Ž¬â([ÏóЭ 9ÆÎë%~¤=?çØt5o¼hhcº«¹¥¡!V=±Jn`\#kk­®ah×—ÜÒ Æj =Ï*­îu¯nëаʣÀ=Ac2FÍU*Ú˜a Ó°Ÿ1 :Kq˜rkÞbµt.ç²ÊœE­då ª(4–6ëùvcpEW+° $?á×™‚EÝñÌ,õZåÇ5=7ª[ž>dØ%—ºs,þûSëX“$9¬¦(±°¼`Ø.åYµd±ß0´Õåå?Õ Ë2 —צøØ´r&{4¦ _Ûjì'Y…æ±jÏÖr¦ëš“éU®OÅsà—èÞ!Ã2=Ï„ºZ땎aXyº¹Ö§çÙÃÐ;]×µAë3 nÿU÷tu­Ú mrôÜ@ɱ‚¯eØ-ÚºÇzòå%¥¼Ù,;±´›Õçô@†S(nÍÌQÖÙÑǘ9(ïhåU¼îšÌ4üEÃ#sYm¡+î5ðç5ä‘'×$_ÄÖB ë¤/†ð‹£i™Š›â\„×±â¾XÄî2Ö©â^‡×ïcÝ|b=„¯êÓVÜö0ÏpFYpØ"¢SN¬¨ï9z9*l¯Ä»>ï$h)p¸ÔP–¿íy4C“»ˆ+iÛÓú¨ÆßÞ*ªyde~mé¹F~PËŲ̀TMQ¯”é ŸJÏS%J!Â7¸í{Õ•Ú¹ìÕ*@VkäØOf=V§ôö«Ký?˜Ò†š4ä»o‰ð­ào•~cø¶kÒ¤%£P>zL̳i]ÖÝßvŒ>÷´–³×ë¥T¯ã•:Mm¬Î-ƒßZ~­CÛfPMX©ÀX˜µ¨×52‹©YVùòj‘íJµ8ªçKFµÊѰhüÎ=ŽÔ“!"üü³,ÿøgð?Ï–Pü—€â‘Q\M(V¢†ÚP¬D¥Ð¡X=b Åq¾”Ú¡8>©Ç ÅjÜ2øí¹"Ž–ãn9Ë͉±-ù"œz¶à)¹]dª¶žY-P«4ך‰Dš,^ x*ý[HÜÙÀå‚F´–Ôì0Rað"ÁSr“=«N°ôl“ôW N˜„I2ÀU‚F4ÉWX |¨D3 D‡®¥©FE#k޳¦ºîç*Øe¥Œù±¸«æ¬L1êÌÿ8k:ÙR’ž¬¦¹ƒœ¥DÓ¶Fé§ø_èÅb~œnŸÐ ß¡õ‰aaš&×jM­˜N ž–k¶W]"—sìbW—„{¥ç N˜€{¥ÓÀÅ‚Ft¯;ËîÅûŠ&9×°=Vîà³á,ÓæZmGÌ àÿl£Þ(>¼Îç¸Wf.’÷£}ÎÎrY†^ÂûDz ð…‚Fð‰ª¾a¸T$t{ ø¤à„Ê\#oZ#5ľ ø:Á “ðÈG€¯œ0¢GžUî'£©•yÝ´\®òàÇ'¬o¶þ,ðó‚&a©O¿ 8aDK…_Cò¿ü’à„uMÒß~KpÂ$ìñeà·'Œh¹õ1¤Ãw€?œ°þuìÏ€¿œ0 »üðW‚F³Kê nÌvF:´íƒ¢òÔ5—åLy úö]#ð¬Vµ±ÉªæVÝÕŠ,o˃z)ïµñ¤ÊÂß ¡UNÃgrõƒ,¹|@µ®/¦LAÏÓ§|óžáXzyEÝ‹„‚k1fûªVy^‘&šŽëgµ$Æ”JLé×ÈÚ| †~j:µÃŽ(‘‹üZ`Óó'ŒX„Cl]&Ê\Õ l-[•‰•!µºš\^¾Ÿc}c )sðÙàR}áb ‰;x6øÙ‘-´€ƒ—R ãœloUfœ¦û¯Þ"cšN`OCyo³$LÓ\ .ÕQ0á \I“Æ¡'ŒÇw\·ÜÔ’Y›O± xüˆ2³ÎÓÍÞ¬ÙÛ%cÙçï¿/ËÞ~dË6ÑTQ ³<|>¸\=QÕ,foNÒ,/¾üɘåÀW‚¿2²YòœG>¾ øøSêZ$»7ÊXæmÀ·ƒ¿=˼øðwD¶L¶C»¶vÎ…YO“”P«ßÌš4«–*ú"å½%+o¸îԌΔ1ø;¦Nœ°î©Iê à9‚&`ôÔÉÀs'Œhô3&t)êy×–/›´{Ç‹'¬s¢’º ¸IpÂ$ µ¸Ypˆ†zºM¬ ãkßhu™£g=ZRÎJÄòô´ ÍLdeH[ÌhÌz%~›i æiXALZó—\±fª[*Py?n‹’ ýñš”á—\Ñ{ºø{Á “nœmnWƺ-¯Ùᄉ/¹¢5'M^Ç%W$~Në´äj3^¿Ò>QUêüþœáéfÞ­"y¤]¡ÔC¿Ÿ .ɨÞUÚx~qE|+§ŠeÇöÀAZfF»JäYLÔBê¶V"<üTeàÉÙÖ§ wY¬mÉmi [’fg7T6->[`Üõ!‰; ØÞÙh—ˆAJr-oºßD7-¿ÏqÐÎçí1úíNb[Ôm¹>¬Û‘æÝÀMâ×Wò>½~¼=VŸn:Â|DB³f úàÜêÑÆ%.ÍrY‹ÔUåÖÛqáZðµñ»õv¸2¡¿ñ„\GF$·&ñëˆ+y·ÞWÞ¯[ûõ¸òŽXÜúÔ¬íÐvy¶Å›Û¥œ8°?1riƒÚ#k8ñ8.árðåÉ;1‰_@ù##:ñUpÜ«buâ9Y³#? ¡Z3p1øbu)kýŽ6`—hsCìva[ƒfŽwòí’˜c‡ukRöDàZðbóUpeÂ:Æf¿.€u‹Í;áÊ;cwëRX·Þ WÞ[—ŠÅÜz'\yg²n½®¼³¾n½®ìcÝÜz\yW¬nÞWkDi:½šê[‡íóèòfô)M86˜SÛ´3Ÿé‡õì](†„ëÁ¥6çÙ»àÍ„À7$ïÙ$þ’âJÞ³wÛwÇêÙû¶%k.—:,$Æ\št[<üüø}x7ü–ðp©>š“øåÄ•¼ïßî‰Õ‡k¯žF­æâRäÁY¥Â€Á»ìü)0¦•Í—hé6‹Ó-=?îšnX·&…ׂ'tì+Ö1é ñëX·¤c/\yo¬n=wÜÌh£¦„nÍÀ%àK”ùönòÞQƒïÏ÷".ïžXm¢þÄPîÒÆúDh÷$¾(5¬ûÓ3¼üæøÝ/\žðð[’w¯Wòî¿.¿/V÷?aÐô:(Åu%Ôkž~’²PÂà1_6‹¦Ûóæˆ‘7‡mšû˜3F¹wg´Û7g´Mô* ì_YŒX¥M]²h/oÇÌz8™#ðÏʯ†-(ôèÏ>þ@üe áƒà&_PHüóˆ+ù‚²…c¿ò‚2ý59Û/4SÔiªïg»Ò~K4_ŒÕ†8àÅíNÖ‡IË]à]ñûð~ø-a7xwò>Lâ{ˆKÑÓÏíç6©"w Ü´X§Éd}ðwq)®b打>ÂV0Pvàþf’åhMÔwu?ä#®ˆ&ÛÊÂÝÀÜ_t1±J™ª&~ŠŸä;h;Ýók/ÿ†ríòY®†Ënß*m÷TCõrs¸šªå€Ãàà ãQeˆ%¤ï’^®p‡?«OBó> .•8Výå]@ÜTøNjL$qW‚G?2kmyƒ ¾{М0S;Ÿðe8y$Ã7†—°Æð ð'”»ø<·T(èθ„r~ üSÉ8ùÂ^¨Ln.¡öÛÿ 2ðÓàŸNÆÃŸ~ü3‘=|ßÞ‡|V24ÿ=ðàßPî·óY±“iô‘V¿þüÉ8î¢^_gIÏý1ð_ÀÿE™ç~ø'ð?%ã¹ßþ'øFöÜgW6òl¾ÇºžåÇBÂ/""ÍþK _)ø_ ²+ƒß†NÛ®Þ_F5™ö<¤m!•¹ Ο§¼pŸÀ’IÞ[¶t“Zç3à™dJ÷âÞ²ÒÅ›>xøyJŠ7ýâb`;x{üÅ›ÄÍv€wDöÚð;N‘üN`xW ëOÖPo?ðð’qØ“{ËJË6Hë^àð=ʼv-ðFp©SÀÃ{m7°¼?²×ÊíËE:<8> >rhìÑÝÊ%­î>.Õ…ÞqOêõuŽâ·6ðð;”ù­ |¸T—rx¿ÍŸ}3ªÊ‰%åTŠŽÈ$göC?мRói; }Ôh·-v•<-gêC–-ÆØÚ µt~ׄá^üWðUÍóôÝåMËè—Z <]pÂd¢yYé(¥â¡ý"ÁSRsß«þòŸðËgN˜D©ø7ˆ=Sp¨9Hè†É? ølÁ%7-~º!qpõ2ªiHœÅ[mÌP¸°Œ|† Vðó¡sµë¡áYàgI—îtÃäÎü†;xËg犟~³„rçW€/—Q®ú®TØ¥…¤Ë…@JlÛ$“ìêRû +[Cê³]à‘ý¨U$I›ôÒAÝã§h©©2HËnàuÐøZåUÆÜA^$ts€cì:Ä®ÑdꋽBc‰¶*ik)s¢KI=A¿x3ð0»nï%îzâúÀ579\‡¶*É?< ]¢íàWÝUy”–Ðí%@Ú¹íÅ j7Œ›ÞU¹Æ’®z?ðѱá#Ê\õN í÷ÜÉì»ê­ÀWÃM^U'W} øèò˜zW‰„„n~”]ïoàãSɸªÐXÒUßü;v=Í®÷*sÕ7?Ʈ׋÷’„«>ü8ÜäcurÕO? ]>¡ÜUçäu¹üí‡@Ðù»~”Œ§6÷r…%õ«Àï±ë+ìú®2Gý<ð'ìúœx-I8ê§€?…“ü$²£Êuú‘?þúüB}\àYvxݨEÆ‘6Ocß¥š’Š«BcIwýðÏìúvýŸ2wý=Þýûwâ½$ᮿ‚ØyÂMH|Tw•:Žt˜\$ôII-ñšÞ]²l§ ¡[È€üh²®dÜui¯ÐX¶'ŽT>ØÖ ¶ƒ•Ú¡½ê/Ÿìi;¾JÍZ í³©ÅÀ•ð•žÈ>{ 2Ø_tìQ3GG¤Ó4ü¶oº0±VwõËའ|ºVVâ0Wz¢UÀûðt÷*/Mô0š½øFv½Ž]O%ãÿ‹{Iß(Þÿbàìz»^«Ìû¾‰]/¯& ïG+4õføÉ›"{¯f[S§ÚbóBÏF¯YùzQtýUÖÝ…Mª? ü%C./ ~º ûQ6ʨ¦ »Ÿ6ëÔ²¥?YfÔ m‡õví¥Öjvÿ„hÛòq‡ØÑКgŒ6%Ý•7â©ûÁåF §m­ð‡•Píð6ðÛ’ (Kz¹Â²…46càÒýŠS~9 ¼üöø# ‰{ðð;"—ƒð#[$ÿ¹À;ÁïL>, ŠÂ°p {X€uüÁoÛ ˆc©¶RÕç@= ÀåVþO›/dmº7´f½ÀËÁ/O¦xŸÐKúJ4îH×àzpé-H¦ür¸|cü›Ä-nß½`‡î4#ù›W€_¡ÞMG³ö¨„fýÀ›ÁoNÊMI_I7ݼüzenzðð[’qÓ-@\j¥7fÁ³ÊÝtnÞÚi†Ý<„t:¼\ªn ï¨ z…Æ’®Z—ƒ¬úËwß•Œ«æ€wƒß]'W½x/¸úŽ‚ùþ®Ú= |3ø›“qÖE½¾Î’îú"àãà+sן:w½øð·ÔÉ]ß |øÛ”»kãÆí›%û ð³àŸMÆSç÷2u%ôCÀO‚R™“¾ø9ðÏ%ã¤o~\ês#f¤Ã€_ÿªzGÝ$娿þ \ê,iGÝ$í¨ÿü'ðRæ¨ßþü×É8ê×€¿ÿMôhºŸ„äÿ ð·à¿Uöøóûk¾u@83ŸJWÇ}:H|:€¸$KéܨêÜÌ®ˆ+â[9CÓ´kíüàn iטFvØÐK†£µ†TïŠð ð3"Å´à]§\N]܃¶Ó^tl0è°! %Ï®W·ÇàÜ~£ ›ùrÏ^ }“ÁðÉ_\.Õ÷TÕHç{^Ñ]ßÙ966ÖÂX×lÙ¿©†²—o¿I™±šúKN-SmÞ ~sdS5†_Ê}Kਠ¢ÇŸ×¯—¼aÛ©h¨ôê u ¿$>Àhá7ò™{d‚EÄñ­¼ƒ…ßMŽž(9VFÛÕ¡íèÈhWƈ›a”ÿk“á°´‰ÿs#ûçrm§Õó¦aÿÔöwh­=]]kÛ:´]t.±ž³5}€–±Y¶7lZCëi”Ð.uÇtmËŸZP4¾·mÏ>ªŒò£Tq„©+Ú É¥ÝÎ:´/- ÷!|ø;”Å›Sû*[ؘ–¶ËÈ™YÓ Û@º½ø%ð/)LóŒBq¸†Øw¿ þå:T $ÿ+À¯‚Gk‹LЧg„>ß~ü» Í1`çs5Ä~ ø=ðïE6Ç¢Öî¶Œ¶ze{ûÚµR…çûÀŸƒÿ\™e4¿²ÎÙ&UÎÝ]Ý]]=®YèèYÝsqÈÚš´ü­@Š­Äý«Än£†3PCì/ và)©³¢Õ$~aý+i5rÂÐeTSußÄ*©+ðòº•Ëh}¼êÓó£ºÅ+¡ÖîuëºX ´ÉÔ]pZMízFu ?¹¡hÛ|dZ ?îo¾ºXx.B¿…(•ÆX§ëHã®SHÌÍÀ£àGëP§ü[ÇÀ)3$Z»ˆ+î*…ÄݼüžÈÖXÒº’U)=«Ö¶·³(-Uzî¾üÅÊL³|ºJeÕÚ‹»ºÖu­ìZ²j!]_üø'â¯ZHÜK€Ÿ—êÓIü§ˆ+i5…¹Ë¨¦jy‚U-}c†á±z¡Üþé+yž-ª–¢Å£Ó¡^FÛÛ¡m-žU¬¾¹vXç³Fõ\Ž-žË´«]ƒ÷Ê룶™óÛ8t ¶i•Lo\lÝ_ž5iæ$lÁZKì'rº§‡._Cx5„O€?1Ãj'ÒíMÀ‚4þÚ‰Ä= üøÇêP;‘ü?Ñ bqÝ}zVJèó9àçÁ¥F¦ÂUO$î“À/€!²9Nl]Ǫ§î•«»ÛÛ»W®]-U€¾ü!ø“iõt¯]Ó²j"-&¯3û™À¸«&û›¨;¼ZZ¯m´4›Ù~Ô4Æü>;‡ý‘]à‹<Çä+B¾'ï†ðIð'•­–½Ž=Äu¼fÚLÏdên¶”×í Ó5ôЧГžo~ü‹ñ×S$îuÀ/KuF¬§Hþ—_ÿŠÂzªf>>ß~ü;ñ×S$î«Àï‚KuNjF­fõÔÊ•«ÛÛW®í–*Jßþ<Úšçà]íUk©î5nW×Ê•í]kzºZYpaÍ©®•ía[S¤òïÒFo| °Ê ßjTY$ö—{†àrû©E«+Hü™ô¯¤Õ8(¬^F5UV«²cøíZÞXê¦Î¹Í¶•+e©lððóû´ý•3-0l«uVa ¡ Ɔ°¼OYÁ8w‡]rèüV'–›BìŸ}ö 7¦;a+Ròàap©M”ÂU0$îp|¼ É?< .×]Xµ‚Yvè‡ô¸x¸ÊÙÖ5*w+ðnðè³­ò~:Ö Zu±T!ºøBð*3ÌÕj—‹×¬\ÛyÐu;F»V®é0»j6bkÔ*¤êË€ÿpüµ ‰{øp©}“¢…sÿÑâRôô úÙ=†CGº»U„7äTÖ%¡ß‰O—¤ÓžUBƒ8¼ÊGésp'Îã Pž“6‚7F*ÌUÏÄ¡eÆ%Ë”Pn)ðTðSÛÊ„ß)b›§Ÿ¦Pl©µ$® x:¸Tê±â%ùgÏ—KB§ß&¹ÄP¾PÐn°¼#Ÿ8Ø Þ™ŒOœì望Ot{À{”ûÄ\ò‰Â°„n—¯—ZYÞ#Ö·€oIÆ#V·‚oìr+EH‡+;ÁwÆä£º]¼ ü¦d¼¢x3øÍÉxÅ.à-à·DöŠóùÄ›ïØ 6áq¨‘^Þµ!ôÄaÒPÞ ½=:³…£•QMZ*‘€!œ0¾liN÷:²b<€ºþîc"íζ‚KïŸnéÕ<êôÉ…Þ[±ˆû#çŽS~¹ØÞ'qMÀ Á/¬C*@ò/fÀ¥N å°Znîß7ãvð2ðË”9ìJà~ðýÉ8l;°\®³u·R™ épx=øõÊv9í8Ê’ËJ¨h‚Kõw&걃Àšt&,¨Äë¿ øð7Dòéà]ó³3Üœý›÷\±¥†Zo¾ü=ÉØî)à{ÁßÙv *'S‡Í0I‘¿~üãÊÞ­P6hÕ*’ œüð“:v¹’øtqIúgã3U§¦c:dÏâŠøZ.[¶lÙÔIšTœ[óöP›fçr®æÐΖ.+ëÔv¢¹:+\,=ý. Jx¸Tš0á)6ø¥½U7{½¢íf´F,c(£eÍÞ,ÿ$Çÿ„æžöR]7j ý´&ܾAYÁ8¡ß°5\€Ä•ê[2J( >F+SúKxSÝ ©ÓhƒhÉ._¢0\ãc¶šëÉ)àRð¥É…ÄŸ@\r/`Ê]éýÕÝÿß»AÆéŽÅtÇ"üÊIâ³¥ôY“øÑ“þ ýÈaήèšôEz-šü4:½B±s?ûÏŽýÃC…-ûJf>§zn`ÕªœÞ³ªgM'¦~tt«ÓVþK½›~r1ýäeÿ^~©L\#=®&9(Uc,™Þ°P÷"ðE›ùoœŽE ÏæL‰‹WØÚŽõ‹s'gâÁ/çM)D[,–ü°*¤ò.ç“füÁ7þà—+—}øÊ#“<&í?ìÞ=}Û¯Ëz¾ñz•jž,l½ŒQØÛ,ÛdÁä_¼(Ä/Nô˜)þ?ùÿ ™7¦¹å™¦“–^¨–NjáX}+ÿ>¡ Db——„ KUWó‹Á¥ÞMU©sûõ¼©W«½Óxé‰/%i›¤ËEK .E6iœf“©öh„ ›Á›°G »š'Ó©† uRö ñ ˆK‘=:wQn¿ÑÏíGM]ÛiZ†îh­»ÌÃF®}Ëà ‘õÜ6m—LÚÕ{®_£Ðvžéå«Å·&Ø‹p-øÚämGâ/ .IÛÍ‹ª´8€¸"¾•/Ó¾þ¹*žMƒh75ÑŒC%=ßžaßG‰N±¢¢Ýî%Æß\þMkßføŽÇË1øò[EkS×òp×É%ôVÿ±Ä|¤Cë3 mÀÈÛâ8rjÁš–çØ|^®P\¢“ʯÄ¿ þåH…³Z!]RÞÏIL –PòûÀ_‚ÿRY!¬9VL×7¿ÿ•2±MýÅ‘¡R¿ü5ø¯#ûø2ÞÉY°CË1[˜ÌÿÄa*® =Ï”®ßä›gü¦aÂærЦ/é7{…ü±£ý}Æá¢s#¶zèur×cÎÓëVÎpžstׯÛvl¼nÿÍW÷mÙ|Åní’v­oÜí2<Ãmm™ôuKÛ­üÑt·ã^sPk=Ï:’ÖÖàwmmS~¦ÅŸ›ÍY]ö6ÍQ§Ã2¼N«X`É·7|P?|ùÊNÃ]Ýé‡Û³ô|탥|žÝݲAÛË~~Çw=£ÐA™skKÎÎúZã3þ<ûÞÜèøŠ[\múÝ6mùrmÊsˆWÂeE¿]òŽ^âf³èif®·eû±úávñQ‹¦»ãVVcVëméèèdÿ÷¥u_ÇK/é?sé±ó2ƒé̲«µŠàþI’ûƒ¢û[Vd&¼ø Ó}ÂÏ·;VÃO`»ׯÍû÷Twc¾ù ái‚§N ëÆtÇÂÉw,ìÏÛzï'%)1­z8½¹ð…¯Ãñµ?]Fû`ün¬¦Ù@üî2§VöÜ5b3s͸¤VícYxIÖ¶,±¯À¥5~…÷QÕêQªù,, Æù(Õ‰–åU;½r)²íÂþœ!|®úþ±sð(~Ò¤>èz¾˜y>â’,ì'F±™_ýŠ˜ªìD¯G븙aí¹Œæì?c|q´Ëro“Æ>h؃F<2šÕMÿéaÿ9Lì01˜ÇXèG:ö⊀ïŒüHû4ü¯@ŠHE7×Íÿ˧ÙåÖ&53XÕο¥é‹î°sìñݬž7Â?W3ž…pø¾ÈÏuQù¹ Ý-9,¹rËî1ÅTÍëì¿¥×ðÂkè±às˜R#j¼Á×XÏåz»;{Ø ·{[l+?ÞEz;v±««wëÆ}[2Ô¼2œ¬Qôzì¿zKø'X­ « ¤I>AWåÓeoËþ-»v¶øÄÈ e5Ïp½Þ–#-áÕöCaxWdµ7ùjçQ#ß»n5+ŞNJ3ýÇÓKÌ´JËv ÿõçÌ!“ <í½ãØùšáj>H _˜Ï/K5L8Z*d¸l¨Ù|ÌÙ^µî7»x%ø•‘ßc:ü€.)° ¸|{dE¶±0]—½¦\‚GI œõ!z)ž…pv„è¡%áì Ñ'5TÒ³Y¢ÑFãØÕ0‹Cô)Pž°!šÄnÖ5D“Û€‘BtU±sûKn¹×uJOïüY ;Ñ6$>Àh ›Ç£ªsjƒHÚ|”± ~+±øä4˜„°ÊⓈCgËðî_Ý*hƒvÚØŸ íÙ¼z`ѵXòÖK茹|%fsÄ•˜‘;ëkl‹A⚀]à]É{2‰ï ®¤Õ8Î⣚r-áÁg@øJ<˜âBÕÝBÆM ½š À¥/¸>s'ésâ¨ÁO¶Y]j …?ÔZ <üiûù“Œ2ýæ õÁûã+T”ŽãÝðý­Ëºûێч‡¬£Ëºó]¯Ö) Óvª“Þç6”סqÞVºcJ§ú¼þÂA—éðŠÆ^!ÓŸN ·o“Q¼ìéã&&5¢™25ªþ9ý­#ýmµÞLwe*U—Z£Ç]­=ãÓU=¦¦³×ë¥pGOXê—&ñ/ ®¸si×|ü‘äsiÿhq%ŸK?[x4Çøréy˜)¡\3p)øRézzr‡g—Í×;èùòtšåá¬98®éZÔtûÙK¸ |Ó,J·IïÍÀà¡çý×#Ý&…wß%£xôt[™êÒme*…J·ÕÚCyº÷K©žnÇ+ušt[[¿ÕDº]r §=g š–‘ó'¿KålA-óàrƒ s6R¦< ~T¡Íjæl$°¼üÖÈ6 ³‘øcÄwÎF⚀·ß–|ÎFâo ®äs¶³…GsŒq|ZÛýIú4£OOÞ=s…;e³œåy›ÎwûÛ’–”] \¾*R ©ºÁ¡A+`²ºmnߪ°¼ÕØäƒÄm^ .µ \Ÿ‰[ Ü}ÓYåíp§l÷6ü‘bÛYðlüáÄ5sà¹äÉ7ˆ+ùðwŽ(_c aÃéÓ œ5á”] œiátÚL0ü‘¸ ÀÉ[ œ‘áÛL0ü‘¸&`É7X·ðw®(_c Ù°áôiΚðGÊ.δðG:m&þHÜ`‚áÄ­ÎÈðGŠm&þH\°ŽáĬ[øÓDùâcøË… ¤O3pÖ„?Rv1p¦…?Òi#0ÁðGâ6 $n5pF†?Rl;0ÁðG⚀u $Þ`ÝÂßy "äÆ8÷ÑêÿH¡f`ô¹ Å?Rv p5øêÿH§MÀ+ÁU¢ñÄ]Ü.ˆÂÅ?·¸|ûLФØ`\*…‹$® h€G<¡ã‰ ®äã_‹(_ãŒ=aã)Ô œ5ñ”]œiñtÚL0þ‘¸K€ Æ?·8#ã)¶˜`ü#qMÀ:Æ??ÀºÅ¿e¢|qŒ1þÿ‘BÍÀYÿHÙ%À™ÿH§MÀ㉻˜`ü#qk€32þ‘b;€ Æ?׬cü#ñƒ¬[ü;_”/ŽqÆ¿Ðù)Ô œ5ñ”]œiñtÚL0þ‘¸K€ Æ?·8#ã)¶˜`ü#qMÀ:Æ??ÀºÅ¿ DùâcüóBç¤P3pÖÄ?Rv p¦Å?Òi0ÁøGâ.&ÿHÜàŒŒ¤Ø`‚ñÄ5ëÿHü`ëÿ–‹òÅ1Îø:ÿ#…š³&þ‘²K€3-þ‘N›€ Æ?w 0ÁøGâÖgdü#ÅvŒ$® XÇøGâX·ø·B”/Ž1Æ¿BèüjΚøGÊ.δøG:m&ÿHÜ%Àã‰[œ‘ñÛL0þ‘¸&`㉠`Ýâ_«(_㌡ó?R¨8kâ)»8Óâé´ ˜`ü#q—Œ$n pFÆ?Rl0ÁøG⚀uŒ$~0€u‹m¢|qŒ/þ5Ñ9oš5/šé° ÷µ¡È-8# é´¸ \e$ªI\/p;¸T$ IÜZàð3)’bW p©H.’¸&à xôÈ:’ø¡âJ>^(ÊÇX`è 4jΚx!î#œitÚ L0’¸^`‚Ä­ÎÈHŠ]L0’¸&` ‰ `Ý`àTÙ8ÀþHŸfà¬YGÊ.δp¤ÓFàÖ†ÄÀ‘¸ ÀÀ‘¸ÕÀ¹ŽÛLp‰kÖq‰7X·pQ¾8Æþ aÃéÓ œ5á”] œiátÚL0ü‘¸ ÀÉ[ œ‘áÛL0ü‘¸&`É7X·ð×.ÊÇß6ü‘>ÍÀYþHÙÅÀ™þH§ÀÉÛL0ü‘¸ÕÀþH±íÀÉkÖ1ü‘x#€u ¢|qŒ1üyaÃéÓ œ5á”] œiátÚL0ü‘¸ ÀÉ[ œ‘áÛL0ü‘¸&`É7X·ð×)ÊÇÃß`ØðGú4gMø#egZø#6 $n0ÁðGâVgdø#Ŷ $® XÇðGâÖ-üu‰òÅ1ÆðW þHŸfଠ¤ìbàL ¤ÓF`‚áÄm&þHÜjàŒ ¤Øv`‚áÄ5ëþH¼Àº…¿îòcœûì†Þû”jΚ¹Ï¤ìàL›ûL:m&8÷™Ä]Lpî3‰[ÜÞ0ç>“b;€ Î}&qMÀ:Î}&ñƒÄ•|üëå‹cŒñÏ =ójΚøGÊ.δøG:m&ÿHÜ%Àã‰[œ‘ñÛL0þ‘¸&`㉠`ÝâßJQ¾8ÆØüµÂ†?Ò§8kš¿¤ìbàLkþ’N 6IÜ`‚Í_·8#›¿¤Øv`‚Í_׬có—Ĭ[ów•(_c\ùQ°s®„fÍÀè+?LÒèpÕsÊM+›/å ͶØÿfªŽîَ˾æA‘>Éwh5×´†ò;´¬n±¨ª ™£†¥é®‚óÎWá>ÂûÀï“v”äÏ;'½ï>þHXý鎤Ï;'… (þ¨Œâe÷K7Hžw®L uç+S©ºÔ竵G µPsÞyÜ/¥úyçñJæ¼sunü6«¹E#k޳¸Ê#í¨ž/®ŸŒ–ãl‡¶«”÷Ìb~BtÖY°o9m`œÂ0ý®tÏ1‹ÃÔ#„?‚ÿq–Åß?ÿþ—ÙÿPü¯2Š«‰¿JÔP•¨:þª³G,ñ7ΗR;þÆ'õ8ñW[¿íÓ{Ìå=,y-èÖ¸–µó¥‚åÒ¿YfV¦Ä,@;¦>7\–ç=ñtå¾ùñ E]J“5ùbŸÚ'8¡â„y¬õZ(åõðÊ¥næO©ì²«Ñ…@⮂§T®®Ñ…@âöOEï¢[á7’J.«¥Y› U~°eÕg„îy"%‡€/œPQœžw…èäPê¥ÀW N¨,<¸ûJ¶WËtœ0j/GØ>ÿš úWÜ}<Cš öqÁ “îã!ñ¯­ %ßdzZx4ÇøúxæP§¬!¡Z3p1øbé¬br/÷à3îä):FÎÌòfulR,â£uÇ£~]ËÛYÞ5Þ.¾Uô¬'GÁGëªH™Û÷€ß“D¨"cÀ{ÁïM>T‘øûˆ+îPE⚀÷ƒßŸ|¨"ñWò¡jðhŽñ…ªyCwKNØ`EJ57T¶ôi(¬–LRjgvXwô,K¢5×sxÈÄäÈ/Ô’Ó=]sKÅbÞ}éËth×–Ìk?xøMÊBÒ"¼îÞ–+·ìn©UDöoÞsÅ–ºÀCà‡âÏ~IÜÍ@܉\$îÔZsÆ ^Ê{mn7{À5œQfGcpÐÈzšk¡/Gc­ð¬]0Dk,k;Žám+G~áêf{FxëËʲ›Üa»”ÏQZ]Ë1´QS—Ò¥çw—ë«:.>nÊøÃÿÿüÿ’ñ‡?ÿ þçÈþ0‡›WÂ$˜J N¨Ê$£2&Ilܯ‚b6Iª¸@ð”Ô‰ Ï?\NÝŒF¥ŽKÞ§¡µš–ëzÎïžZ3<©¤./†"n»³±î°"î8”`ÊÄÔB +xÊUfõF×2ûà­‚&avxLpÂÈý¾ÙÛ¦ôe•jx2V» øzÁ U%ûÓ'2ÓZî-Àw N˜„åÞ|·à„-wUu¼1'ŠešTûrµœáfs€Õ‘%+g8Uf?ùm@ c¿G`z¡ài©)«1L"Ξ#8¡2“×è»\ƒ‡ ~q¼þîæõ ÍšÑý½i’Fç—ý³<ù#¦¥‘weSÈ‹qáJð•ÒFM~¾é½ Ø ÞVº#éùF¤ð¥Å/•Q¼ì*éÉùFÊÔP7ßH™JÕ¥Ö˜o¤ÖÊçÅýRªÏ7ŠWê4óÔ¹eðÛ4×+åL#ôâ‘ :[Á·Æ_ñ“¸&à•àRky¢Uü$~[q%_ñ¯C‰"Œ¯âŸë–\ÓЭ¸|‰²Tw¤\õ·æí!“µ©§Éb­yÇ̶ùùÀ¤<ñÔM·gŸê^`ì†O‰òýú¸k†.ôÀ'oWÙ+[£l¬Cy <½W6tÙ ñ·WÒj¬GiðWòEt„oPRD'ƒ-† 7ØU4jí‘çëVŽŽ0?b8¶–5òy·3k—؃Ô;fXYV ÖK®‹óíñ'$® ¸<ú±]¡ƒ‰¿*€¸’r—ŠâÄ1¾ —öl ½šê7©PãHÅÅÀ Á/œ!1ŽtZ ¼ü’øc‰ën(7æ9WZkÄ8w0ÀëãH‡Ë€ÛÀUnPT#Æ‘¸&àvp©Ð-Æ‘øÄ•|Œ»L'Ž1v&仨Õ%¡[3pICÔ΄Xã©x°¼c†Ä9ÒiðrðËãs$n5p#øÆøã‰ënßTÇ8Gzlîßœ#qMÀ]à»’s$~wq%­Æå¢0•±níæN¨¾cè²i:†Ê =µN-kŠ%ïÄLw»ä±Âv ÑC4·«¬Âkt m„;Ö± 'ñ;¨¦ ­Æ&x‘usí;Y‰k×Ê$N0-Ïp²F1ìÈÄf8(áIà'I's&©uµ?|6hñ>+`ZYéÀ°ƒžËUæâˆ’ÙÊÓ±RE3] < h‚›Ê‚KÓýWo©UVkMy&UŠ@\jú|¸$€Äzà^äB±´­CÛ>dÙ4»tLb½iSÞ ~·:ûL³ÛÛ´öyð!ð‡’±Ï=À‡ÁŽlŸÅTft »L„MÔH—,þDÄ5_þšä«ÿxq%_\!\›cŒ Ò‹ÍvØÁÒ©¸¤!jƒô¼I:Ý;ÝRÔ@eb*éùvùÖ5‡eov¡],¾pQTê˜AÓóŒ\‡¶Ñÿ«‰7²â"îá¬D;+ÊØë$àËÀ_¦,¨-vêmÙ²¥%ll»%ŠðMàoŠ?¶‘¸—ß þæÈ%©ƒv¾¬jíŠÆi­”'iħßÿž2#N_ئµßÿ þÏÉØïûÀŸƒÿ<²ý4Q'-š´óy{Œl½ŒÅ~!0Õ$8¡ª\¢åŠ2å‚r\,8aöJÍ.<%”'ŽÊd$,’Z )›Ü¼_ð”Ôæ{ámr ø€à„u±ÉƒÀç N¨,Þ»K®˜< |©à„I˜äùÀ— ž’ë:œ .C]£VA§ß3øå ’{Wß0ˆ—9»¼øfÁSR]‰áíòðiÁ #ÚåÄí@¤áMRç-À NXÿ,ìSÀÏ N˜„‰>ü¼à„M4Wjg]Òá À¯ N¨ªìÈí¬KÊ|ø#Á ÙešuIà×€?œ0¢eBï¬KâRAÿRæ—5F3©[º b*8aÔ§;šIâVAÿЍ†ÄhæáÑãÍœ?f˜CÞQkˆe:íš'‚KuYW`;6Íœ_áÊÆ¬Ti—¬òç†ë™1#wÒJ]ökƒ¦§nÖ =ü)ÀÁT×l‘™5Cª<|1ø‹ã¯THÜó€/¾£Tø µHþK/—Ê ÃÅ.×|9øË“]$þÄ•|ìÚ*Ü™c|±«ÉcE]B³fà¢Õ‡TÞ>Ý<Œa{L#iYÏdA*ëïm š9ÃÊb²ß¨ØhÐ<\Þk:¸k´˜‡K46—#X«ÄËX |ü!eñk>=loˑЉ1©óà«ÁÕÂR3†‘¸‡KÍâšðô¶Œv­žÏµóÝàé•«oÞ.À³hšµ‘Ë`{Júl@§ÚʦC,Ê{[¶S ÚLr¬’üÖñôx¯þü/ªîÉÅ.<%µú:¼Ñÿ ±‹OIŃ o¡ŽÓòڃƢô‚'!Ø“ZÚx41‚ãÁåF«O™Æ±†u)ûõ¯<•À±Ù$n-p›à©è[ë¬{ý‹ÉG49ê*K/y¹Ý¦;^‰öÖž®®•m¾U¥Z¿¤óvàm‚Ö·õKÊÜ|à„ñ·~IàíÀ‡OÉUFÁo›Åáxy×–±ªÞ§÷°@UÉ=Í'¡Ñ[€oœPY«¬Æ[ò×ɯ±·`ºÙvÇÈÊøÓãÀ7 ž’žJ9å—_|‡à„Fã©—Kû³§µ âÅEJëÌløÏH»w¿&8aÜ-ª×š öë‚&Ý"!ñߨ %ß"¹R”AŽñµHæäQ#ìF–¤R3pqƒê#Õtìq&ŽffMoÌ`yG‹Ý]]“÷<«ÒÑøSMé,Y·zƒ&± :=æ‰ÀCà‡êWI“û€‚Kuã„«‹D\›Ó… ­¤ïaàÝàw+ ­ô‹ðyàr#ÁoóКiIè®ÒåùÀW€Kun„ ¤m#^ þÊä)‰Uq%H·‰BÇ1Æí»¼°=;eÄ ¶ïš¼JóöÉ[GÛƒ,>æ(#˜ØI͘°ÁA3kò…Ô,i95!V°X£ÐAìwʧ3»ÚfÝÙ*-ó t"I¼Œ%À€KeñÓn*Ñ4äE Í^ | \åZ¹[J¸_þšø›§$î!àãà+hÔ°@*Õä$=^ |3ø›ëÝä$eÞ üø’hr’À§ÿ`ôضf#ñ ®¸k6×ü0¸Ü¤ˆ O¶f#ñ ®äk¶í£9ÆX³é¡k6R¨¨~cÊ燩ÙÄQÊ!ê·m•gMiÖ†Ð-g€Õfv¥Â½‘%ÀW‚Ë%g Ã)ó:à›Á¥blØpF_|<úä«ÐáŒÄ¿%€¸âg$® øVð·&ÎHüÛˆ+ùp¶Cx4Ç8Ç`õR„fÍÀèc°ó&iôÝr<›Øó1©ŸC/оÖìZÃ5s%=ߦ žáØC†e˜Þ¸8E §ùÁó4;i uðˆQâ ËØM:”òj×,åE¢a¹¦gŽÒÏŠ}âYtm5:†:2üûbÞ«¯™.¥< òí(üÃëØK¼ã¥À_€ÿBÚ £K3·Ÿ¹ÈMµ|dÚ³iHù_ÿþǰAw$}6 )ü§€â’Q¼ìáéɳi”©Qµzlîo¦ }@2½ªK­q@Z£ÚÄÕ· ™ÖíëõfªŸR¯ÔiN©Qç Áo5ÚliP+Y"Þ›4¹‚B¾¨äb)´L"8ᬋ¥©g— N8+biêü€âçË(®$–ªQC},U£WØXªÐ(±ÅÒXßLÍX£Ôéc©" ~ûléCbKg9v¡|,h؆aPÃË áeñ7 ç¤.œ0é†!‰ßXAÿJ¾axJa| Ãy£†3`»aÇbI©fàRð¥Òeò(ÎÈ4ë ÄF¶)¶Ô t¸×Û¢_«Èš†¬}æú[0‰ í E-·ˆk ®‚Ê„ÇÀ)«_ælݸ³/ôbÒånàýà ¬·%q· rIÙÖ6itMì­:d8Ú5”ºÚ¥ZwÙê̺K…Ã9¤ú(é)~\n LÕŒjw¹/0”F?þ<‘n$ð›Àƒÿ8z$[‘øŸWÜõ‰kþü§É×C$þgÄ•|=´S¸3Ç·ëÌ™C¦¶Ÿtj.iP}~Ä‹Ë]”ˆ@“;'­RaÀà#19ö!Íû/æu ȈQÑŸçÊ}†•ªË±K4k±z38PG­Mfz,½™“€oƒº°&1‹4ù0ðcàSX¬ãšÆEú¾øpéáï)¿üðãà\ÔwðëÁ’ÃÓ&L碉/p²i¡çØùÉŽÌ‹ayˆPÔ§oêS'Nwà&±MÛ,¸u“ Ü$~Aý+ùÀ½KXŽ16 àGÊ5—6Dm@LŽÜ/(Gî¼)&oùÞ>*RHÝs%–Eš£Fp9²ž²Ó.¸S#³•ñ;´ Œ}D+ÃhÅ™•’‘ÉDw᡼®™(iò&à[ÀÕ O“‰’À×ß ®`°8l@#ño  ô`q¸€F⚀o{òÄ¿#€¸’h»…;sTЦïjÎÙ~b:Efà↨ &—Óg鹜‰ V>î'¬ã’j'/¿ ~ÇÝ g%\¾â’,2çDUg/Љ¸’~+û`ëv¢Ò~'Œ/E;¹O´Yùu–\¡{º„¢K-à-Ò±îYQ Hj\@\IûQLæ£?JŸ©ñÿä‘ZV·ÊÛã°¶YÖ. ˜–ÈVÇX¦ªéÖ¸ßÝ]ré1ýIsÍ#,Kµy·y–K Ý-9Fy‘;-žÖÛ'ÏuÊÛCšcº#%Ƕ+>°s9·üÿ6g2)-BcŸ°_¶&~âoŠÀtÈUùš~ÓstË¥ã|¨„ÿ4_iÁî%ú{RÇ1òâIƒóY35¿™ð›üål5]Ö^Á”o÷ìö#•ø·Ñn‚Ñ,z•óùñ £®á&ŒÑëá¿Ç%»EÛÊQ‰rõB1OdTwL­1Æ{yòæŸÓÆßðƒ5Lvûø„n${À5œÑòþ!SŒæj£¦.sféøäò*†3•µ$Òãf­Ä ÖH)r°Eð´T©‘Ô© qg— žŽ>溡œ—ñEšbUæôžÁéó7 N¨Ê£R†4€ƒ‚&aÈ›C‚F4äyeC²ö~ež¨[©5%Ì5 ¼_ð´Ô€œJs= |¡à„I˜ëà#‚F4× _©J FÑò<†ãØŽ+zÝC%ê¢qlÛóëÇjñ:B±|ø[Á Ù¹Ñ5¤ ýÀ? žV7EpZCÿø'Á #zI \³Î llœ0‚uª\IØM:´Áw]Ót–ÿå ^Ð 'ÈÇM‹[ŸiUÞVÙþË- º3Ø0®#lK‚ÞÌÀ÷ N˜tƒæjáàeTÓ0þ¢hÐlÌ{†cñÞvJ°½Éí½äÙ”’g)רP•ò4ã<'˜· t-;l»†4eK†1$?Ñ-Ù~“Šì[— ËgÑÉ„ kð ¿þÅ‚H§ïÿüãA$îÀ«›ÕR3‘¸/ þãÈžýŠç˜s€9©ù?n¤¡¼$[b¾iyÌÝ©UhPUÇ<q„ßÕ'¦í‚?eRü.š“,¡éRà2pùʍ$5–WÒŽt#læ£GúËqúà±E½8r;#¶nÏðš»ÚÎn†V ùZ¼xüÓG5ñÂF×uK?ÆXGl+œ!j'”§’•7áA mp[Yž/1DŠŒÇÀÇâOñI\xüpdãÏᆔ0É8𸺅Dc¤ÈÝÀ{ÀïIÆ$·ï¿7²I*]ÇTõ†Þ¿”¹øp¹sRªÎÇiÄ ABÁWßþv…ƪ±ºšÄ½øðwD6Ö)~jEkôü8‰òNà§Á?­Ìb§;½uṴ̈ø›Ávó½-[¶´´É²/.µª'|!û ðŸÀÿ)²Ýšiz³XU)a­þüwʬµÀ·ÐÖ--2úðÏàNÆ@¿þ\.ƒ~;ŸJíP$až¿ LÍœPUøœºASxù1 „ç N˜@øKÍj‚§´ÈVš«µJìÏM:œ\.xJ®ù­jai²x©à„14°¦,ìZ(v‰†®„ÚíÀ‹'”S{Ê/¯^†VÏe‘Ýåw|ñŠNG eK¢Ã€Ïl0ý½Î(åk¼†±7|Ñ1<Ý+ßh¸þfŽè8 n¢éÚ¸iäy3„v–çqþ¢Å¶íÚ*÷‰ùp¦5j8®Ñî·YpöŸ[>v…ŽfÁ¾ݚÓÁ~  “º\`ú"Á ŠyÐV¢NI÷/<-ía¡ê”t¸Npˆîwq`RÆÕUOs ö“ ðI”’)Bz=ðà„ŠL¹ØW¼WjÇRê0ðÁÓÉ´•Òð^ÁÓÑÛJY1æC–¬´b‚”AÝ”¾áè3¿œò– ŸÏJ+êhÊ•¾'ˆÔGë*ý9ÁÓR'*Gë ºYøEÕôÍGOPX¿ÎŸ¯ÌßO©Ö+-¡á` xKüI‰;¸ <úäÝžjmβ÷SùÓh›™@x]篿Z™AçŠ6NØÀEÊôup=þÀE⮀D¶a`hE$>H28aà•“ø ~+ûÉNØDv}ØàAO’¾\ª&Z Ó…k”QM ›+bXH] ÿN ”tøK£¾šÜç#®º¼š,^GVÉ«i¨Yüj¬Ç$±ó€ À£oIà7}C½……Ä¥º×çŠ-aÃ"it2ðlð³ã‹$nððs"Ûe·Ö«]a8}fÁ¶X{¬}§n:¹J,ÔZ_jË5þuFë^wñš Ú~½Äš~%w8£õtu­kË„-vô,çóàù:»ŠZ®>Å.‡¢–«o±Ë¡¨ùS±Û¾³5×Pž‹’d±Ë¡¨å”» Y±Ûfä† 7XÖÄ'¼x­¤ÿ®ë _¤r(F„ÛÀ£ž+W¤ #£>EÊ@12ê[¤ #ã*R}¡‹”bd$[¤ #Ci‘ÚKEªD]˜í}Ùá‚™ó&-þ «Áð/^]´kL#;ì è%ö¥áiz¾ƒê²îÕá žÂFh[u*xƒ(lƒõ)xƒ(lƒõ-xƒ(l>ª-x +o$tÉDiD8Y¶„+yƒ(mƒðÏE#æúéJžØq@s z>/f,í|Ê:ŸË$&K¶nrtË2³#Á"(‘N’‚ð0xô;rEpÅn¨>EpÅn¨¾EpÅÎǘ꾾¡KàJa‚ußJ¡ººo+}fÎißa[#ÖT T}ü Vóá+ÞV[=Àamø2FŠŸ ¼üú:•±a”«áú”±a”«áú–±a”+c*c»Â÷” £\ '[ƆQ®†•–±¬ŒôÃf¡TàµäÍaÛžÐU²Mwr㬠¶ E×¶xŽ©¤Ÿdð øÁ::ͬO¡3QÐÌú:ÍGµ…n‘_èöo‘(v&Šš O9¹A2Ë WìL5B \‹l™}¬Ø9𥡷éK` 5'ª¹*…/lÙ£Ç9x\nnAô²wåí`}ÊÞA”·ƒõ-{QÞ|Œ©ÂÛ²)tÉ;ˆÒF˜`…w¥P]…·‘•<£P4>·k“>>±³rk¿™è¬Ü m2œcí7ª÷$zP5Ÿgq®Àº”´”®‘ú”´”®‘ú–´”.c*i{w….i#(]#É–´”®¥%R˽z)o´ïÒ-š•(füs–TŠoxqëQÙm9‚‚6ÒPÿÔ2‚–¯O¡Ë£ åë[èò(h>Æ”Z^¹e÷¾ÐÅ.¢æÖ&”ZæQÔµU©%õ[bO¾ëè¾öò¦LµGÀ¯Ò³#È.×nÐv°±–^° ® _é±ÎŽƒ×© Pî õ)ƒ”»B}Ë`åÎǘ†öî _óPì:( ØžÛ jèà2êT1r4ó¤d ˜|“´Z5á¤Æ]Owø‚FÊkÀ›ÀoªSA³P¸¬ú4 …˪oA³P¸|T[Ð+»ðEÍBñ²à*'7HV;ኚ…âExøy‘M³£JQ{µßÔRz ?=G p|¤N¥ÎFI³£–ºªRçóÒÆ^gÉ(d6WÔÖ$~~q%­FïÞG¥;ñlkÞøþ5ÅÀZ¶*s½3-§œ4þ¬µŠñçàÌH¾RN$ô5 úùGô×»}Ä þÒú<Ð`£{YKÿâÔ†ÿ“Õm½Ä´Ö=®ú”Ùb¦+Îø£0œÌ¢ƒCxï‡ð6£ïļëÙå~´ÃªmÑÌû²öá5åki [Oµ(+µÓœ)E¯æ¯¼Lpp7ÑÆ.¯à|à Á%wÄ©f¬7ÛÙa'8n,¡^ðrÁ ±Pª¸Qpˆê[ÎÖSWRöR›€Žà)G™9Ï‹{ùææåÝ"Ùö(ðå‚&c[ø Á £Ù6}¯°mí®m²nÖ+ñ…+‹›±ûæ3hLê‘+øpül‹$û·aëv{°½`‹=]ŸQ§D›æ‡JìѰ ;¿fË‹ºýå™|7¸m[¸zWì ®¢]¤–\Oü-S%«Óy/|*—XÔIƒ•ÜS·¡ò%dhà®Hs¼hgV£m5-q^ IöÆì)ùè$è÷éðU¿úžðîI…ã¾QWT ¤46‡®¨T^†ÌTç7pQ–ío´j2C¦{i‰9ßR:×ùÁ„î¾n&_1f;†p–œI#–ìnþ›*’h*¯Øt®àMÑÛß¡ó6GD›2ªÉÛ.yÛl]H§ë¶-ÄâK±Å¡ØŽPÇö’Kÿ]hNx9¸TmU}? ¦[èuÿ¤Ê•Àà;âok’¸À«À¯ŠlÏ}uÿ5—•°àF”¾A‡X!´hñ¸®µ:ö™>kçK«•|Ú[’ÊVÞ°†ÂïðD³øjðWK?VßfúÍA#ïG‡½BþØQ¾ùè±~»äío]ÖÝßvŒ>.8a]Bt”Ç× NÑÖó3ttž#ÓU—zø&Á YŒºêºeìòà»'LÂ.o¾GpˆvIK•¡÷ÿNpB…鑱ÈG€œ0 ‹¼ø Á #ZdnFæˆÒá“ÀÏ N¨Ð*+e¬òà×'LÂ*Ÿ~CpˆV¹/pøŠ?dé…J7K¥jÛ:FÕŠ«Mœ½È÷ZÎEùårFùG't´TöBÖJûkWÆ-¾)0}àé딹ŒòcÈmKZÝ ,ž.$â!éë–ài+z$ =¦Gòm`Qpˆz„Óó„e˨fLïªùú‡±—ÜÀ!ì!õ-AG Á/ŒäÓÕ|{+Æ…R^—Pn-°¼W¡K×89ŒÄu/¿4þ’Dâ.^~Yd×éÒÜqËÓSHD×v%4vhÛ-±ƒ=ÍJÈÈ ÿ’¶—mp[i]醄¤Ê(p|<ûGÀD¶ßÆ)ÇØâÛÀŽà,´»&Õ{(g~=Jÿ”1èQà‡Á?¬Ì ‹Ñ¬»mÚ°§5í§€_ÿZ2¦ýðëà_ÞŒ“lx“ß~üûÊ,tVÐBÝÚE¼Õ- tÖJþøßàÿŒ¹~üðÿ‰l®‡Û(\²Xç;m¹­hçÇ-»`êùN—¦mû¶àŠ6Ç ž θ1t×ÌWKOM„à‚nY†Ó¡]KÇTF!ýù9~Ù–œ§C/㦜°Î:õBà‹'LÀ=R_,8aD÷¨œ|'[¦^|à„ŠÌsB¹q!c£§ï<‰÷zà{WÐA3Z©LY3‡,Û1rTª]ÏÐsœÜ“Í—hªd§q̯N'44³6ÜËç,Œg‡ªaéøÎ;…¦ÛO·)s…sËñ½KDõè1>ÝÜ-8a’¾¸Gpˆ"³š€4Ø ìœP¹¹¦šJk×Bw¸’–7 ž–Ú×1¼¹ÇOKåä^N‡6ÆSâ<+½~¥ê{”eÆ“Ëløi¤ëà'LºKaTxEÕt)Œˆ.žl̰C“Çð„½c(‰C“Iè‚»ñ——zà^dÃKš<&ŠÇñ†rÓZ•IšLŠÜ|.øs“1Éààw*0Ikøj‡T¸ xø}ÊLÒèR6yøBð&c“û€?Ù&«Û‚'Yû]­|¥šß˜ø!Ò= ü,¸º&ÉH÷àWÁ¿šŒ ?üø×"›ðÄJ¶/—ˆ“:_þü§ÊÌ£‰³­«fvtàu›Œñ~%Ÿü«ÉÓƒÃïg;OðTôÅøÏjCç´îÉwN“JóÏœ°ž}¤Ê2àrÁåŽm¤ÔÙÀ‚K.y~[¬Öž.¯Ñ|¦-i}H7­gÒžÁÓÓ¶_&8aÒüaá*q§Ô½•=`pp¹X8LmþJöKãš ûz°/Q"Æ-²¶18hfM¾ì^tœæJ|%¸XO~˜/Ev'Õ |Eý é°_ ü@›fj¦¨mK˜ƒÚƒšeO¬_ªÞÉó t}UÇÍ.€‰ª[mü÷PÖ³£ÖüŒ‚n‰ ‚ã秊3³•O$QOé"Ùª8û# N¨ªe8à…D M^|Xp¸“wð…‚F,›i­5¼ARœP‘A ž^v Õ^|£à)©>ΪR§Ù„¾ø&Á%ç"¿=³-Ðæ +ýÂ$ñbÞ ü”à„’úEY<ÔÑ£ÛŽÝÜutý±þ Z?ü棵~’ø—žw”•ÊcÇ´^­«ÆsN»ÒˆòÓÀÿœ0ÜÃÒI¯4"…ÿ' øÿÈ(^NÒ ’+”©Qµ€÷ô·†sÐË’”é_]jeIjw¼eIjŠQ½Þ`õ5LñJf “:‡~+»®% M:%xZ>ù«Ï¬íT’q9ž/8ᬈËé Š_ £¸’¸¬FêKÔX\®in™¬F×°1X¡¡ŽƒÃz½­šñ6F©ÓÇ[EŽü¶—ZǼ§ÕàmöÉЃ§ÎFŽö›³i 7~æhFj5~ðt<‚®¬,63'êͶ®Ì¬ªUî¦kœ¦‡‡'L qš:‚Fì±i¢n‡¼èbð†MGôÆÚ%‡Yl‚}»èР‰“;Jx»©Õ¤þgÜ£bzY"®?+gJO΄?m+ÏÁ#7œ´Oð¬RaÀp²~—Š®Ñ&ì/ä“\£‚Ö·¿¤ñðvÁ pÉÆ1à‚FŒ2K'ä…7Oãs/œ0‚yªf9CŽQ”Ðì1àk'Tf¦ë“HÜË€ON˜„w «ñIÁ #zÇ0«LòyªjJ®˜ïº“æyR,‰rW*軉W^¼à‹¥ »rÝ› ÓS¾N`S³àMÍuiS4î»y—dã¡iðTÁ9ΆÆCÓiÅO“Q\IãAÕ—Dö·2»Ê´Ô(¶• Ð"Çk%Lãðõz-5›1J¾9 È5ƒß^ÞÎæHóy¾Œ;^(z6߈™V/iÙa³Ý=T¢l1¸/³l‹ ü×à)®©KˆMdìµÀ[ç8+¬P\—Q\M€U¢F­ý¹ RáU‰J¡Ã«:{w®ZÎ^¯—R;¸Æ'õ8ÁU[¿=Sˬ‰!Füɱæw«lØôõ;ýä×™×'lÞ-8ÇY6ï (~Œâj¦5Ô†M%*…›êìKØŒó¥Ô›ñI=NØTã–ÁoïcaÓ²=¿/PôÿMí«½ÔZÉÊnÌçµáñ¢Íþášü€þå9%ìêíOS«òSÔwPÞ`£+üÒÁÀ˘³@ð9 N„ «Æmðgë6Éôv'L|â1U6M^ljÇ$~Në4ñø¼~ëæÏ…ðçFõ‰i'ŸºY÷Œ![œN%=éø¹¸ð𠤫š¢ÚÔh ®¤]éNXÍG5®t•˜t´[µMk«œdTÍ’œ9{‚ð*p¹|”­"Uö¯¿ZYä¬ÙÙOâv¯—ï›ñ¿ý|`½0—« mLúC2òãZk®T(Œ·i¤bŽÙ»âÓzmÄ£ûÖ;øAXt—aÒ&ÈZNŒGòŸ¦_æSÙý ÚÌÁh3½É;îxöÁÿ˜7×$ýêZü´ŽkdOë˜nk®Ør(¼n©‹€]‚*s°ƒX$î`·à„ ø5?w„°Gpˆ~ýEm°dñôƒoÈVòì‚F\¬Õ*Ÿ@+Æ«:³Ã:í$ecZà46ß÷¨§?ˆNجM‡zb° »Lµuh-~}næó%&Z¸Ô[;8h8Tòx!Ó³Ã_Áø(ß:nÀÈÛc¡]z+ÿ'8aÒ5ÑÝ¢8”±nIÍ=N˜x¢Ké@„×1Ñ%ñsX§D÷^¼~ëæ÷Aø}Q}bÚD÷ZY'viÙl[ƒtØjÖÖ±ÖnØ„÷>ÜGØÞ.ðžÕ–¤FWq%íR÷Ãz>ªYe×(ÞMåý©3¼‚÷Ó21Ÿ©'¢öb´VÅõÄíy²70}7hãÊ?!Ö¶ø´)ll± gÒi«4ÛÌUɹÁŸ¨5&ØJÇÁëö¨AÕ“ËOA«¬ Ìá2B¯Îy/ÿz}‚§ä‹Ôä¢4Ÿ²·Åk ›¬? |Šã‰‚ÆÔ¸&àI‚F,… yó€ì0Ÿ¸u|§;DMuºÉ>çµG;¦G=x»à„’izÎH{±†òÓƒæwŸ'8a¸' ;’!…ŸPüù2ŠGQ¦F­é9Ì®¡B”)U]jµ9îôœÚ_¯×R}($^©Ó …¨sÍà·»ªŒ ׬¡ùTì’Ë·íÓ¶ª‰·þ#}$·çôÒ†z :“Þ?þ“à„³#Úþs@ñ–Q\M´U¢†ºAge*…޵êì¡|Ð9î—R;ÒÆ'õ8‘V[NpG™-2ƒªü ªüjÖe¤¿þApÂÙ#ÿPü2Š«‰‘JÔP‘*Q*t”Tg‘˜2Ò8_Kí8ŸÔãÄI5®üVݜƀ~éE‚Ö#½”:ª™ô^ $£¸š«DZV*5U£Rè«Îǰµœ½^/¥v„Oêq"¬· ~kT ¬Õ¶#°g` —Ñ¢c¸´ïh‡¶•¶Ð0œ‚í|›*K‹¾„Gý’²¸@ŒYŽXÃzK­Ø0Ͱeú›ÀœP‘õ§¶Lø#Á #Úþd~˜†q¨dŽêyf:Ú‰UÂR?þ»à„j-5<â”²Ô lL Þ(5!¼¥þĦ'Œf©ÔmbSÿ‚á Û|×÷mºã•h¶\÷ºuëØ·}fÎáÙÎÛ)è–ÖÚÓÕÕÓ&NX¼ÊÒ‹EÎÊǾ]Ù&öæß¶ûßÄL%ÃqÄ:]쀄ûÚÅ_q¹í¾Lñ·mhŠ ÆÄu~Ê‘˜Ö;Xr=>¯ûÝ”§U0At@¶ùõs»ÜÄ0ÔJŠd³v‰ý€8ñÜÐJVÖp<Ťq?ÿóÿÚÿ5½Àÿ‚ý«•…)> ߦ ,ˆÙC†e˜Þx=|Èkç|âX­ðfÙ¨›eÐÎý4Yó6èE…/7›^'8¡¢rÓD[†×¨é}À ÎQUy©Ln]ò×Iê6÷L7ÛîÙ°s¯H٧”ÒS~ùõÀ Î1ZÄ=jGӢɩQ'õ4}øMÁ9ªqŸ…"ìê¹a;+w›~ü¹àã»MßþBpŽÑìõŸS&öÔ—•ˆÇ¢Eeò;‹5,€`º³¿¬îø!¼Â2FY.Æ~ ”çKÄ_±È3ùf±€“+Ð>u q±üGÌ×\­vèÙ—©ÃœNÏwd´ž®îµ 3eµU+Ã/á£wþKsþApŽÑÞ}è)‡ W.cÝf±> ŸÙLó>› ¼Ž3›IüœÖifóóñú}¬›O¼Â_Õ'¦Ù|?3„ò¢Öýå4g[0Í‘P{)° ¼KFm®î‚¨æ$5VWÒ^õ 裯zTLnÞ(¦%q#ÖÈUùQPWºèŽCÇ?Ù¬öÁ™Pþ:›íZVÑSø&ïFiò.®Y(²Ûlg‡ÝZá†uò‡ñ.Tú½Dê9ÝWCõi{NIï_ þê°úÓI÷œ’ÂLFñè=§ÊÔ¨Õsº/tÏ©2•jtVï9UkãöœÖröz½”ê=§ñJ¦çT[¾MuŠ=àZ-3Z÷ºÕ«Úü.±`lX¬†¥X+Ö.šy³ÒKqü“¤YPÎëΟՋ3¼ Í8\4øÁPåµO˜†=ÏÿV¥¸æe²Ê‚¤¶[â*NÜíC(âvV޲f ‹JÝc—Üqv .©¶ò¤ŠEb!pÀh©/ ž’ë¦o#î*ºE²6I}ø=Á gEmB3–ËŠ_Fq%µ‰5jï*ºE¦>Q£TØúD¡EŽ;I¬¶Ã×ëµÔ¬Qb”:}¢È5ƒßþ[{9ó÷ÿ‰y¿âÊŲ=¿/]œë7&4ªm¢¤Z Ûê ¼ôôg'Lºñ÷B”ëÖ¥ð„&ÞÍD-ð&¯c7‰ŸÀ:u3»õõ‰Aø‹¢úÄ´ÝLÏÚigurŒö¾¬ž7øfQ¡×Í¿÷ž~¾t¶1ª IÄ•´'½FóQ'­]KÝB|]4Y=a·ã,€ª¿ê®_­,_{VÞ÷9—û\AÆçHµKûÁ÷+LjžáI×ûÀû"›u©Özid‡½½Äêâå2;Ì‚gF‹†;èîE;?ýž¢q¤]€„Š&°îFÊ|ƒw-ØisÍl9Åïd×hß(P]ÆkekHÍïnd?£aÀž~¶æ–X†)J×ÔÃ(eä§&#gò •ÊÓ0(Á,Ï·e ä:púÇÌâ~3ôéCôÐwÿ¯ýÿS`æû&¼V|c—ˆhŸ¢ 6æ'Sþ‚éô’ÿfxBd_¸®MŒa󪡊•+3i& I Õá7.;µ˜Å«Õ•{¯D$TÊ‹ì:È.+!K§PêS‡Ø5À.;²¥Ïh'•›tCæ¨aQPâ½8Àñnî—V¯ß^8©«Ž÷Ñݸ¬»ÿ9ÔG—C'ÝÑe=åŽºÜøÍ¦Ö‹Ój»´‹ÀºµÃ75»•?èáôðò9›5¥ýoŽWã_^¤•Øï±¯XÓÕ(º&k´Þlf ëúÚ²Ìî ’Ìž©rŠ+è öß²Œ€€ê/Ú®FzóϘfùLê†{ÃZ€î¨ÚÕ˜‹¯«‘î«(žÞ'£xµŽ­‰'gõߘ„kô?§ÖÓ×è5Söô¡:ãyçµÚŠÉÊ:½÷ªOœxh¨{ÍéÏUï•Wì4½²ÊOlÂkbZÔØW‡êpùO¿k´Ý­]­ßÓÙ7Ñ”p:Ò=X~wÞl¶ùu\'ýÀmâóÀ×þ3¹š+&(uær»}f¶Ô\Ÿ (þ÷2Š·æêí¿QÚŠRÕ‘’G ]©‘µª£…¢N/³êc(*šõñ„ik޸ħæP"8zÍñ¹ r5þ¾5ÇsúóöPk¹lP2£ç‹ÃÈfíÖŽ”8ñIÿdR'¾:zˆ¥nô-C¿vÙE2˜ˆØí"[*ÿ«§ÊZAßZ!]÷|^`ã­Âò¡«SÝý†âGe?nÝ£÷ß«ÈÔOj;lýÃË®U?Å\ôêô«>j" >¾4] £Øék85‚'N¢¢I(Nè¹}Aeî‚2ò£~=×bn_°¶;MôDdà[¿¯_ŸLÍöà—ì;ÉÚ¦£ïg×ìú;%µÍ\VÛÄ[Ù|  ÷ûdôŽ>P™U뺳ú[kxAè‚Ê ]K©³Òñj©šE¦N¯ªª’! n½lY»’ˆOêq* 5el‚³ðâb–b¾d”WøGˆC_…r_–V.Ê„ð´|ð5àØõvÍŠùà¤ðŠ_Fq55€5ª ÖßZ\!ì•è:Ø«3Èñ¦ƒ×v÷z½•Úa3>©Ç ›j3øí •ÙsÏør‚>N³ö#¯ãp³g6ÿ&ox|/=ùòß´R<_Sw]"os‘µùØX·dnZÜÊ®v]1K"pÓ•Å·È(®$«Q£j^Ì"pÙ¼2‘Xna#±BÃ/ßýëõvjFä¥N‘9jðÛçˆÝH«o™çÏœæð±‰[èùŸùéE ¯Ã#>Q— <3d#òëïaדìz×l‰Èï (þnÅÕDd%jT߯¿¶• ÇJ ŽÕYåxáø8Ž_¯WS;Ç'õ8±X‹Nø¶Mfkç .„.ï—Ö%rÇó‘I½h¦ñû¯ŽLè¿âò1öCÀß³ëìú­’{ÇsÓ¿ôþŒÞjB¬5ju<×ð©«DÑÐ!W•ŽÛñ\«ÈÔéUUïx~æ·^¶¬]GÄ'õ8u„š26ÁY”u<ûÊÍiÊÍIK+©ãYº˜3¸„],HÏY¤¤ˆ?Éž³4 øbÅ•ÔjÔ¨Õñ|HªãYNaƒ½Bƒ·ãY&lÆúVj†Í¥N69fðÛçhb…õ3êt~ÆËåûžË˜Ç#¬Kðm>¤õj‡¢ô=Ï)og×»ŽÍ– |G@ñÛdW„•¨Q«ï¹b^©`¬D·ÐÁXaŽÛ÷|\÷¯×Û©”ã“zœ ¬ÆQƒßÞ0]ß³ˆ×Éu<—Ÿïx>ùÑÎ(y¾?gT6cPsο°ëûìúõl‰Ç¿ (þÅÕÄc%jT?‚ ¿Õ7®T4V¢Yèh¬Î,Ç‹ÆÇsýz½›Ú±8>©Ç‰Åjœ4ømg[‡æï€È’iŸ– ‹­Rh3îQS—ìoð•ž{†Pz®º>›XøwköZ‡z*p»Îa×yÊ XóPw&ð|vή–Èæ;_Ó¡?£Ú‘>FÇPGès°Hà €Ûð’¶*³ÙYd3–~ÝFu7­‰`Ð#`¥Œ)÷Mvíb×P2¦Üdí·¹W²k8²)3¬$öMj¬*,†sG€/ÅËz±2“N»Í´Æ{ ø»^ŮǓ1ÞË€O²‹ðµ‘wb¥Êº×߃7¢nðûÙ"«¦RÇœ‹JƒR¥cps¿Ã®°ë[Éãs¿Ë®w³ëÛ‘ w¤¶ÏÛCêå}Ä·zÂ>a~SƒwÑáiÃf‘JoÌ0D»dråN×äÚ¢JÂC¾'pÞ^ñêçí®S[Kú$Û*óöuv±{æÝoò=êù‰ˆý°Y(„psضsZ«„;aˆùG…Ñæ+s§â0ÇÞ–];e\iþÀç³ëv=˜ˆ+Í¿øva×ó¢7‘Û4q?½’™Qéæ?|^’ºH°È7Ýþ-’ÆC˜ÏÊÿ|æ*ã!Ìgå>‹ó?ÙxÙ¶@af™º¥ÙË(¹âääjc¬øÚV®Ä-^­kD,ö—kKÏÿ¬ÀZÅ;>a¹2Û7êž'añ:ÝìjÿNÀâ'´Y>t vuE¶x_¥zFüõ7t÷÷mç†T±9»G|øCFä$áÏ€¥Z ¼ïô®Èzûü— ÷(£šíó%bx„6‚7*ó¯ãÎñ"R Âëx8‰Ÿ@\I«ñr¼~¥}¢ªÔùý9ƒå:þQ$ï…´W(õÆÐ/€Ä§ˆK2úŠªÎ+é­WÄ·r*ʪºƒtØ«ä²yÝ }‚é«`%ÂSÁOUVQ”mmq zGÉ2[2ÄZjõÔ¬·H±³àñ×[$î4`'¸Tu9á}\"6 ‡ÍèP[–`²…e!Ô|ð{í|Þ£eíB‘µVYŵ>¬×‘æ]Àð‘zÔ ¯†[Fª¦(ßDK“$4k.6»3x×ùHJYb2!A>Êg¥tHh¼¸|¥ÂÒ`zF¡†Ø&à*ðUÉÇu¿:€¸’wéÇàÆÅêÒi¿Û,”^ÍÀà Ô9´ëéVNwršá8tD<9èÝaš4] ì—Új!œC?'&ìïIÞ¡IüÊâJÞ¡_'~M¬ÝtdT;¢ò¸1a 1Zœ ì髆ͬ—~ î{MC¢1ú5pcÂ:Æh¿:€u‹ÑÃ×¥‹á]úq¸ñ㱸ôiYÛq —¥|l±]¬ ëÅã>ÂåàR=Xá¼øqx.á ð:œJHâ[ˆ+y/~-<÷µ±zñœ¬Ù‘P­¸|±27îe- ÃÑì’•«Dekz²†˜ÍÍ<»rNW”Mp"pø®øýµppÂÝ໓wv¿'€¸’wö'ààOÄî쥰Îþü‰xœ½T,&æìOÀÁŸHÖÙŸ€ƒ?Q_gîcÝœýI8ø“±:{z4¬§? ï&T߆\ǧÀ1§nÏÚ>Õ ºç˜‡}ǯÞmÖËŸDA%Ü ¾5~/žMx%ø•É{9‰ß@\É{ùëàÙ¯‹ÕË›<½Ô#¡Y30z>g’F«+^\™âÙÊòr3WÒómg{vhócúxèÎû×á>Â+ÀÕmO˜êªåüµúêI«ˆKY™«ÑWOâ¶w‚ïŒììsi«KÆ$»€ûÁ÷+3Iy¾Î–--2ƹ˜Ï&cœ>`<= †­H¼@\qW$® 8>˜|u@⇈+ùêàõ©9ÆWÌs‰”j._ª,óÙ<±÷|j¶ó ê ‰:x5øÕñ;ýëáè„×€_“¼Ó“økˆ+y§ý ±:}jDB­æâRäîVë{¥œi¸þ¼«œ?ñJ·ôü¸k†NíIáEÀµàkãwë7À• /¿8y·&ñëˆ+y·~ ®üT¼n]”P«9€jÝúÒŠ[×Þ~¢uâþå'ÚÂzúSðnÂà;â÷ô§àÝ„WKåñÑ<Äï ®ä=ýðî7Æëé µš¨ÖÓ7Õôô‰Q|ò\k*ŽîÙNè¸þFx8ánp©ÂpÞþFx8áð=É{;‰ß@\É{û›àáoŠÕÛÓû¶HèÕ Tß1yñÄ™~zÎ?¥^wU99i¿¸|KüNþ&86áVp©îÐhNN⯠®äüÍpì7Çêäû¶%k._¨ÌËO­:9 ¬“nK€çƒŸ¿¿~KxøÉû0‰_@\ÉûðÓðÛ§cõáô¾]z5ÕêîêZ]Bj/^ ~iüÞý4<šð2ðË’÷nyq%ïÝoG¿%VïnÜ·«(¡X3p¦FhÒm 0Áýø-a#4‰_ÀºEè·Âoß«§·÷HèÕ Œ¡çNÒç%ÔZ <üTi»EÙ½¦q»ÜÆ5¤ùiÀð–°O@w$½q )¼, ø2ÅË‘nܸF™U‡Oçõ·n—سF™RÕ¥ÖØ³F­EŽ·gÍ4_¯×R}»šx¥N³]:לðm‡Ög„Þ^ ¨K+¸ÜôäI¾1q¢dÑ1-OBµ-ÀíàÛf´¿‹ørÉ_'黸—+ܧНnß$«ø”_îîWÙ‹_cæ‰k^½ÿ$ÞÆ÷ÔÁ:ð°¹)é³øðçÄŸ›’¸&àMà7%Ÿ›’ø›ˆ+ùÜôm ¢6 Œ17Ý67%}š3(7%u뜛n“ËMIóÓ€³*7%…—¯SnªLZ¹é6‰ÜT™R¡rSµ9nnZÛáëõZªç¦ñJ&7Uçš¾•ÊMƒºÌ°Ü”TÚœU¹))¼¨67¥_ì&˜›’¸6àLÊMIŸÀsS׬cnJâo`ÝrÓ·7ˆÚ€0ÆÜtØÜ”ôiΠܔÔY ¬snº_.7%ÍOΪܔ^P¼N¹©25jå¦û%rSeJ…ÊMÕZ丹im‡¯×k©ž›Æ+ušÜTkNøV*7 ê2ÃrSRi pV妤ðj ÚÜ”~±˜`nJâÚ€3)7%}vÌMI\°Ž¹)‰¿9€uËMßÑ jÂørÓùT m+?.¡]3ðDð#Õ~Á»®ÈÛCfVÏ‹³iL+ÇþA{å |×ûÀi›.ß•ß_ùÐN"·å!=É)ÀkÁ¥–q…sûwÀÕ ¯¿.y·'ñ×WònÿN¸ú;cuûÆÍŒ6Ê®ë$Ôkž~’2¿ï#Ç5²žX·éòÁ^,Á [®^(æ‰ø»[°»üÞDÑ»]„-ô`Ï«<Æ®F1x'\Ÿp<ú1v¡‹‰7ˆ+ùbð.¸þ»â-ƒ¦×AS\] õšê‹A ÛóÃMÄá(Cí•22,³å>ŸÑ6nßœÑ6ÑÈùÙ¿²šØ‡ŽŽÙAMQ²nÐmV~5lAy áàÄ_PÞ…ÂAø ¸Ôq(Ñ ‰^q%_PÞÂñnåeú’œíš)ê47¨Þ¿KsYu é¹œI°üÈÈt:…Û)·ù"iy"° ¼+~~7ü–°¼;y&ñ=Ä•´ï×úˆ+¢«YQÚÊÒÿ\©vqF O PT¶‡—ÝÕÿ½P—p5¸Ü&¬Õ¼ý,ìêŸwŦþQ¶÷' /^~BO¯ÑÆ'qk€×‚Gßb¯Å°@Ö­¹•?­œõcGÃmn±? ÊÕ?|(ô~ÿô(×_þúzDþ¿ƒÃÆ—"ÍáçÁK¨Ö T_ \XÙË¥ÊÁCQ¶ý'}O®_}@⚀À7$ˆIü%Ä•¼g¿Þü¾X={¾ktÈ8÷ûàÐïkˆ£ë'ŽÍÿIÓS€kÁØÈå}peÂ:näBâ×Wòný~¸òûcuëfÚü_ʱßg~?~¹Y *ÇŽáÒôTà:p)Ó†sì÷Ù ׃KUÑ›Äo ®äûpæÄëØEYÇþœù±8¶¢ƒ>ÿ%Ì€gâ÷åÀ ÛÁÛ“÷eß@\Éûòá¿ŒÕ—ðƒ¤œùƒp`ÂSÀOQæÌ‰@p°¼/~—ÿ Üœðøä]žÄ_@\É»ü‡àæŠÝåKr.ÿ!¸ù‡âqù$øÜüCɺü‡à檯ËnîcÝ\þÃpóÇêòéѰžþax7á,>€Ô_ ÜÚØ¡†gÖñP¿-€u;à#ðìÄêå2‡|¾M¸¨AõÑ\è®èÜÍh%O³ì1ML+ËÏ?‚ûW¯Šß§??&\ ýœ·Ð>Mâ×Wò>ýQøñGcõéÔ! µš¨vÐ+›N¸|_òþNâ÷Wòþþ1øøÇbõ÷ô¾> ½šê3•Þg¶ù}6µ@„õtz„ÅÀà ìþü1x7aw&ñ;X·ÝŸ?ïþx¬žÞ¸¯¯(¡X3p¦nDGº-žßØFt‡ßÖq#:¿<€¸’÷áOÀo?¡Ü‡¥fc}ÞJ¸¸a¦ÏÆ"-Ov5$6ëð[Â:ÎÆ"ñ=Ä¥èéçös›T‘ûJ¸é'j¦_…~üOÂß}Ä¥8úÏÛÅö ;Ý÷S(;ŸÂýÍ%ËÑ¡¨ïêSø!qE4ÙVî°„ŠUF¥|e"Í éQwh]èMµr ºçÏ%æKÚ/ÏUù,Ÿ†Ën—ê*R¿TTʇÀU.ˆm© )ܼüYŧüò.à0¸Ô2…¯¤Æ4Bw%Ð7#;üZm°de©îêж’£§'¸Ãv)Ï|<ïÚÚ€¡ ™£†•ÑJ®”‡¾üµÊ=|ž[*tg\B¹? þÉd||a/T&/—PûmÀ€@™‡¿ø)ðO%ãáO<¢‡/ÒZm‡û¬ddþ ðëà_Wî·óY±“YCZýøð?$㸋z}%=÷GÀ߀ÿF™ç~øGð?&ã¹ßþ üO‘=÷åØL3·Ãž£g=òâB[‡¶µ”Ïk£†ã–\–­äJÙr~B“¿uÇtmKt‹N'2“b;%.••OšC+x§’«eu‹Â½=àé¦åç56þO©;'TÓè–z€‘TzðqÁ “(6ͽ\a¹2“zørÁ Õ”™ÔÀ× N˜@™IÝ|Bpˆeæ#Úµz>×î x3MYp ‘Ìû%$8WÞaÅÀ2t‡ ΀iñ•2|A…cК˜je÷¹ê¬á_Ižö²bVòtQZËr+c™­n›ª"–zR`ú9‚*.b'ù“±G ¯^ú6ག&QÌNê-+-ß|H#aMœPMqKç€÷ N˜@qKß¼_pˆÅíºíwvªMªNÐ]æÞ¬P´fó%—}Ú¦9öcš8_\Ym“F KÿTpBÅEa®Ð\B·¿ll¼Qª?4|9XÒ+4ŽP~ü_Á ‚_á4 N˜D!øÄΜ0b!Hw„í¼"ù>Μ0¢¡ûÐ>#|¼Œjº=»4MÛËRR¾¸¾]gX¯¢¬ÿ=4%ìïR^ÖçÅ#H(wp¸ÔнL_T–È.IÝ^à6p©éZUy-p?øþøK:‰ëö÷Eví9¼ž“x·€×Ëíî3mÝ$ š„np |,w]Ð+4–ôVhƒÛʼõfàaðÃÉxëõÀqðñÈÞšéà«ÿh¢š8%kÀä B5u2¬uºcŒ4=|ø”;uÓ@¾T”Ðì“ÀÏ€&—^ÔKúJ&[¤ï»ÿ˜2§~+0À“pê§€ŸÿlýBðç€_ÿ’roãèÝZµ_þ»dÜuq/W8‚¿~ø ð_(ó×oþûdüõËÀÿ×:4Hþ¿ÿüß“o|VxxÕ4æa€=¤2Ÿƒ„óÀåLÓvuù箇ˆ!µÎfÀU®[¾ûJKdR¤ð)ÀóÀÏSRˆéÛÁÛã/Ä$n>°¼#z!ÎÈ8l'° ¼+‡õwÊPoðzðë“qØ“zËJKÖ<¤t/p7øneN»xø É8m7ðFð#;íÜŒLªD:ôup]¹ãÎg>PÊ¡§#‘VÏÞ.Õ‹ÞoOìõuŽà¶ð6ðÛ”¹í0ðð’qÛàƒàÑ·¡|´<¨æ–Ǽ}Œû²8Ì#ßÁõž¶±2ÿVŒ¶åL}ȲÅ@w«Ñ1Ô‘¡!ôœAƒá¬%¬™Ö`¾ÄLi²¿ «šF­19‰I#ô>ž'0õlÁ UÇ~}ðbÁÓR{õ…vøô¹Àu‚Fm²†îw"ùëO×aÎÏ Ï.£š~§£š¦m¬6C¥¶Ú­1meT&Ìdõ|^¦Üü&^êו€&z ÍþøÿØE5à¿%ãþ‹zIßÎÿàoÙÅrîÔo”9ÿ€,ÓH±9õïÉ8ÿ·€,Ù¡i$dˆÎ?@»3LÙå{6úeù»ä¢4èû«¬!Æ kˆã”a ÃýQ`újñŠÓr‹w³ÂÛ4ó•zÚ²J ÍÂiZåÑiGÀ¡²|H±ëvÙª DºÈj4 ÑéñD Dú «Ò„M"ˆ+µ†&J´d¶Rt^ü¦‹xßí MËÛCí]µèŽÊ¯±?°Ø1à÷ðn¿#ý€i|›é7YÙ4Ž{…ü±£ýF¡8|ôX?KãŽö·.ëîo;F²Ž.ë>vÌÿÅ~O/ÝÔSCÿ®îÛ²ׯÍû÷ÔxˆïY3&ý]v…S¦;N¾c^áÿGÞ›ÀÇqTùã:l˱8wHâÄ%¶¥D$_r"ÇwœÄvÛI8DœÖLKÓöL÷¤»G²ì˜#„›\ÜgH`÷ »Àîr,ìÂ.°°¿åf¹¯…ÝåXöþõª¾=Ó’¦Gîêê‹>4ßgÍHïÛU¯Þ{uqÑ@koo ¹¡…ÞU¢ô þCâÕ>E[Ë\'XS=$I£®\2Ò%ªv¤;¬xnßy`[’¼Bº7Õ•¼ VJ 8Ôïø54ûf• 7ù”µvÀi$j ÁO•.D Pä‡01Šír«"’I)Ú±è õÔÛW²Gê™þe0¥ˆ¼‰Ÿ ¼œ=g±Gj«KÝ¿¼ØÅžÅìQ7vÒ(£ ƒ¨82ØÞ&ª$vÿ2ïè“tJšÎ„Z]=-d RÃ5ëU…–ö“(T©{ãàãr]ÌöWaÏËÙóÚtZÀ²aP–unðeìy{^¢Ìü゙=÷²Gjæ5ºù? ø({îõÓü‚ù3 g=LÆß§VFG™ÉóöÐaã“þ•]]%Ý7-Z‚íbC†[0Ë,÷& C´{Ô5œ j?/g— q¡®¹FÑÈùYÞX´1Ç.ÕÎ⌼²Jã1 ²¢Bdb—Jä•}'Ú[լ죪–Š5¢£»S¥’á9SZ×dÁÌ1ï£OQoÈ´ò&Åä ƒz4åÊhÑ!Z£Ã…Ôœmú÷x?Â1ÈcʽÕbG·ŽJmJ¬\àqÈÉ ÏR[ž€œÂ˜+©Þ9þ˜«ÔA>Dá$𙟙H“´Š€/…üÒt¬âyÀ—A~Y:Vq/ðå_Û*V͹_Ub<‘(¾øÈQïL<Ç,±T:ê(±úð{¿—NîsΰÏYrD‘8ÿ 𫿪$¢¿ø à÷!«ÜœÑÀª? üäø]ÙÍ8ìxæxbNwXt% ×5ª î©:xOaÊ5]Y'ùC­B&Tlîm…\t^­×‡…L˜†¡/.ääM¼µ8$dB5&ÎÏ2 Ü,dÂLœ¯J ¼^È„1MüEµ™SB3öFVMÚ+èžfÒÃ? œ5†™‰¤Ö5­{Œ4:¥í6¬’©­Ö¶Ûe„lkü;Q%ªx ðsB&ŒÑ`‚ß:Ï8–3\Öû1Ç-“uíõèGv±þHÈ„Š,¥cĽµb{a¶òwÀ ™0¦­\æûAò¦èÁIŸ¶BÔ~"°mÛ¤Ö«5Þ[ÏL+:±¶s€ç ¹Mj¹Tät°m)ð|!¦àUÚ/2aLK98Ç„ø˜n{]}ÌÐö܃N1Óàƒ †Sõ3ÕŽ(]ˆS¡ŠKã Õx!° ä6©ëÞÛטkI«'…Ü–ÌÙͳÔÚÀcBV:ÿÝÀ¾Là”åf˜§ûÕí .¢ ƒN¬«!b¸%šŠæøF!ªîs¸F‘Ó–`÷nà‡„L˜†í¼øa!·I_YÍvþøgB&Œi;Kk¾)êHùsà§„L“PäÅÏ ‹ª¢º£6æèÃëZ®RªÅ"KìôÞjrØefŒL¿Q™ùjÛòÇyE^¨óž’Y2ÔŒ2~/Mx²ú9‘…üe%¨½øZÈ)͈œ5Ì Kö—ˆð󀱇£fýå{¯ƒœÂœ©»øäøs"ÑÏç!ý¯> ùÑôÆÑN|Tã4V1§q ݹæŸù(æ"p¤i劕|äü G¸ ²Ô¼zã%µ4e+Ál¸ò–tZ÷ÃÄWb²“¸7AVsô"ýÅàVÈ[“oؤn5pämñvä™yÒ¿¸òõf:‘³'$˜C>œ–™_I3½ø¤–˜G[ÏúË7ï‚|W:fº¨CÖ›d¦£Àäœr3]T´Ç÷˜G%¸Þ ùÞt ué°`,iªeàqÈÒÓȳþòà³ ?+SÍïƒ|_“LõÙÀç@~ŽrS]œ7&L‰Ñ\bõàãOÇXÏö9KšëK€¯‡üzeæz?ð­ßšŽ¹>ø6Èok’¹¾øÈïPn®í[oÜ.AìSÀOCþt:–ºx˜Ñ•4Ò?~òÇ•éûŸü™tŒôÀ¿ü7M2Ò¿~ògÕé6)#ý.ðûS:Æqñð6i#ý ðÛ¿­ÌHýç5LÃH?ü!äøç7Êé€?†,7_Ùð¤ù‚î‰ m£Óã'(ž-dÂ4LõÜá*iÉ=*Ó߀üB!Ë„1ë/ÿ+þò9B&LÃhµç ™0¦ÑÊCÎ>AÈ„Š ·cÒ0Ç žŒÙn 9­…;gƒ²¼Ñ¶®®2¡£m] Ü,ä4Vïº‹× YÁêè£Ñ¤ p«[ÕÙ-qŤlÍŸ†Í¯…T7yœÔ·d‹ýA\:t.@GñÄ,•!MÓî(Ðâ šß}°‡=GÙÿíìÑvìéÑÞ$œÝ ;÷ݪ®g–øŸÄ¬DEA’¦ß¤ÎD~p7äÈ·¨Ó7ÒÞèL„o ¿Q†8bmtVFCñFge¼êk Ù謶R)ÂÎI—LýÎÉjm°ÑY>m}¿¦;Fm/h®h3©wÌvJšk+¸¤ð^æsì¤ÿ'¯»s[Ðç–hmpA„éÑz sÂ(N‰M^ÁÄß©žHQÒ.-G÷³Øeº4 ëæl‡Ö_èÅq&x…R&¶€™npÅ®ÍþªëéŽGß άâVôbqŠŽÜŸ0œqöÓ»+fî(ûI×nÝ™0‹E£GëÚ°áZí&òúË«µƒz©ìÚÿd}wFÛ6¥å1½Rôzü£—šˆŠkxšq7ÓElè+â¼Ën#Oª»vïì®çÇï{ñ_M—êûîd› sÝ7ü_ðÛ¬P« ä=lëÿ ¹Uê|Â&Ç·Öß ¤e¥$΋øÖ¶¬FœäèÄ•Ä754ÔÇ75¼¢Æ7…•’X|K´dBã[‚ZÇ7EüôîªK,"„tK‹Ñ|W€–Ü…ªôi;>ÍFpž'®¨:ÐŽþì'z×ÿÙÕ».¬ÍÍåPÛ.®r[äщºus¨ÉúÓuÞëdx«ñ§JhÔõ§KGºPÓRU ±ÈU]­øµ-ÄnªÍ IEJªAclV}…»ùä´ÎáæÕ´›à§#ŽÙ %ÛèzÐÎ=‘—[Æ1Oìà)éÇÌR¥¤Y•Ò( ,“®~Ù¥8ÑŸÍÒ?$þþÉnÁ®óÔ½q+þñ8”œ—lÖɱž:|£E}&¡›ËŽ=îÐæ;t jIÿÌåãL'ëMx„‚¥ù(M¹Ô¾žE/c¨QÖ!>tà¶aòÀö[vì¬ON»âx– YXè5•ú íË…LӾΛqÈ.uþ¢W?®Š°SÈ„ŠªªU%SKÝÀ>!¦PKíW³B&ŒYKgS“gUDWì³Þ%QEýÀ-B&TTEgø­)¬#а’nÞ"äö[Ò©¤­ÀýB&ŒYIÚ”ió®fL–؇mœ§Äü%ñ»è™Puµ ÊTÛð™B&L£Ú\à½B&ŒYmK«ŽÏ•©Ÿgï2¡¢ú9Ë.“átMêŽ5Ü–}5¬¤—2a•ôð B&ŒYIË5uWlGwÌâTwäyU"óFà{„L“TäéÄÿ'j¹Šj&Yóüî¼96f8”ÁMÑ¥Q^–¬ìb^ p7Ì‘À¹e#gŽÑ!¦.³Q÷Ÿðv„yÈyu9Aζ<Çë`‡6 bsx7仓o¤Î:åÜxðÓ 4ݯ”¨ÆåÓl¢äŸ ù¹Êêiõ4\4]¯ËÓ+Ó2½á™†éÿ€L“Ù¢øgd‡Gïðð³¥ÖRF¯Ýç?×R½31fíÞ%:v®g”µ¢a{…¹&“j9×tØ?ÆÄ@™M½ôv'°õ!*2”K§ ½4{y3hî2a fÐÚÜ+d˜f°Që à¨Q´'µ~VyÅ¢Æ*³’30Wµê­ÉÇA¬÷Ÿ-dÂÓ¡»M”^|… Ó¨Ïç_)d˜õùi~ «;mþS;R)•ySvì ІCÑ8Ççz»XsÍMåŠâWöùxf1&11ÜÝÃ7Ó§»þ!¯AÑEñÞ´¦}Þ(ü‹ýÿö˜Çú/£XžÂŸo¦;Þ»ŒÌx&òb*ÃW l»SÈ„Š¬kM]ç‘ͬ«”þl6+ãHÚ¶Û^(d ¯í0ðEB&ŒixíÑ“f"p?ðA!¦4ETyÕ$ÍwÒ½¬9ìßÛÞ½µw{ƒË?x85­ »8aÔ–~Ôb®ë¯à %Áßñ«x/Â;!Çk uÓæŠe:väcĉÔQ`Ysȱ6¤ÎÆÊš£5?RwèBvc›[oàÈ­™+püìLÏå*Žž›Š<ºGT=à£Uæ^Û½è-bòfàãO§î¾²ÔŽÇé›<ºg­Š’¨ ·? YêVíºô„Ì^=W0-㪼]-£ìÞ™Í ¬“©µO¿ùëéÔÚǀ߀üص¶¦º&­á€‡L[û¦ÀÖ6!ªØ@Â"Qs­g— ™0…škmž-d¹WÓOvê–kb|—áBn•;)±®d ¤L¬^.d¹»s£×É…À•B&ŒY'X_‚¥C£ö„Sa+å2kL£¼Ç‚¤‡f§Ö/a¾RwrÒ$ZÝ3Ìñv!*ªÅÅ|Š51™ª|*0/äV©ÑÌèUyÐr«»*;«á ËŠº3.ü"-˜¦"~cÀç ¹UÝ â²þìÕ%=ß5ev‡®4lXs_%dÂ4jîyÀW ™0fÍ9þ9~ýY~\ŸFpYRBécÉÈ›48Ê—·SZ9aêþ ‰Ó®v'Hk®yœý Û©]õR=ÓUö|Nzßפõ„$*îÇ´3sˆN¬íbà¥B&L¡Ã߀p…åÖXF6¿¶3— ™0¦ùeª}\Ã߀Y£ê ³Ì3q½x³ 9‘õÓg"˜PoÊõÇ!$Çž‰üàs…Ü&å £×÷àó„L³¾£o_%ýϾ@È„i}M@ÕŒ½‰¦Y‹Eß› f6ö¸a¦73¢ƒéËžvð&Þ,LºüÜ´rf¹hˆõ!šeŒ‹a$X\ÅWÒ•X>ÅÛïòoAïž®)£í¶' Ãé©÷w¢o¡ù:ʇðMß$]VMÚBCäß üäD} úFÚ[hˆðÄ?(Cœ?±–|+£¡x 2^õµ†¬øV[)Él¡Iºd꯭NVkƒµÕê 4ðiÛ^¾E”ó´Õ‘û²îè%ò¸š[Ös†¿É³Î>ý:{ôë:eRB‡ðc´$ÐsXÅw=²î×qæØklDíi<õ?mÇ)Ÿ,èÅ úNWèVPÒ?κ:뵳ȣY¶Õ;‹=#GF§zª1ªáŒ‰àY´'ç¨uB©ËÓý±ÙëŒ::±±øÄ'û*7ö·lÍ1Ý£S´Ë”•€íLõˆ"ÖLÑ)KçøoŽœèUØKÑÏ]#»éû¬'¤ÙüÐd±-u”1+]β‹¯íÔkÕl[F·T¾0iº—dBE>wÅì•7%Ó’Ìj‰âÀ«„L˜tVKêÚ«„,wó´’¹ªG­ÔLÂõPÍeÚ¯Ì/§0#¯%†«7 ™PÕ°U/«º® SªÞöï2aõvð‰B&ŒYoÛ4ÖmcžÀ­pwª{Û7Ú²Jtø œÂÝêÅI}ÊæÒ¢Ïÿ'_-äöøƒ8‘{3ß&QE%½™Ö—`þ{w…sïÁ\¡dæ½ÀŽþÙ]’é=ÖJ˜¿g"Xø3<$øª«h(ÛÍdqÊßñONÉ8æù1¡î…fü°~qÅqŠ_,ÔùwϸÅ{«FTª{Ãq«ã\Œ×ô—€±öÕš^í÷M÷Ì=|#ó$ërò¾uXuÖÁòxî@¥¬?;ãË4ˆš§nõ˺‹…¬Œ«ÈÛiƒŠ¼»¡U$Ë­–¨ÛÎ/k´é!rO/¹u ùžÔ rë`lK‹>£@ú×× ¹u]ú9Î?‹z®¢šg]Ï4mó5ÏBiÇÆ„Áwj°FÜ‹õ&Üyƒ2s_$®Žj×Df3p;äíÉÛ5©ÛÜyGìŠ<§¶Kn<ÑÙ ¼ òmʪ¨Ó)é]Sf3 Üø<œëꤡÆÎžÎ{:»#»%":< ùd:Õw;ðiŸ»/|–4Ñ‚]q§-c·¬}–ËES„A¯â°iyfQ(ÿ8>ú#¦+îàv=Öëeám¬RäP×73²^ªëUò¦8F*‚š®¢yTì꡺©}ÀWìP7µ:^+.º‡f’ýXÉÙº•Qö»-¡Ÿ×þîŽi•£ämCüñÙëÜ…­¸~uºvÜLxƒè]XªÇ§ lý!·Æ¿†!²{ÿ®h4UTãÞŸEîÝ_ZÃ;ª4U¶]“®«—ÊE±M78tÅŠu´hЙ9¾KŸýEª‹êRd–îµnR‡˜ì-v‰FßÃË> ²Ô G±»Áíý}Y™>01¿ø äçC˜? þ ñø}`e4ê¯oébõ¹¬ŒT¤°Ú™«ÜÀà›U,õ{¿ÉjmÐûUgšÁOßÁã3w§3†ùP´ØN+Ü*­¡Žoä9Èœ:m¼ç}Y«ÎwÈS³~­Íz­Ì©WæîZLsŠÑé¾:Ó=b*2Öð"k½NÈ„ókX“Èorkä•Mré´ó¼J| q%.] ÅÚÊxEõê +%™aͤK&Ô±'¨µ±cWd ÁO?ÇÓéŠåÏRú§‹)<Öñ)ºëñþÑì {Zzñ/Ñœ ¯Oi“¶sT,&0=þö±Èº-ƒeó®îLñ%ªYùóüö).²rÅJžÂE#G6¬ÔA„6+«ý—Ú²+¾XtrÌcþØ$ Sc:›H·ŽúÕjáVcñÕÐY‹yÜ‚Y¦™¿IèiäDfê\0Ĩ«¯ƒµÕÛVôŠg—ªæ0F¢âG$McË>ªÑbß+Ù|¥,ý‚•×-O+3Ñ̉å¬<¼c]јnÝÀ_Ìé½8 øcbå “Òp¨ãðS¶D2`ºnÅÈg´FÑàG´uU5u×}k~àsM‹ÎŠ×0¨p^³ËGi9# F6ðÀš~@ö d´ ü‡ á£šq×}ÌÀR×Ù_Ƶ<ï=çtÑýÖGm,ÕYå”Êâ(JâTõ $>°)ê;ýïA¸rü9úÈEûc¨öQMѶ³¢Hä'PNع]: ¹ n¹3ˆ'ýrù)Êâ§JÊ¥%4;4=£¢~p1äűËáJqháì™Z<)§3€×@Vwð`Û„VraSŸDd8YjiDH……L}’ºàZȱ¯h{®Žœ˜ét áyÆÿñQËž¤Õ·–ëÑÊqÀµWà›2øG…blÅoøW•Õ6Á°J®ÁWuš”l„€œ"oº,@Š›ÙüåC-Ðgj=ö¡™3‘|I°[¶­¼X l™y~8¿ÇDL¤ñ…ÇÆ1FÿV6’Xv‰¯ÏÙ,CÔÇZo›æçL«—&g§„Ø O‹‘àq­‡Îãa)ÌpçQ« wF‹!Fþ¥ “‹!uïþ• cÚà3»ýƒÔ*®¿À[l«Žõ7°¨Pó™ägi°?Pf邉1\‘ýÐ!5‰Ü §×ÿ¸À¶­B&L¿þ/¬86¡Nj•õÂÛ¶j{éÎÃkGy›{>¾Å‡»ŠSìN‰ÎZñ‡_¦­QžIƒ5ÌÈøœ÷hþæ1í8fŒß4*þs3Ž}Ì_Ûèòb‰;Ô‡˜³ü“VU–NétwŽ8Ü`apo'ŽÑé \YÊ(÷Ùx ¯ |»ýé4᪑Aׯ!©U5hKÓÆ‹¬ˆŠnŸ?œÈ‚È8û[=Õ?6Ê'5ZGKŒF©cLÍÇb¦œƒáÐ"q;í(FoÎd¾gl»QÈ„é7矣 ÿ ø !žæ†[ž2¡"õÏ2a†kï2aLý¤j¸Éµ™ëʉ–Ï´¿VÈ„ŠmwAIÏ»ÌÞ ü€ÛUÙ'c¼ß%äv©|ºî_~#ðƒBn—šGˆn¼¯~HÈ„1÷PÕx÷nAÛš×Ë|©æÓ¡µ±ň̯[d„wWt×ìý ÷'ÓUõa – ™PuǸ’+™ÖXtn 4à*!/PwU㎱4á'/2G%v¿à\àj!sLÞî,®2Çxv¿PÒ?/èöyTß ¡¡..ŽŽ»£ƒ9 vÛ7 ytžÍTãPn2G5Æ:¼YÈ ÔÚÐX{{„Ì1ž±fü¹üúºü·W\VK ‘]Þ?Ï‘¨ô¨2GµVÝÁ¨O r_.dŽi$òŒ±ÞcÁýBæ¨Æ¦Ÿ |…9¦`Ó'€¯2Çx6}WmcÕ-Œ®^24‹ýŸH5¶éÎq³¨›½ÛlgÒ0-mÜÑó´ñDË9±:'þ0æ‚WÿKÈ·‚mÛ$“Ù…g— ™0Vжm›Ù…ÀEB&TÔþ€¿|¶9¦ÐþjÏ2Çx `‘Ô¡cÄIØÂ‹„L¨:W>g¹§·`¿ SÉ•y«’pÕ ¯v ™P¥.¼8 dÂ,u!’ÿ…ƒB^(uœ’\yáZàF!*7Ô‰’œ¡"ãYx@È„§·¡bÒ{áMB^¨lyáõÀƒB&LÃP‘ø/<$ä…‡bêÀ _xâˆP,EöÓüô ¹ mO/í^èݦr2támÀ7 ™P±ÕŸÉ_s?^L‚â'€Ÿ2aÆ›÷û€)dBEmàÀ/™06ðfà…L³ 윕WÏJ«3â=qâ†ni´“Ü3½): û¨¸N¢nþAࢠ„LÃìƒßZN¼†;}šaÝ`JwÑ àÕB&L¡~]¼FÈ‹ä· ~:Ø#Žàrt~wÈ´ Ç]ž­íççúYƸ¸-1zm.B·èN!JsÜÖb:wè°)wàÑ? ´…Lí5èi¸E„Ëâeâü‰uà–2uõ2qàUnä#·”1«¯5äÈ-µÕ2ב[s™~³Ê¦þ¡[Éjmpè–:# ~ziíðéY+b4怠Ü!2Â¥"&Ü"7¶´èÀÇ„L˜@>8KíÃÀ7™0 Œ½QÈ‹ävã?ÝZ=³a´z°GFÛZô Ç!80;ÊW˱ïçt:ºA\ã,cUØË¶èB&TlU ]»h•%¨a´lÑï„L˜Jçú€,á_+dB5‹E85aÑï…¼è÷騸ò¢?ĶñsÄõ.Nœõï-À³…L¨(Ÿh\÷úW™0…*ê8x™;¤féë/÷”Y5×q9p;ä&ÙÙ›Ðíÿ[…Ü!u˜Ÿ„C‘&Œ¡ÏŽ!!ªq(à6!wlKÇZ±î¡c»;â:½«:D§WÆ‘_íÑÇÝ7i7µ¿iTw“ù’iÕººqf»;°·ãùB&Tlégò±Œ%Ñìx=ðíB&LÃâ;ô¢>ª—$¶™u¼øZ!wH­\¬û—¾CÈ*w&50ùß)dÂØ:Nð|ðÃB&T<ç¨õ†Ñó/-dÂ4*çÏ€Ÿ2¡ªèù|Jâñà…L“OäSÿMÔlÕœŠxŸ¦ñ³œkËѲVª¸ü‚Áq“®\âä :ݷľAgºÒaÏâ,Öá¹»b{¬;ÍúDù¼Iœ_uÄ( œ‹èŸ2Ìï3i¾FÇÛÞYê¥Ç•›†üpò­…Ô=øbÈ/VЈy\Ñy ðã‹üV÷´°Lº¥¢¤îÏf³=tÕgÆcŸõ½ÃÆÖâ[_‚ü¥tjñO€_†ü娵ØÁšä®è;ô‰Ä?¿ùë§Iw8ýð7s:wˆè?‡üs%¹ýÅïÿò¤cªßþ²Ô€Ê´Â-‰õR]£7º¸ÞÃgÛnÙö¤[·Ö†jE'É–îU§Bù䦎»~Yß¿‘™NÒÎ9ä&°:@¢ÿS`kNÈ­9eÎl9* ?ÕzXrk)•ÊoÍ-!Ƭü[è@/x¹2 ÷3Œ¢=Þ[4E³`Ûùnq92YyFÁRkÑj?&dBEÕ{Fµ3+SÇŸþ Ó¨ã¿þ½ cÖ±Ô23¢ðyà—„Ü*ëoÅóìòa't­JÊùð;B&L£b¾ ü® cV̹ÕTÏ•ÏõZ¿üµ[Õ|sØa§"wöÔF‹†;÷í¹eÿ¡Ã{ö>¸mÿž'²ÏX©Š)\/“ ¶þ@:£ˆd¹³Š¢Wôo v§ÛvÆ®èó»µ.‹uÔ6‰›d¥®ä!F»€O2¡¢ª>wvíJÔ?†‡ðn!¦PcmO:Bnsbר5Ô¹ÎÙ¥QÓ)Hpf¬é’ZiND]àë„L¨¨"Ï©5Äí,wÛ³UªÑ!j{¿ÛT^Ú ~@ÈmR;¡§ÇÁà TWÓ+žMwÙäø564±Ü£±ÆH×½Ð%ÇE{ÒåûvM˸»¢©ž«‹Â€¥ŽÜ†d’Æöw¿%dÂ4¬á-Ào ™0¦5,fáæ‰5ãÄâŸ?2¡¢:¼È7´M›ò†gä¼íd]RUõ Ú…L˜FUaLpÁ!Ƭªjg•ç Fî¨?¨Rk³ú„nù n¢õâ t#VQ+é´ã<úô½ÄBàÍB–Û‹ozì—ÂLª¨dz¬õˆ¦i·ñ» ý«õr¦“«”èzÖ\í^=Þ¡âkJtu&•uæ¼ìqÃ2(cYß„áL‰ËY¹»¬þ½ZzÏ·H‹¥©U*.)£ú¨ÞÄý€âg;úÜnÿ ?þ»þŽY_ãWùyŒsÛyÇó˜0©;y—V_Tø-‰åb…Ö0Ž™£M/fæ Ü¤Š†Î£®uE_$ü+³T¦“ò‰«onuxÑÀ]ÄúþêøW-b ´U`"AB/– z†•Ñ0{X!Óÿ‰~l˜=ì'‘=Ѿø¨ “ö<¤î(ð1!·J-ž>ÏD À‰Ü%o¾EÈ„Šªp‘¨+™ŠyðýBVzkFƒŠyø!ËÝšЕ(|øçB&TV-¼ÁÈTËÇŸr«Ô¢èÕòàg„L³Z6ñ…á,0h5s‡ºÃïËd—}ókoËÌó{,FÖ¸Wˆœ‰÷ßlkr[üE#‘ƒó¯…!TQÍÚ•·Ðžtn‘Eª±ð«=ܧ^'QÕØ£žØ€7ÊB7Í!òKAù镆뚺åGF׫׃§ÓÇ®ÿKKë7(!·@Žçë®s)ˆW‘ ÷—À¿†¬rQX£s¨XQï £Û%(øQÈ•¥<ë/¿ øiÈ)x%R÷8ð3ã{¥ójÓ¯²ë‰Ðß¿9ÞÊ‘(õ<ˆÎw?¬òrÑÕô àO!ÿ4v5í­.dÔÑ8åôc¬_Çú"|¤†;¢Éð-ଯ@¹<÷M¶LÿL ]èH²ÜÅŽu+¸mßV‰ªmn2a UK7Kr¼^È„1«öÞY½¿Q‹²¹_ÎB·ÅÓÇ럘9äʽâw{®×FY×4ïÖzh®áÅ¥÷ßü¸ ÙÃR„¨íž9aü 2Â/ Yné@tÃøðËBn¿o5U]£Î(e.´D7˜¶gŽÒà«K#¶Ô˶%wë? ¤K¬Hn‹7E4­.Å9nÆ:òø:1Z¼XÈ„)ÔeÛÀK„L³.Kk‘„F¯'~ãá5Bn“;y"™ô°mp· Oóô_NFx½Û¤|yÝ¿<¼QÈmRsUÑí¶x“ۤΓšyºŸvÍXª)Qà7óB&Täh®œ6tˆ âÎðÆîÈ£uÄô(ð~!¦Q‘ð!ƬÈó»k9¿Ô”‰*|ø!*ªÂ•³ªRÞáβ£çJzô›­‰%úKmŸr›T)zõ½ø7B&ŒY}2בƒ¿þÛ¤V’Ö­®+Bª+§s•bÅ•«°/-d¹ëŽ¢WØß!·Im.˜Ñ¯6­êDŠ+u ‘ùíBn—¿€¶mfàíjÓ&‰jj? xÛÕ &ŸðeD„W ¹]åy`vˆˆ‚” ¼x…­¢¿x!ð!·KeŠ‘›­-ãØ#d¹K¶Tø=ºg‹cVÈrKÊê¶›%¾ƒ“k9?hß"dÂæ·œ[w™0•ÜÝ/J Ê7÷ ™PQÛÙ |¢ Óh;ýÀ' ™0fÛyb5w\pêðñB¾QªzF;M~ðu_¦åz4ãO#QµY³ ‘§£è­ž | c¾]äé¨ÿm¦Šj¦£¾©iÚNÚ.mŽ É_N7mnˆÆèÄÄ-þ­7ÔGú´Ïr ݵ-}´8¥u‡v¹ù‹Mj{¢4·âŒé4؇u&cEÝc•I#~ü«†ëAóì/Œ#ÓP²íà¯ò%"FÙ°„¾ˆ%ü[”*á7!Sº„ã2Ùv“[ÃÓ%‰÷·€?‚ü£¨üéiŸ.I„ þcâü‰uº¤2õWéŽt|¬¤2Jõµ†+©¶>æ:V2ÔØ›U(õÏ“LVkƒó$Õ™eðÓŸ‘ï+ûȯG\ XáË ]»Äˉó3\:r#oŒùkê/Uè«. Ìh GçS[oÇÿº›sÌQŠE£öD`4¨`ËäýKŒÉ8-=ñDtp+Ñ׆Ê»õ‹B&T–DÑv¶:j¿Œ&òŸ-*ã{ä4ƒÔ·¤\—αçŒâ‰Y*³¬ç»86®3ë»Ý4roT¯0‹Žz'ñ£¢/†|±²qÑäÄè–’áé,¡íe‰Ø–ùflg\‚äÀ ¥.N®«u §ºY Ñ{ p#d¹û6‚Ÿ¶EÞšAú‡€› oRVI+ žWv7õõMNNf"TVHp#’[€wB¾Sap«8aUu-ð0äñ«ª½;²ó%wG!*Œ²zÅ+ØNˆ£¡Öû?-Mu¿¤¾-€ñÜïÏãÒù_öœ@<1KåéÌýn3œ£ÆT¶¥™m·­M«GÛ‘a?êÑöÚ¬+_,N¶‹ýsµ¶Ý.²4ãxvCFۚѺú‡†ÖÑá]šÃÒ»ÔËÖà\Í1Æêò<‚/¥äƒÔ,{uK/N¹&Ë;"ÂÿÁŸùéÊüÇ…« bhÌ}¯‘g eHp|ð5_£0i é2‘ºg_ Yîzèà§Ñ]<éðÈ(«¢¶þµ|þø&ÈoRX£¬5„¨}=ðÍå6!?]Þµ¶»GZ×Û»¶¿_ªù¼øAÈTV7«ýð›·M ·}ýÙL6;Ð皥ÌÚ ³ýk³k³ë#Faâú1à÷ Oaý±®ÔhˆÚ¿ùûé!RÿƒâI›ÆïDuW1nHny}ú >,hXfî(‹3í‹/ûmÏ£Xs0Ã~Ò“ez 6ÛxìÙk;ŽéòO·±Ð3íb¡g›©‹ÅeÇÈ™þ^:Nد_Úâ|ýi!hi`=e¯éga‹/m=˜+”̼÷½g¼dw…@ò¿¾ÛÈóAn‰ÕéâóÈ ð÷(;ÂO@þ+uùï-ëFa+^Ôâ"`Éhí\ÔÉRõ·@ê…ÓRñ&Èè—> ¤ÕÖ´m'þ Kô@Få§ÀŸ¡¤V}×d|~ üUKõäýÒ¿"ù¥‚@6ÀÙÚ¡loïºþµRíè7[ÛDyPSRT7]õYÿ† ‡Ö®ØHòÚþ¡õQC±=˜eO{2ɇ2R×ìgmäêK?†úòȦOã¢Â«¨¦wy…²ív®àÐÞ®;2Ô5bý¢uk»3üxäà!L,ÌøÓi˜MÍ›¬ÇäЊ^ãXÙpÌ’˜V‹öbôôâŤ.ë¬Û&–l3m8Ö7’àõd`NÈ-R§_F #\Ý!`^È-r«DƒŸF#\¿2¡²þPV‚O h ¹ÅJ<Œpuã@[È„±ÃH? #ýÙþÞÞþ!©&S>MÈ„ªÒ±:ad`0»¡o0›í_5zp’ϾQÈrGbGŠ\ÝÓ"d”Ý6Wÿ§5ôŸ´i Z´"‡‚èq‹; ç Y²-¾;øïììÑM'ߣíã±dãzKö».üt¿¢iÑæayf½=h´á}oÂûÈ­õ¯×.Ù.Vö¼¶Ýgzˆ3•ày+ðˆ[¤ŽëˆDHÝÍÀ£Bn9Ú„ Bú‹À’ USë :^ ý'éBê,`EÈ„±cÈ Å X Ù¸QªMï²ÂÛ$zꎩõ¯ïËömèX»n}s CÙìÚõ½¡Ê€BŒ_ü åF£R÷là‡„L˜¶''õ®¡ÿ¤M£]TºŠŠ]? Ü¬çŽÒØÚ>t–ÝÀ"Êés6!5üľé¡f“¶ÕÒ*å<ëÆDn3 ðÒ„6^Z.¬×fVPÔaÝvtg*fÜY€ÖMø0Z÷ÃÉÇRW¾XÈ ne‰wHÿK€/2¡ªÎË@ؽø¼øZ!ËMrE <¤îeÀ× ™0vàà—u,ðDãd¾]È-R÷ÀÕ¿"',ðÉär^†yõ™ìÚ <£Ñ}ðB&L:êºw¿)ä+Š¥Ý=©ÿV ý'm Eû¨(ꌱ¨³[wòS<ÂÜ”açPÁ.•]Ûâ36bPlh=_,X}îO¨ðeƒÓÂ?$P,+Т"·“ExWÂ1¼«º%k8·ð^!&fHÝ8ðYB&L=Ìþû€Ï2¡ª0Ó¿N‚Ï‹€÷ ™0é0Cêž|@È„±ÃÌzfÖ÷õö®—##2_'dÉØW¯nö‡­è:xãö»û³¬—“X·‘ûìà`¶»ݦõ×±·Ù´ië;zÞ¸—uÚ6f²™í·\;л5b4¢·ú௅ܢr§pH4"u#d¹kÈâ…Rÿ5ôŸ´itÃðQQ4Ú"¢‘W±Æ{(‘ Ñb­Vueí]çÊÄ_›ÖºoA¸o±EYC9¯:ÿº27ÙF?âÞNìà“„L˜t!u[O2aêA†ô?8"dBUAfm¿Ÿ0/d¹ ªhA†Ô=h¹ÅPd6² 3D1Cýë¥ÚÎв܀bݺ¹eŽ ³n ¿wmvp=÷ýÝkû7m¼Ž½‹1ÛnÜ{ûG-ÆÜ1ÆÐKþ­ “Ž1¤®ü¬ Óvî¤þs5ôŸ´iœ!ìÂGE1Æ1fÂ, ¾`Z¬‡Þ@#k{õcf©Rª×Ñ7_ðíWünIÖG²->ÿ/ð;ì-~^:¿ŒÒÈWÏMÜ´–àÅ ]¼¸«¬iõ!ùg‘m‡ÙZZµ[Ä>ÛêºvÎä¯%Aþ8ð-B–;Ê6ZÈZ"ÜÇÇá’oBÈ"ýo¾MÈ„ªBÖ† >ï¾OÈ„I‡,R÷vàû…L³:Îé\GAkp ÛÛ;8}æ‡è|ø×B–;Ê8Úêë7 ­„ˆäß&d¤ƒ©û4ð_„L˜¶÷'õ?¯¡ÿ¤Mc©¨g¡m„øÒämOF»], lÉÑfOh®y<ú2æÖexÂmxmÊ,ÿÂýîT®`íq=¶UXpǫ̃¡ƒ¸Ý¼SÈ wï…†R·xXÈ ¶ïE¤ÿ. .dBU¡chP‚Oh ™0éÐAêFG„,·n¤ÎÌÍàÆ,p ­“j>GSB&TT7W×íí nèËf{†²C™¡ÁÌ@†ÑCˆï3€ Y.-ŠCHÝqà[…L˜¶ó&õo«¡ÿ¤MãLQå>*Š!]õbÈÐÀÌ%g‘Mý,°%ìÛ.e¦~E ÷±3_Éù_js2tû€·™0é Aêºû…L˜zÐ ý·™PUÐèºÎŒx< ød!Ë F ¤î ð)B&Œ4hïæÀ†¡^æ„£‘™à!KF²SîìÏ0ܰ~hhãúlÿ†lv-c1fÝ»¯2aÒ1ƒÔ¾ZÈ„i;kRÿšúOÚ4–‹÷QQÌX=3fг[ŠGéì€E'„ΈÈõlp%\ ®«•Ùùªà¸”˜úqgÏýHPîÞ*d¤£}i ð€%½uðÓ+2ÚAÝÒv˜Æ¸Ý£mߺIÛšÓóFÉÌiûé8‡¨çˆpz®% cµs`Wç(mOçmÀ*™=|·2ŽQÖ]>߈ýÉYֶϾNEXÝÌîù´Å/4ìØ£׳X¹óË3+£ESd9Ú¨©GOÇÎE!>…ðtuw%kaˆÛs€éŸÁÕ=ØÄó3¸þ×iQ~~Æ@hoÀçOojIëü ®îõ@uçgœÛ50DIØÐzž…m”jAoþ™ UÖðlxå…d_Äò¯€ÿ,d¤³/R÷çÀï™0m—Oê¿[CÿI›*ÚGE‘çŠ<ül mvòèƒc+è¤&JɨŸž‚„׀p¼‚‚ßÚÓ(¨Ó>ã(Ží¶ãБÒÖ¸8Ƙ‡@ tNÿ4‹1“ŸÑ5K£·N YnÔ-Z\!u=ÀãB&ŒYû—Ò¾r»âRÝ¢uE¦v®õ‹jžDìðeB&L»•\£»@i+ù{ÖJnÒsGù䬪8–ØÃf†Ôy¹™V*Ξä;ø)w[+Æ¿ªqʼêçtüÆ<‡e;£Å™ J7óºAÏð& Ãêu½J~ª6ýO¶]'œy|ZôlïB)áߣHÿ^]¬Ú¶w»Èñf5C“7Slÿøk!+]ŠÒ>IÝ翲‚¥˜Ñó>ÒÿÀß ™PÙØ[è>|~ü½ýÂM2ï#uÿ üƒ[þ»::hŸMôdïB¸!ÂE)«“úÇÌl\ß׿vCïÀÀƽýk{ïˆI±=¸òÚä“>R×\y]úq„Ô¯ ž´i\$*ÜGEáìâ™ál>)F"Ò{è^ zK[6ûæŒóäÅo>ùQÚq*An%p•[®’!W÷ûŽC’T0Ó"FÛz•µª#,“Ñz °OȤ=¦½’ÎnEaRwŽSÊsƒHy6àÄ"¬œï½ÙÒËeJ@Ì1ä©6pÕ[wàj“¶•.«YêCgÐóËJG+¿†eD¥LSµ¼ˆ¥R9ñÜëe¬8 ü JèÓÊü³šá,âöy $I‰Ø÷’OkHÝ߀â‰~eô´†ôÿø#p‘:D°~Z3¸^‚Ï/€ÿÚ"V‚ý"ù´†Ôýøo(Š]çv ¬ãçÁ ÒJ”Á蛈‰Ï¿ ägÚü›i gmXÛºe"$³!–‹kbHÍ EËlH]°K©O;¥ õÝìOÚ4.ø¨(³y>e6†e9f®À·ß(”ŽíÃû34¦Ekëiûð>cÒ³­Þz¹àb­¼¿P^/ŽÛŽéJ˜×›½ ¿áºûÈ-èáóQÏWÖ‚Î×€-?·B×\Óçwgñ#qPÒ ¼6áÝxí»O³q;¼_ÈJK‰2¤Î> d‡%D2¤ÿAàCB&Te¢Îy¼øJ!&eHÝÃÀW YnߌNÿš¯_?Ä:8˜#—©žWß&d…[èvpú×n ­¼XC,ß ü!&kHÝÛ_2aÚNžÔ¹†þ“6ËDEû¨(Ö<‘ÅÿöŠíÿPW 0ûuG ¾Æ|)ŽxئOä•ùÁà9c ÊÙÎïê°€å/‹>)x9ÞŽð‰x;©‹©›±˜HÞ/ä4b ©{ð!7%Öþµ(5¢öhˆÇ+€)ÆR÷0P]¬YÞ5¸‘ú4k7ôö®‹¾©‹È¼ø!Kv³¢îÞŠº“‹H¾ ø÷B–[-κǟ2aÚžÔ¡†þ“6•¢ž}Tgö±8³_¯ÐyÄ~«µ½,jEÿ¤bI²kXnÅÕ&ôbÅ«' s¼ÀW·Œé9º.)r+ÐðN„ûðNû”µ‚ èR]q‚H³Ïßüµ­âz…~Ìbޕ׍qò·_(d¤£ ©»ø"!¦eHÿýÀ„,íêF™Qw—_.d¤£ ©{ø !ÆŽ2|ƆNÜ=Ê™Wß$d¹ÕØuëæª:Qf}v`cßÇp3Ù2ÙðþhH¨!¦ï~QÈ„I‡R÷fà?Y®'ÏÇ“ú/ÕÐÒ¦q…¨l…š{Y¨9 Wò†5Zq üˆW±p2+ÎÙÓ‹SÇùZÞÀY›pâøô#)X ¹ÑÒvSX²Ë´AìAöw—­¦ÈÅ:M·ëEÃbñÉкvæÝLwd×Ö‰r ¼åp¯²æ³–NØëÚöQ @Õ%Ëî”Åb”¿©'Î^3bþ|àG…L˜tl"uÏ~LÈ„1 h˜ +#ϲ”r9£ ÐŦƒýëÄ Ÿö$Û9Êì¥âºF±È7k»ì é|¢.j êü!¦Ý¯„ ^©´)ÞΚâA3oÅjæ›lëh‰þ¿I 5°69À„qÍR™IÏÚ‘¦àÌ«ðn„·ãÝnWÖ¼Ô W·§!&Ý€HÝ@WÈ vAFOîH¿¬Yò•úÃÕ¡³k øÜ<)d¤“;R7|š%oþ ~zn× 06ÈýXôÓ–‰ÏÓ YáOãáêõQs;bù à…œÆ 2¤îaà‡„ÜŒdHý‡kجdV‰ŠöQQ@1ƒ¥§~DY§óbÙž¡ÙVm]MàË9÷¶Dn!«ñº„&^×TÖBÖF¶™v¹ ;%=gTÄÀµô¹2D¶ |¹•vaC‚©;|…ta£ÒÿJà«„,9`«æ|âñ(ð1!&tHÝ«o2¡’…´t£Ä)–DæÀ÷™PQݬªq6ö÷m»q/s!YZ‘Z}!a‡¨~øM!Ë­I‰vHÝ{ßr3în!õß®¡ÿ¤Mc¨m…ü©„QvŠ~LÁ`{ܰ Ó›ªâ÷jpnÇ<Þ4¯¬… ̘1=`O# ÉvÎ4¼©í á˜†«m—àøZ!§± ”ÔÀ× ¹)Ë@Iÿ#À×·(_º.êÆJâñ&`ŠË@IÝ£@uË@qæz>œ}û‘yø!!Kfòõê&[wƒeß‘LÿZFyhã†õt“Ù:ºÆlãPæXÄ8D¬ÿø !+ÝK‡H݇ÿ*d{I"Rÿo5ôŸ´it‹Š÷QQ:~ qhïýÐ&vhóàã‘íˆK›íÒ¨iÑÈ8ëUŠ? ƒ0%Îb¾ïOxï/w¾DrcnÄí™À— 9î©;|…›Òý!ý¯&ÐýX/ÁçQ`ŠÝR÷j ºîÏ9]t¢SÿÐúµ½½ýCû¥Ðï²Ü¥чÜÖG>ƒ™Xþ9ðkB&L:æº÷¿.d¹Mñœ=©ÿF ý'm8ÉGE1çG,æÜ΢‡e5{è&™­,òLÛí?㌚m›aåýÓl¶Ù“yƒ¨žà¦†›+®Û£ÝÂ¤Ýæø¸i‰Ã ÷ó³¬q™vÚuË3«Á×ξñl?‚ñýÛaÙÐܦɢY…¶s{ºi±È‚F¼ÞWÊšðG(ë)kž—T—¬NÑâ­%xþB ¿Oï-’g…D‹q¤öÇPÛ¹£ 1Žô/žù eÕÔuÍÑ8;€x’q=™p<ò9±kCìµ[·®·wCô%¢r.ðrÈ—+«˜+ÂÂÛÇ-±ÎÖúÐÞqH|#š«€;!ïL>¾‘º•À]w¥XHý Ä“6^QÓ>*Šo´Û®Î)kYZî±ù£øaŒ±†a妦ŸÈz aÝ)~ÆÚŒóHhQQ䦒Ákªßm— ¹¬€Þz›QÐ'LÛ‰3ÇD¬ß,d¥ãJ!ˆÔ9À·YÁ¸RôDú¾UÈ’·„Ô?h$+Áç=À÷ ™0éDêÞ|Ÿ%{3ÁO—w òmxýtjnôsÔˆÌûŸ2¡¢º™ûî‚Ál6;ÈØGŒED÷o¿2aÒ±ˆÔ}ø+!¦Hý¯kè?iÓè5Xt°~,òOkgî™oƒt]øn<í€ØÚM!‡>£É¥2ë¡Ñ¹«QE/Fx/vPY£Xˆ6Ó'“ƼI݉:‚G$Ÿ <&ä–cÉRw8%dÉ›²‚ŸF.¤ÿ8ð„ •—¨#xÄã^ೄL˜tp!u÷ï2aÌêXƃ -k£¯^ &Ï>$d…ëåê®^ظ~pCß×ÍLd×gÌÈÇsÕW?"d¤£ ©{øQ!Ë-çÎIýÇjè?iÓèµí£¢¨R¨UúùXZžu^z+gnäƒ}ÿ h½dW,oö4Rì1´¼-ao[PÖJ´Ç.ºE‘“¯ë£W?šXÚÀ„,·ÿ,Z¬!u&ðA!Æ4‰ózÄ®•œ©÷h˺}Å#zø!KΛԫ½C¾›œœÌLNpÃÍäìR_Ñí3Ž}c†—+dÊ…rŸ§º›ÈžOÔ¬ü°¡——¸uöôÊ@¦œ‹èéÍþŸ “v‰¤îÀß ™0m_4 þˆÁwI“Æ œP‘K¼p¶K¤Ù†ˆÜÖ‚á…àv¡thk©\ñ™{>ù¾²q¼W€ÅÀ.!ËÝ[V÷Ðâ¥{lÎÌ–#v p]‹¸\rPYã ;¸˜´]\/ä–µ±­iˆO^mQ•64í±Å8Z¯Ë:76*XóG´7m\I™ÏU7ëDü&€´h;ÏýÉÇJRW>Ä«EÉ(RÕô0ðÅ-ÊDézË5ñx–7¤t ©{ ð5-êDYÏúeë‡6ôönè¾UȼøÖÕ¢Ì1ñ´.ò^&¢ù mW‹ä¡ ÑrR÷6à—ZDêóÅôƒ?©ÿr y 4a»ü:QÓ>*ÊAί—ƒDd¶ÌϳóO¯ „¨]\-d…×&ÄÈ@ˆP7²KÚ2ПxBÚ.®rË@l[:ˆ”­£ ®Uo@?ù˜•+°ŠÚkät ŠÛ·°g+{ö(3 eõXÌŸ vONÅ‚6ïdÏu-*î_,–hEî‹Ã@úÛtxN¹½Ww>ù«—ÇPª­4RN£(Êlè,FËäL9nOÒ¹NS-üvÙ¬hHÇ:Ñ¢çƶ¢¿ã‘¦¬ÖÕY†^v윑¯8_»G‹>ë9Õu%ó˜‘ïU|ç½åýÀß°çy-²»êÕÿûÝ©\ùd–\Ÿ‰¨ý¯@~#úok‰J’}&RûPK¿ðï —Æï3É"¾6ð\ö,káW„©ê3 d%ø\ ¤ô…eUt dÒ}&RwðRöœÕÂï ‹Ýgäû¡²½½ƒ¢ï‡"2+€W·ðÛÃhœ¢ºé¬ÛgÜÐÇÚ~–þˆ:—E<ûŸiÝÚÞä;M¤îàÁ¾¶u_ú½R(€·ˆGÑÛ/aß§ÿº³•“ã’ u•"—©o«¡ÿHZì’¸t6Š?â£ÿÄ,•vÖŒHdÕCØŽêiÕ’ëµèENIÏ” ÜÎ^€ßQéq‹¦u4Díà…¨)¢6Ç2–µ € ™0õ¸KúŸ¼XÈ1®\ ³ˆÅdeó%Ø­ö Yáõ† mBf„,w¿at›¸Ø'd¦ØDØ/d¹‘‘¹mb¼X*I°Û Ü)ä•kñØÄFà.!¦aÀ„Üíý¢¾À[¢äw÷ ¹E*¯:…è1!ÁíÉÀÃB&LÃ*ï2aV±¨ ¹EmWñî¸Mw¡ŠŽ¶6fzâà튕;DM}ˆá(ðÙB&TT@‹G\ÃЋ®’tQ®³©¥©©(©o«aÌTÔ9U: l¿eÇÎ:|®e¸´†þ³X¶_yå•ZN/æ*tß¡V´Ç5Çtj̓‹=49Ûq ·l[y²(W/•‹$øÛgÜÈor*˜p;*x{ì7Ù—×=íº^Í ¹û\WÉÐÝŠc w8ÐÉœ¦9ì•m·Ge‚eŒ÷h9s8Ç’gÿ û}}˜ý_f47Þù¥†ñRÃ-qªg&›Ác³ÒÖó$2æTªw•MߥUèn2¾ê°žͶM§1ÃrÅ‹ü~×ãýŸ„÷{Rì÷ÛAïG'n¢‘Ë‚gv³sïžNÍtù[å1½Rôz4×Öl‹¼­óZÑÐ'h 3û’-ñ*[ð*„;ð*;b¿Ê*†»¦Ìm¬ÙtÏô׊nÞ[Á•Ð?Rn()žyomJÍûöxæ‹!4Ãqh0\Ú¶á 9ÞŽ—»]ÍË Û¦7pœM·>9ã~“:,Î,¦›LÝ_:|õì{5·ýIƒîb§ïD~9X8Gu/w9½dÞhk˜kh¦Â­”ËÅ)ñÖ3êˆæ1Øýü(òÛìÄÛÞ€·‰ŸÞ?5Õ«{ŠcîÝŽ×Eÿž0£7×] GøÐ{Blz—ú®…QfOÍ¿DgˆBãè_ÃyiÊnðØ­Ô¡êÚÅ ¥ì,y•¼8/¥\õïòÓ¦ ݉^Ò{ð†„OÁÆ_¥ÐLJØk¸Ã¹QÓʳ·(Rr©Ʊ½`MØÖ}M°dþ>*²µd"Ñý¾í”X—G¹²‘3ÇæX$߈LýP'ÄyK¬{gV¼6¬=MãÕ®]Ãë=NµïgÂ^p–fŽYí·‚Ç­J«}]xµ³³¬;žÊë”YÍ~"s?î„þBÉuªz!³êz"VҀ͛٠9‡”Öw?ÕwI·*zQËWJ¥)ÖÍäc.¨e½XÄþ\¨™÷màMØÞrÁO¯ãÄ28™Ÿþcé«9f]ƒ'°ücmxXë_aÙý×ߣe£›º1D¨æô¢g8 „…¾Bõ+ôr¯p^áŽ$^Ár=ƒ«Î…¾Bí+ìä^©$Gu¯½!bÈGE ñFjˆ|™[Ýf§uᘠ2ÝÈE'¡ÖFàE–½\ŸŒ÷!DêN¨¤“ÌGÖTíw?¶U]¢ £êmz"¿ òGŽê:ÉÛèmÄ,6æ0çÔ‘ßì/2i`„ήT#¥\n4‚!ôGž¶Å~‘›¦Ìð›³rFÙóßeÌt˜ ælÿ+1üÈ{£ž7<°i^‘ì4ò =/Dˆ¾¡ŠÿX»Úï› ö̘J@ßvÚW1ù…îÄ Ý©ô…VÔ^(~ð= Š„+@qEü‘†ú v0"_£Í "£OD¬6N ËŠîºîÂëªiˆtðΧ.Ø(¨ªë‚íªk!ˆ»¸et'a9¼ !†#åÖ]Ä´‡dÙ@-Ò”—Âjųy dåNé½5a8ûfC¸#;òûx?Bub;i±?K ýK63†w!Ļܡiï²À‘˜¤Â ²  æ‹V|Td¾ÃÕ —Õ¥VÖMgÒtYödŽùk„ýS™¹O[Ãk|H£—¥‰w Ä<9aÌw¸R·ì ½Ë¡+}Ÿ8LïÀZVÙ^'§ÛÙÝ€)¡¥ê•M¨õ£àqTi­ï§Zw+£ãŽ])óÙ=Ãq+n5®øÇˆÝu+% ´ñR„êVéð;¯ {x ôßx&XÏ£û¥2x*¸c¾3£Ï óµ8Îøº†7,’ÄááÀØ—„k½¯@¨nÈhˆ^Á9õWÀ¤ü ‡À(~ &þ³2­pþ±;‰wpñ„êñ"nF‘Éx ã‰s2‹Ô‰Þ9¯€LE=™è^jd&”’j”ÒgY?­Kgšfü'•6©4þ¨63Ÿ ¢„Ž2eÿE~§ãx'BuBô²='”–-_š7J¶åz´Ø¯Õa!þÖÃ;Y[¹õð^Önn=|Èöt>¤Í^¹Ý\ïÁ«ª[º'8ÐÌ’“¼mˆ‹IÛ9ÊÉ‹°ØWgõ K¸Ä(;½7ûVäW:‰W"Äâ¹c@f5ûÅO#+Õ5ìy­B·‰„˜ÒÄ2OˆéÙ°–íÑ& fQn!ãÓðB„ꆚ7â›âÜ22Vö¶S¶™"«œ•5G~§ãýM›b¿ÀÕuÂËìåÇ»vJ,>~^ ÂWÇ&|)™;kãæû',*2Ãg‚!¡ºÕŒ[ÂÕ]C³¤ïÅ{nÅ{lý+ë–4w'dã‘Y> , W‚åÊØ,Ïf,¯º•œ;¢Óº´î«þÇÔãá³Á¨(fE<¤“al׬¹¨4qiׯ)níЋ‰Tí9 M˜íllÚëµ!eïsÁPÝ"*©Œ÷y BØÌŒ÷ùàñ|¥V˜êÅ ð „óqÈâ…àO8_‡,^„w T7dÝœïû•šs?7gŠ:<Ÿ®Ó3¬ºÔ€Gæýxª9Ìpž“7L72éAš0ҙؤ¸áÎI:`¯‘‰?â„ >Ðk}<Vj­"CŠÌæÅ`CØ6ño]Ym;¯Tî;Àþ礪ñÒξ£³˜× =?ºvm^X;°¾÷µ÷•t‹7ÉT,3ã—é}ôÏ¢¿xý¿W •ik§·Õš‰cV\/ÌJê™ß‚¡TŽË /«Õ˜_Þ-¿?[8Ë+ÞvhWïFñá¢?Ì ü°cVÚi‰ã j%¹˜˜ñ÷Þúµ ^ù‘ŽÏ°—6 yÿ-o|bÎó_ÿÓ«ý¡%3• E®^˜ÕY:ó^áN7—YÆßÁŒÌ, ¾rª§ÆÒAf!•ì?gÖЯäKÇ#qµg uöO¡j1ðLÈRESW뢽hêõîKhC9´M/“´«„Ô/ EUrZü[ĪiGu^ù‚ª&p?B½Û}ÓªRQñ(ªš3U~ævHÍ,@mžùüj&]s‹h•µˆx5³†áã…ÒR¯f®ß^dc8½x i‡ ×ç„n·­13ÏOÚ¸‘Îz˜Ðq¹ðV‹k´[FÐtBÄ—Yˆú#Üy—ºôL¯X/&-DýÖ9Û#­º$õ»ˆG².;âÒ¡ç¬Ê‡Èà§hš¶ '@ÒVq Ïæ`hÂðí¼þ‰ÝUC3«†ÖEÇ­kG-{Ò¢‘=ü’¾«?ÄË4tO;+eöñ¶°SúV®¨»®±Œ+Züˆ²æ·°“5¦Î° +d €sùSàãW֊®àê^|+ä·Æ6—È_sýo¾òÛãòh»nÄ;QðJÅ“'FÇÊÎSí=wØÉ÷¸ž>n ;­Õꉽ[í¾ië¾íàÎí;öѰÔÁ)73nx†5ÑÕ9ããÎîkµê}ß5Ç´®+¬ãt(CWð³îîY¦z©Y.oeޏ¬˜NÆ2¼>«\b= ¯pD?¶e°Ïp×õyƱÞ½_ïX¥Xdßî¼VÛÏþ?½—/"ÊP¿ «3oçü_ ùÅ­¬çŽR‰t⋎OÜâ´éïvk«Wk³ÞC {•5###vÅ;q›sL:E(?ܹ—ý±›ôc½âG¬áOY9ÕÚpg&ÓÇþçkë››ãæëúÄŸÙ|rFÇŠ1Îì%³]uÌÐ<T=Ò¹¦gZÁ÷0îÓþ|÷É“!|{Ý{·n?pKˆ¿øaÈŽjÆôe3¿±l¤hëy”OÀûPÞ]Ï - ’“h„`ÿg2ìƒ~±½³ÑäÍ#b6ªì½ëk%ÓLJkÝá£e×±økª³§ïì žôý9¢9&çì;ÔI[<»¥êþ¥Ü'& ~lèŒ#ÍAµz$ÝTǾB7AÒ„`Ž‘UÉyþ}v.²RRÑvü)Eº±7gWgÙóXÔÆr^ð~È÷'ßXÎA!|òé7Rÿ`ñ¤ßXÎE97ÑÆ²Ht|$¸-.o™µ„8f[1‹ö8ãl,“ƒ_£‹Cz{±¯†_{!fïÝ¿9xÔÐôr¹hŠ£ßÕ¶ŒsÏñ&Ý2ÎEk <ùDú-ƒÔß@<é·ŒÀXu‚-cYp@‚¡?ª~d©åXþ;N?ž¡Aû ƒ— ûàzÈë•g_uúßÑ­ŒÓ[vlêelg¼ÏŸ¡?•™ê$•ÃÀ£*óHqmÁNAžRè4 üKuÕn‡,嫦Ä!5EÀÝV\ák[[#­ŸŠê…éN?ùóÉ{aR·øÈ_Hß “ú/Oú^ø|ÑN8&˜ŸˆqW nþô¢úüä­6Ÿg˜l˜ÎÒŸ‘Õ׎Öϳ²|E+õœ¸sz²@黸ãŽ~=¯aéV E96´šÏh7ŽiKüe–Ðôˆ{ØŒ1}Ÿ…Ïý¨,‡Ž\sì’¸0/EmZT^ç?ù#É7­óÑœ? ù£é7-Rÿ±âI¿iVp+nZRs †_/iQ9u¶¸ÛÑ¿e7r8 Vç5ÈZò6{ì”ð ÈW¤o³¤¾3€x½ý’‘jµÔѽ¦y!°IS+ÂÆ}Ä#ÙZúãÒ¹-ÄG驃 Ö;™9D7Wú‹Õ«CCt”ÄŒ|kÚAÖ {À ¤nŒñGz½©²z¢ŒŽý6‘)•+üíÆ+åCµeØË±€V}»I³H×¥zìoÕ ¹umܰ ‡ÅS:^}¬hOòQ2ÚLØ«³x<åòÓ&ìâ ˜«¢qŒEÌ2-†¶rSš(² íÏ×]M¬qe¯±Žk>‚÷cJšÜì%®†cDgÄï!ô„Üê)ô‚EÓBwjùfÐ]2\2Ý\¯c䢦iDÖZB&”#=ë/V„LÓ5µe¢:Ò?œ2aÚ.òbØ«j´Îüv—i1Ïš÷wVðɨœAÇ÷Œi&_^Uv —}µ»G²Ï_}Ëçà-ŸÓç+;*Êï\%|HÈ„óÃù> þ° q5ÎW ¥£¢j(Ev¾êê#‰QÑD %Üù&§uç«Æ,ƒŸ>ušó ¤®A‡KóNF^š5…Õ?ì®]2<³dХŢ‘—ÙÏ|Å_࡬å-fA/m`õ[àï„L¨¬ÆÝ[+¬Bÿ+ð÷Bný}ìߢ‰ã:ø,½\vìcüSDÓ.²‡’iÑ2±î:CA‘Ò\‚ï2lÛ,d˜oy!Í¥p=>ªYH³XÓ´;h]D6+À€Ð?‰Mîh±z–¾4p&JXô ÛnNŒ–/†|±2kÝnNêÎ^ù’ØÕsDë ,¼ïî©·Å%Â’KææJìï˜b“"Üá˜Î·KÀ¥Àû ß×”$³Ãê£9ˆ°”¤aªIìŸ |)ä—·T“¿,@üe2Äã§šÊhÔw#]¨ÛÈ §2b‘Nµµ2WÂ9‡á7«hê§Éjmvª3Ñà§oìÁv*×p&Ä’îûÃE£ âNϰò|ß”Yb)Ë„XU6–Å”¸öW¨‹äf’‚rýÑXž­’*µÉk  Z7™PQ[nß~ ?:¡Ö-ÀmBnÝ–FÞJ 7· ¹UêÌ–i%°:`}µ ]&ßQá9:mWµ%j­uÐ2¡ºZËJr€žn˜£ÖŽ+BV°ð~‘h‰…0ëìJ!W¶¨Ì‡#§å¤¾-€x$›y6.­EL¯ø¨æ— Y/akìs ¯@-^ùBu}ÜÎÚe¨Qs¢t° rWò¹ÿ°cÂnÈݱkë:áQ[& 4™·áƒF,!óó¡1»X´'ýÃ'XÇŽ%P›¢Ú1¿h@6â÷Ò£ŸCÔ ƒ"L¬¬K0[<ò™Êº WÕ´L8˜#g$Ÿ „<¨°5„SDê×B^›¾G'õëˆ'}“¾f|e¢&ÝæO‚D⵸òRe} úˆ®Ç2ÝÉk†ãØNÕ §Ä#Aü,àFÈ“·ë+aË„C‡Ò·kR¿)€xÒ·ë«`ËW%j× ŽOD^øt¬™0WÍO3`ví±hl攘ôUøaŠ®ú*˜1a]5©_À¦¹êU0ãUÉšt9ºI¯‚¯JĤ/⇚»,{ä‹Ó˽ühÏÈV¼ ß#\ yuòV¼ –K¸òšô­˜ÔwOúV¼–»:Q+^˜33ÅQ jK€gµ¨>×s˜u„ G¥³lk^¹Îá_´‚4®Ë¦W8¸²ÔÀr4c_ 'Üy_úÆNêo žô} |MâÆ^‰jìk`àk’1öJ¹œš±¯¯IרÞ¼™Æ¾îcÓŒ½ Þ•¨±·MDµô.X7¡ú®ät%çžJ¬?ˆÕØ»Ð^»`ìg¥cì]0ð®æ{ ÜǦ{7 ¼;Yc¿u¯¯%@õÆÞ?½wé[ö´“ô°»Ô¡)¦ÈÖÝ ‹&Ü ysòÖÝ ‹&¼òõé[7©ß@<é[÷հ諵îö[÷–%ˆ-.ƒ,uOk]BÖíiFµaâ¶xä«’·á«a·„NgÚ6LêWOú6| ìöå6ÜxSJÈ¥×ÀZ ÕçÛ|5‰¦çó&nb1Š¿¦ On°„XžÌBÎ&oÃ×Àn û!÷§oä~ €xҦѫõQÍêƒÜœà_³C«LøvRSZ±á_ÄÃŒH¬Jê×^]«tñÍØp4í=Îä43¸˜Y‚âõÀ›!߬оk×ÌR;ÜyBµ!KHÝ p/d¹e†ÓÔÉBö@> Ü6–Õl£4!Áð0ðä#é˜Æ“€G!«[äÔÐ4‹åïð?í­Þ\âÒÖwºn„*[,Ôå·¦ø‡ÐD_FTKÀWA~UúÞ9#쮊j¼óUÌ;ïwŒ¼™c¸oÌäNYÄðÚ2ÀˆLûÀŽ00/£ÍMkkqÖD¥k€ë!¯OÞêIÝ*àÈr» ƒŸvb9”Ëw¯ŒXœ#’¿À'A~’roÙQ'A·|<G¹ü3mn”Éè$hï†|·,íYù.à ÈRûë¢ó“÷@Žq¡êÂ3Ú!¾™†ê]C,ûª³-‚}*¶ÐR¿QZbÌÝ?­ 6h5§Â&qøÈ?PÞ$ê–=!cY¿ÈÏ™üÀ4Ä’aNX²9üø?ÿGYsøG› Óh?„Úv!·ÊõûƒŸ.­5‡¨‰Yéâ·¼îé,¾™ã,ª‹SZ™ý¢ø5‰FïáŒL@žPW¹ÇCVîIà³ ?+ÊÞù¾Ø•»@‹~t1x6ðyŸ§¬Z5ŠhX+_ ù¥éÔÊó/ƒü²ØµrQpP€†ŽÌ1ÙöóràÛ!¿]YE- ¶.SMï~òÓ©¦w?ùCq«©õ Õ«§µI­±ÃÚwHÿÇL¯GlPô‚¡ßUËü©Ëú¹‚!ŽD¤tŸÿæv¹;sÈÏŽ™Žëug´­Ö”æVFY÷‚™HÖá%–ÑÒ­·šëUò¦áŠ>CÉtùÖD ŠðcŒˆ¨^Èå+Ž¿û¨J“ÿQrøE×ÖôŠgÓVË÷åþ¯Á™‡pI;ý°ÀÖ/™°ùA¼õŸ€ß2a ¦ÚúEà·„L;)÷M5rRND¾ ü‰ ÓNŽEÕVQIŽÞþTd£fÞÐý´Ë”º¦Ý]ݸ¼šßM í¬bÕš@Á`¦f»9#¯ÓºÓ›òûóž£Óá£zî(5¡fî¨áh]ýCë7t÷h»+£Q«¾£@žÙO6f{4öÿkYãßMk{‚çŒ1Oáßlmº¸÷šokvDKE^&´õr-½â/‹?ÑÒ|è´fpÂYIœ½kÕÑXmûòè”¶WÏÝlZv0×8¯ëÛcŒ‘KDâÕ?ý’•(ŠiŒ/„d¯µË±mÿ­!qZÀÌ[šzÉå d»ýÜ|gåE¾d znعSì×ÙwÑ=¦wùdc\õÆõŒävæ\ÐßË4ÐGâ„*fü0ṉ̃O΄iLtó_E‘ËJÔÌ›Gù¼É¶Ž–t~¢AvmÏ®ï¦%Ž-Nš˜þ›~ð¨ÝJN+‡hŸ(Ó/•ü]XC»ÔW2ù^clŒ¥ ›å΂Q8EaÁt’(wâžÑÇÿQ¤Ófh÷í\wƒ¼Yyî6òã†Ûƒýë=xÝ‚åâ‡lô銵hÖk©a ™P™ÇµêˆÐµëTz–èŽÔ·0^ïQ\:4ÇpFñÄ,•‹é¼b»86NñvÓȼQ½Bm."½ ¨(‹!_¬,g¸hrbt 5ÖP‚g I¼•g%Ý,†è½¸²ÔÎÊéK,#_#Dú‡€› Ëíq¬WI+ý³ª&''3*+äl*"¹x'ä;•UÖ‚‘ŠVU×C>»ª$ÎÕ#wG!*{ýŽÖ—(ØNˆ£i…¡6Ñý’ú¶Æs¿÷Å¥CMåÌâ‰Y*÷0÷K'7õh2ÚÞL¶Ú?¿iªGÛ‘ÑvepŠSFÛf²ÏOÄâ×{³Ôdæð±Ú<–Cçã¸nõpžNô²_磄,©diIÄØ[ ¼²Üd]=çqîÁŠ3a°ü•gDvÑŸ’à÷,àK!«q 9²›Ô¾ rü§è¾ô¿ø ȯPV=m%ø<|=ä×+¬ŽQ»˜QûJà£]Ë»Xÿ¦ýPooÿÆ~©¦óð]ߥ¬n¶ânÿºl†69°Î[f<—Éé}VŸaõåtOgmªbôõôf³ý½O$·Âþ7”]Z³!™ÞâƒÀÿ€ü k–õèFCÔ¾ø[È¿M?.‘úÿ ž´iŽˆU¥³x„x¶•uÆEHâÝpödü£Ð´­¬C®³`DáÈpÖ¸Úx…z笻?£“kZ8Õ-r»¹/Fx²\2V÷É›ìŠc‰qÚÝ8`¸ìG9Õà9|:ä§'zHÝ]Àg@~FBé&ð^È÷ª =ë²|ž|ä$zHݳ€/„üBE¡g°Coïà†©&ô"à«!¿ZYÝ\凞¼mò3‰û³™ÁÁõûŽœ EF$uŸ~ògätÚõàà Ë×­“jVŸ~ ò×”ÕÍÊ:ùãÀ`vCßÀà`vcÿºˆ©#‘üð÷Ÿ|êHê¾üä?¤¶§ç£ÿ¤Mc+ônm™Æ#&²ÀäOq³TïöLm¦{'¤À\weÛ3þ”·v`ú7ÁPÅbŸ[Ÿ9XH/ùD¾æšÇkgàD8߆B |!d¹~aÝQŒ†X®Æ2F‹e‰,ú`=j"~/¾ òÛ’B¤îEÀ·C–[ü4z"ýï¾ò;•USk¿OÒAˆÔ½ øAÈŒ]gvõSb¹ùúè!ˆ¨|øIÈŸTV1—× AýÙì@ßÇ-e¢F âøYà!ÿ8ùDê>ü ä&¬ $õ? ž´ilÕ\E5èYh½^¶¿6vAk»F‚>aÚüRÑ’~Ì,UJ½E“õ>Í‚mçk‘C«°°âhëJùS·9:°‡/,Obc^žðY¥¶FœÆƒôn/þ3äN>j‘ºû€ßüØ6Ö/1ú{{Y ÌìKñàÑý®@>xñÝ–¦ ^ì„1ú¨¦…æY åËJùàÅ“xZÈ—öhÅÔ֘q“Væ[mÐttÜqy–ð²¼Ï¿}¬º˜3â›îÂÛæ!ç•5Á%ÛLº‹Ë1†íühÄë(Ѓì%ßlH¬@Ž©lôdôO'!OªrØ0(ÁçiÀ§C~zòÙ©;|äg(Êöú™‹>aETž ¼òýÊjfuÝloh°o”7¤¾ ƒ™þLhí…d}Äõ¥À?ƒügÉg}¤îàŸCþóô9©ÿHñ¤MãQÝUTSf1¥º§¢‡R²x\á;+z´Ý™êî ¾ocöÐvoîFÎiù{ÀV<†ÓÖ ì¡› Ç3%Fv£(†ü°²ötQ`\|'{SrQ‡ˆÜ+ï„,Õ÷ŽHÝ‹ï‚ü®&D#Òÿnà{ ¿G]4’àóaàŸAVéÏB¢©{/ðÏ!Ç÷gÏ®ëíˆ>ú@d>ü[ÈR“u릧n<ê_ß—Ì®í]›Ý°¾‹9—¡lÿº½QRã/ÿòÿ&•HÝgÿùÿÒ¤þwÄ“6E¥WQ]O§6ü]]’wv j³î¥Ç’Šð‘p±F|úXxä†rÞŽP}Oç‚ýîT®@ëÂùðÜ7Q; |:d•YvH˜!uðŸÑ„0CúŸ ¼·Eù:½¬ŸçS\§GêžT¹N‡™ f†¥ZÏ‹€ê×éuÖ 3ƒúX£ÏÒý¡Ó!Á…x>üäO$\HÝk€Ÿ„,7ü4²W'õŸ ž´iÜ,ªºŠj‚Ë£Ó‚ uv÷Âó.ÐÌÓrÄeàÓ®UࣽÕÓ-0ÜÖ 4Íž¤Ü´ö d…ü¨²¦• ö€ò•œŽ5OôžÛ010m¼[‚ý›ÿùŸ’Y{Ц ¿Yjm`̘Eú¿ ü䯩‹Yk³|¾ü.äï&³HÝ×߃ü=1k=‹YëYO£wýàZ©†õ}à/!ÿRYÝtÕ[[ÞŸ`¸aýÐÐÆõýëÖg×g‡B;·!‘‹Øþ—ÀÖ•B&L:r‘Ú_A­&äV-ýAꯨ¡ÿ¤Mc¯¨ð*ª‰\¹øa4$ñó>xÐÚ'öÒŠ­KtôÍI†„qœ‡V=È#fÚ‡7$,@.(k(kh›i— ºSÒsFeæD«iø2ÈR[£Rg_ùåM<¤ÿÀWB~¥ºÀ¾¶±Ÿ×…ühò‡Ô½ øäÇžu,ðlìíÝ8¸Qª=½ønÈïVV7«êv–6ö÷m»q/u´~ÃP䥩DõCÀo@þFòQ‡Ô½øMÈR‡¦Ås÷¤þ[Ä“6[DmWQÝ`Ü\Qg}㥨||®NÌñ—%Dn!ûñv„ê㺶ۥrÅó»:µ<«µ´œBr±= |1ä'rH| ä—4!äþ—_Yî( 5ûh‰Çk¯ƒüºäC©{9ðÈÄ®Žs»úùFÚõûi'm6ú)ÄçõÀwC~·²ê¹:l&èH&çæõ ¥®™ì†L¶?j‡‡ø~øÈßI>ôº÷¿ Yª§Ïç“úïOÚ4nU^E5¡‡6ÔN_‰åÝée|ØJ×ò¦Cø­¨›fÿ½È­ç^šPý†ÚeÅQ—£{÷C–Zq-êº{€@~  Q‡ô?|òCê¢ÎÚ¨Wcu¼¢ER÷0ðU_¥ £³–::tzƒLG‡È¼øÈoQV7¡»ïú‡ú†C·M†Ä"ù.àßCþûäã ©{øyÈŸOßÁ“ú/OÚ4Šz®¢š8sÁ¬8C§G¤vt/€|º^ûVwªTöl:$—%1Å#—Q‹ ,âEíÕÀ-·$HÝ…À­·Æ®Ä•í§H½ÌmמMÚÖœž7J¬¸ä¶¹mÀ» ß•¾ÁßKòQÁÓ9äþùÖüpFqðU6;mô¸Á¼%Ùž¿›[†-u´Áíx-§B~ª²†SÝCy„˜øä%È¥ä[©»hA¶š8‘~X†\VØ]_/Ágx ò±ä'Rw7p ò”‚ĉzëë×®ëí]¿v½T“9|duwâdëõÕÙ¬¯NÃýƒkûQ‡=ËþÉ^!s,b&E¬þä¿H>“"uÏþ%ä¿Lߣ“ú¿ ž´iÜ!*¾ŠjËAXç¬÷hwÔÎ*Øn[üx_k<8úkð{Ô®ÄÑÚZYÏÕÇ£ŸªøD¼ a ]TÕ©ÌFV†iØó&uÇ ûdà1È*ZHŒ!u‡€Sã;µè1†ôž€¬nÔ¤m0jŒ!÷ŸYåek!1†Ôݼò}±«c_²ÙßÛ»6zÏœ˜<øä‡Ôufê˜ë7ôa™úDvp}ÆÌFÝ¥FT_üd©}ZÑ¢ ©{øQÈMß“úOÚ4ž$j»Šêº+O.ðÏ7ez‰2Ào'—îã'h»YÇ…ujX€94Ð;st׿#‰õlŒÞI}JÛ»uß-·oÜ4žŒ×"Tß]¹ä–²aiõ‚LÔî ñËOB>™|h!uwŸùiM-¤ÿéÀg@~†²jj óÜâI:²ºgŸY®£üt™ØÝÛÛ}š‘˜<øRÈ/UV/õ6@¯\ßgq3ä42ýÙlÔÝÄõ5À¿‚üWɇR÷2àÇ!<}ŸNê?@òŒÀ8_Yj=GÌÈCú¾¾%ÆÕ jNZ#o ž¤#©{øfÈoŽ]gôhC½½Ñó·ß ùÝÊ*eM½ÍÚµýC}æÝ-g&úÍÌP6êU$DöCÀoA–ZW-îº÷¿ ùÛé;|RÿÏÄ£èí—Ž8.îpë(j©fö £Mä2 õmÄ#i¶‹âÒ¡d~IñÄ,•vƒ#9Œ*!l‡Ü«9׽˙.‡¯X¦¹³B¾Pa³eÉѵK€A¾H¡Ú¤IÝà ?!¶M,ä9ˆDÁ_ ¼ òeÊ­bYEiB‚ÛÕÀ>È}éÅUÀ,äl:Fq9°rl£ãã9c‹Ÿ¼Ï/‹¦]¶¸4˜ßfÏïhžqC“اKö”³­1SœÔoR><¡³ßÃMÐö¨§³T?y¥½ã𥮦««uñˆktãtˆ;&ÏwWKSƒ©o `¼ µùTé,<°ý–;ëð¡þÆÒâ‰Y,{¯Tø_äwEõî…¼7¹ª呃n՘ܵ¬HXã,O‰ã*Ç»¤mcrÃñzw8ö$k놧éE±Je-¿ÔÜÖÖ°/¯‰üý"Ákæb¾ÁeŒ‹v]/ñÏŒ æyNœøFæh€áeåY¼ÚƒnÕÔöeTÛä¸Åž éÊGæ8^ãJËê2Çp©>Y¬ïš2{´ öm³ÿëŽÌ1°+V!ÇŒcd*&Ô.€¼  ¦uº}TcZÝdZ×½¤‘–ÐÑJ‘ùGÂnÈݱù>Aðërèâp6óÑ-¬J„O€? ^­%èöQMµfüjEí‰Aƒ°¬ÌF272Iy–ŒD&m(ar&6ékê×mÏ4ÎÇܶ3zuÛ`Ix äkšPÝeèöQMu_˜ÈEˆ»AŒðrÈ—Ç·É:¢D¶9¬=M+Ö¸Wˆ2u”Ú¤TÈp¡ž°™!ÃnO÷QGÂÓ0dL€a3CÆ$tû8/BÆ1=¦´y&2¦À’°™!ã8tû¨¦º›Û;ìøljïüèöQMÙ®«Ó;¿YÜòâÙe»R´]>mÞ«_~| ×A^›ûÊ@¿üètÎÄ82˧áJÈ+›PÓO‡nÕÔtW5ñª=³hLE5ôg€"a䮨t·ÔR°Li¢š…á¨ÊÃúµ{´¼éÒö¯ÏÍl»'){&¨n¼¥9IÙ½POØÌ¤,pñÒ¼HÊîGBuIÙåõ·oxÑíìÙ F¨®Ç½rŸÝ>΋Ôì¹ J¨.5ëoTÃJ´ç+a?äøsfÑ+ýùÐíãC‚ö¼a3´À© Ëv°N‚Æ/©›ªN›ô mŒ•ž½l !Æf~apÚ„3&¢‘ÉÝB„B–Zq³z€nÕTï­T½|öh‘%<ý&ŸÌž05¾÷Ú-Û쟬fÉ… ïöæì qüMΨ^_èÒ¥p†{mä÷zïBx+ä[c¿×z/׿¡€/­ ¼${:ÒÇs*tPã~»˜OmOߤ¹&eÁ²Ðè±â!¼ áÈb¿ØM¨°é•@<wÍß/Ï4ñaæ²–:a÷óe tÏ…cOºÑƒÈÃx › ßû…6ßNt"§s]D²õ á˹ÙëºÃìÓ~JÂÌî8iö‹Aœp3äÍMhÎ/nÕ4çK§u²¸É{†d¿ê¥`Ex)äKc3¼sv¿êöÀàvV»F³+^Î.Ó:[øër1£ÖYGK4ßáÎÛöuÆ1‡—áÅï„|gsz]/‡zÂföº^Ý>žî½®W‚#¡º^×¥õrrn{ÑìU`õ*¥-)z;º}œ]®×€(¡º.W&´z•ô·^ ¢¯UJ:z¿º}ücèo=‚÷ ŒÕߪ«öŒã¿’¥ÞÊ}ê^¯´8#/Š$õmÄ#A£Þä…ZÔ‘Ò£-bQ8áYÏRV)‹GXïmÒvêmzõ@¸òòôëäQ|ÏGñÀáÛîܾcœr3ã†gX]3>îì¾V«þ¨Ñ×ñ]sLëºÂ:ž+èNWð³îîY¦zŸk.oeޏ¬4Í 'c^ŸU.±TÄ+Ñmì3Üu}žq¬7Gï×;V)Ù·;¯Õö³¿GÇr=£”¡4¢«3oçü_ ùÅüc¸_t|â§M·[[½Z›õ¢HØ«¬±+Þ‰ëÜœc–=ÍÌwîeì&ýX¯øQ§¦»SVNcµ6Ü™Éô±ÿùÚúææ¸ùº>ñg6Ÿ\£1+3gö’Ù®:ŠGfh ªé\Ó3­à{÷i¾ûäɰþ7{Ý{·n?pKˆ¯öCîjÆôe3¿±l¤hëy”OÀIP®çÉPÉI4ÂûöÁØÒ^Ùhòæ1¥PöÞõµ’i&¥µn‡sÙu9Û²„CÞܨÃÖ½}—væP“|•zDâÅÀ µÚ£¨n—ä as¬¨C"p°G=c<®™C”ÚˆG²±/‰=¼¸þ3YYæ÷6ºŽ…žeJé ”7ÿC—IQKh=o{õzg Ê Ï,× ~Ú}²à ØáyÏK.»å±uà£Tkš3rÎ9jÒ –¢„–âûg´HöÞë²’<Že)þáÅ¥z$uµvŒˆ)µÅ­ÀK _ÛfÖS3ö¦ÊF¦q¦ÛKYÇCgÿ¤,Ö1r=š[u ¯Gcµèé=‘ H_ ÜylòÛ4ÿ?–´–]bǾ­»¦5>¼k랃;{4:”Êv ÿŸysÜôhþ϶<‡VoG}‘€×â—x´ L˃‘ÚíÀ ßÐ Fvo„|£Âq‰ŠËzN!AÊÜÜò+øiäXOØÀx±~U\:g¡&|ijT$NÒZŽ*!¬s’–¢€ÒzGDZK8㤱ˆ‘¤}ótK³GÐ%€ö˜–+ê®+SngWB^§£8ýœÃNĺΨ͜ø¬f g”5óПHìƒÜ¿•g$j%@<ÊÞÞôŒRˆÚÀ~Èr£ÓÞ>ªS!õ”îèÅu*â;“s* ( ’`¶x&ä3¥ýÊy3í£QA=ÇÒ0ZûHÑ{¶æ–œ96ÅW[cr93‹3Ú~ÛuÍÑ"û°,Î6ÓC¦Ôýç©5Tä’uŽžÙÑ—ò@²™¼?¢/Ý <ùHü´+òaÀô£À"䢲:YÒYЋc–픤êÅÞùžtê¥< ùd“êåiÀ§C~º²zYÜiãÆ±²T­<x?äûÓ©•g€ü@“jåAàC-³.ëÝZŠö8?á\ª^^|ò£éÔËÃÀÇ ?Ö¤zyðߨ¬^::Ëö¤áHUÊ[ï†üît*åO€ïüž&UÊ{ïƒü>e•².ŒUTÅü9ðS?•Nżø×ÿºIóiàg Fa×†ÎÆ*–Tµ|øOÿ)jùàW ¥IÕòUà× M¡óœŠ%Y¾üä¥S)_þòcWÊ¢™c»é;?þò/F}^1†ëIÕÍo€¿ƒü»têæ_¿‡üûØusAFÛ.NºÖGGc‚v棎¯ÐwðÝÖó„Ü*5 m|…¾´jÏ2aÚã+¤þ‚úOúã+ç;ç˜ÜøÊÒÀü’Á%Àó!KU'Ö1ƒXe®a×ÌyËp«;ßýÛ›LW›,?žÿ^~w gÂÈûûW]5£1ôê_ù… ³¾/ªS#>/¾ò«“wj¤îEÀ×@~Mì¶s¶ÖEU˜7ÆôJÑ뎜›×ßùmÊ*iQg‘Ù T ½ø!ÈJ§†Þü0äÇ®¡…=šíÈTËŸ?ùc »6Þ¤á>Bªn>ü<äϧS7üä/œ)Qú"ð|J@êù‡é§¤þGÄ“~Jp®0tŽ N¹ÐÚ fK€ñ§\ΘÁè]"DëEm®¤ dènÅáÓ/ô&?QºË¶ŠSšc Ý÷Ï\ÈÏ~Y÷ø-1¦•³²íÐy^ÁtÅyJ<á¨þŽ;M·š,â\|ï\4ú³*ò„ ;]#ú3qùkàßBþÛä} ©ûKàg!6vS‹>Ž@ú?ü;ȧ¬JtNÈÕÈ—ÿ9…‘R÷÷À¯@nÆÈéÿ*PýÈ΢NË´&¤êä;ÀB– PÑëäëÀAޤ²8¢ðcà¿@þeÕ²¤Ó½Ûñ¤«æWÀÿ…ü¿éTÍÏÿùÿâ§,Q6Rÿ»âI:a#u Zª+÷¹T+rÂFêÿ@<é'l°i}ZB Û"± X‚Ûàò–êJ<É”m&'«š²uÑ„lŽî¡v4«R23×­M°LŠý{æ¾vFœbH_×ýÕOÀ4½\.²ïEmÕý|eÀ¹-’+¢5óÐ$Ÿùé7RÿÌâI¿yœ&q~¢Íc!_/A šõÎщØ:–Í äT[Z„ß ºüS<õ’ f4Ýå?bßeýžÙ Ë´2ë•èrz·[lT>&NýªžJ%‰÷÷vï…|¯´øç—ôŒ˜c´¡Õ߬L·¼Ÿ8É÷´Žt]Ù?Ò}’~x·uâÊþ“'ý¿8Ò¨þnS%òÏ> ùá¨/AߘµMµc¤tÄeDæ×b~2;T‰ð‹Ä_,C¼j}m-sík zH’Fýän¤KTíHwXñ„ldUÆ«¾Ö¬j+¥µV*õƒzC³oVÉp“OYkœF¢üôLmB/VŒ.·;£mÕb4ÝG ?2çëï€üŽùâ8ß þNâj§ 8N%¼";Nu•’œãL²dÂgrZçpœj 4øé¨pœþmë,5òÚè{^‰Ÿž•²L¶dXž˜Â7iô|¼Â€1÷¼ášû#üïJzc¼gër!Î;oÜz6ðr!Î oܺ2@|¥ q%ÞX õÞX ¯¨ÞXa¥$æ-™Poœ ÖÆÞX‘?ÝowÉ+klmû¶†µþ°‰"rXr«Ô2@ê `IÈ­¥Øuy"€Ô[5ôeo2Ò‰œ\­-d¸ou¤“Ô—kè?1iHŒt^ l™c‚#üÀ jK€ñG:gRÊÍàd‰žm4P²Cx¨Àê ú9ÝFÁÜ•˜0™»¢9ÃñtÓª3yðŸ^ô  ÙM¾I\€&AèAöÒo¤¾@<é7‰ Ñ .L´I,©>#Áo 00W&Ù.ÏàµÒŸ LM –›%ÈúÏÚί~‘^Üyû|èçáâ;dˆÇïç(£¡¸Ÿ£ŒW¤~ŽÚJI¦Ÿ“tÉÔïç$«µA?G?ô³–èü̱Úú€™S¥~r¡³[¶g[䃋S#Êj¿‹©Ør/þ|põ’b8‰?‡üçÊZçB~”ZÔ¾qù8ð¯!Kí¦Ö7"u~ò§cÛÁ…Ýí–i+}ù6 ‰jú 𛿩¬šÎ¢Ãa†¥w÷©ïÿò¿§S_ßþò/ÓïË’ú_OÒ‰;©[ü5ä_§Ÿ¸“úßOú‰ûE®9&—¸wàŒH rK€g·TÏ’Œú3¯&8Ú kgYH¹âinÁ®ócÆ Ëpøx] @‘ıÇÀ†E’ÆL193¼\Ê„'!Ÿlrx!.÷ŸùyÉ»+R÷4àó!??vKÙÝ-vRéE׿)íñŒqÃÉh·‹ a³Ö_­uŒo#†qd´ƒF䮽Š€ÿù”Uì‚}¶'ÓÆ¾üäo)ÌÝ[+UR³ ømÈßN?‘ú ž¤ã©[üä龜Hýwˆ'ý8¸'ÉÅÕâpb nK€Ë[T/®~kuù(<ÐÌ…Ôµµ¢¬cc–ØËE=7s=uÙ¡_Ïk¸,&º»bå|F»qL«XÕ‘ØmFŒ¢Yzý(¿Ù“MÕ;gÅÑ«Q›•×¹À@þHòMë hN„…üÑô›©ÿXñ¤ß´.Fsº8ѦÕó¾%È-žÝ7ÅkŸAj[µmMW,Xú£ 4AŽéT¾ ¡8n;¦W(Iø‹[ªçÕ·‚|¨©ž˜<xä»Òð¤ð6 YO?À“úÑâIÚ ‘ºÀä\ú^ˆÔçˆ'}/¸OA±j<¼rÊ?ÑXT?Qz¶Í{‘þ¸È³šÄê YKÞf/^ùŠôm–Ôw¢·_2R­–:ºÏ‚i^ Ä“v\ ÷dk¹3.h!>Jî¤Ñú æEÎ<»Ž\ÐÑñ.⤷ƒ';è3ß2_V*F]0“£á˜Ñ©à&Cì<4­\±’§ÅR4«@÷÷ê,+˜¢ã¥Jú”VÐ' –*4 0Æ+‡µ®vÉ ¡ÄÏ ¨ŒÍœHFMÝå µN¶<3W)ê³¢ ¤šÆò´üÊ3h£cóó ?õ äÜ)NѨQí÷ñ6J4ËŸ\¸DÈ åó¡8+´ÚGJ•ò —gó¥À …Lí èi/Ï"ˆ_$C<þò,e4êG‹‘.V¯‘×f)#U_kÈÚ,µ52×Ú¬߬b©¿0+Y­ f©3Íi-Aæ ð •KAåÒ¦øÉE#ž^¹s@ÖU®^-dÂùá*¯ ¿F†¸W©„FèJV^µRÞR ¯ÈÞR]¥Ì½’µ‘Ù7«dÂfrZçp˜j 4øé1ØT/#ï®»„Ÿþ“‰:F|‹#x‹ø¨E*¼Ö裚Ôeš¦mõ·“Gd´,ã߈>Ë17¸Ó0t-ÕJ4W !«Ë BûפîLàE/Š]7_Òòd±%Öéu§÷wC.O½ìÚ…j·oúXR`@xTwk+ï̼¡ãOÔ¾‹A\+8ú4ýתK¿ý~¼ÇÊh7Z1Ü­hHYØ€?…üÓæt§‡ 15ÌqˆùÏ€ÿù?æCŽC„ þ[âñse4ºƒ¬^#'8ÊHEJpÔÖÈœÝÁpƒoV±ÔÏn’ÕÚ »QgšÓZ‚Lw0Hå ÿOsü䄼Ÿü_­‹„L8/üdkG8Éщ+ñ“jh„ùÉ 9?©†TT?©°Fæô“á߬b õ“ jmì'™fðÓ=,9¶lϨ{qUµ8ýð—&zH ùQÝÊ~Ê£ÍÀ~£v|šànO\9Pu¹KÌÏ8æð U'lzI'Üzh ¹ÕTâ„1'œ¬>à}D†·¬„FýM‘#]µŠ–rÅJ¸EvÅê*ÆwÅm!¦lM*ú!"¼96«ºÂCDrZçjZNðÓ3ùPÄ_†y‡sÒ(M4%¥¾ðøaSÖXLëÓFèª,ç3ñ9ü$ðeB&œYöËÄ_.C\‡WB£®‡¿d¤«~UKy{%<#{{u•4Wâ­Y4«¤ÂmrZçp´j 8øév¾ËåÑ]wèÅ|/Nwó‹e™Ö=ÓõÌœX9¸kÖª‹ÁËhc8„¯âE¾Ú´|…H¤èüo€7ÉÑy+qàjhÔuàM™‡‚ŒWÃ6ªWXUs%í›N“Ê«.ÓSnÀͪÎÐX“ ÖƱFQ[›Ö´%ÇÇ«TΕó›’ÌŸWæ¦Ó¯õj#û &%|a^a®8Ðv0+ä¶ì<ÉäÛúÄûeˆ« JhÔ tÕ©g)ÿ¯„ddÿ¯®†æJã#4ˆfS¸_MNë~UéNk)Z—9¦ÅhÌë@e²Vt^ô Çb=ˆ c¸sÜ1töÏΰ–Þ`IPÛuÀýB&TTO–µ­Þ*d˜µÔÞyK8<$ä6¹ƒèÓ8±o¹hê±ãÞmÀ¢Û"ŸS߬¸W /ÉW÷”ШÛbÏóã^¼˜§„`䘧®væŠy§ØšUDáñ.9­sÄ;5&;­…ÈÆ;ŸÊÝ r·²Ösî´xW4\W*Ø>_È„i;ø!Ƭ¢EÝ2w­‡2aâÝD3èª&·÷°Ö~O·tà{ø!ÎÀ÷Þñ÷ÊWø”ШÛtWøoveKE@%L#G@uÕ4WŒÚ4šUVá¡09­s„B5F<­ÍȆBŸÊAåƒÊÚÓEÓB¡7ig\3oä¥âáÇ€_r›ºHÆÃÿQÈmñÙÐ]gM[—m½&Y!õòBêöwdôЩËÑÏ’!ÒÿO`ûR!6!€.âžA6\¶/^"dÂy.Û/ ¿T†¸’p©†FèÞR^µ2ÁQ ¯¨ÁQa¥Ì½·´‘Ù7«dBCa‚Z‡BEüôN¬*Ër•?ŸiÂÐò¦ë9æheÚ¥j´|˜îRÑ­¼îä5ËvèáàW3Ú.:×…Žz‘ÛþV}ÇcxÇcÍñÄ“”ßJ{â)às…L8?<ñóÄŸ'C\'VB#Ì‹ª•òÄJxEöÄê*eNOÜÐì›U2áž89­sxb5ü´àïïGEVãÛ“qÔºðÒŽ8»jÚÞèqs˜¶UÙ÷Û´88ê6üàÛþÞößb¿mäÓ4X­jNX¤itöfD.W@ÿøw«À&„©sE{Õ6k$œ0ל” Yô"À€|ú‡,"Û Þ)C<~ÈRF£nȺÐYÁj޾”qŒ¾ÔVÐ\áëÔ›C³J©~(KVkƒP¦Îp§}*uÅ^ËÈkšâU—Ñ`íuš° YÚ¼òuóÅŸˆËWãO•ШëOÏs~KyR%ì"{RuU3—'=•&Ьò ÷¡ÉiǪ1Öà§‹ýóµc´àw4Å‹ÆB!ò;!œ/þóP€ø!âjü§ЇP”ñŠì9ÕUJ2C(I—L¸ÏLNë>S?]CÛòŠºCWßÑö;·¤‹LölëÆ¡â1õqÈÇ•µ&5‹~‰Û3/ƒ¬nƒeè¼/©;|9ä—ǮǛ5“Î-1‚'Ë›–6¦OØŽ¸“$‡kÙ‹SškŽ[tF Ýì]¶]“ŒùŒH…ÏW¿ ù»ÊêZÁ‚7"öàCþït*ú{Àÿ,à–ÿé-²mãúŒŠ–Ø%E/ó¿[o2¡¢ÊVµ¤ƒØíŽ ™0…o½ 8.d˜5~—lû­9¬ê|±va¶éhyÓ+òè6½]ø!Æ|ËÈ£ÛÂ~ª¨ft[âr½+¡œ°r»t“`߬›#¿ÍðôÀ]üš ¦g²dV—‰[ƒDauñ¤mHW¡Î|TcHK5þßÉÓ* \ YnqU=CZJG/ wŽ2sŠìW‰Ñ¹ÀW$ïWIÝ2àe/‹]C«ÅÍlÕiCæ3é@ä [ìÙt0²Ì¹oÄñràvÈÛ•UÞùTm3i–`¸xòa…=˜Ð ×Háà]ïŠ]é®Àí¦wÔž4sÇyNs»1aèZ×@¶îoâ÷±Õ.d ”`µúÙÄ$0ûs%ªßù}Ò/æ ­ž1€ÄGŽžreÿÈSiä(?cèèZÌã k î¤Ï‹ž~˜–N÷ŸÔF<“ò¾’š¾Uý|€òº Ç›è]ßü/ÈÿõëŽ7-¦ñ¦|rNÄø¿Ìÿ[†y½±iÌ®yJŒyjÄÁe/i˜(±¢¬[Ù ˜xsŠsáH¾þàR²j .)S<ýH`¹ÅåA2€ü‡ØîTjV³jc›åŽbZ%¬™ãùH-#*R×K&<*O„/¿@†xüQye4Âf5ƒyl^»¨NWaÕÌ9«y M YåêDÔÚØ‰*2ÖimCf˜.HåbP¹¸©.t Ž ½˜2áüp¡}â}2ÄÕ¸P%4æp¡Ò.T »È.T]Õœª mÔšU>á.49­s¸P5ÆüôBqËtÌãDƒÜv€›ü2‘¸Ç‰®™u&¢§‡µª½ kýøú q0aÈw$ÝòNàÃB&Tà–“=d”ø¾8ÀûÅ2¼Õxe%4êzåkê2Z¿ê¥¶â‘¶ºZóv[ˆ]rÛjRÑÕ?$U¢…7«’ãNrZçˆ:jcðÓ5Ç(;†kX¶Šê®ÿ?‹A–‹Ös9Ûá;ö=›ÿ±Îh1\Ü×ñ:_—ö-¡Î—Úˆ³ï$dBÉÐì˜ÁìA öcæx….¯4Šö¤f‹×stÚ´;iz±aÌ8Fwý°ØWNi—Må²aͼؒ¯¢ƒìŠ«åìÒ¨I‹l‹O¸KÒ¿l›2aún‹}o"™ ´¾@ÈÑÏ{jR¿å¡ q%‚u3„eµ¡/™@ ³¨)€Âj™«Ï6—é7«lB#g‚ZGNEF:­MHyU©<*6ÕmȺ͇€ ™p~¸ÍÇÄ“!®Æm*¡1‡Ûr›J˜Ev›êªåTÝf˜é7«lÂÝfrZçp›jŒ4ø©?R&Õd«=ét¸¾Åo2aÌ÷ß¡í—}ê^­÷¤éEÖpy‚®³î–Õ[²-Û³-3WgPäŰôoþHÈmR=šxkW£Mú¨f ã"±†1"—5пÿn(éÙ7•…(b´xä³bûÂ0†ç0óâ&ØK‹ö2ek<¢S$š»!wÇ¢üÖ¹v™÷P7±qÞ+ ¯Ïf%øõ‡!+t¢ ¢øàfÈ›•)ng~+DiðzÈ×§ßÒIý–âiJKïfÅ1¹–¾°¨{Æ1 jKË!/O­©çÇ"6%¢y ðjÈW'ÖÔך–¿^àfÈêZ\ƒ¦N Ï^YªÕEi꤬¸rü6¹©“ú­Ä“6naQUT“[|Hxœ­®æVÆÇ ×3ò´òz…IGì ÷è-àX+6 "—Ã}ö:Ú‹ÿ‚ç°ÔMçWFú{V«›XYʇ­­,'´´œáxºIã¶ŽáìbÞóÂÕ?WU8ßÿ*»4üjᇠHºðä–†ß\]7;â™Å¼q¢|²ñúÙÀ×T,§wÿ°ÀÖeB&T0¤‘ôRqb|f9ÉÑ™×ë6s!ßô´$»¼‡þ“ v6ð|Èòg ”âÖѸ(€xšRkƒ¨©A%µ6«ßjé%C‚Ñ™À³!Ÿ­0·µ‹ùµÀs Ÿ?íתÿIùÀK!_*]1-¡½/O Ѿ¸òÊøþM¦´â‰I#ã$ñ¥‚'OŒ˜9—F”¦/±NžÐNJ-b!ÂW¯‚|UTâôY£F ˆX fÆŒ¤ÖAÝUÚ«dhO3 ~ë1XWpËzθúD6Óo”ä‹76ϺŻCK¸K[>ƒX ‡ ¦(+áæ\¸Im½¶Îaz2£•ÉZÞ2ny«’[¾öt4¸Bƒ[$hÿÿÔ΂ߒ ÉBƒ1Äù¯X]Á¯ª=)&/«Ý»›SWOŒÔº®³¥ÚÒݰñ[¢´¸ ò&…9vÈø-©ë^ ùÚtRûk€×AŽœ”= OŠb3p+dÛd a[ñÌŒ~;pä]ó#£¿!@ûÚ)eô±y6-£WR‘3-uõšTFŸœå)Éè4¸d2ú?; ~K*|$Ws$Öó[±º‚¿¡ö¤˜¼ìÞ ùææž≑Ñ¿uîì‰) ~yÈùtòë½@²ÑœÚ Å&Ú>’sB”MÈfü2ˆ:µDêOL—ŠŒM±[|Š]zZc­0|Ž—BNoZƒ´®®liÚ´©×ˆçôïá+€óhZƒè® Ð>]§5”ðlJ'HY GJNÕÖk d-/v'(aƒSß úc±³à·¤ÂGr…Р/2ÿ«+øô§5Hëj`§5HýÕŒ?­üÖ’NÊ2)Éì 놄Mj¡~à&È)Ljºk€×B–šÔ˜VmR™õuÀaÈéM/ÖÍÀ&N/úmÄ3?2ëíÀy4½@toÐ>]§”ðlZf­¤„#g<êê5©Ì:9ËS’Y'hpÉdÖ vü–TøH®æHpç·buŸþôiÝ lâô©ß@ùéú4ξù+k ÇÊ]½âD3ÿÈ3ºO[î)z³½Àc)ñŠ o¦'ÂSâS2ħE›Fvº™^ºcÍH×)Ô{äöÊHGŽ,êjl®ö1L³Š­þ¶ûdµÎˆÔ˜vðS)<@<ŠQÈ$")=¼ò=ñË ê$"©?@<1i`Ñò·æµ­¹Q+ihÓŸD$­+€+[š6‰Hêµâ9ý‡:ˆðÀ«ZæÍ$"Ñ] }ºN"*áÙ”¡e%)QP[¯I u$ky±‡:68õC,vü–TøH®$zó_±º‚O‘´®v·4m‘Ô_@µ“ˆ‹;Y–ÉòËÎV¡SˆD§¸òFe¶:…Hê®AŠ]) $–çƒMÀaÈéM"’ÖÍÀ&N"’úmÄ3?2ëíÀy4‰HtoÐ>]'•ðlZf­¤„#g<êê5©Ì:9ËS’Y'hpÉdÖ vü–TøH®æHpç·buŸþ$"iÝ lâ$"©ßÀæM"^1לH·¬OÜ œ€<¡Ä'&<…H„'Ä'eˆÇŸBTF£nØX5÷bô De”#Guõ5×¢tciV¡ÕŸ>LVë!HY?•ò¾“Ä£8…L’ÒcÀãÇ/ƒ¨Ó‡¤þDñĤéÃ"ÎðÕ‚ÿE$¸^´?ŽéO’ÖÀ•-M›>$õZñœþƒDø à<š>$º«´O×éC%<›2È¡¬„#¥ jë5‰AŽd-/ö G§~ãÅ΂ߒ ÉBƒDoþ+VWðéO’ÖÕÀî–¦M’ú«¨z¢Ÿev†ð @$BýÀ÷ ’ºk€Í܃Hú¯¦¿‘´n6qúÔo žù‘Yoîj™7Ó‡D÷†íÓuúP ϦeÖJJ8rÆ£®^“ʬ“³<%™u‚—LfýÇ`gÁoI…ä aŽw~+VWðéO’ÖÝÀ&N’ú=lÞôáÍÕ‘$ljDëÓºúµkB?›;™Ó{î> ùQ%Þ3á‰F"üX€øc2ÄãO4*£Q7ÀܘhŒo‘§$•½\äH¥®fçš’L¡6«xëO^&«uލ¦©?•òýâ2yIJßüÈ¿ ¢N^’ú? ž˜40yYæWŽÎø/"Á -¢Å¦?yIZWW¶4mò’ÔkÄsú±á+€óhò’è® Ð>]'/•ðlÊ‹²Ž”P¨­×$†X’µ¼ØC, œú!–?; ~K*|$W ½ù¯X]Á§?yIZW»[š6yIꯠÚÉËŽNžev† ¹$6ýÀ€¬È4Cg.IÕ5À¥v\NOrd3ë!à0äô&/Iëf`'/Iý¶â™™õvà®–y3yItoÐ>]'/•ðlZf­¤„#g<êê5©Ì:9ËS’Y'hpÉdÖ vü–TøH®æHpç·buŸþä%iÝ lâä%©ßÀæM^^T;éêï%éN1)"ë ÷‹‹Jy8{bÓÉ‘k5˜ö03l î>œÝü±œËo],¹µ Äå/b.?Qßjx›2¼•x|54êzüË™Ç5ÿ¯†kTÿ¯°¢|ÿßbJM“J«.ÏSlºÍªÊÐP• ÖÆ¡JQ+ ~zIÔu°ìZPÉh1<ÑÓAîéÒ. ÔG’]K0{ð…B&”4á`Ç fO¥ÞÛ˜9^a´Q£hOjnÁž1Ó' ­h5ŠfÁ¶óš=ˆà¬Ó¦W#6} øc,¢K¼òCÀŸ ™° ±%ñãò/€rëæIWŒœ³OœäèÄ•f54ê泪]1É@¬†[Ô@¬°bæêˆÍmþÍ*ÐØ– ÖƱM‘¡?ÍðÞ9Pr¨ºcÚ7àwký²ÉëfÉ·ñ¶^!6ÕË®—ô²mà!Î/»5@|« q5^V 9½ìz)/«„[d/«®bN݈™³J'ÜË&§u/«ÆPƒŸ¶fb4Û­µ'Ô3 x›Û¶Åÿ¨³H¤~{ ý'm›Ð¤|T3™µHjWÛµÐ-þÝ*PÒ…R(VcˆÑRàYÏŠíÊžϒ>×[³u™²5ѩӋ={b1~ë\»ÌS¦MÚ¤™÷ Ãë³Y ~}À-·(lþ¢¢øàVÈêüN;ó;!J;€Û 7ÁçúíÄÓ”Æ~0+ŽÉ5v©åØDi)p9äåi¶öüXÄÖDL/öB–ê…œRk_kZü²À­UûÐÖN Ïnƒ,Õð¢´vRÖܹ ¡Ôï ž´i ‹ª¢š ãfátvŽÑC{×täuÇÐŒcžaÑrϦ¹P{²:P¶]×S¥bv6â mÆKÞ Y~k¬.u]È;4ìòÓ ìÞ ùΨ/ÒŒ.?> ~X†xü.¿2a]þZõFîò+ã©Ë¯¶bæìòÏiþÍ*ú]þdµ6èòª3Ôà§[¸GÅ •‹ /]Ëާ›–æšã–9fæt+g0?Ër›‚]Ìkyò±1F«ò#Mñ»‹Fôb¹ µŽŸÈ¿øÈï˜/>÷âï”!®Æç*¡QÿÐç‘.QµRþV ¯ÈþV]¥Ìåo›}³J&Ü×&§u_«Æ@ƒŸþJë22ã™ÊfÅrpÊdsºkˆö”V˜®fÜ]á‹ æx»oZ&XóÔžæz•<­­xþŠDö¯é+§¹}}Ôž0Äbĺ¿;£²µ1“ýéJ®ÀâÃŒuí=šm´N¢Â‚ƒ[6ræØÿsòþ©õõB&œwÑ¡õQà;…L8/¢Cë»Äß%C\ItPCC}tPÃ+jtPX)‰E‡DK&4:$¨µqtPd ÁOÏÔÄ*±®IÓ+h1šîG@é#Mqœgeµë4aELÒhý(ðKB&œôËâ_–!®Æ*¡Qמ;Ò5½Š¥©~‘©ºÊ™Ë‘žZ3hV …;Ôä´ÎáPÕlðÓ%ÝÚ„©K¦¡U>ߟo*k@ ]Ï(»a:ìT/âò}à…L¨¨rBOõ"ußþDÈ„1«æ½šîŒWJ†åeh³¬Sí;ŒëY‡Åã] {Ô5œ #_]C*+_ÿãZG&W°]¾áʳòDFL3ˆ-²\yÝU„4ùàÑJÂqÖ³äƹZ*°íÕB&lB@¾Bl!)™ÖÉ®þ í}LîIîL}z¯×?%dÂy£Ûþ:@ü¯eˆ+‰Ñjh„]Þ=g­Ë„m5”£†m…õ5WØ–n,Í*´ÐHž ÖÆ‘\‘Y?m‹¼‰)ÈãÓàñi鿥r1úðKBn“OC[€í3˜ÙÄäÚ%šU×Kå¢áúû“æs”YSOï÷í]B&TäàÎà9Ôp&»N"jïnr{ §£’ºnàF!·Ç?5ò‚]R?TCÿIÇ1|Š7 ¹]ê:ÍxëXHýµ5ôŸ´i\/LºŠÍ\°»ú·àß§Ï‚]b´xVKÒ v/ž¹„¯—|ŒÄª]¢{1°r,ÚÁoÅ_µK¼ÖwBީЄ®ã#…çwAÞ¥LqÈ:>RÖ¼²ÜqŠÁO#·xR¿;€xšÒâ· ³â˜\‹—ZµK”–—·$½j7¬ÉG^ºKt/@H¬ÉG_ºK¼ÖwAV×ò4yRx.ðÈR­/J“'eÀÝã·µÈMžÔß@[Y@\82jó!j;Zjiw‡À˜•²DúîCâq.ðRÈéÝ}HZWW¶4íîCR¯OL)ÜÐB„¯^Õ2oî>$º«´O×»•ð¬[¼IßТ¬„Cšsý)"µõÚ:‡éÉŒd%ky±ohIØàÔßÐòÇbgÁoI…ä ¡ÁXþüW¬®àÓ¿û´®v·4íîCRuãß}X†uª–b‡Nñ%ÿŸM¥æšBrì)>R×¼²ÔÜRôÔþàu¯kŽ= OŠb3pkKÓî\$õÛˆg~dôÛy>dô7hŸ®w.*áÙ´Œ^I GδÔÕkR}r–§$£OÐà’Éèÿì,ø-©ð‘\!Ì‘XÏoÅê >ý;Iën`ï\$õ{(çbÝIìÙ³Yüóóéä×{d£9µ3@<ŠM´}$ç„(šÍøeuj‰Ô ž˜4.3½8ÖkÙNI/JOkÜ Ÿã¥Ó›Ö ­+€+[š6­Aêµâ9ý;ADø à<šÖ º«´O×i %<›Ò RV‘’SµõšD'(YË‹Ý JØàÔw‚þXì,ø-©ð‘\!4è‹ÌÅê >ýi ÒºØÄi RuãOk¿µ¤“²LJ2;ú!a“D¨¸ r “¤îàµão˜i“ʬ¯CNoz´n6qzÔo žù‘Yoo©±Ì“é…ÀPÐi=½ „gÓ2k%%9ãQW¯IeÖÉYž’Ì:AƒK&³þc°³à·¤ÂGr…0G‚;¿«+øô§HÛn`§HýžÊO/ЧqNÄÙT=r|Ä8VîêÅ¥c#žY2\m¤¤{§t‚vîœ-I•£ŒFÝx²9pBdsˆ|†Ž²w‰‡ÔUä\gè¨o^Í*Íú‡ë$«uŽh¦¦!?•räâh2IJ¾òKâ—AÔ™HRÿÒâ‰I3‘–1ÎwÄö²æc[†å™z1j%ín ”0ý™HÒº¸²¥i3‘¤^ žÓ¼„_œG3‘DwU€öé:©„gSÆK”•p¤üAm½&1^’¬åÅ/IØàÔ—ü±ØYð[Rá#¹BhèÍÅê >ý™HÒºØÝÒ´™HRuÕÎD.îdY&Ë/;CX…ÎC~àFÈR† „ÌC’ºk€C‡bWʉ5~Ä`prz3‘¤u3°‰3‘¤~[ñÌÌz{Km½õ<™‰ôÇo}Ú§ëL¤žMˬ•”päŒG]½&•Y'gyJ2ë .™ÌúÁ΂ߒ É îüV¬®àÓŸ‰ |ÚÌ™HR»'€Í›‰Ü(9U6Q2§«Ü ¼òýJ\eÂóDøñdˆÇŸ‡TF£n4¹Nz2ú,¤²7‰ƒÔUã\³ª›V³Ê²þd²ZçˆcjAðS)þ@ñ(Žc!s¤ôAàÃŽ_Qç Iý‹ˆ'& ÌAíqÓõÌœü/"ÁE³ä˜þ$i]\ÙÒ´9HR¯Ïé?RB„¯Î£9H¢»*@ûtƒT³)#%ÊJ8Rö ¶^“)IÖòb”$lpêGJþXì,ø-©ð‘\!4Hôæ¿buŸþ$i] ìniÚ$©¿:€ªwCúYfg¯ÐYH"ÔLq7$©»ØÌݤÿ:àpKÚ»!Iëæ–Úå&Mšƒ$õÛˆg~dÖÛóh’èÞ }ºÎA*áÙ´ÌZI GÎxÔÕkR™ur–§$³NÐà’ɬÿì,ø-©ð‘\!Ì‘àÎoÅê >ý9HÒºØÄ9HR¿'€Í›ƒœªN” TgG¢Í˜h}ZW¿vMÔ_ë–õµ{Ÿ‡üy%¾6áIL"ü…ñ/È?‰©ŒFÝpt20‰™¶5EžUV‘£ :;˜kô´kÜͪŒúÓ¨Éj#«i†ÁO¥¢ÐˆGq(™F%¥_~ ò—â—AÔiTRÿåâ‰IÓ¨âZÎÿE$xS‹hß„éO£’ÖÀ•-M›F%õZñœþƒ=Dø à<šF%º«´O×iT%<›2Ø£¬„#¥jë5‰Ážd-/ö`O§~°çÅ΂ߒ ÉBƒDoþ+VWðéO£’ÖÕÀî–¦M£’ú«¨vµ£“g™!¤BçP‰M?pä ÊL3t•Ô]ÜYjéô$G6³CNo•´n6q•Ôo žù‘YoΣiT¢{C€öé:ª„gÓ2k%%9ãQW¯IeÖÉYž’Ì:AƒK&³þc°³à·¤ÂGr…0G‚;¿«+øô§QIën`§QIýž6o5[iéêï%éÎ 'K¤]ä^à³!?[‰‹Lxö“?'@ü92ÄãÏ~*£Q7Ь Ì~ž¢Dž´Tö‘cŽºê›kÒRUSjVÖŸkLVëñ*9Å‹)@TŠºSGóN"`Ð!0nˆ:ÃGêŸ@DJ"< > C<~¤TF£n¤ÔFºUx䨨Œm¤¨¨¶ªæŠŠ2M¤YåU?&«µATgÌÁO;µ.3cdz4¯`h®§[yÝÉk†ãØŽfñŸÆhû!”æÙî§Süñ‰+ª>y‰9âǼ^ÁÿI»édñ!àÈ‘ïm®ëŒ1gœ¬/>à}T†·_¬„F]_|ÖHW­¢¥<¯n‘=¯ºŠñ=o[ˆéB“J§.¯ͱYÕîø“Ó:‡ãWÓr‚Ÿ¾šyûJ~ª[Ós9ÛɛָæÙÚ~Çp=ÛÒ OÓ‹­k ›]ÛÑv³¼œB„éjfÞÐ5†ã†e8zÑè߇· ”4â ãÍ>|ÏGüäO$ïIÝ€Ÿ„üÉØv´¼j7í !UEŸ~ ò—”UÑ‚}¶gH0úðÛ¿­¬v:FÜ[+UR³øÏÿ9vý´EŽA¤ÿ;ÀïBþnúnïvQŸUTãöÎnì‚yÝ‹j¯w€ÉÕïÇÔŒ³RhùŒe!/Òp>šÞâ`䮨oCßH{qîï–!BZºÞë¼Y‹ƒ"ÏJ+#X_kȬ´ÚÚ™k=Ð)6„fQý™àdµ6˜ Vg²ÁOßKÙœcð\nZžh–j™b¥wZÁ/Ž6¡+, ÌÙŽc¸eÛòg‹ü ˜ê/ug´­E×îa|\wòEÃu«ùéÌ á\Áv K,CŸ§ÎY5ÉdŠrzi¦Ãã|ò×›âø‡ê¬›ñ“>úɱ™Þ#ÌyÌ"¾!°u…[#ñ6)D´^V#NrtâJB„uCÄpÝõ£§f 2ÁDÍ«D & ëq®`¢¼q5«0CÃN‚Z‡EÍ øé•ši¹f¾:´íwE{4·’+È&øU¢×ƒèõMñóçÍ6Å~IÞºø!Î> >"C\WB£®¿¨žï—òÍJHFöÍêjh.ß¡A4«˜Â½nrZçðºjL7øéÕi"˼=$ë†X ªéV^‹ÑÐïÍ{NŸ{¼Ï= |¥ ç‡Ï}U€ø«dˆ«ñ¹JhœªÏ½NÒç*!Ù窫¡È>7¼A4«˜Â}nrZçð¹jL7øéëª>×1JºiñY;æoMÃÕºÄipƒ~œ·ÙÏ,Û« |ä º5nˆ Ù¬NTó¹«~@ów£Xvi††lì Ã_Á8jMoŠ~‰ÿýÔèÅqÛ1½B©;£É;™¶uB&”lÝ¡îöªDgÖ¶¸UÈmRG‘µÀíq\0ƒÙÛñš§A«Qƒ6=¸{ÒÓ°Æ1>IZærŒ¢î™¬>ŠæQ£hl;O¹FÑÓµ>…˾J!¸úS¿+ä Ù´µ¼96f8†å&o1LÖeUçCÄø~ÎôHà.à¿ ™° ¡üÌižK2ˆ·ýR`û"!·G^Ѥ ÞÞQ#NrtâJ‚¸uƒø93‚¸LøVC/jøVX7s…ïSjÍ* ÐÀ ÖÆ[‘¹?½†:Ib{›?õâÈ»31šy?§²œãz(2aÌ’Š¼B€ÔÖÐÒ¦ñD´?›¹ìIÐÿ$ü;Þ’XöMe1‰-žù¬Ø~/ŒáÅþÚ¬Þ²ØJ˜Ë”­ñˆ>è^ ì‡ïh‹à·ÎÅÈMÚ¤™÷ Ãë³Y ~k;!ïTèD–¢øà.È»”)ngÎ'DiðÈ7¤ßâIýîâiJ‹²0+ŽÉµx©~‰ÒRàrÈËSoòù±ˆMŠè^€,ÝN©É¯5- ~뀻 «ky š<)<xd©Ö¥É“²ànÈñÛZä&Oêo ž´iu·óXÙ¶XÊfêEm?Ÿ`;XMÇö6ØB؈ÿÙÀ!ÈCÒ!ãÚ¸õJ4® ž´ÍKGMú¨Æ¼î£­®ÆºFÆ1ϰÜÀ&Ù‚^ëµh«k‘¯|²På½F Êù°„Û£ÙÁË­YrÕrGñ^„Ϧ(}:Û›*Ãì%ý²=Ùµ«E´  ÙK¾«Eê++±k¾ƒOë2U4¼²Üj¶ºNÅ·0-haâzåZ¯Ñ¾äF¼Ÿ |'d©.ZH¦ºñ•ž¾ ò»b×ÞÚŒFË,f÷{±’Æt± …¢dåii£S2Uýnà÷!?v¯võŒ^-ïÎ>…ugŸJÝÙ|è}+Á›é÷.¡¿óD~¹n/1¾¼ÆœäèÌëõ®fÜxò”¨Õ0òÔˆý/eo©wšXùÍqãIZÊ;+aÙ;««–¹¼ó\¦ß¬² ÷ËÉiÃ/«1Òà§|ÿßXX²0#¸ëA‹Ñ¦ÿ<ÿ]º1©Ü=HŒþøB&”4ë`Ç f{O}÷ ‹euÆ¿ù­´œK. µaþ©m¯ ›ФVqý}À;…L8/ZÛáñÃ2Ä•454æhÑ×p)c5 )¬–S hQWp%]6¡-A­š"# ~z©–³-ºÙÇcŽÔ,ñzU‚S 85/{mÇ/2áüp¦/ ¡ q5ÎT $zj˜Ev¦êª%ÁÞA¢eîL“Ó:‡3Uc¤ÁO[31šì kO:½£_Bñ‹„L÷ý£®q#õ÷×ÐÒ¦‘Cƒò±™{žóПǿOŸ=ÏÄh)𬖤÷<_XÝY]¿'±á™¸^ Ì@ÎÄâüVü ÏÄ«¸ ò6… t÷#)<¸òveŠCv?’²àÈñ¯ÛŠÜÜIýÎâiJs7„YqL®¹Kmx&JKË[’Þð\·½GÞíL\/öAîK¬½GßíL¼€Û!«kv Ú;)<¸²TÓ‹ÒÞIYp'äø -r{'õ»ˆ'mc¢ª¨&Ëø¹p;‡j+€õ±1ÛÉ»Ú8ëÇ{†£c&νÃuTnA/×nPœ5¦Ú£V<Í1Žáò/®gâ,üšžÏ›ôïêzíêÜ£8Â/Â^~±G“™c|P®B`æt—vóÒøî˜yLbDb¥LøsÈ?—.ñ¦Hý_ùwQ_£#ã(AŸøïeˆÇ‘PFCùˆ„2f‘F$ÔVKR#I—Mý‰dµ6è‘«3Òà§—ÑLe6³ŽváöÓµ3ä[É §¢OU(¶^"dBIŠíø4Áž¸r êRWŒÐœæ‰Ý'gOl:9r­V]þ9¬eñsvÎnšþœÿm½x« øßEÌÿ&ê~[xá­Äýª¡Q×ýjÌý60—¬†mT—¬°ªæêk5n:M*¯ºLO¹7«:C£H‚ZGEm-øi·¦ë¬ë`–ÊE“Ç]ë4ˆ¾‚k‹ƒºcx¨ã {ü´‹(ae ND9| çEDyo€÷{ex«‰(JhDŒ(ÒE ÛÈE]UÉF”F-$ñòš;¢4•^䈒œÖ9"Šš¶ü4ú=ÎAï÷Åæy¯ LªŠjñVÌ8²G[É3 M°"\YÝrg—+k K'BÒ u—» Ç¿v}íÌBÖ¹÷¶Ò=±´fªh0·è"WÝʵ³{dª±x'ä;¥¹Ç»\4¢Ë]&Ï!ò‡%È%%yNÂ#—DØ ·dˆÇOt”Ѩۖ—°D‡Wmä”F¯H)ÚJ™kܲ±Ù7«dêgÉjm¨3Ði†ÙCJ™ûNƒ|&!O6ÅkÆ<˜•^àðçÅ*T"üÂñÊWã9•ÐHà`VeÜ"{Ou3—÷”?˜5éÒ ÷ Éiê1Ôà§ýüX°Yg`›nàôkš”·iÖ}ÒŒ~r_öG ¤9é©°4Y'ûQàg!v¾8ÙψN†¸'«„FXz*ªVÊÁ*áÙÁª«”9ÓÓ†f߬’ w®Éiùª1Ðà§;™s-i“jýåSt•8ƒ‘_cQrEàUZ— ™PQ[[@Gt‡5ÿ£:­/2a £:­g/rŒeþ§NȨNÉÐ]Ú›l.­1…¿¯‡¶Òå µ­â!fÝø2 ¹U~φÜñœ7Ìq¢áÌû•UžÚIï}?ð[B&T­“>µ“;ÀüÛ2ÌëE†iÌnžóÔÎS­È‡y*{Á¨7™b­[ñ ›~sŠ6ôŒÏdÕ6ÙjO«¼7òÞNÁ 1ySÄí¢=næôâìCÐOýHj1DÅ£ºiål§l;ºgàìŠÀ1+”;g¸nä ±@Aµ=CÈ„1 *ò„Ø4ÕLˆIÜ‚pÊ Û!·+³Ø9nƸ‹ˆAyoÆ õ ؤ›1Š(~›f%(/ŵ‰†‹.?èem—ŸÖ͸ #l²´ç³½{¥£ÚÇâÖ%ÑÈOÚ&e¡ö|TcRKżû´Å$"!$—B^ª¬?v–¸º‚&ÛYw¡3jÏŒH \ yeò=3R· ¨AÖbWRg˜Õnõ¤G ~¬!u®ÆÌȳDÄï à6ÈÛ”ÕÝùTk5º%'@ÌnÞ ùN…éWèí¤p;ð0äñ«ð/¦ßî8:¥Ý8eXãºÃÓ²ð 6 ŒtõmÜØÝ£í6òã,‘bÿ`ÿ¼Ý˜0tþÝÀë¦}p‡m³Îv×@6K?¯Žm»m¿ ƒn Þ\Sª¸^µ›O?`ß*UŠžY.†Í'L]f¨†Êî.üz‰»Zd©W·‡¸\ìr«ÔR˜È’OØ-äÖîØæ¤WÇjü¡–¼1fZtx‘g8¬ò\¡ŸPý9FQdôEó¨Q4 ÌT(-¯åà¬Kàƒ”Ñö2¥õjà „Ü*?‰#74³F¬W`Òë4ˆ$ó¶çÖ~6Ê×pè…Þë…À¹5òlOS†^ˆñGÌ?*Ã|Ρ—kFžrŠ¥yhEÙ DZI¬ØêVlLÓmNÑ…$«¶ÁЉ2ÅÓèdÎÕbÉbh®â•mægi”ÃñX0§}!µ3ãl'o8=Õ«š…[ut“†Õ%Öó^©m± c:V™iæe¾Ê®è¡W8x™Û"gu}h“ÍDøòñËeˆÇŸlVF£þ]þZHQÁ‘§œ•±‹ê¦VÍ\núTš@³Ê'Ô'¨µ±+Vd¬ÁOWi]&.ê4Ç™7öDGÝ“9cê±ÄhÞÛ@U]gXº·Òv#p¯ Sè­´¡óËÏPÞ.0f­ÝDÝ Aiþ´ŒI³XÔôŠgÓÁ*9½Xœ¢CUÄD²fÑ—EÿF¢jo¾RÈ„MŒžYÙ“ô ¯¾CÈ„ó#z¾3@ü2ÄÕDO%4戞Y©-’ÊØEŽžêªæT£g£&Ьò žÉi#zª1Öà§W‡^¡+f„-é‹sƒ|¿¾_iŠŸ=§¶HA,88"ël¿ ü¥ 燳ýU€ø¯dˆ«q¶JhÔu¶ÿ{ÿØÆqåãHS¶ä&ÉrÓš²eÒ!Á¢.‹²%Yr‰eÙ’ÜËK`I®`áÝ)ZQš8=vú].õRœ^/½—ËÝ¥÷˵\M½’K.×çÿ¼ÏC jfgbþ_'«Ï#±Ä|fÞ›7oúJaóA¨e%«…¢´ÇÕ§Ÿù<î)W†VR´ÛM.ÕyÜ®³QK‚­1*ò¿ƒÊ¿·Ä£®E³}âhßàIc­ç2FŠV8&©ì_ÿƒcû¥\&\þµ}m8ÉòĵøW=4ú×uµ`6Jç*ÞVaYo«Q[óy[ÅŠÒª"‹ô½ ¦ÚÜ÷j2é ª]m.’¹d®h‰÷ ¯"=ª~#/eb=p— †³ˆ«×ãlµÐ˜çFÞ£Š7òjã'í[õ)g>ßzjÕ U%íJ“KuWªÇ`ÅO{rÆaÇ(™Çøî-¾þÛ.Ðòð1Û-Z½Æ .¨LqÖèZ kµÄÙž)œ³¨:ÅÙ>|ËíÒÇùµÊÕžˆŸP!®ÇÕj¡9H+(XÉÑja'íhõ©fþAÚù«@«Ê'ÚÍ&—êµÌç;ç3ýV•M´ßL.Õyü¦#?}V¸f½~J}Ù^ôºg~̤éÚNÕ–O×VLc»bøÉìceü)Ë*ÁuŸÑq— [â³±üTÑgwœ¼œË.ŸÝq…@ü âZ|¶‘>ÊUñÙz˜Éúlj™ßg77ýV•M¤ÏN0Õæ>[“‘ŠŸ^’3n é|YX¹Z,ÓÚ¶äÙÒGé‹wâ.eŠI¥4èWñwfœÄ}4ƘCÇnàq.w×â“=JŸøN ¼§Uxëq¿ZhH¥TuB[i—¬OU¡KÎFSóªÓ¢òšÿ(ý–Ò“nE’KužVDO]›Qµ×WÔ¨œ•“ÊTâßg†Ó‹Í^½†êþÄŽ§_ÉåDþ*ø«Tˆëi´Ðh¼!~¤{¶’•<¿†Òž_Ÿzæ ÆOµ*´ªŒ¢Ýir©ÎãNõ­øéꆷ\IŸÎ$’{7ÈÅ_Â,}lJ梞cSVñcSè`ë¸ÉŠ‹uaì1C’ÛàC¸ ò*mNgM°ñh8ߨÔkäØ?›Ø?ƒQž'r3ñ»¸ ò&m¹‰’[ Ü yslÕ-éåKÝtµ8 y¸%ñB¬›”‰þNà-oYq> ? B<~œ †ö›”µ1“ŠôªåT'X¢L¿UeÓ8.H6Õ&q>#?Ý];72b.¥áÌk|‚¹‘ ý‰Qç…ühK}îUŸûð߸P|î›âoR!®Ççj¡1ÏÝ äsµ0“ö¹úÔrª>7Êô[U6Ñ>7¹Tçñ¹zŒTütŸšÏäóÑA¸¯01-æå'ÒR¿»QÕïþøŸÿs¡øÝÿˆÿ— q=~W yüîF%¿«…™´ßÕ§–Sõ»Q¦ßª²‰ö»É¥:ßÕc¤â§¨ùÝMÜïÎY=$õ5pÞ›r†ºãÈ<Ë„Š56Ò¥Ñôœ<³Ìs/à2¡bÝivÌbv­œ³ÇéÔy~ã—7ÞR“w\×ò*N¹@§´58tœ[oº£¶ïš®]œ6òާ4X”yø.gZÛ€*­Æ%úh@3ÿÉåÌBi@3ÿ%ÿ/âZP=4´¯ÆÕÆL¶Õ¨–Sm@eWã&]6‘ h‚©6o@5éŒÂÇjÜœzÍͶq9Û–V1< g¸L³¤§«(ùlÃ'm.êUˆxbÒXÌgÍ$¹xHßÃÏŽŠ^” WW3CŒ–—C^ÛŸE1<ŸÅ,Á¦Ë>\Š«”Ç%}1]ì…Ü‹±øÖ¹N…")o»1eü‰áÍ üú×B¾Vcõç±aDÂçwAÞ¥-ávæw"]Ü ywú•’ß# ž–TvŸ›U€ÉUöE¬wfW ¶ ¸òŠ4k{aL²6Ó }û«íí²¿à.Èú*]“ÚN ž Ü Y©âÉÔvJl päøÕLº¶Sò× ˆ'mUnQ5ÔaœäNçppæ ëûW‹º)Çôé*RÏçלŒz–;i—à¨v»lXf~¢¾Í ÷êÔï4Í7Žñ½e†Éž²3wàF²&‘m“[³5öá´”…§_ ù¥²YiÅH~™@üe*Äãh£‘Èá´ÚØIèUÍ|£q§Mº|$›j“®²>cQ7Tf*E*¯‚üª–¸ÐX[h‰þ«C~|¡¸Ï· Äß®B\ûÔBCûZm̤]§>µÌ?Ъ¶…6鲉v›É¥:ÛÔc¤â§½F·³r½aܯ`»,Öqb¿ .Fíþ.äï¶(@y0eá{ÀŸAþÙBñ°?ˆÿ\…¸«…F"sic'íeõ©fþUý`®¤Ë'ÚÓ&—ê<žV±ŠŸ®ìÁÎËóíRpͽ#½åG¤öÿ¯%.õÂp-}}»~µën^ûÇÌe\&\6ÓU'N²Õœêàl³*Ъò‰v¿É¥:ûÕc¬3ê†âàlÊSAå©-q¡KãÜUCôO_ÄeÂ…á>_,± q=îS ygåWÁjc&í:õ©åTgeWÁ&]6Ñn3¹Tçq›zŒtFP9™J¤òRPyiKÜfpÏPÌ“©(˜¢Ë¼“Ë„ Ã}¾K þ.âzܧÍN¦Šs2•6†ÒnTŸzæs£§ZZUFÑî4¹Tçq§zŒvF‚jG÷ˆd>2hQc7Ñÿ ð \&\Žô‹ñ/ª×ãHµÐоK3iªO-IíÆJºl¢gr©Îã8õ©øéž>h¹Nθ±lX6yÓ³z ×òªEß–Ïú®eúV!Xb`ŒÓìÕjp* ±ËÈ;¥’S6*®™÷í¼U»Kœ%wŠE³âY4zÐÏ"a³p´êù3îSðŒjÙ·‹†ÉøÕ—wʾi—g.Üõüja:g잦KÆ|Úū¿ËeBM`Yŧ[І¼}o”oŠ:a½øN.gõ5Ô‘'ìQr¯¾‹Ë„1­í.~œ{mcµGçIN3»ò«n™oÆ—^%Œ-œàÀIŸ©ÜgœaywÌÙ¶¥O ¤\½›c{— cæNz¥û¼bˆzVº¯ä+Ýoᜰz2¥•Wj«+Í"«Ïåà „á®ÀoXn—lÕ n $_5(¹UÀAȃ±µÖaȃ!à&ÈJ§o6¾~t†’Š–ç)ihp?äýéhh3ðÈ·ÄÕPf}m=Õ§)æœ<¯ZB#×U;Ú#òJ!îÇœràóŠAˉc@j“’N0[´h¶Åº“£UæðŠ«`»ü«Ì¢íO‡ï² ޵´–®B±Y•èªWeç4¿™Ó³Ê^pêHÁž´ têEy’nè¤/cMé$ ;¶öxÙ³óf™5ØÝVnœe87°©Ç6†X“\ŸTaY§V–®ã°j·+qŽ 6|€cÆçrÆ×fË‚“nÌ6søt.«–"m¶™*ð\&ŒéXަ;Îì´ìçæœJS í—Rjc&í5õ©åTW¶ªøÍ$Ë&Úo&—ê<~S‘ŠŸ~.\½²Çti8âu4ìÇ¡ÁmWûó‡&̲%þvóÕÆ­UÏ·Ž:“Þ±ic½qÐ)Œ³=ÿ“žkx¬›oØË æ4/ÖU³8k|Êôø*ž‚åå]{Ô*Ðzš§­ò¸éþýzײÊÍòunÛºµGzfB(Æì\&ŒYŒÒ3'P!BÔ33qöìE’¬ž &O­½` ÛC¥DÿàeÄY:D¸K Þ¥B<~{¨†öÚ˜Iµ‡zÕ’ÔN¤Ë¦q{˜lªMÚC}F:ãS£[a˱ÈåJÈW¶ÄojÙrLÙè^ ùÚ…â?w Äw©×ã?µÐHl˱6†Ò~TŸz’ÞrœtEûÓäRÇŸê1ZñÓ—÷yíZFÑtY?ÂÒ²1ht{šø²,W8µK>k q~±vTïì{CgžäËz'w*,5Kæ»ÕŽñmd¦k¨_ä:Åá¢íùÝAÓŸ+™Ç‡åÛ¿?þò¯µ™NäâJî{Àƒüo± çïzƒ=‹d*v|b¯g¯Áº·¶o”ÌiƒgHÁÃ1ó..ÀÞYæO?å2ႈ.2?ˆÿL…¸–èB$zgz˜ÉFÕ’`ï,Ѳ‰Œ&Lµy4¡ÉHÅOïÎŽ¦ ¦hÓ»Ãýö¨S-L·¶ÝOX¡U1óVÎØU_|Wœ®7.ž¥2JæVÓ¬¸*¾‘­(Xì-“Ö+m…'V{‡¸¬¶0^: È^<ÌåìáØ ?¿—>~ù® ² ÝœàrvbA6›´ƒ Ài..ˆf3û @üAâZšM=4’h6õ0“m65ª%Áf3Ѳ‰l6Lµy³©ÉHÅOï 7Ÿ—èôºÏÑ(9eÇwÊØtRorê§Ž„íhØçéæ^8˜Ÿ º/Ò‹xÅÌ}™ûfKñòБ¢¥v!eâ[ÀŸp™pa¸ãŸ ĪB\;ÖB£ñV‹º;æ*VrÊZøI;e}Ê™Ï)ŸZ5hU E»æäRÇ5ë1XñÓ =C³L¿:ãÒ]U² –k ëxÅrm:Â,J¯xˆ·_Èe˜ĥW<œ„!†¨eÅCÇ8 {‰yƒ•Ÿ ­Cåq:¢ƒvhâô+q§Q0*W¢²ÂAA§®ñQj£\-²ž#ûFaËJ0üX¶øi4L?aW´6ì+¬`?hЦV\g´h±ì<'B__ÿâðÚõTbÀì`WÙvˆf…}Ý©ìUÇYn|¾ækÒ2ƒµ0w:N5ËCtîŒÍ;Äöq•ÒӠާQr9£vŒ}Ú²Ñ_\ÏeÂÓ¿I&ÂW įT!¿IÖFC{I3©ÆX¯Z’ê!%]6›ádSmÒ ë3RñÓ7ÇsÑ&TÖCª¸¶ãÚ¬9q<æ¼k³Ì›ÁÔÜ?ø*å‚6(Ïg‘èx‹r¡š÷éP« EG‘™e³8í1_Í90e—ñçµCC±“~çš<±”þ¥ô‡-ñèªû%‰ù—ßæ2áÂpæßˆG…¸g®…†Îý’ÚHIûq}I`¿dÒÅí“Ku®Ç4gÔ• @"•€Jk¦Ôcl™$ò ü1— †«ü‰@ü'*Äõ¸J-44o™ÔÆKÚ[êSJ2[&“.™h‡™\ªó8L=*~z M­6>ª'Xîd²¨×µ-~„nÁf/¸-q²|Õ™6Þü¤-ÎÆ›V2d×7s™pA8ÛìøâZœ­I 2èa&ën5ª%ÁA†DË&Òá&˜js‡«ÉHÅOïGºÙ;ÁºRÖù/ÑIáÌÙÒq`̵NÒ©ÒÌù–¼ËOÃY¬¥.Ðê¥ÑiñôAµaßZ._‰\¾razäW߯e…ᑈ?®B\GÖB#¬…™´GÖ§–$=r’eí‘“Ku¬ÇHÅOÏ=ò¤mªzÐÕGÀê#ڪ΢À2¢ªsÔúOâòiàç¹L¨IE‘ë?)¹¿Àe˜ ú[áZ†ÃÁ]GƒÔk‰˜­¸]ÚÁÏ‘4ìb±JÛ2‚ÉTÜç´ªÔÅa¿æ÷&¡É6z`”ôXCÛ¼'\ÙP{—v@‚!ù`7‰ÇzNÓ71š;æóƸËÃe µD¤gó©|¿È±ý-\&ŒYÎÒ³ùO‡K QÏù‹ùl¾$—g ýgàç GÅZ¸x§ó|sÔØÑh4h´;²°"|5[ ¼²úöàz8iÇ3ÃF¾{ Çj@¯Á`0ø7èß¡@Þü»)øÍæ@Þü»-øÍ6.oãÿG=÷Êæò™(zÂû!ß;—ÃÀž8§ ò:(p xo¨ç‡çmsð›MBž£ÿ•Ïé³;ÂäøG±ÔrÊ\RƒœŠyøo¨kwƒ o®û™ÿÊçô!äî¡drJ:j¬Sžß­sr½Yø ÿt¶²ª ŸÓ‡‘»‡µæ4/êtnN#tÊ58$ÖXáMä7Ì©lPýldŽ09¯->8k¤âÒíW%º†°á — ùäøå,Ý~Qò–€xÒ¦ñ( ÄV6£ ýGÚt4£‘e:JÙ à¹ÏUE0>ì§U˜<œó&œ)¯ÁvóÁbN!K«‡ ëÛ¥Õ¤#õêáaÈñ÷iI>%»€xÒ¦ñ\Øyˆ­¬ÏCúÏÓRÿ²QõOa Š-.‡¼<öˆHà Yõ f¡ú(¼e5¬oÌ>nr•ò¸dSG|ׇ Åâ-¾u®S ªþvcÊ.øÛømO£àÎ,"ás€×C¾^[ÂíÌûD$ºxäÒ¯ò”üâiI•>7«“«ò‹èÕã Ô–W@^‘~/ŒIÖ)â{!pä ‰ÕùvYßfàõõU½&už<xd¥ê'Sç)±%À!ǯlÒuž’¿I@‹¹×kw‡çÂkbùZX›ù^ZÌ.2Ô«9Å$‡ñ†Ž]Á‚ …69sp%—ÕŽgn“3Ë€«¸LSŸ›‚íÀ Þ*‡Gj ð“2ªåš2{TÛÉÌjà“¹L¨H½Ÿ^ËlÿD0–ÊÚÃBØ Ò/Ñp-æ½ë†FžÂMSµW7ÔÚÎãSÌËÚ=Æ0»3æœ0FF­q»|Ât]súä‰|þ¤1Ⱥú#ô÷'챓ÆÈÕû c'û7oŒŒX3Úð%:Ê'xÅ.øFcĵÇ'üÒhVú#u%“uEŽßÕ”Áýâ”XЫĤöÍ3¨ä*ük‰Ð ·Žná+žHI1âÈÜÌ1û".jˆ8–²ˆÃ/Ì 9¢ú{JcðDùÅuê$ËS?å®uf)ݬê)•wXˆlWL6bü\[¢Ú焳Í̹7Ê*OÕUº§jè¨FžrZ™g“`ø·Ö:V ¥ë9õ´bÿÏßé´(ñÓËÃ> ÑÌ]¼ÅƒÎö~0}¿¶ŽÂJá ¸á.\RÑ¥Ðqöd~•Ë„)t²~Ë„1•¨t¾Qø:ðÛ\&\è§q'ØØqÊñSêôqo¹£‘ Ý9¬©ýÇŽó¸L¸@úçש“,O=ù~@l«”nõ”Št»˜`²Ñí¢žD“è$c›ºú;Nµ0®½ 4éüÖZ§Z? EÏ©¥ûîN§AÍøT5ЯqY.k”{΂Ò>¢åwÀA.w j4Œè(¿ãBà—Œ§£3î²êíåÄdp'—Ô£©Õ34åO99:½ ¤®½À{¹` êº8Âåã©k/ÍáÐú³lð¥ÑÁ®ùà¬uZ†2sA?[,Ø5l´z•käS€oär€zô¬­ëÝñ8ð“\0-¿ ø).OËÙ^}ø.¨ÆCÇÑBª}ÆŽÏ¿É奲ѰϘüj•Žo Ä¿¥B\Ëj=4æ9ZHþzm̤£s}j™/Ïô[U6Ñfr©6_·¢ÉHÅOߎ1goÞ[…­ô„EƒX²\vÉ÷%ókN‚sék‹afÞ|íx–ðWü*dÛ7º©?2iç­¾IËõLåÖŵhšËžNñð¢gã2a Mï¢ cšÑ¥,\ºÁ*ç­^ÜÃÔ91]qè![ú6âõ2àû¸L¨È±ŸH4Ë'Ö Õšæ‹ùÌ ' œØ~Rža]g¼sÎ G¶Ïü@­_ô~àO¸¼HÏem‹Y;žh3¾è§ðÖÒŒë¡Ñ°Êt@v´!¨4ízØÊ6íU5ß~ÙæU§EåÕé)WàV©32I0ÕæÑˆ¦º&~ºÚ°K•"Ý7Vv„óëdwÒˆäþäþ/69é =/ãvVC=z¦ø†žËtõO9oWЬÑeA­R¥KO+ŽçÙt!‹°œQ:ÍîQ5Û¥jI ðÂ{{jÒ!DËû04ëöñ—#ÄSÕöp6ª®+„ÍC,#ÒÁ±zð…_˜|ðEɾrüu#Ý>Þ`ý³q¯–éHfm¾øYÈŸU&®{³ԗ„ÂãʺÐú»‘K^gͲÀå”–Î|?zÑÂÖpÝWø‰ŸÅ‹" ùǬÁ嬡%†M|ýQ¾¬Ndyê§<ìq:­\ˆ£­|"œfÄÔ^²ÉFLíiKTûJ†Ä¬t³ÅYÑ<Ã>¥ü˜ž5 ÉZLT×ê·ÙNÖ4¤ëMu·qÿÏê´­Ÿ* çŠ\ÖƒËzmÝ =“©Ä­¸‹Ë„)t*²Wws9»;¶šVu‡n‚uƪWœVVÛà]\&Ô¤6 £ðDì°ÂeÂ4tv7ð.ÆÔÙÖk„K€g]ÀS›Q¼O‚X»À·s™P“VÕv—÷?ÄeÂ4ùàp™0¦"×Ö6†‡C;áh ß6® ¯¿ËeBE’:–9 )v-³ßþ— 5t-^æ@„,ÿ± ñøó#Úh̳ÌAþ Qm̤v}j9ÕeQ¦ßª²‰8“KµÉÄ‚>#?½8gÜR[¯ _J­á¨ãOêµ¹=Ãåvõaý–-#úYà¹\&\Þ´ý<øy*ĵxS=4´/ÓÆLÖ›jTKR‹Æ’.›Hoš`ªÍ½©&#Q'Tö¸ŠTVƒÊê„¶_ìæ2áÂp›=ñâzܦI¡z˜I»M}jI0M´l¢Ýfr©Îã6õ©øé¯ Ï.UYñ—->¢ÆwŸÐ¹áì‡IË®¯·óì£{Öz\¯êŽ™y‹þÆó­²ñ@Õf­[· Æ”ÍâXúnZbö•ÁF—’ÙÃÇÀíbÑp-ö7.QW4ÝqZ¥YµÜ`|ȯlËãEÒ‹ÆÌ`Õ@°<Äö-(Àè£tñP™¶¹´<øxÅríàï‹Ò+w„‚︈˄1 ^zåÎ+P…BÔ³rç­|åNpb²G¶`3=ÔB,/ïÚ£t¢|°zŠ.ü¬¸N…}X 5«ë¼ø+W£{pÛ¶®Û}tY¹Ü.ºµ§78ôµdèÈW×f†F)UŠþ ²ã—CÝVn<×[ûûðŒ;ɲz%ʇð­ßÚ’výLaùÞ€JÛNYxð?±Úv"üIø'UˆÇoÛµÑhضŸ]ï‘‚¥Ûwmì¤Úw½ª™¯}?•*ЪòiÜÆ'›j“6^Ÿ±ŠŸ~›ûä‚Íï 1óy§Zö±ÛÔ2&,ßr/oLÏ·óFÙôé?,Áôè²òÒä¹MZÙØìÀî›ozYrn,{}š5´‡Rå)Ž[eËö§i }ïV-|Uð-ô;»ÔzsËáFž¹âTÇ'øTmMœUì7v9_¬ÒÕlwøÍ*c¶Os~ü`úÉûÄÅF–KÕÀ4ŠÎ¸ Ÿ°jBC$–Ëâ´IÆËqyߺ~ðËýCC#µ3ýiN…v0x¿Þ2Í‚é›ì+íq»ŒöTXõ«¿$oÄ™ 8foârVížÀfK€—¸%3W-Ûòä²wŸÂåìS43 E${ð>.¦P‡²Oá2aÌfæ¾Z o.%·C£D#A£b¿Á2ŠVyÜŸ ÛƒL-0<²Á`O½=¦hnÙûŸârVí´–†ãÄPÁcf¿ü2— ÓÐö§Äe˜³¾Ú˘bê«zuÏUScÍ… c™…oÓ¼—8J·S ¨läiùj0Ö7Ûl‚Q`ºƒÄ2Ýü{{,ø%k¿Ñˆ^jÌ%s³]Ïg¾rKˆ{kþÌŠ\«äL’‡¬{o>þl{ï½²Ž¤øÂªïÐJ >Â=Ë36¢‰^Ý?Ëw@I9̱ý'\n¿5U:ò{-·õ¶¬³ñ:$N˜z”Âï$ÞÂ(%¿HÀu@_âQÙ&¦J“{¾i½)_ŒÔÞ Õ¥ €’Ï ˆG±)¹).7R© ˆ'f©¬butWÙpFÒPó’ù"‹ö Ino‚–WAVê4^:ŸïîB|×ÕKRWÔpzdLÄ.æ ç’oƒ)¹ÕÀ~Èý±u¶‡÷  3jºŒ"ëvÒÄ&m¡{›A¤•wJÖ³amE[&Ý]¥™<]Èîé¦àiàó!??{À@~Al¿ºå}¸à’L“ŸõûÂÅõ¼9jR†k3g ™3ö;Ì*lf®o–ýâ4¨shÀ¬Äâsçü«Øßð¸¦Ùwn—õZT0/ä˜YÏeÂô#‹ßçv`rØ£Vd¡³NàYÏRaÖÑåõÝyÇ¢v rtǸ¥(0>¸ò•Íö­RD²À7¦Pò›Ä“¾I¿füæDM:ÎHJñê.ƒ¬tscƒö˜3+˜nÁ°\×qk–,Z·¬AÓåÀAȃÉô›aÄ„C‡Ò7hJ~ƒ€xÒ7è·Àˆß’¨Aw<È:ý Ì: øhÖœû†G‹Øh¦]‹I¿ï½¥-Uý˜1a }4%¿IÀ–ùè·ÂŒßš¬IWäMú­0ã·&bÒ«óŽëZë{(ÒÄ%ïÒVüV¼G¸²Rø(gÅo…å^ ùÊô­˜’ïOúVü6XîÛµâEy;WU Ö \y¹63f=%šlsªåBÝ+—ÇìB°úÈ.³.³l¯¶h*ŽË¦,œÜYiU‚œ±¿ Nx ä[Ò7vJþ€€xÒ7öÇaà'nìUYcþx2Æ^­TR3öÇaà§kìÃÀo­±?±eÆþvøÛ5ö줬¥¿ÖM¨¿¹-\´Ú—wBÑà'y…†ßxØDÖÊߎŠJ¸ò¾ä­üí°lÂë!_Ÿ¾•Sò7ˆ'}+,û‰Zy‡oV‡˜uãGá‹f1ÚT·b³,îfÖÝÍâr»P5‹=3\çŒ]Å)sZzòçxð:È×)îìBÍ DÔTñx²€x´Õ¹ˆ©Jn/ðfÈ7Ç6vµȈÃ~àAȵ©dYÉò'œÂp×Þ½]*ʹ˜‡œOG9‡€È…øQ¶9 ä-ñ$ÝPrÀ1Ècé7”ü¸€xÒoÞÉ:À䚃%ž•ShˆT'ðlÈgk‹|öÌ=ŸíœB;¡¡ó€·C¾=y£' ðÈw¤oô”üâI›Æ»`æ!êYSs=_Øo 6_ê××%`5‚7kÎ9|×,Ö¦Ÿ¥'•ß ^9~x«àHÞƒÄ *öI*Pëê*¸²î0f­¨/Uèözd]‘=¸ò–ä]%×Ü ykúu”’ß& žôÍú½0å÷&jÖKYû¨bÙï…5¿ÒÉQ“e3'.f6— &M,Ïn€œÂ<Ü{aÆ„-œ‡£ä7 زy¸÷ÁŒß—¨IwÒÔ²’Q¿†ü>|s'ÇdŒzæt³‚QËUÀM•Ô*gÔïƒ!n†¼9}£¦ä·ˆ'}£~? ùýÉuEÕ¨ßC~"F½¦á³‚5¿L˜ƒœKÞšß &ì‡ÜŸ¾5SòâIßš? þ@¢Ö¼,˜dV2çÀ„ χ|¾6s–žjŽhSVA>”¼ÉfNxòáôMž’¿]@<é›üaæLÜä«j&ÿA˜ù“1yÙ ç8&ÿA˜ùÓ5ùÂÌ?ØZ“ÿ Ì<Ä–™ü‡`æJÔäÛo>xXX'ðLÈgj3õÛfÆÜ¡µ ‡&ºtŽÍCs×9´BÙZ<ùHòæÿ!˜<áýïOßü)yS@<é›ÿÀäÿ Qó_ÄÌ¿0¦@­¨Äp°`»?%ŒÎo)8¥š7¬²N´Ï+yÿ5ánÈ»Ó7pJ~€xÒ7ðè?œ¨w0¯(0ëê_ð¼ýO½Fýa¼G¸ r -†!¶p …’ß"`ËZ>CþH¢F½”µÊŒñG`Ì„ñÄÏbµU:r¡¹¡ò¸JŸ|2d¥e;ûv|: q6ï‰uCµóy/ä·ÞpòÈÀ‰í'ébP¦˜û†‚£Jù+n82°]üuãì6=Ä—òz3ðiŸ&›gzcÎ!¾‹GJG“;×ø>]àýtÞ5‹Ë¶)žá«FÃeN—ŽtGô‰¾Ú¸6N5âD_½ŠÊÌãÀšUš•VCž§Xu[¥ÊƇ'›j“ÇõÕ2ñÓ¬ÑÃé<ò3´Õöì-»¢ÜOÔZF"ò𹟫18‹XËHÉ=ø<ÈÏ‹­õ|¡)4è Áªf±/Àäâ×3¨S¦À­Nà¹Ï=Í{fÄu%p;äíÉ[öGaÍ„WC¾:}˦äwˆ'}Ëþ¬ùc‰ZöâŠO§ÿ)p뮀¼BÙ¬—ÌâtxŒîȱÊùi# W3ïÚùûá¦kcÌ,GõÛegXŸY)Xcv™Ÿ©­pÚæÇPa -ÈJëÙ5^®L\ŠÀ äJò­2%7|ò±kIJúq›²áqO…üÔV†KDä!àÃNG1'φüìØŠQÛ—Cž|dµãÂôÖ——_ ù•é¨å…ÀWA~UlµœGÇáÑe&µcZ¥CV"ôjà; ¿#ù†’ë [ÒnØ)ùw ˆ'ý†ýãÜÀÔÛ°7j*8¾A§¨rŒ_ƒÐ`kD¿Ú±)Äòàäämøã°[ÂAȃéÛ0%?$ M¹_<è¤Aºo„™~¨gtö?{æxÉþ`hTsE;ŸÄûñv·­ˆ[VŸÄ…ˆ'¦Êö1wG'´º–W-ÖÏZ¤±jóµtäæÝfè‡7ÜT\ Ëq?¦B0þ)˜á>Èûb ƒŒ€¦µ#Á¿éB"ÿàË!¿\6ôFÚ·QáWÄ_¡B<þJm4ºÀNZÉBª•^µ¢WãT#V­èUŠÐ04žÜijö­*™Æ‹@’MµÉ"}*~êQÇ·ÿv;̼®ÀØ3cçgÃ-Cðä܃ÇèU Ï,ár& %ȃt¿šH!HÉlâr&µ ”5))™^.g´))™Í\Τ¤d¤d¶p9?HYVïbËýDFf7—3»µ•ÃÒ‘èÕ>ÉM½í³m:»Ò½J>+ µ:œY—ÎçÚx'D<1Kå^Ö Û/^KSaºÕ–.*Äå°tbÅ·KöƒüÖdgÒr…kgk.×Ë»§iq€Y-ú½†d?UÞ ù^í>sQjÀ"äb"sN²£ÀäRò®ˆ’–!—c[ÚY¸B3˜P± xò m‘îâ®Ýû®?ÔUNQsàDæYÀG ?’Žzž |.d¥¤3Ê`?Uü [[$Tùœq]³(É1ò]`jì±1Ë¥u&x™ù…1×)©¨÷yÀïAþÞéSõÿøcÈ?N§êÿð'•®x•·­ï ù§±mëŒðÖ[»øð_!ÿ«¶jOá³ï:Q¡gÓzÿŸÀÿƒüéèæWÀ' ?[7çkŬÜxN¥Ù¦–:À³¬­MGW@GÃtWewÍË wÝb –Û·ß2 ò÷>×ÕÀ«¹œQZ+­ÁÌ9À\ÎÄ_ÿº®‡…]tè*m“.×®Lç ­§ê3ÃÀ#\&ÀåŒÒBMy‹¹èr™0¦Ålì ElΩ='«y jzvß-Ö”ïЇãŽË‚¶]º® 'øV.j6¡ÅåbÉ.*pû ð£\&LÃ†Þ ü— Ó°¡·?Îe˜6tY¯èljŽþF­­Ï|øç\&ÔÔŽ,bfò@Ô9FMÛ ™s9£3øk¢1™Ÿp9£üÍ(‚³YG=Ì·Œn;g©5ô?þ— u×èª3:©©&ܲˀgs™0=gH³©e5ãÛ\Êå¬Òµì µôøæs¸œUÚÖ/o²ˆ‰³çr™0¦ÉfUŒ40+Âó¹L¨½Ù±¦ªŽŠÒ»}\&<­ô2à\&Ôc¤Ù‹€9.¦`¤Ù•À~.Æ4ÒE¬%tUìt¸‘Ë„ºítTÕ™ÞÜÏeÂÓÚNw÷r9»W›^ ¼…Ë„iØé&à.Æú{f„lݬûlOš¾=iõÑÑZ=õp?V—½ø— õGý,àt¸½øZ.¦aÖꄾ‚Ë„šìúùÀ×q™0 »~øz.Æ´ë a\Ë/á}×>ºb‰ØR…oޱ jÙì€ßæ2¡f³ngYb?þ — SèÉfü[.¦a?ßþ— cÚO/·ºÑÑ©z¢œe4Šþðï9¶¯à2¡¦Ní’ÂX³!´fÝÚöUÀ‹¹L˜‚úÚÏ^Âe˜êë¬wkå•Ó~)ðJ.·«Ý×Ý´VO=¦@ ïí×p™0–j“jÆx#p;—ەϵ˜óÍ9àµ\&LÃVÑWkßÅåö]±muumrõÇ9fõÝdY“–§ÒÉmß ¼‹Ë„Ú›£’Šá–.žæ†kq¹ý˜6Ã=|€ËíéÌ´ß t¹LÓp/¬®0ïÖl@T(pÌ ´¿Ë„šm·£dJo2%Fo¾…Ë„§¹ñþðõ\nWЧ~óË€oår»Òì¼ñ¾ø6.·«íÑ?=\3Þý–7aì*˜êõ×Ù.]9xÈ2Ýü„%D~=½sç‚þ„0Í¡ ªÇÿÃeBÝãj¾d—Çä¹uœ \ÉåS0|uÂKgq9@-vO¿ p—CLÚîÿÉ®æ2aL»_¤èŸ;.^Ì奾ASC]Z÷F7äØmnçr‡ÎóÓš˜jÊ=À.¨ÇXׯærG:«X:.îàrGüU,¹ÀXƒÕQué¬>/pÌÁ}ŠAOü¸0ž£ ô¨:Žr9@½V½„Q'ž äž|—L#ðPg<<ÉåõØôÀG¸Ü‘ΚڎcÀçr¹#þšÚûëã裨êá™%Ë(³x¨±Ût´‹¦Ý·Ûq§,»lŒ»fÁ¦Ey+O€eÓ±‡1;žü)—;ÔVw6­»w+³ÿ|‚ËO¤S ²»w+ý ðß¹ ž ð/µq9À*ÀÏl†Ë‹âï¹YÜ«8hºAØ¢%\^¤óÜâƒùq{*p»x— S‰•ƒZ¥àª\ÃeB=–ºh9°‹Ë„)Xê"ÿ‹Öq™°E±ò¢ËÝ\^Ô€¡N–Ô Ï¢Ý\^´ût7TLz/ÚÎåEÚ†õ÷p™0 CEà¿è:.Æ4ԃ D°ð$¼á°X´Šì·c’}‚C%è³›ûhsSßn“¡‹ö_ÉeBÍVVÍ[‘1Š~šË„ilÞ¿|/— 5Õ×?ÃeÂ4êÀ«€Ÿå2aÌ:pùœ¸zNX-½Ý™~ø÷\&ŒÉTz—ïxU¨¡ž½Ï㨥ú.=*#£Tõ|:î`Üž´ÊüHšü³Ü¼ÏÞð|—ºÞX+ÌÜÄUÇ·¼žœ±«~â(vç[€Ã#jGéªîýú"rOø0ä‡c¹ñ-Õ½_ÄæÀÇ ?–|=¢äž |)ä—Æ6‹Ø{¿ˆÎË€¿ù÷µéhæÞ¯’yÜö‡z ×*úì÷ƒVßÖ ¾øuÈ_OGƒo~ò7bkp «ŽûäWŸ‰o¿ùûúW¥UoÄéÀ_BþeJ«2á¿þ²Ò¨JÃoþKà¿BVÚþ*oª?þ ò¯b›j‰àtÚmî;´áœØ}÷m»ê)?g­¼éךùà“ê°p•ÚøäYpk¹jÇ©QVÍ‘6:’sÃãŒTÉQ)ø©`Ç!¡Íe”ì8$<ÊåŒÚH¹øéÃáëçjGÞñËu]Ì<¯§×­úìu»M°°¤<+–È~ŒËj;ïª÷ŒZÏJEÇŸþ— ÓÐñÇÌeÂV ¡…?~Ë¥Ö¸ñ4ã˜ïTޏ‘ý°¦Šùð/¸L˜†b¾üK.ÆT̹µ0ÏSó2ü.jÒÒ“£öøó渫·>t1ÜuËÍn=|äæ[ŽÚ}ëÍw±Ï˜Š‹¤bŠ7«Dƒ™瘽–Ë„i(ú—Hv—³ñ—ªGƒÙÝÀ¸Lx: èµ°ÂeÂÓ~@‡øÞ4¹œ5uņ´'(À¸œMay!%w#ÐårÖm¸«ylŽ&Ôz¥ ¥íŸÇeBMnjQ9_©F-*læ`²_ÎeÂ4ôô|à+¸¬¶whÖà󬣎ù(¿®\-Z.ßyǵjáýØœ1jÜ+·DÙWÂå¬ÚÖøF*ˆj‰føÖè¦0<¤ÒÜdÿ™#m} Ym „¼5üÉ^Êe˜ְ”57w*ÜÄ@,Ö×s™P“W‡†¶}{Áò­¼¿‡¬±[EUí}À=\nOaÖˆ’»x—ÛãÏ]_?ñ%?aå…ݱz5'M»ÜÉk/^(:túcɤuXòƒê”‰½Àp¹]íæ:ñSéAõ/q3©¡žAõË ÃØU,Î>˜bìãy«âžO’é‚áå/×V5–Ó"æá.ºðõûdk‘zp+ä­É×Jî à6ÈÛbkOþh J;ðjÈj—è6ÒÍ™\7¾[-ç•4³¸òþt4³x ä[bkf±Ò¾âpxòamÚY!hÇò|%Ý ´!§0˜GÉÝ< 9þ`Þ±ƒ.¶]º«¬b76Y4žvÁGÖÎСêã¬%î5¦&ìüÄŒs…Íp ÆU³àš~•}•©c¿-eôð{õ$zòæË^C´þøsÈ?O¤;'Ù¿þò/Ò±¾ïÿò?ƶ¾~áÖ°Ú¡´…£4•MSêÂ’ýÇÌE\&ÔäG浜f$Ó¼ŠË„)è0s1ðI\&Œ©ÃK…yæÂ~?î/UPýà\&Ô¤²%Le{|Wz™ØÜ ¼ƒË„i(ì&à\&Œ©°^Á‹›õŽ©zÑ"’BìÁebzð!.gâ#¾µ34®á€v7´þèZÅ–l쥭'{Ò¦ås-5è‘î5R&žü2— ÓÐúÃÀ?â²ÚDÒÌà=Ò=>"ðÇÀ¯p™0íß—¹%ÔPOo˨<ßtƒ»ø=˵!®1û8…Bcc¬?è)-}ÿ#p%‚<¤Ì»E×zù À]¥'7è´¯õ"»â»UˆÏyAé+^륆æk½´ñjœjĵ^z•"„ô¯õJºd_ë•lªM®õÒg â§7†kBœrqš–ø°>% YGÐ5˧Ô_"÷Ú÷:gØ­§·¶ƒ4Fµ>äç·È鲜øQçÎët_üÈ¿³Pœîï ÄW…¸§«…F¤Ó T«ätµð’vºú”2¿Ómfö­*™h§›\ªó8]=*~êμ0Ñt-~¹OÙ0«¾S2}ºý‹¹ãÑéË÷ø ½—x€™—Ìr5ø ŵ{B¾3˸L¨«w¯¸€Øœ ¼€Ë„I÷ó(¹3k¸LÓ®©¯¸`zÆœ>©Ð4&Yë¸áXšY©¸NŵMß2ŠVyÜŸP™ä"òïâr&Þñeâ[gŒZ¾™³Ë¶¯¢Ó#Àq.¦¡Ó»\ÎLÄÖéJSbÑB\¥¨)x’Ë„º4ÅBí!eM= |!—3J‡ˆÉkêiÀq™0¦¦úxàš\]{1ðã\V¼ü£aX´ÛÊ*üðO¸L˜† ?ü —5ŒOe¥ÇÉ(ý¯¿Æe˜<¤ÇÉþ˜+µ†zÆÉÎ3Œ*´ú2„B踰údDþ|`ä®…Ð'#ÂëâëTˆÇï“i£¡¹O¦—TŸL¯R’é“%]2ûdɦڤO¦Ï@ÅO_Þ Oæ”=ßåwÒûíÓ¶\º¢ž†Æèà{LΕXÈ0IKoy?lÔ.Úþô¬;ºøêÛÚŽ ¾c€uÐ0ŒÆ½5m¶-UK4Ýôë#†ù0äk«ºíƒ²1ùð3?“|ÀAÉ}øYÈŸm"çׯ:K,ø"M©©èsÀïBþ®6e”ôçâICAßþd¥­^3wÄYJTþø3È?Ó¦™e|-u“»TtôKàCþïttôsàÿ@V;=WüôIä7-ךQH]£ël GZØÒÇýÑÿå˜YÏeBM¤ýÄ›T—ép9¬£ «.s%pË„1U·Œ÷™™ú¤/""CÀ\V¼„7%ÖDjðV.¦¡¤aàm\&Œ©¤Å|»¾‚~ïä²â¦† y {ˤ±áÃoß«¢ û€E.gŠé(è.`‰Ë„1tkp®ó&Žb˜ú öähÙ‹W;¼A×¶|ÊMø).jRµêÐ>±ù"r#S”Ô§_ᲆ‘©'Gí{y³hºt„\2C”‘¯rÌ®â2¡&ížÁ‡£Fl¦ßì%À+¸¬~­¥”~³«ë¹œU ÄO—R;د¤œ,šåàÎ+Ûoàlª3êȦÊÙæ2aÊéîä2aLå¬àkë¸I¤Æ™k€û¹œUÚÕÓPGÍØëZSØð屨ñ°¦Z; ,s9[NGk·.ÆÔÚ´Q´Ç|>ˆR­T,êTË…œq‹ã[ü8¢ î4ë]Ãò|»Dî²à›/:Ôœ:†íÛZÚ/| MËM™n™|ð”],R3j{^Õ*HÏ!P¶+ÀŸr9«vœ·ø©ôÂW¸qÕPÏÂ0í®4 öؘg!Ç4%Çl?X[@º¡ììU`ŠW›´ ‡!+yínbtðÈ·$_³(¹ÀÄÖéÊžàØ¯@wæ¤Í#]Ý ,@.(S‹534Õ]9bG9˦3CDÞz=ÙLÐiÏ a_ î«?3¤FÔÌW­ôÌ6^S˜Ò«”yg†šš}«J¦ñÌP²©6™Òg 3>Uñ¹LCžn‰Ç\ Ç6T]æƒÀçA~ÞBq™Ïˆ?_…¸—©…Fãg¤ºUò™ZˆIûL}Z™ÏgÎcø­*šh§™\ªó8M=&:#›†üðˆÈäEÕWúip™ƒª.óÅÀ×B~íBq™¯ˆ¿N…¸—©…Fs—9¨ä2µ“v™ú´rŠ.3Êð[U4Ñ.3¹Tçq™zLtF‚9ãNÅ@3$ófÈon‰×<“¯^;2hìPwo~ òÇŠëü¸@üã*Äõ¸N-4ºÎ³Ã¥›\ÁJþS ;iÿ©O5óùÏS©­*Ÿh'š\ªó8Q=Æ:#›ŠqgÈäSÕfÄéSt(Žý4ðÛ¿½P<èwâßQ!®Çƒj¡1Rö ZØI{P}ª9UÚ¬ ´ª|¢=hr©ÎãAõ«ðife°½Ìo)Zf!8Tº>å7eÙã¾gXTÍb0ÛZ£½hÓ½µEMUÏòŒŠëŒ­’ÇGOóN©R­Í"Ö¯ΕÛç‹Î½²Çö1)ÿ`°ÞðkÒ2î¡Á-=½œ¾;\eN:væz§¼UöœàµJöBûŽSŸ öa0ÇOâ·¥åÅ?rì²_»MÍòUY ªÉü„Ë}'f/­°¬©¬Â!:ÿ ü — 5™j³‰ÍÌOÿÎe˜MýÙµ£ëÔ$6ÿÁ1»˜Ë„št¤ºŽØœ<ËY¥=xÒ*Ê.žÏe˜*ÚP[Çk\x?»ËžsžŒÂ¢o"¼x=— 5iqæz°ÚÑÁu›¢連½8Áå¬Ò–syÍÞ´¹LS³;sÆ.óK6­f –Ò0UÛžp.[Å™¢ -u-ɾ˄š”ŒS Â]*Z}ðc\Îêë?5ÕêãÀs™0îTê\göÀÏq™°¨˜÷ÙÏ¿ÅeÂÑwÊ~[ þmâZúNzh$0p¯‡˜l·I£V’¸O´h"{L ¦Ú¼Ç¤ÉDÅOÏ`má¸i—•šµÎŸÎŸi«1gÍWTÚµ¿þ— Óh×þøÏ\&Œ©¡ƒX†×'åm7_-MRÇ!ˆAƒè¥¾#ÛaÁËœ¸Å›sª‚ªÿ…cûµ\&Ô¤êΚªôÜ~=ðV.¦ çö]ÀÛ¸Üó›ü‘0”þAà!.Æä!½œûk\©5Ô³œû^<ÉBs³œ·úòN(%Ówíãtïky§\ÆfœÀÌÃ…õµãü㟱üudŠð^È÷¶$DŒqÆ2‘…|t!DˆDø˜@ü˜ ñø¢6šÏXÖÆK*@Ô«”ù–Q9c9é’i&›j“øPŸŠŸ¶ìŒe1;„üÁ9]åó¼ˆü‡€Ÿ‡üù…ât¿ ÿ‚ q=NW Íçyiã%ítõ)%™ó¼’.™h§›\ªó8]=*~zÿÌó¼XÍõùY^£ÓÌ÷NZnm:òËóXT,\·S®–,§0óqu"Ã?R÷Á•R_à£6šàY‘'—Ù¼†Ë„Ú:Mnú^ÊŠú:VÖ“ ”û›¹L¨FyÎ7÷¯å2aÒ=bJnp— cVƒóê—~¹NIÑr3»‡¹œÑwÉã|ú¸ :÷G¹L˜†šnæ¹LSM—3o•?fŽ[4OjÓùíÓÆ˜i{ƒèš+è­|„Ë„šô–½e—ŠÆ^ | — ÓÐØsr™0¦Æž5û*ÏgQºé Ëu× bö ‹†Z|Ëóécßö|;ïõÖ–¦ðÀ>ï”ÇìBð&]Tè²Ïø©^ý®EZŠÞ©V;[FÁã˜=—Ë„šìaZ•[ûˆÑà:.¦`AV/çrVíÞgñÓMü¬Ð¨ëú؇£«íFÓ}ߎ¢O¦ãs¼›Ë„ºtɦ §c¬=]Þ<Ê嬾¾{S]Þ<Æåì±Øº<§^ÙÔÖ"ð©\&ø(— õD}Ù‡€¿ËeÂ4ìö$ð5\&Œi·Ö£¾îxóVÄë÷€ÀeBMŽfÝŒåUB Âáo–¿ ”˜~øW\&LC‘þˆË„1y~pßrxá‚ ÿøk.jRáÚ9*¤Hv¸«âšù’Ù¥¤¾ÿæØ~—ÛS¸ã‡’ý7$»†Ë„1Õ§²…\¼„Ë„šÔuY„ºòf1_-V=%…µ_¼ŽË„)(¬ýRà^.·ïÕÐ]ž{6§‚þöïâr»úEKÙÙ '¯WÛ·«¨épŒË„šÌJ=i¯Op™0d1/HÂ% ËeB=ñGû8ð©\nWŠå«ÑÝÀ“\&l‘ß{ð™\&ÔTo:C§Vs0~Ðþ— [_sÞ|œË„©ÄîaQ*P~5ðõ\&ÔTw^ |;— Ó¨;ϾƒË„1ëÎSj±»W²¥5:4)&L…¸·ª…FãÙæ"l%ª…”´Õ§‘ùhƒoU±D»ÊäRÇUê1MñÓ+‚Uvüð®iºàŠFyÃ=žú"¥Ù€ìG”ÉÆè´G|븟¨ùWÛŸPõ¯Bp!ŒG|Càý ÞzÜ«ïlé®+ZÉËjá&íeõ)f¾! ±"´¨t{ÿèêØ*uE{ÿäRÇûë©93jŒáùÕÂtÎgŒáTþœþB™S gòþø .¸ "æˆÿ£ q=.] fò´ð’vçú”’ÜL^’%í9“KuÏ©Ç@ÅOßÌäÛëíI«8mø®Ì陞ñ å:Áʉ™'ÔÎÞÍÓÍNXÅJ°‡#8r¶¾M´~Ú­]Ž^ƒÑƒÝ]ùªïŒÕN¯-­z¾ú…ÞB™-ú.¨©̬vÈ—?ǔؼøV.j2¡fkrý.ðm\^¤vR¤øé𹛝º­Ü¸üA–Dëqàg¹L¨IW«g,î…↢¼qSÝ}ø—\&LCwŸþ— cê._=eû¬úR­ Îü ¯Be5ò?Ä´8Ý«rß:qýÇÅgr™P“Bã\bKŒ°»mñ%\^¬´Ž\Z‰‹Ï^Êe˜J\ì””×ÍâµÀu\^¬´­°q–ë†yîÊXµ¬¤ž«€[¸L˜†z°ZñV.ÆTOVÅ.ÞÜÎåÅÛ•y´îhšÅWoä2á‚èŽ,¾I ~“ q-Ý=4ôM£‡—lwD£R;š&Ñ’‰ìŽ$˜jóîˆ&?=G8`qÔ*:SFŒê{h©¯39½V.ÆB“Å.— 58ÔÄGì{oO…·ª…F+õ“v¨ú´’Ü BÍ$g“R[A˜¨¾¢Ý|r©ÎãæõÔñÓãÁa¨I:µa§œq#.b¢Ý¨üàÝ™'öÎ9uFi!M-÷?Gî®Ík¨´ø_¿â2a]£_ÍåÅjûäÅO×'5æ·ÛÕ—¬á2¡&- BCµA¿%ðJ.¦ ¹%Ø2¿¤›Ë„15§sÐoIp——¨ìÖHYÌô 5§6ê·äà.¦¡¼ÝÀû¹LSyk›úÉžÏNäLàÓ¹L“¤ô1ñßàú¯¡žcâï2 Öΰƈf,œrp*]àä:㬥©­*r*¬Ób?Èß1‹ãŽkûµ;øÄÓ5=ËZ4ÉÜ}9"¼ ²úÉ ³ëÉ™“–;êxÖðჷDéð(äNµ¢äîƒÿT«kéP V¦œò•>û×=Æo}âg›Ò±©Å¢U„¦5@Cì‹ÀwB~§6½.^UTúàG!4•¾ ø1È‹­Ò³ƒ9Érp€à¸åÝ *ú8ð!ÿ±6V½!%…ÏŸÖ1 %ý ð‡[I]Æ´m ¬#0iÑáî.øXw» 3ÄïÏ€ÿùô«mƒ‚Ú2Y`'—ö.iµý/’]Æe˜j…ã›p¦f¶‹“¶W NˆfM^Á5§j¸ÚþµSØLonʾ'oYO>¡ü ,q™0íhä[Üfj¨'¹‚E#tÓÜR ®v•eú6è^ù m¥£âZyÙ:BTzýû“¯#”ÜzàäØJ;Rï#±À"¼â¢!…Y¯ˆ%ƒµë ìé ^9J–éU™zÙ+Tž¶_¨t_(enøÈ/ѦîeDo¸«l—'»T´þJà ¿!­? |#ä7ÆÖºÊYbð&à[ ¿E›jVpÕx¸¾²zÞü8d¥kUåÕóVà' "¶zÊüÚºt¦âxž=Êj\èψ:Fª?·N²?4ó>oÞ<Ÿ…*ƒu¦'lÞ5tF2ßžb¬v„1åõ“ƒãö?ÉQ×k>‚ës, 3ÜÂåL ë2(¹«€[¹œ‰¿.ë9^…4} bªÅ‚aV}‡ôÏ/¸åMjpàa`\ÅžåNÖn}ƒY°úÎÌ%ÆT7ðøæàLž Ö›êå£~Sv±h”®+˜Ãg9Òùâ$gզݛ™êæ™sÕ²-O.;,q9«Ô'¶Õ¬ ,s9[NÅV³÷.Æ´Õ‹)³vOì¸R ¿–­_ÀeBMÍ[v:Ê>š5lÙ—_ÆeÂ44õBà˹LSSJëA‰Â+€¿Ãeµóî«dRI%o¾‘ËY¥¨\^%¿ |— cªä<á’ Åû ‰Ðïÿ€Ë›W¬3ˆQ³ŸârVgÐDA~šËY¥@Où ð \&lmùàW¸L˜†J¾ü*— cªä¬ð¡)…PˆÊ×€?ärVmºá._1)úkàßr™P›j"V½Qrü;.ÆTÍŠY]…²ø{௸LxºtkègÂö|Ö‘N¨ø_Hv— Ó¨¹¿F²‹¹LÓ<îÄÒ,Ö§æK³ì`äÓó©³Qmñ`ŒäT\”QÚ—ŸÂeÂÓ¦KÒ~Xá2a vÖ^>ÀeÂì¬ý> Ëeµ«fýJá&¾øˆuOT¬Ä>Âåv}7°Žîi»×˜dOÙ.3(˜¾9ÌþéQhâÛ_ |7— ÓPàsïá2aܰ¸³VTÆ]I«¢¾÷?ÇeB] =#¦¢¡?þ — ÓÐÐç_ár»Rì7«×o—óÅjf¢øYJäºihÔR —Û¿ ü — u…Ë‘.¸©¦þø/\&LCS?þ’Ë„15µ¦>#¶òèDë_9vœÁe˜ô¤'пÃu\C=èyš@·Ë4´ÏWŒ×Fûé f×4lŠyØü„ãYea¾5œ„Ū>¾‚’nª‹±²ï»Èar^[µXA™²‚™¿}»n>$½¸X‡|<ù:BÉ€Ó§ck?+](ý' 뼄‰N¬kìç`ßÓjüÒu’Ï ˆGÑ4Ç¥ó}öœ! žØŽÓ0îtŠcã&«»wØV~Â5« ëE®¼F[E^=59zmÉòMÖ[꫸M2çw\äeÀ-õMá.±J¦]ŒH÷BàVÈ­Ø[Oéon‡¬¶·¾‘’ÖNø~ÅÛÞß?55•“PVÄV3"y-ð>È÷iSVÇHÕRÕÕÀ#ÄVU»|$BîŽBÕ–ý%#¬íŸpÜGCµ÷OÛZê~)ù¬€ñÜïX\:?dÏYâ‰Y*.s¿»­ññ^cOÎØÍúðëýæƒÕRÁt{ý9£{pÛ¶´Ð¾b¹üШü„éšyßrù•ñ®™†k–ñíE>”\,O›+ÕѢ翵M/gHæûÏ`„.dW›ËèÜm;ÌS¸,' ¼¦Ï‚ü,±IÄ2%ç‚üP <9¥ÿ0ðÙŸ­¯;¹i@Ï /‚ü"êuŠ…ˆdŸ|1äÇVÇ9Ý{zÁ­[ûú•*ÍK€¯‡üzýílÁ±©]íÈ mØÒ?´iÆ7K¶³Dò­À/Bþ¢FÕÑ^ˆdßüä/¥ßÌPò( ž´iü9×s õ4ºç²æeé²Ö¢×Ø›cmŒ´Ÿù p!<ò¹Ê–LmøL‹n{½½ìP~â .ºNAvj‘ˆ]ì‚|™ Á†§$1ÇR&v°Ÿ=t¶VNcøj•󩞀ÜÛŽ¦{}9ã:f>×[î¤i{½Æ9ŸP¼rƒ]7ÝB¯q W†·±pe…"y¾ !xÐñ—ošgÑŸÞnì fQMÆðµÿÔ_è3Ëfqš†£ØONA>Z¡lߎ"Pºü¶¡ãݾ«0ÉÓg™ÙÏ)K'n¥ÌÆ·†¹ Žÿ<”·™¦¢ö 6ËÇû€?cÏ{ÙóÓä£JîÀŸ£Ö‚è†ÒÿðÁEßiÄ™!:¿ðWüI:¸¡äþ øo(‰øÇN¬è¢àfp‹m6nTªa¿á˜içÄ2êݲ٪énÚ n¡ÐfpÓÐÆMÛ·mݸep›lŒó¼Iù‡ {—Öï'ãPrÀ!^`”|ÚÁ%¿¡Ž•¡ôiü%Wx õÄ8ããØþ1gÊÎ?Ø‹FékÒ2ƒ&éfÞ*ma­Ò.ÚÁîÙ%§l;UZYeOøõYtj©‚äÁ^÷¸ýæ¿B Ç!k«'+g62h‹(–Ï‚œBš’›>¹]hJÿa`]è!ÙV†x¼˜bš’{P_ú¬îAÖÊ ±ôFùî3Qy ð5_£M3]Ú˜ [úYÐ9ÀþÜ&ÙºÏ7¿Yi)¬\ëBÉýð‹•:îñÜ:%ÿ%ñ¤MãG\Õ5ÔÓº¸|ÏyÉ,—{]9ãÉAs2°•5'{ùQáÞþŠëT7ÜÊL²Ø¬?P²=/ìÕ»8ží…*_·¡ùkä•Ð…ìj«,ïqÊ>säŽkºÓÆÖ6 Îa×6‹²í 1œ¾²Ò†¹ö†’󀯀üŠ´7”þ+¯‚ü*íM¤×jÂçuÀ×C~}òí %÷jà ¿AC¯fko¶lêëÛ²a›R%z#ð½ß«M7= [œÁÍýGsù¼Ÿ#’Ø”Ø(ÙðÝÿ ò_%ßðPrïþòÒ÷øÝøI›Æßp×POÃs5<7X…qËë¥>Ì|.pˆµ;ûõQêg¢ðm³ÁHÔŒGºNü-òBxòAmuâ¼C>cîù1ɈØÝÀXg Éµ'”Ü!`r±í ¥_–!—µé'<Ú@ŠNU@œ’ÿ€€xÒ¦ñw\Û5ÔÓ”ÜC§xN[åqZTr(»Þµ¬ò„S¥ýI7ÑÊj]¶R¯æP­! ÆÂê;vÇì¢ff¹áfÒõâï‘'Â{ Ç;'A|KC“BÄL ÙK¾I¡äîúý4)”~8 YÍ™6lR¢N lF礀x’nR(¹)àÓ ?MC“2,*ÙFkJ¶(U§_YitP±IÙ008$Ù¤Õ—? Yç9ªM %÷bàÇ ,}_NÉ\@äßר (ðyð•ÎΔkƒ(¹7ßù]Ú ŒÛ0¸¡¯oÃÐR•z7ðÕŽÐm¤›†mÐà`ÿÑÜà†Í›ú†¶lÚ@3<hzgÓ–ÜqɶˆXø¯ÿ5ù¶ˆ’û$ðW•~#@ÉÿZ@µEtÙ×QgÒ;6ŒÄí Ú¡ƒNaœu‚-`»ê˪[õ¦h¬Z.[E£Rt|Ãô¦K´‹jš¯<à÷¾ÙZÚ´_6 öؘåRÇB¾=ú9rKèCV™jTy.Ó-Z¼âÜÎ×ã Ì\:ï`¶t­ùgdЂli«5—ãûM÷˜ä" ʨυüÜäC0Jn ø<ÈÏkAFé?øÈu’]C<^ |d§ºG„`”Ü /‡¬ˆ7Z34Ð×74´Y©½øûõ Ï\5 Í1}Þ² [Ø3°M²µ!¾ï~òw’om(¹7¿ Y)Œçæ)ùï ˆ'mÿÂU^C=­Í3Xk#îR æKç¬÷Ül[·Ê–˼tÑ.3Ç^sÂ"2«Þô·¥vxM/sä¬×Ü›w›Á/‘sÂg@~†¶*tŸ Ž‚9f*P{ø2È:=]DÃCÉ=ørÈñ=|ÃCé¿øJȯÔ×ðlPàóZàë ¿.ù†‡’{ðõ_¯¡áÙÀžƒÛúú6n_JdÞ|ä÷hÓMãl[úwïc-϶¶Ê®%žü>d¥°\ƒCɽøÈ?HßÓSò* ž´iü+Wu õ48ÏiÐàÜé8/8{l?Ÿò¤öæÖ7§õÂqÚíÆ¡ KmOÒxAmW[x­gŵמ½ÇZ¾ÙùòOøÈÏÑV´l£&j/¾²Ò¤\óCÉ=|ä7µ ù¡ôøfÈoÖ×üH=wßYiR®ù¡äÞ|7dµq^ñÓÁIdƒ}Ô7(Õž÷´ÕgðÞÃ1É~m¤Ø:Ô·m붻ع9F_²"¾_þ#äL¾¢ä>ü'Èÿ”¾ÿ§äÿY@<šr¿l„½ƒéÀ‰ÿ+:˜iÕ×øH—%Ÿ¢åvÄ¥óoìéOÌRigM²$‘ß@%„íÛcÕh׺üﮂ¼Jcµ¸Öå7PájÈ«5&qJûo¸axä bÛÄþ cl¸ ¦ñºÓ4œ‰™š°Y†Sø­ã¾U.„7QÍžµ‘>s˜²²hAVmn˜êÒϲ̢çDT0²åok©Û¡ä³Æs;Ï=U:‘Ð*Ôeâ‰kcë4þ'§ÿ„z ÷CÞŸœª#yüÒQÉíeEª%¿„dÌuJõé‚] A GRñÃ-ßœ]s¥óòßàO¸òÞ”éÿ íõ”i÷:#ïT¦ùEIv™ùÃ+™xePžTÔv™_¢$M÷A‘°rwlº1.ÆŽ>¢”5½c–;i‹Sù4Ãÿ¬/‚|Ql†Œš4•ÿCò„;Z`cO íõØØEë‚FÖe6å”úÂC”j#¢Ô§´-®å‘Y±Ø¬Û+z™Ó¸o¨~™Z/6C wí¿¹‹ýÚ·}oxC4{”g€[À^é’Œ™&ÇØKSÉ‚J¶µ&—A¤¢&“[¾N\Å)M àrZ›ÔµœR·KQÓE»4œïèÈmîé5ŽÍÑá®CâÓý´ÀôºÚÓ.ys[„l^‹l\Û/ÅZu ·¢£‘Ï,Ã%±ÝÊyÜTN1Vn|ðö½òF‹q÷õ ã(¹Þ ²±ÅF» <6i5Ú yÏ×¢9Ÿ˜ke6ƒ !F‹c¼Jz›f6i7Z(³w¯Âz,‰ aaêšÝ [µjö qH«îŠŒî`ìuÛ¦+Œ=7Ê—Ù6p%D?0&×u3ƪ|×,{cÃÖñJ½ ”gºL Ñ_&L]»WƒÇÕZµsÅÑ" 眗Ç&u¸âÈÕhúìEìÎwä{rƒ½ììÿ== þÂÈä0²Bx²r] ô¼.@}®ŠØ›¢&w·¶éÒ³HÿErH®ɵ±I. מ J+“¸†‹öâïº,$4ĪH¡ô¹h%Iq¸k´Xm²”7Šæ  Iˆ‰˜4æ†94Yø'Ï6`iÄfÙ²Ü8‡å8ݵ%Ïó&ð$ìÏ®ôkì“AãÉZkìY먔Œ"keÊ‘ãoQ”0Û VbƤt'ÓÝå;—N­`¾×.Óš@}²*Rô§‡»<§hØÅ©°‘~óݬº˜ùc]½¼ÚôfÙª½W6w˜; ð.äî®Ø¹Ûoðÿx&‰ô õàe¨ë–á!ýþæz;ÚukÐ$ÉO<" 0…©¡(@ã€VSZgxÎTx—ŒB³¶Ü7î¹ãw‡özÒÅw+x÷P|‹ðÍQLv˜¹1×,YÝœõ°‘š©ËƒiÕRqH7òF.ËùmÈÒmZ-âncÎêYÏ’gåÄ\ÍøqÃÌ7Ö~”7øƒÈáÝÈÞݱ³wÀu¦ÊLO^7S]é.V5–ÍFT «ÐøC®Se^—å¨×ˆ¯‰âtœõHH{–ÛAãv­že}ã±8ïÔ㢸Þ®„úfœ/Ÿ1'7ÅôN0% WŽ\®)9ÉaÃ(¦h§L†é&¦ðF&Ãtƒ&¦÷€é=‰1ݨ‰é½`zo\¦ Sm¶®êZ¤ÎÐêñ;ò£˜”~¶Ž-[Wõ”ÇS´–ÇA>š:çL|»œ/Vù¬,¶Ä–ë:.­Egf–·ùÒu>jtÓ}”ÛùbéŒÝ‡Œ"¸ Œ™±[Xèš7‹‘Þ·ëæC{ ‹QeóVãN¬–‚uÌ´v™Æ[Ü`—åI~ þ2E˜øÜ¸øým|˜¨i˜ø®S&tÐåYvÃËÞÙŠ’vR& ›P_·ò®SCN:w£ÈݨöÜÊsÒ¹Ë#wyí¹;•Ñç¤sW@î Zs']ýq»Bˆ ft` ¼ KFÆ‘%ÂßÂÑ dð·ftÀF¦O—Ñ£àDØÂÑc qL«g‰µR'ŠjT õ-ÔIbp ¦„§÷à@Lˉ1Õ58à€©“S]ƒ0­$ÆT×àÀ`ú@\¦Òƒ÷#eW«Û‘ï”SúÙ:¶lpÀCyxZË£µ›®p%k€­ÜtUªÖ²=Ô`‡¿Ú›¬Y,m•'m×)—X0c ß5óyÇðJÎ1‹^.VYX§…ò®áÚÞ1éœM"g„ú֔˗ðxLi-áÄ6h]B}´.˜±A+Ì›0§·mÛ*MoôõऴSàAP!låNàqB«éÛª°°ý™È a O‚Î< <ž¥UÑÆºàü«ú!_qÏÝx4 Ð4”hÒDgÜ¡‚‡ù—„¨iâö&çnPq²Òœ=¶;îZ¦ŒÏ8o,78ЛۤtúijQÒ„á:‰Ûã;C…£:ž&„-< ïÐxDk Ñ{ çsÁ‘ðRp¼46ÇÎp±¬´=|ž‡º‘ÑR?¤U÷|Ðx¾VÕíY'œjX°=ßµG«¼ÆøxÍ0FYün™Õ¢/]ž/@F±Ç0fFÖ5ñ7A凗_¢„úöå©xÉ‹âz金ò‹µZ|ÓNégëØ²— <^¢µ†„úFq6žê(NœëþÔ q -a+Æs> *n±½}<>¢ÕÞr®ÿÜbÌCS? Ò„ý Ý›ôeMå{Ðw\yžOÂËÀó²(ùãàñq­J޹´ì E¨/F¸(â’æ Æ> †„ú<¼ú>ŸÒª¾uNÔØÙø4h€ö@lÚçÍÝ~)Íì3`FˆÛ* c23iЇ†¥‚m“9Vh½Fp>/ýȃôïP oþÝüfs o þÝüf—·ñكћE#óùYä“ÐD>ÍØù¤¡ÁþÎ rƒAn¶ó­õñÜm~³IÈuô¿ yýòJnT¶4æÕ³&äUÌ¥ƒu otÎõ?ó_…¼~yý|By%½5Ö+ÏñÖ9ùÞ,ü†:ÛŽY…PÈë×/$¨×¹yÐ+×âXs…7‘ã0¯òó‹ÈëµæU¾Áùx558{Öáâì™Ó¦&‹mǵü„ãYâLÇ”EçNʇÙˆœÆ[ÅGíÄ’¸3D_nã€@M€L¤ƒâ¥-á÷ö >¥·VÄü|‚žy&ZøŒ ûãË©—×aÅü„‚'Ä1„I™r??ÖjÉ[Ö §VtG ýôð MÍê}C4Ê[•Ÿvû'ÄÝ„1Éß³¨03Ì òSòd"—ÓÅ“Ì.¸U×,Ö,êxq<øœöe ÉŸcñdPß’÷Ûçžc1iºy§T1fe©e¨YÖèsÊÚyËÿ*²öU­Yë`Z“eò50!LwrîËHùëZ«|CFégëØ²É¹o <¾¡µ vÃý:g$+\K> 44Y>5QK•Ê¥aª‹GÌ¢m6j±³(„l[Ã{ZÒÒ%¦€x4é㌊k—ýœ¼VÚ¡‰v¼¿´mFÓ™˜VÚ¡ Âs Ÿ“¾V(ùsÄ£I+fÝ[Z^µ÷xžvI²ÇËö˜œ|#I´º!ì‚Ü¥QO¾íy3¡óÖhïKZz¢ä/¢žťþ BijT¶†±/›ô#ï” Õ<ß5îÃ’,nIž`I9C’}Ø<†•nË>»cÄ;1á—Š'OŒ²ŽWÜ{±³mØ-ôz¾9n »Áf¬§œØ¿ëð 7íºëà‘ÛíÝsÝ-4$thÚË[¾UžìîšõqWÏÕFíWÍ^Ç»ö˜Ñ}YùÁü„év‹ŸõôÌùš® ߯xÛûûó…rî¨ÇB{ÒÍ•-¿¿\)±¸ÄŸ8j¿vC¿åmbÊñ¾<å¯o¬Z,²·»®6ne߬#Ÿö|«”£À¢»«àäÃ?øÃ^£bæQ‰táE7$^hÓ÷öë×sòÁ‹„eåÊ‘‘§êŸØáå]»â6­Qa_v“y¼ÿªË0½érÞ`ZîÊåúÙÿÃÔúçç¸sG?ÿš'¯4XgÐbœY&º$<2+å1é‘®+{g|/ã>ãë{NžŒêгìÜ¿kÏÁf¼ xäëd͘Þ8sög޳€òüµÝü|•œB%Ü+°ß«Â^lyÚ1MÞ<$mùnœ*™fR©6ìzž¹ƒ¹é2Ÿ+ÚÙ¬ëÕÑŽÌK;s¨If¥‘xÍ¢HmoýѤÛ3G ·9VԲؽž54×Ê‚!JYñ(VöS>Ð(j5ˆ<1ã—ÛYÒ}œ/ ô,ú'؇ÄWSö7 ÌÚTåO99Ï.ÐÕ|ìƒÊ„9¬VaýA0S"·3 ¸€äÛcçí&šÑ¡ ¬—þÍEl «¸Îø¨éâ¢Iþb+ZqÁö²Ún‚|“²ñ´EŽg¿QO’}2ðä±Ë3+½D! p+ð6È·%׉ä!Žª(û™ycŠEA^ÒÏœ »'< òY*ÔRj6èÓ„ÐÙÀs!+õ¯¦ºd„¯ÎŽH8l°ÎNÑXV’{Ã"ðã—«Vhât>°rwzš’íöAîkE…&9`?ä~cUu±"Z¿L[½‰W¯Àâ§ÒAaVÀxAÁqé,‡&BT ?mgͦ$‘P ¡0L¨iLnýá ‹ufMw¼JÇS{FÅr}Ó\°{¯Rõ·+pÆ|g`ÊZMyшUªLD$Û€<¾%SòƒâI›ÆÙ0–õÔk ´5XpT„@ÇxKÓêpÖ@Éè }v„l“¬ì¸|A% Z:,üw'­Bx˜g?Hw-¹ë¤ç—Í2{ï(ÎËMÏS)î³€w@¾C›ÃXÔå–Ì.Ù¶¸<hB65:„¼ShÔ´QrwG!Ư‰9äÄ£-÷¶o•"’í âç^ÖQò–€xÒ÷Cçrs®Íp%ㇲ“¶¯Nà2ÈJS²mfs†g»¡ùö@ÝöxÙ¡Cjì1•"^¼ ²zçü”]|¤ß!· ˆ'i¿CÉ=xòÁØ&¿Ú°= í‘:´!Û-nˆKèCöÓÑÓQ`rUCßO¶ ô'S§’o (¹àqÈÇÓo (ùiñ¤ß@## 6íž%ÛB`˜;À3!+uF¶7ÍÓB̸8Ú /‰Î9sÊVx®?åDŽý4Ë× à]ïR.ðSo‰#ý}ÍàýïOÞQrwMÈJáñÌyXêO(hdhAV Ö$M¿©JŠÀ2är:*:Ø*YÓk”-« 8j^ÅÊÛc¶Un1ˆVø\ÈÏM¾Å ä:€Ïƒü¼ô[ JþùâI¿Å8Ÿy€Éµ‹ùÌ¡·NàŠ¶9b6G`âÙ,ÝtËxž ÌÛ”«%˵ó=áØ3snãÓü² á kÁ™td¦7áT‹ªv9_¬X×#F„ò{.ðä-ìƒg ˆ'iFÉ=øä‡N—>‘zø»·Å}âòFà[ ¿%=½øVÈomA„ÒðqÈ'ߢPrÀ·C~{ú- %ÿñ¤ß¢'&Ø¢ÐÉl¦³NàYõͦßTkO‚i§`;4-ù¥É(ê…Pó QY³1N7m„§+×'¯ÌQgÒ’5ü•xðnÈw'oø+aì„÷@¾'}çäïOÚ4VÁÔClÙd•p÷FÓ­·4™n ×µ{azÞù"ÙiÙÕ¨µ„wB¾S£¥GLË®†uÞY­—ËÄ(ù»Ä“6 á*ßÖZú$¾F‹¥Gµ4ÙxuãO‡ÌæSF…Ÿ2»ƒÂ‰ú'T;¡ÖÕà àXÿj±hLLWöÝÕM¿Ä5w'Ha”çåÀ•ú.rmÑÔJ§B~júUƒ’?) žô«Æ…¨&Z5– Ëfv…~¾b™}šÒ³i“™gä ºà‘¢¯YýxZ¤Üt†ª"T‚© ŠÌè Dmó6c9ãVÇólØ<dœk©èl5ð5_£­á^&,ΖíX£7ßù]Éw,)¹ß¾ò»cצ³gx¹é!bóà§ J›šÎ¨­>WQÒ_…üÕt”ôià× -¶’õ* ý…¯¿ ùÛÚ4³¸‹õÛ<%µüøWÿ*µ|ø#È?Š­–•9cY¦qNstÔµ&mºEW6D J ü7Èÿ–|ˆ@Éuù7釔ü¿ ˆ'ýA8†8ÁaQ°aFZ'p9äåÚèC%£hMZÅà–N©¶~NŒœØ$%SÆÎ ëê’®Áì [¸žŽ’·Ô³žNšÆÅ0ú[Ö½‰_¢¥&Î6÷¡yFl*Î “Ã54|#;*s ª(áÕ¯ÖhÍ£2—À‚ w@Þ‘¾QòÃâI›Æ¥0œ[fÍk‘øZ-ÖÙ®{J¨uã·+³Ì¹6pê#4¾[=…a¡›-tTsÆcì¥ÚŒ^Ãö)»X¤ø,<‡µ`Œš¿â;h·hjÂq"¬óÍc¬ÇœÖO¿W(Ôs€?€ümÞKm&”¸üðo!ÿmòA7%÷§À¿ƒüw±ëàRÌUËÄâï¿€ü‹äƒ J®øÿ1}HÉÿ“€xÒ÷‡·êœ¥Íõ Ì:ñçCg»Ã;4KNµ¬Ã`Ýrq«lÑ%†v¹¡ƒœ5î6ÛÎû'ÁÀœéyU:b›¯a›pJAªNÕÓì ¼Gø·•ÜF×H\~ü'ÈJõBÎ5RrügÈÿÜ2×H,þøï•:ár®‘’ëþäÿHß5Ròÿ) ž´i\Æmº†-‹X»8¡þþ×Õ§0cqœlGŒ2Ð ¼òuÉwĺ`Ê„{!+Ïž(ù}âI›Æ:XPˆ-3ëË‘øåZÌ::ð`ö«À¬?ð˜=ù÷¬Zà1ß, Ý[ôĨ ²Ïª¬žÒ€ j Ç›žÕ¨cæïr¼GøäÇ´9 Å]ù {H:P 2¯¾òk“(¹—_ùu±«OVzšÒ=ð ß M'KºFí²SRRÊۀ4%*¯”7ßù=±•¢4ÉGÞ ü äjÔ‹uœy %½|øYÈŸMG/~òçbë徆³| ûZµ«·òŽãÛ!f¹Õ9ÃO²±:åíó3k¹L˜t¬NÉv YƒË#ýh‚’¿¬Žá“~4q¯-&M¬˜uŸÉNà/ÐXLÆYU4†¡…ă ÊûEÀG!?ªÍAª¯O!>¯¾òë“w‘”ÜcÀ7@~Cì w±y#ð}ß§MIqÖz£?Y©I‘WÓûŸ‡üùÖDDá À/Cþ²Æh\i‘ù:ð;¿“ŽZþø]Èß­-ˈˆÒ÷€?ƒü³äãJ®øsÈ?O?. ä! žôã‚õÜÆL..X‚“xÈuφ|¶r<0{†ã¦pß°LMX¬apƒûgÖT²&žÑ63iª_.Œ 1÷ôƒxNÖuÙ à+!¿2y×EÉu_ùUé».JþÕâIßu]Ém?Àä\×µcÃèuÏm«°¦Éy欂lÞ9™»îqp`N-¡ï³ù©; ó¥”Ó•ÀãÕŽsj¤ˆåE»dûµ•1 Üž |1äk«³KF¼ÛªŽßÈÃQ‚ÓÀ—@~IüZ+ë³(ùGÄ“´Ï¢ä:€AVŸ‘{YŸEÉ¿T@”Øu/ƒ¬4xa³ó¡=°SÂ.È]é %¿N@’[QUß Yi)œ¶ƒž‰É‡€†üáttõàG $¶®º{Âêµ@Ëå>Äò£ÀAþ‘6µ©í‰!.?þ²Òœ®¼âþø Èñçp³ÒÑ¥ÿÀ‚«œt40ÄõYC=ÑÀÓÉÎßÖÓZ+ ߨ;41#¤­­b4ë®ëN³Xè Ö:âY ôl¯—¢^ö,H£æH²6 ã„O‡ütåBhǧWØctçû ºóûä‰à¾÷‘{× Ž<å$û©`=P>±nðä‰uC'Oâ/zc£³¾‘{OYG#O‰ÊBÄ­îÚ²Ð8Õˆ[Ý“)8q@Jü+ oQá5¤­TÑZ£çE#¼–¥œìx»$ž¡’Æ9nÚe÷óÍJÅu*.-j3ò®íK„‚ÅÝ^Oг¯·!eÇ¥Ñö‚M ŠG«A˜ÕmåÆsÒ+J…œe.ç2ăc`VÃA3^'Nòö£›µ=Ô~4h>–ŽTJÆ`nÛf涃T>ÿ~þ“R3¹¸ƒËéÓe6‹Y3h+xïPá]óÙyGÓ#&#µÑhØ9ÒjzDÁ÷èa&ÛÆhTË|mŒPZS6³XJml•¾"›ŠSmÞThª83êiзˆáJvʵÚêðja¿ÍpŒÄîà}칞=OI¾MÉíAݧAO4̨ §ûÐÉkÓÓÁнáÜÀ&Ízì9Ê7ÍX@EâÅÖÌÚ^,Iúëõ5‰^OθÙòUtV¾ D_ªL2‹O{%â¦0fÊP ^|-òð{ÚzÉ^²ñÑëâ¯U!®'>ÒB£ñxäH÷¥ÀH %éÀHŸ>„Q‹Æ—ÝG{« %:úH.Õy¢=f)~:Äœ%]~z*“é|Â[vWäý ðþzlÞÒcÉaz!êKÞgÆõÁò€sðü´°Úzáø1á4G^ðÁ’ɼlÂ}÷µ¤…Z<ÒìÔͦÍ‘¿x;äÛB3E„ïˆß¡B<~3¥FÃfª“uãÕJ·UÚxIµUz•2_[ÕÜì[U2¬dSmÒ`é3PñÓOÝA°ßKרÚÁ¾£™'Þẕ²Þ+­+„oÕÚÉMvyÒr=«/\bLYöø¹a“q[§|SÙ|'C–X¨ˆ¹ñž^£(ß 0s6— [àæÏìeÄVôô™s€]\Ît-OŸY'_§B\‹§×C£¡§?k¤»¦]g¯‡š¬³×¨—ùœý¼ÆßªÂ‰ô÷ ¦ÚÜßk2SñÓ5beÆúÛ•ùjÐS½;Öió™e"üM»íO¨z×Àƒ\&Ôà]“ #¾‡Þ‡Txëq®Zh4Þa<Ò]W´’wÕÂMÚ»êSÌ|óabEhQé4äÕ¤:¶J]Ñþ>¹Tçñ÷zjŽøéY|ë ò-ù“ÎDJG@éHK"æ%1ãåû— F¼\ˆWTˆëqéZh4>Jm¤;N´¬…˜´?×§•ù¢åy ¿UEí;“Kuß©ÇDÅO{+óCWÓBäoä*èð©QsÔ.ÚþtOprkŒºý0V»‹öì¶x®µsÄ7«÷ ;Uïú{À÷p™pax×÷ Äß«B\wÕB#*`®«WÉÁjá&í`õ)f>;¿ù·ªt¢}lr©ÎãcõêŒOU‡rk\>.j‰÷Œ?”ûÀ?ä2áÂpž_ˆY…¸ç©…F2C¹Z¨IûN}zIt(7ɉvÉ¥:ëÔc¦â§¶8”[;]évói:ñvÊàd"׬MÝaðw28KµÑ6‰`É2ˆºsÈös™°Þ9ÞzŠìp'— „kÎ^#¿F…¸׬‡†þõzxÉúeJIl=E¢%é”Lµ¹SÖd â§Ëƒeíµå1êîÍàts«<'u‹T=ç~à½\&\žsD >¢B\çÔB#Ús’j•<§^ÒžSŸRNÁs61ûV•L´çL.Õy<§‘ Úö‘Ì(ÈŒ¶Äe^¼—6»{ÕÒ‘öðàÉûŽõîcT]›×‘æp9+}VR«ésâÏU!®Ç‘j¡ÑБ#ÝÍ®ä^µ°•v¯úT5Ÿ{U©"­*¯h§›\ªó8]=Æ,~:Ôp Aç~‘÷ÇÀûc±yKïWÙ « QÏ~•Aœ}Ôì°NŸ.6á§VÚÒÓ„[@•pò`KZ7µÍ“Ä{x5d=gK$Ü„áñ*Äã7aÚhèÛ<©’T;¥WÚ7O&](£dSmÒé3KñÓKiÛ‡Ðâ§k‡ w«¹ÎãÝïÖVuÖ̺GuXùÚNâw?ð8d¥;y"?ÝÇŠàVVÜ-Wé«yÑùnçc‡j!æå!Èi«lgð1ëÊD”EEFÄçùÀ—B~iò‘%÷0ðe_[µËpä)JA?/¾òë´é§=78 ¢™·ßùméhæõÀÇ!?[3tÀºèôñ«ùµs8,o‹VAåÌbûvàŸBþSmê[^´K¶o0Ï`—LßRàö7À†üÏý§w[Õñ£TùCà¿@þ—ت<;烾:?–S¡8~ |òʬâ/t&oˆœ`*öM¿c¿RŒKƒ1-µè¬Õ—&{Îñ5Þ† o-a© «òÙaXÊ5®œêa'œjTÍ|' ͬ-*Ÿ¨-ÝóÔÌVé-2tN0Õæ¡³¦J$~êžÒ­Ô·ðU‡¯g6áÍ|Ï-Zá(`†Ó¨žéއ×OÇða!ßavæÕÀ7p™0…`Žndð\&Œigä-?¯B4Þ|— [ÔôŸÇ ­[®Ý]7Ó²n`¿SŒÞ ü—3Ò3’-о+ðþ® o=1€oí c€ªW ´”ôih¾P aiQ15‹UšÖÔV)0:&H.Õyb=•JüTþÎd‘Ç÷Àã{Ú `éHÙƒ]ô¤NulꙪ‘ž1ÚŽ "EïÖ—-ó]* ž˜¥²Ê0Œ]±¯<ß-®‚¼J[C°¨‹t]²±q¹xäË’å(¹ÕÀ.È]±Õ´#‡+¾5QPÏ"vô2«EåðH‘1§Xt¦è'ŠÜ2ÍÒo—54b¾xäûbç š$‘aXa;äve«Šj;éÞ8iZâÑÔRöÏ\káùÕ‚mÑR‹|±Zà n‚+xËfqÚ³½œù³€WCÖ·caшí[¥ˆd;€; ïHߥ7~Ò7í0çÉšöZê5ížS¾“KöYÀM7%oÔ;aÈ„›!oNߨ)ù-âIߨ¯!_“¬QG®™oB«SÀŒú”6î*Ð> ˜¢Q_C¾¦µF} 9Ä–õµ0äk5ê%öÒ²1G\'ðlÈgk3íUdÚ-2èü¨º½²v|-¾°rwòv|-l—°rOúvLÉ_% žôíxlwW¢vÜl‰u3fÀ³ Ÿ¥Íˆ/ V ÑÑá´rÈâ}¦B•¼µ¬%ïÂ{» Ç³Uu)gÉ»`½„O‚Q¿´%Sò½âIß’wÃzw'kÉ•ISvX~7¬ww"–Ü/· NÖºwã=Âw&oÝ»aÑ„Bì‘¶uSò× ˆ'}ëÞ‹Þ“¨u/ ŸU Ö \y¹6ó^GöÜÎ@zf^ަBÑs€ oHÞ¤÷ÀŒ 7BÞ˜¾ISò›Ä“¾I_3¾.Q“ngÎOX'ðLÈgj3è-Egœ¹â¢1Éú†ŽkØåû1XJÉ—¿ò3‰¦è^(¡·(käD~p/ä½Éùu0lÂ}÷¥oä”üõâIßÈ÷°÷&j䋚îGhB­ßowÌ¢tVœNDéà%/QV_‹v8ùK½¥#cz#íND¸O Þ§B<þ2m44ïpÒÆ«qª+Gô*%™NI—Lã%ɦÚdI†>?}’Q¥›!ÆXh0óN÷ø¯HøNÈw&PrÀ» ß•~L@Éß- žôc‚}¨x„ÉÅg58×d±uzÀs!Ÿ«ìiÏ ”ßDLV/€¬ïDxûƒˆÓeÀäœFï¹?ˆ\ì‡ÜÛœ—ÝvÎÊõª¨h¸²úÄÌi¸/ˆ2¶x'dißÙ0šKvM0ñ½Kà}— ïøÁœ6‰ì ÒÆN*¤Ó«š$÷ég*¾¥¾/(i½58“MµIÀ©¯‰Ÿf{dãH‘ÇÝ•")¹8RO ŽEíà˜vIÉß+ žôãÈëy] PoÙÜÅ¿Ñúl¢Ñ Ô?`xNÉ2ÌBÁ¦KðÌbí¸©þ`Iº/D,Ï@HÞ†¯‡ÝBL߆)ù!ñ¤MãXmˆz–ôáô~FgÐiUct‘¢Ok±hßcÅ¥[ ü*E…Éàz#Š.£\|gáˆ^”eE-l'.Û€ÃmµsW´tÄÂvJnp'd¥ùáYgŒUËyªéÒTˆÈ5@AÖT‹GwÓ Ý«a7iµeé*EÉgÄ£hšÝqé<™=KÄ»—jwÒý’ln†^—BVÛ,Ó¨Þê;{žø­^ ùÊäë2%w°²Òš¼YšÝÂq’=½¸y…ö¥ Ž+_ÃBD{€‡ R&œþ5,Äû0ð)Ÿ"Ë¿á BÂSDDø>ø}*Äã*h£¡ïm”¤†ôêc¾Ù!ékX’.”ÆýôdSmÒO×g–â§k£¯aQ9lC$ùTÈOmïTºÛƒxŸ>òsŠï|D þˆ q=¾S }w{h£$í;õéc^ß){·GÒ…í;“Kuß©Ç,ÅOwÝ~wÿ1?Jÿ/,hºZZ¹›æá‹¿¨­j]4§›áO99Ï.X¥ŽÆW€ÿùÒéh| øcÈ?Ž­äKtw-~Â1ÓÎåŒÚà*}Ú’®E¦x— Dó˜Y._®B\K󨇆֮…J²Í£F}$ѵH´P"›ÇSmÞʾU~øíñ·«×ㇵÐÐÀj¡$í‡õé#‘6ÉB‰öÃÉ¥:Öc–3Ì1ð¹1*ê»AåÝ ,R}ð#\&\ò£ñª×ã!µÐЩj¡$í!õé#‘H5ÉB‰öÉ¥:‡Ôc–â§—ôäŒ}vÙ,§{ G¼›Ð³¤/d)~¿«­æ¬š3ÀM7…vEUï&cÛ™?þ’Ë„šØll›Dð_¹LS}ë{©§ÁÈ›ž¥m;ó+ŽÙÕ\&\H}„ìÀ˸L¸ ZÀl—@¼K…¸–P ­}=”d[@úH¢h¡D¶€ ¦Ú¼Ôd–â§—Ì]?S ¶T+®ž©QÜ Š;Vß!{ ð.. Ïy£@üFâz<§Zûz(I{N}úH¢ïh¡D{ÎäRÇsê1KñÓkzÃÈ3˨ –ÛhýLÙ)÷ÍXC#»g@ÌÄ#ÈÄ#±3!½ua?ì0D=:T·.Ü„ú·.è\SD W{ ÷$ßï¢äÎ^9þ‘ºw å¼_¥î3Žea]°)gÖy¿£Ö/£g¥ ëšùNí¯FBºJP¦ž|&äg¦_%ÀðBÔR%2mدW+6•trgÜálÞÏÁ /Â5éÐö·wšÅB_p°/ï»Ö¸éh!üklŒnKñì-Ãa_Tõó´µ´d™^Õµøé;&-dHŸ,jœrÜc|šŽé´@·ˆû4•Wqã¤÷@Õ‹&Ëã„”í,´™dô¦ Ï,UŠV"ßH—(úŽcx%fPÒÆp+JþVôaÚÆph„¨ÇþŽÃÌ;(ƒæ7O¢±¡Ã‘*ÕÑbpp"+üQ›ûhµöùÔ„LÉbù nL TY-W=º¾ññüct2cyÜ3ÆíI¬*ldz¼Ê[eËe_Ŭg¬Z, æ .]fÖ(|\-³öÓ¨˜®oç«EÓ5ò¶›¯–<Ÿ Ý3º­ÜxŽÚ]ž´Ü­éUGésßf)±,Z®CéÚþtxÿ‹ïVg¸'X¸×cLP1YÈ û²ÚíNh΃+= Ö(3ïœqȲŒ}.cc·ƒnè ²AʾŽö^›.•(?³Ø”º_o–ˆ³W?•ø¨SeÍ‹¼½„q$ó€½ÿÆ¥Üø€'#ÙC:í[¾šQòYñ(6ü‹ãÒ¡-jgˆ'f©¬¡¨È)Ž›Ì…Þa[ù Ô¬²úÑ-Iïv(Šp ä5Ú¤ÕS“£×–,ßd¨yª?9Ç•=`–È]ÜYé°¤†©.f}VÓ.F¤{!p+ä­±u—•>,ŠÒßÜy»6%­ðýŠ·½¿jj*'¡¬ˆ$‘¼xäû4ö «n”ª®|$¶ªÚ{¤/¸8 yTcWÖ¬úŽáh¨öÞÑÖR÷KÉgŒç~/ˆK‡Žý9K@<1Kås¿hê{ëshîsÆA«ÆX½,ÞaëèÐÙÕµ^”ÏŠÆr†dÆî‚Š ÃWm+w#ŸÐu=(Ùo²`„¢vÊÈ­Þt~Â):ãÓ ||BcP1îxjáS!?µ.œÒ? |ä§iSWvÓ>Ï>òs4ªcÔ)"’}:ðÈñ‡ªVtoêé57mèëܼM©*=øJȯԦ›ž°y-865§ýƒ¹ÁÁÍýGsGK•yŽÜÀPn``ƒdCKt_ üä/iTá¤åŽF$û*àBþÃôÛJþËâI›ÆÝ\ã5ÔÓê:¬}¹Ñ1Ëe»@-ÌM9ãÖœ±‹uoׇ]û˜Y´Ëûýaú%5>[X㳫Lè×ôwºÞñ7ËáHsD‡]ºÂ܃Œ:mfÅ–½ ±ay5ë­¥ÈM†üpò %W>ò³[ÐÐPúÏb/°¢‡m8Ÿ´Q΋Ä“t;CÉ=øÈ/ÑÐÎl`íÌÐÆM}}C›6(U›G¯ƒü:mªénÔÎ nÙÒ?¸eãÀ–-7 lزmãÆAÉf†Ø¾øUÈ_M¾™¡ä^ü䯥ïß)ù¯ ˆ'm÷r…×PO3CÝað¨×¸“weXk²‡_ïG‡éÓ˜@¿);6ÖÄxQ1óÇÌqKºNŒ 3„ú»1k…nÌ!¡;vÈó§LWöìòáqÈÇ“oZ(¹ÃÀiÈÓ-hZ(ý' +uá÷a6lVàó,àCJ¾m¡äž |²R€1ó¸é mìëÛ¸U©=ø(äGµ)æŠF ËÖͶôõ¼ÜäÀ†Í9[ºóBT_üäO$ߪPr? ù“é»sJþSâÑ”ûe#ìË¥ •^ƒÄïä:NÚjá@!%Ÿ¢Ñž— Uw ¨|½yÜSª@%„íÕR™µ@l±%®5®pÉð¼G¸ ò*Õ–õüŽE$Û \ YiÝ}D²Kd(¹àÕîQ?½0è•—‚[ã.ë—‡;¤dâµ8yH»©,uÍò1E[¹¸ò¾tleðzÈJWÊÛÊà ã¯$4ê¶Â”`ä׵ЦËbnN@žÐo1¾k—Æì¢ìZebU>²Ò`½¼Å8À“O¦c16ðiÕ¦ÄO×Ö,†”Ì5‘&¨£6á” æéÀ×B~­vƒióÊ ÄÞ|äw¥c+o¾²Òhy[yð=ßÛV¶Šë,ƒ r¦]ìóÌ1˸Åèffcפ%\¼÷o{=½*ljõ{?†ücý^dzŠ%V|*^ç×Àÿ†üßéXÒ?ÿòÿ¤cI?þ/äÿmI«¯Ã€]=xÒ‹'ˆÔÿÇ1s— 5•ÉÒϲh oDøO‘öým-íQòYãuŠÖœ*ȵé&{– ˆ'f±ìY·n‘7‹´Ž“yž¢3n¸¶wŒÅ8Ìx¼ÀÑŽWq‚*¾ ˜„IÓµƒõžÒ9…R ÷@Þ;'·LߨÑgXe§k¢‡»ìbžÒ>ž3{ò =\&!O¿¨°_ Ñ/˜ÀþÚfÿä Ž[¦ñ¤ó•G^…ÆIn$ÒQO:X Šnvî¬Ñ]õ‚{_Ù+Ã]ù {¨‹Ú6¯B'ÖÒÊòqϨVäK×BN@>;WëÍîi»×˜´ë6Ð+’—g:v„ë ¯kŒ#íõØÁÍdÁ iÓcñ¬ÌK˜ecï^ÞÔ„+­ËFÅô¼ð`‡/Øf† îþ—ÎÒ²Ax3ä›cgé*æßÈu¸%³-ðp}¸kï^[°A’ð*Èñ·öÐ1ÝŒtLC= B„« + !Å4ÔcH;D=†z/*ëoU=ß Ú¶ûŒîà6$,ð÷MÚ®àZF¥¯þklÞ =3ÅÀrƒf• S¾¤‹È¡03‡—ÌÓõ¬ºz{‹VyÜŸ”'Y1ÂK!_›ä}V¢œ£Y©§»9éÞšà¿è1æõĽ\SÃüýËé{å3YFÆÃH󾨙ÜP):~-gAŽÛé ‹?Æ»’g*ÙÖkL3Γ¢zä™;`K¸rüc ¯òÌIRNí`$ õù¾õæ(‹?­î‰aÆüòZì5ŠþôpWÁ¡›òÈ>‚„ë!¯×Fv’“ ¯5KÖAW+YyÇí!íõ8îrÜÖq³ÄJnfhzåàÔÑÚžKöÛÀŒnæ¤Ã¿»rÆæ'L E®”/jÙ"VHÄÌbW@¸æ¹sƒ½¹mÛbyï*ÈvAîÒï½9qÁ{óñT¼wðæ0_Ñ{O"c„º½w˜³d¼÷ØêóÞ×üKn`S\¯r´/†|±6ŠùÁ¸§Ak:.ņɞ1BÞ£Rl8Wo"¹Ûtú:éa)J>+`¼a©Ù·‹&fiR'py[ŒÛ“#† YÓSŽÛhýÏ èpäéëäÞ ZÌy+{°QÖÃÿžŠl·©˜#½±œÞ8 ßr.ÿÝÙô»þ¥ç>~d/—Ô¹¦ý¯³fçfs¿_ªôdÿÜtpb¼´·ÿàhÕ.LË,ŒnÜX0‡6mîÇÂÈþ’Yî§x1,χŸ€Áf®ùe­¬ uD›i›Ó;8 &ŒJCÄ£XÙ;bO&P—x©€xb†7× ·.¢µ@½Æ¨MK€z‚¬ ÖõÇI:N’O’Ï$é\œËì3cæâÉþ+±Qô ƒÁ¿qú%{\bü–²„‘xöcÑí Nà³|ù\< ?9vŽ„92 …áÁþ!FÜî*;e‹E"ש ïÛuó¡½½Æ$é/üÁ¬TXÀ6|øàíô‰É#“ΔÎU'rBxò]›ªÇB©+§´–Åqñ+ÿ2TøãUþ{ãÒ9³ñ³T¶|…–°Á–/Ér‰ŠÍ–À)ëž ùlrmú£˜4Mêšyßr Ïwƒ¥[Á½¼=6}*çÏÎì ¢‹8£éU+•¢mø Ù?ø䇔u3G'×Y¾iKŸqBøBàK!¿T›Y2âÝVm|Æ'áÃÀ—A~Yì*sií TnWƒ“RÃ9vú¥Bá¼ø~È辰Fš[Ì—ü*pû4ð ¿ Mq‘{ ? ü"ä/jL6b¯á€_‚ü¥ØÖ²¶¾#8yÂñ<›Îáu‚pØË)¨äùï5–í[¥ˆd;€ÿùÒo’ , žôÛ@aæ"Á60kÚ ¼0·Ä-m3v@H6³;,gc€³vžŠ»ð¹¤ŽŠêkǧ×êœX7T»Z§sÈñmC¡! ŠÈRÓ-ÊÇ¥À7ªô`çŒh-)Mî¶â»Ià½I…wÍZ²mŠ·íh£Ñ°é[>Ò]W´ôµ;Ú¸5N5bØK¯b2ó¸±"´¨tòjR[¥®Æ%›j“ ôÕñÓ+ ?¸*`̵¨Zå<]ÐÍz%¬ÏS´Æ|#o‹=²‹HõnÈw'¸ˆ“÷@¾'ýÀ…’¿W@<é.+x= 0ÁÀeT6p!>ÀÓ/pYÕþ6.”ŸK )p!¾›Þ- \´ÑH pÑÆM*pÑ«˜äý<Å·—¤ÕÕ8pI6Õ&‹¾š#~º>:pqíñ ÅÈEäzd¥B.r¡ä:€÷BŽ2HG.”üˆ€xÒ\ø;Œ\ò²‘ ½ƒY†Ó0r¡w–›"zñRàBŠ\èMïE.Úh$¹hã&¹èULr‘‹~žâ[ ‘KÒêj¹$›j“ÈE[Âó¹ðûëÕ‡\Dª)¹ÐKÀ¹Ð;÷ ز!—sÚx°B˜`àR \ˆO'ðô \ˆÕràoSàBù¹¸â»IàÝ¢ÀEmܤ½ŠI.pÑÏS|K!pIZ]—dSm¸è«9â§ ‡\xàcÈEäšâ %×lá %?"`ˆ\Îå-Àä"—öò lèB„:gBVZ ÛЎ١˸ëT+õ×]gÊðŸ}é³]Ïç/ô³ßK[:å`ð&È7%oéçº Ÿ 9þ‚uiK§äoOú–3h £¦¤,}HÖÒσuŸ—ˆ¥KXºgÑɦ1Lý<˜÷y°¹ª6'gêèœx3äø6&mê”ü~ñ¤oêçüÏOÖÔK;õóaÞç'bêý³M½\-²(…Nè´ÊþL_.mÜçà ‡!'oÜçà wBÞ™¾qSò׈'}ã^ ƒ^™°qKûñ•0蕉÷ÀüÆ-ºoië^ ‹^ 3[¡jfrÖ½½&աŬ¤­›’¿V@<é[÷*Xôªd­Û—vÝ«`Ñ«±îÁÙÖ„$FÅr=§ÜÇG#b9ïU0éU°³ªv&gÞ«`Ò«`SZìJÚ¼)ù]âIß¼WäW'lÞÒÎ[¸Ä-ó:óŽå¾WæWÃÐV¨šœ}¯†M¯†Quh1,iû¦äw ˆ'}û¾6}A²ö]’vßÀ¦/HǾK–Yžé±©¯I†nT»ìKÛ÷°é Òµoá’ÅVÚ÷°é[fßk`Ók¶oiÿ½6½&ûÞaߢˎiàk`Ôk`i+T-MÎÀ×À¨×Àª:´X–´Sò{Ä“¾_£¾0Qï cK˜uÏj« É¯mážo– ¦[0 Ö¤ì~×êÏ/Ä{„ HÞÜ/„‰Þ ùÖôÍ’¿M@<é›ûE0ñ‹’6wi‡~Lü¢DÌ}×)™»F÷~Þ»†w¶ªáÉÙûE°ñ‹`dZ MÚÞ)ùƒâIßÞ…Óò“\¨u\ÖÚ/†…Æ_¨5›Ï¦ÙÖ.NåãL“`‘~`Öm¹–çËZ8Q_Ü Y)’³ð‹aÕ„{ Ǥ-œ’¿N@<é[ø%°êK’µð’¬…_«¾$ ¿ç,œî.Z%˜yC›7pS5÷øA/[ „…ŒÁ•ƒË9&] .éN@žH¿Pò¶€xÒ¯—Âô/M¶¸²ÕàR˜þ¥‰Tƒ¾ÙÕÀ5§øydE~€UÞ±ÆÆlV+ʾ´e_ÚV?e;äíÉ[ö¥°f«!_¾eSò;Ä“¾e¯…5¯MÖ²}YË^ k^›ˆe¯›]֞׆  $oÏkaăÓ·gJ~H@<éÛ³6µçvOzó„#&Ô?¤xù)ô@e-š˜®AVÒ©œE°b 7¤oÑ”üFñ¤oÑ—ÁŠ/KÔ¢³eYƒ¾ FL˜‚‡ö‚Käú…õ†²öLD—ÚRóЗÁ† [è¡)ù![æ¡»`Ã]‰Ús«À¬¨ð&~€' 3 ü>!ºî=ï”}Ó.‡7ºOš®M»#h¨fÏ~kú†7áT‹Ã.ç‹Õ‚E?4¼Þ\¸–_uËì£QþEáIѲՆÊâ\à« ¿*ùjs9ª á«!¿:ýjCÉÿŽ€xÒ¯6W ª\‘hµi7 bÀøÕöY„.ñ,KÛqøW Z> ò“”Ë0ÓÖxŸ·ÚqøÄi+p²Î=ÇáSrCÀwjL6â8|J®x äkbW«Ne'G<®ÞùÆä%×¼ ²ÒÍxNŽ’²€xÒwrëyu 0ÉfGW'0þøE¢>Ž(.^ùªÓÄǧ-À•Ba9GÉ ‡!ët­>Ž’{p'd%תÉÇk€7@¾!yGÉuo„¬äZãù8Jþ&ñ¤ïã®äÕ)Àû?ü 7nÀøýŸDýQ<˜ƒœ;Müqºx-äk“÷s”Ü&à.È:rGø9J®¸òîú9â±x3d¥=ùr~Ž’ë?}?GÉß" žôý\7¯N&çç—S*Pë.o«]j¤èæ–Ì¢tKm˜'噚°˜‡s Ó˜´ÜiñšöpgÔ2ªžU0ºrqÚp­¢5i–ý`ÄS!oçïƒ|Ÿ²þOŸ£í(?G€UÈUÙ|Ñ)mG|'Þ“*¼k¶–mS<ÚN޶ӯ­qªGÛéULf?¥~´~žâ[ GÛ%­®ÆGÛ%›j“£íôÕœÙ4Ô\{Èdòtë\ûà×>¨îÚ> ùÑâÚx?¦Â[k×B#ʵÆsíZ¸I»v}Š™×µÆqízyŠo5©Ž­RW´kO.Õy\»žš#~zN-¥¹XéÝz"¥×B~mòWJ®ø:ȯK¿óJÉ¿^@<éw^{x} 0ÁA:³R±Ê²®Ä©¸¢-î ÝìÞ뎰Ó*¬Cû¯³VðmÖm´M•1<ÊÁ¹ÀýÕ†Ld—õ-:¸çÀu{#(Þ ùNõ/b ’»xä»b~±¶Ðè¶Ç §l¦gŒZV¹®¼a ¢¶fÄwƹÊkkjÅA‹Àºk°ÆÌjÑ7lOE÷w¿ù‹útøàí{Utÿà×!=Ý ø È߈­ûý=9cY6Ì¢çjM#?aºfÞ§“ûj«Ž,:šš°óÂêÒ1×)©(÷›3s™°Å;³¸žË„)(7s ðJ.ÆTî2Ro¡ä–/‚|Ql³øeÝØ\{”ùR“yñ÷°–?œ=6ÆÜ{ýè§êçRp˜WuÃ5íy®ŽòÓ2ª>ë„Ðì§ÉÞñÍ>“5Óžíå#ôª¥’éNsïÌ›²pƾÊñ„o6]‹êÒ§Ã=T|ÁO¹òŒ U≩´eFý?IBƒPá2Èê}¶È:í‡{úç¤~&päø6œQ)„³Ä“F. ™Š¦ogá‘÷(tšH±_Nœ’+„yBª…°¾‚ÏÕŸƒ—~àä!±ÜJqlh« ÈéÇNà.È»Zc»ij0b¹=À}÷-ŒXîzöõ*´SŠåbólY,§¥„¥ÛX}zM*–KÎò´Är \2±Üoƒ‰o)5ÉÂrüƒ#ÏÄ;ª“¬7´¯iy´ä݈ÄïÞ¹§ØSò÷ ¨ç{šùæ7jH–ïpLæ›R=³­~/M‹f¾‡ð^ˆxNÿ›Ÿ\@3ßDw¥@ûtùÖ³%¶¶–Š|ôê5‰;YË‹a'lpú#ìß;ßRj>’+„&îÂOX_Á§?óM©®®iÓ5ó­T ˆG±fW†¬iGð‰ÜÂDD.vAîÒf•‘[˜(¹‹€ë ¯k:.OŠ6ÞÑÂå”|€xF@}p-? º9¶ÞI`½ulž- ¨µ”°t £O¯IÔÉYž–€:AƒK& þm°3ñ-¥æ#¹B˜'®]Ø ë+ø\[ÚË(Õþ¶ú½¶[QÄ£+ U ¨·¯†¬óvÌ&õFàÈnÇTQǰ€xR´ÉÀ®¡äw ˆgaÔ{€ûÚÌ¢{½@ût]¢…gËj-%,èèÓkRur–§% NÐà’ ¨ìL|K©ùH®æ‰kvÂú >ý5 ”ê @}k@” áfñh ¨Û˃Jõ!àíoO'¢Þ¼ò­ÑÇâÑl” q(Ñ»€-\ˆCÉß+ î…8ÒKÝ7pÓ0ý…8”ê™Àm-[ˆ³ï…ˆçôïæás€ h!Ñ])Ð>]âháÙ’n޶– ?õê5‰nN²–»›“°Áéïæü¶Ø™ø–Ró‘\!4ém,ü„õ|ú q(ÕUÀ5m-[ˆCÉ_( æ…8yé^¹ ØÕ–ÚBJî"` âPò— ˜îBJõ ` âPò=âYõUÀ´‡èæÚñ&Ò“ ¨cólY@­¥„¥}zM* NÎò´Ô \2õoƒ‰o)5ÉÂÈ‘—…üh::yð1ÈÅÖÉzÃtÇ«%«ì{F·ãfѷܲéÛ“Vqº7N;óRàG ¤Õí̧Ÿü™ttöQàg!¶E~ísÀÏCþ|«ýÚÿòŸ¤£/¿ù+-ÒÇW_ƒü5múP™!&ß~ò÷ÓQÈ×?€üƒ64 üKÈ©Q)òó"Ääï?†üãt”òWÀŸ@þIl¥¬·4=¹`¬¬ZÎû¶S¦¦l°?5}Ö× æ/×µ¼ŠS.МdÑaÿŒ9nÉô‚雞åó/PPðO9f¶q™P“‚—”,Ó«º–‚’3×÷q™0%g¶¯çrFm}Ÿøé‰š’ o© \·Ôwµ|Ãz j ß1œ²EФêðª[”韩^öI¥ê³þî(SzÁLÅf¯LW‚¿'cèå ¦§` ™€ŸçrF_›ØÑuð`—Š) UÌ|•Ë„i˜ZÅÌ׸œQkÄO•ZÅ ƒÌ7¸L¨M#Ô4ò}à¹L˜†F¾ ü3.¶D#ü .ê«#×)iäï€?ær&61ó—ÀŸp9¿M|±ÑmûóheÇ7\«hMšÌsNMØÌ£a°/zFz-?áxV¹—¼]Ð(2d_o-=r®äUë#…^µT2ÝéÀW²v÷ÅWœ|à¦Í †/V°´§Ù*— cXGÃÍ–—7‹yynÙgá2¡63)ÚåcÉ>ø\.g•+¤­3; |— cZçžz„Æ¢/£ä0#,X¾i=Þ[AKì…M1b4Ï0'Ù;4r-½Æ…2ð|àW¹œUjã­qÙÂí°†zÖ¸T±ÆEŒg©`ƒ² ª`Ûä²g{~P²þ”C«‰<£b¹†çW Ó¬þcfÞgJKøò¬³/ ª=}lt¬1³Zô²Y’®Ô[‘]Â*äx•z† e}>qy*ðŸ‘|­¢ä&Ï„¬4ø:£¶ôþ Ì-O“¦kS=™­G¾N,¶Ÿü(äêÓcÀPEŸ~òÒÑãÇ€_„üÅØz|z¯Aé¨ Æ†zø¸ÕØP³ÞlÕ6^~kgµÛ¦%oìµ°K4h°þ04Ó¤»;”ù/qÌìá2¡®PŽÑT0‡ÌMÀý\&LÁ2×oá2aLsPZŠKq™P£R†T”rð)\&LC)‡÷q™0¦RV²ˆw×Ì {LEIG€— 5)©s’ÂáÃoß«¢ªq™0 UùÀ‡¹LSU…^>TäÏ ÄPhÌ©º)ÇB™gÊeÂVÇB™þšË„i(ýgÀã2ႉ…2¿á˜}—³j˵ÆBÙ!àf.¦ Çl/p —³ñ7=¹q,4fÃÐ&®n³[Ïâ2¡&Ý.Gí>øtÊ_’Žv>Êe˜ڵ"#]3R·áŽépl‰F¨¬<µÂúôþð7\&Ô:¥ÿ/ð .gŸHGéÿΑÖ$“LSéíò”ˆ†ÚÛ¹L˜öàÍ6®Ïê¼Ù„Á›Ðfk†Ï{cá„Õ„YW_Ÿ¹t …}VšŒú Æ9Еµlâ³xäë’·lÌO¸òÞøU}޲»Tõ|Òœ”Y©¸N…)ÖgA¨U÷'z™Â+Ÿ‡Æ˜g0\GÃtò5„2²ø(äGÓ¯!WôBÔSC®F ±Ž›¥ |ŒZEgʰ‹EVÈ®‰­ÉUϪu†ÃËÒ帤wÌÌŒ&{\:‚Qî)÷"µa­E'­AJ>+ EG±".Tjâ‰Y*3ƒÚ…™—B„)ÛŸ0,öëýI2¼º"¼²Òy-ÚJ¼/®‡¼^–?½‘ö¦P"|¥@üJâÁkk“6ú6…j£Ô8ÕˆMzõ¡}ShÒ…ÒxßP²©6Ù7¤Ï,ÅOåzˆ<º!«Ÿ£oCè±°72t•²Ûì ²·™ì†Pâz­ÀûZÞz¼¦ónUsŸZ¸I»O}Š9õ ¡*~T/Oñ­&Õ±UêŠvìÉ¥:c×’ðÌ8£—¦„cø’ë +uÞõøös|ûFuß¾x/déI[äÛGÞ#*¼õøv-4¢|ûÆx¾] 7iß®O1óúöq|»^žâ[Mªc«ÔíÛ“Kuß®§æˆŸÚ|f;˜V)ω¬/Ê;Åj©ìÑÌIä $%©ýÎ.‹Óé9ãFéõbv¿YmùT#s[Ærʲ¢´‚}ø=ÈßÓf‘ÃҔܗ€ß‡üýØúïÆŒš8ÞezñÏ| –?þäÿÓ¦¾¢« ·Ì"àR.g”† åõö’=ƒË„1õöìÚt‚°‚¥AÕc¯ ÌØ™2±Nßqíq»lE­w8p.«æ&íŠôA "?AEÐ |1— 5i`ñȤY¬6RÁNnBA ÚÂásJ>+ Å:±8.]ì9C@<1Keaw:űq“Ùà¶•ŸðGÍ*3›nIz»¡(Â5×hó «§&G¯-Y¾ÉªI3ñ£VÞÏ9î¸ÉË€[ +-l‰°h«dÚňt/n…¼5¶îäGð(ýmÀí·kSÒÚ ß¯xÛûû§¦¦rÊŠw£îÞù>cÕRÕÕÀ#ÄV•ÂB "p?pò¨ÆÈÕ¬úŽáh¨öîik©û¥ä³Æs¿KãÒ¡A‘³Ä³T1÷+xÝ^ãΜÑ=408Г3ö8åB5,–¢ÊÔg²`Úã§Ý¬ð¨hFÅÌ3Ç­œ!™±½P1á!Èú–—¯½É©º»°0äm$ô|;Ï~<äŒùSfäFøfdï‡|\cP1 BÉNCžnÿ¦ôž€|B›®²6+ðyð!È:—:ÅBD²O> 9þâò3»7ôôƒ}}·*U¢g…ü¨6Å\6¬Ǧ†´p 7¸uó†-ýG=/79°asÎØ Ù¼ÕW?ùu7i¹£É>ü$äO¦ßºPòŸ¦Ü/aïX®U·Ëèæ´%äf÷µµ´…¥ä³¶¸…¥ËÃ:Ä7òb-¬$‘ ÂvÈjKTõoY¿ï®„¼Rc­Ø²~ôA¸ ò*ÉF ÆPrÀÕWÇ6‰“Á†jS8ZÈ ‘1œQÏr'­‚a±n ¿†AØbéÝ47óì!Ö2’¬÷¥JßS?ŒÆ³K6]‘b—Yžt7€²~ðå_ž¾¯¸õ D=.K¡rÞ„ÄoJ´r.õ\p¬®»³«!+¬\õ¼ Uò&H'Ǥ«çM¨’„k «ùˆŸnoP=}Ö‰˜U“ø-D¸0>•®[ÄûBà!ÈJ]Ÿ†©.ñ,Ë,zND[G–ûd­ÕIºVSòYãEŸ*È1º:s™€xb‹±nÝ:Ú"Ê"Rs`Ž8è.Ms?4Fh@6bÓ\ʨåFóãÒtnÂ¥ã/¬>Lt‚RÚÑÇ ,»qÌÐ0“Õk˜ö°_q¼^c” ek¼×ÈÛÃùà7&¿¡òFÎz¤³vÙ!< ùpì¬fMšÏ­à@xäøƒðòå6¤¢ÿ±Š*ŠuÜwÍXÕã ®‚¬,Î w/Sš>Sì5ê[êåÍR' &÷3m:&÷išTšŠP+‚ö7Ã1u‹¼i‡¨Ç"×’EzV‘Bñúi)tû`0G*Íò0#\ yml–û´¸JéÌ܉ †C ûbgfØhðß̪ƒÕùî.>‰ÐÕÛ5m™nW|Mº ¼ ÃíRÃ-tðwƒ¡>ß"¹¸G«äNÙ@†¶o·ÁŸ7ÀfÚTo€Õc#à0¢Õ"äìSvˆz¬öØø>P#4ÚtÅÆ×7­@7¤t|Ðf†˜0ÄŸýÆ§ßøì7쑯AG°ÏÿäÛ›U  Óõ·mÛÖkÔvb“§µ ,‹]Á)"$X“tF6IZÝ£âzïG~…Ö»eͳÅmi‡xšV´<¨åµV´kšV´ý×1‹+±ZU¢Zå˜Dÿôe&±G¾‚ÀœðÈ×Äwš¨s¥¡€÷ñ&±Ì¤2 µêW&m” A ”Î…XZÝÅžF¹i显ʄ^ð벊s{Âp!ˆÚI€zœÃ88ŒÇu “=c$< bPŠ’›Ðê¤Çê(ù¬€ñÆêfx/bFoW$)Ùm|¨™p9äåÚ”²tä˜5=å¸VØÐá È+Ò׉÷BÄ£VsÞÊl”õð¿£Èv›Š9ÒËé³ð-çòßM¿ëà_zîàGörIkÚñ:kvn¶÷û¥JÿAöÏM'ÆK{ûŽVíbÁ´ÌÂèÆshãÐæ~,êg¶Ý¶,–éÃOÀh3×ü²V¦,µvÊí…ªÓBk-¨„——C*JXâm¿â¿[4Ç-Þ~x_Œ.~bvÕ>\2§í-ç𤬗åRbä|×¼aÝ'ž×1Ëbƒ+–ÜzàÐwåýЀ‚ýúuÎNìj¥ÅYÓʲÙ_ù$‰¯œi2s*ÀVÆlÒ]ä+§:F o„šÃ§Wú”¼R¦ö^C¯$ACg öj)pd¥Âi˜êâ³h›šï,J";³TÒV %Ž€x4)¥{z×ñ-"Nɸà åÄþ]‡o¸i×]Ü~hïžën¡ð¡i/7nùVy²»kÖÇ]=Wµ_5{ïÚcF÷eåó¦Û-~ÖÓ3çkºÂõžùB9wÔ+XE{’õö,¿¿\)±†ÓŸ8j¿vC¿åmê÷­ã}yÊ_ßXµXdow]mÜʾ¾Ç›ö|«”£F¯»«àäÃ?øÃÞp ùp^tCâå€6}o±~½1'¼HXV® ¶÷ïðò®]ñ »0ܵŸ}ÙMæñ>þ«.Ãô¦Ëyƒim¸+—ëgÿS럟ãÎýükvž¼Ò ­·Œ3Ëä@wƒ„Gf¥<"&=ÒueïeÜg|}ÏÉ“QÝÅf'ùÞ ,@.Èš1½1çÄ3GŠŽY@ù~…š]çkK`o©°›©öFÌF“7ÉèD[¾§q˜€–TöÎÜÁÜxÙ œúÎfý˨Þ`d^Ú™CM2+ˆÄk6EjVýѤÛ3G ·9VÔv¦mNát(˜0. beïˆ=òNÝâ¥Î:!R1¾¹6ì°„ãØ4ÙJó¬4ÅJ³«Áðu0L"HÁäQ0q$? ,¬Áj»òµ±³qs} ›˜a${ãÙŒ4ý’=.Ñ~KyÂÐ6û±hŽÒ5˜£žåËgIr­‡Þ;K[jY2 …áÁþ!ÆÜî*;e‹#ש ïÛuó¡½½ÁVw:b¼èÉfw‚1¡pk—¶^LÕcAS„=SZËâTýøÕ|ªvˆñªù]qéœÙø‰Y* KÉC_JØ`)¹d¹DEaó\ùÛŒ\'ðlÈg«kkÔõ|À¤SÈ]3ïw¤¸AçÍÁ9"ÓAÏNØ!^1^49«ã‡%Å.£W­TжUà÷I*dÿ<àCRÖÍ\'žÝ,Eê…À—B~©6?²dÄ»­êø áÃÀ—A~Yì*s)¿ˆLÓEŸ„/¾òûciLß®)ÂO¿ù Ú¹-ƒð£À/Bþ¢Æd#¶e~ø%È_Šm-kg^ôYq<ϦÑ'|½œ‚Jþø÷ÿ^cÙØ¾UŠH¶øÿ!ý&™ðÇâI¿ \ÎëX€ÉµYÓVà…éä nél›±D²ù›Ý59c™µCØ…Ï%uTTŸ¾“‡BC:>‘¥¦cW”K!oT髦|Z&ñÝ$ðޤ»f-Ù6ÅÓ2µÑ˜÷$ä!éÓ2µqkœjÄ—^Ådæq3bEhQéDœ„Y[¥®Æ§e&›j“Ó2õÕñÓ+ )Ü3fÓömÖ+a}ž¢5æy«Xì‘ \DªwC¾;ùÀEœ÷»ò=é.”ü½âI?pYÁëY€ .£² ñéž~Ë ¨Žð·)p¡ü\ \H ñÝ$ðnQà¢F‹6nR‹^Å$¸èç)¾¥¸$­®ÆK²©6 \ôÕñÓõÑ‹kO(F."×{ +…r‘ %×¼rüA:r¡äGÄ“~äÂßá˜`ä’—\èÌ2œ†‘ ½³øÛ¹Ð‹—RäBïlx·(rÑF#ÈE7©ÈE¯b’‹\ôóßRˆ\’VWãÈ%ÙT›D.ڞȥèLÅr©¦8äB/u[8äBïÜ+`ˆ\ÎiãÁ a‚KA6p!>ÀÓ/p!VË¿M åçRàB \ˆï&w‹m4\´q“ \ô*&¹ÀE?Oñ-…À%iu5\’MµIࢯ戟6ráKŒ!‘kŠC.”\°…C.”üˆ€-r9—W´“‹\Ú˃²¡ êž Yi-lCB;f‡.Á !õ3­]gÊðß,2S³]Ïç/ô³ßK[:å`ð&È7%oéçº Ÿ ùÉé[:%³€xÒ·t˜A[5%eéC²–~¬û¼D,}XÂÒ=+ï” 1Lý<˜÷y°¹ª6'gêèœx3äø6&mê”ü~ñ¤oêçüÏOÖÔK;õóaÞç'bêý³M½~Ï#?n†/—6îóaЄÇ“7îóaЄ;!ïL߸)ùkÄ“¾q¯„A¯Lظ¥ýøJôÊDŒ{`~ãÝ·´u¯„E¯„™­P539ë^ ‹^ “êÐbVÒÖMÉ_+ žô­{,zU²ÖíK»îUmµ»m°îÁÙÖ„$FÅr=§ÜÇG#b9ïU0éU°³ªv&gÞ«`Ò«`SZìJÚ¼)ù]âIß¼WäW'lÞÒÎ{5Lzu"æ=t*æË}¯†M¯†¡­P549û®ž ŒªC‹aIÛ7%¿[@<éÛ÷°é ’µï’´ûî>JþéœÕ™›úšdèFű˾´}_›¾ ]û¾6}AkíûØtˆ-³ï5°é5 Û·´ÿ^›^“ˆ}oˆ°oÑeÇ4ð50ê5°´ª–&gàk`Ôk`UZ,KÚÀ)ù=âIßÀ/„Q_˜¨wÐñ$ Ì:gµÕŽ@Ðdá×ζpÏ7ËÓ-kÒv¿kõçâ=Â$oîÂÄ o…|kúæNÉß& žôÍý"˜øEI›»´C¿&~Q"æ¾ë”Ì]£{¿ï]Ã;[Õðäìý"ØøE0²-†&mï”üAñ¤oïÃÆ/NÔÞ³Çe­ýbX8aü…Z³ùlšmíâT>Î4 éfÝ–ky¾¬…õåÀÝ•" 9 ¿VM¸rüÈAÚÂ)ùëÄ“¾…_«¾$Y /ÉZø%°êK±ð{NÁÂé"ë¢U‚™7´ùÀÉ׿Hƒ _¶ ƒ+9–sLº\Ó'œ€<‘~5 ämñ¤_ .…é_šl5pe«Á¥0ýK©}³«kNñóÈŠü«¼cÙ¬V”}i˾´­~ ÊvÈÛ“·ìKaÍ„WC¾:}˦äwˆ'}Ë^ k^›¬eû²–½Ö¼6Ë^7ÿº¬=¯… @Hޞ׆ !¦oÏ”ü€xÒ·g6l$jÏížôæ FL¨HñòSèÊZ41]üÿ±÷ðq\×Ù8ŒÁV5R”DqJäBZ,;I$EI”UIªCe°;†ÜÝYÍÌ¢¦‹Šm¹JîEr‘{â–Ø±K²;‰ã’שNœØ©Ží$o¿qšK¢ïž¹ÏìÞvÎ;3¢¿¿~>ØÁžsï)÷Ü>ZJ§á,Zƒ‚LÞ¢‰ýVñ$oÑaÅcµèöJXƒÞ#&L B;Þ½q½ÂzðöL‚®öµ%¡7† SŒÐÄ~@ÀÔ"tl¸+V{¦;Þu É:ê ¯ãx²4£ÈïÒËÔ‹¬¸ºYñŽöeFÞ¸z}Ìd½Iÿ¸_ÝóŽu4}Äš0Â~Þ#¼ôñ~Œ0ÅmÄþnSÛÖ¹ ƾ)^çè%$ëª7ü\ÝðŘΤ4JŽwÄ-ÏWjE3|Lß„÷÷€–êÎ…3íM0gÂË@Gï¾…6mb?$ žäMû"˜óE±šö"~«‚„lÀUmõCã÷ÃuãΖ¬1³ÀfÑ®m³Ðí[üŒ#ßy9h¨fÏ~«»š3nÕJEmÄÐÌJ¡T+EºŒ7¶>­Ù†[³+ì·#üküs¢Ã: ÕÄ™À7~SüNs…ðÍ ßœ¼Óû·ˆ'y§¹Žrq¬N³@/%ëFïª.˜!ÐzÇ0”†1œšðRЗJ×a¦­õ.o¹ÃðI¦À!Ð*wx†O쀗ƒ¾\!Û€Ãð‰]xè+"»U§t#9®}0þ Gì:€×–Úž-Èûˆ'ù ·™»“‡qŽ/[ru£^ÄãHÄ•ÀK@_ò<‰q$Óàe ¥áp1ŽØõ‡@« ­1ŽØ] ¼´ThUãHŽ+€×‚¾6þGì:€AK…Öh1ŽØ_' žäcÜîNÆØûá÷´IÈÖ ŒÞû‰5Αˆgó óÏ“8G2í^ úÊøã±ÛÜ Zå2î€8Gìzû@ïK1Αû׃–Ú‘.Î»à  oH>ÎûÄ“|œËrwò0ÆLºRB²N úÌ‹[`211UÑ%Ö dñáVÐRó‹ál: ;&Üz[ò6Mì· ˆ'y›î†wÇkÓtŸª„d@õ6}IK›fbÖÊ•^ÿJ)ÃîÆ{„»@ïŠß°»aÌ„»AK­'‹fØÄ~€x•¾s¸>Ø‚÷rØï%@/þ—Ø-žúüÈfñãÆåü¶úÃÑt\‹|rßp§½3Vwþ:-.ýÅ|PA¯Ðd­4¯¹FÑ›+ÕÙ;®Þ£³È=í˜NÞ3¦ë€k{Õµü?c_e9Â7ë6ûÕt•fªJÓþú>ÓÄ['§za\3°º}Öĺ7k5—µÿ 8f–q:#5ìÖÒî—ø7ÐCÐÅå$ΙÀuœÎ¨4ý`Ì,žÇ錔é7ŸFذAW?æ“é0ý2ó)óþ9]GÌ4ï¸v­@‹J*˜`d–^Ÿ™ó·qšP²íø4âÐeÿÀå̱Ñç<\™ä¾x?§ ÃÉOoÌ:\yñpù¨ßéÊ$°.®Ë^ÏÛÛ$OWV&FK^8œ=úPee"µæp¨²Z} {K‹ 4ö´*¥õÑÅñrãèbuf)~ºŽ]ìh£¶U¦NÖ®R“››’ŠâMC¼éäõX˜jú ?`™ñÕ,S1¦¼»9/³`©Ucg¥"m…®±Cw¼QâqC/±®'µIe£è­ qhKQÁpºs|Û‘—~8å‘~6òÚç,Û2 ã–k•‰KvĬ°tˆýµcñLÊ¢æ«.™æÀxûFÊj&-ö ,)³)ãñFu?ý2¦ªL‹q »ìmÔµ•Gþô¤+ûùs=•ç‡Àÿý¿JZÐx¯' yŸä~NFîè ¨21b¸ž@™l¡ZRµŠñ[ÒöÓ‘¿ž@½œâ[×Ä­®Öm|¼\çhãÕyŽøé¼gMo¢v‡mT±2«8MQ,‰‘í^nUÆ7²½¸Tðþ“nð,ÐgI;Ï¡¨™‰±F@<•¶LküR >(Œphùq’¶@Ÿvý½³¸/®݆32•°Z@<ÅÈû)SIw)–™‡R§æDŠýrüä %L9 |ðlÐg+ɉ:H0A³AÑB¯põ}Ž ö92b7¥Dâ[çð¬tÜ©êã’}ù~£,_½‘ålY½ =cêwf½®š!È&ZY ‡Ê¨Ôê53éÉ$ãñZÞrÏò6e§ºçùhpãsÜ".öÿŸÚ™ø–Tó_%Ì‘™žþŒÕUü9'Áäe ph©¹œ¹œ?G×/Sç/}Q¢Õq10 :›ŽMt ˆçôÈå.ö€î9=r¹¼ v^Fì„r¹Èr¦–Ë)©áÐm¬:½Æ•ËÅgyJr¹ .ž\î—ÁÎÄ·¤šø*až”êôf¬®âó'Áä¥8z@a.7 SƒÀ!ÐC‰VÇåÀ½ ¥¶ƒD·‰}â9=r¹ýÀ«A_}zär×b_##vB¹\d9SËå”Ôpè6V^ãÊåâ³<%¹\ŒO.÷Ë`gâ[RÍG|•0OJuz3VWñ×4ž“—k/ýHŠå8ºWv’õzàí oW^ † vó;€wNátâ«„9ÝÓŸ±ºŠO~書®®kS5ó-U ç ˆG²f:C»nȸ»“ÙìÝ¥Ì*ww»ó›@oJG ˆ'A›¼˜âòbß- žÓ#¡¾x-? qó‚Øj'Õ&Ô‘åL-¡VRáuz+¡ŽÏò”$Ô1\< õ/ƒ‰oI5ñUÂñœ õ~àÕm§Í÷Aìçë%r¦–P+©áЉŽ:½Æ•PÇgyJê .ž„ú—ÁÎÄ·¤šø*až¼öôf¬®â“_B\¯ª["U × ˆGQB½ Ò/•QÞ úÖd2ꀷ¾-}Ü. ÅF°‡˜ÞLq!±¿[@Õ qB/uà¦íaò qˆëò¶ÆÅÓ)-ÄÀ{>âyþwsHà3€§ÑB÷AìçëB%r¦ÒÍQVáÒOµz£›¯åEîæÄlpê»9¿,v&¾%Õ|ÄW sô6NÆê*>ù…8Äu p][j qˆýy*^ˆSÝË!A6»Ú[ˆCìΦ¸‡Ø_$`² qˆëÅÀâûnñœ õ%ÀÓh!‰›ÄŽ6‘>3­Q›PG–3µ„ZI ‡NtÔé5®„:>ËS’PÇhpñ$Ô¿ v&¾%Õ|ÄW óäµ§7cuŸoKz!qí t•0( â…8E©„z70Á…8Än+0Å…8Ä~HÀdâ×Ë).Ä!öûÄsz$ÔûW·6 qHÜk±Ÿ¯ q”È™ZB­¤†C':êôWBŸå)I¨c4¸xê_;ß’j>â«„yòÚÓ›±ºŠO~!q½˜âBb½€ªâ HeÔ‡ .Ä!v7ok‹°§%Û%dµ’n·àL]©p¾´ÜÚ›&K»ü…Øß! žˆb,Õ4mrܰCßS;ÈÍÉÃ¥ —ªëé…ßÃ<ˆ Ï}FüvIì:g‚>3²ZÚs2ú8 x6h¹iEE[`Hó€¾ }œ\z}Jú¸¸ôuú?µH‚ln½%}hÀ,èè³j‹rÞu˜:éæAËÑ)"A¶·ƒÞžŒNz;@“Q­hT,ï>uC+¥’6jÔŒJÁ4-kæ<¿­´R+6ÝjVŠæ„Y¬é%GÕK%ºiÔ¬x7¨WuÛ5 Ô$kÝ5Æ,{º[Vç;O‚~Ra~%3Iò>à@ ¥¿øAÐŒ¬ô…²:ùð# ?’jRK’|ø #|øiÐŸŽ¬“n~'°5ÉO~lò=¾ÔÙ1Nwè[™IÌÏÿô_'Ÿ oåJ¯#žˆbœÏ2á#­"—Y kßÛ áù Ï—°ŸæBÜdìßbx úœU$÷À‹A_V~zcÖ@ÕâáòQ'¾+‹IàÍ‚à›eoœkè ðÊbeb´Œo ‡³ÇBßT¬L¤€A”ÖCyjõ‘iTH롽 cO«RZß/×9ÆõÔ™eÓ§ü"àžz)èK¥eyþ\öNåÉ÷Þ§$tÆ{Ù;É»_{¿ŒÜj"§1b¸ì]™l¡C¨:Åø!´=Àtä/{W/§ø–Äeïq«+8¸ÇÇužà®ÆsÄO7òËÞÖ¯h#†æT‚9jEmÂÔ½E„8S]PæàÃÆ$ÈQà1ÐÇâïù»"°ºY]á‡)‰X]Q§ðÃÆ$H 8z"}XÀIГ)éc 8 zZ>“ /¾ôK“ÑÇqàƒ Œž«J “ _úêt~ؘyð1Ð%£“Gƒ~<²N6kº=V+×Ѳ–­é%×°+ºkN¥é\”væõÀÏ€þLÚíÌç_ý…dtöYàA1¥¸ö[À/þRÚqí«À¯þZ2úø2ðë ¿ž’>¾ü}п¯L2Ó"$ÉŸ¿ú[É(äÿÿ ôŸ¥ØÐü9ð» ¿«P)áçEH’ï¿úûÉ(寀?ýƒÈJÙÕhiºóÞXÿh­RpM«B-LEcª»¬¯ãÍ_Z¶m8U«R¤9I =þ#-ø"Ú_ø•ÂàÖY>½Oó0pÉÀ%²S™À}œÎ„înÒÉseö rï—‘[É8—1ZzúZqœ«®s™/5BŒ x)ÔÐ|^-#¥jj½c.MKsc_1r{ìK‘7‰Ÿ®aÍ…­OÓ:>ÆÛŒçÈ&·l³•u,.ºS³ ‰v=sÐàtÆH¤]ÏÜ å4aDE¨·ëš3nÕJEÞœÓp¥ájÆ5½¤¹–fU O—L‡þíæ¨=jòu×ãdŸTk®QÔFt‡ýëe&{eºêý}QwõŸóÒkþ-§ YCGסC]2¦à'+ÿÌiÂ$Láï€ÿ—Ó„it„2ÿü§ •iä&9üð¿9M˜„FþøSN¦¢‘ŸÎiBu>r•ŒFÚÛ 9M˜„F~¶‹8MQ#¯Õ²¦«±ˆV±\Í6JÆ„Î"çä¸É"æw ~d¤× ã–cTríJë 1dßè 9\)ª6&‡œZ¹¬ÛÓ^¬d]­Ã_Z´ ^˜Ö½>bqxëh_ |#§ #XG++Yd8½Tí=ÀpšP™™”Ìʱ¶ï~ÓíR+;C[gû›€â4aDëÜßè”Z¶V¶˜ W7KoŠ ¯%vü¦˜Þ*뮣éìÊÓB/k¤|øÏœn—j£-kÜÎí°Žj–5îÁ²FcJ/Wi&wÄ(Y“šY*Õ×Ö±\»æ 7bþî×èzÜ¡ ÷€VwÖÂ’a˜A Η‚ÛN¥UZƒÄ¾]@<’±iaTqvQ­ ˆ'b­œÁ jo}£IÓ ½ôk7Dxh©Z)­Ž%¹Ïž:ôê^z#éÕ±$ð‚àÈ}ìK™êVÇ*)`¼¤õH—Z}(_w¥´DŠ—ëƒHêÌRüô6%Ø|rÛÐY‚]°*Žé¸4©ÀÚ[ƒ…OÃÖú5–é ÐŽ Ç›6ÒYx­Vm«j›Ô@7öK¬R­\qB·ÌbÙý€²J]4<¡—j­êtW[= H³]&öíFk—E‡„Z* žˆµ²ŽµË·[¥Ñ1ÙÖm¦QwGô³›lHñ† (Âu ×)‹Ïk''F®,³LŽåí=ÌÆ7oÙcBnî-µ…1À¢2K5øžÜ zgdÝ…$‚wî½[™’6Œ»nÕÙÝÛ;99™¡¬€–„„¼x/è{¶$5;HU{€÷¾/²ª„ß6GÜ=¢°IÓkî¸eòÞËÛR ¿Ä¾]ÀháwITq®`Ï ñD¬•Ã,ü Q7§Ýž×²}ý}Ýym¿U)Ö ^£OÎÔ£WôҴ÷â}(ê„ÃÑ´ª^8¦y-dÁ®„Š ƒ>¬.&\gÕl&8å!‡ie1öãakÔÔ§ æö.àè)eNØù vG€Ó §SˆßÄÿ8ðèÊtÕ>¸]Bž~H¡:F¬R1€í ƒ~8²:–g»sZOÏÖRNôð1Ð)SÌÅ~ÃZ´LjH{ûûòý;·îè=ê8ù‰¾Áíy³o0dóJ¢¾ø4è§ên°GØ>|ô3É·.ÄþYñ(*ý²aöŽa•‚Ñjàñ ®cïxÓ[Xbß.`Ê-,3Rï$ñDͼX RýP áÐ "9³ºÉ¢ýxðÐç(ôڀɢýÐáÐk² ˜,"vÀµ ×F6‰“Þ‘.¬ã´üåš5âö„QÔŒÑQÖmág^Ð@ 8Z–ÆZšz:4IBÄ„n›:9}wcˆc–M:Ƭ0áa¨èçßZnæ2’s^?ðQMÈ’pÎ`~ Vç\ìZyš¶–n5p h•nàà‘à&²nÎ;À#À,;8F´‰ý-¼Óe}ˆŽäŸøä-.à³¹ÞÌ®c¸¡}Œ °x7h©;B[r]2ì†^r¬€6,øj¥nÚ»‰}»€Ñ23OUœÀ•3thë2ñD¬–37mÚ„åúX›Z°k¡£ky1=úÌÈ‚íc†«]ÖÃ,=ïÉ•Å:š!Z–ÓtsÈ­ZNNaDÅËis¨àý¦ÈúMè‚„ð#ܽ ÚŒÿÈ#‡Ø?ù‘Û)é#CUÝq,}ÊiÓ†ÎþuŒê+hWwø‚\á¯SZg„fY† Ù®ÛôBÁ¬0 *’¼7Z®&ü†u VÉ{ïȾKé…#ûzºº»Cê(á oŒ\¨¦ˆÐ¢\ö„ ;â‹PrÜÞ>ª‰” B‚ …!a`H8xˆbÂT¿9ÄF 0b€.ûK¿qÙoØÞ•n‚ô„B(bI®Œ ãºíöïÚµ«)08n­8­ .ÜŒú­ëÕ ’“€¸p»n²ä¿¢]CGå‘Ì7—ô‚1bõî·*®m•ðD0¸ÒߢT-RÁàØJ9ãÔϯ`pÂQ öƒ®b¦Vfž_&ÏwŠŒ¢rZ…Qì ï7·BjÂHËñæö›2 RåOæ’™È £*DÔ#D…òúJÑ ¡Kr¤¿M©ßœY/v9VÍ.¹z88L‹šõ’yÜ(jûuÛ €pȪ¹fÅà?KÄÛQB!}K#ÜöwD-Ù.ö—t ˆÝJ]?t‰Ø· ­Ç4k9³z³R$š 뮽Ra/ö˜1=iÙ­æcî‚W^•¼NîÂ{>â‘«€YoµjUtÿ¿»Qì6s¤7VÒ+ÚššŒÕô»þ¥g>ùÈ^Ö7dMú!¹VÌ,Íž^·\í=Äþ¹îÐøXù@ï¡‘šY*ê†^Ùºµ¨lØÞ‹‰ê^fÛ½~K–÷+õáç`µ™+~\¯TÆnw"hݵõŠ3d&_TÁ‹ËA/o¨Ì¯ð¶ã¿[8+*Þzäê¬ÞYôÜLÏ>\<ˇT 7ªr Iæ•{ï·¿?¸ééG;fŒ¿RyñÍ7>xGÁõ‹îýè6¾¨s&³]¡uâUf]#Ëf~á¥!¾°Ù^fYÿbfý£fɘã•S›¬èåVc“BÓP÷*a¹ÆO Iߪx$ÄPgÿÔT-®-U5-¹.fiÞªånG=´7×IÒ*!ö«Ä£H%ËàE¶k©—Ðá™ ÏL@/Â,Š¿œ0i½û³Ä£X/Ç]ÍÛ)륺èHX/Bb¦^:  Õêe9ôR²ÆL7¤bB QAKd+(¤bB Q鉤bŽ€x)fcÊhf´±5´D¶†BjÆor¡:2ÒUI3ô¬bÍèvÁ1+!5³ÚXœ°fü„{qºšY mø¨V3+}Ÿ‘R°ÙÒ«¢%²UR5K Ž%¨ŒtDR ±_+ Eªé„jª£acÙRÈDxè3PËR¨Â™-•vDS }v–€x§efx½tB¸:1±´¬ºèlK5-#ög ¨6-[)è%?^©šePa’‘lÔA˜b$#ökTÉüŒÙt°ÃúÌr(cy[²ór(cy[ªórØ£j3æz,³CÇ2a&ÑX&ŒŒ¥ËVÀ,|Œ§‹iJ(f%”±2a‡Ç St˜•pÕ:ŒŸ“éã“!Õ² ª L2'[U¦˜“­‚5úSN^/«¡‹ÕmÉÆ±ÕÐÅê¶Tã½s¶€jãXÝ]FÂF1ÁEu—3 Š3Òu—3`>Æå.¡õ"¸H¢î"è"Mw9.âc<;=~*FhêmöÅ“xRlö‰ý9ªmö— S1!# Y&ªAi*æl(ÃGµŠY%(&oVÂF3¡§ïõ¾1ž»n„ád¯«i“ínGÒ ±?W@<ŠtãÈSU ÕêHt@F„Is@f ,ÃGµ2g4Í”IhGõ>´”å„ÔŽà,­ŽlJJ;Äþ<ñ(ÒÎj1¨•ëOY9‚BDEÅ®œs¡s›é¤•s.lÃÇuÒ62W‹CQMB7ë Â$[ÁYÒlqD½¨oqÎlkê9*9¯YU±«ç<¨ä¼f:iõëóÄ£8‹.ºV­?¤b·2“̢χ2SÌ¢‰ý9ÆÓ½!Å„íÞ\e\°b.€2.HW1@>Ƨ˜ÁŠYe¬OX1롌õé*f=”ácƳ|†©¦V1]Pa’Y@”A˜bÐ{ô1¶,À®Ž„ÔÌ&hcS[²YÀ&hcS[ªY±_#`lY€=b†Í.‚:.jK6š]u\Ô–j4#ökŒ' `#¥œ‹¡‹Û’Í.†BS̈ý:Õf~D³e"Úfhƒ0Ɉ¶Ú L1¢û5ªhÂ.Ͱ9Àè‚ð̶äÖll.S\³±æè£Ú5+ÄpV3Yh#›°Çd¡lº“…—ø¨Öcü™šRÅ¢pV7ÝÐGw[²35ÝÐaŠ35Äþ\ÕÎÔÌÐR7—@—$¬›K KÒÕÍ%ЇjusV“nŠÞ‰V!õs)tB(L©Å®ÿzLBaæ&iýû Ä£H?gÏÐMv†M¢sPJ®­ij-vå ”\[Ó NÒ "öëÄ£ØXç“t$ã@=ÐIOÂÔô¤ë@=0ãq _?2”‡Rò ;PJɧë@y8jh]svàn¾jè¶cUBj©š!ÔÚê³±k©š!†¨“Ö±ï"-­­¥¢962RG}Ð ¡03»Žú   7$¯£>˜¦š¬‰¶ÔѹG<yw ÐÅWㆂÀp e?ÓßÖ4GªLI®é–Z‰ÖÅô·5MÃ%­$b¿Q@<’JŠ|ßù@ßßè#žˆµr¯¦5ìû`F·íiºEÆ»$ƪ±_NWéj™QÍm2+öÁ¸îjºmh5Ç­•¼û0šn }=Ù ´Mx/è{£–±ý²asÔ¿8ý°1Uµï¶ §Vr!»˜s\}̲JѰï9qÃÞ#×^·÷ŽC÷ÝzøÀþ«n¤ÃŒO;ù1Ã5*Ù®wuïÑ꿚ëu¼kŽjÙ•ã…qÝΊŸuwÏúš.ÿ*µB±’?ê’9Á’JÃí­T˽LãGõ©+{ g[¯kLõ¨|=L %öv×ífö}ô=δãå<b˜í*ZÿOþ0ç_Ï8Ô…m_ðŠ'6}o·¶y³6«¼JXQ¶ {Ó_æl³êjfq¨ëöe×éS=üW]šîLW ÓÚPW>ßËþ÷¹õÎ/ãå—õò¯¹üä®»Ö¼Ùû²-Ïà<,²îÚ’kªø“½éë»Ož °à¥¬¸‡nØ»ÿÐMf|ð(è£a͘ÞX>óåÃ%K/¢~„èÂÞmy-zÕœ„¤?&#½Ø8-h%ÙHüæ2'QVîÖ\É4ãâJoÌ:ìvùe«R1¼Ð~yÀ·x‡ûß0óhßÀ²,`5΢´$Zã)Šv¬ñ(Òíòá¢ÁmÎô{+³šn*ÊV žçCÅHíâ‘töÞS'ðÄömm<ÏôOÄ,gucíxvÊ ¦ývÔùöúx¨H,Úó#%Öˆ²C©XþF1oC…”\;! á Ïˆ,WóN)ÁvA˜]m*wúû‚ñãô¤Û av+Ì”4#H&\®¡pB×—¬:JŠÌi Éü à/S*™?PhFmâª[ w^óigžt®n9á¼BªÛ{TßbJg~IYÛ…P]ä¨ëÔ†N] Ñ®„8W*Õé9â©OÒ²í…<„êæöý [}|RJ™û á*Ы”µš¦¬Xû!Êþ6•­f½²Fä,ÿ*HrUL•%)Öˆr@ieùÂ;ôDJ®«! ¡º@q†‘ HÉåßûsR¹ÎŸqäE”Ð-¤"T7Ýç·M8ø!Š€!¡º¶iý¬ã¢Èxä"6¿E”ñ‚™‡DQ¼œSݬáù‚ž£J(ÞÙ©Î/œ½!<Š7@0 AKMUµ 4Þ¶h©@s#d!T½]ÁRrÝYnŠM®A)¹n†,7+•ë̆\ÖDIJ°[ ¡ú®¶DJIvÒªë`#JF;¥d; yÕe¼B­Ñ†8)ÉŽ@š#Jkí\q?X”xv+D"T·¥á‚†xvu„÷›ûù]™áE¼ bªk¹Ö "Ž˜NDÅ[.Õ%þ"˜ú>Oʪ„|w@&Âu ×E–oMÓViáî„@„k@¯Q–‚ÒɈڽ BªKA/µUDÿ&Ç»•:‰füõó\Å…ðâ C$Buaf†x¶´x÷@¤{b¯¢–jC„Å Å[7C c&TŸvlhvÕ Îsk–™aë®f›Î±°¶LB®æ@çâ·å£°_ÂÐ=ÉÛ2±Ï ˆ'y[>û=¯-W ruÕÛòƒ]Û*ñ0ìÙ¯–5LŸmMg»2Æâ¶×YÔ,ú 7ýî°6~ vMxè«â·ñc°k $oãÄþjñ$oã%Øu)f¯K°ëR,6~´j[UËövº²˜mVŠæ„Y¬é%–‹è¥³qö;ײmÚÊÈ~p'-îØÉh:c§»FQ™öÞ(š…qËµÊæqoÇcX·(Á'AOÆï%¸áè©äÝ‚ØO ˆ'y·(ÃʱºÅBo:^B´NàJÐ+¥=cÁ ‘®*™ÌÚ'Y¸×ôbÑ$ÖK³V6*n#UoÞ׫b;p^;l2•}ðè#Ò•=³’_e¸ºY’©æ{€Ðeޏxع¥f¹­æ ˆá­À"èbtW ˆˆ½! ž¸±ë CºI"b?& E¥ï®;T Þ7â¶ 0¥‰"bß. I¯\U«‡:ñD¬•¬i8B¼U*Y“Ôî6Ç;´ P³m¦µÒ´fÒðiÐ(î[”*”J(,•OZÁ€µjìL¢±µÁœ0rc›y_Ôz!1Vˆ'ùzqPŽŠz¡ÿÂ…bbÛ\:ú¶ÚŒL-,¢ì@8-÷xP­$pð"áy ¥|è¥P¿–lÛNàù £¯€¿f·vµé°NþG³{\«çø¬PÈR¿‚Å`‰ÿ\°ŒÑQ³`zyaÖш¦;2Ú½8zD™v—è®^ÏNu˨ÖVAW“Qmøè¢‡žî|ØHØ@´›F t¹V=L!Û`Š1Ø/0žH;ˆÂ:Š‹ ŒÄ®¨.îÛ­™• Ãv ¼Ç[ckY3oäsÞoŽSl´gÄÆ=šdø#ù/ÞúeŠ],ýHš"ð(hu§ÚÌ©Ô{Ç@K¸5ú‘%`t%èWãJõ0…èGl;€)F?b¿T@µÑÏ¿4ÉÛùÖSjx‘ð|ÐêNw ôb× ¼tôuü{vk^%hYšU,:Ý­rÀÆØ¹|ÚG‚¯ú»anW¦Ò¥`™uèÈGòÜ -5ü^ŸwÇ@K 7E|$À8ð(h©È5òMpµz˜Bä#¶À#±_* ÚÈ·¢iÓsXW™À‹„€V·Ž>ÐUˆ]'p=èõ‘5³10ó“ p$Þ…ÀËA_®.ÀUeÉsxè’ÑÚÀAߘF€#nÞú–4Ü$W«‡)8bÛL1Àû¥ÆàøIfa]e/&àˆ]'P]€Û¾[ãµ`hÎ5šË°-Ë'½ í]$ó…Àà§á]Sð¨©t¼KXB‘¦wMÁ£|Të]þÕ™¦œ{MáÅ)ØùjY;ç^Sp©)˜gg›ŠŠëò‡ÐDbmî½# š†×L§ãAÓðšét=h^ã£ZêlhÖ{¦ñ"á:Ðëâ÷žix áy £ŸqPØ­]mFY¯ô©3¦µlѪ” ¿Éšo‚¯:ÂWhz¥¨ákúwmëëÎ{3üŠ?xôIeŠÞ:§Â>ú‘dþ"àË@¿,²Â·ÕW”Ñ Êšciß©S5 æ(_F)2‘B]9¾ø4è§Õ©0pçãœ*üðË ¿œŒ Ÿþ6èߎ¬ÂK*$ÝxÃNÕªiMÓÞ˰M Éù;ÀþQMàq®vSh‰m0Å&Ø/PmèÏ=šmàq¼H˜àÜ#±ëª›{Ìe^ÛvƒY*ÑhTÿ®;Ãz¤¯}Mu^t":/:‘®G€ùS·ŒøÖ©NàE»e'àH„êºeO8UŽåÞbOö›qÝ.[³ • ½â¿Ör{êˆ^8ÖÓœ‰¶òN/ÝlúnáÉÉ2 S—Ig¨f6?úsʬfέsËoôï$c,OôïF6–žFF“%ýx;! ¾ÊWsÆ­Z©HG£t¦ì¢Œö¾ü 蟤™Œ’ ?þôÏ“QÝ¿úÑ›¢ðm" ð?Àç@?—F›øB®OSh‰m0Å6‘Ø/Pm›è¯ñðî˜ë)/Ä‹„ ®ñ v@ukybØ(WÇOœôîgÎnêî>I¿| rbSÿÉ›NžÄßÙß“íïöj ûÞý½ƒ­?ɲOºJ:çåìTÌià@ lqéY—³/.e%€I+G¹–äý  ÷eäöc3O "…Å)F˱f8;[ÿÃAzºÉ]™Œ­¹Üä®VA™¶¹Ïjå')ÕÒ)È7—·¦¥EÏUæºQ1VÇ?½£ÞÍ:ošŽ|¢9,~X< ,[Ë¥)4½D'£TØWëÞôZ}àù^„èõ¿ ÿWºtíø4¢‘9YÒžMÊ6Ïq̬à4¡‚¦c1k:œXÛŽÌʆàD‡\IÛ¡FŒÖÙåp–«V¦½P#WØöB¡R2Zii6s›}Z5ƒcä:w Vd M†‰~‚E”g-äY›Fïø%°,ÂzÇĶ˜bï˜Ø/Pmï¸>Á"Ñ=~ ^$Lp‚…ØuÕM°(\"±.n½5 ÷y)W·‡)¸ÏKá2„)ºÏKá2>Æ4¸4zhö¥x‘0ÁÁ¥—ÂcÕ .Ý"7¸´Ïª®«eúú¢'QqÎ-ôKÔñ¤U=Ã%k¬ÑůWö4ÿV¢7@å+_úõJzñ$‘¼oä~ƒŒÜÑ;ÊÄh ÎÎÎP|è^2Cõ Ôjg¾Q¤YÞ‘RµîÔ|4-õµîºÄËuŽ®‹:w?}¾ ‰¥û'Ðÿ$]º”†HøþôO•41‘À?ÿ™ŒàjZ %b(>R&Wè†BRâ>Š»f‚cp|\ç‰Áj ´É0¥‡y2 8‘ëvŠŸJô„e¦Ðÿ%¶Àû¿Ä~©€q …ï?ˆ >"vÀçáð‰u0Õᣇà2¥ã>ÁeJ×}‚Ëø¨Ö}üµ}ö€ÄéñáŇÚ]Û÷|æ¡6•kûnÝÍÛÔim³ãê#fÉ<Þê6 줇–˜¿ ×°ËfÅ{)§™F…Æ—$”½øh¹åí«Û¢"Ýwü>SÒ†Gm½p‚}4pR£~ó0«Šq«jTØw”ŒQ7‹.¦½I'ÝgÞ˾ãëÁŠ?ÛæØ¸Ûíýq¡d1i|6}œMïÞšÍ⋲Þvw÷fñMþ/¤†­¨FmŽtÑþµÏëa+’wYCn¢Ã˽¢LŒ–Q¨0œÙÔB÷n”8TïF­¶ç‹Ý¿Sªò–…UeÒ2˜Ö¾x¹ÎÑéSÄO´¬cÚM¥cfEÛ¬]mVXcÚ¿k×¶œ6RÃ¥~Ôú ûEˆ§—Anùk¦£¶°Ëßóef¡’ \fx„Ó™#§Iw« ÷­2r«ià”ˆÑ²[5œ4-Õ).tc¤N3ó5FM®Rõ´l‡LK_ÁmA|\çi ÔøŽøéÚ¨î]IÏoíª8¦ã•Ât£¨95Ö´¼ê+ü¨¡Xˆ7 oHcØãanƒ¦0ìAl;€){û¥Æ3ìA÷E9wà°ÇÃx‘0Áab× |ni$±ÖSÝÒø|æ‘tüçøÌ#éúÏ#ðÕúÏ*Áòf%ôÈû#x‘ðBÐÆïBÀm7€ÞY7W‘ ¹Æ˜Í££…eƒõ¤‹õAÖ7¯I]8N%ЀÐeêí¸±~±w(‰J@ ´¥0û¼mœUÐÕÈJm‰ÿ@´F|ר‡)@bÛL1û¥ª €þ•ÆTU&þ½ /®½>þøGì:¶©:¢òà)Ç?V[VŨ¸æ¬7¥‚ cp ´Ücª‚ IR: $‚ 1º Ý‚ ñ¯'@O¤_Î5êa AØvS ‚Ä~©€jƒàM·¯ÉÄÁ—ãEB ´$vÀ 7FÖÎ N9ú=.~W¥‚HHé–@—R„$I 8Zêx°‘–Û÷&”Û$d‹ ‰ÿqà Ð'Òˆ„¯àõ0…HHl;€)FBb¿T@µ‘pµØ.׃ΩÂWàE  7ĉ]'P­EVÎå»›\õׯ^ì£Ú¡¡&:Ї.÷î©Pä+ñÅ7#%#´£‘ì÷‚¾7 G{Îõh:Žö(œëÑtíQ8—ñ *#x}­Nû¼Ñ%`¹—21Zºõâá,Ókèe^Ê„jÍ5`™—ZÌ·£rƒO«ZZ¯¦Š—ë«©Ô™¦øéŸù;Ö³^̤Uµ;馯[+EƒJêŽS+Wy’ãïx/².:F--‡Æ-ù Óv\-ëèÓ9´ Ý5ŠÝÞ鼎Q°*E|ÂH×¶JÝÚ˜mÕªÞNyž•¦Yw\Û©Ñ),Þr.㚟4y±VûV-—ÏyÀã¾ë5N.JäGåÒ²_¢#,ÿM)ò{ë| ¯å4áiù3ÁÊ®$ò«CqäW#TØÈ¯P#ñDþX«%0òÇÈuîȯÈ4ÅO³°]4 Þu-Í÷RSŠ]±*=Ö„a—ôª6b¸“†Ác¼;i5¢´w‡5®ÒšdqW‹àúï@ÁÞ‘NÔ-õÉFÝ'€ä4áéu?$þ!ÁÕD]%bE]¦W©¨«D¨ÐQWFæºÁŸVµGÝø¸ÎuÕ˜fÃ…Q©Hé ó1ó±Ó.?ý8ðsœÎ„¾ä7­Hù´ øÓ2‚«‰”JÄPŸ**t¤T§‘˜òÓ8«%8RÆÇužH©Æ4ÅO7Ña{¼ÿïZZe˜fa\³øo?ÙÁ•¿ A¿›JÍecè_ÀiÂÓ#†þPü‡2‚«‰¡JÄh}Ñ<Ë6¥"¨‘BGPuú˜/‚{Z•?ãã:OüTc–â§+üGeÎÊEúwˆôï‘E’˜m~5ìŠ0…ÙfbÛLq¶™Ø/¢À%Î6ÕPÐló«ñ"a‚³ÍÄ®xšÎ6“èëw¶¥<Û¤÷9ó’ü.ài5ÛL ‚§4Û¬LŒà>Ý@èŒD™P¡2µ9…>]Á§U-­s’x¹Î‘“¨3MñÓ«æmvô²8åìP/O±& é©]±$ýáÓ.Ìþ ð7@ÿÆéf?-þiÁÕ„Y%b¨³J„ fÕi$¦0gµ‡Ùø¸ÎfÕ˜¦øi%xj·i©_ã­ê¡ŽŒ¢ÓˆÁ³ÿ«xøE˜õÊœÙÄiÂ4²ä¬/I~°—Ó„§E@Îô ‚÷É®$ «C嬯2¡Âd…‰aÖ7îj È1r; +2Í&†r³¾¢0Û!ÌöÓ-uÍìîãtfßé)÷ ‚ï—\M¤T"†âÔUP¡#¥:Ä“ºÆZ-Á‘2>®óDJ5¦)~zqó¬o~›Šy_QÔ1ˆ*w Ðê¶4æ}IîqàœÎ„¾þ!­(j ‚Û2‚«‰¢JÄP7ï«L¤Ð1T>”ÏûÆ])Á4>®óDP5f)~iÞWéEéE‘E’˜÷} ìŠ0…y_bÛLqÞ—Ø/¢À%ÎûÕPмïkð"a‚ó¾Ä®xšÎû’èëw¶¥<ï¤÷9ó’ü.ài5ïK ‚G›e”ÎG”‰Ü« ‘(*TF¢V#§Ð« 2ø´ª¥uN/×9ru¦)~𯼝X’·¥<ï+fxZÍû’ÀŸ6Ë)Ì*Cu˜U"Tè0«N#1…Ù8«%8ÌÆÇuž0«Æ4ÅO_=ç–^úlÂ,Öô’8 <®O°0¬›cã,0{A›>ào{9°wˆp胪Ya¡F2{9M˜F¸–œ&É÷oà4ái®37 ‚ß(#¸’p­F •³ÂÊ„ ®j$†Yḫ%0\ÇÈuîp­È4›ÊÍ ‹Â0òת¥”ØzwªÞÏiÂÓ#Rê‚ຌàj"¥1'¶j„ )Õi$žÄ6Öj Ž”ñq'Rª1MñÓXf…EQ¨¤Gåf…Iî—_ÇiÂÓ#Š>&þ˜Œàj¢¨1ÔÍ +)t U§å³ÂqWJpë<TYŠŸFšEz"=Y$‰Yá×®S˜&¶Àg…‰ýRñ( \+³ÂÖDPhœ~-^$¼´Ôül€f¦…‰]'p=èõ‘5ó©ia›W5+cZÁ2FGÍ‚I'”b ¤6ÿœ‡–=X)³/Þ¬ícŒJÆ´7a²«;¯ÑK|¤NÂf.~ôgSIv÷k=šä!R$ýoôï) üUAð¯Ê=åQ&FËȱl8 ݆N|” *ñQ«•ùŸy ?­ªiþÄËuŽôG‰6“:|ö ¿¡ÌYT¬ kçè úO¶­sß~ ô·"käj± ôè v3ë†vm Þ Ú†ëæ´¾þ­á3Y*ßqÌ\ÀéLôåc™ìë¸Ix˜B&Kl;€)f²Ä~©€j3Ù•L¶P2œ°©ìëð"ázÐR9e¸T–Øu/lStsæ.©T¶`•ËìÕ’^«éc†ÆœÒ(¸šÃþ@Ëî¿þÀáîúž רú$óÐÛ­Êå«»ºµ¬^rØ·è¥c€é}Ä,™î´'@­jئe³Yr»W£¯Ä¬ó¬™ìúßy鯮±Ò­rišbH•¾¿1¿­ÚVyÖ÷8¥×-¦¶Oñ«TMt“^7pÌLq:#ujjÝ$ù4ðaN>ÿ³pøAðGdž…+CåD·2¡Beàj5ÃDwÜÕÒ:ûŽ—ëÙ·:Ó?ÝŠ‰n £^ˆa6G”ü³<¹Ù’û7_â4áéT¿,þeÁÕU%b¨›ÍQ&RèªNÊgsâ®”à€×yª³?4›#ŠôMˆôÍ4úÀÁ®SèÛ`Š}`b¿T@µ}àÕb˜uî‚Ü5°ü^$ÜzCü½`b× ÔÚTÝ@ÿ¹}~Tq[­h”\ÞÐ^GÙ<úX^÷8·Sð:bÛLÑ뇧ùÛÈÓˆá„ö¹Çñ"a‚#OÃÏÕ< Hù܈Y±Ê&ë!ˆCNEÓ©–ôéú˜Ó!Ë1*î8{k³v¨ÆþÄ›'hš'õFü[º­JišÆ’&Ìâ)ç,›†£ù¬,ßQ4™´ÙÖÛ4FøÇ¬÷ã˜å*Ū°_š•ÉÂ~ë•+|ƒNúÚÀ1s3§ “-¯G8y}:¡åõ'¯O7´¼áÄGµ¡EØ´_X^ Ü´ÿzBu›ö_-XfýnÌœ0høXÅš¬Ôÿž5ö&ÿÖ,œ¨ðó1Yhb~^5 æ¨ÉX°—<×–°‘õÀþºÞª«Ûc¡ç;H–? ú“ÉLJŸý©ÈƱ\cUP+³æ!|<%I~øEÐ_L#ž¾ëÖÃâ)±í¦O‰ýRÕÆSa¹›] ë3oÀ‹„ .w#v@uË݆¥jÕ2+nψé6åk,é±’÷çN^Û ' =œK%»8 zZ™ÒTúMU¿ø è“QõqàC Ьê…Þ½ì:yø ЯP¨“)¼ø8èÇ“ÑÉ£À׃~}db9G…÷[ ­R+öœÛ¶Iƒb‡#§Ù%&.KhJÓyí਌‚ýç{ LÙéþø/ ÿ%ÿðG ”žÓý+ð' ’ºÓý ø пHF'ÿüÐÿY'Ý,OdÞf¹œ>×í 1|bÓ@}*y£}߉êÈI¦éáQ[/œ(²×œl÷DñÞíRmkýÅuö}ÕöZQëÕšß(ÿœsÑTø;Op:ü~zcÖ\ô¢áòÑø¦¢IÞ'¹Ÿ”‘;úT´21ZºþÅÃÙy­"ôTµ2‘[s ˜ªV«/ªº=À¢NÁ™Rª´–â†vé´tÛzÆ=^®s̸«ó¾&g—̧뢼¢¼'í|:ó!à¯pš0‰Öÿ)à¯rš0¥|:óà'8M˜n>ù ð79M˜„N~ ø9N+¸µ}¿—OåÒõLÍ˜Ò îÌѦ)ÛÓÀÿátF¾csÊ6>oÊ6.²¡»Ñ¾—Óí¡OK'ekß×›èðr+IÙÔˆ!—²Ë¥ljD›²)ÔWÄ”m\&eS,¾øVh—NK·)[Œ\çNÙyŸøéoŽznV”æ ¤9˜^{2^·þòÉ•ûúO2ƒ~ð_<‡^,3Ëcï°W85 Ù–´_|”Ó„§E[òJAîWÊÈ­¦-Q"FP[2¯EHµ%JDÝ–¨Ó×¼mÉüŽ”R¥µ7”;§¥×àv$>®ó´#j<¯ÉÑ%»™uQ^ Q^+-J”íHg”i¢À3"f@Z&Ý&¼ø!N·‡^°Ô²Mˆy{ üaAðË®¦QP"FËFáœáì,-K5JD ݨÓÏ|Û•NÙÒª¤àˆ×y"ª³?Ý e¯Ó Öˆ£mÖn3¸;¢× Û;ÔcGøõz¢__‰,¤Äz½7Âò€^ íäm1&`½±í¦¸^Ø/¢P'l­°GL'¨Ž‚[߈ ÜZAì:¶)ÚZÑv‹äÖŠ–Kõ®7…î*Sq6-Ж2UG[šI2Mý`2š®ýPdMß™ÓFj|3Ëë-½±w¾ÓÞ7 :w%@åÚ¤éŽËhüaàw@GºxQGzìûN°²5ù¨[5ÛßS¥¿Í¿FÄm²ïcÃþ„ÞÍV/ñ^îfý+þ¶Fƒx2)2UÉw9ÒÒ¢Ã/qIaØ„äÝÑÛ[ò"µ4'Z†¬LŒ–±¤ß‚?u[ =+?Tö¬Vwó ¡„t·”*°¥èœ>-·î ÄËuŽ®€:ÿ?•¤¥¹Ò\žZ;´¶Zw X¤.†æWÒÇ•þÞl…ýz (²Ì׸d®–9)Ÿ&KE»"#·šÆE‰-—ó‡³ ÕŒ(4t3¢NKó5#Þ’RUµòÔ|6-5· ñq§mPã^MÞ,3ð.ŠbC[Z”(ï‹xj!íàK9M¨ ÚÇ<ÚN?(þ Œàj½1Z†ûÎá,W­TtW"Wèè®N)ó ±ÏmöiÕLpÀŒë<SŠŸîÃB¾Æ’ÑÎÙõÎ&ñO6¨Ðha‰Sqms¤Æ79áz -‚¿åør*Ñv3:ÙPûÛÀor:üihi…Ú?ÿÁÕ„Z%b´ µ‹‡)˜HÅY%B…޳ê42ïa¶ÁŸVµÙø¸ÎdÕ˜¦øéÿ´ZÓiŒÇÓÚuü:‚ÿBþ(•ºòæì]Úåš76¤ÙÖ¼Áô_9¶/ä4áiLÛ5':¼àJ‚©1ZÓ3‡³Í*–‰«jä W*g¾¸zjnV †Ø¹ÎblÜìÜd]˜åfy*¡4s—dôl_\ÃiÂÓ#z®_+#¸šè©DŒ–Ñsápö.©€©D¤ÐS>æ=<ÈØÓª”à×yb¤³?-ð¾¾wÀ(.°a]xÛÔGJtøE©dMòÏæì÷+]‡'tŽ\P‰uxo‚µ¦°ØvS\‡Gì— ˆGQ8ô·«#r+ñÞ„ 7€Þ Ì×g»N Ö¦ê`ñíVâ͵R+xždžŒº7ÐŽ2u·WMž}"»À‚~ad¿¸ihU8ùyÆ m£z©Dq—iÞÎjì;iñ³Ú~8µéhŒ§îEmdšÚš…qËµÊæq>;Në6s2ÆpøsÐ?Wf ý=Ræi.ätF]eNsøØ.â4aDsèòí4Ô,Ä×-sVÉ·˜å4aªî›éöqš0}eºýœ&Œ¨¯,¹Z §¼‘”À;9M¨Hk‹ªæP_~›ŒæîœÎÉhî.à(§ #jÎô‡[½VÒ©2/óZÏ™Gýó#öóÚжÍ-2[ݶéÔnÖm¢+ÆŠ†S`©0û ßJ¨~ øMN+œøˆ¸Í„úðï9M˜„ üð{œ&Œhí¡{"Äÿ€ßç4aò=‘7sÕz˜BO„ØvSì‰û¥ªí‰øÛDl©m"oÆ‹„ žàMì:ëÛTàýT«nÈ͆n;ŒdIk±Vp{Ê–×½˜Ù¡èÙˆ±”ÃÎÑÁÕ·t‰ÚúãÅÚF€6Šò½ªŸ _ý…4Ó"äw_-µÙ0¼½|ø{ /²½¼†µˆºÐ¢æðB ÔÏû>UÅW9fnå4aš}ex§ 0ŽÌmÀû9Mø¼ëã|:ðAN¦êÌ™G¯ä4aúzø*N>Oû8$嫟ä4aº}æsÀ/p:#Õ.„×ܧ€_ä4aDÍÝ#ÛÇa ¯k·q«½cV& ÛñZg uÿÇöõœn—ËLb6&±.rš0Å·#ißÊiÂÄ{6Äp;§ “ïÙ¼…+×Ãz6Ķ˜bφØ/PmÏfY£gS ë'oÁ‹„ç>/~?!vÀóAKÝ0×TïWÚ¯™ó„éžMèv•ªèàAQ™íÈœM’|øUÐ_MÆf~ ø5Ð_‹l3R»‡H„¯¿ ú› uþth’ä[À?ýçÉèä€ßýíÈ:±çèoJÜx4OÇR¦‹Båý Ž™pš0]§ÌátæH"¹x+§%{×*œÒëÞÞÅiÍQzNéud œ&LB'w‹œÎ#ë$¶+HLøN*Ò›üH$ÏOpZáÕsjïµÀ'9MU{qõIÌw—Ó„Š´q~‹„ú}à_pš0 "AÊü%§ ïÿï¿ËiÂä{oåªõ0…^ ±í¦Ø $öKTÛ \!™„î¾/&8¿Eì:êæ·ªËìæìí!xªŠ™TÚ ¯­®Å‹vÉôFà»A¿;Cx-ð= ß“BÈ$þOß ú½i„Ì·qÍz˜BÈ$¶ÀC&±_* Ú¹ žRªX´* tÐ|^$¼ô…ñû ±ën½!²nÞÔ*h–¬1Í*ͦ_yÒ6cÍ#a^ÞÏwTuÛ5 µ’nã Z1ŇÖ*®m•Ð!÷¾#Ë'3*†Á§1F„ ¡´ S÷þNÂ^4à§@J™½´W 2&ò4ðÐÏ$c"¿|ô³‘Md9ëòQÌð»>H’Ï¿ ZjÐ0j`};W¬‡)VbÛL1°û¥ÆXí°^óv¼H˜``%v@uõ±0•ÿø¼Š©Tðã ?žfL%A> ü èÏ$cŸ~ôg#[ÇBLÕnä£ÜÞ¾8XS·ŸÙ†"¡ÌßþèÿR¦ÌË•è9R$&šP™26ÛÿÛ § #*óLϯý„n&IžvàYœ&L¾™|W¯‡)4“Ķ˜b3Iì— ¨¶™<«©™,æiëmØ`ø¼Hغ+þ`Hì:›@oЬŸã§ØTÎ}yA¶Þx¶ØËìtkÙýÖ”¶Y;\1J¥œÖ¿kç®ðé,•û"à“ £ÒKøéðÍ'ÒñÓ'à›O¤ë§OÀ7}Të§gÏðSf‘áç"žÀ‹OÀcVËzL8G}ÎùŒ´“cDM(vT¯FY–;ÛUÇÍJ…Nèë ï¤Tæ‹oýö4œôI8æ“é8é“pÌ'ÓuÒ'á˜>ÆÓ˜]‹üTª1}/&ؘ> ¿$Œ¹1÷ÚŸ™NœDc*4 é6¦ï„o¾3?}'|óéúé;á›>ÆÓ˜ú~*Õ˜¾/¾³-ÑÆôpÎw¶ÅÞ˜FpÔxS*óÅÀTÓwÁ1ߕޓ¾ Žù®tô]pLÕ:éºæ\×póU¾Ž:¬§¾ /fAKXÎSßï$ìÝYK÷ŸbÚËêËÖ ã–Íœ°ùæ5Gsjcc†ƒå¨þâôlÿ.Ÿ¤Ò]|ô£iøä»á‡ïNÇ'ß ?|wº>ùnø¡j}rílŸ,šc#Óa=òÝx‘p3èÍñ{$±ën½%²ŽîUí‘WQ•’?î ïT¶,ðФáïáöãa$lÉu‰ç‡,3iÁÙ†û½ˆ'ª+†Õ±_( eP4\Ý,9-8[¨î§€x’®bß. ÉXÔUZKµD@<k¥›yÆ^mÂ(¸t®:ìŠúМ'͘†Ÿ†yGØ Z*}hÉuѰ'V@5¯÷§k<ï‡ÁøÍxÎ*ÎسX@<kå*fó³úÌlÈ’|:%¼ ôUÒ%‰rötÇxöxw€ôs?M¢Þú–°E 7’>~š>$~HFpï‰tü´21Z&‰K†³¤ØÐ'P+“ª5×€¨Õªd¾¨ç2ù´ê¥õ!ÔñrãjuÆ)~º‚VΙF…2ìn{/è{#‡ÌÍ3B¦+ïf±òŠ•ÅÁ²w˜5÷v)÷DÉš4ì“'ïŵj•~Ôȸèšàn­x\6®Þ| è·(‰«K(®ã ¬o$«Œä­¼¸I²Áá»Cjaø gWRÐA0–êk©`E¦œN..ÌøØÎ0•0ž±Ž¬æÐH>õfJfÙ j„(ׇAXY–±ÌÕí1ç"Ï|‚T4üD}ø9ПSh!ÃOÄîW€Oƒ~:²¢¤6ª“Ï¿ú‹ªuãù²Œn¾üCИŒn~ øG ÿ(²ndïŒ')þø ¥6 Gï£Fè£ý%ð pºôÑ~(þCÁÕôÑ”ˆÔG•í£)‘*tz¢N%óöÑæ0ù´ê%8åˆë<)‡ã?½Ì¿¨R¸Xoy7Îê­H0¨Ñ°™¥É{yf§3rëZî(™2%Ú½Ì%ÀK9M˜@»—¹˜ã4aDM®õrï(²JÁˆ¢¤Lp?§ )©“g)®^QÖuÀÜ&LBYWpZæNòÚ¾iæs£z­ä†ÞÍC²Ü á4áó#ËϘ@‡Ó'%€.§3njY~¦œæ4áó#ËϼøJN'qœ1±;|§gÜçKå®·3ÎЫâÝmÇ'þHq9ͤÓ?Çd¿—r±WŸætF®ßCüðëœ&LB‹è¼f¾ÁiˆZ´)û0¦h­Ãµ­2?Ø QÒ¬‘£FÁ¥Cþüy7];§Vš›s<Ëp§«fA/•¦5½Z-Ñ6ج‘ËKÙÁïsl¿œÓ„ì •=,®ÚFÑ,„ÝDIBÝ ¼Ó„Êl¡dVŽñW=7CâåC9Ïê_Bìoã4¡œØ³¾“”í÷sš0çh¿¨sº]ì»óÚ^–mOéå*‹lÌSª¶5aiÁ’ÁZçЫH¼àƒœ&TV;tXg ¶àßö!`J‹ˆ}»€x$=yQTqhtv©€x"ÖÊ:MÓn·J£czeL¼´UˆïW (Âu ×)kÿÖNNŒ\Y6\…ïfÕçó–=&!äFàÐ;”ô¢a£¬›¥¾çw‚ÞYwí¡'â¿ ¸ôneJÚ0îºUgwoïääd>„²†kHÈ+÷‚–šÐ ®©ÙAªÚ¼´TÙ¼43üQà~àh©>[K®‹‡õš;nÙ†¼÷WÛR ¿Ä¾]Àhá÷Á¨â|„=+ıVîgáwŸU1\Ö§¿*¯]“ײ}}¬!?ÌqÇaZ´¾î°Ë> IAÛ½æ’~ øfÐoV˜¯Ì;øÐÑçvÃGwâÿVàÛ@¿M™òÚvHÈónà{@KÕ Ž«T `ûvàS ŸŠ¬ŽUÙ­Ý9mpp[OÏàÖ>)Çz/ð×@ÿš2Ýtû-oÑ2©¥ííïËö÷ 0ܱ}×®ÛûvôõmeÒ‡lƒIÜÏÿôß(Tá„a°ýuàß‚þÛä› bÿwâIZŒq×QMƒ|Œ5=Øèy˜7;}Ôä'×âªæ‚E'Ø¢Á6ÌÐHkphÈÅk¦èÝšC ¥é¯õÅöiÇtB;ËÇQHÂc )s–5ö…D½F%ÌŠ!!£ |9è—ÇßÖ»ð _‘B[Cü¾´ÔØp붦—„<_úõñ·5ÄîUÀ7€~Cduœ™ Æ¦`kmúû¥<èÀ÷ƒ~¿2õ\ߢ¹éïóš›];zú¶íôÂIÿ`_wÿ®Ý—QQvïÖÍb /;vn½|0ß—/X{zÊ![$*ÑG€ÿú¿âo‘ˆÝ€ÿ ú¿“o ˆýOÄ“´ŸàFQG5-Ò9Ô"Yãk‘®Ë{[+wv‡¶ü_ƒ8„ç€>G™åo¯·¬ŸR¥ OÍoåêÇmŽ4z2õÅ FØ~ É~ðÐê–õ¶-Än ðèC‘µº“åÔM-æ™2¯5K%§¨ÓüÚ×íÖ®×'½ƒ*´viD¯•µ½ŽcLݕ؊GR¾´\‹É5~6ç£×Øì¹Æ”7Hp(Ÿk¤s ïûÊ®ð¾òIÈG¸ôfe¾²v¯ï¬»?bVt{Z+ênØÉ®¸´Ôú’pÎ@춯-¿Ïÿô"Ñ®·*E«²›eázµÌ2ëÍÚµz©ÚðIÂÀqÐãÉþ§`@>ª1üCÌð½­ö9ífo|ìÆ¼¿é^Û[­ÚÖ”?øåíèm½{_ í$¿²-[Nìï3-ÖY²Ãv‘ñ$-Ƨ¹žë¨¦ñ`m‡vµéŒvŽeMÚ^¯éègMÇM™î?É5К2»^ÉZ³oMšaÛþÌ\(ÙºÛAoWfÆ‹‡‹·ÔZ¯Ö †‘æÔ›*ãr¾®\œÑb¿Ûô¢Q¬ü5`ºæ”Yî¤9Þ¬Yè€E²ïÖ@×”)vÑ ¬<m.™^|)è—Æß¾» àƒ L¡}'þý°2•dú%Äy•€xânÞ‰Ý#ÀWƒ~udm,Íiý==ƒR~òà›@¿I™R4jØY»>^,åÇõJ‘9rÅp{¶níëíßÖ¿=0% hÙIÊ'€Oƒ–Z’®e'vo>Zê*§hM*±V@ü2è/Çߺ»'€¿ ú·“ëÄþwÄ“´Ÿçª®£šÖåK¬u9XñÆÍ®õÇÍöÙz±dLk×ÙÞ‚¢ë ŠèÜk±ûÒ´ÃÈÑt:ßǩن7[3FrôɈáNFEãZf‰Ž jêâx£mUËdïúÛ—ø nƒŸ÷ã¤Uï"yÇ ™Fø&ë ¨;Â/þ’2çëÛo•˵ŠYÀð¢YärT–=í•÷oE}ØžIýUàƒ–Zx®Uû<Ÿð§ šB«Füü9蟫kÕúw†—Ç»w™p§ ãnÕ¨ø¿ÛNFTÇ™Ùþ>Zg¾sMíܱUÆ·2 k8M¨H=­¶5õ÷íìc}§íý}»vîêÛ¹s°¯?xgZ@ûFâ®àtæ@üí±[ ¼šÓ„I7,ÄþšúOÒb|‘k¼ŽjÚ·‡Yûv^°F˜£ÖM8Õ çM ôõï`mÛY-ψé¶Éq…n:X×ëeQX?1MÙ~§ßBé ­n®û¼C†cèva\;<]aŤ¹rmÉ÷*àû@K”„k‹ˆÝ#À÷ƒ–ÛÌ"~¾-"þhkAûŽŠÔ” Û‘OÜM±ûðã ?®¨ƒÕ¿5Dý;Ão¯%a>ü<èÏ+SÍÆ ýNGm§L3Gª hHÌßþ舿ý!v_~ô÷“üÄþâIZ ¡/ °ý¹…µ?7®±õÉœö‚¼v»³*cÞ6Û›½®Õ®oä®Àz¬)Ñ}ÌhÚKëø}ˆÐ®ðe…ðÐR›‡Zožmž ÚW+• ׬HÈx° Zåb逆„ØV@WRhHˆ¿¬‚®*SÑ‚þþ°cu$È$pôtüM ±{xôqEMÉ 5%ƒÛ·IùÏ à£ U¦œK[6%ƒ;zûú{võíÊ3õåòLþ üðs U^˜Ш»W…yΤ£9±F@ÇuïÀÛ¡µÕÚ5½âšÔC˜0JÓX‚@gC»ÕWQ„o-w|W+·Úó¸Y²«:îU…·I/Ô×~SAYÓ´ƒÇ*˜¿J‰Ÿ ’Ó³Žáh{% ôvàw@'þ6ŒØ½ø]ÐßM¡ #þükЭ° Ûv5 ò}àAÿ0þ6ŒØý ðAÿcd}ðm£+¬IŒþèS¦–Í-[¯];{mÇÕó”ò}}ýÖ€†‹dý)ÇÌ…œ&Œ»á"¶?Û œ&LºÅ öZý'i1¾ÆÕ]G5 W•5\‡,Ǩ¸ãz)‡åÕ‡j#Ô bÝž}|ùÛ€pjN3*èV­ÙUö§´œ­ZÒ½]ÖÇ*¦[+zpÆT•EnZÇ^æ:¡Ýåë()atU™»l 8„»Þ‡š–wøÐRÇ_‡ksˆÝÀ·‚–Ú.±Í!þo¾ôÛ•i«}GàÎ9äyð)ÐR©o¸&‡Ø½ø^ÐÑS]YÀvê6í’ò¤÷ô¯+ÓÍ%Áݦž¾íÛó;¶æòLüÉû›À¿ýwñ7>Äî“À¿ý÷ÉG}bÿ=ñ$-Æ7¸Ê먦ñ9ÌŸV+Òú¼¶ ÈÞiv‚2Ã[T|ˆß§ê]vƯVѪzá˜>¾×óû( áaЇ•yÅ¡}OK=lº“ºöœmò.àè©ø[bw8 z:…Ö…øž}B]ë2™æçA`¤]FáZb÷BààåVHŠŸ.÷6ŽRŸ&ü„Iòð1Ð)SÌÅ­š–ÛYÛrÔqò}ƒÛóf_Øyõ-À§A'p±{ø èfæ‰ý³âQTúeÃìÃN{nbþ®ã¶ÿÓ¦²- ]ľ]@<’F{Ö©Šx7é7©æÄ±ZöoÚ´IcMN¡F'ýh¬K£Ù¦sŒ_ZÁ÷yŒN•µ·ÔØÎZÚí„.É@©„ûAKRÜT’‹º«]Ö£'‹ÍVC]‡uå4ÝrY_4§0¢bŒå´‚9Tð~Sd„÷:oyˆý“)Œu‡.Ô¢ „7‚¾1>« ”ãÀÛG5Þ³žÌdÔt™]TŠV¹‡÷Ö~—lhÿr®½>ºŒÌJÉ첞6sÚ„ÙÐix}þ äú¥2†×矂·jôy5éSg­¥m8<Ï›wm»XÛPËŽÔ\ÍeÙw…_ö›c uãžTŠ ¡ ó-€ðÐÑwÓì¥Â`od}eWÙ(²ð$”-ç͇ðš>ØÞ8þ ²î½7r9ÖáÖß,3äVŸ SÕðòý9d"\z] ÆûmðöQñ8ã­9þ9çfÅ5Æh8²y9_è²üä'¼ôÕ‘Ër¨•Î9ä™êóLzökºÐ|¨Äz‡YºÕ|ˆ½ë]ožcíõ¤aõlÍiÞ­õC[»ÃË_¢0„‡@JÁX¾Þ>ª1–³ÉX¼À¥—f#–},|Æò]ˆCx6è³#‹vEÝK(ú¯ 9á ¯HAÑ Þ>ªQô E;Ú¤Q Ÿ–ü d!<ô‘åºh~-‡WåßB<‹@_¤¬ƒ¶t÷¢·êž}ìþN©öBwψ}»€Ñºg3Ç–õŠY ) wW‚^©L)K†Ó,|µòù{èpèUÉëäïñžxä*`Ö[í‡ZÝÿï{(v›Œ9Ò+éø–3ùïVÓï:ø—žùä#{Yß5é‡äZ1³4»zÝrµ÷ûçºCãc彇Fjf©¨zqdëÖ¢>°u`{/ÆÂ{™m÷"ùUúðs°ÙÌ?®W)c¶€ {a€“,qm³q™S°Íª«™Å¡.Úq>ÕÃÕ¥éÎt¥ 1­ uåó½ìŸ[ïü2^~Y/ÿšËOnÑŒ’c0™Y!û²-Ïà<,²îÚ’kªø“½éë»Ož TaÅ=tÃÞý‡n 0㻀h#¬ÓËg¾±|¸déEÔ(ój‰:¨æ$œpT~TFz16.h%ÙHüæ2OTVîÖ\É4ãâÚraùe«R1¼¦õò¹Fa‚ÆL˲€Ô8‹ÒJhÉ‹(ÚhãQ¤ÛåÃEƒÛœé_v7+u‡If ²¦Y1$R»€x$}iäÙ„%­Ÿˆ™Èr¿ ™ \‡(ÒRÔ·÷E —KWQ[`nV´ÜVÝÈ¥P¹7+Z®s-~Ú~–b)lŽð,ÐgÅ×- ”£:ðQÊ›æm9ç p¨e¨¡exi›äLK©Ï32‡Pg×–hÉuñpÙ;T3€qxèó"ÛÌeäÆŽY4rþBË꺾¥¯e}Êt {¨¿¯/§Ñ²LË1†®Þ{ýá9Í,™åðîO¢Ÿ¼ ´T—LÎý‰ííÀ»A߆û“ÃÀ{@ߣp4¦æ°nG@‹€ÑÝÅOC7”ľ]Àh 嚨⬀(>â‰X+ 4-È?‚Y • #žŠ£qfJB¬NñH†á3Ä9K¯`Jzj%”G¸ô†(½,E#P$Ïf`t^™›Ž@; Ø º7º—ç%´Ò' e¥gmS9€m°tò1ŽØˆ'ù ²Š›´‡ñ•J!$$뮽B:®Ì”ﲪؓ\?øC£ËC*cZÖ0Ýqö£„¼«ý å,«U .ê*£nèCÂìŠ?Ƭ‚I^úòÈæÝ¡YRZ¹¸ô>eZYÜe›cãrj9¼ ôMɨe?ðfÐ7GVËïvÓt’S5 æè4ÝI:9nƽ^ƒ¿¨|´V©%­ZòW’›Ž·ÎØqkE:‚Æ·j¥¢6bhf¹Zsb^;8ª‘Åkµ ÿfÓ(æøåÙô½¦Ãü–ŽWð/›Ÿ ŸÝâ·Ñ‹‚Y_Ûc¿q¼‰0ºÃ.놌aÝ‘n#!Z¼•D°Z÷B11¼p™MÀnN*³¯’Y9Àv=ðN&`ÖÞ•'„—rš0¢YŸïM W7éBô _#KÊè›ë`9àÕœ&Œ;×!íÛk8‘›z? ëûkè?Éç:üŽñå:Kë%âuÏ}¦tÂ3s€xª<‡Þ9غGY‹ÚAƒKa›Szi+pèñÇz)Ü zgdÿŸÞÙÜ z·B’ÓÈ^àU ¯JF#{€@ˆ¬‘…9‰Ä“Þ¹xèë*å9¥Ü<úH2JyðVзFVÊ MY'euõ¸ë5Üô›J­<Ÿ5#áÌÒÇEcTgi!%“ʽ øè§Ò~ôG’Qî{ýÑè10tŠEï| øqÐ?Å¢—:€Ÿý‰äS,zç×Ä“|Š%lÿŠ1ÅZŒ¹' á:«ÛêÉ–d‚5s¤Z÷6̲p3#,‘¬åZYF$:N:÷#UóL>É5HA ÐŽ² µ ¿¯/lŒ"IŽ_ú…ñÇ(bçO‚>™BŒ"þ/¾¸mÖ5qÅ(b×| è—$£ˆýKÄ“|Œ:“[³‡1Æ(L‰K‡Ž_ 1êíþõBŒš7¼n Us«5WŠãÇ‘ºFÑE«Ú–7næ£!ŽMš^³lÖ›,Ó]¥EÚH\Õm×/Žàvf[ciÌG@K¥;­·±zë†7’å“ÀÏ€þLüáØ}øYПM!¼ÿß~ôç? ¼»àÓ ŸŽ\üÐáØ?#àŒ»Á’ o°gßÿc o´ÄGB²N`ô½™ícÑÊ~J…™mB/Õ Ç›PhšK¨XþB· /n…5ø³ð¡ß¯¾%~ƒ? FNxô¡ä žØOò/,¢Øà¥–‘ Ë&\Ù6ë4ƒˆV¾ÚòkÝ«ÑàNX›%©Îj µømölØ)áFГ·Ybß% E¥ï®«¥o1ù9À”V×÷¤·tDg <ÄGéÕcMûÐÞÆ¢È‘ Ì“NºaÑ¿ÂRTýÊ6 ZÖÖ+ÇzFtÖt{gßizmÌ;`Ÿï–ôs{ æ¥Àt4?˧µ«j¬iñ¾ýȤaMƒÎXîëÓsÁÈf•½Ã“¼7½_oÃuš…®¡á¥äõ³Øš/ýAKsÔ¶X©Äã›Y‘ŠL:ÊêkÕª?·íŸèf9®fL¹¶QfÂÙÇ#h’¾IHöYůÇ{Óq {‚ÉìU•Cîè~“Ž9dM«3]F5S]ÙFÁòZfþUUË*±/ª—ÜÓßá 7Kû-ñÉk”ªÑª”¦ëuiú_qYÁ©€ì ãš^ê¡¡|½åqŒZÖÌùý±÷³ã­-  ²ô£M#ËN³úÐW¢óñF¼Uº]äÝ]›ä7L›FÉ[‰ óÊék(Ö’QsšPU7‡™¥Y /RûSÀpšPQ ]<ìÜR³ÜVýbøvà9M1€>3ëD‹NÈ+ù7k½0`¦hä4:ÙQÔ.÷dVüó£â˜¬?lòk–Ä…'Ì3ÉݨWlÒ‘±6{¹Ä7Œ1c*ŒëÓ)û8ãM:z¾¯Z)™ü* mÄÔ™-† ¶Ts⸠ÀiBEª[2ŒÅa§2¤Ùø‹ÏÇh߯¨â¬kã‹î}T³k küöF^5-ì!©ko²Èsq!믛ÎûÛºrõ¥ÔÕÕ”e À¬ë{AïU˜Ü ÀœÇ]ÊÃ} ÷EVãõ¼©½¤…N3ô5]:,‡ñJ5¨}fáÉ?²}¹7|Çr åï¾ôk#)_á+êÀ÷€~B-,n#vo>ú©dŒëuÀ÷‚~odã:–cmWÁ¨ºÔ§½,EAªÇ 'hü–ç¨U*Y“dŠ¢ÚH{õ"ˆv‡ ŠTÐ÷q̬ätFªÿu\á|n²Æ7Ö~¬OB®Î¶ÆV¹Î¶¦í#0\ä§CÅàåaHÒ•Àþ¶ú拸ˆ]pô@òI±Oò}Œø‚X Zf¯Ç0cÂè#à g¶3r /À{„k@«Ë€$7t0ë] »âo…ˆÝZà&Л"۰̆’à"àÐ[”iEvCI“n-uYxµdÛ@Ë\&~z½®&ßB~CGÖ¤!—énmÒ°›:$T½øЯ‰¿Ù vÀׂ–K~ÅOC7ÄþuâI¾ÙXÏýÄÃøš…Ž‘ ‘H@õs-ç8.Ëzu»¨¶my‰Ð±¾°FL¢¼ôÅññz.áfЛ“7bb¿E@<Éñ…0Ü c5âŽjx¾vK=÷Y2C¢s«=Þxc¥!mxc–,!åjàÐòŠ\€Oû†ÍQ:WÎ?3.JÓFãú'®=y_Ÿo×ÞTñs GåÉ/}yØrѳ[4\>ÊD¬fAÕHGò^!È}…ŒÜu«iŸw²;à Keb´ÌÆVgŠ :eN™l­¹œ2§V1™yŽè)ÕNK¹æpÇ´ÔåùbÂ\#¾Åê9⧃»i]ÓÌlÜŸNå;¦½<>ëÍ—NÒÔn„ÈóèÔ¹¼p̔ľ3j øèGâï‡;ø2Ð/‹¬Ìö=2ºy9ð _¡L7í7î•ÑÇë€~,}< |ôã‘õ±\ó_MšŽzq,Iòzà“ ŸŒ¿@ì:€ïýÎä»Äþ]âI¾°›µ‡1ŽéO›ruÕéßÒ´hëó85 õÕ ŽV-ÕœKg½Á2|ƒOíT¦C[?k%ð^Ð÷Æoý`ñ„÷¾/yë'ö÷ ˆ'yë×`ñZ¼Ö?Öú5X¼‹õ_Ä—‚Í}³„Ä+ Îhi0bÂÐÉ4±0µ­0â±t‡Äá´aÆ„ÑGufž^6¨kþN® ËYìùh=êÂÍÐiþF¼G¸ô>u©d` ˜J’ ×–:P!\*Iìö_ú‘mý,¯)mj–³ ºx/h©6Uá8’Åš Ídttð(è£ÑuÔí-z"ž}R™Ž:ŽºUJE_úåɨèEÀW€–뙊Ÿ.æ«õæ£$Ä£À×~]ü­·°ñÅë w´Iv†£µÞÄþqñ$-F·è:ªY|;?fœø7jºä¿|¿>J§`5Ö¼‰[=(,WmÓ[þæÝ‹N¯…,Ù&”†ðh©svæ\=¹ÐSB´€5Ð5…–ßX;¹ê¹™#{CžÀó]-8‡à:°º"+ø¬o¾8z"þ€HìnN‚žTWø‡`æµýzÉëãHÔôð• _©Üzñ$²½øaÐNÆ|— q‰É~%¤~ ð= ¥,ÏúæÇ¿úW’±ÝWô¯F¶Ýkýy ,y¯ÚÖ„Y4hỸÜÈߥãçÍ”£ùù™— „mˆ¨þôO”Uâ¢a¯ Ö‚ï:îõ{èSÚCìÛÄ#éïk¢ŠCkd ˆ'b­<饶Áš|stÔ°Y{ß8/Î9…ã¼ul!vvçµ}ÂVF‡ÆN]³P"sfÃÿ:ëí }Þãf á“ ¥æÔ÷H¢¼øAÐR{óÂ"b÷Nà‡@(²±,ôT$¡”? ú£ •"q$ ‰ò)àg@'p ±ûð³ £ŸG“óRso÷p™®-æi“›^œÐ+t¯¨·³~¤„î~ø=ÐßKß¡þø#Ð?JFwÿüWÐÿYwÞö5o£‘ÙÔ¬ûkÑxè-•´ñé*M±:þëóâ9{]C7q:nØVè,€JücŽ™§3R{c£5[¸ÕQMRð!ÖüDÞÄgû´²¡;5|Soÿê§ °ÿG¬¹™–5òcùŸ@)áØBrEÿóÃe `Eëé÷Âæ¥ý9ÞNÚÁ¯öyoöwó­Î´{ŸI!ÓÓ΢†?Z.þ·tÜ9Î8 t\åãÀ_ýëñ;.±û0ð“ ?ÙnÌúA3Þñf'Ró7ÿð$o ‘—óù4Ì7Ï 3Ó! ´åNºðþÞ3 o¾¹~';óS3pš0ioí†Íù¨Ä[3û1†ÅG«<-ÖlÃoónLæj£HŽl:ýÀºÃÿ 8-Û3é®þ¼•×®5*#§™ÂéÍb˜tŽŸƒÃIÄ6r8$ðϼýŸ§*¹?ÊîÙ¡…(6v’ÖOiÍ‘6£2¦“þÉ…zèÙ®K <ºµb?§ ’e™þ /Xæzàmœ&TNæ8mƒ^¼Ó™èÕNÓ«L½za<¯f¤¤Û¥in‚­Ïd™Ïë&_}þ(›-ÏoûF=ñ[ÀY&%aQ™;8¶ŸÁiBEµ•Å!¼híç7sš0›j?¸…ÓíÑwƒ¼B°©k­Ic°‰…>Xªc–¦i€é±1ÀM¦µþ)ÿ¬h“~ m}Nsݘ1‡¿Aˆj! ü8§ YÈ’S´È%ôÊ’æ³À/pš0ãøð‹œ&Œhü¦J¦¯šãòs·q ”DÍüð/9M¨H_Ëy!íÐßþ+§Û¥zm2:ûðÇœ&Œ¨³e ‡›‘ ÿøsN*˾+­ëáb®Ð¶KÛTöÚB§£Ä¾]@<’º(ª8tåÕRñD¬•u,;¾Ý*Žé,­¼Í4 ãîˆ^3ìЋ3z (B,~2^;91r%ÑÇâO³f/å¶ì1 !7w€VwµÑ¢a£¬›¥¾çw‚Nãn#â¿ ¨þn£ ã®[uv÷öNNNæC(+`  y%ð^Ð÷*SVÇpÍRÕà} ï‹¬ªá;å$ÀýÀÐ# ›!½æŽû·ªÍ 4ä½ù¶TÃ/±o0Zø½ ª8½m|é©x"ÖÊ,üâ<ÓÃyíº|NÛìÏ€å´Cyíú<&Âè¨L1[Þ­íÕ“RRLçöÐt.?tÕ?P“ºk4ŠOçe²?Ó‹Gkü'JâfžèÔ)žš×BÖPl…ð ÐO( .ûL‹|6'yÞ üh•w9læ%vO? Zn Kü4|Ì'þ~¼-Â]N­—oÛ.!ϧŸ­rmÄ*Ø~øYÐÑçÑVeºsÚÖmÛzz¶n”r™ß~ôW”é¦Ïo‹–Iíoo_¾Ÿý×{4ÏBÊöžÁ­ýSyŠ.ìGV„üTÈš¤þ?Àÿý? 5Iw¾°ý=àÿ‚þßäÛ'bÿœ€x’£Ÿ+¾ŽjZë—Ÿb»D+3öÎ8þ»«iX§KhôBÁªUbl‚P„/-µ»¥?õ^gÕlÖÂ8èÞ²ÁÊ«W´Ã´Ü•5­´ƒd¯ãXÓ+”„ð¯>ZêΓpí±{ðYÐϦÐNÿÏ¿ú êÚ©]Û$äù]àW@KÅæpí±û"ð÷@ÿž‚vjëÖ]¬¥Ú¹«§g×N)¿ú*ðÏ@ÿ™2Ýä[µS};ûzûú·ôoݶ‹7Rý}[w îê Ôc@+E2ÿÇÌ2Ng¤¶C†k¥ˆíŸƒírN&Ý<û ôŸ¤Åäj¯£šVêØŒV Kƒï6Èk+ÚµyjÁYî¸ãf%§íõþöpÍui"l³vC^ÛgÙFÅûXË(:ùî°³…$<ú˜2¹îæùšÎÝÚͶ1aTøäÍù9­<È ]Aán•På²Oƒ–º,\#EìJÀg@G¿¬GËV«y­`GOOÿÖ­ÌpöÓnOÖg¦I¯•±«¬ÝÚífɘ=~C¢> üGÐÿ˜¼çmƒñù¨Æó3ÏF‹sÚížóõ÷QZ•b­àey‚Iòm³‡Û€0@¨UõÂ1}ÌÝ&mGaƒ>¬ÌÃ6¹ž˜Þ¶FÝIÝ{$/ yp ôTünC쎧AO§ÛÿãÀ O¨ËíÃŽAýPü¹±{!ðaÐGVÇòì Ëìú{z¶†OìH’G€~L™b.n•ØíÜ>¸£÷¨ãä'ú·ç;Áù‰úàÓ U¶@ù±{ø èè-PèpN쟢Ò/fïÐrŽú³ÆÀ)ÌîhSÙ–„®bß. I£]UšÐëPÉ¥k2çwì‚J£Ÿß¡v¯!É´ØÕ¦þ¤õxöîÂ{„ç>OVêYßÜ ÜZêø€úXØLì:€¾(²­¾€/ ª¯&¤Õ…ïºq¯¡Ór³aã~©í†T‹h+ù´î棚È(ö€9a|1`±mŒÑÔ¢„p«k@¯‰%ÌbÛ \ zmü¾¶þEx.ès#ÛÄyõÕ“LþÝ”¤‹ÐI9ɵ8z@¹©,¡Ë@%må àÕ ¯NÆVv¯}M2¶2¼ôµ‘mEkØ S‚¸éHÞbÇA+·˜nèe¶$P 8 Zêø‡ðÆb§@«ìÕÏa,&ptô^ýæY‡ÚÓ#ÇÑs¬bŽÒDío‘ÐÌqà»@¿K½ÉŒ:agÛH ?úcɘÌ€ýñdLæÝÀO€þDd“Ùé%züb¾ê_7K=Ž>jh7jÙQ³dhE[Ÿ¤Ö1,ݓ٠NRÿð‡ ¨¾¥rŒ’·‰ABºÿþô/’±¤þh•«/æ°¤þ/èè«/ÖzÁG¸Å×»2:to€„zŽcæN*ª“%ÃŽaИœwrƒj»¬Me t?„Ø· ˆGÒSNyÑdàþÝ¡6~­x"VËþM›6i½D7:³ÈS²Æ4ÛtŽiÞ~~$È|'Ô†.ÉåP*!ö4¶Éíi?½‘uzµËz4áâd±|¨ëС.)Í!·j99m„c,§Ì¡‚÷›"#¼ßP§yˆý“)Œu‡.Ô(á oŒÏj帼}Tã=W“™4ÍŠú#3-¦æðE²­¶Ã†.Ì^€ðjÐR=—¦Â\ÂÌ™,Å.ëÙi3§M˜ åç0½=Ôuà@Wx+Ø! …­»>ÇÕGI`ÿBê,+@xÙWk;´TDo>‹€ÉZ”«Àž°tGdQò|„,Ë$bþmL õçrZÉ3*Å!º¢:ëŒ[“C]Óéê_ (at>A¡‡ßJÞ8¨†Ž†á{TëÇ¢ø}™kûZÞåÒêГÐe»å!¼ô­‘Ëvq ÿÉiͺ„—õZÈGèﳓº@/º?ûƒJý)¼i^Þ>¦Ôø´Ü±º0/@^Ц²ñY?GãÞ¯‡\„ëA¯ž´77@”Û!!;}Ú›› (ašíÍÍàí£§¾Šœš|ØÀqš>bMð›\„SI¼HÓ™õ=Ø=[ >¡ƒ$^¥‡ÀÛG5UÚCUÚâ8q½öBË,, w(?sñ#’ðù–‹ ¹ÂØx% dIxGÁõÍÇûÑm|QçLf;êī˺>–Íü¾KC|_³µÌ²ýÅÌöi"pŽWNù´ –èØ–7Ð×ñÿ$ˆí ñHˆ¡Ìú©¡Z\ZªfZr]4¬—L½U»ÝŽjho®’¤5BìW ˆG‘FîÙoUX—¥VpéÖϽÔA™¢‘9>~æ™zö[þ”“vƒÎ"áuo®2ªtèvÅÕðÛCû·‡Þ„ÛCCu´KX]T¨i×tK­|OXaèÝN–ᘴ¦‰ý¨€x$5½4ª806å Oüôýš¦]-.°íOŸa¾ÑõöW®Û_±nA·×æè‡²åÝÒ`LÇ sEùø¥i7¦S Û¦ ²fÞÈçdŽœ^£!|?è÷+óQÿl×Sïí"G \TAì>ü(èF¶˜e¾ÊÃßWI‚| ØâÖ ½´ìûÐíUå Ù~ø5Ð_S¨£€õ6Äî À¯ƒþz2¦ñ›Ào€þFdÓXÐz« ðûÀo‚þfTAÚ/6GOŒ»åÒÉÇ©ª}7έ²‹9‡î¢²)VÙ÷œ¸aï‘k¯Û{Ç¡ûn=|`ÿU7Ò€Ñái'?f¸Fe"Û5ãã®î=ZýWs½ŽwÍQ-»±r¼0®ÛYñ³îîY_Óåok++ù£ë¾›v¾b¸½•j™å×îøQ}êÊÁ^ÃÙÖëS=*_ÏhuŽ:]{´›Ù÷Ñ÷8ÓŽk”ó”g»ŠVÁÿÓ€?Ìù[e‡ºð¢í ^ñĦïíÖ6oÖf•ƒW +Ê–ááaãO\æl³êjfq¨‹å%ã×éS=üW]šîLW ÓÚPW>ßËþ÷¹õÎ/ãå—õò¯¹üäÍ(97í}ÙŒ‡gpYwmÉ5U|ŽÉÞôõÝ'O *±âºaïþC7˜ñÿô_†5czcùÌ7–—,½ˆú¢åŸ-/D š“pÂïÒGFz1./h%ÙHüæ²+£¬Ü­¹’iÆÅµå ÊòËXúVá‹/Ÿk*hÈ(°, X@³(­‰–.‹¢}§ñ(Òíòá¢Ám®~"Ó¬d=Ó6k(áùP1~'ÖG<’ξ0ò ž-OÄTä:oh#Kš¤Ó$œÚȘmÕª9Ú+È:ÓUƒýk–~9mÌ®ö{ÿ2z’Q“¹ÐZm «@"èÍûf]rš=n±v{œÎf1V–¸Q8V-ÑmÓ9­bè6ûÁ»œ»Ê^1üŸÂ–f)JàÉúisi LT‹–ÛjÔ‡>¼x=èë#Wf{ø+úðà oT8RsXàTçm"Iô¨AìÛŒ5vG‡†Ý— ˆ'jÿ%üÎXal¸ÕÎØõ”ÔµO˜ru •ÔÙÖ4Gqêrµ”ç®JÍ;¥P›`Éíï²X”1 æè´ÙËŒ…ñ³6i å%ʹ8zLaÿ9àšxb×=ž¼W{S@<É»8GŸ,FS.!\'p5èÕÊ|agk€¨u/)þ5}´Lxº;¬¥¯Âë@K¥á,}¬›ð _¼¥^/ žä-}%¬{e¬–¾ÄÏU%¤ëžú e¦~ƒåõwôR‹¸ß¸²)kVêSÝõ¤ÛñÎh3+¾c„ŽôT¤³÷ƒ¾?~û§\tÐzòöOìGÄ“¼ý¯‚ͯŠÕþ°DAB0,X³E¦ÿÚ¦_4½‹j¦3.˜ÿ¼)ÎŒ]„¸3Ï» ¯iö¿ã½‰5¿% ë;«„ç‰Æí;«à/„O‚~2yß!öïOò¾³þ²:Vßé  É‰éRâÎC¢{…º'8󸂣ѽÅviÚ¿ÁTycµð<ÙÀ¸g5f5,¶C‰Õ†vzç]âIÞy΀Ü«ó,ôÆ%DC¦%f`мçÛuï™»×M’kUˬø7>Ÿ’7h“ÌóØk®nVè&q³‚›6mÇ%/,šÞÒóûïÌU«Ì[ÉCÙ»¶î0iü;ÅÝI«ñ•Nè°"×; ·#žç#ü'Ðÿ”¼#ûOòŽx&œïÌøq@B´N zGü§$~èä0‚#f­JišyYɘЙ“…øþ=óLØ%áÏ@ÿ,~Ï<ÞHøsÐ?OÞ3‰ý/Ä“¼gÂh=Œ1¿¤I2 É:ÛXjóË×Ï1.A¾á @øCÐ3[¶X<(¬áÈ`ßú=ñ;ÐYp§@?•¼û÷ ˆ'y:Nsvì¶e;Nsv,ô†04«Iz^xÐÙxïl˜òjYSçAgÃkΆÙv(1ÝÐDìß' žä=HØÁç|èdØèø ¡úùп9ÅÌÂw#îSYEü˜Q1l½D+âéS³2aØŽÑ3k*•¥‰æØ¸Ûý¼nΨ–Wÿô¿ÄïŒçÀ úGÉ;#±ÿWñ$ïŒkà€kbvưÙ8àšXœñoÓsÆçgÓ¸¸n±RÖ-Âyãxà¸@‡7íÄþÇâIÞ×Âׯê´BPB2_Cry]ÝI4Í;‰Ã³qݬøƒöÑü1s¨ø“bº=Vóî“ã'â„5üµxðNÐwÆoøkaì„w¾+yÃ'öw ˆ'yÃ?Æ~n¬†¿À·$ëFŸ2^0C 1ßzg- jœ˜Ÿu¼¶cþÖg¸zmK¡fÓdYi:¯6BoŽ¤Â®Ö@פµ1k‰ÖUóëÐ'0/> úaežºxع¥f¹­–×à à# ‰î«a#±™€xâŽTÂ"ÞÍÖmM7['©ˆý+Ä“|¤ZÇ-ÚÃ#UuÜ”¬¨>R¹A‘J¯¹–x¿G¸P¥»âÌ~cRD*lQÉWý`Úa‹„yðqÐ'¶ˆáCÀ׃~}òa‹Ø¿A@·hãÜ¡Å7"K× \Ýu‡ÖÌ=é/)Ycf% BïfrÜ`­»7'à‰ÌSƒ9¹¢¤`Æ/dU-ÇtMÖîQ³ÂÌQËÒ÷°ŸôZÉ¥|A¢6ξ´\rßr€˜öˆ‡miH”·Ÿ­rA@KCìÞ|tô ‹åZâÀ÷–›co©–ëQ<”D~ô'’hZˆáû¿ú×’oZˆý¯ ˆ'Øu? ú“É7-ÄþSâI¾i¹€›³‡ñ5-‹ø©²uWµÍ:Ò:bÿsÃ\-Køs IÈ3} û"E˜Àмù* Ù¯­rûqã|¼UÏ͘Ÿq*!ðpè}²ÏúæÀ€–Ú®1$výÀëAGß}–6êÿ9j[eY³½xèû”ûwý|<[¯ä힪m5 nÞ²Çzý#ìæ6”€SÀHìQàkA¿V:DÌò6iã}øfÐoVhbãÞK-ÙÞ| è·D6±aÿˆAÍ·j¥¢6bh5Ç(jÌææÌ¶½œœRìŠåÎN³¥’8*Ù[?ý“T“8’äÀç@?—DG ÿ#µØD&ÄûLý'î$ŽJß¶íœ&L:‰#ö è?É'që¹9{cÇ#“­=‰›9ûY'‰›ãÔëF<³ ·fÓ¾-ÝÑt¹æ¿q8€J}&ð¥ _ª,d-ôÎ… òž ñ’åÀWƒ~uü)±{øЯ‰ì-í¡÷»ÿ×_úuñÇ,b×| ôcÉÇ,bÿ¸€x’Yr{öPmÌ"l TOÀY…$F'0ú\çLG]my©>ÙÖfIª3€h-~›½vJ¸ôÆäm–Øw ˆGQé;‡ëjiÁ{LsOÒU°6î#IoÉFGƒ‡øˆ'b­\Ï¢ÈaW¯u»(\”ëš~õ­£eZaœši—ngÆ’½Bø¨éº¬ §A~™~ðFè–P¸VñðÍbºÞ V1%„»xèûºÀýÄî0ð~Ð÷ÇŸ(»€:h=ªqe>Q+éfä0‡oLÍ¿..Ûâò“–7Ÿtó™ðÆ)jyí­<ñXVùq•CYkiZ›0­’îî¸Q1&X#Qf™¦Y-ŠTÄŠQÕ}ÁˆŽnyýD*O4o›ŒS9ê]!Må˜dÅö8ùKd¦5f’®÷uÝôýü¼*†CëK†î°.¼n»&K´-ö—%½Úô­XšSaó“…Ôb–îßK×é˜õ•ˆõBô6$‘µŒpl?ƒÓ„Iê.ÄÕ´ÿÆ"ã‘qÏú¼]Fõa??oD&Ú @Mg¿âŸSºÈ[+¥³À[ä, wÚ;Ê´ µ²ãò#d³Þò«9$ § ¬ò #ô*ŸM¨kÂýoÊ:Zᯠ"9~* ž¸c'±û ðg ¥óh*¾åkÉsô²>M6W1Œ"ï3›æÚžxn]bÁ¥Ô둞–™ùµlÌÙ_ªi»©°?ç˜191•·ÝrW‘LÀœ&Œ»é&vUà 9M˜€ùeŽOrš0¢ù]w{4Ç04½äX6’yðqNgäú½-ÇŽ©¹”è}Àrš0˘5)×9T6BKeÂ.ˆ#aß |§3ÒgÌúæ×?Äiˆ¦SâkŠY;¥±ÒZeÖÍ+zIˆC™’îoÖ&-ûØhÉšäQ¬­ƒ¢Û„Uš V‘r˜’1Uo Óomktyz茅JúaŽígsš0éŒå"nÏuT“±,gË^]wH‰.†„ÑîoU¹’š¤9 ¸ôºøC*±[<ôy‘ÕóJ¸ü¬qž£ÏóÚ!kÒi´Î^ßbB/Õ°ßOìè”tê‘°üÍšäßðÛ ¿ý¼°¨¿~ô÷“±¨¿þô"[Ôz¦ÓR‰t¦£Si’Öh«…:4’h?ä˜éà4aÒ¡q3WvÕ„F—…ÆÛùZÔÆáÑþ=G¼ã»á Í'±k«e?\/Ø–ã4^ÎK‡à-(-¡ ÚUæ0Ò›&HœÀA?¿Ç»ð!ÐE‘ê˜Ù{Uö:EžzÆ2gÝ·©8c²fÐ|¼hšò#£±I´kcßÊ’+#Çß ­Jè@Nx˜cæåœÎÈmz–äs•y øfNgÔ-ø™c1|ð-œÎD_òs1K•½±Iö ­“oŒà˜•úžD½ø :ϤÞ“4_~•Ó„ ē̳À¯qš0¢Þ¤vÇ‘_~“ӄσ@Ÿùð»œ&LB1ü+NFTL{èü‡øÿ5ðo8M˜tþ“å*­£šüç–ÿÜ0ßø?khJVelÖ%hÓü©ÞYSÈ^ÔÅ!hÆÖÓß¶ØÝ(*á ˆ\l‰5—€9aô5F5c•€x’¯—KQ—*©—¶À(°,‚Øv—€Ž|ëi潞™WÉŒ²t‹¼á¸õÈhîÎä^ôÎs¼IMr‰q}Â`~Ár²úA5‡|HèI°4w5ÓcÂ7¿×“FÞu+þ·ä|ûh›ÝUunÚÁ Kü\Ëf¯î»ê`·×òÐ{×êe³ä²„wé”Õj‡‰±–½öªC‡»»³•,e™nëù@äÇõ)Nœ«‡‚ú¹¶ÉM.µ1Õ5—E×ëÑ9€5Záç½`•ð ^ÚK‡ _B 2o¶;ÏÊɳë—%˯áÖÒÖW<7*[®—rÌü%§3‘îòn’ãÊ|ø3¼d™ïÿ•Ó„ñ§¸Äð;Àsš0bÌÙãÏxB3m ndt§MÓ•6¡›rüÿqlM˜tSžC˜ô1ýQÞHA¨~”wŽKÈ“N’ä,à9 Ï‰?é$v+€k@¯‰¬šaL©WZ/4BTsÀÿv3Cwþ¨dk6h;uUOO€V9-;‡ªà AKMËÎzm>×ÆÓºÁ-Oßúmêt|Ð㜺z7ð)ÐO%£«·ß ú½‘uõ§,y`¹œ7…- ý‰S0EcÌ6Ðê4Î6ÒËr±«t¼?kéÒyí°IËlx#|_Ó*4Ú£u¬bMVr³ÎTj𥞕Å(dYoÙK¡ÆÆelì}3SœÎL)³±Î±K—½uOáåʼøJNÆŸåC„£Ì«8MÑÖ°ŒÏíniöv¹ÐÒ0–¼›y#Ïuž…5t7iß?Äš%ù^ŽOٻ߷ðzá§½©Œ¯þ?N&å¹åÔQMB´%D7U ¯¾=¯ê«îŠFSav‹Óʦ´ Së?½—p;èí©Æh’dxè+âÑÄnðJÐWFVâ!"ç¼N§×'¬Z¬?K3,UÝ´%†ÀIȽÀ1ÐR×Ý+Ë‚H’ ° ºšŒÖÆ€Ž>¾öBÌX MX=“ÜÎ›Š¢ ¯Þ‚Uª•+ZE/7N „Ozm´—FÍ>p°V1¨þôþNÂlà¿€þ—ÔMáßÿ ú?“1…ÿ tô“¾–5Ö®„mHÿæèm-þï¶T¶÷qµÖQMë$1ÔÚæ„) µÛ º¡Ö·6æZ]ZÜò*ÿ½¹®3„—zŽ[¶Ø¥t­þ=õ§2+~Ÿ^™òfEZ~Ùa—¥Ê=GlÝtµ½xQøÂÃGöìîöúýþ!ªâ°4_þ/¬™4Yž5ŒëSq,·å°«„q.å˜y7§ …Q™»¸I’?ÂiÂø{Äð=Àrš0bÀXmì“„ùðNKNú‹Ÿ†¦ˆ[>¦?ö9)Õ}Îe¸ ‰rp h©QÈp ±[ô¯°YY7…9?çòtŒ¹¯µ—¥ž <úxú*)ðaÐ'£òÀG@G¿¶Cé (‰ö2àS ŸJµƒM’|ø« 5]½øÐRíYSþ¥Å2ÚäÖ3—Ìvé¼¶‡¾‡ôl5õäöÖëFR£ô*âiç£3ßà4aÒíìVnëu<†Ô¶A^ÂçÇI2¼¢-±!5b·xeÛó|H„Ü T?¤&Õ¨’(à ¥·Â«mhƒ¶#«ítS£’;ÀþQú¶ðÀÿ-u€|x[øWàOAÿ4²-DT#A~ÆÑÛÎó³¶T¶óq=ÝAµ`N˜Â ±í*Tkûk>@ä¥C¶°F®Eÿ)×ø´õrDFóÚúÆXš—lei¢"‰·«·ù¦Ÿn (È¥Z¬]ñò-¼ùpŸ•>¦›ÞÐÔ<«ú$t¼øÐr»ìT¯å#‰~ ü9èŸ+‹JsŒQÃú‘íîáô’V öêƒ4¡o$9ÿ‡cf3§ ÓlQH”`§ ãnQˆÝ`?§ #jNjà ‰0ÜÎéŒÂD]bêŒ$^ÁéL‰:±Û¼’Ó„u2់êØ£s>V¿rEì¥û½ãF„åÑžô*F(!ÊÌÕ²ã3TÖ½ÀOsš0ÅÞIò,ð œ&LÂ>ü"§ #Áy²îíåž`M¡åõÍè"{±;0jÚά[GùF‚ž†A4 «`—€cü‹Š‘Ö:ç¤ù-ŽíG8Ý~$ùœs'·¯:ªÉ9·ÍñëQ×J¦ƒõì¤/£ÄÇ”d.4Üq …ᑌ$¹ x9èËãw2b·xh©ß4z­èEÐóoLÓäÇÅzÙ±n{‡¹Í5Þåï‹™Ëùè¶òþ×Ì44·9ý•±XõÊtãj€ú(=3^Ž?kð åRtã¤Å+9z[ȯlS¹…\& I^ |ŒÓ„ ˜µ·{œðqNK‰%~º„¬¬W*Úxç?¾Ó„i&Û$Ê»ïåtFjxx½¼ø>NFÔËòÆ2•Ðm)Iò~à'8M˜t[º›+¶Ž©ßìsÂÆoˆmPÝ¢¨®VûO½uDÞÆÍæ•Mºãìÿb¯×=hŒõ˜eʽÓFü­£§tòë<;;ƒn£÷—NÙæØ8vÔÅ©¶õ?FÅÝŸ9ú:7¶ÛÃ^+3–$eO­šóJé}Ls†3>í–?D‡ô³”cæN* i ©úÃÆ4’¥¸Ó©¤.\L#v—·sZ²×.~zÿ¬ebB´:]yŽ£ž'i0Ðqu³b#)Üë’¾™ÓrÁ´N-ªã¦ŒºŸ¾‹Ó„I¨û-ÀwsZražøéÃÂÒ\kôškúÖ)ê%ÍðåÑF™Ö¬Š—vºþÉÚ&ñŽíqš0íÐglïå4aFÑ~1°Ó„ÂÎ)l^Ð1Ó üéHa©ý¢ì¥‰Æa­u„N˜¨ˆˆ²íoâ4aÒ ÓeÜdê¨&a¢óë ¹°r©ÿÌÙ/o€Ç Ƀ&ÜÚL£ˆBÀž±~+ôÐýJK¨þü:©Þ‰rø"Ð/Šßëˆ] øbÐ/N­—GR¼ørÐév¾I’×ýX2jyðqÐÑ;ßë´l}¨Þ”`'±^üп¢NOc$ɯ? ú“ÉèéWŸý©Èz²»g^§É¨ï-VF_Ç;<þ}£Ù±˜‡àÐ-•÷78zsŸ¿Ñ&;÷)~º»œ[OSëò_æ„)tù‰mP]—ÿ?µh`6à 6?Sjô²õIúØÁMìuº¦‰¥M¾ý¨ó_²XÚÖ+ÝÃÞ°)ûòRmz—¿À:ìα^«Xtü© N¿¿«›N ,yûƒ#/ÔGž½ÜF²M>Ɉ¥·zý(Öw¿½é`«çëz›¼X¾?ó›NqÃ;£ÕçU¯¥ÆS{g9UçÁÇâë¯îó_­4ÿE·°z¥9 4Ÿ÷à-Å3XPá»´7ñÈ^M6·”cæ9ù_emÁ"g\·bx™Ú—sº]jMK®s¬a¹¯ãœ&ŒÜ‰iFÖĹ1åÝß䯽œe^†lVе‚Ñ|´G£¿Ûdac/q%Ðæ4aÒMÀ•ˆ¶>ªiºèF%KÓ «Vq1þH;¥»{!aè.u]Ž1»º£O¢ts sñçLÄn°tOdI­"òÀÐJ•2 £”]@2û²d”2=Y)š™Ç CqY*é­ôÇÁ­Ý8ï‘Ú[ÿ@{·ØéÂNéM®÷B0óÛZ¼HÙ¼›‹Ô!œ„Ý\üÐÿ Ìn–‘3²¹Ánóù¿ÀÿýŸÉ˜Ï÷ÿ:úA Ò>ýßÀ_€–[F¤›¦›þ\¿Œn¼ á Wp:#•„×Íÿ€íJNFÔÍ=õ›Ô+µòï%ÿt7 ¿Àï¸6.úð6È™”‰zÅ ¿“а x˜Ó„Içû¸aÔQIÎÁº[üÇÖ{gtj¼NE·œyöôÕ²—øiŠÂ[Ãó}šáôâh#Ÿ¤K<Fúk¥)ˆ‚Fæ÷\†`oFmæ\IÖ²s³Ê§;"¨?côÔ'\ê÷=N4W[_¼S—³«‚ õ#ÀYïmß4«¬Qu¸r Q}Þø¦îVWTxYÐKþ•(bߎ·@& fð¾YÓA_~κ˜‹_ã´¼iæ ±¬‰öJç‘ûaoûÉb8‘ ð-Ã[ûdè,’ùàÿrZ®ÿ.ª»ÿ>ÇéÌsé´8Lö+Žœn—Û¿ÔZ%¡sHdp9§vçRIûBà N+èü¾Ñëòr¯¤eá8eF¹ðï*C¬«3ºñV/jtƒ2ACˆõèj¶7lŠ3 ‘F8ü²9xÎŒ™áÛ­ýè+¾}å÷$ßn]…Øá£š¾òWéÂV·tå”8¼6«uò#aýpw½¾HTÃ%ÁÞÕúºž¢á˜c•¼v»7Ùçoì¢)wÿ¦F3Ô R4¶fùÄÕyUHøUÐ_Uæ÷r“÷$ËÿôŸÄïúÄîkÀ?ý§éDcá[À¿ýjµ: “, üÐRýÅðZùKà÷A?²V.šÙ©7+M·?y3‹JûGŠjDûÑ-­Ñ1å àÙœ&L@g™eÀs8M˜’'eÖÏãtFînQe£c$ÊFàEœÎH­— ¯”ósš0¢R®‡Ãê‡^ˆ f½“QßžQ_C¿ñûd¡ó*Çf Åi¤󑫹YÔQM>²šå#WSmú$!¥º’\SßÃçÁàI´¸ôÆø­ŸØìÝ•NH"6·€Þ¢T7²ƒ{$Q¸ôÎdt“î½+²n.ôV7Òp¹ŠÆdÛ ¼ôíÊ”¶ÜË“#hí^  ÚLFkw‚>šžGZ åš‚@åDq© àKA¿4åT‚~0²r>«MzI3 ,N =ß=Q´é|m ûÓ`Þ”Y#¬õÙ1ïÐ\ñj3üÝ€gƒþú>bÙÝ.ì½’¸"¯Ý„mÞ¸þ8ûS©Öó!Ž™Ýœ&TÜzJšSf/ðœ&LÀœ2{€×sš0%_Ïܼ…Ó„ÏÖ3ƒ€˜á4aº9,pš0¢nÎQÔhfŠÀ)N+¼§ÞhJ¦¡™_Éi…÷àÌ©¬i º[p¤éÕÀÇ8-·%;–FÓÛ[Eø§ “PÎãÀ÷rZn3tSM¼cF£Ùzô6|ã(îý›ÑB6>bÍ$_Ê›I¯é”ßüGó>Ží—sšP‘ÉÈlþ#IA&`)íW¯å4aDKùqó^Ïz÷ež½­6}a](¬žq†ÆL ÄÒ"Ó…ÁŽ-ÙÕ'ñgÙ_?MiÔÌ ½Ä¤ ‰òV/z/„Ÿ¢Ú>ÈqÁNN/êžF])-·^#­”oɵsب0÷´õ–«si—uxw4ž¤‡½ˆýBñ$-ÆAÔ¾jFßlº÷ Tò=«±Îûã¬ÅâÙaâr[]ÕM›EýI³hˆ×¶û«¦qPwØr_‡²Ú íä«ÿ`ícj{W®óë£z¤×2±7½Ë!̬óÖúmáò­®½NY˹Ðf¶z[ É¢/À<±;x1èèóKëI„f6ó ó2âxÓÕ£®ç_RGê0)/¦ô´åZ*¨DÕoß,#x=yio›oë6)!N1Z†¹ÅÃY¦×á ÐÖqÛCûâª5W²ÄØ5’iTIK›™ÃàÓªÏØæº±"VÓ?íc=xÖÄð2¾uÈ»8Õš 8¾"‚_ß ZªUö¤^àK"¤žØ4P«æ°kL¹'Üñz 5ÝqÙ@{°º¤$Ð.b6Þ8[ä.ËÈ­&Î*£eœ]9œm(Z*Ü*‘-t¸U§?ܶ·µ6ÑRªÖÍ@°;¦¥®àf >®ó4jFS7Vº1ãü%Ë:¦•Ìc|'öî°#²TÍ9Žígsº]j_]´á[¸ÍÖQ~`˜¬ù q.ôÎÔ´iSc®©iv?{Ø3Èž­²4“‡Ø³ ˜-uPW³ŒCsýVÆÃ¨C A_]Ffgu§åñ0úƽþVÆ#ëH¬2æ·‹r†•ñVÈu«Z{æú/¬Œ·A®ÛÔ×ã€*]ß¹n×ãëõõ8¨ªï„\wÆ*c~gŸ¹ rݯŒÛøÃå +ãÝëîDdäõVÆaÈ5¬TÆõs¶3!E¼b®½^Yޏb¸Ê^ò–qýCggµÄ>{u5:y!öÄ“´÷¢|T3¹¾ŒO®Ëlš¹B.½LY—fוՆ´B–VŽÐº{=[ƒFƒ{:$ß™ÀK@'ÐÓ!vË—‚ŽÞÓYZ?MB[9àVÐ[Sx Yö¯}E2šÙ¼ô• #CÞ)xÞàƒQ¨y i˜°&Lµé`ñ¬¿u¢‡"Y¸H¶æ8 ˲éPô"-âzß ü è*ÓûjÑKwK:çǀς~6øðó ?Ùæ4Ç’QЀ_ýee j·CŸÅC‚| øuÐ_OF%¿ üèoDVÉZ,€p„!‰=ˆ$Ôïÿôß+TÒV%ýðŸAÿs2Júðÿ‚þ¿‘•tÔSN‰Î›óc¨,YÜÌk7ò,:GWâËnKÖ$mc¡1¾1Zè­ ¬/­ÔWÓQºHÐ?^PBïÿ‘–}-¹üSi«™¹¨sš0Õ{kL G8-·k|Ɠši~´d^Û[r,o=Y®²&P¯` 5éÐ[½4cõ¬ÅLº°Z”_8âµÊÞfñF³lÙEºÜÛ[V=‰…¡WßR€ÿÉiÉSbÅOCwîçVG5„­õ­6V¿x×ñ•é¶aYz”ÉÒnvnJ²ì&˜›»mÀ+ÛTå¦ÞC-–šR÷h’l{÷‚¾W™º3‡3œ°Û£Hx ô1…ú XAìî–@G_¯s­¿^Ç;Ž×)륣ñ;ÌBU¬J¸»àˆþžOÚt:¥R”Ÿ-wÃZË4çÆ½2^ø4ðÐÏ$ã…¿|´T¯¤yÝâ¦ÜŒ~S9Éòyà×AK¥åÑZ™®Ø:¦¶“¶æ„ê÷¶/fI$K¨ËÝ‚9ízìó7·û…¦´¹½ˆê÷QÚ&Zr]2\4\Ý,9-8kàf(µÆÐ@ìÛÄ#7gÎo‡‡¾p‰€x¢ŽnÐaZHQÆ ”1Xg&’…FÞ pL¦>í˜xŽM (Òœ GǼôaËEo$¼A€ä]/Ƚ^FnnT™Aн|T™l­¹,U«˜y7ŽRí,k tÇ´ÔÕzYk¼\çXÖªÎsÄO÷ÌuFAv̜𮊧ÕnUÖ—®2)q‘ƒX€ÛA«; vpèÈ¡[„ílD÷ÇAÇßÙ vwMÐfd.íÎá¨6 ýÚ miq¢lêÈH·Ìð… _¨¤eŽyK |Rü¤Œàjšf%b´ŒcM³T‹¬D¤Ð-²:}Ì·¡#ÐØÓª”àv/>®ó´{jÌRüôü¦éÁ’QsÇýY¤îûÐoQæ7+üIwßú]É4go¾ô»#+j[cf‡DgcN(ü‰üàŸ‚þSe5¶hØÛrÐ_§¸0Þ–ê(±o¤ŸUÊ… ˆ'b­Ü¥iÚUÞ©†4QhµÚ{]-p½±·CüÐÛFKç~…,ßQhšPXT«(`,°Ç­°ƒ$ÑÐR't‡‹Äîn`t1²¢—²zåÔbK Õ] sv0Iâk kɨ¥ œ=Y-¯ö'ö«–ã˜ÏëóúõÍz¾Ïµî޲¿¥S³Øß›Þ¾·ÂÃtýã‚›®,ô§Ì´,¿ÈÒÑ ãFác Óu¥š˜ä˜içtF>@Î4åžhÕ¢Tß•DZ <›ÓI\ FìÏá´‚ Ôþ¹~10ÏËpïp··öÕ©±hòs¶ˆë~h±Ç¨Uó¶wÒšCw˜yáhiSR£á]w”7ÏD¦Ûh´/.å4a–׎ֳ½“Óír—ŠŸFh4¼K€ Ïä4aºFû:àùœ&LB-g/àt{ôáÉöЩ<ñ_¼Ó„I§ÔǸ6ë¨&³§K÷¼kzY/Ç;d6¤T%HRª¿ï¡"k]V1t[²#‰Ö7¶%vé±;ØÕ¦êÒ½E9™q’a0 :I9­”´ˆ”tóU² ÷Þ§P=%³‚a°UÏÍø/û“xp7h© ²Z~s/p?èýÉXj7ð*ÐWE¶Ô³)Œw¨‰¤ÙÞZ~Z‡ršVfÛ=îºUgwooÁÖ+y»§j[t5HÞ²Çz«zá˜>f Ím(£©$ö½À—~™Œø-Å–7ÞG¯ýZ…&6î½Ô’íÀ×~]dû¼ýøË¼iì¥U/OLâ½®!eò-;|txF#“÷¶ø·dô³æšCUŠš>Jk)Yg€u]ýLŽ{;üÉL¿ÏКSØvŸêî1ŽÞ%pqT¦:³nÁÖä¶çuÕSH,Ã}Ä# :£ŠCvKıVèXêÛ­Òè˜ÎŒé6Ó(Œ»#z–ì†Ï‚¢×^§,eÙpuÖÙÃ¥„;@ïPfЋ†²n–øžÜ :úUJí¡È'þ»€»A«»isƒß¬MNNæC(+ 1#!¯Þ ú^eÊê®ÙAªÚ¼¯­¾³7¢ª®îæ›Ó«L·Îú1÷Œ±0_«bà®óFZÚèuw'ÃÍ4ôwÔšpŽMKùäýÀ÷ƒ~¿2uŸ]mˆvå¤éòF±&!áG_ýÅ„òÀßý[)9ä—€_­nÛìY¾C5HWVž™˜„~ øÐßQ˜LöHÛß~ôw#ëgAøÉTீúo”•ñ0ËðÆ-; ¹§6´Ú–jDìÛŒ–-‰*ÎìY! žˆµr˜%ABî“ÓnÏkÙ¾þ¾î¼¶ßªq 5i=zE/M;ünœC£ÑÜù݃¼²`6TL(œ‹¦ªe¾ÎªÙLpÁ?LMŒãšöãakÔdý aïN–ºh8 (¬é"vG€Ó §SÚÄÿ8ðèÊtÕ>¸]Bž~H¡:F¬R«ƒˆÝ ƒ~8²:–g»sZOÏÖRNôð1Ð)SÌÅ~kZ´Lo¨¦¿/ß¿sûàŽÞ£Ž“ŸèÜž7ûC¶¯$ê[€Oƒ–:>6\ûJì>ZjGb´pN쟢Ò/fï¶Aß´%f¶T[Xbß.`´6ò®+ºv®S@2cö‰×ݾCŸkAN¡¾’¢±€'twªè\à3 Sˆ«ðSÛÞ< 擱:ñB[‡'ñáÙ U®5 ðáIø-á9 U†Žž„ß®-:š*¾ÐÒ‡ÅÃêçp8ábn·éPû‚Å\Þ,˜txh¤®NƒŽÞIíS0vSóÀi0ŸŽÕÙe=_žm50Áftn7Ý–h3: ·ó­RM3ê»`™1-i£&_JÓpHïÊ^~šŠDcã¸!¸`P;Ú©€çƒ>®¬~— ;†A×X$¯pM1¥'öíFKé_tªâ®G¢AŠeâ‰X-7lRø_è2½ê%¼´ÔÜtĺ= Þ>ª1¹½¬J¼cvÆR5[Ôݼî8,š ôõoçíhÍö.{Á©"|ˆéøÛ†B—ãEp/è½)Ôç‹ÁÛG5õ¹†U‹vYÖ\“¡…{ "\:zµbÜЋ¤äœ¶«;´L/…„+@G¯¸ÁÛG5Š»ži¬V¶X4µTØ/Kp¼Õ/Â5Þ½=n õåëû!ƒðzÐ×G.ÒžÛÈ'¨Ë’0sþîŽ!ïxÇõ{‡ Ç,æÂ‹AG¿h;¼j_Þ>ªQíͤZ:=^o`ÊíËïð|»© hy¸CGÓ»ÓUƒýYèb½E!¼ôÍjŠÅºifåõ¸FŒq}¤î­îœ]Ômó5t±^ƒ¢¼Fi±¼0Ìj½hŽzÓ-®Wíà™UØÐB¿‚ª ÷ÌÝ S †˜ô„Ámr!Ëì1Gšê_‡²Þú–ÈåºhÎp3ÈÂÍöðÑæ1ˆGxè‹Rˆ6ƒ·j¢MÙ¯1¥—ÍŠtæŸOLk݆×CTÂ>Ð}‘ÅÞÔZÓkb€@NÑo€t„›@oJAÑooÕ(:Ý‹7¡„iŽX¼¼}TS·Wα0qu³ûvÄ3`ñˆNx%è+S¨Î·‚·jªóaÀ¢^‘¡e{ä!<tôíÂxŶðÍÞÛ!ašãïoÕèm¹ûœ¶Ù—,‰÷®†“¶ò' áÐ"KùXK%ÇõªÁuY4m~RôPIÞ•ÓÌâ„nuy ûq"_¡%é,ëéš6»r]fWw.t‰žD)_ú‘K´Mkþ >Í2ä!êf ÙÜÖÜöÜNÖ½.dsÛr;r»º%R¶wB^Âm ·EïÈ6|ýnï*¬Ÿ„še£;¾D#Ô@k)¸Ø»ÁÛG5.6@.fekÂ;ÉÂáKsu§Æ~G «PÐo…· ”ÕjhÁßa @Dü\AÏM‡ySvÚ”ÑïS‰ð\ÐçFomMzNá ›½ñÖë¯-Ü{!¡º1òðÆ÷>ðöQñ]Rrl\‚‡³Røµ\ÛüaÇпB^ú•õÎðïƒ0ÍÆúƒàí£eôë¦õ*t„Ž–)Y…c¬AÔǬŠ^ên +{Ó zEÛ{(ÛßÝ8k-ty>„2}0ry“%™˜z͵f*íÚA£¥†ÃZoŠddZ;H¦f¸š^òv>°œ=t‘>Œbª›,¹|žaÖBöÑ¿9­:nQéƒ4á ñ+œP݈ùòÛîîß½3§±Âû_…„ËA/Þ¿À0AV-|u}òªë_„oÕ„‡® zô)†A8Â.Ð]‘=¿ÕHM,l on‡T„烖:qéTF%cU2¢~â¦9*ùkàíã/Ã`Õ¯£„iV}¼}TS·ûf VÓKº©WúwíŠi}ͧ <á>ÐûR¨ÐßoÕTèZa¸J¨ÊÐÒ}®}äÊFÜ?¾•û !\ ze ªû,xû¨Fu‡f'Ás,Ú®g—ö¸¥ ±lrûöY“”¡ ö›( á!Ї"l/X‹©á-´+N/mñæ]·°’oñW»ò©ËÐ%ø¤&T·ÎæÊS˜£„Ü-V I,z¢^ úÊèÁÁ_ñÒ¿» GÿÈ-gy=£48„÷ÃgÁÛÇ_†öþó(ašíýÀÛG5u;{9íˆa3¦Yµ3žæþ‹p/è½)Ôço·jêS\NÛ¨ÉÐÂ} ¦9TøeðöQM%ÝBF׸Òv¢ßôÚ›‰Sh•ü&i`j€Þ¥·q’›<Pܺ\¿²Þú5 ƒcyë³øÑsBÎÚÿU9ËÒao»q(µXºÄðÙï 0„ê†ë °f%œtœÞ¬E!ºJn(ž0‡úù.œRÉ»Â#|Óö»(áu ¯SdÆÓ˜úÀ«+‰ÎÄW!ašCf_oŸ·Cf_‡p„] »" ºkÆ€”ïþƹìT·Ö¬ï)Oßáþ ÈL¸ ô®þûàí£ÂFN¾÷¸5zçñÿ ,„ê¹mÁÇ›¯BÇqïõQ»ß„¼„êÖìkûbÏ‘iA/Í×s”èšý„'T7ºµ Çœ„D)—޾çqY#ú‡–è Å)•(| øcðöñ—¡ûú'(ašÝ×?oÕÔí쵕Ç*zµ:Ð×ÓÚÊoAtÂ+A_™Buþxû¨¦:ŵ•õŠ -ÛŸCB…k+iqPO!Û¿{ ;üŒØ·!ašË5þ¼}T£·{75ÖVÖïQô6…ú7ñ‹–˜ÍóZhÚbj%wšN1+¼÷¦Óáô=ÞÒ1³âc†¾ñþKŒð^Ð÷F.äU”R ò$=™i­â-b,Ñ•MÓYžµò›õ©Þæ¼õDè¢|â^:ú} —hš§‹<«b*ˆîäQÙÙQ½àRNí•T"©þ.„$T·Vª Lµ>—À ›’û¯ *aè¾è.Aì»ùºBÿÇî{¨ý¡ýkG¨®Óµ™ ZÕY"Ú—õí"§uå»ruñ»OJÔêß@@ÂÍ 7§õþ¼}TõîjîaìMr'-Ï×ø~xº3ÎöãÕ–¶CóûÔY  ]À¿C¡ï}WäÞZïj¡X,qñ{†EðF½-ž¬Ô¹ú¾PÿסËö÷(á­ oU£<¡¢-‘]’¤/~k_~`ç<žñw¡ ø=ê{J•·ñnˆY¦µœV±­É¡ ViHbÉé?@6 7*óîm»wæúwoõ"â¡»•c¿ñ~¢Ú-ç÷!Û÷•Êy.-:Í6Äëæò…OO‘Õ­÷ÅóëRZ¼B¤*o¯[®ÑûGÈA¨.{Þ[_VÏåbn!þˆöÐ6ª”óç4C/ŒmíF»Èê8¼ýd'T7÷Ø~(´ ÿ æ„í ÛSh˜ÿ/xû¨¦až±p†–[W«¶5å-«nL|é…‚U«ðSÙÐ@ÑÌ‹èθnEm̶jUož)tÁþ…!<úš1]’Uh”™|eÚÎæµ=½MmëN5.Çåõ‡ê¥±&Â7Æ?BYÕé^7÷rš1»Ú?ä)£ßûa€ÿÀ|r²¨rŸsœŒ/„ßôö¯(¡ºù½K… otDA½ÛÈGrE™Ìû1¤$¼ô¥‘%¾à6‡tÐr½rhÿÄ"¼tô[Z¯­ñ:wß=xkâ´MØúï¥Öe2ûjÉÐß%¸®¦ÓÔöûõµûù¯CçßPÂkA_«¶8ÛgÇï8àÌ*J½„¢›‡.ÎOP„Ÿ(-Î5bqú¨<­µÓ¢ÄžWÚÐ¥ùw”€ðÐ×D.Í~±4[g•Æ1ªºM­ ­*ðJQÖKÐÒ¨áÑ¡Kòžp?h©+?›³œ¦’ì:…’¸ã¶ahcFÅ’›;ûOÈN¨.Ë Ÿ\üxûøË0òß(a¤é”–l—Óa+ÌI[ÝÊpì~ª´:CáJìÛÄ#!F«ã’S»ÌL?¤P?kã‡ÿ ïwrT¤–%ÃÇŒéIËnu×ËÏ  Â3@Ÿ‘¼Vˆý™â‘«€YoµjUtÿ¿Ÿ£Øm2Io¬¤7ü~%¤^M¿ëà_zæs,f}CÖ¤’kÅÌÒììuËÕÞCìŸë•ô©™¥¢nèÅ‘­[‹úÀÖí½¸«·¬Wz½4;ï×èÃô}+éû®øq½F¯TÖ ¼dÉkTòvY²’€;u¨~W‚^ÙИ_ß”hÑïÎ ‹·¹º×s.zn†P⇋g¹ÐJÁ¢Å"š\B’y%ßûíïnzúÑŽöÒîÇ„›o:|ðŽ‚ë›÷£Ûø¢Î™Ìö„W ¯ÎºV–ÍüÊKC|e³ÁÌ2ÿÅÌüGÍ’1Ç+§–ÓpI€šýgU}5?—PLÊÔßãˆGBŒV>ÐAJ iÿÔV-.½LF¢–\ ë%SoÕt·£[ìTNJ!Ä~…€x)D6(-€"ÀZ—ÈZkH¥w>ˆfš´RˆýâQ¤”kL¹¶^pµÛt›.L׎øPÞæ/FÜßXŒxƒ¿´Û;f Óåí¦º¥Ø Yª(’ð&Ð7)Tªkº¥V¡¯Š$¼ôÍÉ+•Øß" I¥.Ž*ÎÂ6ÞÞûˆ'b­Ü­iÚÕÂý6Lm¦V?ë4pÝkÝÔ,ndôr¡¤;޲€~sCx7軕9ÑÂ.æ ]a»ŠôŒGA*sÀËT莋¬ë›òÚ¾i­hŒêµ’›;… Œø¹?Sõ[Êš¼¶ ·fWŒbèû+é~ô§£ªý²asôĸ[.<1|ؘªÚwÛ†ÃÊç ÙÅœCýÐ!›®€±ï9qÃÞ#×^·÷ŽC÷ÝzøÀþ«n¤¡ÚÃÓN~ÌpÊD¶kÆÇ]Ý{´ú¯æzZvcåxa\·³âgÝݳ¾¦Ë¿k³P¬ä:tŒð„¯no¥ZGõ©+{ g[¯kLõ¨|=tx{»kv3û>úgÚqržÑlWÑ*øð‡9ÿþÞ¡.¼hû‚W<±é{»µÍ›µYåàUвexxت¹'.s ¶Yu5³8ÔÅZœñëô©þ«.Mw¦+im¨+ŸïeÿûÜzç—ñòËzù×\~r‹f”ßBlÁxxça‘õp×–\SÅç˜ìM_ß}òdÐ+î¡öî?tS€ø%Ð_ kÆôÆò™o,.Yzõ#„2JõZfÏTsNøeAú/ËH/Ù­$‰ß¼˜\9íáЇ½À>Ð} »æ5‡¥‰LÑÙ!ØElľ]Àh­3ª84 ¹\@<kEâ:Ta\²Õu¨Šì"î˲uW^%bÌé,½‚éñìLàE /’®<5ã$Ë¥À^нñ?»‹} û¢»y^B#ýâQVz“õžØv@$äˆý €x’*Âjá£Je’u¶5&B@KÆ”¥3$º‘Æ@ô‚kÐå866ÉóÅ Ó|+¿k®Q4ö|Àl·L­¯Þúeáh¹˜‡…J„E ÚŠ?*Þ ¬‚®Fvˆë¡ Gj@4ë”·T»óÙ¹tüðÐÏ(Óq'×±5âHiøËÀo€þF2~øû ?²†ïnÒpY·ÇÌŠ^:U³š3쉺¶g_.¥ðÿÃ1“å4¡"…¯ðÚuå¼:Ó ÜÃéÌžDtžé^Æiˆ:¿<´WS±K59µf†€Ç9M¨6VÛtGŸ”V_ |5§ “Ðê àk8MQ«»BjÕ«²š^rÂfž$ök¿Ëi¸3O°ý § “Î<‰ýï5Ð’Ï–Œbî–@—"+¦=6ÿ2°º’|Ãt&WiÕ´çÒÒÅzL‘_wƒó°Åa ©ú¶ À- ·Äo»Än0 ZnˆBü´œS>øB‹õú5vMwØIX@7ðM ß$]äø´oØ¥lþêD£\?qÒ[Ä6œÝÔ?Ü}’~ù@åĦþ“'6 œ<‰¿;s˜e6'†]½vòÞíRmâ>Ó _Ö׺Œs®]£¾ø,ègÔޘµvmÑpù(+‹à ÚÔ­Z£ïù¼ ÷çeä®w¼Úçíÿ‘ªâ£e¤X3œ­ùáî ª Xè¦LÆÖ\º©UßA;ìâ_µò”j©¥|§â§iéÏsÒ„¹.F$ŒÕ¥ÄOÏ×tïzror DGÃE=úÏSk–‹–_½žµÉ¶ßþ;è?MÚƒÿäþ¹Õ´JÄhÙ¬nn¤Z%Ò…n Ô©f¾– ÙRªŸÖ‹¤æôÊ´týãã:OôWã@â§ÃÔ3 Ð߸Z/Ó)eÔµÈúsBÝÚ¸á¶5fT ÓÖ²tÙki}tÊ—ñ{£ÇŸä/³žRÉé–J˜¹™Ó„’%ôwÓçB4~Ó±@¾Ï¹8ÌiBmÄbÖF8±6™{Áï‘\I#¡FŒÖg­ g%{ j„ Û6(ÔH¦Q%­WÝK%ß±VK`ø‘ëÜáW‘iŠŸnôïCÇ Ñ²¹ú†v"8òIˆy2µ¼Óv)÷„;^¬¦;.Y_|#§ O‡ì;ó&Aî7ÉÈ­&°*£e`]9œm(Z*¾*‘-t|U§˜ùroÑRªÖq?ØÓRWpÜëÐ÷EVÕ‚îÐÑ—¸8zDaÞÏo{4ä½þu)…_bß.`´ð»$ª8´Þv…€x"ÖÊa~…¨›ÓnÏkÙ¾þ¾î¼¶Ÿ5ñ,ŤVžœ©G¯è¥i‡V4U´C¸¸€Gîhþ©]¡\»*&< ú°º˜pU³iáëÒvu×t\³À~Cì^|´T¯§y–8;ØÓú{z¶î”r¢G€~L™b.öÖ¢eRCÚÛß—ïß¹}pGïQÇÉOô nÏ›}ƒ!›Wõ-À§A?­Pw†=Àöqà3 å63‹Ÿ†çÄþYñ(*ý²aö]TXhy¿Ãz®co$Å–Ø· ­…]UæsÞîÕì’ØO¸*!\zA$gn9'‹ß­®½F¡Û–Ìʱ¶Àµ ×*d0„'lô†!:Úd4ÅOÃ7¼Äð<Ðç)7‰EÞøjà´Ä²mæ@ç’±ÿéi`áwãó ó)YD/°¯-ÂÙjsZIJˆªáZÒ ¯}U26á«} ›è^ úê”lâൠ£m< ´‰±R¹,!Ý­ÀaÐêÌi7ï}O26qx/h©Ñ£æ“YÞG2Ü,‚.ÆÔzLHÈöpôD2Vq 8 z2«0€S ¥Æšjþ˜·ky$84)3jºXê}69nÆëÇ‘œú• ˜[Ä} F1ô("tø÷ ÿ^Y=/v C/9V@:O™sW[ªbß.`´NΙ§*Nà\ø¦6~„x"VË~ïf½T¨•è‚É’5¦Ù¦sL³éâb~Wfó¼á¬Uwá/Ÿ¼J%Üzä’ÜXÔ]ºµÀp¼;ŠË†îÔlc¨ëС.{Í!·j99m„c,§Ì¡‚÷›"#¼ßø×ýæG cá̽!¼ôñYm ›ÁÛG5Þs›w«5…&:ž®yå:QÖG«T#b–ãÖŠ†g;ÕÚHÉ,x—`kÓ†nÓ}×ôG̼,;¼ålAo}[äÂmeæM–ÚÁì´™Óèzk&¤£ i/båbÒ.õ¤r%tân½5ûèoÕØÇ5d,"P[4÷†fÞÈç WXt1è®a“ξ _«— „‘V4/=¤#Þi'Gx„Û¾ë§XG‹ ¯æxû¨FÍ—‘šÅMö-ô]ßX?£- ]„ˆMxèè'÷i¶U«³¾†ýãéTîœ6^ãyˆF¨ÖRÐx/xû¨FãÙ¹[8Ó0´¸}‘PˆÅÝÔZ»8²RNÁýŽpèM)(x¼}T£à‹‚\?Þ0´¨ƒPÈö"ŠÚÕZ¹üàJ9Ý -q½¿Ñ¥¬—3ç]ݾ)mSªÎÐÝbß.`´nά¡Þ• )Óö6Þx®j‹p–@ß3øªîíPÄöúßx˜´Rˆýâ‘«€YoÍ}U÷»MÆéÓúªîè÷BÏy[·à' &ü[±Nyžj׿j)è¥ }ùµ}º_Ô½=´BÌÑ_Â;ºg÷%2™„‚±]&`óÀS1Y>5QþÝ ¥ê¥%×S»¢[¨¤õAì— Ø|PT},&ÿ‰vC÷JÐ+Љ°Ì¢Å=ö‰édÞó"¬¨ÚfÅÍËi¦£­qÍöÙ ÏN@3С°½,iÍû5âQ¤™œEºv°2ZâãœWëÜô¦o¢Ü¾Ê"=¨PqA÷£û7NΩLLqÄ~›€x$ù~tzV ˆ'b­ ϸ¶Ò z–ޱ™k7ŠÝ̺‘ÂȲ·¼Úé?–ßê'“„à‡•yŠÜe$K8zL™Îö»{€ã Ç#+»=ôê`âo‚>UŽÿïNóÿïNódï4'ó=œ=ÖŒéTî4'©'é'e¤ãâir§¹²r·æpȈ®-‡v¿Ó\YQ⹺{R@<Št;ßæþ¨‚ÝoóÐwªã+øˆGÒÙWEžôY Y|l>@6¡N~v*üýØÂ(”˜.JÖN[`ZpA’0Øãz,i“ù?•¸Û¿Ô¿­iE›ŠÎ@xë‡å¤iÞFs®!º9.—]ÚÖ¸¶zi›äP™ª ï—CSËñþÊ6Éš–\ç¸ð^¼3û ÐgD6•«É{G\7§éô«”Œ¡«÷^ø@N³ ÿ`Rÿ7ŽYöɪmèöБC·È…¶7ñëÛAß¹0ƒ¬¬9†QºñÖ믧”›õ|KFi¨«b± ¼R¨Öœ¡þëÕÒj½1Ó ¾AqÎG3@av:©ÈE¸¸ôÎÈ'¹wgä\äZ øOäZè œ† ¬Ñö>_…jZÚ&nØ»æ_ŸC¨ÕÀ5 ¥†1ÃÆ¯UP¡¾ÎÚÈsÅ/îËCSÉ:5Ét.0:—œSÛ`?èþ4œš‚V9R\sô±VÃdKa«Û¢:±ø©ÔM€íFËÙ³QÅ¡V~¹€òósâ§Û‘ÏlktŒfoGVc3Sbu ؼ];l|]:Cœ³ôJÔkI°À  7H×›šp’e3ðЗ(sñÀpb§/}id[^¤eiÂBB-9`?h¹p²“3§Rvwƒ–J¦Â+e¸ôžÈJYØ­Ééä2à• ¯T¦“¥]H–¤ÜåàM oJF3{7ƒ¾9Ew¹xèÛÔE±¹2ë9ÕrP­'£¿»:zDA¢–—PIX]TXü€+´‰]Ðm$Ÿ¦ûQñ$ŸÁž=Œ//Z0â†íyÒ×t—·ÕÇ9%3£3ú¤åÇÓÆƒP~dVŠÞvá,û±d:.­û· k´›#8U£`ŽNkºFw×P6%ìÕv'ëš°Z!x±‚–½æ¶ƒWwkθU+ýÿºûò07ª+ßV»mì6Þ€˜%,… ¶ÔêÅÆ4›ñŠ ÆÍ2S’ª»Ë.©ä*©ÛcB&d‡l„ìû$@H ˜ dÖ,3“B’y™y_’y//M’÷ÍûÞÌ÷¾/“wϽ¿*]©¥vêÖU‰ _”ß±¤Ö9·Î¹çœ»[ ÓÉØíPÈ[YÖFÇé]“J$£D­Â\|ô³±|^ÓEÄ Ï*+HöàË _ÖØõ[œ–'vß¾ú•ö;\b÷ðÇ ?C!›‹êsI„W»jì½Ú%_°×6ŸKìzºjWàõLÚçûŸKˆWò>W.ßFŸkFö¹$P/0¾Ïß Ð7bû\:Ín½ö=/=¾eÀï€þÎkÂóž‚NOø3Ð?k¿ç%v?þ#h~§…ç%vßþ7ÐñýÎ:îykKÎŒáYŽ5e–*Ü WîïfŠÂ%iߊ|  üs©Š·«]cí<êtà9‚&LÀ†R' A§ŒDl(µx®  .ÿUÀÕ‚N­ÖØü¡›,›åSç :u^ìæ«\“:¿†Á+ùÐ-ß Ó¾Ð=Ÿ¯a+ˆÖ \ÚîÇP Þ{ÄóŽ;ÁkNKqyzÒ¢pÍÏGÓÖk)¦šº•÷jÌ*n!Öè4¿3Ú7«N….²Shð  Úå%ëtÀ7 ´ê/s]ÒsðNÐw¶ßK» ðM ß»¬ìk sLã%5ݼôýÚÔ4ÇÌœJúðS ?•Œ’>ü4èOk¦£Ï‡’Ÿ~ôçõé¤õÈcN< |ô#Éèä À¯€þJlœÜGî¬äVà*m6¸PÐÐWÏ‚Vš½‰ï‰]pHí9ÐÏ%ï‰ýóâ•|¼_)Ì›cûâ}om›š‚|½@iÆT1è7Î’Þwœ /{-êךQ¡Â³Šî¿{#¨s&æ,ú³¡»ç¥Ÿ¡!”ŠÓ˜lœÞÇ’Š¸IÂJéõÅv4IX‰þLø8èÇÛïëˆÝ—€O€~¢Câÿuà“ Ÿl¿k#vÁÁ×§@?•¼k#ö-!^É»6i[;g!}»¨ *ãk˜…lÈxÇñi›æýrU>e莖™Ÿ |Q•Òœ%¿”’.¦œk(¯Zˆë²¨ÝË€w¾«Ã.‹dy;ðÝ ßÝ~—EìÞ ¼ô=±;ËŽ¾†©ÞÓiÅš ¨Ť;mÍÒ Šºñ b#­2¢FÜ ü1hµ… fz]HÛi'»Šjüè_%£ÚWÿú_b«v…(§¯óýà¿þ7mJêTQÐÿþô’QÐÿþ'èÿì@º@üÿ(BѼ”F›ÓbÛ¶(Ý‘êÀ~^bß]Ãà•|º ßcÛ¾táœÉQ®¸ôr唡qáò²9R“Ÿ"ò,ß7˜Ør:ÀâGIiÂì4ˆAxèë:'Hœ¿} ýnˆØíÞúöøq"n’Fâ˜Àà닪 :< úh2 ò€oýÆÄ â x'hSï-â„t¡ŸzïéÒ1õ9Nû»$Ä+ù8qº0gŽí‹=tDRA²^à’®ðà²bhœ+ÛQÛÝBã9V§!yÃZÂf©àRµ˜cDìZ©ð},уÅéøá oì|° qn@ëÜÝÛ»›€èø»{O{Î=‹…úB5oçlÇ®ÌDvP$Ô8ð •e4Eìz€Ç@KÞAû;%Ä+yÜÌMØ>µ08¸­ ]/ph¥#òM„ÝDe™è$OÚÝÖ˜Ò’Sf›g‰-¿é&Ìk«~ü.jÜ)Àƒ ÕJy5 tT>ªÃ"Q+ +íwXÄî° º»W\З5¶»M5™á{)™Ö-›+[AsSÀOƒþ´6Í-Xå—Üi%Ý=|ôÃÉèî3À/ƒþrlÝõ(œ<# > úQmZY¼ªÈº¹w=KI5OŸ­s{Õ<|ôs±U³ kŒFßÌI2<ü.èïêsv׸‘I’—¯‚~U›RN󯫆BÍbü=àO@ÿ$~*5#ö?•¯v'bÄ®ø3ÐJ›¯ã%bÄþ%Ä+ùDìõœ9¶q/%/™£ Z/piWܽ”"ím²ÚD „l”ˆx-VXÆeØ%þ&=ªñS“Vo}kûÿõ0xÂÛ@ß–¼ñû╼ñŸ ƒ?³­Æß:þ8ÖN¸´z±²ÆI’ׇ“$y§êWDàö=®ò—Ó ÓʰñÁ-«ÕÝRJIIªàè‘öç=Ä®x)èKc›÷²Æ®q£Z 73f 3T +<~qŒ¢™Ÿ´K ÙïñÍ4sÂG‹UÏ öTпÙר¾‹šuðà?Ü~ßEìz€ý‘ä}±ÿ¨„x%ï»Î†cû|×Q KA¶^ಮÆë²âFî‡BÿuÜ^`oÙËŽ™q¼v}5¯ÁúJË;(éV7:ŠØØá&\èd…yÈÂeØ4ßv-z^'Ÿýtû»ÖYèN„Ï€~&ù®Eì¿)!^Éw­³ÑÎÖÞµ»Zª§EU·³ÑƒõçÁË]±„îMT‹t˜7ªÍ’T+€h£ý6{6ì”ð\ÐñF¶Yb¿JB¼4µ¾w,TKÞ+`šç;TìîØx€x)ö–ÓãŠc ‡¨\Ì­NŒ{™¹ž®˜ ®FÁyu_ébºÏ­ß³øŽúŠ8¥œ5vÒnVù.ê0öS¶öQ#â#9ÆAx/è{µeé-ËíµÌËIŽJˆW»órb÷àý ÕÎÀÉŸ~Æ(²œé›åâ«é‹4]<_t=ʨ ËÍEB.r±ž3^u2t=Îqòo˜u÷Ù4Óà4cÁ¾à8†éL›3>ýœu¸*6J õe£öz:˜ºHÐ)µ[ŽbuãU°Óõ87…d`5˜¶/ÏGwIç»J{Šßrll•jl(H½8z@9gXW›$ư„x%mTçAê1ª×ü¿+g±AÚÎZÙŒÂ|ÊùŠPš™Õä©UŽéž/ÔÏñ<ÐJµ¢ùjbw&P¢cjjﬡ}ÑóL¯V‚&œ-±k]qÖéy?²c¥f¬z ½äûÀ˜U€zú@¯è{¬ÈÉÉZÈ@(Ýæ¡(Op«of̧›§‚[Ŭbyòè1~ùÔXzõÐXß1zópéèê¡cÇÂîqà` áç¼LŠ$_ \ zeÔÐ7f]&uÂXñ Ï¤”ú4… ¦K ÷H‘À§J‚Ÿª"x$º;¾%%´SŒævÆÒL¯c}­žM‹»¦´ Õœk‹»¦ôjDª9Ô¢ dKƒïÔcáÆž0×à+Újšò§g²DE!1qÖ¦äcôáaÐê™Õ<|:Á}]=ºÐÞƒcëHåhe2tª+“ªNupè]ZœêæTÛëSwKrïV‘[OÕ"FSŸºt,]S´’kÕ"[dתO1km5ž“;B‡žNs—ߺ;vJ]­]~û¸Çåëé9ò§#Mêo1‡oÒf’Н:f‹YAƒæŽbø ·~[ÇbÂ2Ñn4½c·°„ãV¼½½!þ­Þ|ôƒ&Ñá‹’Ü_T‘[OtÐ"FÓèpòXºAåJ!B‹€‘C„>í/DÌêzDÍON§wvJq­ƒEû¸'XèéHò§7vů-%a6‘ï×q=Ên©@çA ¶9Á÷AXŽÅ×…jŜ̊g1Ü\Å´KTŠGh?ÿÅ.Õó÷ ãÑzO:•w§¢KÆ àž)hBM*— à.ûcƒ¸‹FH^…+óHÖ¥À•‚N)cgýòBàY‚&Ôö4ZÌÒ»nàÙ‚&Œiþg„«¬}Yc¯ëYî”åe Gin‘ª"sÜ$è”ú%—qæ{rk•'S›ÛÚ¦%Óiÿäbj»$øvÁµ¤:zÄh~4w,MŠUÉoôH5¿Ñ¨’ãÍ.Îeòz.-Ó‡6r;}Ðdœò§Ö\Ó‹¾YlV ÚŸŠ½`Íö0àìƒøËISeL6õ!4õ!mýpk¯‚@tJgýÇ9üÑÃÀ'Š_ÿÑ0r–U 6¡êµ¥6ƒú:ðUA§”§i™AX.”ÖÖ¦ñAÊZõ9„ÔO€ÿ.hÂ?‡9„ÔHrÿ‡ŠÜz«1švèSêçÖ*N"è‘0rÕ§žãM"ÌîzFM¥;ní”êZçíãzœ<@O_’?Ý×dÊ ˜TÈÒnÖRÝfÃæ—Dؾ1aO±¯æf uGÕ½CЄ1ƒÈ A„G[Xô¸•¢G¡Iø¸}d×v1ÑfŒcãž™?Ú0wìhcg:– â+ûãàoƒ™1cÀÍ;£€ºw4¡¦¡]¡­¨û+’à_Q¼Ù8¢¾àߨ-17¦àrô4*j´hãl-bõ„=ΖÛeUúcg”?¬Ð2à´‘íÜGã:­Lãt¿OФÃbep£’pbCÒÚu³ÃOAq+³ál©bÓ‘e×qì’Å~¢2£¾e&hü¼ó=OiKëkoË̼ó z^ä[Ø;3 ™w‰$÷%*rkÐè£=[fôÈ58iTL[·Ìh–Sþ–Ú–™¶ª«e4i#×¹£‰¦ž#úùæ°ù§ÍT²aŽyˆWØ£©ÏÃUÚæï¹.öÞÐȇ7~“’_1KÓ+–ç¹^“ lGwm~¸J~R¿À“úEì'ù @Z˜yˆ;\Õ愱W5åºx̯æ|‹/%6aN‡‘zÀ¼§öJZÄ~¾„x%-ÆxüvÌ&.ó ãÚÄœÑæìቻQ«â“CˆqÜîB|°t¿rz]\]’ƒâ•´Ie ½µ˜TêïÄQ£]ãÒŒ>üÚakÚ± ÖA,¯ÈÕËë'–*‚S,ÎÔFÕzáć%4 +•I³bä,ÇåõZ'D•Ö´•Èf¸•]g¦äÙŧÌWsvÞðË4Xñû2üÐoÑœ1¦éOªüyÄ,R‘~ÁM%I¤Óã†é8a•ù®u„7* jûÆA×.UœÃ.–©¢l¦éê†H‘ævœLÎÓT(<éõj÷ôv÷ˆ±ÆØË^©Xchóæá>I^ BrDƒê‡õ“šPSŠ®r<’$yøª ÕÊZŒUZl¼!vü‰ S±k8¦^®UOç ©|7G×o0Èq^4=¨ªCÊ—Jég*ù|óì Œû8Óy·4n‹{¾,fØeßHOΔ-¯OüÓµk'6©W°®“¯>¯C“苘[»KÖØéN[|»û¤(ŠûØ>ªûð#üÛc…3Ûfz<+eߥh’ΙT˜™ÉŽ£ú² }b ßì ô®ÜµŽ›zî Ü“º’gÚ~Еø£Dëʬ¼þQôþ•ú©ÀyšPѬâì—Z04.¶&Ï9 BÂ?üº  5Lƒ´yÇ ü¤$ø“*‚ÇŸÑ&FS'Û;–ª<¢M®Hs z•r¼=Ss›}§žLóé†örcºAŸÊŸ.ä÷ z*9I(Í7!Í7;â3SEUwù·ÀïšðÏÃ]~Wü»*‚ëq—ZÄh~QèXº¨ä)µˆÙSêÓÇñ€­¥~CÍ#Ô¾¬qmIŒ"ù5¯A‘NÓplŸgêZ ˆ‹PØ Ó.a0‘g©4Ojý<¹¦ó¿Ä_¾ªg(\ =«ž¢ {ŠÚºðÂml¨_fíèRõL ºç˜FÓiyA1,ï4Çx¦Óy²œø¿ x— 9&<‹•… PÏÄ蠘ŢÙªÚLã»~?o¢¼›Ã†Õv¥ãäÖ$%=˦›WñŠf¶Z²„n½U›iˇ·f±Ý¼ ôUÙ¶˜¬!vCÀm ãïò}8“ &ÉÉRwE[Ù¼ôíÚüß<3ú´I2´AÛÉhÊ­v%–üétmZæué¦ãN¸UŸ®6/Í®_]7߯)w -æÜÌ–3nQý5úðW •¼»ì •Fw«°5愉¯MÒÊM˜wpm’ØÏ—°Ck“ÃxüvÌ&Öùº¸61çÚä©û­þmbS\0»»—’a—×€^£< [W‰$FŸ„x%mKë¡¶µØR÷‘ÎÑ"Ç´9î«§¿3eº¶ a}ÉúÊ/³ö=¦ùWø-4)Å"ø#±¶F >öìß-2¯ïЪ…!2Ø8iÂÊy&ÅsŠÖG&Í),~xVx$°¶~Ê/½õ¬¢;\ëåÂZ‘ì°¡¾¬©Œ%j)Ojiý¥äÛô39§n}…þÌô}±¸:7Û‚Ë+wŠ…N|Ϥ¨Y %ˆ!¥gK˜E·* îx–/ zNZËsiÙ…VIÙãΈå,Ä83¦gÂeÎ¾Š„ujK¹0Ö5ÅÒ›Žu$§5]^ÎÙåIkeh,@ÇLì/‚Í^DVç±E{b¿€ûâTtÙè„Ç=‚&lw^Oì®î4a»³Ebw1ðAÆth'JÕ¢ú6’äZàÍ‚&LÚÅn€‰¨'\_[1£Ë™ù<Ýgdé\µbø­zöÉ·z¼e²Ž˜ÞÑÇgm äG¯%± !¼ôµÚIË<+pËJW}“T7   íïÄnÐÿªï_7NJ}|æÂáA)ºåóܳ‡›Etàî–‡33ÜDÓ:²L27íŠ 7ÍJÖ¸F¦ç¿I¼)FÒ^žqÓvš‰Z¿ã@Ø^8SY´ÅQ;=âq©Ý‚&Lºoo‚éرT|3˜&><£¶Ì;8<#öó%ìÐð iHˆ³‰‹Áüâ¸61÷] »J,w,{V8:µï੸èêQ'ú/Æ÷@(ÓNˆ«McXB¼’6ªK ¿õl½P$Wlh0!Æhbo—_˜`XŠ0çm^ˆ“§êÂÇcOd8„Š5Œ£Ë¬ –©LY [8q×·´“ a`lMBXݰŠö0ðk‚[òF¾ZqÇï{Šv‰L—úÄ0JnÂû…ˆ ’Fè1 šPS‚4Ÿ+,ºH©õÀM‚V«ÿÕ”ëKhÄ0Ü,h¸ÉYc” ö™éY~FØ­4/¢]ÇCƒ4Ô·D5˜4³(ö±Wu‚åj1—1xÆL*lCÜ€A·óc–ÌM/gW<Ó›‰œ©P£·4aÒäRØc€‹J—9aâ™ yñ0ï`¦BìçKØ¡Lår<þ;fW€ùqmbÎLeó¨Í"Imù*›öY°®±1òㆠ)tó”U¶J|«µBs–w‚Þ©œÂœWÍ$ÆÕâ•´µ] Ũ'…y#R?˜¡‹lót²…9úrÙsÍüdxxà ƥ…õ7‹ûUn ¶d ¼~X…&ˆå3+Ö‘ `‹ßeiK•Ç —9"oŠÉ©K%įò)_Yq* N,šK†Ì±Å½Tp‹ì·Ùˆz²:>î¶Ì²£j±T?TêÞ¦éV=Ï2ñ9\©)9«2mY¥ú<ÊïãMdéŸ9 ˆ6d›¨éÁ¡•ˆ°ZßJz4¡¦œh!{RJ³E$Î[€ï4a»g‹ˆÝ1à»M³[b-l‹æ÷† ž#‰yA·nZô‰?’öàÓ‚N)]ÊÜ|wÓ¡Šúž¾ hÂ$Ô÷ ðEAÆTß>Wjv—7?G=Xv'òEÝ¡§ˆ>UNxI`÷‰‚&L:D\ ž„äîÙ«‘uþ‘Ï¢ wʼ¬ð|”ž¸´*hÛÐàë?ª]NkR,b£KÒ¿©Va]kZOx7軵u³&v«y™–ýŒDy7ð= ßÓþ~FìÞ |/è÷ƶ‰LmºQ0+¦Ðdµ\v‚[†u÷>àÓ õ¹È’SEwÏ_­ä¬¢ëîàK _Š­»KBÝe‰Ñ¢–È€‚ˆ+sÜ£ò¾õ·F+èò;ym÷ïì°.S‹€' :¥ä«#ë25¸DЄ1Ó÷áïtÆÀ}²O- tf°IÛée‡MªN3µ‘]ý’“ô]Ùï÷a³‹ &ÈOšM;Ê b&T¸eË“ònˆÊrf›2|q¬çß)vÓ¯Ð~Œ|>ž€Ç «žå[B*^5ƒÁ"yd9x‘²õÚX&rh'}-Ø}™  “íÛ…ù‡¨'´ï¡ýÚ’´¨9É“ Jx×zrîáåÐËã”pÄöì@wƒV[€Ô I”ë€×ƒ¾¾ýŽØ] ¼ô ±ÃÚ?ÁÉ×ò·P«µþYëJ´QJêJ:ŽžÇQö [јˆ¾'/¡S®m—h¡D? ¶;ù“vÙGÎ-*ÂoáÎÃ%p_ôpƼPÍó½X•iWv:̹ ³'±ru/7CWâXÎxôDŸ”t£@>¿±KuËìD PÏ\й7È·šái=­CÛÄ:A0ŠÊ*»^ð µÉŒ¾øú9s¿h:ŸÕ1Kâ4P픪·H¼èc‡ï•s!ô1®—ÊC`iîøœ0=ÙZvA5»èá š0ik‘ü«ÆØñëÚ°Ûks‡ÂBœ™°XfŽicLà1Ð…ù&Ô!ýÙN×+­õiN‘ ÃáÇf|öGé¡Í.꛵üØx„0ÜT9–ña¶pȲÊb›%dåE@ñÝð«!³È¿—ð× ¼Æ÷€u€[™Ø 愉¯VÑ„}˜wpµŠØÏ—°C«U×àñ¨lM¹.cÑ´¿ gÜ®Õj‘±ï–/Å”ó‚¸â죧&!^1ŸÊJZÌa±6wÐyQÞ1ýÈ»/®ƒ–W‚^©-;_´jʧïVEMÑIž³€çƒ>¿ý):±;¸ôšøó0bÁ ª¢dZGgãYºh1jã®ã¸Óô¯ZPÛÕØHòµÀè\'Â~Xaû–ªç1S¬x"h¥i¡¦ÖŠÔ¦ÖüÚ±`íœÆ-Œ h~Ç,l q&•&¤™žIe¸ h‚65ö»b[°íæ@Ç·¼ÈÞ–Øç%Ä+ù0 £mkèa êÎÑQX=áÐJ3”M%:Ã4¦,ž\7}TCÅ÷û@÷µßGa¼„€¾ yC&öJˆWò†|=Œ÷ú¶òü Mè(ˆÖ \ z©²%Ïkim󻸠FÚ-93⤂Ð+€AoÔ–sõrñ”öw@—w€Vºy)ZÒEì6w‚VÚV_8¦/ª»!þ»€»A+ÍTGs7Ä®x5èì:#ö{$Ä+ywsƒ0jŽmL[o ™K°^`üıÑÙ\d†«/AجM¢ÖïdQw=$ú2àVÐJtôn,»=Žð:Ð×µßñ»«€ûAïï€ã!þ£ÀëAë\jáxˆ]P¢“v<ÄúF ñJÞñÜ(LšcvZ¼P¬?aoô<Ó³öÚ‹¯u5'Žïºß#|è·uÞw‘8÷?úƒí÷]ÄîíÀûAßßßEü?ü0è·ßw»àG@$yßEì?*!^Éû®›„IsÔë»»Zª§à—žÌ§\6ë$mãdYP×s@8™¨6LR®‚l¿ ß»%=”¼ ûa ñJZŒ¿€Õ¨gíh!ëJ7)›7@Â… ÕÖlšpêHÔ(Cr,“¯vGb·¸ôòØJù(ß`f6­`¬’`~œÏ•£R]!¬œ‹T%ø‘pGä캇á¶&k0<å ë+XÉ à—@I›•ôä¬è›^I”Gƒ~<Cyøè'bÊ|®T¥|ø ÐßЦ”ù¦SžTÒÊ·/€Nàè ±ûà‹ ã½9#cˆ+øNCôÑ¥Tõð ¡MUê«Ï$Ïÿþôo“Q×/¿ý»Øê:3t©¾Q°ü¼gçh›tΊ¾Ï$û½ÀÔbA&+Ü,´¢ž\a›Ü<˯:±Ÿ],ÂV°‹¶’Å)Âw d%­–j5uM\¼¨¶N²lŽ€i¿­»uÀKA_[…W†Uð²Æõ.´œƒJ%7U[™]›ä¿ xè»b©´™j—˜~–„Îr¡Düð1ÐiÔp­¼â²?6Ƚr¤Nð,²Bî~ôçT0ë—ßüè¯%cüo>Z)I«{ØË%ãWó4OŸý¼6ï¤<ÁFâ|ø2è—“ÑÑ ÀW@¿[G[2M7ÜKÕ&ƒÑNÙqc|%¹,N½­vúmNÇÔCbF—,•^(hµŠOÑýÑ’’WÝ ¥Nž/è”òžÄY¿|20#hÂLœN&rì4aL_\sCQó:$ Ü$h…·ŒñéÁ&|÷ ËîëÒ™OFNk‰}·„x)vÙØû–oíâeCÄ+æS±j—0»ž=aÓü­˜ùA}V»4å:´päY…j©@—iãh­[¥'ákÎ.½‚–à1ÐÇ´i)ny’ênà@ eÝ ¼ô}±•õnù±8,÷B^cWDȉI·ÂbQíHjý†—p«L¸|…?« ÖwÒÁêLp 3’ð+ù ÀÔÙ‚&| ôe(qÌ`ð”Àð†Øì´†áÍÕþËG6„ë0²Y÷Z꿼ô.áNA§”v`GWÐzà.AÆTP¾V2ÀûCœÃ:R¶J¾=ź™Åëñwi!yö-<>–·jÙ%?“'¦eèºÈ%5p7ðË‚&L:£4…鄨§˜D:È(½ð–‹ZþBw]ˆõ÷»™Ó~߬;.Œ]•ZéÅI“òJÂÒT&\p“³Tš"O›ƒ¨xu:©Q¨Zâ «Ù#‰º*$æxÅòêŠ& aêF)³«&¿]¼»Õeä ¡\—˜.K Ôä2æí*Gu$ÉpHÐ)¥ KÑÜ±ë š0fï¹ÙHÅ(P BÄz©¾1ŒÄ±‹6_=¶jE-Ê–7N‹ª³JîG/5“±€ã=ˆ÷$ïò°·õŒ7ïU§Šì™QŸÁ3ìÀ¬'QMú` ®âÍ '•›š¤«½én8>Üqø•õÎ%p7T •ê‡T,cÚõ±^Ì´”§²ôÜ÷pgègëñð8ï­¶Ù¶iôJŸŒ¬òKîôª¨Ý’¤úð!е¿[»ýpl{é!¯ ž/¿ ú«ÚÔsJM=è장¤£'ßý½dtô(ðû ¿[GJÛ²H„¿þôµ)i~)_®F.G²üøsÐ?OF+?þ芭•­ÜRò#¿ù'3†²Æ¾ ¾\£¸LºTa‘ðÏùxóŸ»âŽ7›Ž;ƒ]ºÔEÀKM¨M»s¬3ÆùBà° ÕR¦¿|>pDЩ¶ù»s€— š0¦©Ÿb”Íü!s‚åãÁt¿Ší¦.î4¡fÛ]N]lßèµ[¯Î;UŸ/¤´Gl-ÛðภSãÚlø ÀA&aãÀ;MØ¡ š: |“  5í"¦ù=l¤ãÌ(ˆ‡”0õ)A¾Ö­õà}‚N)Í!7ýå·?-hÂ$¬õ.àgMÓZk{Ë|¥Ã›$Íg Zñr¯6 RO_´ÚÑUõð%AÆTU/ ”VwIŽï$hBÝé\1ï¨:—ß+hÂ׺sùïÀÿ)hBMÎågÀß š0 ‹}ø{AÆ´ØÊ.åÿ¯  _c£þÔÒM˜„–þlWš0¦–Öi>JÇ!¯0=•»¼hUÌq×ë/{.•˺ބ‚ç7‚VªêÖ”ë‚1«Èza ¾g7VÚ3]_$c(´3p è-Ú”tÎd¥Rö· LOOg#(ëÆmû¯l!ìåÀÛ@ߦMY=cU¯•ª.} ¶ªæE_q$næ@ë `'Œ™Õʤëµp4Ô{'»:ê~‰}·„ñÜâÐß ñНÆ•–ã;ÖLƸ*k\‘ÍWW'3Æ6F¬1nbѯû³ì ºkaÓ KÚ"J~:$\z½¶N¿r¿5áÑRË8 ¶9Qr}–ˆG­v{=pè}3 «XžlÁö"àu •jÚÕ=’“³Æ5Ö´ñ–xoa6ÓmäÎOí@’`.êq;™ÑowdŒÝÜÈ÷²Ô– W2Æn⛇™‰ïw˜ØwXCÞ¸!›XäŽà „Ò=š:ÂÀn·êÑ,Ó]Q´<›2öQÚâF³Ï®ð}7o›µ+2" mW¸©˜ÓJ›‹£õb· x'è;;¹ÿ7ï}—6ÝuoÚ¨ ÏÛïýêȹN¡Û7ß ú±Õ±"½~hc_ÆÚ¸©¿hÓ:¥žõ.àÇ@L^YpmÊ#†³Ãë7 o\¿¡¥êZä•$ägßý-ª›²¼\ ¶~ô·“wéÄþY ñJZŒ¢Ðsˆz"ËÍ,²ÐUUZŒ=YÜNÅÒ*ÃÃ6c\yoùâV¼úI”àj*»4ëꩨ=¢„6J•P4õˆ%ûü™ü¤ËÆXž}(êiÉAÛIˆÝ-@‰N<’oX]ÖIÖ *È3 <Zçî‘„Ø΀ž‰­ŽeéaG6S¹H©×Ü|h¥¨ÚT7«šÄ‘¡AG®Ü>8<¼ióúõQC Éù^࣠m(!vï>Z©XL<Nì¿&!^I‹á U‡¨'”lc¡d´bM›^…Lnãï,šl•$NËdñÄ?\5iêÝ Ä‘í¿ ñ ·Ö·´r²<¥³ù¨eŠH°=ÀÛ@뛓k;ˆÝvàÐ:;ˆÿí@´©M?Á.ÂHâLJˆW»C±ËmÐvlm,I±Ð±@6­Wê8S §´)æüfcxhý€ï mÜ88´nýºÍc‰z øYПmì vÓÀÏþ\òN›Øÿ•„x%-Æa¡íõÄŽhQÍ<’1ÞP›ÑÚÚdËöÅÕܸ{Ê2<Û?$þ`ü±…®‘¤ 96 éV\ä£3>¯ëIÙÙ?—gCùzoÌXe»`m×q'ì¼áWªìËч4žá ÐÖÇV†Á‰¿öR1ö¼d|øèçÚŸˆÝƒÀçA«Ue“?Ÿˆÿ ÀA«Õ’m:¶RçïÿúÚ ˆÝKÀ€þAluœ”¤ÁÍðÆult3¼i£Rú!ð— ©M=kšo†|»˜]¿qÓàÐû纈aŠdý@^¢î7]Š%ꢅ)bû+°]"èTüå¶ÈñØ/­aðJZ _¨;D=aj”…)iËG†q†‡y¸*ªy~“VòˆÄ¡ìýµz‡XåŽzDî4†pô¨¶qŽ´$S7öqÇ+l`5¸7€Ö9SÓ"¸»ë3 ãÏÔD.ÄÿàQÐGõ—uäùKà[@¿¥ýÁ…ؽx7è»c«ãÄô:Š-ýýë7)u¢·ßú}íülÚ°nãÀAßÏN ®Ûµ#GõÃÀ§A?Ýþ¨BìÞ|ô3É»sbÿM ñJZŒªÐvˆz¢ÊÊÙQ…Vù#Ê6yW‚^©lÓì› —uÝÅçö<ÿxÙº£_€‚ˆgӠרˆØôþ¤Å{\.™«&Ø…@ÚÑÒ×ÅK·kê\=cV)ß‚ë©À  Õ¶ÉŸnæKyWðÄd˜ÆÑ{šÜG#†ÑRž¢°`GboºxpJ«bMèû-Ÿýó“ÆèL‰%N4ôßË+_FÝ)5%½ÞÛ%|ȽíOBˆ]ø¾.1çÿžøIˆ’šÞüÁû4Žp[²9äù(v>P Sºã.ZBìî~䣱ձ,½¦`7oìïß8}õŽ„ùð!wp‹1±ï–/Eƒ]WSöJˆW̧¢pQå TBÿ¢ÊVgLOðŠf¶Z²„[\ Z)3lÑmkGLg±íž úTl[œ'#v=ÀÓ@Ÿ?îFüÿÓg€>C»I,$“˜pŠEéÖ³ ³ÉØÄ¹ÀÐÉØÄ냠cÛÄ‚ŒJ± ’a¸ôív±€ì¢8¥ ÛVàNÐ:+¦Îa#À] w%c»AïŽm£|hU«+Qq©¢Ÿ<ìšž´Ù°fÊôlZ|4ìÒ¸X| wS6Ü ù,5èjà'A2ùdáa—!êÉY¢óQ0'l_tV¹4ˆ$:¸ ôª¶t8½—Å÷Ï­|5Á¬_ºý¾€ØõÏ}^l[==Ü2MÏ7w¨ ë|àèíë>>-,.%cÊzîã#Áw€> Í¦¯º ÝdlúR`t9¶Mo mæ\ùSn¤ŒÃHèÃÀA?¨í™-ó-‹ q·TR„xcWG‡Úľ[ÂxCí+ÿTqZ–¡Ýv‹%Ä+æc¹xõêÕ,Ñ)϶â+ÍÒ„åUú¯òÜi–@YÃtøtöàú>–-1{[˾¼6r î„2 /}qìœÅd1.é'ù³9!y NòF–ñM‹ð,ÐgµÏøZÊqx¨§dHÛ<¶X…~kœŠûb¢¶‡OäÊ‘E~3Ä$Ì€Vº£Nä[hƒ:S/spé;cL±“Ï7FŒ; Ç*MT& i;Ïþܲ 93ˆ‘,©w”-–γÍ ÔÎ 7ôö}‘[ø—h¡térâÆñðPq¬&ã˜`½½õÈ(²¤wC:ÂÕ •²ÉúJ’,ÁH3»ˆ®Á·BÂE u@ƒoïõhðrÒ`pã4. í…× Ð\Zn¼#øÊafºš r3ÞÑ /}¹rŒìþ“Cv‹õ:€Õ+¡žéè³am#¸©ˆQÌÓŒ ¯[ßÒ[ÉøN<&³AŸ­1¯*¸¥ŠW-µx:Äí]Zm.ºí¿K¨:DõÄ*žïÆ3PÏó¸êø^Tª.íYý¸bIî§‘›rÄ'¼ ôU±›rFhø AE÷»÷B(Â3@«MÆÇÓù{À;@=:ßJ:÷'Ýiq+¿å…îf£kIIûUZUä7´ÑÒ=œníÚÈ-y/¤'Ü zkì–\X¥\KlTYÍ+ÿWÌRÁô 6BF ‰ß) /­tAwÄ»æÊ«i‘!ö±ä¯šfI¢ ‚îƒP÷uØ}|¼Ôã>NBÆxÕqŒ ÕÄŒ,™tP°90¦dkZ©0#ÄTTç‡ áÐk: Îƒw€zÔ¹wµÆÿ"·é#há^Ð{;ðl? Þêy¶û¨«˜%Ã:bÒÕŠ¸R1¿ˆ Q×ç7ó eŒ\µb°œ«Ê¯ed¿êÐÝjy·äÛËSêgCS÷Þ»YÛ©Y³î|£9Üà~HËbhú,‹@Ü&ûÈù8@¸ôöØ9Mš+æ fɶœ¡Í›£ÏÅ}"ž:þN’ Ï¢,'Ï‚§éW=kdÕÍ[¯Ý¿Š9:{Äc)DÉ)Ùqbê'!0áÐjÛ äO·Í•íˆáEº2S¶(1À?}6ÌWb埂ü„ñŠ<ÈŸö°¶DåÓ`Oغ§ƒJŸ „œPú,xøg:¡ô9ˆNx9èË•'”zâN(Ñÿ^ õL(QVÅ{±Ö‰¥ÏãqêKªæ“¬QEùØÎ=?¶(WÒ~šäÉÎta$ŸÎPí¦œg™‡üß:œÊ gr3#ƒÙÁÁ¡‹ØGGö`óìí¡ìাÈôÈNx%è+™«û+p{PkwŽîVˆ·„x%.Çñ Ôó<.hÈ&Ei §ÉyÈ B^ú‚Ø_¬þ#·à!HM¨oµv{“Y ñœÛšÁ<ŒêËt•2˜/ƒ=ák!ƒy2v2ƒù xø_a0þU´ƒ°“ƒñGÁ;@ÓÞ4ˆâÕ3¿9j@ä>}¾Í®áN{r³Dk#Ñ{ÏcžPßTå5-Æ„ûiDhÚ#•²K7}3¢dMdŒ¼=’çïÁß Ã\:Ëèù×`Á LJŽ,ð7!$¡¾ÖÊ:®âF·*ºVÿ®½²Zýx¨G«7´ÐªcK5êײ¸Ö0½‰*¯÷˜¦lpŽ™ÄèÏøÛhá  oPj›–½gÏv‰éÁõLÕÙ#=àôp†9š Íné˜5|OŽpôP"S\Ï‚ÛóZm3zy^h?D¼4=Ec˜\jVTàšýB2 ÕI‡Ðꕟ@ó“°âäeD™^D"\z™F»i´–“ÅÛ“ùÙà/ï‰âíºg¸ã¶c5ÒáÃ%fJ =Ë3 ¶)5d¡g–¬qùßõö2îõ§wêŸðrfÅ|šÂoèAÉ™?ädãS T¶*®Ì±ñá,òÜ\Uañl-`BJ¿Á~ÐqKÒ“\ÌÞá3ÒÏVØÓðÇåïxv‘=ZùM5tø©¼;UßîŸìúÏÿŠ£°i¨{metafor/build/metafor.pdf0000644000176200001440000562555014746146344015175 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 2 0 obj << /Type /ObjStm /N 100 /First 804 /Length 989 /Filter /FlateDecode >> stream xÚVË’¢HÝówÙµh‹|gFtôj"fß3?@ij1ƒ`Ø=?碠X$Õ ªòž<ç¾EådH{²d-yއ?Š„‘$4 Ë‘–„'©ð’ÎfR’ 9ICJ)’–”a„”÷¤rÒp\ãQš´–¤i¶GH ‚Œðp#2&¶dŠdó@&'‹;£.4Y„9D1ž#‚œ™•äÏòp²G.6÷`çäØŠrqš‚ÖäÏZ AN"W*ó¨8G?¼ÁäèQsà ½È$psZ…îˆÁþ£ÜàHHôa„T쥵™Èa Y@àRåÜc l(£ní¶ì †f)·]ó4^hí8 R4_è2ÄÄÆ÷qàXh°ì c–a.¬eN-s0 á8ú%œd÷ðìŒÏF"烡ǵiž='ŽÁÏRŒFxôQpÞñ¶h>xNDà41"4§#x!’yÎ)ÐH$…ûÁ°dîóaÝd8,ÕP-‡Äݰ†œ8/!WÁI)L&09)¹\ŒNJĘ”¼»žT\)/«âJ1>©8gÌOòº )5Ë1AÉ»*1©½É¾}£×¿èõÏæï†^ÿ /?öõæ»bßœ7?vEû¾9Û‹C܈úþ=ûr»üzƒ_=»Ý©©þ57s»‹û¢¯º'ͯkOç¸+·Ýæ|,žõWë>´iÍápއ¢‹›Øn‹j; Ÿð„ºn.Å,Þ,óߊþŸbjÌÕJ0«]Y&æ`¥˜í©*ïN¯fŠÛŸîÄþ´ÌÚ6qiU]yov£â_Q‹í› ¯ÐŠæÏǾ‹íuø}]ÎänW<= d´Sìz_ÖÝ\0AIM‡ËîA0ØIöe#Éö`¯°‡Ïø²¢Ø——X÷Ǚ憭¨~Õn&a Áï}5qÙXæ-,ͧû²ÛŸ›¾¾ó¯æ27x L+|3ÜÙçyíS¼/»¶+ºväŽv’ÝÅÝãÊÜ‘„¢9óÞŽìÁZe^Ûýá _U?½~çèªòcĵXØù.žÛÅ I+úªx 2B M[OܶNpúºŽÓr^­eæ¡Á—àÇçeÖû´3ï‰})ë}ÕÇz‡ZŽ—‘ÿŒÿŽúá5÷ábY_ooÓwø`$x±¸DÑôÓ"L@‚_ªæN¬eæüå¾ö^Ôñgûô³cÀª}sšŒ¯l··Ÿ6Çï™{\|½BŸ*á½lê¹ô†}ª=Çí\È@BÅÙ +=~žñ—ìÊn^ endstream endobj 203 0 obj << /Type /ObjStm /N 100 /First 859 /Length 965 /Filter /FlateDecode >> stream xÚ}VË’Û8 ¼ë+xÌ\<A‘TU*§­Ê=»? ØòXµzL$yö÷·aù!Ú"O$Àn@ƒ²u®U®tn,N,”+'‘*5£ˆk¡¨·WTÊZ^xZSä™ÖÀ8ø5bÉ™vˆ‰hœ+v°™ öX e,¸Ø9a-UAˆg´* “iê°À«,2ÒÆ)«½Ü¥¬“;IYɯ0Ê1xE¡\!«W®,°–Ê wxc3mYyœik•/‘uª”ûs ¬v(×áÜ¡Þ\ p(8—ÈðRK£ Ê¥¯‘AÑž±ADí­"éŸöº#meCØHCKé¤\‰ôˆ¥–‘YèHˆ†dÈeœ#²‘Þ¡Çd<#:TΨ Jl¹ ñ rñE$TÉ¢RD làNdYg ¡È¢Ë ¥È:ȩȢÆ}ä4„‚Xä¨E­bÈE`èEždƒÈçŒXäm™1$#/U@3* 9#'*q3C5*!C6*цnT¢n†W稉EÜÈ‘ŒÎYæ#÷èê×y‰ ¥Y¤9iºÌ–Ì¢…j’r  –qeÑl™?/syD™ö2yyž1ÔÒQFý˜M°  †Ó^§UzµÉeƒÈeÀŒô°” u茔ñ^™\fRÙ÷ïêýoõþsøgPï©o¿Žýî³jÆ®šwô¦~üȾ]Í·ml=v繞è›#‚o‡y·?wçv‡ wRàM0?†éôB¼9¼¦?.žû&à®üG™[A^N‘ž“Oç}»mªÛn8Ôí358LÄùjŽ/7_}ÖXš}˜îÃã4ý¼«úá« y;ÅÝýQÖöê ÅG檫çÓpù«ƒ¿žöU»©‹/Å:N}H#…âÀ›bžö/ó÷äO±ÛfÚhíÍ›bâùõGÈ[|)VüÑl§bUÿoð™ ¼Ifý±A\œIÞs£=ŽM[‡Œ»k›óçO?ŒÝšòðl3ÆêÐT÷ÀbÅ}}|aDqAOÓÝ×OcŒ¿ ´öòy¹!3Š H©2ÖŸm×LÓ¼ØQô0Îõ¸B_ìzjçªÖ‚Îè¶ëGw§5¶;%_ò+Žü¬ça;Ž^½Ã仇ßç•4k9Õ7ÔTÇáÏWúkjðG šƒµöm³0970¶̰k‡þþ!»šQì\ýnëøbGÑÿ5‡5XÌmº?ÐÅŠ!›ß‘ö]ìmôùóðÔµ‡ç-ûÌ@‡Ë endstream endobj 438 0 obj << /Length 1781 /Filter /FlateDecode >> stream xÚ•XMsÛ6½çWèVi&‚HJ¤¤LÛ«qÜv¬6Uä\’Î$! °hÅýõ]DÒ4_l‚"vßî¾}øðFÇ‘7ºyå=ñ³5{F£ÀCQ„£ýa!𝗣p¹BËÕhŸŽ>ßO|oŒ“¯øH&Ó ôÆÿäDáÃ$Ç\ü0ù{ÿ;XYŽ|­Ã0ÐVæk´òÃÑ4ðQè/k+¿cVbñP[V¯Íƒ„Ú‚ÃTZ£uDÚÒÔhEð°@þÚ úˆ¼1’rÖ½lÌž/aŽ¿T³ÀÐÔtf¾Ÿú!ò¼¨žõ+2ä#³0ãCÇ3õüi°td&ÕŽL‚ö5¦*{ÎÛ2pÞ¶P‡éÃÙƒ¤²N(+lëÀEý°{‘6Ü„¥rÏBWxañìjOŸ½Ðûù§úy<äÁ ߨsâ©4£-V‚~»ü„S¬Ìˆ•ù["¨fÙý r¡•Ëßò‚ 5ˆ8¬ç¹TXYP¥¢™}> \œhr¾%"šûŽe9±`uú‚¿ 3,b\Ùƒ¥ôH¤æ_©ʇò¨ç½  €gaœäØ¢£ì_ì@óBYœé4·á'ðáÁ ²øp”ñ<1CYÆ(f‹¶Ù˜‡ä+ÌgSW·/Š@l†Žô?kÑÆÂKÍ\bÁÐ)NÖ>{^`f’KhèÆûoUþÒ^Xúµyn'ÁÀ²ÂνÀ3 rž’¬£,““Ñ(¬. v\& ¬l`º:¢R¬#Ä&]™uÅzñë2vQ'‚°Ð£NàLr»„qèž>Ù ¦mrXœrÂ,á ’@ }Ú·÷¨›Ìõ±·ÅL‘~nüŠAAþ#YÓœ±öž(®ë#{~sÉÁm õÐΩ,©ÂP-#¸„§ø3Ê ]š©l£Áty7™6AA¯ŸmÍŒ©*wÂyÏ©”¶¡úš¬öÖ$.¹ÑºŠø4 A6N£+íê“hCµ”]ö‚BϪ—¹¬Y29¶á¤rÂKK@‡‡AGP–VÛé =1ÐÕa$Bp!]‚gvª%éêy¿Š¤öC+ž.½Ó壮 ·· KA¥…¯ÑQzKà䱚ï>…Ð N™ÛE»5`—¼£"˜‚m>;6XòQg}æäâk£€½ühIS[õ;¿%Ua\¾]m¾2³g²Ë»VU—- H”^¿/ëÅiŽ cH/bF+?$eÐ1—M0ë*`LZ;’š4]1[^%xµ'±˜1 hž‹ØK›9»uù8‰`@’Sÿ¾3Æ%iQàùÞ%„ëíÒÇTo$`—fw7¯`nÊéßCþ*š/g_¤D÷Þ> stream xÚí\Ërœ8Ý÷W°„D$Á6©$UY¦z癅ܨÛ=ë@ØÉßÝ5¶3_l‘Mî¦qW ÑuιO]L¢SD¢Ï»÷ûÝ»OBEeVJ&£ý1¢„d<—‘¢4“¼ŒöUt³äÏý—wŸ$}´+™q*Ý6ó’]kMkG¿rG.Û»½eDs¿!ó÷¤×›R¦ÜFüÇ[Ÿý®²Bn9Ë‘ËòÆX}솄‘8íõáo}2Iʳ$„üî—¼,Ýå1 Ä}’¬ˆÿuùóëç]t“RÎIœ?[»\ÝGJYƈZ@×UÕwõ÷$U¬@ _Bÿò NBñsäS¤ˆ³ÊJb=ÕÖ‘¢$ÿ*àËUê÷À÷ƒ©Î› vO•ÍËPiÊVk|¸@‡óF¥Ïðýüé4˜„Šø”ˆX[“™ñ ëC’òñî%L÷mça¿O˜Ã}Q¾ÈBÌÀ­žþÒ>¤ ‰poE…™Äm]õÉQ8oGE ¤bìë³3 ùø)x Ê'0UO½#B1{c>`ë¡3GWŽÕV7ÆÞu•sX…@ÄW%I–ÎP7Ú^SÔTQL‘B(]À•Þ›¡™¬ç 8›Ú³Ð ¥ý¿ØJ¸´—‚—å(æà W@…·ÂÚK{§è^B€_M µvë› ÍBuòm’“ø~îÀ±o̱!ñl%< jÿ²1'™.õG¯AÖ›…¾QwïÓPÓN Š# o¡A®·‡‡ù¬®|5Œ&Ž ,|§fª±=·)°(ñ¤û v®@¯`q¡:ÝÔÎM,Û“ÀAú7MÓ¦OÒ’aˆ~2뱄7£¢‚OLíhµÝppb:üØ%d3ÖT—vÇóÀ‚ñÌh16lˬ¹´p‘͕õÅZ äå:¬å Ý?-±6x£ÎË5:Ÿ.)Æá€ PU£]è|&„³‹!``_ï¼üe–1W˜úÁVÇÖcŽŽçu|¬§¦¶5µ 9žonf"VœºñÎmŽg›Û3Ž»N]ÿBVr2“³ˆá“iføjîý‰EÐ×Õl9¬•úíËx½nعY­ooýËÃxt³¹»ŽYÔFû»—Á ÚM6I | *(°ô¨®ûºó£x‹ˆÍ)½"øxð=GZ6äVd_ÿ…pÅ\kü<ØÃèÚXÛ½ }ÉaÖpìz(pÛQñßYëóëÇýîý“R endstream endobj 595 0 obj << /Length 881 /Filter /FlateDecode >> stream xÚíœ=oÛ0†wÿ Ö †?ÖMŽ…·´ƒ*Ó¶P}8¢ôç—²ÔÚM“ödK^rKŒ<ïñîå‘ ¶ >.Þ­w÷’†Ée°ÚŒR"b(ƈ&X­ƒ‡åûºjmÕºðëêÓÝ}¢ÎÆÇT%¹Ûq¤è†,èðú RCã âÊÿ‰è•¹Ë¢²^ÛÂ…‘fIÂ(¡çØt\ÎiRÿ“4ÝÇþ×ÏžñƒGH—LÊgƒ h1N˜:C_ïÛ¼®<{®Òþúð Î^10ûÆf¼–‰Oû û]Æ!eÚ6ùÒ”©ŸNĈz$jA½Os¸õnŒéÉó¦ÿ *ئ<´ÖyT"ù„Ð*(ê–d‡òPôéF£Õ¹0ëh潭ݮǭóuQn(˜z^}¡TtÜÉ¡ÊýŒJ!ôË s0ôßùýÄ]K…iäu¶1¬nvp{ƒ¨1cÏâðl>6q¶8Úw?g‚õòÿ„ ˜ðS¾Ê%Ç=éÑÍ)¨°oì:φ4ƒí€IžS˜-oòª%iU‡,Y>…> stream xÚÍZMo¹½Ï¯àÑ>„Íb±ø xwáÄ@,lHbè Ëc{6¶ÆF¶÷ßçUOIݶWL"w9Tw“ÅGV±>ø&vÁ¥PG4.¹"h¢«8Šú6;bm›£Œï(ã{dCÚ¤˜\$ˆÅŤ頋’Ð6kqIÇ þ˜\Ö~˜°T}f×´Â<„9'LXê&1Þh·Ä㔕t΄Á‰ðOc|*Ž ãMè l‰³‹±igU²"(¹…âˆ5B²‹MQJtt¹ÂØ Å‡·Ì XÄqªÚ9;Τ±]E1C(×¢1q HÖ! K™t+0*GÅQ™U:66ëƒn]ÆCiUŸ°Ý \œ‘«ÒUäæ„cÞ¤œè„©iè éRt…T K%9iã'Á&C#©d—ã8ª¸Ì  7Ëø©¹œû -䢟*TÓ O]m Xeªì Ÿ’+·Š+ãr±YETPn)Q;WhT×]›+­É&J%@‚ˆuZv•:cÙUÕˆu㬋ÐOѵÌX®k:»`¯³@§ Û¿è´é&tÚtªjºè´5@è”ßÿEì@«X¢+ÝÁ{ Y'Ä’)”7j.ZÔ0>|ÆüÁBS°H"†… tE¤:¬ŽH°>~ F©#Ô¦kÖ˜ƒËé )bðæäÄ ÏÜð§ýó½~vž¾¾ðÏÏÞ{zè~øaó`|xxG¿ýGùþlêz|¾£÷ö<¾?;Üv>>ÞÑw÷ú¶ßîõï÷ù´Ý½y{¸š˜½úvÌîâÕö³ÇžOôá›>/ÔO÷Ô w‡Síxr²žÿöaë†_ÎÞl7ÃOû‹Ãöâp…^µçfxº½Ú__žo¯F70¾úëöÕîìÇýg÷"àŽ 1žn âcqó±ß£‹‹=D½Ý’N«néØFkùØÂÏÉÚãóéæ ˆ£¼ÍðãþòÕörœ;œž ?áÆrªhÏîUö’’ºHŸ!+ÖæY]¦/ÜÐïÙõËdÙ]ükxtr2Î0<:?ìöóáoOŸè߃·‡Ã‡«?ëýÎï/ß <,ËðëÕ•ÿ8û]à‡yOœQ<«qsõ æwé#Ü ¥æqÂþwœŸ>}òï·‡³×ûË?|¸ÜÿŠY÷ý*"ø[„pJÇóþßìo¯_úóýûáÓÇÝöüíáå`ˆïRQåÐnQ ±U¾c š7¸»ý Èá{´|Tç‹´_ «UÆÿ”±@wƒ¡×—ܾ%lòÓÇ—g×ÛKUûwìŸö£úŒxÁ9{ ÕðøV5Åawuu½½ša;Ï¿ÿãŸ~žáç tª1õâúݻӻúRcgäRpGí;:?†{vêÔk"’¢9sM"Û|jJG?ŠQÃ/—ûóg[l\üÏÝð|ûùðµcýÚ÷7ùÆ÷7¾·ï쾋ܵÕÚã¢5M<¶ÄbƒXl‹ b1BLž˜<1ybò²ÉË&/›¼lò²ÉË&/›¼lò²ÉË&¯˜¼bòŠÉ+&¯˜¼bòŠÉ+&¯˜¼bòªÉ«&¯š¼jòªÉ«&¯š¼jòªÉ«&¯™¼F˜iGÃgã÷7‡ òèèqÒ|ÓŒ×\jÎÕ—¨‡ò‘û:ù3òiL@–ÅŠÏc®n${¡t7†ºF¨Æ»Å’G-s7†¶$òÄ(1سÌTÁÑ#õ¾Åå1š4SœomÒÁÇ ­ú:WE€yÔŽ*(/¡f_YÞ`&'ùn ‘–ÇP’×Ðq‹Yo,]IJ<†¬6Èd!·†åÏŠR(Oö‘;ºà°<dG5Ìt¡•‡ä†åϦ šÈs]0ì#utÁ+œMÌÍm¦‹ˆŠ&qƒ,A›™*P´¡Rë@XÞ= HûV'U¤óèíÂò'y,°L*¬#ö0,2‘kù9„Â>QéäËÒI(x šH }7}YA)xšoªÒ:é‹,¹&SeŒ¬Ü—ÖQ…¬p(H|I3UŒµSGyy™k±8a ˜Gíè"/oÜÈ3ÏtŠJ')ËÛ—†ôpÊ_´Êo¥£‹ÂËc@ßhÒØGîä/eùx…|ÚšrIΰéÄ̲`m‘j ”Á¨+pægʈtdý+ à€ìlŠ›Ì0‘”{(xT}h3…D · YE_ë”Æ0ÁL˜{(òò(bƒ1Î@˜Iì*¤­¢’¹/C[ðܳMZA17ó´±TLÔÓG\…7ˆ,¾…Ò±‚³ˆIMqŠ¢QØw1¬a}NSFl¤u¢(ñ ®"FµÄ)ŽÆ#©½½à5ö"TDó™>FR{·2).‚´3„äkéi$¥PTöu¦jQ/îz(Ê ( ùLS8¥<ÒþŠ%î[Ò¼þÖãE®>Jï¦LV8#Ø`ÃNI²©§Y!'ßÚL#‰õ¯‡bÏI1"}›bRv¸wo¸†F(x©3PÓ[¼Š/NªòE-ý÷DÔ¼ï ·Tü*_z·4§“”ômå†hšX§{rKò-·$÷ç–Ú‹ØïäØcü˱­Ö¹1®IŒkãšÄ¸&1®IŒkãšÄ¸&1®IŒkãšÄ¸&1®IŒkãšÄ¸&1®IŒkãšÄ¸&1®IŒkãšÄ¸&1®IŒkãšÄ¸&1®IŒkãšÄ¸&1®IŒkãšÄ¸&1®IŒkãšÄ¸&1®I–åšnŽF®HpgÜêä{ñ<¯à«rA´˜BXF¡Œ¼¯¢¬P‹eA°˜“nšStA¬± ù­ÌX78qê•e…ô*3û6cÝà»5i]!”çH~VeÊ8y=+Ä øk½™˜1oùEÅ ¹•4äeF½e{wëÔVÐÜ•³› Ä=Ôe]+¤Üpξ}A¿Ñ BÛ )7B/3³@(ñ%vQ¬a©z™¥V¢?´ë&»m_!œ¿¸ÜEZà¹öÑ5îÑ™Ï~­ ð`‘º(VpB›> stream xÚíË’Û¸ñ>_¡›©*“C|æf'~d³[q¼S¹x]eˆ„4ˆùù[ûõéF©¥Ù*;']†@£Ñ ô­ 7‡M¸yuóüîæöeœnò Ox²¹ÛoX"J6)cA"òÍ]¹yçEÛ÷w?ݾLØ QDq†1(µä¾í¶<ôü£,>ʃÂM7¡åtÁÆa0àã󀂈 mPµÍaë‹<ò‚­‡áõóõO”ççÙ\Ø!ü ƒlÓᔆo_ÝlÞùB„žù2}áÏx¦lRÆ w•Úúyš]%þÝÕñǪá³.¯ZøQZˆ§…N6ý”ÀÅUÞ?Lé·uÁ.tý[òªNœ]eþ£ô‹GùÆx,å ‚®–¤ò«Ì¿‡è“G‰þ¡UåRt÷×HúH´[{Û$öÈ%xv Qß_Éãòö*C¼–ðHӫп¿&—µ4”OqvMÿ/µdrÏJBU,®Ïîï!ût½pº}'‹Hdq¶ñ9³úø{Sª/v÷* ‘'Ašç®ï"Òe¥ðâîæÓ 3;ØỔYˆ4ÞõÍ»÷ᦄş€ È³ÍgƒZo"Æ‚40®6¿Þüëgç#!æ#IÄ6qÈÁÒE;è+­ $^ìçAž±‹FÒ_ ªa¡÷ ògz¿ÐÖÈêÔëž@o¶YèÉNåPøGÑ"v¢Ìà­á¼*”(AìéŸ µË’•vYçAšet…¿©¾èôqÐmó5;X´ÜÀXd® vw¯¨ß¶ä”"‹RÚò؃‹ˆ7u¸N>ËCïØQ}¢KÕDÒ§hëc§îUÓk¤K‰Ó-U•*Ìu̼ÝÓw?6j ¡~Sް‚<œãa}i´Lá¸?æA ™ÁçpMsNÝØ6ãRÀAħ«¼]¹l°\8pVžäF„0ÈÎwGh!‚î,`ìUI¡u(U1V𜡩¤UjÀ àe#;­†-¡,pAmìALïõï(`\2¶ˆ¨ãB¶„j%û±s(²)I. åĉ%¦+ɪj‘ögÄÍ…7˜»ÁNßYPK_|4TŸFYùOÁ‹ÂÈÀ¿…–„ b£¶öÏç·lê¶TU?§!ëÞ2‡'ŸÄ)rïù‰@º)ª±4ZÇi?ŒåÉ7× —7ªÔÙÂà Ï!º:¹bÙ† ‡ðÚ®sFȲ§/Øk© \¤º!¸;& épgΈb­ f7>“6¦Ú)D9€vzcógBk·1V%XŠê[対bô1¨SK¼—H­×–Na@`KƼ³¹ý'QES¸ç„Á¢…Lþ Wh€%Ù‰…e‹'2]_”™ Æ‹cÛ/7Õ îÐöŽ  ÙÏ8dÕ9 Ò.ÄÖ‘“Å9Žtkt”0kÝñÜs…D‹£eüBÄþ¨ -+ð·’P@²÷méέ'ú¿ÈfP•ÿZBÄûݘá´õ隚ߨ¡}²cÙòlBõ¹Ö›*é³ ܆ ž{ý¨mS¡Õ€u»£ Ò’e°f©vÉù&PD£Ö ÌIøWvÍïc£mÕt?è¥Äí`ð¦Õ}oŒ>Øpé€@¼Ñcl<¤g«ÆÕ¦m| %ÌQÁŸf àì$·6ö´‚‡WÁÁ>I¼rT§pÌ!“tZ!`>æÈ‘×ËúX‘‚a¦ºÂS ¹fÿ uèˆCä-eš¸D.J…Ô‚a Çb@ž«{‹¼§/˜X?¨‚±ÌÛÆò²y'²ñyå6õX ú2,BùBjA e([ê>‚‰j0Õo¡¬Däv4¾ÂœkÐDvʰˆ"º²Ö `£\î!B9Ȇæ2O—¨èôƒÞŸh¢¬´ê»¦¼¥² v‹‘¥%‡éB“Ø yMN¦ÄÆ0Î%†/ï±n±ÒètÂõ]6·5EI?Ù•ä|ˆf®KÈšý–yé¯mûÑ9=¢”·ðà-[)+;Ô™ ÷áÎkwG™ùͳ’Dä¬ï ª¸oô§‘¼CØ*î·±w:¢ RùkpûÁÚüä½ÂkwƒÔÍ)¡–l´Fˆ† ×ßÊrYø`l˜®\ÀÄMÉ÷|áÎÄgΫœ5áוª®IÕ4®¢&{KÓÆó+z×îð ¢­›½ê¦œz@ÎŽz·ôYˆg5Y@Іjs²Ë•B•´Hgù&6#x™2{˜©1b’Öd ÜñÚ‘yH4ª²“N–,ÄÄ‘©¿’Õ®“î]€Ì1¡¥”» †ÐÕdáa_Ä„÷ó6çÞ“g»ÝoÂЊ÷žËñ?r°$·ÝÎî°&àÁùꟿ¾¦Ñ±j»~ Æd„d€p)[eôN2ÐqWéª;%,ŽðvÆ/2´ÙnU·@´Ð½ªNØS¶IŒª<‰­>úS –ÐÈÔZ[I|èAL•o r‚̲Ÿ««y~®b´+4 æL1À%day‘ùfÎ r Ÿ¤ìFLy+E‡yxe©g<ö‹¬¡Ü) ò M«ÜÑÒÈeqrÐAaðâpPÝT•á¦ËŠ`ƒ5´<=Çß/h¹ŸñgÍ“Ù& ´¦ S ;™[6YBŠÑ‡F›†.÷ô"¥ïNph¦ÐˆJbPô£! IŸÏØÂ’'Zîñ7 Ó‘a@‡£¢¦6›zwÐÝaagñ÷cGe+®ÊÃÁzTTÖ`JBóXÍs×…zœ~/âkXð :71]ʰU‹´ƒ-Z\›fþ.¨ã`—%Õ1®IÃ/›4Ü–éü¢IÃÏM>=`>̺4|êÒ<9?W¦V½Â«$ 4&dõG°=ÛÉæÏ@˜'c×ÈÒqDÕyŽOÇÁ”$³‚€‘¶‹.âÏëܲî?îôÎFp[–ýªÓ¿¸»ù/àÛh¶ endstream endobj 692 0 obj << /Length 3506 /Filter /FlateDecode >> stream xÚíZKs㸾ûW¨r¹2‚ ÀÝÚCRɤ’JRyÌmwSCKÍX"µ$5ϯO7†,Ûë­½¤\e F¿¾’ÅÍ"Yüéâ÷/®>ä|Q°"ùâãvÁ“„¥Y¾Pœ³<-7‹ï—{Ó—Û¦½Éru(×wå¹üñã_®>H5š%9S¹€‰í ‰].·Òb•jm?¯„‚!)uj˾jº÷—+‘óe[uwP’z¹©¶—B.·¦5õÚÐ÷È(kü^œøÞõe½)ÛMõÕl¨ŸŸV4Ý¡©;C}ˆ*_Ñã¦f‹;‚ݬ€7…”ž7em§Ó z_r¹¼ÇJ²~Ù_b[߬¾R½oapso‰„†uÓ¶f‡ !­ª€c‰ý!Iĺ2ußýHÎ.WY’,ÿfÊîtÓØ­_å§cY÷Õ%_nªú†ÚºfoÜ·e[®W1ú{lï«õå*MîÑþVõ¦B>W›c¹£¶›¶9:*A‰a7 6žÂ–«šša²½í‘†™<°Û¡mM‹õ-H>­·®6x2T¶·©›ÛñͲ3z–…È•-û[8éf‹Œ{O<ØŒSDöÎÔ7†Ê£MÙƒ § ý-Øi&dÐâ„,LÖuÃÒÉêÙ QúŒ/Ûª¼®vUÿ€R—Lˆ‚j´Ï ¥~E™<–"j¶Oää.LƒÔ»©Zã »®q%ä> ­våõÎ0gò‘!Xq ZžÓ¦>ÞºIÚ}ÉŽuE•ÇzmÛÿ;³+8×,×4á÷n ü1½hqÿ…#Ót42e) vöȯ?^q¶Rš1~À w™  `Ás¬9vÔ€fqUÖåîô›šÙ¹ÏýmÙSÉ2Ò6=ªu¹Û=`•/Ê~° ¿PS˜ÌÌÆu³®¬Be]v G(?`S×j*EVñ´D  Â©MkCeWÕ¦l©Œ¢µ¯¾ ”›ÍÊ8¹î`»°< ú #žÍzÎ@rùæƒ{H€­@é}ÕßR­ÜUe÷|RtÆ’dLÉSTðŒYæ;ŒÓ…|{h RᎠË¡™œÁÀr6º-Á 4%ÝÂk¶¶'VAûÞZm¬vÇ5î3)œ0¡Ý/'†8nà ÔÖ¥+\»ÏN¦ DFÝÉþºªËaŒã$Gc›z JÜ(Y1\/ù zm/ÈÕASsì×äs 2²xPƒöñ·&ØÞ¿H¨„`iŽÒt Kë'eJ°dˆHÎYbÛË,Y¢Y(ç­#Û¨h.ý×À&»oÓÓÉ ™±LzíËí2ÚújO^ «ƒ )Éãcä±!_ ºrØ…Z0ΫP“å1ŒõþÇ-Ó¶ML6ôª HÖŽ;×oWÝaƒ¡9ú†Z­íúJ6|~îÁn×M?òÁ½xK‡åc½1íÎPÑ¡ò"Í$}‰¥P,Í#‡:vYOìËaW‚½s_›]Cj'K{^ñBÛ`tÅ%Ký~¸t‘ ºêÒ¹}Ó]÷Õ>Žš3=–ËŠzèQ‡œåÁ¨|ê&Ä’Gæ*Š48 o/W€9n*Š€!@Ù‘4Ïè(KTЛ×#m*ÕvÇLë ØÆ²"›ìzBJÎÀ£N@FÓ›¢9–^w¦ýLnˆZHþwGxnƒ¨0bb‹pO`‹\×Ö)gRŽÉf®1Ø'PgŸ¨RÕN3nMœ²P³ãòœeià—Wsäô œ¸\þ5Êk)˜Òùàq„ˆ²;Wê,»%Ó²ˆ²Ûm-n}È¿뻚ô£ööµG7j`ù•cã{§ByªÃ§œ&'F¶ ì£’®˜.fçsJÐ$í\Nvγ© 8Ž:ý7Æi&Sù FçÏZNŽ—û!I“Ø.‚ÂÙþý±](XRðQ´›$eZeÏ—Ù|«1ÙÎÂ|ŽÌX0!£3êÙ„ù”’ŸØBàü7É]‰4ž 'i©ãŸ1^AÈ‚`ŽŠ.„ÚXü¨|‹}&6[Æ6ë.^±ÝlN]+EÛXèºãÞOƒ¾2•.¾²¾î¢Oÿ•Щõ’à¸0jˆ¸Ò 춺FèD!ÂÙQ€0Þ=@ø[‡‚gŠJ øè>ŽÂõ«Ñ>à‹ ï 4iÂçA…ä§€îaŸÏí@êgú ÃT艰ñBô˜°€ÿAiN¬)Š—/Za¸’kg ¡ÐÁö[W¶>fòq´ FÖ‰®á,]ž&Í3–f{)Ð#ßhsj¼¹à2‘acAš-É ý^ç&‹Œ 1C/Á ôÙþƒ ÈYcâ¯rÛ‡ÂàVáëàVá ‚ÔÔDÛ8 ZPy¨£•nº¹¤BÕWXè=!8€+‡Ó8¦dp\˜ùêÈL‡<›^¡m_>PáÚ(–µ]èÊÖ5[öÀ¯©ýRã©d:×h™zðù&lhÝŒ(Ù~ÀxáŠåä—iÞÊ…›VtvÎéÜ;Ýbšf vçË]sCo’»œ šÍ¦»rIU¨†\«Uw?•?1:Ù<“”׉(9ûH–“=UªþîC"— çDeòxÒ§6å$?Ú}KMy jT ãJ¿5¦*DáŽí±%Gdwjú²Ú9…§D@A¾u™#(ñ»5POª“%¼²$ÂÌIÞ èLŠàé%›f¿2[kãi¼]k€Zp=˲彡µHÿÝúñ` .†ñç#£ìtdpJŠ©¥GF:èô#£ÜÅ3°fFÝÕh®€Ö”åÜŽx¼,@zLæŒ: !Í,â­íXN¦™^u¡É³Þ*5~3Û•—Å2=Õ¥G]*˜¨!ȰµÇa…Ôàü/ÑNÄ8®¥õ,#vÅ$‰É<°ÝФò±–òI`ŒµZ¼ ¢¯™HA nX½‰’¥Y–ŒN:vtø”FNnC¦‚V•Y ”ŠóW™ž:h)ôeÞCƒ3¼™>]á—¢`œÉD?wòô6r›€\zU] ³5[ÊTµÍ¶7nÐ Šuò¸†ZËn¶¿rßm sA ü~º5½i'’\§òq6³êÞ‘›°\+‚IGîê×à ¹’0H,?]›þÞ˜zE Ù¶Oè¿òJ•KEb0‰ajfqî™ÖÞ1 7×.AtßV=ñÏFüÑ#å,±&ïµU?…P¿;‹Õ +xÈEü6–­°-×á¡W2•¤çèE°ÌÇôžZ*¤=~wYþ\ƒˆ*€x Aˆœéçr {NR!{c”›E3=ƒ'Œá+2scjbCNx±œ¥yæ' 40S©s‡,ß–›ê 7_ÃÌ3YŽìÉ,‡š¡×³!£K•F§[3ΞSqz³ds×㻃$žqæy~BžñæÚÒ|þxó7ð[£ÈI†¨(dm £¢GÜ]ñ"eBkû0DHÇâÿDH]%LiuÎ:²ê-ìx·œ).ð–/±½þ §Ñ+{r/Uî¼Q¬(ôDVƬLó ßEsü‚ 88Þ=¯¹P OÓ—Î3©úñTüxñÓ·À ÌIÂÁK`^AfÖû‹ïLø»f)lùÞvÝ/28n·ø÷Å?é Ñ4òb§öñâõ\V?—˹å²~šË"j¹¦Æ$ç)R+žvO m½oÒ?ë¡‚Î9þì!En–螺YÊŠ¹fL=F¡Åo­dUÃêz‰Á˜:ƹñƒóìUé²×Xpýáf1ØËñLNfHeŸ°RR¼ P fcÑuºpŠ~½· ZÔY¨À¿EÍuïoXaqwÃdÔ=ö—(ì‡ËôxL­R>“¿sLì˜Ûô$øNs ØC‚tÅ€úv ›²?zÐDÙÛÃêñ=4ûŽ’ï?yáK: Ô¸f|ÂÀ–_i”/†æO@IPrgVO>øBÀãÓß6›Y,Š{fwð¾oïŽO”-XÑϻш!i•̲Uî-‚m„|mD7€þiƒ[!‚˜|Y^SãOFæÄ;y*×ÅsÁò4éö"bÈu ³Gbš \¼[*îòÉ9YÚÝ9 ן˜wÞï›Úá]‘)ðQ³ËËÏ8»]ÁÓ{T½¿­ì-'ÇôoÕÑSl6uÌg ÚcûZà QR: îÝO"ÜšÚ}†xYÛ‹5¤Ô :”ð”íc/@<àz(Àõܧ½¡pÛìÌàã8w-¬™,f7 ÈÏŠö>æÀ,‘$¤zòš“ŸâÏK‘ö³Vo²Ú7³wL6²×/¡þÌð]–)–çÅô Wð,9Ã…œ=ž›<º¥'¾6ÿâ~CŠ2ffÃF0)š¢‘ãö‘‡†p1ÿU24Q‘€ã}v†æO›pÄDjʤgeNN2XÌá…¤Il·\NoQŠáwð³×–ùðM’h ÙÈz& £ÇL(BÎ [¨9ÅÒNm„ò4 –p >˜TOãO ¼’‹âiP‚ÿ…¾…‹Ñœ‚3(™ý, Æ–æ±Kõ+¢Pùš¾…>z<üü*êô endstream endobj 709 0 obj << /Length 3570 /Filter /FlateDecode >> stream xÚÕkoãÆñûý #zrâí›dƒ|)Úk¯@ƒ¢5Ú¹GSk™=ŠTIê|ίïÌÎò©µeE‚B¸ÚÇÌìÌì¼vÙÕþŠ]ýñÕï®_½}§“«,ÎŒ0W×·Wœ±X*s•p™]]ï®~ˆÌæÇë?¿}gøl¢T:fL7å`ûü¶i7‚EÛc^|Ê÷½bÓ ÍVŠÄ-ßÂ73’€ÜßÙÖ.>Çs””ª{?ƒ]™8KdŠ3’˜Ã„-U¦hVI³Ò˜$L\Íæ|»ÙÊŒE<€’›Øp3 üösg§<„r±Q+€;›ôi–ï7:ÊËú à&êïÊZœEôåÐc©Ñõy½ËÛ ,ëbÑç בm;»ý¼¨-óº°¯iâ®ñósng»¢-o¬ï(K,(¼-µMTl˜†mñ8ÓšHÎë¼zèËbÂ’QUö¶ÍûSka+<)‹¾kzKÃý]Þ-ßU4‡CSWÛS‡$ˆDEâ@ƒ?0&¾¸í¶ö7tk‹¾£ÑC³³Õkj—¾¯nz2€“‘Ó×ú „¡j#n‰­7ÚEQ~9V°¹¾lPØÛÙAmá§W-j/5ÿöÇWW?¸Iƒ–ŽÊ `ã—ŽSЇëïýi÷°­,nŠ„Vm¶JfÑ(·›ÊvÔ…zÑÜö¶¦¿­½µm‹ûÃ}C_¨ øˆ|!4m·áÑk ¹_ŸW_scé[ÖEuÚ sö8ÊÂò³BLs 2©I¦C ŽT6ß•õžFX)—ͶȫÊitt@ZÇ÷}k»¸þšf,š†| ŒòCY[ZÕÒ(©/ôÚÛmˆh§Fo›SúgîÀ[;•áŽJì¹±ô¿ÊÛ O£½mßv$»¥ñS½£& Ûö9ì/šzW¢æt4ØøùEÙ§žÛÂvà IDôÏ;ëW’ –$oA5q×Éþ¶Öœá1|sšÑ‚hË4ªPJiÝ[êknh´œl–™›[câ™e/¿¸“9ê$‰ì²{ú8i’ñ«—úƒT¬£€©|4ì1™§kgñ Ñ2×,†sëäßû¶ìÝiÁ? Íç&ÜèX¦)ÄcÍ8¡xØq§©ºä;€ÐT/}GÀi°XONããŠ&%3lܪ^`c!l&•sl_°eÎq¾YÈשX™lŽíK€K* riŽO€KÌ’ø/¹/ñËíKü/öõÛÍ–›„>>g ¹ŒS9êÒ ø´ÞÝŠQG?K{²Ÿcg Ÿeb¡’ t2æ„X @¥/bg#,¨ççбbfð"NAŠv14Ô±–üEü*hIŒÒ!T+FJžÌq}°Œ[‘e±NôÒ|= óD]â‚—‹^’¦zœŠõ V2¤ `Û9Øvï»s~f1Ëø¤›š… ¤)þ @8ï°†ß ×A8ì ¤Ó…òd$ |fhs'~IÎæÿ€™á¬E?´§+5KÒ/3vªÁACäN:U0Xƒ¹œLÛ+2ùïzÈÀô‚Ã; Éõ„PþTPôT,õ7·ÔãCžÆz4õ!¤ üd´ýÁœâ5I%bÁù2¸›qé0îRדb•ùÊ.%äÅbN ë0ë &*KeûãÊ|°S¸r‘‚jŽò!yO<¤FÓç5ëÓáÆz£Øñ[4$cÞY”¶vA-ô»ˆ—CFœä‘Ǧؤ™ª˜³Œm)œ§ÈË!©VCðŠ}e ùna½ÏàC” ¦OÊ›  Rq’d/vî!}Mb¹(zŒg)»k÷žâSq·ÚDŽ_oÀ’¶'ßšÒ!Ï•ĉ\%»ÒÏÆ\S(Cê/Tâ4¶´¾× {Z@#7Ôß`:ˆ§ºì‡® %p1}¦¡QO•,˜˜»4ÒQk‰‚!W¾QÜ!óbbŽêç¥+Û› ì‚®3 ºQ” ekY›U½' UH¸]ö]S‹ôc,d€iíè¿;d®üPQcžÈž>ÜÔÖòÿ9¹s+S_BÈ¢ŸlÛàyIV‰ŸÁÁ•‚¤S t ³pJpg!™4øÈdUn¬LIólu3Ñv=õŽ"ï…„¯ºcïè?YtO%ƒ˜bÌÁÙÓÛЄ9¯!|T’Íb§È%ïã#º;«JƒhÊø%Ýa ë®ÔÉ™îI ÝÅèÀ39„ä®jiŽKÉE G³Ê³GòÆLÆé”ožÂÞš« Ù½qõ¤ev¿Nj§çAûÃiý”Ò›X²ìiÖƒ õÖ³ìÜlß&ÖwÔAš ÒLhÐ}µ—ç>z…‘.?+—º¸ym ßøÖ”‹ì1ÈÕDÿØp„Ô*1àÁ&ÏóCè ĉIV"XÖr°¾âÇ p5ßÌÏR”‡k9ܘ§•Æ\¤¬øR™¬¡¬­š²Ò2ß75å f4Fئ3‚­°1åp`Ôd,?‡o+DöŒkgiÌ<9XêȬªq«'Å5–t;%yZÒ\&±Hõ³E} %ÿ3Oý#ÞSñp8râészséR`^mxT0Ðÿ›?2ÅÖ"t"ÂÊxvß·Ñ|aæ1$ ,¦Ÿö¯Édôõ¯³ìSœYTB^Òû˜~ãÀEá6S1Ï2¼ó‹•gÈõ·‡<>ÜQûÝ©.zC8Þš?ò4¤¼i›t¦TÜÇ¿}'åªj9ªˆGÿÄAGšÎuOŸfjý%Ç^mÿ”ÛºûÉr`t|\Žmƒfø30«£Ñ¼öß ¢|V0ÝûÓ’ü‹rWdѾü '3H×zýk(Ydޤ¹1p§H@‡=ÁÄ2'»îºÉê$|*´àŸiãÌ]Þã}râ߈$CU-qµÊµ†Œ;]¨;XÀI EÐв4yÚ#‚…"hgM2é‡*‚¿~ÇïEº±äaük¡yÍc’&ºâ]—yvÔž%Æx™´m×ÔÛ¾t¥,Uãèþ#ÉbÈ|¿<²¡?û¶9gðHÃèÿoè3h›GÃ3ù|Ô0îukMƒB» &òǼíËâTåmåN1Øï¹€ºÏ÷¶9yƒCãÆ÷{ÿ6ß&‘*º~úŒÏ#|ì «8D™r9À b÷Áƒ\à aÈZ4U©‡˜qµù ©쫳Ôöº ñ&—Lï[›w¤Í8»oýfÞ ï•4pÖW“’À1—3þp] p$ý`©AØBû}<Ï`A/&u¾l±¤˜[é[oTaKàæ£÷¨¶Tçþy×¥z&…=ôð ãîÃM  Œe×çÌjËîõµXêpo|ä”»N¶èfóY¹ÖâÛï5U ÙfzV2GS ž"ï§Avΰ 5L_a º(t'Î=ñ€:Ú¾ùU=”#à)‰cb> stream xÚ­Y[ÛÆ~÷¯Xä%`qI¯~kÓØm€½mœ ¦¤‘Ä„"rèÍö×÷;—¡.+ X`9sæÌ™9÷sFÑÝî.º{÷꯯îßæñ]Vy’ß=lïâ( Mšßq榺{ØÜ} ÖÕÛ~X$Q°<Öëßë]üúðÃýÛ¬8ÛšFyXä ó¦‚P^EzÒÝÒ”%//“[Œ õ[g»Å2©Ò Çé`741ë84£Ðvè\5]hêVàu·ðO}3Ž}'ÐM3º¡YÑ•'gcS»:\,Ó4þ ––uW·O®YË–C¿±í(˜n_;%?0¯`b ‘TY&ß4ƒ]»ö He¬ê‘ÏÀ/€ï8­÷4*.¯ÒôÝ(D˜ÍáØÚƒíœ'Ñ( ··*Cü…åÝ@¢”áûwPœ1gÒOÒ(, 0•þp¨Ã]{8\(áZaIXD±ß±º5]—ÁÃÞ²äÁÀ,½5‰¦é¥Pì8‚ h†å’fÁx´kQ&ki”a¿•ïÎvv¨Ûæ¿Ì:mÓÙzñ¡ùcgÝ,ív‘dÁçýééF@û%Ê¢&´ákšæ_Þâýª`ucFvsC±'+JMfAk7€±ÆÃälœCR&*ƒ·„ï`(Ï}ÉDa^À‰`ÄéJV&÷¿DQòœJ%¥W4.ÔXàã\½j­\”¬ýµÈ«Ö«I6&X÷ݦ!õ‹¶Ì…°”i’¼ÅÞÙâ, ÓìR†$*“elÀ¤A×wË5Lc ê´²_dÁÓÑ XÚÎö0EK×îB’*Í(u;ö:"¬ÏÄJÝ´Ä9T’'iðÊí÷7ø]ÄS2jDç6Ëý·'Ýæ¸Ìzß»þÐO´)ÊX¨²ÄþKa´:Ø­2fZ  FÐz”ù'¸–]ÿl¿°7fBm:ݺWâ‡Ë8E8mã–·,žä¦DYðìéw¸7|1Ï‚‰«€¢8±$Ï,Î hÝO~¨¦C;$ŽðüžÀm72\Ùç¼gW¼gÁ'õ«™õ È¡šx~fâ˸DÄÉèHõä“dǹÃg¿Õvó¾ûˆ`\†y)ô>¾<КÐ`óY˜Åñ_ ²I–åŒÿ+n§Á­ z±¹Ö1!Ì.ö‰QP›ncÿºµ•Õ•u–s(–ÙlÚ¯F;ˆz79y¼ Žºz€Ä.dh&Q~åÊ“[Ã= ³0 ëjDh"Y$>#^Ëg„wY§¨[…¹iÓØ‘beAY¥e3sutVçá¾"èsÓ·µdEBèá8ÔÐòÚ*Å¿©È­Âyt7»‘'¿½ÅÒ8­~ÓJY`Ãþ”VÒCdž&Ó¨ICÊÏêܺõ"e‘Y¡ cÇ#œ_iøAÅÆ\ÆQðú Ä3l«aØ;½ˆOVêëÙíÍxuåüà¹ÔÈ…”=IRÍ1 @áæß§ ‚†øvP"Ì1k§ÑÙA¢æŽofk(ÏEƒÙKCÓ¤O…¼wG©W”ª]2ýzr{HÎMõFZ(ãxT¨Á—¤ô\…$³ËÒ^„[)Y1a> 9  Tâ¡à¢"…’Ü©îtùe:1dcÏøÌbÏ'-7*¯AŠ+2æs$ÖPœIª[‹™y.1“Ъö•ÇqðN±ëeÝ“í6~³¸Õ¸EM…m7|\V¨ ²Ó¾–b ã#—ã ‹vLÊL‘©]?<É„ìǘü´½—Ò}AɬÉ̘(Ç¥zf[tò±­á[<É©ÙÜ5º¨}¤3’«o(BË~8ª ‰B¸`ÖçŽG‹êx4”ÛÆñMû¥:¹Š¹’|y“©Hã—W& «òºÃ–˱_ÓåØzàÌ#÷îe…tç4N¾êGœ‡E_ GÛ¾òY5™ª3‹½jôröžíYÐ*òÜ[kPI}@¹©„é¢C"“t<Ç:¬RËwU­Ê¥IZú§g-Ì­8ƒ` å¡IQ6®¹MaIL%Z9è2+ËàGÔ‹˜²Ðï²|’Åh•Y¥Zµ½uÛzZ>ä¡mGèSqml:>·ŠL®xªņ)ÔKÔ&•¨ÑÊú¥a`'áT49hmÄùªÑTvz’yAKôvB÷GN©ÇüS:òD†Á¿ŽÐŸ„î?Ù ©›\]‚âÌÛ7?’ýcÈ¥+äÀß:ü3"Œ[•sNÓ3Èõ Ç¡ç‡EåÐ7ï5ÁĬmdµ×=µLõg’Œ8*¿O{}`uì ö¢—4·Ì²Uî•˱Tc´,ÜÆH{Pjk ðæÜ·ú£ÖÍXРOJD`+_ç·ÎÒ¡‰˜+m·ð´.½kÜß§•Œk'ú ŽdÐtx£™«0Jæ×£½sÇñÍýýB™V¡¶…Šsmô÷Ÿ»Þ»Õ½þJ Œ£$Œãù-l¶ÈÙO¼w4ÝèÔ)½[¼ù‚½^p²ô'@aÅrŽR U ä Ñ7ƒ=ôð‚oØ[o8´®¿y£»ÿ#âà½×<ÏD®øäBðgªoÈÎï2£$afâ ꇰ³|Õ/Ï«°0sZy-æûÔOôÔ¢öb¢˜ÚÖ€ô9)>ݸBõ¦³f~üþç7Ž„ TÉìéß 5ÊOÜ€DbÃÓ£Îl˜ 5ºúAà*ÔÚ¿5ç)ŠçyŠyR¬â0Iãë2ÌnV ùú*¤ÓnG=HïƒÝÖîÍ!ƒ\MüOÐ̓õÁ™B Ç›úImKyçE1÷»ÆI)=·x™Üü+ÉŸ ´‹ÁO£qöЏJU¥€lUû¦fînfÜmß¶=Ç´ù’sÿûf6ü,LžýïE±±}דõUyU°à* ôÅ… 3‰âÈW§Xù®§ŠLdaŠâYÞ-$óÓÒ{ùhØ-|S ›ä}Pæiczd Tyv½pôô¸öçžià7l¢¨íâÒã]Ô¤n~ñ†l>ô[÷ˆ aУßzf§wöêätÏÍ#E­7»²ÉoШø—¯èÔ‰¢*3^¦eø•Ð}÷‘+ÁMß¼‰£0.sSÜÿ6Žá穵‰Ìuø½´\l1™¹4ßwÖìòÜyØýÿš5“A¿s¬ÜŸ’Âé¹°#ו7>´«3‡|yÌå‰1v}¯¸#ÝWnOdÛz­;$Ô¬ôì@F[»©TõgÉ{b¿™‰¸Ó%™O2ø²òµÏuš8NÑ0™†¿ÌøŸ<…q¹u«ùåB~Ö¤¹LÍÆÊB-pý=LIžD1 ëøâ$3zXr:ìk3ã»Bœ*¿tPF8Ö«¦E°²z®‚Çùê·ôùýëÿ‰'ï endstream endobj 747 0 obj << /Length 2770 /Filter /FlateDecode >> stream xÚ­Ymsã¶þî_¡¹)5s‚€¯ž¶SÇ'ws½^|n3™\fJ‰Ä˜"X¾Èu~}w± EÊ´îÜÉèÅûî³Ï. w¶¹³ï/¾½»XÞøá,fq ‚ÙÝfÆ]—I/˜…œ³@Ƴ»tö‹Í½{·¼ ø £ cxLcº$iZêü;^¸vö“©2àfÈB„ ”4ð0ç¾£ª:ÓÅ|!¼ÐáÌ[¸Ÿ]Ÿ³ùBº±óA7Ø8IžS½¡o³SÔ²i‹uÔ$OŠÔv,{) ¯ISU¯«l¥R’gÅh¶Ð)“RUsÏu^S}5®Ó6TÉìfêns»LYi<Ä!KžξížoUçð¥ÓÖjÓæXö`ͦÒik6M­¦³ ”Éú>Ù*PBËߑس›3=ÖIA²•²©”YªçÂwŠ\')ž”ÚõÞ®ÖM÷ÏÛ÷$ÙfØŸŒQLžbE‡4=àܾë芾f#XXÙ†4«ÔºÁ­`­Û–²fG%R7ŽÖû=ZÌ@LÊ`„+YÀýb‡l[¨¦Q€ ÷Õ^5ÉFW¯(4t„µØ¤õ#™9ÐBăæ÷™ô#jz‹[—ñ›‘5„t5PZ©$ÍŠ­šƒtéÁù+4­9¯ÔÈênÈÖ&pÒtvm;±ëìT^û×$Ü5Ûnä^ðcѬB/£â-:ÛHwÒ E§€|’¯Ïy§ŒG½Æ¬AÀgÁÍ%taáE;áóÝ ›¸Ú'¬-²³; ™py7`èÛ k4>)Ä{Ù6‚EÁhûݹ]ˆ˜EQÔõýõ y,ò½á:¥8;/¬äó?b¥m¾ßq¥ãB DC–KPè×K€gñ‘_À•àñ3ÖÌ6ô}Ô­ê¡îÊä¡cÉ” €®¸×©Êë%0ÃN§uA<ŸÈ{Xÿ‚Rç_P$ÿO5Ü&ö<¸“gŽmëv†}©ÖÑI’Oqi?=Ø@ÆÜyØek E ‰ÔI¤N'MI’lš9w ûCí³ëЦ1ä„Ý’`Ì€°ôóœs é–ZìÄÐ3¯5‰ˆ¨$Dªh²Ê®œêu»Abxqâº=`gˆIC `¡ÁBÈ' 1?ì±kš²¾\.™ZïšÛBˆhW,ÓKËñËsðâaÈü¨Ç#ÒÃÃNUvW­¥XÕT/²5EH(ÃÌûÂIJ] /£œtÝ6eÛØÐÁÆÁIÇf4ñc¥&PPˆÿ&û27ðIf¿ ¥„ÍN£ƒht…}¹9E™nLl³5ÙVÉžZ!õ0±“Ï¡ô€ò¤Êt[SËǸ—b4€;VÃv‡”q·@¡ *vÁcà¶@‡&ʪ|Œzyðl”Cœw •¬mü×0Ou<á“B—ªø¿²I0•˜Ì¬_½ø/_Ê&x°è$™´Ã2d¿Ún2ðxXàz ã!@ õ šOl¶2H­LzÚÄ e%*Óì'Š\¨©OÐ*šMB*Û$YnÔµVy¬ à`†!ífNÐ C •Z) c”¹nì,„Ð7|³m+eåC8S‡Õ#µØ#ø<…·­‡}Öº‚)K]Ø4 ÚÖ@ahsn@»ÞÛ)ƪGÍÊÁ&'ÀV膎ŽZX,%ô¹™Ã¸«¹ï;?>Àn»1º8AßÀUjUg­¼„ä¡|Ê„Ìr1_uüù4ÓÕö,ú‹¡–Y Ã+˜çBø)æB’eYÇÇ ÎN£?ºuçý:Ï­º#Xîúi(Õùf;"jrÍ CìI«ª wsƒ>‹ùóÃaõ·îðƒsÿuÂ+vèÈæS–¹üz“„pûâ²ÈÂN7¾HMÓwnLE.'z,ôâ©­€ŽP™ 8pJ-v Þ²%··ìOí ¤$HK©]Úki\­tL΄Rr_”µ5åÝ¥ ½â±%²w¢áŠ#¤5•‰TOšXíÄï¿ÆlËTß·¬Ü•KsÀ#Ž|q>t—[µ$ó’¥5ÐáË=åZëãRÂíþÖTº5”%wÞ›|ˆƒÚº.ßôBÑ7Ç„­P¶íqm¾¡!ÝïÒšQ˜õÂÈH„ëÆ}²¼ ü!%y1 Ü>Öѳ̸þ\i}O5|€Áù«9\ ¨@pJLy1aGõcuVÛ ÊÎ<ö…ŽaÑL‹>~=uèÃÍ=fy¢ªRÖåúî~PƒTÅfÀÕý%5Þ¶u­ºTíSO7¸kª‰É6¾ÛGá½70·1€Äñh”~ƒéü#¿Ï +zk;â®yùÏéžKÈ1Ùò&Þà²kï`¼½ØÐ”µ‘ô¬æ¸°ã;€‡³4úMfr‚­¶{½¾º¤†«u’ª}¶¶Æ‹܆å8Kø‘»§±VOOà—¿¦Û׃\Ï3ÈóC¢Šú÷¾ù§y,̶„o5ä[t.|uZŒ‘"p†¤.Á‹kª,·OÛYаl›Ø¼Ÿ^Á@V©¦Òf®Áã×T"Q7mšaæÃc×̈ß4Ô×jÊ’¡„@ÜëüÝÜ\&*“¸ g0[ÆÂ‡¤Ëk°v¯TT~[š¶QS–=^¢^OÄz|véÁ$ÄÔ#–†>åuy—+œÇŸx€±‰àä àÓà”êÌp+wwc¹ü­XgK!$O…*À"Ī“'¹ÓœxÒsã#Vz&ãÝKq-×F⛪‰Ma8t 4Ž2Q šnécC4|ì ã\XéaŸÚX²Þñhddj3ëE×o¨±o#éMóX> ¿ÁùÏ[;>Þ‚eðŒµåÐÚ²³6¬ÏÑÖÓ¦öSœ3uÈpùpÁÁ Ë\9ej.=æÁùGDñ³‰bmÝn B &f U£mñ¶“½'nÏj[×5\ë<ÏŠú´?Ž:Ÿr•mwM7±Y’QÓ˜’ë:ß*CøîŸk°>>ù`-m+ÌO?ÜA|á? &µÁ?6 嶧ıÔ뤂['šQ]l懒ÊÜÊ/)Õ¹*¨qð¾^²>ŽDø¥û*XZï³ßÍÝ *X¢žè!sýþÝó#¸“+¹Î–ÐV×ÝÖè{M(L3ÓéÔë6O*j{C”7e<ÆãàBñ¥‹ _Œƒˆ¿ªþªRúV°å$1Áq½à,1ñ`Y»®” 7H.Ù?rA¸0Û¹øîîâ?Üd›¼ÿKLàh)fëýÅ/¿º³ÁàLÆÑìÁtÝÏ<Ž|†[ÏgŸ.~|’ºÃÿÝÆ¯09¾«òX2Áƒsª“.†ž•Ú¬è#ÝÆ·ýãy¨¤lÇõñ¿cýÆv77þgÎ#Î@o/9:ýµLüµˆ÷TÑåÂoÌŸqe÷ÄøÂLúƾo#E1]_"óæB…²WÖÌå.\M¶WVük^O$„Úƒ›î!‚Ô¢ty4#} .™¹Ac– W¢pÞWÆã»'»)Ž(µ¦=HŽöÈöIc¶Uš(¢nWÛJ·¥•›¤¾}^b„}»K\=¸Úqû\¬ÒeY©4[7ÝŠôd˜·Ý,«¤îš´½ÃÑ»:ɲb1u†þEªóCÖÝûqL•4º"RzbV@Ùÿ&Ò› endstream endobj 621 0 obj << /Type /ObjStm /N 100 /First 902 /Length 2488 /Filter /FlateDecode >> stream xÚÍZQo¹~ׯàãå¡\Î gHƹ ÒГmƒ<8Ž.öm¶’\ÿ}¿Y­,Ù‰7Š£5°ÁÕîpùípøñ’j5¤ ÖIZR`ÜÑB!'F‰1” Ï´äP“Ûihâv(¹Q)8ÙLKõ7¹)^™a¯5²ãJJ†qå@¯Ð*Sÿ(¦L¸ÐÀÜײÀ9\”ÀšÓLk¶þQ \½VÚæ/l$‹6 „֛àBs0KA„݆ƒ(š° Cë–KšÚÌr Ò2>17|6>Å4…Ìc…#$ÃX9äìµTB¶Ôp‘¾µTC®hÝZ7nÊyf ” OäÖ‡±JÆs ªð°>HÄ þp†¾Páð•5w ãü¥­òÌà/#øËíüeRýŽ×d܆¿Ì›³æ×ð«¡VÍ~'ùã ¼X’y­ sž•D¡º¿\Ñä6Šá; :¾”ê4”F ¾µ&8¤àËàI„ÐD!ÅEßD •…g˜jÆm4ªGZaTï!0…Zsv¡6L‘¡§ "ܸ„–‹×І….¬ÌŠPhpj1.ÔkåÐúOÁ+Z E¤&öW{Ì’[ÁÉ”¸yEDmÊ@Xa›Ô¼*â¾±YAÔPªhΣ—Rk°ƒCˆY€›HКPƒ2œ[QxˆURnÖÜ™¸2 +^šßÁ{ .›̺Wÿ»œ‡îéÅÅb9ë^~x»ìÿãôâ÷Y÷ÓâêÝüêuÂPMoº¿w¿t?¿¦þǬ;œ/ÃëÜ,¢iÄqŠR<ü$&‡´% 잆ƒƒÐ½ Ý߯¡{~¸>:;Þ# *ÑW`Æ[Ï-²P/¤~ H_ÑßIšÜµ¥”zc…òŒýçJº£1R_EÞɘ|AÕø>íµ%·î 14”yø!‚ymæsçMó½‚á‡ï¬ë“o¡Ôïr+íuKȵô@!ç; ½Ðªƒ«ƒ«ƒ«ƒ«{bëQ¤Ï‚áS¢òŠòÛ=BÌøêü(~¸8Ýß8PšSX€Ä@i\zÖo…º&ú.àH6‰êÓÎ×ìÑN­¾œ Vó­Á2Vß>(z4vcŒÎæÚƒkdßU$]-¶)=bx4w¢"ã«-d„‹Kö I÷¢û‰¶ÑîD»m»&-cßs oMÇHË·d›~‰§@Í>'­îyÁƒ+\×ÏùïÌVR»Ël¾ÛùPf[¥ ¾k¹*y(e(óPê^™­_Ò󯢑ø.|lý>5Žîg¶óÓëãxøîèú$ž/ÞÍÏ®÷/YD4ŠÜhߢ{^×£éüd8„1˜J`° KdˆýTûÍŠÌôx8 ¿Dæ ÕdÜS-r.$ú:Šãr¾\ì‘^ðåÀ‘ðýÅzrñsL ÷ˆ0n4í &|MM:÷gççwhÎ ìJs·l×4'ˆ‹Ti7cL¾å¾›1)ò{|è7«¾[4y‹·9óÍÞ¢I?¿A_"Sò³_`æ‡2(Ûg Êy'-"wÔÏ•ô Éi(&åIe}_öÉ ¢žö»_kT§-ÄPî—ÇòW$ÙÝpÜ“Ja¦º!NÅiu\¥žÜ#M(ÅÔüYÔÚ÷ežK±>Ç—Nã~#JÅ<‡‡þ‚(ÍåÖëuØð-ý§tOúº§ÇËÓÅE÷²û×á/þÿÃÉryyý×®{º<ùð6/λOOçÇ'Ë·Ýù|yôëâêɃQ¹°ïÿûù7òÝÄÖkÆ”ÿ,YSôóxdÚÏ}â›:žø@îƒÂ¾å»Åi\\½ï|•®š”î·ëëø1¡ÃN“<¹MȬ»ò¶íMÎ^áÙB»‹! o»Ù2âÈO°ídüò¾_ýÞ¼÷äâwÈ{Z6—Ϙ8ëC™Xt`Ü‘¥ eÊAëæ‘óÀÔÕÁepþ¶S\Àa20I?æ+t~ÊÕúô±=Þb„Jõ3›Œàîwm ¡Ÿ3änÊ—,²X?¦W0üðKM²Œ}ª[W×~öu…BHz½ Š=k[ò¹c s:ÓnÎØï.ݰŒ ½ôG–wè“ï™8û={?ÁÚ<ÅðsyŒ‚nHyÔßH÷ë™(³Óéb='uŸ”ÄOÔþhu¬~ :Il^2ø>× üô)°þryµø ­ø$õS;z¯¸Òñø!KÖèK–Ùâ‰ÿ Wâ#§s0C–Èö7p˜ëÿ/O.»“ùÙå¹}Ø€ßinß¶½™Û‘ B'cé·`ÊnÆ i"B“ŸCæ­•þÿâÝÉ endstream endobj 769 0 obj << /Length 1880 /Filter /FlateDecode >> stream xÚ¥X]›F}ß_aå¥XŠg熪ªºMºU"UJ³Ûö!‰T°MŠðz÷ß÷Î;ÞD~`À3Ü;çž9÷^ðl5óß/~½½¸¼É,FqHÃÙírF0FŒ‡³ˆ²xv›Í>I–mUù8E€²|9'8Hve;ÿtûöòZD½å‡( )¼Ü,Œõ” ì¬Áܰ7wá'/h™]òW“¬òÁ²c×ËkÆúžËقĈK9pú#øáå|!0BpKœß_ôj*‘ C»úªÖ»\í6yÕ6'ÝùŠcúpE!Še‡V^´ë¼ž/(“ARék¨»ÏyÚÚgji¯i™4ÝÄÀt,P…þm/êMòb"D”£G~ C9qæä„¹ø¨¹H ‰Egn[çY‘¶èˆÙ£HŒÍ*·[Ø·ÜÏ©’r—ƒ’ Î@JP,„‹¬vPà`¿.ÒµêH¯TÕØ»f­vefÇw¹½fu2'"ØWh¾`Ú›Üýñïë¼Mвù"5ØìÂ…jA€³1±ŽŸÎ®rÁ“ Kzr¡):ÆÜZëSÒù9IÆ‘å1 _íêlÙ#üÒ:±ÉÛµÊb¹Ææ¡h²Kå6æpÁ*S)Á_ïíÅÇȵ>~‘éªôÍ6IÿKV¹Û=­'ä`–â­>ÅjZSÚ¥ººêEÏÈÝM ’é?Õ³5•nÔ²ÝC·É¢ Ÿjž"Äñ°c@N¼#6Ÿn1ÅÌW,`Ÿ|¤4äMÐŽÁtÌ­LšF—#"C]~ntYˆ Ì&¿ÛЏ‘¥ëí¯ÊFùxsŽÔLQz^ú¬ž¨öw¥.?ôϨ¹ 4Xò[tzpÒùÝûtà‚Ðló´ÐåaúTù{=ÔÙŽÂB¦Û¶AF6uöé‰"v¨©:7;œ×jø¹¨û’ûo#º„M>ú!ÊäïþW(€5Ïì^»½ørAÌ>I÷Ù•@ZPª¥›‹Ÿð,ƒ?¡‚FPÍöfêfÆáÄG\¹rvsñçÑï’æÛî¨ÛÅ@0…ˆ„çÄy M„Ð>A¯2Ãw6³õ¶íq¹žè •Õß»~Z.^;ÃæÁ†]І(dàyDŠnt/c è>°5i]l5¾%Á\;& 1H²®crð̳ÕÖSÒt+§¹‡&}¨þ‹6êL endstream endobj 787 0 obj << /Length 2087 /Filter /FlateDecode >> stream xÚ½YKã6¾÷¯0zkcŽH‰zd1‡¼&@°ØÃN9$B[´­…,”<îþ÷[Å"õp«=ÓÊlГEªHÖã«ì`±_‹Ÿî¾{¸{÷A&‹Œe±ˆ»Fñ"áœÅa¶xÈ¿-y°úãáçwb>˜Ê€‰0=vŽÊóS]>­b¹d¹Þ­x°Tç²Åï·¬4¬½ŠµH@’¢_µ×£Ï^ú}÷! ‡[Okž²8%=oÞ¬Ö2–?è݈í| é÷¨ÛCƒË€ª56“rtß<¾¥ÙŸ ×h´om VnúöÙ·Où‰ä¸F˜±TòñB¦¾4ï×ÜM.õ']º¶ªªºU­özŒÎ›ö©öËâèzy±/ÚÆu.EÞ\ûX*·úÕ [£ªfç×õZeö^ØmëOXû­mj“kã÷Ü>¹Ö®®º=lõãä²Ûºj@¿Vï?|û¯?ºÙŒ105§‡‡LÈh"fQâ”|k0²ö磆oFÉíèx¼Ìa$1ËRá#ûÓŠË¥Þ¶µY­…D·jµMO+!—ª<ë†úªuSÅöz.×LA½æPŸËœÚ7#7 —¼Tìj“£­Ý.×\²T$n¯ÅW=×¶6F7§ºÊ‹j?<ª)TµÕÍë74s‡Iìw˜$n‡ ºÞ!ŒAU¹29MÐÆÔ¦¡ÌiÈ,ýÍjÆá²®¯ì¤ºÒ4£Þ‘ Óß^0Þê·Ÿ£ó‰L²$’Ýf Ã#8,቟çx®f)‹b1Ng§kuË¢rß’G* ðàW#©9émñ{c’ÝvWËCsä. ss–vK½A“çK—e1uÑî#À Ür®!ÂHRT­6.ÇH²©ÏUá·³pùïº%)ZBçî›Ý„­="Å·]Éð¦ËxÀ’ÌÏxÁS ‹úâX4Ïü{‡Èú¨«þüA·ª(›Üvű̞yé¼ùëi%o¤U¼<ŸN򿄱‡ä3Å¥©÷x(¾í!ù×=”~‰‹äßä¢Óë©>µE]Y[Z̃Ôô’ÄŠ-ª¥þ•Ë5œË^‹é§×…ß×8›Æÿë¹ Í˪0#,ÓŒj÷ä„x&”rNCb,Lþ»cmÜœ½®´Q%‘jûHÈ^Á©n n´iœRrEšt³å°ðúJE„., áÓ„z6.ÆÃÖ˜\AÔ‹ %.Çv4CgHi7„§wyÑ´¦Ø¬ ~ðzŒ²×Æ9Ø&ÚY›b‹î³mÅ—6á@²ÑíEëŠæô£È,|É'±i™ƒ´L<ÎÁ´1UÀ¡>OÆ(N€cB6Ú? ÀKOKÍÿüt·øÍNIrA6o)Èðެ6CS@nç3è/=ÇÍAžaŽ­À¾ô¢EŒqüíbœ{æˆ Xª@~†m òÑà0ȱ]`HzyOd“"yF(Þ¿èÙ$cIÐåÄmÓE@B›ŽÞ.g•/Ú FTÚ#P„BP)‚¾ h %VAm[´a0‡‰G¯ïTª-¾à U¹¼‘"æõ$¢7_ö ÞDæÄ˜}×Uw®í$Üápਪ³½_ØžÊÿ{¶|X82ƒSia+³ˆÚ…ø*|>ÚãB‡J¬7“èÌd-òúããõ¬óÖ8C*å\añ04ƒžùüÉ‹:ºV©«½=1|©¦®?<ÍXϺ§²p¶ÃÏ}AØB\ô+¸4Ô&›ÁBÝ>ºBL×!²ñeà+Uçdø¿€Y–Ôc—à…Ò*’íΕ¯¿ÜÑüÂî 6G'>è)h‚É@ܶ:—i<ÈãF‘¶âj#>j ½LÒ‡o=ÕlϦjl w²þÝÎö^?ž¦.ePy8(‹5üc“½A}–ðN¸¯»qß ÁC‰«7*5?^QÈýôÁ0œ9†Q]qažÝö€ ͺT7 #–dQï"jHÓèúEþoñÌd’âåæ>° ÝÒôÿ1о4=]½¶ ²tüêÞë 5™Ÿ’ò*î§Ùq˜¤_þ¸®^Ö4b©lò_?>ÜýÂ\ñÊ endstream endobj 800 0 obj << /Length 2167 /Filter /FlateDecode >> stream xÚ½Y[oãº~ϯð[e`͈u+Š¢ÛvSôàvƒž‡nÒmk+K®DÇëþúÎC]9q²èAL Éá\¾Î0þb»ð¹ûããÝýCÌËâ ^0©í"È鯫8³‡d^*+LÆ¡Vÿ³(²Âu»æXËB‘xkä-RØÿíØiEÔ®±T½“ÚR¬¸í`HF¾ñÔH> —¥ZëÕÄ¥î7Œ/·Ç\BŸ\Hÿðñç/Ÿfîª@°ÌP÷—=ÍánKÓtêjÆØ@hx™D,öag<>.X¡`"H,ƒ?+-˪»r«NNæx¡r&¸ÝùhLÈ…·9Ö”eð+—40n…@8vÆ¥@1 „_Š45±ÀØÆß}ÓeäÈñÎÚò´VvÚ…€¦½UC£¢Ýñ§Rn†?–.ZÔ×??óÒ…ïé <†,ˆ3ç!g¶\EIê= äFÝ0#5äåPâÔn*#/΂z{߀n0Ù-¹gÃ"³¶‹¤ýÙ7…ªìLY/V,,ªž¬hE+!uöÛú ù[*¬ØeÁSª˜æéáz1V¶¤’ÒðÉÄ%qŒ³NÑê}²zv¿éÃÂXvüÇe "ÃòÄ€‚Žг#*H¹….p™× w|ÐNáÑ•wDCâæü=íÊ|wqÊ;ïçmጴ¢•èµSmɨäS)‡#_MßgGÊb?rˆ²ÉŸ€ ­ËÖqè°“è8È›yhjʱӼ-eÁÆ^^·÷¹¼A$X„Nœ§rF`²(_–¸yEÖ•Å]- Lï‡^@&ïB¶…ýRmkPŒãÁüð1¯G`‹ÞºšÕ'aatÕ»¡Ÿx+¨`j(.Ь¶%°- bRP:CALlÁ{@’xf0$|@ŠiŒÂ#ŸÅS“Fý FýF9aÔŸbÔA¿¬; Ýq¼€Ž%Õ_}?(@Ç2—vͺ9Ö‰1Šÿ¶8ÈKV­ç.Ñ„ù|pv3>™Èú5Àéx§ñýH^ ²ÄûÕqƒ+yF®äΕ0V$ÕPH¶6„Ao XaºŠñäÈÀÃzèc ñYDdŸØÊ;Ôîâ™ñÒŸ‡ÉÞF¿A­‡ë†ý× Ÿ¤ÑˆÓñNÓÂÄ„Ò_7ƒÀF…JjÛQ¶ÊŒ¥†ªø`CD›j7àNÀøyØbŠœ0åóטˆ¼õÙþNê> ^ÙÙ ì­h([´±“ p'÷{Ùží¦¡[­2ï’Nôµ°aCPÚG¬»§?oÖsU3ÕK‰+²bB%’̉¤y ¤iÒ;ZÃNŸ+5÷à’Xfg²µXŒ=]½%ylbb_L¨ãN'¦hƦR‡™§²;ʪü¯*ȼELÍà ‹›K8¨2¢÷™©àX»±™ŠÀp8Úcë˜ÂÖËCƒ±›†bZÊ ¼yeL}a€þ$æB ¼’>Z+õ¤ªW{3Œ‹ÄpEÛ¾xÎáaƿʨ(·¥“{*Pfz™WøôÊBï~\/ÝB›½ùqqäUFÐ-¥C9ÿ*#èÒ·Ý5½’›Ù¸×ÊK.Ð0&|ÔaúM —[¹¡B>,N²¹êaÔ(VübzËj³]‚BN°¿/ch—U¾ÓkytÏ(xÊŒƒ²ÊŠþÙåw§§õöp€J«CÛ|S¹fM»ýýš“QNàtç³ÄD Ÿ>×ô¡´ÓúÐýöþþt:1wòrežyûã_ 2]]ƳgS—ö³¢1š:á³Ú(sm)ÓI¾Ýþ—¦†âA`Í´Ìë§$5¶|îSuÃÌŸ f>æôΓ$ª¾’P®Ÿ;ÓÒ®²¶SŸíµ›IJõm278~dþo¹U¤|£ ŽÃ¥ñ¿9¶æ‘·6.ÃÒºIl}Ágçnô/¢/ÍFŸà¶oîÚMú_d™‰/&þã™ù÷Öè6mö4çó¯A‹”Í寀q?¸„VÑ”ˆ¢{î3žÆarÿ­ëØ“ƬôÃÙX…"ID+)ÙÁ=ù|ÄÚt*7Öl@~vó»TlIö¬bsGÝ4ݹy>5],vOE“p“é$¥¼5)mZ 6«ö§Ç»ÿq´}œ endstream endobj 809 0 obj << /Length 1875 /Filter /FlateDecode >> stream xÚXKsÛ6¾ûWp”ÌDš±€ovªƒÓØé$Ó6v$ˆ„$¶©’-]úÛ»|È”íä"<¸X,>|û€¨³v¨óëÅ»»‹·7Aä$$ Ýй[9ŒRâù¡1FB/qî2çË”¹³ow¿½½ YOÒó\Âôhže»ª8ÎÂ`JvµÈòT’zËÕ ŠÛÁ^aOÃܪ˜»LzFÑõow…h+ϵoo<ωaqèkëcgÎ"ƨëÕ«W³y@é4åEº/¸fXTkÓ©óæìq™Wéó2ÃeU]‹fW•Y^âŠFY׎îyó25Ö‚EsFI l—Fêç¹iE£ìøJº¼Ù×b1ùôir‰›æ ¹«-aTŠ5ŽÒ|‘vß2uß`¾€²L× šYK\FÀcˆÃ*G“¶ùAds±Z‰Tâ©·U& Ó}Èå­Z6U±oqä>÷puëŪÃ`bÜP@s<ƽí€]˜æ?k ìŽ2MÁ—‹o¤P:ø^nª?·ÝFì݉‚æ±çѪÀllWTØ«V¦•Ä¡Z6¢¾ÙJ a+Û¡µ÷Ÿep;‹›«·×vJÖ¼lV qØá̡ȷ Í yrôÎtì>—,ì}IÅa[_j; .ÇN»\í0¹Ò÷¤ll4ôC_û .nÒ^ÉÜZª/&:¹ 0r~Ä[¿Ì·zÓaOàÙNkJ@‘(b] KÜ3ž0rÞÃéhìð¶Kñ ˆn®ì±)UHçdnfT\T-£¦}opžà‚S1ïebÁ‰Ø)‚ƒƒ,!†ëà±YÐsBR$ºšen}jòQÅÊù;ÞXį™o!¿4?YÇP.áŸú "]Ê…kw½¸¾»ø÷‚ÁæÔamþõƒ€$®ë¤Û‹/ߨ“ÁG°xIìs|/!”ƒ»}"y‡Á@‡K’˜Ùô¥˜ètúÇ,†ˆX×UÙ˜Å4ÕÞÌ Ú̼hª™¦Åi(§ þ( D &í©ªófgÖX³Þ˜éß—«äõ ŽnHb~ަ( GŠ"/IˆŸ ^ï!›×ù<ª-UN +UšÄPš˜Õ7û2ÕKq‹bU ì [ðNÓÛ‚Ë[ÌZhMÆR½¥á©QŒòØVDì¯L›¼iLÅ7 çú„ºmÅ7é1ebÄ'}±•&(1(}’€KbÔ7‚Ÿ¹^\üEØÆÈ[ë ¤Ö ôޱ»!™E-»ßŒ á÷éâ4'Ú@hó„2¨Z} XˆóAð8ÜbìèB«ÉXe%!ê`rOH°Ç*À¶AY¡&y,Do åC[]®siÓÔCžÉ-Ì Žwù]íbœÔUʰfÁ‘äõÚê+žÚxX¶ÎÕÕ yì…Ȧ žÃmñh)8è|p8Bˆ§l "ƒOŸmW5D¥éz¿°á“¬{šm‡Ó‡Nߢ¸Ò½”~Àõ"U ±ïò¼hàyçŽu…G<ÁX©AQ${ùyîg,˜ÂI”Oy‰ I^œL›HóÕ'U™¡fëjæSЯ§µí:â”ÌZ”P¿æ5 ÷êÊVäÕ\EN¬!ÕJíÎú„<©gvÏÞtÔ£‘¶ +ž/$Îæc—GÀ›Ö¹;‚|¢ß±(¡ $`=$Ä_Ô¥+żh*Ó[ œ1Mf8u¯ âÅ^C¨i…Á:¨(Ù¯ºŒN"B£¡»~¥Ô­Û$aÀè2°Ö«µØò¼Ô`>N;Üf#/»t#mšYŠÂše¤r\¨‰Ã¤SV¸Ójì¤  q»å$ËùüAm¸î)yõçÁ|€¾Ï!be(v+0[¹I‚1R CMcM‚3{YÍM@Wï. ‘ƒ‡§rÑâˆ1VÈ1ÎCù£{tXÞ}ú> stream xÚ½Ûnã¸õ=_aìKe`Ȥ¨KÛ-:mg»(P`&hv T‘h[SYr%9žü}Ïá!u‹ì$îvS¼žûñWÛ•¿úñæO÷7wB¾JXŠpu¿Yqßg2Wç,”Éê>_ýâ¥y~¨Ë§u¨«m£Ú¿ÇAîíämêªk¿¹ØðÖsôõ™r°ÊÝàHB3ýõZ Û§ýCý*ß ”wýW-D¾¿²Þ’»’–ËRñQ¥¤LYÌlìSíÀ–.¶»Ž&MÙsvq”¯š/ ʦ¶4› 7RÅ•ý±ìŠC©1þ-ÕM®X’AdŠ%ĶÑv¶­i–Ò_œ!$p#òÁLüÆK#ü`ºhi–¸WY8ˆu ×$À·?ó²ñŸ h[ç­Cét9´¨ã «ÐÌC]Y/:Ê›"­¨Ï{|ÝÙ…Üj$)úBõ±X@ÊI‡—1®_ÀõÖÖãàÑfñ¡§CÂCç§MN_ºiŒãx` ÎÃQ±ƒž»­^¤'bR•Ø®ô#ï] LÉ…é𘒀:Ϩ“ugˆˆ±-ƒx¯k”Á`¢ðm2p½Gê)Ÿ…ó>мgD¬^G¹ÕQª£þHuð‹Ä1é†ÍT‡¦F}|Ö#‰F=’ÈÛÿ‚Xz²‚•KA4f"î+KLìd±(ìƒ @:ž…$—„ÚZ©ª(òþfó¸^”2´îep“èhK“‘ÀhÈ¡¤íäáÀ1CʘҒñâ”ÁFÂÙÌÝ^ÊØŸ·¥ˆÝÊ?«÷!ãa_{α4?‰_`wÈâ(A:ž…-²›YS÷#Ëdêö2­yß;V£ÞŠAF³^ÆRï@z³6÷×K݃„Ū¸Xj")ØàÖ‡gŠ9‰‰É×^ ¦oâ_L_‚r¶#ò6d^ÛYy×›Z"*z-׌™‘Œs>J ýº*ŸH? Ôž8mÇ®]Ìüx\](ÌóŽIPD`ÓûpÑç„f¥èŸY^‘ nŒDÐeî¹ñ\:8mû¢ãYì#)Ѹê®ãqÀ¢~ÝV³óH0‚àµ0Ф ´}…Ö`_ýŒûœÉ¡déô×îP/‘'#æ'£ ìÞ•Ž] y0³ôtIŸî¬€Db!¦nTÿçèü峬Õ>ü˜žÞ( ›-îå¤ÝC Õ.BÙ'Têe þ í‹¡Sa5ϦƋ–PãêëÝ/évuc’eW-¿¶‹ì#ø?Læ\n¶k Èaö÷uF£³]÷]‘ˆ×,H(Qc ýþôøðÇ=†@Óí¡©¿è¬cu³ýÃ’:N*)'útã³ÈX“>7&,F{SßuÝ¡ýíÝÝétbîfÏØÄ꯿ddrÖ„'ÏJï¹ @5ª©>ê6F›<ùí¥ðœÕPUA~’I„‡é#”~È{ásßæ!¬ü2‚cf«XÈEôÛ’‘§Ö$ìpª¨hé#ýØd:Šmra™îÎÒìßüy›GPˆP †Ðñ3ZB}lè¡=2m².»ob]Ÿ°½ÖŽZáŸêMw‚H ñz)ôFNÌÎD*MáŒÄü÷Å(,Hò£æ~þYˆbÁ’+Œ¯ˆNÉòº@}ºã>xóPFw_Ú–=ú/þò¿…¼¿¿ù/î&ä­ endstream endobj 832 0 obj << /Length 1565 /Filter /FlateDecode >> stream xÚX[oÛ6~÷¯œµ±ˆE]¬azH±dÀ°b]’> m‰¶µÉ’'ѱý²ß¾sx‘%[I»¡hÅË!y®ßù\ÏY9žóóäÝãäí]; I"?r—õ<‚ȉ)%KœÇÜù4£ÁüËã/oï"Ú“d‘O˜—À=J†çù¶.ó(œ‘fÃñÀÄ3ÏÀQï¤kº~ ‹L_ð ÄÜõCovS¶õàøé ÈÂipª‡÷x9c}ŽKâ‡F÷e݈Vž«Ó7™2qgÈk5–»*“E]µz*kýÍ>§álo„ôíj¼-ky&¼_ÙÚì‚sVÝm¯ôàÉ î9Ñn:+ô”z®¿ ¾g|u{à›m)ÚÜ4ü*-àÂ(èwY¿_]]ÍáÔ©Ìv%—BOËz¥MÑþeFÒê1¯rs¬nÀۺʋʜhQ»nöÌ›‚W™Ö4r©GžœK-õ£«¿¢E=>{¡·¼Ý5"ÞßO¯Í£E*·ukfO0«ÄÊ̲"ÍN{9ÌÔ¾ éGáÅÃ<…ÈSfohKþ”ny+>Ïwr]7fë(¸¶b›Z}¦ Hñ¯zÆµïø”$àæ¡{mªàSEê¥þʵq{ýÔŠæYä/ø~Ä…ûB®Qa0æºÿ® ³ôl\6¼j—©8lÍÊ¡,6©ò¸›\‡h5ú´^ÓHï qD|zæO.SÈV'<â…æŠÑ íÍõ›8¤p—™ÕM.š”—e]\`œÌ¶:€ §7¸Šžª¦ý½$Fê$½o-8>8½QGí[Óažÿ)poëïø<Þ… ñ¦8ˆÜ˥Ȥ)žM‹R1zæ¥Nw#$@ó8·Uw: P5bÄ~XRÇã¹×ÑTþ1ÓŸï{zÙ²2UÓùÀ{!Û·È‹LÚ<þ ˜(ДA^€¿QÉ×|3Z‡¡ñFt8ƘQ‰=ÚžæW)Ëq}É&ÀèQãø3c%^3ÂÀ¾ 4±Ä´TTð`Kž¥”ø¶nê2®~쎀réãýÇ[ë,$‹(^¼ÁZQe #ESu Y?Ó{¨€zóâöÃðrkمȰXÆáOÐ&Ú®S¯ï%dü/ÅAtÒO¸6¦ï±ŽÜw¼µ¡¸meʈö« V~0 3˺’©o_Ü>NþžPÅ,hGƒXÄHèd›É§/ž“ÃhGX²pöJpãÀ“â€Á¸t&¿¿Ø„Ó°1 ¨Ï?†|„AA_éŸõI² –³Ü`b"‹ø0_|ö‰†e"wsê…€¬sÏ:ÆòáÄXÐÁï àb£oæ~ˆòFO{úaì+^cñÿÅmšˆF#D”y>¡ “ ?;hŠ­Â1êsNfϸà¡ts—™šô“D—5ÓàŠsÃÔNB½=[¶¬kâ8j×5zi¯(Š©2W2u]bnâ¢0¹©w4@Í)Ï]:c¼IoVŸ=Ïw»Â` CCa°*–¢‚2~F%xiˆ¥. Ö†kZÎY«šñÒÒ’·­¦ŸÃ,bÁ²™6…L˜–Ú÷´Ä‹¬Ô(õ!ßtÉ‘ýØ"p~3‹½ md1Z×ô»ì]séÙÓA53ˆ;ߌ¸!è—›)Îó[@&^»Ä¥PA £8‚òM½O]‹ñ¥xezøN}-ÌWU-!• Ä'dÒË[±ÜÝüúp{}j[­<–¢7Š×1æU!mƒÜ¹\[–Ýâz,ÿ4“òJ3“¼Yµ½žuêW–»+’gM”Ç&·'´6#Bˆœ‹_G±¶½ŸT7 €ÝlµÛ}xý'ÒëIuxíW#p¿dáw¿~ÿGiÅ”°Å·UV<¨¬—ÔwiÌ •À7"6FJßnE.k°‘3ÊfMvˆW4Ð@ËíVdÅò¨'ç`·Ñ¨W1•±æp¼ÀÔ"+QM*õ@`™oqÄ KˆÌšw£øÒÞ€0+YÇ2p-¿®O½¬ÛÉųïJ–bæ> stream xÚ½Ù’ã¶ñ}¾Bµ/–ªV¼“l*›d×唟¼cçÁN•)’èðPx¬FŸn4KiFг¥ }¢/ðÅ~Áß>üõéáñcà,b"X<íçÌõ‚Eè8,pãÅSºøy™¤é±ÊÏ«À_²ºHVÿzúÇãG?|æq‡…œ©ö;>nyà‹ùü躃oÖnäâGkÌ¥OsùY棯'˜Â€Å‘0˜Ê®u¶]­]Á—ŸWÂ_&y'aêÄËlOR–´Æé/)SŸ4h+ÚÝå6Û5ð i°­Ê_8©,·’•­¬5&ú2—8û¼rü¥ÌiÓ/Ü甚ø±hQ#;4üáÛ­Aıï#YËÛ‹Ÿ×ÂçË]U¯Ô •m’å œì0ÄË—OH$-íV0Oº¼%@ÖÐ?ò¦þ“ã½½5ß ä¥PÕU1ÙQm~“Û–Mô1Ö¢VÈÚ ˜ïyÚ`ʲj“V¾^‘ձͪҊ´Úg[šD3‚Éé Êš& ÝÊY&xFC0%8.ap¬ª\¦t¦lÚ¬@éäCÕå);UËF n~:ªÒ1¯îÜ©Z¦¯—•‰p\"þ­Lpbe¢v(ò`€X²-J†æcV‡ûj¼Ñ_†¸úa¡#xFrsF©üÆH4n̜زøñý÷Ÿ>Ìx᱘‡f]kòv<‡ñÈ åдçü£Ü’:Ù¶ÊÌBgÙ ÕY¹§©²K[» çP›•‚U;ýÁA†*Á…‰O ÉÈLióK¡‰ÈcnOå›<+å›9±Å,ЬS~;sX¿ÇD8ÖÜ›MR¿¹¤…àÚq> ¸cÉjI:K—ë±(ˆûƒ€ ±¬æ8ýE‘Eù&ÍšöeFµ‹ôüxù·%̹2küO6›šÜu·?ÕÛ>ɶUj1ú tŸjs½W±‡S¶ÒµÕZY;HL0Ç×’ 3x¼¢ù™,¾‘íœÍû!ãÜ7Ôj?ðîé‡çLßYZ ¼`ö1ÄS¤_˜}ž÷xb'žÊ!höøoÍ^Ñ´q¨2àZÑîG‹C»Ç9ê³Î6+ˆ˜]7VÎY}Ì™/¬°×ùÝE³Av½=^—ç…LLcä ‘‰ò^LA¯ËÔ8Xû$­’»d{¯L©UP·ºœó±2È󈵢#G»mMýo}ÝYåç}UÞnï%}¼”~uðÖÅ}I:$pT¤þ]ÙTuJÒWåE£ýÿñ•·çßã¾¾†¬5è|”MmØC˜„¸ÛÙÛUeÛ|u­!ÖKüé K °LÍàH·òù^›s±©^å|y;eŒ±(Óý¤i `Ú¥Cl±GØDÄœHWħ®å…vð³ƒùDÌ„¯ ¥ö&Çúx¹Å’^è’ÿ»ƒ .)ýsÕ¬Ó}@ÕÕXc®›,5{õÝ|‹},yUHÈõ°¼Â°†7õMWI}¦É¯i–U™~ƒŸóâr.C$%BJ†êh€RÕ20ÖÍ4mk™`‡IÅJ˜Ÿ2UÛÀH·Ø.¤ ÓèA”tmË@㺢rL:][Wic“™ûZ H' Œ&P=âå?5=}zeÏ8¶—6F&]Š'ꟄóUTˆJµDàO³j€L²j€PV9‘ž'Êp¨è„e+Ðò¨$×z­ÖkôBZk(làèÜ Š*ÅÊRùcCª0u‡pd5[PYAÄ}ßÅ%V™J3½&¯ Kèõ*®HQÔИnž& `4¢ÁY©9˜õ¤´Díêµwú=䢨~ã‘!xÎ|äcðÓäcÀ+GÅaÓmöuÕ­?þ" 6m—fæ baÐ~x©Çn@æuã¤> stream xÚÍXIÛ6¾ûWN2jqHíT‡I;i (:3HP$9Ð-«•DW¢gɯïã"[òÈÓIš=Øâòø–ï-\°UXØúyöòfvö*ˆ¬%¡Z7k‹`ŒŠ†EË$°‹E`SÁë2Zerá q +ppzŽÁ §]±5k$¶Y“±n´~Àg¤sl9$Fa¬¼]„Ø.Y¶+ºV>¶— Çljýn‘¸6Z8^Ûp€]L0| …0ó#oò]&ʦ$‘]3AÚÐê¡EÔª²ÑSWúsWŠžvX´æ­ÝÒìOZ0dà †ðX?Ž{ø^/ÜÀ滤i>|-F†Î‡$A ©¯e'ÊLR»¶¯ùZÜÑváE6ÓÂFEû{YKC1ô…’˜ô^8Á#Q.2=OB·ÔòÉ× ýØêyCÎ."Øín„Øvçgg9/o‹3‚‰C/:û£ëÐ-öBTboB?‡.òÁ~‡"ÒãÀ˜–Qu|2T0üc[­ìêæ•  ‘ŠGîc8ŽÜ!ž‹¼h§r·Ôb½k |xÓé®àú›·T&Æ!ÒÜU{[qqD|·)³™åÕC±ç–ÑF7VÆfšç,GSXX©§¡ µ’—÷´ÞV'êq‚>10 ý=>àãk^/^¼X€<̲ÓC·ê«B6*^èF[všD/7ô»NåÛhÉÚV9¿PÖtŸXµ—µá¹J ê`ÈSžZfxýàþ5EõFÆhÍh·kY:¿ºš/õ$-S±åé­ ×°Âô²2Ís9ôs94…?´Ê •AVè¢rZëbb§«è*ÝÒN0)žî@çÖ0x`´ovl›öúÌeÉŸÎ÷ž© éNâ#¼ûØ‘m;' 竎µ·, w]ºF˶œWý"SÖPƧðÖZHûàÛ£*ZÚtë”ÝoÍÈ}UÖi&©œxšZ¡p8LxKŽÌÇ' ÿºFûÙ&çµÃÖk– CUóî™AöFØ?"Ùÿ÷é°iy}D|ÚvMÇèEÞD ’,Y&0Y=+˜qÙíVEËwÛ½Ûzwb——½;ÀŽž¼®i»ßÂÎ?b3¥1€=vª>´|ÛÊ‘|åÊñœ¨}( ÛòHɡۆœD½sšªƒœ'¡óÑ0ù©H!O%…"Ãf#·oöÄ~oàT‘9…c)qÌVe“K‡ ½u•~ˆ«‘â WÏo^~?_¿£þû¶¦ŸI­¾æ„K¨~N¸t| Ädì>Å( —D× ¹Ñ€œ·9kSZU<›”Ûò;#Ò;÷—É9 –.>w½‹Z5¿º4;ì!ÕÕéE6.*3r­ók>)jèÔe~¡TŠÔ™>NÆß!bçO‡&?Ч-UÜ$2kßÁ÷Q(š(ؽØGK¢g`­ä A}ï~t °zÔ•OßÒ,+(Žù>‘àä/Z^ÍÖ0”º'³Á¨psÅÛõaC[Ž­D^?@ZC=.³=Ô<“{S³WáJä‰i)àI4Öa~Q Ö6û*?Xul‡¿ì·ˆ.õn™dküÀ·§lÿüš²ÜW⎉T•7©kšÎ»=0óãsÀéŰƒ OáÔ<;À¯ÍN0ÿ–é öˬŠþ¯FÑ>â¾Ð[ÿÆ®ÙåÍì¯Q×8²§ IˆB׳²zöþ#¶r˜}—ÄÖ"­-nΑ/¯®•u=ûíä¥G=†Œï…`U胰(AŽÅÉŽÑ%Ÿwx¯¾(Û…¹¦ûÐTÉ+/sov•(á~¦{—kù"fæz_~bæØß5݉Œ×ýè»EØpr*ÍÑ”ð'p !ÈÀ¤ÏÀM?…Eîø1ï7?,m¹•uè o^™+4˜á™K1|—ä(±ëf@ÃÖò Å`ýÎ`æÌä÷€,_±Š7…:]e©#¯b@ë¾h>èEª4¶O­èbð\*‚j·ÒfläYV~;^Ÿs`c|›U;(‹­V ú·r9œméªbz³•£eÓ¿Pà ôvÂH^do„M ±‡“Mº "èoá–D; endstream endobj 752 0 obj << /Type /ObjStm /N 100 /First 887 /Length 2020 /Filter /FlateDecode >> stream xÚÍYßo7~×_ÁÇö¡\ÎF´Aî Ü…“Ú3ü ³•Ä=[2dùÒþ÷÷Ízå±USÎJ—‰\îü8Î7Ã-)»àЍ£P\ÉÑE”É%!”ÙåjÏøÅˆ²8-Ï&2*ÕaŒ"Á«L ºQŠ -ì(E%:*ÉfIŽT­’®¨ˆc¼s9ãЂÑ9F)ÖRѽ°ã”⤔ˆŠZKrœ NÁ8¹wÁ8˜D¬¡8.ĘÁ*€]" E1^­€¬X,ÙÀš°ê‚É1xLd¯**X[©ÁŬWF%Y ^IÂäÝí}©è^½0h 6T–8¤I©Å¥ˆE*Ö—l‘(LCDÝ5˜®£µ »˜z°êTØZPÑÈPzU†ò) R˜ƒ)M b”йb陦ª3e LÐ+U¦¸ÌØ…†r{…^9Øxâ²$F2¥èDI±åÑR„ŒWœœ0S@ÆÖ+LD CTŠ“hÝ™PQ QIÕ„ƒÁŽf,TJJVŠÖ!Ú‚?›ªb…¤Bƒap½5bëB¶(&Øœ f²É±±ØÀ°‰Üw7“‚­ªY[©À•`Ä•1§ 0Mbz°qŠáÇB“A"“‰61þ2ÆJ¹L®¹Ø$3|ô€ij±÷†É6ZqFÔæQ›XÍÌ R£5@¾QWƒÄ¶Ô 298˜toó•;8pÝÈÁÀqñ€½ÄPRÂzo0~Â21hJnú|ÿý¤ûy¹8y;[¹#×ýüúëÞÍ~_¹ã ^ÙTïþ¸œáÅôÃlÒýˆigóÕ4U­û¤;œ]-®—'³«þ´ôMÿ˜žMXüîŽÄRåcL3]¢oï z¹WóùCõžÃ°˜ç¸)óPÊP–¡Ô¡¬7¥„¡¤¡ä¡Æ“a<Æ“›ñ>[ZcÒ½½þ÷ªþûÙü?“î‡Åòt¶ì—Ž»¿u?u?Qÿ`‹>¶bª&I=ÎTñ°}–ê¥&H½ê7è­ëþºx·pÝk÷Íáû¹_^Lýõüì[Óü80´úÒGbò §Ô‚ãâãx0'`Òk’}Å‘jq9[-F"y ~ û’›€|8¿¸(Í›W‹õæœH‚7w@fSÿ|cþ;¢>(z'„cõjä<ö ¨²‹m„1==½\œÿapFÄÅ N%XÌS10Ñg‚YKPÞær Ÿr² a#°-)¸zª¦ |-ü¬bv‚ ˆ¸·È+Å}„Ñ$bŸÊ³˜Ngï§×ç«xž€ØËÑ=§ÆžAs£ˆhGbµ< b5¿4ˆÕ!øÔ!øÔ4f°É1ùh„Á”ÈIÃzK2‘iúœ7GgW'þðtzõÑ/.ÍE_y àj™:ÃçZ"›|Bb@Áæ›Oòj9_½ÑÃ!Ð P7áà[êËÀÓ_%@Wœe f¾*íå¾ì³åIáÀÞ’Î çbsr·é\¼ð(hŽBÕ—…::ä_uÈ¿êÏ «87ŽËF¾ù–O,%mÁ'_Öfw@‘`Œ8ðè‚-ÕZÈû Œ‘)A\´ö[p0 JÈ…´æ/ÁÒAr„W°»À!‚d£€¿Ú’‚"ä¾³"°ìVöc‡¼Övïq_ö6j@Z–«¶ 3L\ 7 #…°4´I˜@+žgk¾Þ奓†G—Nv=¹“º[¶Ý¶îÔÙçüü“Â)Ëãøga"m²Ñ²K‘6aF&e—ãQÓèÞ»wþ2{àøÈ˜šìAY?#-»Ö6,v«}S–¡Ô¡¬£^±SV$øñ6t‚õY†±÷Ð)ÃäV¾2,̱7ƒŽ ,kíƒcRÏAöÆá¦ŽÜç¦à0øEV;  ²J+ûáMäåÄ·¼IE|ÚoÚÑgnwƒ÷eï2ר&HE3NèWÆ>‘y›^êm8ì !èíîJ±gÚòJžÂ5[Ä}Ùg‰ñIaœp‚ãkŽH,Ëø¢„è8Å6aΖcJ›0ò±ê×L¡)?2ê_lÔ7ißToÊá9…¡¤¡äQœÍÚ gx »ÈOÆoñ;ÿ_nFÁ‡'ûlÏà“þ“!ŽHbÈêÞÙݾÍÙ'Â5»§˜|i8rE.œû”оMr%ì”ô)!¸uïôNR|¥[z§¢^E÷DïCšyKï·iæNè}í8Zœù}Ù»,)f 6aÂUËx¼ýR¯–Su~1U§º ªFžŸj¼£jó[RuÞ‚ªó6Tý¤pTmÎý׿Ü&LU¼‚;†§ÓFá?;éúC7ßÌþQŒƒn endstream endobj 861 0 obj << /Length 2191 /Filter /FlateDecode >> stream xÚ½YK“Û6¾ûW¨&‡H»L<’'Nekk™I.›­ZŽIŒ%RER{ýv£›ÏáÈ’Ê•Ð@£¿~ ̶³`öó«^½ù`å,‰Uvö°™É ÚØY$¥°:™=¬gÿž§Ûmé2œoá<­pÕ*ݯÿyøÇ›aÔ[n)¢xûu2Â)¯Þ æÚÞÜ%O^ªhš–üV¥[7XõÒ÷Í­ûF26&>ß}·X†A0¿×ô=¸zW¬©½)Jj¬öiU‘Ñà¤!PXŒïiÊ`;#’¸Ð¿Ž#•ˆ8ŽÏñYJ“cà+E†½ûÞÂEÿ„Áç×ÍaOUíJîÕÙÁq³x¬¸õ;«º<­ê·wïïï˜Rî nwÙk<Ç öåhã'—mwµ[¿}øõ·Ÿš}wnõñ8 mN9·òT”B¦ÁHõúãÛïþy߬¬N•«›ŽÛ»UÓYgÛ¬nù”–"O®é !à*$n"‘Ê c mû®\È`¾=\^WgÁtDŸÇðíC=²Õè6ÍK¢2þ™¸½¡ofƒÝ")t¢;BÑÝ„UiPUØN£SðÇBy½†"øB;—‹ó ­AKAꂾÕÑ­²Í&î\# gŸå[êZ(ðe–>îyÙ‰­xÍlêÓú jô¼,|&…ÿr9Šcyº_,µR©´Ò^*¤·Ry"J…T¿“o‹ ä‡Q’"ß¡‘ ŒÂ’ÄyMsžv.ŸÐ· 0‰iÎÖZé»_§”&"Šl3ùõ”ïÐà§TÄ&gFïïÿþG£Ž!a´œ` ÷uî8þíÇvâ×*#%Lh†ÿu‹BU’ a }¯PïLªÐxʪ ¬³ jhãJ‡JBlëJb°&Šã9+žQeÿs1l6(Nõª8 {—.§Ü^u*=O¸ß´ÙJ•¸EøÂ–ÇWg(/ì=‡R_€—L¬PZ=ƒ×‹Ú‹Œˆdr¹ö´@ ¤kùý&Ý þa!cvÒDñN¾“A¢¿8µNe!á&Vn¹*Pw­«Í;¤u™}¦ÅÞwL,ÞþqO~ zàU0ŸTaY”•@Ý›ù/ÈDËù)÷û#”[£ùh3bB%Ú€óJ¦ìH ·šÈ*Þ°ò(‚–¿øv7ƒD/4úw0u-(èL‰ Q# úZ¯ðÃf,ËeÊ_íÒ2]a‚PárR´½t¶¯w$zélôUév$u½Þ­í˜ôô½¯è}±”I<Êê‚-§®g… 2`™DmTõdá`‰›t¨,'j=ÿÝ/?NÙ#‚E…ç<>¤¥Öôüòí\tÇeÚ9(Èpƒè 6çÃŽìÇ ~!îëÛÃÄT©‡*½wìfÿû£«Ól_}=Ú!¾&yBxîO&”â—éRQ‚cOѾ0£ƒ+ö\Ù 2 Tò2Æ _J<¬…$Ù> “yD…$<Ÿw(xJ9¼æk0ÍiXØ‹! <%ó÷>·®¿*¨õè˜BŸAÊ`•¿Pag¡ûúÃ.9“Þx_v äKvt›&uvéj7H“a8¿ðnûvLOuñ×£0ÖàÕ7L‘‰o‡al^„¡îÂñµ0L4Ã0ŠF1Á)ÔÀÈ Ãˆ ’ú0º‡a¼Uâ’QƧÜF£_„ß·FdS,¸–ûb›­|þqNõsšÈ§¶>„úIÛ†n:lw ó,vÅi¿&tÏòYÍjMäS…€žüÀÙ¬–²rËaŽ¡#Åòz{Ð=é­ckx;H´«}M£ÙÔƒ_FZÈ6~cÕä«ñ»ìy(²®\M„º˜ŠÊVÈ.ãôµ— ¢»çwÊû*Å’ŠAŽJ:˜:ñ5¥[¯|æ”M) 8OÀáz8qé4Y;•CÚšz3ü>Ø Á”üó¬Kí%Ù¦¥'ÆÊËní Ùœz v©gØyQÿŽkö½èà:E•Õ=ñʉºvøɳºW]i˜("aŠÇ„é*µç°h¯x!Ú<§¾ï7§ü¦7bdæ{xÇS«ñ†KŸÐ8¯pzÅ]r¦flûtù@/ßb%ªŠ?º*[;æÅ^ÖÌÝføNà2 U ´Û*4}] ^…]•©š±Ý©{¨· - ç9<"á¹Àz“å5ßñØà´h­¡· Ñ&ß2`—yÒ|= é~Ï ¾¬H|9ºfEéДúØÛßX±ó5â[Ì:4\wÔýº£iÍzÂÁ°¯iȽ›Â´&‘Ï2¥Šx·¡$äÌh¥;°#hŠE@|tp•> stream xÚ­Z[¯Ü¶~÷¯Xø%:€—G¤îúÐ6qëmÄ}j D»ËÝU¬•¶ºØ9ùõ%JGÇq€—")r8œùæ›Ñ w—]¸ûó«?¾õø6Év…*R“îÞŸw: U§»Lk•FÅîýi÷¯@çÿ~ÿ×Ç·©öfÂ,å¬CsÊË¥³: .IPVÙþXÖG|ñU(Û¹ßÇ·Qä­´LNKíM/xª.ÕÐ/Þ_Éš¥ªÈ ½UÛ”õÃ>ŠÒ j–ÆvØ‘CËýÝ«ó“t^-÷6ãíàf¶gî;ÁÄ›[ï^—GÛ/—út­Ž×ÕB÷w>¡Ø Ø´X$ ØÙ~¬áD{“„AmÇúÄíƒåß®›“•ÎÃ$¤UñádÏ: JxŸ;*YE¡ßòNéÓ{ \F=Êã¹ko«íág{`3­Vª^^‘èz¯eÄ*>–jÊ›ýª;2Y¯eWÔ;>~ÄûaZyþT Wn Ÿðp-?ØÚÞlCzÌD™ž¯•:étÐ@ñ¸…—ºbÕtUy¨íÖm ×tÅEpl›¡¬šžŸ†ÐeC»=ô¶c±OÜ÷ËžáüÜW¿ZyÅyЎñ½¹Þ²‘7·(ËL3Ï«!'ó~K`:ÈÞ ]²âœYb×±íÀüîmsªš õåí^ËS:«£!3Ç hŸ®¶á cC*þ1 =½¾8œ—?ÍovS®a°·û°2ØÞ“%öb‹å8´·r¨7ê'q²wÑ6ÿ?ÓUJýF ;v"a÷ óà2’*Å$õ7+bÞ̤ÊD‚dßZ°Ÿº —𛃜¹Js~ó]ƒo‚[Ù •!jÅQpƒõö%¸ÑSo{¸Š(M‚@Cu¯-ÏXš¡™Í034 3Œ‚c);,ÿxþ2žx£ŠAFhC2¿ÆÓÓ¢¶làÝÉÒÂ8ÊÇA?tä¡ÃØ‘( µCF#iÐ0ñ°¿Zé{2[à®ò~ïZÀ^<<@úu@“´~¤.î[çÉipkO¶–û-ùI=ÆD Õ&Ð Ò öŠÃA?j†¯þ©|×á-sóûg–™Ç*‹bgfÝ­T·Ÿ3ËÈ(­§ùÎçêà/-žê“wâî\=Õ„t–…½•O,k{<–=Á1y›wºÎ–}‹€‡gÂch¬"<Þª •ª<Η›íÑK{Äg±GlÒêø;Ù#>lÝ6F'x$ÔÀß«,ȆG-2óÆÂ*dó³LjÝ$vzßR1…zì!d±h +?Ž ao‚ô£åñ’ÐdI0縓6ƒÚž ¥}æ±c]ö=çÂtœ©šbܯ™=¾ˆ]xA¡òÄÍC¤á,—í::ìôÓÆ.q¡’dzù;™Œ|J‚ „ŸãU2Ñ–Þþóïx£¿sØÏ¸ÏFQOå‘^jó5¼ñzIÐnUWÿ†Ÿ( Õ´³#V÷üœâZ;ˆ°ßàí£ 'ˆ%ƒ°(ùGz¡ú9ÔqÛ­Áz‚E%já²çÀ‰#Z{0•LeqôwÍÌF$¦²z;ó‰B[Ò6£ÊEÞ¼wˆ¢­Ç1$⹘ñéXù;UϼÌwFfߨ·%Ñ–‰Yð{âÚ*M%â`¸=Ù»…ÿšM´óžãŽõvU ®·{?vжº\‡®}¬RV Õ’$‘X½æê5$7R{èÿ3‚¬—é%¸¶nªÈàžùžÛd™P0ÜÕ ‰÷Ž»ÑÅŒñÛÁÌÐ èïA/-Ó—ÂöAV™ñqŠ#óàÚ&3ÏѵKö÷›øËÞ'ŽÙßá×Ëí’Un—Dγ‰)pßâ܉XN‚cBÁW»pï²µdÊÖ`ìÒµã;Yó‘ïú Ç!«.J„œ*FQ°]:U"p'É,,‡ž„qL“ÁLFÎ™Ë Þ°ëñ‰d"*7ƒ%Q5Š^îÐǸS³€:L¨ÝòuÅÕ[—‡;2N4³†OÛÕ*X;Òò8Œ\¸§wÉ~qð`‡OÖ6«W<Ñð‘È{„ñ¡ab†,?J4ãNa²ö<¸å`‘ºææmªHã:n®=˜½l梗Ñöëª(• ©Ç«¼m c‘«"žèZwm·ª2L7…ø7ÕV«Þ/®Ö#Z{”ESu†Ü¾RÇyuËZ©ÛNõZW+ØÂéEÒ4îeÕ¹ÊðÙR2tú@F›NgPHRp…Û ¼&VYR¬ãÆŸ~ØŒ @ˆKe“÷e‹jK6…“ýF¼¡§xÃk–^ˆ=Bn#ßßÐ>È›Qç zA+Šõ\ÙŒ‚‹m`f]IÕ3rq ›·ZEÑ l΢ˢ_ê^vž?za÷ "–t½GT0>oXWÉßœN½èw`åSÙÒ ™GckºATÁá‰;±*Áʈ‰À²Dó"|&Z}æ÷ÄéŒW“®msd*vøÓ¦/~ÓÑvûÂ(¯RYçd3I˜¾¹M%3œ¶©À™­91#ô#§6.rêSlï¤ß ›Ð}vñ[¨„žÒE3…M­9FáòsØÔ”¹wq¹Ê%÷¬·ó‚É ¹®\!°|Zfe·¶s´Û‚åŸwÙƒ¨cè$ævŽ«/<‰×•ȵ‘6œì«Ö¶÷Ó·)5™«XáóòòpþØfB‡0Ðqªž„™·w˜»9™Ót±¦ˆ\%|ÝÐÙ·ÄõRšØs,Áieç”\?Õâg˜ý‡ï·@&çsì›A¶(YLL«flÇ^°`@ÁÀ{å0lËoÈÖ±×Já §¯æ¼•g.ŸˆOúBþ¢#úü&RÞ¯ÕRdJÇÚÑÆ8&ŽbC»4 zç…ó‡bY°-!.´œs¹µ¬Š¹;‹/eN£âu™“SТÀzÔ[?OH²X…ét)¤Úçç5Fa¾8/l1ƒu轎Óa›oŠj·dvÜ»þÆ[3ñW™t‚ù~’ságÀËXEû(°ú¥×¾0©½=(üïó…§ö7|b­l¤Pi1YŒ_‡;*·åTÒTyÃÖ*.b©3l•Ç e]½YxEfÊdñ×í§Í¿æêˆ¨‘ÊÁ|A…áYáVÕPAš½Û‡°–|Á}ãÊö¢)W”\i¥³É7ªÍ…ãhæ®W^ÌÅM.Áá6ò}¡3d"ˆ9l%¡gŠ -hì8Ö_©÷Ï­¡³/Spþ5 fD+´2‰Y¨z®? o‡ÖÅC0ì $Ïo$ÍSÓS£T&EÞÉUD)ˆ4…ùŸ'‰çI<}Ž…wr sŠOUéJC«ý0(̳~ ÃpcËT[ý²-!tDæ³—ƒôpui¶¸”…\|)!ô™<¬S9¿÷´…”;Þ wü?L1o…–…‘@è[3U½ø3'|Üdª:ƒ³„ño \…Ñ’©bËLU‡S Ž„oñÒô&úJüÐý5–÷Nò'^óg )7¹ÊG8ÑW.B­¦9úêW¤¾Šª>û‹”ïÞ¿ú/̼j endstream endobj 880 0 obj << /Length 3510 /Filter /FlateDecode >> stream xÚ½Zë·ÿî¿âà/•‹Ç×.¹ESÔ ì AÑö5ýÐèžDIëìi/»+Ÿ/}g8ä¾´º“¤¸Ç×rÈyýf†âW»+~õ틿ݼ¸~›Š«Œe©L¯n¶W‚s¦tze„`©Ê®n6Wÿ^ä»]í–"Yì–É"osÍ:/×ËÿÜ|ý61ƒÏ5ÌXØÛ'2\ò‚jW+eN¯¤/-úáà–0 ëü€ ±È˦¢Öºº»-â|»wÝè}uŸÅÅdªÌó¸¨y³r2@­9AM L™Ã.`·s8‹7äÞ!,(Ub˜4jUæm ö Fš—Gß5‹-º§RÖf}6qF# 3YÇþÛ¥ä‹cK46E¬kŠNG¶¡%ót3`°Ï˜–€¦ì0‘%„z@' P˜¢ Í¢ž‘>ïº :¬Q¿1t fd‹9ɘ°æ÷1á¡JZ–Úì7ƒ‘a¤ã[¥” ¯¡7 õUœ ™ŒÕ·wfè" ó¤‹È’K/êpºí\á¸sð!¤yx_îM’Å>ƒ˜©â@~_WŸp9Uq)-¬]µÅc`ÕJb®^ça UÒq¨Ë-çÔ3.êðÑðn«ÓëŽn Ç©‹OJUX>Ïtˆ×[¢ÒH¼!¶ï*_[‡îk8YÓ§êŠû5Mß—Åa6­ëªnˆõ8û±ÈûHîÔïÀ@ŒÎæ~œKÜY&’s…c:³¯êG2E¸ ¤ò0ìb Œ£ýˆ±€Çéñéé4¡Ð¨Æ0g",³½_œÉ“˜æ3½ëü.é3áÓ(¥~ö(gÒûÉ& »úLš/5“©|&Í·SöeyRg𠻨ØUßB”\ü£jÃ\»÷/(¾åÂü1{UãK5ß}ûbaŠ„éÆ>Æ7°îk*8 ²cùöxXGë5ÑD 8AÂa'uÿcã<ôBtZÔ­«CP?Ü×{jås° ¹1·Ok¿6]ÈÜ™s"zÌ¿ã]A±!ˆŸà¯ˆÆ - åßÜ>·h6eÑ>ÒÌÖ[>™<™t":'S#Ô?ÞGRÁq®ON™³q÷î°_]8|îÂ'¦÷Îuá5þûæ:×ü!„ ®$HèÃßÈC(Q”XÕ¯cì›prl~Ë¢aìAé;ˆËñ)Oi¿ÿ?l|! ~Õ[œª_ñàŠÝ¾í>ð.‡9öŠü2ͺÍõÎ\—ů.+]Ž¥Cl6¿AóƒcÄÔü_Pç.=$‘”ÂÇšþÁDvo FcÒ„¢%Ž{~ÁâÆµ³å9Œu¢^Å|ýöõßß¿™ÓB8UnFÚûÂ+7PÁº) †C‹ñ¡yxª•h²ãv¾s›M(ð$Y2†¯î¢:ë.J=œ©|b¸*ìöfzYa×Ç %.Þíi$$Q£Ãïj‡YT6:? ÿ½u` ê 'êYáÁ×e3ÿ² ‡¡¯³%e&Gxª¾?`ïÂY÷·%½4Óýn]CÆ:˜ÁùƒÎä [!î€ÖmX>ý Á&lWM¶j¾S\M‰^<3‹¿=ÒÜÆmñÖù±l_Í1è°[ëk`ÑÅM}iÜ˰ÙÝ'I`nªF¾`”.ÊjW€Û?YM¿XÀ¡©úùydãcáÊ )©þõ¾ªƒ»¥äòž~œ¿y÷Ï7óÅ~ Ë#öjŠ'£ÆÑ- MySx)Çv,l½Þç5Dßq™ª0E‚[·É-Å"sÆÆ Œ<ñO"¸´v«`Át¹~9†¨çAÌUýx=Òš÷a›V‹ÚµÇúà6܆ŸøïÔ¢„¥ýs Ó¿²hAÏXÕîköˆßP—bS­ÏĦJYˆÈÄ <˜OÄ•Q³ái¨²Cn—é1[zP]€\~"›€‹‡]·"ºð jÖº¢~Ì9“דN^ÉtlrVßÍ©±a‚w|'ÖÖUÜü¾opõwEC0+å¤ý|r¹¡…·<ö þe=÷žgGžFÒLJFTz¯íÙŸf,ñ9êUòøë!ôâ5f?-õkw²ªðÛ¬)ÞºmÕýÜhN\}eR.ÕaÕç¤2*{DÃ’´ODý«‚O…`‚Ñ/€n⎱Ö)0Ã,‹p¯‰»y Ú‹Ró'Tñ§Y° :hŽ”Ì³\sƒI27Ü‘Ì öèÍ ‡ãÈ*ôÔÀ˜ÒW Ó×!¡3pÌÐ# ›1½Ô2ÛÇ'çq×Íê–¸„@ þUÅŽé5g:¡ag(4ìGMů<\ÂXÐTêÿ±5ÇŸðý°¦Ú˜Uè"ÁEèÔk°À¯tÈ/?íÃ^3ŽLRý|˜%É–ðcHRS*Ÿ¯ñÎ"ƒLôý2¸îÃkQBÞÌeÔ&…T¹KÐÖˆP/é·Š/_½Üämζ5hüËþדú2>­$ý}|šˆô@² yy¾ˆá‚$_(á”nÒÄ4˜v&¢ä&ƒ[óIr3pÀ!˜‹v&Ñ©#¾‰ŸEî k©` #­ÛÄÔ§Kõ0X PqG¸ëÒ…©@Z̈“BÍöÛ:ï±rÚ|‰¦¼¦ÕižhÀ‰xܲžù’ «:0óMuØ×Ábìw_凼|l(g¡_ÿáÔ;úGš­bÀ?ÚÒom!"Ï×?CènŸ&C಺¯Å}VXA<™—ôi¬WÄu#“~ß‚ƒÿ¼Îƒo}_mÛ€~{.+6 î?)¶„1R€ø.1Úcòv‘p“ /~‚`G[6© .§ºµ© T£k¥ªT™ëMÃ>r•²‚«Y©¿¹yñ?Ž,ÈÍ endstream endobj 890 0 obj << /Length 1129 /Filter /FlateDecode >> stream xÚÝXÉrã6½û+ù«Š‚¹/©ðÅ3•Tå2V|™Ì&! 1E(©Dùú4ˆE¢D‹²ãør• Bè×ݯÐki9ÖÇ«ïçW·ÂØJQy‘5_X®ã ?ˆ¬ØuQä§Ö¼´>ßxÎôËüçÛ‘{°V!?I§[“/— OÝðf9 oò#Ì‹¼*„ᕣܯèa¦!f^ “¾ºÇx:óBçæ»ŠÓžùþ (±˜x•ÃOÜ÷I¬™›¢Øq%ìp8‡©ûòc“Ï‚2F.‹¶.BkùÖPù,†\%;=÷©<Ï€íŸõIÇEÑZØãÊC”&1p•¢ ñ¤ÁÝ_ùzSaþ MýgaˆQ`J€ Hb]__Og¡9ÑÍNŽÊ¼ÉåˆÔ •QÅîF"7quø_ö+Ö× oÄõQžÃèFFgu)CÂ;©ñA¤` )¹rDjJÃdï·[öíÌ,GO´æMymh[Qî9®Û!8ÊVi…óò7'tÀÄ–Æ® ïf­ç¢ÔMŽ(ì6ÃR(C†Ê²†7._…xºçJGOxÃH¡‚¬ðWÊWÎy Y.uJ¼Áð¯VK¹(¿øx p fŒ2åºSµ¬Ûª!t$PÓ–ó[^¬(­Ô䟤Y‘ú(Vpyõ€s  Ï¸a¤ÏeQµ¼Á,ÓX¶‡µE“M~úq¢‰(˧lþé×»Cî=ž+ÉÿHÕéUƒ`HýbŽz$%ÏŠ9sMüÍ@†A€ß{WšˆRf^@yJÒt,ž`èL~!N/&yh«2ùðœç½:E±>JvÓ²¡ÜÑ•Ó÷åºÖç”Ú-°Û*gÇ›hÁĉХÅÈ ÆTšs$ŒQg7@Ë¿£n0¸ýf^=®¢Ð¿˜áÿD=Qˆ’x¬wIÏ‚”5ÎyËp6¹ÿÅœ“;’íˆoI¶ÕcAIöVLµ7ÓÆúœè2»±&§*÷Ãýa+€4÷ ì\³;ìS²5žôÀö¦úÞþƒ^ e W¹¼ö‰ ºOEoÑõ:>Ô[Ñ `_ÛÞZ®òÞjutHJï¥!ç¸?¨%lٮŵbÀõC?'ãÀhk(úÈ3ÌIy$¿Ë“}-Ùà lòBÇË]§ðbõý“¿µ¢:¾¡ui”xº)Ì Õì6Ø8:'òƒ²ÿhÍ5ð¯ò-ѱ˜r§¾&³Ûê»! 1 ÈŒ÷?›Ã[)PøÌÀ‹x^,ÊÊk†„˜ÞK§îu¨Å*ßàæú(N_tM@°à¾èÄCp òÎ_„Å(>½1TTˤµÎu“-vü«Y/¦cvN,Šò½±®2a¸ûæžMDXºQ’r›³lÒ•DÏmQ ›‘KLvdbO¶d"Êdw‘ Ýoe»"«àŒ0ël=;°#;‘–RbÚ·C;¶S-)SÿË.N0ñ™²3ÕS:é.R®ýå"¾ÎW„C®hGö¦'?ÜͯþC©š endstream endobj 901 0 obj << /Length 2260 /Filter /FlateDecode >> stream xÚ½Ymܸ þ¾¿ÂH>ÄÜ8–dùè~ÈÝ%E‹ ‡f7H»êµ5c¥{ÎöìvûëKJ´Çšõ¾âP,°”)êäCRšÐÛz¡÷׳/ÏÞ~ˆ™—YÌcïrã±0 D{ cA,2ï²ô~õó¦]1é_¯¸ôó Ûå«ß/ÿþöƒLf£I ³šœ¡ÈYHë¼ý „—‚l¡ìZ¤…×<ž°Cºö¦Éwªÿ-”a™@Øj-ÃÐÿËÚÒ|þøg…×, 2I»«T^Ò ¬dj“(gAÆR+úúõk+‘o·Ú惲ŸCE ÕzìžøíI?Ê[Û¬ÕµªiÁ¼ï;ÝléË’ŸÞ}u‡b8t4Ǧíœcœîí¸X¾Û×Ó¬ªëÚŽöu£‡J7Ç-i5ë MPw~Ú¢í:Uçƒn‰Ùn,…å—4 ÚqU?©ËÕsQúAuçF+?Ì{þ NÿŠX RuŽÿè{_ésXmn¤%{¢4@Ž¢gï/Ïþ8c0"ôØä«2šyÅîì×ßC¯„>˜8©wc$w^ÞœDÚµwqöÏÉ/O©Á¸ê °³8bžLD%Ñ„‡ë 3'¥3’YÊFD|Ôÿ^1°b­«¶-Wk.CÿšÄ6ó†x_V÷óº\_®’È¿Ý+˾D6xgo?чLã bvòÆ~þrõ] t¿®bðD>GYF)2^Rð@fä¿?«¾èôÞ8Ù\-Gõ8ñ ¹fiÓè`ðP‚EþpƒªjñCøè œ\•6$ À®-UÝÛ6ú2Ê5 Ð&ׂB)Ÿìð ”ýj)†A8IZ˜Þñ‡ â‘3Ùîzi.‘©åÀ… dã^7‡¦°hÄì;^u©èLù(V×–qªë$ЩµÎšÃéBÉA—椴˕‡B¡;¥‰Õ”mínŸwºÇeyšúº±|@ð®·MÔåɨß¶Ù௠‹ÞN`}:rKêS^G.nÖé‡`µŽ8÷¿Tªq†öæj5EƒÙYh+,Ë|Ý[ÚïU¡q_ªÅò0ÃY°ãË* vƒdᢶ…g3´¡.ô6¤»¶SckZ«hÕ¡…ËZ5C¬òn”Ý]鯄W’Cw \8&y×iE o ëCsœ­$<pÍàÏ}¾U‹èº‹6×m mI6&Y/„¥;5Th²1?QxŸ•85‹™Lˆz³“hú¦‚Ád¢è¡IÖLDA”ŤÀx|1(´&ÖQаœ¾®†‘ÿuÌÐçÑ®êǾò;ä1ú(õVcO§6z8ÿðîãÅ{âA0&£{E–~×!¶‡ñž‡Œv±(4Ú£¤'Ö$1¨›ªÄÌoœÊ޳í yÝ=A2aHŸ#ÇÈŠ»ì©1rZ5¸[2δË#P-G_$±¹jø3uG&©´&WåµM+<0À×ÿ¾b¾U\l³ Ò{³ ³8ÿˆâ e>¢·Œ'/ÐÛZHæÿÒÔ·v¯Pë)Œ]¶^oè$76æâYÚfÌP£„iê ²Ç`ªNS—X2&t¡y™W.õB…Ó+ ÿD.U5ÿúY ¹®û7Ûžlè˜ þt³¦ž'Ób°å†  "‚„XêbLÁÆC¨©5&¥À~¬D†ÖR““6·öã¦ÒEEUÉB1òU{¨K'Aú¯P7,†Ý@y]š a¾,5%6NrgS‚åYêÿ”“|^÷­íçÍ-:Ý'mI•ð¤^·õÆæ§;Æà< ¸œÐ ÷‚ýCvàà`Çk!¦)}³ÉŒÜÖ¢@Ü Ë\?øú/€ªÉo 0wºÀ×%°ÓR(4sPÓ,M´‡ø0ZÛÈbAá 2rÆ*¹n•`ä ka´»®ƒ|MÀ›gજ">9˜i_©#Uùg€S8}!“&Ò‚0™ƒ0‘G&ë‚0!BDŽɄÈ/òZYî‚Rl0)/Vy)Ÿã¸¶xæd`œâû¨à G<‚áz¯h`n ŽùIø|$cÏ€d±»Ä}¢SØÌFA"#74Í<Ÿ¥ŒówSÎü–Z·…qü5YbòZri´s¯Ô3ŽŒõQœÌ*LL»JÉ4žÂúÎ#ÁF„4•Ø,Ø|{‘· ~ 6B0×õ¡s¤c°AãÒÀ;º40M¤qF˜Hƒ]c¤A®i¼ÛÔ4‰ ßPŒVI–ó7°<3Ã3A'‰Ž¸I7Î)è¤cЮãJ)¹ÒB6ü;“2HXz¢c%O÷+'à¹Òõ+¸‹¼(ű±I1Ðn‰:Ù,–TÄÆ¤Äú€á¿7ãkUhtz[ ëÊÖt8».•;Ç$Ú˜Ç lU+éßî[èéu¿dD*=ylœÁÆ8n+ ½lÃ,tÑƼÖùR奀¦ÚðôÅ) X=VË©˜Ï—gq®­twà¤{ SÊ7qR>‡5Ë,¹à|à)\ ¦RêëÂÞóšüÈóO&=}[º¦ÌoîÖM±ö·¥‡Æ}~ ‚Ue^5 î,Ár kc4| i-Í-q\“^epàU×ösVFž†C÷û®ÝwŸëâ"—cáê­VÍv¨þÌÚÆ¼ ¼(àã‹\þSºü[މèa6‹èðaÞ¹{bIQå]^ ª#qS§S­s”l°m`lúÌ– ¾ÌŠÕâ‹Ú~íÆ”°Þ©a€eÞϘO‚0RÖûz&«¢òázyñ¼DÎq¼ËîƒÇÕÖ—,›×/fû¶ïõÕ¸¥v?^q¥Àøì–ØH³Û„*³8£|翺êlÊA‡+OŨ€ÄÖ³ÔíV6*gt)†Ùôf…œ³ §¤qùéóû¥HM>BƉºÅOËþØ6üiÈ&)|' ƒLœ<›€èÅÙ\!(=z<àÒÓÔû˳ÿ=¹)Í endstream endobj 915 0 obj << /Length 3030 /Filter /FlateDecode >> stream xÚ½ZÝܶ÷_±oÑ^Yü)¥ðCŠÚmŠ ˆnW{+W+m%­Ïׇþíá %J«»sœ¶ØQäˆrf~óÁM6w›dóÇ¿÷âÕÛÔnò87ÒlÞ6"Ib¥ÍÆ •oÞí7?GRÞüýÝŸ_½5" T(Mó8š¢ioD}¼‘iTÄÝ©ÀO^$¼¾z«T0ÇV¥ÒM²•:Mµ¯îª¡Ÿ}¿àÒš8Ϥ_º=UÛõÍV)UÍP"'we‡6ZèÏå®:~Gª/üzèÚÓËŽ^¦IÔÞ~(wC¼Æ\Š,Ž­Hc«¤ßó¡>_†u{WíÜ‘›„¶ÏIbðr,©Ž^Ní¾¬{jãù xòDV Gj}ÿæ/ßQ«ì'* ½ ï«Ç¡ÙÝ­C…_$£Â¥é–û„ æV„±’çØ‘„E aÉp›ðÎl…c§ ™DŠcÙÅ®mö—Ý€,º‘bÓº"q×Õ±m÷$»§£æÓSë}’&£tgZ„UO¦>°P6NRíeõö›ï~xCd3‰Jç‰ñT°ŽxZm¤Êâ\/ô&Žã_aù¤ÈxÑ݈,º»œÊfècæÎ„Ëåš´TšXûÕþPEU÷`Õ¥DX¹/ßù#<\šI ßv7nyøÒ—,ŠG†cWúãõ¸¦®{'‡þëOÀ‡6)𨜰ħ»ùy›&Iô#« LBô¦.©í̆šlc1Ôúñ±âÃS]Q ™d±ÌÅ(‡kš‘ÇY–…šp&”‡¥ðñíÜ‘3©öe?ÛÌ7´ëývx8—Î ¶R‚öÀ2søÕ1Ý=h¬0§¶+}ËŠ_KÖŒ²«P•^z¡£…¼t ‹TÁþ¬“‰Ê-­û'ڼ݀šZ•9E®€»X皈"Ê‚Ò Þ|Ð|M4"ô¸iœªt:D¡™& VKÁk§³Õ>0• ¨Tlý.ø»ý€3Lãiv˜€€]¹2°Uæ3Â|ÆA˜<î(ò«£˜ƒŠU:; ´-©;Q FVÔã´ž×zF„èùpÜ¡ÎzìðC“aÞ>Pÿ·µ˜¼£›åÈŸ/ÖMYW0ìo¶©Ž-ÿÌ–úê®qØ6ÔÀ€ÈÓ%r‰\S(áÿUv-ÚM’F·70p ~gƒØp(‰ßŒ{ 껚: ƒ¤À`©£·Ul4—º¦ÑãM=œÑ5ô¼­…«tè¶ô+è‡`ËÂïŽýšðÁ©h}åó6[“Ç©Îaagšõâ[„7•F碪ݥ†õA&…)DbmG£å?/E½¥ Ò÷u²´§í<Ô€þ1ZÔ*.c7Ÿ™ a´Ñ¢ü7´]ï8Åø°â)×ÏìÃŪõÊer±–16ò>;¯T.øg92Ga›„;‘V¯ª 0ú¿«Yø&Ÿì„ódq’Šð]—öË-búˆtÎÓÀvVøBaóÿ ûæzž<Jû0—se†89Þ¢7öÛaÅrZ®¸·L-ƒæ]}Ù»p±eÒ7”§V‘ ‘”NMEøÐOh7ÇÉZjn “D˧`ŒáÕEÌ„œÂ;oh¹Ìð²W½øe·+Ïø]Í%]Ï#W¬à±ÑPuà'“:îðéÎÇ1—qX˜yã†ß*fƒò|˳4­§Ÿqöü¤+»s"#›r L}ˆ4Ì,{àe¸ŸÄ“>âWf1ïu¬ªIHÂÇŒúM ›o ­ÁÅ>º, <’I#§ZGyÚrSÑœÖ4îü œïßÙSZ`f_íH',kŸõ£Ù#úfÙ]ÛQq-ûžùÚ¥ÀÆÉdb6Ö‰ Ì0ùå¶Ü²Á¥@![D»ò“+â\ òó+"t‡~µ œÎdÑ@NVQœÎu‰î Ñ”ž®$‚&‹mjö_ï?õR»Õ®÷¢!ò#öðìmã䌺FÎU·gn›= ÚK‡Y2v®H€¢„\+æçA‘ˆ4£G£Þaöïâ~33 pª~ÂB5ìüuãÉ'34l†ÏÍ™L†g”7<$ãIvm×± ÛŸÑp ™‘¥×Nè˜ðH.UT<.Œ8f¤×y˜À1ãQ>Qž@°Yì‰ÊÙq„Ff~½æ×aœêiê•tönÇÐvØ:³)þׂL¨:ö™ Š®Õ0‡°ÝfÏÑ,0s;Ì]FÆIŽ«èË—œGÃ/Î6¦ÓÔüþªf‘Î<ä]WžŸ*VH ÉÌÈÃ}EÎ,ãè>óµHà<Ê¢ÃÊ¢ß;‹ÿn‡ž‚\4Øèêð )N%†ÈLœY»¬ê\-<ƒ«`N¥A3j¥(fbeÕl±/¬æWÂ\Ts… ¿¦òí#I§•S€HÂ5 1²Î„ûD90›4çÿ¿óe1P§áΫ~‘ÞPM.¨L?–; íü&j××*›­Áj‚žß£È§n¬ÃW|Œ·Ðö·Ðt€nåâvÀÊàvçxævb°D~áí€N$»WëÝ+4(Ö°yu›Åj¹ŸVÖ ³Š2×¶ i˜Î±D,üËꄦ ±ÕÐz%†í[ýˆSƼø¨«¦tnÚ`ø~º­šñ®’ï¤ ÇÝD±2 ïg„^œÆÇ»Øï& ß>ã(™±}áÀÉq·âÚæ0£^>~Kž'³óèÿ7\’Øy5 œ°ˆþýÜUÉ§éŠ ›gFÊ ,ö[î/зO “^áU¸¬´qšŽ*¸Æü6‰ ¨µç~Uéä”ÿÂä1Q²Úµ¨!÷\€1*•P(‡ïí!LL¡£‡Ìºê²¹sY7NÉSn+Aö }ë°•/rÞ4ŸJ>ùt…aæWÏ\Úˆe"®0Ÿ®5°æfÄÆh0y>7Í›ÚÝ{.®-°sq·€]T,À©øÚB«lº¶@ ‚!\«à5F+ÖîjrÅN®nvgÿ¼ÀW¾Ä©Ïä¡A—Øš_bÐ÷tmaŸ‡]ÈäÜ[l•×q¾É¶®»Ö;a7>2ÌÄ: ¡?Ñ+(Õe”rÎrñ’y½QnìïÆk™G26f‘é§À{ %æ!dèP]ʃ\j'p¿â7ýŒZ}£¥ª\ndœŠì ƒ—mãMòDöÓÍÖfÑ#À…ÿ•Ò_\WÿrxóîÅPײ, endstream endobj 923 0 obj << /Length 2534 /Filter /FlateDecode >> stream xÚíYÍÛ6¿ç¯0r’1Cꃒ ôÐ’î.’C³Ó6Øf´D¹‘%C’3Kÿö}”%Y3ãiÐÛb0E>‘ïûýÍWw+¾úñÕßn_½y'Å*g¹ åêv·œ³(–«T&£|u[®~ TݬE|]‡I X{PëÿÜþóÍ»$}sÁÒ vµ_„’¼âîœÕ&’‚e2\mÂ>‰ˆê~¯[½ÞDYhUìiÔ6xÌ=½4;:*”Å,̲UÈáøûƒˆÄXMȲ$ÃÇ@öimdÒs]êÏœ‡µîèpE£j{Sœ*ÕÒ{ejíÇEsØšZõf-‚f½AóQÐ7´¾uâõºëuIãÏ<áÆÉE#^BÐM'ž›vß-1œ±TæžÆ8VO.o4s&y¼Ú€ó$!º~¯‘³0 LOÏnßœª’ÆÚÀ:JJâæ”#+ ãÆ?wô„è›NÜW•®ïú½Û¡›¥A}:lõdyV`S{ò†žÀÊÃg‚XE‚ [oâ$ þ…yF§„yTßšßiÕƒs#ÚªŠfZU¹ƒxÞM‹Í¡6ÛuÈA™Dóë:ãªÊMÿpÔî8~º¥ò;z·ÀÉ©T¸jº%iTÕ¡´" Ž-…˜)u ’%À×{ïg°XiDóem#,àÈž<—82oçMw"ºuýRˆYt$U…0Dé¢$r! ÈáH÷ŽfG4¥êÖr€DöÚKÓ"ÅK•ê:ü0Í­9iÙƒÏa8¨=DN\ÑôŽeqEÒ)’ $F\‘)&Õu§IE2ø€²'þËŽˆ”m?àÛºéiæ U ö H ÷8cЧª “ß~xO“XkŠüÄnh%’9ãÞ£«åáÙj¹JcæN·´fó=̼9t4EˆSàÖÆQa~ýÝÖô’Ö´Û¥è;O‘p°¥‡´Ý˜¯‹zgúïo?þüv!š’¥bhðÔ©oPpÈùÕÝÚîÉìy-t$Ñô…ƒpìµ C«cxžuì`¿ŒãÁ¤™Cþ‘´G6íƒÛ§ÜR= ›ìoÆ=›ºrô­&Ap¬ŽÇÊl–ÌW¨-•¸Ø;ÇAŒ¯ƒ4$Èתn¾Ú˲×KÉ4fi>À†Í”ÀYnÁœˆ²-L À8§[ xZ‡¡Jn’YcT5dc{µÅá^v§–®yô¯aå,Ì£Y#‡ôÀÃæN»¯¡ t¡‹óï[žŒ3h½„Û~ 쉔Eg×.6NLŽààó»Œåò/.EaÏë 9=bSK¯•±X͵ÖÐä.C!ý×»¦ªèzrXÃì}hñ»Y?9´›0™DˆÖYåÐrûÓ‡§zÐTŽ3†ƒ’˜Y{Èê ÅnÓ4<¿·rÝÒ#Ô£ŽkܶQÏÆž”É18é;~úPî®j~ÉL”t ÑjÝM9ÞÁTÙþ KÇoâè¸q7L'ýòÃç_w¸S‹¹Üƒ¥.ÍsÙ o®s†âRâ—ëÅð½c) 'A¨xÙL]T§Ò3íkÈÀ4^dXyÈìýd¡ýeß~4‡¿Jš'µÿí.ãØgŒ]/!Zký²4ˆ•S°®´-So†0ìTô‡Žsª­¢Kì¹j›%Ñså(âÙ3åh²ÍÓñÐ.l¡Áº$B÷» N’öh¨P0¶ ½º Å]/ˆm`!hdÐíkü’=‰H KK¹ÃS!ütx"ý@gGdÉYnïžF a@Ö‹†ŒGâJ˜”‚ÉìÒˆ¶î|µèŠÖl½/«­û¥{bï$ s9õÌó=Øý_r+% ÃgQ¶ÿç;ˆyw4fÐ=œamÈŽ Çøë9ôpr×@ÚžÜ#ð¯DӟЮ…"Ê#ýá'4n¸pþ? ùV²xÁáSÇóÍÁ…3Ô¼œÉOÛëy<—‚²ÈÛÁ··¯þ§[} endstream endobj 934 0 obj << /Length 1951 /Filter /FlateDecode >> stream xÚÕÛnÛ6ô½_aôe23$u/¶aíº Œía0Z¢c­’èé’´ýúò’e«IŒe؆5Ežû•¡‹›]|÷ìÕúÙåë0^¤$x´XoŒRâÑ"fŒD~ºXç‹_=,[ÿpù:b~ Qx Œ¨Õ’…Þí’‡ž M%ô•gÔr¿—¯}ÿÇʹA²â1lúˆª•“»GÆIîȶ¨sÑäË©'›F5-®Õ»ÄEYÔR4¸ÎTµ)jѪnɵ)‡–ÜŠ%$á1ýt+ÊdzØÉ¶CªÀlW´]‘ýó,îÏb1SM#Û½ªó¢¾Aòûš²ì%’éðD©u_v²¶BÜ-ˆ„•Êei¥•®ÝˬxG)—ùÅ‘àjó‡Ì¬– wÏéÄ©/Su'Šz`q¸½Ue©4·wÃhÄ‘u×¾¸OwÔJ“ 4Û¢#ÚH-Ù>^y¥ºY•Å{-½,‹RNº\jžn QgÒn½üþ[»z5¬À‡ÃÌ Ô‹Ø—åjÏwˆQ´æ?&Z#ó>“ùß’n/šê,£Õ}µ‘Í4 ‰¨d'])ê§6²ÙüÃl>…Bß\¯Ïp“‰‹X&t沌&À7¡Oý§«sœkFàÏ$ürˆ‹w4¤À{‘÷¢„5ÃÝ6¸º‘µ,ºöF£ª§vP³ùÈùÞ‰žŸcT ¨DTM/Ä{¡€’(Žä;êÛ†)^ŠØO4LH‚Ä_ø$b¡íªfBÀ#èŠF Ágϲù‘üŒÆ„ËßÛ—3”'A8m¥<Tæ94y¤º}>ƒ,€®.`‹ûMŒO#¢5ÿ}Æ]µË’„ìa+ùOi%~ž•¸<S3]óÇ›HTª¯M*à&`ñâÞ^6tk.p›B¸S"?Í Üs—˜EsT´–&6—ÜY¦AWÑm Ì;iŽz]qj P߀ ltħZŽ;$à#‰¿9hœ<`N@ãû1'#I™S+”›ià­wFxà=V® :t˜Ýn–àÇMnô‡ÂB üÙ·²ÏÕLd­0¡{ ÂëÓèŠI9áèŠ Èz]‡•%‰®¯EŸËz³äÔëÛn5ÓØã”¦VØ€3ï­ê$Þ°¶7+³•L"ö+ñµ²{r«Õ"{ >ÓC[#q‚0Kc6•º¯KÙ¶3:‚ñÖO‡˜|?+8ŒTöÜM@%Ì‚,ñnäX1ߨ½ü´2ÿÛ‘×ÖUQÛtsÊÔÄ}‘̘ž¼Ói$BνUey^è9UØB$KYéÑëòQ#äÚ˜lÝ@_vZvî¦FØ…¨€œÞ¯„O)`±oŠÚîRüºnk#£ð$‹FK‚Ëë-°òi:T=ƒò>€BlÛ×™\ΧÔ[/œ¦GŽ “ò1Œ.ý‹?¹èBmuwêâ4%GC­p…íûûVŽõæÑ¢G:­ ÅF´Ds@ ñû4Å„É©С£‰‡àY1x˜ lTüÌËÐ43ê7!Fî:I $ñ •C²*[…[ jÉqÕ)„É`èÍ+l ü9]`Ï.ú*ö­1&ù7×Ëìl‹”fÆ çØê\1% öN:Ý™’s\Ýhl‹O ìÔ¹ªVú#²î»UñÁ$§|%·:ʶ:ÛÛ#óøb²~d7]éŠÇÒ{íNõ¥ÅØáSµéêdKy×-™'-ˆ 3X›;9W®Žä‚Au§ò¯žÿøf®d…àM£Η?Jb?t ÝõÕRëµFØ«˜ö´'éti½V}õaæ¦ñÐòaÛ~_eõ}è-ØqeEo0B©Ãh‡Q–ÁÔ0‰[ÿ@£9¼–ëjçÆÎñ•ÐÙ¯u-›[þ~õAhUµ_ f9©íÉ´¬¿\êF²cc0¹*÷è*Ïí_L UnÍ$âîŽ]k`x&¥¦!ñÇõË»ÛÍ7üfµo”žˆˆjn¾ž¬ŽsÖ²Obcbmi»<µ4ÌÉ`·]×íÛ——wwwÄQ^®ôóãHþ>/`! cé4ÛÏiòjýì//½ö endstream endobj 946 0 obj << /Length 2282 /Filter /FlateDecode >> stream xÚ¥XÝoÛ8ï_´ØBÆE ?ô™»¸B:ìpJ"Z'ÂËüZ㦋Z7MaÊ1ø¥ ;h9óý\?DuxŸpQ³©ô´ª™ÓÀUÖ.õ€šw#têñÛü«Ùæ(ÃÒ¬ ºÚb;bB©Rê{ Ã! U/f<ƒa¹aá0¬Àß"XŒØW!¸`U:d$'œsˆ¤\ðo!¬˜Ä#‚ð!?ߪHUú»ß5M¡‚ †_é}`Žp•Õ·* K­mõ¼' ÷:¾/·*e¾„%¯tžõËÓz€N¶/‰<Ó%‘3¦n­?´ÚMù:Ie¿êûn6:…Ηí4Ûtž19šKÁÔ¹@à\ Žcï0€1%± tð À¡FUcDk ÄyÒC¯2Hy€Ç硳¬¨Y”4e]üi˜ù?°Üµ‡Np:vH*œÍÊImûí†òϘç$1S\>ñœ7ð$à1$‡¡çàˆõl < ‡yN0©‚—<'²Á±óœøèßyN B3=HÆ]èB¯»üL×MÅ„„tðºÓ\g@ît"¹·i–èÄ*±y]IÑcOÁ(a§{! À,ýÝ_äÞ‚f4šS8\(`JÜC¾†-Ô»¨ô~-‰xéd87¦ê ÷Ù Ô%‡‘àRϺAK"ëoqJQ¾çîë¼w¥ËÓ½¥á/f #«Owøˆ“.éñ0rnÊÙ&§²OAÜ3°nh–µ= ]Ó‡®8`\7‰ÐÔ*ËïÚb4ˆXôŽ7Ì:°Xß¹ñ °2¬ÔЇ̼}  0v͈cÐyú²ÁÓ¤¯áTtˆÁUgpØ_<Ÿg ·ù’½“HÅ'4 »ç ®F/ *`AbmŠýòHRy$ž)æ„+æ ÷¸/¡CÊ>šÞg“Û¸à7 rMl”b¨m.Š aÌDoŠëDZÜÙÜò M¾ßC¼S¶K3 è±bIÒë›—ãq/P?t¥„­£4FkÇ`ˆ±+eÌx½v¥ü£nÖL„‘ÏàØAŒ΢@¸ãk—#>¬3úÁá—³ä¨Æ.5¯ñ‘b ÝãGŠz±MY<~Ù×…ßI{e`è%æCv]ìÜ÷Zß¿¸•d»‹A*RÞ|Sæˆ=´|УF„#\¶Ô쑈Ü4-ð–…}Ú“— ÕˆgjR­S¾âM%[Íüv[isi›9\K,<¡xæBá9uæÉ)ŒBép¸š¥øª.Êö%5IØ_ª¡ž ÃÛ(,…r XÚÚº ‘Èt)X=ê³wÖ0¨I26¯³µ~I4HìI}5æCÕZgͦÖgo¯¯ß»M‹³¶2ëM¡Wê…ëåÅY¾›Ao7†Š>ƒ6Í;I dNAC=Ì‹¶;.ÞKà>ë®#H£›ïÈA@bxc[8!î‹GÒ¸.AéìíÕç·û²=Y|_æxO椕p ·Wðîú$wYO»ÇRˆ‚^û`v£öÝËq£ÈÙ´1« )XHÃÜõ¬Ý±Qm¦«"ï^€°…øÂäÚYc6´­3úüål?]uXù}pÃÿG¥òE|ÝÅOìbü¤–ó–²ì†P—8œ.GvÌJsoÏŒ[¿ŠÂlW–Ô{ïvyȶÃý›JçÅ|ÛûY/Oƒ±m'ôk¢8};«§E9Cªu?~,޹«¬ÈHìþŸEå3¡2XŸ½úr¸°0û*|ð.nÞü¡yº endstream endobj 954 0 obj << /Length 1010 /Filter /FlateDecode >> stream xÚÍWßoë4~ß_ulºIfçWDîE $àÁMÜÖ̉‹ít+BüíØ±¥]Ú®À…Mêì¸>öw¾sÎwRà-=à}}ñnvqs—N½<̳(óf ÆIæM! ³8÷f•÷ÓU”]ÿ2ûöæ.ƒƒñTíÌnÕ9ÝÔ°k˜^m®£ô …¼FÚ䨋nîâØ»U¶Y¢mƒ8:ã šªÅØqyyy¤\ý€hÈí›G‰…43¶0#2% FÜÌKVÏIƒ$a¾YÝ@æiÞÃÛ ŸA 8‘oL~,J½ý8õa>êê³`˜ÃÛ=l­°¨ÖW¤”ú„ÎÈ@eè\"ÒØµ•µ¨ÆÇw úÄ"Wæ‰Ha&_~3ÄÖùf± ¼kðCÍ*a|<ÇÃöÅ.ýo0Gô¨/âŒ((›ÊDBàßôøðçÛvˆ_U¿¶.WÌ‚ª[*ÉšÜ!ÍÒ<<ÑÜék˜sÖkåŠUŸÀ¹˜ÌÕ½““ÖäW^,pé‚¢‚Œésw8ÆOßs$ˆÂ›}_fT¥«Qo‰¸qMfV˜áOëÁœ"Ëù3lû„° ˆRVÚc*$Q¡þùC~‹É‡÷“CùÝa<3cwVG·S°)¨„Y˜*ñ± ö™Ù²#TI˜Üö:/FΉ¢0Ù±côlê6,P©¢Ñ9@¥ƒI”N¬ØÒ4—²H>OO&i„Ĩګ×5.ÉbÛ§}Ÿì%S©DJ‚KXÓÖsÌ…½tÉñz¯˜& “Sõ0„mMNB·(÷þY9ˆ¥:$Ù©X&nƒ6vJ&IþâH"¾lk͉e¢z™‚ð"R´cz9òc߯õAÓ×¢n'€Ÿ©dÿÚßñV`»)~DuO+ˆŠõ$½ÿn¶×Ý6ˆÔ”}‰ÔkÖ¨ W`N ù`Å5UÚʉ¤ZµÞ«F)Q#Ùšµ”‰@x@¥Ÿ‰tXoÆuš£¦bõ˜RÛ—”?ìý*’\½7܈rÅÝ“ç“åJÉ=¦DYVîZÕö ðÎ¥Uïô(áZø¯™°‚,k™×)à|»_²‡ŠÇaQÈ?§õ¹Œæ¯ŠÑo}ð¿3:gN0k€ ZuQƒY+èöŸ³:VsÇùékÐXB©jšg'±¶—?0~¿ ìÁéè†ÑM¿§ÔF˜œÍûGt¯Â: /•S$ifÇq ѺŸbråêëɼ^»Pÿî´W·S§þB¶q_ §NÀ9V/øÚoÀ|Å fcŽ|¿ëƦD´«ˆ>;,5…¾së»ß—¢À‚Tã…eosùÑÿ wãW³‹¿Ôa, endstream endobj 958 0 obj << /Length 1256 /Filter /FlateDecode >> stream xÚÅWKoã6¾ûWÙC`Íð¡‡Ö‡,š-Š´ÝdÛÃî" ,ÚáV]J~E{‡"%KŠì¦Èö•Ùo†3cì-<ì}?xs78¿‰7A“†ÞÝÜ##æ‡^D ÙÄ»K¼÷د>ñòìãÝç×AÔBû˜ h ª* d€òókƼ1`Cß`GlÌ V4¡ÔyõêÕÙ(Àx8—¥²UZÊT¬Eêö*©ÅU!ó…ËYX‰/—ZmeÆKa?üæÎñRË­1ŒŒ&óF wôÛ‘]uÆQ¶þ€¼“¯·jž'*³òÔ.ÿØ…Øåo»å*Ù‹B&î`ÂK>…? •3Â}¦MHÔã#•ˆT>(•Ô†”R9ßEQ:Ô¼¦Ã9_nh͵äùÌ}ž©l©r‘—Å[ð×cÄm ¹È8ÎÌ%øõÍ¥!êY«ŽVn”Ê®3-ªáÎÈm&–˜PÎu»™;)/Ц„ïo§˜"Nj–O€Á“C.õÑG5 9D›ŠõD¢„ùpG…|Wð…8ÈÂcVºIÓeŦ‹Iê­{ ¡Î3`ð º¯à–µ‡‚^lñuf⣠"»^kào§%ðuH `|ÿ)%#  OBÓ ¡j‡ÜdŒ ·©Ìœ¸Û‹Û”ÇÍ×Fœ‰úT±Ëb•NOdRœ¸O -“ªã¸=übXÄ\O¯/º­¿µ8íG×Ä£ØK}Fðp±Êêú™ÝöJ@'뢨¦5fþˆD ÑÖEÌ…ÍéóýØŽøÖt@2è(™, ôûãáÆ™Wy±3ùc*ÌDBÃÐvZsb¾¯-Dé45€½zêÔ;€rGTæ…€F§¢é_­L\›rÊÓ•(ž¦Ã¹Ö¡c÷Etì^–ŽÝ‹ÒQ¯Ðbþf†*S endstream endobj 975 0 obj << /Length 2282 /Filter /FlateDecode >> stream xÚÍYKo举ϯ0æÔ lÓ"õdƒÌ&3ÁÁb“›C6¶ÄîÖB-uô°Ýùõ©bõ²ìØN U"YÅbÕWönŽ7ÞÍ?|w÷áökߤ"Ttsw¸‘ž'ü º‰¥‘ŸÞÜå7ÿبdûÏ»?Ý~äd¦ŸÄÂOCØÇÎÙëþÝá¼ïîž·_}²pçG©]¹S1}ZÿXêýlõB°8i¢·®èJ³Ý©ÐÛê†݉);ýX´b»ó¥·ùþ@ľj/&+~ö¶`™Wäð}1L‚3Âðd/ž¥J‘†!ŸdXØ[Ûõù•†°¹)[6ÈUyÒPĪ|,òvM…Ø»Y¨…YnÈ,ú²Ã£³(5=_®ÈéYõç½iÚ— JRJ•Î-êØÀ¯¶§²>™.© HDxvƒ/'C&‡/š–M=Õ}Éã½áIynòùŽtTàé'<¹ù½õuœ_¶õbzduI÷ÒÎ.¸Òçw Êq¯›÷(GFtxŽÊ—Q9ð¢élÓ¶ô† iÓÍ@Cgz¨èu4"x™ÿžšªJ"áƒo~ýüç¿}Y3Ö@¤ÞÔXåËêÃÈšúá\Bˆ×ë®f½ t7[™lŽýÙTY4¬Œ¦ìÒ€nK¥4|Ç0.Êö™p¾À'4aÂÉÂ݉±é\禜`!Å"ÂÃûB¯A¸T.ŧx\Ñ%€a:Àйo;b°gžš¶Ÿ°F®]G|ÕæœFS,gt†ŸHn<( ÿúäzŒE2^zsÖ¢¯Š—îÆD §úæõ¬B‘$S>çÓKlàþ’q¾…|±¯<€j’N^ !ýs,w~胉ª9@¸ô‚ÌÍÂÇÄ¿£Dq§’pcìA`)uBVÅÈ Ÿ0©[ i°@1/ô±ªÛ®ÈˆÌ°ž0æ%7ɘÖÖ}“™–>Ô"vÀ S!\éSQѧ3ÿNWº¼"ƒÌu§G〬]ÅÒ‰«WZúйY]uM±ß*ÈÎ8û‚ÙVøj4D;r)¦\b¶G©Æ=þ3.Kr9MËU_ô/+>‹$ìw×™¶sŒuW°R9eš@Ÿ«Ê~ønq¦<’‘;ÁÀçDœˆ,tÛ·‹IE.ê÷¦Ê }Aà“4‚#ÖÎFÉ :ue}¾êåŽpŽ*×M^üÛMiÿÕëÆ½äÅïç`Ëså~÷¦{0ÆZƒK`°Ô=(!Ý€òŠ3åÉ0e¯ÙR=« |j~¡ÜfÙ”Ö3Rá Â&Z“¤ºï¦‚Àg @+ª¬ì1àOOÁ9·5çØ­‹F^@#T„L‘ ¾ÖËéc]/wŽÚBôç‰× ÓȆ‡ì (™æÝö<Ü8ï3«¤^G1š–× 2Ñ7»Iqk×4S¦/Lj# — —ò@QÍ—Á[€âöèYhª}‹çYË oœSûñË—µ\7 D<ÖٔοúŸGéÿCTüÖ"Ãø-1$Pp£Ë!vÐå¡'P¥áCvÏïn“ Á‹n[2œif?†~|sÖuÇþ “Êà™ -JDâ­49–7¯„§ËCKOB…ÌÃàWªå#’ÍVØ1K½…ˆq¦½Í|½PD^ô6ó ”Z‚X£1?œŠŒ%9ë+ gý ÜT}^àЇ9ó唘Â-iJ¾ðT2¿æ†êkÌêÉ00'qm«8‡£L=7\ ôUnšòJ†EÄ©àÕ ]0²Ð%‡ (]“:>E[j´´&7mÝ‘÷\–ü´˜MvêVQ lÈÂÔã”í(‰Çø Pª8{†oCì $:޲º=\ê*wŸêa ÆP/?Ý´5¯……EÞcEe{zj^fcJZŸ°ð,J3n½rŽ+ ¨.¬W>ßJ°ŒÉ–âÅ—EL¶´1 O7ºÀš"¯¾¸7Ð'|¥ä%ðŸ“~Rõ;ÿrq7œÆÝç:.îòÛbæk†¨¶ž _©™Ô›œ¸w®ŒºÔEeޱ¿ãjÐÞX¾P™Åy žÄ­ Þ”“OúTW¼,£^–â^€côüæÔÄáÊ뺪^C‘|%ò¥B1’ZTß>ÛtŠ’"5¨Å³l—%ËA$[¥ QãQÉ( ˜`Û§1å” Yµ#É¡³"LÏ9¶ÊBg6rÒŠ@¶„_i$b?yÚã¬&p=9K[[âzìºjÙ¹¦ÖCJ…NË}·¹­¶€ß‘½@ÃxIŽ£¸—÷$÷Á¤Cý—Î$Ô‹áìrZ󖕈 R6ó—ÂÓì ìàèè~Ö.6{š,Ëf‡-WˆŠÔíàLù§mª;ÞÑïøÌmG¨ ¹+ÝPŠ<ƒ–¬>aB}X •C"j†¼Ó˜±a ˆóŽ8Þ!úõ×!z‘·ïþ½}䵟KÚ·ý:ôlŸPÇš›íµûqgÔÝØC_3fw3éú¦šÄ>,÷ú M VÝfêqŸ·øÙÆÂ†ÅÛ·øûÇß·Xi—‡ã`ÞåÿcþÅ©…áÐ[ÿ±Áù›‡ûýï0pÙAÅŠ¡@ÔÍñ·kà§úþ¢«'b xˆ{<|Š{ØnZ˜§®»´Ÿno„ã¼Ý¡õŽì_² Õa*Óç›ËîùåîÃi÷±’ endstream endobj 865 0 obj << /Type /ObjStm /N 100 /First 883 /Length 2153 /Filter /FlateDecode >> stream xÚÕZMo7½ëWðØÊ%‡C§0 $)ÒhÂI¶Fª£¤ncÉå¤ý÷}³Z9’%%+ym ‡d¹ëYòqøæsUKpÁÕBN3.ÉŤ¸²‹•]Íêˆì^]J×â8Û½¸¬ÉU‰NìïBN$j©®Füu*̃`]$& V°©kt13Ö¬„AÅ$‹—„YñçXĦ©. a^ü9j´…ÄQHx]££XU #Þ¢Œ·ju”Br‚#ŽØ²£œ{¤¢ö¤8ª6³bBµ-iu)àqÙ%Â@ Áæ œÐBÁ€]â1€,g{R\Ê!bh*si„Li…ñD°’¤\Z Ùžˆ>{R1àêlÕž$Ç”ð snÅzœÉfÆ“‚P Ž+°(±ceࡌA…0ÙFRÀ bí+› 0•ªËºÌP†B.N#MìXSÆù²ý ó(ÎC“¸  M„Î[1EÁ¡8“ñA Û–qÐÒ$WÄ´ÁxÝt£Ød±ÇÊŠŽJsp’=a lõœœDÛEΠWÅÌüJإⅡ­ŒHŽÀ =Š-°K»&-ëi±'jOZvÚL,Ս޷«ím…Á©­i%©`bl¤&ƒ U×ܾ^ù@j¼«H¥%Š‘Áf6ÍP”–þPšÙ˜Bð–mKœŒš—ÿ^M\óóøídÔ<›M“éâ“GØâé¨9\Ïnæç“ëÖÛG?M^_ŒŸÎþqgf¯¥W#L1Ç»€\[¹o¾i§ÿÖÕÖ°O]óëo¿;UŸ{&ö8W7½y÷îÕ>ÙB+\4û­öŽì ¨º!üs''®yŽ1,­}í9‹Á€î¶º,oÀ –7PiK1Ì×ü<Ÿ¿˜,ÜÔöís×¼œü³p·KíÖ§„-}–z>›'Óé Sµ¾Ï°˜ï³ë¥[¹QóâæE{ÿãÅôïQót6=™·K„WÍ÷Íͳ³ØÞ¨sì†ùË)y80üoTÌÌžCêI«À®ùnöræ ÿ/NßLýürì/ßiŠ׈õà<8{ÍX?& Â}.¾æºÇäú|üî|GK=€yºM¦¬Á+üñ2mðgƒYüÙ`œ'ø¼ºÁkYÝàäc\ݘçY½cáæ~ü«Ûü“žü«ù.ÿd¹1 ¥Ëk’‡ˆ:>ˆ ;ù¸d‚݃ ˆ({ðþ.îiÊ8z„ôX}ïK}ëI}.i/Œ«ùÅt±ƒŽhv-òÛå“'0™…7š½ÈM Ÿ£™A·¡v?Í“““væÉùâb6m^4¿œþ`ÿ¾øs±¸ºþºi>|øà/'‹ñ›Ùü««ùì/,âgó·_nÚ‹`/²Ã^Éxdmýdû„¸ÚK8æì©äýú†!ö´=$e5’§²ôÔûòŽ…f)÷3WÝ6×z¼¹&b›eU¾"ÌFVOˆÍE¢*úçzߪìæâ™pæ™hØÎ´T=jí@)Dˆ&5=T•¾XÈs²tN€lNÞZý„‘Kã…~Â\òŽ¾Â¡øRèžáq-pÝqzø¹˜ïú9]Îx„Ÿ³N†a±FÆ€þ,!ãD)o=ŸÑÄþ ¤åTÉ—PËï _R½i-¥â)Z·Èר‡˜°±%rÃY—½ålÕE?a¸½´Ëv […‰\ÈÚJÈ®$nÞ÷1£;–Ø”¶ˆMñXbw9¨v˜¬±6dÀê%X&Äð-š+¨e )d×¹Ð'jl86`¬²ì§ÀÚ$õ­°88¾°?“¼_Çb@ 0û”­Ì­aî§®X Ë[Q‹[—½5"A O©Ÿ0SF>Üñï5ÍüvÍ Ö,íXSI¼e*‰Ž5•e_¬m·×ºk´+†#¬l±é%•¨ ¹µö»¥—ù3m€ñtö~<¬ÙX@«%ÝH9á¾™•¤¸ìO|¢Q7¾ö¯Ç‹±3_Nƒäl)ž !o?ÏàŠÜ3"%9¶x@§$ i?;t­’¨ž…¨Ub_1z›ùºìmøÓès?Qdô>ä|ÏH¹aå6—-ÃfîeØšã]ÃæÎ¹‹…6íö8l#!¿ ¨˜bf8}r g©¬W)E‰mɸB–„¦~@†l¼¯ô’–ÎAl Ü+ï爡—To%3ïZ? ¨‡Ÿ3;ãÜß|×e?×yÚ)Ì<$õNlßrÏXµÜš8ÖÂóvèÎt…¯m;÷ôû¸êÔ\·7ZŽÞ¨ôgÙºì- ?ˆ0ò¸žžÂŸT{ÎLR}é;sTñEÓ=kǾ¿‹q,!d»q!騨V–íÛþòZº«t×.©í>Fªt±PºX(4hã&=ûFñ ßjÕDTB ”±]Höµ9‚‚´Z-ÔÈåŸâ@0¶­p¬¾>÷Áq5YÌ É:zŒªXÚN2Še럲õÖ ?bG¹ŸÛ_µ8’V(Bzáô`p¹Ð †ñƒíW=` |.åÚt-X—ÎÚr²L×â#šLRÄà0Gj_ÉÉ>nYY×ý¹š!_»þÿ•[r@Sv¶&‘FÖÜO˜*J×õÌÃiÃw endstream endobj 988 0 obj << /Length 1717 /Filter /FlateDecode >> stream xÚ•XÝsÛ6 ÷_¡K{|Ó"õÝ›wפÉÒÞrë’¬}hû@Ë´­F=IÎÇnü@‚’¥DqÒ‡„ ‚~ Ú±V–cý>:ºMOjÅ$X`]--ê8Äõ+¤”nl]-¬¯ö<[¤|5þ~õqzê‡nÏ¡$Œ@”fc±b9F8ðÞ‰až°æ\Ür!–¢ÓÈE"ªÞöŽ˜î‘$Ј 8âÛ¼>O\7²ˆ&Bûœ¯…™;næ>¥«Bfö#™|SJífõ ̱ÏÒ,k7âÔ7Çw˜ã0)Lù0õWV%߬ӄgø™‹z-H/e‰„Sß¾Ûd²L‹N­E-J9QÆ‚ptìûhÍJ"­ïÇÆ\;-p¹| žÝW¢z sq`¿Ûl28¹N¥aª%ŽüÑž´Â)¹T#³ßì(SžUQ üŽ‹Yè)ÿT/k8¦ªÓ¤ê«u.i’b ,"Ÿ0/lŽn0x$„#›¸¡2b$†Ca@#…€fM\¥"x­ç=xôc ÀgÆ.×íˆôâQÚÈ\×õ¦z;.dJd¹šR‡@ð³i•愲A&F„ú$Œ)Êù<;ɺžó-³ç€Åì±ýe3[EQ™(¢Ž‰¢VŽe±Ø&5ÆEöqÆ]Ê×jé‡Û´^ãB½»Ml0»áÉ5_‰!L]8Ö‹ZP?Ž™oËmYèà9èXÃ×slŠ›ùŽ})—õ-/Çpq†ðCöïÇ?ŽZ$Üà%ø»¿>_ÃìEC { `dû@Ž7œþ¨*rã¸IwiêzÄÓ¦ Þ‡´ë;¤]ß Íh“/Ï>— ¡üìzv²É5B¼_èÇÔÖ7Öìû`–è3‚B.“už.ÌÙWãÐkξ¬Ó…(ÌÊäþ`/H/åhÔ—uZC,Ñ3ÝÉ¢"í={C¾G"ê5®=ãÅb.å5îUÙEýÄóر`aÐv³!*©9b}}}ÏøNMÉ„£è ^ëü εOÿx‹“ÇÇH|*EU UÑÈÜ}s‡u©OiìµÑ+_nàŸºP¿ÒÆK!0 ße•¬^üwHd•êÉ UÓú*ökZ™s²-҇ŴëFˆÎ¨Ÿ`_vRïÞ©sòõÞcqÃö"à/?‰ aÐ=j#j¹ï0¸¹®×*§“šrír[$ªÎUø© ¯‚Õa5’¹º^f¹Ýv •y$öHC%® k $æĤ¼ òr#!M@º„R׫i±Ì¶ª¡ÙkmHÜ]T¶jKÈìeÇ,$UûUH]„ÉPl¾Ö Í“;žo²'zªÇ=˜¼Àkã1„xôPÖ«W¯ !9à!¹¹GjÁkŽÔ²”9RØa!-jyF0m”.€8“ÓÓvgªMôÚ4óK{¥w,š£Öu É€êBúÞ'cÙ†¡‚Îlï„iå~´v’¶K)ß$P ”Fód›q•Mµ®\Å~fr…ÄšÿËK3Yª®2ž*Ìd¥€Ó%B}ÝpèÓšæX'ᄎ¯ïӾƪIPÎ^è¶XÍü™ŸL?k¿?!âæY´/@Û>°ÿAÏ©¦æ¼jìoƒgªU#ö¡Cª•¢êëYD©uŸ­nBEãl§-vⳃ““3Se|>Ó'=2ãŒ: ÝdE«Ì1¤å\ó(½@ßg¥W2`MbÓZ¬ÅîÀºƒê>ŸËìY»Ü3(¨OÀ¾gÓrÖÁ³p“Èl3“LN¨D&|œ š–ËR ]Zèê£ý×¶wõÅ]]Š|H¤e7bû)ª­  Écp8/Tü¦Š{n¾ï²4Ÿ%ŠÇ9d:ñ=…Æ#ñ0ñþ^ßáço3s ÿk¹^ß÷9Ô#æðûÐ5xKé¢Åvth…¼ùÜÈjF ˆ»ÀFûÑÉÕèŸÕu‘¶¿0R.õ­$}ýîX X EÖ­fÍ-x;AjWðeÖåè¯'Ë‘þY¢ßM€%𺳴^=üY¢SÈz+¥¬ÛðÀ‹«ªKxs™¾ “Éä×øù>…þ^õ²hž9çRÆÝ“°8þ“µi½âÝ£¡}ª1í½¨’2Ýè+ô?Š4/•SÓ3õ[¦¤o>7Ýxáz×fì¬ÏÑzl«t‘ǾËwÌÎ Þ„¦kYbYo·A½lT”¢ºI1­Òß¼W_Þ¢<Ù2c((Ý!&je¹e³å ÿiT´¡ endstream endobj 1001 0 obj << /Length 1412 /Filter /FlateDecode >> stream xÚÅWmoÛ6þî_!¤f#ê…’†vX‹6† Øš,ûÐö-ѶZYrEÊNþýŽt,f$MüÎڢʋ™M·EÞòræú‘7]sÕ™¸ªürü”…Tö‡Å˜ýðÔ‘®=Ö¥Ic¯›\4Ï·µÞ¨¢®ÐJ:å®Ä† wT_¹Y±x°løÙj'ySðy)Ðì9—"Çë ¿»U‘­Fbò[Ëô¼¬³¯Hæ_KÀv°ÎŒ¤Q„VšpÜãrU·enÏ]<Ái‘DÒiˆAòa´ƒÅ „Zµª›O^äIøG‚ã¿cPüVK¥Ý¥ilâDS6ýà®D¹Á½ùî½ÒáÐ{ïÛJÁýZŸí#˰2¾çEƳÚj… ²^ Ü[´Z¡ 6åù—V*D÷àÌxúç,°”‹å ®¨Z"÷ÝŒyÓBd+å‹òœ·ÂS›†Á!N§VuØy¹ÛÎZ Åuãnšú‹È©›åöF¡óC.+z‰á&:Ã=§h[òÃ#”‡C¸®”ÚÈ®®v»éNž¹`ðàøs২£i§NGú(h‚*KǨ¹n¯KYŸ(&ðGã%?À"°÷<ð¼’ªi3…K¼#MaÑÖ”ÉPMlu—¬2áfuGâû±@¯ôíŽäê¹ÍV÷³jUmÀ24ޏ¥jóï÷Й»±÷%ßlÊÓû4D5î~Ì4q±¥ÅÅåÅÖ/.tz}¾ìöØÊK½i÷¸$ˆÛ®>>öT;}õÒæ†9¬Ï ½²¹ñ´[óR j'îY”> stream xÚW[oÛ6}ϯ³€ˆuWÑ Ë€d@±§6ÈÚ>Ðes•E¤ìd¿~¼Z—8Žˆ(úãá9ßÕ½•z^üñpq}ŸA¯eeÞCãÁ0q’y9„ ‹Kï¡ö¾.–-ß¶Døß>]ß§ùÈ< !È ‰¥íb¨L.B‹.m³‘m`ƒ(—{±9rË|.Výw‚ONÏŸ×÷q<&ª€"“Ü=ͯÓÌ3P‘£‰ü JC©ŠV?̲&hE;Ôš· Œ<àäöÀ"°©õRÕö\`v>Ó®eæ^AÍ“oqEšg»¹ÆfaáI·2ï;?Jˆ´lñô|ÏíFãuø„<úÓ¢š¾;_Ý 2¸ÉÐ6´'ÚhÈ‹*uzj‰¶Ûöyº…Qµ¶0ý2xg¬[ñwéÊ“¹.¹£©Éç K™u*¼î¥®ÉkßÂ4äò4™ )Tyµ3¸Æ](ò’^ Ë´LSCó[F¸¶ÙA)׉+â„eédÙØÎ¤Ã”IâlN{F £tâZN™8ßµ-]‘J{Z?J§ ~”›û5–ž`3 u‰ÙÑ^’[-ñá‚ ó²|ž}Úwäß›MW¨úÅ”QÛcn U4ì©dQãFµ'Ô·â˜Ã ?âãÀ8uòîoÿúrwÄÉÒoe˜;+|`­²©KéßÄ â ¤Yd¬ý2ÒŒ¶Ëy4gmòÖ¤GK¸­IÚØgg›†ëÊð¬Î*ÌÓ,,C×Ô}Õ…Äš²!·ßÁõo¿tÚfå˹¶÷ègá‚àj-–¨Ç–«ºæX(R©öq¿[þ¾ÁÉ ¶Œþ#[/ lõÛ±"J%–=zeè±Ðc’½]~~Q2°tçÖBlù‡ëëý~ÜÍ~ ®?U+0•p°|3Oâ2L§yòÛøÝ¶œ¾2Zå(´ »üüæ ]¶jZžb-»Lœ]Æ%ÔÉF_1Œž¾1Ÿ­â®å9ÈézžÎÀÒ÷²lMÕ)©Q’<™HÓB)PAªzSRÕ³¢¬¯ÄÄö0λ U³c¼eŒœrµV…«ž5Þâ®Ö³H½ÊŽ%O5ØÁsòŸjmú„eG{aæG`éOšZE7˜_Wî×Ä [Úl¼Fü¼@™=细Í×»'´Ù¶øô·ÀÉ$*$X–’˜Bƒuyy©êLæÝ>›U2+Ò jåp„Q¤¥û롟  HŠCOxG@` ’ôFÃ@¨œJ§—˜æö18°ˆsÒýˆB˜¹á#%–RêT¢4“ß#ÌZ¬žaj“ jm“A-÷D¬Ig·E_÷bعŽ1Üʪ¬‡fÅÖô&Vc!Sº€TwÞ‘+‹j†ïºóÙîÑ%¿ÁœÔWC¤nä¿«ÉmnмêóE/- W.‡ ë•™}úÞÆžuŒ£¢øT•ý=¤t=ÎdIÚ¿hicº«pX_á‡èû±kZýmW£#‡MwQ¥géiV‘`ºNR@ÿ  >|¢¾š¨wµ ÿ꣟es®ç¸à%ýW¥ÿ£}ç2%ž€¾hwÿj ÍÓ endstream endobj 1031 0 obj << /Length 1613 /Filter /FlateDecode >> stream xÚÅXM“Û6 ½ûWh’Cä™5#‰%µÓCÒ&™f2Ó´qzÙä [´W­,¹”´»é¯/@PŸ«uíí¡³4 À#¸Žµ·ëÝâõzñòmZ1‹…'¬õÎr‡q_X¡ë2ÁckZ×6÷–_×ï_¾î`%}æpP£—lò戋ŽQýf½øká‚èXn§U„>ã\XÛÃâú«c¥ðã{ ~Š#ëN/=X>ú¨7·>-~íôM¿Út·¦»¾k‰ dŽ?bxŒ6y,ŽÜÖײª—+/pìY!Eòçb“%•LiôQ-yhË4ÛÖYYT4¹+ÍÚK/°Õ!aM‘½ ©_6Èm]i3æañ}ñKP¡À‰™À pˆ“3?Éj«²#Z9‚ ‡búÈZ¹1ó=¶¿m í!8áyv]Òw[ŽM-i°!¸@Ê[¸@nz¸`tTC¨`â‹8¯?|þXàÒT¹3‡ÜÅUݤßVÕQn³/ŽãmÍϪ1¿Ë¼XÍúìo©ÇV€U䆅ûÜ.›,‡5z„&l¾¡ì£C›¬ÈŠ=ý¤M 5ŽW×èŽnñ¼$oZ r BvÞ/ÝÀn7÷ÖV´%)ÒÉ2;$ÝqÛ²¨U¶šóh³ô»iñŒ"¾ Ô—’G¸a’’·šÌéÙæIUQÁêËs T 'M©<3IþŒ–ŽRIç³×®dË•ïùö¥R²:–EªÁÆ£ªLMTjlUªTÆD_y~ˆµ1‚ O)*°¬¨¥2¢™MÙ©)ÍDI#äUIÒQ•ŸÛ,•)3ö‹i…µàEL„¦>WÉ^ÎÑâ“R[TnÏG˜}÷WËUà86cLÇÅÚã,vÍÒçÏiÉ'N߃¬oÊ”dAÁ ݯù,;^{1OH|&˜3š8ÄRħ­ÜÀ׎ótâi.oenä4Ûgue5äkµk‰ÚW±ù·ø¼RK×±÷ÍA†hŸŸûÉe1JëPd]Z'&û¨ˆŒ¼£ïc5ºŒ÷ _RBc³&øÇœ¹q‚`aë‰Æû|o ÀNeÛ Û²“õ”šæ<Û¡¹ŽÂàâ1\VÒW³öîÛ„à†5‹jÆ5‹+r‰£[MœyÏÓ•l þXd©½ÕŠ¿½[LÙñFªqZ×ãû9•u’åš —8dÍÏ&fMÑÝ72½¢9âT½m‡–4¹‰tfØ¥6”R'â9Ù7@R›¡41WPúœ° Õ(¾TCç¸Ô€› ?"½—xAB?££?ôÑÃI=˜…ìØ´+1Çq.……‡Vß1O¶ún¨º»É¶7EG…'§s\€.êpB»º)›<%y#é«Ô‘°W~äê°qG<oûÜÒ‡méÚ5Íeæm&~»ÈéQ»uX0Ô‘›±ú?Ç‘èïiqŒár[º‘!>¬Ç  Ëè³ëZºáJ² T3¤XÅmÉROâŒ[ ÔY̆qr‡Q‡±®hÉöìj†£ßúIVý ïsì³Èí߃îˆGJ:P_ô'8ãZ¯štµÄ "Xø€¢À.Jò§Å›2j×V.áèíúvÅPGS™îã²|Áò)éB½PŸ.ÆŠBÊ´}Ú`O<"§>ap4€¡¥ÌXa¦Uä Ä$”3aô ŒQtÞ%—ó¹?Z„  ·Ô ³`ìôºË0§ý¾Œ=¢„'<§^=¥]ð™ôíBžU5ƒžáÙcáZn¼ÚÖcr§_BTj¬€GGbžBã,(ó¼Äоë~Ãg`Y zßnM°£…÷Ês™‰¾??lݨÕåµSÉóÝNž+˜ÿýsFô\¹ÀãNÆòÍùfàÛÄÕ\:Nž.L§žEO m.0´9ÿ#/"€ª<´OÁ4͆¼(s©©àå$»úC‡ùKe%x_V ë²vš@ö”®ÂôÉ(´Üeõ IÌãWÕôµ ÞW¨<å¾7ª´Ë[2Grð#{½Œ >dÝ[¤…®!Ó~÷¦Im¤JòÊ<ÖÁÜ(šü ¦0 oÛ\|}Vœí¼àLðŽ “Š¡ L 2Ïb0GáoÖ‹ÿËS£ endstream endobj 1049 0 obj << /Length 2551 /Filter /FlateDecode >> stream xÚYmoÛ8þž_a´ÀBbš/%-6‡k÷Ú=ìÞ‡${ûázd‰¶ÕØ’W”’æ~ýÍÔk”Ô)ZDäh8"ç™Wš.v ºøåâýíÅú£d‹˜Ä’ËÅívÁ(%—‹1"E¼¸Íÿñ6‡æ´üïí¯ëA8àõ)#a‚ “ÈrAhà•Þ•c^ñhÂ.ùTÖj´h°xø!ëXË¥]÷qɯ¬–+Po£tmG‡¼P‰£6Å&O´ÊììT©,Oë¼,´%”[÷,vTï•TI‘•G;VÛ%¼­Jk}i)Zµ;†$ZT¸a;¼Æ} 1Ø7—1‘ L§! 'Jž“û$¦aËNû$h@ð‰„ÛÓ©lý™R^×xj¤ßãæ“C£´×û¤¶£¤Rv°±:¡U…µüŽ Å~Å/¶¼½¸%ÛÉ’c™©èLñëtÆGc­¶¹9Ï J‚ð^ÇÞùßZ‰0&¤­ÀÚã °"œ:_ü¦O¢)N–fQS;ÜKË"ËÑ“ƒ%TJçY“´~¦µF“L¡‚ïó¤µY ›…gÇTn´ªî[\Òã‚sæéüª]í¶Q6uZ[ê¶2¦>”úþ¿ÿKÃfØ¥9+Ça9Q$ g¢³s] I•‘꘦ÈgbGv+òz?#–S©ß2Õ'uõf Æ7srÁã¤?u!Æ ü± }øt¿Y2÷k¸nœ•öY”¨O_"†u’–Ú ëºÉíp ‘€ýÓÈ»5ª…WFµVÒÖà4лVO?ýC¥VsX€ ÕÆ@¯ðL.ž•“¸ÖÇœõ±á²åK\Í{R©Ýârƒçn·p}NXð ‡æDôiåU øFaç˜g:²Œ§žÌ%ááÄ\þØ+ ‹’{΋¢rŸš­Œ†¨ÁNôvÆT!pùq¸ª%‹¼]sTEq3vЙÏ%x¾¥åy¥ð’Ó雸ŒŒe¿/3èRƒŽ2ÌQ¹ÃƒÀ‘!MGæìCKË ‚Õ =ÏœœÂç‹cg)›²)24y_JkòHmC©ª*+mÇ6QóíÂ1«ÚñY;6o˹ÀDD¼Õݧw3êŸC64£ñgËcîR%uqЂO=“nQ®àèœèTáÁ@(=55é\s`-ï!øÌ‡8¾]2ê%ÍAõßKð…èÙ Äö`ßd¹®«|³äPÄX¸‘áÆ·É×HA¬‘1 4ò ·Šô¾æqˆ!L¥Ö¨g"‹µŸ(¶!ÉZãƒ9ˆ¶ôA¡³gÂ7c”PÙ¡TC¡võ¦ž‹Ú"&QÐau9çS$dr,鮨'sŸ„±ÿ-aáXØþN9GØÊç>æÒ™ÓF$ê9­Ô$Û—é¬Ø˜„¡œˆuŽ M\X9›  §§|j'ÃмþÈØ8$ù~—nï‡?àA'Ýî^:#ÅŒºè:s¬}¾†J“]¥Ô¤èÞ©+±s÷ ÛÅßXÉ'ïí2À6ÛÁ,<͵Âl /¯-UïËæ€ù'$pã´QÐæ93R–kÛÎOœ¤5ÓÀ j%ðqs˜©ã)¯òÔäXXØæsxƒÕ›z¦trAÒFª&IyŸÇYÙΓ6Á'NsýNúì¤Íå#žHëØŸBÊ%³e=ð·\!xIŠÈX+ñ#±T˜; Ÿë‰å8¦QÈcÈÜ>˜2äØH¸:ùÝ Ê Õh4ø=máÆFÛÝމ Oýï¥#Sé¾Þ$ªÚZ( 3.<Î*?=ÜoþzTu™wuªÊ/PÒ‘²Úýe6Ù@“&Ä(è\PšZK7|Z²@Ëuêß×õIÿ¸^?<<öËË•±“îó/•3 ÂUÌâMs(ˆ8$Ôdßr_«­2Eˆ;ÕßÀoIzuŒOMD£¾wpȽOÄ~À¹ðþžT÷Pà*Gý›c{Gìk„‡ZìþW2Œ½ß]?_(­-“i9áY›ÄT® £î”•ãüÀÖJÀb“8ʉ3Y”œª¬©Luu»©Ñ…,¸d^Þ7À@i¯Í–íXø@ø¹<¡ãIÛÆ òÂ>oj ÂÖR,°X%•Õ£}é ”Èû§GÈôå nBúDÆ2:c‰±¹^é €2ÑG$PH€óŽÎ Ææ\2øOfÜ" ÄgOl4+s4Ç5$yF#º¦B2ó&‘ù;³¹•5 í×I“©Â&2½Çh.ï†à“OÇÜ#Žø> C­ï Å7ƒ¤÷t–8ËÐ?}Äl\œ<šè Cô°Uä£F€µ;» †*‡zúöð¿bH-›ªhÅ™ ûü5sxáêH»p”z ˜+‚Á¤ná?Šç¡Ï-ø&ê…¢Gsû!¡‘xcÁ(‡g(ã8’”AÀiÌa  ŒO0.7y¡ËÂÀ{¿¸¤÷±ÀZØâÖáE‚o˜<-m×lÙM­”ÄNwe™YB½‡ÆäGÄ›¹nˆÃ(€ìªAß´Q³>ƒ~ HÔ«¥ƒ¯Ù½¹ÓMšcC¬ŸË³–³Y6î3”QÛ`f†þù{fœùk­×Œ…!e,æsŸ_E!¤ù ¸ÓÛÆÿØy/ÆÞÈZ#NÔáÍÏÐQBãb›Ê0:¤‰Á¡‹ðêÚ>Lyk^ØÅ-²‘¨'Ì@;5%ƒ2&šõd”cË#[l#ßÓòFÕ7å¶~€ €—¡s…0¨‰Æg#-ä9¾,†P#Òþ¼+sÈü%¤#)Âõ­É=m’S1W#°€?˜Ô7ʓﺜ-λ§™ƒ{ÂgojB":×Ù¶—ÿ]é;®ŒÛË/Ó¦Úaw¹†Ìíò‡}žîí°­åa˜&ÅäZ Sÿ׺J°R'¯º_ÆMœåœK©ï¼ü‚î«okϺ8§,©T°¾Òvj®”X×9âÞ fzúè¢ æíï xng¢)φ҆¿3_Œ"¨ª'ÕÊøÆ{£×(Ɉì/ü¾ý‹ ‡OÌ.yÉè:M t`_›þ‡©þ÷§NÊ7~‡š­çcF¨”cWýð59žÏòO {ÐR¥ßùgHB÷ûßÛ·o± AÏ8¤Í!ÁÃáôPîì ÊõaÂÕvlJZ³l|ˆ$›ëf÷I•'m×aÊr €»¯gX ×O+ûT÷ñ¨ õúÕ›ëë7—î£ùU}*µ›m`V¨›¥ùUÚ¿Ë`Ö¿ƒ¯$Wð‡lÒ]Û€âN8˜xÕXƒD•»ÃbuOƒßÊq·ÈfËí[|¥¶Î¶Í‡ÌýÛŒRL“2T „PÔÈcîÎsŸOölWýáöâÿ@§ U endstream endobj 1061 0 obj << /Length 1385 /Filter /FlateDecode >> stream xÚÝWKoÛF¾ëWŠˆ€¸æ.ßEX4iœEÒ´Žã\VäJbC‘ —”äßÙiR¦T'½õ`s3³3ßE€ ûÃ÷ôPÇÓbªÉõCowÈé"žN»WÄî}¹RÛë.n®¾Ó kìÎVVÔ\a ¡Àsìô4òHø-«žêôT—x( \¥Ñ[Æ“*ÛÊ ß‡ñÎa_Á h– F²fpe†lzbQj{Ôf©¾IN9W üÈÅЄÁ6í¡iž©"hà»(ð:j¤)úvZ"Ò ¡‚’‘Hkú™ë¾u2úSÂi“ÛÎûÉQ_ƒÃ¶ß36ÀGÆzAŽ/GðpûñzåGÒ<À"òÎ ³pà‚ÓƒaŠU@ùI×%„Р úÿÉ»¤Ü3ùI …:|4ÿëJdýª‘uÿlýKø(ŽJÖ ÂàèZZôsêy)`ä<ú¬Œ uʘA„a`Æ>"k„žoN WW †-¤£‰¹’uàˆ·Ðµ²œO±ºY³±úB±pû¿F0"²a&ÓD˦HÔLì@P0ÑP ¯PYò販ˆ+5È—Õ¦UEûØeÄvYAŸ,]ÉÇ¿â{Ê¿\æaç{l¹>†å0Ãô¹3†‰šSŸ`"|;ÄDœHLdЖLÛ²H³b¥Žv¢-ê†j%¥àí)¢ì±£qâÚjbîÇÉ­‘™ò¾'R®²^˜¶:‚VࢶÇíäȲ·% Þ–i{,ñ¿YÝ•(­ôkè‚JNÇÝÔö¶ÿi† j¾\™ Jë¡[Ӈߚ,Y× Ú´ÈˆgFb(ò út ÿj¿[ü±Ik[•"ÌQY­~‰( ¿Ç=§‹ë¹RrÄ©@{½¼~R˜d]×[þÃåå~¿GíË¢àÏzÏŸ«XšL„£Vœ" ³Ú? v>n endstream endobj 1075 0 obj << /Length 1238 /Filter /FlateDecode >> stream xÚíWKoÛ8¾ûWí!Ñ$%’âb±Ølš,6qÓCÓƒ"K¶º¶••d»ûïwø"9ŒÑ¤·b/–L 93ß|ó öö>Lþ˜M¦ï9ñ$’œroVxcÅÜ„ Io6÷>ûY•h¶uæ/‚/³Ëé{&ÛbLHàL-1%2ÁV Èòlh…C*`-2[®ó"¯’øù&Ë›ÑöÁ1C•N EÌypì—y¶lïÓ-œcÿ4]ÒÿHê£ ŒDâßa†)&ž–8|9¯6ómÖ–›…þ:oÓ0ݤ«°Dï*7æÓµyìËvi>´ËüqSQÕfõ!ÍþN92@q6°:µqÒ#uPæWÛ´™sªBmòÂN.„8HÆŒôM›¶eÓ–™’¦ û7UÑîÓ:ˆ„Ÿ;¢"ÿ;]§Vb‹É„ôaãŽ3¤Ž‘•PèE ºS£ŸÜQÊãÄ:EÓ)"˜v—mûÐü2ΫUõbJ0" ÄôkÓ Ž8*qä°/$Œ¢üi‚biÉr“çFÿÙª©œ\Áð‹QâÕê¯y½V ™Ø1ˆ›SçùªM!ŽËj~Hß! L šðÎ1seŠf‚z)¶ Sµ±Ë•yfuž¶¹'•p²çà .Õ¬“­î¿æYÛhð'³É?¢%}3žÀ“zÙzòù öæðñ°ˆ@ß^‹®½ø%bà•w3ùËä RŒ ‡ò˜x ˜ŠitX)޲€:$ÞÅ·¶V•%ÍZ@KP ¦ þUˆ˜µs8Zˆ;ŒiVæ›¶1ëéfndoBˆŸÖe %$<¯‚ýýkD¯À°ò›y/ B@ê­uºa›g– 'Ê“TPE'&„¼ÀM9Jxò¸5¬#Æw‡Å2F,¡Æ wy“Õåƒ¦Õ J£uçJó©±ôìkécÿ–¦«´i\,%1JhOÓ7&Äo$JXYäÌiAÒæ´uñcó™\>töX¿}„ CiŒÌÓ&“~×¾«—›‚¸ÉDoý‰«® ‰ûÈôƒƒ( ðXå]ç„$–(ŽÇ^¥ª±&6§ÆX„*¹#¢²ŸÀÙ]VíŽ9û„6ɸ œÕ*ÃÛµ®ǘsœ1Fÿ±’/8àÐ÷²t3L ïËAPôˆäËÒç97Q¢Påˆw¨€ßïJ…Ö–ƒTO_MgÚÊXoÅàŒ=åêUóÚlél‡p8﹤òÁ…î{ WJ_¨ÐORSÛ¤Ñô'ù|nþ®mo­&±Qo‘¢†¡ß«%ˆëhÃâsѦ ¼KñŠp‡1ãÏ ã!p‹§IäF(&ÜDú¡áì’Uu70ëiX-í.]SÍ*µw¸d„Öº±:YcmɈ5·j OWÛüÍì¢p¶3Œ‚ètÍŒç#dž¡WöÚÐk—¡W}¨ãÇ`è‹—mwgÈo¡Zת6]Í{!Ÿ‚,]‹,é"vxÒ‹J‹ƒT’A]êËÁ¯ûÝýïö&>Ô•¢¼×s0ŒPèQ4º\L0zÐQc·}}:všJw1Øï÷¨Ó¬:?P¬žÇ9¸ 'þ‘(!l„×_:ùÿwΟçÎù$è0ÝÿÄE8 endstream endobj 981 0 obj << /Type /ObjStm /N 100 /First 953 /Length 1988 /Filter /FlateDecode >> stream xÚÍYMoG½óWô19lOWUB'v$@ ;@²‚ŒDÙÜ•HÅÙ¿¯šÉ”H«e ¤©¾é®®×U=%ãLIb|0%'CqeÃ…pÅcN¸z¢àLrd‚K&ûˆûbrÁëú'aRê;zφ#פÄf(BÄ“ ±Óß3$¬¿á‘˜®@H*dC)ð$89gEcè"¢þ¨ÉÖé H‰TІ cHÁ5V|2Ì®â3¤ 3âGq4!GbØs}ÏBЩÈNìT"Ã9èXë²!E#N¼J˜ÅåŠËFˆ£JRªfpF˜²ÎÁ¢¾!x&UMƳ€ ‰‘Xeo$«Uª ‹¼ïŠ* l[Õ)ÝÛî_ÝÝ÷§ToTÉ3¬bÕ­‚‹¦kð–IÃ>[N°WÕ¢¯M÷Ï囥C¾:¹XØÕÕÔÞ,æ_«©ÆÑ#$ËJ¼ƒ"¹X“E®Þ§»h=âbЃu~h‹׳~9¢En=Ãd•«£·Ø( ÛÀe¯óÅÅåÍlq6Ûå"ͦœî³©”šL‰½ ض¶’é!vÈ<äˆBmàȈ¥ L¦Îm`±‘üÀ”a÷Ü öl;ëÚ¢ž-RÚ¢°sŒ²‹¡™ä%¤Mé+•ò¹¬TↅnW¥õË~6Úä`xC÷é–¼Åî–¢Õ­Ì YìZ&À!Ä·wYS“¦{utTÇï^õóå¢{Ýýzò£þ}õ¾ï¯×ßt݇ìÕ¬Ÿ^,Wÿ¸^-ÿƒ9ìrõîë±sz2B„|±,JRlQ¼}š¤þŸœà’îI›p´W?.××—óþ#Ôò´•¶ÁOqÂ4#gr+:Ä`QÙ5¢QÖÙZѨÏlBò­4Q{5¢•G¼<¿žÙâ‘}Ô±Å0ŸÍ#äòH-ø[ˆ…öC&©mˆêS»[^D&#²d³Öø»ê¤i”/—N$[P9t"ÅÙœùy c¿N$"µŠ÷ î›7—ýjüy6½<{D&CÈ5‘ÉÇà§Éd: )càF´OÁ/­hØ¥C#Õfýe¥À軿Ðã¬åòùYË|›¬,ƒàaÜΤx+5Ä’°a‹ž×;o]MæÝQy5_ŸÙ“óéú½]^k^¯ÇKÍtÚpµØ\O."šdŠî ÉïÕ©_M닛̫1Hì,:vÁ†Zàí§öb5½šíÔ«&›<§<‘]ŠÌ á0h àêV0ÔÖS¹6tðÚÅF4šV¤KjD3ÚÉü°–yöùÉVß²Ecc0—/™Ë§0Wx* B¾üPx„æü@s~ 9!ŽÉw’±ÀÝ1‚dô$|—KÐó?T3û Ü2‘[|ÍÂåÑcήˆ6ñEöªq1ïûÙùÈIJ)L¢h“ïúœˆÅ˧xÑq62ÉI™éAP¹‘r¿’-ZUÔšÑÿ­fñ.ÛTñê*ŠOêÒb—gTÙ 3ýìpWeƒ ‰ø‹­²™“Õ¯C±2wù;8oõ€÷Š”{=°KæO$š ¤’ÑÊ0ªªr}J™ƒd9G¿+QÑS _~ %ýÌݤøênçó3ª…ÁO÷»Ð>dëBjEƒ¹r#š1vαM9 ¸µÿøè“n<¶¦<ìïø!x¶wt)á]JÈ£œ$Ò#p¸ã¸ûŠvtŽ«~Ï)uãÎó/äL–à=B=åV´$ôH¥­»iÈ©íŠö=m`íF”^ÚЄ=43µ¢'aÏÿE”Ñ)ƒïß«v¢µâáÖ±Œ<M©nõhÑ‘§F´îÈÚ¸´¡qVbëØBÎúPÑÜöÙäÿ±³c endstream endobj 1091 0 obj << /Length 1237 /Filter /FlateDecode >> stream xÚ¥VKoã6¾ûWÎ!6sIQÏ¢>¤mR À¢hâíewŒDÛ*ôp%9N{èoï I½lÙM²Râhæ›ÃoH­E­_&?®&î]ß IèÙžµZ[ŒRÂÏò#­Ul}žqoþuõë‡{õ,9 ¼ Ú$*äšìd™íkYÕ¤ÌÙç ~6¡&Dòzß/Œƒ…íÃ;®ÝëÇ}bwµsÝØ™8Ä xË_‰²qdaxÉš5±¨E%k4"¹O< °U®©tÈTÿaÑO,Ûmôã¿zØîôøá¡<ŠìFO0ÞRƒWÔ`\: ˆç#@às&ÏQñMðu‰E‚3Ów ˆµñ˜ŠªéìGIMO l:ÒçCNŽÛ´¡ñçm þS%6òõÝý|Õ4ÒüÈZÊz[ÄF®ñ²£°KÙgƒ#ë×i׉£Î´1Õƒ#Ÿ0Ò5ø1— ›:ÄæîïF-õžÑ%„4ºxzo2z :Cg›}†õ~‘ÙsŒòþeíÒ•Ò÷€»IQ˜«£ùNÏ׿y¦Ö|FxGë»Kí\J Ûá„RLÌ%ah2_ŸUgÕ\•E‰âl˜-ñÐQŸöã¥Þ ïÑÂ[ï1ø«‹NõÝtx‡/Ò´@98h]ƒW2• ï÷—xÂ{%”‚E}=K= Æ Y×ÓN4k[)Üå3þõÆ™|õDÇPzÄ Ä¿Œ!éŸgÐÜocÚŠ¦ÛÊ7ÀÙ½ N¯Sµ15Ó­ÔáÍÊkЭšÎ`nF¸züÈÈæO endstream endobj 1105 0 obj << /Length 1676 /Filter /FlateDecode >> stream xÚ½XKsÛ6¾ëWpœC¤© ãÁg&î4míÎd¦íÔö´‡$ˆ%:©ò!Å=ô·w—i’¢Ý¸‡^D€\,»ß~»µ6µ~Z|·¸¸ö˜’Ðãžu—XŒR"Ïò#ž­»Øú°Œ •r'WŸîÞ_\»þ@Þ¡Œø(k…" jÔwÏ‹k!kl\dsÞ ³GJ²õhõd'ß#aÀ»²bÅÝåQ•+›»t¹.š<ÖÃ"ÑÏz«ôà#ué^•»¦–uZäöZV*†—LŽŠü#¥e,k©GI)wªû*kBcC©ê¦Ì•÷úa¢%iòQMŒÞÐa@¸‚'(q)Óv¼[Áª¦Þeí'ht†äC uƒùU©–%›dI¾ÑÆü¾òÀpmëµlºÔÄmf\º÷}*¿=ÖßíT-“¢´÷eq¯¢šåæÛ¿2ît ‘º ÃA­¬7ÛÒq w{¨mëz_½¹¸8¤ÛyeƒÁƒíŸã"YØ©ë9bú@î8 7*ÿ°`‰¬S½(†ý§¾v(æƒCCMÈ—rÃZçsʨ¶ÎöàËE7€ šðý%žÝ–¹Ì*UéUˆUüt£-Mµ4¿™Eà0ýv/£Ïr£Ìé=w”(Œ8A_íÞ#©€g™i=@Ö-­vr£\½E®ê4Bi„Òm‘ÔGY®„¿T3Àð}çŸ0Ø(#oFGØÖ×ǘR®;×û³œ{N@fàìpÂ(Ÿb+.R„Ñ£„žð/¨ðHJÅX˜ ¤áNÀr«L²¿Ëªb+w »ýfxŠþ)‚tMÂ}åŽOxï±6â\„†~DÐÓy]èg¤!¦E¥×HÁ–•Ê<6›ý@®ÛǺ+ÒäésÆ 0Þ ^j}[£µ@[Æ+ Q€ï€ô5D½¡NÍq›F[=ÉÚ¸­(æÝZõݺJųÜ!"áê‹Üí³'c¶‡ @™çtág!„ß׺^½z…t×V¹¨Éd­ô4+6zP¦Õg3ÂÃTzŒ!ÓËŠ²TÕìo©_Uh]?;È2•½E6dAèš9Æ:‡RomýTÚ·S²jJuyvssvn6M/ë}Q™Ùf¹Ú˜Y”^Fßb˜=~Ã{ ?dmºJ‡–p!›ú!II»ô‹Šm•$PÌ©M?‡C͆­UëªÈšÞoऺ‰ÕÄMûfƒi4à‹ ¦eÊÁÅE9ë©RUcOðÑM©9ä¡€#z©wvf·¿y´aâ¢÷'0)Ë=,£nu|ÑÑÉô’_ ³²lò7s‚•ªI¥Úþœ2.ݧãŠ.J…ñ^© PCî¤ë4Kë‡Yeò0v]Oy¨;<ôp!^ßÚöHžö‹Vy•·¶Ö÷TWw‹?¬¥4Öß¹àЮí>Q+† œˆ0°Ž­èÎr€b|ËPfÝ.~{2ÃÛËè˜#ážÃ,Îpvz°Ã¨P3ƇµñêK í ´vÈâ‚;¦òÃàgs³á {$Ì(U9&‹àBcV@¿¾Ã@i4&м@W°Ó³×Ø"€±¯õÔTˆ6@ƒÖà5ö;U³ÛIÀ¤ë.‰^Œúëú¾ÍÛ'ÀBð‘ç¿$­£GÔÜ+s]p8×Vý$V¦û6þCO}Ý—#úm9b!tˆGŠö†€ãt'ÛÛ$N GáŒ8úqIJt3Ž ã%=I̲LVÕLsÃ\ßÒ3pöÜí úòöh79ÄùÍǜŠfvõŸÜ®ÈpɆâ5Šü™‰:yÂnž¦bãæt×%Ñû‡§>:ﺗQaCÙªÊ2Ö3U–ÀÕjd¼NH·«¢½mþDhT'ÝÁÙ6fŽŽöü?ƒ?:L3!K#6€ˆi$N ™ðjáÅI endstream endobj 1124 0 obj << /Length 1596 /Filter /FlateDecode >> stream xÚ½X[oÛ6~ϯ0Ò‡ÙXE‹¢$JE3¬Ú}L²öaÝ-Q¶I4DÉnö°ß¾C‘ºFvs†1E‘çò»ìÅva/>^üv{±þàÑEˆBßñ·ÉÛ6"®¿ #Ÿ„‹Ûxñç’«¿n?­?øxp’PùØ:Í™Hð•9S'/lCˆûƒ+V{Çr(l}óɶ|tíÔïú!CYƒ……äšÎ«W+˳íå Ñ¿9¯v"ÖëD”zeLJ­ jƒ±‹<Ø1Úü¤ŒØ¹( ºFÓ)8ãºçˆX˜¸È }X`z^ÞWÛ³Åæª×ZT„ìaE(ŽÎÿ¯ªÊ:ÏYyæUö\DCï¼ÊÔŸ¢OSyê:ÊØŽÐéëïʶ—Û:çE%Ï:Ïy§Ñì§N;ŒpÙ0pZY±²Ïnïéu¢€XRŒHç%àxi4ò !mOÂ6`ÝÑØeŽž†ñ:zh¢âØBŽ"ÚÊB |s¡ÇÃ"ª/5 ,´–As¦ ÝæêМŸW¡³dY=Ÿ¦9jlÂ÷©aîsø!áò°ÂÞì#ÌöŽè7pToqY¥9«x¬sóLQž¹r¼åWÛv¢´Pn*¿lŽŠ1¯˜ULo$%˹Þ4 a³c˜ˆ,Šî1-¶úÏxƒÒ›sÆQ¡¢À5qÓÊýxÛ 5õzM•ÞÔô¼»úÚ[°ÉO(eÉå^±†D‘+bVyYŠò9ÂhúXö"i*À¬“«JÀèÐì_*ÎÞ:(3©øx>(QŠ²Í‹Ä0îÛúFÔE<΀ÚÙÏ*”SżˆÌNZT¼4j¼KТ~™õ~ÿ_k0UEªüËŽC± k¢w±§öŽª~1©§ª‰PuªI3ÙŸd“V3å¢W—Õ\æ' „×Õ›×3¤í>£YJY²]A´÷yåƒÜ<ÚUV·¡§¸Ì zÐ*uÑûöxØü ½-ƒžÖÚ—Bµ\H”Û_f`Åtµ„Œõú%ذ%o–×ǫ̀ÙÝUÕ^¾Y¯Ç#j9«Þt9`.ý`pñwMZ—"LB!EA3 õMÐ5OxÓ<©œ#Ÿÿiè: \;Ã@… 0hÐ@ïØØÖ²Y>¼ùd £LF(Uó³XÁ²{É¥¾¥U½ºÖ?ºÁQ/tr3—šáCíîYtcÑÝ÷FQ‚Áï‚¢O*£ pf–i:Š›œÚžêM[™éanDR¡ç$tÉgÜ‚RúOÒ×È#ó†FØÌª½Em¢ {­ù㯎㻚›¢„mgêY±H•­¡™ÇOèú›”è`¥6™|<ÈÞØUn¸ ôw™'ÆøCAãúfy}r¢a7Õ¢ºHÏ98Œ¯DÙcXA•ÀÁ`zFùîjXï#Oäùìy%Î*ô°Z>“Ó6ËórU)²düxŽQ.3ñp–¡ËD› Úâ õ#ÀÓ´M¢·š>żî®wi´¼×Qê@¥¦~h¢Ôï‡ûÑ`!×Ûd¼+ ¦êmŒs5¯}¯JA„Îÿm½zÿåûŒËÇ7 €˜ïv^O!kºí×ó9’JTgj¸j3±Õ‹2•wfÙGH½V¦ÓׯM¦Ú’JºîéÀÊ”µ9½èlÀÊh«Ò®N½µô/—J•grÎd]ò«ËëëKó…„¥WÕ^Hó´§‚oÍS”^Eý»žúwª­¸‚hm‡_•°&8$©)O¿óØâI•ÏhmZXµÔ5 ‘j#EVw¸HUó Lûz“AÞVž§7î93ŸªØ€8@,Ê1RF¾’Ë1R ¦ûÔ(yh@ǽÒ?ÿ´rf-Ú?÷2L ú!<\{ê<”×'©ö÷9K·Ÿ¼@“ýÕûÛ‹h1^¯ endstream endobj 1136 0 obj << /Length 1215 /Filter /FlateDecode >> stream xÚåXKÛ6¾ûWÙÃÚÀšË‡¨Ç!‡´Í- Í:§$Z¦….%oâßáC¶d Þ šÂ-Ãàˆ‡ß|Cqˆ½ÌÃÞϳV³û‡€x1Šx«Ô##æ^H Xì­6Þ‡yÒÔ1¦u‡T%ŸV¿Þ?ðp0ÈÇ…X4Ú,Ö*3ìæ¸`Ì‹@7ðµî’EL+C‹bJí›››Å’c<—_:%’Î>TÍF–VL™¦ERÈÚ½ëĺ”z˜cI0ŠùÁW™~Ä·»ªj¯E%[hˆþÏÞ®fÍ Ä9,8` áÈ÷’jöáö6ðl#GÞg£Zy>`ú äÒ{œýqXáikP…EPŸx é ¨¦ÅÓ`¥(ŽHî6Y'r±¤Ï©;©žDÙÚÇ´QV¸]P>ã·öñ÷õŸ2éÚ `a_ƒ€Y)&øÃCEÌ­ô'Ù&ªØvESVz\ñˆNØA"DvôîNôPXãѼkl›4Õv×ÉþaˆŠî) *ƒŒî2ȹSr ³dªµµóö^D|nm¨BLë™›z "êÍŠ¨È­ã Ìãb±JTØ^LZLN*šÑù> <´Ç]ÀQ˜Ä¸gåÔ¶ Œ¦  v<_¹Ü{5U™Ú*ÄiÞMR…c62UåS–Æß©—YÒ'„I¯Àa_éÕÓ·òj¸MMÙŒb¤kõ¡MHbN&'ß`ÈÔó ¡Ô%1ÍX¶ÏûŽ úˆ¯ti¦Cßo Z.ZÛÖã‡Î½½ì ½­Fµ-¥f®tCÌ.r¤Uû2^QÂIƒœ×ç–烈Îï<ùæcQŸê£ û„ÓûÅËÓ¤Ë5 ”ÆP‹.HäÕöôo Ü”V²— èZUtź(‹no»>]n%Sk!“µT¦Õc]½í|ƒŠ<•y½øîl}”sÃNê6ÈKkÓ¥^x¤|Ø|½ x¾;.Éð8ü(óN‡?Ù)”{KSTgu£äær(ª£H˜-úå¡(›¬HDé0l´÷pBÚʤH{ˆséj†Oî&t¾›XùàzB÷Ú˜p‹»ž°FN¯'¬J›7»ròöaí®‡”ìvª>…¥oß®f§f' endstream endobj 1155 0 obj << /Length 2161 /Filter /FlateDecode >> stream xÚ­YKã6¾÷¯0r‰ Ä>$RÚEÙÍôlA’I:ØÃd¨mÚVV– IîIÿû-²H‰zØÓí | ]â£ôñ«Eû]¼»ûÇÃÝ›ûX-R’J.»£”ˆH.cDŠtñ°]|XFtõ߇¿¹—,)¤$4‰a;fS•¿QÊË–ÔÇÌ ¿£nß¾¹"˜¿QbXsBËÔY¹­Žƒù# •$iÂý¶EµÏ7Y±Z‹T,ÛʴѲ9éM¾{FáǃnºÆ?pÊnu¹Ñø /[]?­x¼ÄÅ¢å®rs`¶›|¬Îe‹O«Ê~£1­u“oÏY}f4ÝÖ_Ǩ#( ëj¯K· é²9Tçb‹ýGm­Ûs]ê-½ý5÷úk“DáúíóI¿±êÔæUißR¦ËÍ!«³Mkñ¿M[çåûM#ëД‰¤G@µÚb¡2«UÇÓ¹íWðƒxÏ 4DŸ'nIÓ±k˜ŽGßô ú¦ o¥c¼Ý@øgx`™<À” Aâ4õ}ñþ§/pÔÐ2 Ë;º5³NL"©ºUÞ½ýáýÜ:<%I¢^¾ÎOß¿P°(®†ÐVsoÌ(QIÿÂÿz¸¸…ôƒ ¼×™É¨"2Uj6ùþ˜ñ—“ÓaÅâåÞ’; {¾ôã!ßPuú&Æ$‰XÔë.ŽR ØN‰Ä ÷/‘Ì!Åg0PDÅ`lÁ¨ØËQ·^¿ 9x0r(¢·yóÔØ¼‘Uk<:&(áLÏ®Íò›üAv¾r9ÈC/*¼7ñUÈeÌÈ£)äÀlØøÓ˜ƒ1^Âtɰaº1zÌ¡˜Gæ`Š©àŸóúPÝ 9u,g!Ë©g9»ÆrÀ“óò98ÂEg !’Ô;h6á/ð—ü¥Ž¿,ä/‡óŠ?÷Ùñ/8 ÁƒÅ²Y±eObáI̯’8ŽãQÏ‘X±—X]!1G‹ ‰ù„Ä< 1w$CÇA#¼¼ xé½Ó!¿v“TØZô>gpéArö„ºk9iJäaÝ ›–R±4ºy,¡o±„6 1d¢ Ç_ÂÒ‘x«‹6»L¥Lh{— <’ ½†¤JCËY—C¾=ƒ%¬œa3ÂöaiTóXBßb íK'ŸÅ!dÅép3–ÒE4F4éH¯aɈ‰¹, ÌOijÄÄH%'‘JNÊ D*é"•D*Pª¯Ïf¡Ÿtñr0ËóQ×ùƤ-té4>[ïo¢@ûQëŸQl ~ÃT’ØÁàÖFh#ŸfNtyRPÙü{2gª dúFû²~$YÔæu°ûó»»iV«¤Å[va¥­D‹]ݾÛá“siu7zêíW(úÄNÛ­`lv.ZäQ¹6ûŸ Gó,­5”½ÃÕãzÓ¾Þóäû¼mn*ãxd< °Çm|Fh:@G?ÒÖÄqˆlò£_ïTdÝ —B‹.e ØÌU‡i¤ÎgC[C1¸5ì_+Øñ»JÇ ¿<”˜ƒ2-^$ÁAÙ~^Hzø‹åG̨{ã±µuV6»[ŽƒCÉêK–{0V[#;§gžtçÆÑ!Ùî\nÌìáHÔ ªNlyòcµÕÊ6€p„79ìÕ¸íÁê?]×Cy4çf&)W”“=™«‰X— f_ë?O38‚‚šuáìï°v o­5n˜MuÍK|°£fÀïj^8k‰®@Mư ßÇã·ÿÔegå¨$?fûÀYœ›› ½z“¡›CÆ8%J­Á¦Ü­ÔóÈœ‰]¥‚(x¹½p¹C¶1:ÉK×"‰v q‰h€Å“®«Fßrs¨\Åmm…7‡ð¤:·§sëFu‰KÈa°¹nª³V;±ÁÉ.|pÏOuµ׸ǻþñœÝ´f­¼z«53žªóöplð¿! öŒþ¦­MVàd;mœ~°Ñm§[Ë£›!†®ÒNhæŽ6‘¶ôp€Þóý/oçN6")U“{$s]Eá•Å0ÝþE;¾ýþ-Æã/__ÆÀ ·uõŠ$§Èã5Sw³˜&ÝVØE€ÿcÊàc„‘̘÷n$ŠèF Fê=‰`l”K wiâ°Êjz›³ôøýPµúËWûBÈ+< ÚÇÄGn–F¸—$JÝu¿;ã ß †‰¶©%"œùÏaÞ˜ð1©süÄ›!t\,3ݹX&(ɳ<º9hTÖ²ôÛF·ö¦{j‚¦Dõ7¸»üO½ýúáç_çŒ#67ÝM,&ϰx†¹ê D$£{•&?žŠ±>7gïÚÿ³Jà@ŠíÚ~À83LjŒÅ»L Ð µÓ¥03>:ŸþÐõN5¬g¯ù*$ÛÖG̃z{§–g)uäý±çNW5Ù¬Þ]䇩y æÐ™]x5{„á·•þ1e?éÒkYŽ^Âg;Ýüm˜0A"óÑŠAÖÁOã<—1¥Ë{ã °dn±ÆýÙa»)²fε¦Üå/èëcFÎe>wKA1ßûà€ª&€ëÁž‹3’ Ñæ*&"ê*·÷5§ @‡¤ ñ>Q0ù7ÅXñɅ¨¶dçx6*sÝ— å¿%Á— å¾%³_‚ÔôK̉öIç°âØcÊ?}‡->uý‘H¯ÿz¥œ Ö2özré3J/ûÆ"«îÌñ“é%AA*†˜¦/(ÃBZô’t‡\A’ÿà*ô`…€ÀÿIT,žq˜ûgûOy6Úýý’%C– ºof‡z6X¼}¸û? ´á˜ endstream endobj 1168 0 obj << /Length 3746 /Filter /FlateDecode >> stream xÚµZ[ܶ~÷¯XE¢<4/")¡ðC8‰Ó8mÒmû´ˆfF»£D#M$“í¯ï9<¤î³ÞM\,°âðÎsýÎ!ùÕÝ¿úâÙ§7Ï^~nÄUÊR#ÍÕÍí•àœ©Ø\Y!˜QéÕÍþêûhWW?p.«Ž5Çìúß7_½ü\ÛÑ ˜ f˜ÑõŽvyÆýWeKŒ¼ÚH CõzWdבª¨;äXÑ]^åMVÿÍ÷Ôòí¦í²®h»bG=Žyw¨}ã\ó/³¦;WwÔ˜U¾å/Uv:½¸ÞHG’sýg( ýóÚð¨Èw‡n›óæ:æÑÐɺN2ú*ÛýÜÖÕ <ì~THµ¦K.tS0—ïcRå~E”• &T\`Ïö'Øõ&V"ºÁb2ë:XÙ•‹–Fgç®>Â)wYYÞSÓ¹E `㯇¼¢ºŽæàѱÞç%Õýz-`|K?A0{Xtb”R#FÍNDô|õü‹×ß|û|…¯&aʘÀ׺Y™§ã=ëǾ]1eVõÝ‘\°Yw6edt[7G¤2ÊÑëˆX**ú¡¨K ªÛemÞ¹Ml¢×E¨WAb›¡9ãBNIpjêk¡A÷9R+úæXÿ[¶CîJt`ŸW»œ:0óݵ԰#ª¹ $•2’©Â¡à*¦^öʰÉ4‹u¥˜AÚ֨njAŸ†^…ßlÒ_7á{Úó±ø ‘ï7ù-îó6ßuþ”NŒbŠs/ PÛþrÎšÜ“ËÆ¨Ôj5uäHLTßÒ—ä 3j@Ͷ>WûÖ·úoV¶5–lÔäݹ©œ¼B=RÎò¬-òf4å :‚zÔ*“H¢Ï¦|˜­ÜÓ-¤ßÐaÞ¬qA€5DúšË\°LÆ‚¸à{!ÁWøn™Ð½¬¹\-e<ý=«5xp›bBi$ÅHP›’y,î¥.ÑçæPOΡ4š>é-•Juô÷©º< ȧg¹@9ùA)gÿ”;ÖUÝÕø'êJÄLšt*ëèT‹ÉIZ#b¿Ü®3i­ßì8a\îxÇÈF§¸ø4¡(Û¨ «yîý,ü±äªAwKÅï¾x63ÓÆ‚.÷=5 3'=ÛˆŒÁªÛáDZ¸Eƒ©ùššCÜÝL ±Ó{(5KóaO'ÖaJ@˜Ì¦•Õ‚¡T:eö;‘ž`èÒÁ “6úk•SÃÎy( }Û¼[õ±š.úûSþêùß¾^ó¯1ðYôý¬õä&¬E0ȾÒo¥,~F,‘—Å¡®÷~{3C›.Lü%o„QLÍ=íð{–ÅFLüê…ssè¾vuÓäí©®ö‚A¬úìMKPì‚ É„H%‚OÚ×E{¦ìãì٫ŰZ:§*¦ b±;ÐÙ,¬Ï¥§Î6'Jë&ôªZ@Õ9Ø€`Ñ•H½¡¨‹F‘ÁC–&bfBþöë—ß½~û5B-Àéd+qKàá·×&ꨕàªÚWŒà(c(Z4×öã7u—ìý’ þ9vvfÐxÜÒ0ÜzÖÀ†&ëêÆ¯…s,gS4ïÕ×#¦ 0R\ûÙ{Ê‚öT9µ8}Åé+–.è+âæ8™êë—7«ú³DÉ1)]˜½ç©vø–JžE:ú±Šo¶ácܹú¿¤PL$s Ô<„PŠ›èÍ›7T MÔœî#ªü €ÁléëA:”ºš¾(c]sv쥟cwÓÏÝ¿„ÚмªD~÷:R ¾b½)JÅSÚý^kÚ‰Î"­¸`(ÀïrÿQCQ6„ssIÚÛ ¾)} &Ø”;þC F²Xï#Y‹‘,O}qwÈN.zÅžÂícñelü5Çÿï\À¢keÆû…»CÖ…’“Xj A|f(,w1„‚©hÉ8º/rgÛ j&Vr)VÐß/‹UM¦òsUYÓÐî©n×ÅétÉŽÇø 0êÁºC«Ô˜°(º{¿p»–3(³æ‚–»œÍr" È"ª'‘•žIRêi¯ï$cã§Ñ—ÿäm8·¨Ü•YÛ®¢TŽã÷çeÙñݪR,î,Á§ÐÞÂÒjH‘GNÓ!Ч•BœJ9‚øþ·çj7ò$36ëtÁf¨êñ˜TšÙ¹þ‡’imïé»ó9”sÙQÅ¡iJI,Ð"M‘ ¦ î(Ë£–˜Jp• ²á· ’áë“7)9ÄÚFŸ”p„ FjSÞ_­&ŸÈ Y±@.Ú¦/sÄŸ0kûˆ­-îŽÙš­)K’QBfe"¦‡]v^›E@Qê÷Í’öâp¨×&‘‰ãGOr—w$-­'¯Ó˜~ÅÓ¡XÛбw>^›ÏGâ±£~Mßö”ïŠÛû!ðq…àÂí H/¥’3Xh‚IPÆ^N¥ è)k²cN‰CôT;ƒçv‘‚>í` ¶n}/P„k˜uƒ~+! q‰Gls¡‰% Z­¯ G߬I§§‡´ÊG50--¨B6jÐ cMF?.æŒbÇO¨¦ü^úaxTŠ;:·¤Òd>ß@MOzWyðTçã6Œ¥ó¨Ð(G4Õ:bkGò91ÓÛ"üeùB3 ¥àç"”’f‘;´‹œ• )0iz¢ãÜa›”©“Ñ›Î÷ƒ2úÜÕއλÄÊ­àëa÷±p¬VI„ÒpðåY …ýǧƒŸ‹Óa—²v̇"â —ØwK>Å_HCD6èbSßeþ Ç°’Ë¹Ç l:>ñ1£-û` w¿1!S{v‰!Í=V ’¯êÓ˜PyÍ}: - ¨b[~'/ãæ+ó sqÒ§ü¡Ø»÷ã–¾—ܿЊɉ÷?WƒÉÝ„k8ƒPf pXzC{¾†Åbl ¨EN» ‰X‚Ï»‡ RÅ 5[À©Ód:>T;Dß)"—R’§ÀÓøƒäô­¶ °NÆ@ Á.nÀ©Û¼â@»#†sUôõax¾nF°XÌhÖ›¯-:Ü`Á-&B¨E/„PœZ%¡‚2nù(sÀ˜ÖW:EÕbHSirrØ­®6kÁû„Íñâ&FÁŠÎ§AÛ:ÿRË>DDi˜Ií$¢ÜúeÛ¼ëЈ.µ2æ,ªW7ßýãõz2ëttýÖÈŸÑßÙèäÔ2fÔÖAËÀ:ŸÖBÄÒNÅÏpð«”TSà’æ†àZ±Ò™{¬\‡¡Baî²OIÂFºµd‰ùÕ5”¦¿¡ÂUoŒ¿¦Þ·3òWØ¡,À½M\–Ïf)–¨Y6ë)í$ê“ñÞKcq¢&—FÈWøA}œ—¦‰_vÓÔôøe??¦NyÅÉ]´]Éå⽋öC䢇Ðáq–\H¼QÑOsÑf0sÑ;»ë˜à¢]­÷Æn{“ÜÒÁÛ‰G"÷—%’YáC{è²Þ9„¾iw™#|œ¾ÇMS”ҸꩭbB&_]¶«‘::Gý°‡NŸî¡å8R”ð®ª![0 ÕÝ!ƒÅÇ !ž[¤ ÃÍã…†*òÏP+²«P;õÏ<˜CèK 8ÑL šù §Á¦ÂHòTX Oµ¢w”â½ßÂrFŸy^ŠÏ\Ö%Áñ•ïCÙ¥…‡žä_"¸_#Ûí~;3½Æf—ê|‡ÞLCU~í ëF[3Å{!ËÊÓá‚ÍæÊ^2ÚÀ32Úbb´ÅÂhSMo´¡enÁ°ËŒ¢b!;nGR¡½qvb+V9…±Ð±%ƒíÁ~3úxƒ d°¥÷e:3Ø2 \K×Qrr݆?Ä.d¢±Ø›è0í£Uyéa¢À?³ÐÕôYhŒw>d¼tµÑ)“øÒDrfÍ$üFÜéÄ-ýð±ÿ4ºwi~þþ×ba_´ðöB¹  õè³ ã;¼P –›ü—s:waËçu{ê-Ò'æQeÌä€Á2»'81 ³‹= ûôž¶0²¢î œ ¯ð°©…íéG¶Û›l‡G÷#Q6W¯¼R£x¸y.ß›à#!Ã9Qëð‹·i®TE+éˆU¯¬“ N½Ív²?íë3 U~jÿÃ9ñÙðæ‰ = ‡(¡›Œ^7³ßŠãùHµ½M¼‰FdG‚AïB’È’0›Ïã`ZÌ9-7¦²˜tJ·£úBÚRõtœó÷¦d0MQ«h…™½Vœs‚>¯¼õ²ýOçÖ=(Ä_‚Ï—LJ³@Ò]S—¯Ê¢í2 ¯ÞáZ/‚5qt :wص¼«a“‡‚±Ý(Ë¥ sK5!ï‰å­ï•íQªÜU” 0ªuÛQétnpz^hù©×¨é¡¸ðæv=²“²wˆïòf #.w ÃÖšñÀËswrçSš|‘ÒþY,1»Tô¥ãCŒüøßÛ è¸yÅ„auVÞÕ GÝáusk!<äœq®¦ÜÍàðÏUwq{öBüƒÕd@ÃI꟦RJ1Iû—¯méoÞ<üJzÎèÞ½º´9½’ióaš™LÂ¥Ê#ªx§´b•}J‚‡W8èÊ&Îν–À‡Û2˜w#\Ü­ä²ÙaÍt›Ñ•¢ÂG>”~¢0£‹'ù€düòp|™¦ÜÄÔÒÙ‰¾ GÇ’3Á®êruj ÒÌ+9# …S]Ðå‡^Ú‚áT ˜«Aàw¢3°ÀÚÚyx–5»½!0ŽÇá­CüžçÔ‡XŒ—kVzèÉ'Г»¬LëKõ1o8ŒPý̘¬î&¯V“íD÷Nblª"rz6~Ìî©âäuR!D¸žî×AÕ/û§3x…årZXC¢è×T³Gôâ±èhN—HÃvGª¡é!^ÿ^f[ädÆr¾¯ožý¦–xË endstream endobj 1180 0 obj << /Length 3223 /Filter /FlateDecode >> stream xÚ­Z_“Û¶÷§Ðø%ÔŒÅ#$Û¦3¶k§îØnœºÍt’Ì”'A'&©áŸ/Ÿ¾»ØHJ¼‹xôÀ%,»‹ß.ŠV7«hõÍ£gï]½LÒUæZêÕûýJDQ¨b½J…µÊWïw«‚X®zÿ«—ZLz*­Ã(K€í³mê£HÖ}Ø ìþ(âIÎfب8³72…FEËõF©<Øš¶/Ê_² *eOí?FIÔÊŽ>Ð3ÊzWn‹Þ츹¦æþ`¨¡úÓÀŠí¶iwe}SÝQÃ-ðÁV¦ÔDB™daœ¹…ý…zÌÖ…*ñ+oÚ¨¾T¸.ý-]ySw°H®7IªƒW=­`[𚊪k¨éPœN¦F† ÁL‡XeÓåÀÍòê…8E$Á±Ù™ŠHàX7ö»®ù3®g5&¸ûÜ5¦#Š$häuÖ" L»YpÃ,Lw2Û²¨H»IPð^ƒc>ö­9:®ÍþLʲîMûa-a4 Û7vÑ|(¶ÌÓ 3E»=˜è,N¢à½õüp[VQ­é†ª'ÝCæ:8–]~@èXKæçVyêÌóöé‚së½ÜmG¯›¡Þ± E½£9Á÷@”SSïüÌ·kE[CCgW ¬Õ­„ÅõÕÔÌÕÅE ‚é¹>j³5]W´8ôJ³Ïb÷óÐõ܆:FÂX‰€85 îŽècQd:|C•t†ûÿïmÓ›¯È3)’0ÕØ©_–µ¨“à "À+…²{Ÿä¸HÐûueè¼”(ÛUƒ¶¿Ç¢‘VT pxnc”Ù™zË|æNƒ-ÞÀrß8fô ŽmYøñÛæxj6KnV›%ŒÐ¤ý¨½5šõ.l7,2½þjÚ&Ds%Á¿Jš`6Ø yË^°ÈêÊʼn8mq4½Õ¼v§bkPï"ûÌT´°¬3…ͼ Æve׳÷Úés7=õPUWæxêïÜìÙsŸVÀ´.úù‹ ˜d¡ÎhìS€À®6[uBn°LUtÝz¦i¨#íþ ¸/)1x¼ &‡iâ¡Ö@ss9/Åý”’…òƒŽ?Á±ÍeZZ–—z‹¹ ÷¬ YÄ.z5ì­ÝÂr6"–ºjîvûò£ë=[d5*÷Ž ¶^Â,õ j¡Ss\b•‡Y–…˜™{\ß7c‘w(·À?ecóµ¥°´„¥Á\Šmnº¾‹ù ™¯l¸¬`s4µ(]so´aKí,rk»-ƒ›£Î$ ‡B ³a.áìt[†Õõ§kcÈi53µÛY@³¸0ÂÙï’tø I]hýãRNÄAOâüà{ZD<¯1±·Î‰¯sŽØ2åØQ“ÞH!‰+O•qcÙ:Œ}‘$9i Ë™ô °°öÌæôÂó‰È|îþG†¿aYjíãÉRH¬Ò0‹“¹SÞ<¹\¬Øf[•UË¢X-dMÔ'#kÊñ ã”3 B;ÓmÛòÚ°á‹ëIôa³ Àç<ó¼ÏÂ3¦{”`wôRØ•Ik8@{¢°í5§­¼£NŒbÐŒö#—…_˜­Zô\"¿»p{‘É0ν®-ˇðXŒÁh?Ô/BD3ëÌ”‚„%²BÎ×çžôÀÌëEta«Ë|ansÊ~páq‰¡3ãûä¥kgrï˜EÚ,ÀNþæn0j`){ßÏÒ|ž>ààwd´÷•ÔvÔé(IáZŸ¿¢çÞ gé—ˆ€“NÇà§bê•®gR UûUBªhE°¦åÂ.€DPiÒÉ ÎL;¢#©lRƒÂÞ Y&#(€«„C].íº8ü“#lTì¹0Í)­û…¥ë² ù…V.fK§“1Γr9iL5Í24áØQ/*‰â¯_yé×_<[ž >SW&£0ŽÝ·oÙÁÑl µãă•”º¡E£á¢¸¬3+9gÊ-v–„å°ÓFA&&ÓØf+I*ðÞlí%òP†4—M"†2²Ê~QqÀ9‰õ¥â–5‡šL‚€‘+qDœãÁs„,.þ"~Ï®ua8ðB)ÏøæÅÛw‹ÉŸÓ1êSµ‘g%t³ËoèiÝ•À † ŸX8Sárr§»L\T73|RÚo§ƒŽÊ‚šy¨ °ªÑUù«ëònÓõpðŸÙRËHs1ºÍŒ?ÝÌÓL€uxé–ø"ñVdÉ ¾ï÷&™ü’-Ý RdâNiæÜ)åb+€ö…;)èFy˜´Qì=ß¼¾úîÅ›×3Õ@Rè9»r3ªFŸ¥³“à­$^Óü‚ÎeªòÐØø)SÎí2»þÑðË-g…xv'€\ÐM&B{‹ôw'íõ½É–˜#2/9«5Bí6œËt²d¶œœÝS ߇Ô3Êi<ü·YdásôHŸºô,£Î“YF ¯˜Qç1i^ïɨ!DiúEÒ”8ZJ©aê1¥Îù†äº7¥V¡½ú³rêXñ! ç±—8Ñ ¬+L)ê¹ ÉØùì–)÷·Lžâ0Ròò²)Ž2ÙDov½HX¶H îñéRa¤ñ<|Q7Æ|*ƒÝ¯=‹h±ú,D IîÑåÑqœ.¬€kA~¶#|GŸ³K{u73n|[Þ0¸›ñªó,?úÝÞ7n˜d> stream xÚ¥Y[“Û¶~÷¯Ðd&jÆÄ ’nÓiâ&±{’¬·ÍCÝJâJ´)Ráe×›_ßïàBQZ¬w§}"xpˆË¹|ç-¶‹hñӳﯞ]ü¨ø"g¹jqu½àQÄd¬)çLÉ|qµYü;X·Í‡(ÍÀº}±üÏÕ›‹“töQq–fQkÇ’TžEvŽE(3IÝ¡Hñ…4Jî\†2Nƒº]Š$¸-»%.ÆÃ -/› 5Tph«fèðvW6F:}¿o7emd›¶´zM;V¾Œ£àfÉ“€¦È‚­ý®¦z+*IëóЕ{3Ž >DI4Ít¾"l a¨Ã´µ-Z)"±esÈvµæ¹²ãôeÑ­wåæ¡y^¾¶úíØlì4pó©´ÕøFe1O.øÉØh¥ ÅòTf¤”Àr!™âvׇ­,V9¢ô¨õÜ3ŸbYijqå)‹â™#c)ƒV¼?šH—³Åsé°ž"2å©ãEWì)¡ÉF=%¢&ž¿4˜Ò`]htTA±]Â5UcÄ\LE8ëhêuŽÖß9á¤vD7eÑ- ºrÂ7ã´¢7›²_wÕÊ€,F[Í@ÚÇj \Š˜8šõ–nÖ ÈfPé¹ÁŸODO/¡2–çÂMÄlòd9ã¹²Xckë•‹þßÂC×Rå®m0&iRTAÀpQWºÀÿ-ì‡bÀª«µÑ€w­ x]×Hºj uþébY¬ÓäиŽ&U·@Ú¸?BôFp–6çFî°ÂvÂ,*¶NFc_}6õ3#—¯ zê.Â@Û&ƒW¬ddU•ÕêúÎtn°7¸| èMu…°]õ®6Ïç:]sÑ:ÎiÞ{XÍΨK&=GÉDuÖTB¦Öôh|j ãiÌk_쵩§x3PÕUE³.{›9I*‚×VûÐÁâÕšG&ùD^ä¹¥IÐÙž±è¥m\«8 8>WÞu1zBBO‡æØ5v©ÀØ…kW`N0„sÅ¢c½þ?0ei*OÐÖÌ DhÍrìv°r2™ Tâ×YøC§®>Q])ëj×¶3´ k/nÉ#$ó‡|ugrŽ‹œI.Ï=Ý ¾F[ E,l$¡ÑiSŠX®Ë€éôwðY«“ŽÞWå® ½©tdA¢¡lþÉùhÜŽ6mº§,~nºúÖ<é{ìæÎhí‹;7¡yV7ŠõzÄà“’“ÒÊNGÑ[öz²8°Ùu\±›QZf¬Ù•øjmW@†Ã‚!1Š€YÂãªµÖØ—Ö„ÖïÞ^\þðî­y±œ¦g6~Ô¼Pq )Y¾£wõÝ2¡eîÚc‘:9±¸ç9}¤# qE;ÌïK"äõµ.aŽ þk©¢ *×»aUŒºAHÓxJGž0™Mˆþ×Û›Õߺò‰p›("k»íß|LVÄ,9VèçfùŒ²-ZtX½m^Ò&NæŒa†‰(ì†áп¸¸¸½½enf$N̦?±Ìù2 ÇócŽ^yàg’÷Ä —åµ9‘•„uÿ‹¾oHª!|ÊdðŽé†^•›­ŽJ’¾e„^ ®AæÌJ_UÛmÕôöƒ7Vç×%ç<°/WË4žô¿1²KÀù”¯¬.¹XDQ>³Jæ„0E‹'Âý4aãD°qAƒh,Ó|aÙ±ûî4-›¢¾CÖøèºH,!”‹—» Ëîè0lIÇ?~a¿“°ªm¶ªÄq ;ÔÉ1æUÑm´ ’GÁ%#Eö³‚oÌûÕçÒ¾m¬ô½UûI?¥¶Ïs5Z’Rk܃7È4´ëy3'faŒ4YB‹ì© -Ã#L»¼öb›&>W!·x6õ{¨˜ƒc+‚ô|Wnª5­dHÎ#S{îÉ(DSöòÄw„ÓW%ÇÄŠ´­Èœ8à+žÀ±I¡y`e©²óß´¥óGI¼ÐЇа<ÊÓ0B^9¿DRFº#y¡¾–/1ß‹Eµ ûjϳìkùƒd[·¡ï:(äi®‹õyè c³Õy“™€‘Y®ó ùs/[E ÉlN%6JþÊÅÝÔ†°Ã(ÏOz½Q2‡9eoKH©Ø·Í6Üvíx0=s¾åÆ9~㉚¶)Ã[}8%z„Œq‘&¹ NØ)uºË)4MlRklÊ?F}¥OºN¯R?fÜϘ0ÝÍYϾ!ý”¬°Shn1§u¿ÖEc‰OÜ™XjÇ;Ùàë†`Y¦–}“€¿Û³ ÃEê+_ЉãytóP¸ø¦ë”$¥øæiê‹o…²'_Œo®.>²ý¡ÂÙ,B¬æ,’©B0}÷3Ô©2ˆ”ëÊ€T;V¡Òce oŒÂò }oU²ßÛ`6˜)Ô~‹f¨®ïÌ5twtpnélV wæ3͹ÐU˜×ÐóÖEz†^®–ؾ³[=B6²ºž*ù"²)ð˜?Ùû‚?Ù8?q½ÔØÆ“$ó9?ÅÒóǰ 0Å8Ï”×ãIÄ’ô ›ÞëOÆu9õ[6˸tU Ðôòwø}ÜÈàN”[ÜátU8Ü–eƒ3ö¸¹3¢3äáyðœ#œ!J4£ÑœÕI‚/ë ¢¦;ê÷tÄ%ÁËv½ë ]Æâó£þéá!‰ò2ŒË’îÏ.ÖDvf„÷w LÝbÞÙ«`i.)•brxì½ÖšE¹LN•2 „ˆ(šlü')SéÙÁMø‹¨@”ù¥@C|]ô\dioP>yÞù"Îõ@À ™!àtƒpœˆ~$jè½t½—°¢9kAú³“üÈäÞÁÃ}Ÿ‚ßåB´lHÇ…`"çôÇö'Q;Öc]˜›~ê9©¸ÞøÓ×÷Q°î€æš7Îï¥GâÒ#véI‡XÙ˜’ñy²$÷’Ek?uÉB×h'É%,&¶[ÌÑÑöÝvè;$/š‚ ª‰É}ÿîåŒûÑréÅ—‘µj[·Ä¶wÞ"˜ÍÓÄø0 ¡Ù!GÅóEtÌ2‘>чƒžÂOfCR=… É9"Ç^ xT|Éß™’éÅǾg7JvåOeýK4y’Ó7ÖéúEèÂÙÛȳCùgèVWg<¿³O$b"À<Þ¶k}kö0yiÔ¦ ýÄý’&ᣴ¥ýxu’§òÏ쯕Ω˜ì~ˆ©¤’eÙéß—3_' •Ó ¼Ì>Ócj•ëìNyâ=Ó#½'¿‡Òûc׃ø&JxoÓ~¸zö_ ¿ endstream endobj 1203 0 obj << /Length 1045 /Filter /FlateDecode >> stream xÚÍVMoÛ8½çWÎlÀRôm©¨»€»@ÑÝCêžÚ‰²‰P¤!RN³Xìoß¡H)–+»^7éBDÎÌ{3óh×Z[®õûÕo««›7ÑÂJ4öckUZžë:A[ Ïsâ µV…õq†³Ï«·7oboogÇŽ›Dà§Ý“söÉu}&ºBjû•k‚@„xïœÝ´ý¼ ôñ÷Ïl?r§¿RÁÇŸVøs«V¦~¼U΃`?ýܺŽg‡Tœ†‘Ãtö¡“,:s³óŒH±‡ý9§Úœ ã§N’$ÆIöãl±ä'A¤È{DkZU/i€©ÚýîìÐ[L+ÎèC‘£›À´â¦§b†/úæ.y=³ƒ$œ– Ë%áLh*k0U/õ«Ö³ù¬ŽA hÉ8u€[†*…ah}>lH¾Ñ=of§À,7S@˜ÄõnæGS¤œµ›Ów¸;Um‰ ç|\HaáDfæ¶5/ Å'KœÀ¨¦Cü`@˜- ~8ÍkŒ$ÖïÀ¹ÂDIÉýÌs§˜’ ç…ÙB¹4r^×Xl9+[žáÈðgk²MΚìHg~ŒZG ÛP ”ˆ@`jTdùU[ŠÅY®-ã 8‹ÃN¼)Ô¾®¯¯gväªrÒ¼¡-]ʤ|­j"îÍŠ…~VÝ® ‰R¯„Ê®·v¨&À¶Ù¶wƒ¤@Rïzmë •Ç'7r+ŒDSãlr{;™› $“[.ŒuÃkcå$ËŸ¾`=}ƒ((ƒÎ]¾×^—‰>†`%ý…\B …~»ä .ÆkˆÜ˜\î§Mß¶PÙ=¤ ÏÀ9¸0[3½üÓåAûBtuyö@š¤h.+CzY*A“wñßÝÉp·Ž«=Qëéåïn¶…¬I.oDŠKgün‰˜ä[ÞP.|×ó¾¹8Ù]<ÚзÀÊ×I+T§zÝñ 39*‚]rS˺a¯Æ6nQÝ*cYó‡¬IÞ‚Û88 q™Z¦YWÈϼΔx+²Ðít”g«ÛËcNÚ ‹:쨃(§¼Œ¼†)‚øÊÕ.ƒ-¿è¦øèÍýWÁgãšÊÇlRp ?5&— ÷rÿ\äÉ÷#N®Þ»d…r¶ßTç {ÛºžBË¡JI ùK]pìÈ…øÒ  G}T.™ÿäÿšÿ±OTûc„!915/. :ÆÏ$ õ†Ÿú«_×ËÕÕ¿Y|fG endstream endobj 1088 0 obj << /Type /ObjStm /N 100 /First 971 /Length 2071 /Filter /FlateDecode >> stream xÚíZKoɾóWôq÷žîªêW ,àÝ…“`!;@ÁF¢l%"G ©x÷ß竇¢LR’ÃÅr°X3SÝ]SU_½ÆÞå`œñ.G#‚ßĦè5þW"‘a*&x2•£ ®(Á&„ „˜è<.L”4Â5<MâÊšLÊ•5›Ì^Ï+&§d¼wbJ©Nó,J° (2^[{lRáV4>ëC¬Š±(•O¾.ÀeŠXïUø –€;9(¿Çí\”ïâ‹(¿î[Šò;6äâ{lN^•á}4ĺ¹÷ÉÔ³|6]][ %ѵeå¤OÉv^_‡‚aH©ª¾"%èRXÏÈ r]Q 3ë~ì@eÝb!]Áо$•ž@¯+ÀÌ‘+ņSÈPÎEEfQ¸Œ"•\·ÍF×m ¨ªtqF|U"ä__L``ªJU•-»º"€ªjx —‚—Ÿ©jœ!U0 †|ƒR‚s“:„8·ˆ:À¨.U¾hùúÖ¢ êÆAàŒˆ{R%….CôúŽúÆ©î ã†\TÉÑÁë¹<ú¤|‘LäªFh#Vïõøc}£/MRÏ(&æªøṤ»ÀšÉ±î !“n ^ü¤ 0'‰ú4“Iá郪JTu48qœ|¥,õ^2Ù©/zƒ«ïæ\n ê„O‘É”õÜŒRwÎXªÛTüêHÍ9òèâbÔüh® ¢/Mó÷ü@s–a1ìf³™=Þß}÷Ýë¼°œ-ò÷Ûv¶4¦y ý Þ¡.{Ô¸»ÐB« UoìžÀQá)«‹äñŠOO°yóó¼½~7Yš+Óüüã[Ó¼Ÿü²4ësßÿú0ÁƒñÇɨù2Lf˅ƯëGÍådÑ>ί'‹§Rïýurs7þ¾ýÅ\9܈{*ôçX FZ-~3›µØíê)Ê©<_[FÍ»Ç-ëõ_îfÿ5ß·ó›É¼nî>4n~j~¸òõB幯›À,ëû{›R,1‘%€íMUå;Óü©}ߘâ›ËÛ™Ž—óÉÇoU+›6*îÙF¥T%à*ÛÝdî Š3mÄù=¹ƒ³„hÓ[B¶1æ³p#€YI}ßYÊzä ~Ü”žlÓ“ÛãÞ‰(x‰MHìCÁ ° ïÂ$4©õ‚bô—Ð|¬òÔt¼"^É.T x¿FRšEEìN6{Õ’ ±,þØ4Ÿ?¶ÓÉr|ÛÎÿð0oÿCl;ÿøí3|A1ò†M¢µ†XŸp€¦à÷¢øa2Ÿ>.'‹¥OÇöqv· èÓ$â謖H\¢-ÈE_i‡ êêZ{õŽ,/˜×±Â“-(Oúq‡HV|îÉ­îQPÏõäf«ôå&&›œœ…ÅuÎì“OÍ/BϾ<}tè!Ù=DLJÔÝOǧŽÈQVuáé)›Ÿ•X©i”EPtåw•H¿´„œ¥RÀkÄrH8QŽlAo±$DõÒKé§å(lƒ<+„8 Uç^r¬3Ùd º*I¶Ú·KŽˆ?h¡ƒ¢p“uÝÎnïfË-/çp€—o2¯ý–ÙRæ³p¨=éÿÜ¿7œ)åÔ—g"ß“›\±QN,á^LW^„„¦+ÚEo?œÐJJW´…®h ~ÐyKËH0â`d˜<[N¢Tre[4½[\ÛË›ñâ“m´œ[ ˜‚u¾€†™9Û©¶jœ‹µï—i9Ï·Ê!Ú1 L"—‰N޳X_y”»Ìåà–1Ò2†]Í”6—#F)/üß{­*:—½#=íþ1o»ŒÇ» Îë».&t€ˆ b7d‰ó Þud½" ¡Úé4952EëÔHÚ¾2Þ˜#{ža´Z5èǃ‚¶Bq’aè2¸lsæjÖ« \dýÑêg ‡_©ó_Ò+jioïî'ÃËü&˜…ÕZÈ1‚6+ÈçêÇýeÎbr?mo&÷¶71Zý Ȥ“ê¨$5À½H69ƒ`æsbHS5‚–8i¨óž~Ö Em‰Íúý,!1Ú.Ð{iè~Àä) \("ä'§ûÚzÄ´áÐɼm— ‚œ“ôã*BŒöƒ_ËA;©i%¦~9èàªjOV9:‘d·HR>>‘¤n.–ÒЙ kŒS%æTSAÒÀ¬”¯¥‚UC¥î;¤Ë¸§É¶u–¢aP+‚ ;_G€¡;9>ªPì#ÇÀóuÔ3îµ–$34"½$Ùœ¯ÿ I endstream endobj 1213 0 obj << /Length 1902 /Filter /FlateDecode >> stream xÚíË’ã6îî¯P%{«ÆQ¤^[Û‡l2Jj³U›8§ÉÔm+‘%Gööß HJr«'3}È)¥!ˆ0ðŽ^à}»ù÷~óö>æ^Ʋ8Œ½ýÁãAÀ„Œ½„s‹ÌÛ—Þ{¿h›¡;çÃöÃþû·÷Q2×gI Ä4¢Œeòoï…ðRÀ%âîD*y&0'hKŸ?nwQøÿÚÑÌU3üDA§ú74ÙÚ;SéíXe‰•éü¡®…tïå]Þ”íù=þS|0tëáéU~1'r–ñ„è|ù%á¾kJ$ößv0g»eón¿ù}Ãagàq§Ã˜ &÷Šóæý‡À+aˆ3‘¥ÞU£ž= jN¤¸ö~ÚüÏiîvÔ†eÎ ¢Æ’{Q³ˆGÏ 5³B-6†,K¹5Ù×mÓÝX€PaàïÐmyäç½™ù!ºêÿÚŽ€ý6‘þµÝ}Ûmeä·ãÅî>_ò®êæËj‰RÉœø3Ô¢Åâ?¢˜0jY¾Q}ÑU—¡j›…&M,|—ƒ+ò”Å)í¾›Bo݉@øCKc1éGÒÏiöl”¢1Où@PÕ”U‘ª'Üë©*NçºåoH;PXOð)߆ÿˆW4ó TCûµ5Áª¤•ü¸»TMoØ©È[LJŒ´ÃI;U UC]» #ÿJ?íÆœ†2ò^ ÌÄù\ß;TV³Ð(ëç>?ªU%?WúÒo—J·‹‘…ì!.…@]ø†¬AìOm7¨æîþ«ÿüôÎÌ«¦†)‹]œTñÛÝþÇŸíz~¹¨¦Ô36pÿDʯ:4Ûq<«fè?*íÇ¥DÉnbrá‰I !ÚœYÄ]—ŸÕҠתT.&AìùÅ;ËÐßñÂÌ ªøÓϤ*r*fàðŠ€F !4ß±BÏ"WFS¸Dh9§¡8å]^ –ÄUÕµ)ô{KÿÒö•‰H ¶Ê#»åÑÉZ­…E3žTGìæÎ¯Ù!ðK„½ötøˆ<áZƒ„rc·õÆVŸaÈY#üÛs•ö î†ò¯5† ¼g>Ý­N8y ,1_€V·Ü7ŠÅR,Á˜U ôû‹*ªÃMš<óVPœ­êš&Í\ê¼À\€sZh|ÌbWí¼:iÕã¹YÍ ÌÖª`µÀ}“ÌÈuÎ#e˜LsƱm, ·§Óö)—eúL3Ú©•çæfëÑêl»“iìgÎÓ´†å§ެ‰àì|nm°:õûwtýdœ©(ÆÎhýeWªz^FÓ~ôšlôé>S·G¨о"!§ñÌ)`òzR&#†€ï‡Mõ=-móD%ÉiG vâÃíœ+8vÒŒµÑǃF’Ъ ÝdŠ7uÀ4™õà«së2%ŠŒ `a4 ÷JCJ–‹<åcæ%g¡”K{P%ð鿀~C¡ÇµÂãŒôãd’Øø5@¾:gúFÇáD°¾Ä’`œ«-ÎnÍgÎ|q6Ó)ü”j·æûÏ­ÇðÏõ´vÏé é5NE¤!' ÁÏä´ˆAþ-c§¤ 8o‹Œ·Eæ` ª*—ÜTÓ²ô©ÑY»À–p$ÄÀWÐ?5ÜÊ(A­×ìÁêª$Œ¥upÆSÓi Vu0k-Ö¢RÊ—æå¯#ïø‡Ö}x2ʆ¥^wô,øã3ƒÝuÎSÌEìKö’K¹˜‰ÞÖ¦È|˜’%Y×ÿz}\‡ôÊ.b±º^ k`ø9a„,É2¬©€…à PC£sX!²Éa5†Î[2pý¹^OÎYÖÉhЩT¹dãˆÙÚÿY(›¢>3ÕVŸÚÝ3á?V9­ •ç*Ï$‹#'¥ep{‘†,™ë) (IM'C¤'SÃ¥©auÕÔYÊÒ y…¥5IHõ+Þ“²ÐQ4 ÚK©!ÊX’8ÊTì—Ha‘ÀÚÆΗ'“êÊaö¦aïÐN c7õj÷ ×·ç¬7üF yU÷¯xhØëCqáÜ‹þ¹ÌòØkà¦lä‹ÇüÍipÒpûÐì1m‘Égøc 8„—tÕ8Öö1bÅ™çOaÙ÷€ìc€ºf],Nˆy 1§ÁTñÙHö ÍÏŠ'…pž4–Ö=øŠ%, Ýýe%6Oiâ¶ÿƒ­—7+|zp2Tvk|xÈ’@¼ÌÈÕ£ >ÖÌLy£Zºñnã&fiâ'XV&S‚V¸V½r7/VNLÈLß°ñÜ5W˜eLrGË>ÜÞ7‚¥2r¡¼~jo*îlÏûqB³‹ û ¸¬t¶™4‚SúÖ…™érÏLo„³¶Á›uY‹àªn[&taŸÁh=εÛÈœJæ]1¤KSÍ;jˆ!jü ©Öïª4Rÿk+hÁàÜ/‚¨Õ<®Ð¡ß´t¶¸%} iÀí ö­˜È£qX1Ÿçb;¾ÛoþÍG2µ endstream endobj 1227 0 obj << /Length 1316 /Filter /FlateDecode >> stream xÚÍWKoã6¾çWÉ¡`Ó¤¨gº.º-²E÷R q·‡ÝEKË´­­,º"oúë;|ȱdÕp‚zâˆä¼¿™¡ðh=£Ÿ®~˜_MßEÉ(CYÄ£ùjD0F4ŒG !(¦Ùh¾}ôÂØÿ<?}“£›4‰Û;¹¨T½eJß¼ÂN~Oø„F©á™ lRËùËN¢b¥?¡4óXí“Ô[7[^)«•Ò#I†p’´JK&Ý¥Žž€"Š£öR!­äFò¥¥”°«Üñ¼X=ÁGˆ½ý¦È7v]‹fgÉ}Q:ÃÜ®»’åFð•¸q‡Æ Cå¢l¶îX¬ž¯µ£ Á¢iAYY;!xuñ™Žb”e‰=úy5Š ÅQÖ:)7¢V¼šÍhH”¡$9äj æàÐY©÷è¾`‹’Û£Šm¹´‡¹¨k.w¢ZÕÚ1 {䄇€ÁÞ3‰N¾3ÎD ö?á·"˜²{%?¤²ãä$ÎPH£^¤ŠªäÕPâ3”¦iëæ·þ$ˆ°µR,W†™¦­6–Þë²äÂ]-Eµæµãvå•ljwÞTÅ_ x$¥ýÖîèê†Tï˜À€ëÄfxâlµyŽ­Åó–û$ò¾²í®ä²µ¬ZæÞ~,©j¦xO1 ¼oRáD¬š*×¥†\äâã8“Ô˜RbMùàgÇʆw ú_ [3ÀcêJú­ ¬A´¥÷En&ÛÓJ{ùt0Ù½¾µqg-a'Ï{ÒÚ¢£¢‚w&/r)´b~óSˆi¹Zû`¦.mÅ?†Tð|£¬iñ¢Õ •kdJÞaóÍþqñý–+¶õdW‹/A¦h×a€`œõA¶…ÆÓ”`DÒ˜&Ó/R¢GLcT`:XµQ€Â¨‹šîªým)Å h4ì1JM8ò´ úPRí‹%?‡uš z—&ñ¦ûtûhw<ä5?tã?´üoÜmažE†^2Å$W¶o]füÄšÒy€$yUÒé9/úSÿb¥´hm&%/%[’,KÏéL!ÐqøJÁ±ÎRìøßàbvN]œ  LN2u…®»G=g&ë`û ÂVÞµ“x‚ý>n¥ ¢Ð‚/ð¹ÜÝÜÜ見=xT©“ySè $½lÊA§}bhÙ!>öÊ›‰]û¸„ác®ËœŒÃ1ãhë‚ÿ|·+!Ígc»)U³|š]›åÚí­ëÝìZéÒÐúv·æ«ÙµyH/ÄÑÍGVËYx·3zÈ ·@·„ÐvCÊ–KK˜Ÿó×_îr‰_í_L×10yÈ‘ÍÁñAp}©é}4èÎ`)=ŒôªŸ ¯‚Ái­¾4Žÿ-4_Š•.J*ñ»N ¼Ýû@‰o“ÿ+P ¢ÁÑú~ô¯æ¶ìÍŒž8”v:i6w󫛯 endstream endobj 1240 0 obj << /Length 1879 /Filter /FlateDecode >> stream xÚµY[oÛ6~ϯòR‹YQ"uЇm]†õmm:`h Œ‘h›€,¹•4ûõ;¼ê5u¼õÅ:¢ÈÃsùÎ…tì‚0øíâ盋—× r”'QÜl†(&IbŒ’8nÊàêhê5 Wwë„®Pô%Zºyóòš¦£u$Ä(Í€©^@R5å"´ÛüzsñùØï¤Ñ0 ŠÃŇOaPÂÇ7|ʳà^O=„HI t¼»øÃó›?µqß©‚ºÐà` ò]ÅO»1¦Ð”Óxت8·¤èµ¶ïc.8•úLÔCpª#ÐÚp'Ô˜ñyý•zbCÅ6fè¶QK̺gC×öuI’&“+0#ž½гÄö 'ä`ø~0š­TV$`È«%÷LªÓǵnèQãÆ<ëFšh„è+Î dJ¡:gA1daÈ6M«ØâÈJƒ¦ÀƺLø P!y¶º1“"™w:ô<i©ÞXU™tÒÍr³Ÿ¬Û-˜ÔõÅÞŒHsûèhö塿4$Ùßíê#kaJ_AL“pue;Ü8ù€`ò«a´|ö±Áía%ë]IJvv¨ö›“ÃZpQ”„XÝw"’awÌŒY]-œÕÐðÔé;ÝÜ^©¿B¢„³ÃË»/%\ sL@v à ‚¨$N©»ì˜§?·ðA6ß¤ð‚”§oïíôˆwŠhèy« Œ NIBæ×L£ÿˆþÞëÑj endstream endobj 1251 0 obj << /Length 3462 /Filter /FlateDecode >> stream xÚåZ[oì¶~÷¯Ø·ÈH–)J”Ц@‚æ´)Š$MüR$*ke¯µ´G—㸿¾s£n«=ǧЇ€E‘£!9œËÇ™ w»p÷—›¯în>»]¦²Ä$»»‡CÙdç´VI”í›Þþr÷·Ïß$zF¹Xe©>DS4õ­ ƒw·I(ó›Á/nB™g5É>Š}»7ðL"æð|,Û’'Š¢5Ð$©öóä“,RËS|¶Á#Q¡=Áý5Ñ«Y¯`» òú°µ¥H97’¶˜éHE¡IʺéK`ÅA¤FåéÄ]mùv(ë¢*;ú9ŒÃJ•ŠV‘LŸÔÃÓ}ÙòGÍ÷U5,ÀÄÁ»ê0ä§N8Þê0ÈO§ª~䎪î\æn¯ÃD¹(†VY˱ • ÎyÛWÅpÊi9¬ZÇÁcÓ¾Àšô–`3£—ùÖzS©2v¤™v·!Z­l6Ó–O7OÛX•…ÉŒŸæõ_9.«"=žEm~çWWè6VØ–,Z9S<°uà?ÒYºŒ&ÝjNpM¤šf#6pçâK7­VD«0²K™¡Ã0¸¿1ýÆf¬UÚêxZܯ™Y8c“x‰ãh ¯x¦\b°­Ñ_óV²pB&ö O´ T^ -Øö$ «ù92½ç—­M3¹÷GØtmv8ñשL‹\^ùµC FÒ`Ã;†sÙV€ XÉ}ÍÜN´Ø‰^؉!/½KcÅ£DšÉÜ3Ç)µˆó[+4g.ev<•yͰçyØRi‚º&—j,Õ ³n©€,AF!húB÷Èq@ˆ,É»5Üf—{¨d<tyb~CkçKžÝu3¹m¹ð§Ò]‹X—›? ä]Yi¤&QvE~*Öy¾»È¨Èû0Ôºž}Óó¸Ê ¤ ê?A‘«Ò³‘];„K^‘Uq6¡Þ)À%ïÇ*—xV4à¢8†^á,}ƒ W ‚”™Eê94Œo3ñÓÐhËsÓö<,'óÀºfÀÍbÍh†HXÉ—ÌEx3;&-B€v3PÀ^>ˆª8ò@‘×Ü_nE<‚%²G“‚éæÜMÚ8FgÞv"‘a„’Œ‡Y܈l*ûÁi|´Ç—j„ž¢j’´ç;Ã!Ú4î…Õµ½dWöb\ ¨IäëÑmoCÀ}ä2«¥¼ É“ wÍ¥Ó‰xl˜2.‰œ :v‰Ѐ hv=ÄùPÓM‹È-{0DZ‡XÌØ!0™ȘaR5}Ê_¸ã^ÈÏM×Uì]‘‹¿dñÚ Ô"¤îúv(ÐSEr²fTxìš)¼b$sÇDip†•³“ƒ/f† Õ=@pz…{_ƒžò¹câþH8Ùò¤©ÛR&ºÈ/ïÊî ÿçb!F^P86ÚVK’Ÿö1ÊoÖ°¸9:nµºø¤µ^x3«ˆ€¸ÀŸÀÝŠ¸‡h>øÉÓ•ž¥£^|±ÅO+pϵþzËD!ôe.J Ö+“à”p›ªjƒº½d7#:l²Òt [±ºùúîæí¦°¢wpw#XeÓHʼnÙO7?ýî0¾öô ½{H;<í~¼ù§y–«^¬Þ¢à"'y‘•Á°‹_µI7ßd±É*Òf‹Õ27dB«’k§[OEǿ֬˜µ`q±¯Ð›4Äùƒæ/³"8Dn Fî…vfQ ’y¾¯šºì{™Â„¡CwædÓ0øŽ”‘>Fe”Û‰pv¯qý¨Èä.g bíúŠhhÓ^Á6Úôn+«ÚgþÍêi^gzçcåaƒ'Ü´î·¬Æ$*5&‚¥YçÑ@”\š`ª\½Ïãb ÏA^³Àäã•ó#,¨ì|Up¯˜si„3.ÿ«Zº˜M…p"ü£õ{]¦§(7÷‹Pîy W{Þ˜22 T€{Ãì½3‚¥Ä:y·ò¼À3ŒÞ]®Ânq†ü'Iè yEÐqHu©™BG‡°y8©›R‚›µZÍ5…Ò¯Ô(³ší¿ÚºùÀÖ“ÕÖõ•­Ç³óÿ{æ÷=‡U¨Œá–ˆet¸a4 •pû_„Êh •Ú´õ¡R¯ 8” qþx ÿªš»)pBï:pjΚʌLs([Iïb Á¦„Ñ8´Á÷Xh¢Y`ÙoÅNŠ6‚ÿhUظ÷Ó ¬èÝt:êK{%ƒlcûšÀªm¢ÂL/#kt5²F‰¿Œ%€EŽÕ¾{;p:è¢q«¹k$å›'n}_â*à‚RrÇAǽkXi (/ÌWÕ‡ò\¿º‰+ù|Ôîžn|x$ƒhu(|Æ$|ðÅKáã G®?„Xñ·k—¶ÌÙ÷\i­D—qJ¼VጫÅÅÁÐñª,]аt6?a¶¸/§UÒ¡l\*ã^Ã…E·¡“ ·4‘ë#4Ž"bì›l&õÈ4ëu陦?¦‚Lá¹00°§³à¯|`åT3i±äŠ21álšI/¶ èìBkŸR±±¤T,®¥m_¸¯ªáÂ÷”óEÇòû†r'Ö{èëªÇš»Hé¬/7Z,ñ\ÃGt™ÃËi[Â%eg2ñ§sQãÚ“-fbí鵬C’*ûms€XÍ–¶1_v8iÆžp[¯æU+î¥[qš5;oÉßMDTÔÊI¨à‹¶¬Ÿã ‘:±üo·\s‘ÛDKj¢è9çƒg"NB|yê”®3XC©y|è8ßåܳð&нГ¨4ù‹.å<ô‘hâT¬ë@zî”Ü/~"d”€Ê»M7ß<[&f\4ÿ ßÀG}ÙÎOG~·¬˜Ú—9¡ù÷ªªþ…ßѯ õ©ìºÍ:¼V‰™ªúÌô‹7_þýǯ7´%±ÊÅ‹<§âIÈ»kŸãÆå-mŽ"Dj®š"•U¤¼B†ˆyÇÐTA@ê^ÈÏûÑh„n¯<ÄÚk’Y‰^îóâ×ýÌ.Š@s5À÷Õù\.¹:Ì·À¦{‹¢ÿ#,—ö§Ï$ßþð…–æ©y.[ÕçÕ‰~åè,SfŠ’96È@r>Iîˆw·pA9W°¹©šì3 ôO2IÐE—wæK.™ÐÊK ™·]ÆlìŸ Çrõ¤|<È|:©…Ž–A,éˆ,gV±ƒ+7}›²Ú*.,0‘EËŇ$ÈMÏç¨á³m°¼xàª\™|X”mOQ _ìºÚ²T\ •¼!貨 –;™–*–§2Qâ{”ÙæYňª€ÝR¦.ú­ý45¥A!8¹¡ž–˜n dnaðŽòìsPØû`¯âCá¡"ÿ®j>]Ñ–ç\²¤~M3 Göœ¥ä!J­rå0àKÐ$×—awn¯–¨S3jÙ ·Š¬†Ž’KÄœi d©@™ùÈ¿A}ß—ŸÈÈq3ÚE'?çpv£¦ëb¯‘.¾,â7|ÂÈÄ—±—9Æóˆ Ií¿©„ù¼ˆˆG˜ÚàÏ„Jù ü¨ÄÅ×¶‘c±>/pe¨+™¨áÙ R3ü¥?½`¨ìê#kv‘ëìÓæ0¸dØ!–$§€Ï'V,œ»å'ž›Ö×—~%›†‹'¼¬ ú[ÌôC xy®ú£èéàkù€Š²©ªw\v€¶ƒ´Vê =ciÇ!ôèn ÊÑ0 \§!¥t¾æ²y‘"$rðÓ³£Å–w´Vkƒ4áæUïÒûZÄ \ YA7s¿ˆt²ˆ­Ö±Õº‹ —“ 7Éjá ~à”s…Þî_f\0YwûŠØì{ùqÁšÅ±ÄÆC|j3€Xs׸!BW1r ù“u0²Ùŵ„¯q¸º^àwTtÃç ª¶örç“ÁË*tP¯”{¹Ü¹Þµõèš«1Ÿ\ å1?ƒáûÏjÑù®ô7ü1ó,¶¹Þ˜ÏF¡:t*4ão¾ýòÚÍ~Dc¸2ícù;¬ñ*ïŸ_ßÝüwŠ endstream endobj 1260 0 obj << /Length 2639 /Filter /FlateDecode >> stream xÚYYsÛ8~ϯP%Ù-ªÖ‚q éo­'×dj3“²=3Nh ²àH¤†¤|ì¯ß¼$ø˜T¹Œ&6Ý__\MèäËŸÎ_¾—l’’Tr99_L¥D„r3F¤H'çóÉE—Å4¤ÁÍTFáw|úõü—Ã÷Qw«¬ÑåølU—-Cn4çez•]®ÔQ\šL£ï \AASËßêˆÄ°‰N*P•#OAcv“ª½®²)ƒ[Œ5Šë›,ÿ–])ä˜gŽ5 e¨K·´­ÕÜëV*F­§,hªmÞô"!§²ªT½)‹¹.®Ü”Z­ZT꯭*r­jœøB#úVûnûY«¦ÊЦ,®@K 8¥ò${sÀC­LcªÊBÓ8¥ÜžlE:.L8íe8”kÇ"϶`§¢¹qP•¨Î˜¢$2QÌ?¦©±äVTÜŽ;@7/³„Ä‚õ(4líyø^ˆÁn’ü˹Å@¾le·‹*[+'šn–¸¼(·ΡTÚø@Sy¶Z˜ûâ͸à„Òp ››¬"œQûâLL­ˆx¾1:º+l‹j£ ‹]‹–»“™ã7cIÓ°3龨)aaü´!CÑÁÎn<âcs™‰¬ð)$怬kŸþî5VHâ6Èã‹£(+ÝFJxB3òH´f4“Ú Y©f[jNÀlLúõÀb€tÔi¢³ÕÅõW3!<Äc›ˆÑ9î5¾ÆÂ¼=Ãå›dÜ1b˧a> IštŒ ò0Gf8ÄíðÃþ!pƒØæ4{çÝ&ÞÀ•Dˆú‘M2bìnCáѬŒˆŒøÓã‡ú1Ä$‰y'U¥6«,WÇ/õ¢È^z8ä(DÂþÔIÀŽÑׇ"‰pö 1š9À›;€‚r\Ú‡¹µ®k›hzeA0®ÑAy“ˆíHmÐÕ..ŽulãV¥pÉÉ:ß Y.Ý…˜e³wˆÝZÜ.UËoS‚¸p ÚÛU¸WKàYÝêZB'T5Ü%ðÝ ¹ ›½ˆ•’Éø3ýN˜túGÿ†`4Ÿ·1ÑÔ£¸ÙŠÁ…GxKâôYñ‘Òttpæd žÅž…¹=ž…ÃQîê—tˆƒºÊ› €ÀÌîòzdŠÙóUÎÂNZ‡Ã:Ã]bºÜ$\]倞’„J‡‰lZ,š ð£2–yðl‹;3Q®7[D/D§alJ« 3Â!‚<Å‰Ç :×YœL#SZ.ËÊ@Ë‚ßSÚý9M çX-®¦pŸl*i U¾l.³­r9Ìã󉈈>ûüx{sùŸµj2PülS•×*oHY]ýÛ£!S·EBôÙýáVaçÌQJZ6ͦ>:<¼½½%íÉÓ<8~¤™]1 ÈHY:ô*¯D“„Eã²úT-”-f¿Íÿ®~‚†°ili“o‰eðÁޱÕ9´1 5< ΧW á¨ážkÌ(°Ñ5pðªmà­ 1v;«Ìö ¸æj“80:‡eP?Ý7:ÇYèTVåK§  AB »8t²@Ÿ3sÈv«ãdf=ÚÀès}o=}Y®JS<^éºñelhÑ™acÇ #H_¿žÚ>|€E2M…_8—<ŠˆÕQ<¼a ±y© š%ŒŠøR*fTÊ;Þ.°ô•‡,„Eôùå­iüÂx·} “à Ág{ÙÚºÐ÷Fq¦ 1Ú^”«9îl\fÒµ@2¼á«MµÀ ÚÖþ–²¨uíµ94Q¯‘3à JŠ¼î˜¡ñݶ‘ñ?©¹Îu¡<Ê ç˜=ÛÌ v?Îp´v³ß%Œô™>έ‡Ëƒ_OðÏùºÙ{éVïjîV9õ­ÎÝjšì¬!JdšŒ%59Üšò6ã­6KÝ?äK]ÿÕ?ƒ¥‚ ¸yèô1óJxÝwÁ¿ŽUT•ÛbndWw;Ø a(ç Ç/;}éî Ìt¯¯K=ÐŽîu1ïhÐÿ1ü3¾¾×ìë@iü3¾m\5ä±5är 꾌Ÿþh„4Û[! Ý i^o…4ó­–ÞÒ½ð¨€ÖBáCڴˤQucÅÌšJßÙyóÏΓ vÀŽB«“^ ú1oµ|ožÌ·«v×ëºÍ’ê1éÅ,ô?2RBáA­˜ÖÛ!Ç;Z¿4÷Fò_8\îÍä{3óÖ¤i ÀêξçøGYóïeYïäwç/þß>×— endstream endobj 1270 0 obj << /Length 1592 /Filter /FlateDecode >> stream xÚÍXYoã6~÷¯6j£6W¤¨Ã‹úa‹Mz í¶·@áæ‘”˜€-9:œd}gxHòíì¢@'äCÎǹ8¢ë<8®óCïûiïíµ:c2XàLïêºÄãRJoìLgÖ÷ÝÁíôç·×ípz!%~ÀaÅçÙ€»ýõ ðû$I•À5=×Hz{íyN‹a,y¾§VXƒžÞ#.‚#FɘFzøââb0ò]·_¤ ¥¬Š:®ô@œ.ºw_¤ušÅ2-Í@^˜Eù“bCÝz¦Y¢;ÜJ¥.û㌚ýnd„åÙš°göë»…œ¬æÒì“•'IYˆJæfì™ÉI<—壡39É,F  œðg(*&ð„Ð TÑy**Å2Õ½ôY,W CÜÕæ0O²šŸÔ]5·g…Ù€ºfJ.-—0íBéA zž§4ˆ-ŽÜu(@CØz;üí½þ᱇šùÎLGû§c3ÍܽӉ™GÛÓ4rI0Ž6Ñ6œ³>˜¸%”5[2ëL¡A[‚!ÑØo´O(ⲑ7c·›j*ò:K|ú¼RM‹…:Í2e]¤“7?½1- ÙªìNvô#[e$M¿ã`—/rFo;Zc;n× Ú˜y•³PAå,è@ÝÅøû?!Hd· ±oAâr Ç-HÕßi¨,4ㇴ©¦I•–•‚)ªB>«qü§Æ`“Òw\餣— ’È„Y-¿ 5ýôç•åº,+0dYÉø=frÆÞ!JȵmvÁÀ4lzÂsëî·&ŠwFâ‘Äšô xjåû_"þHbº×ÿ­ã¨ÿO™x•ͼ ù07C2q\"~±ts™+ÈȨMz­rËÎ*³‡£9>I—ê•YýÔäë¹X­Ò¬´Ã©‘+Œ”ÂÊ[BÎ «Ï:³ÈÍÚ‡âDB¤É¾Ãwmß ƒ¡õš ã6‡ÊIhoaˆwÊ¢CÚÝ2±K|ÞÚCÎo ÈZŠ¡,½g×4u‰*5W[z†.Êó!q—¶Ñ@â.Ó\WCÂé Ý´B‘2À®ª[påZRÜáŽÃL7hlO˜g?T/ˆZ¨Šh zA¨ úi舙Z¤Èdâ„BŠ)RL7ˆÈ,Η+ˆGdèzuxÊ«Û*dŸýâ¼€rÐ0”ò!Û*ûZƹ•uSÉ4¹zÓáår••Ȫ½úÄü±™ƒÎ»V¸; Ô»æ:Q~j¯ǯU¸ž%˜çF[‰Žm Ýj½²(JíTÛŠû3Ä¥tt•“òÏˈui:ù}ëê&¤Ï »¹<´ß0ßh–/Nxäµ9ßîN%^ÄŽm¤z–bª^¦ÆÙF4ðInÕˆ•¸Ûô¸-×bÑò!eCçZGûŒz à)uT÷ÂTž€CwÐ=ýñ½¿ÁRå^5ú„ù1=†„Q竳’Y-«#[ÈúËÈcŒ„{•Û67z-g§å_1¯Ñ÷pãL“ë÷¿Ü\iÔt^W'”Í|úá)eÏV¶çÆ‚ÿNÙg%ˆnQú‡öm•ÿZëzÈ€ò©^4ùêÄ%u'ÊÔ¼U俢[ÖbQïýî^­m1sâ²²1½"j¯“·Íî-ø¨Æp/j+»û‰MG‹ü)-H%䢣Á×ß$'½Ÿš®¦½Ç…]‡6ïXŒz$âN¼ìÍn]'9M<ø RœK‡SJBŽ)~áÜôþh^¬¶[õVÁÑy+ƒdA;'Ù÷þøKGÔFÖtàûýb@ý¾ÈJ(a–Påñ ÿñ®L‹5Z©«û…ªKùÒ7òó€öñ5)U6⚺‚‚ËŽª'.ìÀý' Ç ¾ u¾1àücß×@þPJûXÏe1îÁü¦ú®*ª°óAPuM!Õ$‡-@CF‚(| ô³d°çY’r¦2’û¾B ¹²Ñ¶c±í§M¼`#y^~]g:R¡N Ô˜j‹ÆX¾æÊh42¤÷æ3 ]ÊÏi©»º †¶±RʸWæÒf@ª´fPLkÜ´Õ;½+PótŸµ’Ö Ke²W`–!Äw endstream endobj 1280 0 obj << /Length 2891 /Filter /FlateDecode >> stream xÚ½Z[oë6~?¿Â8/u€‘”( ‹>ì¢={Aºé¾´ T±åX=ŠdHrRï¯ßκXNœ XäÁäð6Î|sQ¢ÕÃ*ZýõÃ_î>|þbä*™Qfu·[É(:6«TJat¶ºÛ®~^ošú&ŽÖO7&Y‹mQõùÍîþñùK’ŽVÆ‘©…mÝ’Dâ”sÍhî-O¾U)Ð4-ù©ËŠÉªK¿Ÿ¿h=æ6’V¸}".‰’èT~º¹ÕZ¯Ÿ|£ömÞçÜ,ëMuÜÜëÛ¼îv~]ÞŠ:,:îç‡CQo¿½ûñ§ï™Ò‡*ßß~,wuþ‘‰B8^² &—G~•:ã‹ÿ¹½‘ÑúáøXÔ}÷¢^¾ø©œË|ü>©™Uþ}žnd².6}ÓÞܪ$Z?—ýžZý¾ Fsß-ÍÛ¥ØÝ¨d½ƒeÔïÊÿOæ}šc¿i@XbÆÊ„ï[æåV&ÂÄ)sôÇr¿iÚ¶èM½-ëf7¯FlçÞÍ–týq[¾‡uÔûë™o}ÙÔž9·Öµv-…—uÝçeDX 2¾¯ü5J¤‘Dj÷Ù² ƒ Ò}ƒKhÝÛ¯Ìöýž[k•®Hªæ¡Üx¾$þÖÀc[nœ¥ÁNž'àÝð·;›rwb"^ÔQ`c=o¹£øY‰¸óû<ïËÍÙo›³$!F r Õ´9rÎ*²oŽï½¬¼mKoÑ`®o&t½,½ÂëÍÀ]è"—Çγ¸óVsá¦ï@è×_a³ÏÛ|ÓøröÊЃ¾‘ë=uúg„ó†:EU°»!¦Ú ½6µv…-§ 8Ÿ†Ò‰!ÑÐΟs–ô 娥œ€7öZ´$ðF’oêå5¯d.d`P2ƒa(:cPzGË’oT´¾]bwŒÕ±R#¬ÆÞ«‰„&YîȽNbƒkMýËy°›=¯Š…Ô~NÉ{æ5ý6÷¿91¹öŽ~7UÞu ÇÙLDÖø>`Äæã‰:6ñó Hˆ!˜â·›+­ÊRCX4‘ÐDkç±(k”{kÑP¢lÝç_QÎF 2móÈΔ€D7ýtðª@nŸË®˜MÚ‚êÀ6ù±rh CxÂ9ß*#K‚Í|<•KrPJDQ=*ÙÂw¿ÑÓâFš*H!øe(ЂML±€¢¹ë x%59.ø æŒç}räN†R{¿ -ï7¡yhÉ©•[vƒÔ|X¸ aeE’ª×t$§ƒ6 ΔÙ%¼E+D<FfSUó Üý±­=÷̓¿Ùr St} ˜ìç“ÑVGïùÑbÃÜ‘N¡\2.k0Ó`5s_R„ä ŠG  ™Sà þ}.Á€+ï[WØn˜6„ †±ßŒ#èìÒ3uÆÃ~Y/‰Dj¸íZ¾„ Vļ“Åñ}ñ·-nY Œ±TS-pò€2£·kêêD½¼EqÈ0ªRAñkj;' l.뱌¡UüšKa¥]ÖcÜÛ9(l€p¿³pÓ -ÉPʰX_#CÈP5²d*š¼j‹|{bµGþ½ì¼"×3³˜…̤ŸÎiþ«(fsý÷D× Jð GÅ(h ±ÐcÓC‚лzG êÂáÁð‚ó×B´iü'–râ,&]^Ó¡ßÑÕ3â9L3ỽ7døvÕâ"jþ¸E=89ð—$£ÁV¬ôóGQ­ÁàÚ5$A¨ q¬á,Ç`ôx8ö<œÓÏ3xõ*\ô'riŸ™åÞ&„onJK¿¿rüF½Ç"ïŽV}#ÈÆè“NõøïÀ­Î’uçVàá«tÄZ®Ëžhù‰¦Ý󤺀0¬Ë[&;drxt"75OïO‡‚I;Þ‘x›.ÏkÒ²$Yƒ}¤qìžÑ àhö ã ´¨‘GåØ$¬!by(ê¢uP,Q4ý¾ÙR›ÃT0¤†ð&w µè±Ñ{}©S$Ô'n‚>­~¦ \aÌmÀŒ•ˆ'!âA`•h@PæÀùXÎ ·=O“Yf7>-I`”I݃âüÑ#%"íWŸCs­*ò;nÃD¤Þî~(z2Q)§1™ØψV€©¶Îßk(ÁëðNå¢Bh§äj4i[ÀûA ¹Â´ø„CÓüE9à¹-Q‚úc'¤9õ Írs¬r&cš}¢¡ƒNÉ_>-_XeW]X/Ì—T³•³R N/6vúÂC2¤•™$C`(‰NÑPê¥'‹€C<(gKv4#CFS´°‰6}õÙã%)ØÉ.ÆŽ…0*ŽNÜŽ*`ësYUtg‡<ðË•“d–ÞÂÈD= Ïê-*¡¯hRq‚ÑŠOb¦Ï½Cdñ%‘=Êó]”HM:Y_“EÙ  MI¥0©½„† ‚jÂùÊù ›qzq9,}IdpúCçܦ©^ Ì&Ë·ãà 0T]³iÕ•(ÎÁYŸnfÑôi‘€Ok¼ë˨(J2:Ê΂3ç£d€ì”.sñ”š(쇷ÔséÌ‚iLií• LԮЎ&á³,h…Ô‹e/õè8§~r6Þ'ZÔ- XG“^0íøJDO®0íd®Îéh/:lÄ”ZJYü² ëŸ0g/š«–ÿOa]‹ƒïÖDÀ¹ §‘‡ìHS¹,“`¸PYX?ª«“ª7»…[dì…¯÷Ã[ü:¼ÙWàmrÅQ>Y] @.1"2ÞÀ Îbx 9êûÓ3G…–hiiˆE¡c'xk=¤t4‘;üP0Î :•kL±‘Æ)46û·$3ÊbÒÄúÐæ/·”6[Êe²P.ä›,”)µÒð8fоp™ïà6OKÆ­„ŽÃa‡|ó5(8;á1ŠCõÅaib(ŒPêC)‹Ž0ýRiÔ,[òÁ¢›Ûe”+Éá  Ü³Ý©ÛŽ7šUÓιQ“ŒP:¼XñŽYƒ¬Ñ1ŸK¼›ª$ݱÊ@³ƒêcî)çNcÕYF *’÷9Öâ½"%ßnËðÑ+˦‰¾K ŸkàtÞ)ã¬ÐN£ )×1‹IEÊL&ð+!)™þÌb måúo”²ƒõ´øO èÒl½uʑƔf§¾òšböZ×®v‘jªÍ¤qH™p>~¸):ž<–ëÏŠ°U×aì ²˜<Ø;-=:  Ó°ù ¨$]SÊ öûœ§=æ=¥w)eÔH£oÁÖ×[Òó¢ÌtÎõð¡ca†Êûðgz>à\t®ìmK%"Ë1=¶î™÷²ëŽT3¶kú¢ƒei~“´tGŸçr= ä¾9ã÷™}(%ûÒ@± áy¢ûOþÈ  k§I±rl¸–”cÇ” Q3¸žÖê%§"±¼j.Täqã†Nꎇƒó|Ò¿à¸ÿ׀؄4ÝSÇé°$ük€+'ÜíKž¸Ï¹Q7@£Pfþ-nRÞuº5\å³>±(¡ 3jbGC[’ŒÝŸè—''#¿‰{±ª Ì³x}–pä1*FaËWaµ_Ðш+I!ÞÆC_Î`¶—!S9®À¨ÔpÕ¶m޶øL*•ºÊþÀÑuQQûP9ë…ÿHå LEã¯V¼÷ËկĦ &–òZlÔ‘²ýíØRɋꊵ÷`´§ü÷r±ð­VÏTcªº:¦o`øKÕ>lìx`ï ~8¢æna¼†H©›ÍôêíÚüy7h™DÅXŸ•—y—¶ð‡ˆKJqºÅ[Ÿ)ò¿ßß}ø>iýß endstream endobj 1292 0 obj << /Length 2271 /Filter /FlateDecode >> stream xÚíÛnãÆõ}¿BP T¤ñ\8CruƒÝ¢i€^'yÈæ–F6SŠx‘¢~}Ι o¢mm[ /õƒgÎpæÌ¹_Ftö4£³¿½ûëû›2œÅ$V\Ív3F)š…Œ%âÙÃvöóBòå/ßÜ|T¬·S„ŒH³gSäË€.ŽK%d«³:Á3層 ®Q½ÃkzÍCXǢ/’¬Ñƒ£=J£ÙšÅ„òÈþûn 0]ÔÏÚR+Do7çDÆÒ»M,y#”œ‘ˆÅ~SR.Y´xjö:¯-êÓ’ÑERY /ÜjuЛô3¥\oíBQNÀXDB)Z䇃η·ï¾ýôa‚“0T~óÊâMì`ˆ7³]™ìµ»Óq¿É’ªš¸>’$TQ«¬ÏTÒ¹®6I¶™¯æˆ‘dsøÀ&èY ä3"g$–Ò¢9¥õór-[ÔF4…ŽK.Aziò˜éÊ.ÁEˆgB,T.¹'옔$:ªŸÙ/d(AhØnF&Ïö‚­Þå4Y=qK’ `þÜüœÎ'ƒ1Å\ö3‹:ɧçáqxI7‘nñoÒÝ’}¼–lØ‹) àÄÆx¤Œ›ØI™äÕ®(÷h¾<’‹â±ÒåqÉ䮨ÐÝéMmá*ý*§`ëöPSoн_E‘ oÙe©«C‘oÓüÉ©’ý!sêŒ&ßhcÀÀÑ€t”\qhjC–´žˆã ¹LÛålj· Ãµ.gõD˜Là½z%Ñ3JX]X,°3e°*tìmƒ•„ÉxŒô¥Ì>¨ð½½JåíU¢Mfvi`¡Ozs$ Ã‰®/¤E¯ÓyÉ«c__áö–Ú¡´ya<´9ï+«AcbÖ„s§S“MŒ}UÚYƒO#}+håbÁI±0Œ6òÞ’ Z¢zC.ŠDá™¶›¶éqâq'‡-²€³ÌtÈR¸ùn ‡šú¹(Ñ +ïÕ_Ú+ÿ´ŒÀã³ÝÓäg*p@ûãR õæ¹~Lí4€×LÊ’ˆ¨Í¨_ŽÙë:Å­eñ+T¤(Ÿþ<Õ®@2–]X_Yò Ê“ÎJ ÞMa3Dâ¨Õãs]ª÷77§Ó‰ø›—k ¸wýøb@TÖqg°m›p¡„8$“C-Üë6Ú7+_ªk¹¹ï_J¯Æ ßLÊڹƱãOø0B:°8Žz$+9xh§Ž³»ê¼?ÔEnìñªNê´°šPx« Zµš.¾Nöeº}ÒŽ¨þñÞNÚn=O;O.«´>Ûõï¡ñ«\„f N®¢a„^@±^ hÜò-ÂÈðÍ)£–﵂/_C;Ùlj›H¡šDCX'ÐMØÀS&™Ã§{;¸\ l.v‡LÀÁÕC²Y²Å?“'=%Z7Qc¿Av h¦°ïBTÅÎE=·oõ>yÁÛ. ÄbWŸ’r) °žª’ ÷§ñÀOFÆ9p¡&pÄæm­—·„K4x?û̹ "2õîÀ ë fïkÛ"E·ºÁä)Þü z=R¡HJÅ”ó0 ½²9Ï'íìå.«ŠIßA÷§$2ÑÀM/£ÁØ£ìcÖk.á4¤­òlމL͌îÉÁ’ŠÜB¦à€Ñ=8XÀ×?ESÙ…á»H€ýX¶À^'USj·Õ¥’ëxãEÛ Ù¼¦‚™>Û×ø“!Q,¸š?k©<"> stream xÚíXÝoÛ6Ï_a$æ±"RßÅüЮM±aë†&oÛd‰Ž…É¢ RN½¿~wü%EŽÓ {(°"µŽäÇãÝñÇ“ÜÙýÌ}<{wwv}’Yâ$! gwëq]ÇóÃYDˆzÉì.Ÿý1Ïxué»óÝeÌœ•2½üëîçë› êÍô]âD1¨US!g®YèúÆóf1`C± /ö O'¡TO¹¸¸¸\®;ç~6¬.ÓŒé†Ü})„,ª{mBDzj œÀ³&|¯ƒ…}Ç;À¾˜Ð¡¤§T Y@ZåSvDNâÑSvø°{±`—–-ˆš-H;4ñAp$8„p§C÷§¸ûâJ;sg…<•é~LS6i%ÖKýpJ~_Ø”åyZ–ç ‹¨EÝÙ‚'!QÊgüÌŒ{IàyÞ¼L Ldi™¡Õj5Õ÷PÈ–¶,mc ïéoŸ?Ä¦È Do‚7[¡ÛBBÔÒ&/þay§¤ÒR^¬×¬aUÆ ×Íø¶n%Ë­½}¿vI»nøVK¨MhÓC vMãl¶+RYðJè-a_QI>ÊôŒ7 5¯rLwÕ‘0g$ÏÍ jS¶N‘Û_ß¿(A'LˆY.'ˆï†ƒñݨ— 8:• h<¾¼yûËí‡~Òô—| žË%/aye³è.~ºÓLao·t[—&ÒÖŒ¯¿©Y·UÖK˜ôofù'Ï À,Víæ¾Ý²JŠ£¶À-®Ï ãóæ»ÔP/ŽvÔ‹Ï¿¿Ó‚!^ûÄ‹S‡‰kTTZœJìxñz 1Äë%Ô/v*âEá@¼ˆ/"4ñ¢¤Ï=ÀFÄ‹c5ÜbUÖŠ OÁJ­ï™ü nzÁáJb¨ÅÈE¾VûèÿŸ{¿MîM¾YîmêÕx{ÉüŠŒü¼m¢Å-Q!¬8Ôdl‚Ïņ?t¥È6¹ 1ÅãoK“d+£NcnËÅQf¢si7¶´Ç¥M/¹…dµ]ؾrÙí0™.R¸6öÂÚÆ×_wTæä´8¦Ggwá¬8”8UÈ6ß/É›Pç9 8¢£4‡LQgˆ:®wõémÿW½2¤”[Î=Ž«,Ì£W€#~0BMlþà…?:½Ë´èÏÁÂGšWcLŸÐšgòØÞ1&òÇZSþàÍhžrKÝ]ò6„XzC`[×SÀÀ8 ²èã©ðçx´·S¨Dä$,u _?Ò$ÃŽgé)¦R‡ÉƾfâÍ“·&9¼™oðFŠã/··ïMè®K{®;z0¬fÉÂrZ^àc/f¼[¨©N¼mÓ#æÊä•Ä/EÙøýÜPT9«üT²«€ª­¦…dBh¬Ûí}ÃÛÚLpÛ¤­Þ)[ŸG©SÞz¹a~@澩ê,¿³ —|kJóÀÃ(À­.‹ªå-æÖÐÓpx—BA¼* XƒB·Ó.¨ªÛR}¼SMú…€Òp´Ê£y` ¾8ÙŠƒºhŒ£­ z°‡¶bK¿#ª³U÷ê§þÀ¢†ñÎÔæ»HIðýñ§Á‡Nûüpwö/ЩT endstream endobj 1305 0 obj << /Length 1158 /Filter /FlateDecode >> stream xÚ­WÛnã6}ÏWN&€ÍèbÉrQ=lw“¢E6[ìºOmh‰¶ H¤JQvý÷Ë«n‘“ØMà˜34‡ÎÌ9$]gë¸Î¯W¿¬®îÂ…³ËÈœÕÆñ\óÈYxˆ‚¥³Êœ¿nÂùí?«ßï"¯32Xx Œæb5&¥ävîÞìo£ðd(çPÚ\¹f¥»‡ pba,,„ñ,e=ó¢3Ðs\__ß΂ ¸‰þvCO‹œ!ÈQf”Ò–ѺÔâ2 ×¹ùA¸Á1©i]åG݉1f¨¤ŒW¦W7 È*á¹RJF³:峂ˆp;c(‡‹Ab?b/3ßK/îxºîM]!- *…y*üwõd§ºÍ0C)—ŽI-¥EYsc¦v&…oŸ?iAù-,}–‚Ú)IÍÀ eZ¨xadÆxSÝúÓÁ,ußsÁ24‰Í ׿þ<z_ XÕ %áÐÄLVx8ÿF«2¡Ê/£¡©É…¼À®˜åL´ _Øû­½/í•4Ç ßÃ|j#—d r˜ˆ/a¹Ú¬¿\gwçì€ùÎìZGB+_¾úŸžúY}%Âíz,e¦ æ—æEyb3qmäÖ8Y[9ÅIŠ;1ăU@#‡)J><~»o¢ê¾=œ**œƒ{p€yÖFT—¶?#ƈþòu׿ékØŒÍéV 4Ë ž™„è`lÁÞGj* R0Ybø¦,ô6FkžPÖÄäë$§Ôé©×I]–MOs¹Ö"¾öä ’j#¦ÙNÄ T%*÷“œP6™Nöª•‘mЛ/>jcŠ´Ç‰K;FY1(r•)èD¨RÒ‰PÄEûsQqF>·ePlÜ:r?ì± ¢e<vÝiÊiDSœHÃË$àAƦ~- t?¤éÁ€½÷mŸ=ïL¼¥C„Út-2ÃBÊ^ÀòzJqà·}úóññÔðŽ cÃÕöïÀ°%¼Î¯,Ê“íØÑH7&ºøt…E—ò®ðϲ.ì*îöüǧ|œa‡%ÄT ±A ¹`—â·{»ù¿.€,³çÑž8™úØ”À<“î; ÑQ‹EÛónH”¾ŒÃ¸ƒC»üI·Eè¡ï°¾Í/¼Î…Üæ2ÿ£Ñ»²ÏÁ<ì€#™CI/M!¥…€«Þ9²ønIáDVƒ „yÞ¿+.^Æâõâ—ý æ6ÓüÿÖ0Ÿ¡ÍF\ÚͲµ;ÀÖ)?G’Í UöǦìOT}øŽfÉäþ~Ò­›Ûïö÷"‡C»sKЂ0ÖTóVýO2±eå=4¤¼³uÇw6Ù›š¤-Û¤´Î ¨Ö¨¡4ûì!ƒøÊµñ´×XÈ:lVqT>«—&Âp Ì•õÍžÏH1¥¢pŠÅ£°KÅ3’“ž‚ ì$³­82ñ~Šô d.ØËA]`Íb`îOŸ>t?2ýÓ±]ËÇ‘6ã|‡o²*w¸1Òø‹WŒˆ±YS/Vzž?°iú¶½_]}©GQ endstream endobj 1309 0 obj << /Length 1318 /Filter /FlateDecode >> stream xÚ­Xmsâ6þž_ÁvJfÀ±ñ+7õ‡»kr½Næn&¡ŸÚ~X€fl‰J2”þúêÕFÆ ½  •¼’?»Ú]ŬþàÓ͇ùÍýc fÞ,™&ƒùjø¾FÉ / gƒy1øc´$ø.òG»»$y,9¸ûkþÛýcœÍŒüÀK3±¬šÇRåÆ7Ý?†á ºI$u'azQ &ÓT †z@ùòO?ö¿¼7Ÿ$¿b0ßMbß-zt¤Ñ{Šý&ïÍb ¾oÆÌ]µèщSgÕI §©»6¡§óÄ'ð²Ä¬†á¨${xN1˜)ÖÛíÅÐ ü‹X?L\$Uà¼ByA3Ûî'#Vtô¼tÖ§‡]µ$§ñ±Ò1Ï™A0uWÞÐÀÕK¼iØ‹ £³¬U’_m–iæ¥~æ’QnNo„···ÚÜŒ×ÅA‹ü°…ì]Ÿß4Úz3%R¸%”33uµ°$”Âp$މ€«Z"ˆ¹õ/ —¼<\ÜgúÚ>|¸؅q´Ô+J*-«Á!3{’•nõß™E7D ¹nü³hÂ,…M˜%ýrC8©Ð¿°Ð †ZØŠÀ¢„Z`ó¼Á/;˜u^~1W„êGê-åß-(ZÙ–àáµVZSRoÙE£×XÜnЉ•L¨]# Jû¼Æœ™G ¹Z‡p«À@µ-ͪLsWÜârùTQð–,¡¬³mÿ»~ê’+z”ý35 Ê&—à$ß0nOŠÂŒPy´¸Gv­Yü£>~vNgz-J‚QÍ  [‚RÅ VŽq¢ÛæD‰ž4Uµ­¹™¦Ø‘‚s.倂/$¡KA½^š Ê¥ ‚F'Ð{4“§}ÄÊ£^îç‰n[ðÂÿYMa>üøõyh܉¢œ"#c”c+s”ó(mZä⧉vþÛâœbÒÓš½5Œ¨;Ï>¿XO·çÀë¸Þ1(¸+Ï„@Ee'Ö†×'1Yæd¢_ÓSùLþX.EËžJ“aäE³n¢yE|›ùS9¿éˬƒ›žåÜ8} –0|ÿôòÐf Þm¾Ù4¢¶ÚyâàºÆ±Ü ''˜qZ/y‡ÿÎY?KzÔ—«OH?F!|SÄÈçlȽ@Õ5®ªJɇº®*Ç´«J©qUÙyž?̵$é’mãªjpcÈ)1ŽÊ¼©Õ޼Uè,$„æàËN¤´„_í¿¨õ_QäÔ³ +Ë2µåhñ&¼–leö=( —ï–N¼ƒ”wèüúÜáEÄsÕ"l'6º%YkAç)™Üଠâ±Úx|b–ƒ“o2‚ób¤æ9¡ Ï^¹ÈUIÞŽÔ‹\ÕÞ'œË½RQ¢±»¡p(ÌVb™õ¸I”dºh–˜Ðáx¸S­[±:ëe×XL]ÁúM&Ê?TkŽ€ª%ß`¼ÿiœæ$C–Ä#ÙµAæ{É,ëµn<9•‹äÞÊ>c™’vA£ômðZ §°"»n^”8:ÅÒ®ëÔS6¡¾$x †°€Å…ãýƒ^RÜÖ[Z¿üþôtNýBŸúI¦@½ Z_úÓàè"o|Ù\úÒÎU_äÆ,´ Ô³†’.-á( ÖV%%´eI[ÌôÝÊX'=‚²ló¤ ÷Êf™—„oó€ân ÿ®A9÷ Qœš]+"\ÝÍêý{LG+uD6ìÎd… ò )òáÃÃðØi:˜¿ÛŸó¯Û>ÌoþŠ‹ÆŒ endstream endobj 1314 0 obj << /Length 1847 /Filter /FlateDecode >> stream xÚ­YKoã6¾çW¾TÖŠH½QäÐv“Ú¢M¶—ÝJKtL¬$'¢oúë;ÇŽœM¼ŽÈápæ›eß¹u|ç׳ŸoÎί¢Äɼ,¦±s³qˆï{A; !^dÎMá|t£xùùæ·ó«˜ŒfQêÅ 9jN¾«—¡ï>,ãÈõ>ù>]ÒF$ryÝU¸þÌ7»^ޜݟ }‡ôÆIè¡ä¼:ûøÙw xù›¯²ÔÙ«©•‚NI]:×gõòŸêTA0>ñ½8$N%^^ão#žè&‹©—¥ÄôR¶¢b-_®¨ï»¿sVKM²ºÐÄu $k–AâÎ{ކx¬;;}Ó,ÃÈÝUzt…ÐeõGW­ycuUÅšGTv_Áñ³(ÒZü³$„¸¬ì¸TºÏÛ4ˆ<„¯±©FD<ƒˆØ¼€D¼ç2oÄgbºÁ„ST¥ }æÑ Õ˯º:WkW4òÝv§Ÿ|°,Œ*cÙÈZ©-kFW¬¡U•EšbpU[»¢cW5xÀIÊžFùäô+T¦ j>HvËgÏüÔS Z$Oá÷ÉüJÔï–«Ü~O QñB°žX.ûj(ûª`-3¤¨ó²+ø;…™8ô’(§âívW\, ¾a]Ù.¬!Û‹E½k*Ëi°ÿæâæï—–2ã1"c-ø5^Í*./r<Îý·x·Å†öDìîŽ×ÅXhÃïJ–ó‹…ØÔÌîíy.šóGJõ™”OôÎ?5Kâ»·]ÅëV>ëšc.1°$‚ Š“ò@Ÿð4®òvg@µíÖàyk!,jQuÕ,ÎŽé´2»¬HìEÔ`åž¼©^åuÙóæƒ¤‘­fßw¬iEÉ¿C_kHÜ·µ¥ùý¦ ÞT­Ýœ·[a“ÒÑh qþ¶d_¿Æ»oëXɪ;k.)þ;ÅR˜ÿ^®ÓN•-Vš"‚kMé€ì¥IÈÍ-ƒà­o”Õfk[—ÜTœ[1êt¦­_ÍIû ¥Yëê Ôº×ûÀäùSNÐÄÅ ]înEnè |B1âÈUöF:ñ NÀ³áSÞñ\l ª¸ÝZòÖˆÜh ²í ÖBæÆÊÙoE¾ëlN«ûr»ëJó~ͧýDqBì©*ùrëæ[Ö°¼Åƒd¨o£°ƒ4Lñ¬Á †„Ùh2³“ˆêÂdª28QšB3§¡Ý¾¯æ¦bŽ c/¡ýLt¼T8ǘœ‘ McšD½è²ÛïY}.·bN<âØ£i0m´waÄR?Í‘7ïšâ@@q,Þ¨¼nžêCÜ ’¸WèžÏéu<£½ÖsrB/„¬ó“…DY/¥*ë914ô2?Ä@3Ÿb„Íœ-ôRJ­ !Ï Ì¼4Mí4êþ‚åm¸6†eëuÓ‡†A=ø'< 7·I]s#ÿ¾çéJùà YZÆ“"„¦I!€.ÓQJÁÎ@0 í:/ôTܳë%…(1ˆÔ$•É¢®.xS>ö[˜,ŸêÌÇÅj.ó‰5’€ñ‡xP=òŒ aÐW«bÜ6$.®R%'ôçÜy|ÀÅ•¦C,Ý<Ç6‡L¿zNŒ<ƒÀ‘—€E-Á¥Üi !§8úa½‰ô¤`ÀXlô³°¹á:ø5kª‡4B+ݺ+p*hæ&b „I©åϺ47½†—:àw ƒÀD!R¶\#XRO–9\C±Déµê‹ÃÚŠZ?êçõVh»|²Ò›ÓÞÂo­;›ÅR6ÁÁ¨i†˜+1íà o±ß,":¶”HD¤ž"¹G˜Eª¾úCÖ½8žb@m_y”;Ÿ‘ 0Œf'áóÆP'Q ­JpuþšÚц¦Z„ãjÌèT'%äa0¯ûîФ.ä©Or_U]hŽùvÚ:‚“t¨˜$­“™RbõêX+ @4¹ØÎ¹êS^æÊ//åô}Í¥Ô³„4oÅm-ð.žë´Düø~‚N³p®PAÈ’—À37' Ïä`½Û`L‚ªUR¥ÙÝ] î€ÐP2( ¦–(8~è1Íyÿ¡o¸Ì#Ä~4­û“^¤¯G¯ºõ NkJÞValn«@íí¿Ól^{‘ƒQk¸q¾:)pk}§ ¦šo_ï’zÕÆnÜÏár¾S±ù›úQaò#û :2üØî,µÿð*:Ü8z?æŒJG÷0”…#Y·wúÄö~×ðÇàÓxÔcãwÄù~+H²qª›‰ˆ²áÐôËbñÍ€xнÑßÿ/ÖlÑ endstream endobj 1207 0 obj << /Type /ObjStm /N 100 /First 975 /Length 1982 /Filter /FlateDecode >> stream xÚÍYmo7 þž_¡ë‡é$‘¥!+¶ÈV`Ц¶ÁàÆ—6«c¶³tûõ{¨Ä©ÛëÙ¹ Z›w¡(¾é!){_¼qÆûŒ§¨™½ñÁ±áP‰h8%%’‰>(áMŒžRÔ7Þ¼õÑï÷ð‚M‰É$1Þ9•‚¿xÇ*ÆãÕº õTáÃgVJ™ *…>"Q \W¨B)26x”RùÈ@k]Ø'E©lBe ¡€R5Th OJyPQù(˜ÀN÷%ØÍ±Ê‹ J„µÉÌJ&H5ƒ±T`†èwU‰!"W#X]W`(Rª aEÔl,"WU3¹$Øû‘/ª‹!R/ø“8ªšø .õЬ’cUÍæb(‘J†%”ëZ†ä¼K†}(º‡ ŽuEò†9è_S%õVó@!Þ1©~IîTÂÎp·ÊË êŠb8ìˆèqaÂpôÌFðÖ‘²K•+{Ö¤Ñ ˜j\ÊÕÂȤc]+^WÀ[1WcEL,’±22y¯ï2RÎרe2I“ƒŠU^UTò:q{“R1TL’êŠbR©æ ßű¦laPYõ+ñ%uEÑH‹ºBE  Õyðª: J˜*à†êÄU¢f#asIO!ì8'p(웯×B^QË Ù©ãÉ (MMØì‘ΚNxAéÞÅdª›BR0ìíïï5oþ¾hMs0Oæ{ÍÑå»y}þélüq¯y6™Ûé[‡#›—Íó·¾>ì5¯Û“¹y Y‚æð˜$gƒºÍÛ@ lfß4G¦ùaòfbšæ›×§c;=Øó¿ž˜§O÷ðïáj“õ0öV̶ä/ë1kGç“a;ª ]ŽÏúÓÈ{±ÈDÎf„ÃG¶þØ[)›º˜NNÏF­ê³¬Ë  Hg^›æ×ß~7¥XRX l#q|9od¤VîT¢M³ŽÜ>u÷¸'ãyUüPqV—*T ã¯KøFà!p’q8õ"šWÓÉÉQ ÿ˜æÕ‹CÓ¼i?ÍÍñ]—¿¼o÷šçØ©ÏgŠñuõìlr9=ig׸_ßýÜÏÏ&ŸL F‚‹³pï«Á«µø¸kÆÈ6®ÕGõ9î)Ò…-i‰`|kIád=0 ØkQX6†ú|ð±µãÁy;[‰´ß&Ò~]ì±Wgöw§"VA &öG¿ã2¾e£ÃÁ•g endstream endobj 1323 0 obj << /Length 2611 /Filter /FlateDecode >> stream xÚµYmoä¶þ~¿bq-p–Eêuïš/Éå’½‰ÝE¯@¸Z®—ˆVÚ£$ûœ_ßÎP/k­ë| C|’Ùg†¹Ñên­¾õÍí«ë™XmÂM&³Õí~%¢(Œ“l• fñfu»[ý'(›zDÁý:KƒðSɵL¡&Ò@×ýqýßÛ¿^HóÉ,I$¼€%Üð4G‘W/ê¿×âx2æ*.bt%sh‹i¨:t½› ?[*ÏÂM!ýRUsgJU­¯¤ˆƒ®¡o{Ò¥Ù?Råá »ƒ¶,qÐTØ©NQioÕ‘O¶Á=Þ›ÞQ˽Qã@·íÙ¤,Â4”q“>5Ž”a”ä^HÙµ(‚»þ¨ëŽÕ=4}åö ¶H£0›Õ¸c“¦4d‹ú¥Q`u×ÛÚéµ®¹ó;ƒÚƒéÜ~`qÝvæ¨:/NTU¯[ªŠÒhÝéýZD꫎L»´ß$Eœú­ÜþôÏïö+ (!XF„g=ÃA$ì9 e!h˜Õ§J•úåH(ʪ²C{ÄY´5õ•nÀg…‹ô`ÁÊ¡A#=Pej0¬›zÉ$"†ÝZÜ+Ö¨v)HŠ0ÙxAvº›ý‹_«¯™ !ç(pö€bC¾kêê‘jVWš"FXa+¿¦Rß:S`qÇ"IÃX&ÿÇ",D±Œcœ[Õ¬ÙÓ—ô±Fm+´¡ëZ²¡QX¤ñKlɲÅ&›FUV«Ý#Ãcø‹i=ë³°àЇ’ }ÂçU è¿ÑúLö—­…_QK«ËÎ4<ç¾áè;6v¤N™ª}ñŒÜàÃ0|9Ø›1ð§~ ead6]m“Ðj2 ¥ä ÿžÔ¼§çá )ZaVÐH¶ˆ5Mïâ ¾G?ïÁ0ToÍošJG­ÚÞj–³úso¬ëØUs»ÃØAQY®íÓF¡½Yqó¾EŸñXî0õ©ïFÞ…o ZUˆ‡êa€EsøøuAoÌ•Qá´ÃRì ïÎêºÔíLÙL Jµ$ÛìI’w„M×Ô;?êšiÌ;¨H0ò© þÂbeÑôTüé ^d…ÉxÌè’XùXbÚËJAƒ}o7¸1BÃ_n²àŠ-tG‚d~f¨†ŽÊLÖï ™C&plt‡Æ¶ÔuTîä̓ºé¨ryc¹ì­Eçwº‰Ò`»–®:jö wËñà8+ýŠm_xžvHèÍا¢#¼~™ó—«%©Ùºƒ#¥úãQÙǯ>¹D*ÔâÊî,IÈÛøuËaáhjsìN<†#Æ Ú^ã²`t$÷¹W¶3•fÁ£ÞUó"=°{ÝŒÃþLxªmÆÙÎÙ-–¼e(ÕÔ+‚ð8ímÕñTqyF@ƒåTõí3C0œ=Lâ( þQ–ª…?"ADÄwáÅãúm«»':µzÉçäDÙó vô.F¥@˜ ºIqƒiñ (¯9EcW©jjÞ²lß"2°„ {–߃¦‡Ë’2bÉ›ƒÁÞô‚”b±Ÿ× ª"nR¢Ï¿ñB{3ê™/nކ󑝙VÐJXÍ“wTä1W\’•r ÄghþùÚÁÌÂhHýäò¯_]Gªþz! yñºŠúòva'è˜Ôç/èû,†\â¦Í¤Ov™7%Æs@fÙ˜Þe–rÂF™!OCÅ9¾ Ï< nSU†#ƒ§¤ƒÛ‰¸º¤À$oO•òvFy›œ°|:w9˜dˆl’7±<ÐRûBÈUÔ¸å¼å"žä ÔƒÚã ÞÀÿ”_rß›P:v3 éx¦S2\¢Þš-Äë '8xË—‚K1Lè`]¯ ÊŒºò]y3éuºN®Øg׆›÷áKÀ]B­dÔþ(–@ûcüRÌ&¹Çl’{Ì&Þ¦@3ÎÙJGýª‚Õˉ'mÐ:ã,ÓQ$çÐ ­çèfeÚ®ß}<´“|„ö‚k™ä‰èX€î‰`MƒôÚPch‹h eø´¡ààânL”Ï¡-fÐĪ„˜tÓËÔ/÷–Fé)ߌfÈúƒ°=îåwü$%_‚ùïNÒø®C€w/<.ìûŠ}–É™ëèVLKßôº ëûá³ ÍwÆÚ˜›gZxȺòÙx“3d½ô6F£8˜b!pˆ üÛÚïÃDžFçNâd‚ ”t˜H‡nzZuS ˜˜,Ÿ3dQºÌsß “³£qÏ€˜Üóè~7zWWy˜cô“”¹ÿŸ´é}Cæ>#b™]îo»PPe×»»5kM¯É(ZS[7ÎãÉONnC©1œs¦à¹?V7rÎÜUóôdÆËƒØŒã¨÷ð•9˜ LG H£ NMÛJàPsf†ïÄÌ#±”`fîžürÀÓîÏDcb'¯Õ×K猢Gk/Vúq[ž "‚õÞS›¢0 [¦¦;®ü 8‘> Ãuhg¬.»ñ®›$“g è7uÛiµ£aî¢;çæýë¨áÂrįG†˜¸ûç5“2àšÜ…mLŽßÙcÿÓë£ùïóZ–€ª›ÉdB$c~ÏÃÖcï(”¶Ü§¸^iÕò)OÚÐWN®Üú™ùˆÏîqôšDRmÅ.©³`ÃOí_,¿EÐ}WpxB‹©Ëª§Œß“‡—á1ò ?wÜúž)?†‰«¶¡öò Ë_‡0ÈÂn“…Y4ütôoÒþš¾ŸÅ¼>„µÑo<ÇÜéñÙ@õe釯Ép› KüÏ¿¹x a­×v1D]œ®ÛÁ[Ó‡š}Óû‰½Ý¦~Pr_rÄ4%ã‰ý"JX Er–´o×—…X Ü×þæWüMK?Ôºm_À ÈÓE:IËP™>¬@Umé7B—Ò¨év[$ k͘ðx˜Å¡Š_Aµ@7NŒ&×ái*Â?S °Ÿ¾nì‘O0íâcfÚR~ÂW³«,ŠÁF9ˆþ“Ü#ÿžh‚=h2þi*)&oöÈýË,Iã!˜¾ƒŽïìЋÊóÛæv ü×½Í'ó–{H­gà©hµ^„Áw·¯þøþüµ endstream endobj 1335 0 obj << /Length 3349 /Filter /FlateDecode >> stream xÚµÙŽÜ6òÝ_1ð“p+")QÒ.üàv‘ä!žl°p‚…¦¥é¢–Ú:<™ýú­‹ºZm,©R‘¬»ŠÜn‚›ï_|}÷â«·Q|“ú©ÕöæîáFoB{+å[“ÞÜå7ï½(¹ýýîŸ_½µj†i¢Ä·±:„³oêÛ0ð>ÞÚÈó }«#©È+êá„ß¿dÕÕ’;cŒÆêf§c˜4B/ëŠîvg”ò²ûé0±W0”ßK~Yô‚Tù·»0ÕÞoAè@x*|xyÑ–ÓnrÆï‹®úMˈÝ·ð¿@ÜǺèäuÌd¦®ž³-> e[8ÚâÜ´=¯x†¬î˪À³Ã¹wÀÑ4Šøtq¬ðˆ:½¬Î ZtÙé\9¸üoÑÁñL¢¼»cÑÉ´¾oe.úæ”õå>«p¯8µÏÚ¶,„~3ôDH{¿‹šÅjÌ\¬°M£"'V\ãõÝÏ¿|Ǩ Á…±J&òýñXîtÞªGÛå±KÜ®Žå”äŲ<ªåÂÕdÉ/»~ÈŸt®SJõÏ}5ätF˜yh›Ój8E‰ß’2½‡žs¹TWêybDžÚû‡|«oI7\’HA»c3T9Ã÷¸Jj¼²æ}¾br(凜¶¾JÔBoßüðnS©Ÿ(ãP_Éj·:ð†žuÓËâ¬Ç8ǧ Ûï‡6Û#Ÿx¦yX ï{TÞ±É;?–pvF)@iIÖ*Žü4 —ÌèfÀg¡ž›¦-Zž{DÝ#ˆ××yÖg<µoNC"H€²Z4ã|U¯{¾YZ,‰æPÙžàXh/Ôê¦ÞÕM{Ê*v 8——]ß–Â0Ðá¨fËΘR×à±´xªšÃî'¢ 4£ÀûvEóorCÅ }Šƒý•ù¡BT‰¾¬j…¾Õ£»Å¿~Yáy^nÐR?ã›é…?…‹´Jü‘Âxåœ]7œˆÊ°aò¡©ª†-Hü¨àôµ;=’»à((KâýCÎ×Á¾Xi€&M–Jƒ^wkìÖ¨¢~0Èè êRt{X†6 Ó÷Oü¤°€†Ä£°`BåÂBp/ÂGZ­¬0tŽ>!ïg[!EÄoIÁóÝ·€X#~àó/’!|AÑ0³ªkšÒ 4ƒPz¼¦°©0ùË^,JfÑ –©G$ç`þÀ"üü”¨S¬‰òc½ŽVsýA/.‚I0Žå}ÙóÄ:Mü+AãMÕC0Â5HÉ}dš´Àìñž8Þ KcŠôD²DrÌwñEÂæJƒÀèUé³u†C&P æÞ?erp d½¸Ä&éÓØ„l2<œ¨§ß|tOÁM lðçï_¬D‹Ûå ^ß¼Ÿ›zg0§ì@>:ž.\8›{Ç ¸n´w™¹Ï$€+ª…ÊÑ‘cŒ ¸`¢öq»ƒ’`ትޛ[H³9¿/«ì¾’%ؤ×ÄX-ìäVó|ÇÌR†ÑÑl¥JûQ4ºzþâõËŦe…~œŽIþß16+O¼—’ô ~BÂðgTíÅÊ¡öC:b ™í¯DµÞÚàhÚC½ÇÃÊF~ÜßfýQXÑó“]Bru…Øž­ò£P¯ì™åg½¯›?wß4òÀ±QÛøȨm²æâýþ*Ã9Aô.Xû…\ ¡šJ±ûý³¸ˆœ¶¸¹ˆ[á|(v\Œƒi˜¹d^‡Pù§v¼™áŒƒa$Ñ&‡úqÄ5¿™RmFX'…£]ÈØ·êB“OU}5H,T™œ !üR!?I&éWõ³¤ƒCVs)줶‘iµÒL–&ßdØÄRibÒÄHbŽâ`Ë~AÈÙ³Ô=ù;ü–Üo@~¥¬ÉÃ|Ù¹÷™¬‚áŠçó†ŸP(2ÀÙ¿CÍú‘¼àc`Üp`CmõÄ|×.`êŠàhÑùÐZü"¼`}áªÞ,5Æ};Uv0p•,µ¡Fq:W#Êr.ÕGk_…£#Ê &'ÞaÀ€Å´¹Ïl°Èg~ÇàìYraÊNt:c4ÕµT;èTÚHcm 3R€´®ŒajÁ1ãÊxqnºréq™$=‘âÜK!M–ª]X3³æM/Û#©(Ы-1s‹\†$H2'| 8vH%´Œ|jZ7óÀOé~Å«þXìú[±WÓÑ·ðv~ttbI8ã>/kG´ì܆»bµø³ƒæ -®âÑ –ôY9¸Ú퀙.#Â….#n-€Óã9IÉÈbÉpÙ›ÄÙÒmñ|®JGúJî¬\ú§:{¡Ÿ˜y%ˆŽH£¥ŽÈ1KH†*†Iô–»”Nå;²'€#Ãá@úŸq!òÎ-çSe.wEÝ•œC¡˜%¥b¢Zˆ†-#2JÙùe¹Þj-µ+rxQ€YT‚ÜÈTFê3 |ßòäÔë¤7lA´§hÜÝ|]WS„®ÈÓ2W5½,ôÀó}9n°Î¿EØÐÒ±•7ó²0Zœ0u^ÑôÓ¹‹-&†J¤k¤96ý¦¤i–{:_µço¥¡W u!ëÝÖö]’`¬ÞJpº”{˜nª±¤]y*)è­«Äñôˆi!ØÝPõB’{˜D£*Gê&âhÌj «VQ!Àž‹±³±Ú};ÔÔ–Ã|'};ªßDàP)®œd™Î^A½™Swàz8ݳjÞ¡¨ HÛ’¦•ýñù)Œ†´ÇoWô>mã Œœ7š7ò•T¾u7´¬ƒxåÖ™{¨ƒ«²¢{WP_vY™¾-kò€€öŠÝ51‚ä-ÎXû©J/roPã­ÄÏBö=Õ;²X…m€©jÕAÊU+N“@‚äËÒC¼›Xûõ¿|÷Ÿî“ŒUt¡µÊÏyainéç*á÷|Œ¢ÏpÁeý‹©»¯’t©—c=lbîßb=?ÕÃ8+õ0‚l.€Aõ0ÎH=Œ ™A,Ù"¹–$̹–$Ò˜75÷ßÀy,-ŒEi.bSó\-¾ÈÆœçnØÙèc0ÚP0î$n¬£±]¦¡0vÑÙnGg»í,Ó„Áe„{fÊõ̸ˆÐó“ØÙÓ¯£àZ¼†â!ÐÏ»ˆÛ׌5ï@픊ð!,]0ö¿n©¶ŠkM¬Åí0¶ëSp/š?Æû0Ãá~+‡å¦òØÕ ëüÛø·óoC}VÅmQ£¬Ô(ðÏÅž.çø²Õz/nÒ`ÁèØ(8çWïÒ.º¸PÆä%¸ÀÄC›qqd=òË|~ÚeÃ޽m‰½Ù7^W² ^írqðyfu ò1ký–éÞ«ß·”,‹6=yVÍ»ôk…PŒšñ|/Ñl¹UÎK`wU¹ÁEC×7éèá¦ëÿ߯»|kÛ –éd-Ó¶YHÚ¸N°‰æ78dW(‘,ö#µ’û°SðSsÝRÏÉYÁå¦S(+ãÏé¾ö!sH£¦ƒy-'¶Ù36+ý¾v»³hù½bª½$©.¡ iËÆn¹”Õ8ÅÇÉR6ÙýÐÖEî³–oòAÅàœ¦0ýզ߂¤vãgF6F³00¾ˆ*7ý'd%ú9î'ur›É ”"q ª²}ñúeùPg[š2I¢¹&ÛÎ äa.¨^sNËdg¼ƒ3"A„ܯS '/;îMÜâRÇeí>t7±:²~ ô2R-™¬•ë;Ð_h¯9ÄÀÔx¿, Lcï]I: e” ž›ŽÊ;1WåîUÑ™bµõXrÉ? Ùºo ƒ-^õ³Á—9XPŠh iŸN½,§_˜ H9•k§ ñ 20ˆ(´Þ»òTVY;fÁ&Lñ^jC¬õ!‹~®Å홋íñce0sÍ8bk?o:øŒq@B—ú&ZYìsŒäY&bâø‹L$Y™ˆ4{Æÿ(*žL;EënÓeçh¥jóŽÔÌ€”«Õ€þ‚.Ú*×#»0(õù**² áÊ@¢ÈE#»0×D°3Áj×€uÕ@t9¡IŸÈ^h Ý ³Pë¢q¿ üÐnÞÍ,îXÅj¶RÐïî^üÆŽ˜ endstream endobj 1347 0 obj << /Length 3049 /Filter /FlateDecode >> stream xÚ­ZYÛF~÷¯ø! «§’M›ÅÆ9mÀ‹…=Ù›ä¢(‰‰DjyŒâüú­êª¦H¹'q‚}vW_ÕU_]­‘wû;y÷ͳ—Ïî¿NÕ].òT§w»;%¥0qzg•©Éï¶w?DeÛ¬b=®Ò$?J©W:žJ¢ªO«Ÿ^ߨÙ.±TÂfp„[žä8å™äCïÖ&38¼ÖVšôjGû3Û'Òj¿MWEY}ö¼8ŸM­P¹ñ³”‰l»Àž*21·›>¼ýî«ÀžI.¬Mg{ª«µŽ“h8T ¶â¸!Ò#J¥8ŽUOu8ÝfB¦±ßð±èDSœªþõSèFZh5Ý¿h¶¡ë¤"Óúà õox9T]…³@#i.bß­Aíy’øWëØ¤QÕõ©ª-v“èTùäÈ‘Þ}I„’F’hS1¡=ÇieÑ1™¥¾aÆ™ŽªžhæTÇ;ö(O¤»Ž Ò§Æ$sš¹\Þê#džÚ?–¹µBæé¡Á‘Ȩijœê¾¯›½ =¨X‰XÁ7IJ+¾'¤%ÆO¥Îm‰_=·ŽôO -O¦›£¬ñ ™®°[03Å0tõf¥eú%R ¦På†>¡î9À)d¾0'Ö7r‚c¶[D6‡–nê”AW¯Ã`Ù6¶7Þ+ä?³“;}><ÁРs‘eSXƒHüžfl4R»,ZŠ˜Xìâ)½ªÒ;* C"s>NäéRÓºvô·è˜ghÒV±ú‘\u6I>·Ò씩í©j†¤_eƒc^Vû Ä²ÁAÒ ¡c Þë#*„È—ÚUˆÈBu5NyÈ‹Z’¨‡’2,på0ºD'- çoÙÀp:ºÀÅz’CRîÛ´ÁÐ2 §ÑåÈкTõþ0øa¢yÞú6®f¨ön›è&´1~5¢}K/Wãåj¼\ a®¯*¦LZoÊoºÂé·ü°³¨µÔÆÛ­Œ£W<ÄxäC0êW;²"ãœLàBçnÜV n R~»ª`ÒÜbŸü§™ä];— îºö´œÆ^Š+kl4 Á¸V©jÔq†)öîöæm‚†î\诸aR¸rþZC *¨{jyÕ<˜ò@h{ß»šæ\³$%Ir<Ë7zP)Ør¡ÂL¥¤‘mÍ2êÐôDÜTÃ¥ª˜~·µùcoE0ñ:±‡ŽñЙ(1pÛ:_ M~>ÀydÁMâë&MUm=Pö¶á…sÍÑâ{';˜ZðòsÑ ¡{¸äDJ Á×õUÓCvKæ8¼ç1–?9Ng°Çq„½›wäQ„G¾rÁO÷{—»!Ù…UøŽä°U´iÛ²H/Øýú9*ºz"G=T!ßuõÜ:‹oQ–#‚‘…±@Ÿ%‹gÉΟ٠Œy/M‡øl)ú,™T˜yfN…(óï*>ĉ#  ¾Õ3)°:—wä™Ü| éæôFS P máVˇL=å/Åžc9U.û§žóØ…b:~Vë’’ŒÅ÷ ŠZœŸŠBc;K;Žíùäœ8,Ëõ@O*&Œ½jÍ5ÿ4>ÿ4–ƒ<4|f‡7ô]>ö®›ñ´©º!¢žŠÎ%–vñœ`znAzÑð·fÉ5ÓÀ¯Òlw) $ª¢+ ÊÔÈè‹ÊÌCš`Þe²xzã¸-šS-b=Õé$Ïžo«]1ƒõ³Í…•jV‘›Ìð/²Â%´êÞ׸Pqëü¦ÆÅpA…ª‰³p¡ç·lÇöþR4÷ý¡±–çP™Û9kü<Õ |q­…ll–"( $.yŽ9ÀÆnÀâP°2‰¾F-8ÌÀxٮݎe½©èŽXÖpd=ø'ÊÌ1´ðë¹ZÄÕŸ{Àœ®äGq¼¥ŠHà8ÊšR®=áz_³ZXeÿ¤Ð”Ô"¹¾gðîz œgÊ9 uŽr¹/°ÿ¥[k›@yš-õ}9ø·›fzM»šþnlJŒÕ¿_ôúJ6A•ÚÎ%>þèJàÛ›ÞÄ߯2¸Éq·_ zŽþ½J!äWåaØcÕù2>‘¡7ãD˜lzÜùÛåqóô Ô5@ãgpà¢íö ]Ç"1fñ<ö„cýàÕ,Ï&e†áÜz¹\„?yµv¥ÑtüB2·l$°Êç?Úåoðu\% %¼­ UY©,¢tå/Èÿå+𠏬7®xŒ9:«„Ã9t¢¯øE‡ ã˜TÁ?"ÅøÖl‹Ž{êé(æD[üàS4ömˆ°ÌÈpè*¦BQÔáÃR|ÁÂñ4žœœž€»âW$³Ód~¥…¼*ýU3T]SL¯#°ø52ÞŽÝD aÚ=÷aÊX—=‘œ§‚¥ŸÿÖ‚„£ÝÆ!ø¾žu}'}Ðw*À†ý„8ô£å„¨2Å¿÷¡(û£Öi‹€Å ãqró뙇ñ¶­±÷JŠTJy¯rƒßÕ€€„±J¤~|ªÀob_5&ùVFï7þshÇTZ¾ö´Oà“¦Ñ¿PREÃÄׂ¨œ&*_ A%8"N!o %l:±E9VjgèDò :‘Äe´ÚnûDÒàß{osðélȧ9Q4ÊÚ‡bíSä &!f(3éò?ÆÕÏÑÅéÒuWs…?r*•"Žq±È’É‘Šíî÷ï9ä´ÿŽÍ)DÏ8,8æt)AP}‚$˜C"“[:ƒ¢RÖÞK˜®3©µR2¶€â‹kÞjž¶~ÛþÖ:‹Xx&ˆ7¥"*CóèËŸÇ#?ܵø÷±.yþKžÿ }f;½r#ÞYÊd*â—ÎWFµ÷šH"èèä¶Ášƒ€¨c¿‹L惰ô Y’ü&¡r~ÞÆQqö€ß‚bƒ`„¨_ÿ‹áå›/hÅ„7ì|€7ž‚8m->^ì߇@žg­Ã(Lä„±ä ¿§ç?Fá3ž ¡ °–Å¿ª,½W±Uø‹V¶NÖÊcèWÏþ‰é endstream endobj 1355 0 obj << /Length 2760 /Filter /FlateDecode >> stream xÚÍY[sÛº~ϯðLgRjÆ¢p!2Ó>8±OÎI“¶c»mš¦”[Ì‘H’râüúîb^dÚÑtúбg,KøöÛ]ˆÜž°“·/^_¿Xü¤ÌIgZè“ë›ÎX,}b8µÌN®×'ÿŠ4›ýûúÝâ'ÍšR¥±6ì8UUÎÝÏ´ŠâÏŒ‰™PÐã*²å~‡ó_0ÿÖƒWÎeœ¥¹0 ”dïý¾:Í7Ñyì:úÇ,eQ^zñÇ ~_ì½è] O–F/éqúUyëõ®g&‰¼Æg¦˜`\Ó£(ÓÑ_îÚb—o·¨‘E¶ig<I[”·$j7–f7ùînëÛ;›—Ôº©«µáãáÃç°¥™RôyMñݺu °°.üWA§XÏë¼¼ ƒy¹^T5Z“nì·}^·½\DN3ö‡£{*˜ŠS“„ùjá3š¶Xå[2õÁ¶›jÝ•¢ ÂuÐÑ¥ml^Ϥ‰VxˆzÉ+*‹y¦ÃKN½Š¨$±f2(3a$sGî5ðXÜ™8[€ “ õxë¸IÕg!4Oá#É¢”‹ŠÅ çÁä¦mïšW‹Åº*⪾]psnÌ‚ºHC댧rbisoiÎuÌ„û‡ÕÛ:o7pø”,™ú ‚~"Çø&änÛ.Ëk7Œ<)à›žH:C3ºjµ>úQB!}BßÅ BäH*XÓ7Ô\9j„ÆÒ’U8ŽÕ~›»òå7®¨ÇI!EÄÎ EÄI®¼o&TûvþD±ïâC^ºòEB|6Mk‘ÍWÔ¯}&@.3]0A®¯’Ž5ß¡fµ¯KÄš@Âç›mQê°wqW¬í®¨¶zäíÃ}«)8¡ga§úëÍŽ]`ÇD”&Ž>S%&3Mð=:ÆõâKüe_fïGÁÙ`Ë›DTéqÆ’)ä•>Ñû’ÅA ¦t3ƒDrïÅï†Yãø> ôú¬±»ÏJº¤QŽã6!nSƒÛ+úRb2îSEŒ«£Tq¢\òäùÔ Â=¬·¿çRÚÝ›éŠK!­î¸@ôôdf’›p€¯?¼¡ öK§rO§‚TZmÉ‘æÁÒ8N< \¨²Rs4]òäG¸íXrò>K(ð‚äYrLõ‚'†ÏS({æ`i²jOb#Õ žî(ò*Q™@ɲoJAêªgÉ|.£/©?L8sTŠb²…‡£‚ g4r eyo±hýî®r@öúýß.¨Á³®òÕ†zŽò$d@mË¢¤pòm5M€]ÐÕ}\n >¦å &Œ#s~d€æœDu4bB42‹3L¬_À Ëœ.mŒ0Ï—6’u ÉQ÷D\„R¦‰¦r[OÞ ÁËògSJφ)[0(ˆ£%æ”/MšMÑòA~ù÷°YaW›v™ïW=™g>Lú: WŽ:ËÉr½™ž1Ã3¢k•”®a`è’_‹vC”úI„%Þå«_s@ä)òÉVÂ’4r˜}áù'“·-‰€sÏqKª¥Y|išøžI]èÓã¤K@YÌ"tlTê÷ÁZzÿÙ¶©F?õOø‹Ó“»Ô¼ÄŸ‡FK丽il4'³]zõÜJRÄ2ë“'%œ›+¨H÷åÊsÛŠ¤@1wûÖ’0$PÕ¾¡Q;Ìô@£@möµKÒ@¾Ìç÷0^€Ö[ñ!vt£â>ùå/u`Á“¶>ïúÅ7}›'6|üt[‚1¨ŠÃVØj£û; nö›èØ¡² [7u¾ëKz‹õ?‚ iüaÞω:Bs›ôÇ•#ªWòôÏg©¨¸+J ?ãÁß8ÁHa 2(`Òñ*(Ý )úÿÆÖdg3ü/$ÿæ—ˆ/:åã×±Ã7…÷€*ýC=3°Ö¬†! ‡of§áݯ3S_‡{ì—Dœñ´;1©yTVelµ< la¡ñ@Í,‚X{Yz4ýÊ ±E7"xWwNÏuQƒlN©ûuã²´`½¦ø\ŽÞ@қ⾫¤‡»˜ŽÀ֕ר¹Ï·{4Šmtc|æAoÙX3Xzm1úbÇA¬ªÁ'ï x¸Èát*z"ú¼E·LgrYÝÛn¿o©sJ§½8¯^\7ý;qÏ_‡Aþo~•틟 ¸€mè,ú}GÓ½FQ¦£ww>­€ãfR>gŵ‚žícd´”fʶÌñë¨ý–Âþ…“Ú¯6vÎãi]\¿ø–%0R endstream endobj 1361 0 obj << /Length 1045 /Filter /FlateDecode >> stream xÚåWKoã6¾çWn Ø€­’,Ùmuhw“¢E±—5zéöÀH”M¬EÅ$å$ÿ¾Ã—d)v°XÛ­ð1äÌ7Ãoè ¶ ~»úusu}›â`®Ó( 6U€ ã$ 2ŒÃ4^›2ø{Z4|– éq–.§á'„¢Y´„^N)oëÙ?›?®o—Ù‰–á0[ ³=ÅzÉrF¯oã8XÁÚ4Ñkñ*Ö‹Qs±ÝR5[,šþ¼°-@8†;jƒŸÐÕŒçðÌ­ô€óvýš–Œ€Ð4^ç‡ØËÉcñܯ“$‡ ÝଠŒÂõrÝCrÓ×xe§¿›-â8ž;Z|¶]¢”`w­¢ÒŽ5\ÞpjGMe[µs°N¹•D¸9ɶœU¬ \ÍÝLcÛš.¯?¾ï%¬&Š–vX5ÂíSmÉ<¼ˆŸyçÜ(+Ñ´¼ÔXu ÂJšêQï“}¯!h5úñ±c[¦d>Ð~.Hd_´{@9 Á¾ÙºÞöÚûQ4´‚80ÊÕ0|G"Q ˆiãÀ» BPyßð’q§T’ú~ßÌF^ÐKG<`•²á%²4Ÿ¼ûëÏO%–ë`¸‘,Y.KÏ+ö ÄÒ»+æ0ÑCKö -4_Œý¦¤{ÛUkuL-tKyΤ r訨‰öò‰9ÌG6ß%—Ú5e>¹¹™\rGô&;ÙÀžÚ´>9_=¡Ï×èÏW5¸¦vv´^þ`;ï~¿„â^@þ:æ9ô–^9}¼ò6ºÈÛWü{áŒé£¦(í#îŽ^çàñt˜²‘47¬Å?Æó¿œ$ª¾6$‚ùy4Â-jd IàãeÀ …éz5Dá.Z³%ëÏP[ÜiÃH‡@à¶µ¡9šCcKÞ,µß,D'Úd9'at"ö>£¹ÿúûËX[œónœ•C+ñäøÚ*O%ÈLÑñØ&ÊÙäûïÊ$U¡¤ÔÜö8Š“Kë¾ÒÑõr “7‡é®ø LÉjÕaJVÙ3LFî0y‡IK,&Ý;ÁdÕXLõž (œö  ÿ ÎzPZÞƒ‚‘½SPF Ô¾ß7¹Q³ÿÝš¼x£Fè­ß¨£:GW¬Æ2T¬îrõ™Ú5jÇ„« Šù#6õŸ‹«áÄ@E§µÝn¡öðjˆiî9²#dzq8Ý*Á¶;§C~¦¾ž)™´åò r+Î#S¯œmኙª wΓòä©ÚÔ#Œ– ü”ýÆûxtQª˜ð±ðq|–°çë6Ä¿…|I.½åw7£§Qô"1´«£è}|?:LPp¶º=ËéŸ:*»Ü·w´ ­¤½ýŽ·£roXÈ©é> stream xÚÅXKsÛ8¾ëW°<{ªL|“µ«Ãn&™ÊÞvâÙ9dæQ „5E*|XñüúíFI3ž8åª)—L°Ñht7>|h;‡;?­þu·zó>JœŒe±;w…ãq΂0vÏcq9w{çÓ:ö7¿ßýûÍûØi hÄØÑ:y]mB¾~ØÄÑš]6_‹rÃVÜLöæ}8)ŒCïQ  ¸~€Ìü°qƒ X˶S'ÑIz;IQµo>þØÞÒû®ï¨!Ú¶?¥î(:Û2¢½èµŠº¡FÛõûGjôÈkk¡hꓱK²>¸UÝœDiì©¶kÌ® X Âr=β(»:Ÿ&kQí±¯w"¿w»œ‡ùOÔIÎAÆht1F‘úêb¢kOC4$±áA '"Å®žMÓˆ õhí§÷˜¶ˆóõ?\zÂJ>°B=Ȫ?ýÆ#~RÕ~·ÔûÙÛ~öL+òP2.òH»iÀ\‰ÓÙúËÌ>ÛÃ9ŠŸ ú²[ʵ2`Ì¢¿›ÜJ )øc©ÓÛüù§•óI+e3ž‘–övO©}zùBPô]ÀNâÉNC‰l2,ª‘¬¸–ãI*>’îNv©Ï0è¥Aúö †òÚWŽ…?瘧¸ÊàvÙÜã%giAÓ¦€z¦xn˼MR¡ÁM d»Ð̸À ®ÂN< ¯w‹ŸD&W¨ ^¡àÝ–^ö(²W(zÓ °A3AÃ8ŠšÅ¤+™; ]…µ: ¿^ ¦ò*ÉÆŸ ’tú©€oªXÀ‘Çæ…Ãs[ΉÔg ÖW£¢¢ùêÝÿ(G ÓaÂ3/E»„ÛÜLÞÈ8#¿Y˜26ŒFÔí§±ÝÊsŠåÌO³¡²ãõ }'0½ŸÍ¾„5¶â÷ˆG[„Ò—÷Ù5#5G}lvQ­œ)¶³-U›e¿3æCVoÕÍrêC/¶Jˇ—³4雇ECÆöùînõuœ’\ endstream endobj 1376 0 obj << /Length 3321 /Filter /FlateDecode >> stream xÚ¥ZmÛÆþî_!(¢¬õ¾òŨ?¸®Ýº@ÓÖ¹¤’¡$Êb¢#’ºëå×wfg–âR<ß9‹û>;;ûÌ3³'Ÿrñ·g¹~öò}¢¹È,®w %¥06Y¤J‰Ää‹ëíâû妩¯¬\Þ^%n)î®”\‡íÕ×ÿxùÞ¥£ÁV*‘f0³•ìòLòZá÷å{cFcV&38h¥S¨34´8Ëz Ÿ,•&"ÏtXêÐ|ª6Åáj¥•Yö ývÇrSíî©p·/û}Ùr}IÛ¢/èk×7\yl›+å–·Õ¶ÜRÍmUœúmG[Ð:.„ñ“^*Gk!m:í•Ê–ŸN7eݳ¸ûæDZ]8)•/Vp ¹s4dò9¹lËþÔÖ^6(õͧ°3(ÝUýžë÷ܽìúê¦èCÿÛ+íàøNeG夓Cßm¹ó§{:ôTQusûµF(ãÂV®?~ûnf¿ >õÐ –Qbr ;°¤aωPyJÃÚòx(6åÓ-a³/ÚbÓ£>L’.»¾­êOôÝpÝ`,&ɼ±øŽÁX°°oPIwT+ ËU=§e`·ƒ·E+j0¨nî’dÂæ¡#ºŸÏÛrÅVha•Ž­ÀëF¨œÎ®©÷TjËC‰²’ÀhVX †_ÓשóªÀÏy;VÖ £ícv¬D¦²y;ƹ‹š¥«vôKò´U±> }Óœ•’"sæ):°´È]¬šâЖÅöžÍïðÿª.r=¹|õáË_}²Ï•ëÿ¦,'}úîJ)åà+ªéÊM_5<ç®áÛwÓ´ÃEê‹êÐ}ÞâÙr#ƒB<ÝØ›óÅŸ- #“ñj¹¥ÕgµQ4Á_IÌp:¾ÎÑ*#gˆ¾Þ‡[ ÿD¶hq}~¼Ø* ”YÄ.;¸~›ÏmÓ€ág*ôßê íD.7…ÿP„‡ ڵǶDòC˦¹9žzn.èçàœZƒ=–ý=55;úðƒ–-uìªßAbD©à"ÿzªZܶx„‚ßaSØeS¶pr5µ1¨D.;õûê vA…³ýâž>ꦧö5 ˆÛ´è-pG2Þ z–ÀM@_›9RTÐU®?m«,peUºü¶Þ–#]º1«¸¯æ¸¢Æœ¹q½›'©ˆÓíƒÓ$#Ê)O5Å»‰¨Êåü©öièùð(â%Ø™,˜=°ÚT¸|ÂáŠíÏ'OL¬·3¼^ø9Ö$Õþ“x˜S8eöôœlðùœü %=8×áŒqa/Pà{A؆„þ,€ÿhÖB%Õ–j" åàB­§ß^#*çžØX#ìV;r¼žBû啼GÛºâæxàÒÙ©G O;»^€ aÁέ]¾Ç*rìà%Ù©ëàÁü6H ã¸ ìx?` Çé.x¯'ˆ³ÓËÝT²rñ384;üM ç80;ø ‰¾‚´Óþ½{G(¾yGÇ ?ÞFÎk> óÃÙn)Êï^ÍnÙ ™²Wý€Àå,«Ð83R¡É˜Fc‡±qøn`ÜÂRÉû'hÍË·ö…òµÐoàýX»æÖÀcà°­–v¼fóbîØ˜\$nrÎ6ÐMÇt¶y:‚Ýåtœ@Të¨Ê ¶0‡\€ÄT89_pÙ>ÀðÂ×g ÚëO}‰î)´°qÍb²V>ŠÉ.?ãí æºÆe"³IL°ÞôBÁiÒñk s\GÇ¥˜iBE]¢“/Z®&BcÛ¢î»põž»ÄÔWGQ¹¢P¸Ÿ/:î 7a»ån-’Ê.^ðÐ|š3 ¤âAC„h—ß]ù÷ïôcnEÉL$vP5ín.¬ÎE– .ðÏ]“·ÃŠAI$CçQ˜=Èn¡zÍC|†¯;e‚ÔHe—R¯2cpó«¾f…MÝ l@™q¾çEzßí« '§6EÇWE“‰R žõž{Ƚ©Éü" $tÂæ–™0õÊÆÓ@°i£>¯gÖR«×Ú]Îâ`ßc*1³eàS©»¸ØY|‰R£ÇJ™™&Àû>QМnt"2±¼ÊNäµç>R]Îò&Ù—È8û,›¡œZô€9—ûÑ@ˆ³§Ý’¡ÛE $½Ò?›¶¤Ð'Å“ÐiÍmg…µJ˜IÂhîDò\h7\M%ë¹É ôx„¸§"9-LtšÈŠ\ŽñÏØ<@É[Ò€”4¼ý‚eH›‡—zZÕŽãªË°1ã(5™)hrKuY* Q’±¥®8Ž7]w q'§8ÔôÃc$Z¶\Û¬1Ø ê®mnFÊ—ÿ½Ê©¡Ü+ˆ‚KfÙðÂMrQoÑF4Çñ:ÄñPáÝí k‘äê1b'©žò¢ncË/†‚Ocks& A$ÒÀž­Î´Z`6Â:³0Óº?bµa* x¯Tú¤³²Ÿ;+•è1÷¢DÌ> æéE´ ÚùÅa@f‡·E»¥RÙ¶M˹%Ïž&Æ'!¬1O; q ä<ߌ·ãå$©9n¥­úð=zn¥FBo?nn—52ú#88³iâh[áƒæ©Çé̱&D>‹“Zˆ~¬5£3;~Pz5O´È“ù@ÑžŸí†Ç0~]ËÝŸ8Ùð#(,\cøz)ŒO ·Bçióßóa€‹Ã€Ë(‰£MÌj=³K‡pÉT™]0™è ãé( )ç"‡Üÿ­Ã”[Å—ÜHp¿À4´MAÙç.¹E®–Æ·|¬ #sHMyjͦ¬gdOÍ¢©g)’ý÷9鉶@±Z ¨;œ€¡ŽéhVмÐã„x“—aƒDNÊäªlä1òœó³6¼ªAͺØü²ÂLééào°oóÎÏ.KQŠ‘zz"•3`…ÿkгKæÀzŒ= väܶœ“sXœO+N Ü QÆtœÒ»È?žÿÒ£hÏïÚ!:‹rGÑSöƒ¹#ÂeÉMÄ a*Èì[|WöΧ‡¯ãpnHÖbþ…ÞöñpÊ@,×Uþ­qô>…O]‡½¿Ò)òŸüÀZÔ~~ÐjK~Òúøöº£J2ÿPÆ5ÓŒ™<¢Ùømx-›9ILžÐr~)$¥^=寥`2 >ÎdÃS¾×ÉåŸWô‹»á$æaï©á5ý¨W†òŸYØb'Ï£ ˜Nôm ÙàL†ùÒ×oøÃ2Äïz~Ê-wPYo7£ZþxØ\Îd²éòi´üì -Õ°|oíyyô2¹Í/³~þ<0Ä48þøùüÚX†fùóë7CáÐÜy |xœ1sã @ÿì8%´ŽÆ…¼Ìbår‘ªÉŸÁx£ÀÎhøKOA8%ÿ¥Àëçÿúøœg,ª×ùsU­ª×õ¨¼ ]@Í¡‹Æ.ç2ÚÝkø/HvaÇàÙþ™¾Lû endstream endobj 1383 0 obj << /Length 3120 /Filter /FlateDecode >> stream xÚíZK䶾ϯh  ¶¹|J”‘9Ø‹8pFbO’ƒíƒZRO VKmI=ã1üãSÅ"õjÍz“ È%0Ö¢(²H«¾úªzøîiÇwºûâñîý—&Ù¥,e¼{<îçLéx—Áb•î‹ÝwQ¬ïxüóû/c1©+ãÆäms¯yô|›ˆ½Ü euÓî¸_ìý—JÍæïa¦c¹ÛË:‰)²'Á„½T,Ôû»û½Ð‰ˆúáZ¼Þïu*¢<ëËž Ý€¯®—·]Wö—¶)ªÆ¯ÜgçK=¾çnò2l¢wW¶—R2~»0š¼=_®CYÀÍ»öL-·"6òöÚ =µñ8®ñÔµ× 5ûê—Ò>¼nÖ*–È4œ¤ìó¬Î¿ç†Ã?±qp•2kƃ³°uÅŒ…ƒß'š>}K¯¤v¦¢¥#«¨iêêÊKÛù¶W¢„mÜIÛѬþzDí}w“Weã§UͱíÎx©—ÓÙ`ýÐ]óæÃg<Õ;x°8ÜK@å⊠eÃ{=øÀI½š±AÕ¥K—šß‡o î·(ᾩ§j†²#3¨©Ïøá+§o÷^T°õ¡~E<~‡])ÚˆûôTáÄç{a¢²¡.¸U÷œ{T¿qÑ nNŽF=áéíkͬ¯øÝ†¬½²šÁ~—(C |+Oj–òd’zæo¸Ø‘˜6IÐþ†Àx²Á="ߣ»AžD¾ÂgU==3êîX2ë êüǽuan?¼^Jê¢yÙ@= {êž<?9cƒçV%¤t //ÖŸs·O$K•YÕË©í½Àè ï¨/&½›7Ô*ñÎ#ï2ØÚ ]ÁÇQ#,\À"‹8ظ69ù‡CŒÌ7~ìµø’ù ÛºnÑž^úÏDà B°„ùÂéäöô'xf/ mçÍ×áa´>4*yÅêóŸw~JÅ®‡g¾¤fð?ÿ:tYÓaÎSªµÇ®ùÈÿ ÉÖêÆã ìÃŒ„dìÒ#!á#!á#!áž Ì=2‚X…!ÔGÎÿ¿ã%Þ&¾&c'ãÿ- 5ÅopÉ´ùõ,#f6I>N2bªµ£Gô¥÷ñ¬ ðr(}h\0“®bóWG(ÐËxìÓsÄ3>JC#£‡ j4ú 'xÂ.À%j8tÁF)óêøºXHGÙåÒµ—Œ¾VŽ­¦®ç*›fm2aYlFÆR—Ï0q#H@j¢§;èî…ž®gE¯Lbb y ‹|Çøí¥ÒÙ“i , ªî–¥' ÓzGg9Ð(³ü´–>`á™ýØî²ÊO ݧS:¶Òõã-Œ¾ê£+)Æ+A&ÁUôù|h×x>›:.EÏþfÑM¸…;¿t“aÃZ/Ó€ÝkãlN>¶ƒˆ/þ4Ѓþƒ Ïðà›ÐyvwÃ*àÜ9]n{æ†ýu\²n¨òkuÔí.+;ìôkÆ4) Ôð^DΧ¶^ÔLD¸È¡Åk§»§.·ÑöZ~žï®š‡¬Hų¬HX‡åˆ¨ç®ê½‚Šk¸ÿ­C ‚·ö¸¸ØÄ§~ΘÒ××Òk4(©Ú94=šÎåÜ*b¼:5Š ¨ë­Ûqê0f—Á°™CY¡ŒŒéûêP¿ú±ô8„¯ Ê<¿v^`¬1d€œ/à¸þäµs|ßýˆtÑ$¼P…מJ8ïê®>»#ní>;Ž…gA(£Ç¹²}Ödõk_Q Ù öpÉKž$×¾šøa„Ø;¸–»\ôÌûT"ÐÒÛ·\h<_—%þ²ÿ;tül›•-*Õ¹×a%ä‚)Øúu8µ]O/Ò©¢ÀS‚Îö–"0ù½yMñÞ•`ôe?ª>újKJ¾ #VIãR2xHËúªù‘ªÆÑ/!ùw °ó¸ |U”ð±¨ñ2#ÆÌ××sßÅ 5e f-f™ ˜·ÇÖ 9Š)‘ìfƒÂbz¾–Z¢µ´4èâLæw?Ýay€ïÄN¤@`A¦´Þåç»ï~à»>‚ ˜æù↞w– [¯wßÞý•ê×˳QƲDx¨yÞ>¢L·Ž¸0&Ãd"çG QY¤>|»Æ<*c‡cÁå¸EÛyÊT<^Íߪ“ fõXÉÀÀå¤#)Æ‚åïH›8€U5œVûZÕ”p;aÚ~*¹%Ú®(BU”ñV֜ܔŽ`ÌÁGÑË›)„fÉTjy?€tL¢*ņÅçNb;CÈAoE‚Up3Xiä[Ù`SÕè×à5¿ÞJ”˜.èèµKØNçu(ÈÉL%™5r{—‹#/v 'û¥$óíml ’A9*®(“”žž @DB¬Ë¯g妛¤‹,ҺʇnŒd"Ú@þk—±{bæí´ð‰§Ì¼F¦Œug¬Qbûf×;eKà?fwÝÓ.4¿¹)‰3-ê‚‹¬~kúH­ÏX'sN1wÒÏbŽ;PvuãKxÐËèEœ‰d•®£¨Cv—xWc}¬;¿QL믗K]¹ÊBz>åŸ[EÉq#£•üòœmæ´’é þ?¥®pÙ$ )ͺŠoÚR³ ˜@Ô[£¤%ÂØ  ëuOä-˼æAºÖÒwŠÏ8sUA‡Q>°Z¾ÙðêlîHíjð"{z'*ï‚tWfÅëV ÎІiçÀ.!SŠ{ÆÖÛ1.áé µKøDÀ5 T eM±X˜5$&³q1ƒL1ˆÜÍt o!g€ñ§ß©42­¶ú¡˜™©¬´ÿeDŽç¾÷°µ1dþ»|Ú, i> stream xÚÅÙnäÆñ}¿b ¿ÌšÞ>Ø<ÖÃ&ð‚5°‘“¯8$GbÌ!<$k¿>U]Åk¦µ6ñºº»ººªº®‘›‡ÜüíÍ_îß¼ýªM"’P‡›ûãFI)Ln"¥Dh’Í}¾ùi›5õ.Û§]h·ây§ä6­òÝÏ÷ûÁF‹ÍT"вÛZ\òFòY›½‰Ba£d³×l1´ª©«—ÝÞÈxÛç¦í îÓ *8ïŸvÚÂÉ#ŽEUt(ªçži˜Ò'+Ú>-ë‘L[t °í†Ÿ¥•…x·t µ¶±0pu¾ÆvÄvû-~Âí;Ú/ס¥—KåŒ2B=.iZb¢<2¿CÿØ´ fyt}ÚH – ¹p³­$Ö–‘Ö,#ŠŽQ¤¥Ž]ùP—Ÿ¥ÔYZóüg­C^ùXf¼ýå\fiå€ay:WeÑùD¤¥ÐáRDR("üøEM×—Ö#!+@;êx›ƒ«ÕÄMJŸ¬9šu>·M:r_òmû†…f K­…6t * Št2Óq´]Xâ›ãÅ|6ô€ƒ5>aiü–=i«i ^|ÉóB¢Ã‰´ë†Sáã _»ŠfÖ®˜‰E"äù; %TŽ+|×Qõ6>ÝëÄŽ–‰J(;Ò© @§A°Ö)¸§®hI}‰Ÿ§²[Ô_¨œ†º²ÎÜß âÓ¬ÒŠ+ß‚“ÓóÁÁ½|wŽ„“kNè ‡úv͉Oê_j¢SóöS3Ô=^X¸ÛÉõµî§VÎî/Õv%š?âŸKt€Á¥ÚâØ´¼¡/꜡†¾ž9 N¢UE×”fÙЂ«™™GìžÑ=€©ª€½ EÚ‚_hy€\ýš‚«(ðɹí†ó¹éŠq“sR°†Û’P“çAp~Ù˜"ï«eYÓ‚ó>7u>óâÔì»2/xùyïâR+:ÙÛæDPJŸïbÍöàûp‘ìDqMçù±@邌€ªy €®€_)ä%9Œ¢å¹•F1¬yùR´ šÊ‘àèh<×:b Aåuý¿¨Å*ÞŽß·ŒY<6 Î[jÖoŽê±Rn¿ÝÓ©8¶é©p‡ÈãÄ}Ô;ã‚æ&ND^¾Ä´+:Ñ·ýjK†”4ls£ïø©#\û7©$à*÷!íóH…Ž?WÙ5%_­Ž÷nÒRMÇûƒàÕãÑØ .)M§J' ÎO苾²ME«mÎ\œKôéÁiÕ㴊ߢƒ¸îHžŠ´Úâîæ‡O7·4™–w“âU«ò®^Œ³q Èi\¢qÉ€fèï&“Y¼¾;üw;;A´eömZwÇ;púWÆmׯ-ٰٲ¿a‰þi~ÁÖ7ì½þTçCÿSçsƒ 4ZÚ¯ûÿ2üM­Æâ• FÒì—=ºà¡J©vP`ÖäR\B™J[¦”ª†‚¼Š§  ¦Ë€DÝðIÕ=o<¬'º‘+J™h°ÈÚ:o,;Yêj%cÆLÌØí_¿'ÄW—ºŽò5\è8Óòþ—»< °˜’:¢#?8È‹¬<9«†ç*Í­½±S€ø²îÛ&`Ž6¹ÔÚÃ{YSJ›Añ*¨&}_u«*Œ«ºulà½+.—æ‘~W^E¹*k*޲RTè@$rZuë!d¡žÓ 2ëdÂeDÌ9ñ"P”.½&Ä"žÎÿ‚¾ÁCª0k ßu…Òç¯ÐÑëÂxÜiÉö[Vé¡*Mö ¢NiLfÚ­Ó„¦•JõÈkÌeƒÄêñLq¤ñ•Ú‰Ñ,Œ'^!7!V4±“–ˆu‰ ÍÅsO+bo‹žÊô"ªAPÁŒÞ]ưϱ 庬ä€v†ê¬€"&§ ®©D¨-\\cgÀðÃïæº/,¢(‚¢ iGš£f¤¸Q!ëÓ¢‘šš µçn8·© OÛ¸ƒ(c±3äè6t–q®T‰Æ¢}Ó»»Îy/Fwå|”ˆvý“åÔ:=DYHJ^øè¢=,¨›Q(‰{(+#h 8ÃUô(VuަeÇ6M¸]ØGGS9 æ\->÷t,꣣ #-NOœU‚oCcxŽ«wì q»Ç Üv9¥Lž{KÈ÷+®ð}m8R«îQ‚¯+x"oSôÐϑҎ®‹Šàsåœ?@Ï¥se¨2 H”àOÄ›ó%?]¥MØÅKæ'Ï´—ùÖ…å-ìüºi2èül²€Éÿ3t}·bìÊZ­0zòK/é¯eç±Ø½ ÁÇ™p]P¬M׆B | 8òÄãˆ8³âëʤB×Ðw+Góv0™·#Ð2ʆÛá’ÃY¯L¥-ÆÃHŸQ¼ìñÖS®.¯®bð¡-÷âÿµÏéb¬?1^÷ c$ "Ñæï%•ÈW´ÎÈ&SWs`_P¿û@ÒSç .=A ;C€Gw‰Y"^ Añ2L¥çsQçwÞÿãŸßù|t"¢(œ¯£›ÒÇ1ï ×Êà3ùöY•vçøØ.[•®Z¾¡Âùæöfî‹ÜŒEÀ••J`_]4œém£– š³=ˆ–¡°ó^ä>±H+ôuŸÒVÔÀG÷“úÙÃFh„Œ–íT‰îÈ‹£SÎPõ¾4"‚DwjõÞ¼”7¾Æ3€Ú®³$¯ßcPÐItÍ·~•oó?ò=±ýô{Ù¦vrÙ=Æák¹N ‹†üôô΋œ³3XÑ\ç³9a nýe=ÇÐT\ÌÂMCŸûèhDŽsyÚE¿ÓQ™K#W¥‚7Ð ¿p¸µËÒ:ƒnËÄ>4È<Ý`݉¶"‰“Ém\Ë=*ˆ~ËYh˜éEÍMu«×~Š á¼t÷Ÿ~ôúƒ@D³ûº%ªü#ˆš¶|€¡¢y mÍè)Y2“mÑmiÛÞ¨Ð/AJi£ßù:±Uƒè"1pmp—(ãg飱ž»>^ŒÒ¿é¯áYÍÏÚ/d +')·…+ÀînÊcú^è$¶Áò¥ú½9èÃ\Q}Í›‡°z–âø  2ã/€ÊL¿ èí©ìÆß%ÌÜâg!–õ¸‘’‰« ùÝý›ÿHyÐT endstream endobj 1397 0 obj << /Length 2012 /Filter /FlateDecode >> stream xÚ­X[Û¶~ϯ0’XsEJ¢¤ [4 ’¢EÑl¶ç<¤y%zÍF ]츿¾3äÈ–´ÚK€³+^‡3ß|3Ú_Ü/üÅ/¯~¾{uý1Š)K¥‹»Í‚û> B¹ˆ9g2HwÅâ³'åòËÝo×%¬ bX!c×ä¦Z†¾wXÊÈcÇ%÷½¬,pÛ+Ÿ›œ´ ¢À X‰'æ°‘—Õ:[—j¹ ü:¶!½ZíË,W…>êvëZí–üåGþÞ4^—'šª³ªÙ˜z§ ˜än™Y7ª>,yäõ²ÔOݨ¼uýFÿ£Z\»!Óµ¹Ùõ£›Úì$A0‚$aqšöÀ·hb7­ZÄi¹µ¨ûq«¬­a䑊´†‘¬*\À½õQ7´2sŸJ¡ G×™€J/ÏÊR3* á3%½Ê‡¬fUv~æ_ft—<ìë†T( Eʵ†¾[R¯ÈZÒpSƒ\†BÁãIÀ’XŒ!ø¤wºÌjðPè æžÞÌèù,ÁC•ŬʂÉ8ª,Rލág Žèjæ@!¢³[­I‚%â|ºë¡ 3‘È~ úæµÞTÙë‘1èœ}ƒ:ÎH YÄHýøî÷Oæ Y ¡üÊ™>«œ{ƒ{& 5•ªÈ÷vÈYÝ»Žƒ°ìlh@´ßv«›áŠ3aÄ…44! =é%÷¶ý~ZÓd»}99„Uyâ:Ë¿®€àyWfm/+k¬)þ؆B5y­×v—^¶6˜\.À¡x‡°b‡¸§¢ÍÃ8Äq·ÿ‡06±œ?‡‰dH_NêTÈQ¢ ‡ iÈ™a ìé¶Xtàäâ[ƒøDÔ$ã~ìÿ:„Üg¹§. lº*·ÀØa›èq8Ûïk³‡LØ*7£+špÝ{=¦0 AA ‹aà[Ëð‚Š½»­íŸF²Cº˜¦§Ìdÿ£Í "îÑ#‡nÜ£ëÚ6ÃÛUªi·®iÁþ¦Õ9­¡ fÛûÕ%»¸{wdµi”[`«EÛúß2±uñª=íÏÈë‡f4s¹µfŒÝa ³¿ïýé®çQ¤Ã5J­9§S†½Ø\sßÕÀ§>ô±Wê¯ÊÂŽg÷=iU}xVª ÇLM3©{Ã(}·„=]»55"í` ÚéëeÂoSnî—X@$ÿ]J°EåÛvu½¥xÌL¦J#$¢æއõO;Õf€Õ ¨ö7¼˜©ïœI\@UœóÀ•SŸaÖó5hOÍ[4btf0œ³í¶m÷ÍÛëëãñÈú“—+tÍåø§^Y<q—kœO•)”|<{áVmž@Lbµõ= —ãkx!B ý\“ ù'|ásßi·’0óÞTE™ÄÖ}qì¡í«¬ÊÊ“¥#&Lݺ=aÂ•Ž´ÉÒG÷YE¤Y¬þ¹w¯ _p @˜œk€ßµ¦«+¤1J4º•iÝøÓ'‰žôŸÌ¦=fõ2€'æÜM3@bĉ[FT䌌Ô>uUÐWôp>ÿK&l†Ø¡€úNLYV„ºÆâ.‘A|ýwÓ°ƒH¦ý`6n#Á¨§MH8(Ê4ïÊÆÌ²‰ï³ÄÆ5ÆÁ”K!i=Ev¸îƒø è9¡õîåj$-xÕï»vTÕÚt”ꆿ Ø,ªÿ¡¥;•5]ýH:ƒ**2 ¦ßð!óH= +€"2> stream xÚÍWY“Û6 ~÷¯Ptvwj+¢.KÛê!M³vÒdÚlž6™)-Ñ6;:\vÜ__€ey}äxèôÁ€ ðHÇZZŽõóèÇûѳ»Y±‡nhÝ/,æ8¶ç‡ÖŒ1;ôbë>³®Ó®èò›÷¿>» feßaö,KJ+œ¡ÊÈ!ÛÏî<ÏŠ@7ôQwêE*OÝð<=¥ ÃI0aê2;f‘æ?yòäf8ÎuYm5ÑtëuÕ=hW¼5±Ü.qø<'^Æ[®)^ c&Öb]Õ­ÈôH–¤—ç´\ÛeR4=šwí©…ÉqæØq?r|Qåyµ•årïJ#hnZu9-<'¿xÓˆ7lP&²*‹‹ª.x+ ãt= Á“„.8C`ý0Ý»g/j^ˆ÷Nà4]Qðz‡$|ÕïT¼hê!EÍñNŽ.Ïó®Ç©´óùpÔÍÇháƒæàªø½¸*Ínk^6‹D|\7¾d¹—°\C‹¸ÊÞv%ÓrŽDœ$Ñ_\’¢b7®êñYh&ÚYP™7ÉÁÉx½áù)Xêª+3ãÆgZ à3¹”m“¸—¶ëéFm¾û´§¸ÿÖHAãÓùÇ&L…­ñònÃI|ËœûõúùeCþ$Vvhqc-ú Sî­7 n£ snøçíý›}©o ݇odc—Ü@úÁü´•á©?Wk½ØW%¿¦rÀ ¸fšÇËL 7RqºvUÕ¤µ¯E(ªÊ|§)U+ËMÕXÂô¬Þh¯–V5´„uUfªr"k=…$ïÎ[?ô”ç~8ð™¾þ¨EPOˆaÇÁÞqTÑŽ#_y„„v…äøÀf¯vä8Êâà[M¼øåb‹ëLWMÊs•ûÚ³uӞˉÃ]ßO/oºZ$ã7Œ)¹L0YL?ƒ*“â2I÷² F{–è¤/‡çü¸ÞBšžzÔ¢ Ù4}‡Ì+"4âªÃ!âD+ÈU_ãÅ:ïgmx-y™^êsÃÒšVåÆÞò\•תk“ª¦Ê©Jk¢þ÷œNq:ÃÁr›àËådßÌ*tƒÆa}5t`!«Š©X,DÚE•‰Ü Ûöí¿­zl›áíçIJ§2®ˆÇNÒ¦oäçî¾²u.ßsaÛvšÈ$DQ µUŠ1íVˆRÔ=&d=ËEÊÓ—7%ë%]ÞjºZÐ÷ ³ƒDw†îíâþ0ÎÕ/šéN¬ªZêòLÊ* t”´ÛŠD"•šÇÁ:çì÷Z;a…·ÈÞ,¬=!3ªú’¬ÑÜ­¾$"9'¹ÌDÙJ8åêžýò~ô÷ˆïŽÅúk»ç¶3‹­´=|p¬ „žíÅ‘µUª…åÃÍ~æ{@çÖÛÑïý}ýñW½ à ?xH¡Ï,7Šlf®ðýÛ`pñƒƒY®G̼^ >ì åÎõo¢åÓç%Ïwl4 .ºš¸ºqÌÎ+=|3ÿK„³Ñ»³–õ¿$zežx¹þÌf>¥ÄOP]k¹V·ïa¬û˜Fp¦,²C:w]™ê‹»ëù*m\,0¼®wš¥Ry\ÿL %`sÂk¡å¢Å ­« 2!?È 43Á¡$ä;­üÞqܶUµR­»"#Íò…˜Ú(¡¢¢Ȳᩀ3:ˆª¤Ã.»Ó$¾†ÔWZY›Þ‰CH§ˆ‡Úáñ®áKqÇc\3ðW…–®T°lÛ–*׃’ÄÌ¡Ö*o=*¤Ndfk5µÂb:€ÙÁ«˜ùv0ësøJ«¸æ“rÖîJyÂ’çÛQ_24eoû.;Dÿ(ÔªÎDÝ÷l¼ö›¶jà=BqèÆŽb±:aÈí(Š.ƒèǶïÿ/0> stream xÚ¥XK“ã6¾÷¯pukW9)RÒnå0©Mg“ÊiÒIÉh‹¶µÑëÇôL~}‚zP¥éqwÊ“ ‚ÀƒÍyl¾»ûæñî탌7)KW›ÇÓ& &"µ‰Ã)‘n³Ío[•ìþûøÃÛÎfŠD±DÄ ÇÎ9öe_à´»À û Älþ^¨Ä.Øó-ûê«Ý^Áö'Aÿ¥é.uFíSÝPãXè¶%â¹ a1 #N…Ðo׈¥É8¡)5»š®^%R–Èg%íC™²(ÐY*åìØ¿2øø†t­›Ì4®åç¼k]§ktÕž†ŽnÎÇc]úÚš¯ÞýøÓ·nðÚÔçƒn¼1Æì’nRyº%«b±Cõ]³ ƒí¹/MÕµžQ–ÿ‹C¢œ0a±;ÝÇ…A=W‰`ËÈtµÛs ç?üÏ;×>ÑÿÌ~ÞnqÈÄd{4O_å÷î€ó½¢\gÜëÍ— mE•—5I¾¡ß8E›‰¡dqì‹DçYU„†b˜Êž¿`* gÅ‚0¢%Ökn»¾vy]éb·a´Õ`íÄY›FÀÅá_nÛ«9æ§Oný}Øq Kr}( tk2ZPW4ôtÉ'ë⦵]Ÿå¦¥‰Oyáv?¸Ï€!¶{<¨I—D‘ºp6Ü‘¶wV¬u¼AºËQ­;íÆ ô^Ã!?µyû<¤Qº{¯‚T¨m^uu9ƒU` &DáÄ(Zh`´êËÃ0Ç2˜Xò®…>Zèf¢Œç‚® îœy º»Ø˜¶/:”ÄÛöR÷EFmkøoê¾ÊLÆvû( ·ß£Úö•Uù÷ à&wœ»í`IfNHÓìÜÉ·:â¿þ'¸éã:ò¡¢wÝSS—k*6&Rx–3_cD®Äâ^pE÷¿ŒVÄAMc§¾:âj&iP7¥¶'‚ñ²ÎLAcÇP<âcn—¶¯Víˆn€01N¶4.ŠÓ-†ÃÎlâ’˜I g%;6¯_$¤ìNm m¨‹¶v Â%›±¥æûïî6¿ÙY+àƒ,Œ@àb"UÖÅpâÒÅx"·UMçð›¸aŠ˜ û¨”ÚaÞ‚Nˆÿ}‹ÞübŸÁÐú*—-ç.ã´¨ŒÉö:|Z×Ìi 7ƒÁ r´¾Pœ ɤZ˜rÅŒ̘$7Æ•ˆ³HD> ¹Åíxõ9?ZÚŠ9Ñ@ÎXŸ.£Y¶ƒÎðKÞ]h1~×¥kÍ9º–&c⢀¤bbŒ½ct\“ØHêfyÍzO +à¡ïiuZ{:3êl4q›C8êteê¾-œ¹ñRŽ&÷8Ó¹ëJò—• 5èfÓ¸µ€‚Á8‹îÖsFæIÊBùïrÅWؘ‡Š˜.œE6ìŒ6ÆŽ¦?Ü‚PK=ÜÖ xâ ÇÐOu'üBµÀ/Tëøq¨.‚è6üâÛñ`–THÿ’@^ý¾p¸,É‚­¥åiDü4KÍÿ iM^¬'åËZÌOÆ0!YÏT&ü¦<BH$dzذŒuˆå{k!¸’Cl‹Å‚ÑðçzM ª ‰êãÊÎ1Sé¸qÙ·ɳéÅÖD&ußÑgotW7-}DÊ™aNu“[«Ð¥‡ VIÿÎʼnù¯‹ý˜ó“é(8«Ë=…òÂâÒPÔht,ÌgWÏfY‘ï +øHˆ¬ê6ãD6ÉUÝQc‘ÆanbI?$lUq£ŽÔlóx„]óêL]Kë‘ cyCMRÊ6ójü:|ƒ\C¤Å7’ |3ÝA Ñù¹ÛõëÅ @iyDÈxY€H—uJå{N=­»;DÏ`ª?‹§Ç­ˆY2`{-µˆG- V;fÔ±PIb6œdÃŽr\€ƒO…©Î6þYÓ4Jz$(&¶Ø=çb;uGÃO–-[êô¶Rà h%¡[˧Œ”s›‰v57~Á˂ɨíä§aƒÕ¸+%£¢JkÈrFcö²H³}•ù¨²XªÌŽÅ\\žú¥ãpªÈ /|dET4JÂ"¾0(ŽPŠ­ƒinŽ«ô¨ˆjòQžM?£OkäA‰¦í†,ŠŸwòò'·A:è¡O°C£1ûµb ¬qñT DîÑd~©¹H]f…ÃeÞ¶N|0åT-õ×@k2^ÿëµÈwá–)Lߌ"~Á„tàùOäòqP– $°ïjÌØ!‰€iå\vÇ!¥²ÆVãû~'òå~u,M–åB8 HoˆÇa˜®VtþÆmFö·þ$”I.}[”JnÙso¸Ü½ºÿ²K9é%¹bè^€A¥ÆçX(¸ ûìs,¬ŸÒ”#†û"o; åý›{ûPgÛ³WhOˆ¸RÌžA÷J¦ÛGk,OñA%M]ÜÅéVWW”ª¨áÉI¡oÝüæ2=Ebºx¯Ë+ÜBÈÈÿù\%àrÄîÊÿq{0¼õ͸'®Æz°:ýXOæÕ‚ü^ÿ¤iZ ݽ ˜VdS«ñ%ÆñŽ>kJ:Kßvæz½äyòP¨!ÁB”xÀ$ºq:š¦,ÿåÏ>~ÐÅßR£3m7*ÔCæÇW`qý»j\÷SPg«7ÿÛÇ»¿$ÓÐ endstream endobj 1431 0 obj << /Length 2063 /Filter /FlateDecode >> stream xÚÅXÝÛ¸߿¸‡ƒ Ä4?$’*Ú¢ÛàÒ\Ð;à’Åõ¡éƒ,Ñk%²äêc}›¿¾3$%Y²Îñ¦(Š]ÀÔˆœoÎüFtñ¸ ‹¿ÝýõánóF²ED"Éåâa·`”È…bŒH-ÒÅ?—I{hóÕ¿ÞmÞ„êls@Q8Ù]2Â-wÔóî~7o„8;³Zà¡5W@^@FòíèôD’’$Ò¼“”—+.O¦Z­yH—Û²-ÒÚ­ËûmöÆ-’²øH)OM‘xJV4¦zBq^“‰Ô±®^ìšiÂAŸN×öº¶ÇãÿGÏ_n×±1uãdÖMÜdu“%^Í]YMôöv&ì èY>šÂdÍóJ†Ëè*½®ÇÛ•Mʪ2õ±,Ò¬xt×ÞM­ùG5qËoæg‡¸1© ¨WbIiHË"žxµŠ‹´<¬ÍÕß™¤ñn?”©Ék8Ä^nÎ/0fp[o½åì¼$MvG~t;Ô)¡qCHÔA$ Ý>W+H àò›®[ÆxHh¤Ç¦½ýßšööÒ´”¸Å4½È6`ËÕØ¶²J¡Nü7æõ÷Ôj8 Âz3{IPE¤Æª,ÞæfÈáÌ‹©&ɰ^™ôëYÊBEBí%„Ünm fù+W+¦—íÁ»ìÃ5à CíŽücoŠÕZ0æJ—`þV9ÚiÏqíÐŽÆÞhÜuÊšýŒ ™„ v^2ÿô]óÝŒED†œz5 ¢„3ú\ìã9^a@TôUfrÌlÿ¹þt ³µà²aÎXEØÔÖ8Ý—É,Ûˆ(%'ltÿ%ãµP¼Ã ‰B]¾<Åsð‚s°žqæ3=‰óbuÉ[„°}ðëM<‹Iw+·Ÿ  wÄØ¯:Ñ•iÚªèJÿöyrx×I“•…ÏJM &Yÿ`÷J1‚µe/9¶è,®µzƒ[+„þÁ¦§]ù«7þˆ^Tx‘ÜòýÅ%dJ pËnY^»¯lŸ+ƒekèåÃJƒ«œNéA#»€Ýæ¶™¡Þ¼Ø=¦qãW»*>˜WÎYœJ´çEYàÍåb^¸E[{Ê‹Œ—’„Aô¸&¨±â¯ù@BUjÆPÌ–÷N0ß"Áƒå1/G­÷¡Z„Ò©k½gìáªi¼­×²JŸî=ž ”ZÞ燊‘M¹Å‰¯^Aè±A?iXG_SƒCàÀع`t9v¤“wLãßÐì¼ñuux7 ~§ÉC–‹ph€-ëÝ\{­xÓòˆ9ýj°Ö °‡í͆·N¾­Rð.>óÌV# ¢Û:,¡ƒÇ+¶ô[’ÒÁ[ì²I†]Ûó):£ˆ0}K$<Ó%’ˆ˜?ºt }º(.__»uŠA€„³( R©.ElÐé8ÚÛ‡ •å𯈕‘ùOa‹\*ºW ù7+þpÌãêÙ‘]jàæêì\&²ˆ>@àw(¥<ïÎi«6žÝ«ÔŽ È!+óGÆÇç¹DP·ƒèZ¢)B$è&‘ýz–iÌgZ%61Ñ`Œž©EdÈÇ>Ë7Êä†ê(\€PD  J•ë/3:ÑqÂM«}@qÚ hÍÂí늽%ÀÒçŽÄŒƒöÝx¶áYÎ`YÁSxÉñÕ{÷ã¦|á±?dó©Ç8ù?"ʘ¯9ŒZÏFY¹oAX{ܾ‘çÎ+”ígÊ]srµÆÌ8I).¸^eκ·_teäÛ"è¹Ø¢Ê¯Õ-…Ú|ªkòD…$³!„©8œt¬Æ{„Ís ë¶bÒÆ¾>D€ŠŸ †íø¨ƒ~ sD‹?šV1…“£Î Qî¬Öpεç\¤·O"œr"){Á(2|™Ú’fþÃoe ¯V7tÀvÙO{ú 'óPª'8qÖfûÍbR."øÃÃÝë{³ endstream endobj 1319 0 obj << /Type /ObjStm /N 100 /First 979 /Length 2151 /Filter /FlateDecode >> stream xÚÍZßo#·~÷_ÁÇÜC¹ü1œ! 7À]R·R ð]€¤Æ=(ò:qcK®$ãÒÿ¾ßÐZ[²$g×ÚCò`{vw–Î|3ü†k½g|ôÙëß`JÀ߀_¥¨àŒ>„@†© =<ò&Q‚Ép¬wØdN ˆ)Yô^õ¡JP¬RÄ„äªäO¤ƒFÌǹJ0#'1B¥¸¨~Ò`dp1E¼x½G&Äje’Óu@9¤¤O“ƒTt6\&Ê³Ž‡)úF &¯£$6Ñ%‡9’@*õ^†¨ŽÕ!:Ã5±®ƒƒ‰äª^”Ô£ŒQ’.02™È¸—<JÑ¥1†ËXFÆ`¹ÂxV¢!¶d}«#WÇð¹5] ù¬H0ކDua"’èx¢ „EÇ¢od¼‘k  B¥#«]NCï§ë=6äz¯ ĬaÁŠSÊ:GÁSñ: ’„uŽœMÊ^ç€/S!}·DîÎ[€ë½ ¤Ôy &  Hp4à伟¢J’œpÉ©$Ì80kÔÓ,ˆu8~€ê Ì䢋 x†K®ƒ#NáG°P<ÉñAƒ âYN GF‚×7<© #{”ÔL$¤¬fbíÂõ)æVw† uäI—àÉ¢¶ ›rE…ˆ ? ‘ɱڎ×2iÖ‘æÇzO°… !ƒru(ÁƒÅe“_Ó©W¼èÀN !œœžž4_› ¤rDfŸ›æ‡ÿm¼sV'K,¶ Af÷77O¾üòem@Ä2 Ä–öÙ|¶2§§¦9Cv(êêkg ¬Y_Ä Èî‰Æ­SCn£¯ùn1Ÿ¾oWæÂ4ß}}fšío+ó8Õ‡ÿݵx0ù¹=i¾Â´ílµÔJR;iÎÛåü~1m—µ¨ÞûW{y=y7ÿÍ\8Ü` n 1Ñd·µÀ­ßÎfsŒvñPâÔžgÓV…“æýýO«zýíõìדæÝ|qÙ.êàîcóÏæ›æ« _/Ôž)V‚L±OI¬‚p±€\Ÿ-zo«ûÞ›æós÷q~5³ír:¹™¾Q·lÆ%„§¸”RÃ",rlO7•» ² ¶ó‚¸·­ˆnqŒ¸¡;q‹ñˆ¸qµ§î6k!wBY Ñu‚ï„ðB´÷…ifücx½:; I´¬au¿eÜùøˆ˜ ˜æíéi¡y;]]ÏgÍûæûóoôç‹_V«»å_›fº˜Ììâ/w‹ù0/~nî&Ó_ἿµËÕm;™-/ß<âHpF²º3{+^7!¶^7 –C8Îÿ¶V-±0ÅŒf‹V°Õ!AP °ÉÙ„úMì,óáDùi:¾-¨­{Eä®Ó`–Zøˆ2Üäšr{3û ~a5‚•eØ yç` öB€ÚúÃnY¶+ü´£¬ˆ’!²^Á>nY)‘'[^ðÊ»o¿ÿ»=¿¿±Ëƒ¶ü~žÐ Ø”ºÉТ›ßÓäãåÙm»š¨ÑožÕÞHjï¦rW{AA­³;n£ö’ìÖ^J¯¯½k³+ù>ªœ"ñ(È´ÛÉ@h˜¯þ=È·ºÒÙ›Wƒ2R°A㊺†6Èú¤=G±™Ëps?}údÕ®«ù–ÍÏqH<‡›Ê´/9h§žÚ!GŠôÕŽHT0ÕÑøÅc|5àÓ²‘Ž )ŒI½µ ‰ÐÆ[`C ‚¨çˆiHJûêT›Ð}õÔ&gµ-\Õuϰ€¶7û#ÃÏ~OøKÏð?ظåvý\<ø¯_ßžzÎiØú6áÍ4&¼CŒVOnBÌE $6o´î!jû™ó©ëåÔž_N–¿ØùÖÌåÖyH-ä}µPŠ¿û<Ú!Zue?mb¢ ¸£ýÇ7ã»@z=%¬‰…ÄQ .v)Šz‚†[:8vô^ý ÷HJ BX¼2g±D£‡R¢AñÕZø% H†Må§ÃØŒ¸yû\Rw°—5˜Ï2 × æ ¹»Ð“º®øC–ã ™÷œe$»Ã„<îA‘kôJ <Ú*=Aft<º½›Òap7›/nGl}³«5Z¹·ÏH '6è©e÷røHà¹d9 Ý'‡7AÏtoÛ‹z໲Mð½pÅí\~=à²ŒŠ³˜PÅp’9Ÿ´9Τ ðÕýlÖÞìF¸ ¨9›ÊôÑ¡nŠל­HoB` ([c‡+{¨V9‚j•®u.ǵÎ]3ª'%^?­»Qø·žåÞŽÒô€›wþ±éÁ–oIÒн¯ !‚eYCáË.÷Ô®Þ }•“vÐÜSh²É÷5$Âm\Ò˜åt„~›Ü.Ôj½²„üNÃ¥ßøz‡wKùÑO.¡ì•Ï¢8ƒMþ)´`éúú$¸`].GÒ½Ãmü;ùÝr«ßTi£ÜêÜ17Óz2Ðé%Bn6YáƒElµ˜Ì–WÏ‹˜~hîr¿§pb[Hzj¬æ˜zj¬‰Žýú»‰Q¶cŠ»';Êëñ±þfZ?ͯê„Ô Ü Ò yÔó ÈÁ6­íÙÄÛDv‡?ËÝ-®g+{s½\ÙÅíd¼žÀçhsQjöTÿÑ&ÁÅdØw¸M,íåd5±W‹Émûì \?SbMVÀ’CA®¸XORä…sS0š¶LïoïoƵ(jþ)éZ[„NÊfáßµèîfÞÇžþ,0ú`õߊ:õ(ÊËŸ–úà,åGèÑ#ÿSBAQàë¿À½lÐáÖz݀¾©üTªQ¨¯v¤lõ¿Õúi×´Ùà›ÿg„   endstream endobj 1442 0 obj << /Length 1051 /Filter /FlateDecode >> stream xÚíXIoã6¾ûWI&ÀHµ S¦˜¤EmêžÒh‰rˆ¡–Š”gÜ_ßG‘”7É™N]Ðl’&ßþ>ò=»ÖÚr­o_/7wal¥Ny‘µ,-于DVŒù©µ,¬Ç«Ø½~Z~ws¡½“~ä9A’ŸáLA˜ÀÏM!/\-øG{T¶!³½~ôñí\µŒðʹñæÎ÷­ˆ£`Ðx¡Ø‰ÍëòòòÚ]÷*Ç,ïD-Y³V“Žòwz†m¸šãºÐdM×Þ6uAkMÁ¥vãjƒ;Šë\i ÙÈuÒP»ªÀBúÊV#áR_ÜЭæ}G²‹‡‡‹WZ(ÍDÛp½ZÁª&k½Êi–ïö X {R&¸0ŽÂÁ8ƒ/g•œáUÖb.ˆ+åã‚Ó齋£qKp‡ü 2l#ÄCN >>ômI…qa]4•MÊ’äB»²j ¦œ~=tNWa©Ù–j-6fb¬­_SÁ3ÔÎÑ+ï+rºÑA‡„Ä6®1ÛrªeK´Vsñ¬Ï5]A:=-ÕØö+Fs™!õ¡‹¦,äJÎ`â«=–Ù'é8˜—ùОØÙŽ Á\ô5®~OÅó‘±ÎäŒúå®IÓs¶ýóꛬnÃ-'ÙòáçÛÃ9>žÑ©`{àuß=<’ÞãZf‹I̓”52õö1éëTÏÿlÏé<ÔÏCê,ü£±Ð?‹…ˆhÔ㣽GÕóáEuS󸩎¼»<ã9ÀO°c{縩ÿjA‡!‰? 11rbýµˆ12ÿÄ$Ÿ1É1ø9R¾¤çëAMKù$cm8–=#CU댾jz±óâVM½×SöZ«ãjd¨0WÌ8¼%9-))L„'‹"äøiø`}s@<À‡êEçØÈY<â,fcâP¦]±"3Ô.y©×[šP;^„f„ùI±x8íJENÄk- _ÁBœ†®#U³14F¯™\7Á?6àÕJsÃÒTCPñ3ü¢©µÖ«í‘#v×uÙ×ù§éÎâ‹-}DO‡è÷o>k¥­ü—ÙÞ™Êû…[èµ§wÙâv¹øu€™k¡±çDIèilåÕâñɵ ØyÖ‰õ~8ZY´¥q ³˜Y?-~œí‡ÆÒv¯±­£„E‰c”ŸïY¡Ú'õœ4A&çß´­Œ®êXʉôÀ=Üxt€® *¤rç­”¡¦÷;IÓö‡‘ボ?`¿jࣉù0CßBÚÑÖ¤ÖDK}ø'€l©h©õÉJes£F<ãyñÓk/¼Úȯcw;whÇ2U¤ šH Ê‘ÀåÈ"Ü™ÔÜù;¤¡V endstream endobj 1454 0 obj << /Length 2683 /Filter /FlateDecode >> stream xÚÕZKsä¶¾ëWLùĩڀxÐU>8‰×N*'—âví*jHÍ0¡È ÉÑîþû4Ð p ‘´IªœÒa@<ýüº¡tsؤ›oþpwsû^ÒMNrÉäæîaCÓ”ðLn¥Dò|sWn>$eÕŒÅc5»rûëÝ_nß å-ÉRJ”†ýì\EÍ”›Ôs¥7wç&>ŽKþ6‡*XõÜïí{Î}ba#ª‰Ôd~LEúùÝv'Ò4yÚwO®ùpn]«©žªÆµJ¿K]³¬õ8Àjê.oÎc‚È<ÿï·4MçǪ‡«¸Nøç5Ë|ö*IrÍ&öVõx¬úíŽ1•øó´¥"©öc纻ó«“jëÇb¬×®zì€]näþ°Û}÷ˆË?ëýñb¶L$Ó”ík{oì/Zs sš“ äÞW0,Ò¤24~ûb?V%v=Õò8àŒ$£Ùt[sš¥'Ÿ7<#ZæÓl²bc°ñŽ*E˜ÐÈH:IÐèÆë™ÿéXµšYFŸ©ø¡SšÍ»ÔÀ2N­ Ì/>NµŸéŸÅªÉy–€Üq`ßõ}5œº¶¬Ûôˆ¤èë¢ÝW»}gvô»pcج¯-u›gDkÊÊ0º>´]bÏ]W‚‡ìÚuÉré_×ìfôNðY— õîö×-þNjãûb¨"çS–¹H݈ðªŽ(Âu¶¦æ<à-y2vØã©¨8VÈ,j–Ó‰[ÒûËŽ#Ë a×uÓ©ª¦óŠà«^¯™žköcݵø…7K“âtj¾„]V™¬aNZöíXúz[p“}½]d©cUs¶ª™ƒ›?U lv,ÅŸ¢-±! †x3{8Uûúá‹ë´f}×§TV¨ðÐS·cÕ»“peS™/´¸'Õª)üÀÑ›Þ\›?ÿx³öiàÃhµù°ã2O¬C£¬Æ¢nûNJ•üùGέ¥ÝÐY•Æ®s °F'ߎ{<˜ØRœ›ÑÚÛÃo.ðNËÒÄmR»NÝ0Ô÷Me»óY…ÓPwWÄzãE V‘0 øš2nê ÷í*ýSúêÂrPŸV‹áwVÛy¬"“Sàyi¦?¥=7 ¶Ž[‘|9u02X×]VŽÁô¿o5ˆ¢)wã—S”¡`?£U$ëƒ,ÌçÌ;OšØntÝ) ‡Ñ?În‹fpf:…ÏbÒ*„HÞn±ˆn^/ƒîdœ‰5.­9VG¹B„ÅM§µGèÞãL‰1 K˜ø8íwjн'þVÎûzsrƒ Åh †;ñ;7eȸ¾3â/I ÍårÈGtBÓb¹«Vî¯Õˆ‡hŽ$P.#’9(ýN¢>æÞ£¡Y¦}L‹ÖY8àèºÑ\3ÓV?²Ì,”¸Ûg™ žoÃñìˆóCë@.!ÇßpIdsjQÜÖn»{·%Ðĸ/sBs5­Âdäƒ%¢<Ã?ŒˆŒ…šºÐK.‹œ°Ç:.C‡GLÐq,²‹†³ë¢bœÎHèEH¸ƒ$ïVŸ9i„{71”&Ì@i2þŒ4çp#•Eèe p¨q‚)5‘òrkp‘*§×ôdǵ&J²Ð-[/ ¡š†LðŽb•2‰äD^œá£nÆmøskЙÃdæÐ?àÐx,Æh‚Â^®WtÈ¢jöÆ]çôKx©špÊãŸêÆ ýGÈ–&6ÏQm.˜9]kõ ù–""]ƒ! bÕŠ¤L¼{;ÚÀ.Å ‹Ë‰ùИxÍh**'¾ÈlY´Æ;R¼h+ÖòsFÒŒ‡,rYÔãë l§˜nÒ–w xºäP.ˆÊ^6”ŒÊg<Ÿ \Â6§†XÈ6ÁvT”ªUt Ü „§LÌÎïáÒƒ ¸÷â¢DqcM”7'¥—»0°LÏ Gõ”&›¯{ï2ÖQûdp6¡c2ãÖ1™ùÏ„¦!݇˫.¢9¡q~»S­‹¸d¡Ì•úš‹†½ô³=ÇáÖß@Ú {±;w4s@'èm3e£äšå¡V®DstEÐÊPU =Ué†;´ÞÞ âOàaØÖ’ ¿©ÚCôþ,¥„¦W`Ôûâ7Æ‘³9øÀö}5žûvðHɼú wЮ̈́±{¬÷jÃLhäP* e+×ÅBÂÑbŠÿŠJOêYuÀ!µ¤–‹\ç~ö¼SL%w6Z˜D¯:÷¢…ùÚw Õã$¨ _ìä•Ö¸ÉBÑW!Lõ ÂôÈ|Àñ¬©.Iºßuu º_ëDÐO‰uð‰Ô­X:{\c6‘˜³~èEÂR¯šÏóàŠds2|“eÓ{“å»æÏ˜Ä›Ã Ÿ¨±HàèÝI¶ºì(šKáA &±Tä@¬ÓÐn“vڠ县l)¥IQô£ 4Ïõ’GN~gC9D#¥Bž¹Å}$õÇÌf»üS8pËúw¦n¿Â¥•N¾‹ ÍWôQ´ÌSö¿»|å…ø¥ý€ÿƒÄZq½DLˆÔ%±° N`ÑΛ­&‡¥—)N°WN²bÙm,ž±´<ìï’‡!ÞgBÙœ`G ´fs}¾¯" À$ÿÿTµëÍó0Y5~.Ÿ^ q苲¶(À|E£^¹ébv_û²ÿìó.T-~·9ö¡ÈÜ¡ˆ¤ö¼®þ#?¾aúŽÈóŒ™`Žx!¾æ_<Âw÷dÐZ†ŽÞš¢™Šñ.6y‰Â3è …TW3¹¨A_?cýT]+ì žyØ{'‹½—Z1¿TØŸ›óã"²¨NÅþŸÅ¡" l•y˜• ‡…ö9 _Xÿ4-×B­Ê°v‚)¼n•…"vQð=þC€Û ‹õÂËÍá¦r· Ö82ä* ¾½î¦§¶Œh}™EZÐhê¾wQ¦g’èE`ó[Ë:MT„/%®Ë4q?Õ”§‚èôîµ<»Æ¾kVÕþ‰6Ó ^SLOðš/±‚æ¤4,±þ²ìoËóo/²~ßú®ýà(n Á‰i/ÄP1‡Èo¼ø&ÂPÈç”Pž'˜$tqî”»Ú|SãÂТnÛF;뚦ÛÚrÓ4f¼kMøíõÇk®Iž"3Rå|ÙXÜ¿XË§Þ !g:) ±æ¥Ø€.ßdzzMSk\­ÃçhSìÁàŠ¾ÄéUßwý4dŒÁ¤øRï§¡Ó.VÆŸ_l1Õ3\E~Uýíùt²Ï8¯ÔÍ{SøÍ£&ýŠXÂI´ox µvÞ!`ø[_fW— „¼þC÷8½2•e==øX šÊ(nù8g>êi#:s–/2œÃž½ë5W+F êð‰Þ&L¯;¶wRÄüm‘æ”ÐlÆvËk `¦&£×ÁŒ]d:ùëŽ6>°%w÷©Û}s.ßB›ÈÈò„ak–W(Ûqó> stream xÚ­X[oÛ6~ϯ0²“W‹uWQËŠv@Cš¦m™rÔÙ’AÊN³uýí;‡‡ºFIƒ¢y/:üx®I;³õÌ™ýqôûùÑÉË š%, ÝpvžÏ¸ã0Ïgç,ô’ÙùjöÞŠÜùÇóW'/CÞ“ôB—ùq 8Zf%6uºõUµBá#Çløao•Ý,³Ý&=Z|:kkå'püãØ@Y€á ãžO0ïæ±cU›|=¬´\Ïm`/æ¡c"»ª/Ó½4‰ÛMž×LæÅncÒ³ëÃåo`RšWÒÞÉê“ÈjVÉõ¯´r¨Šë³°ÌÒ©Ï"˜pf´7Ý34b°§Ï’˜7ë®êz§žžœ\__³fç¹ ÷¶»w FpQs]ÔWô¡¾Ý"ȚݥÙß)Ä­)×z°s¯’_¡¹Õ^†Uåde#g7$A@ÒoÇ£4úåM•×שœ{‘%&bE \0¨“Qr  '0Í]Ž;zÏÄ‘pÝÐÙDyû.ãŽ;®µUU`Yp‡ñ8ô¢“O׃ㅬp¼©âáPX0*ž7ÂäËéFU“µƒåï°X³éÞfƒqEeUy`š[ï+{P(IZÃ(ì<±Rjò} ÙT•4ª+óq·Ûܘ)4ÐA_î›|ÇR–EZ MǶç:Dò$j¨~Y]*!©PÌ‘#LÌEcUü£S…’Õ¾¶)¿Œ”^acÿ cÓrEP·0Ô¢ÒínS4TßêŒü5É{<6Qãÿâ3ÜAv·ÉBXè·¡Š!T1aýôÿ´CÐ\Á;|< ðÉî†z«ý¢¬+28â=ãrº-¦ŸÛšè$|(é¶–o„{î÷aØÜñç>v tI¦u{f·Ú²L¦yí:TX÷XXªZ3S 3Ði€C*í¬:Ð`›Ö²øL}à+Ýê´&8)Å&ÅP;}Mëín¨©6˰dA_Û-9õž´.õ¾P£êýêfAý²X–Å¢3a ÿš«ÍX…‹¡ Ñ£‹)¹[NEI¶ÖÑÈ5ygë”ÖYC^¥&O³ ût¨ ¹ªÂø¿’ú„ï{|#b£îÐûÑhóÆÚ½=ÒGÔn”„C(Úd©ãsœfÕší„ÌÁÑ^è[Ç©ª¶ÃȦ|$ƒ«Pf3ƒ‚C=ƒ1kãf&óv»ßÔÅXÓd¤kµµEލŒT<:å$©¹Ñó´k°•Û”mhè &N]˜@Œð’š¯Ô8Ô<¡¦çMÔêL­ë‡_¨iÒ™úX‘Ëã·¯ÍÌ·’Z uo™Ãw¹—Æ[0. ’› ÛŠ´œ¨àéÔõ?û*˜Ðçl˜x‘¹[­½“U"×õ.Ô Ú €Ñ\V×%-ú¤M> stream xÚÅWKsÛ6¾ëWpädFnHàSìT‡ve¦‡ÌÔ•}Q}`HPæ”$\’5ÍoïâÁ—,)n¦Óú ].Àî~»‹5¶6¶ÞO~ZM®–!±b‡nh­r‹`Œ€…2Oþ4¬ÜQÉ\¯b;䮿÷õw¯5s½v¿÷m½dÌU{§IÊ6S{š4¬’²:ŸJîrghô\[ð×Ð4— ˜Ì;¸þµ¿çÛYݾM æY"‹RQ3á¥? ª¼xÒ<ËÛ¤¡šáŽ`ÎÞyR79ãÍÚ»8§e"QmŽfL›y-ˆ @)OrábìÛ!ª‡ñž&¥‚ƒZð¥óÀù¦¸šû¬I#¶Ù'h],êÂî#²€óÉÛ/V×7ïN%ÕíØ °ðÕ틜•šR8D+:@KlyÝ;„z'ŠZ°qQ'}©>âþ§Œ6oqa<£| hIw´<Ò«ƒË[ô2ú#%[£(ÇGéK}ù Êó)DÚ ý™ª¤±DÕŽÜ¥KNJ#QÕ7:çH=‹Ž–Eµ-EƉh3ªUÍsh‚¦÷U šÜ± qÙ8=ÏS¡‘”W ªT§û$KŠn …CŒòB“/š`MÞh2ˆ¦>P™slßùùY“6½5/ ~1½ù05’6ÉO%µôç\¡(ª.T}–-NëÔ|¤â‘R“Á*Q$Z¶D´ï´]×Ñ ^¯ðõg,=ñˆì‰½wí½gï}{ØûðŠnahoÒzOú=ΰÉõî7÷ûÿ÷y>·oˆÓzøtžˆÔÚ½;«ø?~'ïV“?&®Áé3ûÈçVZMÖwØÊ`,Aˆ•jeù0»E¾|iý:ù¥›Ç©šþ`DLàhèËG(ð¢gÓß`´ ƒÑ>ÅsÒÎ×Jßq Ï!d&ÖÇR¦…”µ¦‰&o¡È5·¼ ‚¿$Á 2àtÜ(B.XùB \ Â#ƒ®ëÏ‘Kmø[Ú¤¼xPi=t·w{4ýò™£Ð$À²«éŒ|ø$å}0T’L½­(/Rý±»tƒóʺå"ƒÌ >tÇ‘¶¸!ò‰IÓ›&ÙУN> stream xÚËrÛ6ð®¯ÐäjjÁÁg&î4Mã´Nfê8É!É"!‰  HEvýöîbJ´)ÅÎxd¼»‹}/ÝéjêN_O~½žœ_Ñ4aIè…Óëå”».~88g¡H¦×ùô£ù³Ïמ_†üRD>ãÜ<FVÕFÉ N\ƒÞŽç—BÜœ‹ ÔWç^›‚äªÙ¸ƒëwX‹B–Äž¥W6«"KËÙ\¸‰óÉ ÜFÑ<¥áÛŒŽÌ:»Ý­¥’Í ¹Ùhhl72+–·´Ø­%•eQ¯hõ¯TMkH,;¹GK“°TÀ<Xœƒø’ V«T}™Í½ÀuÚu³-sš/$JV òJ ›C|F‹\.gÜuÒmÙÑFÑ’>RåA̸Xù\_½{EPCýÂf¥Á Tx¨!/Ì LBæÙwü&;H{DÅC21ˆ faL7_ß¾ï´Eµ)%ͳ¦žù®yu]È:3Ëmuœêj GÕlëÜl­ d½­¤*2\ ø¼ÀIU‘.JÙÒyap¤4äigfK•VòŒîmš¶-åí\^,ßl¦îÆt ´R!¡(rš%Ž!ÜZ]ËÀ ×ùŸt6¦(7b"‰¬èÒˆª„ÇB_X°,­‰˜,ÈB‘ ¶!ØKiÙ‚±–f«¨;‰²]YX4©ÝºÈÖt¾+Ê’AMèBgÛj;„-Iü(‡9÷]æúCi¤W¨$¾¯ØÒøb 9ãŽV#̵~r]O%$ Í5̵ha$)‘÷ê}sžŽÒå¾wÈû‘†ÙLZ°š•²^ukƒ±Ó·ä}©dM¹­êÖød=¢êX° è½ífDÉ>Ä4~莄MË † NzÓ„^@0ׯ Af4¸mÕ S™ÚÙ¡VND%T¸Ìé<ŽY "H&I¼¾iêy/u%/ˆÝ*wµ°D;í—b³A„ó0 ?–cŽ Æÿ¾c‰+Z"Z6ú¸áœÜçÜi›Ê°‘ªEq]ÝÒ’˜.·’.›<2\=ÖS|ób„©Dg²"‘€v[D ‚Õ¢AÜ‹¡u ]Ä¿l”ÕyÓÊûŠkYo¤Á>O¿i:ùl6 }@§¾ÿŽÀg~ܤN¹—/þz;–*6Jú|’dƒµIðÇâ©ÂøOÓ«{™²G¸/àQUÚ½<•ãEÌDà T D) ß$m’ êY¢C“‘Ó(°Æ¯!¶ ÝT#XËŠ6!@6&¢A%ãù‘QIhâí:UiÖY7»/ü»)SžÎ–ÆAÞÏLëñùòJ–no>_QèB/ºÇn^lâV{SÈØN?$°ÉU†¨Ð=(?þIf1«r¹š“XS!+ïg!(Bfën‘n­¨‘ʈé&ûòïùîÛâ— °„ùF5ÿ€Ë³F­~«y<—Ø[²æžEÚpÑ~Íô¾ý¢óºë6í³óóÝnÇ,et6ç€ü)ÛæàP O¾[{AmÀb •ðê&ÅÚi¼ø­·cÀˆÁÚh"MØJ='p]çùœFØ`‹lÕ‡Ü 9+[¨º3ÔQ%Óv«äÅ“««'gt˜Tfµ€U-Wf•Ùþ,‡Õþ -ûþYۺ˅Bƒ>ä¼Y¸- ‚ovR5¹½ á?ÃÙ¢´/ù‰†[™ª’ϹԶ¿­ –¿Å)p„ÐÇnäKízyúr/ÌuZ®Þ™8£ŸwHbòêzòuµ¥ò¾OP%ºÐ—eÕäãgwšÃ!0õe<ÝiÐj Eº,§o'µÝ ³<)ôùT@’ᾼуÖ0Üó祚 ¨[ÓÎP4\I(¯õ Õþ°õZ÷ 9{ „eZ·OiyiÛ„ã¢q hˆ!ê‡Ã‘~؃Ni¡6SŦ'ÿ¸Hx9Òà'SF@û†EIÝØÆhEÂXlm[sf²œ¡¼žŸ](Pýè ‡G ŸLÐó@€6£ž6_í™Ð[›4û’®ÌB—ªûNP®S°ME ºöXpü  õ®EŽŒG5cLðÆ©PQ‘döcÖ)¿›;vî+¨“ëîtì>ÍÙÍÃ?Œè>ƒ&¥a“•i;öí â[{}ÑõÉH…4š¸½±°;, ?ñðH0:!Ì#Œ,ä VÇý÷Xì¿×ly©,Ô‰v4å?ÌPµº-¾étu—›Jd×AÿÜš•é‰pnJ÷;áFa‹ÛNK±k?.lÓG¯C_†åªt?ð¥Çã ƒNÕJéXý>TW_nÿ*çq¥°Ñ™Id`ë×Wc¾Lè&yÆãÞð,ÒÎÖ¬ú{ÁA»¹»´²lêaû¨ˆÆc—¼7å¯ùéšÌó˜ÏûáŒz*$™ÿæ|\ endstream endobj 1513 0 obj << /Length 3039 /Filter /FlateDecode >> stream xÚ­Z[ÛÆ~÷¯XøÅÍÎ…ÃKZmÐÄHZÀؤqRµ¢-‘ IYÙßsФ¹Û]7Ø gÎÜÎùÎuVßÜßè›w¯¾»{uûCln2•Å6¾¹ÛÝ­•‹â›Ä»ìæn{óë¢8OMqZþûî§Û|2 ´QI k]â‘ä•–Õ6Ю„xeès<åïE——‡v4o0¸—Á©Z™L¦Þí ž¦ ×7 Ì’æûw¯n~]YŸàÑ‹¼¯OCñâ”o>å÷Å’èÊ–ó%Õ§ó!o¸o@/º}Þq÷niô"ß”‡²Ë»Bæw{¡ÛÔÇÓʺâ‘zÇ¿oж+0cË„GØÆ¤‹û²ÊxL8â ˜Ÿïèštþ7j¹òÚÑWÎD‹Ý¹ÚðÚø…§Çßœ.M~:ô5õ¹ÚbÛÓé˜ð§Rb™4ß#¿ò;Ó*²QîoÛæ~*Þ¡x¬SÚû@=>ß®©Ü’L¶J"e\æd6ÙÃr²,Ðõr¡…kþ=æŸP.s»¬œõ*6^øëy•×Í1=³ Ô˜8ìU¯?›…l-É$»> ¬­Y\ÊnÏ#,~hò® x¿É9­?W‡¢•ùu%TUQl[^Ï]§0þóÂnkØiı¦z±-Ú²a‹ º=4 zl@¹…¤ä#„0vZe)Úà—eŠv8/r@Oþ[5ÇÑHű&Cý´xþ¼åßMS\¯¹~àßÁ7óCƒù?M¸U‘™Á.nË&|p€© ·ÊšôY&ÜÅ ®ÆÔ€”å]tõò´íOð9ä×¥<ˆä»‡S¹ÉáÕZæžÛÀÅR®&| €¹ÞOløKlc8k½Ä@ x< VòÈ|4Fì?ê®øšhé_dÿฌ*æcœŠŠAwS슦¨6÷ßjÁ¸ÛÄ^IˆŠb Åï]“/Í‚]ãp¹- ß7E!#dÒpèÚ– sW7Ü T×ÞnêêƒÖvKǘ‰…Ê œêç¥õ ³°,D(‚KlÑÖØ8ÖÛâÀÍ€l£õ-wÓ^(žk±¶é !8¾Ä¼u`Ã}/|¼ÃÛ×Ýœ®»L¥½Qøff©Hù«ã…>UûYgç#•d/]lÿ©ýøèbÑh1À[ñ˜±ojæ¬hÅÕ¾ðVùv_of÷ÊT’ôÐÿ žÛ¥ µ„ d¦2!3„†EB^vª²{@¯„aWä?V<ØÖG!ÛämÑ"²cr¯ýlÙ£ª;n|<·ÒÊ™+‰Vq2qØ-èQˆ—g‰íÚÖ\cÂñ}¬ÜIù>x(›,ÖKRÎ}“@ÌW6ýF° Àš7°ìBÝ+™ßoLØnMÀs°¾,`¼Âb0uüü¤´§½/ÒÐ¥ÁKbGvêì9 KIDxŸ… ]´G0뉾†¼†œ*8€T,~Ú[ü„¸“˹¬ÁS°#]‰?ÌRIÔNhã©[ü³*¹*9LÑ ÒÅt±»«ín7€@çÐ~ÉGÇÖ")q9ç !‚nnÜo€¼Ôo•vÃ`³v¼¿RÜ`÷ö3€·/UÔhˆÂ²^tÁ1ƒæb~6rÌâPtRµÆûz÷ m`7Æy-•\û‚mº§Å:QÓqj-þò© Ñݹ©ÂV,é¸tñãŽg·5æÒ‘¿Nš?ùàùì ôsÄ;/]@´¬°ü=òþùY°WQ–}mûXô¤èi;<œŠ·¯!È?¡qž UL65M`’’ÔŠir£œÁR˜cÆšû»¦dë9…Á>šå¤"Ø"hHº 8dNú±÷(m:­1£\ äpÕáÚEL•ÜÄ0àRŠˆT*è¨(EdvîÞJCð¿PI6?Ödá`ì7e[b¿ø†‹‹e'×l;ç°©ëNwäQ#¾ RðHE±™IÁK‚qÇf_`q‰˜YÒk—ÎRZùJü<ƒ#»=–¿³]â;)‡èçŠÿõÜíÃÆW®+*9A j ¥U3z+–™m7ȶmŠ40<É1„,…*Їº$á¥æjUˆ³G=¯“Þ¾–æ09eâÁ”Tg²¾7ß²…’rÃSª9V#±lpï¾0•¤*¶S{ÎÜ‹¸¨÷ÀÌ‹$¶u‘]¬K²‚H°ÅÈ™ü}—Õ””̨ÓÔ²EvÄé8zŒÓN[H;úZî­xÛ·wïþ~†Ï)ðùk¸¼r)VP&‘j{>óæá¹Ü¶“H8Ÿü‚uØ-É ¶BÈŽíAXä_Ýa$óøõ²ØÂ¤à÷½ù‚y:Û‚ûg¬…pÊœ°qªÛ–‹ãøE^øÍÏ«Pæè'ÙåБAªàÇöØ…ØF¤üœŒ’˜2<§ƒ@KÒgB]šú„ì˜Wç° ¸q´ê·û †VFûÇÜdÐN‹¶Y—„f’3Þó'£ðبøšá’ÀÛâ[°×© ±èø=€{JŠB-ùw¶‚_ pì}.d®œ©LÇ×¢ÄÓ’•áFÎ\Hûq?9 šÔjiÉ¢*)N#»ÆçZ´T]æ t %­´u“ ®’¸‡‹êXæŒZíùt:…úŽƒ‚ÁÇÃÜm7e¨o…÷˜Þ Œ…×s/;»ºé_wúW¡PCÔO¿¬ôÏ€©¼ä-qˆ°EÔñÅo,Ë‘³»_b1JŽôË2†k›}·ÎÏE.ãõŒg^¹´×Ï?_>¯ÿz,º®º:55 êæþ/sš >óßa!ÿ‘ÿŒùâ±ßÜdÞ¾ëNí···—ËE…ñ?OƒíŸrÅÆÃrãìBÍròû»Wÿ%zE endstream endobj 1523 0 obj << /Length 1059 /Filter /FlateDecode >> stream xÚåWIoã6¾çWI2jɤvõ¥E¦À½xÜö03Z¢dvdS%©,—þö>Ф¼&³5è=$$¥·~ï{O4š44ùåê§ÕÕüU’MŠ HÃt²ª'¡ ŠÓI†qFÅdUMÞzY:}¿z=•âÉ(‹Œc°3ÈÐí¶´Ó‚WÈšÛé†ïTü0ƒ‡‘Q\ÒšŠ)Î=º+©<Ò?°sc>ñqÄEn,ü>M‘Çh¹QkÒƒ­y³©£ÂûcZ„^0ǹ÷%(DÁŠáQ o~滪/Û5Z$ó¶TŸìHû(!’A‹íÌ«¥Yî™Ú˜jC÷J5æiGʤ¡Å+9Ä ÜÆyîðz= ÷¼;¼ÖJ’•ó¡E’é7Š(&+µt˜ ï ¯Õ=Ó(ó¨qvQ–¿ó5³‡Åˆƒ"ÇN J/Ø(†Y ^¤¡›ÿø]¦qn¢CËa€Qè7Juò‡ù¼â,࢙cà<²ùŸRw(J†¢ ñù8 ƒò÷Ã<È K–Û²íÚ'hrNˆ+‹i<Ò&„­›››©Ÿ ä¨eßEͱåÙ&?ؠϥٓ]eÕ¸TvÀ¡@ú‘Ôѧ;"q¤†ˆ|ȽHlOUD©}³R©ãÐ8o)‘½ ‹ëåòzf²…긴§5œv´±§’-Êý» Nûwà…,à_°.]=IÜÂù 5³! } héIÆwö!¯hk¶¦ †¸Ö’·ýˆÀ¤úÊžˆ ÆBÅJ-rAå1 bK4Ìfpç6àߊ.Ìò· Üž¤{˜ê©·ç(i ô\Ò3ÉÁªK&%¹;©£„: pç² bÍ%]¬–¿ÝžÕ!;‰‚B£o!˳- Æ„© ±ÑÖ0o|%ÈNÂÚ: Åíº¡™lÉ |£O!Åê½Aÿê™Ð¢’ÿRkš8‚>=ÖÞ‹!ÀÇb ;ZÊÅ5vœVpÜ´¤×£=ß¼X!è°zIZž9h]ÓÒÚõÚ(»Gñ _€ÄÚ?.ìŽÞŸSúXwL•ìáX‹Èª¹ðÝÀ`;[‡(‡z.èC7ötÔ\D/ÒÁmËKM +T“lUíë [5{ñVý(ºŸØ—½¿à\'VÒÖ•€²f3Ü=¾‰ö›Fr‡¡bo~>>ÙsÀŒ¨ ³„r+°TÛÇ“¾®hMúV};SíÖ!ã'ðÌþ•YwïÓ}5å±E¾–TÜ9;lwŠ'té% ÇõÅ÷颞¹­üèAmû–÷üªÑ[òöWW£ ã×Uø­ßΰý²X´žG3øûϦûs÷3w‘=ýœ]Üä ÞÜÌöûÿéâ#ð«FØÙï¡ÛÕÕ?T4NW endstream endobj 1529 0 obj << /Length 1117 /Filter /FlateDecode >> stream xÚ½XKoã6¾çWN:€¥–%Y@ui±)ÐK…{éã@K”M¬^KRN¼Xô·—OI¶”¬ã¤Ààˆ çõÍG8;8¿Þü¼¹¹¡{q¸ Mî@<:„^èÇÎ&sþšã²l(nîþÙüvÿDõ€^´¶”^I•`¬ß?ø¾³ºáJêº~$lûŽ»ŒÄžß™Æ¨bƒ0tXܹsÖà”%383ÏüØàdF1kêŠá™P†ò Ç…¾· „AèÅp­ ÞÞÞÞ¹«årÎP‰¥äÏÓ;|o6D0I9Îô>Îsœr-#®UŒîr.Ý3_mY]´ÜØ('¼ÍŒª2½Ý2RíŒÙÏ-*´ØÐº©)'Â}å8®/âÏ2м¦&by¼PQÔ)’o ”r¡44b7AÉLŠL‰Ìù¾?¯ðcYgL?$zI¥Š K­u† ¯Dœ’§ÓWËòdóñ2Ý? ­XJ xïË’µ&§¢‚y‚Ÿ³‘‘á,ñ»B‰ÉhRŠ7‘RœcŠ«Ô<î(É´ôHøÞ$C:aZÁdY%­Ö+¦o|+¨òH!zÍðŽbÖ×ÐRÍZã„`VÞjí[aoˆî¼l(É*t ŸPI*<ðT÷1\z`}ZÁ̶¢bÃ+Ó U0ŽWSeßc¤Š™éûrÊP‘¶E?6]^»_†u®ii!’֔⠚³ I}%‘™u½. ×ÝÓQ‚Ä8ž'£(1“~fa-Àÿó—ß?ÚQ@IB‰mg’TV–¹L¦¢ŽÎ¢.ÉÎ\ yŠ¢®sŠ̓éàÇ~N“ç±Gí°1ÑÉ€ŽÖÙƒFhüwh[¾#ÏІiñ(Æ~2ûTíÑlø¹3oaΫ‰í€éVŒÎŽùßF_=élQúÉ5¨¥ì~n÷kšRô~.KW²Úúÿ¼{¾ŽÄFñޏG«á¢ÓÍ›DñÆsT¡ï‹hçË)ãuWš1Mî40þÎ×yä÷ï·Õ”ž\ À «ë=Þ‹î¦zu œkR-ïÛÕ2#ÔyŸ‰ r†¡„þåŸO]„½Šá'?PýËý`dW¢ 3Ë¥·‚áå¾Ð][âŠ3Ó[ñÒ‹¢èÛ啇w¢)Qñ¬.§^zùjZ[ÜŸ åf(œ ƒÑå`Ìvݯ‚,èJëŠ#R  4eèH°ûg„]?lnþPý~ endstream endobj 1533 0 obj << /Length 1507 /Filter /FlateDecode >> stream xÚåXYÛ6~÷¯œ‡Ú@Ä%©»¨Òd·@‘ hÖyi ´DÙDu•”öè¯/OYÚu6i²=€q‚¢‚0Å&þ2cÎ:MiÖÇìç§0•5OA‚‘1¿šÜ+#M¿ Wùµ|µÆÑŠpÖÂ|§¥Z1()aPRbËJë@R‹µ‰ZkE0 ¦Þò`u4Ó« Öì¢ uW©™£º°ü`ÄY»Šݮ̗Öz;v+9qŸ‡v¨ #ïè)äÇf©´Öí‚=xjËÌâñîY^¾z±´øOóÇ!È`â´Nù‰@"omçæ×ç¯ßœô“4M?ßÏi/HŠx|)Ê€µfÉê’R“ño/d e•øNMƒU©Q•ë]+ÛUV«Õ—”0:ªÿ뢠,™CzhUÁ®ꩽ!¤ Î¹’²UCi¡áVŸ[3ÊúuCOïØZɲ;Ý9²‘©%B:%B:¥ê½fi²XmÖ()QÑ+šˆï!Ä´0' ’>†‰ã¦úÒ–£³P¶UeÒ×üVßWwö´–BÀ¶ó½ÕgŠd^ÖÓ·oO–D]Ž¡Ie{ ‚º;S=dÆÔRG¹¬­½*Õ^j4•0—¨ýûûóãžê­ŒĶYöù'ÿj¢•,–*ŽÚìšõwÍS“^:=\ ;clP8u/©6a2Ä÷dúÄÜÇtDÛø=«é?€}ÿåÀ ðú‘×ÿ0>ïüˆ«¤l–-kúû9¸ñ|»ø š“¤S endstream endobj 1539 0 obj << /Length 1620 /Filter /FlateDecode >> stream xÚÅËŽÛ6ð¾_aä¨eQo÷Ø6[ ÇtÛKS ´DÛdÑ¥¨Ýn¾¾3$%QZ%Y Nz²4œÎû!«ã*Xýz÷ÓÃÝö>%«¿KÃtõpX‘ ð£8]e„øi´[=”«¿<Ö´*Ö?ü¶½O2;ˆŸåÀJ£e;D¹ ,óîw{EÍ&Ê#$Ú„À"CzùˆvrO–ú»<ìîy\“Äc…r½ “À{âêdžÔ‰™‡3£uc?IаBÔ¥y?JÑ^ÌcÇ@ñ³¥»^+  þDœ± Vž Iý ÈŒTMIn«C£h]RiÅ.Ù:L¼GN®j‚ ”úÖº…ÿ‡nßÃmÿÞV±ƒdÿ´¬.8³zˆÃÃèª9ÕjŒJ0Éu½ç…ZD)±Zà“–1J'Zà Jè`¯çKÅÎZ¤x0QÓeÂ×ijšÚ9ƒ èÊÏ.IŒÀŽëu^_oy['KŠ8Oæ¥R²J‡n`T3,X««Û ¬„¢•M&Qo0wšI:më ä§ââÅÙ·•ýþFb]n+–®OüX³뎵íæO«–5KŠì÷«± Rèv@ÏÄ:ÒÐ'AÚQ¿7Ù xfQ®Ùûi®"?%©Á g¦@Oa¼^ë ’Ñn¬o}cgP¬—[§”5üÓ’(y¾­\bß0iðl ˜âu2GÎq¥­‚ú•ôGn+½®½Í†^C÷o&$§u±(%Ù·—w”¥LJ!ZRE_/©¸`è:‚¦µÃ =÷’ÖŠòº³W¡·è¾êÂâÈ^ß5œ •k’{Ç'KF÷I ÝßTt¿TåÏ» ˜²Ê xè;ãPRÛ’/ ¤CÅ/K„’Ыđæ%Ò†E ‡*¨bútb £4G%Âù#‚[ ìd1±ežÆcwä&>"ØÄÇ#aYCâoæ&4[ 61àþL1v9Þ=a^öÌñ's$Þ åˆ,3d¹WCüH^˜—‘GYšæÂ ~xžÛJñ±è¶"A±`Vˆ«#°…â©Å`ê¢w-´ðk•´cFŠfÆÁø;(šYk¨‘ʰ#R´óó„ œºéý%G’øY6°„D`³:üÿÐk¾´- ¿0 ý0š ¯R\‚àõ!8”qbB-"©“$qæ!’8ÕÐìÇ.×Âü´aÍvô¹ÊâbŒËæàÛnHXê¼ê47_èæCI²ŽI„¡òf&EÜUzRxd L>ÝØðh4¸åýƆGZü<øêàöW~±%Ä‹[‚³/­2Ÿ%^Uç­èêù®«ôqØ×-´KõE t$!¬¤¸œªoÓOºËÃѰi"ÔÙ4¡&jûÇQÏÓ¸ wƒ¹“<×ÓîŒGììë4}úbg1#󭪿^J µ ÿÂ$µþtò_úüÃj~öœ6æÉ^hg’Ä™tR«4]p0/ÇwؘI'ß(Rñ3Öœ~±¾Ý S,0KRØìœÛÌÕÉ ÷Ó¸/”ïÿx7ׂà1LÆerî/±wwÿÂËã endstream endobj 1545 0 obj << /Length 2886 /Filter /FlateDecode >> stream xÚ­ZIãÆ¾÷¯|‰Œ8¬*®r°‘ p»cì¡È’Ä@"e.Ýéùõy[qkjz& ú ªWû{ß[Ùþæ´ñ7ß?|ûøðþCoR/t´y.&І¶ë›ÊL)².“ÅÍN…Ûìj¿^\ژɥ}¸­òR•ðmŸ²Æ«`M»X3ãayi¢còsÖdyg›ÝÞ¨dû„§Ú¼«¥ÿ\vglÅÛîy§à L¶+lÀ^'Ôöfóòø"óñ•HÅ q @óy(†Ót°ÍvjÛ”Ùá"³ŽîlœïÀG‚¸Ó0äׇÖ6|Oàš à÷¸Óáöׯ~°m˶å!Ú û.¯¯L…#+YÉ7†\gyÎ0ô„›gà Â7œÎÉ릱ûµÛ¶·º*´ÙõvzÃÎUnQ¿ù¡?ࣀ‡ϳþâ—5–±>CJ/ˆ#'Ò¯^ʯxÖLîZ{&! Vvм$އžV7RÐÔƒfÁ•÷)Œîö½®·W¡—r|QxW›µ=?èó°z©O%¨1²\1è=ŸÏ¸×ðHÆ´¥üÔ¶=×ý¥àI¡Á…NãÎ"]%Z‰¤c#8Q$)ÒŽ¡OrÓ†áõšÝ¡ñÂÄ ì†¬ñ<¼Äè)ÏyãîœÑz[Ìò¬# Ñ€•ÆËÍò ²?@]àŽu€|ë;[<7û4Ä„ò´ˆþålÁÞ™$Ùö-Ù$)V¶L¬o]YWïÖ åÃcƒÄ=afª–M¼ØWƒ…ÊäÀs¶Ó¾X(>7ã8¾)¸)†Iè5OWì0·åשP{:Hç’›ƒU/ùi|HÕÞ·›eû$²Õ+dkeØ‘Àï€lì Ȧ$\hˆ¿€– ›·¦F=•„h¤<•Ù¸ðµh´N¼0ÐE›®Ú?lxC0Ñì 庬UÄ[`œ©oQÕ´1Ûftylh}r/ƒ1ö7Øâ7BcnïqÉÔÞã ±÷4Yöí=. {d²Ód’Wõÿn§™P¶k vR"üñïßýŒ«eQI,èS¼¬±·K–Ûÿ†íŸ6þfbY±cQÿ.[‰mŒcÑ¥gŽ+r‘kŽÊ÷|ÛäÔ—r •o{©( Krw—áy¢áËSCœ…½1j`«t¬8 {ÁLîM¨·«./n¬†v!)PŸÑd®¼Âh/ŽF…"“ñÇ;°!š³…¶æAC-÷ hf—Æf…Ü-¯«½¾Ô÷TjæoÃ8e«;FÂDØÒ·D½%ºØóß]4Šnj[dx¬·>®ùREÖÜŸiÀ=vF ÅÁDËD™áõeFí{‡ÔX‰ÊK;(Å ]þj/Tñšc}žKÞQ1ªpg2Údçšç¦ì:[Ñ{Õú{X c‚åƒ?|óןV_xq8€í‰È]ñ¡œüá›;2 £¹Œ>õ¶QcD»4Ü}Á¡Ÿ¬]äGÿüy§”¢ÿ vl>ÄC~ÅkÝ –p|i¿Ø_å©ìÚÏ·—æP(j"0/¡àD‘'ätxÀÀ›—µê¯7“²  0ñêö#^µó­žÏe~^ltkðäbæÉ"‡V²†$â]l“Dà·©ûª !"Œ¨}EWþÍ÷µ-$©sÄ08ws@(eÿ@vù¡îdª„¥I8®ž€dÅóbbCºÝBêIxÌÁ8r  sÄ Chёʼˆ§A’ëÿ)p­(ŽX8'»´µÈþ¼dÓ ¨¹ùã÷›_i-x¹¹ç$º‘¬&û†\ájàOø“|_pz®ñéÏó*˜ã®©/ Ä;hLË‚M,ªÅ`Dì_ŒwÏó¾ìâø¹2D}¬e°2š–|˜Ž¼P ÿ$\™žxçd•À=pï¼ò[{$Ý6~BÁ>ü\a³}º÷ÒRÒá§’!ÀØA¦s‹>ïÂÆ%C8ðÚAãúAYpʱ©¯Ü²i´Ú®G7Šs¯}ÛÍû½‡DeÖƒJ´ …=n§c¬x *Ù wDcbçÓÄ×â+V6àWãÀAæ;\ò§SÃFi«: ãP"‡8¤T”Žb˜$aô!g ]˜…ž1£lsåaB½=Õc^ hõ86×;¦á®ÉaǹèzÛòT1‘/Š£¿.6Gq”Lļ7¿ô[«é:<$w‡¨ñBeÅu9t#+š'O†-XcKÈiÁÆ¥ÀJ$#¶ÜÎÀ™d¬Õ}Ë„YY Ͱ”¥pqä!ÇŽ¤â²˜‘7åo/ÎŒÐ\Äa{¾fNoðpYg¾r° ="í®¤ ÉЂÆÁ:kÅ…îI’&»­Å¡©þX{](;À&c_‘sw1B’x¾^$6«çA$ä礬´×R‰Àóý!r­în5•^Tq«o+H¾”Kvѽpß•IXù –Vy4ªVÖr½$– 8F=¸0×1ÿŒŸHU{(œbjPÕÖ"[ÀÖ纵B rãVïVËRLJØÕK¹) —ð ±F³‡Àß1¸>NúR_K×S/³µ{u!ãeevÅÑ“Óä2£Îàõy–TXñmRaÕ!…H•ŠJh„D¬lLè*ñ¡™ç‹à'¸ÞeîÖøí‘Ýg!¶qäœÛãε‚ɵ8“v†Æ}µs‡«}È?Hà×G÷ŽÎšßvÂÿ1fÊí[¼„ˆ0?Ûâý-+‡²mvQTt¿ß=>ü€.-‚ endstream endobj 1439 0 obj << /Type /ObjStm /N 100 /First 973 /Length 2140 /Filter /FlateDecode >> stream xÚÍZmoGþ®_1À}i?tv†ÎËÁW M^+P89àPe¥QcK>INÚ߇#­"E’½zqж¹»œ!—ä<|YûÀÑ8ã"þo|ÊFÈJõÆ…w9ŽÉo‚g}L¢„3â„°‰$=Ü“r}Ma}’ñžë²l<¥J)‡×_ $¥Àœ¼*$ž¤n‹µÙy¥°6‡ *8ÝEÈøÂº 6 —ë.Pž<é=2ÄIïÅhHªâx Ý*Äl(ºú´€R5Br J„ŒÈ0AÐ]vÉØJD‰•-vxë"ø+ª\Rª$¥¢a¿X›ù¬¢’‡YEá’9xHÅpȺ";Ø–êS𥬆Ïd¸C(›àÔ¡8ؾZ¢zA ª–À¯@Õ®¡,½§2«ºP3pRk–hB z/Šz:ÀfØW`´½*œ±[–ªR€©ò‰_} … ÷¼@ *˜˜CÕO@©yÄc—¤v)I×BñäHeàe’‹*.KÕû&ªkñ2‰Y÷£*!¢4àál]KØEêáWŠT×&PU{ˆL MÝ.GÕwŠÆ,^;u”êŸSåýÙ… 8hÙ}1HÎ>TÙdJʇKØ©ÞKï*z»,L`‚(•±µRàË¡òa—\|ïâ¢×¼0W^ÝáÌ¥iþóßÿA+gY¶D«a>¾¿¹yÓûöÛÊýr2ž›‹ Ó¼Œ(D]öR42xyS«g}q»FÄÒâ¢Ú½]RÃjy¡V‰‹õÔü4 ^ çæÊ4?½xiš×Ãßçf¥Ãë?î†xÐÿuØkžCŸáx>St¨›õšËálr? g ¤©÷~^úßM~7Wz#zu½ þ«UªðVBµ Âge“RªI+ðȆI¶˜[â½m„ëºqû nœµ'ád¯¸Ç•ÞÛô뺓6üš4$ùŒî“°í>¡ÃÜ×<'ØíÊÔ”¢úÔ”²$RKä–(KBñÿ™Žu·^óêþ—y½þ×hü¾×|7™^§U÷¦ùgóCóüÊ× U~€×ö%XE €€eM#ž-„ãðZJàzVÍþÊ4ßO^O ÜöÕåÛ±½Íöòº?{g'wóÑd<ûZ­¹K£]*à„¿RÅ[@)“³DAr´ …VÖsy³z©úNͳ‹‹* y6PÁÍ«æß—?èÏWïæó»Ùß›f8¶GïGwê;™þÚèUóbx3ïÿ|;œ¿›\ÿíÇû›ùèC:êχ?_¯=ùzÏ[lWrÑzäJŠÙ¢$@RN¶L)ëØïµ,¶…bPn¸×¢ëÂ.Û€téaá  Z,ë% ŒÒh¯*wÓÑxn«u–Æ9›FHñÖ#Ï,5Bébòïc &÷O£ç`‰´ŽsV“&¯ùÇ—5ú0˜|اQ…8áyùqdÞɳ„PëÈ Ð²‰ºrÃ6Ç$ÙýÈœµÚ•}µ(й½@éáé4ÈŽ² Ù‘‡lñK8Žôw?¤;RÇEomΩõ¨ßcBät8ú}üøÑ"ûo'Óoî¦“ß EAðlÀæ=Ê]ŽáÝ}T}Q0‡bKŒÝñò l‘8"ëÌ‘Ü!ÛˆÞ«·$F6êÌí‘MS8gñ²V¯lT2GŸ„ÄÛ'!ùŽ'!å­Ú3Ñî[gnÆ. >ÌOÂi¸+³ë’ïÈ­‘_ðà´žcýkQp´{sÙvoN‡¹wèR[wf×-ôe:g%JÂ@B K€ê,®C("¨h/²ènûóç§ K †ímrŸ0YH‘ÿz¬¥r.ZTR-*Åeò°Íy?oo‡ýjõÃIÁf¶G…©ƒ.Ñê`푪éÿ×0Æçi çpdùSí“ ÕwäB­ÉÔ‘;¤hõ8wäF+±ëÞÌ¿ø̔ᎮJOGfŸƒ-!žè6ÀïÜsñÛ¹M§eGƒ_æêBK´­z^¶ê:#\ÔÜ¡%¤%V«RKä–X­ŽO©(ý²½‹H}:”N §¨'Ñ0Žeƒil7`¬¹ëÞÃòÿháä|}*` å‰VhZE1"2´R,¥ÜNÎÓ›FÆ‘÷e՜ƀ—øKiAp›Ž‹ZjôµITïÆüå ž?hDj¯m!•du¬-^’¾9¸â ¤Y œœ·Y§îHÙù§œÝ𪒠 f ÌÐ{”¬S+±ùs F±·ΙyÉF$;F´ ÜP+GpÓñ1ôog ÈË¡ A†LAè õsPŒÈÜôýB¾†%£#ýz‡0-8ÅŒs°~`È…´\ƒBßOGçœ(-úd­bY?s”PûevŠÃûõ™ÝßÞö§œ_-Õ´:j NǬþQ…θ°ÊyB„ +x¥¤ðzºaº—ûmÑÚ–ûµjMá)Ê}­£ÄÐ(o0?:çØÉ-€Ì´kα›ÛGë©#³è3>Ÿž6 ÜóííèJvT‚tü”C¿´vwä¼ÜHó”åÄAÒÆpaÍÜÇ[µì°j:Áª{¾ƒÇ*g” ï!>!„øâ]Aን,OÂvípêÊíU}ìÈÍhž] '6‹û&eŸ}EøôáàxÇïˆrîå²ø¦½i“§Šò½ÿ°pŽ^:l1‘À‡Ya­—–pÖia@7–µÞe5ÁB('ô?ƒD«ä‡ëê­pÀçˆ æÕô½—ŽÜ>;«ÿ€´âþkÝG´ endstream endobj 1553 0 obj << /Length 2711 /Filter /FlateDecode >> stream xÚµY[¯ÛÆ~÷¯òR °h.—W÷ÍI“´ˆa4=hÚ]‘+‰5/ ¹ô±òë;³3Ë‹DùÒ´ˆí³sŸoöø›ÓÆßüðâÍÓ‹WßÇb“yYÄ›§ãFø¾'Ãx“áÅ2Û<›¿ouŸ«*ßýóéO¯¾’ÙéÐ^’){,xä…ÏÄ7{™JÜÞ |!éÐ÷Cgκ«ÛN¿ÜíemŸaªa(äV].]{éJeÆM»nsÕБ#}O“¢ìMÙœ†²?ÓÂA›g­ùh­U?tº' æ¬ ß2»®*su¨42LïAê,ŠˆSà ‘ŸjägÕ©ÜèïÍ_Ò"Üpi›^ó´íè·Ðݺ14ý° "¸¹´·ÙÕ÷þ4{.͹¼½¯lŠ¿ûPƒªh­7CQ¢Pö@ÿÚ²„^ Ðtà…© þÿáG¾‚ÿ‰Ý^Q¼UôÉ/ƒjLi”!Ê;mõ#‘„öN‹¦êvpò´ÇQLP@_¶“jMºÃ•WYe ÍÆò€oidó嚃ƒÂ e~nM üô§‡²QÝ•‘<®Ë뤋®w4›öæØ'¹ÌïUß«KOJo ßsÑì2¦¬™Ñ¡)Í*ËÍPÜqG³.O*}KîªUG,;Ç|Àzq¯àºü¸¼dôIs½¸›Ô¡EIHÏRßž˜y2à;ÞèªE¹Ÿwq´ÅÀ–Òë1 1Ê„cÕ4¨´1´€ ŸßñGƒõ-Y?¯ú–fCø›·5úƒa³Ñ¢i‰`­Þïƒ>1ô é¢t|&÷ËPæï«ëºæüÀq«˜îÎRˆÉ`ÛhÖûðбíf§Åö¢:È"C¥XÌZµWª®}ÙO²±õQi=X4?OÔlF–r–‘ƒ4ò’Èedü\PøÜ'ï@zà¬î¨x.Õ,{6ZK?õR¸…Ô0QÞ•”5 È]d" Rhú#äø&çÍ)KÃóŒ¦hiçԵå§ ̈´ŠVç†)·´­hºÈ¸¾Œz<²ª(¥^˜esM걦â`,s¬x,oh0YzŤ3Šeæi÷x½‰&H“m^Z7åLétc9Ý|yâîQoQˆÝ/HϤJ¼À¨À¼Hgþ2%Ðwƒ0âKÞZÁv"Ý:á¬a]¹{Ú%á–ØÝÿ`%iëÛ¶W/{(’¯W´‹a%½,Lˆ‡?ZÙ¡zCů<›bC÷/i•(·§–Уܖ–5rœ÷×Mù«¾ù,4T†O»¶æóSq•£ñ$&“‹Í<8!‰1+5¦S½YË “S‡;µ·ÛÇ~¼}²1®â8Y¯´xàM¢„L¡1ªªx¿Ð6>mêƒïæéÔ¯hÕtZ™Ú"ü†R*èÇòÝVtÖr±€Ã9G"xÈ ¦JEƒˆ¡®Df]·<5x—ØGÝà¯È.äùÀkŒ‡ŽDÁé¼°ù˜üZ·ìâ€Tëö„ÜjÌ®àRP`ÐâîU£­¦ÃÝ{„+ö‰YÌ(¶çòtÞÓp^ðqÎUjß„4´Ú*J ÏÞ"ÒÊk{©ô+Õ”5TW—JÙBŽgÙj-•&ÁU~{EöH³ !`Ë®mȲkÜB¬¼w!bâtQv Q̹íµC+ÆAŒ‘ ®üÈܸ¥ÁþðÉÄGËÄüÆ^&ãYÚPSÞàT!“)U8þ<&±Ì÷_wBˆ1{=J3ÏüãòÔEs:BpšÑ]é§wp0]`Ôt†Àg”ïx:OgœÔå}¦Ù|Å®ˆ­²ìQ"‡‹…_’§XTâûtìåCe.Mm†ƒßN_ÚÎðÝeE@ZC=îñ6ìYz¦Þˆ#pK1}ªØp!HÂ$0WÄbM¡:5„Œ íXÃÂ0cè²-.zÝ‘þm(Ñö¨ðùÑ©äÁªË‘¸NæNçªçãµ.JâÊ Œ¸6¯jõ‘véÊjÀ’±fÆš+F‹«È¦Ñ–S}ÌÊå8J~iŽøÏK7† Æ(Y ½˜/¤C e¼#x= ÝEÝ8{næXc?v£†&wX! TDí1.4- ìÖ1—Bp10 )VÑÈ=Á‘†ž”Ñšjd<7¶Œ–Æîi«'ž%§Âdt9J,à[\ý,!e­Ôµ “²âJæiWZ¡L]#ìLn{ì&+UŒ0¤ëÒ-†´i“!3<5¦÷-c9fZÊî:"຦6\ø™§‚ûðÒ‡þ\—¶s^ž rL¼!h±Š"€ŸÁÒ>³ƒbݸÍänkQî€ rPà0ÓdÛÀè>×îùËG—Ÿ¿,˜. ÆË‚ÕË„¼,Ã¢Ø ²ñÙ¥ÓkMâùr.Ñ==‘x1Ô$rá{2pÆO’9³èŒeƒÄœÎ0o´BáCAî1?=¹j¦ltÇtbäÞZj¥ ¼X$_#¢µÂg }ZFjw¥§~ô°ܺtï^V™Ì …ôG§iÙ3”ág„¡åh‚‡tF{"h¾‰áµw•eíw/nœ´r©ÃšÔãkã…{G¾E7ûLõ]y„^ÙnC¿|sé·[ŽÊu\Y°µ'¿~5ñµïŽÆ"i É¿l ÄXC†6ÃI›|bàFAsLJ¸¿ìàùðÔÂË¡Ã<+ãêØàÀ÷ò°:õòx¾ ”-å,âZSEÂRWG[QJÊ5EМàÖ3N¤K»ö‘xÎ?:eà 9†l[|Ñ—TEàHH‹LªöD`¾é±"è½&ÜÁ{ „a±u5 LsþÀ¥ÙsÌVÔMD¬fX´—áà_ðÅ)ÆÖèwüâKüÖ# 8ßêúz¾z|%ùÑG¶ã^«©¶ ÿuz¿¿GOµq¬›× ? ÞháÉ…^{q`bÞ( °÷Ñž¤^”Ž‘Ì¬¯8¿L¼Y!°átêñ1žUõ×7µ>¤‹Ÿu"OŒéAÝÀ¶c©Æc6ûæíw߬§ÜpJð÷’.š¬ õ’D¸Ãz¶zæ·Y‡(¬ƒ‚h˜0°Ù¶ûkSéÅY<èš½'¿iÁ·{£Ë†ßÏÆwî¹VBéÉQHZ‰þ­üåZÀVYò5já1/ ïøëõ#Dæ…‘˜+èG]œ´«_"KŪF7ûiö5òãšJ$À")*‘~ôH%Ù¼Þ«¿$• ÿ2•ÂSuæì tÎ*GÛçºPí‰ä¥½ £X<4‚h.>V×kH/7O¦ÓŸæÏcïÇyÓ6Ú˜ÉKÓÏ8,iú·G<2N"—Æþcãd±ø„q„?'ûrã,ÿ|ê»>s…ÿü.¨¥¡ÛÝ8Fð¯t3QÈÅEœ>†|⾋a ¿lW}3¾¢ÍÌJ˶Ò=@° Ü›,L±(˜ç³›Ü1¿YÕ<:ì vÛ>3³¶ðÖ¡éoXà4Ô…Øs/_´ŠèåÿüùÝÛÿq¾¬ì«)nCEÅ¡n“íšÅ'‹?1ºç‚;_Œ¡×ˆïs'ƒdWo+oL¦Yö{þ¤þ­‡àÆHâñ#äž^üÇG ü endstream endobj 1560 0 obj << /Length 3866 /Filter /FlateDecode >> stream xÚµZK“㶾ϯPùbMÙ¢ €x%µ;ñz“²ãŠw“8FÃ2EÊ$åÉø×§ ð%rf¼©œ6@<úñõL7ÇMºùææ«7_¼•zc«¸Ú|¸ß°4MD¦6š±D »ùpØü¸5üö§ýâ­b£‘Âè$K%ÌãǸvŸ—{w“†ÙgSï„”Išf›×@ô݇w»Zm›ü–Éí#½œ\^aKoÅý-—Û{׸j†-=Ûât.Ÿhof|ˆÌ$<ë·öïT¦4h²‘Å1'VЖ'2‰Êô0Oº4Kc‡‰x±°!™È”öÃVöÓïùóÛ]–šíãCQ†Cw‘Qm—W‡¼9¿¹Ã”[j[¹‹×S–¤BmvL%‚3ZçXàø_‘õæàFlï8*4h…yCå EÉó—ÊSûQ elm?oÊkúIÚC‘ÓYº}‹Ü¨ú@ˆñŒY¢™êwæòöÒ¸7Ÿ¼ÿîÏŸ,L¯`´Ô#‰rËq™ëãðLI϶:> X#ƒ0Ô4êok_¸ùåÏnØF(0I-6JÛDZ¾ÙŸn~ü)Ý ó¯°kk6~èic‘Ç(Ðróþæïz£«…ñ'U úÊÂTM`ØsŒÐ ËÄ:„sôè ÐkñlÝf8ô[1·‘Ês@£ýå’7¡ÝÔu‡-åµv2,¿åi&šüˆcÕ%з⬱ã-ÃÛ"ÓÀfɣ˹mÞq˜ðÁu®,‡ˆ+arÉJÀéšíÛ¢‚õžn•ôn˜s?ﵕpXZs¾d&lÉL`Çfˆ 5–-O.[[4=1ÆÈô§´JŒdÀ°#)ûˆe)ö%Éž‹z ¼’3UÝq™z©Tuçþ€Öž®pH¢õ©W3È㈇@°P]Å }Ê| ‘Æ‚ Mu•'ÙÈ8whiÒ®¦ç£g{vûœÇ  +ÒI$¬º)žYµKǪnÜa@cp'à ¬ bR/‚2¸|i>:œ* ¦' ˜B[t£`ž¨wEÞR«À AØáƒY”F@ë*ªG‘¸$,\„¡9=þT?¸êÓ[ PA¬0`LN%¡T°Òòâ| $M,…®üÒÕ'0è½7WOÚ×Mãö  À'E÷€›@"¹Mì½T{„Ô4nŸ WÈõÂïÜáèÚOiä‘x*¢ûOØ–ZOýëèï‹SQæÍ€$)§µ™EËËúX_Zz%Öc+œÀ£¾žŸÏeç—5@J›Í«ý6B¨çEéWuåº.ì•§©ÅÃ}¾°ø&ô«-{'²,‘JM4a§;ý뚎Z},DÆKÉ·ÿºÍ€µÝÃRÚzÚÏÄñæí—ß¾ÿúUv&J¹õ†ö6ÅF‚m©kOÄ…(ç–k+3ÃmPÝýCÄ¥šLmªoê5ñ»–Öß÷:è`:zíl ZK rûÙ¶ËÆx øJn>>hÐåNû;Â×P\;' ITŸÀù…Y¶VOÀ3f⺠Àæ…þê$½˜À_QÉÆcŠýCàA`[@@èMT6óÙ€Y!¶ª/ݾ>¹ž}(Àl=N®k0ÈñAäÕÆ¥DöRvaÆ"È+Óä'À—êHo‡¢…)ï0@»‘Hó.|&Ù—uëš%ðóÖ˜-8½S^bê ˆ%Pßwè'>§`‹Žˆ#ûSá ØF…#7–œ4ÒêÓùBÐn°Ø·€™IÒA>§EÍ0“U/Db:á#wË_žçaÐÒë³w´á­… J;Å2 ¿†Ãè£îQ7ò}\Sà°pà’R½#ô1’o¡euÁÍÕôÅ]|ig^QEÓÄ&dÝd‰“«º6¬ÌŽkÞÕ€šýZí’ìÛ‡úR¦ÖuÄAa¾<ù„8Zõ¤Ï"[–Ú¯±i»-æÙt@'lzÓÁÆ3Y~Ú„Ï/ÕÏ%+!'vã$Þ‚iºË¡Q„í‘] ±ÞUl÷Ö#€û®¡fQ9²÷%Ø cQÚ@!Kvûú–Eþ‡9ú:Ç4ÀC xØšx­/|²í_ªÙû¼u‘”wCç’†LWÓ1œäW5ü–ºÑ6ÆQ#¤¾>BlCˆ]Aœ¢Óõæd²P¡Ù]é†Ù]rÄh5nÕ’:û©w®›.ƒf*BID,´Œ"àŸ¥Þ…V}u¾ õy 4™©ŸaœŠ ÔŒFäÍ-3Ûã sùdb‡+–Ã`Y•2„BÊèí_î'W˜'U·»+Ù‹¼ ÛÄà¥Ìw1P‘‰™*Ñ2*dݹîÑù[‚,ÚVÊ]Ø­ºœNODí3q’H oüå/@¶¢Ëg =àÖΰ´ûâàή:8€°@œõ–mqâ Ð]ao¶è¬©è¥$u4¼”ä\JÐAR‚ž¤Ä Ö{4kRâc)A°è¥$cët»™å–ºî›úöv[T#– ¼|!³°t–rKoo–{ ¾ †/Éâ÷ «Ûu®í¨M¶¹a!Sà!0ÜY±­‡+XÁWwáëiú ÏMZày·©¯V¥Q_¡ó™PÛ¿Õ]X:@• ©™ß øéÁMƒ‰Ì øž’Ø>È7=ûvÛwûð^Odì¨C¶íú!ÇÆu}k´Ä,ý.¾˜#@K‘Êàl>:ˆó-ÅjTÞµÅ!‚Îy7 êÐÐ(EöˆQÏ.I5ÂT„ÆØ®!Çœ`_°¦û§8[Áq¾T‹…ý¿ $Âb•3jÀy1ãI6䔨ü!Rç2zv™‘"©k D¿~¢¼L€PI)Ž&E½'E"á sÝ_šàÓev=ÏzÕ°UigÞ‡t„tÜóL'B}3³éö‰Ã 8Ú`6ŒËñšœŠ8‘Ñc®ð2R°Zíe]>lÇÆ>oš'jò*”^qx~ Í¢*Ü#ôðîo;2>x‚?8(" ½úJqtTŒBzåŠÀaô,~ééŒWæ…Ä‘À¸)+ƒGGG2L!cvÚ»‰íÌ®°k¬l0€°1#x@Båc‘ã-|4v}Ñ›àà3D|ðIÞÎVÌ4ךEbY‰Aß<[¨9 ‘Ó8‹$ÓvúËŽŸDé¡Ê{.ÞìÒ$e&¼W¬xÃÓøÂñe%ÕæbÔû"žWEJm™Xã ™œ?7&ábVª v•²ëjgê«2×Ç×&±¶¯%Àé´RÙÊ%¤× ÐLß¾wŽ~I´¿ÃiŽ›Øüá››Í~eŸ—£ñtF96rÚᩦzìßuࢽ!½(Ë ¤úÑ4¡Ÿj4÷·¡À¢Û˜‹×—àŸu½«vÈ¡Wóì¡æ¿Î;¡l"´]ýö÷gZ_gËI£´0XËa ~òa,ñÒö5ù-†I/žK7’»þ¼¿vOgXøÛ÷‹ ÷R1vJähaƒ£Á¥ì<\/òWƒY 1[ðÝ÷K f61l*Yæ¹¢`HB®­g5 ï}z›ÅúŒOÎ$E~ŽÚCq ÇMî݈„åy‚ex_ËÅ+ðqÙ2¶4Fq:B2®ß\ÜbÍW·¶WùÚI„ºB oD€g $ª¤¥}n$¾òÎÞG]œºú ¹œŠ‚©OŸúz!t­ùÉ Bº2ï:¶=ãðP™° |˽ŒƒT*$kH#•á{Ü.~ $A$Ü">¿ü¨ÚÎ>ˆ3Ò_ø¦òù—Ûï·9ÂÛ2Ôwv’©glS¦ K³¿æ*§‰ÆiGÆi^0N5¬ý¢qN#Æ`œvÉ8Mdˆ¡¿¾@vM.GKêfÅß2 œÛyóq”PåçsSÿ§èƒ)̱jzû ÄX~vÅ\û‘4V ¢záu¸¢a¯høÚ¥ÐLø=ÿø"ÁË@èÏ€áO†¤ ut†Ì\!D<Øu€(£)î¼wË‚eÂsÐ^†GFþ#¼Z³íOO6mlr0¦×Ž-p ŸiÍ?¾Z<4$ÝV¬‚K…WFñꢬã9=RÉt™3v‰33é·¶ç U¥ÿûu‚‘ƒÄˬ«×€*I›ýË®=³rrt†£ß2Žéx0ަ®¦ @©³ÿ†,ÊÓ®Œ‡ŠÌ&RÎB»¹EB„‹z9——ã‘vbcýÈ4/$E¿£+Žþzß®n±!¯OÒ_2ãË‘“¤×J ×\Öë¢x}z-×€q”£€tEP2› JŽt4:Y1qìâÚ±ã€Ku@ï„ÍðQ¶­.eI¤ˆÉŸÎXÒnãÇŒ›$›ÿ @ðê]|”·¿AïIózrL„±o¡žý9ô"óÊ0]M¤ß\SW%”¡ιî=¾ò*Ûð!^Ñ?õs½ˆ¯ûf|s¯{N.ɪ¾åÅ«6ï9¹añ>ak±ýœç”‰”æ%Ï©ØuX‹ \yN$†ðŠT–—êBGÛç>$š;N03s$y 3è¶'ÆGA+¼ÍÃÆY,Eƒ=|\'¢u/¡Îߣ¦Jÿ‡ 瀲võg ™%rÈ@ž á¹Fë‰ñÂ2£È zÕTO"ƒk¯Š»ëqpPâ˜(¿qŸ_¸ù/bîk endstream endobj 1569 0 obj << /Length 4078 /Filter /FlateDecode >> stream xÚµZé“Û¶ÿ¾…ÆZíÔb€g:îŒëæêÄI›ØI:qfÊ• ‰ EnHÊîæ¯ï»ÀKP¼î´ãY ‡‡wüÞÂÕa®>»ùó«›>MÔ*òD'«Wû• ÃÀDÉ*U*HL¾zµ[ý¸¶Ý¶¨¶·?½úëGŸÆédtª Í`*–rÊä«IòÀ¤ùj£SøÄð¨s]ŸOw¶µ»Ûɲµýå\ôeSs­Ø÷·jm[_ŸâŸ’ªéús»;ØNöòy<½ÝDZ¯UžçoÂX=e²™­¤aäè~Û?ÜÛgOž÷ijŨIš¸¡}Ãël›Óý¹·LH´ø!ìW¥ÉVà]ÇüEWœî«²>Ün´I×oou¼.Ú²¨·Hº6ɺèºóiplNM·µ»¢C>”Û²àŽfÏ¿¸}·mìg{†z[ÚºŸŽKÆ•˜Øõ®ìeÍݶعõÐ6ç{¢?œS^lÛ¦C"u´îúó®´ÝS¬åë¢Þy¸š&Ê/™úù×>¶&:ÃlÊV\f`+Vx§¸øÈB¨-YMBmÂÂr»á“Q& t¨çdÞ&ó,ÉeÅ$óòúy\vÁ[hÚ7-¹kú#7c;nx íÂK®€ˆ†µ<ê«âçâp SߪxýîV…P¢QV`ñÖ©YÃfŒqiÏñíl_”.‡k"~y‡P¨Š¾G-£FZª‘‘÷¸)ù š ïŽ@ÖÃ8‡jÛB¦¾“™‹³§î‹ƒmÎ*a0#0aÿRôEg{XJå0OÓ¶¶»oê$6¡Tàïr €zŽ¥|†RÆ¥¢•Â}Û }oËšl¡gÃÿ‚lÕ¢}ââ7ŸÝ,mƒÎƒ0ÎdÂÚAÝ´'àZ”™[ˆt©vß=}üŠQ‡fºÞöÜöeËe¿µØÖÔä³õÀ¥YjµPdV×ÇQ£’ KÓ)9‡ò®kj ªð^r…Då“ɈM–‰Šç´½´EwnoȸÈ)^#¢ùÝm®IÓîÊŠÕÿRî÷–¿!pi]ªðE ²n;T¢<^ŸŠ.U×p‰d~÷ÍöÜ¡Ô`…t&Ö»’H‚%­˜ú¢gmÍÖ*, š•Aÿ¡Œ¦—K(äv+¤ôÍ0AÙrÑÙ–×$ ’8 n.'ØZ´¹³^YN6¥j\éÛ¢îÀDœì5‘[´\ø«s_ûl_&¶Æ }蜜ùóÍ2r*#'B"Žï±€2*‚QÂ3™(õуý¸"v/l1vÑîx³4A!íw2cÁU8éý¹âò‰ÄPú‘D¯)Æ‘„4p2Å& Á«˜Ü& Ãõ{ßÉ‘d¡Ã¾Éo×T¶zà2»hå¼»·5>Ž"ߎ£„ìpE&}üd²ñ0 Â‡2cHð–ƒGéÁV”žC‘RÑ RÀ."S9®=€ *Ú×v÷ö–O¬ãO© Nf“\r¾›5XsáN>m–|‡êÙš(%ÞÖäÓ#6a²þ¿'5²Ô¹Ô(\ËWM-=M] Š«­Ý î#݇&4åþÁS¨X¶¸Û©Òcëu<ófbÑ»þïgppí'% ò('!.øÁ¢†ðBÞ²ÖïŸNxÿÊáߨ®ƒ$šŸ§à󥣋‚$vì À%0ý°ï‚ÜÎá|b»ìøxöD&ˆaŠŠƒÄ™¶7ZÇ ÷9£& ¢dpæO^|÷4Ceòá$÷ÎIûƒíLgA:⑪Aq?È- ðàÈ¡UÙÌîÇbÙá÷íïB•g@•÷œ[ á€rìÑ‘þ`˜'ççÏ€.ž\a"•üŸØóv‰B~“"£Ô„ä)ès6Œ—SÁ›mÙÌâ©«2xÍ),Ma” _Âôa6ÇkFçãþsGd%ñÏ·PèÍcŒ”š£Çd ëžùRAž ¢qr“L)îÄáp2hv?ºBèzj. Û%Eéû(–;ék©)Eär.§Jƒ4ʧö/Ô:••ïxAccÞ'Ò*ÈÔÅùv%Ä—t‚©Šcï™ú˜—±ú{žãdW'¹Â:î%ZF3yBjæÖüîV‡ë3¢°X¯ë†’0Pê…´üÓUåáHMf}W·R˜¹¬õRÚ‹ûûª$ì 2Xà`K7iÛÉŠâ2d‚ë Ö·Ž4DÄáðÂåt}®+Ûu‘‰ÍÔËVž}úüËo?ñ¥X 'Íý@Å ¸dÙ4¿’]¦¨²Á».¨š¤ úìš¡JRðøjt¤–çlŸ¸Ž!~Õó°€Î4éPpDæ"j5¡Zß=p×$Q5¥ù·”QþsÁÏzþ…sp*a”èá=BÉAÞP™Á–6®Â! ÌÿOÑœh櫳"øQêÃðR3Ð^ C´Gÿf¶éMh`c*I×ãOÂ?Xóh78L3èÓï…`Ûž:ÙVWÂùró<…JY2Ê~T`Ó‚á®oKá ùÆÌ%h°ùr‹ÐñÎr3%è¤|„ˆÕɺ e ħæ&N:AÓTÇé¹?u‘­½êq±f/ËÅ’$ÂBYïì½…ÿêÞ—«?(Kñmßl”n”úùÞ¶eÓ"Vxorâ9ذ#¥âB'œ\¡~A¶ëCn%ŽAaž—À¶h’–§Ùˆp’€ré~Ý@” .Ü›®òOPÐS#«¢>œ‹ƒõïV¨ÙŠvtå¯VäíÅ—Ÿ|+1¹´¼Ü~ÖŠFRÛïøçûÛ ó•’ÓóøZB/TÐW”ùÃqcÈ•IÎOº ±Ž$DÆ5{’A8¨ñão^=ú¯Ð7ÉÔýÄ‚¹ÿ“¨Uœ™Y¨Õ?|«Ì ÆU7OFdÄõéS Ô$¦ [€1w#lÔdpÁ? E»æTI÷öØt$?ø­m»FÊû¶9¹ dj ÚN&ã[*Ñ^O¨$h"\j£:Ë¥ 0%K>ž yä,,gÍ@Ç-7©€Êº|Þ1[öh²+¬¹]á·+lç]'ïØÔÙmƒ˲)ìÇS'TÍ¥|½-:ë“„4 Ì9ðœâÆñåi/!ØüÃgêC@}ƒ“¸K†*qùùTòóɺ˜ƒRglž¡igñ,)[;\O’bX):màäâð¬9&É@s(YèQ3Û­Xv®ÿÀCÓ° ÑD].Ð@,*W¤P7Ÿ¼ºùåFQ \­Lž:7`T` ¼Ùžn~ü)\í ,„ÛÙê =áD)~V­¾½ù;_NWf21|¦®ûô|l ³E&þ-¶¥ù#ø/¤l»A´ôºÏO":³­¥AJ?Ä ¹™ÎÅPOÅH „ùBÝi$²Ýq¹-*±kèº"—„ðÞ—Îà¹[gý¤w{nòWȵç·q¼~ýB¤äÊw¢íYJwv€¡â-HÎj½_YЧ—E¾Á”ß×/–þ}B–Qœ^µÁ’Ç:•PC‘±4JƒS/uà `sO×Xâà÷šV¦ºk›bG&NéÅDÐYÖE+}Û X‰:n[ñÁ8Ìœ‹ŽãÀ××Uìpy¶2q&äÙÓ‰YÌÖÛM×ÇvçèSYzÙm§°A ZØ0gÀûª ‰]t¹CÂf&­Z'Åõµßæ£m¨áÙ­Ïœ­O×/‹ºÞ|,ûÚÝhb÷k–T Ñ´Ê’9Èáã@Œ‡;/Kb¨"¼ñ$YÐø¤ïÑÁx̪¼¾Ý@´øÌ£Ë¬Sò!†´¾´‡1° 2ÚÃEܱzfV“Aoäâo±XN/:>`1}¹«ˆ’ž³µkc:è4ˆ³E¶÷‹='ü‡‹<šÄp×ÌGªáv/æ·ÐØ9‰ŽÕåë5B<»é°mÛ´»žˆ%ú€ÂÏuƒó¼«Ÿ^‰ZD#D èÀñwÔ ¬l_lŠº¨~E=Â&2X iþôã›n;w´,Šž=ò^<ŠƒlLnAÔœëò·n„M¨1º?×”v÷™xý93ÀNí.ßœDI&ö ƒYD½°BÌ´ÅkO“Ä|Ëb"IåÀoUþŒqÝ­aÌ üB”ÔœkzõÞ~|†Ac8{%¾«ÁRkï›VZç2„-SÂ::½±põa FFÝšõ5_'ò‹e„*éfQ»­eî s¼,¢V—‹nA5Þ® c|¹G£ƒ¶¾Ë—™~ûîƒ0;~à}nêÊ}P„Qòžû ,ˆF\=½Š‘]Ë›lïY< žêóVpƾÄU ¶w´«ƒ¶ƒèÙ_Έû@Hå»ÇK`Õ‘ ÃzÏ_¿xòÞ´CTq$ËË$\$cjZ]}éÝG¬ƒ(šJyï&¯~Âuq®zÉ|á«#éž<Àb¥LÁë…c\ØÅÙƒ¾d¾¼˜¸+:WldÀWdÞÁ¸;ù˜3raÂVÔµ€Õ;6òmäH†ø~HÖa›:ÏÅ ®“i>?ùÝ(Iì‡ }›kþûx`Q=Ý2|@¶9ë áË­Ž;ºóá‚ ¾{àædž(#É/½À@$¹ËHæî…œ‹W³Q|) Ú+ cùL1ó ñ£ÇCJæR ,ƒ0'Š—‘+z„ÏñÔ#zŸèÎkrÖXijÆßÏ‹º~YË€—Û¯lYq·¯òLÿ‘„Êbjñ¥Qˆ2(ã[Êb×daaš?HÀ0¨|°‘”LsW4¡™ `Ϙ½„ wÑ6>G©§Ž [(¿ ƒ8i“ŒÃ‹£{â ÙHÞ}FÞsiâèä„ÜËÈ+WS@"©m×Ãù(ð)Í.ˆb‰w¯ÁÂìrÜgª`áÁþœát†$>ÎîÒÊD1&wÉ(|#¶û×¹ëåZiòw¶Û¶å£õîÁ]Å"Ì܆‘"˜·în•Шp¦„’?v/$ùÑ –øéò¹£°ú5‡žÆÝ¼`òâ÷rq‘'†L‡pnKîi”î!Ç‹—㥩)J„¡cþž¦[æï±qðXéï{÷&ßVClI“bMA@º³•S<ð„Zp˜ W-L±c6ÛiMlžÃ+l™ÊÑÛì#¼1^Á@k@ãxù¶|w´¸Ö“ÂÀÏX!55yôcbEúAx&†Žø–Õ‡µRˆ[=×d°ç¯¼x ¬N–xWx$ÞÀ¼9DVæ ÎÜá]wþ TD=MÜ}L2ÑüŽäò&qGE¶øÙ ŸyÌA¸*¿x °xI$£Ÿò#G£Æ:'ý¸‡I™©1øh”(|KÓ‰ÀàkG¹b¢÷ûÉ«›ÿYŸû endstream endobj 1576 0 obj << /Length 3436 /Filter /FlateDecode >> stream xÚµY“Û¶ùÝ¿bÇ)5cÑ^žéƒs8I'i2ö¶3¦\‘ZqB‘ AÚÙþú~xH”w§/"€¾û‚‚›û›àæÛg_Þ>{ù&Jn2?‹u|s»¿QAà‡&¾I”òã0»¹-nþí¥fóŸÛ¿½|«ÙÎ0M|D‡ö”v—×;Ü÷,èg ·aùA`n¶:É¿{_å›­N•—w•z÷ñlzËç…áìó(óƒL»ãl¡*Þ´8Ck?Ñ㦼)V©ÄWi8Òk€ õHÜ D1%x„k(ypߵà ‡g«ÿ––gŸL“2ÆOÕˆo³Jà›˜O!©Y§Èø™áø›­ ´÷ý~ Z´§nçûþáTþõù݆:ó#ÝlA_²(âO~ ¢@X¤½¢ÜoTàåCÝü"VfÞ¸lóã©®š{~{¿Ñp­Ê›3SÃ[92½á©]{< }YðÛ]nK‘K+FèµH ÜÒ92›ŸN]û{uÌ·HºÀ¾¯L ¨w"ô~£"ψpcwn«{™;–ý¡•È…ò·!Ÿà…Ó‡ª?ð›|¹k»®Üá^äP>ÎN:Ճ呭î hâU|ßµMÏÃv¿JAÉB`ŠÅð©ìŽBAŸÊ¼cŸ‘¶và·xÃO– ,J0% ¢üJ¹-n€vÎ/vWQ’*'Lœ`ù4P]+àFiëÆEa ÁµUt4æNø*Ê’aáê¤*Âm?«_FÉ N¶ûõ§Ý‰Í¸FöÙh÷àÐ6™GÊJG‘{Ó’½âT‘c©ƒSõp._£1y˜”¨¥„UPr>z™‡ðž§8ñ“OsQÏ;QÛ5å÷ðÓ:í®d 3v©Ì9«MºÈÎ#?HF¡y‡2³-PLgÑä } e‚ôŠrB ŒN®GA¿`”XËØ_I`×"Fƒ‡„Uñ7íÐß„j¶¡`9©e²o{?AŠ"?Öj%v`.Ý\¢ü(Ô3½âÌ@ø£ÃøJOb+Ÿ];I?zÒÎTŒ'­zXH‰Á£g@zÃ@òÈø»r-þÄ~†?gÙÃ% ãgé¨wŸb÷”†b5iå§qòÑ4UÞLi7˜}¹p÷{—T… Ûí "GU±Vä*¿ô_œEˆf8ÞqØP£A-}ŽàþN]N «v ü@…°œwO€3`‹Fl½'ë¾oÙ}Œ)*0¾Qé£3šGKú4Iéœ!œ)[èÊ3Fu\œÊ,Z£¸¡kœ u Ç |‚œ^Åf™¿A¶`´TØO!Hõ "r€¸’ãRŒ²çw>; ½=r…v )[¸ÚCª­€Ìp^ ÐF¾š-i~ó^êÊ})Øa&MO¤×ú®Ì{—-ž i%Þ©Îwå]û2ô¾kkž¤1$PlM È{ãÈ“ei§ÁG“‹„ŲÖNx³ãò¬@Á'ãô@g)ª0x+³ÔÊóïýÕ~T^pdÇPçºbV¢)›GUCö£<‰ÝTp`ˆ>ž@{”Ã'S—®MqŽl¸³XIÆY-€{I£¿ô×W+°À‘™\½re€všd¬O8 Þ$òÐv2' Ç îE:ņÅ–0 fKZªT|V‚·V†-JäK÷2?¢'}¯‹6'Aã”!„1œÐòµ³pbç)·‚gΫ'@§é+)à`þwÇýPóË]yȱby_Q û'õ؆ ;öØþ Úæ*˜aõÄ'YÅÇãKu•UG®SÁôLõÛÓ‘5* î»E$-x,¼*~WAžkÈ Q ‰[=ð1ó¬]Ù‰×ů†î…}[×ìê¶$J<­„D»Xj–sZUÖ“^âJQ¼øÈ£‡(ý´Úx&‹YU›¥àn—|¼uÅpKMèóžð:›“ÔÒèì6r«0ñ×d¥aþjÑÜÆ–öîðF.„ÈæºÙìžý·i„§xäÔó·oŸ¯ÿ7ɨ«KJÝt ›ˆvƒc“îŠä]8Bu¦xryð>I£…²Ì‰Q£ˆÈ0Žþ‘?ý_‰äàõ(‘˜ºNdDÿü`"Í’ä×2‘“ð0‚^bÔÅKŒˆ+ÆÔ¾J`쇩þ_¿û“ ̉I¨Ã…i‘èäi ê¶bŠ=‹wJ–þ$&áz<Ýù¡÷?OðæÀíúq.8g+>QŸÃÖŸ¿¹]ýŸI¨}È„>…±êsÌ#õU¤§höÕ1/]=x?—}û¼ãŸØ¤…ù/ºŠì°¿ÆIˆ’Ñõ‹ÂonŸý³ø0 endstream endobj 1595 0 obj << /Length 4089 /Filter /FlateDecode >> stream xÚµ:ÙŽëÆ•ïý‚_L·Ëµ°¸dpç: {ât0x„M±»™H¤BR¾î|ýœ­¸HTëfrçA`©ªxNÕÙêÍóFo~}÷ˇ»¯¾MÌ&Wyb“ÍÃÓÆh­\œlRcTâòÍÃnócTõe±/·yøÝWßút¶;ÖF¥€¢m™Ç-wZ€oî]’+—æ›{›Â+Žwý¾¶÷ÖÚèhj™Í :­òl„ø~§ÑÊ›$ì(†™_"U&woÁˆ‰ 8¨hv80ÑÑ®œ,N•vîæÉÒ°£¼v2{ëdã†ÆÊÉvUÓnx©„~]{l»¡n^hŸx¾nvõÖúè§zw*ö=O~¬‡ÙvÊö 0 ÏÕ ÿ}îÚÓOµ¹7Ö©X[•{ÏÂíq&„‚ï§¡}‡Ï<êªþX•Ÿ`k|Tí_·‰ÔöÞé›8úíõ»•Æ#­Gi\ðËX•ºO¥UÁ!#8ŒYãT–ÆarØšˆ‰”ODjw»ž9ä¬W©NCp†8æW…rÎØ+4Š­2“„!X¾õòÀY’o€ñÚçáÔVãoµ7dÔ››2êL~CF½½”Ñ,ؑ̈́ïÁ<Õ’·™]®~G†áÖà‰ ú»\á„(+3KÐö5¡t¹Êü¬à@D&2”;pƒ[¡èqúïRPO¿dǺ<šù ®Šc2a'îC¤Áܧ!]9M£aF(#b4n‡‰e§oóÙe·ùlâìm>§öÌ¡WÎ’kœñètΘúI_áUš/ê3YˆS¿0 LŽl^¹é|o0!Ygó<†3'þR]ª…3.É…38‡œÁç*gRÌ$~‹1ä ÙMÆdqòc2•LX˜1@ÀXëÉá¡ÑXóa9\ÄP#=\FjÐM~Š®ò›«.0Uñd`¯Ý.ÿü·“KpÝŽWðE'ÌE«$ŽÏr-àÈkbsÈì†c„!ƒn.®Ë¯ ,ä°3âôÒ,d“J”½_KÀm¦b?Rà¥@6øDê%>Å4¢â©J¢ìrøÅöÞC4ü]Ë[ŠÝßNýp¨0¬¡wÛŒ$j!£à wǯ0!9ˆJÌ’XOcæ9t ëŠójí*ª4'ѯªcÒX¡€Ã RL¹¾Ç8¯p`7íõÑ® ó¨Àê¡xåUÅðBËÏY÷笤e”ö¸1bu’&¹tDFYž:J âà `7g|r·ePâÄwÓ®²eû ÛµˆÉy5¥ï¾^áN›YyB1¼ÞÁ±úá´Nd¨¼]µ‚*E™·mÞ—õª¼¡Wsñ›‚ ê„Í-eâ±~¿» rG0Û@/)!@k 17¤œ—¤’—ÌÖOMÝ`bYœ%c¨Ú-ERIˆaÐ×ÿ¬WfK“†Èë$h0ØAŽvdv"„Sù"–‚O¾¸çHm§è# zå¡>„ùÇŠL(ØX‚è .¡¤ý¦~~®Ù‹õ"|{EQGYmrauœØè¤·P2Åðù¹£8‰f^å W×Y"„wÖúýÃþpÍáúYÍÓÃÎiõ$ð’‚rÆ"F¡ôhŒ9û&’ôôQ`õT/ã|t-|Ë•žÌU1Lä"”¯U¥Þ1ÔCÝ÷@&§”Úe“³RÛ¯ÀÂÀIà¼&×çåœB©Ä'š"¡xÑ ±‡F¯ÇŠGT ÁdS(¯ä#ÿq†+¨wXÈç¶éž7aøÃ¯ïÎíƒÍçy$àVåó¢Ë{®k1õŽÆ@é“QA20ykDT¶û=È(.‹·0¦ jû™1>ÞÄhþïcgÄíKg€¨«ç窳Z›·ð& >ý7}©› ®™¿…ÍÃ-Óäs`Ûí±¨Û¶Ãâß Ê6‹¦þ-œUäŒß¼àÂÄü[ÈjÀ•¾…+†Üθσ L9 óÿ/’a9÷–¦ð6uµÿXÕ}uëªÖ'™§J`ÑÓ}ºÕÀt*m òWìn ^Þ¼t6¹ Ž!T€üyyŸßŽ…‰•ÄÁ"˜äVYÂÞ.KXs«,qž7à™¸ð’GM+•ˆ“$vxõ>ìËÉÍ×ÃEÑÈv‰Zrþš~èNåPíÞqoó)¼P¡OøÕ²’š|"§ ªËõHsÀø“²?Û·¸tï\®âü< ?5%¹å´ã³:MÕpüþœÚ t?˵Hq3W`q*|¡å»žÙ6•[-],Í"~mwÒ|†™º01¡`ƒaÕ|…Eu¤ìJ—‹G™“âsCnÞ×T^†É±S!¥ÃEXoúvÜ$Ï90ÅÍ®llDeãåqÈ1& fýØË¨ºú~µW!mNK‚Ç@ùð(]˜lŒ´2nWd Úº¡ô'CnM@´Ûò ÓpEžo¨ õéMÔÖ½­‚Þûs„saˆš:Þq£Õgÿšj@à²|¡‹ýî†j€¹7Ëè hÆ™U)áÆ#Èްù‘6… lúïÇe”\4ˆŠ!1'ai¾ÚÕ}yêû÷‰8¼T pÓñß'*wÉ›R*Êç”bo!u¼ˆÚ?üDµ~ƒ›þ+Ü:“Ñßb&’A|]í¸}ç2#š³ÕÞCÝ‚n„ÕYJ€[¹źkÃG,¹·¼6o¼NMªžÇx³J=c„Ô窠ÓðUλþÔ¯)ÜmÜ ¦ì” ˜Þ»<«|‘õ0új.¶œuñBË"ŸºÂ´­à2š_ä‰ð7˜±l­X&ð@m-©è[ôc"Ì}¶œ[n=/ÏS ŒÌ7'¬—¶˜?vsˆùb/9±1°\dÖvj¦ãûçðÚ–E·«©B!e§JGÊÓ‹â ”1aWm»—²ê†;™øçXuu»ã1UTá‰Dáµ§Üíl‘3fQJ†#fö}Ë£®£ºm•ÙB^ý+ íÛæ1ñ ¦/é×}ZoÏCêEçɰ˜]s69ïÚŽï ‡"=„üÖ(úŠòÜL>/kN‡ÇÐð –bÉCšÃ¼u($÷žß‡‚3ïUbÏ"E×x¥Œd•w£Ñþ?ÝM3l܇¯–U¶_Ã`oc°#»ŠÁÐ×B1PÇ©Ì u®Á,~CœÎO¿Þˆ§FA³[«JœlqÆ[pÆ/ˆÓð1 F&¦òõ0h0ÝõŠ}úø•I²Büö;=³<¡ÌIŸÇ$Ÿxâ'ÛÉ)°—í ìiÀMD­+m/"ÜØµì#f‘oH»ª/»ú‘ë³–®Ï1§9v¬“u{’7úмÚjîÑ×’½„/lé3­ó—ôœ„´Êþ©4îèk°p ^˜Þ!éY:F0ÉÔš!–æLqUç$›í:ÿiíVäÀ¨•O‰†À;ˇ].žz6ç1 ¬‘9Ïi]Õˬ|“ÞG•¥’~ƒ`ßq_㌳n¥ƒÔ_ñÈH6Z^0€±çÑœýð·^îôçì‡%a?ÿiªð&Åð|ó¾þ—¶*¢di†%6™Áµ@ÿÃÃÝÿµä+¼ endstream endobj 1614 0 obj << /Length 3715 /Filter /FlateDecode >> stream xÚÝZKsãÆ¾ëW°öàPU+ì<ðصÛkÇNÙëÊ®âlW$! и²üëÓ¯Á‹ $o9—œzzzº{¾îµº]©Õ_/¾¸¾xõu”¬Ò M¼º¾Yi¥Æ«Dë ¶éêz·úiíâË_®ÿöêëXFZ—¡Š€ÉÛmVnqÜ…ê3ÒW6Š¥ÂÕ•I ÑòwEuyeãxÝÝ-—nêfŸuÁåU¹õõ]ÞæÜ^TÛò¸£JÇÖb—W[©6Y7”Šú%”ÓçŒÞ7—&Zßä öÊgYµóÌå¸2XÕÈ%"æ½ýõ˜5HÀêuS×—º&«Z\D¾ã†ñ¤8’'…ÒtRnûYEê‹ì¶n¹ú ÿ½-þs©Õº.ëC},ëŒôÚ(•~ÅĬßÕÝÝ>«xxÞ-±›•|gúÎÁD:Àå™õ×—:Z× ôÅ ,k\©oø¿ãm ¦c·­÷RÙçY{lòVèÖ•´Wy¾kåÓšÿÛC¾-nzz¾·ËJùæ¸ßäÄ„ëçÍQ>¡¼êÚ¥E}(2œ;õ{ôêkkGJg ¨ŒWÒßtÁc¦:Ÿ‰Ñ~ nú)£Ae=s–NO¦¹Ôn}{ÜãÄ!©“Iœ¬Z¶uÂ;ÔÕ®¨ne"(ò¦­««®Ø_–rÛHVs¡ùÔòãxJ=SÝG¯ô$¡ÇSáwçäÚhQmᕌ`Z1»&¡D ä0ܪåÊ ©%–×—¸ rýT¢ ,Ù$°ñGLœ¬Xf©>81`R· ®ÜZ‡Lãgc¢™³›0æ‚0v~Âß¾{÷b+ðƒ6Mü¨Ó¥ÆÑx° ’A½ÊýÁ-0r0XmÐ^ÈÉŒjE½À@jÁ…÷Úñr¾ðÈ*ä…+k?náoþä…?ºVt¨°µàP/-8µ°h Úy²æØ©KdÍæãÖü~qÑÖ6qµh:hhI~Õ!8ìZ´·c! ‡Î“:ñ,9é4 ŒëÓ5IˈÄÄ|—#+ά‹Æ{7^¹ LzB¯—æÒJ݉›ÖcÀ¡MXóðPÎŒ}ñÄn×Á9ܘæBð~ŒysæÏ`Îs°E5í ðÇÇ4Ö›6oøÔó¬v „h}7åÙöŽK·M}<Àɪj%.׺ Vvæ¿ iîä S¬¢Ç*\ÂcZnp8v„r v_tw§ÒÕ Dn æÑ!¡œ%IÇA¦Þ,ë œuÏõò®‘Þ!Z²ØÀ%#OqeM2ˆl")=’Ô ª ìÇ¢S¦û0Zi8‡véÀ¤Z”™íLÇ«%0fEïãÔƒ-×ãU,3^¥î1^Å®±²A?¯ ;æ+ÃÞaÛ'¬›DŠà•cÖäB¿º¾øõõA­ô*a ¬Š¢8°l÷?ý¢V;è g„[ÝÓÐý°ëåêýÅß"—žtœÆO ÖÍëEéèP<Ës¦™?‡gOkʳ)ŽrÞ¢o µ±!𦢹ùf¸‡©ò®#eÖ¢å†.£È!¯¸™€µó:‘NÏ ×o6tøøÉ¤°ÉwyhÞ =OžÂ6¢ÜÇÐì‘õ´û}Þ5Åv1(oUÉ™¥ù:`ãcÙµþ@“^þk³ý¡dÔLZ l.Z=ú£5“#²"[ˆrðÖü_a¼YÝÃ%H‰‰|€¯75ˆØSËðm&ã72üÐÔ›2‡H¸Ø’A£Ì9DÛ"+ËþŠQ„‡Í$Â/DTKvWiÞÝ÷'\¾Û@æ×„( Fµ ˜’‹[€ä]F€j$;å,(ôÁ”IÇ”>•Š’€¾ÌSÝïi·p²ºô{7™Á"YÜ¡Ê9wþzÀý]ýúE]•j E&ÐÑÈ×FŠ×f#8£oPå3ÐE<(p7¬·  !Waõ á£2Ahz”ívËq“qO²€ 1ÊñtðH‰í èWfi8Þ‘Ï€Z¨Öb8LºÍeÒ¡ûù T§€À=ÐÔÕK±"œ àÎôt‹ÎÆÞÃQ}6ô6±y2ôÈà³bpä÷Øö–L¾‹Üôße(VUîÛ†Ò‰;'tS±m,4Ü!¶ -lÛÃL|V=ÎnÔO°·ÅØ! Ü4f#!‰¡Q/ :¦­ŒÔ²V†i`"û¤R†¦J¤@Ý«»ÑÊQðêìÖ(ŸÙ{Xbœ>¹÷¡qC|(’ã û-Ç,èÌN85qÅ:³ Ú4ÁBœ¥óÙ‹±Ü¡}Qî@Á I™gÊ]öÜ€e%³#T6#=cHéøÉÍpîé˜5OçÀFth30‘J›Ù ÄÒ*¹8…ÄjaÐý].ßTDˆóARÿ—€0àÐ’¢LàÉðA %1æ4ZÊ'^¥*ˆÔÌŒfîÄÀÓsþ>ï:# B3aë‰jU@uI±(í·f\ ¦=„$°ñ¯Õrz%qýFÝeíóÁb;‰ßÊÐo»OaK\ˆ“;²Ý¿m'2ü¶<)Ç1À ÄŸS|1 \#;à(.€ÿ m…üï³]N¦š®ß䇼bdr+*þc³#̉Ÿö˜3òÁÏxì.ë24Ö(ô˜‚¦{X‚ \;ÎhÓºLÕÓEËZ6ü/Ê•pê^t7é fÅ·ÛcÃ)òØç~µ€[Éûê‰ßH8ÆæQÛš­›™Y°neö ööó¥”Ý·Œ‚Ý€ ~Ç× 2çW¹Izıë½Y¦’Q: B)³l«@k7£1»JÂÀÆóÃ,À‡®"ñ»gÎpl¿'± ¸\èJÛ#h4ÁX9`ç7,*õ(*÷>’ÜçÒFhµy÷ˆÑ˜Öéó-˧HM`ri"š7 À00¥!$ž]ü`êþ£¦s ý%õІPé"@*Q ¡Æ}(ÈKhŠè%W ¿À­šÛ•/¾;É\Ü—!칃»¬étš¦]åÆ:ˆX&háy3¢3ÉdªÈËû¼hs¼•|lV@Ëñ€òƒÉÐá“IýʦÀ*UW÷èÔ ¡•ÞI`ƒºuEëq½Ï+¼ÿþM;Íüð®e)~¼LÂu±Í¯~¼Ô¢Þ]j›}º -3sù¶âC·¥3 K`¤ÙUVeåCK()4r©Jäš%ìëcÕá¹JŸ÷ï j°Ž«k²VjÝ=] sÅ'°Ì0 K¨‘ìg\"1O €fÚ0Yÿz̪®èæ./dà0¥Æ¶ÚâÇ¡E¿Í¸?^k¡Ž’”˜ñ¾P3ù:(Ô¹8,6ìNú$-Ž&¤CM²þ¯ÕKC/ ( ÒPVœ¾¡õ+Lñnïê®Þ×Gùl¶Ph-¾7ù~¾Pô¹q¼þö†Ç1¼Ä‘hêB¼¾áÿ‘g7섵…5‘‡KP.ûMQårñL°6ñ×v±ÒS\(À7nò¹ÉOœÏûŸ%5 ²$¡2¨dÛ¦n[™ÜòÒâõ…¾þø'òŠÈ,îj•sY¦™kVsKŸåæfÌeí²f§ñŽ£÷MÓÜ-7•§ÄwÐTïv’Õ¢lš ÄσÛ@xû²þmi)ø®ó¾ÊËò%?ÚЩ£Ç ¬_ÞU%Í@_Ió7YÛæå¦ÌèÊ%ôD¾Éw·S•4’áï¶¡®¶wùïWßçÛŒ㉇ÿüÄZ…XQÅH!µ&¹dû’b´rB™81c¿ò°’½ ùµ¢A?€‚ü8o·M±áæÐÓŽß|XöÊ™x帿¿‡‰‡—Ð*©O{æe€Ua>ëa@˜ÚÅ—’w×€í5Œé‘ Vú+›Š™†^)½ÎÄ™ï(gðŠ«Ìg”[ˆÈ A™÷|Hæ8Tç^Žù¦¥,k> stream xÚÕZYÛF~Ÿ_!øaWXí¾xðƒ½‰×Y$›k’6ÉGêÑ–H™‡'“_¿U]Õ¼DùÊÓb€Q³ÙGu_M¹Ú¯äêŸW/o®ž½ŠÕ*Y¬ãÕÍÝJI)ŒW‰R"6Ùêf·úuíšm~Ø^ÿ~ó¯g¯¢d4ÚJ%’–òÃÒ‡\I^<ü®6&–"SjµÑ L54ú7­£Éøg¯Œ­ gaé'ß¿üúæÉF 3PpWÕ×Éu{ïhpëT$‰ƒOõµÖÕmÑòœúZEë¼l`•£ÛQg]4o¨µ+î®Uº¾sõµI֮ܺr”±B%QØâéä€p~iD’ÙÕF¡£ÏbÄw?ê/ÿ½È‰D˜øS¡ÂàŃW»]Ã,ðoÛ¢ZØ4³B&IX(ošîX”{šWÂjù!0¯iëâöZËu+•Íœ3*NE +ýEÎ|óÁ™Cµ~Û ¼¸p"I„²‘gIYZèÅ8jd¼®îð7Âc4ŽºÚš)Íý2ôþTWHå»bÇ£ò’^8 Fº³å¨£iór—×»âO<7¾::š{SКšÁSèTÙ0ó7)uÝ´þ¨W"‹"æçõâ8=â >µ÷yZ޵kNpçO¢ÖU9{ß•;Wû%ÞvyÙ-œ©{‡Ç摈_ÜÌknzéi"·{ºDýÃ}«åáFQ³^øó¸&ôçílèè8øxWúð J1£è NÌz—·yãZz(‡æ¼ºAQmu¼-J¯Çð”—ùá±)zBÀߩܱ‡äî÷™È½ Ëð8Ð4ÂRÜUq³Dòep® ÿŽT˜'%Ãü‰tU#:PóÇ3P¸Ý["ðJì‹Û¦*5èé ]&g"1=¼ˆEßSâє֙Ðq GÎDjØf“‘ÔðOñßu-‚•â[—7]Ž¥× dD©_®3TÙ"¿ š÷¢iªmá-ü‹Ø‘SýÖµù†íÍ(MÙ Qݵ®¤f×x#‡V[ÑoóX"²€ðsÛ튰Û*´ æÌØ…W¾‘€Dk·E*y×rïÛû@Ã"LøE²M*–:n]ûà? h’Å`îÀ¶À)µn¨÷èÙë¶U¹íjØ¿õf”»gÈkl?í}ÕµôpÌËâÔÆ[?.‘J 8¹º8²®;Ý$F¯¿ö³âƒ'E®b ¥Õ€Âô:PíÚGåq^TAIðOÁ =Þ@ÿ­£‹m× ýž^<81çeoÝñMhé5ËÄ)yFläôstÇŸºEÔâsAëÔÕ§ªqpî8¶ëÿ\§rÍ n½¿€‚ QW4<{£ß§?]ÜëVLŠº@t~:Š-¸…‡{\H†ßVHö•¡¡—^íñÝ šŠ¾è;p„÷¯l´úÈÍF{,Ñ_»€yÛûª­ŽUçWGR2¾ñ6G”æ[âܰ¬rø=øSð’íãÉ5—@l%BÅV¤‘áW>cFÁ½/c¼º¹Nìú©ü¡çé;àLá—ð ™ÓÖ7þø:ñ4|ïòºñƒ¿#ü‚sØuÛvs¬Ð™HèßV`èÁ~©ÃyhÅðd[ÀXê&Ác§? ô´aÏ„á#IG!Ìò“Ò~xÌk¢ #™@Xs_œhÔ`ðz%É‹AÍ™àLBYI®ŒÚt½¿«ÝÛ.À¼fÜÇ™ÍÅSèDp„¬Ýô@¢÷½#Wh`’ÔРW\”#˹• k6<,¬žÓÏm‘7/ÑmKa‰æÙuƒòY =˜Ao@S…ðç 16ÂWW®þûu­ûx±M[mþ ã,5øð‹aÜ+<ŠG_£û€Þ ¸vBðN†”Îa ‚C¼¿†®æä¶ÅÝ#YÔ4þI¤ˆ­ qL],%+Ø’V¿i° ŒÞ¶D  NÀôC@¡só@½&àÛ3&PöÆß»> kòã)DUèx¥U½ sªçQˆëóÆ }¢.3LäÉhî#¿}w´¯2 ðÆåI•Ì8#Œ>'IþÇw?.¥È¨Ê’Ï*£Pü0°Ù;†3#€s†¶P8‘‘ˆÆâ›•@‰õ§úÂГŸ/Ü¡b59¸ÑÙ…ƒ)ŒIÏŽÎnÀQ|ÔÁ•QÚssr¸,”®‹¶¡žæPìï[ê,}ô¹¿öEˆ‰{€ˆ™ÔBt "„ż,C&°Õ ™ªYH .g$O}ÎEéËáMhþ~¾‡d³eƒSY”¢£› ¤ñøßK<+žË ‚%{í~…e?Æv+/cûBéç³ÕrM‘¨¾.ˆ!÷‚ô¬Ó YÇåÕ&™–¾¯¦2Æ5lLÀ–:μvc@€¿]ù¦¤ª÷†Æûwߢ\ï)ºTƒ˜íÛnŒI°`Á+ã™ áÄS:¾W•J…”¶/«ñ¹ŠE–€Eáe¨ Âf|VÆøtœ’ƒ¶ÚÕhÌó…ÍРT¡{X tŒ’<Ýù‘XæÔ„z€S3æèƒZ†ž×ç\Ð “ÌLnA“À¦’±¾}±Àpà‘ ÅèEåV‘ú0$ Ý lŒÍ]S‹’IGÈ«ز”Âi<¼¯Sxr=g,±ÿ° À‰T&Syužïæï ÌYL6íÎFhdÜ£TûQ­ÕXƒÞÞ‡ mÙRµÀÎS”˜ ð êšGÂvž¶Ø'BÙáâu©³YUÒXË›@ã®+Cæl×ÅþUSìy´Wºa–™9|U4ý^«Íß`>éÂŽýÞºÙZ·±ãã6äp!NÑ·.å‘%&ËZ‡ùØ ŒvÓpAºNÖÒmÏØ¬™ÖÉB´@ž@â„Fï Qä>X㤧ÐôÔ¯Fz Í ã“p-…43²ÒÌÈŠ8nI?˜/"û´Y¿&ªÝ‡ÁM âÀ SÚž~æ\„4{ÄE³«¨Âd×eÕÒ˜m^×ÔW”ýe¯|ëë·8Œ?V7¯¼OÅ‘]¨XtCH„V¯Šôˆ:L¥°Â{G§þÒXd¡‡@ÀxÅ‘¶ð±fxôTÓ2S*؉¸V=@êÄ‚ÖúʰR—2.E)M…"È• å+Aþ—’{Bb—/N¯Ô,ÕWz 8ü@$܉}§©3$!‰éƒCúØ'pýÜ'­\2ƒ'§=ÏÁ Ë„é²xndð¯3ÍM2‘È> y,Ü!\ææ<ùRNµXß¡âß¼V¡#$l²Á¬1²K¹‹i2öL!ô7™HãåÑbi$b´ ÓöŒÛÞ^(¶$Ó¤g+^Ê¡ýEY:.Iɨ•)F-ÌLî+Bªl¨w.ì-c «½Ãºõó'ßü´´qñ”œ$Ud;x%‚9µ;´C¤e jI4…EJ±3;Ü:uM—¨ïÀXé6¡ZäoN§ºú£8ö·C„íø»­Ž§®åq¼¢¥RÝSgÑP¸¥«N0$OkÀòÝ~ã/Õd­&¯ŠI¾Û ¥Q2l|;QUëÒ¹iâ@ °5$þø¤4(M-¸ëeU»²i]áo±âx im¶´”iF> ôÅ/‹5"Ó½cñtyPažZÅÀ‰½OñiÆSIuJ|És Hгƒ|¬]­Ôy.cœ3•±W¦n ´!;ÆzL/6ÿDÒ× 7|™ oÖp¨Æ“†ß{Ì|ÏC<Ô†ËìҞ˚êLc…§óøm& Ópå %*ß:™„¤@4èhGÉ8”Íâ'!þNÀÓ5LcÅù¾i ±·¡Ãkyâѧ¼cô€‘G¤¤Y;wr€áê»§pžÊå¨: :I?_¤xÃ[é%_aœ}ó‘‡OÈ-±þö Œ¹_à#9.-D¡½…×áƒáKœž]8q¹`ùû„¯n®þ-¯Ü endstream endobj 1632 0 obj << /Length 3200 /Filter /FlateDecode >> stream xÚµZY“ä¶ ~ß_ѵ‰º2-‹¤N§ü'^ÛI¹âc×:΃ZÍ™f¹[jëØÙÙ_€u÷Ìx]©©š¦(@ü*ØÜo‚Í—¯>¿}õÉ›(Ùd~Ëxs{·Aà«0Þ$Bø±Ê6·‡Í¼4Ýþ÷ö‰Åh¤J? " cÇè¦ÈOŽ{0õù/ˆFv*Šü 7;™@§":?Q ÷ð_lw2 ¼otÞtõV%°õÜU55n·Iè=Tôð7SlEä«¶:Wý÷VáåµÉ÷'Ý|JRLä 6;4‹"ZýÇ£.ajxíQCCeÞ}•Ÿ¨«º£ßœ^œu›ïò2?=6¦¡7ö^µ=kdé}~6¥žQ­õ)oMU6Gs¡W{Ý>h»:xØ XÞL1 :Þme„RíP ¹VÔ›íNIEË© õy›SËj:/ŽÔjÚîðHÍ"/©‘ßoa cŸ2àz/µntÙê=Ü/ÄÏÔB]Y:¤ót¤r™†¾R±3I#D8’ø±ì-ëç K*ì43"“­M}0"7 Eµ°VhW }iûyk5¹S@5 ÔT¡ ]òIØòü‘eÕRcÏorú)N:¯©y0MkÊ7Ù å ÆR4î못˜òžžÜÎ"·L¸De«`˜QumQõr‚¿fßTµ®PàwøO×[°ŸôæAF )‡šVBlì¹#§ØøîÔb›öûŠºjš]£­ŒÖI ý×øÚç5Î0Ë”ÕÙä'çÓ‰×äçË d¾!z¤`l–xÊXŠ˜¤ %ÿ`ñËõV¤Þ½)Ùë‘…ñO'V-±Üݘz:y­©@¾·Š;PÇþqF›ݘûru¾.iÈ%¯[St§|ØX­iº³cmqºù.¶œ ¸ lH;‹‡ùb9‡½\ }¢çÚø¸ˆéKˆÉÒSb~j”8Z2ç½)âßìOðÒá;NbÝ—Ž¥˜ný’œX_ÝF¥Æ1"„vÖGšÜlwp¾¥àŠÐŠUy¥0+‘cç&Nöð…Œìžg¤`F .CÃ뙑W™‰’¶$öU ò™åJ0&…ŽAâ%Á̶<âf…FègiÏëþ÷“(^@‚ÌbÝŠHÂOãÄ =¬`¬Ñ0DCxÖ^¡OìöwµþµÓeaPˆiÈùDÙ÷º¦1ƒë`ïÌ¡ËOLàëüt²aœ´b“„ˆtvD¯;j‘·6lÝWõã(­*E¡]yÝŽ 4öưN &éU·n‚–N÷A¤WT]¡JF¶ñYü(öENÅ¿µ'Y¨¼ËÑP£¨ô’Àp ûR¶ÔMg_èpLzÕáÐPWð‰‡ÕÚ‘9Ÿ«òôHO]£yúÙbHÍ3-4ÁiMS&ç:0.p‚ÔTfO£•4•Ï¢•8z ¬ìT¨(3èÁ±&ÉÜ)-{¼ù÷Ö\ÓÄ{sÒ¦ièÕèçs]ƒ-ò{Z“Bf))þl­uCÛðüÁ"Q‰Ø“(ì•m~¯€2Ñœ'˜vD E¨Z€É+g ìÐgd“ ’Uâ΋Sg÷ú«} ÀÓî]‚ÞZ©¿iqÏQ¿îÃôõ’7ôŽâ¢6{(ë‚BtÍjˆé½µ™AwÒÜF‘dz¾£Ñì(s ²˜"ÁfÞҮݿG­ŠLHvcg¤¶q8˜0MŒS†’sŒ™qÊkÆ)Á½Ò,|Ê8c?SÏgæÇYö”qb¢7EÒÄÛ$ËŸŸÚcÕÝ©]bYÚ†ŸÉÙJ*IRBÓØh/ÒH2¾”=[˜iàï(çÒMoÕÊ{cJ;-ŽìY’Fª( '©ƒU ç*¶Ñ§Xð0M± c|Ø7«i1{yÑvŽå¸'pÒ²ž8ÜÝ`²GcìÃ/³#¸¾À[k0Ãn9¾8Œ½®<€W?²D±÷k>iZ°{ÙEè &⎔ݗ™9;z©8dQKsÃ-S}Ø®»êtrŸsúÙ3C<¾ej%L4ylcjÞ¹•ס…ãFÞÐFæÂð"p”0H6 d®Z“ 0±9Û%e,Y¿Ð(ªÚåÛÔ1äÚãaƒ¾ááŠ~áÍLØÕ5´/jâCmŠ%«áqqºdæ[ˆ_MU2>Yü™šÿ0õ/}o¢È!VB×dß&þ OUrLx xƒÀv£©9ä—jˆN¸=¼+¹¿ÔÚžÄ@ÂÆqèj.º0w==zK¸ »&¸ ;Þ™œo…w\C³*‚°!¢gá¬| ‹ÆÀä³pöIp,@ f§ó‹p­Ñ5\«ü@>k³8p—Ms!U,[Ô` ­qP=G‚§Àq^N쵈J„¼u0krBPë-) ‹FÒf¿º´ïÇ úºžcÀ†Kìp+l©Äªfc®f¹=¬R~:)Änviæ‡ÂðÈ—óø³”ÑdØŒ¯Ôã{ýÏï_¯ð„UÑ3µtRð•©Ÿ$½ pv@´å„‰p½Í%Ðr-¶_®P<Ž'¦2Q€lJ$˜/ƒŒÙÇÈøíW_¯ ŠÏ’Òf86·Ãè;6D÷Uñ²4»*Ÿ ¬#|éËåë“Ä×oÿõÝËä[ЋРóv›IBÂaàñÆ}·f²‘Ÿ ;¶ÉöØ"<—6…™*ýí›9öíÿOØ·k†Ig%lȇËG ûýí·kÒ*é«$ý(ÓEüb}‘ïUÇXS®é>¦GT/´oi p‰@Bø”°,Ŧ°/Øp¦\\Æ…‚R‰!eZÓ,d¦Ý¯ºâÒ 1äìW+#ñ°Ÿ¯º®â)R1r{¹8´OoLõ‰#ÈP#úݵÕî°X6X…uJžŠ-8£‚J›¤Â)¼súðé8¿=Út\ºj¾äj>ü‘רý@w]и·7%1+c‡íÓ©Uá55!KÓ¼€Me,…1¶34»šDqÖZy ;–(œ(ßôŠÑÌÝeè}EY‡€Ž«¦«TxTûCJuB£Ð˜ZÇ1¦Yñ %R_ e ÌXW <öÃpLD®OÊBï1€#Dɬ*Ö@bmNæC_D\XÄ J4îþ£ßý ßnÓÀs™JÔo(Þâ”|ÃC$ÁX*w óA×_ñT›ØË#ñŽà/'ºáJ¼U\°›+.hð>%.YdYºgè³kÇqúÉPìå{&wo*Ïü4]á»ÆÞ×%¶~[PR O˜,ùI¤ŸÆ} y‡æþÙëV?49ˆUé€(ŠfÔþúÃóÔÀ?ÉçS¾ýKÜM.¸)ÝäŽßáMeWèº|k™ 5Š Y Í"'°J,ÊlÐc×ßÅ}vŽŠçÈÔâ¾Ï’îû,w ‘I¢2k©m+x{Ohõ€µHR‘ôI(>ä%ýBø1d¼/X´dõ™ó¨ìZFŠ©1¬£Š0M®óŒêWð[äž\¾f£"¦}*ŽúÌoƆÐ;ØÈÃ:³ ƒX—®ßTõßA°a,ë<á/ÃMc£Ûᘷu©Ã‘ªk7’-9ØBÑ%÷\jº6w‰jJF6ðç§›5¿_à©”/DŸÛÁÒþ¾êê¼ir‘eñ "MË–™Ÿ uKõÛ”Å7)€FRáAë‡Q:ú&åð¢oR¾1OF_¬àéùÔ§(ì’?bäÆy–!³Äa ì‚ô4ZSÿp™¥ãŠr–¸Òç˜Êžr}1UÅé‰l4Kæ_«À+WA[sžŒM/ƒ†Áý}¿p‡ÐÚ¥±3Ÿii–/ÄìäþþÉa“U:#m 'ð=­àßê'4˪jèǼF( ¸¸Æ/; Ÿà†½ÙOT_a­ßŒ¯GB¾_QÞÉü‚ºÑT-ûIª¿¤‡Î¼kmóŒá;|UëKU»Ýùœ×<§A–‘«æfM ¦³ßú@P²$Â}²#¬±”üÊÞ¶ üšymŸàÀ!œÕ_” þ¸gFuì*SЃ8Ô³aCEÃ#~øÂ£ÑÁÏwLÍØÛ²¢peE1µ „ãç*M)ïóœn•°eu¢axŽ){xeë›ÂÕ7ɰQ/]ËÅL.TÚö¥2e»Û›ì>`X—/n_ý¡ü9É endstream endobj 1638 0 obj << /Length 3238 /Filter /FlateDecode >> stream xÚ­]ܶñÝ¿âp±ð*’(Qb‚¼8¨µ“ƇHS Z-ïNÈ®´µ¾ž}g8Cêã¸vâ0¼ÔpHç{†—\Ý]%Wß={yóìËW2½R±’™¼º¹½J“$¹¼*Ó4–B]Ýì¯þiÓÔ‡f󯛾|U”3ì+U´o›û~ìýÙ  ZìA(-ÏÔÍx®‡G‚Öóõ›4êí½'àûMZDz0–và¥p ì Í©ïŒæ­^Í¿çn¯‡ÃcÛÝ…ˆÿϹîÆvÞ ­t¬i„Ò¶ÃÄ ¡îöfž¸›ïë‘àD‚º`#Íßö‡CàÞÀ;¦€ñG&£ë‡c} ”}kÆ¡Ým²$:£0Q ^àTµcèvÄnPžƒAzÊ4:õÆ´, µ§_mÆöHG–î&^()¼Þ,Ц ÃÇú€x6Ä.Dukv­Ñ€t >hT/:½HB&‚`”ÎOºLß½ Hªõ5 ßõ'=lò$òSiÎS?ÔM¿34þ‚~þ¾‘IÔêæ~ÜÕçź,IKdw¼ Q‰ßë3Sh^°Q}·>´Hz•GÖ{C–ç2'Ý´·äO„˜{‘ÇpEçPŽip:i—Ò;ÔÎÀFeœ¥©ß'»¸r8·ýÀTZA™À"=]ì .¦ã»X[c‹™*ônèÏ'ó"HXKYºSÍ>xÅ­(Tœ§åR._|«ß0x×,‹«D¬îªõêÉ]«ÈŒp\=ìi~¯­‰’'5Vâê=²ŠÅ$Ãî’ «,ý´ eî÷É>½ÏÓ{uçãNt#xânO§Ýƒ'6V­·™Lã¬ÌWN„ÍO×Í=¬`!&õ=€ýÉr…>ˆ†‚ >¤áÀ¯t.f=½˜(c!=†MZEw磷üzÐþ”î«UØM%p®Ê`PĉbKý5ËŠÞŠ°*Î'c¸þù§—×!5ªT¹d÷üª²˜#WqYz=8õm7ngί /»e4yZçëຓ¯ ˆ=Ïã¼ðüy±b@–(¸8 3Ó$ý,¼|ý.Ä‘AFS}þ¬»gI,§»“[Þ¦ ÎÊÅRæ ¡VO¤b…‘• ˆÒ'L& ¥JÅYæMïú—‹ÚPTâ“FœLÞéú—Ël-€u ¶"Õ§å/–ôW­ =ßEdh~À„`;öÛô=à o1o`žÂª‘¯ "2š™UÊ8ÅÒØ;к“ xgSˆ¬ŒŽõ# vš~ÏFßž4~¸·IŒšþ¸k;"6“|á´ã=z€4Oš°ŽÉî0O:,`öM(S"&€+VܢȌÁϽ‡ûÉ,¾§DLOÉŸ ú¢ÂÜkä¦Ý)[†Áróü ×§5{i§™728$¤ß ›Ü«BMÛùܪk4åJ[¹B±öصví¡ý@b@Ã\kÄÊEö£“ô‰Økp‰7 \"öËÙñ"`Â×2`2êÀËÏÝo±¿#Q„›ôGMÈf<ï[mCmžrrà¦æ%lǸ›ámça"dÕ«[íCUÙBmîWW›HH¬¼Kþÿ-Æß±ÅV”Ž a÷¢*ï OÁA€­{Þ@äÊç ôÁ¢£Ú +M0Íí[k‚·`Z {†€˜xÛƒé;gd1é‡TõpÖ†‹QŠuô³ \Џ«oæŒ5Ep$[ƒEÔ) T€¶ ýGTé!R}ÒðŸ-žaÂÔÇ“­BpvÜŽPæðv¨i4í]go اíD4An½ò›ÌËPÝÌëH(oea—([§gª“0 Ôp6Á„O¨[­õ†JR©JpämZS™ï¾ÇþN³ëTޟˆ 6/£¡)>Ú¸rƇóçU)p©sŽ/<8ù Þ»¸‰$#áO#ýÓ(¿pëOë+fí+dç%ÍOòj•H~s)q“y\åÜ¢@¤Ö©p*dzi„¹qcËaü÷J$؜Ϲßc ûæúÝMèØBÄé”…ï‘B6S­vûöݧwƒÈK*”’šÂ`_5né¸+Ô¯¸¬ª@ëF”…ó³ø!]p¿¡„µ_\Ç#Šˆ2¶(:7iMfš¡7fkÐú…“¨m¬c`yž § =ý”ƒYH+À8ƒv6¶’ì£EñA®ƒ) Â(8àhêzÎ…:y?Dîh±µ×ÑŒön²d « UM& ¨žäBŠ¡„±‚,¯ W5xJË”4µa:ø8¢ˆ+›ßÎYÂŒ#³2ͽ>²=μö>P—ÙË)¨i‡*xcô•ÂT1€ƒ˜UéPfePÐW®ÆYv]°áç±éIo¬‰â•µó*H€#ë5V¥PURUJ°ï,:¶¾ p3¡ú†S”ŽÍhÓV±"Z¥‚èéHÁ)ŸùÛ¯‡öp ÑŽçgžÚ"Ü·Xÿb¶¹ðÕå„§=<}××VK±ÙÔü€y¬ò|žûæÅ…nU&â)Kî.T“Yš/U"s޽œŸqÊö øÔ Míœ÷í0'_ æ’º î@êe¥I,ó*Ye¾ÂÂK•ZL쯡. ÜóYÆ•ϳ–dÑ¿11>è­«¿ð¼E1äÀs¦€¼Óå·TÉö…ÑÎ…0ï3\lÛ=ºØ© sÖ{Aüyï…@\•¶ðÌÈkÏ»},¿Ô9/ãðþ;Ù ¸cÅ+m¸ «¢»ØR´rª$§hXŠÒ¯» ÖìTrÍNXÅ RrÕ›xN‰ë6Ï•¯-,=ïÆO»´Í6Xû‚ßµ$K¸s!*ý fÍDOQÎGŠß³(ô¦‰;ÜÒôôLB„)+D®ýÁϵuÐïØr»qÄÔ¦ø:ë~Wi%¿ aéÔAسQ¿ð¨·õo”Ö‘ó‡Ü¼¦I=ºÍb«ÕßH æ¾9õ %¶õ›,qe†¿¦?ØÊ ;Ò¾C}Ï´LA¢=´ãcèv6k-ÔÔ—áHé%VIVµE÷ÆŠÁ®›‹ÁvŠ&¿S¨µéà×ÁrÝŽÖ|FXËsÁ¤Ó— "™ý±ÿ‘AÙ8©ùÏAˆÙ‚¤‹¯Ña%ÑÏõú³ÌµqÁôórxü¤ªâìm1· !×8H¢C=ŽS ¼H\w‡ (ÜËvÁM€äÅX'e,Kõ‰@UÚW‰¿§È¸*?¢13ž¢„*D(Uýƒ˜%ÔðUñg<`>y¶LàþeÉOXåç¼Ú½y{~üÎSùYovêJýàߺÐMUœgÙ¥·H¥â¤¬æ¥úï¹’oˆ]¿»p§Ï‰õ1f ÅÛü°~Ë"kÜ•}‡ã Èâ­ž æXÓi²Œ‹¼Ïæiœ*ñùLyóö¯oÿä×ÙCNÇ¿Y¹ÏÖeñWe\᛺߿Ü<ûWu¨ endstream endobj 1645 0 obj << /Length 3262 /Filter /FlateDecode >> stream xÚÅÛnÜ6ö=_aä¡2 /¢(u‘‡lSo³Øf ÇèÝ.PYCÛÚÌH³’&®óõ{©›5;NP̃(Š<ä¹ß†Ÿ\ð“¿=ûëù³—§Úœ¤,e|r~y"8g*ŠOŒ,VéÉùúäß‹”/ÿsþ÷—§±¬T‰a×Ç­±Mžmr\÷Œ{èá99bð™Vúd% L*Úÿ›”z´ûå©Rƒ] ‹â$öüû_þñî9]j[I¦L·ì²ª—+©ù¢½¶=X,fŒ ‹7ÕRðÅ•ßP/…^de ¶vM“ye/—"YüÆ¹Ì [¶4]]ÒócVY[Tå̽„Ž™ä*œõb„)Bj–Hq²ðü мó'P¤i³rÕKe~fmqÙÇĈ8‹µG0\ø 8X%€¿fB$ôí]ÕZ'pÙ¬%X#¨@Hͺ˜;ΰXtd/‚·o¹¢g³³yqyŽóçzôÜZƒ¨É5Éñ~¸¥ºhlýiŽøˆ»²ÍÞÚRÛfí ¢…6L‚R¬@SÓÅóë¬ÎòÖÖEÓù ØÇÕY)R ÷ÚÙríÄQ¤ÂŸ¢x±±´ AYù5îlœé1Äi[×UÝм&>ýR±ØZ`>ƒ£aüzÓTþ=¨l»Ûå•Âûûkºw§2wdàÚIâ]–jÅxl¿àÈf_ÛWÕÝ×4,ÏjK°ój»Û·Žð–¹£ÅUáøçxSÒ§‹[zÚÿíI`Ý›4ô,üû»ìCvµ@¸õu"#ˆ¶õ'l]4XÍ%žÂ³SȈ%`PGô¸XJ¾Ø·$W7E{]…—N*~'tE4@7ŽY"áÑ3äír2$ 3Q§îÒÚ툥‰ìa( 샃¿ÃGL|›Ñ%08* ;¿õ÷µõ%Á€À]š%3ƒŒE¶ÙÜz ñ­ ¼ j•µz7×E~M¸ñÀ²¦ÙoýøÚÖ‰ÛË95—c£¸’Irâï ô@ iOì>·µ·n‚“¬muéÏDhµß[”â±nod[Q%@µ(¯¹ºèáþäd-©õGw¶úM‘£ä]Wmµ­öþë/K!DÐófŽ_|\Š.m¶ÊÊlsÛ8sˆSÙ- 2Pk] ’5©\ïsâL·þsvuU;CïÔ™i˜mÚýº°¨³Ùn´«+ò k¿Îsá\àÃÈIúY¬÷ÙfΈ\ÕÕ~‡Ðw:C#´ž6oéÅÝO‘~Êä-Mñ¡©Äס© V`Î~v£<«hQ•––•Ö®›ñÁ_Ì8%…AMÐ’?f’dRw*ˆòwŒˆYl:CXÎq£QD¡•‰Y¢Å˜p€pÕ¢e^)á- ÊýöÂÖ4Fk¯ ´)–b1bDCóŽÙìÀÙ2¿ Ê,k;„h€¯`"lãg²¶¶U ìöã³ØÂü½œ³œ‘„bzEU g±al3gD`„2y»Œõ™šˆ .W°qŸ‘ý‰^¼-›ÖfkÚë<5 f{ß6a”Œ%‹„| §ÜEHºPÅ2iˆJæ<¢fœwVw{@ž ïà“Žê¡ˆbÈÍOÆT$IJ„XÛ`î‰q’tG늖»ˆ'FbÃrK«¦âËÁ9xÀÅ‚YöbN±àî&êcƒâUY¬fõ âÂD÷N `n™Åyp ¦tjÆ1Vµ˜ý»qòè.1±=Å}˜2wÃT܇'˜<\/ ™CçKà”ò»IN¤,J£qHü”  ‡žÿ|63I”×ø³Jnhî^F #»ª>ê‘´‘‡R!9“2yJÊóó|PY¥JÍWÊxŽb-xÂR.¢mä¾mùyhÿóë ]´OB\Vªjç5ÙíÞTž¨ÕzÝtÑñ. ¨dlžD—³_¿0]<ÎO$ HºèSð»˜C‚ ô“áõû˜ËÂ\%‡1×R lD¢9„ô.2‹2$ŠN !]µôõ.a`ÉqÂÌEâ9‘‰¸Ï„Æ WûM.? Òç$I‚ù—Qú$I:=Ÿ¥gÂD<–$%Íz*ÎÀc…ŧK­D?»ÍÊÕ9¾ï? ÚÙ%Ä“·j]í]Ö®d2f;gJdœ}õ¼*7·|NÅ´bQ’ …µËñ!İn’Ù\:©ØoZÏ3bKqg$ûÒ½R21Õü”qÕéi¶^ÏW>”ž^Ê\€&€S31< ew†x)g £,º8ÿ/˜Ž$}A7Öú;VF¿%1W‘pÒópyg`IÀLN) 0îqÏMAÕ{Kx 75Ìôž~{ ²›îå«~Ôˆy<ÁûB v+/sÄ4,IÔ±;é]þl¡Ží?–V  þZX*Üà0¢L ¦8È©CòÖ³'Š¶Ù‚êEGÉ{©Ž†…)“N3~´{`¶Ñ˜IQAÓ*rˆòêÈtHùâ’ ¾Ž@¨õ0I‡Sˆøpîø0?Oühh$~e ±òÄ×ÑQõê Çx §V¸èæÚú}mÐpÛL[2IúÝ‘IºpÅ9xnÀ„ã0å¾"sT3qC_gà ´è“s,81$ ¼Î×ó0SsTnzËwH[Er¯Ø¤®“Øu•VDPïmÛÎm /Oâx(%`?'Ø:ñˆË+_ñùXÜôŽí:ól CšgÛàç`i¬'Õlp3@íK›·ß¡!U‹w®qÃyÿÝ7­/)`IÜÏû>B|§!e& ©ØwŰ ¼vUИ/Þ¸:©«ó9å¨é£·Ï—?¨XOj?GÈarîj¿hÙŠªs\\P¿n\í §·ÞW¡×Á™‹[ZA’ˆ3Ô7°þ{¶Êó}Ýt§ù@¼Þšj˜œbî})§‹¼)]æ.ÛùØw½{}L*Ñ2Í(ôÓØy!±î^S[Ð3AúÚ;|òÕs˜q±§Ôc·ævgiŽJK0Tß×´¨(}&?–œÔ˜ÑðìN^$•dº·ûp6ÛÕEûI¤©™äSãÚXSm¦)ï„}}FˆÇ­íE½/JÉyzßJ‘>¤î%ôa×´&éËðxŸë¬,÷[Èø½ø§®Ÿ=ìrë­ˆˆ\»DÑ K”?¨KôÃÇ®®ø}µ/Û{{B^h»&’먈w!=½Q–—%À“:ç8r ŠKºÖô'¿fÒÉqs¡wƒc¯ª‘ú¨/ƒ¯£öŒ5É A¤Q%†T6AÓCÏiµ¦r$Ø6#EèðDR’ÇÃï¾ÃƒC‡<wx nt :F'½8ˆ…&£>-:êÕܥŰ›“„>J2èæ$&tM° ÀÔ´ì?" ‘èšuضA›‰½=÷‡ŽÐ±¡5Ö¨cƒÃ­!u_µÅÖ‰#.oéK]40f‘ê¾–‹LSW•w[ú<¼Xûcgx±È¨ãøUX9 G•⩪þèB|_OzûU ñE™ƒqïzÚô­#ÉèpeZEŒÇñSêfoÏþ„ÿ =}À ¬rz©ôe®Ï.ľ={ÿ…KУº«C¯«»~‚hÍ4ׇÿ•Æ!”O“ˆùRª“ˆô1yL)õKÆ€çf¶lŠ[¿¡Ç²©û6©J%Ó†ÞOÁÝÎdÜRåè¸ áæø_ tŸtß§¤¼¯rQWÉCÿ þ?!B‡ÏÁŒO;a®¯Y~¢€UÄÝË 0XÓª!ùÑG` ¿ñõcÁïÆÄHõ÷oÏšPÛÒW…œãè"úIŠŸ:gÈýß3anê÷ðU?Ò.Ëð?%£3BÛÿæAg`ªÓÅÛr>#¢ìK±ûËI,F~©™/% q´ £#uT"ÒAú{Œÿ³îêy#—ŽÀ³ÿç¤é, &,ÿ7«tJIÝSÒm¼ «FÜš‹Ÿ8öv—K¾ endstream endobj 1652 0 obj << /Length 3575 /Filter /FlateDecode >> stream xÚµZKsÜÆ¾ëWlé°¢Ï ˜]:Øô3eɶ¨ÄÛUwAÎ.°°fè_ŸîéÀÎ’’’œ0˜wýn€¯nW|õͳ/Þ>ûäëL¬r–g2[½½Y ΙÒÙÊÁ2•¯ÞnW¿$e·)v›‹ßÞþ퓯S3™­¹`ÆÂVnZ.pÊ3î7_­U–3eòÕZX¢hVU_¬e®“þ®Ä†Jºþ¸­ÊŽ]¬µ–ÉUUoüÀÕwo:š[´%5ê¦÷‹öû²o«Í0¡9Ö[j‹kÅuRõô^ùMŽÝ±Øíèeß´þ”âph›C[½?£oü”²/ÖHP³8ò4% ŠºØ=ü ³("Cé4Ù5·¾§-êî¦i÷å–Fˆú•§¼b%Ãf9ܨªý¢}YtG¸’ÃX© ÆR*¦òlùùwo¾ý< ™3kG^ÀIŸrWmîè‡#6&ðá =|HëZ¦ŠI«ç$sâŠ8pY•ÜÞ"¹£—?˶¡Vy!Óä ‘&eÝ»©2Ù5 ^—Ô¸Þ•û¢¯6/|"w(7•çÌ'*"Y5ÜE¤=&( lI*†‰( R…kN…^£Âf̈ìiY#›*O÷€ÎK‘’HÇöÐtþ…B%Iá ÛÅÓE=Â3CpH‘HŠ®+;?©6/ö¹öó½7Ї–ÂeЮêAb¶ Pß-D¾‡.ÆJıd·«KЉëò†R4¯Nt9D7½Ó"N$Çà¿,UäYè†èz˜Øß#ˆ ½l+¯é­_2ì¡4j¡ç#t;yaƵe±#QÅngñȽgX„¤²Ž8¹-»ê¶îΉY–N½“°aB›‰ˆAƼX)ÄjŸŸŽBW=DöxÁúÇ…»]@ÂÁíYAšÜúg¢Xø\  §Ïý›;Ëh™Hè&í¥s¨‡$È 3¼UË]+ú„3,Y#37Ï?½qóÛ5~»µ-þ»‰`gÑM ȮKdñ ´θ§pRM-’m?ó“mÑn«?ÉÛ»mu’&4Š­q~¶¹™ŸRlï`×cq½xpF|v•Ë}AˆQ ¥,¨ßË8ø3òŒ,Q:$ÞÚà˜÷{´ eÏØ²9•C'¤pUC“Qɱ !é"ëƒhà[èö‰Fihš“¥É ‚!Ù€ž¢£žàÌÒ|à·ÂS¿(7ÿBmº5O^›¹µŸaS'ßT×׎ ¸¼ìia±s6%03WŸ‘ ú¾ø½<Ö(~Lr!üØ+@ ­E´•sbÊÂÎÉs¸Øë[à¹q”TiR—å/£|‘º\š}óóZ)g&dQ{QÅÃO°¢càSocA* Gç¶—Õ“›¿7)&\v¿Àµ=÷qCFìgK‘gÎ"»H 0gÙ˜øX¢Â)Ì‹X°¬˜IÇ»uÛ(Λ'ÈC”ØmåÓy;:”= ±iZq‚AמT†Þ¶ÙU¨ q%·, A{&!€Üò‰‹­}ª%‘çv.ª»Â;$zÓþ¾tf]•@9cVGC޹2 Ss¥ž1×NøÜçgø sδ¥¶>C-hàœÚp±úaçï„‘y¹d™’sÂ)˜êÐWÞL\$îI5-äêcš;+ÎSuH‡CŽèb»Û£G6§Ê)Rº¨Ï ñ£Á¬"e\ûbï¯@ÒlÞâb–él””ç¯.ŸŸâýŸR: / -2f´-ÊqqO ÈïakƒÝèûœ¹i§i° Jg<—óõÃ(½zu¥UI0 Z­=GkÎR9NöjŠ“÷á¸Ò ­'‰Ïž¦pFè3ì{p†³,|D8›ÎàGÏè?å NóUX½`‹b™ÎβEå§l>ª©@cªÇ¤«Ð9ÓUx_ê*nÐÓÓçù4Ⱥ ¨«ÑŒêcØ~¸œŒx~ùýWW—¯Ïȉ …7ŠW 5Ä£„<ÿüï—ñí”^lç2lå«s˜1‘Ò*ÊWi/n®?åÙ±f ¨fÄÜÅê†z‚ë |üô¤æõêº.ºAô¤eíò{›·åô¸öå/?½7ìuÓî]±íz³-w‹ }Z[BßîÂÿî19#o~xuù?Ž|v 1‡Px=ù^ŽŒësçÅnBpÔES£Œñ ÓæÕ §(BŒel` ×N~f‰†K‹”´£#Í`Æda±×}‚¾®ÜüÌ!‡xZ¶̈‰Hq>XÔe/«ô‘øþ®Úù[‘ÌÁ9‹*›´ãÍäŽÖßÑ$·“Ÿ'åÚXì´x/2È15F'*T"Íÿ™5éI)fN¸eÒˆ÷ [ä'µ;¥|ö-Â&÷Ê—1³ÞM„RGÅ.Ö©Ê’¯•¨ £Âï+Þ\¿<›ue93ÊN¿®jçœÒ#Aøò®bþñ.çBùçÂÁiìWoŸ½{†Dð•X)•;MDXÚÕfÿì—ßøj ƒàB˜ÊíêÞM݃-†œÜ­®žýD?Y͹9ì•5–zYX2«ŒåHÕŒ2nN™ š'OI„9J¬'“þzæ“:­>œf#§Í$íô¸ möÜG­ØF†‰|bG¸|êËX|ÊžÞE–ð– dån ºš6é~6äÕZ)ôRó2cˆ‚Ô²,G]®¸=Õ°1Ú,êa8澸›Ü¹€H±—ñþT‹¢ µQL†ÚÅ™ª¥õˆo lñ‰`büuãš)Y8üeô÷Ëù|øú„ìC7c´ ?þÉvæêÑlÉàçÔôI8x0³ó=ãx€¥âÓiðâQ< šü˳Tܹ©ÜƒñîÔRiÎ]1]èœ ñ¨¥;”*}b©‚AÐ\2[ÁÉZ-Õ'#3¯¼Ídº—–e3Ÿn§Ü/Šëɤ`¨Â,ˆ5Cñ0ª÷8m ]­-Dá€7Õ‡ ` ð@(Å´MgôÍ Ÿ´ÞZeá—”P÷sdIíîÝ‘ê²Yž´Mã«m Ø‹USŒ$ÀDÑ«ûÜeÂÏW“ÁÚ™¦Cî0™\•~¬Øu µ^5mKÒÜïËòêŽby*BŠ#‡àÚ ië¯Ñ´ÍñöŽÞ¶U·9vôû¾ÓeÇÚç2³š~ì¦|íäC@nÏTÂs=ÕÊÇê°ö=l™JÓ÷©3Útü3–RóPJÍÇ_[ÜŸF©N>wÿæ–Âg"¦[L¥·‚êø'_ÝAvÿ¸„€ endstream endobj 1657 0 obj << /Length 3212 /Filter /FlateDecode >> stream xÚµZͳ۶¿û¯xãK©‰E ’éøÐ¤u“Î8‡ôM.mg ‘”„X"U’²ãþõÝÅ.ø¡‡g½ÉLOÅXìþöJÉÃ__}÷øêíû,(ãRKýð¸I«T?äBÄZ•õÃ?¢Rnþõø··ïµXPª"Ó$>ަ*sªîUÂÜoXoU–ÅI’>leŠæ™ÓÐm¶J䑹\N¶2»ÓFD uí»žg3VǦÆ]ŒíꯛÁÚúÿ™dÉpÝ Uo/#2mMß’¾ÇcÓRÇ`Ï—Óê­›¶yi ð\Ù#ïøÀáx[P™etˆ¡©:\AfItè»ë…šãÑŒÔ2}C 8ѹaÊÝOƃ=ÀADZçGØ´L³èÒ›j´Uó?uÔµ 7öcÃ$G3PÃÐÏÙþæi¨Ã¶¸3Ú®õ„2‰>m$´ì ®¡¡î}ßi&íÓM­-Ò}²õÕœ¨o¯µmxͱ£Uw¾\A¢£³Ùi3\ûfˆAÆiJ‡„î‹éáŒ×“é7iáQuÙ=©¢RK¥•Eœe“*ž…%¢µfçq–枆/ò–‘ŽË¢œøÈðéù×öcÛ¡P>·¼ÕÊóŠ  %Ëèz³@4œ[M{hˆÖÔWÛ¾©FPNßV Xd±–bß\º~t ¥ñ^heCŸ ºo¼¢/h¸ l8B ÊpÏÐŒ!ù€Í‹ò¾œ éiœ&?6ØiØéÊ+†/Bм…¸]'¡„‚³ùhJÚŸèÚ7‹½8™ÊRÄJ(–©ž4è’|qUðÁW­éª ýy#À¸ m¯é zÌÒXäéB‚Ûðéh¢š¤øÙŽGË˳$¡E÷I‹µ¼*˜'ã-vÐê—»õS§Úz†š­aˆD¯ìOϨ.JK%'{ œ/‡mç“q¼þðýëÀÙ¤Œe*îZbžL4¯ÿþáû0«2.ŠÂ“ñFá`Qå)‡:¬»Ð”ÙÌî)›4.æ­µ| ·©ð1¥0™®¹riåÅoànðV˜ñF)¾~ FXÙô5}Õ áö–õ_W_]¹w ’}…ôÊ“îCçPu½|èw}d¹^NnƒÂã Þ ?Ã=a¼‘)ÜïlÏÜ蓸A©½ï%âHް¦XÔÅ5é;†`¦ŒS‘߈.¬Ë9„=êÞ%gÅËT”8‡XDñéÉøB¶§âT¦K“ùùe&£A&ýFÑáznÚÐ=¤Y,çPï‘À5,t™œ˜Š PÁiìžà ºÛ¦©I1põaå$Õ¤´ö¿¤Œ¤¬šjX`%q·L!A£ÜÐÚ™ÁA°ë »Mî«T®¦£7ù®©>"|6S4R&‘(‹âØ,¢]ßÛûa« "+~>ÚêH[òû½^*…?74.}³ 6ñkaºš.m™@"Ö>ë“e«UR¹íº6…±Ð¸tÃȼñsæ­ä &ñ»žjjï˜ÇupW¦RoËŽ0l¹98:)î‰YÅ"]Å ´g3’_Úf²ŒÞÛÖ‰Š\=ÑÓ%AÔy Ú³V¶—wϺ]ÂU—+{H}@$}@$8OY…eŽ`¸4•Ý¡¡Yo)$›#<¹ˆðÄŒHéä‰èŽny³«ÖA@w—L§ri”Ô^ ±…­Žv€ø%éÃ|3ôƒY–˸ =H’šÁÏõj¤™q63ŸNáÙÅÀËÑ»°£Û¶öü.Û¥°%@Qm| «wÐ)‰Ób²èñ|-Ë¥8( ¡àlò—×ZhŠ‚]áiA(B n\6™P Ê–ŸÎscƒM'I£±7íà3B²­³Ä ·…i^ËÀÒòâIÁy°BkRÀ4_+ ŒMfZø4¯ˆö×¶B@`[TI=ú1L»©Eùä4-¿¹\ZHÂmÄïhÇÌÀØ@p‡M†±Ç,H\7”:"†*Xèê€[f OIRKsÞ¶p{ø;­lT9Aš`ZúðRR7RÂoUݦ¢šèÞ¢X7Q-u×wþ$\aCߚώ·î:ùбéðÒ§|ØXFŠù:Rfþ\Æ…/¥ &þÎfçÃ~X:ýÝa»;œ»[›c$[vž|å–rA·D|K¹^ÝÌ9U.Xº@~2ã8ø¹/Œ çyâ2—çuÔåcÀ8NË9ÛúZÙA­ìù—Ê^Rvx9—ö¹G-cáüÙÊ…Œ•Ð_MjWá’û\ÇEvSqxôðîÂjÅ¥ò¹>Hw H™çšï2-^»ð„õw=:ϸ)Š5n&Œ›àÌ—˜™DÄí>T[ÍA—ÄJ—Ô‰3—†(Pþ{ôŒ|$\V™ÿŸäói…®÷D Ë8«6±¯AÈ8séÉB5H}uàˆ¢o­WbÍžPçósG1—OÝ? x÷ H¶¸Eu‘<:,¸–†,ÿ†""ž¦ª€AZÏ’‰ ÊJ1+ 8¿É›r´·|ƒ3õ¯×aôZá@ ÕwnÞä\þuZØÍ“­žîÖ1!ôP.G,ZÌ}“mã•̶²Òl< >è¹þ”î||“DÜbŠ›[¬ü³­PŽÝØ»+þ²BPlYü·mO€¬p÷f4Ô¢ ÇwúáÇlºLã7s¶-§¨ó ¶m»šXC8í;æÀçÄ3–úÎD½x2䉗)Ü‘Š%ÒfpB~ÁéÒƒÄZ,j|‰|ÊE@6S¤7Ln Á+}Sñ0œÆùÌubXCò¤>Sî^DšÅ|qîßÈÇž¡\òôëÂSI'’¯I‚¯"weu˜èç‰ óP¡D럊)Æn¶yV¨h¬“{ê—¯)ï¯Yù5ëðš9–H1ËŽ“¬à'4kOòv‰^ænPŠ«æ­í~/‡byº—DfâùÈ rROZ?SÓ³{÷{`?E5ùª9¨kß7ÿ¹H[z¡˜þiANϺyôo¸SñjÓ 0ÁNÉ”±ëœ’2Mÿ÷@|'ëŰKÆBÜÞ”S¼)]Pw¦–abp‰øÜ:×ÒCŽ<ï\› ;Ö2ž]oȭ汜‹©^ Ü®éU· `—Þ¨ÜN)Bp'mýæé|¬“X\€°ÛÃ[ˆÉÆÞ £‹Xc¶J‚¢ÂûâF)l»f§z á€î/¯þ¸©$+ endstream endobj 1664 0 obj << /Length 3166 /Filter /FlateDecode >> stream xÚÍZ[¯Û6~ϯ0ú°‘ÑE$uí¢'Ùf“i‚ô` ìvÒ6m‘%C’›M~ýÎp†ºØrÎiòÐ"8EÉáp曋-v‹hñÏGÏî=}‘ŠE©LwÛ…ˆ¢PÅé""LU±¸Û,þ˜v­Ëõò¿w?>}‘d#ê8a–ÃRެPHò(âÅ7*-B•‹™ÁETw{³¼EÔÇÎÖUK/Ûº¡FÃn#¥Fei(ŠØot0º=5f†!•†Y*=n–"v§ƒ©:¿ºæÖ[–ÔZׇã©óL:xçÞ‡Y\éÖl˜ª˜%JÞÊVºD¶7BȰHRlÀ3!†:½*a†L"àÍ|7WÆiôq˜&,ø_¥L&DgbÁ)…?í7¯ß¾{÷ÍœP$ÜBKNÒÈcÝ­÷x4|9jÛ´´HšŒ·JÃ<nΫ2>¯›WÖK;zilûž[K‘.z†¯" cÕ³ÿäLy¤ÈCòSa¥_&7yÔ›MûyÄ¡ÉUyHFÊ $ùBùÇŸ&A'6v‹Æ²5ŽÄTë9K.’PåÂ/’QI%B šØÈϸT‘ž™õ{”9, ï2ÐÕ†t©wn©û×(‰DQ(xŠ'Ð%âàù©élEæ£Iº —7qš8zErDÿC¹ªOMÅûÒ égÄ—3’à…»öiÊž«ñ4<\ÄPáUÝ-"b^Dª(x­?BC&t2lüXï«Á_ø`ÙhÆOf ÑVfB”ˆ~îÌæ Ý"©ãÊm‡A6™1šÐoÿïúD³øÄnkB%ŸŠõucÛõ©m ÷el{]k½¶1ê†s 8ï!•¼‡T1«,ô^ñà~¤x€÷ÈÆ^fê=huÝцä=°¯÷Ž)ï=fð8ÄÞÃQUDÐù³ IÁ û$„¿/ó_ “Ï¿™àÍ*\Z¿ÌÃ,ëﺮ6ïç+ÐPD*Lâkh(2ðñÃ|tì·?ܽ™;w p‹?ñà)}¿¿i; ìá÷ƒíöÔzkºúñ2I‚ÖÛM·¯7Œ” Çaøy •HêÛÎâQ±œÅ³cøâ¡Š7'ƒO¢sƒO¢AL_m⯀^ŘIù‘Z“èÊõ8ƒh© Á¥Œ‚ßñ´-‘Á7svV1EUÃKC/Ǹ\ÙÒv¼å»šž½i+ä~)‚=·/ù)ë݈Ӆ«4¼ln3`¡Ÿ,×$[Çæ`aÝÀ Áå¤à[^ÖÑ®ÿŽJ§‰£OZdt ¼5Öuƒkø<rÂÛâÕLÈ[}¸™»“ci«’d,àÆjðÛ­Û7õó3Ú®Ô Í*%×pÜ[?l¶Kç…"¹¶€«-)Žm›ú@­~5ÆE·NãÐ8µµVLù¾"¹TôŠ›Î; ßv§Þ ãæÎÍåÁÝ2MíŒãàäÔ4FÅA•À–>›Z¯÷èc°80šK7#R£ó$å{‡¯¯çpÜ’ˆ{&#o?q@3^M†qÔ‡‹ƒ@²¢§ŽÏ×ÍÚn?ú3B %ÈåΖÑ}y”ÎÜ PIðªj;£7DåLž¼êÎŒ¸rÂ|ö…Ë{IA6c˜ÍL‘Ä qÄ ÌV{q¯H,bp'±áôBn GÐ2Ots!Î|7#¡Ì½ZB;+bû˜†šL½õATFb„ NżݜtÙÒà°XN1ù0ã0ÿ;šÆb˜½ñÆF‡pe²Yl´Ýœõàž64¡3üÆ <€Åûˆ}âC`óôE>‘rÁJ[H¢>@"?„b¨m—«a2äúrÎÀ ~é×pÂ2ÖNÕÆ4Ô\ÕÎ¥B«kŒîPyZzÎ;£¾*“H Úô½¶Oq‚¶ß®ì·kûíÆºíf½4N†Ã! ‘ fó¨xêDž±»H2rIÚ» è"%tJ†`œ+†Ï$/Ò^/’M2ï)¡k¥×ïo°ês*)öÀaÊ]gpÜÕÕsz2xNÅÚ ”ù"èO㊊¦N%IDðSÝñDÒçÉZ4¡<9—.}œùhòÚÀ穚uxm×hK’,wéý$Æ«†Ž ?2óùÏ…Î@;»³UqìØ+̬“Ÿ² r¢Dc¼޷ĝ¦‡¶¥pá®t|z½rˆÎS%î?IoäóË@>ŸŠÏ#òdËò…@ŽÙ7kñ؉S<¯ºySÇH–;;ÄOw0N NcÛ#õÇðƒÞâÛXo}|^r迚KEeR„™èAé§Ûû¯nœÑ ™ r˜q#3¬¾dX5 ãB h ú }]³~xyí4û Ï¿6¾¹+úØšö»v£iÆÛ¨(ü‹Š’Q:ŒC9ÐhÜ õ'Y"Îé±q@43@] @¿©©‡ô}Ì솷˜}i¼ƒ®ýf.^_Ö¡Rìjp˜, ½ª±‹”…S¤»!•qqyi×]ù<ͧWC¢æ_Å×.t’Uf¡ÎRp0œº=‡0CÀeddÿ£~ÏayÜë³LíCÊ2«Dyð1¹Üsé­Þ^»Ð‘ù¼îåßÙ5'd.ÕtéRNa˜Ë®Ê–3'–ÃßfŸSîìv ‰x‰ 0gnÏw²½Ogi5w*œ4WâT9•=–fÂOë¼ ®qG÷ª€ž˜ƒ` ;³5K6ðÍÅ}@¢yЦÇoàN­ö)#ìLe]ÚO>Dª‘¾ZÚAšâ¿–BˆN©o^jðéOæ4Ð׿°”©à%„bJyÁao.‚ÊWF€¦ãž>>÷82Ízwò€ ûr‘⨾pr¸¶„ÇéyqÅu@'CY§ºƒgCTXÀÃîYõª5 Ùã†z¼äãÀ€Ùè§U§ÃÊðZìr™¤ Ü+ŽíÌ¡}ÚÀù5™ÍÓ£n\LKŠ“c³°ƒË„0b!j\ò„9Jí¤Ÿ£È‹ðüÖ~"f½ ÂÄàžúì³Ô7Õ¬¦S"jf,c<´ tšŒúøÉ°zï¹ÑhÜ㽜¡S|,¬06Bªy”ΆvÀTfPþg ¾]÷dŽ{¬5±ã•‘ˆþNÍ—ú=¤GšQôoôøe¯KS1±(²Ôgð„É\o:Ž î²z7ÕÆX„©P* µÐ³ÊðØ `ýÝù—›, ÿp‰v¨UÞ¾»ýåan. ”°©ˆz —ðaì8f  *Œd^Ž-jz°" ‹\~Mööåì¹$H»Èþȹº±¯ó>xä'Í«¶Â:ƒ QW®zUéK¾J ÏîþzñÆË6J¥a_hN%XP1QnÎÜ„ÿÞN-ßuŽØiÑœ\¼ˆÔҾіv·§ÈNÐGDüÎtoÁaÁx3`œw³Z!J&ñté×Ã5šÓS“Ç¿ò 杻’¿5ÿ‰Cð§I^„lvv"Ú'ÇÏT £c/Ÿ<>ûž$s%aìç¬k\}ùDª˜{× ÐQHÀ[¢$÷KÝ.ÇѶßèPoLÙÎ*ÂwþוnY endstream endobj 1670 0 obj << /Length 3302 /Filter /FlateDecode >> stream xÚÕkoã¸ñûþ c¿œ¬¸|èA°®×¦½¶è»A?\[ ²­$BmÉ'É›ËþúÎp†z™Þì%‹Š15’Ãá¼Gru·’«?¾úÝÍ«·×I¶ÊEžêtus»RR §«L)‘š|u³[ýsÇWÿ¾ùóÛëTM0ÍD,XÇá”ݶØoï•äÕKG&I„”ñ*Ò Íû—LäÃ}Y_EÚæëþ¾Ä]ß6ÛSGê£wMMÏ=n›ÃÁƒÚòJ%뻶캪©ýûòöJ'°ÔÛª¬{BmnéuU÷%à3´Ø¶MÇûtýiW•¦ÄUÃ7WV®›aÛã©/ñ pÈØ”' ˆï€|•ëõ¡,º,ÿ&ÉHgx]–»‡fÝ7êŽå¶º}$3½‹8ÚXÏá¾"œù})a³å¶iiQÇG·‹;¢Û§/úªë«mGÏÈøJ”‚Iì#Du§¦÷ȨÙRÿ;)ößtÁqäF¤’L(•ΙºÉ׿þÞÎo­ÐZû³ÕÁãk!M2;>®Jbƒ®8÷~\}*»ùî#Ýyˆ eR‚Ï[žCEßôÅž†õé°)Û9ǶÜUÛ¾i;⣎­È¥žó±B±V~Qy€š]¹Ç3ªÜÝï¶9Õ 6j]ßp˜íî’†Ãöôè¨RÓ›‰4ÜßæJËõ©§wuÓ/¨qØÛòèáe{@QâÉE½ pv¡>­ò6Ö,\º²šÚ$0,ɨ ï #[¥"Ï` @ÈD«• åMu`ËT°NÑë#Jp±?•íNº!½nȳË@˜¿ ãe Èû¢ïK>GåW¬÷4BQîp¬ÖÎ0ž3NÇ©ÐrÐ 66ï^øû÷?¾8Qdd,RíE*¥yÀË€¸K‘åg+ÿtqé,™Ôƒ¦Qr}ãD#£{àIG¤Éäç*>ŪÅö]MwäÑŠö Dîît ë‹m9ìR;sJ ^D*Ñ^ “)&Ätá¼æ„‰8Øòú3Œ†çÂ:;kšLoÑŠ,.ñX´}åT&l›¶½2ÙºQ!åv@°¤pÐÑ’†Ü0Æ „¾Y]YP…Ä Bãçý§‹gŸ^É­—­Ù‰aW%3s}' ÿ÷eûÍU,×, -Ú™¨o¢OÌ»5«¨;Xò€zÀ¯Ã, æ"M¿À, ˜ä93+y³>|1³ž’“A'ºòPE_IX øe/ž_‘(û’ó_61hJ¬~#qùŠ<Óq.t\/@Äl!k&M¹*Rmï Œ 6<£&µº‚I`=‡ëaELÙöâÉÙ{¼ô°«g«\êµpf~Æð3G:Kq'Þ<ÞQ' Y… ÞpHW½‹¤?ªw ëê‘îd¡Ò•xð$U¹ß9íse¢X^äá Ö1g‡Ž)???Uä·œH7©’¡H/†d#ŸçG3Ћ™­úÁùdŸVƒ¹j)“жèJÿ’¢‰ Ú¥ˆÁNÕ„WÌÖCŠpŠB R‡A‘ɰϤL阒«¡ –ÄHp—NpáwWµå¶wþPæ‹À^“EãÚI¨£„M†À¹½8˜øBàÛS§ÒžSÚr{Ú»¨Â°g¨“ _\%‰_yù¼ü ÀápÙZ— B”±+A¤³„’$”'ÌÓRÐ.ÂCÉ·°¹]iˆ¹'ÕTrÏ$c©Â™R9¶ JÇG ˆ$NáOØU‹Y$ ߟ%“À;¡Ô Ë°µ(öM©¥2Ÿk4$9$Ìé,EPÇ)³T3Ò¹]Îd"Ë9û~™vóƒÿž“+Çßoê¹àô5KÝÑ*ŠºÇT ¢J5<ÚÂ4*êbÿøÉÏ e|CÙ62>/¦ÊÎÂÒdå`QÇ.ÎóK¦)`_*™"o‰¼÷[6P,œç|§’9Òy²n6}ÁiléPÛ^ÐOW¶•Û Qo iøEK°³b9À†byž8Ý_Œv D]Y*©8 ¶æ„é«üOeˇK…șߙ›ø¨ƒ4ÃÒ֩ȾDεÐÕNÁŽy?]ø+Hss8o$äÂØÕÆºÀC¸Ù< ò0šœ³›Æ‰Ùúåá—²ÛB&7ZÉ%« ƒyþŒž‹HÛõ¯dÕÿ­¸! ¿8—º;“¹˜>CæìTæ®eßîË….ÿí….ô!âxaÙ~p_¼˜K.>†/Žÿ0¨È.»xØ,2 f\m5³ÞpáGc!W“O¬Ï°`pM¿hÁ…Г ‹ xÍ¡®h¦¤ç¯~8Ý9ôƒUË•ÿ/ú¶ÈGªÖ×W‰ÃCdCµ/6®x sÚYŸØ|èø(WïE„9sªŽÐŸ­÷¸ÔdèkÞ^*÷N:ŸŽ0.8:Ú[Ïò‘›³ÄÛõ%’±WAÍ‘ƒ‚†Û.P@yf¨Rlê—Š %Ÿ~A‘´L•'œ¨ƒTâToQÇ lIÝ5CàýسÎ1«ÒR´d0j,ÍRg×k–½)ß%À*sÀ`Ú%À®–“œ7´ª9¡Öõý¸¡ýö”œ+’\¶/àúpñ¤~Éuiš•H³t4Ïb/oÖÄdfcúœP½XèöÔN«ÓE¦-ÕÓRàgÓ—ôséKž’\¥¡ü”M¯Î0^DÎ>» Dº©ÈdvöM8&š4PJ">ô§¢ #ñ€*Ïrjt ²¿4>ã\ø¾A”lüæ? [2¡ & hÁmø3³‘ ø„Lp­©ÃòŠß=$£Oaú¿ûGøk3LÏ䢪s!+ÎÀ½¤gˆْ‰|Lá}{Li,ÛÓ€-¬Fg«:ãJGo‡€ŽûÓÝÛêù ÀÙ³~<”ÕÝ}O•³rân^ý\ÙÄx endstream endobj 1676 0 obj << /Length 3598 /Filter /FlateDecode >> stream xÚ¥ZmÛÆþ~¿BȇZ‡Z —Ë×ù¶vŒQ÷ŠN„’xwŒ)Rá‹Ïò¯ï3;³KR¢l£Æ}Ðrv¸;;;/Ï Ï_=¬üÕ7½»ùöe¬V™—ÅA¼º»_)ß÷t¯¥¼Xg«»ýêçuÑíòjwûëÝß¾Œ’ wè+/I±”aË"b¹ñeñÕFÇ™§“lµ ¼¢™+¿ üõû[­‹6(n7ÖÍ=ýªuÿXð6j*T”z~ í6o˜#YÅ^–è”/ÕJ{±Š™'X6öȺ™p½¿ ¢u^ EÇR”uߌrRñÇ÷eSwÞíFûáú% Þ´¼¼ÖSͩ̋üÄJy(ònh‹ï¾yû&øfIšÐK"Çýœv‹ÆmY²¶Ìë]±éú|[VåDz~àÙ¾ÍënC‹BµÎåÇ« q0^í¾iFêKM…ÚË ¨,ÛPæÊ^ÜÝüq£ Œ¿R+•ÄP'^J”AÄÝáæç_ýÕ“?®`Yºz2¬Z(¡×ªÕ¿nþÉÖ4ÝÌ­Gž½~¹™tv1i`­P˽T̓XÁT¿—ÆÔìù‘Øå/~à/Cà«Õ&ñ”]OýY–ÓSá|ÏO“U䥙ˆv¼ÔEøN]dØV]èbu‘xI˜ÎuMÅ— ¼,•´A¹°©]¤é—\@zaö‰pKÁÜ4~Ç;?ÓÝd`­ñß7zÅ|哊ÂOª.i}/üz™¥¦ÒŠŠæÆzY®Tä%:q¶ Ü (à«)áí: ÖCWìi¤ñnäwEÁä×Õ»²fúŸ˜ò²¬k8¨ŽãµÊ²H†[ŠcCÏ,OeÿÈï&R¾ß—äƒyui¢Ž=_ŸqÄ0 ½&ÿõŽèVºtÄ™¶R/J²©'Þß*ïú¦…ŽÔs9:ÂM“‹!äÐ5ΧÇrG* ¥t¨^&^šº ®ÂöFe‘ª`~z‹»6AfO€Á.ïdôôÈ—©qÖÙ$?ÎöÏìþ´\[ÀêöB•YäÀàƒóAC˜™oÏæC»þ6ylˆæGZô'gXÏÅ=ë‚»\|zè„â¢Åî$•ÙëúæMðr o‚k á"#^X H ÂÙ•Þ^[*C$w¨ßãlý ú>‹?É$žÒfñTN< F †¦¨.²/2Ä蓆 ²™pM,AZ°˜œE;ã–刎ÇÁ؇Öáz›3lÀ„É#µÓÜ»º¡•Ÿ„Þ{ãcy”—)Ã(ÖýSQÌߎŒìŠà¾b˸GŒ0(ûnÉ®& •ý‰Xá y›Ãv)‹hÔ7dÌ6ccÖüöC[3ƒI äüs?Ô;+€âx¦mÊÕW#ICéAú™ >wÀ¸ñüÉi(#GjýŠU^Œ9ÓFFٺ魈­Ej.ÂÙÚ ‰Zk,¨ ­?Œ£)ÒDAç‡4ýÂIXCß!˜œWûD­weÆ&”—L)Úø‰ÊFùg`ä‡ ¨ [T.)ä§mW´p\^c¢¢ ¿è?‘À¤Ã« BØ#µ‘¶Ój¡·`ì'Gxî|Çx)^(e‘ºáßcƒÄMª4£4š9ßÖÀ@E`P±³ eÓ\ƒŒ0´‚ùÓ¶4 <1}ƒÇ«ðd)s,šZ? pº/LüÀ¼½‹@A:6 ‹®'¸ZL!Ž®œjnf!Â/¶%­±ñYpÂÝóe‡šäÔË¡(v¿Å#Ç_í¸H'*¼yÍæöÊQ™+'šàfPzDÊF†ÐO—÷By~«3:#{Ä=ÞÁ¾÷0–ZV &BL£ XÚ]:ê$?ó"”:3=îÚùv£cæâUcÝ×R誇ö÷5é¿Jpaâ`„&X±+!wu’µ-Jä 8í¸Ù߳ȄëGaFR)¿1ié½Èóâ²±lùÊ$ˆ6ññô@vvúË­žYÓÛ’]´2>‘„öü›W°Í8aäøJ †e_t;䵂ŸØúŸá L‚Á¯1ac®}¹s¤ÇfOÎ(v]Ú’$øʺ°)-&š¹òwíƒõ«¼ÝŸ6ÿ¹M±`YÓ-‘žyȱdÛ–Ã ù®mºŽÇ¦ˆaà'¹MsøX*ÆD WÖ5’óÐó#]Sÿ’¸¤Í7/^Ù‚D"CØêB÷6ˆ\×( ™‡ƒ ¨Ý`¢H¹e³ªFd @’$®¦Ç´¤4ØÊJTDÔS»¢ï)u]b˳b̵Gq”Ï·G ÆŒGŒé VÖ” Š}ÇCnÞv‹]yZÄÊêt‡(ór)G0ŽeáT«m½LZÖ‰´­Sà§=ßl¹òJÄáž›ƒ¹ÒAð¦J±Ý9ÞDíYÖy-%%UUÑ=_8õc"¶‹gÐ^¤²Ùfuª=ÃXœ&—g ¢ôµ0 sèÎDÜèT_©(„¨,seÇ颰‚Îiè ã.„ÑË[Qn£É-˜ç¶ ·›x¤­Kù\‹EøO‚'#‡''ðŸÚÖŒË;™ÉßQÿÌ"}†Íáˆøaû<Ó¢Á­±ó<Ìd‘ξlWwÃå¼ÝéwnËÝböo›Û7þÚ—ÛgT˜e6Ù¤&ùh,æð´Ô‘™6.­‰,Zml½O oq´^Tó÷²IÞÖÊŠ»¦…xÇ—ì°q3òÍMaÆýéXÌEBx4m”r_ìÝI9âÏKWíÃÊßP2[´ÖžR ckï¨î]àûé,& -çm„ÇñÄ<À°Da ¼D¥cü9ú“ìƒîCóA 6ÒöN7¢¿;Õ¼¤p®·\®íà{ÆO¯·¿»þZæ¼ÌILj |=©?îÈðÁ†G[ah¦^fvN|ªÜzy‘y¤}2â1t¹gÚQƒ!¯¬í®¿‡ÁScãQ?&\¿®å®„-Ÿø=Xw ,d\c¢Î>ò-¨J'(Z]+E Ûp`ü3r b›Çb®©Í„Q*Ím'T ˜ö<—o'@æ ³0¹Š_Å*ö‹¯“?¼øi1ý&žŽÂyÄÂ9oÿPÔ….pžçº{Êi2†&z`´ŸÆ°™–Ë(¢šŒMH·Ø‹e§Òh¥Á1ï:œSIaôþ¬f5S…€ü]/‹r–†ì#r ð×Z¾ê3Ärºü0¼rÍ~&gðmO ƒó0R—£ÎqÁÕÏ.:eD2²ÊB —K—0ÖèïÿYMÅíz¸˜ŸŠ¶¥¿|xÆÒÙY›–ÅŒükbfÀVV‚®X”Ž£¥cž_®¨²èËÂj{IΣêk1F,ö}K±”÷ì¾ ~?Õäå™CàÉÄE‚®Ê·K-UÜÍøi‹#¨’’X%6n‚bŽ®FŒkˆ¦5MŸ=DE˜Ç6…@˜f÷U¶dVg®‚ ë*J\$ë*&tfëM/3²´1dµ0ZjœaÀ~k¾`é5¥’¸_é¡ÐÐ^^Çœì2îû,L_ÂúvA:sá=x¦í'¶€¥“žs`[ÑÁ¤ÄÆ»¥“‹MËÝ’¹jzWX/£¿9Ð9”À6éžâ(ë3CåSRÇË Í?…ô„Jcs?Šr–{²SgF÷Uy\¶5­ã%]>=FAjÍà‹¯ír7ªb2gÙwoþýbÉŸ1 âéÿ¹„"`°-ÎïÚ²¦¶ùüKDÊy—?LfgVm¸Ùª‰W¬c´j.Ä"ßSÑYòºc„úRôêL ‘LùJ_<#È_îL¿ÞþàDϦ;&ªKvÜÈ ¥yKd‹ñÃIȼÆåboùPËüc3Tû‰:É>6Q’Y‹¸„û³8¯Q>ÊRª‘¤Á–J÷-1>¡M…hR¼™›Œ&Ï íñÅÔöBJ["ß»—e‡Ù5i÷¡ÔÔÓ¶®ó4žÈÕûåÓ-ó:å<•N-ßÿ>t½-ò£eªÓ<|ÞëRpŒ~Ø’Û,@BíéåìKÿ7¶&.Aûï)ìDéP–îäNäßLôÔt\Gä§²ªæë•õ®öö_^ÊúlÆÖDblÍ]ÏÀ ü³Ê»-è+‘Y'θñÛOÛ Œ©xÇ1 7“ݼmžcøˆPOõn–^ƒ ~ŒýÒäKªM½(¼¦Ü8sxŸ$e-v"m#²°32° ñÏÿ™cÖ¢uá|„¶¦ÓPU<Ú¶dµ=2z2íeÛª0ÏŽ]?#ûO½ì>ùäv“±Ô-×[Á/înþˆå endstream endobj 1686 0 obj << /Length 3013 /Filter /FlateDecode >> stream xÚ­YmsÛ¸þž_áñ‡5s‚ñF¼éuj·I.i“fb÷næš~ HJbŽ"5$eŸî×wß$Øq®±?åbñìî³ ½Ø\Ћ×/nî^\½ £‹˜ÄŠ«‹»õ£”©."ƈñÅ]vñŸ V‹ÿÞ½½z¥Ød¦Ð‘49fNÞ¦I™â¼ÔIÑj²`Ù¯Xò…]÷Ó"æARòÙÒ‰ˆ™vúbÉ4‰Ci_W‹%EP¯>çiçÚkü•AZ&mkõb"#’„ë^ëô é¥Õýò»Ë,é²n’]~ ˜]=×€Å$ Y¿ž,–‚Óàn›Ÿ+R´ö7±?(Ûjf^`Ӻ꒢*ªíw½ u]–õ‚‡Áõ€mÇ‚hÁ Á`ÿʾޭ£ g·¯«¼êÚïOŽ`¶w ¶§$¤ÎöÇâô¼¦[‰5ïwz¿`a{«ûƇ¢ÛÚ–Ó™ÂæÛ¼±ó2;’¯q kg´Åïyë&;9õ¡åó–<¥÷Òé²dŠpîPyÿmµOë¦É[°b6XµMvûrèÝã^’¦HªÔ©;êe¬ê@ùf 0çŽ?öܱåΛ Fƒ¤ÅÚ}žŸ(åh6|z_¸¨Ü9‚YÈH¤ šœ#• Âä`€¤Y0l;ÀˆS¯Ê<²CM¸Ü#Ùïó*ûáîã¿_zÞJÅCønP¹r»èíµ*sŸ#ªP6(h±xêm°‡Q¯Â,"ŠŽçì“G€Áœë„½Aœ§Ù=ZÄò «{G´îË¿uç‡Ï¢à}Ýåý̤ský§¥% µ4LRœÖ£¨Œ öjÿ‘UÓî”åѾn„M; <°òûhh€Êì]ȹ `AëÐßDÖ'H7'g†0Nz6§Ñ|°þ屸ô!‘ÉÔŽQEƒ ûçjòÎ Þ _Ê®Åøíœ”IAB:'ÑÃx)¤Y,˜êý†z?…fR6y’í ¬[·°·vN,†³mˆÁ‡î8Œ<÷pîòð`uÕ9·Žà’ÄL>C±ŽN1ä’ˆˆ8‰éIA|óJ;cDý~ +·¶¿ÆÀ)"m ³`Aîzƒ ¢sÀÐCQ–¶µr‚k Ä67MÑu&Z€¨Œç;çaùêš|_&iþX@RxβÛ"ÝÚ7N'ga0†ˆI$ùÜ%&²‚S¡ÁÍÑ%„¼ë0xXEL”<ÓóÕõ?o½ŠBä £Iä4™°*Sÿ³Ö·O\EÌ{¼Ð1H{í ¤à9á€{,(oå<Ç)œ9áÒúõÌc,ÉQ|$9Ð6Q~ »N3³]trÓØ7E5Œº¬«†P Éþ‰¾h0‡ÛæÇ³ìÏ" 1~ÐÞˆ|*õ½ Ç´±>TiWÔ¥TfÏ~s.˶‡Ý.iŽO½ZÃ={³Ýrš¸ÆÊ™ñÐöv¤c ä[ËxŽÈz…A'jŒ@4²(ŽÄZ·qxií$ã«Ø°qÑLÊ œr_d?ìÑw-… ƒÛü+ÌÂ! Ê1Èìòn[g-ñ—3R†|pÐAѶÞ9M“,+Ðd ¥µ ‰ŽO,bßgÛÛØy Šôø‡"tt·žîû‚'‡©£=U9‰ãY—~|sùÅÍ>&fòËcbb¢µ~¾6ï^Þ} 9¿ü_r1o>Þþý[¨óÁV_iä¯îþ¸6ÝÔ£bÔ4V„ì‘úJA„RsÏÁ¯žatäˆ þe(4,ň0ŸÛJÆÀë 'úzÆL$Âs' î uÈÈ#}r´ã&Äÿþ™©‹¢±üdyC ,mŒÂêÈÜmûïY":òq ìSž$²‘¬Tuµü=oê“¢ÍÝ0š{0ÃB š ,f¸«Ë’/“ë,8@:k5µýÕô×rŸŽ¢\>Ø+ôÓB‹ÊÓm·J=÷zä¶'! ùëÏ÷«¿Oàè—û¦F²Lêfóoý)¡43Ä¿ $2y²kžód€øxÕ¹íº}ûýÕÕÃÃéß A“×?Å Yˆ÷(ñ䆀yí/€ÁhÎác¾Î R°øjÿˆý¯Ë:G'e2¸F—¢,xg~¹18§Lº;©¤ù¶Sòݾh“Ù.$IÝ ¸Ÿåö6ƒÂS“òAÞ>iº¢_2%¾Øw$ßI3óјËòî±-Ú©(ç e²8ÖôÑ–jÀø¨¹?sÆTáô ÕÝÞ¢*õ¡–ákð÷u^¡yÑ…ìÀ‡ö˜b[CÂú±9zqÛiꜥ4Ÿ;zÊ%Ù)Ãs@’ ¦‘Ñ'Ε’Äã°79àY] ¯€?0ªéðxÎ œ° :ƒûÔXr!I¤ô)5 ¾ €3 ƒ?ÙþMžZ‚Ö 4Üä7ù­ù=Âx«;3_ÏàѬ0‚%®0Â/¦2‚!WHËim¤†±}“g~RiíäÂϰäCÞBª‘÷XpLî)qÆŒzAæevH“) ÅÆM¾Mî‹z†§Ûæ‚Ǥ­7#`Ý=H"ò‰ÍWÍ ŒøF<Òˆ#‘Å—î'ŽŸ]<@2Êá7Rq¬£"V1õƒH‚¢’="fAÄ1"èßmëݾµ× 0ú77íµûuð>fÝ} <ú¨¾¹ „®Iöð;Ä ìÌ0Æ,Æüà Ñ”ÔÌâÅTz׿ý¶N‹¼;ö7hvõ,J­ûú§&îæógüî\7¿º"²rÕæG(Y€ˆ(°ÁÇû XC-(ŸÆÊäÛ£ôãÓ¬†¶•=T@S„Ф¡*¡ò©˜r)®>·íCc÷)‰)$ à:ÃÉM²©M&tðaÁ³¸ÀÀŒÆˆüàý¾0Bó¾>”nMlЂÓÿᾋ[ÔÐØ¡&äúT\ƒŒ¢#ýl¨†Ï*›Ð¦ÓO±lüìA&çÄÂ0‚Å„1¥}ÐTœP¡Ny–ã·9Mç~v±Ö}Žƒ™·.6ýîxŒöª²¤É evðÕ2Ý%·SÑ{O4f$ rÓ`ýíŽð]Jô‡èœ\±t–âÍÒØ²¾Ž B)—  ôr"Óz4—…†AJ{4—ÅO‘"ø»úŒH–K- j´&Ý eä7/µ~y÷â{rA² endstream endobj 1696 0 obj << /Length 3275 /Filter /FlateDecode >> stream xÚ½ZmsÛ¸þž_áO)5s¢ðJn§3NΉã±ï®‰§×N¯Ó¡%Äb"u$•œï×w R¤ ÛJÚ^<‚À$±Ïî>»;¹;a'o_¼ºy±x“ð›D$'7O8c±TÉIÊyœHsr³:ùGdÛe^.gÿ¼¹\¼ÑéHZ1§,åÄLŠ"/˜_üd.3‰Ãs‘ IB¯ìòçg‘mfŠEßÌæBgÑuŒ×$úaÆ9bßû’:_åe~×å­ï}íeûëOL3nŒ„+‡.)Lt73žEwE•—$´©W¶,ª;º«?Òõš{j/›ºmçõŒëèþïýi´Ê»<¦OOôèÓ¥Êb–éþÛ_õÆvM±lCÛ$cž¤½è7^"IÌ¥á±Ðâdûn´&Ie‹·—~-üx…_î6‡EƤ? ‘€i)Gs31¼Èºë¶íéb±ª‹¸nîœÅB²t!´B‰À³ç)¼—LbÍ„ÿòº²]‡Ïç"ú•ÂdôÖ_ñýcÂ+G}È7ÛÒâ°ˆÚâ7K‚ýeW4vc«®¥žuCBm;RôæÕŠعÉû-kûq&4<‘‰eËxùr»ëöÂÀ·ø½¸Ä¹õ®AÄ€0(ÄO‚Àá†Eç«Ýž];|a‡{-l¼²ëüS¯ê?t ¯Ä×p$ž‡‚Í4.Ò/Â쌔1! AB'±LÌœ ¸¦‰1YèaLÁŠ!p7<õðà‡ðH‚Gâá‘ ðÈzÛU&z]W¨Â•­–DDEÕÙæê'/[šGØ€FÛÁÎçÍ p´¢°r›ûÑe]uMÞv~–3{¸n쌃ÆÚ°Y'1xµ~?~hï—¨Êu]Öèµî采—#x$$½$wâkÛ­ëUÐd±I“§µmöpàòm‹±¶ÅÄÚ¿ûOôÊæL¦pÍÄÜdæo1—1ZAHÙœkxQý˜²ÓŒ”ze§ƒ²M¯l}Êç9XÑ=XJMµMózK¯+º'åƒèòÓÞ;ÀЮz8¸±yå”ǦF½*œãøhÄ\ÊÄ:SƒâÅy¼ÒÕ1J—#¥ áL\È,¨õ4f*yNë9cÝÓ~³ëïZßSTÃ[äóŠz}L«tÐшø9"ˆKãõÚ®Š%"ð¡–3p´æx6ÈÍQü@Œé .G\ò;ŠCOºGM:gõ*å\:µrs*ÄŸð!§§y±šƒbÓLýYÆ,^ÖóM0¾°4Δ9P현¿€ 0ïk$n]·&;·'—±—ÇÄ1UÑEQÁw}?!!| !0ý€qÂÄCƹ'*‡×hlN-0{8ÚØ¥-p…>™ œÏ`Љ,×y“/áÉ2بß5´‰8lµ#7æÞ€·qï½wCỪnòÛÒwoжžòX>+ ä³zÈ ßáTCŽƒ34÷a²Ÿ2ù¨÷֥Ѕ»|ù± Läx2”¥Ç œ¢%×ÂQà4ýºh ÿEÕ61"MÃñ’Å ®)\ëµuþ¶Ê…!ðžT›È²Ás-¸ ·ã0}[F`I Z}`päµ ›€=·y'¶È©€Ñ†”À1ë ¬Ì¬boʈè¢(Ëv1óÂÖw—§½öU,ÔAÅâ*wjo¼-6Λò6ßmèæ¬mëe‘wže!ƒ÷[¸k1}Ûá³4w¤RJæVôaCÃÐÙvÛÔ¿)û½ñlbSÜ΋v”6à°3ÉHO˜Aèii`õ¯-^òsÑAìš·»ÛSÄÀ5m Vôùlš:Š€^þ/»xêô“íý¾g±xãtˆDô>T&HdlöäõùÀ|i™@qG2•à– ²§*G ŒvÑý²ÙÆ Roa½ «¶œbQpªø_½ñº<®ïcßñÒS Xˆï:÷2—þê­Ì*}XŒ“lœ€Ó†€ô²ÞÀ^Pކ„‚RYÚ’î(ÁF©‡åÒ@„[–°Ò²¯ƒQBœƒsNw¿ý_Ë­øñ•6~Œ q=²!È“)ǪÞWs+ L{XÈ‚Q`>b —1(À¯‘ ©Þ†ôÐÛ¾íG/Š»;ˆwþîÒûR<ÝÜÌ€ÛÄ~=8A|N¸ùoê½ç]W÷"~Ÿ¼ù^g ²OÉŠ²U/<ÅjZ#äºT3‘—!€ß¯ËO>CÁʾL„‡# PËÄ»fðÀ¾˜ãÖkÛ]‹@õâ$y”,ÁÜq=Ùu¸ðO=ßö%Ä~‘i1ÊnЧâ€â`ú9ö4€\‡á1{Ṟ'e¾²Ö`䢸·]@rŠ…k‡2–FOAìRJH0›œŒcö {ÿqL„’€4ºÂØ}”»u| å>ľñ’ä¯òœ™|÷ÌCý‚«Þ šH+¸¿"þÊ õJ\`¨WŽ^úrÛ| ñÚ¶Ãz%’ºçꕃ ’LꕸԾ^‰‹8¸Bo¸^‰#X¯\[O “ž÷éç«”XJ‘=$É0—ª”B¥T¥Dþ)¤«E˜T)a=£þ¿UÊZµ{nD¿CcV£ˆ© ‚OØQXÁuÝ9ƒ¹ôó(NQ›¼fÃï,!±ûò› endstream endobj 1549 0 obj << /Type /ObjStm /N 100 /First 1000 /Length 2464 /Filter /FlateDecode >> stream xÚÍZÛnÜF}Ÿ¯èÇäa›ÝÕ÷@àÄðn€] °½Àn! f(yÖR˜Klçë÷TÏp$j.¢F”v,×Íîúœ®ª¦vÖ%´s$´ ,(AäY°ÂøÈ‚V¼°.± …SŽ…$¼&‚FCðZ$ #\‰"¾Åsh›ïaмˆ·BÛõxž&ðEƒæéE,kSZ!åW‚´³X"DHë» -Ï’ žÞ…$È+~·ˆW †ŸZPŒŒ Œ"Æ0:äqxc£UtÂX±Fô¸¼€›`²…ÙÌ’„UÄJJ Jʳ$-¬Qù k-¯› 9Ÿu¤˜¯aƒ¡‘öP®M w½VP,%– â<Ÿ×N8d‰ y¬ëÉgñª¸´™Ç%ð5Â,)ÏBZx Ö 'p=ò5‚ä` xk_ƒÙà¸f„¬5o,$Ö©7 Rb|&Ÿt¾›†ñ|PlPŽ×°Víù.JŒ/ÖkXÁÏž”ÇHì.b~ÐBJùšQåwƒá#ë nM~¾M~KF›QÁU£e/ñðµ˜ýÊÃ#£ÏºÂà c†#D–’Hë5àk VÁ>l²=à»É°=¦J6ð³Áˆä2Rxb ùYø_ ‘WÀçÕàZiÅf€jEŽg„je’Ã2ìAP\(ʯ'ÀÌ*Zž~1±Á#O–2öÄ“¥lh¶ fcüÌPYwZç·c˜9=:;ïšz)ÎÎDñÑjsÜ¿ÇèÇbÜæÜÄ·wà ðßÍ~˜üøã¨øuÞŒ?TKq.Š_ß¾ÅÇêëR\Œp‹—úøí¶Âòº?cÙª^.˜%òÌ£â}µhVóqµXsI¾öj2-j¾Šs… ìë!Ñ*çxífà›ºn0Ûùš«σeó€Qñau¹Ì¿ÿ>­?ŠŸšù¤šçÉÕEñ·â—âçs0ž1ÞA!¨Ã$/sŒk'A «€ÿƽÉêû Š¿6Q¼ß½¿ªå¸©ÿWÓ?ªz5ûž•³AóVœg^Íúû׿ƒcHv¦@V2OÕ«››‹ƒƒµRy´wAzxQ¿ÑÆkÉ$Ú}gøŽ­;^pÈÖ—8Ùð^í1||†áÃÃï³4BDè;K#-Üh%#"‡IDCÐ^Œ[çɾS¼9;Ë+oÆËiSоÿ…ÿ}÷i¹¼]üP_¾|‘³jY^5ó¿ÜΛÿ`Ù̯‹Ióy%o?ÝË)Æ•‹E5»¼™Ö׿OÊeùûb6ùþ¡»¤~îÒ'–£`N[Ëdîcû¼’Øcx¾ÑŽbªß>NÖ[‡`ƒ>“ |Úuˆ5ØÓbã 9³Ø®ü$a<\Fó^*HÚpï¨FKìa9ö–u3Ÿ•õKºOÏÃc­’Š7í §u&±>€Æ«ùrºž8m£ôȈ@YiÒ2SN“ôÉÅs=½\45)EÃá1ô‰DÐÈF³ÚJ ߥ`e´‡ÑÀPrUOwؼ ¡þáùLÆ}Å÷·ÒwÁzrH¿’Á>-$ïë*¸'ì|÷·{™Å^†,üéÄ×ÑìaeÞéïd­ÑÕY2=u–â…´!­¨ZA·µBKu±¥ºØR]ô­Z!¶B;sjgNí̉^€ -o­HMBü¡´yk=ÎG—ãë‰^¤#mبñ¿ïdÜÜ`—3FWˆ(Zi`™v&‰ ꉀ.äjìù·Éቪ!EéYp·§ã\]]_WsPµ)-•¾ƒCž ˜^h>Më èÜWÉ;‰ª¸ÅbœÇz¹)›ÛrzÙðV¦Ý€[™KÒº°Ådµ—žë…©ª`,; 3ëßqw`‚’Üüéf ,a@,HçU¸s¤ò2R_,õ„Uã^ ¬b(*š²ä3&펧ˆÓêæK5]TÃ*ˆL„3o夲º¢o«ÅêŠygHsiø- \Žw§a>î¸EwN®³éë€É¡œÖÀa42Ž-‡¤ú _Ê›ÉA$— š72(9‘'Û(H™œ™˜J%ûZ%h3X&û„´íþà6m#(ÓÒ‚8œéö©J;éð¡ ðÔDÏk»“èùõÒ'%zÜèÍÉ÷y‡O¾ o^šs’Ü%7ÁK­Óñ-´œ/.M oq‹Æ‘“–éƒæ>Ƈe7Ìë’ô,T^';íq(zŽCÅÖ¡6‰>Ÿl„A]Œ@\ >…²ArOß8'£BsöPà¯]^’|΀*9l>^’ õ£pfãIÉŽ·23rQæ†þ‘3JZÝòüæÒF;äæï±n>UÁÜ !þ­‘NÒa<óqy3Þ =2/Ôé„^§Ò=Dòv8÷î'«¡Ý`5êô`¥4,é[ù ùSp šó’»ë:y •/¹ñ>È J„€ß±µÑýSÎà6pH0#¬üdRîÓ´éøÏé¦{LëŸfÚŽÂ+ÇÇÉonw{WÞžÞ»â3ßõ~cu+ÐÐnn¬ HHñþ¨²TDy•Ž{øí|ºüî=d½iŒäóÿŠÓ¨}ÁPA™T—óÕ”÷¿4|ÃIÔiÛ†;EèǺGr¾º^ÍH‘Ú‰}k_#Åê„ó|ëdw{XÛõdmïìNh;ýêÍÿ>ú9\ pPç]Ø£D÷ %ú'ì)÷oËËèe žƒuˆÒ*ÿ|„àýžBÀÓÓ|Ÿ†½~‘Ü,“¸Í‡d’¿f £Mäuµ\"™Ýeÿ*YäÁÄ¡pŽÂ]vy²AƒÚcÐø ƒ†—0(—mü]›%$‰\”{VÑQƒ–7 êqmvÍ™^h³èÐ\‡Ú:,9„ÕvO?}ßÓÏ}V æE¬æ2Ž”“îIð›²á¨Õ®æeýyo¥ï mŸ(Ƕm‹¥=¥õí)­oOi}Ôþ”œä¯ æŒ3 C$£3‘‘êHÔ"ù­—²Z<,åŸéQåÌZ4VÉÕ¡Y¬f³rþmx<ÜBáþ’0¢ƒ$ªÁß‹ŽYµüÔLƒãÑõ÷¢‚†Õ¸·¯$®jQ/DX?åõõ¼º.—Õcˆ?^0–$q¶”´´&B|kîÅBE&…ÁŽœøø„>:ƒ·Ÿ;ÂÓ¹—Ðo´µAò—ÉýFž§ûަ$™rÇNv1øIDÚCf©/™íiX¤û/,²¡¦ endstream endobj 1702 0 obj << /Length 3365 /Filter /FlateDecode >> stream xÚµZYsÛF~÷¯Ð“V™Ð\8F»µUòLJ씤]×V’‘X‘+¿~»§g@@É´“u©Œ9`úëî¯{ÈŽ–Gìèõ“ç—OŽL²#ëT¤G—×Gœ±Xªô(ãº\ýé|öÛåÛãS>’”y+–À:VÆte±.Qî s«ß[z.Sm %Ý÷SqÓõUQ?›ÍEšE§1^et»§Ôÿ´*ÖÆ ]Î2YA½r7üÊÆu–•ÃLXtJ7ó®Øl׆äºjYW¿2&Ê¢.ÝXoºžd¯›–†ªza¶þ«ÝL±Þ® š+s=Ç/…¯œÃ>é$¡o±ËVpK» KƦb ;èöëçñ$Z5Ó·ÕMAwLv,Ñ1KrÇ3'‘Ž$T¬óaIÅkh»ÕÌ¿`Âîn$ìàúW!R!¹{a)ÇÏbPp÷®ú~Û/š*nÚå1g1€%;~þ#Bó\±ÀÓç¾À7¦Ár×Òª!ÐpØf ¯„óbQ5ëfÆY´¼ ì·bq"&a¸’E8 J©1f¸Ç ‘°‘i1*e?Š®òã–>byÃócg,•™ÊBð<‹Ó\8øpŸ®3ë«u±ÀWÒ:ú׌ Å®‡¸Éuô“Y,MçÆÞÇ4è$©CàщYtfúb^ÔÅú®«:’²85uekŒ   ±¨ŠeÝŽ±Î¤sË¡‘¯š©¯Hé#àû+ð˜d‡Ïwëµ 9³ä<›ì:¥n;Ïòоs™Ã6éGMUfÇŒI‰ß¢Al<,´Y·ÚtÓ‡í”m§”£í”ÊÛ"÷¶ÈTô°ßVW3Á¢]_55Ý×´wt9\|½­þ0K’¨£ØÆjSô~Þª‡¯Ñ ¯MÙÓxWýa¨E‘Ö¬‹Þ,htX&è“ïÙì[\»Ùµ5*mŸŠ×W‹]Yàø‰‹º¨ô.d@"ó4=Ø Ó%=ûÄoƒ rFhA4$)šÇÀ 9pÍR­ó”1øÐ BA«8ã÷Ý÷à 騲Rý…[ïúŠô@ HYÁu¢Oè;}Bëºm6Ô*ÜøRÓoÏïÇiX]égpÌÕæÁ@œò8ßïþ>“¡ÎýüÎé~i³mƒûSþÕ¸=8u-ˆÛ⡸­4Cý+­¿3nOœ±ˆaɰ/qÊò ¸´9Û@æÜ@:dŒ#C±ÌõŠí½î;ºmÓ,Ìšæ¬c˜ ‘ $¨V‘ñ8úKµNT‡K>¢: k¨Ç4—Âv Z~ã"lexu:Å–ÌsSu ª,Vê|»– NX2¤N·Ö机@ æ:2çeéË:­=UºªŠÎ:[¸«lZ`JÞÈO§Á§#wd,þÔú‰ª¦¡[T2è‡GÕ¢êïhpij Xëêb¿d×ï•ùSÎüt Œ/`rtèÀ«Ôá=S‡àBŽ<ºJ-­RYö]ÝA@ð¹fÐÍ ÕˆaɰKï¡åèžEãuD«½ÞµÆ2àª/WNò­ŸDΕˆèÅ®…¨èÆ~žqÎ#·ÖELŽs PâÚv˜ÛÜ#_‰‹úpmM·mjKݱ‡xèè& Ûûý ÝÂ`àq`JË>1÷Á2‘yí«ò1`Hî"?9;ÄÓ«q¤ç‰uõp 2î!ÅcÈÈ5dp1×i’·Ÿåì\þäòìôãùùo"fñ‹AÐïLå=ÌTËeU[m«Œ22•Ž´JÔÄ%¤ºÅ^ü‰¼XA@XCFYÑt.8m¶]ßÔ®{æÇßW~ÉýúöÉàB–f¦áaµ§Ôÿ4à²& ÃðÞÓÁä©»â>½Zt±ÍÒ‚™>¸OØI‚q€b$€‹Á_¼hÈÅ´ö kƒŒHEøáWMsC=ŠwÐèîºÞ S*©ß΀p[tßVöò{Ghx­jH2oßà#Cl¾'–j‘*ã½f;KLÑ|WU¹¡d5ÊæC ššIy¤}[T˜OÅeS®€ ÙaWBÙ ­3AáÛ¢l®U8†Ÿë¡Â5§ðЦ\õWÅnÿi ðiß“”Óhæ“A)¦”D(ä®b« )©%„гÁo=’§„N…üGFazóî;,‡0ªN¡»²ÈÀ†-]`}^'3\=@³èʹéLañDxt©Ì] _d].v!^5‹`Zï—ÉÃÝ7g5)·®.gß!«ùOÛmb.xýÆ‚gSúóµD±Æ"“”šü 6@RÈõvEÛ»1ôRx†›=è¸_û×}7“þ!? ;Z¤XÜ¢žôŸãŒ5n¸vCž‰ÏW–fÄ›5¼F"T$N«`ºoêkCžÂâ—CøYÃu¯2ÉZ»Uµ UÄÁ‰²T¿¢ücï6 •Œ>X^ð;MýÞ¨V{sB“gE¹©Ö뢎éeܪSTí b²‰—hŽLQ¡ e]ŸHDkš"3Ùz·3¤Ä ºÅvÛ6Ÿ÷–Ë€)w‹Ë¥b`Ñû•švã—Á'÷œT¹j`uª×á½c;ÕýÊX†bp*†.þµ`™s-8¡ZpšÿéZ0›’%§ª_üÇìjÓu¶¥`6lKF|B²Ôûe_UR™¶À)«MlÜ#Ž8dí–ÙGõÄÛp¡á2 ’ÿ½BŒã°W³µNè{sº§îÍnÝWóeÛì¶´ ƒG Awœ+Hô70Ëì/®!ðqI@NgI0ï„tZë¯1KÎçL ó ¿e  fªð³b(úí"°À´Ãæ6nCÿm³ª;"÷$_º«c³ÙPqä@µj4¼¹A"zDéeGC”–‚÷\T®¸Ð¢|ço ëØ¿ªê–-¡ &µ·Mk=jæ1di~CGÄIL?3‹ª¬€#~¹Ÿ9„W-/¸žkû\ØÂ"xâôHH.¾ƒqÙ‹7/ÞàœélÎÄydLKf'ÒžÿxrrúæåüâÍY*å?¤KBæŸÂ€²)<+_·…%ÆXXŸx‡x€˜û1vO©oÙS/Ýè…²9²µ¯^&x(Ebe³Ù`LA)iˤ43©RAŸÊ˜¶åÄ„ÌÀÌÕã5+*9É û~¤%9ø~°ÿ€Ï?è$h1$ñ5™&EÙ¥ÀÒ`èÅ'âõ?­ˆiÒ¤ B)™‹Œy%ª8IžFœüP°¾úŽÁL·2„0©r@ËÀ 1ÆÍ“P†Ý‹P¬9$Ïc7ð”ú/ÍÅÊÆ&;·B㊗N<½Q*à´¹ªÜ¢¾w”¥½ÏÀ–;´²I»"©N¾(ÁÄWp²5áˆäpEù"áŠzz†3"2Nà&î¨ÿJ­ýñtR ð凇³ìtR— endstream endobj 1706 0 obj << /Length 3432 /Filter /FlateDecode >> stream xÚ­ZßsÛ¸~Ï_á§ 5AøIn§Ǘ䜋{Ûw×NÓš‚-^$R%©$Î_ß],HI>ØVr}Hì$±v¿]ˆÝñ£7Ï^^=›½NÅQÎòT¦GW7G‚s¦tzd…`©Ê®æGÿN\WËròŸ«·³×Æîhk.˜Í`*¯–ç¨òŒ‡É¦*S(žJ #)ýÃM¤I>—ÍêÚ½˜€(M.¶"yÚÜp‘ç´º”UÉÙjÝ6a’Oøãæ¤X6õÎåÜÕ¥£žªî]û ŸP,;êºiZºèAi^Ý Æk·¯]ÿÙ¹:ÜTu³ªŠ%ÝÁ“§øaðQSX•Üú’uÓöUSÃcDΓë¢Ã×Â˦¦v]TíÐ7/ú‚Ñ ¦fw½EάVð²/úªë«2LZ…™Îݼ*«ÚELifr9Lð"h¤»Fb†«AAØÈ¹7OÐÀÕ—×ÍÃe"Se>H º†‡OPjg´L‰ñ }¿îŽg³yS±¦½ ÎSr†Ó^žžáÄ‚çvÊ¥ÉK ¡¸Øc)ÿŠ<>>9ûazyvžý7Å8;ýù/rzyù©Ìál“2ž¦Q”i®<ÊJo|+é;9OÊR›%§{xB¥{xÂñO(+jêpMeOý]õÕ‘dåŠnÓ†›ÔhÂHHì8/ê:бßUfÌß12tBà•µÉ{”mORyŒóÙ䤻[­ûÔ¨åúE3Ç ‘)xï9õú5 ·)Ë1„J£Ynm ¢8 Bg} ¢)Ó& ¢†'¤9¢z@h.cr¨_À©2)ËöWÑX®äÌHõp»jŤ’: =šaz?/?V5bNfÉ ÏÁ.¹J^Wõ z‹0„wÿ‘(làh•8¶­[ÁÉ 2¸“Í—¨‘¤f©¿å}wW"0ͼ&On«½Nñr³\º¬YcpùÛ)_•Ž®Dd‘I Eë]K‰`)üja¼+©ŽdªTƸßË;Ö‹FÙçJáæÏ¼  掼[GqNÖÁ‹çáÏ™¾”Î̓. 27Ô¹Á˜X,—AÔ-O ü;á“VA]·;[h3ƒ!G¬» ±í9{àî­ƒõüÿ†ž /VÐÇÂÄm1w!c¸¡ö$º#SÎr5ÂíeÕ€uÛêcKÈ4“Vœ Ä\çÞ~ñ°›ífyê87Q÷ ±Xeo 5»ö_0³LL% +`l™ag\] æäƒ»…Ÿ4¹d¸tiÔ¡ó9ö™äe{÷Ñ÷X\Yß5¨Ó~ÊlØO2É«/Ű;PcØ®£‘d£²Ç-ZoöÔ$шÍ%2¬Æ[ÖlÚ=âæ›ÒoBP÷PöhÔVŒf÷‚ò¨­v£¶¦¨æßµ•"-¸M!×Kàuƒ£.‘[È6Ì=Ã7ýbUx—¨9¹D ÇoYèxÓ‚ÓZ‚× ÷—ƒà9)¾+-Ðs5±: ãßù6Á@ë"ÜK!ÃÇ7s×Ö4[Ws·ªŽ}K}r–é|oUÛy=gƒ3Äbœw°„@[0Lë|ïªõºªË¦ïÉ0¿M૪å²*V!J>ßÛ%:9áaM?¨4 (FUä½*ONY¸ÀŒEŠä5„ß¹ }Ãê¡€V ÐiPòC³RAâ¢-;ÌýMßS¸¢[b)¨´^·Íº­`“QåÖ9J_L Øw]§Ã®Åù 7 ‹ú÷­ƒ:%§œ(‹»bLW…U;r„ÀnÔâÉÍ52&¡Ø\rfgs¥Ú'E©Î¾c–ú{Û­ Êã›ÊjH°Í`uù¡»E€È“7àc/ËÅg(Û¯q…Ó¢];,ìý¦Ä‹ç„ë1ß‚®³€õ°á.£-xïÅÄ—8P\ÌçábX™Üõ‹ ¯o©I7¶€£¸ë¿ÓW ‹Î[ ªô•? (:’t»­Ù@Ÿ'´ÐÙ·®èWð­Ô½Wñ1rìßC-u}®ú)Á"6ÔW: QPë2ð4VjÁq”´ƃÚ~ž÷pýE‚¬8<§Ë‰»¶ÒG«þ€±Ì¢Œx (ä€[±Ï“/?(-êrá¾NÏ]Y¼ RLøƒ‹ó¢ý q==Ÿ 7êýû¤¯'OU„* ìtQ”à iº’ž FÊ „`«dèÕ„i¨ú ¬ˆ%5à òhÐ;¯¢¾rÑôÍ ÆµãM_;ºWÿ}Ò “1™š'ê?TJ~ÈÑåàçøáÜ1;„;êæ¨uæSª4šS™”©4%ÊB›ÉižåÿdŸ¦c/Ë2#ïÃ%ầǒ7f懌¿êaozFÄ?ââÓ pOÅÑm6Ï@cUuKWÌC®–C6…O·YöÁ´JLÊÚ là™Eu$÷‰´¯-™š^M@sCï8˜A<Aç}' Æ >$Œ:µ¾ïøpìð8|«e˜â©“”¨O`+»ó.– H8ä7eþ­D"‘y¦þl,WqpK© Îß;î¸lÖ[œÁâüè©­N^…–²¡GÂi¨z"J´•7ÎuA¦‡;×¶þÜLàìj^WÓÐêKc¨êSíu뺎€}7ÃàqÐ~±ÁwÜ+{Ƭ(Oç¾úÿl[9Ûµ®Ê4ZWåу°T3›Û³_¸•SÅ`ÆhÄ“šqq¯2tÙ»yHƒÀ#œ3ª]°Ðqº]ä¥éN€CÉ«å5&ž.ÜþpäOh0Ÿ[.\µ 3œ„ÊeSiH,,$ÕMóq5tŸ½“0kðmbôm7d1WŠÐeP'Ý–/”~"o©{Ù6]7Ý9ýmI½GvÇTb§=á.„:XuÝÆE ¤}ÌÊq#ž!‰­‡ÜO¾—­ãdTwÊ’WO'}°=!þ¤!qªrÁ¤¹WùÔA2ݤ°JúzŒUшµ@´Ÿ‚dõ»›ÍïÖJÇŠ£S›BF~Ïá\!¼ móiµ¥|ÔQ_8-Ùúœl÷@‹ô·GMG½+[×;º£Z¢NIj}¾ª7)©›Ž/ ๎é)î§×Õè£ôX̉‚ðÁƒOβmZ7¸ì–ëö °çÑ*PÀ°Ôágõ„ÊhôŠ•Âf’ü;)ÖþáŠÌ¬âñ¤™ÐÙ>$~L»\Ó‹¢ó5íÔ òûì0@.ÜlW-}ùTÉ,¹uµk‹eõÕÃL |1yõe½lZïPg4:%q0³ÏÀ@²·ª Ä1”7Qó#{'_cM¼¿õÿÑÀ¸vÞ e…wD$ìúͼrPq ;{\æÝêMã s<@ÒQçÜÒú”–2ø¡?T—ÙX‹5Ù!Xê2‘x#yüœÖùößOœÓŒfœ `äZç7Ü@¼úœö× „–Ê•‹þºØŒÜFó|<‘UvŒ5ÃÑ] ’Ó¦†'‹â_!v¨©ÏÉlF`Ñ5!E·ÙpnEƒÂÿ<²d]”‹[?”Loy/hà<Û“YÒÛ[¯ÑWŒ³ÍMÿ™Øm,·ò³ü`~£Òoå®tâÍᵄHñè|²ҳ߻Ž}â*eWQZQJ›{´æ_Þql–ÞcHIЈûKhy*:“ž¼¢ˆ Ƴí\TÕØ’3 $p,ôtMY…胃Æèã§òÙaTûía¯{à8^â7Ç-Ïw-OzûÇ“bXñp>ºw*¿E˜Æ²áóÛC‘`Í·Ò cýjRxùïÉb$¬À 8>ô§œñ/CûêêÙÿøâ;œ endstream endobj 1723 0 obj << /Length 2340 /Filter /FlateDecode >> stream xÚ­YmÛ¸þž_±¸XiIIÔ˶ùl“ô®‡ö]´h“û@K´MD–\½x³ùõáŒlÉç8iÒ]`I‡3Ù‡3¤V\­¯ÄÕ›g/žÝ¼VéUäI˜\=¬®¤A'W©”AåWåÕ;ˆ‹ß~¾yÈ k”¥A,rL¦+tU ß3ÁâOdûQ’»~˜1¢uÿZH)½¡V× ?J¥wpçWÓ7Ü};Ò~1‹Py¶ãñÏãÄ]SU¶îNù„&N½ûÊØõ¦;•M½JÈŒ y …”ŒÉðöSš!]o× åéÞ¡ü€öä“<[/Á,™ykÒbþ3ØÊ.[;l‰ÙEÚÂéŸCnÑÔ}Ûl£ðñdÄMÓöDëú¡´¦£ ÇÄ-œ_׺zêìY8Ê4 "yˆÏK îXè® ÃÊÞ››/pÇâ 3Ó ¥<^ÞoMÝŸC¥Êƒ0V—P©‚,ÎFfg±äq<…£d8F ]æ)ÂÑùÐlOE'g‘Š@…ÑE¤Šô¦“BŹ/¤ð<ÊÿtŸ,jŽÏfp&óÞ ¢T‚Y–á‚—H^Ìü½64ך p…ù‡°ÆTÛ} ç¨nèhÜ?bªhhД%“[Òt˜äÂÈûi»«l”š§WìL@cxÎ2Ò{Õþ,@îe.¼¶-æAì;t`g¨§ä¥­uûDýR÷ú,2ã(HÓ1wPHÀÜŠÖÖ0Åžñ>dœ0‰/a,”80ÄgDÀ2y`¡½ÒÝY Å Ó‹ÙN¦éLc‘¦±‰HU’¤ç’s˜‚!ÕeèäÝC)÷EÕ5³ª~lá7È®ZR÷-Öü™‘2ƒÈeANrbwPAûK—0!ʇcJÌ_£+ ²ôànØn1ðtE ëÀÏ -tÈV×uØÂÎ(Õ ¼›¦¤\÷u&ú^«âùi…t»Âá%Sã0óhn+sMÍj¨Ý¥‚F=žÆ2Hîúv(zžp;ƒNE‡W¶PL]¸lޏn8„d³lBRiH2ž°pŽ™ý½áï¥äAšE'2f{„ëdx8*½^V£MK(T%›Ç{l`/ìƒI Á#9O]¹Šfñ¿„JpâIVvoj(£•„LN@éLS3 ” @EXZ'ŽíiÒ9ñ†}P»4,ìBJ”€ƒj g±ÐÁ©]¶ù„^\ØC® 4*Ý5so5åXŸMŸ¹nÌÙ‚.%µ1¥ …ˆIЋf»zC²¦µ«ÀeVHY‡A`èàâJ=0°ZƒWöPF°©bCš¶·þHrœ#q=oï¿NÎBÂiPZÖרM7+É1§¸ãK5Šúî–­Ž^ƒî s™n>0Ó5T8¿ Jº*/ø4Hç(Ê2‡"h&(‚‘‹C–žALº+!¨òû§!ð!¶JtQ ÍÁ«ƒpÔ±&ç$”n:u:iùDí]SÙÒöŸhdzjuP‡¾ûæ1)˜gÂÍje ]°Ü²yÖ@Ò1kÐö8c|Æ0âú“Ï.tÿ@_óuÿùoßþpÍJíó~×tŽw2ºŽoÓ¯e?›1_=<û/ùmê“ endstream endobj 1729 0 obj << /Length 1505 /Filter /FlateDecode >> stream xÚÅXK“Û6 ¾ûWhœLcϬRo¦õ!i²tÒé4»’d™ö²‘%W¤œl}’zøµã´i»‡%‚ ø!SoíQï‡Ñ‹ÛÑÓë˜yœðؽەÇ(%A{ c$¸w»ôÞMÞSêk¥3­¦n|z%ƒIÂ9Ø3ºŒ2TQ·ÅÓë ðRÐŽCÔžIjÔg~ÂÀ.Zfz: S>ùnfG¡ò¬ÈßÓˆnD¦šZÌÇoߎ¯`’ÓI&çz[©+«º®kÇårž÷sKàú9Ø%›Ã?ÇÖb[d¹˜_?só ¶2~ƒÏ3F xï™ûŒp–Zñ£G¦³ˆÒ‰,ŠFé:ÓÂòK¹Z‰Z”¹ãB¢´¸%l€‹|únO¬ÊX! Ó UPÍB }“”?hÇP­BV.OyÑ‚‹‘e^4KqÂPÀH—{S¯›(mfÆQD¢Ðw1p`ŸM¸Ow— ÈõÉ`CÓ&ƒá\2EÞŠ,Âsö,>— ÿ•'ÞCW.Ê@}w*,iDXÊ.Žï.«I™m„:a*Ä Á¿8Â6À,€É„_kX‘ëaE®‡¹VÃíÊ¢îTs³Ù¸(ëz|5ñaþ VE¶ø[ò!”YL"(®G¥Ì¸Eǯ͸uì“$ŽŽ6>ºjpèù6SZPÜ?kô]U»¹ñÁx/²z/<³3›ìÅ.Ä.H’IYiñ ÉÔ„ÍȪFom颪>*Kºùt¢ W¬hѪuk•n–÷V Î" ·6«»ùªK'TV1+¯u-Á¤Sý$õ]oýDÙ±‡ˆÙDÀã’kK+ù§pR¥å’RYÕÕZ€±%´Ýæ¬ûHT:+œ¡l³-Ä¡Ñju°,Û=ð1¦»éü®Rö;é½É7ç½I³R.÷x€ß˯¥¾“ª­›«ª(dUºLÍÊí‹lÇFaxŒäÞŽ•E ÉUSæhE}ëøÊMˆÏ-»»+„ÂÒÛ¢Ò§Žcu0Dö`ýðx'(@_íïì%1pUåNÔzïTµX7EV÷o•;lm.‡Á¶r N¶9IHÒ0º¸Ú¢ôÏÛœjñ;&›í*”dœIK<vVîXÕÆRoäV —ߨá7Y¨6³0„>¥¦*¹ Þf‹63Ò ·ÙÚÉX@Ïu˜{eý!^ÜCº$»¡ štg= ©£XÄcGúaÂÉ©Ïz²Ó[!K|GEA⨄†Üž ½M)øö]†ûx‚>á`|šAW\Y~OòždÉ’ŽŒCGî›`Q/¦½9J{ßfŒ“ð°™ØI¬¥1:‡%Õ8ËRÜå@QOGP匥Ù@‡Ñ^Ny0°ã÷vâ¤÷‘™/¥}k(Ÿmš ãÚFõÒ‘ûí’M–Z”JêûãÍÛðm´‰qÀ·cx0¶zñþ[ ùóôì[}t°OÛ€ã‰åæ§—mcx/ç¦~šÎNÎwò ñslßj˜žïƽÛ0óúå³Ö–\º{lûȵÔj\úM˜ü;UzôêvôÇIê±îÃÜRCk—oFï>Po “à ܲÔûdT7^ßîIˆµðnF¿tŸâ‡£ùú‡ :øúgx™ç‡ðõŸ¸×g%ûoÿÁg=4`Ã…>á}Ó{= £‰„húÜÀb -J®,oz$^_k|_K-j™Yμ¹H<™úÑŸXögSÙÕùXÒ/È@Å'~aœCGö\/!#k¹5ÑèQÙûi„aÞ§$ñÝòë¶«Àƒ$æÝÄQLY4ù ß¹vØT!QTëY!?N4…¼«ªåNð |z&;™•¹p¢ç¯¿¿²«^t”ƒ:ÁÉÜR;\˜pNØ©Êáj™•ó"Sª{kû£á•€ÜÜÉÆžñ‰‡üpš´iAœÆçY蕼ïqä®Ò¯ _ÍS#¾ŸÀˆ·¹‹WßžÏU)BH{½lBRýn­œ endstream endobj 1745 0 obj << /Length 1932 /Filter /FlateDecode >> stream xÚÝXKsÛ6¾ûWhœC© &>;M§vkwÚI{HÜôÐô@“”ÅZ"5$e%ÿ¾»ØHÊ´ìä–ŒX-€Åbß.èÎîfîìד˛“óë š%" ½pv³œI×Êg‘”"TÉì&ŸýãH×›ÿ{óûùu(KUˆÈ“ H/úàº^×vi×âÚ—8¿Vj°i¡ÂHïZx0í}õj¾\×y§hÜݪΉ^Ö Ù:m[Ò#ê!¥/‚Èêñ-ê‹$¶ šM:%Öøþ1! ©|á'!R$A@+—%]úƒ¸õíEÖ‘ºB¦Þ^ýñ¦%Ê„ž‰üê/¾®ïÞ”÷®—í-0¼¶Þ~õ÷΋‡2­²â3nþm8üâ·Ÿùýk©¬nXñúúâÍ»«o0.§í`n €ŽdÄë¤Ë`zÑÌ¥ëÜí6Eu•‡ã6(HÆ"Ž9”H°y‚!Õ“"ö­¢—Ÿ!w•Š¡D«€}åÑ6D¹—; ŠD™¥è9]cè´Û"+—Ÿˆ¹_Aæ ¯X´\*H’uÊ3uc&Ú®)3ò2ð×å=¦S±.Wuͼå®Ê0Fø´U½[óÌm1Â"Nè]«¥¹iè*˜.-+æi€©Ã‹x eÛ•YKSè=QVP›”O‡™¬)»¢)Sßù¥X¢ºénÝñÖn.>Õž`ܰ¥Ã‚!Q'PŒQÚÓ”gn†A) 1‰Ü‘ݼýëj*X<3‹Ê唡’Ħ¥E£A ™E{}ùÖ¨hÓþíËn5qFèŠÀ³yEUâõ)áAoé†IxSÁ&ööºHMHoAfþ8Rj Õ}ÙÏ'çÁ(wî_ž8Ôˆó9öËÎÃÜ œt½+è/F)Ž64sųÛÀ±ûdþ4L¤M Öƒ¿A½Céܘ-y•ÄÀè™›È0mt„’?a¹qYÕP¤e–m¯(†òÂxQ²# ëBÄu pRõ®(Øzðñ¬A#ùö‘õ£@x#=Ø3¼Œ„(g°^# Èu¨¼4X·ÏÔµ0a¤Æ…[¡/ÁË8!4‚±ÇKøÓã%®Ðˆ‘¸xS•¸•Ü€5/`Õtúñz — É²~CètÞ²‰ôñ»&E‰bª J|ʇa+ô~žx×SmС›LûÃÉtGNWoˆ«Ð?,ÞSÐE;”Y€3'Å(<í4&‘£4ÅÙFvëk’‰ö¹×&-˜Ìô„à#ÁØg´ë’©˜* ²Ð”/A$å\ypâ¶©ñ&e^Vwt»Ò•þ„+ÇšZdií+D<Èóì±´3žH»OpU7óY y ›°^f%¼PÑÖV ë*õ¬«`•uyƾ -´’4ز„e ÿRvŒn¢A¦ÝÖ™›À´Á W½8Þ`Ußð2´?Ft•„϶±Šó³¥L÷á¡S”Œ¿@§4ôVñGÅçØ*@‘U€8´ °˜ÊÎHRͧ rš¨‡ÇFŒQÈ ŒÒÆ ÈÇdx¬Cì9þ ÝÑ"–‰¹†)R:¨y=µ¹ÀÌêõnSµ,³Ø‚ˆK2Ø †¹¥Z%é© <Û‰ðvÝgó¦‰w_Ot%ÊQ@ùr‘š·$:¨«ü `ÙDeLL½Äfd¢´1Tþh\Úþ¬»Ï«jÒ”D)ÁÐ å¦~3dõ\¤¿èÿÚ`‰oŠ¿oM”†âδýrô½B#’ƒÎLùüUd=HÉ‹áÇj¦D(9v¦Z¼H7þ‹Á*£S&­7ç›ò#&p‘/º–üü6ʶF[û€æð²Obã¾ðˆ]Uk´”/âþm`¿KAYp…ïãŒIuïÝjVï*Ò‹rKÌ4ÏKúA| ix°Ù¨–6ˆiË‘]]í¿Õ`FçÃpǰ.-EJ“™À2ã9ë¶ÆéȼMuÃîzlòÉwâÐ P>é~HØûi.ÏSÿãep¤J‡»†—A†®…ÃÜÓui)êih2#ŠK"*Î’ ¿ej×" L4úİRš®åÙOosسƒ'dcKè—äèßó@a½¼›Лºö~ºNYd«î6ÝÍQÄJ£ûžÿ‡ýÃíO`îš·4(Ø ‰º¹ûqª"y¾Ôø;Ó àŸNÌ&çËèƒèªë¶í÷ççûý^˜“ñC¦38þè“)q2yúS’¯nNþA4”: endstream endobj 1760 0 obj << /Length 1323 /Filter /FlateDecode >> stream xÚ¥WKsÛ6¾ëWpäCÈ©à»Sb×î$“N§²’’(’“¢BP²}éoïâA‰”)ÉM.$XìãÃ>l, lü1¸ž Æw>1"ùÔ7f ƒ`Œ×7BïDÆ,5>›_0¦uÍRT±õuö~|ç­=Nä£ Š@¢ä&ØL¬•·ßâ¶v›0é¨MS¶`•EB“­Æ;û[rÚZIhØ$DQcä'ËÇfÆ’U=· ËÅæÈ²]™ÿX5‘e;A®x˜b‚áO`ʇ•›rn“:[/K`¬ŽíxçÏ,‘»²µZšªßcV¯ÔB½b‡M‹²R³›8yˆ— )¬|¯¨uðÁê½E=³ÜV MÉ)b€¤ùl8‡Èó÷}ׯ³DpS›÷å¢~Œ+Ë LÖs0A€ÀÿF×Hs´ÃEQHÇï‘É3ÂM xØД~ò…Rß µ£ŽÓ–LÁ´Ù¸ªë ÿuhž,E…n,¬‰Hp„C®•…Í –ÔÚ[ö}öƒë¤ëD¯°þ9ÓºwÙ‘š„¦¸*ÓÉðÏÃ&…G&ÙKû,’CÕq%>s^æÛý ÂqÕÛ”Øf;Ï¡KªxÏ º¤âi ‡Ã.+~ÂgúJŸA9Q¿Cóæà9ñó@%e±‰+íñ"Ó*xs5èu؈ãÔj…—c’ĆÌÖYÝ+X>dð¶Ä“\ô¢Ÿ)ÛÉ)½xIçße­oßÝŒö£dtW×ïnš„Ï·ý–Á¶ (_æµÊNROfÓ·/hïϪÜÎßD6 ²¿ÛS¸±Ä5’bðù+6RX¹²?JÖÂp¡‡®h¶¹q?øûdá•ˆî¥ ¬ó]bPÚ5ñ÷ñ×z>´ÊvçnLm_Gï,×3åFÕ?>Y„À•A¯ZRÓ¢Þˆ[4£È¿æßd9 ‰ þ?ŽvºV#Œ„€f¨ãw¨íU¶‘…çÞ0w'šl±‘ON®ô y”)j' èæÔ`(b¡%æ1ç=—v 8ð÷È!`:ìyPx6`¿áêmé4€0º×öE¯ïç§aj’õÞi—O]K]è[>.q‘ì£ìMßÛ¥†û7oWŠ+¯g„Ø näwŸp*DʪƒÑI‹Úçì1Âÿ qâp endstream endobj 1775 0 obj << /Length 1454 /Filter /FlateDecode >> stream xÚW[oÛ6~ϯ0Ò‹iJÔuh†¥Ã2 †!Ͷ‡u”DÛjeÉ%§yÙoß9<”,©jê"ÞÎ…¿s1_ì|ñË՛ǫͽ.bn°xÜ.Ιð‚Eè8,ñâ1[ü½t¸·úçñíæ>pGE(˜F ÈzϹÛ4*cõAâé+n€…` ¶îäÖn‹‚¤ïê•×»ö ÊFħßͽC‡Q‘ÃÜÈ#EUòA¥ÍÔáÀő۹-ËÕÚõy'Gã-}ÓBjM7Ù &"§Óp ¾¦S#;®Çbv§ØÄ¥‘µc0oÄÐLŒ]~ªÙ«š¼–eÔAɬc£ˆ=#ºãÝü¹ŠÝ¥,Z5 þ”%ÐïÈòiåøK@±²ž<åÍžFà :–t®oŒÎû‰f†>þV5ßäÞ㾃?-j”¢áà ¡˜ïŠ×c­²üe>  1ïÙ°mË´É+`•àÜMW4:Ö¢sÊ3¥qÅ_êF–™¬3ÚWu]ÕÚJ•v1­J,SeªH(/U[Øìé-Â2Î £ÈäÅÚ˜çz¯Ãbß'·ß(ä¼e‘—JâFþ²-“\jóZ‘×a—Ó´ðžûüͯü®aàD³—VOZPÕ-«N¤˜]£cÉÙ"ˆ_+éÉO†`ö„Ú¢ôøfb`t#¢w܃\1?H2S·©ódåòeÛ]*¶Á?«ASuÀ±3²IJLþ€AbOWI#áÚÖ†‰€‹©oY OIÑ_"žë²ÈñÏù×çUY<“aC òçCÐZ@Êå±k lêøJ¶. ¼p˜íX[æsÏóX$ÜCŽe\2/ŒÇéíß’2…Ó{i&eeóp^®<“$àÅ)/w´¨2UKÈ2ú†lvq¾˜]hWÖö˜, @0–MžÊÂf©j¢oȘö ‡e‚ŽÏÝ,º‹@Ô¦êØ\”æîV>Rr_Õø¦\ßõþZEˆÛv·§ ;i>wTºoÙvÍÌ<|ìC™ëŸóõÓ)ùñ  ÔZC6ÃcU½ûa†Ô>_ôIô†Üg¡á>†€~X™ú\ºoš£þ~³yzzbåÕ˜)@Ô9ñg„ü¬#‰CI£WxP[e*)&_ý-0Ÿ „õx OÅ–Az#¾ËNÞ­Øù©*³->šÃ%Þ}-KYTiqƒŠ€¢Ò«G™~”;eoøÃð³^Ô·qo‘ãU[—¨XN¹Ãžqü]#›\Bè]µmž |ˆp©fˆ‰€Ç#^LcDÌèˆM×8Èz¡»!ûÎ{× ¼ˆÍÐÙs™ÃÝ)·²*GmΜ(áæƒÖìÄEÀr.f£Õw™çOÈòNÙœp‡¾}½¨÷3è²î#Š{8l/ –ÒöƒnD˜üFmÅáØÚþ@tF”í9†YÓh‚:zyó‘äˆèT°Ø‹&Î{ä¼xÙyZ4ÝñÓõ¡3EfÀOÛŽ`uëÛ‘KÚQÛI—vcNûŽÆƒŽàåänŸôçOòp,ÔË¿qF?"P†Ò–è’®W¯^a:Ä.¤HÛB"*8-ª ê\´#ˆÓJÓØ\ˈUu­ô²I5¸¤Ñ»~v’u.»ôgêlí¯Â ¡ÅS¯×ôUýÀˆ<(©ÛZÝ^?<\ßX£ùms¬´%0+ÕÎÎÒü6=ïe0;ïy ÿX’îºJˆž@˜Ä€Ç‡mn]:äŸT¶V[Û©™%*Ç8¤li¼JtU´=nRÓfjÓ±M ÈpDE\x6 ²93PN-ÉRµÒc¤ ‡B˜žs{ÉS7=öè-}þíü,:´¿;û0è«ðô¡ƒ4ÃlzpÃþ™;Ð)ônóÅ–äçÇ«ÿsÎ'é endstream endobj 1799 0 obj << /Length 1637 /Filter /FlateDecode >> stream xÚÍXKÛ6¾ûW9´2sù–Eó,4@›u›C Z™^+‘-W’ãÝþúΔ,yµÎ:è¡ð#‹ä<¾ÃÑà: ÁÏ“góÉÅ+Í‚„$šë`¾ ¥DHDŒ-’`¾އ˲2u3ý8}ñJE½Ù"Ñ$JØËÎcTᤠõÛ¿œOþž0iÀºu$ˆŽ£ [OÞ¤Á^¾àU{;uHPIr\N~ïö;­ùBôÍg”hÉ­4aìŽùÝJðZ –q’ĬõãÕ< Ëj*¢Wθ¢áoEÙÔv“q·¤"1çç¸eÍWz$ú£¯cgÍ SgU¾mòr3ðáàË3–XpïÌn“ÙµÖ‹¦tcV™´1Nöñ±ò½$ê¾i3ܗþZ¸}ÿ¨Ók3jÐ]‡èÔ ŠÞ<žÎ¥!!ÙI+üâ§`^ïÖfãÑ9× ïÎÍ?14Ѓ·ô0y³2Õt&˜ÓË«O&k¼¼tcV¤u휨N@­ŒÚÝUëôÑÈÙâ’$T·³ 2Bˆ0u;™2‚¾Ò[±‹œ–µÕ¦rór.;3ëüSûÉ~Ÿr×ÌÐ ¨”‘D)gDV®MýØ—à˜zbµ°òÒ“ìžàqÓße»õ® ÷ÄA!‰jç4”†—Æs÷¯¦Ió¢þžá7P8ãR£;aJú½y8è¥Ãܺ œ‹[Ξ•DÚ¥¦zCÏ:ž›ÏwUºŠÛ©V¡ÿÚ4«rQ»ƒ8ßäí!^¶à4«ª Ts»5õž:ov)¦çXâÂãµþ‚ÈÆžR(| ”WVÅ'”$àÏéÿFHŸ˜q‡(.Ì2ÝÍ)$uB"‘!É$ÔsüÉWù&-ØQ~?v*&BœÄNÑ–ôXB-z8¶ÏmêA¹M=(»ÔƒÒy©G`w M{~-i¼œãoÈ@’(*îª;‡ õ+êsò$:‘wÕ~=I(ç)ûÿe£Î‡“IJ“ Åú§aI;#w`w…5qÝVÂç ï¦1ðµX^OÐ×ÇãÏ©†@˜lÕ\¥»¶žA5c··‚ÜÕ??ì¿\ýáL!³mUâ9 euýãÈYÂâQ qÄOÙ0c´½8ÆÏ^¶jšmýäâb¿ß“V36aOý©øC¢€ ×A‡A$P†05Dá­Y[ç™Mf¾©jûÕ`ÖÞç¶b–QxI¬ ÃïÜð¼H«Ïؽ?á q/N)sÏM°#ūߵiR¹6í ¾‹ÃùT¨°ºuœ‡å¶Åƒ±¶¥Ÿl 8ö¨­´çAbë²8zß@µØ´ƒþr'Q¬K8Ϫ¼Éë•[ôÆ,ò,-\žn'ìkŒC¹ƒK·û†ljÀ•#€¤œ1æHÙCšF‚R  /—™Œ’œk&cJÆ.w´W3oQæH² F cB_\­?0€àæ·1eÆt7ü¨×8>x’b"•í»iÂm[ÅyF=òÞ<‡t¶ƒ|‡èŠ(ÂŒ–ÎRåmm»7X•oÜ«·nðÍ ¼pÍ _d›üw›B}}†î}jÐ,Ug;»4i?o€ôeuUÝX>ذ_–ËfŸº)cSD Ç^ì’è#/ú°#æ2C\r[ž@<Ö"ºøT×ä šäTŒ~PœHu”<ºöôiQ—÷|•xÐÝ3Ì(g”Âò›Šƒ^¬Ï,ØmŠý,°x¸bÎH|(gιbc1ὕÝï[Ü­Érl$³»õ@¯ŽCèå|ò/NF$; endstream endobj 1699 0 obj << /Type /ObjStm /N 100 /First 981 /Length 2129 /Filter /FlateDecode >> stream xÚíZ[o[¹~ׯàãîCyÈ/ coi´À"Iv»¤èØöDX RÔy™ “‚M€Í Ã2ìê’J˜…K}"À¬OH¥ £Âú8JÄØ(§¢ˆÖ-TGÉu¾M ÒYÌOQ÷² ¬æJ¡@Šj¸*„j½ÀDçŒJVoZPeHÍuã¢^¤ú¬ñRG#LStx\6-À#’T ëHTß$ “XáÁÒ‚Ày§èìð:„¢³E¬ƒ®±B.uLW¸®!eÅ™‚‰Þ©SGµ6¹Î’œ‰;}7Y˜ÓýòókÓ½Ÿ|Y˜# éRïÿ¸š``üi2ê^aÙÉtq­• N6êÞN®gËùéäzUSêw›œš}1'úE„y`“Xh<ÇÓ(0Ž*Þ®ð³9©ª‚ûÇ?5¥XFb í­ÀpÓåÅÅÎÝÎnö¾¼ó¸açá;—]wþßò9ñÓ“ßmçÝñt:Ãl'«cEñÔce%x×ßj7!4Aš›šÐfömfZÍüh‹̨{·ümQ?ÿõ|úïQ÷Ól~6™×¸Ý_º7Ý«_?èÞOa5ï“EÂJ +(´>K¨¿"lQ’¡v\=õÎtž½Ÿ8ú»·§öj~>]ØÉõéøâô{õÃ0`¢·gÈMÉ6äø,šëåååxþÇðxnCÑ-ÎR¬G%Æ×Ä[áœÎ¦7–¾Ðà@ìÁz\ðˆ+–Rù:Žç7“éòrx,’-éùƒÅiB¨ü ˜Ï㋳ᑰƒ[ ÔRá­+Ï 9›\,ÆÃCqd½²ÒÛ4 ž­sÛ¡Ü$^9ë”ÿÜ¢àl-a›AÌ"ˆ­Qµ%Ú¼=gæ—c»œž#9«L²á ¸&Réƒãòfxk࿬|: e•¶Sº¯£ø}@BpB¹ƒQ!àÅ=`\M³á€¢ ¹i@HÄ*]îäÓÅåƒ*V)Q?ÊñDÙ;Wµ%E«´µŸ6;±Ú”†Èu¯ÑUÄöØAŒù…<§là9i†Gysç§DÏd3ï Úä-šëÿkï¯íÁ¿¤¯¶Vv™Ý™Û?y$öϱþ½ ÈÓ¼?ÑÖ‡FëoDÇ FО‡È‘ ¬å Äõ2Êö3üøÍ«áŠtHd‹¶øŽF'¯Â7-ìŒ7~½0ƒ÷“Fv_w]”Ñe²kC=n÷R·ÒÕºãÓÅùlÚ½ëþþöþûî÷Åâêú‡®ûüù³½œ,Ægó?]ÍgÿÂ*v6ÿôý£S¤c¯²v_y}Š #p^zjsŒ6ré©M@¢W4ý´½¶N~j{R>8®ÐÎÆ"M rzY‚F÷4A%÷KÐÓ“•ÖeKë²¥uÙÒºli]¶¤´ÒÑñŠcÝßèµLÆoÈ|%¡= w@r¶¥„^@%ÅÛ\â1[½bîƒc`ÖÉH8Tì5’¤÷ ý,ò˜v¾ :xÆ £wu4}|3|[")ÜuŠ‚ãÆ‡í-ãéìf¬`žq);”ÐûÊ­p¡ª (ú¾Ú(¸ø¯Ÿ²Dtᩯ6¤ËcZ3”¶w¶¤¾&!§-l_m­7ž¶3{Pß0°mgÂÞÕ>m c‰÷¯ö±ÝŽÆv;šAK ¥A šgt€I_7´&úB„lª¨N9ÒW.L±=°G¹óB¢Fz_ŠG[ZPUàS+p˜øh³¤­`~»X^ H×”¬*ûit-xäD<]¤êQËñ-¥oë:·^CÑ+;œ ÏAÙæ¸ZÒ.,6…]JðFm >Ç=µœW_aöÓFÕ±ú’¸Ÿ6çb]ß©°•aöÓ&„ˆ¾[Ý™No¿ã¹Wa÷®£eýNIû×ÑÜ8rn97ŽœÛ›¨Üjmnµ¶´Z[Z­-}—ƾK›¹´™K²ëÝvÈl¸°eÖß x8Noâ•Ñ|;Òi)ßÁ0ÎØÅŒ;$åhBôõCîeŒ 7h®v¸œ½V9g5¸ èÑö×!¨û“ë ­/Úu @ô \€¢€9êZØùç°œM>Ž—‹ ?˜>‘þ ML“•ÔëhûýÎéòry1|Ôrf«?LjhBÕ£Þp _4®úS•†F9–þœ¥?šE1±õ(Ùê+Ö_Zq>z.tÖ° X”à(°ÝF±HËžOÿ³Ë£×wõ's«w²Ì´Dþ¶™jîÆœzc<ó Gï}3ÔVýðl §J\Ê.oeʆ›üˆèÊ9FɃ=µ%éûÁ{W£ÿÕª endstream endobj 1812 0 obj << /Length 1741 /Filter /FlateDecode >> stream xÚµXKsÛ6¾ûWpšƒ©™ˆ&$>¤iÒi¦ÏÄ9%™)MAŠTI*²óë»À.øY?Òéø °X`¿Ýý°tèm¼Ðûñìû«³‹×2öÒ U\yWk…a "åÅŒJ¤ÞÕÊûà³P->]½¹x­ØHUD"Pq †¬ÒºntÛùaw(ƒf—™g!ôêêìï3bè±þ ‹ Q^¾;ûð)ôV°öƃ•4ñŽVsçEp‹8 —Þ»³?zs§¿Ö!Æ~°0Pó”TpVúˆ+‚wrb€iœw¯,”~Ý,DìƒÅ’ËÐÿ½¬»Å¡ Ñݶ^áŽBá¼?í'~»þKç] ˜=š( ˜| 4J5JPDœ øA·yS컢®&Þ(LÓ!ñ–, b.†C•Û½Ö•®Æß¼ÑY§{Ç{|ö>=5ºOƒ5(³¶Å›F1M‚4â.ßõX~‡Ê“»Ê(ˆÓÈé¤1FdÉcM(Ò@F5ß·ÙFÏ‚qœéíNÀyöl±”aè¿ø»£|0²õß#Wc6É·(qŸoç3hDㄜ$ñ‰-HžDðûL-™Š‘D ° •r\&•ožãm³ªª;ˆíåÕÛ÷¯hn«³•nhLI<µtS;gbëA¼)t$´Þ·—†dP¡ÁF¯Ë¢Ò—!鮊Mѵ—üg‹U·î쯒]“R1ƒ“á;nÇc;œ±Ø5YÕ®ûÛG]Ölœ¦>Îï×ë,¿d¤µÏ·Nj‹¯šä¼.([@{˜¥áŒÕ²»}îr­êÜ%r}3H#‡Í(»)œZŽNkFrÝqżh€ ýÍa§á {+犹9aàI=Ç ò½Ïâ¬óÇãèª] ó{ÄO¤Ó­¯» ÒÈüXt[º)ü‰×l<'¾½ã$X C5©ÓûÜäPÖa<¡­ƒoÉ“8ð/œ!‡ Öèã±,ëM‘g%8'’8ü¶{ë[·À]ÚP¶ˆÜ@û-©nëC¹BùZão¶ZéÕÔ"X@æÀ)Ã-4-ü•^›<Ê%­sA“Ë÷#™*‹úH$¶o€QıuZÄj€ÑLö0šTïaW¡lŽ*ªMK{O³bð4¿„ç`:F<>âi¦ž3|0AW¤á<ºìHûy¸ÖäKS•"e@òmSöþf‡ù6k²¼³Àì—“>ÔoÝàrG»Ô@ ý„ÙR¯;²V­pª)6Ûκ»Tpu¦¦N¸º¦¬ï;ªò–º–-µ*hõÃ)CÁŸ¤ŒyçŸ0Ûº)¾9cé%>l.l+²å2»¢Iú¢Iàí3¨m þ ì¡òZ㡲¸} C®WÀä< ‡ýë¡U³­võ t›åìg¯H-¡å.;jüÚzGX¶ºj‹ë’F_\BNtûH©CÍž)z£bÿfiž3#;\ XŠ#X p¬˜»G`©,å¢&óñ€„ÂÚ4ë„„Ý<é…‡2®~<¼Ô ½Ô‡TXq2ULÖ×­nðV…‹úÐåÖ!£Ù£©xjÑ4;Nщð«z¼õ²f–œ­^=Ý÷ÛoI æßö±c£Ø1,9ÅE“ì&k¢ˆ²†ÝÍ úã¬a}Ö°‡O† Ìô¸”C‰WŒÆé²Œ˜BÚ5+H»³)±ÆOÞÈHæFDÕäW{ÇÿTM¨Û¶'¤€ô¯»kÛPš&ŒaÆal ¬&­~kûfÒ쟶;°ê´$õ+ÊTõ¦‚OÜ.@sV Ögê±”Ò´qa$ ‹lˆÏÌ1xÕ·ø˜«§-")æhû/‚0 ’ð$.ô±üøÈ@@tSäÆ >á É(øèû@º‡„²Î3—©œ>ÈØ°Œý^ÓÑçÌü —Ó®r}NÌMí®áã@Nã9S!–O’Ô)ºý+$²Ô™)G¦L‰S¿z‚jmmè̼q(ILu¶|Íd·uæ§ï§]«g"Ì#$ªï}1a#‰á3Ï{é®çˆ|¸h†M.—`™'SçÇ]ô¸Æá›HP+ö®Ä 'Õ=ú¿ì?l_¤b endstream endobj 1821 0 obj << /Length 2415 /Filter /FlateDecode >> stream xÚ­ZMo´F¾ûWŒrÂ’¡ùV´—DûFY唵”C’CzfØe`š×öûë·ª«‚Çö(òîê盛>ÇÁî° v?Ýüðxóð% w…_¤"Ý=îwaøQœî²0ôÓ¨Ø=V»ß½}׫Aûåx¿?ÉÛ?ÿõð%ÉœuQ‘úYQÀ®fEd8é&àƒì÷áK9«î£,7ËîEĈWõ¡ÖÃbýê´,õ‹\ØÃêV«Û0ñª¿½âÐÓ}‡³*ëý+Šíxz²3»=~…WÁÄÓmèɆúçF–jXîö|¬Ëãj/Ù¶–ºîÚÁ*¼8\í8X$ ]Q×åaB”{'Ù›Væ5òI5QÍ=€Fáå^¾Ô‡c76ÑŸx¼ïƶRMø#H‚ie¥ö·aàɱÑ4Z$¯çE*ü0- Å/2-ŒHxœút²¥e3tæµ >ØNdËGã]E{’>_QFªÔ]ýļéúïÛQÇ‘åpGóÌËpì ý ™Ê &›­ìT+clÓ9 ÉŒD+`l¼7eFBŽ\!Õ¢4™‡UvmEmÜÆ4xTÌB"I8˜ä¹÷ÛQµ¼]¿n´D2ÝÅôÆÝPâÊ?øw[¢~"òw%+\É"«£ÀÓ½¬s…Þ7Õw Ƚ6ìÄ9†Ç0<ó¨k3µ·ã}w>#D‘j˜³Xn™ƒD˃¥HøqÁÏMéŠÄ/‘ ~a_Òä­úº¤Î×[‘6GEÝK¼ “ÜÏ£ äbƒW1˜špÍ«dÁ+èY^%–Ðè•–u«*eÊ–&PĘÀœøHÅœó\Wúøq ØFq¼´‡ÙÑÀI¶£lšW¢Êê?£Ñ¦Ø*é`C3z㎕]3žÐÐ!•jю׾Ùf㺀¬B ,l‘–‡Áλ² 8¼':]7“'ÞªQíÁ<W4ÊÓëàì1ß~qy ?Œà%i²\Â|x\–ºÖ†"c v Ø ¥A;ïç=ÇÖhšGUÝ‘vM+öc[šW™Þ ô@-Éy>ƒžöµÔ¼€µOÅ›ðYhó7„j<À½Hc2ö)‰*]‰*e0¥(ª^©‡Ù䛩¬®õ73c‰Ùÿ¡k dq󪢆õ†¨íÖ|Õò¬sˆ¦ lÈ•F0[#h7õ âëd]J֎ޙ˳8ðPa :«ûú…;|ðñRKZ³ïò™rÄ ¾ÖY%˜üªÝê u’ŒœðÔšÆôXÕŠ9£†Ùh‡9&ÁöóNSL"ïÌü=7þ7£™›þÕ-¼ò({Y’ë‚îÒ~`ìÈDs¤ã(v¢MƒöÞ.aR0jAož…«‡yá¡Æ1:¬åÙµÜòÔE Áv2űüÒÕChŠiÒe&FEè‹d“þ˹®ac$¢Ù»bÇe"öMx,"'Ø6Â;v}ý­kµÝ naé° É&þ×Eo°wCƒ×ÌFÿ¿Éì<}ÿ¼£Äσpƒ×Ÿbµãô\åÅÒcBßDEá þFüíx<ž—ýƒïç»ÐM}hOªÕÔ5¶Ù ÛùÛöb›ùÀ¢ ÍÞa>®y˜;¡V ð\*iÂŽ"ôúúpÔ…iË­öšZ扪â¬%h¼%L_{K܉^^„Ëä ÷©yg͉N”ùyž¬‚à$%ŽÁ›½Úç„–í°¿J[pàým˜{‡‘Œ£¢ðU§ÑgŽ¢$ŸfÒ ÀWpר%4Ô !æ×&5Æ=Lî5:÷[ˆ¨T[âòT¬÷̤DÞæ±^ ÔÃÌÃ)P§ûýC½œ·"öp4MýÄ‚&(¾ƒMZµðçç»9LÍ_ºÙýnfmˆ`N‚Ó83p‰ ¨e°„)ˆI¤«´Ò²Öºá„Qßqx/[Øò’òz¼˜¸}ñs¾0[˜;Œûçxrš™¸xqR†x«b'f3¹B5' ›¨™ª*".."$’‰IÚò"2’R­ØAnn÷‘³."#_o LüKX´¶»u6q@ç\§.©Ÿ„«ZÊuÈв?\åõ)qÁøl•šB¼§×•Åsauzû%¯,x†$^êõV}QøQ6ù*جMæÑ+líûyZ|0œÊ?È¢¥uî»çëx*Âe*8NN¥;œ»pšÊçȨ´|^×óœƒjUo’zH—îéb8E[Ö [ˆÁ1ˆÈ5f o§E5ºìNÊdœ‚²@*éQÞ—Äë"ß”Î'Ѳ¿S±ã·º%»x³ô7]ê­"ÃÈ^dÝN%û–U•FOµ%Ñ Þª™o„³¬@©ô´)_ûºdQíeùq$vàìÒ )=7¾œè¤v@¢ð…–[qÃ{hvÆHY:c¤PâKm²ÐØè- 1 „÷xä Ü`iD®ø *qã7¤Ï”@B{lY :T0ÕDèá[,BÄ(‚P~Õà …> ýr Сò©å†Á[y¯ƒ8ËEhüø³["¸[Y@[ ^,qù÷Y€œËO'…†cÁ«½žž:cÉsÖ¼5ør6ä‡)S`gjü©÷Ã+MpdŒ¯MCRôÂð§iH[@šÿY¡ f vYf·+uÁ±®8±‚q.°aé&Æwœ9aÓaó6x [±`²bN ÃïîOÛ£õaP€W²êoêãÒt*ÚùÒ’rv‡\Ÿ-©#JÃ09u-òD~ ¾Æ†ó$ÓÉz®~Gšå <ý”¾Süû»ä”ókR%Þú&#ƒîé‡L:úÎ9Sj˸°kLýš¦tᎹª„™ý\f3Êzl.²™AÏÓÄôÓÝwC×ÔÕw[AæGÉ”ؼƱþæÿ2üóñæÿ/˜£ç endstream endobj 1828 0 obj << /Length 2477 /Filter /FlateDecode >> stream xÚÅYKÜÆ¾ï¯ø`pM/»›Ï$â(Vb!i‘¢8dÏ9&›»ZýúTuUsÈYJ¶7C¦ß]]õUÕWÜps¿ 7¹ùÓÝÍí›8Ýä"OT²¹;ld %›TJ‘è|sWmþÈ0Ûþçîíí›DΖêH‹$Íá ·èÐõf°¢Oc#úS;nB¾ÈÿÞ¾ÑzvÄN«Ø±S) jRk‡Åö+!ÓDä™òwg[wmÑlwJfAy,ú¢´¦Çn ¶¯Û{š²ýgSÖ‡'Z`†FñV‚—ð?7رâõM±7Íð :* жíl×ÓH #J²í@ƒy“Œî$FÙÊ8øhû»:¨[¸ìäN ùaÖj;9?„¡2­~¨ ²ÃB‰2Ž„Ô“:jV- MûEpÛ]”Êà;¾mlg÷Ák´L/bWæ°•aPŒ%QH[8U;SÁsÓH„påâÝã`*qeÊ%Ø–;™©RÚUš/2¿æ×Ò™ÃO§}×Ð Ùà\´ƒS;NÓëJ –ã@ÐQ3¸þZ3JG ˜<Œmi§sCÈ}nPÓNÅ!~ ú H±o õ¶¡f4/Ò™`ËÿR½i_ë‡f:¡¾kD!£F>îŠø.lÛÚ6 ö.NS‚Œ=ƒT¢.›/ŠÃÞ¯«8÷Œ— . Ÿ¡)“ Íá (0A¨¯9¤ˆ‚Þ’7âà3Ìe>e Ìe¿&æ„¿@k ~Ïrô[ª÷ãÉ@ ¬’ùmyD·AZuFüÙØ¢n†Ïä•e°Ë@ÐLd1 zç@EÁ¹é0lEq0;|øã@Ö¯€VC@v!–»®¡vt£-»¯{¬í‘–”]™ïܵ•Ë48Yv-Z®2mÉËëb«š¶í»±­øöbiÀ„5Ö²‰|úAÕÙ…)AV^ãm]TÊ;7;áç´OCM*w·¡1ù¶÷ưjáŸÈ6=j–šïžÁ6fiz•ú!I¸ñ%H(¡ÔD8YþW^óŒ«ëb% EÍöccŰrçSs•ÇþÜ ÜéW³dоîÆáç"[‚W¨,eh3Áú{gÍ‹q ]ËBn|pxu­‹Óë™Óó:RòtVÌ‚ /ÞåR ö[£¥åµ¥…§â‰{>§5¥†¢ça‡I<°úaìg¨’×wÍÖ(M6òºŽ9Ø|ë É oO£yŠä±hš'ìé 7vìÛ¦HMØZ2Ü~j©I1ö–G€ÏÏ5Il!E>Ô¨ì§mâÈD1ûÀC-wT½³×Ï݈ÔaldÃ2œÛ¢§“`»ºµKÿ/AÓÝ©þd®± ÁpU. ©„WB£O{ç/ðÖŽ'1(Õ„Ÿ„Ä„ßÇÚòž†1c^¦Ã. Ú´ƒÖ!S6¼ÀQ6>˜q•®JÆt<¿m8i×4êŽÓ(â ™]û¨üíMQ!oÑYðÞ*Ê#YIýÝÊÀÙÚœ9`ÃcÝV”;¨ÿ€Z—Œ./®&¶Ô:÷.|¨+ à¥É.’(ßÊ30ܸR¥ÊU ” ™ll*j£Ô"uCc WÜo®Î—€ûbÊ8á’`4ß>­» p„–š7t~­ËJó]ÎÆ·LºWžƒ§8úƒ";£)bÀ(êlzÔ$öH.SùŠ%Ì‚oš¡CrÕJE”ä"K÷¹œ¸Ž¥@1¢)7¼Z9&:‹f‡ˆõÊJG˜.ç8¹8³]¨”ˆ3=?ÑÏ«##%’dºz|Y+  4Âq„pµˆ ´”WÕ³@ ½ËX0ÕG±÷@œåj•— Í>/B>Mæù…)áèɃC.Î`AHÔr Qî x¸€$ Cv8rÁFcòÛÑŒ¸¨ð0'ÖP ¡¤¢ù6Û-q. él×á³ÝæpqXH0Ÿç\9ìãì8ðë€VY.tœMTº©O+¨Q ðd 5|vG¿“LIa”ˆd´džö8q¸ª¶œpPçbºý€ŒcÃ…­>\¡hI†)¯_È0¯.]" 6¡®4½HãI3c·¥¨°ÂfïÖC&òtRccŸÖâB&¢E]j‘$¥ÈÞQkïH~î"ºc…¨.œ™6â¯}ĺ÷˜Æx2¥ÓØ×¹ ôýÀwüüÉŠ2“÷[íÌÓrË>ù¸L›Š(L¯-뀦ÀU€|4º’DÊàõwM¢¡WÔ—õôŠùjV_­ÅÔ¯Mñk…ôûŽÖž‡ßÞÞ>>> 3ðK—Füõ_*Zñ{n.óå§Ú+è<™Œ—•ä;s0.da´}Ñ·’×Ç¢9™ÞÑñ4 î¶P®lëàµàÁ¯©ÿ·bä·âBL!Íjfk¦¾ìÜ—ð,Ú‡ŸXÆÆÕÌHPpeÜð(QT7Fd‚Ù×Eã ë$žã:Ö"»«÷XT Η9òüÂãA¶cçò DBw#ÐðïMÅÂà;(F!è4(Ñ7Žk°‘ðòøŠI.l‰ôÂ$Õá›)C%*’XÉD~ÁdªÄK…Hváº|UW#Îne(@¾ô6„å* U®!¿àÿhE Àx€J—쎬A´~+¸ñ¾<žêÊu@:WÁ_|Mýp’Î%o‘.1Ã%Õqðÿ~¶s¹‰Ã.=M0Ü'çœ3\tŽDÖ}°¨4x„.ÂùˆIäÿòCSHAÜõ§sã¾^àðÉC—À×(s%T2!ñ-ÞÒ}Kû2'6î=‰£ßžASÝ5FýûUf¢3ùýK@ƒHpùFe+‡äîïl3¤ybAˆbZœ®á ¨E*’X-uº†·P&·a–Ç»HÇ ^‘GxGÊ0Ù}ZIßÞÝüüsé endstream endobj 1838 0 obj << /Length 1540 /Filter /FlateDecode >> stream xÚ½WëoÛ6ÿî¿BhAl†õ,æ}¥CÑ[’nÚ~ %ÚV+KžHÛIÿú_²ä*A6Có(Ç{üµ‡½w“W·“‹Ë˜xÊâ önWÁÑ0öBPL3ï¶ð>ù«¦åB¢‚¯¦ûl_Éé—Û÷—QÒÛI³%Yrõ‚3Å4Áö(oN“T3̃6QÃöOƒÈ?–b6aâß MÄþ/fx]±ö›:•[†+d>ã |¢8ó/§$òµªŠ%òwU#Å µ–ú·Sùí}Y¯ÍvÙ˜Qpn?l,qT§5Maf¬.ÎÖe˹@ÆqÔ7%("©3À«¶”¥Ø˜MW¼(sV©]`Ë8gQdØß+;4û¶6\çÆÅ( #'zf9âGˆ²”8#Bð„¡ãQL(ÆÊ€Ê¶öI˜dŸƒ &aŠí )í H•¾Ô ØH¹/..ЦDM»¾ Bã‹åö+Ž”ÈUæ„(("Ah$þ9±_ò|#—lÏÛiˆáªó\û×4 |åæ$µž'Øz>†•×M]ìs©½K“ÄßrÉæ Ly/¸0»ÊÚ,]›áXÊYÐŽu› ÒÍ×Ë¿±5õ3¦ŸûŽÓrš•u³å3nŽ ÷dRƒ¶ùM³’GÖNiâóC% ‚û?ÝññˆŒL§[Ïí´ïsåð0sw ‚ƒÇÜÆ4¹ø*:`£ÓýÀà !Ìá8Èbí óÎY‰f§þPêµjjÈëw“3u¥(Nû@5wžH¢IgOín¥«ÍØ(9¨ÞJƒMveeFƒ@Ô"kËf/FlG pô²ŠéÓÅÒj_C7µÁ—§™îo€wJù~»¯3€0ÍÒ Ñ]Ï©b?7fÌ[Î$»/äúIœ>µ[6rã0Qèà8›åWžK‡§g“Q” ÃæíÛî*.ˆ˜á¨ULA^v±’@¬X=þ|:0\ŠUù¾R÷ÒÓªY¢-Å7KAÒ6Âк"èmM NÝôhÜQŸ„Ò®› :XmA£9¤LÙšZ0i¸~›‘ ¥‡JÏ-gbßòųëëg3{h¹»FØÙf5_ÛY^.òÓZ3½¦ÎŒ…»Îf øAËÜI[.vLH®Žg{¹iZ»tÏ™#ß-œ>Ï‚¨u¤gæ]•ÒY±.šíœ¯VÊåæÛ¶)x5fŸ–‹¡} š”v÷¥Uáàw¡NlIÎ)Zv´&Sñ >=X—ÛôÔ´îÆ4ºê£e(`«Õ¤i Þ.”Éúºôe˜ƒÔ®»'°X±wU¹]èȘ‡³E½u\œ–‚é-€/wb‘ü`“sçô*ei ®N ¡ÄCRhY$Æ^t‘ßm½bµäÕü7ÆkñíÎÜ@õD§£íæç%Å `L<”'?7)þ{,þ¡øóâlòövò÷„èrEºÇhâåÛɧ/Ø+`ÔÑõç¨Y·^MRª.¥òn&<ˆéúÅ2¬> stream xÚíYM䶽ϯè›5À¶F©¯9l¯‘ÀðÁžÀ;€5»[YÔÔ;;ûë]Å*J”Z;=ÓH€‚>H*’EòÕ«b;Øì7Áæû›¿ÞßÜ}ˆ’Mægqoîw¾Tñ&Âe¶¹/7¿zB·ÿºÿÇ݇X8]e”ùA‚"Ói×vºüRïnEàå§zÀ17OóÄÎà­½ JÒñ¾Ã±ûÓ£n†~6|ù¼û ¥»ìt³©§¤çórjw‹Iìgé¸ìO·"òt1´Ýí6Œ¯ÝѳÖÍ~8ж…»í8òU¨ìðÔc>ŸeÂvxª@‹Ñ84OñÐëŽæ-I˜…‘·ƒeÐw_}Ñ=w¶ë: Eû¨{±µ [ù²^Þbõ? GÑvÀœcÛ”U³çýçÇzüú„àä]•7ÅUûïõÕD €z€øû©Èd @dPçD^?äM™w%}é®k»ž:ÿDAÓúO·[)2¯mêg^h£ç+Fý°˜Í6‘~ ˆ?‹"ZÄð„~Ö¾£ÅÎ=)óÓ0ѨVö#B_E£É¨-Ÿ¤™íÂXª©QÍ;²u£uÉÌZz>0Oú£.ªß fè@ˆ A{¦æD(*¿~¸’ ‚ñ TP¾œv½î ±ŠT–  zIh«[¤ÿ“æEmƒ”œÆTÍ€á}¤¦>í©)ÁS¶a–y?¶Ó ª9n„ªÝŠ!eæ‡"_¥ƒ¼H‡KlH|%G6Tý™Í}$|àý¬™¿ÿMyU÷ß\Š`S%Έpºš’‰ _&‚ˆ/! —D–òœÒ;º³­sÈ3H—‰C0¾LÿOPŸ7GóA¿žu»¯ ƒ¯”žàiV·{¦§ƒ¢•¤²TmÓs×C{ªKz7Q žyIØ;‰ àX·‰0ê³XznŠeU¿w07òýOÿün qxÂý帚 Áò|=´OOºÚ9Û+±ÌBÚ9<',ácÂ{˜ÍÃËÔÌëž5UMQŸJ½\5·*`wîzÚôbk<ÄÂ[’L5»Có1Ù>æö@'Z³‡µ*¡ïøyÍ !į7¸:8g6·ÈAç¥î®0†Lc ™Ä“1P8?ж>=6ôŽSAˆêy [áød†Oª2ö'†£È"êÚ€©;ÃWf_ÁW 7Ï|ÝÊosÜO&˜B(2ëG }‡¼Ë‹Á`R÷LÀæGM¨A'Úg†éón`mMI¢éDA9†¥‹EŠ6ájù6¦äœò9)4©§F}™3lüe>×Õãë sh»êKÛ  SWÆ7àÝœŽ2±a,ÃXêuQÛƒó"ìAìý}G §Æ ò˜ ª`¿;5:<©íµhìÀ«Ù®‘‡–Èð*-»X'Éì¡¶â7ÝôÕC­ÝÚ£>]*<Ö Íß)í&N¼ÏÛü³9úb‹+‚‡t8+ §ÑXñVl­*'õÉ„DL¾‰íŒ„¼éžöMðäÝ­Hùjàˆbò¸(q<„\[㪅;.›©çˆffM±DS¦ÒkZwõË;½v@œzÌJÞº÷çk¨!¼çÑv± —‹ÅÔÉŽ¬QŠY#ÎY«©¿Ë1²F\žŒ°ÆâP¹Þ_.]¶ jv±…Oî4¦Ä%¬‚àÙpêikæè…V -õ-`2•M¨³aê…±ôéPÕ«gÍRm¶(¥“‚ÄPÕµVòÓÐ>ëà ­Ÿ¯ ÂùðzRÛ¾"“A©a x1ìÜ:b $ØËúHoy÷±§t—(ªó]£™¢€}E¬ø g«+@:Œ"úÅ™E+Â7\ÇhÞSGÓÿ÷ct?ècÿFO”Àûæôø`Rö>ŒÏŒ1H,ÆèY-÷‡Žf÷1Äñó<Zm¯ˆ•Ýyߴɧ ²²fÒ¾b…P¦hw~—ÂVùdŸ•ä5 |—XÄÓK@7^_È`ƒÌOƒ…]jýIׯ· ˜CwUX„Ê Þôð¤ NÐЃ˜"`‰9Mà9&!”Î n”Ì nì t #Î kêôÚ¤Ö -YôgKr[šÂÏO7â@¯?}³ùÕt‚œ|^À²|g³Å’ äëâQ§wuÕè+ìFá,\G‚ÝØ-ò"›·ÀKݹ!ßaŠ©™k¶kFü‹ƒÍƒA¾a UÃ39ÕÙÜ«VÎo{šyû˜ ïžÎ‘̪„·‚ªŒ§Ìëက˜ÙB9n(M1Ò teÂá`ÕÏÓÓÖ®øY¨b?ÇåÇ÷+~–™ÿK¸‡OʾµË³çè´ÐœjŒ0ÍáâægyÛo#-”lšµêh-ÂqEŒ-«}õ–«t-S'˜«ˆ9øœ|SÙxªœP¬8+4z – ß„ïcøŠ« r€â°Ð5»] A¹š&P¨‡Úƒ/ …‰=²$×@ÒÖ@(ƒ>V0¶Hù·w˜c˜°.çT€–ù©­«Õo‡¾ˆÇ«³ð‡Kıµ/Ì@µ/h6ä!¶$ .Læ›6k”)ˆ#5¯€áÛì9’öÏ:¶ìMrÍ€4ea×ô1ð'›W¶«œl<Î£ÈÆÆÀ‘²^KD ¹c{­/Ž‘MOM½†H_ÒûùÀ©t’£µñ2J8bVì"•ÅÓµçtUö—¯\Q$™ŸL×DïÈüi4G. I2°>/÷.20 ´DnWæ$̲´g„+íñŽËr#Þ/&Ã@=¬›bªçÙgÞŠDCû{ÿÝåKɯÒ4ti FÆdfz‘ÅÞݵ=5ä;s+ƒR³”ä@)ù¨éÚi•] ~IR„™âÀÍÖÒ(3a¼,ü…ͼÙÒ2çe QDÀÿ´¦Cqnƒèe°„ ý(©®`¥Ü¸ÉX™@>b…_ŒÕ,ì0/h.Õ®!ð.Ñ<ž?U%ýëñºpÞÑÕ̱­Ô‚.Šo½¡á1oNX9‘4/ÿ}ÂЀ-DOÒÄFf·î${’³•u]5¿‹_ Æ _7&Ä…Àþ±ø – ‡ÆÖí;‡¦yGrZ*ËYÿoD£{jånj u®Žiõk‹ç­Ÿ§xöùÝýÍ€"ÃÕ endstream endobj 1855 0 obj << /Length 2352 /Filter /FlateDecode >> stream xÚ­ZMsó¶¾ûWèVjÆ¢ð{2=4ißLzè¡õ-éL) ’8¡H•¤b;¿>»ØÒ´_[yÇ,¾Ágì.V«ãJ¬~¼ûþñîáK*WEX¤*]=VRˆ0ŠÓU&e˜FÅêq¿ú98´î‡p¯k)‚òZëÿ>þóáK’y3£" ³¢€uÍ)%º¼•-¾D‘7ke¹™¶Q4F4ù¹.·“Ù³½²4,re·ª¡ÖëRž”„áÄ-Ï›ò¹êÃõ&*øé@צ¿è]õ‹Jïï¡-’ãŒÃµÙ UÛP­×CORÉ-ååÒµ—®*ž€ð®xÞ럇ܖE’Ða˺oap[MeIÅok™z7˜/€z{ r8uZ? O}k‡ªºêžê¿ˆD ¦/1ë?´Mý‹ï÷$¢ºæñå`—æ#è†G]Úªzw€…óÓœD0°$×Õ¹z8† gj›*›õ¶‘I˜G9-ØJ×íUSÖ¸o>Å,É‚§j8Qû\‰ àÙ qå„òQ&°%ïðë·óP¤¹Ð×}¥ ¥¢ˆ(k¿¢T*,VJá1ºJóÑ@kˆñFÆI˜ªd µÆ¯{ºrúŠ‹°ó ‰öû"ß×µg:ôm)âPŽòyñ»Tì -‘¸v ç^ó®ÕùRkÚjÜhßñ€]§á.ðdTAÕÐhÆ¿J…q,§ŸgAA Ûëœ|ê¯pÇtoÙe6½ç.=ÛpÙ­e¯gÝØ¾v "<œÿõ·@ cƒxÄû\V9ÀGL挦T·’Yd>™càçÊ48—À–g®‹<Ø—CIs]yÖ$‚QÂ~«öUs¤qpù+‡ª«+qÀ¶½Ôgue¯{:!»…¼d€ûS{­÷$oÙ Ànzïðç Üw©Ûá¦ÁC3¼Ñ"ØJ¼<º£êÄZ@­Hh@wm}=7hèÍYv }Y M08m­qv?NÆÉ¨¡JfÖ ø|iû[`ŒT4p³ºjGD¬£ª±4ÖïðÂ'cTpj»ê÷¶ìRp ÃH2lF_ç͋ހwÁÍÁ®-ƒåa^ÄßkÆB.0öSPƒ¿5vþ¨;ŸG9‘RWh‹©.Ñ E ¸Œ¸l¹?§šû¥SŠi4Ü¡¬«cÃÆª&Ððûßâv>çö‚>–ÁˆDš}|¥Â\:óŒ+ü@œuÙàE,dÐUÇÓp–bjr½à(ôa É|¢ÞSD²‰!¼3~†Ïý4®D_~„kÖ©xeë§!TÈódj"w€¤Ñ‘oðÆíóf¯íö°ÞM!‘œØ<¨öà>Œ;™¬²ôX•S‹'}ât|é›}å{ÉÆ^ÒõÞøîÈĺ¦ÙD· ´p>ÂG‡ÆN¤ì­óhù?ªÝiëÄ=Uu=uAþ©DðÍÍÿû»ʪîÿrCtzÝbÄq‹2riH\·ÇjG ‚華&Õ^,9õM9ë*g]­e@—Øj;è`F¦ìk-wΛI逸jvõÕyïªù&Þצ?Ü]¤æA]Dž{Fúâ0*¼ÛI'€‡«æ{@hºŽßÓ ƒvíÙ@‡‹6‹híÚ‚ÒKÛp„¥bhjÐ’ìu³3ÁÈØóŽo?«Ù÷Ôklzx ïãS&ÂYI:ü_õóeÁVÆØJ¨~ÇÀ¾ÃŽöîðæ«á'ñß?Þ­~6£ôCvWš¬1™Æè©X„‘š½WÏ Ic£> »46¤P^{¼žŸ¥Rù'¸Çs.A‹a”#—bzˆCáqÉL&\ŠíÓ÷ ޽76.fžÔFhÚÍâKÚÀc†ï’)§ìò]b$q˜aÎw´8#.>B õbäKaà+@›![Ä#Aœ# è9(Ò0‘ÙŽO2#· vÇþ6_9}82?­ܾÌì ÿŒ÷íïžJAð“ÄÓk½”?Sa”¹ð§í_ô Ü–VŠÃ<->øbÈE(²Ù+¶kŸnÃT͙⧠òƒårmv2ÑGOÍx h„umÇcŽºÑ]Y×/ë41Ïâ1½'ÝƒÂÆ¨0þ`—@·5 ©~;;ËÒƒ…#™ØæéÎÓ%d èaEŠZ¢1Ê£®gxV<îÔ‘g÷ü^$RדC-=ÈM®Ï²Óç²j8À¾3ìÖŽ¿ÍèÈGo]'òó)=\ªÁ-ÊÇþdr™¤åîãL"îÀÞ;@Q ìD§kM¡ÛHɪ:f¾Zf¾Z(QI2Yh:KC|+<Ú k–ñ~õØñÔ_ä¤S(%.lùÚ_ ƒM…R¹Ý¯TÃ37˜4ŽHC+Ó¤-¯^R1¹_Þ¦c‚*^nu‡)3Œƒç©Ä2É1΢Â?ù)Ýûyü­åýlŠßgí÷BüóÃ]èJÁ«½œ·mM2e¿ t"$ÐáRûªaôa‹wõÓ,øþ…š=¥ãçgœ¡/ `umg÷ÿ¿Ò ™›Xòhî)ò¶ßáV&]È)ùw@šz§––S(ÝóaØÆ gãÄë÷™ŸWl­>þª• z•l¦ê¾ú]ßö’c +þ½ËÙÅäÂÏvXÊ‚`ðC=‚ÊàýÄjxãfüÈ…ÏXÏ•ü*ÎǼ¿ÝÄq¼}’YÛœàé$²Ènëå ûÒÁýÛýº*´øG ñ•ßž¾½¾—Lÿ,Èǵ=ê7žÅ1¿ocÌï4G“²…6E…ç^€ËÐÜHŸX¶ ÀŒ~LqFul ÂØSÃÓ‰²YóÐ-)¨î&ZÏWY‰1Ë› -6ü€ÊÓ0-Ò©#gÊØ°úÏæ+2ûF­oºb2dŽ ê2G2#”±ÍÝ0¨ûpb[·<ÉhJfcßìVaËx«0{IÆÚ?œ:rÜH’à†„Î©Üßf…¢)DQ2Bño3P–TL3?®?™e~ cBv¨¬€'åå?PŽæ(}˳S¾æ[rêvÔÞú}n|BæÏ,Ë'?Æ#B%\üç‚<ÞýÈVˆ\ endstream endobj 1861 0 obj << /Length 3088 /Filter /FlateDecode >> stream xÚÅÙŽãÆñ}¾BXÀˆxzû`ó0à;ñÎKx€ƒjpýŽï¸Ò^°±ŠÃÓ²ˆNÓ™Pà†Ü)‡¼ªûÎnìR¸h&@i郣œŽ·çºÈP÷O-"þ¾§¢-Ú}îxŠV‡ÀôüXüÊêCÉ«_qÑe8´'EîÆ=<Äήl çƒ âØµ'$C9Å„Éé½Tf¶;ô–C3)Ø´,]f&h•"seyXÞH“åEë‡ê©îR– µ©ýDK­Z’¹!Ž…Ö›`²‹j#3ÝEÕA\¿x œ 3@œõäçÏ!@BgH”Í „³fNØ}{i ÎXÈÛ[<’ÊÑ7*Q¯•<4X l¤Û(®óÒ™$ vº|ÂNWé "¾y~ôÏdËãdñ­X$6Õeè <®Ù_ žË®ÝójÉ¥hõÎ?é4Þö ?—jÈ)+€Oq1üTÞ >”E[N+ÐÔ—(«Y„ž™OÅo | W·Üh 'YÐê°ØÖóº×­$UNöD‚¸Dl—a\³Ï¦"3Ñœ}ß–Ïç5÷,´ñ8µ¥Ú=dµ ‘Ó¼i˜V„ú„•Ý›¯!K‚9WØ‹?ªà¬#iËHˆI6÷”XÙô–øJß1rÈoËo"¢H­É/ïÞò¿—–éPhL¥&RÁ„Ú$Í®1–b °°ÈóÜ,…žlrþq¾E@”hQ95&Úþ\rf@´Z„f÷·\«€DÃÝãÆ7ÿñãÝæ`B(üXËp#†Ëm0…´[\BÁQ`ËñRï‚=‚:²6£þô4ÅI˜æ²%Žƒ¦œžóÞGúÏiüTù}ÞäõK_¹WpÏœs.”%PG¶ÞÀ’UêVu}ŸIî9|œ`Ù’îpñ #+çÖõ{|q”X\Ñ2–0„jåªÐqù6Ú®€@¾ $"LµÏ¾Aÿ{0%~ÐÕåE)–' ¹ìœ²òq|)GðHO‹|Èû’'¾’ð«$=×ù¬·r;áÇ$½,ÖFü÷jf1ºç.|%2ƒ;— |”æø¤S•Œ _ÉÇÎ"éTH•LŠ#åuh£@s¦ØF­Üƒ#µ¸=û0¸}K×t5¹4CUŒQÄ+2hBM >> stream xÚZK“ܶ¾ëWlí‰SÑ@$À§S9È)ÛQ‰ËÞT¶³Ã˜CŽ Ž¤Ñ¯O7º>–#))Ui€&F÷×løðü>üðêÛ§Wo¾O£‡B©LžŽQ §Y‰TOõÃ/Á±´E­»( Êk;î~{úû›ï“l6S©ÈŠÖµs¢Há W!oõ°WYnìe“ û±ï[]ïö*ŠØ£9—£6ØM‚ªìˆ~ÐD(ëÚ {"'M„KÛ<Ê0¥ooÏ}ǽÍxš¦cðOäòGÍŸ~q(5;”L ‘Hw&`W]œk-…\„¡Ÿp¼vÕØôØí“P?k½b»î«ëשl%ö ù"Ih³îÆWØíeâEPc<•#“x‹Õ½ƒm>–çK«°„°r*âˆïôÛpÁüR¥0ø5LÂFhñºwÒÝöB0E$¤ô—}1Í'½¡xÓyîF5†¶ìzÞÊ\tÕü òÒ5ìñŽ$wé›n¤&®ohR9ðç’~&à×þHÔi‘ö0þût:+ô(*„Œ²¥Ð›n‡Á{”  ¬#¡eƲ«Ë¡Æ^ ô¡ 2M_q[¤Ûm-á:Výe›O'<<Žø`¥}Û¥Iç•Rç~àIÄ«æ-&kÀo¥ô¾1ײ-´£æ“ûs³÷W=;O§QŒp]x2ûKlBÍF  ¤U$Ëß›îy=Ž®›|Ø,ñ'Ÿ« ­(æs_ŠW™Ä =ç|~>Í÷‚x½u8֠·VDhü2ŒYZ¡•Ê¥»²% B‡ýµëÃØ—üÁWƒ¦Cr€ÞûÄ囲« 7FSh…ª /}W›;{|ÐÍói46»mǪGmQ0Y€Bè7'öˆho~KþÕ€BìÁŽaÜQWv ŸûZ·x¹Yü­Çô´Ô€‡Æ£dŽM˜â®šîš3¶8âÆT¥…k;¢§_Æ"Ûâæ  ÷¶uBgÕ¬JÔëx‰1‰qâÑ®ãüKôÛ–çÉE{,½¢5  Ñ–Ã.ʃgdh¯Tø?°E‰jɃÜä!yêy@¼óà­¡¥KúñÊ"ÊÅ…Ó[¢·€ñó[V“asZ2EÅ,Ö”ÊO€¤T‹¿iÐöݳ¨Í>¡|µ§7Dä3GsSÄönŽ5EøÎQȱÈ![…Þ>!Vȼx¡Iæ “t…iðiûà ¥_a£ D™/l6¨ÑÃíìÏ‹ßíy‘1wZ$VÀ\ àÜZ7*Ȩߺ)ô㌄Å"‹ãžgÊ5>DàÛ¹¼íÀƒ=™ê§¢š'Ið¶õÐ-ºu¾^%’”'Rp«î)'œ@Ä*þ:ìËäç•3aQ9åL9‘12k¯œH"åD¢W/¸|‘®£Vwƒ*váš*f‹dÔXü%Åït@Z^G<Áu:¸†á ý´+m]¦¡HïÁï\ÈD-}rú‰Û±~zvf§ãè=­ÌÌ›¨ÚRZðViñ+ýx!ÓÌ€š[+ô<*RNlx䤜~¯ß1Úˆ ÐtuV÷|mÌi>:Ïrh9;Bˆ¹îr¸†øZCdäÂ=0 ˜Z¢@¥m©‚§]á‹%†]ð_ßÔ«˜|Â8…(J1ªÃBuœÞ^èŽ JLÙÞ¼ºç¹³90Ãn1úì §‚¨Õ]æ䲸å’2®sÓA˜ÚRÇC*©ì2ËiÞ¿ñx”–f™³¨Õ!¦'‘ãΜÊz3͈Ÿì—Í犹#œ'†$ˆ`v!ØÉR^ÊÒŠ õlÅüاiAôù‹…3ÂIøÅK±;Ù v<ÀV–i‚W[˜ NàØ·-ñeƒpˆ^Êk†0ÂŒ|2ßlz%)Ôt÷Ÿôa(·­b‡aÄýÌAi¶ï#Ê‹Å}üåé§}·±v\ˆ<ŠgkG´.dèçÑ%K†åDZqÍðÞ®yµ¸ 2²÷f¼µŸ%H7Ì–|Sn÷cO=–Ãè)ºag m í]b ·‡Ö>¦ö<ÊèÊ‘¶=^ëgƳ!Ûð š[(»KÛe„t ¯(ýI½‘B“£&ä×"4&­–™‹#œÞׂA;IER¬@ûs.\æñ$‰¥Hg2Ë `Ã&„'ðÓöÏMe±“„ d‡•†¦¢m\î#-fáÉna TÍñFd/‹lups²ÉäFPmyD|b‰ØòÈÓ& ¥JDÒßRÕ·÷€(»‹£- ¢½H@Ðp›ƒâÖ\Ñê™=ºý\UËÖ<ÏÔvçÌO:ãgl‹8mÍ1Î(êG½¨áÝ©åPCø,"ˆÃì¼'çfe9æÒ…éÏ®¼¡;ÓßT!—Ú««›P•λQÑ_@ߢ€«*\ÈΰW: ¯¼Ž4 ]¹†ë6^ªÓà­ ÎnDíÿsÝÎÉÃÒnø†*=Œ¥ï4Cu=cͦºSNd×ÏËqмæb•Ê0¼¯ƒ­ÈÂ'¶t±çr6ëÐ_Gj²R€þ=•ˆsyÒ¶‚Ó È]t•æQð#x‚5ZŠRüõáÛ[¯œÇ+;ô’iììg€¹ôöN+tælj¦ÌäM7øÎ–½ÐBàà`QXryQ¶6¤E)± ¿\›‘çøÐù5ßüÉ8è–ôç®ë©ªlx…‡¸Áí|ó¦«V ªU±f'óÝ(¾Ü(—`€Åó¥7lØ·þJbÒ_"â$*~A+ªÝ’;¿’™«è B€šŒœú厡Vµ¯<¿£ÖÁÖKk޽䡶dêØ°ÑíÆÐÏ=_ÉmHë$)…cªmWìp\¾:@¯|Þ®¢q;Âq$ç*Ù ÙïÎV˜Ønzôšñ¼wcÉ3ÏfÙ;~C7¸u"W:É]i$çÄX&ÕƒÍ rÇåF9xEÓ# Ex'RRˆwR_ ¨ôÇ ÿÅ¢ˆã)ØÞ¨ù •dzEœê‹å6ËXdÕn+ÆÉrÉò£«õ­WšÆ[΋¥FAHt I œ†BE«hÂácï ø®h@ç!•ÈfÙƒ¹!¯…{r êY—Æj/~a/º÷!hT û¤y8€ëÔ!’,º ¸«Ýt4-žñmH†œƒ·„$4€ëî³i¸ÖA4=#­•rÑCAüO`)ö%ë0¾xϯxTLÀ'A·<½Òòv~¸X/"÷²„^¶Ó«§E œ£øŽR˼˜özH"·ÂS%Â$ÝŽz¦ÇÊØ¥’®p"á._”¤zç‡a«fd§ƒb÷JÓ æ×¬1î­i¥H«ÔÜúö)57>"³ÏqÓ›a¥}H6qcåm¼úv„ wâ€Íô¦È¼Ûñ¶… ‹M/Š+)ºØ”ø+Ž"±ŠRRw3+Žñw¤GêèV»˜J¹§\Ãç5Ê=£bþPoœƒ†.? mMƒI· /á[¬u†ÙVbI[o±™ES_1ØÄþúÎÐG¼è ñe¹ðÂ{4 …õãv‰µ˜J‡-9{ßõo¬éÄŽËÜ :u$§¯|JøÆ§š•jMƒNýÐ|ê»ÑÆMrN iyHR‘e«ray…P©ôîœà²^'‹j²‹-m“…2þ*‰©t.0\t&°?¯S’­üÞT`|<´e÷û÷rgô™b÷º‡F:zãZg3àäD(WÙÌÛºnüû&ÌÿçeÞ{;àaœûÿ’ž‹¾¥kpèŽ¤ÙæØï/óÞʇRá¸pWY‡{-õSvX?Õ™mc–V@ï}Sngb¢Ô§ŸBˆm˜‘SŠŠtB€ä‡•Æ" åKÛµïµ/Ó¥±åá0ÐÛjSrÜôÍú¯Dæ7  )C‘çÒ©ÃåsS,çÞ® –-ôäSÅ;>)¢J•†r‡`ÔaøÊƒò €>R›`BËKYñgûàØñ=œÍ|dîS“ùl—†»BWî9h5WzýóøË"_ÊXŸ/£³ýu˜„âY¤ÿw ÀE&ó¿ƒAuiÚ Â}Mµ1+w¬~™*±i4ß=½ú/5uÛñ endstream endobj 1878 0 obj << /Length 3113 /Filter /FlateDecode >> stream xÚkÛ¸ñ{~Å"z2°æŠ¤ž×Û¢wé¥è!AŠÝôîC ²EÛJdÉÐc÷×w†3’%Y»ÉLrø˜á¼9r¯¶WîÕ?ŸýòîÙÍ+?¼ŠE¨àêÝæJº®Ð^pJ)_½K¯Þ;Rz‹ï~»yÈÁRíÇÂudmÊÊÔHÍf!]'ió÷]hб½|cñÔb±ôÃØy×M ™ œs¬&Áh=”¡Š…‡oÖ\ß}¾X* àýókê\´ŸÃ2I§Æ"tew˜¥(r^&äuI´eÅ:oSÃ`‚y–÷0^ïMÑÔJ¥Kæ† Gc~|nk\¯s:yY~¡ž•ïpjŸ-2YIæø5áØX€5äk²?ä¼ÃRm[3 ¡æP•SMNUNm ê!;‰OÒšƒt…Œ{F}p]wŽ›"ôâóà¸=3+êÆ$éør qGK° oÌœÝÂwN‡)–=‰Ú¶Ä3QHÚe!Á zg!!Ïñ­`| š]½zW¶yJý•¡= O’µYæi<Ã,ûϱ×ö&îø¤BÚùdlGÑi?0S¼ž˜Éj‚€¬R†ðæC{dÙ ¢Ý¯LU)(‹üDS\q¡|pð—|úqgø´¦:eÅ– ¤¥ÚɳÂ0öÍ‚åèB]ˆ°ª(î”mÝä'–‡§çBQKP¯çlXjF½ ³C¼ý^[îz¤öZ¥¤š@Àã>fï ÔÍ ½óEK €d£µVjWDÆ"É IÙ›ìMzä9m‡V‘ÈN¨O¶ ³dåvùÐ5z±Ï®¦R³ÎöIΔ™.ì]ïÀi¯"G9kÀ8£‹«AŠnÇ*™ÔÎCÆB.ežÑs{c~Û6ÿ0ë†j ®÷ Iµ‘³mÙÒ$ë­ÔxðÑU…qºwþF¸ƒŸY,Kž —|HtŽÕm±Æ-DÀÊ`ì&"Ö•þZ{•hf%S;2é QKÔÀWcÞ2u¸‘xtûüú1å‹=xþÐ?Šé­FÙƒ”ð!kXB+•Ç‘4Y÷UÛ§ø!R÷:^Ã…1,¨ØEã6U¶Æd?‘·øELù$õ,Ÿ”Ð:¸àœýi!Ãý4©w§äYñ„à ‚ø;Å3ÎþÔá<‹GtÉd‘pÊãjìùø’ÁfÌ)Ìr*ÖB_0ê1ÕUBÅSÍ…ƒ‡šë=ª¹!¸àKÍ ÿ ¢OAÓpÈЙˆÂ½%á€IF•%9»1WÆãŒlè¿!³ všf”J…“pŒs©9â( 0DÒCëÙQsQK•$v%v@–<£ÅÍŒ÷%8ÔU•ܦCØy™TyÖ”¼Oι4{–[kñ£>9G¥jÕ—¿Â0ÐŒÖz´°ä¾l«µ!ð}R0T€È€ñ¿ñ Iމ@I×ÐkN{£€"ž (âaË;#:)Q9™tò)…37#z#í¼,÷‡2¶›×H”ó¦LMUÐà¹åÅñX°äl¢p\vA€å(´–Ü( ‚t[ve•ýdˆ/çÙ>kx—¥{¸˜²kìU¤ÑTcRqàdÂîöË»kâ±`[ÝM{z'SejÎl悪+ÂÞ+’ßËói€öãsºv ÇŠ?Îü|–êp•ÙêfèÐRxçÈi)Q³”xðϵ©'õZB‡j¬ØÖû—(Ü#<ý¾¡ßRGú­û¬†‹0ît}ñ`š[Tè·T}îŽ0z{ò:+½½©½¨øÇ`•ËõþŸžpšÈ•º+Ì}<ßPG"òÙšÿXDàQòÍv9ê–<Ìï HX2³Þ5«¤íÂ빆;Ε}¡ÏU’ŸŽ«¿ïM“€N-!Ýü 6.Êjû·9Ö+OøºÏ~¯‰|ZV#ǹ{ÉqÞp}uh×4‡úÇ››ãñ(:Ì õ®3@ÿ”@¤ÇÉø¢€r)ƒžOþHwÔ•ÐkSÿ?üm‹«Ç ½ ¾Îïmèòç/Ô¼„w;•ŠyÁA(x*È>Ó»œÚÔ %ü#ëù°Ð¾Ã¥ZÜnã ´µ1 Øq‡R¦2¥…ªá|SS3‡T´“—½¿ÿ¥[®w´éIÑowuPZ8²ßj´jJ@ÎE®ëùŒtB+5§p°Æó†O¨P»î Ý”^/'½È3º!½zªxi™¡ŽÝà3Têàfµÿ,€‡ Gé«>K©~H©ÖCFΉVØ<à4;T)¨²²ÿ¢ àM>uÏY6ÒãO«ìuGUJd›'ÙÄï»ãrƒeÅ“oíˆ=Å•’—Ü!*úoìÆbÜInÈy{ ÙŸ$ÞÑGlòÊ–Ð+ó+Ó~Z̺°›ð‚²Ì ?`W¶Ç‚ Ïä§mYˆïç;ÎÝ!Ã3¾ñÕCOÔãLÚù#Èð§Žè›> stream xÚÕWKoã6¾ûWÎI‹!©7PúX-ºh›xOÛ=Ы+Y®H%výER‘§MŠ-Úœ8Íór4Äέƒïg߬fWË8 JB:«C0Fž:!(ôg•;.6uÃ…DMÅ.?®~¼ZÑ@ÃKB% Øëd ”Ð WKÏsb}%ízQ܉»0)ÕJggg—n€ñEÎ7¬-¥Þh·šÞ—µ¡ê^å–ÆZðæŽçzWÖ·šh ñÉPLµPQAD.Á( F‰ý†œ3ùæX,L°¹+€M¬%(!Ñ4Ø¢á™,z'ö<+6ÇIpßþ ×uÝîò“1Ô­Iì+×j«Š5GÕ0Šg„ž¨\§`óMG=pÛžÛ®eO2ëÿ/äVùè4tQÚ]pîŒafˆµQh…-„¬õÊîê°¶ì®ØÝŽ?7\÷üw„)ëoŒ…]>`ÀÂF ú‹áÑQ¼]пMýºGg­£•{Ù°›•QkeVW\ _H¾i°è\F!¢$û=ôŠ.EÁÂè6|S;ž’|®µròfü[ ZуËÅ‘=FQ¦ÐE”´†á` dá/(¶8< M‚±Ux¼é ¬Ø'nËY ëb'Å=Á*Kòׄ1½W1§/¥ï ¯ LÀ€Î ‹Œ¼Ô6‡‰$ï»ÉæÅ½ú¿4~& f¿Ñ,Å/@÷ ÞX’m;m^ØBÔMΫ¹žþ'¯¯Å+;Á]>é™ÿÿqfkQ—­4ÖK°*üU"ÎÖ¥žŠžù/¼ï¦ÂÌüÀª}iƒü&èæÝñÌ£Û·«Ù3°a‡ôã20"¾çdÕìÃGìäðE^;÷håø0QG ‚Ò¹™ýÚÈÓµ›ÉafÌäOè‡"1=5“Æí0©R”ÄÄçËK‚ÀñÒ‹.ºcH|ñ C¡I…ú;.·u®÷4Š8¿¤Áø:×۟׿ÃäÛÿ€ŸÀćªÆ/¤Ë=O¼G(Hú”è4¾ã"kŠ}_’)„“ \B—Ä(4wqÙO°*5‡ª5k8S÷äݣ³@§G£Öé›ÍÆ(™ú}4®^ŸÚÌÅù‰gõQ‚C+…ŒÄ —úÅ>$CCØÎò^°[~…ǨŒã£b¯Ëg¦s F7dc4z5QÌÎOÀàÏaÿ’[ßÿ+#.ñ|ä'!pÕƒ`ú:Ø&´ÛÕÊ™®®ß¿µ¼<ßrÂÙC§L—_ÿtcyŠ!ä±äé\ sݧÀkŠm}ϋۭ#[ÎT—Ònlè©ö6˜Ömk{ ¤ f .OLóª Wñ3dyC endstream endobj 1895 0 obj << /Length 2237 /Filter /FlateDecode >> stream xÚµYÝÛ6߿ Äb­HI”ô°¹^RôPÜC³÷Ô¨,Ѷ.²dHt¼Û¿¾3äP¢d%»vPøAüÉùü í/v ñÓÝ¿ïî?Fñ"õRÁÅâq»`¾ï¡XÄŒy"HÅâ·%cbõÇãî? æ1óüX#M´mZÙ)¯=dH{çÓ÷ƒÀY´Xâq_,Ö<†ÁÀ¬­äY=<ý ¿ïVëÈ÷—­ÜVe-|êå®TÝÿ…úç²Pûw¸쳆ã¦Qd¸=UÙ†ˆº¡yšå¸éMºOǦsûº;³OÓ²%BÕfu·¥N6ꩬÝY~msžç%·YþÀˆê˜ïm«+ÿ’¶]•‡‡üwÚ^ôŽy4튼©š“:ÔÚÐg6ìöY!‡n·RÏÔÚ6µ²GÏåÓÐrD†½ì©´džçṌ½DÂU}Ľ$Å‹Á²Þ·+æ/w§ƒ„Fv3ýNìˆ%pÄ‹ákt>1º‘QÇÂKn 5«WkùËfó™+joÍ7¯²®3gm¦$ÌrxFþ†nèîÃC/õcKå}ÓXx¤Á"}6:YݨLÉ×ߥjvežUpø XªÆ|»£ÌËí³éœ÷Ríe‹ÐnP6uG¤ûæT¦½‘æ›…,ƃap¬e†Ði8Xr‹zÌNÍ–sBœXàã¯ÿû0#DMÙ ¢-}[©ÐB7‚d$Ȣؖê1 º´1 WŒÂŠHŽMSiYÁ ¿ò€ÊÓ=DDÓ94…¬:³ä\*¹&ÚL5mg}æ2ƬÖO€ŸÏ•½ž.¿¬x´Ìª“ìì,톻ân賕³ÚÇ6jWöq¡¿{š3Ú·âð̉Ƕ>5k Aê±´—ÿ¦ Y~’Ò4þü·TYYuo_p¶@x~š^ɱ…»Þ`%Œ¬„¹ÎÆ\+aÖJ »”9zé—µ’-©˜X7dä†lpCg¯£qCÌ*BÜ®ˆïùôáÅÈö=š4€Fš@u깺"ðåû¬Ír…²R jËz‡íИmêh;Ɔ5%î£ 1èæ\Ea¬(\‚â–¥Öñ¥(y" Á}–@ø2—&Ö–pä7C@MWw&Ë_î…^ì‡ýf›¬}9%Íòñ¨'x£qÀ£ ô‘ŒÖsß Dï ÆN§x•ëÚÖ’8nümµpŠn‚GôŸ.¯× ¨C¶eŽï€¾aHƒ©ÎRË æ|ó1– æÓˆÆÄ@=`bîÛGFü3¢Fi²Îidò ƒéVEaeˆP½´/Hðó’E‹×1Í_º›* ê–ñƒÓâ7­–­EÔ…)´l9öòh=jîmmä@*ûŒrâ‰nFÂ­Úæ0¡0ÿJ\ï]ôwÙ z䟋Ñ-¸ƒš"‹%¡Q5yfã §¿NØ0mÔÒ*z8€‘?áp lPè[â€'Õ«†W¯hì•s`J?ñ¤K¿,ŠI#IjYB+7!%dv¹bn§ÇŸÍSQ7¼ ¥ý ҈Ĺf.e…ÂKD_4þ÷ýŒŸ¦ú/Î>Gif?ÚãY34£ª?Î<_Þ-,]Cƒ2šB;H­<Ú@â˜Ähûýðx÷7¤ÝÄî endstream endobj 1903 0 obj << /Length 2659 /Filter /FlateDecode >> stream xÚ­YËoô¶¿û¯XäR°e‘ÔAmš/Hôºè!)PyÅÝU£•’ö³¿¾3œ!EÉòkQè røžùq^Œ6ûM´ùñê/÷Ww_R±)Â"•éæ~·Qª8ÝdB„©*6÷Õæ×`×õzÃþX^ÿûþow_’Ì¡Š4ÌŠæ3}…ȰÓUÄKØÿÝ¥¼Q·*ËͰ[™QÑàªÞ×ã0¿X-KÃ"—v±ºõµH‚½î¯oU,‚±£ÿpÒÛz÷Ìă¦B{>>ØžÝÿ2¨ ãñZeCõSSnõ0ŸíñPo‹¹Ê¶íÆr¬»v°„ 7[»ÞIB[ëíïÐAåÁ±ìM) šòA7QÍ>€Fáé¶|ª"‡îÜTDàö¾;·•®¨ÃoQ¹‘•Þ]‹((ÏÍH­õ@òšq^¦2ilY(^‘iaDÂ=` Ò ß—-Í\6CgN âƒéd6?´Ùk%ý¾¢Œôvìzª›3'*q¿=Y7@Ê#æ ´ýE²FªŒ<`’1©«šdìÖ‰IÆFÀPa¯ˆj‡û“©¢É°à ù)éÔ4èm7å—­±l¥e”×ãA·krQq˜¤îèu½?ŒÃw÷¿üó‡)eE˜E¸!y(‡KqlQlRE$6SrÌ3dü!¶ë¾"Ê×k™@ﳦ*P±D°À[³ØˆTð/<–™‡ç®Û=OÏ«Ïn+:܇7+ì°²Iß©ôa BEŒ}Y7fyQ¤Áºïj(w#®Ts¤9p •î¨éÚk"U}w:á}Cªa„YâÀÍVÒH$I?d!‰F$´Í™Df,JHððê¾ÞRÅ—Aò6³„’a’8(È^žÞd^á´¯°Æ¼2[êyá^eÝê*\èå¹>—€»D$pÌ4Œ Öçu5>®Î»^5”…Œã\be.>6Ëö\6Í3QËê¿gT ØBð"-lh¨fmÛ®9Qk#•Û« _±¯( #†zã¸È¨8 者&Ò|ãÐØù}çêÐ4ïˆN[ÀÉÊ#OÕèvo‚£jån±SuþÓî×6ÏG§[û–4Y.3a>¼?.˱ ?dÆ<–lã°@—Æ(ü´#â¹5·u½®n¬J²sœÛ­9•© z¨T2¥<àžöu9òÖ¿¸*î„×B¶ÂÖ‹il,þKúÍD•2˜RU¯õ³_Ô•¯ë@ucšM[bæ¿ëZYœ¼ª¨0™ ŽvjÞ‚n¹×©D nkNÆïª³;Pnêc=^(ëáS²öîm’Ïy–dp ‚¡ÅÊ (àÞº3?Te Ñ2»Âï+-£4wærq…ìÄ+åXÒ˜]Ï/ @ã_늜èê²öW¨[PÇ’ù€ºóHm¬M– dõ`[2{l|…åf1¬¦+_Àm§¦/ãfx1G X»…Õ¯PB“C&µ>Ñœ¦€òÎa¢`£fó¡Ñ8z˜2ÖÍb-÷®ËµÀ¥ˆC;e±³8 €¢L>v¥U!@­qñéÔ Ýk©&ç+³T’o‰ÿ)¨”ìi))ƒC××tíh§‚]Dz,C²‰7§qêö®àsÉltÿW™­ò0/âÿ#¯…JÀÞæµôxý)V{>¯£¼˜;ÌP7GQ’ÿŠÿ·ÇÓPsÿà?«¹Å.ʦ޷lk j\3¿ý5lçKlûòàpsù"—#{‡ùR†¹È½H+’xÀ(8êÒD…z ž1ÉEAL$× J[ïF*™#ꊣìbãÙ@÷¥gƒ3ÑÉ¡qn`žšg¶ž 8Wy¾pl¶ÀI##_áMNíçÕ^×W0ßEN¤˜é<¨Z#ŒeÒÊ^Ž+‡wúÈ=hûÂWûÒSö‚•½ =bh{«„¢ô’]z+z™×òÌ­06"å`‡5Òœ<œ±ufŽ릙› WQðÍäÿü#ñføÓçeþj;ì.ÒœY²pìbÔ%ü'u‰Ýèg|tW‘~gÚ˜n®- …îaÐ=]ÆŠ)çqÛõ°ê YJ ­G…:Â;¼ãh'ðr3¦hMËUw$+Ýn5QPõ<€(˜g¨üVîâ;ÃçÈçôwúé´–„)@7¸®ßN»"J‹º…"È ¾0ßô(>*þòãÕæW›ÅYÊ×Ë܈("Š^FD˜uꮽI<×*aÍã†÷@k°+/ÇIÅÌŠ8v) éîÇ«c*gò]Ïè¼,P•e0¾ÿ ÿŠ™H4bæÌô&s/œþ\®Õq,KÌ×ÏòÏ_ Kê?;2?_¨ˆóêDšŽ¨„}”÷ñ¶ŠGÄ¿ÃÉlŒ=ÉlÈìà¶ûªÆ¡WÑÜj¨ÜêA L\ˆ#«„ra•PŽ~å¶9WšÉvšsoR6@Ò¶!,ë\ìgŸ´ì8æÅ•ˆ‹W€t‘%> stream xÚÅËŽã6òÞ_a D Äñ)i6Y$ØËÎôž’‘-ÙÖB–Ižžž¯ß"«(QjõLº“ÝÀ’ÅW±ÞUr¼9nâÍ?n¾¹»yýF'›ŒeF˜ÍÝaÃã˜Ie6 çÌÈlsWl~Š8Oo¹ûñõÃ¥2á,N äÚ®ìÖs»ö&¦+|ûú”Áæ­ÔÒíÞŠ€ϸìO³Í äòTø /u; Us¼Ý “EýÃy×ÖØZl¯}‰ÀfNiw}Ù½¿å:* ‚\‡}{.{v»•&‰¾y@pQnyå×zø ‰Šrœø9ŽE]ûÝýo×¼£³«Þ>ÐÜ3­]@¦°gÃaïÊ’ž ?–n:ûZì¾}D)³„'ã£ÛªúOI &“4à ¥ã¨…§ûîe¨Ú¦'d¾ÍçußboW$Ó~:x¸Ð°ëji6GhÎj®c`ub;À?Né«åïg6âœ[§qÔ\ÏeWíq0¢CÇ|hûK¹¯<Ѭ£Ÿå#° èŠT ×-äÃB&ùPqýpXer㮵²Q /2–tf&Æ»¡ëï†.Ší`s¸6{ûV9ZC;rn‹²Æî}YOƒCH&ÄG{òz»ñäTÿ(W‰?ÈTáU²:ÿ~žN\T|ŽŒ:*Žê²9'„ l‡¡í÷y]è–G'ê{2ÛDfèþë¸:6`¤ ÜŸÊ­Úì]BgLf|Ô7/¦‹—€Õ’±ö«*ºÄ2ëˆ "c˜ÉÌœæ$€ L#û¯ß•C^Õý—Ï :©Ò¾­A8_¤KÜDûSÞåûÁöC‡6•'Hh U (‰v#\K›³ì?·P ™ÔGdI+À´®ˆçÓ6HëèE4zàê@0 ¤ÉÖèÐÖhoCìF"P \ãÜ¥­Žmóü‡ìÚ®Tþßo¡kÿï"ÓÑŸòâeþ@ÎeXêéY0å0…6ÇÆšº=V{¿µ¥=dŒ¬jâÄÌ Áøà;S:^G]kÍå}O‡°µäX‘i±ü¹zÿrªYÕênyááÎ^>GžÇ°bœ$ª<ÿõðð’HËÓÙ$°Ã>ÀÎŒÄ ×©«¦¤u‚¹—«4<³±fº(›=­b­™ó‹Ö€iˆÁÿ»¹k³]cõ< ˜Q*pð–nåÐûU?²á±câR3)FÇôªoëªxµâš$¸&ùu;âbÇ~šGBe̘“íg¢Î§=L:÷0YàaRò0ièa|P{+‚PÞì?×ׂÖ×ù®¬{KfÑyÓ´Cî\ž5ÅŒCqD~Ç**­¢ºõªËÎ9rÈλÈá€ý€­¸ú}•¯ñJ+ÆåHŽ 0\a‡®c TÂQ¶à¶GѤw±v2`(¢‚Ô²S”€ly¢X¬“µ<äÙ¶¦üð2ã<÷9’;v8ø˜±ypÉ›¦ñu“Çwoüá€ë—”R‘hÀd `’lECgê†} Xìêr¿ˆfŒ8ÿ|ë–-ibAMpì:*öÆ+‹>lóö]¶?TC]Zs•xs•=)#¦Íáìè/ œ˜çžñÂôp)M)ŸQ.Èøø”ñyÊY Z—é¡6Zà#™K½9Jg2—þ•2Ç{Õ¦š@èJ1ñƒ&¼-Sx›€¼F¦xÅ.O|æÆ.DS–pª)Ý9Ê ã‚"4Ôýi ¦„O4°H&` LÀÑNÊóÅsvåµ6ÜyB˜™N;™‹ÆŠŽ=ÓUtz aú¾ry¨°B3—¶)V}¿õnk>)=Öeêò}Y¯å•@åx¬©}§yD"9Hp‘}¢{ LŸÚ®úîÀ)ÌÕCìC+Éá• …±:tí·"Õ´ :Ly’úôÄþŽ]P&šÓa6d}K´Då VŸ/×ÁÝ#GlGÖ¹áLLÕ­Zo@®+•‡biª¦2ÏZ¥‚ƒ4K!ɦfíBx—Pþ¾«÷àsxßÞe ø°r/—,Ý$à÷}ÅÓéÎ÷w7¿ÝpWä)¦ÌF˜Œ¾íÏ7?ýo ˜Ac2K7÷náy“2®¬¨Ô›w7ÿÂZî ÷ñ Éx&|Õg•b"Ã¨Åæa%ƒðc,r‰«£tå å¤%ù)N©ÏÞk˜Â‹@žÚ¡$ñ¡ºØ£‚n6t½äQYH*½4ËkàŠé Ä³J5yÎ8@‚©Ñ@Ÿ¢€ÜM%óÏ0C?}³fF%¡øRð£ÛD9*`”Ÿ/õ8Bõ몵R’åÀ¨LE'§­+‚ öŸs˜*‘>-»©†ˆSn„NXjô’Þñ(Py™üKCŠ9O<…딀.yWì$ ãéÂÈ•]×vÖ"ºˆ@ùlcñ¥!È>gFÔ§ÌÈÜ›ÞyùšÄWà “_.]{6ØwÕ@e…EszûŸ¸€šñånÔØŒˆv•Màv·"Ž®ñÔÊPÉŽŒ„> ]Zf×QOøy\C þ¶rKÌhô3³FX65øêáX&SÁ¸Hæ™Å\™þ;ßþ€Í»ò œzc ~<‚ˆ¡Á¶„È ÞzXAl:´çí X¾ÁSåÞP1š•ÌÊ àƒ+î÷Ø·Жulj.‡èµ÷¢f¤¿òÐ^;Ëm_%acËp«±É±mìnñ ØÆ¡Â † ú(üÂM=Ÿóî¿U~ÝøÒm7Tò†µEá·a]Þkœ¹k‡Áɱž?N*ú^ˆ ] È#:ÚǨ†´g­œÖ¶ˆršDpTuFY‡Ñ.ïý†ä^1 ã? ¤(´Õ…+öeƒÙªÝ~XLR“V.LFJ5ópÈÙÊ Pz2íݘ†¸ð0¼îìw—Å]V€þÒÏpÏ2΂ÐÓ‡Z¬«s5øàMÕï¼Û›I““6Rá|©n‰óÝñôŒ•€7µ}ÝT·~ü½2ã÷ÍYB:¬S.}cKTFŽß  ½"Ç }‚6/þsuf|–Šá‡ ö0é뚆¾:MëùTφ4[Fßu¹5$™×;Å;>´„Û#$û+Xå²·¨®T¤|©²Ça=‡Pœi>‘½(Õðõ›¿ÿóÝ÷k/cÉk0* ÅàM³§ŒœVëLëÉ4iEb ÀêðD¡Ò$<ÀÞ\|}÷öߟÇò+º/À~8®k·îRYM–G{•À¤¥½?Uû­Ñ:nI©d)VY&þ‹+tvíµ)èø=eI"²O«|æã0ÃAˆ•¸·Uí’®•¶yí<@’F"æÜ§UàM'ŽÀªUŽ$bâȈ—ˆöuÞ÷+Uä¤iXÅ Š7Ëàú O¯.õZ„n×U©pM„UÀãTB n8=]¬¼9aÐnƒEÓ7ð Î³¢Žši‘.}½"o _3qøD´)ýñZ2f)_ÿ7…7J.Šÿ’†4Æ endstream endobj 1808 0 obj << /Type /ObjStm /N 100 /First 973 /Length 2012 /Filter /FlateDecode >> stream xÚÍZßo#·~÷_ÁÇä¡\Î É!#À%Û-ø®@ãT[—¸µ%C–{Éßo(É–-麒Önìåî9Ùo~qE%° ŽJ³]£«d×äHÔöTiUÇ\qCäDmu1%—¸¸T±HÄ„,鄨º\l§l«Ptªbƒä µU‚+L W‹ k³0…S±þIµ‰ö"q=¡6=i´g Ë©-Ò$´¹Œµ‰ÇÉqÐ6ª]l= ÙvŠcáöŒ1jë‰8ŽÀƒ3F¹mÛNMt‰Ž5ض+Û¿d ×lÛ‘ê$-F¹éT)Ò %›¡;ª ‘plëfŒŠ- ˆT㣓D¶³Xœält,4˜Ä1a”ŒþIɶrÛZí-E’‰]„Èö,»›) ›,1¦h<’ÂøÙÖ˘Q‚ÍËXoaæÒ@…¤Ðt ã@<˜ºäbj0ÍCIfÀ2IiÏ ¤Ø êRâ¶Jt)7‹+¹döLj¡¶#¨:SÛ9L’9™54WµÑY‰ím µ½i9x Xæœ/LœºòBWè´E@+8¶aPXjhJ†”‚ü”¸ ȸ¾ÆÒ6+4j#¼MÅØÃC4K{ Ügì˜*ÜKU ›€m´Ô¶rkÀo#¼ZÀˆ\aÛD…Ôg°\$l+@T䫹¶·pC(¦­¢ê “ÓÓ“îwG(ðés×ýíï?; Á €•8z„'77O¾ýöËÔ€ˆ8ûK(>Bgý¨áØ^©¯ ”ÕWìòõÙt2w§§®;ô#ÔÞ¦Œ!ôâF çqyš-Él{Ün°^÷Ólzù~ü~7Æ‹Ñ/ã“î{°Oæ÷—Úü“î||?}˜]Žï­=ûËøêzôÝô7wa2H™>‚Ñh†ÙˆSY„ï&“)V»X„R“çÛFpÒ½øÇ¼Ýÿùzò¯“î»éìj,KPr\ ÒèDÙäÅ@,ìNË@i…Yb˜…všãÓt6¾Ÿû«ñ§ÑÃÍ|8x j<øIMž¤·<³ÛÑNY¶1GYáèÉE"˜ZÂFöˆæª@TÃ(©—†Íå~Úvºw§§C÷îr~=tžÿh_ý:ŸßÝÓuŸ?ö·ãùÒýán6ý'¸øéì—¯_‚X÷È7ëÄQΟêG54÷£f¤ÑÒ“Ú¼¦;2<ËkÙä`¯”-^)=½²,~敲rFÖ gè€Ô2+j”úaÎÿúF襅¼•õl1:±TÙ£%Þ³”’} -[•%xëÍûQ'%„‰žÄÂVòë«P3âWä¾b£÷Ö î²v—ZC$³¨›nÓán³”g oAz€Ò*RRú{.â:*»¢EÞ ÔÛëûK~5ºÿÕOï,poV1ïÚuâGÔV{/#rŸ8¸Ë†Ýêu¬zœASÚ4h’à šÂ2&Z xÐÚY¡mõ<¨Ï¡'Ÿ#ô…â‘szûÚ^r}*žQ•$*o&ZYd@<*Ò,®¨å«É¥â¥î]<§ø*Åó0XÍ[ú¼TÀª[7gŸQ“ %ßU3y „,aûtuÍ9ìpÖ‰áúò á¸Âk͈¸±ļº‰È:Ë£«³‚±iê-y&‘gÒ  ¼hövÔ›Kð‰íLI¼Z]V )~wA4ººº›Þü¾ië}’KÞ’\"U¯¹'1EÈ:ÒŸ‡8@Ô-5¸QƒçU ®«Ü£¼¬šf}¤´N*¾Š}2PÏIJ¾´:]ãîºcK±qdv ¾cY(X…`†’\ VÉîs Ð% ’Óc“ °áZ_£I¤ŸahÅÎìWmzæTÞ¬­²sÀvе”#¦ì•žr|ñdãP•Úi¹£´ >eLöhºO§ÛZ« ©ô¥f±ËžÔÖZ‰ROjʲùaçȺ}=Yq˜Q¶ÒÒ7ÖEUµ®‡²ùÊ6ÛÒ¶ogCPÛyàÖd·š´H啾 óý¢néÁªìg¾õ> stream xÚ½ZKÛF¾ûW>i«Ífó™…Y,öÌbÉZbk†»)ÔØÊ¯ßz5_CÙ†ís`wõ«ªº_µ&Ø4A¼†[‡¦îmY£´Yº=]ª¾\N®îéw&NT˜Gó«ô–cƒÇ×ÜBÂ/š+~+W?ôÜerÃßîìåñ:ìàLL¿CZ8l¶oüVbüؿËLòíoNö¢[cσ?•mZt@nþúó‹…¶ŒÎUj¯ñ™ç.õ©lP܄щ÷bb²óê‹Të¹ú.9W>ð{hNçKï„øè:i.œ(ûæR ­w0ˆ6‰lûKÝõÎÂÎ:ç˜_¸*\þžü ¤mlLöçg!ÅvòåOÑô½“í«²–m0>ˆàØ=4-DÇsLÊyÍŠu jɦêîúkåÞ¼Ä}_®ùA®Ò@ëW¢àܨ4[(¸©E[Kã±i¼R-Æh…ÆN$b‚›O¥ncE§*ŠžK°Âz>š5ûa‘t®a*È•g"jÆ ;œ1’©(YSäÞ¶«z„Àúé? ÙŠE ¨³”±j}e'Š«’‰¶›iΖ†«xÞ¨J>¨©®Mýj!f”β¹Q©üÝ£-V-)‹T’™‰ ¢8–‰€X7aH’"ö)„V3íÐTMËMTQÝ•ýu>ÃÀ KYéïKŠ^¡v@*Æu2Éš…¹™1ß¼ž¢ìú¶Üß…Áö‚Ôgê$Õ|mâQŸvK´§<†óxÎp=c˜g‘MÁèÔ¦€lë‚éÃv­ÃÌð eÅž׆gÆ~f$ïX§Â#ë4òéÚ,m\‡ayÔ¶ŽÞ x O|híõoÐ ýÉ06òÈý©@—P,µ{†Y”êxèO×6܈:K0ßo÷þÑÁQ«ðjâ\Måó àÔòd}bñÞ{nÀòÊ1×2µ§­Y„;ÐÈtÆÜù6Œ(ˆv(hÌbAU><ö®Ì“ÓŽüE%Þ%ñ–3©rqLsŸ×PÉ œWqƒÖÂ×'JhlÇ€Èxˆ Ä™ýAq×@î·oݰíp"IH[Íp1ŽÉ²³mûglÉ”ºnz‹çOöÄ ßá–M»–^Â}_ꈯ¤n 4˜$’A˶øï¥ë™ÈlB£µõƒ4IøŽ “×É8’âÌÖÏÔ }äñNožA‰˜ì¤ôÞ9‰Ò¯ÑúFúse²xªŸª<­£Û|sÿë¿~Zq#p·4M¦ÕÎÈJFšzdZ i"0îÀ|OæLbÇy(+5lù„&Ð¥EÛ·”“ÊšÂ|r ˜¹–ð PmE*``¾.ÖCp’!xpεk&TáZ€éXŽ¼Ð øJí-2ø1i2 ýÏ”¼‹{1ìÄ&™£Ì'}ê4PQžÍó‹·QÅÁç~¬+'Ö;­’ö2Ü]Îg >§ï¯B¿iM!$lë‰=ËþÍ»·ÿøíÓöäS?Âÿ0G°cÌað¬ãWŽA>Žî!uǵ›2*³µ»Bƒö¸ëøfß¡"ê)øàæÒC‰Ngzˆ…CbÑÐ<ÚÅóÇ\9 tXY{œªU䋜0õ‡$¼BéÝBN²EΗ~3œ£2¾m °Æšöäd?®Vp¨¡™Ö]ÊÞRZCúñR8ëì Àƒ YÆ5Ê7ìé\9b;F +O’{Ƹ)¦=i4E!Š-æA74“âƒ<[èMkƨ3•çfno܇óš)†*S$ŸDöøÐÇ\Z&ñ«¯¼­VM?¼¡Ï+lÅpQ¾¸F–ÈèH$µÅÐG4 H´Ã4?èïÇö’³¹h±º©wøfBe+ô1nXósd£nZ'ã*ð„ÊT%qúYª‹r•éhþ&FŒQɤ¡ŠRýÑ(›Ñ:c¬”+OuL±ÝõØ¥-LŸ<8á0W#a×*„+S •!™KØå|v4õ ¯¾¼ÿmœÔ³*§¢b䯕g$ãdèím äo½©1ÇÜK™‚ÚuõvgÆÐ×[téRX|ØÙtÓ@¬ìžáB"ŒܘT!»Pï axî ÝŸMö¾tëÑ~•å üj?îg‘JG1ééÚ—Y2m±€, *!ïºå. ht[9zÉèøö³ïæwÞh¸Œñ¹„G¸Ð3$ò©¡Š›ˆpýÇKu7٦áÁEÆ™V¼Ó†Y4DÍŽ»¥E ý¾À×Ñ3Ò|Æð>„àmm«kWÒƒ7@ä{¿xr²ÿôí«*À-¿L½tn~×ÕkÈ{ pV+ÂQ¸Ö˜#Ä`ß—®ãÝØ ¬Ci:Ƕ9q«oξÁß=¤ ?8-V¦'`†m»~8>4…{ ão h×Cd´mñY?FýµÂzV`Nñ ñs(ÆcýõâÛ}§nÞõwxiªágöï#úÇn³u2þ Ž¿Ejc‚)P ä—(ú‡ˆ(áE\™8®!ùÇÿ½ü´Ç ?o?1N©ÂÏ,¥jR3ùý÷§ûÿaÞÆ_ endstream endobj 1922 0 obj << /Length 1457 /Filter /FlateDecode >> stream xÚWKÛ6¾ûW‹ddÍIQ¢:$mR¤—¢[ hz %Ú&*KŽ(¾Ã—E;rºXx9äß¼‡Tí¢$úyñn½xøÀò¨DeF²h½p’ šfQŽ1Êh­›è¯“dù÷ú—‡¶Ò£$ÏÈlÚöƒP#\ï]$NÄþŠ2jN­H‹Ôž}ÛŽbèø(—„ÅKÌbѾ,3ß/a_ËÆ,‹¥²#oUo©#Œ8VKøÉM+ôbŽ©Ähõ¦44‘DÉYï~hÄ`·]h ú1Vø]âˉ·Õ£s;:ØíÀnŸÎ#VÙ­€„>ñbW§\s{|¤µ &#`ƒ'¦ˆÁDvvt‰“»–fi!‡ºô('ÍVUݳ(Ãè gH㙥9¢%¹U[¹/éܦŒ'ÛT˜koZù©ì¥÷ý ÿí»Ú„›$9Ê‹«pûÒ‚# ·ßÚÑbRÙ%#ìs’£…Þ#ùœÒ•SêÝÈO $9'1¸””å —(xz‡n8” „àÚ:ÛÖ£s¨¶»l4…ÉÞ¦”žä¾Á›”¢²¼j@×£öý©m,½q}ˆ·r×Ùæ“[DÁ –^Ø;ïC°—¦·ìe¾ÿâ}¹öÃLG²Ä^p¸WÔ%÷Ü?]KDþ^J!sÙe]›½Eë Ù7ÛˆöìE˜ÂwRãÀGã%X؇ÜÑcˆVh3ÜS•0r;œkh×55ÓKäÃÀ»1TϺæ û xgo˜˜¼wÜ™†¡úƒ¿A¶W. Ýí#~27¼fªÙ ÜFÏ7îs+ÿ[÷38)*‹)êß@É^2Î`”æuöZˆWÕù-òª~™¢‚’ Êzâ;Ó20*¦gË7JˆÂ +èBúÙú~½ÐF%Ž0.ÌS˜@ *0‹êÃâËÞ„†íG³èO¸…‡ýÔ/~ƒ?ÏZy´U7óüö2¡igeX[`mP[¦*¨„cß5·êvÛ·®üÎo¢ºoÄ÷ïóé~áC(HX6:Àż\±$‰XÙQ¨š·µ¾š¡¢(UÝ}útwo™\V#DÑÍ60ëÄÎÍjYÕ¯™áéòËJx’–W5‘«Ž\BËâ§®7wöEpO*q¬¼ð;}K{xxOTðmêÝôˆœ“3è–=-ñE:¨Gy…yÆó]# ¿ƒôY½CšæÏöjýé÷÷nI7€Ê8é}(ÍÇJ‰/†CïÉýæ¥ÂWí¡U; -B]䗶茯êì D" ôª8¡Ó®DÌqV…'2O¤ˆÙ£öj€oÆtFdÒhwëwot  Æ@¯úrÝ)¤çµx®àc…¹©½«ª»·&4¨ý>0LÓð5ñ'$ÇÝr¨9¨»«÷ x6a²fV‚±Š!Â@¿ûç AÞ|kɼ®%|³Šæœy?³kèÛ0åõt ;*âõúª¡ûü!²ýþ endstream endobj 1918 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/forest-arrangement.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 1924 0 R /BBox [0 0 720 612] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 1925 0 R/F3 1926 0 R>> /ExtGState << >>/ColorSpace << /sRGB 1927 0 R >>>> /Length 3034 /Filter /FlateDecode >> stream xœí[Ks¹¾óWà’Y¶fñààƒíZ'ÙZ§²²*[)ÉZ¢,YC2éÝ­üútÇxIšÐVåàâÁ¢?²»Ñè'ÀöìûÏä§øÞiÎ„ÒøaìgÚrüx\°ŸÙjòÝæü/¯Øõf_zÇê¿›ëôóëw;~~÷úïðmoد“Ë÷Œ³›‰`?À¿OÁ;ÎÙÛ î]5º4ÅÁ'ìý.µÇ¯öþ®xÐwÿïð?ð»æª“‡~7ú ~†›=úá49«ÿ¢MˆKkÔjÉú8<á±wÙj‰)øíg¸îŒLîZ2Â5«6¢3š Ë£t#lç3I2ƒé»²Ù)bH2I–YH~?S ÝëNe&ÚV¶l˜h_ÿ>äßE†ÉØðÕÅä»70gvqË„èH~ü±qhwdâž],Ùåô|¾ºY/Ͼ¿½At°éâz»ao×7‹aöž]ü0ùþ"$@»»üt8vµðê+_XÑIŸpôÅ$ ˾ãŠH4ØÔV$„k’ÞvBW$„+’=q1"Q²ó¼"!\“ŒfPfT‘ 3J=Øåò¯øJ Õ ²35=S3vñ ]òuOk-:íGܲÛúÎõ#nq<·áƒ¶âæ ̆65sËÈàRÕÌ-“†âezæúNEÞ×ÙùýæÏ·÷ë$¨¥<5aœïDÏ$è%cq„c¨ ¿@¨'Õ™\‹"W"ÉR &ˆqL*‹ª Ö­>á1‰F®˜S{ŒÎ8Pâ"’Œ ‰v®³žI¨ƒ”vKá1 G.œa¥”’—¸ˆ$ãB¢Á5àD Ì<ûÈý¡Ö²¦Œò S$ǽ¡üzüøì‹Jß/U\èöD3B'÷UnÓîx5¥taÝF©¸zí¸•Àþ'<6ÈÀmZ††n$B±°:®º]C-KšCqQsÑ¢yäÆRàâàÒ7«Žù®#·á-3fSðÇ#{“ÇâØ¹Ùl qIÇD•‘]5dyâ†D$³Ù†§š7&™­ehb†‡2ZK°Df̃¥¡ ჈9Bj ëšBÕ|DÄ4!Õ¥ö-S'J¦Àš½)ËI¸gà[â=òWÙÒë¾%èâª|qýS,XeŒ4ª%݉¿JÕ²p þ*k WMúTy#”ià°1U©©ØÎ^’Gñ&ÿvLŸd>Ñ> ª¬õ«j)¶ r£¿dOCê(¨–܄ԡĺÁïIó’8¶¡Îw•6º‰;¨^%nÉÙ4xIÑàñ4xIÕ7Tzó…š³nÈV¼ÊÙRíÒà+´¦í.¯R¥)X#wÕhšÆg™Q¢ˆÞÉ–˜±a?±î4Jµ˜Ž(Fö°nW î4-•†øëN«Íwß$ Çm·*mlS©#ý«FÃûvþºÑô-Šæ_7Ù80ÿºÑð'°ÃsOÏ K-b¯MK›3ÞwÊ×û%g÷d.áÃèç hx¼<Ë%nš— “)üªMçȃU¥kg¼Euªý¤tÔÏ>gð!ää• ’3gX—ðáyçt»¼²A‚úé>ÎWyœ·Û¯ì‹ ý¸ò„þOÑ/o‡à|-úWvÆýúý’¼² ‚|œo”gÛüâ¯ì‚ <ãÏÚ0_©Úõ+û8_­ƒ{ úÁÊÈ>A^ÙåÀx1Á~VDÿ>!žË.Ê3>ÈÓä'دÚÖ8 žFy\<Ù~åð9øWûñ>è§ŠýÂÑŽ ‡Wà³%àƒ•ð1h'\À‘>á;vã9>oŒËe8S6á¡àp,3zÂ(C{p² UÂk<—÷DxÈžI\<§ô ðÀA§I\¡ XÁÓžgì!Ðû€e:m 8ȈÇJ`Õ zh ÂCÁ£s(ô„ƒ=ðXH† `m°iØc'á ¸O¹p¼dà©§5 [²O¢'dôád3ݹp×Át½JxÈØ«Î£Ÿ}ÂÑ/PÆâ¢Öõa.ñ¬$â¡`‹Þ¡ÐŽ~áá;åÂaÊOQ8OxÈXü2}ÂQF8ÞÒ6¨eô*á¡`˜Bô-ÑŽ6…I§$Q†4øAF¢'mšÏH¢_œH"Ñ/„%Vù`Ó|†"tŽpªíL<Ä¢Û6„óÊuÄ^(L?m¿Œ[­Ÿ·wëÇ«éæjÆæ«ö¯s¸;o´n¹ÆŒ(Òñˆþòüü=»ôæOìõ߯åè ,)5vû ËY¯ž5°c@Ë1ûÙñìJªÎº'ŽéðÔÑ¥ìñ‚†„ƒ‡ùt’añ$ãúú~5ß.n¼‚gʇAšJ'9«íã ª5›®Ç‰êS8䎒ÒßÑ)œæ¢Ý°Dˆ²¼ÆÚÕv²BÀˆf•bgç“Ð~NXz§FÝ8&^Œ –¼óáç'Tj¾;÷YpºÜfw.ù÷sâ]²Ð·Ýœ*/õwî¦à´yQ¿óùö§ËË÷Ï&û9µÈ õÏT;9Õ,< ' íÞÆ9Àjóê{÷^ÄVŸÚâè0‚"§Uèd¤‡âèH¦S‚ÐÏÄ qt8»Íëå‡gò…8:¦ˆÝçåñÃ3õBäÀʬ~_Eê VQ`¹ºï^mºN.tñrY(5A" XSŒ¯rå¸éêE¸§ &uaÕR¨‡„,.º†I;|±«2$E!ùWÃȆ°µ¸nF{þ6Ü/u†V¸dάgâèï9>žÖœßû<”¯‚Bƒµå*hmò|ý’H×$‰ –®²ºOÊ-nåÔBE’YQ|qûw,qÄ>2.ŸÆôC‚&쥡»H@üb9VgÈ0®½Žð®†žòµ§½ÎËéüË®¦ëG–.>¬>.®¦óíÕìj¶óx{§\(“N¹{n¡îb50·pÛ'±Ê¯ùž:e²1Aºõ^V ‡ ž´ñRVþ—†•}X÷dñ6‰ïÃ]àJ|î: ”•* 'Ø"\I•ðœeª72³ð›„[÷…æºfé_xa4v+P¤è‡K¤“€écyéè¶ðˆ‰V!Òï‡ù‡Ãû'Ýoÿ^oØ/°ô4ïÃçÅæè@§»ñ?:VªçÆm×l{·8:棬٤\¾yóñnËÖ· Ëî¥xß­˜U;a¥ÙËÕj½Å;É«Võ¬î1ÄŠ~Óaq[Ô’ V¹æüÿ¸êü-¾áñ•k†§W=N¯zŒ}uzÕãôªÇéUÓ«§W=N¯zœ^õ8½êqzÕãôªÇéUoùUÓå¨Óå¨Óå¨Óå¨Óå¨Óå¨Óå¨oãrÔO“ÿG endstream endobj 1929 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 1935 0 obj << /Length 3581 /Filter /FlateDecode >> stream xÚ]oä¶ñý~…á—jQ['’ú,Ї ¤íCP$.úˆVâÚ*´ÒVÔžÏùõ/êËòÝ¥8à–’Ãá|ÏÐÑÍãMtóý»oÞ½ÿ.U7EX¤:½y8ݨ( MœÞdJ…©)nꛟƒS?X7†Ã¹<üúð÷ß%Ùb‡)Ò0+ ÀGk•V¸è]$GÜÜ›,§÷:ƒM†—}¨ëflú®l÷ºˆ‚Kß·¶Æ± à¬æ\ŽÖñTUv ?Z”uí—Žô2|’éKÛ *GÞ¾<öcès3>1·0­ð/Ìo$™‡?~œ1fyÏ8iO Ñ®îºåLfp_ÙpºvÞ8<ÜÇF?Y:ØcŠÐ¤ÉÍ=p¼H^Ì—I¢ î«ëÙvc‰[ÒàÁøTŽÜ›ö ’àSy¾´Ö…tZÇ€¸€L:æßO¶c‘®® ‚J‹ÜîžúçgÛ<>î¯?þëÛÈŠ0›Ysw¸7…æ;à ìºž/à`@-ȭ妫Úk-K›ˆ?ËeiﱿŽ|B ol: >âM­ì{權²0Þ᫉ò ?:;ð®!EçTý•çëëÐt<3m:÷µmöKéq„%(Î< ¾CTÈw\çd9/¤=‚ô—(‰Üµzâ¯Òyô½³~bõ±¢"ü)j´¾2°3¼vÍg5•l¨U$ÊÏ'ÓtÁ|ø¨ú<Ã¥ïjþÎóþ­éq$✽ÿˆÒ*‡¦ì*Z’x„â È¢ãAGIå ¨¶‚PÓ‰ 1ý«k_ìPÝà%@D&/fé,›Ä¢³tÁuœ÷¥Œë*NÂTež‰ÈõóÇÏ2]‡i¬·L†ë܈ýg v#iÄ „KçÉ%£biP7壸Uœ>­î<o¬“bÍ,>ؤAaËqh>Ï’8 ~èGd¿ÎÅÙà.€x› ÀÝ8\«ñJò‚ÏÆÉÆ—KS•-¸JFßû`mh%è¢xeÓ "6-Æ®Âñ'*GÚðnòex‡tiÚàõ¦Ë$J.Ãp"`WwrØõ#þsu²§dÀÌGübD¨M²ˆT>‰ü±jaŸ‰ÚúÜM‹{â›ÃÒºŸ_ÞÄ[¬4¶Bç®QtH9ŽkÆ—ªv¤}0ùJMp<¹wO÷ç„õIUɆ€%Žj;–M+T¢”¦5¬–0p[5¤•x‘ÒY?_Ž;H¥:,²‰ÆO{1'Ôf ®žC”*hô #Úÿe¼ï;Ò›îÊB³æû-ííÎa±†¬h2VRË;ޱ}'‘šÓ”­ëyäìÞÝŠ$T¹Þ‹®·Cÿì®ç=T¤C5»—ÑŸ zæ¡å·Á÷€!Þ˲?$O !ñHcµÎ¾»Ð%z:(¸ËµE-4ÉÂöpcð¼Ÿ9äy¨²ØSyqÍïvç2_è$YÉŽ$SÄ£HUÐ)ÛZbžÈ—ƒéKÒå-ˆ_v³o„é’¿)|‘4‰G;ÿ{•i0ôþd^¶ô–* c½ñ–’,Ü3E˜VÓ:ꦕg¡ tûòPy±’Ç[-̸s/p+ÆÛ»4ÌfoÏëݺфq¤–Uâ¼’ÑÆ{7¾´¾ a±ˆ²Mjt[¹Y·Ëaœ ¶‘hŒ‰ý¸*2êm N ½¬r¶¢ ‘Æãµ~áë.—ìzg š[ÌE÷-¸¤Ûýò.M¦»‘•7Èl*ÿ‘ÞVªY«W.YísðI¡ÖÌþvÏã™k#ÐÞt–s¶à\{eä+à§í±…Å‹}±LCSñ\~’äƒàp9Ü+̤ƒª9½0xâE¶¹8Ôó×¶Þko­¯ø™#ài#²ð×bJM¨ô$¥ªoßrDÔÕP{ŽhÓÒð‡_¹íˆ­†E‹cÝ{€óüû•ÓÍ<ö÷ …žtÙ”²Ã8AÔ``âw©¹lN½Ñ¤R9ì/ÂØ3ì;OŪ@;†»þ,+ ¾º†"'®xxµ²NzY‹ò·¿€º©@juJôgÖ9êW˜`êbS%*e*'¨08 ªÎB`r¸?x‘·çeM-Ɉ/Ýxäf#ªì0–ÓG3T×38 ˆóûï>âoð ܵof’›ñ:ГM ³p´~¢Á]òD“Å> pþ½³2¿ä'# 'Y>åV<ý„t“ Wï¯ÓÅñZÚº¢›§«Äórëþrì½WÀéþÌÕÔR—å)Fäv­o¯}+j‹všç°hßôØ ŠµëÙ S ºÕ© umyÜóª*Ìç~f‡{ý0èiM󵈈Hêèшúo§b~ÏÎÍ! e‹øš‹©, ó9þ]¸0Ùn EJ¼Êé6hâ0™ãÉ›ME@3·–¾ˆ’{;¼…&[ÖVQ†Lz¿›Üp¶™Qk_.ð:î%0z›Àpm ˜ý†jƒD“/f”PUš|ÕPå"ESÃÈG¯$^ÈÒ·VßM¼© –‚dÑŒ¬ƒ,.Áׂ¢gàQ&ÙõÇ3jÊÔäY6u´I×[Û=Rnð³ýêi¥.Gy”釿±éüó ÄV Âú—˜žaÓ6ÿ\Kæ+ϵ<³p{bÛRmA}šßI(TÔŤÐDØŽ8 Š©|?®ÒSu‡ÿáE›3Zì8R×)2¾Ü2 økz’6|G*Á(ÿÛîÛÈAÏM+{²ÈÙr¨ž¬”x'~Ð6ô&:ÒÈv ŒNçáB$œkǸÌ×:Ô@Œu1w=B<×KÍ‹ƒ=÷¸nªMq–t wAÊÚ~ÆÆ?×Âô¹qN0™u‡o² <á Ž¢‡¼HâTyzÓÊÁ¤Ç±×Ûx˶ m #[9…§WŽr7$cËuõ`ùå‘Òz-ï:]Ü߸ä÷¿×f”=S+ænÙ/§‰£m93QË¿ÇuÌw<àå|ìýCž$+)hG%¹R²<›;,acBÏ—ÞIj…ßd¢ð;ØSØÄäÁO#äÕ“¼"û?ЙÄ^AMYûg.ü––É8?+ ­²¿ãÑe`jj9½”¥òÍdPÇdç(ÑÇ+×!š\·áC’tWRÁLO.z™ofØ9QÁã3F;\°iÉò¤–[ Yޙ΄ w'5Bï×rµ·ØEb~ÏBÜÕUyÊ¥7ƒj@øe2ŠÜÓÅpØŠr¨´\·úéWÙÔÐé‚+ûéÿŠöIhòx$ÜOc¶­ þ‹/dr½[º†ÉkùÉ?mk¢4÷|·0NšÜF4 A’zr‘ZD¡Q›„Àç™’Ó¯“L/è|}ÅO/‹¦”ÛÍ3ÉmD‚MÓŸ11ôlKG:Œ3R¼EþÄ`PŒ’çùú&òi/‚ÈÇRü®öÛÑløHOÁQÁÝÖÿ}.(ý‘Çk_ÙJ;>[Nt¶ºy åûž0ø3ýõø«ùmÔÉ2`Ldчà¦d´A¦ü_3ÿ拸 ³ÜQñŠ­ó"4‹Ô±mÎûQ?JÒ7¢¾’·8ø•vänMûíûÿã? endstream endobj 1945 0 obj << /Length 3555 /Filter /FlateDecode >> stream xÚ•ZK“ã¶¾ûWLÍÅšª–xð•”›MœrÊɦ¼›\Ö[eJ„FÌR¤Š¤<ÿút£àc¨™qé@°~¡ûƒ¢›û›èæïßüåÓ7o¿Ó›\ä‰Jn>nd m’›TJ‘èüæSyóy#•ºûòéo¿Oäd¨N¥ˆÒ&rƒmgûAt§Ç~ñ‹ù·:Öî«­J¨éÛáØöön«¢hSßÉMuª†ž^Žâh8BŸÌóM»ëm÷ëŒ7¶¤îö2ìÛ“í©¿h˜¼o›Ÿ£H•¶ÙÛ·çΖÕ~¨Ú†FUÍ€³¨xSԼʾhšv n‹óÿ¶·~ æ »ví¥){Ülm ÊãØoÀб¡3qbtŸ-ÕæÔ–—ÔRn*˜ø2Œ]1´]ÿ*ÁùHâZO•cr‘¥©—ø¾­iÐ\ƒ™ˆLæÇÝÌ6÷—“mx-Ø+q»o‰´³L¡W’ðØ!r{ úðp'AäD´µÅ9‰áÔ1ì¡Ü»~pr)€’U<—ÕÁÍk$ ؈§¹µ¦}ç¶~¼o\&1#¹· ã’Úã„`;¯™³®»ü4¬7±|ŸZ‹¸ÛÆ™Þ|òŸ*È[+çê‡ÇÚ~w»+ºÛe¥F¤ÊëêÍÊŒ‰S}V_VfÑZÀG~”Ó¯‰I«&Ù\z[eh‰R”ÿ»ôÓŽ< 8$J\ìjÅ -ÒÔøwmֻΙɄGòZ1BëÒrq¼!ßAó*Éæ6s]äàhq‚ÐDâý±(íšÌ3#’L?'ôX˜X½àe©È¤œÉ\e™“9> |¤3OB2Z">/gz¢BÜóØYKŸLüJåÙæáh»ÕPå`Ì˦¡D:ŠçŠ>S¡b=J¯M¨E/¼¹?Û}uxDn5)X冔ÚÑùؼעS‘bvn|¯ÞXŒ±®åÄ5íBVÍ=½t.R߃§‚_=c$0\Äéš•”U?¬:f.ÒH=o$±’ÏÉV§™Hó|.12»Jjg,‹°‹ïn÷ÐíŒÃoKÏC{é¨g´•¥ÆJD:~D‘žâ¼Ø‘™Šª&Ò(ïÕÓD¤Z¾hE/­ÇÑiÅ®ÅI.ow¶n1 ?P˜P9X6ÄΙh·]»Æ›’"3ù”7s7­¼Åž7°­ó¹í«ßúªä–KRº¢éÏEçÎY%!ž>Rgixl—zÀ ýZ©kž˜C¼WúU‘5ù,ùZðä³!%cž½ðr„‰Ñö£r³8rÖGa>h‚!®¨?‡xô¯wk1SA\ ›;_Q.˜»á¤ÕÀ“rd3-TžrJ•Ž)ÕZP„Ô'ðPëÛäÉzz¤â„½”aËùiœ’$’¹ŸÂ»/<ŸÂsàÏ|P‡æ4¨Ç+è>Yr/?!‡TÖ@:§¼ÅÍýx¶|\B2sõQ¾–ûœ,ƒ¦¬Ðu~­ÊKQSçûzj ñ®È2„ÉBø¸íÛº*×¥žÉ'}jôZû\ºCömJÁd6örz†;ÀmºÎ'{šåiržÕsò©2Ñ‹à{e·@É3ß–í0ØÕ݈I6Ý­Rzº[È@ƒ—3·èîñêJLjV>ä…ÕŠ$·_¤9£š:¶]õ{Û ¨?ìp>L]ñ8ªt<º¸ í©ª}Q×ÜW–¶$ɘXè,YT0-û[´9×-»ä™A‚¨ò I…Nf"ƒ9'"û3Qz;<^’\D£‚vuÑ|}q-¿¥Îž&IØæ)l0I2=¶UF-©FMŒ¢ÙÞ•e…ææ3|8OßÞu¸ $ý¬¾RKŒ¹°©d,QyZKÒ"6z(m™4YßÛóômÅz"‘M`‹êh¸z@ƒb‹ž*Öúá¼ÐáÒx§‚·_«bÍY@ó& G½b½ U&ŒA:b5þ†£Vb\~µ,¢QCl!¾&Çö޵Vìv É ðPTàŸ–hC2¯ÇTiIê âü6,gáôï!üÖ(ˆ× H¶«öôÂ1æâúR’ C¬}€ÇFqj/®ðŽ9„Ápºí¹ÅR5üíNýt¤[wçʤÉ×%A=î?dj[Ü©È[9ŠY‹(ílfötXÀŰðxkЉv5Xq/ÞÐëÁçh >c8Z¨¼ºžÜ ‚sDÈÂíùØçã_‹çôY‹ÈÇL`´þñôœF†ò9„®ÁÛÄgm›ûáHmö ”jø€Ú¬T`Ò®+ö”Å xÄ¥ZÈ] ô GH¨¾Á±]u|ú/óxÚµb™Rj&¡~ê"à™¹ÛüàÖé•HsF™t>—±6NÆ+¹’ÊEœØ*ö–tñù–µûäùå֙ݕriŒÈQ¶yOHDä‘&§ô¾¾”–ÉD3NöðÎYQ «@ÃÚ²4¢òÀE¦Ê8†?(±Q·íWj9ýN»NUsA!+ÉCkP û+Nçš¿p\ÀóÒ3¡ Ç¹k϶[̪ hÜ7ÔÏLi¦¡SFBæ“°EkÒéX­°£ÃœUÓàZóÍP!¯Íyàñ‚éÂî6°¨c[vÍNR¦ ¤$hJRš6l6±S’Ò%…Ì[ý±½Ô%µÝAßÜ…ñn[WdñLsâ9¢2Vƒ“£ŠôæëŠfû–…b Ѓ¡)ïBå\SÄ5,6 Qh퉈´ &JØÕÁÝã}ó?-Ï6t”š#•¬TD‘ªuì¶kH1­ª24û¡~d}•c:íqµÆ—Z¤Y:¢;. ~÷Z_ö­Ÿ¥6÷‚ÅÉ5W`nÑì0ì ÙFo!«ÔPB¦0“£ÌÁ…¤ .$ƒ IÅ‘Ó5hÙ€ô6@íƒG©=&G¾„3úD0ÐV„‰CŽt„ ½ˆ‚ÈWUÇ 8øÔ™Ô.G"x|µ&…Èh¢àÌ.Ã_í~ÂÆúµ§úGûEàÀƒŸÈn:<÷¨ùó¤9Å„礔±ì93 I*èÀ*¼à!&ö- ðûvdÊè`âÒ ¦¶h;I¼Èý˜;üdôÝí›kÆ—ÈÊãi||>yˆ'zŽ Å«ïûçä¡c]&„*Æ„PåršbŸÛ{Béè½ ‡«#¹Qî‘‹]S(É\½’S%´† E"“™IöóT‹i´¸¬óˆ×‘ž³žÝTNB롪¹–V:v“Ît6 `0Þ¤ ç¼Ø¤Ô!Ð*“¹€<ëø*(ÌbëÒSBixÇ¡u É<‹@ƒ(âJ»ª´<Ã/ Ỹ/5^h ÅéùÒÙþ[±æÖÿ½“î6Ì)PšôZŸœ[B£NøkÌŒ­Eãê‡àê“°º$cäF›)h Ù&䵘Ko½X ÃõëVjh)O’99S±£jÖ¾82Só{¼f~Q4l½/ø´ˆ—Ù,$ ®˜qÏ'x¯ÙX¬¢|®8š +çh cˆ‹ˆ‚å$õhGØA,FrÂê¥è^L&¿¢›¢S’¿R7/¯9êÆßa §Ïذ‰±ŒQfiÃt¸õ!ú•¼Òn•PùÒlaâ©Ù^½8ŒS!•z"šôêBre¥_¼;ÓëT>`1ךÈÃSŒ‘‚1ˆErN£·ò ¬»w¥©J—1ô•öÌ—Tð‚¤R]W!L)ºyu\©IZôYZlÉqYü˜×}át×UD§k2h¼/ººZþN®åÌT“çÎW™àÔI”¨u_sK< cü²0äc{éö–È‹†©šÄ¼ÿ·PÔ˜´DùZˆ_"g w*¡óŸüeF3å3® üÓG½äp%T¿™Þ¼oOç äkoD¦6ÿÄ?Q4ÔO«Aã#]Zµ–Æüç‡7DWô\@ßT6y>®K8qÉùS»kà ¯¡6Ζ—uòZá›<»$>ÏzÖY{¼˜ÐçóA6QàŠ‘”œX8œ€u榜fP†»l]ó t4äÇÃ/þyi‹©íGcûÛpnŸO/caÆ3Œ9”Zä 2gø{„f¦ˆDÇp>¹xV©ª+õ¼§2’%¢.%S;÷oìg÷šL4«"è>A ³¼Ë¥`“¥ ` N¢YÊWü !Žà?™!úð^û¿=A›þ(0Ì´ÆkXg‡É¦Vp3 ÷Û„…Ã63“i ”Z‹!‡µó4iþ¿¿Ÿå—+ |œOÿs0GçI_=½{ „¡È>´f<7'ë—ÛÊÏ|„¥ž5j Öì.”'VíB‹š}€ªïã–:{bÜr™ùÿ©L¨åî4M‡'„Oº¶#-ük‡Ë@GtÒ\¤ù™ÍØÍv€M²÷w­|€ºØûVKDž´äþ|å¡Lã+>£ù ºÂã-4O…ÿóA;ÕÁ7à¯xv:£¯\.¨(õCžYÛk· ¹û_Ù¬ÜÆžþUÿ×Ü\î¶îŒÁ.þ×—v•Ac·xkwiÔ 5ö ž·"K.?‘xBŽŠÏEAot׿šø??j• È5–þ#€õs9H"áÊßâ$)ÉÜ[ƒ{Ï2‘•{]”Ñq4~zÉçÁ%*ÞÆ‚T*”qÿ ÿøé-Îq†žÖîþù·OßüN`ò3 endstream endobj 1958 0 obj << /Length 1770 /Filter /FlateDecode >> stream xÚ­X[oÛ6~ï¯0R ±ˆ!EÝÜÕÃÚ®ÝV¬ÀfÛúÚ¢m5²hˆtœì×ï‘´%Gq³l/oçÂó}ç4-Gtôã³7WÏ.Þ§l4!“4JGW‹£”ð8eŒ‘”OFWÅèÏ`¡© iÖbü×Õ‡‹÷IÖ‘à“”d“ èkײˆã¢gÔ™€Õiguè—‡QƒÜ ½'4Øš•j>Ó„jøa=%e]Ó,…,'inµü1Îi ªÅrœ¢^ŽÃ´þ>NiPÊùÊÌÄV6v­Ø­pÞÑ7IÏ#¿“W»›Ù÷kil?Ü4ꋜ¢šåwA`QLÐåDÏ­÷$ƒ:jÀy×¼Ä=ôlÆd’3/·2f£_^\ìv;â-Cp¸cþ8º=7PÇöX`‰óö„Œä,RG™]})–²žKý„øÿ"ÇQìJ}Q޳àiiðÂ~ÞV¢¹3H·à#±GD)³þ†œN‚÷c–-ípIl*eôKœËƒ«1O‚æ®l!q£ìWKéV®±CkJ¶'êâhÞ4Rj¡4é’š3’Àö\ ß4¥)õÊ }”E9JA$ÝÂòe’$vùŒƒÚ6µ]uœ0@†8éQåŸ'x ÖÄqhšqJ1€ç–â,Î&Ÿ£(eqNÉ×sô—¯P%rì‚QÂO/fë/ ¨œ ÊWBÆ#’F ÉyäØTV1¼§I€>EYp‰xGQðq?•ËeYk×ûà¦3Æ‚¶Ãì,üúN^Êë¾Û [.±—hðsmd³i ŸL©j»L-¬X¤Pk;&ˆÛòLÛILÁPŠwz˜&´û&€§IÛ9ͨ; egDüuF8I<B8çécÐG ƒ Ç ”š¨úq±):C>ÿ1žD)Ïru¥0óVÕÅvnÚ”æYÖ¼•*k;ui?»Ò¬ìD›Í^*¦݈ùµXƒÁüËq¾Ïï.<­* ‡Mo·®ó'$’6t?©…Ù‰f̳@Ä*Ë„àñð¦CiËNºón®c¢ÇùÐqDN§<»ø¢5¹¡<%%åCK"'GƧ¶Þ‚ýוVƒçy”äí èš÷OÀ£SÄ^6Nrœžî ¨E<ž@y·_…eçdsSÚ3ÉÍ,ì×278)šRmõ@ì^Q’®!çØ?ûÌ[lë9Öí½*Ü^Š$'ñáøv×®B.Ķ:‘Œ“ˆ DÄ~¼GnóÊQ äÇ'WÑ ÜÎâºð0Þ@ð¶ML=µuãÂM«ên©jòø½Ò~é€Ë%ÙÖåIÜc’gGW¬GE Õ^í¬W§ÌD’Jñ³‘FÜXJžh(ïZVëõ¿0<ˆÿ1#N’˜÷bxó•…ìéÏÖNn@/nøýLid°™kUÈÊMïÅv«r¾Ú¹$„ZUã¸6wh:Ç‚€™+SžÜOa)³êEQ ÓOn=ƒjÐÛy'M©ˆ½ö⊓EÑË"ÝŸ¾—†ƒwú$A»¶@»RúîV¬7Õwùûw{Øxú ”ùªœAUŽ­®çÏŸãK„væRÛ!¬«ømë*6*µ´¦Ô×®…—/·~«Ûƒ›ÂÏâ5,” wûj !Z¤ »çh#ÝŠW¡“^ <×Rèm#§g——gçN}95¥]o½Z.]o^N燹z‡¹B1…2›/ÛÄÁ=Šã‹©ëˆ®ÄlºÚH4/Ú¬Sp'…oj¹™zÎðÔöÏÛQè•F¬-ý@ûºßv<°xZàÛP«B©Jº6è-×ÂÈ¡P[³¸;øîý¦ÎãüÈãA­m/o­3jg!ûÖEÇl‹ÒÚYæF®§Œû=6j»\ÙŽ—†€—«ÚˆA¢ì«Êúaô(6×ßxíf§ÜfnM#î©òÑ×p×tûæ£6{ËR@}~Òã½7 T5~¬Vö £¿íëêo ]ô[‰†¬xŸ|þlDû¿Ëí¦˜^]þö®‹sWÌ@ÚuÓ0'Ì}²—,=÷°Ú[ÓØçš¼Râg檚ž5²8{È’sHmîQî8IÚ"ßï . zU¤—D.Bó•Ò²²Ø_çó ýEO¥†–7²Á÷ÂP2{üªj« 櫯Ž{mµìsîÆÝZíÞ›åv-ëƒ JáùÚY•ëéÇB~Î{…ëIÒnB5…l¦gðŸŸýŸ ÕLÿŸúĬæ«ôëÁ°wÚg½C}åëÝIØwQº;€e«gÊpýtn  âd¢É¡6w3Ñœ=ø뻫gÿ"u“Û endstream endobj 1966 0 obj << /Length 1168 /Filter /FlateDecode >> stream xÚÍXKÛ6¾ï¯0´=$ˆ¤%K²ª@dƒ9-ÜEš-Q6IHj×î¡¿=¤ø°äÕ>¼ Ð\LŠä¼g>̶³`öáâíúâê:NgK™„Él]Î@øÑ<™¥øI´œ­‹Ù§W œ¿þ¼þýê:ƒ£Q ü M£þPI(bܧ5”g/-âê:Šf A”Ì%‘ÅQOå…©XŒ†´q F÷µÁ«–¢‚ñC…2‡í`± $kÁÖ¿Œ—Ï".0ã#ÚøK°P´———ŠÿtŒ«ù¾ÂµšÝªCLÍ9Q#CHMväNïì ¦Ìw°ÙZ‚>ØV„_L(þu-¤ò„Ó1Ú[ñ ¬Âϊ陋ƒµD&TÒÓ;«Ó´5wˆ"£3a¨QóÍA*aWñçz[ŠÈr¹æÐ‰Ôóœh é.Né'#†«JDŒBŽNÜ-ÖVê°ÒmW£F»BJhÈ=Èu8Źú~÷›öéš‚cˆ¡}« Ï‚UzßLae(ëŠÊ 7(û«á¤ÙÏÔN)^‘­<Õ+øAì~»À»¡Ð”eédøÒCd®Þ!¼Ýqöè¼PRtühåZ š9Urǽ§¶¾ùã½5Ø3 _ ;=×=iæü‹6žŽŠð€ Uß¿djË48ŸOïBàÆÏ­[Åi€Œ 0ß©Ú ÷h4¢Z!ǤaSøiYÊš^©i 5„5cà¾Ã…Á9)—ãfkÐîçh|Þ¬éÉ-¢l[{ž ¿o–ª>Wu(ô88iAâ&g-®à&Ë7¸)$o‰…©mõ4?®æbu JRû=‡þþY¿}ã¸â×ëÍü¨@p_¶¿̵¶K?vEy‰ëÍýx &Gû,ðÆð‚}©ýÚñéo>À:tHþ¹ëܯ¸¡2HÖÉÞÂO…üX8x„ºì§/oBaTé ýæ9nÀ¦Ôw¤á”TÎÃj—âD>™û5Þ£ÂCe‰r{5)PuZpÃHÕŒ¯D ðÎÂÄ€PÜ„N¹Ÿš{þgOÛZCi] ë¨@›cÄÙ 56âk8$H!¾Ž{B¾–¡áã?£»ÐWåÄ|éG kV@3ñãorÉÉ,k!ãHªûÈë- Ræj3‘ÒxFÎäEóÞ CôÖ€…M±snuãt~7³t‡ùöØýtRçúÂJ8OÔ·v÷±dû¢“EvZÇÎGGÎ6M÷Mµ8ÿˆC6°:0Ó³’ò¤‘.Ò)‹Ù=“w€>ß1‹ÃÐì6©§ªêÿ)Œq†?Tß7é'.YãÛ瓺­pmVËb°7‚ñþÁ¾l€©}T˜…ܵdbƒÊ®zñSgª˜Çb ÍÝx|_ŒŸAèE— Ç^q$aЙ°šŽ7¼ò^"Ó=º\7Vé Ø¦ \%z­À¤Š ¤# §õb¬Ûl)鎭©V&pOCâÖ•ñºWüS/Pããä è~vÓvгö¿3¾__|Äq­Ñ endstream endobj 1970 0 obj << /Length 1525 /Filter /FlateDecode >> stream xÚ•X[oÛ6~÷¯ÜHP‰uµ²i@º6Æ=tM6`ÈòÀH´-TUŠJìbØoß¡DêâÈnúbR̹|çÊÃØÆÆ°_ïn×6"N`Ü® lÛÈõ#ÄndܦÆÝÙšñ‚Ay}~ûÛŵŽ8Ü(@a¼–;¾$ZØJÅŵë+ Ö‘’ •OªŠ3¢§¢Q+Se~8Tµ/•YY9il_é'º§ísú}! &O R£ÆHsI óè*³ùßò½y£\8õ¨­Ý±øp»ø²ÀÈ6pÿ:u\­<ÇHŠÅݽm¤ðGÀŒÜhe<µ¤…áÁ6ô\ØçÆÍâþ=z¸¶O`x¢ŽžÀ`yàaÃÁ!HðçžÀ£×-t‚1«ƒ¢ÖoáëslûgšóÜr|ûìZ Üõ ë`þ÷¼è{¬k­ðƒ™‡<´’GÐ{_xVé‘ï™3žöƒ†·»«rqÀÞš"o0¹v¾éöçŽi—±Fí+ª¶òZn×FT¨‘úgµ%U:!rB§SùgM6tësìÓ(`_BÖ˜]õ·À&õð+ᦌ—ºïÓ/ Éãë«ßo>è§Õäž)öäàKÃíNúä=ÄáþYë‡E endstream endobj 1981 0 obj << /Length 1556 /Filter /FlateDecode >> stream xÚÅXKoã6¾çW9Ù@ÌP¤V¶Å¦@ÑÓ6{êö K´-T–´Ç¿ï e+^;±‘cr8o$l&tòûͯ7÷A4‰I²pò¸žx”ÈóHÈãÉc6ù{ê±pöÏã÷¡ç,å%Q#µh]5»DJÑ´¸ö†š#î8w6ÍyÀÔ®9‹€ÈÍÞ¬Ù7Ðún6(¦{Y­×Ëi”PêÝÁÿfžYP—ÉN,oë[3oE½|üòõ³™&YF—Ÿþü˾ï+)4¹ ˆ Þ´Œƒ âÏ{1[²|“Ëvé›éºH6ËÛÛc~†B9ÁY"秤0‹%ŠoÏYw¯1«g¿§—`>‰i4<Çe›¬ Ú-KoÜNÇj¤IQ¼¥`%t}é3-§Ä Ÿš™G§›ýN”rˆ„°ÖAÜ”€):<êÌY tÐÇ Āаƒ@È€ÔåÎñ½nQRf#Œ¼ˆDÔw±1NhðŽÓ/'AîÁâ0dò€0¤)ïlÄ]’xÁ,÷§™LE*Aoe€j­¿àÙ ¦I±Æ4²Òß•èL¥¢0#'4ÇÍAufƒPãë|!óR ”s#@JNJü¶µHóõ+Nâ©Ü M-÷»•]‰úà7ƒ…»¤Ð+ë"IQ-—Õó6O·†¤ÅS×ê¸mµ/2=3ŒÄ_SíË M2ç±?}@¡Ç€9ˆÚIƒúA†„! ì"¶ jJD íø&ø‰‡ŽŒ´âø-D¹‘[=f†‡reä˜'JkXóõ\bÇcàÑ€øww,~4ˆVêQ+™·2Oõ#c¸ÔÁÚ¦4E“9’µbÅë, ¦@ÍwÕùHke“—›!à!Û‰„Ĉ݈o”²—áê1­4ó² btl«Ûî´"ÿÓ™ ã!‰±•ÑdÝÀðˆôijwҞѲßå(Lȧ­ÎÁ‚ È_ƒß÷lg›½¨6yŠÑÉBƒÎ0tÐ Äç-K¡&*`…>E‘Ú×ݪ²c¦¸DE‰¦¡7žK=] @¬ÐK´Ç€èzÌí°31Jí¯Ü ;7 ((G ¢4’ò*9tWž·þ±Ç’(Ô×wØ‹5TñÛ'q’Ø'ÍÐØÇ+CƒÀI> 0Íx}(Ùæºx<×4N®£L[Ù+GߢmE£“ƒšL£p˜…4îÎÈ3—'ìóÞaonR~ûjåǽ½¹Î(ø¡f-3¦ÚšÅ¯&kü"']®€Ø×8T¶‚ª©‡ÜñÆæ¸{¬ÏªCʪùUY¼“×u‘Û~¡•·S¢e±…VïÃ"&MÓêDŒjAß“”œôÞ'¥À‰™A?d«V£_—‘œþII“Úªn°ÙÉ.ǧ¾Çœ¯TyÑØš|ØntåíK¡uHï»ÑvHd¤‘íu›Ó‘®[kizª \ÏÜæùeäH…Õs{gÄ>J÷òÿ[çË^­‹ÆkâùÒš¦%Ý&M’J Z·ß9tzâJ¨Ç»*S~²ÛmG”©N¨´p6þÁà,& ʧ‡_Žtcp=€2¸ÜÿvJ1¨(‹®TŒâŽó˜‹àZÀ“WÞÓ%ýÒ›ÍõA~ý´™ü"/k¤Oàìø® XbèÔ5â÷Í òbU˼*mÚ?°ç±è™¾˜6¸Õ` ¤¬Ú]W-ïjz©$–t¹í§¨é[5ÙÝWV»¼üÉŠÖ—å€7»ª´jð]9­ÓÑíôC· cÒ@=ÛŠV´êñTãÓÖçµÍ5> stream xÚ½YY¹~÷¯—°âðhöØA¼;À"ØöÄyÈ&@DI½+©µÝlg}ªXd_CÇ 60àa¯bÕW§øê°â«?¿øööÅÍÛL¬JVf2[ÝîW‚s¦Òl• Á2U®nw«&û¦=WÖš¶[ÿëöû›·:ŸìPeÆò²„óÜZ!s\ô‚û+`u6Y½ Ë72¢¢M2¶ªOÝlãä€éu¢XmDÁ²‚vÞ ñ¤ÔlKUXÚŸí5¸”¬È‡5ýekëæ²ÞÈR'¶úy-xb:üÌ’æbˆÞ´D8÷'[_OžzÝ|\KT§>l¨:š©/×ÞzÒeG´¶é/;¿ÎÍÙߨ lMg<;—þ|gZ|Âj“ ¦x2¬Ôš˜oö°.O“]}¨mÇÖUˆäíZx†afÁ"Pì±²4ªZCƒî\NÆíP8‰I6ÏX&FmóÿÈ5ßÐÍ0Ag’iž†-¸Þ°û&r:¨¤,DXÉçPò8Îg^:³ö%¶¡xEX;n>`¹òâ¯ì]¾Æ÷B*v¬ZH]8)•Å[KØ É Ž¼„Òi£„v„0ˆøKEòí­›¦/Žà„Å sN z4±Ÿ“jÖ6xõöõ_Þ¿‰àE§`½ËþÙœI4o±Ô%Ρ[ä$iànöÚs¼’–)•|Z=¾sýƒïxü]åI6Wß`€q“•Ö¬ù—‚™dJ³Îkí[6á0•³Ò –nuçÔˆcW>â_Ú³¥’ÔσÁç¿ï̾?Ñ2/AÜ·#—7¹Y„ˆS¸d™.Zœ”ºòÄ7å®§ %Ðg' 05ɇÍ'ûT²’KÇNïcSžU<9Õ”x›öƒžÏŸà鴆υŸb2õ¦ ÏjIÀÔÕŒáÀ¦‡´Ù>«yE¼¸spØ3¯ôzφ²E‹úò_iÿÀ0Öœö‡5æ¥þ9ÖäKf{´wUÜ(ÞË\@×Å ë—÷ïþx6¶‰l®mó89Ö´‡?Dš”i¥f­ÒP :Å¡þüð±þfÔ£µ×î÷77÷÷÷,ܼÞ82\ÿ”fx·R”²ÝÇ?jå¬Àߦ¾çxáÓ\¶æ«~ÛÊË\æ²N9¶{S^‚j ì`µ›Nø’ î à f¾ƒ¤¦ß! Mðí›êR:aÆLœzG|” Š2~e8ðq­¶?Wã_uú$c€kÓ±ÿ£Qž­:ÑÖ‡u³Dï}ˆ¶¸¡ô¾ÙÛ{H; ÇŽYDå4/-ô™2fP±’¼t?:8WrÐH9¶ì]n‰ÿasW~C]£·ð¢B%·ïþþƯl¿áÑþÓýLãæÝUüvwyBg®ñ«ËÿÛÕþ!š±ò*on_üv²  endstream endobj 2003 0 obj << /Length 1262 /Filter /FlateDecode >> stream xÚÅXYÛ6~÷¯܇•€—§Ž¶.š¢ëE‹"Y'}Hó •é£-¯ŽØÛ_ß!)Ñ’­z íC¡͹>~3C/v–v~ý0ÝLEèÄ(hàÌÁ18!!(`±3›;]B#ïÓìç›i@:GY@%1Ò‡y±©³›DáÆÇÍ”1'­€+-Ÿq®Õ|‡Ì(åùcW’Í.“faSíèX`øG”m°ëŒbÑÄg¤ê?„1×Fdr©9eV¼#‡‘•ƒãÁh¬œ7û‡:¯ädöîým7"JPL¢¡|Êó„ƒùD6ŸƒM‡¨|ÚÈ©Úà6F¦w¼Ù|½\Wå„_@êhÙoµÈ¿b¡Ù.²d9yüj¼ª'î_Oo/~ü׸‘vŸ“l¤ œÆýéSöØ%{@²à…öºñU­½ùbb‰ÖÚ¦”Ñ/ˆõ¢mLIôÚ¾¶w¹IªWQßµ:~ÛõŸaôRø¿ÄöSiœ¸ŠPh›=kh¾ &Î(±¾_]eôš)ÿ‡Ï“´[Ým²‘“ñnüÌcMHJjC2r’Úœ„¤¿ I}Ó Ië¶!5ûRî&Ó7¿ÜÙ=ºF"űcŽ ‚ãNº}ü„9| É GÎ^Ý8&aÈÈ™s7zkçÚéªg)ŒºÎ,HNΊ‚ð©1ˆž.EqDÚáz{¨ 7I+ϧ»ÕJá×|.3#N=‚…kì›O…Çá“Ù]yT¸à÷Êl»ÿS¦UyèÐA½ó ,ŠQ6ãþGY¦ÅzW­óm„#ýGIôŠ…ç‡VŸÖÛTë(r³JàtŽÑæˆÑ¢O MÞ`a6 ³¦YR–æáÓ»WÊà9Ci{7c€tlŽõ¢¦Å8hO¡æDŸFE4R¢pVŸ|_&K9Ë9L}¾µ053µªw̬Y­òùÉhíä’ÿ8¡åßÕ ¼KІΧVà ç—ŒøP}ˆÇðA¯HTÕšžS=î ¾á&˶µ!„Úâ>Å•œ@úŠ»Ëz#· á_éá¤d{÷ˆeE²í2ëyÄ bGH/ò*ìñêŸÂ÷IÈ a Mõ($ŸŸ‡."&è±rÔf¿Z§+#–«¼ÎæF¾×g™[Ȫ.¶rþçsÌ\¹+Å@Â$ aB›±¾Þ”¡²Ø–’¢Å\.Ô•&uV™¡0ÀO ÏK¾ñãzLxÛ0Þµ¼Þš\Ò¤Ô0)& „á·P¢ P*j(5àœÅðóÉ‚ø¸p žp›û^§£:‰Ýº”s#éæk¹“ézñh6‰YŽU¢†"¼Y ÷ÌQd(Ó$“ƒ(‡ðˆv±È·Ù£õe„,OÕ{}m¦(ÉIØ$Œ¾nº¥ î2Eºõ( ¥ý|†æš\º°º—RvܘoÝîðÁ‹©›dµ|Í,šµC¦µ,+}qÇAƒžÕžYžбò»A‹ÉKÞ Û¥ ãƒ`w-ÓUuŸÔ-LÊËQbíÇÂúíþóý÷03ÈÄß¹jc(/–ß R¦c­êµ‰…ú•P@ðøîìú{CdUU»òë››ý~ZϪ׻÷—xA˜;þEâœ{í Ï¿Å5 endstream endobj 2016 0 obj << /Length 1738 /Filter /FlateDecode >> stream xÚ¥XKsÛ6¾ëWpœC©©|3S’4ÎL¦Ó™Ún{Hr€HHBB*ÉVýí]!ì­<ì½›¼¾›\]'ÄËQž‰w·ôÆ(Œ/%%aîÝ•Þ)ëé§»÷W×qÚc ó¥y‚  rÍ4ÁN6p'=îYË> R †vÓ [²fJ2ŸÕ“ƒý=9}­$óf$I±•ð×4Á>gÅZ-èdEØ¿œÎ"œûOóÀGÓY˜fþGã _¤VÞˆºÜŠ×+Í’ú¦èŒÖ´:H8‰ÙÅk»tc?÷\­í‚Z³ã¦¥h,uK‹/tÅÅ*‰ûXÚ(ËZ¬ÞOƒØ»´Y9b©7HŽoð类⭢ŠKÅ ÍÄØ¿KuO›i˜úlÄ0iŠàþ­®KÇÑ7F„òŒ´ a2"#76r½PCwiõ“AD™»hö%ˆà Ý¸Vj+_^]•‚#Ѭ®F$KÂôê³”hÃqŽœoFâEpÿY ,q00fÕ¿ª¤u ÿ1ʼFOíðF;Ðà„§Ôl(ÚÕüÔwž¡,àù_e¡8èÜìÏj Qœw+þrWChˆZÚ©úKÀp ,i#JV¹e·ø÷k^¬-öØ:®Í®¢–³ µ¥.˜õ|w‡á<ß™œMIì?¨†Š•hÔQ2ë#±KUoèf[=’J¾N-€]Â’¨óŒÔ$)#ëÅ‹ÓYŒ±_ˆíÁŽ^¿yg{Z¼fvRREíˆ×JØc¦¤/9„qÚ…äO]àY"ˆû.à@ਈ‰s2 l”“@ÌÂÌá~™uÇE‹bepÇW?¹2­ 0–r7¬ÄÊ.¿¸$%!íX»¨Cªi˜ÜBj5yU“¤6H7ÛÓ†Ó6×kígOʤ>‡N?Få®aó‹››‹K§”ÏÕVH7[À¬f+7+ø¼8®•0;®ikÍ០d/ P ©zpYÑÅ|K¥bZ5Ý©µhÜæ‹“ïÑvI²íüâB§Iýg½º•>Šñ†?°rÆ–KV(¤)B [ˆÂÏM àÕ09Ä â]ŸøÀÝ‘öíD8Ö¹ýüç0\T-æ?;JU‰â©î>'ú]Dk•p·I¶`&­ð¢¿Ï ž ·¬àËÃñšàT¢‘íáéX€ Ê¡µ >"ČΉ0ÐfµÛ°Z¹DA&Ás-ñ pwÖúܼC}òönòÏ„˜bAºÆº „Œb3ùð {%,‚|H½™woX7^)8t2ª¼ÛɦOÓ=k+œ2‰ˆ&Œ” ºÇ^Ö´F„ýnäzšÆÚÕì–.]½ÿÝ•}Ó›qigúò×Ó(öyåØ~mtµ ÷ÐøŸÀ#JQåß‚‡¹÷  uÂtùÈœ•~…ìÕð­.£ßÓØ^»l/£+°þb³Ý)wcÓ†êÁrJ°Mž‚f˜î—ìnp7VÚ1mpÐ"X6TCØ!H{ž­¾®\ÿ)¡ý}~å}üîà2úà§!Y7Ú-$S½xéEA[ªíšÎŽÛ%ˆcæ²>ÝA2l³!÷®Eé˜ÙôóëW¿Ý¾mÁš…l@+ùŠ«6B­«}õöI­ºV¯m3›XÎw+O`õp®½K¡ȺvÜ™|¯ 5G83ÛwÍÀ¡ ÛX>ç.l©ß,ºTÙ¹äÿ2Š­±Sàž§TZ·"?w›á¹cý±¢R޼"‚ â(ìžKM/F)Ðìæ¸KÓèˆÄY˜å(1&O†ôm¶ìùóÁë£ê(±¯A’¸× Nº½vì~4Ã^cØu@†¤ýœ¯jÑh õ¾$Æ(&]ø0F†HÐU=.„¶àkZûÖ â žøé0µ;}–AÒÞ³‘œ7 BȬ'F ÿ>«iÒú2<©­/éÄ*zM*èXiSZÖ4¦éÐ+ÚµPì%`•„¾¨«ƒe5³ÆwÓä(_ÝëH—c¨å1ܯëÙ÷|3()é0ƒ{|-fâÌõ=S9œNÅ ¢¨÷„ÔqV3VÊa!Y¸H7-˜.¬|Ú^9qi³o.“‰Ÿo1a*¢ù)##ox\¸ß62—6`¡†ÌØðÂdTCXææ"ð5˜_·‘†nì¢ìÁÌØMÓÔ®ä&Ce:ÛQ·,×bW•]«Õ¹…i'ÛD¸l[—,Û·RW¬1­ £1m~ãˆÒs1¢( ú1ý½ 5Óé#ùÑðm¿ÐHýž'- endstream endobj 1917 0 obj << /Type /ObjStm /N 100 /First 981 /Length 2207 /Filter /FlateDecode >> stream xÚÕYKsǾãWÌQŸ—LüRÜ—qYÍšrÖ,(Ü¢ýz ®ËEµ¬‡åbßyí/åh\¼­¾²‰}CÒ·©±›+jÅx1›Uv³JXZ¥ "n?ü°q~æˆËOMþûÏãÙoñ¶ªGeO‘·â'ñ^\Þ¨ü)6lØ5žÓÕ½óÜSþ †[XËûÀ à»`ççL|`âÇêcÅÄ{s}7ãów6¼žg šô¢ŒñÊ 5$îd®ÁHÜE{P—¦.f‹»M5®ØZåÛk&~ýÇ?‘ ¹Ar ÚrÌÍ–“É£ßÁiYî;J€vÞõŠ W¬ÿ¸|rë?ü-—¡–_›o}¸ƒ!­w1¤åqZŸpY—E3®fWES²7WßÃVF¤w/ŒgW~û8n&ørÍ~¬‹ùÃx¸`?/›ù²9Ë÷-‡eM_-·\­Ïªhélû‚dé XТˆ¿Sú¦bQfoˆŸÊÉ粋øÓlXƳ{–+ÝÆ•:È4{e~÷¶šŒ¾ï//iψ–-ßnœÖîYÉ}” þ>ž]Ìã§ÏWã»»ž §Ý Àˆéx¶\°äÅ¿—USNÊ;øÈZ1ª`ÚÅb,îëâs)Šá²)Åp\—Ó»IùU4ãɨÓbXW3ñ©.Áƒ-Åp'‹ÑG,Æ Áo£òNÔ8[ ŒÉ¤x\|XÎî‹z9ËFT÷Õ¬üM ’·˜Ãòv+h´:6h¶âd+‚6bƒBàן?ý‹Âœv½ŸRAQñ´ø0{r¬é˜c“‰;9V¥uŽ5²%TKô›uUäÔÒøˆÌ†bbãÙ×'Å­>œu‹Ñh^M~ï/ã*¸¡6!ð„¢ªœå¦BÄÑnÔYŸ/gãþôÐÈüÔuyåxî"“å(ÓPÌóø¼ÓÏ=ª;”4߈öHhÔc%ÉÓ3èK9¾hßÃP¦cÚaVRfnã Šb8¾fm•&êr­>-Üìžp³'„›m£Ìª>ƒËPpš+,§iÆPpa¶Àÿ‡]XÍ©:.úƒ’E(ç‘Í †§ •Gnžëeàˆ Ùc0d÷`ÈIÃãS2ø„¶ZãÉÅ]<9žt‹§ØmBw-Ô\›Ð]ËìLKØ–pÏÀqŸç1l1õ„?«Ñ¶bVò ˆƒá2…»ú ùêk0e,‰‹óó|‚¸Åñ·ë÷ôïÍCÓÌß ñåË>-›â®ª¿›×Q^Õ÷g='=Wh9•M\ÓD‹\,m:U¨S.š»ÿ€H7Z=6®¢í¨G«S,'MïµÑÏó[Àº6ZšJž™Œz¯ÀW&<)‚jDclE¦=ê‘ §kõÐȨôDÐEyÙT=–i“xéI“¨¸rºhr?™N{Ä,«’æQcPsb7Múl\Z¬ÚÈó_‹U—0ÍÓNæâÂõf“¹­7˜•1Á«®ÜŽºà®² œ^|ºq[pkù‚îi«ÚmÕA~Ù›ÓJŸ÷»¥ÏÛãJßæÕ½{µ±íE÷ rÏýâ ÷KG r“¹Å%+iÕ«p+hD–ÿwÜ1rzGîÈmu~)žØªn­Ä;tmQ+ÊïÆŠ²/µzˆË¿Ö¯ ó …ÙKÙnü²AIZýw_o‚ ŠÎé¢G¿OZd“'‹hTIê ÉöSEƱrG$Mæ?*|¸M$-;rÓï7Vuå6Í[xftÛÁºŽÜèSö÷ÌÚs»ù¦ÿòsPÏ endstream endobj 2028 0 obj << /Length 2918 /Filter /FlateDecode >> stream xÚˎܸñî¯øb à¦Eê ‡<ìE‚]o° ‡ÝV·ØÝJÔRGR{<ùúÔ‹Õ£™õsY$‹ÅzWõ„7‡›ðæ‡W¾{õîC’ݪHMzs·¿Ña¨¢8½É´ViTÜÜU7¿: oÿu÷÷wRímŠB%iˆhÓ~hqÓ«Pp»ï»QäÚD¹¦c“0âÃU9–‹ÓWde©*rã®êÎcݵes»1IÈgi´ïË“åá®kDznëöÀóñ( _nM”}]n;0èP#ìË­NÛÊöîêXÙßê<8\N¶åX¹íðŸSWÔ/ß,äotª²„ß0>œí÷¾xw,ûr7Ú¦q c?¿³ØÙîêýÃÕ+èRZïö 9ÙñØU˳—A¶ï;¹aB°+›Ý¥)‘$ÈÛ€¢‰< ±F‘ì¢<Øßj`TÝl†royí£âï?ºa¨A¼‘8ðRÙ[Ö·uªUaÉë_º„q,›×¼yÁ¾$WzÖÍßÂ$šŠ ²LÕ¥ùîû£mWîËb•Â Š¯+—ä*‚—ˆÚOŒÙD¡Q‘Î…?)ïa]ÙÄ×B÷õxäs¸ƒn;Øž÷U¼ä‚zîáχú¤¹0txºË¸ëNv€wê·+O1a¦r Ʊîçþ¾nרÅ*Ïܶ5L‰Š‹¥¶¶?¬JØWÄ3.àü'ñªÈÌR—^ÿ`[Û¯K7ÎThK×½”®1á“ÒÕÊDÏ 7S:+|á"ö²e¤Ýöß,€‘)lהðvS¡@,ÓúS¹ö$«"̼'i´“0 þÂwê`kùžr»û@U—£­ë›1…ŠŠtÉÃOVìöó_-¸Ãfxób?U6çã \ó(ŽÒ¢méXŽÃ0 š[Ðeñ´q`Þ@>lŸ0˜ìu&ÒÓ2ÂK0àA[ñfQ¾œ?ZRW <ŸÍvVv³pYb’¾¶£jqî 2–ÁKÝzÙãÛ¿‹_TnM(n¢/"½…€9z‘À/;ßmû~Ÿì].hÅÛOœ›ÃÀð‚çj¦_âÇw2],N] Ã1#‚¹@F@|N]eÇoahÆq:çŽ÷«îšÊÂÉ 1&þñ9g³q¦…ºU£å0[¢)±j¨6­GPFðî¨ô:X#$Ç`ÌìMßÿôãªO6*O'ß½}à;—~ \ì ½ÐNÀR¶ÝÓ©A¬l õ€ïÌMò*Úh•Ë—ã+Ñ9Višü®—ËÀIM^ޤè\…îŠ5 þT~Ó£Bñð—Gꘄ*4ܧ.mýœ"Fpw:e«“åpâñ¼æcü óhaéö+hî·+~Óê9ªL“rG™§Ü„@¬íy…¥ÐÃäà²Y¤¸0»K#ã­åõmIE$h²èKˆT£ÚnÑÇ\Æ5o84ºš{Û£X–>¦<Ÿûîk}‚ Ã;Ö­Ñ?íeŒÃ‹½éÛoÁû—pÙø\Ž|.t›çË(»&~ág$Ì­€™§Æ ' €!‡Þƒ,ïçå•äØçÄì¨[R+çßìž2£ÌZ.„•‘}ÝVR:Ìt&Ëýð§?½ÿÆüäY“) UÌõ2ZTõ¡‡ï‰Q”‚I›$¾(cÃÂ,`ržŸíå´u;¹0I#;P`ÁwnÊ–¨îõîx…èÜãÍÕšLAøÀ\§Ó oE}wi+IÒ^¢ùJ©°‰5úQªDŽ©Yóe&‡ËbF Ùáõû²A€%M¡âXzwÄ¥ÔûK»£ºf»’âšÀ¡GÄjÚÂö`yãè}¾.öñÍ[9L ÷ׂ\R€k'¨÷O—O&é§œ¡#l/Um‡5Ç·Ì»$›@,MãIÒ8a*tq8e±ãÂÑÃ#[;þne^V•­ü¥î¦éUAƒy/ Qj¿c’B¥³§øÏjëÉ´ÝótA Ö­œ^EØ=Ù5—ÁUù“‚£•b_ùøØTnJ0Ö‡¡ÍÛ$‚üM¶ŒGªŽa4‰Æ ‹ƒ,²aeU-{+FÑ9TV®Ý—RŠ«#K^Ë%ñ&2”µ=+æ\·„‘œB;e‹]qƒI ¢8™Â-À‰L㲎GÈÄ~œ`‹ƒm'WôÇÒadäô`€Ÿ/Û‰ªÝÛº$È-z®\¼ò"1` ?ˆËx…Š'”E¦âãLšKfŒ2˜žp¶ëddb„ÍÞ "þnâ€ê_¸÷ñ¦Gö„`¶'Ížn¯åÔ©ØëRB0Ý»õgM‰P˜±Á·l†ŽGàYâz˜’vè3&¶Ôl‚IÕ—HÙ=© ž­}#SAX‚‚8'@Ñ K$ð‡Xƒ'I8¡ÇÞtÍšäe|F©+á¥á”¾îe8ž_F‚KÐŒóÉ&™û–ýxéè#lñ¹tßw'•ü¹6õ(NQP½œ—öݵÌ\çµ» ^¬ø!µ¡!-‚¤e ¨¡k¡qÖÄô†vaœg@ÀÀ]`QäÞÕçÆ¾åŠcÆŒ2‚”`ØõõÖa#®"%ݼƒãªq]zÉ%!æn­äηÀuôpôcGÑ Vé-ÜCOív@7eUâÛò`ïE?Êþ2—¡3êF!À£¤å8c˜ÍØfïèsgi¼Ó‹‹×Y_š+%~/J€ã̓t9³P™0Y²å(|àÎ Š&èÙGàù:?[šÔsÕÖU¢Þ˜ÐÎêýT«c¡¼^'ß]q­û®.3ÕŸ[ … .b,èܨH‚3vúhTòÇoìâfnìâŠÄÔä* F¯­ƒ;¤±K›å"רåèï¿ÔåZO£HU87 Öú™±Ÿ1r}Fh…š‰Ð]׃Ï9wÄE×ÌÖêZÊ`e熥šùg•–Rj­RZ¥çNô—z…R¼%KýІ¤:b&t—}Å3Û÷]ÿì­¼¨POUÒ`WïÅñ’Etkwuûœê⌉‹¸7Œs×¹$ÄïS½aÇÊäÅ75‡'ŽHÇ7*´2ÉU×üŸ”ã˜X“޲x`RòGÚf8d*Ñ/ÆÎu.7ˆuÆœº®#A5ï¨ú8Ë,‰˜[ µ²JîpöC˜„Fû_Há6«¿$¹zFÊ(wwÚÌã\ÈÜAz¢vIÙ°Á6ž‰@ÎòÃãÔlf|?QüùʾXEIä•= ¹¯ýˆKÈ€5 €\º¸ªïŸý-+[ô+E/ÿT@ |÷èhš !„:ï ¤Ž…ï†óâ*ÙHã*̼(®Óã·ß9;ÁæüœG¡Ë`ä•E8]–ExŽëmvËÔÐç²È_*ùsUáί`Ëzï=DEçH«.;ë(“y“Ön0¤ÛŠx¹’}ÏÝÖ-÷F!Ÿ¨-5wwèÝÖØ™*}äë{BŒØ°Ol.VD†N¶ãoÉŸsÙ5ʰgòkÉ£ ¥K_`™s9l… ¹}«!\|áµm=ÙÀâI-§Ÿ}7pÃy“×lÀ\)'@¤à ðõÚPÞïZlA°ìÿ¦Lªð¼ËñrÉñŠàÓØ]Äôonˆ™¼>™&Oä;1Iq b±V±É—¬ð„DÙy.¿,……äô¹Ÿ┪Ópa÷Ƈë"+äqž¸ä/̧š!wÍùÂ+`òé&ÈVOB›ÞÂÅCNm/03Á =Ãk™BA ž—{Ÿ&Gå/‡®¥"L|îÒæî§f¸¶Qn¼¼;׋Œ8×^bKSNœsí2ä£0ɦõÌÅ•¸ý[ùˆ‡'ª:WW¸‘oã]À×5Óÿw€uSgÖOÏøsR½³ëáàýÝ«ÿ©#z endstream endobj 2034 0 obj << /Length 3261 /Filter /FlateDecode >> stream xÚ¥Z[¯ã¶~ß_aìKmt­#‘"%¥HØ š œ&Md›¶ÕÊ’+É{v÷×w†3)YN7)ü ^‡äp.ß ¯N«xõí«¯Ÿ_=}£“UZèÕóq•Äq$S½Ê’$Ò²X=VÿXûfóÏçQY0T:ÊŠÙA‰LpЫ˜iÏ¿0[³·2K"Uä«­È Q‘»—ªÙl…Š×?˜áܾXX8^m“4)ïîùl6[™n2/v2•ULT¤ ¨äi¤òÄí~øx5_¾¶^/,©Š(Ë´ ¢½/ëý­.ÓS}p{¹TMu¹]¨ÒÜ.;ÓQ¹=Ò·n‡Š¦åër#âõûM’®MWn’õi³MÖš“£P׸-˜~ßU;Ü/V­‚À×é ñ|I‘K^I+½þålš…Ó$JÎdn›ï«…“$2 õ$†k]" •ºa½Y$”FEšÎTOÀkÚ Á¼–"e-„®Ñ h=ÎÛ•½cFËà»E$s5åd(¨I‘Ý 6¢à×.…P"±ŽÙSñ‰§Höp™¡{ma6ÜKoÞ *䞘;–o=ÑѾn2·Ô›- pW•ÍÞ,©P xy2?ˆ@ËõwGê]–kt¹Ê>G®µ˜P®‰:^ ~íebaz™"·LhüV¨*,ÔC……êKÆÒ–vÜbþs+¹ tŸ®ZÊH|c4Ÿã̆°Ýõ¦#žœœ›61;hÉì@ÏÓÍôȆVlcãõî#uª¢º¼œ«ý™ª[R`VÕ™ú#›ènW ]ÙñÔ²aZ|hQ£Ù·¶¿üØ/ÝmJ;K²•–dååúh'Uõ¶/†šÞÑǹ0;‰Œä-Ê‘¿±`þ>}“LPEG±7ƒÿ^ò°‘ uÝš¼týcÃÛèÏÎIp)eMìÖ Ý‹g!£,-þ·tO<˜²"”©É™;â)áʉµ['‘3›Q¢È‚cŸÔY@ „‚p`4w‹@)ôÜPÝñ€}Ûô >áv»ç ÿÚ•û¡Ú3{€|ÕärÝxžfÆÊ¸X¿k‡»E«ã+¥Ò‘ö¶ú!/·nà„gë8Í‘fA¡½^Û¾¸ÖW'†{wá$7>ˆºSHìŸ*ä›q:¬†~¾FÅ-åmh/¥g”BÝ‹eu½šC´bgàôIÈ(ŒZj{Ó zÀ¥þz: ˆä–ˆ–£ÙÇî(V§Së(–lH6S·Šk…H×ܾF$‹£F3öA›‡}:ÝÊ–mm–âzP,¶)a[[a,VH.±(V§0Ömñ«¬`a¬ï²P?3‹MÆbÁ"sl‘y0ßÁXÚP²¬³Ú?ò´N÷p=P*f²| 4†Æ‹Î Š8’…œÅ“õƒ"ìE–éœÌ©56‡ :féœLÕÍ8ìºKç]%Uçéh¢tNÆélÏ”q:ÇtNÆf;·¼»õâÞ.Êð}—A [Z?ˆÓ=ÈæuKVòƒ C•­ ]Ù)U÷gÔ †ÀÕIíÊ»,@j9u|`”œãƒ®;Ç&Ì9¾T²ãƒaûyê :Èñ¥ò‘ãK2°"â3<Ÿ”<÷žmêGj¼ó|S¸ün`(;Ã4T6“yŽŠIErNÓ`Ë®‚SVB;mÔ^MÉÔqJ玷¤]bÎ'wæÜsÇ*w羌é´{{¢órxf¥)MbWqÐLrÄUD*Ïï’¸gä'}:°Äíe‚¸l»ã„o7Í#hbÆ%”O¸õh_–Ï/½=¥óCèðö‡¿-E :2ŸîaáGkÔÑ—î÷蜔m¤˜¹àdDïÓ•ñ\&xתíu xb1 dÅ£kÌâ¨ðæþ5À‘×ÐÝ#9.ŠtôjäËáå«]9B>Y.UQê)ÁjÑ­©&P`.>°²ÏŽ–]j\QxûQwêNg ßƱ¢ 'hÇ‚]–ï0IóHë»;|ûvñn°wÂò(ó´ ¹CGüŠb#ÌbÜEôÆAœÄbÅMxˆ¿2él¶~¬L}èýkŒé{´/ɺB±õ¯)Õs]û’‰úp÷ÂO%pò§ˆ¸Xfx ªï–ÒHHþ9è"õÁ3!E1ÏY*9f!œTA,¯ÄgøA"À*ˆµ¡ÃšLúd¨L!iŠçÞŠÒ$RêÁK}1È ´Àê,Ä–1ÅÁ’ ~]ˆ-“±«¤Ï<Ć& ±ŠEÿ2x) ç!¶äT/¾Ð8 |‘ŠÒ'î|Z ‹ yˆ°ËÅAÐC!LF‘J6úì vQŽ w#Ãì4Öà FùÕ³©OÇNëµ,‘Es÷ÿ%ãž•0ÎÿŠÅ)C­tíÚMâ.ÒË5K,zxÛä$Ó™U5"V%XC¤³îŠ‚Û‰ÈO¹’£VÎÊäÌyÚ=[fAêo9óÔ[ã¹7‡Ê/£Þ>¶ºE¥þÕû3Œ®òFwb$e‰a±ûjM†giÈH&ã°"Ù¾R”‘«Hùôæ½Ñ ,® v½ÅŪ<‚Œ¬ ÙÒÚoÊðÙa83©ßz„¢±öÙ©Ÿå\MÓOw‹]VíýPöõPzG{Ûð­%Á79ð}6‚.²~£³Ý¹Š Ief”Êëµk?XCG (.Abˆ`ì}ôî(jÿ†ð¶§ ¥;…–¿…XD‰lÄ‘æC¹¾|þéïot'-¢<‘¡îhg€&©qéÎ %bz¹ç-MO‰;«[¼Œ>å$ñçŠk<ïÁYų‡õyÎH‚dïÌðb¬wp/¶@^+ôÒ)§i%¹VÚj˜‚AÎyGcÜÔQ:·Pɉ’<»9`™|D… ¿d+™Ì ìànd¤>S¶Äÿ(Õpô`”vÊáCÒ$L'ò›N›!g|’mž‡P.L˜ã|ˆÖFxö×Äü9^Ú²‘ÉÇa˜üë(hü×Q\JhäÏ›B‡~Õ›ü/UD`•iòWv߀éwÿ¢ „â§øîë²_> stream xÚ½YmoÛ6þÞ_aì“ Ä4ßDIÅ0¬ÚaÚ I°}X‡@–i[­,¢7ûõ»#)YR”7okDÔ‘<ÝësG†N6:ùéÕׯï‚p“Xq5¹^O¥DH5 #JÄ“ëÕäÏ)|ö×õ/‹wŠu–Š8&Š‘]´6.zE=ïæ¹x'Dg×\DÌn›óˆÂm®ïöº·{ V¨HñæSõVÏæ< n›•k÷Üéz[®Üø`ôŠ ¸öeñlçLF­‡Ý²¤Ižò¤Öþëë£Ó$Ëç&Yû%^ 7½6õ²$3N§·3Lu•l‚ö·I~†Nûù-:(Ƀ˜~DÆJ›C^Ÿa÷$ßo“3„4{f)åuRÍX4Ýho~ÇØsú8yó—›8#×3Pa(ҿɆ³R– ÁðiÁEÝT„aOP\äÅÑÂ-hÓiÇ­.hˬȊ›h?Ò"\éÝ3Èê-ŠÂÍ¡ÄAÐYo l˜;¹¯ªyu5 ‚éW¨( Ì˜Ó ( &à3ID÷0§¼Á`²k0˜ð¬‡Y‡SÁFÌdÍç­ó?ì?Fg[ÉN†xDz_Ou+„çknÚÒ–¬VY•ØÍAA®wº¨Í¢µˆÔÓG9# ¶ãsÝhâ±×ó¬ mê#øá}€G¬Ù·­ë½y½XGÒ|y6·XÓ~þ1x`°cí 9êÀ± ï…K½Ö6¬4d´9Ç—P$Šz›äD’‹é%ÁêYs³8Œ<óK‡¹8÷MS>ð¥S>ì;¨½(ÿƽYäÅA]æçwðu]úåÅ!ÏݨÛEÃ!7èrEH)ýfîRüæ¶„Tƒßd©«¾`%¿² ?À7t#A àð^ ßsv¤FxÄö}òh4Ÿ”JD9WJ6^íER*ƒa(­Ê £fÁ(aT„ J…è£1‰XŽH1‡¥ :ë÷%¿VǬ@Q¨´®e1ŸþäŸÎÅ‘ð.†@VÛ™l 郟A¿á ‹TøîGØlà“až@}¿3Ù¨W¹âDð¨ÑþdX*Û „c|¾]Ò¤ipUÃ+´š©MëˆÄ\>æRÈ%FxÀû˜:fTÙí]Ð^¼ãZ„èZĺV=âZÁ(‡g¨â8R”FSÀq̳`'Ê£~×eóvé’ƒI>}^”tzåŸV`Jï`ACß7ɦœw³É>{ÝKåŠqf2è™^#…‚SؽW¶uƒ—£Î6[×VÉÎå¤.\p`ïeæc¥,_"ð³˜Þ; ø°-{q¡EŸ-¦0Y ªooËü€4† O)8ŽÒÍ‚ ~ÆÃ„ò©TÃDªh4L £O×wc?‹OùLLrhÁ£¤^RF©$_Æâ…‡’(:˜aQ§ äÓj0äqO2ŒúQ0ócY@Öþ vßW3Ú½t×Xwλn“Ã| î“ô3¶@ákï€è‚Weši{ÕT…@½ÔF»ÀpÍ„›¾ºƒnHì‡qÑ{ fMŸq7bŽP#Ù)„ìåÄ›©uµJvîú⺑å0ÔUv1c11oØõ¢ºÛcB‡‹%à‡Ež-ú‹^¬unÉ~»_ÔIþÙ¼FŸÞÜžÜc*³»Yƒ?oП7Ù¯ÖÏéò¯´?¼ÉM9Ú^>óÈÜo:+½©Ÿ¸S‡>NÅ­U]‰„?ÙDk8mM#Àˆ±Áˆdd{ñü³|Ì Ú" Ñúù)¹ iUÈ’KXN”´¬*ûD±k^&ca§OÕU¶[gyþ¤pâaá‡ûrß0S"cÙ7ÛäÝÿå¼@n;)Zø®Ç’a·ø+‚¾ÄݬuGïÞúý œvLseܽո8]ø<ßÐôÔ+*[xzÂÐB²{bÃVz‡åÿhžo¯_ý*wh endstream endobj 2059 0 obj << /Length 1183 /Filter /FlateDecode >> stream xÚ½WÝoã6 Ï_a$ÖfÕ²ä¯a~Øpí‡am÷t»Å–¯Ž³œ6ýïGY’c'NÒb·½ÄER?R$Å8Vn9Ö‡Ùϳë[[Š|×·2 ;"Ô·Œ‘O"ë!µ>]eÛªâå»Ï¯o½` M"Q¶:9Lˆš9ÚÈGS~“†w󚤳é#ÒÃçhœ”f]aO‡òOÁrþú1ò$>uºLšN%„ÐhÂ!PsØÔœ¹'£î¦ª¨nôœS2!ú:¼ZмwнÞ=”Ï”¡ôœèÄÝsíòû„Ÿ/lWˆx.x L: ja0ÖÚ•ÅÚˆïÉ]É–=·'EGšb-߈Ø3£pÛЩD6(àý œ­Y”ü‰—ñî›î;iŸ¥i˶n|ûÓ/÷7£ç¢-´;Ö¤óIÅ%K øK¹¦Wð@6–¡†oz\&7 ´ö%&šÞ$«=…²¢,Íx_j™O¢€°ƒCðu– hf¢} r^¥#™a–ÚúæºTgê{ž±mÙN¥íS`ŽÓ¤ïÚ(šªzÖv @ÿ·|ò¿^>EÞ¿Ío”±s6'þû$8j{ðHü‹¯í endstream endobj 2070 0 obj << /Length 2408 /Filter /FlateDecode >> stream xÚÍ]oã¸ñ=¿ÂÈK`ÍI‰¢ZÜõݶhQ ›·»§XŒ£®,¹’œØýõáúŠâØA-ò@z8ç‹3£‹Í"XütõÇ»«Ï·Q¼HX¢„ZÜ=,x0ªEÌ9S2YÜe‹Ÿ—\†7ÿ¼ûËç[ŨR+&t„,Òþ,MxW#´Õ`ÃÊïX‰€’öýXßð`¹ÙoMÙ6£íÓñó­”CVõbÅ5Ó¡ãò0={x¯X±D ÏkZÞ¬D,«û™uëæ4®‹´i躣ãbΤæžÂu½M¯ ktÜL&±Çªj¢™Òðtã%èÁÏyûH³öÑxŽS^Fóp#¢åCÇg“ÿÇ4ÙÑ©öíºÚš†M$0âÅãˆÅ FÅ8w2{ÊÏÚˆû$ôÜ'Òq uUצÙUe–—ZkÒí®p¿B wIë<-×ö€ðK¥1™½/ ä3¡bQÔIÿ0#y0©@y„¼!b)1Ë:KŒBØ{E´ûc´ã§5âä;ÒHcÞ«’Xy•ı»€¦*µ¦MË,­3B0u]Õ ­X]T­ùýÍJ*¹¬ÊâHHUiÃz :úí3ºoõiNi \uÌæ3Zã‚Å|è//ɬd Y¨ÄXGNNSr!KÂГûD Aër:j+ï‚›Yç¿0ÙÛêJàxáHÓå{µtîp'MMµkÖܲµ6F6üwR@kë`•ä\eKûžMIë;h¹”`^Ð'\åU•Î(„«TtÊAú}ˆ|C˜Š)¡ÇÂlöàoíù­vm^•iWÒÜoQmò5œCÂB oK¯QÁ)~[«€ÑZà _>ܪˆ1;·€°vŸåÖ÷5ÆïÔ-7Õ¾ÈFBuëm./×Å>ó%/'/À®¨ZP±¯r*ŽfUŒï©8ªøõ×f^©"R, ÕiUJpÕ ‡´czÈ›óµjÀ-L=Ë*‹ƒÎ¹¯!̾ÀÀn÷!à%ˆ©Pvdžf©p˜Šè|*ÀLù4GH†L«ävæéˆ„i­Ï§S~ȵÊâ¦ùwÝÎs$Rt)¡y¦B Åå)ZàU!“×þº(_7$5xKB‘Ì¿P…&qgr×Ïóä$¤ªaÈ‘˜aÈÁxƒ?žm‘6aA?/ö_,E;Ç8‚ã®HׯÁª’FEpr\¡ÓA‰e²üf e;*f±Ç×ÿõϦMó¢ùÝå¹Ê¡È·çûõÁ²±2 ؘ·Èž õò+FT%–ûrðãÛ­|ž; ¼Xc´'TˆÆŽR‡Ð“޼C¨ÜÈÉÒ˜²Éï 3¤{Á_.ŽãEâ8þ¶â8þÏÅq(ÒûóÅÑæmá^ÀÿbuoâÁ[3¾Š_]¡öB>Ãù`šGòÁ·ÑAÒÝ®®vPˆ´nƒ“Ò@N.¸®öÚÿ°ëÿŸ¯ë딋®;ÈÔ"=ÉLâ®ÖK jІæN.ÚÞÒÆS>l?pCIØEÝï3!W³ z]¾†R•ÒIUÏ8Y'Õx$U`£¦t§ÅSÂëdK‚ϼݡ­Ó®F„“]×ßtVWÛ¹Ç$àVÊo$d⼄ŒkÉ-'ºkÍî‚„¬³2H¤ïM=n—´ùú;Ͷiý½9mÒ4ÇD½[È ¢+O÷…“–ÇŠ.¬Ÿ¦Ô»ªÉI¿’+{#É]éŒÿ¢àœ®‰3wMÄ„2š`“² A¤i°¶(H¬µ!pjmh‰Îº§‘÷5î7¼+Ü…šÏCCóE¯ ù–œ ù®PxOÁÎËæá=‘  öú†k×üCÕb¸Ò%F†^&CLâ ª·î' '^}ˆëÅp4?Ã6l.Aœ(ÁÝîsØÍ¸a²8éê‘?xÑú[4• ü1½¨Q:4ýÇOW‹ŸI7/Å´Èôß ÿ¥Sl'´·ïFûÆdo„ÉY>Dfº<Þ)¤vÁOûà“Ê(ÆÀGpvåÀm9°ºÚ—ÚÚ*'ûfv?ºÁ1¥ŸÃ$`Ä5çbâ@” Öc³!£W¢nZúa««xD,Уz˘º9ëDŒ?¼ˆqnŸ²ÑvŠ+ƒóg8m̺BÁÙTÝ>†rÏçæ>P+y22q0ãDu%7ÙäØÔ Ä'i{[/M_A„êS$U.®1(×I(£I§ÜçDƒWÆ´÷ùßúE*ÌÓËÏP¯;«kR3»;—~Þ›öÙØüh°þ€8ˆ½ ¶Õ;öÇ}ß½pÍôi}ט}Vù~}‰ÚÈL¹6¯ù@íø„B/Aº˜s†Ë ö. _"Ë‚Úù Õþ'^! ñhj3yƒ,2]@ȨGà-(Ë[¼Ñ|7D r}Æ—2wÝú‡^%¤÷{î0;ެÛMB‡ßmúº÷FH{%ü•b–±ù7Ì|Ñ âÂÞ0\þ-=”B"Þ;¼”†QËV±Þwoìu*O¤Xî®”ScVjŠk˜º±9­óYů_ö{À{Ú5i–µé^œï}7]yŸMf®lÚ6kuLÒ-¼-¡[™ M]mLiòÖmö¯Ω9ž,Óõ÷~˜|Ÿpâpo R§(¹gj~ëÄ÷ìuïT09•E›¸àô* Œ¾JÑS;@>÷‰XÄ|X’Þþø×o_ÞìP;ŸB¢_7+÷U2Q,T“F]YÕ(Žß/ñþ/Ï5ƒgâTåêí¿¶¡/qúHŠÃ||å¤ÕLc%ÁȪ C—E-€gû´ð$`ŸÅů­ÍDÂÉlqýÌ&#—‚rR­¶Çùˆ¯ŠÉ¾G[û s¡)Ò,Œ“‚‚þé3&³Ñ›Ð1ž³³kg‘,L’QGxš³tþ5Ê@öÍÞ¦*Ê÷£1ài&x2¶P›±®$…j v)œpe±V F)×µšÂÖ´Âw—…ôÿëaç¨qš½b•Bi¼> stream xÚÍYÝÛ¸߿¸—ó¢1#ŠÔ ÜCÒ&ÅŠ^¶èÃõŠ“-z­V–ö$9ç¯ï ghQZeïCQøÁäðsf~3œE«ûU´úÓÍÛ»›×ïS¹2¤qººÛ¯d ¥ÓU&¥H•YÝ•«Ÿ×ûSÓØúö—»?¿~ŸdÁleR‘{¹yR%8é&âíýÿë÷J«6*ËݲMœQÑâm±ûÏdõì¬,&ýQíÃPµMQßnâ$ZïEWìÛQ·ºª¹§öÐ2íÁîªý™‰Ë ÛºåEí~6öP·ÃpÙ§³·2YßáÔÇëÞwí©)ÅìÖS^ùÚ™‚\™ÕþP”ö%¼ª( yUQ~á‡WGó¼:"òƒTæiÈ+’x,[?ôöT¶~^óÏ(ŠKÛìx´jืq². àbÀ‡IRºà(A þq° Áe"Œ$Qza«¶A P±ô³ªä­ãuAñ$»œÖ´"­9º»ÝÉö¯ ×eµGÒÞv¶hŠô 'ž6Ù ·–g¢7ŽÕM®…Ê3œÐ¥P>¶$ ì=€l±;̱r=6uÕØþÿÊmW}n›ÁÒY'Õ» _Á¨ö ÙãÊoç´9mWíàÐ<õM]Ç\ ß=E÷œle&R“úÉäàá-°ÝÑÈëöˆ´ÌܬÿàÞ˜cVœ #…ÖO—{Xd’ ä3çñ¬—Qxíèw™ :ïyÞÀê­i²¾u`BߌºüF¯ûóqÛ¢+3 ±ÿ'´C$!âÈ)3[¡ÑV6^å·g"y…0Kœ@añ[×~õ®êvõ-øêVýüà>ΕÂ~¤0+ c:–gA“X#xÇXƒ·úpÓDh™_dØ‚Ý=ûÞ«X¨ÌLш·a4b“Ðø¼¶ãL‹ ö™«[쫺~‘ÎAGCÛéþIçÐØû tŽÑk˜zþ4¾‡ô¿=ÏA s¤½½—•Ô†wâÐ:¥Bìúöü§óŠ£Iw¼gÖµ"‚%*Åœ8A<•Ôþµ©ÏDï,Ì (¼ŒøÁÀñPFÑxÖöß&jï:ܹ ßýíùK‘Ä.N¤iâÕ„Bûšb5K_mHòvÃWCV© !ŸÆ¬<¾,`5Ó€5VîЄ®Ðm@Å'`Ûv¥íèév›ù –ƒ<ÜÄÏ';CUªÔÛ~~±}ƒ¶¿Ù<õÉU^Õç¶÷/’OOäÝ‹| M/¦ äƒDÇ/4Æü”7bÙ@ÓÉ2ø‚€åœA“+™Ãñ*™¼äõ©‹­½JðŠË|}yÚ ’”à?D7C‡ŽÉ]´ ·=eË’  gÞ;"Âë²n´ —G±†ô6Óþrïßüåû¥ôV e~– `S|E\ã×?ZÎ=ã ÄŸË™W(ªºÿþzá¶û}o‡—K—ë ðH7ÅWVýPP(½­-âË-|*⌣Ép‡]ÛA˜þÐ6%+)•m– zì¯7ÃÚÞ[8ôÛ£êöžrBSHƒÿcq%Öèó鯑‚þjŠš­cpZ‡m´\W”¥-§û’ Aƈ³FÆÉ „q² ™ÿz„é „hÁ„Ø~ Ðd$E>„Wø»1Ž Gê…•ixœÑ¤Õ"tÅXà‹~¡ò8 ìñ¢FD¾æø5EiR2湑ö™Ž^Nta²OBqŽKB…¯È|Ç¡dÝ8Uˆn´‹!Z«?rÅŽ¶p½í\*ñ*tH°ˆ‘9 áùÄa9¹š†Ôʨõxoìƒ{¯>cô…CŽmÆd8Á¥z†£/$|ÚŸ*^RÜßÊ«¦f“æ† cè Ê¢ó÷è:WmÃÉ£¸¾T<Áª@Úè,WÚ–«Îg‡Å‰¾8>°KÏ}°«Ð õ¸UÍlÕÙ1Ï@˜oˆ6­!Å—JbÐ^ äÁöóÒˆ¯q,¹¨¢§Ôĸócム8ˆ`š¯ä"]ŠEf^ÅÑY±æLêÑ8£'zPÍAráCƒ±ŸVÏ`à±4°ÅÙ‹™“³Ž[,Ý£Çr¦)u˜¥¤"ÏäèQ¢”&å¡á‹L x“ðëƒv¯OøýÓ bHâ/™“I›kùÞEi)¹Vç.îþI^Ž™€…aX„…#û®=N–†ÝEߟŽÊ… !OD–¨I ü“,~[y"§.Ú*Ï„ç7qô?î3B¯yYÅ)þáî§¿/=i,tøD-e;©ñõ±ð†DŠ!!mªÙ…£e‹D^œïºc!NMõÝÂÑZ‹|¼'ûAÈVQ¾ Â¥Mãñéˆî ©ñ³(¨·š© Q,Ž_ƘÿªÕ3»Oë³[©Á´ »É5^ß„6Øpö¢)È(2‹ÿ¶ÍmAÎLAÁeDùb¥{#ßÝÝüv#]&)Wq I ÌSélµ;ÞüüK´*a\€P&_=º©Ç•ÊEcx[¯>Üü¾Nƒ ¿W–ˆ\ÇÞéfÙ ^ýLåN@Rà-bóâ§ü¥"ÅÏ.Á¤ß¡š“õ¿„E¼^®ôÓC¡a¿¼T>9sŠE°ü.9ÎB,J=Vû§—TR$ñEÓK7ÛD0#ûúÕâ•©L¾|µT$6l‚YΛs4àÐXÁ<":먶k!µÕpf ÷4ä_¯’ $V"f_º¶ó$?]þ…ò‹1˜Ê)=?VŸ( Ã'ÿ*›å¿ðïñ•†ˆ8Z ©xõ$¤ÂuübRAk ©¾ø ‚•à³AÌáQlä8îÃ#l‡áöaRÕQs !i|opC 0$Péú]Å1±ñ ½Áby¼,¬WߌðÞZû/œš¿pº"]I®Ò¡ŒŠZ§î¡í¹–ª5—ÛyðcUøùvÉñ›\Dêâ¸Ü爅ü#*ÑK™¦Oˆ£üº²jª„T‡:²ÿ\ý+q*§…UëXHå˜Y€á©Hdy2‹¸›™yÌ?;O«ó¾‚|¹žXÌZÀCÿå>®{ endstream endobj 2090 0 obj << /Length 3221 /Filter /FlateDecode >> stream xÚµZYã6~Ÿ_aô˺1G$un0 Éî"H€¤ƒ}È,°²E·•¨%G’»Çùõ[Å*ê2Ýstý`^"‹u~Uì`u¿ Vß½úæîÕ›wQ²ÊD«xu·_É :ŒW‰”"ÖÙê®Xýº–:¾ýÏݿ޼‹åd©Nc¡Ò 6²‹ö§º6®{ðö‹½7:Ní•À ¦ïþ}ë²?Ünd¬ûƒ¡£´ž‰p<)ïÛ¼îö´nv‚ŽEûºuí­L×÷§S÷¯o7*Pv{{N•oMÕQ»©Ç³mãÃ&ÿPòä.çÙ­”k:¼iLAOñ]óÀ;t§²Ï·÷€5»¾lj$¯6‰*R« °8‹"¢õÝ­ŒÖM TFÁÚ`çCþp¬Ìky:˜šZǪéû²¾§^Õ`#ÌÖMQt4ÔæpTÇß5µ¡Æ®9U5OÅJk¡ÂwtË·æÃÑÃæH ŒK>kÛç%S™Óë„¥ çË Ã,'T‰´mÆ +éõã­ŠÖyu2õQNø;,prÂö®i[Ó›º°Ì±ëšÅzb¶ˆIâvËlý³áù¼êV`øéªE=¦æOß½ZýJÛ Ú7(:ÏìQ€Ø E°GÂá<|ߟ¬À7ó;•BªêuVgXªŽ±ö.$к'=a®6ûëLŸoò:¯Î]Ù‰áÔH$ZÑ©ÿ¬»Þä ZÆökü=VùŽbœÑõy]ä-¯5mÛ´WÏ–Æë³• ¨ŸÖj š"|D2M›Wü ³›G¾"vò–OËoUÀÂ/+²"œßžé·3d>Fz½‡ EGN]ÏVg.•|’ÎRŸï`Î7ŸË´WÄRï*coö^©hág´¤"ŒÓ)ooË›kFÞÕù†A:ôƒ# vµe^ï pNhˆ$QVú‘z¡)ëG­q¾#½N+ho8=èÌ\aÇ Zf Õ²åUP`óU—ðüÊMÀ7ÇÉ‹oòé²I@6:z¹lê/W"×.ÿüˆê„/!ïÿÎïç®ñWq¹û£íýœÆ ®²g8ýÇÉ:8¢›¦ÿÒ›¤ˆ³äå¡›ø…’*!3õ™Bù«.˜Áã—Kªºbà©ÒèúÕP}á1¸¦H¿\2O_dÉO¦¼?ôƒ˜!h£âÐÄñþ ú¡§iHF1ZdB ¯ÎˆV5aÍË(šj!•¾Œ^b‡ËØ÷A0¶ÖëÂìo% ”SÕøÄAˆ°ªhzXwìÌ©hh°Îû P…J³­…>÷%Aw½>0fÀ[Ñ7ÃF’Žf×`·Ì‘:©NæÐ‰<»²0›‚U}*”+×Ý!?jò·ƒáÿÔ×o\ê Y ˜YjâaÁ€²°ƒ'çÃ9;†€Ðkö#$g<É©!¶Q g8(¦ËXTæÒlXTv _P×âÔ鱯SÅñ¼“ØwƒÙóÖ›Û¦â'ƒ¡".vŽM‰¶eÛåò)…ªþôLRUÓ—~ƒ1…@õ]{„‘¥éì:ooòªò%€2Äñe^žÔ[Nâx¾õÝO¿|ë‹b/Êe\°%ëŠkÚŽØ.—%qâ– óÀ³ynäA¤~ÈD^RzAÚ›yí²hêd´žQGþ¹ª†"?l„Yïð @šI ü廌JÃ!Äö<Ä‘i.ˆ}º3¶¶¼b¼s(Õú]Y9çÛ8²¥ˆLó£nžólâÐ"Ÿ–bŽj£NÎKõ8Ç‹sú©aª-w¾Dyxb¢ôÓ¢EÓ?ÊõZÎÒÒ7卵Gx Vä‹–ð³ê†v +¨ê@¸9pñLëìãÌ4hºž¦ø ¨5.Qw²†vw W?\¸åyf> â}¸¯IêšÄ\èî­ni—àÙ’h®’Òï#Çü„JL*JœkNø"Øš]ìE¨ÉuÅÄo¡E^¨¬xâ*™©´œÓ©}t†"³‰ÙàþÏSÉ‹\Åøˆ8ˆ¼6Ò€¥äé(4¦x@ÙòƒsFLü«Å…-ïÇœ@B;RÙ$:ÐÖÞGÞä6›ýíÉ,u->d›¨‹–²â·S×;ï¡EàõåJDÓ.²Ö6¯Âòëü,·š<}Îó‚ÈñÈ ¿YD|›šûÙB êZ™{ãì~ɪç^ }{B¦ç¯š%Òt%cýªqìp ÙFðVK”îŠ!R:Ü$}¸‰j!‘toÇ¿cŒ°ÇŸ° ù3WNcüïEšF¯Þʹd­ô‚'v®¡ßÑå)÷0£Ç¦+¹>=ëîì~†ÖM¯Ž3·µTñ0ÁX('!¾½é›ceöÞ™d"½ôWpD Y–ùœrÖæ³K½¹V‹ÓЯžÖòɃ໋Z b~"w†žèEÀ¤Be|-p µSTVB‘-#@·ƒä¸‚sà\®¥L*ÖÈÈONûý ÓhÎ/Ý ¬ý^l™pywø¶?4Eg>]ÉÚÀë%Ù³U°YÁ1ýPîøÿa4°–Þ)'ÀÅ×`,1ÿßqG}›ÎÑ®™åÀ´¼¡©Ï¬:CÖ6>Ö~‚ž+‘%5g:™¼F€ñnxâ)ªããÜtà°µúÊ )d*¤ÎæpÎÝ|½?ÀÖ³ê+Î?cI\âœÓ¤zá .ø|çÜZ }AV¥2ÅVY望ÅÑêYóÑA,&u!®{¢ Üoú‚–3 Í=UP˜pÒ›0ñÂqŒžV‡c†{]=¥:ÿý™(ù››ãµž}0zÈ$ž2‹?ñ: ˆ{Ùø.þIq2lyÅÎB¡£t,·4O>ã×Χ9[`JËÏ~k+oŽ Ó›+É’yÂN;Y¶øo¾nó*tïÐ8n¦ÿÒ†#K(Æħ_Q=É6ÇܪóÆ>‰¯Ûƒ_¼Ù•Þ‹à:…Ù¬¨cñÒ¼HðBÌo{¬)ۋКjbÃUçìTréÊ<Èí³¸ëÚ*ÐäºTz÷fòø 5¸™¾¾öúpñ‹“+C¯&ùꢒ9à-_…BˆVŸ <`$S3Çé~¿½{õ?75V endstream endobj 2105 0 obj << /Length 2826 /Filter /FlateDecode >> stream xÚÍYY“Û¸~÷¯˜òÃUeapðtÅ©x½ëMoâ²'›‡8It(RËcäÙ_Ÿn4ÀCOÆ®}HMÕF÷×ůöWüê§'ßß<¹~‹«Œe±Œ¯nvW‚s¦Âø*‚Å*»ºÙ^ý+Ø u­«Õ¿oÞ\¿Ž’µÊb–dð2tB%Hô„[ö@Ϩ׎|-˜T´é—U&ƒ¼ôbëŒÅü@‘^­Ef˜˜Í/Wkñ`›÷9vm~Ô4<—ýFEs<5µ®ûîù…|J͘sL2™ZÁ>_Þe.H³,•îâýÁžùy.;wjÓnË:ïµhvô©OM 2¹É¼·rëÖ­WMßë-{H赕d-&„UËÝ7ˆ~÷ÿ!zWå›o¾ë‡í ®:sòt„1¬¤Mkz})ùÈÈ %§—V÷C[ë­­W!nË®ÜTw«8 ˜u‘è² '³Ó¿ê謁(ëýj­Ò4øÈ#žã0Aç,ú²©i¡ÙÁ’ ±¹ºüxª4‘wåohTC[/è’î„’iölµ¥ †Ï6×[ØP&!Œg;dðâi]>õD‹0c©PŽô™‡[Ìâ,¾Ç«¾õq‹@7Iü7ˆ7‚É&XE ¶Ý¯mï3Æ*{ˆqÄÔD°àç5Ž\L×2ƒ¦õp1 EtÁºòË…Ž‘–Ì.“ŒÀš y«;š95bTÓÛù kKYïšö˜zpK¾i†žGÊ<'³º‹gî¦TúGïõù¸$L%c|¼}›v%Ò`?µ)Bç†3äÙì ‚B†â÷‘T~…¤·s¬n­˜ÆfSÍc9g‘S#bÈÃ8bi6fÚ™p>ÚîqpŠAÄ)uþo¯‡ò%MÇ+›„Qü¥¦£m šÇà÷Ì"ðuôA%ºzS’ˆ1-§Áá” ðÍ„}œ…T`·ÌNP¢"jãô€ß1'ÅSNšqûªÀ(SÌ-é×8\Ê¢ÉCg‘ŽÆZJ³=ÖR*3è­V Ú G¥Å‹“‘Ã]ùŒêÎ[7¨ËµcÝúþ™:À`ª5H˜b2{˜¸ºFT÷z](#þ€ÞwLÂB>Ò”uQ [ÓC_Ëž<¢-s*H@ L¨Úëm\Ac0 ]ÁÝB9bÙö|pŒ57¨5LeÑÌaÅ´ˆTµ |Ùü“²™ m C õY—û¹,iÀ2ÁM…_,—”ËrJ ¶À;ûë;¸¼J¦›gÃNÐh’#çl;†“•7§×CÓ–¿5uŸ[Òª¬5s5˜KdKÕÐ…”Û²…üŒµ¾¡7àKNJéE)[ŒeˆpE¸Wôˆ‹¢GLE°EX=†WsÁÓy—¯6Wš;{”†×Žx§l³§J”Ô†pH5¶Ul|‹di^œzûÈÖ…ŽC}.ô©ÿboJ ³âå®Õ¦§VSál;SêÂu[€ÜÖÜš`È: x¿ÆÍ¨vlIæiÕ×ö@éõË\!ánÑ<‹Ö¶é€QwÒE¹»£ê Þ' u4±ó‰Óy)fBŽAúT|ñúÓ0|¸› Õ”U«Gð€láÕ®½=ôÉ”Ë7{ÐJ…ô+é>ÃP°xês>ûL0Ì&Ëξ4a…”äµ%M¡ã t9_FýŽŽ3@ÀRœŠ˜˜m]FßÒN“¿arcIÚı6½¨îMdx\™g“AªV al;y4žh·F¶0ÃYë€$³‹Ã¶¡‡Ôì\MøÈOŽ©-V)¨­ÚíWì¬2~YÅ ]úM>˜Î&ñƳˆ©©ÖùÃùvó§£îs€ÂúÔ6XÓîÿèá¼zF³ÄTìX¸Ûáý‚P:FÂCߟºç××ç󙹓WkÌ‹ÓñÕô"v"›bóª_e€¡ø_Øà½Þic8]ºûzõ¿Å\¹Fñà=à_Ê0xÃìÄwôþ¼Ná˜våCßÛ-h‘¥áLøEç)"ÉÔ”]> Ç#!x §ç˜ë’àÆ@¸uE‰×¡eó£L¶+•Pr[šÇyä@K pPà¢7I§›ò!:;—Á«ü¸iñË‹N< pÝ%dÄ0 —qêç—Ï Î[ëiÖ§þQÛ: ¶+{ë­ï°dòýït„æCm JǧÞå§è¨ïM¥«/í*™É›Zw–ò»øÞ-¾Ü@xs«5«Ü­fƪH=t‡é€·–RržÚp¢† ¬o†v‰v­ëC–Ù.¢œU bCü¿ë(x)÷µÆ¡ù­ÆNtu¢ÉmÙahÊî@K§aSA¬³‹bSæŽYÛiä>•Ár‘CB²ôó´$ÝÝ„iç¿–,Ш(Q'$¼A»¹ZÛ[ŠÅMj3ÃŽž¯ ËÁÀLo?žÊ­>–MÕ`¾Üßù(t·—?N,ÜB b_“™_5§hÁGk¡!ÁZY&>JÈOYÌ| t"ÑeàÚ6%ƨkÁ™à"¾þÄ>Ø¿JP@À28Ã×Ù G)™-aýP]kG(‚5W`x¾bvá;zÿq¿Ÿ‹Áφ.t8‡2 ƒ×L°Í †”óaËÜ©°‰æ-p`d x.Šnœ&ÁO /ki›ÚíâД…^›/¸ íЦ¯•[¿v”`‘Œ(üjìÆÁ£È‡žÐ3¹Í—àÓñ4‹Ö¡Šb<€LȹJ’uêÃĦ?Ï^æÂGÈ3(2iBw’ZŒÐ `*ÎL¬ÚpâÜä¦!€]¦l…¥÷ô°¿i$îJ»É  _NyñŸ|¯½a$‘zM[m1¸vt H}è!Èu=Aóćfןs›å<Í~óʶþ¬(Qñc¬¯œñá|6ÂÔg÷P‚e´{«äúä¹[®bVrå­D~¼yò_íé²u endstream endobj 2116 0 obj << /Length 1454 /Filter /FlateDecode >> stream xÚÕXKÛ6¾ï¯0œõk†õ,ªCS$ŠŠíöÔô@K´¥Fƒ¤¼ëþúER¯-;AP X`9‡óüfH/v ¼øùîýÓÝ»~¸ˆQ¸Áâi»p0FÄ ¡ã €Ä‹§lñçÊ!Ñý_O¿¼û8#VÈbÔ1mÛºf¥â»ÃF<ÈFÖvÇÚ á#Ñû~gì~íúxõc)šÉöa„?-¸šjòQ 'dlxb1rŒÉ¼¢¨­‹SsÆ®E¡µþÁpÞ ÉGA¿M©©ò9-nŒ¢o¢fÏd3ë(òo hWVÕUEƒž5qâ­³Ûºá8š„ð0«ÐE±;à¬á û p©,šZ¨i°‚ètŸ?aìJMVMÆJa¸õ¶`õœiÞK0ì8!òb±àÇÛN×¾l¤ÐèLi­‰kÆé½ã¯žkt»çćÈ7È—¼¨¶EYÎùî¹(ÀÎÄw7gsf¡)•‚ŽP¡]1™7Ù€Áq *ð¶“LÈÙì„(p/È™ŠÒŽ3! WfDp܈|p#ÇŒ£õçkÖ]‹Ÿ’¡]…^dàë iÃ9+©Ô¦CÖ•>¤›á´·©þCÀìØ4 /´Ú—L\èhÓ±ó3ag{™®Æž–õæÍ›ûµ„Íþ¨©÷?ý¬‰MÓ¢fz’QI5UÔº[¼û:cÉè°¯¥ï4ËD¹‡¼ˆXxV òü9kÇPì¸@`f<ëŒûaÝ›‹6鮋?V%{¢S—i™¶ãaÙì4Á ñÙP*=BÓ]èHAâľ©³¢6;„JH?;P^Ð:Õ ê sÎR&”Ÿ°+FEËY²||\>¥E"÷0³ Ìj¶3³´HÒa-ƒÙ°¦²•À?ëÌÆ`[Hëj5Õšm·,•Æå®ÉMœˆl튩Ði•ÇÂè?'†˜©(é&ÙS!™b§-´n–ŽŒZR°}b#°T.\u:泉˜!ÁÊMÊL7îhÕxÏ%Fó(³À»« EÞ<ŸE‹…@ÙÚ©úVãËš¾æ›RÓãM€5^4Ë¢BB¶Ä6a/û«†BÀ{Ï(]kT+E‘ä7[=v­«ã¬Í ÷z œ€ç¾üÿŒÏl§Ø—þ02/Y‚9ËW®„'®nD_d·Vë¥Ò4EÃí¥i|²9 ƒ½œs¯·ªn$û¾×ÅÙKÊöÒJ¦òDg[Ƈè–}õPI™ 8ËlõøãÍ|Ô¡èÞGeøöP\KoÕs!s%¤Û1…i†Ø˜ ­°Ú(ÒCS˜O9=ô°ËœÉã~8[Þ"„ ŒŸä°ûtÆYkåÐ_÷G­è¦Ò{‡^£ #ò“˜ Ù•yïÎæh[–”ýGÈ©Êc‚o­‹~ÃÕ Ùß­8ŜśWÕZ"ëÆÑ­ž²*ÙÚcçWŒÍ·Ø·Dl¢&"§ÓœKx‡H¶4 ˧GߟLC9ÚÚ£¯Wºcu–<=þñáú9Eao'­üê³ñ,V‡ÞT}GæÀÊǵP±ú64þgñcSÍ_c³{5-ˆƒ܇'F«r1£gÆè¤|Æ)ïjúLÊ×Ö¾³h>ñó—†. ®œ @›ò¿L(Ê%þ\B ‰.$”Ø$Tñ K8fÉ5sόㄪõi G6¡pŒÉ®=Af’eZˆéuzm->[ÛEYB}ñþÔ§ûé¡q€[Tc»žz ŸyØ…‘À¹ö<ô,Ã>Í/<½Ù7¦¢úßœÌO¯LA1qo¶$mÊÛ,yõöþðt÷/§â^› endstream endobj 2122 0 obj << /Length 1154 /Filter /FlateDecode >> stream xÚ­W[sã4~ϯð¤Û–Z«‹íÄ€yÚÝa˜)°}bYf[NDm9•ì6Y~;º&NÖîfx‰Ž”sùΧ£#Ëo&ßßM^ß$(HAšà$¸«! QÌ Iƒ»2x¾låêâÃÝO¯oâÙ@—¤ ˜¥©òd´IµÒ:ç¯o æJ;‰´vHfs£â™Z$ÖHPyÆžÚQ4ù0†[veç^(ó.ÏÔ›Ê~!i—á¯TúHGVQCA;ØUÏ9­µ7Å™­‹UÆ*ZKj£ØÕïì"§…R'`¤»IÑÖ[ù :=>2èg1´œzyQ÷tªu‡x1)š[¼ggg.Pέ—¥\Ò´h¹[²Ùy’œ‚Ôó²-ú†òŽ–{h¹Xš5Ç2­jÆ)> m>N!ä<ïDÎe•ÑÍz·’ÕíRkú »À^òr#vcäipó’-Y'3ò³›okÖdÆ/¼ó¢ÇÁIl؆–!­*Zt®Æš¶ôŒ=±nåˆYȶî;jguÞ±®/ÝŒ¹}èVtèa¤Ö>¿Ž• §šÙá_£Þ·¯õ“ÁºnÝî¶Õl…Ž•}^ËÉ‹%kz”Ôe­ªË3D»<Ìy^o;Vì³Qgu_¡E+ÕL·\o‡Xµì@€Ÿ;ß;L{kîŒW´£¢]RNY·u¤GS¿¨Ya‚Û…Ëå7;ÂüŽ oÖ;à%S¥$ô 93;(TÈ}ZŸlÄ'û5BµB]x°¾š”]¡›]Zµ¾–ø ÷üm|!¢ø¦ :ªLÞŠF;â»’¤9Ï o¬e†žc|ƒÿ?WäÈ•ÊêÒCýÊÙ»‹Bý.7xÌbLkn|¯Þ]àp„“ƈW5 $5M"L¢ç ß_¨é:†P­ÄZtUÀûfAÅa HÕV˜ï]{tšFjг#†ZÕÙM+&´tïûE•á}%\zXdbÛ2-ôÑÃ,óf]{™}ôXÍewOŸhé‚ì[ô®G)GØ›|½®·Ú“­î+ß—Ö¦É|u?¸h}Yãg¡t‘­4í˜DÈ öíX•§ìͦ¿ÿpû›¾™µŽ`™`Næ,ãVƺ•­Ú2›^_O-­pf‡^Rç8ìÚð£]´—¤:š*½ð̱Ê6ß0™M%eÓ/yØ8³Ç“¬T0þxZ¸ÓìøÌùgXM÷ÎN·<-j}Zȧ½Õäúnò0AÊh÷4Ç”ÄAÑLÞ€A©þTþIçÁ“Qm‚H½ÞgQr¼›üº{’æý¯^éƒ÷¿B™D*Ø<ó4:|ÿžö*þЃtŽü‡À›ÛwoÕááù/ꊓV¬ô•¦…W8ÖÇñ•Þ.þ2´gÓE3 …ä Ò5iÅÉÈg " )AçT‚­ÍK`˜Ý>˃Ïuhõáűût¹qw²ÍCwt=‚š.¥å=ë"Z—¹TμΥ´ßZû¢7ÌbOñT8ù$ÃHáÌkÑ´ËÿÕaA endstream endobj 2136 0 obj << /Length 3068 /Filter /FlateDecode >> stream xÚ­ZYsãÆ~ß_ÁZ?¬±s`pĵqe×Þ–ØRu(lКrÂþ}»•"8 —¢î»gµ÷_´öei1S[Lb¤rBÊëíN4wÿ,ö=ôœ(kv]"C=ªâ-èâ-³7½G2DâV… ’ZIt¨xÆ¡Ìí`%¼œ•æÚ—MWD|Y÷ÅVšàT´4Ñ7ôì®Å¾<>ðä¹ A=\îÜJÇ?Sð<éL‘ÎîÇórÒ«æTîå«„ÞŸÁ9=ðš¶Ù_x!í;7CuàÉÂÏm• îYÛhìžõCqD»Ë‡Šõ_®)]e"Œ¢ÔQŒÎ°¢t CeÜ"4ü祧Ó$Ôà†3Í;ïz¹üögزïQ>Xéú¶¬O8–VšvÎIxiâ }B݃Lý~'M|‡ÒÄçÐzë‰Ó‡bçã4ºL¤«#³.] y!õ΂Qå…ÂÝ™,>¢¡cˆÅó'ìDñ„ˆG:ΰhZgÏ¢´¢xL“ŒU˜@¨tDuus¿F–Ö¡V™÷ÂÕ£d˜h¿äí„Qî›¶X;ÎDpk4‹`'Úm€˜ÈõÇ‚ øjúâë×»©Ø/7²ÿCDamÝü°'´‡ŒÊœle¾‚Yvª}õ›"©T°sèú­ ,3ðÛR O¢œ <®¨<‹Ã4ñjæSV”€ÚÕ¨õÊ’àÓ‘oª­ˆB‡œËl tÄe2hj¦ðÌ”U FUkA²–»š™Ð%ߟ˺ðaÒ^[ä}ÁÔ"—™JC›£xæšõ¯áÂêõÚ”ð õL2@†ÔA†p ddÝ6(ú¼¬Ö!Æ2æ0´`:om¬S*¸4b`8Ñ Nèà×2_‹€Ó1N|Y±âqÅ­Î^pÇwætüäj¼µïé^ÜC$£Ç4;FÍ£ð¦›ù¤á‘”³â Ì ‡º|N5€'ÓØsuóò«L˜¦Ó{.çç®Q,OÇk t ޵/ä mšM/¼àÉÏ\¹ÓF‡i¦Ùl¨÷hþdm6×Mìøsõ Æ0-ãÀæ™y…YJd6W*!•…Ãv ijkù4 0ÆP*M‚ï>ÿø=­Á]§6¿ž áÔ¡ì®Uþ@+Ñq²ë‡OAr‡@:*j°„wa\«¦GÙi  ÜŸi+eäeÚ¾Ë-e*QWàiÃÿ—üRÖ¨D²ßÃ;bÕ:Þp¤gî6þkÈ«à,À`GÀÙmfKÆ%¯„èALWÞU|ºÃv›;½+ÿ]¥Sƒ4"”Òî<¤\”R>š|³ &ÁïðÓ#qohò—µ¬­G,Í‘ótj%.¢,{à‚iB£Ýþ_V£Aj¼'¢zKÌ›Z' ,ûk7ø t]Ó0§”žù.‡öЕZ_"‚Oó%çæbÍ£øLÂEš JÇîF4“‘žíÙ}`EÑõåR™Ï ºÊ2f¹ÜA¤­­E˜$lŽÑ½Å„ôÃöHb¾¹ÐlN¶NçÊ­|¸om¹Ç$Aökê¾< ÀOä5_Q (µ)~ÇÀ®»­‚è¼ -’àsíè*Ö<€óŒip†ƒo8Êž‹š¶“Làíòxz¼â[‹ö,17>"ûÜ¢n8@žÝâä+¸UQïù—U ÷Þ½ …Ý%ùìAÁfƽ0Ñ }UmG³Àß;‹ •/=˜XOoÀõN „kÇÛŽìºàèeOiÞÛ8 ƒ¼ê'íêÊ·ò èTö+¦€ÂúÌm0í˜VJ+„8¡bF±ÌT›£ZmX £õåx(Í[û‚Âmªnp`æQ`Ë=à Övù…Gýõ }´ßØTG#Ëîx1¤Ýð·ágh#b©¶ã=¬È #¸(­™ì,·i9Déq™œà2)_‰Ë öÕ£‰½—%`}ñ¤Xƒ-êW:i(¤wj[¾ûáÓÅé¬â/ˆ³ÿò©äµOšä5/R Q¥‡z¤<Ì-”äuÊdžè(¦SÉÊÝ“YY4"uüå€Ï¢ñèêaïè‹~ a–ñ¥ÔTÉxÉWKõÁ_à¨õ{F.£¹Ðy² •’s¨ë›.ÊÄÄ­f æMýã²×Ù¼0a,â×Ù|¤Ôï„£óZ‚-øâ¨C-§¹,0*Ì{Ë/6J–Kn±¤" •ÎcCKmlU’5)±Äȃ|t·oÊC‘Óh¨E[=zà7ã'Ùx‡#JšãÎp4ˆ5xbmó Ðò&PÝÆPòûs—“1!J(érC„áq-ÜÍ+ !‡],À·°ˆ$Ìí’)ZξÄRž‘Òh|Ã…™ 8«Èm-ƒ×ØKÌØšM~±eÊ»¯E"äš{Lº(0P_y€ðÏ¢Ù%"á…„Îû”Cþè•\žMI2ÆW­á–p „øi0Ëc±ïKR—§ç6O¹ÌñÙ6Mï›Õ€äSÀ"‹ ö1Å#|ÍÑÒ´äæ–£ûkÊv€-ÇmÞ7Œ^¯•ÍûÖ/5sÚõ¬p 7ÃÉnÙÚv¡–Ó¤Œ?sÞØôŽÐYËAˆš"ö"eYI1(•ƒYq5ùv*ТÓT¢@Žx|_ªtQ{.º i&ñ¢«@´¥yæKs…5ß•ä.$,¢\1nû¡#†"´/ƒŠcÜ9r½X|eë—ÓƒÜgêù‚4c7¸[Ü„à è{ñðÒ…‰kU0oGןƒu‘†Q’..Ÿ‹Õ¤þ¼ßî"¨¥XËrÚ´¿áŒ ̨GeyËír„ vmKM˜’BéÇ=ù6ª’4à(G Ÿà-ÚMö oi§Ö´Ä¼ÆäÉI§ÍÀ)!uŒDæU[äæª7ûí‹×YkäˆÒ“,†“Ä+Ž"€ˆ£²eÐ÷v†Î›e£ò×0'Ï” S€(«ìéhJÐ0¸+öœa £ëÐçÔ·¶.ð£Á¦ XI8ey´ëkÚV*Yƽ%ŒÕbò™sA2ÿddžcðŸ Òy®¸÷îz‰¦Æ´XŒù w_Sç9®â”1qÕÇŸMÆdCøäñ‡Ùeò[äË86Os Y'Žf=o3ËUY|¶F'œa ÷]M¾azü‡@AéY`ëárë—³ÝqÓ‚ZºøjðÆD(“¿1‡.3ªÑì èÔ~*[û䇎_Tža0GÓÔ†×Ì>ìàý¤wxcƒTû•ù¾( áì$*Ú·˜jf€ºåf¬cæÖŒV¸öYêÃí›ÿsŠÀ endstream endobj 2024 0 obj << /Type /ObjStm /N 100 /First 983 /Length 2233 /Filter /FlateDecode >> stream xÚ½ZKo#¹¾ûWð¸{ÅbÉâÂX`v“, ÏÈf0Å–=ÎÚ’!i2›Ÿ¯¨n[ŠühÙ=>تfW³>Ö›ìŽÄC,Žb#’‹\¨ŽKÁÁI$ÉNr±vIA®„Æ“œŠñpvªùDt•mD’££Ý3ॎ¸ˆQÕQjcåb0i›V¢£*l”ýkp‚# Dˆ‚J†UðƒÍ’0Û¿ÈÒž€ ièžHx,1†²ØÍ Þ\!1*.‹a4YE2ÒhlZLBÆÝÚô‘1Im IÅq ƒ˜¡5âFeÇ17>Üåj|…'±YJUƒÉPÇ™ J1oÊŽUM.”$¡Iƒp¡”6jXOɉ4íi¥¶î¢NR´ù0dQŠjc˜¥ð€å¦PML™6v“¦P’f¡ .%²™!2åÜø0¦¡%—*È€ª³U\Žöìî2c© 0&TŒRP¦D Õe@æœlmØåÈÆ’ƒ;æŠ'´é p‹¹!ø‚+dÚ%0—PÑA}v—0–š\ÂXÙÈ`WTÚÝâJUC@ê4˜^ˆ*¨¯"„¶P ¨]#ÃüSÙî NJðBÝè'‚_Ì=š ±=®)AËd憩²I€@­¥UWM5à ®Fó BÐTV›ÏB(‘͇ª9™4øg-µÝU‡E´g1‹¶õ †jõèøøhòn1_»ãc7yñ›w‚ ¸*\¦¿€'!Æ6°lÎýH‘îX•6w~üñhòërqú~¶vÝä×·ïÜäÃìµût„[&÷Ãof¸1½˜M~†Ù|½²ä¡öüÑäd¶Z|YžÎV›„ÒÆþ6;»œþ´øÃ} Èf³?AÐt‰§‘j÷ð›ù|Ù>nò”áù?±áhòþË¿Öíú¯—óß&?-–g³e›<|šüeòËäçÔ. Ï)V‚Øöæ¼)V¯°Gö¿I‚/\Á÷¦éò½›üyñaá&oÝw'çs¿¼žú/óËïM/·˜ÍÒiSÝ?~û',â~W¢ø„À™¹ºúô 3»q ±çw¹ïLºcÅûînǾŠ\Ó¾±ŸmR–}“r|¾I™F5iVo…†cñ•,A‹G‚eõé`ƒ2`ÐmæÞ ”Ä«Ž#•°ïHYs¤í¶ ç®Òw½ËhݼzÛ1Òu¶EÑ+Y,“OEÉ×Óùê|ÄòU¢Ï¶Ù†|s›XÉc¿é"v\˃8®/W§þälºúì7Ö¬öRf®„à6ó£!8$U jHŸíaz‡•xXáÎÊôDê‰B™£öbÇŽ¾Ÿ;µ/sµ/sµ¢ÚQ5ˆºQ¨”á,R}dÓYòÂú ±f«ÓéÕéˆN£¨qÙuà<ȶB¶'…+vʇœó½0ŠbòY]²õœÒ¶¤„îC ’K|E… z™¬Ø!© ñ¶£ ü¢7H%>[!Ãϸb†+D¾=ä²zGMòè‡\èö‚jpAÞa~r7z/w²t”y ·:Óà¹cîœÆÜްí#Ú? &’d«þ¸v‡Àö:¯#¨'ºC`{—×·#ü YÎV~óíYgFÜFί—@ ÃÞùÞQ4óeŽëÏ#¨HœRnaD¶¼6ÆÍl½qÁ莲ÞAQ«½\\]_˜R6.tç"Ì싽îbšÿŒhšÎSŠë“_Qø³ÁyÅŽ1"ê-&áHO"ýý€uî–{ Øx#>ãž-'ÓÑ;ÌO—’{¹{Ëx#žÁŒðªžbÜO÷1 K÷Ô½Óß^z¤´ºÍ|[¡'ì¾ 7ejgƒ¹E¤Ë ÷î;_ZlÙòÙã{ 4ËaÛ*ÐÔ}‘Ð>U鈾Rs_©¹¯ËÜ×e÷u-:øÃØ!Ž)HbðíC&$˜â5;{F!Jw@RòÚ>ÑxȘ•ÙvÑäw8±oßs À1viΛsí‚ßd_ËqÛtÙW4)•×3 çÜŽ z móc_Ú 2ªi`Šd߀u8ÌEľG€cdÓÄè«uKØþ%û†M‚š†ð+öbŸ¯ OÝ|PA¼—zÌQr ‹—­\ü?6JFF endstream endobj 2155 0 obj << /Length 2434 /Filter /FlateDecode >> stream xÚ¥Y[sÛ¸~ϯÐäa‡š‰` xÉt;Íz7›¤I“±ÝÍCÓˆ„$Æ©Pÿûž€”H1Z» ®ç~¾…³õ,œýþì—»gW¯c:ËH³xv·šÑ0$<Šg ¥$æÙ쮘ý+X7z3ÿ÷Ý»«×"9Y˳˜$Y'ÙU4¢¸èYèŸ-x’Ú –À&î–éýR+£_Ì,L³Qõ|A³{ØIƒÕ¾ÎMÙøa¹7ÍVš2—Uõà4µë%AÞÔº,T«Ý„?" vÖå²òúýyuáF‹Fù¡º1nh¯ýþV5[ä8Y€(2!Ô“~.!iÂÜÜgäÅŠ‰ó1±˜D\tRú>!È„`Ç/(* Û8PÿÙËj¡Vs&‚•ÊŸÞ6…ªÜЦõ;\ãˆïˆ;Dð% ™1ªp{]Öë)ÂEJŽ„o•Ù4ÅÏÏ}ÿ|‚¦£n-*7΂]ÛÌ©¾•Ô©­È+ÙÎi¬Q¾ø ò¬]"Ò<ø„ ö츯¯n èT¤Ý§­8g6»3Ÿà},¡D¤ÉX—<0â„FÙqG~/×ÊÚ:³è5#YD‡Btq°ø“Hä¸âžBà^}ºýxýwÈ’ã%JSFxJGê~dTJHÇ'by/w»êá¢\ˆl™´ãø0]Žä iö$ψNüÂÝWL§ ஽8üýc YNÒŒPî LN¢„=Ù1Á Ù ò=ä€(qeJØ×Úa«t7áÚÖå÷«÷e½ÿ¾]] ¶Y0˜ÿ<4˜ÍÝaH" ù²–›k èHž6ňHè±æ´^qXÉ~PŒÙ|0ÈóùFå÷*×#øVï·KO»/P1²”•´O Þµ`:;¦jò¢ø ö¨šãÕ6ì¡lj{¨ø¤äémåó<šª•M\Øûcƒ2T¾1K¹ïXÄk&´“ ðäÞ@þrø¶üTsöÂ#V¤i×R Åp>PÌ3HÖCÐQ|÷ÜQ"P]¯Ð1;ýòêêp8îf؈Íúë/ùpÜÑÓ{¼}†Y2À¤XPZ-x˜x£VÊæ Uç£âå‘ øXÝ—5&ì”o‰ïü*7rÙªýä0mïºùŸÜ÷Ýœ‹ -ïÁ£êFÏià×ßÍ“(ð{^ÙVXõ±2ïs¡úç—½­Äüv¨É㙄€ÁIÆÓñ+ß êW@Rüð£yödûßFïE)×%ðÕ’LšÛowÏþ Oý endstream endobj 2171 0 obj << /Length 1539 /Filter /FlateDecode >> stream xÚWÛ’Û6 }÷Wh6±g"F$um뇴õæ2M3·OifJK´­FRÚdÿ¾ Hi%­œ½LfË8hÏ98žózñëÕâåe9 JB:W{{¢~èD£&ÎUæ|ZbŸ¬>_½{yâÁQß#ˆÒµ‡Ž©>³ð¬jлÝi—D°IÌæ;+OW#ÉsãËKJ„C¿µtá…±ÕõìÙ³•xÞ2eEÚ¬æfYˆƒ™ˆ,Sf&Y ;gUfÅ„”\D•å••PÚº~uÍdΪÔX ¹ØCI`!ÊXmNýâš‘+mÇ?^à•œ©FòõŇ/ì¥ùšåv^á| v•æë´ÿBà éVp[È\Ïàw¶Œ@dŒDÉk沊7*·îнµ (̤§ û1¯Ò¢¹uÿíöíÖõͼQý6«¬‡_V¸|¿çim”"ãÅ<€ìY2ÍMçÝõÔͽ G‘­/6›‹{ÝÝç6—›¡9ÆM1ñû$”Êw…MÕìï¼Ð†…A@ƒ5¼}èYwùŸÂ^.›ê§¹ƒŠ]!8uÔW6ÖÙ“‡“ëËWl7ç.Ôz†(DÓô—¼Ïý×¶o¬êì›5ߊIžuÀäU‡Ä^È|êc—ì&aø¤’vEÃGº~tï}Wðïƒ+TÝd7fŠÃÛ`ÕG~7cÛÄ>¢†CK˜{ÑÔkÚÅ0ü¢Ö@†ç“ΜÜT™Ö3Œ~'²Ø\-¾.0Hzî‰Õ)Œ“–‹OŸ='ƒ Ñ$v¾µGKÇî| óÂÙ.þ:Kˆ-{'Ø| }ìø~ˆ|Ÿ!æ0‰”ĸcñ÷š2^õ”Aƒ)z**3¶€ëÉû¶<í¹3¾áU™›i›zò›81«NÃE<ìÝõ!Éc`2Í,œif¾@3 Œ‡¿3Ëü šm;Ó†¨ÛL mÆH_6UÚŠº$NZVÑ£ØÕ,·{ÌŽ\ÕyÙVb{bo%Žvƒ­°Þ K.ÙÁnÖ+ Ô‰4u*Êîx‹$L&mÊlAÎy$ãМÌT—×+ßõéÙX š*ãÒ†È .%°¹²Œ®÷-…ê©m£ø—ƒøg-°;þôt@æ•1~8èâhLÿ[i´ü^8ÈcÛ›Åî?ðÕV=BhTîÊË}K‡miÂ`iÁ”2.DxTb> ¢¾Äž›##ãüa BoDM•Ïh‚¢ˆÃäGŠ\øPúxïg³ü×]ã©!üjß-˜w®C×üûi® cÚýY+÷—Šss ü.cø‡bGœnúñõÂùÔžš‰è2íÒ7i“N;0M:’eÕ^ H(Žb‹H840fþÞ²{5J'õ£óFSëÓÒÆ¥µ¢â<›öÛ>¹‡‰ã-¾[Ú7ÀÝø ÃOlošêS Ä.ŽF†Ô'^tc0loy8E®4ØÐŒŠvÑ¿2ë¶/뉡˜äÓK}μ¼Ì6+Bæõ±„„ |ß°ìßa)?S}çÖ™¢b’óÅ¥ »åvï_øÕÀŸ?>‹  ?"‡À{9“@h¶+Ã[ü&ù™0 endstream endobj 2185 0 obj << /Length 2567 /Filter /FlateDecode >> stream xÚÕYÝܶ÷_±ŠB xy©Ï )b;M£nû<Ô- •¸·´õ±¥Û^ÿúÎpH­´'_l}(îA\rHÎ÷ü8Ç7w¾ùó³—·Ïn~LÂMÎòD$›ÛÃ&äœÉ(Ù¤aÈ™on«Í?‚c¹ýçíë›ãtF)ó„¥yçXš0’HôŒ»£:™Qï<ùN¤0)iÓj(tmg̯ ³Í.ÌX’ÑÎÛ£Úîd$‚¦«TC˜“*õ{Î…ªhí^ĸ” Q´Ð3Þí?¨rXP2q‘¯Í@§î]W\1 ‚³ŽÝ8Ð2Î÷ÅÐõ†ßó˜k¦Øsø™ÄZÕ»“Z"Q¿ŽE½£q×Ó×J¢Ëˆå¾!Ëã˜Xê‹¶êš:lE@¸IÄœ8‚ëBf÷rس$t:ÿå¨ðº8F£Û;fÁ`Õiç€6 ¤©h|°ì!ªwܾÜê>kœ µ× ÌÅÏ’à¬ôÝq°†:e݃îg¨È‰÷™ÄºÝF<¸ß† ¿Þ¨Ý=ÞWôºhKà_ÀkPúç8’h³%úQ£ïZ¼_È<:š5MQ×hKÒºÕºè·aÜù3Œ•Vî ½*»FaÓõî®±Õ ²fM†7&©ã EÓí@ãî€ß$8ªAõÝjÁMhI·e¯ £ C ƒ>e×ðš@ÁÓðrÓ®Î.¶bÒaqçhÀmö¬±®¼'Äû$l–{~Àjä0Ë‚½ö*ZÛʪ †¥ê!Ê[¢A­š·²ÂÔiÜ׺tÖÇ<‡Fè4gE”óÀÚÅ °â·v­Zӹѕ5‘ K¥WLƶEÅÉSÝ 4[Ø+aªÑE¤hÚIQæAH¶ ¹¿¨¶Ñ4åÜG¯º“•æPÁCŽÇÑb‰¶;PðÂÄpÔŽøÔwûÝš4µjÐË"º¾@‰æ¼×• LœÂ”‚_o{úe¥‡¯‹‰hÅpµ=ýävS1ÐÈrˆ÷;{#¥»ï·"4šÂðS¡‘IHBÛ0 O’O$LQž\æ½Ìebtþ< ÎG]Ý.r´Öº83íô—XMfÂ)&¦ ÌœÏÀÜ2(!‡ƒGD<µ±&?BrçvüQ\‹œ”)1«èº¦á<`…‹̈vÑy.‡âÙ¿ÓMׂnw-t_-6w½s28À¹"ǘíúS×Û³Wó«Í„óø0ì.zççªï±¬DR¸àCè‘kÍÅ¡¢­®ŽîzeN]ëÙH‹5§Rä@@¤1`ȯêe…‹HŠW#œÒµµ‘õ«5rA G³¶”¸l%·þãƶàáà\ÖÄ î±`ÁÌýX¬¡š¬ 9#ÏR ¾é›‚AaøfkD)K"á)±?>>XÆ,æ2YEg¡`iyHr%æWë°IðÓ@ Bµy(–>`5u°• €à,·(C3÷¤Aƒ1êü$„Ë`°j,DðäI`Tkô Ñl÷Ö÷íZ[ÔFûƒ!"WqnBWP G·WÁÀˆÐȺ/;%ÆÜ+%ü±lÓ#À¤á[Ä™KÝF,K&Ý:“]#ÛLL™L+šL²€À9g€€~L~Þæõ¨¾¿hI>‡`i| ï§|2XOØ÷›cÉžðÊ8'šdÃúrWÿ®®Õzô©µq à Xü)€bŸ½`pèêºCo8Ok ô!rÍ·W _ˆXX²\¤0ÈM†â)3¥ Äâaó\eÙ¾ÎUÈ*•A””²{’+wf"‘9¼dÔç³tûb>Ͻð‹roŒeçKù(5«÷ŸÏŠ3Œ-»pñêXµt¯ÉŒWé]a–ž·uµí¥ptüAÇÓéÿPHÆØç‹h¨Ü";U¥17áûÎúàH ¶'LjO [¦K1¾ÄìÁÛÀIÇÚ?5 [‘ôO—€òº<õ¨*÷ã+Sr˜AN±—Èù”dä<ý¬”  r²Xæä¿uƒúê–„—‡³ˆ‚¦ø¸ ”ÑÒh ú~¿LB²,œ²7dí¾ëžT…ÌØ(ÌP@ `ðå±P °êsê9 ^¨ùº·tøQ”åôg·ÓnÒ¨&,0w‚u+Õg&P¡y¸¬ÔìMQu«~WuðTLÌ¿À,ñ*¬¶“á$²n&¹Ç 0hŠëflðG´c³·ˆ‚ÓË¿_[¨ãv®ñ¦ÀÞTøBÎù/0óê`»õŒ\T?Pu;‡¹ÂˆEØ[vr&µÆ‰ÅûkpŒŸL¢]½ÆSÄòh‚}ôÀ#IQ0pž¹¢`vRŒ­¢à»PÔ§¹ QˆdòI<QÜJ;m¬.¬•¶û'ÔWΊêÃh\k(q9ó¾rÈY.ÓKm‡~U5Øhb`âå#Z;#fBJM—FÕãË΢‹÷¹»¾C´ƒ»À$ßÝc}îúp¤ š³¯,K ÔgJYOS ¤¸x‘¦^láŽR ¾ô¸ñ|aÖú{¯ï´­ aŽ•%8Â1~]G‡Ö‰pà:8œw4=µ^!¡§5RغˆƒááÔ™åáoà‘^(w÷ŠP‡‹úÚûG`ašìð4€ù¾RgõÀš‡ÿ¨–•?þq5D,–ò‘Æ7»(†øâÉÒ=~š?˜!7æî‰,}Ç©SQ~´õ]N5§©òâœí[Ñ$9·­»´æÞM¹mà€1¦T0?Í.Àß7ÎmBß­õé\ØFØ^hék÷ã`â !ðûË6ƒ“ëÃÝÂOœüy›ÒQåqØ#Þ¹fÄZrâ éÅ$çûý÷P oOH|)°®¿û “<''f©-„XÝðq=L!(¦Ìs†“ùöææ|>;‹J|'$éÒ¢ž)¨ˆN&Ξª¢yÌÂHþf”†¡´t‹(}«Êæ_óŸ€¶‹‘o˜üžÚ6ÝÔk~/Ù¥w:‹ÌHd@¾À±¶‰»Ä±Yî;¾©Oãe¯ nA5î.Ïw¤!̇»Õ¶åá08«ŒKIø]t€m~Ð…q*NâE²—€ ¦úön€=ð’+ÝyÚm£*]êV­8@É8 _»2#ðÉÖ"_9ÃŽfÞÀEîÿßÀlIò÷B$"Ï$[{‡L^jˆ÷ÚªÓè…7PÍnˆ£ñÕë±eÅ-ÿ­s¬ÇÖWÄ1¶saïivíIŽíéY¿&Mç–µ¨v¡^qé-}\RJý¿Ü&ÊdðÃe˜5J¸6ʦ‚÷½ª{[p+€ ]G·p ÉÜþó®; g¨à2 Öl¦ Âüi[çÙ”@dò [Ï#ŸKoj¸?D;GÙš•#vOY°\zóÁvÏeÂ4—«¹áO·Ïþ ó*Àh endstream endobj 2196 0 obj << /Length 1342 /Filter /FlateDecode >> stream xÚÝWKoã6¾ûWÎ!3¤ÞªCÚMZ-M²§Ý=0³«WEɉÿ}‡âбÙÝ=-‡ïy|Î7¢Î“C_g??Ì®nƒÈIHº¡ó°r¥ÄóC'bŒ„^â<äÎçóý‹¯¿_݆lo«ç»„² ›dõ…R¯U&H[rRnô™EU 'Ü;¼´§—n“ž‘q/ÄÅÒ èâºPõèøk $vZ=4Ý;-Üóöˆ%‹I©Úš¾’‡æì»íEÄ ­'«º5Vtk4gÕWY'ë §kÓ‚¿ng€©ÐÄJÛÓ~JiYç¢P· bQL\7¨Bâ'x'7/¼l ¡Ž 4ncú;|"ÀÇ7²ÎÎÎ.–¥‹ŒY_ðN˜aQ?™NçÊôZ8`ŸW9«ÛV¨¦®rYá ¥­Û6¼•c°,Z2J’=Éygvý´4­PÚŽ/4 ¥àªoE:ÿx7¿D¥2åû“)üp”É4Û­¸°âÚhà)ü#….¥>ˆfÇ,Ái—‘„Åð”¢ãK^ñb«$bðÈ•@txœFmB%à6vÂE{¾µ¶oxc|ü*é”ñÕ(L¿)jÄœ£z‰Æÿ&ªR\ï/uc·iÓ\Êè1½ ÌÃ=Ï[lù‹Té\ Ymæ8׊D‡H)Ž_ Y¦Ã•/½KOK·‡w $¸ôH°·¤:Ѩ4ÂQ.Ÿd§R»øÈ³oéüy-;1ß7vš^‰Ý¯kôúqû~DFr| ¢R²“Ùm­   üÖb÷Ÿ6k—]Ë+éªÄت/:T¯³ÔD¢QðÂÄI0ꌆT¼4Ö¢ÙÍÃìŸÒ/Ûñ…¹)òœ¬œ}þJÖ@4ñ’Øyv–ŽŒùô ç~ö×Ñ\5pÒ8ƒ¡ÏŸ&$ K7«âÙ„ÁH€K’˜ÙTû§Nµ&…ü‚ÑÅSU«Nf ³½Íÿçn°0âÏÍÌÇÇ¿EÖ©ã8xID É¿ÃÁá{aL Ñ +¶²Xh*åò8R`„pÝ"ƒi#ÏP´Y]6½N÷z°ÑîB¦®{ÜU÷]!EkCðëÎŽè;É 3¥º>ßšn.ùš0¡ãIÕ%ê¨W¦…—™­­¼\fÜ¡9ׯ%Ä}¾©.`ŸA~¸€«Ý@4Ãl…ËÖ"Ø¡éEOqÓtr°>×3k¼›ñç8øûoøõÑr„8>%gÉü„øþøuýM‘\ªN×)Cí¡ƒ³`ÓÖO¼Mo¯ÿ¸¿±åFѵ—ÃUF>‰ÜqĶBÀ+(!°Ó‡»OöTÃ[^¢HçUmKš*kzÃ\F.v!;X¢×*øàÎWPK©wãŒ!>’õÿm5 HÿP¯y·±Yiv·m ²Öùº†ŠdþŒ7ß!ñ8q\·wö%PÁéïӉäÝ_gQ¹ÖsŽŸa&¥beÚc94bÄ{…ø}9ô˜à|—1 w7ƒŸ°Âßï|.ýia¡áehU#2¹ÚšÁóâm apÓh5@?ÊŒ´Bsn]÷EŽ“b7§™é¹2C†Ê˜fÏ•¾Ce£™“ ‡„ú»OÕáuN`çBÓÈîÒQD&£ §k5(_ endstream endobj 2213 0 obj << /Length 2705 /Filter /FlateDecode >> stream xÚ¥ZYܸ~÷¯øÅjÀM‹¤Î‡<ìá ’ìfëI^²–-±§«¥†(yvòëSÅ"uf¶Ç cÀ£Éb±ŠõÕ!‡7÷7áÍ_ß|{÷æÃmÂor–'"¹¹;Þð0d2JnRÎY"ó›»òæ?AÕü†rÐM¡YwVìüe÷ß»¿¸ÓÙN™',Ís k÷ð(ÆEoBw”o?ÜJ9Ûµ—if·íE “’6õ`zÝ-¬ŽK–gŸÖ^úªmT½Û‹$ ¾ìxè¢o;ÇAßÒ¼¹è¢:>Ò@Ño¹÷{E¨®R‡ZÓ íŽƒÁ¸‰#Ñ‚¢=_†Þm…cNnÁwmûùÝ.Žƒ7÷ Í<މײ2½QX‹ÀƒöûÛo?Þír|ó‰&ˆ“zІíö’§ÁߎôÃÐØ‹€N„.ßãœÄ³-{ðóY+3tž¼êÜ41«Ká6x£+Ä!¨¼¬ðü/U9X±Â\{0º#Ù–4£¸æ¢¦±©þGç†îZÐ=œŒwX*sù œ6÷¬l Õ••ÆSžx"}G}¾5Mû°Å–”LŠÛÛMRœ¥r\òö ¨À¤ô¹8‚S#¿Ö¾ ð!Õ™ò¯ãÐâÉ0q¾ÝÐ@Q3«"üA¸¥Ùsœˆhn åPF™m’Ã宿Ý"õŽ:ë™À:@I¾|g6}!`ÚΠ㣧Üp–#78pù£í+j56;ž‹Ì³YÈiiÔúLµY/¦ð:cx‡«ºÕª9N;î×·‰ÛÏ3[¾LÌ,¿:VB¬Ý5Ì,Ý5.Ùt×<”,MåU‘G8KR UÆ@DãN°›ä(¡µ>OBžàýP¯ÖͽU–ä>çËèÅY ]u_5>†tƸ"מG!α¾¤ ól¤UÖ;Æðéù2²„erÃB€0"£õo8€Œô…Ó²˜…rÄ{©§g 8+-‚DKúÁVu \PŠ'7Óɶã%E#¢Z†'!™È6 Ž(¦%_>áåk’Ö´êšzTœÂêŠÉaÒÙ EÌxHe¨ç0vö ä¬3½/0ñ(øÆ;>\i†„<>¸Î)ªÎ-®sN—&ñ­Ù]=x&½Yô&x°ó\Å·eÜ„ãÞ0ö&ÙÃ@].uE×19÷»¼ žò‚Ø;§üªÊ“©MëzCßD`­¸~Ü8£o'ú·¹2@_zè•és'Ù+“ŽùuA;o¹È–ÁÒZíDè0zß6ð7Øü^XPnZV [ÕæôY`ÂfCiA§g™þàŠÜ ýiø!"àiª*~ÞrÆlòÜ8iC¤]×m5àÝÂD^K´Ô™y²#Ç®`çêX¾Z¹K ›·‘qÖ…1äÔݸ°+sU(h§Ø1\uêÙó!àÊÅK܃K å„ñXË hí‰øY=Ò‘½úŒ¦¡i¤è×£ù@µxG›QyW ›ÊœÜ¬…ûlR:š µî¶¾ØL/ „€YÜëñÛHMñè,:4óðÐ[‚5}ò¯ðe7ºWêþò¤€Âá>ÉaòϹe‘³l ëÞ{£+}ªñeüå&í·0EÐúq]ƒšM5¥èlòwø‘rnd?!ÒJé Œ†Fèp+à â0ÂR8êTƘúIåhôÝ£ë ðHû©ÒbNõ{G}¸P{pËñ›’­Wï\Û-î‹ÐŒx뻾’(Ç‚UÜÅ%„ÁmGï­£cyû= ±quå§9"6ž÷$r‡8*zMå8eðËâŒÏ mÑ^JЉ¦¾ÞÑ'ƒºæ[Ö¢|ÚQ|V÷Ú¾udfï«K‚åÑ*ØqßÎó×±(C&’‘C¸½þùÓOßýãŠÿ5 &3¾R÷•À1x’ÌÄòF /Ê%µ5îU,ë*¾V¹:&‰XÈóWYF4³ Kz0Îì®gÌÀ\GqõÓ‹­ÛwoþŸ†Þe endstream endobj 2224 0 obj << /Length 2406 /Filter /FlateDecode >> stream xÚ½Ykoã¸ý>¿ÂÈ»6Ó¢¨ç`]4“Ggv3;E’vPtŠ‚‘™˜Yr%:¶‹¢¿½÷òR²å(Ù ŠöC"ŠËËs7¸xƒ?¼yófrƃ”¥‘ nîÜó˜¢AÌ9‹D:¸™ þ:äA4úÛÍÏ“‹ˆïMÏ<‚ ;I_=O¬T‘)V-$[<âš7žÛê`Ÿ±ð»zìÇÐ)HÆz® ÚIˆ½É¾`Aì7-e%ó\åÓ£Å*7:++uD‹NÂYØ.úê…ž™«Ñ˜§Þ0—ƨŠÚe‘o©µqx­êf€ž*ôfr©‹Õf,sý€“T â8}ÿ2 ¼¡6ó>½ÌšŠ¿{7SFeæ4GIJë;t¸ÕÇ8c0LH’ÁJÃÆÊNæ‡Þ0“…kÌUö@ÍÒuÙãc£X-nñøvðŽžrä{ÃÇ‘¥ÎåmÞÈCŸ“—™Ì©¹Ù\ŠY=Ð-nñœä€u!Fá#"î'¾%¥¬¨­Q|"†r6ÓFÛÍ ×”ô\Õº¸§fƒ"M_Ve¦jE‰‚æÐy]Ò‚Z™¦0…¨:¬+¥j£Ò¨éÅÉåõy9qÊbÏß‘ÓÂ’$Ei—£õ\góÑX¨U+j~È–^þJKp¡ _)0T …]T.–p°ÂÔô®]¿å‹r†¨ˆ@¬\_QjTjÜiæ¶¾³>€MX§ Üз§6Š·§çû¾ÏCÆã.݃¸¬há1xpÏoîñá]U.¨EúÃàL6àVA ÏJË8 u8“\{¶Z峚z‘bì“K°… ž CÑ% ¹-øð´,~…á°v[êÚ Ú­¨ñÇ¡®ƒÃÙÅûó›Q*†'×ÀuÀ[ùÊúG€ç†Zú¾pn¸ãÙÞ]|¤ëznÆS„}_>ß1J#ˆ­üâ@ƒçíË.líËEß X„†ˆ¶¹Å8±2äöºn¢DQ뙪 nl©çä¬MfÐÓ]sŒrÁ¤!Ûµ^@èq ?î.ÎöD•¨‚ŸBäÙRÃZ:6n=—%„ dðf <ßM$\P96S`“œÂ¢o–,·¨‡,Ù2üM²@š# Zäµvþ <1¼™[´¡­s§-äØ!óÒ£Õ}Ù”{ÌZ»ùõ¤/óø,[m;–Žä–U“ ¤iòNMÑEûi>À@ˆY>b1lJa¢ ÍË Í¢n²_[*<*¿‡g]ïU^ƒÙ…6‚îgŒž'Ìuü‚3Vs÷vÞtÿ@Ë"Êš W¬™¸#§‰·wº(Ü× h ӶȺRXÝW#±0hÊ–™–“ 4CÌêRS¸I+ÝæÿªÐø×$ã/#N%â;¤Òoæ|1‰X–Õ‰X˜{ŽxÖ‹…®o‰˜{7zÝE‰Jé¼‚ÊÇUxMøí&"Ûáb®Åì |=æ$ÌOƒ¨.ËbVšÓ¹\.šb´Í«~Aì »Aê”s½1þЗA1@$ðR*õí¶qbQdéìcÁÈ)h²Ê qwl‡P)~ru¯èÖC´Ã\Ë1<‘I ÏY€®ÝºnøÔ‰þÀHÈu6_è™ÛûfÍÞ×FƒÉü@³?ºÁ+ÖW=™kã.¨ùù¬f„ôS#‚XžðÖ§>€ÏÜBÄpwÑ;zî²®{oŒÛãhŸÙåÒÝS}ž"±~ì]^ßÃŽD_ISâÑÜáÅå;ê<½:¥Æ¡Ô¨û,‚£9úâ%“眤qÂ9Oƒ~“À !”»¯0 ?j€{Áè Á÷t®V…™±7üĨ“&Ž/ÝëA°@?¯L®m¥….HFáAŒ"Ìmî°3¨ ŠÂ.)}áÁë–З¹w†‰cî¼~[@è©›’ú“‚úhÖϱÏÒÝG…ß }_:,&ûþÏ}4î‡}„‡1ó‚è%¾¡Âž|«ê㼯áPŒ¤"è#×Ê墼¨÷Õ"XNy,±Õ•k>­®KĪ6«\i^*¢ÀðDЂÑÖ¶6©oì§‹¼¹Õàeq&«™þ§šµ×”ÃK[½FÙH@õÖzüZéû¹©_RUÄLDO4m®/¶B€Û å=|u"{kB î¸5áùF.–ù3ÕàÓꎓ€Ä(h±{ç¼oß¾ÅZo‡Ë-µðFC-ºî`ë¸;¬¦\–«¼¬©Ó¹©òÔ£a#æ{›ú`pqKÞ­½îf@¦IÚð ôáp7 _’—­®Â<ðãt'ÌêöÓ¸={èÑäbÀ±Ÿ0sõˆ â{&T.Æêîê‡Üd—= ìG†} è»+¢·ÕÇÔõØ4H2µ§ôø7=Äÿr§€b¤Ò™™@I^–ùñŽº)ük.k‡ª,+`7š%ú^›z*ö—X ’ °2î¡.´I½šÛz§¾´QÛÚ: 6”ÄoØ*okU=¢Û·•ÉÊ…rßVñÛwÚ=ئ‹pºÖ¬ÙÄø9P6½Hå¥jã`2Û¥š•Gîu™Í§w4þL7ó·vÊ3ú1~9¿Ã3w¼£ö`Sñn‘> stream xÚåXKÛ6¾ûW›±˜Ë‡DI‡R$´hQ´Ùž’hI¶ÕÈ’«Gv÷ßw†Ci¥µÖÙE‹¶ðCŠ?~ó ¹·ó¸÷vñíõâòJ /f±–Ú»Þz‚s¦|í…B0­bï:õÞ/óòçªËÊ$cõÁ°®ÌW¯¿¿¼ ÂÑRkÆ1(¶‹„â¤w{]^)åE0[û8{­ÂÈN_+”’={ölµ8_îMKÂgStYƒš@ËZpÎ*˜B?ð€×¶vÇ7׋ߦsO ÒÂǽ½ä°xÿ‘{)|LÅ‘wc§<Îú äÂ{·øy°üakQƒÃŒP»´/¼ ïÏ’—Ûâ³:˜h,ŽDÞU𫵠øòunV‚/weÕ´yÒÐඪIx¾’ÁÒéNC?m~Ë’¶yŠ òY$Õ×@aè¢~È"ß]Éë¬IêüØæU99ìý¡'Œ‘·–œ Æ.¿êÊ×â!Cµl+j“êpìÚŒ:ŸñÀ¦Î«Îͪº¶È³š:¦LI(Ûæ¦ ¡¦íÒ;ÓÜŒð„¤PSÜÕ–Ú›}žì{}iž˜ÞˆvŸ ŒÀH}â'0ÏI‘¯—p™Y›—;7ZºÏ½E0éŽC†š6·¶À@’FönÑÁQ¾ÁnÒ­³|¸Ÿæ¾µYz ž‘§¾|Îk™p/ÇœÞöñ:bR˜¦!çŸx€, ¢ž¾Ž‘3aÂò)ÙÏd«µv_­D°ì9Mg!©j°þXö;J«¤;À­˱ÁN !0X‹Ÿg ’@äÁó/Hw“eŽÈðc‘Wï¼^üåíÃ(àG̃û?pû³`uc?[«X2Î5p Š&þÚ˜]6ëa§7E¥÷¸°·eß)jY»¯R’--PÝy8ÉRƒp@îùÌ-øã 6IM `Ðñ9EkøÌ—bÊÆcô_ë/Èä4ßåö±s¬«ÝÆÔ/¯^ýðîcŒõù).‹Å? €=ŽK³0Ôçq c¦d4ÅåXçe‹˜ÜNðxyûÍؽ*‹»/#þdIªêSÃÒ¼iÍ cž@’±²9év“µ¦ùŸ‚ g È1 íÝ1{yEBUšâ∇1Ãê(<¿ªmÅfUs6L!> stream xÚµkÛ6òûþ )¢jU$õ< Ò¦{¸zÀ]ö[R ´Eۼ豕än÷~ýÍpH‰’åMvƒ"HÌçÌpÞ3J´9n¢Íßo~º¿ùá.É6EX¤<ÝÜ6,ŠB§›Œ±0Åæ¾Ü|XœßþvÿÏîRæ1#– sH7£HœU³WaWËðÜh¼tY\€(õnoÝõ-Ï`Qwjºêg=3JóÍ–åašÓÍû“ºÝò˜ƒêj}ÚË^½¡ñNUí-O‚GœŠ S‡[¨®§éÐÒ)I?²ôþ\ÉŽæÝt•‡®µð‡²”`hrîUIPu³8W·¥ªh¼âà›£›&ÑãIïO4Õ†ðê-ˆ¡Hzâðô ÷²ªžàPýSÓ6·, žêöÜÓÚ£N4úÔçòé fá, 㿌L…ð™ ²ÈÅ$ÒCeJ'gì³PpîNÎÍ~ÐmC¸HäÞ ,UÄÚÊŠ^K•’·< þÀ‡¨mÛÀßó@[¥–ǦíA½»ÞÑ@ÉýÉ¡êÕßfê²Ù‹ó+ #aŸû‘ód~ìÃ6‰âýt¦ñ;Ȧ”]©ÿg$ +êuy–Õ÷sÈÒ4P<ãÝÝÝ?îߤ?ðõ¸ú:P?·íç7·IôŽEHìþ•Ðö-¾žHê4±ϕ Ë×EýŒ\%èkcÇí~Ñ—Qgiõ¤@2íQ5JO·iüuD²£øZ7§p2õñ/¥þÝÝO¿Üß"x»Ô!DÛO¾e"ŒzOn±ÈŒ1µ ä8ËU©Z5CO{æ‰ðKO„í“h¥–C§ÿ¤1ÅâØ£ÒÇ“‚Äãï,àÌQ#µÄq»k¼­§Ýõª£#¸g¸uP{KG¶¸ê2€÷mmNfqîÈÁÀaEç}aÍz_@ Žt@vж%D I“‡Ž¬D—†8s;‰ÈoìÕÃ@wŽ@§;ZëÁßã,è æÂÑQŽ–jdðÊ'.sai„ãqÐËÚ. 00/µ0"’Û 0î¶ë‘(^;4·û¨«ŠF¥¶üïÇãÉÈnaAnöÕXt5àÜ!ÇœÁ”6Γ…Ù°ñ2_lž€'”²VÂ|Ó¡ñÐð?˜4Ìâ²0K ¶: ’`ËDÅt¢€hâ.XCãýRV\FT°=ÏßGžŒiKõ= Óö}° ›b:EJ˜žÆLîÖ’Â;m9NЬTƬ4zêÆ^&•ˆPe@”=‹úêù½N•µO¤h²´kæ…""óZ¸½ÁåÌÏ ³4é”C¬äà¦Äx`ð"¹dst¹ƒ< ªóõÕlÌÖ)`1 ã"ÿ ü: 6ÉóݾsÆÝÛäÍ©à à’:0: Õi>†jšíeCƒ]Ð ¼GRƒiî–XøUžd%›v§W!îÔ𨔅:^Bmëì˜RT¿“žø¢O‰þ™w2VêÒƒ)É\g.Š>iU•–”z¤\Ü^»#¾Ž.(2ûdÏV¶yq1çɾ¥h‰¹×˜?_-­·"ã×Ê )¦­ð˜¡Ãæ•ó*wçU„YÂĵ§áàp¹·•˲EqÉsÁ3pÔc þ‰˜Ne›4,2‘ã¡$Œ¡@îXç+¢ÉC–±ÍÖ;åìq7DÒh7Âs²9o§ÊWø÷4á¤ßàÞ> D°§m°s¿ ¼°þˆÿÈ'»¦~?KëõM%¿Ñ²?G¶SjÕ{ñÂêÌ6Í!@äóñ^׺’]e«E Ê&ú"ºZ¼â•¤"š¯85ªåRÃùIC¬ˆÖŠW9äRí"bÊ ˜¯d d+ …«›Ù¼Âf¶Âv•Z½“–£lµÂ¾ —ÆÞSIsç,nëŒóuŽ:Ç®èœHyX0þB¥c¤t¤÷)dÆq<×û MôŠU‹;M)O]K1)Ít­9@ëPy`Çs*>Ò©øðL,BbS„ÀÄ+BÒY{EHM”MiE.<éŒW,_U d"Œ’⪑—å} ªŸ¸àsù½]¬¥-ow®äþA.Ò¹dÓ9·ÿi쮣üÞX'e;Sr»[®3ÞáJ÷j¥ëœÝЗ½Ô•ŽÒµ6%·9ä®o«ó`gc1 ãYæÁ /übŸåÁÑ7Gå3rÊg’ÌC>9}a…û•'H’Má,²¡j¦QÈ 2Ì!Ùæ1¿Üßü~ÃLç€m„Àò>ÞpÁC^d›}}óá·hSÂ&hr(À£9ZoâÈÚ|µyóoú 2waâPþxù<ñD{­¹ 0ÏÆ3ŸW1H´¤0_["ïñsB ´N^ÎßšÉx„ K*"ìu«~“‡ ÏgÐ áSæ×;%°ZÒœëÓ Ê•¹Ÿ¨qP Æ‹/%jS)¹žMÄ邯 ‹bòÖ’FÂ<3C§ï}È!݉â¯kö’±ØåßL±]†#Óq“´f¯îOzÛCâaÊ}&L{ Ó¶ÃGßfà” s—<à Ä”>/%zQ|씩I²¤Ó”'ߎéCòܧŒWq5Aý síqXälѼeºðyPûíóí"°Ÿaà7¦„k~xÆY4¶×¨›¦>˜¸ŒÜ€rlÀE“(3Ó¥ë-†b÷¹#<ĵì>cñAˆ},ÄeÕ €êtÿ š" þÕš0œå¶8ç™ë'ÂÒþÔö¦_ˆãó°µFÚÓ1û1$7ŠÖcïÝ@±ùX†TîôÐÉÎ$¦ãûóítð¾ú˜l ê²ùšYyðßsy¬më}ùŠþÔž«òzæ²"û©=‰ÜŠ13”µnf™¡í+ŽÿEaî¶çß“ç_%ÆÛ s5,¼»û…üáÿ뤖 endstream endobj 2141 0 obj << /Type /ObjStm /N 100 /First 984 /Length 2004 /Filter /FlateDecode >> stream xÚíZQs¹ ~ׯàãÝC¹$’`Çs3¹dÒÞô:ÍÄéÌ]3~PM잢õHrs÷ïûÒ*V,Eke»‡>Xî‚€À®ƒ'6ÎÙø¬C¹(A&R‚MJI‰hıÉ®<Ùx'¢”Bå*Æ“Èk:ãcÐ ÑŸR• §d¥’ñ…U@Ä*¥®ñã((…å]ÖguZ]%yüT%#¦abfu^p p (ª$¥°ZçAAVõEstTgDP¢6ƒ£×ýÀ#ˆ®s“‰ìüÔQ}@‰‰)×¹ÅDñEg8‹:!b’«r±½äÙWg‚RûÀ¤&ªö 4â0‘ÀßPÁ¤–Xa)Q)ðI¨|X¯äú6™ì¼JƒK²Kõ™˜ì]å+ bLVC@›LÄçdFˆE„Ø='ÖðÁÄTÔxˆ²œ5Ôvœ³¨ñ”_‚ %ðI5b-— 3°Ï\’n–§þ ˆqÕ(X]|u3_ûÂvUøBuŽ—PªT6ÂzA-IC/àxIÊarv6ižwó•9;3Ís0†$g^b€@b„Êz€CÈXv=€fÞ 2Öôý©û)êØcÃ¥öî_À!Pv3Ф!uðÝw“æÅ¢»™Ï;¬özÚTŸšÚ6÷Dì‰Ô¹'¤'ʆˆ®'|O¬WþdCUô¤9¿ý÷ªŽ¼žÿ2i¾ïoÚEUÛ]4m~hž¾öu ;½„BÌ6©3R¶z–ƒ°JÎb½Ó]>©~=7Í_ºWiž™o^¾Û›Åõ|eßuË+»x?ýV ?Š>ìô‘­> &”cú̺GQÇC -SÅÙ‚SËQlA"@²BrXéb:›µ³ñ4AØ„ÌE0D©‰ªXÒ”_¬Täýô—öÅù?žþírv»\µ‹ñBN°šë¶ ‚&rT#˜æÇéÍÍì·½”½ L¬U‰ž¬ƒ—ŽçröyMö‰Ð0~+š8XÍ„¸EšGº+V¡A…”Tôf7u3Í“³³*¡yr¹ºîæÍyóÏ—?èß7W«ÕÍòÏMóáÃû¾]Mßv‹?Ý,ºÿ@Šíï¾-ŽÑ ’%¤S€1«Ö;ÐT8Uöv~=b<#ñh1Ü*_9T˜!м¿1ŒbF±åFÍe7íªÑ Ç@Ÿlá[E‹ÞË™*r=;»mç—í>=Ãþn×:ùÓÏÿº°„hÍšU°æ·³ÙÅAfï\厹w /Ã|Œb<ŒpÖâo wˆä;TkŸ‚uá½?â”]hr´ì@“ƒdÍ$`ÁD_†@²¿@R9lÑÅXu¹ m¨¬0fBÞ$Õc[ÒáB¸ZLçË·÷b2»Ää]æÞ»p p‚È͉ld~n$‘ÁÜ8å0ã0fJ5?äFûbs(‡þ`~'®wPúÉA.{`¶|ÌÎ=`Î=`–0K˜‹ó [í # OëVôƒ¿^UÄ¡‚PÁÑ( th)E‹¶þr¿º_#tV/N¹"iŸ 8æÐ?Sp6ºxP#(±èºÕ 0Ž`ÅÛ±-ž·•ÁÊW@aÇ5ì«;@2Q½é²¬BŽlqò Ö=ýɨw›Å.mÙ6)£±áü¼V½Òƒ¦A‘w—ùxäíåVÜÃ@n­Ù%”GáÖ¦3î-Ú_Ÿ%) µ ¡€•<”=®ÕpþƒàéÞiÓ{ÞA§ gëÓÓ¦·ÏQèåó†žØÀ½yóv.Hj XŠ~apµ| Y°RÒç›äÿŽ æQÉY¶·`žPv…‡[°¾KÞÜ‚Õ&9”ßñl«Ðæì˜Fx Ö«Òƒ £ÆÙs ¦ç^³ÿà¾ÃüÐ~8°—›b´ä†r¬™Ælï臘“sNàû9'„ÓsŽïKp=ñ¹vfø…eÄÙ Q¶–QŸ»ô‡½°$¤Býé#ô-h*¨ØX,W·o`ÖÑs!BwóQ!mÒõ[ð1…>´×ï®VË=úÔô€Ãv—y{K‡¾Ï‡¡ÌÈ ) ]š€½Ã>(¶ŸÛ'›‰ ÌGÀ tÿRB?‚ž|fiTTΜ¬~…Ž0¯~ëem!Q„£G·-2ðbxOÄÑzÃæ-æFwíSzî˜Ù&‘ÿs-n¤Uqq ·v`ÂÜÑŇÂÀR½sìwÂ9`ý}7°œž6Ÿô/ƪ98;zë^¿Šý—[Òú+½û\p·îéÒÃæÿ †å€»Ì»ôÿ¼Ûå endstream endobj 2263 0 obj << /Length 2627 /Filter /FlateDecode >> stream xÚY[sÛ¸~ϯÐìCJÎD0Aðšv:uœ¸É6ÉvlÏf:Ý>P$$"¡ IEu}ÏÁo2íxwô@ààvð;ä­v+oõ÷oî^\\G|•²4ò£ÕÝvÅ=‰ ZÅœ³H¤«»bõoGÕ¿yž8Ê:—¬ÙgìX+÷?w?_\‡ñd©H#§)llñ ÅI/<{ÌŽ&³×ýôµQТ_ÝÔw²ê(gK'[LäÉjÍ%´ö²v×~è9zóUæmoé›WYÛÏBL¶ˆÆCÞ³ü“ª·Uß®¥,à _ÑÞ§Rå%5UKߌ>•j-¹®»LÕªÞQ¿+%5¶ºª´ë‡ÎiËõþ kYwíë3g¬¯y Xøñ” /è%µ=}ʱ4ñ{þ3,YÉ=‡ˆ⣈%L$É€^[B+ô™;õ¤º’¶¦ËÃYÒå¡óßN6uVU÷4ØvY]dM¡þ' ¢4²UÅ1«ÚW´êíõƒ‹ EA ÎÒ0¤c®?ÜݺkEÎw„u Š4p®´þö'7„3hB¡ð°|Ï5òCË…#4¯É:¥iRèT2s}fÁT¹9­õ±£Ëó©!ù‘`aö·ÿÍÍŠW „X$!€8‹¸åÞ_€1aœ °—q–l;µÏ:dÜáÇ1ã©Å!¢9Ë|€1ðz=¨Ðæk)Az'k©º{š'Ø%Th©œ„;efGf(#á$Õ®ìú³o^½¹´T]¨<ëtÓ›’åhfF”g­œ[×àŽ:•UìI± ¿æ!Üz³b»i§‘À¡£‘<Ç­$,Œƒç ZïÜH¦âíõ›wwn*œË["Œˆ?}wß‹YÑÝ}Úž1öü›·zoYÈŠB €•ΰh/ÎX™à=ñIwæ&B !«…(°0K=4ªîŒ­õ¤\W_€”ƒÚøbpÕfÕœL|1^a©t79„NàÇ’UƒhPóæŽ„©ÁŒqŸ§„{§Ð²³¸ /pîÜT†ÎÞjÐƒŽ˜"qŒp²þKcEÖeDØ6Ù^¢Y‰Ø{¶¦ï‡Œ‹tnUy¯´ÇÞtð¨gß8ÀWÎZ†<0süSwú`p÷Ûc£Î0+¤YìçÂgžzâG°Æz¬Ïºû#aÿãcްSÙ®ÖÆm!AX¥ƒ‘<«òc•‘JÀÀæžè×âwc ØX%œ½.dµäçCa`¯ýmA'!¿ñ‡ˆ ž­#qÞʃHg *YRB@*k\ž8;¹p6mçqôÔÙkÖ±˜eÜ3„6…HE³Ï€t2ûær°pêeôÙÊž¡0¶o§kZ¨Õª--µ´ë{˜Ã½AÓïNÀiKÝtù±ßtkÂÁt¹AWtô…àÖvKñÄú,aóø/­%ÞŠúèHW 3—<˜˜µÎÈJÞ4ef2=ÜVY[L ª_¿Íä8ëá"'?6 @f2èÖÚÎUû9RÐÂ…»`˜&L‚­F'l’§!ÃÜö1R©y"Éc) Í-ÅD݉@sž¸ZûÆ‚ 쇬Ïä?àÎ~j‡1¤ïA·­ÚT¶g4 ¾F –TÚ±^Ð̶É  4‰PÏÜÖ.Z°RåL8ábùÂð‚½•–´›M> µmôþŒ-t‹­ìŒ1 Pl“Ÿý¤*Ë-9vë©Eȼ”Ÿç?K¡Î‹bØçËf¹Ï‚pàv¦ØS]è(M³YëC‹Òp&¬+Ù`yScÌ·­Å–êÐi#»“”vœî‡ê Íõ ¤Èq0®FõÆÈ?$ÿ@3|Ãw^Ø5¦â`½d+cÅ B¬¨‹'½‘U[™mïÝ(ÄÒMıó$KÛ{IÓ¿`¸†éyOçiâýÙ] d,!hÖl²j7’Üô¸Ä'¶qR­ñËJ×;Ô^¤•º²Ü¢´®´—]¶Î€{@Ñ:´ãHÁEÊî7ctoúT­oè1‘ž Ô®¾³~Ê ïIö¸“¶ænÇ , öª–ÅrOæ!üÒŤ¼jƒ˜·ßÑ ¦ºÚî\Ô[ÿêFù˼ì6Ù±¿ž²`@)d¼cû—Ó÷ÍßMz}h4¾0ÝìþºhW G7ðЏg±É–0i²Í…¤ ß!;-»îо¾¸8N¬?Ù]ÓãŸL#CØŽ§cñh}ìÃ7Hñ¡*œ áFnIñ½¦ýø?´S‡0ú^2K{ïzòKú̬ 7¬Ÿ8Ê-kr¹(œ¥Ò!ÐCrs#ÝÀsv ¡YBàÐõ¹0a¼ÍC™¦P8$³œæRØã_.’n¾½¦Á/x”š@Ð{Î$b‰-'× áì†o¡˜ù$ßÎð"€r|¤º›1ø>C˜<Òõkß²è-(©bœ!õQ×…®-2WevØ÷ÕM¸¤¨~g1ïÁu/%ïe±£Ç?ëæÐc–ЏùÂù¥ú¦jKú`'Z°ÂGÁãÑ`À·ý»…)]a=Xc©‹– 8ITëk[Õ."%‘?+ë¸skp€Õo•Ñ”¶¼^]¾¦Ë<+ä¼·Õ´GÌQú'Īv ¦sâ{…1(uJ}ÃCœ8|[#ZG0rò:æ”Çb(šÜ ó\…šC7ô¡G0Á¹_dÐAê!Ë¡*‡¸Ç¡ àPŠ,ñãÃàÏh^úؘ7ÜQo …~Þ …¹˜Ð6ô¶;eVs*ª˜3/}ægîXDKnÁ¼:Ö¢µMþ›…I‚Kà3îù瞾Рúän<‰D|ñÄúÝmTžXªË¸ … Ÿ!sF£ÌEheîs+ó ¨O” •m)óo$|˜k$ _£ »^ÇíºvøÊnýžÑ&·y¹W…=ûÎ…´ÍN¸íÔ×ZÖvä%Íþ`oØRó¥TPׯyJžî]Ñ2ú¡AÔKøàÞƒÙ˜| ×b~ßš*fÏcMŒGè<`­ÏS”«;$¾ÑyF[ßd6þÆó믉xusEÑRÏÓuÔF_<¥`¢iœpÁCÎÓ`Y#hVˆ/½?Ô?ê½€í Ã„0uUÊcmÂK ù!#"M\´Ý3büåØUʤTQŸ¨GáY<1ÏåÓœfØ:=œËdÉ9œ©„0IÆ£ã´/ž·÷5VÏý+ï'ë©—DìO_Ù~hþ|aÙƒÉÔú¹zÂýpIÞa̼ zJÜPÂ^|mÚ=ã|1k†¬-Á‚¯ôçOù]bϘ\[v§Ҵݱõ“·ÃcA=ÜòÁßO@;ûûÉ”Gò­g3 ™äñƒk°<Ūˆ™x(þÄd‹ã+þcB[²Eyw÷âÿ^š¸ endstream endobj 2274 0 obj << /Length 1262 /Filter /FlateDecode >> stream xÚÅWKoã6¾ûWIØhÄHõêC¶/¶Ðvãž6{ %ÚVW–TQÎÚ=ô·w(’zENb Å^Ì¡43œùôÍ mÃ2>LÞ-'7 ×7BzØ3–kö,äÏðmyNh,cãóÔv­Ù—å/7 Ïî¨:¡…l€£Z)¥«jKy×^GßÔ&öá¡#ÍîtW¤Œ÷,O­7 Ç10/"ØÀ0myòuyy93]ËšF4ö)­˜Ü¦ùF e¿*‰VIÎ¥L³X™åeÉx‘gq’) .¢kvO´LhÉh!"Ó¶Pè*”bZI­ŸL¹2.âx´\kÇ(ß—l~ñéÓŵ:4™WEÎÕn»ŒmÔ.JæQû.†]ûN¡søA«h®m ¶QxôqX'*¤]r`±ÉÖkU*ë]³TŠß’j«¢Zñ<Ý7¸HÕ>f˜Šý*M"`&-•NÇ9@œ—£HÈ}¤Ê0•ä“ÀRËågªÑþ±aÑ«ðDù®h’­¶LãM7YΫ$ >ÉÖýàáAºgÀ ‘¤Ö=vhØÆDS¤y5剂çÑ(„²8œž—æÏyþU³owJÉ·‘ïØº–¯¤F¯Ø"ASì\CÅ«ºòïïî–·Ýà¯äÙêïÖÉÍô=„m·Ÿar¤OxÛx½bå¯hÁÙòÔÞän9ùk"²· »iÄs`uh7ùüÅ2bx ‘Æ·Zugè’>q@N‡Éï'ûVÝgÍNŸ…¸> stream xÚíZK㸾ϯ0úsHê ‡ÙÌN0Á&¦û¶ Z¢madÉ‘äééýõ©b‘zYv»C€ èƒÈÅ"ë«·›/v ¾øÓ»ŸžÞ}øŠEÂ’P†‹§íBpÎKxäVÁ&¢ â„Iž‹¼˜¾Jó;¤/½ÄˆQzq/}$vÒ7+ÌaV%ˆDfºL5}”—­®¿¯d°tÛÕz%‚å.G,pãݧY‰å¾Â¯žíª¼ìY éÀñDatá³çUIU46–¿¢GZUMÃRô+ØEã `#ðŽw’éà³/ðp… ޵Îò´%``>(#èpSì¹Ñ­ÃÍlÒs™1 ÿuÜvužÝãô2;|öN/˜N= ZêVB¦äs¸J–él¼#y?XÇ£Nú8I ³ÒŸXà]ü\°8ŽÇâ/ôN—÷àsaÄ…ÏœtàDÑ£ ³@Nô…ÁçÒ  Ã}¼q@0ਃ'CfLgÁYÜeê $8ÚhK¡Ç7<‘¹îË3«:£­]?ÐÖÐ)Z¸RÆŒ‡þØA3þ/Ÿkò©UÙlo—Quă “ x‡z%âåÎȈ(h‰øì,Ñ,£GáJ:AUìeƒêÔ¦ÕA74C£ÔlÇÞϸKÈ7;iцÐ?Ž3ÞÇ£¿7®mí¸y Ç!¥qÚ`ÜÑe¨¿’>œ ràÞÀY}±Šs*l0SÕÙ{`lêd1P8¬Ìwήl‘ã«ê]s¼ææxí)J­3Wpl^&æ2ÖÓÁ5ÝÍ3ˆ]3øÿ @1ùT%¯:Ìë²ð|É|o¢ìÇt»(0.¶y¹ƒ³ûp™—æB±øBñ ˆÐK²HßU¤8åEìy´üé…Þ‚*"ïË¥ICàMuÔ%}šæuZh¢ì}‡½Ù £äL r1ùŽÁM§­sÎÙÔúDg„C=¾%ä é1îuÙï±ÊQCnwhÝil%€C£z¯ù0Ü'™äYÇ&ÿMߥã(4hw§4 +²HGo†æÖvœ ¡oènÃuCe€ÆD#X_(í­wð“Þ¾C 9†0Tõq˜¬fïÑ&50m.¿©nr–(ûÉ…nÄôíf'–8SÌ·ãÛ# 4:ÚÙ–,ªÐå®ÝMŽÍƒ³µ¿;vÜ _ô§œ9ß•‰3"@Š^Îù¸ ÅíZ-ÊN]\Ä<¸U¹e‚zBj²–qÈÂi®i½ì Øt©Ì??Qjð»·‡(€î É2Ý«Z¥-™v¼lÚši`û9Á °ÄVù¨Ü@Z¯k¼ŒÝÌb±U¦¤_OŽ/í…NUãÎÞ®ªA°|»Znv÷99’L;ùD¶eyC—ãº$0بô6±V1YÙÀÐÈ>´‘$rGÃÀD/²¼©0^¯„§r²f›#”aŸ%¼‚ ¯»ý_?Î躀t©Xky”­òƩŠ.7ƒ¤é^°l_ êÓ0šéíË](޲_p˜Õ.Q$±Õñalˆæ*@-òR[ÒËÑÒ(h We¹ÚYV1¶-·º¶}ÍÑõÄd3ØBº^w ØáêÍ2, ¸¤ìª¼ÌòTµÆÅ ×ê¦Í!3ÕvéæÕ¸W&¸Äaÿ):(t¦öãj—Ll.“Áðˆ 6Í“=i‚Q©q¸´Ñ˜žâ¨Ýçn4«–ÔaÊ¥èmšªÈ³‡÷™jö:{0~ç\Y“>ìÜ7f¾ÈdÜ«T¦`ZxÎT5d~(Æ=l U~{˜ûñ"A85Žæt„ðÝ4#óDoèŸAR> stream xÚÅYKsã6¾ûWè(UY|ç±µNU’ÍrHy³‡I IÜ¡-AíùõÛnð!Ó.sØr• 4è¾n4 `uX«Ÿo~¸¿ùðSœ®r‘'*YÝïW2D%«TJ‘„ùê¾Z}\ËXmþ¼ÿ營9a ó@È$‚…SSìvÙn^ýjém˜*7a«R †4­«í§ÍV%Ùº+úÚØ[è¤áº?j¢6æ@ SU–ZGÝR«h‹æéKÝ2ËA?|äõœÉâj\¼èJ[·Ü±ÿ½·;czjõ]ÑÚ½éNº"¹3[4LÜ‚“ò8&CΦ-È ¯#¶&:º®ù H$¶f"Ýó¶ªz¿Qñz¯;Ý–í ;Ë1¯¨S·e]!›ëµ]RœÝ™Ë™;¡;Y»¸¶Ô’d¯#m4Ìž¾ÃÈlEÅ*¹‘•˜ï©[cÑý£­Iª†I<î{˜Ç°tEãä0hØ\û=Ày´È1Û L½Ië¢ê8Â[ ­éV½^yAí9¼”š¹H)ït%¯.Èé÷GM¡†Ó(Nc¤>2I±Í"2T"È3ÏVt™­—“n{^-5v¬ÃÅz5{Ã_¯?wÚ²æŸQÛ¢¹0è¶*H!ú36?!™¸»ZÄí‚J‰$‹çF|¯Ï †ÄJ„Á‰œnq0Ó »…Ð |BÃás:±=†1vEù‰yxÑ!Ä®ø¿%ŠÕ¼TÑXÃÙþD¶ê0)Ró·ŸoV'*β&yE òZ‰<ËÁi‰PYDöÝ!ðâ|]i[võެ/m¥;!|#‹)Ý~b´D‡Ô¯(x¨\¹Ýcƒä¢)_Ëöa(¢d€àþÒ–¨b–®¿èÎ6¥n6Ç¡ .ؤž¹ÀÏ»FŸ<’T gS¼˜ÅÒxš]°Ø¥4YŸ Ø"$uÄ`.}iNBY²¾«ªµ {*š†(%ìm_¸ˆ€‡ü:Äà0éï–Ý©÷!™ÍB-4'Þ|žÊhÂ’Š0 =ÃA ž¯"áį֘y=©„ô8•«­7й0ŒC‘GW.§œŒËÂMs!Ì`Ï™§`š[(¼#àÂ(Ê×?<µÒûì_šþ–Ï2JýÉ€ž_TæÜs{à±ÅI“ “î¦â™Xl!7¸UÓ<ʉ„…!åwc¿N)îpC2AZèíž3Í'SéF ò&1ˆã >±2p­Z¸£9"Ïs[.…R¹ß¨³­¿è…ÝÄ:)b®¶$²5,ÊžuY£êºÂŒÁ¹€ 1uÛsë[šÄõFŽPÇßE #u\¤v­s0’2J¦sÕí& ýCšÔ;  …1Tz^&@ïLgùL—:Ò#AÎBTåœrwÀA[ù´ãõ–Ι“éxéªY„íë×0Vx¦Ïµ½@p?×t²9Õ‹•EËçaŽ–¹/© sczw+  ŠO„£m6y+°‰ÉFe“@¢sÅtîswâ*£;¡GîœÎÏÆùƒ#n—âØj ¯À¹ÈÅH±·‚xrÀ Q\*|ÞçúÁ(Dò¹!?@J®.¸ZT£.´BiºNÛ³i]±¾$ãAׇcoG*{Z¬eæÒ cR8¬u©kNêÑí"| þj(Óš­æêªtbÒ!öáÖ"×ÿ08ø Ç¥:4úvvÃ6CÓosÊGÚà©©Y7kèÛ‹Þ·˜Ñ?°oË× Šj†µj»c (Šâ!{Àvœ>Ê?—ªÀLÈhÈET#{b£áÂÚ†að*H ÎuP‹:D"KÀëq”QCq‚pŸ+QîqKt<ì§»Žq†Í«¤¥¢@¤pòÎÜêÀO ) ȱøM¡Tl®¨šCÝcQö˜ßñ%Yo‰È6Ëi(¢…ÆÏq¡˜H_Ãs¨ÛB5wèŸP$¤ƒ{¡Iá âä*§ÁвáàœP&oˆQp¢Êf1Š‹R•  w$y°ǽ¨˜·‰%(‡%oãŽQAA}ç§ÐÇ9n!i=;9p¦ºÎrÈ0v*žˆ¶cfΞL¦"Ìãx}×ôºkg€nüYÆŠÀ‰é®¾N°@Daô¶Ü—ª×Á)E‡_NTŒÂz'’œHà›/¥â³Cä˵0Ÿ ɈXübqœ¶HóíˆÆt>]û Ÿn¥%ÛUˆ$xKþ΄DgjøDqŒÏA‰u”“!̲D^…™m¶ÚHæÚŒ@› …åü© ÔI´fc´ÂÅÏiîy#8‡y(HëûMu…¦°Þ¦®hâ ’q?Öpg¡t ,ˆØ…Üìž øå` Éî‰&Ÿm@øÒšNó£»ßP^„¦náUj/âÛMÝBeØðS†Ïb„~~HàŸXå{glãÑ9 JÖ ½¢qžø".æ€_µàîäEc…O=—Ê#ïHœE•u¹œ-qLîW³ ÅÎò«YÄ÷‰ˆ®óÐ?-mÃN÷Ú݇;+Þ‚%€JJÐÓŒÛÚ{ÏVöèp \ì÷üZµtñ7*¤ûzœ'Œu'ñí ë‡Ìµ>tMõþ>@]~Ù/`çÙ é÷÷¿ýëÇ7€GRø´Øb# .ŸÐ!É8`E…ÊàXç*“ƒ»Æ`býlîv@¤ ãGOä$êŽß=/*)b9¤ó«Žå%Ÿj!^Âã«ÜÛoãs!ktºƒÍî)pb3ö§;>]àÊfz8ÔÀÛO¦N-&’éo'2s?›DpX9=߀Sðuuö÷Â[N†›z¤ü€HB«¢çL°ïèå“FݽÚ'ЂÖ~sõÐw2§„䇑Ç×SH'ÙxÜz=n‹ÇÚz©.Ïn|þH;8Ãå õÖ‡K9‰xMé-k2{Óyz‡êOÿgÕ}lë÷øý*çÛ¯wÙ˜wÈE3‡X°O§iÞ!¼4Í_30ýzoïï‹?%àÒVïÎVו}‡tÛ_ª'Î5¬@{9íô{Ì·M±ûk*Àšw|á²ÿ*ü«éõu˜ -æ-„î/]ëS4?NÕ¶ÞùÂñ ÉõnƒïÄýÑtXmгÀ;Òì¿]ÑØìüé‘Ñþû&µtyìwÅÅŸ*(fé•8áèÈï>ïþ~Ò}¥ÜöÜ™ÿ@Í LwøÛÂ'U$â0œx7HÝ/<øC7ŸÿЃ¿7I?ïØ÷gû͇ÂK†›šûáË‹ 2†åd>þ¨Á¿k=óä÷7ÿE:˜ endstream endobj 2311 0 obj << /Length 1764 /Filter /FlateDecode >> stream xÚåX_oÛ6÷§R`‘ˆ&©ÿÃü­I·¬A¶$ÝÚ£%ÚV'‰žD%v?ýŽ"¥H™’¦°—=$"Ç»ãÝwGckcaëÍìûÛÙâ< VŒâ€ÖíÚ"#× ¬¸±u›Zï휳9ÅöÝœø6'¢‘ó·‹s?ltã…q bÛ-ÄwÓ MÀ ¸ŽÝ¡!]½éš¯y5'‘Í˄ףý9C­$²¡Ø%ZÂEV|p}RòÏ'sÇ¥¾}>°`Œcû⛆å9«æ¶[ŠgŸuKßhÖKVIä—Î¥¨x)Ìê…’D°}i$~À>&q—ɋbûTsl*¶Ûf Ë5cšÕ»œôZSóu“ëñzNl1wˆ]iÆ‚K樓ÃiˆA nkOÆJ–ê¬FÚ÷?ô}ˆ¼°wýY'óm±ã¬É1¶/æ`»hªR™£b­¿¿4«@š§Y’•|Âw!¤‚€<ÿAx žBÏB€ví”z `ó$B`ð B— Œ± WÄXàPdNxd6:ÂoóÛO¶rÅÞe.äï "*\a¤­Æ›°òƒ(Ó&‘Y¹Q,¡¾¿:¢ÁÚ]*¢jéZî3¸eí‚Üò‡MkQiêŽ%² ŸŽ4A^uŽ]k%ç!ÜšoîÉdVKƒ)ðùXË{È‚ÞɨCRÁñ‹£î2â6·bîbÞ^zÆDÀ= ·š>wç£À ŸêÝa7@v'ìsˆO‘çWE†úžñçZÿi^‹Éƒá?F‘U©©^«Ê32±¯èJO±}N Qô’£gÇ¥xö@ É$H²1ªôå*)AéÜäEñœN€TânG{k¨Ù름[(ÊZv·äS©‡…Hyn–ûm÷P£·š6ªzu— Yëaµ´½[$„ô?º[+©´bªPÜ—hŽÑ‰g{Vìò'6>à8À[x=ü ur¯^½š;>ÆÃ¤JŠ"©j¯¾¹ØBšš¥ r‚0ã¦n³˜²nµLEáðõš'Òpµnì >0MbʤæøÎÑ_  ”Y"(ÆñÔ–Š×ã-•% Îê¦âË£«ë£cQ¶ÜK3.I¶,»I I·@a¡›€z¶„*ã<¥Ü…18tìÈ”¯Y“›3)$è‘NßO¸S”úÛfv5Ø›ƒ©KÑÛgõ”=9[­¸:=6´¹5.|dÜ”=fܱ¼á_kÒ˜X‹Âð'M-E‘}VH)¿døCPn¯ß™Ùn4ÛTY:œç|ÃËe%Ë£ü¨Í\ P<Ö'–õzÉ÷;ÿ +ýñ•-P—e%rMxS‰f§|Ú¡é0±ã¶âL¼”÷ôÁp´-“h™ H•Aßøÿ ¸`“u ó¬X&Ê|Òµú¡ºîól¨&Žv˜ØÿÅÀÍÎngÍH[†HÿÂ¥ðõH`%ÅìýGl¥°ê ¹ý¾e-,r|è©&·nf¿>™›Ûgô¸;£X4ŒáõöÏè»þù«.^»+#£âðL–<ÍZTÛ0èv¾Õª.©Ô;ždj‘§šQ×Áv­S«v _î¦4‹.p`Ô²Iz¨Ü….Éáfs3ɹ ¤>JÞ"¹%3#‹éÌ þ¢^ã] oŠ—7OÿÂÒƒXY¾7×!4*Y.dHÒeHÍrãöýÉV˜œÖ‚¶MO9«k}Œpôk¼žÌe8žz* oË  $IõÞ¿"L ‚ׂ‡> stream xÚÅYKÜ6¾Ï¯h8‡UnZõÜ…' $$‡dl‰Ý­XŽDÍxòë·ŠE=-÷LO°†Èj²XUüøU‘ãnŽwóÍÍ—w7oÞÑ&aIè…›»Ã†».~¸‰8g¡H6wÙæW‡þö?wß½yòÉP &`²Kƒ %·žëÜoyà(^w§Ü¸v¥7ï…˜Ì݉ 0“w^B1¨¸7Ss÷ãëí.p]'-ºV«Æö²ü˜ëÖvt#«öÐwdsì87õq/›·ïß}ÿÓ×VƵ­‹và_´î_П}K¥OuFíCÝôvȶ¥0DÓ0pî³$6 ÿ !3o}–ÄÀ¦”ì¬t½¢J$,.jÚñ a¾+æöÿ¿âX gÆÄ°!s}Nv¼k¶ÜuŽ]©*Ýζù]¸…Šx̘ô|\@g†Ð(„hz}dµÝyëÔûßUªmû@ßÉŽÍV‹8ã~¼Â éªü•õpº–ï³X k½~jkªò´¦i¾µ¯­¡ÍŠF°(š«D¸¬šJ¹è‡²ËÎ,äâ >…>M±y~¸ë³ÎëJd?õTãÁ>€Ú|Û³JóÃ#ud¿f©¼:ös½À‘M.÷…ºl¹µ`f8Áù%v :y¥š~×AÃñ‡Áp#<)’V]¹ïG"¶P–ÁÀ²×w.dªÚ¹ª‡SžžŠÎ ®œÍ((´¬ Ú®Ð¨ÃœöTwEFí½¢oSwU¦2¶Ýù1wnÑ 7tºÊ˜ü›ëz*T ϳËÁ”Lðæ©‰éð éaçáµ’v$}pà§–z¸ ͳ,e„j!ö*ê"Þ)š<œÓ òµäìÅXP„½Å¦Y‹$^w¨= ¶ãÇ+Á<~PÚ\%—%ŽØZe”ø]Sy¤à+¥e^¬×EË*|^Ýb8}â2?˜WÚ»º‚ÿ¶#ëmŽõœç‡É oe©hrOm 4'D:+©·ÜQYñH"„¹ÖtÞ'+RöÁ° ¬N’VwÙ£5B“HRWç¥BNqcçËÇ5ÎÌj£Wî´5&±€;&eBÙ€þ¥œ ¶-ȨSv”gÝ>ÏòI2ʼn•æx%:U¥x€qÂþ‘~Q’Tà˜,GÝ÷yÖQvw­ga't¹Õ$Ïû,ß.Ý:×m›Cus±6ZÉÈcÀÿ¤B[V”ȳý°i5e‹ËÜÒ–-DL &[k y<©Ë¨Æ¢óXÅœ® uèËëNÏWÐ]S1ËþžË°î)pM±Àÿw­q ãc\_y«ìÿg¯=þ˜7wÒÊݼƒ×F•Z+ê ȸn#cʯ‹‚Øeø-­Ë3ÐPý?/¦î è&±ÝIÕûI­žŸfú¶Æ@(Lؾ‘GenãýIãT{}Õ^aQZ7@¨‚lI«c²±6ª¦<_oÄŸ÷@±Å ­úýƒ4lnž¾ÀŒó_5ã¼nL/X>ÍY±¿¦„3èìù`¸]LŽØf@9R^†)¯§ìñzò2[»+líÎç¿ÇΞoã†z*hvŽc{ ZVP« 8ÚÖWÛzþÁ§e罘›d ›z1 …ÕUñ¸ˆêÅ4Õ>]ѯ¹s{…3cØLªá³Ù˜ùÀåvÊ­}³Ý€¢HĦba<ä|Z³Œï­%,æC†Ÿ bO$’€¹IT§Õò#ðY”øW*;}hÿ¬²‰eP$†ŸyŽ_ú*³S®ªMX… µÿò7¹æqzVƒöÉyyïö˜ÏÅ}}•Ê¢ wÍ…n×>†âY:«ëN :º@LK»FáõãÉ'‹ÊØežŸÌ¯'wý«ß°´úÐCºÆ#ʳ¯~¦Ñ?嚎'=(žÔ…§·OvJæpxÇ3*/r/b7`eôÌ\zî¶1„Ê>v£G‹Lc¸?¬{öu4“º'md©^Û»‰2Çs\Ð…?°7sû7ýÙ·@#œeËÐf–¿ƒ0‚ Œ?ÁÚ%åë»›ÿ/šG… endstream endobj 2337 0 obj << /Length 1966 /Filter /FlateDecode >> stream xÚÍX[oã¸~Ÿ_aì ˆ‘Ôu±):;˜éìbg[8A÷¡ÓY¦mÍÈ¢W¤’M}Ïá¡dKѤi }HLR‡çú‹.ö‹pñ§W?ܽº~ŸðEÎòD$‹»Ý‚‡!“Q²H9g‰ÌwÛÅß‚ZK÷KŠëÎ.ÿ~÷Óõû8½¸(ó„¥ylÝÇHô*ô’€:¹ ^õä+‘¡¤K¿h«F·.n_ÊâÙbÅsÆ…×ï׃j–+‘ÇAgªfË(°EjJyq5I˜M¼–¶-³›³F°LÈžLŸl¥›«åJ†‰ãKÜeÝ |Jò+CÏŠÓ©®Ô–­>kä”±ÜRKx’R«ÝRÄÁ§0e¥ÛóizdÍb•ƒÝ)ø â“Ç1éWê¶U椛­³^†"¨«Ú{dYÔt²Ñ]³5l¹Š’$¸CUðÔXQ´[Ú©¶Õ­¡uÑzë¼ëˆ•õt¿u=[0î©—Ac&3Ñûï—73.æ‚åé@â ‰ÕÇÊZåOw­>’ý2Ì ‚ÑØäÙ8 N-¾¥ õÔYæî…p!a÷Hsö !rQ[›ÚŸ˜“*+Œƒcƒ$U1c"%KÓ"eÝðø”Rž]áL cºc/Á~7^½óç½–¦8úU­š½=àZ Ù¶°…çÐVûª)êú‘ö'Òœy² <7ö ªJÏ+ÁQoUMgè k)±`»ëšÒ#è>…qH(…GÕŽçsÇ9‹£ÁNÛ§þ‚%g¢¢]ò,؃¯K2–<$ÓAPgT/º™л€Žs™s…ëÜcûBeðJ&Ï&ÃD‚JU]ÓjãNrÈŽ¢-±p …¡'´T×°2´¢P9ÂÖ9 f­±àRyó(xÓ`Í}$JÓm )HN9ZuÔHwÎw8D¹[¶ÛVÊ Ypaª†Dqp¬Œñ|62´·‡ÂÒjð=n†‡›m×÷]Wr:./0$Á®ªçQíWÕXIKíVŸ™Ï˜2ÉcÈþqÃæ±[|!gq’½(¡e2‡Oæ‰GŽÇ ËEæ]&¼¶o– FgºÅô1ðÿ¨ï-3¨rõn¿Û]zÛ¿.“0¨Ty°›¢Ü!Š™±y\¦¿¸ßüñ¨lØ]ZýY•–évÿ‡Ùê±XåïŠÔg)„‹´÷Ë51’±<ãý½ƒµ'óÝõõÃÃë%ò±â§sÄHØñaê Ì™‰‚ÌÁû<Ga­vÊ…O5%%È¿€©¯£<±ŠÂB“‹’X¦™s¾yèó:'o¡Ww¥Ï‡4 ÐöUÕêѸ¬ƒ[®fÀ£5ýø\M3Ÿ^þ•8=å—b¯¼õI| Xe²ÂTÑ]ëj#òÑ;ßZ=Ý(±n-$¥qyIPºÕ;û°—i f€‘¦ ìábŒd2Ã#w#á9¦¡D×]‘|þIˆ$ÊØ œ#¨Ü¡˜bk«+„Ñ5¡®'2½þl »eªPÎH_q±È5È‹‰a>Ô0KžC-cjÁûžDÁG_e@w(¿PÌÖ~)ö0 ž¸TÆ_ÿÑS½õ>0âu[ŽÕÖ«p·L£^…[[}nTãŸ|KÔ?ú‡k6W<=T0Œ²©P¼ƒ1‘þKoz€´Ñú ÝÅŽƒ¿`®Ì\í€Hˆ4¹ ðéÄpÎ ÁsŒ¯ˆ#ïB<üA—±^Ö âàãàýÏßÑáÛõ[Zü¦`3 ލ<ÏósÈ€½ÎÓŒCá<æ‘!a1 âÈI_üæ[ü8T×ìÝøáêg¿ ŒãŸ; ½°¥ç4o%!hp²Ãú…I°­Š}£1] Q¸ú€‹QPæªÄk…ó fy‰£ÅÁ'ÿcåǸ)¶ô°í|Œa¼É‹ëŸá1"p>¹,\ P¸ˆçÃÐ%ÏŃëÏ­92ÎgÛ64Œ\Fã†q«ülñÇ–¹~-¦k×ýòiœvxƒd]S=×ç "eé¤Ù¾DTÂÂ|€=Ê9ž#r––D8´½X ðn‘_J<)«Ÿ“I&äfêg2Þ2°BF¹ñOÒˆlié¦Kã©Ý5 {8TåÎF_-Vº¿Î_½Lúa¨Ë#>y­. ÷Ƈ½ÔGx¡TÛùAo2ã½û½8žê¯ÌOç ðbÌ’h@HƸô%æõë×8E]v5~:pÛZïiÑVæ‹_á×CkW'ܵñ<2¨Ý°»ÇѹŸ‚\)Áùð¢FT߯èWÔ3ò¨ Óµêæ›õú›+/´º±'mün»Fíý®¬nÊó³-ìÎÏðèþ±M¹ïbÔD@Dx:ñC ¦éãJív0$zkémcFÿV™±þKTþ±ò¢ï«‰Oägù€­û L‘³Ï oª#Çg(Ô¹äÿW‹¾4ݨßOÿ•bnGs¤;÷1ñ/:gà+ÔË•ó÷oà½M—ÿR¿ñlàŽplpV<ª‘? ÛñzÝþ[ßèêÇ¢±ª^}(Tcþc—— ]jdRöud@‰ü_"ûÿ YOJÓ»»Wÿ.‹»O endstream endobj 2346 0 obj << /Length 1522 /Filter /FlateDecode >> stream xÚíXÝÛ6 Ï_a Í‹Oò·åaC{Æ=tkúÔ˜b+‰0Årý‘»ì¯%Jަ×ëõ Xî$Q$MþHJbˆ·õˆ÷ËìçÕìú&N½ÜÏ“ ñVâ‡Q⥔úI˜{«Ò{;§qrõ~õÛõMBG¬aNü” È0IYKÕi¾±ê¯oÂÐË@ ‰´À"L#±(÷ìÙ³«ELÈ|Ï;¶`“ÇV´HR»ÇÉ;©¶0PËQ––·aPvÞ·¢ÚâôïŸÒ‘-A˜ú ÉñÏ‘ebnäGYäÚÁÆ*5³·¢À'yè-(ñóØBÕpËùãšµg~ 6hË™XvµjÀ5¬*¾µ«B,‹Ó^ «Ó^É:¶„þº@×õ÷ X@ýœ¦g0JÎ|¡*øë;$  Z¹±Á†«6¬ë¿ÏšÖ5¬j7K~W;ÁÙËÕìÃŒ‚<ñèOq–øQ’{Å~öö=ñJØ„Oøažy·†uïEriÂ\z¯g Yt>š¤…H’ M"êÅIîGipO>&ñD,ð󌺿Òì‹ Æ´Óãïâï+Jæ\ŠR:Ï4q£œüZ•â ÊžI\¿îúRðö âÔÒðK0ÀM.h¤>I4ýo‹FÔPÕÄá“ãÓ"Ï ¶™ŸˆFü¦¯ #»ƒpõbFÌ,?M’@¦ÁÒ#áàMÇ„UU³æŠÎT oì¶j yjØé Y!¾¹ âù†®[ñG;”UYX¨=ÒÊ ŽÑ•=gmßpŒÈVhM‡+Ïy…$㊞´­#NuyùxL ^hœ‚Ö*Ó²-¿ðÇ€OÔ>ÉM]IÖ^¨¦ˆæó£0“l~–ÒrGbŽ´v”ÂQJG©¨#U£i~ÝòÎÑU²\ýùæåÉ0ò³Ô¢ióêîÀd»„”#¶Üï¤ØÛéñ4½“l=P‡i[0ÉGúÏ"%»£e”·¥;•t4~àr™„¹¥4|#EÅ—Îß÷Ý‘s·80ž˜ÐÙãñ§F'î¶ßóªkï á§BNlz®LÊ+…ïfýuDàÚŽ5¬0u —m×( ]z©kÀk^ˆÍxÒÀäv'ŠLÃ|RFÀ‡ž9fWfq*ÅÜꩌ—"3vñ¼Ý©^–8_s!¬E/YÇK_—c<ÍíÎ_/à ²}ŽK{RÆs¸×Z±––K™sÊ~€UVûNiÇnqa«46É{ÉÄ“]¦¤mq¯]mkßh?zŒÅFjAŸŠªâá±Å£¥èÜ•p+ºÝÙ9£ ää³öNBcíÝâôض_nýái­?;®¹l_Ëauо°F°ªxŒ¹p¼}s{;È1Ö8ð›F50”}…¦¸ãqq[“ÍÑ•ôd¡‘Äé Fã/ù4ƒNñ•èYx¦cj­y$Y†ŽÙ„ó¦áz^Â¥£¾ úºæÖÉ76e .¥>|ïÇ‘f±OÌù9rýÈy#¶»¯G²ø¿")ñªxÒ´,¿ƒù„© ïÐo'¾éÕן¼8›Ó+B+êàùzrUÃÙ´ÝHϵåÿ¼›—îxcÿ½ly¡ªòÉœt/°‡y‰o;×Y›zl?\Ñ•n‡ûyðyxJ@¶ŸnàÔ™˜n1³áe¤µÒ"(÷ˆG‰i“åtFÝOT¢@‚lT`b# üíJ&)kãŒ&% 90Y¡éÆU½†™¹ùBÓì¯æSÝŽÙmû@?mOçÉ¢*d_ºG©8ïuƒúˆl1Måá;•'螎J·;65ÈqrVïàóÈ•,X‹›‰‰‚ÁȪ’G¤Ø0Ny­PSŠÓ~®ãpjoklƒ ²m9µA_ŽŸi¸Ÿ¨:®“h‹ÙÊéBjû°<õX@ݳJ‹ZžR´dD‡+,EÙ#š.AƒÔy9ý H“p€×€#ÇÒEEûLl!/õâ/W³‚ºT endstream endobj 2355 0 obj << /Length 2599 /Filter /FlateDecode >> stream xÚÕY[¯ã¶~ß_q—ÈÀZ+R%MÑ-º´H`÷¤}h D–èc5²äHòñ:¿¾3œ¡$Ú:·M‹ 8ñ2$?~sáœàæî&¸ùúÕŸn_½y¯ÄMægJª›Ûí?ŒÔM"„¯Âìæ¶¼ù§WׇºVÿºýë›÷q2fÊO² t™q"NpЫ€ÕÛß7ïÃp6k&©™¶– 4†4ùS]íÙk%ÊÏRi—ú´Î?Uýj-UèÁÄjèýÕ:ŒRï/[l”ޱ麨~©Ëר¦¼a§iÆöØCÕ64´×kLê%«ç-Oi÷<²×M_mj[‡Í­·,Ži“÷+{y}Ô°9÷d.|´µHû„æž_Çù Çù7‡ãSožÇP 5n(¼mÛ‘@‡îñáWøÌgÌð/Ƥœ[òák]•<ÑB¸“ϹýÿÚqÏÿÇ틜(ó¼óÖí]3àHÈâcÏh{¦ÆÓNÃq:Ã!uõÓ @ÐuµkÛ’:'RÒw¿kuIã7šÛp{S˜Á:¼Þ°Ë‡Iÿ݇vÀ=€:[àKÍ7¤óbGRqìîW"öN æA¬?U{Àº>Cƒà¹?­ncƒð+^{=œ_@2C4#¥Þp> l؈{ÕaŽ]95÷UsWóèiêjÝ‘@1P3to©»ÖÍݰ£Ø#æ‘JJ"Qd·÷ÓBxŠý8v‚VIIVº¯¬ KÆË\Ë0òe»w:™F(›JD1ÓDà ˜EÛ•÷´<ÝxM”Š]ÞåÅ »ªª‚g!ºúÎ)§Üí±µǪ̂ÿ¬‡¼ªû/?ƒ#§ò¥‰cËNU9ì ¡•KèËég$ Ès’À'y3eG:$Áî-/÷ IÂÀ—r$”Š=e¼à)Õœ#±Ÿ…â!ŽÈ$±î3IFH@žQÃŒi/ÆöùþPÝ„xަЬ1íÇYè’œù| WYrR»ª VudßvÌžCôüÑDzÒcD(I¸¯ ½¦Ûéúœ`|)ÓŠ¶~)ÓTjÌo»žd‡i*3üæ‘iÊuGðiŽ­R;ÒavoIÑ#î(ó“ø)wtI4q†–]-‘.Ñ$hÈ)ˆ,=…°`dI{4 bZ^ÚNãUà÷®ËÏ$ͽ“ 8ž6jŠçÊ™‚ØÄ\d—!$¤Ì;‡fvK98öºü­YXë{ý6Ç=xí€Â9¥Â ‚ôa8iÝP_@mf¯ø -j1xCÔ¿`£Zñá5øÐlsoì1a#åØ4ˆõÒmPÒƒ@Y÷ ¹çt{ö g»½È‹¶AV–®Ü΂ñ|Ú)W'”z‹ûÈõàf4À˜}Þ½tzkvýò›‘±tÊàœIN˜ão^8m‘ÛüW2bêf‚ ”‚b˰9Ý!<_²ÆWÌq‘. ÑÛ¢Xïco-¦Ó•6ßXc8B’¨ûÑx6ç1s'êÐmV£¹­DêÝ<Í0¦Æ[9· #¡s„óÛ· -3Ïwñø†®…Iâ^ªïûÏ¿ÐÖ&îè1 3Õ|¹," Aü³ˆpô@‰ÂYY¤às?|5o‡ ›Ø·¸öã/§¶©ù&ÀÅêÃÐ/ ,Tâ‹ å½Îûc§¿úâëwß~±8Œ–Q:"Ò-i ü$Í®~÷aI_ A+QÎ "fžÉ|gWõY¿¼`âÇYøìD&;ú5&ä웤9“ÞþØ$Mî>œû^Ú‚T¾”cw®¡Ÿªqaòž[= í¦×ü C ¬¼Æ²ÞRõ‹ y8˜g·Ç¡&ô¥¥“I]¯‹aÇ©¨ñÚïذ /6 yÇå ÜrVh»3'Tgסšò¢ªé—4†ÒÌÂs\Šá\Ñ£»u\y*g|­˜šå³Ìt&\â™rqë@.ïJª0é®ãäp•“À .v› àôh#½^Ä8ÙØœ^Ö÷FŠ}/¬ãÖÇ`U–08÷ÓV¸ú¶ž[fÀæv댡;²4§™)¦Íd~gsp1<ˆ"K=úØäÆû‡¬ÔPSN?MÛíM©ºfô€ž›]µYIH¼8„Ödͼ€k¨z¾dÞÓï]…Û§q¬cs^¸–H”%O™h˜ŽCØp°\ 0ĉ,çäf'ËñíbC¯7”†~4y¢e{ŽCÇÝÊ æ¡ç•Š­ëÌàŒâÙŽœV,>ËS›ÀÃ&ã„ý&J³”&yÚoŠÌÉ„ø3 ûZI죆ͯÖP<ǹàÙ—ý*xà@ŒÆ_>¤L^(;Á3xG˜AšÛ +öÄ+tmr½ÔÛvúç£nÖìñ1 éZhA/“„_I29ªt¶(ò¥oTò›2šç?~4=y­b½˜bš\8lâ'ј ù¦Ö¦œ…ÞÛrøÝÉZjCe„$™[ ;oS‹`j-ð|f’‰_Ë£P>MùlX4iÌm¢ùõÃYäÒ”k5òimŒ,–Ý(Ç„??½é0Å$ñÃUb,C?ž¥±Ô\<–‡ÒWSä#9Jøq˜\T l Í>¥c ¸I„M¥+µOŒØÉ^• s Ù0«yï"ÆÅŠ_Jã ecoïxLY²ªßX$rô2ý Mu4m³ø˜-À¥uæ*o·Š½óA“·Ó¢zùA×u”“aÌ @·qå×v/DeÙ¦òUò„uf~‰Ç3œRcœx%Aì}¬(ªÁ§J|PpF©ié·È{Û‰¹+¶O;Àüã€V€ÃºHµL@ oÓõ¦:Ô=µîroüVŒ¨NšúÈW|P¶.Tàð¬ÔR5[ÌKæÎ‡‡n É Áœ* Ë g^Oÿœ„yg^«ãÁe׺\¢ ¾‹ÃH¸å l0Y±¯ý%—‚Y‹ýj‚¯n?|ÿn)FÃÛ&sj|¤ŸŠ>ï[vTKAÑ`b¶Õåx S3ÛÔvñ±ÂJ\léýÛo>¾{NÞ€º»ž—w/®Ÿö9>§‚Ø:¼8Š|0Ya@åü-ÛalÃjEoÿã·b“ Ó9R?øßhÁ%ϰ/çñ\µEùݵ$íÑ<ÀCÚrYàýí›w$˜wM ¦"JìxP\®‰W¦ÜÕTã¿7m}‘a£rÌlN!s†Ð¼ SæýNÏJpË¥ ¬=ÌËoWXvmg ­Ö–_ZÂøÇ*êíÝ ãW…þ¾Û©t±6ùÑVWp™¥wD×t¤ÝïO÷›?‚£ÍÁׇ®ý7¼_ü¶»ûÃbA\rƒÿ«ÀOLXÄèÈâutŒæ Ý0úß½ys:|»òjmJÃãò…Nö™‰Ì­Á/!ùîöÕ‘Oì endstream endobj 2364 0 obj << /Length 1838 /Filter /FlateDecode >> stream xÚXYoã6~ϯ0ºÀVb†Ô­¢~H·I=¶h’nv ”–h›]ItE9Núë;#’²åU¼I_Ìá5šùæ¤éd5¡“ïξ¹;»¸Ž’IF²Ø'wË £”a‡•4ôÞ³ó†t ‘÷ûNÖ…h*îNü`O¼u'^›ùm+ÿ®{>wÓ$ôìÉ4¢,Ë,Yà]š…DiŒHä­0Ë|³iÏ×8K¼V™ÕJ´|†ƒ–3=‹"£¯yù¨¥&úèú„„Iæ¿my+u+s=±Œz²6ãO¢¹¬…a0€Œe¾cpnO ÐÀ`þ¬³Ÿ=hø!bPQßóý$ø†ö7«BÜN X/Áºm7ú«‹‹BI¢šÕ£<ѿвMSÊ|?¤Ñˆ𭄤aØE$c†Ûûi (ˆ|Ý.ø+¤ â,¤™÷Û4óÑ€5 OµŒa窋mÞ‚ëà‘ÄÇܲ»…àâÖv²]›v-ö—–ª1«žä+1jDøl˜¦‚ïÑ_Ô¶¯>jÙ¹ÅÌxGos<íGÔ»UËvÇ›ixcOÀchvÚàYÊÜ ~ŽÁgoø>Cc‡é˜©CŒyÒÔi$kMîiIƒùÀÀ> Aÿ™“0³©éVóýËR«ÑÄAá—’tÒàÔ7˜N"¥H d[ËãD– C±/^öðs>“ØïíŽßZ•Uuêc€ ݇kç\>xK¥ QòDKk§Ëm n¬jm¦íš·†â0Ä‚kQRÕfÌUÓ½èù”òã”Q²éZ©bÏÛd¬Y‘4`CÏì>KF ˜ZÛY”¯xµ)ŸÈ÷ŸæÀ0fqØ,ƒ…†×«W¯¦³ˆR"ß–]ÒÅi©V†h¤þh)ˆ¥ v3׆ºã’FéúÙ=¦rWº\MAgë…‹§¾ž™Qh”c¤\o1ÿâææ‹sûQ9o7JÛÙfµXÙY.çù~¯€Ù~¾ÂçðCù #ÏIâú,=¡høÎB ?Zû e·7ÊrSªv êwWrþ(-}/ç÷òH;-wÅœYºK€MÌß]Ú…‡RVóŒYpî£äŸ•>oDoBÏPÈâZ®¶ÝñÍ€)Ù˜ÈÃWõ^›a_ÞqæÊù˜‰G`úùТ ò;pj&çu?˻Ͷßôa³=Ƒ䪉5ËÒˆwéy@…Lƒ#)ž‰sxîj±ñµ¡t~}ùãí•ÓïìêîìŸ3Ö¥)Ö·}!¡î§“¼:ûãO:)` „ì®;ZMBö$Ä:PNnÏ~y2`»Þr˜÷@“8dÐ8fÐ}°ƒ¶ñ¸eÔIÆüÃÒt= #Ob: |h±¸¯LÙÓZv© ÖĄ̂ í2n›ã@¹oà&t%¦„Ú,v)½Q˜ú\Ü[¾ ­|x?¨Û–ÿüLôàA-rµ¿…”ÒÈM'çËûãk[L­ìzψš¢aHÛº7=ˆ°V9v é¶¹ºÌÙÙœjvgß‘oâéaýýW ÍÓóëÓú/ÃÐxtÁbÇ–v|ï¢VÝ›€±sˆúÚ¥å[Õ¸Í.RC’&Ã*X ÞlЇRÜ‹ržE}n_ÉÖq$„¸À<†ºd~X8/ôÌÕ¶u{ºzžFåñTÏ‘Äu}Ïé­ùà<'¢]tÍ+kØ•}øÀ9áœAeÍž·Â^Õ൩eƵ–ÖA×–£Ú¶¹rì{OZ”¦¡~JÍ™•ß©ÕõáEºJ,ô£šêÿ©ª9šƒçœPwÓà“­Uͧ ëk|ó|‡13¯“ ~"„aß„°¡{„bÌ å£Y5:ÅØáí]‡®#›thv¾áMkÊ:/·¶õ´ ŸÅ6’¯¼‘Ì«í…Ôχ¤ëþðEõEË‘ 2—q¡Âq·–ø¦GÒ<á˜(…‰ÍnYÖGÛp_Œ!Œ‡«¾Òÿ1P —`«Í¶Å‹qxÿ|%› ‹ÿ48w@ÇN[$ [?pœï±½ý¬Fðqåe@’¼‚÷9|ùÓGi”’°̾{1“0éQPc, IÒþM]އ^«miKãÂZPoD.± ‹Â¾£ke+òBµk«DÿÈýë[ÑrYê/O[œÅŒ°0˜êÙó¯¦ý? ®[èd]>šÉn-ž–шÄûÇêÍç`‘GiódÓ°ÏÉ}Î,Ä«!ß–8©Ç¤ AÁ8é›H¬Ë#’ù!ÉhrðÇQŽq#4ÿy]\ endstream endobj 2254 0 obj << /Type /ObjStm /N 100 /First 985 /Length 2079 /Filter /FlateDecode >> stream xÚÝZMoG½óWô19lOWWW,„N odÀv€ì >p%JÖ®D $gÿ}^õÌH¤IÚCzä ö`«f¦¦ûuu}¼ê¡÷!g¼ÞD"†½ÞÁUˆõN2‘² Ù¤\S¼>ŠÎK¤R0ä©ÞH‘&¢!vIï%HÂ*eHEG‹ÅPA%‚TtàĆ¢÷FS…‘0\˜0\&èFheI˜!aÜâtÜ„qK(*áÕRt\Åê¸Þó²R y§Rl.Š8ãž°>È*FE—1@vsèk%(” –SßM0Õ7²aõb èx˜œ£WÆŒQ2œï²s†³«÷ •1GI&8…áašàÕÚì¼ ¬K`,0_ß ª½K1AÔÞLûÄõ©˜ê²ö®Ô§0¿8Án°ËFpkÁjõRK'‚÷Ûᤨƒ­Þ'있îCCSC½ê 2БĨou IjLÆB%{}3JÝ!XÎD§–bl5¶Û«Ä&²n3{¸›P%CŠõi11:ì8³ƒT±ÀÀ0­ŽÇÑÄÌ ÿÅ’ô]lg"®OÙ$õ"HÁ¤@Už,ºk •$EǃYRä‚9AÒmç€Q«FII1ÃÔ)WÌX~*€Ë™ì¼N$xa“à«:¦É„ð€TLöä0ƒ8HnŒÈºÕ¸ ›«Þ•ŠX¼É‰t~(眪¦(Õ>ˆÇ\¢b‡AŠSŸb\ 49;›4¯óµ9;3Í+¼°g^ã›àpí…F9VÙ^°:Zè.Hm)ÝER»v2v%ö2é&äþJ­üÝw“æ—åââÍlmÎMóËËW¦y;û}mÞMðH±½ýïý ¦×³IópÎæë•¦‚ rÒ¼ž­ˋ٪MõÞßg—7Óï¿›s‡Î ë¿ÃDÓ%Þ†"åVñÅ|¾Àhçm6S<5›uBê…Ü ¥¢«ÂGëh“æÍÿÖõúç›ù&Í÷‹åålY‘¸wÍÍOÍçT/ü– ç¶‚õˆD‹¼†¶Á)1ÙÈj/êÞ¼1Íßo¦yi¾y}5·÷·‹µ½™_ÝÚåÝÔ>Ìo¾UkŽ‚^hÉÕø¶Yó;›ávn›<„4]ÙËézj¯–Ó»™½½Y­ÛA\û€ Nz2MðÖdS![$”b û¬isV½nmuiÍ‹³³:Cóâb}³˜7oš__ÿ¤ÿ¾y¿^߯þÚ4>|°w³õôj±üËýrñoÌbËëoG³%ËZ×`@¸‹m+™X'å²—"—­ ³’À‚HcDÅÑrµ~¸D´ŒÜF÷„ˆ£³Aëþg}˜Ý\¿_¯öziÎ+1©Ùå·üÓÀMn“° (%fþp{ûî 29Wµ‘Äp4P[Ë@ ¦ÍY#g¨rp6 †M’lAÎÞÒ~ÊèÛI|3½ŸÑQwc›yOÏÜ)ìfîäËÜ›6I|ľo*~ß÷iƒBY áy´=òm¬ÈFI¦Ì E& TömŽáKB*Íáݨì!e((q‡dêŠ{ö½À½z¡' ¹' ¹' ¹' ¹ŒÉ ЪX%«Z‰Û>¢ý[¹B8\‰og׳ùåˆI›Ø:”ômIѾŒÖ:w˜¤ÌVÓÛ‹gÀAÑ2öå‡ÚøÕp`Ÿ­ÃüèãlíÅÛÔ†ÂÌı^Nç««1íꎾñhÁéaŽ -È'¸ãâQ4¢9àŽEyN‰¨åh/ ˆ6s÷Ë'XÆØäÂ+ÄK­¡eíä¹{?â¾€1Äé#¤ßB8Çýl½ ˜GŒOH‚‡‡ºaH®oïîvxV9†g¿¯ººŠ|‹6Ì›8ü´ƒ&ô¡¸©à/š±/;òØèB7«'gHw3¤§gHßõ§ú)¤xÔSèD69ýÎC`Ðè¬àIœô›…‡­ù«q õ`§)' Ñô¾%Ò€…†ïpG³DGóù#çã3d‘Ïà ä¬è‡7$¨¤ Æ#ã8õ(¼z·—#òÔ¦òcž ÈSy ²žFáÚ`rhêä iÈÖÁÏVü8e<9â8íFËéÇ}Äqq̽>zÃi¬èiŽ~Òíh¬pÂ}ùÓ~Ö`ø~¹ëi§`£ó_“6i;ÏO@PôkÆ cò&,|톲ýuÁó¦~H›ÊŸ§+û´%"™ñб…©o 2$ –¡Ú ÞûqÙÿ²o#œ-+²LŽ¬Ý›KÇdù ûøe{Ìø,Úuh ¶AèïujY‘QKÈkÛrƒ ïÉ^ ²ëÂü€¥ìÔéë‰øQ…À|÷‘>bgBB ¥=T€íÿÏb$L›ÊO¼ÆYý­È0m Èñ¡|áiå×yV¯»ŸW9úÓ½¶û­ zòÚ?¯²‘À endstream endobj 2377 0 obj << /Length 3253 /Filter /FlateDecode >> stream xÚ½ZK“ã¶¾ï¯Ð-RÕ ‹7ȸ|°ËÞTR¶+eOœƒíªp$Î,c‰T(jgg}ºñ  #Íl6. ºÑèÇ× ÒÅý‚.þòêë›WoÞj¶(I©¹^ÜÜ-¥DH½0Œ-ÊÅÍvñËr_ }½bjy¿úíæooÞ*½!JMLYÂzv.S%NzE=‰ðÿæ­Ñ[ka ûÚšèžP]µÇäõ1£IYð@«; M×V»Õš•tù9¬7C×»ç¡sÿÇC½iî}ç»Ú5)ÛìîfcïW\-«¾©nwµŸó+U´kw~•¾ÞÕ8ÇMl×ûð®n€’­òB­Ï›îý—7?þãÛ¬$I¡Â< ÈÈL©%eD–|±f†îê#nÿÙÜu÷Íå'xaå%¸™ä…°'KŸÙ£x€ãR?f6T.Ç7G·båþ@§VlÙ7Ü#žþ÷+N—ë¡[ôLõpLw]¿¯·®cÓõ ý þèø­Ú-Ò9€ ¨(°AJ¥Y8“ «0ry|×v¸ŒQË[ßw[m~_§D`ÔŠFû uêÁ=Ì(Ã4T «48¼­ïVŒ.«Ónp£Í1« šÐI(o¿úî§œ*pIJjÎt̆QØ›H÷øS g³(ˆKFkˆ–£ÇñùfÌ6’ÕÖö(Qýˆ¾•»yE²"•#É/óv«˜ž‹P$"D¦$aLŽ€ºy&š¦ Ÿ4™eŽb vB%þ)cfgŸ²†´˜²Åÿé\9ÖãCƒ̯øØÔ»­ÕkŒƒ/(YÕo›ÆÁ³1¥8ÍgÈ GÇ–)£Æ `ŽHåòfeè²>Ž?ðÿCsšçu¶iÃF]À”cÀø¬§WÔÁ©® 'MœP…¨9«OÖc R#1<+-ÂAB—-ihÁ ì­Ž®·ñ³*÷çØiWõnü ™â\8·ÇccU @Ô?óÉ DqqqBÎÀŠÈƒH ÒÁO*ˆ’j¦lˆK8ŸŠö¶]ç@€3Áâ ÷+2¹É;Ù#ãq™œ]pϚ*—OÔl!ý±7e*NéÛìr vp k™—áR‰U‘ÒxY6WzCØTÍÀêšÝÄíPYEáÓµ†¿„H²yqm¦26ÁÍ[8ÞìNÛs\o˪›úà‹¢NÞO$ÊÃäÕ¨÷jYÿÕÖl«4ãXiµ|+¢À‹âšòš©2äѼqhžé`ÌÆ×]Ûy6í< Ëz¨ÖÁšÜˆ›afµ,Û1— ú$ä¢ëÑã˜É㈠v€r 8X™†¢ÉërjМ‹A‚ú]ÌoJbèm0€µ]·³ž†Îvâ:2º@µ?dâ }D§D§>0ºŽ)+V À½ôLrÕ 7\E¾Ã]øÙ>´vœXûo|êj®R@6º™ŸŸ‘ªà¢.vc¢ÕomèçÊûŸ<5mö’U@ί/Q…Óå#Šw<Ù™{vž@MúÄKØzåŸþ$à?æÓ¸hÃà CcçjŽá­6D®—‡ªÆõré7´Íeõ,'¨çê™ë‡æXÛd/ߢJuž¸u[lNŠÀS“%ÊJ¢õó©6~ïUÆ(¢Fë’4 (SÊó„©Hh1Ægk<@öãõ$8omˆ –xb¼Úþ³g-I-!ÍG”ñ7¤O<òºJøš Žª˜õÁþŒNXŸ‰GcZT²"MãR” ëÎ*åýy:(mz'3œS„ Uq*“¥ÈµÍd^NR°| IÒ$zÞZüSÙ—à³HCÁe’þ(åöåKÖâŸq-‘ѳ¥Ø¹—öë! I¥ðr966VÙZ±(ˆ.ÑP„ý8*ܹ´îËñ(2ÒFÒLâêÊÍô´|~e%c5É MW/"%ž"Å>­´!ÿ¯´ò–öˆPòçmk-©z¢êÀ1£Ð/£*rð–¦uLÖå© œî³¨sÀ!™¾;ú9»CÕnØ/©¼db¤b`Æ—t¶äÃØå‰÷ÖS&ªŸàLŸeY;}¬Dè(žsÍa"DjÜ·iØ)tEÈxHd'X €¯X¥”­X—¡„×ápB܃0xÑs3U¬×ÉGÞ)ù26ÖrÎ2¸'P»rå̆Ô!“¦‹ÑŠ0s­dS\)Ù¨k%›")ÜY›ã¼¸ÕBà© U0÷ÿUŒÀsv÷À`/ü2´VrÄv•Ö¶>núæÖögÝ_×›ßñ+ ºŸª˜V%ÚfëÆ¾ø}i³<ù 154ök6Ó祠ƒÙÖ»Á–V4æï:û‘–f^½´‰ix˃:”õ(Aìº_Áò®zt~;¡}±0æÌ s_ãtö{2é­E……ÆT&ħÈr¢É—TNVþ±eB{Ç4– ‘¿¸LˆÏ¡Lè6Úø^Ÿ´cóãY™{]z gJÒÖ¹/ ½tÇBɬZè>åÑ~›~[õŠe§ãÉ}¿‰÷˜müUî;¤oo^ýÀö‚Ë endstream endobj 2389 0 obj << /Length 2498 /Filter /FlateDecode >> stream xÚ½ÉrÛÈõî¯`͉¬2Z½bq–ŠS±§*K¹”™ÃL’ˆI€€’5_Ÿ÷ú5V6)Éö¸t@³ÑxûÞâ‹í‚/þúêÏ·¯nÞ›h‘°$”áâv³œ3¥ÃE$ U²¸Í?/EÈWÿ½ýûÍûPŒŽªX3 KN‡i[ç+a–[<ûŠ;3ø CûU #ØTôí‡rÈX/×i“&1Á$OzDéÄŒl¦Ã¨;Q4®Ýå¸PË:oNû–6« í¥ôó·i–éþ±é>ëN¼/š]^Ó^½’|´Uð+½kë´l6U}È3GzU×ù>m‹ªã¥Ê7+i–¿p.×E^¶ }ù 7<-3dbhÁ !i'Æõ»¼\;)(5âQ†LÁ†ãñGbÆc1‚…Pö+\H¢µ9VeV”[zw¤¦u‘î`]¡Ç[tU\|¦5 ÉmÜëcUíQˆb"|9G@Ì+Í´ÐSæIR #ñ¾‹@%B×ɲÙU§}æÖyK‹´^‰x¹=à+È„ ™0ºɯmUÿáöãÞyd§5‹•ìN¾vx*z¶»´íVŽœôx¬«#H§uwéúSгí _XEЧ%1.bÎ’8œr÷…µ&×måáFKÆCyÍ "¦£þÀÈÐæ–Ä™Hô5KÒ@ß ²ŠvW”ŽDë\°ØœÊ5rˈ¹H³H ÌhIÞà_ûÇUh@°÷;ìÖëÞŒÎéã*Ð\/ïr|ZWÆŸ>³Å×ÙÚO Âd´DýŒ¾ž|ƒÌÙ–5h-‰c<š7m@;@ßq~ v§g~íõªÄ ^këUð$3ƒØSVhM´É×JpUÏÔ‚Wà‘GÛ¡¨²|jd+бñ–ÐF^dS çq°×{®sŸqÇaØqxѽº>@ûÍLFð'\˜ô@zò"Ðáv[yÀ/´ |’añttƒHsHWÎHe |Ÿ(Œã¯¢ôX²ŒBpQuÝEC=3Ö(1¹œZ\VHÙƒ ‘F3.=1¤¢\ïOº'Ž˜é¶fqùòo˜G^Ó«bã¡V(ÅÂ8~"¯Š!*Ú ÐR:ã:éj‡MOCÇ,pÄ®f0.Ç·Îo"›²'A bðGŤüˆ™ 1瀃 g¶–kË3JÓfØm–Dñl2qNY „at&âŽaåNF‹ ª|jZfLJ ˜1¢á±û^xÐiQ-‚ Èkh4S`;U'<‘°XšÅèØ×R-}TKÈ Ê|ÙÊKvÌ X?M¶œü¤M¤ ¼ºLB¶RPÏ$Û™¦~B ú…àä%pú‹À©¯ njø„iésç†`e¢d¹Wñ±èç®y\;ò¸¶ñD @j¨Ý “AVd’;ÕS m @À‡l!m¢ñõ5±añϾV"ÂC®aH6]Æ9' ¶8¼NŹš¥ðæg­ÅXËß ú¾èô%tßÛ5F¾ðù4ªä׈Ø<.ô†ï-âØ›ÏDÿ&"ÖêY<Rñ¡FžV˜pP$ߊ{ý<ëé±!îÒ|ânœÄ×Ê÷ˆIyV¾#È;4=…¥†ºQõP÷T–PËqÛë/-¹9ƒ2›LÅ t:-µŸl¤ ‡BTQ‡{n,‚ËQ&PÔ³Ñ[Mꪳ¼^³Äº›åÛë3 ì1Ñ‹ñ§eãaG‚°Mï”ë´Gk32´L¸çˆ=a{L­×LÌ[¶¢òº9æëbó8+º‰AÞ‹ínŸ7ÌŽå¥r`;’΀¹L÷§|2N¼0VÄoÁ5„q6ûÖ )ª»ÿA»<%i½O›Æ#Øø5ýâ;ÏÜþà-dþx8躭ێÑ1Ê¡a²}ѸëªlAöç=ܦÚï©ìß­«Ãzr° 7³Éê„|ÐôŠ&utRXzwm‹¶4 zRb%K[\ñd¹©ÓCN›8ú¡•#òñÛ!½9Ÿ}â@ 6šÂHZg@]W5½ÒË6Gáà6j‹&èK·±ýëÆ¶´b™Ñ°¹Îó‰É :ÏíÌà§*÷}WHÛm€èº9#î²P0¸E<Ôi$¯oNÇcî@€ ‘½¬‹†óaHQ¶yí`˜»êTfdû•è2ŸÝ¿@…çþv1r¡Ã^k¡GêµgI½d‘sõ¾œ)ÆØó¹jªƒ#*Ͳ‡L»àz3h¯›C:¤co°Nªdâ.p”ƒ™­v»4¸%ƒ†ŸVÿxàX£2Ý®sI³`bþX¼¨‘Z~<‚H0*[¡C§åòçß}öÍ$¡ôNƳ¥<á˲ji„kŒ€óòº- âÀñ†¥6ñÐò¡ØïieK üºiNyÆhþÁ}áÊ5X¹I9‚³“rÚsÇìÅ.ž¸˜ÂâÊD}AZæi}Ì.ÍÎ 2¬‡™1•gO¤9› S÷°+Ö;ZÚ+Õ®ô{¾‡FÜNÁFôýû/×|L\ªd¯ñ¦¶ÙxL‹,n$Á-„ÅÏöÐ?()‘¹7Çtý)Ý:vœâæµ+á©è‰6^fn»@fl­aAVMÑ]š ¹8«æŠñpv5Ùä‡"Èr ³h­æ»»%kº{¢‡î&Qΰ”Ç,ÑÈtW;&jHK—@@Iê22 L„ÛëôäÄ ?º{Æyí´ë\¼{f`À¬?:ràŸˆyóiXd®^@&,ä“ë‘DXVâÃW„ˆdhŸðŒeÉAydÿ+áJàƒ82Ü«\¸_ ÈÓä¦á¦j*±*äÙÒêºËaíözýØÝ†üä®tÊN%–Ámãl-‘ÐN„ÓâñÚ´¡ ;ï†RÚsÍWÈÙJtÛç´]oW˜Ú]Uc²ò—$ÑŸV1P²ßØ&³£ýÇUÔäë]{—žºdŠh<ÊJ SCøû‡û»?á -”hÁ±®°ÅbU½ý£/?Hˆ­Ã?J¼¾qæ ¨û2h×¶ÇæÍÍÍÃÃë0Cù…Õ`þjÕa;jðöÕ'Éw·¯þŽÂÈ endstream endobj 2399 0 obj << /Length 1662 /Filter /FlateDecode >> stream xÚÕWÝoÛ6Ï_axÀ&c1Ã}ËCS´ë‚uN:`hûÀH´-Ô’ QNš>ìoßIÉ’£8é: X¢ãñx$ï÷»ã™NV:ùåäâúäìuÈ& IBN®—F)~8‰#¡H&×Ùä½WȦV3x«ÙÇë˳×AÔ[!’DIþŒ- P·X‡=ëyk>ç(…]´PKUÏXì©2Uz°¾ç§¿+‹'s–FÖÃ…J?ÍõÀO½ÓÙ\øÜ» ðå¾wi¾Âû@Ê’„×*Ì{§óregk¥w›FÛ%˺*Zõv“§²Q™ÑÍ.Ë•¶“Me•J79DIYí&/•¬íLQej£‰ \ôpB¹ßîrƯÚեܨ•ÕAÄœÝ I‚ÀZ¿Êvp¦¼2Ö< ÞUC8EªG0Š#ÂbÞîtê,ú¸ø$Ù°hć‘Z Œ¤a<µ» Ÿ}à<!w7¢·4ˆN¹µë¦ÙêŸÎβ*'U½:cÀ8F9|£0IⲈR<Žb΂„°ˆƒOãGÀç±oÀçQdÀǯ?pà‹„{/«ºV)FQ[„“G±7u´@]G XZXõž8îhë­Ÿ¨G µ´@h17ðÒ!®À•éY8%£\a E®˜ï€¨ef… µ–·yUc·“G9ÃF"–'M@»3qúiDŸ4¬% åÔ$ `?J8LžMN)eàqŒ4<¦RQê½Å\ŸßHmHË Õȹ0îu®í2ÎÕjãØ¹ÝÖ•L×J£÷$ñ~-íÄw —UµmO:B›ßÐ,¼?fŒ'ž¼QÙJi“¡¡¹èL6Àðå~c@U6ÀN«Ã›½Ê4±P=ä"ƒ|f¢ƒæzíÖ­án7UõÉŽ’ø­g™BŠü[Û}_6pcÚÈ€0ŒÚC<9$¥aŸV¢Î\±Œàl~pTquj»E¨u![°D‹(W˜WwÖôOˆ $Výé';¹Øi­6mµ•+e¥×x¡jWf&íÈH–Ìñ­‚×.ôÝ[u¥ÜÚ]>vþSOjZqOà AŸÀº¤¸=||O5'3mÜ–Ö"Î=i?Ë]ij¡™oÙŒ/ÊÎPóíÆR¬¡¹_˜Vj‰aü@)Osà•vײqÒ™Þ(»ÇÎ&L·+:)uSïÒÆ¡j>œ˜X³AûÂHœtÌXŒ•5 Üíb€Mþ™¸ =#èp:xŒãa)©S¹IžÇÊé ðBP ¼€tÝ•¦¥€ï>ƨÁ,Cý-WÖ¹„VižVH¿¾ÊÙ{Ù•˜ˆ¨ËÔV•Òúï‡v}àìÛ4wçÄÝbzœè¡kR>ˈ¢áøaƒŽÁYèwìŽ ˜õõÝ¿ø×VP×bqç:B(â˼Ö‘§øUöv°+»ÊC„ ¿ƒ¢uju:‡e÷VÎTa…€cga–bF´ÅœB„“ƒ£T¥Û3mORÝ42/ÛånVËÂI]¯b.bz”6ÖH,tí½ÜáMc¿ê&‡¥ J»Õ vÓ†=ƾ}V¼Ë›õøÆm°ðè†?€nò$"дiòC×ìM|âÇ]?Q4©¬õˆ#BHŽù1Rk¥žlWj¸ÓdˆH­\Lž÷/Vl’ÙÏzk¿?º84ƒ¡,-p¿s{ø~ØÍ†.ìzW²¾ÇM`ï'ÁI«Û.ý[\1ý e–té_÷€yWÃ[‚[sÍG=ÎQb>Ê–îbœŽGØ/¹?ŸSãÏç)*§ëíôtz×À?YL]ï‰ó‹ó«Óî’ç׋w¯l_?`¢0nZ(Yêó´Ú¼Eaç¤æô«ÞÞË &|ÿî?O6»:ôhÔÃg,³%ñ°2âûOž*j ºú¦eå_寱ÎäË{›™È'± “Ï2$[µC^‚éûCc MBxaî(¼B›;(Hûéç Ž]¾ h«+JýêŠcÛ9ˆî‘@¹lÜ5>û˼íÔPƒ^G@€^¹ß>> å ¼ˆ£ãÄÿ FìÓH$8áÿ£ÒL¥øk õ|ߔýŽë[Êôâ°L×GÊtôÿ.Ó‹çTØgáò ã|u}ò7îcLÊ endstream endobj 2406 0 obj << /Length 1249 /Filter /FlateDecode >> stream xÚÍËnã6ðž¯0œM°¶¢—e;¨.-6Ýö°ÃëK[ŒDÛj%Q );^,öÛ;IK”eÙ]¤h$$‡£y¿{°؃Ÿn~XÞ<>O¦ƒ¹5Ü`°\Û¶ÜÃÑpÏáʆ‚µº_„Ú&«pU‰ÔÁ "(Cô ã&V§•®ÈˆdEÉu°k_ò­Ž¤=RÚG(oÙæš\éK‘BÒ™„žOS¡ëSÑ5)´B×õRÐ!Ï ¼ŽÜ¬’ÞŽ^7áY…È>‡Ñ€USGÝê5Áˆ¤½×UÄê@*ìêƒ ÈêpŒ¼n9Êq²I8 ½“ÞtÒ;¶8ú«=762Y7íTÖædP{$™Ù£;,zån‘7µð{goâȉMlšã™8«ñLl«òÕÑÌà%0ƒVumKîê"ï Ïë£2…¾󇉔f$,¢‘<ËõfW‹'è›Ä3¨Œ:H4å¿,„î[ˆÑc×xÿ]¤%òçÍüV@ÓKD—’õ Š_]`fw=¬ëxvŸü޼ûïã°ŒR¦ò8JÖ‡cOOÐKªŸ~¢uå^-žQ‚ê6*^UªkÏ7H,8òƒú1LËü©w‚§¸À'YôBv¸õžªç:ædüY¿RQÎ`øÏtó¸4ô]7žþGc¢:RN>‡Ëŧ÷ÿöØøÖ£Úü0ªÿ)¤×÷Ë›¿*ï¿¡ endstream endobj 2411 0 obj << /Length 1373 /Filter /FlateDecode >> stream xÚå]oÛ6ðÝ¿Bp ÌFcFÔ·†éaÃ’ CšvŽ“=´ÅFK”+TUI¶“¢èoßñK–ÛÀ°n/Kß‘º;Þ÷‘¦±2LãzôÓbtqåa#D¡gyÆ"5°i"Ûñ cäÙ¡±HŒ·“‚¶$eõÔu'¨¤SËl›éûůW®ßãµCùa’ölN42ÕaW¶m@í9œzfû ŸY>lÚ’©¦ÍtfÛö䇙„uAP±ygºæSv.·,X¢ˆ# ¾J`JðR‚ ©1‚KqÕ¤LXqˆ¯£”Ë/4í:y:×x½ŽÛh|;V; iI?  æÖ‚¥3l¢ÐU®›Og®i k8ÜÐØ*µ3šrsæcj¶-I!h̹ Ú³üäg¾?®hr…ùΘÄlµ[4¬è1+Óñ1=@ëš®¸8¬è­ï…Í£¹Â¢MÌ6=³Ôþç–ÕÑb~Ùoab_Š?;“„—e¹oY+×õº|Æh–o÷wD¾ÔHdiJkZ*Íè#)ªœÊÅ’44‘(+U¨‰B~aë-ͳrEÕUHŽ$Â-¶LÓ:a© gMI«Žä™×hQ™³r%1¨WÙ¡H#ÚÑéLi™Øäª”4ëšFã×s$‹ÚŠ5jµ„UIWjgQ¼û–ÀJ|ã'!âÕ><^T ‚ÔM²ö3CG¤ªh™DW?ÞÜíe¶'$8emb’Ç{&¼¹y­mxÌ"¶nuFbeïœi¡ÇJ@±ªÙºÚ?:%1¤8?zŸJÉÏ醿M$t³Îq¯2r²ì¾ð Ÿéc5>Õ:ãO¥Jšµ:XÐÒ².m iÒü`£á·oÒ óŠœÖˆl½‹$ø*)ÁK úÐm÷9OÏ›_$Ð-Wâ½–ËÕö,ä{ânÑ*ÒöK¢ñ«›]O›b憟ò$´= i2]Ø,Õµ&ª…%‰èt@Øö;À¢{º³>E:#ÜõV8üŵ®5¶m´³‘”;û“D}+ã ÉÔƒj+–èãñö{&çÙrÝJ¤ý@%rw)!7[³ßǽi΋® jô')ö潃œÀÖÊ!ØFŽ{J†/ØÉ išÅ™èÈ\³LÝJ¦6ÀæjÝòÆ,WuMã6ï†yVÆÊÆ­‚-ï¯êšÀ½.Q²dE@ÔY*ó c™Ž¿ÐΙ™’µÕl¤»hÌ ’êáÏ)œÖúžR“í%'ŽˆL¹Syoù'‡ºê`[^ö…U,+ÛæôÙ¾K5Wz,‰$’ÃPY,X”Åýbê(iÓf@ ›‘l2ÿ¯¶¥k~³‰£1xØí±²­YåY#.“%%u•t7¬ç ï`LK¶•Ⱥ¡;7Ãq*žÍÅ©>DÊ }ï›Þ!G—‹Ñ§†cLw)ËñPXF\ŒÞ¾7>‚&Èc+H Ã÷–ïðþ˜w£ßºGÓŠôÄÞ‹ üè9ذ¬ÙxïÁ5ùPë½Á ú¼(†uGSl¹æä–N±xå‰ÕÕÔq'¿ëò6‡"Øy¥ž‡bñf@æÄSËœ|$S uÂè ç`aŒÿŽs„\ïÀ³¾+ÍùîƒuVµ™6Ï|9x¾ByÌ,™Ú‰Wë2¼ÒZ&aÝù¨³ÿÏnRí„.òýnTÝ^þ~wàÁŒµzOH{C®–À? Œzeht~=ô$›tRE*ð';Èö'³ŠÄÉŠ²bO-C"YZRŠ÷˜YFÐUl9¶òö}3{ xà÷~òò’ÖµûL¤Ó_ëC4á endstream endobj 2421 0 obj << /Length 1561 /Filter /FlateDecode >> stream xÚ¥W[oÛ6~÷¯Ú‡I@Ìð&J*Öa[—v+ŠvkÜõ¡-0U¦mµ²¤Šrüû^$KŠÒ&„4ÅCžËw¾sˆ½­‡½g‹_W‹ó§aä%(Tx«G0FŒ /" –x«µ÷Î'‚VÏÏŸ 2ØÊâ%œÁAfÓ~SÕ­Þ¶Àît8Z ö/;%…Q0+ö›lÓ¼P#ÁÁ#ÝboIb8BXÑÕNKƈ¿9”Y›W¥ý•+;ª|_×vžÚáØ¤u-'U5Ö*Ɔ—„Q˜:«JyTïqˆë4ûœnåã{Ð$À"±âcI„buâÇ]žíìuuÚ(éTK˵¬sUéµ[nÁ 8R;ˆ"œ€§ IÚ³þ™Ñ–!^q—½¼x{9§LiØmú!XÒûï1¦…´ójcG}½™8c‘;lDNu1¤‰ Ä/Ú]ÕhW©Î5÷çÛ eŠÍ6ÁC[«ËßÀ~.³]û1=èÐYíC<ã$D,¦¥?¿~üÙ…kY7Õ'™µ¨j¶?Íùˆr²ËgV}¤ãˆ½´wÓ×ÚˆÑ%1éävm[«GççÇãu7KíÑÓõÓ‰&àKHÒ§9–ÊH8ŽÂk¹ÿØ—e&ï—P‘=aêkŽÁKŽMB}(bã|Š ¶Ú-|yR•뤠‹"_Û¾LË´¸¶©¼´Ÿ^Ûᘷ;ûÁ ®Ò9iVÇáóp-{Ô?hèW‡n³çœMuûFItÙ¦m®Ú<Ó»5”.«M{L›€E¾œF!°„‹I0F`bæŒÄ°Ý)¦˜i×ÙûÉ{`£8sЦSl­«\Ãèœ`DbÁ¢óOJ¡¯˜ ”c6RÄà X.®R`Ç[`r6 àDÞÃ(ܹôáC q쿬Z;iå# û0ìseÄuœÚñ„ÞG!F$xQ®õ¶á¹=µ\¬_Ää$é‹gŠ€œ²ýâÝì­á#ŽX{G³uïqCdŠVá].þºÕdSÇ…Lœ@TôHo/z#°B‡øx&[›%:ô¦  WÿÔ,˜fÅþç4 Øßꎙ_պΩo¸Çˆß϶ 3MdŠ ƒ\¡VY“›ûÿ ¹?u5ZYCL¢ëÉvÖ#Ê­Þ„3aP1ï»)ÃÍL汜ߗ>Ç)®èYOÎÒ+‰µ\2Θ7JËÞ9]n÷Xl`£±}uf¡½–›ôP´_¾yñb˜†ºœœÈ!„ ÈDùIqn ˆ{Y¶ßN÷ïè}õ­Ê ðXÏU«®“(Óý¤ÉHË¡ÿuIíþp¥ªe–ëæD®A¦E1Š˜[mܹlûåM´™²tê-‰€æÎêè\~w£¾j˜¥ÅÁ]ÜVCì<ŸvRVç©/Ö•tf”šÛôD$ô¯ 2ÝÃbõ,Ü݈ªÔ:Pæ›ü£ÔßWM·Òé s­«²lNš5 &YÕ4RÕPómâÂRï'dœë®ÿíÄÁÆk»AíªCáþ(Gp{¸Ï&g­ †ÿŸˆ–‰QxGŠ(<éžb[ð­rójïVu"è1 áw_{hëi7Ú¡PØ™,¤Nbû˜B®gº EžH¯°ÌèΡ‹ì™Ô4hp°íÇ´Êת•{×Kqè6h4ŽÐ)!Edú%;‚„?›ÆÙMo6Î@b¢o¬ªA]»%pŒÃÃjÒC—ø¿ë~÷l®ÂÓ¾ôi÷–Ç›n”DßXæÎ²e sesX¥›7†1¢dx£­×úÊï=“‰Ó³S›½ø«ÒÝ–ÚÒBU.$PÜbˆó4iæÞ´ 0Ú#âj®ÍEœôV“¼óÅMêºjZ¹~4KmÐþ ´Âjä endstream endobj 2442 0 obj << /Length 2450 /Filter /FlateDecode >> stream xÚ½YÝoã6Ï_aäåd aDR"©CSÜ^‘-®¸kI®}h T¶e[]Yòé#¹ü÷7Ã!%K‘³Ù>‹…©ápHÎüæ‹ »E¸øöâï7_$,QB-· †LFj¡9gJ&‹ÇÍâçà°­Žíò×Çïn>Æú„Y&Šé$Q–«™.B'ÝÿÞ|”òdÕµÔÆ.»ˆ’¯÷ÙúÓhùd3‘0cŒß«¨vù:-– CmE¿Í1[çÛúxÞgí>«é#¥Ÿ§%ƒ¬nòª$í C4ûª+6D^en:­ëçí~F‰`ʯ!:]ƒKp78Ãm‘7-~[XÜ~üðχ;Ô#þŸS¸J˜T<¾0>b¸b¡4´¬É‹¬lßB¾Œ˜Ñ¯€/yd¿=ðñ£¾󤎡Më¶;ÒÇ!k«9;ã`ã•£åMÓe@`Gjv»óÞñŽÀÎJœ»Åî¡<÷˜éXú[3̨_D, Õï¸É0ELÜÕ¹0ºr‡´ÀÄAL˜\=„@@ÔSÂvg@xmBëÌ#%½EÂÇ-:ý—b|AßWmF£vŸ¶4rhè+]Qhƒaý·Ëkñâ>5'ËÉÌn3º‚¢-ÓÚ"BqÛ궈Òâ…@„Ê#@©¯¬Z4ÝñXÉ<äV/DG{Á%âPKá„ÈÛÎÉV:ÉEANЮú»^Ù³‡c½ãÁ(dÌÇoÃ3±sbZ“0õ¸õ‡û7 | CýË«þ ‡çQ¢ÈËùLLQœ…!ŸÄ¸Dö’©!ÅÁOb ‡˜3iIÄìpl_ˆTäeFÄ>žuåh醬oIäR–\:bºmI¶3Ò’GD%}9“PÇA¬6TdÂx"ÿHE‘ŸÏ¡À4—C‘ns((‡6o[Ô€A¥t“ïò¶yw’Àrǘ LÖ•¯|Ö­= LÙ’ ~‡’ ˜öÕR@ħ™'§5FQ"¤ÈÛ6ÄZmë60ðöÂɾ”úÊÍ×UWnüiР]Iqy^Χãú’†ÿ©æpn&þÕ¾_à_˜„5$Ð3 Žž÷U“Ñ0+²Äw aZž8ö9VG´]CcªÇ`0²Ž_Ü­s"AÞd7·ÝMÛK0mÕ‡ZtCÒ"2­ëôråH3N؇M™À€‘â>ÐÈÛ#[‹ã7¸ü!/mÔ"­0AGY òÙ iH+º|ý†©àÃ÷ÿø ñ­«¢ªoöùn_À·d]m2w†k3ñSHø Ê"½§pó(‘„2+Û¡ÌÊü£'®K‹¦"ë"ð›ÒÄÐÚ µ†r˜n¡¯fâ›PÓ<úlÕ¤™ ûV¢uGh Ñ­÷´€µ¥ ëž0Éb!ÇDlR]‡¾3réôõ•ar(ìdMc™`R÷g%d[ÁÁ/!ëmÏåêýIµ ç:|ç®÷i®mv ÜtßÖt]ø´Úsd¨6xÁÀ…S á>ŽEec§pï,mm(ºE ò%¥:-)ÚGRåÊSâ<àÕ-Ð÷ŽzšÏäÉÙ´È¡ß{“\‚q9c•2Œì»'löÏ7R(´Ò}Nõ¾«\SŒƒQ’F‚­ )ílf Zê+PÂ0aÈÉpÜà5Úö½"ô \ÆÓÜxÊ×¶„‚jOÕ†ÛóàCæ-¡^µ¼6M«É‡•3ÊSàa_/\Ú4§;©Y¨‡ô ךÆâ$,‘ÖŸæDн†ÐÞ xRЫ»/ïAd‹U!E0µ©S¼ësé|;'QѸ¤·ÕïµÐ1½Ÿ@OV`Š©‰„ǤÑ`3<”áÐLØŠáD±ÔŽ¡âMüŽè ÛÌFWØlë÷ßvµæ‰OB­4QpÿÐv›¼¢)°8‡ë´œË¥ô/"ñOÒVÅ3á âTÒ[õŸwYLFI—$Ø; ש- `ßÚD÷à‡ꞈ%DIÄMvÌÊMÏ_•þôŽ×+ÂZ‚¸0ñ«G•ƒåM|–Æ&Nª6€ÜTÄ`ˆ·Á[(ô#ç€S,C•2©FÌ:†a"êƒÊÁepIu#nü”7k$áë@Í̧Çc–bæqù:Ö*ø¡t“ÞÂ×Z²Xë9C mÃÀ\§‰TôŽ`°ïŸ® 9d·—ë®÷Ò=6mw·_Y}í«žp¦YR1ÃÇIXû¯}/ªù«‰4<ðõ”³8š¤ãÓÀÉ!{ìð„:;K³Ç'ÀˆÂ#NàO°„óˆ%œ²G² zÜaðŠ^?ÎAb,3ƒ‰òfÁ1HË1ìM!Ñ'ÁÊU@ð‹‚£ @h75z‡N¨²øŠ‘Ô—¶4ë²3/ÙãnÛôvoØw¹ E¸½;ÝißåÆTÈã–ãî¤gð®Žãþå Çã­¨½obŸD†uͬ¦:ø°„]»¯jûþäAü¥ÚøÉ¾ÙÛÝ®ç+Ä— Џl½oWiçu…ÛÌ=ׯLϵ_=?­þæÇ®uõ;h•Uõîë¹6^D,–r¹ç»œÉžK ÷ëöm{lþzsóüüÌüÎøœlÿæ;N â?ˆP”óxl…ûl úá&ÈÊõä¹è˜ê: 1ùDa¦”c–ÔæEÈCGÌ|S•›níÆçÂ6½N¡W{i¨ 5”¾`êž~q8áZNZäšÕþ%ÑÝŠò“øÛFCzü½¡êjê µ-÷(8¾Qxh¡pkZ×/á;MµmŸÓz)uÍCk ÝÏÕŒ1FjFFbÿh5Ø4”¨:ûù/1Ãfà ÆC1ÅÖ¦ÊF7P‡s£¤¾ù½iØS"嬷ƂEñ,wÿKÇâ Lfÿg@"Ô{6`㪾ÝIÂó¾ok¥ôž¼æ±ç›)ãðW•ÏÉ}¿Hÿ6þ^‰¯4r÷xñÞj‹P endstream endobj 2453 0 obj << /Length 2755 /Filter /FlateDecode >> stream xÚ­Z[“Û¶~ß_¡úe©i’Éø!i½I3M§M¶Ó‡83¦$¬Äš"e^¬l}ÏÁ(R‹UâmÇ3K8¸œÛ‡ïæ‹Ý‚/¾½ùæþæõJ9Ëu¬÷ Á9“‰^¤B0-óÅývñs$´^þrÿýë;-&¢Rs–Å ²B‡²Û¬ÍÖT ßp·ÇÛû›7š|!Æåuª‡çæpóó/|±…Áï0”g‹“=,8AšHhW‹Ÿnþ1®wù´:H9ÕAp¦±Ð*eyª¯”R³¹1Ë3ᕺ[&**5ÛÕÛ‡¥È¢³é»å*V<*ê-5~„Vsx*ðmfÛeíúL_¬¾®‹ê±+éaó$Š¥iú9æ!Wê€+µ[Ç‚ú³é6myì˦ž™álŽy8d‹•ÈÀŠ1Mÿ¦i>€J2¤¿ŒÁm_n*ã»×ÍÐÓÀ•-¼²v´yèMM£[{’µ¹Xm ~:'Þïï}XÆ ¬Ûšz㦬M2´ÚD²kV¨(³ åJÑÁ7EUë°$zÿŽóø×¥PøÕ¸…ÛTdcä–$ZÞÎmÉÛW§½ãжc_ÐПšæhZ2=õ•9Ïa‚`x~Ýûšö³ºô¦=€LGhV|ↇ¦ë«G\‰úŠ%XãþiÊ­U:û}Û »½uý6ÔØ6›á`ê¾°‘a»š‡³ŒÍþYtA43%cöƒ¯­IšÖ §3¨`’K/{,6Š…®Â¸Ï¨Ö{óq(*ò#thÈÈtn‚¹ùóølþÜY%ÑÐYµ±§îzSlÁâ’ÇQWÚ²½ŸÞš´iêMkzS=ÒˆS· g6§aFÑuÃáèì#C½5mõXÖ» óööxÊ›Òú¯d†BB‚LÑ“Œ‹;9]”ÚÁPkbŠ×à×Ms°g…9EëDöٙ͡Ú4CçvhZ!\‚ß°‘ë:-„L»í¦‡™*¢½"SÌ$%§½l£ª°!"ëCêëzšb³§–ÝÏE½\´A€³0:’yªšz’jh¦Ž"¼Ïí‚­›ätUƒ—ÉÓhï²±zŠªÃÓ炼´ÖÅ5a´(ΰUºB#hTåÒêTôC뺬1à9Á?;£t뺰°{[P„­ ?ÙB3 ÆÖ#;*M°QN³8IIîõ‡I¦]&<W'"wÇΔKE™]ÃJ”MmÈš¢7n  Çó ˆ%“~H2èv8€ûS‘DÿÚ[[¢ÀÐï›Ö­†uçÙÓmù$áœ6©å$1)ôsÁ¡*ŸÊýã±ÜøŸ8×IK…£Í,Ã%ÙzFÄ.™bØúJ7¼oPþdÎ^hI ¨}’ÑQLȉÖN:§MP³¦ó¬Í2U×j r”Ž~œˆRdÉy¢ µžçÃ0èi 4K×eïxÛ@²X(bÏã’è8´Ç¦s?Ю \pgæv²8¬¦õÁÜÎ#mšØØÏômÑõnE÷Ä,ð«¸åN¦ªVf9…™=÷˜ð”¯°:ŠS&S_[õEyQ^>÷þÌb.æÕÕ«4/‹È/”-š0Á]]÷5’PTNæoñ9‡­8Á¶­B AÞy}'ÄEÝë̳õ’D²‰Ĩ} ¥Y$Bë(–ä©ü `_§Ñ—øÐôHýã+êüª8Ô®cåP >øS;º~Ø––ï P³2}è<ôºµuòTf(’° Jš•€ƒ«™ö³3AmfŸÁyšÞB m»îLKÆwÇú„UTƒ™#(fYœ_fˆå*š¢<‚ZWþÇXO"ý4|Z'AŠ:Wps{èœI•_øyn}–ÈÑÕ6‰`5´ùãR«?ÑÑ_ƒÖV Kóñ=Ê;ÇA{ë4ýM{C¸Á1CövºYÍ7MÛšîØÔ[Géõ½ -"Y–&/>ö|%)Òé±Ö| ¬˜C,WÌ®-è#çš !^ÅqÎ’Œ`^B\XÉ¿ÔT²¸z_IL‹nËL‰É AÑ9í“:"Ö)£óküEÅ# Û´Œtt4ŽÖn£¡^—EçG-ŒÖSy®âÒ 74> rRGÈETâOûIj‹OÓª(—x89ü.FÜ­®8+7W;LmËh¤u/ì®MÀkZ| g§äë¸t'„¯ð½Ìxºm,™ÒcR¼|WÅ2žMw¯ÿbÚóÌÑßSŠä ÕˆŠD=WIÌd’8RáøÈ½§KW^˜Î™çh] >z¤önBsÓZ?¯£”ñUÌâX½:³kPöæ7qìs1(»À`1ÝîílËïö*¼U¢_w!äJBçznν¯À sˆç/µÈÅ­Ì,2 S<Á’ð¯î·Å$Ò|…/@ H Pƾ9yV¯˜K–¶M ùˆåŽV"ÁÉ½å’ Y€ŒõùÀùÄ(´fò¢¤Ü ÈaeÖÝ:ÆW_pD|ù³ÈçY-4Ž-½åvr_妰À׌«‘vg HÄ*ën@][xì Y¦FC¸¯9þÐ`„«þ|† ›BºŠ ÒͤÊX¦õÜje½©†­G-ÿÝl,Üfß”ÎUó¤rï9¾>´×6O¦Üí{ºÝ”¿£ÜËú^ãn\äò/ãb¨zê(ý—2øÇ²E»[øæß>ùô˜CÑ“µÜl¨Ë‹ŽóK$e91脇·6œ-Cʉtò­eßlß¼º{û*t? ñžðA%,§Èý[.Ðѹ$z Îï÷A ®Ÿ¾æ÷Ž™€þE\ÚºÜñhÇè—/6³_N/ǶŒVñˆ::i+°8Ø`矉O§Eç(ê/ˆYÅÈR8D—ôoÏÿØÏ]#p²DËI"`d‚wól’éd&Ø[Œhû&XDzÀ¥ó™.³¤L@`Ï\ê%UÙüSµä)8–‹9ËaókŸª¨á“ù—êÙ¹ðÿ€€ ‡ú þ ý.C_¹¡á.áù¾n˜ÜÐOÞ=ÿ Vãß endstream endobj 2460 0 obj << /Length 2028 /Filter /FlateDecode >> stream xÚí]oã6ò=¿BhQœ ¬¸üH*·yhq›ÞîÐî6À=ôPlÚÖ–RIv6ýõ7ádÉV¶YúPà RÃùžá y´‰xôíÕ7wW¯oµˆr–k©£»u$8g*Õ‘‚i•Gw«èÇx_¶Ëd_¯Ü®]ü|÷Ï×·™Q¹f&Ï GÚ Ò<¢DÁ²ÜF‰4pHZ·-ºE"­ŽËöy [ŽÈëlD>M™µ²§þèÊͶs+:Z]³Y\,7øÏÍhKù _½¦³È €,£-·^È,^»e×¾®ݲ޻6ÈXybb´”3 `àðaF V5=BÛV¥#µ³ø±ì¶$ )Xº_Å.p­g˜&Rkfu%àª<Ë‚}&4˲^&”4–æ)a•„eGä4ã6F87ÀÛØXÌé›šíµ¹9ÎðÌ™s,§‘Ô0cž ‘¢$̦x\1+ƒb_ƒYD.ã¢Â_Ž¿,ö;‡vä*^ÖU[® üwï^<°w]‘U±{jË@ãþ‰p¾)ªkºäoMެÂw×^;†.ñO<ã’ó~}ª«36§Ø)8¢x®rm Q‡ªñ3o5eWV›¤«“+ 2…ÁÖ¹&èÊ¥Âí:|.–ÅÊíË%® ¬¶¥;qÜÃZñ,¾óVEW´¨.P•ŸðÇlÔ`šøþ[(J<À´(±{2Úª©Á^h”I¶ŸyXð”i>œ÷öó.VVAÊœoY-w‡•ó&½iy\ß·½=Vô©íŠjU4«ò7Úáàe ¯Êà‰ÆUK¢Å½ÖGÜ.š²¸ß…$žªšf,3CT?Ílîë×XÏ„!6Ad±Ø4®}¨«¸—¾µ«¸òúË ¸ùé?HH‚Ë̾Dpc˜6ƒ‰/”‰ûR˜åqjiêm† ÛÛb!yˆ/úÖ'_YùJŒGË-}C?àÎycTBüýga9‘±ñ²Çý‰sÙ…ã§äò„,fAͳxÕk<Q€wP3éwëZG æAXr¯'q{Šß‰m1_s–1=Ã/IÆ9x÷በ"‰¨ª´—J ñº½þ2ã¾”å' 7CDNš~ŠHB‰f§öAj^¸7É î|þ¢¢R±ÊüXÑuýú#øÃ­ƒÉq‹L>SÛ×N™7û£ù©|Eëc oà_XBÁÞÖ«›/nß~1Ô‹Úc©'Bßz!ߎ…ü7Å‚(Âoè'µÏ±ùr²©'\þñ‹<ìê®ô·¾Þ@é/»$¯ég„tôÙ\îy_C…ÀíL3!¿š—ÄŸûû3LGô&,‡šóWÛ’IûûÚO¹smˆŒuÝÙÆŠ_âì;~µžúÀPUm } ×"DÅCrìµ}C? „ÿl·"á½k»®½þ\ÝAõr_toY´1V~ózðÁƒÞ§Ë’íîOðáþÊ3¡3ü—: ˆŒ4ïoHõMp`¿Â¦37ÀY!ó½2yü.é¼+n› ,ZZQýWÐv=ò¡‚öj÷äÊ£øÎÙ\ȸC2B2Ò,špò”/õ¡½lKÏ Õw/g )ô‰f¨ï.©ø®G÷ŸmF­É†:¼¾$rp=P íq¸û-ƒ;#b&Y64×—Ô%3zø.æºnõ‡k?Ë7$ÀYlÕ‡S6}±;£ut4Ä]Ï(c" Ô8È}ß|§2.±•P9Œ0¸æñ½ÛÛRúØm±ÇÏþvöhá DR ÑVõè5@»CX¶ÛЮSc RÍR®&âCu®Ë{¨¡YRùRÛTÂ}:ôL^n£©¹ƒãÁ…ˆ© à†o¥L?U?1¦}ÓÔ´.÷vt„¦= â{(صYM± tΛ~\…­IÒyShË8öH)Dª ³»£&‹_æ!nR 8i“¨äãn.œ’9öj&/€«”(ÏC±ýe(rLiÓ§Ôsc, 0`$`n™˜rf¤L}›;ž)/…É¡š™1–?7ÆšßÉÉá»0/i¬Ã+9[u6Â~Wù«"}/Å®­ rpQ×ø€ñ„k÷‡jôâx±e¾S³D0úèþ‰`˜÷º0lœg€NÁFéùƒÊÍí×ÿúáíÜë ãb( eõòá1gV ¥º?v¨ÊO ‹*eVçck¾ê‡EÎŒ:騖8ràhõó;dͱfGÇw5îb°÷cÚåC“Pbm(ðcËã¡—½5Y=#ÇoM“¹’×K6ûÖ„8eu&å4hÁJ™úÔS“aêô83<5‘!¡ÃT âÄý ÇÃK}É8™/ÔŠ™äWL(LK b©?,Õs—:zk’êDizg!q€ÂGMõý ?ÁY&4J–öï“úlr;yÃ2£“T:½„Í>–A ¼!¶ìç*MÙòöîê×+áóLD ÉAa‘`we³h¹¿úñg­à#Hë=ÿèQ÷‘R,ó]Ñ.úáê½õN»&©t˜p'â}1V[b¾Iͪôù† ‘„ÍR€@0Ü{ךÊ÷ˆgsxˆ©éÃNãn@©úÛ†Ëjõ?Lè/\=xh‡iœõ£fëí4ã†iþÿàûg|/bRø¿+OU† endstream endobj 2466 0 obj << /Length 2433 /Filter /FlateDecode >> stream xÚÕk‹ä¸ñûþŠæ’@lkô°e{²û%p“Ûƒ²ȇl4mõ´sn»ñcææ~}ªT’_ížå` k©T*ÕûÑÃ7O¾ùó»?=¼»½“MÆ2-õæá°œ3éM"Ó*Û<ä›n…Noþõðãí½T¥9Ke „Ò©h÷»SÛ²EäwÜ¿q{¯ÔäÖN©˜imv2 ¢Ë¿»ÙÅœoÿö…ÇŒs. à`’dqÞYºKAÞiùÙ¶}Ùµw¿•„m»âd:{³SÀÁ¶……ÄůŽA·<»¥@ì}ÁÊÇqÝ?Î(ë²CàLÆY î6\¥Üo4K•Ö~óDh"Õ°Q*RdÇ™ÉáA)™Î¼(GÛØCÝXЮÔbÛQ Í·Ï72Þš²ÇmœmÛc€—ж}•Û†¨Ïì-”fzp’AA—lD’EpÓ#-‘­èÚ˜Š8ÕŒÐú@_bÔ±òb‹§cgsíF"÷"ÞÚÆÐzQhõyðÐå fÙ{ÒI:Q‰TÀR¼Q,˼7ü4¸S:!Ø.5ÝÓðÜAt ¶…hËLé1ùF³,Q©Ó<ÓI‚$£,"Äþ’ÖDo&8‹2I·|åiZLy·"Kôp¸ŸyCær|Ç‚‘•$XIˆÈYI{NîÑ´uAGÛÑô*Žƒ§uÞ !³­+Kxûº/=’)ÛÚuÝz„ÎÃæ.;“"J!(ãÍ\ÃßÚ/+ÚÑ,в©1¼t/»$”÷ë#QÆ #½¾¬0™UÉÅ*i”L’CKZ3¾…´ñ·#û)H5*KæÙ3·_8—•3šÞ„HHÏ…¡Ó܈tûÔŸlÕ­å ¥%•ƒxžÎ%û ½9rMå ücé¦ÁºEËÏåK8ÒYs2¬¯ŠE½›?±4™;ò.Êâí˜*Ðl2Õ‰ ¼DC²jíŽôÚ°/´#Ñë),xÆT*æjÎ: Òd¼ƒ‹5-Áf)àcÜPñEgR<üwßvjÏv_¸Òà½im Ò©Lm?ù‡ ÿN¦ T¸§\£{¨&H$s;ÀVJâËÑt”;-êé—nð†tîê 2„œúzl&.6Õ7Í”Áé4z|š7cÑcú’ögÓ˜“휰XÔ^°I…£Ñ8YŸnÐòÒ¶—U†£©aÚÍ'ÉSK&ô•Ü9ªÓœÎ¥+þŽ}}¶ô4O¶î†_C}¼ÆÚ¬ì™vÆïÝ,†®ôŽ‹NÅ7]ôr\˜°ÿÅæ;{8Ø=êA§±µó±†KÇ.‚nM8zþ;É#˾¯ ¸vô…Œ€Öz-|oú¹éÌGøÏoÁæÇ:ÿøÝý÷ß½Ÿ½ò±*\È]ỹ%ôàÅS5Ü;±¿ŸŠ=éh‘©Ÿç}uzí·:ÜO?É‘`Ww¡ñ>¢×O¶²E÷J [¯åéÙcQ ¾}ç[ÛX3!ÿðÆ£?\ytBoö¤³ç`æ•W±–L¦_—^Ïy°­÷µÆŒãm*øÝBüÿÍ6ú¿6ÛÄËÙF$"g©³a¶¶F^™mD6n$4c_Ÿmþq“b–Û©Ä5þ4çж~ì VC\ÿEkCIöR'4jø»´ Ì±Ã¤A€Iû™¬L«Dð7g8ŠÓ9#èl2‘ÐÔ¡”ºœ:èˆÃ×O¸Ä©¿CúUJ¾5uˆ$bºÕÿýØñ²Â gI´œ;"%ÖçŽ|çksGÎEreî‹v-†1ñï5`¤Z¯P_6ܚʪì·@\4u¾e)‹Óy@Œ‰ Kã´÷Ãje¾ƒ³#¸YùŠsÓØÒta0EÛ®uÇ2‹ć[.#™î÷Uá˽¸ÅíóP.~›q(¼¶ÌÛ•—¤†Ü:<ÄÁ²j2bŸµÆï§ HÛPªò CcÇ"Ù\s¦<Õ­ï ¡}¬ºboÊyO5ô!0¶óö†‚?èÏš¦,BGæûG÷ÍÞ|lfà»ÒÎ@N'§ØµíN„Ïà8õi¬àHÐåí»õÄ6éâH4µmˆ†õ™ÁÓQ¡’0™åµõÀªîh±¯«¼ÀfŸ¶ô‚ÂÔð+ˆÚNßÖ}·¯OÔòCšûTµ5ùûñîe€ª²C4ÌŸ?¯öÏ\!e‘Ý㔥ZÏíaYöy÷]÷ï[@›ev¦2åk[´~Ú“©i[$ýMšöãíc8¤é“ÖC¸ƒx‡&@=béGSÛÐþ\ŸûÒNqyy¥zùp$ht—jxÔEyêG*ÔhæeBàØFî(?íÅÐv!=‚Òfßõ¦t)À$[NG$œÃ¦ÏD¸!öuY‚C¨<¦߉pI žìôðîõŒÁ OëØýp¢Ã–½ƒÕ›py´=Nj(¡ž-Ç<ß³tü™ Æ?Bî|3"ôd"€ˆ¡®GpI ¯&¹ò³‹4Ôþ Ò•feö¶û}4òÆDEí ª§£z¥Èù[U0“G§yŠKµˆËPœE2^4,.gªpsò‰vyÑvMñˆ~Ú“gð¥èŽ«&‚Y)Sý®ÿ 5þâ ™ªî(}eÁS3½ò<¥ª«Q!AþZ•¯±•F,‰G®ÖL³(U+–žqž°HÌM=0¼h½2 ,´"â@/sÚKFÖúš‘µ7²FÖ‹,é¼wÕÙE ãÿ‚§L@4¼hž†¡U£ÐõLØÂ{¼šL;“’ͩ֤²‹.õû‡wÿyi¯  endstream endobj 2371 0 obj << /Type /ObjStm /N 100 /First 975 /Length 2182 /Filter /FlateDecode >> stream xÚÅZßo7~÷_ÁÇæá¸ä ‡?¾i߸†î.ȃ*+®¯±$Hr’þ÷÷ ¥U$GJWÒªl€»;$‡Ão¾Eq†8zã9 d(}!†}ÑF4ú€F2ÁCÌ•b‚$ã“q¬_2:VÙb¤Èqr&¯oÈÄœÐHѤ¢'2…õSbŒë·`<±2ÔXÊã“¶-| Îø£ÃøzdÒá2_ #ZPÅ;í›ñBí!«GÎQ¹‚õ&¯_ ÔHQWP0QvªAÁc]ƒªQœjZ²a—ÔL¥Z¥ö…YXõ ΪA€0 L„¡¡Å0_µRIh©VÁa””ýZx—±T´‚Ð4xg0R•˰8'—M ¬¯<™€ya|lמ‰¶ZªgpºE>bÂh‘U;MH±Î€,è!!`£.‚ÈH5^ FKX[øê‹N¡²t F¨¨õ!Æœt(X@µ€’v`gDHm‚MÇè0›D¯=€0‰¢=€IÕŠXº”j'¬3º¢«à`"éî Ëé*°¨ˆ¡µ•LL¤ãqÜ¢Ž8%çu6/ùj),7Qµ1Ö’(ê¸d0GHhEµ^p&§³aø$USàPâØÆ”°Œ{b?%eÑÁ”ªœˆÂ½¾Sà@¼É.èXq&RÕÅ™ÌRß%“Eáà‹9rí›Ñª¦…æ\ ¼æ’ª\2Å;•îìÙÅååEóæ·éÈ4/ÇãÉ⢹}úyQŸÿù0þõ¢ùa2»Íު˻wÍ?šŸšßúúpÑÜŒ† óÖûdabl…Í0——` k”œl b/Íå¥inMó÷É›‰i^™ïnÞíìq`ŸÆ/Ì÷ß_à¯=’·.—µ"PÂî¦Èý‡ÇÇMM^™· "Æø7¦ù÷þkJ±¬ûNÁifüôáû½ÂÞ¹*‹Ø w”öÒÜQZ„m€§u“4m‚¯žCš¥Ø\º®ŽcàÑMš$YIÏVy5/êN^ÁÔWk·+ø@€§-àB`¸ö  ýŠ•ûB}ÀxÍõl2¼>¦¹~ueš7£Ï ón‘׃ûÑEó#¦s/uÞ|ò4ŽæË˜Sß½Ý= ~˜|6«KM…¾ëÁ ½!O®‚çsL\œêSܪ±Ôð]?®¡F/ ŸHÞ0Lklv² ¡½®1 fׯöºè®‰Ó¯'[[xÁzâ²Íˆe_&^­¥.¥yyyYgh^“qsÛüëæ'ýÿî—Åb:ÿkÓ gxì_¦³Éÿ0Ìî›é`ø+6èo¯‹ÙÃç}Ñ E†Ê “¼¤Êl]Ñ@ãmôe¯ÍæC{s7˜ÿb'S]Åü+bAbÓX6…×ÎïaF z[l{¦l€¿¹BÚ¡{³zVKÜå=H"âÞòÁ2¶#{’­À´žRÇͧyX._{XNÇ{Xö+ÇÊ­«åÖÕrhÒ6b¯Îçrejöbâ;³XÖg[JÚ ¤éìa¼°@õ辿(_-lµAªxËïj3œŒÞ÷®Œgä HÙ‰õI»Dëƒ&ÌüMe>'ûW&g«B>S“^rÖ!)#Êp>’¤BȘÂzbY2mNüG‘äïëʺ‚DZ޶õÈ9=ˆ>¤p¸®Ÿ>}²£ÅàýdKáÏ(3ç(sSxÓD²"¥£4eŒM¾£´Èi²ž¥l1ð7oñì&áÖmÎݦì/d~4— \N`àÒ²ké•]ÛÓGeÝŠbIŒÂßÌù?öÈ+-Àc§Jáø‡ó´Í´ŸÇfÃÁ‡áWéA9ë%rîØ%-ñÉQGé€t(ðá™G§„ü™GàÈš=Ÿc=“?‡±Ö‚ñ†M´Óisº¸ÿÖÊûX¬÷;[º-6xyî³ZMêÑU)+ŒX£‡¯j,ÉA S´NögÔËð°JªW‘ì¹×h ¬³×l ¯9?$ë3EÚ—:ê*q?œ˜Ýoàé™Ãm¸âÑH£Hó' Í/ƒB-4î‡\÷ü$:¶€Z›žD€™ò9Ò“È×±®‘ëiµÒá¤î|õ‘èÂ^ŸØs´ÔÚmw/ w@ìØ-ÍÉj¥µ›´}¡®ÒL8t;@“ø,ÒÈ… É™¤s±©»& ­øv“¦Œ“¦ë:¶rTŒrb­m‹ƒ6hçh¦Y޼Í4ÁÀ4yÅ4Ìm#´ i-qjë^¥×ˆDÑia4 z¹|…|?éqŠŽ,2¨Ž™„àXš´X˜\)5~£X8šNg£ùüz oƒÙâiúoðÔ«~ðP¢¦øõ†ÉÆ¢uQüþ)6«®õV Y^ˆz¯Öë²dc?ûءؚٖ¬÷nÎ&^Wv„==ôZFÀ§ß&ãþj­f#PŠ— Îq–´o¼þ” ­yÂ`Ð °qôVïªAZyýc6´Mf(“uBël† vÖùs[ôbµ{±)¼S°–t•õ83ïºöÚ)M8+èï :J{=aœZ'ßwt=:¤ ÒÄÒB¯1‰µîYiÉêoX¢E‚ŠEß(Éî¸Î­Û"t–6…×)&h‚œGtÍ]eÁJ%ÅŽÒ4õÊÿ´šÀ¾cÛ³:ÉV±pó§CåðhG·Äùx‹[eX’úDs@Öìš.MYƒ òm}d3ed¾,ìσñýh¶¸›M>çä\èñ<¦V`àEéë(éµ „›•CËRûÉo uû/ 7Q·¿òÐ7êv”ób8u«uö•ÎÃôúã(QêÌ¥^õé/´¤’'¼«ñ\ÅÆ-Æ8â¸ëNþ7P¤ endstream endobj 2471 0 obj << /Length 2826 /Filter /FlateDecode >> stream xÚÍkÛ¸ñ{~…‘CQ‘”Hi“|h‹l{Å]‹æ¶è‡¦‡jmz-œ-ùôؽ½_ßr(‰^z³W´@`M 3œ÷ “,îÉâ¯~wóêíµâ‹‚J¨ÅÍnÁ“„ÉT-4çLÉbq³]ücy¬ºÍúØlÍ¡[ýóæOo¯3=Û" ÅtQÀv1W.z•ŽÅZjβ"_¬…†MÒ-û×Þô¦mîLmªþñ׫µÈ’eU»ß~ohÐ42»•È–;³é»·ÍÐoš£é>'g«µäÉòÆïhËzÛ׳ånÉwÃMIhÊC׸Ñ-í~h«¾7~šnËeš¥ZÁeËè.´.Y(Vh™ãº”åyºXs–©[U¹Uùì0ÅX4[ó!†1aWž½Ÿ¡ž”3Áµ_ò›È!…å<-"ôfL'òKôfpe>§÷*áQ½Ž²F†EPÇH&áJ³Eï"ºRPL€òYqÒׇ½iMäH‘3€—q! IKn§Y¾˜-úœÈ$&9ÁòÑ.þü”K > 6Kb‡ä,ÏFé¿[­¹Òˆ/uKõŒxØÃmŠUâ)Æt rZƒ&á«ú»0¸ð29ÿ?3ó>BzÁð#BzÕÐç™)Y®Sü•*”óWR°'àr¶ø•{/…§¶Yñly_mMç ¦ë«cÙ»Ï|Ùìb\Ò‚¥¹xê-Š ¦uöñÓ91…Ë•Œh\€ TNÎ1\2–œ1 àï-]*›;aKŽ <Ô›¦ÞV}ÕÔ%TÕ»_šv%õÒÔc$h¯µ®¼…ÈäöÁ|Y®D*™¶¼3tuž1Ž^Ë^ØB±®³X‡¡hÀhç¦l„„_! ¸ms%’í&@+,¼ë‡m… @ šÃ®mŽnêa_möÓ1?©8¨ì¨D?D.÷棸* ·Þ†-êt”ä£é˵c„Ð ¹Q‚»ŠwÙŽ»áhÅÄà,p—óèïÆ]y<ŒËYXR°k '×é«ú.²ýÙäÁ#Sƒ²ýÉâr€mÙÓq•9l»« ò¿o¯¥œñˆœñ”"ØW«58°å®êÝ t?#}Dˆ6¢˜ë¦7W4cú}³ýðúÓÇo¿yí@m²Ôã`kvåpè½ç²Lš‰¢5´áýš(8–ˆå±zã¾ïýoýþ™Œ¼»Šóûò^‹HS:ôp8øÙh‡';´2ÝTìp;‡Û '󌴎$4•ÐTN"ñ3ïÝÕý2×ø!¹ˆ%g®ÔU†¹„ N•?Óe·oðP»Ù¡ÞB¤·§ŽŠÛLÙÛÈHž#˜š’*½àØÚ!q(KÂ5±¡6bç>>ÂÀ§ )æAÜÑBJ`E׃¿,Ûmõ³‡0w4þðmµ£àÊ%¤±²ŽƒÒs»Ö£žx.\¼žÓ¤ñ]rIéŒ ½À”evJšGvUS¦ËæŠhÁ¨Ò™>¦HûYfEu½Ë’2ç3*fØ›HÉ õb>flßG²ŸuÂt®¿Toëq±€t%3`àÌ A9 5"þ¾·½ êܹ܆¦ºÛÛH€_¤{N˜œxªæäHƒ{—Óô`Åͥ͑à'š#Üæ!àÁÀ¬§Ã|℈hÝTðXâª~óJŽhÜ"!‡P‡§H›~=e³Ò ®à™ô©çÀ¿Jñ’nLvc¬dù%ÉÎT RiyPŽF[ùä1¾Tb©‹E}#å*,õ\[F¤#²ûxÇJ_âÑ“®ÌKj^Ô ™Ž²>¯6±ÔÿœPÏñ¡5§C¹±ºjtûèt¨õjòÃ’ «¸0yñŠC²a“6Õ”ÆÃ?–/ZÌâÝðÓ“džgr´ZÈ™ÙPWApÎ.PP56&ÐŒŸ†¢µT©õtY~L‚eSGÄšŸæKô¦0®@SìhbO€SÓuÕ­-k¼§>ÖY÷n=8€mR„«½c·‘q"Y"äAȳv‚š;ŵÔéò/þ.®Å äQ‹Aû¦éè.C=:EW†¦Dy26ð”YFÍiå+¿ìÌSÂŒå LÐ u¡žÌ¦zRÍ\C kȘ–#Ã<¹®û TÝÇåÅÁ©lË#¦Û^önTE³BÇ8‹ü¡Ï. &Ó/´Æ $2ä#žÛšcYÕÝuPt?ï;…dºà!ïVy¶ÛƒéPÙšòRñPÙà›¬ÚŽ±AgSP„"ñÎ¥?øVë'¬‰Ï± ´²Óv¦”„ÑÇo%§úyÒE7ÏC¹èP 9 Gc.ê@ÎÙ»)ë/pnJKL²n 3 µósþà¼;%w®ÒíèÈõœ§çD¨d¦Ó–;è,ìnŸ_»/0ütìáufí (0m-'Á'R)_~WÑd2¿¨J‹àìyäûÍÏ"J͵Á™ƒP¤Øõâä‹ßTpq”¬ÆØçÖU´oè µ:<º§/Ê5Õ`Ñ©5ÀµÖ©“"W¯.¸5€OO„ç·A…ºc‰„d]©ää(pI1qηva¸bÀv„‘å4;t½Ÿr{ûÙÔ]µµ 炞²6’Ð@dâ ‡L\ùç£É3œ×9ä>ëp¥ˆ?|hdRÑÌ>˃Ǵ&B¶©ÿ1uC´Á+ƒ—IkÒ¾N@Ž›Öw³Ó’Ýü<-)k0Hˆ+ÉfcÞFõŽc¬l"R0ä°º—,Móñ½`jÚã÷˜¶‘#Áï¿…}}}]ï°°ÎmS¿»Š·æ­b@Ò·e‹Ši,’.%ª”E±¼H³³oÇâL^ºÄÁn´¬À¡>”ýÐZeÆÔ¢§•x<5-ø ;Œ)™ò%¿?­ôÓ{Å­(j£QÉå¶1]ä}$…`YŒ)iÝô>qˆ–bzH² zw(QÇýK‚lûA±·|·Æv4qɾ9Ú[3ÐÌØ×RäîüØË…3˜Õ]/´€*š ¤ácwE¤P9j/×xHÑ^w®!56&Ž6°K=ëBE^'á¤xJüÙÓ¬œJ‹ŠNㆀ+Èçžq€[êìǧӉCÁÓ!¯µ®Ó"z@ójÚm‡ñ$õÏ R_Ô={€Ïw¥>{³ÓâÒÃ#56ðg!/‰k•µ¨_æ\«sß®yg‡aSš^•ýÏvþÐ`_Gb {*ZpJmµq¯C€Kv&ŽÙ™fîm0wõ•=vugo^ýþÍ endstream endobj 2478 0 obj << /Length 3124 /Filter /FlateDecode >> stream xÚ­ZYä¶~ß_1ðC¢¦¹¢¨Óˆs»ö¶8ƒÈˆ¦Åž–­–zuìxòëSÕ”F»6œ¼LSd‘,²ª¾:8áÍÃMxóÅ‹?Þ½xù:Én U¤Qzsw¼Ña¨LœÞdZ«Ô7wÕÍ?…»Ý}õòuª=R“†*XˆˆÎõpØŸ»Ê6¿eÕ{c•FñÍ>Ê ÓðäaœªÚ»}d¢ nÍTÙ ¿ |qïx²Üq¶c¹/Û²yj™Q¶Bܵ–{z[6õÜŠã©™@V‰â”ûªÎѵÝÈKßít¼¯w:¨dßR±ÃXŸËÑâ)á„{¸©"IøÝ‘/JëŪ,/Ü=½ £ˆ‰÷’©8žï²ëÎ2éÆ2© Cãhná$ îwQL#8s_’ kØ*¹ëÕ,ìAâ:Ñ-(å8:„Ý‹ÌäH«4B­â"fÂÇ ns£;·Ï*b˜þß™ËÌM›I‹Âçîm˜„•½Ø¶ªÛ¹Í–Y­ !ÊQ»PÖSWq{lkhEš³×!p ÂÚëXiñ_v»( -þ}¿ÓI`û]’$‹$¦Ã Zy Vq´½m¤¹y”½åCìáþeÃÄ ü2‹4u6/øËS»}¬³àÍ(4Ã<©·ÇÎ-ÎöÛ]lö>Ô÷ͦŒ’åÁƒmmO†Èßpƒ4—ȃ{‹§}êÈ’‰”‹`°#÷€æÒï+h™ëarÆ ø-ùgÐ…2-£vÕ±qÍnë½}7Õ=mÆÁ¿‰ÃǾÜ#ˆ$}(›_ó`Ùï4œw:ÛvXÈ$±7-ƒX`â0¢ µ!¡·àêÎ{{Dqía”­8A“t¡®SëËxƒíåÕ†‚޹^Jú›†µmàá’»g¡95†¡¥tœ¾Ã€H'é„ h'«[K 0=œ®klpé.S#[P5\ØäñUìØ‰ †¿§-ÇÁf¨ëPÊD_ù vsŸ.(¸æIÖo¹h—Q>LÖ UömF-?Qw8Ÿ¬·æ?u·?_@‘zÊ l¤…³#ìá2X·Y'dvy¾42çØ»^™4\ì¡F罚Ušè˳MŒã4qmY(L˜ámmÜýPà OˆVIpžr ÛÃzͽâI©%]ÞOL8ÄÆÿôöæ&ò½"œLtgM’ÙI¥‰ï¥B£Š@ |Mî ÈW†#>’ÀQ½sè^ÊÈr½+…è!5ÅÈÙ={ѨùÖ=ÌÿÚ–è¡ßÏ^¥j :4YÇ ÀídoWgt˜ïQ(B€Ï9Ù¾P5×¶÷¨j¹ÏžåðWÊèté%à,ânÃÛga­XújÈ"Vr)#Ý0,ýõR”D^K +ûáڰꌲËb“k –•ïöHÁXÓPmú¢¹CS…n´ÃÈ­Ç“Åõæ•¥! c>2Îe‰h醑.ÜwyÕàL…JœÍAæEe Nð{€L¹©¸]A AVŽ PAÁÕG ÒY7täß9ÿw³‡º·²Ô½Ëÿ¡ÍõŒò\·ˆSaÞaè-’n¥˜u8u\ËñÃ8€Hx8t=ÊàbÒ$Øø·ŒxÆ h‘J¾Ÿ¤‘Èëâ†ÙµP’QæBVbŒg8·b.²>|öÉ«WŸl˜T«¬ðaMóúOµmªÁ±»¼Âƒ0/É Êb/“ô–Ãúhdƒ‘1*/Ì*YÒxq-›œ¢øš Å®´ ¼+—¶À'–…¢»®>Γ7ŸÒ˜ÎÛƒph  „-½ûß+ãÔGFÛ_z;n„÷³"5LÍ8,sŒEÚ†,h¼9.³nw4RUÁ  Õqºz»œ}.À;X«5@.ÄîfæÄÉ“FÎìã’zHäܯ"_†Ž©o¹E>3‰…-C‘‘]×K\Âf|öx¤sÓøûû <^ „¶’œÃ›Ä°<Ð[î·£ *ð§óÐ`ÿ†UéàÌWlu&p£›µmR•s)ª²~‹ŠUbæ0Rîןï”ô0 þÔ®Xìѱy’k5_«ÉøZ Bî÷’‡§×©N,˜{H¤¡•Æ÷ª…™ÎWN‰Ù=B¸@«ëè àÚ\wÒNIôõ ËÁÍ›Ó bå>*2.à_:†èÞ>N㥪¬?n×Û-Qóµè êVa _H ÐD‹¢ RpÀ‡;*1rïlç‹ç;½ÐŽHtG?\£^Â2¼ÄÒÍ[õ¦­ „³È絈gØã×3Ãëû)C¦"H~%…׸¹uÇ©ÕÏyïaAbè ­®Å­t•ëÌË¿uz­1‚‘ü—Ò•®Ÿ¨°¥‚æB=ØÍÚï×eÝW+'ÿ d¶i\Uo_E(NѧüÒV®è8wþu§¢=ä*ëäs$¸*ÚìuNÏñãí;|>¯ÝS ÞI~«ø³¬ï‚ë‘Ñ2ÛáCEs|Øa•ìÁ1™‚Ìíá4Þ—“Ò@¢H”Éç´è7ïïÕ2©öŽ¡«®øí–E 0»eöæáMÜKó;<ÄbOÈ¥ó(Oãx>}ùòññQ¹w{,˜]·ÿØë»†è¦Ð…Ýl À™Ê!¥XHá; ®Ó~[úø¼£w êÁL¿T®AúC:øšp=Eý‰ŠÀ‘üjî¥* EZ+c_ÉŒÏ?o ü^UƒbM3~ø‹Â°ð޼ðHQ\¨4œo掔üÇ}×ýÀ_ô¿ýŽüDìØ ¼æÄ;O-ÆTõ Až,»QVjÝH陵ŸbGnª­”<îˆX¾%#{ä¡À ž÷?|ʃßóà_fHdàšÚŠ1p¼ã^§*ÊrÉËœl¢”e%9É&'ÙD)É&JŠ ƒ—Y_É,ž]¬`oÀ¿®ýcá.)ÿ@‰±ðJŒ…”W/¾[b6©Vùõ?$þ<<±ð:©+¸ñ…¼š£ÂŒ|)ƒØ’XCbŸ/Ì|e[hÏ3„˜íâY®}™Çsé6 â<}E)tª |J2Æé,ª®F\x©C¥C“Áo틼ø»2*V°â¦)¿º{ñ_¶GŠÀ endstream endobj 2486 0 obj << /Length 2391 /Filter /FlateDecode >> stream xÚ­Y[sã¶~÷¯àK:ÒÌ @$wÆi“l›ìf{Ú‡lh’ØR¤JRv_ßsp^$jãMb?àœ¾óâÁ.àÁßnþúpsûN‹ e©–:xØ‚sF:ˆ…`:Lƒ‡"øiu(»|Óû²©»õÏïoß©x²&L5‹Óv´³E,pÒ w‡›0N섌aQHÓ¾Ïʶx³ÞH%V•˜í«?¹vÓõ¦ªL»ŽøÊÍ}·NøÊÍÿÄiʡЊpuß v}Ö—]_æYEÓ£Æ¶i©’7‡Ç².ë5ÍZ¨Õÿަ-¦îýÒÖt§ªïi¯ÕD{lÀV©R¤ÖwuoÚ:C[áb‘òÕûµT«æÔ͖ʇu*W&Ç÷uS5kÁW»ûK×™®C¨]ÖTþÝdU¿§ú×Y»cùÒ'2JY¤Bï“7nŠžL‰˜âý°GÄÒDø ÖÔhgt—+õIJrg‘0œ®,’Ê/Ü÷ý±{{{[4%kÚÝ­àLpßÞs©u¤eÈá/IÅ’›ÃQK0±‚΄vüçZƒ=L¾ï³ÓOWÿBƒb ĉXrácCÃÈ×M]œòÞú:Œc ˆl“[^ÀÖ´ ÍŒC?Rñ\¢­q ß›q‘ ì=fù²YЋޒěa¸,ݼYÝÏc—CXoûçëîŽcúÞÛg†KÆNíÝœ¸;ôî†óº;JÝ-Á¡òsîNtßþ»ëØ5+yhñáÛ‡›ÿÞ H<îh²(N‚üpóÓÏ<(`ð}Ci<Û©/Áâ%­‚û› 8s^Zp›I*@‰@`©(Y·aý™?…S~€eMYmšSG6úÁmbY]PåÝ:V+“õ'r^w]w•DP~‘îVÇ™Ÿ‡ÍTºJöÓåmiÅ›©8ª:‹ÑÍ5-Ø—N«#;ÕŠ&?!:¹ÎÁ.·ö<3L³h˜­5ŠqÝý>ëýÎTÖëøÄ¹tÕ'ÄJÓ¾PëΡš©:ƒìyoZgfÙ NR3Í…7IŸ•U·hŽó2Š”Ìr4y¹}q‰ƒ@`P%.L»žïmRyBx7ÕÛ…«‡9$Ä–ÛÚêâtµx! aêÜ™1”°½T7MX¢#«²,þ´Ké.C2`‡C4Ú|Ÿ­¥7:›-€ŽXVqTæÉTK)a|„ €2‘¬v'JpV?‹©pD71¬×ÐVò©a-vJØTj1ÇÎjb=´]bX ¹Âh€šŸªÌåšmj§ ôÙ ÅáckŠÒÚÁúJLñOxHV%Ø(-àŠ,Ìýœ]p³;Ú¶o¨}êÜ9µSõUær£~gԢ߷Íi·oN–h2 VŸaãÑ…Šaf¤ýjÔIdÁMoü™ÛÊis2Žß‰)'”’OùÝŸiJ2M?JÃø©Q,Ä€€4%c x9Z€SP#ë¨Ìwiì% íÔ ˆY޼lgº7." ©ž›j¢$[±z4ý³±1ËgŠzÉËP®ÝфˣqôØ6ǦµWÐÒ 9®¿<ÈÂ5ÝÒ@¼µÆ8i6]Y˜ÂÊP÷Ù’÷Ç3lJŽr—¹—Öñì.Þ¥j‰ÜI6à¡»ö¦W]vpµ¬[8D¿Óùlù˜…cÊDs]n&4KC}¶¿º›œ2”G„'¸ »&£z´'_‚>ˆG‘ž›…Øg9vR¨´¥¥ô8’!KóÓüÒáïì…ˆA§U/sWøH´¯|È@[ ߥTgï±™£MôpÃÁWèF8|ˆØúà€ÉåмóÏ ð-Û1›Æ¢Ò´s‘YþâR.¼mšÂT×i"‚{^¢ÝÝÇÇÈô—Œ^Óó/cð°Hy8gÿ_¤x·ô5^ª“o?ƒÞ]8k`¦m›¶»ˆ³TŠ9æ‘@ý²+$ˆ$ô…Hv¶޾x\ˆr–Hÿv‘ðR¾^¤ãfÊ´>#ÊoqW^¾Þ]Sæp;¾C|ß ÔóØœêâ÷'`ÕëoðÆãHG> stream xÚÅXKÛ6¾ï¯0öRX3©g€R ÚCRdè!)ZZ¢maeÑ¥¤Ý¸¿¾3|Ȳ­}#Ûƒ !EçùÍPt²šÐÉdz_®ÎÞ|ˆ’IF²˜Å“«å$ ”ð0ž$A@bžM®ŠÉ×i°ÙŸW¿½ùƒ¥<¦„Å 02‹6e“ÏÕ¶-UÝàê3ê9~Éñ€ÍœóˆÐ8žÌY“Ür»lw•,fsÑéç®Ýv­¥oËvm©v--‘k±›±hªj;þ}ЩȯÅJ¾µbhH'ó $< íAWÀÆHKP:Ñ ¤#¿|<›|3ÎÌÀ~¨•û²µÁÉœO·ZÍ‚hzS²™™Ï¾nH;;h•]k)ZiçrU)mô…2ú’ÙœÓÐËwd4à&ÞÛ^¶bil G4û¦4õk³iéäËUmà(!p‡d ¢  Î7ûEתhË\Thdtºר ´£®q„ZÚw»ÆcZ‚ÆvŸoײö œŽœC1M ™—{ïƒcõ’¤Á‰zÈØŸ[ÖM â¢~8üF#:r`Ê {Fnq Ütn…8:‘$`‰‚Ðsð«&ódŒ’Ô2r†¬AžÓJ‰B:úÑ"-êE«Ê…z‡k­@wÈ“„$aCi ¦ðö'…q‡ÇµkÑz …”ªÑ¯H™°UúÚ| &ÁÌR©7e-ªæ˜GÓm·J»Áß³”Nß}ºüõ'kƒ€Å$I‚C˜¸³.Wë Üf0iòITQ’¹€aNkå–tu!5î_>v¥4òÁûYˆ./fĭ㤴}!b»µ;ýúÈ?_^Xz1cÁî1fÓeÛ¥Í z¬AݨÊA‘q©!ªÊÐE;`Ø ‡ÍZu•[ß[Î"[ÙXoùó¯¢=^d²Kƒ*]ÕÚ cKK6ˆžH2ï˜4þ…7ägq8óOW¶Žë¶e¶ˆØÀÈÒI‹´ 72Ì-Úá„w%^ BøÕéFL¹€L[i¾…8X2ý\£T  R «Cs–Ë¥­wð«Sæ¼â0kÄ:Í$F#‡™ÏŠF¶›%T- 4·]ð³}BîH­,#1ëkŸ ƒhz É8'!ïÁ˜ŽaG PÛ34žaÖ¢ KU6­Í"Å$Åb94ÜíZ!ærOe%7²n;j¶2·ö¢‰³΢žnÅÒXˆL¡KÕ5vùVhÏß=å*2ÒÆrRÚM YÙ¬;âÞ¨+äw±Ù¢#A`Q‘Gî0N •w¨“ÀÖÂ~3Á§; c$ Ò‡ 'Œ<À îN03Í$øî&•›ëÍ “Öªe£8ô™ŠÌ*g•²^907Ð^TÖ½ï „h‹ZæjU—ÿÊâíaPÄ x$$qÚ7Æ¢ƒEÇ%Ž„qo˜µˆ¢#†a€7}Š[t\n£¡Ñæ£X˜ BC tUÖ¾‰[ìì{[h«‹C•æ!%i˜BÞ“”Z¨b7–°Ð\ò,9ÑIN¾ºÛ,¤öÒê¾vਬ €‡Œ©¬ v^qtØp>Yöxm$J}ƒ&ë×Rë9NªÅh÷DˆŸè÷ŠóÆ ,JU6æRÞþOü¿£3ýaÑ¿8:ïãð#¢3}0:ã×ÎäåÑÉŸü¨xWCì'¶¦Í'‹ºþ;–“þWÓEß nÑ ûÖ·ÚÍâhê ý+æ„jçÿíi9à½ìªA!9úÅHÿþêì?à”Ø endstream endobj 2497 0 obj << /Length 1410 /Filter /FlateDecode >> stream xÚíXÍoÛ6¿ç¯0²l bEÉ’Ìb>´@2`(: ó°CW ”DÛB$Q ©¦¾ôoß#åØŽìõc½ Cð‘||ß¿G*ád3 '?_½^]½¸Ké„–FédµžÐ0$ñšYø7"w^ŸÍ‹º¯A=/ÂÙyµØˆ¶¼(ÀÚ¡ ÃïA#É‚ÁeÞA©Fy‚ÄðøÐ‚ìhø] xYçw„ ý<¦_ÁÃþiøÅÎ}ÓoC 6B¸B£ßŒÃø+q¸ QN9uµÙ¿bÕZ¢äê©BÖR ¿œC Ü(Ù·å .€ÇÍÝ,J¦f4™Šz7K“)Ùû“,ô~­¶€Þ(c`A]K{ä±j7vijJ¿©Ûªë„ÁIÕu_ L¼®qYö¦ë .ŠZ4¢5wlt„5äc!:3¨Sþ|‹ B)©\Ìܽ¶F ¹·¥×Âo9–)#´œìÍQP‹­Ô¢=!’.ƒ/¿¢þàñÆë¢¯¹8­å UéOq@’FÚ9†0U6S²-]Àí’æMWïg¸ªx[=æeÉ rýà(´µÃ†º\÷J,¯ïïÀóji:©ý,‡Y+6Xç4fdžeÇÒ‹jY<ñ—0sü8ã†/áÉ‹ÍP㶦FÄ×»ê}lêÛW8úøiá]‘­|1U³(¤áViý*¿øè™6ƒî×¹j÷̹¨åã¹(úå(&ŒÒ£Ä®+3ä¯-eˆõpåóØ8ê3 çØ]Õp›–]åøa @„gõ å“wž5æ$ÚÃY¡r(âe¼ü‰vÝ7 W;«P¹=ÖƒNêø­´¡Žš­-«ˆA|û®“Êà2‚ˆ(Iq»¬Ö¶W¬…˜ãžC”FÑk"î½Pi5Ø``×= úbëiä‚N&À@”'Âìí‚,ƒØsQx2OûP(©=m„jª–×z¼!ÎP‰¾34Åm ¾Ÿ²tòìÙ¶¼{õæ·ÛíŒKùs6ÈäL{„ÇÂÑ[BBQQB <~/9£¶ì‡ Ý6Ù!ùÒìýy-\„¡Ô(\ 'wß«µê)°ŽøÕ%áå™ú>Hé.)1‹¦ªZ,?;Ã,BçÞCvQ q1³/YÛ좹{ÝÃ}·Ã /K[¢–3PÚž×Ùì´Ù’Îæ'•ddq6½³E,=KcŒ”2<¹ ý¶Ö¢‹£(¡®"êïHØww$,Xôüñ¦„u¨ãíX5f)‰²x´@@©/3M„†)YÐä JB-„¯ø!‹‰²e‚äý³Ë”.H4φãNñQ‘¨‹2Bé|`ÇŽžAß÷ý$ÂNïÙhAæsvúM9°BñAÊÿ =ˆ¡X÷©±ÛØlìÝ,†'Vß¶{Qû‚<}B¹gFùÿÓâßzZ\º¢ùw½©ÃÎÝ7 #ù,É·««¿¨+ì endstream endobj 2504 0 obj << /Length 1431 /Filter /FlateDecode >> stream xÚ•WKoã6¾ûW9É@̈¤HYöÐÅnú@ ´»¹u{ %Ú"K®('õ¿ß!‡Ô#Q¶[ˆÈáp8~óÍ8‰Qý´zÿ°º»Y”“\2=ì#š$„§2Ê(%’çÑCýÓ,]ÿýðëݽ¤U.Âd†œÒ©2Ŧ=÷UÛ«½Jü!w÷œO¶m8$‘2Ú° „wÝŸö°ûK"sV…~wÿãoŸ?”Zc`håB z§ z4sÞ*åd›gÞæ±]3?›õ†‰$îeµ·ò½îtSh2svtZȹeFÁ2þ ºG4õ{[z£ÎdÛáäºíÍoxÈIûþºÞðd—z¿¦I¬.u Æã³µ€‹E§U¯K;Éãªñ/1õŽ‚Í$“á%>-Lí[¥Aã¨Ö,‰ŸÖTÄQhþùXõ^²SÅã¡k/Mé5ïÂÅTphŸMÍ"Ý¡ni#7Ã9Ü¥­ÛÎ ¯º¡ŒÜæo«ì½·ßËl,úª9àÌ™X “õ&ƒ ÜW‡‹….±‚ÉsÕGS“YØrIÒD Ö½ ¯ø:€<#c¯ }TMëG%\ÜKû6]yßLR]IðêŒs’q1¿ûψXmÿãótë4‰ŒÃÔµÈID _šÓÎM"N ñ‚Á[+U—–ÚT‡ÆÆjºÉ\Š#J~ž0¯Á¤êQl ¸ÅÑ» Ým'›Ü³/¤í S)‹]hRkeªúвskLµ«!/7¢vo£`óÊ®Ù`Ú‘ j4î…,¿ÔÞ°HPô«…jlŸl@•¹û’$̵^ºãÞ ¾ ÷¾u D »¨Å½&r‹ˆ™]*Ïtݸl¹YFK à›™‚ì•|;˜:têJ“E[@Ñ.ÍðY÷Ì鈉} A€È†ë[Ùä^øžilÚ“ß°ëªÃ±¥ø­0åtævþßn/™‚J \Ç?„œZßaq“²í¡ÝÂp ÎG€‹S²•ù4´– )0Ásæ°ï4 XƒLE{:ו9:z‚UGO e@‰#+M #¼ÞI¿»).¦oO7·žG¤$y>Gèþð.Äæ+ÒÎK6}_V–1Rœ+ÄZûâdu¶6âðÓ«ºÃnçò‹.`vÔ~ž ß‡ÂyÐ×`‚¨…™JG6ƒ‰ï7ð9°¢d þËìÍ%‚±$pÍã“ÂÚ„rWÖì ÝãW•ee­«Õ±vá:̱tU{1¨e©—t ¯Õô~ÇsU{;»+J&E?x¦›©/ã™ $¨˜FüÀTo¹çXÿìȧ=¨[ãáSö#¶8§#ÕÚUÇÿ*€¬¾õœŒìÛºÆ:åùpe¢ÅI YƒS¸8¶ƒº<»‡ ÷XìÊë¦D30m½cƒ1.(ÅÒíØ¤D¡½¡§®<Ôö k\šó Ùº•ÊøQ»HÎ$Tø±1±acoô8T°ñ§¢m%Üå¹ä„½¨^;ŸçO•¹x¼ÀìÔv^®Îg­jðq ýW?߀ ¾ ØØ endstream endobj 2500 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/plots-light.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 2506 0 R /BBox [0 0 720 308] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 2507 0 R/F3 2508 0 R>> /ExtGState << >>/ColorSpace << /sRGB 2509 0 R >>>> /Length 19475 /Filter /FlateDecode >> stream xœí½M“.Çq5¶¿¿b6vaqÔõ]µ|É_[tH$ ‡¤ \¾$u/ ;¿ÞyòdVöSA3ÒÆ‹Yðg¦»¦Ÿ§+»³Nå9™žþö)=ýåé_?üõ¿ÿï¿~úæÇéùº®§û¿?~ó݇ëézùüT®ùÜÆÓŸþøáïŸþõIÈßôã€xúNIë9_Ouêoszî×SÎù9íƒö_¿žçšO÷ñ×ùëßüág~ý‡ßüïòÓÑžþŸÿøÏr‘ß~HO+ÿûˇ¤ó»üãc>Ïî<åçRåoxúµý:]å¹Õ_ø}žÏ¹üÂï[~^é~?~ñïþ>_ù9¯_ø}îÏküÜï/½G÷ñ•ØYµ=×õôù©Tù¶6þôôô‡ý¥Ù­“øõå&ÿ½ìf}~2øxæùu†<Ü„\Ž— !úùC®ù¹·§žŸ¯ôôIàÀåð·Ÿü·m>÷)ðOò©~ýÕ‡¿þm–¹ùÕŸúž`úÂ\ñ¯œ!_úWŸŸþñ‹ßýÝ·ßþÕßüñ_Ê|úâã7?ýøô»ï¿ýøéË~úêo?üÍW˜‰÷™ôs_Û/Ϥ|­çrÅW3Êséõ›90Xp/x@ÉϳÄoüì·?àþGãâ|sM?w§~ù‹•@¨(òMd|³_ȯڗO_ýßàxW0K×ÃÉùõ'·ô\óíäôê3‡DÅýÏÖWŸ)‘$œúsᙿÿóÿòôû¯úó÷Oÿôŧïÿ‡|a_úøO_ú€oxšýg'™DZšO³=_7X‚D‰3À(Ï+ãƒý9U;ÀNñ Þ(óy\Ok<—sˆðá€þœ»NSÂù\'øfØÃˆý}=Ë£ÚÎßPGÿôx0£?×ú¼ª<”×óH 7Ȱ} vÈÄ÷¯X¾Æé_”Ÿå‡¾’"4Éí»ô“Êsr,LJ\Ï«áÇwÜ®ÅÎòCß) “;•ú\w`WLJ¼ ð­nÏ-Ýžõvˆãû! ñ›jU‘™3?Òž{±ïE±<”›bgíC ßIíyÊÚ ZB©8~†¹pƒùÕ)Îx©Û²³üLJȈIgèµ4y,,Ç‡È «Û(ŠëóœþÕÙY~ˆãÛ!Y?m’H:½K×o—øñfÏyÇiˆ}h;Ëq|;$U<²D@ív§åþ~É·¢ã7ŽçÌõïO®ëmß&Å&×o-–~øÿ&ß+.øÏŸ?ÞæB}kPå’àRo7«Î×^¢¦"’»eÈwuéœ:Tªoj_()*C]°½ýª‚d¸ÀÚ”¡Þ~U›aøB9>ÜÁŒ˜Û›‡Ú„>`Õ;¨°¤·uã.ì.à»Òyµò›‡ÚÄA|íú]Õ7OÑMpá ‚Xô»zsîÏ/tS7°â¢FÌгIÃD·À †›ðÓ†ýy…<ØàŸžþ(?š àWÇžÏgÝMÊÓà§ '^ÝŸöÁõüÚ%õý(câ.ÐÚ†?mœtÓîÓ>Þ±Ž!ßXaæ(÷@Æ(®áO%¯%¶ã ó:ªnkýâ°­;v†?îºKÇæw‘0#ñÂü2v^  ?Šn¹ T{¶{›³ãOuóüSoØ¿S91Ú’Ž‘@Óþ´1öñ–}§8Þ±§¨láeúá;M7ü)pÕ­…8Þ0ưڒÌý «² Œ]„òÒˆÜ"RŽò¿‘£ü·ŸþôýÿôÅÿôåÓ×ß}ûô~ù4Á\~ýÃ#CùKCOÝ팱ï{Ûÿ¸Úÿôô›ÿíñéó ƒá}-ëuL÷>t°¯~ý¿¼úä‚×ÌãÉ¿zõÉmé#ô?÷—§&*ÿÉ¿Œý-ù{Ã6—óý|ÿ7ßüù»¯úøí«oF’A°…±šït|÷Ó_Ê´~úâû‡•Û¹?[Põš»”t=^ 1Øywäyùâé·ßÿðñÇŸžþîÓ÷?Ý  vìw¥Ã•P1ñXÜeù_»`{óÇëUØRGüË롽®Fãþ*a~5nW9p€)Ŷ\$ʾþáÛ§¿ùá‡ïxÛwp¯]Ó¿ÿâ³ýâXC÷_«±¿[Ö7¶_rÓÍv} ½<¢hÕ ñÃ!W±Š1;„ø~H’ "ß1üpÈÕðØCˆï‡ðêö·‹ý/N—2¶Á[‰ìígWL¿pnº²…<Öo=¯Q?ùgz¿pr¾vLJšõÖ“‘Xyvýg&±LÀ—埯ž€~KÇ¥¯Á—óoO ;âg¦Åž\~ÈËɵ§¨ò3StOt?ä6ÑÿƒB×Êå$’@ù å£]ùR(J ¦*€¨wëϳ*LÈlËÐâ!…¨Ïy”•…‘„òJ8’AˆlJ†Y&s @ù‹,iVѧ,`Æ÷ˆ*­eP^+HW’AIXCX`­e½D)ÝÒ{§p¦§z1m”l¿ZfZ%Ý–´®bégP²@?Uƒrë®nPrUIªÒ4(Oue” Ø}ä1Q©¥pÉüͨv¬Xå ÌÝ |Kë4(_xe¦PþDÕú\BI%_NÅ`× Ìâ#ËíØ|dùª^ áÒjÌÅ‘dY ädPr¬"ŠATfVðV„ryg7(·»2Êí®ºš ”Û]YÖ¥p ÀÁ‘»…*C(€UT7(o5e”Û-°-ƒr»ÎdP¾¥ª„áÌ€ÙG–?!°rdØu°LPn%J–AÖ¾¦d·{âbq»§V[)ìZÅ:|ä¡U¯ËG–›UbpâòZ N$èuqˆÛ½<'n·< -'¾Ã¦‹VB¹íòÔ h—ÇàÄž«ÀÅ‘óÁ…Û"ÂnP¾%m”Ÿãá¿ ÊŸhÙcpab Ì>²ÜJÕGž °ûÈr»N¹hô±˜Pn7ÞoÉ L]­”›%p4ƒry­X ¢DV>Qµ(·»±Q¡ÜnŒAŽ1ˆ½«…§úÕ Ê`ýÛ Ê´oÍbP $ºÇePpËG–oIV&ÉG–Ÿ7Ý~Ôª,ŒA¬Ç: cP Üʦ/>B¼z†Å ÖŠ1ˆµ~}"FˆÛm o@Üîi1(kW¹YËe0)áÂDÍ¥Ö¨3–¡tL3ˆÛ½,‹.ÇÛ²ˆÛ½ò„r§,Ó™3G–»£µñ¹”çv¿,ÊíÈ,ÊY\—A¹Ý=Y ‚%I€ÅG–[ÙõÖÊÅ d -ñìÆÊíîú*!”Û-1(P¾ánT  Ü,³”Ë“eÆå#£Ú¿X ”wœÀÆ‘;žêÜ¡$”ïP cP œÕ+×ä€r»2 Èg@Æ ÞË púÈ’‰Éšëò‘åI%1ˆ×t¬Í Üî®+EBùþZ ÜÊÞqkåâ{'§(ù@ïƒo@ÃG–ÛÝUÀAˆÛ=<§Þîá1¨:“n\ …@‹A]†÷é18ñTïÓ $ °úȸÝÓcPçª@&Hä2–Ç 2Øœiå£õe ³ƒ ·{\ƒ ·[`ö‘Á‚\ƒ ·R c¹Dd‚!Pr†‘,ÊP c°*_:’%È4 c°ê˜—,·{dRQ€KÉÆ Øœ¬ÜÌePžêg6(ϱQ,‘–L@Æ @¹Ý Ó†A¹;»,7z‹A$-r/ BÉ2%‘ØÈ¬úF8†Aùþ2‘ÒÈPÍb°êÅ ¬Ù ä £Y ”7 Àé#Ë3t5`Á7<ºÅ #ƒUÙa#” ÈD:$—1,Á5.Àâ#ËsL`ó‘q»‡Å $<¸Ý_>!n÷´C`Qmc¹Sd V¥ª¡ÜZåý(kä#ËlËbõÿ  dV1‘Dd "ÑOó²›5 1ȼk^ƒ,‚8}ds&‹ÁªËÙG–Û- ²² È(Œk6(ϱ™-ÁXµ1(Pn÷̃UïŽÀá#O¥õ/ûáÅbJ@˜`T}? ´˜-¾ÿY-Á(qVÁÛ-°ùÈ2³Z’/Pr†Y='žù³y NÓ²0ɯúnÍcpâv ´œ¶3Á$¿ê4˜}ä¡*–ê#KÎ0»%ù’þ]ºa1¸0Wçð\z»‡%ùq»‡Ç ’Æ-rËG–÷㜃K+6§Å`Ógàœ–äcžƒM÷³æ²lº{!I>³PŒA’3>²<å.YÆ\—Å rÔÈlJU d’ß”ýÈ)k}ZÉbr•,™Á®d wV²D­œ>²\ÏÊ–`4Õɬl1(Pje‹Á¦›×+[‚t·2 X‹Å ²ßX}d¹Ý ‡|d¹ÝƒÔ½p;ŸPr†U-›fƒ%®Wµ©rd d)Hò‘åjYVK(·{5‹AI†/­£b "‘Ö2&MåÐ5eƒrwV·lz=™ä3Í8}d¹ÝkX 6]'Bå#C15,%‘Nªßb " Ï€LòâvO‹Aää1(°éþ“|¤è púÈ’3¬e1ˆŒ½2Éoú6YËb°)I²–Å øÈ$š ìô_„Lè…‚A n>¸rB—Å¡à•3‘òCð•,Õœºb EÕ“[,L%`fû‚[QnÏ¢QW‰Â[âaÜŸ/sØrâ6[DNÜ|‡™ó ÎM1,$&…ÅËp£ÐØ¢R·¤ÒU-çÀÒ¢*Î>þ슫ÁÒU-íhú"¶Ð\H%À©Ylj.ÌÌ£±äR°E'·[xª¸xùøãuP-ùN—Sa[{‚™P²ÌíÕwΆa S3éçƒóa\Óè6±¯óaXÒuYŽ(Fj×700C«ž¡˜‰ˆ`lÍ^Ί Öùà´ÖA…ÞŰÎ'ư0šŠ»¿¸+Ä%ª×¨&dÈv}3f»ÒSÀ\tÍDµ‚ë¼¶XLeÝO>þà¶xññ!žKN‘uJW“sd²dÒmu'ɰÞ*м‚1’Ód]ÓY`†o'UŸœ(Ê ×ãLYׇ/pññ±Õ›œ+“eæCr²L0æCr¶ ‹6Œçt™àÚs€UÜPÌøíZ¤<}|ý&§Ìc>$ç̺2ÀŒß®I0W ºÍÔ,UéšG§ä¼YoÜfrâ KÁ®˜Ù ¶ð¦âéãc>$çÎd§óaXÂÒ­¬ÁÙ3Áy(füvê3gÁòŸÏ ´®\||ÓÒ–Þ9œCëóÁI´®ÙOâ51J’Óh‚KWlñ;01€™¼ôA«gÒc>d§Ò°(eIFóñ+á-~'CE±Å0”àÈ›áR[üê*ØâWÙm`®$ºЩ4×ÇŸYqöñ!&½ ¼páÀ¿KË*²Ój}mïeó!;±Öu)lñ» h‰‰o"ßåã/|>'׆:À\U ÍÝ€¿X/Ōߡ»ä);Á6”Vfü«uŠMð芇ÁHv’ kj|>gÙc>d§ÙKU²ólCo0ãwèµö\a }ðgÅÕÇŸMq÷ñu> ËpFæ|pºM°ÎçÛ†”3ÉŒrœìŒ”ºS1ãwèž”ÉÇ×ùà¤ÛÈœκÂù°,Õšy¢8ñ;ôÆ3~¥½ T‡aˆˆŠSoXÿÅËÇÇ|(ÉòÉ7™+µÚN¿!芙ïÎÜ”fü8(Wbü]3ßÕ+»?Xî4}|ä/`59¾ò`ªŸ†‘¿çá@34ÅÌw—¡˜ñ;ÔŠuÆ/ˆ‡¤¸øø˜ÅÉ80]ñôñ‘¿”fË¡d0ãwhÞ Ìø\¨mçJD°–g9%òb²\ë2Œü¥8)'ùKqVtFSÌøC·k‹órà7ðùœ˜ƒóÁ™¹18œšãÑ[üZQ“s¤@€³|¶8=N¤*¶øœNÐÉùà X’¤ØâwjþRœ£mÒùlu–Ž< 0—'C!`æ;CÿPªNÔ Íú-~EÉò¡ W`‹ß¥ùKu²ÜKU<||̇êtÝPˆT¯s)f¾#ùKuÆN0ò—ê”ÝÔÀLµX¾3uõ Ìøú"®>>æÙ+ḃê¼ÝT¥}Œ_P:—bæ;¬§fü‚ã±ÒÀaó¡VËw ã˜Zœ}üIUrõñ …™ïLÊ?ªxS¿70~gf©a·|g*ÌøQThô c>Ônë0GS-’ü¥:*)+æzeª¤>UgòÀ-u-mdüÎÂùà\Þ,œNæm*Š»ü¥:Gú)Uçó¦&ŠÀŒßY5Ÿ­Îè Öùà”ª¦˜ñ+XålNê Öêgõ¦ÖlwùKs^V×ò ÆïÔD˜ñ;žœÚ›ªI͹½©.`ÆïTÒÆP\¯€öZŠ‹|¶9¿'X0œà†ñŠå;SëR¿‚‘¿4çø@eÅÌw&˦š³|S™T\>>æX ±à‚ñ;µ”˜ñ;uâ3ß™Zךs} ×–b‹ß¡ùlk–ïÖjv§û@¸a<çûæ YˆÙÂÔÉòÜæŒßd9jsÊoêÄf¾3u!ˆ²Z‹_}Ð[üN·aùŽàÁ2Üáãë|pâoR3Ò¦å;SË?-~© nÎý F>Ëe;±Îgÿæâ|púo.Î+YFþÒœ$õÌø]šˆ£,˜ëpV&< *Á¿‚+ËŠ¹^;ýÓ€‚‘¿tçMkº‚‘¿tg—Ê´€¿Kyˆ¸¸^Y(ÀŒß¥ W`ÆïÒ0×++Qä|àÒH'&ùlwFpe/^dü‚„ÌŠ¿‚1º“‚`%‡bƯ`ä/ÝiAÔ'ÅÃÇGþÒ\šH¡r3ùø˜Ý©Á¥òÀÌw«RÜÉÁ¥ åÔ\j¬Ì|G0ò—îü `ä³Ý BYñôñ1ºS„d?¿¨Á^Š™ï, l`ÆïÒ…60ãwé‹,õiùTCqññu>8SÆ4)f¾ß깿 P»bƯàL-$óÁ•>Œ_ª™’”dóË$óa8_(ùËp¾´+0ó¥ `ÆïÒØ1~c>˜mḃá|!˜Ù¤xúøÈ_F¶õ ¨Ú®8ûøn Äñ‡æ/#Ûz><ô ²øÕJò-~•æzeé°Å¯aÀÓÇGþ2œ/ßÛ[üNÍg‡ó… €—b®WÀ'Å¿SçÃp¾P0ò—á|áR;>àæã#Î.MTÓp¾¤qÎ.-†¶ø]:†ó…K‰`‹ß¥ùËp¾¼rSœ}|ä³ÃùBÁ:Œ/l×Åù`|!°Î‡É|ùË0¾ùË0¾¸Q*¨ù0òÙa|!°Îã u>,æ;¥›Àãk𜆑¿0Í%Fþ2/VI¼ñ…ÀÈgçÅ|óa_Œù0/^”WޝWåÄÉpfIü,†‘¿0í$F>;/Æ|˜Æc>L–R*žT(.Ñ=+qüB9sa¾Œüe_œÍ]kÆ|˜•ëàFk­œ c>Lã ‘¿ Íóñ‘¿Lã Û¥E‚i_Œ|v6®W€1¦ñ…À˜ÓøBàF9Ìj†U÷f|!0ò—i|!0ò—i|!0òÙi|a#1Ÿ¦ñ…À:Œ/Öù`|!0ò—i|!0ò—i|!0ò—i|!0ò—i|!0òÙi|a»:çƒñ…À:Œ/Öù`|!0ò—i|!0ò—i|!0ò—i|!°š2_Œù°Œ/lØhŠÛeóa]Ìw€‘¿¬ËãW ÓJ¿ZA¬ùN£þ¸ùø˜+yüê•Vf¾Ó.]¸[üêƒØâWêÀ}Fþ²²Ç¯V‚¥U<~'Å‹&¬Æ|XÅãwê|XÅãW« ×0ŒüeU_­'¶øÕ‚BGfÕÒ+‹_%¶ÔþÍÇÇ|Xù0ò—Õ<~—;Ê1~¹q¬ù0ò—e|!0òÙe|!0æÃê\¯7šÖ1~c>,ã ‘¿ð5HŒüe_Ø’–3~¹ñ<‡aÆë|0¾Xçƒñ…ÀÈ_–ñ…ÀÈ_–ñ…ÀÈ_–ñ…-i™!0ã7eÎã u>_ Óe|!0äA—ñ…À½*®>¾p÷ñe"i…?Ç×Ò|_œ²bƯà\3~“Va*žËøBàžh$ì㢸úøêÚ—™ï¯¡˜ñ›taˆjúkV^a¾\ªbÆoÒD˜ñ›”ø^ÕðÀç3¾xfÅÅÇ_Uqãø ó˜ñ›´1_Æ«¿1ß®E1ã75š_܇âéã¥"þäã/Šú¿I¢À­N]1ã7ií0ã7uªó•)QÆÈøÅÆÑ–9ë|Ìw€çR/FÆoÒzÄ|_œ ½—áLïF‹ßÁù0=~çÃâzXçÃòøÕ…€»6*ž]ñðñü/_-L¶ø:’ñ…À˜éòøUSI`‹_-NÌÉøBà‘ÅÍÇ_Mñàøµ¤äñ«åà­Xü.ú*_Œù²Ç¯)[üj•bNÆC’ŠÇïRãËd|aÃÆWU¬ë`̇d|aãFü2¿Yks2¾¸Ō߬_ððñǠߦù€ýL}ßf5füfUj3~³–,ª§j7\p=Æ·K1ã7'Jf»å;Y¿hàáãc>$ã u> Ëw².ôs2¾°qã ˜ñ›•Øf¾“µx¾Œ_M–bƯàA_Œêãë|0¾xuŌ߬Œø2ßÉZ¨2ýl¸˜$¸†§gZ–ïäÂù`|!p§eiòñ1x‰%ÉÙøÂ–µ’Q-M«a™ˆ0'e¾“U©ÌøÅÆ_RÌø…ð¤(æz%kâªæ¦>þ˜t’öñ¥¹^Éú ÌÙøB`xIeã 7 ávÊõ ô'S1ãW0æC6¾ÂÚl|!ðhЧ?ñùŒ/^K1×+YÝj¿Y‰ `Æ/7¹^ÉZÝûdÆoîtÎ6¾xdÅÝÇŸUñôñ1²ñ… “S1×+ؘ¤¹Å¯9æÜ=~µÊQ-Ê“á6ÔX×âWë‹?“âæãë|–ïäÉù0<~'çÃôøÕD˜ùNVâ0çéñ«åŽÀ¿7"çeù6>§âìãë|X¿‹óaY¾“µæØâW‹¡À·øÕªG`æ;Øâ—Bëryü*ÑnîLĘÅøÂVôEÌø-ZèÌ|§hñ#0ã·hõ£Êë“aÌ8ØÅøÂF;÷\Œ/FþR²å;EK Õù—ã›\ßøÂf¥Øz…±ÀŒ_\xS9?㳃ÀÓ0ò—b|!0ò—b|!ð¢g0×+Ek!s1¾8MÅŒ_|ÐK1×+ÜÈfüšÍA1¾ùK1¾ùK1¾ùK1¾°-^æz_ >Ÿñ…À:Œ/Öù`|!0ò—b|!0ò—b|!0ò—b|!0òÙb|a+f‰j|!°Îã u>_ظq¬VÝÝ0ò—b|!0ò—b|!0òÙb|!0æC5¾ó¡^–ï`£y)fü­’ToöiùKM–ï­“füòF3~‹.œ€»ùP/Æ|¨Æ6Úq3ß¡¤T=­“aä/ÕøB`ä/¨Ûo†‘ÏVã 1ªñ…À˜µX¾SôÁ–«ñ…­h½$\M¿E_äÀÌw ý·kõøÕÄØâW«M3ëê‰1jóø:jóøÕzI`æ;Eë%-~µ^ØâWë%áþÂõ &ÒPlñ«‰/°Å¯N,àéã#©ÃãW¤ÀÙÇGþR‡­WŠn4[ü.Îç ±±Žñœ/ÄDìŠ-~µ^ØâWë%§ü¥:_X´^˜ñ‹ø¡˜ë•zq>8_HUm®Îrc^EÝ—aõ²p¾°ê¸ùø*uv¾ú—¬˜ñ‹‰^Õ¼ñ L§ùÿeó¡9_Xµ^RÍÞ‹aä/ÍùBpöñ‘Ï6ç «>ø]zý3X ¹nÇg1žþÇíïiýäíz´~òv½Z?yûÕÊ>>ߪÖOÆ|DàÞç+ úm>3c¾W­ŸŒx¨úâŠx©J$E«Z?ﻪõ“ñ>ÄDK·÷eœþ>ÅÄl·÷m]Ìgü}\ó_×Å|Æßç,܈÷=#òª…J‘/ ãºåÖä[¾Ñ.Ïg¿íò|†ùJ»órºå;íb~ëù?ò¥v1¿õ|ª%æ3žoµÄ|Æó1Z}E¾FaxäsxÍ[¾×Ø)hçƒ-1¿õ|Ѻjì|²%æ·žo¶ìöSÌG[f~ëùjËÌo=Ÿm™ù­ç»,4‰|˜âÈ—[f~ëùtËÌo=ßn…ù­çãÝÌ[¾EúuËç[á|ð|¿·çz æ·¾^h…ù­¯'Za~ëëV™ßúz¤UÎ_¯´êë®gZ}\ï°°%ÖCMë'c½Ô´~2ÖSM¶Äz«iŸ•X5uˆõZSb2ÖsMë'c½×´~2Öƒ,Œ‰õbÓ§XO6-‹õfSˆX6uˆõjÓúÉXÏ6­ŸŒõnÓúÉX7­ŸŒõrS‡¿XO7õ‚ˆõvSb(ÖãMë'c½Þ”õ|ÓÀ‹õ>EùÁ´Áæ.Î@3n|BSOˆàšÖOÑ´~2øŠ¦õ“Ág´Éþ2Îw4ZÃl>¤éÆAð%,ä >¥MÎç[šQÁÇ4}q_Ó´~2øú´ß=θñAmq>8_ÔçƒóIMë'ƒojZ?|TÓúÉૺ&&Ágõ‹|­ó]ì¶|-‚/cáPðiý"?ç|[¿œŸ›>þj7¾…EãÆçõD¾Öù¾žÜ—|`Oäçœ/ìôjÛ|bOäkoì‰|­ó‘=‘¯u¾²gòµÎgöL¾Öùή…Á‡ÒË øÒžÉ×:ŸÚ3ùZç[Q¸4n|,ô8w¾¶òµÎçöB¾ÖùÞ^È×:Ü ùZç‹iˆ|2 ‚oîlc´ùè^È×:_Ý ùZç³{%_ë|w¯äkï•|­óå½’¯u>½WÎçÛY(||¯Îß_ùZçó{#_ë|oäk}? 7òµ¾_=Î}?¡7ÎßoèóÁ÷#ºÖOÆ~E×úÉØÏè®æ¾ßѵ~2öCºN„Ø/éšÈÆ~ íb¿……Y±Óuã3ökºÖOÆ~N×úÉØïç¾=N¿íuµ˜ˆý¤®õ“±ßÔn}?ªkýdìWuÝ8ý¬®/’ØïêZ(ûa]&b¿¬«ÕDì§ÑG"öÛú¤!œïÇu­ŸŒýº®õ“±Ÿ=N¿í÷u}QÆ~`·Æ§¾_ص~2ö».œb¿‘f±ÉB²Ø¯ìê§û™}q>ø~ç¸8|?thýdì—­ŸŒýÔ¡õ“±ß:.Úú~,ô8ý¶_ËB´ØÏçƒï÷M\b?xhaCì}Ä~òHûÍpÁH·ýh®•Û~õH¬?ðýìÁúɽß=X?¹÷Ãë'÷~ù`ýäÞO™õ¾ß>2ë|?žV±_?2ë|?°~rï÷¼;Øq|ÖOîzQ¼þ€ù ãÊ­Þ`¯?`üŽâõ\¯ ÖOîz†ÁúÉ]ï0X?¹ë!ë'w½Ä¨¬?ðzŠQYàõ£²þÀë1èáõƒõ“»žc°~r×{ ÖOîzÑXàõ"(Äk·z’ÑXàõ&ƒõ“»e°~r׫ ÖOîzêE½Ëhœ^3èLºëeFç|ðzšÁúÉ]o3X?¹ëqë'w½Î`ýä®çê)õ>£s>x=Ðèœ^/4taõDƒõ“»Þh°~r×# ÖOîz%:D= ¯[½ÓP㊨‡ê\õRƒõ“»žj°~r×[ ÖOîz¬ÁúÉ]¯5tà¨ç¢IÔ{ "G=Ø`ý䮬ŸÜõdƒõ“»Þl°~r×£¡ððºÕ« µ«z¶±Ø1ÁëÝë'w=Ü`ýä®—›¬ŸÜõt“õ“»Þnêƒ)êñ¦žG½ÞT;‹¨ç£JÔûMÖOîzÀÉúÉ]/H;Ú¨'Daãu«7„'ßêgâ|p¾p²‹é®gœV?é|á´úIç 箟¬>¾ÕO2~gæ|p¾pfÎç ­ƮלV?é|á´úIç 'ë'w=èdýä®e¸¨'ìíºëMga=­ó…“õ“»^u²~r׳NÖOîzWº¿D=,ÛšF½,ô8÷zÚY½ž–ùÎdý¤×ãk=­ó…“õ“^Ï ¬õ´ÎÎÊzZç i!³ë…'â®'Fý¤×·ÉúI¯GÎ%ê•Q?éõÌÀuD½3p»ÕCõÒÀV_}|ÔOz½u›¬Ÿôzl`mìnõÚÀ¨Ÿôznàz«÷n=êÁûŒzñÆî'Fý¤×›·ÉúI¯GN#êÕ󭞸¦¨wÖùà|ádý¤×Ëõô¾]oß&ë'½8Ýêõsz~`ë…ÄõÊdý¤ë€­%Eöñ‘¿¸žxŽÐ¯›¡M]˜n½0æƒë€K½0ò×C#q½D£óÎÖSÏ›ÞxõÐc´Eÿ ×kç+ôÀÈ_\ïŒüÅõ Àm„^¸ßô$ö=[oÒø¢Ýz”¶èáz`Õ9_¸X?éz`Õ™¸Ýô2À½‡žxÌÐÛ¯+ô8m±~Òõ:À¦b¾³²ë¿+?è€u>˜^¨y‹ç ý/\oÔ˜øl=R[…z ç W¡ÈùÂU¨2½p顇®3ôRͬª]OÌô`Àªs¾pÑÿÂõdÀÈ_\o¬ú0ç ž»^­-­ŸÜz6`k;Áø]ô¿p=pÍ¡—n-ôtÀ}„Þ®Ñõhëñ€‘Ϻ^¯ASBϬzAç Ww½ ãwu>;_¸´~rë ‘¿¸ÞxôÐ#ÏzÅÆ…ÄÖ3§zGàÜBÙØp~ë%‘¿¸žù¬ë-1\ ¬óÁùÂEÿ ×s¶¥õ“[ï ŒüÅõ ÀÈ_\/ \{èIÛ ½)ð¸BÚèÙ´õªÀë¦gmËìÈ/\Z?¹õ°ÀÚÌËùÂ¥õ“[O ÜZèmû=.ð¸éu‘¿¸ž·_Z?¹õ¾À©‡8ÏÐ ×+ôÄÀ˜®7î7=r§QÔÖ+«¾ÝøÂ~%êÛMï œJè¡s ½4p¡§®7½5°êÛ/V}»éµ;¦¶ž»“HØzï~eêÛMœsèÅËMO\GèÍÛ =:ðH¡W6}ûòñMßÞ9¾%[œnzyà’BO¬úvã Ußn|!pŸ¡×žWèùW½¿èá~À©‡_°êÛ/V}»ñ…À­„°êÛ/6¿ƒêãßýúÕÜïຠ#q¿`ä/î§\fø-#Ÿu?àžÃ¯xÜü€g¿`ä/îÑ/­ŸÜ~À¹„ŸDg;Æí7¬½b/n7¿ `ó¿X>>ò÷»^=ü0ú¥õ“Û/8_á§\røm×›pëá×Ügøy#q¿N#¯íÒI”n¿`ä³î'œo~#À5… p+áWŒüÅýL€‘¿¸ß 0ò÷Cé—ÖOn¿”N"xû©ç~+Àe† pKá׬=ä’ǯ>8·ß 0òY÷ƒ^7¿˜žØËýd€s ¿`ä/îGŒüÅýj€û~6À#‡ß ð¼ùátm¿œžèá~:ÀæÏÃøM‰~MÆ«_“ñ…Àê×d|ag?¯í÷nÞp¡s¡íí˵›5J¶á­[ÛûØm G4‰D/ƒä1¨í®¼Á n÷å18­u…Å V5zë @ù–¼±`¶€£ï¦€sî–½¨A…7ÔLy·ÛÌm7ã,c·ê”Ïâ<åÙëm>åv{@¹ÝÞ"pÝ@¤WÝ0õö"ü7”™ì­IkßKÛÜmMǵ›žÎ¼[¢Ê|ó†)½jý¢·S”ïЛ­Ê3ß[±tVá{£ÀÖvÀ>v“@4ı0€2+¼ALgW;o˜ún.˜çn=X¯Ý˜°åݶ°GS@6Äé>²Ü;oˆÓ«ÙÞ.§³#ž7Ó餽Õ`»`6=€hˆcM|%r½Åàì»àš»=P¯ÚîÊ›âv;IG¶Ó¢ÿ‘StUkͼi ú9AW«õ?Z>2û1+Û]9;WÙîÊɹªÅ‰Þh ýœš«lwåÌ\e»+'æ*Û]9/WÙîÊi¹ÊvWÎÊU­JôÖQl³7–ê×xÛ)ÀVvS*ÀÞvË*@¶»ª>ò­ÝU¯ÞîŠ FÕjDo•(9ƒ7Ò,s·ÙêÔ y.Àžw‹.À ¼gßí½å=åÍ¿:ûzk0À\vã0@´»r ®²Ý•5lÑ’ ÝÍ–,OHog(9ƒ7;ë•í®œ|«lweÒ:71¼`&k€­ïl€ò~ôm€’3xû6ÀUvs·Þ´êÐ[¿ÊíöÆp€9ÚÆÖ´›ÊÊ“Ù[ÎJÎà éÇÜíêåâ½™]ošðx«»Î&†Þ0÷Ý&°ÌÝD=hkZhè øeêz{>@ soÞ¸¢µ_ošÂyã¿ÎˆÞ=a£Ð[ ²30c°éÂÇÛÎhV¸úneØ›šEx£C@öLd’ß´´Ð›$JÈx EÀ6vƒEÀígÚÍWÙ­{ÓÌÙ;v^€·}”›åM!kÞ-#[4”ì}·›Äí¶f”€+íV•½i1¡7²”Põ6—€òXó&˜[®Þ"°¥Ý@°—Ý^p´Ý|P>¸·æìM‹½q'`Ê»­'`ަŸ€¥ï– €èˆêüYSbËۉʴ÷f£€òˆðV¤€èˆjJ{Ó%˜·1íœÉÞäQ™ä·aQ-5ñðö©€ãÚÍUgÞ­WW4fíMÛ]yÛV@tDuÆŒ±é-_%ܼ!, <š¼], <ƽ™,àˆV³€+íF´½i»+oS ˜Únb (7Ú[ÜÖk7Àly·ÇìÑ<Pî·ÖÄívŽŒíݽ-/`Ê»ioç#Ñ[úvVRxÃ_Àí€{ÚÍ‚GÙ­„gÛ†רmˆ{×Ò@oR ˜óna (߃78î,ñöÇ€r»½92 Üno 8ón¬ (bo»Ü»r)Þ”P¢À[6–´:Ö²Û=¶¶›Aö±[EÎk7’\y·™î]÷d½ 5 ÌÕbDØŸžþøé?:‚Ç¿÷®ÝÖõ^þaÿî÷×ï=®ß{\¿÷¸VøÞãú½Çõ{ëËà{ë÷×ï=®?½÷¸~ïqýÞãú½ÇµŽüÞãú½Çõ{ë÷ןÞ{\¿÷¸~ïqýÞãú½Çõ{ë÷׆ß{\¿÷¸~ïqýÞãÚÇïqýÞãú½Çõ{kÿ½Çõ{ë÷×ï=®“á÷×ï=®ß{\¿÷¸¾ ¿÷¸~ïqýÞãú½Çõ4üÞãú½Çõ{ë÷×Ãð{ë÷×ï=®ß{\wÃï=®ß{\¿÷¸~ïq­ïÛ÷×ï=®ß{\ÿÿ¦ÇõµÙŸ_*·]÷ Õ÷¡ ?㇞üP›Zô¥ú¡c¡r?4ð‡BþÐÏêúC{ÿ Ì?tû/Tý‡æÿp8ü7Ãkàp"¸û./=„ÃápO8¼ç…_†Ãµá…§ÃáøpøAn‡—Äá4ñàCq¸T¼ð°8.ÿ‹ÃãðÎ8œ5|7WŽž‡£Çá÷q¸^!‡“Èá3òàBrx”¼p09üM÷“ÃåpN9|U\WO–Ž-‡ŸËáörxÁN1‡ÌƒËÌáAó¡æð¯9Ümï›ÃçðÍypÕ9A.B‡ÇÐ ¢ÃŸèp/:¼ç£ÃépMzðT:—^ø1nM‡—Óáôtø@.Qw©Ãaê¥ÿÔáNuxWÎV‡ïÕáŠõà™u8j½ðÛ:ܸ¯®ÃÉëðù:\À<±þb‡ûØáMv8—¾f‡ëÙá‰öà˜vø©½p[;¼Ø§¶ÃÇípy;<àâÿ¸îr‡÷ÜáLwøÖ®v‡ç݃#Þá—÷ÂMïðÚ;œøŸ¾ÃÅïðø{p<ü_¸Þ‚‡óàáKx¸ž†‡ãáƒâá–øÂKñpZ<|—ÆÃÃñpx|ð<Ü!_xGÎ’‡ïäáJyxVŽ–~—‡æ ¯ÌÃIóðÙ<\8ÎÃÁóîïy¸¾ô=œC_ÑÃuôð$=K?Ó·Óà õ…Sêá£z¸¬¬‡Cëáßúàîzx¿¾p†=|cWÙÃsöp¤=üjÜl¯ÛN¸‡Oîá¢{x켇?ïƒ{ïáíûÂù÷ð>\ƒOáÃqøð#>ÜŠ¼Œ§ã>ȇKòá¡|8,þˇ;óƒwóáìüÂ÷ùp…><£GéÃoúp£~ðª>œ¬_ø\.؇Göá }økîÛÞ܇s÷ _ïÃõûð?Ã?ñÃmüÁ‹üp*ác~¸œè‡CúáŸ~¸«Þëwgö÷ý¥«ûáù~8Â~ñ‡›üá5ÿàDøÔ¿p±?<îüÃÿpÏ?¼õœ÷_þ®ý‡§ÿáøô8ÛœíÛ œí^¶+8ÛœíÎvg»„³ÂÙná±ÃÙ®áe;‡³ÝÃÙâlq¶“8ÛM<¶£8ÛU¼lgq¶»8Ûaœí2Îvg»Çvg»Ž—í<Îvg;³]ÈÙNäl7òØŽälWò²ÉÙîäl‡r¶K9Û©œíVÎv,íZÎv./Û½œí`Îv1g;™³ÝÌÙŽæ±]ÍÙÎæe»›³ÎÙ.çl§s¶Û9Ûñ<´ë9ÛùüL»Ÿ³ÐÙ.èl't¶:Û=¶+:Û½lwt¶C:Û%í”ÎvKg;¦³]Óc;§³ÝÓËvPg»¨³ÔÙnêlGu¶«zlgu¶»zÙël—u¶Ó:Ûmí¸Îv]í¼Îv_/ÛíÂÎvbg»±³ÙÙ®ì±ÙÙîìe;´³]ÚÙNíl·v¶c;ÛµíÜÛ½íà^¶‹;ÛÉíæÎvtg»º³Ýc»»³ÞËvyg;½³ÝÞÙŽïl×w¶ó{l÷w¶|Ù.ðl'x¶<Ûží Ïv†íÏvˆ/Û%žíÏv‹g;Ƴ]ãÙÎñ¡ÝãÙògÚEží$Ïv“g;ʳ]åÙÎòlwùØól—ù²æÙnólÇy¶ë<Ûyží>ÛžíB_¶=ÛžíHÏv¥g;Ó³Ýéc;Ô³]êËvªg»Õ³ëÙ®õlçz¶{}l{¶‹}ÙNöl7{¶£=ÛÕžílÏv·g;ÜÇv¹g;Ý—ívÏv¼g»Þ³ïÙî÷lüØ.øl'ü²ÝðÙŽølW|¶3>ÛŸíÛ%Ÿí”_¶[>Û1ŸíšÏvÎg»ç³ôc»è³ôËvÓg;ê³]õÙÎúlw}¶Ã>Ûe?¶Ó>Ûm¿lÇ}¶ë>ÛyŸí¾Ïvàg»ð{;ñ³ÝøÏµ#?Û•ŸíÌÏvçg;ô³]úc;õ³ÝúËvìg»ö³ûÙîýl¶‹l'¶›ÙŽþlW¶³?ÛÝ—ÒjàÜBZ œrH«5[ZÝ–Ödmi5ðè!­Æ|pi50æƒK«1\Z lÒëîã«4ÛK%A›”V·¥‰Ë–V7²,[Z ÜGH«[ i5pÍ!­.WH«Ó i5ðÕCZÝVå|ðRÉU9¼TrUΣþ€Ûi5°J©½TrUJ­ýV)¶—J®J©¶—JRs³¥ÕÀ³…´X¥¿^*¹h…åÒjà:CZ \zH«óMZ ¬Òd/•\…Òe/•¤¦hK«‘¿¸´ù‹K«‘¿¸´ø.­6éõðñMš½||•n{©ä¢•™K«Ç i5pï!­n7i5°JË«Ç/¥:.­Viº—J.Zµ¹´ºQãµ¥Õtê–V÷›´¸Vc>¸´óÁ¥ÕÀù i5ð5CZÝ@ýöVÏ›´º‘)ÞÒj`^*9)Åri5pé!­FþâÒjà”BZÝ ¹»I«çi5°Î/•œ”š¹´X烗JNZ º´8÷V§›´ù¬K«5…[Z ŒùàÒjàÞCZ ¬R]/•œ´Zti5p¾I«Ói50æƒK«Û¤TÐ¥ÕšÉ-­î3¤ÕÀ­‡´¸Þ¤ÕÀÈg]Z ŒùàÒjàk†´ºMJ%]Z lRkÆïl”b{©$4£7i5p!­F>ëÒjà\BZ ¬Ò`ã Û¤TÔ¥ÕÖ-­nÜÚÒj`•&{©ä¤TÕ¥ÕÀe†´X¥Ï^*9)…ui5°I§¿Ø¾ºK«¡Ñ7i5w»BZ=)ÕÝÒêI)ï–VOJ}·´zJýTrJǽTrfJ˽TrRj¼¥Õ“Rä-­ž&UöRÉiRf/•œZÒê©!­žJ\‡´zn)µÅï–Z3ß™&ÅöRÉiRm/•œú iõÔºÀVO- iõÔÊÀVOJÉ·´zRj¾¥Õ“Rô-­æ~jH«§a…´zê‹,¤ÕSâ!­ž”Êoiõ¤”~K«¥ö[Z=(ÅßÒê¡U‚!­Z&Òê¡u‚!­´ØÒêA«€-­´ØÒêA«-­J<‡´šÛÚ!­Jä…´zÐê`K«­¶´zÐ*aK«­¶´zhÍ`H«‡ †´zhÕ`H«¹cÒêA«‡-­´‚ØÒêA«ˆ-­ú" iõè”ztJ{]Z=´z0¤ÕƒV[Z=hu±¥ÕƒV[Z=h•±¥Õ£SšìÒêÑ)]viõP¢ ¤Õ|p…´zÐÊcK«­>¶´zÐ dK«G£ÔÖ¥Õ£QŠëÒêÑ(Õuiõ É–VZ•liõ •É–V³&$¤Õ£RJìÒêQ)5viõ¨”"»´zÐjeK«­X¶´zЪeK«­\¶´z—J3~Gq)5ãw—Z7ߤØÃÇ¿îÒêA+š-­´ªÙÒê‘)wi5KsBZ=2¥ä.­™Rs—VZéliõ ÕΖVZñliõ UÏ–VD)¼K«G¢TÞ¥Õ#QJïÒê‘¥ÕC†!­:QCZ=T“Òê¡DaH«™¸„´zh½aH«‡†´z¨URH«‡Z)…´z¨ÕRH«‡†´ºkÕaH«»–†´š‰YH«YüÒê®/ºVwµ’ iu×GH«»†´ºkõaH«»–†´º«ÕUH«»Za…´šum!­îZ‚Òê®5ˆ!­îú` iu×…]H«»N´Vwµú iuW+°Vwµ iu×RÄVw­E iu×bÄVwµ* iuïœ.­îóÁ¥Õ\„´šå…!­îšX…´º+1Òê®E‰!­îóÁ¥Õ½q>¸´º«Õ[H«{£Ù¥Õ½QšêÒêÞ(]uiuo”¶º´º7J_]ZÝ¥±.­î•ÒY—V÷êRk®W¸0 iu¯”溴ºWJw]ZÝ+¥½.­î•Ò_—V÷Ji°K«{¡tØ¥Õ½PZìÒê^(=vi5ž!­fkH«{¡´Ù¥Õ½PúìÒê^(viu/”N»´ºçGiuÏ”^»´ºgJ³]ZÝ3¥Û.­fmnH«».TBZÝ3¥á.­î™Òq—V÷Di¹K«{¢ôÜ¥Õ=q>¸´º'ΗV÷ÄùàÒêž(}wiuO”Æ»´º'Jç]ZÝ/Jë]ZÝ/—Z[ü^œ.­&ÑÒj–H‡´º_”þ»´º_´p¾°k"Òê¦VŸ!­njÒê¦V¡!­nZÊÒꦵŒ!­nZÌÒê¦ÕŒ!­nJ쇴ºéB#¤ÕM?xH«›&n!­&ñÒê¦/ÂV7-j iuS«ÖV7µr iuS«×V7•"…´ºiecH«›–6†´ºi=]H«Y„Òê¦DEH«›>8CZÝÔê6¤ÕM'bH«›V8†´ºi‰cH«›Ö8†´º©oH«›Zõ†´ºiVH«›Ö9†´ºi¡cH«›ó!­nºPi5‰ÎV·ÆùàÒêÖ8œ/lú" iuÓzÇV7-x iuÓŠÇV·ÊùàÒêV9œ/$‘ÒêV¥Õ­ºôºùø*Åu¾°UJu]ZÝ ¥¼Î¶B©¯ó…­P ìÒê¦VÔ!­n…Rbç [¡ÔØ¥Õ­PŠì|a+”*;_Ø2¥Ì.­n™Rgç ©á i5‰õV·L)µó…-Sjí|aË”b»´ºeJµ/l‰Rnç [¢ÔÛ¥Õ-Q î|aK”Š;_Ø¥äÎRHÒê–(=v¾°%J“/l‰Òeç ÛE©»ó…ÔT†´º]”Ê;_Ø.Jé/l×£´º].½>¾I³—å›´ºjidH««n<†´ššÑVs#'¤Õuq>8_Xçƒó…uq>8_XµB2¤ÕUK$CZ]µF2¤ÕU‹$CZ]U-ÒjnT…´šRµVW-” iuÕ…HH««~1!­®šØ…´ºj+‚VWmUÒꪭ BZ]µ^2¤ÕUë%CZ]µ^2¤ÕUë%CZ]µ”4¤ÕU×VS£Òjn†´šŠÁVW}°†´ºj½dH««¶’iuÕV!­®ÚŠ"¤ÕUë%CZ]µ^2¤ÕUë%CZM1dH««¾8BZ]uáÒêZ9œ/¬•óÁ¥Õü`!­®Z/Òêªõ’!­®Z/ÒêZ9œ/¬•óÁùÂZ8œ/¬Å¥Ö&­.”boiu¡T{K«5ñ¼I«•8»I«µUÊMZ­­TnÒj}0Þ¤ÕZ/y“Vk½äMZ­õ’7iµ¶z¹I«U9s“V+1x“Vk½äMZ­…Y¿ ­¶Ÿ˜´úé8àéé°ô¸žîÿþøÍw?óÓ{olvÄ~zR+¶†‘ïçóý'…RL«Ôe@cY¡op4_„þûbÕš<בŽÍ£í'ê·¾ÏÕGì[‘íÛ~o×Ås®û›¿–ãÕŸ6í2å?ߢEÃjc?A®;•90„¿§¶î-~Ï&v®#›GÛOô¼ÏÕrÙ=¶"=Úÿ6ï×Ås®Û> ÷i—v!û|ûûR/• /]‹ªûl3 ‹{êþ[•jûy:*åÔÞÏÓ7¼ª€‡v"èo›wx«×j—O~4³Lóóý'šŸÃ{pMö"©CÄ?FÇÿ½öñséØ<Ú~ÒÙ[ÚÎUÊb­ˆ7Îþ6ï×Ås®›ŸeS”ÊD|¾ÿDm0”2%¥†ŽËÖ›‚H§±QÊþ{ó–´s éØ<Ú~¢ûüû\58Ùc+úÆ®dÖø½]—{¿nû,¥yz(¯³Ï÷Ÿè>·:Ÿ0]ƒô¶¨˜Àxxú¦¿§¯‘ŸkHÇæÑöÊ‹ýÜ‹Òk[Ñ7v%sÄïíºìÜûu{¸“ê.º4ÿ|ÿ‰¾¼´ë»vÈ#B{p G’Ö•COM?×P÷‡Ñþ‰òÝû\Mk÷ØŠx´ýmû½]—{¿n»/K;œ!mÌööŸh>¥ÛúLë0k¨2¤ßÝâkÔ¯lÉ>׎ͣí'º–Ûçj&±ÇVô]Éšñ{».;÷~ÝöYèÊÝç˜ÿD×nº„®œ¥è#ÎÞ$Dú÷hjá¿·Þpv®£ºç˜ÿDy£}®®ZöØyÏ1ÿÛö{».žûpÝþf§ŸÙý¾ìŸh¥:©s»èJú ÔÍÃé÷EƯø=û&ø¹†ºß—ýæ}®Vߗý·í÷v]vîýºí¾t]ãg*j>ߢúV¥b§.ÍÑ“žúhCü¦]èøûAÏ;בŽÍ'“ý„Ž~.{©ûØŠ8öØ4ËŠë²sï×ÍÏ¢²ÕK~¾ý@Wã&bÊ¡¨¢føFU Ô«Vö~^3ÅròCù%Oý<]€ú¨ xhv vßWcçÝ®Õn…ULí[ôùþÝŽÔ*N+x:X»¢’Wüž5˜v®#›GÛO´bŸKO[Ñ7v%+ïßûuñ܇ëÆgùû§ýð×?þþ¿ÿúé7?—ˆ¾L9ÓÓßÊÿþò„ùïØU¹ÀÄDàç§ÎzBÍnªC$Xê0²0èáÚ8¼°4)ߌ:Ëy÷E¼p¿ìøqÀ¯¿²¯é›ÿ|ý¯+_úÓW|ÒÀkÿ£P[Ø'úæ}õùé <æÚ—O_ýåÃß|¥ƒÿâÙSß¼÷³_2^â²TºŸüúsÙÈ$ÎM¯=³³ ;Î̯>sêÖhœYýL”´âÈøÓ³,2¾] Ñ>;¶øa\ê½åð˜ñ²‹?jÿ].%J~øøôOß½êv~†t=~bµ\•"ËEð1~ûoß}÷ñÓÓß}úþ'ÿ@ÿáÿI4v endstream endobj 2511 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 2501 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/plots-dark.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 2512 0 R /BBox [0 0 720 308] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 2513 0 R/F3 2514 0 R>> /ExtGState << >>/ColorSpace << /sRGB 2515 0 R >>>> /Length 19473 /Filter /FlateDecode >> stream xœí½M“-Çq,¸¿¿¢7ó °ylU~g.i⛑Ç$6²g’àò‘Ô½€ €fÌæ×OxxDFlê–6³è/áÝUÙuNeTEz†{¤§¿yJOyú—õãïÿû¯Ÿ¾ùñÃõœ®ütÿ÷Ço¾ûp=]O#_Ï×õT®ùÜÆÓŸþøáïžþåIÈßô〿úNIë9_Ouêoszî×SÎù9íƒn=_õéþ/þ:ý›?ü̯ÿð›ÿC~:ÚÓÿóáþI.òÛééoäùôb~÷|ÌçÙý§ü\ªüíO¿¶_§«<·ú ¿Ïó9—_ø}ËÏ+ýÂïÇÀ/þÍßç+?çõ ¿ÏýyŸûýõ¼êzºÿ‹¯ÄΪíY~ðù©ÔëynüéééûK³['ÿðëËMþ{ÙÍúüdðñÌó/ê y¸ ¹ /B.ôó‡\ósoO=?_éé“ÀËáo?ùoÛ|îSàŸäSýú«õÛ,só«?>õ=Áô…¹â_9C¾ô¯>?ýÿÿú»o¿ÿü«¿þã¿” øôÅÇo~úñéwßûñÓ—ÿôôÕß|øë¯0ï3éç¾¶_žIùZÏ劯f”çÒ ê7s`°à^ð€’Ÿg‰ ÞøÙoÿ~ÀýÆ5Äøæ"š~îNýò+P%Pä›Èøf¿_µ/Ÿ¾ú ¾Á÷®`–®‡“óëOn鹿ÛÉéÕg‰ŠûŸ­¯>S"I.8õçÂ3ÿçÿùé÷_ÿôçïŸþñ‹OßÿOù¾þôñ¿ôßð4ûN2‰´4Ÿf{¾ n°‰œGÈ`”ç•q€Áþœª`§øo”ù<®§5žËˆ9Døp@Î]§)á|®“ü;3ìaD‰þ¾ž×ôó7ÔÑ?=ÌèϵÊXòP^Ï#i$Ü Ãö-Ø!ß?¾bù§Q~–bø~HnˆÐ$·ïÒO*Ïɱ?"¯áÇwÜ®ÅÎòCß) “;•ú\w`WLJ¼ ð­nÏ-Ýžõvˆãû! ñ›jU‘™3?Òž{±ïE±<”›bgíC ßIíyÊÚ ZB©8~þðŸ¹ÒU‘§ëØÿÛ×\Þ`_ü$ü‡ýéOý¯}’oEÇoÏ™ëßž\×Û¾ å¡ÁO÷Å«óldQ9Éÿ ¼ 4Ñž¯~TÙ'ùVWãÉo¸dž+á^xn^o½hÉò:£¤½~Ybß"W÷8ùõwÈþ®Dg™öe½zúžÉ&åÕqìçJ°]¼K=¿ñóæKÞjœoø³ö žX¤èŸ}ë©ö-¿ú­’$»™IãÀ¾ä>ß0'³$ÊCCÁ¢¨®×`þé[4´«¾!‚ù·ñB¼’]úzý¬¶³#"F¯Ÿ^vés¼ýk»E…,'^Ìvö-0Êë_ü~vDF»Ê®œ<ÀÑM†‡Íïúú»Ì+¾Gý3ÛÎШo8—Qß“ö‡#,Òëï¯ýáŠ2^ÿÔ¶?,1aO¢úúh´?‘ßð ãF<ØWÞz‹oáð–YÉsã…ñ†¿;&Ö÷7Ƙ¯§åþÜëýQÊë¿.þéÛ#Isßø·Þox‚ØÙ·7†¬bßzéoŒõúÓ±ªH÷Ðèox|Ù•ß^×xóÙ·ÆxÃëÆ>÷í…‘ßtéú¹ï/ŒëÍ'K„Øwž_¿Üö“o/Œ×¿ªòÊ`ï‚£¸,ÿp=·)Ë™¼ÿôÆ‘6CñEzn#•ñ_åˆVÞ:Ò¸ðfÂEÉP’ò®7\v0Tjª¾ýª6!C Æ\øª®ëÍCmòA¾«K?àÔ¡R}óP›pøBIQêšø€ííW$ÃÐ>  õö«Ú ÃÊñáf|ÀÜÞ<Ô&ð«ÞAý€%½u¨wpawߕΫ•ß<Ô&âk×諭yŠÞh‚ O|À¢ßÕ›Cpïx~¡›:¸5b.€žMö ºV0Ü„Ÿ6ìÏ£(äÁÿôôGùÑ¿:ö|>ënRž?m8ñêþ´6¨ç×.¨ïGpÖ6üi㤛vŸöñŽu ùÆ 3G¹2F©àp  ,y-±o˜×Qu[£è‡=hݱ3ü)p×]š8Þ0¿‹„‰æà—Ù°óbøSà©[q¼a#OlÐ!Œ'?‹>° Ú)œnŽÛñŽù},<Ä¿U¯£äã†?m< xìOûxÇü>dܬ¯Py |Ök—ãOîŸâxü<|4b“îì•‚'¦áO}zøñ÷ùQtˡڳÝÛœ ¬›çŸâxÃþÊÁˆÑ–tŒšÆð§±·ì;ÅñŽý;Eeƒ /ÓßiºáO«n-Äñ†1†Õ–dîWX•aì"”—Fä‘r”ÿå¿þô§ïøÇ/~üÇ/Ÿ¾þîÛ§ÿñåÓsùõ å/ =u·3ƾïmÿÃjÿËÓoþ÷ǧÏ/ †÷µ¬×1ÝûÐÁ¾úõÿúê“ ^3'ÿêÕ'·¥ÐÿØ_žš¨üÿ2ö·ä ì Û\Î÷wðýß|óçï¾þéã·¯¾IÁÆj¾ÓñÝO?|)Óúé‹ïjTnçþlAÕk <ìRÒõx-Ä`äÈþøÓÓß~úþ§{¡CÁŽý®t¸2*&‹»ì"ÿslo¾ñx½ [êˆy=´×ÕhÜ_¥1̯Æí*°1¥Ø–‹DÙ×?|ûô×?üðýoûþÚµ_àkèþs#örËúÆöKnºÙ®¡—G­Z!~8ä*V1f‡ßI’AäÛ!†¹ûqñý^Ý>âv±ÿÉéRÆÂ6x+‘½ýìŠéÎMW¶Ç:à­'ã5ê'ÿìBïNÎ׎I™Ao=‰•g÷×dë<Ë?_=ý–ŽK_ƒ/çßžvÄÏL‹=¹ü—“kOQ;äg¦èžè~Èm¢ßæVÑÏÿbnU.'‘ÊßP(½èÊÿ“BùP5UD½[žUaBf[†)DÍèxÎàä¨,Œ$”WªÀ‘ ¢@t`+P2Ì2™kÊŸX|dI³Š>e3¾GTi-ƒòZAº’ J"À’ÂÚk5(ƒìÝ Jé–Þ;…3=Õ‹i dûÕ2Ó*鶤uK?ƒ’¢ø©”['puƒ’«JR•¦Ayª ,Ë \€Àî# ˆJ-…KæoFµ`Å*O`îå[X§AùÂ+³0…ò'ªÖçJŠ(ùr*»V`Yn·Àæ#Ë÷Põb—Vc.ŽÜ ËZ 'ƒ’ûcQ ¢2³‚·"”Ë8»A¹Ý• PnwÕÕ¡Üîʲ.…kŽÜµ(TÙB¹¬¢ºAy« ,Ó Ünm”Û-p&ƒò-U%ôgÌ>²ü •#ëÄ®ƒeº€r+Q¶ ²ö5%ƒ¸ÝCˆÛ=µÚJa×*Öá#­z]>²Ü¬ºƒ€—'Ðbp"A¯‹Ë8@Üîå18q»åQh18ñ6]´Êíh—Ç ^@»<'ö\.޼˜x .Ünvƒò- lÓ üÿePþD˃ [`ö‘åV ¬>òl€ÝG–Û-pêÈE£•À„r»ñ~Keê lÅ Ü,£”ËkÅb%²ò‰ªÅ @¹Ý5ˆ åv d ‚t쀌Aì]-<Õ¯fP.ëßnP¦}kƒ%Ñ8.ƒ’€ \>²|K²2I>²ü¼éö Ve d b=ÖƒåV6}ñâÕ3,±VÌ€ŒA¬õë 4BÜn[xâvO‹AY»ÊÍX.ƒI Æ j.µF1(° ¥cšAÜîe1Xt9Þ–Å @Üî…'” 8}d™öÈœ9²Ü­ÏÍ <·ûe1(Pn·@Æ`QÎBຠÊíîÉb,I,>²ÜÊ®·†P.^ c°h‰g76Pnw×W ¡ÜnŒAò w£Råf œÍ \ž,3.ÕþÅbP ¼ã6ŽÜñTç%¡|‡ƒå¬^¹&”Û-1X@>2ñ^n€ÓG–LLÖ\—,O*ŒA¼¦`måvw])Ê÷/ÐbpàVöŽ[C(ß;95@Éz÷x >²Üî®BÜîá18õvAÕ™tãB%(Z ê2¼OÁ‰§zŸ–` H€ÕGÆížƒ:W2Á@z —±<•ÉÀæL3(­/K0˜-´\¸Ýãò\¸Ý³ äò\¸•ƒÈ%  ’3Œd1(PÞ€ƒUùÒ‘,Á@¦QƒUǸ|d¹Ý#“Š\JÆ0Áædåf.ƒòT8³AyŽb1ˆ´d2Êí™6 ÊÝØ}d¹Ñ£X "i‘˨xYJ¶ 1(yˆÄ¦@Æ`Õ7‚À1 Ê÷/1ˆ”F†jƒU/^`Í%gÍbP ¼NYžù£#¨ ¾áÑ-)È¬Ê Ù …@Æ Ò!¹Œa1®qYžc›ŒÛ=,%áÁížøò q»§%‹j³ƒÈ2 c°*U åÖ2(ïGYë$YfãXƒ¨ÿ¿™` ³Ê€ŒAˆ$* c‰Öxš—%جY€ŒAæ]ó²d¼Àé#˘3Y V]æÌ>²ÜnL0•e@Æ @ùà`\³AyŽÍl †ÀªÕ€ŒAr»g¶¬zwy*­ùÈØ/ƒÈèT£êûQ ÅàÀlh18ðýÏj †@ù‹³z ÜnÍG–™Õ’|’3Ìê18ñÌŸÍcpš–…I~Õwëlƒ·[ Åà´ &ùU§Àì#U±TYr†Ù-É—ôïÒm ‹Á…¹:‡ÇàÒÛ=,ɈÛ=<•4h1¸3\>²¼çô\Z±9-›>ç´$+ð ÈlºŸ5—Å`ÓÝ Lò™… d ”œAàð‘å)'pùÈ2æº,‘£@Æ`SªZ “ü¦ì·@&HYëÓJƒ”{¬d1È v%K0¸ °’Å jý3àô‘åzV¶£©Nfe‹AP+[ 6ݼ^Ù ¤»1ØXÀZ,‘ýÀê#Ëí9ä#ËíȤî…Ûù„’3¬j1Ø4ÓÈ(q½ª%H•3 cP KA’,W˲ZB¹Ý«Y J2|ic‰´î”1Áh*€®)”»³ºÅ`ÓëÈ$Ÿi¶Àé#Ëí^Ãb°é:š(Š©a1(‰tRýcIxd’/·{Z "'AM÷ï˜ä#EO€ÓG–œa-‹Adì I~Ó·ÉZƒMI’µ,‘À'@&ùÐT`§ÿ² dBÌ( VpóÁ•º,¯¬˜ˆ”‚¯d©¾àÔ[(ªžØbq`*3ÛÜŠr{º*HÞãþ||™óÀ·Ø"râæC8Ìœ_pnŠ™p`!1),^†…Æ•º%•®j9–UqöñgW\}|–®jiGÓ!°…æB*NÍbSs9`f%—‚-:¹E(ØÂSÅuÀËÇŸ¯{€jÉwºœ ëÜÚÌüƒ’-`Æh¿¨¾s6 K˜ª˜)H¿8œãšF·‰}|ò®ËrìD1R»¾ªXõ ÅLDckörVL°Î§Å°*,ð.†u>81†…ÑTÜ}üÅ]!. P½F5!C¶ëk˜1Û•ž檠k& ̨ÜXçͰÅb*ë6xòñ·Å‹ñ\rЬSºšœ#“%“n«;I†õVQÌàŒùœ&ëšÎ3|;©úäDVd¸gʺ>|‹­Þä\™,»0’“e‚1’³eX´a<§Ëצ˜ë¬â†bÆo×"5àéã£è79e&ó!9gÖ•™füvMB€¹ZèÔm¦f©J×<:%çÍzã6“gX vÅÌV°…7Oó!9w& <Öne Ξ ÎC1ã·S(˜9 –ø|N u ,àâãë|˜–¶ôÎùàZïœN¢uÍ~·¨‰QšœF\ºb‹ß‰Ìä¥Z 8“&ó!;•†E)K2š¿X oñ;*Š-†¡¤GÞ —¢ØâWWÀ¿Êns%ѵ€N¥¹>þÌŠ³0émà… ¶ø]ZV‘Vëkëx/ØÙ‰µ®K `‹ß…EKL||ù.áó9¹6”ÐæªbhîÌøÅzy(füÝ%OÙ ¶¡´:0ãwXݨSl‚GW<||F²“lXSãó9Ë&ó!;Í6Xª’gz#€¿C×0¨µç cèƒ8ûø£(®>þlŠ»¯óaX†32çƒÓm‚u>8ß6´  ˜IŽ`”ãdgÜ ÔŠ¿C÷t $H>¾Î'ÝFæ|pÖm·e©ÎÐÌÅ Œß¡7˜ñ;(í¡: CDTœzÃú(^>>æCI–ï€H¾É \©Õvú AWÌ|Gpæ¦4ãwèÄA¹ãwè ˜ùΨ^ Ü}üÁr§éã#«Éñ•Síø4Œü¥8š¡)f¾#¸ Ōߡ P¬3~A<$ÅÅÇÇ|(NƉ芧ü¥4[† %Ó€¿Cóf`ƯàBm;W"‚µ<Ë)9“åZ—aä/ÅI9ÁÈ_гr 3šbÆïº][œ—¿ÏçÄÜœÎÌÁùàÔ®Øâ׊ œœ#œ}|ä³Åé9p"U±Åïä|p‚nLÎgèÀ’$Å¿Só—âh“¦xøøÈg«³täQ€¹<š3ßú‡Ru¢nhÖlñ»(ªH–ï ]¸[ü.Í_ª“uà^ªâáãc>T§ë†º@¤ê|ؘK1óÁÈ_ª3v‚‘¿T§ì¦fªÅò©«_`ÆïÔpõñ1È^c>Tçí¦r(ícü‚Ò¹3ßa=0ã•ØµZ¾ÇÔBàìãOª’«¿X(Ì|gRþQÀ›úÅÀ¸ñ;3K »å;S¹x`Æ/ˆ¢B£‡ló¡v[¯€9šjá||ä/Õy Ëw–á_烓š‘6-ß™Zþ lñKepsîO0òY.Û‰u>8û7çƒÓsq>XÉ*0ò—æ ©?`ÆïÒDeÁ\¯€ ´2áa¸P Æø\YVÌõ ØAèoœŒü¥;¸hZÓŒü¥;¸T¦Ìø]šÈCÄÅõÊÒ@fü.]¸3~—¾€¹^Y‰z ç—nD¢81ùøÈg»3‚+{ñ"ã$dVÌøŒùÐ+93~#éN ¢ >)>>ò—îÄàÒD •›ÉÇÇ|èN .Ýf¾#X•âN.](§îìàRc-`æ;‚‘¿tç#ŸíN‚ìÌŠ§ùÐ"$û ÌøE öRÌ|gi`3~—.´¿K_d©OËw ÂŠ‹¯óÁ™B0¦I1óøÎPÏÅø…Ú3~gj!™ï®ô¹`ü‚TÍ”¤$ØX&ùø˜ÃùBÁÈ_†ó…¤]™ï,]è3~—îÀ&ˆñ+óÁlƒc> ç ÁÌ&ÅÓÇGþ2²­W@ÕvÅÙÇw!Ž?4ÙÖ+ðá¡‘ů>ˆP’oñ«Ä0×+KwЀ-~•ž>>ò—á|!øÞ¦Øâwj>;œ/¼s½8)¶ø:†ó…‚‘¿ ç —Úñ7ùËp¾pi¢š†ó…$Óp¾pi1°ÅïÒù0œ/\JD[ü.Í_†ó…à•›âìã#ŸÎ Öù`|a».Îã u>Læ;ÀÈ_†ñ…ÀÈ_†ñ…ÀRAÍw€‘Ïã u>_¬óa1ßi,Ýî_«0€ç4Œü…i.1ò—i|!°Jâ/F>;/æ;À˜ÓøB`̇i|!ð¢|¸r|¸*'N†3Kâg1Œü…i'1òÙi|!0æÃ4¾óa²”Rñ¤Bqùø‹îY‰ãÊ™ ó`ä/ÓøBàlîZÓ0æÃ¬\¯7Zkådóa_Œüižüe_Ø.-LÓøB`ä³³q½Œù0/Æ|˜Æ7ÊaV3¬º7ã ‘¿Lã ‘¿Lã ‘ÏNã ‰ù4/Öù`|!°Îã ‘¿Lã ‘¿Lã ‘¿Lã ‘¿Lã ‘ÏNã ÛÕ9Œ/Öù`|!°Îã ‘¿Lã ‘¿Lã ‘¿Lã Õ”ÁøB`̇e|aÃF@SÜ.Øëb¾Œüe]¿Z@˜VòøÕ B`Íwõ×ÀÍÇÇ|XÉãW¿¨´2óvéÂØâW À¿ºPîÃ0ò—•=~µ,­âñ;)^4a0æÃ*¿SçÃ*¿ZM¼†aä/«züj=!°Å¯ª82®”^Yü*±¥öo>>æÃjÌw€‘¿¬æñ»ÜQŽñË `Íw€‘¿,ã ‘Ï.ã 1Vçz¸Ñ´Žñ+óa_Œü…¯Abä/ËøÂ–´¼˜ñËà9 ë|0¾Xçƒñ…À:Œ/Fþ²Œ/Fþ²Œ/Fþ²Œ/lIË ¿)s>_¬óÁøB`¨˜.ã !ºŒ/îUqõñ%Ѐ»/I+ü9¾–näËøBà”3~窘ñ›´âx ÃPñ\Æ÷D#aÅÕÇW×¾Ì|x Ōߤ CTÓ_ðÊð óàR3~“&ÀŒß¤Äðª†>Ÿñ…À3+.>þªŠÇo˜ÀŒß¤ˆù2¾XEøùp-Š¿©ÑôÈøBà>O,ñ'QÔÏøMºnÕpꊿIk§€¿©S0˜ï¨L‰2FÆ/6Ž¶Ì‘XçÃ`¾<—z12~“Ö#æËøBàTèÕ¸ gz7Zü·éñ;8×+À:–ǯ.ܵQñ슇¿àÏxyüja"°ÅïÔùŒ/Æ|H—ǯšJ[üjqbNƤ¸øø³(n>þjŠǧ¨%%_-‡lÅâwÑWÁøB`̇”=~µHØâW«s2¾ÒT<~—_&ã 6¾ªb]¯c>$ã 7Âà—ÉøÍZ«˜“ñ…À­(füfý¢€‡?ý6}|Ììgêû6«q0ã7«R˜ñ›µdQ=U»á‚ë1¾¸]Š¿9Q2Û-ßÉúEó!_¬óaX¾“u¡Ÿ“ñ…oÀŒß¬Ä0ó¬Å‹ð½`üBh²3~úbT_çƒñ…À«+füf­`„Ä—ùNÖF•égÃÅ$ÁÕ0<=Ó²|'Îã ;-K“ùÀÛH,‰HÎÆ¶¬•ŒjiZ ËD„9)ó¬J%`Æ/6þ’bÆ/„'E1×+YW57õñǤ“´¿è,ÍõJÖaÎÆÃK*_ظQ·S®W ?™Š¿‚1²ñ…ÀÖfã GS<}ü‰Ïg|!ðZй^ÉêV ÌøÍJl3~¹ÑÌõJÖêFØ'3~s§s¶ñ…À#+î>þ¬Š§ù/lؘœŠ¹^ÁÆ$-È-~µÈ1çîñ«UŽjQž ·¡Æº¿Zç\|ü™7_çð|'O·áñ;9¦Ç¯&*ÀÌw²‡9O_-w¶ø¸9/Ëw°ñ9g_çÃòø]œËò¬5À¿Zô¾Å¯V=3ßá@À¿Z—ËãW‰vsg"Æ|(ƶ¢/ `ÆoÑB/`æ;E‹¿E«U^Ÿ c>ÀɨÆ|(Æ6Ú¹çb|!0ò—’-ß)Z©Î¿ßäúÆ6³(ÅÖ+܈füâ›Êù¿Ø˜ôž†‘¿ã ‘¿ã =ƒ¹^)Z ™‹ñ…Ài*füâƒ^й^áF.0ã×lŠñ…ÀÈ_Šñ…ÀÈ_Šñ…ÀÈ_Šñ…­hñ:0×+øbðùŒ/Öù`|!°Îã ‘¿ã ‘¿ã ‘¿ã ‘Ïã [1KTã u>_¬óÁøÂÆcµê¿ã ‘¿ã ‘Ïã 1ªñ…À˜õ²|ÍK1ã·h•¤z³OÃÈ_j²|§h$0ã—7 ˜ñ[táÜ}|̇j|!0æC5¾°ÑŽ˜ù%¥êi #©Æ#AÝ~3Œ|¶_ŒùP/Æ|¨Åò¢¶\/lEë%ájÂø-ú"f¾Sè¿]«Ç¯&®À¿ZmšYWOŒùP›ÇïÐùP›Ç¯ÖK3ß)Z/ lñ«õ’À¿Z/ ÷®W0‘†b‹_M|-~ubOùK¿ú Î>>ò—:l½Rt£Øâwq>8_ˆuŒç|!&bWlñ«õ’À¿Z/ <}|ä/Õù¢õ’ÀŒ_lÄÅ\¯Ô‹óÁùBªjsu¾ó*ê¾ «—…ó…U–ÀÍÇW©³ó…пdÅŒ_LôªæíŒ_(`:Íÿ/ØÍùªõ’jö^ #iÎ2€³|¶9_XõÁïÒëŸÁZÈu;>ëüˆñô?nOë'o×£õ“·ëÕúÉÛçÉ:?âófñ}è‹äö}iýäíûÔúÉÛ÷­Dæí~èBáv¿ çǾŸ…ócßïâó#ûøÈgö|©Z?ó©V¶ðñùVµ~2æ#÷>_Q˜Ðoó™ó½jýdÄCÕWÄKU")â©j¢ñFqrÄ# Ò-^øåÏ(lh·x¯Z?σªõ“ñ¼¨Z?Ï“ª KâyS5Ñ‹çÎñ¼b!D<Ïx¡ñ¼«ºçaÕúÉx^V­ŸŒç) %Òíy[µ¯B<«¶CˆçuÕúÉxžW­ŸŒç}ÕúÉxT%â}Q烿Oêä|ð÷Mœþ>¢´:ÞW,¼ˆ÷YÕúÉxßU­ŸŒ÷!&Zº½/ëä|ð÷)&f»½oëb>ãïãº˜Ïøûº.æ3þ>gáF¼ï‘T-TŠ|…×-Ÿ€´&ßòvy>Ãøm—ç3ÌWÚõ˜Ï Ó-ßió[χø‘/µ‹ù­çS-1Ÿñ|«%æ3žÑê+ò5 Ã#ŸÃƒhÞò½ÆNA;l‰ù­ç‹ÖUcç“-1¿õ|³e·Ÿb>Ú2ó[ÏW[f~ëùlËÌo=ße¡IäÃ|G¾Ü2ó[ϧ[f~ëùv+Ìo=‡èfÞòu(Ò¯[>ß çƒçû­¸=8×­0¿õõB+Ìo}=Ñ ó[_o´ÊüÖ×#­r>øz¥U_ïp=Óêãz‡…-±jZ?륦õ“±žjÚ°%Ö[Mû¬Äz¬©ûC¬×š“±žkZ?뽦õ“±daL¬›n<Åz²i!X¬7›š@Äz´© D¬W›ÖOÆz¶iýd¬w›ÖOÆz¸iýd¬—›:üÅzº©D¬·›C±oZ?ëõ¦Dh¬ç›^¬÷)Ê>  6wq¾zœqãšzBßд~2øˆ¦õ“ÁW4­Ÿ >£Mö—q¾£Ñfó!M7‚/a!Oð)mr>8ßÒ”ˆ >¦é‹;øš¦õ“Áç Ð§ÝøèqÆj‹óÁù¢¶8œOjZ?|SÓúÉࣚÖO_Õ51 >«_äkïb·½àÃh)| ‡‚Oëù9çÛúåüÜôñW»ñu(,7>¯'òµÎ÷õä>¸ä{"?ç|a§WÛæ{"_ë|cOäkì‰|­ó•=“¯u>³gòµÎwv-Ü>”^Á—öL¾ÖùÔžÉ×:ߊ¥qãc¡Ç¹óµ½¯u>·òµÎ÷öB¾Öùà^È×:_LC„à“Yè|sg£ÍG÷B¾Öùê^È×:ŸÝ+ùZç»{%_ë|x¯äk/ï•|­óé½r>8ßÎB©àã{uþ~øøÊ×:ŸßùZçû{#_ëû½‘¯õýèqîû ½q>ø~Coœ¾ѵ~2ö+ºÖOÆ~Fït5÷ýŽ®õ“±Òu"Ä~I×D6öShçû-,ÌŠý˜®Ÿ±_Óµ~2ösºÖOÆ~ô8÷ý èqúm¿¨«ÅDì'u­ŸŒý¦>èpëûQ]ë'c¿ªëÆiìgu}‘Ä~W×BØëê4ûe]­&b?>±ßÖ' á|?®kýdì×u­ŸŒý<èqúm¿¯ë‹2ö»5>õý®õ“±ŸØuáû4£ˆýH’Å~eW?•ØÏì‹óÁ÷;ÇÅùàû¡Cë'c¿thýdì§­ŸŒýÖqцÔ÷c¡Çé·ýZ¢Å~î¸8|¿whâûÁC b¿xè‹ ö“GzÜo† FºíG£p­Üö«GbýïgÖOîýîÁúɽ>X?¹÷Ëë'÷~úȬ?ðýö‘Yàûñ´Òˆýú‘Yàûùƒõ“{¿äÝÁŽã³~r× ŒâõÌwPWnõ£xýãw¯?àze°~r×3 ÖOîz‡ÁúÉ]1X?¹ë%Feý×SŒÊú¯·•õ^A¨×¬ŸÜõƒõ“»Þc°~r׃ŒÆú¯A!^»Õ“ŒÆú¯7¬ŸÜõ(ƒõ“»^e°~r׳°P/ê]Fã|ðz˜AgÒ]/3:çƒ×Ó ÖOîz›ÁúÉ]3X?¹ëuë'w=ÏPOé¨÷óÁëFç|ðz¡¡ ³¨'¬ŸÜõFƒõ“»i°~r×+Ñ$ê™PxÝê†WD=ÔP犨—¬ŸÜõTƒõ“»Þj°~r×c ÖOîz­¡G=mL¢Þk¨9êÁë'w½Ø`ýä®'¬ŸÜõfƒõ“» …‡×­^m¨]mԳŎ ^ï6X?¹ëáë'w½Üdýä®§›¬ŸÜõvSLQ7µð<êõ¦ÚYD=ýS¢Þo²~r×NÖOîzAÚÑF=! ¯[½!ô8ùV8çƒó…“]Lw=ã´úIç §ÕO:_8wýdõñ­~’ñ;3çƒó…3s>8_hÍ0v½æ´úIç §ÕO:_8Y?¹ëA'ë'w½(»ÀE=édo×]o: ëi/œ¬ŸÜõª“õ“»žu²~r×»Òý%êaÙÖ4êe¡Ç¹×ÓÎêõ´Ìw&ë'½Xëi/œ¬Ÿôz^`­§u¾pVÖÓ:_H ™]/Ü8w=10ê'½Þ¸MÖOz=2p.Q¯ ŒúI¯g®#êÛ­x¤¨—¶úêìã£~Òë­Ûdý¤×ckcw«×Fý¤×s×[½7pëQÜgÔ‹7>v=90ê'½Þ¼MÖOz=:pQ¯œoõìÀ5E½;°Îç 'ë'½^x̨§o|ðízû6Y?éõøÀéV¯œ{Ôó[/$®W&ë']l-)²üÅõÀs„ÞxÝômêÂtë€1\Ï\z耑¿¸ù‹ë%w¶žxÞôÀ«‡£-ú_¸^8_¡çFþâz`ä/®n#ô"Àý¦'i´ïÙz“ÆíÖ£´Eÿ ׫«ÈùÂÅúI×»«Èô0Àí¦—î=ô4Àc†Þx]¡Çi‹õ“®×6=ó•]Äø]ùA¬óÁôBÍ[”8_¸èáz£ÆÄgë‘Ú*Ô9_¸ õ@ήB=é€K=p¡—jfUíz*àQBo<[è±»­×j«Ræ|áªÔ‡9_¸*õa¦V}˜ó…‹þ®'Fþâz3`Õ‡9_¸ØðÜõjmiýäÖ³[Û Æï¢ÿ…ëá€k½pk¡§î#ôv®G[Œ|Öõz zœz>`Õ :_¸ºë¿«ÓðÙùÂ¥õ“[OŒüÅõ†À£‡xÎÐ+6.$¶ž8åÐ;çzÈÆ†ó[/ ŒüÅõ”ÀÈg]o ŒùàzL`Î.ú_¸ž³-­ŸÜzO`ä/®FþâzQàÚCO ÜfèMÇzÔFϦ­W^7=k[fGî|áÒúÉ­‡Öf^Î.­ŸÜzZàÖBo ÜGèqÇM¯ ŒüÅõ¼ýÒúÉ­÷N=ôÀÀy†^¸^¡'Æ|p½1p¿é‘;¢¶^XõíÆö+QßnzgàTB œ[è¥Ë=5p½é­Ußn|!°êÛM¯Ýi4µõÜDÂÖ{÷+SßnzpàœC/\nzrà:BoÜVèÑG ½:°éÛ—oúöÎñ•(ÙzxàtÓË—zz`Õ·_¬úvã û ½>ð¼BϼrèýûEÿ ÷N=ü€Ußn|!°êÛ/n%ü€Ußn|!°ùTÿîwЯæ~×eù‹û%#q?à2Ãoù¬û1÷~ Àãæç<{ø=#q?ˆ~iýäö‹Î%ü$:Û1n¿ `ík|!p»ùU›ÿÅòñ‘¿¸ßðêá‡Ñ/­ŸÜ~Àù ? à’Ão¸Þü8€[¿à>ÃÏù‹û}tym?N¢tû…#Ÿu?à|ó®)üH€[ ¿`ä/îgŒüÅýN€‘¿¸J¿´~rû¥tÁÛO8÷ð[.3üX€[ ¿`í!—<~õÁ¹ý^€‘Ϻ ðºùÅôĶXî'œKøÍ#q?`ä/îWܯð³9ün€çͧÓxlûåôDÿ ÷Ó6ÆoJôk2¾XýšŒ/V¿&ã ;ûym¿à™Âx•ð êÉšÅ_¬~Mæ7¬~MÆ×~EÀíægÜ{øc>¸0æƒû%õTè×d|!°ú5_¬~MæÇ|÷kn)üœ€{ ¿'àÑ XýšŒ/ì©Ò¯Éü¤:7‚¶ßp¾ùQ«_“ùUc>¸Ÿ°úw_¬~M懬~MÆ«_“ñ…=5ú5™ßVçF×öã6ÿ.ÆojîßUºaõk2¾x\ḟ\Oô¿p¿9à”Ãù‹ûÕ#q?;`ä/îwÜSøá~yÀ³…Ÿðá·×ý&Ý8çðëFþâ~~ÀÈgÝï¸ÍðWøÏ~‚ÀÈ_Üo°g­ŸÜ~„ÝÛ¯¸¤ð3®%ü[ ?Dà>Â/xÜüW¿Åžµ~rû1#q¿Fà<Ãϸ^á÷ÜrøA÷›_$0ò÷“VÿQã ;qûQ§~•À¹…Ÿ%0æƒû]×›&°ú_¬þ£Æ«ÿ¨ùm¯~œší×ÙYX±ý<ËÍ︎ðVÿQã ÕÔøB`ó­>¾ù&Ž_Ù«ÉøBàtó3VÿQã ÕÔøB`õ5¾¸ÏðSžWø­¯~¬=ÓÿÂýZS?W`õ5¾XýG/n%üb{ ?Y`ó£]>þݶçî~´Œß¬õ’Û϶³gûÝ—~¸ÀêGk|!°ÎóÓ7¿]àÙÃù‹ûõö<ØæÓøBà\ÂïXýh͸Žm ØÂLp¤m5 (³Äˆ%Èܦ¸3Çpc@yÄ»Å1 L7@¬a Øú6O” pke@¹{n¼ ¸Ê¶eîYK$Ý´¹3urKçÎJ17|¬iÛA¶²Í¢å0·’sMÊKÅm¨{ÑÒH7©Laa ˜û6¸î,€sûk@™/nŽ ˆÎÎF J¶áÆÚ€slÛmÀ¦Ü½¨Ã…[vÊ wCoÀÒ·Ý7 <‡Ý P^cn(³ÚÄgØŒ®¾MÈ{Q Ü-Êávn<`g¢Û›JZâæç€mlktÀÆé€3m[u@Ün3]ïE+ Ý’æöÆÿÂÜÞìÜanoì` +xÀÞ·Q<à˜ÛFp]Ûd¾}¤¸}çŠÈ êinÏ0,õnnHs{aQ 7ÆD/³Í„¹½1~½hÅ£[îÂÜÞ ùsØõwÖµº™?`Ûê°_» Ìíêœm7\c·èE ½ zX{@ô20–½ Œä”·›7>”œÃÛ"¢—1|€+Z*töqó† moÇX®Ý¬P² oåØÚnôØÇn8¢I z$Amwå &q»/Ái­+,µªÑ[WÊ·ä-{´½}7Åœs·ÌèE *¼¡`Ê»Ý`n»`»U |oä(Ï^oó(·Û›€Êíö!€kì"½ê†©·éäo¼ù ÌdoMXûn\Øænk8®ÝôpæÝPæ›7LéUë½  |‡ÞlPžùÞŠ¥³ ßµ¶¶Û¸ö±›¼¢!޵€”Yá b:»ÚyûÀÔwsÀÀ­ýzÓÎÿu6@ô¶€€è™è ¥€ÞRƒM>ÞŽpF³BÀÕw+ÃÞÔ,²g"“ü¦¥…Þ$PBÆ[(¶±,öh¿8ÓnθÊnÝØ›fÎÞØ±ó¼í# Ü,o Xón Ø¢¡$`ï»Ý$ n·5£\i·ªìM‹ ½‘% „ª·¹”Çš7ÁìÜrõ™€-횀½ìöš€£í曀òÁ½5goZDè;SÞm=s4ý,}·DGTçÏš[ÞNP¦½7”G„·"DGTkTÚ›.Á¼içLö&§€ìˆÊ$¿ ëˆj1¨‰‡·O×n® 8ón½ ¸¢1koÚîÊÛ¶¢#ª3fŒMoù (áæ aåÑäíbå1îÍdG´š\i7¢íMÛ]y›ZÀÔv[@¹ÑÞâ°^».`Ë»=.`æ¹€rï¼µ. n·sdlïîmySÞM{;‰ÞÒ·³’ÂþÖh ØÓn 8Ên% 8Ûn4 ¸ÆnCÜ»–z“bÀœw c@ù¼Áqgˆ·?”ÛíÍ‘åv{ëdÀ™wce@y{ÛåÞ•Kñ¦Ì€Þ²°¤Ýа–Ýî°µÝ °Ý*p^»‘4àÊ»Ítïº'ëM¨e®#ÂþôôGôçÖ.Öñï½k·u½—Ø¿û½Çõ{ë÷×ï=®¾÷¸~ïqýÞãú2øÞãú½Çõ{ëOï=®ß{\¿÷¸~ïq­#¿÷¸~ïqýÞãú½Çõ§÷×ï=®ß{\¿÷¸~ïqýÞãú½Çµá÷×ï=®ß{\¿÷¸öñß{\¿÷¸~ïqýÞãÚÇïqýÞãú½Çõ{ëdø½Çõ{ë÷×ï=®/Ãï=®ß{\¿÷¸~ïq= ¿÷¸~ïqýÞãú½Çõ0üÞãú½Çõ{ë÷×Ýð{ë÷×ï=®ß{\ëûö½Çõ{ë÷×ÿ¿éqý‡Gmöç—ÊíC×ýBõ}hÂÅø¡'?Ôæ‡ýA©~èØ_¨Ü ü¡?ôó‡ºþÐÞ?(óÝþ Uÿ¡ù?¿€ÃMàð8œî>‡‹ÁKƒÃáðG8Üo…ÃyáÁ—ápmxáép8>~‡[Äá%q8M<øP./<,‡‹ÃÿâpÇ8¼3gßÕã…gÇáèqø}n ‡WÈá$røŒ<¸%/L“ÃýäðF9œS_•וÓå…cËáçr¸½^0‡SÌá#óà2sxмp¨9ükw›ÃûæpÆ9|s\uÏŽ<‡_ÏáæsxýN@‡OЃ‹Ðá1ôÂèð':Ü‹o£ÃùèðE:\“<•Ç¥~L‡[Óáåt8=>P‡KÔÝCêp˜zé?u¸SÞU‡³Õá{u¸b=xfŽZ/ü¶7®Ã«ëpò:|¾°°ÃAì…¿Øá>vx“Îe‡¯Ùázvx¢=8¦~j/ÜÖ/¶Ã©íðq;\Þ¸‡¸Ã?î…»Üá=w8Ó¾u‡«Ýáy÷àˆwøå½pÓ;¼ö'¾Ã§ïpñ;<þÀàḻÞ¯/œaߨÃUöðœ=i¿Ú7ÛÃëö…îá“{¸è»‡ïáÏûàÞ{xû¾pþ=|×àÃSøp>üˆ·â/ãÃéø…òá’|x(ˇÿòáÎüàÝ|8;¿ð}>\¡ÏèÃQúð›>ܨ¼ª'ë>ׇ öá‘}8hþÚ‡ûöƒ7÷áÜýÂ×ûpý><ÁÇðÃOüpð"?œÊ_ø˜.ç‡úá~ø§îê‡÷úÝ™ýðméê~x¾Žð‡_üá&xÍ?8Ñ>õ/\ìûÃÿðÇ?Üóoýçý×ÿ…kÿáé8þýÎvg;Çvg;‚—í Îvg»ƒ³ÂÙ.ál§p¶[xlÇp¶kxÙÎál÷p¶ƒ8ÛEœí$Îví(Îv/ÛYœí.Îvg»Œ³ÆÙnã±ÇÙ®ãe;³ÝÇÙälr¶9Û<¶#9Û•¼lgr¶;9Û¡œíRÎv*g»•³Ëc»–³ËËv/g;˜³]ÌÙNæl7s¶£ylWs¶³yÙîæl‡s¶Ë9ÛéœívÎv<ízÎv>?Óîçlt¶ :Û í†ÎvDíŠÎvF/ÛíÎvIg;¥³ÝÒÙŽél×ôØÎél÷ô²ÔÙ.êl'u¶›:ÛQíªÛYí®^¶Ã:Ûeí´Îv[g;®³]×c;¯³Ý×Ëv`g»°³ØÙnìlGv¶+{lgv¶;{Ùíl—v¶S;Û­íØÎvmg;·Çvog;¸—íâÎvrg»¹³ÝÙ®îlg÷Øîîl‡÷²]ÞÙNïl·w¶ã;ÛõíüÛýí_¶ <Û žíÏv„g»Â³ác»Ã³âËv‰g;ųÝâÙŽñl×x¶s|h÷x¶ƒü™v‘g;ɳÝäÙŽòlWy¶³<Û]>¶Ã<Ûe¾l§y¶Û<Ûqží:Ïvžg»ÏÇv g»Ð—íDÏv£g;Ò³]éÙÎôlwúØõl—ú²êÙnõlÇz¶k=Û¹ží^ÛÁžíb_¶“=ÛÍžíhÏvµg;Û³ÝíÙ÷±]îÙN÷e»Ý³ïÙ®÷lç{¶û=Û?¶ >Û ¿l7|¶#>ÛŸíŒÏvÇg;äÇvÉg;å—í–ÏvÌg»æ³óÙîùlýØ.úl'ý²ÝôÙŽúlW}¶³>Û]Ÿí°ÏvÙí´ÏvÛ/ÛqŸíºÏvÞg»ï³øÙ.üÞNül7þsíÈÏvåg;ó³ÝùÙýl—þØNýl·þ²ûÙ®ýlç~¶{?ÛÁŸíâÛÉŸíæ_¶£?ÛÕŸíìÏv÷e„´8·V§ÒêF Ä–V·¥5Y[Z ëÒêFMá–Vc>¸´¸÷V«T×K%'­]Z œoÒjà4BZ ŒùàÒê6)tiu£frK«û i5pë!­®7i50òY—Vc>¸´øš!­n“RI—V›Ôšñ;¥Ø^* ÍèMZ \GH«‘Ϻ´8—V«4ØøÂ6)uiu£†uK«·„¶´X¥É^*9)Uui5p™!­Vé³—JNJa]Z lÒiÆ/¶¯îÒjhtÇMZÍÝ®VOJu·´zRÊ»¥Õ“Rß-­ž…Òp/•œ…Òq/•œ™Òr/•œ”oiõ¤yK«§I•½Trš”ÙK%§Ö†´zjA`H«§×!­ž[Jmñ»¥ÖÌw¦I±½TršTÛK%§>èCZ=µ.0¤ÕS CZ=µ20¤Õ“Rò-­ž”šoiõ¤}K«¹ŸÒê©EX!­žú" iõÔ…xH«'¥ò[Z=)¥ßÒêA©ý–VJñ·´zh•`H«‡– †´zh`H«­¶´zÐ*`K«­¶´zÐj`K«‡Ï!­æ¶vH«‡y!­´:ØÒêA+„-­´JØÒêA+…-­Z3Òê¡Eƒ!­Z5ÒjîØ‡´zÐêaK«­ ¶´zÐ*bK«‡¾ˆBZ=:¥».­Ò^—V­ iõ •Å–VZ]liõ Æ–VZeliõè”&»´ztJ—]Z=”(i5\!­´òØÒêA«-­´ÙÒêÑ(µuiõh”⺴z4Ju]Z=hE²¥ÕƒV%[Z=he²¥Õ¬ iõ¨”»´zTJ]Z=*¥È.­´ZÙÒêA+–-­´jÙÒêA+—-­Å¥ÒŒßQ\JÍøÅ¥ÖÍÇ7)öðñ¯»´zЊfK«­j¶´zdJÁ]ZÍÒœVL)¹K«G¦ÔÜ¥ÕƒV:[Z=hµ³¥ÕƒV<[Z=hÕ³¥Õ#Q ïÒê‘(•wiõH”Ò»´z¤GiõÐ…aH«‡NÔVÕ$…´z(QÒj&.!­ZoÒꡇ!­j•Òê¡VJ!­jµÒê¡E‡!­îZuÒê®e‡!­fbÒj…´ºë‹.¤Õ]­¤BZÝõÁÒê®Å‡!­îZ}Òê®å‡!­îjuÒê®VX!­f][H«»– †´ºk bH«»>CZÝuaÒê®-¤Õ]­¾BZÝÕ ,¤Õ]­ÂBZݵ1¤Õ]kCZݵ1¤Õ]­ÊBZÝ;çƒK«{ç|pi5!­fyaH«»&V!­îJ …´ºkQbH«{ç|piuoœ.­îjõÒêÞ(Eviuo”¦º´º7JW]ZÝ¥­.­îÒW—V÷Fi¬K«{¥tÖ¥Õ½ºÔšë.ÌBZÝ+¥¹.­î•Ò]—V÷Ji¯K«{¥ô×¥Õ½RìÒê^(viu/”»´ºJ]ZÍ…gH«YÀÒê^(mviu/”>»´ºJ£]ZÝ ¥Ó.­îùQZÝ3¥×.­î™Òl—V÷Lé¶K«Y›Òê® •V÷Li¸K«{¦tÜ¥Õ=QZîÒêž(=wiuOœ.­î‰óÁ¥Õ=q>¸´º'Jß]ZÝ¥ñ.­î‰Òy—V÷‹Òz—V÷Ë¥Ö¿çƒK«It„´š%Ò!­î¥ÿ.­î­œ/욈‡´º©ÕgH«›Z†´º©UhH«›–2†´ºi-cH«›3†´ºi5cH«›û!­nºÐiuÓÒꦉ[H«I<…´ºé‹0¤ÕM‹CZÝÔª5¤ÕM­\CZÝÔê5¤ÕM¥H!­nZÙÒꦥ!­nZOÒjᇴº)QÒê¦ÎV7µº iuÓ‰Òꦎ!­nZâÒê¦5Ž!­njÅÒê¦V½!­nZ§Òê¦uŽ!­nZèÒê¦Ä|H«›.BZM¢3¤Õ­q>¸´º5Îç ›¾ÈBZÝ´Þ1¤ÕM CZÝ´â1¤Õ­r>¸´ºUÎç I䆴ºÕGiu«.½n>¾Jq/l•R]—V·B)¯ó…­Pêë|a+”»´º©uH«[¡”ØùÂV(5viu+”";_Ø ¥ÊζL)³K«[¦ÔÙùBjøBZMb=¤Õ-SJí|aË”Z;_Ø2¥Ø.­n™Rmç [¢”Ûù–(õviuK”‚;_Ø¥âζD)¹ó……´º%J/l‰Òdç [¢tÙùÂvQêî|!5•!­n¥òζ‹Rzç Ûõ(­n—K¯‡oÒìåã_ù&­®ZÒêª!­¦f4¤ÕÜÈ iu]œÎÖÅùà|a]œÎV­ iuÕÉVW­‘ iuÕ"ÉVWUK†´šU!­¦T-¤ÕU %CZ]u!Òêª_LH««&v!­®ÚŠ ¤ÕU[„´ºj+ƒVW­— iuÕzÉVW­— iuÕzÉVW-% iuÕÄ5¤ÕÔ(‡´š‡!­¦b0¤ÕU¬!­®Z/Òꪭ$BZ]µÕDH««¶¢iuÕzÉVW­— iuÕzÉVS Òêª/ŽVW]ø†´ºVÎç kå|pi5?XH««ÖK†´ºj½dH««ÖK†´ºVÎç kå|p¾°Îç kq©µI« ¥Ø[Z](ÕÞÒjMß~À¾ÔKeÂK×¢ê>Û èß➺ÿV¥Ú~ŽÊCùõƒ÷óô ï£*à¡Ý„úÛæÞêãµÚå“Í,Óü|ÿ‰æçpÀ\†@“½HêñÑqÀ¯ýAü\G:6¶Ÿtö–¶s•²Øc+⳿Íßûuñ܇ëægÙ¥2Ÿï?Q ¥LI©¡ã²õ¦ Òil”²ÿÞ¼%í\C:6¶Ÿè>ÿ>W NöØŠ¾±+™5~o×eçÞ¯Û>KižÊëìóý'ºÏ­Î'L× ½-*&0Äž¾éïékäçÒ±y´ý„òb?÷¢ôÚÆVô]Éñ{».;÷~Ý‹.Í?ߢ//íúÁ®òˆÐч¤uåÐßÓCÓÏ5Ôýa´¢|÷>WÓÚ=¶"mÛ~o×eçÞ¯ÛîËÒgH³=†ý'šOé¶>Ó:̪ éw·øõß+[²Ï5¤cóhû‰®åö¹šIì±}cW²füÞ®Ëν_·}z'€r÷9æ?ѵ›.¡+g)úˆ³7 ‘þ=šZøï­7œë¨î9æ?QÞhŸ««–=vÞsÌÿ¶ýÞ®‹ç>\·?†Ùégv¿/û'ZG©NêÜ.º’>uópú}Q§ñ+~Ͼ ~®¡î÷eÿD£yŸ«„{ìê÷eÿmû½]—{¿n»/]×ø™ŠšÏ÷Ÿ¨¾U©Ø©Ksô¤§>Ú¿éE:þ~ÐóÆÎu¤cóÉd?¡£ƒŸË^ê>¶"Ž=6ͲâºìÜûuó³¨lDµÅ…Ÿo?ÐÕ¸‰X†r(ª¨™¾ÑC•õߪ•½Ÿ×L±œüPþ@ÉS?O >ªš]ƒÝ÷ÕØy·kµ[aU#Sû}¾ÿD·#µŠ…Ó žÖ®h‡ä¿g ¦ëHÇæÑö-…ØçÒÓÃÇVô]ÉÊû÷~]<÷áºñYþîé_>üÕ¿ÿï¿~úÍÏ%¢/SÎôô7ò¿¿| aþ;vU.01øù©³‡P³Ûã‡êÉ–:Œì ƺF¸öo,MÊ÷ã€ÎrÞ}‘oÜ/;>Eðë¯ìkúæÇ#_ÿ«ßÊ—þôÕŸt'ðÚÿ(Ôö㉾y_}~ú¹öåÓWùð×_éà¿xöÔ7ïýìןŒ—¸,•î'¿þ\62‰sÓkÏì,èŽ3ó«Ïœº5gV?ZþütÿÓ³,2¾] Ñ>;¶øa\ê½åð˜ñ²‹?jÿ].%J~øøô÷Oß½êv~†t=~bµ\•"ËEð1~û¯ß}÷ñÓÓß~úþ'ÿ@÷áÿN08 endstream endobj 2517 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 2545 0 obj << /Length 3291 /Filter /FlateDecode >> stream xÚµkoܸñ{~Å"-Ð] K‹Ô»¨?$Ar—^.9$¾ë‡»â*K\[µVÚêaÇEq¿½3œ¡^–íMÀ€E3Λë¬.VÎê»'/Ξœ¼ä*q ‚ÕÙn%G¸^° ¥¯Î²Õ¯ë}Þ¤ÛêÐæUÙlþyö÷“×~8ZãÆãv4³eèã¤'#™au0Z½uC)ü8ZmU@—6ùe”¬uÝÎÍVùÎúå¥N¯þº€ÞYm¥+"Kì?.5¬€3¬‹*Éòò;ẽԼvŒ< „rKù^·Én£üuU/3±çÛ¹‡$½J.4aÊKB’”|røѪÆSóžÛuGÛŽ^h·ËËV×IÚæ×z¼ ~$Ô@C£äϳ ò‘b’®­öI›§ÔM‘oD^Þ0(©ë\gˆ¸îû=˜(Eìû´sÕµ0ÕÖmEß´Ú’ëû†—z½‘~I(»ý¹®©]íx ;;/›6) @lv8c7y{9›^•ÜH6ÊTp/I^$çSQ1³Eh¸ŒÌæ&0{õ«YúòÃów~ÂÙ„9·3=ð Ös%a÷\5&á““šñ†ª"Ã#¨½LÊÙ.æ Y8Ó0ÒùÌîÂKºÆnlq•U›ÿæ8Šˆ2[»ý™7à»2œ@’0à÷eb³¤ZŸ]Ú,A¦™ðês$RFë¦;jCCÂoéÛè¶5º‡:4@3=@–×U¹×ek)CÜun¸bÔn¢'³Cýøêìùë÷~ÿåÕ‡oÞ¿ûýå÷¯^þ° ­Ò …ëK«* Çw·–ŽðbÏNyýüíÇW ;Y z•ûÍñ-.\–ЉíÝ=Wx~d×|¼mðC—׸zñ§9 Ë¥£ÄžP¡‘ IuÝÈJyÌ €U„tú>Ò\GƒÅc£ŽtãWÕ§EÞ´Ø7·>Ðum`¼ƒ §í\Úèͯr„öZPÄÓh}¼Ñ”xAo5÷;8ÀCö¦+ǵÓw–7ºÝ2 ýPH7œÊI.:¤Ì¨ÑË3v†3@g`¡,ËȽñhìv`ãŽF p¢4Q|£ŠzÞ?Íôµ.ž.{®0PK"ìÜ/ÂRDÒýfü÷Šr@ˆ]ï®{®'œxæ~ðž‚ûeÎ-½£exDؽR Wõb…œ <–Ù`füÀ›h$ñ[w<–\lД‚û ~¿Ë¿2ci³‚åO ò=9;þdÅk„û/,p;úÒÆsq\p4fÑ#Îç|—·ßwç‹îò± ÎÁ“@'ÙHW™.ñë|¤8'ôù©Þ€ë¨R _ìЂò½>"Â;3‚håbEÑ×ÀsÐdiî=`ò¿¢‹b¿‘ü*¬»þÖQ]fÇ#ܺA`ÌÑD…]0ËLc™¶*–ìsb5o©@åk3òLÂŒ#ƒM?^˜=%¿·yiUî ùFâìÅ=Ónß=Èå‰xˆP¾M¡“k-1y•'rÕ¢êYw¨«]^èoϺºi»L?rIw„êþP±Ï!ѹÅ$R­¯ ï^k} ”²…”ôŠL6rz‚cÖÖllk¡{B€-½…7+ÁºCn„>ç8)/Á_# &ƒ )×ÁoÓB ™qfÛ,¥7ºÐ{fÆ<>gÑ ¢]ŠGdÒãpÄÁ$^¹.¨.èBÖ°BšT8†u×Õù¿uÚZ`Òò´† µn»ºÔœÕu¼õû’W™Ü IÑTÔ‚Ö&Æ#^t÷H…¾ðÝp|¤Ó³?/e+ijþ4ëÁK$Âxe”yªñÚMQç6àhÍÝ`kt7xŒ×Œ˜à †5v>%ûCAN{!F¸“ÈÅ#°ÿl ,Øå-5À*´ E×F¨°ŸÒÙVïvÀê†AÞmk}QS݃,‡ÈX´œØàã¸öÒ6G`¹˜‹l¾Ùú޳þÛ–¾äDPBnógº¶ @γOéó}P‚òÖÔfEj ^fЍ­ö‡f±Äk¶þAPIÐÿQ/©AQ }¢?t£ œ4†ù'yöŒf.®;$9pãÅ™ˆ8ÜŸ’’%mr ÿÄ>M»:»…´Àá6‡¤nHØ’åyÛœºÜíeq°5A,Bëy®ˆ¥œÜ¶þ„&娫1-“ ^V]ÁÛ&W<ÒT{}î»I]uöö¥‰ Ï"]¦Ž•˜dœšA/ú¹§ÿ®<üÙÊÊ—‡Áï­É€öÇü¿º96ÎU¾µ7F+Uo^hèü– {‹Ê[cG 0ZädâwAÊœ{(:~Û¸×rÎo÷Îð÷ʯés_siŸ‚˜Wt…]%d4ŽÛ„<ßÌK+Sà$¯ç°×“ëRëÌ%´PÂu”f™œÕF±¦ü²âéc 5¥"Ú[Z)Mµ¿ÉáPäKï܈îiøÝ¥—0KÆVw‘*XŸcvŒµmbDÐ"DЀ¨1ãAtÑ0yÐ½É S ÇF­ àË(±¿åØ¥ó4ÃIخݳÇëç ,î‘?5Ôr‡úT¢7N¶Ø7P×3Îé©?Të¤5 C(Ï“ÞRË\‹[DŸN#)`¦¡=Ši3¤/Ü!¹0¾¥êê<‹|H!•ŠSÓî½®>å Ä_ L*çÇ\C‰ –sÔT ÃãÀ2Ü3%†ŽL`ˆ-»TS›N‡C\Çë0t"*âã8‰ î6¢¦GQ®ßÍ6D÷n©JM`§3›ä|®ƒP÷™ ¤1,•ö&¦VØ`߃ÔnîÙw1ÕW"ï¢ÅbhͰž>Ýç%ð~±´˜‚ÈçÏ}ò$úNŒêè NõüÅ!¶/ ”&ñÔ°–‘tl€Ì%Ö'çGìmPÀú‘m`¥æ–x÷l)a ´† p‡KEÛH(!5!¨Y4ÊÌž oÝÖ<Äý)zÐ)=>5¸é‡#4YAÚ‹D÷F—å`”v®™õÑKSôÂÅÑ(NL-6Ñà6¨g£D|•1î"’ãP)¢ ÕV 7eJ)д· Ëdo.i#×h3 {2˜9±Ð YZ 29”zõI+½;=‡ÜåÛ+ž7¹âë´º>½>_Ò1,Ô Åé´<|VãX2Èß±´©§>*b¥"˜&e4ú<  …žæ`†L¬ÍJR}”^eq6rféÈž#‚!d€—ž¯D¬‚Y Ð]Œ©K«ôï»}q”ð}wnÙQ@‡úg’2ÕÛ´Â˃h:ÿDíÑ‘ wÏ‘d RЛ4¼—û5/ÞÁ¦½BûœI‰!ÁoÑØ@bw00r¥¤VÞ°Í‹=p ÑÜ4Ë鯣(^+4?Ø _&@ܵïÞùa´~WµšæÄPË”_\´ƒÿér“ c窱ÌSr¡3úÉ…8tYñ#3vzK€«é´1ãºÉø–…CÖnz¤Ü¡5%Æ;ËÌÛk¸6E”-,Ú¦a²ñ‘}F‘GÊmŽgFÓ’%„7yQô»”Ô:ç…¥Æd5©¹^ü1Áó¢©H*—Úƒ_Š@î*ê_tI@T í}“C ‡Ø8ˆ&±1 1](h-7C¶õ ܰÜÂ2-ºl.2AhŽŒ[tçèF ¨Ú-…—ýÓ4ðûXÓç!·[H4¦\¿£ÕôÝù0KÊ—<.½­Þ÷ER€¢ÃH¦?Žßj +TèO¸ ]Cgèßó[¡8ÞP1|ô·B£ÇÎá6'Q = "¡aä2ÄŸÇÔøû¦t\"Áþüñv”à}vÕšò§/+*ºó—ƒÆ{ÇWëî@_üqSÙŒBãoŠº6á @J~÷I ¦C3”L¶£±<ýz0P&™r8º5H›åØÖ"åèJˆ»§O›²ºYòºàÂéÓÖ>V–§?°Þ+ ЈVx0ñ|éŠeÿ[´ã®-V"pԈß>ø¬ Çék#ËDìj,:~6¡ÊwçÜ{ˆZd|WP,]}¨›¿abMb&_‰(œÕ-Ó¤!E¿$Ñ&Få· ³%tí¯O°a W˜Ñ¤©šÉ½^â8Ê0BÁ¶¼Éôç8)ä¶ly=yFÇV1U¼žÕ–ì÷ÕÙ“ÿ‡Ù¯ endstream endobj 2558 0 obj << /Length 2758 /Filter /FlateDecode >> stream xÚYYsÇ~ç¯@ù%@•0ܹö£T¢X²¥HU ÅĶ+Y`Ĉ{@{¢}º§g€]p¥2S|ÀìÜ}}ýõ0ZÜ,¢Å/¯/._ëd‘±,ñâz·àQĤŠ ç,–ÙâºXü²äI¼úíúíå똦ÊD2'°‘›TÙn»nͶé‘?álûµT)“q¼X‹:%-Ý6Õ¡4½ù5ÒüÙj-¤Z­o )²åË&/°7Znò2¯·0ò'ú®òjìMy Ù}C=ÝÁ¿ªßÊŽÚƒŸ¶Ú~oZê„s£ß)ìÖ/ ü±tÑ¢HÔ¼BɤkCr–¨£6yû.?ʇw/¿­¿l úδ¦Å»¡Þö¶©QlµŽA×{ H.·yM¡_Sç›eÅ{ÛïÉV“Ûq-XeÇÛmÜÝž??lšžÔ¡ †Îü§Ü¼¸¾ú×+<™¶™z‡«¥G!7f×´þíP×Nsøá5âñˆ%Y£ë³Äņ—o>/~Çú}ߺ痗÷÷÷,œ¼Z;ÿVÔq Ûñc4P˜ÍAf ¨MO­pev Žqþ÷$x¸;×µŠ@ke`šL,Ñ“Ô)\ #oêb€Ðqa–$K”}×yùС_ã*[ÓÐý88p’ÇE 0ê=äÛÛüÆxéc=48V¥iPÒÛ•ÐËfhá4Ú¢’BÜÏ›ÉÇ>ïm×Û-ÎFWúØìúû¼]Édif#I˜:ÁÓ³cL@Æ3{d.¡œlÉOà|þ«1äžwV‚ñHœûVÑXt£K0žÆ2¹üÔuì.’1³‘tVu}ñù‚;åǼ©¹d\¤‹muñËoÑ¢€A@&³tqï¦V Åòñ¦åâãÅ?yO4NÎS‡ËÄŠ/T3®ø·óîĘœ‹±þ>6•!½\H¾`ñàô¡ET$³Á»gåT©fiü1‰kÄ3\CiÍ?˜nÛZ—“þŸÐ¢4)ž}c¨U4Û$ìý@G²C«ÈŽkÚ 7|êåýÞÔ4pèÞ´·D °ÃŶ|ª;MFŠ)-p#Œ9@íŒã‚O ¡OÌÁ…$íŽnŒ™„"Mù>´Êe`´Ü©Mës|úÛCk;‚ —¹Æ°ñUðCÕŽqïXeËyÀ;ÿ]„ô5¶Í•éúò]ð´÷ù[ }¼³”ûK»o?áH•£+<ŸÑ¦eÅ"¸&e57Ë@g‘è½´Y *LÙÑ7[–>ÛqÁ!ÞŽÖl«œ µýV†‘8ÔѤނð°2ŸUÝ}ó(`v'Ü ÜªÜ“œ{;*hÇV€ïêh˜T­°&—QÆfÀ±Ë‘…xFáêÕûwŽŠ¸s´}c8âïÈ9ñsz Ž|䎗äe×PËå.l†xÖPöÔÑoépË {6òXw¤<ä¾)^|‡—ÿnƹbÅ<"‹µ|׉ò ‰CBç ê¼µÍà #[v ÓÒ«AÝêú¡°Æî󕈖wˆ³††m D0'›ÀO‰¡…÷£)cź9ŽŸº!Ç'¡ Øîyg C@òÛæ .3 ø.;Ô›wîXž„#Ü5yLÝNûØÈ«f¨{jÓ` …WoÚ­kûB3vÃ0ó µ|‡™&-0~ƒ¼ (²ï±™xE†µ½µþRgó%οŸ“fžW Ã’H2ŸÈ~8ú¾ÃNŽrÏX‡E("ÎòÞ—ÅÁÁÊP‚úeX¸65åœaë鯙/mÑ,_hIe¿8Ãkã2ÂøêlqÄ-OÄÊÛ; åO 4Y’œüò _ã(¥Pò´‘RÁaÄáRO„CHnY¬Ÿ‡"Óç…’(íý ®cªƒm=e„Ï—ùƒñ×¾¤žŽš ¥Y¿Hu… z·¥Ê f} @K‚‰³z4€Á«—sP%¯:AÁå̦š©SM6ûð~v3À•Lq•ÈÖv‹¶ˆ*ð±ddµkâÊ}§Ënß ßÜûI.øGÃüuàÝ£a“‡í›P$§§ÝÁö¾TçxâTMUs-N†â£°Þ_[ã@ ƒrÚ´û(0\Ú¡¹h‚Ç% ¸h†_Šf ŒæšøI SÎPz‡·2c©í?ŸHÞ ùvåôÓõ  R¢¿XhŸW\usŠ”ŠÈ¦7BC°/@óÒÐ zwFSÕ~bçGàÚÔ²¾Ç_Kjå®…]9ýl÷vÝ}òÖÌŸ‹D<í ötÎãóÀçÌ„ó(_¹ zOÇ^or X ÐUÑpÝT¶¦Œ„c#c^˜ ÿþë ­5më §Žéu²£Á£Ëà‚GÅ p-Çj ¥±2žÁ@¿%²žýN{λH^h” ìq›]ÛTÔ¢{àŽˆª5µËQæ(Cú’˜.fk½ŠxxB˜lSÕÆ?]vÆ8¾Xðü…Oþç"Y*Žèy;Ç0˜>=£­%2xRI‰.¸‹†\ îÒº'ü0³§™aÅ2—“D=–`‡KZJQ…)=‡t r)joÜrÈÂyÛB½j9ÎHqô¶‘ADŸÁÌG[@=ênF^ìåmSßVî? qx"D0@–œ&þ£†êg²8]"NÂbI¨¶#!ÂúõhEêå‚RE‰˜ˆÊŒñZ|n)Œ…ÏìÂeæ‰Sû×tŒ“t}’ CÑæ/ßt¡âAÅT²äDD oë}>KDS&£1(:!P?#R·OO‚EòìßT%$ŽP1Í\8ÿén³¿í>}•ëi¹íòÐ5½êÀ"Dì ÓX?JrØ7—Ùp ý;&>ÇÚf‚ Øåp—yDƾ¯> stream xÚ¥YYä¶~ß_Ñp€¤Øæˆ¢DINüàÄ^; 6¼“õƒ7@8jö´<::fv÷!¿=U¬¢ŽnÍd'A?4"Y¬óc)ØÜm‚ͯþxóêú–›Ld:Ô››ÃFP‘Þ$R ­²ÍÍ~ó˶*º|×Ú¼»úçÍ_®ßÄÉlÊ´H² ¶s¤2IèUÀ'lv*‘"ÎÒÍ.L`‘"2sµ c¹íwû¢ëÛâö* ¶C_45?ý‘Î’sæR)¢$òGÝ3E4£HD†žàC+»@+ñ$§•%"–Êì핌·w­µ±ÖèÿCû¦zÍ ‹ÒòŽÜhªš/ÆK{Ûõ# ßtèüƆGÞ\ÊxÜìd …N2hH‘Å1±÷„ Â”7Þ¡Z¹$ªW§žÂÔû•]d"T Ÿw*‚é˜'Ä-¦òyg*\x¦Hàðϧ· ž¸» "¥ÿýòÉtbÝôE}G;“ú QÕ­mç ë:ÛS^XºTÀИ®ñðo¾ê¿ZÉ JÃàæø#O‡ý‡ŽOìw̨ \⎎¤Æ2x´ gwq¼­Ì=…hõÁ¶‚;ê;¯*AÜÃÝ‘F8C@kßx*’™[~9¡A‚(Ç„ãVqÃ캾‚„Æ ÿƒ*àI "H`p-ÓîiÖ¶mÓòaßbï ç‘[T†\'”cJ…æeJ¥qÎ~Ð*x¤2{K-Ã#'ÓƒLæ8=N /m4ô6Ê9[rtõ/ö(¥Ʀ_î½a&ÒÉÂÐ>ÃÄÙ'EVˆ°àBX€†ÒAž`Ì%Á¬CxVŒ¾?tß|I£éšëH$q2cFbìüHg0jN3BÍ0RT)8»a®F_‡6Y,.9éGT3ç²Àƒ¾`>)À«Ež_œŒ(˜ARèøA6Ö€< ýÏ++¶šÉÿÖôŽ6®KaFËXðù‰XDc,pæ™Éù]ˆÅÌPö4Cbq|±¥¥‘ÐñÜΆºx6MD"ÕÙ¤Û/>(XŸü~DºxéÁ—R¥_˜žf¢Ó&€—?»×"9–L…‚'ë âWéšU㨳Ô%#勉·]æIÍíl9 9¯…pä7Û[Æйeš‘™`H€ðœM}GŽã >¸¦7ÁÓŸBb¡Öš{nšüÞÍB¬î&Lžy[”Eïà«XÈy&o=“7œF਌Œ~°µm c»Ÿ¯Œ÷¹Uƒ‡=²÷"à ƒí·¶7»o†}ây©šÒ‘t鈓\°ý0XÚÔùÎPÃWƒ·w} 8z€pŸB.ùzÅ)Ï|ý-0Ð[®Q•fgf\è§“bsÛáÇÛ6CÒó ¯é²ÖÁ:tý®øÌø\ÇôœÈbF8'k²ø7]7Tv?¦Ý5“ñ hÞ³TœÍ¨frCÀ¦;`‘Zs¢ñ–'“ £‘t¾éЗò173ÕÔ:•Üv¡džÛ_áâ¼?¢J¡çœû‹—ÖtÜ4ô™»/<6 OÎÔ–GØ(4&=Ÿ­Ã-‡EZt^¤üVHóáŸ>qžnì—Y?Jç!Šl ã•öèKoÖs2ÅêõHÉ– ë$òÄë\=ef@‚R; !ò5 ^›§V…´^ ËèíwÍ4ÓÐR "z»/&ŒÅ!Ge³Ç>Z"EÄ<¿«öwí]i-AÄX»¥g­Ãú4<¥Ksùî.Eί‰û£^ÅAg>­ÕÝb,™ÏÜ÷+þŸŠ ÔSÉÌ /aT{wCεщhbtÁ¨\ÇBUŠnÈÞ‚ßÐpN ‰oOfø*¶^ø E¨GÎrSæÏ¦_ þä<ÒÁüÚ¾vÆýÎ2—/â(‹à„)+Cé:CT…fC2O`§;Ù¼pÆèB¿†¤àb—eXpýd®5ìæMÛZ_Z£'*sq$!S¥øþ'BÃ+¨VŒ-÷¬§¦¡¿ œ„«l°½½vƒ §2ÓcÆíÙŒ{?÷ bÄÈ“½P?I,´Î^T?HÒ 1p£ÂÓ¥Çi%ä´hÍád ²ÉãÌŸ‡`Qºr€nb YÈáÙ6“ÈèÙ†"NäYšqÕÊ´·çjfLJý賸›ôT-´ðqí)‹w4à4s¥^»a Óì­­ü®µ…äÑ™–!ÕN+¹ý‘ ÛÌRZL(ñÞÐW?Ï$®4 VùlŒƒKÇS¾`™¨y–¬Çk‰‰Ñ%™¹ä -× äâÍÖ0ùT²ƒybÖ“Jp9ËçòÃÉŽš¥ùÊ|¢q>0rp Ùs”›“'ù–åš×x×Ï©t¦T> =KÐ`¾-?Q€Á‰vàÝ®gœúú¡R”õ€Œâ:mÉ-ãgˡ빒Õ6üí©÷¼øGà ëãBiÍULÍðêßÞ×c±'mÁð|{_fL¤`(°2Y©zÞ”¬œÕ¢9ꀳŽRìº[&£ì…#iµ~Y,:»/p?<_|Æbf W‚äݱ¡•¯{hþà@¯%Âiz̵:d€+O:·xzÒAwzÒÑ 4E‹e/¢WdYz–ÂEânBàæOîã+]cqy°’Ûwàx‰Å·Ú_¸Z•ß›;gpUذjuË•ï©r鬞õ©T$áÿö} €ý§¥Íƒyê¥óòá¼ú’€¼C´‰7ÿ;Zï¯äŒÝ=?¤PÌ‚½XD:=CÙW*Þ§¾©§oGCó±/5NßNæä?êq}f¬&0ÞŸhý÷QªV¸’ÊrOiéë-VLàm¹^H¼A<Ùøƒª V}öŸ¬Æ2åݼVòÔéÎb€^óXøg>»ÊMÝ]Q íxûD%‘•jÎy´¥Ð Ws~è8¦÷Üõ³á”» 6L  í:°aùÁÿ>Çî¶e‰÷Dó‡ï/ T¶Âéš—„  Noï øÃ—? Ls“„ذIq[îj'·ÀïõÑî¯=–q<ǬpÜbpšóL¨™þT¼¦¡÷¯Çã™øúû7ýÁí˜b~èÍ…–"`TâôFYbÇI×ÍòãÅç;ì ·sÚ‡VÌ4æaÅŠ˜@rökjºÚÓÂN\~ÀÀ~qü¡õw©Óø¹r|gÎtàîâne»× ™,d; þò<&¹ùéß?um> stream xÚåZKsÛ8¾ëWàÄû1噪$Þ̤*³3ådkgÖ•MÑ67’è¥('ù÷û5dÈrÅ´Ìø°{°@£Ùý¡_€2^0Á”qIÑðŠ)ëèMdZHzã™ñ©a™4ØGæ-Æ™ ˜ž’£©Ë±âo,“ÂÅ @ÚÌÅZ*L‘hXÏ$5Œ yOƤáe¢¥VdÒZ9´qE3¼ ´€f2hZ<‚€4—¸ÖP ƒ¥ Ô£ri= â;‘7xgiñ´†˜áœ :|ð´0#øÔ ò1õJü‹ÞáS´¢ÁVj¦µ6Ô2L¨e™¶ë^‡–J¼@¦žø³½!ZT¢NlfD CKZèÄXKë*5(êU’A¼´†R óIcèÀŠéaVÑG[}­°†rÌZŸ¨x††£4LI7Ä©ÌÉDOK攣¯ÔŠ9#h˜t6I Ÿê\Hï,sA ¬¡s1q¥xA °:0°œè2øtúJ`Æ& AìÞÖ¬qÌû˜d ™šz¼¢¹F±,a "™ÔK€iz­!ÊV³à’f âÒÖ²Ña!ú(‰ Œ2) úŒ2Xð¥Q);‘@FTIãN±¨%}­Óh¹´/ ‹×«:´’&±`´>‘û 9Ïb$ôYÚWB$QaCI(‹ôUH¡“°°– ¤[O §ˆGp ‡šÀ¾ˆ‚ÈB~óÒX‡¦t‰¶ŽÔ Èžv±I_„=Š~hæðpR¼û|Y³âò¼ž/ÛE_/ú%mV‰½<)Žëe»êªz¹ÞöéÝoõ´)_´ŸØ —¶­z?‘³i²Y|¾X´ v²6"xÅÞO~þykÙ4`R¼]öéùM³ø0)^´Ý´îqñ¾øµx]¼<‘éø©zvb¬âš„"×Ð#ìW"Y%ǸçìðoYñKû®eÅ{v|¶àݼä«EsÀÀÅ5#GìD­-Ý1+þüë_ÐHtÊp Ù/V³Ù†ëWP"ü ¨00oiÖ+àÑë) ìùòÜ×;#O‘i›\?x ÊP¬s™¶•1&¯âð ÒØ)þèÚêm a@{G¯Xñ®þÔ)ß»j wÕêÝþjõöjýšn&7zÔFqÚ´Ø[\^°‚<™*Ḕáý ÅóÃôBñ¼ê›vQ¼-þqüšþž]ôýåòÇ¢øøñ#Ÿ×}yÖv?\ví¿± o»óƒ/õí‡éûÎ`lØ4Z)Â6ZÅÌð,Ý‚Ï-`ÝÂÒ-ølãêd¶Pò ”mko,wKÁ쥠Æ4ÚJp 8<ŒŽ Ä,ÒZ®uÜi!ægíeÇ>û¼lÎpRsh|Ñ0øØ4jèhçÀ÷`ÚJrxÁݼeÒvà{oHFu’Q<’úQæM¼i|½ƒÌ)âDxÊ äÝÂÜ©‡›·ª+áĶ-[qYV †ŸÐõ¹]|iè¢|¨cÛmŒv©qmù¯hËhF1”å ¥9…xsxì¥aP¤| ÉÆzŒcì¨À sG”{쯈x[/»º$D•}Ížý¨’­ „Ê(ôi§;ûÞ5ý =Çì—®¼¼hª%û}Õ_®úƒô±ÓUUwÔk¸áòàz­–^Üþj’ì 襜/çÔ§€ˆrY'é¿Ö³«ºoªrRümQµÓfq¾Nîè;‡ÓÔ_¥ùËv6ÝAø¤xýò%Í™Òë´ußo­–ç¬én(ÿlÏËæ¦û¨9;«¡Òä €[Ì›ÅjÉ¢+þ³jûzVŸõä‹i Ñ.—MqÞ•WuQV«¾.ª¦«Vó³Yý©è›Ù´.æeÕÁv5Æ`JYUÐ|1m°Ä²YzŸÖgE‡µ‹ p™ÍÊÍË‹Õâ¼ìVóY¹ê‹ö¼]ÔŠª$zKX®ú "î{AÄ}"þÿ "3çÊyî[#‘Z ‹°¾Ù?̺p³æTÍ­î²æ–"‡iÿó÷Sòú‰Þë9ÕÄuÚúzN¾óÆÞõk–ï÷Tûù P!‡øI…ªuC‰Ü¹¡rCç†É ›.7|ndÊ*SÖ™²Î”u¦¬3e)ëLYgÊ:SÖ™²Î”M¦lä˜Ñ…ŠžRhHå2m wT'Chèb؉ÇêêJćWõ6*˜š x„\VõTã“क़݂ =j`zŽì`vÚì8â0'"0$× “¨õÃwòCkBñ˜Š¥\!`Ò±ªui敊ó¦¿Xòª¯šººèO‹±E¥¢âÈÄ(‰óÓ´Šœ*ÓØH/ÃCªdÌŵæ!ô†ÀL›aŒÌ/FäÃEd³7| _k0„˺oÇãÄHË©ô»áÄÌT€ÀÉùl>‘'xðþ†`ÆÛaœÌ¯ÆãC’ÿ´’Yy€Ç0Œ:’„÷n÷¶^Ö³y;­g#¢†ÅذáD$€ê^Fªvqë<º`\ð@'7™¯a³ï "´Õ˜RcRä*®Ù0З Ó“{ؘՈe»êG„¬ò€Ê‚ŒƒG¸_ApNgͬ]A‘e¤µkvè×»p/?OWålIil§³*m<~5#£'°¡µ \Dÿ„Vß#²öaÈšÓ)àFÆ´ú†oø0J âcd«o%§³ð 'Q#øsƒ8×êgk«µå A¯„ÿ1ˆÉØH£žÌêkÄœðÄþtå¬J¯ÝE¶iÙó9²”R %ÇÜÊŠÃ5çC:ŽRt†j-7Â<¹eQi%l¬„%¡ÓN‡ äÓM Šxw³SvoÊËËÙç1õDp™“ä LÂI9›ÝvÎ)Î ïåбëÒäZî$ÂÖퟛœŠÚœKÚœ¥ÚMWÎRmÎR­÷ÄÜ!ôE¾‰Ìo}#D#E%|§¿Ko^<&wº>çµ1pºÐ’Ïy¹Ì ¾Ç9ï#wžA" ¸iGÕ!ÏTPœn‡O‹^>¡ÈÔ…Þ0BÞÝ=ˆ‘QMQÊ`5݇â¶H‘&ýF*h$Üt Ã’†G:•kÕÖ=<DÐ= % Gª¹À@"*W”Ø=ø Ýh|À|kðæÈ¸0ÃFÛÇ¢‡–:ùæï1Úx 処n;!ŸÏNÈg'äs©ÔgÊ>Sö™²£ÞÛ€ƒ2$h¸¦ËŽHöv:ºp£vۻ˺›¯úz9bš©4™^rZ2…]Ê‘éõpZØjá M/¹ìpÃÅÆ†D2€±kEä„áZºž¥Rþn\È'4¾|þQT× ©lñëÕS:g]º5œùp†Ã= âcÔ,žTqC8ÄŸðPÊñ@7š#‚'“®örlŠ’:kvÃãª*gÕ˜³@UïÌ…ö«Ç{¹èÆåBA)*•ë$÷tW™Ê2L#Žt!>yU•òë_¶ÉóaCÂ7dÑž®–9,Ù¬+ÄúÚ¾;F≀÷âÓluú¶\L?6Õň''†kŠ2½ãt¯yî:ÊsøŒoà´«~ä‚BÛtßþš¸¼Ÿ•rÑ^•ÛŒüON‰¿ endstream endobj 2602 0 obj << /Length 2878 /Filter /FlateDecode >> stream xÚ¥Y[Û¸~ϯ0P`!1G$uM‹&ÙÍîI$i÷aÓZ¦medÉ•ä™L~}Ï…”eâ´ D’‡<ß¹Ñál3 g¿>yññÉÕ«8å"OT2û¸žÉ0:Jf©”"ÑùìãjöG Ólþﯯ^%rĪS-â$……ˆiWvÅ¢µE‡¬OB·ÃÕ+­Gs:Ê„N’ÙB¥@Ô<õ/óE†AÑìö‡ÞrgßÚUYôvÅÝæÐðí¸÷)ŒÃ»²ßúymk»}S¯Êzä—×ðHî7«¶vëx Ú˜Ç1 à6Ãe;sû”Ù…´†ãWZäòDÞÞv=·:Û»=šµ—É®×eQÚÚ\ñ§*kkÚáÀ˲6}ÙÔÝcE5usk¾)è™6QìPDyÄskæ*àOd³õÄÍ÷Ô¥Mv¾-LUœi÷d;• •)ÏnêÕãw’©H]nj»3bw{i+­…Jɺms¨)ZçÁÒò÷ÐY¢d„†ÈýÖÕ¡ëmKÁþ-ÞiK³¬G··Eù) •_hÝ´ßqwZ‰$·#5KØïâíå"Ësbø¢weU:‰À8Sˆ„Wvoñp*ôÕü¥Cbc8˜%s¬Ï8Ì~_•aP x‹D˜9Ûÿ`íwh1Õaezaº®¬oT(“KGOr‘êÌÏ{úø #hEãýnj8l—^Ü.iœ·[¨(û>¸*)2™7îM]Û¶ÛWú³Óæ©rAEtà߸eç2¾˜Ý¾B‡§¢4zZÓ/ *…:GA™•[:ußÍ%è¼½hgüIˆéFR&g¾¬2^ü];—YÐ –*7å .o«rÛ4益w{÷ _nmqãF‘ß´fgÁò˜t½I5˲*ûûgÓ~ 1é ùûÖÎ5ÜNë{6aQ©øòx|׬lÕ=E;’AÙ3Þ Ö#l RÝ[2sè·¦ç–Ë#–½ÚÍE3bVË ´“›Ô:Z9m1éÉ£ápV +PÐXúý5YiëxHj8…áî¡.ÿspC}xŒ¤»²ê`;îÄÁ9¿ðô<´‘qkìÌ—rW~µÃÀHFˆ²}KAyÇgªÎ ¡e¬uîçŒXyð uDBÁ8+ Û‰S¨u39Äc Åx¼Ê!!Çøž`FCÜòòl´3&boÛÞ”µÕ’o„Ü;¦;QÑzr¡Âìô‚†(SöŠ—Š|/Ì pSsΠC³0qZ€†‡YŸ€F¥³‡Ä…/È7—Á(‚í¶4ÇÉÎNnNKÈþâcŸØì&ìB[®fÈ5l;œ•ÌÑ*‚ŧ>ê#"ðhQìRå’„V9`¹o›zƒwŠT³º-)ŒKÍ, ŽÖTL$'ß•ûî›®g6wUH¹ ìèÜ~~þÎ0p¹×Z×bà N§×?AÛ‹Aàã|öó40kºL$޳HèV —C‹ê]7oÈQˆ=ÿ5OÀýÙbÛ/nXÛ1h;ŽNïéÍ'è½ýºð ôc¡ à_1`$„Îwä1Ø<òþ ìŠ”ç;^¼ÀªmõðqkÂ5ø†°9º!ìv¶²£þrþŸ#€‰dǧØ€}à…3@ª¬ÀQ¤§íÏârT(WÆ8`~R*õÿœØ¤³DäX}º:˜=ЧžT`ÅHÂæ"‘nËk4Õê·• *̓†ÐÞ,LmªûÎb¢²Ä‡Fö`ÁÍcvÓ2p`E¡nÓZŽš.ŽÃÀH˜‹q‡cæ̱Šo›/>x3 jEbb§W |±ê†›Ásœ¾‚5¸ûm¹"#Q2XÞsrÉAîÑd´EÛ,ñ‹¯ÄTÖkÈí걂·Ú’G¡N¹Ù:¶¥¿Å½l{ϽêX>åÇL÷pÄ¥8µ0›ìâ78¿‡¹Ÿ E\æÅoƒ»oAdWXãàžÇù‰| ,e÷1ðº³-ù¾Ä3ð Ôçë¦Û–Ü¥ØSlÀÃdá`ç+õŸõŠœFLùIç+ʶ8ìºSˆÎM¼”è¨D’\%-†=ÆC¢œÛO¸$$>§8êÜ•”ÁAkÙ@¹¹×~ÏQ¦ÒkYÇØàYLë­ã/ëãFd›"%«FãvM0îÙÃ6€sbÅ4‘Ö7fcòÙoi&S#SðõÙÍS^D(ã6›'KC’2 ’ãÔÙ#ÇBfô­Ã”7z>‡9X³¥7V_çN=–œ<›ctÏ@^÷B1GÕUëÍc²“äAÌ@"î2Qˆå±ÐÙP‡ýxw»üÞ$œpVú¼¯hÚÍOþIªHÄZŸ½¥Mªéá[ÚÑoû~ß=»ºº»»~g¬ÝƒÑö—¼³Œa¹ã ÙPžß?„bˆåñ©Þ[ÐÖ”¤·ÿáþ3m¨7èvc¼üÅ»–yžû2Pô¼æ¡oàKð¥<¾Èµyß^zX%ñøy0%ø³¿(!ÕòƒjV”7i°_5¡À,*ONôwvi±Ã!ݦ‚µFwfxfwy(!ú%9d ÈÃ'gJNœ¨‡Ãª)QóW2r‚+\ûÃõËk\^ÆJ.¢P'þž%¹¼H>Ë~„=Ÿ={~ýóâÅõÛ×ÐùI‹P¼üÇ_Õâ÷o<÷%B©hÐæmYqí—EÁÏ‚ÃÙsú¦N­iêÕšëà->bv<þ BÅK(˜8Ìfœñ}\ÅñȨrCWØp~~ ®ôü3á·¨ ´.¡‚-—àN'“Jÿ#„¦¢÷I5žï,"Êe`z $+<ÿó®kŠ’åœðY ·«/a ð ©úÆôc:P™-gDDò)”%‰ÐZž;›º8ƒ+ISš'›JSeÒÅÝ6…à§\³½®ñßgŽéÝ ~î‡,C’oÀW»_<ûì^@Ðè ùà|Æß…«Ä‚oˆëq˜/}”E>޲ÈyeéáØ½n@Tdme'ßgðçÆÄM»F™Ö౯ƒ®üêŸkí³:uPLâÄ™ |º Íú°[rn \ ÷‡Ui§½[š‰ðÞCcÚ¹NƒowËë|¸¯1µ)do]68F©…Lå%0‚MK¨©Ôé½HýÏ ž/ ¢óþ$JÓ)LÆ©£ä&Éã}n»qM†¥_>>ù/yƒ#¶ endstream endobj 2611 0 obj << /Length 2707 /Filter /FlateDecode >> stream xÚÅYßsœ8~÷_1µ[•0U¬Á¾Å»Iöœø6{ïÖû€Aö(f`˜ØÎ_-µ`ÀÖŒ'y¹T9R£îO_-ÈìvFfïN/NÞÅt–†iÌâÙåÍŒò(žIJا³ËböW°ª U†«¬kôCج²ùß—g'ï„ÝÇÓ8”i «Ú;¨LÑq?4[p™Xƒ“pG³U¶^ÏŒ'ÁûÐu^™& ~ÏšnSݺÁ³Ð´"¸"‚0B8´†8Á?V릞S|5ÿ©oïTÛµxÏMÝ`'æɪ¢^¡™º™3°Pyo¼R]¶h”Yê¶Qm«ë 'îu·Ä{Ü2­®nKe^^qþJ…À×ÊÝãÀÊY£³N…è±XŒ<ƒÓ¨wØE—uºítnC@WØž«BçºR—'"”‰ì8vñø'Â4¡½cž5R ga|K¥ñì1þ8‹S~ÅXÌ$%î8Ý-á“!æË®[·¿œœµëæöî4±“V¯B%¾Ÿ_0…À}`çPñ1«nçàºÊ8Sê™HîSûˆ)².kƒ±[Äðþü˜²0"ì%ô 2”òïÍœZŠô3d ?ï—Ð&l:òrgh æ €%O@£ }gÑàƒ©·ÄÍY]Ý­¬‚ä@LgnòŸ®ué§`‰Rf4ÏÚìeÓÏ' 1#cИ†˜1S/Fª*(€˜OðãÒ¨z³ í©¸ ‰¤‡Wôz`tTp*,=@»‹Òʨ$|±…´ò$¶Ï¥xâ¤xÚKñt"ð“^à§#>ÑÚ`‚ZÛ]œªªͦÁçafZ!¤}…l+V|? šm¹i[7þG?õŠ·è‹êŠ"û"ÆN* Xû·~âZ_d%ÔÚ ¾wk¸ò Ê1Ì'AW£y ¯ì s­º{¥ªEÛmŠGzZ+H—¢¡£»Ö÷j°lº 6Ê#R“®e;‡‚±ÿO] =KLöÍSÚVÊôio¨hyé.‰ ffÓâÁk#Ãú’sÚs›è¹MPЙaN0|Æ ³‘¡7«ª±±&FG™v0 )¼i c4.͵‰¶±´ 2.ùyeÕ³„h™<ÐI%½?ÏÌ]õ¦©úä×Wo‹MnK—~¾¬éœªeöU›r ‰Û"iË¿ô¤€šœ6ùAe%áÔ–=YI¹A"y¼S9Q"ã4Mb !Vô!‰3=%W’"¨ù$ɤçâà è(ð2Ê`.å´ÚÇ»,`ê36X}š Ä„» ó&\¬!AõK~—ÝzÊ8üz”øãoV€øcætv a¶r¶ÊE}ÓÝg®Äô”’PŠ’ôàtÊãCÒ)eÓ}r äÙ[P&1è¥/m~%<5ñÖ’”Ga$Ä!75Ï(%ÒàãùDxßqãx2ÁúÌK=zÍ\Çž\ð]‚ÝX ‚Vu@Ã9†•cf<×2‡^ q^©tÕ_lʱ\›Fµ8nsŒ›ã`q*?¶tÓôÇ^0a½Ì¸~Àrq*Ù‰ÿpØ­å?Üà ÐDíñˆ_g9)vg8ˆ2§/ ¿Nìû(Ê辘XÙ嚢@wF/j{p1ÿ˜©xŽÐƒ*ÆHÌ"Lì¬p€…ökŸ•qkL‹B Ðl8 €>Å ¾(íÁÛlñL¹8v²6SrÚª<ëßkÉÃdÊÐk ™¾XÅMX)Å:N¥Õ3ˆ‹õ hjü£·—Gÿ=2ð$3:|Uâ, “t–¯Žþú›Ì ˜ƒ-ò4™Ý[ËÕ,2º-2ÏYÎ.Žþ5|@zÚÚ/W“‡¤ðqDgÜxXF»¿\ k< lLío: ¶ÎîÈÇÆÉ,êºveìßV!3­ð굡øÅ×xùÇõK#;]…C(¥øßXLP0,€!©£ßT›7zmRǯ¿uÃTû˜ š„q‚w¿Eg°Ö5¶x$Ö5ϳÚ:g5qNï˜Úy/n°Íˬm=Ècœƒ äÿýɃm( S"÷í“qÈì÷GQv/÷g šÃë”çNš‚mꤟ¡M@\plWv'cßÒˆéŒÞQN>¹RÐ’ÛþµOŒ9|€®6Û4ã[…ý"1â ñ1¬€á9ÆGÎÚâÆuÃ04|ás­qÆØ«o›Ù6+U9Äÿ˜WñQžlÙ)/Æã—Uc„0s¶¹uíwàk×;,(ì=&¡`³º-hüxø{”µ;Úƒ*w´-Hd«••ÑÊúæ‡ï—5Õ8[» ¡ÓoBÓí7!¨©vYoÊǯiJZ¹1¨Úk´Ìp È:×»i²•Úu¬?lþ“ù±)ûuëO'TP}÷æãÅÛ}Žy{¯ßE’˜O¨=Üïµó$> stream xÚXKÛ6¾ûW›Cd4â’Ô»ÈMó( h»»MI€Ò2m+‘%W¤ìÝK{‡É’Vëxs±øœ~óÍphì¬ìü:ûåvvù.Œ¥œÛ•C0F~91!(òSçvé|tI‚çŸoß_¾‹Ho©ŸäãéE;–×[&Õ¶òAxÔÛáµ[<ào6~˜§ÔeEÃ[{"öÁf’ (1{o7|îÑ»ÛjÉ Ûd²Îï±x¨_í¦"a`¶¿šÃúFnªú±€òFü=O°[«õóãØUG÷XÉŠ{†è]yi¦®ÍçË™Šyí&ÀËŒîXö•­¹=|öÃÔI.ïç4t«¦mFNµR›#»ÎƒL>½úF2™ ™gÌ’ü¦ZÉ«ç~ìò ^Ä1‚óh1òÅÀÿ~4!#Õ!zt)öt/Œ~ò‰Ò(HÐ›Š¦cj-«\±è’`D’È/¿öØPŽýÉX ) ÂWn¸÷W…¨&©¢ØŽQ¢Éo›É?"ä-Ô”ù)†ûJâQ˜£)%ˆJϺØnO*JQ’£&ϧ²Êò|•ÔG„’¾Îíþ¤FŠÒ ]n˜Œ#wÕ”U©âÇ®¬Ìð'Œ©4Mrít·í°É³c½e¶©3³™ÍXiÜ|ùœ„îg‚€/¡±MÖ,“|‰Î‡+¡Z?¯r û¿…§0Û˜ù´˜˜ž‚D}áÚ8;Ñ^J,¥Q÷ö*âÕ='&scˆµêÝßÞ±í®x$)>L’pöFAÇñège={öL¥t ÈYS0ÉM·¨Ö¦Qçâ«mA²©„i+ê™mU]s±ƒ”©ó¥ʺ®·guÎÚ®¡Çà;[B,¡2Ы^zæË…²C¥•-g¢©ùÕÅõõÅ «4¿’»JØÞz%_Û^–_eǹ%ôŽs …]ÁZdëö2W–P`IF8Lc›ßñ¥ÇW+¸éì©-iUÓ¤|mÕBTEÓá ÉfÉG0íšEiÚÐD ÜsHÓfMO8@\Õ“HÕ\ ‘‚V0Ýçöû¶rìÒ+óù¯µ³hÑþáhâoÂÃ[J«Ž¦ôÍý#Xz2óÊt8RWZ½½ý;#:fIWmúAבïdÛÙÇÏØYÂ$E~š8½të â@¥Ò¹™ýùhè’v˜ìÁ´( Û)ÂQ|ªZ\Ø„Ðþ Å‚uÓ¹M ¨ÚdraƒÖÉZ¥&ìÒßlÚÓ)¤M)ÏU6ž›îï‹/š}CD"”À…õˆLuMT÷4ImÃÅ:ßiÆ>½øzw¼'úI1›DkÛCêýÝ ÐËz€œÁUY|[³‚ 1QÐ$Ûº»v/拉jçw—útÁê¤í£Á^C ¨ðÎÏÈ‘‹ÓU„ܵ©NÊc‹Ú&B¨ ŸG4Ö¶WÀ<ì®›-/åé[ãtEtwê’Œ#ˆ‹®ÀceßCç9(†gà1²žàŸÇ̇›ÎG4Ö×=! €ðücìUÈÂ4áÒÀ!õá°ÌÕ¦5»á+v<ËW÷fŪÝbkÕÌ*¾R®*€lNàuRJ+£Çw½ðÈw%6US,ÍÔ‚w¹µ÷èKBžÞ~Ýz€©šX·|v°!oߥ²:¿|"PÊ'´‹£uÍw§¥P°ö½â) ]kdW¸ÿóÞKy!žŸö'Õ”>ð'=ß¡•Îhúu•@2Ö/LfDW´ðí|©—Ù10/Û¶Ý ¡¾ßZÇjfW¶^ÔµSTkäO{¨¼Ì ¨"l˜—£²åǃ¿6E΢`³¤ òà@y[÷öPh2ŸÀeõ?t¿‹ì endstream endobj 2647 0 obj << /Length 2436 /Filter /FlateDecode >> stream xÚYKÛ8¾çWÉadl›MRïìôb³‹ÉbæØiÌ6 ,-ѶfdÉd;}Ùß¾U,R/+ΠÅ"«X¯h¾Ú¯øê_oþñôæþc$V)K#­žv+Á9óƒh Á"?]=å«{'U4GÕ­ÿóôËýÇ0‘ûiÄâ4f†P$‰Þp˨£õÆ‘od ƒ>-úuJO•g=Y:b1ÞP$«HX”ÐÚߺZoàÀž¢ÏQwjÓèµ½}£Û¶¨Í|èë\—DSTYyÎu;Y˜©ŽVÕM‘)K‰‹ÕÕ ñ¸¬e試PÛRÁgò‚ivݘ;^»µ€vë`^à\”zÝA7vUÑ¢¨ Þ´œ†!ÉRï:F¦>œ°â¶s=úv0RT{ìHïzÐÈÑÎ45²ZïðŸ9—Y¡«®¥ñFŸ€ôíúÑ'T}¶´ ›DYAº´cõŽvíW "R?/̾;8Ñ‚hm±¯ s&Uuå3,mîšúH-­²¶¯62…¡Ç@S<õžÌ~@bOT»s•uæfq*««¶kΙ‘ú]¿ÌöZ´º'ëÕZ`ÎMñ…f¶º»jPýÂÁU – Ãd*oß* ih2A3@š“jº";—ª¹ápÌBFî±0Â=(‡·š¾çVç4ÕÕ{wÝ0~-:»e%¯?–¬tj>¢ïøþÈwdš²XDÎYUU_ÔÜ]ǾNÄ#)ŽÐÕîÌMól4·ñ^¤3›>£¾Cîµg’’+n©©ªÜŽ}IÌbéNv‘Y÷’~ÌühI n¥à^½íTaDzº[;ÕUN¾b†*4Þ\W™¦ã ä9eËH~!CÆ1<…,•1m÷D‚Í$€–@ô³Gú²W懽Œ`?"ñöç£qßO0€À7µ‚#( ~ۓΊÝ3M+[މ8ac"4ÍUàšnñÄ2¤Kµ'ÚvKÉÄòEøõSÇÄ= Ðmfâ/ŒBh1ê“)˜[N퇖Èd1°Á‘Ï!õ#l‚߯…g]Ÿ“ë·Ômõ¹Ìiýv ¡ ¢s=aà{Q_Ä=öŒò¾¨ã©Ô΃˜|ðVQ~1?ñGŠzÌ€ ô‰óκP*˜„‹Ÿè`|úP€^ñÈ¡DÑæúap«Z×4—ÚP­¹ÉP0Š†Ú‘½sÃéÜ`DAêE[®»Wc; ªHÞÏ ;­òžr)]’KA ´A:ZÚO‚z«óq«›öŽˆêJÓ0…Héí\R 7cÒ´‹%3–,ôão˜qÀÒ {6ý\¹s«ÎT~÷ú¨†,Âq?<½z%óãÄQ_ “†`Ó­Õšq|2™ dQ<óÖZ­vmrâ.¥ñEÍÃp¥ŽºuaYÙAH—}ü>ØHêfýmÂÞ´š@F¼àx…;ªgj׃/Ȳ;—vAM_ Ѩ£èCvŒíÚ–›±Ëxø#Ëø ¡ƒt‚ØF,WÕvB-B´¢ ´@ŽyGýíZrÏ%Ékã› ;´T gœÏpW¥ 9J $LôßÑY¨Ãô¹ÇØHº CvL»\ $ƒâM¾°‰sÂLŽá6ôz¸ m›«¤ÍUnÕ‚»Y|BíwY×:©Örܲ[ž$õolæÖTütf*7œXœ¤ Fñ°iý“ÖνËCÁušG(ƒ@å¼~–\0@äP8°PØòùÃ:Ĩs0Å&o1°ü™Bz€’ËÝ~ þêpï¯k(P º­:k{HÜeAAi¸§‡¬?^/Û¿#îÙ6§¦ÆËcu³ÿÛR¾•$e…Þ€º‡¢£Úæ­£B¢NzÇ;tÝ©}½^™Û˜Ë°ýK^,B`'ú+¦½p>àÔ`îä5V¾àèX"´BÿsUSòø ŸGЂâÄèl€ÛìÁÌ?!'‚÷™ÀŒÏ€}U©ò¹5VQŒ½GúPõˆ6)Ò"BÒ1Âçì 4IϪ! '8WZï}æ4g@‘•y9ŽÕ;º‰_ê †´½³ M}ªwÝ"¥H{!BeÀ§Xyv+Kð£©yp.—ûöm÷Ÿ¥„dÁì:Lp97²¼.Оî!,(åâûßÛ–]¸±‚ûKV#yáÌjú€ð¡lëE£y]¾ššRsTì\/f,(>â™Ã½f§ˆÉ´/ðpŸ}y<¾¸QÊ’P ;m F˜ºãõ“CþÃ=—w”Г“M‡Ñ•±K‡1v4´\$‡ôXÚu=?Wm†£W&zðá"¢ô«éç)Ì#Ì^¯”Üþ6ŠXꋉV$7À?£¼Ï ‚KÀëø²ÎÿL=zÈá~ÿ|Ãí£ wO‰ÐÁcîO¤ÆÍ¾ëÖÁ“¤H¾„E,2= á;æ<㇊N°Sp[o÷¯=÷vçþÅèöáçÆÓ“©“ÿdúWü{ž$@ 0Lè<Ðeby½{÷SV %>,všºe½§FS´Ø„غ¥¶)ôͲéÛµxº¾wÁ×m—ÂŒ™qPŒý Çj©~ÜÐW·x ¦G­Ús£Þ>>¾½³›Ý©nmo ½Jïm/+²a.‡Þ0»¨øÇ¶ÙÞ<‰„+ÉLÇâ‹Î7zgŠ*;DŽ<8±$$‰MJØ2vkŽZ–u¦ºZœ²*SN‡#ó‹À_—4ÔŸkûloAëK¯Ý~CcE™>Y}Bçh¥¿Z g¸“eøþHZ»£]à({7gt@mãàfÖ_:çÎ>i#Ò§#zšŸìM\àÕèvj£Ñ$ž +ÒÅ5€…%} ÏÿèÃéó—ÑeÌlaló½_2Qq2f(N̹lq2Q]_PÄbâ ¤À¾^û¡ Ixg¨8P˜>ÓJ|‰ ¶úm¯‰jtȈ°”ôL~ Cµ7ºw¹®{ïý¯éî«kÞšC¿ý¦ïuÚ)ÐöØÀXËˡ裏7ÿ@Afb endstream endobj 2657 0 obj << /Length 954 /Filter /FlateDecode >> stream xÚÕXÉnÛ0½ç+çÐQ”µ´õ¥@S g ´=Ðå°Ðb´_úí%Ejì¸v ‡Àjø8ëJ޵´ëÛÕ—ùÕÝý4°"ù®oÍS :@žoEÖ<±~ÞÀÐ}ÿ{þýîÞ‡UB€œPUJ+LYŽ…R¼r þÝ=BV(wøžÚa#U[l7‹HoÄE¹Á¿œ©Ã¿}oOçæÇÌ ©å…3øIª?u€·¡¢it<ÄgYO†0. 5ÌõõµÞ\.¦…–ÅÑB\2 ¿*‹„Ëz©HiBŠØ¨ÐB¶ÁïiÐWŒ$4}3 ²ÍË„Ÿc¬ \hInÒ‚BÛRÞ^†¹àF+ù³æ¢ñ!-™òu&è*#-ªÒ9?Ú·Ýcg“…ŒÙäY§R*áç87’ É êb-êÐÇÙºÍL³­JILV5aù§F¥ÐeÀN‘º¡ <ÖeýN«ôêØ^ˆjœIÌ 2‚å©fŠAUR­@yk¼ Ž\Ù…½ð71b$%¬-¾ŒlˆÉ?.’'ÅKҔƔu¨¼xï@xÞÑÞ3yT™ù Œžu=h¢(-~ %M ÷hcøŽ "‹Æc¹ð@x«oPÆNv&0”¼ì̓lm.#{Dóm©x¨SS§{4#}'ÑŸm³1¯ÚpGM3ljAQŠ–fúçoCelt,ð,©:î;­Û¡ÁÀë–k?b̉ß_¶¸ŽŠ(»}Jšòä{ 4¡ŒÄ"Û vÌöÆHY Œ>jÙP“;sõ0ˆdí=&J«!bKHkaÞ;±9pÄÒm¶ljö´ÿ¹'AîÂthù¥fʉbÜ¿ð{Ü}33ÿTûs"°ÍÈRžÃiYtFe‡yF(I9ˆŽw‹L_ò†|/§&ô_…ï½–£etN¶¥QÀ¼ âd:•¶ë†À÷Ћ“pÁJüp>-wËÀs"Ó¹4«–ÚÎUˤ6Ô¥ž™‹Ç0+ÓÀ•´ÀiSÍAc¥Šðöf]Ê,«šR=¿Ì@ëÇ~rm÷Z¤IÂÈ—¥ RÙ…I2¸(IF¯N’ØØNq޼ꔩyøDj™Hq\ñF{õ4©¿&¹¸X&Vn î:Žw™»ŸÓ£m°BX2œÎ{Ú9tÊëèðî4J@l£ã_É*—Ο <Ú.BžÔÊ•1o¥»û6>;´úìÐ| ª¿Î¯þz©ò endstream endobj 2664 0 obj << /Length 1728 /Filter /FlateDecode >> stream xÚÍX[oÛ6~÷¯Ú‘šEñ¢‡^/ßzð*VÞW;tãE°¾Œ´ ïrö{¯ïðiOÀØð4 "¢žàœ0Î'NÐO†³óÑÌÄŠvGùm®ßÎKÚ¼*ç‹þr‡>èi°{UÕØ8›‡Ü¯7 Ù•ùŠ~]ý©ShVœ†!b„rñìqaÊ]ÂD I¤$ný•nÒ:ßÚm¼?øˆCª¼Eºé»2ݹ­ð™&u}‹Íj×bc{ˆO;Må€ÀΕÓV$Mƒö4¢/dЧ:ž8LŸL˜^$ ÃndRfê¨ JÊ‘¶¢y2iÇDñnq†@/Dĉ%Ñï›d­'1¾‹ùxc˜÷ú1àÁͳù‚O.5úAÇ"d$¦8üéSqÉð¹Ñíu•aÛoŒåÈÉiD¸ì ýl·hè Žƒ M@–ñ1E Ê#…”ÄwüqxZ}“¤íùÅ‹Ÿ/_;IÞêú,Ôí*º9H£˜ P10ÃpvZ4“”°=™÷3Ö3šˆe‘*>5–ÑQ0û‹0°°î$á\ák§#STë`ߠȳÑÄQº·ox ;YYµ“ØWy¹F`:O@W;`«£ÐvN#2ÑPuu(Ä® Ò(4C>&í¨w@ÐQœ¹0x:5•­Â¬sÐÈÿbN ÑÃ"Kú ÏË,OuƒszùEn¦–„ZWW6JÚW–c:ä˜òô'¤UéÇ ÓÜJž4AÑÊ!ž—i±ËŒcaÏÑÓò‡)Œ“"[´·[½§Žõÿ²c7)W9vz|4mÝ›¡„Q^½öºæ»;l„¡Gé‘]×z{Œ‡0$í Â3ç÷Cš"Ú±í ³ä‘l˶%ßûZ϶ä{¶eÏ6HÇlKÇ6¼xôžm#‡ì¼t‚ø!Ù.óuuHÐÿ•x. Ø¿I<Ôö<¢cæ±”|D òež „ÔŽ2Óï3¡é âéb•4xe, w™.Sàë/†T׈˜µ›—o´»Ò]¿vT#!Œ»ÌÉ•YÈØ¥­Íž|Ÿ4íÛQÄ5o§#nNã“ò¤8È“F©µ³ÜÝí%Øùô­ÿÀë½ÿðØêÄbû(¢õÞ2º:·±…ÛDXìA ~ùÆô„U+Hú¥ÎŽœ³œ±½aÅüƒ\ÓGGÞ[ÛàL°L­wP³à7Ï2Î×òÑi9Œ¸ƒô÷søi™)i¿íŒÒ2Þ.«™8(¡˜Ä€ /ö×­‹€´/¡@hÍd Ütú¶E‚&:PÕ…ë¡¢mmVžLÇ@€ktrPÿJWÿJ¿®vef,m)ê¿1Û„¿+í–Eë ®W, Ýr0eìÚ0:wú±l‡gò—à†÷ó\ìÙ¹îU]m¦¶Ü[^’àŽDw+|€`ÊT iPªWa;ý¾ìcM P×îÖb'm¶I7Xü‚ÀØú”=‚Ð}83ÓZÜîálôeÄåqÐk>Sõ;99Fp÷¥ýe®uU-K #P¢âpL9TN4y6u2:¬Ÿ§E”ÝóÅ Š4Þûò&¹é®2÷v,÷—Öæ„ò (½¬AÛš©€P·(©5Ô;@.2\¶(µ×©\%IÌú0ä>}#ñˆÈxð-Ð*6·:›gÂXØÏ#`?ÿRµúìáæNy@À„òzNU÷ýƒL~y½œýt>ÿN endstream endobj 2671 0 obj << /Length 3308 /Filter /FlateDecode >> stream xÚ¥ZÝä¶ ¿¿b›—z[G’åÈCŠÞ5 Š6èm›Mzf<»Ffì‰eßÝô¯/)R¶äõlÛôeG¦(‰’È?´âîéNÜýþÍoß|ù>/ïLj UÜ=ï¤i¦‹»RÊ´ÈÌÝãáîôý?¿ûò}!Ö¬T©Î%Lä˜.ÍpžÆÆŽÈúFð 0}ŒyðƒT ÄŒ†þ®ëöd£Á‘| +ICßßË<é‡û‡L©äܘƵ?µãs?ø!]ÇPý`ßA‹d|nˆ¤®Ç¶ïˆàvàZ­¥ÁûzÚæ@DžR%»k8AÛ=ñpšX&¶}êX”þ¸ôÁa[pº&Ïi ýÎ6ÃG܇[$“Is¼Wyrlö#}Ûö_¥¦Û*þNã¾?76½Èó,ytËýG‘‹ñÓ½Iÿ`ÛCs‚¤®ËÃGœ¶>MŽW\Ð1úÁña`´Z;ór_óóTŸ¢ý´Ÿ±¿PUIÓbã2ô—~ YUU¸uC{Æmo=®FÕ;ÛŸ@¡hL :vÎSxn’9-nÀŽíž:¦®~-©ê¾õXÓЖ¥©íÖ=5xEŸÇ¡9ã4ʸ»PpŽç~`JÌ’¡žÕuy9 Ir@o½á OWž.Ò¤ dpÁ™Ðɇ†— …?ÎuÇ3×ݦû~èí~^5AcœllçèÄÏgñ¡u ;Lgö2-³µ¡©,Ÿ ÛhhØÒ±•©¬òÍcÅB_´Zžf¶2œÉYRÑÊ– œ•¹á~â¡G½ødyØqÕíäÜÚü¹‡ö3îZ»ƒjÓ&}K'CŒÓ&…G¸¿C„GÐŸÍ xÔ)™¿3H?û†AbWd ¬˜¯D'53Ô`5ûéT3™¶ãX÷=ÄB¨}Ût#q¸Ó„_2Sl‘™º1Î0©“çúw:y• SÄg4Ûl&Éà2Yy›EÙ,µê]lÉ!Ü„S<3ÑZÍ"‡;‡`ârk»Hf£Šf{šØÔ…¡ƒ‚ßšcË©:t°u¼d1Þ¸ÅbÜÂ7L·xaÜb6neŠäC{ná’·È´ØÆ±'„)Î]»»W"™6á O½›ä!ˆ1ä ²6üeŽ<Âfüv—„ |ÏŽ×ݳÐË(¾9h…7Ÿtsá¡ÔÑX= SóoxÀ[~¤TþFÊlu#¥ò7]tj@ ®¾V׌}ÇŒh¨`h JOÓ5Ì{–Æ®²"5eîÍ}7Žˆ Yä•çÙ“@/°Ì“¥•™#üÚK³oWêþôÜŽ:Ïæ Æ ÑXŸÇl –Ä;§µwì6Ûnº—Éd‰Ç•<~Çç–Gãµ0~iP?ò7@ÿ¦}zj;f"WÇçþ|±Þ¡ãÑ)!4CÛ˜'½/DÒ6ûçqWO䈋¤aW]ŸÒ­‹¦édî‘Rü'_µ4†Qg™ÂtpŠEšF‚wŸëýH3}Dpn;YúþMærqªÐnÁUð’ߣGž ˆ÷F%pvö7º€Ói¥9Îýö¸¡T&•eæÕ¥A±¾züó_ÞmÌΨ’3+âDž/`~œº½ ½òéÄ Ã• ÿèi™D~5#‹â£Ñ+¿“ñ:§“¯·†Ä®Þ»S/± föüS;8¨É ÞG¦½£B:;¾Œw¿Mv‚­Kom»;54&X-à*¿¡¡Á¿dúÃ=¤ˆ••\Öè¦óÎ9“œQ'óSohi°*Ž®ÐØ†¦¶.¦Õ&êK{pÀ}%iç@ò "ÑE.@óaý—vœ­ŸéµEªjÖŠŸ6ô&Oóu„"LÐi³t,**!1iYe±Ó)å.jpxnohH„* ªÒ²0^ÅÛw§Yåt”DÝei!‹Û”±4C.\ÁÝÖâ+A ¹3Á¥eˆqæ?¢Ô- ïQfã€ÈVèÕW‘ƒ®øþ¯P­Ê$ßò EšW¡ýn2StøY¦öå:,›·¬"s£Ü6»± )ª´¨ŠW·QhlÝ€ûP2­ îC/ûÀpƒÆžÀW¢J¡4ó:¢fyš½~àE Z$êÿ´G[ðØàº0, ;e*t¹J]g`'籡^ÆâÙT+tP­Ð ž”*抂žáÅÍúC¿”抃ŽtE¯ÍCe\â€$aÁÆÎ‹1l¢ž a´qñ«ádG"8.Ù€ ™ÑMrÂ/C¤Fê @>‚H ø„›>cƒv ŒÝ2UÀ™JT¯hN…¿ÚR€©Ò3,››QB)uCg‹,UR¾²r•ª¢ ”V•Õ6Hä©6墳¤„•NE¾Vd”±¦F•H°G ŽÚ˜(!å-Óƒ}”F½j{r9"»¢º‰YY…Æ'å¦ÌÙÛBUo+!˜‡bGà¸!"L Ááÿ(¢º)¢y]D:§•©b/Æ !$kf–ÒŸP¸<ã  3“Õ–>ˆÔ  ^l89Uòð—ƒA±T ÁуàÍM J±Ì“§ž0‰ó ýôôL5F”ØPEŠ5ªÀ žë+uí f¨ÝvG/†Þ׈äÛΎਗj˜$Îk×Ýí"E›r "t`’ãa´UJî¤æ4 ¶ÙJìdV¦ùb¾…¿ÿú¶Âð®P™ ¢>i“\€‘˜rÛž( f2–#fõtò‰jÿ·gsP‰•0KX#—±Üs.(!àÓzìŒ ¥‚Ä…“%E¨Gðû°«)+Åhz)àÖ¬O ªÅÁ/ë6gýp9ÑìÅ!xÜC‚½Yºp0ÆþT’•´ç/o«È¡éÏ¿½õŦ P®fózŸ¤JT:zÕÈÃÛ…L{7à‘õç%20I]ÄÏÞ÷ƒ¡éØsTL]GGçóly[ÞþS»gБ%DbzÓ3…h¡aë3·¨¸…-§íظ¶ÍÉ…Z”CØSûô<ž®ü&€cZ~j¨¦¤@Üë‚Æâ3%e‘"ÔŒo]F–‚Öz&;Å¥¼Ó•>ñ-ñvšÎN˜RR ³v€T€Ì|ñOC:iÁ¼,QøÑX§"èÉ…Â0gZ„k Û9LûvמÚÑãÜKI× ¬Ä ­Lœ‰g *±¶qo9@"dóq®2ëÓÚ æ¸žšŽÂ@½szÄx5ŠV\ÔÉî¶ðÏwŸëóåÔØ_3îàü±?#€×V}:R¥ÿ[l„mQôä/'to€2_•nÛq%g°uèj$õ°ª…E-w.Ëú¬B9f~~1ÞÜ€4#’‘ä6†kÏîè\”8P/ŸpÕŽ!šÕ«™[•+±‚ŸËHƒi#ÑžkÎ "dþqZ¾Šƒ^cìÔÛ=×2sA5>ø]^N0˜Æ×3¥uíë¹0±~¾ÑÞshÉ f¼aL©H`Ìì–j+|õo-eü Ê s—*8ÝQ.)Ö%,sÓꮽ Ô€‹/Tñíá;1»K Ï $ /Â|Š„Öa°„"ÿå©èF9;¯Oô\$•8ä’z© õ¢t7ÖT–h(û ”Ï]$tú×8Ú`}…¢!E!6v<;/£\°C-/ƒôj4,_Ov=XŒ»:ž=–g%F­®œªLßKÍ=~žênlñ¢—äx[ÚÐêqÊ# N]ø+( Åñk‘ù³A¶ú'W¸¦¯žûkútZE”YI úOü•ú#oŸé2ù1kíê+ˆw~i¡:ÜÖ쩸ƕñf©í‘_Þ*|3±ü¨Ænõ ï{|>Ù•¶áTÕá”/ú¹á>¦1#cÈ4ŸIPHß¶˵Äh„¿l:y»u­>9p©ØÕ7æ» ³¶É67ò¹›Â'Už-¬ã82_f\)ÑDTòµª1xr##Ç ÓÍ6õS*Õ¥b_£‰ùO«h)ãl[ÛùW) ¥_éÖí[ªb-UÊ–çç3¦5m…FYi´ ]}Ä7NCgWüaFá[†œKüÿ%_u7„V7Üüeý”D+Îû‚ü/ÊÄÇG:òª¾£2cÐäATÍÿˆârÎù_R ÁõŒ+q££ìøb"xgfyBuvÿåP_7S¼}?À²—¾ãáǨ@ÃÁœŸÚ®æpÇÿç‹Þ‹à9âûÛGüÓ·¦…Ù Ÿ²ÿ‡‡e±ýJøîñÍ¿ýîeÏ endstream endobj 2681 0 obj << /Length 2761 /Filter /FlateDecode >> stream xÚÕÙŽ¹ñÝ_!ìS °h}ðî±Ndl&ÉC6-‰µÝêÖöa¯÷ëSÅ*ö5­ñØ $ ˜T±š,Ö]Å‘›ûÜüñÙ7wÏ^¼ŽÕ&Y¬ãÍÝi£¤&Œ7‰R"6Ùæî¸ùWpµÍ¥ïlÛmÿ}÷篣dòÉb‘dlçPU!Ò3É',Gø:ž|½3‰Q–nv: ¡M~Üj¸3󮨫Ý7ykÛŽdðª®~–Rmu°ySu¶Ù*¼Çÿò²ýà •r³SFdIJüól+Â2f‚¥#‘êÈ_o}(^Þýô÷oWvŒB¸ö€ûh‘aÐ-MN}u@ÒñW„DՌжå)ƒê}—ͯ“KïùÒðýa~i@,ðÒï·ÚíM Ÿe$_½iaPHîf—Jk¸·Y™õ p•§&—úhKšj{ ñ¤Ca«7tÛ @ÈÒàî\´„êÇc]¹}¢`ÿ‘ í¹8uEu¿8¦Þ·H. º+„Î:ÙCÇ¿YÞµnxì»C}ñÐá¹ûÉùÕòKÝW¸™É‚¼:ÒïR‰“2=¿Ô-£Z$ê×®±^b¦öî\ø}räÀ¤Ûª€8€'LN0>œ‹Ã™‘ýIkEJؘ–·ø€:\÷%  ìmt⬴9ÃPop¬`ÇÆ¾µNÏ@D(Ê‹‹‡¼<ôeN*ˆ”<Žm$â t…&Àì+“š—åG®¶j d É–ËÓ+Ät…KŽŸ†qÐåïð6–~å8$AY£0Ürqá%w#‘€Òv/“eÁk< y‹kNQ[š(ºómò®nZ0@“ë*ÞóWt Ù‚Zۭؼ1‰ˆR=7ú5?g z4OrN¦G‹LesY¯»‚Ô$iÀvÅÕ n#Û«=§„qòŸ°Fáô¶yÒ79¡­è‚_½!¬öÌʰ½eºœ²G±¦ÎS:?K*¡‹½¯Á…~žœÛ-œB´šÆ#²¹•ÿˆ†kÞtjfÃîü {0§ãsšвäUÞ¨G|`ŠòvMžZ 5Êóû¯Wd©´#ãQŠåÁñ€!ˆÕ8ö ~^Ä&‚ø¥…Œ³ÕøE»Þm3€Ù·žmš´ü¥>Èþ†ËT|ç4þ ÁŒŒ>4“ cB=(¾a§Ò¼kiÁ›cäc[:WGC3.¤´Ö2#àŸH7 ò¦?!;æÔ„BűçlsÉE_3F.Í*z”)>œ ÚC*…$ÑŒ÷]‘›œêD¦sÝýq*Üïˆý8%å2™A±ó²3yaúHË  %Ú­vüÃý糑‘vá'ž­€Š¤åMO³ øBbÍþ‰TÞŽÞ·Ù†2`[©êÎzíÍÙnÖBŽ35Ö¼¼±ÃÇÞ8µäÀW”ùÞkàÉ«çROF"¬ž3›€4JKc,âLÓ5þÚaõ–UÍ왊ü­ûøk`¬Êxª·.aP™t,DØ¡ÌÛ5?ye’†^±¾RXÁJùÕŠae¡ˆÃ!§si$óZžŽ1a9 e²í˜¢ºB‡ê²üÝÑÈϲ$ikò fUú„!³ËìÀ¨D¨!Àh)dÈl¹¾ÏËÇl+‰E6‰l»!µ™„ç^G%©—¾ðºtcއÒÊÇÍB‚¸ÃÿúÝõ‹(](âè¢/U±G­íÛ‘,^: J¹Áí–¿@îõô»ÎÒÍ õiãÅZ$°…ðy õAŠÀˆZí’tnSÔž´O½9]aÿ™WhðÅÇÿ‚ô©j~ ýh Ñàl ýtî<æL]'ŸzÜ©ºâo¾ùl›ÙÍÀ7ß­en_ÈŽC!ÊýÓ™ÁÍ )‰)ÃiBê ’U,,-«X@"SŸ¶¢€€Nìa¨[«©nû¡Kؾ ØòŽÛî:ŠDÆ8Ûgû땸Ž\5ÌU_Z'ᮚ‡\ =W‡ÏÌ ®†ÿ\B<§®y@)ÏñXP¥K¿mi/È…K‡IòçþBpzhTQ1ÖPÉl«h$ùê±O0Èœ›âWîùBdWz‘zž÷Uñ‹ktá륑rê@!wŸçOzè¸LHžgÜÕüΡGOAWãEò¸¼ðn5Oáž¡ÂøqO‘‡Muíø÷9 -T”~ÂQ€ÍZÎy¿î0ÌèËÒÈ9 Ùaà”Lé9AH.ćʺjaÌ ¤I5 0[+OùY·¡<7^ßaÆr„™Ë}2d}øëV2’HÈF¢Çý¢ó£¢eÏ—&Bf‹G‰¶Ÿ» GöØÁ˨4¸·ã+À¤Êåg8£ý˲»ì]ƒÀÐÓ"ˆ'[ŒFØý!`Ì+zyÖþµÚø4?ñæN‰”ˆAÝ:pìƒq ‘–s^îxyÏp u2d½ô†Œ øà ‰mµšÍÞ÷E{ž¼94õÅ×?îõ¾è˜AèI¬¸÷Yî¢ÂŒE$Çg¤_]üFKéÿ&b!´2“MsÒç‹VãäÏ8f’ô´™û·—±hòµ•+·Q¬¿"~{÷ì?Q‚:¯ endstream endobj 2696 0 obj << /Length 3090 /Filter /FlateDecode >> stream xÚiÛ6ö{~Å ]2sDRÔQtŠM»M6ESdgf»X4[@–h[‰,¹¢”Éô×ï{|Ôå‘“I ¼žÈw_ޱ»ð/^>ùþöÉå ]$, Exq»½à¾Ïd^Dœ³P&·ùÅoÃÕÿnº|ò ¨Œ ‡‹,ÐQ7‡®Õ¦EÐ'¾{áäúµTýh-"Ø”ôé?t UQíVk)Bïn¯Û½nh‘âyöj»aÚ´-L[d´ìª¼…hâÉéÓjÅÇ×Ҙᜣìuší‹Jÿ-¯;Ð:¦æwÀpI«yÈ‚‘Ì (p$µ]Á“iW¶(Ú/TÑÌ™£›‘ÇÙÄ&hE ÙŽÂ^Q™V§9ÕÛ%kFþøQù£Áç}‰8ü.Èb¤âLDÜv¿Ê÷ä‰ ¤šð\„AÏs"1÷8^¯„B«U^Zv)Zî.²=;Á[»;_<ÿùæÇ…—EÀ’‘šgtß»Ôyáb©å9XGZí°¦á D'L$‹ü ‡ QQ<×(³¯»2§§ø¤Î¨gÑmxêöúßK\â0…™BJ!’ÀÇ5;dŒËÿÇê úØz~Ã…Hô¯6Â¥è.Ö›Ôôå‡W­L‰1M¼ €*£¦S V*›¶Î·Á_[è¦×Åçj dò‚®*šºþdØG5ôÂÆå}ï‚âÄôæ˜þŒ>a¾<‘DK$:–e³®I3 ¬÷´cýJ8¿½_é¢à8è®5|Y»Ä¢z ÉäèãÒÊ!ETÀä~,Ý¢ÐCÀrBâVºîã#¸a)NFa]Œ”Ñ2òr‚`ˆæÂ-¡ ¶9zl”¨[â4dHºg',N؉;–(÷¢‰&DÁb æ–(€´DMÏÒŠ&wCš¿ë ¥hnƒºå@³(9eÀ~Éw +Wl ã#Ü,°­‘X¯]0 ^ûáàq<¯JÈ>ñ+ˆyWÀ'ègä)@6íÙ8²äBÏ‘÷¼45\@.a™HˆŽU‹ù¢u<½!À×"8±6Ùž8ºìCª^V!øÚØÔ¢šÛ €‡$€®kÚ¨Ò¦©ñÍ»U¨lÈV‘WBs®G-ë °)ÁÀæ_ž/§”¾{‡(%ø=z¨˜a佪z¬%P>Î"9z¥û½ÊYB Hæ1²mD¢h—³é@‚±EçěøM³O‹Ò¦p´+—›r" †>lhZ–Ný¬µpWKØÇ!¢T˜U‡¶†Ç‡1œë„ݱš¸wù5!³ù\A¦HHÌKrÈ"['Oá¹ ä¸8–öˆ"*B.:kIdÂæM8ö©L-æ’Ï1—o~Wä­ƒ%'19;¡JòA©)³-2'©õ©µEäUÕ^=½×æé9!`U|ФD ‡*KgŽŒè¤R_#&ă—§<„d—ø„s>áN~_¥, °ÖÁ ëÎ*ún’å3™$'ìJËfŠ–Fë¦q²OGíæ ¥î8¥ÁšjïóîPs?$FvÌ›bÛÎs%ÌJYŸÉ‘v¨ùB¾œÎF\‘(ï'|('Ì„Å-v§˜ƒøÚííëÃÑ`÷ƾt£ã{àpÀt€¸ f¡µ´i‚QP‚IS˜÷4³ƒÑ»¦¨;Óßç‹ ÓG·Þ6hE8³F³Ô"klÜ5Ú`ßoIø²e4èèMß6.œ¹ÈõZCªuÜ‚àbÅ¢8z´ ùã|bd< %Z˜²X2³N>eeÀ·KS”X²*ÁÁè’h®§q)ð1‰üÂX"P-d;sßÉ8„qÞe.-Œ¢©G³Ý‚ÈyB8º¦¡ïÄöu¡ûÈõ?c0¾ì} jƒ3Ìi¼%Ab+ˆg÷IÝ5•M£È5&¨†ps éånÓ!àùM½mïÀæmõeQÄ€º ¿Ô±r8”°Kņ‰ŠOÉ;etùÎöÁ‡l¦ðå¢+•ø ŠzŒÐEÂÐÝâç·2”Gý纟¸}ò‚¢)nܼ·^AþýçúµÎÒÌM¬К6o!Ý­Ö0iíl¸ñzcw«Ó5Õû‚1]@TüÝ`Ñ `k¯s®8 1]ÉtÞÙßIpßæšIè~«|¸u¨sì@Ôµ.÷‹ô ÌzÃÄjüÜõŒw•‹Q]BtÂߘ{Û7Ù×P:€ƒßYÍ$ýu3 _kHNs³Ü9‡˜ð9MÔIøg4UœÓTú¨«2 þZ àƒ®Ã|ü#–5ÕíóGiªšjª²éî-*¬r ãs7’Š áTLòÀû¹Î¨;j@šÀHŽ4'EÁÍÏen˜1æ¾×KSt0$éÞ;Y˜¹sº¯0m(L‹ÎÉ:ÂßôÄØ›{(kÈ1¢þ¨PNd&‘M÷ ûk²†@ô®1‰T(–ò~޲h^|ÝhW[bkk1íTI}ZŒ5‡”Aaý™¢Z†³6U±Ÿ±!>-W1Kqåê¨&þøyÿ McšéîpIã´€Þ¸×2 « >¾°& f†ƒ¹à'[ À{ó´ýè÷ Ææc2u,?ݳ*òþÆ=cßaj§”iãÞiggÃùã± @£xl×éígÑTÐL§h8ÌkûŸúÓ¬=!ÉjM!0tek\WEú”œv«SüÉ`ÑLâYeüãÇôp,ÏÔÄkd`ÚA f±$t×W_}…=*`™u¥ý™ —e½£ eév†škhnd?« ìXWÔçÅ-ƒØ «iS¤}o#µ$» =ÇB}»¦Q£×ÍÐtj `_=½¾~úÌ=Z\µÇÚ¸ÕV•Þ¹UV\eãY«ñ ÿ·ÄüÃ6Ùîl/çÇÛ'ÿm|Úm endstream endobj 2586 0 obj << /Type /ObjStm /N 100 /First 982 /Length 2372 /Filter /FlateDecode >> stream xÚÍZ]o·}ׯ ЗäAÞË˯@  $p RÙEÚ F±–F¶êÕŽº;²“ßs¹;²dk­Yi$ô!ÎÝÑòð~’Ã!{ã ‡ìŒÃÑ‘¡”ôA2âD…l‚/*tBq&“¾TÈ” :… ¹¢¯oˆ%îAC>“> †³JÑPŒ^¥d(»:H6T|}³T8±JÞSR SûXŸAE\ÞãXQp2õQd]©Fr£%ª0ZŠªA-»¨þƒê~f€À¸x£ˆ×‘¢ñ.z!(ª—÷°¤b|¨“±3¾®'2Ÿtʈ…úâ³QSŠ«‹àl„ê"¸@ª/xœ]Ázt8ÏF<^+˜P¼à,_0šþÍõCôx&¹ê8 ¯×¥KHº0‰Fb®ðF.ŒXLpUÏG(U)Á­jݬAê²1|YŸ‰3!I B@W!Œ5±šÊ0 "1X“J°b`ÖgˆIŠ48׆ ©Î ›Çjó0J¬EäÁeê‚MÌ\%ŒW¸êá¯%æ€á’‹u¼b;}~MÞ«^$“žHw× Hêe ž¢hÄë)a)D¤RÖ¹b4){Ѥ¬kŒxc=? ¦’6a•]©#Šê%o2{Å $ øˆ²x9‰Ék‹"s2 c¸)ç¤öF¢ÇúW¸Põ\W˜ë()*f³xâˆT*R5eSb LdjÉÕXL)…ööšŸÌ1ÖOHî#ÓüãŸÿÂ_¬‡G‹ÕÜ\\Íç¯÷¾ÿ¾*¿è½980Í Q`§úÖ‹4æ6?.Äô›ð;,´þQCS†w0ïúGRÏU5¿,»“—moŽMóËO/Lóªý­7×^ý~Ùâ³·í^ó#ð´‹~¥IYÇÚkŽÚUwµ\öÍ–xþ—´V<\,:Œv¼®kЧֵP6Bqƒ@ƒÀƒàA! B„aä2Œ\Ö#¶Ä f¯yyõ¦¯¿ÿr¾x¿×üÐ-OÛe]ˆ{Ýü¹ù¹ùñ˜ê]û ¬F’¬Ó„#¶¨¨ÓÞj¹B¢["]÷aõáKÓü©{Õ„À7Gg ûád6?ùV=0 Œâ­ƒñŒ€*ˆ…û`,/föâÃt8$‹Z9Àâl†ãî…ѽ¹ZõšCÈ zSÈÑRD.æ×2[à­˜¶â8õv¶Zav§ÃÃ(w×x2ÛŒDƒçýbvy 8i:8Þ±Õš6ÀñZ†PÞÆÀég‹E»\]œ÷例‘ggúq€¯ÐgÐÌ­fo@$K–g‹`Êb•ˆ„®R„RÒú‰P–í!|¹ìÎÎç­â™2ŽQMP }¡ ì q£†Ÿ è-h‘ TV¹§d3š¬/_·Œzèjq>a‘IÑV¸([4Ñûp¬ÚùEwÚη¹kfpVCŸfF]ÓþveÁ@ïÈ‚‰€²!òëëµÔ¥4‡u‚æð¤?ïÍËæïG?ëß¼ëûËÕwMs²œÁ>ûp×0¾í–o›ËÙÉ{´Û?~<ŸŸ^´ýìÛƒõ‚"¬tÑëÀ·YNÈ,<³ÎÑîh?~ühÒYw ò „Êo”bâ7_(“sUŒ Ýb¬2k)õÛ¨Ó-¶t‹G!Hx<7úDZ%¢;ØRÙ-Ý4¹ |Sy°™Gm€'PÖÄ(£q`³W#s¤6êÏcǦì-ÊöÎŒú†Ã? ‹[ƒmS¦GƧ/ã‚ÃY´–ÄJquW¼6,Z÷Ä¿BƒÇLŠbR®‹ eKÈOQ\ÙJÍ*P°LŒ‚X†UG˹<_ó¢9ÿ  §›ú1@ÞÎ/.&ìç \9}2 ƒq%lYÇ ™”q­=#Ý<`%Ų¿”¬\g+Œ³ó¾oO§¥8Þ'D± :”‹H(j_bC‘”nÅòvÙ^ÞDQ«ÇÊôMå¡„agoõ j¤¶bFM©í6ˆ~¤v€O°³©­ü,‡8RÿYÊü4ÚŽKe¤6‡Xw#µ‰lH»óŽí=e ®!wôÙSb/z û¡_lÎXô´r# íÆíÆíF†v#C»Ù¬¸Sn™òF´EÄ5#®SVã#¾aPXÌÛ7³E÷a6ñ> ©åÀ!I¬ƒùX»2±…ãWölpšÞ¤Xtת¶‘×EÿG†¤ç!ãëÙ#«*¡2%=îF~E=±OVhƒþô¬¾ñ(d‚t¼†’£õ|?”1ÎOšðÎ4‰dëÉÿß’&¯;H–kÒäIÆù9IS¶ )×@Xk°25iBé‰Ì€&AÍä 8“wà+zo"pŒeë$>kFegÇ×P´{dØ}P¶dTm·² s’˜“ÜÉWièÇjk‡‰#•}‰%©ÍºgýœÜŒÙ´ŽâÓlZÃ#ìH0nÚ!Ä]oÃFéL±Ø(_.6òÃÙTRR¤IYª“è}zI6T;‰õ^(õ„”ž©ß멨¤z÷YïÆlÃë mʶH~.Ø…°6-´üR|½Wp9`/§wRÛ/9и–]×Q”†,U”n*_%˜ó“({8–§Ñ&0&á‘Ú.ç0V[ôn…i÷z·½ÄÝ>È ¤;ocyx½K»Þ&7²·í¼ñ¼õáÀ-sf£\l´°ªÍUúôÇâù˦òð⚆j ƒ0lUSš²Ê‚yÚDöú®·§Ál9C,ØÖÐó±bïJ­¯zÊ!z NªßxÒ.@_¡^ç‹Þ^¶Ë‹«¾]õOpA‡ ¬g¦ Ýë¤kÏž6ÃȽ¸ z!–ÀåµOetÇðª:ïî1WMÖ¼Kfç;2;0j~â‘ÚÈú‰Ç„dqû×DŸŠÂƒÓ}]Gn§{‘G¤ûpê4|<óõ“f Åáã¡8|<7=ôþ„g è«ÕO%A`%lTÓ$7Á§ÝIóâðoÍÑ>þµïú‹ù~}÷ûþi×®ÿvŽS¿´ß¿Ãøø·]µû‹«‹7írµ£í·ÿ½šÍ¡åÏ&; Ђ~$¢wàÍ;둉‰Î#{x>õÈ-xÉV¿\ µySöô^0€©¤ÇùÄU†… endstream endobj 2705 0 obj << /Length 936 /Filter /FlateDecode >> stream xÚ½WKoÛ8¾ûWÉ¡)ÖVô°d+»¾HX í¶ë=µ=Pâ8fK‘EåÑC{‡%+²åÖM[ˆÇä<>Î|Ã1=çÚñœ¿G/–£ó«Øw7‰ƒØY®ßóÜp;3ßwã0q–Ôyw¶áR»Y™—ÜU9yþaùÏùU4ëX…IìÎ’}Vúþ|f”Fž s~†Îµã©Ñž„³y¥> q1j£ÓÓÓç“ÈóÎTæX­ ÓE½–K ÜøDßs“ÈBS`5þšX뜼÷"ïëï·@‰& ü‡»þ'»ønâÏXµù+©m€R\ì³oño@å¥&šIQ/h(¬­AF6%ïYN4Ô‹xÜZ€{’ Â+@»5.ü œVz•™ »’Ê @ËŒ¥Œ3ý°ÏY aoxð¡ }½qèbùöÿË®a•µùã¬]Š p7yÃ&Ö&g÷@÷•¿ï˜^Û´ÞÉí®"Zª¢“å´¼lṞº¤ý„oÊ”³¬S© j'óc™†x¬ê¢þøb㦈£ÿØÆûAzö³&Ê<˹ª?™6yÁÓ 3nJ¦€öCD§¬‡8|,CNØÉ·òëÚJ þðçÎÁDo¤`)‡ßÖo;üH)Ú¯aÏbbãíÌ•ý˜ z ‰¤¬ÐŠ¥åveKýmt¨N”ë†bk©Øg)4±ÍË™€‹™ n‹[ÂK¾-xaàšeÛú3 =•íý@¼ÙZ¸Ø“Ù§ZÌJÄqÑF”(Ú°›Ýž‚(L™ÛȈO*@0†‚(œ‹’óݦ&]HŸ@ ØÓÒåýqõ>„›e§\&«– H-•‚6WÏ1,cEC+uö‡èusIub‘£Kµ6U÷Úð5êIEÀÁyˆ]eüØ´žRÀ«;°_ø]dF'‡øWÝvëž³¼Þ›DãÈlüŒñ9ûÁñi³‡ã®±M[ö¶ÓÑ*Ü”D`Ûc%o¡7oŸöƒìûÇ$á\fO“?qÞ‰‰ë*”ýæÍ$„e „.~û¯»†¦'ròd˜DßäÝèr9ºùhé9~û\ð#ÏçS'ËGï>xÅMtî†Éܹ«TsgŠ/ŠÙ4D™;ÿÞ´ƒþgõ&Á÷BçM‚‡‹§, ]?™½I:Ï8zd¸ÉÜo'ÿV“1ˆ¼³— ×’Ör•_#«^§«N>{€¹O¢§œý+BŸÌ endstream endobj 2714 0 obj << /Length 1741 /Filter /FlateDecode >> stream xÚÕÉrÛ6ôî¯Ð8‡Ð3‚…ët|hš¦M‰sJ:SŠ„$6\4Kýú>à«iUršCF>@o_@›]üvõúþêÕ[/XD$ò¹¿¸_/¥D¸þ"`Œø"Zܧ‹O Û?ïÿxõÖgTáQú¤]^5$ÙûœÔE¬ñ¯¨½îð—íÉ%`Sàù7R%u¶k²ª1.–,"Ad¿Ý—‰9»äuš ¿š)„ªÕß2i”]¬ñ›ä±R(šCâ<"­h×X׈<âÄs ¯Å%c$0§œ ÝÀ ó£Š7rVÔÇ¢¹kEw‘Ћ7KRçƒÀo!›m•"¼®j¢C+2æv,û/g´á’(ìFžÐr] ~ŠÔ’ù.¡ #‘çõ®ó™zôp‹¼ãC¦,|ȳ¢ÝîÁC¯º] ÂU ŒÒ`L:n,ZSÇ¥ZÛE¥¾%âA¦[²€0ÆñˆqÉó)AYÏh‹û„}biâ=ŸS8B†-Úí !ŸpÞ!\¿›¥^q¿§²çTsl±PÖæú÷y¦q™Û"é ‰ÜQ;™dë#.¶qƒÐ×î9q¾—J¯™£¶Õ>Oñ¿•Äï.i÷tæÖ_Л‰¸%ƒë|w’)ŽKm¨¤D×ùëOÊÕËÓ†µ&ÙU§—óÍz0×Ã¥¾pà d ÍŠ:ïtøÜÙ—FŸ)å2½Õ{¾‘ÈœX÷% P•l,¥¡'Ï-y‹PÙ#Ua1•,U¶Êå\rê5¹:Ž©ãø}Õqü6uøß®]fÎWG“5¹õHSv¹ug†žûÎæÔGúžX:«€Ú$ïvuµ«³¸±¬¶4 ÍÉs¬ÿ¿‰{üÄ…Tu¶°»JeÈ`¾©‰úk˜,è"×lfÉ„Џþ¢!.SÜKªº–jW•iVnp ´.s­+FFWzsª+!D—'ÿ”æ:Õ"GÒÙÎØ ¤^áõã¾Ù†–!gCˬ¾%˜°ç:_å•™â\‡xäÄÐ…¶Ò;¡MQ_€ ~†¹¥ÇDªº°KL4è¢ÊM¸R5Y>¦ð/Ý–J²!s%x’hú<ìfj§ ½(~juÛºr®ª½Ïâç±–î)ψ³ÒZ¶ÓAÜ»LG{%ÓÓveпèagG϶¬ËéIJ.gÆ^úŸÎ² ?½e‡˜Ëš¥¶¬Ú¸Ô¸­ŸëýsÌê¤{®føs|» F‚ÀŸ¬ž‹ž¯Þت–RÊ´íöWÇÓé¿—Ó&ž,žë¦¹G¨×·¤"'Œ ¿ƒ®[žï€)²›ƒž¦#®7Hˆ ÍþH©8`>O«ž“•Pý˜çld˜°½AÔ›¨TÏ)÷ŪÅÄ9ÎsR@,Zz¦WcRÛ,ÙNµÄà 2S„Úè¡-a`Ëc¨Ë#þU6ÚÖNov“ì›Éöêj_¦Úi—Dë/º0çu<c\~ÕJ‘U÷!#ô]Íõ…UêyߥÖE Óåµjpa`8èÔVÅ"`x+ìu*Ö‹VÅ6}Òè8&¨Áý3ªU2©ÊÔ6ͦӂæw¾KnK9ìŸJq Ü8ò»€@Ÿ¼Kô~+¯C¿ô!ÕyÝ Ý¦§‹»}ÜËÙÔ™œö!²™ä‰Ið{ýt~¬½EŸ4âšmü›;EUKÜkªZ!¼nÿþš©}œgÿ˜>Qÿct€Ri‘´Ë þãø5@ ü 4û¼y† ô[×ù*È«M–˜ìÂ]´ |û䋇­4o#fãÇܨ6hXǸAJ±l (¢;`^Á )Ã,aðM–QÀQó\„•qqÉü`ŸœwÉö‚mŒ)yb‹U•#ld‚/Ti-IÈ×GÜIåZ»M †Óáš&ˆÂä§[V@K²:1ΰÉH,µÔô3ÉÙïjUÁ½~ìÉÊÓÕ J«Ïº¬€é î¯Ú÷/ýžšvùXãXÖž‘ò‚÷ÌNÍL²?ì ®w]j×Ä+T¶ËyÉ.‰Œ¬”íKgÚl/¿rAÛ`clÚ‰‘Ù—ä_ï¯þ“*E endstream endobj 2723 0 obj << /Length 1698 /Filter /FlateDecode >> stream xÚXKÛ6¾ï¯0œCeÀæ’z«ˆ‹&mR$ÇÍ¢=4-JK´ÍD Q²×ýõ!)Yò*Mˆ†äpžß ÇKg»ýv÷úñîþmÌfÉb?ž=ngŒR„ñ,aŒÄA6{,fzÇR5$omIê_üõøþþm” nYL’,™†Ÿ¥2ÝQ§¸ã÷ªc_ù löÒ¯¢á²Ô£‹Cu,…«`_’Ú«{±XùqèmÛ*o¤ªì*熼;nµ(,Õ(û=IÝòRþëšNP-t[6Ú^ßÖê`·¹Œ¡à\ø‘wZ°Ès·àŠW¼¼h©Ý 'CmÀ»ªS–ÍçVè,Ь#¨ßúÿH:«Ñ}K>`‚`…ÄqÔÅÜØtõaÐ ÖA–tì]¤ˆ1cú„Æ>“ Lר†,5éG*óô^¡ÏgmšŽã  QZRèFxã>ÒˆJ"È–1»^è¸ »TDÉš—å=_ø´_ïÜÕ6¹:ɬ5˜ç‘O+þ$õT`y…šhâi`©ƒàº­ÝBmíw/Q«¨„l._«…¦ÞÅj1›r|˜LBÃH© Quõwz°ÝJ4…6Êù[ó¾(çU¥$ˆÃ.ãjóIä Y¬â ò^ƒsA”z…Ø.õ8è_Z lØ RŸøQ±4-S2‹I–©ÑBÂ4˜$fÎ(””Pà^ ¸0‚hA© —6§¸m‚ƒDm¤·ª¶\Ü®kH«:¬À°ïŸƒ#’˜øç~ù>Љß9önÊ+õð¯VAš? !)‰\Ù(0½>K-ó>„zƒXn\øà¶Š€¹Þ;¼ÔÊnAwr[õÀ¼k¢j&0Àâd댿t˜^ï>ë]lœ}¹Ü^¬"Ûî`·¯cãÖnÞÔ‚¹à¤KžwÜ•í ,ó ‡ÏøÚÏV~D]I_šØfâaóŽ"/W%æÉ]Í ‰Þ›•1¾MÇyT²jô} UÛY2‡~¢o8]ÙùQü\Êd‡ýkï‡6°ÍÅÒ£b12K¹Û7SýÀ £ð4ök ¨à0ñ½Wö´üµ niáô¿&°Úш;”¶qæä{¥Eeé“äWÏ$Iáíí^UêÉ¢plã<À4A§©÷A8püóæ‰Ž¥Ð?'o4- ¨ ">u€yµˆ° öªÆähó|ÇÐðÇ"¥ž*·»E]bgMù}SOŠ|ßlxk‘C &‘E$Hû{y>m~ÆšÔêX+ÓlU½ûi"DÌI²ÜÕ¥5Ÿ$æ±Ç7ß‘Ïß|¨ü´¯ü}Óõ÷÷çó™tš+0x þÿ&8–]Û;‚k"06@B£q`s*ª\|×Ôvëz8&Ð R“ù¢$±„OuÐáäU-L/˜´ I†c6¼…¯(=Ø™·Ì­&wɾ'°{äùgœ3˜çsÕ÷ 9L{ܿǂSm ­(¨3Ó;¾ð?4Ðb`ÚÉ‘ÑôAm›3”CxbIB #hÜäc„ ž‘™©úšV`ô–V?ûèÚ’ DÃȨ ¯BIDÒ=£„¥qÜÒšœhIƒÉ‚|F7xé«ý>xSpù¶¡÷Dß6öö¹Û*WÓýË4øÉ€ÛÊ~s 1»ànoò½ ã©²€ÂÈØ`ãápÑõ¼/„â¶’ )„q® %1t#ëÅ‹X÷`"/s´QØe©v–¨¥þì(p@iK›¡Ø\S5tBÕ—çbuˆOkFúLTVÔ|W QÍ—óMÙ øÔ¢˜£Ô/;oïþ‡Ø¯ endstream endobj 2735 0 obj << /Length 1880 /Filter /FlateDecode >> stream xÚÕXKoÜ6¾ûWî!2àeD½uÈ!Eí6Eƒ¶±ƒ’¸Zz¥V+mE©öþû9C=ÖŠ_@Q{9’óøf†³ž³u<çÇ“ï¯O^_F‰“±,öcçúÆážÇ‚0vÎYdÎõÆùäòÌ;ûrýóë˘OXƒ(fY˜ÁA†i_5Û6ª`íNhön¹¸>ùû„ÃÐsøpAœÄ,ᾓïN>}ñœ ,þìÀR–:·†uç„ C0®œ«“߇óŽ¿F‹ ˜jÁ=‡Ü‰£Œ%Yü˜€ X4Ûí³,åV±ß`ßÙÊ<÷½ìŠfƒã›¦ÅÁ+{ä+œÿºþSæ2,k&,Ê’çhŽ~ŠüóŒ…1ùé©ò¶ÜweSÏôõœû:uVuž–æ ¯³JäaÞ\…YàþQÈz)Ùó€ñ`Èö-÷š æ…ÎXú&±@LxÚy^Óî ¥PEÓW¤¯Iàà4ÁÁZ¯Œ¶+ŠñÄŸ+}d ,q[ƒÚ4Á< _-•¥”Ò€4ÆPgƒEtKšÅpÚ8€5(SH[W=±cžô=wµäÛRÉÇ‹ÖZÍ3þExMCÚ C(ZP[ÕPRçdøGÇ© %k¢ÐZ!Á™"8=$Ãë&êM_™:>»££ûÁN ÖàTËéSZÄß=YÈå=«ïÁ4 Ü̺\ò©a(Õ¼ó–*ɺ¢íƒòϯhXÏ_ä›4rÆ]›I€2d™¡!3‰&±Ákh“É$žµP*…T\åãª6Š>}ÛŠñ‹VÍký½r%»Á~ 爅ñЧ\¾ýåêâÑ¡uD³+»#/’Ô¼çô{5 æ^ÐmëÓ}p·wqàÂÆ²SkaŠX‹ýûX‹m5‡¬+a èÃx¼OÇCC[šq(\“êù©âð,sþ[sþws˜¿/žnªÙ–¹ŽPžùFJýÕ€ 1a¨ç·Ð„š÷°žüèk(¨Ì*q<çi“š¬§&Íšk b0à‹N‡öÉl›Š%•Kÿ:dPć&QÿaóµN2žtlµT^ eÿ(ߑߜ‘íÿ+Ïh[¡ëm™ëÔÌÊ;LµÆØ×éʯ;lÓG™5ü+˜¶è“ý¦ãÆ­áz´©  Yn‹‡‡EëC-ÇØÃÛú=fÔéow+e*ºy‚ÁœŸ“~|õ´ÓâC‡fÂ×5 ò ;CO‡>Öép}›"º¦~ÌÑ®b1kÿ³ç¢ž_ß§lñoË‹ë“vš‚[ endstream endobj 2746 0 obj << /Length 2435 /Filter /FlateDecode >> stream xÚ­YmoÛ8þÞ_´ÀBbFõºØ®ÛM¶)nÑC’»ýp½´M[ldÉ+Êqòïo†CÉ’¢d³Á¡h5|ÎÛ33tý“͉ò뻟oß]Æü$cYÄ'·ëîûL„ñIÂ9‹Evr»:ù·+ª†m*“³z+gÿ½ýrv%½C"‹Y’eÀÒnçÇMï|wKû=»¢wj.’Ô› L :¼¨•¼3ƒó£Û’˜eiÐ^Ví]•²˜Íƒ”{²žñÔÛì·ªlp&ðvÒµ¢Õª¤oS9þð‡¥'5^Cäõ)y2Я½.צyI¸ `IÐYb]Õtã2¯*£Ë ÉÔ䊦¿ù‘_î· å¶Uk˜á´ÉbWé²±Ö8™óˆ3D@p–E‘S »#ß±¬6µÜ"oƒìØHÞ¡œ5çÀÓ´1è̸¢y2±V†Í桟z7Ê,ˆ7p …Ù8ž|^o5ñ'2Z¤SÕ*æ­¶º¡ ¥%вÅY4²¸\¨âmÉN¤c ÁŒ•¾GS㤈‡¹|ÐÆ-ÑŽ"ó{“NK£V6@wøÚâ—®z5~ƒŒ³4 [-vR×/*=oŒ]IQÞ)×÷D)·-ŠžäD ÈZËEÑîiÁÓí1KÙ4-î°à9pɦÖoÃcì/¸$q·÷ýj˜‹ÎxKö6È‹IìnûE5R‚é™›y ‚BíC:z9ã‘G¥*†t²¢ ú ›¼Ú7Ç…Z6UmNa"‹ZhÆÞz_.10i´ª%ò;8’>GûÂÀÙ7Ìã#/{=‘-⣖·õa>@|슅s Ù~3·ëÒ44¦ƒ@@56ª$z«¤Ù×nÁJß\¨ÕF•вx,èö>“8@S鯶!Wíݳ_…îœC{å}n«´™JZd”ÎÀ!¦}úF#Ó{4®›_›Z/°.íцÎ!vÑu´É/*N°z,N°8°qRî ow`ŸUÛŠ„ ‡rËy…"Jš· ê˹•½9Rj£Ks¬|‡ð43‡PèÓ®ÙzÀfæüöú_): ˜ð»œ‚ùl"ÑÇ,M:v/± 3–rÑn툎 dChwˆ1ïƒ4™]``õá"R—‡qå<у %}:¸à€àb¯²éˆØ½Œ+ÈýÕ Y@S›ðèÕ ¶G~·½•߈µ‘ˆ ß ž±H§6-êîP‡ÚQ‡K¶L!¡ä2ïïîñuÃ^Q©5è7ß–šÒç<ˆìáí “‰X dÖ¶ùÂ'@àl8”E…½%’$ì]i¹ÁšQfm€ÀŽ>.qÜá=\"+oÇ7?Aþ„}4ÛÄxûµe²5‚·Xƒ‡Bo'°Â ºp8`1Î;l>þ_¸<´O¯qlB-ô“#›­§Ó<Îül˜¦&ì (÷Àl €ÞaSB˽²W…Þ!×…¢…AC6a[²4ì*~žO%`QÔ=\–²tK` ½ý®uÙSs†ÝŒk‘–Õv5ÜA¨‘3|#*½É›gš¥©š‚ýQ/õcB‘>:I‘>Ù²`ÏíJB²œ¡àÐ]ÔÇgÑ:—ßg)¨P¬m¥oú÷ ¤–y³û¶©Âk&|’EL›°Ÿ÷‹¿o¡‘‚‚>ßÕÕw(º¬ª7›ôTÈ"!ñûÎg‰M»˜}ù4ûbóÖ½>ò¦Ù™Ï·kožÍ±=^ÿRjæ°ãÙ“Â5¶¿È(pѰg¼VkecV•Kõ¦Öñkq§ËSz¡]1Gü"s¹¨U~JOµ+È=A{_Úõh|;‘Wë;Yhx÷A`q¯2@¹c·³$ôÜÑöKMàó€Ô´eõׯ7ŸiqN{%} Ûïr½´%BXï ùHôpÂ4û•›¢â3ݹ¸ŠGž3mõ‹iÈ Ákp­Œ‚<  aYwлy,&F;0ý¦ òWf*ª <ÍŠWÂGLµ2ýwZL ¹Néꀇß7l*ã&Ìãql®*axïf•õì{m¶@ES—ÏáƳxØ/!úèåÐÏÁY€^IÚz×wÞaåSU®öKúÉF$Ø84r.!É<[áv¡¸tMW`“¶ár‡l‹Ž³;¹¼“5éI¸6LÓVý/˜ðª}mÜÈÂÆµ;´o%7l uºˆCŸWëæ@¡ ¦~bHèÿzGÇ<2û»é3žæèç0rs€û‚—ÜœÆ"9ûn »÷EÌ´?éj,ha½ÆÕ"Š®-î\A!ýÍõq"„VQ-ïÈç°×:¾äû6U Q ;~åv}r7|fÄëf™oõÊ‰ÐæÜpÓèï¥*ÝÊ´ûÊ-^³©Lð{®ˆ)žQ=¹XFK–Ócóò’EUÝÑYL?øí³žN> Žï¼r·ÃL˜!Ž3‹ã(t&ÄÉŸ«¥$Ö×ðò°yÙ¼ËüH“Ÿ®?ñOl¦ƒcTâ¥È€že ¼•xÄyv‘1¬6±Ï"xNõKþr}ÂÇÂT“µæu?*þ¿ÄŸü"òxøSp¿kéýxÑï j%5ÚªËݾî“ôqEÈýt4Y€CßÊ1¨¿r»+ž©¼“ÿ}’CÔÜÙ!^)ñúðáö º,–ûÂJâÚQ­ âX ž¥ºr´}aÙcU?3@¾µÀÃ)ƒÒu£{|µ}‚E†Èpš¬dC»~šÓW”CÖ½õÎß½~ê.ÕçR;ºäúþºÑRŸ/»•V‚v7Èsø‡©ÍFÕïóîýécÕ.hl‰!¾Èk'AQ½®,Ü¢.—Åþ¨þÕÍÕÍ<$zoºiüIÞjøÇ^sµ^C—æÐS´o'R­ÌÐ<õV¢m[íîÇjžv*@§pþþââýŸª»ÖΗ}qHÍj¤7< ^.HܯS4@Áâ(QËóúÅí»ÿÔ´@* endstream endobj 2762 0 obj << /Length 1903 /Filter /FlateDecode >> stream xÚXK“Û6 ¾ûWh’Cä™5#’¢™ú4»i:mÓÆÎ)ÉLe™¶•Ê’+Jûè¯/HP²äÕn6‚$H²çlÏy7y³œ¼¼¡“8`³Ü8Ôó÷'¤”©d+Gµ½¯ýð'Ú·^p÷Öåƒ(íiÒp|€\œ#ñûÈ:ä‰8ƃǤÍhδ–B ãúöâ˜öàªùòã§Ëk½Y)L§–©…¼ðòr›–×ö¨N 4ðB{¡.•'+¢ê»\Îi{.Qs¯½,ÝÍY»°Úv„ H;KËœ‰BÚüqê}Ÿáõ A`®]M)”Œf/mž=×ù·'YaÍ0×±ÖIц§CH ?:ÿ»±2ÂX åªN²BÚìs“Õ;ûXø‘È©¶NK~¼§§‰ç}Ô5²HåcÚú>‰8âCV„ÚϤ© óz„‹žnPZ–&ùtÆ7Y‡ 檃L³Í2ov‹²²;tµÓÄõ” 7©²²Qx&M”]Zgɶ(U¥ jW6ùé•Äíú¡µ´Ì¶Ž¶Å²Tk¹Ñ(Kš\{;än6æbCíé|¦£fıHÖ¹C# ÈŸ ª€HrU"¥Ÿi88\O©pp¦øÀÜ@Ææ€£I×!s#ûÆš 8±••êoàGËêÉÍ.KwHjs`¯2ƒô#B1´B[ÖU¢åÞLà˜q°ÌBJ\ûû­¨æêÅI¡4.ÓDÑìWø ,eMÞ¡,ÖY±ÖœîÀÀÇm5RƒÒ¢ë(u’;•^€¨ôÂ*yD%¬ *ûöêÍårs÷õWPˆ;…:(ÂÚÊ:B˜]K§WúàÁæ(u?Þ%“ÒG h²ù=(ÌB1 -e ¨98@æа|‚9X1þ„•#怉°n >à¥%è v‚~Š¥dsÓšR€‚¦Ô-œÐ=QÞ¯{'Èøá%퇇­g¡Ç³è¡}ôx}ôÃj^!õo·6“ë,•¸xÄ µ¸ºs…´ÖvÓÓLáÈ/°ÇÀn§ýóMo¬Û‹Úd£éÖ,æªJâζ+.·Vµ©5#qy¯ÏÕâÏèjÓÝÓ±tl ˜þ ºÛ¯JSm—<0¢éè#÷Írz5ç9øõËMçTšU)tg¹Ä©1 [[i‹Ž“ðø!uü õ!-9|‚zƒ‚4U#8bÐ2úC”æo²£·ãårò?£Œ×w endstream endobj 2769 0 obj << /Length 2956 /Filter /FlateDecode >> stream xÚµYëã¶ÿ¾… ˆ ÄH¡m!žRì´ÆÒ‡7bH¡y=Y(ÇÙQðX—UGMÂT‹À¶å¾hD$˜}Que~þ¸Ç…¿ÚpKQå¿ ìÐx`‡É6 Y°áw&|¸Á…æ¡æÕç²*Z7\UÅ®7»â kšg¡ç‰×²;‘v{Wqàû @FBÇÊÝë—uù¹/ZÇ'¹è®EQ}§rú9—ÇSGÍö”ï jÖ‡ßA{ÒLh3?5ÝCñ Ì~4L}³–ipì/ ™­`¸Ìô´L“ôD™Ô6ø¶èòòܾÃtúp§@h&b•ÐÒ¡NÝr.2B¢åcðüᇼ\`aœ‰$1n2òÁ„,cÐ8ôÕ…•¾p«v6ãM‡þIú,Ö2þÒ ò}~¢¾¶Ë«}ÞìË_-› j$(tŸŸ[{ž²›Dã&ßÞß÷ðŠÚ,Td6©2NY2 Ñ òÛ(EÛ(ÚFÉ$ø¦®ß~±ŽÁ\ã· ö%R²ãéÚN×n:* ÒNç5%N¤mš˜kÎE¾ŽHXYlê þúŽP–ÒcI*âX:˜ß„JÓ¬dÒ”¨Ô²BèT­”0’o-ð+&RàDÇYEÛ•—¼óP0# ï$Ä0Ÿ»{ŠŽË˜%iœ ài},ª¢ìž¨ N쨰v€m¹³üL»G2YœóÄÑB؉i[O‘’¥ãŠk&}©­ÉXò,&óÄ|ضï’s£E9O§(q,`*N„Ö™É×/Ö™ ^ HÆzfçPZ ®©eÃ2J:ÈØFÀÜ»U_saçªg„åù± ùàª#÷"Få21h¼v—CªâúüþÅ__} ö¯™F«îx†Ä„Bj9sÈÅ#¸­®pæ!ù¥Üñ÷;)Mb™dNèG™&¤SERÅ"ïëyádJvy[ŒFåz*w'ú´Î~»§Çr猓‚P®‚û‚n<]êž§XH£]¿r†I—œWmù àášàæµ?þo/Vù‚)9Ð¯Õ ø m»¥¨”Õw}, `—ëó¹F̯,<£3ìš¾øÊó&+©ÀMƒºk!§åQû“^obPµÒˆ(È·m}î;þ,2´ñ§O{.üžÙýYñN1ÌËÙ9¥SÁ LUl+µgá´šXÊ­ Ÿ´™¥+°©’½è£½Ìˇ»Ÿïpm¸’+¥ÀVÂÎ:6`å²Õîr÷úÇpµ‡A@Z(Øàj§^V:„3Ñ”œW¯îþNY’g¿‡½4ä,:â3ŸßÞZ™žˆl¸à ”H“aÎÛE9Ù$\Ú$³¹S8¹½OhˆŒ<_H঄ IÌBŒÓÁœ-‰8JfÎmÒOaCì"8ôŒ×‡¸5^|G&z¿ñ’Y|k¼f&ÂDa"†mŸ¿] ¢EÏÒ|PÁç8Jð¯ÆD‡ä ò‘„η÷^Dô¿¢£|Œe¤…{`Ú$½{Õ Úpß«}ƒz a/d¸ìù±iUIQJé·s›c¬NK8SÝ”¿ÖUg‹4&¬²[YHeLN¢,øŽ÷Ë÷ûíó—Ë‘&c\|ĪØäzCóûü{PÈd0dÑJIhš2Ÿ\Â& &4öMާ]+¢%ï¨{¤›Å‹„6L0.q3ÎD$dü­¢ì}¾5ìñ'CKÉ6öɶ=„ú˜è𽑧w ʱJÝãY$ªø ~ÇHTé¡sXf‘!Y^œšY•ÂÁ%ˆSVV´“h°¬h–•é…ŒÐð‹V:µÊ§gʧ}åÓƒòiV>í›%Üf‰ˆ0InB?¿ìÅ~|·Wåpôp‡¶¿ ·cµ‚$&™Õr¸–›ò•MæW¸`€ÌG—œ© "¢[êeˆÛGŸ$‰ ãÈÛ½µá$ã]’HÈ \ÊŽŸ/1Ÿ¹‹¦7¥ð f -ÜOlYò¾(Cng§”‰ƒû’ü94ùÚTVÏ?lL!ÐɰsG’Ý‘tÅQ[;§´ÑD3W }W W ™—ÒwÑ ©çRfÞEæ‹z/!¤Ó×Ù‚“ð˜n°üÙ`ˆ]“l H¢ê™tòà—š Ÿ¹#™•8Büo´ï¡I1’ÓÉÏ]µsI/³:Å"ŒüP5AÞp"åïkW톼“Ìrú¤]K×÷] q¨LÚg3úur‹ûÕܕ۪&V,Æç§+¿­6Y,’0òŨo fˆƒúŠˆ à9á2 î胸Ÿ m|+ƒç¶æxŒ£7gÓÄןÓ§3¬æÍ¶<Û] ¥> stream xÚWYoÛ8~÷¯R`+c-†¤N«‡ÉE‹ncw÷¡íƒ,ѶRYTE)ÇËþöФ"9rÛ,Œ„×pføÍ)lí,lý9{µž_ú¡µDË€ÖzkŒ‘ëVH Ü¥µÎ¬Ï6Yzó¯ë·ç—º” ê»À¨#ª Þ ŠÕ‡¶a¢Aõ!Am™Ë{3¬Å¬`ÀÀ1¦«ø\±-«ç$²Y™21º?à3Ò9²¡ R þžØÎYºo6I ¬¶W|ÛÜ&õÜ m¦„ Cï7²šbh -#bÜ`‚Dz3‘¦è¹º…’O¾Px‘~¨ë9SD05÷MS‰ççϯwç#nx~-ºÁn€rìNHwˆë!Þïò#KÓÀXZ/~“ƒo¿Þ³¶ÜɽÛï‘ÚT„Î;½<ò ×ìmSäÀ¼;OÊLMòò Æn+}Tnv–'»’K›EÑ9œ Ü(S®€Çƽb‚)S¦sâÛ{máû| 8¨å{Öìy&&"„¢%LÕØd‚Lj ÃdhkB¥µ õ§Ìí‡{ÁÌ1=¿®ÅÌ8¡›C– \’‚ÂPÇôŠ1%üe!ødNÀð£ÈªåRM¯d¦)w”)òr[(e©!riïøÊª Hðr²mKȼÔÛ\)?Thod”'uÎ[mÆϘá¡)\¿ÓcËÅ]r¨ŠYòqÖ,"`x=!`á)^Ïž=›;>Õ“"m‹D*/—ß©I‹ozÙ‡ 5ï"¢»Æëš‰ rh—@å–Úõ«xxbrzçôœ^—˜,iÕŽ™zHß;°D´5‹Ï®®ÎZh7zµUÉvz•æqúp–Áª;“2ŠÂÀׂ£^pÃ?´I Q$›¸JDäø¤…H«õÑ=D¦¡bUlô9“á!ÿTÎ6r ¼-Itï6×/=äw,sØvËÒFƒ©ÝANUi黼h{söM›±#ô«vS@9PŽh4Õ4æ`9^O fbl(àòù÷¹~ã™dÞéf±þ5zƈ¿?BËÀ܃„OÀÓŽ\t£Ìø]'”‡@+ßG¶|<í§be÷r$ó&“â$±d R1‹=¿=bœl65»É!´ñôÞ˜wà ¯1eñÎIîòIx5~•Ô]è$uÜÅP´ðàGGnzúQƒ8@¢¹/Xì.Œz"vOrPByõS´+Àéµ£ïótÿ`ýv™G{ø~I[¹«˜¼ðþµß\¾ºX¿\=ÁôGr/_¾[] ö²íFÄë«OF›ÙÅzö}FºòDúF›†ƒÓÃìóWlepB‘»Œ¬ÛŽô`yЄž,A…µš}<™à»n~\ï@õÀ#TkäáõQƒÒµÐ8rô©bóW‡áC/¢«¡©ÏIx®>l®»„wh) ž‚ˆúŽ &¾c¨D Òýâ(*u^uIòéß—“…¾êaàúaj±Õ}DŒ˜h“]"ŸômÅÙ#´Î¦Zp¬é›;“]•í6Ô¶Q›ðIÀGȯ÷'0á³ru%ІïÊ×åfð⌜ÈC~Øw•ϧ>†m礇ñŒÈýK‡bQ×·Ø&ŠïL-ºi-ŠjoæߢúãÊ,eb  -Ç|!¯'ßD|¶JyÓ˜æ`[³ï#>)/Œ\^CM~ØF¼m«šm«Œ•"oî}Znêücó„ìºMLLξÍT  ?O·òÝÛ±2)‡êÖ±w@¸þê‹ endstream endobj 2792 0 obj << /Length 2031 /Filter /FlateDecode >> stream xÚÍYKÛ6¾çW9y˜‘D½Ø[Ú&ŠEš½µ=ȽV"‰®$g³ÿ¾3R¢dy×6Z X`E‡™o^¤½ÕÃÊ[ýôêûûWo?ÄþJ0ñê~·ò=ñ0^%¾Ïb.V÷Åêõ¡R=;ȶ>ö²ëY[gìØ”wÝÿüöC”8³¹ˆY"¬­çù"B¦WžÙ¸c‡{cÙ7ADN“Þµw¾·~8Ö²é»Éôù÷íÎÝ£§«/ZèÛ|o÷¤IÌD؃fÍÝ&ˆ¼µÚ~–yoÚ;úæUÖu$ëd»Äg<õí ¯OÔózA?"a>íµí³²‘íóXö{sbøcéªÅƒSó÷a£„yÞ°Ò°ùs"‡!Kùp`6c¬¾áaÂ8œtãÇ,öš²•}v¹NÕ¡/U“U —®¿ÞùÑt«Zì'¤] —MQæ²£N¯h°;ȼÜ=ñq_æ{¢ÿéE^¥ò †¶O ¹’»» ‚Q/ÈKm5šÞíÕ±*hæV -yƒ2À)7`â"Šè´½,ž×ˆŽ³©ûÛ4’ÄS@_k$‰Qk¾£F c5‚ô<«$5Õë jž­áE5X‰M¡~kª'²ÈVÂÚ°âWü—5Æ/vúÀаHlì!€V«BVµ­NÊËmÚORCôpÂÌ9ýr0éx˜€&ñ<ˆð˜—NAüøëåVê¡Ì5€¾±VøŽØøh­²ßËÖpì%5È?µ¶¬‹²ëÛr{x룥¦d,C¼ùðî—OïBb21²—!äâ£DL#ÓÇO7`ÈC¡1Äï€! 5J †H8Å©ˆ‹3o†¡ÑÞ¥P¤õΟqnd±ÀÅÆ¹ãØ.Žà`d ÎÄÑEÀ%Sàô¢&€@k!€н ¸`iL¥ÿ÷£ŠvDÿeT“ “y²leö¥»¢²'5eX‡‰ýÜmž$ëÔ!+Ò´µ9äÇ>‹¢pššsUÝT]a¦Ûgm–÷Ö 0R£?h«1çqM öTíô0Œ¡õ«‡6«eeí &µUm!Ûÿ•\t$`³V›bÎq¨#~Lû[då^àÊŠ]++÷8E¤ y:q"ÉŠŒ:»c(‰%e=1e­¬•mI¬Î¿õ­¬åR‘ s›™ŠÔ¶“-õV{T¬i˜ §u}™_XMf®¬ËMßfMw€sÚ*¼Ûg…œÂÙÊâe?;S+w7Á”NL.Ä#L)™$~G˜€Á$ݶH¥$†žcÇ pô¦XKQÀ äòms¬ª¥H·P’¡± @—}»#Tse}P”PÑN,¯:,w»†Ø™`èn”™ñ¬ý²tÞa‡§+aLF)â>Ý%'PBw€’›Jƒ;éLµp¢Á‘ÓÍ~2öU#ÛFšMìu\¤¬³Þ°>Só ˜•à¿„w086´J0µŽš3Èb!È‘°³ó%¸ÝB¾dxçœx[åmp‚`õå8š0…¢$U$Bùx ªÆÒµÇ"ªŽAË D½°NÇÙ¢«*jnÍúx¬šÊP›©Úíþ}VVÝtm™åû%¥MoÅ OoÅúBºÓaY«ÕÞXg©ØªÛ}ظJÛYñùØ]‘© ÚsÊѽcs¿¤±›˜äd wÏ)Ü=S¸{Æ—BH|R¸Ãجp÷®,Üc´áÞsAdà AàÜ{¼áªÆ=Ÿ¥A2Åt6Öc±ÐeÑïÏ”n@ËDS°Ø€p[*«‹[0Œ‚És|(r+ŒÈ7hÕˆ‡Mmåî­ÔÚÄCUÙ`鎃s˜æ¡Åˆä@JÚŒCûJÀçuQÝcCÝñûÉéäIŽÅ‘YŽÕLs·|³äÌzéÔ¾]AcD:U<‡ËÖfšžÎš*)¨Ã¥HX³}Œ´Ð";§iðÏ”‰¶XÏlĦ3{3Áñ¶tTÉÙ7Ü…CL¿ƒ3ag¸ c'£O¥ën½M07Ý+wiX‹BÓuµþ±AwOl õvÜô¼ ÑÅ+°yRÜòz‰?k­Àû6²ªSÔÒé)ô¡(ˆâ>=bî`4Ðþ1ò[MA ˜ÒäwA?L†]bÿêç2E,ñìQîEðÁÒ4½üÍÌ÷b–&ScŒ]Q¸šwmøcž¤[êü‡F’A)ã©‘éGI¥ÊÒ/Œ³ç¿,ÞÛL¶;6ùX¨ ñu³\wac}Z—Jã›ç™W{#öôž8TDlQ¤÷÷¯þZÁÏ. endstream endobj 2702 0 obj << /Type /ObjStm /N 100 /First 979 /Length 2126 /Filter /FlateDecode >> stream xÚÍZßo7~÷_ÁÇöá¸ÎpHF´Aî ´@䀻~ð9r¢Ö‘ IFÚÿþ¾¡$Dz%ye¯­3Ú’³óã›ÜZª .j Ž4š@.ÖbBt"ÕvšNv9‘ Ååª&TW£2î—RL WYŽpK\-Á®ˆ#Â} CI¢°‹!Àhá&s‚D$¶kÙQÊv-`@¦6[uT$Eû‰ÙÈF@…HMÂÒv-»1$˜“‰Õb{¶!Ih«A9µG {Öl#"*\±Fs†Í“ãm üámDÌŽ‰Ú|’ŠIÕql–F‚”l‹cnÞáà85KwUê‘Â=œ‹=²ã HrÓ‚TÍØÌX«j›£8 p$†”ÌS’œP6‰5–v·"~9ã)$8Ñ6BÈI›,¥´kìRó…d—(·»Å¥ÛÝ Imæ\bsµå@âæe¸5Ihk¤d#p#%5àáSö 3—v7aæZÚµêù€¼HN£ÝDt!Y€e1Â)Ê5`¸W…m¤b€ó –ÑÍb¸Fµ=™ªÓ¬G›®¶LÊ)Û|\`Sq6‚ŽŒˆX*ˆ”a5œÐ&©Hz¶ÅÍx[‘ÕrCñ$˜ÓáWné—aXÎÚ°Ã €`"Æ(‹ŒòÊ+K’+Äm:q%¶ÌC!»‹‰K²b˰¢¨%HF •Ò²%Yj²±Vf!˜gk‚„Œ:>>êÞý}9rÝ‹Édº8ê~šÎ>Œfïê<œtÿê~é~ÆrtrÔ½-Ü{–裨“¼=¡Ôê Ó#k|Šzo¯þ·ÀœÝ¯ãÉŸÝ‹ãã¶B÷âl1žNº·Ý¿ßübÿ÷i±¸œÿÐu_¾|ñŸG‹Óóéì—³éXÅOg¿ÿñÇ#üwÇÂÕì®M¿Ý`j?Öe° Ê> %)‰7,‰}¥ µîøØuo]÷Ï黩ë^ºïÞœOüìó©¿šŒ¿wCÛ‘Õ[Ž‘À1„Ê>Çf\ÎÆ“…¿Í>_-FóŘ¥ˆ'Ê÷Ú®"ž„îµëbú¤f=_] ‡* j­Y!ª=ãf¾“9eOº»,f§“ùùfOà\Œ–@`3LÑcr×C|6;©@1YjëKN>=R‰{±Šž4¿ ªFÆûWåMåuß¼‚ìöÔF ‘­ý”A2‘g|8Jn`áF=£)zd=G¾[Ï‘^ÏDëê]—q´Œ‰c#Q`ϾŠm¹ð¯õˆæËøÒi0Ò|M:+Ð7K:d“±yY“=Öä£Þã§]¬Åv¢ý ì¦òý¶M›OÝDOmIÕ×’zj3G¢}µîÓxxÞ]½d»¼´.eÛñ ئy ßa~xYsXU3Ó Mpàoü×íÐU"C7 º3I?NçŸìA…|A”X=¢¬Ã> y$<Èÿ¡Mˆ¡†¼…ì)6•âÓh3y‰}-IE½Ô¾Ê¥]é‘ۀɫx†èv¢wËBäe×e±îv².Y7BY묞~¨Ò‰ÆŠS4¤„.ÎxmkÎ;³öÓx¾r“|;³= ñI´aÀ$BèíF|MæãÅßCÖ°z*HBHB¦¬kXÁ¯Á)w×ðéx6’΂"… Ïn‘}Õ% …=]w¿ýÙ gl' ÊVì„Aós’o–D* ýÉa+‚öjG©Õç=Gb·¿‘p”²¡|\ ºípd«¶yÍ¥§6+SúZQFZú΃mÞ{*0øY‹Æ» «áá ›t i}VÖg© ©UÀ>JãÈBöB‚¼Á3Z,kÙ™•ãÉùÅÕhr6þR€c… öÃVÈ(l6¼GHtMu Ì4¢Z¾o°…M ¬ ygolÓ¤y&#ÐßìÅBdç Nà3\äPަtdÜTþº›G\´>6%ooÐúi‹VŸ÷Ôf<-öIß4IÓº?rOüÈ|?T÷€DÿÞJ¡€h}í­Dpe~’Þº _9$GË6ö|Œ¥§6 c·CC6“;\{û™·ûÛ€ò¸ìÉånöd}xödôøjÉ{R.è(à=*p:~˜äa¦…4ç²å¦òý'3[µ)¶sã~ÚI±+¨©§v„sbá§ÑÆ®I·bë6mÂÜt›ê|f»–ƒàÖ-l«†Gä{Zq«"káúÊšˆ•5+eÈâçò%Ø ü Kì¢(ìÙÄ­ß¶¸¯ÍöNÓ>­ë°8€=vÙJb¼ãùÞÙs _íÓNž9Ú§9&I ü|†´ Jز±}ƒšNѾ·©ÖŸé¼Aªõ˜ÖƨjuŒŠÕ=/Œ?p ìpI™ÛÇ 1jû¨ƒ ƒ ïŽËÅèãhòá|×Ci¥Cà{›6ÓÔ›üøq¥ endstream endobj 2802 0 obj << /Length 2475 /Filter /FlateDecode >> stream xÚYÝoã¸ß¿"¸}‘5C‰%—¢wÅn®ÅfÓö¡ÛY¢m]dÑ'Êñå¿ï ‡ú ³E€ˆâŒ†ÃùøÍæ7‡~ó·7??¼¹ý¤79Ëe$oö7!çLÄò& C&E~óPÝü's¹ùïÃ/·d8cQÈ¢D€ ËtntÏΪ;]zezÖ viküî wË­ÖÚ .¬„m”¤ 96aèn³Yœt¥ƒc\ëþ8ÍvE¯;ón³#èV¥,Z78jm}øT4Yt›0 —“j{Ú3}¢8cœGÆvª/ˆk¡u$XšÊéz¬K§U©Õ~%ÁgQÖ°„Ó»×DGÑÌgžðÝ3ÊÆ­‡ /»Ù‚Áó$!©H yP\švÒEÓÀ€çY¸èkÝ"…Umú®ÞmÀ œ54­ÐŒ”êÜÓwý±è‰¢÷ôìŠHuÛ«Îq⪢*Ü« ´ Ìä2øGëHÖΖ¹1𤠷¢µÝ_îŠ ‰Ð--øj7@Yï†Ø¬Êóïô©uLÆQ æ^áµ1Ds>!‹sˆå1ªïëöà‰‘Æåèú¿Þ=Üÿó½'DDÌ2™|d?ël–‹Ì"Y”ÆDÿi•Ƴl,Y’%cTvªx4¾¸ÌY–eÛ;Ÿ –gctï;õ»GJÃ(ùš”p`(uãøgA¾%óì¹ãŒ‡ž‚ú‹Û0Hþ²fÐZ6Ïi3µqè 'ë(¾tg¨‹SàËÌ`Â%FC4WÓ`d0 L_—ôj#ŸmæêþÂMô Y]¥™ª Ïษ[·0¾vèµÓØcÙÅ)]æ÷*ôÖÔÕ\Õ—[Œ¿ Ü"¨–³‚Âô¥÷•€”% ß`ªMÙšæ¬Êzÿì&.[A¬Ý ÷ÃÀe°+:'®nWß-p$š(LÿÎqœô0𧦇 Zét —ȇ% §ZùIäw~ÄŠcé‚çíŽPÊž…£/°s&S‚)ºN™³n+ãHz¥ì͉¤É(_¶£é¼>·¢ˆ#WˆbL#Pª>©- ¡ Àˆ.Nq¢S{Õ©¶T·íÅ&}ì"àž½>›°¹ð™‘nƒ)†àâíÙ–§ÒdåW–ÃÓ@,W4iÛFx’õ€jÛM×3Çà#òp,}œÐã`{¨ º½­Š®"¶™ÊQž­n·3÷âJÄç\ ß;@6%‡Øs ïük{”¢_BŠ ç„/+cnW­Íw`Ö¥ÅÎÎ}>¬¶v´©•íý‚u(ˆT×b/c*Õšº&"hRŸ‰D•-*[¶L¤øJ]æâÈtÒÁ)ÛRÁÌ,¢+·ˆã¥p„­š½gsxqH¼qsÒɃu;u†Ü-¦†Óæè¢ß\ä¾Ç¢¯õßu¯–@''(\d)N¼pÌù[4lý—ÂæŽ³ß Ž³@::¿±û›c²ÛßÖgЩEñ7.¶q [jÀÀÂGiyu×£r£±-œ5DCÝ´œue/$BW!›qdÕ¨“»ÀŽ rŽZpÈ$q×ÄÕÅkû²^ÂéJNg•æZùN`)t2Ét^šà1Ò;0ßOFLFsùw%²Gïð/¶xórA™³Tdž#o(cK± ´éއ'A£K¬[¡¥hn¼÷á‰ÕÕ¨ï8Ì…QÂò|Tæn¢ ·ÈùøÁ~ЬR¶ ÂݼsùÜ:Ýù*`Û^ÄM}å@JÁÒpòNs>z/š@©xâòŸÑÏ“¯>~ò…‚`œ“»™ÙŠ m­z÷©wЇ›-{@"ÇØ#ïEÆãaÉÝñ౉’¹#ÀœÏÝ-¾pÛÉ/vÈ¿®Ë;¢Emz™ÃaèÝa2»#JøîˆÂ\°l2÷ÇOßyG\r~EÅ’ÉÔÞÆñXü°žöGÝÙÔ2r îW‚<ÄKÆ ¼ž’˜o2°D³?l¡´³m$4ª<ö»â2l\Ƴ×-mÃâC8ÎÙT\½?ø¬ÈR¦£z‡©iüh—§ri»÷§sóJнL9P,$e<3@+ëíÛ·øFS^Ûdâk£4èjóèFX m-³Ÿ‡g›|8eP»ñí©èêb[‘ÀZ‰û­Â¦¹~ÜÒSaݱÝÕIæÒ©»îïxç­ïz8[¸·¼µêàÞÊú®œh¼M4X¥¸ƒlW†Ú€šD—aº²C[Ó§­ÚïÑ)4G?˜xôï”Yê>GåŸk·ôS½Òa¾þZ’ÏïÞü‚Œ endstream endobj 2810 0 obj << /Length 1100 /Filter /FlateDecode >> stream xÚÕWKoã6¾ûWÙCÔbDQÔ#¨-(úŽ÷´Ýƒ,Ñ1»’èPTâôÐßÞ¡HÙ–-;5´]ˆ(j83ß|3ñç<8žóíèëÙèfb'AIè‡Îlá`ÏC$c’ę巫U!’ezýqöÝÍ”F;ò$ Q”$ ­•ÄI¤…Fž5p3%ĉA: ´´K¢¸wý6‰9ôîݵK=ïêG¡ÌB6Õ­V*\ì¡„& •\1Y6*U\TfC±ÚžýÍ£[§™‚R¢ÏJVé/Ý]… D‡¯c³Ý*šÌ~}÷š6ûÉÇ(ÁѾ·EL,¬»KvHÎk%ù¼iwN… Oë%ËÍz)$ÿCT*-Ì{Á+v»gIÌk&ŸºOiѰ#>mcYkÏjųmh¹õs.ÔÒŠ§¼¨…gãî¼H³Of™5àÇíÆB•§ÒzU H2‹!gUÍÕËÖ2ø'$g: ÉL²*c7US‡áû>u1Øué“rÂÂËT±·¢R§…fSȦ\ñœO2½í üÅ.’6Ãâ=$%_³Üe‹Ë”ÍìRäŠg¾áêYl¿ÊT YoœÎkQ4¾¨&·oÀ’EÙÌ  `‹ò…¥òX¤Ê èÕ–^¸ûÔ-À+:1?­]È›Œ_lí»Péþ2².Ow‘tµ’bÝR~ÌBͪ˵8öIK–Q`M,„ì’”åMÆç¼ÐõWLN W{Þ9)~«ÆÔÇv$qN•^%ÔA‡ÒÄ*”,5«¦‚<=ß5^w¾È8ʵL«[éÙÝi©ÑxÏSkÞxí¶=÷(]ƒÍ`Î ÃýÁ~Z¼4ß\:¦ƒ-#êßµwU›´»Wnwdt7=Ž0œô¼H¢0r²rôá£çäð t#’ÄÎs+Y:Œ Q@`]8÷£_63Àþ³:`,Ø: a€&(¢äpèØ™'BÚ;è£$ÆÝôñs›Ï>õ®~`j)r³nóT/.¯}ª[Ð¥yýiþ{Û.C¦¢48s‹†!¢Øøù «3ÉWÝÅp¡½ êÖÅ1 mùN›*ÓGkC ó\mÀ ̼,Ì3+Òº6\?ö„ o¸ ˆj*~10ëŠÉ&Øãe°á÷T•Ë‹Á©Åô ‰ãarJ‘‹i€ÃºL†®›­mz|Ô;“éWßßßÙ-„P¯GèQÿör9 È‡ ˆãÓÐ!K‚À"?G亨†h×å‰_¡°{äs¦]×þ[€?ŸùÝ ±ên`ø ¿fTa‡ ^® VÂËÿ5òô5BÿHtZ¸ÛÿÙQD endstream endobj 2826 0 obj << /Length 1803 /Filter /FlateDecode >> stream xÚÅXKoã6¾çWÙ‹ÆŒHIUlŠnÛMÑEQ`“´=t{ %ÚÖV–¼ålzèoïCY(Ù$=‡Èá<¾~´7Û̼Ù'ßÝœœ_†Ñ,&1g|v³žQÏ#~Àg¥„ûñì&ý1§±Xüyóîü’ÓÞR?„…1²‹öy©Iµ“få‰çé¼·eÙîY²&}Üù¦ZPo¾ivªÐõ`û¸=¿ôý¾²b¶¤‚ľ@AŸÇg÷-‹8‰kµ•Åbél^®>ªD›>—kœKrY×hðà¸($L8 §`+iŠìWÎ "üãYg²8¡Œ Dí¶S’ü˜ˆv’–>çe5!‘FD°p r¯t9©¥GCÈbŠp~³UhþNém™¢K²çŠR97ß'AÄÁï”Äaˆ>x¡w§44t±d¡7Ïvû\™pª'Ö ²í ¿k7XcûÃiè&†ßä»Ý”M!#¾´K§=ä‘HÄC§¾ìt2BÕ@æÒ‡0M9aÔ!úÓ'“ OGc^n²DæàëˆÎu‰m½WI¶¾ÃÁí¢¢*3`s‰sE &¸MïßckÏÅíÛ²ÉSì¯nL+¹ áü¶Ài7mÃT­MÊ&w²©xÃÈ_¾ùùúí„Y@b·æ`<îEêQ"„p^dÎñ„<Ý…%ºÇÀIB=m=!N»AŠ»ÕT!(à¥e–Oןq‘l뎫—Æ©ec¢ãq“6^š(ìì«2m•B®Q4ÿiÓè|س+S•ã\Zª' J˜JÊt+p*œv‡_̾J겪Mi ±‘Ø®ÃyªÖfnݺ) 8Ñäô(¤n‹ây%ÓÌŒE~7-@ƒçd÷ {6¡¡µv™N­a±¬Òìoåö€6YÚȼÆaæZp1ë¥ÖI>œNº?&8$ñ±Ìa¢]Ü\ý:…Â0 QöŠç@7(:ºg€-oPóH(†É\µªÔ>—I[ÑVwlØ´¹hú&MëüÒ+tx6tF~±Ò_È1(½‚bÃD+:0¦ëÐQwŽˆ`"rˆ0Ÿ$6-"L¿ª-"†ÓQk„pFôu!zFLKn ¨•Ç[9ʃÇ4^0:,,Ëe ˆ¹ƒ›à¨??jÄF=Icøn0Ì\;‚[@€›Ï( º;ÿ¹psº!´ ^16–Ãà,ÿÞÆÒT¸~qü¥ÔêY•QLá’ºhv+[§{€ªu“fªÆ™Ãqê`Œ Æðu°—wøy¥’rçšfk&ƒ¯Ä^kf¹^«Ò¡6mÔðS‡pðqÞ[èª9ZXƒKMÁ‚«óZWJ'۬،¼oÔÔÇéT¥Yâ¾ U¥ È]”ÛËÛîî°Š»²jú€<À–c/`yÄ®2—~m©Ú nºß&nùÚ¦rkÐo ¨UÉV¯dÓ^Âæ˜‰„ŠCâw—öëÛÃê[à›‚º; 7$eµùf"»(pаKÅ3TŸD0áÍ*ÐÞu¯î± sÙÙÜVë}ýõùùíí-iOlÝÜÿë å1ïQ›{/ø8 ‡it¥ÖÊÂZ‰ª_’Pc_ž)4Chb6·W§°ÎgõP»%‡/ß—0D¡Äؾ”…ÌïjË7`—eðé ›ÛLoñƒãˆ¸ÉRy3 ØûKnZøñ°_6áØèœsÒ;xàG²ÕÈd>ÖD·nQ×Zê¬ÖHˆ ”®Ëµ¾…ràGs5Œ("`ÿè±5Æ>ŸÛ×hSÏ7®;ÃóéÆx ÈœF¨ÇÆØJËÌÀèTp?:ÿX×äàùœdž?™­ðz Âp˜²×Êeù›¼.xÃý®{õð#Ù¥°«Ÿ@^4^| Æ›±ŽIBßr\—‚OQ‚‡$ŽŽ1êÈçsUpåE*G‘ŽÚ>_…–÷T°/eÃRž¬‹ðI«0·ù tq$À¥’GxìéEŸ<í¢ûYš·ûã?à ^q-΃#Ò"îýöêÕ+SY¡Êî_ Âᵋ*«ÿr=Hù²Æ¾å{v[YâöP¸lÕ2SµÑî8:È*“m%µ³¶;œ§Rãª×KlUmô0ɽS²n*uqzuuzæÍ.ô¾¬Ýh£BmÜ(É.’î[ £îœ"/àY%›öR5šoŒ©ùaéÖÜ"-wKµ^ã!fý„!•ª‡†@Ðí/.™Óá”ù¢"È›¬,U3št YdΩTkzþÞ;"zÈÖ]öY¥S¦Ú.^26«ºÌ›#F@ Õûf•ÃÅ`)pâNÁÅ€kzÂñôßœ rÜÒ lþiõÌ[d}Õéð@î¥ÌÛ›“°|ë endstream endobj 2840 0 obj << /Length 1788 /Filter /FlateDecode >> stream xÚÍXKsÛ6¾ëWp”ƒ¥ ø>¤Ýi§¶±sJ2SŠ„%6©TdýûîâA4Ëê´“ÑÀr±Â~»ß.@ê¬êü4ùánòú&dNLâÐ »{‡QJ~աć{öáÿòc¢w’M¥DÒG”¨iWÜ@d7öÍâæ3Gâ®,«ªãÿÂåp·‡ñšBIÄEjŸÙóEJ;zNI`,"a÷kÞ/ÎhØÝ©jØø> stream xÚËrã¸ñî¯Py‘ª,>SëT&›™­l%—'{ÈæIÅŠTHÊZý}ºÑ ø&žÝ‹Õý~æ‹—_üp÷—ç»ÇqºÈYžÈdñ¼_Î™Š’E*KT¾xÞ-þ½”œ¯þóüããÇDŒP•ŒXœ d‘Neݱæ¨Ù¹*XkÊc½3%»ãްJFç×=µLaQ™¿šNe;98"0‘5[¬EÆr™ÒÑçƒY­EΗûsµíŠº¢¯­vÀÆmŸ[³#¨«éw×蕈—·ÚÓ1mWu×cƒRfDwÊe£=Õ~©Þüø­ûØ;iJݶdM¥ÆÖŒc‹¨·æ}М÷tpjVìÏ1ÄX¬£”3žE`Ÿ„IÚùé`¬\y¯_>U()_Õ¶nNuú·´¯éçht{n R+_ž³-ZOêgóË¡ØpêšbÛ•W"ÝžŒþRT/n³pô£KD!^¨Ëã˜Tðœe¬,gü-Žž7pH3ŽÀÍz`º-öWúØ× ri…¤µÒ¬d¼|Å@€Àði‡ŸÖ€–æ`@Ku0 nês¹ 騢؇]ÅVë8Wä¢ÛÐH3ù<Yžîú×P0D9ˆ [¨$Cq+bhWQ4’¿Ðy©?Fù/JY–g=³œÓD’’Ej,|Ñ:!Úî¼»ŒP©8žÀ2WLÅÂÙ-¡Ó·®V<­–q‰lfµ¢ú6«Y²šÌÕù¾Ðjø;²šE²¡•ÝjŠeÒ3;Öa£Ö*½±’uVCÐZ­¨ÆV‹Yž«i´DÚÀ/M(Ør¨ÿbf6£ƒv‹2équµ ЃËtNoW„)&É8¤.E‰‰Æ…\Âä¼Ð9DL"zË÷Qp‚P8"XZ;[‰œ¥\Nm…r^Äoª¢Z‡[#ƒ¢1#• «KWŒŽ\WI ÕB)]¾/;ÓTúvß§b¹V…¬†b«š~ªóÑ@%„W$¥Ë³;HªÃºnV"[¾jÕ¼1+D¨G8eeæýŠMRªt$|‰p¦X Ûöpe,|R+0M(ØD”1•DßTÚbÉDê ô&4z]íZ'P Ÿp–LcY(+P7JÇal)Š›àI48Ž6”ˆY’ÝÖ7 ªŽ|þ–+"á]áMÛÝ)}^À§Àüv@ óÎV³àV I£—…Z",½ÜÚO¤š“Ô×ÌëTÐÀ)SðÒCŸÀ¢­)N‘¶A¤|&®h;Äò‹©LC&®Ÿ[˜Š<éFMG oYÀ`´¬;H4¦ôéäæ§`Ñzº¿%ûsjC!ãF<D]uM]–V0¥"g0c=Ú`~à"*¿èL+¡´úx*1XíÁš~‡aQhÈ€egŠ[>#GƒònqbSªç$ötв~Ao î`›65,81dC¨¦IY”Ê7û]–z"_31fµO}Š«tþ3ô šƒ1Ï[2Š-$ã·FÑ+³(‹ûn‚§ô—À!¶õÑAp»1®\¸ƒ%bR/>¢—¨¯dK{ýp…ª¹]Æp<8x< Ö¨7ÃfQ­ Mxp*©Ž:jÚûDˆI8r6 g?s‘#F7QJˆM`ù@ ’Z,°s-6+µ}c3¡däÁýÃÀ®}Ú"&g> stream xÚÍXKÛ6¾ûW›Cl`ÍÔ»€i› Z´h›uzIs%ÊV"‰Ž$g7ÿ¾3|È’WÙµ(Pø r8$çñ̓¦ÎÖ¡ÎÛÙëÙ«›€91‰8ëÜa”× œ1¸±³Îœó});òµÈIS%‹ë__Ýøá`$Œc8QqsÊiFÍ%¯n\׉€;ð{醑b_º@ä\ozñâÅbéS:O²LZQŠ´+d­§ù¡Ì:i¾;¡â¾h»¢Þê Œ2ÀýKFIìù‡úÎæ×ý}«õ»÷oÌ4•åêjSÄð1{g$fቤ꒧E½+ºýôË21+D±ººKÊì¡ Ñ.ÿž ³7ëÙ—ƒ­Ôa=NüÀ%Q:i5ûð‘:,ÂéÄ#çN±VŽP =Æ¥s;û«ÇÅéW 2#ÈxÌñ½€D4˜ãg?ÚÌI1‹Ê?•¥¸Oç¿‹n'3=Îe£/ŒÎáÔóçxòKMþcó ¬Ú>¢¿ë‘€^¤¿ÒÓ&‚ΧaÔàìgѦM±WNªyTw„%ƒ€²ÛúVSúJ£˜žäú›–IÛêûG QhMye¬5‘ Ô{,›Õ;°¡¡ñ{ëê¯Õ^j¯À}T4e?æ?ì1órÂÞT£œ8: `ñc-™ï3@dûÁ8ïMn‘|nWW·©ìº+CÌñeuóú·ÛAÖ²ü²ÉDs$yè³LÔmÑ}»VI€{ .ú~_ßß5Eµ¢}nüth»•MKå]¶JQ8~M1+2!ÄæˆSW{\ß Tap~dRŽØËâq7Œ¼ˆÉà|–r[¤I ÷ÆL)ßv/Ò"ÿ¦'w;PNI <ü ê´X*b®Ô(À<ùT™"âù="±«šˆCÞcÜ®’æÊ}#7ɦ(!Mi‚ÎYFv'e¦Ã"(L`ˆQ Û‹c*íl*·Z_d"Ç”J“ Š©Ç„»T¥Û uL¨óD$RF?‰DHÍç»Pªž@ùÓ×.i’´³°j!cT)ìICëÝ;$ÜÙ7ùÉÆÜ6Ieð™4Ϧ.Eÿ+½´H¦ëIy¨³SŽg©j ístu)êŠS««K]ŸfuʼnN¥¸Q늌¨ëh 5±¤¤ÓLIc+iG;Þû®•è_Ã~`gkgo"¹iEó· ƒë-Bÿï_n4åë‚ûóžQgFŸvˆq«¨Še×$u»ykÃÔî’LŒÝÚˆìéxº+:zË4BÏB' Fè„iNjt"­G'3ÅOm4èF¥Æpí3šE4µ0—X·€çm•t†u¸wÂkYmœÎú¨=˜œX¼=ì4|{ÙZWö¼r^n8ϵø¢¾ÌW6´°!=ßKZBáJÌûg(äâ‘öÐ(ñMñáÆ°h°àÅÝ­^µ[6æp”©Rƒ-y#+C¶—ö{… ¤%EiŽÎ5E$éî|ŸmD®BUÓ¾×N\`l Þå6Ö}þùV†>`“b †¡îÒÐ$,ÓÒAKHMKHMKHC›«‚-!¬´„ô–0p¡,÷]ÆÑî†êϨc§ØØ©.Ã…’ñ“‡’¶Ù±& HÝþß2>£ W!cƒ&6ÈŸ•Öàyöú|®“yÚ©Zâë¾éÇ¢ƒDå, íp¨ŠÎpMŸÔtºÇÄ¥ÞB­^<õòà¦ïä±QaƘÌ“=(ElTŠZMJêl¸·lφ ÖœSËNüò1(¦ßìŽ>Á]e™Šæ)·šèMÆõ-d‹pC «mTl¬c‹>H µý³Çä€çåZxÉ_PÍ+AuRÇX=éžì÷Ízö/"ﶨ endstream endobj 2873 0 obj << /Length 2136 /Filter /FlateDecode >> stream xÚXK“Û6¾Ï¯P•‘*>S™ÔÚ;•r°'ÙÃz”Jôð!äÈÊ!¿=Ýh"5Ï&¥*¡ 4èÇ×h€/ö ¾øéæÍýÍí;?\Ä,d°¸Ï‚s¦¼` Á/îÓÅ—’ËÕÿî¹}ˆ« <‚Ër,ê–=ækÊyo¸[ä£Išµ‘!t)šû£n“¼0“i£é“íE‹ˆXÑÌûƒ^m¤Œ–YWíÚ¼®ð+´›14ÐöinÚ&ß®$_vÎ:£QìD}ä>ÿ þÄï?¿#žÄ‰2yÙI«SúìªT7Ä‘yÔðWíÜj4æÒç¯÷MR2TÛŸñÈ'-^7+-÷]©«Ö¡•)íÌ^gém£“Ç6±ŒYE=ÛzN‹#Ù3dþ<#E)ý—¤ˆžaWsB€Çó.B6ÒçˤJg¤IÁ"Øõ¶nЪO%*ÉT÷lI£Iæ11Æ:hëShÛÚµàz )ø±hÑ`Dùk²H0 j£¿®£xbjÉ< –¼,›ÕÍe}Ú$„c›W{r>„~̸TÏÇÀœÍ“|r9’ÅB žI`CŠóåVSÛYK!…²-ÊÙÈ8†8þò´à¥3%Ôìtàt’²&qŠâbǶ[£›Ç•ô— šž·.Ý*‡~Ç£E ¬‡€¤X«l"Xì;›8Púb¼>*¶ÖÄ‘[Àa]'–mnÈX7è”ÁºB.ßœIˆÑÖ7ÄÒˆ¹"a ©WtΣɶFƒ=âŸÛ_S[W®c6]VDîòÝCqÀ?R²ÑåTV/M]"‘±‡b l_Z˜å:†šÑ’–FÊ|pd¡“Ô ª{67ŸŒZ<Ð×t=à›±< ï£ánA;sÐéD»ÀEj ¬íaw6FF¡3×…i·=ó]R€HÎK%ôyå ÓQp̹3é…{L(9FÎg\ÌÀÇ ™’|ú@0]† ~ä\îrç5È{Æc×k£ñèè”~žŽ,Ïïaƒ^O©gtô@輣αºðiWöJÁVty7Ðô“PlÓ¢9©'M¬‹,s‘WQÀ£åÏ ·ÏïŠ"n§ujhúÀKxž‰iDšsp^æízðzum´¡©ƒÈ>÷G†k›¦F;œœ©ë¼êA;Í÷nQÔï…ƒv.ÉJ£ƒÕ];w…Ì“0p¥äŠ”Ý´æ¨wyvvvo@€X:@f=áƒå6iœ8̸“yCÑ÷[,EG!eÝSãa1‚š.œºTWf»r½å¨ƒoÞ¾TíðÑM¥1ÅÃ$¨‹LÞžiP›6/ÁÓôeÏ›xµã}’o”Í¥ŽØºy¦ƒÐËK\ê$U$ ­³¢ÅØ„Ê)‡°Q6ËÏä.SÖuK áòô±Ñ'qiÓ8F&âz÷” àÄó–¿Ö­¦YÎwãyc‹!Ë`1¼X ¿hMñüšs€´QªÐH UÖ¨ŠN„M .ç¡êQ)Ç™§íH `5›À§ ]R’„î=Tª­xlÀ§ŽÇ<¹,òŒJ@Õ{) ‹S:Wg†LzêRŽàmE£5Û³¹2v£”bSKÁ:w;œ&×½7wN@-†âvÈ÷× ´lö!õz壗uƒK˜~¿yëùÏ +ƒ"Û¯‹}ü}@Õ»C»MºþÀÅUfT}¦.ïOÛ•pnŽMýIïZV7ûæ .=æ+5¹Üp{ ä¶ÀväÓ{rk8´íÑ|w{{:X¿òjƒ™ý²ü×êoáƒ8¿è£ü©ÞëLÛHÁëÚ?¹u^›ÚãX­x<ÏÄr‰GkHI*w9 €‘×UÚí^* —¨ú&©’âl°|ÃY¶Ô†¡÷ÔœrPs“,ò°÷˜ì’½vÊÃf ¬>.÷Á_îu×TX œ¾ðîù&0ø€iÎôõ8æCµ'˜ —z&.ÂþW·Æ‰/&þWÁŒŒØ¾\\ÊšÎ⣔±ùc[pyZicÝ ÎD¨ðö“1ì‘«€å\ÍÅŠð%UkãXù Ýáøº0õl¨ü_·Ë«z̳¯F7S wѧ÷Éé}³/v6ÛÎØŸtâ!Fo4Oë5”?õqhfQ%BÅÂðÊRo¿$å±xOOñ;Œ@bà æ Á<îAèÕ«W˜ @§úx&*MÚ„(ºX"õ’¹››ú„×NìÓ-µIÁˆ rÏæZÛµcMj…b´ ú—þf°ä…Å   ;š‘"Ñ×d€Ñ|æ{xÕ·øñE˜ÝÜ÷›A_¶%ýR«êÐí*¢+[e¹Qæ_tºÑY†t]˜h ²16plgêb¨F›i0y^`7ãA¡ñ‚f<çkêì aˆåŽ:þ¤¦ÐÕŽ|K]§|GÄ·ÔÁ…b ÙkÔ€k²z2 ª<3™•Ð~2U[ÓÆÈüõÇ곦‚b )$ÜÛÞ`›ä'‘}~ðÝ{‰íÅTýÇÓ¹}Öf“!¨›Íœ…ûüZ;Ÿ5]õÝ# ÕLzÐà£õ°õ»û÷¿½í?Á®wB*ol+2‰üšuèö6g¬…mpRÉٹ瞿¥:JGp/:*IûmAœJÓË•e9%.EЫ‰Mtùé™ñáÑÙÆ)fßP¶x—|q§NÒuu8Ú}UXÄ›;£?#¯XK&×Û3rø£YIú©3í`þóv ηUŠ‚ÆÑòléøöþæ/‰î%z endstream endobj 2887 0 obj << /Length 1808 /Filter /FlateDecode >> stream xÚíYIoÜ6¾Ï¯’ƒg€ ÃE¢¤C â t‰ÛK ²Ä+ÕH®;ɯïã&‘²ìާEs æ .O|ß[øQƒƒ}€ƒïW//VÏ_s¤(å”»€`ŒXȃ˜ÄY\Á»õu+Š2ïQ{È6.Þ<ÅΖr§)(TÂ3)´Âæç«¿Vš8 £zG($A~X½û€ƒæÞ0“&Á­’<!l ´«àíê—QÝü©L`Ì5`ÄA9‚qK&ŒËÁüÈ[KQškËÏí†ÅkµR›-ðú÷ !dUƒèôÀ®iuãlC£5è?ÓÝŸ.?мïÔÛ–19¢üQ (c#¾à/N8êm¿]Þ–×}ÙÔž±“ÑžIlI/2X]\‰Í–ºÞ u®”¨^Þ®‡^šÍ¨„ENÞHã*Ï`€Æ ݶ¢»nꢬ÷Z¦ë³ºÈZ³B´mÓNÒõ{Œi!êܼ»¬{Ñ­V –K{À†-“F‘ç[µQ‰¼·tæ¤ÆxEwvú™WY×éÈö#)â(ƒá øöÉBüÓ¥8¶RÈH¸NÚ’4E ‰ƒ-…TÁÆK¿uÙ^,ú箿ümYQ­èéÓÍ6Âxý–éçAôWM¡ÛÊpÙplŒ½„'!ŠâÑȳB7%Æàk™0|HÉ–°…)_tÝ{aí™gz·µ¸=4EgzÊ¡¹¸¶³}6PT‰QY‰}v8d³±¬(>}÷úÅoÏŸ©¨aàƒˆøïW FùC×Ûj¨(÷eoõõmVw»q íÞNÜäÍ· !õÖ­}-e2–¾ŠÃPµ¤ˆÂÆ’äaŸ…)·jÈø¿q™ë +ÞåY%¦ù/_ÝYó´bã:'k_´ñ6DmŠûc³Öovy…%†ê“Pë ¬v+Øq,&ˆ%ÿ\Àb8tÆñ·P 1ñ®©'‹\óJá}pl) *C‹#ŒƒMI£Î¸¬(¸vC¢5`£j=%ký„ôÊú¶ü¤ÇúFu×"/wŸÍ <ð´{Š ;=nȶ'Ú¬·šçò;;q{UæWKg•Ö.sÎOÙõ4A¿»j†ÊÌ]š%.ùPe°É3ê‡03¼}VVÝÙÃð<ÌÇD=õªÙ—¹%\Ê’hTÞ^AE­žQ&ËÑéUªkM”2—£H^ …0£ ¦ÖãÖtÉ%\T¹‹jz¨¦‘*Lïƒ;!¸¹µÎ Âyp‡(áéÝÛ0dëvZõP+$‹…ä+˜OÛr,WÝNo/ú‚S‚Y}Ö§aq ¤^Ð@q´q¢!‘­1’š ŸNèÉ5M`?eDV5îò$¹«ÇGs7^~F¡ÎÅÈ 5¨ÍŠ ÚKçé5𯅦ÞEVH[ £m'ërfµG#R¡!®Š†Ê Ÿ.çl i·K ky$¸;’¬¾®dŒ3¼n…Ý¡¨{=ª*€l(?tº-·Í¹Ÿgr†pzõõp³T_C†CPžÁ°~( Ú}`›¿Þ=ƒRÄhâ2ƒÃÍCþó)‚:&•A’ˆ«†ÉP¦ÃQE0@ŒBØ£‡¢•&;®­°ñlã23%> stream xÚ­ZÝã¶¿¿ÂPD‹žy")‰Š{¸6¹äŠ"É´ˆÖ¦wÕÊ’+ɻ٢èßÞ)‘2woïøA"MÉùøÍ•nn7éæ›W¼~õæ}®6« Ql®ž¦LfÅFqÎ Ym®÷›Ÿ‘fW»þó›÷÷†Ê¢`i•!3è4è}³›Øp¬qð«Ô®ážoÞKéÍÞʬ4Ó·BA§$"ûæ¶™Æ`þjƒª`U)Ü¢ýijú®n¯¶RIÓMúŠçÉ­°C%SOŒ'½k¶óNSow>Þ¸‘ýúö0ðèèÚz§ÇÔÃ]³»[: ¸ò· Ûëª<§ z<·p¢­ÈÓd¼ëÏížÞo4=‡þÜíõž­ÎòÊzË ¢: u7>MURW¼LnÏGÝMГ¥öp•Ï'FùÛáìp$í ޶I¬¨œ3Ìðû+‘'u{&.Í.ä’=²o°c-ªLn-È6U%?§yªÙ-{MJ°¦T,Ï3wNÚÕ[ý뉆,É*Vré†þhW2µ¦ëvì-CáÇÊÍ€|¥×ï¿yµùÉŒŠ0hÁ9ƒVEòá@äÎáåÏi*ôþ5ô•yÒõtÇ»+‘&[ÃŽ-—ŠÉB…ºs¬‰ï¨&U¡óøÉºR·ŸeQ¸œ¯*vÖ{í”ø‘žFüø²(‹Ñ÷…v÷ êCDŠBæ,/VbŒˆP€ËÒ {ž2,“2‚¥)§)÷»þþå¼hûÛfgX‘Fóñ9Û6î4œ}°# Reµ~hên§·W<ÙõW<›{¡ÿ ¡ ã¡ù•æ#yt ߘ°éSi|p1ÊÂŒžÎCçä€5Ël¯WæNͺv)"ž &W–5ïßý凯cÊX•nÆsRyÆD–/êÊûeµÌ_k*³;+ü¥ªŒ C¬¨øJOuÓŽO8¬Ð3–°É’)©,ÐÓô¸:G\£§þ×¹n·ÀPÔAïŒÍ@÷±ßë6_œ§,+åʇ¢xú›hóÆ#\F.¤ó,’­]ŠÄŠ['ðd¤<œ@´FĹÇ}롾ՆøV@_žvýÑNlº¥QOôÒ,ZêʲXéßtÞ7Úì"»öL0šOsG1OŽÀöm (ó86 ,@â2¹¾3‡ÃÇÕ𱦽eI½þ+8eFŽd§O“ÛF0<‹È'bIFZ‹¡4L;×Súî¤dE©6‚†I§AÜ’¶à?8àº7ìçTˆ˜{‚ d†³Ù‚Ý•bc³îI`úéJ%€™ûþêþý´î ΔÊ?Y÷ðܪ‡+Q[ñ„‚ýOªŽUG¢¼°)™Ã G³<åsw•''´ý‰àY¦irêOçÖ:Ll›€ž‹ZVË ý‘º]—Zçe†¢žGçbcQijÅyr ÒÔU:¦^õ8J¡Âfœ¼JfqÚ55I˜Ô5êV§Š!¸ k(™ ˆQoè°†‚tìû š*'ÎVLÏŠXD¡þ/cÉg­yÂPÔâÚÁFŠˆî¡ È˜HV*ù” àà.Gz'A6Ý-5û%ذŒô2k¨§~£öSQWê“íG±2/ÖtÁ1ÉÁ1¨p¬(gÄx¼$Q1‘Îæý6B䨖ˆøÇ«-Þ‘-sÉ$L´ã^c(Ï1ô!ý^•’‰%”û1FN0®f¾×6–%g©à¡zuýd Ðù#鼩}µá“´Ãù§ƒø ç ê2KÂPe–à3H^j-oS›7 J‹ù¬1æ*p.òugô!4<ò®'‹Ä¸z×P ÷Y§‡|(]ŽoÈ>sl¯"÷ýš’ß~°âƒ D”Y(>è©L0Âì‡ýøš,˦ ΙŠg\Œµ®b¤¡c¯Ðä˜8ì@æ5f36 ÷ËÀøŒjxƒ~éLžÄbq@†j‰Dw}{>v£mDY9…†-7=šÖÈdlð¬ÏS•ZÀb£ó%èüž|ziò»Xæ³Lð™`±$ÛÖ ]“µà Às¬\R‘¬JËu8feùö©úÊØÂS#W f0«ƒ#¢Î‘"ÂI‹Üd×Ea¦¨ç/;b)C”Á%cè ŠPe¿‘CP¼Œ;„2ô’ /æMc‘ D+ùË´6Fke^.µ6W "‹CÉ™½d\(ŽtVZ[‰H¦ŽÏŽu1ïHI ø´\ðÕþ……,8ÕU´ï®”pm’$6¶‹,ex†_ ôwä‚î`=ï aqÔ 36‰h =önÚÆÃòV,×î|¬£p‰o€­`ED‘ªïí–FÓk"Ñæ¶¡;™bvp8õV[‚¶¸90¡_ÕsëÓièOàÜÌÆLüÑMC=Ú*oSÆ,~YøåIf%çbDZfç®y.Í8H—2¨»NB8†M™K ‘‘QÅ~!â¤ù¼§ùÚ³›ÎÅIÅA³L­]µQ¾ºl=ðÆÂf[KÍ"`±«Ô½4/ÉKÏDáům\Dç÷M»G«À*ö=‘/<@l¨½K`Í®>j*|!/Rð&ê"äZ2ÖQ»{½ÜTÚí]T[߸R᜷ú支¢ØXJÜŸ'0KFŽçë_ëã©ucç•A¤æ»kí±Àe±ÙFŠuŠšI[ò|s¶£—Û¯ªé™´I,"m¡L }ö öŽ\®n³MM÷rø¶D·ØB×ò}Ój‹ ØejÑf ³«‰”›š Dt7ˆÄç)z ¨NŠäž/m˜UEr}gÿYíz\f¤¦WÚ ­B´ÅÂZ}âüØà©¦pW”Á—álßS{lþí6Bf$üÊ´0ÛÖf¡LéA΋Ðn/²fˆƒ;lŸÏ¥F#íí…ñ[Ð77·²´L2¯¤ø2œí›(Cz°Ïù¦Í[¯¦‡—ÞÑéÕÜZDD½‘Žœî/Œ!øµ&ÿ~xá 5²Ø}oÎÔR>~±°ýõç b¢ä‹x™B¤ÃcVÏèMÖªˆoS^$Ú•ë—¶lžÍóOóX‚ ú—u|ö“ð©(# ?«îÅRÀ…cÔô2»{-aC+e•lU·^G¨,9žÛ©؋ĢEÊDî]¢HûÝ– ÂQ¼pö"M-ö‰Tñh€Ì° ¿Y¦.pRùAg ™ÖÂTºÝЏ%¼&õâMï3%\sIP±UÛ‰,Wq–«y½ÿ:=ïÜ×ÿ™½‰û%¬Âù³™_Òzrº•÷Ñ” ?‘àY<#`ÂnzûÅ·úá‹X­(¸Mˆ]3åæ{¼4¤öÕ‡wßÄȾ- ðbrß¾ûþ%›I«¤}À¹Y¶#û×ï¢TaÕê¦ÛÜþ~èì÷Q'—„fY÷QŒò¿G3z‡ù8™ „B¬2tY½ä |µû`ÀêöH]6x\›BtµÚK}ímážÖÂ3§]†ÂÑSÛÔLã9¼)ò%›Ù7‡˜Øë“îìU&d~t÷]>Qãç]ò7‡o5bàà Ø»çªBÚ{WØ-•¢aûçQ¯öá‘ø¢ŽS}̸¥X€›+8l‡“$÷´ÔòÅ#tÜ]¤‰WršÂŸPi¨Þ­’Pîþ\¥tñîO‚ïùâ••ý@q_i÷hÐEŸ:ªøœª4@Eª·"] ‡¥HYp&—kÚ!)â·|6¾¥ª<ØD9l⛫|Ëç\X å_¯ò<¦¥*¬¨Äµ´ÀbPÔ…¡ f<´?!/ìº Ä „î7MW/Ó À3Њ1üo‰AÂ̾¾~õ?šmÀo endstream endobj 2796 0 obj << /Type /ObjStm /N 100 /First 978 /Length 1965 /Filter /FlateDecode >> stream xÚÝZ[oc·~ׯàcòPrfÈ! #À&‹m´@àÝm~PmmVíZr$9»ù÷ù†’|•â#ûxaôÁðœs†Ãs')Ò\pTBtUi©Ž/´ªcµ7µ¸£ÕeeãeWb5B\ÉbDr561ÙÕ”G ÔÅÈ^PRŒª.Æ”\¶”LG DÅE“ T5a‘]ÎF ¨bÒbr1QÁ 1ƒÒ6â2µ’³ Ô`ˆÂFs¬Å¾sl˜(ÚÜ… ^Ú²)%ÌAê(×dïÀ¬¦˜BÕÔdRØÙP5ñZ6• CJÕÆ"ŽCló•Ûˆê8æŠ9ЦR •âXÈØ$‚RÈ„4NX^• §°ã 'ÔÅ9:ÆP B ·-ªHv\Åfu›yRtBbòª†vfÞT1ì*Ò–—2(m Š“dJ*X€¬çM¬•0GÂ×jª)©º€Ô0& &>’H0ÆLT ]N.1˜+q³@V—¤ÉÈ”Ú J.¥j¶ÈÁ%mÚÎ\š•¡ÞÌHŽcÓ†Ál=€)ÙzT]æFÊ,m,Ü™› éŒ…c˜ ³±’5ØØ‚¯¥Y˜kÓ๰FhU ÈÒ”< ›SU ‚J¡OL¿V±+Ђ&¶ €ASi$§¹yBBU›qÐp{‡°[;".l’á›p/STÍ&Š£££Q÷f>[¹£#×½"‚;ƃY Þ³y0ÃÒæ¾*ð&{øî»Q÷Ób~úv²rï]÷Óë7®{7ù²r'#|2éï~»˜àÃøçɨû3Mf«¥E\6êŽ'Ëùåât²\Ç~{÷÷ÉÙtüýü‹{o/2Bk:ÁDãF#ž”׌¯f³9¤½_g"ÃÓ2ц([býé¢6vÔ½½üϪ=ÿm:ûߨû~¾8›,Ú¼á¤ûk÷c÷ÃûØ ê)ÉʾB7Y‚g‹Ëš|ó§=œ|¯š2ߺî/óws×½vߘùÓåê[Ó× (HØ3b 1ëkl‰ÓBHÐļÅâ|ì/gÓ½@vÍŒŒìâõú…®VË?wÝçÏŸýùd5þ0_üéb1ÿ/fñóÅÏߥªÕ3|>V¯ÈÕ1‹–,8øLûíu1Yœ_®&ËÕ.½†¬¶xøç¿þí ËjJA¼Í.?}:ÙËŒR׸9oõ§'w„âQžúq£`z+>=¹tTô6÷u^¸• n%‰©àN’@ÊΙŸ–$bØ‘$ÊaIâÖÒë!«;lP²·‚ò,ÜH ¢òÿÎôv '7Z";îqËýåê–[ÞðÄ;>Š’imã“|Åöž’<ºYÛÙÊ–u"n Úüí€^-ÊU —=𦗛ÂO$ÖÜWOÖDÃ;bå½)p&ƒݘýºå^ã )ž­±zÇål6ù4ŽÅ“ÒNöãq,ÆpÇq£ùk»HF¾C…zÇ/¿Ìæ‹s««÷j*F÷ÏÐ7™·û/Ÿáý¸SeJ_ÙØSzÛ<õäî¬}‘°/©¯l&´{µ¯lÊä#ñáÕ}_×?Lu—Õ{V÷"é^æd²Ï—(èëmÍÁ[m’”½b[.(w÷;÷ròé|~v;Ü›eøæƒwÃ,k~nüÒžÜ)%/’zr£9À*õEWñ´Ãå ¾(ySªE)ÕÑdÅëÝ–yÎ/¶RsLØ1¦j•ÀYÅ ”9$h¤RvqÃ©áØ¹'7iéË-¦ë+›lc_Ê3åìî |ÉŽ*‡‹ Ì÷#(ÇÇGPÚœãØYá†ø'ø`G§9ùjçhbªÚÉ(þ‡ýç¿N?Üí\žXhàs¦FWkƒ’Õ'ìÜ9£;/ô•”Ð{ §V‡’á)ˆ›P«‹E}NûËÝÙd¶œ®~»¸™Ü›ÌW5& Z³ü<Ühäíl´·ä ÏàžÜ–ê ß³êŽXÕ'ÄjÞnUóvóªáyÎ\ᜫWg®ê5<òÌõ€â‹iùÆ6³Ry¹'Œ„’ì6 Û3XÂn‚¼d:$£5ïÖCBXéÚ»‹[ v±Túr3dWêÉÍ ü¡/†âÊÝsÙkï!\ô~—ôø.Û.ÛÓ¦²=m*<쾪zi÷1èz?ÕØýAˆño.ΰàmp@hQé µÂ—¾Šä­P¯vÃ'ë{ ŠÉSN¾É9úˆ‰R¼´«|4µµð,²ÇùtyêÏÆË~~a‰oy/‘”|@"¹É|•HÁêóp³mMôy¸©xîËœÐÖܶ$öZ¿J›qw³`×ÚOK^ëÙÛɫ꒗lRUå-qõ&m‰> stream xÚåZÝoã6ß¿ÂX € ¬~K: ÝC·Ø{,r¸Û{-:Q+K®$'Ûþõ7$‡åȉ“öp‡Ö$E‘ÃßÌü83 ]Ý­èê‡woßÝ|Òl•“\s½ºÝ¯¥DH½J#Zä«Ûrõ¯äØ™²Ú ¤;ëßþåæ“J£WD®Išç° ›Ì©²“ÞQÜcµiæ&lx / ?­jÓ­7B°d¿f4)vCÛõ~౪kßÚÿ{ìÚ5SÉCUš’¬7Jñä»z0]S ÕšÃûÔÔ¿®µJ>À+ð¼mÜ»4Ù_äÔãjýñç":W‚pÆÃ9†âÄImLÝ/Ze„æ,Ì-šraA–‰0ç®8ŠgVÜž‘<Ó« @Ÿ+…+wk–%w§ƒi@‡+š ­ÿífWíõ}ÛùÆã}µ»÷ÍÚDÐø¡]{ØV´¶ùBíá?†«&®Ê†¾_5€óƒ]©ÀEúûöT—¾½ߊ§ƒco˜"yŠùû½± J j¨š;Û¼¤-I*tÀ­1‡¶\BL¤„k9ê BÊoä1mÕWB¹1{{½Ù90a,mÕáÚÃ}o>šÎøW¿PʇÁ”8^ ÷a®A+‡$[uÖØ}óÇÞ[–Ȉ/"‡‡™œŒž†¸?5»ƒ<‰“”s4† ª›çL&Õ~©FeRåçǪfWŸJÓãƒS=TÇág3 ÐV£m¡BúYéJƒ>EæìŸH0mA4C)ø‚‚4Q,©§YÖ謳¼$ƒR„N®ø…2µ$B S^A©ós˜ßúdzŸ²°5þ‘#‹ÚáÔ~ȱGwÁÙ9#•×±°øºÌæ¾ÀY & d̯eë?0@gçÍ幇Àˆ£ø¨$h<0:ãÞµ{|3LB·Í‰Çcn¶[C,3’…ßÇ/l§Ï—®MsnöÔ(6™""Ëç ýŒéÌ2XvLjÌåH" @?1%WѼˆ‘eÛíPTÍGGà»cWä9‚áylnX6gÇO „àIÝîCoú]Q?6ò´#N‚r´^ÅILsBE“Ò©©že¥`e1+æ„p·-ÇÛö©%gšÈô*jgÙèK­_z²R<¬k Ê!9'N÷Ažéq´0.'ž™—¤@Òã¦Gœ!fvEçŒC—"Bùœô¬îºÂÛ9ìîãÙÖA0äæ2ô&1]#°84/Dà“jVo9 tJŸn,Ý?Þu¢ÇkÐc4%étÿ²Ÿ‚T/Á·9EjTD¥ÌÏ žê'ð¥:†Ïõü¯?4|5Š,uaHDkݘy´]e¤z²Ò …q`Z5¥õŒO‚Ÿñ=ˆÅާ!œM˜ ¸ÙÒ³8в‹·4‰‚˜›ö4À:^EF<0•˜ÆÒø)£1ö~¤e‹Éí:ÖóGò›–Ì@î®3ý±mJÇÁ³ˆþBèÉ“¡»jSŒÎ¹Në3û°õc“=°ßFçû.]’‚P*®óÅT˜8G@óäóÞïÜ6P,„§`Ÿ™|õ6Î>ô\#ž²d¼’.Ç ™4í° ‡€ðŠò+ÌüNçq8`ïa†ÈÚõ'»´×ód—öNRAÇeªÛ»ÍÐM6w0å#W–ÊkãHu9ˆKÝA7Ѭ˜›¬4®G½ ª9Ë´ ĘfD‰ùµ'ðH]5?‡`E Mq8ó!;€l䂘Èx¤È“Eõf.Ù©$<íƒø­ùz\2¡x}4éþLÞw`×zQ±5zl|€Iu AW &ú$ýA®g×_ ‘SãpÑŠ¥ôåÍÏ)ÐvÇ$Áõ"#´ÝyO‘VÜ*.zXÒƒø[ŒHQþ4ôííý~éF×ǧñ¥iH{™k¥ivææŒ îÑ\>ÉÖdî­+P0Ó•6¨³£UˆÎû`t[ô¡éÜÖNðÝm³7]×B,ç†kï†çÖS ¹s±8yÕÀ¢EXjïßÉÕ7~àÏŸ{œ‡—þHízÚºŠˆ‹½±»1J7êf1dDðØ?>’ÿÆ §Pb›Ø?•ba)Ô"HæÎhE;<<›BÔÚœ[_ÿBØ…˜1¬s޳‘u{Í!Ã;K„,g—cšbéØË!NÛìûÙ[çÜ->‹ø/Dþöe8XÊðHß9‚„eû˜¶÷þwW}¿àqàùxì¬]¼ÊŠï?¼¯«Þ7/ ÷˜œhÓÒ­TÉ­ç8”eÍÇݶ9æš*±‹£|mcýÖ‡.¹ $ ñT[×­…üicÔÙÅ gËO@3ÍÐÿé,[š×: ôr=•PŸK®R0µ)0,Áf“£%ÌSÉK[op±ÁöæúíÏ#<[ó ):ÈL÷a]Eêíõò ^ –8·í©AAœÕÅ™yÌÄ/¥â¯ÂD>½BäÓñø¿7ØÛÛÎÓQä\£_‡ð?×óR%*¨àœo 0!×ÃÞ·‡ðå¤,++Fø–ljã>mß<©Œ›Ú(øy¿0£K$»öá:csÅYJ'Y`9htf8uS¥-…†$ž¸¬~ ÿƒYEÆM«P÷•¦ Ïñ˜ØùåäŽog·g{ûÚ¼^àVJïºjŠ…Êº–š‡ÅÖ§Ý.„@˜ƒ%Œ‘fo Ö,g c¥‰¾y/µvO7;ÜeB+*†â—å÷R&Ó/þ‘€Ïæ´˜@× §Üš2lå—‚aDmÓfwa¡Å+¿†¥ÑZLù,ùœyó”(®Î¿…Ùú±Ì¦ º(ô$‘k@rUçÀã¾[¶ö]q0BƯáj<+Òy[QXì² ÿZ½òÏàbÔb¢ëžXˆÛþ9 t —pöƒ¥‚Â÷·ïþQR8 endstream endobj 2921 0 obj << /Length 2953 /Filter /FlateDecode >> stream xÚ­Z[oÛÈ~ϯò° €hoµ‰Ñ 6öíJ;áÝÎMÊÞËŒòÁhÕ ÕÃ6z"IˆÓ½iÐýðêùðü¡#ùy/"[ÁFôl£ëf[ÆöR’d…|l³…(r’ƒÎ¬•¤Ó]·×ý×wqÁ…JâzPDržµ\mÛ*ºmA²,=Ûv0zà‚S,÷-ûG¹öƨ"l4Éëˆ]g81kÙ¦ ã5‘³gD°“­ôœ©dÓiã¯p¶vm¯°†®•q]è¬ÝàPÀ\V&·[ÝéÈÛ\å$£YèÊñsä"ÏÑäákr-¹H†v0¸}Íq¿Ôí6g̦vÇ}Ó‡n±ô>€cû´ðÍv°ÎÃac3ÔÍÆ½Ð/6èXéÃàúu·wëq&bÖÂ^#.÷fEaŸjw\™‹ÁSÛhë·ír¢¤ *oQ-Þ°ÈŒÁOPÙîz ºÖÕ€ûéé0¯ó.˜TàÈü̦–“Tž`òÕ‚‘ôPYJD`»Ç<–±kÓï¤a þ‘|Öaô²ÍK bç¥j 7/ɱ©Ïcf; s>Âê±1a *hž ùC”ƒo †Öªv²ìz«>ž ƒÑû]½Ù»;Ôó! Z—õÎø‹Ѓý-w€Ä¢*ƒSÆP@/ìØí¶µþ¸Ù¨Ø‡Áu‚C¹-\ 1ÔƒˆÁ 0ãEÆÙ}¼È¸(NAŒGÝTæÀ…rpaddáÂÈT€¹eºn÷žÈŹ×ñ£ÀÀ”£€ˆ%¨÷w ¢ð@PÚ ÀŒC3Ã(ÆA) ? R! Æj1õ¸P%œª3rq&Ö¬8©Î¤Ð{×±ÿïAbú]ˆ;åaT ¦ŠŒq;k7Xµ]èôx’@ôv»p ( í\xŠi‡C×~«™A#=*·È“«­¶+ªv8vìlá @ÔNªÛã¡øŒ>Zâs‡ Æá>=ðÔ%"YR.[¼ß þÑÀ†úÖNµ°³Œ]b×Ô.ñyj—vª‘Ž@ slØì5ñۺͪ€£›ÅgÛqŒ®Í}eR°Ì³PóŸX¶óNv!¤”ÍÐ-!X!¯3AR¦Ó 2Ç'“ Bð,Oh,BÀŽ# /Ê®QWd†qv·²Í¥¶¿e7gy²9j×o0Zf ±k7.±0½/ä Ø¡Õoý¶y²“Ò "1-’wë³½hÁ—2ÇGÏ!$䄳3SÚè ÈS®!Ç#A{©=QAsÖ®·t‹&6i&ßÙßiGdp•A@0ûó SÏ–ûsY”ËPhÏ]²ƒ$)!1ãa¹Äz‰¼Ä–PxŠŒÜ†þ1&騤_ÇJ#"ì ÚƒËPxêé.¾À,FòêàÌ ü…`¶«MhH©M)9Tg>kË*ûH Ôz¸4…v@ÂI ;‘_ã/Ê 3—KJƒ*ùÜ®ìB‹fî)‹”SþâéI+ S†{z’%ÆO{O»‘«<Ù“'»¸¬ðœ}öpu54iLœþL5Iø2š˜æÎØäÂe¿80ÍO ÿ/E2›ÂNaV==1Ujúéµ\­-¤–-â“»­=,´gÃå“rc7dÿpm¿¶qÒ*¡ô,˜Þì;…r9›²ß‚±Z9†ýúœu×$ê ?_=û× endstream endobj 2929 0 obj << /Length 1208 /Filter /FlateDecode >> stream xÚ½XÍs«6¿ç¯ð¼´Ó—iLlÚúò:IçõÔɸ§¶²­> Ä«ÿÖ7`#ºÔ¯¬%°û©Þ2ô×À{NÝšM!ZšØÐ=a§AhŠG¼½¬qž–«ÇßïßÓMcd ƒô$6/8v®3Œ<©h-›sÌGf4°Dh‰™%"KÄH¹{9&ó£Ã܆¨ÜV`V¸èôê²ÊÈΤ?0¥èµ…»‡¹ß¹E€ ˜KÌwZ¢wϘy³Eh # …¾¶rc 5”€†QÑCãú4ˆ"/š—Ä#¥,obb/ o ÐÛ‚4L\¼ÛÙ#È´ŠOœ­IUqF;—«¬íÿ.qõy4Þf«½m³)¯Y~^ †a8“šhaR\`‰Ð3KD–èÁ¤z0©“ãÿ®…<¸¯Û­íMvW§Í:§í³;X±´rñ޽\“ß·6üÍÝGPFÛc@Û)ü$jûÉuº¦ŸM»Ý6Ï&ô luk ý8;ß^…OIvàk-|ŠÑð5”OÑ |ŠPð5:,·u ß>Å´ð)NÁ×è&s#ÜÀŸ *¸´zØé§¤]?ÎÅK¹óImÝiiXÆf.nçF[ÞׯTùÄJ­á•9p6íomô¶4ÛŽ^×8Ý—0zJu;"\<ëàuváø®§ÖÇ­Ê€^s×;ÏÝ%3“5lølŒÜ–½«i§/ é¨õ¼{¾;+‘g§Ôù—‘Ëû‘…6ë>ÇŽÉ-ÌcT=ÔÉ«5oB·ZÆd¸mÞåuY>7n¶4ÒÂÚÈõLr÷A™Ñ5µÃP(p°P÷½¹%Õï’îbâÞݲí¤º † ¸°æ“ÏG ™zü v¹=þÛìÑ¿Xnà*wdÌѬûÕÕ¿R1:+ endstream endobj 2935 0 obj << /Length 1887 /Filter /FlateDecode >> stream xÚÅXYÛ8~÷¯’âb†©k~È줳Ø96ñ`:y eÚÖŒGGwz~ýTñ%µÜã4;h EQÅbñ«¯ŠU¦ÞÞ£Þw‹oÖ‹77Aä%$ ýÐ[ï¯>­ÿýæ&dQ.Bƒi¡c•-‘euÅ‚åÝ•,%© ‰ Ôî÷æ†s/ ¡@ +ΙV±ò#˜äN‘Úfiû‘´VÍë«U@é²T÷Eµm®SœæÔκ'ƒYfÇr»ýr½~ÿË;œ3S/ÍcWÕfÐ<4­*d›¥vIžW)¼V%Z –®|F{^¾´ëSY:ù¦2£®QvÊš) µ5Ã;•¶nÃû¬=X¹z“µµ¬ÌkUo••‘¥](7›ZÝe²í5É:“›\¶hœŒ’$H.Å Î}í «eÙAù5§ˆ—Æl¨;~®nö׺¿Ênv‘Ý‹wëÅçƒ-¨Çz2‡4!Qâ¥Åâöõ¶ð Œ <‰½{-Yxè ãÜû°øoOØéS px0p”P0/H|Gb ws1£õ>Ibæ¢èg\yµòºüAµ€À¼hîâà•Ž0$j~e&5wôׂ 4ôÍ™¾UMZgG_@¦ ø“ÐRï¦+S\jh+ó<ž€ªìÑÌËÎ<Ó\6ÉZcñD4tx¿èôÂL "âÇ“E”g†à÷¨×çp^id¤½Ã‰•¢¸â4&Aˆy1âÚ¼øK#÷jÀÇ€Ž-êÒÙnž…æÙ$Eà‹Øˆ®‚Qoý«@ÄÏ£˜è‚ÄÜJÕŠ…‚ðXÀr ¢ ó›¶Ù>k›ë/ÿ0;K¥œ†ÿ+cFÌ( ð¼Ü!li« ±»X½JavFø· Øš7ϹŒ‘˜ yäcÍË#¾üõ*Æ’x»jŽÊ|iUÓšš0S•ÊNØÅ8 ;ævj=•›i¬?Rê§ž R˜ Üuuí±³ú³2Í»­¦Sä¸ÓÎ i …}ƒ¥þ u*ÀiSÎ![5Ÿ;Y;ÏÚÏ7«ž¦¹Õ^=Òªº«r›•{[­œV’Þ€0 ùõ 0Æ‘¶Ü,‹cƒÎj àyB ?§U ½DaÁ–’ŸDÖ\aAB¹Hz'‚;¦Í@©!ÃQÁn$~Úí´Yv& [ÀDÖU×`½ z¤]ƒ£“kú0qÆ«±ìt;öÅëÿ½3ôââÍ—[ØÞcf°yÂRvP€¾ž&çÌ2ÖÿT£D°{B„ë>ú~0ºÕ7x¯Ö%Øá% VB[تºqÛMlÙuy~"迺Ô%K}¬q2Òø ’Õ_ZøöûY,¾éG0—N”WûUž™t›g‡ªÚŽOõ÷X?ÉôŒ™³¸Æ_ÎòûŒAþ…]@áçŸöl8>:÷I²oFmÏžm;™Ÿ2â‰XíU Ñü0Yñ÷¸Ôeºþdú¢d“"<„ËŽº‹ [©{p÷F<Ö•1÷8ÚLçφ Båuš)¾öð+„ûÐvã¾õ˜*¸ªò•¹5w§NX¯m&È­ n¥!» ?Y@…÷¨ˆµ«1«àø¨êTéÖƒ™ }Ë‹hêyüäÖ˜«ýùðÅÝûZ@Ú­°"çLSÜßÈFæ¼³*5œ˜Èc"ÂØ^F6™»4- [g*N‡žÿñíŒO™OxÐ×Ü»ùBSWÿºRÜÍ5Â'¾§ÆA_¦j„¾?Z®º"ö÷FèªV0€N×áWøµ©nᣴÒÒÈZvð‘ÁMõ˜ç,¢Ð7õÇ}ÿ˜å ¡e@‡O±<¹¡yØßú}ú°`¿—på•›+(=¼Ö.‚RBÀUëKŸÒÄb„ÁòÇ c•sáXÁëm ó3¾òÁ ÊÊJnìÚ;DKÕö3°©«ekWue®\[9ÂǨïŸkýHÌ{2h²‚ÂÜ–âV?ÿ?ÕQý±ÒÿAÊ(sâÀBÂi8ƒ‰¾è‹ ëþ2’.)Š“¬UEãZW7T­ûéÌüFŸõÒýLÅó˜á>„AÀ/ä8}¿2—ˆÜóÝzñ'Ç C; endstream endobj 2946 0 obj << /Length 1796 /Filter /FlateDecode >> stream xÚ½XKsÛ6¾ëWh’NCΘ0ðéi;uÒ¸i&ISÛM¦ç@‰Ä˜"U‚²ìüúî E2´âäЋ»‹Åî·È.§îô÷ÉÓËÉñY@§1‰L/S꺄{Á4¤”<ž^¦Ó֦ʊšÌËâÊu̪ub¼|y|æ‡V$Œc¬˜˜#ÑÄ5guСvr‡…°È5Ó;;fV’oEµ#¢{ ¦I@™f¾\ Ûa¾k-¶Å¼ÎÊB¥¥zV”µžT¢ÞVf;1c9û$æ51멊±˜0f´<µ~[¯ÊêÊõ] ?ô{ô}oGpl¾XÚ>h±Ôj¼³×ÊÄ|UÏ’­¨ô"£ã¼#0ö XcðŸv7³_×¢NeålªR]§¬–¿ŒøŠ2ø ˰iõI î´íÍô/Ñ;Ó#qD¾U]oäÉññn·#Íɶ wŽ‚ §†âh 4ä¨x’ˆúÆ ž¦> °,QÌÁÃßá€WW<àñÙi&Ghnn½$82딘…×IuÅ}¿p`R«YK{†Nlè.®¸G‹ù D¾ó¤w¤å½³)¥pÜJE¡—ß”eU+Ô°¼Ç8h¤þØp÷‘á¹ÚopS¢5öýVÈk;ž(à0—zÚ²N†ÖsYgëD‡’” =Ö=8ÙT"Í ~læ[76õ-µî[›WvˆÉQ¾u™Š\O³B³¬³[% uÄ™€ i¨.N%p{Y )AŸ“±ÛœÚ¨%³õ67Z«ïz›ÞÙo¼~ÇÏQH¸ÛÆÅÓ*«3¹Ò|/Q‚?Éõ^‚\ A»Ì›¤Hõ䢆eÙÙy+ïæ¨øªÌK›ºÖòn$Ęçƽ^ˆ pý† G„Ä*5îÃÃ¥èIÀ…G=‹»WŒ^DFRƒÃaR¯oÌ&^Ó2ÃÐ<¦.ÐPz<[Ë ¡ ²ûˆè€ÄŒš°K¶€Ü™Í ʨÂyd]¸8£-ö8s öÜØ`χíS0ûÝç sRïA¡9döYȸœOá˜"-×C:© Ô¤ʬ? ½øÂèð¬,7Mx(å^… üX¬Ó¢,Зz!Ò¥oQ â-Œu€ñ™Mô梨³Bè5¼ãóTí•/‘H9ø˜·>Ö øVp»YY^ë/Ä Ž•ÍCKH‘¨‰†˜Þ‘wÀSfR*hâDEQ‚VŽ2(ãQ@¬a)ÑéÃá~D8f×.T6´€›Å> Œ#qñP¹@W§À0PȪë½y¾•Rä¹Þ¼H–¦*Ÿá}Êm‘ª0Þ»¡ƒ­Ñé"Þ+Œš¤æ}ØyVér–B$¹Ž]°ø#æ$Ü:×Ã.«WzC%°† *˜^Ý$ókTŽf'{QkØ~VQàQcZM×3m/Ÿ(•‹z§.Fœ†Lp(‘ôŠ2’H¸I$x>½?xŒÐ}*ËQÀÃãOR’Àž¹|´ƒòñüA¿§¹,Gë7¶ .‰TGb¦_v$êžåMr¨ë€†“Ç­ï”ÇQ‹z¼}¬K=Î+õyÄDØ2ïÅ©Óïé=8˜µÆÔ §TVŸ<¿œü;¡ê–´mÂyȉïGÓùzòá£;MaBF)¿S¤ë©À =ôl>½˜ü5bÁN§ßWœx €‹ƒA§¿Èö}~ÇŽýäFYwo‘WÛêµ€æ85]wkà'½Ä“¦ýNÍn1AÆHþÔ†:`'“Ø ¿ÅNÊ=Œ¶ÂÐ. Dr^e…†ïh0Ï ’dJ›½¥ ÌÇÂ@-O¤CX®2ÔñÓ£¸!a^˜é˜È€DaØJl|pHlÜç’ñ~EÄ‹½þ«éo‰ùt<̇V=àãÒ&×ãZ¡MÏØpÒ±aØ{àRxù„-hŸŒå¼.ª±0ï—0ö shè®Â~¿¡€iøöH«›fˬ–?ßþ 'f•Ò<.‡}ñÿj„!,FD†1@“¶D hðù ÏøfK|õu^©ž|»†FMÄÛWpv{¨ˆ„жìßÞø¦£qÎf¾Ðã}ÑDdÿoÉWcúÈgàÞ±2Dh̾)’c å%Ü×£:Æ6ÕZ«þHßÿ5Ø÷É!sÈzÜ#Q÷rÈ}^Á‡$q}Ó(×hl<Ü? Ž~jâë•CÈ©G¹ólqgU'“b»ž5”êc „kÕßÁÇ&O檱ìˆÚ­²ùj H¡MŠðÌÝæZëa4ËU¹ÍM!œ™6¤Â^Y¤û€Ú%…@<iz!˜:¹F1hln°MUÿ®éÂ\á«G¡ñÛþs¯OŒu{Í;„èÃR‘¦-HÔŸ8&^ÉhÀBÕÿÖ$ endstream endobj 2960 0 obj << /Length 1578 /Filter /FlateDecode >> stream xÚ­X[“›6~÷¯`6kÏYB€ Ótš6M§™é¤ÝݦIfŠAØ$.ëäß÷è–õ:›¾Xï;Œ­­…­ß?ß,Ö¯‰åi ¿œJ¾ÌœcRúðD6aÔëŽ ÀÆT’%‚cô‹¬Ö£¶Æè“0âý>óáњǴû£ÄÐ\XÌNÃfÁ6Œ†óÁËÅV·e²‰S7ñóÁõÀ4¬”vÚÈvÞ…ùÆ4•Ð Ã÷j¢÷ßfuåù×q Ê–ÿ*ƒ¥¯í97ÄQÿý¦®t)apïË# “zaüy§8SDYß ÞÉ8sÍCd°#Ç0Õ~=£GsòY_ƒD©ëÛ© ?«R5’8l°Tš–fn¨#ç³n‚Íòièÿ~¨`ë:¦™Ö…Çnó2x!bG Ȧú+êÿ΀’t>B{Zý! ¾*MmB³Å š¼ÿ?àÁ endstream endobj 2975 0 obj << /Length 1559 /Filter /FlateDecode >> stream xÚíXKÛ6¾ûW›Cl`Í%õVÑ-š¢IƒEÛd“’d‰¶ÕÊ’KRë$¿¾3Ê+yµ '½½XäpHÎ|󤹷ñ¸÷Ó쇛ÙÕ‹XxËb?önÖžàœaì%B°8ȼ›Ò{7ß«ª1Lê"¯‹Å‡›Ÿ¯^DÉ`OÅ,É28ÑrûB ÓŒ»K€;p/{ö¥Ÿ1 M?J“Wµm0¼N¤ÞR¤,NiçÍV.–~–ÍÛÎì;CãJÓ7_,Îç&_ÕŽëP™-L¿QjSír#Kš­\/ühþžs¿¨dcô%œ",(%õ¾mʪÙÐÁÚäM™+·S*ÕªžÛÀ±D&SÁ,~ ÓÐ͢ȡ»¼Åëòº“¸×ø¥AÑ6(F)›B,!•Û@”UÛ5¥fÎ0#¨*?faÒUo™o/úœ“l4\¸îšÂTmC³²•šFMkh ¤éTÓ«Bßvõ§,ÌYR>[g¶­zÏ#®áG|…_ü±HáÖz½YTh/”âí"e±5«¼“Šˆx Ƀ󲈩ß{õ·‡ÛÕ÷;ðÒu«–{ÕZmZµùn" „²Îr[/Iz–{ „wÃW¨ÃèÎe©è÷mÙëo®®‡ëo^,AàÁõ§‘6#‚ãÄ1.ÇIüƒ,a©ˆÆFx-µŸÕº„5à,µ ¹á}…N¨”µÉA™m[>&z”0?{ÉAq’ÅL» i]´( aä œÅ¡ðÂÄg<‰¦ÓñÄ8mö‡îôn;É/¯»Ý.WŸhò‹…Äóó§tÑSšýJx<G”±4‰¿«öÈ%‡*‰ß—]¨joÍþåéàÅÇø!yŒ”Dr–v“5­u®õ”C‚ùQÒC{A]L¸Sˆ†K1È üí jŸ¬jÖRa¶w‚€‰\ßr”¦ÿÛªìl š6]YI}¥Z\9X‰Aû$`A«MåbFwÅv*C?˜%N³ôoä‰áÔ0“)ÁæÉÌiàŠ}]`Ú±Õ;$£vE@¦MŽ.þtÂT£”:ìaFùàµiúØ9Kf, Oj7úõã% ZV›ÊèëÜEä ¢\ ®Ž‡1Ö×4ìü²ô M¹Õ&WrêB_ÆÈ·úºÀµ -«‹Ë‹Ïø³¿Íkø«WôíVC¤nsE[©q @°HŒo}ɯ¹ãÎ÷{Ù”×7¯Þ!GÆÇÇ*dƒ-ÝÉ8†Ýxíªâ9,Ð߈óRXŠ»ŠˆÙJºbÛióŒnÐâ<¾ï€)9öDvÂ:vI?IX”!‚K‚xX¾ÿÇñßâH±q>ŽøJYˆh¾Á;€GÖ:üê½,ªõ'GÄš†ƒ¦Û­zN„¿%0î°ÀáƱuØVXÂFÙ|Œ˜âk]MRŸ¾¹ô¶íjýÊõ” ßQ½=0S»Í„Ñ9œæazÜxšü/d']êñ]çZ*ÕîN8NjîƒFqèŽ}»Ï«ç›¥Øæ*/Œ}øðÚe_²8vïbŽ-GçÖe-)‡Ù™Uwõ&DfÒ¨¤«ªÜK($›;Òxd?>œ'Œs|F[¨èñÑ3zÜÅÖÔöHuÕA P_õt>ú„$<Ö¥¯„^  çGèÅÜÐZš Ñw®†ïÐ=œüúâ}ѣ߻PÚ•F$ @å´ì k›h>uõÙFvÆŠHà}E»ë©ÖAߦ"Eç»}Mÿ“øï Îކë£ÃÕJ»óZšßEXË„ØçÆ›s—×÷­ÖàöuQø’Ÿï椪 üW( Skß,؉[9ÉlK®/ļgÚ çh3Ç­Ü—LF÷`®S'·4]]Oáº]DóOûøtŸùÎËü>¦ýÿO2³ endstream endobj 2988 0 obj << /Length 2279 /Filter /FlateDecode >> stream xÚ½YYoãF~÷¯Ð£Dí¾Ødg1 “ÙÅ" d½»É>PRËæ‚&v4¿~«úàå–-Ï«Y¬¾ª¾:IW÷+ºú鿇»›ÛOIºÒD+®VwÇ£”©V)cD ½º;¬~]sÆ7ÿ½ûÛí'Å&¬B)Bu Y¦SST1í>/÷È}Cý&á÷ö““é[!3;ËS ·J~:™ê0›¿8aªˆÎxص¬ï Øq³™Xw¶®Ý°=™}q<»‡çÓ=˜øFŽzȻܑŽMþh&ó~£”›ƒ{÷Tä~q˜g…0»— Ql8N½ûŸÙwŽovj!H˜òfòõ}ÿh*ËŠÐDÀ*[ºNÇÖ>Ô} §àš¯wź1]ßTÆS»úÞ_ Ÿž‹îÁÓ<{~8]QW( |ñ´á l_ä»Ò´7ïÜ(oü,Ô`_æ]Øfw¶§¤óãÅåÁ$QjÀDÛ?>æÍ9&”ˆD¾c_íñœ°_B׿фº+ÀÃÁ7Œ®ó¾ì¡h#ÛjN²”…åî~ùב= ùp6Ø…‘Ðæå’‘Œ¢V2’z|6æTæ{ó5Õ †¿é@Ñ fÃ’õïEÛÕ½ãu:+{Trë&&wÍH2ckŠ˜$ÑRžï"Ë(¸ðÀð%¶†]½Ä¾ å.² ‡“Ðt\f+ ÕþÒ„ž,ØGÌH– ×/*gW‚jBÙKÜ‹$Ø?Œ‚ýS9’wžÑëü@à˜©\ÿ£*ÏáEiP;NE`Ì– ú¬ÜÈo%c[¡N“æ¶¥ü-ëªË‹ 4Î5¦5n83`âÌó¯ÇhJ¸,Â_áÃËPŒ¤\O,ÃÙî8±?´P§)œ½t¯ëãpF7˜˜Íl•Â(eáëž \Í{çí¾ÆužðŸiž›¢ëL÷p”è}5%œ¿¸î§ÿgô¾’¤É~vGÔkÙ€¬Ÿ?ÆìŠ™ˆÀ25X\÷åÝF@½ê~@N‰Îfî§4O¦¼ÞùTcšbrãr<>"º»gc‘ ï¨ûA ´/! pë±àwôX<਀SŒ•Sí=rÓøs0Ôdé˜À"Q%æîí¯Nþâ­ ÞþH¶jPnøËO7«_-øÓ¹öttž>¬€•íÛAÀ tª„º,¯×Á,ÚoEâ£@2@¬wmFÂÛºïöµuÀ Ú»âñogôÕ$YùÎ%)U=àøò&*é¾} €³«3ï=›¼j_}ûT¸Û§|r{ æŽ6æ#§p{BjÊ{ô @x©!¶n ÀÈðˆY˜åh‹/6rÂ+Ô½ÔwÛ˜DPÞÈʸ7,ðÌÄzW÷ÕÁ³! ¹'±8È8™Á#9¹}0¿Ÿ"þCj’±ÁÎ…çî,e[¿Žx÷ªZ%þ:mÍÖ+TÃÙѧ‰§}žÀÀO­Œ9X¥ÁØš¥ÝË*) =ÍrôÁÚíhŸWsW{ÊÛ6°a*Ñ×D¦ƒô !ofNoømΈÐzæ2üª×ÙLísz8òLná`jº›–ÎHm ‚…]àßLçÑÓÇë°ùÕ Âà‰ýIïâi}F8T…J½etådŒ†“Ô>µÉ+À]zš:#Cª]Ï]âD—3!ÉæL¤±>«Ý[_¶¤*LH¾_M}rx_€¯\½Úf”¤©šg_ÞõúÀãN‰'<•6«±` ™„¾ÀPØ ‹¨³Á®v㡪À¼ :Æʆ¤âÞúl»×ñ!DY3!uAQPKËtQ]VUÊ52¢+©Ö{HO;{7‰ºrD_àZš×Pm†ßܽðª‚Ow‘èsZ'@ô†K6pqW¢Îæ¢àŠX®·…dÉEZï—Ü|±ž•~ åš9ÖeY£nŸUNu…øý«†ï79$¡þXçâv?0ì<0ÂÂQÐ3«[ð×a•¨™†,|Ÿb…:'"Jƒâ|^nôÐŒH1Ï¡žÞ!—}Ý4¦•¼b‹ïNç|­üõgéEyTÖ4uóþC|yÇÀ(»aëK­}»™§·È2ð³Sk ¥¹NEæÊCA©ŒHíJS6MKˆTz5áùÞñ°i°.&†Å}§ÑÉn’¨4íV¼ÜMšÉénbq˜’„ qè3Q_Mö²ii{.¶Ÿ)¢ö6Þ%±f,¯o ʈB»ŸæÉ§§¼ü&T¶cùn4 m—k{TÖá…€4¯ê¬™eÁ6¿òYð{NJ¨ÔŽÓQÄÆˆ™TúwH¥‡ˆò§H„ë씈»ºJô<ýÇu¥„¼Ð¸•œ(~…fá—Š;XÛÖ"Y/*Ókã’ÿX¥D!ŽIËÓW¶©ßÞþœ,r±ý)&#[`Çû–‚¤É_ƒ?X¶-AœÉäÀqb¬êÎɱ¨öeïÊ$áú&mQ¹ö3ê’W©_´7[3ih¹4çt éh_½@ê;ÒŽKÙéÏu‡ëgYÈíÈ’ ™Üw½5 N;šŽRå.a¾›´Ý܃±ˆìk›©ú…c  DÉ1»ê;â–Žà)xðYÿó‚N!üŒ8Í›Ë J’ ¾È7ñB/ê9¬Ü)RÌk[­ÓPà ´³±…¬‡²}›Æø´øÔƒ$÷—ð"¶Køßù‡/ ìÎã "a•&$3ê7„«ió¾û A2*bmzÆæß?ó½x¤<ãe亮8Úy¦HGÙ³¢kŒ(Ûv~¯í ã(1EÐóC±pípb7X4Õm‡F¬8û¯YFh²Gk:›ÑEÎ ‰¼úZß“Tzl^{ëõÕíËÍ3ð©cqEwün8\Z3Â%¿¦ÖÍcìú¦„ˆVºJ¬óû \ºðOcB _ *>ö(”o?âÀ«8)ô(”rå¿Kä¦ÌùÁõÔò;lhD`¬žÛÀ7´ H´÷óãÝÍÿ³õ/? endstream endobj 2996 0 obj << /Length 1755 /Filter /FlateDecode >> stream xÚXYsÛ6~ׯà8턜š0@ðìĦmÒ63½l·}Hò@QÄ„"T‚²ìþúî %ÚP޾ˆ8»ØÝoˆz+z?ξ»™]¼L™W"Rïfé1J S/cŒ¤¼ðnÞkÛÕmO–ª ÞÞ¼ºx™dGx‘’¬(€&G¢µ€:=¢ò0Ê`‘›C¿Ê^LN>–År/d¡…½×ÏË ŒŠÔWr#p”ù}W¶j)»MÙײ5»Ë][ ³Ì_—Ê,Ï…°Kj+ªú ¥‘Xز³ìÖ¨ÌùÑ5"ž‘˜Ž*™.ÓD$Ù@VvËýÕn#Úþ<9Í‘}ëàŸrÂ@U{î¾v°.´ñ,ŹƒGBÀîv¿ªI3w0‰bRÐôÀEß©lv!Ï8ø-û3RëñÎÉ8'”Ž ìë¦ÞŒÉñ¼„Dzªd·¨ÛUs¤‰O‚0.bÿ'D‰¿ø{°Ä]S§º,ËOF—ܺlÆ8¡i<ºÃ©'ÏæÙ@£„“hfÓ>ÔJ¨Þ*ù8qQõfadHÊͶ5Íì+»:D! ±5q2\³Ø„êëêaXvv&ºNv–D.ÍW ÄÁ®Ø—ŒÔf'Ñr)L Ï##ðÆ yÐ9;²Ën³)»{"TU6•ÃDÊG|sæWr³Ýõ Ôc)àÄ"¦·¢ù(l¿4\ÿr°P³ûû-›SÔbP/˜ÐAÕ_!Þæï×uµ6Û›òÞœ„ð×aEL2šM=¢©¢”ù­ìÍa_cul¤²[ì]Wöúè×raÆ&Ǥƒ=4(ÌôøÖQJ§·~pxY­¥Òù Æb‰ÄK ?œ«ú_1ºúHÍQ³ë+“Aa²¥Úu‰ Ì·X<Ã`<‰{ÒLvJÇ6Œje¾s¹kÃâšPAVÇ t׉FçlK]ÌxMNÎE¿×™'!³Ô­ÝýŠYŽÛN†.·²³R0¿—®ùA®Ž"pB >˜3¸ºB _¶öxUZjPûƒ•2c~H̲©7.€CÝ8Ûqݰ¼¥‘*ZÀA5 ”ƒl9W`ÆÔÂHó©)ÐÒćëÔ=:€¦ÚCÆÏ°a9b ^˜m{N™}cX~s°õ½š¨luìà¶@¦w•øZ5pKûD¹œˆ9Ý@¬ñ&6 Ð\dPy5ñóó ðíP%…çþO¯¡Œl–«Õ]™`ù+ÀøÕºŸ—;aà Å8|_$:¬WŸíoçßB>(Á…!€õD+‘ÝêWÁŒ—ði¹ŸQ‚¡^··Ã+Tb"3>Χë¾ßª¯/.öû=$!\øHüÃÞmrر±Æžt/2’³ÄzÁ_‰¥Ð8ºž}ºý­Z·!4aà—"†g¹¶|D5W SØù^¶‹]eÒ+Ï2LÁeX¶es¯4xáTÝš­+óÙ×ýÚløÛC:åâ궬ޗ+aUO“ã†ÄÆùØø¼ tŠì@šá#—&º ¨¯{ÈÐCTH8º–Ë~ÑÏ3_¸jì¤ =wxbâ}ž~¬Dëq›ÝP>{Eiœ–ãˆ0=ÖBÖˆ¡ F ËSž]¼SŠÜRž’šrg¨&‰“)R®…-DÏ%@A¨S’käÛácäOáshTNÁ zužÖ\¥ql¤Ž¸,Í·êDÙ;û%xF#NöIS©rŽa¨Nd5è¿y>1Õ‹;l'O„Óãð‚ æÀ:ÌÁ>9xÑ>Áž\ó34ÖšMÂj`Æò‚$™Õì_Woo~n£ðÒ™)¶Õm˜O_lUS*דˆáŸ|´àXèì£o"wÉÈ Ù$ƒü© ’}zú8•^‡à¸ææ;¼st` sud4Ì&ÿ81èn²Qç®rs ¢ño¨) ‰ã1 I\¤Þ茹»1e¬ ¾¼û ì*!ädãðüùè endstream endobj 2902 0 obj << /Type /ObjStm /N 100 /First 976 /Length 2015 /Filter /FlateDecode >> stream xÚÍYQo#7~ϯÐcûP$’¢T¶-ö®ÀPd÷€¶Á>¸‰ÓÍ]b¶Ómÿý}”3‰½±›±ãyH,ÍP"EòûDiR Á—jˆŽÅ¥RÕÕhýâRn rÔì„ÛqY‹5²+ÉžÄ઒5¢‹!–#¼S´²=KÁÅdÓÕH.’&k±‹²|&.f1 bv±Äöc«´‰!j›/RSŸÐM%CGb—ˆlD‚éÔlJÙ%¶5V´ÔfN¶–dk tÕ„+a*]¾Å‹åxÆwÓWLJÓQÆ‚V¹JÅQj“3m”‘YXIÑÊ6ÚÄ8Ú´TÑ›–ƒ# m¡Å6¾¦\ ‹Àš¨˜]•¡´V“cø<âY†;8©ÙËê˜R+hå6quÌÍcp ³caÄ¡J&& A,´Õ¦ËÜ@C.f‰`€¶•³µŠ©Ll‰–8 d®ÃR$Öj-uBX^F<…Õ"Li©ZÙ øb"h!s²ØÐŒéùÙF¨Å6‰Ö6 ·ÐPJPœT[…µŠ©P†êДÁÄØžÁYÜJ£ËK#H9üC¶åe„5£ÕÒZÕåÚòi“á¨PLW±ÄRÔi08`Ñ€‡˜ÍðÆbfÂMÉÌ„]Æ 0Pjž°I¸e,b¢’+4qª±ÍR±PTÌWš ´Õæ€*®„bÏ ³™aA!3½"-ìUDšXq%::>>ê¾w§Àq¬O\÷ÓÏ¿¸Z=1æN쥲›Ü^]}8úæ›ÍÂ1„&y}„©kÒo§“…;>vÝ[he˜Ú†½…G¶,;HrF*-;p #á–8:÷R¼Þwà´ØK=Ùz×a‹á]ÇB¶sºgÓ³wã…;uÝß¿uÝûñ woéû?oÆx1úm|Ô}«Ç“ÅÜ(«Úø£îd<ŸÞÎÎÆí™.Ÿý{|~9úvú‡;5J4ìiM h4Ãhc”´|3™L1Ûé’͞Ǝw éË5|fQ{Ô½»ýuÑúÿºœüï¨ûv:;ÏšÞð¡ûg÷C÷Ýil3õ ‹d„ÃòSb—êáËœÉsÍzÓÂòÎuÿ˜¾Ÿ:„õ‹“‹‰Ÿ]üõï_š¿bER¤R7#I ½³OøOú,ò—vÜN.hHÍ>Ø~’‚çFÍÞÂ)Â>ÞjÇÍìr²ðW—ó…™t8sb Þè ÆàdRòJÖ¯žu»=£¹?-Fþb6ºo´Ëði›ñ`0¯ ÷`f!bÜ‚å5ø®{ Ëk}Àâçˆ]Åò ü÷†lŠ!ëþ=dcÙØC6澡}£Ä„0PÛÑ|‚vªÁ£XšÈ—Zÿ>ô“(ƒXŠaH¬èÀ¯Ö²Õ_¯nož´f“z”€.®¨OXw¶úÈçdÉW}ÄþN’=öÉ÷+j êÞ7 Ý›³ÅåtÒ½ëþsòƒý}ñq±¸™ÝuŸ>}ò×ãÅèb:ûêf6ý/´øéì·/羽PµPòl¿\}2t3ý%Û\\.ãóÃ2 *I„.ÞÛ‚zÚcOÙ2(t»[£–H¹§aÕ[Ýó ÎÏo¦W‚Žß³Íœ—œ·*Üs¸ÊgŠ¥©Douß@é¤> ò&sñŠÀÎ¥ÔZõ´V m-¥Ö{•¤Qz£Zx&o¨žÒŽÕÓš³vÙ×Rã!Ûšg×}†‚;>ÓO$ýD´ÿ–Eé ¥$(ÃN"8/yÆgô[ì܈b…ÔvÔN¦¿6b•x‡8® ßDZG}i3½"óJg ;êPiÔÂCWɶïáX0Lšì&ù™°Ø–õ+‰¾µ¶Ûœ#`iÓ~àxWÝ™ßîH¶cbx õ>h¾¯Ar"0»¼ÚÄ@[ZíÁ°¿6Ð*Én }&õb& z¤D~q&¨“Æ­¦œM'vüÚP…4°ìÀ"«ÂOïø¥9£ØÍ¥¥ª·k®aÒ@¦I¥­ŠRÑ—‘&†ôÐUÚ9Z´”Nf N,µ2¸W¯‘Û!6îÓ–”ýiKú“¥ô'KуЖ€¦ì¾§-A˜sʯ—¶ÚFYg$»Õ&»¸Ò!\q@â2#¤}zðv©ÍRQY}pîÜ^øLoÌyóG„%uÂZ~š°6JlUB¥íþ–s*m° Ÿ†I3êDCçæ >~iÊO*³·ËîaÒ‰Q‡øÌcÛË–n8ièГF¡G„•ëOiè}å¥é0ÌÐåüpé#|ޝ–¸$Ь.*{ûþ#I<Ëö"ç||µÁ®Óó^³Øýœ%dn·ÌTñË.á¥l/ýÆó³ÑÕÙá­ ˆ@ʽˆk亃 pºË‘QyîÜ(MO¥í‚–¹•OlfÃMÒöå&Öø2Ò‚XD*ÈiÒÒTàoê“TÝõU{¥<æÎ’÷çÎÒO(rÈëš”ÉÛþ$½};O'TlbR@¨´ýÛßõåüÌŸœæ70Ï­¤–”ØMŒ§Q v ¾n'ÇÅl4™_<â‚¢;pÁªðC&—v!ÀoÕ«W§Û¿[?|øÚ; 놛’Êûgaí÷ëz˜ýškÁÆÇû5B ½Ú ›jÂÉ¢Þ¤á.´ëþTw¹Œ¨;]Fl’Jø]¹0ø?nò¬ endstream endobj 3010 0 obj << /Length 1238 /Filter /FlateDecode >> stream xÚíW[oÛ6~÷¯Ú±€ˆæU—a–mÍ€»%^÷ÐöA–)[­,zºÄé¿ß¡H9’¢¸Î°—aƒHɇçúGØÙ8ØùqöÝr¶¸¡È§¾³L‚1bÜwBÏ"g¹vÞÎ)áîûåëŵOz¢L0! ¨Ú—YQ£ª¶¨ÜÅZ~†­°á÷zÝIð’™óW¥Kð|ÓìdQWƒããuqÍXßåÐñH„°oôÜM÷à |…´s9.\ 5k’ÇUe¢X bá1èiU¼0R;‹‚NJ­ê8+äÚh>dõÖú?:¥vÕloE'„!4« Ì pqÞ £‘è@¯Gy€¨ñ¡àæÀ:Ûd£ÜŸÌ\ºDÌ7²t=Ñy­ÌZíe’¥ŸìË­4›¢Ù­:If½®ApçæaŸÇ‰¬†ªÛ,ÙŽµPÓéÔ¥¬šÜx ~y€ÛHã_µUMn³¾’f-US¬»R¼Ã·ZõÃZ¦1h3/²Ê¬Ú•v?j+~¦¥Ú$ ¾À9]›Ý~IBç×CÅÒ˜Œ¡›Â®›Eè  #nŒT}jöƒ æÓÝ7†Ú°ë–ÇX›zߨBþunÕ(]ɞʗ©C–{UœÚW?Û®Œó¤Éã:SÅdPÚ«~@o\@H[›g„$¢QLiS$ڤʼn’ÖõBÕ]@uSÚ¿‡¤r–—W.È7õV••Êß(ÁnVótã‹ñâëe²­WqÓC[™ ¶HµÁôÕánõ푪ÒÛ—ªF•›o&èŽPŽè²G/÷(hyMÓ›Ý>¦7 Â#›nëz_}¹XÔYv=p¸gþ$ý PG¢NݱáÝ?Q€B"†E¸‘©l›Fš„žŸÿqª9†DxGP@!º Â6÷lœó|øç{U¬˜® ‚¹Ý‹‹8ÿTµl§²Âüuc–ö iÿ0œhA¾ÌÛ}œ|Œ]2…øŠÌm|1¸¿ âaØeëµnU0nÙ4EkNõ:¹µÞÖЄU%ZZcêV¥õX‡s9 @‰@FU ù:¢vXx(.f:‰—Æ>yG©ÏC4kNÁt ²µÊ4ž#ú,X|¨*t‡™2Ì&»VPÄÅ5·ÒrÄU^©'¦–3nù”>wÍC2™8Ϊó瀯ºë+)e\ˉüè™/ G#ÆI“†Û̽2{µœý9#mpä8?2N!¾“ìfoßcg Âõ CQèZÑÃO×ÍÛÙoOŽ{í:tjæsâ0ÊϘ= '„öqö«>hÒó“¶sÁ1¥Î óü‹ üDÜTˆÉsâ6C¸?1„Óâ„“ön®’2Û·u}>9]OBbÿ¾-éyC0a…£ÿ‹.KS£0€kÙ`&wźž|ØY¿WñFžü8ï{àåK}…A1³îlõ¾­³Þô È.p±Ç@/¦Ø¥§>GªäAœÔ K²!Ó¶5Òlwi|5Sú×÷_˜} ƒb77|vÜøW~iÂ03ÃüŸÿÜÒ6O1l©8ó{ ®@…ÿpýW>¸u\ÎJGo endstream endobj 3025 0 obj << /Length 1400 /Filter /FlateDecode >> stream xÚWßœ6~ß¿%•²+Ýúl ª¶jÚ$•"Umï®éC’xwÞ`“½ûï;Ɔ…-·¹ÞÆŒÇ3ß|ólü¶øåfqù†‘ C Yp³ ƈF,HAŒfÁM¼_îY´ËQSqÔÖrõñæíå›8£CI–ÖîDHb+´Àþ"f#éu/¾ؤîÐ+a¸,õäàHÁø:’ÂQŒœº£7;±Z‡4[ªÖì[ë/õN­ÂxyÐî“s/¯W$^Þû7UˆÒú€qhü‰ƒh¼ZnŒ¨öFV*<§K·y.D1ˆòºè?Toz)ÃÔkë+ø·´³8v¾™Ûû3 ¶ÄX"@Åti:'a¿¼ö{•¬eÕVþÍßh㤾´¼1²½¤(¤?*ÙX³²p*ysa¿âwV3Ø@œ¾jÜ—ÁޝÞHÕê9GÀLÝ6Â:÷«{Z§`S-/½rØÝ #µµæÞm9K¿­ >L°Ì•ØØÛ­Ç¹µ±jõQ_®*àðxÞ(ííàe95hP¯Û[-ŒFžÞÂZÂÑÑ,q¾½[¼lÅÓÙã妭s#UíÞ Õa«Z·h„iÿ™û§ºý$ró(+_®@¾5;Õáy‚½ÿ¬R¸¶ÜlWîzëÌx·bx)E¾3·¼Û´×8Ã()ÌbDÓ°/?¾Þþ\A²£ÖûFuî¨fûÓL]!a„bÐå^8óQ8hÀz¿¼²NLîŒP–’þÜΘ½þþòòp8 þæÕ ]Z°&fÄ Ž åÍ9@¥$öQ`NúJl’.E‹'•·S¬¡NAºF8ƒÐ¤n’và‡˜`gÝšÁ—_U]´@14š$Këûš×¼¼×–kö”¬Ý§+÷8H³sº¼èuÉow÷<ÿÌ·Â{Ïâq€k£4íAzkóS}yéô@ÂÙ*±îå\±ð ]wjŸ•¶TºVsàÍŠ&K1CŒ$Aàÿ„'Á˜€²Y×{Ž1ÅÔBwáî'ÂE)š¡s"‚ÃSnJZ]ŒHÊhrùIkôS†$¦³Ù‡(ŠOÈr-|mxYj5ËKwŒÒŽý~ù_öŸ2h«ôîÁC0…°Þ%WêÁ3_©Œrϼ܈„ì1BßÞn‡‡™–4]ms%xñúfñeA:'É0˜PÆPeA^-ÞÄA¡ñ~ipèD« ^%‘ l\/þšp4ýL͆Ø1°†BÜ#?<ýŒ`œ¤!áØï?íQÕïÊpáÁìá}qÔúÂíüá8ã?ð)dìÿøßù9¡^¯,ÌRÄú |%tÞÈ}å'Ô¨7³ Ùð±õ/Ï ’k=G ȉ”@>;õl†Dq†’d`ïlemhq2ík(e$Ù©ógÓëùsÛM hQ÷¬|´íº‹¶]Œ|M&37— ¾¾˜«8“fv2ˆO”E4 zNך° Q ídXëekàÝ…³¶[iôwß¹…ßEõSÄ7‡èyx¹m+˜ÎôY¿îݹ•0€f¨ÅÓéqTK 'e !û’c¹‚?–Zø´îZ§3õ:NÆñ1¦çœœ4*t"9 n1ÎlsMN|p]#PAØ_š­ë¨ù•{ê½ÈåæÞov,궺í%-ÚöY€`Õu~xÙ—<ïæ‘ªÃNæ»E -œö~ÚÒÌþYÀŸ][zÔo}‡jT[}(,‘‡ÞUÀ¯0‘ƒ6·!õ´HþÙ ˆ“žç~oìŒïªv£ª G³a|0(ÝIL “WúžÁ»QÒ§šÍ+hÿkóD endstream endobj 3038 0 obj << /Length 1651 /Filter /FlateDecode >> stream xÚ¥XÛŽÛ6}÷WMXÀšKŠºmÑ4iZ½f·éCšZ¦m%²äŠTœýûΈ¤,)ÚÍfû$J’3gÎÜL½G½Ÿ?\/._D‰—‘,bïzë1J c/aŒÄ<ó®7Þ›eÀbÿíõËË1ˆò˜’ Nà NèØ•&e¡4iåÔ^wă+·s$ð‘›ýÏ¥E©FŒ”L½KIœš×{鯂˜.ëV[mÖ…2Oa¡»[nq°ò§BïÍJŸ|ûÍKSûA´<© | –ÚÏ–ÿP4ÊgKíÞ#Zе,åÆÀÃù@É€Ç$£=<“©%!ÉÂÐÉĄ̀×M#Õ±®6Eµ³*Zí´³ÚR[3×B-Ôˆ‘4b#Y™£ë ä2g ,ZÕŠÒ,¥ÒÅAèÂȰåAê}½ë9åç Jæ Ž‘øŒå, .¶VíóóÎñc»á’©Ý¨qmîì9Û /Æîn94Ñ€W@ã@2ÐnÌógY ³•ýíY}Ê,ÑÚ€2Šj@˜b(õ¼‚•ã,‹*/Û´Ûµ“ÝÖei¨eŒƒOðU4…X—R=qßcœ„XÁHBc TDc¡7«ˆ®Z×d"KxZGKã6 fXgðÐÈ$8á)ŠD$L¹ÇIÌ,”ÁŒ_A<†? !x@4À¬ 1q£fÃ9 ’ž0Ï™‹”Ðè³­›™c šØ9âîÉ»œ«€†$ 1x"’Þt«E[ê¶Òf]oÍs/µlê¬d¡oƇÑî®$Ëx› X´”ØYÝ´v)1¯òÿ]9Jø¤4DŠh¬²iÀ!}°Ìº&$4Èò¿=ý¬‹O{YÍ%8§w±nD¥¶3Gqˆü$ub¢ñYºÜµéü²w±½–²:‡Ë!@«Œ!`6Ìe3I*íñè¾A2Åz²‘UÞg àˆI¥Uˆ´±ñ2© Ì䆘„q`”zíCîe+\A1EµUn A„F·M5Mc·¤‚)«AÚ¨O࿟öû)½Üî|€ÎôµM€Ì÷z-Zy79³ˆð´Ï~ßœ>¬¿‡D* ɬŽMýNæšÔÍî»Yʆ$â=g/Œö J½”·ËWhÃèN(ü)ëS•ÖGõäòòt:w³”Z®ŸvT#5"8Žeü6‹?Ï’² q^É­ì©øþk 5š‡fàà$–Ì$VÑ~y¥¾¡Ïx’`õ+Q‰òFañÄ]À«î§Wæa:6ü¡££Û„å ûzù{È‚Öø8¦¸6Lûœð­zc°á9õÖt NnÔ5\iè ñæ.4¯ê­>A^áÉRÎð"IØ?¢ÅÄ#ÿóø¥Šr„îÂÜÏ ÅaJfØPƒ)µ6u,ºd”°4æÉå;¥È MjAùl¬F˜Ž'\¹’6ÞŸ–ªž¥ ²BéDòÛå§äŸÈTê[Ù†z„ÃÊ?i«F9Ëõ:y#ûNg|7L8YznpZ!mUÌxà´¿¹^c(ªòÅ׋¬3‘õCç ‚ÈË‹7o©·_®;u¢/V%!ºµô®ÎÀ7˜ÌÆzƒçbèL8KHLÓ{ ]#ú3¬cgÆý R¿zÆÝÇîÌÇæýwcü¶Ó¨£üØn¦Ïxfú ’˜¸ò¹TyS;AnJl­~1ËŽãÙ|ëÖq¿–—BÍ5ª ‹”÷(~åPúj†=a¹¶àÙ|PôihcÌÂ)ìãæckjúlT9Ó=ò»¶äŠ›§pÝ9K“Ñ@Ít”ô–>žK4CB 989ŠgÝ> stream xÚÕX[oÛ6~ϯÒ‡È@Íð"’â°»tV`è–dÝC[`²%ÛjeÉå¸ù÷;¼H–lÅIú²,J<$Ïå;7â`àà—³oÎ._ (¤ÁÍ" #‰@‚SÁM¼ 7u^6h4u6!<\N>ܼ¾|ÅeoSI¥`W»‚iˆÎ°?¨EzÚ’O©„Ì-z;Q4LŠm6XÚÛ¢ ‰ƒ)‰‘ˆÝÚë,›Lñ°YÙ Ój¾]ge“4yUº¹j1 áb[ÎÛi Ÿ“Æ}Ÿ×YÒdzOmf¬w>¥QÙ |^äºAõ:9Qgˆ‚ž´š}Ìæþ EU{n³&É bËï®c(×f[£®ñˆ‚è)Î{æÉR¤‡WÞFÞ‘÷”Š(F#hŽ B`z­´Ê Š. F$L^~ÔÝb&PŽ™5úÏ7gÿœ WÒ%TŽâBóõÙ»8Ha"Ÿõä%](JF†Ó"¸>ûã<¸Ÿµ‡‘˜ "E‘àGIûòsBûüÝ,ó°ôÑîz»^'õ{ùÍÅØ}ೃ s3" vyá¾¾qqì~­D1F'OÑŠ•~€€n3DÍ'#ÇËLÏë|c³ûÓ=ñÕ0¾7U/Uú|êE$×y‘h=– ‹.8«ŒåÀ‹:c Œå•~Î;×Î:èþM¥‚Ó»MGU zÐþÔFµw¬Í!‡Cm>{fb0àˆ¹g›IÍØ"È zº“ƒŠ”@f÷cŽÚðñQ…â}ØÛgJ"…¢h¤º2QãósÇhš/óFû/Ë|t“ÔúÅ2kÞXÄòs½ªv¨?îÂŽ Žž—ÁAž´È–Y™¾è/ôg!„ÚÄn æv  ÖÿYÍÞ_=Šæœki»¯üßÉ>ô¸‘ 8S§u+Dû¯k‡¡"’yýúêû¶áÒ'#ÆéHñùTq&îcc??.Kõ)yr¯î¡$UOÂÃ~ÃXíž®*Úu.ãïå²Âò¨N½OÍSÈ‹i;-Æä ýUþ€~ø+ŽÝHD(êñ¢À€2}•ÕJÎÿ¯!ÓIÛöÛ4J *sS9˜§Þdó|qç?Ú’åv=k)íå> stream xÚWÛnÜ6}߯œ^MŠºMÑ­ (ÒÆnò¨VâîªÕeCIÞäï;CRZI–7¶ŸH‰Ãá𜹑Z;‹Z¿­~¾]]]û¡“8pëvk1J ÷+dŒ<¶n3ëÃÚe‘ýéö÷«ë€D9 IÌP¤„2¯Zr²ìZÑ´D– éª7®¨9 Fœ^…ãÂp­èÑ&yÑL6ŽL¬,‡Å$Š#½õv/lÇãuݵ‡®Õó¼Ñcb;œÒu›l #uÌÛ½žµýF°ÂÏ唸¡ßSØte™È¯Zp4÷HĽœ±L†ê{´µMiÑe¢Ñ+I–åm^W`ÞÖqŸ0Ï3—̱#LÀ|£c0™½.º£Áâ·Z"´‡!a þw’R0»!5®“º¬òíR@ ,âÒv&[Ö™(´Tj³um;l-`2s-ñ‘úT€ë ©7'•¯£]j¹D¦ûÜi>w‰ÃØ#AMýMµŒ˜»N¢ £ˆ¦¾«…ßÙ±«\ìI!ÇëmW¥H­þÊj¤gUÝê‰m'ÍrbÆzó¯HÛóVš4ðÚù®Ý×ñjðvÏI ïíŽ-¶;¢CÍxgt‹tßn’NÑ?ñ˜…‰}Â#·w¸Žw›ŸJÈPÛZ:Y«ëÔr÷ã‚“1×#>è¢F™OBøA- Ö›é[¼ÄäLÄë÷íÛöÐ|uu<I²í€Á£ãçYvb†êؼº C1ÊÂ0t¿.šz¼%‘º™Þ¿ÐœH±Rœµš»Hoô¶6$µËî×ÖzL¥€ä½À"Ö58œÎ?{ªöÖF¡µúõvõyÅÔÙP&= ‰1-W>Q+ƒEÈé„ÃQG%ZZ)Iè¡ÖÍê¯üFµxj3£*—y€\ÈžRe¢ÆUîäàè=¢Ù‚,3¨ö8_Þ;âR/¼Ñ˜< ‡üŽõDt,t!< P.‚¾/hR™éÏH׋s8á`Ø6[ãPEÒ4Kþžñ!F/îÁu±à]˜¹½¡v-¡ëùÄ ƒiþÝ$;ñ@ðÍ1X;“¼_¼ÀÄA×7\¥¡çŠzœŒ®²‰±ápåËT&ykÑIg:#¬eüœJÇ¥q¹?ë“6LØ_^j£³|—·Í«/ßé‰ùÛä»*ßh0dój'Ú7Ê{pßE³¯d¼~‰Q7e.ö³ kD ±Uöj¼ÑœEékÔœT/Ôú&åMÚŒ®w]©ú‚sÜ~#•~9—ECè‹NÅkZ…çè!ƒò÷T?‡öêô0¨7ÐÏWÂdÕsk‹Q7|H¯4¸çQç®ìyãÀ$3Ñ©oq`†ãûÞ!®k˜ÑôxT± ·™¿Þa#Á¡µÂÜ‚csi¾ýj~ªf&UWnzIÇ KÕÃÃÇ¡HRÕ?T÷yºŸ)R1€°â¿“%ÁÂ%þuö}†°XC‰ãàø18€’@WÅIaß„ø­jãDâD°áRiV\š¹qœo̺‰X²äç©_ 10já¹ÁK8ø=ï >4–'"Ïó5˜„ªx¢÷x6jóäÅ÷ T¿¨¯~d±üAsù?"̽D endstream endobj 3082 0 obj << /Length 1612 /Filter /FlateDecode >> stream xÚXÛŽÛ6}߯’±€—u Ú¢iš P´ÝuÒ‡$²DÛJt %ÅÉßw†¤dÉ‘Ýí>‰¦FÃá™Ã3CSkgQë÷«_×W7/fÅ$ÜÀZo-F)á^`…Œ‘€ÇÖ:³Þ­™W‘Iõ©mgX¿¾y釓¯x0ŽÁ§²wYŒFWÔ,ÖÁÄÚÌ7„I®?úMtI^´³'¦Ë±ÈrXL˜ïëO×{a;®OWuß5}§Çy•}&Ú§3ãÄóaeNXéÏß»®?7zçø”®:tËÃp%EÛ]«Ô[|FÇ·uYåÛ¥«ÞX(&¶áª¬3!“®–-± vWw}Ó€×VdÚ 7†£Sü¢Ð 1.«âÛ0µ/@@‰@ÒZlm×_½§ÔMsQ!$<‚Ÿ>dG®á§G+|‘Tú i2M§,تÈ?ÙŒ®]A+$Äç>)œÁE¦@“¬.ÀV¤ˆΫµ 8 LÖàMã|AÛ¤èõ†è|3y«ºI\*Ï•~vCâ!˾Kº||9 ó¤:Pñ¼Ë™OÀIÀV]²)„òno&÷f VÈˤS1ÁÏï0oĀà ©nê*Ë«¶m;)‘æK!%0CY{†<ÆÈ†årX&ÞN ‚©3Ùשˆ0¤ £ÉD•bÌÕ 6.´Í¦î« iéQfR³Óuô—‰4¯†4D& h=C?ÒèkŸîêÕV çSÁ€óúƒ^à÷i¾¤+. ">˜‹‰RÐÒ>g;o…9ü]½°(¬Q6x[ß¾y±°$èJ쎑]<»À8gÂÌç¯ Y¬z¬¡ƒA»¯ÕCEÌÂ3UŒ8 €˜J!Lµþ[Äb8–Åm_¥Ç£‘ÕÂVÕ.)º^š×‰yÖ›px#Å…0J½Ì3¬ûn_KÔuÂí?62ªØîlà:(àö­iEºï6I/¤žÄeÒû„Gî¹_6¿”PS¶µtY«ÍÔr÷óRÎ]øœ“®Â'!LPKBôfx‹›˜­é‘8µïº¦}zss8Ȱ²í WŽËŸÖÅY>¸ccÕR¹?C1Δ[±|ˆ2öUÑS¬¡B\ãŽ!5ÀB¢«‚ïRFc1{ÒÖÁ0iªvÁÞ¤JŠo­®Z‘*øêV?´šÎª¨LÏ6Iú)Ù ³ûÀŸJ,ëEÑÒk¶-ùBy@rÊϪïBÃãOì0ºð¬hëE¦ Ù)‰÷Íð{îŸòG+¢iϑΠhÿ°+•ð™¬Î¥ d\=S) Ð.€„íjM눊€È2!}µTR¢°p @‹\«;…ë«ÏWLí˜0‡<øal¥åÕ»ÔÊà%t(„êeZZP,ôÐgaÝ]ý½€æ¤Ûž‡i <uÎ'sÏuÛ0gg1wJ¿¿ðC ØôØ”¤ä'xV@#P_•ï'zþO   ivÿ?¨½Î˜88ƒ†„Üšþ6•y£2þÉz¹È–戃ɯù±5l*’¶]"´á|4¤àѼ$x¤Ñ¢L»” º¶{Ó‚ª9q§¿xÖ?¶U£zÇõ³4ùƱÊ7&û gw<å.÷ùdI|¦¼š_üf®8Àà_ôƒˆž4j*E(†_¯u¬Y¾Ë»ö§¯?è™%„ íĹd¨Ï$v‡»¾ÄÎû"Äÿí×KòÌ(ÊóVé~$ t)÷ã(7§ÞQªà~\ }¦ª :Ð{HµJƒ¥|žÛ¨JìŒÞçðs\hG|—Ï.V:‹÷Gï%(L;ìñ8ôx–ñÙ6"Í·ß̤j`Põåf°Twlxf`Xª.~4E’ªÞcâê°ÏÓý‰#ÅCu ‡Ã5á {_è7¦TIlñ‡| —Ç"–ÁM¯*àÍüÑΪKÆ{õ´ø¯ÁZ¸e]žXh¦áÙœt§)³tÿ|Ô°¢n/ØUšƒEO…‡˜¯ endstream endobj 3004 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1751 /Filter /FlateDecode >> stream xÚÕYQo7 ~÷¯Ðãú0(‰¤4º Ù l@‘vÀ¶ Yê¶Y[;°´û÷û(×mZŸ9M¶ì!1ïî“H‘Ô'ò.ÖZ]p)„à²Ø/¹] ¥â¢G%ÛÜM ™\Tq±VÜŽÑîT—s´;Éq)Üa§‘쑸R’ ê(;!qDYq‹Rµ Ê"´AJš>Ê0 )Ä(JjÆÙØã$’`D³0¦6XÚ€âHBP!q³ÑîUS1¢P“°¶Êl¹HdFaA1r˜®`Rƒa±9Ù""îe­&A5Ç6´BR[+ŒmÁQÄþ¦Á$hЦ+AC /aN¬µi5©šŠ¤k/@¢(·‰1 ÿá;˜cžÆæÌŰ+æfa¹Yg‰ ÖQ0÷ªY§x¨Ò@CiÖeh(Í:K‚šV“šuL.‡(\ÂÿmDq9i2ˆ>'‹,±Ù'—µ¹“3¤¦ ³gS1)$<°,Ê5XÄØ¤– µéââVCWH-)^¦–lRK ø˜cmÒoídR¡`ÇÚRKÄ’v"ìZâªI¢P 5·cBlKÔdX¶(Ú(xqƒPmaš¤Üàa*m€8É©iUHÅì,˜x Å=•¦¶8©Ñpˆ–6+`ŽÆ`c·hl)‹kl) ýš,Z¡¤Ú&V§Ùb¤šKœL†Ü1¶!cK¹á·ßÿ@àƒOð,<î{xvñêÕ“É·ß^ŽâaX':iõEzÑØ]>ÃÕ·‚ä9öZBœ½À{¡糕;8pá íë6ìÐòá~w!ðÖØ{±Y_ Ýlã¯/T…Ö˜|x¸˜Ÿ>š®Ü±þpè†ÇÓ·+÷^ïã¿Ï§xpò|:¾‡ ÓÙjiTlüd8š.ç‹ÓérÍeíÞ/Ó§g'ßÍߺc XTk|E' Œ—´ÞŸÍæ˜íxMÑfO£èw‚l„õZ?±¨ .þ\µëŸÏf/'ÃwóÅÓé¢é O†Ÿ†Ã÷ÇÔ.ÌÔS,2!pÂ!Ÿ¥Ñ·S €š™÷››¹áÇùã¹C˜¾:z6óÏ–³{æ®1#Æ´‚Ã}К£–ÀŠÆ—x“€+½ÆôäýBÚ:†ûMÃpÿtu6Ÿ †_ØßW/V«óå7ÃðæÍÿzº:y6_|}¾˜ÿ-~¾x~o‡…{» §Ž7~Wx LJ)ûh¼^¢Oµ\ËKû‡JÙ!'OÆúâÁÑ$ÙƒHwšð|¾|qÙl³V ¼ßfp½í2Ù3æûtO~ ÞìI©ì‡e':dŸ¨ͬ^FØašÜ;ÑÞBЋX%õ¢S&¬Rnkô©ÙW)h¦Kq'¿~D©“í¿Ç¯‘·ù5¦ëòk«)×li#ÄÏÐj?£¡ÆñØïsð’óe´L8б‘)Uou0êFŸwÓÉRZɾ¢lBGàíðÙPšÂ¦Ý”öâÔ/^Ÿø‹Ùٱż±]_Ml£h*^F7ñšÅÅ^4!A;Ñ9#œ¹þÆ9v+h²P¯AÆ(x{íFŠóWït)˜Ê6U%¹>U¥üŽ¡ßCe‰^íwSsi2ƺ»5—„–!fEC¹®Áˆ®ÃI÷`‡Ëà«Ùa Í8âÑKv¢3Ȭ׋f”5v¢ÑÌûˆS©ê~¹t,ÅSèõIDÎVé›Ð“f/¢ÿA]~MŸìÔÇ9.Ò,‹ŸyO¿8™½4ƒ¶ªìS敽ʼ14 y­RFÑ”}mCËh½¤Þ:·Nt(Þ¾ê÷¡-s‘¡ÐÿãlÌ4 endstream endobj 3098 0 obj << /Length 1403 /Filter /FlateDecode >> stream xÚµWßoÛ6~÷_!´bCŠ%Û°nk†e¶%^÷öA–h[,¹§ûëwü![T•Ìé°“¦xÇ»ï¾;±³v°óÓìûÅìâ2Œœ%ÌgÎbåŒ ˜‚MœEîÜÎ}»ïW—Œ ¶R ìSP¤6횢¨á. çkÁ[!EfØœǰ¬× {~‹T«ø‘‹´([Kp À²3v<’ 0Ö’‹ w=?Äóº»NèyQee—óö•¥Ð!! ?6âï|?´7Ýz!ÆsÑ«wŠm*x®ÿÞ»~8OË®?t¥Ç_ä2¯ò´,ÏÜ0œ·zY¤ž4iu§gYÝ4¼LEQWý_IéwûYÁ+=øñCqœœh¯Òßîê*/ªµ^Úy#«Wucìë¥TÔÌR*Æ›^ðàOaä»´4ßj=þÍ›Zsfw¢ÁO¡&êoÝÄ×fý‡¸¯º*;¢™×ܘVÕÆ†‹®1ŸS3ÖË<hÊNyÎÐÈ×.ìïĦnÞá·ðC¾ÀÜ¿ÜN-WkÑæ­ËJžmÄ2í¸‰‰&X[ç1øò¤R “A£Q4—¾{i•–ŸZI5)UTúÓµö…Øè*…z!•uru—fwéšïY8¬¬plµÉ€t%ó¶öÊ$“z Þ€€döyP¬“0Ô»o”(WYŸ’7õJìÓÆ¥ÑœO#Šøoñb ‹”MèHT ?ÆS ݹ>Ÿ@µbAŒ&èøˆ`Ì­¼.$.F$f4ºøÐ¶èS† L'“5ô¡ªŒÈrÃMix]¶õ$W$Ý1ŠûÍôsö2X–ð©Ë-²½¢ÁÁ«Ïˬ]«úŠ™5.˜ 䕜È04`êÜC tqkì³7‹ÙÇQn’ÃTÙÐɶ³Û÷ØÉáã @á°½Úºu`VÈЖÎÍì „m5D5”aFÝ#LõVâI÷»”Ó0ýÊ¡ç£ìLfˆa8¤´R¦?ý¦ax &ž…‚n›ØDÛDIˆ|Âúv¦Íšb§Býµêr’&»#&Âv’•iÛN±ˆú(¦D_˜ ¼˜âQ;ü¾á"bŒÚ÷g õì‘L{þT޽|éªnæ†êqkB.ç*är2ð3"sàž‹~žMU!µdi¢KžRäÉÛ,ð‰]€U„d|8צæÅºí7_é‰Y…†­ ËffÖB}wñ¯M \†Àön ýbû$ðn¨öðT9‹àu ƒÝ;ƽˆ@×rõ"DOŠz ïªoºÕ…ªí<¡n‡Â8œˆòcnÊpGéCÏóã…Œ˜žÜ°V÷t $ú­$[> -†Ìp9¶;ž«OfQõ0©ºí²ß)ñ–c·ª)€?»2ÍT+2PµßÙf¤HÑSb*ÿÀ#¡+µÕê1 q»©»Ò@¿47WSwUÞÇCRüp§åð|.¦ Í~ôuK¤wrÝ…ã7ISoG;4Ñâ£A1èZï$“Y§¥¬×ºq¢Ð*a<Øo ©@È T˜¬ºÒõˆªÍÚk§|à ?üÛÖ9/õÞo¹œÊ–EÍ–|*6ú1Ãs¤E6ù×UÊTyÏÏG8þßzFtLÆ@¥;=2µF]=ßÔÀ”=4Y÷à¦ÿâi1 endstream endobj 3112 0 obj << /Length 1485 /Filter /FlateDecode >> stream xÚÅXÛŽÛ6}÷WÎÃÚ@ÄåEÔ%hЦi6hÐ"íÚI’ÕJ´­TG¢×Íßw(RZIf¶ëhžLIä\Ïœ;[;/g?®g—W>q"ùÔwÖ‡`Œ˜ç;!Èg‘³Nw‹}•ÕE¼ü°~uyŃÁù(ˆ"×n¥”¨M3l4Àn°Ûí¶»4€—LúIÈ8Ë›ÑÁ€¡::. ‘ê“ëXº”ãEuûƒÔë¬LòC*š'#aÈã ˜ /òôñ÷”òñ¦w.Çx!;±E•Š\/HõjSÕzÑo«Å’ðŶM“U¥ù(9–ÁtŽ|>Pù¾i–ÈNÛÿoˆ;ä²1J몘h}1•²³j«÷˜ãªÌ?ë§ãN”9ŒRé#B;àÔB¢M&Ÿ®¯ß¼°ÀŒG(ün3Èà ÒêqFþ™¶1jWŒeÖÈ,1xÚL|½Û)w±œ|œd*3!;”µÈEÜGHV“s€Ú¤*DcOSð@'Ò.ù¢¿Wi—µ{<šø>Î^öàs›*Ï«%å‹£±#6ÜvÕÙÍ’BL$ô4çB3©j@ç¾*Ӭܚ$¸·JyœÄ×ËfA´ø3ÏŠLê5øšÁ ý—©^dª,Ôbbˆzõügý{GõÔ­Zô`i,EACà_J: Ï‘Íõ±ù-¬N Ã2Äa·ÿ±E¤xØóó¼ÌÊ[›¡0Èq=B`ò©<—qEL1A祟jù%áœ"†½NxÄžÆàHZux.+Ùe½„NaÎÄ¥‚½Aiœ¦™BVœßÉ©cäkÓNQD)âð‹L£{»Œè)€ÎlE›C™Èž…-^Õê;'tuÞ|‰D6C•žÖH£èÙRQ‹ÜUµXsRK3÷eZóÍv %Ó•ÐÛ¥/’¼‰¢¾£ "ŽXØÓ÷wÇÛ› èãsw_W­7U½ýÞ‚B=ÄAÖ³3ŒxŒ7ËkåÃH§‡¢°¯”ûæÉååñxDæ¥Û²q¯~:‹ŒÌà ŽDÞb?‹>NµØ@|H¸e"¾fr™†ÚÃmÑá2 DªèÃ6ö¬s}øò¨æÓl,”ën Àÿ܈FŸR¢>]ëŸc&wúƒ¡8}ÈR¸ØÇÉ_ñVç}>œî@­wG ¯ÁV^UfJ48¤(AïQªk]Q®ª<Æõ’ aÁE ðBe£\ŒòÏ|‹Œ¨*ïRŠ™ Ýc­Ÿõû@˜4{L§ÐJ«L¡è’`Ó .?6 ºÅÌGfÖZ¦ó8³ÊJfx–7•* í…-øÍòüÕb{2áMgó±~f:ÇDÕ 'I­&Û¼WƒAøú-jyŸGÍlMôÙ‹õìÓŒ´N’þ®ÁH€ ¾’böîvRøö B JíØî,èE(ðT^sg5ûÝ¿Á}fl4¤Î÷ˆÃ@ežå>3Þú„С»¿©3g›þµ:E\›ô«JN›É„~¡*4]èÇ×:_Ž C„ÁÎ3‚Ñ:=‚a/ ¦f=Î\²š¤ÎömÂϧ«+ƒ•Ö?nÀâéHêW&Ïú½6ù"ÉãÆ6æ(¡(èyeB‡Ò>àx(dô¾‡CÄÆ¢ŠÝÜzUE!'çIÚ YY­Y„'k›Å7¥:A”Ó1;+[ã£0ÆÁ¼ý÷`Zgà¡€N†—7 tš/pà÷±ß£GËvh_1ý[´Õ§×mñ©Å}ÁèOHÐaë#ªÓè´HbN?ºO«Æ &úQðÛºQíéïÇÚÔ4Û•Â<4»ê¨îÂWÏ~Y½èÞeÛ2Û ¸rÕÍÓ­¯÷æ"…çj;~Ÿëž§roÆú‘r³5[Q¦O‡.„P7UBöŒÊ`Z"ß(úÅÎ"h|e±êÁóþkìñ8)°ø?%¨Í» endstream endobj 3132 0 obj << /Length 1760 /Filter /FlateDecode >> stream xÚÍX[oÛ6~ϯ0Ò‡*@Ì")JúЮMÑaÀ€&{jL±h››.ž.IóïwIË’+;I[ …Äëááw>ž‹él5£³÷'o®O..¥š%$‰Âhv½œ1J ÑL1F"žÌ®³Ù§ ó¿®»¸ŒØ`)W‚$‚ »hS›²%u‘âÒêO¸¸ä|°gÎed7ÍCƒÜm}ñâl.) ®¸ûº]W™k/«Ú5yÚ4N 5Tƒ1A¤êÕxé–ŒN=ã~hH6º­&Dñ„Äò¨¤9“ ”Cƒ‘DÊÁÕ?SI¿œ;]3³2mã;ͺº[šöÕåë߯Þù1B¬gx79IØ3a±Ê‹âY±h̪4KÒ´iݼZéöMkªEœâr2œ?EÔÎ-l!(ÇþðÈî—æz¥ËìÕpãîó­„çD¿¸ä;нìÅϽünèŸ û))èÑÄq๠"‰ö.ßEZß#pÕÍ?zÑNà'yó^W2€D%ò8à÷¹Pß½ë>ó«‡p /#”“Ç)‰Dèä½®Ï V]¡Ë¶E³ýï4 M £^З½P8Š´ an‘NË3`}°-‚j鯖§(QLm%œ¢;éJsê¯9èh8A]=è€G’‡ I‰U¿ó¡)A!,zŠJ?Îïq8œb>âÕ §ú&r)O.5$W4$— 6óÞ4~mOåÜ|u¹¨2ëÚ`ÿ­iº4ÏïÝÔi×®õ·UI:Ÿ"Ö"-žIöJ/Á¥pàÓÛ­ÿ"«ÝËœ°ã„«>ëø*o0p’ väÕ.hva{ÇÏ"ÕÓ£²‰óQ³Œ9ð€ý%Tqoÿx"Ãþ°ÄA‰ßžØé `WàóÆFîƒ&zì[=Z±3°·¥•lméÛž:ؾñóÞŸ)J7½m ¢v§Ÿe“d÷¾ ƒLˆÚò|„K¢öÓ5(loʇ7Ð=… 'ÞV8dª.J„‹.úè­ŠSÑþ߈{•Ðõ8²y§].ò.ÓÍ/㸠JÀ=CI"÷?‡¡ÜÝX×¹pÄB$Ú<7.ÇÈͺª0Eá$dvk$v(^øõÜízÓ·\Ì‚L.\k˜›@õt½F·­)Wö“ˆPž ]¶ð*BˆP}„,Gé7÷¾êãè«Ð7ÍC¨øX$¾?<Ìæà±$Ý‹‡ b*—¡ÏÔÐKæRY> stream xÚ­ZK³Û¶ÞûWh²‰4cÑx“Xt‘¦qœNšNgºˆ;J½—D*$eÇ™N{ÏÁH¢|oâŽAà8ï|ÄV÷+¶úúÙŸß<{ñÒð•ͬfõænÅˤ2«œóÌH»zsXý¸>·UÝgí©ÜüëÍ__¼ÔyÒAZ“åÖ‚8ßT‰ž±0B|®¶ÒhlW[‘CgIÍß ¡'íW?n5c뻦Ýlaëf÷o·ï»ðrG2™€1™U"ŽÿÌ2;½ûlq¦Y¡c»ç 1gëëu_Æ8·Í†ëõ»êPÕ÷TUÕ0SÙWMM容ôTì‰x·z]¶UY}s:7µ«ãìËú€³Zmm‘I¡V[P±Õšæ³oÚÖýÐ\ñF¥§Añ|}jî˜m¶Wë—8GБ_%ŸP °Ç°Î·LJj•¯@Q¹,¼Î2¦ùJf†‡áÅ‚¾ pv[+õ)ÃÆ¹¹®¯@CަŒ+¥5ôa1Ý/—² mÛ¦éC»6t¥oI7\å™Êó©rÀܫE¹.‡*XÞú&<½9 P_N;‡>dº¯#/®{Öh3Т;vAôûýÛ™¤aÑôú~ÃÁm:zy˘øÕ 9PEz»ŽÖæ !%áR„¤&Q( uyò%éç<ùtß6—³wI|¼ üöÅŸÒ¾‡Áµ^g¨R¾þ&p4BéŒ*zÉëóçYÁŠØ l7`¦ûËÉëåzÀÙ^:—Òг;»}u÷Œ*´È +‚.LIøsÝàZÞ{CÚ4è;(¬­~¥2¡B[h|.Û¾Ú_Že¨nA£Í‰ÊîÅÞxxëZTDÙ?T•ü•Ç® 5õ¡Ú£@¾$67¦GÛlý¾ê $ATM5?-A•ÍdUú_P”Ækt9,þ‡€-®]0ˆÉ3¡†îŸÓ0ˆL úpµFD\bÁ¥°äÃ@ÚñS‹Þñ# îë£À”€`˜7Ü"´u÷Õl1zëçl¶;j2:—ö  uÉŒ:4'èö›=ã“ ÁMäÁÛ N]¹X@Z°‡)œU×8«3UÈÇqVæzgÃLHI8“feÄ,x˜ÅB„Y,Ìúv±jÌmƒ”(FÑAÿÞÖÏ4,`¢¯lžÆŽÉ,A÷n óv]xÛu®}7@#Ú¡§ö^›¾fbÓÐ-ŒBÓ‚ÖÑGyâþí¶ëA¯·L³¦>~ ¦w1QN‚qfú®o/ûþOŸ½úòû%ò m–çfd×òT¦G¥ýå›/¾^gT–ëüw‹{õÅë§Ln+Ø@7æÀÏ²ÂØ¹Ü¾[ “´jôpÍÑ[nõ˜1ñÅÛŒ[Eîò¹Ìcùè§l*K²¼L²©Ü»~ˆn ,¾¬êòÖ5Ú/V˜µ«hØšRfÒÞ"yœÄ° \= b±˜ ¥JÕÀ–ŠçÅ\µ7Üi¢Úeûçã QØ ó?* “\&¥Zvù/ŸæU×bÐçÜG »^Ö£xµô'Å%ú(J®SˆÈŸ8dž¾jU‚cl€Iz—¢š íÀæv3žñ|¦¼úâüôÓ³ék¾Þ¹þ½Ãd‰„€Öµó$ˆuž(¦BÁSΨ?‚˜¾W7Kد¼ß@?àÝ^¹È ঺ ö#<}J¶J"O8µ Ú†”¶a›¨|´ÉÐo†| PÑ„ž0àTs54x RI­š»Þ«YaHåsôÈÚ¨Dû«_©<ù6pó¨ò'Óô9ƒV³|‰5å¾mºn6Òé,m5|åf`tPL3hþÈB³Âï!°Z0HóŒ:—ôÚ¹}ãY”—¯€Í>Ï?‘ó)ç…F΋s œWʸՀµ*SBO“NG{+=wReÉðáàº}[í¼°zG±àµM-ÞWÇ#•vŽ-Ìnéð¥<ß5í­ Ù¨\b„®—8eÎiïnnsJã×½MZ t`zZ`²"OóŸY$¨J mÆ3€lzp³•Âf’é0güã<7 3n‡¡¾YZ<7\ä>Ýõ`l€Š½7P T!Ú ÒÑ+¢zUSùìÚ=¬3‚²I@^N—(‚ØD†BÓ—G*Ž1V«þUƆ“à´)³l†²#óFÆÖ]õ›Ÿ6 xÈRŽo¸˜¸TF›]HedAÚ°3bÜøœvmsïjGó„ªóñ$A위jŒÍö¸ùÅÂÎ-ARÙCN Áá‡þæÏ à9¶uå©ñ#š@-}¡½„R²AV¨Ç31ÿ¹¤ÇÉaV)·_ðñ¾u]GQßpÿþ|Á ¥À@̧»!gÅÄGgóFB$oSƒ“!Ñ%'“ÁL’ #Pa]î÷Í¥öš”×V¡ÊÄdp|Ž.ÊíT‡ º®¼vbÁ°£{H×ÝCšàØbç¨bîøNò&“ÚédŒÏPF‰õ÷.ˆú黦wŸScÚ¸›‘,˜Xãôó'™Ø|lëÎŒ˜Àlmk@@qE2ο‹™'à«)lŠ?›…ÒÆ«ëÅÀÌ>¶<Ͱ“µ¤°)°)…LaSŠÀO°¾Å¬JEïUBŽß,bBûâT“v×þ •þ´7à*¥†!?•¹ ²ˆÔѦP otlY4TÄú¦wô1AA¨Ï—œRÚ""D}ˆP¾ßD¡YŒÝ°ê£(Í u…ð`6f¡ÁvXG)-ù6Aü²ØDHl2vsV Ÿ&–Ñ2ظ¥&ƒeèÜÑd,×3nÛLöPEÈÏÒÇ5DTÓvô¡ª÷ÇË!öó¸Æ"8B…‡ª£c]¨£|‰ÂC£€¸oQþ. »Ñë¹s—C³˜ò,ìÔ#x4åAfË3©1"u¦s>3îsˆF¿.a¹5e÷î£ò5C‹„Àäë¿û3Z1¹v¥Ý—Á“ƒ:Jc¢ï)”ñ•AcÂ_ТnC¨>£ãà7Õ"oñ¡£v—óAÙ ï8}:Jà ¶¸=ÕöÍB¨Ø<Óã­òw?|ûí‚ÎÀõ­˜Ÿò€DŠN®‡«$Süõrü½HĬÏê.ÌÉ»t”@ ­ë&ˆMz?œàpÍgn]Ç­q»žsÿ‰àÈËŸälÿOpäZe"7¿ñúoü“±áVÉÞGË’k÷ÇÓiñ¸Lÿq`ãí›F:f×_¨8¿1v!™ÉU¼QÐ`éÒBŽ$Üà Øë…K̘MËBwÄ4JSÂâlJþĤ ù¼uõÞ….ñ8¥¤G¼•Åò˜þ >‰{…¸½ûnéú xÔ;\ù*,n.ÂÞ„³Å †²Œ Ã·ˆÏAö¥ÃíÉS5ØýËwëc*Ü.Lr!‰Bdf·$a÷K±®õ µš"ˆV£EäÐjôŽOµºµÍà Êf¶0Î&Q]øèË”UÔê«Å°ž´ À‘¶èdÿ‡Õóã¨òK'ÍÌDâÚ±‡uƒ!ý%(b"FKžu›²$˜å7€:cLýA(ˆ>Œ# >ŒÃݵ>X,Å<þ¹ýCy=ðŒiÔ<„À> Èj[€ºçSG„FœQóøõ¼ÿWóü–ÿ jêˆ:8ÿ¿ÆAùAD¸ð&sè>¦.þ¤l.×_6û0Ìöo% rܾ*]ÝýFQC2[$(¼ñ‘Ø‚{}Ž÷V]h¸ñÊ¥—SåÕ&—“ÿ‰¨Hž¼üòøá·øß§õ4‡C—àh(Î5ñ½«•xsÀñãuQ•¹ìùâ_5`û©ùôŸ­þ³õÚsãó«7Ïþ<ªx¬ endstream endobj 3148 0 obj << /Length 3290 /Filter /FlateDecode >> stream xÚÅ[Y“ã¶~Ÿ_¡rUMe…%n ɦÊ){}”“ÊîNåÅq*‰3ÃX"e‘òxüàßžn< AÇk×<A Ñç× L6¹d“/.þvuñú­ÔK¬bjru3¡YF¸PM)QÜN®“o§Œ‰Ë﮾~ýVÑÑP®±‚ÂDnÐzSV-Ù¬rz‘…v¦Ÿq©ÜG3¦¡“ûO?ÅåŒS6Í—M>‡?b&œÅ7ßq1ùÖº+6E´Hè¿©78 Ÿ.Š6/—Ÿ³®üo{©×mÙwÖþw¾)ò6¼oÚ‡e±x=¯—õ¦X„o¶ízÛúö}ÙÞùuú)ïŠå: ¼Vs$ív€ Ía#óMþ”D[É&3`½•2p5ŸŸßÄó_ª1/©6*¢i`ã¿.-²p3ç€$ðcjˆa¡+Oðë·œG£3:q d<ÈRg¬u³­æÈaà?3tº¨ñ7›Vuë;6E»ÝT¾3¯|_}ý¿bÞ’Ë™ÈØ!R@s2-»Ušíj•oÔpM”»ÔŒ×nüâN|Ãê¾s7 JûÛ@zé6 Ìæ–hfb ý;“™W &aC‹E‰ËåKÿ<_Â|‰Ý`YϱOÂfÐz>IìH ¢e/X¦õAgDh+Å?êöIúðö’Ê)îb“W‹z5+n.™œÞ¯ß¿ªŲyåÚNltì%((•ýV¿òCôÜ€æGHBÁ¯p¢hXš¥X-ðà¦ÍÛ²i˹_¼ Íëª <9¹¤h"Ôrà“!çG cAhÇË@˜M¥ ã@ØhÐXZ›)8Òß…¥ÅX9%L¯Qf‰9¸`e€Ý9àÿ$61ˈ]ìgâ"µa¸c­íàâó«‹.¨sFÀxfÁãˉœðLOæ«‹o¿Ë& xù5ø,nÍäÞ ]¡sЏœ|¸xç£Ç˜pœÊ€ZKΉ5üíúÚLhr_ePŽÃ ?÷U6ý%±¨kukþè,Zß+b¸ðÝN¨ž3{IY™Œú÷]Úph°Ôçmý±Ñ™€wkÐ(À uàAöṴ̀ÀWIx§é¿¤YƵ$·k„Vöÿ“,M´mH n:17Õé?ý>a°à§©Ùk¶¿¼uH& ¡èžÃ<®Xšùÿ<à˜À;ÌFÃîðl$ð¨à¶f”vWîÛ5Äm"Á7 KÁ™cv­)É”>l×ýT†#øC÷øyÎ6õYÛdûÛÜñ9à’ôd4fàÿXi=]ûÞ$’õ¾;N÷þäMêhhœÅTÙêÏ@~3EXf#>DëA`qCQzÌ— `„cŒ}tß—E3"ŒèõúÉÔfÄX@]€Lñ |‹ícÚ›k‚]ÓÔ’Ñ6%àQ3^ÓùFÑùFh”Õ¥@— §Ø4¡Á{4ªÉWëeYÝú'ï@7e^Í$v£!nð>AJêE8 ‰«¶ÛŃoFfb„khϦ³]f´2X´î}Çžâ‡mÀ2<ÙžUî÷Ëòö¶¬š…­ñyÜ ÿr¥¿kê p!·zÊä„&7dŽÀטA)ÀEq{‰ ^aTÞø_ŸgÁ¨ÿ¶ërž/ÿàûÞ•Õ,ð {baKÈàÓ0t\7ÅÆ ÞE¤ÝŒk¹>N6åÏEˆ¬†lpfÑx$©\6ä,;>€Åz9|¹oÿoí¯ ~Áð%ïÀ¯8AâZqüj~E|¼ßçãWy ŽÀ€<2‹0L9‘àhnêY`X’L@þQ¢Íãà ¸"„#Ó?%½9ãD+¦¶ÿ)$Ÿõm½ JÑÙtxÌ7ÿm›NQn:½^•?y»8”é‘Þ`À«wÁè ÃÌQ`HÙtQ¬‹já½fæë/øë*4,u‹fŠ ï°€€êœp_ì¾\.ýçwy…•%ðåb”îÛîwžžC˜W‡œ¤ÓÞWö÷’Tô%òs ¡ØåšJQÏp¸»«y³qêJ§mQù§±Çå‡<.$U:ÓOàÀޝí$)eءĆ €½{}—@»’ÐÌœLm žžšBqþˆu\ 5J£vPõ€Iß¼KÈ0$†¼°–œ’Hb)sCÈy÷fØ’‘æ7ar‚}ˆé‹¬¯¼ àB2LÆ.àHÖ †R‚–íéXUÝ:·ÛûcÊ#€ªê¬+¸»D|Ë/xwW´Å¦¾-ª¢lü»´ðYa8·ø> ŽÑ_ö°<,ZmW×EXÍSÄV/=ùÜÉ®$Áè²}¤‰‘\88™í'3Þ!C×púž²š/·(û'?Þ“ «¢Íg9‡¦l¢B ½ê^Ž|€@?Ò™¨¾Ì]¦×1\ÂQD&HÁ+ §A›`«¬ (!,¹ƒ˜LvÒÑ„f¯çü1¾XվɈ~ƒuwìö™ôÞå—¬KôúYà ö«i ïòÖ¿ £D ðEplfís±$e?<<Ï}YlÆ%L£6JHi„`j†¿sÐ`}Q¡~ÚåܯnÐW­ˆ*öÂ3\„8¼KÔàCƒ¢ÄÊ›D nùdÖ<<ùÓLȈ:ˆÛ\Úi–Š]ŠÁƒ÷í4±J¹1ITöÛ¥NœM¨ËP­8¨™C=A5Ï¢ŠžE•ÓÁ”ÐÁõ`ùHÆþ÷¥“Ó8gð)òhÔ_À‡Ãj)Ö Ýt¤¡ÎŸÔ HÒ6?ݾøy ‹™¡u,ÏyYré)6÷笠.ôÅ•:1ï5É9¨ž¶÷—¢=>(À3x¨W•!ÀâûôI $¸L?7-‚€Áä9iÖèsÓ"\-F¼ù¼ÝæËåƒßè¼XR. ω{ÔO׿m\5Àñê.¼ý¬Ø|(WuUæÕ웼Ü,üû¡8o‰R6Æ éxÂ¥ú‰¿ñp œªÂ ÆlÀmÞð£°5ÂWøè¡ 6fÁ×ͺ˜—®À«yÞa¸+Xšîr‰áÂO„cx¯h]šáé{¶ŽΧ·%ÆdƒP*Ðñu¾/”2¥4Q=‡KçIÝø‡zëçZÃkÄÁØé©ä=•sâQm½ê.Càà]Ûàa·œ÷P³Ô{•ªÏŸS·C”Ó“›ÞÕ‹7Ÿ|öMê:…4„š>™ jêŠík[¯ªÝ)6|9äõêÔW?üàp;h88p—i‡~¬ä)Õ[èf•“mU»JÅAQ‡´±»æ‚24}9Ô˜+â;©[ZBSv$ Ýå,ßÚ¶5)VâQ›ãj¢ç'¶Füt_UCArù¨ ctåd‘òÕÎ1øº)¶‹:yÚ>Ãô,|Ÿ:S€³OÖØvàçNuÝÇû’µêS‘ms(d°ÁÑ=¶ˆ?³_£ ,É?]ÃWjøâ#–ðã#NÈ™;â”×mg&§Ÿ§ÊV•1P&ŽU; Ú ûrÿõ:¢þï—3 ÑìóÄ CJ§ÀVpæè±¼0¾Öuè€Ø¡†LŠºÓ‹\99~=ˆI%¤¡PK´B+ÑŠ½ZÃAŽ^“5ÇïÖÀv•ü­$:Þé^Îòéc_ÒâŠvçŽtœ#ãã(GæŠÂ4°eª^à:ø ¼B0u7)î2ì@*Û¹îw ´ûH¯ºHÃÇY¶±ÃFÛº…pâá(9RÁ·|Uo±–À™?@Çߨxç}"v'/ Q•Üò—»d¥£ñcËÞ»BI˜âiM`ž`ѽ,΢{Y%)M@ è‹TK”ŒÃU§ ¸vµCj:ØzÀiÐïÔ2ƒz°LDÅPÚÕŠ S4åb›‡Q2`ÛÕTáwOÜ•œ~ƹËÌÕöÖk6ºÊ]â>6«ÐóTïˆ7.Çšò—„žSWùÕH×窹t÷°GÄ¿òåï2ˆåþ®œßu¢jRg›ò¹À+]ÀôwYô´)Zßp·¸…™þ Jå{P5}¡¬…Vªd„ÿÁ¨ýX7:ƒ‚ÌQ ·ª²´À'De H¶íôSwߦċ:È píIGõ[q ~a4áüv>ç •Ç—7Bý–õçÓ¾=¾S”úJz x§l–X»s;)íX3b™|«IfãJ ¦DÈhI!sZ©âƒ-%¦]·/#`ÏþCH¦Tç?¡ëPþ£Dï}ï· ç0]/xÖy±n}7ÚAÿ7ñfý?¿s‰è endstream endobj 3160 0 obj << /Length 2554 /Filter /FlateDecode >> stream xÚÅY{oÜ6ÿߟb‘ÈÒ"©gp9\šËã‚$—Ún‹C] ²ÄÝU¬·¢Ö[çÓß ‡ÒJÙqÛÎ,>†Ãá<~3¤ýÙjæÏ^Ÿ|wqrú*â³”¥‘ˆfË÷}&ƒhsÎ"™Î.ŠÙÏÞ¶Ñ—¾/*ÅšM6ÿåâíé«0,’iÄâ4––\ˆ‰N|·Ël!ãÄ,D ‹$‘µë¬/D" ¥°Á½&« ½Y¨å\„ÞRå­!‚.TEÍÒi^©¬©ni°V¦UMìËv]Ö#ÆÀ ü}ÎCOǼ9ñ¾ôCÎæ‹À½ÿÌ9÷=½£…yæXe•™sOSggžN·=¥aØH¹ƒÃ/Kf žŸšg¯AÓR52îGβZßd#­é4—Ȥ#_îê¼-5Ê–^«é›ëÍv×*²š5 ˜vv«Ïˆ"žE,)Ä, øL²ˆ»³ˆ ;Ç,ð9Xó@µÔ m jýÞ:yösT!vBÒ¯qdr¤o5®kÙ×DÝåÊM“eÑ4ô>èV3r:C‚ùA<¶ÈÖ¨]¡'"}Ã!îWˆøšB€<éôY[š¶ÌA¸Ð÷6Ù-5jÝRÞ ¾7Ö7åù®ÉZ7·«+eÌ„Ð<,áq'õõ¤‰Ò´·³`XeÍœ'ÞÊñg÷ßé­ú¼°iP9³Š=¡–ðy@qaõ+xĸA¿ówÞWx òäë‹;Â,µaIdèpXݘC¿2¸išvæ<>x± Nd®è>ÿ•à‹ÕÐ^ Jé„5åfk±Æ†¤H[YSLÉ'ÆÁƒâë¯È‡– ÒdpðøpìñÃx !ά „î0ðk®É6h­¼TuKãzIßBµªÙ”u†ðòíO ¶Du•™®©ÝN{U®ÖŽ ôãl~ÛA´ê@8—Ë›M!èÅ<±À!}‚ün•—FƒHpb{6z‘gU…J€í_³âÓ±âñ”}ˆEÉ_ö˜…w; „ÎCòj ‚›²P…Ú”u>é×>ðŒÓû:a¡4n¡—­ª©Ù¨ ¤@ƒ¤ Û¢>Ì”ã«]'€RŒ5¾Qm¶Èꬺ5ʸȷé¾ûu™¯©™ƒÁ©å< Â*|ã<ÈïÑ$R$üÉê–¹SEƒS-xò€þ…+žÏøÚµnÐÇõ»a6¼#+"žXP´l~²þS-WsÜzEý8@:•¯Û«l§š’`£¬œ†L&¢Ó÷ßö7Wÿ@ Až[€]?ž1ݬþ>a(‹ÀË-}Bâ³Ø–X ¸æ—•@ÀÒ¤7ñºm·æééé~¿gÝÎó<Øþ¾:‡ÀŽ÷.Õø±d x2YA¸ÈPKeS…5ÆoÊÕª¬­#ÅÜ{ ‰[D‘÷j*îÙN 1sßÁÅàÅèÚž;Ò×n=K^¹2M‚=¿ßk•ËÛÒZh×\z¥jU¶·´Ìú1LeÔ¸ziœR¢pXD ‡p<·ñ½p`ëæÆ_™›qȼWE™—µš*¤ÍCÿ82ÊÈŸà‘Úòù`[ŸsÔ‰‹[ÊôR¨0a΃èé±£ºDŸ:å>Ô£¾8…ÜÇ8$܉Ý<ô¯Žj€w—2’¶šp +$ã‡Â{ÎÜÀû¬¹„W/ ÑÚVOû ã¶£;¿„ÌVçk`ù^åYÏî ñûÑ:“­Ëa¸P5 кimÜ·Ê-ùižŠžë·Ýê1>™â8ÑZ¼tî×UC‹8޽—}#LŸøµèˆ ÈZà Cd¦ëÅ–Ò3ÂÐä:wÕÁfYÓ’;./–]Ji˜^AŽ5 ÏÓ©Ó<‡ »ØvW9©m¿Ý·ó(ô¦¢²…ô{(ü®)!Ö´î-Š¡w Ä à17ÁÄpÔKÞÍ@ÍDó.[v3ÍmŽ‚¯u¥ñ¾°ºp9LÈྨ‰lFvQü ¨qAðÀ“>†L00Pb% ÁX™S‘?§W³…‚hB4gÙ<÷j. ë™5– 2±°'ï}O ¿ƒ¾Ôù^ÓÏÂ>[àCêƒSÐ S~Væ).ä° ^¨é Rám™ ï_5 ¾q2¼Ðp7páa…{ç‚ð©7Y½½QÅŠŠˆ$²ñ§„ð}á¾.z+(&ížñeaYåKOäl,{_¬Ýº5œîJëkêÙ ¾Í\ÆPgªÌ6ÈÅhÆÜÖàžÆ*安Qb˜rBÁ壵H·î¦O\‚Ì•ü¨ßnQkàÜp·E7‚.‡Áà['í ¼Ý»Csý”&ÏvÆ(,ápò<ë.otãÚÁMd\D|kâ.ÒƒcÅIj¾“'‚™º.v€YÖ³äFµ!­BL©3úЭ'¨.w‹ì³Žn³üDŸL¶°môZC ðs:½ÝH¯#0± ‚’xOŸÊ½1>]¤ν2zŠÈaê½D‰UÜ—v“HƧŸŒa7>xzéËÉŠ9,ÃqÙ|®œ[Û¡Ä¿WåÆ5oMÓª­y&|×­ªVWϸZø’,ìŒA;Dý««¬yvqöÃK·n›5ø|Y={TëGn¬Î·;óŒ?éÖ‘ —2ƺ2|È¡í„d)ÿ?™ƒÐ£qêž¶F² øº1$dS®6™p6ÛQ`x­Ýà*Û(¶ëÒµœ‘­Øã¹îÀ’HxlÉ/¢°ý¿ã\FØ endstream endobj 3172 0 obj << /Length 1748 /Filter /FlateDecode >> stream xÚíYËrÛ6Ýû+4΢ҌãAà‹´wÒéªqWI´DIl!R#R‰ý÷½x‘ …ȶâIg:݈^Ü{îÁÁCx²žàɯ?ß]\ßr1ÉP–Òtr·šŒKÒ‰ ¥,›Ü-'§”¦³Ïw¿]ߦ$èÊRD"Áé´Ûן0¦ª@ûm®»_`7Êõ-cÁws†3$31™S¬û|}ŸïoîþøóÝÕlÎ1žîò}®T¡n.«úÒµU‹Ý¡¹!®¶P¾«ªÛðS„Ð'̉vƃá8áʈíÍÛï³ÏmÑnê¥-¯ê½·ž7 \„’ -.ðŸl—AŒ Êd×ð@‡ªDM¡¶õ²P“"CŸ´8'Y†(gP (ã¼CmUªbÅ«²m‹¥‹¿ÍÔaÀ6wåUn]ñ±/6m±kn(vU¥ÚZÝbŽÙ•Ðã7ø‡¤ëßÊ—Š¢à™”§³”d(Iž—¤\í6ÿgæ%™qHz…Yã ?‘€¼‰1beÕêìb›p$Äиj¾é¦ï‡No ¤D4ÓËÏÝÆãá‡f.˜n±``»CûíŽQó8:%´ÃQ϶ˆ1JQBÒÞùeÌPФ½€JÅ,A¦±Ü"§¦ÄÁøè¦\osú|´ë][ÖU®ßOÁ±bFøt]ìmC[Ûg³+åêÑVŒ<êÂ×M¹ØØHÈ@0ÎúPs²7Á“& ó C)q3œÆ2…d Œê;锺soSØ‚*ÿÖBS¨rSk7>oêƒrå{ט1·K á0 ɆŠj÷½ËÓ¸;°ëmÚy ó1艇 s:? :Íhzr :G‰du~ õ K ;ÀÎ=ì|ªfdz„<çy>B>•ì•ßoê³€—cà¡Á/Cà¥^žâÁë*ŒËøOéñ„Âe¦t`Ê!˜À¤¯æ:ßž­lLdæˆÌ žš)–ËÌs™ä2Dã2œmŸæ²„à¾Éeæ¹Ì"Â"SGd6"²ò•°ßmʳ€r¼È,ðð¢'2T,êðö‘C§±½ê÷ !’`ß" öÔžx$¡|ïú…HJ„ýñ'ýN Í9ùŠòÞ´Ž2Àýf A æ2`;4®Kç'”u¾ls}ö|´«ÃöÞ°”'îè\¬ËÊz¤©×~-¼ÈI §pœóvô\ýH>ÇÎÃp4|òÌ—1°DŸ²¤¢eµP‡¦ÔS×ÒÄÜ´·­Lr?óLÑ%%é’ëE+“ˆP1\Rû%„KˆÛÚÀ³°£ÂO®ykxSO»å–# «ëJ“Tk 5áI±=²ÎœN1§xhÍUS‡ƒin«£b_.le0! I‹SÕº…¸ @õƒë[ SUue–]Ö³I¿ëf“n\ùž;Ý!P8ýÆ^4ÎŽY÷/ú¥ƒ/⥉“ñ(˜ÐlsìµÖ€­‹¼)®¢|Ô7´4¤Qü‚¦ÝõŒ·9œw¦ æª¹Ž &a‘åݦ{Ÿ¤Ú[3ù‚û¾Áöš"Òß~”+;ŒUÇD*bã»m§,O_rÄÔÀÜž¿H 4Óüf¾- ¶Ea«‡¦pÛR§§PZÔ[à†[µä€ºn$¥ßðŽ„êª^ÏG¤‰åkÙnFÊùppÿÕuÔõ–SP³F¹~®r<š«ÐP:I6ÿ<ƒïŸïî.þN,è endstream endobj 3182 0 obj << /Length 2486 /Filter /FlateDecode >> stream xÚÍZmã¶þ~¿Â8 ¨ œy")QR€|¸´¹"AÉöS.@e‰¶ÕÊ’+É·»ùõáÔËj_¼ØÅ~ø¢ápøÌ33ô«Ã*XýõÝ÷7ï>~V|•²T µºÙ¯x0ªUÌ9S2]Ý«ßÖç¶ù¢Ò¬=e›ßo~úø9ŠGÉT±8MA¤™.DŒ“Þv÷üøYÊÑW['æ³­ˆ¡Súµ»¬˜-+–&­V5‡2ϪÍVDÁºoèÙu^îï©q{ÔýQ·ÔÈèË´ºë¨… ÒwÇæR¶Sû¾ˆÖ·55¿Qâ¨Qèý†ƒÐKÕSGÙ‘}&;iÀÂ0qßüò¬ÈáUDn,ÃÙÌ 3ó%1“Q´Úr°Gh­—µYUéêåæËðIÞ£y$ì¤ëÛ²>à;7Æ4}ΘØðÆÄ~936ÍÁ¤þ{gLCcâóÒé‚F½±»Ð[T”ÚðRØ•Qnd\FËÆ•Ô$vÛy_7ï_hÛm”ªõç ÖMKòGÛ Õh; C¥ëN[=Œaà©KcЇ:q%ÙÊ+ÕÕÍí’ZR2)¼ß4‹¢8‹¥ŸòþÆ(ó¦ÕKâ¢V Ý\ƒ€ ™ˆ§výU[üþó/ºÏʪûÓÓP³#­ÎÏ—îå0+ë^£©Î=ÕûU}9íÜÌfï]ÏCwS€(ëzõLÈpœ£Ïá8¯Þk~…?5ç¾ljÃG\À——®ßðµÙ ´Òð$¥Á Êý™&±?G·ï…Q ç.†cߊ4^ÿ¸·+ÕÆÂÈߺø€}©á@§iÆ×Mm5Yu1ÍÔxìd¹é¤{÷îúò`å;×€÷í+ë¢\ õ¹å ©Ö»{zâ1Kð&€ŒúŠ~¥ÛÞf|ÐSáôº ʾ³cÍa[•ÿFôèª<6—âw5¬Ózj²Þ±iË?šº·LètVÖªžÿ^á @Ú*HßÚA‘©¹šE¯WB%¦x%ÁÕ¨@çɨod(Ó„êV×¹¦Yd)ð €ÞíËŠBÛ.ZÂÐJˆwÃFfßRˆžÎ hzY:}™¦ãÓÇiLA!pn@ ò’ÑÌD¥Ñ7ô2„%75´mJIÀ5ìz¯ —‹‚ÏŸþöëTDÈÒ ž¥¸(ôÏ™·YÕ5ÓÒ&óÙ–nË|âfj«um… Ÿ‘X`eÕ6XA ù’ï%Ö;C‹œþúÌà®Êv/Ç}_ö•~,q¹ÛfweǨXùÑæ-R«ñûK©”3“}žKç¶4li:î\e4¹z·÷o·ÛûÿÿÝž²²~£Ý"§üO÷úº2Æ®¨:Fí†'ë¸4ä,Ì…/–†´˜H¡0´NlëÀGîm¦1)=S¦„½º1† ÔØ0Ad²³;ã¹ gô€”Â÷¥2W.A4N!pØð$sÃø©)L ¸Oƒv•¼9/½[¢wªœ_§òÆ.Q$ßÉAhGn\âïÅt!Š× îÂfÔc±C˜C RB M¿—Î~¹ŸÍ7›A°INù-ôCy~êØ.#Q†$a+vvCÏl)=i³ú §¥–'÷îÃü:Ì•7‹•Ù‚‰ M6ª!»íÛ ~ÄÃÖ›1d†fbwWQéÜÖ c•~6¡ÓÚõëµ\äùÙø‚ÝÚ· A-k…ñÊöê`8H—mPZOc¨7]á‚úY»PØÌ¯$˜ql÷/Ø×·«¬xÀ¸BˆY*í1~"šÎúmA.2\])n¥uØ”¦Cg^eÝbm(`Ëþ~á}{ÊØ¥.—n„…r`™DmR5~[öGZÏ&k/«­ ïMSŸ§ØµŸ¬­@åeG2x'—¤¶mòAü¡t¶ú #s¥2ñ‰_›½s>ͽ“t”{Ë&Å+ ÞX&æÆ…‰\I(þ¬L±`D˜ùh¢µnúY@Òÿ¹dÕRBpÑ=¦‡L÷0õ_ABÊ’@Mü,X„Eëëâq°$Š%!Ÿ€åôu+‚aú+(œ°‚Ë]‡•`|¡IK?S†Ã]ð*B¨éÝ *eH žEcÊ8x3• ˜&æ„!™ ä¬zŸÄ)C`V,ddyrª€p9‡L½QÙk0ÁÔÆ{¡m¼&´¡ÃH…ëOR _ãûŠÖ豩³p™lÃ×5½›ÛF”d?³ò, våá”-áò…$ñ¿b|X1.ý„>»ˆgKÚǤxµÇfIÈÀ`ϪrÈN/ÛÒV(õÈ=¼bA$ýб\Ò*f‘¿ôŸäa(˜Š[ì4DÐ9Ë.Ö×e~¤Áq€Lñb™*³ø%–S‚ó¿f)ªµÁŽ H˜®ÿ^W÷ÔI€ÊìýBý`a½PiÕ1³{êɬœòdVûD=x_YÑÓ`°ìFò2´ë4èDô xÉœI1Â$×)‡ƒ¤Ü„îÎ¥î02P,·V5îËËÛ¥æ™x#r‰mSÎâdlaK¶\^M¶Qè•pk?E·!šÐíÖþæBÐHù.js1£â45/Áº–Š¡ÇP1<'w$8幨… ôa;fa$Äm × ÅeÒéª/«wt{1`†ã,ðt—£ ŸG¹+w×+1ãi2ż-z|£š¾@£´Õü ôt¸ _}4}I./Äw¶Ó¸[ &Õ4䇖—@a Þ$a “©å ÌÖé烇>„÷ÓLªÙƒ¾{än5Œ1ÅèÇ×­HlŲ¼¹'£¶LMlfÑ¡$CÕšDÓZ"¡_MÿȪÐ4[DAÄmžÙ­š“m•.9SÞ×28oñ¾™+ŸÇvýÒ¿rˆ˜É!;sÿrýöÃÍ»ÿÌàΜ endstream endobj 3191 0 obj << /Length 2946 /Filter /FlateDecode >> stream xÚÅYY·~ׯè©ÑR<úàÇÇ2$HëøÁÊCog§£žîI’V¿>U¬b_Û+¯Á;d‘]$ëøªX”»ÛÜýíÉ_¯Ÿ<ÿ1Jv™Èbï®;%¥0a¼K”±ÉvׇÝïÖéþ_×ÿxþc¬fSMœˆ$L‘›ti›÷RêÊŠöœãô'’Wñ¿«¥®ŒÑ¤ÑîJ'@4Äæ½ÖÑâëÝïW‘”Á{M»¿Ò: ª¦Èû²©¯º"¯,Ò¢àÜlEÃÍÍ¿mÑwDoŽD,ª¼ëèÆÌOœ(‘Håñv/ªî)Í\l8ÔB¦±ŸØÜôyYÛqÿTö'Z¯?YÞ?ü‰t×â1¨ùe°X<‘"“‰g‰Ku¹8þj&JFþƒãP(‡g°´‘¨‚+üD«Œ0Fí®@Y±hQ=e} “£8(Q>QšÚåæŽ)ö¸W2ȇª§eÿÿÙ–¦äUERs‹P:I¢ýîÞKe6ʎF)^ò6?ÛÞ¶-ÕïUpÊyݼåÁ¬žvÚÄy'Ko@s öWFÇÁ÷ð¬ÁHöÚo½ºÛÇQðŒ¤L*.D’HTPä56tÐÙ ,‰ˆ<ªi@ =aqh˜î]‚ÈN¾Èôb‹òxGšzÙówõp¾q†IË|Zå¾Õ•‰0ʼóêrÊ7d ž«Ñ¶óv¯ÒàvðF&Œo!‚³­{ñ÷ÆsïU)ø®)øñO5ÈMçâ²=› Þ8Â$ ½*?àT[•§¦9ð´ªé»ç°^(´d@úEc¼|ÁdHÄ&¨ÖLq0eÁŸš¡b*´Ñ4>ÑHÎDØpå•jóDÍùsÖ· ЦmmwiêëP¿¼zþöå/¯hÜv}yÎ{‹¶˜$ÁOÇ Ê¥Ü[{×´ß]¿ýõåÆùc-"MŽIÞL2÷V +„‚4 Æáxʼ¸K¶›Lã£íR×oz%ˆ¶ã&@×átÉ–l¢éÇ!ЦWdh¼ûÅñ´ žXÔj8?0i ð~{µÖ$N˜»¸Ç€~ü°}jÚòKS÷°â«6­‚¿Ûº° ¥P³»¥Ñr;ëÀ”(((ü¦tÎG±±÷Ÿpàé&NÿŽšÞȰ= ö3 H§u¡AF†-Ô)¨áìLŠ&¡á¹Ï-µ9Ìá·¼óßKÍçÇ!ްå s~V뎌†#Æ)3Gûíd Í„edñÆ8ÍtÒ–9H•(Es†ŽPæâ6|Ó5gžÔ€Zæ<³@£ùØ8P¸n˜Ë FÖu»‡5çØî-ßøÈ`Ø7Ž}Î]œK‰g”‘Cÿ‹m¢àžË#QûEÊl¦Íއx:£t†@¹ QàšÍM‡l(½·fÞ¡±êXú@°>ÎdÐýT¸r´œý/‡†ÊLS©ºçÄÝÔè·ÕlÑÚ¼#¥ÃŸpШ;“ò`I•™áL:K‚w幬òv}Wžô‰Œ,’+#BN?NòUÎ+;ÛØ3ê³T¥Gmh±š%«Y²šep¥è×%üþeÛôBPÌÚ(µ4l¢tNÎ%áƒ3@ry©@žl®{† JÄ*FªCV˜¦ÂöüiqÜ_yh ú žDe€^³a)Zzä.EJÙØÈ †âD-4¶Î1ØEóÈ-ÂCÌ"Æg8‡}J€"бK×+¢4`0œ©ƒnÆÊO¢‡ì{ ÍNqÇ•ÒG(ÆÎŠ"éa›%ÿ¢ÌÌaär*oëûÉŽDEg¡‡qhÌ=HªH¡Ãdã4¾/óè0å²õÜ&@DnÝ… # Vq&ç?hZ”¯ê"îÂçR’Þ‰™–¤íãáöÜmF7Bá0 üo8ÀM†ñÓñÐ#©ð8!š&økrn™F:Fy@9 (ó›Š]`t†5gÃë oµDñ¦ÙmÑtY3øNÒ àH !Å…—Ͻ‹^4õ¦ìÛ¼½c”Ž¥ßYžü6w©b½Ÿ^¹9´k-e†ŸÑÐÑ)o±Øqh) "ùPvÅÐu”€PÀØBûY°D«ž ¬¬Êž!ä57Kç™ßM¢5¾°¯ôìRÅÉŒªGšhF›ÎqíL:Éf±{އËï$>Ÿàª"¿£Îc¡¿‰±@Ÿg‚Ð-™q^ô/÷±÷^ lºö-;ñßó½{DÆpЄnN?p»³mIHˆlšÊ¶œ5e^Ý«K‚3‘š±ÄRUðÑÖ-/™Œg·´Ô0 P!ó®yF‘·B™c[[tèè~»ä²v„" Ã¥`\lcõ#Š@B °ÙÑßüÂ>/n4>Dÿò ™<@uy †œIö|¼óø;Ò+MãLñȰmûõ60må;“­=êÂ+ù®Ë‚xC"ksZŸî¸…íPõ¸Å¾™g;Æ(¸þg€(€‚…üµµ„À¼œ9»Q2¸q:‰f:ÓC G |«ÄpŽdWÅÀ‰7–~»ÊßyqØEÞûE#Hõhs6+8©«<΀ù<&w€ çñÌXÂÀ²”vEƒ¹VØoTF11»«‰‰0^x±y Ó!¶­«¥Ëc?¿\ªÒ2€¯r_†[ˆå¾óÇÍrŸræ?–û¸¦è–A|uªkÆÅhïpó…P³µ²Ô"KõbeHÉDg+'ƒ­=€øaâU!äºÁ^‹PëÇ”1ȳ:ƒè5x VBv΋åO¡òNlqZk©©ŸËC,ÎÕž˜3¾½# ŠA_˜ŽÜo™ûp¡_¸Ò;C‰ba²UÅD4¿ü­¼@Ž7c ­¥aû·=ϧ¤±% gKL@ÿu'Bob ƒ‘Ò“nî<3Za«6§Àƒô¼Ä‰(ñÝÓ®n>mk™¿x„–±Xmî³vJA]lñWàÒÒLeÀú°YI6Ω‹ËÐm…šT˜© èjŸÒ„¾€wž)‹(j…¡…¥Bi4A)ްH!ܤrÒRÇÅÛXBXŒW·ÌpBMQ¿©Æósy¹~­† ÓY»øßººRlþß¼‹Ì`rM8µ}óîõ?ÕÐ!ä}e7)€vš¬4ü¸EU*¢dn­¯Eï¾zöLH•®_!::ñWËÀ­×ˆ8Kîç³_wŽ$…µÆB·)$áGŸÑÄ"LGÐ?ÕÑ5~ðÀ‘ ïJ“ô›€¾_Ë¥J¡ ÛMí¿ªÎp~–F"Œ’e4ýµ.??UÖÃç«Ü'±Ü €ûoûâ,@ùV|2"Z¾Ìàq^¼8@ÎTô? ÐãnÝ•fã\ÚD£ºbœ3Ñ ¿¨èx¼K@ÓÝ絯Ea|ÿÀÁ# æ{0)B•²r·B:> stream xÚíZßo7 ~÷_¡Çõa:‰EiÈ tº Ø€!í€mA¼Äk³&¾Àq×î¿ßGÏ“KzŽ®}HÌ»£HŠ?¾#eSŽÆ™àr11á³8SH?½ñ!ëgVyO7°J[‰ûb•6C¢´—ÚDaë–Þ#ZK¡|²¥fëKí‰%m[9X—i[dÐît42l0¹@ªÝÓ8îˆ*pCÝÀ07xg¶ÚõäVÇò Ü”á3óƒ3‹G&ÉXn×lü¤{?ð4쀧Ôã)Ý…§[Ã%ou6 ¯(î¢&p„¾PåÃcÄdVò{#ØkÆWŒØ²s<Æi7šÆæbzüÁúþmç{ë!£gŒ³ÁPôè}‘€LH{6„Oùδ3?½™õ[Œ—Ìë&’1ߦ0’›¡ƒyŸÓέեgjëJ‹¸Èý˜òK0¹›%Èùþ%yUyL=z"öÄš'õ„ìµLT“zÍrêNS€°µbòe:·ÿL5Ùv¨ÎõÉg[Pë“§TlútçºÀ–õÛ†~®‹ÉF—·)É]±U¬~Ù²6$Ã2ÊŽóW{4(ZÏ«WfPVáG˜q1[¶û3„BBò^1DOfü(C®w;R0 S\¨ØzÚ>&2ÿÜÀl.[`öUæ÷(LˆPËÅêQÍ8î€*œí™Ñ¸óq ‘"Ÿ¹ïÏ Ð/äÇr;À6¥‡j–7:€½ä20’‹Ûî~ÕA²Íd)C§mhIù>Òÿ4+æfwÿ&HúGúGúÉDò>;¸C¹å€ÑÎ`4¦ Ú}¸Û;‹ö;ßã·FŒY3E¶õ'Y8D¿Ø·…>^B´¡è/²MúrJ–à{Â;‹ý6ïª]ã’mý¡æ‹€–8f€QÔŸaºÃr«—³³óödvvã­™·)ÉÁ/¸“³1í pZ…eàÄ&ïpb#eUs¹/ÇÜ—cîË1ï·=Ú'ëÑCˆ%ýUÄήÕÁW™Z endstream endobj 3202 0 obj << /Length 1930 /Filter /FlateDecode >> stream xÚÅXÝoã¸߿¸ ˆi‘õq¸Ív‹n÷î€$mš %Úæž$úˆ7÷×wF¤dKѺÉÃÞ½XÔxÈ™ùÍ'å/v ñ×7ïî߬?„t‘$dáâ~» ¾Ox."JIÈ“Å}¶ø·w¨Ìƒï³\‘ªËÿÜ\ÑÙ&ž„$J8²cg,A¦7¾“Ò?×8?ÛµâQÜm[±ˆÜnÞÉ¢l´"- I³^Øã’ Oæ­ª—+&|Ïl­‚ôÜ*“ ý–Ÿ Ë-ଈÇÈ#ؼà$¤¡3cÆR`Añ“YR:Àª¬ǽN÷vÙì•]äú×%õ=•ë½1™ãCŠtZgdbú2ÊbBAß@¤Î={ýñâá ÀâžçwÇ“8 Æ8d*oä·Žœ9$" ,þ($‰ yFHÈü°ÿæHðÙ˜H|úm‘@“ÂCLYa+-·Ì2ÝhS^MÄlMž´ó¨Ë%¥¦8˜R•$+Ç«Ë4o3•} y,?Ï_Ž÷ƒ/üJÕM¥ÓFeðFf·šƒcêÙLŒKMç1Ù`ÜAV²PMüéˆËáäEÓF½&­ärÅièÌûb×GÝìíªÓ`½•9nÉ‹K¶¨-*‹>Oµõ² Ñ£#&F#éd4 zˆ’Dˆi”¿‚T“|ó* XL pm1`1s^’‹ÇÎEðššmÎT™*Ë©ËfI!yœæ–¸1m™Õv $j÷tG²G{Üs‘8΀ó;…àØ¾Ç(9ák‡#¬œÑ¾×n@›`Àð@  ÂÚØgŠrvgÍô?@BÈËá«M¡ÆU±Ã@`yQZ´žèr&ô¬¶ýlÕWœgµ'×µ#iWž*Õ´U©²¾˜.°Y×z“?-Cá×7ÂQƒrÎB"b7Þ,akÛìM…ŲîjäüL9²¡0UÚCþµך|»[‚½3þ¹ A)•î›l{— «Öȉ üçÇÇÍ_Àrkªt¥Ï*mˆ©vži„Ø£œå¶^Yå ÎKþ¢ÝÝòö™ÛÀh¡û¦9Ô߯×Çã‘ô’—+Û{ñ—â 8Ž&g‡ÎÂÏ“ˆÄTŒ}p«¶€=̦úð‡‰»8ÜÂЈy$¼â¯TÛüæ^~ì©?A¡“ÚöýíPlH[^ü~qG“Aâ%¢¤í°å—Ä`Q?•l„¾íg/Ø}‰üZ«ÜÓdBjF'_Ù†&¶m˃½ëiЩŒ%c—j,é¼å Ûú¯ 㞆ÿ<»Tc—ÍM㤲t_¸ƽsãüžU3äX’—#âOn?¦Üâî’³#Â'€àÇ‹3@„Ä}Àh› ÷Ž3¾ò¥eraêæõÓ…©ž…@mv0«éû/²8ä_g¿Çp^ )‘ÈìYoß¾ÅÝ’§m.Ñ@|ÍÍÎ.L†×7\UXݺ½ºmc T£vÃÛ£¬´ìGÚÎG>¸Û%d†äúaeŸ +nŠ5¨P²n+uýÝ/·ß]9¡úº9˜Ú½mà­T;÷–êëôô_o§ÿ@м†²IwýÝ5ax€Ç‡­nzsËÌ+µÝÂèïÌvV\¶õ`¢++¨õùñ¡îøJÕcCaò?i§ã£ž(û…xÛêܹË<âå WlÿËæ°vüîsØÕpÈn#«ë7ŸîÞõÞ÷þþÍÿcºHì endstream endobj 3211 0 obj << /Length 1459 /Filter /FlateDecode >> stream xÚ¥X[oÛ6~÷¯ÜMY‘¨‹¥bzØÐdÀPôš>uÝ@K´ÍV"JJ›aØoßáM–l%i·ƒ‡Ôáá¹ñ;‡öã;¿.~¹^\\Åk'ó²%ÎõÖ |ß £ÄY—„™s]:ÏP蟺þíâ* F¬a‚¼u²AŠéæ†qQ{¢Æ’wá›#.®ÂÐIaSÉM«0ŠÔ®U‹é½Ož<9_ž†ËÏ}Ûiú[Ek) ĬßËb£M#ø–Väw?öi]Í ‹» ùÕÏ/ß_ºy!ù|7€Aý¬DxY°>:¾mHA·wzÒáþ¤É[\õ¤5*õ¾îi±7œ|PBjf÷†¨èRÑ=çåÿ²¦íHÓjsZr£­ò=äV„íº}Ž|ik?y¡¸›»Ü÷ËO¬O¬/ö˜íŒÒ%î°¦(³æUœí4µ…HƒfÌ}žæ Ãðì§•;®¥f5Ám/H¾|ýnéꯘæ]Ã[3ÛÀŒ‘™4/ßJ˜¾IsyরK¸i+µß´W2·¤ÓDEnIÕ^Txƒ^ 5±¼o4)Õ_œ-õ47rÖ ^]0ÎV·¸((Ã)>Kò­™²Ã´&¬ÃÕŬìœ?Ÿ=¤÷¥WUpÑq!µšr™„ÑVéŒAúØ/ÊPýEä*=¿/IpUô¨ls¤/K{AXiX¹€”n8+©Mœ×M5Ìn± ˜p³Æ–§Ç™4¶™´RI"½yùzio<ÍyßY3k5Cî!£s+ô1w?è‚-5°¡Êë –ózE¶[RtÆ5/I¥É¾ ‡ÛãÕ·ÒŠûnÂ,ÒWÆÃ–;*“+‹Ïn5ÉC w®‡4ƒÍµ_)wÊ þÖ+m×—w®¥E_tùòë¥Yù.GŠCPg}8J~KÄsÿ´Ô3À!¯ÄžÏ9ÜkÆ;òüèà ¦Ä¨U²£œiZ+!)ƒì’ÔjR‹gÔ CÉ9`‚®ë`TæPÙÚøL³L*aäEihþâ*6ò6'.óÒ4~HÚÚ‹ÇY“° ØR¼—îSÔvЛ ¡[…þÚKýäØÚÛ¯¸ÉvѳçsµÁ ƒê­à_-Ú c,y´äA¬Qþ¶ Úi§í—ùfÈôAÝOŒ ÜGª«|É$Æûco>е˜Ðû&a“ؾƒˆã£!ø‹¹JÛû»Ó‹GzÿL|ƒß½°ÌšÃÏÎÌA¡Ç––…Cóž2diö *ŽUT QU”c‘'’Òïm»ìÎÅåõâf€ß †þ­¡³ SÔ‹Ÿ|§„p†f©óU±ÖN-ô:’W¼rÞ/Þññ¨šp¸Ì£&4M¢ÀAqèYüHÄ“­28°HðJ6jPP쟽}«Ç7—ÕI’ %ñìÅÒ™Ïôôõæ³*a÷›/³äGÌ×odæ­€3B¡Öød— M'qylçÁÞé{%…¸¦^bÂzÕ³BmUfÈÆUŽà ,Ò’f3if< ôdkU¸mô=hàú†ZÆëKY¬{F—šu¢0<ÒYNwFX4 Uïç$…Pâà Ii(‹äŒ~°NÕkHÇgõ©ÁP—<Ã1Û*‚¸%Y •x±yÁ}h1<ævÀi®Oh¡ï}hú'Òí-t©Ø(ì8„aL’?òâupZ'ïq® ÓŒ¤¢4W¾G^b¨à( ;ž\RI¶HÝ5€¢í 2X”&›žl¶¼2Ôfgˆ ¥}þIøB¡‡àŠL# |â¯ß}¸tGO™üî©틊³-‚3:<(uóïI¸ƒ¾™·5çð Û€›s_+ ÿˆÖSÔ;bòHåÛ-¼ªrùü4vr8ÃNªÎzÅó¼_ç_“ïJd endstream endobj 3224 0 obj << /Length 1820 /Filter /FlateDecode >> stream xÚÝXKÛ6¾ï¯06‡x]FÔ[‡=$m¶@Q @âž’Õƒ¶ÕH¢#É[l}g8¤$ÚZïzûPø@r<"9ß|óœÅfá,~¸x·ºxsòEÂ’Ð «õ‚;óüpqÎB/Y¬ŠÅ§åׯlkÖÖéÕ¯«ßÜÑä / Y”$°ŸÒu=ŽJŽ>âÍçM´o¼(Vê7yL½zuu8Îò£Gc-ú­,h¾–-Mò*í:º@d]™û,‰¾ÀkR±NõY `«·3¹ ‹ãøÔ>7ÜO˜ïÃÈYSt>;ópM7ívâö²íú´)Ò¶¸Ôâ]¾½u¹^ä²Ò³l£'›¶,nïÞþôñý5ž½ð|GöYUš‰Ê訇äz݉þ¼fN‘Ý-7 Æ\Ly§ý\€çßøèåÌV@†8à§¡zÇû`ÿ ßTuýO@>½1X-´uìµ%û¶M_=в¬w•¨A óm±©ïÿÍ|ð7€dZÆTÈÑY‰÷p<¸:nÄcê üp´­…€—k€H›+ ³»”Ùï"ïqÎ!H6ñ‰uZ0z‡K„|ß”—3åć@ñ†³®gö w]k«z{9[˜¦ÄWxa°òïÈ#»µ%æ©ÙëÁ¦|0„Ïâ`¹Ú 2ßð!);’¡£U p=ùQh“EÑDôD7°ý¯Šï8!¼;½XÓøà<ð˜Ûˆc˜³)pO¾QGÈaQœØ ß? :;Ý ®“`~ réÌßÏçb¾MÛ4ï@ÄgÙõmÙlhŽÈŠ²ßŠ9{Òq<Ú3”‹9xBˆ’Èèâ¶…XcÔ¥ûJ;Ï›ÅÍÁ áôœ}¾}šYã¾P/ɶÈËõ-þØ cË÷Xd!cQù§"R.[Ñ•Å>­A±Š%ÖWõ Q bhYòVî+­— ÷Q.’ä­Hû“×§·RÞAÞö28ÙU²‡0òÏBË~û^ôiYu¯OóGSÁ¢Ôùç³ÏîéJa²ìêLV4GÐqÛhBQˆÿlµDfhï¯x°TæGÀ€}ŸËZthN-ß=â„-×¨è« ª¶Ø =ËË6¯ôÆe7‡¢<Á‰l„‹-šJÓG(ù¹|`ïN–‡uâ0€!Œ‘1&E7šîúR6ÝißðÀaNÙξëùΡcÒJç¹1Ðqi]QIj™ ‹_¯™l ÑŽ9î1ص>ä£Bè âéBœmþsÓ²4ÿ²iå¾)5K3LÇ™ÞLñ¼;?¶°G~¾‘•Ü”9Úè%O8†àÂ$1µHiPgªN58ÇTãCs”…(ì8!q†.Ä“è#A9W.‚M5ù39Ú…ÆÑ §9š¦ß¥fÈ”Úg™öRzäœ&­ÅÑãpÕzZð‹æ^Tòœê8º p 0GÞÄðOJîûB+ç²ùì8.ˆ\øä;KÊ{ê6jŸÁY ‘iÍ®¬÷U:ið§§Š´Qb\êÆší‘I±‘q)þ5¸Å–KQ0ëRîð` X}øeΡ¦cçg [’CãÁ¡‘Pݘþ0 9Ø/n°‘GáZêòÌCpbØöŸÕÌ…óB~~÷üºÊã€ñ(°ÙW `ßó©×ÀI[æElqr/h™‰þ¡ò,4Â%w´„ØMr ·z(–°§¦!‰ŠSCdœ[Džáã1­MñèNVÛÅ'¥1dÇ¥–õ³ ä5ÃÐ++“Æm:ã+@ggÿ>ý‚ â ýOQÅ£ZYhÉÎOô™lÖ¢meS¾ ׸¾¾¹7I÷(rÒPw• ëWGBåÁéŸ3^õЄú:Ë‚æ»ñÊJž𮳜mB[›©sK|+vÝK"Àå–¯\ÊÅ8vW|9@„ò­V€‡3•KïÖ(+¡EHû‘;|ÙÑßD1Wç[ø7Õ-ít¿!à–Ðd¿!Ñ#yˆþIæB;Dõs1îj ­æKJÜS•8Ç‹±Ä¡†j ¸z¯[ã+:÷uèXÿëâU"Ôjm Ì3££î:_ßžÄé8Ë‘ʺç¬Ó}¸Ïœ£øÖeæ\"'~›ö¦¿iúVVÝA *hÓšdJa74ºÏ£Õ¹œr'nÏø¾Õ^ñXRCGÇšW±±Q ‰*1m¯,Á•ú6þ™W.%;SXØ)fYáú¼H _gNv¦ÑA#ƒ›ªâ(þ7ú{AÄÕ÷O‹°g¿p뀥oà/G7ÒèFStþ¢Ä/¹^ ­ƒzð∠k(í;ÙÚI¸l6‚_ðæ·“ÝKÍŸVùÁüƒ×Ñ®¤,4û¶ª¸wpg3¾_]üKDã endstream endobj 3232 0 obj << /Length 2798 /Filter /FlateDecode >> stream xڵ˒ã¶ñ¾_15‡„ªa ‚O;›Ê:ñ¸’Jå`OìCœ%B#z)B&(ÏŽ¿>Ýè_Cw]•ÒA`£Ñèw7€ðæñ&¼ùæÍWoÞÞ'ÙM!Š4Jo72 …ŠÓ›LJ‘ªâ桺ùO©hó߇¼½OåU¥‘ÈÒ 9¤ŸnMwÝ©DÜ7!oáÿßÞ+5Y¼UqìVo£ €Šh4ýólñ‚¹,Eù ͹¯M[6›mTÄAÙmd<^Nºí¢‚ÞÐŒ=ë}}xfàQ´©[õÏgM“Ó1ÈcUuùè÷P“5e[-è­¾T¹þ¶ ½"IˆÏ½i èÒípeºÝÄaðËF&nÌY $?Ðô¥u,ã"]ÝÁ\Ñ>8y¸´{”›¾¬î-úcíG†Œ5Ów¤R!‹AwûÃ$¼µ¦©«Û»ÛÊô½®n&iéLë[¿v&Õš„A¥å¥éÅÂvsƒ³ñ¶2q”!ÄgØtÐѦSc[Á<§ÓÝŠ˜vS¡HeFþ¦û²nì÷œ‡Ab‡",bZú€êW ÜsczÉÀÍ&J‚'K½Ç€ét_ïÑkñçKÙöõF¶1B-éãÆ#Wµí»z·‰À È̈áÿyMWÿjÚž–¥5óQ>n’ ¬[Û¯ù"HóÀì¬îÈ+„Ì&ñ.®kÒ;‡å¶‡(»ªþÕ/ï´­«KÙðrô¯57Œs‘ç¹7)†Þ»ÛÎS»]ñ¾¬Y(ý‚;rÂÇÄûœ÷:V€s}«¢\$y±¦…ÿ؃h2Àhk€‰šgš](ÕL@@¸" L”ˆãè…€ÿ~U>Hƒ:Ë»9‹Ëس«8[tÞ¯`Šmsȋ՚~"¿éЯiøí‹`”a*F¥Ž’½‹qætÈKƒŽóHÈ(›ë¸â@s±Š’à?eJ—10³µ5¹·C9 (–‘]šq»CgN´fØå±Æ‚A̶kÙùd*íZ ÊŸÜŽO›0¤0ÿI¨=ZÚ_ù@£?Ðß›ú‹Úî4•H^ ¡Rülã$aýz{9í\Q-Xjøg©q4 ØØ—-Áw¼ìÛw¦iaE˜’ØKGUùâI:Û"¡’ÁG§uDQ!|$].ˆ§…ˆ¢!]Ù“îáÝ÷ÿþzeB?‰ƒØ·€±šÛ5væÒV–¦ÊN芚~ßÕº:•í7 tËK!墛úîrÖÝwDÍ‘ŸŸÔs%²\ "_Îöty-£G”âlZzÐ;¢ÌyÇJéÎ]ÆeôÝ|–æÊCµf.Š\Î…àœ 9å”ô78¦Ãퟴæ…!£¹2¼#gtZ' §2 ¼Í4|¬© ·ôQ·ÔÔÞ¥nvÝbÚ°ü­Ø¶­¶Õ=´é+Ú‘‰(Áw¦…*Ô™¶¾æsXöe1mkBÎ8x™Ö3ïzˆ®ç„…ƒƒHcßä¤Dï«aÐJ P»*&6*[¥°aÙ¹»JÖ2*pvƒ³¬ì\ûäzÍŽê(L––ÿý®³ô^E…¾)ù²iHIrvÂLB.ýaM"Õj#½I’ h3?pá Í6 Í^šhÖ8ò91žö”àF_Ù›‰õZý•)œœ“xÅîßÿó»¯?¥ÅEÚOÇz¤á©ü€ ¹ê4=œr—‚¦c˜Õ­…Îjd•½$–G“E+l|CæÐë;2|%þtR÷¬«•þëôÊyR]KöÉ cSît³–>2*¹–>P+œœ\»Câ€j}<5'PSsei¢nGæÜ€uhOuëw<ç¸s>ͽµ‚p:C‚ØÏã­‚SoñÙv¢]s雲 'Vu-sÀ‰(}Üíýîâa­cK@ëY1IÙ!õáKŒÅ‚à•,C jZ\X¸xÜFY8*€N‰™ïgÀJ„+&w<ÇJ|Mr™¦B¾ôvû Eš"¼"JŠXNâ€"¹i¸1WhÈšf©÷•¨eÆ‚©•t˜ >“°Ïdô™„Ά¦mž ¥ÄÃü/bÐÁ•Ô@#ktb™v÷‰XºÖ݇óDÿéí=»aT$Á}Ý– å>474\X…‡U˜ú¶FT¡Ã”o˜Ü伮㜡õ%}BÕ]½§½¹húD匒—¶ÕJ ˆŠº”øµˆdéÁ RïÙçÛ?ò8ÅFrQ8½£Þsȵ-ÚÚ™ŽÛþÄ·ð8Ûˆ¯:}â©Ñír¼º4w»RÁxº¸ ]ÇYõÓÅi‰7w¼W,]Vï!þ& ¢ (¿j®'ž%·¤¦;n4 j,í´L6õó>haý(!ÓDÄéà g³v”€#Q׎)ßãLy2þN ÀãzG ·a Ñ’âêu^¡ D w-Øð¢YÎêÒ‚F"d8Èý ëuN]!5»Ñ‰ò1±.,B ~ÿ6WŽÚjÕ¤½t©%NQš¾¼)P¹\ tRŽå’”Ÿ#~ØÀ5>ô42ÏùÎà&´¯#Ä…†°œð âä”_®6¦‘ˆãArM«[åÎÖóÒ{nʽ¶‹Ä:ºT>‘ÚM1N>)™oæ@>•Ô·/Ÿœl:\yÜ_uf¬«d¡H.mØ(?ÕVùJ—Áž­ù‡„žwìÕmøÛy Ú(ø|?›ÜÈ€L>¹{f}¹–›YIÅLIÅKQ§D§Š*²á9/÷Ïys.ùúÑI9S‡w4¼öZ.§—Qø’4}„ú~SDÔ }Î3¿¾÷—ÙöÅõôÞœ ã{د=Ãe#)ŒˆàÇO~n±?néåv5¤~|ûâ*rÅm=°ô|ënrÕÞã9ásߟëÏÿ7ÖGz%mü/ÓëåúühEÏR§ûK×úW‰šŽ5^º‡ïßò¯÷›Ÿ¦sˆþM÷s=ÍÝ#›æànxü«Æ÷¬»zìwåÅ¿Å^©œE"Ôh?=ý²ûËI÷%ÄòöÜ<ñÓ=þy5±ÄÓÊGì‹Ì]}â (_Þ€ÎJÖ±ïÏö‹·oŸžž„ßú30Û¸ýk.$|x(æç§5M~ýðær£ endstream endobj 3243 0 obj << /Length 1784 /Filter /FlateDecode >> stream xÚÅXKsÛ6¾ûWhœNBÍX0|fªCâØyL2Md§éL’DBcŠ” È–sèoïâAвh×™zñX`±ßî~ æœ7 ™!ólÍ iWó2³¼ü†1[k;šû­‡,òÄÐÇÞÜ6¥Ì«²OâLj&A£ŽÇöÞWeV•ÏmçdÁWK^nUÃ.( KÁm#p[vù^ÆØoD„±›øsÂáDºPS¾Hà`€ˆ*¡FmT(&Ø¢2 aæN²NU^εHä-…â#^òâV‚ëÌ*m³žšØÏM®vB-ÄvѬªí芧—|.úPg ÖãŒwCxÕºmvŸjfmoävl?W\åRå©–6¾®fê†;Oì#Eìot9‰nôú(‰Û`aω j'¡Ñc:kä¥!¸×®c¬»3EÓfáB©•|~|œU9ªêù1ÁˆÄ!‹ŽH‰®1 QŽYöa>òÁþG¸šáÖÕ,p®¦Ä¹:}ïC• 4ó½t!ÒKës5†oëû!ñne.ݺ·núÄmýÙMÎÓÅ2Ïœî‹aä7ºÏUþ£¥›yj¥ßºÉÉ6~;Îý²ÈIlêžfY¤÷ƒ(ðQLüÛ70S  »È|;QœË¾¬Ð(ìzvµÒÔk)I´cià;ìôàË*åvë W•6 ÀõÎÞ?·ƒ'“ÛøXôEÑáHÙC!™yœD1a$ $ñûC‚Ah„¹zš y©I1â}0,ãƒÃÌ€áLØÔ{¹– 7øÙÑwNÚRf7ƒ™÷YÚ)›ë VVõÒä+ ^­y©òÂͬŠJÙ–ªì¼ÂÏÆk'²õ äq_d\q›]R(ÙË! I›µåmª•,ª¢—ηôðA¨E•õy?ay<3ôl±#`ëƒê‚8íc†áØ( 0Á1%qòb¨0ì9"`„ÂH’P8}G’ª…¬z+/†_ŒâA­»¶9Ñõx7Z]=ŽšëÂ’£u™ß½ ì\ -£L§*–n×i=ËÅCjh‚âmÑ¡œ°¦h>N!N¥aWãJ¨ê!>ƒjÔ²¹-taàÍÖeª€*¡ðK;bâ>Ôä‹©N Ï¥&]7íVúÞÍ"Ov¬M'þôÉŽéD’v(Õ÷=6¶4ˆ1—5.ÿ³šë$¸)Q_ ;1rºáËUqÏÅlÿ¢àŰYè·q»«Þ“'O4U`8h‘® ®I\w‹jnu./] Êw%mÛ\°Ì²ªÆ\Á%Ä0’útmïš×9o®‘†-0Ø´la¥~Ù¯ú:—‚Ëu-Ƈ“Éá‘SšÕª’®7…^)æ®—æãt;—Ao;§9i ?hšÎu–7'¡àßÁa–«Æ\¸â-Gb6©rf›`è3¤r× mÅmîÎpß9Ì¿bâÆ¶tXé¯áçåWW:µ:8†S3¯ól|1ù|º§'ºÏàe¾YŸ½¦ioÆ SYë6P *Ô:s=ÞYñùòŸÀZjþ7­±ýüÝÔþÏ€œ^\CT¤}¤1åÝéòàëw<È`¶G,‰7Ft9ð!ó#_ß$ŠÁùÁ§{3×¼wYú8Ø€î½;9¿ûV‚3uªÝÄ.hŸY¯y1­5ýpp±±ÎL}´$¦›†÷tã™¾ðƒ·žÙîÓ&VîEƒÆÀ¼ìWÀ0FïÐ_»WC¥qN}DQç+åÞl¿ø<=Óį—+4éëoZ Cæyx#®«±•‚œp¯KƒÜ.j«Ô*“íÌÜ>—²ç~—U¸¶õÐ>칿@L¶e··l0àS·v|–ð´{|á¸B †fã!ÔMÁî¥pÞÁé>yÊ e›Œµç̱€¹:¶Ò Âßâíü[B|Dm°?ë»Âu³ðíÛd|ÿ¡MìÛ. w ù>,©(•¨Çg/ÞŸŸº¡M‘/]óç¶¹)ø´ÕM Œ½”í€ÉÕϦª[×’J¬ä8r½B\‹b¼ùÍ|ÛŠ8ϕӣ>ÿ(¨uræ$¯ç é­ÒŘ’Æ’ªÙlÚTÖ)O/›ÃÔ)¶CºöêHÅ‘ ÚÚª{|“Ëý¨Ø‹H ˜¼™ endstream endobj 3255 0 obj << /Length 1755 /Filter /FlateDecode >> stream xÚÍYKoÛ8¾çW=É@ÌJ¢žX졚¢‹Å¶¹µ{ %ÚÖF Inìüúá’ì(‰eì‹D†CÎ7~TÜÙzæÎ>ß|¼¿yƳ”¥‘ÍîW3Ïu¢Yìy,âéì>Ÿ}s|Ìÿºÿíý]ä Ty’27LÀVªE^ˆõn\clGƒ ;cáÇ ä4ïC=÷\g½ßʪmN¦Ÿ?ßßq>Ü*òXàC‡óµ‡~ÅKßîUT󅺎Zþ-³ÖŒWôÌJÑ4äîÉr±ÇxâY ïê­xGZ'ëøKÝØj±³-\x1g~ Ï„%àŒž‘ ²¾Ü“R­‹ `_ø‘ç´ŠžÍNfÅêH?7²Ý€IÒØHìJÕåÚ—9Ž}giÞÒ.dN¿6ª.žTÕŠ²46E{fn«r©cûZ@ê¤aHû“M[lE+ ÛïnèÒø‘ËF^ìKb öÔgI‡ç݇߿~zuXÅ{ù4`q˜èc“?e±½øÃB`Ãà=w`bÑ6l¾àAâ|Y–ûJ‡á»ëú2¿EYdñâÎj_em¡*Rmdk,u ½yߘ7 ÊLQ[£ÙȪ)–¥CÿÇÜQîeó:Ƶ“L|šÇ“Ýoìàˆ}‚„Ïàˆ-±7„T ±Í/õæ½k8@fàГ/ö–x:+…ÉɰµÁ´F¹^vY|m—E¹¨å™¦ÈÚ=–!jþ˜{¡#ë– ßê¹4Ä6C«™™X‰mQ­Ç6 Ë€©5 óvNÅðPŠåå1l‹¶4µ¹R5 ºj¥„Ä BÍ~1½òYP‡3A » ÂÈ6_±ÛÕjW]w0!F¸“ îÆ6eÿ5wŸþÏîšèŠöérowª)ìöëpj·ŸôcÈÜz½õƒŠ*§€,K  4éH·ÓÐ4Æú°òP]¾œÆy|ÝkP:^‡RhQ ì6BçØ¡v(=J¡E) ä¥`$¢¥ð ¥À¢þ—(™ÒiZ¹k&Ô®è¥Ü©öÛ%’ ckÃ'g¬…KýÖNµXâ¸#øã„ €´'¦.¸ðSÏù²®”f(¨§¢‘6™69Â&Î4¹qÎcðÀºj‹tßÈüu\T^tš}¥ü!ËËq8e]dT$]:P9-eû(eEï\’™tKàí¦è=1Ñæžch Í” •hŽ©Fp:Ñ M€;M°ÙµÊ€ut=À¯þ\bcyyÿÅ£ŒUæ)PAžåñÐsLëZmÏ4ˆ¹Oïy±.Ú ‰^Ö¾j„´sxö;°ý¤¶p¬ñ„gŠ[MÑáÇ®sä×Í©µÇM‘mŒÈÚ2ý% 2"u•ÎþöB}«r{ŽºÄñáY«}•ËüBb®ŸþDbzK[‹ªYM¸ kxáó„`‚g:‡3„dƒsw IkªzKºäÈ;TxÒƒ c@²5»i~0/î.ºdúWyØôŽ ¿¹UýEG8giꪑ–”2àÀKf5bDÃ??ß̾Qæ?±»ê¼IR*[nÑ3•ËûÛX=µ¢^O('µÃ…u1 çƒ@›]TRvIùâñf’ºwÓtBŒEÏ™§Ñ»CBä’ä²›;çH?8MóTðåDò~ˆÜæŽÛ¥*!Aš8$”á-ÒˆDSIÈ%@QV¤“u†$Çú¢o)`*v¾JùJfÅ}æEaO…ŠêõNÉ9sÝ>àqŠ>7ÐFT~‚íÈT@d ¸ªšéí$SÔl#j¸›IÃï›¶Ö Ï ¾© s ÂRÕ¹¬±ÆÌ§!UÚ‹‚ýZÔé\Ó h¹þ Î,Eö°Ö ÿEG(§´'ôié´¼"D¸ÞUnñÀïÜÂ1º¥eÖ--ÔWg ÝÂ߯-˜köP·»ÊÃÈŒ2‹ ™Ì"L"l£#§ê³¦ Sñü ðû™Èõ‰m°ѺG’èæ S“Ü &[’µj¤[y±Ç¼¾¨þø0ÆO}Æûï®D! X{¸`ʦéwEÉ1Ø—¡ÏøÛ‹±®Ç‚À;»PÕƒ…®åPQl8j<üN[‚÷*Š '²¨ÌÛ†LÙ#$X©“ìvøÍä°GUî[óñ„dtQÀQ^ 4ô¸ w_VclJôeTaFä²ÊŒºZöjϸ¬™Â±€È_÷­'“>€SeÓŠÐÃŽÅîh¥½e-T Ü>¯hÑòÀ&}‹9ël¯oéô“M{å¾9¦­üÜ튪R­¸òdŒM`]æ甋þ»åÓýÍ?P ¬ endstream endobj 3262 0 obj << /Length 2740 /Filter /FlateDecode >> stream xÚÍYKsܸ¾ëWÌ%U3 „A‚®8§b»6UI*¶v÷°Þ5Äh˜â³$DzüëÓøe)òRslÍ~|ýà«Û_½¿øëõÅÕ»X¬R–Æ2^]ïW‚s¦¢x•Áb•®®óÕ/ë&Ë‹¬Üüzý÷«w:I«4fIšÂ\NN*BÜOÒñHzÄ·2NEƒþf»¬(ÛÉÀÑãå„YmEʤŠhè»ÐëºÙÀ|bUôo;gåÖî7R¯÷v×µØ-×Ç:·å%¶ãuw°${*ëŽZí¡Æw^º—(ªMÄןq!Û´¾³ÞÓ/ÕvY•gMî5hšºñÕÕLôP7Å׺êÀž¤ö—Â};|ïlž‚ÅÜ·}âš̲K2»™AJÆŒ.H@Œ½±Ôˆ ðÚ D3¹ŠY$½‹OÎþo¯/~»À|%VB›xë” ½;^üò+_åð´e*5«;'z\& føª\}¼ø7EÕDŸa*É"ã¿ð³×‹ƒi¢ ée@£­`Qê}\,…S"Y„À¯‘뻃mì‚9TÄbåß»n¸IÇë‚ë¶*IÉ»*1ë6;žÊ¢º¥îÏRYSdÕοÇÈ H×õMk ¯œD†È%‰¶ø7~̹ÛÕG "¨#»ÝÀ:EÕv.’¶©f<5>ž4©J+*>_Q‰éŠ +¶^¸!¿¤ï ár9õÜÜ“¬R4Ôµ«›Æ¶§ºÊÉ£qôÒÄÍ_Qj9N\æò¯+v.m´¡´q­Y¢LŸ ¯Lpüý²ãM´äøiÍO䔄¯Rð>VšIþ]9ÕO% ÓÉï’Sñø1¼zE¯?.€ÑÚ„cÐø–K×ûŽ®Æÿt84 ¦Hy¶-bsÌ×EG/Â\ÝC €¸‹lÁrÚ8{­3k¯#t|Ýz }Wt‡¢¢6´¼èþ\AÔÌ×~«VëU³IšâöÐQóÚS«-rKr®¸9½<Ö÷-†J*Ö쨖͛ Íwçßc÷ßI³ÕKi€¨¸ò¹ {ÿŠËþI ð¢îáëcjN¡àw›6Ií”·Ûö\v—äKû{=‚²p4ïKÁHDûž:Ÿ!èÍ2h…XÙkµ€ˆ? M04zD3z]f7nèvæË•vß‘I뺦Ʈ¬[úH¦–í:—¥Ó¥b,WΆ5´¯K«‡Ò7Z~W§“Í/©_n7®úÓ¹Þe¾ëÆÒ[—<öÂþ¢Ú56k©hÅ*Èõ6¨Â@LW-½©«™D¼ †„¶· Š·Öúóqø1³jnW¡ùOÉ' ;T«>Êa«ßüåh» °fë>YÝÜþy eŒF ,Å©Ïùˆü¾ùù'ÄóÐu§öÕÕÕÝÝ +o¶½Ãòß, @–R‘Ž6bÑ*M˜zê…xš`ŽÛ¶ö%xŸ•7M(w‰wñú2&˜ð:Ƶi7*RcüU…Lßd§ÝI D^´§2»§¡îòM [Ú–ºÙFbœ¹Óp7Æ3âÆw™ñÅŽwWÞPáF¥7†R5TÓkD»ÃZs¨ê­¯f^fRAÁAM±k—vW)›ÅÂ̧+þÔnm¦ÂŽ ¢A&â“„Jo‚w'¥Æ£xRy]`ô\ÑÜð+Î#.3ttEÆD|Iw£f 8ö4¸ßyZ*Þ{Z*1÷´â‘«Ž UÚø;Dü¿BN@ª¡:fþ|[ùë{¼÷,â]gî àEƒÂ¾Mø+„…¿÷¢ÙRÊj»Ä'ý`_¼d1\" Ñûî#ê*íÚÿÜÿ?l^ìü-ÊÌžF³ÄÄOEGBÉÒ‘Á8|ÐÌfƤ&^\^µÅ‘E‰á> stream xÚ½WÝÛ6 Ï_¤êgE’å¯ayh·»Euw×í¡íƒb+‰ZÛrm'×Û_?êÃI|õå:ìbJ¤HŠü‰¢ðt3ÅÓW“—·“ÅUOS”F4šÞ®§c°h‚¢ ÞæÓ÷ ¢ùÇÛ׋«ˆœˆ)A4=F¦á•Xk© vÊhöƒ8Ðò>a.°«^ñbÕpÙm/æ>£Ø»Fs?H"ïÊ~>à“4eð%À‰IâݨRX&¯ëBf¼“ªjíŒZÛoÃsÉ M‡^]¨®EÎýðÄÊR„Óƒÿ¯ç4ôÔ®©ì£²nëì½(Eö*;ºéÀrÛÁD¡•öœ>"—†¡Õú¢mU&Ö…AHX„Xö\8‰èT¥ í’tD‡¡z /F.( ±Gh@?Pʨ‹Bœ,#”ƇõÛ®«Û‹\I¤šÍ‚`Dp‚˜D”°0E:0Åâ(‰Øˆ7> Ä"F8I¬Úßçö¤È¶ÝŠïD3gØÓùÆ©÷Ç<¥žÎyœç)&Ø%;ÎϪÊwY'«‰½RtÜç¢ûV´v•¬,ëÚ~îK–aóæ­Ucgkž}æ1ˆÌ²ä@€µ¶‰îå‰>…ƒ üZww¼™±'FÇöÿTêI/ÐÀoRœ¦>8M¼Î:KÆrH ølΓ(ˆŸÚíq!‰ƒÿ|RÄ`ÿ>MQ(µqÂÚQ´jPŽ_ø¡dÚè¡%¯u±¸HtxSÇ®¸”í*y®¼ %ñ žßg)D)9¬ÓvÊí93°×䈑b§:»!°’ÃÒ¦(Ë'- ùc¯òï·H²`ÄýYƒ"ôà¢=›pØÖ»*ë«9 !<æûcÚi2òJ•‹Â±Ëî¶2ÛZÒ~[I‚žRsX|šB®‰•lÞð9m{2ÄùåW^Ö¡qˆ¿&\ (‹ØÜ €›Y]Ïž=›û!Ö>Ù®à°ÃBm,ÑÈö³£ôUÒZZ§È.SM#Új¥)”zªÕÞF{ÞH^eÖ[ðȇ3ž†®8ç¼³R?ùö+Z퇮'¥àí®ËÙõõì•ˮV­­`T‰er™y9ŒŽ<°Â—ð‡VÙFW©'éÑ7M!i$yžµtžŠ/;^øb½Yç‚a1¦´íp{O½·{é<ÛË.º!\[•/g——³S‡G=ìÜõ ²­‡¦5ÚF]22Ú pî¬n7¥¹ÇXzOa§Ö*-¥•à seZ!{ÿi·m¡j·Ì„Í)U–k•3‡5MX¬ižÁÚÀàéÖÛi»]~o™µ’U7 ²C¤´aóÝŠGÁkë€,ÿ=ˆ‹#¡™*áMf ‰r9ôá¦fÁ¯tDõ ¾Ä= 5~¸—ïÙG7St÷ËY®ºNä³3Àµk΂ä¤y‘“ºÇlä‰#¿kAâ=·ÊUùŸ…ÿùñÃr(ªºÅa„ ú ب]_v÷®’u²Ôåô)W.N .o¯ß]>¹ñv«îFSõ­›ßÀõÞç_e{„îwº×A²ÛõR|­{ï&—·“/b®frx»Qèœ0&Ó¬œ¼ÿˆ§90A? àqrgDË)´è(6Wv1½™üöèÍeˆÃÎ ¼Œ™B§ŽX>þøôÖ„ÐÓvö%dn]è3ÞÀ„.èÐ{W­$oEn9omïœË¾'Ð"æÒ×Üçº;wmásË3÷á€Wîë×Õ's< IRD£èï„̾£‘·3 Cô•ï¸NY÷/À‘Þ`øþ6¾WÇ–ˆÌTOýÍTYït› +L Š>˜@ïŽÁ„QÝœ&4²^¾y÷ÖžB˜ L12F¶N±­-–†ôêžË=a3„r±µƒõÌ'mWVð¶yˆPŠ0ÝbæÒ9{)Ç(<4˜®7}Lýà ÊÊý˜®A»kÞž<4·õ½vx£O4jZK[ qŒªK]>ö:Pæ3+] úe-D>¡ì† cÄõ{É4¢u£t#º—¹ÈÑ(fÂN©|= endstream endobj 3291 0 obj << /Length 1847 /Filter /FlateDecode >> stream xÚÅXKÛ6¾ï¯06‡ÚÀš+‰z¶È!²A‹ (šM/I´EÛjeÉ¥Ýì¿ï3ÔËZ×Þ¢-|ЈÎ çñÍPÎl;sfï¯ÞÞ_ÝÞ…î,aIè…³ûÍÌuÆýp¹. y2»Og_æ•(äfñÛýO·wAÔcæIÈ¢$Q†Íã‘fºrH:p‡=î¥e_z,rÜôY‰­l{îy{ÇyßÒx¶tcÅ! zõj± gþ‰ãs/ë]™"½)+$Ö¹P O Žíú,€:ÉwÈ2Ðç³$nª½`M‘MHâ>‹Ãä” ¥øÌ÷\ \–AÏÇ_À)W¿Ëu}ƒöæòAæD§Ù6«½ÔÀ¯6öET[ûc ¤¸Z/*þ/í&y ‹ãø´ƒü„ùþ¿ãŸY­J%_ß½ùðéÝ±ÏÆ9«³Ì YÌ)]ßT ×™o›½,ju2mŸK×á1ÆõÒ¯®(zÖQ¢X,½À±ûÞà³³ÎÈe¼‹È5%íõD%ûã·œ ÇÂ\ŒOÂöד¨Àâ ÕÊFGFÚóCP‚kBæn1A=ß3£ÊÖ‹%÷ùüaás‘7_W²~”²Ð/ÞÜÁ5Q¤HÖ!Q—øT¹Î6O´¸#‡J¦ÙºÎJ“µ¬HräR¿=,Ü`.iIgª’ØàÇâY¥ƒä/ï¯Úê¤ßÉjˆƒ³/&¸¦25‘ÊZd¹Ò™Ê@ ¤áÿ¦0–uO¦7¸fÌÇm²¢É)k2E%=ÅšAŽöõî4û.;£Úºs9ö¶&g/V‡¶¡¨y>ÛTí¼qê9Í«ÓÓºCóêbu=›6ïšžÿ¨ÿ¿ù¼ZÍ—ß5Í—/_ì¤]®f‹¿Ì³ÿ`;[|úv(Ç$‹‚Ìn9hÕg[+rÊð’°×/“‘½™^  âV\lTŒÓCÉ TBx hur  Z7&DzOf—íø4³±‡BPÇn-ÄÎíèb6½ºž®Tž‡ÉCá`ïä±ÅÜ% ‘ÎzrS²ZšûqûBV!LOnÊÖÜìIc[™k+§íOcw™ëAJSÜ’ÂórÑŽœVËi÷uBÔ-æ[@Hõ"ÜÁÛ ùîûu7X@£žÜÑ–r\¥Ê2…Ç^¼åßG»´çÇ.íýÑeZ›µZ‹\ï¯ÅG@°h¹³#ËÚ¦d Ð!1£cÙgH£Ë+LtV’¢ÒdCÑR[,š@B±þ)(x½¼°ç—£åg;›+ZX>Êë> î3wî)ØBá™ÙtË݆ð°°÷ “ÎÃrG”!]#Ê#\,&(?Õ¾|­^‰h‰ò~0Ó.¯/oFãåêýLƒÇtÈêiøëC°bmBÂ~[ÞÌ—“›½rôGÃä2ôoÑ0Qvá—@ÃÕµÃ!ø&ì@ I:IêÉ­X1%éÉM¬<»ñÚ&÷àËÑ1¶Þs;Æ˜Ž±Ð…V(‚Ý1¶ÅvM|‹#²|dùš :;$”[Aг CA&Ÿ‡l\¼…wbxèCofûˆ1oW³Gµ¤s®^1tŸù6†J´)POî5rð}¹·D¡'wÐ;1æáöR¬sôBÜë^´'·¶”#:¡}=Îþª~t’‰ñq’‰áø$i“[¢*z4•úqÈ>¦X/D/Å‘ºQD÷Ój1š.¯†‹iöɪÑ|anÈ‘ ·å.¢nóˆµ:Mä"ú>ó“ݧrmyØ=§:ÚÒ@˜ú´úb‡Å^lÉÀ=D€öQÏ–šñH_¥>jR‡ì¤ëØ¥ËÇâ;"¼èÆbý‚½} f+ò•A¹~µí!È  úuø['‡ÞqN9¢¾çàWî$ÉzCzIòi<™ øÕÏK.ÜJ’nî'Éö—„š$Õî3ßõ’Øçõà.î˜ðzìÉíÑHûà%àÔòðV}(î„&>E컸R”ó¹Ÿs—sèîˆØ©#º ©œM—À5êG,(Èð«T£'z§oŸBÈ^ÇR¿ )R`æh½÷_ Zë¯ôLoc©þ<ísýðIÖùýº™/ô£Úøz¹öŽŽ2²S¦úYOšäY¬¼Ñþ;ºÑÒ^ŽV#{µMÚ+ âŠhÔFè%#››ûH¯2yòëøf>|Ýå¤ À.gËYª×îËOÜd^]¯VíåÀ[cÀ(æŠ ®¬OùrÉÅ–‘þÃŒ+ endstream endobj 3306 0 obj << /Length 2275 /Filter /FlateDecode >> stream xÚYëoÜ6ÿî¿b‘ðÒ|èAõá’\š"½Ûm?\îƒVâî*ÖJ[=ìø¿¿¥•Ö²ë0V| ‡äüæIóÅvÁŸÎÞßœ]üD‹˜Å¡ 7›…àœ)?\DB°PÅ‹›lñ_O*½üßÍç‹C1"U±`RKS'¥Ù ÕwÌO8¯T¤~%#S´ê÷)—+J¯kòrKÍvgh;¥FëCÍT4l×Â~͆È&Û(Åü8ìÉ’z)´·íö¦lÏ{Ì-wÚÆ²¨ê}Òæ•;EÞàWyÉáPä&s„Õñ\¶q¨M–§m?·”—i¨Ÿ”Ùä"‹•à‚éȇ†`qÐÙÒª®Ms¨ÊŒnÎaû²5µcG#ëª+³†-W~z7ö0Ú´°GRgÔ3u]Õ µ“Ú‘´$Y$6­£û£ëÙ•KXÆSZö²ûònF¼B²8Hè¦ãm«}Þ’` ³©«= @q@/8€•§ 8È/žQ§êÚC×2»ŽÃ‚ˆqÑ‚÷ á{hšà^Òªø^‚j$$+Û‚f²¼ië|½”Üën¤@¸q¶kŒ[ƒXãHZ•° K[7ŒGÅqý‘Ã1„IsNJÝÿô¾JÇÞ¾ÊLAÚxo/ÒÐøWÎ¥“ôîóv7ƒ’œñp€ 5M{ùª}5g 1Óè ÏçlŠE"œrº-wɳÀgQìÿ³hÊlwÛ|{ ³•/}¯ªçn«™>R×$ÛUé,Û˜EQxÂÖ4q`åt2Ç{ iÑc=Adf)o[ô6Ö^6ôÝÀPöf;¹›DÅ&SZÅŠ…RM êf©êÀ[ú‚†§yc@z2V^ÞÒh³«º-TûeY‘ÑB³Ý%mß2DµéJg'8œ¤-8Ÿâziµ·7€žÙò:OÑTqáûÿú7ó•ÜØ>´ÄùœQAØHù“Á?cw쟱o•m8ÉO:’çÀ t.‡1åVçɰ/Þ¦*!ÂàqíI™C1Ç?±/faä¢ê»%ÔîªzX7‰ŸOÄQd#PÑ]µ›íN…qOôÛ20é®]'©iw™±°©ÓÿáþnýϽiŒ«C]}3i˪zûÙXà³@©‰O8ã }_Ôpx×¼Â;LöôY¬Ç´kÛCóöââþþžõ;/WÆaûç Þ$ñÑÊž¿Š#¦E0áÊlŒÍ ÀÙüù‡ŽÃÏIz i†Ï­Ãá¾warï ³Ê{CýŸ’ú./ ãÈþeɤ÷Α#<ÄBç_Á ½_Ëuž€—¦iˆ•¿­Õ ÞÖ§¦”Ê Åæh²Æöã95YWÛä…k¤ RKáåß—ãÀãx yi’š(m³© Xê‡j¿ïJ0bÜDZÊKú^·0 §KLÁ¤Â<¦ªhÒ¥ÚûÅ€)dÍù t*ôY:*øŒ2N¼¨•¥:ú p—1q ¿ñW)ClÆ2Î|ñHM³*G¼€0,¸æ\…‚ÇRCGÛߙí«‰ó½JºÌ”jšúÛ0ð®~˜u,=æßàGzïë‡[;â[¥Á¡k÷uÊ8åQ~à}yU\œ¢žÁX .á æëCyÄ%‚9Œa.ä ÆÕ:/›ª´°ÅÞ' WèýÌX‚-îm^؆¤0‰qÈm4‡‘„ºÛªÊh ÝAéðñTààØ 9A`…FùŒA €nÀ»Î£(¦bà@vóSÓè ý2|1Âá $ó,,ÀJþ-€…þEÓ\E\ˆXÎm¿Òó£p¯ÁZwŽg°–ß+æ>€ç.ŠÄõ>õÃoèóKú¡+Š*ÝõÔnùGv Ö rÍ&IHŒÕP ÿ¶B<‘”Ì™œ HV£æA4ù©ZW·VLéõåó[jüŽá-/lêù°]b½±ƒDz*–Ó䣌±sj•4)ØSî`æ”ÂPqQ5Ec?e£SäB L]ÑÇæåv‚j+·ˆbŒ06oÍ¼Š æk=ëàOµ9V H7 šcƒ ô«M{QEÞœD =<~±¨ð%.N- ÀŸ÷pâ”|Ît¨¢‹oMÃî –±œ«Ùì5ÌN²§kã´í]ÑT³Éæœi›ºæãtð4¥‚²A2ñ\Ò§@ýe4~‡ â—ìià±jýöwÏn¥ÄÓžžtˆª¡¡®}$‚¯­á©I ’£î—ÝïòtGMWè`ÓæuÈŪ14zg푳¦4)©±vïK:fNŸ—lEåßË$Ó?·è>5´‰ãó0ü]‚ã[Á†žŒž‡€ =…@øÜÛCuéw®1…£gŸ¼ÞA44þ Ä‚mR=æ†<¾£;¤ƒj¡¦ÀA¶ô—„‘KGƒÞ­‹î𜈤bœJ7ÄϸÂÅAzÏ#9A§WÆ»bÞQ@þâ(Üó§?S…üäõSô¯ŸbT…[EÆ'R,³¥$Ï—Ï¿'ûCñDÍö¸†Ñj`úƒÃÑPC»gèׯ_cÅ Q3)Ò®HP(Ø-ª-5ê¼¹u-̬jÛ«ÚeÓ§\jðtCïÎÅæf(Á8HÁÝ$Cq#Õ+úšÏ>~o’j³ËWWW¯Îݦùe{¨×[C¯4[×KóËô8—Aï8»$—ðÃÖé¶kÀ“HÀCè9ŒKwYtQøµjðá¸}{ä~Ñ^™³»‘} Š-HÇBGyÈÝ}îò“‹ý饜ŠÏ^¦×D+~wÀ¹Sá9ðp¼'l>Þœý$"r‰ endstream endobj 3316 0 obj << /Length 1826 /Filter /FlateDecode >> stream xÚ­XÉ’Û6½ë+X¹Dª²`‚;|³;UN¥’8Jr°}€HJbÂEæ2‹¿>Ýh"9œñÌTJbi4zï¹ÎÑqŸVov«—ï"î&"/rv‡».óƒÈ‰9g‘/œ]æ|\·²þ·Ï»~óy÷þå»0Ñû"b±ÀMQz¾@¢•«/x»[}Yqº·¼£8`Qì¤Õêãg×É`ï½;"q®eåp{ø0.?V¿[vó¯’ß÷Çòs—Ew¢0fAÞ•ßžÅÃÉA‰„E>À‘ÍÖ ÝõMÛnüx—²/ššwá­‘£šš–ÎKÿV6zûuw[UyßÞªû—M„Ì‹£§ØDéF ¾‹¸Ï„ôø1ïÒ¶8+ÉÇÚ_¬0q'Oœ-ÌsµçA¡ô¢ußÐ7•-(£†Í •ìO9 Zk¹,7±Z×b‡‘ÅÎÖbÒZ, ×L‡ÝXÕ- ê%ÌHÎ?;y̼«ð4^f ›Pùä†îÍ‹Í6tÝõU¡]nGþË{=Éd/Ͱ8}§'Œ1`Ã!þëvÃÝõq¨òºïTãâßÌB|âÜ8‚÷L„K2õÕ†‡ë<íC®‹þ4óhº¶D—ÑJ~ØxáúÇhÞ_óN·60Ò¦š¯ÊÚ°üÇn:\JÙud¬‰Ž^³ØOŒÜßµ•ün¡y`OMÅf†˜pÜú‰`8ÞòˆB§ÊUñxã­æÃ¬æóˆ¬†K*ú»sSgE}¤½NVçRÏBà6”m!ëÍ„KuűnZ44ž(K ]rßÈr³`Œ„q/0…æŽÆG¦Æø¸Ö¨ Ãê} áL„:,ïõg \÷‡X*Ì„‡Â= œqJLÇ åžç¨¦&–ãXÇ2,ͼ‚{]/ëL¶ämÛ´í ;ê¦Ï_­"ÝÔå-5uN*vãè¿¿ÆLn^,YM„ _h…-lM(æÖf Ç]6[ßMXySWi;ÍÙ /(Ïê<ϺiAßëLïÎyZ|r]/Ͼí/×Ïsˆêâã=Ö¨Î$±$\Ù»lŽEJ ºlÀF •±-RUMÕÂÄÓ0WŠÀW)°áëí^W~Á L•Óp­²BU¨«ÔÛÝ©ÊL¥…«¬q„1SQ§å™bXÔ³zyis“|V´KùÌý€ÅáƒùŒ`Æçós‹i‚¥ãO]D>ŸÆ¶ÅgEBH-U„VV¹Áu/‹šwlp[I÷¥i8Ç×(LfèÅ“ÐuÛuiißl¸9÷°ÎZü©Êªý?Gi߇b_÷9^|̱«äD‰qCE5†´ZT V!)ö†ÝŽkV†ß¹”ÔYF¬®OEzš1:·xóbÄC­Jc“ŠÑ6C ™ðtS8z‚@ÖvÁi‹ÐPtâ«P ‘SvOÀœNî(Z"U ……‚ÀT;`¢A°0¡%,s,lu€ré›)Œ¾§!Öû[ú¾¡`8jâZoÿ"¿ô+ša…áB”£Ê¯(ñ‚+é^ßõ@öšèDüÂ0Ra_uõ¬ŠZ“\Ÿròïú:r`uŠ ÕÁ2ĹF†Š¸Õ_‹ q¦ôRW¦Ó½ ÉFyÂÃ(\’-ºApk| ÐmàÃSŒNÅñ4¥ ÷ÀõoŠsÅ=ƒvÔç4ÓMB˜" ìFØ 3’ÀCf»¤¾nŠTwd”8¬äí4Át¤DœÖøó°/Q8û¾Ú’RBÝ6J¶_Ñ\„äz.‚u^;qñŒ­B$}ÆÝ‰ GáŽRSÏ+Ž#Ï#…ö¼"Ö]<0t¯ ¹ˆ”"x%5Ä`\(j-ôn4Aq¨ ÷Æ„à<¦piQRá1Γ‡!ÜG#Q]ZLÄã`„@1… ½÷Vîú ²Þð| öÓÐI§øäöQaÓYêAŽK37àÇúÞ.x0/Ïx©SNzá Õþ}RÍ;à*FÉ=0‘ô©šLe IJL§@—§A5¨ªPÑ[f‚aN¥\¯·²'O„M –3}‡ÉÅI˘d¹˜íöùkÿ"Éšj{ÉÝ`•,mÝ÷ŸéiáP²ògtµ×Ï€ŽqÀxÈ/ÎÕÿ”,y8,áÁÅÃðÔtM'^j±,}ÊÂ@ç{ÁÞ¡)Ë wm÷ ¨@‚# xõͦˆ óáëÚ½D¬ 8­Þàz*苉)Æår»,¿ß„Pµ.på·þ+K |¥èöˆ¥ßÎç+@‚OWmþDÆN³)hÿ¿[xôè&9ÙlÍA«úŒ¡‰•CS¼þ5o]$Œ–cÿÙ°š`U‚$)øÉ:JÃ(ׂޅ?½Èdðc‰Ó3ü°ðï[ÀϾèˇ îÅÌöYeê.[Ìß·»ÕšŽ ­ endstream endobj 3331 0 obj << /Length 1898 /Filter /FlateDecode >> stream xÚ•XmoÛ6þî_a¤À 1CŠzÝšaMÚ+ÐKƒíCÛ´D;jdÉå¸Ù¯ß’%×I°(¾ÞÝóÜ Å§«)Ÿþ>¹¸žœ½ ãiÊÒȦ×Ë©àœÉ šÆB°H¦Óë|úÉó>ûrýîìm$Seê3™D°‘ÔdªÌpÚ„»Ýaëh0Þ-˜û1tJZö¡nõhÕ`õH°d:)ó'ÓõžÁF·ÖíMS;¯µÁ–ôªºu]z£+7\W4Øökë\—Ôü̹߶:g³¹LnßèeÝèSN¸×虽Õ,ôT“—Ú¸cê%­>¶ãF£swb½ŸÊ‚‚s0p ö±Ê,·UÖu…‡¥ÝnI§šmÙz±gÁs?ªª[×¥MK­]Q–ÔRåLpo‡êÞm±Ð[µÖ qº}ÔðcÉ´A¨y…hH9@Ã"ÆSÑc¯WV„ô‡øÉ˜Å<í€e÷’èƨ´SbSÖvW —,qV ieî×€~ssCJ©–ZªÑÔX(Bšû°,kŠ®Ï‚fÜÚ*tR“8¤«–õàE, D”ÜïAÄ7é­Õ-šùˆƒ[ãf¡–øtLxš¹…²$:ëeuÃ~dïÀgIä÷öÈæIÚrèÑ)aÄÒ Ç”üêüäTWeyB FgÄ)`Ú/@E±÷‡SpSƒ…%:‹+gkþo*ëa ™Œ€ÝÌïf>2xëp,8›¦ÆåwE®ó_®`ÈfW먈=JÕÌDâ­ô(¾)Ý>j;|+Öªí±ï¶€rætE- <~ÂDìð~5ÃÙ`›æ3¹?ñœøåTügA¥.—6¢T+’áïYéì¦]¨­n¨O9V vKz|_îî¿b k:~ÕYËêfõëÔ„°örKOIz[þ! ]ó{,Mz¸oÚvc~>;Ûív¬;y6'ºã#¨a;ÑG´ãQûË4f‰Ç \饶ë*{¾ý/( ¬€5Œ¼K ûiê]0Û{?Ñû{õßv—ïÝTÄE¤i@‚Ïã0ñþÜ訅pâŒìF5@tݦ-2CÖÿá©èA1Üή›F—Ž™ØAA[-‡Y£s“í¢,²—…2ΆQ8Ð=J`QÜEQcÔD‰¾'G ™ˆâ7Aô¼ë¨9Úö¸rk#矂'Égß„àÞ#ŽE1ãû<Ñ‘,¯ äÓ™àÌ—<>óÀA9@Å(F:–C“§à‡©‘ bÕç‚;D#¹¬«|›9Hモš«J•÷ÆFvXUT4tE[í€M²Ý"›ð°w£²[µöyÇ’pr$úï0 ÖÛ¤­€=6ݼ>¶À¤šryëc½lw@^à³>¾cìMýÖ=odôÖrˆµb@É1˜!= î?³H"Ÿ}5†Ýq±‚Ë£Á9ôY¬dìù¯JS OKºãˆñ´'“Q#…ïˆÃÚÞ§O¯RÉÂ}Ê/^/±â{¼HÃG„Â=¨eKl`-Œe$¶© x†„B€='Úƒðü]Xf|šŽHGAP¸Â žT@dX‚» "…t&Æ®`ŠUU ™‚ñ é!)É}]»4Õ„OzÿÁ_¦ÄñõfÛjz!= ±´uxQB9²t]èNc îºóF¡†;ÌÿøNѦ0ίI@=½T‡Ú1JúntI•íc”‘,N£1( ,ÕTE’áYqŒ O¥ôã…”›úæ›­ÌÌz˜ÍA)HcØùf¾én‘/^¼ÀÚƒ{x ÝBÕôZÖ+j@¾u-L˜†Ú–ñv&_³hoC=vÙº±»SM¡ºZÃ&bJ»»hŽœõrNOmPDv­•Ù6úüäêêäÔZœ·P»·¼UzåÞ²â<Ûåð¶ƒSÔ9ü±E¶êªN”Äóƒ=ÆvXm§n•×ë¹^.;§vO€CEmÆŠ4k…ZÜN†»â@˜ ’©/hج·N&ëN¸Û]õcç¸XÛ‹è6Æ%8†b¸ž/<­„‚ “máÅœÉ=¡«^ÝÜá]»APðb›àqaåºH‚c{’à„=Iì ÃSú[Ø1Óôú±¹'o®'ÿN„u{Ñ´ñEy3™fëɧ/|šÃ œ-™îìÔõ4gmt.§'=èoöËÐA\ç,‚ë¡Hášûô4BøÃârïžûišÂsæ›_Ö-;kÒTûuf¾îîâÔ} ˜Øú¦ãι¬õ/VçǾ·dl`6$”,–ás IŸÒ¢#ŸÒ^Ũ^ChhŠMÇ‚gÞZÞö×x?$~ùpíÄ<Ûm ýt‰v6Íèæ<è¢ÙpnŠo´ÀÚ8<¸ŠØР°ÒfT²›hs]Noý×–Äp|œd6¶î[ý휎‡¾í/”E¾³ö?nrFä endstream endobj 3342 0 obj << /Length 2599 /Filter /FlateDecode >> stream xÚ­Y[Ûº~ϯ0ò‘)©ÅyHO³E‹-š-ús€hmy­Ö–\IÎfƒ¢¿½s!eIK'Þ X`E†Cr.ß Gñâ~/þøâ÷·/ÞÜX¹ÈEn•]Ün2Ž…Nì"•RX/n7‹Q».öë寷~scҳέHóD›J$2½ˆtà¶#î•g_©ˆš'ý£+îËÉ´KÏ77Zwš-V2YfG›ü%6ñç×Ë•‰ã¨®Ü`Sô…¶}óå§›·yÿÎ3mOõO/UýÒºcÑvå„Gr¥SÀäH¸ 8T’7ñ¶]Ê8º?ʺï¾zªoœæó\“c½§Vä™òj/–+eãhÛ´‡ÓÞýh¶üìwåù-`²l–‰Ôh/©­€ÙÄÑÿøñ©h%~3þË®?mŽ!ãDØ8õrÅr¥“8ú¹¨y3žkxtç¶ç¶½nÚ¶Ü}Õ §É£C±Bñ ›\ má)En ‹íÛê3ï£iù¹¯ºžGpð¶l¶¸2ä}Y2ùãʾ¨öÝ+1ÓïD++§à•´BÂÁhµººÞ$Ÿ–ÒDåºÇ}i­¢¾ágw,×ÕöÑÑ6D-ǽW_ÊŽ‡wEWnxˆêÀçîZïf³G:sàèþÝõO5w<õåæù*À@º^ Ä †×Ѷ-%×M ¨«úûcÀ‹OKe¢¢­Š»=)H¤­_âX‘§r‡YƒÓ£, þ¢ÞÌXœvZ ]cd?_ˆ#×kbßÜW€Nà‚‰%_PIzö$>ìJôØ)GßuGËdŠe O-ޝH18¸©:ójiLÔ1s»Tq´ê›Õ'…WB/&mò’ðcSnØŠÓÞÅWÕÐ$Ï@Úõ¡pP‰ÈÏØðmý+HIYbgѸý,ˆDXX÷¨gç€^-û!¼¢EÚ¡@Ü5蔎ƒ X>BTšú“‡àÅÉàPL}¨ú]U3µ,(få.Ÿxâ®9íÁqeΈOXÅ…éJÁÏ¿5]WÝíÝËæè¬?ж CÚDd´SŠ ÊldŠx‹…Bé¸8€‰Õát@;½,“¦"±ƒˆ— aÐMµ­Ÿ‹8ϦgVÕÚG­N"/‡É‡²¨y+m„ûÀye*”VçÜÐ.´*~zæÉê€CýîPöóõÁƺD†tNd8ºó3]º2±HwP—ÒÁc×hµ‘“œH.V¾ˆ ·̘‘Ëã3!‡¯<8/eTÔërµn0Á $æüp99|Ç”æáÙ–ý©­KG-ºI,Øs9c|Æã³Øï‚%)aœf?—”™M§¸µâõæh¼ª1†—2󅣕šyÂö—›Îs‚…æ¼$›˜oœ@µ aUÔÅþ±«0íÆ’jG|5)Ƙê“cJ^WTáÒ„CñÈ €x 9 Ôžk · ¨r0)¯Ãlñ¹'ÌÞSVÛ`r4©sUtTjЈÐÖ*?µŒþ¹+ë¹sL³\ DS÷ŠY_ዦ¾¼¦ËĶu´ÓÝ¿ ì^‡NÐÓ¦´äôÇ¥ÔcxD~*(‰7iq“47dζìŽM½á²2Õ"ƒ¨©vðV´J’iêYðƒËZ£¯˜ x‰c¶žÑÞÓ€tW†pw{jÏpt†…/ìõ1XNå.Wràꇇ‡z³×ÊÕà[ `qøô5ŒÔJè4Ÿû¢p‰ÕJ¡ãdš]dK_4ñF¥t6#z aI,¶ú‡’'÷&“ÆÏ_Ee¤^ã H™~Âqnà [8Ï…ƒU»ßN‡O¬ÁJWhãz.³ä³ø@­ˆ?á™ÏÌ0ÀÝ´téÍ2›ÊsÀ(Ç@(‹’¸½ÞLgŸ?¦:"B VQL7ƒˆÉô«v_¯¼˜®Äôl9}1-X\f£XµCišÒ¹ á›óÒ$»ÉIýìV&+ec#Ÿ ÈwP"=ß‚.xCÂÞL½o"æì Žëwp ³iH"¢ªžJÔã5dÄók(÷÷îTÁÙµÅeFÇ?¼ ]/ߢÊî[ºÌ$nHÇchHÆÖƒs ’r¾˜K5õ=ÎÁxôùP‰R¼h0[¯º2.NÔ¥¸+îé}®d±€J|Rÿ«‹°­} ]¹n¸Se®¡†ÂWp9ŸSª9 Èè²½”ßäô»Ê €l®d5‘è ûšÀKˆœŽ™‹îÚw=<"ã§P1”*¦üÇ'ÓÚ$¸ãŽÆ×cÑ/•\W…×’Ï:–º¶æ¢&L0ú±ÍcžçJꪺ+Êb1¯þßýç4ô$TÊ­:•ù–„#º.†J¡é&òDeŒÇ@Ø6§zCà­"ê{"qŽëŠë~xó¾/«ûÒ±aÚ•y»Ê¤rb†WÝÿÛOqJœÇøMU>,È<‡ŒJ¬£z»Ì\EG½ôÁîF¢…MÍ7›©0PÎn”xÔ4v7%X¡.K *ë¾ÀXÌ”u×·§uÏ? ~ð‡-¹[¼¿¢&á'.eünFѰž ×j™‚éŠÇÀùV©JËY)~á«ëÓ&1‰G5²Níüb‘N7Ô1éòŽ$~¼Ïl¡oÄ­ ]Ο_|\Í:SBêd$(˜¢óqó`|¦Û=å–Q×%W> stream xÚY[¯Û¸~ϯ0òЕјI]mÑØÛ‡Ýb{š}h T¶åcueÉÕ%Þýíá ©‹yN²}Ò˜—áp8óÍÅáæqnþøê¯Þ¾ÓM.òD%›‡ÓF†¡ÐQ²I¥‰Î7ÇÍß©í?þôö}"gKu®„Î`du‡¢>à²W!s_±Þé42v*…AMÛÎe³Ýi¥‚á\ñ÷0T]?àÝVfÁãx)›¦ûs;ÖG¢÷¼¥ Å§¶»ŒuAcíiÅgéZÏäRZ‰$RîÕv§â0ø/}>$ê×n@õúôÃx|"¾+UF" 3Ë÷ …ËûÜ %"ÖvKSyØît¦EšmvðByÓʪî!ÈR‚’Tžå¿Ç¢&rhiÎè>nU rTž.iª).u¤"ÎÔ *¹ÛP†@ˆ#ÐÚJ”MÅàMu1*çÉtA˜à å°V<ÉX¤ñQ˜qÆpÝŠ!:Êßëg‰ˆB÷°¯ÏE<ªƒïÒ±iß_Žà´ÈŠC·‡TFB¾åºÊ‚KY4$½÷^ Ð8SÓƒÀŸp0ĉò¼Hæ„›¬ Ðí¥Ö’»I°$¡ñ#8âáX4Põ¾43Ëð¡?g4‘ÈÃtž®ÀágÇš,“~†YOsÓùJ“}Ùn ~\Lúpn«ƒ¡#£‰J”Ó´äV!ØàF@ÜÝ•ýPô1Ο"2&Ò¡Z¢eOCXgáBN§Âž[B謜6ºx°ÒÆšPQ¬ µÑ üt¦4ùJ¨ì°l `0\¨‚ê'úUs:kÒbÚļé®04¹¥ç(¶€Ìàû¦¤bGÕ}ËK±J9=ùj¼Cšpɰå8 ¦ŽQiüL“*Ãâ3 Elê«bˆ3Z‚µ68Ñ¡'Zü„J+i†%i`ogüå3rŒO¥ >0^5בùSc]9Œ]Ã|AÆšóX$ëäÈå¤aoöÙe'DÙ[³¢Að¾2@}#èÜ(²EÎ4åôf0ÏoÔb9ñšyÆq›c#=ð.2X=Õ€8L¯‰¼^޽+ãøÙó¨€úí¥Qþ¹ˆQGÊèÅ‚ÔPñÚT1i C®¼îi€’Š<5ƃñŘ,•+8ì2ÜL Pì»H¶Ì™ ÷0Ï$(ëò¹LžP–7)¤‚™¨°|ðîQ0o¥]dŠ}Ç ÞÆï›øÝqŒ>uÕ3Ô+3Ü|‡øÁ2zldðò³hµ*uZî±å üs)T¬îSb,â­?Ç¡)ƈúŒy"’8}Ù<”ˆ¦$È!ðÞÛ3¸6‡lKœ¸a3æVÑrzjZP× ¨ºl¾Jዱ0D˜F_¬>Á ’Eã,N!'ðQ™YkV~ØæÊ€Ï¢uùL SbÛ-±âÆè;Ÿ¬&^µ¹– —º¦L×Í¡(|½j›®aBI‘JéºX/5YÓdZÜ‘Š;rHr¯k4#$–qœ_ÂØ¢‹Äý m³Ücm;/älm¶ÞÞóÞâ¹Å×¢ê|áÒ'CjÓ¸T¯\3õWJ8Žøu¥bà‰F–ŸT[mµêüÀȬóã‘Ò±2‚Ø„ ¹9®ŒÀâ¨Q¯³ˆ—ŒaÇï»hØ}ørƒ0*ëÁìŽÆ e~I‹)œµ˜è³´³¡á¢ç/}úkÑõžÝ7Œ7¾R$SME›ûLçBܬï8% »%‰’¥Ã|×bJ«³³D¤ úÀ)PŒ˜šßÞ†@F ZC´ R{;åz$LóFÁO0å|F¨G‡»óúÞ ÜY­ÏthŠmMŠ?Ú,Œ¾ì©÷¸ÿ°Î’pÔì?ÔãñYn}‰ÍpeÁ·'š¦l ¦)'L‚Kkùù½01º²Äy ©ÕJkÂÏpéÛЬ¶‚}C½6CY20xR „¬)˜Å·©KÅNK5”'ªƒé…ι¾{ç1VCÝÙê]hJ3òëyh2–ûK¢RFû¦fXàUà¯þ Þöéœùå¾² t)û‡Î—4¡õ¬ ­¹ M¬sä ±÷ÝL…"Õ.r38@ ;סŠå¤Ã0¤5Ù²mJוž‡ÈD–»”oêY¿"•K«„èÓBAX˜üFËœ,ÁV"8¾}Ÿ<‡ëD«ë¬LBÆîoA„MäÕP—ÌÚß¿ eõèŸÖI ó,dÒD\õ}ý“Ýð+ú¼¯šÆmÈCÛ*•iðp®øHû5®Kص´J7± •’ér¨L,FÀÐØÓ¿@Î@~q&aSàVL:íœu’dí¦0oÓð²YeãwÖëÃÎyñ»pøáéŠ>Ôü×ÙØ—½¯ßÆ"þÃòYh&d®_¶ÐÜüçý‚¦"JÕÜ@°6³ÆYÄ“Z ­å²Zvþ5¸óƒù ×ü‹?³í—ùPìG•)âÏ£‚‰ ¶BK]×)9Œâü¾´ÇyšAö?‰{Œÿ’DÊýѹ¨Yæ”r]R ¶)l{AqVNsö63œÍ‹„½åÿ€ë·˜&Ô§Ç-¶Q8ê|Ø& ay8ûb´äâ1¾š.ž7Isû¸ÿý¥ ¸úîÚµø‡’h»ÇßyK½HÄZ/ŠÎWÇ0n:žÉîÑEµu†kÿõÛ··ÛMØ“lÂ`vüK9ª„Œ.ŸÐÛÙ÷&¿yxõ?å: endstream endobj 3362 0 obj << /Length 1360 /Filter /FlateDecode >> stream xÚíXmoÛ6þž_adÁ&cMR% ˇkº:¸A¾d¦H´-L– JN›aØoßQG½ÅrÒÝÐ+ÐðíôèîyîxJèl=£³×'/¯N—’Í"I.gW«£”xBÎƈô¢ÙU:»qtçÉüöêÍâÒÆ^$IEÕ˜qá£jÑÁZ¬ÝÖÜålzøÐR­”ž³ÐQE¢ªÑóœá[Y8sYD¸'á2«6!¨s>wy$œ%1”΋fô_©OYÄŒ ¶ œ·šÔem8÷vº¼‹ïr…GJëRö@ƒr…Û1.“R­æÜ`Sždª¨ñ­Ì±Ö*무/JUºOTЧ+]nGhÕ6Îs;Äëó‘ïclU¼ÝåŠ ÷Òrï‘z-õ?«/‹ ™xH·¦çÖb( QÈZ61204ûÔa@Žô¸uÎó†ÎQ"BÙÚoêz÷Ýb±Is²‰‹â)T½àBÐó™Œ&Þç2ê˜.“Äç6WÞæ¿g¼Ý ™ó±“¯aðdAѽ!fËw~ x„úGÔê/¹p®æuTUgÅm[ÁŒDÃ5XMÑÏe@mˆ¿TÉœùΦÌË9£Î:ƒ’A¤—ûëS`Íy(sC¾Q”ºõB…üxEÃÈ)‡Cx1wxùoûÃ;¥ÐyUN^á~RδYâti.ö‘›/v½ÉöþqK5 N¤ßÕæD6r³-S•㎹¦k¬v³\í‹Äf¬êM\ãIl·îŽûª¹³QiAU»qçX›TíT‘b €å8É è U¸¶*Ñï‘èMÁ»æãè¢ãªJãš$:^Õ„|Š4¸¹¸ǤvMè0fy¾¯j §ïMÖ[u•™v¤ƒÔ0À£Ôx…öÕ‘¬xÜè!À¥èòî/@¬¯>ã¿¶ÙrPÞÓâÏ]ŸRPl÷€3 5ÆYVÔ%°3ë;ã7]ñõZaW·€7Â<"ü§0šYk-]RÀmV(\4_2f²ÊtUã”quù¾ÂÄcŒjh¥xQïScö½Û=Τ&ÕOlTœš ÏÛ7™ËèR H«}R÷ÌVÊ.ºîcí&å=.ðvƹ¹ÉGaô”õv7Žªùˆ5^ë 7þê^Épöm·ayû‡ªÞ§6Ð"»(²ó>„ ø1 }èÂõØðèìzdÀXÚL9JçHü>MŸg²)ø.,+ß”ûzÿÏvÖþüvꉻ¼Úå™áƒ^÷ ùÓå¾Hí\âÎl=ÃzP²ûbým²ª<úbaŒÊn Áe¾¹…ù¿Á¯üD~å—ůü üÿhþŸšÀÁ–ÁÁÈèÖ?B1üâù)ü›ü϶I­°KîõAmàŸ ®îžw¬ ƒþ8ª¡‰þ³dËâµñ[klKv“—ï•&€h —ÍŸVnè9ÓÙѼ=¼ßíž®û“ië `¶ˆ·ªêÍÆ˜I™?}nNá]«S+åiœ”ë~Q•Ûn_:«Ó–»ƒÜWW'¦£Ã­ endstream endobj 3371 0 obj << /Length 1085 /Filter /FlateDecode >> stream xÚÍWKoã6¾ûWN€&€Åˆ¢ž@}袛ÅÚÄ›K`i‰vèU’NœýõŠÔË–½XlÐ6‡p(ÎóãÌpìX[˱~›}XÍnnýЊQ¸µÚXØqñ+Ä$¶V©õxåzÞõÓê÷›ÛXIDPD ¨aâìûWÛ:¯¤bž9ÆÆÍ-!VR§¤lø˜í†ð‘há;¬d€ßv1Šq¤¿^\\\Û¾ã€n!ù.‘;0Ò|H©¤šÚðªÐ”»ôM“D/Y)+Mæ¤âœåTfU©?TòlßÚÆŠ}óÑñ³m,ftû—ã;üÃ#¨xÌ«WÆhTŒwDq>h¡ò’gj¸»\·Ÿ¦=yÜÕõ7Ëþdš{B1¯^KZ0ѳu&U~þ\ÌÁÖf¾Ð_æ4©¶ýFTE·Iªr3?®ûÜõSs[lO‹:7)ðúÌÚløÆíê\z­©,5 ™ìà Í›`Nù×1ÜaO™-±çùÄó<RSÕæ\, ï,êñEvÊæRñ| ¡Î ,ÍÅ÷Q7|ú‚„êàT5<¤gQ_>Lù•pÌ©>žCU¡™•G­€–‰Êí¤z9N‚MÅz>áVS¤Y:®P¼˜¬¤u.êÏ ÃþÖ“ÊL¿«zrŸÓuÇÞ‘T¶­3ÛfR,ÝO‹®×lINK±éd†;IùV:g/,_î/›uRQ<·ŽŠì+kipSòñMC­·-6÷º·> stream xÚÍYY“ã¶~ß_¡Ú—pªV¼P©<ØŽ7唟ìIåÁNU( ’˜¥HIíÎø×§h ‡£9œcKëëM¾:¬øê/ï¾½{wû1+Ít*ÓÕÝ~%8g*NW™,Uzu·[ýµæF$Ñá\5ýÍ?îþzû1É‚)J§,Ó´Ì2Né§=€; ¸×ž}-3 *7é›öFðèp9™ºï&Óçÿ·• Ï›¯Ö"gyLG½Ÿïž4K™Î¥?hQ߬e¢£fó/³í©½wÿÛªè:w×Év™`™Êý ïÛSÁ.uù~•8f¹öú°°V¸V“¥NŸß/âËòDŒ+­e*¢¦]XQ$Lgb²ä¡:–M$S:ö¬e½­.»²> µ¡FëþO—j‹€Ð$œ&é~è$qÓûò\Ù<:5;Ó}Óv®ÿ+O¸[…à<œàüIÀE¢çñx'cÕpñŒ)9º_F(f‚gžçÜ”¤n³¥ð’ù f¸ƒ`3½š¬ºVR0§\‹” AªP¼\MÙ ┋¨pݶ¨ K’Qßíl¶åþÁu`†kœ›®ì˦v= )ÎñÃL\÷óL¢¢-‹ME e½0£¢Õ,ŒpÌ‰Ä ’Ú±h‹moHÀ]ß’qwb¤ 'Fâ‘Ô¤.NfªÃPxZ膧½.t"ƒsk^!„ª9”:l¬r¥‚ ñËÑœ`Ĩ¨ä'•È£CY*Œc!ÏÙš®sò棛¢ƒãY¢ ÖaX€¿;6— fª8‰6ÿã¨Øí ‘ðèöÿHcÖs[•ÈI´3{t»Å¥ê_¹h‚YÂ[¸ûéoß/Œ€¦L¦c·øÞ¯êšðÀIäG¼;@Ú¾mN$/øÁ¶-ŠÍ5z,r¡–Á¾pPæå¶¿&vÎ9"`øÙþóϦ/ʪûÃu}°):æ‰ÂmË·¨[’“½èÐ^ò@ÝãH^yÛ´ Pç¦ö;Rý+çrgê­qðl¦uÆS¹i›æRï:7J ´ ZÔ)4åÁD:y÷>'ê„„euR9UåútMR%LÀ Sã“,rMÞ6”tFY ‡½³ædc¤äõ\y Üãk‘ÄÇo~üyI2fš§¯E̬L¢È½Ã*væ ÒP\9oÆG ‘v”†å° ¡܆rÀÁ©pòÎÀÑÑÞ¯B{c&BIƒ‹ 4D@)ä"[†<‡ -O_¢ü3ÄíÖ™bÃ9SÜeCÛî¯ÿ‚‡hÖ¦2˜J;b¥aÊg¼4x\aqNãþ_Êò‡s 9ÕGg Â;"^§r‰žÐ6ß²DDÈÙÂȪç †Šzç{<LžÈ Yùr?î·^²Ÿ!iêjžÀiO€GÌm>FFÙ Lò©¬½5}êJÀCË[§ÕJ¼šÙ=oK)Ê}Už^n÷ëâ¾DR‰Ä©ì;hóè„#•Ñ¥Nd )]fì/µX;ÓÓJø¼¤å‰¡¡)͉8;Sw%f È“ð.¦{ä)^ÇÃއÿAû*D( ½ùçE³<Œf™Oõ³ñZÀá^Áà‰-ŒC¶V<³á¶¨ÿ“GDó; ç`U’ ˆÍ¦ó^Uð¶¹ô[«MÈ9¨r*µÅgÌUYå*ª›p‚ãCð€¾’oñNÅæåwï˾=ìL&ηP²ýIì‘}N¼ôhŸèiÍ ÞŸÏms±ö>UrÖŠkàIÞâ}þc×}øš¯KÒ-ú—_v,2(HÐâ$ýˆlömï-q¼/·Ÿ\ üǧÎ1Ø´YÖŒ$ÞTWÂIåÅ‚ÊÓ yA½Ÿo@×È:8¥Ït§îÖm?+]4¾H1x÷À›¼ÍŸïÊC9«p^E“!ëim®+Ý;QÉЙHJ³°Q_NÇ™9mŒ'›òBç\[ÓM—úr,·ÇÙB$?uh!0Zßúß,&°¡1ÎlLª‘¾¡ñ_@èÀ‹‰èïGS;:ÝÊ¥nÐ/ˆ>ÅÈdØ-VeªYœuPùãBŽ­mí9H±?Ð Zxùãö®Ú™ÁJq<½ìo¦mðj<{—U+ÿ"Œù7vHÕ`Ü…4>Û {·Nƒö`Ч¤˜‡ =]šM0m¹iìøV| ¼~ž.Ρ¹äŒÇb–à=]P"|&6ÖÍ [NÅèã}ì{[bSü>•ÚUˆñP)ìîoT©3P)ÛE•†7zlûH$´¸.×D3¡K-® 6‰Y¦“Q°Ö»)¡˜Ö³W~ç« ÏIû—@0_tû¢=¼"Ê6gÜØJùDÒtŠÚ˜¡·y¸ž·×$ç[‹f™0žÄS³\úú'™Êë]þ¨ÅA¸3=XZiVô¾úA+çŒgjšW泩^ê—aÂîÆô_Œ±…9qGsŽ‚ÅUþdXù¾Ø'¯ûäÔ_.¸aÈå`ÌyñjŒŠ¨ýÏêüÑ´f¦ñÓ7ÀÎ}?¬àîZevZÚ->!ƒ™éØ,‚Ûï$S÷å Èý^þ¨š¾w1>ÕQ÷pÚ4•k»’ˆF{u ‡FêS›t8eƇÀ‰(¥Yôíƒc @úä¸ÄÙPk[¶ÛŠ.»§¼þïž®ßß (TÂ\øJôâT"MX,òÇß›Ÿü0…Ö®ÃoØî4þ+'W5{yøÿïïÞýAŒÀ× endstream endobj 3391 0 obj << /Length 2043 /Filter /FlateDecode >> stream xÚÝMë¶ñþ~…‘Ke æÓ©cÛä ‚’½%JK´­>Y4(y½›_Ÿ)S^½Í®Ñhá‡#rHÎ÷ŒãÕ~¯¾ûð·‡?‰bU±*OóÕÃn•Ä1Ëx¾*’„åYµzhV¿F)Ï×ÿxøáã§< –feÆò¼Bv‘QëDDûS§G\ü!vgøñã§, vo²\Øí›´dFDNCû»šm¿¹_‘³ªLý™ýù¨L[¯7i•FëTD²;+šŽšÆá¤êv÷ì÷õ¤Û~t àÈÁ$Úis³Noeñeªq˜óXë£Øzó<ú~Gèsmðîp» °¯‚nÙþÇ©j¾^o²8{ý i$û,iØûzlu³,Ò»›ûu£:/ªÝF¯¿K·EvƒãÄvN™^Uðæ…KãIYʯ\EÂ"K‰0~!Â!a‹¡¡>H#ëQš£iû=Á¿Å"V-ÜÞBÍT"©J–rá…ûÕ Úþñ+Z8S‚¬dq5)ž^¤•0'õøJiÅÊr¢·K螣{ÙQ~^'qdU5µ`ìŸ1ÊŠ"ã±—gÆ/O‹5ú¤ JPv„±´q¤IÔök˜’8Ìਠ£ìiš)c´qQG¿¼MO²{A¤$JÓʾFiέlnœÎÌ6IÎò4q¶ÙµÇ;L3©ªPÕì• ÇNõûñ@pJrÇ¡–r¨ƒ‡ígâ0‚¨Sí¾×-—ƒê ’4ÜÜÅ»‰%­GûñìÂ8o­3!s&ÄnQûªŠ%EáY19µ[å㬊óPùÀÄ2P·_”"êÿüF²í†¿¼.­4NXœ‹¹¸jݽ]ZÉÚg:“EØúQÿtëG…Ó]ù[meÈx'{¾Y®·"Ü;ÉGÖù(€¶n|!!¢wè,=k»¿¼º²€“NZÜÄ^]Ÿ´•õç½Ñ羡þùœôÜŽ'ÔH„lx$bÏÇ­îæ¬´eÅ‚fþ»ã´cèäöí¼™™C%¢K‹V‹Q ]¹žÂ²Æª{’ÌR Î@S=ÍÏ Q2ΧÃxnZгÜÇYáâlR  Å,XÂ5LKQU¸d lŽò4¢ É¥'IÊržÎy';EŸÞ‡¶nôqÁØ È”&[Zx˜y9½êuQ%r*@…J¼7móvQuzßÖjRÆp¼*.LÀ=Úl'’{-=èsç`«s¸¨iT3§H,u8NœO™ÁŒ d¡vç.ZÈ£º:Ô¹ËÀ»½ÛòÚA|G*©O>FC $–0 KîXèÀw[:]K§‚0# ìûa8hÓþ®û‘ŽáxKe„c·oìÈÉqÉ LÒ ]¥“N૯îÖJç½ÎÁ*ýÛY'Í:)£=°Ìæ?ÛÆÞjtç6ßÀ’§”f6Ѽ~.\ˆ $†—i_£v˜ŒÉs玨üÒS^°¸àþrŸþúã/ß~)ø/‚oIÁ¾Ÿ÷%Ö„çyßó‚bêÝnPãýÌ-s‹¹ù•{M‹™cíf[5^Æ»ñ%‡‹HbØšQ¨µ1j8é¾q2*@b›%«E×xgʲÀP‹{«?¯FXÂĤ™YØs–røï¿ü»Ò­«³Éø¬³‰½µÀ£òŸOÚ'«Ô³!¬êêÅà×Ð89&\쪌ԧ%ÒÁ7W»ƒØt] ¢F×ôuèÓøÕå17Þ‘q(MF¬š­D³ÅühX¦Ar÷ÖGî…ýb¾_RªÅ‘Ђ“œd9s·0Ý-ŠÞô~AÏw•ŒÏ³¨Œ2>Éa/g„IÎ]åLkpÌ‚”y^à‚¢žOj~Ò´è‹ÿ!çÿ _š{žTü¦ìå®ì“ÀçŽ0 ¡«Àqý¸§@à$s»— c/s„.mCµp§«þO„þŸµrŸ©½êïI»9$Âh 8NÂÂÉ”vãDÒБDð$ÚàÒ;S·Î.¥ô.¤kŸŽU“M‰NÂDi©¹”6%1Õ}IS庸¦ @¶)ˆ\ žû|APÛÖ|ÝúkÔª|2ÀI-i Îlà ?‡ Ä9²aP>‡€+WÅGàÏ mhÁxuÓÒûsá¿ìþI]ç¬,æ*öô̺+gHƒ–V–Í»UøÑ²4 Z6iy– °VQ§×/ö”œ¨ÙŠ ñ—C[¦¼ØêFû¶Å$á98Ÿj›—ÒXëãé ;–çUô“R[mƒ\°rÞyuù:Iph¶WcóYõö_ª^T_Æ¿MAÒ„•b’´sa¯I-+X65õ‚l©T €H{ÉæRÆ“|©¸3õNÊŒ‰ôÆß1ÆÞ¡Š®€ÅgpÊšagWQûc“– ,”¸‹~á¢ùR%\´bYê¶>X·_ð°×Sˆ¨1à2ÐGIõ8uô`‰k½.*|d*Ä\UƒŽL`×Õ¦•ÛÎÝ¥íƒõ":Âó67Ñv"Ô-é$ú-}[¦=mäS;¸¼¸ /Œök8¥ Æ›ºyþWb ÀMwhvîÿ–ÀÅÆUßîß,Â.^ãyºþ”¤$ürûD[*º®Ë¢ÕA±Á}Õ‘ùÿ®‡SSg·¨E…ÙîžgÙ”}ø:‰Û¦=®t4s½›àÜ)®Ú>&žlQA¿}øð£X–) endstream endobj 3397 0 obj << /Length 3269 /Filter /FlateDecode >> stream xÚµZYoÜÈ~÷¯üâ@j³^üàìó%yØ]ÀœaÄ ‡œÉʯOUWuóÇònÐ4«¯êê¯N2ºº»Š®~|õÃí«·y•‹á·³¿D‘¶{lT5OÝW}Õ6ôØ2ùÑVw÷<ºjÂ,jÛÒÖ"p“ˆ8͈›O(ÖÈðPh¸¡ØŒa™}}.gØq®‡êTO†uÅÐvý5¤Þ´¥YÇs?Иþœžèá¡*¨Qt[™mîÎG<¾ÃŒǪ̈\‰(M=f`Ÿ`Á r8±pß-Îqjûj )S¿DqWЏÑQ."¸Ù­ sFošóqg;-ñY‘tNËâ€âh©‹—tTžÝ]ÕÜMf³ƒÔèñPtU±Cðñ‡ø=ÕÅžIî°^XçëMñµêÅÎ’¢¾••±³½ƒÇ öêÊÝRãR µÒúÐC/G¾ªª)ê7~p] TûûêD”­_+ÌÝß·½'N ES.[VvxöêM˜´rŒö<ìÛ£W¼ˆJXqM Ž¬Œ Æ?¡•ž ¾îíiX( ¡; 7É gpvWïxÀ½­™´q …×åâ¹ÆmÑôˆŠU üÁ)H¾)A 惚¡FÍÏ%ÓÍ#ÞØs}ÉR!ƒ&œPt+ú¢@_ríGU=íØ´¼“ST@²%²É’P$™'šá ¿¡+XE ºeñôx87{¯€m“xsM“ü…@'l\Ñ?uí©íÝ¢æám˜¶¶ÓŸ[Äì£Åÿˆ&€š‰h¯|äÔɇhÕ@ŃOaxgÚƒ3qHÓ õ–~‡{)åWÅ®#€Ü:3«£°‡7­ª_ÁŠL”PQÐRWÇŸå¯kŽ@¿M«£‘š-ñ¬ýÀúª<›ñ Vy0" nÀI]oÞ÷´rA? 0Жk6ëF‹X?‡ ^ºŽ ›®ñ¾ˆÊ·¢ãxªo:sš^ôdËq`ÓÒoÝ6w–—$3Rì p‰} GjQ`8`àI/²1‚+QÚ9ååú+fðùR*Ñá* é!MY4˜™¾‚¨èšã¥†Éû¢á9vÍ+ƒ.ŠH«ï¸µT˜8þ„N¥ò×÷+‹¸–qM|UÌßã}µ¿÷<÷Ì=Giz¥MŽ<Ñ+<`Kx‰l°²%^ï“• œ³×·dÄ: b¬Ck¼ùžç¯ž=Å:ý.Œš+ ,J¾ Þ·yvxS>20 Ä=0W‚;«9DU‚Ÿ÷ ©(Y–?†Tô d僠.”4rÐ<OÔØ¹Á©·O‹©^ŸëÁvÍ Äu°Ù°'Á&<¡±OyD”šï3lúE|Fêe|ê)>±ŠôøtL÷–m“Ž…ÌÓ î,Ü ñ7h2-†…%úàDG×´¼‘©ÛI=DÍ¢æDU¬fæ»4]ëlQã!jFˆÎ˜ß÷¯D¬ÔÜÜfé nÌÉ`/ýŒ %P'ž¼4²„ñ 4‡O LðéçáFÞnÁ ´~3 <à¿¶*ibØ lð0:ÿÜÛT‚ ]1Ûœ­bÞ· f И4» Ð/:H~=ú0Æmm·÷ArÁ¡hÕTÇ‚d/Î@):½I VLòyŒú¤•$=ÔJñ!´~4t±y1.Í„”mt ´B¡èˆ„®ÙŠ;q½²S’‰8Ëg;½“Ä•„qìØamÚV-ïØu9UÃNwÛHòPv3:&Nò~¤W “g™>[[B=¹iDX¼Ï” ±¤±ÁpÖ˜OçÒgOã-âŸ8IzsæÂ<ížxl©¡Ëkr'gü! Øs~&)RŸnPœ0:†,u`ÖjÛÜ ÷kÐ^7¨Rh©^„‚ùšb Òøˆ©gð:3¤\:f ãÔ#1¾ä¤„ 7ɾŠ&IgX„Ź´°¢¤à ãÀîëÒŇ×k¨ƒeƒ«h»uñdc¬ýúáÒBZ˜Ydåø;ÿÂD‡eB(ƒÅÃ&a‚À—gLðüʙϤ’bÀ³‰¼¥ì™ˆ)oYtœÛ® ɵ¯H­O+Ž`Ñ|j Í5`%;þ'®—°½‘9±´r±0£%¬‹$‡«9ð¤9­B¡íŒ8ØÀ]´\£m†®­éòoòh2ó^lWÍÈub5”æT5ÏÞqŸãΖ‚TëÓa5˜N³ÙqÞ½5XCD¹ˆ’d~§h.×±¦E¢ç’zwûÓß?¬¬lr‘I=5—NLš|4‰µ#2yHãô^³ °E2À–ó¹0x*ƒx]} “Æ !ì«ö<¬‰|V:Šlýèàd¾XðtqA#Òxæ\¥ò¦èG¤‹°™ 85ã­Õyè«Ò…1ÖÌ—(°ÇŠ3ÀbÓ`íJ zðöéYåK'–a!¾ M©iisc&"5ò…°:÷µZ˜FNÖAÓÉÌQÖ¾¬M̪¶°ˆ"3‘+ïFêöKáD#_¢°œj»jOsG㘹5˜\ø‚vßž]½ ™%ÚäÌ:á*(2‚dž¶,´x›‡¥UôñXºÝµÈWHÆ _ögDW~sTì†ÁOD÷w~a5íW3Ëò¬ë¤‚,öºI.n~¬zž‡¡RÇÀ1q4Š~ƒçx_–L‡à—~%“™…YÔyÆMò¸Ð(Êß\Ût:h”z„½{ÊÆªðlŒ¿·ˆ;ïØ;ÍOœþèÛ ŸD9NgÇâ‚„ e­Ç·@tPÑTŸ‡GŒ}j&ÐÔŠýP}¶.ïL ¡‹Ö×›sO…9E¯†ÆEù½€Q‹>C¦ÚnšLë±Zã¸óž:znÎ] ˜&>ûK}Qòø4Öãá!è´)CK'o² ]õ~ g=£+4™_qÀ³WÐÏ(Õ4™+<“äZT–Ï%Ñ@§³…u'Ù­æŸ/æ©Ër©Ó÷µ»ßÜÛE¤ºöÈŸ!ÀŸÈ®:üš?ýøj6)’lÌ^)6›}Æð­ŒoàÔt€èn©ˆL6]~-uÑÓg ?Î“É Îıcù€U<œk¢q Ùb¨‚'Ëœðh‡âæy¸’øoØœ¾6ÖÆÕãh„+Š@kßñk¯Ÿ1}wŒ”1J0©“’éûb|œ¼$çŶÎê©i:Ÿœ&ÁVC—wE“7È@ËKNÍbÂŽ3WKœã«Ÿšöæi±Tù¬ .qì— œù—i²c¬7Õd|Wͨ‹þ —8“¶îSø¼£â”+Í׋7Øc™±±¶\|^2ÆÜñ¥¬ZÉL$*@óëCQ÷kØL…Î/a¹ý›e†¾|øŠÉ¿íß^'™f² 2ªHÅh%…Jùû¢l1Š{>Ó¸ š'3].TÆÎö½ÿD†µßµ,±ÄJÝÒ‡’äëκo›ÖRDWAÑ]lß!†…ó÷Z˜‰ÙF7RIHq œW I.‚Éû–qI‘Ö(Thúá\òeŽþæâμÙÓ”aVöÿÛ¾ÏøÆ¦lÄ¿V`OúöÅËÚ½!(_æö×F‡`7oÒÝÇRþ3þ¸CünÞŸþïOÿÞýï‡ÛWÿÁ |J endstream endobj 3297 0 obj << /Type /ObjStm /N 100 /First 979 /Length 2029 /Filter /FlateDecode >> stream xÚÍZQo7~÷¯àcûp\r8$‡…Q m‘»w@á䀻yPm9ÕÕ– I¾´ÿþ¾ájS)ZY+kÜC¢YiHg>~3Ãu BÆ™@%ŽúɦxýŒÆ‡¬B2^)†HLz¡êŠáRT(&%¯?9“Kº€àMi•Éx—²JÁxrI¥Œ¹¹þ*°4¤b<L¼ƒ$º†÷ÆÇàôW†”u¬‡]Ù,á1³`DZ2r‘ñŸÇb^Ÿ’΋'ò®Î+bWwâÔ^rX­# ¾À¯˜$Á Xš˜ëˆ`(QÕÃÌ9±Jø®8Axtíwê§“t:Œs] nHº§ÌN—Àø\7`­U ˜I².¦^.¤Û˜®$l4avðBð Bõ:âÄÞUë ¤¨Ø¦T—Àw!«Xc¬C3¤¤vb{œjTó¥¨ûC8µAâ̺3vŠŽ€ Òu£3ÑÕmÀñ‘ª/ààØz4&H5¶1›jl£‡T· Ã#~ÖïÄÄëˆbb®1@èb UÂÌ%g¬‘¢I®:#%HIÇb É×eHÄÀ!\˜B5HA§C”×Xd8ŸE÷“Ù¤[ó[XK‰êª è¤#ý$ugˆH*ÕÎ,¬R1™4rA€üPmorTêFsŠê)IêÁ29³ÎgfѸ"ØzjÔ*#¾âv ±Ž… óªWŒ„ Jiw„ó*±Z…€ ¢vqyyÑü`Þ 'ûÊ4ÿú÷Ϧ«ÎÄ6bÈüñîîýÅ·ßö+ªíZõç@mÏÖãs˜6ã“eèÜ8ÂÚQ~½˜¯Íå¥i^KŒpÔQ¯á Ð7Xˆió€81°Ü>à@ŠoÕ0_óÓrqýfº6ïLóÓ¯MóvúûÚ|ZêíSü0ù0½h¾Ç²Óùz¥¬”tüEs5]-—×ÓUËTõ»Lof“ï¿›wºB²ßc¡É£I «*¾šÏ˜í]˧jOåÓ*(Ÿnß Ô ­ñŸÙXg»h¾[,o¦Ëº´{ßü­ù±ù Ó÷jí5ö˜,Á³1dëA` rëõ(²X—ôÞ<þ²ÆœÍßgóßšW——u…æÕõz¶˜7oš^ý¨ÿ¾úu½~X}Ó4?~´÷Óõäv±üËÃrñ¬bË_ü> 7³›:}¿Á¾>t{Ÿ­ò¡' æó‘-y=ÛÞ:—¡õªbáiþºx»0€ÒWW·s»¼ŸØÇùìk3š9X%ÉÖ ¤˃Œ¸ÿïˆ6´® Á²ºÙ V”ƒV<,IÖŒé²>ÞØBŽmù³åv¶^OoF6%EKHÀ”€dÔ(^€l0‰{Ò–_îúp¢d¤µÎ`ÝQî˜+fõ Õ&²ù{˜6Ò¸g S&xd×CºC›;„ºC›(ɺäЖÆ>§ZÍÕéLvõ=ìêŸÏ®Z&Ì“Ñ"¶¥ƒw>¨Õ0xeª/–é©S8›ã Næ¿­§«õÞü)xó=aN™q ËËhS´Ä3L;f±„Ê vp¶ô‚¹Oš-4P¥>BB§W;Èß‚ôØŸïà÷ñMå |‡Me@]‰@Ÿ¾áNˆ:!w‚Œz<$XFùš FçÅ„Xhë“Hš§Êé‡ÏÏÅy†,ˆ…a€hË&Ñj?ŠºÖf:œ³¯Kû¤%'”X øã­ )Uýÿm‰…¾±ò]aîѺ¿ḏ*Ÿ AK`S>nÈz9»¿ÝÝg »]K ˜Qîµdº³ÆTµŸ×«a"pG®Æx>\c­æ#:§öolà(¨ý1VÓ»ûÅÍôn/Ï…zÓ壽i¯v„¶ôVa½ÚÀŸ6ùô”ÝP»ÑÄÃqe 6ÁÝz=ðÚz¼%Èéáá¦zŒ²¯y7-²–—½´ʘy |n)kšQܰ!9AúDXå„°Æ…ý Ç`[ùø1èÕF6N4tnöèéÂPmªGl¨%P>—<æÎNk¢wuÝx(óy Œa”Ñ?”ÑryÓ5]eQ›Ì/QYÔHF:®ÛÊBŠlñ4P›"’ÅÚèõkJ±ÁÝFÑðv:ßð•zH/Azqs“¨Wê#²ß¦@ŒŒ.ð  z‘UùÒ÷_5‰¶£^P“˜HÙ².En&k{½œÜ®É¹°GÄé"N'qŸvÌX#¦¡Ú.X}osYî4°‡îÂñ ïÎÅsîémS9 ÏÛ^ɧ”‹¹¯ìÊJ<áe´,ñü2ÚD²jŸ6eõɹ¸€Ã÷ã¼BÞŠÐó‰/w×¹cÀܽK‘î]ŠøQ9± èVT4Nß{T6úþ’›¿ðmüÆÒ¶#ÔΕú™Sy¢qžÌW·#6ð¨†BëÅÙ HÇ"/qÜ)d›ÀTD©}ûÆ‚Ïú›~˜ÎoF„6Š/ú—/ÉfBÛE=úÕ®Sy§ä”?}¯é}JVò˜øíí2»Èj8Ž,vnY…G½Q8TB¦×¿±Ò>ùƒrw†ç2äÿ3o" endstream endobj 3408 0 obj << /Length 2262 /Filter /FlateDecode >> stream xÚÅYÝã¶ß¿ÂȉŒžiQÔgk{ r—ТØÛ6¹•eÚVÎQZgû×w†J²V·ØîCú²&‡Ãáp>~3Ôú«ãÊ_½¿ùþîfû.JVËâ ^ÝVÜ÷™ãUÂ9‹E¶ºÛ¯~ñ‚0]ÿëîÃö]Ì'¬",ŽSd˜Z¹æ‘wlΪCæŸÎp¿ÛwBLvoD™í› ¢°Bšâtµy¦]³, ܉ÝI®7Aä{xfWÖG;ÓÕNµ¨ƒýyUYwÚóÎŽ.²Ê’{6SãZwÒcÃcÆ'ÕuùùåQ!Ò$üîzêü­a—jw]wǨºË‹ÏÇVõõþÿ©ú9ßÉÿÁÐgu,‹ül½ÇÌ’E§Z;/ë=,Ž9I¸-æÂê²æ@¦K=裦d½ŸØ£ÿ¦:¼l*œÒ€ì$µû±ãRÛÅVv}[Ë=Qëu*—ºÜÖqä±õ&ôSïõ50re-ž…,J±`­df§8c‰Ø_á÷TMúyí”Ú·9ÚíâîBƒ‡é“ù9Ä…±E‡LðÜÆYE·iàã°Ãðvð‹çhi)öh Y3[Ù@ï”%뾑mY5Êm°šøMŒKëTC„ƒ%À}à–ž«$íÜtŠOdßï#€XåuŸŸÁx;Ÿ®Sr¨yÜ£±Ím¢%‘ÿýãoyÕœ¥þMÀÈñ4ع…p?šDÏ2þ_š·²4¦üx‡×´Ö•m—Sä{h,* JW¸šÚƒWÐ÷Qè•]¬ò;¨QvÒ²ƒí1%ÉSöw‘‹49eÑ•ŠŽÉö~DžMG‹X¢­h´Vyp"JÒ~§Fæà Áóú*[mì´õ˜Òå™’G›J­{¹Ü`„Oðe´_š¶kžzǃe!墘Å\¸Òã yPž<Ê z‚hÀ4Lzº‘Eyx°*ÃʈRÚKêè%H"‚•ü«&`0!ËÂpÌû…k± Í!®ϯbéž+†ªãKtdìŽ "ÌhŠb)G#oÁf¥ Á”µÁ•’™Hh© ¡D|ê¡ÖAh "y¬.@ý†Á…ª f#¿-sÈmIÆñŸ|?0Hc–‰9‡­Õäw´h’éN´Î+IúÈúØœ ûKl‘·Ï»Ü’/÷‹©…g%.‹BKCM]{ÓC_»ìNÆ `–L"'¡¢4ÊX>3j-§ÍÈt•ˆæŒ±ÃA½–îèzvՖDzÎéÃu{ôR’!w}¥2bjÀx^›gîÄ,r“ÅÖ?@Ñ2o‹“Q(sÉ Ë—pmͽÚN ä²Á/ÈÛZOÂ2j×êÎÂÔ& cïíPÀðŒ~§¥sÌ­éa_++…|#Ъ‰ÜÕõûR.b*jgñ±€à“Äô®.é7ï;UAçT˜ÂhIMs.%õ†êâÜrØ¥_…?ò”ù°KÓ¾+È[쿘OGñ,óTßÊØ¨•ÌußÒ … ­W`P´’@d –•q$™Å+·£]²#Ãðñ3·¶•糸m&O·¡¬ì."mÁþè‹­#8ðˆ ¤iU£Z’mXP6ÙfB²ÍfÿJXèqB$”gú,d2-®öš.ç+ 8ÑÐ)ªsY-å«€Ö%^ÎW#[Ù_Yƒí J2ÁòpÖSL‹‡ƒ£ÊN6} áßZÀ%—×µ]·ù€þU5†Ø^Ö…ÜN[ãÛIKB§€Qjçzóÿ­îˆ‰bÔº,7'õs{¼·kˆðͦY4Ýñ Z¾Ÿ×)Üÿ|8®(sÿ¹Ž!]eqêvyïÞ4xÌ‚‡³ˆ‰ñÉôÝå~÷çJv98jч¦Úã— 8´‘WüÆgØø«´§áí£ÇTþ±Ÿº®Ñßn·—Ë…¹“כȿ;þ©7@…/Ú_d KyDN óÝʃ4áŠ1¢_※“ª­jÓ~„ÞG†µ$ñÞ|€§Ò×vþSy„R¤‰ëqý}Í9÷hr·††Æè,»€j€€çÙO ƒ;í$öôIõç½åE£mèËQ+Àm]N òóƒ6 3S¢àq^Ÿ±†.ã‘I žù6G qà±þ'úxM_‘1KÂÁð;A eA»Íö÷¯˜we½ÔG¦@Y0k¯¼ þaÿB(&Î÷¹<|¿ñ(Ê>AÌ£D°…èO8ãà„­.+Æyš,õ‹H`-»®Kó„Çük|Ág¯Y€NIJNæ>99†•T½ï [”„óíèGÜ…vÅ¥[ûc‹7.€t›L‘Cj“Ÿáæa•CTóØ‚'(¦ÌÀHS}kZ'”M„Ålâ» —ÁñîSËGuè.PDâ-y=IXâi¯OðAÄÏñºpN‡ó9zK 8Òð18Φ­rÖ×åS(B–&3~ÎQøñx°"žs}!lþ ‚°8j[Lª¼zõ ë'ö?̓}ÿÃ{;¸Ï ƒÅfb8 WVÍ„O% 'Cª~3$ÔȈÉsnQ äÊS2 b(áø±×‹f£0£Üw›A]¶+Ž®b`}žÌ¯œŸ‹ºqº!¼Ñí -õga«®íØ:k)hâuàkI2ÌîñùâZS/ŸÒTjÔa‰ž o¾º½ýê5Z¾é¥i¶ƒY-4+Ê7Ÿ¶‡Ù¸†Þz¾Ø)þxwó_?iÎA endstream endobj 3417 0 obj << /Length 954 /Filter /FlateDecode >> stream xÚÝWÉnÛ0½û+÷еÉÚêÐIÑ¢‡¢pE€–(›¶ˆT,÷Ðo/)’²¤xKûÐÂ9œåÍxf¨+ EWÞÞÎFW7Ž¡øšïLe+†®k¦å(®ahŽé+³HùvQÂKþXIN.Ì>\ÝØnçŠé;šëûT`Ã<µ|Æ4Ò…Ž«ÓT<ÊíXŒ[5]¯aW§.Ý4ù¥ÏøÇ´SÍêÔÐ|Ãkå_ª¶®_Ĉp"E5ŒTÇ0$XlåL8¹BdÉ)0ÇyRÈ¿@©"ñÄE°¹_’—ÒC×|»ÅP0¿VùZ¦à»nëk4áß÷’ bkÀ—?Òª]ðD€€€þ£Œž6o£m Q Vœ’A}hoof"¶1-7vŒÅN€y0~Óé£iܵn« úUaZ5Ž'(E2* ‹81á­JJá8/S¾Gr&·‚¢Ês|*Z”!“¤O¹)¸y¬‹Ã¾'Xk¥“d)T%ŒPH}ÉBBýpSߨO¸ÃÁ£00Ms€ÛbÀöºpž-°fù®³=ø¸|,ߦ¹q¢q’]HØ7Ê,ïA"Ør¶Zvêèd ð¥„1,a Î-~NøjÈ‹YÄ¥%$pÁböô4+P0ûüåú¸¤cjL[ó§¯kgîŠA?G'2yb†@ ¸oym”T©~k.Sëeå,r‘§yE0’Å2dxÎÿÔÉ6ƒq(hÒº‡Ñoèšw0§iŸîIÛ§,zE5OP6©°† ì·Ø¶·â6WN¾ÚØp¨ÛúÇuÛ¦Çö“?åe ‘É’4Þã%*ð9ºñq²L4 ¥ìOÃP}e<{šÝ™óRŒbwˆØ$Ê¢”¬³m^r–Þ{ÆÒ,Ï” ̳mbèKÇ4÷Iq5Ëi_P´4T)Ì·¬IV)ÙÇÜþḀ!Š×b&£1Ž0ÌˈF9Yoz‡áyÚÔqŸÖ[©oåsŒÉA÷žùûM¥™ØD'–ÃÞ£FãóÁ°{Ù=Vœw h_ór½žþ1Ö:ê endstream endobj 3421 0 obj << /Length 1131 /Filter /FlateDecode >> stream xÚÕXKsÛ6¾ûWpäÌÔîˆ4)ZÕ–·wšI{Huk{€È•„ (dI=ô· |‰’:s¨ˆÇ>>,v?ØwÖŽïü|óãâæáy:sæÞ<šDÎbå¾ï…‘3 / çÎ"sþ¸›Lýû¿ïž£ µ4ŒC/Šb%¨ZTÂ}0½[os.õâu<<‡¡«]Ñ£Þå†Ñ´ÚæNfj04›oooïÝ©ïß­¨4bš‚g›îžÊ Î1ÓR&¡$©¤– ÷¬#áÓŽ0I%‘ôìö¬³"%Ö¼¤)AMÛ2šJ^jG”nà{óé¼gêŸþÔg\Âw擳üˆ>¨Æ¾<ß Y’ÆÀí®Ürâ{ó)7Tœøi‡$çh/¶9z›½‘D€TöC—€ë~pM[DÛ~¤cóýb;Ê\š˜æÄi™<–oq$Ïy:nÔ'êç’~žÞ<˜õpÌJ²ÇãÛ-—9RG8Š ñ`v†dx%¬•QÜS†b,Z?ý2dš,¶÷n†4ºU‚´b 86ƒ –dTa0‘CN–Éèi)x¾“`ÆÞ«c–» š5´HR-ÉG¾'tt%ÏOï‹)5Ÿm+¤âRý'ñ¶S´Ž ·À äb”C/\|2^˜ÏÈvr`k¹ITÆ8wòÚÓž0¼Z ÀÕÂ^‡^’.)ËôÔÁÎøçZ­òœÚ Ž˜Ê7ú×ھϒðë™ôÌmüù*vǯ ÷©ý¯m÷åøÞr•ÚÑ•%I?Ú„Ø‹ì&Ghí¢™ÆDLJ›˜•°ÅUO”õa8 *s´•0.xñj—QBgà@t]Àâ¸ëì¾F‡¤Ð)t*6\ò‚ïÛRRR§Ü% ÊÁ%*.cEÒ¿¡Ù\q…YЪúñÜÓ=¤ ߘ^ðè=ÆaÍ%T‰æÅ€œIäÅóù%9º7³ jÿ´ núž„ÝK£ ×T×¹9t¥Ò#è3×+Z‰3ÁÚ82»Fý+s5ÊkŠSÐd.¬VJqî´*ý®(ŽCGGZûßf._NŒËÿ±îÇÿ¾îJëUf´3±çp÷k<£¡…Y—2šB9t#ÚqtÕ>›J+êð+È Ïº¹hQ‘04çI‡\Eë­ä “\›V%BšAbã‘HKBä Uº#KÞffôg‘£ ¦ÿã|wBì»—¦¹a/ëôeÕÉ=¿Æ”jÏdΖ_ßcÎNl@›E¡r îS–[Ƨª©PÁAÙº§ëâoP5[ž™JÛ™>£4‰èUÓiÑQ·‘“§Vüj/—/x§ôÖϰŠíw9ˆaXP3žÛ¾¤Gˤ›V\¡#˜´ÈéYFWZFGrõ2f*üíå÷[—ß$$3tfÄQH(TÒI;IãJèEèÐóc༇¢R½Õ3ý\N‡ƒ´”mPªÍv½N„§Æ@Ý"í‹QÛ)èm¿êÿWØöíâæ3ÜxÐ endstream endobj 3425 0 obj << /Length 1924 /Filter /FlateDecode >> stream xÚ­XÝoÛ6Ï_a¸f1+Šúæ‡M °µéS7`´DÛdÉ¥('ÙÃþöÝñC–%i‚ht<äï>io¶›y³Ÿ/~º¹x{ÑYJÒÈf7Ûõ<‚hSJ"–ÎnòÙç…K.vJ4jù×Í/o¯Ã¸·„¥‰Ója?¤(táÙ=Þ^36K@: PzÅâD‹¯ü˜ÌíÐ,W¡ç-~\™¯<ð?½Ð»/.ÍøäˆC[ѵùüg>Ǻ¼Ç¼jV4;)ÄÚ·CÉo×7>]u\ñ5üA¼¢IÃô|,Ëö)IibØoÞ¼1ë³úpl•0µ·ÄQŠ¼È”ÈÝÉêÒÑb»™2ô¶––ɳ½¡Jq¥!ëíHë–g VôO9>Þ¿ªÏçáªÓÑX扗­ÃšKËw »¼mØðƒ¥¸[°©Oâ1¬ðÖCZðT¤…¼·hÂu[U çœåèìyùÿžà)så ÉP›v³)¹ÊZ]:’gEµQ•àò 1TÁH y°«FëîVü®pÐUž;bê ÝQ«"ò¡šÎgºMÔ êyO3íÇ;¼åÙŒ1Œ$ 1ÒÝÿØñøI³Îz·ueq°üË!ŸoÖóweYg\rj_çs'ÃïÔz^ͳ^57E.Ö.D¹ZŸ6®ÍEQÔRÅßqÜ~ÊKFÞðÍþéDwusñå‚Â6ÞŒvù3ô}’B–ËŸÿòf9LÂIK“Ù­=ÌH±qÀ€.g/þèæø«“4äÐ^’Ô¢€ÎB/"^Ò¥Ð.A÷roÖÁ¡ê2õ± ¼ÅN.Y¼M£­æ‡Þâf™ú T¥GÚ帆Åì„ôïàM†z×ÜBÉûDZRF8æ °Ðw£‰ÂD qó^4™,ŽÚßú×>_P¨ÀV4!‘u¸O¦ºK«Ú|3.á.š¬[{Gô¯ÓÒ!cuÛæ k¢›åÔ[“¾Úí„ü~† ;ik¨ì­‚¼í|ì@æÈQ¸ ¶÷ÑYáÝüÄ,0—ûÔð˜å!HCß‚d½ ¸—âF8ªêXí¦ªW]/u²”$!Ňah4Cúåz…~~9¨µ\ÏAµãJ¡È¶Pëëw¿~¼rš‹]¡\E!„¸X£Æfß>2ïä’‚×·Q©æI„A&¶Þw7 µ¯ÅDšï"÷]F—q=¾-ÔÞz¦síC€Ÿ4r¹áˆ-zžipÜÿ çp²sTèDÆ\^9•ÿt‹±«Ð^^ò¦1ˆ îè'1 •¸skëL´|~@R/rRäa¿×³KR‚ôŠ„BòÑKNÅ׃×GiPc42¨!+«%Ö±®r]½qº—ciGáÂE/¯2„ YèÒÅ®ªuÛ‚+Ší ¡GBÊÜYî&ÀHõ'PXí>*uà#¯Ö 7‚±xZ„‚ Ç_eN Ãái£PŸA¾‚îuVñãÈùr[_ÖÈ*8×(h„¸Ì€²–™q½ë€UÄ ™Â~…êJ í»qtÖ¯n1’ëË)ÔRˆø ì[L`Å0¦f¦µ~à¼^B‚ÈšÊâ4V&:?¸4qV ‘7ó±‘ÞEVüéy¾ÈŸ·W Ûc¨zµj]$9¨íÛÁØÚ(ƒ-cÛKG”vIH4œµŒ¤ß\¥ì{QªmPŸkþz v°Ûf˜ëô6.³YD%¯¨œÞ+ã{!E¿s»¾+.σm¡Ɔ.l¯<¡úðe½+2ð9&à±*d‘Ùãc`k¯¯ö–%]lï-_Ã…æ`šÖ‚<Õæ….qÏ@ÍÞ×m™Oï|²¨²²Í]å)ªQq:÷+ƒä©e§’'e‰Ã'“gL‚Øï'Ï×V®óô7Ï“ DŒ}ûšWyBhz"ÛéIý¾Öwª+Å‹ÊDZð®lÁcÕb³+Lx¡›ŒZ×nŒ$±¯RúXÙPFY[5›—Ý{#¦ª"Ü«••È_ŽˆyŸ¾¦F0‘J£iXl ‚‰3D̦äB±q’˜¼—ƒàÁéÃ_5õ«§§êv_àÎEG‰;çÓPX¼uWf1ìw³²n«ü5PÁëý8§xPãÈä;þêæâƒ¾J† endstream endobj 3433 0 obj << /Length 3072 /Filter /FlateDecode >> stream xÚµ]ä¶íý~Åâ^ênK–e;@^‚&m )ÒCóШÇÖθñØÜÞæ×—)ùc¼Ûk’bF¦(Фø%j£‡óCôð§7_¾óÙ×Iú‡¹–úáýト¢0Vú!"Ôqþð¾zøG yøçû¿|öµ Ô8KÂ8–@È"õæ ’à<šaDä7ïèŪ£[v”)cZüG3u3¬.¬8ÌŽ" uF+ÿ~BE_wÓp8Æq v(‚Ç®'ØãÔ¶¦!à­éF‚ÃóõjÆþ™&.ÅAFÁÃÂɘ–FÃt>]SjÍàñbÐÔ£é‹qêÍ;$`”ÍTÕí™æ1 ú¢ý ÅÑŽ ã´h+[ü2]«¢§¯£$y®àWl‰€ðQõfî¶Ó¼]|3QÜMx8¦"u»¤¸K¸'ÎWGÓ"õõ‘ŠàÚUõQ$K+¢ƒoJÃõÀn§Ò 2™ðA4ÝíjZ{ €Ö=‰ƒ;Q”f‹Þ8ŠCÙ×'Z%(®œÏ÷ò28f¬’T]ÃOuÓûJÆÁ‡ ¬¨£?¨(°@éôßôO¸å™¾pCE©2æß`akhÚ¯òj÷K’Å’?ý©ë+þ"ÜõÖ;âø}„r45ÓŒeüÕÀü@Óö¤EL' g|‡&üýqªÊŸ" ,§¯,ËËHB@ú¶ëMÛ-ª»…9Y€¢àý…yÿ€fÁ®¾S“˜d0½µºÃQƹ5üµæ‚ƒ…¹ÀÉX‹±óÖbpTÕ¸É# †ßµÇè¯+¢ÙLLc ‘{S“%ãwA?O¦>_lðx…‰™' ±w@.ŽTpš±¾55úÒì)8—€Ãt@¸È8l, &‚ÎøÑ.¬>»Ö<:¿´‡{Ad>ÞyN»H±fÜi0•;p‘Qd†]7CoŽböfÜzSÕåHœÆþ¼‹Sc˜Ô¥7kºÓ`zÒ@EYúê_ÌÀÈL¹›Æ²»æ›Â€/‡$x¾¡÷ã&7vô{b$¦Í®£YTp‹§‹ÍQܦ“ULêb i-G¡ˆpDZæš'¥¸u6³ú`5äÁ0‚}E`Ó÷ 1(cF+®`8ûQÏ«»-1‹IÉñY ÅÆKÀAI4B½Z4HodÝ+Ey¿¶7Ý#[ÆŠ¬u/¡¼{At°îµÜ‘ÏŠ>®¦¦ž?ÐÞö±^žCÜ s pgË—lY½èPçÚ/\ßµÀÐažç½åžH¦:ÙÐX+i¨„§1’K^ZŒÅ;v-Ã.h8 É• ÊKW—<{2ã“­Fðc-æ¬#˜e Bã(£Šsue Zr2—šÓÅQGa–æëhJ\dj³T\`á\Í¿Œœ yê¦óåsÌóyðÍ£ÇëÍr© GøéŠŸáRß2Kœ%37kwGÈÒÝ- äî¹ß ;Þùež²-æ\!Ô>Ø}aFôõ²È´sL˜wÓ¾4µ»AiÊ›<]êr7XP`B­É£kñLŒPø[ðœ¯=øm] ~WAÉ.„ 4—qI˜ ®ËÑn¬UÇñ²³Îçºß×üãËtêð@Î’w„4_Z#æÖ—-ƒ(¡ôVi‚#ØÚ£h›óÅ qdDÀ6yÙIà8D«à;ëc–DÀ ÜzF¢Â„ZÀ­ìýBÚT f‚ó€mú^–ýr›¥²ÊR€ê²"3ôÀ‰ Ø>ÔÅΑÀ-„èźþ¸s*Ì39‡3[ÚÆ®Z]²jo"íkçÛË*k€Å¤¡òåä1Uís M¤šêV… U¢¼F6¿$îPa0§;ü²éîÕ]E”„*ŠÍÁìî :Rj­#»k·Ù}aËèVýÚíºÓ¿)-\®lÐhvøRY˜dÂíù2çÛÎ$pyW"W=ƶáÐï<fR_ŸÁp|¾1.ÄÚÝõÎ ñé#[£è9$âLh»ÁAÆ*Ì”×4±±#È­½Üp{…‚ñ<áU ÄEWoÈë$”³mXê_¼m®{JKâPi§¸ À¸ŠLï+k!…:~ÝéF¯V¬òÈͱýÀs/Õå0·ªËá›ër¹êd­E`RÎnÂr¾`àY.—‚.¹Bÿ™ |ÖŠB!6:XÔþ³íïÖÿv‚¯+ ­Þ7* Ê)@ëîÀÖHm&š ~ëWw~Î7³„ÊeëI.;³¯{ü½<RúoÞk'8¦a,ã=kü|Õ“‚à©0‚]  ³ØœpT›¦×Š‘ 1»ãã‹·†öÎ3MC)Äêw4B»–u f¢ãMóÍG•Qp„ß—‚c’‡j~`~-6®C£r30Xd •s³o9_··‰Ù¹[ë¾ÊWybCø§¦'Âûîúéî!S&‰üµîáÚ¹€+±Ü õ°Á"EÁGÁ@ 8~¤ß[±Uš~Â1èX¯Î!ua8au†¦‹`<Æ0•ærŸ «ùFlÆKWíñ± !;fÎQØ_øwÚ—@(‹XdùÞuYÈVP}¥›ûô mQ(Ðòùv‡ñG€+ÍýÏjêíy!Ôªu[5–#øáì2ZÕ/8c+H; ÷\̓0[àyª8·-ðì¤kƶk¿ÂçiƒÞÕ3$Ò¦OmŸ©*jÊÓ+0/eHõ A¢}ï[ï¨#;¾`!D©ø„¾sÎhOuÓðCCU­ÞôÜJ಑qi0ã.¸´/t¶Æ¡|‘k¨4¶••cü EدÕkƒ&b(V‡b„R ~>èĽ:s®“, *ÅsÍ¥ûê1Aóÿ¹Ü=AÀçãh¿(ËnjÇѸz×Ù»ÆB<™¶|颹£4ê”zýøÿ”1•¿ÝÓh^î"ųYÆÞÚqDm0LW][Må賓/xw Ž\Ë)v/s2tit½K°Ýi,j‡Oéñ_M}­™­¡1X–wïÇî™ÎþwÊüßH}q6¬=|ì'~ \ÕŠKù¢ÿ¾áWÃ[ÑC945…+¿ñq”ï2JÍ›/ÚK*áöc/:6Jm;6csív¿_½óø²&[ endstream endobj 3440 0 obj << /Length 2209 /Filter /FlateDecode >> stream xÚ½Yÿë¶ ÿýýÁýÐ&@ã³-Ç_ºuØv¯ÛPÅÞ­ûaPÅVuŽZöe׿¾¤HÉNÎ÷¶Ü€á€“DI4E‘’J¸Ø/ÂÅ×ïþðøîþC-Š Hãtñ¸[Daˆ$]dQ¤¢XÍÇ9ÁJƉ=0ðð"°§eáÁY÷‡QRüù¢CmP÷¯/TåQÅÞI,ËO)êQdnùnhÊÞ¦Û3ie, ŽãËÜòÛ¶SZiU”Äå×Ö4üña¿Ç{Ä>F–Ï¡+(´ ©Ý¢“¢Žp´}¦Ö¨¾Ç0;ãá&ˆCŸŠZøê®>ÎÂK„yq//Ô¤i4j—±÷+BÖ—‚ã5Ü÷h'a’+=°Q¸Ú+ÃÍXpyo­‡óáv„ãòÁ3JÓòàùäb€ {rs £ÂÊ€Hú;#ŒTCÙSncÉäјcycÆ)kÌEʰÂDZje@Š›rˆÝI#›eMWBí¯ˆ‰¼žúÑÐë‹‚6å eZ ¢\äpØE5÷ðÈZ ˜Â¥É¦V.<à :l‡²êU´Ôrßš‘8`Â÷/”ÑæüS{DØèN™ºø-ð邵ìõ–Òs{üu•NPÞiÉ/H-ÓT‰ÈTQŠéáöjáÄῘ*ò²ªYšð°,?>|N$RåÃÇg²Dš*r柲,X©V£èÅY¼œ¨3 £å{ZˆéÓ$œº¶TÕ€A‡ PßµmŽÅÈa¡Ã7‚ÝɃín¨FA=ûÆcó)ƒUê}£1Ô–²±¤ˆÊ‡@xŽ$tÅŸ¸jÁÿœõð‹5‚‰fØÑŒpÒ¶ëÙ¥Zjÿ…€R'^ÄîÔ8ìk,õ/¡[J^·e‚­×¨Û)ià¶Ü¼Ñ•rø4=™…“ÍcŒô5èPsú_+ɽž–éuÙ²åú¹Ó]Vp]Ÿ~æŸ/Þ¯ð‘¯?X¼ ­[²ùŒ£UnUïö+t~ïú~¾¦Uyè·r˜¦o39h± ÄXËýöü´ý=œU‚‡¯Àð8h»ýïfÒÈ^—Oï ³5–JÜ}Y*%P¸ùTþÐ÷'óåýýù|Ü—Wk[”ùÏªŽŠ z(¢b’_ò®}x|÷+¦½ë endstream endobj 3453 0 obj << /Length 2740 /Filter /FlateDecode >> stream xÚY[sÛ¶~ϯð$3>ÔLD ãÇuÛ¸u›±=§'ç¦ ‰ EjHʉû뻋 EÊð¥çÁ&.»‹Û·ß. r´:"G?¿ùpûæä§Tåq.˜8º]QBâ„‹#Ii,’üèvqô߈¥|ö¿ÛË“Ÿ‰&Y' CF¨Õ3šF«^w= ¿!n @Œ´æ^mÎ$4&VùZ/u;£Y¤ëBwý‘ÉD³£9Íb‘Yìè«÷³9ODtÏæIžGbÓ £c[¿Rí6 ÕÎ8‰œè•ýLRBóœÃ—B“L³è­nU_Ö++Q¬U«Š^·e×—Eg›¥ý*ûiUýÕI7m«+PojÛ`vÆ”–M‹K„eÍa›ó4µkØîp,%Ñ]©ºØí|:Z»È@‰úÿP6Ý·8##:Ù&žÄTH/úÞIŒ„Çy6bJ6LÉKà6™=zoçHI–}fLPJ¨›k’Œç*cBr¯½îûm÷ÃÉÉ¢)ã¦]P³„È–& ç"0øœæ<&’B!%sx¹X­´?DÆ¢)$ÑjÆHt`0ˆx€føÜlÊ~íD~ŽÒM±®u¹:¶ŠWe=@d1*<\¤ƒ Ë38ÕÙβ¶Úp.j®jU=t¥ëZè^†Vàî!ÀÍIÔ•›m¥q\¢U«¶k@GeûL!häiœÊ=4Ú²/»µU¹Ò‹½þ匥Q³kan¡çqBÒçQ“’Ä $4 ¡€,ÎǸ‘”ä:°$ÁrDŽHx8’Æ Mž¥‰8¹Û|1@˜ŽÁ`A,#ÀebŠ _T{×´ ˜J$p$@s{üØ0XbXÂH€§n€jíÚ.ö™ûž»/®yF#["TR@Á™µ²iågBÂEPK¦ÐmTUÍ»~·x°:z‰G·uVÀÀÐzÚA© ¿ES÷mSU„Àªr2ßÀOl鮬Uû`˺^l›²îƒlÄúÀ17=0˜#Ƚ/ ¿²Ö‚ˆ@‰xn’d^€¥OT2#jàÍ@. b-á© mžÀ"(åÓ= Nëh+ q%™¢ìJªûZV•™‡Œ>Í(¥QìjÎ2©ªŒŒnM~ôRǶþ±ýV®\ÓoNÆ®“P‡¬„DöÍf« P™P´eÎÚëfÑÙJߨ¯å$[ž!hÀ Xé‚Ô„ãBøà}{2™ÀÔ½™çá!³cØ@zŒ¼ã&85D”‰CxúyLˆ< òËâ$;ˆ`WM«ë'ÀS{æÜ‡&lØõ}S»Ê™ë½ô½g Ý™"w}<º4{UW@:ý8D?‘FNòv&yä¤-¶Pý®U›Î©þêÆ¹ö¶>.Zß{ézó½Ç¶~Þ4Û=€¡ý÷8£Î¸‡l>@–FgPT·ÑuoE,V¹Ï([è4ÎïTg zF(NŠy¤_v3aè pæÎVoÝ6»ÕÚ)ÛºM«ç¡¬uÝ•H½.¹ð!zçsù‘æ1χÝ{´P÷æ¡n±7_.] =RPÊ žä/dxé ¾»ÌåÜ#g‘ Y(cÿ˜ò¾´ÝJA‚—ÇIšÁß!ý67D"í ‘dpC4Ô\'¡>¹nBó•“s|zd—ÎÍñuðбÑÇl›vªza Qk…,q`c„ÆAÄNÏ¢ˆ™[ÄÂ÷ÚÁn×ë²vˆ>sí—î»ã™¸€Ì+×÷Sc£lë¸ ‹.ÆMÅ9-ÙÀùŸ&‘´]䔹œ™»±˜ÎîôõÅ­ð¼^“è“ÁµÙô{ íÒÎ"‘ÒV߀{j &ÅžÚá1a“ËÈvÛÁòܽ¥ùüÚÎ×en4 0ÄE½ª`<7Ç?±§ÑNì–熚$Xÿ™ Öź¿S»Á('9˜É²T"=ò†‰è9oj ÷*åájác×µýØ ‚&ÉðJöqZ·ªøªV:D0 ˳,˜½ È^̽Üä‡hdóÝ4Ëþ›r'ùøH¤Œ9É_}ÃLÄkn˜Éø••‡ù‡¯°çø'‰<ùÒuñ=ID\’$”`Ñ”ÅÖ©gœ¸“¾ÑÚVuMðQÀgG-VmñŸÚ§Ùþô©Ÿ¸C¯üÏÎbìyƒ£[¸gòL<“£ ˜~ïl¿fr ÒÁûû¶Ü,˪úÿç&Œ ;KK’>öVU¶l¹öÍÆ¯S<ø}ãQ.Ë}VôxçüÎòOœ ßüže¨à{eÝ¥+Wµyj„ü¾Ðÿ`ö%gÉ€ëeW¿4ùýS D06^ªw½> ‚¥É•ËjÞ©¥ëûÝö ó˜wÍ‹Váj¾™8%å@Ðο¹ð¤^½$¸üǹ” ãÙ4 ý"fèäTìdà¼LN`œAáûÚö9ÔÏfw½ø®ðÁ¿{ÂSµ l >ø¨u¶Þ½{7›§„Àæoli¡zeKeÝ7v>’Žlà3ìžäþ5pÕ^‚ÕX{#4‰÷e!¦äŒ‡á”4¬ÝÜr†™š ÆÌàÒˆÉÿ†qØ¿çƒx¬1§PŸ¸€Óå4mF’$ăßk´­VÍÊš…Iž „¿÷5®lÝÕ£º-„?û ©Ã£j÷pÿWæ—KSEßízgQoš{7àÇ›7snËæÕݧ4&ÕznºÃ¹£áVݮէoÿ¸~ûÞvªòT•®\Óòþ\­(O‹¡‡Aó5ÜãSøçªÝî®Óý霊ñ”m"Š.K77 ñE³™ë¥û1ÛO:\Q«»éŠÚÂå<ø ÝÎ쩽i÷X3?yˆø 23ú±jSkS¸ó‘Eó³5N§5/«ÃJNßV›·~"|ðâöÍߦvÕ@ endstream endobj 3460 0 obj << /Length 1039 /Filter /FlateDecode >> stream xÚ½WKoã6¾çWÊMZ[ÑË–T—IžX£—m 0%³¥H—¤ìxýí%ER¶dù‘dÑ‹IÑÙof¾’¾S9¾óëÍ/Ë›‡§yà¤^:çβtß÷¢xî$AàÍ£ÔYÎ×;ïƒÙ]% ÷ÏËßžfÉÁ–({IšJ…­p8›)¡ߨxxŠ"g!¥ç±’žFÉ¢Ÿ†‰\Œô¦ÛÛÛûéÌ÷ïjô ‹),K˜ n– S+9G”èÅ dûZêQ¬ ž—4ÿŽ&ÚÎÅ.s *äeô á°‚¤…Üþ£€¸/R+­ªVÂvHD8™ïùáùöw9Ũp'‡XFàæðUnOí³¡ÊÜí (õ+,QàEòì—J ÈùÒk9‡-ÇŒŸmNŒÊX=㇢û¥—Ýßdz»×¤|éb;M/‰‚S÷lÉèN±¼à[•»Z¾Þ˜i§ öUòœ6ddKÇDùNÀ ”ðúO¼ƒû0äÇÎP©Æˆfzø×=°KÇìu7áë¶Y©îÑlÇÇåÍ! 9i endstream endobj 3465 0 obj << /Length 918 /Filter /FlateDecode >> stream xÚ¥VKÛ6¾ûWðh—o‘APt‹f h€¤nzHr eÙV¡‡+Éëõ¿ïH”dÉ«¸»éŤHÎÌ7ß¼LÐôÛâ—ÕâîA†È`£˜B«-¢„`. )ÅŠ´Ú /K&•÷mõþîAÑÑS†ØhÐÓ¾)ãCš%UÕ<\Nÿ»Õ⟅-AtP­”ÁZ£([|ùFÐîÞ#¸U§öe†‡}ŠþX|Ô]¯-|ÎÇð)ÁJP¤$ÅD›ÐÀ9dà í½ù"6н€I²üd“|ç>>{”Ò¥Mqå’Ü­v|GuQ¶öæ)à(0¯áÀ…JÍ„J‰s¸«¨LuRäo/^O£­QÀfB8ñ‡cµ²­+uáÖrLF6&ã+‘ÄeÆU â=™îÝ›‰éf7¼=Ôi|ô˜¼Áî£GeG®”KÜé³P!0Õ \aÝùõgewñ,!Ï šzÒħ©Ô8þä{$dyîÖ­mëÈ(Ýá¡NÏ}éQ²Ü³8¯«›ÀþÐÓURO8ä4ëIqç»·uS{îÙŽÒ㦋t‘÷›N +ʹ$¸„ _™ :45X™Ž‡óËáÇI½ g¢ÉÎø²Šlj»£¢tgÖ}ŽmŽ‹­;nSÙ,vWiœïê}§¸šKgbÁ†Þð4“Í3"û§¤W×Y㎚ĩ\º· wß—h†ø‰½´#¥SúÊÝwcñõä7 ûrþ‹¶«ØÔYleÛݶl™l¶Q‘×6ɘ­û¼eb×iy—4g.LWýfƒØR=T‰;Zˆ“›­#œ§ãrûìÖòõª¦È{áIG¿b–i, ¿•> stream xÚíXKsÛ6¾ëWpœƒ© Áƒ$ÈCikgÒé´ÓX9%™–!‰-Eª|Xñ¿ïâ)R¦mIÓcG,à‚ø¾}‰Ø[{Øû0ùa>y{/AID#o¾òƈ‘Ç AK¼yæ}ñk±«êVÔÓoóŸßÞ…¼·Ÿ%âIÖÔNr¹i‚Í·óÉ?"öˆ³qŠ¢8ô–ÛÉ—oØË`ñg–’ØÛ«­[/€ãyÀ@.¼ûÉïÎÞñ¨.ÀXÿ£( ^(¦ñÓ ¸gáæáàAŠ’˜Ø›üôX¦Û|™ÅãtFCì% ¡Ÿ¶"Óª÷eZ<6y£gŸÔ!f²ªj-\Oiè×Ûue~­U¿-þKØ(_f ¢É9) Âh„ɇ(áÄÜJ4Ë:ßµyU°8`2`—ÄÞŒbD\?~וKõ¬ºG[é1;†j-¡˜ô,-íØGKSrVeÑ“•—EÚ4ÚõLÓ8BŒ3KØ•ùjÄKðFíNdvôÑš± A‡ €ã'Æo>7éZŒõ¸¡gð+ñ÷›é,ÄØGÁ”Hó`bFJ KoÞè÷L[ÑnªLË +)ô`áƒ& ¹óãë䂾£ØF,1@-J^24#e% ” Ï^6Ëk#­òB€¿ˆwŸmÚ¾»Ú´Ûâ¬Zv[Q¶Wf±Ú‰òÝüÓçÛ…’¡Qêò|·ÍÁ˜hZ;éÊRn¥j˪Í»»÷¿Üß탨U#ÌǬ»HDõñ}y)^½uó¢§¼â!ßrÓÀyŒ9ÿµ¥£å´`á±çgÆÊsw˜‘„!’@ÐÉ–XFêÓïR©\”Óá¿Ü¤uº”‰ZM›¶Î˵–e²QºXæ«G£Ü-À™EU½ †#Y‹´Í§ÄȈ¿>zJ;*šÎúWZÙ•3’}§Vç~ŘŠìÆ\~(öêµgÅOO tÖ6—mÅv÷ :Œ#Ùýû¼(4­ “K»Fd¯PɃ!#6ä.¡…ò¨O‹œZZ¤¬j€ÔYZ”RL9÷%^æhµ 3Â>‡dÖµV!7hYÈâú½eG«Tj]ŒÕ>1a?Û‰ ñ£ ƒ®ð¥ËÕÆ€¸T±FØ‚“êaðÒRݵ¤(Sà¢ð•˜0@ PIî ø»v'!"‰MNÖ‚º‹l•²DWº¶Qæ'@ÃcN¤Û‘,Âì¾-"!vÅw—­^²&ˆóè` 2õ«Ñ× ·º·ÜWuvú[JŸQÜÈj¢ dÃþÑ&NMébQ ÙŸ=䲩3>t/ÌòŸ¿BÁ¸>ŸmYµN纨ÖÒµ$…‰ßBªª´è"JNö¡x…IlÉOzäÇ~AUdZ¿Z'_D]ºjíóy«U›´ÑŠ…¥VÙÎ-‹4é_.ˆ2±’•/í Sò±²rD¸£S–Ù ˆ4²¨LžÅ„L|ø˜ Ý\TŽXäçe«’ÒZ$Æub½l§”ªœ€¶ì¶ »SÖc©Ë`ãÖÚÛéR4CSûM¾ÜÚÕòäl<Û5€¸´¹ã\Ê ¡ÇºêÊLùrSÔ¢'ùQjË R)wçÆ¾®¹0¦Ë f»{îA†NZtfºª«íXåt.£û•‹²'tu§“hr \Råt9¸ “ ¹U…•RÓívpL£gúŽ du*=`¯ûJ4±ýæí”¼+ªÖž!CJFh> #zUs:"Ú‚CS¦*bÀTÁ ‚Ay­+ϰ$‹­Ù jìUµ¨j7,©tó4ËÔ?[Pé¥Àp YüÜS'·?T¦áÃ×׉d1ôö›tÿaI±2¹JßuPß #R–ŒœáqÔ¬þ:\àqX{î{&Îã°ó8<ð8lý {6×ßaÞNÉÆãÔÊã°õ8ü¿ÇBäãq†‘ <Îå8óÿô‚ÆÊž Ò㡇‰ëä°Î]SsÝnCI*SýljBý?¼†¶f UM‚³#2wèH‰r¨ô?ñ\Ð;$1"Ôýe}ÖO”àèI ø,øc„q2Œwóà"ìÍw0{Øã>öp¿RwñúO(ì¨!aWWk ÔòêhÙA™¸¯kæÞ1ú޲^Ÿ Æ%Ùyf¿\^@a!Šãä‚^îE: þx ƒ!tFËf`–ý|?ã Ñ¯1·óÉ¿LvÙ" endstream endobj 3492 0 obj << /Length 2555 /Filter /FlateDecode >> stream xÚY[³Û¶~÷¯Ðä%ÔŒ…¼vêNí6Î8ã^æø4íŒÝI(:bE(hEýõ]`”éÜ^D\w‹Ýow!ºyÜÐÍ×Ï^=<»{æ›’”Ë6‡ML)áI¶Éã˜d¼Ü<4›÷K‹í¾¹{ÅÁR^PÂb„ì¢Aœå Å`V>£ŽPÏ‚-;¿gÇrä¸ó¯BWm§ ñŠÍ.. ¥N²‡£ØîxœE‡±¯u+{ì5×¾:µuÕuW3F¢C¥…Âùª÷ߪ»ªÖâ °½¯”h°‰DÓH{^'ÙˆÎÍíµ&Û]JóY˜PÛïÌÁà0;Pi ê°‚×ÝØiXi–äpªP|VæQµ—£Æ9ËÔŒ9¦8Vi¼lcUŽÌJ™Ö¢yŒi1ïlZ¥‡v¿e4u»#ÏFnxȽÃÇ-œÕœÝL‰Ã–¥ÑΈ+Tû?/µçJñ\ x-OB!¸‚g¡t Gt=Ù³xž®ŒtÈy¨ý*¤…! å7CÓnrœ¶š²üón\+®úW+ ªqjåÉ€:WŽR F-ŸïÇè…4lº'Xs–Zôº­:œù@S:Õ6cÕA;ÆEG ˆ£AslõՓǯ†©ãv{ê*Y–EõQÔO §@ÜkºV nŽx·~-m:âã$bÉA cÓâEQŽÚ1ÃNc¬ô\` œ«nÛ¹“[•ºžNB×m–Fà Ü÷«+nmÀpŒi޶ ¸a$%A-¤<÷Êq¾eøÙëII§$¶Îƒ4·ó±m¬ý¦ÔÞ˜‰rKkãø¦±wj<ŸA å×ï¯n\hÝöˆzœÄbNâ¬ô¨‡çyñúåÛw_áê^eŒÀÝùÅóýÜ4LÒ‰¦=ýgi¦%É󉦱.âVÝ@mLb2P›¸øÛ-(·êFñ[°6 –eeµ,§!²šI0ë£pªÂ¡£>wdy›ƒkI·¦‘õO¸Ì8qçX =Àô ô8ôʯH)8KHѪvß]gå Ìšs¥ØÒòfÊJjpf·jNÚÛˆ4žÀSVµj”(ôïàö¿C—ïÚ¾6R±Ü‰ 4ƒˆ p¬„“ :MÓ*¾Öœaý=vÿV O4(uq üY<¯ÊµA6Ýžgq½Êßµ¹5ŽxmOKr8%Ý pX×¼ÿúÙ­J3yB-mÞ£¿Võ“E{ëÆpç?CÛïèáHk´N£…•À·Û¾ëDC¦ûÎ+rgÎÛ" BÌ úF8¬sÁÏ÷Qˆ¶ÖdœÇRsÀF `èY %‚8ÌÕç1„ò4Àˆ./¾¢ßyz_¬8~L’Ñ"ô|/êc;``æ^Ä·ÕÃÌ_üÇžr‘œd _f!NE6õ0žÑ{°2Øn»6G¢4ê²ÁE;°Íæêf½ªÍÁc]刵»›&PX ˆt Ûû“z{Áíد&|¦ÑOŸÜYζd‰Ê…\Nâ5·ïÚÇ£¾ó‹VžÛ€Á"y’>|TSÄðC‹]oƒTaÕúþaýß^LbÀX¦¤QÛ|vO«×Ü/æaº =y½º!™Áytä<´b;¥¤màÇåähÒ Ô†A¤6Mé„Ꙟµ¿•^ZÁ± ëî AVž‡Öæn ƒôO{Ç9¬¸JÌS’‰·ysÒ÷ÿZ‹‹IB ΖqÑ8}šÖ¥5Æ`Z²7¥3‰Šž\ï(¬HɯÞºV EMgK-`ò”úø“Ò9À™ÁëÙ£”ºA« ±¡”¬Û9:¡v„Ñ) ÿTÖCssaêÍšj!•ù„Am' fkze„Ïež•7É£±WgQ·æPÖnS¸uó`Æ Ä¢…­˜&ÎÀ0ÎÙ²·xbzƒìåh Âüû7_bÇÂ|¿¿ˆ/JĦn1 Sõd‚“Àžp̓'¡Æúˆ­ ? &’‹¹ÎÓµ8ndÈ^>ÁàG㕲­WÓç›ÕøµwR.ê5ˆyÓÅÃTðø¡pãdÁ]7*sYƒc„A+-|°ã ÇV»Õré4;Á`é^T ±¡H.%(C4²EÄÊéñbR|/°o2{¥[=z÷™2©Ê?â€]˜ûT§¶¯æô#êÂñìq~MEÿrk.Bå`¬Kù$÷7øÿ¶ñ¦; ½?¢ßn3ðyQõ¾Å0¿P­%g)áÅ„«¼|Üÿù$tºØÁEÛGg9<þi­Jd IÖ”}¾ººÅò0¡9j}V¸»»\.Äs6ÏÜQÀþö©!F äâò—Ÿ©Êœqº¸ƒ{ƒ“Û¸ˆ+Çÿ·ªN¨IZÂÍÔš„)/¬î©«2˜ù‹ì›±FXã9€}‡Ø?`—Am3u ±fk/·ÉZ­µ…)xß#>íÆ‘SC–†± Hæ`öñI9÷ Eyð©$®[8Ð;ÿ ]9§x'úR [žGk }š¦åÂ@nnea <[¡QÚ¿oæË¥Ü(ñ9ò?0–%Yˉ)»5²F¶ÆžîbJâ"ãùÝJ‘”g¤¥|ÕiSF’Ô[UÎÝM\Yµc÷”Ö \óS7¸µ%ÇdìÛŸ3vHEx<çÜÀOðbšÒ)I°ÿZ`Óªº»Ë±­¾ô_ÿ¢šCÿµ—í)RUM|õðìÿ£D[½ endstream endobj 3506 0 obj << /Length 1126 /Filter /FlateDecode >> stream xÚåW[o£F~÷¯@ÎCl)L`¨ê‡n›DªªVu¼}Ù݇1ŒZneÀÛô×÷ 3` ØMÚ•²Ý*J8ç~ùÎÄ2ö†eÜÍÞlf×· ¨MÍÎÀ–…—ƈ:±‰Œw‹’‹8ªY"P™²å‡Í÷×·Äë 9E^€Ê†Ý&dšYÚ pÓ·Ù²›¶/%tóK‹„‹ä©çõ­ã>S·qÚ7Lì!êk]K“XÖ"Ì‹GE½ùöN†qÆÕ!bSTœU¹ŠÌÃ}ÍÐ^Ù¥bw‘ v5(œÔ‚\rN‡‰ E¶°P@‚£²Æ¹¯ÍÎ]´ ÷Rh3m 2þ8d–„uÂ*a’ïQÆâ7M±*Î…¢Yµ™*¡ÊEžEq¦%„,Hw:°2fY¨ $­Ÿõ” éÇ{‹X)g¢.ùj¾^ϯ´ÑxU¹Ð§-œ2¾×§0^…ÇoœŽßdµVðçªqÚÈ£dè‡HØvU0QqišÕÕC^jáùèùÈYûIðb5Ÿƒ–¿r³Õ>™ã]\µ©Ì¢<5ùnÇÃJ§4Í#žL% ò;L “tó1Ö~âQ ;m±½ÖÅ÷cÞúQg_M™ì<ÞóŒ—]S”¼ÈËjÚGù…—Ò/ð÷‰þЛ,’œ}?Z‘ÙÍföû ƒ¤eàV\_Ž‹m„éìÝˈà#(GNàÖÔpy‰ vÁõ° "¡.6\ê!śƮˆO_ÚFÛ1]k¹¥ikñËc¼`I-k(_l™à‘"óL=/—6‘5½TÇŸ¶¿6Mq:„ ‡Ò—䢉y¦2›Bbuy¾ƒñ+ãÆ<›„Ó|7ðé|*éÛ: ¥(DŠk¸Ø<Ã<-jÙAòÐeU‘„¨€deÿÉõ›Ã“/EOá/y¾S‡]^*¢ÍñÞ²ìªj5|Œ«‡NRÇ?È7ʽђë»q78ÄGàU× ƒê,/¦Ás‘O;¬¿z¾)Øh²à• õ 9ZLδäCÍ^nÐ…Nµû‘\­¯“¡%r4Ô4¨,Ú³-ÂôûÄï›Lg ÚÈ9îÍ]ÛRHß÷ìÂòizØ l%òV°=þeàd7·Puïhxæ°ôÒkš¯Ù: ¢[Ü}LpñðÓÕ=,îåeJ ð¸î9%&†Þs:j vÈ$Ææ œèQ=°QÕ¼]i¡`;د“„vÒFš†6‰°ñ(-¬4 Ýý`Wb””•û8cɉ¤4jé+eE¡ÁHѦ“âèäd*zòJÑ·5n Møošâ·œÿzbþËòÓ—D&5Ü…Ëÿ>ÔϪ³¹(Ê|¿eåêö›îo>Çîø´àðéB¿¼øšäð4I‡*2#.̬c/.\Tq ÿo®6ë·­XÁJ–$> stream xÚÍZmo7þî_Á͇rÉ!gH¾I‹ô \"ɽ òA'¯S5²dÈr“üû>Ci}Vô╼. Æìîp8>óF*„RŒ3!6QLˆ.d(×7ÁĘ•ˆ†sP‚M¢ÊSLfáÉ%)áM‰á ™’‹¾ Æ»ÀJEPÙë81ÞSåE±RÙø+ƒ**“ø˜£Rd<ç:U1^(a ‚¼DÞHÀÇŒ÷ä“eÁýV|• ëB0!9§2(ƒªk¢ªè BäT;‚¤@3g(Jý qÑõ`)$±¾ó ªž#²«_ÅP ºýã²~^õÑyõeýaGüÃ**¤:¶*¤P›²×wº'’t65RöªŸ*^býZLtÕ*ìL¤ú•£‰+;2¶vÄX~TÕ@%ÝÌ:ÂÌ£S2¤Hµ†à]ª0à ª¨<,?æ¬ò„ ;€@B0ì«YD Ã~gX®¯¨j)Á»•&R@UiÉ®¦‰ÉƒªpJ‹!ÊÁœtD‚©z&¼Ãæb0®_ÙˆbÛ"TÁ ©¹±„®O’ÊèDté²ÚQL-\’ f€Š"©Ž…ðTcø@rN§ÀÆ%_ט³I¡âO±â¼“¤îà”$©d¨˜’WyRðY瀔ìT—)¹Êƒ¹Rqu„¥;À˜2+žAÁ¹¼Z”ÏBýJ&« A“a ,Rä³óó³æGó.-ðìW¦ùí?ÿ…ã9 ûòÁfHÝN§ïξÿ¾r¿œÏ–æüÜ4/P°{Y±ÖA£@ì¾(ž¨>@Dóëb>~Ý.Í[ÓüúãKÓ¼i?-Íô7Ÿ¯[|½oÏš0S;[Þh È:þ¬yÕÞÌoãöfê»_Ú‹ÉèÅü“yëðBKR¡w˜h´Àhet+Æç³ÙÒÞ®â•êSãÕšˆÁ•øB£:ö¬y1_\´‹:‘{×ü³ù¹ùÞøwªÛ«‚SZª{BÖ©S•bŒà˜Á:À÷úöKÈlþ5™}hžŸŸ×šçãåd>k^7ÿ~õ³þÿæ÷åòú滦ùøñ£½j—£ËùâÛëÅüÌbç‹÷Ï Þ. ×ÒM¿[a_:…½OVÃ9«Ñ’£%˜‚·uàz^7ûµi~š¿™€å›W—3»¸ÙÛÙä™L N6ÃÍ:=`¶Çì£ÇûéÕÕpЍ™:=Û˜ziqõç}Ô§4=ÞùÖ£.•(Z†Ïo¸Ôsç€ÌÅfä‹~Ü!‹uÔW6ÞZäÕžÜ×€q_M|‹Ì¶/plÄŠ(²/p€ 1Vº1ˆeهDžŸ¶CŠçãBÊ};xé·ÙGÇÏ!K~ÇbËé‹%wìb{îù ‹åíÅRxÄbãn|ŸùÎ) –ä'áFábuSOî ÖêÉJÓ&ylþßðÜ!ж÷7øÓ‹*ëÔÜÔB")V .Vœ–úâmÐ ¢=KÚ›ñh:.ŸÅ”mB7…nÆzdT”±€.¾GN G¨Qaè_¸ÏÜaJ [Án&6²AÖÒ{Mcm"yy'ã+ºøÊ=ñy _A:|¥!ñY¯ý,Z´—ÞÚÆ(`ÊÞ½^LfK»hß/Û›å^œõ¯tѦ[´sw•®÷Å¢ýzŠJw…ªr ˆló—am/w€ÿ¨™ûqûMœ?>dnÀ{óŽ(ÉþtÇÅ1uDîˆ.€ò tÝ™àKÐØ£üD^Dë³-î@1>š}8íã#yöV»æN“€ ]]Ðd¹˜\]N¦Óƒy[ôÌa­IDWYüÃ6=4‡G¢‰¬h¦]„šŠÅýAçòf6 ˜áÀ\€;Ù¤'$(pÓN¯æít+£ñ1ûf´½Ü¨»mŠ}eS"ÄòøÈl¹Q ^nËŽtÉG¦Ë ;”¯¸‘’½…„Ó£ªÐ §M”Q è!í:£ù¶þÉ2°ÓÉŽÆB’³.? ³K{²õ.nŽÙºâ{rnj˥žÜZ7p–¾Ü~Õ,ôã&qVû÷ÇõÚƒ7fiÇ)m’Ó#u‡³©;œMGŽÑ_ØôØ\Æ`©ü‹ó³g'7Õm™âº„ E0ÅÉê^fóñ¡£‡•ŠŽ¬ ÝDôAzQì­Þ×k¬`Wµár2û¼l?={ô±„v)õ¶º+‰r¢Ë_í\wŒÒÝÀÕc”Ç8;nàjh)þˆh{Ÿùá~f7£( "}¹Ñ.ê+›"ð•R_nçQ'æžÜ0‘ÙYí ½§Xî.µïX^]M?`¹»Ñù€åÕq÷ê×k‚:" YK¡4³ìµ˜ŠV˜ {²Ù,z¼çò7^$¯O´|,–€æèb×W¸¿yŸ0¤#%Z‡n¯×ír>ìqMÑßî¬5¡ÈVSÒË"[—Ú¼þ}ÄÁøò*å endstream endobj 3524 0 obj << /Length 2681 /Filter /FlateDecode >> stream xÚµZ[oë¸~?¿ÂÈË:À1xÑ­À>œ¢{ŠÅ¢è¦èC·Àʨ•%W’7M}g8$u1Äúdñ6$ç›;m7Ñæ÷Ÿ~ûðéË·8Ýä,OD²y8lx1©’MÊ9Kd¾y¨6ߊ$ºÿÇÿ|KølªŒ3˜ª€™Ôë¡®ÎE3°þXàôO‘ݶHfëvnáN¤Ð)iù×þžGÛÇóQ·ã°X¾þýòMÊù‰³ÍŽg,ɈN·ÿ§.Çõþó+¦ Ë3áŽ]´÷;Gn}è·lŠa ›/¶L9“wîà¾w4k±ÜNæ©›õsG‡®Pã)S"¾`c€¢R,“bF‘³ÕE„wBf,â)ð NËÆ—“~?{Æ'¼Èh|¥–;Ù줦ûù©.ŸhdxêÎMEÝ{ífç¾Õ»ßI)¶ßîy¼ ²CD ‹³ðã3n”O'.šQ÷m1Ö÷"ÞþŠûiCøŒS†/œåql¡×¿ ‡‰ i=œºvÐ!¸c pË9Ü•> LçfD¬>¨«ˆÅJNô‡±h«¢¯‚(–æñtÛKj ¨•˜;W M!Z*gW3ÎÉ,U¨B PLF™§zÒE?tíÝ›pЉÌ^z'rÅ„XÁàY€f„Û:°Q¦@ݸG‚pçyÆFÂg’¥Ü3öîXôu[4A 8K£äíFANÆ‚Ét»ìÚªëîÊV Àg7äJ™2!•eYBc?iMöê—ß鱨›á»×Í‚Õð…U8v•nn³šJpo5Í÷_±šãYþ¦Õ̇̈́Y"ù˜Í´§íé÷ò&‘½ ¿z“n’/ì? êÝ;,T@ $À°VCòø¢(As_5jŽ“!tÒcwÕÈ…ùŒÂªÊc–¦Ë  ’Wü>o œÎ‡(‚r’»bñ„ei:£fìÞ[Ì{ÛJ˜ €C¤)‚–•Íyó~]éN¤äÀ_.­A*G”?lþªípÒe}x¡Î‚~ìVuûèÖ‚E+úºØ7z¾Znσ&2G·ìާóè—ºSƒtï`±·ŒFçᤠñ;‚1³ÖÓn8Z 〪ÿ«+êYD‘¼k›j]?c1Ïn'RÑáqOž² Ö-,\¯õ0ÖG¼Ê»¡kºÇºDäШ#¯ñ×#…ç' ާ§†gW[ê/e×÷º){EDºÖ„·DÇFIø½·¾«×;wÊ*„Lq@w"ã[°×PËÕR‡‰Ëà¡a%ŸGë™`Qä5.äU%SRNq+ #Y™¹©Ýh.Z0 Qþc|nc€‡)+9É¢¥Þì²vK—~슴(Æ£ô£Â2I¥ £íÌcSG²ñˆÐä­þò×[‚ÊÅ E(0(˜ùÌóTôÀ¸[¼oùKJ# ’£R’‰œ!5}NH±á…gøíÌЩïJ= ~½JC¡Ä_0.z>bw¥w!1Wª8Ì\ Ée6aÚÝSˆ¹»8O|HièÏ®£’Ùu0¦Mòí í9 càW׆!'" ¾ö1ÅÝÐvÏA q¾ð‚Yˆåés æ@_êÕ:Ì ÄS”÷c7ê[B<ë¸ÚòtÞ/du;Í~4'&ûg|€÷TØé´ª=÷n¦ËŸ-zX g…Š×®ˆL`Ζ˜·Ç³eó1-ÈS‚Y5—6¹Xá\,ßÖ‡PHˆ!ˆ‡ÑÝãû«R”ìóT \Öö»SkXüs ]aXÆsŠ„wãæ Æðs›ù`GÓ¡³2ÄSÎâ\­üzQ>Õ­öVн6ÞÆ;ì%$Õ¹·>lެ† ›ÛE±ªëqøBR&KÉ„Œˆt&£‡ÆNA¯“LìÄóc_ŽÞ©)J”Ñ9)[ÍX:õ¸sÐ/ƒw%GQ:ÙЈÊøÛwç¶2Õî‘–Qr´M\²ðS8»¶ôÍñ·øN°Óý:ŠBš³múî:²‡<åí*êù¸/úDS"µj•Ê™5Nï¨p¤ >ÜØ;P'nhº} ;µïû?·Ô=‹Ea0]À<Ðù‘ÜÁ™jˆ›”\F2ˆ7â”ñÔÓÿöõO?…ÙÝ¢þðFÀÁãœE‰\Ç»Aõ, 1–OîyæJ´ÌžnQÙÍ)ù܉„EN×mM"XÒ]{üe)÷Áp¿Ûº§|Guše0Á ½‡}Zšú n>˜È SÞþ`á)½¦3 õñd„ :õ¿ÏF°áÓ¶ÓGìøåòø;wìHŒ`Q¾£¦WÜÁ†÷ÀÐÚÛÃQ­ÎX“«'à2c"“;Z*¡ÖE5 ÿÁ )gÕ¶*FXcV¹ ÄšºÙ,z2Ÿûb ó©(çÄrŠ›Öë#\Ø/ÇÓ ŸiPyÆ ( Îz]ÕåèˆÎ2lÂþð Û‹³‘S9%¦ËÙ„Z¹@q Q·áˆ¹›ÄÜË^k6½ª­ïu[:òz|Ö¦rª¸›y(n^6–Ô&&Q0ˆoù+/:gÏ­ŒƒAÀúE[ KI*o«aË-øB•v/ýbŠJpÈ–!òÉ4`Ãi¡5qB$öª´¢¥¯I{í‹…#'¢09âI3éЂ'O ‡mx\»:ðÌCËøñû8¶þ&Z:“£çÓP™K,éŒ5ŠsOÝÄ1B2P/Ùgèt²¢DFÛãèÊŠæbf£pÑ¡kÊ`íc‡—ãiìFL½Í%k“4¦íz*r¥Æ2ñÝÅ‹)XKíÿŠ£Ù¶±¹¦É«ƒŠ|~Pa ×Զ̵^ð¦ñcñb)žõ0ºIÅHãÄ/G!p…ªsÕö]1ø½J:Ša€´Ôâê,—-ü×L³ÏNìŒâe™8ùG÷ûËÄÚýþððé!#² endstream endobj 3541 0 obj << /Length 2999 /Filter /FlateDecode >> stream xÚ¥ZK“Û¸¾ûW¨|¢ªV0@è*öao%qe]ñl6UÙ( šaL‘Z><žýõéFƒ )Q²Æ)‚x4úùuC|u¿â«Ÿ_üp÷âÕ»D¬R–&a²ºÛ¯çLFÉJ Á™®îv«i‹]Ÿ•-kÙú?w}õ.V“I2M˜JSXÒƒ^p·Ëj#•¶6¡‚I’†½[‹8¨ZOÊ) ‹¹–{ ›²¾*^.ì)–D~ãzû_“wíw KJÉ ›¶Ëª]Öì~ç1?Ô;S~·Þ„1º§£yó2¯«]Ñu••/a„XØX¨”%±_0¯Ǿ3-¬¢e0™OÄÀ ®ƒÕhBËÆ“1’³ %i eUB§SAþPlÚ?zrÏð¾+ÚµUlQŒ=z<ú€œ!ÅÓ {r¤On_%,URã4_Á0¥*4,µT«É ò}c¼Otþu];òéäLch"Ð+êÉ÷?zÀ‡(5Û0šZèjö‹xÀ%±Çã ˆ'bZ†SˆåÈÎQ¹w‹…æ$æeÖ¶ Û\‚ÏUúeY´Ü"ð€1æ.cðp´ÙipF\Êi|]uYQy£ð^l >þ‚0Ϫk_Ÿ(Ñœ|GÌ&ä, Õ„‡×TOép„ŽóAõðôi¬%:.pT9%ê¶ÜoRhs?É|›¢3îú¦¶œâ”.wç¡ÒÁåcË…Y`è^”,d_ N’ 3°\Ìâè5ªÊf)}Òš%*š¸¥‚J.šû \7ké¹3mO%Ó(ȶ5jy/7²Ú¹=Zƒu~3©öÔRÝÕ‚_‹#½wpǼ„”àBè‘1ö´t5ôÄðrõ(è¤z4úÖù¡Sò#xÈ—1)„e-C˜ÝþÚÙÁLJ‘>Åß‹ð!¢sôýwHb¿x[•è‹.„¿iì–v½E9 k sÆ8¦o ‚´“­jàyVæ}™uÆ[Gkc(E³ñ?tt2IiÜBMB:ÄU!ËóDònï|»ÂÚ¡êjÅòˆxœôÕU}×µ¤ccðÒ¥ØgUW£Œ…~2GãP~Æ" O¥«o. ž°°ø¥^x…ì2 ŠŽv:dOŽììÓZðÀÑžÑcoˆW;…Ä1ÖsŽj ‚Öna ké‰ éUÑ>¸^²uå¥O©)øîk×væ)%©2Mð9|¢¦9|¢žéÊB%ñíùtЬÕ4-SÎQ´ÃA*¢xkб»Îú0™9WžÜ\ô]F÷7h 6rØ“‚üÛbŒ†Ì('AëT Æå:¬¢Á,Û±Ygß [0V̱s–¶3sktÍ“kÔ¤ (-Â.XýÞ­Þé¹uÃ1©²…À5Dg2Tšâ6 CµÍÑ–§ÅVW:Æm#®J³ÆÆx|{DÝ«RÁ†ê÷ǦÎMÛÚ³D‘v5$mk£®é£õü–gî+d©òa·-KS¾yÙVõã2›E-')Ƽ0”,,i%XZÀpd/æ×tËךµ¦*?öK7DB½ñ[ê4h­Jb‹ VuàUޤ¡ÏÀЊZ‚6"T¨ŸøfëoØp9-b=t^*‚„Ø¢ø†¼c)cÚ¨PPÍ£ äÒê”Ne˜\ãÈèÄœ(é\RÌ Ø~K:OŸ‡°øz.ékΪt¼£9fù§ìÁ‹aô-Qù\*@%ÃÔ«$Ð|øøË›äWê¸JcR±HMNþ>;éZèâÑ€›ä¬é„'®N„öˆ™ð‚EÓ”é“Uß«iU ÔÊqûY%úñJîþÕós¹Ç}×Î’<ÓWpZ‘ž&¯œâ¨F@ÐÑ]“FÄ`ÉN¼ ¸Í“ž`a{‰”ÆÁ¯UñåÕû¢ê¿l²²pÖ2\F2ømñ` ðLqtf¯_S•þG >Hí¥?9ÂŽ§‘UòÄAz‹ùƒÉ?Qß@³«EDc^6/ÃÜn"ÐÝåPô‘¼m8?® b«¢OÔNÓ±²Î‡«sãò÷¥…ÜÝ$~—îZܺ҆څ»7Ïvôw^ÓÓ¹lzïb‡;—_‘—ö6žŸÝƇÃ%0^t›néo*ˆFôXÃ2¦ ‘÷Í»ïß|»dL)hu8E?tÒ+ÍY’ž±-XË(²—Z@0ä‰^|R_åæ•-gt“|šÞ ×Oจ\.}¹©Ñ˜Íp¤Ûzoí›¶| Eæ™áémey…7¼¥kH öìÙCwI±;8¶þè‚Y$H‡Qø©veÜ8°¢ƒ§3ch=¦Ü¹¿ÌXCø¡¦þ‚'$íÁ¥ëÙñY hWŸ¦€.Cf":)ÀM+ä¨ìeµ­XÌeÿ ®ÿ§@_üO>­Þ@ϸŸŠ÷Ýa«¸¯œiŽèñÖ/wYÓw#–rç·w/þ b× endstream endobj 3555 0 obj << /Length 2535 /Filter /FlateDecode >> stream xÚ­YYÛ8~ϯh$À@b¶HŠ:‚Éb3Ùd’A²3ènìÌ+‹€æ?¢T"ñŠôeåF6š¾ÇªiÌ&w½¶¢ïßn!iiT[S3ÝÑ)  cÚézÕnÜdí0±˜à *î-ñ4S5g*híꪘ‰µM[˜nÙj-}éݬ`üÞäNZRéPHÅü„OµhJ’8Ÿz0+õ¢üóÍ‚°\°@ Ò’×äF”ïíªší!m©å­ûƒ5·ËsSî—$‚)5ˆP7m··[ÒZÂbÕ¯#GXóOMýáMÞTèµqlÅ;ç)c¦â!ŸC²âîùË@°0àýÂjóUg-<†³k8h¥ôÉòÝO }>Æù¬hŽ:3ètzkÅ‹<ÓÒ y.l"Ï…‘Ûsâ¹Ð³ž‹¼ :»V“b΄PSc“ãĪ— ƒw T@¤»Wžõq˜.Àg :i[»1ðšÂ6­·æ¿zKk{Ì¢)­?¦uk²ãxÂØvÌŽÚƒhŽ¥-«Pª;"U¤mm¾Ñ"ˆµ>âÏŽ~5à¨s80Šq.—:Ï䀎qëHÍа¡ŒnÜÙ8BŠiyKH³–e.Ô,ía …Q\Š*Fä„ÕR9Á•ê,Ïü8œ:û A„˜ûŒœø›[bÒE ,ŠQz¾ û!R ‚€}Ó=‚Vá€W8¨=LiáZ¹.÷„}hÌ–!Þ9 µÙ›àãúGàÜ(ú!7Æjîú ‚L⧦‰`G8 ü¥£JX6Z§+3‚$<¤4ì WŸ[ è$ü°‡:ç%€W2,‚€à±·•ZÒ÷”R©Óáá‰s9r¶^SÔs‰Œ†<ˆH}åDbP^䃷βÅÔ›$ˆDþ­I¼F§uv°òp‚Z·‚Û­ l‘EíÂÚúR@Éñ]¼)xoJ‚ZÙtHz­…T\NZ‡‰Z0l6¢Aô5» 2ˆü´€Úvp•èªIRÃ>!¶FÝC'=sCÇUÞ¶«‡ýd¤ê”Î)°0Ý­2=HO®Õµ€ÉȽÏx´ÕHá4³ˆWþ,âa#ÞáŠ^ }ÎT?)ôe¸ä¢}†”šˆx MïÑDäjLž¬L¦Â$Ѽ7‚q®¦ úðŒEúÇÂ!#6Ö–ÖQ·Õ"5¨0øõ/h)ÅáI­B9r‰Vë£Æ²¶mÜgoî9ø©±ðÂ)W’Ò ë¬ø!ãñ ëN“4Ñ,)2'Xxz¡à`%²@pW-­ö‡ªFζʞ\HÆ‹É4¡±cÎc©ü¹‚²¤Êwû¸¤-€ê¿V!dHÚMÚõ9¹,h 99&—Ÿïï6/t›ª¬u…¾Ãªzÿ·ÅL0%§f{æ³ü‹„wÍ+<ÄgÎ3ï¡mÍ«ËËûû{ÖsL‚ld?»©MÅP@Ž'=¹á¶2׿L sOŒp¥wÚF•†ÛXó#úܵóƒÞîµ½¬ÁeàÃoàÐcnô'J¶¿ç·¦tCÝB4 ‡H:‘:T“*¼/t|Ýj5¸h?(ìPÙû0 b†FÓu )é¡1Í’åÀ§#1–ôp¹áÞuZÒœ¬oß¼¢‰7Yº…ÀÈúªH°8!Ñúb ™^ÝÕyî“ïajôpáDX!"ÊñÂç¾ËL!̼­Êm—¹dE§‡³y#r)¦®èã²MÔçh·‰%ŒÓì6Ýë%}K`Ä0ÿ†H_u5ew ãÊâu¿nrø©uÀƒ¯áâ}¨-#O/˜!Šœ{§Š h$öqbô}_¢ê^þEˆ0ˆÙBØ€s_Ìcp[ ·K¸žò8”ÑåW°æNh|¹ÀòOå´zŠ©¥ GSKåL-x_„„÷Ù¥qxPßd·dsXk ßÞöáַݾnú­#ý‘ëìP˜­ã}³Š‚ž÷uk¾–ºt3?ÑênòŠ-%ý?¯h\s?@ªØTÕ-íÅ Œß¿ Q|!ˆÂS˰Wð +Tàt‡ƒ¿TYJ¤¯Ò¶²8ã ïý§W4øöê-5Æ=K×àŽB>æ™—I©š+Γ`Ù%$¸–ârZ’,»„ûèwDÊìxÐ]¹Ç±È÷>3¤…ëO®;C ´ãï] 5\Móôø¢ï@a&;x½­I÷e…qÚÐ ÂÍPM²3Ÿ¸ÒXŠcxgˆ˜õ%àNÓß_?;ˆ^²1TQ"|2ð¥zçtÕÉiüsŽÂ…Z2¸‚ke>fo(h/¿ÖMEábE5‘Á4£^kWãkÐbBÅšî¶DpÍóaVæ`õØ•æ±:(ŽfÅÈS8£hr1=<ÆF@­:&ˆäŸòÁjøÑá»ÿœhŸÅp¢w*êŸÆRð“7Âñvÿ]†‚É(8{„éïûö}Ú½Ûʕދ÷Lýð…ù¦·Kg·Mº)X“lš*¤Ää¡›;Ù¾Cmœùç»›gÿ&Wˆ endstream endobj 3579 0 obj << /Length 1473 /Filter /FlateDecode >> stream xÚíYKoÛ8¾ûWîae bHI¤¤ÅúE“‹æÐÆ=u ,-ÑŽPJr%ª{Øß¾C‘”u²­Ï¾˜£áp8üæAcˆ½µ‡½»ÉŸ‹ÉÕ-#^†22o±òÆ(Š™—‚X”y‹Âûè·GkYU³O‹¿®ni²'e %YÚÉEZh‚íW·Qä¥ Íb-DI:ˆaÌȪÝ, ûf„ýþÆoË׿û«#ª¦°¢s3ük¾”\Y™‚+>‡Ð@´-`G”‘ÔìöêÕ+#˜7Õ¦WÂ|¨GKtª/D­Êƈ®,z.;§Œ`”Q‡Œ׿‚ Ûsr³˜|™Æ1ÈPšÆ^^M>~Â^“ EYê}D+/Ø“8Zz“w#ŽÇãà8€vÏq`‹‰Ç°æ¥?:nÏ'Œ, Q–çÁ{¡xp]s¹íJÀ:¤~nˆ;Q‹vF¨Ï¥ÁG3ß–µà­¡5 ÷å“(‚›ÕŒ¤þJäÊ€2Lß7…08žˆf JXö+ @Pv"‚i‚QŒ©9ÕÑåm¹QeS`±Ãä ª!V’"ãm_çÃÒ ÂÌW)‡Ê°* ÚŒø\ã¦ÊÜpÅ›Â2"Ù ý¤±p4+„¨­ £©ª©±š…Ô`fÕ¼+ÌŒ«Ò©Ú[cpֲƮû”ºLÓËÖ©Ýpœí6Ñtß•õÚÚå,ñ×Ú壻/»Ùÿš2j7äªå•Ð"ßfûMûµ4ó„0K!3o,¨í–:7O¦¬UÛ½õŒŽ/í™a4 &:d0J½ví9òýÝq¼$ »ð×Ð çhÚY”øÁ†çŸùZ%ÐA°$Jq䬛 UÓ C ³”6™F[E'œ¤ö²Õuß¶€0¨“8 V’Ølñ¡;¶è¹ñ¸F†µ«Úܕإ#rGލÉH…ŽzyO#O<µ“Kø87*B»7ŽQ…‡>Öß-¼ë[±Wå-ÙI¾td¿ì„z}*ZxQÌÉUè6oæÓ¦–[šÚ­‘2vkŽî”µ\5mçÖY={ÍšRÿÚ°t/ZžìüŽÚ@0Küœkm™n ƺÔÎþ:ô¥íïÌ7Ÿf.UhgëQŠz­M_Œ¼‹e!"ÔÁóùÄKX†b:¾¢t‘—«íÐM×zÍ9‡Cý|Ò‹nã];1A “çL©¯QJ°ßKUn¤Ö±C€#8gk'Kôãƒnàë™åÖLXŒ‰‘AF+âª-Ÿ ë[y‹0Õx/a‘¢”ŽñÖ¤^gÏ—%ˆÅÑQsÖ=n n XQkm 7od_ÕvŠÛÇ@l8#v‡Åì 0€oÀnK¾”r&ˆ“Ì¿–J´5äù.Dävƨ?<Ê÷ôòóy ¹U/ù‹‰Ÿ h¬C›BeƾsÏk®!j#ê¨n¹´‰¶ï(Àüç©¿¡“½Ú›Åä?â[{” endstream endobj 3591 0 obj << /Length 2580 /Filter /FlateDecode >> stream xÚYÝoÛ8ï_aäe fDJ"¥;ô¡ÛK{hwmû°wÀÊ 'K>}´›þõ7á>Ã8Žá‘£ÑpÈùúqì­VÞêŸo~¼ssªUÌb)äê~·âžÇü@®çLúñê>[ý±2¸þÏý¿nî$Ÿ°úÊc¡ ÃTöPÈùƳ ôÏ›;ߟ|ºñCa¾ÝDŸ$tÒtµž X¨§$‹#Ñ/™î“:I[]_ƒÀhÝ´u^>à8^·•¥ušïiÒî5 ª®M«ƒ&Ö~Yb±ßu}»«êÅÇÝ&›¤LŠÇ&oj úlà¼â0$½~­š&ßÀ/¼`]Û¼*š$´¿ÅyD‹¸ßoëê—ÏWÄ4Û»ÀTÏdôB‰F/üÛ ½¢z°Ô:)à9è èÜj’eV:Þ:4áÏxªüôÙ­ ØÁ_Öl,XFó3zª`ä­ó2Í3]¦(EŨ¥¦ÏëëKúrÐ÷׿8õULÆþ\_KúÂJVß¼µô'Êϱ®ŽU¶|Kûâ2`BÄó}h‡–SÑôP?þìÒÒÌW‹S {-a0Z8téÎ04ǦÙ"žæÈ…ÇxÏI.iá,i“óƒÜ;)hEó­íêä`ÕH«²MòÒçlC#wÓE®3ËP-w]™â2§7c›m¦)’í¥›ùzÍõNÛÞßòvO#ª‹Æê6µ“1*ç3UÌ‹ƒ~…ÿ:ì90æ=CÓvY®›Ó;B0O*»Ue¿ì¶n/ÚlćH‰à­)HøºìºÎÓ>JùüX`n¬O̵×|mÒ­¡ëá RÌŒ«¥Ñ6û8Lìëf_uEæJª[ë ™3ÇÁ›Á,+C¹ ]Þy4ð9 ½ßë¦ÿ¶¾öÕú6[¶Ö²G]£ßÎ}rŸ”Y1¸²Ù<¿C µåIuQ47iÕ¨›¬ÿ×A\ÂŽÿvʰžUOzI–oβ*7¥FÛ<\‡kH˜×"´¶Â³UhÈ­®iL6Sc}4ĽåL¨úœu™`Ëvd¶ûÆ1ŒÍ¦ÍDZR ôÆeÓþL€Kòõ·½Æ³–p~I‘vlÁ³ì] xRM›ÊˆWïpŸ;ðGâhòï$Ðz0~DåÞ.cL&½Qf^ftVyæÔ²3`Í›û¢mñ€TPá÷ßh þAƒ‚¡/0Y•ÏÂ:VÉèlûòÀE«mMÃÏODpŸ‰`¨wºÁ£:å#PS$ÄA_Sl¥•)€`p¨–€÷!‹!Í Ä“Íë“/¸ÊE`N#˜>2¤ `ˆä-H&d¤¯h…¤èÐÒø¢+3í*ÇÂ)ÙFÙ GŒËÝÚ¼dÄnírð¶$Lžªƒs9ÈÖœùBØCµgsU•ţ焋ä\¨'dJ Hð*) 'æ XìÉóÅä;ïI~ øm;ŸÁ9Šñ Ž…Œ¤š¼h8Z,,RASHùÜ›†NMHá€L ƒE?;:¸¦RcAé„Wga ©òrxªí~*ù)>ghRL\'IIÏq1úÆú°~cX)KOEÓQÀà ØÓ€ºñð*\™§+Ú™·ÚPÌGú‹÷G¸ÿüÛ­«¬ÀPÈyî;™<ɼÀŸ'2á%¥•ÇÞPZqŒGbh}V0D<<èR×hœX¿1 GËaòÛ웃ôÖ·ÏUEAùãæê·Oìî‹«ZlzÎYìŒÆ2á3 OÔYë|jºÚç/—ß`z´W>±Ûç¢prVMØžâS‰ïÏȨê ÑþƒrÈ/ÜCÉx/ü B«Ê.r(¡ÔàPBQÍІ‹LÆØ»Ê܈’bC´ÊJJèQCþ©›Ú7ÄÖ§.”ú¢ècOÇmk*†ï©õû’È´ì\t0fEàÈ-©@T{; ðŠ»ux4`so¼ÈÓ¡¾»º½u3 ˜»FG¹~O Øí÷•CZZxÿ\ýyRÏ›¾[4¨³í£m´è¶u«Ï–ñ'êrúb¨˜1á©`¼ÔO% Íý4­2«û™Wbj]€¿ÆBž J CHÀLöäD{yñ&ÄCWŒ:OL{׈è±J`± Ð@Os3€¡=AI×yË‹£õÃ…m‰áÕ¥­iQã{‚”0 7¹9äÑ}xéÔ!y…•2Ú(˜W7CpÖ39Fæ7ÂUÏ ÁËû^d Nû,WŸÕÏ?®ZýÃëo”)eÐ×âßH’É£pbr Žø9Œ‰¢þ`‰ˆ Ø2ώ׈êM/éá W(r#ã‘ÅÝÄà°:ì§ÖEb”ǡ…Ý8²UÚ Ñz"gÚ Á–bù‚_ kïfEÌkOmï-¡*|ñîù² IJŒåõ¹|0$(G}†«£|íîýÇ/·ÏÝiÕÂÛPæ˜^Îp,!$óM“cÚ«ÐM{Y·BÊWÜdŽŠ†£¯Ϙ^`bV#ÞM›§ ½¡»®2]sLᶃvm“£¡¯éï)54Ÿ—vC  í²8Zd—813¼4¥žt!0¥3ÃõÄ:·$ð¡]•$ÂËÎPIp¯ï®¾?ÛYàS{¾¥rñûu Ù† &®ŽbZψr‹€ %ת?™øŒÍŸmfPmñ>¤3ÀÕàÛ>O÷SÀ©Û¤¡ˆîÒ¾£¨Ì’Ú¾,«ú@)Î#G»o¯`úwb£D´þýtDÉé©´çô[„ò 2’¯6ËE‰nоŒúî8RʦՉA?2´ñä¡üÒ”.z2FªN\’WvÈ•óÿg-j ü[Õ˜†613L­Á±àžšõ äˆ1”§ú‚Öb¡¿¾æ 4"°ÿÐ'¤VÖV·ßtßLôèAQ/¹g)Ž&d8vÁ ”i°s1écßð™Èu¥MóŒÃ¿÷PN¿`1ü»Âe±icʶ^¾‰º¬°m/û¿‰/þ\ã¶-Ï=ÓOM¯žÛ¿–øäzоø>­(ŸáÙ§¹í€pÛôàØÚO‹.Ó½d+to Õ¡´Ô¸,@9zú/VÁ:•‹j?$¶Ëb‡€vß—±FêïFÔŠ9¿ )#Ý„‡ZO´,˜4¡àP!oŸ ½ûçíý›ÿ\yÀ° endstream endobj 3597 0 obj << /Length 2496 /Filter /FlateDecode >> stream xÚµkÛ6ò{~…‘/g1W"õ,Ðrm6—æémöîK{ÀÉm•%C’»Ùþú›á õZ9Ùì¥X`EÉá¼g8ôû…·xûâow/®®#‘Š4’Ñân·ð=O¨ Zľ/"•.îòÅ/Ëú˜‰}q<®þs÷«ë0¬Wi$â4lv¥ŒB\ôÂãÜ÷êZ©Á®µŠ»m-c*Ú\¾~ûÏÑîÉYq$ÒDº£NUcZ³’áò÷•.õj-U´4e«ñç^׈—mEÍIoÍî~´M³åù¸¡•ѲÚÑ÷T’†ÇMöÉ0hWñzMgÿ¬8g­)÷|âiÉòì´F†€ä5È3 C"}Bvê/ßfç¦Yÿ]×GÓ2(;êê“9®`Øšª$¨e¿^VTûua~[ùÞRæPU¹X­%—wnE®w8›‹––øÆ¼ò£n/iY =8ÍîÁQE_Ÿ>Ûª®usªÊ|2OôÁà&;ÙÖd%ýt\Y–à|”}Ô¼ö¿?U­þ‹˜ØÀØrØÖ~(†ý]×›ªÑO·šÙfKK2~; Q±ZÞ4°PÓLunOç–Wªs‘Óx£iñ^—ºÎZÍ`Ô•E|ày`ybM6@Ss+f¬r] H¢å¯ž'[§ˆ~†‹6š(fAIÖCGó³:ί_ß||3ãÇ2©»UpŒ/èHshäME fHI¿‡>`ÔªŒ—ÿ^ÁÉ躡å¥Õ>ýr2³ü¯} šˆ¡fà W!%[iä[ÙOnö¦mžn>Õ ­×ÚÏ4ä(9jr”‹ u!Öjr .ÁøÐ_PfCT÷³=Lj<9Ÿ3 060 Ä&½Å†1Y,Àêê\æCE¤ÔòÝŽ çÒ’Œ6§óWK>&GÖ†¸ ã‹U¬¥0áO$‹eJÃÛ·/¿Øíà]cµðįזvçšë63‡œŠCˡ¨z?ŽCÛªl몘¥.ìãöã$#°cSN68{{²eDµ;þ¦%Aø…iе“¨HÏOÒ'ëa0I© &ˆn€è¦åXKY±¯jÓŽ Æ~ŸTSÕËT”Çi!bM ƒŽ7&#¼sÚ\#¶£"É´1¹žÈuw.·ß$°¼…O—u–禓¶¥|å'Ëýù¨!ÿ ’ÑðÈ4 #e$–ÙçÊžéw!C!=hND”Ðþ%¹–eðcÖfßÍ„jT‡ ûÅÝT”l÷.ánxúÜôŠp®qܘ2ë÷܃aLõS¹UG„ø½Ó[Öcþpª¯êÎ[9£8ê¬9C@únìì¾'üµ‰(àðW)ÃÏ©<HµÇx¿ùáö匔")d¹Å;G&PÈþÌf• LuމÏ]-S£lšWcº×±'bŒtð<ºßÝÎ $Ï Ü”[p°r«;êõgù·ñ£oÀÇÏ7¾žÓ~†¨—NU†Ùô›ŒÐâýì䀺Âmoïno~šc.ë’é·Q….Ãtìwý™L:­ôàNå+G”n ÂÝ~.*%|¯×P?”ÄØßlk³±uˆtUÂ!(]%ÁÛCÖÒ¨+7`Û†w rË"„Z±1ö†W‚ä)鬡M¤?.l n˜£P AR V_²ï±Ôþr”} «¥ä\WÝ>À¦eøºŠ†íÃÉÆCR*ÄÁJºDiŠlS0.%/€$ôð’g)I†•9ØCøÝ ›VøÁÐÕ ”ö¥»'#ID*“ бA ?íL§íID}ÓhèƒPÞ[Úß6’@2~bŒSÇÑðÒAªW‰÷ Ǻw>ÖÞcýQ­÷PÞ8%õ×é²uÉíì†ÌÂã0r?ù>5^"G7§I¦qùõÓÿ'סy}ÿò_ïÅõÇY° ŽÃ‘Ç4/€âÊÆA­ã¹ëW¹;§5…)uÆûŽæ“f¾î“}CËœ¡{¡+ˆ6Ç;hªiÏùé’I©r€u¹‰íçîNP·ó‚J„Tãª@©~'‚BÐHP “ '/ÊN‘ pH‚Âd„¼:²`ˆ”q|³r›”Y’Œ~x/^ß\HÜJN+'¸ÕÑglIp[¬è, Æ—, §\“#±~Ù7†4áuM-NLÕH\Ôïš+¾™ˆÞÜ|Em“uwÎñÅb""o "ﲈ¼^Dºl—áSæ ïq×Z6VTI(’8‡›kÜK7ëGáxy^Ä~5Ðä\ëIÁ5ÉëÂÒåð¥bH8ÁGæÉLƒ`ˆëö2®Ž¾ŒÆP 5LV@ÍÊ_‚ô+}÷ p[l{…p‹ÞÒ¯šZ=P†°]Büƒ\5é\5t§òËåc¾76¯zÒu9¦F˜ŠÄûºÌ“ •áKWKõgÓy$ß3&ÇÃ’Ÿ+Ó4Ä€0”ŒÅöì‚MÃÀÍ|ƒˆÔº–vÐÅlÕy“:@Óå8øEñ¸í‰óà %ÏØ»UÁç+éùPjtEìo3:N„—tÑ+?„±W]A½Œ”æ²<§°RS1ênœäÙq"ã+*ü8N'=YÊýk™&ß0ó&#¾Óžo˜¡;ކ¸!èßd躃;+BƯFÉØ|yŸ½ËØcôʹ^¬ínÛ.ï¹–_'«™‡ NV¢C9íb…ãúËës Ì¡df<…ˆŸÆONÝÊuBî®h Eƒ <û@@#éBk¡Ó³B®Û> stream xÚ½]ܶñÝ¿âà—ì¡·2?$J à·8·)ì$pH¤@t+îZ­´•´±/ýíá %J«û€ ÃGŠ’ÃùžáŠ‹» qñ×W¾yõæ}’^äQn”¹¸Ù_H!"›‹TÊÈèü⦼øe£Œ¹üçÍßß¼72Õ©ˆ‘ÁF¨;Ñ]}8 ä+Á,vßê8‰´H/¶*…AM+‹¦¼Üª\lvíáxŠ¡j›¢®`0Ë7öR&›/GÛôÕ¥J6¿ã§.·±Ê7?ßÛ†–÷–À›ÓáÖv4ØîyßâRnzÛÓWÅKl±»§5ýp*x’ú`@³­¥él>°¥Y<n ·ÝÉò$¡;ÝuíéˆjÓWØþŠ ÛÆÒà®h¨S]û¥:ƒ›‘þ&Š/^ìú¬«_JÀº®îÛ¶$ØÛÞ„šÛªiUQÓdYõCWÝ^*±9!I¯ñÏ÷ݶ´EÙó©íÚ-`_­$PQ¹;ÕE‡jó«HÄ¡úâÈQn퉳·»¡‡ Ikêöίv³:Û÷€ ÚÒÖÓ~$aZâ¢aŒ—0·àíë¿|ŒÞ}xMà3é2q”ÂC#* &‰Š7ïñð¶[;ÄPŽ"|°EêìÛ×ß}úôü@O­'Øj“EqžÍ)¸k›²"B§ÂßZ™|$?Œ–Uäs"N¶`´ &`+L.ÙJ0û¶£‰Â¯ÿ\ ÷Nèa”…F½Ðã9Nͣ l;ÕCÕÜÁe:2º¨.Øw—ɦÀC´4Nl`ð9)@JàëLJæ‡á~M˲ڀb;Íq›Í5$¼ˆ $®š°¢CÛX[Ú’ú÷¶³$6~­†µ1­e[“Æ@®¢~øÃ‘?‘cÛ!+3µÃ³Šltµ"pR§Q,Ó3‰ûñÃ/i:“¸ƒ-ÛU¥mv–>; ÅK#¯²dEì?|¿ŠE¥:[ÁbÏ’ŸªHæé\h*|g4«òädWH²ŠÎJoèÄh”P›ááȃŽ?ÐÂRàégüS<ø1jž‘/Üo’/\à¨ímÕ÷NsĹi1ºzDŽpDàœÒ‚ðLwŸ¬J ÊgàþL>3h+ô«¤ó‘ë`teÖ÷`›a!»-€‹²„ü)<Ø\œá*JÁšÎ¤ú]òê“Å›}×°§7;ПžÔÆŸ°sgÛ!+Æë%ÓàÖ Öäßpì¾èy²%øÒîÆ“>ß[Ø´›ü*„h}#¶ö? 9[ê·kzÝk¡ m-vÝ1š¥Ð>¢Häæ]ÃáM*I’E"¹@¸À À‹³ÎY˜AødF•©ÚÝq@sƒ_è½¥Þθž‹Kj¢LÉIO‡û¶|ûúúzMI0ù¨Óþf+u•ü_6 óHÆà’‰|ô’¹ˆÒÌÌ.™Èð’ …(Ø>qÉ42q¼¼äÇU ¼ šé¢ò“ïâ=yEÂ@=š [—Ô½µÔNW—6c[ð‚ߨ¯^e¤Z3:fÕ5ÿà¢ê4g·˜lÇ#¸ îßv=ÍPÜ ·–ÀƒÖ'Š`´âÙÂïCž F~¯xlݰ«XEñ̲÷k†,ðšYÞèÜ€¶ºÐôÖKüYFMI8ffýèN:¥;A{¸'žBz+íB3üDÕéZ„úLŽrÐîÚúthØÂ7m²ü¼K© ­msêà®(ìÜghùþ½B…4šŒzÓjÿ@ÁìKA;]Y}rñÌx°™&Ê$ š;-Ìæã©Þ2¡D%jŒÕÑÑ5Qs¹€o§·Øq¡ £ PSŽLTÂW4Üb$zì*JàxëšÖBV6 ƒÅ}.b²9Ýr™ÑÔÿcÍÚFB›EÇ9³´²Ÿ‰Dbžb¸7©Æì„ÁSÃ%ØaÛ‰N”Êxa hà!f"Ééé£àݼå!ß™ç>‰Ñ@¿ÛÚºU”Úèn5vU2¤˜+š³o©Ù--]dØ–òj4jêjG»szH¸cœÎÒ;éb•nMáÁ•˜(ÉÌ™¿Xݺ*™v>߸•†‰®zÁ.à(w[¡’†À!$’^³Fœé(r»¶Ãà¶m\t’qÀ”ù€)Û4ÅÁ1º¨ŒÚk+,™CÎ¥Ðe°õËUA¤šëHÄ ÊÞ8½Çà·¶³ÇE,\”cçÒçħ‰Ó>ÐHVGÁš-ÂÐN àÓ¯Zy V~Tš•·ïß}øézÍÔÅRŒ1é’4‘ÌÔ"¯a«¦X$ä µàÀZå {p§žGúd èJ.¼Á¿(»è°þFÝOX†›çq‰|Ä 8u8ÕÅS…;ÈZ³ÉXôÍP|¡Ó±6ä<è(£ŽòX¬‹Íæ»ÆOR‘ÍÀ]z0–¯¸îXe$”úÇ ª€æ3;ÆE攃u¿§ûÎ[â˜åIâcWó­¨° P‹‰¯ô£¹=µ|gš]“ê–™G ×CY]ÉÁÁñ§a%àq çÈ'Ž!!e3©^±^êO“á\¬Y’¼ƒ‹Ê›Êcà9†Ÿ;Wqi¿ÞÛú¢Ý7ý±®œ\cæo»ƒ!÷#ô†ôrÇnHú¡ã˜­-úÊeà°…7‚ù‡­/Î1†çÁ=–?Å÷±lfh(Èv}l‘µf˜šÅ,•é2‹“€À8EŽÙc%ed¤´yAä8)`(Ø®²ü˜ö$)¤üçöjUƒÀ¶-“Â…ICæ¬SuÁ¹-›s`s?Ø¢DT”×ÆØ«*o¨–Í_´ƒÓé:Ü20ìãI+¨C×Öµc-€9«® #¶•$bä…Žó'õrË\ËçôS,õáë4Fê‚ÑC¯§ái¿À`¼×ÛR#ŸGÈÜÈV"ݰT͆#Æø^Ï í™Çíì¡E–sOƒŽã!ÔÈñÑ÷þ'ðC&Àx«ð\:öÚÕd8²û ³\ÂK?ÀA¬Ø|r ÿ›Õ˜¼Þsag>ºœòÛr¬EÂÕ Ò}S)2Ù‹Rnz Áo. ’5Û '~΂÷*$ØobKÑîUV\’èHÝü>=õ)E¸©À‚Ãcu_x¿ ûSãŒî·3¢^HÙ#F&Êc~ÜûU©dõË6—ÆÊ×T[[U‹Òg2ÏR LNÔä%tL@)D¿9˜Q £8Ó|9óx-pˆ ’+B@’u5¿Ü^»ÇGâpòB2ô^¾ž»þZØIµ#'•>æ¤l² Ú} Œò(Â3œbù,ÒTëz³Z%ÿj6fi” ýR>š—ðÑÌùhûÁ½ˆ–>Í%äÚÆÛ«ýzq]IÏÓ…ÄYµ4È=t"¢D/t„’,™ Af¦"!Ôa¨½ jJ¥ÚC •b`lJŸq´< ¼H¦pˆ^›½ÓË’éäi¿ñ% ñ\}Î¥è¬Ìâ÷îB$5»`˜ñ1.l©ýÃv-]®g…¦Ïh)W¢Þ5ý*æ 8ò;ë„Í–ËZÎÆC'd ]Ë‚@ÙÑ‹ÎüÙT|Ê£:!éºoiÈ[×+îgn!xÇ/n…• ÀëéG ¼-!³ ÒÔëñø&Åu{ÿ–7Âþ|‰çÖå–_ÃÜ“cIÐO¼qúB>þ~‚-ÊE§°Ažïå&íº·à‰[|੆à=«·lGnmM¢¯ôÔ?~²f|n.1áꇹíû8Vå^à“ý«>Ðeª•ãs6•tù}6¨7¹ô"5T¹¸v†@z&IB_ÆÝ@Òé2ÅBQ”]®ÚÛûù¦<íHqSRºTð:V+Ý®ë—Ïb“ÐsäË4MçwaŸ#żÅmöÜ2¨ÃÓ$aåÛ¶8ݧî:Ñ›ïx |}?ÃÌïO;®<ѹý3oy²t ‘rgÖ–Ósæà 1z| óïtÒu¾8ðµ“íØ4 ÆÓÖýÌHnÞÕ«L{¼b£òÌÿÔ'÷?õÉÑàŸ¦ß5M“Ì·,s¯æ;ºZNR8Íæ\‘0«=üsÅôû¤…9ÖZDùô €Ûa-%”iøúˆâ÷Û­ŠéLN²(fIš~ø†EðZä‘0Æyvvló·ó˜BÊ<‚4NŠâœÿl( ÐŽÝCLóíJc ç%‡0RÌb³8í_ ¥(==騑Òá&zz éœÍªqQ¬C|ßbΕù«ÍYx zF ÞcšV©%ÿ¯KæÏ“޲Ù-)`Ê&ѧà=ËF±ŸK;V ÏþÖNrCÑ"‡q¾D:]ü$eòÒÿ®°8këê&xI™¿OÇ‘”ÁåÞîPxõUüÈ;BœGÙT°t{éº*›KWkêJê’{—X8:u.S(;l@¿Ó x+oÑp+™(17Æ[©Às*½ü‰EpTÆÇŽS?ì9ýÜS¿`°Àê»ÏÞ{?B_‹=½×tw¿o2½:ðnîÙ!\?º9_Ðd> stream xÚZKä¶¾ï¯høÔ lkERÏ{ˆõ#€md3A€Ä9hÔìeÕRG”¼ÿúT±ŠÔ£9³ã ¢J|‹Å¯¾";Þ=ìâÝwo¾¾{óîÛLìʨÌd¶»;ïDG*Év¹Q¦ÊÝÝi÷¯ýp©¢‡ör9üûî/ï¾MóE}UfQ^–Л­)³+½‰y€ÝQå"JËbw”94RTm|Ô‡£’ÉþÒŸtûKœŠèpLU²ÿ¡3£®Nø1Ý÷gªd®ºnÎOM÷@rߺîõù‚_âXÖîFúÞM—{=˜·ð–¨}ß¹ÚUGß¹?’V,î?ÙŸûfªÔr¦i%¥r3½Ç€9D•IâêøIaM4E%*ßÁ¶eš:ST ¶T)ègô[¶ü¢b7 ©øñ»7[}ÊH–¹êaÐוå7ŠIÉÌ/Óç¦miÐ{Ïl?}"ÉØÓÓèj¨©Œ±Õ*×.`zwÕEî‡'–í/Õè:²Kg{·ö©8Ýß=²ý¥kî2uÈd8O–m,¦ vœ%ûÆÐ³µ¬úPÆ캈¥[gýôÿÊ5âˆsU`<*rÖ˜Çù1°¾ET$j·¨tœµ©:VáÜ·mÆùÌúUæérû±AEŸXƪ?6Góß©4½Ÿ´ Ù`lúޤŸ›ñ10+™Æ‘Ì…›Vh‚áT^¸'})úŠfÍ`‹‘k&i¤¶®y†z§þ‚k$a¡Óø52Ð"U_ÐŒë•èÀv³A¿´™cÅ»–„vçƒìÆË 7£ëâÕ›º“kºè}E‡tÿtíá‹i }ÄÙƒº6Ö ¹Œb¡6î6L¸6i¼ÿU©Z÷ŠJâ“öBÚ¢œ´¥rÃ2 kÎÍ솃gL8¸Üċ͜-Ìš‘’Œ¦ßT£~èô.êéG@Õ¡ûÁü)°ÐZ¤‘”åÜÚz…ï!K-.Ûè•f>4Õ}Kž“šbÁ"<›®n§mC|£'mxî‘;ÿµ©æ·@+ó"’±÷Yhh³@K³ÔUª†ƒ(öÓ…(¤€hbg‡—ç›eþ|°”ÒŒ± KÕõ:ôW˜ù¨[û1·¾sš.—'ö?¨U÷vⶸ5' 7ö£zu‡öCÁl?z£gÛt€ÃT¶&4ÖCì".´ÿ¹³³”nYä^Ã^Õ•O==Ù @õ±[ì öðYò@ w%J/U79¬‚íÈý@ BE¿¦#ÄejY>özÝ¢†ÿõñ-Í¢,õ±ô\Õ#ÅåçBÜѵXƒØÔÕ ¤iÂ{ Ðwû ®I¹ëh àÌ.3•¯b£”(r½««T²“év‡€¨á1+z8c¥ÉÂX0A?ët -.(ê#‡…™î —éÁ#‹ƒ‘³ud4–ùåîP‚‡_Ø ðMß!¶€×Œ?thaµA$|p êýkœG¡ ªS;U“%Áº¡\áÙtà—1ãD€Y„£‚,Øàð– Îä­&Í£Hæ u? Ú\ûŽ—ÝŠVs´*à! ¯'£ÙpP0vÝ‚ÞWDª Ø¯}ÁŒ K5ðÇÜ¡bרÆ´L Lâ±i·Îº$Kô…¨øTc¾¤Á‚w<î–…¨¤°64á*)÷Õ}H^È >‹³ýŸ U¶ð†õZ°^lWÑÖFbž;bUkW×è1dʼn‡zœåû¯Æ¯‚ÉHT¤žñ0 w&DJž{ -çz­4`ð½rC?'*õ ?Q’v UXzJ¬79§áÚã墵¹²H‹¯ã1°$J>G •È£Dz¾û‰«$+& ©Ž«:ÆnD¥¹'v× V2²K; Ï.fd—èà‰ð®Jvp@¸µƒ«Ò98Õé¨1‰¿V,ù6`+”?K¢ú«ü ôUx3àÚLipV¼dðs=!nñ"é†$Å3V‘Ã(ôJŽ …عm¸„·KEBotz§’­.;LÀ¾6ùY­ÛöÝÒÿ-Êb›íÍM¹ÿ'Do§¶ºY×7Ô€`"q0z\‡BÛ…^¬¥±áoÌŒNàIòqÐî x b…˜”ˆ]‚áYsCž†o.î‹Ò0É9‘Ø/í¯Ö¹ôð¥YL “Ü"|Z€Vˆë„©’0\•bá€(=;q:ä§q)^‚Ž2Rå:À‡€6@`Ý'‘¯ ÞɨÔA{gOÞÁHÒ¹À[Ñ4«˜«ˆ"JŠM²³ðµd}Ö°ë%b> cÒÂõ ¬;3 ´{1+{r/xQÀ^p3¡ä°w¾ø÷:òxtã’Qpï'»S}þ±MfE 1ßçÁ¸'O¹½–Ý=­;Ê¢ù†LvÛËQåY”n’ôå•™ Rî*BIÿoN†áéÿ3/Ÿùj_® k=öSË-ï¹/ÊYVqU¸ž°@·KjON§Y¯Ž;à{^ìö3Ÿ€l÷SÝ õtAŸª‰(Fó¦õ—< jê†k¨5×€¶žk(&[ÊoT›;Ž)`@µ5«'7|Ÿ‘þÁ+°ÍÔ´Aý_<ï€*@n¥à zm«¦ÃiHH¾ Sés˜V‹8‰Ä|hö¬“Š9;zÖIÓ™Ÿ½THªÝèR‘‚ôðÉn+áNìîÁÓ0À£?©ú«Ëín­–¬Î SJB¥ôÊ®o'¡×õîãß?„¯¨ÅœXBþÂÿZìEwß²¾ Ë19§,"ÊLHst{=„ÑDEI2[¯y_7Íat¿Á:f±˜õnÞŸ^èJ,ºz½º„Vû›hÞÿ&Ãc$0Æü‡*(èwêšoQW÷Jî¼;.½¹´©îù´hÁcpC?“&Í{?œ¾}¸{ó?ÈQ“ endstream endobj 3520 0 obj << /Type /ObjStm /N 100 /First 975 /Length 2321 /Filter /FlateDecode >> stream xÚíZAs[·¾ëWà˜Š,  £ÉŒãŒÛLÓ©GrgÚj|`èg[5EjHªNþ}¿J E…´žèC{÷¸ø°»Øý@ˆ.gÈe6,&1…Lˆ.²6Šñø-D©à´á %ÑI…}0ATØ£Ï'hDô†ô‹èª°˜ ob0±Tád„kÏÙHÑž›T˜‚ɱ6¢)Qe¸JAÏ”Œwõ¡Uê·:7rõ[ Iu\KGB¬èÑUZ}‹Ï2+fý§Tµã3^á‹Î0‰[}Æ¡(h”ëàêb©3Âàœ‚Ç˜>§¤X"zɤXÐg©X‚áâFÊ0RЖxÍé¯B3ÐÑ‹ÕàÂ&®J4H1†ˆšS‘ ìé©~ƒRµ’P*9#j<´¼Å’ÈH*:Z pŠêL.i/)šDNíÁSÀ,ZOœŠI‘0*¦XÅ3ZRMŸ=Z¢ªÍdzÓÎZÕð´”“¶2¼Ì…„€?ûÕ»hrp ºÌ\­”¼±*%gƒOu:˜SÎRG+&¯£Á"Åy5_ ¦xµk,ŒõTtIÀ? “ö‚®nSÔ½1— ðÏ"êâ¼)Ig$N}^Ñ ¼¨Ø:ò®úƒ8õÒu'®. G'§§'ÝæK)bUŸ™îÿü~r6”hž?½™LÞž|÷ÝãÒœÙJ~&iN6Aqÿ—þŸ“Ù2bä~Ò!{«á|CúÕlº4§§¦{…5Î%­>{¥aß>(.º}@`gãÕ¢OöM aL#‘> óîõ|6>ï—æÂt¯xeº7ý/K³÷ͯ×=~}èOº—ÀÐO— M/µç“î¬_Ìnæã~±JMõÝ_ûw—£ïg¿˜ ‡ˆŽ&z‹Fs|­©¯TÁûz p§‡Rª±ÕH²­´û¿¿Ì’0!6íPñ†V7õ½SňQÀð4­²ßÖj(‡iµ{1ÎÐÛÅŠ(žÊ nå¶\k4™@­Zƒ[#¶†´FjUÏ¿™YÅpÒßü¼¬Ï?]N?tßÏæïúyÅïÞvî~ì^^øú SCYLÎ &"Q𿪗¬Ž%’,¨ä^T ›îO³73 sö~jžÜ\ÛùÕÈÞL/¿Uý‚ÆÇ`R1Ѐ+H©HÜb'˜ËéûÉM?÷Ã#¢¿Ef¾EW òÏaˆ®þ3  P˜ X’•Þ€Å[‚Œ"\3`®6`Q4 ÌÅz0’}€ ©Bð¥´ìms .ÛJv#ÙÕ‚}Çõürº´“ËÅR! èìS¾¼ÿ· ðvÃ-ì»ÑrdßÏGWý3À 9Ûf joIy:>wRòÖK8ž¹Ünã‹ 1 Æa± ÷!‡…ýnsæ£É¤Ÿ ¨ŠŒ¼a¨%Ùï¹}ê_Ÿÿíå_Æ“›Å²Ÿ¸¢H¬»_#JdQì¡™ŸF×ד_‡Œzl Ê”±Vë*¢¬%:r>Ú»u3žl!©”€Ýlã¾pã(AmßÙO:ølQ¿Nèv <€Ù&%_L=bܦ1|9õàF¸Qn”áFFb##±‘‘HЊ‡<ÆÔˆw‹ ¼”x#(ÃaXÙ×h9¿]û`uÁîÅéi {1^^ΦÝy÷÷³õï›Ëåõâ]÷ùóg{Õ/Gïgó?\ÏgÿÆ v6ÿðí`QZ³—F¿bîàáð5SF6e:^õྸ.å½€\}GAÖBÒpP¶8Ù Çu¿œ {bMñwH¨Æå=|˜\] ˆ©[w`’œELÞÏ6¦Ìæ«Ñ×Ì­ÔžKÎå¯ÂŠ óPp ¤…´©¡Ê#%î ¯Ë~X,ø²¯4ª Ú[\Hö”ÖÒ¥ \ïn$t´Q ±¥ÊvJéË3´\"­°•VØJ+l¥e)iYJZ–’–¥¤e©Ô²Tj=§Ösj=§Ösj='²@FI~Ê&ÂSÑÝy± NµiÜM…VÉËž½->‚£?Aý’W$¬¬''¢å›K·xS½ÞMûÅx4?¬¥¤ bAÌñø8P '=(j8øñBýÙpP°’ÓŽ û*||¨†ë!EÃ\‰ÑÏ…ƒ°ŒDO^Gà…t|`âîü”rÂò–ãã`õçšüT*6¸ãgŸ º[µ>ƒi¦ãe_Ø=Ì×½E¥ÞÁ×½NïQ¤ÝËàêf2Ú"º)@tï ¯_à—z—â9¤#”d_a¸÷•fÔ ŽŸº/sûþ†q$T8ÊO8Ê©æÆTscª¹qàÜ8pöpG·4õÖÔ®×lE G}FqrDr†¢Ð–¢›C¥: é^xÒ N¶Ç‹®¬óFaŒïú_·59:[ÂñÈÇh ôà“nôÖ=2­Ÿ=¢[¤GvW/ãÛzbÞÚd¤ ¦ñA,×kGÀƒ¨Ëi,³kÝÃ[ {Äåu÷ù6Ú†køªÑ–v“‚óþz+Ô–=wž÷©ÍwïQŽ—´xJÜ/ðˆs[§´ÀSxР¢ûq¨Õ-é/8î¬F_Åc< '6 ®.¬h=ë-A,ìCÈýÊeä€ì|_xI‹½'f¹Ä–õ@¾9ã!—ñÄmŸDèU°/u<½Z6 ¿‘ bƒ"”;°Þ(tÑêNFEÍÜPØÁ½ô Üó„ Z²6L™ðCzȬ÷˜|0zòIfõ´mVïž`ÖÛ½7q©5rk”A·Üÿõ~*¼Üê® GüOÈ¢ûð‰öŽÿOŒsÙ[ÂÒˆ-³*Óu nzÄïNBïGãål}(ü_Ýêàb endstream endobj 3621 0 obj << /Length 1723 /Filter /FlateDecode >> stream xÚÍY[oÛ6~ϯ0òdc1#R÷yh‡tÍÐth–­Ö=ÐmsÕŨ¤Þ¯ß¡HÊ’,;VÚ`E„9âå;÷K­ÉjbM~>{}vùÆõ'! =âMî—lYÈv¼‰1òìprOþš/˜ý}ÿËå·¶Ú¾…\+€‹êMEJÑ*IS¹óÌÒÀí^ëÈÜœ™ˆ¶:ùÇ,$SšT¬s´uE Æ!Â.Q‡_e3øOóÅ?,rmMó¥¢E -K…ܶ[wøùc€GŸ,×:7ðÏ/äòhXì¼:Ès\sÍæž»_³} ¼T4ª~%|†§¥Ð¸òLPžñl¥þêkºÌ“$ŸwúØ|‹òt“g,å=ÉvXšcÏC A² µlLо:ÚÜø b¸a¥à),®\ fK å“e‘ˆKŠ.…+× å"Íc– £àôC9¶¯ž+ÙéÐJA³˜+м8„föhzîßšœN0©Wù6À¤½8-·Í(pQ^¬ Šk‹’ 6ó‰A:Ü3ž8J§¿¯Í™êíE^eñAádR.1Ë"Má™`…«EºÌ‹P80U`ªÚl¾W†´–Fp£ðœÌy”ϰÛ!i'§¢à_0údä¯A+òìÐESЊ肕A<ÇMêà^S× ’¯XƸØÎÊt;”B€µCϰr…¿Aø¸fÙÐ5²¼ÐlJ™XçñÕùõõùÀ}®ƒü°•{މÔöCäc§qù*¥ßVª¥¨â­Z&LêüAšK©1£O¤|EäY²Ý™ÿt-D¬\d†¹:ÿýÝý6$$½[j÷ éÀ†Ð ºÒù|º`²*]˜Ð–g¥ñó(©b#8žõü…f4Ù–ün±ù:‡rúÂZâ;})~š Òl«ãYÄ6âi™E©ô¥¸9*ý<ÍøbF¬i¥÷︹Y²_PUÆx}¸F“øtÎ>ΰˆ$ž‹í†õ5ÅÈ»ÛÙä‘“ÝXm}¸ÞŒãìxíñ,ɾ»»Q{ðÏ2€³„¯ó\[h•çß»”GqùͤlÜ~Ué{@„/ít·›ÿOb7dl±%{]Ã{Îp§±†&›7jƒ?k|É.Ãw6¹º?ȉr °˜·vg Œé‰õíKrövŸ³Y¡âÌ;‰3ï4ÎÜz\ÐÑd.TW!#:™hbìš “^b “ù¡Î›/§S^š —B绢hlG­µµåC‹z΢y¸¨µ¸¨ÑÉÃ×_ñç1‘:>h¸™¼Ôò±mS5FBFWÛöê éy%¢ÂÐ_v¡\çUbú¿¤Ô•ÓBktÅw-_¦m­*Gð€A·MçVViJ‹£1Ùö‘íµ:=ËdòÝÆkNà8ÈušØîû¤÷:ÙΞ˜õÓZ>LJä‹(h$LiÓ"õí›b㮿Ï{Žu<0gðgÙ»9-«‚]ÿz7ØNäî”2Ø ƒ`Œ÷»{º?Ê .²{¿Ý3ÜîûÈÝ Mã{ÞøàB õ¥/ÈQŠ÷ç5·ïÎkœ×Pµ„PfÕÅHËËòLÆL×T†#ì×–$ û’)Õ¤\'= •–>[·&r¡B|]yµQ´Ý$&Ñe[ÜÙ]Çyªˆª¯^BFÖxJQT‘Ëx‚íCfÖK£ ê¾*ã\tÞÚX ŠBZ[Ö“7ÏÒkdþLÚvr=—ËÕÞšÉR­U\vkÕÑhuô0ÀE®Ýhò‡aŒÄFNØXÚ°I`nöÌO¹¨© †4cò¿ƒ *󿬄¦øV&cÙ(ð{ùqÍ£u·¢:­™›ÕUYlêQmuIA¦"-ADÑÞDƒçúþì?Ü endstream endobj 3656 0 obj << /Length 4008 /Filter /FlateDecode >> stream xÚ­ÛŽÛ6ö=_1˜' ³¢x‘T`2m’¶˜\6™¢»h…l˶ZYr$9Éôë÷J”dÙcw‹1o"ÏýÂñ¯ÖWþÕëgwϾy¥ùUÌb談Õ÷}&¤¾ 9gZÄWË«_½j›°u¾ÝÞü÷á§o^©°·^Äš…q »™•ŽqÑ3ßp5adÌ‚>´ì—MZÐfBô6ƒ%‘èöZ”ˬXßòÉSY¤ÚuÏofR*¯Ù¤ÐðCï7ߪºÁŽöÖU¹ßQ3«éöM—´ôKÖl&ààÂgAÄÛ¦ ˆ™t&Å’¶î`¨ÓEÙö@8vWLínþÄq’Åv3 ÃØ{•Iž?ÞhÕ¢àË4Zg+¯f@ÒX©rýcÈå=ì 8ÌÜL(é°+”h¯†ãˆ]üµØÅÙc· 4“!?u݈)_°‹[[D‡]ì@8~€Å)j"zƒzuÀ½·eck6IÓAPÛAB î¬Lû|ˆáz±I·)`%P¾—T)5в¡FVÜHßû|(˜Ì’Âï‹eZQÓÞ ›y2OsjÖpËÅŽfæltÆü´`i¦áÂö‚[ Q~{ýóöáãõ6tÈt úèŸ@jÈÕ¡l›6›ry{ýæ~j?%ÿ}q âÐ+ ÄHy›q…^SÒÀ2]dK;  8¯ì‚­¦rKíºÙ/i>]!6W颩i±nĵf Cð”øÁä×@€Þ<¥þ¢¬ª4Oš·üE+ $0ÔAƒ-½`¸ p“ð¥w÷H‹–0ÅöyCK󕟱”!Z„>&‚ƒF’¡SÕí«÷_Nñ²%ÚQ¶çÏéèÂ^¯Þ/6„¡óÃx¬èÖYYèš“dkˆ/œ@пl2ØÍÌÓ:î5»la4}f·Iv»ªÜ«±Â‰ºÞowîœcW÷Ápˆhl¾ ¦îª‹‹þÝQ˜eÐÉÞ9d¡Éê¾FYž¨èg™YV©M²mn…›ÆWeE ËŸNr£ž€Ïs;é>!§€òƒ3, #; Lé=æéÓú¾eŸ–àrð†„E+Ù”NPMY±D݇ªz¤Ð†¢ Föàwnõä@ö”?T“µU¾c °t<êËÉÇŸ_>åB७Z®ÛöÄÂØ©ÀÞl·)¨æ%³?ý§£¡ò}•5 ¡JµÌ ”ûöª»Ö,”+ú5¹nû´Ïªv˜øüó W^Z%ÖŒ™án`ºÉÜb‹û|]V ¶¶õ·C¿Œ &ÜC° – A †‹~)ß÷^á~“€ª94*¯Žéó'JÏ«²;~÷†½˜4+ÌŠŠúfELJx04©JIweë 1•Ö^ž&èÉàtýiŸÒ¡ƒÌöã/÷-[ÀÊÄÎdÛYkQû7àÿ]:¡0» p ²‚~­ÐZá ¬BìRóÃëg#„ ´¼Óóàt(2ÂïܤվXXeX¥ ¿ûšÀ±j ‡Ðƒ³ŒÚ‚gÀwI>H&“ûøna4û*éîIÌk#ŠW#C{œ@z„]àEȹ.Ëd7âz-¼×ɾ®g?¤Õ6kìÜmY!ܶO@ÐÕÌ@¿ÁeT @›ÄqÐ#[Z"øã ZcÊYÕû5Ä ÑJ"4Ô4…òÈP#1†|°°y–Ú¥G¬)Ç0lBÄ^ÞZîìi :Ñ F@=Î!Jp¯´cG½q¸—VŽæI D¹½þñÇ)fhþ}£i{ø(­‹|Ìe½¤âƒ#Þß¿;rÉ@F§M©¼7òýÛ© ÀN¡2®î\ß !Xæi=Rÿ­0ôpV‚˜a<ÍcÁT,‡–ço©îØÅDOF¨jÃ/¦d/R²CÙ‹$É^¤F²†"u¡ìÏ:êœ#{¡}Ù›µž!à|Ò¨CÏ õIZŸÅ(ÔÖÞæ§H[©19ö"þ-¥àÈ´ïâƒ#†âEÍþݤˆªð¯ûÌ!„½w!ñëlö–¬oc £¤ê±{åÎèmö— ô`Ä0¬ê3Y]8Kбr4{êK¹†I'£E¾ÍŠù)®ã.5ål-l8~-g@kþH¿Ãh(V€FÏ·°›Æ„Æaò¡û {F»#¬4Sc•yƒ’÷Åß å…¶0 )¬)ou~'Mo~CíGåÚ†ö¸žBk\r¨Up´¯B̪š¾3bå\§(ݺóÇ œ1þ˜M#œÍ'†;§#ƒÍÖˆôSœ"Á|ÇS^€€¶€ü°6A€5dª6ê†ÙG¬ßO˺õË´¨³æÑ®[f‹²˜-àÚ-Ðø1Sb¤×6`‹ÀÂT7<òÖi T¯²z]ÔЙ߀˷Gxl-Uì}l€Á„Ñ´ªÐÞß̸‡šF @~ë.Bc—TÀî8öҺɶ€C»ÜdÆÌwó&É Ãϰ %G³bÖå¹|Mà[Ä´áV›R‘÷X×,)Lœ{6=¤¿C¯Øƒh8`_ LKZÚ¦Ô…Ì€TÎ#ß('Õ DEBM¨8zUQ0µ@¤u}Àˆ¥oàzßÃý>Oå ÀPʺ]²ø3Y§ ñí{ï0Ç¡±À| 6’¼.©U§Í¤O$@%örÀre~›÷ ›ãåñˆÛë]•,¶Éµ ¦â ¬„ÃÙ1÷‹ÇgœD]ìó}}쬙L‰hÂ~dSYÐ\$µU4Ó¨óUgòè‚ß~{‚QÎã†â9ñTN'tS{ßàè(b¾CqˈVË'b«Sõ+ïÀ<õ5%FTÀâHcb5#€¼Í…'…¡rݤ‰íT¼'˜VÛÄ+ÌY1Ç`ˆË^Ú›÷‹Y ;ÌÕ~ó…¤Eá•fq("cјŒÄ•`š[`§òŠf9°[•ÙË´ÚÌÂN.a`ÓX · gÈŤ‘nÞ7Í&± G}:ÇBttæ6mÌáM9­¸þáý4lÔqªœ¬}Èpp5TÜXõIœ …ÿ N• qêG½äà8“M•ZtC'±_€çXR‹˜’îö–q|k±Qw&ÌUUee7饳±»Ió]m= ÅÂŽ§­2”Ž´“Ÿñ¿2[ÒPga¨ L<7¶¦žñVñ»sÇ-ŒqgÃ:ËÑ~f¿_ì›’ðcû‰Ýpn?N–ìkÂô>gÉÀ~v\7¥Ö¸dÚi—&ÙM™OåNC&œÇhõ1œ'!¶#b¿¥Ì¤¤dZÊÖ“ùnˆeûÉÚ¡^·çßúÇ,¦ ýÎx‚T £³¦$ï ¡5O7D¶¬¬ºû Ó> ‘΄ƖªOÆÅ¦¬ílB?£Ì,axccì]z¶GÁ#Ÿ gdÍ^'ƒ[í2²Hzsä4±46rLÄ bkj/è‹»Ÿ¢¯æ äñ1w˜¹½¾{õúãq«-Saxš4::ç¼·i¾L«Ù0:G“H—Ç£b’Џw—ÖÙ2­Ï§¢T / 6 Âáë!}*™ ÉÉÅ–­‹ ÚêÖÌ(¨‘™¹Œí¥\úi®“,öé!Ùx¥¶ ¤‘Ç mJ#9ØîÖ™”‰lC\héUSß:ÄRãht"W),J&€örÉ,ë›Ð¾ƒÚÜy¨RXèvÛ—óG:ô(®Æ¨Wµ8û ˆšcУ8®H¿ìË‹œ ¬¾W—è &ƒ>?ï†á¨ž(Ú’¿Ðñ¯ncVM¦äÑš{¬—õMÿlU¥)Õbp±«iQßz§:º0Xó#“J`·ê ©TJŒøÆ^ÍFŸ)="’Ë~Í0­Ûš‘.E‚ÝA2Ô H…,rIñDÙÄU*)¾õ¬ñÜA½rh}Òv†‡¨”;3½\uêä@ÏKðEaåTì@‰aä“ó±"¢þÓ´ÍžDJ>^'&¶¦¯Úš¾ö~(Ë?1——Î~J{5Ùú ŽñUYÇ@Åöÿ‚‡,z1ÆŠ™œ¼lÓ¹gra¬{w¶M–õI¹ÀˆCô&­74ôb™ìfîi”ÔñÈwV À4|ŸUàîSûcšT‹Mj•~Ç}íÃg!ÔTr_3þŸ³ $q”‰`[¾;²z"5,Ư¥Î$xk. ÏWëz.'“‹©×£G-Rć>>ø´¡Wïç˜ IgµÁ,ÅZ{µ‘d¤ÂWZèTÒùWÀ˜ÖyIplùõ‰”WÏ`Z›®Cn/[ ­WП¶õN˜* …r§óZhäüÜ%Õ_Yžd³»²ú’š|y—™,3ãÆbo™.l;ìª8>Ðvf ¸¤.L‘£½ìÝÝ“®–.=w•÷ ìZßû°Xo³â öí=¯ºŒ‘ëÜQŸ·O…Î+6öä;!µ¦¨¬œ=1 Ì çyšÃ¢ek¤Lþ·6ÉRe­FßÜÏ0¦˜ÝýóÆVà³—xè¿·ž¾½ýðÐ1– É›*$ZþÇ·¤Ðr¯@{1«y ¨{â#Þ‚ê30±Ý›'¼!¥ pnÝÓÉM™" L%Ô]là’‹†6ÃDJEoH`Eïu–ääàð§}Ù¤uû /FðÌ0¯ˆ©³e9Jï·ªËävW<0°Ø('nîa2Ãjš‘ÏЧ°W8p s5N…†¾kªÉ¸7G®3Ž)ñKM[6<æñhÌ„XÖxÈ©Àz†Be íêDÀ‹—ëúø8Šm“¯·Ü÷ýçís³œa–…§³)u$% ç£h+½ÂâÙ¥× ÖçûÝLà‹VÎù Äj=pÅ´Ö‡hx¬M’ˆÇæ ‹ }BïîÝÝþõ‚;õ`ëq8FrʯŸ44Ö *Á"6V1±“ÐzHÛwvpÈDo¿©¸g*pÅ´¨Jík ‘\”«éêˆrõw¤ãýÀqp);ª\Ç®Jß/hÇ6È÷vrðDYxy¹žå9Ãy‘ü²{d,<[6¤mÆ v¤4ævOP&Å:µ/ŒÈÒ“q} ã"Зr¨cµyØ2|é}ì‘C/˲jÊÝïU𫛉)A­ÏHáŸv¨3RR$×V,Ç¢Û]úöúíý»÷¿ß¿ýýãÝûû_?·UÞ@0)ÇÆ$/…Ò­OHw(Y8–mŽöå²­ F¾Ü4¾/Òm`¡ƒ^‚:=9‘Q¸¸ ê»}=R½ÄsbßüÍí¶0¥íŸÀ¯±2«ÇÁÚß—ÏþÀ™1 endstream endobj 3691 0 obj << /Length 3475 /Filter /FlateDecode >> stream xÚµZYä¶~ß_1™—h€i­HQ— `kÇÆNœìŽã‡lp$N·²:Ú”´»ã_Ÿ*©kÔs,ô)ެ㫃œíÏ‚³_}wóêõQr–ùYÌã³›»3~(Ⳅ1?³³›âì_O‚‹ßüüú‡˜Í††IàGA ™Aº–þ¾ªkù*°¬Vß…!ÌÉÎv<¶&öu±cYà5C}«4ÕÛ;*óV«Žª}KåÐÙñw­<®p”ZV•ªÊ?d_¶ 5~¢@ù{ÿ’qÆý,ÍÜò¶éu[]Ue×ã´öØ—uù‡ÒWç¦úw»þ¹Y ®a§ï€ZYÑ"M~º+óí¸ A˜ùiÄ܆8È¿Ø%Aæýv!¯ì§ cŸ³ØÍq—üæ›Bõ*ï¿GáiOìȘð£dÜòòb'Xìµ Ð,LC/—­Tþ‘ª­iDXlp¬1wTÊ xŸ.xäɲ’·•"šÉArÒ%M,y˜µ±4kc¥jsYQµ–ù¡l”ï¨ëg,5eœ$´ÐoÕlñ1öEänX·…ª®Î¿¿öß¼=ß Hœøb"§lŠYⳕ쭮Îy·µ`”ùIÏÌæÉ¼€O÷[üÌü0ãûí3Ž["ãµ  Ú‡ àºëé•Ëö¶—%R:޽®—º/›½¥jëeÑ’?ÄÆj@&…AdT‹ô~~z¦Q©úµzqÁýtÒ!£(~$3j…,õº–6V FÐá jBÑ.ï6ȇ~ÂÙÄ£þÐWçoÞl²HøIÍÕŽöh5mO{]0os»0õY˜¬·»~{r;±Þ."^w´u£ƒØÚÖöþ·Ê$àÐÚ÷nLÙ8öe>á’}}ÛËŠ´&€žÈOcêøçc Šºl«~²(JÄF§ròè¡.¦´l°+·ÊÍþïЙ3á×§RNº¼¡”"ÉMV຅‰‰Nú¨/@öC­šþ›…ÁåcОXH°wüÀy´’·Å1R_Ä£• õ}¯7ìMÄ\ÍÂÈAÁ<4Ô`ÐÊUØ1³w4Õ» ;¡<Ê®£áŒÀÚܘÄÓgñ3ˆ·8÷ü,ó3·ÍóT0'dˆö¸Ub@feÒ²ånhr´Ë‰(¤I’}•>ÁCC5Z@%ÈC,ˆ‡XC’`iyhÆ,yˆMJ¡4²¥ã¡Yõ‚Eã˜m²,SÈž¥ ïÛ<œøe< + ª=ÎD$[Ùíÿ˦?¥†à2¶PC@?Tà vj Fª¡tjˆcVjãéðÕ¦ëÇ@qR1*˜V•ß·OŸè¤» ø¨/Ýp[”ŸÊ×=é.LÆÁœÚÙ€4ð¾Í8†Ì@Æü4Y©Ü‹Ä¼Âx¦+M¯öZöê1€Ó¶º—û4 —žÂAˆúf¯7’‚»½Et9ó>Êü@[ÐV‰×)»7©MⱘÊÛ{* uwÁ@.‡Ê| l'Ù:lYƃ3Ûô‹Q‡OE_ º,é*à‹²Øû !LD6È‚Ê_-w̸^MÛSÝ‚ˆÑráQ¼0$NœAÐHÃjy?ާPÌFå°Ô÷ÖukçžÝcî\ÆÁ›ã1@09eÅæ[QQ€— QÇÒãfb} Ûi²ÞФX ±Ç,q%¶X‡SÀñpN7»ŠŸ±ŲzëLwlZ-=µZ¸ Rø(ðD ÷Ûªk‘ׂ½,0ƒ83ÏöÆeâ$Ö1Ÿ'#Õ›oüÇÆºÄ Œ\#E†’"Ù[Zº£ÊË»{ú õà³·9(dV bsZáØ‚!ëPÁxæÝ¸™…ÚY…ÀæÇñÊÇ™P‚'ñ Ó§±+Iâ%Èò”;$®îÐUAÝGÝ¢Z~* ;¯Œtc——$àÐ*ó|Ð2Ç¡÷vý†JJ‡@Eá4w›ÆÂŒ›¬Úý®*?âéUUÚ¶Wtàì–µnž ²tYªÎ\,¦qÛ'M)Ü&€3xÔ/GÕtŠzèòH>e‚Þ«ÞäLG ’YZ}æ­Öª;¶MÑÙ‘íj³·òXÉÜ@ ¶Ë#PõKYËÝâBÎÙ1” !Åh 2’+h&¾B´ª5!ÓmqD@H5âK¯,<‹4õþÖöŠ:ûåÙJÇáObÿ´Ö½<¢UöDþpYU-JÃgj_fj2ë)¬!(ï0È jë/T°n·ól»0á>‹ÅZ¶Lë×kÿÝû,.Ò'Ÿ¡ºü¢ŠÿrE+7Fd±Ç•…¬¡‹Œeg{;šIYzêaÄëê|΢ó.0àV ±æÊ·Þö PÈžÜÔïÔ~ ðAp¶Â´= ‚2¯èBƒöÇ‘çt9ŽŒt/u(^[Œî•£OÂÑìï5YÎG¯dì&²ÙWlÕ¾Õe¨í7é)L¹µ3(oï¢[ëæS2pºGýú¤ô-hùÕÍ»_ß<™yp.'D><âKî¼/›Ü佨$XôIÖš­.‡=.¹uÊ3PÃè¼­C/)õlp:'ïbÆäËäÂ(|QhírÔfën¨ì‰Z*ñ9L×@½-ÿçàŒ(ÜÛSÀœþ`ÛüšÝš‡b ï—FQÝÆÈb’-wÌq”­˜´­ûèž.«O‹ºm0GƒÚ›) Çgc»(„p†­E‚oçKÓ)Ø¿/UUØk«‰öáQ2 £µå×κÎue–Zçwj§lµ;[¸u¶E²É’˜lu· ¯Ù´0‰Œq ¥n®NçàÌðéþ½Â¤Htu?‹È8楉ÿɲ _1H¼à2Â'‹|Êâ¾ø2‹ø¢Uoâ<2 à ·±¹£­ŽJÒ OбB•Õl¢qÿS…Àˆ•·¿w Ê æ[É%à,*b¥i›]!‘6oPÐp¸€pè¨(BT-8ºÌ±‹{`¿.­×nQavò˜e>ã_ëE⣜EÌyNx<­~Jz¿†¯Q 5‘žÊÎq¶º¸‰)[sC‡!±¬59úKdŽ@†GQ `:hÌ‘Ô ‘—ÇJam¸„ãêTÀÁnÇ[=ôjª™ÛkÙ4®EÎTLæ{MÔaæ©­˜ Bp¥ã"ÞõøðoÞp…g l Leõ3 #ÌÈéåZñoc+·Õ¶Gš@~DcaŠ˜{ïaŸ²B:™^2›³©òI¢gä.¶,ÓÌëàüæCž:S-OßeC¤ TIMmކØ1%!Sô±þŒbÜS¯ù¯ V¤év¡VYÒv Èa@AM=@c¿ÙåÖ­ ð­ ƒÄ÷ˆñäÚwT›GŒøm¤%âîÜcAt6òWmÄ7Ó9u¨ßh+·˜Ü\{×l^†Ã5/W›¹ŒòÖ]Æ¿L€¦è°§Ì©á éŒÀQ u}Oo&ØìœC;Ò˜M(ÿØuîo'ðU šl{˜95LGóoÖŸÌ¿ÝæUoçÉÄʾœ›Fê»ë)X{ rà±î¬¼™d­ý£ƒp@ƒ5—FÂ:ez¡W˦;JÊŒš†qšüÕc29œx†}£®AyÖvJ.‹‰möPÓaÊnëc&CˆÕE:`DRP'ÁÉ»7h¶Õ6Ã}(÷ Ш¸„€b$ïØ©´½Ÿ.Œ4î×nÕeÊ™ã*–Gt:jÄãn W¦Í(“}À ™£'T&T`6½8ïäÙÑ<àcZÕ×NT|6©'ÝØ…ÍIaÙ ªp‹›ÛLÛ„§M!µ ´&8¢à ¾ÐÄ 3ÒûÅBŸiP6·ž÷6Od‘ ©:«e˜Oêj¨_Ú¬jc3^£HÂxL¼›ÊCFã²£áË{¶Nî›L•û3ݦˆÁÅ_»lËò_&6øé¤d6Ÿš8„Ù"{ö "¸0/ÉKõrà'_‰ÃhºÚëÌŸW‰®~²t+KŠŒÀ¸¯¨×É«Ñ6ï#6~Ò%®-«?ÙÇddápĺ ¢Ù—V$ÈÃÌ9—ÝêO7,Ä¿Ö}ý?nFŸõݦσ ôZµ{÷îHˆ¡…]vm °nù×W¾¹yõ?Á‰ endstream endobj 3708 0 obj << /Length 3001 /Filter /FlateDecode >> stream xÚÍYY“ܶ~ׯ˜ÒƒŠS¥Áâ *Ž+ò:ºlY®ÝMT±î g†5ÉÑDþõéÀk»ZÇ~H©J6šÍúCÝXºØ-èâå£o®½Pl‘Dqµ¸Ú.¥DÄj¡#J$‹«Íâç¨)S²+Êrùï«7g/¤žè‹D$`ÍjrÍPéõè+¡$N+®áeáÔá\ÎôÏ^1±nH¬Lo»ÌÒöÐd}|ñíã€'Š®t¯¼­›åŠK5é’Éèèòö£mòí’Ëh›5YµÎÚ§3/+M‰r±bšp­ÿˆ³?~ÿCÐ[0›[ÞõÎ º&­Z—ÙÆ nšú¦nº¼®n;+‰fÊ;kþ³ÿëΞº·X™˜0[È%A3Ö)*i·Ïà *áò¦íð!Žºã’Ѩv3uU|vb÷-•õ&+ZçÛlŒ)´ê{ü·äÅehB‘„‹H«MȘ"1§¶.¶bbÔ€yXs^^{·m^íœÈdøE+É7YÕåW-òêcë&üba3ú-ºÎ«ºÌÓÂm(L¡1ÎŒ$RúÐÙ!Ë•€ý{U#¦þÿ ƒ“5˘FO]ˆ¬ªâÞwsy·÷°ÛgmæÕ(Ú^¥ðïÖÛ.«„Љ“Óì—/s_Ð!«dLSa:7ä¨tÇÚ ¡r4ÎþÖ˜-|‹ƒ‚Êù`°Ou!³RØœÆn%~á>Ø=ìùøõá7Djù»¶àõE8þ6AªÛ›°¸šCžfóÈÞ…ðQh1ÝLxÏÁe–y‡Ä,¤r7¼¸Åè±"NÄ6-sÈ]ó àtIb\¹%Ã’Š.kª´ËGqõewïÚù>­v–@pÎÓ'é«u’ÜþjOë(ÄZ—†7CR¤ÈÎ'‡Á¹¤nwƒ64œmXZžúIÇ]8gÓ2ŠÖàföëÁvnÊa ¦¼$fà–æ¦ÉºÔ¥mœ¬·'J>X†[%ȳ¶ËË´ëbÒ>î³jà6ôÝW:eÞbÊ:°ª/™¬AO©ëúPxú¼9·‚ÏYÛ:8À¨)¼˜ˆQÂ)wŸz¾„ݾnС¶çË[%øIøÑ ƒG¿Ùï—è°Øî–vË׎¡³õ¾»NYÓ×’†Ê{3ý¯ŽŸ®ÿVÂîBWP|*%u³û:p‰ÃðÕ-Ñëy? @ž$c ÙwÝMûìììx<’þËË•+BúÏßw˜slVÕ¹²‚@!çÕË9TS˜°¨Çi‚-o.}™€È‚­-øDâA6­êjµ†<Ù`Ñ„‚=„àóM檕¬†µ@Eå-å-<\/9FÜáÖ}×b}iêr´÷Fxõá{þöü&]œw?»"äé.óX>îóµ/s_v‡Æríë´íû–ÚO}Ÿ§¾Ft•0 .궯$TœRöeÔûÎñ"Ûºr§ü÷þù®ÁóìWõœÌüà?”œц(>PÊ9$,°wõ¤æÝ¤]Ú/4->·yÂ<•„Ær6Ê«/ã]Ñ;Ôô×õGÌzYå}ýáÍ37xß΋ “ô祒‘Ç+3‚(=o^¿Iwu‹ +Lôã’1¡}΢—ÄJ“è >ƒõÜ~­. Ÿ;þÔœúwÄ©ùJ¼§’‹è-”jù–,ްhƒ³hƒÌ7ÚkË`âÇ:o[‹]xh¬÷‹6ïe¾Ù³ßq‡ …p¤W³T+{^÷»¼âŠÚã…¿Ûº(\7´:Ü8QÛ6yæõ|Ë£¨e‹.­:ÿ~ã~?á»ióÙõH ØšÔàmX€@s Ó+›ïá¥×•'Óº²ðÑ4\Éé½ÇßäõÊ7zÞÚŒQZd*캽£!¹ÿiàÍR¥ ˜˜)`t§gñVÅœ¨Ó´»©s̰g |n:cRêU¬ uB‹nB0”±TœÀÔm;&mú‡c%ÑÎAßÄÑ+âfΉÈè§cUDS¦½Æw^ãU¯ñÄ=_vù‡j°sµÔqä5íZ“Dôg.@©væÚ×@ 9žu+No€QR›µv¯6_Æg7ÐüÄcÜ.ÇC¦rùßf›|WY` PgÂD·2°aG³Lã^àVQq®Å/œ+ûBƒfD0q¤Ó³6/a¥†B÷Óüà[š¼œ’ì HàJ,Eô-±}ïož åù©·ýÔg»8û©ÓjÆÝŒ ÚûeÂ5LÌxô~Ÿw™ŸMœìÂÿºäÇŒ‡ŒNBg°¬Øô†Ïp¸h'74˜ó¤Œ`ź\Í“¥”c.”þ‚È kW™ŸsWB*[¥BÚ--^Qà* Ðie )Í=Ô›MÛòSR-Cðte‘Ÿž-­¯ îÁl¬1üKÉjPú!˜Õ=dáÛ@® B–Q#CUšs=²Zš`êb<&ÿä~+ô ‘ÑÌ-F9rEÁ÷l+/zçu楠ÆD/©½nW/Á(àºÈ\ZK ,:º}Ùº9wyƒI:9-oŠAìêDù:ñ¢P•E)»»(e¢4%&qƈ=w·„>¿ ÀÊûK…yޓӻê/æ8)ïÀ‹˜âešâ„R¡’Z¤"bü|-,1g”RHƒF-×\Æ:xéÃ$‘*ž'¹Ë¼,ëjƒ•VLHeØ^zŽCÁ÷ü*ßAÃÝk½ñZc-=­ à%Ÿ£Tàh g€N3×lÀ+Û&-m6rðÍG§ã{oÓ÷ÂÚßy€ÄuÉo¶mÐÜt“ÉoRØ:&3Ãl¢°²1—…9’ÅÐY²]ÁL½¯Íe†z«Ì¥Ÿ^ã"k³´Y ­ñ`íCõ¸RyÈQc…Ç2åA3Á¡5–GÖ$xmÄ T}'×FA¸i}F$dÊasD xxsrÛ>£ÈÄ(¨ˆ^¥åoél3w5 Ÿ¸çw¿m²2ï‰'ôá´Gí™Ñ…e57=£6Ì"ïD¶†&yÊŸ:tØç†@f9Gi̓¨¹R¾Òžèù“ÿf›U@‚D¤Xí{pÀOõ=aß;h, À™í Ü[½/-”­ÿ v„ÿ¿üʓՄɄ`]ƤJßQ&âטÆ4ȯÐÐðXÍùõj˧ñZTÙ’Œ›Úï Ä ÌÿÔÏÿ ­ùÎ?/¾¬‹MÛeyåŸ_õOœ…«=0«+FQzé ¿ô¿žÆ{ô#dŸ»™ï‹ ¤ /·ˆ à9ߨxŠÍ­ƒƒw«[7µû«¼–…®¥hÝØƒt¯óÊV(õ§*ÜÔj8‘¡î_µH„ßûºIt,¾€D5$U–<$©ö݉¿š‹‰’rÞ*‹˜i ÏXð £C‹:»ðÉh¢W”KÓG–qa£Ë’g<þ ?òìYšoVdÅ⯡d]ÿ…¯Š¢ý7g€¾£!vw ‰ãÙ“´ª`æʅú¿˜Ö·úí¢ƒSî§¿%Ÿº¿#uR{Ç]Ãomðú&œ¯‰Ç¿‚Ín2ТovV½Þ Ô3ÞÆ$rYo»££åv€%cúð+ ¡‚1í"± $æ{b”ÐgÚ–|¢B‘œŠà ä߯ýî<ëx endstream endobj 3717 0 obj << /Length 1160 /Filter /FlateDecode >> stream xÚÕW[oÛ6~÷¯²‡9@ÍÔ½˜ºÍP4ëàfO퉶‰H”'Q©³_?^eÉvU§H‡,F Cêð\¾ïð‚ÞÚƒÞo“Ÿo'W×aì¥ päÝ®<!ðƒÈ‹‘Ÿz·¹÷qŠc|ù×íÛ«ëõTý‚&ÒVªKÖEY*Í ´¤õ¨·dæÖÌp,'}³ò¥—3Â離©Ë÷Où‰W«¡—ʸï÷C—fQ pˆ÷µœÆÓÏÖ@»^YÍ3\ MP?ñr3æ§ I’çð³¥¢MHz ÑÞ“†•ðü|—I RˇQøq§¿ªjã³jŲÊiaÄOb!_›áªå™`oÀùñÍP”€ÆJa`¹Î‰œÑâ3e ÅÆc!'ˆÿèAœ†nÝ¡Ëä«.ñs¸Ìª¢`¼Ai’1q bدßÇO¬ø÷}ok&þAi:Šnƒ$Má£Pr]ë’+ee•ÅŠCÒ04ªôRªíH¹-hc‹hežr¡Ú†¿ÑiØ `¢ =Õ™‚ dõ]Ž®‰ HS4¬´k¥N ¢iMjj$z‰ÃéƒzG¹0S1¢pGþ´¡V¨§%ù‚Xs ¨°¢¤ÂûhìÓrH²ß’재­Í•‹†˜‡‰¢nd"fBå\JN³ŠçL%J ó¦¨Ö¬,3#»aÍ"4pÈ•$ÂrDÌcKë²Dh§z~»­+’mìNw}¡$÷Ýög|EkÊ3jöÿáY¡ú9N’Pû\¸Ú8}B Ÿº"$}QtgC"Ï†ÈØúáÿ>²s¦Ò³9 %ÔµÜrU9£«ÍDcæ,¾Jl†Ö4ÇÕ'Bṳ̀5BÚ unf–‹##DòøØ°F/sdAIVÚÕ¿²SRÒ´5_¼_^¼²+Ù\l«ÆŽîäˆÓµelžíßår´§J{®:Â]æ¦J*6U>¿¸ywÑãi 4'QQ{÷–šþݲڔÃÕuŒzlc?ìöÿ]‹Ø« H§P”48aÉ;ŠÇ¬(©»?ØMÙe?ÑêØ‚;L ¿WÂfØò×§XëÐ’M©¿_ÈÿÌÄÆH+¶£¶HÑæF€¬pÓ]@“HW¤-ÄHÕtÈçÒQÙÌ/þ¼×¾^<çÂaŠì‹x¼Œ—gd|^¾ºáîXI„å·`÷´`›ªÊ_D²¿Ü€7'zCüMÉÒÉÄ9ivvy%èk·QìT Ć·å’ØjäÞ¢IÖ­:Tµ+©MTíZÇ.ÙÊãPÝ^ú‹±Îl”+'OêµË_¿—ëÿ õòNAfîv3Üv²×m«Z<ŽeõeÒ“î³Æ(ü4ë09½«[ÆåG]:ßãUÉH1ã•dð¸_)@÷=K]²»žÅï÷·™¹]¨Îïá¥h/ß[>U>´&q²žþx÷ÞÔŽÍwÌÊœÍ9;(Çüѵzq;ù›— endstream endobj 3728 0 obj << /Length 1370 /Filter /FlateDecode >> stream xÚåWKsÛ6¾ëWpœ‹4ÂÁØ©éÔN§“Gë(§$ˆ„$N(R!![ίïâE‰´,¥NÚCëØÁ\,»¾]boéaïåè—Ùèò:&^ŠÒ8ˆ½ÙÂ##Æ^BŠiêÍrïøYs´^M>Í~¿¼Ž’mšÆ(IS°¥õ‚„*¥¶æ/¯)õhÇ¡Òöi´º$0IÍ¢M#ò"“q„Ñ>ŸøÆcÙðª]LÍ€Š²^Jƒ(ó`ÚJ 3ž={fÍ‹ª^¼ô«<.ÍäºÎ…ï ¹²“‚·ÛFL/þxõæÂL©ý·­hÍ7ìk…¢ú|¸?Á(\tÜ¢Ÿ}3ªp-ËõZ™ìíd·+¦»ÂÊU1­œœsɧð߃ØùH‰Ýæ‰ÏÍñðTf,rQÉBÞÿ° Ý<9Fé±}wH”}X6M=/äà°úijW;‘ûb±™l®1†¿Bo¿5<Ï÷NN/Œ ß²>¬6*.¢˜ ¢¸Ø6r%šýžnºÊdQWölrÅmêJ!«·eîĪ8Y#`MüûÊø6[=5Rzñý÷’Ä¢‚ß'9þ‘ÐP½ØíÑL|C'Øúû;~¡ÌÊ«*Wúoj›éf[¸ƒ?ìGW«ÙèˈÀ6Ø#] Iˆ{Ùzôáörx ž š2ïN«®A… $¤ —޻џ]õŽºXBA;(–ã8$PĆ¥ò  ÆQoQ€RF\Í|-$÷_T¼¼o €HáñmÁ—ʯy%EéÿÆEÕ~Uܤ'…\ÕùãG§,B1&çèúˆQ|¤ QŒÏ¿Š6kŠºÛ½“îOÜë ã>a(¶!º¶´0ñ)IƲ6ãGŒiDñe Œ,“ [&UÓš=Ûn•îFØá6CB횣A•Å]³¢6B0}JíÌl®áéLé)¸ž€³Á]0WÔÜ—ÍVþôð3f¿›©ca`É'QÙõ·!– ü€SÛqÃÁÝeì“Q¡4 §M‘;Ëh)ŽN3Z†CFï 0±¨²Bõ.ÊIý°Ùë})ÒH™(K•``§8¥†Ô‚vRj†"A°§õü”BuîÃ-¯3.¾g¬zñmŒÕKK t‘‡ŠÅËìT¦hìnÑ)µñãl…N!Å'ð}A}¥˜czþTÀ„ HÇr¦²$8‹—8< Ê’!\À£>\BÒƒ ¼oŠåJñ/‹,^`þ/ðhð²?,àEõ+éÿ 0Ù“&u€aøq†IȆ‰Î 9Ó2%ñ~I€aækÛ@XÿǤ}ŽaŽcÒfv“ö9&eÿ̸šþ¿XÑ» endstream endobj 3744 0 obj << /Length 2241 /Filter /FlateDecode >> stream xÚåZK“ܶ¾ëWLé4S•áâEô-‰-'©ŠRöçÀbvXæ’cYúõîàc9òj¤*U9µ‡ØÀ×ýu7¸ló¸a›ï_ýåþÕÝ›4ÛäI®…ÞÜ7œ±D*½É8O´Ì7÷åæ?[‘©Ýïÿq÷Fó‰¨4Íùöß––y°4Ç?M9ÛòfŸóÄÈl³èò4¥Sm—³m†b¨Úf·)Û¶GÿKóàÄá/1›Þ7ß>ÃÌd ×q÷¶?õácxI‘È,òÇKs8"lØ8·õ­ÒEU÷ÉbɹÙð\'©ÐÐI¦iƒ ¿ÑnDÆÉn°…‡ ¶}ìÚË“ï뫈6Ä. àæ´CQ÷~BŠvÓõƒtëŒ2“F˜ÀˆŒ ¸ƒlïes,¿Ž:K²<ýDÍÆ1c‚MÍq·úšÿ×þ0\áˆM›nˆE±3àˆmı·‡Ö9WX†`ÔÒ7ÂÀÔ5Áè#odÿg~øëÍ~ÈEðChy/€Fs9?Xv'¿ÜÏm†Þ÷Í:¦ˆ‰œéãÁ£w¼é+ç­€xb"MTª¾2b" _xܯâK2'C¾<úßgˆAßÔÅ^Δü S`s²Ô!þ~¦§¥Ì%@_7Íæ˜ 7{™ ,)Œ¡4D}¾ïÉv}Ûì‡ê삞É®eæd¨„&¤`î)óHMß]k5°}&RJ& RÖ¯‹T*òZ7{¼–ТÀhAß­”ÍÝ*es·â”GâÀ¬4¸Õø¶îVé٭ζè/}9X‡SчÁeï©ÙöCW5!› ¾'{¨Žïý¥%fÛ^†C{¦"¼Ö‹Ð¼KO£Ç¶[L>ÃæöESÔïûÊoq Ͽھ¯\á!€IÛ§¡ÚïöÀÎŽ}!ìuT ÍÓ °^ÓÂ×oß¾^©o„H´â  d cAeÍ#õvEÓƒÌÙ–h„^¢«úŸýp‡vô§M8x3”7Q•?KWA¨HT¾°ã¥z’eÛ¶,1 dÆ©‡'·ª!–ÈcDýöÛ+æ&›iˆ¯ðXâÜQ`WYѶƒÑ®½1—I69’¿_‹isý׋ûßÓù¨4aPÚÎh8Võk‰ úG8 ±…HzFèÖÎK€§±©úß^Q_æó›±ÒUæç÷qÏ’'̈¹÷—ÅP¼ÜõÑ©Ú&ð°›ëɨ+Τ0°Pã(aάQº¿<=Õ• ÔÛ.Ï}|7¤Øl3}]<ܺ™ë!µu¿`Ýx×§×B\f Ë£{ü¼5j·.ee‡±¸Ó‹ðÚ_z;Ü´YÃ;TßÁ|o\k»ê@¦ó<Š{´à×1<°’¼ë÷Ùй¶ ’Øç·é_5œ îOí¥.ר2ˆåÊÁ»Æ,ܽƒY±!“<£›¼û“íÃÜn'³í£KËú˜T ÝÎmò BM9ÄüúTº%¼²êïí–º;º…ã•×7–yõŒ×®(Ë—£Ù@úÓX„æq—n‘¯c©…Ÿëh»Íäé”]ç‰$‹3j>—D]&wL-·[/ÕÒúÓ:‡„Üa¬Åèw''£àØ ÷¹Ô º;]€U`5`@_¯ôC–Hî0øçp9¥“éìª)ýiTåÅY7Ê7sôÿׂT(ê¾õ­‡Õ{ ¤+%æ. ¨"‡ßáÝŽ3g*”ì=Ƽ“=Y—”©Pa+±« 5©ð¡]õþ—Œ{šÅÜxXm³ÐaqãBþ³íªBq±–›KGV>»Ð9HéÅUæ§%ìküò¦t]¨1]Ò§ÝØÓu! RìöÙtý‚õÅÝ$ÂÀ¥)íZ¶#˜Lø˜¥-¿²˜„©Å·ì½æYêÂ@e!¯¾"#O¤X$o¯Û¦~ÏÖ²,¼Ò±œZK6SH¿Ç䶨ëÕdM%9Ë^¾LudWV’ybR>®QQ_É#u¢Ä¸$ð¿]U 4fü–ã àÆÂoá&f‚Ò~tªeDkβyª-\¼Áp>r>D‹Ã‹G¯ßp¤py`ïÈî¸g;H-btá¢ÅæÔ†=SjCÑpåÍý§ ÷{V)ËQŠfžZ¦‘±â#mÛD{8m¤½qnhoBq0zƉåÐ)²Üjò3á"W_÷ƒ0v¢3æUI×>1örŽ‹¹¬»p¬Æõ„Õ s,âb>Šbôýº›ÖÿŠÞöwËë[”E:ji¤™‰´ÃiÍèÜå.îéûpóO–:É+Ì"aÂ!Ï]†f.ab„CN}œô;.¡|ÑL<^Þô>ðhCw9œ¨“|x(:šæk˜áCÖÒ Vdäþ¼Bi®µ`4\˜²8³8ã ^UøÇyÞf(g21oó<–#/B™fsRÚ‹ß›Ýè‘á wä1i½‰ªyò†#¨Èd1µDf‚„pí³Œ»éÈ'ðH¾È±`#пë±hS(Ùk†Æ3öBÙ˜ )cžQWú¦®emkR½ÝP[Æ39·¥¥Kˆ»p‡r~ºø3ê' 8ÃÐ7«ÿjòÝý«ß_\ù˜ endstream endobj 3615 0 obj << /Type /ObjStm /N 100 /First 1007 /Length 2814 /Filter /FlateDecode >> stream xÚÅ[[o¹~÷¯àãæ¡yx/Ü’,Ò.Гmƒ<Èò8ÑFW’7Éþú~Gô%‰l9žªÀ>£áÏýr]4Yå¢)ʺÂ:%É‘ÀÏ6ƒ£|¬¿D Û¤’¯¿d•³çQÖH$å@%{Ê+k-甪ŸËÖr1à7'uþ¨l,œW’²Y8/l õmQø@@9£DêÎ*q1a 'J‚!ÜÑ[R;Hu\PR¸èÍxâã&m®¿aˆ³ùÀo=^„Ìqœ*‰` ÅsàÜsÉÜ‘÷Êc#¤‚òÒ¿Ê»ºŸ”©Ïà]ä¾(Ÿ ÷ÀÏRy%ƒIkQA,× N긤‚/üÓ‡@hdSˆ‰HSQ!W ›Xøm¶ òãºYTìŘÂ^¸ 3‘÷9¨È  Ò\e„mÅR×ÍY%S8ØžÄÕß ¨„qÉ@ö®JÐRƒă5 Þ&J 3¨T¸ódC)$kA…È·QeKn$l:÷Q L¾êW)*WÇáÛ˜ê|ø6›rJT.ž3§Š)T wžLPÅQ'“ÅoAˆjZ TQ%Q  Â+)ó ¨@ÉŽ_`p)º›ÄB‹ EzÕv•¤n;²5Q¹Mn*”5Tƒd+E ð|›ê ¿ 3—„[“©Éqþœ<—‚úCÁÉè—ŬMF* XHµ~ÆAˆÕѺbägŽc%Æ%­-®~–hj±~k1þèøøhôæËE§FO‹åæhôúòtSŸÿ>]|<=[®ÎºÕ[—`Þþ6úuôü­­G£“n²QomíÀ@o½66'EcfØ€×¥$Œ{ªŽÕèµýuùf©F¿¨ŸNÎz5ëËÅô‰úùç#ü7,`@p"Ú“!â/ž½ÓΕ@ºõd<›ÜÄñ‹z ÇÄÙOÔèŸÿú7t[„Js…âÕâr6{׿X.6uÞÑÂŒSÿÕ Øª‡ôúHÉCúLLKÙ>ÀT!§í7ðàäö§In2è~f¬:zµZN^wز½úå…½é>oÔ»Û\|5~ßž\·Ø¬é6ë~Ȭõòr5éÖ½ó­¿½ìΦãgËϪò7ZXy0ìÕx…¯ L?°Êf…«ï'žêû·DöÝ0âtâÓÄ@|p•ÀPšIñ;¥y±š.6U¹ÞÏæóá´K,t€TlÕ.vÙÂPõÏ»ñ¬/çóñê  Æ«Li`À ?r/˜óéf½oÖ_£© /f?…ÿf0üb ­ÖŒÄû†ÕŒwû¶);úÚônYÛm;¼iS»í±î‘â·ü˜4“f`’Q¶„3°F¸FøF„F´™]›Ùµ™]›Ù·™}›Ù·™}›Ù·™}›Ù·™}›Ù·™}›9´™C›9´™ƒÒƒˆ5ZÙ QÒ!Â:$iä‹Èœ`51î´8ŽáLÕ(pd2Fªä@@Cƒ+:X{ˆn5 ŒÏ Ì83¢3l"#JCŸ<,ýp(òk†;ï“FÞÇŒ^‡ÄÜ8kä‡;a,fóéât@g¯‚l 9ŠÓ>@|Ô…ÎÁyÊn-ÝûÕxÓ („·š BYª‡²öÅ„Ñ9çP>tëõt¼'Ák›˜DGm’g¤ “\ÄaäŇâ‚Â×@PAéü‚šy-|¨ŒE9¦µnwˆ]^l¦º—éYÚ ²{ß§A–eµ0ãpc#´!³z†å üÈ©j+#ã†GÀ*n‹"ÀFëÍ{P\.O¿ügÀôËÂw rs‹ŠÖ&«-À©¢ÜÛ-”îÓårHBˆå sTèÊ}0Nf‡—¨%]à7·¡ÜÏŽÔcÀè"%A+ xlo¸ˆ´‚ˆ 8w™Ê€" J5zS }„3†¨w8¯ß>ÈxJv}‡S]ú= óC¶¬K¼áZ¼Ä||¶EÐlƉ”ðŸ¨:,û2âw£¸œÀž™zíÙIm8 tÃ}8f§çï×§n2d툨†œK++_’Q ³w"Y_ž^̺ÏI0 ŠÆf­ mVûRq;<{6tT¡f²«Ü€ WNö^'“÷Бa0Ô›p#XׇÜûpü>Gô}41ìŸyT*r!®¤ËwÇz´ãÙ¬› )¨ ;!jvkQ¹éROPHùFlˆ®¨t:UXpa£A7ù‡³¥ö:B8D—ñº»q³•ˆAN%+k{”ïôó#úŠ©õ rëäÖ'È­O["·DnˆÜ:¹u ò mIMm½E”ŽŽ>§k£C)™ÃÁ2aÄ‹z $§ýµ¯Ùkw‡¯¶µÁ4ü†UèV\€¥Æ;®¡› ¬¡ûþ*³#k'El6ë?FŸ>}Òón3>_®þt±Zþ†UôrõþÉ#Ü*ª¢QÒófÞ@Âæ‡œ¬Æ } Ûèb<ùúËËç/Ÿ“~r[¹yÅa[ƒÛñcQDn¿ßh©‚T÷qà­“¯È îq&ÕôÞ6)aRíh¨lS¾dL#l#¤®¾[‹dCpHCìÕ-"jªÀæc¶ÇxŽYÀ‡+ ì¦ñ>Ï@æÄG%m0ynAݰŒ‹n³ò€ILÊ×Hr¨éÄ^ ù}ðÀ‘õ¢$FºéµA=é¸ÝîÔûl¼Ñ‹i7ûÔM×rÔ4äqVҹĤҧ¡…”‡ìÅ"É2×\ªi ~H“ål6]¬mÉaÈ.µA..ù ‘g¢“öCt±šnþ°¥¤GZAö›=„„PÀ+t’L­š¢°€ŒƒÆ±U7ö÷uö‹a7ß{½ã»£C±õØ€6`óÙ>2†ÉwÒBùñ´0I TÒ•´@%ƒ†%öð‹ðüÑi^Qå5pÇ9zŸÝEî6Ó'gãõ½Õ!OP[&e¡Ì9ÞÒJxNЬhpçn .ד¸+<Ø/áð8x2ÉSý†ƒMByèÄ$É;å{™¤õµ§þ¿ÍJ1…²ïhku‚ûÛo´Ô–üc{ 7’Þ¯üÊ­&èõEËv+ÞëV¼<­´Ü¶]çJí:Wj×¹’»‘‘Ñ2ëíu®wêyD ã]þ¦æ1±.‡3·(õ6DôÅs¨‰a²[åàfy;#ßàªxãˆn&±#›½ö< VÇÈ` <ö€îØÃ‘ \³™‘x#!Eùÿ6D:¯â@!Í’! Ç2õf@©%CpAçtx~øšûk~^M8ïÃ]HNš×8û ž /7í 㿾ßÎË endstream endobj 3750 0 obj << /Length 2490 /Filter /FlateDecode >> stream xÚ¥]Û¸ñ=¿ÂÈ“ Ä\‘Ôg‹>¤—Ë5E’úp×®DÛBeÉ'Ê»Ùûõጾl9»¹ƒD‡Ãá|¬ö«`õÓ›¿ß¿¹ûËU&²XÅ«ûÝJÐa¼J¤±ÎV÷Åê—u{4âxØü÷þŸw£d‚­³X$Y´<žJ"Dz0ùþ{÷QëÉ®­NR¿m«jÚœ7mkónFàâ¸$YªúÓªf_æ¦Ú•`Ý5ð³µ;Ù¼Ü=ðé`»ƒmçætªxÝ$oꮬÏeÇ`æ¤lêLÝcOgÀÝ3ɃEv¡-ˆ+‹"bì‡&?´¦ÞþlêÎVÛ[»ß-2Áë:¹Ît¥ëÊ\\Üy.,¾ôVF" ùæöȽZPõùhÛ2ßlµ ×­Mu¶8Ö¶{²x=\ ècê‚Á‚²Ãï ]\ÅÛ{(Èï× P…­s†”pñ–O"äÊâìq#£µ­é× nH°°»ýœ+–Uéè›EeáYË€ŸHW-ʆŸz³úÅ#îíLL ß5-Q)lgÊÊ'ò;” ‰ÉGÛ>4ÎþƒÕ‰"‘Âwi¢GƒÅ•æÜ±1Ö¡9W,!ïmm[ÓY£µzÂ^?µÍ¾µn#׎ÍnÄXú±)z#Euvlç~Jšb™]ëÆG†™Ä¤U$ÃÕ?¾ÿ×—ˆ E$=ÖËzPR‰ÖÔŠr_vîõjhNèÚ^:ö¦ŠV¹÷b× )FÅ Ð  àK=¦—'À @<öôN•É­›“z:”ùá‚Щœ‹%E€Ò@¸H#JGÍG i`ms® [ˆÍ6ÖzýiGÐsíYFÝÙâÀ҃řÖVÉôC¦òÅ2¦©\óm×ÂíK®…»Ñµ®´;·‰G¯£‰²è« ˆ'’ }12·M9{ ìuà·ï˜&d}±<éû=\ñz³2EQö†…‡šv#ÓõboÝ9Á¶OÌB:RÅ"R,¨,›¥4zù]©H¨!qJû¿Õ®;ÈàƒéÌ_<¥áʼÿ?”ëÒ”w¤y'Gkܹå‰Êðµ%Öïtg[ºÿñR]CC &Låo C…±j o?~»Àµ„!ˆl7ÀàU>YnñÈ…£" >qO¤çéí¿OŒ2‘$ñüD4tp³@$:œÛ»O02î%ñ¥(whà;ðŸ&qõ_‰R«+¾>x-_[¥8à)®;%†$dô 5Îi4ñþ«20>–c`5´ä Qm{dZà{žŸtª¾l1øQ„!Ã)ÇsÕêš ÐÈÔ¹ë egg*ëX±úB» W€uô®°’:2R¢£½®ôŸ`T ìšÎTtn‰X©ùÁ{ˆÓ§žÌ‚š¥ˆF5›r³â,\?ÀxT#Ë…›oy_¤^<)ïO*†“ÔâI2 D¡t2Ñ·O}à¿t[ˆaY4¹Ì5½Ì×úŒñnFMAØ#<üyù+Hl•–¾à]¸’¡Q±D ª5ÈêߦC Qœæ•Š×¹­*íZûÛ|Ÿ\––O•P%A:Ôî‹F ø{i/ŠÁ‡›.«xNg`ºr1^ØVjýÃn°â릯æxª,ÇBhE˜^¸F*ì¶ðã,V ¡¤ò Ð*ͱüݲ0Ï«²æ:f][¬pÆËÏ?ÜûzV‘¿§94mÇP¼Ã (Žz×Àí¼‡Ú K =?GóL¨­…@½TÈø’.Œ¹°ÂAkM‡9þŽÄq‚–  %>ˆk‡æŽË™»º©·WØždK¨OØNz¦ç \†—ŸÊî@›†°„¹ÜJUúr@GÐÀ2Œ&ýXÝÈ+$âîÍ·©8C¡[±¾¢ÄâÍtV@Ô÷Џyà&Š Qú¾¹²(%¬6•\ªy;³e/Xȳۥë ¡–3M«tP§Ô^Ó²×4̇%Ò4@HÓ0'Mû¡×-¬‘n¥šRôŒsbêêÛøÄ¯{·tÒ£EŒéEÅ>ç¬×)jZ>s;¿4ØUfØ›7DÊ1Ѩ¯D°ñ@Þ=6Ó+&Áf¦ äÅìœ~ƨxé9¤A,8×1¨-•@UY3Rm­/ÙpkC É#k¡J4¥°ôXšù:‚BD¼œÔ·R ÔÚ#ÂËN3ù+¸ð’º‘”Ðãi‹Ù bdå$›ݬ/ûûþIÄTàüµYŒ=Ô¯q”n³ÎÎŽÖB‚œ 2ùgKƒ,•ß“×_ q#­NNŹU¤Qúbv õhuS¹/3¡‚eÌmXBÈï¿¥ÈOü$©3vŒÎ¦§m¬ø6mŠZ‚ëðk"ã#-ô= oô&àmPè]7MŸ–û´Š™hö¾Ã̶3–RÏÒ–KxéyˆéÙUYÏ.Œ®z*u“ï4a´Äö‡×±í#mŒà˜±©‚ 5U8š*˜P Î.š*d›š*•QS…¨ÜTÁÐw+š452ÒBÉïhkâðæ]Í,ß;n`N¶uà»òh'mŒü®6Ί“AV_%61FËí £ß:A½|‚N¸Ñ¶Ä± ¯Ç¶%Ñé } øè¾.‡…TiüBµˆH¥S_¢Ó· ZöOérò¼Híµÿ^jñ|M=݈}tëK6lò©2™,; …‡BS«ošÞRIíñÔov騣NÞŒ‡á‹]Ë”Î+âê`ÿþow‚{ޝ_¾A÷É©sÖ3ü~•‘¸ñ¿ÕüÁ.NÁ;À !÷ª˜mwñOžŸmwhŠ[Ïm¡$›å{ÔcãŸRmcü#1Ì|©çÁû}K¯ÓÐ*—ñAÿ,ƒ#o$AÜW]~ø|ò%* Ÿ|©ÇwÞ÷ýLžé‹ØHúW&蛌7†U™E™á ¥,‘i¼® :ûwÀ¾Pí,¾UÓ"ž‰_úk¨-›³#€9ƒÀZGûð,üǯøúÃ;çÌm(“õýW¯¥À£—>'Á—©›ÅJÜ–ûC׳ R*”e`¾µ·ÌfÍ¿Mµµœ}òŽoáÿA™³͸)ñdÚ®ÌÏ•i+–ˆ)H&ugö–ÅQš_’ö’]hj§àSq­ai:þgÁ –Ž Î9…áœ[JÀpGSU<ôM¡Aw4þòðf ½zå­ §p5ÇKl¥x*Ÿ^ÖËMôÐnpZ×µ” }‘éìõ¿Bý÷Çû7ÿ€@ëÌ endstream endobj 3758 0 obj << /Length 3005 /Filter /FlateDecode >> stream xÚÅZ[¯Û¸~ϯ0ö¡•cE"%JÚEÒEÒlÑÝE“ÓèåA–h[YòŠRNN~}g8£«å“¤ ´pL É!9—o†Ãx›ãÆÛüñÙîŸ=F›ÄM”P›ûÃÆ÷êJí#õá6ÇùÃ:qدãCæKSSëÒÔ[?t>¹æ= ŸýãÚ™r}ØúÀ¿+[d/C¯Ÿ8 =lÄý^¡eZP„i‹Œ> C¿Y}¾t­] æ=í‰'+PµEÕѹìwÓè tZ}GªlO¯´¢Æžçà—€ùÊîëÃV„Îa ö$h]k¥RN­4pC/è”W~ñúåŸß½¢Ñ3UG£˜]âNVŠ­‰•ŠH:E• «LS/˜êØ"£‹©WÆŠDÔOo«øm%ŽçÝ%‰+Àéf§ÆÑoëötFQ‰ÄwtK¿ié¢=ßž3; [ÃÆE7¦®vmqÖDÈÓ6¥ÊŸx ‰Ä[˜öáÂéq:iaÝÆö\×2‡én$äBè+â–‘©AÒf ?vg]ñ‰ÀpÈÁŒc7HzI(öȦ.Ñn‚Øy÷9é†>Èð‚dnxÁÔðè»àÙéåR:g}+F%ì› |6…yOÌGT•1X]‘›5»Ú Hšm&žÎõèziŠª%%À`mÀY õXïGê±@Oø€ ³v }ûý;‹Š~_Î<±>0©_£¬D±À5ëjRdû@Ô®*úÅÑëÔ©)P"ÄÕaÝK£;êŠD< “`¡&¦…pÁs-ß÷øR}À?VÀúÕá€veÛïŠOÚP³æ•îZ€¦z _:4~¨ò²,ò.-™KÛå…6ß®Ø*QºI$hG÷ÖÆ¼äÚ£‘xk¬sjƒÀtyÀvìä5n©UÝR£Ñ¿vEÃÌÚžk––YW¦lªil6¢F‘Æy! ŽÑJIÆJe:톘¸JC„ƒ4fHøYuk÷h!FÈqârÙ’í"§€6S'K[1ûÓ¬B¨ÈU#`¿_ÑDì†jÀhÞ#GD/æÈ‹².Ð×ËGú:§ï­é4f•ëG dí šF­ ‘é²|®'>Ö2½îªÖ¸´Ä? ~Ó<næã M …†Õ?ŽMéàv_ê3}XYoýÀù˜¡R/ÛM]°Ë:3üjäû±m´År\35Ú†h›.;ñz«Ú h&ÁŠ*;ÝC²}ÙÆÊ«æÞÑ• «šœ¬áYÖ5Ü]0oˆO0âñš¿Ui¹4 øå,µšsnÒø8ZXæEgÅᑼâä©©:±Ãœê®Ì©kÏ48'Äî¢zÿˆÖ5 ÍâüŠgwUNnª† ‡¢Éº3Xfµc;nVœkÈ­7õžvSûÍŽ‰ƒaXƒÞ#!©tœýµ{ŸÇY¢KW…wŹ(Óò‚M÷Ý_wÖm)t=o0”¼©/ž·vÕp% n\µâ€-z3ŠUPFñDˆË=}~ˆ=tïÇVÅmFrÁÌo,8èº*™·Ï×VÜQEìEÆd×E¹À„>fÊ(¬NF!Õ€v5•Öð¢¬ÈyÙÃ÷vDIÎd1ÃÅþ¹ñ¦Áû 5ßâ5e~Õ¡+Äà`Ú q=U“ÒUþpåíà í€rºK ÷kC{ÄÝ7ôï{®Pâ3h¸I0hÿn…ÍNÆ ²¿ ó×Ì[¼xÁu ¹PBBZçÞ6%˜°ºRÒ—%IÍ{Ðb$Î"“é`+¥.]jjO ?©ÎæÛ‹‹aÚÊJÿZ£Ç4“ÊZ’ŠÜyÑtëÝ)å‚Oݪ¨¡)Û4̆µŠ2^›³h¢$C±|Hü9h© Ïå´€2-%ÐRƒЬ“â¢ù/i-ÜJó‚>Í n¤yÁ$Í 8×Ú9Íõ,¯†!¤=Ôí5<Ÿ=å¼,[ÝTpþqí*a°¸{5‹W´$&CÂ=MB }s¥,´„ÙËÔHî&—p‡Ò˜vÁ>©¨ÄœY6‰š*2Q#³™"ת*SµBšlÆ’©uš ù§›¥ámLç^k#ƒÕJþSmÞ0¢„k¥›¸T_£‚!ײV,-o†Ñ€EsÎÒõÃaîßþu­ª+€o<`îþ‘øM<mL..Oa¯æ0ZºP溈F]ÄlDHÂch  Yƒï/ Åá\Õiñ"+^¬Ê(v“á(T}[8í˜ì‹ù—qÚˆ{ýž_ÜÜs$\5*ê£_¼ø(Ö×``ŒMpvÔ)®°ªÓ@ºÒØÿôòs!È%¦T²E®£Y>WªÌfÍv[.À{Ră”’,þ_…b.© y¬ŠEŠß_€JõÁ(´ø‹$Òº ®í†¾©’£z—Eâ4zÁ'ä&+¶w$Ÿu«]?pnb³Pz”â/?%AËê «zJð½ð3¾çCS„Ó•;b¹ß Ïézþ§~ñþ÷Ò¤XR/ì ¦áäêMèN©éùh.—àW^/¦ËnäXTß²cƒð!GòââÚ½ ‡WÇIý?()0Ý™-©F„¿“°Jó럵@*'õÙ—F°A‘TØ-gØÝó]‰~O ùP‰_Þw˜Ñ¢€Éðûïß¶‰ c¼Q¸Ÿ)eÃeƒ·ð’cM½ÿeˆ\}->+AzkLQ=C1CïËßÜaã{KX© ®ŠÅ$ü}Ö¦;(úÀI?ea†z\ Šê:(겤l|èÇϺ¼àÛEÊ¿€ø0vc¼¸.õüî½×múÔE!RÏc‘àxl¬iÛ÷7zl1—Ú!ÿæg)Á¥ö;z¬âî¡/’Y÷8)/8ž5hòËÙô@µœM×Ü»ö¶<ãé>)!>,H ~ÙêŒþrñà½?OÎwtÓôo@W¯>+‚œ¥H_¿ÏOÒòËwJ¯é6Cë_ÓÍÿl«—¯Úª}-5`áù`ñ—ÝoX=+Ürÿå˳·õïˆ{Æü†¤2|XôDÿ¦Ú¿:ò^ÿ«v_±Óîrùìò/¯~“ÙÝØå8òÐ;Ñü¿¦@Ô]Á}uÿì?s¯ endstream endobj 3785 0 obj << /Length 2778 /Filter /FlateDecode >> stream xÚµZYsÛ8~ϯpÍC†ª²`\ȩݭMR“L296¶kó°ÙJ„,&<4$e¯ç×oãâ!Ó²äqÊhtýu7h|ru‚OÞ<{yùììµ '1Š'—«‚1b\œHB`ñÉezòŸ .T¬gÿ½|wö:”ƒÙ,HÆ1¬eæQ)õ¤gØ-ïÏ^36xkÎdd^›S ̾üù×Íèå­¤@qDýN˪®U³ÉÊ4+¯fsâ`3¿žÑ0Hò­B; ww+ÍIˆBÚõ>üvøÞ¯ªåºNÊù‡¤lU>ÿ-Qeó§Êgsã UMk[M›´YÓfKûø‡Øjp$ #Ä1ók*i¶µúûOŸÎšÐw#)…Ÿ K»xUÛßûE‚µ@Ý$BD‚ÞÁ¸qèŽ>S«ñ9™@4¼+æÛóI9G:rî7 ‘„øŽMŽDõT€¸|qøÞÖæzË]V+û{9‹pÔU©~ž…aÐØÞþµ•¶Ÿn¬U«êêJ•*ko{{TeîžnÖªœ°e¼6~4Šöë‡ € –» z2ëqPÂbDbùƒJehübtÐï‡³Ü Umß´Û4SÎäY¹Ì·©Jý“ÂÚ© )“ü¶Éšãáz›M?6äêd;Ð&‡…ˆŸpí;¨ ³¨C¼—øzFÂ@-ÛjçÔÕ¶]V…?vRºOà IŠMÞ=YLÔYR.Õ#Ô°ÊZ¤}°9ÜfÉlÎ( òL;£nÝdíÚ¶Ì)Í`u5ϳï3‚•gëªJOa€Ó UZÞk#®é"Á‹·¯Ní[/]‹Ã$[“ µ#0gi[4öy[¦@~wÍÚxL×Û4ØÖÙ²õ0ê´»;0ùxm"„×cævò¤iÖf`Ù>«\ªl›³þ°È¡U Eˆ¹ Ä|æñAµë*mîÉ*Fâ¤îÕKk=¢Õ²Í[£` PÝÙúѯÓ¶©ÔvUª#§n&µ²oAIÛú)F㺱©³Òõâ8Ä›$…?ÔZ`Û<¿£z*b„cîõh–ܧvªÉ¸óÚÕ¶\je£Ù<¤4x»œÊŠÕŤÆ%± ª„³ÞºÚæOySÙÖÂYô*307¾^žÚ¾msÄA`°mGÛͶ(’úvß)™DlÈÜØ3ŒÞ·c̓à…¼ãB ‰Y‚Sˆ¨wÔì¶vúQZ#ÿkëdÙv2]˜U”!4¯’Œö¸<\q †(ôR’³t öÙ+8G£#Ú?PG(ìÑT¦I³Õœbjœãpðc${©u°TûáÏ ’œïÚ¥±©îÈ º£NtÏ}0nëRss¶ìOåz:Í‚Qx~¯’õámn­I$GXFc:†œnÁΚ?Í’«²²¾fã]RŽ=©Z´IVz‚6Œq8Dˆ¸èbp®’kEôÞ[ÈÃ’@ç@銯×ú • :dÅD+¶T¹{¨8™}ÕÌbüüb±øÊBâ&XBó’í·D Á&¯ ëB·Ñƒnh=è±^º÷8=Ð(Bí]Óˆ½—1cEÑ#<QÄPü°}:H[eÿ}´­ Œ£cçÉb¡öîË¡›Kq¤›™ö[X|BðI&éqÄ 2ˆó?Jˆà{ã Ea?@÷RGùJ»Çu–š„Vâ@¯fÒýüÙͲp×Ã& –.ÉÐ1áè)±ä€\"1¶Ì§RíðH›—Iž® Ý´Ï1@Խ꧈“.úV»eŠM™<‰¹|ɲÛ7Õ…ÂjÈxãì¾Ú:~ô:Ó'sïUJ;Ä Ì#žzá¿-¶9¤5}ZâdQm2÷UT_VfH¡Ó>9õÅFUv¬Ü¨Ú ×y/PâΓÊ^¸<9±³ÀÊ;¸›Ã=èb‡Ô™ŒÁµù8×ø6«ïä*>•ÏAqzD@Ì2öE¾Zí›@“ŠG%&Ã2uY]?¸KøWwŠï}öý‡0VM©²Åã^j‚¿º”œ{µ“û¬ê´/,'\RvúxyÀvl„àÝj1†BŽËÁ3]@IXk·nŒ?QFv•/ú:®ÊWW3pxOÿž pµ\·ž¼ÓÜs‡\:ÕþíæzñOÍ<‰Ì!VhDU}õ‰+¾2¶cM$bµ~]óx®ÛvÓürvvssƒüÎPâ`°ý^ýãÄ$¾s3vÇP+FdÇçjú!Ô‚KÕŸXãÃP›YD“V–Žò‡¬LC†gSV&°®ÎRFé›ý>enJÃà#2 nlLEà¿Z¹aÏ ôêø vY\Øk­ ²e’Û’ffl샽éþ¦/ ú¼p8¬ eÇ¥¡¯›Tf­a†9aøîrß|„[Ùß4kTÒ¨)ëK´ÛÙã^¼ÚÖæ¦t¸‚Y7>&þ"U?½Ò™‚ûÒ÷¶„·ÛVM™ðÔ îy(=5Ü£Ó@’XÃFòIÜ„(Ä>v 8fgßÊev¦« p†x = ëkžô|ÜÖäØ&p°Ø¸?eû,°^4·Å¦­ì‡8æ}\×-Ë ¢–¶§þÎÄ, ô ýÍ­6%<”U™ìz!Ë+UÝØgûºèE÷Õj§4™N5ß'cF!e»ôð=™¢ލdÓƒˆ14Ò5ü.>ih .2ôÂœà ¸€êï “DÁ’ÑŽ©;¾×áû)Þ$ ^BÕìˆv&ÂÀ ôÃÀ#TÄ£X¢Ç/4NDäq"¨ëÑáG*Û³¬Êù$?CéûL㲺 Ö¿‹J'0÷6¢XÖ0<4º¦Ì“f]©9$7ÝpžYkrýdªïé4ƒQİx²P,Ð…z–€4!KŒ²G‘†6‡t’.8¬€£qNqz.lšÉqð»c &èÁž/üÀs;ñ}Ò¬]Ïå `äÞo~-š(ÆÑ w«_ÿ?Ò°RíèAm²TY@&8¸º8Ofç˜Õ©{;Ežû×:ËÀf%¿¸Œ˜Ó¦WƒÏ;ï³ÍÊûªuw_fpª,ϳ¤pÅÿóÑÀwp>Ôz Ó p£ê”bØŽ2©W¦õIX²÷gÔùåÄ8ÇÞ1ãî`2øTÚ)Ö9Þõ9ê¨ØN°…Àð•]ß½‡†ýÕ½Kkå/ îfn„³'Ìܺ,‡G¤íFZޤý ~ù”C gOU‹ßИq«¦M¹2^%#>YÆýzùìÿŽÐi¡ endstream endobj 3800 0 obj << /Length 1947 /Filter /FlateDecode >> stream xÚ½X[oã¶~ϯ0²•ˆ&%êÂ~Øî&=(6(N’vºªH´Í®.>ílö×w†¤lÉGëMÛs æm8Î囡èl=£³ï/¾{¸XÜDÉLñìa5c”’dz„1‡böPÌ~ñ‚$ÿúðÃâ&fÒ0e„)02Dm•‘jtÔ±?áí‡qhvøA“¡Ý÷0O©—µM-¯æ~&Þ6Þµk?Ј2‘2hL…"õ~¬íR·«ª¬}¶ÙiUeºi;äC½feç[YfZ̓ÈÛÏYäI7«ºÄÝ*D #ÖßêÜ×ìÚ:+í>ø¿™3oÓÎ9¬Ö*·soU'³Nv–íX¯Œ'=Û+GH"£xGò &ÂhÍQ Z„T Ø4 ,Hf>XMD‘%`5†J¨ÇãðCÄ‹I8eèÖÐÂZ 9CóÈ:¤ÔÛH-Ûf-k©@ïúÙÎj0yg÷>‚Þ ÛmܹBÛ}±s%km»¼ie7iøTÔûj*©[õ1›¸ç$HÂóÆŒDÔ$ÁKŒÉœ¹P5‚¡µD4e,?ä‚°­=i5.Í= 8lBj¸XÿySOÉ|£³§p?ŸSὟ‹ÀÃLR#o@­‡ÁT +ošºØåZÕk$I<85ó3ˆ›gŒ³KÕvéÎ6OJoì‚ÞÈã¦UÓÚÙm–ÌÖrÊX¡„§éd”"ˆRŽÎª*¶Ô÷ðÀ"71 Áq߬ôSÖÎÃÐá¿5”$îÎÚœ>B7~‰µÃApcóÉÈä`7œ Í4“Åï]Gö4Œ‰¢á„|>Tãà*ˆ¼‘èõ ¥=ÿuÙ5#à>¶ð#é¬Å¡íÞ!¬Dd¨^AhtÌ»ZK!'é _vÒHÍxꬪ³ ’±ü•ºùêIǃŒZ³ºxù‰"™†¦’ƒSš˜Á3%×­šB:GÔ64q¸ÚÕ¨MÝãà‰¯ˆ˜$ÉØU®?eÕ¶´™mÂKÆ­¹Y c~ðüÃåW¯^Íýz€ª³S˜]±5€€ •²Yc°8Š¢p´-Dqãú»Î\n´õ6«µ,ýe²î>£&Ü™›Æ˜ÅT•oð¼ ’ø®•ËËï.¯ì¶L-õ¶éÜèFµ\»Q®–ùq­€Ñq­Èt¶„?ò˜Û;¸ƒãô¡¬cþ)}Üý_ôqqýpñŸ fbƒ PÎ#á,¯.~ù•Î X T³'CZÍ8€zÂUËÙýÅ¿¿è¦ÊC\4æ Ð5% ÎÄÜ(ë0 qáíõú`¯8åÞ^e¶s»+µÚg­Ê´\˜A)±úÜ£â‘àª%¤ÓG%ߪO²ð¯Ws–z+™ënè.ÃD‹aÝQ¡8‰ÿŒâì3 žx„ID‚^Aoe—·j‹È1‰§%ï8/Ü8ÐÁ: J¸[‡L¶{tm j ªPq¶r‡?§ÍÊióPЗGVŸÌDáÛíÀf©…^S-*Õ¯ÛÚÐèÙdµj¨M]2¡yS—Äv½ÙÔa$ÌÆÖ½:pÑx.”ÎÀ8i¢hêpÇHbÀZ*LmfÆÙGY6Hüd‡æBÈÜLX©ÕºmLÝeÊ^˜AÍö$ç²ÏÈÞt\!™2ÌÔT¦(ò]%v.%!IÕó!UPnÛ^<•Q1¦©Ú¶ d'éj:# fx2ÒOÝ©@gÓÑÙr¥Ú£ž•©Ÿ]ûÞµ Y7À/×íÊì±ïî;©Myáj›‘ßXïëiu ÖZ^¾¹ï±L(Û\nõòáî§ë«!.ä^ß¾»¼šòF|ü,/?÷\ŠU·¼„§*vYÙO–ðf)¢§µžduçÖï:(‰çáÔsèÔºÊ7ÐٮﶛÆõÖYu¤ØnÔä ù~Ÿ/o^¿»ïï×m³¶“£©½l›“¹B­•7èì¥Bzˆ<õ(vÓ¾€I¬¯Û9Yw¼»/ ×ë›p—Žžj_ =/3µ•-xwïÔóxpÛSõv§¿= Ÿ‘WbMR µÏgëç$†4txXÌõ¡\Ù¶”õÚÙ↠?ÜÄáï·œzñ!iÎ>Ó\´º#Àß[{nagŽ˜fÇú,ûXïåÚéÞ¢ˆq!Øâðúøí­E†oÈ9Á“XrúZýKjb"5jÂöËjD;~±™VONÔ„š°q¹…‡±©ÆpªÃ:ú0:¤µ:Gm1‘x½xÙ„D,MHHÓ‘}wHDp|gÒ`‚ ÔâüÅ׊è¾6 ÐB\Œ#¼1åÍ€ÚÁz¦[È|#Ï<øÑQƇÚÒè_tgìá§÷/wŽÆT5æ{Ç `fgbÒ°Òme®Vώ̮⿮ìü‹¥PuÆÁWG'¬wvó€z~!Ѷµ‰>8êIªõÆ`l¼Áä”™Ç]DOÔ”#%$aü+Ždz/Æ‘IáÁÀVø¡·¼ÐúÊà?ly» endstream endobj 3811 0 obj << /Length 2744 /Filter /FlateDecode >> stream xÚ­YÛÆùÝ¿BØ—R@Ds†w‹#’DMt‰—Àcé[zÚWQ®q‰Ëp)HË&˜»ëöxÌÒ9½ýÆ}[ÄxÌyb4bD‹§ýjE÷—3vøN¦@OTeµÆ­[Öæ;w d+tÎY xè°÷eÛÄe®ê—uÓ&)ªì9’¥”¦åù3šÛûZ59zÏ2~·\++Ò˜&Ü=9,àû«4†uÁ ê±ØpD5Ý ƒ4•æÉñá#ÆP÷zŽÉäI<»ƒFcÁñ+0‚z0Xd}ï^è AŸè̘óJÔhÅ;”m–¬ÞD¶ôŸë”ÅÝ]R@iƒDÛ»ƒª»O«-øSŽ Ó£ªÐ2V´žý=¾ì,)?¶M„âª;|4ª 7°ô÷sÚbM0«àÓ2¾–¨½-Ê& éù]t¦)ü»:M(ÂÀRçýxM–¥ u£'÷ç>¬y‘UÊ<Mƒ Ú©=êÂôR³¨nª6nÚJ­hÇÿã?]÷|ÆÆ‡¨Šây+äOÅžR§X4×;þ._‡>´1ÍÈ ©°H…" iëw)\°ÒHüÁd§E¡´Êÿ·×+˜9uZ^hz}.4Šu ckJ9• åz–7øÈ)*ži‰>Š9—Ò íÞ“ŽRŠë¾qÃ*zz€^2èi½zõñj<¸ÒÐ#’ºÄ#?–-''®Q?æ¹j*í|NO–©ÍpÔ+gÏwåÉYÕì:&zúS.ªª¬c•Du“Æ OŽ“žý4rT¢OÊ®>½_áƒk÷©]Y-Ri†#8ooÞ¯9£Q¦4m‹^[^ëónÈ„AŸ4õ¤P!‘ÃìgÈ+éÖlÍ_sÄö­µŠ!|£àŒâcZ{†áàÛ`‘|Œ\Ä«‹×5~xä­S‰Á¾5]ÂΫèë¤õû«ÿ,#ÛÐŽF±}Çã×meÉ®y<*>ÁÔ|.òˆ r0×›Ur¯Þ!s‚P7\᡼džJ¸.üë!ã-`ò÷µThw¡×xITéEp¦9µà›„›Uz¿•–ÑrûoçËÀøuÙÏZÓ*Ó¬2fö))“Ø[Ø%éôPž' £î á Ô/*B)ÚPnq†é>ó+÷g ¥*Ïô’7¿ÑvêgDÏëê)0ê2×fÏDL; t êᤋHG´¡4~ª‹¸”$ûúÂF0ja„º…Œ[Á`­´ƒû¬ð`ežØ¿×îÏAÓÐ 1ö q'76€-0…½ÚÕÛšC¶¶`¯®ÄG9öª.ìÀt†ôñ¹z„W2¶½Þƒ°]ÓJ`ï÷W^Ò¤²%Ø>v#ÎáÊëpPwÚ—àyŽé™©Föw†ðFŽ3S'•ųNË$ ºÌ/“.9¼ë.9<é´ÌžÉVH~0òׂŠb ¡ë€Jìt°sEŸ§ÔóYð_‘ gêKíó Ýï™Õ_íá« |k¾*º~„5‹A°(,=C Æ! ué.ÎÎ"ÌŒ#oÎÔè&‹7S„™g\Ê h ÝèC©'|lZôUã¦yÂ"x:_X’Â}sÑ †³{¡Û #|‚¾'É/‰ñš°ºØ…ë'úVóþN ·Þ Y=è‰2/t©—Ô””q7z¸»ÕUÝ«î:P[áè~"ê ÁáJ­|þ=¥ÿ %˜åñ§%g—£’–ïŸ/)=!‚™ÒžIúöùrŽ4ŸÇòwåð`!K‰±½Ð¥ñ¹àXStb—ÓBrë¬× Z®%h ±¶Wι)újðž–d{PÃe þýeÏäžîÓhvs8•“-M×Ïi‹ÛC‹oÖ¿HJØÝ²æR¢èe ¼ð´²bþ aEXu,ºu·õ?F`ëpù/äEwá#¿ù¾ðF2¤£&ÿv€ .1ÅÚíƒ Òóí‡wzË4:Nþ³v—Èmãg ¢oî^ü ÷2M´ endstream endobj 3820 0 obj << /Length 2779 /Filter /FlateDecode >> stream xÚÅZÝÛ¸Ï_aäå´À™¿$ª@ ¤w—»E.i_.N¶¸¶z¶äŠòn6(ú·w†C}®¼_ ðƒÈ!5Î ç7C9^íVñêÇWþøêÍ;®2–%"Y}¼^ñ8fR%«”s–Èlõ±Xý _ýóã_ß¼Køhª4œÅÂ#?©9æìxƒó^Å}÷|óNÊÑ‹k™HÿæZ¤@”ô¾+wÇ\LÞŸÉ–&,3¢[¯>µe]凫µ4YT¶)·Ô¹¹â:²Û¶n¨ÿ)Öq}Mívo©áòchlµk÷ÐÎâ(w³iÀxcŸŽG“WE}¤vYµ0,âh¢ƒpkÐ\¦5 ¹µ§æ)mëã©®lÕ:껓ݖŸâXØ "º)sÁ¥½¶'JãŠ3mm“~ÞDIR2ËnZÞ\qí@9U Zàa…šž¸ügZöëålë@Ô¢¬vÄŸ­¾æ©b&ãÓ}~Š¥¤Éé ¬”Jƒsë•d ³Ä‚¼)¸[ .1̺¹:Êg‹fs(5»Z+‘Fo¯Ö ×in» ød–$Ýö/‹Å‡\$Æ6¯¨± Ò&z^îði"gÛ•é‰^Ñþý‰¢=É,yњdž¥ÉLÉhD˜(¸wD|¶ûÒQklè0VwspApк²ñ²µß èVÆÜëÈêVp8¶ ø÷ÚØ ѯßÛ6/î6 tÓ)’˜A†í%Lñ„xµùùEáQ$bØ+ºxÌ®!T.l— 0x¿×6çmûÇ×ß}x½°o­Xš©nî· ì4ã²—ïõÛŸ—¸phŠäé\¾[f#ËâبŽpÃ9=Ü)oËNAÞU9ê¬ó0ð,¤# œb©L=S)Ís€~Y«YÆ’¹Jº ÓŒ¥éƒÚ€ã–d½6þþþ¢NõHRgѲÁS8U=·Ÿž¢ÛAU@ª É£ 4òc}ÆS‡ã¼‚† ‹ãd$:†3[pk]{ [ïleËöŽH×^Ñ"œvl,ú5Ùáàˆæ›g—0ÐÂÞm¥¬*Û,mä<ûúŠCš -î/RMϼZXt-bè@à›ìû¿!"y|ó?ô¨Ïí¢PiÌ´èÏhãx>`!²Yj! p¥e-€?fOÊ+x"–ò ˆqZ%ˆ ¸Æˆ 3Š4dñB~¢æï`Óá.â8:åM[naSÍÁî…üºDš)‡Â¼Jô2áAá2ºÝ—‡%µiˆ©z |fºWíÑæUØb»Ï[Ú%yoÌÇA»n_ŸÍÙZ,$ Ê0!gŽô\¨ ¨1Ašf_¿(‡üy0?tÆ{ iø% I¿Ð$,£0¶Ìf±y¯ô3„y^=Ææ!ØKG‘^ ‚=_Ú„C˜I¦äØz,ÌÌ Íaçx,ͦ°‡ýl ¹NCgãeÈšÚxXÖ'µY—kÉg{3±À@y©Åt§ÛÞZ‹ј®Ê3÷±Ã¤¡Ú3—°#FôROÀŽ4]„cîA‡¡ ââ‹ÐùX*{¸6f¬…ʘæ3Û÷Ø!5Å$ vàóv@üäc‡€U³ Ø!µðÕ$h£,UM³T5… $„ øÄðN,a„y˜6+¶Æ0€:½1ˤy ”V3 B%og%Ëx×X™Àö&ÐF0’?¿¸à*f2U!ä‡íîòã³n_r·èŸ,Õý”®^™Ÿ «/:n %Þ¦œýµIÒ<•ú¬Îná¸,® n’Ÿ È(Ò˜ßϧpÍéUMBù”J/œ‰µàxÊLð§äñÃ!Ssép¼Ä¾_B†?µïi_>j\þ°qãYt!E˜{ºaF]0­ÉÈ´¦Í(áËÄC¦…*‡ó—›–3®Ô}Óf|fZ xÓfü²i ha)þÏ–ÝÞÜlŸnÚC½+·ô4Ž`ópy}GÄ[(¶ö¨Y¡P猱­ ä½%:…«¦Ì«­]okŒÏc͆`Õ”ŸéÕE‹×§ÈãÍ$áY<\¥R·‹‡Žº˜ø»9ìäWSkcééïz°±xÁ#„×z¯oòf[ß,e( bÝàTËO ¾"¦¼š%^2cF“àCùÁŒù ù=Ÿº d{³/p‡2?6ƒÓ ±w?ƒj]Ÿ«-™ ÉCI“Fgg;.^OìüÛõæ_U:šDKöñvî%ÝîsK×z±ŽNµs忀zŠÕà8BûÄè瑎uaÔÄ@Ð]Õ wÞ¸6¯01>ÜÑ ³°±µ h¿¢‰žEwS-2í44`À¯ïëÖ¾À^7¶ÙÔ/3XJ§ŸƒÁR92Œ@à<ù¨Œ³:+AÛž0/^ùJÓ«ÀxÆOM½ƒDÖ…áëaxÁZ¾u2Ñ·ÖÞR!J¢ÂR¶|>´4Z.gÛû£óîíß>üðhYÔÙ ùÎû…Ö!N ‰²,ÑHâ¿ï í@Y@ÆÈ-ÒèW°²ÏÓMÿÍæÔëêt‰—âé\ MŸòaVKîp Ìq#^è7tÑÐÅõà =!Ýœ¼í¿M„ïUÛÔ‡Y ÑÙÀ¿>‰'‰Óì…ÎßžëYÝò/p-Ê?”¶Ñ$%P†ý=TBŽ)ôÂ@ø‚¦:à§k ƒ“wuS¶û£Ã†œLsÓ H@ »˜qL‚N<úywh ‹Ü*[t:ueagzíàïkdÆØ3rø¢({m{ɇôÓ±$“ñ’™¢%EÊŒäÄ%ä‹_õçϕР/[2Æ»×?P迾õªù>oó?,Dj´†bÜ„ôóS=Ê$°Gp ¬ÓÓ‰‚(e7¥>nÊ*Þ¹-ñ?¶àehwÔñ®Ún¥³£O€Ð„˜Ö¿†<„ú®üâý Ÿ’ðyna¥ð*Töî Ñié„“„X4vÅãT»ÎÁ>wÎDEߌ,Û±Pн)Ýo¡…;róñº(ÜÂøðZQ†­42êno".Œ/œ L…м)@ ¨k¥Ãû âûü‘êåÉ-”Hë.z3 bÒ ·@àÖ½Ùäh¢[êL¯#Ú–,ã¿S—èÏßö3/þcÄÂ,±@z2“ÔônCïJ!úLÑbm½þ2{Ù/„i†5 ½EÅQèà‡ù”%`n™èntpNXk•…­x`U|\øHE…‰‹ƒó»E ¹üx:„^<©Ó\÷߀ciü#aW Êß`©Gÿ ‰GNüÿI ˆ>”°ÊÝ¢u)ƒà¡ÒųÍMÿ¿ šœ;˜Ñ;òçŸtîMðé˜.u±aJ÷‘ñ®\¾£‹GÁsúo à ¾Ok¹å½?  ‚—Âå_ý†yž¢ endstream endobj 3826 0 obj << /Length 4033 /Filter /FlateDecode >> stream xÚ­[Ýܶ÷_±}êê•ù!’RŠ<¤€¶HÀ6âIt»¼=%»ÒUÒÚ¾ ÈßÞ)Q:î®m÷°I†ÃùøÍÇVû[}ûìooŸ½x¥ùªÌJ-ôêíÝŠ3–É\¯ ç™–åêínõóº;VÙñýÍ¿ßþóÅ+e¢Ù²Ô™)K å扂ã¤gÌ“_m¤á™*‹ÕFxIÒ´÷7B­«®®š­ío6B™õûº¢Æpoé;RFßÑe&ŠÿÌ NL¦r&TÝ /ÖûÓÑ6Cv³‘’¯ÿÑýmÕÛéK®ÑWLJCÝìéÉv]Ûy®ªÎOÙ¶]gÕ`wϱ£Ä—=Á¶qs4Pö=ýƒÝÖw³õ¬6Fge¾Ú€XK¥ˆM஦/°™L6Ûö†«YM:VCW¤v{G¿~l¶ -ƒá²3ÂJeк(ÜÜœ®[›Ð"3RÀêòŒœæ½¥2À_V¬:Ô j¾þöÙ‚^d‚<Ø~[¶3UZ*žÈ4ãaþÝ©Ùu‹ò7Âo„‘ë[K§Þî¨ghý”öøpüpEcêï‚·Ã# 9YÀ½Ã‘;»蹯w ŒS:êjO·Ôy´Uê`Š“’‚¥33W_˜bUã¸S~+¡áÔ­h›í'tE»kæªÑ NÝ·•_©Z“0à½ÓñXuþa¨†ºêmVQ¨õËÿœ*\Oãw´ åå³q|³9ÇÄCÉ=·% 3¡­0áÖ¬3“xv´èÕÚôõ’6žçÛýn``Wû}è@=xgÊig`ˆ¨òqgâ5iZÓ¸O!¥×™“þ@Ç]{jœáK㙄A‹‹þˆ‹±nHƒdhäÛƒímG¯ÒÞBç‡ßh\º=Œ•¸ožêwÕ¯öÔØÞù&˜MS8§è‰Ò»›Ì»žè'6éïõ~_ã®JVb‰Á¾ç…\¿Bæq%8ÞUøô }{_Õý½ 3n[o†vó;=]Õô ‰£ÝÑ[Á?¢*¿Rò‹8Ù‰“ø`"PïOõPÝ,½nA “Ê ”Só¥äaÈIFÞ ¶Þ;Ñká–ÍË‚ùeË\9—䯀ÕÁzrä䡳FŠèÕœ a‡';|Ž'…Î %ƒkê®y2ŒŠçKOæ~c=oÕ¡o?‡G,õÂ×¼¿Ê 8anFVœ~HgŽ­`t²Ø9ÜWµh%¹[ì wë&µ4²…]ºÓÖ¿1~xèÚ5D5ˆZzáj4ÄÙG¯3Ï÷\s(Pœ¼˜ÌÎ>ØfG£Xx £ðº¼Çð½¤ШhÔÇ‹bé¨ ›a`[wÛÓ¼.ºi4=&ü–¤+[ºúÙ‘´sLõ³{¹Ix²žbfëÎï Í»ÑÁC§‹ _*zÜÛÆvÕ>Üp˜Ðýf*[\Ñê÷vèÃÕ¦jªÃco==°ÜaxóðÞƒÒ…™)Í ²ßbßcÊÒI?Ð g³åFªª#U…·…ÈTáß~CkD?¯êΈ¡ùò÷¸ÿ*kذ¼ÃµÔÃ} "ñ¬#Ü 8Œþå±~N_ùÑá§Ÿ`$ôˆkœ+gNúIÑ~DØÝfÒÆžæÛ=P³ö]8 ço;(#þƒlt&*Ö´ƒý ½+Ÿ¶>µ8©ÀYŒ.È[êÓµˆ2+ŠbZËSJ9Hi¢Sï•ø":€M`__˜tuJ‘ãÐê9•13æ(Ý}›"’:ϯ™ÞWÇ/]ÛŒ™‡ûú‹™‰¼N ÕN+,w_dlŠ?¯yÛT¦'²\é)°DÔŒþ-ª0ùBçd)ûi¦S#¼Zï›¶³»žÁëSx†¡ ü8«§_GÉy{®Ê,_ƶƒ÷#"r½¯‰´,šØúö‘–ÄãTW™6ãÊÃŒ<š2£fýÂ$KPA.&QO3ŠVò‰ˆJ‘Y1qò CÄú¯7®uÈÈbš22f"¢)ß3#Ѝ,/×B7EFÃrâKF eõõWÞ˜rž™BÌAD¼u¢ðyW1KÝ"Ôª80¡ö¿ëã€vÔC%ˆBœ)AðReZ——k¦(S5ôn%ÄÒÈEfÊ+ûQH9Û`³ê!qÌ»P[pÊáyWWûp¹.‚ Æ8 1Ó°ïÛÁ†ÂK5,Ê5ñ¨§NgÎdƤ¸´ôõbæë™óË _Ï2ÁFí|­Ò39+­g~ENYB*ø”™.f®9 …7@Ú¶éë!rÒŠÉsðÊ%Ÿ#³Ÿ‰·>­>¶.Š`¡¢«Òñ)y—cò^7ÛÉôÐ=Ñk5É gI¯£Rž+“åyf&Ë…ûÀ—«s…HpßÐ7z°£Că[C¨¦é¬,å\—(Ë2‚²,#ŸD9,dõ4TÑ#n_¼ô5*éª_‘«6rîª Ù;öl³pxΔ]ñoI|œÐGð?@À„<ïp²ýüË~B´½7J­ƒ­ !æòù×é0Ô® àÑsÐ ¬þ:ÐŽÒ!âÜ>Ò /Nb1zãßÄõ¼Ü‘>ø¦wÃÒyð­™ÍR‘K Ä£ù)).&Õ,žOA3!“é ³ý– ƒ¦íØ+A†Œ\,JÑÏŠÒéþA.WsO¤1=yÚ0epX‚Þ i¿Üã#nÖ¿…‚²Ù>{~ÆÄÔ„Yœ‰9—ñµ÷!·uƒ€‘Á÷žšbjÊ3XˆKÄrf†©—i†~Dš3g²bRiäà‹’ .¸Œ¨|JJCV†ï°m"z2å”d||2U—T¥É.ƒFS¹¢Ž9ƒœÆŠåŽâŠòb"0ÜwÖÏ_ø6¦ AÓç…©˜fÈ8 ù–ÛmíÃ()„îv!Ëw!:¯c 1?5¹}¤ß$Üð… ¼uœøv2;.4$[S8 ¬|ýê›ïÞ¼L…P£éeÁæd>j߀TSÅ‘R­Ü†³p²T*ÓJ•5êÁ’Ò®êvŸqÀ¦Å&—€ÅÛÓ¡ºxÄ‚ú>¾Ð?6Cõ‘¾î„ ìL]e8¼€^'y,våšNÝÜ ]<%ëoøÚú%žAƒ`–†Ë+‘„ªÁ .PýVáQÀ}{:ì¨}!¬ÄÊóÁCð6:}põëMï,<Eb:ÔÀÑ”îh™þœõgĺš(aÂgyç'|‡_ø )!–6 \áü˜›õ—ÉŸ.;R>R*Ãâ¼­³Œ …TÛ±tÏåú¡=<6í±®/zÌ Pj Äg»c˜BˆÉ5ÙåÖ#:óˆ~mÕטë#‰à˜ß?&£Wâp~ÒãÝBÁ š2èfŽ¢i¬GY–ëwT¾(Ø Á¸â­Ó3e¤ E8q-Ξ¸jiª¾% çRžâœõ(È”´x⯒„Ù¿h@\“»ïä 6n›KØæ~°•;Áp2ÂíöþÕýQpv“ül5sìã—4ž ]{8¸­…iÎkÇïÅ0.QL÷ƒÑ%»QEVJ~Í>ÙÒ¾Ìb¸T€AÆØO!qéú`C. ?>‹×ÚпÎ8_‰r;ÀîzÇj¢õÂq8Ô L¨æ˜ugQ¹!²Ð„âYãŽ{¡rFéR’ w6âZ»ºƒÌ„J{QÄÁ¡ÈþIøØSÑìˆ bÉÊ+úÑd•!H«yòéþ%Ç<•rッ/ØÐ+g ZÊ'YEQØU!¢è)ë3Â2ÊíøUUL“–‘WùâÖè8è½ ¾v"3³¼dp΋¤n¾œƒ‡ûø\íßšù” N÷gâÔ;¼ÉFƒØM,Ί…pÒD€5A¡+”PÊE€Æ~*Ú†&>%/7Ô³Ìéa0Y¹BŠ–—Jלel*Vœ«]‹L)õÿ¬]ÿt³1xÒÏs0mIl“ª`c «>·€ ‚<[ÀÎi—RlX¬ãŒÅ²žä>ª¢Ìñö‘Ü–±rÊøñ^(hU XH‘Ø,ÆÇàùúÒÀÛ ëžFÆË?øàëã!º0ÑõõR NmZÝUŒ–º¸§y>;R©›ôÕŠÑd´vHŒZ®>Œ¿~Ä“6£>ûʸÖg+à°<:ËMH•' >¯¹"Aú Åö¬­õLæÈ¯˜ß˜ÒzÄfnÔÞmB}QfL<¹…ÅĶÆãQ~ºô™§™ž.ÜÊi2M¹Tùá/Š+²Ð×|^úA²þZÊxÕºl?¸Ë;z> stream xÚÕÙŽä¶ñÝ_ÑØ£ØæòÙðƒÇŽm`x7ÈCœu·fFÞni"©= È·§ŠEêîžÙËÙ`1+6I«Šu±Xâ«›_}ÿÙ7¯?{ñ¶«”¥FšÕëë•àœ©Ä¬¬̨tõz¿úÇZ:yõÏ×?¾øÎˆÁTåãÒ ?©>fìøÎûŒðØ¥5sÒ®6ÒB§¢÷~»’zNùÕFJµ®®éÙÞ†Ž:+÷Õ‘Úù5N¾ÎwísìpëûÛâ_<µ»ê˜7ôë¾ho©µ/ÂKu^¶ÔÕ-ÙÌ×ôt*5@[F¦‘ÎbOsÆl“L8§üºÈ¶¹¬Ž¦9ó}X¯BPÀŽT1'äjLOµ& [|Ã&ë¢Üçw9üW¶ìj£œ\¿¾ CÝ:å.ôµ~ÖuÞ@Ͼ(oh¬éŸÍiwK­Œ×U}<¢¡'¬Zµ]ø±} ÊÅH ´e:é¸ó WŠfÙ•a©U'ÆõJ1#mr… K@2“µ_—Ä$eã&3)«·E[gõÃÕF¤n]žŽÛ¼Æ¶õ›Š}D(¶… ï²’º‘Ñ~â]¾+~á\"½ØgfôóP4-µ´t@ºæ9»aÏdHqÁœéT%Š´æë¯èÀÀè§ Ç¿éôöˆòb/žÓ¤é+þQì%€ |6 ³ÐÑí—öp¸ *#Ò©\‰T÷rÕ,ˆ€Šqõ°Ú€±\60ê ˆEÑ@«!A@‚Íx¾€E´z‚Š3X¸òiXx¾ÁfÛšŠ˜U• º2ë—yÓ’0énϱݛ±†Þ$Ò`€ŠÐƒ¢ŒWL™¸û†–ö«Ø“®ªDâÅØ÷ì÷¸&6O ªý\ÑÈKã.ˆã™/@®X“Z&T'ÞÀ%S´Í¨y§†°Ì¨#.‰íž4eb´pJ4” t,áÉXÈSÀ¬›º:Ý‘¡jl„ç?xáuàeŠ&˜‘0™Nì—@” ï§à™_ ½þ½EOµ§žjCíà—ý|àØoøR^Æyu€u Æ7½“†g JEL…—l®4蔓w”røSK ô”CóÉ—lÊd‚\RL¤‚ÆŽ‹òt¬õRŠ`€´{¼Öû>  qjòëÓ†=C¡Ï3”ºv‡ؘšCÈ ¨| Û*ÖèåÖ;häÔYVå¦)v¹wþ]è=írÞ}ã`äuÚ‹>>ÀëµÅh“¨¿iëÓ®=!îø³(ééå û¬ úÛ¨D‚7? êaï©óºöc®ÉŽ¡u—ÝßO¸·=‰X²mhæY †h*o0Њ#6H•RàC€vÌ¨× yÒ‰(Î+ŽÅ!«©Ûo t晪 §$ãà­W„¨Ð?£§•~x·Â §²y¾D Ü<§ ¯£~q¢1y"¡3IÒ ’+Ö¯ò<Ì¹Ž“H¡³ãÝ!ýt¥Ð»5mV¶Õ]u:T MÅÝ”\ˆ KÐC2—Ù›ìæ ,1B»¿Ìú „¼BØM¯ÝV°šäF¶bŸ·YqhXl ~@U8À?æV5žK¨ù3Oƶر°š ¢ÊÞŒiE /oØImE4„(:®¼­êò˜•¥äÜ^ZlŽåïºâˆÖj[9®§.­g`½>ʱHwòi KÍ1\xWçûXË/¥`Ö鱬tÒ0Õ‰·X²T¾¤f“•Ùá¡É—e篴c—¢-ªð‹ÌôÀê–Y;Ðàà ‘1¤d`w¯È:ãÛe>ãÑ»[ P¤L˜á]vÆW-¸(ï¹nÍ£WeΜorŸNÜäXð¦i‡X>áÖ7p–%ã$}@@Žf¢8j>N•\QU‚–ô#£GöÔ2lQI]Š”c&M' *Ê2¯GL« = ! þº‹…EšíM4 £•2äs°5L\ÀÏ!Ú Èj=Ü•s8Á)ó.zÁO‘I;Ë.Øusò ŽÏCFgvê³'v€@Ç4J…÷½ðÂPH¿Øy(&]È—Ø3¤âþ;Ñé8mÈœTWEo,=‰› @f99>ñÐY`B¾÷ñ&fptHÄ#-öO¼iˆ²@þÕkzéLÔJIùØJÇ„Q#ª1§žŒ"%Ó¥…èÄk2µu”· á¶åôPïƒ1Y¿ Æ”Yè?#2_•­‹™®q* pN;Ÿô%ÝŒ]C_RçKžšûìz23àÃ_OˆIæLõAÞÓ0pŸÓ°é€ zt›­tç¥BX…äœ0ý '“Å=‡Ó+pGN2À°õKÛꘔxø8Qù“6*-wcpd›·÷y^N¦M½ŒÙÌWâÌ%u”vDŽMØWÏþrF!Ķã\»añÛ¼NÕÀ!=kZÔ?ì= ŽS:ëLgT\§FŠëäHqaÔ+.t÷Šëèœ~ßQ5–UÇáðñd4#|0i#˜>+y:R¡Éž&B­$x¤€õ·¤¡.f±€€‰)qjt-Æê2‹Š%6™û\eÌGv¢ó“Œ±±úH€MÓ&Ðå#s.ò€ˆp Ü…Ögn ¶WGß GTGlµÁw<®ŽÂ &Ýpû—õÐööŒô0:[9ä%S|v”SJ#Ód~±§—•Sñ‹¾R(ˆ„úÓwÔο½<ë$õÐI*ÌdB§²Ó¨=áƒÚ³½’|}jiÊ]ÕÃ3#MÛçÈè²hc2NŽãŽM”QA“‰ýÛUh"òF¯!«‹ß©í5Û˜f}Q³pgïè\çŠmI±Ý%Å–àoŠíÃEƒŒivu±(gÛ@l`]k»£Ÿ(ÃÂu7—á0Gc(®YG"6¾R„EO˜&òó+ØH_’!æð€Çœæ1Lçñș೭>n‹2’hýuVçÄYÌg©·²O4dsæÆN;9$÷\"`X¢]zõÞòÆe§9›òÎ…ÑÚ1Þ_¹_ˆRÎDÑÑ:8¾þW¥´§š¥=Ó˜EÖ,ž¤ýå퉇^0-SÃ×ß–\W§zén$Ü‹šílPÈ„õÎn|+320‹VÓdhEvÓ¤ZH†Ð}ÅO ø0&ñ(Ð{ƒu2Mç§ãN¡à:•sóë’\È‘I ãft‡Ë}ünMHޙة™r³.«C_°kŽÖβq®g0õMÑ{Eæ€b.-rÜ,^. Ø^ãz;sf ÆA<S0¾Õ¨›ö^(Âv%\}`&D2ÅñýɶŽl Â5'Ÿ:ÙÈ·âäP-S&”\)ÆŽf©%¥´s¥´ J©}l¶€Ã…4Ì¥éGÒt0&î=4C,€óKÛQùÊXЬF+…iâÑ t°J‚áAššó;˜ø˜d0é 40”X`3˜¸„!²ÀÚ'€»Ä;bÄ¢Æ%âù»rB}tNxÍPpÿ+åGÞª Ho¬dÒ Ú*ùœH>õ­J>úV}Rª§"ø~²”,¸0Âà5£JÜÿ‘{À¤]*þ÷ (k7±Š‹Ûj“‰Ü-A´^–>”¿Ì™Ç] ëÞSäÜãžFKæ´x7žªËSõÑy¹‰¡y­ò¦U~\ù¹äþR,7™y¿'±4ù°â“|Êâ“ÈO˜VùiUŸ0­ê©´~÷®Óëßg—´©fÒŸX9ÓÑð¿ê3] UM ^H§Yý¾]Ìê[?5¨ó^HóYŸÃžÀûö‡¯¿¶\[¤í X*ÜCýzjZjŠ7X±XGx3ÃüÌeáS1·ïzûˆß1ÔñBYîÌ㲂»|7©ƒ3š qÓMÝåw-}àëRæéåT2cÓGï’Õ—M4°É²¢¼&vð°rS Vô3îsêÉ *ÎÅöM|= àvÙ*ŽÓuÅ5Eû@¿â… N®ÂÛá¥}‘ÝTevZÃá”+&µôöb¡aw7µQæÜ•¼u³éŠtb†•sZ¢‚7p eôhÚÓþšDµ¿5ÜN/u¼P<‡±„lðÑ¥kË%”ãÕk/óúí!O'8 EQbMß„ª=%$#…" ì¸ oø„gdÌÍêãsªÊ¢OÇ|Íê?[“ÏV°®ñtØÓìmjŒpÁ*¼Ô´Åf©ìäÃK'_ßV÷ž~€¶VåÍá~ÍŠØøˆ0ø9*ñÃ’T>ª‹ãñ‚pŽÕô¼c4C…. |yá—Rj}›ýR±V fÕÉc©èÞ ŸTÎp“—9i™~­ÙPG¶««¦!Súþ€~ü Û¼€lØÕFk·~™·‹üö•èUý¿‰HÇÕÀxÿJåt¡h&¼)iWJô÷“ø„X¼?Þ ŪϦ*›x¯‹¬?h¸‡Xw•s0¥Îÿu*¼Ë€1/ƒC‚'ÎèkŽzñ|c!…[¿Êh6¡Ùóß™â°äÜ…;1™Úð‘©VJûŠ|i¬}P¿6Îì?K™,MSKzû/Õé>?åâ¾€0 ò©tý5lò¾ñÆœ¯?G!àñ‹_Kš€qø4Çè“8)ã'qÐåõzИµW …dÙeø0E„/o°‹íÉ'|“‡wƒzˆI9móIE`›–É™"Æ ‘î­µcc(‹¦›Ahœßë¹P¹ë¼OŸ“‚,èGü=­Ÿ@¨>Ôôw}øì ¢á×1Ï_Þ@õF„ïìÊÒ³WØh~m4-Øò¦%ÄÞX„-ØÙÐoª†ß¾hÔ-ÕÌÏЄͰJãü;rfT £ùõ¢zúb@¼æë»XXìãø4ÿó›¼qK˜âU žAÕ°ˆ?MÝ—Ôü ”²ˆŸÒ}NŸ³ø`ªinûwL÷µY÷™D|þùõgÿôÌÔî endstream endobj 3861 0 obj << /Length 3946 /Filter /FlateDecode >> stream xÚí\[ܶ~÷¯䡘E;4oâ%Mœ"N\‰álI´3ÚÕ3ÒTÒÄÙ èoï9$u¡FsY{7N‘ÂÀJ¢ÈÃÃs?Šß˜ÎîftöÕ³/®Ÿ=©ØÌ«¸š]ßÎ¥DH5ÓŒ%ììz5ûa^mS²ýéê×}þ2уÚÂ*¢­Y®7+=£Aül!4#‰5³×ÐHøjßgY¨ÿˆ™UXÛß¾ù b¨"\w=¬Ò†ÜdÕÛìžYk¢ÎFª)K´0m»?]Þ¡$ ÃþҺ΋·œ2u¶?ûý½M7iž0À“jI4ŒþVé]Y7yQž3©‘D™A— Nù<-V—÷Í)ѽì|Y¥· §Tœêx!¤%RÚÙ¢Ò&‰o~[VW fé<»bÉüçt»Ûdµ/)oýu»ß4ùOæ?៴ÊÓ& o²&]¤Eº¹¯ÛFïòf=hÒ‚°}³,·YM`Àðø èå&s«È½EºÛA4é“ÑÎ…‚Gðîv¹ÜW«{p}X4Í’ƒÕŠ­þ Ãä5<òw“EVÕ[°õ¹e5¡†µ·¹”óÛ}Õ¬3÷Œ\¯ÑõøÆù\蜕²ÍóéhÀFÛr•mjßЇ–‚×1°oƱ`ÞÈ 0ªêƒÄº©öËf_9UàùGšÐ:ËüCº©Ë†›ýàjÁÀ²B±\†Ñ£©² (¿ò«¼^î¤ÊÂ?; ëÂ@¶Y±jë¿»bÕÕÛaÚ•W®À•‡Nä¼Þ/×¾h™Âô€q0â,@ã¡? È51½;ÝLÈÒª,ΡŽ„‹$ ‘0ˆCD€/ØZßá-E`É͡ӱØ9Ýß6e+á—ð¾ÎŠ:“7÷mUx»Ë–ùÂÇ…e„±vž(¯(—/±™Jæ€RꇙKJÂbàXÃB”mn6éê,P[¢”|ô°’ÑZ»Kï69x zä'«eÑã¦Üe¿4؇ÀãBPýÀ•ˆ§àîú=¹)(A’ó¿ô´|”#hJüª„×"kÚ)è ¢Å¨Ÿi6Òxa/Q˜ }jÇk—`^4¾ª›ý*w…ðPe»²jül`ý:æ_¦MÖ­uX§É·™/ß•yÑÔhZ„¼­œÞûzÍ\ÑMÖv–Öe±˜‚‰ôfãpÖºy††HÞoÛ²5ª‚¥ë¡¨Ú‡»ì§ßm¶lêç½þNDª,˪GCx.ÑTò« 7oûJ—P{å,â^”¡¸×}SVÎowâ“c©ó~EAÛ¨õý#‚þ«z¾õYã¯é† -¥šC²£ÿ ·Jί¯Às d_µ¯øùnó6/\‹Z0î1x‘;ˆ¨×¬óÐp·¯ve…6eôY: Ä›u ¯}M…ñÝx>ÿäÅ›O&2þfž•ÃP ï‚zWÁ´’Ó2·I>4–¶klxh 7áeÔÅ2ó­q!†Wˆ 7,4âºKy~¤BúZz¦ˆÅ-€CiÄLÅ ùÄÐ Wh1¨åÀUzñÝÊÐ Amˆ”þ‚3"!ɉŒØ¥_“5„ë¶t¦Ñ,„9”ùnö.¤á…ÃÝÎ(¨@rë û™aÛªùu[+`&ôsèm®a'f:ìÌ1›0ì×TèKüL†Nêu¹ß¬ºŽŠ` xnLl‹*ÃDÇüY„ÑÁM+´Ü×៧p׃m°@q^,f|uÂÈá¹ë©«¸PMKÇEY0cZ÷1:œ÷a9÷ˆå°Ó̳íÓÍæÞ/;õ.]"öà‹>õ>!úËðzù›úI7¾æpøÎC¹>æ¾Ä$±¸Ïê#îs TAÏ¢l| „kÖ§IEöÜ(’Œ2Þ²ðcGôÉòÊß®fØͪÍü;‡?´Åªº%CA†652–$„òZZúúA¡Õ0à°ƒ[瘸úÞ6>µ­ý³Ï©ryYE¬ç/ë ⤬Á‘)l…—aìL’Q,G@ TŒþÊ£¿‹×C ²œð~ïû0œbtPiÙ&½á4¤ÿœ°%Í3N>»¬2p¶¸R!á&†[,éáÖ=º€ -‡Å”&¬È)M$Q=@ã\Fi[˜È`¶mßÍ6€—ýncX¥ÙZ_æ…›|W;·@ þ¸$dœ¾„T§ …]°¶…!–m˜Ç!áñË'ÔÜæwëü,Kج²„ùmÆa [p}Æ™cH(MÂãÍ jàl+Çy%¨^Üj.ÚášQæ2JR\^Â4˜,/|»nÆX·Õ‹`Ê&{ špîÍ%ÐdŽ!hzÅæ~m «+ Br|Es·úŠ6åîʃyä DD×JŽ"k„HtK¬oƒä[Óz´%Ó­×$¦‘ñÀ Õ%F|Ò*Þ ˜wQ¯Iaa„Dö¶Üǹ.Üu+PH­ëP}¥€ç>y$Å pa± Yu”™áÎ%mª|9Þàø%ÞéUm?íŒb`¸°-E£(„„a1B8Ì;–2/ ÆEb'æ“‘Á(‘áz2«êÖó„hÅ|¡j "ÌA‘N—ï€Ñ†ú18Á9%”ª4·â—&ç´ÄPÁy$nsba‹V¦“ÇÈ´ÄvN&è¦`X‹AµRQ@6Èí¡Ž¡†ÔçJp{4õD“±cq§ ÈÏŠ„,KñÇ3 ‚5]¾§ÅÓÄ1y`À߈w§•ûé1-òAAǘAD%ˆæ—!GBŽBN(K\Æ4  ,ÆÚÀ1sÇ@op,y+`"J¹ö]kÿ‚M?ƒ`.Y¨ÆÎ:Ð@/€ßt„ß“!6¨tDš„äAGÒ¦4ä’pȨϋ»Ü“( 5úÐO>Ï­ >Цê¬M1€íHÚå>êóÉ%’»DáQ|~Bé…¡-ïsþ+ÿ¡äÓûÜãêÈé!¼å“‡ªx@|Ë'TP\ªà‡Å·œXûÛ™šIFD{Tñ?±öÁ®RÁŽÖ>+#‡‡µ4±Ü©'ÌA [œ±>™ÀŠÐWâ„«î›Jøì f†3øÔ½787˜ ™H­aWЉ1³A%Ø6Ó‰ÞÐXêLoQgìHgvØÙ?§ìÞÓ–rÛ’ÇÌÒ5TÐÓ‹âwèÅ“»§1úE6·Oaó‹¦é1››ßìÌa€Ù”T”ÿŸ:¿úÔ‘¿Ã©ó»²¹ø Ù\<ê¡•´ÚAÒ:f¬Ja‰•Ký~Äg£#Øm^dÌÚs %®ºã†“5ãsä± _ådšpibšfB'èOyq%ݱ—›Ÿ:N F'áü)áFs„ ÅÕÓäÈ0ŽÕÄõ|b7CšNê/o ,H1õ.mrw <|¤ün_9âFàëD4…‰6¢GD µÓŸ ¥–øÓpŽ Þ¶ä<ñAšÃqòöüë÷ ‚†ƒ,xƒ§-ûMê<-È“JðÕš$hXÁ;?vÔðËçþòŸp.”VÌßý±+àQ!Äßü;ãÑ1‰`ßLŸ„Ñè`_%xÂ[M9 ˜èšjv(öf–'7q$ö›\ ¤ð ¤8½<T†\]ÀÕ9ÃÍð(=¨Q® 2Hoïýƒw+m£ËŸ]-m|[îø¹#¡ÿM˸[0Š”ÈQã.oö«,pa½ª)1®8pàÕMZ; žàþÚž CýU^7xàWû7¨Áͽ¿_e·ÈcL÷›Æ|¹_nòU–A84—o6¡›  Ò Àù+Eíü›lŠÖ% #¢_«VSÛÖ‰éØÈrp=ªÞ஼» 7Yó.s¬¬æÙ˜þ¡;*víž$à•µ÷èPhnÃ]wNî+»)jN“[X@;‚ÀÑy`ˆäÇ< ý‡ŽR0q8-7DÐ$>&lÊDeSªÀ¦„*oÆÑ)¡Àkç=¼†øDÖ6ìÙ—î¤ÙÎë ÿ>Ôm];úM úùñk"U7ßZ-RñÑÕ±H5Ÿ·£Dw¶haì¹£r@P7U)­B:†k‘ÒÕb;ôQÃx_ÍÛï¦íۉ꒮YÙuW·’B N¬]X*å¡]ù% @àv_,ƒŽž­3Á=J [“§&“!F ³†˜#´K+öÎQ‘l­‰è±O…cº–ÿ¶éëàÄOŒ'0º”mÐõì¤èȰZ÷D®¡NÍýÎYW%C©ÅNˆFA¢e“!ŒiÃÈhÏ[Ã"øXáó73 À³CMàËà òQvíEø\hXaÐ?†¬ò×ý«†ÅDtÑ,ÚNOð¥óºk4n[%HêI®-#¼£àÚJp¸¶-å –t‹|Nÿ䲟L,„ŸÑ­Îò‡#öÁ’ IÍN1ø=.„Õ¸sé~¤~òýë/ÿþº¥¥í<ûy‡àì+ãƒÚÁTj÷pñ|ƒ]eÿÃ…Ï{ψLIÓ½¤d*1Z0 )¿ŒýUŠ?%š¤2Œö«ûuG;m ¶¬ŒIG›Ž‚m`µ¡0<Ìpܱ4s2t™—SØ%Žƒj›¸´ºÄºß¼úö¬uuʶŒP}Æ´îî¢@2‡'k…wSðՄ΄)6TùˆŒ¤wô‚k3ÿ /z>­GØs!Î!Høƒnæc’h ½Â’å%Nyóâú¬S¦¢ ›Šu3ò‡¸ÀJò}}6 u/èÁófj:XÃâp£s·äüØ8â]ÞS ÄœÇÑhI8ìòF4Ëz»Ï|yÙðýë¯{Òšcs–MºÌö$óO'fûþÞ'G¼É`¢Þc‰:~Òë0@qN;óTÚM†Ž_;FçèÓh¯>šÂ@!(á ¿ÆRÇ}t•¿u»dnµÏy'"  ý#ì;\–þ™OÚŒüv.o¤¥ÿŸü¯w´ÿMÞÜYúQÓÿ$vJª&VvòÉ]¡É¹±Œ÷ðBˆÑÇØQœBúÚ'8ôˆ^]·%þôý]^ãGB™ð°}€1w;´ü—6‘£8B¶Õío®Lô1Ó'¾Z5úb}ÃÂo8…ì> é?Á«×y¿*}©ß9Bñá“”adp³öŒŠÎ_Áî;K[I·¾I÷íÈwŸðSWÒþ"^ø 1üE½ÿ0Ý^¿¼~ö_‹³6 endstream endobj 3746 0 obj << /Type /ObjStm /N 100 /First 998 /Length 2784 /Filter /FlateDecode >> stream xÚÅZÛŽ¹}Ÿ¯àãîC(ï  ø'6€1v€$†z¤öX;’ZÛ’ìõßç%Ê#%õŒé]À—’Ä.ž®{i‚IB ¬d<Nè ™À?˜HÂâ/.äo‚Úp$b0Lh‘(2aDòö„¤(³Ž óvA…ü ¤“e* ²šÙ{@°!ç9ÍÏFpñŽáx”<çµÐ¤4öðFhmyo…6‘9{àwš¡x/´Ïè|:fx> |LaKRükÓ-—@˜˜)lé4afà±9(<?˯,ï¼°*ò»A0`˜ŠÂšíœSLE%¬Ï{D–?‚ÒÂ& Ø œ ,ƒ„£Ì%FP!¯KPx@sÚ³4¾3Y~I ç²z~õYøÁEÍ»%'\òüÉ ¯RÞDá54ˆw!Px”Æ÷Z5–àI(ÍgµDÈÈ[~c~w肘r aˆ&QæàIǼGÉ~Â(‘\ÞÍH!¿¤Ÿ"ÛN´^¤ÄªŠlÌŠˆ6¤a{‹Æ°+dqöÏn œA±6@ÂòU²y'v–l[;é¬ #2ÙÙeá&¬?x&‘÷,6¸-Q¤Œ»Qréâòòbôæó²£'‹E·¾½Þ\¯óç_§‹Û‹ÑÓ®Ÿ´ý[…H Þþ9z9zö–ò‡‹ÑU;^‹·Æ$é!iM$·^CÒA»š’L6aÝqy)F¯ÅèÝ›NŒž‹Ÿ®Þ/d»7³ñÏâ—_.ð§2Vºì [d„#>Çs0 WbôŸÿþŠ“ú œá@‹Ílö®,~Ñ-Ö™ï „0[žz'·0öíèÖZ»ûÀ^Q~€YzÄÝøœr÷<ÜÈo™a£Ñ«¾¿nñ–bôêù 1zÓþ±ï÷ª¹i/FÏ€§]¬W+YZW,ŸU·éÇíjqówÿj'Óæi÷‡È"õìoICF¯šO³ðôvaVÇ ç Ïxrgâ]Åio$L¡„¤‚˜u4RqðpP`ðG7Ÿ®ÆòjÒ¬>Èn¹žv‹U=cB–œàÏ2æhd‚1¹ä$bò#1m + 3¬{‹I©¼ÚYOW[ï¤B˜¶Zû$9?1ñ«>°÷Gè²VŸ¶÷Ç[u¼oÕØðÑVí\Mc6ä„O. ÉEz@¶ÚKí„\x€­Ü]¼×gPRúÎu Ïƒ0U[¹ÑÝWn4•›Ô=åú²¼.„)„-„+„/D(D,DÚA¢p…s(œCá çP8‡Â9ΡpŽ…s,œ£®j™ÑKV©A(Ð’‰@Í)JŽçée?]¬e?oäüC½ËÕ—•(¥E増„ÒÕ¥‰Ç³õj3Ÿ7ýgÆS±tP$¹:,` ©8êŸó~º^­›õª..` ?ë•´(>Q²Iç’žè(š¾]M'›fVR ªî‚F%#âÏY4ÌbÒô“ú¦ƒëQgï%ÈG‡!ˆ6“öGØrÔ’»kƒäv×hD¼´."ö/fmó±¥nS‘Uð&HÄh©Ð¡?‘è-8ˆËäOØsZ×5Þ““ÇK°ÒhsËf±hg•±pU‡4U° ûC.ug±ô 2Oe,DÃØZ+©ŠÈZ©yœ÷:eÖ\_·•‘xT<™(P…;åºÙüÖT¶MQF¶Ôíb¡>‹å÷ß]?¯îG#üÈò ½mâáZÀAöRdŽçÌY÷œ ­G_d’–†§KHÜ›UFêã¢oæ›Yý˜‡æÌû<ç‚¢ M#O‡P]¸\–AÓµï+›Lð0_ý ÄÂC¯3@>Ž»õ«D˜=cP`¹óHfÝͯÓÛÊX *{ "å¹Ûi,“öã´YŒ+Gn‚(1wh "ʳ°Óhž¼|V9 è¦H{ ¥VNŸòô oí¬ ºÓjÄw¼²¡<¥²hç}!ï‚}·™ü.£'——y‡Ñ“1OF¯Gÿ¾zÉú°^/W>}ú$çíºAÎþÛ²ï~Ã.²ëo~þªƒŒöäÝÅûiƒ†îàØÃV š¯F”çV¤â´á ;  C½ZTߨ¥øøî4•Ö1•Ö1•Ö1•Ö1ùšMà®êpP“A¥JU ºÀÓ‰ã•*gÍbZ1±º µ¢/@`› äf6ŸWL µ 1{$½_Dv‚dÙ®»ŠH¼‘ù ­ I¡b˜ræ«W¦ÜÅh>•Hh«ø(Æ*íã1rŒvÓÏe3¾…ûÜ›h¥‡L?Ó·¦ŸxÊÑÐÅ™ÊÚZ'ùèG¬æ CÈ8W“G+;p±ÖZ¢}xøŒïNHü*ŠÄ׃ZaÈÇ'P_‡Q>æ{|Ý ÕøLqG쿉U£gBïj ôAÁC‘Ì)ñ!¨‹Ð©¾5xÍ:Æ9™• ¡ÕÛÁ•J6×¾‰Ü㉾¯êÆ.>Ã!Ä,h†£b˜¢¿ä ÇyÏ·dÊçËÀÆ·OcG1Ýôíòë¸ÅGØ<X½Ô>õ‹ú~‘ÂéÇz¶Wt¡r°¦£GY™ökÿ«d¾ã`ï N-‹÷Q—/¯|ßaÉÑ ôN„}¼rý}åjûÊÝÕ›|-bG”J%†êª@hxø¼Î£ô´1À­ôrâª'ÑŸv]Àºu…Š1=@g<#5|¡…#Ö‰Ú×…Al¡¨g\ÜŠ…`ñÍdbxQW5·AI¾l“%ø¦!Ïý%é$æ ºñš‹=¸|½Êðdò!y6;»v?(xo=nvÜ=%EBò»ƒF¬2bw$}+ìý³q¾xôèð c‰»SJ¾ä´#¨nT@½À÷+ ×H.å;|×Á&{|^Õ¬å-’ÁºY¬»e·™u+´•TÓa'x× ¶#5ìi°ë®_Ì›ÅB+*–5Ž2aÈ¢üçÖDÝu?m©yÀãQQ#><&¡qßNZ(LÝsY~Ðõ«£éùà*$íž²mY¾öØ|ÙÏ©ò‰¯º²ÇÑ}gº÷ßè”ÜÀN)zÏŸ.Þk Q S S S S¢€)QÀ–(P®„E[8ÛÂÙζpv…¡«Û•Yd-(•L¹ŒCÒ@”M<Ž×§=´íoÛÏ”R¬y„µmöpPéæ[´ð4«vCøš§Óp˜mÁc¼— lžÛfÖL›äköe!Õïq3«³[ž4inºÕzºèêêŒï–8憉gÜ7ïו£)Ÿ0²õ²P@XnV‘=J´³ÚZ4Ë%Œ'Ô­ ùªãOg>oúÉg­´ªX/[’&h¾cŽ2ÝðÕ~É—Õ}@¡NâA°hûÕ|ºþPÙÃ4,‡¯Ç#ã)Ô ¤2F¾¨©ÿüò™{,kô—9YI~7§Rþ´µMß-êºq9èï!(¾<¬=n®ù0ìÄÜŒñ|@Llg׳fR9L{žóï!™|©Ö ‚´lnfSH €tô:V‡} endstream endobj 3882 0 obj << /Length 3709 /Filter /FlateDecode >> stream xÚ­ÙŽä¶ñÝ_1ñ‹{®xH”üàÄGFàÀqk$δ`µÔѱ»ùöT±ŠºZ=³p‚~hE²ªX7Ý<ÝD7ß}ö§ûÏÞ~Û›Ld‰Jnîod m’+¥Htvs_Þüý Rsûû¿¾ý6‘ PJ©6ò@Ý)§÷÷YÄÛoö¾Óq,Reoî”…AMëÆÞÝÞé(>´ÃÑuØ4‡²ê‡¼)xâäò~ì\O½‡g‚éÝ0TÍ þÅ,§ÎØ”m1ž\3¸&$æ·òÐÝJ{xOЄY¢IëŠ*UBhB<jEˆRДhhéWy.7Õ‰ˆ#À??å«Óxú|gã;m¤°ò渟Å1-xl+*Mž@lðر ^áÔƒ>8×ð‚·2:´Ô9·U3ô´ÙÕçÎñ.É¡i»òê t³iÚa޵p}jAHsÌ8|”ØŠÄLD_Ò?ôí®¢u,L’­©®Ç!m¶$Ц aŠvƒÑ¢m»²jò°æý­„ )†¶ë )þAÒä’VÀÄ£ û4›TXL4?åµ ÐIªÖÔ.ñ{ê\>ÜUWÔ[ª< ”M„‘隈óÏß½åó+\]Wç¾­JÚòä†cëå[€üeÉáû5S²C —㘸"ï] ·©Ÿr’Ï2JÒUùCízmò“#àt±mÛ¢RW”Ä$BÏܦ[Ú.¬šT îíDˆWLsZ^YŸ‰d4¾e¤B'zÍ?mpgc=T,ÏÉ›b xoöxA¿n„ßç¤Ö§õIr)µQ4Aq=bÊ?ÙZDDùדäÐ×íÙõ_0+4–xmâ¼!V‰Aá%y6,¡&Hhܪè0nûj¨Oâ>•Ý_S Ž¥ƈlTw1çXiƒœf'º¡½¦`&,ÂNÏÔxp{Ž?ŽHɈMð§˜ôÂÙÀLðOUCº`BZ²íÝiJïh‡àzúcu& 9Í çd^ò»œ,),Zšˆ=Œ§PœNöáû¿6îrš^pkÁ§·` rvýœ=ôЪi¨Èë:Ä#ìVÝÒ·uÇ_ŒïDüÿc`Ñ>t•kTé—" « .úÛ»žw8±¼é9ÄÂÐjʼnûýD!…Ø ÛXùKë¢!"—f/¨Ã ÖP Š#üPÛ y†é¯w0ZR{N §&²<»ˆk#tÿîPÈF"±fáqf#§6-'±:Rká?µûC0¦Qzø u|\ÖÈÂî^™˜nÚLiŸá”Ç·(Qï~ã ¾òbðÉ9l„ùó¡/ºêÁñÖ9ƒæ /ò†æf[ÕÀ›nbŸµ¶»)}㨖d;M+‡¦È,+¬Òy†ÊeÅ0E¬äÌP½IDfuêã(a¥ºÑ"‘|”Ú»!-8¯W!“cå&¢†OÍ„¸ÜGQêTÄ™qÔÉ^°'2½Œõ´¯¨Œ2ÂÌ%32ù{*£àT½¯2ˆ{H›ïÃUb²Ì/®OÅZ¢µkž|Ò飢!_±„ÿ)JôƒG^øª»÷Kgç…]oÇð„it•]?P''=V ^ÜÇ›= C³>`á„AÖ!ZÚ5Ü?#K@ϲka6$õZ½n¸ˆ¡¼b¸dDV ­Â"ätèl$쀉¸bd’ŠÈ˜u’+Ë´[<,µMç •K>Œ+œOÕÉ>GЂµgTˆ¼ö '¨•›PpEû?#Ïþ§$‘¶x]!OòYâ]zQÇ€™ß*d4 ˆ È8BMœ$Á‹Ò@¥b.œc šóõGávS­€z¦‰³2ñÖˆ(ÝV¨«~ð–«LçÏm˜»M­1{µ‹‹S:½ZEÒ°™d6Ýˉ¬˜ß_¼ÓÐ!¯ÐñÆêPᙜRLc¿$x —‰µ=,b/˜àêÅrÿUáIJõÈ™¦”ZÄɦží5C§Wt’\é×Êfz&xú;W¸UÔNƒ†|O<4#ë»$CKÐI†ôR†PÕ’n¬ Î<ÂU\œƒñ²âEë/©á}®òÍ ŸÇ+.YÈ+ ŠA3ó2ƒ”¯Ûí27¾`žºÅ‚¥Àɵ§j%*3H .Rµ© ¦’2“T…gy‘”ÓfðãOat¢¶¶öÛr‘YªÃÓ{ž¦2¤½Æ5 qz4Wò~Ú&’Ô\©lƒæ‡D‰ÁÂê[®³ÒX9J{eH{/B—H!­QZX½aÑ—^S‰Èf/“—šäJhÛòÃHêÓõÎ28š˜¯Ž§Û?06Õ?G^ QÊ¢l¯ézœ #ík²œî+;fÛJ³Ó¿~ú<ˆ7¢õBÒ"­½âûu2”žzs±LkÉþÿ–ôÈÒ׫¯Æ*Â×ý;c€l`Óði³Ã…Ñ¥[õ-ÕP%VØ(»ª‡Wx ÁYÌ™k†/Çå÷ŠÉ97iE¢&0/>·>ÅGf×zk‹~µ·¤;ìúR‘1xä+| OÓ4SŽ›®ìò´B]ñäà«t¶ôäÚö,DÒæ{|—´¤R¤Qvn¬è”·¡…¼‚Qâ;o×v»–PØ9&ûôßLÜØN]c4ÀÌ$ÝðçZ¤²›øIV²‡'_y0šsrÌ+ö"kHÏâE褮m¤WOpX$æ‚T²}‰—â¿WlNÈ>.·xêÚñÌÓñ¦¢¾ÿ€óÎæp®”ûŸY䉟@>^ÛÞ ‰ÌèOyåÜËîÐ|TÓ£¹Æ"v¤ð}zŒÃ‡K8^(®®ûÈ !xMírŸSâÐùܵ+¸ÿ‰Âjþê'1›ä`–‰+UÛ_(¶B´ÉϦ=RÏŸI¸á™æé¡:ó‚ê2COâ&>|‹]O‚Ê–•=ÿ˜ éq öÈÜÓ(™q•QJ¯Â+ŽøŒ `l>ã8VM‘–ª/PŠ=måXøØ :øa•RÁ¿C£?æ]˜<oãÃsÝb%}¨ <‚Õh;^–ŸZ/êÈòž°"oªþć-l¼Òúp®s,ÅÈ÷Çæ©òm¬ìIrÊë~Ê_ø‹MùKÆùË¥NXðn2~ÑÏzS4sû´—$fgeáÑMó#&ŒÌn:”ÛÃ(¥Q)—©`ô•[Z-ìå°n.A½Ž)8˜Ì¦—ß„Ü))w®XnCX¹a¹ÔcÓ3­ØƲòøHN – «B¶ (à>L^>ýnaSŠÖºCE®ƒ€ŒW‰žºÇ¼#Ô‰40ÊV¾=:M<*¯å¸ /Ï Ÿë§œxâií²æÛ×̡Ŕ-i,9ŽÆë[wqbýS„‡ù1ÿ-÷š„¾ œÓÕÔ ñô¨í©:¦"©Øê8$·‰¯HS«ÖWµ7RIzøª'À¼ `ÈÆXÅ`*@S>yïF&©ÑJm_)p¥á™?UQø9XroÖ4¾çµE5}ùª‰¸ÈÍnÇ¿ßùAØÅ3ÚÍXÔ®ª’ûç¶~BÏGovvÐD½ûño}ø2 ÖÔU,ö’ç¿òrÿ«ºzè*ÿm¤$¦þð5¿ù*ÁÒÉàë¡{Ò,}%!6®¼„Ç6N ‡^!ç/áöÐ'g£7n yH8a“¿ï1“ÃÅ'‡Åcšÿ^+âïµ4O¿éã©´[c_¶žÍyÇFaÑcNSB\¬4{4=y4ÍÍ,R&…‹”À³©t3Ïù«¿*¥|­J ÑÔü¥ÖôyÛE‡¾¾ò™Îd—Ÿ$N;ÍVMQexª ß@N€k¸|> ÿßÜö_A: ž endstream endobj 3890 0 obj << /Length 4207 /Filter /FlateDecode >> stream xÚ½[mã6’þ>¿Âè/çbßDJ ̇¹ìN6ÁmÈônØp²­îÖ–ú$yz:8Üo¿*©7SmÏä.h4DIT‘,V=õFóÕʯ¾{ó¯woÞ~0b•±ÌH³º»_ ΙÒfe…`Fe«»ýêëæ˜³ã§Ûÿ¸ûáí‡ÄŽz«Ì0›e@Ëõ“i‚ÞpO~µQV°$KWiá#EÝî ¢¥ÔxäŒYèáIýÔîòCR3‘ô#æÍ­H×§cQu·-³õ®®º¦>´x—®ë[™¬ŸéÕ1ïšrW´t×>»òÎe±§¾ŸÊœÞtÑùIž±Ôöó‹L-c2Ë3Ë›‚rKÛ³ÛMªíúç[Í×e÷˜¦×jµÍÈ’dÌ™w7U]7‘Y˜” cÂ4~á ¯›»Æe2e÷;¡§“=¹8)Á,Og¤>¼ÿ·ŠK`›íxzâ›ÛÒr]ÕtÅÏËênʯj}jÃ’Ô¼Æ0!K¹™ÍäfW7QF)&Òä"£@†5Ë Ûc˜ ¯sŒƒÚ̦y÷ÓߢüÒÐ5™ñK&]M^凗_‹½@™¥ëeåz›dýM®¬a:‘çø)ŽT,»ì®(f•UKØ7‘&˜´Pëº:¼P 6¿nénÀˆ©¥lðRbŠŸ2^Ð\_ý¤r²¢ˆ›À²‰—ÀŸKœ°Ä Nd•D†Û™íuN—sñw†:bDƒ]ÿŒöÊmšD&¶›Æ·Eó ©9…Uz´8¼OÖmù+™V½v’Š×SæÅe£x²þ+}A©Ë[ç›Ñ'‰·µÚÏBM^¡å‚p–œ?¸¶nÓ …ˆ¦«Åü”· veXfUêœ[®˜~É1·Y@bÒ¦Á¼ØÑXú|¬Lƒºb0”©/MF¡X|ŒÆF¥V/¦{þ Ilê¾ýr>m¤Ô›oƒñžîDÄc›¬LTGÅàp’ˆNE,xº~Ìo%_“ Ò“má‚hÕÛ./+'¿‚Т( ¬ðþä}"hóÏåñt¤›CùÏ[GùX×î[Kï 14ìÍð¡C„„ƒIžòóŒ–4NŽÎ] ˜£‚Þ¾óXáéÉe}‡›^ßáƒ]^Qcë‡ØÕá ’8Îì‹(TÞ`gz½}‰m¢…¾½ÉúKÜ?·S× ÐAƒ#zç– „f¨ò„2ºàœ’êg^õ@À^€ûÂÇþ¢Ð1§’ 3÷69¼Âûè7!ÓKÞ FŒÂô£nc>ÚÈë| ˜dK1¥…ÍzIÿwßC´0S=A«¨ÛèòBc5üL—Ê¢xÅ2‹L_¥8Š0ÇÔ(*žô þïs¥ìÁKDÑmŽKÜ0_Í—˜ ‚ )=ÁÌ9JzßóùSH‘á`zCúçs^ºL¤˜Eá3™m13}šnönåæŸÍŒÏ“õZÆ=›Í(1c”Ç"h<åÃcGmB4ì:’]}ÿHl&ûCëçè Ì*§ÆèÌO„ ùø´yéïœvÿB7'ðWÐlö¢Â>ùi¢ >óqie>*ñáå8ÒéWÞ2} Ò;ï#'ÞŒ ñæyú¡üLVýý6“¦ß~ Ž8.xH@@o{çvÍ" ÷#†µ‘ Ðq§½<·åÃ1Ùm 0Ĭ±Ð]ÿú}ìòSŒ @I&“ TÂëæ±Ž‘€Z_=‘‡üxÝ‚ î‘!x›g23C@ÿôXƦe™`$¤ë³$CÓ%qTæl—OôLüwÍ'†úíyÞ(ÇNÏ<²±¬¤ra³B·ŠnJ$IîOEz/ K# ílé¿ W˜óýé@t\”‰Û¢jˎȕ݋­-±¯ó Øsµ>…HóPwUg¤‡l4”0?E àÉÛ‰7áĪ›3 žç­¿ÒeTxðñâèå„å³ø³g9xý÷=ƒCÕ F&»Ÿ&4pû|Óú*L@“ûЀà®n{ ð ³/Ú² éËnÝ8 ÷ÃT³Ê>ïòh¶äÒsÛ…ÁØOÀõ&f]ÞG”À=L¥Ð× óÎ'lÊ™Æÿ‡n]þÛ¯xJR ¯åR>7IÆÕ‚¥Ú¢t22µ¥)½…qc5ZËÄPØòLqî`3 KdvV‘3É,8ž\v+Ë?àJâ›­Eõà *ˆ¤¤GÈÛ!ULÒ»:ê>&à~™¯wWqXºÚàv§¯¹ )|-!ÊS“|Ø|"X"T—ç!®šH<ÐLÁM$¸ò™/$a#p¡8ä0੨?À#=!@mHÞžVáêpíGܲ&àµe21Sßp[Ó.ê¹úfㄆ>7]B—)€>òAJ“I±$ëwÿÇ÷1½’`{¹=yåc+ŸæÍB.&SÓ11þ9¼3e€ï鬻õè3Žšàvû2C§iÁx0&±¼~ ñœ˜*Ù»~¿ùñýrX .o¿ÂgDðút؇áP"ÑϮԳ$®Ùkz£D:×PçÞTû)ûbuÎdš\«T—fyµR1iÉ\itÁûŒ¹j“ã N#D\§“ºð¬&s(ȽAMrÒˆµ ÓÅbà‡•ÄÜ:DjB0ºX8™ƒÔñÌ„~Vy̤àbA–7:eUÍÄðÔ§®hb ‰Œ Õ+ðŽ õç‰dóäÜ÷èà©P«ÃÖ.oÉ„s4áþeŒ'ÖŽÏ×,m‡b°Ò8C´s¹¼aTÿŠì¶ ðÛµŸ[°qØtA•¾Úx KWªo¾ýxóUqD¶—±›ïÿøõTú­ºyÿÓ×Q‰']o¾Ó“Ú®£@ÆøT»!6öEkêºÐhŸÀ)uÙB3¯qãÛ¾¦ãÍ&Òj–HåG?JïžÀSçŽÝäº:·E˜—§qªÊÿ:Þjèó|ÈåBÿÔ×à—ßD3‘õ²@arÐÓl1Øßí¡ ÚËÂÚ¦û»ùs\ÖÜ2ÌëR¢Eßáæß¿ÿîæ«"n¤3Lço?^#mÎRǽeðX‡ÒûÍŸ¯‘¶§ßé=2Oã&+#¦É°{të2‹›'8xôR^@Ÿ‚€Ã;u§f°œÈ¥…Öàݵý+j̽fx4¦äÄÉI„7Ëý1‘þX¤ dÐð”‡Øú0X³ä}i+çÞ×d8Ï<,Ƨ,KÒ”Îp™+èRBΗ«½¥ëå±2ÈpáòÞ'C^·Ýx¦u”hYÈ֌ґ.,ƒ«£ùùˆ^ÒLÕàJk8ð¬‡x&±´%eÝH‰ÊÎPô« „¬Þ«ºo¯'óµb6™+ ƒB· -÷†Á5îéJùÎÀO'†Ì ~ÑÓô¤ü6E2ßJ€öòðÃyêÛ¸ò'¿þ\ÝÑsu£¨ ~¼F€ó78UK§áR–&ɵ§áâh• –˜³òé’Ì‚ºÈÁÕ} ÒÏN$(³XpPà¶‹ÃfåS›õÌØXÍëOÃt´­7Þ£pÞx»÷!f&[­Tßmî!3ƒ,¼b¬åPk‡`zýÞçú=ü¼`†È±H9 •.xh“™•È’å&gV"<"­@µâfô1Yk²‹ p'}À=ŸJï¦ÁðÐÚú.#€÷u K?¢¯½ÏóA <ËóáQ‰çøe«™¼+‚w xšX6äãYu0‡ÆŽÍGôsoÊI–—ÊkÒ¡á§Ÿ©M2¹ÿˆ«Šâ ™¹™ÒGešY.gÕ@·UJ’…Ãë¾ÌjW°Ç»…êqŠ¿lI¯=3b–¡È·§…¼üPS2^†dü0', HÛ Ê9«² è%saˆ–û‚¢p‡»ø®Âð¹NT¹RDµ/â^ôø/TŒ†MÎ-=ú¬÷Gà:+“Hî}Vާ!§cµy.[ß·nö¡9*xHák%ø<š Àt Ìò¢Œw‚.¤ àP]Z÷õ©¡¹†4NÿàŠ "€ÇtÂCÒ‹0”ÌÌϤlc–:¤ã£¢áLÑT… ]™†='qQ›£µXzÅ0e©øÒáÔï;œ^îšÑäåѦk“¿ïÚ~çáÔ5ÃrŽB¤îtØôÌï,¦Q©Ä2±*xjb_*+åRŸ¯Û5 +ªÅé¸:äŽ)Ã}N[ç9M<D9M|¿`¿€ BÛË9Íé2¦)<ÃG9M¼Ë½UãšÉyÀÙÐwý5ì®ý-9O”’yÒÓ•]ïB¥`º©¡Šà „qÍ?}Öœœœ]wðå†¼í««»¦ÜöÇÍ·Þ‰@ ½ê Ç,!bâø8Ç_U¹ÅS&'?Êžéè¬;'®©‘ó®n®9Ç1ølVÐY8÷Ã3dêîpò¾©EDÑXg…\¿z2)èÙÑ„¬ÏÆA—Üy“>5£gí¬?¬ïÞWûpH‰’×jË£•qœ°ó³M¨&A£¬@vÅ“;I”øŸèøwáÇgîælF!EéSƧðÚ1â‘›£i6´[.JW¢Öß{ø“Ò³iŠz ‘?ݽù_ÓÛH" endstream endobj 3902 0 obj << /Length 3712 /Filter /FlateDecode >> stream xÚ­ZÝ㸠ß¿"Ø—&ÀŒÖ’lÙ>`î®Ýv¸~aP¸+POâL|ëØ9ìÞEÿö’"%D™Ýk‹ùàÞVc:g¯iùn,dßv]Ù_ÚæÀ£áæ.¾gìØWjñ“δaOd‡î3¨¥ ¹Ot¼}߀ÍêG›Ó*v~ÙÆ¤óqpZxmÆócÙõ¸¸X“×·ÜVaÐïý°¿X9.0Óý$ 9 ƒöS×-*çËWôÏçËÐÕžÁ†±vgE?U÷ýÏ#yx?T¨ÒÁPµ Q'/¸X•J"¡RïÏ!ƒ”àr=T`.¤ÔÚÎa<ŸŸÙþŒh±¹V'Wú#¾††Cý!a¯Ž×ð¬«ü0µ­ {J|þdS£Ü¶¨m gµì¨}héɺŠMwÚ3îQOÜð*HÈ1€{ò,6†A‹âÕ›ý©è@$»H ®Ï*ž³ ‡SVÏ”óÃg™‚¹,êã…u.Í.Ž8­í¼?qÎãhÍ•Õÿ·näa—ƒÙôÎkQ8ƒÆ·mƒ Üöž=ß{Dœ8áG;ký%næ›Wkðþ$êX6U"gÞS'eÚæÜ6‰¯ä&3}#Óf…C?ç,z*&ÐnÒ:²xb˜À-—´X£×a8¸9 zN¨q݆>¥ Ù.m¡@–¢ãÎÌ¡`ÓXG}ÔLøáTÕkc]Va°‡šàéþsBÌG`]×ð³^Tc_¢ŸŠ!™ylÑɺû_÷ÄlýòÕWÕDä©CäÀºw¼˜fÊEûdúöõð:`k€…³DÎÒ;œ¦âÁA‹?ižWÁF‡D 6€„FwÏ™ª —¯p§3F­o­èÐÃÜ b ÊÙ swÜÇÛ…M«sm-¾÷-Ñê"Ô2±ò@÷³Ä  ùÎT€ˆ¢À02IêK— Ö* ÂJ»+cðÍz™ÿ1¬D¥·qíRgprK×¹³qâi¨a‰{ ¦¼ è é7Ñ3`~~·NUÜÛ€ª @Ûž = rCá9€ý’¾a< ÃxÍeIx:ÄNʇ]Œ¢¦Æ+-L¦W+YmºLÔ5ŒWÆ8h…‚@dê=’­„ð„¬0÷ô:†1›,•õs_1sxfÕSI-¬(46FtM{Œï»,Ú>_xš÷ô°FÂ{ŒUµ ~ù>$3k¬™+¬ù”¿ë˜kh[j4Ìj Nøž†@N „œ1O`[÷)dÉ_ûùùj1|J@-sÉ*4Â@m "q÷`QCQ5ÁÍK…2óK,gB‰t)Ú”ùHTMrÎòERó› _ŒÑlîhdÊÚäv& aEl1öV«c=T’˸«4Ä]™¯Rºâpõl¦‘RÐãRt°~8Ñü…¿HT]ïBˆ$Å"´WÇc Ø •&‹bçO¡P!džÍ‹öÞ„a+Šs(ÁrÀ¹X y|f1Oåþ¹#‰Y •’&º'ùKø*,¿HÒ4 ©WöÌ3᥀u׊«°÷m=ž›ù»±€àSz‰9zWý\™Ù„ÃÿrÌ#Ìáê ξ¨ú §¹*OwÛNÖe6‹¢¶ü9=ïxg¬ÒHˆ”+”CFv,÷˜ð}}êKÊ÷õˆMòhûþH´~´''5vZ ð4¶½‘ vØêaŠÑllw>Q_O¸þßT6’ôøWÂ!‹$1“'ïÎw|hM"Ò²üÞ—ä’|I iTø*ùrÚž'Ùçë$*2/§ž™V‹l ´—­´ x¹ÊÑ)O™—ë—pcÖßÉû¡'ŽÍì¯ÓÇrULžwöÎònq=¢¶Æ«óx^ŽKµ–`N”öF,“¢ØVpmegM±íà{à餌}±3æ»_xòÅ50Lñ̳ÔÇ櫈9펙£ Ò-7¸½ý)¬ÆþWËZä_ÊE-µŽZŠ‘žšG-àêOíXÃ`c4)+AΕñ…r÷·Ûz,ºŽPø»fèÚz9——fÊWüžS¾²ZUÇ÷$³‹€ýÕEÀ*OAK†ìuÛ;Gæ®)hCü}é”Ob~BTΰéëÎtÍÚ·/T 6?X.^}a€q~0¯¦[³œ ÑØà\#Ïnd:wNUÈsÂÿÑ˧°?ðp=À—f¢øB+ß“yâÆHu¹ûÿ4 ¯:kà–Æ2[ìsƒË9Â#«78þÎzŸ,Z¯T42’îß—ÉôÍÄܸå¦kÑR›¸ž}•w1úKÌ"ïŠB÷¹lHè$~õµXú?_‹¹«9Ån^þ†£a䃯Þ| Ðï­KôtOƒãžÌ£^¿àVí·å¥dà¯sNüs÷/­|ÂàHœâfOýÐûa´åè·‹Â%•> stream xÚÍÙŽãÆñ}¿B˜—Õ+.»yðƒ³Y;Yí‡l·¨‰YŠ”Ù¤vÇ_Ÿª®j^âœÈÁOl"“BUõY=$4è_¦r.4ÑýèGþö×èïxRÍÀÒg½¦½c½Ó¥¡ÏÝèm»oŠ?Tß„·R{m]i0 á·î СÓRKES%H5h]Ó6ì4°ÁS5­ª®,iu¾–ÑZ•o90 Ñ».§‹$ÉŠàA¬lùSV¥©Ý Ubõ¢îÜ.ýÛ[ÿ°ÇvZM9Ô×"ZQGàÝÊéO%<•5z‘ŒR^$™Q }À)Û¦ÈAKÈ$ÁËz¿™;'•¡ }ŽŒ½t;©©)T•ë·9º©ôÞpÌœÕ"_ê1üÞ±aù,ÇŽcá<õÔÔ·E©ŒçÄ âÏFÂ5ýÏ:ÿDËÛº¡¸¹:êVó'X¬j‹¾/Õ¶(‹öŽÀ¨{£5}üþSÝê×ä%c†FŒÅ#Æ6¼Èý„'3N¦7×™\ƒ5™Ô¾c ‰}ЦØuªtfö׳L ˆª½®4pöÍB&F;^гD¾£üÓZ:¸²bã‚iDÖi¸û ±0ô_um}ÈUYòV®š¦py»î˜Ä–w­gYšãÔ¬»AÍí¡?βYr" Ùµn|Y‡ƒ‚Ä·ÀºØX'èX£±¤xÀÌ T*!9íÞ~ÖÅþÐZÖ¥ÔÊ2t ÔB«­®Œõ$DŰÁ­wu~hTõú:‚3d!fv@QbåŸ ¦J¼4éýuƒŒƒ42S‹üË$rEE&!fZ¥a¸ZXôQÛ;+ ÚàcÕ[£›3Jcó@´u¸[·ts¶ad¦ö¨×L¾àÝRYÜœ@±³ ›ä™X2`eœ&ë®ÜÑ')öDÔá{«Œæ-²)u<•”9z)fFa¢*>G²Âb_ . [(¯ñkœà m¨cm)¤Ùp¾'¼è‘ 8$‡dœ@ ±RÄ>†‚L±¯lú€& %ù¤Œãµéö{¶(ÂÊaP-‚ECe*ȼY‰6Œ<kÝæâ·ƒ®îKÈ.œdæ.EQåe·#í'ä9™c}”ùG™E3Ú¥ï‹ z’¾c×þ*ö²$H×ß/̘¿÷ =e V#¤ k(Sú†…Ëaô5Í_q´fÖ]He®O³+!UŠtÖˆõqø.‡ÁâÂhsÒkgÇ~sœYd¦1X—îRŒZ\C?C˪f˜Êóº«Zwû­»c{7pò¨õåÄè\Ë3× ÀUoÄ4š„½ÅUípŒËiŒ³—CŒKŠq@Ǹ¼PñXN£CÄG.â£Ëˆî‹øhˆøñùð5‰qEmN!¨öQ+æCézhø|oÚê²6Oh~Ä+üеɰÊÁ*ëŽp–à‹#-©¿µ´ü€ú(€ÒˆÝõs‚~„°µ"ð”£y­(pÈ |ȇÍÀ"€69ïÀ}5ïS‡ .ú™«õlô‘ôR¿ŸÒóó9ÿöæÃ/K52„RŽ„Ž|* 0ZüÑq^´BB¤”}Eñ}¤3ißgÆ”¯Îª`¼ZªÐ¡—` ŽJ ¡5¹AqIoQ cY¼4Çûë¥XÙwšÎCŸsyÓRRŽ]zŒq2ò:Bôe6Ü•UwÔR N0;~áp¶4ÜD?s" D}KäÄ=+Œ¤a|ùÚŠ ¼`îP·M}Ä~T­Õ”…Ľ¾AÔ¿‚¬Kr¡ôâ¸çô¤òOjjè'k^‘FàP¢fˆ‰µkmÞ5´yTw´eÛ„lwªlØ0­Ú–­“ È¢'½áÙ óÒ`ö˜“ÎHy#¬Ü+€\6ç®7[çemxIo*öLÑh<ÍÃκ¥õÆqßÏt*ÈKÃË¡ýÙ‘ ¤±AÒ?¯`ó­9PdâA‡3›]Ô§¾7¶Í¦³ùÛtúGÚóXüÉ+0/í#\ìQ‹ŽOÃ÷´÷ý¥ÀXêÅÜÞÇí8»Ç„­¼TÆ,Ø) ¡wê:ºõý¨rõWvìXèZ ¥^íÑrЕ߸‘aÌAa&ê( ÷ÀÈZ\L?·uYÖè…Ÿû½!p¾™Yw"ÍF@mO­½2/ÒýªÓ>ø fÛA–¡ÓfÊ40Û”Â=7/ŒI6>½¹cBÀ¥ANå¬ûtÖ –U;ÕìÆcá=Ü\²ý ÖØŸþ> stream xÚÅYKÛ8¾çWøhm¶ø%öÐ Ò‹,&³³;™vö Kt·= Iîžì¯ß*©‡ã¸­ÁÂQ4EëñÕÇb°z\«¿¾yûðæö>ŒV K´Ð«‡ýŠ“J¯"Ι–Éê!_ý{-âx󟇿ÝÞk>*cÎÃDvP[¥¬zÆqo7½ÞÞK9ùp+µ´_nE’¾?Ì>=+Ò,‰…_ª>V;Ón¶" ÖÍžžYcö®ÿ‘¦î;ê/jzöO†U“›’šaPÔYyÌ‹úñdXQ÷¦ÍÌ¡‡AœÈ6ߎnË5S"$«µ”Öä_Ù[SÕÅn#‚õÑïM×ÏgÆí·iß´ÝòMýãýõ»Wîú´/º¾Èæ‚ B#÷M;¦5]‘ÓõO½OLÒ<šÚýç× v ý¸YÖ´ Ä¡©G÷8lŸÑ,iy4ß ¾?B}?Úæÿsæ‚ dM]~¾^‚²y,²´ô:J{)9tƒfèõ\éÉÇÜ9d(ÜÀ´>Aƒ­g¾\¡Ÿ ÂÒÙ&‹ƒn74`6•‚‰¸ðÛ™ÔT ¯Îð¯K  ¢pðDTLÔúyÃõÉz R™Hë]Øßû¬©Lw³Ù*‘ŒãOœ?!Wh‹´ÎÌ6kpÂi}W¥}[ü9_'‰A¦-$¦$tºìÒêP®fÚ\üÆ[.ÿºyi‰å¶[ÀV A´†h,`=Äl|­ÒvÃãõcQ£—Ê@_¡û™S ´­Ràé–Ðëf×™–ÌãV¡ì±kÑ{Wü|ªAaq½—ëd_ô 1ª»^7)­Y¨^ŠþéÄZÈÛ²ø´á`ײxjšÜ67¸µg«×u÷ák½ZƒýáO}Ã.ŸŸ³ë÷÷ªE…L‹bÛµt±#d<~k©„,ÐÔ4 ,a¬€^½‡uôŠÉóLüƒ£°(èÚÏwg@dëÍ¢ в>3¡P,ÐÉý ¡¿Üßýôëûsà”°˜+?ôuFÅÀÅ:œ'ÆØõ&èÀ™#äyªóIÁ”¦BBu{â0žÊ¢"GCG„?BÚhòî+$wN¤Q‰ ãŠÓ§6X_&KäsRP†ÆÎÞÿ‹„¯ï7œ":ja3m }< ìÝû!ÖÕ±qh1Oå4ˆbÊONÃÅ«¦æ?¿Ð½Ð ’ÁVvÊKj1ãÁWöÇ:Ce³Í6býa?Ù‰5Ђ£­H"Æ“ðןšc‰ûÐ,Ô5ÔÚáöµì´`ñ®¾ÁÁü,Ø#àÜèÁWŽ òE’!c¦âxâÀÍ‚ .l‹´¬@1¤X€ÐWTI¦t|ªg·´SA•üÙ·©…}mÓfµá.à¶¼ÿþX–4˜ô×vGo±(Žæ†hM~ÌìqC'CÕ„@O]SwÔa"ðšT¹. j:ñÆÇæÄøö@s¤§¾ÏÏÚõî“,u+¡7Øev}ZÔ^FëõW›á„N¤uóœ^tvÀ„ òF`˜[ƒõï›P¦Ì·ýçÊ$‚A^áÏ4Á°îèÅêFŒœD|åȇÑÒxŽI[?¶Ú@p"5~VÒ4vNžAGdiÚÅŒ8´.cÈ•kM£Z%ë‡M¬i‡ø/ÁD©j>7ÄZ¤£ÍgÝè]Ú7Þº¯¤Ók;K‡= 4²mÜ¡¦§A•ƒ^Z)uŸîÎÒ‰KxrqµK„ Fh)P‚K.©mDFŽ5‹Cg ∥"x¾%Œ'V‚ïÜ;¸pÎg.î†Ï³âd¸ˆtS#ùGÛ^¿¬•È ¨õ&_¢º­TáúaÉúÖ»‚¼ÇО¶Îµ5gRžð&ŽvfJË„…ÑÛÚ´†]€V"­@ŸñÜ–¤ 3™ ôU‘˹B±X΃W:?S“¥­ë}~¦Þ¯ŸéðßáL×ùiéIéX˜–ÒŸâĈÕ4EàÛwq HâûW(¿„˜?…9ê›×_’*Bð̛궂¯-SlÇ …ݰvÞ†-<²ð0f‘Öc’köEi^¡óRˆ3d$uÊÕN¹2üœz,φR7õ¥Ôu(›ž:ì‘Nùê tP1Û%(Ç >IP]ßZfàØòá/ªÔŸ…¤¦}LOŇ?ãuw0Ya %u_pA=++ŒsÅn#žÿ³s„k4µäl`{¤•Sˆ¸Þ²ú'ÉÁgÍó««„ß» íO³W3Þo]'7Tý¼°RÈ¿w¥»ï®O›‹‘ñ°ÈÛ¸ÈðÝSÚ?Ó!k ™XHfÇ­S<>].ë`Þ‹¨g ‘ ‚SkE•H—[nzó-UÈ;©cå(ö©Ê §¾tÍC  ¹ß•æ€7¦^Žuî…TÞ—‰»°H®¹é€A¶.ž7Q)h¸k¥/.;’“ËA—4¸%(% ’$¯<¶‘Œ×÷#ñÒÉ-%†È¡hlï¸|J„þ=•Ó …i`W6Ù'úIzã³Áµw_rr÷%줧>—tÓcßÀx¼î´W’J"y.qÄ<Àèâg$ô g²÷šŠ*†ø|A†Ñ´ŸðMÐ]Ö—örÝ_)—0`¨»­Q£2è­:R¿+X@­*9~J•$Ò´¹q¤ݹM]‘ÿØYÇÿðæ(ÑÁ endstream endobj 3967 0 obj << /Length 3982 /Filter /FlateDecode >> stream xÚZYÛÈ~ß_1ðK4€E“Ý<˜Obïfa{7ö› ”Ø’˜¡H-ÛÚ_Ÿºš‡LÍHÁ£¾XÝ]]õÕÑíÞloÜ›¾»øîÕÛлIœ$TáÍÃæÆs]GûáMäyN¨“›‡ìæ_‹zŸ:ûÏ·ÿyøéÕÛ ÖIèDI´hœŠô+äo–:ŠiÀREð‘æaï«Ì·KD‹»®jÛ¼Ür5oø7«Jƒ¥xñ9O¹©ìö¦Îש|XÚ|Ÿÿ‘¶yUJË­,>ã?SsK»3\ØÒ:Ý›ÖÔs»ÔZ-î2¥ÙÜzî"íŠö¥lþœø¦Æ½pñãÀ.­Ç |'ôcË€²ØçåjƒSŽ)ÇìpØ. .Å‘ã&ñ͘žwvÉ`i:^l*ÜNdCÐ2Þ=îà ?—Ò·NK.¤ESñwë]ÕHoÊ?Y¾¹UÁbcjS¶šFæÚÔÕþr>ÀÉ;*ôíÆˆÖSlqP=×øŒa ¸?²)í˜ÙÁëªl몘F ék;.­o•»XZ+'Žý)ƒ· Q¸y/qA×8[çåÌüv’8>™ÿ®È›¿êÙv÷âþíŸ^@›7³8/ð·žAõÌDžëx‰º`¢¦ÈL½|oÒìì|±ïh·×Lå/’ĉ•7åŽiòÌ4W>®{=´ÌPù’©96üK®A@GwUÖpëu²è)Ðå].‹¾“¸ý^^”¡7¬ŒÔ ¬NšÕ‰ôi´ƒøtÉ O¢äÊ /RS¾ÓÎÃ3²2íöpLþ=9kP¦0ì÷{H×éÖ0UœÜ1΄ …½uÕêÈ“žeˆÓ ×Läh¯_ui¾tÕUó,U¬E.”‹ÐÑa¿±Õ•C ²“ÔF¹=»žÝ ™9bëgüÍe4KËMm é+}ÛªÎÛÝÞ Øå[ §Òƒã…ê rÌcýŒYúV„h»Ý]²ø`p/_Úª\¶Çƒáeõ»àj¾?q•Œ|”—WXÏwTŒ`å©5ÃàÄ÷'1Z,³¿Î«®9Y¨ew®Oôq²|¸¸|úWO0+¾×‹T¶é±æ”½±£ƒè EÂ(2WœkâøƒÛý÷ñIÅŽ?à yv+Tø±ªÑç1ËŸŒÄ´¹B‡f ìlÿüzÔùõ°Y#³¦ ‘8 ÈX\¼ž%:"~p‚²û4kžÔt8FL¦ÏúÞâ½ivXr¯³ô0ViîÿK^›uËåO&­×;Óp­: c²¿wi“/­’nV-˜ljA.µËž3H·›±yjë`ì´£& »Šç^8Ùk±Úl›•^?5©¯)Ƙx–1XhºUJb– 1“†Ôÿ•àsùjlü~¹0üú$6‚ò¾ òd¹¢Ï ×ÈÆs”>q>ˆBØÓ(¡„¢[ßÚîÓú¼Hóå}U1„Aк­Ó,'—k™Y÷eö–¸<…0l¸!’i°{½¿Öy?0“±ó$û¸ô•ãé^>®·û~Á—HløÿHlìxA¯$?¼×0˜7¤–°]ð“€L,40È, SÀ Œ[$.m(ZÅ’’ñ7ï–>,ï¹6²ªúÔªRÃgº×?w"´‰_dOí=Ĩ*žJ¿²¨…ÁßDÈÚœô²œc å\B¡¹$,bÊô…J&q(TK&¥}×´\ZIËv„Ä%7¥¼Ú¥8W¡«[\·–XÓÖœk€òàÚ =6ÿÞU­i8^‚ÀZäg9ÆÙ”y@’€R…Ó eºScŽƒK !°€ëÆßæ`Ö9¦>ð8±"`,Ì»ž;‘ï]‡NŽC`/¾8Ì ='ðφ¹9lÇÙ§_ï<×u_ò‰Ö¦pZã™e|& U®+÷gÂP÷”„Sž½Å£¼Ê§œÈõ.÷s¿ "|_€Ü‡£倰AQ> ;ÚŠ»FFÊ'jqÿóý?ÿöš{-•¬¶±ÂàÈv—¶ÜÖk V¾€–s)åqÀUÉZø‘ÄÉ ÎM½ÄxT·¾Û§¾ðÈM¹¦Îh±®ñäv‚ñR¡ãsî(uãÞ‡µ¿`¢MW®Û~ö¾‹N–8Ò5_û‹¢Ú.‹œ}Ï"‡h:÷È×Áb…`×2Õv‡G@»L…ôJ̪¸€ÉT€@ßË-…ÀIÎ+ëç´ ÌH0lhâJœú+`§þÊ ‡=J¶Õá·ÚÌi(¸gqÌihÃk}REp]ô "V„/m`郿u’ñé÷{÷âûŸyøí݇ß>Ýÿòî/D»anÕ;<«Þ8ƒç,¨&Éõš¬Ý±¹Ü<ùNŒ“7¾§D(cwÀj¬Làð[æØVé)—Êõ¡kæ6ÑŸÃ)¼sæ–à¼þæ8`<Ên¿BË„e4œd+ªÚ4Ó t°@É„Âàhä<òÚu?º@‚&`IcÚ6šáÐ:# ¯Æw":¿"d!ôͬ ‘J†`™×ðý÷™i!Êú32{.ñéùÎD T(Y:†’ ³~ä¶JšØg{.ØH ü¦ˆJŒjà˜¯ K‹F–‚KqÜ9ñ¬;TTrƒáBPŠ‘¸D®8C1ŽŽoÝ( ¾O…R‹»ñE¼±»iÓZ.O|wÀ܆¿IkVVBŽîJî%ÇgG g2u¯Š£ ,Fù¹øB¦QPÌF#«®ÈxÀJ¦cZs¥â{¹¤xÝØIg&à$]¾,UdwFw¾§@a%'ÐÅÏ<u†Ïå[›(§=%-ÌÔ‡„®­i…vÛY!I[rÕž#úšï»=Éu"×0"i3›lˆ¶ks†n8>D7˜¢‹ÔËäÿÈ5NMŒ¿ž¦¹zuž‚ ð ÄÜ^’¹È—ý”A¬MÈR0¦g¯Ê›Ïs©é“=y/zñ¼SŠIÓÕ‘$™Q0dUùpÖmU7s†×׎?DsM¾Ý§ÊÉ˼YKæbH0ÎÞö8àôÛmÚ%åCä;d³ž%Uïªs”$Ÿ#Ô;ÛtÿÜý 1¼òñuš~5{ ¥bð‹zoç°ËÏr@9Ií:T` §ÈI?…‚8¤r #j­=0 ܘ Í”¿ÞV”äÀŽÌ¤\BǾ¶>rCÕÉÇÓ;NbD¦%<ñ¨Gúœ€hÀF˜ÑšÝU‰j»ÚØ@—a>ä5 `WÚZZ©ý¨Zµ)@6Å~ „ÿZ“ö½ÎF û+:-uµ°l¤{3éî/ro½EOdš¦‡Ál¡°švIÒzä_@+bÍŒ‘ÖʽýlêØ–»‡3#)K;|"hÅÅÁ4Û—ªüž`äKSý(v¦äö®Éaw”„Ú‰dPðø>åÁÇ£‡øÍTü ŸÅO&¢ ‡úâ˜#·× 2|y ~F$mM¸ªµ½„WÌ_l€ ; Ρ“p0e3 ê(J䃟âyVBζO¸é n#Õ½‚ßçü@-v½]ÔÚ:ªÇw=a‰žÙ™•5†΃-\ i åÛ›Q}3çY{^âAp"+ó–|Ã|…¨&/[bØ–ßw W'§h€=ðN%SÍÌçõžæ17E&ªzâøèYíÍ' ¸gBèJœ0ö¦hc—£Ï,G x:æêœáÓàgF“¬$ ¿û%­Ë;ïŒ{)G ÎukÀ¨Á[(Ž£ÔŒ T8…¥_w„ˆÐ;f<¦ìW›¯»"•æó¾öö¾WÛAzÖmg DŒÀ^¶”c'ÛТÈ`F{J0MÀTPøzN+I½Ò½àZ „`i,üa<ÅŒPäC_r“0lHr`-«Ø÷MEß½­Ž‚Œ~”ßÚj?ÔÙWå¥|[ÿ˜ ûDb´¡ŒÖ3Xz‰"ü‚·,%Ù0ŒÎ[nÉ-¥ÃÁ¤µý­+›ŽÀ WµÎÅI N„¾§ãÏF¼”¹ƒÈ”òÏXФÎO´nƒ`ACЧh€=W81Ë|ó$EŽHÐD-õb—6£/ýâ\!ËÇ@EÊ=žógó¾ yF‡N™ÝÑÚ¿W¬æíS`0ûÝ!šg[@sØ:ŸU»ýYŸP@“Ä•/ó‘¶J ¬Î&”h2çÑÙ¶µãݽ}ýîÓ›sAwè;zpÇi^ìqÃ)þȦicB´†<ö4KªËÎþ6°(8•#×ÒìsÎ/ã\IÚCãÖ”¦¦€Ìe3ù=TP샛©ñƒÚj3ý~äòá*Øå£Üo*ôÄåòC2sV$vä·*…7›µ£á†´®ºR:™Þ¿{õñÍûw\;‘P%®(%A=4ÀNt*eŽq$ÅבâƒzÍ‘'²Ë×»¹}°?Æ?À"æ»\ž YBªìüR{ƒoqµc…î\ vèØgˆôHåñ£©ÊjJJÇR:‡‚XúÃp7ུu¾P¶Â{º­oÓÑhw¾K B¨ŽÀ?Äüšt½ãaODÞ0n¤öX%É , @CÿFU`<'1GÐÇ‚ÖsèÊKAVÔ ¸ÍRYÎñ ›ÕâdXaRI‹€Qx”¾é yºáèAPà?pÉð=\õ^ œ5¼?ª«M^˜'¯d#'ð†·$p4ö©'x8‘:yE5øj,-£&þÊ3ÛÀµï>\ëzãÝfWz˜Ù8ímζvN×Þ>ª$½ˆE´}ƒ¬‡7ÈØ;ŽEäÑ3þ’Fc?¿~¦®’[R® V¹fNí4Ž„ˆ¥$/ ¤­]M¿É"âjÏj9;fôTºe·,d‡/’7Ñ ¶‡ÏØ$ÇòBäãåSÕ{±U¢'ê˜ÄKDŸÞ€à'§†èÆ;A€ µáÆ,mS > stream xÚ¥ZÛrÛF}÷WèÉV™£¹`€7›ZÙ‘-;V⒔ͦ’}€È X(EþúôL7@€‚(Æy!€¹ݧO_†ühqÄÞ¿xsõâøŽŽ–iŽ®nŽçL…æ(‚•]Í~dÂ'ÿ¿úxüΈÞP Æe ùAÕ*e«;7î§åwÖž*£üŒ©Œ Qá¼û¬YN¦2ƒz•湭܃ ®órv[cGVà5Å‹ïÂQó,]”EšÓMµ™5›ÊþÁµ`“i(DpRæV¶ÞäÍ+xHd°*ç–¦þÁ¹lš‰€½Ø2Ki×kK«çåDêàw¾)+lÎÓj"â`aQD¢/"~49&Zã§ÞâP4Ó\´2„wV" Îp#ë~ï&B ”î­µ î—¶À»fé^MK#Ó*K‹™ÎJ7¥ß„ƒ:éà䬯æÚ@îØZ¯Óª¶´SŠ#ò²Á›ò¦dí›PJÐvM»,&°mV@?|ëÑ?o …kØJ…°Šm'm/¥z2 S‘n…‚¯ôï«‹_NÇä²( Û±¯pi† ªl¶Ä¦YZ[ltë¢ÛÇUÚTÙŸ8¨¼þbgMie±uS»¯uw€+~—¥Øï¤ïÑÎ"ØžUzº½xÿâèw?ãWï[õ¬ÓÙmº ¨zY%1& ë$¯K§ “´z7¦Ã­Ñ„[-ô¤ëµia_Sb£W ïD·}QÀ#â›ëª\€Õ×ÐÁèÕMŸ”„ã#âN☴i–eå´];ý Ô÷¹¹eDÌ"ƒ«ü:‰yPæ7ÞÚWúïÄÀ{ÙÙ²¹N7žèükk>"ÿD3ËV¤ßÝß]ÿge›$6…/r0eeµø~DB†LÃZI< Ò]»cIÜiqÙ4ëúõññýý=kwžLQ íöûØ^€e&"i—ëp¾+•D,z¨„ {c=­Z ¯úïÈ_“Ïzc«Û‰àudøÐB^„Á[ YÉupɨá¬LyVÐÓÔý¶í>)šÙ×ôvú¦ÜÌüŠåªn»Ú1çeÝXﻈ¦… Þ9´^Ò¢e>Ïš¯Ôøž¶:¡«C‚H’˜¼—Ltp‚ŸzãØq%)8½‡Úa\)î‰Y)¬À·eëÜR릙•+Kc<í˜ÊKMÂÙ–ëCì{Ób^®°ÕÞ8‹»qŒHš3ºÏ‘`jkõ— XrÝd3ÚÏs0¬xnçÙ ÂRã0ž €ºƒ ˆìŒ@D#k$>’Ø‚ŒKéä÷ EE!3 ³ìÀ]EHi¤Öœ˜´J!wí`^fòÇÀ‹$ÉcÏðen7Á“hÊ¥Ž[ ¡¸ïˆ^KùÛðõë4›Oël•hõ=„AlVþKNg#_4¥ý§Â@´â[¼Ïm½…WŸBB|dÔð/?ç·ˆe¸ÿ@c¼X8OXŠ' ­r¶LºÈ÷ð¹]Ûbn‹goÕÝuöÕÖ4ýCmg´ÃÛ²\¼^”'dШ3;_ØúÕžÝÛk÷5î¡‘Â3L‡.Í᥄|›ûšÓyÍ:5ïàÒ…°Rv!ÁÕ’æ-Ú×ey‹;`,c‚j¢àSkðšîfælc‰=õCn¦F?®µ˜ãLG†ÓÎþëOJðœÛÄ çšÀνºt¬×N” ¥= ¯0Wy*ëÉFE¦ÕÐÏO¶çù€¡W·¯±óbS×@DØy áÞ½sŸUnйw¶¬S@`/z_ë(qsoÖCɵ0¼"-ÂÍIXñD¨5j‚À F /ñù²É¾´†®&QÐ:IÙ~˜äÁÉœÞa†Áeè$½,ç5>dhÄÿz KçŽ1v¦¸9ˆ„»ð¨*Sú'§wã—òâá ‘è1Âs«¸t×}„ž9‘ûðŽÎ¤x‚ðd\!¸è8q`2Œ›aÊ$ÏpÜ„|Œš°ÌH1„·z™ÞºˆEð£Óo¤‰– ásž6 Ý_Pç¯H¾Ú!®\/éá¶Êà,-ò¡ëvCiþI;÷%>¿M«rgH{%œE-Î a;دåÉ®yY,²f3êqçæ™`Nu³™gvÔ)jÍLÔùÄ·`CŽaqÚՌИ±††(È<^tŽ,1à>\·È€ÍµÔZ%£Èˆ‡¬2Dƒð( 5x¬´sǃq¦Ã„ü˜æ)d¢äZ§q2p]&¸H7à}®'À›zI}—41³õgàeMÏŸ`ÏjÔô}da.“žã#(ÆQ>vQ·˜Õ»¶>HƽƒŽÏõúŽ’, âÅVíçÄb#¦ qÀ6ùVç⫞ΥÄ8GéoÓ9W sKÈL“ÿ1ˆöÀ¯Ž+Ý€Ëã ) ;?NXVQ7iÑ”ër“—5½—×)¥>’ ÑÓ㻞šô ÅòÂ|·¾&ĺë¼M;Ô7Sv‰ aãšeeí4ïUWHQ«GÁ¶Ûc8P|W»‰$à{û‘Ä>@!Y"ÍÁˆ‡ Bôa„DdÆðâð9ïð¥ªWLé1H²ÐC|J¿ØM>ÕÕ”œ—?÷ŠŽÉw7ÈË7ùŒ–w J¯i`åÔM#¼)»bkO™4Ïʪ²àœ|m‡c|7BûžQ¦‹ªÜ¬Q„sPä¢ÅB¬™Ö=µ\ð0"-%&£ç4Ý9„D ˆ¾®%}0©å¨ýCú–ì â„ 1å¡TLŒ+\… ©þ§ô6õE‡ÿ{÷ù©{Ÿ(¢„;2资§À 5už2j¤ë ] ]œ…d> Û–caXV×[ã=RD$ƒtPR—§¸^gÃé«çÒì',ÐÚiû®Ì7ŽlÒêãÀýú ><4‡ä¾º –ú…ŒFƒAÁ ûÍ=:®7à@SŠž>aø!‹v}þç¬XÚ 3@ãGâ|J 8¦¼{Æêþò³)²}§À€Ø8Ú9Š>d«-ú¿-÷m#!jÛÉ?Ùgm›rïÁNº‘.Ÿ8xK)`…ÁߦùjµoO v{R즜[=÷7ˆ›M1s‘Ì#½Ÿ^½ø 2¢wq endstream endobj 3873 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2975 /Filter /FlateDecode >> stream xÚ½Z[o¹~÷¯àãæ¡o‡—Â] ¤ ° N ´ ò0–Ƕ6ÒŒª‹“ô×÷;”(Ëëè›6#Ô çð#ynß!mtN(a£#¡Aƒ‚0Ñq# g<Þò$¼Î}’ðÄO¢1w^h•ß… ´&:ÁK+´I‰»)¡­ã~1aâCšËx¬å·¿^˜•¼¤…ÑÄ­ÑJ6)<³äx  %Å_$'Œ·þ1x7xýIç'ƒ³v¸Ÿ¬KR³¶)°N“ŒØoµô¤Ñí¥8=ƒbð÷þc/oÄ/g—¼hrÜOÛÿÁ¸Ó ñë¯'ø÷x4ÎzÈßÂIQ+þpæm×­‡F;-[!Y©ˆ™•š­Í;©íEs9êZRE4kB[`b¬zG`ͯ›/Ö² æ ö>zïL þõïÿÀ°¤…úã$›q·?ïì Û˽1&s§óÛ¾[d,oñÆÁ%ç¯Þ»ƒé®~À帰ø|«Ç²®~°+ŸÀæ=<üêÇ*–©ò‹Ãéò'ôú‡ _†Š| vJ~Ó~t3´ ¶Í?0ÁûY?üÐbÙÅàý›·bð±ý¶Ÿïîäûæª=¼ÆtÛn1çÀ–ó†ÍûålØÎW!3?û½½5¯úo"ï1‡ß ¶í}3Ã× Ñ¯:fý˜càŒOŽÅÜø\W¯É{éa]ðRc ÖöêÒ¤ÍÚºF_à8220 3ã¤Å[À‹{áôç³Q ³WöžnG}œnߪë ½£»Ç¨ëƒµ&©hM|„ÖÄ¢5i݈T¾¦"é«=y™8ÑKFZ>•$½[†ýö³Š”Ô:LÀ7öJðä4HùgU¶H ((ÉÉY¶,N£–Ñî7,ì}c”Ñ5#ÝEä ü4ãÑFîîUúY£:2ÜqÅÛ¶å—ÿµêâÉ3²Ã¤î{o&¶ÃÖV—\i;LUí9¨d^ò  Ô‹d ¤¼ñsçF_ÍÚiÅÜ ZeÓv22ÑW‘é£Ùí .›á¢®3€bÎ0>è“1 ¸8y°°‚Ý8f“F.»QÅÁÀ¬à ˆI£C.‹ ³HeÜN“Ñ|(Ï.šùµœµÃùŸM9óÓĵmãÚmŽÛ)Ù.¬’M%`þáö˜6öXdZH® ¬T5@j/™àúÈñ ªˆÜ][^Nd<Áì‰KøÃ"«ä䦢iÀQ(Ÿ·FÙ˜$s[Ò^ƒË~+ǰvs¹è·nŸ¡©4|i„Òˆ¥Q¶€KD ܉gÔ]Ž—m7¬ŸÛeçë‘cÆ5 @`9»›ߌ.ŸÄçÈ„¸ÄJƒ\O=;0Áç\×pÎÍerm$>àòöÙSpc#bB>†›ÑXÄ΃ ´Çί¦ã¾²/Fx”†äÀÔ"B&oxe0Òž­j+ëŒ ÉÞ"yûÃ@n†ýMe )fòZ€Xì‹B~|ɸ¿úmô¥r¨„Ó%$Î,œVx:ˆå¢½[[¹˜Šh`GùâDA“.õá=zùîue ÙÔ–®pBÎ*sÇ«Ú88Ë¥-Uqpx–oÏu³¸iæõé=§¾|5fˆt” „÷¢¯íèêzñ#<™2ý¿Þî\ø5ó{öyÇõÖ!Â1§GÖùjÔÊWÅÁ»<ÛÓq<;ùtgÛÂtmaº¶0][˜®-Lצë Óu…éºÂt]áЮHvE²+’]‘ìŠd*’©H¦"™Šd_^ùòj}Ô\‰U;„¾)SІ¤àM•sÑpèÆ“Qw^Ñd@ͼ¾-:Ëöp±°Ÿ.F“šT„éðଞb¦"^x"Îèžm-¬ X Ú °FÎksGåµÈIKщ,Ws.ûóïÿ­œ“8²V¼¨=ˆ£k¿.ûªUdŠêv=˜*StqœW^NäüT¹¶ÄÑêxðÚR7†‚Ìjš,S,·u›+æòÆa5•”o‘ð¡Âú4’k,.¥|Ün×|©¨3 \†ƒ ÄÐM¾Tg{„¤,‹¶ žOiƒ Ñï)å_ÌŸàTv¢œÊB±ƒ^Ö­âËwœä{RZÂ7# t&ÚÝ;2>¿¼šŸÛaÍl]u§ ‡•P`¿‡Ì—çÓqû­æù0è¿ `øX9²–Šohs­mŒW¯*•†¬lÎí9^AEêj)¾¢®d¾.ëùòäCqÿ?»™Ôű6[—@o‘sCM ”d:ç‘ß6ãq;®»$|ÙØ!ýÕÞK>Õ!¾Øáì³Å‹øf‘Š"íÃVðt•ÿÏuág_¾(H̆õù~DBjô*5Ü“Œí®[eÂåý]mÚuéÁä+ü€|…G/_¸R(ô'Ž Ç …þ„}Gˆ?Ú;%°5[çìFjóAÏ›ëfo|{gp­Y/OOóƒ—ÃŨïÿ<{Ç¿\/Óù_ƒá¬éäì/ØÜ?0€ìgWƒi3ü‚5ûÛïÍb6úöb‡ÚÆjº{x 5߀ZðÅTÊ•°`ýúõ«œ´‹æ²¿øEe×…õs¤M}Yk6ô|7Ÿ4„} Ê!ö “ëºWÁTØÀ0`°|~ Œi»èëžÑð‘ÞI.â·3WãÉäž³ þ' OÛK)ɳ ‡=®7ÄfgŽì­a76mõþ?x{tú endstream endobj 3988 0 obj << /Length 1428 /Filter /FlateDecode >> stream xÚ­X]oÛ6}÷¯Ü³ˆ&õ­bzè°dÀЭ]ë>µ@K´#L]‰r èoßå—,)±Óm} /©KòÞËÃÃã`gç`ç×ÙÏëÙê&"NŠÒÈ‹œõÖ!#?ˆœ˜ù©³.œ÷‹fOÑ ¾ü¸þmuÆ?Pœ¦°šòôR"fØlÞÑÀÛµî®à¯']¦ûCÅÚÑÌsíêÆ÷&GŠ7q\£˜˜µž={¶tCŒ9­ò®¢‚énÅwÚàEÑj«¡¢äƦua¦ñ¦aí×EY›­Œ®ïiSÒ:×ÑBD.Á( ½{A…öúÉÕ-kepˆ÷Œ¶]òù«7ó+³i™‰oMo½šíL//³üô­€ÞéìB3øƒ6ù–&£HÒS$fØ#(%ɤ<ÛRØ*Ôß»l»e¹0ÕØó‚UÚìÚ>s‰‚®.e2çvùù¾4‘ËIÈÉß3®ýñRXýê5ì¹9Õr·§yºSÖº·åíì¸e= ŒEí'ÚÙ¥¶ ßOü ;–¼­üxñLë§«¡íL7_uCtóÅì ଞªy<½*·´Þ±Ó$[¸ðæîØRo9)Îà i?ß÷üe+¸|ÿòë ÿ²w¿ìð/{'ü«Þÿv©ÃÕEvóâåÛë WB‡xr¡– mTìȪvUÑ 4z²×Æ®áÝA›2µyÎë¹îf&z^‹†W«š×î‘æyY&Ö9û|»ÃkÊ=«­V'ÿ§ùÁÄ1$œ-ÍodTc/ƒ U¦É»"rûE%ª¿¨„®TœÒã?ôÛxøÿrï>AÀ¯_¾² ü¹Ìx'l öªçMYÖ ˜œ!ü§KÐsÚ¦TØZ|OŠƒÂ–Ò@_=h'lâ§¡fù 61Þ™n¾j‹5ß0ÎÔ+èѾè‘VtÅý•µ›.ÙüÝs3r¹ƒøåó½ž}šøŠÒ‹?1N¾Ÿ½ÿˆ>ÂÈOçN¹îôJø`WÎÛÙŸgåƒR<  ŠˆâøA2Â{¨xÒ# G=”&ÄJŸß™ î‹šV÷­|1¼PÒ7ÕÆëePüÇe˜ÖcàË‹ Iû AÖü‹¤Ur#ÁÕ/†=Ð]Žô¸MyõS?*¹&OI¬ÅØÕMWçj®ë'’âuûcOh“}êh°^záÂ@[+h·ý,¥%“á>‘‡EgJ)!K©Z=o&£ÄivŽ5ß<Ôq„l: Uu‡§ÊîæÓ›jòa9b%Ø· ¨7N±ç ÓVk–•Amë-k™õ”çŠL¥GrŸD óq ¼!ø™¡vx×Nº(õÏãÐÞQÉq´ìUt/ {ílŒšô––<¸ò‰ïÏEÂÀøµð(Z³Û€4¸ê©k0EFVöÙ<›óººÇö)~À8[¿ywýètõ$gih%k6¼eZÊô)ìJa „,‰NË H¥3¨ö‹f PÝuR\´gnû˜Õ&U^Ÿš*LÙµÔèÇ¿ú"I«¬x>AßèPÍ›i©‰–¡ázªÇ% Lʸnq²¸+Å­´b{ÆÄ…(õü'ØÅÿvÁO±KLÙ¢Û6@‹¬ÎKõPC¶ÈV}ŶB[9«*yÂ@3Qêš Cš7M3`ô4“úð€MÀÌsu\ôÄ2|ûm,3:¦$F@Ï6--ª.¼]~ÜÿW`Û¿rãóƒ(¼Žÿ€J÷ endstream endobj 4004 0 obj << /Length 2219 /Filter /FlateDecode >> stream xÚåZKä¸ ¾Ï¯(Ì%.`ÊmI~&§M°$‚ Û·Ý\¶ªÊˆË®ø1Ù_¿¤HÉv×ôtÉaÐËES$õ‘Tu°;ï‚ÝŸßýññÝÃÇ(Ùe~Ëx÷xÚ‰ ðUï!üXe»Çr÷³'3¹ÿ×ã_>Æbƪ’؃¦îšû7=´Èù.àØçÃG¥fK*JÍÚƒL€¨H±Z¬]i_ËRi¿öi/"OCÛí*”ÞS5\h4\4)›ÎÇ¡Ÿ:My3"œK÷ÓÄ ÿ%äs"ðãp%c¡aê«4¶ C~¬5itêôFÝ•î‰ðKãí¦îÂëªóe ™B×5Ì ˆÒÈûI³ˆ£®Û½Œ¼'zÍ›r±ÙÝ!~¦»¸-‹"R¡l‹ñª›!ª¶Ùdx퉞¼l ~ºëÐä4üç3o¥‰/bgÝy]Üó”’¾J2Ë›bRà„ÃÁµí4J=äUÝû+‘Ë€YìGRÁ öPƈ.Þ0If& ^˜ÈÏq/bR_D_ ˜L$÷#&y0 Û2`@E Íú×ú4Ðh3q–rÌ}3 ƒbèSÌ(?ɾ·˜)ß 2ÊLø2È€=ï£L~e"y?hÂ@=ƒµ†™ðYÔƒµ€šLX¨QK¨QjÂÔ¤*ùΦoŒ™Ž¡1`xç®oDë«_Ñc8´ :볦òº§eèRŒ›®hÒÈa7ªD‘qbæF\hÜ8Ó@—ŒGƒ¥/¿…ã %úJ?¦ßØ ljéGùÖ󹜓1 ‰ýˆCö#Í`s~D¢õ#ŽÑ½.Zs¸¬ âÊ‚x´ñØ‚x4xð½Áw>ä¯w`{C5òš¿ŠkI¥.¿²*àÐ¥©šód¦wµZ]é’Ú£Ýíýݰb‹Íôu~|ëfïŒ10¡ÚàÅÜö.a‰y /Tâ™ËHÿÞÈ6PŸg®ꇱ„ôr§RJ?ˆ“ÕVÇc¯‡7m6œÉÎUA„€€&ˆö®*ðäaa–T·àÙß4T‹Â;}fºñNbflŽ Òh›ô©á’ótiǺÜ:vG…±·Q²0¼ä°›Ï}EƃV*ÚŠ© ìd“=^to×v{•xgs´Ù³Ð=`Ü.còøP»P¶'ÿWÈþaä1æýþ¡hGõp2‚]Ýðû{Ž X=Aêåeùzw6msh4úæ¼<@'Ä4òhpä‹)bo?µ44n3>2% ò+jÏÌ-ÓÊ’¹˜»f!fÇD|ºè†Fˆhc š€µæ¹®2ßÊ”×Bxt¤iI}BåOdøºüÌ'zºÕUSÒV«r4±‹üöB•yÊ"CnhiÑ‘ç4±éùGžöœ¼dÍþ0‚{aÓx•U S/Îø*ôªžhÊ ÷@3n­3AxÅMÒõÑÔÂhú: .T2{p€bó$ަÀPñ Ö(ì]”ˆý™¼ýCíïöQäõÄwÕÃ¥-$WLÙ¼bÚÐÔZä‡o”j…€.0ÿ¿µ’”)`v¸ÄìÕ]ÎÝ^\ò./ÓgHŒñÎX_Ie¤¡Ù³ŒDr’©”Ò'4~^¦ˆ‚‰±)AœË…²2PP×9ƒ1­ï± =‘¹Ø#Öi&azÑ?7?¶¾’rïÛ¦þ¼ßø²‚.0v¥Ð‡ ‰‘ý”exŸ×õ–úY¼^Lu ^¤2?Ä$ rYŒ ô¹Dp~('‘ÚzS5˜¦SKÍG–0–á]a™¹„ gNY˜àë Ú€T³peZMÅ~,W½&Œ†á‹‹8!½Ü$Ä-œÉMõÖÓ Ç0™cèÁ9ÀМè%€!eŽúÈj«}A]›yŽÃa+—íõuèf÷ð2–+,_Ä2³(·_ønÛ†®½Áëál*6!¬m=éÉL Ì€—xV3â ã@nxa‘÷4´¡\žxˆ"D5 \Ç„Iº@>¶$)¡±ßÌžŒn2%t“©2¾i&r,Áh^õ>®ƒŸ¥l `ÄǶÎI§:™;Z oƒ;%}!À&F%Br­‚Oõcq!’3¾äfªˆ‘RÑ®Âtv#ÿ÷6 *3¿.¬ ¤BÁ„TH:ò7sz,zây@º­ºÌ ‡IÿÁÂþª¡–[·Õ—Èl›Îª/ :|ª^k¶*¶€ÃÌ9ÇÊsÀ²¨P…»™0«;^dòb­#!ýM D&Í€ ÞÀ$gÀ¤¾]D®90Ii?eû1 ,¡h+”ÞL2òÃ(üŸÓºµXˆè¿îí\áymKÍ—öãzÉb½m6¹\?ÃÔ«ú:V­ÖŸ@üë;;êÀ©r%¾FàìáIÛ:/ Ý`Á¤˜²QF¶* ñ~OK *SªfÀx7_"æZOíd=•t/%;8p„ó±ÈF-‹þÀ>ú^hí~¦^›«g&¦»ðà  ÔùÚ«¡Oº;¶½~CÆR‰$“Âs2i¢¦t…3Ìe«ãD óY7ºËÍdŒ}#øÂó·®=wºïyú4MoÝ(O‹¾wEaÝÄ{î˜ Ôà‡ÄúÇþöÓ/ÕÏñúïv@B‚õÅúÇ¢s5ôo¹µR*6j®<ŒÑá·¨Ù­†!“Õö¶H4Z ŒW+ïVç…I‘3QO—ʤй [‡_Þ¼¨—uÍ%t:ù=JÈï@ƒ"Ú®Ò\C+ï/'¢ŽQ§Ëø{¢íÛ`rá6”U±ü¥ðevJÉöîÁÂå[ WŸ¨gYoé4v\…Mgޱôâ2Î NñÞ·k붺û…YÌA@Ù¬Ð9úúóíûþëà ZÕj~÷ )R9§ ó.~||÷ïû³{ endstream endobj 4009 0 obj << /Length 3129 /Filter /FlateDecode >> stream xÚ¥ÙŽÜÆñ]_1O ÐPìnž ü`Ç7Û°6’8\²w–‡ñÐfýõ©«›äˆ»²ÐôQ]]]w7:œÑá›W_ܾzóuªEX¤:=ÜÞT…&N™RajŠÃm}øW0œËðb§þæß·ß¿ù:ÉVð¦Hì(Aê ЫH.èt}tàGÁ¢áC_Ú©lÚqsð¹ßƒNB©ÃQåašóù·[5÷OMwº9ê$ ¦˃/Ë©üÓÑ7ag|þÖÁÓ\7väI9Èj9ŽóÙÖ‚»çßËÐߨ$øÐÔUÃ]ÛÏSÕŸVÑO´]Ô²8õSÙ2¢$ S­Û*,’„†~¾84D°1k‚U˜OqÙÜ“´ˆƒ;ÄÚ¤A§šgåØs7éOÞT¹›j“Þ½I%Q ºu&Üy|° .ß¡Ó0YdXî!܈ðõŽ,&vwÿ?Šê7 8j£‚²«÷ž¤ÂxÑÛz™Ò¡öŒ­m×O¨":eÓiPÙ¶å¥ûÁ¾ŸmW±ÝÁÖþ­JâÜ!Ýו‘opÜÞG”†iì_º/ã-O4˜¼N‚Gy jùÞM¤ƒ¯ÑôïXœü·<_ZûšÍ@g Ò•v’›ˆ€Ëü3Ú š  ¿?7¿’çyÕ6]S•-Ϧ¡ëùÄ/Qýü—Û~ï)x¦è‡I.`熲UÊÛ—3È.ø-E& çòIh²÷VP“#ÄßÒ{ò©øºT˜6Ør:ÛnzÃì¸ô#?$u%Á¥-+{׿©únúöM×wÇ ‰":†ëGpõSƒbø€€¶}ºIÒW˜=6Óc^ü`P¼Fzˆ1bM­Èbd`U€ð<î§ÅSÂVÓG·ãÄ3dº OákÖžû €]~£^{HXÕ‚hyv@IK¤GQð]'Çù‡ubEBUŽö(ì'ÕW‰ Md&Š™,œû­‰Â’1ÎEƸ†2¦_´Ü[aD’p IyÉcž©G=4*™á†çÓ»ó'Á×>`ñ`cp«ТÙq·G®†f|'ˆnDùjrøXxÉnx 6J èÃÝ´å*ï‡hæÎ8~º™B>õÇ“ÿj§‡¾~.[‰Ccäðç #&{½@RV<#fÐòé4}§›$(Iáió‘$´Üf”ÑÓùžhpnÈ YçÓ ô-§wOüû“%½€ÚÀh-Oþq£À¯Ìã,èQw‰ mÄd`ˆEž ‰„{Â¥$Ìè88#pœ¬³¬‘wKÞx´Íé)ƒE ²9—“  ÷Ìä0"™mbë$ˆºfõ¼8w5é=¬–à}?—íÑÞ£O¸Ç#4œûÚ¶/<"Í–G¤i@\†µK9LM5·åÐ>ñNY¸¡ë¦òdûYà —èxÄ/À+¯„{ôJømnTà Dˆ¢uÁ6@‹ü/’àÕnvûò;>ôs+”öP¶ó¬;b$ —99µr\öa‡#D­QÁ¾›kЦ«Ù‡7õŒ }î”{ã ^Îö=ÃÕÍ86ç¸( ätì`X^^»®^h˹%‡c;;”-‰ÖÇs‰Ù î ê|3XÛµ|ìþwÞ–­¸ƒ'VEý†I¼}´V,!À 6ÕQ¨ ¾Êšå2t Æà ƒïDV8œ±§Ì‚8¹ŠÑë–.b- .­š' sK¡&\ÝÀà´Š¦#ºë)ŽÂ&å(ˆPJ™XÒ“õ`Y|ŒÝæzk(í#Oæ®q—#WÙ{ÃÄ–c†·#* ¸—ªC0ÒÎ{Žßél¼=¸µøŸ«ã¾º'¡ñ[V òø~dÏÿ\­ô*0¢&,¬À/ypy×Oäú“$ ¸©gcà‘mïy\÷Yµ˜%`ïç†Ô6ri^Ù¢_A.ñBÑ#XÈ5£$±Ñ;CÊ8Ãø ´Ùãž”<0–ùÚ䢰ZÅÕ„Ö…Ëçò bäMð)< &Ã>3¤F€¥m[¤—&sÉçUa&¡Òæ¥Ê: 3£>UYÇ«¶Ænemâl[Y“I¦Á?íÐ/OpÜäY(K® ò<̶¶y_Q`ØtgžP¢I Ge/ç‰ôþ¢<rmJR N9µÂðMÉAÄwÙkã¨ïäq~™ë8  çƒýb°Õ­ÂÐ Ç«jdÛÑ v Rê )¾9wÅÓ-Òà8“Ë)L!`3òɹëleDZžUÏe]ó‚ËðRL5Ç©ìú»} [U?w“\ ‰gÁÜâcþ€Ã £"}™AJû&Ž'Sð ý£É‰¹F˽}°»}•(ÌrßWA+Úí‡$iö‰¾J®Z&ý~W(Éý !Sypš±ú•7°‹„7pžIlöƒ_ U¦®R9îû²Ó}$›(ÙJ0]\غ“5x&ÇÁTj\W-DÎ-àÒ&ì×¹À«ÈÝ ›¡šÏ¨JHØ™ì˜ØÔ²Ž]c,N¯¬·$¿ÊÄîpäìHÖåÊAeØ>yÔëlp¶A¡ª€Ô‡Ré¥ç‹oäk’4L¯õÐ_¢h¯?ê7^K›Ó\òRð+5Ež±$`e+L\Ïv|ûÎAŽ•W\+BòvrH¹T5 €”9g¸Ìù.Xà ћgË¡"xÞ·d_I\¸¶€´­¢wº|ÌDR’޵¹Â¿0? ˜ÀòðgÌc¯:•ä ¾ylGÔšë¯+›o1lÄ»èÀHÇ¢-©\yqáíBÚ5 Q¾þ€ðŒ{ˆÃ"Ž_ê?'a‘½ì®ûÏ&.žë?ú0õ;õ0Ýõ:TnS¾3¼1¦©¾“ºZ´F&Ò ÇîÔJy¿v10åØÇûh|ç&W’“‚cÖIš ¨­Ôts+¸jË})¨ÙPe©†§¤d×£È͘2mBC’¹Y¹s«0rIN~å‰ç‰`çÊ%¹x¢Ä{"Xòž(qù> º^.®ÿ3›<®sæ2üD2ü=÷袨Ž9ñƒKúÒ+B<>rqt°¾qt¾‘$úÏ[¨%»r¿w¬‹Òqý5Ðø„XëdË[Øä*¡ˆÿ;oÙè Ѹþ¨J©ô¨c£¶J{ø8vvÊ÷„Tº.²ì:ƒ-®ñ”.ù”M¹p¦²…žÑB2´ëóVÄa¾ë(ZËfÀÜÉ`‹)rãÂè”s£VÑúËò³†Ž^Ïx×A6¦SnS°ß f¡*¼«¼ýùo_í G£RŸQ÷“ýÞ,Ññ›mÉbâØ5¢®c9ÃÁ-é@®‚=+ò#z t”û(£C]d[y<ûÁ1³|pü¬j>ÛåøõÜûì~Øóýp2ˇÇÏê߂Лjº±|w-\æÚKà‡Ï?BÆõwéš•ÞðÚ›– ì²Þ‘Ïô…0Òä—nâÀWä î0ÕW©‹ MÕP •ñbÅzÐ{Ï”±ãÆšrgMwæÿ `Ëð¼ ?Jø Åù^"ÍÈ!¤l©êËBåû²(â0KÕ'¬AÁP¯þ#à^ºÊôvwy#ÚkL¦ùUæ~JHN*n¹bÎI .ÌV—¢uIH©}!‰)uhV÷r‚æøg^068Wƒé»Ý¤ØùºêBï8Ÿ%_–è…èÖÑ+Î\)òqÜ]:2ò݄ՑHøúÝ®óù®çW·¯þRdõ endstream endobj 4037 0 obj << /Length 2331 /Filter /FlateDecode >> stream xÚÅY[sÛ¸~ϯÐä¡¥f,˜ ^2¶ö6ÙÙL2ÛÄÞ݇M(’¸¡- Úõþúžƒ EÊ -9M;~0€ÄÁwÎùÎEþl=ógß¿¸¾}qù†Ç³”¤‹f·«õ}„Ñ,¦”DA:»-f¿z, çÿº}{ù&¢ƒ­A‘Èçð!½©Ùfd'”Ä/|{|=¼²pï,X “yóçyʼ¬êÄèÕÁ'F&³MHêSóòU=_Дzrù›ÈŽ}O®Ì\^emk$‚Á7bJâ$t‚çŸ|î¿t⿼ÀáK˜£æÍÑéiH¢°¿2™/w»e([3—™U9§^«¬\²VYY—õÚ<+óß[ɪ’sƽû~-—Û¬E­ÚWÈŽ®´ QDB–² À”—Be‡ú^´‘&Ì]'[¯1§Ü[Ϲ—)QÀõ¸ïUrm²(Z3j2UJ2)ý4ÈEhlÝŠÓ…iUVYceM#+ÅÊü× áà bß!ŽhUgÈš³ÿ¸ËªÓ%UõŠG‚̪lU™·ß^T éî,QsÙ4¢{*´}áÙ»ÅW•—¤Zž~¼µma5¹”]]|)p‘O¾Ï Qçv¦¬•h¬¬çã’vgHÚívÿS)-ž^•Ù}AÊýΕs¢1åZÔ¢Tóˆ{ç#úáõîÿgxŸO?ºî¶KqÀ­êŠR´NeyÕÎËúÐgë¬zhËö|„ÊcDÇ=+ÛÅ‘à‡¨ÛpWN]4bÄ’Þ œÄwÈ0ˆ³ôò»²è€5&ɽu—/œ¥?R`›mwUÿd”Ù”¸Â3°Z•Š ·g„«ù"`DV´nÝ—jcF ½(׋ªü<§Bªr#eq !ó a@qõõ®~øî¼umG!œA=L0¼Â¬ÀžÜŒzãmÍ3Z™;nr. ‹J!2œR‚ª)óž÷{tÆ"Ÿ&!äŒH+·ÎÔ‹¢Ý×Î8D%¶˜y\î/K¬I²º44"@RG£Ø|õ½PY´ÏIénö(ÂÒUJl¬'•[EæU $ 3±•…¨Ì0k„y o›)å¶hÄq°k© ³ÉuªIá$³6àgQJü´Ï#õ'§`g ¡~ïÚ«®ÎlH"9cÞ«Á­ŒXƒtÍ rMÀ7åÖª¸ÕÞFv•³§ª•6hY®ÃkB¨/Ì\מqGt÷¶Òm·Yó0uË &AäöcjíhÏí©õdÂð°'L ‰'Y"dPÁ<‚ÙmñÑIØ¿U“媗i‹9?±P³ˆ°€ŽƒÎí9rS€!ÙG¢Õ¤;-xH’€bÉî÷5}æ|ÆQP50í§¿5 !tÚüC¨ºÂðP/­©|F Á‰&Ù{ó ÝînåÂÎôÈÚbìÈæÌÅÀ…Ñ&høq2v(ª²³ê/Êl]ËAêžgõØ“äK6GК1N·…ˆ“0êu%²;Añì“5äÌ’Bq76Ê7xQ‰CŒl-*ûÐdp3óÐ`ýç«åòSÀ©Ý`1‚˜—u¿eH<óv•Ô¬ Ó ¸¶ÇgÏÃ% IØÞ5µØ“Œ™’$Ižá8_005@ä›Ó›´û›œƒº"Œ³± WÙr9YR3Ì~È;2{Ÿr+t;ï¿Oìc {s×—{Ò£Râ\;Óú ³æQ®âR©AðT°g$°Ù€ò}u.VSbS²èY‰É°–ÍåÝ“§ð¯=*¾wåçoBÂá°j*„)'© Nâ_{”œ“¨Áæ}Vu±/,O'\ Röx\Ÿp\0²àG=þ <æãrðjŽ”„ ºuëÚëç–†¿ÌðØj¥û§Ž ~žGà"ß(ˆOÎkð˜#Ý•”Cté±ýËýÝòïH=Š, X Ù¬ÿz¤qCÁyy¨“ÄYØŸ°ÏR»öÕååýý=q'Cè{ƒã'”“ÒtP`ÑãZ€b1¡Zø(V€M«6¿†$g‰ v×`=ø±÷^gÞ‘÷Jqbçþ!Äç֎ߺu·x-šª¬G«Ü»r«2»ßIˆ“¥´“Wv×Gû-Ô.óýØ\†‘÷¾Ë7f1+¤Ù-M‚sµT¯`¯OÁôgð—q­#Adrøo¢g{;Ñèv‚iövìƒ:»0“º¢L‡GnMàH Jså+ò‡Ï¡dêMçføó| ´‚¾E™C;b´ 'œÒƒvã¡¡É,YôTë5@~K9<øEs“c-Í2¤àÐ Y¢±_BMC!/¹lË- ’9yÁá a4Î(¾o„¨+ :”€1ï†ØZ z“U&3ÐFÁ‚=M}k<,M¼ë2kÍ¢þ­cmub«ÄÎ<­â8´Ýt˜ÜIi¡ð€•ðƒÚþÕQÕÂbžQ­É ìòH).›Ð7 P6¥ïQlI}bÈVU0Ð2 cT3¨é˜ž­–NÐs'¾ŸúàÚÇ´M!Ê`Õ1ʈnî…P€²V¦ePö[b'n:¥¤QubT *·«‰¶ x~—áÊNþsN)õìÖïì-µ„Ö: ‹_6:¥Äþ 4› 53A¿üͼð“nu¹~£~Á4%°Y.oèȵ$t£žë߇˺ßfà92Í÷}Âg”G³fÞ£.3 ·È+2•3BÀ` ŒèepÈ4½$i8en,¢·r|UØÐÞÒÞÞbœ¢ÁÑ æÇ,n@6óƒžè”åÑ8:žy¼¾}ñÉÚ e endstream endobj 4053 0 obj << /Length 1897 /Filter /FlateDecode >> stream xÚíXmoÜ6þî_!8ÀU D4I½Ønâ’Cj»=𧕏k5zÙ’ÒÚί¿áëJ›ÍÆ=Eq( X£á,‡œyøÌPØÛxØ{söýíÙÅë„x9Êšx·k`ŒÂ(ñRBPæÞmåýìó¶@cW/~¹}{ñ:N'æaž 4Ïa2eHóXa3¿„i¦ šÂBmöï!ÄŸ~¾ âß #|`CoÄk«{Ç4öïkaÞßÚ—}ÓÔ8´ÿ<¢Ô¿iX½¹ìÄÊ%ÒCqŒIžÅð$ J0ö¿gC¡WM_~**¦ßª‘×ÝFʉ_t•Vëq¹QØdÊãXo¬}ìË‚WuÑ,š`¿îÖ ‚ý‚—CÝw/à×!ö/;=Ø/Hìïä?ÆwµÞ¤YëçpÇ´ÀÁußÖŸYe8¸H'$‰' ¡QŠpœØ„|à‹(–ž°¿á‹0õ™viúù²PúªVF»B”c*5öª¬ìHÞI!’;7ÏI21 œ Óy„hzd¶\AÃÌ%“£2™£1öÃ0þHiI4û ÃÉOcØnäÖq7 [ñââ¢êkÔóÍÁˆ`’\ŒÃ0À Årvø ƒ28¶œ I1`–ÄR§§þi!ƒÆÊ»aUŒýîƒçþ¿9UÈJ3µxŠ ¶È‚‘—}W…¢4õ[@ZPtEó(˜Ð¿’¹C×úq_wz@ÀþhÝs­ÝÐ ;–þÜFYfãñV‚ªy')çdIØÖNç&ÑÖ7C1Ôb¨K_ýM¿î5>Ž Mìÿ"”gÄ„ÉSRNROdâ£ìXÞ# ™¥§òžd.~íp˜ ‡Ç0JbŠ"À&ÀÅ™cÚÿe#úŸíŸð‡2ËW-^¿9;X"‘áöÃä uÒi„²tЧ¹šÅYúÙ4m{ÒQ޲˜üžÚ»S~(øÙÃѤUòè“R+Ífw'wFœk¯ÎŒôÙÃQ2bÛWÌü#ÆtÐGS¾®ÇNµfÖ§­/ I†2œÎÙ¢*Têò$ MqjÅi¡ÿC.b”Q—‹«ozœdÊRô;³¢0ɧ¾e9—žO9bÍé,7!I!ì\g'$ ć¢Ý6Љâ,5¢É£`ZcÙŒÆpzI8¯4ÒüKÞ J€1'pÚBËq„˜€`Âh¿Vƒ tŒDÒÊE:ç+»…ãô1ª5f0a9âH!Ef'Ïž=[14)“ÒQ ­’Á‘O)HmúdQcQUÆ–½÷F…B½?¸¤d² ¦(ÙÓûw.˜{“jHd „[ã]_™¼@q.ó‚!/ù<ær¡E½¶½ìàäOWðÖ±y+ëe¹«àm?€+–u«RïTFùêöì·3¢@K\¥!"$÷Êöìç_°WÁ tm(Ì3ï^™¶^¨I#Y„ïæì‡¯fI5Ës0Á¾’ˆxàäôÍϪ4!tJ£ïeZ/]Z%íêB ïêŽܲUŒß׬ ® ­Ìü5+¡-‡ßK^'B…(‡UþŽP¨-ÏÀî&ƒƒböWL”¼ÞÊrï‡ÍãAa|mjœøFxÆš›µJá~A|}èO´–ý6M Ù‹äÊúAõÒ•RQlÚu˜IwÏ[ËnHÍL«¦lŒq¢‚ÜÖvªÉot ¥­^ΑöŸ+òÚph²Õv(ôÞÖ … „9tR]èGcÓÅßòì&Ós­yÑš;ôí=ÿ$;Pœ™ælW¬éíÂ^^¤^_*@¨»÷ª5Õis»1Y•‰¸2DúÕÂ0Ã…»Fµ­ªUMd`:דµ)„jJ¿¨ßmÏMSVÁœucÎ‰Š²^£`“ò.Ž5!p[•ý”©‡+:IÓßìïdkCT;+f¥{u-µ¼VÔŽüï9Ê3BGœD­ôàtN78Ý u2¥a¦Øo~IUf\$Zª¥Ü•SŠŠZñÁZ;n5ƒÖVØîç²*îfêì dGXGpÏ`z™À:áÁE±…›çÈÙòüÍÕ?Ï'´oãÙ++Ž+Á†çÇdQUKrAmTúåyß5ØÍÇû-ÆË×—ïn®Œ ã%ÛËÛ믎Nª+Üòüúêý»óYRYe~¥Ý11,Ï?Ÿ??v¸¶cÍ2mö‡ÁÂIC1Ú•ï_õ‚ÍVZÕ›ÚÁ¨ìåanÌBÈVEy W­þœ¨Úâo˜þ¿Â4ù#`ÿ¹0=dê8Õ õ%WŸ±Æ–uƒøJŸ1o³úv_$ôG ;—Rm‡Âb뉩}2•Zª»í8¼8¨\³z¡ƒËjžšœ'oúi +sú+`9¸ÛêZ?Öm†; 2ýL›Ä(¢®õþtìã ôz®ÃÔ_”l1×.\û­´fßqèwQf¶ÌÚuCÙ·LÈ^rá>”üç•.Êß¡S‚²l7®Ê»¿vœÊžC?·í»Ê}&òjçÞv2j¯‹®|r`ìúôÿ@×I endstream endobj 4088 0 obj << /Length 1593 /Filter /FlateDecode >> stream xÚíZKoã6¾çW{© Ô\’’(éÐÃÝ] @{hôÐ-PE¢c¡²äRR³î¯ï ‡z9Ž‘¨W!@4"GÃá7ŽÁá›Ç ß|¾ûþþîý§0Ú$,QRmî÷Á9󵉄`ÊO6÷ùæwO&jûÇýï?)1aõcÁ¸ŒAe2Ç”uUŒwÜÉïŸï?ùþä˯|ûéNF0è“€FÏ?¾Ð,R,‰e¿Ú?[z:kk³ÝùRzõŸÂ+uõØH[1ÕVE,TÃçÇl˜E<èž b%·M¢³ÚÝœê*/ªGškÚ´ÊS“ƒ6¦6 Í|á!¯«òL3F—z+CÐþ¥UKR\ÙRbÑu ’`°²àÞ¯Z“ì?ÐmZ”Í7ìú¹½„ƒˆŒ Dºx<´ÍëmVŸÚ¢®Ò–FÌVÄÞcwÔˆ‡”×Ö4ÓœtVìÏŽæ¦öÆa´7>_´·ˆamqÓà‹ÀÃgG‘]£ÍVro—ë/œËJ礂Û/BÈ¥…ÐÚN$S¡˜:|f°¦oˆ‚¦·ãƒ.kô­'z¯$Â:/yY¤S4 Y­,Þ\˜È_ž©,g!W½ºÉÒ2»¥°/™ (ï»*5Ø[kq¬M¯'áv6©«Þ#ý°âö6Üœ¿e+n‹pËWÜáV‰¸eÀɸEÀ}]=n!p«Ç-«EÚÕã–y\»zÜ2àŽ«Ç-nõ¸eÀ5ùêrK‘[}naA²â¶¨9®¸-ò7³â¶¬Œ[q[„Û~Åmn§·…•È Ü²ƒa­à–U"ÕŠÛ²Ÿ©u¾è¦ÕäÅM«{ÓŠ3E••]®é¥®zÂé#°º6iK·Ûö;'ç0a(ÙvÆ¡÷†ðÖº¤;R>¿¤cyYŠÒf¦Ç‚îÊñÆ×M¥ M¥ô:»ý‡a{ûÏ—oƒÉDxë28aA(Ï£hºç¹´O»0^I—n¦ «ÞËÀx\0ÅÅKCQЏ÷SW¶Å©D¹¾šìÃ>›°šà54ÞBãÌÙ&H¤¢OÈ  ´5ÅW²WÚϱqÌFŸ½Þ ‡CÛ€¡ÐkÜþ’ˆ©ÀŸïϤϙxZTh¡3fuÙ+7E,1»GÞo–«™cÀ8mŠô¡ÔxíD‰÷¡lµ© ÎG)Ï[zßR§E:J*_÷ ‘{ìÊôfàGÌò„õ`JT}ˆîSTMϱ§aš·ú°YÔ“éâlž^1aé%y"ê"OàjÈhÌ8hó„% =)O ßÉè¼ÈÈqfß³Ø#A sjÜ2˜N¬ײEYg6­ïܧÿ·k=G6ypÙ!5i®Š Ø"Ò3¡F‹ÛA»$Î'GaêÀgž¶©û¢;Ê=g*gø´?]`ß1½ß\÷ÐmWv;ûîÝç?¿»êJ1N:„x®÷[@5…ô„ CV’»&(‘À±úÐhCq—ÓðC(î!Ó{Sü‹ÙÑ2÷ìÚ¬>ö£6[ 16Tí(¹23ý)¿E¡×¤G§RC•ÙTz‡º+sš¶' ~4 ŠoöÔ‹¢80ž×Vf‘:>JæÀÊ&ÒâùZ¿•ðYćS7ú\Žˆ™ÁͶ-La¢ã‹,; ÏÓO<ÄŸgCLÒÖ–EÕ´:ÍiÀDýY†Äˆ¨Lâ9¢NºtÙÑöô< šÆkÿ›b艓 n߇´‰v+¼ø€w ç„3.ÔX^Å9bþœ'À¸&7™Ü>*l ™Ýèw"Ý^3X3«MrÅó3al ´‰dâ*îä”Pbs›Z£Ä.¾dìÏ¢ '\4!iËI`qÑDƒN›†¦r¨XMñ`˜ìª\›‹.Ke˜Ã,}%ñ¾­rY8vÛ½¢pö™”ÑóÂÙ÷Cª.áùt(²‘YÚh¢¨JâØ5-QC¦Åˆ‚Fþ»+ •M¡Ë²HQ˜ûáX³}±pl§“©O­;]fÑGCb~ H‚3ÉÃ×£$á—@Ï8¯õ×~¼¿ûŽøùb endstream endobj 3982 0 obj << /Type /ObjStm /N 100 /First 992 /Length 2547 /Filter /FlateDecode >> stream xÚÅZÛn9}÷WðqæaÙd¯ c'Aṽ$ ìnY–MdµG—dò÷sŠ%Û‰¬¶Óî}ˆSêf‹u9ÅnÎÑ+£8§¨,¹$‚“?*pVž‹ !f-.’WìI…hq#\Œ"XŸ@ •L–g‚JÞ+g +™W¼²¶H™•eb‘œ²ÎËøŒ» e#õ€–By")‚&™ +²œD±QDщdœ¬H^‘Y$Rl¹‹g£ "E)(‹Ëc0‘)w-AÊt‚q˜r3ÅÜ\å”r$ pS`‘ÂfrHQ9ëÊ8ü¡\®sò åÌ!p#É8Q%«„ÄÊ HHNyëD3ìí)•gƒòŽÊݨüf•Pà£-ã°GÉËŠØ(ŸSÂ0b°eÆŽmÖÁ¬‚32¶6x'ÂRC,óbËC,Zœ”eœƒ–T°` !%™—½ ™=æ€/DSÖ†!0‹èƒÒÈAfs^E—L )w£Š±`™b¶b!—á6AæõF%2N@ªÄ¾LáT‚u妇M^|½¸ðGÜO>‰~¹¸ ¢¬Ë'•6{†Å¥\1ec1 fr‚2'ÁHe/›i°Á9xYp*Dz~8\½\ƒ·bçËE¸+öºèI™‹¢ Ñ…ˆy°h‹Éä1„5‘å±HSqäˆÀ°âœÖÇŒ8ÀbpQ<ËDÌf½/a6 0„)‚ŒüÉééIó²¯Ôé©j^ÂûcÔkü;cg7?àÿ!ûí8uûv§Ý>ƒ ¿ürÒü¶hÇo&+õN5¿½x©š·“?Wêý nɼo¿^OpcôarÒ<†É|µ”äù“æõdÙ®ãÉr“&ʵM.¦£gíŸêÁx-<ƒÞc¢ÑOc ÌXžÍç-´½Û$,ÁS–wæ/#Oš7ëóUùýëtþé¤yÖ..&‹2‹yßü³yÕ<gË6Æ’lfí`W Yc ðÐL1ëœ1ì¬ØôjþѾmUóBýôúr®¯&«Ñe»Ð¯/FËúz4þ„õÿ,Öê%«¤Kk´‡/ Ai.N’5ÒÌAX“åx4ßÄñB½+Y¿lìþû?x²f OrÚc†ùz6{p0œ½Œ†Óèï6šƒÕ’Cžd´uI¦ãhòQ;„Q·Ñ6MùÎ*÷au+’nÅØ­à¹V7"©y‰Äv‘ˆ¤Ò„’¤»b¥>>Äü6Ärµìª°»ª«ªP4njõV°}†j T/]˜É6(P¹°Éô€ è ‡³:ƒoìpxƒÔá‡Çù-Üv‡ƒH£Ê‡#¶ÂW’Ã> •f§…Uy¤V&;¸=¼÷؇¸³‡NãÃ!ó gâÉÛ9 g H¹yp{0Ã?öæ`÷°a8¨Y1I.¨! êÞê"EÁÃ]4G`QÙÁÙ´PPJئÒjxÔØÃ•~ºoË|{½š¶óe\LZè©å¨Ih5<&ƒš£¥Ð`ƒÄ„úV±N%¿ k¼Uѱ;ÜòÇ$–¿SÞâcË[i{­FâFpc6 ^AgdABU¥yE+}kWŠv{ð1Šv`4-Ǥ:}á–ÇÜpŒGûÇo}ýã}Áò–¢XW_…P…X…T…Êp¨2²U *TÍT5SÕLU3UÍT5SÕÌU3WÍ\5sÕ̽v@œ‚vådÀƒý¢­”:!'ph2|Б¯ÓùJ/®Fúz²jû­Ìr´Á!uà .ã€ï0Í[®¯®F‹¯‚¨ÇZn¬&Î;0ø§MiÎïs9]-W£Õ²_4–Ñü³ˆQ'9ÊC…÷r –’6ñ0ÃYL–Ó‹õhÖ7>9=Û¢‘L˜„oCËÌ/F‹‹§p—u#ÍŠ)ÃB·˜Ö“§ñçD:!…0øÉ!""R(£ÛD?Òl2ú<±íú)0 JkɉŸcXÇ£ƒð÷z\¶p¤U¿>„b¢¥ ì D§Ëiñ(ëù|2ëа19ïÝBñrø"‡Ô÷CYŒP~z†bmÔçà…& D¶eeïC2ŸOz‚ÞIÂwH2Š…?Šä|´þ}Ô³§MZμ+’v›é”?þ˜·‹«'ˆ!‹”b¥Ÿ"¯-ª5Á]ŒœRƒZ›®›³öIB:¢­B;Ã&¡ÍIào Þ+¼4ët¯¯Ö³§H{¥ÍóÈÀ LmÛ0¶í0­·“Ëž‰ÖGÚ#e$˜ŽùOGóqÏi†AdlÌ{4Ø" "~ ÍÙ«ç=×$Þœìˆc9»IG<;ä{3e•Ý›…¤ŸtU]º@‹8–#lÄÑûÝbÊZš³ÓÓ2Cs6–€æMóïׯäßOW«ëåß›æË—/õ5Åß®íï˜E·‹?ßi<9< ñ¼9øxãù½ÑŽ1:Òn£)!ÇSè:›||øG§óûG÷®ž¿í]½íÔ»:y×x·wuµtµÃtµÃtµÃtµÃtµÃtµÃô¦×÷g¦‚Ì®¶Õz0¬î£Ùî¤Þ¬çÓ«1„ŒÝÉBâ\' fWW=–#Çï¼CBÈòÙr'$Wû,ÀHY¨6; q wê„ãsï\Ö‡¨åmþncPp8¦Iàãv6›Î—6'?êwƒø@EDhc}EtÞ'1ð:#¬+"Ž.Ç}]/×—‚§Ç“RäåÍlÒòEºVÜ fíïyÁuô¥xÉÜžPpnÞ8ÙØq´Gï$Ç}ÝF;°T¶éiF³×ÉØ®£)h ]G3ÒŸ|»Òm´EY¥~ú{ëuö᪭J–{<þýöcg:~LòÝê)k¨§¬¡ž²†Z]C­®¡V×P«k¨Õ5ÔêjuUs¬šcÕ«æX5Ǫ9VͱjŽUs¬šSÕœªæT5§ª9UÍÛWù}£ª'ùnŒÒ¦ÇLÂQ³ hÅ_ýY­8,J›|ÁWq!1¥Áqx´)‘ü‡‰Òi#Iw’w8|†=R FÝÝáˆè]†G!ÄG>$­(ª©ÞK=ÃÖkÐÿÁK öÈ{/õ {8;<“tù\¸â@~/Sq8ôö‰öÙÆ‡Çv—ä›ã-—`ÄÃã°ÇÞ=\!Ÿqxæn”&ÚáÝÔ¡_Kq_ää ’üð8ä¼;ïÝÔìÁçg¸|”²ÃaI>k‡¼ÂËvŸ>ÊçUaøò ý™÷EŽì1ü¶°‡9ܾÊ1zÇÄÃg19·änÊݵéj¿Dâ`H endstream endobj 4100 0 obj << /Length 2608 /Filter /FlateDecode >> stream xÚå]sÛÆñÝ¿‚£—’3!àN:c'rìÔNS[iÒÎŽ$& Àà«Ê¯ïîíÀDsôÔŽîk±·ß»·”»Ø-ÜÅ÷/^ݾ¸~y‹ÄI"?ZÜnžë:"ˆÒóœH$‹Û|ñë²9¤NW«Ýþpý:”p‘DŽL@fýD"Ð —ñÛñúµƒ¯ÖBÆæ³µ/aSÐÇyÚ¦£¯'wÉÈIbß^UÛ¢®ÒrµöC—¾5³m“M³ºjÓ¢*ª­Û½šBëîx, •3@=ÜvU†×8ºÆÜ0ak/pB? òt™n.eæÓÊ —*kë†ÖwE»§ U¥fÚì1Rk4ã)¤ã&½á·åìÏè¶Ë ¥çÔ÷}Ç$³ÊzÓÝF«ö"fcoùO7tËzWd´á. [pPuÕœ{´1 ¬¶`ÔG•+o¹½ç}£=< Â̼Þò±IWµû”õ¾îÊy*×`ûIµ6…N[+ ÞLRàæ^$>–ßæÐø“¸ò|4¸œ˜^ÕWïß=Knæñø p|>ž›WÏAÍOﯞ ÑOcùþæÇ¿?O?½Žº×¾ëc0œñŒÀ‰NÎièšÅNËSX1!D×>`yÃm_% ²¡Ù˜Í¡¯ÏÓµ†5@ýÑVfÿþNAñRê?=‘£¢ê­I-|§ŠÝÃÙ——ZMp‚±ÏK¸èó’YØ Ì †dèí‡5ƒwÕø¥ÛâÀ•¦¹èñ5zÇÙ:΄ì‡KºSs¶Ú¼Ðƒ.(\­ÖP³˜ôZÀE%„n_BI¯i³×« {Ê´0WX¥-H>ÓtbŠ[œdu…ÒÌáÉ©hÇÔ“ŸKZjúÚ¼Ÿ BzL5…þcÞú¨¨$ç]?INU)½ÂH%·)<‚0\¾º'бÂÕ9§²8v¤×—Èë7WÌú:h!ô†jûŠî—U •ùº½?*ºÑhºeD¥…;aäyþö- 'Nàñ¡hRoðÅ¡r@@ñ}·/²ý$ê"5¶l +>£TåiÇPŒG“ˆe»ž^Jû¦d‚‘<ÒìTºU)ªPBí÷M^”ÀC/kê·jŸ>]ð1]TÁ}§j +>­˜ò-ò—­Òã§‚MöÞ¤MÛç]4*ßu,86ÌÁˆÌ?QS@ƽ> Ó’Q ôú‘÷ñâW¡S<Þì v+ÐõaÖ¯>ÚÜÀ#Æ‚"{ªé7×Þ,Õ'ˆgÇîå}`Ê :”Ì6ª½SXåã™K‰=—wLx‚ñžì³w'qv†q‡€K…+j"–dCûŒ°æ½“ðÏÜ:Vêqe™®ÝŒ²F=ÄœLáéè?§…M{YÛÕ›ô˜=îz¯s´Ú4Òä\p$Âó¬¦ÐŒ²Ï n—xœYἨ²²Ë•ÅÌH÷¼Q*Ž zN”n†í#LÊM $k.q¾M¹%c<ÇÌlš·ý}ûH¦|~ó)Š!×ömרãc’6‚• )èÂ:̇«ýišO/Ó´€h7Ô4®íû°×4n’{%÷¤é•·Üóª:EPszï± jø 4²º‘Áæ]nh¤0°âߪòž6eÙt­ÚIO¾¬3S®™Ü¾˜ÓªcÎïÚ´ó/RG(¡ÃPú$?Ø>iä`’°±Os£ÄO£t‘wiÉÉ'ÄÁ¯Þ©J-c1²G$³™[k°;ê Áx(¸›´mðȶm|C§mþ|K£­Ì÷Áºh¹5'Ü`ù³VÛŽ1lí…ZUºh £\¤{†Pú¡Å„'I?)gçà NFŒêÊ#š^‰È–ï`Ärþ2µ# ¶YLŸŸÿœæ»žã‰Aµ.‚’ P¶±©6œ  áDÓëÏ”$Hxž€¬\¤¿|»%‚ºÊ˜ú—©‘=Š›Ò . 7N&¾4ǃç:2NžF,ØäÈJï)kêÃÌO¯O¼C]×ñ½É;ô“j6µV—ÇùrùÜllRø_Ú£••,¸‘ã†r*‰F ý&u~1ù,|ÿX·ê‚Ø»¢ÕEo1f6$§¼a‡7©õa°ßdÄyW‚&³â`ñË”rð•}ê ¼9Ÿ/ë9°‰0>Ùn(Éva¯´‘Ó+DbpwbDØT­ qŒ?`,ô–3Þ,ðù웾ÞR×mÊÒ¶kø—‹S…̶À_ߘ6rðÿ=šºœD«ƒa%ÉF@…}5ùÀÚÛ—Z–½þ’Š<ð—eaêÝ€kqØ9ñ‹>êk¢lp ÂIÑ¢“§W[d––»º)ÚýAóo4où:¶ˆõC=ÊDsM°mæÔ¾]†V6@¡PäêÁÿ±ywç|¤y^ ÿõ&…èÛß~Ùÿeº¹}ñ_‹Þrc endstream endobj 4108 0 obj << /Length 2834 /Filter /FlateDecode >> stream xÚ½YY7~÷¯üà•w»Iö™À1<^¯ag²ûï¥æŒˆéCéòüë·ŠEö¡i^è¡É"‹G_UQÁên¬þùäÕÍ“o¢d•ùYÌãÕÍíŠ/Âx•0æÇ"[Ýä«ß×£d£%ê KäºR´Àqðò"'z¡ï‘ ¨×Õô5VüUù/Ý\kØàd7XÔ šž…!²u½mUóïMžÌügXÿÃ!ô?ÃDþg©Ÿµ$2.jÀEˆ ¸ð€ûl„Å“^ &d#7E6–®ïú̃¶·0”sãAˆñâg‘&ÂÞ?¦•gr'ø0§wXôðô14EâNöyñðÜO±txPSúWÕvJæsèkG~¸+Àù£»f&`ØhÀ)#û™AµÝe†¶Ñ*p›¦n¬4ÐŽ­ @„\øl¡¤?z‰N$@‹ºî¨eÜ"H¬~€0±wè-Ù;’åX¶)¤©Ü]²U‹Ò‡È™E¤&™‰fJáç§«#'5?bDž«[ø<ĪÚ,vç|º»à`™›?ÆK¼QÞnkeb¢‘‘¬ŸˆÓl.Yôkž&D}gp œœhG[‚¥êN4d fqè.n‰›8uˆ›@â¦BÅ/à Ì9ó2³ìÔËÎàeA͘vl%% Ð4a¾m_–²9ÙN  xºkýaÕI:òKÑ©“ \ j€mÁÍ1>?ôHüÐ}WTkÐeâ䆋]‘Éò‹ÐŠÞ ôe3†Š0lûºUváRB%n™b/â°ÕØ„ÕuF%@‡”Ä”0ó.¾ì]H>îñ fz€éÊ.l#ët‹JgK ny¢¿tî?åKà™Qœþ _‚âð¡/ñ ]çÀÞè­±Öâã^ïö423{è;³‡YÆì4š=1G-’¤ÆÞƒœ«®8ã©BqNBŠ-ø\ ˜@ãǽìHç(¼S²†Ôîm@'k«höÖZŒjLŠTþqÁ ²—›å¦~œ 0ålè!8 Ç$¼WggbÙ8ž‰ð?ý8LÎð_u¶ª¨Ïª Бnœ£ÏÔ‚>n|Ã@@c¿ƒV c¯à/=gUØ$}žòoT;ê\ß[îˆd†§~$œT_[L@Ëd`0õÕIAX,<@¤0à†þ…r*" k(X@«.½Q>--Pâi[»€´Ä£È2-¢0¥v‹/ùède‹‚QÙ&lw`ù-9˜m©­«]Ñ[.›ÀFcçöE§Á)FN¨((ut²œkoÇçÕ Ñ¶ª;*e·vyÆ… R÷­µ wDhëv°5ƒÖÚtåÈX:ÏCÍ`ºêš:ïwpäÓ£(6³6Îc_$éèk4÷¡ˆdíäî^Þ©Çp-~:æ‡{Uè<àC ù.'|–²³Ø×B¤$d.âf–µ#eæoÙX5g¶j΢IÖŽ=Š3Yô ¼ 3†— „%œçÍÈߨ³@pY´CqXf+l,çy¬YÄ/˜Ÿ‚Z‚uÒÅØçIöxªŽË,&‹¦’EÏ«ìËN4a‹¨`6ru80[Æ»3]Ø3IýtÄ`ƒ*8Q¿C:')›—ªÉ«:ÚI?'#úì`˜û:ùôêê©qû¥Ë‡PT0·’5»0€°ÆÎÂÚµêºåÊ‚4§Þ`6}sõtaC[ʇ“›‹"Š`< Bæ'ñtö@¸™˜E€%¾{`ý 0Œï—šVySØ G³¶ L)'@‡û–­í‰¾9ªJ8!äù€žyùÉšGå8ì¢Ô¡Ò7¥°„Iò =*÷SvŠÎ®çV^̬‚ÑZÏ‹þ€­«Žƒ9gS9Bß–'8`ÎÉ]za('¢´½ƒRÌWv;½|óËûë«%¯€;…ñÔ+\ Ûp>ÄcOˆò¾³§ˆ 6ŽJƒÝñæQvTfгî$]”ôÙÕ¾BtctY™ | ‘ù)âhƒV6äR#FðX\„bð¼@Ì¡§ Àw„bìY³†Ý VÐÚÕ¹mmÑ"ûÎNDbÙ¢Tø"fs]20îGAºœº›Õkúb–FZãÌOXüð¹r¦žÙ•µKJã ëòóE–u_Ù4Þ­·WS5>¢êîôÓ9ä11€b—¤â<:Ë‘fRIýðaTyý~1ªÀ\>˜ÁKð¶8\¿V͵.ë  Æ{/5>m!y¸véuk2“æ<£áÂ…L¬Y–Æ?æ€s|”=`&)¹ÝÓ½g0ó=;Ï„áÑͦ¦ý—dñöR„åi4‘êæ­ÊïÔ¹v©‹ a›5ÀMÅÐÌøÒâÈO"1OKÿÚ®/¨3²ÉB(Åßö Ö_ïö¥Î;¢O®ƒ]sšjúÏècY°– ¼W€ÊL“õ¿71”j·ï¶²wLÊ®- T/iæH<`ÑTïõý’pbî³ñõ+Ä¢p¸˜;N³ø’m‰`†b|åÙ¢\*Ü{‹F²¯ T­ôîÞ®N‡xöHóW1"Ó7½àïØÐõ»ïvƒkë{ï]]Ý—²ºè fuŸÑÇr  ¢íØN¾é!ãr.á]Äfx—@„“_tÙ—Ôqz_׿™aŽ| éó­lòuŸÑçf_—‡¶®žS~žb`ODaOòÿ„½WËB‰S¬dP&Y‚Ùl×èe®Ðe”Åe¦2Êè ü!è¯Ã< …“¸˜àY0'™¹Ã(6g6™+É~€K\½ún—PåA7”þc÷•<='>$èiœøÙr©Æþiÿ,Ev›à¢ &Ñt•_?|÷¥5‰bp÷ÒEU\¼ð0qÄ4Š[1<ˆ%grqAî{uóäÙ] endstream endobj 4116 0 obj << /Length 3551 /Filter /FlateDecode >> stream xÚ­ZK“ܶ¾ëWLùs*ˆHtJ?$ËŽåø¡rR§JÜ!w—‡“É›C~{ºÑ äpv×NjâÑh4º¿~`ÃÍÍ&Ü|ùä³7Ož½4r“‰Ì(³ys½‘a(td6‰”Âèló¦Øü3è¹85Õö_o¾~ö2N¼é:3"É2 f'ª,ÃIOB¦ï~7;m¤ˆ´ÙìT‹5MÿY©x6ÿÙK­=ꩈLêhÊá¶-žôå‹o¿ÿh…“ˆ(–nöó-ì7eSvy]ý»,°Cßïú!ª~¨ö4£„æ!ÚŽ>ãð‹²û±:´M•7´èO4ö×|ÿn+aI·Âà)vÆ Ãä/ÐLeð5Œ÷mƒ¼mvÌÎä˜Å11U01ƒ¼O©¥BÁ–òéL ›|'µHâôÖw¯_¯ÊJ e_VÀË¡,àÄ»SsU录t~·•qŸêr÷:oв¦^_h1 í§­ ƒªÜßWùi’=£’kgLB‘èøÿpHÔˆÕc&pL•=æ˜s=޹žüÑ# Ò…,iœÁIÐ vËÍK,i rüI‚¢ì÷]uª¶¡þöš†Û’:Þo\GWµ§ž:F¶zÜ:ÕA_–´æ³.oš 4–æ ¼S-¶;Ñ@û2º»t¡÷0¹)¨ái>(œ«5‘ &¥cüŸŠ²¹Úª08õ·Ð§¥›–yÓ~ÚJ)*ìù®¢YȨ֊ãÈ1jfËæ‚÷ÉÇÞ<Ë?£[ î¯Q¼™´›ù3þÁdLW¹KL|Û ß(Tp'ù€-I·ƒ]¯Êâ¦ì©ÓÓü¬zš’×}K=û¼®QÛˆVIoÝçÍž‰îÛñmÊfXÐý˜¾ÛÕ+yûy»¿í𵎼5V0í‡#?VEõn÷uÛ¼;œMÆOmÇnb[Žql3!¼=´,…®£ÕQ0?NDò»5–GØ)¼N‚òp¬º ¶ÄÏ4ø,¿CÛÏ a¤âî|?œ€Á;î-Ür°£–ºGò+ðÃ3ÒÉÂÖW™w:•¦¤SðK )8âOÒÊ”¹ÀÆ }°c†>–¨w))Öî1[ £â®½ÞÚœ¾_ã×?a*W¼^J^~ν^šÎÜiJWþz‚[jn蓤 þXÃPísÆ4è´˜¿Êêævè'Æe¯^Ð/Á4¾øæÞ3 ríJjürêíŒ&ìåC÷àž§~¨†[jçnœ¶ƒUUƒ'}ªQv=íóñ¦#Â×\¯-I:ÊÇÄ Üz¨pªï&‡°€™—Uc5Ö¡}Þ’fÄ Ê(z4¼5Ï…3|)à·•6ÿ øžÖ£ä-QGý\û-«Ÿ §¸"ÿ…‹Tó ‰BÚ2â&õrã\F32$k·˜NŸMk‰J2f"Xu<Éü†TÉ»‹ªOeÿtÕn­‡â°Œ:ðÞÓ‡Õ[­º±Ùv¥Ãè(@]ÅDË¿/XçÑßëÎ3ÒàÐv܃ˆÛ9qÃÈžÜv\•ÔQ5ûÜpA½æŽÁô¼¯¸n£¨YÌ¥"Q×FÁÂ~%ÖRJŒeÞm% Ò ádž&ø”vèáVë%ÿ$Ùi²ùýЙƒ¯°oP‡ƒñ}[Ÿ £|‘ýóö‚á·.›€{DéçF€ãÂLá绵ˆS¤Æ[ð¹¾#=ÖÉät&ô76Ó„I2q C¼>Õ;T˜‰X¥sA Õ±fû™éEìp#“qèàêŽX¨£ÅY¡ãïñصG@¹Á#]ÓZ°Pˆ§ºê7úD©W¢O×äI¢3³¬ˆ-¡åÆ73L¯Ð3"ŒÍ}׊P*7•ÁI£adÈÉ1BP’‰DFË`¤Aí¸CÙKÖœž>rþ…Û²P:Ì…ÆtqösôWuiW)+§RÜ89Í M&B†sC³Á™Ëþªj $#’Ášjjj+»syH8c”Œö‰^FFÁ{‚s>üˆA‘g^ 7]# MO”ÏÉÁm%Æ;”z•´Ä«Z‘’©ò…¤×ÐH •*·o;t6-¥©zíÂ@l4ùÁ^4­“tÖŠËK„®k o‘@Wò4ÿê—«üTP‹02se{ãüMÕ e·/ì*¾þ¼(\Zzî¢Ú1)‹ds Ù²Á!•×@€gš§øéWQ^ÊF3²òüå§ßüøb ê"‘ŒÓùt2\™ª¹ û´RM>†\°üY—Å öà,N=÷@€ÑyWpIþDºé°2@ÍÎ 2ŠD˜|ÁMNu¾()ÌKX€ÙXôwÍÿF»[a; äÜi%½VòÎQd‚¯7hï F!ØÄt“¸îXe "”úÇ ¦€ð™ÌuÆw±¸# ûm{ª j[o‰}%º07Ó|*eÝ%ü€ôw}E ŸN`4vM¿|f]Óæ–š‹Àõ_WWªQàø'pº!ayÏ6¤„`l&Ñ @Gô²³þ<ç²c Ið¡ô}“@YDpç Ömb˜‡,upl뻦=@Æñ¬Çd¥†Ù}ÙÜr?¡È.÷즡ƒ´öòà·ÌûÊæ±X6`ùþð—tj³c—ǵ°†cÜǺ™"P4Ø»Ø"Ë‚¿ßÚX †f1 |ç¼b '~ŠÓðRäh¤PÚ<"rœ ÐWl›l^²ž8É ^­Z`["ï5 inª›bìÂ^s×Üe^ +ÊYNÆØs«g”sðQ°v#]@‡$=`wh›¡k©š‚Ó,jûëüˆm%qïBGÙ½v§"Óò!û —öðÇ,Fê‚ÑCS|¿„>¸$z`<†ÛÚÑ|˜!J©-V¢Üj¸]ŽãûpœyÜ®<´xåÅŸ%‡ W~1³c£›\ èÍU_vä! ê÷ »\C–Â’ñž'wü{öíÁõ¾ 3c2f\<•0²xVÂp‹;çwOG˜¹žö“ÍuÉæ!91£Éß­=I%âdÔÆõ(‰,Â÷“Aõ_WµH¨)´ìËUR‘È¢h‘€Ø’Ò®´Cክ'áýÉ¥Q[$#³Èðfô€àà™Ö}jî[‚G[a®l©›¶íÝxSœ¸ˆD©‰o¾öêV ù¶bf –7°á_£‰©X Ñýív'ž‚µÔÓ—y·¿¥ö5=vëÈë¹ä±›ëçØtç2Xv„øeˉÛ>iÅ\÷†™~xAÿ<'!‰\ ¬ìŽûG)­8ÀÄ ¿_A\ðª #.ïózõ=)e¯À“v7üo¨>u==5áHw8­}¶pc¬ÚYÖo«]ÿë‰ÿe!:{8¦ÞKï_q—:•sÖôBþdôt…WPÙ‚…q¸®bÔLWU‚ybš{¯ºÀ†.býÉôðW”MK¯úÚýË“5[-uZËÇZè ÖÚE£_¡y§¦pK=z¨¬Øu YÖݱ…‘¾òžß8뜕P•—O€Cwâük|¯çHd6[ñ ˜ÀYn穟+Ä{o9áè'›ËqÞõy>”7m7ýûÁ"k;#÷âÍ“ÿýûti endstream endobj 4121 0 obj << /Length 3657 /Filter /FlateDecode >> stream xÚ½ÙrÜ6òÝ_1•‡õ¨ÖC 0®<$©xsínmâÚ<$[j†’sH™‡åë·Ýà5ÐHr¹Rz°Ñº}“Š7×›xóg_¼yöòub6Y”¥2ݼ¹Úˆ8Ž”N7Fˆ(UÙæÍaóóVÅñÅÿÞ|ûòu*f¨ÊŠ(–6rHí1†ºDÄg1ï¿Ú|§’$²ÒlvÒPÑÂ/ó¾¸ÉöºiË}^]ìdšlÍ¡hó¾iéñý…L¶y[æ—UÑhŸ×4¸,è·¬÷Õp(þ‰~û›bÚ‘7_æÓ¤cL©™ÒØHÆ#c°°#¬3RFIšx¤¼½v{=‹º¿‡€.?ºÓ@ dcÔfBÎ’„vøýBÄÛüî„”¢¼§Q~{Û6·Ày_TnÒl‰“ø0w0„µoãn¸'Wò#¼š¶Cù!`’=ÑoUÖ0çÆN„]䘈—Ôÿ»v\J-r[”ÀyKãCC¿, ù¼ 9”õ5ŽÕö˜×C^U<Óðê¡ãU9ýŒ7)·WM{*†÷Íu1ù;œ?JZ ‘Ý´¨œ4üutqùÀg”&ÚßëU¾G%<¯Ô´b!«¡Þ÷eƒBŒ3  ~ñz‡¾9âý¥`/âåÖMÏ3¬ïúp^îoòHB&q~}¯€Xò™9a°°2 Ë‘Ò2ù° ]¨#ˆnU¬¾Ðx"èVÑödgƱ†ÓWN}QXªe„“m?¯iÖiäùñ¶*–Ëʪ€5'|™t<<”WÈÝUѲM2†|C>Vó/@ñ€÷%ªïœ™”˜¹,ª÷úýì0ZÜæìVÓÙ­Â`àR ÚàÍEÝõx^|Ö|ÙԿı<õ¾ È75^Ž»HÕ}ðHžŽbÁ»"¶j{(HŠCÕ¿Ùó™0Ù\ÑoYJ䘜·ؾ)œ¬–} ârk4ù ˜'»ƒ7¢¢€8"ì›¶-ºÛ¦f£t ŽäQÆÛ æNVy'™hÒ5\æÓ¢i¸9úéz %oy²Mu¼ÁøP¢ê_âqZJ&«¼)+Þ•ˆÇ=5#v<âÑ"M9KÁþ¦Üuï¤5ÀÔš XC”aWô_’:ñ6ÇÛÏ;žçEyÒ«Á¸Ü-:läI¦@oµ÷¸]ч”H¢ÄHï£ËÏ>é? (šÊ"›ÈÇ”¼9ˆpãìøh¯q0t¿+s! ® Òr‚j˜Xo.v­Jqªä5†±[žïÊò]Yº+ð»À}À´óùN bž©HÈTÌ«ß2Šž¡hŒÛˆòQ˜·q›(±ãµ( ·EÁŒ9yÂï€Íñ…OL$´X:,¯ÝÆk·IVÚmFí6.Ǩ ±²#XÎ×!YÁü}²·—‰QVÇ—@¨žØÄË È ˜’çn³äa ­Î Üh8JìŠDÀ§´Ù{x±‚ýVT¯‚=&½Z®œC›üeæ-šÞ91ÖÃñÒ%&;rø…Û+1èèq–¾º§ÕfyWw]Ùù§Ð¥Q‘Ž“óËԨ¥”¢Ù=ð¯Tú°Ý«X2KœÚpöGp0ú}qëR±…8Oàžyù-D"ØŒ]©†8ÿzh1Á;6-ºL%0 €æ<¤µ ÅKù¶¾ÉC>2UŒg¶ŸÄ˜x"Å»ߎMU§‘+§—W@#$IY¼P¢d”Æ+W}ó¶û-H‰ŽÌÜ(\bVt!¶Nx.rÜ“t-·—wû:oûÁ‰€ÈȲl¶þÇòP¾¥Yç‹qðmS¿=º@S2 áöÆ5‰GTÛïjH»HÖD*3+þž´Ž “è€gÞSq•ÂRihÛÝD9Ìk¯ˆfˆ a¶ä€mÁÇô Í;~öòV;ÚØ±¼ %ƒ3Æ É$jKºp𣄑>L"6®Ê‚Qh ˆI‡ß …¥ÂáŽ@í À”Ûà°92¡ ¹%Õû„C( š™¡Ës‡Â8ßï›ÁQWN‘ {@U¹{xGW-Ì1<ô䜦A}ŽÓö~ÏSuÙK 7y̯‹ªC_¾ Í:æLá AýŽ <ŠccðŠCÑíaº`üE:F˜cºææQ¿î/ 7?»%àmŠE½À† )‰ÕöuY» ÉÿN©˜r8\Iõ5ÎáÖå–s ùá¦Ù=CùI:ÏãtL1B™1ƒ!çqŠU +;Cw!8vE /U¶e óæTFÏw„»†{àò–fò~Âqž‚ ^zŠ™¡HP ¨SÞ³"ÀÞPp†b‚tǬ¹¥9  &—ŒFG¹`zv_¦W@Ѷ-hÜAñQùí¥È7\ñ õì´Äi—‰Syßæû·%ªñ¶è¹¬¢4’±0<ì /[xБ"}{BÑ*—E+mä\‡k©0e?,L¡_®v¿ÄúˆÚõs,ô-ç¢8"§“Ø[€ÔÜïOˆÎçbr?,šÚçm[RK ¨øˆKž%¯„gr·¬2Ujû6*@oÇÀµñx%É*Ÿ¦(Aišu‚°ôhÍvåñÖ‘ °/›ýM›×Ï/ 0íB‰¥Í¢TÅÿ3;øŽÅ©(šóö޹Y¢}œN¦ð¤Æn!/¢V˜çÈY¥È B‘:T¯c©¬øN4·ÿ¼ãÇjù²ÃB íî@S·gö=atåŸÔ[Ô[R…7¶oŽZòoÅÍÒ¢õgP+RS´*>á’ϦîÑ-œDge¼;#höš(%vÂ"ó ,ÕÕèµA]y]—.¼æÎIˆ‹,P¨n¸¾æâáìó2ï¾ tn‡‚@“hº—“ Ü¡-£x;êe]4CǤýDµŽ§žxGÏ´—óÒÁ‡$ÇÓåõXj¯Ç­›Ð¥„¶‘šZ ¬±"Þ¤Qf”4vÅ`ÆdÐkȘÕf†³›ê<Òï½—§ÕlåÂÙö¤PvÚŸêQûa8iÊ4F-Oy±¹Á€U>e•Ÿã¯T •O'•OYåñwRùYsÌËüFWÔS^ß»sl©wl©Y\9NÌzô0Kèvlö¦×´06‡ëŒ 0æÆ—|äÊØÒ±ƒÃ†×Žæuoÿonl.Ð9c{zû¾ÙçèÚw?BXàPúO÷â\pâèäbͼo-gfæÃò;KY!õ<ƒÞ §a×ì04†ÙþZyÒ:" —Ñ+’ç~mÿ÷"[+ö7ýe>¸K€‰¿ÑÏ÷¿€jÜ}€ŸtåXù”>ñÌôöW|@´¨6á÷[cSê'¥AUáFË«;‚’Z ©+A±}(÷¬iðLa\'¾6Iœ²óª+ÚsœÊ1cä¤,¿.BU;G(ìØBè¥ЍŒ —ïè=@ÉïþF9?稇ˆSŽ:–Šˆ;罕˜íǸ\À ¶ëol•“¸7 õâ áúrfN³)ÏDâ™Hâ‘ þêtä¹o ƒå½ñù£ïÉ'ì“á÷zÖæ<\é—†zÜ:s‰5¿L½ 8jY›,uIXvá§c«çŽú³pC.éÔ šÌì´$JÕò´8tZjaáïÓ2÷Žø‰‡‰ÀF:Òi6?퀔`«L‡¤4?OFVdž$ñWò%ÿ:¾äÇàëS°(ÜOºýôtK¡"«ÆÞí}ûÉS9­¹[ Š»žB‚x2+ JÄÈÏ2µPÉÅq*0½‹a+û$q†N„°ëé‰s $‘ªæ>(…!H‘‰ÕCæD‰OºÀO‚ž$ÕAO²¤f~Ö+®>R™Ä,ãûéå1:è±´W?è´þu*›,Ч^1úòÐ.6²É¸É+Rn80`»°V‚Ê µ4Ý9‹Àœà»Ó(1é¹[Ë §ößʸ::$q;½·â4çÐýA³îUÓÃ’M>–d?D°ï´g‘DÝ9%ÝUO?E`'ûìD¶œ BÄédÕ@9)è RHPêè™_WA¿®Á¢nè§rÆ*$G6ºM$;ó¦ê”ºJ¾¥Ý Ýúñ!îQ‡ÝŒôgØ-)Ruˆ³„ný¾äSùº't›Ç°¥ÃÖã"÷cÙúH‘;pý îNåô.GU”Åò ‘;{’8ß#·ù€_…^K›FÂ8"¤ð ~£pòî6’zôƒdúI êyƒzµºîéÉÐ\¤èµkqžO„äBž«&‘€š}ž Qo+óŸ €?è}¹ä—Óòžþ•ÕQ’˜Õ›p h.NÐK¸ÉT¤÷Æ™È k¬0çTM¦:‚\gFGüœîÕ ]UNï ¯YqH6óF“+IEàÅ@OªnJ÷ªØ•Úø0–ÚˆŽa«*úžÛ6ëø 20Èl%±e0Ç ÏT‡øElöÌ¥“yr&+¶,ñ1SÝ©8ñʼühNõôý8 ̲¤ÿ´aþÓ»üúÞ!Þ°rßäoW/¾©ûæ$ÓÆjü™¾|¸Å Ö ìôC í…ˆNjD~ÃoøC_8a´œiò1QòhG¢F‚Ã6rIÎ}~]ûÊY™:¢ÅΑâ.’šL¾tD6#뻀IèÈÆIÀ$Vdi¨—æFA-Gú*%…/Í}MXòKºHœk‚rM†Ú¾Ò˜™k2ÔüD {f§®é«*{Ò53ÔvëýºYŸÌ˜<ÒPšµ°ì¢Tˆ­8ëð?ô‡ˆ{é¤k„/OD°ýÕ›gÿ»qtê endstream endobj 4128 0 obj << /Length 2150 /Filter /FlateDecode >> stream xÚÕYÝoÜ6Ï_±ð“çeDR¥yH çšCóÐÔ8hî+Ñ»ºh¥…>âúîo¿q¨]ÉZÇkÇ×,Š‘3¿ù䬿Ø,üÅß_}ýêõ»ˆ/–D"Z\ß,¸ï3D Å9‹d²¸Î¿yõN³®Ì—ÿºþÇëw¡:"—IÄT’Àf=¡ô9½òiÿÅJ*ÎÂ$^¬„‚¤%ËLYµf¹’‰ðÚ­T­.p(½²Û­Mm§«ûlR]eZ™›¥½O¾/ÒÜ”mcçóÒ~>l¹«2S¸µ´è²¼ÜŒN•c’ÖÔ©Ù·VN~ ‹Œ'ÜÉùÉçÒR©EÄ%c$Š˜Tr±â,HKçÏ@°@-Žh>ù!gH`Å>S2€-8KÂЮÿT¥ºÍ+Mpá}AÁuëuaœ’^ªimmìD³7iŽà˜Œ>ʵ]A±{ޤ<Öy³tNÂ$Í ßB0?ŽH×K{›nðÛC4±“™&­óµ;[¯«%oøGüľav9Ç‹Œ™ˆ’/+úÞûø¯}À<'ÌDÂ0:Âìo•°£Ã„œ-TLÄáA¹¨°ÜÐûÅP÷‡) ¼"àŸ¯ðJ<¼JL­‰Ï ¯XăÈÃæáIƹŸ0ƒç]s‡”…•G,ö'¦TcK”WTD^‘—Ÿí(oìR×ôØÁÌMUÛ©Õ›»Þwq¡÷]Ô¦è=£Ùæ{Kº6í­1åˆN RÃÜT‹0¥ËÌŠL\$¶q"ª]Õ!Þ8îC<·Fµ1¥ÉÛ;;ÕTø á;=F8œáGÁÜ#! b¹ sbBÐNþD. ¬FLø¥çâ3È…€LÑqFF7®5×$oY•«Ò Ón–€X›#pΉ‘®*·÷„¦¢¡ÓÉüëH° rdyêʬJ{{6 èEÊ±ÏøŽ”C @Kzs‘CfiA3P(X åÅSÀÞè¸Ò>Ýö ·½Ä! ³¾×µv¾Ýö‹ôôÜUµqß|^rß3íáŽ*Œ&Kã1hO, qã‘gš6ßQÀÇ÷}]­îò¢ÐO¼+K‚Œ½9r²wCÆÀ7´o n€s³ç5}´&ÂjÝê¼ìyËጺ—Ás +@EÞNÿžïº¾¨ù¶ª2K€ö0§O.Xt¨$v¦ÝVÙ›‹?Íé2 n޶ÝCž[Šuž¶&{&S¡7eêãÕ<[°ÇlQ^—LˆI0=(š’Í[Ê&ծ̭±QžMS¤GU»tÒ\hƒä3§S$É]¶ªÊ¬³à«¦éãt­î§kر¹½›‡RÙÄtÛÎàà ä©DéÄ&T¬)IQ6€QïDð¤d`_n·yº¥ùCf›âh [ ÷B‹[š@°‡’ øŽø_`£2„bJ½„ŠÙ.¡vÔEgF•¯{NˆÑûYÛo{•Knöo“¶4¾±Ï´ÐM3ƒ´’pöà')jç‚ ô‹K]8Ûœ',:ä4:?ð®{¹',ؘÆ=mEÞÐØÆ›ŠáÝ¢&$뢨ôÛa-­v{Hÿw#d&â@JÈ1ï’[î ‘ëÉWã`™0 'r%g+§  GöX×}ñÏäŽZñEwcÏZÓBüÕ5qf꺪OqsŸí3X£TúŸ/p‡z4sXÐ}ZˆD€bú"Ìnû³˜K«Â8˜½µ!û•­ßÀÙž€Mš³býøóÉžñÚ‡$¨ÿ²“à”ˆ TéV 4$f R[Ï~k…ƒPÝBuûýŸU wÇ8Cš¡š6W)%®Ã9¹†Rà÷‚~5rœ¯‘VwâÉ¡Ë]3Ž™Åžg.¨<†Ùñå# û€eÍÛ‹›[ü§ïæò‡à˜¼†Ûþ\‹Ò´8„Ô_Îm3*¿]etuõõríaH¥J˜âÁ4â²ó` »³€g)à\Sùüx\K옯¦í²Ü4£ª&;QÖèRwMþ”¨ý<&O%ã{R'Î~Ô°‘ ]º¡H; òÝKIó úã’žªÌñÎ(~­[(ÎWÑÏWÏÊù'<ã@9Dú󄟯öߪ2xÂá^¾—Öù‡?±÷âÜ$÷#'ûL{=`ÑКy?×ã°Ž-±hÔ›6Ö!!­Ž¨(%þb\Á,^Ôȵ~¼'¯,‡ì¸¯sÛ}:%«PL‡+ÿà(Ô ‚Q7™¼øŠ‚¹âÌWáXÃ?¾$È?Þ9a~Âgúާ@ÿr ‡Ì÷ñ%|I?ÞYÁѱdõm 9ü¿c,YN NfUYÜs÷Úä©.\DÕ­Ë«L·®äÊ´ïGž¬#òÆ?“ÚaÕ³ó¤iän¾ÛŽ?q’ s¿Æ°Ñ`_ž¿Å¯A(pè¡ßc»ÃÒµöÒ¶ï•JjÃ|Õµiµ3Í%¼†ê@?É8Õèݾ ·htå²_»¦³ŒÛXµÌ´Žíýì| Üä-ÃÜ<Þ¬4°"$õ³pDmká~3ÆÅj³wˆQ¤¥ýO ½˜ý÷Þ¾ÿáÒ~õ=’¦`1µ£CÓ¾ý»ÿu[ ?ÈN1éÊã¶5aLƼž_G0ÆÎ¸V?Y–cïÚ9©) öq›×“ÍÑ¡Gí½whƒ6Ä$ÃÏ«¡‡Ac‘ë2ÂìУ„¯¬oÇTK%'Û¥<áLâà¡_Z4¶]úõÆ)—àIjp:REâŠ~bdøKŠ˜ÅðåH£Ói—p Òñ­ÁA;îZêÊÒÅ?´ãÁ>ŽûößͶ¢¯®_ýI#’ endstream endobj 4170 0 obj << /Length 2770 /Filter /FlateDecode >> stream xÚÍZYܸ~÷¯˜§l7°ÍIÞ ÎYgÈC ”Z=£]½:lÏþúT±ŠºfÜÓÇ@°ðŠM‘b]üêcq¼›ûïæo~¸{sû.ˆn‘„*¼¹;ÝHÏÚo")E¨“›»ãÍ¿vÚSûßýåö](gCu,…§bøÔVF ußxü}÷¼}§õlæA‡ÚN=¨:5}À”糘¾’- E+·^ÞõEeúü¸?¨ÀÛu™)sjfM~Ú«`÷ÁóTVäußQs¢gÿÀ«æ˜—bµäRR^ó C¡c´ËÅFY»ÞÔGÓ²¨yÛ6í—dz*ü}Zî·¦Ü*bödKö¦/À¸Ù·ñü ³¦móîÜÔÇ¢¾'Q·(‰)‡¼ÛîȬeºUвÁ?å-I6C}ü¢¡j´Ñ1¯3î)ê>oYd6ï©i¿}Aµa³jÃùü®ÖÇ Ú{Ñ6ÛíýOçÿ²n·¦bCrl*ÖÛE_4µaçe^¡ö·«…Ï…sŸD6ù}õoyÿл/Б%ç""!=ISïÐ%ZÉØd(10µ"‡agïÞ¢wú~/wˆØÁ‘ŠMÓæ4 `¤wCLÍs‹{¤AŸŠþaú8I ÿ‰ø¦E©ù'¦Wa"¼Äwv´Ÿ¼dv[yøi¨34¶Ø¥v>Í´"±fD¾ æM"!“Œ%E°»‡f(QP#ø7ÔJQýÐßÝè9B¢€K'öÂ¥ Ñ ÇXªÊ´—´Ô±ðã‘•"d ¢P¸°ml²²¨`´ZÑ£YºKøZøa¼¶3/ÍÊÑ$ŸûÖd=Y dªöh~D¯CÑÿn(KLök»Á9BC ÇÑÒm~2›ªÂdMhfMu†”×5uGaá xYq—#x²ó±¹`ðÛF.6Ê◽ĽY<4 ÷µ0¶q_ízž’^ £Á.“ö¦¨Œ6ê¯vƒÇÚ†œëæ2P€ ^䜀&Õr÷Ï} (Sýãc!ˆœ¼Ø´”]îºì¦âqkC×s‰ËåÉ%hhZ7¶J‹Só(ps›ÓW#26R¦Iìa’~áàÑv±fÄP±âü]±0 ]³í{ñîGðóЊA;…]“ˆ¥Í?ã"úžhŠ›©Ã¥¡ä_˜òÜ™¡÷uþeeÏVhÌ–—6š/b­f>Ö~²»ÛG–¹Ù Ô.nõšµBÏšµ"n™.çñÖZ¡²”£ƒ±¬:¼lNë=ý®8ÛÐJ÷šã~a—Po´Ë•\îõ&.›F%"žPP8·‹Tý#àF‘A*º¥|FRªKÄßÒ)ÅÎ†Ž¹R[-— àL2\DõHøÑˆÂèÔ냵=pÔqƒé ª‚Ý;„`»Y@õ”X¨í6;¶‡:-\øHÖÉmçP ­ãÕ~FT`2ßå2’NDy<-‡‹LO)áËðµ–‹£C[Sl€\«ºô´ˆ@ÚEÐÝmIÀ2¡?I‘wÅqÀ {50|¿!Ù‹HŽ¡ÒŽe›—–’ÓR¥ô6++)TàÏ£.ãžž¬ nT.™…’ø {>Ñ[‚Ch8ÝŠßrî- !¯’d÷Ø8ǯŒ¡bõ4~-S×Ó! rì±0÷uÓ—aò -«ñrq/Ð<Ú·$gsä °…èg­P¾0ü14F‘»œc† ‘ò¤ Áx΋ÚÛÆñ´‹DŽ^,êæ‰ N8¸I £ÌroäÇlè$$#uÔFA<½ë$°/€B5-¯õ®Ì ¦â}‡¦†46tæ%Ûb‘ˆ$pìº,€çd·ä«ó1Hô1—(Ŧ| DqBNw˜ç³0ûŠ{Gý§żNC±áH Ö—„¬nðç(2ŽŒ`nµëÂK„?ÎÇâ"ðI>ß_Ÿ†Ó`ÁøÞ">È5ž9¡¢fîÀ‰ S5CÝSÛ2vE;Ëm\Þ%8¸±šû¼Î‹þÑ-°úÀù±©n«â³²ãÈÞ)Ï,uϳ¨Ì*¬©eB¼Ÿ“©eo4u¬…œòXæôÂ1VC”…É,ÊT¢¦(CÊ&³‘ràš ŠH‘·!H¼I6 éRa0éÜRñ®8²(Kï£ÀK&Ê”!\¶ŸU_®YçÍB-†ÏãYu^òÖÀÐo÷×=Xö»·iúA’PhìføÙØÃ«ÚËÆƒùJjB›É¯Šc«©daÅ~‘»E¯Hüd )£Öù×qÄ×®CÆþ&ë ¯€V¬RviÒ4¿žÂ¡Ë#¹‘ÍøÂSã®I)H.m-´¯æå¶ ä׈£Í—¡Hï\ÐA³©ËGjÑÞŸ%[蜒­Í’«µxÞ6Bªb)‚Ñ)¿þZ7mu™)„ZÄAð%Ulг«a€¡Vðæý§<__V6i‡D΂÷ }ÖT¹»Èu—êÆÕ}Ê</˜ÇÔÄGœ¶©¾ø+kZ7/{‚îÄu⸠´cÞöØkºÇªÊûö‘~¢=>=Ùý¬ ÷Ó!ùé±À 3]æÐ{{ çyHË"s§3œX˜ñÐî.à;©›7;´'_w0ÈþåÅ:1Œ÷ã×–À‰¦`~i­gN'Ñl ÊÙXʉ™¸Ó1X&Ûò‹ôcáË1¿€W€Gåõv¡6‰B“’<&]ZÁ›sí–.ân°ö/Âp±¤V¬m¨Ã⎚oªÊÒušò±+ºiÈõš+HzDœ‡ìâY]‰(–3ОѮ™´ÄVù?žˆÈ‰ûÃúºžªiù^dq[[ÚB¸È§ä €—{ /‡ ú3ÈnS— ð¶ˆ0:D“qÖ#=ÿ”×UAÍßÑã÷ÍÙP¡%Ù)OzLƒµ–tó­øVŒ9Ñó?TWÌòŽ…éŠûº°É«4ß={Ñþ‡»7ÿS›:± endstream endobj 4187 0 obj << /Length 3763 /Filter /FlateDecode >> stream xÚ¥ZY“ܶ~÷¯Ø‡”‹›Ú¡I‚g¥ô`%’%•e'–’<Äq‡Äì â1æ±òú×§/ð˜å¬VVÍ»ÑÝøº1ÞÕí•wõÝWÏßõÍËØ¿ÊÜ,â«÷‡+ßó\ÆW‰ï»±Ê®Þ—Wÿqº:wÇÆ\ÿ÷ý›o^FÉ¢¹Êb7É2Œ*Oa£¯<ÿj§’”ì‚:)nVäÍõ.È2g¯ñ›£ëŒ.™ÙŽs?šáȬá¨e\ø¹éU‡Ã3ùÓw°¥–[€¥«HÙ5 º_­él>¬ËOmãÃØƒi÷zF‘óæ÷YäáÚ÷œÜT»>?ë^ÞÏ^äíóž7:­ì.çâÏžTšYe—_û‘óQwÒ¤²SÝ÷¦‡A|fŠxR¬üjç™$>¾›E‘±­Oã@sFž3ö¦¹}ºŒâÈMãID‡¾yTD¡›…¡m ¢Q ˆwºÒ$*ž¿nK]õLóú ã…/J`˜–*Ç Ôçk¸a2©Z¯+šó±…‡è²ÿðlI¨A¹q€P#7R¢™/ñtZ<œ0÷&´hVL(`E—m×ßpËœ?ÅXU>˜ë rîp$-íõïà¨éœ¹)ªŒqµk(K•ñ’YeX}ÏõÏ%þ#(ÈÛÏ<ˆì·¡Ë‹¡–=³ž‹¦)ª±ü¥Q `ÒÝ¢Õ‡G5H ¤õÍÓç ÝÈ›Ìé®hï>9Kô¥³Tíí÷æÃ£‡¹iš~é<¥¾3ySèÇfR0SäéLß¾þëÓÝÐgM¢Ò©ßó'L¢¾t’c>ÜåÕøøÍ†nª‚yª]àp!”OŸ3ðÜ$Fø¨ÍíqxtJSÆÙÊ,¡E¼h± ýØãücìúQÊ-h‡õù_’^ ƺ±tû÷ÑÐÅ—Æäê‰xõîÆÊ"çÕ bEÎß¾—ºwo„@qñÝ‹þÁ”îÁç‘óår{àmøK¨\Ít?{*äVÉUìf‰J±Qä† =対8Ì`á$®Â]-ZålÅ^ù¸ˆ†¿EÕowh»š}[äÀnäÖ‰ž‚ÄØy›§B; =‘Hwí§Î­íðëhŠÐn¹¡Ø*Rä½Ê»;SUWŽŸ%É_˜|£›¦ãõG¾ó5Þåõ©o›¹uŒ÷5¡¨Ðy~ÏìR3º«á†»±è¢Õæ€=mŽ‹$#l¤fè_a2BËu2Ò²ïÆQÁB#k¨€}_é’%4mû… Ôhaƒ\Í^vžŽUøº«M“v¼GÝœõ(Žys«™iæIå4#—è“yèyD™ú´;PŸrîn^º:å9} ÊE:®Ùæ ÷N—=×ó'í{²PµXDFQÒbxÀÎÞÃµÆÆ&œ]Xg¸Zç¡kk^L Ä3°m‹Â(Ïš¾ç4‚ÈÈU„ ¿Î3õ(£5c½·Û&%‚‘¦E6VF>ï̃Ä;sƒ{2†di |ü¨~Ö1@}H¼*™Þ‹†ôã•#ÂèfàZV$ì½ U€Ïî­Š^7è«­¢Ä±ßI÷N]{Ûé¾—êµ™$ M¿„ÀUÒ2ñ;{fâÞó¬wðíA,¸É ¤ït·‡ æÙûŸþùbãУÌM’x¨Áà?62÷´˜¼êÛiâI!dãèlέà?£šÚ 2¦Å4©Ï-*2ð7fƒEûqz¾Ã-ÛÛ©0…`Ý_»ä{£«R"O=_rS\ÚIðcÖ'íY¨õ bˆÝ(~ qµ±ž°Á±Tq`j¿1²ŠÀ|'qµ'\ ivÞ5Ï|ÄÃ,=›sõ©íòÎT÷¬ÃŒ)²ÀõÀ»q\˜¡¡S²‹ƒîÈ(Ðó…‚ &_ ÷Ž (6(û±­J)“odž“ÑãÖè±M¿K£Ç6¬o(?|û“. Z(é?ž”ɹFg;7¦¶º¶ÚRDôvóAðm>Ö´c ÑÎð{ÙÎ’ TÞŸÃDšéYeúOhÈÇÀ5žÝ‰¤8{!’ZqQL æ]8Ô KÝ4ÉÎÂãŽOyÁZ»É熂SÓ'¤§ÒÍ-fP‹²GÞ`›Y …Ì haÅâFÆ::æ£Ú"k/Cäåÿká÷^¸\,uo:®S’ãh+mFáIç8Iws>*1´J•fóyK˜G‡¬«Y¹èóç# 5¦`Õ#D±D“¸H#HªH±Tåf€ñúÀSfíAðZ7‡ŠŸpÍhK®¯‚µ(@}hÉè¾|‹Ô|5áfÿo¬O ¡*ïÚ‘àTè ®P ” 2hX ¼/*鉣C×Û£ üƒ‘aa–(Šõ`w©‹Nçý4¿¬1`ÑmÜyV=1¸Àõ°‚iæ‘°L#!1{oáY€&Ï‚=ɳ\®çÂ(Ùì`¨Ý …<êêħ©ÝÔDŽƴDíÞº7\q[ž?àï’&g>íþB“­·5«ôc®,uþþ–¢å¦RÝÀÂàø-óVÁ!¶©@lt1AÁˆàXÛjJPbÅyˆÈãN>ƒBLúZu6ä8ÄÜ÷«?+µ{&ç±1]Û&2V‘µGË}.îþ,¨ò‚Ùî'7†…¼(Æ.g{aΨâÇ™«âpF<[—Ñ:MÅÚJ¹Ë~º„$ÝÉ¡ù£v¥sšÐ}›G€Ž*Ûq_iWŸú_<7ØÂþ» 92[I•´ÅÏ"+„x¶;äZ»Cº=pƒåŽüKb‰À“s#غ§Wé'+šh{û(ÇùJöm´–uì®/…\Všï[Y˜©µ,Ý·]fšßYiÕº4,cÎÑð­!P¾§$ö…s(ã 䃘wØt2øáϾä*-(¸¸Eo~§…’ûÂNãP´µå.^× Nž¬dŽ'û5p™ W6Œò/‘pœû4«z¤¼½¼*|N=G«Ä×Ö;ÜŒì–ï?ϧée( ôE¸k±¨öã8]Ï?ƒÀ*‰Àç2àB‰3B ˆ8j˜¹…»\›ážYËëÊ”À(ôiàò»7üøR†¿'@Ê…9U24•Lräöš^á–7äb>-Ó OÍyú0¯Á×`¦|7Šï$L ·`åŸíÓµQ8¯0.Ýït¼Ÿ#ÿòZqH^+˜!-W–°‘:O7Nã§æÊâÇRçS®,^¤Îiæq€k–KBRžHœò.¯w6¸õj: š¦Sæ…Ù$àu¦T6Vð`iä¼z[¾±4¾9„~ÂoØŽÞ`œ ?5 5kõJ‘oºÒ¯ÓÓJ:}À<ÄV†¼;ç̦Š3N¢À÷w8|ØU§‹]Å™ì z@B^ ä/ø]­_e‹î6LDz iŒ9LÄâœîßX;>lEˆ#Q4…Ô1¯î¦1QÃçÔ8r¾æÏœWmj|-‰[¸*r¸…eªœ?MÛì.ƼuMBL`¿ EI`H7[[!ÃU62D‚ð6„œ‚·‘ÅòBð6’4(ؤ%öÂJ HµŒ-@I’XšÍMW@ƒ83¦P‚±Ýýj‚Œçõmˆãvü.@0¹x¡P ù–N{t9F³Ë€³áˆéA–C Ö,¼Îô>SSL Dä ®I±H¿^š…Á¹°³ih£Òj+Ì\ÈsL"[ë„¥6ª)½ÔKjyAPUËm{¸ú%ÅHXåÆl }VÏDÒç5׉GäJfë²’bö¦Ñ¢ðÐò%Oø®5Í'²'™&Éò©9ó~UC@”Ú°¼••k/Ë'(žð%GþËEÓo¦PS¦dË£„¹°¼0pãd‰w=¶0¼nú±Óv…ùb­‚‚|×ËÎ^jÁÀhñŒGx ý‹A Qn³Â"¹—ÊGœË®{q:ã«-E»{WkSgŠ·RR{O¡ÂXlDSJõ áP–U·Ô˜Iå§Á1‹éyDkv!f„Òö³Ì³ŽŒ±ÁlR4flí”ßLyB†Ç¿h®ºlëÝ ·{æó_µˆä·?E³yuÿ»\8z×éJp=3ôúQ§w·¶ð-gPJ9õ#dÉ"/AQT¶~Ã„Šƒ%d ’±)–ÚüÆñÄzoTeÿ&tÓ<ú”ë.dÞÖ(~ €sHQ6)F çà=›p¡Ö9[X(¡QtfÏêà‰:xο®c(èâ8ìóQËhxæçEÖ÷Ø›Í϶ۓ'ÆVÞ Óþƒx=›15 kÌÇÛØ/ƒËv„ÿ?xgJóa÷¦m>ÔÆkybP¤wŒži ÐTL‰M`þOlÙMJÛ˜bó…Çú‚÷áíêÙ•þàG™3@ ”<ƒE˜~ú“…ìm<•ò¾ …\ªçCþ;’ž§è‰ü6É‹IÄø þqUœô,Ä4œÃ ‰1Cßw^ˆž½‹>—Èz,¨FŠw†½0§–®ü¾ ÝØ­6tH)ßµøåd!-”šíõ@>‹Y[3zñþ«ÿ>¬‘Ø endstream endobj 4216 0 obj << /Length 3520 /Filter /FlateDecode >> stream xÚ­ZIoä6¾÷¯(ø22àRK¤Öú0=Ig–,@b`ÉTU´‹c•T¥vÜ¿~ÞF•$Ë7ÔAä#Åå­ß{ªhs¿‰6ß¼yûæí‡4ß”a™©ls{·‰£(ÔI¶Éã8Ìt¹¹=l~t”\ÿ÷ö_o?dñdª.â0R,D“ºSʼno"Y±øVgš^Ùªˆš_ÚŠ/¢õäXJEak‘}Ûô][¿«­ë‰Ò¨¯ÚÆöï>âJ@Šy‘9ã’$LÒ‘!NÁ 57Û8 cðØx«¸”[a£ªñ>Ørg³·wOBæÇÇë8 ̾o;î·wüfµ“yV^èfåšq™…eêx2ý±=¬\DÇa^Ä~ZÕ]ÇEp?œLÓóâÈÞ‡7+[dq˜&SÀÉOöÆs_¼÷»=Ž^ýøõwß^Ý\}õírö%îu‘ø•q–p8I“0Uڂ–iÊã·Gxáå 68&Ly¦òÆd&ð¬áVu>×Ö¸cž× Mokn²zBTæ:ñ‚bŽ^ouYÂY¬ìퟧÖõõ“¬æÌÝPów(`$:{ÚÒí¢ùµ†ºê-lµÕI¸~8Xã¸óx4x°Ü ’ññ¦ÜE^×öá:0µ„Þ@ ,Þ!1ÉÊMÛsã~¨ºªé rßî[¦¯ñ€Gªæ0»MÆ·!îéX±è8 É ;8J?ô†Gƹ‹kðK<ôÕ·LX^†úcÕóà¡%–/$+çV КÏ3lo:`8ªÐ…‹öÊ*x7^Å­IlÊ,òLâ¶Î]‹+~´ñLÞ¿yŽ«MÇÐïÛ“ßöhû#·š¶Ùž[gçgUi¸êÊìý¢·†ªÙûEXÿùD»ÚÀÖvòþy'SÄãN–ŠÇ¥®ãWc¢÷ºæ×¡ªÇ ¯°å“éZô‰öv—ÀÛ½ãÆ£±÷Ç^Ú¶®¹µŸVLÝB¬Â,=·xŽx¥’°¼x³wÏ—˜G+®'Ç£ü6Q8 ]qkî wà›åè§ö`jñfƒ„¦ñn¤ɨª`ÓÈó(~¡îlüÛXÁ)Ê|n5´’ë"»‹sðG—5‘~Y“ÇÉ€^ñôÄY4º¶üÔ‚dIc|@%"ß³@…íéíÉþFªu˜ßߤ{ƒDµN`Í“YúÔõj¥0Œ=Wš†Y^\ü¼ä‘o x庠9aRè³Xx¢VÅ–\·“Y¤ê¸ñÐ ŠGª!–)-’¡^ü(4‰o0Hžúµ©œ4ÙÁØÅ&<5/¦ˆ!àTPõ‘Ç*~ÀÝXÔY‰z™_JçÁ©Â˜¡³à½_Û= é2Ø¡çzždûÅdX„,h;äƀù»ª{b2ù$x:Ò=žâiSåB:É™‡ƒ}——c‚.U ‘mEøb )ƒ“™«¨·¦ E*õZeH_V˜ž±.¤#Æ{°ç.šEÒ)s_ü¾HÖ6ûB1Y¸JˆE ó“ï o+J•,.œ$“Ï^UŒWäèõ| Ù¯ê;0ÌÙ2Û°P'ƨ™¶üÀ- ¥64 ä–ÁY Aelø¬øQ£ÏoLÕq·3 JÜÑž™²3ý£!ædJN ‘-ÜmnIëÇÂGÒ4Üumš¡Š[?p74{òa+jW }K1ô’\,p‹ @ÄšÏÎ2Y¤¥!,¦¦°xús”Þ&Žbk÷ä×;Ix'× ;4‡ 14vÏзèúL6¼r‹"Ì ŸÔ@ëí¿²µó†^)J¤bòN†Ù`‰¿Ð#à ~š®#á@S‚îø.è©sƒ9¢M‚¯LmzÖwZ6Æë1äò‡ay¯Üi)}0·»®=-„¿b™Õ’òXÊÛ¡öí r›'€kVáÔO¨hÖ½ià°²—¸×ƒ“¤ )é<»–<îô¸§3Ù0ÎtõÓ$-^Ìýu–*ob ù#dÆ*L"9à/J¥óI?oÓ(bÕG=šÄŸ([Â;œp±qR³Ã¶ÖcføÑ®%`¸Çc\Ój'¶âð Çè;S1Aªµ˜á §§Ù;yðд¸äcóÀ=»ÔÉ›‡¹àÚF°Q’pKçj¸|¸?""IÈàóÜUàȺãdº=ôx{h nIÐ5Â3¦À['gDÃ0¯K#%ym…B0ÎïÀ©Fâ“$8XþCLœÔcÅ$HÍÊL”á¶€=,a÷Žûlº%²©ë ì¶D"5hçà(ÒNæèd¬m(…±å7`Õb‹c…Çm (M{² ØÊÊöìõ8¨V”þ©xŽ®„©‹m¶˜Â>ñi²Œ:û‰¸ ͳÕÕ%¥úT¯{¬l!î ›v96šÍç\“€¸QøH™àBÈ¿O 2R€F7]_ñV€œ9SãÎ ãÐù÷/õc^KhÏ=¤ ÒqùêYе”©µ‡PãV+—œÈäÒ4è¬{àÖÁ NïXVaôFA³“àƒuêÿr CNÞG‰oûvû‰û´ëtR»±ANPóöÖø0€Ëó-`ήrþýE¨ÎÖ¯tŒz¿³µýÄÊ „ñ$•÷²Hdt¤•TÑv4õYF…rª|Í€ß1òÊè³y€¬žD'y¥Âˆã? û£÷ô>¿§èÚ^8wéÛ"L²b™^rü :u9AßÜ­ø1fho9e[$jeîÁçs¨—yÅÅŸ¶á>j޶­lî-é ‡n¤Ñ׺ĎRbGYøË]dB@Eq¥åÒqà@EËÄVwàÿP½ÁN3=úm¶÷MËf™zÜ—bʳgKîŸdZ³˜qI\°·š¸¨<£2ù¸‰õã3éqð7:73N‡líüFøSÀ’|!Is´-lÝ{ä,·ïd—©çª«N™Ès/idNœ2ÆŒÔoe/ô”Tú-ƒ'kj‰Vô2ŸtãˆÙU¿æ%؟䯮ótr‰\HŸGBZDBœ$Ñßë0às›KƒÐx¤úN4 B ä}‘ þê¿›ê|^ìûªë‡uW®_E‘öÕUPñÃÿ×sqûÓ¸–+)­ 6¥ÃRu/d㻫‡æX]­hPš„y9+ó^\vM¸.€Ï=t"µ%œÒ ; ª±% š_DÊÀ,/Â\-ÕNä-ä ÐH£%pI£gÀ¡ù±u—zåìÔ>+dîk˜ÓÍsyÁ,Àó~×Rñ§PÁÅ¥b_h†pàsŒþ0>‰þ0„߯ðÉ*Ãs€Ex(F€”æBÄ«e· âÇÕV‘¥¿ÖÔlù¥ï(‚<Žò¦ êLLÊDrPürî°žÀñË(¨Ñd`Úñ ’úm¬HÒ¾mãøÎpI{Å\8xê Ù=.ô¨‹ Z3¡@ß %“"f6…dø&û(ÜAžì䡱€¨¸¦‡¨ãúkÙz³ÇHo‚W¸ÅçÅš: 1̉ìÔ‰éb¹9L7Ƕ\&²;:á«X8}¶Œ3ɤ±Z¸Z›ÝàUçÞ)jòðm0`Ç4vt:_:X,>.,ê Ÿ?кõD•j÷v™@!ÖÝ_Ã’¶A&B ñ‡]Ë¢¼•žân¥“)îV°ó÷âô)îÅþ ÷â 3Ü‹3^À½´7×_)º¦XòŽøo¿OªcéÂtXR]~Ô¹CM]K…RÁZq!Õù®>–ðUu»§ƒoݾ¢º"ð‘MûfR^cú[â«|ž\}îÌäC36p&×xF Húd?yÁ„©> stream xÚ½[ÙnÉ}×WÔcòR¬}Œ¼@ÉÀ°ýÄðC‹jÉŒI¶†‹2ó÷9§Ø%Q‘HJr“€M{¹}ºê.çÞºr*)¡„SI mF˜h8°üà'¼óxR¹8‹¤ËÅA¤ 1ÈYdÏk2äh“Î02B›àxÌ íoÌNhoËu^è°„N†ÊQèðl­´0Z—³ #JÖ* c¢ãQgYa¼<æ„ ¹Üë…IÎr”…ÉR(Ê*[¤Œð²8æ…Õ)q¤…µ| ÖyJÑQXŸž¡°Áò)qs‡6oî ðr‡á^DzpÈcøé ŸkÈ—w3x…¨Ê1|$‡¹ÒwäÌgX%¼âB`î0J¼#dáæ›[#|ÐãA¸ÊTf6@[U,“xAQz ¯Ðü" hN"†ËQ\€ƒÄñ½QUœÒXS ƒ@ƒ¬ÇÓh€PJH´œ¢Y8‡¡)ó 3„mnƒ0ãmÁ›9Œ‰ÕƒÒH€Å`Ò M.¦EZØåÙ›7g£/Þ´bôv>ïVg£Ïë‹UùýÛdþãlô®[\¶‹¯ô êÛèï£_Gï¿êòãlô©¯ÄWëLX^k’ÌxºMAFè½µQ&£qÝ[ñæ}£¿u_:1ú þòéj.Û帙Žÿ*~ùå ÿÄ¡­Ì˜‹;Æà¸?9ø©à•îp(̇Ë'Ã}–ðeÂX'iñÆj©aÆy©R܉ãª[ÌÖÓf8 Fe¼8UVIxã´Œð|xlr§[夷´Ó$=ü­µAÂijÒ™—¬Ëññ.Bú'1úç¿þ-°Ò–>Ðà ð"óõtú­^|ÞÍWEî¹g°›»Îé5r/âÜa‚6?‚< @Äèã¢n_Œ>~8£/í+ñíá”|l®Û³Ñ{<©¯– mœ‡O|óe·^ŒÛå&|–cÿh/'Í»îQ&‹!$fƒ·ÿØ,p7CXÞ\X&z‰—PN<%’÷[®|„:ؼ߷ÖOC_àƒÒ’Ò:+ ¢íítzÔãð)J‡•«8|Òjwz‘ßþG‚}ÎÍ8¸;…8fC’Œr.)S„ûK»Ýÿl²ËO—Íò»\´ãå€î&Àÿ{Æ%ÉÝL²’Êo’ÁÅçênV“n> &°FIºæ)I„m¢Æ·†o»u÷zÑÞ ¸T1ÉH‚4±¥’ô üžøµ3S¼aÎ/õ†à׸Ëâ°ÚP/›íï½›LÜ$³‚׺If#Åó1é®ü ¾±™ÒˆÂ5œ ’´ÑÃø¢3§ãÎH²S¯Ö±Ï' öðM^’û)™™9i:#ÇœK‚÷à›v¶Û¾fíªßé•û¦ÿ€Š ËÂÜ‘¼Á=KæVÖÃЊù‡çº¢YwÙNÙ3àgÙÛ£‹A ÊÕ0*ÉTöÅ\…éƒ3O™ê–u¾Ú"uxl‘Ú½Þ"uO\˜ÎhÁ.”´žœ\Dyè;õ-틽ƒSkä³x>=: ¹<?xxzt*˜}v\)j¢ý)|øý¹÷á£óí©c$è¡§‘øÁÚƒù9½2ú ½Ê?¡WÕÁë4¤^9p7ƒP<ÖÏðÈeK­-D _¿[±šñª[ È+¸ ‡•Yg0úà…#·Ræ5¤®¨˜QGJšhÕ}ƒ÷!=¥WÛ ·­ˆT€Þo ¤|OÐ óLš,ù‘ò™ª|¦² ã‡õnZ²ìg|/4`Ðà‰L:‚QûÝ^åf1™¯äbÖÈõ|2$¡w ô‘…^89|g-Ü óð*ŽåcY–LŒMVÒ±"m“L{lt'œe¼$ ›'ºÇ¢1$½ØU?°–m;xè÷-gËÚ^mñq‰B‡ôz£°•{Ûj¶Z‡õuê ÖAªƒÜœªƒJ\•ìªdW%»*ÙUÉ®JvU²«’}•ì«d_%û*ÙWɾJöU²¯’}•ì«äP%‡*9TÉ=!*ïq¥N8o¥£iÆè LÔ}rS½7E™nÀQ…M:°åvW|—ëÙ¬YüI<ÖcBÈwX,¦Èsf?–«Éj¹jVËaÁhðÒ²ÇÚÀª¿C8çNè©Ë»Á4óî¶9 &¬Ês£ÏIî`ø´ÉM ¦¼j—GPšŠ(1Uuv©"(|Æ:ÙÝ*¼è.ÖÇ€cú2½…·p5¶/Ó[PxDº=&'9^ ¬ÄŽùK¾“”„S>„J¼j/VPà ÚN;JÜS‹¯–Ð8_a'–‹éúæJ“1ÜþíÑâ²õ{Í¢™·WG€cA‰¨¹Ç1IyCâd9Vôvírr¹n¦C»›kfÜÃáV“e¹ó¸¾ùe³¸<‚Yyh®¹Ÿ!CóŽÏA´¾l«\€!>[–¤àwjjg­çRîD4™_M×í|ÜÏ*òé{ßlµÙ»A8m›ÛVwëcLRDEæQ!¹”÷†t;¹V£ X5VŒý/Å!¨‘eJ´‰;Œ»ùÕQ¨Wq7·ÄðÅöŠ—š.‡¬ÉÍ0 p_‡ÜGÖï‘ í-€õ1}@$H ™T(ÙØÃPÖóy; 7X%z(^³*îBY4Hw¦Gá]ưQdz{¡L›‹‹v`$t|ÉÞCÉI²¡æ”‹fýŸfh]éëkKu‡°üþû¼[ÌŽŒDâ:M)-`Ò˜\â§ó»·’o¦ÝQœ/Ê`aØ ‘·&GgD÷}eŸîj2=B|bãûI/B¢Æ ¹uñ<"S)¼€Lm_|×C¥tççºcžC¦þ¯;æç{ÌVæ¹VO±¬Ú!®k‡¸®âºvˆëÚ!®k‡¸Î•eåʲúFÒoCq–X:¸™Àþ¦²ü0?–CvªË|:›Ì/†ÏÖÜ~¾+Æhï¥É»•–Ͷ³ ⇺ endstream endobj 4228 0 obj << /Length 3631 /Filter /FlateDecode >> stream xÚ­ZmoÜ6þž_aø“È2)ê%8.n›Ešôßõ×C¡ÕÊ»jô²•´qÜ_3œÑëj»=†(Š"‡óòÌ3Ôʋ݅¼øöÙõͳ¯}÷"‘¯ü‹›Û WJ¡=ÿ"p]áëèâf{ñ§.bq,³Õo¾ñÚ£á:òEE0™¨¥ÁAÏ$ϱÖAh¬U/i绪ÎÚ}ѬÖZENVò´HË6ÝrG‰×Ði÷)-ªõXF˜ËT·èö¶:´Y±$](\Ïtãqò1Þ¥´ÂÏÒHþDxQ£ÄÔ|ÿí³ÙŠ:J»ÝDû_?Nv9[Õ …ê…»­jZ·bßUÕÇ•+tý}š®”q>­\ã¤ÍóÇ‹m [¢,¾(Ž—çmšoÓz¥¤³ÆiÀdZ 7ð.Öà‘1ôÞi¼}¾Z+å;q¹}¼¨ž'¤ô»Õ‹xÛ<$«RÂuƒ‰¬ ³²bㇴÙSëÕ6£ê£Þ¯³:MZjHã:Ù§ Ýõ.†wy#ý´¿ã&[¿µÖ¸k«’W½?ðsë_Ùï¬ß®ÒSõ¤uóx¸ž0&ìvyLЬ¼}H+Z‰Pwߤ}7ZõúÌ7·»f£“‡Öò„ëd±µŠ « ÍqÓ@ ¥ëƪ7+wØï;a4ÅgØ+ü Ò†¡ƒ~qX ¦üü föay[WÅDZ߆|ïÕžp#wj6€„ ßwª[¼ò«ØÑÄ·JhÇèÈž^ÇõïYgë몾K-\Aﮎ·ÀMµMnûN‘¶ûjKí)ÚÁ@xýñHd|¡o¸¾î±ï¬Ž<ú}ü?gm„(£¦Ú`´}¤±Œ½ï“]Ñï✞÷GXy½•ß*ž´Ç.èsò *aýaNRÇyžæ0hK=)u“Y(É;ð¿ã;oÖׯ¿ý°¾¦îÁ×í­50»]ˆÀD¬gŸQmoÇ>Áö›¡œnìG–ý!}ø-G €¢dØL8$Fìm5à@À‚X­=¥œŸöiIdž0批+Û³öžîò¬üH­;PÑB:ÝHáÍ_»ºì¦º\Èî'€Æ5ž“TeÓÖqVZýÕ™?nÉ–FÛÌßVÔNËæX§Ô.«r]ZÛ­¾&ÉÅ.îŽy’’Jè¨ñŸ¥öhTpá‹(Ð!2ƒPÕ ~¶¼â™ähÐÚ…tBZJ2ßZbZ@e`%LÄ$êÊçÇ´Á”F{ˆºN Æv¬\ç ž抄 £©IH¹ï¾8&!û¤“¡H¡ ~B.¯œÍ=õlÓ[äAñ1oÑ«¤ç¼ÊÛ´.ãY^‡¡CÓ}VÒTí¾›>‰[ƒÚ‡O€3åBF=Ê4U^d*×2 gÌ º Sg,d#tŸ`ªß÷ýªsDÓÀÉg4ö thp¨ú­•9h³~po‘ÃpY:p-lBaÀ)ÐÐ;îú$ýobÈ~å.C°OŽÚÄu¥5 )VhÉQxÚ÷žÎÖ.£ôÎ{«(È@aŸ¤‘gl§}aÔÀòxñ’Ñ€{ù3£ J ®҅쫤pCqCd4|nK‚_hǦ¥Ö†{v#ý–Ôe@CTÑm²‡‘´Ýd Bk®€2‘ DN­)¤ û·cÕ¤@Pj©io34Oœó”UÙÖß`î,8×É›°ÑêFb³¤Ê׿&ÙÏR*tìø”ÅÔ8SðI(" ÐI° s¨FýÁ6õÊ Ý±°4 §Ç=§b'ž/,â»Âxál«Ÿ›À´s¶ üö~ÈÙ¶Q‹ 2 lcisU§L0‰àÕ&lX“LfJqöÕ/%måAue¼G@ÂÄ =2ðë“ÍYÍ]©3!¯!ƒwšÐ×ÚøÎO˜„–+\ Ôb ˜Ý&_¾Ü¦mš´_¡ŠPÚ3+ºx^8ñXb‰ó}6! K²O“ÔWq¹a±e°Óøp1ÏPžÊ€ÄæÝ|d0;’!ÅEH1§gE&ó*±ÌšEŒ‚Lrå„Ýþ£ÜÚõ=í$iÝÆ–mzP¯gur,š6† nèù`n¸5 ø€–„F\TGdt8Ý ôíA•u‰?¥À†. )0„‰÷6(Ÿš (Å ’F¬\ä³€Z‚Í k3*éŸ&Õ|Vˆ#PPJ}4¸ÎPÝ<žŽX§Ã’ ˆŒDŠœàbÓZë`˜w¾2I´¼ðéŒK[,bP’F̯»FE×mµÚmÛ÷"²Z®Xoê,²òÈM[+Âõw=Y‰+—hp,d:.$¡}–ìé9±häi¼.}¨+ЖýTN\º;¿³«ñÏÔjœÐb¶1λ²S† ha­š^C}`u–OR'Ù7‹A ø‡<Ë[âü°¨ï þ?ÅyMôÖŒµØ±P‡À?Œ= ̰ „P½”ÃU(Ü!!Óâ˧ ¿ÀþB¡ÆŸy>?jªÚZP;³{{(zVËqÝЃŠ;)„“¶êÜÒ•Âè~r€Èj;r ¡ª燊i¹k÷Kõ¢y§’a—B‹pèFkvxyQmӼᑜ¾Bql AcÒº®¨9öC§Ÿ+\t&bÕc_Þ´|¢‰w›{zœ«žv²¨Öw;Ìòð]Ú4Y\Ú`º @|`ÁFB¦€r©c_Ðaû9Nf™;œøºáSØ€¾»½õ÷$Ê>ïÈáàk¨°P >¦áÍzdà Õ¿ »ú¶õiÁ%!wCa7'Ìýy%ƒ7tÌ5ªEH,S¨PÎrê¶9Ë’"VŒàÄe«fRtÆÜ5bÛЋl»CxWY ä74ó°¹*#…ín{o_-Ò¨(zÒ1I²Ë}\ÚžÞy‰öIODóš©óheÎ[&;ÚbûÚÔžP -À[–Ø1‘sXpÏ ¢ïo»‰ÀKÈæüÙ@Êß6ˆäZ1’.Šñq“òÂaF™0/f†3,Z)áGþÌI¿jë%8Ón¿k?*`EÕ•PV?^ñ(oËeάð…§Ýë–ŠøU¦!2Ž3”Ó1Ë.¯d ô ;}sq½k¾(ûô¨Œ…&G€¨UÊû3_ ¡Âq½§…½7œ­ÂÞúzCÜÓLÏ«°#kÔu²ôƒsÙwdᾯ¾²çyçøxàÙŸÈÌJÕ1 ƒýÝ·©¨…ºô!À„ÑþÉÑõ‰ŒˆHW—‡:NŠøòœd`Ô^oT¼Îms>¤ Z@rövv%?¡?>|G4í® ÁÕ–èô iôcÚëË—xÚãü)6dÔÃzQÂoþÿ°41÷$ƒ1—¥†ì…iŒqj›Efgœ0€ó¿ÈÄÉP¹N5Za*Õ<ÿ7­åÓö<Ë">4†ŒNIÆÈ¡šc~°Ä¾é¿3hkºòç ·{“n’®±á§Sa{JnLyLŠç<Ú×Ãĩ».a›Ê•Ñ*DzNã¦*¡¼º_âC9à ä vIøäôT–6Çš`&á÷蛣–!\J'Ü8M\cºšÌ­HŽ=Âi¹œ€æ)´DƒŽxŒÖ,*¢òólÖ ŽÒD.e ¸îAóv—‘¤ýž~ÊŽ(÷øøqñÛóèS·•fî éÈí~&$;FÝ >ëŠuhÛDˆBÍŠuè¢YåX§Ó5Ž|‚€½UÑK)üМ '}±bJóu›Ú´£±›û 7î)96O òbRº[^9Ò¶í9ö´€„ŽŽ©>n%¥Ïù$o’:Û¤Éñ¦B-õÈìŽìŽ%çŽnî)@+ôÛ†´ ûŒWÈšæH7`zòm5Ä3e@–éÕÊàç‰}UcÆhºüÐàÙ_!˜(¨þšæ§U(*¿µòt0ôÏ•¢¤É¾ÝÄÇ”áªû¥æ<«¡‡o6¹û´ùžPn Pó+€¨¨êÝ_—r—ò åêÉ/¢žIXtGçæÂpD4üÜlß¶‡æå‹www¢[yµGË?ø»LÓ ¿Ëé? žhò››gÿ=9c endstream endobj 4236 0 obj << /Length 3201 /Filter /FlateDecode >> stream xÚ½ZMsÜ6½ûWè”âTe(|Ô¦vK’[N»,UrØìâPãRErìØ¿~»Ñ ‡” iìÝʉ ÐIôëî× ²ƒ›vðêÅÉå‹ÃŸ´=ÈÒÌspy}ÀK¥2–óÔÈìàruðïD2³øÏå›ÃŸ ŸˆJÇS&,ä…ÚMžnë _°°>,n&3–Ô¥°Ð)iâûòºlÜ%e]”ÝlþdÙK mŠ[À2¼Šb<ù}‘‰$¸Wþ*‚GÒ* ÍX™\Þ–$S4›«ªöûK¼¡Vñöºm6ÔZUÁµeÝYÔÃ_we[m /®wåRæF%œT  ±Egôð;•L¹±Oék)3ž -æ¸çlÿÃ'ŠãpŠã"û&Å Éì¡dŒ›¸¾ ,À2RWxÇ—e{Qmšºò“Ü&ïSß0è4$“É/yÕ®ÂØ¯)õ‘ TÖã}gÌ$…vŽ×b\U ¹àìr¾ŽêDœ8¾ï´©{ðuàc ®hîél¥Ë…Ö‰_-feL¥\‰¯×š!`jøñrª4k½Òœû6kuÂnÚ¥Pw”Ѿf æ-ET‚xËÔìæŠ„­$E ç)€5üœÄKÆcïS$ïÏìàý3˜£ ‚¿°llæÚG1ï¹ah§}¼#íÍÂDð«ÇlïV`ç1€(øuS€”›;x°ö¼ýL³wÁ»§!ÂoÙÞ|B¸}ìYLøgžOðGñó| ñgZ} ºWðý*J)¤„>‡Äë¼] üS²Œt™ä¿Z ¸\Þ6›»®ñöϧ€îWáøãhëšø#¬³®Oëê¶iV$=D[ºëºÞ‡LþTõAˆh(µËëeŒAxôE]¹ËþFJ©÷€™@À£˜G\ú^”×¼8;=Ãe!.Û%Ú zaR2? Ì𴣣㳗ˋ³spHÿ”)KOßþC,£ñÛf©áz4ý¶¾ñ¾MTô²³‘‚Å¡¹âÐ@ý*tÑKØxDmrzÎùmBæÎ÷! Žÿ¶:ê)¼ãñ“+–ù`€bƒÇöŒ2à´@pÌ{‚¹ÉtÕ—xŠ&@·ZŒNþ]÷™ò¬fÝ .o!„%O¶€ò¾Š© ˜ž–O†z“š]R–ɯõ”*¢/•fnöÒ9¯ÄLÇ”¨˜/=åü¥=_%!62˜'S‘Â’1}†µfž|Ð& µ‰Àµ‰7Áш M‘Ý£ñÑ*$NRËg-íÇÕ¶Óä™E©˜p©3zÿ8l¿¶´äU¡á›â°äà­9³&ƒ´‡q < VŒZf–ú1˰û¨ !Ô ‹Ð‹lLÈäíúU¡ë,« %¼ˆN¤ U> A>`ÂüM¨EøP(¦Þ )‹èèö®\ç3?ž\ ËÄÙ/+ª6á]Ohà¸ÈWå¦*È,„©s÷¢á;,-¦£¿ŸB¶ÞT¸`–…šVFãàÍ]Þ…®7­¾vc¡vÅŽ*fXGZ•‰@¨ÂB¨uG]´Ð9(´ç ÏýÊ&É„JLl¢„õj! ‘éú>4Dž&±íÕº*BÄŽ«*s×êïã¶"ÛËçeS£ÊL°*'cfž[r±WÅ”E{,S#Ô%Tò£$VB‚‡pR%?¦¡KReÂÐI¥s’ü%\ƒdZ–²¨Æ Šz~®¯LIõ Œ©,¢¯õA‘/ZâÛ”-•3Zšæ!„+_eÅE.üVzê R´^¬Ôˆ8÷ÅјðF\O­b&¤|ÛŽ0 óßæºPË +†ÆE~C)øÁ2¬0ógoò⥌B`”¡q‰Á`WbÐ&Ô!°{GNn~ö™aÀå·…L—Åm•ogÓ‡ "J;*‡ìtT ØÊfè\_±êHc옺ƒÑ$mÀ‡-ÐL¸S| 1Ï%±¼YµÚzÝWeÿ©,ëe×o!ûösVL놩kÒ÷Y“ E•=c)rBXÍïäütâ2†°ü°zM"¸«ÃúÀÜÿá0f²D¨™D] dúNØ'«ÖÎre9D!ç–\-a¥¨KÀÛ]ù ­-Kiü%FŽ’ÜZýÄù`KgjOæ¾êX]êØhh€û<{¨Ã$òq| ß7gHÞ_àÃeðGØ@$cRàƒNϤåYÙØK¦“³Í]ÛàæQQoEÓ{PAGs(ÚB#§ËH¢AlN¢a0Ìü@(##¢Ž‚ö:z\„× y䀧&‹Òf4×=|†Ó©uö9ŸÁ¿îx–ü{ðÂdÞg úý_|áè‘à*U&Ÿ1žþK¦è_”Lù=‘Éû…>ä«äd8$Vn ³OòϾ˜áaŸ?-Ê#:=‚Öà™ ŠÓ!@åüÄ ‹)8—hqçåá€äfáÀó1ÜÞ]mÏ3ÙY6¬Ÿ­í)•ZiöV¿ÝËH7=æUþÀPëo?äŠcYæâºÇ´ý^¼ ]n©¬,)þ5Rt÷ç ªrúÞ¡€ 1úLÆë®¬»mG!oËpO ‡Æ§²º¹ ,n¯=*ðW¨úúiçâê‡éþH®‘?.h”ÀV™¹Ž¿ÎþÝ8ÙRZ•oéÞ?@S¯èñ8¤Lí®`ô,JÜ^õª¯ SeéG‰~%† wø'8Ú”9%'õàO¶/_ü‚ÆÚ¿ endstream endobj 4245 0 obj << /Length 2798 /Filter /FlateDecode >> stream xÚµYkÓHýίh «YgDœzøQFË`XÔÝšÕj{…ÜN%1Ø?º ¿~î­[vì´“ÎŒvAPåªëzÜsîËagË3vööÉ««'³7?‹Ü(ÁÙÕâŒ3æJ/8 9w]ÍÏþã”›Øm²tòß«÷³7~Ø—Qà†Q‹AÉBzÂìúgS*#0!¼$Iì"næ:»™æ4ÕêÙd*¥r.]hwþ5‰„cú̹f>ŒEÐròaúe¯·ßÓlIÒz1¾³ÐIMoTéw]=ŸL=ŸÃ6Ù<ßìËU$¸Éçz]™E…óKFƒïì^çy¡Ë‰Ç{¸ö@¿M¸ˆàtpI¸à”ù>]êž/uòBÎЄ‘óÞ¥öµmáuÎx­³:Í4áÏç•‹w|F*ü>"2$üVÅW+ûÞ nw“ç·ô”/¨-'2tt¥cÓI&ÜwV4Sm³z¥«´¢Gx›:]ÇÓµŠs!˜ Úí "í«zîš̾r%÷‡) ÔgŽˆük!°@âà'ˆÜÃJ>sþ ŠaN^Þ>§É‹¦ªôzM“—ñRSï Þ'o²y\§y¶ƒ!pYÒ¦—é<½EÔ<îüjP“ˆ6ïóìvgvòý„;vþ“m-ÝDG7弤™*ÝkMý$Ï®AœØ‘4«uy‡×‰×8"œE^ÒÔ@»î¼`l` ¢Õïe W«ê4©Ú¥­‚­)8 ázž&H¤à A%¼]Õò ÞÛIxn¤:ÁGÖˆŒÅöçDRƒ )-ª‘½˜”½·C8hçVu]TÏg³yžºy¹œqæ‚§3ЫËE FvŸrṌùãðz^ðÚàë±°‡/¢íyLpqÖ‚ëÇÝPID§²¼ÖÔË3z‰À,ÓØ`Œ3@ÙÚ‘DšÑxi Ž œ NôÇœE©‘ÉËRWUKä=^Þ.mõ÷Λ2C‚ñˆ{ÇöUš«t¢`M;Ý£ÑCÍr?p}ù9|ÖAÏýSÈá·Ü`ÂQÂPCI5Æ Ø^î<Ê(5Ÿ½úå3¬ÅXF£$]ßãüD ?DÄ7V^8h|3Œ~2mgüþå‡nèÒš=ί4y¾Ô™Në- Y‚‹õY‚Æ`çQ?°Gƒ€×èÿ±s‘o Ý äIªá”¾ïXD.u™êŠf_qB)WùÇ)!•× øÞJˆ¿èQB¡ñÊ;H‰£Þþ̾ºÜ Âi¤ÂÀE¨À=x*r¿²¼’´ÞCí±ÃS–ÐAvx}ï!¬÷ÀIïóaÀX„Îg’|S*9<›H í>_¼}¯‚B–/yYÑsšu‹Þ¤Ù¨ë0©ÂΣY×ÕUÝÌè1†)ß C5hðEÜÛ#1 ó£Ó݆NqQ#< <$ ‡È4Æ’X²ó[Çb ø5Î îò ú Êʬ,½Mw€¸o¼€L>R¹8¹ŒíôÏíðo“t§“U}7]ʈ"”ÇÚ‡W:›÷f#碛ÉMÙD»Q;ók…|Û bÜ€äÈŽÿ³—.GÙ²L3#Ë¢4¥Ï溮ýŸ€•f{XûçvâG’¾Œ×1d«vð­]ƒÌÖ ÁâÔ«|Ž<†HXç$gù­éÉø.ìÜèú^ëlŠlÝÒОmÀe¨ÐIëjp5›ý4 YÖ1$_Û!…õµЇ´¿%ÒŃ|ÙøÐ]¾LvA×qp¨Pžláȃ\ uË{Vá›ä9M² KðXð˜E|-+H³xàš˜5ߣ㴖öuå™ä]Èlóe¨¹^¥1f®’|(EY¦Ì”2£â-‰ ÓÂvø#ziHê»J|F´QÒ (µ‚Abf(‚Õß5 ŽñÔ£Y×ù¼IL”o'ÌeM>¦Wñ] QŸS1ðx2{ÄÉì‘ì”À+{ôwŠü‘üKª1mD‘ ˜„„LŠcD‚ÂÙeÒ;…H„ÏŽH¡jÝ ³D `æuž’k*ôðoÔ˜Çà[†0uAÍ}Z¯h‚(a_¢R F ðàPIŽa°­§ÆqÇuw[æ’Ü€\ƒìËÔ«ù¢¾'‡2FÃl6:¹4“'…QÙ«Ì ÞÞhêí ð☿P g_«Ê½c2pS&GK3鹞¿—\€Z¨ÔÐÔTIbJ”#ΦMvÎCÏIn`îQ[QC‡À…N¼É› ?ûD’< Œí%]8dXíÁZìhuX…Vç Ü ˜QèØ†`éÒ~rÙKÄ(^äë|uÄr;fùãáŽÆ\wŸˆ’4n“÷¢Ü[ª Ñýý½{g@p!‘œ­Ó›™þ¦g ]'+·X³:^ßVφ/w;ľèxóecÀøRÇp‹ùb<‰b®?ÁÐ!ßê%B¾0YŒ}¸–,ô÷iÛ±²&Gö¥m-[D÷ÝÈs>ääz§œ&1ú˜G}*¹pðÑO/~èòè``-ÞÈ ¾÷%Í?–@ªTgmû®¿£—§Xzгô 2EUÈýQߺÌ;19ð|ƒÁ#<Åα¤î¥¼ îênÑfÖܹ¼–Ï’ˆ~ÔI܉õ‹wé|ŒËkéûÙ:µéu+¾™(æØUm$iSü*ó’ : ¿9—UTÀE¶€‹§(óDÏ›Ã Ž›œÆkpM4BTƒ!ä_Ù–q‘-ãp<ý†\Òóé AÃÎág ÝZëq¾‚7ò½®ÿ\m‰©­“1ˆXk%7<ÌSðæ’?ú±°#²øs9~+ ˜)þCï/òb(Œá!GÎg>JÆÁ9nŽ UÛïÆ/×U>øab×Â_W•øHÝ‹·OöÎÇ1à+m÷kÈf5Xnÿ“yv¯úe½'o Ù¡òUÏÍÝÑ…+w¾Ñzuˆ¯àzm×X u±º¨)YÄÇÔ†#*w”+˜r«ÈrÅþ&uþ-Æo}Õš [s5+^GâÑZOŸ>…jˆ1 2iÖ¦þÅÇu¾¤N™V·¶‡±¬¢¾)"Ìky .¡€ ØÜ‡*<]÷tg+£]]ÌÀέžÇ5IýcJ­ÆH™ Mnt\C{ñÃÅÅÏì¦é‹ºÈ+ûtO™^Ú§$}‘ìææð´›ƒ]âðŸ{“,ÑÒÛ“ÌW==x‘ç,Òš:16²-Õô¢ýVSMì6•¹)vM¶‡£;ó®Ñµº3 £î°³S>íeÞ­tšM=Ð]´‡þ$ðœºã7Agç?ü@C©EÌœÎhC/âf][Ý€³1mžéÐfm±]ëøN·o·ëäã§#AÔ¶©]÷.ÝSþ³‘¥ ú–‚C0ÌŠv-ƒëžJ䪆n\Ú']–&BÛþ)$ºý+äíq¹l6:³wÂàmŽCª3Ê@fÉ`±ŸØÖO{hÞëV!z·ÂѓǽHãŽBÞsʇ¢«ó¬ïâãNj-Õ¥€•NGáê±ck˜^+PÛUMQ¬·ûº=ˆYûZ'ÚºYJ:8‡zF uýžxàªß!ƒppò.íóµïÆöÉ˼€{ð¿f;©ä!ãÅ7aGâ›ukÕæj³I©o°bÓ'©jÜÌÿιÕ΃v~õä ±©C endstream endobj 4252 0 obj << /Length 1276 /Filter /FlateDecode >> stream xÚµXKoã6¾çWI&¨­èÛÚÖ—›zàÃÛ6 ¥QLT]’²×—þöò©—%Ù ¼9Ä´4ÙùføÍÐîämâN~»ùu}óøü´˜DN4÷ç“u:ñ\× ÂùdáyÎ<ˆ&ëdòõ>p—­|ž{ Ñ`é9®¿)!š#§,°¼qÍþÏA0Y y(5fÁÅ\,<÷éï9þÉ ÒbÎô›œ$é·Ì·ú!?£ ÞRÄ 5ÒºO.Ú0’•´D†8æeb¾¡"Ñ‚»r“áX¼#…~sD…¶'£‘Ì<׉ž¢*P¹ñOfO®{¿· až­â .mX3oìvæk‚8Z‰M ¾çDÞ¢ˆ,.ÞôU6$r™š—™yΉþd;ˆqz4·`ž¢šúïJ¯Vúã?ãŒO/ª£<áòÃ"ãÅQc–¤0؈ҷ2‡‚Æyy0G•£¢D&ˆ¤Ìs“˜$U´'Σ,#¶Uð(•Ü‚’t¨¨^’?Ì|)üËL+á22@áæJÐäÎ$ïV«ÝN¢-Iw¨Úµ1”q ’ÇH0Ä{ìUšÒ¤Ò½Ð$;2¹Äìx¹ÉZóÖ˜ê5Ù{â80~YbÔZº‹ŽÂŽƒ"†D±¢u­k¢r¬ >i^x N Cgø–„Ô-Ö pX:‘=[IêÆ¶’«…À¬…hx{{/,ö©B`-Eëñzp—áÊßZN|Q§î±á¡ò ím"Ê!"dÉN:ÚZ¸ØÆ°ã>¥˜Ú⊉hk8Æ‚¤Li2CອÉÕ†ó•ÿ)h»¯êsȱ ³µqÀ7˜Ën'ÁÔ:AE¥îHQ³’m#•ϧ»¥¶ö¥Ì¨'—3Úû›O‹´ÝÏ NoK7z´%÷i ý+6°·èåQÒ€«aD¢bùžx„Qа©ÍÉgò$„‘/~P$è5bú3Þ"*t%5JÙ=¢X¸æ-¢`%'*³"¤£Ñ$Å(·JœåÚÖ[oÀÚMåcxM0»îÕ\ݤ„v*Âô€™e?œ*6Îo€ŠÖÁí°¿ïÎß_¼£“HzöñЛŸë"•€¢hîÌ}ÇüÎ4P½JŽ@ÅÀ÷e%ÃÍÕ æJ,o•3·ϳ–•›7JÊ]ulEí°’ fù ƒ““]Ó4êŸ NÌì(ÙãØh[A&E"Á8WãV«?¡òo¿¶o@ñ¶›-³²;Ëe¾±Ã‡Ý•‰ ¶…ÒÚ³‡ƒN`l÷ºKlf¹HÊϽµƒàE“VŸ} ÅfÎÎ"¹A Lc´vMJ3q°`×1&nãyæ[{Ýhxr20Ô=a<Ý#<â  ‰®ÃPbk|UõŽÕª1ÉwÏY×&½šMs[9g]Í`ãîpÎ(ÐÍïÒ‹ÜVÛéiú#××Ö|1Øv®ö7ÊÌ ä¤`\\ˆêy´:'/¯Ÿ[a¾¼þÑÂâåuM8Ê:3jÚþ ©¢ vùpoOeBl¢Ô£N%¡ÿt ê‚}̇ìN+†²—˜*09ŸyÕŠPÍCj@GY,FLn9¬, ]^•Œ´«yµ—} Ž®ñð°Åœô›.Tû[‚¬r$¢%tGDf¡ËqcüÜü)Ñ~~^ßü˜Öw· endstream endobj 4256 0 obj << /Length 869 /Filter /FlateDecode >> stream xÚµWÝo›0ç¯@m¥6Ú Æ¤ñ²)™6išºå­í&LÂ8ÃNÒîaû°)ä«mšä!¶ó}üî|ö!}ª#ý£ö~¬uG®¥{¦çbWGº…i÷\½oY¦k{ú8Ôo®r6é`tµà¢s7þÜ9ýÆÛs;缒×F^Á¤!©¢;²m}Ün¯à6ìþ d7pˆ¶T@yÇpºzgTcž’[ä ‡ømµ^ªIHñáO.S*f,ôÏFÃ3à· Í Õ°é9Þšìóóój"f±$Mã¥úzýsÌIöJxÒº”…’Õ¯†Õ@& ÕôM5Ù$‡e(øÍ©ðkc|ÿŒ$‚æ´ ðSÌüh:sÈ–>©M!à‚¦DÄÁ†ÒÙ~Ù:ùêÜ’ùQ-V1¤w¶-Pî„ðpá³X.¹ÎŽt+dïÐK¶œÕ†› bSÊÚ>Úoo‰ Ò}zOÒyBÛEB(HRTƒD±ÀÁ¦É¶Jª2ª2æ„dSš‹0g«Œc„z{mŠbÑÒÏ„™ä²BV17hÑ@ð]Öx‡^[/¬;›F‹™„ˆ“´Vå?Ú;ÓÖ®»Ö‘¼ f4ø­üU_©ô™¢ŽÕ4(1œ,¹Š˜,¡‚,~àm5Ïi…©Ì’dtU:é+ä|z?ß(d9†kƉòa¡ì¬ÏÿÊY¡|N¥¥ð+uì èÚµÞˆtÜÞ‚;„ä"‹AÁÆr· Ÿä:.U>•;M¦×æÏ’ä1<¹”áÙò I®N ŠXCQÈOQ«~Ã3< ³Ö.HýéË@Ô†cífÁW¤[õóßr°iã¤ÚÍÒCøLÛè«’5Õ{Ð!ô{6Ìý»v]?ø×Dzǀ Ñc€n”Ù=?¶²½ht®ÓÚ…Mo`©>ãCüèKŒoý‰t5îx¸(¼Z–.&Xv‹iЊò)pgKβ\“ËvŠ(^V˯“_åu°/ŒMäY¯Áë?†ml endstream endobj 4262 0 obj << /Length 2206 /Filter /FlateDecode >> stream xÚÅYK“㶾ϯP­«©Š°Áçavìq%åÓî¸r°SeŠÄÌÐË‡Š¤æñïÓnP ‡Òì&•äD¨Ñh_¿!¹¹ßÈÍÏW?Ü^}¸‰’M&²8ˆ7·w%¥Ða¼I”±Î6·åæ·­VòúŸ·ÿp+U§‰:A–©ïö×܇y¯$oòcoÑέÚ 5­ýÑ E_ƪkg‹=!³C¦›ÊDH‹oŽmaWî‚0ÝŽ~“m·óŠiE §2=oçÓòfbËÛ’hE×þ.ePš¶04Uµ°þñ:ˆ¶y=Óï2’ð£#†/m‡³O¼cÎLóÝÒ-‰è«œ%'[ؾÚá¥á¢;=¸ìµš/»(`Œä¶»£ïø`hÐt¥©iXtæ%ã©‹Ê´öF@¿ëz^¼ÿÓŽê$u> ¤X­=xkú6f|èJ[ÈHØ„N⛽R¡ˆ€Â÷~¿ “N €ž8¶ÕŠ$ àÄÙ%A;†š[Æ[ÏË?áçÇÛO¿þtšßó~ªŠ‡7ßÿòÙM”Õ}5ë€Ù-£ÿbÍ㊠ kJ/‚…„óÃÿðZ¾rFоﯕÜÞë›—Œÿ £^Wß#“` >yëûþ×¹~¢„>)âÛîš÷‡‰ÐÁ#À^ SR$i6Ö<®ÉÒ ×HÍ"É9< fư1ä‹8Ki‰ ð_Í㵊¶€ š®Ž3›5t"·ÃÁÕÝ 1Òâ€ÅWí=qMQ|_›ùúãÀ„;'rÉ0öGÈPnõ$v` [‹þ˜ Lñ{üýD²+:¼Î"·`†ÈǾz¾Œ'ãBpr¾'‡øz4ëî¾*rÈE:ŒŠ0ö âÓ ÓÓLN´¡Éëz7äÍÁ¢E×÷†s¹åxèŽuIs{C´üp¨+ÃDÚ+²°¬D­ÿ*H~Œøw ‚b/}«ƒ'¨¤t»O rÓÃ<üôóÕæ7Ëtö$<È‹/˜si/‡)Œ÷L«-ç'âêiÓÉÏUh¦\TÁŠ*[£ÌŠ* ÌŠªoWÅ⯇¾³õ¥Å^Çvs4ˆ{ µNèêÚ·[$Z_j{löŽi%06NÞ¡Î 3ÌE== Fæ‚=î\®AÛ›áX#nZ&žžÖV“Ƕ4¥¸Þ…©Úþ !ãí±µGFpM ©IoKJ( !óäÇúZmG¢U¼)¾ùäáÓRÖÌ‘Þõ]sÑ (Ï|»!~ƒÉ7¬eANM]N]-?³vó3ñ,»¾½Í¸}àt7õ: Oñ}àøDŸsÞK8¶³8kMÃìô›Q ¹)jùB'!âÎ`%«¬õ Z¦Û}ÎŒ»%RÎfÈqe7¾ Íx© 9¬ƒ#¶o‰TtÍá8ÎÁ`Æ;Ö(gÖŠÙ3N8pý Wî¥ ŽØé(½¡½#×Iqøë©ªíê$†‰{–}Èû‘FnÛœ>÷¦5}ÎÛ>¡ÛtýØVSûG©íÂ#‚±írˆ9/ƒY½ÄØÐ&sS?Úb¥MŠ ùg"”æ`ZD i/D#³;öÆEÚÁñb3½§s…©BŠÔfRæ@Vð%³ÈT~Ùsz>úî©´NFˆ4A ¦P“*øVmY!Uy´P©p½C^J0X¤Xâ[¨s jÞZÀ6k7nyŽ~Ž»²p*ò:Ö8Пªñ„ò»Š…JZf =–TÐTp‚cÊ1PíJ5ć•27.ÈÍ—”|zCÚK¸ÂÃ0 w5¦ì8Ê0‰Ô†æ8ÔÆÛ®iùv¼µ@£ãà$RýooÖà€ù3p©Q<ݶY¹À¥etê3Ê58 lŸ0û@ ÞU­¡ŠV e¶aœ¼Ž$Z§µÃYǶî"gX!äêÅEfGÈ„'ÅÚäªS—ðS¯rH§9;@#¹ve¸’¾xçTè$;ݹí(Öú»ŽÝH•Éú8vÚ³Ì<[TÈ›R‹Lª9zØGW-Ü ¤Ž&r»FüLV˜&:0ÝêŽÉ#ú fÁ.Ø<#øitΆÒPÈ0ºhŠÐ*~…ª 8RÇGZÍ„%+› a¼9 ²x¨ zÏxñ3÷Å„""æž$p¹ˆî;tªÆðOhjÅ\_ˆÄ?:ßÓo÷Ø‚cJ-0€>¨ïž1SÖð ŠЦj1OŸ{ÔYÄ S—ÉŽ±š þY~åÍ0†~òfïEeEgQ¼ÉÉó#¹R®NÖqªfÏ?äâR¯ª’l诫ÙKU¬šª*ª’­ÒÁµðÎWq¨ÄZJ bÖèö}áµYCYšžbVû‘XÒy؃¡ÐŠ R.XˆÀqôF€ME¢ÃE¬ñOùñ×{íJ™ö±ev­b1`Çç–~Û:EÅ”­“Å3€e°Öƒe½C5iê´’¥Øw~˜¬ðÒ&îÁŽªCdz­Q÷8˜ܨá'pSk÷蹎ãäqæ…v1튿օtßݺœ á[Á ð‚:÷¢ñÇ_?©÷\îM(}X<Q„žºî±Ï§¾¼£/ˆ‘,æéŒ?HN&ÈmŸB×<:Iûf"8ƒ¤$³tBnPS¶}€¦%ç·c+F«Cî¬öf s-ߊBïú6ƒÇ·Üý9$1÷‚dƵËiÈkÁt¹Ùk•¦B¡â#ºßî:˜SváÍ#šzñF}é '„ÚuzÃÁh?ø¥w¡bñëþõ ·ƒH<5íB*ßCWЇ¯Jq»áü¥f—d™í‡×šèŸn¯þ2wg endstream endobj 4275 0 obj << /Length 2442 /Filter /FlateDecode >> stream xÚÍkÜ6î{~Å _âv¼–ß¾o× i^½fqz= [³£Ä9ËÞÍö×)R~Ìz7»i óÁ%ñ%’"9Þæzãm¾{ñíÕ‹Ë7±Ødnûñæê°žça¼I„pã Û\•›ÿ8]»ßúž3è~ûß«w—o¢dv"Èb7É2ÀgöBওØì‚$5v~‡Úv³õ#'ïTÞrW´[-@[Øœ9uÞwê3ŽS§=¬?JÔm)+‚­<àá_<Ï/”lzMp¥i+œi"u¯«,iaЪ¹^àÍœ_÷*×»N–Ca·UªÙ¡P Ðô’E !Ûßò^µÍËí.ˆ3'/?z+œ¾&têÚS«ÎöwøMoeUñ‘¦$ÐûâUn¤8tÕqGë¿x‘çƒ\ð´‘OdÎaè€ëŽ ¥Ä³7xRVíÉT -_mƒÈQ§¾mÖ!"""""óˆ~€[—é‚ô'fl±c†ÚÌYŠÈ\P n9âUà¢ýê¶–p’§E^U’ñ™›ÀÁ¯¯~ô_21T¬Ñê%_aÛm£Èqפ¹2Wéù¨à÷º“HX"#‚P±,Ûš&lèw=Ñ4É;9.7š,X#ÂÍôù÷½„»¹Ý `]õŒ!?1|Æ£`1F3¡ó†i­ˆa(¾Ï”q´ÏÉ’`Ø å¥ 9ŸzÛö`dÀÚKT”&àÕ6óþßÈQ'²“ÆçpZ* NGþŽ|^8Èœ[ÕyƒlÚZ5ææ\ÇÄõRç~@ê…ï¤s˜ÌUS«B¢ ýÐë8¶¼ŠNƒßŸ¹ÝÅ6æ_à4u` ¹™)ø“'¥ÔfI¢cà÷qÇ0FîGK7°^€ð¹ç¸ãYt܉_ê†^Jÿ7Wƒ\DIû=‹­xXdnÀAóï m÷eÑóø@ߢʵ&`û„" ] ¿P’¸]³Ë£ÌM’Øn „ÇîtFÖ„Vøæô©Àj˜¶ésÕÐ}FìÍ88´UÕbŒº׊¶>µ Æë¿-´q&ÂN›ù (R¸~ÆW³—}~vj!K»Yê[Yæg(¯¼3mŽ\›WÆ}”;&´±ûÌœ–Ogmöº’º«Ë;æTv]Û=ÄÝ}1žÏêo7yõtf1Zlöpëªø3™;=‹¹¢í:©Á¤ÊÑÄN;J+ÀážC>d„Ê­öO§Ïöm"ÐÞ·ƒ +ÊiP/%^ãQ ¼̬¶.Óý :¡†g5œNqnö_ïl_ÎC1ØÖ%¾ëîШÇt'n ñÍ›œ§“LÜ0 îS¬o%è»i8ž: M*gmaþTJª® ÑLÜÒ§EBy’3#i›3£îïNò¾ Wc:fºYDÿò^U€î/ÑA{rÛ0p¦ Çù˜iãe†çª09]ôļ T ²Q”GiÂ^`o(J&·ÇüÉ'ãÀõçGà¹"ö§«2R?vK z?MÎo‰­?ˆR× “åÅ\mýP4æØ--È\ |m©ÃÕÄ ·òa(X ª¶{ë=d-Ál^Z¬¤9Í!ŽIs0cÍÑ©§kŠe7Ü*oÚ›GÓÌ=°¨úûRIðO¨Ô¾¢ ¼*²ñÁÚW Ñ'Y(T1U;°EåkFìïvYTXätk=žÄõ¦øir,9µjK¡oé»g¨ìóÙS‘§¼æQ%›ks7Xîé³meÞ猡S×pýUuGóГ%¤áö@Ù ¥²ñ¾Ï„õ#7£ÃÎå}YS1ÆÇ¶[Ó<a8GEð¾`-ð!“ø¨ºÌ þ<<ÆyBÄ97 ºOÌb£û‚‰Ô¹¨ …˜©¡‰Ü@± À¦ ©?‹G¥ÓÌ:nFÛ_ö}õŠe8àþHf)Ù=Ä¥[UU4Ú3Dƒ»GâÇç b6öG5â3—ưCGæCä¬Ó=·›Â Ä:™+t$0ì!"õô„`íMJðj׳|Ù³]iè~(•yR ,¾S+Í‹Ô_¾ )r÷|`Ô}jú4•¢ò Ýxž´†Xm´ôIéý¸E1jȧ[Æ6ô-ö“ v“1ŒƒÌ_ϳ Â$r9p‹Ê§Ckï`ì†Iø¤2‹ª3ûä'FÄxK¸Lë(ĉÄQ¥Ìidâ |{»´Èèe.ùVǦÔÔÄ­SëÐLv`4®iÌ· £¡Y*@G µºeމ¶êïŽOÑŠ¾™Ów9õ’a¼Ï‹Oø {ty­"°Ò§9 ²8± ­P8o‡½Y ½µU²h8ùÓ‘z#’Ô» ä†!;HàÅÎ[¬Òø4)0-·€ÚÆø½–t¾;t˜À ŒMâ·=ô¦K CÓQ¤þ¢1šóÆž²æ`.7ÜߎdÄ‹{ˆ'tkÈ5>˜¼Áº{ßÁ‹rª¢êSÇÞŒðš2 C¯]u2Ÿx’®‘z½œ÷ n~Ÿß«¦1I(LIï°nõ.b«÷hl~g“›ÎègP“V…±OÖlõ°´ìؘïn­çjmÚO9)ò~‡± ¡š†Š—ÞtmÛˆÙÍØG`1·»Ú‚M@¸Vy­§Í¾çyÖômGð2:¨x'ˢʶxÎRûÐ'Îw¯_óì\ç€f̓î(âýCQë7µÖžzÎÏÔi6Ž‘ +JlßÏw^ÁÑUOç„ó„ššþø@¬ÖŒ âØsôÝÞôO -Í ¯»Qæ˜[ÂF¹ªX\ëšœ‹«Î¶JrDÂù Jõ‰øõJwmó©6¼”o&Âf½—90ŒY"X„*­kí¿YYò-»™¾ü†›Õ|—CFp‡…Ö±á˺Á¿ ¸ÀÁÔÈÄY“¶¾¬Õg£¨rG…ÀJ!ÜAadŽbö„B²BÔ%~rƒÂʲ`¤†ê\­ê}|{yivUó¿Ñ¸ \h`ª1¹‹2½îÔóšt3þ›à­,¯¥¾ Éô—ÆÞµÇFÛ—mÓkÙ{õÁë«ÿ5óÎŒ endstream endobj 4281 0 obj << /Length 3142 /Filter /FlateDecode >> stream xÚ¥ZÛrÛÈ}÷WèÉ«–ù`pÙJ¥"kíµ½Ò®c+Ùd³y€Hˆ‚L @ÚÖ~}NO(€Ѳ£r@ÏÓgúœPž,OäÉOž]>™½°éI.òD''—×'JJaâä$UJ$&?¹\œü;2JOþsùzö"Qƒª&K…4 :r•Úæj¢e´ë¶T÷‰ôC ÿdÐhÚ·šêFÃmO'-·7Mû»´²ÃjÔÉ ³Ñd³“©ÊDšjîæ×I&£fu½œØ¨¨—“©F·ÿ˜$2ªÊùÍöªØ•-i~%cæV˜L÷oôç®þº.·ÅuÓN7ms[η¢i—á–ã©èXXôå›~ÇÓ) ò¤Åìýí[z‰Ñ˜±È3Õ·»Ùn7Ý÷³ÙÇE?òdŠ †?\ÞÑ4,ºSyß-¤ð³{!OE¦,¼ˆ4÷^x[^c}T•õ¼ì¾Ê¾‡gåjõV8µÑ[AW]oxêŸçgÅõDÛ躽›$6ò¥?øê/È…þžœ¤¥ÔüSÓ³ªè¸°-»ù¶jj~¬üµÛõ¢hüT¶mÓúXJ¾YUuY´}/e£e[vݾ«Õö†^/<Å.È­å—[ïVÛjŠ–ådªrŒU¬7«²ó œØÁÂd±Ðr†w»öC912ºã†% ¾hVÍDÉhy€S¦„JíM.ÜîÐY Üí¯{$ðBÒzK©$ÿ]ëDe=>F˜´‰0I¥²R`¶ó¢˹˜³ZÍÊz6/¶ÅªYîÊ™ÒS)ÕôŸä8üË¥ ÍmªM"´2Xáá ãΊuÙ65MÑ&Ñ©àë™ðBµÑEµZ§±tر)cçþʸQ¶Ç ÀvÊ%›¶f5eû§ Û—»jQò Û†Mó"†AH›B›+«jlÚ$!×›D‹<ÏúÅ{MXovm]¬¨¦}ù[Í5Ç¥—»uQóíÛ²C³‰I#¿!¢EGÈ °ôáî‘ÁøF¥„“ê BÅãä!‹¦¢5S “d³Û›0Z ³ (\%=Rîëy5Oûbïb0Æ>,›»‰ªöIÀ3ÒLüPïîj,‚Õ@c1†©¦:ÿ’¸ÚƒPúq«‹me\ÔJ‚(›Äòo"Ó³Û¶[‹ ˆŒ‚²ÔùŠvW÷‚!üÍïèT´ùŒ.L¢KÇ(»*o ‚‡ʉcК‹—(YŸªõn=]U>ÚV7M³à²½¯¸Én¹¤F¼à†â`½pz«óC¿ªCÒÚ!?‰¼¸ö´‰Û§|yíKF´‰ç/ÒfŒa²äaÚDîqeÚÄÍ6ñ MX‡´Iø h“™ÒOaôÆÌ¥ßÄ—J¤è*H˜Z+¢Ð`¿ÿ?ÜØ6ÒéçKЧðþONaËè_û EÖ§dTÑo*ÞùN8¡ŽgÓÄOØÂtÞÔËj»ƒ‹› 2W/zòpö]WQžO·Ë¢oòG¹àš}žG…ëfQ®‚±å‰ÏªA®­Þ¡]½—>^s§æ1䤚[9nÒAÅCqgæhäÈÍìÊÍ–Qc‚š["¹“½(æ?UuíX$þh»!NE? oxÊÏ¿ÞTÛÒ™’襯ãا[i c\–#Óù@/Qµ^"»×KáƒKïcÀŠ9‡îªõ¦õÝàdÍYó`ò\‡Sw¾GíMÙn«0÷h• u¿ÛF(ö“®ÏñJ yt¤R©cØI…Ñ÷Â&ÿag62Òº|My[/±ÛȃE ¢H%3idŒõOiSJölŽ„:›†²89†ÒH¯IzàÎÕaZ#”¾[«—öÑàîbq q²::6ðÙ nF™8ž¤ úI—|¯ªq/oº;Výqχì1‰‘!¥zt Ðòkœí’ó”¾%9GTOgXIJÃD‚)æêˆo!œ½•îlFåqô†Mny÷ѦU÷‡|’£ ÕzйfDL†‰Š™ñ@ è"¤·ÑF¤+…úÖzvÌÚ¬B¡„B¥ø©Ýó ²¾!Ô¨h 5²Ô0Ímdªüõ‘XÓF ›p~…n\~…¹<_ìæEŸ RgW¸yçÔFêGßëC‚ãso$U™}4^ãGá5à5‘±ÓÄ&~¯öØaÂ'®i’C((›Hdy˜ÜR‘ƒ¢G¨}W-ª÷%S’+þ†Í$Oõ{ˆIot´‡œõgÁ¥þºhfS:I¤’ºa*ÑNø‘值P2 ET£ªÙÞÂ{Íšm÷QÇ…9!”~MÈ-TšÁDo:Co67E».æåΟî¸üé@°æÂõèé`üBì iÊ´Ó>™É<ÎŽF´LÍž½zƒ¾¤LÒüºÈÆzœ=õð Žpð ¡´#ÓxÑ%!î½taŽsëìÔhDPxfnCÕ®Òdp°èµï1Úò)øY³Þì¶û˜qà`÷ü”/?8iMwÇÎeÀiöè”ùÁÓf=R¾Ãp¯âófü$‘*DãòÂåVÌ»E!hÏ „èÒ ¬Ö$ѽ´¥¿—㓾ýáIâö?•Óµà„/&yè(Ð!Áíñ _UëŽLèžï88ñÀ X8›4iºß×ʬYþ%–Ø»8΂xÀrx(|IÕ¸8•#5qø.‰=4{·Ó×—Á™Ü>ŸŽ͈$Þƒý´»[Ca¹µûáSlÞÜt¢v¿²À@8Äbv÷{Ìçî¿´+ ~‚/οç›Óy±(×ýˆÃ„]ë y„>xIÊ¿«Õª*Öî°QÅü}Vúf>‹£Ø¹×büÑ 5˜êèÎ…,\G*\~nô6 r¨Áë ÇŸÕæMÛ–«bK)•=t mâ ©ï^ô)z¨b$¾Iz £S“+¡­ï›|í÷±$v<ë~“DZÕÔÄêÅ,‰Gt+>…Л Gy³ÛÀ§,±Ìáqˆi÷Ñ<;<NPrÖÔîó9‹ÝtH/t¬G­XÊ‚Ñøâ¿•¡À“õø¬›iRô¾X†?Šbä8˺)i ÏõÂÒµO¼Þ5×Û|\–*E¦+óG«Y“|möåˆ*©Xƒˆô1¿g ¸Ù-öëiQÉð! „rlíxÿvãÝœ™^NÀTŽ•z%¢úe˜Øœ‹ŠÍ¦m>¹[2˜è%ö3Bs=Ê/õ”9…ÊØ°z™{áÒ¦.§‰WŠ;®uqúó/÷…Äðôéô/›ÒSa`xy\ˆJóe!:L­¿êð¾÷­RßäÛX›dÖÜv‚\!´BnüÍóË'ÿ½Þ‚¤ endstream endobj 4289 0 obj << /Length 1008 /Filter /FlateDecode >> stream xÚíVKoã6¾ûWè¡`Ñ|éU4‡,š]4 ´ÅÆí¡M´D[êÊ¢!ÑNûÛw(J²œv Û=ÔLr4œ×7ßXØÙ8Øy7{³œ-Þ†ÄIPÒÐY®‚1b”0 «¢ U‰ÒóI‚Ý[®Ú׃ÀäcÖëì *poOwZèÂÒØ³¨º¿Ô+±*JäsL(ŽIß¼S G*˜õ dÂGIL|Š©›ÜSRÞ•„±±ËÅ8îõs­wÍw‹E¦ ¤êÍ‚`D8'É¢øK4;t E Ž'âòi ¨šÏ0¸ë–; R€îºlÔI{Wø¢Ø©ÍÑn?¼›=‰‘Ä Ä yÙ¾Þ ´¯ŠƒO»;B ó>-U~‰·Ådà…ñµ=œuE£CÅ× º’rî®÷Ujº§1ÇÀÕÊŠï1¦Ún·*“eÓiÛkûinei Ì…& û#*·Ï´e•¹ÑöW«¯*c=“ЋVRTý}Ûâqˆ8N;ü`ºZ´qP©¨ìfÕ!§VZ]34…¹fŒ÷Íßb»+ÇÓPŸ®mÙc0òä@îâúæ?mözò?½}Ï0¤¬vv— -ìn]«­Ý½y'kíÿP«ƒ¥‘ImWQ"»±£s3ú¬*¯lÅ"2J’B_†xh®oBU8âñиÑ„ÂÆ³F:`#§PR P'GkmtßûCÂheÌÚüLg‹µ.:5´Úúr½–©îêÒ6t}츖ͩc`•©Ùc1·çC¿1\ÁO[ɱ¥øhé\|ûFv¨Zòâ´¤± ¬emÙц+u®²f2àö– ÎO,^Ù8¸óQô.ž4UûÏÖÙ\ÝA%ZÒÉN¤ÅFþû æÏ-^-?üzs1ØRVøµÜ€õ׫aº*pe—Ov)eµÑùÿÀy࿆Áúþµ€1¹SûR5ãAJÈåA õÁ…9Ê.ÏÑàü¥1 9;mÅÉ1úñ4“Ä Y·/uQʰìu+¼®LóÐZžbbWëºtàíµ.R½hÒ\©òA“¯† }à_š¦ñËCû¯Éúì-ìf9û lÕª endstream endobj 4297 0 obj << /Length 1212 /Filter /FlateDecode >> stream xÚ­WKsÛ6¾ëWpìƒÅ© |Ó:M&vgzH§±ìÒ( ’Ø‚ ’’3“éoï R¤D©Ž§>.v¿ýöÈ6–†mü2z7ÝÜû¡“8pcº0¨m× ŒR¸±1ŸÆ.õÌÏÓ_oîÚõl—xžŠ”PɤÌÈÖªoî]׈@8ð¤°åF¾’¶œ6]gùn!9s½H!—£(Rl%ž¯ŽÜzRc(•há ÿà`ãð¼®R^0}F@,d#8>¥åpñ ˆI’듘\“‹ÇLJ¾œã§Mn KðLš¶³`‚µ‰Y0Ò¼4£NI†D›?Ml•G Oi¬t̶–@íìÜeé w6Iú%Y²Wáº>V:™~|¼;“XÿÛŸº]¿GÌØmï*Ï‹I‡FZŒ>}¶9|$Ä#c§D ã²÷ËÖž£ßÛ[êpT"´óÎ…5<×!^œ¸ë¿wÄ!qD›Kâî¹&õljltޝƒ#'˜Ó ÇsܹÂôü14 -÷¸UàêÊt|YbW¸ümöK«ò 9ŽMœï#_ÁÀ«ÀBQýzÏÊTdÕ»lìYé¿,"H¶˜•êô}½N±™*J8ŽL|sU"Wš'&-? 7\“‹Žiž”e{Oïñ8.€ š ]¥(ÕCíx$¶[)¢%ºÜXNä7ädÿdz,uLµÞCé$M%“刎éê#„ôúÔ›ï7õ†"ïÙ"Ž‹·Û*n‡Î½ÎJ_ñÁס=¤½âðˆÒãTçaÙ­ˆËzÊuÂB]O,B^âèade,TPu;{«ÊrYl­KîuAEû-¤—va8ɺ›ß/KïwÏâÙô{é}Ê‹†.qä³6 ¡­ÓÈ{¹ŠY jhz4j˜¬ªØSG{EõdÆ<¦jöŠ~ó oeƒ¹²ËªÕ : yQz˜ ¯žf2ÉÚ‡ÞwýÃŒ ºùbi•±^"Š'3€KWÕ,©¥•ÈÇ>D¾%ýÍn;û*4Ê´6‚Ë "\,È éà»í kDOBuO¯§’£W²«ªÚ”·77»ÝŽ4–e­;æÏe õAu’G2H$\xÿ y¥ endstream endobj 4218 0 obj << /Type /ObjStm /N 100 /First 990 /Length 2332 /Filter /FlateDecode >> stream xÚÍZ]o[7}÷¯àcó°¼~ ÉÂ[ iÝ»h`gî~eÅV#éz%9Nÿýž¡ÄTŽ$K²®šz¤;$‡3Ã3så);e”§ì¹ BP–“¬¼q"D\ù&)Žå›¬’ÉÊ[Š*{+‚W9E6*"N¼5F‘7ßRœ<5VG#’S”O±röå;,mb‰••9!Ee] ‘’²>‘2 ZÂd”,zDÊæ2YåŒ+èœreeåÉÌÖ(烉” YžZŒˆN¶a1"±Œµ˜ÊÆV¬âËR°AAÎj8@s^.ôÉ|9S7ï§mÿ|€M©æýÛwªù0ø:Wíô¾w=8i~‚Ád>“‹0Éx1Ǭ½›ö³ÅåX¾ûçàjØ{Ó~UÅ‚Œ|…¤ “¼ïM1w£…b±þ ú x {X ¶ ® ¾ ¡ \…X…T…¼¨ÎLufª3S™ª²­Ê¶*Ûªl«²­0ìÆEGf­v¹’K™8øx#ñøh·ºÔÍïŸ;ôkd\¹P*ï³~² ÄdÜ!b$á/Œà+ ä´Üëó£ Æ½«Y‡(Ú2Ü ¼G3<W¿Ž©ÄPmGq×Çeø©CÉj6UqÀ¸và]~ºž]º~‡ÎA°€ûÄørà. ³»ËÛÑàk‡8¢àï5ƒKk¡ö vyó¦cŠ üœŸñ'–ZÇkä@OaÃ[aœõ¯á!Ý:ˆYÂ@%¥…eïÄñeÜ-&’â!¢t‘»Yj4F q Çyî†Þh4u‡"²Ê!ÖB¸)‚Ëâ/›tÛÑôÛÉl>ýµ[GÁ]¡ <¥‚ñ>鼘Y;šÜvé)YKeÀë¥ôÀ-‡+Ÿs@jãcOõh¢ÕY:€e’Àr°Î^GH]†qÐFªipë„ÂŽë¤Ï8³Š8é0ÌÁÊyPJ)qëeö/>Œ%+ ÒÒ«p ¦ÉJc®lÒv:2˜Í†½I·IÖ€òƒ À[À 2Ò¬•â4Å¥ANäp‚Y*Cä=_ˆX"Á_+ Q˜Á‘@6­lÊð•*ÐjéO}+{àÒ„(eO •åfÊ^š×§§e…æu>l'Íyó¯³_äß7óùíìǦ¹¿¿×ãÁ¼÷©þåvÚþŽUt;½~õ]‰dã~%Òš2S´É3þÒ¶‚êA õ ºzPPm)¢ðeNæ:ž1ÄW^9^/¯œ?¬¼Zµ‰ pU¹ûָȯHW¬'Bê7˜öÉvòaÝN »í„ðY+C]-}-}-—›¸èô t\šÅ?QgÁ¼_‡í<÷ôø¦Ã”&ý>é–WÙkiäîãv0o»ìëÄrW Öá*–õn ×£q—]¿tä?qd£y/ã/kš7ö ºUåtΣ°Iûj[^Šöð÷ *Äëƒì'øeÇäÉñìz¼sX¼®Ú!Ð3õÎ:Ùì†$ü›=$‰‡ I\Â=àz|mB•Ó1ÚßÇ+ŽûäCâ Éæé7H¨ÈP;‘!?rqìÁ¹{¨¼Å…T*-É{mÙN¹úÓ2Ö*Ûjn{ýϰË_û£»ËóÞäê~Ø¿yÕY!áäÒª*‹¸Pe ŸÇ¾ì#ݼᬯϮz³=ôgG°Öå][I+I…ª÷Ï^ý³[°ÄÓỪü(Û®ª–yß¹è¸<žÚr¦Òú;Ž nK¸ßmòÒ ^{§ñäˆ8c<‚3r t®ä1Vò©Ó7 %1Áú¨€x)j?„DFéS„­‘t;Næ…¤ÜM†v²æîJûæ89Ó±o.’†Ûe—E5ª3È ¤‰ƒï8bIŒ”-a‚p±Ò vÚ¤P^éX³ýí`oÒ~é}¥a<„JÆ äPZ|þûˆÝªí ‡ÃoçmáýäXM´!VóÓc5Úãîâeÿƒ™t”Ÿ)-û­ŽÏÖýHæ€Ã_UÞ}qlÔÒ×â.“{D-åuWHqOWÈnÍR}‰œø ûÅKù%œ×ò™mF)÷x Ùiv¦(olÝ7 !íÊÛ™Ý@6Ô²)âƒi“W9-?'ÜO;ȯmœû¿®es\wÈžîÙw’›^º7[ûž{yƪr=kùAÎü<ÚD¥jzmy#9î« ")í©m¥Hòû"!D‹Y½Üÿ™®¥ endstream endobj 4314 0 obj << /Length 1652 /Filter /FlateDecode >> stream xÚ­XKsÛ6¾ëWpìC©© à ìÔ‡4;“igZÛmI IL(’ ?.ýí]~OHR»Ñ j&û¤[¸•²?\^M‰¾¹Ä>Â4’ËB {?ˆQé3þy8"(„ý{$F m3ö_U¢™…Š¿>¢W]Ó¼Q¹8ßeh_—S莀"šŒâyš%sØQÙÙm_2CRD¿–ɿŠ¥ K›j·û¬¥ƒ!„±›ÕÅé FIBFA¼Ñ AAï¡NMFîz_Cª7µ0]ˆŽþ¾÷}"Sšäìt¿ìa[æ[ÓÜÎxaò”àp™Ú<5ÆyÃ…hžÕ¦±²˜eK¹’g¹dšÅ<ÃýÍc¶k«gHñ˜$a×”Åañ0nuŸŸ/½ÈW~Uù¾Ê$3ݪ٘/Å'Û²i„i«“2ËΙh25_ª!¡¼ë{÷/³ŽÂÁ#R=ìRdÒHýè™/ÊE+;–‰=gWg77gÖhy%ÛFØÞ z5ÛØ^^^凹z‡9°’]ÁZåEV'€ '“8¬KëÒ®|d…ÇÖk–K»ksß馡|íÕJ4Õ¾Iî 6 S»_U@Ó ifà‰M™r±ÊL¤8ãHàU˜žJ»Éû®z¬è•ùüÛùYuÑþþàÃ$DÃðLÍ£F'QcÀGaÊ`™—¬–³ÛRój ÿèd^´¡/Z¶.ýŒŒÉ´K‚Mì,ÞÜ-þY`Í0¸/qB?@a@œ|·x÷Áw ˜U(H©ó EwN©h²«œÛÅÏfž®£Æ 8‡Ø hŒ"×Qƒ¬U “áÅ|Ë*–,)ùÍ0Ô³{ ’œ~Éž´ï#ê•… 01Žü ùÊËV»òåÚµå^³ M½ðí¨šb¼OÃÄ'QäŸê­ÓùñY»ÃQØy´¹‚a5¬vP5·M&·E¦¾:tJT™fÉ¨ÈÆ!Š’þŒ¿›«¡† ”'Mª*‰Ó—A¢àñ55·YùÔ²Ž~+É 0•å=°ò†3¸+xGÍ-g¹mŠýJ0Ùñ «d¦Ë'¯ ±F¬¬í9›å SÀÅquýê×Û7¯1¾j妔ݺ¼©%oªãÙb$&Æ!N^ÁÃw7û]GP_‰“Ç—*H¿”ö•Jwÿ7«,·@‡*ßlŒ¬%\îOþÌýÙLyn£l%ÑÄ­ Òá4Rh@1±¡:ðÓ7“o3]¸¨‡¥pžÜ<› ­òYµ,/×OvP¿TC™Ñ-µw¨˜†É®†5áE–Ðý½¢\UÝ‚Ölª“q6/ ì³¼Ææ¢¥ k:yMR^8}à·Yµ®¾›<èÂÁ麠>aíÙìóù¨QÔjúø-¼j›Èê9§F¤rêö@Ýœ2`Ÿ$NW¦x*õÏ~N•ð‚HÒ1õœI×Ï);Õ™iŸ&Çoõø1*™Ÿ?õïÏëéc [­Ð$‚r.ëžÏç/ PDÈ8,ýUiLhÔ§1¡¡¹–ÕX—ƪ£ÓXÍŠ²`EÍ„0ãšÇ†óÛeä>µ ôEie¶¬¶Rªƒ³t¬¼¾~^Œß«—+ÔŸ8À{™7;&EÀªEèÉŽ"Tgž"pÁ{ðÀ©Ý…6wtÑÿYêvÔÎ*Ý[« $ÛWÒü rl(‚z)$+ë*òÂöÁgñìc(ñÏ ÒÇñlÂ…ÿ }ÝJÌÿyç” endstream endobj 4324 0 obj << /Length 3428 /Filter /FlateDecode >> stream xÚ½kã¶ñûý #_âÎ I½ ¤ÀµÍµ)’ôq‡öC ²D¯•Ê’#É{Ùþú΃”(›{{w)ŠVäp8$‡ó¦åæ~#7|ñ»·/¾xd›B©N7o%¥ˆât“)%Ҩؼ­7ßo#•ÞýøöÏ_¼N•‡e‰ÈÒÒhÚS_›1_H»€û~ñ:м©»(ÉhîNgŒ˜Ây0ÕjöÕÞ²T¹vëõç©é»²½ÛEJn«c9”ÕdîŽÓÐt÷ЖÅvê-ìlªæðÈéh¸q2åxl§?ðwÒŒ@ž)ü Ùw­:˜ÖÜédû€ÿÊnbè¡pï°»°®H’™+¦šˆ’β-qhÄv [('†V¥nºªÎýPN†Ó±±ØM‡ç`˜¼¢}¸tÔƒÝ*›*äö¯ý86{Øn`gÌ?¤žÈm9¾áÕ5Å©ˆóÄ1ü³Ñ4Ÿ1ÖêZt, ™9¬—!:poj&󤢠©“§Ò5ÝCp7…Èó|¡CÇ㻹¢§@|³…àøó0=E4¢*r¨âJH×¢­³HdÚ©TH©¬\ö£™>E¸u”“üµý}S9œ‡¾Ýåd†æNm+¼t†=Ü©d rápHlà;‹?I†Êcªü‚\M—º1ãzú»cS—Éψ:ð܉£°ó¹šïgåpŽ)‚®Lå§YÇ›Š;>S°O}à¶5À‹òd[­éî'`ë‘»åx… ´÷Æ’rd¼ãcw¶…3›ì¡Î`¨N,ÕhïL)f2|RÿbAtCЋ0˜ñÜw5Z4’Må›aƒbd³þý ±^q %g­`ËÕ^ ²a´öBÙöU€>d1ï!ŸÝ· ë½ñO‰RÛGþ‚$Nö G2œk%cÌ•ôš+’[àÿÉ 9Æq’åT: r¸ƒk¹¿8É\OÕB´6c3Ц`t>ÚÒXy£ShGúæd"–*ÄXò]Ó¶ö¼Y&"²Þy‰e >fœšx…š»Í¿¼sh\³#ñÙ¬g]ÇÑŸ/dLbíqÔ:…ÝÌóÝ«À¹ rÝd# G‹j“9®Ú‹2Ët­ÌÐ' ”Ù¶ïŒØS?7År}dTö½8BÒ¹štíÐÞ02YNZd?ne†©lºš?a ?ÚV(V)>ŒW‹§(¬eïbý ¶Ü€ä ãhBVEk+õ¬dg2½‘ì‘ 7K^oœžgÀyŒ‚.ÛMnâMn¨H ¥²[݈4ÑÇÏ©ïú©ïðè©iåsúËÂØ#±Ñ.Ày·­ÈMÌõ9ÜA W^Ú‰ÍRœÜ~<3åõ«oÞ|õlÐÄ&˜Ž ±$ñÊ ü…‚O”£Ûà¡p¡]`/¹I:/2=žÍ—Ÿá5BQ³lQùg¢Üuž­£œ3ìûÑ|‚¨F™æ8¾KœžE‹¨âH™Î—ÉbûK[s›$ïMg¶’„ÞYÂG;~ú{0“àØGXŒ@Dãd1IÉgs‚©l_ÓE6°³’ $aÙP@\%Ÿ"´ÈïÉ‘&(¡cÏ ö( ܇,Á u¼–]—ζÿ¸ƒ•gÕøo[qϱÍéÜh’]sb°ž†/ß3ÇÖt)‚³ 7ÆBÿõ]?™Ï?ÔØ-"T7÷Í4~RÌ­€Œe ™Šl…Ð9Œ ‰B„7Y§µôÎmY‘-ðHÙ@xEè<àÊuH†@Þ@(¬Û™…Úλ ý¥«M ŒsµýúÀžåÒy^ç%^£“c˜²HÈãİÆy¶Þ~Ë#ŽqþÎ6¼ð»‡¡?…v=ýþ'°ÎUßMCß~RÆ˶ÍhM[p´B蹚„“ïu@d¦%ÿhïû¡™Ž§_'¨Ö4 ñ³®–²ì%å@f¦þJEÌ+Aô•–•0c´ãu•uÃ&s²â4õ—“€¹sÕ‡(‹)ã'`éÛΖ;U[ŽM¤?7rÑNž&s:OŒÊaPsÒÈeGzö†)Ý&2ó¡©IaÐ%(##púåM^²^A“Å91}ª÷Ë6iºÌöîo(ï¥=\l \PE—E¸]ý¤E‹’b[žÀà¢Ä¦¶Þ°#î¬Gh¦G"WÏÍy*¯HyE›ÂÓë.0X¤QVVcøœGø†™n7•«+§& oa7±fÎ?p·¹[Þ=D¹-Nä…=4ü{À>iQž{ý¤ÓîúL!÷4€{sèÝŠ Ÿnk ƒ±c9†r#盬 ’—µqN’ÆÛ·ìV,ÃŽ”ÂbÇ Þ¡GñéyÌÀ…ÄCcè à”u¼°ÃNVÛƒ‰lÓhÕdûö.‡{e¼ºg„±G× ‘§–H=xà~Îl2SÆ"8ûN†qüH&zïÀqËÚ=0èð'òÍ€v›¿qDJGB.že8•âÒ5ïsEQ.9çè qéž·ÉWo÷8Œvþ¯¥‰»sVŠöObd¨’áÎÔÙX2UT<ºÍÛ€×Kr®Pà—åÍ)4lU.—Î C”TŽWHàÛï¡çö—cØpÚ7[Äò}EÞ…Y•íû,e<{Šê0å¬ ©æHEÎÍ´=Jâ;ãÐgW‹',[}·RÇÉö5ª#Ç[Òí_ÊÓ¹5/9 ¤’O‘X›ˆæ##xN›qaŒ GÆ*6€UìO;ˆag8àød¾ór®?âé¤$R…HаŸ¿Ë%—¶¶E8”¦H5_9•£í›æÔ€'„ܤƮKç”.’ƒ9Þ9}òr ž8 ¤4ý0"Ù¸pÇá–5X:ÎÝn“ª¸àÝÂXYUè*¨è[ë *lÄ®ˆŸÐu{Œ ÿÀøôíõWëböö®ÑÒLæCCVˆ—àõ/'î´ Ò¶9ö}Í0Æo¿±Ž)*V‘0öÙs³/eˆMc ¿0»c:Sj\Ý>>9°ù½r)vìÄoËJQž‰,^r[ª*í,ÖêF­[¿.S¥"÷kßQÌHV¤) >lçÑ&© ßu¸€Â Rã[w Ibíƒ-ä#vW_%"WuÀ¹¤ =¾ÙÒ.Däe¯ü‚uà9 |AùÅP-A‹,+R«Àâæs_åÙÊÒR£ŠÓâ#ŸãT&BϘù’Ý"”t(O}ˆ!†ûvŽf¢;>|šˆ<ÑW1›­ÕKöIëp_Ž³Ë­Ã³¢ Æ¡6¥‘‡ÒÅÚûK›èb•Ø1?B ŠPž_ôº€HÑS(þá’¢vAF :Û~Ý1ÔËb‰v1‚Ok¦ü«B¨åâÑ¢HOüc‘“q[ÑÊ é }ËDR$KÅ7¸œ.>h¹Ì_®6]?¿Î~?šáÁ½ÄEúØa㤣eÂÕ3±¸£¿ J‘ÿþQB´¶î"RYh±øæ?±¶¿.9SûÕÛ?¿Püª :Ž7*‰…‚U§ßÿ(75 ‚2‰¨È7ïõ´É…¢j{»yóâoüƒ–õž©D7Ž~½àÆùJOšë·atÿÄ\¢lëR늇]ðÈà˜íóôÁ½K#Æ,®&q‘Z]½ tŠ·Á‘ïÀ¢ž±ÎÄ¥#þtë3-ôZ\ä­¸Ä"NWâò›À5ƒLeÞ›§ÖaᤷÛg„³ÐkqÙÅÁË#ƒŒHÍŽþIã”/¿G:v•©¢Ù• lK„¶¥s2ÀS¸¼´ðßç%ŠHX —ºÿ'kü’ü…Þî¢ÄeÍ!ôd¡Aó¾·@t ºæËÏîSB7øc []~o€;Eƒ…H¢ÿÍ}®ë=Œ†4:ÖÑÿ•Ó鳜†¨7¦'÷uØës¼5ãbw^ˆ4×܆lBÏ¿{Z‹Y.Š¥&ðÛõs§O…Ìã+¾ë,ßj> stream xÚíY[oãÆ~÷¯ òR XÎÎ}†i6@’v“hТFòÐ(-ÒŠTHÊŽûÐßž3RCjìõîf´ ˜ÔÌѹÏ9ßád—àä˫ϯ¯^¾–$ÉQ.©L®o‚1b\&Š$Yž\—É?Ó¡j]Y5›]ÿååk¡z–K¤ò¸YJF”!ºÂ^@’1¥-AF|‰9²¶ëE³É¨`iYc_ßl(NOcݵh“1’§¯ë¶hš‡é CÈÓ¦d¡0𥠒WàÞ‘è€B!ŽÉ´ÿ=8Â…!­øDsô8‘(WL0¡IFϹ£ª/%1ö' H#§In›¤•UÛ•óÅÐüÛí©Ýo¸Oã¾=űÚÖßcL«ÁyeÜûoôUSŒõ†ŠônCDêW›úÇ ÁiÕÔû®+ÝZwktc³®Ë Ö¹s¬«Y2NwG¿ä%âô˜Ý™Í¢9ù`lŸ…{ ã©´DVAiJœ ¯o#qÐHPý[Ä’½G,Ò$’|ÖèS0\é˜â²Ÿ¨¦9ä&G¹†M ¢H ªç9uD8fÉNúÉ\HÉsDö—zS†¸"ï¦øÒ—XóÐçŸ8Æ8©’¿³/V6b-×ÎÀ5ªÐ‹XÅ×\üOÄ9ùj¨$ÇiSô¢Ó]ջϷ 67ÓjpÈÃÝcLMð™ÀXè'XÏí hƪo¡,ÝU¯>ÚõU?Šè_€)lYŠêñ©m“ù¢.ÁÇÚ<(mª[ašÇùgL0Û¶Y²-Hêv­Äñ©w­- Û¢c7Ô«ÊiXœÆ-”ãáEÄLª"nfS CÌÆœÚÆ:á¹"Ì`±´ÜÛmƒq¶Û|¬ý3b·Y6v;²ÐnËgi·Yj+cînÑ]šo9ÍæÛxmõƒFT˨Æû uY•Ñ€OßtfËuÀ^7¢Ú?cZÏ*àâÂpKìmsŸú³úÒDoÉ2½öBʺw*¡È™ž`£\” e £âÔçÕè{ã?–ÖýÕÀ«#Ž2M“#¦=ƒïâÇŽJ$Ô\’Ƈ#øÿdÅ\/8à±™Ö„W+ßÓUâSp™{¹ñÛ§¡*ÝÊØ¹ãÙÑ/MLþ}ãìÔË(ÂŽ…‘ð<ÜÚõh1JgRð¾ÞþÇmûŒK2M[”o7„ÈÔ9g½WM±§+S¨,ŽÄék³?eɸ¯}t­"/V€f•r!ÃéôÍ"K"m‚A]VPÂ)‡ë߬[ˆgt t Ûa_Å Pˆýf©qª&†D::ô`†$¥¦½æ¹?èb3°Qƒ´3d–÷… È$¢tne$¢TFR&aÌù[!žh÷ðR³ò˜^:;…á!^›8w8ÃÜ^>L /™¹Œ1¥‡½)4dúHhòç…F®B³ªú#¨ùP®rBgH 8‚)Â,?ûtÒ>h2O/<Cè l\¸ìÓ<Ƕ ãÇ1"pÑsøæn¸>0X«·U™>¢²|ŽÊò)•m˜'SK¯]¦i{jÌ\‘tïáØAlƒ¥¯.Ï…IñPñÈ­¬[xúãˆm唿c\õS>ŠÖ°…“Þ2$oíEEÓœ <ξ:öÕPµ£÷­ï’šëàßܘvÝq0§„@q’+Llá°NÛÎ=°X§ÅvÛõ% ‡aGOåd‹m{&$÷©‹¦ðíN½Ç½7Uã:±Û¬›æ4Œ= w/ù¾÷^¶›VÀ›EP?ß&ª}ÈÈŸ&-‘‰…’— ¥ƒ½šPžÀzY«v¢õkÞÏj5¦€{Ñ1;n½¯»ÓàvÞÔÀví0KŽ´c. »Â[%ñª¬PÊüz´´þŽi¼ª \æ¡<ä¯!š#è$K<þLáy€%7tóžÆ§Œ‡H·Þò°¬íÚìÐµÝØµõöI¨å€õŸ¯¯LÝ I…{¾)*Pt´íáê§+x#œ[ŠàÕnMßó /¿>ðäOÝÕßáoÚÊ&žYÀÔNB—§x’ ø“hï‘ÏŒ… Ô?ívÕ0Z0LseaùopTª:“ÍwÃæá70¥|ºA3æÉÎŽdÞ6 Ï{nÚWºÏVì=8 òÔt¶¼¥{ §K¼!‡x„çÏ|}8¶U?õ<ïƒúµïšrðú:H³vÏÅÏvrðÿŒ¤¡¸Òô¿ï ¨õ3µz V¿ –P‹§5\t?(¢^ gwÆÒ\ü޹ŸÀÜz1ÍA”¿Ù¡ò½g릙‰plù*†¢ÔæY›CÝF2*4¦—'~ù UxâÅÏÑÙ<òm –Åb{a{ì:rîÀžè›ŒHõfŽ8'ÏËgüRa,˜ƒ7Äž¬¥\ûKC>/äB á®!m>Ãjš 1 ˆò´Ý»ÅÂ/œ;ŠY¦6ŒRÀy•§Ùw§¦töç±Û·a;¬YïÝ|)rËäÐe~×ÕxZcD]Â×EÇõÃ' Ž/<%¢çpô§ø¬…ÿÕÃ*“QM`á2èŠqþÔÁ7'<ÄiyWg w9Id O ™ãá —s–Ïyq:À%'>@÷ Zr endstream endobj 4327 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/selmodel-beta.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 4332 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 4333 0 R/F6 4334 0 R>> /ExtGState << >>/ColorSpace << /sRGB 4335 0 R >>>> /Length 22841 /Filter /FlateDecode >> stream xœí½K|ÛuÜ9¿Ÿ¢†Ò@Ô~?=‘aº°H ‚EÁ’“’mºÛ_¿ÏZ±ëì%Ræý÷°5à½7X•‘•¹NžÜõ‹¿þê+ýã×ûé?~ý·¯>1Ò×,¿Hé«Uü+ûÿ÷ßóõ}ýÓOþ»¿þñõï~ùSz~–¾Þÿüå¿û?*¿(ýëþô7û•¾þî§üõWÏÿþñ§l¿ðõü4«9µÙ~‘ë×ozþŽü˜l·\oÙQn9ÞrÜVã¶·Õ¼­æmµn«u[­_¬ü’ûå–ã%×óºoÙnù¶Zù²zäeUn«r[•ÛªÞVõ¶j·U»­ÚmÕo«~[ÛjÜVã¶š·Õ¼­Ömµn«çm//ù¼í·/¹Ÿ·ý–í–o«/«G^Vå¶*·U¹­êmUo«v[µÛªÝVý¶ê·Õ¸­Æm5n«y[ÍÛjÝVë¶zÞöú’ÏÛ~Ëñ’9=ï{Ð-èué|Ù™¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFð›Áo¿üVð{ªÑÞú)GÐã­í¶t úòËùö{ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚ß ~3ø­à·‚ßSþÖÛ¾ý.=Þº<õº}ù•|û=úö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üVð[Áï©Çxë§A·®O=‚nA_~5ß~¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFð›Áo¿üVð{ê1ßú©GÐã­ÛS [З_˷ߣo¿üJð+Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üžz¬·~êôxëþÔ#èôå×óí÷èÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üfð[Áo¿§û­Ÿz=Þz<õº}ù|û=úö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üVð[Áoýb§·Þ¿¨AÏ·žé9èôå7óí÷èÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üfð[Áo¿§ù­Ÿz=ßú™Pç {Зß3Å®Aß~%ø•àW‚_ ~5øµàׂ_ ~=øõà7‚ß~#øÍà7ƒß ~+ø=õ(oýÔ#èùÖÏL;݃¾üž¹w úö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üVð[Áï©Ç{~øÌÇkÐó¥Ë3ÿÎA÷ ÷¥óågúö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üVð[Áï©G{ë§AÏ·~æß9èôå÷ÌÇkз_ ~%ø•àWƒ_ ~-øµàׂ_~=øà7‚ß~3øÍà·‚ß ~O=ú[?õz¾õ3ÿÎA÷ /¿g>^ƒ¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFð›Áo¿üVð{ê1Þú©GÐó­Ÿùwº}ù=óñôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚ß ~3ø­à·‚ßSùÖO=‚žoýÌ¿sÐ=èËï™× o¿üJð+Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üžz¬·~êô|ëgþƒîA_~Ï|¼}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#øà7ƒß ~+ø­à÷Ôc¿õS ç[?óïtúò{æã5èÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üfð[Áo¿}íÌšnA¿·yË3ÿ.AKçÛïÑ-èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo];¶å™§ [ÐïýßòÌ¿KЗß3ÿNA· o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿umå–gþ‚nA¿7†Ë3ÿ.A_~Ïü;Ý‚¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üÖµŸ[žùw ºýÞ®Ïü»=./?Ó-èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹õ™§ [ÐïýáúÌ¿KЗß3ÿNA· o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíçÖgþ‚nA¿÷‡ë3ÿ.A_~Ïü;Ý‚¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üÖµŸ[Ÿùw ºýÞ®Ïü»}ù=óït úö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[×~n}æß)èô{¸>óïôå÷Ì¿SÐ-èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹õ™§ [ÐïýáúÌ¿KЗß3ÿNA· o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíçÖgþ‚nA¿÷‡ë3ÿ.A_~Ïü;Ý‚¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üÖµŸ[ŸùwºýÞ®Ï|¼}ù=óïtúö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[×~n}æß9èô{¸>óñôå÷Ì¿sÐ=èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹õ™ç {ÐïýáúÌÇkЗß3ÿÎA÷ o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíçÖgþƒîA¿÷‡Û3¯AÏKçËÏtúö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[×~n{æß9èô{¸=óñôå÷Ì¿sÐ=èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹í™ç {ÐïýáöÌÇkЗß3ÿÎA÷ o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíç¶gþƒîA¿÷‡Û3¯A_~Ïü;݃¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üÖµŸÛžùwºýÞnÏ|¼}ù=óïtúö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[×~n{æß9èô{¸=óñôå÷Ì¿sÐ=èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹í™ç {ÐïýáöÌÇkЗß3ÿÎA÷ o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíç¶gþ]‚~ï·™®ýaÓ-èËï™— o¿üJð+Á¯¿zùýÒõÿ€îCŽÿ€Ž¿ë·_í-?__¿ ?‡Ρû@ùþ9åë¬Eìõ ”¯_°=œ×/P¾aß¿°ã/´ßû^¿ð¿â{ôëßýž÷èw¿þ§Ÿþü/ËWþúÕße7IçЙÃ0¿úíן›=1&Ãó'ÆdøØòĘ`¨sbL†ç†œ“áñ'Ædxî‰1pbL†SÐ'Æd8”{bL†3¢'Æd8"wbL†['Æd8@tbL1eŒÉÈ((cLFBAc‚^Ïc2 Ê“¾QPƘto:1&}£ Œ1é eŒI_((cL°IvbLúDAcÒ' Ê“î+¨'Ƥ”1&½£ Œ1éeŒIï((cL0ù81&½¡ Œ1é eŒI¯((cLzEAcÒ=—àĘô‚‚2Ƥ”1&€ˆOŒIÏ((cLzBAcÒ Ê“î€Í‰1ieŒIÛ((cLÚBAcÒ*ª“¶PRŘ´‰š*ƤMU1&m¢ªŠ1ieUŒ v¯?'ƤuV1&­£²Š1i¥UŒIk¨­bLZCqcÒ*ª«“æ«1Ÿc‚Õω1iVŒI+¨°bLZA‰cÒ2j¬“–QdŘ´„*+Ƥ%”Y1& ý?'Ƥ:íü91&u£ÒŠ1© ¥VŒI]¨µbLêB±cR'ª­ÐŸcR½[üsbLê`½cRëÍ“êÝ„ŸcR;ëÍ“ÚYoÆ˜ÔÆz3Ƥ6Ö›1&µ²ÞŒ1©•õfŒIõݱω1©…õfŒI-¬7cLjf½c‚ռω1©™õfŒIM¬7cLªé>'Ƥ&Ö›1&e³ÞŒ1)^¶Ï‰1)‹õfŒIY¬7cLÊb½cR&ëÍ“2YoƘ”Áz3Ƥ8½÷91&e°ÞŒ1Ýô91&¥³ÞŒ1)õfŒIi¬7cLJc½cR*ëÍ“RYoƘ”Êz3Ƥx·ÒçĘ”Âz3ƤdÖ›1&%³ÞŒ1)™õfŒII¬7cLJb½c‚Õ÷ω1É›õfŒIÞ¬7cLòb½c’ëÍ“¼XoƘäÉz3Æ—ÙçĘäÁz3Æ$Ö›1&Ù§BŸc’;ëÍ“ÜYoƘäÆz3Æ$7Ö›1& ?'Æ$s¼¥“ìtÐçĘäÂz3Æ$sÈ¥“Ì1—bLrf½c’3ëÍ“Ìa—bLrb½c’ë͓đ—bL’wC|NŒIÚ¬7cLÒb½c’8úRŒIš¬7cLÒd½c’8SŒIòդω1IƒõfŒIâL1&‰ƒ0ؤÎz3Æ$5Ö›1&‰ã0ؤÆz3Æ$UÖ›1&‰C1Ř$§µ?'ÆôðçʤÂz3Æ$q8¦“”YoƘ¤Äz3Æ$qD¦“äôÁG1&¶»‹z#ƤnÊcbõÆÄvQoĘ˜F½cb»Ï¨7bL|wÚ_/bL|÷:S»ÇfŒ1ñÝïFí~õFŒ‰ïžãù;ü8>cŒ‰ï¾ãõø5Ö1&¦QoĘøÊ^ï„_e½cb3VÔ1&>ƒÔ õFŒ‰u Þˆ11z#Ƥ‚öÿ(ÆÄ4êI½iÔ1&Ö 1ýùcbõFŒ‰uW Þˆ11z#Ƥ‚–ø(ÆÄº5PoĘ˜F½cb:ùëEŒ‰uƒ Þˆ11z#ÆÄ–‹ž¯Ã¯³Þˆ1a7ÊG1&Þ­R¨4êïvÁóOøi¼†ï–Áë]ð+¬7bLL£Þˆ1©Kã5ĘXwêÓ¨7bL¬ÛõFŒ‰é6©74êëB½cR‘ÎñQŒ‰u#¡Þˆ11z#ÆÄ4êënB½cbõ¶y¶i×fƒßÀRcLL£Þˆ1±î+Ô1&¦QoĘ˜F½cbÝ]¨7bLL£Þˆ1±î0Ô1&ìû(ÆÄ»Ë2µûy7ÇG1&Þ†×ëo”w¯uê z#ÆÄ»ßu7XoĘԩñbLL§Bm~c³Þˆ11z#ÆÄº÷PoĘ˜F½cbõFŒI¯!ÆÄ4êë.D½cbõFŒ‰éܩݯ³Þˆ11z#ÆÄºQoĘx7$^ï„_c½câÝ”xþ?§'>Š1ñnÌNýü¡Þ­‰ç÷ïæœÔÓtf½cbõFŒ‰iÔ76ë&E½cbõFŒ‰u£¢Þˆ11Ý'u‡F½cR±›öQŒ‰iÔ1&¦QoĘX÷,êÓ¨7bL¬wùëEŒ‰iÔ1&µk¼†ëîE½cbõFŒ‰u £Þˆ11z#ÆÄ4êë>F½cbõFŒ‰u3o<ŸÇ˜xws¢žÐ^oƘxwt¡îÐ^oƘxwuwáÇñcLØýQŒ‰wooêíõfŒ‰éŒç÷ë÷z3ÆÄtÅó7øq¼Æ“ŠÝíbLLg<‡ÇkŒ11Ýð|~õfŒ‰uÃJ½¡ ž¯¡ÞŒ1©æ}cb:-j÷óÛîG1&¦+žßcL¬ûê ÝýùcbÚëÍ£ ¼ÞŒ1©ã5ƘàõfŒ‰Ó þüˆ1qš!S›_õ5ðbLœ†Àó{Œ‰ÓÚü*ÇkŒ1qÚbQ»ßd½cbõFŒ‰é\¨Ýo°Þˆ11z#Ƥ¢å£Ó¨7bLL£Þˆ11õFŒ‰iÔ1&¦QoĘÝ‚z#ÆÄtéÔÓta½cbõFŒ‰iÔ1&Fß Þˆ11z#ÆÄhÔ1&¦QoĘ˜F½cR ÇkŒ11]µù•Åz#ÆÄé£DÝ¡QoĘ8½ä¯1&N75ê z#ÆÄé¨IÝ¡QoĘ8]…çŸðãx1&¦Qoƽ…z#ÆÄ4ꣿPoĘ˜F½ñF˜F½cbtÙJÔõFŒ‰iÔ1&F«¡Þˆ1©XFù(ÆÄè7Ô1&¦QoĘ˜NþzcbÛ}¨7bLL£Þˆ11:õFŒIÅeøQŒ‰iÔ1&Fû¡Þˆ11z#ÆÄèAÔ1&N&ê ]ð|~õFŒ iÅbLœfìÔî×XoĘ8 ‰ç÷‰‚Ó’›zBw½ˆ11z#ÆÄhLÔ1&5s¼Æ£9QoĘ˜F½cbõFŒ‰Ñ¢¨7bLL£Þˆ11z#ƤbÙó£Ó¨7bLŒfE½cbõFŒ‰iÔ1&FÇ¢Þˆ11z#Ƥâkã£Ó¨7bLL£Þˆ1±ÍuÔ1&¦QoĘ Œz#ÆÄé`<¿ßœ.ÔÓte½câôq£îÐiP»_a½câtó¢v?Ž×cbõFŒ‰iÔ1&5q¼ÆÓµS?~Fg£Þˆ11z#ÆÄtÞÔÛôb½cbõFŒIÙ¯1ÆÄhrÔ1&¦QoĘŽz#ÆÄt[ÔõFŒ‰Ñî¨7bLL£Þˆ11zõFŒ‰iÔ1&¦QoĘ?'u‡F½cbt?ê§ý3õ„F½câi•ºC£Þˆ1ñ´½ˆ1ñ4‚I=¡QoĘXšÁNÔõFŒImñQŒ‰¥% Þˆ11z#ÆÄÒPoĘ˜F½cbõFŒ‰¥9 Þˆ1)Kã5Ę˜N•Úý:ëÓ¨7bL,mõFŒ‰iÔ1&¦QoĘXzêÓµP»_a½cbõÆf³iÔ1&–®z#ÆÄ4êKë@½cÂôŽbL<Ý£P›ßÔx 1&žÒ©4êOÁóûÆ‹§,j÷›¬7bLì_¨7bLì_¨7bLìa¯wÁo°Þˆ1±§E½cbõFŒ‰iÔ1&ùŘ˜F½ñF˜F½cboêÓ¨7bLìm_þ|ˆ11z#ÆÄ4ê“25^CŒ‰iÔ1&vY Þˆ11z#ÆÄtö׋»ÌPoĘ˜F½cb—-êÓ¨7bLL£Þˆ1±êÓ¨7bLL£ÞX˜³ê“Zñ£û˜¢Þˆ11z#ÆÄ4êûØ£Þˆ11z#ÆÄn#¨7bLL÷E½ Qoܸ춄z#ÆÄ4êÓ¨7bL춇z#ÆÄ4ê»m¢Þˆ11z#Ƥ ×câ·åL½ QoĘøm½RhÔ1&þµ0¨Ýo²Þˆ1á×ÊG1&¦S¢~žö5„z#ÆÄ4ê…rûZ[zA{½cbÚëÍûšôz3ÆÄ´×›1&öµëõfŒ‰i¯7cLL{wcLìkÜëÍÓµS»Çkhtocb:oj÷ãx1&¦½ë†1&¦S¥6¿ÆñcLL—Am~m¡ÞŒ11ÝuƒN›Úý&ê͆êç‰|˜†ç÷ Æuêõ2ÝQoƘø0qQh¯7cLlXéõfŒ‰i¯7cLl˜êõfŒ‰iÔ1&¦QoĘذw,êz#ÆÄ†Ñ¨7bLL£Þˆ11z#ÆÄ†å¨7&¦QoĘÐŘ˜F½cbõFŒ‰MPoĘ˜F½cbõFŒ‰MKPoĘl+~cbÓÔ1&¦QoĘø´ÈŸ1&>mÊÔõFŒ‰O»*uƒF½cÂiÛG1&>­›ÔÚû7cbõFŒ‰MQoĘ˜F½cbÓNÔ1&¦QoĘ”ÊñcLl‹z#ÆÄ4ꛣވ11Ýñ|>‘7z#ÆÄ¦Ù¨7bLJáx1&6mG½cbõFŒ‰iÔ1&¶ °2õ‚F½cbõFŒ‰-3 Þx¡lMþ(ÆÄ–)PoĘ˜F½câˉÚý*ë_&)ÔîWпÁ.³|câË0ƒÚý8^cŒ‰/ãlêz#ÆÄ–}PoĘ˜.•Úüòf½cR2ÇkŒ11z#ÆÄ–¥PoĘ˜F½cbË\¨7bLL£Þˆ11z#ƤdŽ×cbÚû7cbËp¨7bLL£Þˆ11z#ÆÄ–õPoĘ˜F½cbõFŒ‰-z¿cLL£Þˆ1±eGÔ1&¦Û¦Ш7bL|Y3S7hÔ1&\ý(ÆÄ—M;õ€F½câË®‹ºA£Þˆ11z#ÆÄ–qQoĘ|­|cb˨7bLL£Þˆ11íý:\(·efÔ1&¦QoĘزµ÷o0ÆÄ4ê“úø£[G½cbõFŒ‰-«£Þˆ11z#ÆÄ´÷o0ÆÄ–éQoĘ˜F½cRÇkŒ1±mÔ1&¦QoĘØ6êÓ¨7bL|"Q?~¾M‘©tÅóùDÆ·9õØ®QoĘø6É n}ЋzA£Þˆ11z#Æ$cøQŒ‰iÔ1&¶ÍƒzccË4êÓ¨7bLlÛõFŒ‰iÔ1&¶ …z#Æ$#-à£Ó¨7bLl[kâù:ü ëÛ&C½cbõÆÄÀ4êÛvC½c’·Ækˆ11µù­Íz#ÆÄ4êÛD½ÑmõFŒ‰o+&êmZã5Ęø¶d¥v¿Áz#ÆÄ·5;u‡öþ Ƙø¶¨¿^Ęø¶é¦žÐ¨7bLl›õÆF´iÔ1&¶m‹zÏ¿Šþ Ƙ˜F½cbÛÀ¨7bLL£Þˆ1ÉH÷ø(ÆÄ4êÓ¨7bLl›õFŒ‰iÔyÛöF½cbºoêç5z#Æ$£eý£Ó¨7bLL£Þˆ1±mzÔ1&¦QoĘØ6¿÷ë0ÆÄ4êÊ6bL¼ SOhÔ1&ކШ;4êocð׋osXÔõFãˆé”©Ý¯°Þˆ11z#ÆÄÚ0PoĘ˜F½cbõFŒ‰µu Þˆ1ɸŒ?Š1±6Ô1&¦Qo,¬™ÎÚÙœÅz#ÆÄ4êkcA½c’A3~câm/‰Úý4^CŒ‰·ÍøëEŒ‰·Õ4j÷ë¬7bLòÐx 7&oÛYÔõFŒ‰iÔ1&Öäý:Œ11z#ÆÄÚŠPoĘ˜îx¾¿Âz£ÑËÚ–PoĘä¡ñbLL£Þˆ1±6(Ô1&¦QoĘX[ÕÂëõ³iÔ1&¦QoĘX›–×›1&¦½ÞŒ1±¶/¯7cLL{½cbÚëÍk#óz3ÆÄ´×›1&ôñG1&¦½ÞŒ1ñ6¶Dí~¯1ÆÄÛà*õ„Nxþ?Ž×câmv“Úý êÍoÓÛÔ:ãù'ü2êÍÓµR»ÇklÌ4Ýõ31ñüþÁÈã5Ƙ˜n‰zC{½cbm^oƘ˜öz3ÆÄÚ$½ÞŒ11íõfŒIn¯1ÆÄÚ.½ƒ1&¦QoĘX'êÓ¨7bLL£Þˆ1±¶PÔ1&¦QoĘX›)êÓ¨7bL¼-Ï?àWпÁokÅëð+¬7bL¼-¶SohÔ1&ÞV»¨Ÿ?ÔÛnñücb:gêçÆlm»¨7©M£Þˆ1±¶_Ô1&ÛŽŘ˜F½cbmŨ7bLL£Þˆ11z#ÆÄÚ”QoĘ˜.Úý:듌iÝG1&¦QoĘX5êÓ¨7bL¬-õFŒ‰éŽ×;àWYoĘX›7ê“\9^cŒ‰µ£Þˆ11zc¢îmæ‰zŽ/oCÇëõoS¯ÔõFŒ ÛÜ?Š1ñ6øIm~e±Þˆ1ñ6úMÝ¡QoĘX>êbõFŒIF›ÀG1&¦QoĘ˜F½cb˜êÓ¨7bLL£Þˆ11ìõFŒ‰iÔ#Ë0Ř˜F½cb:áù&ü ëÓ¨7bL ³@½cbõFŒ‰iÔ1&¹p¼ÆÓuR?_܆ Þˆ11z#ÆÄ±>Ę8VR¨;4êb)Ř8¶2¨'4ê Pɱ—EÝ¡½ƒ1&¦QoĘVƒz#ÆÄ4êÃrPoĘ˜F½cbõFŒ‰a?sSOhÔ1&¦Qo4zF4*õ†F½cbXêÓ¨7bLL£Þˆ11Ì õFŒ‰iÔ1&†MyÿcLL£Þˆ1ɉã5Ƙ†…z#ÆÄ4êúPoĘ˜F½câX¦v¿Áz#Æ„ÙG1&Ž™uj÷ë¬7bLS›ÔîÇñcLL£Þˆ11z#ÆÄ09Ô1&¦k£v¿Âz#ÆÄ4êÓ¨7/ ãC½cbõFŒ‰iÔ1&ÛŘ˜F½c²9\cŠÉ|¯“½Yld˜ìÅZ#Âdk¨† ? 0Ù“…F~ÉÖ8 ñ%{ mƒé%{°Ê/Ù¤!»dkŒ†è’ÝYb$—îü(¸dk€†Ü’ÝX_Ä–ìÊòbœ¿5:ChÉ.hÖ`fÉ.¬-"Kvai‘X²52C`ÉÎ,,òJvb]ѽ5,CZÉNèÊaXÉÚ,*²J–Æd@Å—†dH*Y‹EPÉZ,(rJ–ÆcÀÁØð“!åÏ”óËV'†åHù€ÆÅ7‘Þ‰ ù­í["„Æ?‘„ÆÇÀ¡ñÁýBã£b»’Ðøàn ¡q\£ïëPâf¥­ABãs„Æ;ÁBãL5¡ñNlŠÐxc×3¡qm‚oo$ 7v<o¼¡oì·"4^7– W®F¯l¦!4^;Ö׆¥Bãµ €ÐxÍh” 4^ôD€Æ‹ y@ã…]ð„Æ Õ„ÆKÞ5¡ñ–3Bã…6¡q~„Æóâ_hç§t«ŒrwÔh~ · ï,AG–­oxõûò òçµÕoS4n‹5 â®°µ -(Bã¶–8‘»_Â=‚иC ‚ÄÍoú4^‡ A@ã¶Ûµù¦¿gÀï‘»_D?à'ÈÐxí[P½Ó ßP q‡ µùõ!ˆÞ¡q[ÛÄhÜöÞиí%(<5‡j§nÍ›þó¦6¿&Èиï¥,jókÜ”"4n{77¿Öøþ?M󄯽)~Q4Á'Aá Më€(WmJ·½¶!H¼ éœP·ïNú^üü•÷&qi÷T š×÷6_иíRÁè¼6·½Ø74î{¹x?¼[Õö~‘·½ã.Hà'ÈëÍðŸðK‚Ì}vzš —9/séõûnR™Ìc!4nMˆ¸ÿ·&ÃHÚ¡qk"¬Ò¶É; hœ½šAãÞ(ˆÜýT@ãÖÔ‡P@ãÞ{ú‚ƽWдÏËú[S :@ãÞ„7©Ý¯éùüê7$î~‚º{/0üü2?߀ƽ)N?7¿ó}hÜšÚ;4^´hMhÜ›Ø&µùõ!ˆÝG¸Þ¤†ß÷1{¹?‚ÆËÔ{¯x£nÐù{/: ê ?.:÷&1h§oJ[ßxƒN/hÜš¾ð~·¦®&í~‚ò; ¨4!ó?nZ/‚¶“eø/‚²›Æçи5Qáûи5Iáû и5EáóhÜtDn~U!€Æ­é ã%@ãÖÔ´‘è…§ýÝÔDhÜ›˜:µûqÑ‹Ðx9¡'€Æ‹ ;«“¨Í¯(иi\?€Æ½ÉH¹ù6÷&¢Eí~ !4^ŠBa[®/@ã¦1>4îM@Òî§ @ã¦q=·¦¾>µ;í݆ÞÄÓ¨Í/³©ŠÐ¸5åàþh¼â!4îM9€œ½ûÁšn0^4^´¨Fh¼Ê!4îM6™Úýôù4nš¿_à§!@ãÞ4#H¼B#dи5Áàý4~šb[LÕÏÍO ¡qozÔîÇ&1î;›¹¨;4!ö¿†;¡qkRÁçи7­àùüŠÞ¿?Aû€Æ]ÅãÖ²¦|^{  fßݰ¦|¾“­ýÏØKü'«û4žOH qg¥Ý›F„ÆÉ[“®7@ãÎ&ãïið«˜áwÖyPoh¼^@ãÖôÏ ñŒëGи5yàþhÜ›>‘›ßRè  qg¿+õ„Æçиýß|>‡ÆMAä¶)»ØEhÜÿŒBm›¼KߨäÅé1¡ñ|Æ#€Æím"Dáw è ¿Âñ ñÓ”AhÜË&¨|CŠ4neÇß hÜ/ü¾¯DØe4‘wè´©Ío.½/ôi² 4n—5ÆM'AâîǦ Bãö±ÔhÜ4!ô ¿Æëиé&ˆÜý’ Û4Æ è¶òÛ„ô„>P¸mò*tÐøi’ 4î·-AâšÐ´CãÞ!HáWÅOøýý ~ù"ïÐUÚ6eûì÷¦é ?@ã6 Æûhü4-?M „ÆOÓ¡qoZ$î~\$g7snSPzß$ôh܆ý€^{Ó ì?†"÷¦…E½¡ þÞ¿ö ‘Oh|ޛΉÚýª ï?Þ ›N/hܦQCPx†Ähܦe[¹mʶü ‰Wh@5€Æ9Íû7Ý u‡Îú¹ùU†X7Ï' qÓuÁ¦;CEsÚú4îM ð«ðãz¡qoj„Ýà§û q›Fó÷ü†~¿Ãoȿï Šðë‚Øüº ó¿ö ‰Wh@a€ÆMãz4ž²HhQ»ŸB›Æýи7àùü­÷&Aâ‘ÎõBãÞ”R©ttí7Ó„ÂÏ'ôиm[ì4nzJ/h|ÿ7]¥4ý*üô}hÜô”^ЄÐü² ì¿,(½ÃOãq@ã¦ñþ7û qßæIÔº §îO€ÆmÛõ4îÛH€À7MßiÓ¸÷¦šJݲ7Ñ`|hÜ›l9;4nz"и~›>8ý0¾4îM9x|ßäû hÜ›tð|~lB$4Îm¸ ñœ”Ýà7äßà§Ï&²¦û ÷m¿L½ ù÷ù%AäîשOøu½?~Ü?"4nº½ qÓø¾4n×  qÓég…–7ïg@ãÞTÔ©4Þ/@㦋 rúa¼hܶY •ø1„ŽÐxÖ~8¡ñœôù4îMJ›š~ohÜ4Ÿ¯ÁÇç6ðGиé!ˆ|Aóõ øŠ"4žOˆ  qo‚êÔôÃ|Ðx>!+€Æ½IjP?7Fnc›ÆxÐxVh+7¦|µ1™Î™Úý8!4îÛ胺AÏðSÓ< ñ| -,´™®€²«üÊ ÏX&ø÷m}ü=N×l1¬`Æ·< 㛫$Æ÷ í½Ê—%/¾·ðîA«‚'š´:p¸Y1딬ø>h¹÷ˆï…"ßaÒÚ #'¬½ëíßË;ñ&T{+¤ö✚ öbŽ9íÅŽ/bÚ‹©³¤´— >@Ú‹Ë{d´Õ½LD{mÕ•Vø8Ð^l= Ÿ½48ž½¶hñF+\Þ€³Ï’ ›½ˆÍÖ¦ÉìÅVv‚Ù‹¹¬ä²×fÉ€e/¦L‘Ê^›¡€²—E`²g[D²Hd/ZÈ^Ad]Š{޽6oª ±—ÂFc/fû’Å^ìÆ'н”|{qM ¶šÆÉa+–žöZ¬>(ì¥@Øk‰©öu¬µx1Á>D:ìµtZ­½gƒ–£µD“OZV`€½^K(»ÿÇ"}@òz1˜àõÒðܵšä‰]/¥N€ºV(?¡ëÅíD2×K@®âI\¯%à¸È |r¥†=À­×í\i…‹°õ"{DÖz1š‘¨õZßä5¬p‰´Ö19ëŘgbÖKãgPÖ`§?‚¬×S=i…‘ ~mñ Ö‹sÖ ÈW«ŽxµN7 ]½¯vÀÕ‹m]d«×Šœi…/Õ‹Aü«×âGÃEŒŽXõIAU½b…‘Õâr™êÅÝ8"Õkñë Dõ° z)o <õÒ\8õZ¢£½={MÞcS/’d©×AͽIÉŽ$©ƒ¹ R¯)ŽÛï k2v õbC)êu iÿ®Y\Ž!C½)M„zMÈ™VkRî·,´Z/|úÐ% §ûH O/fí‘ÖÑD§×ü&©ç[vY%JXˆÁÒÌÅ jú-a5ñ7OZ-2½¦ˆð)+È%+ñÓÏ,®\—~ËY(7ä‹•~KZ,β’„9èL«ƒEà T<(éÅþ'BÒoI«A¹ß²ÉêHË.«FÙoI+ÀÏCV’´ªyË)4z¿$Èç·œo™e%I«õü-‹¬$ç[VYIö[ÒJ|s½å|Ë.+É~ËËjÜVƒVM`s¾e¿å~ËE«#Ÿ;Õ·ô¾ò·ì·Ü/ Àù-i7ËJ²ßr¿e‘•äeUo«z[ÕÛªÝVí¶ê·U¿­úm5d%Ày¾å”•d¿å~Ëu[ù°ó[:Êü–ý–û%Á1¿åÛ ó[ö[^Vå¶*·U½­êmUo«v[µÛªßVý¶ê·Õ¸­Æm5o«y[ÍÛjÝVÞÖñ-}îó–ý–û%‚¾åÛ ´ò[ö[^Vå¶*·U½­êmUo«v[µÛªßVý¶ê·Õ¸­Æm5o«y[ÍÛjÝV>çú–›\ð‘/.˜´ò[¶[¾­H+¿äeUn«r[•ÛªÞVÿ‚VÎÏà̶QË—õl—?L+: ´²Ÿ˜¾D+Û ¤ï-SƒV.Z­\×¥A+—•\Èòöa'heßÎ_¢•z±¯<À6¾5Þ¿D+ûNüü­lû>­ì©ÍýK´²µ1àgßçqœd‰Vö¦‹ô%Zù$£ÉÖ[D¾ieÏv+o ò8àö%Z¹4Ž$A+{{?ÖiåÒ˜ ZÙš{ ñd·bÓ?hek5ò51ÐÊžkë µÓÊ~È=¥YUžÂZÙÚ®|Ê ZÙº´üÝ­lM`8i{Â*c|»&¬Ø›„©;ØD+RËž¾êÏëÀ^) À²SÑY¬ •‚ ¼lIÕ…á •y°¿½ßE瞀VöØR—¾0l}8Û¤=„4‰V.j­lRð²[±™´²·€Ž/ÑÊžÚ¿D+[C©¯\V¶~ÔFéV"ŽVöî×ô%Z¹$®ä`oÊzmýª­l§Vû¸Þ:uý£Í7kôm„—ÝŠû, •7ð?Ã9_“‰Ò"©SA$iekjF÷5hek‚&Më«¿ÖDîtÐʦIû6¯Óø}oÎ:Ò‚´²5}/ý|Ag<…»gH+;=¸Á‘R¤•Móïoðã'´rÖz?ieÓ|¾¿sµÓÊÞ´/šyAóˆmo“ðÈBm~KG‚V6nyÐÊFðp/ð‰t$­lšô·ÓÊNˆFN ‘/Z9ãîð­ì†èd÷ãîie‡:^´²G0êÍ#¥ýƒî‘‹ vèDz@WÑÈæ79ï&­œuäie‡büõVönÿN= Aw€VÎ:R´²iÐO •­»4hå|ŽXD[˜CB/ZÙ»û7uƒZ™PÒG´²Gvêg®nÝû¤gV6MúØo¹'â´rÖ¤•ó9"´²wóûßZÙ»ù;uƒæÖ~¢©Ðf˜uÄieëÞçÜ ~¢ý@+;”¦Ÿ/h>¾ÃO´Ú*ó¡1q{vHNôrƒæß?à§ûheïÞ/Ôæ×AZÙ¡¾Im~}]´²Gâ÷VÎ]ô=heÓøüV¶î|Ðy •MƒN­ì#hß ?Ñèø&3Mº¸ÀO´hå¬/xÒÊÞ­ú·Â¯êï©ðÝ ZÙ4ànðÓû ZÙ»õñ÷vøe=_‡_}=à—¾éåôÐÊYGVv¨µR›_[ßGZ'èö¢•š•~¾bª…öÂ9t[©Çôn|ÐH •ÚmÔ štq‚_çç´²wçoj÷½ ZÙ4€.ðSÚhåܸAOZÙþÅ#­+ü¸7NZÙ»óuƒæÔ ~¢ûA+Ÿî|þáþgƒðãЃ´²wç'êE'›_%MAZ9z´²wç'jó«lä!­œu$ie/ã‹Vöî|ÑÉi}G’VöÈÁIí~J³­ì—•èå}hd÷ë¼ßVöîüJ½ Ï‘ÖîwŽ ®ðã‘“¤•½;¿S»û/H+{w>èá?}ÿVöî|¼¾?Ñð •MÑËî§ïÐÊ~xÑʦñ}ZÙ4¾ÏA+ÛmeJ[„t=t·Óʧ;Ÿ´òéÎ'­ì·±BÝ AcƒVöî|з~#ÈEõ­ì·MÐÄ~‹ÏZÙn»ŒzÑʦˋVöa׋Vöî}ø9­lº‹^žÐ¤mA+çùM/m›™.Z9o:¹æïî}ÑʇF'­œ9_­œuD;iå¬ôÒÊY×+iåÜy½“VÖ„P´rf$¡håÜDƒVÎM~ •ýNZ93ÐL´²Ž¨­œÙq&ZYGVŠVV7¿hå̈}Ñʇ¦'­œá*Z93ØL´rmMZ9Þ_H+ç¢#¦A+ç,´rf$¯hå¬ù$iåœù}KZ9+­€´²ŽÀ­œE·“VÎIG@ƒVÎŒø­œÙÒ#Z9ëˆzÒÊI÷cÒÊIãSÒÊIŸÒʉ½*¢•“ŽL'­œ¶üA+'¥¿VV¤¦håÄîÑʉm¢•D+'Ñw¤•“Ž$$­œøù­œ¸Å(Z9qËB´rš:’ºÈ/‹^¦_ÒÏÝoèlÐʧûŸ´r¤-H+§!º´rbÄ´hås„(iåÄïÑÊ©ëˆjÐʉ‘­¢•“èNÒÊIGÂ’VN]Ï7åz´rꢱA++RT´rb¤µhåÄuFÑÊIG0’VN¢sH+§¦#ª“üHƒVN¤ÕE+:€´rª¢¡A+'щ¤•»HE+'ÉMZ9éˆaÒÊçÈTÒÊIô6ie‘"ZùФ•‰*Z9‰ž'­œDÿVN¼_ˆVN:bš´rÝFZ9q}F´rDZ9eÑÚ •=@Z9‰n&­œ²Žx­œ¸Þ#Z9éxÒʉ÷ÑÊ)‰­œDÏ‘VN:â’´rIZ9‰6"­œ’èß&¿,:™~éE+o.>VÞ›ìXå­ó*o‘I¤mvèTÞ[\ó¤U•„U\´Ê’°óFy/ýUn"Ö€„ò^|PÞ1OÞ¼áOÞ¢óA'o†ýNÞKPZIX‘.´¸0yOqºÎ%oaæÀ’÷9šÚ©ä=uR´CÉ[ +˜ä­sß$‹D ‘¼™N y3„<òž|'#+²’4ò>'`;U»Ù]°Èˆ"oÝkA"ïÁ €È{ðNya¾μ™RC y+Äò¬>äÍ2"È›±Ù$·N­€¼uH*øãÝ…ûL|3½Žô±°ÂÇ›Ïd•-Lôxë8OÇ[·v€Ç»“w¼u£v,ŠÔñÖmÐñî:{ÑŠçl{óáæ„ÄñÖW€ãÝôŠ|ixë ¸±ŽD"m¼¹GØx‹%k¼õåÔxóø1’Æbëp%rÆ» Ó­´õÊx+´ñ> ³3ÆZ4'b,ä„ñ®:UÚצwÕ¡ÕN¯ìÊ‹xñ®z½ƒVãox¶xTzѪ‰$†Uh¼=—(¸â]u–·w8 ˆ U¼9#T¼Å°‚)ÞúÒR¼• ¢XCŠÅG'ÞExoQ*5~Z™Jê&ÞÜß$K,\‚(ñVRHbmM$VÀ59â]øæ#ÞLÁ$E¼Ë÷ÉÔ°Âņx=i…Û&âÍS +I›ü°` âÂ)Hožè@xx–71vƒC Ã›Ç ‘[ApXl¹áÍ…ObÃ;‹²­´/hX‘Þ72¼5&1¼à`˜æG¼ð>gXwZáª-¼³`ÞA+Ü'Á +jЍðfÜ4IáÍÓ Ä '¼yÖ1áEûcŸ“´}þ®s2Ââ2ˆo® “ÞI@k¦îWàƒwN[hEz·Ðêœ +À\iÅóª+­†H`Xüm´ê/.xk`,x+5 Tðf¨#¡`Ad‚q Þ‰5Z“V~'­p£@ÿ³˜âÀ[´7hà­pÀÀû€íÛ<›¨'Q`!$$FX‡É‘ÞÄB‰‹ø ¬VBÀkë fg€Ï¹õ@€—F} €€BþWñߥ!"6R×Ö ØVS¬/¬ˆZáÛäïÚ:½zÒŠ‡?OZõö»6/P¿këäi'# #ó»6@~-âwé”Q¿¨ÔG¼¯òù‰ûx´ïâ(—°ïÒ‹`}×f+>PßµuÜt¥zïú®-¸Ñ D8ߥ£èÀù®Íîzp¾-ç»t.8_4óÄùj‹™œï!MÀùÒœïbº9ßÅp1r¾<ç»–Pip‡ñä|ƒ Èù*œïáPÀùœïbO9ßÅŒcr¾Kç»Á1p¾K§öó]Ì"绖Ψn´È Îwé`p¾Zç{ p¾Zç»t:-8ßµH?ó= 8ßð€ó] µ"绘Ù@Î÷ -à|ÒÎw1ð„œï| Î÷.à|áÎ÷.XG>P‚ó]‹p¾xç»–Ng®´j/ÎW ä|ÿÎwq^FÎ÷ð/à|Ï…!ç{pp¾ëœÊ“þG‚óuÌÊŸ·Áªã‚ó5é ³à|=ºÞéã+²0à|O«;8_ïlO_â|ÉŸ‰óµ¾ôשÄ&q ó„ÏœÀâîi:ǦÁé1ç{ZÊÁùZG¸/‚óõ†q’¼–.œ¹@ Î×ÃÜ¿9_ïwÐ5ÊI­à|½×Û^ zœ ,_â|½³›Øï‚ĹÃVlB‹‡°;Û`Å7:§Iœ¯÷d»ì°b— 8_'ÝyÀŠgÌ£!Ë$þª«‚mp¾ž>¾ÄùztºÿU Vì­çë­Õ¤€TÍùCl ª©Áùzµ÷1ƒóõ¾iq½ úpÀ :‰ëõÔdrIÎ7íëTbï“.Ô ºH/è$®· ¯y½9ß´äÎ71­MœoZ7相Ÿ!Î7MqÅà|“N1#相 $Î7‰ƒ!ç›xv¶8_õA‹óMC§2ƒóMCï'8ß$N†œoâ Áù&:IÎW)èâ|•‚.Î7urFä|“NE$盺8ap¾©‹[-ò+âzé‡÷‹œoÒ©­ä|ÓánÁù¦&Μo‡GÎW©èâ|Scß:9ß$®‹œoj¬?9ßTÅÝ‚óMâøÈù¦JŽ€œ¯RÒÅù&že/Î7UqÉK~ÝÝ…{¿×îzs¼ûmóø>º»“oŸ»;oëÀs·¾eAçªpîÍÝú š«–t’¹[As·¾ŸÁåªCX®b÷Iåž#×åªaLîæWDr·l¹ê_'»uZ7x\eôÇU;;iÜÍ£‰ãn ÀânE—ÅÝ:§$îÖ€ ®šÝÉábÓè# Wùþ¤pÕûNwóD72¸[C ¸[  pwã w7怿ÕaÄo·Î}»+aAÀ·»ò[ìíæÁDo7g$owåû ðøâGÜ­Úè‰ÝîÊû3¨Û]yźչdn·†B@n·Îƒq«&{·[ã$ð¶»ê0]ÇmÕsOÚvWÁ³‰VøìƒµU >QÛ]9bi«# ÚîáZ¥f«}R¶è‚ý²ÝÊÐc»5Tb»Elƒ°ÝE®O•Õ¾O¾“¿ðZv@ºvvÒŠlñ¤QÞE+ÜU@Ön Öêhrµ'†·»èL\¦ì¢#p}^½Ëuð.BB3­ðÁQ«sÔîÂÛ5žB`qÚ]D“VZÁµ°âÉÀV2¥Ýåû\`XÔí´â©ÀV((0ÚÍ3`IÑîÂ#·Ñn2€dhwòës6Ø@‚VŒÚ9ì?»~ì¾çlhг;ë¨[oìÞY쪳³[ëÕa$g7ƒoÎ ÜìÎÂB ­H¥Zô4»¹¶Bföà @f·ÎóÃKE˜=ôxYA\vëì$вf,»óu²¯N• *{ز:d‚ ìfN9Y9ALV)Z¤dùHvóÄ&2²›Ddw‘šh…6z²: ‚|ìá"€Çê¼ Ò±[ð&àØƒI€Ý‰t ÐXfA2öPc±àô»u'–t֩؈²ŠÝIÌê È ±›çm“ˆÝIÇOZ¡É<ìNÂ]­x6¯÷jâ0ìN¼ÌÀÂêØ ¢°;¾ »uì#@Xåž‘ƒ=<0ØMªžì>Pk¡0°›‘YD`uä ØCk€Ý/V8<’ø«à â¯:š’ø+ç|Â_ÏAŃV@ˆ¿2xGø«Ð⯌=þštæð¢Õ…¿&1ÃÀ_u` ñWÀ_øüu èþº—Iüõp À_—Žrþz°à¯këàÚB+`{À_×&|üõP"À_—qþª”;â¯þªCDˆ¿®ÍËøëâì˜øëaH€¿®-úwÒjˆ†…®và¯:q„øëÚä‹€¿Âøë!L€¿.NÉ¿àøëN€¿êxâ¯KG8BüUü ñ×ÅCÚˆ¿ G!þ*…ø«pâ¯k‹Ym´Â'øëÚ‚r;­xPo—•WXáƒüU° ñ×%œø«ÎA!þ*v…ø«ŽE!þªcQˆ¿ e!þ*”…øëbÞ#ñWšBüUd ñW‘-Ä_×7ˆ¿.AæÀ_ºèBüU'¬÷BüumžñüUÜ ñWq/Ä_Ï_!þº¸®BüU ñ×¥Óå¿.ÆãCüu Œþ**†øëZüÆþ**†øëâ‚8ñWA2Ä_É]B™!þº– ÕL+x›e’¶ÈªPÒJ4,¬ðéþ*„†øëâ10Ä_…Ð]Kõ6Yáy»¬ %­Ä»Â Ÿ}à¯kq|üU€ ñW6Ä_Ø`CüU€ ñW æ?Â_ÅÛoCüU¼ ñWñ6Ä_ÅÛ]ÜÁ þ*ü†ø«ðâ¯Âoˆ¿ ¿!þ*ü†ø«ðâ¯Âoˆ¿ ¿!þ*ü†øëÒiËÀ_EãCüU4ñWÑ8Ä_EãCüu-¡³Ž¿ Î!þ*8‡ø«à⯂sˆ¿ Î!þ*8‡ø«à⯂sˆ¿ Î!þ*8‡ø«à⯂sˆ¿ Î!þ*8‡øë[Ò d—Õ «CüUpñWÁ9Ä_çœCüUpñ×o¹dU)Ç÷‘9Ä_çœCüuM1«Ž¿¾åø>P‡øëš:vÖg(K¹DÄ_¹´+üõ%i:´ÊJ4,­ åzË&«LI+ ³VK4l»%¬0‚"þª“ʼn¿¿þú’´ê”´ÂKX²’߇ñBv¿¾äú>ŒGø«xâ¯GfZ·!þ*À†øë‘…Vlˆ¿Š¨!þú’íûlá¯G6Y5JZ†í²’¤U¡\o9d•)Ç[NY‰†…¨â¯G.ZŠ!þz$ðWa0Ä__r}Õ#üõ%Ç÷Q=Â__²}Õ#üõÈ"«J9޲ʪP¶[®·l²Ê”ã-»¬e»%¬ú}Éñ–“V Lˆ¿¾$­ü­#þú’£¿$ð×ùÍ»¶[®—$þ*ðƒøë‘YV’íû¸á¯GYIŽïãv„¿¾d»åzË&«B9Þ²ËJ’V™r½å•äxË)+ñ®í–ë-—¬$ÇxIà¯Sl0ð×—\/Iüõ%Ç[æËŠøëä¹zÄ_,²’oYe%ÙnyY5YMÊñ–]V’í–ë-Çm5n«y[ÍÛjÞVë¶ZD:)7‘Î#Û-×KüõÈ·ÕÁ_l·¼¬ÊmUn«z[ÕÛªÞVí¶j·U¿­úmÕo«q[ m7þzd»åzKá¯Gé¤þz$Nž¶+ü•GÆ =r¼¥ð×#aÕoüµßøë‘ã-…¿I«L¹ÞRøë‘´w*üõÈvËõ–Â_yb®ð×.À5Ý’V‚c×[ =H'îÀ=²ÝH'ψþz$­üÚ8øë‘í–´ºñ×#iVVøë‘Måz˃¿fÊñ–-”í–³:nfõÄ_;åEÒ®Ê=ø+Þƒ¿J’Y]”û%¿ñ×M «)À5ßVS4,¬0T;øë‘´ò×{ðWŒ þz$­üü£Íƒ¿R ÅHõà¯óÆ_1è=ø+ϵþzs«áôÁ_y&®ðW€ñåºÂ_)…¿‚À?øëºñWÀüêðWäü©EÄÀÁ_@pðW¤üußø+‚þŠX„ƒ¿"4áைT8ø+òÎ1·Hg8ÇÜ"»ás‹d‡sÌmz㯠‰X:渭€‰¥cn?±tÌ-¢+–޹E°Å9æ±ç˜ÛüÆ_Ïa´ç˜ÛFI+Þ?xÌí¢ä‰¹à?uÌmy㯊9ÇÜ"@äs‹´‘sÌmÁóê˜[$•œcn‘cr޹­oüU‘(ç˜[„cn§BüUa+Ä_•ÌBüUçUª ñWe¾Õ‰ÈÄ_•CüUá2Ä_—°Là¯\(þÊU5á¯\sþÊC…¿rùNø+×ú„¿r%Pø+× …¿rQQø+C|„¿rARø+W/…¿2HøëÒù²V<›vЊçÚZñLÜI+ ;iÅÃw'­xRï¢õþºt$0ð×¥óƒ¿rýYø+Cš„¿r)[ø+º…¿rU\ø+—Ð…¿r]ø+s¦„¿òÌ0á¯\ØþÊeá¯Ü#þÊ0,á¯ÜnþÊ -á¯Â_wãø«šK‰¿ª1•øëîü,Ý<úŽøëæ9”Ä_wÇÐ…ø«ºv‰¿ªã—ø«º…‰¿î¡'ò1HüUÎÄ_œMüu¾±À_7¹â¯{²¾À_÷Ĩøë¾ñWõ¨ÝóÝÜ{"þª$tâ¯[à¯[£௛tñW Ø>Â_7C‰¿:±©'4ÞK°'Ÿ¬³"ƒzCãK ìa[Áñúˆ‚u6§P´™Ø‚KÖÏXØÔ†m¦ÎóèAÂ:KåÏÖ,i÷ãn?aX?äEÃ:â´¨ÍOgÀ‡õ3{ µùÍŠ â—?ýùïþú?üÅׯ÷“ݵŸŸ¼þù»_ÿÓOÉÿëýOf}Hð?ú›¿ýJ_‡•ÍúÕ¸ ð«¶œuýï¿ùéë/~òÅêïßoþ²ÚcZ=°û­îûÐ|à35´7à[óýÀê3¶ïBó¿ï`=HÒ÷¡õÀ߃ëÉG‚ß„öþů~Ï»kïùŸÿåøÊ_¿úû¯ìÅNçÐzÿL=¿öÛ¯?ù»?ýúÕ?þôïe–þ—^÷c]ÚÌíùÒµrÅCóõÐõymÞó¼º×óþo¿ïyÿÀƒ³*_~®±ŸñÜ…—Èyø×ÏxîšþÕÿëÏŒ^³}ðþ£KeÇçKéUªò3ž·ù2–ª;ºó£¥ÒåÙ|võC—góVõ¼<¿Ÿ÷.ÏïÿÐåùýð¸<ÿЃÿ¨Ëó<ƒöåù]ª¸<¬T¼<¿\~äò¬¾8øC—g-çƒñó/ÏïçýËóûÁ?ty~?ü.Ï?ôà?êòüÁðàŸ}y~—ê.Ï+/Ïï÷¹> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 4340 0 obj << /Length 280 /Filter /FlateDecode >> stream xÚePÁNÃ0 ½÷+rl%’9É’¬‘6‚i½1Õê–JYƒÚŒñù´K†¶q‰í—ççgiÇä¡Hf+eHÎr-4)j˜œkb8gZ椨È{*ù"û(žg+Í/¨Ò(fôb:‘´{W¡˜ Ä·qœ¦/$¨TÀ”6„ 3‚2(=•¶¦k×ïK{—Q¡ ]cSú6ã~OÒåÏ—ë°óíåÅ5íàÛ],Ë® É&º©ëˆ}€ÞÐâη® åëäz¸^å’ås|mzü¹ }dYFå(¿`>F¾†CÓŒøO É@ôƒ?£=FÜÕ7ÄÚYë2¡ÒcÛ5QóÚ{}èNU°ÿïÜË"ù/¯}± endstream endobj 4346 0 obj << /Length 1782 /Filter /FlateDecode >> stream xÚÕYK“ã4¾Ï¯píÉ)ÖZ½e{¡`Y8AUnÀÁI4± ÇÎÚÎÎο§õ°#?²3P ÅÔ,µZ­V??eptŒpôãÝwÛ»7ï$‰2”I*£í}D0FŒËH‚$Ë¢í!ú-îtujºÚü±ýùÍ;¡~–I¤² ¤YNF2Ãt‡ýÀ-î„¥1Ê¢„* 2·©ÎOÚ‰f,T…`D±D÷gÏ5©8RtàEõ¾/›z“PãûKífK½’RÄ™€A™n‘W÷IÝ´§¼ZS+¤ˆ{e¸ ó+ÇKÈ-µC®#ŽÉ°þ;xEC©âÏÙ3àH¢L±Ô0„ … žqÇU.ObˆúÓ9Ѐ‡{%¢‚]ÕÄkj‚Qxvå!rEMLWäØÑìºjv[בÄ{‹®˜G èŒÓ›æàˆË,¢Hd,0ÇJ€PL˜O¤Ö"âãFÄy_n¨ˆ?š¹N,ùÓ¹©uÝ—Ï žZÁîÿ‡ÐÏñòBgq]öÏ®»PņFÕË®/÷ÏðýÀúÒ½OWÜE9˜†-ý•ÎÜ5²Ü!’!œ‰/Bé3BˆýK6[÷Ðx³·kU*K'^6†§4þÊ}nÛŒcD¨zùiw+õ˜ÂHØÔ£s¿áܘRü ÛgäÞ¹¾—žx."V’/E”¦OxÿËyMÞˆôP˜‹ô k_ãmVT¹@d}—§¾9o 7NEàb˜ò ЃU‡NíJÙ9R~8èƒ#ºõRòÎ3õn^ „®<•UÞú³Úæ¬Û¾Ô~1÷"{§ wÇybw9u×gíÍÝ {Ã/-°eW±îÍWÆy…6‰ÄØz“bÌ=éÁM;0Vn§;÷õÆdhÕ]Ü<ñ/É(X_<‘ß”i~å¡bébH1šÑ„Wœ6)SV/wÓº/òÞ©íõ—#ï½<«GÏâNMÝ€ÊÄ1¡Ð$`¹‰-÷ îÑàû,>è}«ó®¬nÞê*·ò‹òì(;Ý?hm¢Dbï? ž“&šòêâ y}pƒ‘eò’ÈLHìò]Y•ýãFмÄXzõ’•aniã-_OBA:õß/­‚¸goáÖ€çë×K¤–Žå@…`Aç³óUךæ‹GçWù|qݸïh#0'jHViÛÅñÒúÙNW.yý®Âͼ°~ØäœwÅÔŽZ•nŽuUMsp´æÞ§^X¤OSøºà1åÏ0Úø ´ÏC+GŒqçqȦ]K0h)LÉÏÛY!qm'¾l¯ÚÂéØh} º“§Ê9ÕÚ²¹tŽpã±ëW ]¯é®R¤¤zZw6Ó}­fá8ÊBöåÿÃöÎT¨ ®" w”&ö§»w špn9‚¡]öy›ŸN"ú¾¹ûþ†¥d™Bí¯SÅ<ÉbÒ'Ì{hP£(#ƨ1+Ô$J¡µžî^t½®]¥¾q+èc<ÖSf½ð[ÏMו¾XX‚-…K_PIaüó˜ãˆCü¿¬1õ¯øÜÛA†YäV:&(ÃP®›Uwh¼yi ¶éÊǺ4ÅdŸ×{íh}½´hªƒ›4t í'®ùÎ#^Jă a+WbDzÐÔ‘ éý.ù2¬^›}Þz™v7Y\©h@]T4 A%²&!JØ2?1I˜ç ;€_ýáâ;!LŠòX¸‘s \?‚AhÅÞ“úËÁ•s˜ì6Ç¿â[ê°64äýõ¨ñ€™ŸÍ‘»Æ\ÔßvYÓ0X{ÖÐFÏz$°ˆ·›ê´[7ì½ß~Ùn”{ÂÕFfj]eð£qSgÍÅ„Ÿõ¾¼^ƒQŒ¹|x*pÄõ)t§°Àe_,ó º.ç ›Bƒ'ŸjßèTVG€°Leó£é¸ƒ<Ú|¢C|,s3 WsLÞQŒ‡¿çà=wk%AÙ¦;t³vCÒø0µî d`»õ`üaÎÜyšÍ!˜Wƒ½#YÿÙÁ®Ó­‹-¿kÚ¯eRh°ï¦Àhd¸Ãplö£ÞL° K 0lËã3‰÷EÓézèÖ×êdx÷õ¡ëûyç7:8o C¨Oó¶N¦møþääÔk)v Žˆ|÷è¾§²^Æ‹ ±éô§†e¦(c¥ÿf“¨‹+ý Iiö%Éì9-K.ZÖS¿´<¬¾rXJÿŽÎ×RN°7ŸdÕ_0& m|¯˜÷½"!p6~ ¢Ù<¬àlßY'Ïç J]û5‹lÕ£0XiEð„œµ"—!ü•šµ )Ï çcNJ<à•”“Rña±VŠ8JÈá_GÃå_B8[ endstream endobj 4342 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/selmodel-preston.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 4350 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 4351 0 R/F6 4352 0 R>> /ExtGState << >>/ColorSpace << /sRGB 4353 0 R >>>> /Length 23531 /Filter /FlateDecode >> stream xœ¥K³mËUœûçWì¦ÔàPïGö#ÛF7 ‚!. ¼%a„¾kŒÌœ{Ö@Æ\Ü@R²Ïʵ櫪fU}9òÇŸ~ä¿ûøßþëÇÿøèóûH³|Oé£UüWöÿß?üøñß>~ûíÿgÿñòËoéûšý#}¯Åþ³•ôñË?ù/ßÊ÷#ÿéÛŸÿÅGúø«oùãOÏÿýÝ·œÌè?›ÕœÚlßsýøÍ·óß鑟&e\”Ùdÿ^($­Ò29d•:$­Rt«ú}û?ž°:²CJw^°ªßW‡l”üëÊ.g3¹¿ȱ ¥ýæu޲7ÈÙ$­ª}veYÕI«â²ÈÊÏÆ‘´J”nU¾o—V¿yUXüÈÕ`U¾÷ Ù [ƒ¤UµS·º¬ò‚¤•Ÿç5`•ù½Vùû gcÂ*óð'¬2wÉÊo†#Ý*}ßr—s›<§Îç´C6ûìNvÙM–Ù ¥Yý}™óÎnuä Íÿqq«# eƒLÒ­üž8²Âj}ïr@V;Ï»Áját«‰»îȉŸÑa5í,¸Ùÿ:`5pÚl£C.Èê?cÂjð{'¬:nï½`Õ¿÷Ù ý¢¹ªKŽö9 &Û÷Y!¤ß99%;-¦³t3}éÝ«ë ;?mÐîÇ»8§¿‚óiºA—Ií~çï7Óº,× ~Iÿ¾Á/É¿Á÷MNÝýú¹S6õ€îøüp¿£ó¢6¿ÎÛÁô‚nð›ð;§|R»ßü>“뿉GÏ´ûË\©Ï‰4Íï?—:wêaºŸ®­Ù…®ÒÍtC»gzAÃ/gø±=6í~§­óãÉ~ç4oj÷;—aR/hܹ¯ ‘2í~ OÎ ~Yß×àwžêM½  üºûµFÀô€®øûp¿vNÓ¢nÐ-S›_›:þ ¿ó-êüzä¿Áûõè:õy†Z;ÏÎpí­„i\ߣ‡é†g+oL'éfºòþ;zAóï~EŸÏð+ô/~ç|vêµûûÛï§Rݯîï{ShosñÞ³ÕÅûíèݵùÕ‰–3—?ݯG»ßø>ñ{ü†ÝöÐî×Ñ™^ПŸðk¼?ŽиÊ‚_åýUütÿ}~˜éŠß{®‡éŒæÊô€ÆóRÏõ0ø}çœÑŠÎÏÑ Ç>h~EÏ÷Ñí——L{ Ý ½·0í~Þ\›®ðëÖ^Cèÿ¿fãh÷«ú} ~L>'Òý Ÿ;ÑÐx¾Î…p¿s¿$j÷K|^Ž^ÐhÿÎ…5¿¼ÙžVïœÚ¹í7þýr¿£ñüÙ20^ÜÔç˜Æórn´bzè|cÓj¯Îš }ˆgº™VÿÒü*Ÿÿs£hßÑîWx?ãAi§[‰ºAóßø%ýûê~IíËÑÚÇ\Ù\Ó Ã Óæwšqþþæ~Gãù< û ðL»_g{o 4îï£Ý¯}¯ÒîWy?†ÉýNÿ(= qÿµ¿ÌçÝ>Ó‰÷FÓ<žmc=Ýx“¦ßix“éÉë}tƒFÿÛýÆ©g¼ö§gøuëö 4¾Ï:Ó Óîç§Úý ûgëh ñ<ô ¿Ìöº7ø%žÿ£´VL›ßÚìÿOGh~g,‰þ®{CTÏ@÷ÇéHtÔæw†±hߎv?Ž•òé¨Ý¯éx'üÔ¾[Goú<Ÿ•ÚýÔžÛ@aõùm«iÜ?GÓ‰ß&éèó’þæèfzñ÷½ ÑþÛÀÇôäñÛÀÈô¹^~>Ï@Êýôüí~×ûèó?*üÔþí~…×ï üÜ/cHkºA£}?ÚýÇ#gXi~g4ö÷hóÏñ ÷‹×óhó“ã£Ío >¿öÓ]¿g¯qüfFиv¿ªó»ì‡Woúõ8?¬šÎ:?ÛŒ:øN’Ïdè<©OÃZÏeÃón//¦ù>ñªSm¼'=¡1Þ°—,ÓƒçÛÞÐLw>Ÿözgº±=Æ«b=žo{)…Æù»ríjŽv¿ÌþÇ.´éÄöeú¨¿žf`IOhú ÷kêïìF2=õû†ûf‹¿o¯³¿œ~]Ç»àw~æ¦v¿Êöáèó"PŸñϹñ«éÌñÅÑÓô9Í~þ—7l¦ý-Éô¹Ñëéfp¿m~UÏÿyÐÌïtkm~§DûzÔ ûÅ\Ó|92í~~››®ðãd€i÷Óød5ø¶/G»_f{´ûñ56Ÿ†ÆüÊæõ9ÚüžñÇòfçsùƒ]Ïxï#Ëßëo`|p6÷Óxõh÷k¼¿OÃè~•ã?k(¡ñü}NL=ã ôO§a­¦³Žÿ\Ó‰ÇâóÁzÆ8þíQÓm~gü€çù4ìæwÆ 8þ£Í/ë~:ûu¶G»_ãxhø5ÿ®ð;ÿ5¨Ý¯°¿Ú ~s9¦Ý/ñøÞÐ8þÓ‘™_Ú<þ£Í/-ާNGh~IãëMޝ¶ßX¦Ñ¾ï ?¶A»_ãûâéˆÝÏ_› Ý¯°¿Ø>P7çótäÕtæóyô4ð|ëøëG±×öDÝM³½5½MOœÏrŒ*t–ž¦9ž)©Àý¡i÷kx>M»_ÅóYR…_E{iÚý îÏ’üø~hÚýNÿ.m~ç6£_w¿£³´ùÛ”¿Ï§<ʹͻ´ù­¡ß7à×u¼~]Ç;á×0^-iÁ³{¦Ý¯ày4}.¦ýz”ä/¦ee¼ÿ˜ž¦úÏb7ÖÑ“SO¦»é…çÅô†öñD97ªù¡Y…6?õçåÜØî×Ñž™v¿†ñ”é ñ}~œ€4í~…÷GnðËèLwh~M»_Âx°œÓülîlS›ßéV'>?ÜoðýÛt‡Î‹ÚüßÊiÜϧ] Ý¯éü,øqJØ´ûq¼eú|Qœè,Ù;‚2ø>`zBûx©œ†+›N/™> E±ùžBm~§?÷éÍr¾ íãwÓæ×'Úób/^¦ÏG)ðëhoL»Û¯b/rÐ¥Q»_ÕçüŠ>ßà—õù¿¬ïïðK¼?ŠôŠÍŸà÷ûÄQQÿnÚü¬_Ôæwú÷¿é~mð~/~lÏÊéˆÜ¯ã}дûq¼bú œÊéßü·5̦s§ž¦ Æ'¥zG^ZÆûˆénšý½é ã=©ùþÞÇo¦Í¯²¿,§ãÍÐiS›ŸÍ_Ljó;ý=žÇZá×y¿=¡ñ<׿ÆûÃþ‡iŽÇLoèŒïïð+¼¿v¿çøü2úsÓî—ø¼ÛÀäè¢öÛ~¸é…ùRÓº@/÷;—‰¿o¹_è?LŸé·_/(™îèLOÓ÷Kó®i´GÍ'Nì6ÅñàÂØmçý\¸ çË.¤éŒþØ.´ûq¼`ºCãy:Úü2ç÷ìF1¿óXûøÞô„Æù²¤é©ïIÖ¬ðß7ø ùwøq~Ô´û5ôßvcghŸ¿1í~j/v¿çx'ü8?gÚý8Þ¶ËýûŸ£;t®ÔçÅ˺ <ïÍ_$¬[YzBãúž;›žlßìA7ÍùbÓ÷ÏiÜïG¦'4®O/ðk/ô¿Êß{ô†FÿÑ+ü ÆÓ¦Ý/cül Y†æ÷7øéz÷¿ÄóeÕëÆ-¸ÿ¬¡4½°~` i†.ÒÝôdÿ`åи^6‘nšóm¦ÝómÖpgè"í~M~ËVÓôÛöbbÃHôßÝ'Šl؉ëc/‚Ð>ž+XX°a,Ž×^¡ÑþœŽÇýÔ>Û‹æÑ6¾ñï;W†Æý‰…†ãzØB ´/zÇgZçcTøq>Ã;JÓêŽv¿®ïkðë|>mÈtcyô„Æù·%%ÓUÇ7àÇù8ÓîÇ÷7ëè+4ú›1áÇù(¸_ÒïYðK|ÞlÙ-}Økî‡á³þZ˜¨—iõÏ60ÆõµåBÓŸû@÷³­Lš<3Ãop|qFî×ù¼a dã![5­þ`Vø5¶OXC¶×t¯M¬˜.ìÏfƒ_áý?;ü¸¾eºA·Jí~:_ç‡hÜïv GŸÓ‚çqúDƒi<ßG›ßPÿ1}"̧EðïýƲi”-}:rÓüþm ©MÃð÷¹±OÓtêeºc¾Ä¾Ç¿ü4þ±‰/h<vc@ãù³‰2Óï¯6Ð.ÐèŽv¿Âñƪð+ìߎv¿Ìöïèçg5ø%ޝVƒŸÆƒË'jmZíÇò‰Óx^–OtØ´Þ†ŸOäd­ÿ™иìÁ4­ñÕšð›¼ßlbÒ4×uíŦ@£ý?z”›ÆÄý¾| gºêfšó_¦4~Ïix 4žÇàÇõ({KÐx>v†_áûÅÎðãz‹½È¹_æøîèÝðù ?·­!5Íù'Ó ×ã4¼æ§õ>ÓíÁöei›ÖÆóstƒÆý†Þ4Æ—§#p?Î×›Ðh_­ã0=8Þ;ºAwéM¿?ÿ£OÑ1¬0íÛlY`/êÍó»m fÚ×^Ô‹iŽMhÞìÅ>A{{cÚý8ÿjzAWøø±?6= ;>_á—ñþeÚýÆË¦´÷w61Q Ó¢6¿º±>l ºvjó« Ï·é=p<¾0hº,j÷›hÏl"%A÷IÝ K¡v¿÷A›ˆ)нRæšÇ·íƳe±Õ¨tOÔ Úïw›ø)¦¯ÇÑÚûO›8JÐ~?˜v?]?[x‚æ¿/ð«ò/ð+ü=g`™ ½ý3Ý ó¦v¿ÌãÍ ~ºž6p…ö÷›(s¿„öÝtƒö÷ŸHƒ.ðîg럋z@ãþ²…<è:¨t’6¿óþ1ñ{üØþ™> Y.KçË'm™wI7è.½ }m!×§ø-¬GøÂ´¿™v?=½Âë¶X }üå ‹Ð¸^g ™ qý{—ÎÇÑîÇñ’/\BÏE= é?áÇõZÓ çûhúeÿ‚_gtô¹QM£=ïÍóã'¦ÑbãžiŒG†wt¾­/QÓ÷ßÈðk¿›nÐS_Ðè?m#"4Η½x@ãxìÅýý¨òÃõ¶‘¦+ïÏó¢S }|mz@ûxѶ4¿¯Ã¯òúÛžNh´§çEŒ~èOlƒ¨é‚÷[HOÐè_Æ„_áøìèçã¼hôÿÃ7Šä¤þç¼Xfh´¶°oZý‘½ˆBãþžþ ™Fÿd»{¡q¼¶q÷ËÌò«š~h/g‘_ÚÔîÇùbÛ¸¡Ñ¾Ø¾lhœoì7=à×à§öáhúUøuù¡ý™]~¸¦Îÿô}«{²»ô¹“ÛeÃW/ZáJØ”G6‰†uúŽ¥#ù;¶={ãµËäù›»ü|{‰Ë%9]¢Ï<ïÜÙåì.»$¬|BÁv¶ÀªJ —gUZeIX%I³â\ƒm¢©.—ätÉ_å[Š4ñç;r\vIXa˜`ûw\¢°å?—8WkÒ Ï¨-ºDr¤Y ¶@Ëm>@ËÏÒ¼‚¶é·óòu£=ô#}fsó®íRª.qoÛ"§KÜZ;Ó #ói…†kgZ¡_ß…V¸¾Ûç£7W-l{Uv‰FæÈî}€-ÎBúo¶½Y.ñ›m)×%:´Ýi…þgwZaøkßè£=h…ól§Å%Ú&;á‰VxRpì¦CXnÕ0¯àÔªKüæmýýÔFÙ]bк½·Þl³mó[ué·Jó¿®‚mƒ•o@ñt…V~D¶ïVySÂ*ãWZ¥AiVܺirCâgømW ¤LNHüæîVDNLÂÊÐ$¬¼Ñò݆.{§„UÃ÷NZµJ «:)aUaµhÅã]ö6ßé27ÊîÒçLnHÿ"SÉ™N“Ò¿ÈvdºÄáÙ!õ×íÒ{aÛÞ +_43 «¿VZybVþЙ„Ά”!%¬põm*d£„UÑ_aUð×A+Ü öΉ¿NZ¥M «Ô)a•pD¾ŸÖžñNy|g«moÏ;ë\m»Ð;ë\mûÔÎxC°­¼²PÂÊÇ¿¶V¾½Ä÷»Ä©+™V¸‘l×d¦„UÃUZµB «º(a…3yÞ‹aåä†ýG›£xÛþ «R(a•%¬pbí]2QÂ*áWMZá&ÄÄÂN|‹ïC؉çù¼ WÈByFE›{£mx†l”2Sn—8í¶b Ù(a…;ÖöŸ»ÄókÓ7•Vh¯j¡UŸ”°B󅩤0!`V¸(G ûyý…UK”°Â³Y¯xj§š‚Úiåo¶¥VhlÇ?¤Ÿº:i…gÁæï %¬2~Õ¢®à‘çn. ›!e‡Ì”§=Yܯo C…”ҿȦ9!ew‰ëÛ2­|hhŒ¬|øaVh[¥.w«´BÕ*­ðз\Xáê·F+\ýÖi…æ«uZB +Ü mЪ/JXá =¯³°Â½Ñ&­ðÀõâ²á³‹Vèøš¯)®Í–°9Ò´8Qc²»DÃØ|‚pmÞ9Ý×ç´JiV> pº2S ­¨í]„U¡î+[i€„U¥UÉ”°ÂmÖ+­2¬­r§„îºóê «œ)a…ö¹wZá&ìƒVèÊû îÉ>iå“F&i•(ÍŠÈ„±_rRžaØZl‚ºËâÈÜA3ÈB¹!Ýù¼½V—¸G¢•ó zƒîç‘iåƒ|Gæ ÝyY%JXùÑøòÇý‘Ý$=ÿ=€T9òÃo>~vþôóþîÛ¿ÿÁ½ÿå;tºüë?mû°Â§Û¿þÓÜUüþôø Ÿ^ÿìÓë_ÿéÏZþ:kX>ûÆ (À®Xø;6W¯?g\bý=¿®8þo-«Ï? |ý_kúúÊ÷?À[ýóø’ÿõ”bÀð>†ŵõáËGo?ù¶Â‡IÿüôÛÊ?m{OWð“o+|ÚVŸ_þn+~ï_?ù¶Â§ܯø¶bCð­aÄ4õFÙ4Žâ”üÛ´¦ÿß…o˜›ÙçËÏüóŸýýý¯ŸŸÿ÷ÇÏþòóþøó¿øøáO㡾>þG/×ì>N$XýÙŸù¿¦Ýÿé×ÿýüÏtþçç¯ÿöw¿û«ßýõÇ/üüñWÿøëßýöù¦ŸéQ—}ÿ:×Öþÿ‘Ü2ÎHÁÔŒô:Fz Nó0Ò³èO¤ÇHèéÑ9›ÈHνûŒôèDCéÑù.ËHÆOŒôhœd¤Gëý1Ò£þ*Dz4B”Œô¨Ñ0Ò£ÜJŒô¨ÜÁÄHZÐi3Ò£ò•‹‘…Ó¥Œô(caFzn¶c¤‡ÖzéQøÊÅH¼øWDzäd¤Gnx{c¤GþJø0«Ì]vŒôH†0Ò# \AFz¤vEz¤Â³Hä<(ÒæëüL"ÒÃæöü;ËÀ³ZЏð¹ŸBnŠôpìÒ­ ¬%‚H›÷á<"=œ™d†‡YM΀"Òà 3<ÌjÌù!ÒÖ1ÚáûFªðl3õE—ú¡H[³©_‘up-{VmE ¿jÀŠïîˆô¨éaËg>)‚H[óK†H[üÛ”ç·ÛÚaýŠô°¥IœXô°•L tX»°•RFdød‚­´¦W¤‡­äC¤GÕÃÃH_iF¤…GzØÊ5QDzØÊwUćùU!SˆôpänS›_­ŠiðãÆHZ…h"ÒÃv.ÑB¤‡#sƒÚüŠ3DzØNŒw¤‡íô˜ƒÚý8)ÈHÛ‰²¥Í/?!éa;_ÑáãwÛY3'õjÞŸ‰G¤GÕ–sFzøN!DJøLˆí,RŒHÛ¹‘¾ó éQA6}*ÒôW¤‡íäòHß &í~…$"=ꃔ#ÒÃv²©C¤‡ïŒ[Ô­9BÆïóHÛ™‡ó‰HÛÙ$‘¶ˆ9"=l'aRćûqâ‘E]9#=ÛÔæ·„D"ÒãA¾¸—¤h‹3#=ñÂñùT„í,e¤‰OÔ8ÒõŠô(KH="=l§,î?DzøÎZüÝÙß™;©ÍovÞ/ˆô°Àx^éQ ÅH¢8&FzøNfióÜÂÅHÛI ‘¶óz½"=l§öT„‡ù nQa¤‡ïEzØÎrFŠ ø)r‘¶“½½"=lç{}EzøNzEx$ TUÕ¦^Ã*܈ô02È$"=™zEz‰€¿#ÒÃfv?]?Dz)Qña~m «kdbDz8鱩ͯ ¶?ˆô0’ˆôpoðSä "=ìýd êEä ÿ¾Ã/ñz!ÒÃÈ\ODzäùT¤‡#NÒ ˆÚsDzI„ó‰H'“^‘åAšéáïî™zMG˜€Ì"Ò£hK"#=„‰‘Nr)£MG˜p}éaÈ#><ÒÑ%E| JŒØp¶Æ^QàDZ#= QÂñ!Ò£n™`¤‡!IC H#2ü2‘ZDz³éaH#@œ¥q$ ¿ßY8CV§nÐŒñ½ª† ñø'üº";&ü„d#ÒÃ#´Wˆô0HDzr„û ‘N†Vê±1ÂçéaÏ "= 9Bû‹HCŒ€ØãA1ÍH _;*O‚H¢->Œô0¤ý;"=LñG¤‡#FÒƒˆtƒ_åõD¤‡!FèéQ´e„‘%q‰‡‘†áyE¤‡!EŒñHÓI‘ HQU„G!R4©‘"|ß‚ßÿ‚Ÿ"]éaˆ;"= !BD"=œDGD…Gz˜F$ ^êlEz2„ç ‘¦‹">"œDz˜Æñ!Ò#kêž‘BÄH'ÿ'õ2Ô_‘ž$ Ý Ñ^ [Ó  ;üt½é‘—"+éa× ‘† áùD¤‡!BKí3"=<©Ç¿à—õûü’¾ÏgËM'ExT C<¿¾,ãIþwDzä©È+Dz"´ô÷ þ ‘†1’"Ãoðú ÒÓ4^‘¦Ñ#ÒÃ!´ÿèè³"1é‘(ÉHŒLŸŠôpÛM½¡1@¤‡ý,\ODz˜F{¶ÉSºC?ß@†øwgÏMÓß'(òx"N<ÒÃ4ÆCˆôðËV¨7"ôˆô°ËŽç ‘dÙ§"=ì6Âø‘~›½"=2–>éaý7"=ì¶Fd"=L·W¤‡=¸þˆô0û‘þXuêI„oðËŠiðKú½ ~\8e¤‡#DzB·W¤‡#DŠðèÐ_#ÒÃ4îDzä'B‘lÆ>éáÍÜ îÐM‘»¸Æø‘ÞŒê ÍH ÏÂðf8Sw"EÒ›Ht†Ÿî_lEðnàéáÝD¡îÐŒ)ðÓø‘Þ uê þÛo¼ÛÔý"=Lãü!ÒãN=_ˆ#=Lóx0÷ÚÔß#Ò#cçð§"=¬Çû)v¬e!ôŒô0û;é|XðŠôða¾ß—Q9zEzdÊŸŠô0 d‘Y„Œô°a -Dz˜®¯H9Ò„H&ÍLÝ¡ÑQàW‰p!ÒÆ]@رw5·;ÒÇmº92HÓü=~Y¿¿Ã_Œôðad¥îÐ@ìÁ>Û0”‘&>P1 䑹>‘!þ ù°vPwh _ˆôpD Ú_\QjÔz¼"=LWé¤7$"=|Ø.=‰,!¢£À¯+ò¢ÀO‘+ˆôð×DnTø1b‰‘öZ1ᑉ0UêþB˜éáÓ+Ò#cíîS‘¦ë+ÒÃ4oÀ¯ðþD¤‡#M¯HÓå鑱éåS‘ù‰D@¤‡éöŠô0_‘âÄHGœ)ᑦq!ÒÃ4eDzØk$#)<Ò#+r‰‘ŽS©'4#Lü¸›‘Yï—Œôði"è ?!±ˆôx+Fzd½2Òç¡^‘6Mň¿q}ÚJí "=8Íõ©HÓI‘î§û‘Ždmê 瑦«"<:4#. ü„ŽÅ­A=¡Ñ¾!ÒÑ-E|th?"=rVû öÖ§'õ„~Gz8ÂU¨;4#CüÛDzø4d¢ž@´–";24"céáHצ¶HŠ,$ Óùéñ ^ŒôðiÒBÝ¡áHG¾^‘òÅHG¾©Qä—^‘6m‹ç‘¦ÑÞ"Ò#çzEzä'ò‘YóŒôx0FzØ´1#@é‘Õ0Ò#ÞߌôÈ[b页)Ezä¢ã™òKïHÌ÷cEzhþC‘9ó~b¤HÝÏ'Ò#göŸŒôÈŒV¤GÎ<ŒôR¦HL„D‘™‘âŠôÈ\ÄT¤Gæ¾JEzd"”ŠôÈÜð¨HÄõEz$n=T¤GÒóÍHÄ÷[Ez$õ_ŒôÀ2Ãç顈[Ez$¾(Ò㉠a¤GR¤#=7Z)Ò#q‹“"=#‚é‘ÉÁH¤H&Fz¤I¤Ÿ‘‰ïߊôHŒlT¤Gšü~Fz¤©ˆ,¿ªˆú¡½c¤¶Å>‘‰ó=ŠôH$>é!ÄM‘I‘QŒôHŠ `¤G_‘ôÃýÍHD²C‘ið|0ÒCœ"=’ƃŒôHê¯é‘8¯HÄõEz¤®ßƒHDhC‘I‘8ŒôHŒðU¤‡"‹é!dN‘I‘1ŒôHŠTb¤GR#=4¨H¤÷Fz¤¦Ž*¿,M¿$í~¬ô¡HTHÍ7*Ò#Uý>Dz¹S¤Gª|žé¡õ1Ez$®Ï(Ò#UEtLùeiú¡ýb¤^«>ŸHÄHEz$E¾1Ò#E‚ Ò#E^ Ò#©=e¤G*ŠÌÈò+Šø #7²üð{éeÛÏ'Ò#)’†‘‰È®"=Ez$E 1Ò#qþD‘‰X"=’ÆûŒôò§HDX@‘‰x€"=Ez$µßŒôHŠÌa¤‡@Ez$EN2Ò#±$"=„*Ò#qC¾"=#Å鑸¹B‘Iˆ1#=RR¤E–_VÄýÀ£1Ò#q~—‘{+áÃy›Í]ì ôØì,˜ç±¹qXñÿTš‡Vræ±ùâÌ,E…3ÊcsI›Û¸ä±Å9#Çcsï5c<¶R#ⱟßò•€ ½tD¾Mcsúš {)€Ä§Õ6¿™ß±JÄwì¥tL«ö ïØÌevǃ2"ºcs€É{}sÀ <r;öR,†Çv(U•©[!'íØS™žÙ±¹^ÌÈŽ=ɶ!±cOììØâ·‘×±'i= Š÷dZÒ:*a{êx­j¡<çp+yI{ò‚âõas—9Úר¥°1¥c?¡Ò±™±ÌŒŽÍùIFtÇû0žc^nÄnl…Á œc´ÈæP4£9ö O‹dŽ=xõ̱‡rH­Àµ"–c3ˆ©û ™´Jú+¬ðü"’ãa5‘ȱ¹zÆ@ŽÝ•â´Æî:9DZ™ÞÎ4­D1Œc?Y™V@×ű;v$qlá ˆc3’9牎ÍKLáØç !› ôÌàPÄ#8  ›@À±9™Àü EüÆ~Ò0|̵nËð-vÙ›óŒÞxQ$ol[2xc7å„8ø±ó‚Ø ¥2ucsÃÐýÊà€UWĬ˜X‘iÕÈ«úÊÛØÜ¶Æ¸­4¤m즰‹J+œXdmlŽ‹µ±Y‰‰I›A¹ ڛʜÍ0Æll¡˜²±+Ï3B66‹¥1cCä*#6¶°± É€]yÇ"_cs®™ñâZ™®±+O;Â56'"™­±ëWÔ¬À¥#YCÔ+ƒ5¶r«¡Ê§b5vUJG¡pq„jˆ‰e¦ÆV$ "5veb56G ÔPÞ5ó4DÌ2NcsªŠi[á*ÓØœXe–Æ®l7¥!ž–I*œÁ ]x£±¹¦Ê­Ô)¤hˆ¶eˆÆæ ;346ÇŸŒÐØÜïÉÍÂr ЋËüŒÍw}ÆgÍezÆæÈ•á›µ˜¡upFglk™œ!p—Á»pp‚ÜŒÍ1/c3vQ H§z:„fëef†"<™±Ÿ„‹I+ˆLZ1ocÒ â267‡2-C 0Ã26k0+cEuø ÿfå,&eìÌGA"„™“±3GˆÉجÂÁ” í `HÆVÆ226÷¿0"cg¦ !C8126ß™!º˜ñ;+À¢Ój(,Vã•­¹ŸO4Æ“ü1h… ,FcdF'0ƒen‘•Ò±hõ$eX܃2¯ÁùYEcdvmŒÆÈLa`4FVrD¢AŒYÑÜY¦h e1ƒû6‘ïh q1ƒ‹ŠÆàœ”¢1XUEÑ|ãQ47*#ó6c4ÁÙhEcpó–¢1ŸÂh òÒŠÆPX£1”5ÇhŒ¤¤ Dc(‰‰Ñ ba4·+C1„ŒÆHJ¬È´šJÊ€úFc(Ò…ÑIñ…VCá°ïh ®)#}eaÀj()ƒV ¿€UGc¤¯à X1ûcÐ 70£1Hq+C©3ŒÆ Ô­h N(*ƒë¡ŠÆàtEc$%t C/£ŒÆHÈ)C8£19^Fcg4£!>œÑ ÆQ4ëø)C¸8£1±^Fcˆg4F"ÿÏh ÁäŒÆH ¡è´åËh .+C¨9£1’+&­Ø1i…ŒFcpEѬ4¥h ¾•3ãáÒ¡²ŒÆx0uDc¬¾›ÑµŽhŒµ¿’2h•(aÑ‹õVñ0íˆÆXÜzÂhŒÅ•"Fc¬­ ‰&«D «‰/ê´ŒhŒÅºŒÆ«ÁhŒµ‰#ãÁãñàñˆÆXLAb4ÆÚ$„±(ÈhŒžG4Æâ\8£1–Ñ‹Åìñ õˆÆxÐzDc,n{b4Æb°£1ðÑxhŒEæ‰Ñ‡hŒÅ zFc,F¾3cmÅj4ZµW4Æââ£1hÑ‹[S±8cÃhŒÅZ†ŒÆx~Dc¬­ÀŽI+þˆÆXL›b4ÆÚŠópXäþ±¸ƒšÑÿhŒÅÈnFcŽ-"•} ìVN*·Ìƒ •m°ÝÉ"›UfiÌ@·L¸¤²¿ ø?î°bn+Hå–™}RÙ«$ç‘ÊöÔ .›UšxÌA*óÍK¤²½—ùý R¹iõ¤²×7"•›âbA*ûk)Áe#mUÌP¤òfc$Ry³¸—HåM&^¤òî$H*©¼Ul™¤²’öD*+ÕM¤òÚ"¥A*«é©¼D’T^ƒ;õI*¯‡<©ü&©¼ I.’Ê+s§;Iå%R¤òÜú} •çé Ry²8˜Hå9Hâ‘Tž O©In+®MÅA*ûJP¥nÝ‹íâù©üUl¤rU±’ʶ¾’¤²­†á|ƒT¶¥4Üï •}ßï=MÕNw’ʾä¸Á;ÓI*ûêb¡v¿"Ýá—Iž€Töâ¹Ð¾âêk¦ÒæWÖ—6¿2/RÙsùýN*ûJð‹T®EÅYA*û¢ó >Ζ¨Ñþ€T¶mD •m5ÏH寤ʶðÒ ¤²-Ó“ö™d_ã/Ôæ§§$•«Š×‘T¶Í$‰ ü¸°CRÙ÷9dj÷ÓýR¹jç!IeÛû¤²é$2Ùü’ЧƒT¶­ W@*ÛÆ´ •}J£v?‘î •mƒK}‘ʾAÿ~ÁOdIef‹TÞK礲¶RˆTFõùÊZ{©¬åf‘Ê[í1Ie-î‰TÞEä1HåÍb‡"•7w‰TÖ“He½ÿˆT^“d!Iåň"•×i Ryq-]¤òj"…A*/®kŠT^9 Ry‰l#©¼’HbÊsóþ ©<×™œ ³Èdó›Sç¤ò|þH*OnA©<•DARyr§²HåYEî‚Tž\m©<3ÉL’Ê“óæ"•·;‰T~ŠÍ“TÜy*Rù!I*!Ê*f&Ryˆä$©<*I?’Ê£Þ¤ò(ì_@*{r‚Èd÷ãNb’ÊÜ ü)R™š?E*ûhh'•}ô´ùõ!?Ÿ ± Ù<~Ÿƒ3^¤²'+€,vRÙ‹Ñ6ê¶=YÇ R¹¨øIeÓèA*{ÒÈ__µ ð(FRÙ6ÌÏ©lš¤°“Ê¶Ixò üðoðë"ƒüôü‚T6MrºÃ{H* ÀÏø‘Ô~Yß?à§ö¤²‹z@“<ö-Îh`¼RÙ\ÊEŬH*;@Ò¨gò¤ôW • H!YìËG´àxA*›."“ݯˆäÍðc4IåRE²‚T.UíHe=Ÿ"•‹Š?‘T."H*P„bð •@z‘ʦÑÞƒT.zQ"©ìHá?î!©l@Éã?×A*‘<$• èBÿRÙ0‘ÉšÿÞ§ (£¿Ï`;€&ryB“´õU&Úо€TvNßÐH>©l@ݹ<¡“Hd÷k©ì@ߢÞи?@*; ˜©ÝOï •‹ŠåT.Øù)RÙ4Æë •½m¢6¿'¤²”“Úüw’T.*CRÙ‹Ñ6j÷Óó RÙ“"¤Ý¯q|„™^Léç  JÏâI¸?A*;к¨-÷PÅEH*í &©\Ry RY{iE*k«Hå͹N‘Ê[ýIeíÆ©¼'Û’Ê[ãM’ÊªÓ RYûêD*kÏšHåÍâ"•w RYÛ‹D*k¿Hem1©¬}"•µ¾/Ry“¤©¼4 ©¬e ‘ʚΩ¼HJ‹T^‰T^"»H*¯!²¤òb1?‘ÊKäIå%²Š¤òj$cH*/&+ˆTVÒ“HåUIv’T^åëïš©¼²þRyeý¤òâö‘Ê‹KÕ"•'/E*O.+‰Tžœ©d0Hå©bÀ$•gáõ ©Ie%YˆTÜx)Rypü"Rù)†KRyˆt%©‘Tn“÷Iå¦ëGR¹Mý{ÊMä.IåÆzI"•›Š“TnÏ;I寤N‘ÊÅ$• £ŒE*‡I*ο‹T."[I*—*R¤r)ìÿH*—"2¤ra’ŸHe­uŠT.êïH*—,?Ê%ó~$©\8ÿ/RùIÚ ©ü$mT.Üd,R¹ðýW¤r©OR¹h|CR¹Ä©œ5Þ$©œ¹Þ&R9s}D¤ræû‘HåÌ}c"•³ŠÙ“TÎë&•3×ïD*gîz©œ•TDR9/ý^ÊYI3$•UY¤rfR•HåÌõS‘ÊYý5IåLÌO¤rÖóBRùIÞ ©ü$oTÎLR©œõüTί‘TÎþ$•5"R9ëy"©¬o‘Ê*®,RYó-"•sãù!©œ5'©œÇï$•5?#R97‘É]~$‘A*gÎ_ˆTÎ/’TÎê/H*gïI*g7H*çªóR9ë}‹¤r&$R9³ŒžHåÌçS¤r._äò€øDRYI"••Ä!R9sþW¤r,RÙ—uñ}~*î VÙtÊL?m •sº\Ù–‘·ˆäMعÃÏ7‰eOæÀ÷ø©˜+˜eÓE”2ý² f'³¹‹›ØrNÜNMn9k[ÁeO⪜ ›HæÍãu£¯âЀ—½8ô¤v?Î?_öeùBÝ Á6`6 †sNï\äš7Ž's$jú$ÅüUL{G<™£QhÐ@™}›Á‹dödŽMM?œ°Ì¾MaPÓ/‹W¦)àÌ^|:S/hбš=™cSŸ'OæÀ÷ùÄüW1j0ÍžÌÑ©4ˆL çÄÄš}†@f÷ëü=›=©#Q/èùB›=™cSèö‚›=™C83ýÀØoödÍôK/ÀÙ“9„4'èõBœ½¸µô‚/ÈÙ“:¤é‡óÌÙ“:¤éW¤é‡Âº }Œôù"OêÀïõ…„¯bØ€=©CzA“ÊõŽÙ“9¤é‡óàÙ“9¤éWE@Ó˜gOê(ÔôÃõõü$u{~’:È={Rˆã?®‘|ö¤ŽúìÛŠ;Ó”u—¹ê!?’ÔC~¸Á?û¶%ÏîÇd=ОÔï[ðêú«7 hß%(ºAƒaýUœ´'u,jú¬ ýU¬(tVô)Ú“:ø‰> íÛ¸àWá'J <ôW1oÑžÔß×ä×EHÓ¯¿˜è¬ùBÑYIÒ¤¢=©¿gÈí%¸hOîúL?Èhu$£·0jÑ„qDFoÒ £IÁˆŒ&É"2šIDF«R8Éh¾v‰Œæ(Td4‘ ‘Ñä DF“VÍM‘ÑÜê/2š;ðEF/QÆ £ÜA2ZÁ$£¹a[d´‚;HF+¸ƒd´:2’Ñ î ÍeV‘Ñ î ­à’Ñ\³­à’ÑKÌ5Èè)ÈdôäóD2ZËIFóíSdôdgD2ZõËIF3t[dôäñ’Œž<^’ÑLÄÍÀQ‘ÑÌÿÍE‘Ñ*vN2z²";ÉèÉëK2š ¶"£ŸdôÐ჌:|ÑœŒ­Êè$£š%2š5”DF3BKdô 2šÛEFs–Wd4EFs¥ÈèÁ!Éh®(‰ŒVO2zpüC2zpøA2º‹ÈÝ…`ƒŒî<9$£(2š™é"£;.’Ñ;ÉhUd'ÍüW‘Ñ|é­í$£»ÎÕ¢U(m´o×¹ÍdO‘Ñ*ßN2º³µ#ÍMÝ"£™&2ZC’Ñ]”1ÈèÆSG2º‰#݃ŒnlFHF3^Ld´Æ0$£¹%Bd´*Á“ŒVŽÉhåxŒær³Èhæ,ŠŒÖà‡d´r’ÑÊñ Íàb‘ÑÊñ MBdt’ 2ºŠAN´"tœi•ßdtVœiÔŽd4gÍDFâr$£™ã!2ºj#Í,[‘ÑD'DF3I]dt! F2š£S‘Ñ\œÍÊ{"£9tÍš)"£9q 2šãZ‘Ñ…¤ÉhîJ!½9è%½¹G›dôæ Éè]Ȩ‚ŒÞ\ #½ ±SÑ›…"HFk7&Éè]‡‚ŒÞÜ{G2z⟠£w!à 2zs M2zsÞdô.Ä0AFoŽÂIFoN’ŒÞ™°$6mr$£w ; ýö™ëÍý<$£7—oIFï,šÛá>Á $£w¾íäòÎⵌÞÌL%½ÉàŒÞ\—'½¹ I2z3ÿ˜dô΢ª ­HUZ£®´"7]iõ€Ò°Â­2zg¡ÐV„;­;wZ‘nî´"¿ò©á,RN5œ9ÁñÔp.7]9²]žÉ £‹È+’Ñe¨f4k87îŒW g¾Ê;Ýœ´œÝœ´é@âfæøas²$P‰›E"$¸‚ã} 5˜y~@âfÕ%¶ÈpÑI5cIF§!Òdtê$kTù}‘Ò¬¹ÜEB»Ÿj‚Œ¶|ÖP.ª¹\_d´m0ØÒ¬¹ òdtQVìSù¨¦2k8‹´T gލTÃY 1ªáüí5ƒ×ø"¡½FrÉšÁë©1šÁ‹É˜¾Å5•AšdÔ žìL}K j,ƒt˨<Ÿó‹ÎS$k8ϦóƒÎS5FYÃyòÝù©á,òŽ5œÇS³5œŸ‡¬á‘ÑÚ .2:)Édtâ|‰Èè”Td´vv‹ŒNIß2ú©¹H2:©Æ;Éè$rd´vf“ŒÞz<›·ÛÊyq.[¯_Xôf ©èÍ•;BÑ*ƒH&z ™½•x"Z¯ý¢7£ÂÉCkG4qè½D;ûÅÜêrCkÆ—,ô ZåIBk3Aè-Ó‚{~h®.Ç‹‚Þ‚A«† hMTÖfcÐÚ]Lz«².øç=„Kû‘îÁ6ô³*ý~ÞûíS)›PDŸµ˜äóVÐ –c¶¸BpÏ[v=o¥t€zV ¡gUÜ#ó¬‰"Ï»‹®´àày«Uï¬Ý¶Äµ½–´³öÓvÖZ²ÎÚ1KÔY[dI:«¶Ag³#缃Ìy“ê1y^BwS¹fçØª¾ Æy7!Òþ¸™(HÂys”€ónüÍà›wÎëx36Ž~ŠnÞ Ç#ܼÉúmÞ*Ê ´y?dr¥KWZáÀ5oèÖ¼«êwZ¡iÔ¼ÅP‚iÞBò4ïJBD³öjhV>0yfíÆ$μ ïgÐÌÚoé0sz6X’eVe4¢ÌšŸ#ɬÚg™UìŒóÖàó.ª—œi…G³ –‘aÞŠ Â¬½‹$˜µY‘³ªŒ‘_Þĉˆ/«Žée#¼¼É‘]Þ|&º¼Evƒ\ÞY ò +0OZ5aÊí«€©eUì"´¬½|©þÚ¼GdY»õH,«ÌeÕÕ"¯¬BZÄ•µÅŽ´òNlÛ+ofË‘UÞ*˱E¢ƒTÖF8‚ÊÚùFNY[݈)k3)eí^#¤¬íjd”÷Sœ¸ÓŠDq§U +ò̃Vħ'­ðNÖ>1ÂÉ[Ù2`“µõËÑäò”pr2¹<›»&«*¹äýůÅHñZ:@/NÃ(^Küñ¢noTgX¢ÛË–U¦Þÿù/”Nf*‘J'I#U @ø%Ç[~ÉvËËjÞVó¶Z·Õº­Ömµo«}Y~ÉvË·á—¼¬ÊmUn«r[ÕÛªÞVí¶j·Õ}Ú ¿äxKÂ/Ùn¹ÞrÞVó¶Z·Õº­Ömµo«}Y±tòK¶[¾­X:ù%/«r[•ÛªÜVõ¶ª·U»­ÚmÕn+ß$ý–ã-~ËvËõ–ó¶š·Õº­Ömµn«}[íËŠ€ð¥[ÐëÒù²# üÒ%ø•àW‚_ ~5øµàׂ_ ~=ø9 üÒN¦\º½.í€ð¥o¿üVð[Áo¿}û¾t úò |éÛ¯¿üJð«Á¯¿üZðkÁ¯?„_ÚɃK· ×¥´¹ôí·‚ß ~+øíà·o?—nA_~„/}û•àW‚_ ~5øÕàׂ_ ~-øõàç@êK; |éôº´—¾ýVð[Áo¿üöí@øÒ-èË€ð¥o¿üJð+Á¯¿üZðkÁ¯¿üÂõ |éôº´——^Áo¿üvðÛ·áK· /?—¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁÏÔK· ×¥”¼ô¸ô ~+ø­à·ƒß¾ý_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~áz¾ôº´——ö—nAß~;øíÛ¤é¥[ЗáKß~%ø•àW‚_ ~5øµàׂ_ ~=øõà7‚Ÿ©—Þ—vîÒóÒ¾oåÒ=èÛo¿}û¾túò |éÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFð ×€ðK;éséyißVtéôí·ƒß¾ý_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øàç$ÕK; |éyißõuéôí·ƒß¾ý_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà®€—KÏKû¦¼K÷ ÷¥wðÛ—áK÷ ÷¥óåG@ø¥Kð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFðs õÒóÒ_º½/½ƒß¾ý_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚_¸„_Ú÷°^º½/ídì¥/?—îA_~„/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#øà7ƒŸïÈ|ißb|éô¾´—¾ü_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚ß ~áz¾tz_ÚKÏ· |éôå@øÒ·_ ~%ø•àWƒ_ ~-øµàׂ_~=øà7‚ß~3øÍàçô/݃ޗvHøÒó­ _º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚ß ~3ø…ëvøÒûÒN_z¾5øáK÷ /? Ä—¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFð›Áo¿üÖk¹øSTñ¥[Ðë­_úòZ|éôíW‚_ ~5øÕàWƒ_ ~-øõà׃_~#øà7ƒß ~3ø­à®pãK· ßKÉ$Ž/=.o?@Ç—¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üVðÛ× 3AäK¿×˜‰"_z\:ß~ ‘/}û•àW‚_ ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à®åK¿×›É(_z\:_ë×Ä”/}û•àW‚_ ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·ƒß¾Ö›É.iÀË——Î×ú5ùåKß~%ø•àWƒ_ ~5øµàׂ_~=øõà7‚ß~3øÍà7ƒß ~+øíà® æ/ ªùÒãÒùZ¿&Ø|éÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo¿üvðÛ×z3qçKKçkýšÄó¥o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁ/\pЗ—Î×ú5QèK¯K—àW‚_ ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·ƒß~ûö }éqé|­7“‘¾ôºt ~%øÕàWƒ_ ~-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·o¿®Ðé—Î×z3áéK¯K—kýšüôK×àWƒ_ ~-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·o? Õ—~¯7ª¾tz_º\ë׫_º¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üVðÛÁo¿}ûµ¾ôåÚúÒ=è}ér­_“¸~éüjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿üöíûÒ—0ìK÷ ÷¥Ëµ~Mû¥kð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo¿üvðÛ—éìKÏKß׃€ö¥÷¥Ëµ~MFû¥Ò¾túökÁ¯¿üzðëÁo¿üfð›Áo¿üVðÛÁo¿}ûÛ¾ôåpûÒïõf¢Û/]®õfÂÛ/]¯õkâÛ—¾ýZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁoß~à¹/}ùè¾tú½ÞL¨ûÒóÒõZ¿&×}éÛ¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿üöíÐûÒ—PïK÷ ßëͤ½/=/]¯õkß—¾ýZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁoß~ À/}ù¿tú½ÞL üÒóÒõZ¿& ~éÛ¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿üöí4üÒ—àðK÷ o¿r­7éz­7¿ô¾t ~-øõà׃_~#øà7ƒß ~3ø­à·‚ß~;øíÛÌø¥/?Pã—îAß~åZo&9þÒõZo&;~é}éüZðëÁ¯¿üFðÁo¿üfð[Áo¿üvðÛ·`òK_~ÀÉ/݃¾ýÂõRþÒõZon.nTùÿþÏþã/>~õûoÙ‘ò÷þþW¿ýæÝÛ?}ûó¿øHå¯ëv{,§è¼LÄúø#‡PÓÇ?üøíãß|þÿë ûO†c‚¿ñÊóÑŸ†µ¯óö`ÿy8޵ëƒÕyÁ¯BóƒçmÚJeg+˜]óýA€x_„æóãÚF’òa8A¹>˜œ8üú ´>øJtóƒöªö>Fjÿà/~øô¾Þ?þã#üð×Ù+‰§ç? m¸bç{ø®ì~óñ³¿úùÇ÷íßÿ`–ÿ¯W°M_þwׇ˿øá†…‘¯§ŸðÍüÙÍ7¿ÿöׇÿ ?ûëÃã'|˜?»ú¸óá?ÿÙßþåç_ÿöwÿðó?:÷ÀÏ~óó¿øøáOšYñ ÅnöÛÿæÇŸÔôñ³ÿý÷ÿ§äK%vLŸ¿û›_ÿþý«Ÿ|h6=±~Íßÿîçg¨ú³:ÿu~Òÿðü¤ÿúíÿ®ÒŠ endstream endobj 4355 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 4358 0 obj << /Length 1717 /Filter /FlateDecode >> stream xÚíYKÛ6¾ûW{©ŒÆ\>E*À^Š6}ŠÙž’•mÚf+KŽ$ïÆùõ>$K¶œìv‚=hLކßÌ|‘³8ZG8úyòÃíäú…QŠÒ„&Ñí*"#Æ“H‚–F·ËèMÌ(ž¾»ýíúEBzªL $†œR­óm¹Ô¹Õœà°ÀO·ŽHD¨@‚ˈc–Y´ØNÞO„s§ÑÝTû^¸þu›D?–“Wð×NÍZ›³žÑŸ‚KÁ'%<Ü—•®›²˜Î(NbÝØ§Œ³Šø-˜bÌáI¼J–×¥Wª÷ë5¼«—~üÖ‹Æ´¦VûÂýª½òýFWÚÏ4› T:Ï3¥"¾›ëüàusó÷”`øm6e¬—«ÓU ¼àü ò“ŠàKQZüÇeál´Ô;],ëvØ?=v³;»|–ïõ3;"âù†÷ÁLðuðF¥¦6­%ÖȽ 蚬XfÕÒOêª*«9»úêÄÏl³Æþ"©3eZ•{€rÌǺÙ/‡fñ&³p}ôìk³5yVùéž{5 d f?µÍ^˜‡wy¶¯Í<×~¸)ýpV×ûm;¶É?ê\°Cv)¢âµ+^ûùmY¯`?Œ9µÉ¬C„Ì?6f½q&AÞUå<››Ü4?`ãhŸlˆ¯‚Èøv£ÝbýiÿÓóqJ HìÖS.è»|V÷n°(+Ø»²Xšb`”6”÷€jKölÔqlaÝ#xá‡æ‡ç¾Œˆ¤·;g$E”²€¸"Ñßé¦îíd‚솶ä4‡±(9’´W–ºí ZÄá59¢§)ÊW³¢¬¶Y>K$‰h»²ÚVùÊër Ö½WPýyÄ1içm‚Fl0¤$ouvAG J%SVA L(x€x0ç+1ĈŒz:!RÅ7þ¡?ìzxÿÝQÁŽ0ñL O:$1$iOÓsœNê¼…5â0Qˆ¦–=.u}«Á€‘¨§t\q€|¸¤W'ñeÀ„;tìˆVÀOR@#ù1#”d ¥'Õ^ÛMµžBëEfnøl^]4æAl-ôý«ÿW“‡p5y4WÏÌàä,À£\ˆ09$c^® |Î`[«úµóޤŒrÄL»ÀNå2iásˆSñ‘V=ÒÓIû@β/”¤qJt¡¼«Ã©ÐÊYiü½\NLjPù­²<>K—ª g BÊía^>?S^v%è}íµÅsp¤¾@~©ú ß¾`ÖFŒùôNB=†³3½3†÷Uð™>n¦#ÃS¿?™Ë6‡Ã’²Ø•àìCÑ# \pã÷)wWð3?©tŽþÛÓeßè+Õ?\ÞŒÕu)UNÓ^†l‡äØë ©D*‘ð9u᫼ØNÞ¼ÃÑ&áî…DàÞ©n#Ø-Ü^„òèõä•oz Èp4EPá(z7â"GÊ0!៬=†úS?nƒ4r÷k.÷iÚoÀ/× ð¢k¤þ²yÎ]B ’¬ãÉñíèÝlÚåàj¶üÌp…õ—W·VéŸÇfÅÔ]ÛìáBš=È]sgpxb“áYçà‘mx$¶—clo%a±Yê,Had­ ]e¹½stM¢Ä·ì3Ës_Ò°‹ûÚ^ûûšõN/¬‰ÕáDÕMØ}´ð¿·:«÷U˜tANØ ]“ÐÎ(,3v·¸3™¿!wùT[F݆:Û-ƒ Ù<énç¡E²ßÂ}$´*Áñ˲ý»Z¹k›e¾yð|Ð>„Ï”ló Åo)µ¬ nWªõæªÖæj° ˆáŽt+GUÑvª@è‘Y„¾Výì!)mé‡ô„w£9)Ê>0ÛîrOwab¶ëU™¬Xè3œB ™’'ã,Lq7J‰¨—‘šbÊÛ–]U·Ù_ùÓÊæã¹ x!Ø“½¨ßWÍ%O$xBéHý~ßu¾ªÒµcä^(7©@ŠIþGíÓJe\—[×9UÇî•÷UÕ6VåѼ•­y?ŸÕ~(ó?£³!‡ý]åk™ eG±nÛR×Ö L±²Í±ÙX] Pr^ºæ2ˆ-Z+´ šðÌÍÊå!(4eåŠ)È÷Êoqb­œÿ¥n ﲺn•]é Š#e ê<rì§;  êNêm"Bþ˜ÀÀdèýk2ýçïe£¿CŠöþAòîâ:` endstream endobj 4343 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/selmodel-preston-step.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 4361 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 4362 0 R/F6 4363 0 R>> /ExtGState << >>/ColorSpace << /sRGB 4364 0 R >>>> /Length 22751 /Filter /FlateDecode >> stream xœí½KvÉuœ;ÿ~E É>åý2ð„†m@86`± ªeQ§HÊ¢lùç;׊ˆ];— [­3:ìî`Õµß}É·'Vþø³üñwÿíÛþøo}~éc–ï)}´ŠeÿÿþáÇÿòñÛoúû?ÿ¿øø·¿ü–¾¯Ù?Ò÷Z쟭¤_þÛÿô­|?òŸ¾ýÅ_~¤¿þ–?þìüïï¾ådFÿñÛ¬æÔfûžëÇo¾§G~šl·\oÙ¿—[Ž··Õ¸­Æm5o«y[­ÛjÝVëûÊ/¹¿—[Ž—\ç{ß²ÝòmµòeuäeUn«r[•ÛªÞVõ¶j·U»­ÚmÕo«~[ÛjÜVã¶š·Õ¼­Ömµn«sÚËKžÓ~Ëñ’ûœö[¶[¾­v¾¬Ž¼¬ÊmUn«r[ÕÛª>VÅdƒUý¾6dƒrAž»íÈ«ú=H·*ß·ÿtÀªð³Vå{] wÂ*_r@öirÁ꜅ Ù ÏÅp¹ê‘éût«sÚ![…þ}s:çýè±íCÐ ºK/èR\g· ßÊô€îËußú^µûÍï»R/èÏWø/<©Ýoè÷ü†üü†} Úýú÷…Ÿwøõï½PèŒãðó† ºA·J½ Sw=áwkRh?÷9-ø«œ©4ÿþ¹Íu†>'ÒtÆÕ1= «kkvM'úÝ {¢^ÐÉÿ~Îî×7ïè]üøsq¿îÏ"tƒ®›ÚüÎ;dûùÉ~“Çô€Nðoðv t^Ôî×ùýr‡_çõ=Úýtþó€_û^µû'nR/è†ßŸð;ç»Pè†Ï/øåï»S7è6¨Ï#Õú9¿ð÷eº-êó|¶¶¿o×%Ù`ºMêfzñóG/hø—ì~íœÏF= q•¿Áççè]µûu<ù¹Tøuޥ¯}Ÿøý¿Æë}´ûÕï3Q/hÜÿ¥Ã¯XC= ~>à—y¿í~IßgÀ/éx§ûÕm¯ è]ðûËýêâýytƒÆý{ôGŸû ŸßÖp´ªçÿè]ýûÕdÚ깿uƒÎ“ÚýšÊ\3ü*¯×ѺBø•ïSºAã|ÿp¿s>ð÷+üïèësþ°ùÃÆù?ºAãù9ÚüpLw÷;§ ÏçÑ:ûù9_Üý†þþ€_çýô‚.~=Ήt¿Æçóh÷;ß~ ~•Ï[]ð;÷ƒ~~<Ó Ÿßöà¶só|yCsºŽß§_¯s#$h´—GŸ¥ÇíKKîw;´çÆ*Ðüýì~ç1Æýd7¢éÁówtƒN…Úý:ÿÜØî×ìkB»Ÿ®÷y04ÎÏÑîwÚçMí~™ÏcëðËÖÝ„v¿Äûó<¨æ—t¿Ý s¢6¿´Ø^5±5{mljó;¯´/§áHÐh­!1Ýy½>/¶–¼Y5½í‹˜ÆûäèaZíãiÈ’ébÿ7t3­öðè÷ùiÝOï—£Ïëé&àù: k‚Æý` ­éóþHÔËôy~ñû~¢+ú3Ð:áxüÎõ«Ôî×x=ìÅ`ºòûö¿Êöâh÷+¼þ}À/ëó~IŸðKúûÓýNïÏ« žL/ÿr¿ÓÑÅûéèõé ÖÓMÆýd/ZÓ÷‡½ˆMŸöÙ/êºt?Ý qí~…á—y?í~‰ý›Ó‘Hиߎ6¿©ïs´ù!OÇß÷ŽJ=ã%\OëȘÖýghOƒ_·®<´û©=9)÷Óõ9z@ãy>3÷+ìÿí~™ïÏ£Ý/ñ}`¿£­ÿ¹¨4®×ðEµþä¦6¿ókMú<¸õØâù:¬¦;zì¦'4îŸé'®ž¯U¤»éJ¿£ÝOÏÏ9p÷Ë<¾£'4Úsë±›N|~6¿s ?€î=·wûó9Qæwn;œ¿é/jÓx¾läazðù<Úýt=Žv¿Æþó¹PîWÙ8Úý ï·sa34ÞgG»_æó3üûûçF1¿Ó¬ }·Çôâù<7V†æ÷_î×&¯÷ѧãZÛ`ÌnLÓ>‚ž¦Õÿ³Ùtåý¸¼¡­Oe%øéy?†ûeöOv¿Äë$ó³þȤîи?—wÔëyÍaüpDó;¯I´ŸG›_Õxã<Èî§þÆÑî×øþ?zCg?_§!p?½oŽv¿Âûá4î—ù<í~‰ï“£Í¯¨ÿyž Íó1ÝïôÐ~ž†ËüŠúOÖ™¼>…zú Ÿ÷†Â4î·£§éÆçÿ4”Ùtåûøènºð}t´ûÓîŸß~‰ïÏá§övûÀ§fG¶Œj^lï¶wäkÖxð4ôægïÿEm~ç}÷×nðë¿Ú‹Ãt³Óí~•ýùÝáWØžî¿Ìç82tÊÔî—Øÿ:ÚüÎûýŸó¢3¿ó~çù˜îwÞï<ËýÒàøíèöçèsãÔ¤ñÐy±VÓýA{ñš®¸?JòzM÷‡én:£?gzC{ÿ·œÿp¿ÓÔǯ[”c”M³?fº›ž8^Ó:Á¿š_Ù|ß™v¿Žö¼¤?ö¿L»ß¦7tÂ÷éð+hßL»_FûVΉr¿„ûÁ´ùÛtI›ŸÝÖ8¾é~ö,jó[ìO–s¡ÌϳIí~ý}Óg`Sì1ÆñokhLgéiºò|Úaº ¿`º›ÎhL»_¢_ÎðKô;Úü&ï§rnLó³fTÚü¬Ù]Ôæ§÷uÉÞq7í÷§i÷ëh¿Êyܯa|gÚý*úc¦74®:Òe<Ÿ¦ÝãårD÷ãûÚ´ùÙûzSo茿7Ýo°}2m~ç}Ýá¿ÜOqþó‚_çõ<ú<è¦ ü¶ üÊhxŸ˜ž¦9SNC“MÏÑÚûǦÝ/cüXJ†_BûnÚüÎûçç4t:ujó;ïoÜÿG›ŸæGŠ5”¦¯ÿÑ:ùõ8 «ûuŒ‡M»_CûdÚý*ŸÇÓ0»ßߦ'4ž—Ó°»Ÿ®†¥s?Ýà ÓËýÛ/Óæ×t¿}ŒLóø·=å¼Ï{¢ž¦¿õÝ4»iΗ™v?=?çEè~ó¦'´÷o âÅæ&µùUŸ6ƒ6¿ºØ~UPMãù8ÚüìýŽÏûƒ]Îû}vêÍãmðëxŸø˜f« #`¶Þ´fh´¿Öq0Í÷½i÷Ëú{~ã Óî—пñ?ºl¶ÿÕ&~¤Ïaº@{Cb—µKOÓƒíï9q:KwÓïÓî§ë×2üúw¦Ýý»pîW0>÷ íïOÓî—ùü· ¿„þ¯ió;1îïs£d蚨Íï4Þ_4m~§Ùø|w¿<ù<¶¿Áöîܨî×õû~]¿?à×ä?áWù¼ØƒÍãYð+¼ßÚ‚ŸÞ¿6¸\óûn;Qö‹zBãþ:êyQùkfQwÓ ãEÓï_먛ž¼^G›_ìXÇ ̄ݯó}o ‰éÆç£Wø5ô? öZÇõ9 S†öùÓîW0ŸcÚý2ÛïÓ°UèÜ©Ý㉂‰aëÖðï{ÇÚ4Úƒî u‹p¾º¿¸Mãþëþ"´nž§¾à70?jºCésa¬›‡ëÕ}"Êt’ž¦õ>Þѳn&üìÅ]¤ÝýG‘@ãøl"ßtf{n/Ó‰ï£Qà—ØžØBÁÑèv›®îw4žÏ£Ío©?p^|æwú3¸ß†O”˜n…Úýô¼Ÿg…Æõ=Úý:Ÿ×1à×õ÷üšþÞ€_ãó|^ÜîWyÿí~\Õ²}†Fûe A¦ý´˜Þö"4÷ÇÑÍ4ÇkÞ‘€ÆñœŽÆˆØ0Ñçs¼ã÷±­r™^ïxGÅôd{bKfи¾Ö±1ÍùvÓïë™î<XÌóau¦v?η[Ǫ@ûx×;Z¦+ŸßóÁ÷-:f6 €óoï'L¼Ø´ú3GhôÏq?µŸsÂ/ñy›>QeÓ¸ßω)ÐYú4Œ6MŸo»°¦³t3=¿~¾ á.L1=ø÷íÂAãøV†_çó»2ü:¿ßÑîר?97JÆùY~:çFKиíÆ3]x?½ +>ßàÇ•RÓíë¹ÑÝëi¦4î£Í¯s¼m…þÝò‹é„ï;ÝÏæsuƒæùšð›¼ÞçA.ÐhO–¿Ø|Z?ßÖКFÿôèfºëx½cjíßiH 4Úg(™nìÏž†(Aãx¬a2]yþ^Ðxb æÓ¸z@£}Ù~…ýÙ£ÝKÑ>ЃæßkðKìOî?µÛܦ­ñ<Ú@íçÑ íëö‰0›Gû{ô€Æù´ªé©ãŸðÓó¿'ü8k_÷¼ßíÅS]£}ÂD·Mû/éöoûB¹i¿l ]L7<¿¦´Ÿ_˜»w˜nÐÞ~™^Ð>Ÿa}÷+è/šÐþ~ì˜nÐÞŸ1½ ýûØÄ‚û%̇™ÐÞ·‰ˆµù¡ ½ Ž×Þ³æÓL›Ÿ­ïáx|"Ót­ÔîÇöÙô‚æñ.øqýßô¹0¶¬µñómÎtŸÔ ºèçË4×ÿmâ¦@{ÿÇô€öù-Ÿè1Ý0fºAûóΉ!ÓÞ~ÙÄ‘û±PÑ4Í߯ð«úý ¿"ÿ ¿¢ãið+ßšv¿Ìû#wøñù2Ý K§v?®?ÚDYÆùÌ~|ÞlbÍül>qS7豨t…^î§õJÓ§á·eÚ‰ïãÞ—q¥t–^¦'¿ÿéøè.= q½Ï@Áýï£4ޝdø ô?m"²@ûøÐ´ûuô‡mâ2A{ÿÓtƒÆóP*ü8ßãŸÐü{ ~ ó)>Q íó '[†_zAãz•?Ž|":áx&ü Ïg™ð+X0½ q—¿¬ãõ†Ðô„¿¿˜L·JÝ ó¤^¦Ÿ§schoOMh|_˜B{{nÚü2ÛkÓ zàç¾ÐcšŸ÷޲i~¾º_æøÜtƒæß¯ð[xߨDzöñŒi÷ã~ ›ˆOÐøþµÃãÓ ÚÇÇ6‘_ S¢v?ÎרÄ‚ÆýR'ü¯_ðãú¥/˜æþŒŠ ¾­ÇïŽižß8bšßÇ&l› ®gó…#ÓÞÿñ… h´/-ÃóÛ¦´M»ç#l¡¤@ã}d= ýýe + ºH7èԨݯ`>Æj ôи^ö"„.Ò :I»_Æüš- è!= é7á—yýÚ„_æóc/zÓ\ßµ…¨û±ù@Ò·MáüúB¢i´7èhø6«E}NœmÃBû{:*ÚûK¦4®Çéè$hï˜nÐhÿz†ßBÒÞ ´÷÷Lh|ÿÓKЭQ7ho¯òC{×ü&ŸçÞà7Ù_°Ž!t_Ô ïïÞá7Ùö!?œ>àÇõ _˜„Æýytƒ¦ÿ„ßàõÃD©é2¨OÇÀ4ÛkÛòð<ÛB)ô\Ô çÇV¡}þÎô€Æó` ±Ð8ÿGÓ/éçî§÷ý8h\ßQà×ø~~ç æ‹~N?¼°lÛñþ:z@ãùÁ³okÜÔ ÚçùPmšoÈ× Û¦Ñ?~…ïs,„û¶ÊN½ 'ŽoÁ¯ðz}Nß–‰ß÷+¦k¡îÐèÏ oø}[§ÿ3ð¬¦3û¶Í÷÷ÌðãxÖt‡Æ÷~zÞm,4Ú[ ”³Ö³lcýÐß<ÚýÔÿ9zCãýÆãçÛîÐx?Ÿñw†Æ÷Ÿ]~è¯M?´gsÈ÷ïôI[Ý©3üÎ.Ñ»>²»ÄËÅf%\¢mš¾iFKq&Ï=ˆ†I_BÙÜÈa²»D?qúÚæ6#ÛÿQ]&I³â"½íÉ.§dw‰.ΑÛ%qÙ$a…ñÆoêHÂ*K Ååo)[K\”Ó%^M6çärJv—¸PËG¼¶rРÔ#a…·êeà Àš´Â5[“VxDÏVxƒ,_ú܃ ͼ¹Ä󳼡ß\ž2¹]âÔmßæ·r'Zá ÏØV¸µw¦î¬#a…ï.´Â™Ü…Vh†Ï°V¸¾Û‡››þLn—xž1vu‰»îÈé’ÇÜݪcÂÂ$¬ð>ƒçî|ýØÑºÄÕ·óà²àûNZá<ïI+ ÷¤n»…Žl|Rìn¬Xž7¹­AÛ§}û~óÍY6“ÒŽ¹áéÜ܃dVÞdÛ^6XyÚ$¬ü*4´TvŠðË…VeSªà—+­ò „UÚ”°JøåæV\909!q̾Caó=àú\ú}erCf—ƒV>)aVþ„ÚæAXõB «6(aÕðw­j£š0 +ï#™„•÷ú )ƒš/¬­ÅÛ{TZ¡5;V¸ÛG¥îö3h…Ú:[¬ƒôK†µ¼ÅƒŽÖA&JX ü¡A+¼ÊmŸ$þФú9cÒ Oʘ²ÂZ²J”gˆ¹úÞN$B.Êéhz{²¸KÓéGÈFI+ÿC3Ë*SÒÊÿ.ÀêµøÐ +´ÏG ÝYi…gðôâäÎ/ ×~ÓØé¿ÿi4¶¿pþ/46é7í-??>~~EÖÑ~ì8Æ×Ï)_¿`™^¿@ùú[Ðxýåûöý ;þBûƒßáõ ¿øçèW¿ÿçè÷¿úí·?ý÷å#üð7ÙMÒóè¦ÊÇR?üæãgçG?ÿøáï¾ý»Üûÿüa'€îO—þ§mcUøtûçÚ·ߟ?áÓëûôúçºÅ³–¿Î–OÅþ†yB¦íŠ…ŸãaÃŽ»¯g\bý<¿®8~Á÷–Õç(_¿à‹M_òý {¼ÿåëcÀ_x‡Ƶõ­áË{o?ù¶Â‡‰ÿüôÛÊ?m›O_æ'ßV…{Úûבÿ„ÛŠŸÞåëÈÂm…O“/ÿƒ·‚omíWc&É}êJþíZÓÿυØPxð/~ö÷ò?~~þïŸýÕçÿñçùñßůúúøŸ¼\³Oø8`õç?~þÕ?þšv?~ü?¿þϦ󟟿þÛßýî¯?~÷7¿üñóÇ_ýã¯÷Ûç/ýÔLºìï¯smmRð™Ìôøc¦ÇÌôHïLΠ0Ócp`ÄL11–e¦Ç ~ËLÁÕfz nÞf¦GçZ3=:·¦0Ó@ì“éÑ9ûÂLÆA3=ÚÄX‡™­af™­ð¨éÑ’2%éQ—26éQ9O­LÊ5.ezÔB¦Œ™UL#3=Ê M™…s×Êô( «LR”1‚L’”L¼ôsdzä=ÊôÈ™ÌôÈE™ÈôȉŒ3=ÒbF3=ð¯Ï'Ó#5er Ó#q‚Q™‰{Ö˜éa3Ö`æéa½‰­ÌsÞ«&¾™éa=]0ÑÈô° 0¯Èô°µ„Ѩ[c,m~k1F¦‡-Ÿ0ÃÃ3=œ†_Ÿ|dzØzÒVæ‡ù¡yýT¦‡3½“Úü´g•™¶ô&™¾Ô'm~c)óÃ7ÓØÒ$ÿžo¶¶¥L\dzØR)2&éaK±Ìðã%fzøRñ¢6¿>™IL_ÊVƇùu1ÈÈôð¥vhŸ{ð¥ûA=ú·|*Óö0sÂg×l«Ž™¶ÕÏ2=*¢>•éa[/À¤"Ó÷vjó«‹ß™¶õ„¾ù¶ª¼3=|+ŒŸ_dzÔÊYkfz8#º©Í¯leŠx¦‡mbf‰gzØÖ£®Ìó+Œ*2=l+˜YdzøÖ*|¿ ¿¤ïë™ên+Óö†ñ|úp·>™ Èô°þ&îdzT1Ìôð­t~<Èô°­wå•éa[û˜qá3¶Î\"£ÂѶò÷}öÛO¸‘éá[µû=™~…Ï2=lë&3E<Ó÷~"SÃ3=|ëh¦nÙHþ=ß\`[W™ùá#)Ûúúd|¸_Õçü2¯2=Šæš™éQ4 ÈLÛ:Œó‰LÛjŒö™¶•™™$>Qž dzØÖid Óö^ƒñE¦‡mÕsŽLÛêç™¶•œ~c”'S™¾u]æ7;™zdzØVyÜÏÈô°­õx^ñ`ÙÖ|¼éá[ý µù ÝÈô0ÔÏ 2=MhÔæ73éQ0qõ©LG)ðù¿Êû™†j4e|¸_ÖñOø)󙥓ia¦‡3ƒƒÚüúÔ÷õLò0þÈôpF0SåŒ`yezªƒŸ#ÓÙ@i÷ãž)fzJ„÷2=œôï‡LC—ž ókS™žéQžL"l7Ô í º0†fµW¦‡¡]¸_7–'c™†’1“¤ÃOÏ2= ]{2;̯’yc¦‡iÜÈô°ÑpV†‡ùiO03=ÝÃçüô<"ÓÃæ¶„LcöÐâB£Ç Ïô ºø©LG•áqntcöŠ2?̯(™¥e¦‡1yx#ÓÃ¦ŽžŒÍL¿Æë‹Lcò˜ÑQá§Ldz8ÚªŒ÷K_™ ý+dz”'³™Îàáø^7æï/dz˜F™Æàá~C¦‡1wí•éaÌú§Èôpæ®S7hfxCS²2½éáèt¢žÉ™:|™¦ñ< ÓÃ;ü}dz8c‡ß÷ÍFÎØjóK“Ï2=Šö¸1ÓØº¥Œ ÍL ?Ý_ÈôpTºÁ¯²=E¦‡3u“Úýô| ÓÃÑþM=¡ÑŸ@¦‡1tC¶‡i¯¯Ì Íïã_Ìæ%ÐC¦‡Gàï-ø ¶gÈôp†N;ƒ¡S†GÍÎС}@¦‡G5 £ÃMge|ôìÌÚWdz3·^™¦qýéáѯL¬EAfzd­V1Ó#ký‚™ѨÍoM¶OÈôð¨ éñ2=œ™ƒîðSÆ2=ücÈØðk˜¹b¦‡3s…Úý¸G™¦Ñ#Óƒ_ûS™¦yü ~IÏW“Lãz`aÎ.ϯÅ~ÙüçÈô0Í Ïô°ÛïOdz˜Æû «úváû#ÓÃ4®2=ì¶ÊøèÐYî§Ì dzøc©Ý¯òú"ÓÃ42eéáÝ ÞÐh‘éa-®'2=L§W¦‡7Òúù¹ùý•áQ¡ñ|"ÓÚ!¼éáÍÖ¢ö¹Ü'³Ä_TÎÌá|{¦‡3szB3£Ã3=¬™#XÖ›áJí~b²‘éaL22=¬Ù_¯LÓ̼(ð+dÆ‘éá¯exThfrTøe2dÈô0•áá~IÇÛàÇ­ÌôÈO†2=rçû„™öšeƆo¶7 F™Yó&ÌôàküS™þšÇçüļ"Óû •ú<ØÞ@¦ˆ¯c{7#QOè‚Ì ßÇ`Ý0†Èô0]¥Ý¯*£"Ã÷/3=L3“£À¯ñC¦‡w³2õ†ÇLï¦Uê ÍLŽ?ŽÇ˜éáÝÀM½¡™Áá™Öƒ‡LÓõ•éaÝЭ  &™ÎØá÷'ü¦2?&ü”9€LŒ­ ŸÊôðns¦>/jïVÃÏ3=Lãz#ÓúåÈH|âÌ]¢îý‹¹c¦‡uó™y‘á×Èô"Ó#?ÈôðaĦîÐU:½2=lXÂ߯ðãxœ™>¬©ÔîÇþ 3=LãyD¦‡ifŠtø‰‘D¦‡³”áÑ¡q~éáLü<Ó#×­ ßüoL.2=|Ø×©;42é‘•ÅLgô¤'43(<ÓÃt•îÐOƇû ~dzø°¶QOè¬Ì÷#CÃLŒÝKŸÊôða425*ü¸•”™¦q¾‘éáÃòBÝ¡ù÷ü*æó˜éá ߢžÐÌüðSF2=r-Ê8ð#³ÅLgú µû1s‘™>M±¨;4×;n¹ŠùF¦GÖ|3=œñóãA¦‡3~“ºC#ó™¹p#3=|Ú%SOhÜÏÈô0•áa~eéó~KŸ¯ð[ú|…ßÒßoð›l¯éáÓH•zC£}E¦G.bΑéáLà+Óãa™éáÓXzC#3™6 ¦™¹¨}A¦‡3‚…ºC—W¦‡i´7Èôði·F=¡Ñ^"ÓÃ432¼£æÌà¤v?Žw˜éaÏ 2=œ!„_Ÿ2Héá á¦v?ÎG2ÓÃ4idzpòS™Î6êÍL’?Žw™éáӜҺ)Ã#C—w¦Gá¦Lez”¤Œdzî‡T¦GQ{ÇL’ä‡L’”A‚L¬þ3=²2r˜é‘÷é‘·2'é‘•!ÁL¬û›™Y$ÌôÈÜò£LÌñ”2=²îwfzˆQT¦G&“¥L<ïL¬ûŸ™yòû3ÓCãkezä¡ãE¦GÖóÀL<˜‰ÁLLò@™Y™ ÌôÈÊÜb¦Gî<¿ÌôÈ™ÌôÐx^™YÌôÈO¦2=2W«”é‘ïfzä¦L dzdîàW¦Gn<~fzde²1Ó#s¼¥L¬ fzd½ï™é‘+û+ÌôÈU ÈôÈOfG“2˜é‘™ñ®L¬÷3=4Ÿ­L¬ (fzä¢L‘)¿'ãƒ~I?w¿ÌëÍLÌÌxezde00Ó#“V¦Gf}ezdõç™é‘3Ï3=27F+Ó#s=Q™Y™iÌôÈO†2=râóÁLÌÝÂÊôx2˜é‘”ÁLÄÍ·ÊôHz¾™é‘63ǘé‘ôþb¦GâSez(“Y™‰ó#ÊôHÜI©L¤LDfzh½A™‰›ü”é‘3o˜é‘¸> L'É™‰ûÊôHSÈôH“Ÿ™‰ãKez¤©ŒŒ,?|fzˆéT¦GâxT™i~ex¸ß`ÿ‚™I™|ÌôHÊ|a¦Gâz’2=´¾ªL4¾2>èW”ñA?œfz$½Ÿ™é‘˜QªL¤÷53=’2˜éñd\1Ó#u2=×ה鑔)ÈLÄõ0ez¤NÚŠ™©‘yg¦GâøP™©)ó™‰óAÊôHœW¦Gâ|™2=Ò“R嗥闤ݹÊôHb¾™é‘˜¬LÄÊôH¯*Ó#1óX™©2c™IÌôHœŸU¦G"'¤Le†)Ó#ex Ó#‰)g¦G*dŠ™é‘XE™‰ó?ÊôHœ?T¦G*ʬÈò¦ÆLT¾2?è‡ãe¦G£ÎL”‰2Ó#ee~ Ó#ee` ÓCóµÊôHÌ W¦GÊÌxa¦Çü2Ó#qýX™‰ëŸÊôxXfz¤L柙‰ý-ez<ö" ŽQÜæ–yæw<ð.â;6·®3½c+Lá{ñ9AvÇæ¶Fwl&)1¹c?Á•Vø‚ÈíØ,ÛÀØŽÍT:¦vlN 0´csüÇÌŽÍH}Fvl®Ö2±cs²[ù@ÈëPyÆuÈÕØŠA¬ÆæŠS5…3Tcs¾“™[‘#ˆÔØÜÃD­Î5„Œ3OcW6›ˆÓÐÊ/Ó46Ò ÓP¼²4”+KƒÉ×ÊÒ _®, æŽ*K£(xYÜ«,¢Pdi°Æ“²4Ôýd–Fá%c–FùJË€ú¦ÌÒàÖQei¥VZáÁa–kÁ)KCQ_ÌÒà,²4XFYE‰VŒåè´B{Å, …¸0KCýafisW–wÓ*KCefi%|LZáú2K£|EkX>Dá3È, eÅ0K£(xYœåP–7Á)KƒsæÊÒPÌ ³4X¥IY™WŸYê¯3KC‘SÌÒ O¯, +Kƒx½²48Õ¢,̳4nÃ,Ì÷³4mÅ, ˜¥¡`?fip [YY±“VMá°jŠÖ°|ˆ¬ÐdihxÁ, ‚ûÊÒ`/ei0_YŒ¯V–Óx”¥!¬ŸY§(K#+L¢Ð h/³42Ñ^fidEMTZeF£UV´¬ò;KC‘ÌÒÈdy™¥¡„fid¥t Kƒ{i”¥¡Àfip'‘²4”À, fÇ*KCqÌÒબ²48èR–FR²48%®, … 0Kƒ4ei({€Y\.T–w+Kƒƒ9ei¤;KCÉÌÒàJ’²4TÀ, î»Q–†r ˜¥‘”ÃÑi¦–Y‰L-³43ª, ¥0K#‘\g–†B˜¥ÁŠ¥ÊÒPæ³4&+”¥¡fi$ÅT$æCdg–7¶+Kƒûª”¥¡€fi‚P–†ò˜¥‘qQi… fipECY,*£, ¥)0K#)£Ó*+<V¹RÒ ÎƒVˆ¨a–Fú Ï€žfi(‰Yœ–ýÊÒÀƒódiÇC–Æâ YON²4«N0Kã‰m@–ÆÚ|¬°Ðù¤8 Kcq6˜Y‹Á˜¥±˜°Å,µù”!Kcqr€YOä²4žÈdi¨” ³4ždi,N,0Kã „@–ÆÚLaA–Æ“,'Y‹“ÌÒX›O(²4+¶2KãI@–ÆÚŠÙŠšh”Œš(”û-‘5qgi0jBY]Ñý<¡, óO–¢bž, <ÝO–F¿³4ð°?YxØŸ, ÆT(K£)-VL­P–Bhž, †X(K£ÝYÈ´x²4Ð2YLËP–Z•¯,N9ïð ZÊ?˜¥È–¯, Ek0K‡ñdiLÊ~'m0K‡¡, o(K-Ò“¥‘žA«LyÅr,År¼³4ž”di0|XYOh²48ɦ, ex0Kƒ…*•¥ñ’´*”´BZF‘U¢d‡Â3˜ð¡ðŒþÊÿx²4ö¥±ï, ´„O–ZÂ'Kã‘WXˆ²4ÐN>YÌQ–³C”¥fóÉÒ`”ˆ²4‰Ô $åYÈy²4Ö¥±î,ugiÌ;KcÞY”ÊÒ@ƒüdixƒlàs>§õUʇmð.>ÿmþ#Úü¯m¶gDhsA·„hóÌÚ<¹ì"´™•‡„63(Xh3×l‰6kK2ÑæQÑE'Ú<¸ÀF´yptC´¹³@´Y3ˆ6÷æ…hsçÞ,¢Í E´¹3fPhsçÖe¡ÍýA—67¶ÎB›Û$J´¹ië?Ñæ&ô†hsÊA´¹qk•Ðæ–¿ÐeG¯Ù?Ú\U^˜hsºH´¹v¢ D›+çi…6W.Í m®<ÓB›+‡™B›‹ÐA¢ÍE(Ðf&<(³£ÜèöD؈„è´ï¡òÑÍ ÍËãüm¶qÐ?ì ñò߃Úü²Ê½m¶Ñ!Žh³-_hs{Êy‚²a+Qà?Æ möòÜÚüûbD›mäÎÏ;ÚÜT>‹h³Ï(àï;ÚÌéˆO¡Í6[ÁãðãTÑf›Eá÷Ú¼…RmÞ, ´y«¼=Ñæ­óO´Ya¦B›57+´y … Ú¬i¡Í mFS÷ù ÍKh8ÑæÅµ¡ÍKåy‰6/NQ m^œ–Ú¼T.h3ÞJŸÚ<—Ðh ÍS(Ñæ9ø<mž*J´yr–_hóäV,¡ÍSåh‰6ONRmºD›‡ÊÿmB͉6NÔ•hóJK´y]!ÚmV¹;¡Íƒ[“…6®y m…ýG¢Í# ÝÚ7¦.¸^@› ´¹´,ô×çݰi/´ù)GL´Ùˆ<Ï@›*ÔæW'ß?@›(ÂõÚlDÒÒÏ74¢1€6Ñ„çh³Çt ]v?õ€6;qµ¨Ý/³½Úlž_ Í¦”Ùü g/‰6;Q6©Í¯Ì m6MtÙÑf#Øð¼mvNºCeö¹/#èê m6í/Ðf'ö\m.B[ˆ6—¢ö hsy¢l€6;a(ÔÙü2g²‰6±H4Ú×îpÔæ—'ûç@›˜Äý´¹µ ÚìQBݯɿÁOQW@›ËóþÚlÄ(ÀOQXØ f*úg@›I¬~ m.ÚšO´ÙX´ØßgíÐf#hÛ mvßgÄMçÚìD/Ð__¦2x¿ÐfÓ(7‰=ªF£Ü)ÐfÓI¨³û©Ü,Ðfû׃:wè"í~\‚'Úl:I»ŸP¢Í›ãs¡ÍÚå)´y/Ðæ­­üD›7££„6k<'´y«œ'ÑæÍòFB›·Ðc¢Í»éø6o•ß&Ú¼+Ñ¢ÍÚ#´y¡ß@›Õ¿Ú¬|¡ÍʱÚ¼"´y ½ Ú¬ùz¡Í VÚŒ™µÏm^*·N´YQ B›1‹÷ù Í‹Ñ'B›7â m^Mßhóâü€ÐæU…nm^*oJ´y Õ!Ú¼ŠÐj Í‹Û?„6?劉6/¡ºD›cò…6ϵÚ<…¢mž*ïM´yª|)ÑfE) mž,(´y~?¢Í“åé„6O¡[D›g¿ÑæÙˆ mžMh5ÐæY…þmž,."´y²Ü”ÐæYˆRmžEh6ÐæÉB›§ÊÃmž*ÿL´yr]hóØú¾@›×å„6®zm_mº‰6¡wD›ÇÄûThóB‰6n‹Ú<:ï?¢ÍCh:ÑæÑˆmÜ:)´y4ý= ÍCåx‰6£Ûûù ÍCh'Ñæ!”ŒhóàüÐæ¡öhóàž¡ÍƒE.„6$ôhójI´YýK¡Í}ßhs_òÚÜÑ¢Í}±ý%ÚÜ'Q"¢ÍO”Ñæ>„ mîƒ( Ñæ>„&mîì?mîºß‰6w]¢Í½¥"ÚÜU~šhs:H´¹Wý} Í½Þhs/B‰6÷"”hsZK´¹«¼7ÑæžÙ~mÚÜ“Žh³¢¼„6?哉67.Û mn[(4Ðæö Ü@›Ûú ´¹q×¿Ðæ&4hsã†{¡Ím]$ÚÜ8Ÿ+´¹ ý>Ðæ¦è¢ÍOye¢Í­ó}J´¹©|8ÑæÆò}B›ç+„67]O¢Í[y…67¡þD››Ê‹mnEh6ÐæVø<mnŒFÚÜÝA´¹ Í$ÚÜò6·Ìû—hsKŒ!Ú¬rÌB›ë®m®Ü+#´¹ å'Ú\¹3Ahså:·ÐæÊZB›ë* ´¹ª|9Ñæ*tŸhse9I¡Íu …Ú\§þÐæJºAhsUôÑæÊù ¡ÍUýE¢Íµ³ÿA´ÍÚçƒ6Wn§Ú\…m®º?ˆ6W¢vB›+÷… m®U¨6ÐæZ¿Pçû‹h3šñÏm®…ï¢ÍUè=ÑæÊrŠB›+÷µ m~¢!ˆ6×åÚ\3ÏÑf•Ú\“>´¹ª¿K´¹&ý} Íeó~'Ú\¶ŽhsÙB—6µÿD›ËÚ ´¹0zKhs!$´¹,ž¢ÍEï¢Íe Ú\t¿mF·àóA›‹ÐV¢ÍE(+ÑæÂèG¡ÍOTÑæÂ¨@¡Íe…Ú\Ô_'Ú\MB´¹t¡¿@› i¡Í¥Ýhs!**´¹ Ú\8?!´¹cÚ¬rÓB›5Ú\5&´¹è~%Ú\*ïw¢Í…;ã…6—Â÷ ÑæÂõ¡Í…»Ã…6—¢ó´¹p=NhsÉB—6?ÑD›Ÿè¢Í…»u…6õWˆ6EŸm.º¿‰6½‰6îxÚœ¹}Phsfé&¡ÍYh9Ñæ¼¿PæþÑæÌí=B›3w¥mÎäó„6gާ…6çÅëC´9s>WhsVûK´9³J¦Ðæ<ùþ&ÚœÝ)´9+ЉhóSþšh³Ö_…6çÁrÜD›ó ´93Ph³¢º…6+JBh³¢$„6ç. ÍšÚ¬¨`¡ÍY0Ñæ¬r¾D›³(¢ÍùA±6gF» mÎŒ†ÚœÙ_Úœ9ÿ ´9W¢|D›³ð¢ÍYÈÑæ§¼6Ñæü Ó@›sÕùڜżmÎ*ßK´9ó}"´9‹(!Úœ%&´9‹í ÚœhmÎ,D(´9s~@hsà@´9«\/Ñæœõ÷šüÀ mΙPÑæÌíöB›óƒ"mV´„ÐfEKmÎB‰6gnÑÚœ9_!´9sKóƒ6 ÚÌM¾Ú¬’¼B›UÞ[h³ÊÙ mævÍmÞ_(3ýp mV%^ Í-1¨ôÍœ ð‚nöh‰MM?þý&?ÜOœ¹­ãS„³GM$ê øŒ³o ߀ß!=à7I!sö¨‰LM?ÐB˜øý*ÒÙˇOêóàû6•ëüUNœÄ»‚vö¨ 0ʾÝÞ·½$júmðìåÅ…8ÓÄgšô[àÇè1BÏ5ì·ÂOˆ)°ç âäSܳGM€)nò«ÒôÂôù‰š ûüUžðóWÔègß&$= §€ç=^´GOHÓçkɯJŸ ïÑ¢žt~QоIzMDO€öU=!= §Ðç  (´GOHÓ÷`èŒiÛOÑÐ¾Í xp•Aä*?´×¢=jºÁO\ hš@ÝáW„[wø±ÿC*Ú£'ð}†üÈTù¤íQB¡é‡rô@£}›þþ‚_fû8Ú5þ¾ï„öè‰BÝ g¥^Ðh¿H{ÔĤ¦"€H»~1Ò=Q¨é‡ó JÚ£'5ýð<“Ί&&(íúEJû6<ø5ø%QÉ ~Ir—î.¿.zš~͇üð>0íQ8ž)?¼ßLEO€™þŠž 4­è BÓz{šVô¡iEOšVô¡é-¶7ÑŠ u¦® ¡iEOšÞ_”4¬ÐèšæÆ~AÓ[t¥UCmV\P4Í悦—Ðf@Ó*Ohš9H‚¦Y¼QÐô$>h…–‘Ðô>iÕ„Tà 9¡i½ÕM/}A@ÓŒo4Íô]AÓœá4ÍoAÓŒ*4ͤcAÓS 0 inv4=ÙöšæPTÐôŽ]i…ïKhzŠ¿n´ŸKhš»MO¸„¦çR +¼2Ms‡š éyCÓã‹’î.ùõM«·Ohz°1$4=x¹ Msè,hš+킦átBÓœç4Ím<‚¦õÖ&4=x{šÖ;œÐô`Dhz0h…Ðô€\i…›Ðôb hšÁR‚¦YCÐ4ךMsj_Ð4Gþ‚¦9Ñ,hº‹ Ÿ´ÂÃNhº Ÿ´êohZcBÓ¬f#hº³ÇGhZI„¦;ßß„¦¹Gдz„¦™K/hZI„¦;›>BÓJ¢ 4­$ BÓJ¢ 4Ýx_šÖ(ŒÐ´:-„¦•DAhZI„¦ÛC +œIBÓ톦•DAhZ½BÓJ¢ 4­$ BÓJ¢ 4­$ BÓêšV¡iMs•^Ð4óeM7ÑÊ™VÄ“3­È#šf… i&Qšæôµ i&QšæfAÓ\û4Í¡ª iöÌM3LÐt%WHhšÃZAÓ,!hšù‰‚¦¹F"hšK†‚¦9#%hšÌMWá瀦+Á:BÓ\½4]IÚfAÓ•…Ð4“(M3£LÐt%hFhº’#4ÍY2AӅ׈Ð4×ÜMs‹ éBðŠÐ4ô‚¦¹¿SÐ4»£‚¦‹@ïA+TZ&4]DvOZ%4]„r/Zá š.¼‚„¦‹`m@Óìå šæ&JAÓœÃ4Í.° i®x š.®3­HXZ$4]„TWZ= 5¬.hºÜÐt%Ýhõ`ѰÂ3Hhº$$4]>Z‘t4…6šfµ2AÓÜ&h:óêšÎ¼ú„¦™ÜIhZ»1MïL8ÐôΚޙ7 é…gZMQÒ°Âã hzgQÃ…V¸7MoNÊšÞÜ3DhzsʇÐôÎ|ØMofÙšÞ_šÞ™Ï> éÍÕ BÓ›“G„¦wæhz³ª¡éÍPõ ¹iQÐtZ„!Ý¡úЄt› eBºŒ©óÕ(@»I4!]@‰îeÒU½ÂDHWëAë­¢zÐKëA/NK=õ ¹ é©])³´êe³ôä&=ÕƒžÜ¤ªzгbW=hAêª-(–õ ÇSoõ Ç ŠöúÍMõQz¨žŸêA«^/ëAwÕ#Fá›k hƒj{—? Ýþ|ÿñÔoÆïOÕof½g@ºí9^@ºmð~ÊKõ›éšn‚ÄM«>“ éÊYAÓ•›”MWA¯„¦kSýe@ÓUõX MWÕ£#4]¶ê'š.Üô!hº<þ€¦‹Î7¡éRUÐtQ}@BÓEõG Mç¥zÖ€¦³ÎO¤›»êUÒÍ•PG¤›q@ºYõ³ ÝÄ„‡¦Q™4 Ý4¾ ê†úË€pM'ζšNÏù4Øý#4ýeš¶½1ø¾€¦‹r€ MMÏš. ø$4]”jHhº¨ëFhÚö:±^sE½åùUz ¾2 $Öƒ^ÐëA?õYzå/HÚýt½XzrS¦CÓ¨§Ìz̨?<9«íÐ4ê'zFýáY]£þðS¿½¢þðä¸Ìw{¢~2BXz,B—¬=1±ô誌zÐCõèYzp~Lõ 7Áªôx àüÔGÆÏQº«^9ëAwÕ›d=èþü}Ôƒî …`=è®öˆõ {V}jԃtäÅzÐMõ´YZ›ššF½ãý@Ó¨wÌzÓ€tçRšF½ã¢¨wÜhõŽ‹ é†zÇ€¨Xº.Aä[õŒ oÕ3FûÉzÐUõtYºrÑ]õ «Ž‡õ k¾ icš ió+[õ’QZ›6M—©úÊ€¦Ëš.¬ÿ#hº4AÉ€¦U¿JÐtá유é¢PBÓÚÄ'h:ï/ÝPŸøÑ‹õˆq<¬?̸r§P˜õ¢YXýƒþÔHh: *$4­z:‚¦sâû–ÐtÒóEh:-Õ?4­M6‚¦µéEÐtêª h:5Õ[4­M‚¦SD h:qÓ— i-ê šNœ{ 4Ÿúö€¦zÃçšvV°S ÈíMgå¿›f½à¢Ÿ{ýa…B Öæúi¯?\TÏ™õ‡çë…W¡q}MgMišÎ $4më{Ckê šÎO{hÚ 4BÁ~ªW hÚ 3 iƒÊš6ÍúÏ~ E4mÙQ»ƒc M;KÜ©Íoêþ4më/ûêŸAa„’šÎs ºF=èÉM›ª=¹”éÐtvÍúÓ¨? é¢zˆ„¦‹ vBÓ…k‚¦ Û_AÓ y4]¸ $hº<1 é¼=šÎ‚^ M?¡é¼šÎKõ§Mg=_„¦3ÇW‚¦ó¤ hú8Mç©zÌ€¦ó dBhZ† é5 éÜ!šÎÜD,h: "'4YõDÐt¤Dh:WÕ;4ýÔ×$4‹ a@ÓYP¡é§~&¡éœõy@ÓYÐ-¡éüÔ[4ÕÞšÎIõšMgµ¿„¦3 MgµÇ„¦óQšN‚Ø M§­úÖ€t“ ö H7©þ2¡iA‚¦“êÓš~êQšN‹÷7¡iA‚¦“î?BÓiÞõ CvMk“¿ éÄþ‡ é¤PBÓ‰ï[AÓi|AÑš~M~IÚý8¾4:ŸGBÓO}GBÓ©ëûšN í4 šNMõ£MkÓ|ýì›ä u‡F½TBÓ© Ò4:Ah:UÕ74:'h:=Ðq’_$í~ µ4X¯Fд6© šNEþ€¦SaûOhZõM'îh4íš~BTM'V4² è.?^BèÀ¯§˜s¥Õ›`¼!*ðÅk Gî´baä.«JI+±Ä´jL+†Ï¾.UØX¼¸dN®xM öó¿¦(hƒhÿ‘CÅ·¤U£¤•$ˆâ5…Àúöí5Å÷úž®¥xàÄK´%hâÅ=k„‰ßV녯ɷ3Hâ5UܸÊêÅ¿%­pÌ]V‚†Û-i…¯0d•(a5_ñ[ -ðá/¹h5Ó ßhËJ’V’V€\uÚy:ikòµzø-d¡\oéÝN$ï~Šþ’UV‚‰Û-a5^ôð[ *èá·„kwYAY &o9eÕ)Û-×[.Y5Êñ–[V•²Ýr½äL²*”ç<|Iï…¾e‡Ì”û-rzKZÓ­²’ì·„ú“ ‡ßr¾e§¹äN«Gî·²’¤ß)+É~Ëý–KVƒr¾å–•d¿%­@µ&YIηtzø-û-7¤pázËù–UV/zø-iå7èá·œoÙe%ÙoyY YÊù–SV’ý–û-×mµdå·ºoÙo¹_•NßòmÈé-û-7$xY§‡ßr¾e••d¿åeÕn«v[õÛªßVVM¸p½å|ËI«Gö[^Vë¶Z·Õ¾­ömµßVNßr¾e~[‘^“@èá/é`å[ηtzø-û-/«v[µÛªßVý¶ê·Õ¸­Æm5o«y[ÍÛjÝVë¶Ú·Õ¾­öe•“¬&å|Ë,+ÉÓ&¼å~K§‡ßr¾¥ÓÃoÙoyYµÛªÝVý¶ê·U¿­Æm5n«y[ÍÛjÞVë¶Z·Õ¾­ömµ/«’.«’.«’/«rŸvÐÃ_ÒçÓÞr¾¥¯/¿e¿åeÕn«v[õÛªßVý¶·Õ¸­æm5o«y[­ÛjÝVû¶Ú·Õ¾¬jº¬jº¬j¾¬j¾¬Xrù‘(¹ü’ó-Qrù%û-/«v[µÛªßVý¶ê·Õ¸­Æm5o«y[ÍÛjÝVë¶Ú·Õ¾­öeÕÒeÕÒeÕòeÕòeÅ’ËDÉå—œo‰’Ë/ÙoyYµÛªÝVý¶ê·U¿­Æm5n«y[ÍÛjÞVë¶Z·Õ¾­ömµ/«ž.«ž.«ž/«ž/«~Ÿv–\~Éù–(¹ü’ý–û-ÛmÕn«~[õÛªßVã¶·Õ¼­æm5o«u[­ÛjßVû¶Ú—ÕH—ÕH—ÕÈ—ÕÈ—ÕÈ·J.¿ä|K”\~É~Ëý–í¶j·U¿­úmÕo«q[ÛjÞVó¶š·Õº­Ömµo«}[íËj¦Ëj¦ËjæËjæËjæÛê>í¤‡ zø%Ç—4z8¥ôñþçéá?ÒÃÿ:éaÉv[µÛªÝVW_r¼%èá—l·\o9o«y[­ÛjÝVë¶Ú·Õ¾¬D¿u z]:_v¢‡¿t ~%ø•àWƒ_ ~-øµàׂ_~ ‡¿4èá·nA¯K;=|éÛo¿üVðÛÁoß~,¹üÖ-èË%—ßúö+Á¯¿üjð«Á¯¿üZðëÁÏéá—vÌèÒ-èui§‡/}û­à·‚ß ~;øíÛôð¥[ЗèáKß~%ø•àW‚_ ~5øµàׂ_ ~=ø9­úÒŽù^º½.íôð¥o¿üVð[Áo¿}û¾t úò=|éÛ¯¿üJð«Á¯¿üZðkÁ¯¿p=@_º½.íôð¥Ç¥Wð[Áo¿üöízøÒ-èËôð¥o¿üJð+Á¯¿üZðkÁ¯¿üzðsÌèÒ-èui§‡/=.½‚ß ~+øíà·o?Ð×nA_~ ‡/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃_¸ ‡/½.íôð¥Ç¥}gÀ¥[зß~ûö=|éôåzøÒ·_ ~%ø•àWƒ_ ~-øµàׂ_~=øàç´ê¥÷¥¾ô¼´oܸtúöÛÁoß~ ‡/݃¾ü@_úö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üÂõ=üÒN_z^Ú÷Õ\º}ûíà·o?Ð×îA_~ ‡/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#ø9­úÒN_z^Ú1ÃK÷ o¿üöízøÒ=èËôð¥o¿üJð+Á¯¿üZðkÁ¯¿üzðÁo¿p=@_z^Ú·¡]º½/½ƒß¾üH_º½//?ÒÃ/]‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚Ÿ³.—ž—ö]‚—îAïKïà·o?Ð×îA_~ ‡/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#øà®èá—öMœ—îAïK;=|éËôð¥{ЗèáKß~%ø•àW‚_ ~5øµàׂ_ ~=øõà7‚ß~#øÍàç_Ú÷Ø^º½/íûâ/}ù¾túò=|éÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üÂõ=|éô¾´Óמo zøÒ=èËôð¥o¿üJð+Á¯¿üZðkÁ¯¿üzðÁo¿üfð›ÁÏ·¤_º½/íôð¥ç[ƒ¾túò=|éÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üfð ×ôð¥÷¥ë¹ô|kð×îA_~@ˆ/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#øà7ƒß ~+ø­×rñ§¨âK· ×[,¾ôå´øÒ-èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Á/\àÆ—nA¿—’I_z\:ß~€Ž/}û•àW‚_ ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·¯f‚È—~¯1E¾ô¸t¾ý@#_úö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[Á/\Ê—~¯7“Q¾ô¸t¾Ö¯‰)_úö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿}­7“]þÒ€—/=.¯õkòË—¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üVðÛÁ/\@Í_Tó¥Ç¥óµ~M°ùÒ·_ ~%øÕàWƒ_ ~-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·¯õfâΗ—Î×ú5‰çKß~%ø•àWƒ_ ~5øµàׂ_~=øõà7‚ß~3øÍà7ƒß ~+øíà·ƒ_¸à /=.¯õk¢Ð—^—.Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿üöí@úÒãÒùZo&#}éuéüJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁoß~#\ Ó/¯õfÂÓ—^—.×ú5ùé—®Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁoß~@ª/ý^o&T}éô¾t¹Ö¯ V¿t ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·ƒß~ûök}éË´õ¥{ÐûÒåZ¿&qýÒ5øÕàWƒ_ ~-øõà׃_~#øà7ƒß ~3ø­à·‚ß~;øíÛö¥/?`Ø—îAïK—kýš(öK×àWƒ_ ~-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·/?ÒÙ—ž—¾¯íKïK—kýšŒöK;¤}éôíׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·ƒß~ûö¶}éËàö¥ßëÍD·_º\ëÍ„·_º^ë×Ä·/}ûµàׂ_~=øõà7‚ß~3øÍà7ƒß ~+øíස߾ýÀs_úòÑ}éô{½™P÷¥ç¥ëµ~M®ûÒ·_ ~-øõà׃_~#øà7ƒß ~3ø­à·‚ß~;øíÛ ÷¥/? Þ—îA¿×›I{_z^º^ë×¾/}ûµàׂ_~=øõà7‚ß~3øÍà7ƒß ~+øíස߾ý@€_úò~éô{½™ø¥ç¥ëµ~MüÒ·_ ~-øõà׃_~#øà7ƒß ~3ø­à·‚ß~;øíÛhø¥/?Àá—îAß~åZo& þÒõZo&"~é}éüZðëÁ¯¿üFðÁo¿üfð[Áo¿üvðÛ·˜ñK_~ Æ/݃¾ýʵÞLrü¥ëµÞLvüÒûÒ-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·o?Àä—¾ü€“_º}û…ë¤ü¥ëµÞÜ.\ܨò?ýýŸÿ‡_|üê÷ß²#åïþþW¿ý毷úöù‘>þÚ‡ëv{,§è¼ÆÀúø‡PÓÇ?üøíãß|þÿë ûO†c‚¿ù°þÒ|ôçLJaíëü Ø?ODZv}°:/øõAh~ðŒ¦­Žv¶jÚ5߈÷õAh~0Ÿ>®m$)†”ëƒÉ‰Ã¯B냠~7?hCµ÷w¤öþâ‡?@ïÛéýÓ?>òÇó‘½ÌxzþmÝ;ßÃweÿð›ŸýõÏ?~ø»oÿî³ü¿}¸‚múúð¿¹>\þnXùúpú ™‡Ý|óû¿ð°¿>ü/8쯟ðavõ=pçÃñ³¿ý«Ï¿ùíïþáçrîŸýæçùñßý4³âŠÝì·?þ×þQÓÇÏþçßÿ œ’/•ØwúüÝýõïÿñ׿úÉ_ͦ'ÖÀÑüýï~þqºª?û§ó¯sH?þÃsHÿùÛÿÜF›3 endstream endobj 4366 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 4371 0 obj << /Length 1849 /Filter /FlateDecode >> stream xÚµXYãD~Ÿ_añŽDzû°»Ýˆ}q¤åóÆ"áIzb Ƕ³3離«ØIÏ2¬@#M_åê:¿ªOv O¾½ùòöæÕ7Z$–Y-ur{ŸΙÊtb„`ZÙäv›üš®Ùw[׬~»ýþÕ7¹™Ñ+«™±¸yJ%ÝðpA²VF°ÜÉZøHÙÝèVk•çéX•#±-f\3Á”ÑÓCï6D#x¢™5ªð¢LZŒY¦r¢¬#jVäÉœf ›{W6Íγ´¤­½+‡cïh¯»§Íz÷×Cݵtð–çü¡+:®ê]åzš¿[É<-›£ˆrÓõ½]»­Û]з££¦CÚø$NÖZ³\Ød V·y~VÛ_  ŸEúE3tŸ®Ö²P ÿJäén7öÛÆ p§4Ú‹ãX9œ˜t8›·œË œ”ÄŦê׎á½Ð×åD^nÆ#Y W Û¦lÜ–VÞ$Wžä×:=çJsåœWÁòláÊ׫u’>ÃT &µ1óˆWL ³äzu³f:S8îËG gnÍ83Üþ“*W—¢#Ák˜†×íPo1:ÁW>:‹Œ|†÷Çv3B°€/3^?n*:ˆg˜PšeR~pŠ]ú%‹ø%¦Ì3]{ßõ“Žôi :GÚ£øw” Šg¬¸ÌaU2sŽ“˜úÓ&[j“ö†CFí˺%°€}Ô¯ö`gsP„Ô „<ÝvD%Ò¶ƒAN©Š›ªlwîâ6…‘Ìk pÖ%$Éϰàk€Ç ‘Ö#ví„•kCø¢£¡³C”z‡ÿܘrЮ¼«›z| œÂuTi<©pôZâIÙìºPfDÞNÜvp-Oï\X¯ÞBÁsCEg(-WéÐíñ+ž¥QËý¡qáÌ ÅCšáFïšr¬ñó“NpÜÔ¬O]SW]·]~ ÅÓṳ̀íã@úÓ!°½ š’y B(¸?>à5ÝB©à­m}Rݻ޵蛬Hgu — T‡5Të 1®‹Ø‘Ñ@· èÂ/ÀÂò3GÒtt-A#n!¤àèà 'UÙܯۮߣ8ôñ–&íÙÌó:°&®3%Ø×²K&¸°kóÍ$ a€ßxbÙ¯ÀÈâ`ãÓÁ½þ¨u;÷x8tE”_‡/–è½§r±0üþŒxªÓ+Uð“ì*Àr^°T(ÚŸ`Mæy¨É×DÐ-'™Æ Ÿd'.4¶v3éÚXÝ»{Šd¥PËÀ,'` ó¾üæâ?Ìðü>oø¡W)0Ãñ†ÁV_‰¹ Ùœ…f2WgiyLZ€„¬8ÓM4fþBÆ¿XÈ+"·Á“§PK¹Œ\hý«~isa ÿ…¹¸lñTƒÙé-òú,¶amÖ%Í8˜™3kƒCe„Ɔ†«Öú"w͸ÐÎãcä}0è42&¡öKËr ìú“hAKí ¬oõ f}(L™]™GÔଧ yüy~‘œIËd1ŒÃ»ú¥1“-ÿÿKíû‡­Ç—\;Z}LÛò¯ã~ MOÆS[xäk³0-›±êŽ»Šh½ëü¬¤á²q†­CÙ—{7º¾þ«\‡Æ†cÇw«ÌdAp#ôr[¼VÉðÇÍÐZ#Y»éá 9Ž€nA‹,äúââg/£¾À~;Hén÷·…4€Ôg˜¥½«þ ]h—Åü¹«Y—æ¹ÍXÈXdEh sñŠ¿xuåTŽq •fòôÏ* ¬|Ç3lŸ±¬…g~ž} 2^XÖê90n ³Ëvœ„©›ÐÓo?#WìüçKå‰y¨´ ïÊàmô7«Ìƒ endstream endobj 4367 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/selmodel-preston-prec.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 4373 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 4374 0 R/F6 4375 0 R>> /ExtGState << >>/ColorSpace << /sRGB 4376 0 R >>>> /Length 41605 /Filter /FlateDecode >> stream xœ¤½M5Kv7¿¿¢†ä@¯2¾#¦l„mÀê< 8ÈDºHZ¦lý}çÞëYYyZ”͆}ï]]UëäɈȈxÖ._ñU¾þîë?ýö¿}ý§¯±~ÍëkÕ_×õÕ›þUòÿû¿þðõ¿ýÃoÿúŸþÝÿôo¾þíï~»~í5¾®_­Æ?{½¾~÷oÿ×ßê¯[þ—ßþò¯¾®¯¿ù­|ýÅý¿¿û­\aô¿ü¶Z8õÕ•öõ÷¿Ýÿ¾ù²#«äF–ãWE^’X];ä´Õ5$±ºªdZµ_'yÉê–Cr"Óy˪ýÚC²#ùé.)Wy~Uɹ%'2Žyßß[rtÉ.Ù§$V-þv[µK«š²Ú*ÏÆ-±ºiU”MVUǼ›¬ªrwYÕ_cIvÉÞ%±jqêö°UÙ’XåyÞSV…ϲ*¿Ö”Ü’:KV…¯¿dUø¾ÛVy3Ü2­®_gJîšr÷i—”ó}Ú%{üí¹â²‡¬C²K^Ȱšç×çSÒê–9%{þrM«[Vd—¼šdZå=qË&«ýkÉ)Ùâ<Ÿ.«­/xË´Zºën¹%uCV+ÎBÊ)Yò§SVS§ý–]rÉ-Ùò0–¬&Ÿ»d5t{Ÿ-«ñklÉ.™å–»¥Ìçèܧ!dÿµšä”Ì;§\Wœ–Ðź‡¾ë-=Zê"»ºK_~÷ý÷Smé×ίsÐS:äR³÷ìms¿ÝºK÷ ~m©å,uÈÏ÷ë­ÓoþZ:Þ)¿·½tú õC¡·tÑß/ùuî[OiÝ?u˯qÕ-?ß·¾,tÓñÞ×#tQszJëyi÷õ}ñy÷Ü'¢WŸŸ[oi}ÿûïúù¾õ”Vûã¥ÐÙÂJwéì-B§_6ס›üF´×ÒSºÊ¿Ë¯ÇøD:ýš¯Ë¯©ƒ)÷‰L¿Êó'ZZÏ×}!Òï¾_.tú]':ÆvwãÝz†ÞßÝð^¡×ûÖ]ZýïȧÝã µ?£ÈoD·'=¥õyфN¿<ÍÒéW韣£‘Öó0šü íõèò»8ÿ·îÒ9Z ~ûÐÿßaøÝcIõw#¢vDuÜé%}MtøÝÃXµo·N?ÆJåî¨Ó¯ûû.ù¹}Ž>ôý|6tú¹=¹uñߟèXCëþ¹õ }ñù÷Àäºõý’¡þæÖ=ôæøo½¥ÕþÇÀ'ôâûÇÀ(ô}½ò|Þ©ôóówëôë\ï[oiÿÙäçö÷ÖéW¹~÷À/ýІ´¡»´Ú÷[§ßÅxäV†ß=šVû{ëð›Ï÷™é77×óÖá7ã[‡ßœ<¿ñƒÐÃdzä׿…‘´îÇ[§_óùÝqà-Æ›y=îk¡‹Ïω£MÞIÊýEŠtYè»am÷eÓó//¡y(zÕi1Þ³^ÒoÄKVèÉùŽ7´Ðƒç3^ïBwÚc½*¶û±Ðó/¥Ò:_zWnÃííӯÐÿÄ…}Ѿ¬õ·»ØÖK¿™~Ýý]ÜH¡—o¦ßÝlq|K~ƒþr-ù ß-¿û0:ýííïöŒî¿….Œ/n½Bß§9ÏÿΆ-t¾%…¾oôvw3ºßn~ÍÏÿý …ßÝ­i|pëð»»Aµ¯÷ƒZ¤u¿Äƒš—£Ðé—·yè&?&B§ŸÇ'»Ë¯Ò¾Ü:ý ýí­Óרr74áW×çÖá÷Œ?vXhÏv»ÇzÙù~Øîñ†ÆwÖ~¯Þ:ý:÷÷Ý0¦_cü ¥´žß[ß'¦Ýã õOwÃÚBÿûz„¾øþwC|ÿa»Çúþ'¢¡5¸uøÝã=ÏwÃ~÷xAßÿÖáW|?ÝAú Ú‡[§_g¯É ÈÐéW¹?J—_QzHçó:ý.ëý`†_ÌtøÝÝêÒßÏô›¼‡Òe£Ãoò~Pï† ýrÚE:ýºÏÏ–S¡ÓñVèûƒêd¢³–ìêä} ô’ÎñR½®úÒx)ôÝPÔ˜ï©èð»ûóœÞ¬wÃפsü:üÆR{^ãÅ+ôä|Ô*¿¡ö&túÑ~Õx‘“®~ÍßåWý÷]~ÅßåWüùC~÷GÍ^ùNU÷ï¡Ã/ú÷¿»ò[é×'÷{]ò£=«wG”~CÓñJè{àTïþ}ËÿDú ô ]5>©-;òÚ‹ÞGBÐô÷¡´¾ïÝ‘†ßÝßçø-tø5úËzw¼Eú:èð‹ù‹…¿»¿×óØšü÷ë­—´žçÖå×¹?â?B3 }¤‹>ȯrß:ýžï7åWÔŸ‡N¿‹ç=&·®n¿ãÀCoÍ—†^ÒUz§ß}™8¾~uªÿ}ŸÈ¼ òzÅ@)ôPÿz…îÜ/=º¡Õõœ8‰ÛTßG&nk=ï÷…kÒz¾âB†.êãB§ã…ÐCZÏӭï0¿7JøÝuŽïC/i¯H†^þýœHŠf…ßïò›öòc~4túuõßqc霿 ~n/o~Ï÷]òc~.tú1ÞŽ+ý.úŸ[éÒÐ÷‹WtzÞ{¾HD·²zIëúÞv ½hßâAÍ|qè#­ûçnÒ÷£ÐKZ×gTùuÆ £Ê¯q¼·>Òê?F“_Õx:túŸ£!+Ò|~—Ÿ¯÷èò»8_1Q½¿bØ¢û/ÊÐ[ëÑéj=B/ú‡˜(—ÖõЉôÐÌ·…N?æÛ¢á.ÒÕ:ýºýv4¬¡ñ;ñbÃHõß#'ŠbØ©ë/‚Ò9ž«ZXˆa¬¾o¼8J«ý¹;žôsû/š·ŽñM~ÞÝqiÝŸZ‰a¸®G,”Hçav|¡}>f“óÙQ†vtëôþ¼.¿Áó«@¡;ýå­—´Î,)…nþ~S~ÌÇ…N?Þߢ£oÒêoæ’ó91PH¿Ëdzåwñ¼Å²Ûõ¯}ºfNÌæká…Þ¡Ý?ÇÀDZ×7– C3>ÏŒ´îçX™ =9«Èo2¾¸Fé7xÞ4P ­ñP¬Æ†v°šü:í“Öã5]ß7&VBWú³ÕåW¹ÿ×ë[¡»toèôóùº´Jë~/rëû´èy\9ÑZÏ÷­ÃoºÿX9–Ó"úý¼±båXßyh>ÿDCÓ0_ç4Í@ïÐCó%1ð­Òúþû’ŸÇ?1ñ%­ç!n i=1Qºéý5ÚUZýÑ­Ó¯2ÞØM~•þíÖéWhÿn½¥õüì.¿‹ñÕîòóxpçDmLË©ýØ91ZÏËÎ‰Ž˜Ö;òˉœâõ¿ÐSZ÷C<˜¡=¾ÚK~‹û-&&C³®/6UZíÿ­gýŠiLÝï;r¡[E÷ÐÌ…ÞÒ:ž»á©ÒzÏ%?Ö£âEì’ÖóqŠü*ï§Èõ–x‘K¿ÂøîÖSºëï›ü<ÞŽ†44óO¡·´®ÇÝð†Ÿ×ûBOiµ'—¥cZ[ÏÏ­»´î5ô¡5¾¼;‚ôc¾>ô”VûGèÉxïÖ]zXoiü¶ü|þo}7EÊйM –ÎFwiÎï‰Xèü¾ñ¢^C3~ =¥óy‹ûK:Û›ÐéÇükè-ÝäWåGzJý}“_ÑûWèô»4^½¥³¿‹‰‰*}mtøµ£õá˜È¸¤Û@‡_Ûz¾Coé©ï“ ƒ¡ëF§ßR{)—ôXè.]+:ý¦Þc"¦J†ž=5ßïÄËb»£»ô¸Ð[:ï÷˜ø©¡;×ãÖS:ûϘ8º¤ó~~¾~±ð$ÍïWù5ûWùUŽçX^ÒÙþ…îÒå Ó¯ð}K—Ÿ¯g \¥óý$&ÊÒïRûºKçûCN¤IWùÏô‹õÏžÒº¿b!OºMt—¾¬Ãï~ÿX:ž-?Ú¿ÐwCVêöùʉÀXæÝÖ]zXoéO5-LƲq>ï9Ñ(­ã«E~ÌOåĤt¶§¡Óùè˜È¬ÒÙ_‡žÒ9¾‰‰Ïôëê¿Bwé¹Ñ[ºË¿Ë l¡Ód1ñzIë~Ö‹Vh=¯uȯ©¿‹‰Ûô«j_BOiݯuɯr½o~Åçgɯð|Æ‹¡´®Ç­ïÝк¿t!c‚ž¿šBs~sËTn[Èï7Žtο…¿û²é~‹Yé|ŸÝ¥ùû’~åøïsàÛ*Ô^ÝzJë|ßÎ%­ö¨5ù1þ ~‹ëu?˜UzUô”Öóx?è—t΄îÒWE§ßTÿ UzLô”Îù¦XH¸¤u¿Ý:ýÏ«6Nä¶}Þ–ß }oùb›Û\tþN¼Ïo‡îÒk¡·´ž—žq¡u<ý’ŸïÇ^ä׸>·îÒ9½¥s| /UºZOé|_‹…šô«ÚºKOë-­û-::éj=¥ÕŸiãLl;ÚÖ]zZoé.ÿ)¿BûЧüŠoÉïâüÇB•´î§[oiÝ1ñ%­ç±çºè|èøb›•ž[wé/æÂ™´î‘ÇÐjF~pnÛJÿIç|D.Ì…æ}·i Zç3ò¤u}F•ßÖzD.üIçûWèôóó0šüXŒ…Ä*ã¯\X”Öõº’—´®ÿöÓù¸uú1^Ê…KéµÑSÿ%?ÖkCwiï[ãWôý·üýÑ­ï5´ú×{à}Is~râ$´úOmÜ ­ñÈÌŽ.·õ]hütÿÍ"¿®ñ{è.½üó-­þ36"Jë|Å‹‡´¾O¼˜H«¿ŸÍ~ºÞ±12tãþ¼_tªtޝCOé/ÆÂö%Íç ù5®ìé”V{z¿ˆá§þ$6ˆ†®zˆ…ôKZýË\ò«ŒÏn½¥õ|Ü/†UZýÿÌ"årÿs¿Xiµ±°ÚýQ¼ˆJëþ^ù …Vÿ»{¥õ}c〴î—Uì×:?µ—«Úï:èôc¾86.iµ/±/[Zç[;ÀCOùuù¹}¸5~M~Ã~jÖ°Ÿîß[ã§ó¿òF?îo¹RæìJlÓ()Õßr¤Ì¹“'e×Go¬t%bÊ£„TúrÇÒ-9ŽÄ9zí yÀa—_n/I¹-WJõ™÷;wI9-GÊa)«œPˆ-²j–²ÒåÙ «b)«Ë2¬˜kˆM4-å¶\)9ªÜR䉿ܑ“rXÊJÄؿ“R­@,ÿ¥Ô¹Ú +=£±X˜R]È-ÃjÒíüjgòít!e¥³#eÉŽ”•®~ìC•ìHYUÿTVU?XéfˆwIýtau¤¬®”Õ¥o”ûiãÈû‹ŸâsuâíùŸ«úŸ«uŠÞb+o“¬HYåø76Ë*·—ä¾à”:uµ`¥)výH¤¬º>¨aÕ+RVm#e¥3y¿Ë*‡I]û£øØþ,«Z‘²*)+Øx×—¼²ºtT +Ý„šX8Ï`Í}çâ<ßoÃM²"ïQÑaotl/’9$ ò¤Ôi[ÉŽ”•îØØžRÏoLßH6¤¬Ô^µŠÕXHY©ùÒTÒ¹4!RVº(·”•öûõWVýBÊJϾf½ÎÅ5j+5m`•o±¥_VjbÇ¿džº¶°Ò³ów’)«¢£ÚXé Þò>‡‡%Á`ŠdGÉ‚¼Û“Í~ýšäD.Éü ˜æ”¼#¥®o/XåÐ0 Yåð#¤¬Ô ÷†•.woX©ê +=t÷[®¬tõ{ÇJW¿¬Ô|õÕ¬HYéf諱‘²Òz¿ÎÊJ÷F_Xé ê%e×ßn¬Ôñõ\S܇–°'Ò´™¨ 9Rªaì9A¸wÎÈõ9¯R†”U’î‘,HY©½+’²ªX龊•IY5¬jAÊJ·ÙhXYu¬Ê@ÊJwÝýê*«R²Rû<Vº ÇÄJ]ù˜Xéž «œ4 ‰Õ… +‰`¿šäBÞð½i‚F~—ÍȽÿ¿ÿ8 Ï¿®ÿò¿Ž}Xô×ý_þ×ì*~ÿõüþzÿW½ÿåÝÿø¬•Ÿ³¦€3±OÜ€âŠýÑÏõ°¥zý¸èûçåuÅõ ¹µ¬=¿€|ýB®5ý|òý z«~—üŸ_pŠ¿ðþÿ‚k›;ÃwŽÞþäÛJ ýó§ßVù×±Wðî þäÛJ+‡Ï‘ÿ ·­÷¯?ù¶Ò_'¸ßþùÛŠ†à·®Óò•d÷8Š hù¿Ôšþw7¹an}•œ/¿ð/ÿìÿüWÿÏŸßÿ÷ןýûïÿûþW_¿ÿ‹?þª¯?ÿW/×’>I\²úwøþ÷ÿùo±ûÃ×ÿü·ÿÇýŸ×ýŸßûÿñÿæëÿÃ×ïþðý‡¿þÏûÿð|ÒŸéÑv|þ¾¯m üÿ;"=Ø2N¤Çd5‘si@G¤Çdš‡HÍ¢?‘óRH¤Ç`6‘HÁÞ}"=h(‘ƒwY"=:ŸˆôèLéчFDzôÊQ)Ò£QéÑÑéѦn%"=;˜ˆôhU6‘W."=*Ó¥DzÔ©±0‘•ÍvDzx­—HÊ+‘eóSEz”©/H¤Géz{#Ò£ü$|„Ua—‘Ã"=®©+H¤ÇÕ?"=®ÊÙP¤‡réÓuy&és{yž5úŒYCsFzDßHø˜5YÏ”‰éŒ9Ôf*Ò#gg ü«íˆ‹œ;È)äþåHÄ.Ӫʊ(EzĤxçé‘Ì$aµ˜U¤G,l2<ÂjUÍù)Ò#–1Ú‘ûFšñm3ÍE—öåHX³i?‘m²«=«±¢¤£š²âÝ]‘Í ‚"=bù,'Eé«syÉé‹y{¬¶ŸHXšÔ‰ÍHXÉB§µ‹X)%"#'b¥õzEzÄJ®0Ez4?¯™R¤G"w~­9"¤Ë'ŒHÖŒh*Ò#v.ÑR¤G"s~Õˆ™"=b'Æ;Ò#vz¬‰N?&‰ôˆ(Ç:üÊ’‘±ó…ˆŽ¿ÇΚµÐ»g*$^‘Í[ΉôÈBŠ”È™ØY$¤X‘±sIœ"=rç“"*2Ò£‰lúv¤G"h¯HØÉ%ä[‘¹Ì:ý*¤"=Úƒ”+Ò#v² ©S¤GîŒÛèÞ!ãó2Ò#væé|*Ò#vö IV¤Gìb®HØIx9â#ý˜x#Ò£º+'Ò#°ƒ¿m$R‘òÅ^’ê-ÎDz$â¥ï—S±³”H“œ¨I¤ëéQ·‘zEzÄNYÝŠôȵúy²9¹3w¡Ão îEzÄN`=/Šô¨…"Ò£:މHÜÉl~“-\DzÄNj!Њôˆ×ûé;µ—#<Âo²E…HÜ)þŠôˆåDŠLù9rA‘±“½¿"=bç{{EzäNzGx\B¨š#>:ÕAîEz dR‘‰L½"=‚DÐÏé³G§Ÿ¯Ÿ"=‚”hŽø¿~@ÂÅê™!„X‘IztøõIû£H IQ H$Qôó.?G¾(Ò#ÞOæDo'ýþßÅõR¤G9ºžŠô€äùv¤G"NÖ[ˆ“ÚsEzI¤ó©H$“^‘õAšé‘ïî½W"LBféQ½%‘Ha"Ò#I.Gxô•“®¯"=Y"â##=YrÄÇ¢DÄF²5ñjLF•c7"=QÒ÷S¤G­l™ Ò#¤éKH]~¤V‘Õã,"=I"$YšD’tüÉ‚´ºK ’{UAâû/ù Gv,ùÉV¤G Gj¯éZ‘:ŠôäH÷›"=’ mè¹1Òß+Ò#´žEzr¤öW‘ ±×ƒšHŒ\;ªO¢Hê->DzR¤þ]‘¡…ø+Ò##ë b$Ýå׸žŠôÄHý‘"=ª·ŒéQ/–xˆô¤HÏ«"=)"b$#=B_ŽüØBŠš#<*HÑBO"}Þ–ß´ÿ–Ÿ#]éZˆ»"=!RD‚"=’DWDEFz„V$^ê“lEz2¤çK‘¡«#>¦"Ez„Ö÷S¤GñÔ=‘BD¤G’ÿ =… W¤G& XwiµÊÖÈdé!?_oEz”íÈ Ez„ÖõR¤G Cz>éˆÐv„G•Vû¬HLjÐ÷ßò+>þ-¿ËŸ—³å¡/Gx4!Cœß\–ɤ‰ü¹"=Êrä•"=Úþù‘V¥H@„ˆ¤(ò›\Ezd’Æ+Ò#´úoEz"¤ö_}q$&‘Å’Dzídúv¤GÚô‘Öx@‘qXºžŠô­öHlS~Më!ýüüâçÉž‡Æ?'(Ê|"N2Ò#´ÆCŠôÈËVÑG‘úEzÄe×ó¦H"²ìÛ‘qi|¢H¼Í^‘EË ßŽô­þ[‘q[+²L‘¡û+Ò# ]Ez„Öý¡H|¬zéç]~Å‘#]~—·Ë…S"=!êè%Ý_‘‰9ÂcHk|­Hк?éQžAEzÐŒ};Ò#›¹‰ÒÝ‘§¦ÖøZ‘ÙŒVô’&R"³0².èRd}@Ф‹ü|ÿj+Bv¯Hì&*zHRåçñ¿"=²è%­þ^Ûo²;è!­þM‘¡uþ鑈Ñ@¯bD¤Gh¾æ^»û{Ezíþv¤Gtãz?ÕŽµb„žHк¿µ“.‡¯H6èós5‘£W¤G©üíHÐBöéQAH¤G c„l)Ò#t{Ezä0(‘&EzÄ0iô&¢£Ê¯p)Ò#†]BصwµôÏH¶uôr$dZ‘¡9ž!¿âãò#â‹HF6ôb/ö9†¡Dšä@%´CEz”öD†äƒ”ÃÚ‰ÒB¾鑈’t¾¸$¢ÔÑKz¾"=B7ë!}Y!Iú>ŠôÈa»õYRDG•ßpäE•Ÿ#W鑯 ŠÜhò#b‰Hx­XŽð( L =^‘‰0½"=ŠÖî¾éº½"=Bóý¦ü*÷§"=izEz„®¯H¢M/ߎô(O$‚"=B÷W¤GèòŠôx'"=qR¤DFz„Öý¥HÐB”鯑DRd¤Gq䑉<)â"#=B—ŠBš¶~¤ùû&¿í¿oòÛþü.¿¢©H|MvÄÇ‘VÄ‚"=BëþP¤G"Qò›ò› ΊôÈ×tG~i!ÑŠôˆ×|"D–üŒ4ŠÕJDª¡‡´OEz„¾^‘L+|;Ò#‘)ENä. ™"Ò#‘©N¿Æý HÐBré‘•üªüزH¤Gh!´ŠôÈiù7ù1ŸF¤GN³èóºüª#EºüÜ~)Ò#¦m„ +Ò#§qzIa2åÇn6"=Šß/‰ôÈi"é%?#±Šôx+"=ŠßG‰ôÈi¨W¤GLSñ‘7nN[9âcI«½Q¤Ó\ߎô}9ò#ý|+Ò#‘¬ƒ^Òz¾éº9ÂcHqQåç u,‰hMô’Vû¦HD¶ñ1¤õýéQŠÛW±·9-¸ÐKúé‘WEi"C¦ü&í‹"=ròB/!ZÛ‘EZ‘1ŠôH¤ë #’¢ÉÖÀ"tyEz<ˆ‘9MZÑCZþŠôHäëéñ _Dz$ò¥Hj¿ëéÓ¶z>éZí­"=Ji‘å‰ðS{G¤‡¶Å?‘ó=Žô¸ >éaÄÍ‘—#£ˆô¸@¤Ç5";ðÓýM¤ÇÙáHkr>ˆô0çHËãA"=.÷×Dz\Ìß;Òãb}Á‘×ðñ(ÒãÚp¤ÇåH"=."|éáÈbGz™s¤ÇåÈ"=.G*éq9HÏ:Òãòû ‘WwG³_±Æï²N?*}8ÒãjŽÀP¤‡çéq5Ÿ"=ŒÜ9Òãj‡ÇÉJê8‹ ª×‡Ã$.9Þ×CL‡SØHé8OhG†t2–Éè8ÌOÑñ•z;Ì–ÐqÌ“Ïq¦Æ>ÄsœÉåVìÆqŒÂ9ΠU6‡£áˆæ8žVÉgrõÌq¦sH&VâZËqH"•ã<¡# «Ë?••ž_Er<¬¦9«grœáü¤5ÎðÉÉ8ŽCz;i^‰"ŒãñFsIÏ8Œ\ Ï8Ô^ ;ÃëàDg†µ$gÜ%8ãT'ÊÍ8Œy‰Í8Õ) +õt Í0ÖKf†#<‰Ì8OÂÅŠ‘…y +uŠË8l%-à 0a‡Zdeœê¨Ž|á?TÎ")ãIe˜&'ãFŠÉ8Tá %Ã;É8ÎØQFÆaÿ § „ ãÄdßÉÇ0]L<Æ)°XM‡eÈj¾²1´5÷û‰Æx’?&V Ê"£@4enQœÒ±±z’2"îÁ™WDc0?ëhŒB×F4F!…hŒâäˆ +Æìh v–9ÃÙDDc°oÃÑå3ÃA\Dc°Èáh æ¤AUGcðÆãh 6:£p›A££1˜v4›·áø¢1à¥á°0¢1œ5G4Æå¤ Ec8‰‰h ±Á¶qGc8†hŒË‰«å¤ Y©O!Ñ.Dc\Ž·¨XM‡_Èj¾£1X;r4Æõ“…!«é¤ ¬~!«ñŽÆ¸~‚3dEöÇÄJ70ÑPÜŽÆpê Ñ@ÝŽÆ`BÑѬ‡:ƒèŽÆ¸œÐ¡h ¿Œqi çh àDc\p¼Dc'ƒè@Gc˜'ƒ`GcPÇÏÑÆÅ‰Æ¸Àz‰Æ0=N4ÆÿO4†ar¢1.‡P ¬DùÁâ°£1Œšq9±baE`ÇÂJ Dc°Îâh *M9ƒ·r¢1.]Ñ.[A4ƃ©+cõÝDc<Ôº¢1öùIÊÀêBÊJ °¢16õVˆÆx˜vEcl¶ž±Y)"cIt[]HY-}ÐÀJH°¢16uˆÆ0«A4Æ> ÁŠÆxðxEcŽ™(XU'eÈJ­Š¢1ž°EclV6ˆÆUôíhŒ';@Ñ›*¢1ž(Eclêºñ$ (cçY ¬Š³0°êH¬”v±lå¤ ¬ +gaÈJ©ŠÆØl½#ã )P4ÆRðDc¨ùz¢1”YðDc q9)«ŠÄJAŽÆP[G4Æv‡¢1œw@4†óˆÆØNèP4†ãˆÆØ´„Dc8 hŒ—ÄJ9mUXé Vû eEöÇÂJÍ&Ñ/¹2²A;Dc8Xh "ᜢ1œ³@4Æ#‹­ÞÑNa Ã) Dc0óéhŒG6¬Ô ጢ1Èåu4ÆKb¥<‹a+'e`U‘ç-§­ +‡_ÈJ9Ñ/)«ù1?£1ÔÔ?ѯlˆ'ƒlGc²Ø®ž‘Ê?ÅvE*7 TŽõ-‘¬"•c5Lç[¤r,¥é~©œëpúüìišwºC*ç’ŸHà.?v¦C*çêbE§_µò+'"•³x®t®¸æš©uøÕý£Ã¯®R9sùü$•s%øE*·êâ¬"•sÑy¢ï KÔjD*Ç‚¶H"‘ʱ®çM¤òOR€HåXxi%R9–é!…s&9×ø+:ü¼óR¹¹x¤rl>€$®òcaR9÷9túùþ©Ü¼óR9öcèþ©ú2™~—‹§‹TŽ­ "WD*ÇÆµ"•sJG§ŸIw‘ʱÁ¥½HåÜ £ßßò3Ù©ìÀl“ÊgûüˆTöV “Ê꯾RÙkï&•½ÜlRù¸=†TöâžIåSM‹T>;4©|ØdRÙSL&•ýþcRy/ÈBHåÍND“Ê{š´©¼YK7©¼»Ia‘Ê›uM“Êû!‡E*o“mÊû2I,RyîHåµÈäKº˜L¿µ|>D*¯É󩼨‚`Ry9‰Ry±SÙ¤òj&wE*/VÛL*¯™ ©¼˜77©<ÙîdRù)6©<ÙyjRù!!•ç´¿He33©ÒLo¦øåC¨Ö«fR„îO‘Ê ´nt亸¤rõÎ`Håz]&E*{/­Ieïq5©|˜ë4©|ÜÿA*{7¦Iå³hO •ǛʮÓ`RÙûêL*{ÏšIåCñ@“ʧ™Œ©ìíE&•½ßƤ²·˜˜Tö¾ “Ê^ß7©| )M*o •½ dRÙÓÙ&•7¤´IåÍx̤ò6Ù©¼§Éb‘Ê›b~&•·É+Håm² RywÈHåM²‚Ie'=™TÞ ²RyןŸi~.Ryÿ\¤ò.þ¹HåÍö“Ê›¥j“Ê‹ÅK“Ê‹e%“Ê‹éq“ÊËÅ~!•×2I-Ry-ÈHåÅ<”Iå5M ‹T^.† ©ì÷}“Ê‹¢&•LeRy™Ô„T^&% •×C‹T^. ©¼*×Ry™€T^Ť°HååâÙÊ‹ñ„IåI2’IåiÒRy²ŒeRyò¾eRyn®¤ò\ðÊ“ñ¬Iå9! •§‹MC*O“µÊÓŃ!•§ïWHåiRRÙI&•'/M*OÆ/&•Ÿb¸ÊÓ¤+¤òtqjHåIÿoRy²Qʤò,$@*χ¬©dR¹ñþjR¹™¤„Tn$Ù˜TnNJTv±_“Êm˜d©Ü(öjR¹™\„T~’3 •›ŸHåæöRÙ+L&•ÛCR‹Tno@*7Š ™Tn.f©ÜØÆlR¹1ßnR¹™ÄƒTn&í •½¦eR¹™”ƒTn&á •›ï'HåÆnA“Êíâø!•Ÿ$ Håú"“‹t7™<¤uþ •+û;L*W÷Ê•õc“Ê•Èc“ÊÕ÷¤ru²¤r]´'Êu™Ä©\ý¤r…L2©\)çfR¹2ŸeR¹’\eR¹ÚHå ®cRùIÖ€T®Œ÷M*W*¤™T®A*WꜙT® &&•k7é,R¹vžHåJ”±Iåêñ0¤reþݤr5Ù ©\›Ii‘ʵÒÿA*×j2[¤r%ÉϤ²×:M*W÷wʵØO¤r-ÜÊ•ù“ÊOÒ¤ò“´©\ÙdlR¹òþkR¹šÔ‡T®ß@*WHL“ÊÅãMHåÂz›IåÂúˆIåÂû‘Iå¾1“ÊÅÅì!•Ëþ$• ëw&• »L*'A*—íã©\œ4©ìâÈ&• IU&• ë§&•‹ûkHåægR¹øyT~’7 •Ÿä HåB’¢IåâçR¹x¼©\þÊž?1©\ü¯ÉÏÅ]Å*‡nF™ñÑ&Z¹£ •cù˜H¾¤‡üx¾!–3™CŸ?åçb®b–CWSÊøCÌIf³‹l¹\l§†[.Þ¸œIF•/én’¹Kó}Óè§8´àå,½ÐéÇü#ør.ËWt—Û €9´Ìåzxçj?Ñ,ºq2™ãBã'DóO1iíÉdŽŽžÒ¢2ç6ƒÉœÉŸÎ¿XæÜ¦0ÑøóÊø‰Μŧ zK‹ŽМÉ}¿8e2‡>/'æŠQ‹iÎdŽÞÒ"v41\.j €5ç6 ƒÌé78Í™Ôq¡·ôz¡Í™ÌqÐSº¿àæLæ0ÎŒŸ{áÍ™Ìa ¿ë8g2‡‘æKz¿ç,nm½¥ç rΤküt¾„9gR‡5~Õ?ÖéœÛ`¬ïʤo.$üÃìœIÖ[*7;æLæ°ÆOçOÀs&sXã×L@ã'KÌs&uT4~º¾¢žŸ¤°ç'©î9“:Dwù±>ùœI/ô9·vÆÊzØ®zÚ’zÚO÷£øçܶdâ9ýHÖƒ€Î¤}Þ–ŸQ?1Ð?ŸAç¶(CÑ]Z “0èŸâÜâ 3©c£ñX)ú§X·Pè"¬èÛ,t&u®ò3}&:·qɯÉÏ”˜xèŸbÞ¢3©CÇ×í7LHã7^Ltñü?Ptq’4Tt&uèx¦ýÔ^Š‹Îä£Ïøñ}DF»û€Œ>ƨEF㘌>¥EFCÁ˜Œ†d1ÍF“Ñ®Ík—ÉhF¡&£A*LFÃA˜Œ†V0ÍŠ¦Éh¶ú›Œf¾ÉèmÊXd´ƒ; £Ü͆m“Ñvpd´;2Èhw@F³Ìj2ÚÁÑfÍÆd´ƒ; £·™k‘Ñ˵ÈèÅóí‚åѼ}šŒ^tFÑ®_Mè¶ÉèÅ÷…Œ^|_ÈhñLF8j2šü_“Ñ,ª˜Œv±sÈèEEvÈèÅõ…ŒfÁÖdôäëCFO}‘ÑÓ__d4“±&£]2šÐ,“ÑÔP2M„–Éèi\d4ÛMF3Ëk2šEF“Ñì±4=âAF³¢d2Ú08чuyÈèÃ2$dô!ÿ2úSÕ+¨êŠuà nºaõ€Ò²Ò­"2ú£Ð+`ç°óÀ ºy`¿<±‚_žX,/¬šAiYéF} бÈèÃ&ÈèÃdôa 2ú°Ã2ú“¹²âXÈèS ÿ¬.£Ð²Òm&2úP2ú°µ 2úP2ڱюõ€Œö¶ÈèÃ*#dô¹h‚DFöŒCF@!ÈèC¶5dôPŒ>ì瀌>÷¤ÈèCYBÈèûmö2ڱюõ€Œv¬d´c= £ë}X5‡Œ>”GŒ>T¦ÈhÇz@F;Ö2Ú±Ñçâ~ííàÑç‚píXÈhÇz@F{+dôa&2ú‰õýÄzˆŒ>`/ÑO¬‡Èè'ÖCdôá2ú‰õýÄzˆŒ~b=DF?±"£ŸX‘чÜcÈè'ÖCdôë!2úðj ýÄzˆŒ>OŠÈè'ÖCdôë!2ú‰õýÄzˆŒ~b=DF?±ÑŽõ€Œv¬d´c= £ëíXÈhÇz@F;Ö2ڱюõ€Œv¬d´c= £s‘ÑŽõ€Œv¬d´c= £ëíXÈhÇz@F;Ö2šéo“ÑŽõ€Œv¬d4U¹LF;Ö2ڱюõ€Œv¬d´c= £ëíXÈhÇz@F;Ö2ڱюõ€Œv¬d´c= £ë}>ÉèóIFŸZV°Ï«‡}ƪ!±*H¬ô¹ +µ ÑÄz$}óh½£Âó¾o²?"£ËG gÕR~j8wdpµ“uÀ%DwvÝÉKˆî¬ºXKˆî$qHðGÜÀ…ŸnÊyÛ/!ºƒÞ%DwÐã¯m¹"» ã Pz +6 M çì/~j8ç…þ©álšÎ*üÔp./2º‘Ì]y]ÙU×pf‘ß5œùF®áÌ”*dtánt g6H¹†3ûU\ùéŽÚ¢+æZˆîÅ ¶AtIAß º¶Ñ%ãƒè2HÛ*&ìXà­bž¹Ú*&ìú­®á ¤³©áÌvSÙ0ûC gjáj8SŠòPÙõT×p®z]ÙŸ΋P×pviej8›2¦†3™Ý®áÌ•Γ&‘Îs« p g¨a«n“¸rÍÊÄ]¶šj“–¶v'Q:$³ð2Àí;†ZfÍƼh¾VѸƒÕ€#wcF çN` 5œ;!÷®ál²À5œûOÍæ®ÍÍ?O·Ë5ŽEF72kLF7æ#ŸÎ&å\Ù ާ†sý$£#[“Ñõ©‘,2ºš¼‚Œ®Ó5£©áÜÙïμÊ'Ý“´\Ý“´ép‰Ä-ääaO²R$Ð%·˜D¸DâŽÏ%PÕ`æüˆÄ-®! }“á"£/׌…Œ¾¦I_‘Ñ×€¬q çþCJSsy˜„N?×8 øÔP®®¹Ü^dtl08ÖÔ\ù#2º:+ö©á\]S™Î&-]Ù•k8;!Æ5œ²½¨fðž?$tÖHî&¹U3x?5¦U3x“Œ™[LTSY¤IQÍàEgš[ZTcY¤[QÍàõœ_Õp^&‰¨á¼ºÏj8/×¥†óâÝù©álòŽÎó©Y¬ÎOCj8O×,§†ó4™K çÙM«†ó$4Ö5œ]ëý©áÌk”k8c?ÕpN: †óX®­ÎÃäX®‘LMèéÉ"_UªR\Ùò4©I½\#Y׫.×H¦öväbšÉ—Éé­šÈ"I¨áܻϷj8÷f2W5œ;1²®áÜË~û‹ŒŽ ÃýEFW½#~?5œ›Ï5œ›“ ¨áÜè.\ù1ëÎͤ5œ›k¢SùñªîÎÍ54©á\Ï¿§}‰[]#¸‰Ä­¬<°ö§Æq‰[»?_$n}ŽO$n­>þíšÆÕ¤´k¿ÉèBD›Éèâó]LÊCF—Éù‡Œ.ì¼6]ºk"‹Œ.ç2º¸½Œ.Lt™ŒvÍ“ÑÅ5Ö!£¯ãšÌ"£]cÆd´#HLF_&_!£/×…ŒöΈ$£U£ø2 ÝU“¸˜œÞªI¬û©/× î­Äjúv âeRº«æ°jÄ‹ŒNàJÇ\ƒX$•ÈèºDæ^òsMY‘Ñ ŒYoéb:ýÜ_ŠŒ.ŽZ†ŒNàm Óï2 ]åÇJ7dtñ dtyÈu‘Ñe»¦ÈèÐåEF—m\dt’\ ~¬¹†ó6é6~j/45ƒÕ~Œ§f°úÓñÔ †Ü¦f0Ñ­IFŸ$¯ö‹ŒNKZ5œ—“-¨á¼œTB çÅ2ªk8/_¨á¼2Y5œ×àù§†óê?5šÓÏÉ Ôp^Í¿¯ÎË5±©á¼|ý¨á¼òZ5œ×å˪á<=^¡†ó<®¡¬Î²Ã5œ§¯'5œ§kÌNÕ žÓ$85ƒ]SvR3˜šC‰T]I6m“ÐEºZ§ŸkÆRÃy²Ç5œ§“@¨á<ÝSÃy“¼ªáE ç-·1½—d´tÈhiõ?[$ns2Œ’üB?¤tú-לV çg¼#2:‡&¡‹t7)=¤uÿ‰ŒÎaŠIèVH“ÑÍÏ/dtóù†Œn~ŸŒn&£[³ŸÈèÆN:“ÑÍÉMÑ%6“Ñ)“Ñ“Ñí!—EF·Ë5˜EF·Ëd¸®Gu{¨Ž7I•Ž^Òi»P ku¾HÜêñdtÝ&«EF+Pèû!£+×Çdtå}Ídtìô‡Œ®”Ÿ1]$dte'©Éè:\³Xdt5ù]]ƒ 2ÚÉ &£kƒÄŒ®ÍÇ#2º6H9ÈèJ’¢Éèêeѵ²s2ºº¦dt}jB‹Œ~ÈŽK$n-®ñ,·^&ËEâVZ’Œ–ÖNÈèÂd»Éèâ¿Ñ™]ÎOÍæðóüÉèâ‡ÑeC¦CF—ÅÎ{Èh'C˜Œ.ˤµÈèbò2º°“Ùdt¡’‘Éè2M"‹Œ~j”BF{>ÃdtaWÉèâÑÅädté®Á,2ºt“Ôº…ñX’ÑãE6‘¸OMÑ"·4ÿ½Èèb’2ºøþŒ.õ‡„.ÒÎ"£‹kôBF?5A!£ óA&£ ËÎ&£ uLF“pÑårMh‘Ñå!ŸEF× ‡Œ.¾ß £¯ãšÊ"£/VYLF_&m!£¯Ãý}™¼„Œ¾LÆAF?58!£/öGV!o¹³_Z$îÅ|E’ÑS;ù/ô‘™ }-û‰Œ¾LÊAF_ ò2ú¢¤—Éè‹R“Ñ—I^Èhï´7}¹æ.dôSó2Ú;éMF_Ã5’EF?5-!£/JP™Œ¾\£2ú©Y }™ôŒ¾(éd2úb{—Éè«’Ñ—É:Èhïd7}5“Þ"q=ÿ^Õ±çÎô>ÒÔx}1þ7}™ìŒ~jDBF_NZ€ŒÖ4í÷CF_ì1}9Ù2ú*&ŸEF_Ôˆ1}QÙÅdôÅ>“ÑÞ n2úr’dôÅ|‰ÉèërMh‘ÑÞÙm2úºüy"£Ÿš‹Ñ—k¼CF_&÷ £½32úøñìÙn;ç%¹hm½~aч ¨èÃÊP´Ë ÂD#óB¢DDûµ úíÑàÐg›v΋yÜå†öŒ/,ô1 +Úå!¡½ú˜Ô´àY?š[Êù¢ ¡@AЮ!í‰ ho6†€öîbèãʺâŸÏ4.ßôLÚlÑÏ®ôü|ö;§RP ÏÞ ù|t¢å˜c®PÜóq]aÏÇ)¢žôìŠ{0Ïžxy>ÄtÃJ€£€çãVI¼³wÛ‚;{{-´³÷Ó;{-¬³wÌ‚:{‹,¤³kÛ:»˜œóq Ž0çÕò~ =Ýåšóã¸ú®çÓHçà!QÂù°N à|:Ç,¾ùt㼉7kãè·éæC8póõm>.Ê+´ù&»E.ŸbybEæ…U7¦Ü xA-»bв÷òU¥ú{óȲwëA,»ÌÀ²ëjÁ+»¸²·ØA+Ÿ‹¶]°ò![Vù¸h¼.Ç1‰.RÙᕽó NÙ[ÝÀ”½™ JÙ»×€”½] Fù<ʼnVÅ«n YVðÌ+ðé…•ž#ÑÉÞ'œ|œ-#6Ù[¿M®O §$“ë³¹ 0ÙU™à’ÏSð8y\oЂJöŽ, d﹂Iö&+äͼ.D²Ë’½Q y3IŽì½OÐÈÞìŒìÝM°ÈÞ¿мŸÂÊ+ÀçÕ0w,+q½­ Ùûˆ€÷Ã/¬„¬ Aö^ $ÛSÄ'äöTí?v]ðcâ>v©àã}gÄ»˜è±Ëå@»>à±+àÀ»ä ر‹Ú@»Š бëÔ°$ïJ4 Ç.=qìZ3Çûᥓ7v½pcˆ6vE`c×|5v‘Pc×m4v¡–ûSŠ¥iÁÅV3îOu(c×O2v…cWH1v cW90vYøb./vièb×".vµØb×-vÅÈb—,v¸b—ù+v]¨b—ê*Ö¦¢o3Å{s )Þ CDñf xoóÇ+ÝުΰM·×c«‚¼¯ìÞfóUa3a Jì¤BHâ½]Ñ8×ù¶‰BqÄ›±7ñÞ¦t«­Õ6¬„Š!ÞLïíâÈ«òˆ½{ ~x]>¼]‚\ôðæ•xxo² Äï F$tx›ô9¼ Þ†"Å ïmÌxÛÊT0V ‰•b¬®æ¾âm¾RÄðvtÃ{¹ qnuÛËülâÂÛi¢…÷¢6¥`ámTS¬ðvÉu¡Âo‰•ÀÝn«‚Äê… ïe y`¥vCðœXm#òzj%cõ„ß+}…m«~Ëc«ŠÄê„_R€ðf9@x³š ü–]r#·¤àâŠÕ#±?Ûle‰•ña¬^€ð[b%2wØÊ«ŠÜo9me^x¾å²Õ…ìŸRVó¿¥¬Ô +Ìð-û§ÄJ ¬Oû#oϽÌÀælÈ[vÉÜo™€ð[beøú”X5ä~Ën+K¬„ñ[YöO‰•¨Þi+Ëù–ËV²Êý–ÛV–²¢rôÁê‘ýSÊ BöÂê‘÷…þ‘9¼Ë!¹ç-sÇÇ[®·l¶šÈñ)Ï[v[Y®·¶Èñ)Ï[N[Yb%ªwÙÊr|Êó–ÛV–VÇV 9>åyÉ}ÙÊr½e®å¼å|Â?2á·\oÙle9>å‡U·Õ þ‘ÃV–ãSž·œŸVóÓj}Z­O«e+ÁíS®·<¶²Ÿòm%ç-ßV‚ËÞr|Ê“Ø6á·\oÙ°zäø”VýÓªZO«ñi5>­æ§Õü´ZŸVËVyÞrÛÊr½å±ÕÊ—UŸr½ey[¿åyËZßr½eÂo9>å‡Uÿ´êŸVãÓj|ZO«ùi5?­–­r|Êó–ÛV–ë-ϧÕù´:Våú°*ׇU)V”N~Éó–*ü’ë-U:ù%ǧü°êŸVýÓj|ZO«ñi5?­æ§Õú´ZŸVëÓjZíO«óiu>­Î‡U½>¬êõaUˇUý<í”N~¤J'¿äzK•N~Éñ)?¬ú§Uÿ´ŸVãÓj|ZÍO«ùiµ>­Ö§Õú´ÚŸVûÓê|ZO«óaÕ®«v}XµòaÕʇ¥“©ÒÉ/¹ÞR¥“_r|Ê«þiÕ?­Æ§Õø´ŸVóÓj~Z­O«õiµ>­ö§Õþ´:ŸVçÓê|XõëÃJÛº~dù°êåÊÒÉTéä—\o©ÒÉ/9>å‡Uÿ´êŸVãÓj|ZO«ùi5?­Ö§Õú´ZŸVûÓjZO«óiu>¬Æõa5®«Q>¬Fù°Ÿ§ÒÉ/¹ÞR¥“_r|Êó–ýÓªZO«ñi5>­æ§Õü´ZŸVëÓj}ZíO«ýiu>­Î§Õù°ªù–o«Y>¬fù°šåÓJ€ðK®· ü’ãSž·ìŸVýÓj|ZO«ñi5?­æ§Õú´ZŸVëÓjZíO«óiu>­Î‡Õº>¬ÖõaµÊ‡Õ*V«|Z}žváG ~Éù#Þw§£Ùøçݵ' œSÉÿå·¿üÊu—Ü®üÏü×_}]_óß*³L‚‘Ë,ÿÈý–*³ü’¶JŠw>VÈþPËO™å@I™å—Ä*§<)³¼(æG™åÕ?`âÕ?Ê,/ö÷/ ů®IM`âåúÆ‚‰!LÀÄ‹­ÜÀÄ‹sÀÄ«=lqG–¯&^MSÀÄ‹]FÀÄ‹u`âãL¼p&^¬·Sfy`QfyÁëPfy±O™åEÊ,¯.¼l•37{Ùj€ c5`‹±—¬2Ë‹x'Ê,/ hPfyïD™åE¼e–WÓ?e–Wƒ-.¶ÊIzÊ,/–ý)³¼à{(³¼\ ¹ÚJE˜›­Ä«Ì²«ˆSfyJ™åEbe–WÕ¬-e–M”Y^/˜X2g)³¼a¢Ìòb:e–W}Øb¬T„yÛªCc¥S§2Ë«jõƒ2Ë«r®r3¤àÁÄ© ºKkó¸`bÚ¤oÃÄ©_0qÖYL[åW\¶¸Ê0"`âÌDÐï7ûMÃÅø fLZ›Û‡~Ê.ã÷ÀÃøûûñ}§ý.ÃÅøis»Ê,Gƒ}˜XXyÉï2œ¼åÉM™å,4ßÐ÷z®Ò}¡§4°mÂÄ]1ˆß†‰C×LZ0·`â̧èð›,¡‡¦,sÂÄ¡qs—~Æ]èó“b%þâÛ0qöv/˜8Ó#*?Á‚‰3MãgçÙÑø &R™åèku—Þ†·´`(QÞ¡§õ”ÖùU™åÐÝ¿f}‡Öý!˜¸»L0qèËðð52ã¼`âÐÀ¶—üX&=_0q<ÛVûéz &î.CLœãÁ·Í~º¾‚‰c˜s^0qhާËoúxºü KŠ"­ûOe–s¥Ï›öfžö+†‹ñ» §ŸË܉Š­ë¥2Ë¡)S½å7|>rM>´à&ÁÄ¡_ &Î!aþ½`âД)N˜8Fú|ÁÄ9¢<[ä×¹‚‰C ¶LœRÃÃøéyLx·ÉÏð‘`âÐÛðð%-˜E0q‡ oiÁ~‚‰Cïû½Ë,Ç`ûîÒ‚kTf9ãò[òsY@•YÝ ã§ûMe–Cóy 3ôÿ6LÜO0qh}?ÁÄùæÐÐ]ºùçøQ¶¸Øï)»œ~†{ç{ÊBwéiØxKëþLœ¯9/˜84po·ßSV9üñJÀÄ¡ù> çKÕ &ݘXº>0±´Ú3Õ»ŠW6Ý*³œ¯p=¥u?¨Ì2o|ß.³ÜŸ2õ‚‰CëùLÜKÒÀÄ¡xø’–¿`âЂë‡¾-ö£Œq‘ßt™æ*¿ÉùLZϯ`â|ù5<\¥)ãÜäÇæ`âþS¦¸ËÏႉC ÖLZχ`â>ØüLÜ]Ö2Ëù"_Ñ[8zÉÏÏ»Ê,w—}£Ì2Óß.³z½`â 5Òçå«Ðê‡Öý.*54ðlîÖ‹9 _ÁÄý§ìr‘»C‰CëyLÜuY¾ Ç É6l¼¥ÕŸ &ÎÔ%ë)Ý^0q/¸8ý&Îéé!¿Ëeš‡ü<^LºX‡ŸËÒQf94~ wçÜ‘õ”lª2Ë¡/ëôÛ.K;¾z7¬.˜¸÷íó—š2Ãy`¡¯Ló^j‡V%˜84eš‹üϧ`âÌ­ºÐé7_ &î}ºLs“Ÿû[ÁÄ¡ß0qNéUô¦,t—e%€‰{§Œ0qh¾ß”ŸÃ9‡ž†‹´Æ#*³Ü»Ã2Tf¹?°­Ê,‡^†‹‡ôxÁÄ¡)SCs< ÇT)ppÂÄ¡ç &ffõÛ0qhàØ"?‡K&­öI0qèn¸xH«?L³¾zŸLÜàÞ&?—Lº.Ò‚÷Ç3ß'a✂Þè%MYㄉsÆÚpñPv™ú •YMÙé%?6ÍQf9´ÚWm Ëéò‚Òz´A²»,0qN¾ôª–¦ñ¤`✫¿ÐCú‹´îÁÄÌü&½^0qh=‚‰C×LË ‚á粃áâ%Íßwùy|&˜81üó#Íßù9\B0qhŽʯúø§ü(ã LÜàå%?²…)³œë1:[~̼åW S'õ—«;:ž|qŠÅŸc¸xIOÃÃEZ‡(©Ð”=ÎS¯.Ó*˜8´Ê´ & ¬›0q7ü LëX¢M÷Êû0qh‚‰C ÎLÜ+»À€‰C NLxwÈü¦Ë"Où¹ Ÿ`âÐï2˱À§½÷*³šï»ä7(#©2˽º,˜Ê,çjâFß.4°qž¨Ð‚bçÚ¤`ÚÜæþD‡° ˜8W:÷ù™#Lš²ÁU~Õeœ«ü ¿ &ŽeVàß&?æC€‰s‘VÇÓåw¹lr—Ÿ‰ÁĹä«ãòcþ˜8Vˆ—áá" lœÔgèú‚‰cùY0¶`âЂ{Tf™Õêo—Yîeûó¶ü\ÖQ0qh>/Î\?èÚœ™`âÐú~‚‰s¡½¢´àtÁÄý©‡¦Lr•ŸÉ-Áı迭´®Ÿ`âÐÕpqú1~&= éö‚‰sC‚¾ÏŸË. &­ûS0qhàä)?úC`âÐÓðp“nL,}=0qè˰𖟱ÁÄÝaMÀÄÝáxÀĹ¯ãw—=&Ž]!OÙå#­çU0qn"±N?—ýLzZéö‚‰C7ù¹l´`âî²`ÀÄ¡Ë &Ží1z>çîÁ¼C~.++˜8öÞGOù1ž&έ::ýš¿Ï’ŸÛÁÄ¡Åå¨Ìrÿƒ·ü\æO0qà_ÁÄý}Ç&$`Û„‰C Lœ[˜^0qìpÒý-˜8´ÚÁÄýº ûæÄ1û¥¾ g¼è…>ÒzÇf¬§ìò’Vÿ¦fîÝzÁÄ¡)kÜåçë/˜8´Î—`âæ"7ÀĹì‡Öý,˜¸=¼¨`â @]è%Ýiµç*³Ü\±ž8´Ú+šˋ(ÎDU1µIMåþºSÜ\‹¨8vçíUÜxPXqs©¸âöp{‹ÛCÛ‰,nN´-n€‡-nb&¸¸9º¸9Ù¼8w- Ý͉»f²À8ö<3ÄEZ÷‡ãfÆ8wPê÷—ü–Éoù÷·ü¯Rf¹m·ÿ3…Vç#IãÜìÙÑKÈ7YãÐú}ÁƱ“T¿/Ú¸m?ßÂCëxÄç¾Tý~•_s™æ*¿æß¯ò«.‹Üä粺‚ŽCë|Š:Î-´¦‡´Âć~ƒÇm3ž„<­ë+ô8ô»ÌrsXðqn–_NT‡®/ü8“zõùɾ„摇´Úȱ1™2ÔI³å¾åƒœÛšóø!Ç®çm(yJ«ý†J¹ÈÏH·žBS6¹Êo˜®òóøO,rhµ§‚‘›–¡‘›×RÁ‘ŸðaxäæåD€äÜK^Ð]Zí•4ôõb’3½x¡§4€ó’ßõC)wiñßâ’Ùÿm09«juô}ã¶y~XäKš2ÒÉ&·éþYpróz trnà¿Ðéçë)>94e‘‹üX¿€Px`›I®Òº>b”CÃ,7ùH ¥œ¤‚¾¥u¾Å)çŠÜåGKHåÐ× UjBýXåÐ ÅS~•÷5,‰d¼på$6^¼rç,‡Öó T¬)‰ÿÛe–›Ã`a–C«ÿ´ZýxÖ`O ‰s!0Ñ”ŠžÒÂô.زŒ*wéf’yK:Wù-ÈU~³½ÌÍyáË¡u?‰_NDG q—¥Ò ˜CS&zÈÏãk1ÌéþÄúM1?9Ú`ÌS/ù9lE s¢J›Ó¯ò| eÝ–9’¸‹Ë8u³ ͺšnÞJî¦,ò¥Øo拚C#Ì—¢½k iN¢k ýý‚šƒƒL® ÿ6%)¬9´˜;qÍA—‰ØZì£Èæ@ÕŽIç)Mã!¿ à(¸9Á7³Ï[ú]f9tyñÍAÕ-Í„“ áœaå~ͨõ–”Yn½º,s.¬$h®¹K ×çœøà t-E¤sëÌ·€:›¸_¬shÊ(ù& í¤#ewÝL4_Ò‚<'FÙÑ[Z…É„<„ ·ÜågÜGÐsóüÔsž"…=·Æú-ÜsèòŸƒ]f›/éfºK áûœ0ª>˯Ïz ¬Ç€ó%ý”]îÒ”™Nº9ü:48ñ%?ö›À@u+ŠPth á"?J!Aƒô~›ƒ-ôW tÁBEEBg8ýBoéjø9ü*û €¡C?øó%-W8t«† ÅC‡æx§ü\ÖZDtþKŸ¿ä7}¼K~ÃÇ»ä7|¼[~ÃÇ›|nÓ²þ·Ë,‡æx“Ð ÍñæÄ`|m¯Ðè Û±ÑyÚDøùÑ^BG‡~—YŽË¢ãš2ÈU~åƒnÚ&ñmD:t1Ò¡’nž‚’ÍñfÇŸ·á‹“ÎÛt¢·t3~F‡…J‡æx—ü–wÉoúx—ü¦wËoúxsá)‹ èó³#Íñ&º›µ ê½²ί˜éÐíM·â²Ž¢¦C6ݶ7ÍÒ6)]¥…L‰œMã&?jÅÁNg3x¡·´pÑÓÙŒ.ô”y/~:šaHíœè=^us¸7u4ó@Óù`„¦ló’Ÿ9xQÔÑmIFÝŠ>ËÏEnUi9»%}~Nt‡nJ½³X yB½¡§éé*­2ñ¢©£Ûó-œ:4Å‹‹üHM¨ŽnÞºÊ] ÕÙ˯ɯšfnò#ÿª:† TeîòsoqÕ¡©ø<äÇû=duhªIùÞ[óÖSZy¢«C—^Ã&¸î܈PÊ5où9"@%˜«ȨÁZ÷»Š0×§ ±ª0‡Öý£2Ì ¿Yç0ñÅYg1Œ Ý¥5>iÃPO„Z×§Ô«XëúÔ\lÃZOD[×§ì¨pë&SE¹Ë¯~×Õ…*!®««>‚\W×L„¹®-º®®¹u]]fì:´žq×Õ5¾¯«ëIA^çkÆ@ß_,‹}èóòÂÖ'gCÕ™ã5F÷›Ê3‡¦^qv´Õó1ð×u €ô¹ÈõBì|íÞ\åÇz6vh]?QØYld£‡´ž'qØ¡õ< ÄŽ×D×Db‡ÖøY(6¯™ßf±ó5Ô¨ö‘¦lò”ïàØ¡Õ^ˆÇ]_@v¼&k<*";ôÉM‘êÜ”¯ÝÆ®Kù)ŽBÙæÐåÁ²KKÑõVáæÐ”.¾äç´‘Ù1M°ÌbéæŸéëgç4ÄB/éö³cCãsñÙOqíк?DhÇ4É1±½¤ÕÿŠÑÎi•ŠN?¶ÁCi‡†øžòk.¨<åÇ~@íÐï%?÷{ÉÒ©°Ú9ÔÐ÷‰Êi&ý<±á˜†Òû˜êÅUï×¥ shõ—*ÄX½Ÿ–’ÎYl&ï!ÛL‹}›Ù®ÞÏ ´Zý«¨í˜vS%l;´Î·¸íêý£€Û9×ÐGZí©Ðíêý°ÛUÍзáíÐz½Zí“ðí˜v¤°ô”_çúàÎiKÏ’óß Üu¾J@iõŸ‚¸cšTi&*óšÑù TïW¤ÐsNÃ> ·´ªí©Ôsh•÷U­ç˜ÖUD{­Å‚¹C¿Ë=ç´±üç­}â¹C«¥€îêùˆîêý} Ý¡©ÝåG^ Pwõ~=¨îêýy`Ý1mNiç!?Âw»C«ä¥Èî:(?ÚÓö=¤)`½äÇøº;4¿ŸhÕÐTªq,#ðûIç2CCiý¾j@Wïw£tè§ìsú=%•‹üŠ¿È¯ø÷«ü\ W wh~¿Éïòï7ù¹¨Ú±L£ãìË8 ½¤ùý옪÷›Á{‡Öùð]=?ñ];!2 ß¹ì”×KÌwWªèôóõÕ‹KÓùmì;´î¥˜Wï£2t.“mô¦€uÔcYí]:´îgU‡®þ”òйl7ÐCZÏ‹øïЪÖ*¼ …ý6ZÏ£ð\F¬èô#ܼv !B‡.~.B,<—5/ô¦Fs’à±,ªêªBÁCS¤:YðÐ*k+<–YU–[4xu±pðÐ*’+¼z>‡ŠÑ¡©˜hrèºÑCŪTVVE£C«ªªF‡Öý§²Ñ¡©ý\ä7\¹Èâ€á¡©$]åçë-4¼º¸lx.‹_è¡âX”qnòkxxÏè¥âYOè"­²ª"ÄCëüj£X,óëüŠ­Š®‚Äkã}J<· ôæ|-ù¹þ±@ñ,ÖUÐke±.JK'³œÛzH«½W5éØö ûWå¤kÝ®ë|É^„‚Ò±­B…ÚUÕ,ô°>ÒTQ®ò›T ÖƒZ÷‹ ñÐTlnòcÿ4Øxhµ?âÆsÛˆõ¢¸˜Žwȯóü ¯•ùuØñܦ¢ï3åw=šï³äÇþføñÜSÑGZå|5qš‚ÔÉ2‡ÖõQ‘é܆c=¤Õ©ÌthÝŸª3]],‚BÓÕÅ"¨4ÅЬï<¥˜óE:´Î·XòÜfd½¤© ó±-iYén}¤9¾.¿åãëò[>¾!?æ›`Ês•õ‘VýcQåÕû™ÀÊCSÒzÉý–€å¡U^Xdyè"½å×]^:!çÜ&–÷ƒªO‡®Öãd±7Ê`'çšÚÎ9Îmi ½¤õÌTù¥áTùÙÊUnrª|²Q ª|.µ“På“miPå“§ª|2©Uî5o¨òÙ?¨òÉŽU¨ò ÜU> l‹*÷ëT¹&½ª|V f Êgù Ê'uÅ Ê'gª|²p¶ŸÊàâä© Î6¨òÁ®w¨òÁ¤=T¹™'¨òÁ”/TùXœ+QåƒêWPåcê‚B•òÿ¡Êo³Påc€‚‹*÷»TùèT¹É¨òa@]T¹‹´A•Û*”D‚*E‹æPå£hª|\j¡Ê5ýPå,Tyg~ª\»Ðª¼³ª¼ Uîw¨òN;¨òÎN ¨ò>õ"UÞ‡nB¨òβ>TywIS¨òÞMy‹*ïœZSåÝÔäÿÛÚ½ôÈ’]ן÷§¸Ã&`YçýxB@2à™ž %Ë(>@?¾ëìµþ'¢©KkBiãvžÊÊÊŒŒˆ³{Y•7ïâ£Ê›»0PåÍg•¨òV¬Œ¬Ê›»hPåÈ@«r®På\«rü}\U^7j[ªü‰Ð–*¯¨>«rvyQåu¢â¥Êë´j³*¯u.U^ ^ª¼ú(Ž*¯ý‰¬>*ºö'’ú¨èJĦUy%rЪœ³|TyE©Z•WªUyE©Y•Ww¢Ê+‘œVåÕ]Ǩòš‰t–*¯7Zª¼z=ª¼\µ.U^xý­Ê ¯¿Uùl³*/¾k†*/¨«ò‚¶*/óQÝ…€*/ŽäB•£PååF~K•sÖ*/ ¥.U^ˆ ·*ç,U^ˆ€´*gWU^ ŠZª¼x¨ª¼ÜÈk©ò⻚¨ò”«ò‚ªµ*/L°*Ïû«*ÏDÄZ•³ ‹*Ϩ%«ò¼x~Råyòü¤Ê3Ÿ«ò|#¦¥ÊóðëgUž‰x¶*ÏþÂD•gþVåÙ+¨rv]Qåtí£Ê³g± Ê3ªÍªÔíñ³™ãÈéP啬 «òJR…Uytµ£È‹»Ú·ëñêj·*Í(”ysW{r½Ôµ®ï©òS¿#ªO_ªülŽéx!U^—¯¬ÊO-u+U]ìÛõP­÷ƒTylÞ½Tyt±W×ëÕÅnU^ÅRå§Öï'U^—¯ê­ÊÏf£Õ{ÓzùQäEµT«Tylfêù­çË6«òS'þ}©KÝ‘Üqà:µ#¸ãªìÔVø¡ÊÏæëx©òØœåß·ºÒu|’*?õh®§jý½¥ÊÏæðF‘wÕŽ„NZï/©ro6 Êc3Z*¼h½þ(ó®®ôÅ¿oÕ:þJ•Ÿ:£Ì§ºÒ­¾›Ö#"Yª<6×Qç[]鎄îZÏ»nVå•]T«ò³™¯÷ŸTyeÕª¼Þ)KRåÑ,Ð]OÕz¿J•ŸZÇO©òÓ| ©QRå§¶RÛ118þ¥Ê£¹á¥ÊO­ï©òSëï/QïÔ©òS[g­ÇT ©òÓŒ¡ã¹Ty½SsôA8µÿûªõ|—ÞªüÔ5žÝÅ^]wu©”ù~u±[•G{u=ÝÅ®ÿ~h½Ê?´ÞÀZ)1Rå§öï;µ^áõYZ/óú,­ÇT©òh¾‘B/¶Óœs#«§»ÚQäYµ#Ÿ£]º²«jUÍ@/Uîf¡TytµKiÇñÔŽt.ZϺVå§9IÇ©òh^®§j½ÿõÅušŸÝ´Ç_©òSgyu—{w=_]îVå§Öñ]ª¼êkèU~j}ޥʣ¹«¹žêbߨñ¬ZÇ©òÚ™² U~šË¬Øcû2šÍšë©Ú*:Ú‡N­4?©òÊÔ«òSK­H•Gó[w=Õå>_ªüÔR Rå•) Vå§ÙNñyRåÎ5ù@•ŸZ*@ªü4ó­—*?µœTy4ÿéçu­7‰„îZo‰=´ÞD±­7ˆ¸Zo8ÁNªüÔÊ“*¯ìºZ•ŸæÆ‰2節ÖC•G—¼êPå§yr¡Ì§j©&©òSç—*w3æªüÔŠy”*?uy©òÊý«òhþl®»j«ï¢õˆì–*?ͤú}¤Ê£ÙTuÓzDvK•ß.z«òÊ.¬Uy4·ROuÉoÔxV­¿Tù© õV×¼Ô¬Ty4ÛROÕRÔRå§väöÒz޹±*æÞ—*.{êÙÕe/µªüÔº«.Ô±1£Rå•]Y«òèºW]´žïY•ŸææI½U[yW­G$·TytáK]7­G„»Tù©+õVíí®õÈ«”*¯Üϱ*®ü溫ë~QoÕRaRå•]Z«òZÉK”*æò麻K¹þüOí×#8E4«'×SuGçñtí[•ŸføwDu4ÇKEg­ÇÔ©òS[U­GJ®Ty½S+¤ÊO-µ%U~ºö­Ø«ÖCJ•GWuÝU;Bºi½ŽâîZÏSQ¬ÊO­÷£Tùéâß(ò®ú*ó­Ú?oj½Wdõ|uý[•†X®»jÿ~Á³O—¿Þ_Rå•ûMVå¡b}©òSëõ”*?]ÿó¥ÊCHIg­ç)cUžˆ‹¶*Oî"@•'TµUyòõ)ª<Ô¹TyâødUžPÖVå‰$d«ò”Is–*O¼¿¬Ê“·:QåÉ]À¨òäý#TyBÕ[•'«TyJ¨ðøÅBY$×Kµ¾O¥ÊOmŪ<0ªžO¨òPËuSíHé®õ˜Ò$U~†Uy¹©ðRåe;G˪üÔ…_ªõ~‘*? CÇ©òPú÷¸1Jc¸nªÿ¾r¨ «îPå¡6²ë¡º Æ“êôRå¡8^ªüÔý¥Ê¿TyÑF몼Ü@r©ò²ÝUnU~jýþR埫ëXÏ£½­ÊËÊ¡o…û•Vå§ÖßOüá(Ÿ¤ÊË“‰=µÞ ¶žZã›Ty¨ý¾Këñþ“*/7ÎYªüÔé¥Ê“£Î—j+çØø9µ®w¤Ê ©¾VåçÇ,”yS­ÏŸTy!ÚÕª¼njUªä¥ÊC• ×MµU{ÕzœŸK•—;õCªüÔNÑîZÏ*Öª<^öê:Öã|]œèÔe>Tëý$U~j½¤ÊãÏŽ:õ¸ž“*?µ®Ï¤ÊOíxíØ( ¥²]· e¡Î—ê"/ª+Ê|¨Î¨ñXÏçkVåñ¶_®—ê&¥]´žïÇúÀªEÿ}Õzž2f®V„E>På¡\ôß7­‡”*/ U-UêeÞTKAH•—å©RVåq˜X®‡j«ö¸‡•—*³]Ÿõæ"8|i½«èƒc—‰2”*Ãʼ©öï”8 J‰‡*?uG™ÕVàYëMB±³ÖÄQg­‡ª‘*?µÕyÑz(7©òP6ÛuSíêªõ<¥ÊªüÔõ¥ÊãkEë¡¥Êãk¦¹^ªõúJ•ŸÚ }h½J÷ÔzõQæ­½”ŽTy™žªaU_‹Óõç6ÔŽ~ÿ¸‘[HC°*/$X•‡âA‘—JGo©òP=RÔYëe?©ò23ê:k=”Tù9-X/U^˜²bU~j[W­çûVå…>2«òS[‰G#À©õ÷’*ôRåe ,¥ÊÏiÏz©òPBÓõPíî©õH­–*?µT—Tù9Í’ª‘*?µãã«pÿÛªüÔeÞÆKI•ŸZªLª_µ*?õ@¯ñRMRå…©2Vå…ûñVå…)ìVå§/UêIÊ9Tù©­Ä“ÖËDsg­çë%«ò¸LA™/Õz½¤Ê㲆ú¬×7Š:>ØqÔ]7Õz©®/U~j+ï¦õÞ]ëy?Ǫ<.˨—j+ô¡õD—*?—yû¥Ê¯²²*?µ•üÔzLM‘*/ÝS­Ê M‡V奿”yS-u(U~j}¿¨™/Tu¬Çû_ª<”uSݨ—j+ï¢õÜodU~.£½^ÕzõªÖs׿Uù©õ~“*ÕEëùüĪ<”uSݨ—j??©ò^y~Rå½ðü¤ÊQ`¨ò^u¾T{=©ò^xý¤Ê{FåK•w÷ÿ¡Ê»ª¼sþbUÞ9þ[•ß©>Vå=YqZ•÷ä÷‹U9SÏQåìw Ê™zŽ*oÛÊߪ¼yj&ª¼ñ}`UÞø|X•7>Vå …oUNß'ª¼-ÔºTy[žJdU.¬ñqUy›"oª;ê|©–zµ*oµ.UÎtT9½¤¨ò6H—*oÅ-UÞP©VåmøýhU~§Y•7ßC•·Žš–*oÝŸg«òÖý÷±*oÍçÏVå­¡Æ¥Ê[# [ª¼¹_UÞ<åUÞ8?²*oµ.Uުϭʛïw Ê›ï§¡ÊSY¬ÊSu¬ÊÛUëRå õlUÞÜ"*§_UÎuTyË(g©òæ)f¨òæ¦zTùªdUÎTuTy³ÒA•·„—*oîç@•7ߟC•·„b—*¯V¨òêþ*TyÝ(q©òÊ÷UyÝþ¾·*¯ Å.U^—¿­ÊëòÔ)«òºPâRåuñ|'ëùùJ•W+TyåûǪ¼Þs©ò:y¾RåÕSôPåuøüÒª¼”´Ty>°*¯\_X•W¾¬Ê«§ ¢Êk÷ûÁª¼v¿¬ÊëUáRåwª”Uy½J¼±žÎ?­Ê«Õª¼2Ǫ¼¶/©à§¶‚—*¯Vj¨òZQñRå•©+Våì¡Ê+SX¬ÊéwF•W«%TyåúÚª¼¸Tyu¿ª¼«B«ò«­ÊkA}K•W¡ÊkFuK•W_¿ ÊkFyK•3EU^3*[ª¼ºÿ UÎÔ,TyM_ÂÂCQf×[µT Uyq<ªœý:TyÙzÿ¡Ê‹§È Ê‹ïo¢Ê˶¶*/î‡D•ßïD•QåÅý¨òâëyTyAåY•÷ã¡Ê™â…*/¾¾G•§& ÊË´Jµ*§U^<U^PZVåe°¾TyV¸VåÅýa¨ò2X_ª¼tÖ—*g?U^:ëK•—ÎúRå¥óü'ëy}©òÒx}¤ÊKãõ‘*/ÍJͪ¼4^©ò⩸¨ò‚*¶*/¾¾B•”±UyñçU^|~‰*/E]Xï*òX¯ ª¥Ê‹ûÙPåìg¢ÊKy”ùì/¥jU®mû«Ê S ¬ÊKF¡K•¦X•³ÿ‰*/Þ_@•3µUN>ª¼ø~ª¼8…U^ʼ«ÖûêœýxTyrªœ)„W•ûþÿUå/P僟gU>¾¤˜—ÄTùàçMÖK(óXå*ïü¼…÷ÏÛ(pÿ~û*ðx½QåÝ?U~UxBoyù¢Ä­Ê›?o¨ò«Æ¯*¯(óõ3Eîõtüýª<¾2§«¢|;½õåÏ«rÙï«ÊAæKe{«r²E•{1ª‚nU^ôþG•#Ò'@=™Ôã?^õ86UîS{²ÊÝiIV¹oL‘Uît(²Ê½-AVyÒ_ Uî5ªÜ=.¨ò­? ªÜS¨ò­T¹¿¿QåË1àVåÎð@•ûäUî^T¹ ¢Ê§ŽT¨rǠʽï`UN¾U9Y¶VåŒ6³*îA°*ý‹*ÞA³*]'€VåÃ)“VåÃíTVådÊZ•f)-UÎÞ‚Uùpë‹U9ûVåÃ'ºVåÃ÷¬Ê‡‡MZ•¢OµUùp‚Uù ÷[ª|¸EϪœ«òá1†VåÃýÞVå#ëö£U9òߪ|¸¹Óª|ø^ŽUùHú([•w_9Z•ÓøoUÞý=bUÞcUÞQVå}¡Æ¥Ê;jΪ¼“õlUÞÝu…*ïÓÊÓªœÙ÷¨òNÖ£Uy'+Ϫ¼{vª¼²Í¥Êo6ªUywW ª¼£D¬ÊoªUy÷ìgT9³ÚPåŒ/@•w²­Ê»wuQå½YUX•÷öU•w²­Ê;ÙyVåÝ]£¨òî®sTyGñY•wÏzA•wT˜U9³ÞPåÅoUÞÉ’·*ïÞåB•wÏB•w²ô¬Ê;ÙíVålv«òòžÈ—*ïž…*o7+]ª¼]•.UÎ]{TùÍ*µ*o‹ßGª¼9 UÞÈv´*ç.=ª¼¡­Ê›ï"¢Êµ™õqUy›2oªõûX•ßlR«òæ®ATyVôVåm8kÖª¼¡^¬Ê[yQíls©òÖÉ2—*oL)°*oî"D•7²­ÊÛUóRå­‘=.UÞÜÕ…*odm[•·Êï#UÞ*¿TycÊUy+ü>Rå­ðûH•·Âï#UÞPÞVå-“Å-UÎ,;Tyó¬XTysª¼1%Áª¼%²Ã¥ÊY×Vå-‘M.Uά;TyÝþ}¬Ê+ŠÎª¼nºTy]¨u©òºø}¤Ê+ÙºVåÌÂC•×Åï#UŽÂ@•“u€*¯5/U^QÌVåzØÇUåÜåF•×A–ºTyEiY•WwQ£Ê+YºVåÕgÁ¨òJö¼U9w±Qå¨ TyEqY•Ww}¡ÊïÔ «òZÉ—*¯ÕÇk«òZ}¼¶*¯Î#«¼2ÅY娲ʫg¿“U^½‹JVyõU,YåÕ'¦d•׫à•UÎ]g²Êkö÷©³Ê«g“UÎ]f²Êk² uVyM¨ge•sW™¬òr¶²Ê‹ÏÈ*/>= «¼p~à¬ò²<µÂYåe‘Õ­¬ò²PÝÊ*g–Yåwjˆ³Ê SœU®æš›UÎl?²Ê˰vVy(xe•Ž·Î*/oU^8Þ:«¼p¼uVy¹YéÊ*/oU^8Þ:«¼8ËŒ¬òÒÈŠWV9Ùd•wU^ÜEKVy! ÝYåÅY d•—úE•ÇÍÙì:Ö+dw+«¼ þU^ŠÏ¿œU^Šß/Î*/Ùïg•“JVyq×"YåÅ»þd•wÕ’U^˜à¬ò’ü~qVyaJ³Ê…Ã>nVyv"YåyQå15e¸>YÛyûxé¬òÌTg•çEv¸²Ê³³¸È*ϾÎ"«œÙƒd•£TÈ*Ϩug•ç›e®¬r²UÉ*Ïœß:«Rå:ì|\U¾½k‹*'ËU¾ŠZª|;KU¾P®Vå7{תœ)E¨òÅûÙªüfñZ•/ÞÏVåË»*¨ò›ÍkU¾Èj·*_žB…*×Ö«Ê×D½K•/²]­Ê×ð”«ò5PéRåk à¥Êo–¯UùVQV嫣ԥʗÏQå %kU¾®²–*_¨F«òÕ<Õª|yʪ|Ýlo©òÕÈ—*_Lm°*_dZ•¯Jv·Tùª¨v©òUÈ —*_¥.U¾ŠÕ˜UùbªƒUùB=Z•/ÏZG•/²f­ÊW¶rµ*_dE[•/w% Ê—»úPå(TùJþ¼Z•/w¡Ê'ÙáVås£°¥Êçþ’UÙÃÓõVí¬o©òé)w¨òé.!Tùô¬nTù\dŸK•Og« Êçôßߪ|¢$­Ê§g3£Êç$K\ª|”¸TùdK•OϪE•Ï«¾¥Êµ×ôqUùì¨z©òéûèòé) ¨òù³¬r²wPå“ãµUù|e—OÕÎÚ–*Ÿî G•3U U>­ÖPå7Ùª|Þls©röÔPå“l{«òy³Î¥Ê'Sk¬Ê§ï£Ê'ïo«ò›¥lU>y[•O²\­Ê'ïo«ò‰²´*Ÿ ….U>}=ˆ*ŸÎzE•ßìe«r¦X¡ÊÇ&û]ª|l¾Tùð.9ª| .­ÊÇK™wÕV×R僩8V僬_«òá©H¨rª|Xµ¡ÊQ@¨ò´*G¡Ê*ت„*¾¿*G¡ÊQ@¨òÑ¿ªrª| „­Ê*Óª„*G¡ÊÙ©C•£€På( Tù¨¨g©ò›mU>*ÙáRå( Tùp×6ª|¿?­ÊÇ*7+\ª|p~â¬r6ñÈ*œo;«|p¾í¬òÁ”g•Oe#«|ø~3YåÃÙd•„ªWVygª³Ê»ïUÞeFVyçxî¬rö÷È*ïËßçÎ*ï(cg•wg‘UÎÜp²ÊûòñÓYå)@Î*ï5­¬òÎûÝYå÷»³Êoöµ³ÊÙï#«¼G‘7Õú~pVyw6/YåÝY[d•“ÍDVyg*Œ³ÊûUñÊ*ïî «¼7T·²Ê»».È*ïVd•÷Æë¥¬r²œÈ*gâ9Yåóqg•wg=UÞ+Yí"wÖ¶³ºUÎñ¬rŽïd•—GÇzd«“UΔ2²Ê³ß_d•gÔ¶³Ê3ÙèÎ*wWåÍ*OdŸ;«Ü;Ù7«<=м©ÖçÑYåósg•·íóg•7g…‘UÞ¬–É*gx;YåÍÙ3d•7g‘UÞn–û& <£Èn%¿É·êVVys6 YåÍû/7«|¢²U>e¾T;»»-®®}²ÊQŸd•ûx³Ê=Eûf•£xÈ*G½‘UÞÉúvV¹ßÿ7«U@V¹ßÿ7«œ¬È'«¼ ÈUž^ª¼2•þ•U®¬Ç'«¼QMa³B¿Yå›ÚYåÎFwVy±ª"«ÜSKnVyùYV9Ê™¬r²{É*Ïd‡²ÏëK•ÇÔ6)íJöù¦vö¹”‡³Ê[";]Yå-}Qå§VöYåÛï²ÊQnd•£ÜÈ*ߨðA–º³ËUŽz&«ÜSßnV¹¯WoVùÍVwV¹§ÀݬrYå…ï¬rïŸß¬r²É*÷Ô›U>PâÎ*d‘;«uCV¹ïÇܬrT›³Ê+Y¨Î*¯ýQçKµ””³Ê+ÙÄÎ*¯žJAVùU6Î*¯|œU^ù<8«¼6Ô¸²Êk#»|’õ¾^ª<¦Î½TyàkÕÊ*¯(6g•3…ެòJV§³Êka=e•WïÿU^ ê[YåÕÙQd•³IV9)d•×ì)Î*¯7›\Yå5³ž²Ê+S,œU^ë)«¼&ÖSVyM¬§¬r²ÇÈ*/›õ”U^6ë)«¼Õë¬ò›Mï¬ò²YOYåe±ž²ÊQ1d•—ÅzÊ*/‹õ”U^˜ à¬ò2ý÷pVy![ÔYåe~Qå•ýN²Ê Ù±Î*/Ãë9«¼ >U^PŸÎ*/žÒBVyñýJ²Ê‹÷È*/Ýïgg•>Î*/|>œU^ø|8«¼ðùpVya †³ÊÉF#«œýP²Ê JÚYå%í¬òâ©Vd•—êï3g•Ô™³Ê S1œU^Š¿U^˜à¬òâ®u²Ê ÊÓY奸øç¬òâëc²Ê‹ÏŸÈ*G©U^˜’á¬r²×È*/ÉÇ{g•—ôd—/ÕRÎ*/|8«¼]í¬ò¼­šUŽB!«œ©~Vå§®ÔCµ³×§Öc ŒTyLù{©òSwyQ]_ª<¦þéõ‹F®óµ³©›jg»G=µT¯Ty|m%×Cµ>Råñ5Gëñy‘*¯EÕEëñy‘*÷×誼fO™´*¯Ýîz©ÖûQª¼’’aU~êwVy|­/×±^CÅw­×PñCë5²×‡ÖCmJ•Ÿ:SÇzn…µ*)ƒúý–Ö«(öh<ª¹>ÙäYµþÞRå1up¸Þª¥Ø¥ÊO­ó-©òSK±K•ÇBj¯'Å.U§YRÒEëy˪¼¢:¬Êk¾YàUëe{ÕzL™‘*Ó¾ézªn(ò¬º È»j©]©ò˜bˆ"¯ªõy”*?u©òS×—*¯Â–¨ò˜j¨ç»´Ÿ©òSëó#USQæ]µ_Ï81<µ^O©ò8­.®§jÏ¥Êã4¼¹îª­¬³Öã|Lª<¦ N×Sµ¦rH•ŸZç‹Rå§ÖñMªüÔÎoZ¯ûx$USQäYuG‘wÕVñ]ëyÁª¼’rbU~j«ø©õڣ̻jg¹O­ç~«òSëý$U^Ù¶*©ŠËuWíß?n¼ŸZ¿¿TyLYÌ®c½BvxÖz¾~·*?u©ò;uѪ<¦..×^ÏYçUëñy’*¯ì[•Çe§~^ÓzNñ²*ËTÔx¬ÇÔ©ò¸¬Ý®·êŽ"¯ªõ}$U~ê/ª|L Ê÷öñĪ|o²Ô¥Ê·¯ïQå›ó7«òí”$Tù^(x©ò½PÙRåì/£Ê÷BMK•oO¹G•o²‡­Ê÷üšU¾'J]ªœýfTùF1Y•ï‰"—*ßþ~B•o²Š­Ê7ÊѪ|{ʪ|£˜­Ê7Jɪ|“]jU¾m2PåìG£ÊwG½K•o¾På»Y­Y•o’UùF1Z•35U¾½Ÿ‡*ßöC¨òíþxTùF-Z•ïJ¶·Tù®~¾Vå»|Í*ßÅÏת|£­Ê·ï£ÊwA¹7ÖKoU¾ÉNµ*ߨD«òy¾RåÛS=På•lU¾™*`U¾ÉÞ¶*ßd1[•“²ƒ*ßþþB•“ºƒ*_Õ.U¾6ª]ª|m²·¥ÊÙÍVåëfwgÖ“Ò´*_‹ìo©òEv»U9ûߨòµPàRåk9;ת|ÍG™oÕVìRåëfK•3ÕU¾&Ùáõœµ.U¾ÙãRåË)N¨ò5È.—*_N!A•¯ñU•/ï'¢ÊWG­K•/ï· ÊWGÅK•/OÑA•/O™F•/÷—¢ÊS¬ÊWóT«òe‚*_¾ÿ€*_ ¥.U¾ª•­UùªdyK•/²©­ÊŸ?«òåýGTùª~=¬ÊW±²¶*_îçC•/”°Uù*VÏVåËS¬Qå+Í*_™,u©ò•QâRå lU¾ü}‡*_ùÉ&?*z%Ô¾Tùòý;TùJ>Þ[•/¦X•¯„ Ϭ—Pæg½¹=uÀª|n”¶TùDýZ•O_¡ÊçöñΪ|.¸Tùt6ª|z?U>í På: ý¸ª|òy´*gÿU>ù‡ßßVåÓ×k¨òé)p¨òéý Tù¼YÞR峓Í-U>=uUNJª|ú~ªœ©Ÿ¨röÿQåÓý‡¨òéÔ!T9S@Q峑=.U>}ÿU>}þ‰*Ÿ%.U>}=‡*Ÿ|?Z•O>ŸVå“ϧUù,(t©òiï€*§_U>™âaU>™âaUNr4ª|f¿­ÊgFIK•ÏL6wa=©}«ò™<%Ǫœ~T9SEQåó•M^UëýnU>™ÂcU>˜ÂcU>˜ÂcU>˜ÂcU>öWUN¿ª|xʪ|øþ ª\xüãªò±X_ª|,ß[•>¯VåƒÏ«UùðÔ9T9SIQåÐ`TùðýyTù˜^ߪ|8Å U>ëK•ÁúRåƒóW«rüp¨òÏĹœ8YåëóÍøç³ÊÏoýÊ*72¿ýÊ*W‡˜)Þ|)¸xóôX8ì-ތß.s~ñÛsá·ãX>Í›-´_Yåñ$Ÿ¬òöíU.týd•çoï¬òbsî¬ò8È>Yåõ­Ê=ˆòÉ*—î¶*7ã²Êå·oV¹ÀöÍ*W„øÍ*ɾYåqíød•ÇVôê˜ä‰*·Iì=0Éú&Yö[¼¹û¬q‰7w#Í%ÞÜm2—y³ß¢Ë¼y^sî¬rý 7«<Îן¬òx»?YåñW «Üë'«<~²Ê=@éÉ*¯vãIñãñWx²Êã¯@VyÖiYå>Ê=Yåq'«ÜçOVy¼‘¬Ê›çt+/´±Á½å™›§p«¹5·—niææîè-ÌܦóÕe™›Ï…·(3#·$së*w¹Í¹³ÊEßUîa6d•{VÍÍ*' ›¬rïbݬòBö¶³Ê=+êf•“mIV¹»pnVy"›ÛYå(d²ÊYàRåu[)X•³Kz³ÊÉ%«|¡Ô;ÙâeYÛóÉ&ìîAºs%Ë0 ²Å¥0’síVoi’-.å–ÙâRmIй¢È*'K”¬rë߬r²zÉ*G-’Už­äÉ*G%’UŽB$«œ¬P«òâÙܨò²­.¬Ê˶ª±*/WiW²Å­²Ùâ_Ty™¨xg•žo'[¼¢Ì‡²Âý|¥˜ ŠDC£Bí¡Î—j?ßI¶¸Ÿ¯s©/U®ú*ò¦¬p?_g•ß××Yå÷õuV9¯/Yå¾ê¸Yå¼¾Vå™lj«rvmPåoUþd…K•³ë‚*ϼ­Ê3ï_«rvMnVù°"#«Ü³ònVyÿªÊ3ª·t²Àõy+RÌìZ„*Wö÷àß^®*wøpM¸þ}‘þd•«nüûRÖ·T/YåV/7«ÜÊUþd'²À3ÿ¾”ímµÉ×ûÓª<ù¬ Už|àE•3»UžÙá•,p)|«rîŠß¬rÏÚ½YåÍÇ+²Êmw³Ê«Yå¾Kª\ÙÝVàRÌÉÙ¡ÊßYÞj߈›£ÙõPPäÎîVÖ¸8û©3ÿNv·Tú&»»¼Tù¹Ù«÷ŸTyÜ ž®›²¸7ÿîìn+óLv·vÖzu]ÈîÎ(òX,Y©òÈæ–¯Zïªôªõj»i=ßÅ´*?õÍ._ª¥æÈ*gjYåîÊËjç:7ÿÇtÝTëû² ²¶5•A¡›•lšPåÊÒ–ªk‹¬mOš³±}×€¬òåÙÖd•/Ô«³ÊS\œU¾¼ëJVùº [Yåkxꀳʗ»ÒÈ*_U¾8;«|ñ}ç¬ò…òwV9ꃬr”Yå‹ã…³ÊWáù(«|ež²Ê¹Kt³ÊÊÜYåé¥Ê•íçs³±uüê7ÛÏÇÙØî: Uî,ìê:²±ÝEEV9wQÈ*ŸÞ5 «|¢,U>Q•Î*Ÿîú#«|’5ï¬òÙe>Tëýì¬r¦z‘U>+ÊZYå“©4Î*ŸÞ&«|:ë’¬òÉÔg•Og[’UÎUžUβÊ+ ÆYåõ¥Ìc½Ÿe•3뜬òâó²Ê ÙŸVåÅ£Qåe¡¸¥ÊËâçI•¡UyA Z•²¦­ÊËàçI•—ÁÏ“*g¶7ªœ)/¡Ê[t%úçI1—ÆÏ“b.•Ÿ'ÅÌlmTy!+Úª¼^O©òâ®tT9SWPåÅwÅQåÅ×ã¨òâ]aTyI¨k©òŒš°*Ïd­Z•kóøãªr¦  Ê3Ù‚Våùf}K•gÏfE•Óe‡*ÏãkVyö HTyFYZ•çö¨óÝž.8Työõy¨ò]kR& ~²s5ÞåtI­Y•g²L­Ês&Û]ª<ûø‚*Ï>¾ Ês²*²*¿Ù·Vå‰) VåÉ]Ȩò„J±*O¾•Œ*gjª<ͯª<ù|UN—ªœëITyâýnUž<%UNWªœ)¨òälTyºYéRåtAyèà=)æä]ßP媥~¬ÊéZB•ß©VåÉ»>¨ò”PÚRåÉ]¯VåÑU„"¯ª¥Ü¥Ê£KHŠ:Tyt5×}¼²]¥ÊO×Î@‘×ñtõX•Gv+Š<«®(òXÏ]oVåO6«Ty`¨í:Ök"Ϫ Š<ÖC K•c} Êk%×±^yùٵݞ²ª|ª‹¥»Þª­Þã‹ñt•Üìò©ú*ò<_Y¨Rå‘}:\oÕR—RåÑ5òRåe¹«Þª<º@¶ë®º¿Tyd—¾Tytq¼Tytmhý¦õüýjUY¤ÉõVíçßµ¯¿TytQH­çYëVåQæ[µÔ¬TùébÐ÷‹Tyt5èçŹèb®»ê«ÎÏ®íºYî¡Ê£ ¡¸žëÉú´*/WýK•ŸZï©òè²ÎÚö.£UùÍê´*]þ꺫v6yaWÞª»²+¯Ï¯öP"kS?¿±‹ÞQäÞ•·ònwý¥Êc×¼ºö®÷~©ò» nU^fE±­W¬¥Ê ä­Êc—ZÏG™y=»ÔVú‹]å¡×g³«¬ã™TyìKQ'võþ–*7†þ@•K ÊcWw¹ŽõÈ––*/oEë1õCª<07мªÎ/U\êºi=ï0Z•&G™oÕú¼H•Çèc=O\¶*?µ^_©òÈjœ®·j)\©ò e«òÈ^Ôï³´ž»vb{Î*Ïþ>!«<ûüЬòìýB²Ê³§t‘Už}ÿŸ¬òŒÒtVynVkÎ*çúš¬r²„È*Ï7{\YåÙSâÈ*Ï宬òì.A²ÊóUöÊŽÏÙï¬ìx²yB•«–âqVyN¨je•ëÏôq³Ê“§Â’UN6Yå õî¬òDÖ±³ÊÓ$‹[Y剿³Êg•3“¬òä©Ùd•sýMVyº ]Yå‰ìag•'T ³Ê ÐYå©ùóè¬ò„òsVyr—6Yå©®¬òÄçÇY婼Tù©3¯§²ãSæõTv|ºÙîÊ*OÞO «ü* ©òsÛÑÙß±Q|j)7©òSKµI•ŸÛ˜ë¥Êó&TªüÔRjRåç6©T–TyÜFM®c=²Õ¥Êã6lw=Tk*„Tù¹+E&UžwGÍw­Ç” ©òÌõºUù©ýó§ÖCeJ•ŸÚ?j½ÊÏ_Z¯ðó—Ö+üþ[ë~þÖz™ßk½LvwÈâ¶zu=Tw)éà^q[~»þü"9·íõúK•gö­ÊOmU|úl8û;nüœº¾TyFuX•ŸZªWª<¯«Þ›Ö"OªýÝµÞ ‹¼k=¾¤Êc›dºªÍ>µS¤ÊO]^ªülÓHu«ŸîÔÎF_Z%Û¶Ö+d½o­Ç”…¶µ/©ò³­4^ª<¶¤¸ãƒÛRÝuSÝQçKµ^/©ò³íå,ñPå§¶bU~j/¤ÊÏ6š²ä¥ÊO­ï©òS§—*?ÛtÎïZÏ—Tyló¡Ì—j+ð¡õ|ÿתül#êï+U~j?ß©õœÂbUž¹`U~j?ߥõ˜ªÑ·Ö«¯¬rÕ~¾[ë†þì_[•Ÿº ÆÓ©Ý_dUž'ª_ª<Ó¥nU~¶yõ} Uži3¶*?µŽ_RåÞFþ@•Ç6³Ö UÛÐÛõP­÷¯6šO}•y¬ç)ÏVå§Öç]ª<†­¿Ty c×Ï›ZÏSo­ÊOí¬ô©õ:YæKëq|Këu~¿­õÙì[ë5²Ó·Ök¨ð¤õU;+¼k=¦0I•ŸZÇÝ޶&=ŸPå§íÉYâѧj+ôPå§N(ò³^³z´*?µ¾ÿÄO[–•úÒzî§ U®ZϵµÞ ;}k½›=ž´SÀvÒzUª<Úʲë®ÚÙäq#á´¥éø'Užiß¶*?µ³»«ÖãüEªüÔúþÖ‰M´É¡Èc½›íÝ´ŸO©òSKÝK•Ÿ6=ÿ÷]ëe¿¥Ê3©>Vå§íO׫RåYÛ¨òSÔùY¯2ÅAªŸRå§vvw¨ò|³ ¥ÊóÍ~–*ÏL²*?Œd£Ì·j«í¦õP Rå§ÖñCªÎÿþóöTFÍçƒÿáÇÿõ??þù·¿û|Ýþæó½ÿão~ñß~úoß·Xž±Xì·¿þ—Ïñó[àÇÿûû¿b%í®Ÿßéãwÿò¯ü?ÿú«ïÿÕR\Qųùýï~ñíóìþÇûü?ŸOé×øú”þ=ä–íùõàïÿ ¿üýä׃¿ÿƒüzð÷_þþòëÁßÿA~=øû?ȯÿù¯ü;ëƒüzpúÏå»ßï!:ÿ£>ÊÂóòQŽýÏÿÏr•Iÿ åÿþÃÿ _. endstream endobj 4378 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 4381 0 obj << /Length 2124 /Filter /FlateDecode >> stream xÚÍXÝã¶ß¿ÂÈKm æñ›Ò!ûR4—¤hQY4½ÕÚôZ­,9’|›ýï;CRiso/)Pz?g†Ã™ßÌ®žVtõÝÝïîÞ}PfU’Rs½z8¬¥DH½2Œ-ÊÕÃ~õ÷µà|ó‡?¾û Y´TEŒ.€[4ØæÔímƒ+ïh`ðíÃ]±ãŠ(iV’* ,V»ÓÝÏwD&¥[5ÝÔ´/ ¼ûáT¬þÐÝý¾ij;ÑÜFD3g «DɈáÌ‹ûp¬‡Í–›bí¥†¦YW‡ WëC×ïÃÜSo«Ñö~ö#¥Ân˜ZÿR?ÖM=¾ø5uë§Ç£õñ:[?ÖüÐ2g»ë.ì9\Z×ûº…Z?n8]_F?×ÛŸ/uo‡„‚YÛa¬·¨dPÁn©TÊŸèTyº‚*Çÿn— r]í÷5NWŸ8wxÒg<šëV}u²ãÔýH·«æ°m»þ4í­Ú½o´NOk¤÷ ûvë•tîZÛŽõ´Ë©yÒô6w`Ù[Ð>2b=œíÎo‡Î®PBðõóѶ~n„ÿR·OÞ:YlLjBŸ¬ó#eÚ¯2+MJ# \$‰ä`=ŒÈRúuÁÐû1Äj-;Ïžå]ï%cpBI¸:”=ÖIó:ed³UªX+ càL*…úUE$ È«ËX’÷™“BµxûÜEÂŒÝ2+À»eÌì~³•‚Mr%*âˆlbZ9“¨Ã%Õ§sSû»ë¶s¿¬$Ô”éýÏÎî häÐ:ÿßwÎ% •Qc)  ˆ?™ú5ª×Õ˜!Ô«Q%æS$×Á…Ž™Ý{‡Î©Œ@–3¢¯*&) %ã~ê/àz[ɸE‹ é‡/C˜G/v|>¥!…ž7Œö<ä.µ å"MÕoâåNhwžµóÓˬüo¯l6lm§îS[£·‚¼»Y4p“c×ì¿ÎhŸ³‚ˆRGú 5YŒlF*æÌ…Õ˜¡ î M_ÞsîÚäÂ\Ñ )A 3ëðÐÈ<¡p_±—Õ·|ÌÄ^†80A  þXæà‚9ûøÁÁ‘ëóö"NÕ\œ»ÁÈ£m<ÐcW€Rê01+ßw=¤C£C ~®›ƒÔ²CœÕò§´r«Å€]”1ëÀúF”QK”}„Å€Kœ8q”ò (zðÿ§è§©Ç»~ a_Kï´8éœÖ­j†Î·œÃb#ï°ÌåZ‹âz»Ë9¬ \³¼Ã:ÚÙì°NüÉõÉVÃ¥B¸ôþȧæóºxDC À2QË®;=ÖmÈAžŸëñè[Þì°å’€€îÏÇz4¶Ú‡c7í±÷£Œ ºSÆ”³OΈ%máo„ù/­T¾e¥"AþÏZ©Š]Áÿ>är›-ƒD p2DÆ$4á* æ”f¾‘ůT,ÃM]ˆT`š‰hØ·¦˜(à›— !8¥ %1È®¢5 Ãä„)ÇÛãyÐPÜ$=],„O3çƒ÷‹ž4h§,à:½*)HM!ð™$¢'”Ðî5fkz1ÿÌý3È@Á91Æ|¦¶àµ„!cg¹Eð_‡ÉÒ ÝŘ)_;øV,@ 4ÝS½s9²Â`‹y÷hÛà²0ï<9ÞðJΈwØ— `#°„n¨žp¡ ¹nÐáZ&Á¯Û]ן»jªaÊêNÁÏgÂŽ«›àvëö-x8÷ÝÎIªÐéjבکÓwAC•û#¤AžÈ‡ c\ïǔß]ó>s4ÍÑ~Â2åÊ9äçKb3¾œíýW˜°}•KqJgK’ã5m}Á1£¡ë…¸Â!ìãߥ{?⡟;}óŸƒ;0®KÉøJíw¾S…¢ko‡]_?Nô_|((5)„Loù‡Û:s3Õ‹Ðø®·¶=v>Ö)_f²²(Ð-ðd[o÷O.y™§KMÿmÚél·Õ‹e¿œö«y?e¿\öÿ´)Àúºý3_$È) –"lÔÊ'N`w[ ä> m—•i—f¸ë©[»v½ £_ºf¤èçe „ëš±>7aW’êÁªOuå'ò„Ðø ófοÖ%S‰Ûè½·hU­}ÔöA¸aºÙ3ûoo›+ r Aýï $ñ¶©p)&\yü”Zìºv«v„+°õO6—þ3Èþ¥Ñ)Ð.ÅES4\0W#_Å^.’Lôàó4!"E™{pø"¢ï!]ÐÚÿ þpð†aª$œ³LßvÙE&¥”p(-Üʽm»o¤,'+Ææî2ž;¸æÁw‡®°ínÚýw=à9>͸~×ï!~Hê <0䆞n Š÷×C;NÙŽâQކɱo/o—˸zߺÌÖ[¬$?qÖX®ä?ÖO ¢1ßppÅ&·ƒñ±÷\7oU—±Ã‡DÈ)š—0´ò…4Z“L@ˆïmX5£A¦øfÊÊ®Qõ ÷{ý!Ç@Âzý¶"¸xím¥”zy[x ÖþUU¦ï²*VLú—b‡äaþªâÃI¯ñFCjº$ðùb„²ÿY9¢oËÔ×}Nô$×·eE /7uÅ¿²Ï4¥`1g|±È=Ù!…g§Aq®on‹¦Ô¼8Ÿ—äýÊ´¾ñªÊ©M˘œþ¯Ê+%®Ê+.sz€òC«ßª‡ÏkþŸØs° Y©á¿õ¶“c‚E3yuL•©Ž’Sæ<Ö•eÉcèMFÿíÃÝ΀• endstream endobj 4368 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/selmodel-negexppow.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 4383 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 4384 0 R/F6 4385 0 R>> /ExtGState << >>/ColorSpace << /sRGB 4386 0 R >>>> /Length 26217 /Filter /FlateDecode >> stream xœµ½K¯-ÛuœÙ?¿b7¥†.ç;s6ªCÃ2 T`ñÕÔ0( –¼)Ù¦«ü÷+Lj/råÚ"é{N¡"ÚgÅzäk>Æ£~üÍGýøçÿöí?~ü·yü´ÊÇÑ~*åctýWÍÿßÿÝÇÿõñ/ß~õ‡¿ý¿þøw¿ùV®¿•çþæßýŸßÚOm~üÏo÷÷åã¾Õ¿¹þïŸ¿ÕøÿÇ·£‡Ó8ÆOµüþÛõßå–Ÿ!Ç»<ŸrþÔÞåzÊõnµÞ­Ö»Õñnu¼[ïVç»ÕùÓYrÿÔÞåzÈóúÞïr¼Ë§ÕY߬.ùfÕÞ­Ú»U{·êïVýÝj¼[w«ñn5ß­æ»Õz·ZïVëÝêx·:Þ­Îw«óÝêúÙÛC^?û»\¹¯Ÿý]Žwù´ÚõÍê’oVíݪ½[µw«þnÕß­Æ»Õx·ïVóÝj¾[­w«õnµÞ­Žw«ãÝê|·:ß­®Ÿ½?äõ³¿Ëõµ\¿û=¾èóM×7»Ðï~í‹_ûâ×¾øõ/~ý‹ßøâ7¾ø/~ó‹ßüâ·¾ø­/~ë‹ßñÅïøâw~ñ;¿ø]Gc<õu8Ð ½ž:n»_ôø¢Ï7]ßý.ýî×¾øµ/~í‹_ÿâ׿ø/~ã‹ßøâ7o¿Š^ozÝ~Öã‹>ßôñÅïøâw~ñ;¿ø]ÇcJ—Ô;ž~oz=u»ŽÇ=¾è7¿Vßý._Ù©›ýn=¾èóMwûÝúÝoÜ~'z|Ñ盞·ŸõzÓëö;Ðã‹>ßôqûYÛo¥>o?ëñEŸë©¯ãžèõÔ½Ä?|Ó=Ðç›®·ŸµýòzŒñÒ=¾hûåùÜûíg½Þô¸ý*z|ÑöËó£ÏÛÏ:ýúO;o_ò{èñEŸè<~ýßCÛ/O?o?kû-ôyHë÷½ŽÇ½Ðù{ŽþMtGŸoºÞ~ m¿ü}F»ý¬íWÐøùýG·ß­ñ;óûa¿ó@ãw.ôù¦çí7ÑöÓ÷[·_GÛ¯¡í§ÏÜ~ÖöÓ÷9íwl4~lj¾¾Hj}þëx z¡óóÎrê莶_~ÞYo¿Š¶_~¾Ùì·N4~ë@ã·òóÌn¿5Ñø-}žqû5´ý*Ú~zÿi¿y¢ñ›zÿe¿¹ÐøÍÆoêû·_EÛOïwÚoœhüƾN´Ôú~×ñ@ôBç÷[%nÔ© zH÷Ư§ÿªöë_ÏÏ¿šýzEÛ¯ ñkùùW·_[hüZ~Þ5ì׿VÐøUùMûÕ…ÆO㛵ì§çí¥ñÓóêÒøéy±ûéþ|iüt?]§ýt¼tú5î_—ÞEZ¿×Ž"uCè|ýQâÁZ÷ƒKOôDã§ëù¨öÓõyiütý]ÿ?]o×ÿÀOדÞ8´®¨ÔŸ® BÏÆOç÷¥ñÓù|Í©ñßп_öŸÎ¿Kã×õïûé|»4~Mÿþ´ŸÎ§Kã§óçÒ»¦ÖùrÍ®;z¢tþ>ׄºJë|¸ôDwtúUžw×»£'ú@˯ɯr|/=ÑŸî¯g·ŸŽßÙí§ûß9ì§ãuiüt¿º4~:>×d?Ý_.Ÿî×ü?Ý._÷ßñëúûa¿v ñÓï}M²ñ«¿ê¿ï–šßw‡qêŠ>Bžÿ×L»¢ zJëú¸ô–Öõ°«ü Ï—Kã§óýšnã§óûÒøé÷ÚÍ~ºÿ^püt?ÝÝ~ú}ö°Ÿî—ƯM4~:ÿ®Y8~ú=.ŸÆ×Ä;ü®Û„ίKOtCoi¾ÿ‘~q[9ÑZŸç´Ÿžw—Æï{Æ@(´®×k>ÞÑ }H÷x}»æßU:è)]7¿¼žÚ5Ç/¯ŸÐéwêzi×ü»JŸzJ½Ñòëò;uüBã7õù†ýÆDã×4~ùÿ´_ΗÚ5ÿƯTtúº¾CoéSŸçß¡ó/ô!½¤Oùº_†Æo ô5p Íï?|èf}Hçó­]óï*]¬gè¥ñmè-­ÏwÍÇ»ôa}Hçý£]óï*çhüòþ?ý~×|¿¼ÞCã—çs»æßé75=¥ù¤õû·&¿®çahüô}[³_ÞO[ëòk~¿.¿æ÷òkœ—žÒú}/½¥»^?í§ã{iüt=\óïô«üž—žÒk£·´Î÷k>Þ¥u=^únò;íW:ý ÷‡K_†Ð‡~Ÿ?Lhüw „Bë÷ºæßUZǧç>´>Ï͸†ÉùÞ¥ëCzJ/ùþþK~‡ÆÇ¡Óoqÿí‡ü–æk¡i>ß)¿Åù~é)­ûû¥¯ k\Ó ­ï¿ãÀM‹¤i]?×ü»Jë~vé)ãëÐé74m£Êoh~úÖýq4ù±ž:ý˜o‡ÞÒ:ž£Ë¯ÇÖ€ô!­óûš§_ãþ9†üçóòkܯ¯ùx—Öùuéô«ÜïÆ’Ÿ¯‡KOéá¿oéªÏ{ȯpþ\ú^úýNùÍßBOé:Ðûš^Óp]/×ÿèÒ« iÏ™“к_]z†>¹_Ä‘Öýèú ]Z÷ŸYåwð}g“ßÁï}é)­ó1~Xiݯ®>ý–߯Ëoi<ÒâÀJWëô›Z_ ½¥u¿¾N¤.ݬÓohý©Å‰+½ô”æó-ù±>×âB ÍzEèCZçO\¨Òe£ÓùXèk ZÇûºQti¯—>BW­§4ݨBëßÇMZ÷—K§_Á?n¤Ò9^ }Hçúi[yb޾ùü+'r¡»ÿ¾¥5~X¹0®ËZ¿ÏÊ… ÐzèA7ºïGzP†ÖïZé&¿)¿¥õ¬Ð‡´ŽïZòóý$¡§æ?¡·´ŽO ŒBûxÆ@Kš÷?å7´^:ýXïj1-©ù½vnÍvæ÷¡Om[ëùyiï1q]¿ÄÄEZçCL¤¤s} tú>_LL¥u½ÇDûÒzl…Î……к¿i¡f´“ñ¦êB½>¿hh]¿—N¿ƒññ5ÿ.Òº~.~¾ß_ú”îò_ò›¯K/i¾ß!¿Áñ¿ôžþû)Íç9åÇúYèØ±m¬Ï´kþ[¶×0FçÛ¥‡´Žß¥cÿ·UÎßkþݤs¾:ý ÷³Ê¯hý)tøÕÍñ¿ô)­ûß5ÿ¿zj=5ô’Öóøš‡ß5l<­‡ôý÷ô[þûßò߇ü¦ý§ü¦ßÊop>]ú”æó/ùy¼x.ùuÿC~Í¿Ï!?ÿ~—N¿Êï{Í¿›´~ÿ3'R£úü¼æßEZã÷3'‚ãšvèø^:6†ËÉñ¿æßMZçÇΉõ(þ½®ùw‘Ö÷ÙU~‹ë{Wùyþ°›ü&ó‘Ýä7¹ï.?Çw—ëí¡OiÏ×ü;ýüû\zIëy¹§üj 3¥Ó¯øûMùyh Íúuèôkº_öë‹é>ÐéÇúRèS:¯ß~ýPéWt|C‡ßÉýª_?t‘®~ç©ã:üÎCã¹~¸&]:ý–Æ×=tèé?å7u¾†N¿aÿ%?®ÐKºêõ‡üšî÷¡ÓûIèSºèóœò+º~C_³~0è×…PB³~zH7ë3ô¡ó©_R ½tý‡^Òú>µÊûkèôK§ûg=.li½ß¥Óõ×^»ü*¿_íòc½-túÝzͧÇzÐF‡ß:uýöš^hßK‡ßb<×ucë^?è×/ýx~„^Ò:×3ý¿‡N?öSB§_Óýº_7â&]&ú:}±þدy Íz]èqé¹5Ÿ}†öñj¹0:¯×Ðá§a^èš~sñ{\:ý|>¶*¿©ùcoM~Có×ÐéÇø°_ºôkü>­Ë¯òýZ—ã…~=8ÓùjèðÛŸo¦ßàþ:üÆ¡çyèð¬ÿôëÁÞ¤õû_:ý¦Öoú50H¿¡õ²ÐéÇ~Xèôc¿¡·S~Õ¿ç“Ð:?ZN$ú5þÔñ¹ôu¡ö¾µÞú }r¼¯P ÍzYèðëKó·ÞóFºttúMŸB§ßÐø´÷&¿Îý!r¡›Æñ‡ôóõ¯صM/}JëxÄ@òÒ×Ç® ~Í×ûõA¯ZÏ~õ³Ðá×&¿çõEÒoøý—üØß"ýšž?¡‡t9ÑéW9?®2ýŠæ;]÷¼ ôþ;.ü¸l¦õ}ø÷ȉb\¦ºßèÀåem~Cóû8ÐéÇ~è!­Ï7ªüØo‰'ý¯…N?ß_G.\q•¿’ËÔÒáWüy¯5üâ6¢Ã¯LžG׉~ƒûí˜òcý-tú5þ%¿ÆóîÒéWy>i¢šÕоüⱫóûÒgè“ûYLŒC\ÿ—¾>h ô|‹‰vè©õ•Ð#ôð÷ÛqâÇ0&çûq#h¡÷³YäÇ~QÞ8B¾o,,\:†i~§ïרIëüž¹˜ÃH½_Èv2þÈYèÉýR + sCù1 ~M㯼Q†®o$±­£ñÇ™… ±-¤ïwvù±zJk<vù±Þ‡ôóõtéô«ϸхöýéÒáW6×Ã¥Ã/¦Ò¹p’Û|ÖáWçsLtBO­ß„žÒÅ:ý¨O‰Súu­Ÿ…¾n\± ªç噑ØFÕõzéºpþœ¹QœÛ¶ùþ׃¡‡>µ¾úÍ|4&zUZ×Ç¥gè¥õƒÐé7¹Ÿì&¿Áù¬S½ç›×ÿH¿Æùyéô«Ü?w—Ÿç[{ÈÏãÝqY ¿Ïô;OÍC‡ßÉúrèð&z¥_¦}Hëþz}ÑôïK§õU9QÝìÊzÐ×À­žÔ+äÄ?tñïµc"–e&½C3ÞÍ…„Їž?¡ÃïXú¼±Q¥«uúM/C§ß°_“õz,tT×'ÅBHúq¾‡N?Ö—C§û ±°~~Þ…>¤«^Ÿ7†(sÊó1tø-ÖC‡ßZú½ba§K—~SãõXJ¿ûûòë~ý!?Ö×c¡)ýšßÿŒ…¤,K“ߎM›ô”® }=¸£,Nß?¢¡OBÒy|s¡,4ëW¡ÃÏóÃÐéÇ~D,¼uéj~Cço,Ü¥õ–¡§t­èô£>*CW]O¡iýžuÊý Ðá7¶Ö×Boé¼¾sa24ëu¡Ão°Ÿ ›UšÏsÈñAèô›ºÞr¡TZç륯e¬Sï¿c#3Ê`wEOév¢wèÆù×rbe·~Ô'ÅÂoúÞ¿Uùñ¼~ý®XHîÒ:ž-oLYf,ÝÓ¯S¿zJ·N¿¥ûA,lwiýþ1‘ Íx)ÊÓoèyzJëú½túuþ%?ÖsX˜2ïC~‡ü¨W ~Ô{…ÞÒ:¾í”ûᡯ[=Ÿ…ëBˆ2öq ghæ¡·´Î¿ž ŸQFŸó§Ð‡´~¿^å·4? =¥‡uúMÿ½ÉoúõM~Ãþ]~ÃïßåG½wè-÷ëØèéÒú~—N?ÖÃbã¨Jë÷‰ڿߥ·´~ßëÀ¦õ¡iŸžéÕû ¹ñ%­ã«±À:tüc (­óãÒ×?±ýûNb#=¥[GïÐÔïÄÆ^—ÖïÒúþ£ÊýÐÐSºZ§ûë±Ù¥uÿÓÿø'ì~÷ñ¿ÿÓ¹þg¹þçç?ýçý×øø×üøÍï>÷ÛÿñOÿú/÷;}oNÉy=0b%-þóš“þÿ˜SÏÒGNIýxæ”äÈ+§$ŸÃ¯œ’;¼rJrÃô•S’ãcç”PNàœfWÎ)a²îœƆÎ)aiÆ9%T^8§ÐÓ9%]Oiç”0pN Ô¤sJ€ SÓ蜒®!œsJ¨ðqN ¡sJ¨çuN ËGÎ)éú5œSB±¼sJš¾ sJ@éœSÂÊ sJè:§¤ñ™[u$Vú§­ÞrJšæÎ)©š2;§„?ç”T+SRµÞ✦SÎ)©ZmqN ››Î)a-Ó9%”Ú;§’Ê9%,4;§¤hžîœ’ [åùLNÉÚZä$§D¥–wN‰%rJ+䔈£¼sJÖ~Ë)1NDNÉ¢z™œÕ€Þ9%‹µrJ¥Ì䔬S9%‹(rJÖGEN‰¹甘ÓqN‰¹甘ÃqN‰ëfœS²˜×;§d-¸1rJÖ„‹#§dQ'뜒5áüÈ)YÔy8§dM83rJÖðçQN‰×aSâ:ç”,çHS²Ì¥“S²ÌI“S²Ì “S²º_¯œ’ÕàØÉ)YÍﯜs(Î)qsJ–¹IrJ–9GrJVåxS²Ì’S²Ì’S²XGuNÉ*ÎéPNÉÜü^ä”Ì ÷JNÉÜ~?å”Lö‰S2OÎrJ&ë Î)™'Ü19%“ºç”xßÖ9%óxÏ)™ì“9§dRwàœ’¹à^É)™•œïû:§d²®ëœ’É$Ì9%sø÷VNÉü{rJ¦s È)™Μ’Ùù<ä”ÌF9%“û©sJfsމrJ¦9YrJ„'|Þ9%³Âm“SbŽÂ9%“}sç” œS2ÌI’S¢å¡Ï;§dœä(S2X7uNÉ8¢œÅ-|Þ9%ãàú$§d°Žêœ’±ø}É)Ôe8§dLrÈ)ì«8§d°®êœ’Á¾³sJ†shÈ)Î] §d˜ã'§d°Î眒7朒á드’QõÀwNÉ€órNÉ0·KNÉ`]Ï9%}sýSÒYŠqNIgñÅ9%Ý×9%ý$7€œ’Î>‡sJúÁïENI_pÚä”ôÅñ$§¤Oç˜(§¤O®rJúôçQNIpÆä”÷ú¼sJºs-È)éÎA §¤7çn(§¤SW㜒^¢œ’nn›œ’^ÞsJ:œˆsJÚ†['§ÄûÎ)i'29%íä|$§¤±.꜒×꜒vp?#§DxàçSâºç”´IŽ9%Í¿'9%møïÊ)iÎù!§¤õ×ß#g£uû+§¤5¿¿rJšÏWrJZuN‡rJšïä”´âœå”TsÚä”Tÿ~ä”T&Î)©¾?SRáˆSRYGvNI…›qNI…ÃsN‰ëôœSR'9ä”Ôáœå”Tê8œSRïœå”Ô—NNIõ󘜒êrJjå~NN‰pãÏ;§¤rÈ)QyôçSRXKuN‰¶s?—휒G휯³;§¤ø~INI™ÎáPNI™Î9QN‰†AŸwNI¯\’ôcþ✒â߇œ¯s;§¤Tîä”âÎ)ѰðóÎ))Åï—9%Q. ñˆrJ²¼  Ï-®@ïŸ9%Y®ðÈ)I®@~§üXè%§$¹‚Þ%¹×4¾­å”ô;9%±Ò¨Ï¯€„к_) !V0tÿUNIh]_ °ˆr=Ï•Så(§sK¦t³¿ss~*§$tyä”$g Óä ¬§4ŸoÈoùóMùQWLNI,ïñ}—üÏw唄ÖóD9%Yn¤’C~pä”dù’sIÒ}|rJ²ª£¯A?}QNI–Wô!­ñ‚rJ¢\K¿^ú™Så^:ÿ”S’åbÎ-9¤õ*§¤{*JNI¿s7”Så~ç#§$´Ž§rJ¢|Pç¯rJ¢ÜPã{å”$§ÐÑé·¸ž•SÒS@NI–CVô5pŠòÉã‘SZÇK9%”c~:§$¹ç’Liw”SåŸänTùçzTùQ7ONI”Ÿê~§œ’äœc²¥»sIÂo|?å”d¹¬þ>äGŽ9%Q~{øï[Z¹HÊ)‰r^rO¦üœ ¦œ’Ð:~Ê)‰râá¿§ŸÇ'Ê)éæœÉ)‰rf”SBùó§sJB+WF9%]¸ó§sJ¢üZç§rJB‹‹SNI–sôìÉ=lç˜liqÂÊ)ÉròGNIäÒ‘SZ\™rJ²œÝ9&éG.9%¡Éñèòc¾INIhq§Ê)‰r|qfÊ)‰r~å(§$´88å”@®IEœ’ä&&:ýxþ‘S8Ã3§$´¸lå”$QÐéÇb9%¡Å+§$ñŒ†>FrâL•S’\ÅF_7šÄC9%]å*ŸÎ) MŽGNôOQŽHg!O9%¡«sLÒoúßwù 8J唄®Î!I?ÖÉ) îB94Ê) Í¿Ÿò«Î™ò+ä(§$49-¨àíç”—q>rJºâH>S’x”>oþ!8 q¬Ê) ]cr tÏÒçÍœ’~s¥Ê) ]KRgn-’3’9%Ám(C9%Éq(w£ÊõrJzeßœ’Ðâš5Юc>rJ‚ëW¬œ’Äí :üŠsq”SœÇé\’)MNÈß„ÛTNIr}H‹CWNIp Ê‘ÐD$9ç˜lé&¿C~.V9%]·Oç”$â\’Ë/¸q×Ê) .D©rJ’qnɱ’Qî‹rJ‚Ùœ’ÐänùM8^唀¯~:§$8r?šü˜Ï“S’øìD§ÏgrJ’+™èCZ׫&®Á™ ç–„ß¹¹>”SZ節ýàLtþ*§$qd}Ÿx„Öù¢œ’àN¦ÿž~“؇Vnˆ&òÁ¡èø(§$8”íÜ’)Ýü÷ëFÞ\×KNIèâÜ’ãxq*ä”´nœ’к?*§$¹åtäÄ;¸Ý_èº>rJšÊñ?S‹®å”$~ï\’ô›š‘S\ ¹"C~æÄ•SÒ<ˆhÎ-$§¤9gœ’à^t¼•SÒœÓFNIp0:~Ê)iÎ#§$t{ä”dÜ‚þ}æ”$3ÑSZ9Ê)i‘Srs2ä”'CnFÞX‚“ÑýO9%ÉÍ5¯ÿ’SZ÷/å”ÿñ霒vçö(§$ãD”‹2ågî[9%íÎÕQNÉÍáSÒ4ÍÿtNIhݰÆÇÒñWNIh]ïÊ)iwn>hü,º•Sš\—,`Ÿu=rJB+7I9%q˜†sIæ~q<ä”äi \ŽÌ)‰ÓdZ‡ßðýN9%¡»uúMî/Ê) _—ßûÑåGn19%qÙ ëôkÎòc|NNI\¶º+§$4¹(K~>”S· ]Ê)¹9!rJâ¶³9%¡Ë#§$ncó‘S’·=çqD?*§„Ûè§sJBëù¬œ’¸ “³‘9%¡Ë#§$nëúüÊ)iZ¦ýtNIèöÈ)ÉÇJE/éê\’"IÏSå”4דSÒîñrJZóó_9%¡›sIŠ8%]Ê) ­ñŠrJâ1Í÷[ò[Œ‡•S}¯”S’Ãç’ i]Ê)‰aÇé\’&­ç‹rJbآ㧜’æ8·dˆsšþû)­ß[9%É=è%îIÇWIÓœ[2ÄAézTNIhåì)§„aá§sJB“óÑåG:9%9 ­èSܔޗÎÐ:¿•S’Ã^ùMù‘ÃMNIèáÜ’S•Æ[Ê) ­ç§rJbØ~:—¤ÀY9—dˆ³Òø]9%Mq ŸÎ)ÉiDC¯–º>rJšëvÉ)Éi‹sKΖ\–æsÊ) ]9%9MR®F•ßâù®œ’æº[rJÚ+‡¤Éo0^QNIhå”Ä´Oãe唄Öõ¡œ’˜6’ë1äÇú!9%ÉyIOùÿ}ÊÏç—rJb¼KÒ¤Ç#§$§ÑÒ ¨†Æ?7“ ³>¥ù|§ü|¿VNINûõ}2§$tqnÉèÉiü¯œ’Ðâø•SR]¶INIhrGªüÌE*§$tÞ?É)‰eå\’&MNH“e䔄W«œ’X–!÷¤Ë¯ÀÝiâP_9'¹0Z¹ Ê)‰e"qgÊ) M®Jn¬Æ²Óé\’&MŽÊ’ßrŽÈ!¿‡¦œ’ÐŹ%éÇùHNIrm}M$bYM´rJrn£ÇHÎÜ“\ˆ­ï£ /–ùÄ *§$´r ”Sˆâè•SZŸW9%ÉÅ)W¤ÉÏ\¢rJrÙR¹™S’Ëšœ’ÐäšdNI=üû*§$´8få”Ä2«8lå”T¯É) MîÉ”ë¿ä”ÔÜ£rJrXÿþß|Ë)Éeä†>¥Å%*§¤ºï9%Õ9óä”Tçš“SR朖H„&ç#“X6ßœ’к^”SZç»rJb^œ»rJêa.\9%7×GNIh?唄.Öá·¸¿PZܯrJbÛá´^Òù$Eº8—$ý×£rJBã·äçÜ唄Æïûä”Ä6ËrŽÉ)M®É)¿îï› åÕ¹ªä”„w«œ’Ø:9%7gHNIl+‘ËQäWcRåW9Ÿ”S’ÛT }J+çB9%¹Íu ÃOÛ`ŸÎ) M®Iæ”TדSzêõ¹qº9·$ý˜o“Szºüœ; œ’,ƒhèô«Îýòs.rJê[¤œ’›+%§$ô|ä”Üœ)9%QÖ±­—´r~”Sº[i=•Se#ºÞ”S’e%}ÝjwN•rJ’SunÉÖõ¤œ’,cy䔄Öõªœ’({Ñù£œ’,‹è!]9%QVCîF“ûÅ䔄Öï/@;´î÷Ú‹²=Ou#=9%¡5ÞRNIíÌ7È)É2¡ÒwnÉ)]õ~K~ÍŸwÉ>䔄Öý\9%YÆ´ÑégÎ_9%¡u~*§$´r”S’ÜíDÏ’œ­r*”Srs¸ä”„ÖóI9%Y–¥¿gNI”mœ’ÐÓ9&[Z¹CÊ) MÎIÃQÆë»üN¿—ßé÷ïòc?‰œ’(CÓçWNImÎÝQNIhrO¦ü<¾RNI–¹éý–üœÓ£œ’Ðä¤ò[ÜŸ5p‹²:=¯•S’evÎ%éÒ:þÊ) }ç’Ô*ŽØ¹$SúpŽÉ–žÎ%éÒú=´ÐKYà§sJ¢lðt.É”Ö|C9%¡5^SNIh]?Ê)‰²Äí’*­û‘rJ’S®è-­ëW7·LNI”Ej|¤œ’,“è)­û»rJ²¬Rï·äçÜ å”TïW‘SZÇK9%¡ù~‡üØß!§$Ê>•³¡œ’Ð:ÿ”SzZOéîÜ’-­ß‹œ’Ê~‰sJ*ûÎ)©Î½#§¤Ò×Á9%õd|@NIu.9%õàùFNIe=Ò9%õàùKN‰×WœSR}?%§¤ú|'§¤z~ANI]ÜÏÉ)©ï’SR)SR}þ“SRé‹àœ’J½¡sJ*}œSR§¿¿rJ*\°sJêpNŠrJ*ûÝÎ)©ä:§¤r}8§¤Rÿ휒J5ç”Tú€9§¤ö÷œ’J.¢sJ*ëmÎ)©æŠÉ)©ôIrNIeÿÙ9%µéürNIe?Ë9%µÙÚå”Túô8§¤:gƒœ’Zk¢œ’Êõ園J¥sJ*ã ç”ÔBn9%•ëÍ9%šfÞ9%•ýç”Tr:SâýUç”TêœSR¨—qN‰×ÏœSR¸SRØ¿rNIáù✒âÜrJ õ'Î))¬W:§¤œP¹ä””Ó9 Ê))ç{NI1MNI9;¢œ’r‹CNI9ü~Ê))‡ßO9%…ç•sJÊáïwÚÜå”rhSRç¾(§ÄûÏÎ)qn±sJÊr‡rJÊr®†rJ ë÷Î)ñþµsJÊ#¢œ×+:§¤ÌW.I•Ö÷%§¤°žëœ’bÀšœ’âœrJŠs È))Ó¹!Ê))ÌלSR†ß_9%w®9%Ź=ä”8—Ù9%eøûöS9%Å÷rJ `šsJ }SRè+蜒â\ rJ óEç””þÊ!ÁOÄ99%…œ=ç”ê…SRšsG”SRàUœSâ\iç”Æ›Î))ÎÁ §¤øþDNÉ‹@NI¡„sJŠïWä”x}Ø9%…¾bÎ))ÎÕ §¤°þ霒;Wœçˆ9§¤°ÿ휒BΠsJ 9yÎ))Îé §Ä¹ÙÎ))Ôw:§¤Ð·À9%ŹSä”ö“œSâõmç”ún9§¤0žvNIñý‘œ’B½‘sJŠsp”S²™¾S²ê¢”’;B!%{;%3JöæÖ¦ˆ’M‚% %{¿”8/”|’½ý1¬ªÓHdE˜IVlzÉŸl¢ê‰&Ù'W„’I¶ƒLL²;¦\’íÕቀût*‰CL %ÙdÜ’I²ZI²ÙÉ$‘d;0K$›¼AòH6e¹Ä‘l§Ÿ)dû&®0’Mï²HöÁï¬(’}89eaÕ7RVý‘C²ã¤’}8eåÀНpbÅWÈ ’;2C$ÛO%l i Ùˉ!…@ Åù(~d/Ž‚ÒG6Eêaîð–Ü>²¸C>²"|Ĺ1„óìðª›><èðg2> æð‘鈅Lnü„·êð?†™þ‚Vº4™Îb9±Ò#Šð‘éH”MbH+H%†èy}‡ÜY$ )Î"Qbˆ¾/á#d;|äÎQø•¯ðÐ;|D÷©WøHE¾…ÄE¤úy•˜aŠÿ,8=5Í‚³” ¾˜ùÂ맻YðÅ8| n±à‹*FXðE3"XðUø«XðÉ” Ü+İàsò¾bÁ'ü,¸ËK`Á'£eXp7%‚ç >Ý^`Á( >ÆM{‡•×aÁíÄ`Á”&,x§Y ,x'»¼sÚÂwV`Á;A¡°à¾¼óøo¤HÁ‚76›aÁÛÒ=Üg°à&•`Á[Óu ÞÈ/„w\*,x=ùÇbÁëÒS ÜÙ_°àžÂÁ‚WXðJ,xe¾ ^¶î°à….°àeéd€/SÜC9XðBZXð ^ÈÏ ³WñÜSÝ5Hƒ Þ¦-<¦ÖíÅ‚ÇÌ<ŠXðœø¿Xð\7Hnþ”UÑ#OOÂ\µèfÁsÑãÅ‚çšIû0 žK.b»‹zLܬtQ ³­‚~rÉ(k×Å‚ç’ÓF‡ßÁÚ1,x,q‰m Kbb/Ä‚ß=$`Á“Õ8ÑégVG,x,Š  Þ½— K’bÄ‚'kñ`Á³„Yïð{±í¹©K²bÄ‚wÂgÌ‚÷e–JE}¹§°Xp– ?Í‚÷›Å KÜbł璹Ùðè11™ËÁ‚Ç’¼Ø?±à±ä/VOE˱E Ï+<¶Änˆ- Xê&¿+!¼³ZbÁs Åìwø¹Ö <¶lô{‹-±\bÁ³ÃF§= `Á»{ˆÁ‚wgb‚Çìz(’%x°à±å†ÎQQ²':üú²ÎEᛀ-Åa6U /Q,xh±SbÁÛvk±àÍ=‘`Á›c“`Á£d ¶='Qâ¶­×ñª}‡’9]obÁ£ÄnZ§Ÿï§bÁÛI¦,xÖº‹½nòóýB,x”êz %‰§ü»üœu!_²àÙ¢¢—jÑÅŠoî Z,¢Xð¨E×ù-T[®û¿XðfÖ<¹‚vO ±ãÛ=5”=$<4,vQj•`ÁCëy%x~‹ÏZõ‰>¤U‹.ѱw{N³ÙE~fÕÅ‚‡.¼ž,‚‡»&¤§Ùï*­ï+¼Þ,­Xðæ™ýîÒ:_Å‚Ç0Q׳Xð¬½?ÐSº?XðvŠîò#[¼:¼º‡,x]ãÏa°Ùï.­ëCcÖæ‹U_ò3»+<‡Ý½U‹Ï÷?äw³Ü‡üš¿Ï)¿fÖý”ßͶç@9´²Ä‚‡®Ö±·¼B…=­§´Ø<±àu²þ ZϱàÙsHlw²à¡a­•Ž<݃\,xÖö‹îòóù ¼N³ZbÁC¼:+¼z}<§u }¯žF°àYû_ÑSZç‡Xð˜FŠE Z÷±à9í4ë]UëÿdÁë„Ý€Ïi¬Þ/¡ÈÐ|ÞdÁo6<§Å,xfÇÅ‚·› Þ†Ùw±àÍ=raÁ›YYXðF+³àëÙ,¸×/Í‚7²ñÌ‚7³š°à­¿Øðô3« ÞšßO,xk~?±àý³àëÝ,xsÏyXðÆóÑ,x£¡‚YðVÍz‹odU›oÕl·Xðææ°à7[ Þ̎‚7ö/Ì‚7³À°à­À¶Á‚kÚýy³àõ³à­ÀÁ‚7z˜™ofÉ`Á+Ï_³à7› ^Ù?1 ^Yß4 îl³àÕl>,xÝfχýÔS¼º5,x¥RÕ,x=aó`ÁÝ#Ñ,x5ë ^O¿ÿa?Þÿ°ŸØXðêìXðÊþ‡Yðzøû‹¯¬,øÍÁ‚Wسà•ý³à•ñ€Yðêû,¸³ûÌ‚×eÖ[,x]f¹Å‚Wߟ`Á+,YðJ)¨Ypg½˜wOH³àÕ,',xuÖ,x5k ^Ù¯5 ^'l,xfÓû5³áøÁ–‹¿Y$Xð:üyÄ‚W³¢°àuøóˆ¯Î ¯d“š¯¾ßÁ‚W³¥°àu¼³à•ýs³à•¶7fÁ+Ù@fÁ+YífÁ+ã}³àÞŸ0 ^Í‚WgmÀ‚WسàfŸÌ‚Wê)Ì‚×Æõ ^¿,¸ëEÌ‚›2 ^o6þ°ŸØ9XðÚ`KaÁýh¼šE„¯ÕŸO,x­f“Å‚»^Å,¸K Í‚Wg'À‚{Æ,xe¾b¼²ße¼:k¼VÎ7XðjÖ¼³ÚbÁ«ïǰà•ñšYðZxÀ‚k™úófÁk1«½ì§ç,x%Ò,x-üž°àµð¼‡wýŽYðâû7,xÙfÓÅ‚›í2 ^|?‡/ÔÓ˜/›û ,xa|h¼8Û¼0^4 ^6÷Xðbö¼8›¼œZ6 ^Îw¼f¼œfˇýô<‚/dç›wV³àfÉÌ‚—“ë ¼œ/Ö?Øx±à…jO³àåðç ^~±àfÏÌ‚—ß_,xñó¼0Ÿ4 ^³ÐÅ~°ÙÕ~ºŸÂ‚ÖëÍ‚g«À‚ö[Ì‚—e–Z,xñóÜ,›YðâlXðµ`ÜÙúfÁ‹³$`Á ëÉfÁËò÷YöÓù ^–¿Ïa?¾XðB¯ ³àerý‚—iÖ\,xa=Ò,¸Y9³àe2þ‡/~¾Á‚²ãÌ‚êõÌ‚gÀ‚»ÞÙ,x™f£›ýt½À‚;;Ì,xf§Å‚ø³àîM`¼ ¾,x¡ªYðB¯³àe0Ÿ‚/Î*‚wO`³à…l<³àåfãûÁ’öSö,x¡!Ypg¡™/t™3 ^<߀/¬§™7ëgܽÌ‚—Î÷…/ýņã§ñ$,x!»Î,xéfÇ»ýºÙoü4ß„7+h¼tŽ/,x†0 ^šÙk±à…ý*³àÅÏsXðâ,(Xðâù,xaýÃ,¸YC³à¥ùûŸöãû‹/ÔÛ˜/Κ‚/žOÁ‚ÖÍ‚—Š ^ÜÓ¼¥a¼Ð+Ä,xa¼`¼ÜìµXðRÄ`ÁïžÐ°à¥šýîöS?dXðBv§YðR͆Oû‰J‚¿ÙGXðRÍŽ/û ‡ƒ/Œ?Ì‚ö Í‚ÖSÍ‚²tÍ‚—j¶],xa|büf'aÁKñï#¼~Xðb–¼°^{³àÅltµŸ˜-³àd=Ü,8ë»7 nÝ,8½þnÜ=µÍ‚߬ú°¬õ°ŸØ_³àŒ‡n¼˜5Ÿö+f¿ñƒuÏ—£AÁ7ÉšàûáßäöÂo¦Â`à7è) Ü…)@à7÷)|o#ω€o:ÀA€oµÀ7ù§ðß›’ ðï½MG7¬t‚ þÞìÃ~o†c ß{ëî ù}#¤¿79Spß7Q*ìÛ©äPß7`*èûî`.æ{ñW=œ«r ¾÷i þÀ >ýÀJ¤pïÍÚ{æì½ïÁzïÓ(}¢Þ7«*Ò{³8è}£«â¼÷ù†yß$«–€7 •@Þû4ÓܰªF¸eݱ*ÀÊšnøî}Ïgõ¦;t÷ÝÏ]p÷v–ØîÍöh÷&é²{³¹ ؽ7®ûFf…uoR¡ ºo‚VP÷&#¦ûj…to'&ˆèÞ@"ÝûàwϽ)9çÞt߀æõi˜{†žVz|åÞ$³Bro6¹7¬·cHqS¹lŒ{˜ƽ´Î`Œ{™ŸžXé. ÆÍ¢±1nò²Œq³dcŒÛ˜/7|ƸMý‚q/ó⸠ƒq;8ŒÛL07mAq³SjŒ›&Ƹ'?7ÛLƸŒ›†PƸé'aŒ›-XcÜN«ãfÀnŒ›¬RcÜ ßq;ÙŒ›Á¼1nÖ¦ŒqOóâV§©nYéÆ=yîqS–dŒ›UycÜlãfN`Œ{Ô. Éó‰qSÀjŒ›ý7cÜ7å\±ÒuÆM1›1nj¥Œq3µ0ÆÍNž1î‰6ÆÝLu˪½cÜÕܶ¬t•Ý·®²ãÖ½1îbP[V: `ܬßã6] Æ= þÁ¸ [ƒqn}`Ü7{]`¯u|Á¸oÛ·ŽïqCfãÖ%ycÜ€ÚÆ¸õì~aÜæ¶e¥Ãýo1îzµ¨kãn”E‚q;ÑZwß4HÆS§Z㎙«ziçRmLì T÷e•ͦê‡1îX&Ê„0î>)oÆ‹€ùãŽ5Í ·Vµa܉êå%ÆÝ 'Œ;ÖïÕZ;1îØn˜/Œ»Wr„qw¯z ãÎ0Ȱ*=­㎵³ ãνñaŒ»ù¹,Œ;·5c܉g%ôœË¶¹‰{|ãÎ=c¨î°rí¨0îÜ_Ƹ›+3…q'Ø´?ŒqGù€zxçzI¶ØÈ׿rLvÐèƸ2Êœ‹IQº‘W½0î¬ êŽ´ïŹ*Œ;ëXʇ1î(ƒQ[îçF•MZ ãÎ"þVsAfç&T›ìý ãΊ¥¦›¬Ø¹ÆõTywÆœLþ51î¬îªƸ£8l¼0îl°€L«ÕV~£)+v¤„qGÝݨVzmaÜY¸?ŒqSDhŒ;kLJ1î,aÌמ²¢í©‰Q ™'’†® ‚ägNŒ;Ê7åœãú&óÓwV‹èÑã†(Œ»‰ý4Æ-*:ýª±æ&¿â–ÖÉÇFõíý÷ð«§_ŸõÍÛR`ÜÍÛD`ÜY]¼Ðé7^˜wúkƺX§_36¾äGYëyínÙ)Œ»Ê À¸›#¾À¸£Z\Ø€0îÐÂ>´^Û ÛT`Ü­°ÆÕí|ß\¿nŽ|ãÎÈ|cÛc$– lAwó4Œ»Ý-6…q7GqW'ó€qWÏQÀ¸ëÝRSwh}~aÜÕã80îê± ûQÕ`0î¤+„MOù›ÆX€°ë%¿æ–âK~ÌAwh/aÜYößÑKZX0î»ÌŒ;ÊøcÞ±Mzž~ÿÜß2þiÛ®ç2Vœõ(UwÉOcÜQ–·ø>¥õù„qg™þF/i¸£ Ì»ÉÏç«0î(Óîò3†¢ ±žn±*Œ;ËîOô(Œ;Êêù¼SëÛ-³§"Öß[zgäüã®7öªGÒ^Ò‡ü˜–0îÐÂVTeñ:_„qgÙ¼±îØ&=†[€g=gFÌwtl»ݘubÜ¡§±î!]w=š±ä*¿¶.ŒïÓw–Á/túùzR=VFÊ cîŠ0ß´ÜÆe驪"Ñ)sã®ëuŸ”¹Ûn*c§÷”óSêã2RÞz¬W¤<÷)Æ}Gʃqg»üOù1ãÎ2öÆZÇWw”¥«E¼0î»lŒ»jDÿiŒ;iÒŠ>¥…) ãÎ2õ½T†.ŒKwènl{Hƒ}7ùî_¸CƒMwE˜ß-¾‡"Ìo z(œh20F>‰~CŸòc1Œ;ËÐzHOcݧ´Ž‡0î(#×õ+Œ;ôz`Ü¡…5 ã®Ó-×…q'½,¿Ü¯ ¦žüLhZTçþj”‘Öƒ2óÆeæÂ¢«ü:ÇKwFÐK7ùub„q×ÖÜäDz<w–•wôz”•ƒqgYùDéa¬û”ÖýYw|ìm¬{Ió~K~ÆÞ…qßõ`ÜYF.,ûP$:AS`Üù³>0î:ÜrVw–‘Wô©2qϸCóy³Þ7³~aÜyØzHcݧt5¶Ý(ßè% öÝäçØaÜY6²q0î<zQ6nl»P6>у²ñŠ>¥…- ãÎ˨£×~EÞƒqÇe¨û£0îЇ1ïSZX«0î;Œ;´ÎgaÜyÙôžÆ¼·ÊÂÁÞãMËòäQâ6³iWÊÄuOiÝoÅ?åmJs•-®xpÜ‘ù`ÜY&nl{R&~¢7eâòïŠD÷ýIwèØv•žÖSZד”¡õý„qÇm{[Ò`ãK~§[l/ùùù.Œ;#÷¥ù¹Å°0îÐøòc›Œ;t·Þ*§Åwò|ñ˜ÚÖ‡´¾¯0îÐóq×ÎbwFô »®òóýQw– [nòc‰ Œ;ËÆ;zS6®÷ïöÓóUw>¦å?äçç£0î,7Ö½eã`ܵcæS~7Ö½äçû­0îF ô¦l\¯?ä×½öÓñÆÃO¸Ck¼+Œ;ËÈw½c„q‡ÖxDw–‘Wô¤ŒÜ˜÷~”‘ƒqç°êq×;Iw½c „q‡Öù!Œ;ËÈ…EwùùúÆ];‘©`ÜYV^Г²òÆL|ÚL;ù¾»¬Œ;ËÊzRVþÀ¸C'Æí–Ƹ›¯G0îæX 0îv2>ãn§1paÜnY`Œ»±ÓcŒ»~gŒ»¹¥"w3& ÆÝcϸÏcÜë×w;ü~Í~Â>À¸ؾ1î¶À À¸ãcÜm½Z~oéil»S†^Ñø/û cãn”uãnÆDÀ¸Ût‹naÜëß÷Ý"Œ»M·(ÆÝ¦±qaÜ.K7ÆÝŒñq·aÌZ·×KŒq·aì[wnÉ]í×mã'l Œ»¹%9wë~aÜÍwë~aÜ­“ÆýlñŸZ,ƒq7ÆwƸ[wËraܲLcÜ͘ ·ËØq7ƃƸ›±0îæ–¼`Ü2LcÜ­¹Å·0n—µãnÆÒÁ¸±HƸó;cÜwËJ0îÆxÓ·ËÜq·jŒºÙOç#ws‹T0îVüy„q·âÏ#Œ»aÜn9aŒ»0R0n· 0ÆÝî–ÛË~´4_ö+Ö›2x}~aÜÕ-[Á¸+ã cÜ.‹7Æ]Õ€qW·4㮌GŒq×Íý ŒÛeòƸ«±0îÊ|Ë÷ÝŒ»²jjŒ»ž´´ã®§[f7ûéóq×Ó-Ä»ýø|Ã~´ìö+Ö[eí´ÔÆ]+Æ]cÕ¸«ï¯`ÜõxaÝøé|㮾߂q»ÌÞw=¸€qWßÁ¸ëñjá²ÓPqWßÁ¸«[.ƒq»e‡1nÇØãv¾1îJ>³17ûéó‚qW2™q×å–ܸëäøƒq×i \wnÑ-Œ»ã®w‹ði?ZŒ/û'Æ]Ùk4Æ]ÝRŒ»seŒ»N·<Æí2~cÜÕX!wþ½…q«úçóƸ]ÖoŒ»·ÌÆ}· ã®ÆÂÁ¸]æoŒ»cÓÍ~Š㮃û7·Ëþq»…‰1îêX0îj¬ŒÛ€1îJ¢1nUG}Þwíœï`ܵs¿ã®Ý-É—ýt<À¸+-…Œq×k?íÇ÷Æ]ï–縫ŸO`ܵùû㮎¡ã®´X3Æ]ɃqW·¬ã®ÍØuµ-«›ýÀ¨›ý„!‚q{?ÂwmÜ¿Á¸ãdŒÛ-[Œq‹6û¼1ncƸ«Ÿ`ÜÌËw­þ~Ë~ã‰q×êïwد?1nc Ƹ«[¨ƒq×jì[w56 ÆmLÁ·[Æãv̧1îêç)w½1maܵ¸euµx³ß4Öv·ß0Ö-³»ýÚã®ÆVÁ¸«ŸÇ`ܵpÿã®Ì?Œq·,ã.Û-»…q‹Nü¼1î²9Á¸ïÑ`Üeƒ]ƒqöÛŒq—mŒ]wq‹d0îâ˜0îB ¦1î²Yû1WûÕ'ÆíVcÜ¢1?oŒÛ-uŒqÀ¸‹±\0îÂþ„1îVgŒÛûsƸ‹Ç `Üåt ði?ÅP€q—“ç·[öã6vaŒ»Ü-ÊûÝX7~ºƒq»Å1nǤã.'Ïs0îâùw¹1baÜÅ?w9Œu ã.`ÆÆ¸ %ƸËaì»ÙL»ÙïnáŸæ`Ü…õKcÜ…9cÜ…ØncÜÅóI0îBYœ1ncƸËaÌ|Ùl[·±cÜ…ê7cÜnadŒ»x<Æ]¨x3Æ]–±raÜÆBŒq»å‘1î²^ØvCW4~`ÖÕ~´À®öëþ;~ˆÁ¸‹[¦q»…’1îâ–•`ÜÅ$wYn)>ì'쌻ÐÃw™Æ®…qæ×ƸݒÉw1F Æ]¦±öÃ~ÂòÀ¸µ ÿycÜeºÅùi¿i¬;ös ±:ƸÝâÉw¡ÔÅw¹[V ã.¬ŒûÆVÀ¸‹±M0îÂøÏ÷±€q»e”1îB•˜1îB ½1îBa˜1î2Œ™ ã.Ô‚ã.Ã-±§ý„€qb¾qc¢`Ü7ÆíUƸ 1Ƹo,Œ»+ã.Äžã.ø0î2Œ½ ã.ÄÆã.ÆPÁ¸‹[â‚qbŽŒq»%–1î28Á¸o¬ŒÛ5UƸ ãYcÜ7fÆ]:XwaýÕwéÆÄ‡ýh‰=íGËíi?0êi¿õĸo,ŒÛ-ºŒq—îä‡ýôûƒq»…—1îÒùýÁ¸ciŒ»³ã¾10îÒÝ"[wéïwqKp0nןã¾10îÒÝ[·cÐqߨwi0îBÛcÜÅ-­Á¸ ãucÜ7Æ]ˆ 2Æ]Ú;Æ­ÛæçqbòŒq—f¬ú°ß|bÜ…ú cÜ7FÆí˜PcÜÅX1wq‹f0îâ§`ÜÆŒŒq—fÆí–hƸ ëaƸ3oŒÛ-ÓŒqÇ@€q—fì[w¹1faÜŽ95Æ]Æí–kƸ‹[ƒq[2Æ]ˆñ6Æ­eèÏã.¬ ŒÛ-ÛŒqk2Æ]ª±óÃ~:~`Ü…X2cÜÅ1`Üî¼bŒ»0¿1Æ]nìZwa¾cŒ»T·´®öË®öÓóŒ»8&Œ»T·oöÓñã66eŒ»8VŒÛ-çŒq—ê–߸K1F-ŒÛX•1nm|Þw!ß·[Öãv=™1ncWƸK1æ~Øï­¥wa½óƸ ãcÜå…m´1ïSZÏ/cÜå…uãf\í§ãmŒ»û®ö£nöÓñ6ÆmŒÝwyµøÆOã cÜÆÜqî·Æ¸Ý2Ý·[ã.ná=í§ãoŒ»Û^öÓøÃwáú6Æ]^X÷å·7ÃQÜ›Õ` nSc0Ü{s.áÞ›SA÷ÞŽó'ØäéÂo›)ßÞ¤õAo1ÞÞÛlrà ôºa¥[¶ÈíMc ÀmhpÛn›¶½ïŽá+ ‚¶7“]˜í½¤O¬44±½#`Û…“ðÚ›uopí½9-Dk»á!°övvŒXmG=ƒjïýêâ=%ä–|pÚÛ1´7-ª ´ ¾ioÛa´ÍÁho¦ÞÚî: ½™ˆÃgïó ÏÞ'é%¢³·Ãgo69a³÷é6Û+ºdO¬tªÌÞ§{„/¬tÿ–íPÙ®^ÊÞÎÔ“mà${Ÿ¯nÜUòdoò á±Ý+Û84ö>ÝØºb5,ö>ÝF»biݰ¢iuà î¸cõİ7©”PØFù€°7‹ 0Øût»î‰ÄöĪЖ•òÄ_ïÓ8÷ª˜¶–•Î+Áׯa¯ÝýôÚT äõ¦‰1ൠŒá®7õQ`×ûpÇë¼ïÞÌ  ë»‘¦˜ë!r½Ó+q4‚íý¹V7N-+aS¢­ïžœšNlM`­÷E%ÔúÆEZo‚0­oQœõf}Ìz𳢬÷aHûÀj˜¹–•(9!ÖN|‡°Þ‡›s'”ºóÜy¹IF´oÒ7 «o°Qpõ¦ˆ¶úæ…VïÃ]²+VÍ൬š9jY‰6V½Ù΂ªÞ‡!莕ø;1Õ›µ êÍÖDõfe zS O½©Ã§ÞÇ‹ž–•áS/÷õLMMƒaj·B¦6_ L½8c©[S“2l˜Úô%0õriÁÔ†1©—Y㊕N``ê»wÅJ\0õr§ê†•0@`jµ S³h˜Ú '0õ2¶<°ŸXÍ'LmÌ˜š‰†©ì-0õ2-~`õìž½‘ S/³ä'V£"^FËS»‹,05Ù,†©MŒS³äf˜z½èiY‰ã¦6O L½ Ô©—S“ùb˜z¹ÝvÇ òºcUMOËJ'?05ëz†©  S/xa`j£©ÀÔËÔöª—ÆÊluX\¦¦ Žajs¬ÀÔìÞ¦6Ö LMí©ajS®ÀÔó­9öž“+V§éi¬*RV¢Å©Ý­˜ÚH,05%A†©§ûZw[‰€X-³Õ²Ò˜Úü,0õ|ï‰=M@/[™­–@ô½¾¬æ¦fÔ0µÙ[`j6¹ SŦžï0µÉ\`j SÔ¦žF­+Vý Sk¦¦öÜ0õtíŽU7=UAÊ L{`¥g 0µ™ß¦¦‘µaêfÔ«w˜¦Û0u5.-«» ¶¬ªQkY颻aêúSëtÃÔÅlµXc]ƒ7L]LOÃäñ„‹ S+¡˜úf«YcqÊͬñB’rL}“ÈÝV‰•Àä•.I`ê›SžXi¸Lml˜šJÃÔ¦˜©i‡`˜ÚPó SÓ^Û0µ.ئÖ{ÃÔt7L­¡Ú SC@¦^¦§Çˆ6L½Þajøè¦[}ÃÔ)«iÔú|§§©ò+L}]Þ±‹=±Ïë@þI˜º¹Ç­`jJ4 SGEOŽpSGA–èé¼Íd}[YÁÔQÞç&ØaU˜ú ¦n…*ÁÔÍÙ4‚©ïVA‚©³·|¦®›às‘bõdQ0u=¹dSG•µXã\–ˆ"îüýSG¸eXìÅ ¦¾;¨¦Î‚ùüǹ‚™õ÷/˜:Û‘ìÃÔAœÐÓaµf ¦NH*Éë,†Iª}¦ÎÎóÃ0u€yú ¦Nc~¦Nþ(?dî«Ýx‘0Á€DòôL=* §Ãj2ÔOx£>‚©CVØê´¢°\0ur9éœk Iß¼`ê¤l’N˜ºÞt7$3Ã_Ãj¼(˜:¤šBçÊë ¼¦NLi¦N|åü0LôIž„‚©N醩ëà1-˜: «öa˜:É’ýa˜º ™t³Oœ ¶zIê¯KV„ƒ ¦Î^õÃ0u0¦§›dž*š·%Á‘=eE_SÍé“Ï8? S'Ž=Ý$óiÉ*a‹Lp…ul~öÃ=°‹Ü ‹ ¦NfïS'Ó§×7ù-÷ˆnò3ì#˜:àzjwùM÷Ðîòãâ¦N˜áDéa¸ú”ÆÊbcvqC ~LpBE§ >0uÂú÷‡ü ‡ ¦NÓðtú¹¨`ê„ 6:6+{õû%LðÀ¦NX@0o®’&#jxzHWÃÖ™aMñ 05Ìé§aê,þ×ßS·mØY0u3<LÝ ‹S7ÃbÀÔÍ=¼©Å†©™›†©ÛáÚ‚©›{S7R„ S7.GÃÔÍ0=0ucf˜º1×1LݘV¦v±½aêæž|ÀÔmÚO0u›öL}÷ˆ¦n7ì+˜úÕÃZ0usQ`ê6 3 ¦n†k€©ï“ÀÔÍp 0uëÀâÀÔÍp 0u3\LÝ ×S7Ã5ÀÔ­q½S»ØÝ0µ3Û S7zì¦nd¦nîÙL}÷¼¦nõ­'v³7ô xý S;£Ý0us]`j«¦n…û0u3\LíâtÃÔÍp90u+î±Ýì§÷¦®Ûð°`êÊ‚aêêë ˜ºR¬f˜ºæ¦®Û°ó°Ÿ`"`jg²¦®¬Z¦v&»ajg²¦v&»ajg²¦v&»ajg²¦v&»aêêžÀÔõðï-˜ÚÅㆩëážÑ‚©+K|†©«á{`êzУ˜º\oÀÔu&L])Ž2L]Yb2L]× ®^‡ëó ûñy†ýº5~:ÿ€©+Z†©ë2Ì-˜º²~`˜ºNÃã‚©+áV†©«{2S× ÜLíâoÃÔuú÷LíÌvÃÔÕÏG`êÊÀÐ0u½{> ¦¾ÃG€©ë [ ¦®÷¦v†»aêêç-0u¥¸Æ0uîAÝí\Üí§ã LíânÃÔw 0uíþ¼‚©+±2†©+ƒ,ÃÔÕáÀÔwZ`êJqŠaêꞪÀÔÕ=Ù©+=  S;óÝ0u%3Ö0uõø˜º‚d˜º6®_`jgÀ¦®{¦®w¦®íÕó?àáf?zX7ûéú¦®7\ÜíW Oеô@¶>)ÞÖëSWÃðÀÔÎŒ7L]Ý#˜ºV÷à^ö†§ñ놫ñÓñ¦®+¦®†í©kåz¦®Õ=»SWÚÀÔµ¼àêI±vGoеõïSWŠ S;sÞ0uu]`ê»G10ue3ß0uuOx`êê0`êZ sûéûS×bøyÚOǘÚõ†©Ë6l-˜º°cn˜ºøùL]n¸û°ðùi¿õ„© ³ ÃÔeûû ¦.Û=½S¶¬ S‡»S?/©qo˜º°×l˜ºe˜úÕóY0u1Ü L]N®W`jgà¦.§álÁÔå4ü=ìGîa?ÀÔ…ž¯†©ËiøzÙOáÀÔåäþL]NÃä‡ýt~S?Ï©Ëéßç´_õß7ÅÚú¼‚©Ëéžß‚© ;¡†©Ëñ‚§'ÅÛ†­7Zð¯`js¦.¬¦.ç0µ¦QŸ7L]fL]ÃÅÝ~ô°öÓõL]Ø44L]<ߦvq·ajw¦.‡áëe¿ê¿ã§ß˜Ú™þ†© Ût†© I§†© °›aê²ÜÃ[0µ3ÿ SßÅÞÀÔ…M3ÃÔ冕‹ýS÷l¦.7ÌÜì'x ˜º¸ç0u¹açn?Á¦ÀÔeS»‡€aj‡‰¦.†í€© [H†©‹á;`jƒ¦.†ñ€©ËtÏjÁÔÅp0uqJ`êB˜“aêÂxÍ0µ‹Ã S»8Ü0u™îù,˜ºNb˜º0¾3L]&p0ua[Ä0uqO@`j‹¦vOÃÔÅ=›©Ë4ŒÝí× Oã'x˜ÚÅㆩË|õÀƯ®Æï ¦.óÕ?ÁPÀÔ.&7L]Xê7Líž †©Ë0Œ-˜ºÜpº`êâÅÀÔ..7LíârÃÔÅ=j©Vg˜º¸90u1ìLíbsÃÔÅp#0uaük˜º ÃÅÝ~‚©Ý£Á0u1<Líž †©‹áH`ê28^ÀÔ…ñ´aj÷t0L]G2L톩 =ä SÕÀÔ¥sü€©KçøS—îžÜ‚©‹{üSÂò S»XÝ0u1œ L]Ϧ.ã LíâuÃÔ.^7L]ÜS˜º8<˜ºtà9`j³¦v1»aêâ°`êÒ뀩‹aP`j·¦.'¦v ÃÔ…° ÃÔÅ=5©]ìn˜ºt÷à>íü-˜Ú=- SæÀÔ.~7L]ºafÁÔîya˜º4Â1€©] o˜ºj˜Ú=1 S—öÞ»¦f˜ÚÅñ†©KsOêa¿Ãp5~wlüÞ`êbø˜ºc˜º4ÃÖË~ÀâË~ºÞ©ÝƒÃ0u!x×0µ‹é S—fX[0uq80uiœÀÔ.®7L]îÖ‚© ó7ÃÔ¥–®ö¼ Líb{ÃÔ¥½ÃÔîùa˜ÚÅ÷†©ÝÄ0u1Ì Líž †©]Œo˜ºö¦.ø˜Z…mŸ7Líâ|ÃÔ¥ËS»§ˆajë¦v±¾aêbx˜º¸g<0u!œÏ0u1\ L]XŸ4L]ª{T ¦v1¿aêÂ|Ö0µÃL S»¸ß0µ‹û S—êžÕÍ~:¿€©]ìo˜ºÜ0ó°ŸÆÀÔ¥ÆL]nØyÚOç0u©œoÀÔ¥r¾S÷̦vÏÃÔ…ý ÃÔî¡b˜ºT`Z`êâð`êÂüÜ0µaÃÔî¹b˜Ú‰Ó†© ¦.ø˜ºÃÉ‚©Ë g ¦6L`˜Ú=[ S—Þîö£‡u·pó°ßù„©Ka¼LmØÀ0u¹áïi?Ýï S;lÅ0õ ‡ö£‡öa¿eØ?¯†© ç«ajÖ'n˜ú†Ë©Ë ¶>Ñ‚©öb˜ºpþ¦.Ü SN7L] '7ûõ7˜˜á†©‹áån?zFwûé|6L] 7ûѳ{ÚOãaÃÔ¬ÿß05á[7L] C/ûÑSû°_5<°ôa?߆©Ù_¸aj÷Œ6LmØÞ05p0õf9–Ú-u@©ÍJ@Roö.©·9}qÔF'À¨ÝŠz;tGõ6Ó/†ÚÝy@¨ V@PoÿªNÙ›G¼*ˆ¶ã{TÇeÎzzo÷°^X-³Ô²m>°ÒÉ/rz³8½·¹ç+Í„…MoRÒ ¦ eM»IÌôÞ/Dºõ£!bÚ-„¦÷~ñÓ²ÿ­X©ð^´ôÞî™Ý°¢åtÇJuøB¥7ÉÒ7Ð!buosØ+a^¤·›EŠ’ÞÛöÄŠVÝ «fd+9X‰þÐâËMh-È}ŽÀ£oDtô&l8Ú]`£÷vGí<ßö6¹œWíÞ€œ£oTDk¼ÛÝ-…Eo77}“#‚¢ÝP &úI„Dß ‰ˆèÍ!@ôÍ•ˆ‡¾¹mìI4ô™†vo&XèM4(ôMˆ„vç&@è}Â%Šƒ¾!aЛÔ)(è}ºÎ‚¥›I½ÝÉSô¨ˆ€¾Л%Møç›Xþ|+¢Ÿ7áÃÀÏ7À"öùX„>oÔC>ß<‹Àg·—‚{Þ'°ç}šBXé¢ô¼O3É«a$+9/[€–U7ß,+]ƒÂoF´³ûX;ßhŒXçMT)¨³»\A:ïó>Ÿ’æšÛ«˜ó ΈrÞÔa9ßç}r… qÞ$z@8»€ó&O ¾ù¦l„7ß”èæ}ºGôÀJ¬Øæ}rÁ mÞ§Éë‰ý¶Vº`Å5ßHްæÉÕ¼®_AÍ7¡#¦Ùm¼@šo`GDó ìhv“/xæÍ78óvrÑÌÆy€™óÀ2o¢L@™õÜù4ɼ žd6ìÇlØŒy»Y­(æMH³Ùæ}Iž¶ªH¬ 4Ëêæ•eE×é…Õ“^6(¼¼Yž‡]67ºlnryó6nŒnÙØò¦0jÙ-Ï€–·[ñŠY6d²ì†hËfŽ–ÍÁ+»]¸²$he#HÀÊn¦«¼nB•÷aÒzb¥…@å}p£§l^ LÙ¼”òf_HÙøŒ²ñ%å}˜Ø>±Ò}C€²á&ødÃMàÉ› èd³NÀÉ›Žo°Éûxu–U}Éû0\±Ò]E\²I(°äÍÆ T²Á( d1zŸf’ÍI$ïÃñÀª@–<ñÄJ ŸpdSTÐÈ›ð`dCU°Èûxë(í.u&‘×;‰ìvÍÈ W&‘—9e‘È˽©E"C`™D^îŒ\l%·bE芕îHÈì™D¦àÒ$2º&‘— èn«†ÄJc`ul¤¬tƒ‚D^Æ¥'V4ožXAO/[ $VF±ªH¬ž$ò2j}b¥± $òâö‰|÷À‰LùIdvÃL"/öÅV‚‹«­ RVÓœ²¬¦ÑcYAæ6¬hÝܱš“±2˜Œ•>ưUEbeôXV4žXi؉¼Ü{a¥{$2›y&‘éQhÙíÀ!‘—»KŸ¶z’ÈÐj&‘·>Hdà5“ÈNˆ‚DvŸqHäÅ™ ,“ÈËpqµ•@Ýf«‚”•nŒÈn`‰¼ÞIdçRA"¯˜Œ•>Õ´UGbÕX=ƪ eUŸ$2ùï&‘¥a‰:“ÈÔG›DvËuHdªÑL";9 ™½S“Èî ‘Ý Ùü$2û¬&‘ãA"ǃD^nÝmÕXLÆJŸJ$ò‚D6»‰lvyºÃ²Hd£|ȉ•>äa«ŽÄª!±Ò‡m5Çzñ•Èæ+!‘§±å ]+ÜÙ¸%$ò-+VýI"Æ„DvOUHd³™Èf3!‘Ýqù!± ç;züçHä_ýáoÿï?~û‡o±Ë[>žÿù‡ßþË·’ÿëùŸ*çóÿ~û»¿ÿ(ÿ eÌþ1NñX#džuæìæ¿ÿîÛǯ¿åÊôëßü‰âH\çúï?bRZnýùñ|ôy½CLmâ?¯G¾­_8äz½Pš^3Ï@ªk€Õ½¾¿°çjéë…Ò¼ðµ·ö …‚½^HÃ[^øGPn¿°$óöz¡t¾ð×?ÿ‘_7~ó_ýõú¨?ÿãGÍã\îÿŽÉdüÜ+'¾?ÿþã/þá/?~þçoÿþç°üÕ_7½ø|­Z`ï,ÑŠë¶ë¥õí¥ö}c’s}»Çûþoì}ÿÄ‹™þxñø©|Ç{7N‘ûåßñÞjïô'_üçßYUn?úâõåÅ¿øPÅXáB=UûŽ÷UÃ> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 4392 0 obj << /Length 2521 /Filter /FlateDecode >> stream xÚ­YK㸾÷¯0ösø¦´‹9d‘™ì, rȈڦ»5+KŽ$Óùõ©bQ²$Ë™îIàÉb‰d=XõÍW+¾úíÝ÷wo?X±ÊXf¥]ÝïW‚s¦´]9!˜UÙê~·ú[ÒúòPï|¹þûýÏo?7âW™e.Ë`µÀ©¤B¦;7Xm”Ìdéj#|¤ˆí~ò¤^odj“CþËZðÄÓ¨{ “ІVì|ÕŸ8—ùCéß13É9~ÐúŽŽ%&b˜”¥f8Ö'.,q¹•e™S)2i¦¥[mÓ™&>ALéh%ÇR8ýˆçÝz£´îY'Ê–ÁÆý¦l½ÑÂ%÷ Ñõ¥fYš^ŸOðÙÓÉ?/ìê×f|Â/ki’¼<ùvÐiã÷u5Ú¬»¨å¨n›”Y¡,žêzG´z»å¤b)WpÁ2cŸðÛ®¨+à•YR`«x\tˆ¦¨O-ÍU·‰oâé"µñeÞHú²&‰wõl5øxø’( ñ7yaêÁwgïã8Ñòj·`N錙A]»‰eÊ©%7™XlåÆFë+®’Ÿ|µ .«t&(T©î„*´:•(šáÉÓÚ$ÏÇØÛ¢%ÒO×ÇrœImé\q ~í¾p,›­F<ß/¨Á0£ÌË}ÑL|q¼°[3Þ .‹téòeqã€æ\¸Æš îzžÏK·Së~zº×,À‘†½~Xo„u  h,5®o~ âváÀ2e™ý"ÅáX>š§ª©.#C g˜c$Ë2A_~@GGïU<‡‡Á¿rX ½DI™{Ú[©±b “b íü±}·ýÄ gܼ¡½AS}Ïô=,‹ºås;Èw‡«–B•a™t_¥ÓH%#•Q“K‚îZ÷;ó0„4C¡Eî{N@ Xœ '¦÷ëœK@mÔÁ¸@Tßµð©e<•¯Í#jQxˆCsáqg rйŠÁ@C᱇[RôƒÎHxˆ®qÅ©¨‚ÏE%ÿHõ¨(!´®^kq}Cèt&4…@—AbuS‘uí@ níØ `Hni@Ê €DÔ jÀŽ æ:!3Ph_w$”O…"SÙ«DeƉÊR¢‚†¬pQÌ!* "ð#z<…< ¾¬qÁ3 Û'µ4ìú¶uÓøöXW»¢zŒ¬#g‚áþTõ#“õ‘x.F[<•¼y(ºR{ùL„íSÝ.FÀ†œgßšX&Žd™MÓqf¹è2ÄÚ»÷÷wÏøJ¬D,ÙXqØßºÕöp÷Ï;fœ¹‚¯FÝ0Õ o?²Õoê»?¯ŸÚôknF‹ô<«‘KfŠqg#ØEø–LƒNåŽú‘–wÔ–>oc·®pÎeIýÐ"ìA·Œ_ï{ œ‹î Áö}¾}¢Þ/!%84´èCqø°¥^Ûàm6Ë’û~½à yFÉõ”ó›3½c/db.®¾p-›”9-g¸\ÐãK™jš ŒXzmšý? @Jà1až.˜g˜f¼XLÉ^@‡h–&ب3ëÁ4E9˜:?`ã…ã[Î,—¯Ùâ劽áø8Qeì¡Ü8wrêB¾íŠCÞ…8˜‰XhÌA©€n^œyÍvLV ¹y1þ»«¤eÆN7Ü.«ÌØñŽç"`{µkžc§¦v×û»| zCUtÏkkB©T¸–á;Š&ØÍûN€ŸÙU†™ÛQj8Ÿ4×?xäñÓà,ÔˆK±<ä|éâÈ ‚\¾3ÊNltó’lùÖ3Ov„'òÀÈ¡FúJ’^vý¼te.…L¸-rÑœQ¹ÿµ ±L›1p×éMàŽšp/H¿î«Ú‚:Ë.x´’)ytèÔÔF“þí›üØh|¬ˆä ôdêoóÖGQªœÊ®%ú.¡ÒeØÎCàˆD ¥±Ò´¤eù£9‘1Šƒ-NT—AUɯ#±>ö@Ñä‚¶žf¨îŽš ”p9²­Ë2?¶‘ÜômÀw0“ï>ŸÚ¸]D_é$”·4wªº¢ŒŸPÉïfl Iw[W]^DÀ„²¢‡ H !`»î´ëã†Ò"ùñ™x[ßu¯kK¡3æ.ÏVÇ_ÙÞÝÿé/ïÁhæ2=ò¿ Ö„MFH‚5ò3õßšª%¶È?C3a%Ü;q\3cf‰ƒÐ1`Î]}©½»ˆK»ÎŽý BÔjÿ–h"üAE°AËXšÓê¿ïbJâ“Y€eˆ§‡»5/È­Òm^‚ù*(#¾øw߯óÍwKù’;–šá³>ÚLÍ!BêÅ•Kß¶KËf =&^à\¸ @ê…ËÛötð$^”ôíÔùvzƒban–ª$n“jΫŠÝÆŠÝL+v«}KCB]¡{ ˇ[ ƒ5¸½l>˜øeÜ!²Øàö…oQf…ÕZòäwU_¸îÖ®hè˜y‰9üDRÝmd‘pê¶ -¬$’>d¶îH£†0Э£öŒJ¡è%HNí îz\{ôâ #(ÚØ¥#á@AÑÅ.Òáò¯5š¯è¤´.\–Á$_dÿl;¯ßŠÇ*¼¡oó*D9!ƒ§xöˆž"AkPq†÷¢0÷ðL­ŒÃþúGp ª%EPP8¾ÓwgÅ!–?—Z2'§oZKù æåå+oÖ"MÁ}«Ž!Äq—ç4Üjúœ&Á Š=î܇ ÑNÛùÃCQý‚Ëõ7{Ñ¥hpލ«wjôU¤Sucݳ‡l ¢×@áÜÎ×·ÕFféçbÛ‘m î—~ñõw¦ì5J'!‡q©.èd–_CLúþz °“,ÀÍRÂÞ%)ðO58”¸zá©(ŸãkBŸã±j—ť̤æ[B-¿¼ùq[°ÆCŸ×ý9"„˜m àÐélñÁU𝼮B •âò/iCCÂÐrúü×  Ƚ=úm±· Çy$®xèoOݱÆ?Q¨ˆ†ø¦ ÷GŒ`£¥Hõaã÷è¢{ðà–è17bÅëžÅ6„ªk(e(¸›J‰ÿmÓÄì7ß¡5“npœ` (vd¯0öõ¾²L¸ÿžv%ÔÏé«Ònš1kçÕ¯vi|XÁª-jeêIøÕïðVí°<Å#´@ˆ0¦ÿ‹ÎØäÝSãýæ˜79¬àš¿åSØðW4…–Qøóï†De®á J:£}† ÚŘc™—üÒ.À£g7‹ÿ8q=zlQúºf<Ÿ*(-­0·ÿQ ¿·6#®70ŸüÝ·ïïïþ† Á endstream endobj 4389 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/selmodel-stepfun.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 4394 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 4395 0 R>> /ExtGState << >>/ColorSpace << /sRGB 4396 0 R >>>> /Length 2962 /Filter /FlateDecode >> stream xœ¥ÝMoÜæ†á½~—É¢ _ò|n´‚¶@bY]©ƒ$µ6IÛ¿_rfdÏC=ÇF–t‰äÌí¾²%û Çôå4¦§?|5ý{R´yòåqž'Y¯ïÆås?¿š¾™Þ>|öË×ü|úâÅüm›§û·/¾øËÃò¸èô¿‡¿þmš§<ŒéËí×cßaúóƒ¯û-‰ËãX§7G¾~ØÞÏ”B„ú¸P¡3€B„~Ìa3€BãyæãBiÏ3¶ç™R(ƒp2F¸3€B„ë1h„rÌ eê1h„vÌ eú1h„qÌ e,Ïs;½)íyævzS eŽCÒ—cP(ƒp=fï¿@]¹æåKÞ•Ëó”=’P(ƒP÷HB#´cP(ƒÐ@#ŒcP(c}žÛÉOiÏsÌÛÙßXõ8Ԝ٨—Òƒ–ÆA½–´QKéAKã ÖÒƒ6j+=hiÔ^zÐF¥-C˜·ÕÐØ˜÷¿7–ÆA=Ž='6ê¥ô ¥qP¯¥}ÿçÅÍÃäÎÂ,{/µ4jÝ{©ÚJZµ—´QGéAKãPæÜ¿3¤6æe[/¥qPcωz)=hiÔkéAµ”´4j-=h£¶Òƒ–ÆAí¥mÔQzÐÒ8Œy[yÝÖCciÔãØsb£^JZõZzÐF-¥-ƒZKÚ¨­ô ¥qP{éAu”´4gÞÖCcc–m=4–ÆA=Ž='6ê¥ô ¥qP¯¥mÔRzÐÒ8¨µô ÚJZµ—´QGéAKãæm=46fÝÖCciÔãØsb£^JZõZzÐF-¥-ƒZKÚ¨­ô ¥qP{éAu”´4ŽdÞÖCcc¶m=4–ÆA=Ž='6ê¥ô ¥qP¯¥mÔRzÐÒ8¨µô ÚJZµ—´QGéAK㜙óqmìÌ>?ŽÆÚ8©Ç±çÄN½”´6Nêµô ZJZ'µ–´S[éAkã¤öÒƒvê(=hmœƒy[9¶õÐX'õ8öœØ©—ÒƒÖÆI½–´SKéAkã¤ÖÒƒvj+=hmœÔ^zÐN¥­saÞÖCcgÎm=4ÖÆI=Ž='vê¥ô µqR¯¥íÔRzÐÚ8©µô ÚJZ'µ—´SGéAkã\™·õÐØ‰—yÞÿ_µ6Nêqè9³S/¥­“z-=h§–ÒƒÖÆI­¥íÔVzÐÚ8©½ô :JZ§0o롱3m=4ÖÆI=Ž='vê¥ô µqR¯¥íÔRzÐÚ8©µô ÚJZ'µ—´SGéAkãTæm=4væe[µqRcωz)=hmœÔkéA;µ”´6Nj-=h§¶ÒƒÖÆIí¥íÔQzÐÚ8y[yÝÖCcmœÔãØsb§^JZ'õZzÐN-¥­“ZKÚ©­ô µqR{éA;u”´6NgÞÖCcg–m=4ÖÆI=Ž='vê¥ô µqR¯¥íÔRzÐÚ8©µô ÚJZ'µ—´SGéAkã æm=4vfÝÖCcmœÔãØsb§^JZ'õZzÐN-¥­“ZKÚ©­ô µqR{éA;u”´6ÎdÞÖCcg¶m=4ÖÆI=Ž='vê¥ô µqR¯¥íÔRzÐÚ8©µô ÚJZ'µ—´SGéA+uî¶ÔÒ8˜}Þ§©z{N,ƒz)=h£^KZ×ÛÛ¼ÿ˜Wüæ –½—Ú¨u稜ÆAm¥mÔ^zÐÒ8¨£ô m0ç>³K-ƒ9æ}ž˜Ú¨Ç±çÄÒ8¨—Òƒ6êµô ¥qPKéAµ–´4j+=h£öÒƒ–ÆA¥m sîs¼ÔÒ8˜sÞgŒ©z{N,ƒz)=h£^KZµ”´QkéAKã ¶Òƒ6j/=hiÔQzж2ç>ÏK-ƒxç}ޘڨǡçÌÒ8¨—Òƒ6êµô ¥qPKéAµ–´4j+=h£öÒƒ–ÆA¥mœû¼.µ4æ1ïóÄÔF=Ž='–ÆA½”´Q¯¥-ƒZJÚ¨µô ¥qP[éAµ—´4ê(=hSæÜçu©¥q0/ó>OLmÔãØsbiÔKéAõZzÐÒ8¨¥ô ZKZµ•´Q{éAKã ŽÒƒ6cÎ}^—Zó:ïóÄÔF=Ž='–ÆA½”´Q¯¥-ƒZJÚ¨µô ¥qP[éAµ—´4ê(=hsæÜçu©¥q0˼ÏSõ8öœXõRzÐF½–´4j)=h£ÖÒƒ–ÆAm¥mÔ^zÐÒ8¨£ô -˜sŸ×¥–ÆÁ¬ó>OLmÔãØsbiÔKéAõZzÐÒ8¨¥ô ZKZµ•´Q{éAKã ŽÒƒ¶dÎ}^—Z³Íû<1µQcω¥qP/¥mÔkéAKã –Òƒ6j-=hiÔVzÐFí¥-ƒ:JÚgæÜçu©µq2û¼ÏS;õ8öœX'õRzÐN½–´6Nj)=h§ÖÒƒÖÆIm¥íÔ^zÐÚ8©£ô }0ç>¯K­“9æ}ž˜Ú©Ç±çÄÚ8©—Òƒvêµô µqRKéA;µ–´6Nj+=h§öÒƒÖÆI¥í sîóºÔÚ8™sÞ物z{N¬“z)=h§^KZ'µ”´SkéAk㤶҃vj/=hmœÔQzо2ç>¯K­“XæyŸ'¦vêqè9³6Nê¥ô z-=hmœÔRzÐN­¥­“ÚJÚ©½ô µqRGéA»0ç>¯K­“yÌû<1µScωµqR/¥íÔkéAk㤖҃vj-=hmœÔVzÐNí¥­“:JÚ•9÷y]jmœÌ˼ÏS;õ8öœX'õRzÐN½–´6Nj)=h§ÖÒƒÖÆIm¥íÔ^zÐÚ8©£ô Ý˜sŸ×¥ÖÆÉ¼Îû<1µScωµqR/¥íÔkéAk㤖҃vj-=hmœÔVzÐNí¥­“:JÚ9÷y]jmœÌ2ïóÄÔN=Ž='ÖÆI½”´S¯¥­“ZJÚ©µô µqR[éA;µ—´6Nê(=hæÜçu©µq2ë¼ÏS;õ8öœX'õRzÐN½–´6Nj)=h§ÖÒƒÖÆIm¥íÔ^zÐÚ8©£ô =™sŸ×¥ÖÆÉló>OLíÔãØsbmœÔKéA;õZzÐÚ8©¥ô ZKZ'µ•´S{éAk㤎҃¾ŸÇEça÷ÌÆìóa^øÌÒ8¨Ç±çÄF½”´4êµô ï{^ìWKï.†~ùųC¿^j=.ÿOïÍíÂëO—Ϧuûåñ¾ênóm þiûÓ|üû./„´¾ÛáÆ».“ïïáÆû®×d|·Ãíïwxºžûm‡ûßÃç/oÑ·¿œœ·_ÿðýO?ýcúé»éūׯ¾ýõ‡ŸÞ¾»§ß¼š¯_në$÷¼¬„ãö«îk6gÝ|»êÓöïvXŽ·¿ÀÈiàÝ¿ùIõËD‡\®+t9e?ü„½\øpìãø˜ÓŽÖ?Zj÷»{ÞΉé~¹ì?³ÚßËç~~5}3½ýГæzûkž|ÈésÕÓº{îü¸ß~~‚Üïq~†Üïq~ŠÜïñÕÃÿJ¢D endstream endobj 4398 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 4402 0 obj << /Length 2157 /Filter /FlateDecode >> stream xÚµXK“ã¶¾ï¯Ð)EU­°xgNÊëJªò(g²9@$4¢M‘ 3«Ÿn4(’Ç3NmNM Ÿ_7È7¾ùþÝïÞ}ø¤Í&cY"“ÍÃa#8g*N6F–¨lóPlþ)oÿýð§Ÿ1cUF3“¤pgê\uj W!ç;.øðIÌ?Ù)Í™NÌf' }ù™‹„Î7›„eF¥È³X¦›`qŸ$¦…¼)ã<Þ̘>sÍ{dï·;•Šè¶í] s­#×Óh«qWr‘}³ÝÅÜDÎÿ~´µ›sÆKÎÄs¦Ñ߆®w?5[¡£§îg.Äýúø‡¦xtm7»dl»K¤ŽŽŽ˜;{r¨h(Y¬$Œ‚eZ“eáìv'Sí·’GCO‹²¦±ÇSp’7uïP„/ž#ŽšmØÀéþ3Øjç[¸ûàò¾#2yÊOŸ·‚G6ÐmÕ54+\—·åÞAŒ ¼¸úq Œ-ÝgëÀð}ë\}l†Ž´âK}Ð+"KS²D`Pà<#‰á/ è±ÝlOŽ^„0 .Ç`›BFð_Œ™ŸVb&a ï‡{_ À‘á€÷d•e{K³4:ÒHò£4*r5Ø3TŸaæhÿÖ1¸éóÆ™cÕ;éçÝÜüH±{‚°`Eä7ÈÉz^®¡?7`Bâ RÊľ:!\²_ÍýkPI†X¤™£É:@óêÀ8W–¤ŽÎnÕ­½«$=Ó²ìÁÉJŸeà'v}kI<Ъ*Ưiø ”ç·Úäv@yÝ¥2„›JÁu4žì…&äÁ{ Èb–©·£˜þ%ÓRlfL®ëËX:ˆ„)á%ñø^!Úƒ9¼%Õèj˜ì›¡.l{ Û‡›í³m¡P‘û`Ùmîв\GßV@®ÉX]¶‰ƒ]pÍR3F{2öÌ„8‚Içú•Œî“ÑN…Ë!†:@…?üã»c@º9%›?¸ <Ëü8^Ú…ëQÁ{nÞàój‘1Lèt^d œŸ`0Û™lØhê¦oê2§]ˆ4€L+…bÂÜô ‡¡©¢$!5ŽÞ“8Y¦ RÉ‚qpIµ_IAÁÛ­•1c }û_‹°ˆäñ²]æ¼¾‚‚)¿à5¤…„Jå¼*BxjP‡;þ m0Øõ¨ç>Рãj]Akê¨Î®-C9“Ü0®Ò¥½O®î¡A\ëfþZ‡.Ï{A‡† ù¼ -”÷¬Ÿ®&Äܾ÷•7zf¡WCJD„ô™:Ï¢;b¿¼Þzíh¿N{jŠG cHôÝÜ…ì÷1›ŒÅ(ƒ#œJ¤54Rë+ …íYáÒƒ±ç:»¼#<‰Îm³¯|WæD à +aF±qî 6»~(JŠÕ[ѽ8ô*'¸&F ðômMt{_aã ÒXŸ*êðÞòúà&6ÂHþçVÍj  ×1ü¸M! ›"HvœkêÛBòIo@âàòK ­¢“Š3€§ô«ôÀ†ÁÃäx¢V%L)³4©5›4'´U¬³pn˦-‰”›Î5Ð{%”`g Úô¡cˆ ýØŸ&qjB"Å¡í@æžIÐ(yOä \Ü•Á£eY [ÛêÒù84†Þ50RÊÛSY{1º!-g7T}ø`ö¾Ä÷Ï•i^}a ºÝ;PBS˜ŠYù—Éê“Ö$W §5f"žá°ŠïßÏðâHÕF±Dè—ŸÏð¼Ù͸|Õ4TŒPw 9Ý< !P¢XÆex=R& ^³7?:GÁЖ®ÇR‚6Š2ß:lÎ]AweZ1Xº´¯ÒHAIƒ‡åŒi´Jz—·ÒSa/ê£ä:5¾¤À>6¥8V® 2wóÞ8p‰NÝRïkw;–-­©l…ÿiºìŸ(djW¾£RR2Å#ëÞv¸^!5ÓYü•À$–ê¥^Ex*í,‹fOgL*1u{ð¸Z{þBK¨®•>T´«0šÌú€ˆk¡ŒÐ]‚†2l°ÁlØÀ06E2&+OïÿcÌP\"òÑ3 ú‡Ž(¡¿(«jÀ'ÇM‰žnÎÕøõkÒ'|NÂÉûˆ’‹·.Çþ/èßJxÈnýSZDÿ ¨Ùõ¶¬\ ]ÏÆf_púo…9ÈG³Å‹ 6ü3¯£…¥¡°}˜°‘×QáÏ‚ª¬»‘îºÀrU…-þ&NáãõJ E¨RvÁyô»(ó ÿ¼-–(½´T¦³OP…rpÈ‘3ð÷{"À\LÓ‰*øu*'ªš¦zbH&ª™¦ÙÄͨÙl:’ý/‡÷k ¿%š‚‰{=Äê©Ó])_“k&m21èUÍ~Ýô-:÷ôv-ÖE_½8ækþQ«œ¹õ¥é|!½/f ¥¯é–¬2Ì>{%´Ä÷½É­/äÿÁ3SËõ\á¯åÊ­/üŽÛ]óq‚t»B6Þþ¸kð^ô« ¤FìZü¬\`æ›@컇wÿ¥5Z' endstream endobj 4406 0 obj << /Length 1568 /Filter /FlateDecode >> stream xÚåXKoÛF¾ëW9mö½dÐôP$iR´‡¢Bs¨{ ¨µµ(Eª\ÊŽûë;û DÚëÖŠ Eàƒö1œ÷|cœ]e8ûnñízñâ­$Y‰JIe¶¾Ìƈq™)Bde¶Þf¿æV7ûn«›åoëï_¼jBÏJ‰TY7OɨpD x³^XàŒd„ $¸Ê8À™eõ~ñÇ E8÷“¥¿¿‹/Þï Î^w‹Ÿào¼[LW®^©™#+ *”¢®wÚê劖_vÇ>®Žm=˜®µnË󪔲½îusözIDþ±ÚmÃIÕnÃ7v×›m8l»!,6‘Oï?¼Z `½Õñ‹*²¨«¶kM]5ðïbYBàE*òk÷µ®ÂÝWÎÒ`†¸ªQ«Ëç]·µÏ—+*pN1À„ ™[Æ_°“œØ xQî/¢…–Šç=X¤œ¨ŽÝkc‡Þl–çGg§pú³nt}Þþèbåe"Xœ¬ )ùØé6PãÎTT"NÉQÃíA¿z681ž%XŠ)%Gb§´,òa§Ý‚ç!jý²²ö¸wÎr›aW ã*’‚o«ÁœNóû’à\7fF gÝeøµ­a»ÕÝnãÞñžØk˜­ ‰H©æ¾òo30åauí®šc<ˆ÷€û=‘ß!vòÌî»Õ}ÐbNô¥ûäÄ {kþiûø{ên‡c©‡ãöv)EŽ–+ûôÒ…‹í"eg­Ùøá vC<í6Ce"/JOõÑìûpv¸†̾"§0jH cÔ»8`eþÖ…ž/‹žÈØç©€ïÚˆãÂàç,ælÀÿx¡Rá©8Rtú¯àlN¨0ÌvþUû$@i¢Ç®&ù¯6·©æ* Ï)%Ì¢ÿ_0¨þs`ð¸t¦ƒô%Ÿ›Ž&á C’ª/k„{¬~4ù/Ì7ëÅ_À2é endstream endobj 4399 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpJRhgmE/Rbuildaeadb44da2426/metafor/man/figures/selmodel-stepfun-fixed.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 4409 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 4410 0 R/F3 4411 0 R>> /ExtGState << >>/ColorSpace << /sRGB 4412 0 R >>>> /Length 12740 /Filter /FlateDecode >> stream xœ¥ÝM“Ç‘ á;EÉ9þq±™5“ÍìÚŠ0ÓA¦„LЀĬÄÑüý­ÌªÒݳ_Ò@?Df×…DwåÙn¿¹µÛŸoÿï‹ÿ{û7ñof»Ö¾q»µ¹}Ó×­ÙüfÈí/oo¿»ýôÅ?ýõ·ÿëŸoÿòíÛ7Û¶ÝÎ?~û/ÿû‹þM×Ûÿ|ñû?ܶÛ_´Ûoîÿýù‹¶pû/T¾‘uñÍ´Û‘ïwšg'®õ:õ›¦ÄÑ+û7cû5<–ð*͈³×zöXB¤Ù7›?iÄ} ¯s_Âë4#ÎN\ëuzŒ,ƒ(‹hFœƒ˜"gŒ, ‘…º͈s¼Îµÿi†ÈÂ1ˆº͉)òLÛBdesâD݈æÄ)¯³ÅÈÂY8„¨Ñœ˜"{Œ, ‘…CˆÚˆæÄp1<(÷ƒÖ“ò:Ç7[#îKxCˆÚˆ6‰)2Pbda›Ä!DmD›Ä©¯Scdaˆ,JÔF´IL‘÷ ªCdáP¢v¢MbŠ ôY" ‡µï?SdàŒ‘…m‡µmï_нÊ# Cdá0¢v¢-bŠ<ÓïŸñY9Œ¨ƒh‹˜"[Œ,<_ÀOŽû‡ž'ûFÜ—ð:÷%¼N߈Ó^g?–ð:Cdáp¢¢oÄé¯sÄÈÂY8œ¨ƒè1EÞ?- 1D'ª}#¦È@‘…½‡UˆÞˆ)2Ðbdaˆ,“¨BôFœóuzŒ, ‘…cU‰Þˆ)2ðþiQ‰!²pL¢*Ñ1E®YØ;qL¢*Ñ;1Ež9·Yyެ‹¨JôNœëu¶Y" Ç"ª½SdàýŸCdáXD5¢bŠ 1²°âXD5¢âÚ^§ÄÈÂY(Q胘"5F†ÈBÙˆêDÄxüó0DÊFT'ºSd ÇÈÂ.DÙˆêDâj¯sÆÈÂY(¨Nt!¦ÈÀû'¾I ‘…Òˆ:‰.ÄyæÚBdå9²RQ'Ñ•˜"[Œ,ìJ”FÔIt%®þ:{Œ, ‘…Ò‰:‰®ÄxÿÄ·ˆ!²P:QÑ•˜"%Fv#J'ê"ºSd ÆÈÂY(¨‹èF\ãuZŒ,<!÷d»qßž4¢ ⾄×éF\ãuú7m#†ÈBDÛˆnÄ8cdaw¢ ¢mDwbŠ \1²0DŠm#º—¼Ê¶m¡òÊçÎ+‹°­±ÝÙ¹7º}Ó;öV‹°­±ÝÙ¹7º§Þê>Ù"lklŸìÜ=Rouì­e[cûd/%Kê­Ž½Õ¢lëlŸìÜ­ß´Î޽բlël_ìÜm©·º/¶(Û:Û;÷F{ê­Ž½Õblël_ìeä™z«coµÛÛ;÷Fß?Ëvì­cÛ`Ï{ƒÛ{/<6¶Û{nìåä–z«coµ8Û{nìÜÝSouì­g›°çÆ^íÂmß&ò´“}¬,Î6aÏÆÎ½Ñ’z«Gc‹³Mس±×$kê­Ž½Õ2Ù&ìÙØ¹7ú±·–{«e²MÙ³±so´§Þê}ÿ/Y&Û”=;;÷FÏÔ[{«e²MÙ³³÷=Á¯{¥ÞêØ[-‹mÊž{ƒûvì&‡Þ Ëb›±ggçÞè–z«÷ýÂdYl3öìÜÝSouì­ÖmÆžƒ<Ž=ÄäØ[=[7¶;÷FKê­n΃­Ûœ{£5õVÇÞê!lÝØæì)dK½Õ±·z[Ûœ{£ýØ M޽ÕCØÚØ6Ù¹7z¦Þê6ÙCØÚØ6ÙSÉ+õVÇÞê¡lml›ìÜ<¶Ø{áÐ{á¡líl›ìÜÝŽÓäØ[=”­m‹{£{ê­n‹=”­m‹=i²*Û;{.²¦ÞêØ[={ß5MöÎνÑvì&ÇÞê±ØjlïìÜí©·zßIM‹­ÆöÁνÑ3õVÇÞjÙØjl쵑Wê­Ž½Õ²±ÕÙ>ع7X·c89ô^X6¶:Û…{£[ê­î–­ÎvaçÞèžz«coµ4¶:Û…½y¤ÞêØ[-­“íÂνÑrì''ÇÞjillWvîÖÔ[Ý•-­“íÊ^l©·:öVKgëd»²so´§ÞêØ[-­‹íÊνÑóØN޽ÕÒÙºØnìܽRou7¶t¶.¶{ ð>‹i±Cï…e°u±Ýع7ºû¹É±·ZÛ6¶;÷F÷Ô[Ý-ƒmÛ{‹Wñx¼èd÷Ø×ƒ¾¯}_Ú6¶;{ YRouì­aÛÆvgçÞhÝ÷{£coµÛÛ{£-õV÷Éa[cûdçÞhO½Õ±·Z”m퓽”\Øk#Ô{agÇõTËÆVcû`çõDKê­Ž½Õ²±ÕÙ>ع7ZSou¶llu¶ ;÷F[ê­Ž½ÕÒØêlöjdO½Õ±·Z['Û…{£ç¾{«¥±u²]Ù¹7z¥Þê®lill×Ìy=Á}‹ë¹pXÏ…¥³uþcve¯Nni=Õq=Õçõ|»ßÈü—nS~$þÂmÊŸwAÿñöò¿¿Ý¾ÍG<¹ÿÍd>˜Ç‹ü?ðäé€}ÌW·OG¼ø|ÈãèŸyú|Èþͦq:äéÓ!±þÓjN‡üó›çóõý_/ž¯¿~ÿÓÿôoýÖnoþx{`ßòúxÀƒ§žÃ)^x™Uq:àqÏ<ïçy:à‘ýñ€Ó*~ͳtì˜{|aõÙ—×ól9^öÙ—×ól?^tõÙW×ãlÙŽ—4}öÅõ<{·Qø;®­ãl?nWðÊ¥õø˜pÿqÜ]âå#Ü‹e·Bxÿò{øÂ?ÝŽ²ëÚëOy{ûÝí§üË1,rܺ3Ýî‹øý—ÿõõß¾º?ÌíËïÞÿ÷Û¯þp{ó›ütœÎÿúôn×ñ׆~Ü‹ùxO¿}ûþ»Ÿß=ßÛÛÛ¿¿ûÏû›ÛýÍ÷ïþôá÷¼}ûöýÛï~÷á§ø@ƒš÷»y÷û“uŒ?è?>üðö/ßýüöö~zûõ›¯îðîõïÞ¿ýáâýïÏk_ëôÛ³oÈêë¶ï[¿?ÏgöôùmÞ/Ì}äæþ£ôÇç·ã&C¯~~Û±…ãåÏdòûÃûQò>‚“¼ù1‚–<ú…ÉÓ¿ÎÇzÀûˆHòììµÈµÙzÜ¥åicïë!ïë!›±gg¯E^©·zI–Å6cÏÁνÁm‹½½ÞG`’ÍØsÛñU9öVÁÖ½À$çÞèžz«›³Ç`ëÆ6gï#0_÷H½Õ±·z[7¶9;÷FKê­Ž½ÕCØûL²9;^/¿ÜSì°õ‘InÎÂÖÆ¶Éνіz«ÛdakcÛdO%{ê­Ž½ÕCÙÚØ6Ù¹7úØ"‚޽ÕCÙÚÙ6Ù¹7z¥ÞêØ[=”­m‹{ƒ÷Âêì¶ØCÙÚÙ¶ØÓÈ-õVÇÞêalíl[ìÜÝ™äØ[=Œ­ƒm‹{£Gê­×ûÓ/#6wŸG€^ù<ÂôÊç Wö=Gà^9öVŸG˜^YÛ7öt²¦ÞêØ[=œ­ƒí;÷FÛ1"“{«‡³Uؾ±so´§ÞêÞØÃÙ*loìÜ=Souì­“­ÂöÆž“¼Rouì­“­ÊöÆÎ½Áûze‡Þ ÉVe{cçÞè–z«{gÉVe{gçÞèžz«coõXlU¶wö\ä‘z«coõXl5¶wvî–cD&9öVÅVcû`çÞhM½Õ}°Çb«±}°×F¶Ô[{«ec«±}°so´§ÞêØ[-[íƒ{£ç1"“{«ec«³]ع7z¥Þê.lÙØêlöj`Ùbï…Cï…¥±ÕÙ.ìÜ}|S{«¥±u²]ع7º§ÞêØ[-­“íÊνÑ#õVweKcëd»²W'Kê­Ž½ÕÒÙ:Ù®ìܭLjLrì­–ÎÖÅveçÞhK½ÕÝØÒÙºØnìÜí©·:öVKgëb»±× ÏÔ[¾Þ”ø’‰ÃÆ>ȼ².¶{ ò #2¯{«e°mc»±so°n±÷Âç™W–Á¶íÎνÑ-õVÇÞêóˆÌ+ÛÆvg/!÷Ô[{«EØç“WvgçÞèFd^9öV‹°­±ÝÙ¹7ZRoõyDæ•EØÖØ>Ù¹7ZSouì­>ȼ²5¶OöR²¥ÞêØ[-Ê>ȼ²Ovîö0"óʱ·Z”m}‘yåÜ=Sou_lQ¶u¶/vî^©·:öVŸGd^Ù:Û{ØâˆÛ+‡Þ ‹±Ï#2¯ì‹{£[‘yåØ[-ƶÁ>ȼrîî©·zll1¶ öÜØç™Õ#õVÇÞjq¶ öÜØ¹7ZRouì­gŸGd^ynìóK˜^ü|]ÁÃNÖcD&y_Yœmž{£-õVÆg›°gcï#2_·§ÞêØ[-“mž{£ýÖèØ[-“mÊž{£Wê­ÞGL’e²MÙ³³soð>‚^Ù¡÷Â2Ù¦ìÙÙûˆÌ×ÝRouì­–Å6eÏÎνÑý‘I޽ղØfìÙÙ¹7z¤Þê1زØfì9ع7ZRouì­ÖmÆžƒ¬ÇˆLrì­ƒ­ÛŒ{£-õV7gÁÖmÎνўz«coõ¶nlsöòL½Õ±·z[Ûœ{£×1"“{«‡°µ±m²soðýÐ{á6ÙCØÚØ6ÙSÉ-õVÇÞê¡lml›ìÜÝSouì­ÊÖζÉνÑã‘I޽ÕCÙÚٶع7ZRou[ì¡líl[ìidM½Õ±·z[;Û;÷FÛ1e‚{«‡±u°m±so´§ÞêØ[=Œ­ƒí;÷FÏÔ[Ý7ö0¶¶oìéä•z«coõp¶¶oìÜ›½´Úm´wï#è…½¯‡¼¯‡¬Âö=ÜRoõ>"“<œ­ÂöÆÎ½Ñ=õVÇÞêál¶7ö>"óuÔ[{«Çd«°½±so´#2ɱ·zL¶*Û;÷Fkê­Þ÷ÛÇd«²½³so´¥ÞêØ[½È$«²½³ç"{ê­Ž½Õc±÷Y0dïìÜ=™äØ[=[í{£Wê­ÞG`’Çb«±}°sïÙ²m¡÷ÊçÞ+ËÆVcû`¯ÜRouì­–­ÎöÁνÑýI޽ղ±ÕÙ.ìÜ=Rou¶llu¶ ;÷FKê­Ž½ÕÒØêlöjdM½Õ±·Z['Û…{£íaI޽ÕÒØ:Ù®ìÜí©·º+[['Û•½:y¦ÞêØ[-­“íÊνÑ+õVÇÞjél]lWvî ÞÍ-vè½°t¶.¶;÷F·Ô[Ý-­‹íÆ^ƒÜSouì­–ÁÖÅvcçÞèqìç&ÇÞjlÛØnìÜ-©·º;[Û6¶;;÷¯j;^µ[õ÷õ÷õmc»³÷ýÞ¯ÛRouì­aÛÆvgçÞh?ö{“coµÛÛ{£gê­Þ÷{“EØÖØ>Ù¹7z¥ÞêØ[½ï÷&[cûd/ïó´;ô^X”mí“{£Û±ß›{«EÙÖÙ>Ù¹7º§Þê¾Ø¢lël_ìÜ=Rouì­Þ÷{“­³}±—‘%õVÇÞj1¶ ¶/vîÖc¿79öV‹±m°çÆÎ½Ñ–z«ÇÆcÛ`Ï{£=õVÇÞjq¶ öÜØËÉ3õVÇÞjq¶ {nìܽŽýèäØ[-Î6aÏÆÎ½Ác‹½-Î6aÏÆ^“ÜRouì­–É6ù¯j=þ˜>¼¯‡¼¯çu÷c=äÑØ2Ùû~oòlìÜ=ŽýêäØ[-“mÊÞ÷{“so´¤ÞêÑÙ2Ù¦ìÙÙk‘5õVÇÞjYlSöììÜmÇ~orì­–Å6cÏÎνўz«coµ,¶{ßïMνÑ3õVÁ–Å6cÏA^Ç~orì­ƒ­ÛŒ{ƒe‹½Þ÷{“Ç`ëÆ6gçÞè–z«coõ¶nlsörO½Õ±·z[Ûœ{£Ç±ß›{«‡°µ±ÍÙ¹7ZRou›ì!lml›ìÜ­©·:öVekcÛdO%[ê­Ž½ÕCÙÚÙ6Ù¹7ÚýêäØ[=”­¾Þ¿pîž©·º-öP¶v¶-vî^©·:öVckgÛbOë{/z/<Œ­ƒm‹{£Û±_{«‡±u°}cçÞèžz«ûÆÆÖÁö=Øc±ÕØ>ع7ZRouì­Þ÷{“ÕØ>Øk#kê½°³ãzªec«±}°óz¢-õVÇÞjÙØêlìÜí©·º [6¶:Û…{£gê­Ž½ÕÒØêlöjä•z«coµ4¶N¶ ;÷ûvì'‡Þ Kcëd»²sotK½Õ]ÙÒØ:Ù®ÿ˜óz¢{ZOu\Oµt¶ÎÌ®ìÕÉ#­§:®§ú¼žo÷»ÞŸoi¿mÛíüã~Kûãû¥[ÚÇNùo/ñðûÛíÛrÈ‹·cøòãñx¡ÿÇCž>â½æyútÈþršýÛ±[ž>²Çiœyú|HXÁ§ùç7Ï'íû¿^ýðpß_x)÷ŸŽ×_¼ùñöåýu{óç/þõÍñÞùôý¾_÷ë"œÞ?ãôÇØËpº|Æéë˜ÚN·_ú¾éà~цÓçgœþ˜Éy:½}zêöçuß°ÑŽïëþx{zÿ-œÏ«±ò˜1÷p8DŽéSŸy8ò˜DñéçdŠÓ!Ï›E|<äåæçCä¸ ë§C‡Ž[]|öåörºw’xír{|¨øBæã~Ï~/~þôþãoæ‹ÿt;>ߺ߇½üé/oo¿»ýôÈÙ_T"ãÖí¸eù}!¿ÿò¿¾þÛW÷‡¹}ùÝûÿ~ûÕno~“Ÿ“Óù_ŸÞmßÿÞ}ÿíÇ·¯Ž÷õÛ·ï¿ûùÝóý½½ýû»ÿ¼¿¹Ýß|ÿîO>üpûðÇÛ·oß¿ýþçw~Š5°zßÁÝïÏØÜ7šôíÛ¯níþ {{jþÏOo¿~óÕmÞé»wïßþpñ û,Ç[=î6Òæ1”¼Ù1ûîùôž>Þÿ ßömyvÛ7ÿ=>_&¼ú9p¿‹ÂºõÇÍžŒ|¿óþI8;q­×yìnŽ^¹í;2%¼J3âìĵ^§=–ÙŽWQ?hÄ} ¯s_Âë4#ÎN\ëuzŒ,ƒ(‹hFœƒ˜"gŒ, ‘…º͈s¼Îc¯0DŽAÔhNL‘gÚ"+›Ç êF4'Ny-F†ÈÂ!D݈æÄØcdaˆ,B¼µ4'†‹áÁíxMãƒò:MÀ} ¯sQñþ)˜"%F¶IBÔF´Iœú:5F†È¡DmD›Ähû® `ˆ,JÔN´IL‘# CdáP¢vâý¯RÀ8cda[Ä¡DíD[Äût¯rÅÈÂY8Œ¨h‹˜"Ïôãß`€çÈÊaDD[ÄØbdáù~°­ãÞÿj¼/x_Ð7â´×yìE†ÈÂáDD߈Ó_爑…!²p8QÑ7bŠ <öCdáp¢ Ñ7bŠ ÔYØq8Q…è˜"-F†ÈÂ1‰*DoÄ9_§ÇÈÂY8&Q•è˜"=BÀY8&Q•è˜"WŒ,ì8&Q•è˜"Ïœ[ˆ¬ˆ)2pÄÈÂ>ˆcÕˆ>ˆk{# Cd¡lD5¢bŠ ÔY" e#ª}Sdà±G" e#ª]ˆ)2Ðcda¢lDu¢ qµ×9cdaˆ,”FT'ºSdà1ß" ¥u]ˆ)ò̵…ÈÊsd¥4¢N¢+1E¶YØ•(¨“èJ\ýuöY" ¥u]‰)2pìó!²P:QÑ•˜"%Fv#J'ê"ºSd ÆÈÂY(¨‹èF\ãuZŒ,<!÷äãˬ(ƒ¸/áuº×x¾o#†ÈBDÛˆnÄ8cdaw¢ ¢mDwbŠ \1²0DŠm#º—¼Ê¶m¡òÊçÎ+‹°­±ÝÙ¹7ºí£ѱ·Z„míÎνÑ=õV÷Éa[cûdçÞè‘z«coµ(ÛÛ'{)YRouì­e[gûdçÞhÝG#¢coµ(Û:Û;÷F[ê­î‹-ʶÎöÅνўz«coµÛ:Û{y¦ÞêØ[-ƶÁöÅνÑkˆŽ½Õblì¹±sopÛbï…ÇÆcÛ`ϽœÜRouì­gÛ`Ï{£{ê­Ž½ÕâlöÜØ«UëqÇâ§<öшè}=dq¶ {6vî–Ô[=[œmž½&YSouì­–É6aÏÆÎ½ÑÇÞZtì­–É6eÏÆÎ½Ñžz«GgËd›²ggçÞè™z«coµL¶){vöZä•z«coµ,¶){vvî ÞGï;ô^XÛŒ=;;÷F·Ô[=[ÛŒ=;÷F÷Ô[{«uc›±ç ãU(äØ[=[7¶;÷FKê­n΃­Ûœ{£5õVÇÞê!lÝØæì)dK½Õ±·z[Ûœ{£}ß Ž½ÕCØÚØ6Ù¹7z¦Þê6ÙCØÚØ6ÙSÉ+õVÇÞê¡lml›ìÜ<¶Ø{áÐ{á¡líl›ìÜÝöÓèØ[=”­m‹{£{ê­n‹=”­m‹=ÙKÉ3õVÇÞjQ¶5¶Ovî^q¿÷…coµ(Û:Û';÷ïsž:;ì÷¾°(Û:Û;÷F·Ô[{«Ã~ï [gûb/#÷Ô[{«ÅØa¿÷…}±soôˆû½/{«ÅØ6Øa¿÷…so´¤Þê°_ýÂblì¹±so´¦ÞêØ[öÛ_Ø{nìådK½Õ±·Zœ^/pá¹±so´ûÑɱ·Zœmž{£gê­-Î6aÏÆ^“¼Rouì­–É6ù¯ê—¸ïž½&xŸa/ìÑØ2Ù¦ìÙØ¹7ºûÕɱ·Z&Û”=;;÷F÷Ô[=:[&Û”=;{-òH½Õ±·ZÛ”=;;÷F˱ߛ{«e±Íس³so´¦ÞêØ[-‹mÆžƒ{£-õVÁ–Å6cÏAöc¿79öVÁÖmÆÎ½Ñ3õV7gÁÖmÎνÑ+õVÇÞê!lÝØæì)àµÅÞ ‡Þ akc›³sot;ö{“coõ¶6¶9;÷F÷Ô[}žé|å!lml›ìÜ=Rouì­ÊÖÆ¶ÉžJ–Ô[{«‡²µ³m²so´ûÕɱ·z([;Û;÷F[ê­n‹=”­m‹{£=õVÇÞêóÜõ+kgÛbO#ÏÔ[{«‡±Ïͯl‹{£W˜Å~åØ[=Œ­ƒí;÷žÝ·-ô^ù<™ýÊÃØ:ؾ±ÏÓΫ[ê­Ž½ÕÃÙ:ؾ±sot³Ï¯{«‡³Uؾ±soôH½Õ±·z8[…}ž‡~åÜ-©·º7öp¶ ÛÛ/x¼åÆî9ÉÇ= н±Çd«°½±so´íû½Ñ±·zL¶*Û;÷F{ê­î=&[•í{£gê­Ž½Õc²UÙÞÙs‘Wê­Ž½Õc±UÙÞÙ¹7x¿ù¦±Cï…Çb«±½³sotK½Õ}°Çb«±}°sotO½Õ±·Z6¶Û{mä‘z/ìÕ/7óÛÝ[6¶Û{mdI½Õ±·Z6¶:Û;÷Fkê­î–­ÎvaçÞhK½Õ±·Z[íÂ^ì©·:öVKcëd»°soô<î2O޽ÕÒØ:Ù®ìܽRouW¶4¶N¶ëçûåÖÍ»÷õ¼ê~Ü·Ý•-­óïðóvÙ»]Ù«“Ûc=à®l9½¿ãFñçÛ”ç[Àï·)?á6å}ò?ÞžðàûÛíÛôëOS—_žÇ ü_~ù©O¿¼øêöñ×_x:àqçó[>ãl9¦3œÏ¶Ï8{׿ùìùëÏîÉ›ŸÎnŸž496ýØñ­Ûo½\ÒûoXúõc„ÜC§_^Çd©—_~èôËÏÉL/¿þäù€Çý<·ìŸxü#ÂÇžÿ¦ðé€gòËçüšçgßgÇ—·Ÿ}M=N^Çkï>ûšzœ¼OVó¿ãšzžýxÝØg_SϳçqOŠ¿ãšÚÏ>>'ûõ5õü pÿ˜pÜAâùaì…ÏŸÞüý{òO·ããèéñºöÓOy{ûÝí§üãÈ1 ò~%w±¾÷ÿþËÿúúo_ÝåöåwïÿûíW¸½ùM~&N§}z¯kÿkß|:ÞÑoß¾ÿîçwÏwöööïïþóþævóý»?}øðÃíÃoß¾}ÿöûŸß}ø)>Πâýå÷O?Ãö]¢ÇýLJÞþ廟ßÞÞ|u³ûüÏãq>|}÷¼¿ñÝ»÷o¸x¬ýùík}úMÚ·^í[kíøƒù|ŠOŸÉÚ·ýÅQý¶¿Ä¸ŸÉŽÛ ½ú™llÇf—?–Égg¯E>†Í¢G¿ðó‹_ãc=`3öììµÈó±žä—¿ 6öèlYl3öììµÈ+õVÁ–Å6cÏÁνÁm‹½½ÖmÆžƒÜŽªäØ[=[7¶9;÷F÷Ô[Ýœ=[7¶9{ y¤ÞêØ[=„­Ûœ{£%õVÇÞê!lmlsv¼^Ãk_6[²›YÈÍÙCØÚØ6Ù¹7ÚRou›ì!lml›ì©dO½Õ±·z([Û&;÷F?6ƒcoõP¶v¶Mvî^©·:öVekgÛbçÞàý«:»-öP¶v¶-ö4rK½Õ±·z[;Û;÷F÷c3 9öVcë`ÛbçÞè‘z«Ãõþô˰Ýça˜W>+½òyØç•}cO#Ça·W޽Õça’WÖÁö=¬©·:öVgë`ûÆÎ½Ñ†a^9öVg«°}cçÞhO½Õça˜WÎVa{cçÞè™z«coõ˜l¶7öœä•z«coõ˜ìó0Ì+{cçÞà}ؼ²Cï…Çd«²½±sotK½Õça˜W“­ÊöÎνÑ=õVÇÞêó0Ì+«²½³ç"Ô[{«ÇbŸ‡a^Ù;;÷FK†yåØ[=[}†yåÜ­©·ºöXl5¶öy˜dµ¥ÞêØ[-[íƒ{£=õVÇÞjÙØça˜WöÁνÑ3 ürì­–­Î>ürî^©·º [6¶:Û…½Xâ0Û+‡Þ Kc«³]ع7º…a’W޽ÕÒØ:Ù.ìÜÝSouì­–ÆÖÉ>ürî©·º+[['Û•}†Y-©·:öVKgëd»²so´†a˜W޽ÕÒٺخìÜm©·ú< óÊÒÙºØnìÜí©·:öVKgëb»±ÏÃ0«gê­_o>½ÿ1/6ö±½¼¯‡ìÆ^ƒ¼Ža˜äØ[-ƒmÛ{ƒu‹½îΖÁ¶íÎνÑ-õVÇÞê}&Ù6¶;{ ¹§ÞêØ[-ÂÞ‡I’ÝÙ¹7zÃ0ɱ·Z„míÎνђz«÷a˜d¶5¶OvîÖÔ[{«÷a˜dklŸì¥dK½Õ±·Z”mí“{£ý†I޽բlël_ìÜ=Sou_lQ¶u¶/vî^©·:öV‹±­³}±—m‹½½cÛ`ûbçÞèv Ã$ÇÞj1¶ öÜØ¹7º§Þê±±ÅØ6Øsc/'Ô[{«ÅÙ6ØscçÞhI½Õ±·Zœmž{µêí˜qû´“õ†IÞ×Cg›°gcçÞhK½Õ£±ÅÙ&ìÙØû0Ì×í©·:öVËd›°gcçÞèc¿5:öVËd›²gcçÞè•z«÷a’d™lSöììܼ›Wvè½°L¶){vö> óu·Ô[{«e±MÙ³³sot?†a’coµ,¶{vvî©·z†I–Å6cÏÁνђz«coµnl3öd}¼r {«Ç`ëÆ6cçÞhK½ÕÍÙc°uc›³so´§ÞêØ[=„­Ûœ=…ï÷¾²(Û:Û;÷FÔ[{«Ïû½¯l틽Œ,©·:öV‹±Ïû½¯ì‹{£5ì÷¾rì­cÛ`Ÿ÷{_9÷F[ê­[Œmƒ=7vîöÔ[{«Ïûí¯lƒ=7öròL½Õ±·Zœ}~½À•çÆÎ½ÑëØN޽ÕâlölìÜ<¶Ø{áÑØâlölì5É-õVÇÞj™l“_ðª~y=üîO7®¸öšä~¬‡<[&Û”=;÷Fc¿:9öVËd›²ggçÞhI½Õ£³e²MÙ³³×"kê­Ž½Õ²Ø¦ìÙÙ¹7ÚŽýÞäØ[-‹mÆž{£=õVÇÞjYl3öéN9—νÑ3õVÁ–Å6cÏA^Ç~orì­ƒ­ÛŒ{ƒe‹½n΃­Ûœ{£[ê­Ž½ÕCغ±ÍÙSÈ=õVÇÞê!lmlsvîÇ~orì­ÂÖÆ6gçÞhI½ÕçyÙWÂÖÆ¶Éνњz«coõP¶6¶MöT²¥ÞêØ[=”­m“{£ýدN޽ÕCÙÚÙáëý çÞè™z«ÛbekgÛbçÞè•z«coõyžý•µ³m±§u‹½½Æ>σ¿²-vînažý•coõ0¶öyü•sotO½Õ}ccë`ûÆ>σ¯©·:öVgë`ûÆÎ½ÑæÁ_9öVg«°}cçÞhM½Õ±·z8[…}žåÜm©·º7öp¶ ÛÛ/xT¿ÜÏd÷¾ßûu?î÷@Þ×C“­ÂöÆÎ½ÑóØïM޽Õc²UÙÞØ¹7z¥Þê}¿7yL¶*Û;;÷Û{/z/<&[•í½ï÷~Ý-õVÇÞê±ØªlïìÜÝýÞäØ[=[í{£Gê­îƒ=[íƒ{£%õVÇÞê}¿7Y탽6²¦Þ {ñÇû1îîƒ-[탽6²¥ÞêØ[-[íƒ{£=õVwaËÆVg»°soôL½Õ±·Z[íÂ^¼Rouì­–ÆÖÉvaçÞ`ßöýàèÐ{aillWvîn©·º+[['Ûõóýr?ïÝûz^÷q¿tW¶t¶Î¿ÃÏû©ïve¯Nõ€»²åôþ¾Ýoz¾¥ý¶m·óû-íKì—ni¯Ç ÷oÏGxðýíöm>à…c߸÷8`/òÿxÀ“§üØeþñ€'?°¿ŒÆôSÓ§öï3Oýðpß_j)·q¼àåÍ·/ïÿ÷«Û›?ñ¯oŽwÎgï7úº_ç³ûgœýsy>[>ãìu i8Ÿm¿þì}‹Áý=Ÿ=?ãìÇÎOg·OÏÚþŒÎv³ã[è?Þž|¹¶÷ß´rÄ1MîÁóë˜òõñ€Ï´~ÌÉúxÄÓáÇ¿|:äùoçCÖñ¯Ÿyø|ȳþã!çÕüò³ÕýØniÇ‹6?û{ž½Ž[Ê|ö5ö<»õãŽ-Ÿ}‘½œ®Ç Q>û*{9}Ÿ³}þeö<½ïÛÝý•ëìù±á ™Ç='žá^Ø÷|û‡ü¿‘Oÿév|½uíôùöó§¿¼½ýîöÓ?þæ¹o&Ü/Íû~ÿå}ý·¯îrûò»÷ÿýö«?ÜÞü&?§Ó¿>½×¾ÿ½Ún~|wðxW¿}ûþ»Ÿß=ßÝÛÛ¿¿ûÏû›ÛýÍ÷ïþôá÷¼}ûöýÛï~÷á§øH›ûqƒÅ>Ž}¤Ç#}ûö«ûepûòooïOÌ›¯nv”ÿy<؇¯ïž÷7¾{÷þíø¿øÿ.r{ endstream endobj 4414 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 4418 0 obj << /Length 2523 /Filter /FlateDecode >> stream xÚÍYKã6¾Ï¯0ú$cFõ 0‡ 0³ÈY,’Î^6{ %ÚæF½¢4ίO‹ÔÃ#ÏŒç,ú ’.’õüªŠnŽ›pó·?<¾øîmšoJVfq¶yЮ+ –Æ#W¢­·;^rˆFõ`šg\HnÝZ¦¬ÈÓÕ[iÌÚ•EÉ2ÅmaÛ]žDÁãIvÛ(ÝÉ—Û]ÂÃ@µ;Ü ZˆJÐBºÙ’Ë4uúë¥^ã´ô¾æ"+uxVí‘æýIÒ ú‹VmO³wJL¿¿/Q”æ,“†ã=³"X$ÉóQp`¾ŽÃY¶=°gÀ¾»NúJÓ«3˜¡ž¸°§Fs'‰¢”ñ4ñÇþFΕòMÆÊœH”°,¶‹ÀÞ ÑÅ+ U¾™Ñ€¢9O‚è^zñE¿`Í«;,Y”_©›”š—Á^÷§ÆyÆÂ0ÿ8ß9ñíNVøÎYœnf4è’+ŠÊY”埬§ô¶ž®ï3ê<4½h¥s~ÚÚ¾ýóEU¢ñËï¶QÈÎÍjuØÆ)ðÆœ@‹¿…iH~“Fý¾Â@6ê¤uMkfè¸(*$*Âñ.}è!âìðƒê%'Ï \Ë¥mºáxD·ŠÊîVÛἇ¥Dbú¡VÒ€§Å!'IËê l`d0h "`·…Á!¸$EKˆð(+Kn§‡¡ÍÌIMM㽤o¥[£jÙI·.Ñ6\d§ìÍ ïå¬W²÷þ„Œ7†Ú]¡ŒvÒküæÀ6’–jiªNííù0{7 ñ“ìí¥ÓØèH÷Ïôýy0=QÊÞÒX]¥ÖM¢² É*Hb­‚4oñÝEÛÒÒÆaX íË5mî·q xEgQ#Se¬‚wŠN_ÓO 3&Pc†óõì(ð*ÉŽ ‡ñ+~ƒ\‹Ï8Y˜g÷™„bž.XøÈ^3i„kÙ,cq–N—Ze‚¤L`¸V5­´ºw"T• 58è YžÇKuBJB—J}>Iƒ“„4§M%kÈYÑ"¤½¡säϳF ª)1¥£%D[Isc‡ÞÙ‘wÕ´"-¼0KV½;Vý9à˜ÔC_é³4«žÑUèô`#ÎÊ3ÍÚ4^òä¢Î““ÀGÙJÕ;RÕNРÜÈ1 \º`öÇŒ´ª”äƒl+·àK¢Nôº3lQÍ ¤lfo/ŽX:ñ~@iã¥îÈ_”hòú€lyŒ ·€Á¯­Xü°wBþsØ7øòü „ù~Åñ®påG$ÏÜÁ4:Ë^ì°¨z6h€u>ûÕò _RPVx$¥UÑ9²ß[²Ž;£Óªv¢)|H:ßÇ35}÷îC'·Áe&圀Ì(ýâ”Ê!à÷TIycÏ;r€5G”‘:àï<¨„‘/ý¢tûæÏ òÁÙÇ… õã@·6ÃH\.~h%Å%wžõ†[é†#ÊãÕXˆ*¸uoWÏì ¢°ká›Ó…WøAðHÁ‚Ô“±–ÁbçÔ– Ù~5DŒ]u²÷$œjž$¶²—Â"%‘¯[ÂŽ,œ$VÄÎôÒ¢ ^â%Ó w$0èäÙ5(CÔÖ“àÇ)§$ܵe8:+c³ÃŠ î˜Á+¾C¯¡=;O\#Ë*}U^]ÙöL ¬@z±»ŒÛ7w)*À®ê- b1¦–„11ý¯-Ö×Àô­zmQŸc *XVÐÞ×­¯uÿ;¯j}-\5?+Ñ’'ŒOY±Â8{pòðG¶ú¹ñò”Ì^žxœ¸&ÈÅÈ©>¡R"…ÆÝvn°mf/T;–ò½ßMxaÙÖç äå¶÷g¸ Ý¡U”qã쪅§ºbÀt ϓϸ„+¦$ b(ÏfÙ‡GN àcTô6ßÁÔ¿YšR:†Á^PZàX‰Ñ×-*X·Hœè€`üº ùI“nC|'Ð]/Ú¼‡n·óØâ ß,äôd¤&A¦ç9ãŠ}ˆ«»h¥àã™GÆOgÍ€âkÑùד®ƒì7ï³}kNo¾ͧ3è|Äà#6Ýß’¹Ë]ÌUºë¤¯G¿¼ì&,¿ÿúJ±fÿé÷» ®ÉÞëÁ·µ+ÊÁÆ;®§Æ[µ=>3XfÍU×ÿUu B w5\.ÿç½»CšùƒÏ®šÕ ´ä‚\ôúㆠEŽûÑ¡CüÙÐ%ÎöÕlÁ,æ%ˆU¢qïï½®ÛG0xÝ`¹J5ëóZš£Œñrl’ÃÕ·û$ [ÿKØô Èm']¿zxófí?SiÂòrV|H£> stream xÚ½ZYÛF~÷¯æI˜möÁ&`<Ùu‚ÀGÖ`w±Y”ØÒ0¦H™¤˜bóæ çvÛ$¦¹êuÚåª6Õ`Rê6ØlíâÎ’<'BV4¥›¾H¦‚yÝØš¨©Á³.Ú©W_ûQÇ å5 n̾žÑ*p5²WΖÛÃÎþO¨«’LÏê« ÔH_çŠùºs”g™ŒÚ^™ÓÚ¢l}ÝÞ¬3IŸWbR ¬} ´˜1v¹^ÔåΩi’¦:ÂÄù?pŒ(¹úUæÌmGyˆi'ìËŸgšÇ2­O cÉFÀ}hàÎöÕF‚&T¦>ähÔuqCþ*¨=Hvn?$•:½Kú.I‘R‡}… é¨OYóHd§xÀ&ü±hQ!·Ôüx$xÄ%”pÊs2ˆ±fl… 9Ø­ø~»cµDÏ,o~x -œêë.PÆ+íTô¶n¡qåÎ4­´ß'G¶»½x“\Å`×û¼<»Gð 1´\oF{àüEŒôáQƒnˆ t¹ÉÎÞ ™áTÔ°ÿ0tò†•O¨—‡ÚâP,jÁ³\5Iæz%ÔÉnœ>n\g mÐÈË­wï8²¦¡ ½Ž¹(73®\Ä1 ýoôæcûfö?tç ú¯àíHÔÜ(ã)íG†#í’Q ×ãh˜èV$е›ÂŽÍ–¾^~_V`Åû²HÉ?ÀçuY é¦àŠÜë¾&[ƒÖ.+×ÆÙÆÄ·N÷bÕ’ŠE=^g›gÌtKêc+žEN!ƒâû²1ß‚ˆï¸|Á«o’Ó²0Dù’%D*ÀíUÙ:ɉ^îZ²?:[ìP"0w¯¨a+|jÑt˜ö{š‹åýWúrýÑ/¯8h_Ô‹ÐruNà^;`„-hƒ‚Z?3ãŠÉbÅÛunîßüðËÍ\n+™Œ|1ÎJ¨€-I·~' ñ`ûƒ>tjÕÛ Ë%X?–µœÐ#Í\ÌZÙÈd0­qËmªrw¹T½ "žØô³²ŸF²’âDñ‰L Æ}50•¦*g‹0©:á숆mÙË™5tcõd»24ÕIèîæ½ÉSSyïL’ÞX$š‰×"Ťòˆ¤¼PDË{Sg©©‚‹Ó1ŸHΞ§/(è€'¾ÏºÕD½îŒ¸/mšu©æC,û _¢Z-gœ2áÔ Z f¤gC†!Cª3ï½Au{jÊnж¬À†vôšW><`1ï´¦ÈwY±:»˜EQ4³’(Y(§ò·.¥M  Ñ}MïVò]—cEâ~ÀtÔÉXüœÌâBt¬í“õ§dëVD…˘aW@[0w‚9”«¯´è¥‚¹x!pZ½•æéP^µìO/)¸Ps!êÐÝÆVWn -¯]´hÏszÀ(n°è Õ”"ƵÑ=ym81NP cŒHÍ{Å®é[WÅÜ?¯d¯ä €ÕÙ¸@ÚÀl¬I/{<µ,ôVèa–ýuo&LÓk¶ÛSâe}®2Ϙ©Þ¿‚yžØc”Úfÿh› ÑþÄõÒéTYy@CX69„kcömxGN˜ªöA»:SM70;Ñ»:cÅÚ¬þÂ$§ÿtVBx‘>â³Ñ€tñ?nêDz¤àßûɘ^cë+Ì9éêÎ\ŠÝ·òã¢{Í‚‰‰·¼þÒzL4ÆÒá‹yMà}µn—L2û)à!1 ù²³vh¼35Fë:^¾N“=ZºF¹AþKßÿ‘U„Pû“TëG[m‚·NÙZT e?í±¯³«¢YÙÄ! C5$‘g¹ zxXƒ{9[â‡ÐIvFv•Ø!gŽdÃä«Í¶^Éõ¹µ¬åó„ÒNFШ«lÇxµ•+ee ò¾[<¨¾­Ç¥+ruÍT_ç€Õ`Ê?žË¨Ä Hi»ã˜4:€¼XMTÚ™¿­$ºKÞ\¡Q';×* …zÂ[õã|yŸTfy’y÷eõdl®=·U’fT(ä˜Ý¬»¶Ë1l{„n–p8Ë@3Ù»‰ûûgƒÀq‚úÒICâ8ƒ¿Æ£û×Û]·‹S ªoÔ`±ú4ìã—ÝUKõÖ‰gÛ°ÅQ«ÏU%òÜäÐ)%ŠËhkªa@_«Q[³Â[³AïžÈö€½0¦`Ú}pÝÙƒaúZŒ6ö³ãýœ<4Ê/š˜Çðn¡ZçîE!dmIÎG8¾M°%H!âaНM­ÝÁÞtAkå(ÛAˆVÉ–½¤oË^ðº~„-®›v²º©pD<°m˜¹ >ÊÆ¸»VÈM$xˆAQ§t™§}¡â„7Wjl²ÀcWÅòÏA6õÅÆ©lsZ~Aî«Y¨å|î‹ÓŸÍ}9 úƒžæ¾»ä¬¹ã¾ï¿t×G&oà;7^t2æ,ⓘð#ÂÚÒ$çzƒÇxUVÆáóËCä£4D)ŠÊ=Ç<¨&!AØR ~À²,>µë醈åý‡ûÿþë5;Xvõ-¤‘±(› ' Ñ:kÁª"a+¡~ Tgù*dÁ´F:JI@9ãéVù] ›Êš2—k@HilÎ }Û¢ïXˆüeƒÇ9—§J]OµR ‹ËHÜFâëÀΔT3õjI),W#šµy´Õ0Üeâ¦^9—ÌŸI=Øz±µÈ’´%\!bFÙ%ˆ·/ ãŒi<£‡É®s=ÇQRç16M¹ÿ­šý‹{èÓØ¡uÖÄë3¥)Ý'„gJSd7ÎU pàRñq Õí÷îæýÛ??üööýo¿Üÿüö?7θa9nÍ[Ÿ0oHÌXØß‹8ÄÔq|½%Kèc.wM ¼ã°@¥x[xŠü§ñe…ÇÂÅJ³¿ˆèS±ÞfoOA#ºs˜B;n-”—°ß|íñÝ6ŠÃn…^ Ûè4­Ÿ(+S[ÐÁ†ÍaF3ô‡ƒœç^úè†hÐèZE’X« g$t'N(¤¹QÀ'úèòßYîpÊ#8¡>zo·øÝw©i !û„Ìžò8£¡B`†G5­ÝÕ›(ÌúÑJGr)œîΉ6˜g‚¨D¨Q;ýbç£ã²= ‡KQÒ™»ÙÂa”ëöb{—`æãÂ!½Îí}—ß„ º©ûj%Jk³oèû†,îßc&ú;æ¢w7ø»Àì¹ë ¹Ž×gŠãéš ðn2LœB=)üÍC¨€ƒïÍÁ¼¦næ¦ÁöÅP·HøÈÝûÄ-Š£ñqTfo* ‰hiúz_~°v„.GÐ¥"v°žžxEH¿ŒKr,SAvúô˜­ÝW7ÊÝ‚….3pW`ømèøù¤UÒ*×=©ÝD£Ú•pµ+]—]M"QäønÎ^ZCÀ¡f.ímÜ2!Õš‚]ýNѸV­í¨#¦]U«Sq-˜KwNmÄç{|æN&'_ìu¡9,í~<2‡ö"òYÈÕ‘”¾oªÙ¨z’[_íNA7s íbxDÔ1°cã¼ÂDFÏa6‡@%TÁ4ò· r×þ¶‹¼åî¸ræ¢uåðœÇÓSÔ‡Uš}É0u­1ØGÃ:µQÌ´VGÁýÑÍò?^ü*ñ endstream endobj 4306 0 obj << /Type /ObjStm /N 100 /First 990 /Length 2111 /Filter /FlateDecode >> stream xÚåZÝoÛ8÷_ÁÇÍÃQüþ8 ´Ée·ÀÝî¢-p{ôAµ•T·¶”³å¢ûßßoh˵â(kù /ˆÎ gæ7¤D-,̨h™qÌh©™tDÏ´’Df¬'"25ñæ5uIÉ‚ Ì ÂP‹eâ”ERµôLJ#ñð Á$•Æ(%ˆò‘Ø@i•DPž(Á0’”K 5Ž´+ ³ACÌ“^(jƒÚ IŠ‚ÚÈ…Q ¢"ƒ’¢S2(W$”iÊÚ2el Êò4 ÌSyA#TeI©è© ³‚£È*ÜAcÉ0C7éµà3Ь²Š¡ø¬åtX*Ò| |Ò| äGöôÆÍtˆHR˜e¤ÞÄ"I9DzÅÅ8²&8ÒŸæë0Ÿj1éFxÁ¬$“±2ñyìJ>ÅT-¹”•üç=³F×Të´‚‡qž$È žzäEO’'ÍÜ& Á1GåA9šePH¨4K¤…³É8Çy+¡.˜Ô)1é@ð¼ ii8Û‹@:¨žre+ÜçHæ-e¹É;•†^Gz ‚ìƒÄ<àcæ#’Ü<à OR] œÔ¦Wƒ" ( $(–r’Ò6x‘FX‚J#" ÑzèÀk>ÊxDIX0Pm²Y] #^c³¡DŠ1ÙLy/¤"1”øBÙÔÀ âäÕ«IvÅn€n¿cÙïÿú7!•k`]Í[­çó“LÜ×uÕ°W¯Xvf£7î)ßàÛÍ‹&»ÌöÅ“_vl‰k_6¦¤Ï~[ÖÓ÷EÃnXöÛÕ5Ë>_¶ÓûáÏûù]1É.aCQ5+Jì¤f’½+Võz9-V›JÚþQÌÊüMý•Ý484û¨>BQ¾Äh*izÃøºªjH»Ù5²'µ-·„-!ñÀ´$d’½_jÒûßËêIö¦^Ίe2@|Ì~ÎÞf—72½ÍSÌE£®8a9%º´†+˜ê¤å^y°½Nî~ϲŸê5C¸~xw[ñå"ç몼 ×c‡õ\¢Xì 1Eˆ!‹Ï#Ú%ˆLkVPn‡Øq_4õx–(í¸§ÔZâwÃr7_,F4$n­!Z ®Bš/ûvÖu‹FÂzŒ ê^nQ9;P?`n ƒ‹ŽC¹5܆ŒÆmƒ„%C¹Q§°ä8nìA¸Ãò1Û“XrK ÜëÜJI®Cè+ÄÚÛ©Ê{öAíí+Ñß]ˆÕ#…XPˆÕ¨EVÁ íÔœç1”='­éå1U6EI!õXË-ûÓÖV¬DÀâcÁö´õi¹àóv}¿Fq»l•\8-îZ<÷p\Ü·.—EÞ”uu•7ûáê¯J(,ÃRJÚA‡ È«g½}ÊfŽžwì§e~ÿ¹œ®Ø¯ëæ~Ý\¤yÍÖÓbI½†k./¶ºjjºèNb°—`Ô('Ù/ù‚úr-_)NÙÏÅüKÑ”Ó|’ý­šÖ³²ºÛ|ìMi€L·/óýŸ‹OõœFßdo//©cFBSÄ>î‰l5nïôgÿ,«×ÕªüÖ}UÞÞp7E¸²Ù¢¬Ö+l³ÿ®ë¦˜· 6z&›ÕðßjUfwËüK‘åÓuSdÓr9]/nçÅ׬)ç³"[äÓe]eŸ–x0$ŸNÉlVBŪ\eðœ·Ùº³)Â?Ÿç»ÆÏëê._®ó|Ýdõ]]dÓœä­îóiñ4q†”ÁL:ØG¥çvk÷fÝ2Š-šk_P5½|s]hýþë§ÿP!"Cß.Òǧ? wæÜéïÃ]ò·>Úßý5jŒ½q‡ó3fØü´‰ƒëJ|¢®ÄgTW¬9C]±öÅÕcX¹÷™¿m~iOÜŒõ/ãýõé[IÙ¯5‡å%ýw:~6ÂϺÑágD?üRßsŸ³g€Ÿs/~Ö¿}æÝÆYEî­>iQ~ö‘¯{pI"͉ŸY^âÒÅñq©žÀ¥zF¸ôþ ¸ôáÅáÒ‹ñ¶ÛýÚZÿ»i{[ïCtÑŸ|wâ¦:<‚.t™'ÐežºÂ9Ð^º‚ï㪢}tìõ.coÙ.¿-j‡P£C¸SÿEuµ(Ƈš}jöA-î ÖK|y`‰òL~úÀÒÁG9O¡€Ž˜C< F¢€œ¿ä;:À>¡éýŸÜõÝé?—éúÀ¡{þ2›ÜAEÂ=Q$Üó)Fê#×cý¨Ì¿¼©ç³ÁûÕÇlN×_Rõ1ÂŽW}~röŸÏ =ûsY¦k.'Ö%yøû‡®¡¼½Ó<ºà2âiÌã‘.7Ï£¶È.˃5CàAÇcOóè"ÎàŸæÝÁ²‚b%Ç<Íë[¬Fø·n¶ G'ºÆt·gµé.Ò–Ð-aZ¶„k ß¡%¶WmŒ-ÑJÖ­dÝJÖ­dÝJÖ­dÝJÖ­dÝJ6­dÓJ6­dÓJ6­dÓJÞFŒ•¾éì—®½IÍ=]¥”Š› ˜EιþÛ÷(nÍø÷~”sÜÑÍM¡¸BÝP!p‹ØXXå¥í7g^ï¬á«b¾¨gÅ|Äk@Úrº}ˆ§³Lz¸hƒ•yÂGõm9/Îi—…›è:¥Cðüöš](„…^è^˦uu»¿3Xf‚ã2P:Ùtm‰ÒKÐ%J…÷Åú¾)G¼«´½Î†]<§ûXâ¹¢Û˜È.þ_F(…ºì%Ó>"]$]ÕåHi|`¢LÛaVüÀ¢— endstream endobj 4464 0 obj << /Length 4397 /Filter /FlateDecode >> stream xÚ­[K“ã¶¾ûWLí%š*‹ÆƒI's°“8qNU²Iq”ÄÑ–H…¤fvýëÓn ÔÎV\S5Ah4Ý_?$îžîÄÝŸ¾øöý_}g²»")¬²wï契Ní]&ebuq÷þp÷ïVùýÞÿå«ï¬ †êÌ$™Ía"7¨¯NçöPpä‚X̾Õ&sïlUšÞ|¬î·:•›~(»¡nžèîù^™MyºV=Ý?¶5/6? ¡>ÜK³©ô¤zÄw«ýÐ =6ucé2$]æ*12õ¤ÿ(tJ£²;›™ÎqIÒ\ÝéÄJKÙí(Krka_Ó¨‘l"éGaDÛœ>Ò]W*|Nƒšz놟–Í¡=u®ySÛ`?´ã¾Ú"w[YXYAC&…1´ô Ö-L¦²|ã>FËK`…ÊSXî@Oâ<)Š$zb‰´ÑíšLú1—²+ÏÕPu¸G·Í_v6²ÍþØö“S^‡ö\õ¾­ËémÇ­C²"°sbß6Cמ" ÓYxFÊî^æ›§ë¹j˜¸¯×_ª}ýøq¤®ôD¢ ì}¼o{*/—®½tõ( JÏ9QŽu)ÈGó4±mÜiz½/cáô+Oî®ʤnê!²±4Mr=Š‚ûbD5¬ÓÃ6N¼fp֗ͲDã²CyU7—UËeI²S¿þŒk°¨ãZ–zA3#×>ƒ3[¥4™ÍY G싊$Ÿ”LB_ˆ;·8 ‚á}‹B %Ìöx/•Ó€;Ókê „/+>}T¥HoUX‘Ž*4@‚û¡+ë{¹iP›bßÐò RuC‰ª o@U=ULä˱Þ©»>c‘ûô zžÈñ] <»úT¼_÷]ôxÆî¶¤wÉâö2Ôçú—’5[nAšžÚ®Žçä~›Âyú×rßÚ=~È 7þa_]b<ÐÏ‹Ógi@ziøx©ÞáqYöŸ&8sÚðѫΙ8ëí±™6‰½l®A·x²°5JaOC€ÿÊr“(1’&«­‰ñšjI“c;N Ä5‘©áì ¹Øt?T°;±}oµJ!vå$/FvÀÁÏ}¨ö]U¢|xÿ·ü1ö1©3=¦2‡ðꔲ`íúŠ:I” 1‰°bV^„qXKW‰‡ˆ –Ÿ%P1=õ=…Æ®â%x¶Ô‰vÐÉV‘&¶XˆÖŠmÄï÷6ÓXÄ £©3Œx £•‘ëQvÔnùÊBío –Á~SjìðÚÛñã¢n ;}^Tû îQ©Ió¤}M¬²£Fø*>3(Žl1oùá“–/!j'Õ§õ†ÔAy¾œ@3Gl;Jèâ³<œê~@U2®üð}óèìCäÌi ¶k´ù§úÑÉV^ÁëÍõr©:êÛµ×æÀdþÐ<`8–¬¬”-/$ÊÜ­2¸Œ*ƒn«ŒYm¸;tL´÷§¶çnwàZûg`•àán]_ÎyqG¢k}aGí¬Žæ9뾿V²á‚­wF4#@çjÖÑ'ÙÃéB*Ïi ÷ ?½ÒĨu© <¨À£6uÞ¿kDTIì³*™&RªÏPåßãpib·&Seªc‰ðû¹vÒ=pŒ^#n“P¾Ðˆ|f³R!C›™D'y6! fž˜èê$)ÐîFÕ¯Wt&³»`ÌŠ×SÅ£¡˜Q´Õ™J¤]hþ5Ò4‘fVIËÀÖÊ»`Ì @š"nØÒlÔ‹^e̽W [UodØmªT„ªèÑ·!8AÜe³Í¿âÌÓ:™ÐÂNC× ŽÊgôÉÈD9Ø‘4$ðw¯7¼HóQxd59oàç:ÅÙŒbµB±y ÅúÅiRä!4ÐÒ©‹†ŒùpÄÊ­SU\S;•‡] Áî—ª~:<¼ú/ø·óáuƒZ©A@nÍæKö!áPçf‰z’hš¶¼öä40¤»SuîéÉ  cÚóåÊ¡¸ewµ›ñ3êÚêTÛö@½×Re 6i§S‹Úôeœâ÷õà^åîý/4!A>xþÏ{)冃+ÊQWf52óaa™Ÿ²°~3xca-^Iâ¿¶> 1ÁW¥¸ÑUÓƒO‚ÄâíeF°gh[zƒíõÑUÐT´x‹¨MŠÂbØá ³+ËÅÂz%ÕÖ.¶`=²³–ŒtH´G7l¶‚àìˆ ”\žËÓ ÖIUb&¨²Ç ˜ÙùvÖ®¬€X$·oˆFe1”ˆÈ b®[êpþQଛۿ?„@4ì³Èçüc««µ‰»'θ’k0ÊóêÝ–U•:1)ScSD¸f¾.[$¼qÄtWvµ;wØ&çJ³ÁÖà„_è`TÜ*í±o•dÒÎw}`°áÅ_\ZX) 0 €³v 0Ôš¡U…£EüŸÖ&"O¦ C„Qö–Ípt¶ùæé\7±ýÃç Bx³/ƒ‡qzÂUjs%ø -Nắ»ýõLªÊ™Ô«v…aü쎶0¼C0¼Á›'é=ƒ£írˆ%áv †¯?ÏÎŒC¹1ü™tŠÎ k!/½yÉ"OÀ›Ç¼(èo|(¼±f_m÷<šºpP >ïÐÕè…}ÛuUi›xìì™ñ§:¼ŸÐS¿swYdð…yæ —+¡7mÀ¹Sů9È a%s@Ñ8¨©Ô¯*§ÀVFÒ &§t>½N€¡–€ÛYÊ@熭+<‰3CeÚ¹p·‘ðñ'@ DâÓíícŒ/ æ•„=—pÙØf*ØØû´‘Ï&`ãÏU߃ÁVR8EÀd3Ák†¤ó Y |p‚s !×~6/¥¶à/Éï:ÌpQóo˜èšëÌ\%ù˜DÊ­Ôg«F ë1-ýصçËØ´V*‹9`{€ý=Çí¶žìö¥Üÿ\>‘º)à`’Â@ÓGrýHKÔ§/©q'û±Y<–)a7RŽý‡obz¤{T*³dLê÷ä&g:new »ªëÚ®§!l…N01{v_áäã{CÝéø,é"À<Ô{ÒŒsÜÆ]4»ÑhêQkxдªŽ_ [è‘‘Jmþê2Vø¦Ãað˜ð4<àq7³ØWÄüˆÌ!ç¢ôû¡‹á%þ¸$B(-)S X«e ›,6 Pý3Òzzêæ„«Ã”p½”}ï‡;kŒYË‹›Ž&´Á±=$e÷ÔÇ6„Zu%LˆKx¢?ëtÂîÓì³'úʑÉ+£"#)…›ƒÏÏjLp3÷>k+‹k«òÄL¹%¾ ¾þØ×=XÔ£kh3K]B?@dο$ŸH»:‚2ª®…’IÓi°îêm¨Jvåþ\¾[¡™M2#ÒÍRˆDoXtøþzºökKJk5y45ï—mñ gnÄ…Ö‚ÙŸŒ˜Ûß×_߸·É0ÂNpé-,àþ kƒ_ µŒqyÙfÿž,¶F±‚†ÉÓæPY~‘‹Ð`ä ­ºé°<1e´óÀærî;XŠ-¸ ¬‡›rd…ü4"Ó‘™uD§1AŽ˜Äd‚Ï&DÉ™f§âàºãráÀ·Ë3S¼U;Hþ:dðÞN9EÞ˜h.\…L@3˜ñzk Ùjœ(Àf.NÚ"(%ÔÎІjÑœÔñs,N–«â“‘=Ô¿¡»ö[8zàŸK—Ì_~KÏßPAÓÎãˆ?¿Þ[šb眔Äzú!:O.—_l il˜—7‚²¤‘µg»àãlo¯YGƒÙbÎI€'­s{‚zNL ù€¢¼D¦ ýú\œw¶5·kEàÌå£(ĈÓà Ny‰#çÚ‡ë᣿Qf¾‰—8:ÿ5"™Ïäßgý'o(Ðe®þ÷ÜU|ر¦€ßø¥êZj=úr tÞc ×Ó"å V\+ÁÐT'ƾŽLzEZPà§ º)’2ºØ5 @R×èÁÐÈ  (íRú)ÏXÃ2*0#üÇgûëЋø¾lèí¿\¶±äO×~ øhAFðÿ×€i"ò,¬ûâa@ °=_† Ý sHˆK¹Êˆä)Ë*€N±šeÄŒ61iÂk$¡©Âùfä˜t†ŒBËÅ”NcxÖ-ÑÅâÖm7Â3³ù;EOšx¹Z=•&ÆØ7&‘“&¬S‰t8¸öÍeç3]LùŠ˜º·aÈ$%º¦zº |ƒ!ú]ÅÙ€HäÏ€Å.~-;šÝ²£ðíÁ¥ 5 j ÁÚB˜I¿x—@‚‘æKçs¡{´ôjFsÉ+&Óƒ|JPP%Cw¤c8çþ}ãÇÖ\†…וl™i‚E0 ׊Í9U‹Å"â2Q·}}×ZDAüe1÷c4Ô>îÞA*h8Ä×òà ÞQF#]­×Ô9È׬Ì"®iRåˆZj·àÜùäÚÞUM£Aµ7Ë-n©4ÛüÂW6xƒí‰K.´[÷¾paJà“V K8û}vö¥u"Ûø+ɇp&å ¤çdzǹ/Îû7N’Oõy4˜¾œà#œeŒñ¹Þt—s`ˆ²0Ì(O1õçªÛµ}µVXµõÃ_ÅM™9yNmóü CØÕýL•\‡ýÄ&Æ.䟸‘uuª4‡zr_œœsq²›*îJcQ¡™$’÷´R@(ã–§o¸‚±\ÕÏ“s=ò<(±XÖõšbÉ@õéê%æÞǺ:zªö R¬ õœ[ª"ňX(OZ¯¿H—ôèØyÄtÊx™«°Rd‹0–ɺF ®°úsÝû’nMex=t%Rÿ /xÛ…Ã}¨0WI¡ìR[û„JÂ:¢~‘YY­b!S×î«êп>‹ìhŽi¬Y›åñÓÐ+ǧ¾öR˜Uu—Íjjºjá­‚Úµ > stream xÚ½ZmsÛ¸þž_áOj¦‚ðò¦×©“‹s—;O3±ïÚ™^?Ðl1‘H IÙ§üúî E*£¦:ã— ûì³» éÅýxûâÕí‹Å•fÉ4×·÷ŒR"¤¾0Œ-²‹ÛåÅ?“Ö®7õÒ®gÿº}·¸Rf$/2ML–6')x†B/h˜àb.LêæÜÀC‹=•Ýj64Kº•õZ…kÕ„*Ö+Ý—‘‰™ TÊ^$¯–5Ì©Ó^æñ 5ÍŒ¥ÉÃnc«®õ DÍsÁ艕CÏþÿ+}œq•äë Ë|²MXžV£‡%ZᡪîbŠÉ2ÑËõf»ëì2¨ECyƒÂ?’^4hWßüðöÅÑ[hAØá-l[äëb‡£™yFÒt'³¹LÓ䧪GFîV Ò”Pm.æ€ÉL©°Î¼µšÍ¹IÙá•&åŒ%­o¶]¹^ûæ¶nÛònm}¯«áʳd›·A´¬îëf“we]ùü®Þu^ mîõå›m¯¢-?ã®»ûuÐê±qÞ.ñT~xm˜›ìªò¹}25¸FÔå`Ó¸êE¬:ß>$|®ç W’yࢊ7E¨ëSq(ó€œA¶ûˆóÀÏa/6BwÜ%£Ì%Áþ©|ÎþT˜x…ˆdQËCæ©•™Zþ ÷‹‚ªÂe@Ô»$xeÉÏîJƒ)iLÉ3“¼˜³ Áˆ‡zÑ5 % 7&¹q5³I‘Ç1p¾m¬­VÀÀ6¼#þÆ«põ¶M{§’˜±ñ¸§äÖ·‡€ì‰À=O¹+ K–MŽ>ö䊸$5ë&jW%HšŠ˜]}îOLsÚØ‚BQ«¿FÙ%ˆslÌ&ùfæÓMsÒÆêl Êb!c%Šrbãëâf•WÎviêmNêê žšäU]¸hŽ&^wAêW/½ôyutxâç âvÎÚ!„ëIäfwm }ðÜÒ#GOiÈ(±U†çÒ1æîÝSK˜üÒÉó>Çð'ƒæcÂuL%ÐÝ ùaÚÃ… ñ­"ß¡°ãyìW5T@Ñ$yEÊ{ÌÒ±„¶Å m˜¤ŸùGôùfÐ0yËÿ ÑÔÚ¯çh;VD4¬ÀÔFPVdöí™&3RéŒi¦µæ\Šh¾!8‘ÎYÈ}ß@áY;Øqê $ÈÏ“Ëvu×áúVÆ“›Í¾[…{ˆ y‰å%c|‚DÈ-ø>añù>Ã|ÈZÏ„Tf °XEÔÔPqÄC“‚à1`¾C×»¦êS Ä/^ß<pý²Š% ã'–‚hE˜üj 2 UQóQ "˜@¬à™ê7¥ ð)„/Ôä ˜…Êþˆf"b¯dSÌ€MíÇwâ±ý„—áQúÈ%8ä¤$ `©ÂÓäC ùKÓºÁp°Â}r‹ÒGå±’¹\=Àe|õ]UÙµW°]×ÍÛýÏ:öþ†;{á¶úz¼üìÏb¡³±y0õ² ùOãšb`2œ¤jpƶµÖ… å«Ws³¯´.iÆîéâl•ß ‡e¯Ä M$}–V cX|lÚ  ED!T¶DªôLlà‚ÎÙÂÕ[(‚&Æ¥¥­Ú² %À(²`·Ïs°íá# êôÃø=~ßv ®IQoÛºíÚÅÝhþù0õÜϺˆnCP=Þ† ‘N¥§ÇŒ‡P±«Páaï‡ âE…#Y¸\ùJhm'.òï‚ü¯A>$þ´Ï D6­Adʸï3‚,œÐdâëIþ‘㜤Òë¼ñ鎟‡¾ð”ØI5¤±³Ý›sÜa̬\ÀõIîL¿gÁ)0¼š ~i¼²Ï8t¦õ[ô¨txkj<ª /}ÿPð™Pði=*ø´îí®ú¢@¹C¼ó`+Û¸Ô:Ápó]ÛKwM¡aÇXÁþPú>~Hò-¸ú  -¤Ñ,ÒåRTLøÜ±@–9rÇØŸòÈv« Jéôlàè³xTŒ€#™++¤PßJÍâÕ '“"ü;ëoŽ>ª÷·‡3!O7ª?œTtüÇ*üu„ûJyç›Ã‘´ŸV¥ƒ  _’Ý'° ÈÈ?:[-ñk²“ößËÕ${8¨$Ñ]xsûâß!Õ-c endstream endobj 4477 0 obj << /Length 923 /Filter /FlateDecode >> stream xÚÕWKoã6¾çWî¡Y bH=­bui›(ºE½ôÐÒØ&–U‘Îcýí%EÒ–b9ërhsˆ†ÔpøÍ7/Û?\}»ºº½Oó @EeÁjŒQœdANÊâ"XÕÁï×qŒßý¹úñö>##Õ8OQž-µ¡AIoD Üh^aw¶žŽ„þLåz3¶'ïžhÓq““çž·÷q,õá,ð[ ©³õÕþ<úÎ0"¨Ð÷xûïÂãk° íbÓ‹ÆJß1õQ<²ê“]Ò¶¶ÂoðÔŠàG˜äúIÜqÑ[a Ê)i6¡RL´vy`ö}_‰îÙJ5õ&X«„ [NFŒåŠHê£öµÕ˜pš d{moƉQ’¯1Rî4ÖX #¨Æ§à’éòxó ÷><è£5•¡`œƒæ0ò” çŠ â3Lm˜³ÚkP¢ a³ÑDËšÇ6{S,}CMeSßø€ýÝý*õ?·l@íD].>ü´ð lË”,ã!ÎÜöŠû¶Õ(¹ãBÍY°:¡¶ån}æ¬)+³‡o0ÊÌåîͧërñ«ÒŒÐ¾fŸÀEëP—ß3MSm‹1è]>Ïïe¹<íKëgáC´o¿™S”Þ} ß{¦«çÊ…Á±8Ç´|µªv­©Ìú¢y¶«Ûæô#Àg"`ƒé„Ì)ÑrWÖ´ë¼øY,VK8%µ¯™ÏÞG¦vΞ}ü½§œ)gXV¢<.­HðÛ„À×É~-A•Ã]ï ¾40Ç$KŠøz/Á‰qì•ΔŠ*“·fiSϼQd^)2+µ{(3»R“Tí¬,:Å]½œêlAY¡íô[S¯yê†:0•,£¦ÌÛ)SfG*è¤M„£T×l‘§®j}·ê/9“CžÀ–‹–ë.»^¼Ì°K2ßeÞ][›ãRüL® ¿aOP¿è«Ú­°‡­vW¾èǼ<2‘¬7.UkÎôœ™1¡„d«zß4®"hÏèÚOy:š=UzhÃ+J2”æÙ Q»Ã¥}üãŠÒø÷fCeÚ¶»jV)ßù©Îjºu~ÛP¾øT™ôµó³ºvm§õ‰sý§:Ccív¶‹Z`Ó¶Ò£!É÷RrA+ýßÎ¥3d§Ê‘ñåÿ7¾¨ÑÄ)#ðYÅÑøc'ýÉï…»ÕÕ¿‘MD endstream endobj 4482 0 obj << /Length 1090 /Filter /FlateDecode >> stream xÚ­W]sã4}ï¯ðxa؉]Ùrâ˜Á/0)  ³„'àAµ•Dƒ"Ki7üz®,Év'Í26>®î9÷è^IEÁ:@Á÷wß.ïîfIPÄÅ,ËU ãläIÏp,ëà·Šò­¬)÷×òÇû‡i>°ÇÅ,΋¼µ–'Æè9€ûŒƒ9XÏ2cá|ÞšGÓÔ.zó.š"ô¶’»ƒmÕDÛbBK‹š'?ù,N“©ýÊZ!eq6ÇÞü8IpœeÅ5'¦•{"jˉ~"[&è€*¬ ¢á8I2Óˆ‹iÑ#·vßD}¼!‘"Ô*Þϸá4‰‹$w½q"m©&„SvH®ì÷ŸhЏ\ÃWâ&êÚ™4D3)\g¯˜XÛ¦Þ¸0~&BS½'T¨a£=ÖFÖc, ¾0ÆmXæ»Ù’x»1 ¶”¨}CËð—áÄNVæÚ"a%|\¯beÕͤ0“úžÑµ„?¾ËÖL«2u]ÅÉc©ô¾>´Ñ^`8Ôq~œj„W{N´‹TU̵»¯d~wRÔ‚Šlw¼ë=‘†QõØWs*ÃcD´Ô‰fÚ½h- 'Z;Ó‰æ“щÖv¹C¨\~ü}qI¦Ót;–iÅcúÏžðˆ®V´ÒN”î@è\ι1 rÃÄxð,Ÿ.еéV†‹E8¤;Âk×КUšÖ£»ÖWÃ3ÓÛ+¦_ÚÆw?\’Â95ë ÇI7D¨UI?íHǤً¯Ç ÁcrœYþ^:Ù³Ã*ÉÄcÂéê‰kÚˆ6 2äT©ð,æNz;¨ú”äF˜>|;ŒWü3Âéq²ÛqÚ4 pA½„2V™Üïbwµœ$d}e/£±„冕Ùê‹uÚÛ¤^ŒºnO9@J^†|OÃ|à+>àD¸ÅEvÅź¡Tœ«–© ]]A2‰Ñ×ÎÀPË]ÃÖíS Eu ƒ—ƒëC*ÉYíMøs]¦Zí‘êïpb¥š´ÑN„'-œÄ^R#dœ—÷ýÁááÂ#GG7ùÓI*‡¿¶9wtXEv$ÇÔF>û T³-Üâ'!Hmÿ~4 ¯]ß¿-Ô¥ ÖäñìéFâUC¶Ôx€”νÏÜ/Ú¹I—þéé>Èì@¯úŽx rRÈpÆóÜàeÅl€§hìfEn!ÏÇðñØÌû±cùÇðù, x#qúw¦èõóaôe'÷¶€ƒ[‘¾P_×ß êµ ºõÅpÁÙÌÏyx\v“¾Žü:n²ÿýšr¸°;>|"ø%Ý¿šþ{±¼ûu6Ð endstream endobj 4487 0 obj << /Length 1046 /Filter /FlateDecode >> stream xÚµW[oÛ6~ϯÜ kI!uµŠùa’mEZ¨ß¶=0m‘Iƒ¤ãúßïP$eË‘wKó“ôáw>ž»Q° PðûÕ¯ó«ëÛ¼ ª¸*’"˜/ŒPœfEPbi̛௷iš¼ûgþáú¶ÀG¢i™Çe1 NHÑv-ÚÉ+ä\ߦi0…+Ef®Di^vw¢“ÄÞ|ó.Êz»`Ú.‰Öš n·ª²kÆëvÛ0¾t’šð†ÈÆî¨”BÚ%qòIk¦P”¨­¤vó7Êš¾·Û­2°@ˆGÅU^ 詚´ÔàÍn¹ûrcWÔ£ÁíÚ-?Kª´WIÝ£HÔ&eð‰íIÃÜ€çâ ôÊ-ôÃîÚKGó“Ç[þ~ 8íýäôþõöîll˜žÐ©Þoèl²"í‚ ¹ž„ƒÎ&Š2@ZM%'š=‚tK•ò_œØëoPž\N‡Ó%ýº1*ð÷b“^ΦK¦4«¿§q²ËélÄŽJ£Âë•È$8®ðt˜+±s¡ o_M]®‰… gÚjrˆuÈP»©…ÆÁùûåF{º&÷×7D“x!ÉšÔ#%3oŽMpÿÐ}ööJNÒÓƒÌ*aÇeŠb DN|AWMK£/«Š#}ŠÆ0«J«òéY:<+¬bft÷¦ˆÆôK±ãðxc0Æ9”o ŽÐäHØÈd,i½'Ÿè²s{¹#8åš}ywÄ“Ï]ó‹[Þ8îFò$bÊAÄ@h5¬ÖÔÅh1X‰C¤ì˜^Ù]•ÿh¿ýyއ=ä6A¯%áj1ƒw†¾¶.™V³äãKŸOÿ&y˜ôu`²o$¼óßuøqg9ëñWü§ôÆwrM"ÂI»WÌ×~Ò3ébsİ8QþȤàkHÒ:yqOêÚÅ¡Z‹:Äk·¾\Õz¼›0$SÏTÉZlö‡ºå‡-ìU⣡¨,âç~ŒúÉJ Ʀ,Φ©¼œÆYV=bV¥è‹2ýJÖŒÓ#ª]Â(1Άae4Ÿ–äxEêµ";\UÓ±XttϘ©Ÿù 6±Ž¬ËÔÑà7Zƒ|ËñD Ú™Ý3Ù~a^4ƒa5+ÑÌ&ïÎ×7À>_Ê[Ω‹›M+ô‚•6hò$ùˆžÁø`¤ººâ$Qœ‡8LÂ,œú~à¤÷-[Ϭ HMÝâL›ÖtÓs>š¦Ç†ëÿ6Of”ËGà øŒŽ$KIa˜ýT¢Ê¾9F`œ£0ÎQˆOJæ¼M: kĉ9z[ Îæ¶+©/Ø^ƒ­jÒ7¼ú«d÷Ûœ0Ò­ ÝÜû‚BdÛêçLp±?:¦“oµæË}¡ÿè?oæWÿSUÚ< endstream endobj 4491 0 obj << /Length 1029 /Filter /FlateDecode >> stream xÚÍWÛŽÛ6}߯Ü´Ù$-i݃ê¥A6h‘mƒÄHnö‘h›€D$íÖùú’"©‹-C›6bÀæˆÍÌ9s! œœ×W¿¬®nïbèd~/cgµv ~ÆN¡™³*‡kŽ«º)quó¸úíö.JúAûI–Ik­fJé ·wAà¤R;•¶$i«î-¹è—~øŠå]zö–ÐÏ`ÚÙ¿ñ"®k,‡(ªŽœp½ÕP½Š-Ö^¯q!Ìáúä°hª†i‘árl ÁP!ÈSÌu†¡> *1AY‹»£–J$–¦:ò’Ø_ÂÈ2ý\kŒè ý0 ¬‚´7a~fsFB«àêˆdô¤Ðêh)àûJ¨kKL*ܡnjˆ¾ð?¨&@+v¼,•õ?‹²B«ö³×©ûÞÖˆÒ%€©åuîù}öÓ›ó\¯‹{,_¸,=A »aú"Ìä|œ¬0Ã9-›ÚÓµdê:èÔ¤q1«‘r{$†ºƒ[¹üq»rÞ6e¾¸³P‘]²}9^.ðÎD¾§²tm)ëtw:òVTqoßߟùëZMëýÞX&öôÅT`ÜZ´ íŒQdÔ¢8îp¾Pqʶ”*YW©VˆU™Ù3¥Ês,£K”ð> _…±Egv»ŠØ´ÊfOÚPoÇ0Ã"Ýuƒ„‹}Iú|}[¶ÜÖmýä´ ùþÇ"; 8Ï]†å÷®;é+Ñ›4v|Ãþ+Z*DÃê¦q4?¿Õ¥q@)‰8ޝ•,LÅxÌwómgGàš5µ–>à6óý'½üÙ4%ïÛj @t6ýÎ/ %%VanÄCø†O˜ñE³Åf)œ™Ë¡ÍÍäUž’EoR副ûlÚEŽi.ï­Úv`Ñ0†¥®ls~rkµG|×ÐRfÚ”€Ês÷t@Œ ZL÷ïHÌU\ Dß3Ùš½üãíKFrf‡>%9=½Nñ_Ç&­ßÝueȆžÿíö’#´$…°ÉCÌПe²ï°¿‰Øê§,úQ /½äÛX?°mÅäzñ?‹†Ít¬œÃÔÎî]Õˆ©$i±£cEê¼M2p*/3žN.({{ñÿ=‡†¤ôé¬Y‘¿f¨ÆêÕö•´E6žúêš¹ñ䟃ë\/š/]¹zCʰû]:qÙï½õ q¿›ôbÖ+dƒÝl Úí–cw²q%Êžðá98iµ÷•‚©¸ÑƽB4‰ìËÄžŽb:ôIÇ!˜ÊO0™ÀAZ/‰OÈÅòËs1”Îa‹'¯Í””õÝ¡èþÛõÕêê_üiѰ endstream endobj 4499 0 obj << /Length 1631 /Filter /FlateDecode >> stream xÚ­XmoÛ6þž_!¤b1CŠzÝ–Ö ºkÓ}i;”¶i[ƒ^8¨;ˆ¼ã°£ÃlxýpJlˆ&/¨è Æ9Ø$ðzé-À³0oKEâ¼y6_„œÏÔ~Ÿv¢iôÞI›¶\5YUº¯¢ÏxŸ5;:ç†}UuæäÕ®2šÎëÁ÷:ÛîcáÞB€±!ÅíòªjœP·å7£d°A#нïnÌ­í~£–ïâ¹ßY+6f»wXop©Ö†4Ÿ÷úú݇£ç4‰Ÿæn~n%šµ÷]÷·öóIpµi²Ò͸Okj­J³©êB¯ µª®5ä¤3Xº%­6ªýÓwâÊ[= ¡Qwn "ƒãZA¢njUhTÙYáÖ® åª-׸º",ž/u£.)z=²Øå8'pöÓÁÒOö\‡íõŒ¦&¸P#{ïT½ª È5(äïþ×„çŽ ’Gå0a‚8I å gÜ0Kÿ3øÿãKR/nÏþ> †{¢'¿ O½Uqöî÷Ö°†0 nÝÛ…=Æ9÷ÞœýÞsÝñh èo@°L/ˆæ'é£Ü…£Ã>KÑQî:6_ø!Ÿýª›]µv2T.æ~8ƒ[/ÜçoË¿€;Ì ×#p=y’ïî‰&‘ÀOYÅÿ¨ÍªÎö–¸†.\?DÈ©pMäNßô´‰n4•ͽAg7à`·úÒŠUÛ@yt³Ke4æŒ:Š•ø‰ßÁ}8ž»m#Sá!“iÜí"J·—:´B´ð£Eq Ï¡`²Ëƒ·Fmõ$:ÑgU‡–—ÖIï å†-nÃÒc®Œq¶Åb”e ã>Ë.& †iHI{| ì ‚S—,„ ÔPâa8®¤ M +×ë­×ׯ޾|IßUž$2Æ:ú8aâý}=|¶m ]RQ<ow³ó¨rG9G€XŸIª&É7¢2R£ÝâÑ\ÔyŸ‹ìa#6D#–Ìqd1'Dä/÷£l‹¥®ÇöÃó²¯JC5y7á |¬jsªt]?±Áh¨6oŽöÚçå´/d×ÈÌ‘'Æ$Ž1Ù£ÙëU¶ùŒÉ,Û¸IÛH °«wîéÈN;š‘uU8¹Ç Žou©kÕXF«wU›ÓEK:š•Y“©|Ñ7$ƒòNÃÝÐ/!fÑG½¾p-$f/ ](,€Ä'w±v¦òÇg>07m²F‚*‹ ŒY ƒ€n5-4;Õ8é>Ës'Y/`lMgiFÇ•VªÛ ø>´SD’‰8ìWè†u‘<2À‚Š1@K ‡&$²K²¬Üâw@Á…A’Âô IÄ’ðç[ås1bñS¿;û!ÞØ2ºË2C›ÕÜï2~í–”9(žx_’ˆ%±ìkÝ<Ÿô“6ŽUMSgKTÙbI?µ5ˆ£µTJ,Ʀ­K´§{»ÁË0Hf·;:7(½Ë©ˆ$À=qòXê›ð>l.ðòû:V;Unɰ¦SMeb{GŸÃÓtn·ëy£Ò¸t²«À°s“jþ²Ä«·^'¾~Hß<‚Ÿ}-°×ÖöaDPQO®ªc©é؆,ƒGC+ý!²£~KkâÈÌ…6~§ÉPrÉ ÷‘!>O CxzQ{ê¨0â*„Éjití² ›³+j¯Ü"(Ì,“G}?J™‰BÇÿk·¡OM¬@)W°¯-'iКñžs_¯)Jz,zµ˜ 5a‡\ôô:‰/‡¬²´KjèMwià´ ›‘áÇ^–›¯hŽmû\ô½'ˆ€pŸÝejêQ€vÿÐ/ú˜ã4,I{¢*ZÓ8-KR¬œŽ~Tݸð—ûÏ ”tF8L•ó…5ÄÀ/þ édm™ŠDÒ oÙøA Uw'5àé~=6KøÝõ/ˆÍÕË endstream endobj 4512 0 obj << /Length 1600 /Filter /FlateDecode >> stream xÚXKsÛ6¾ûWhœC©©_hãN“L’i&“ƒã¦‡¦Š%&¡! )é¯ï.|È´›d<6bßûí.èp¶ž…³×Ïï.®_¥tÆ O£tvWÍh§³ŒR’2>»[ÍþT½;l -H»+æÿܽ¹~•dÆS’q 5c ]„N P§ê…'_D¼d–éÜGA±=ˆë@ÄP!Í™’(L-ó³ù"JÂ`U讪¶Ø »<Õzcmfl "‹Iڛ܀‡ŽE‰iê‰J¹=ì5kVzã4ù(­ìVTó( *Qjü¯p̲uσ.åN(‚ºg žJ“Ù‚æÄ9vgdljw-Ž;×à¥áµËS=§±6EãžZ·õr…ÁA‹‰ÐàÝ»TB¬.§¢ÀIžçžŒÌ,̃?*§£ÓÛ*9 —o»!¾/È¡©ƒ9Côö³½Y}Ç},#Œuu펪ŠÀá(vRò4¨MéçlMg‡çÇ0Œ´]îäJlÝqÇvÚÔåÆ.‡ ˜gã/sl¿`é™ý—‚Ýáè2ÍáÏÙ¢K—™µhD‹J¾© ¿üRìöÛJÿ~+€¸æ ®7>‹!«’õäÉì[!Ü ö_íêù‹×vq,Ê²Æ ŒûQƒ«ºÑÒZ 7ß`ëþ"÷Sòž$†íŠNJü>& žBë„kOx/Ì÷tÑ™K–åÚO<À-ÏÏ\.¶¥I­ÝnåÚ.ÚZ}v+åÊ®ÍÅF nPjдA|¥0ÝîX´uá[³™·Y*Ú­ÂÝún.oo/¯œÒúFï¥r»%ì±v»²¾)û³ìú3ÌÖ üñzÊŠah²³ÐTµöÀï …¨ñ.¦b¦¤¶B}ƒ²EǾÖάcýöµ}ð&Sç‹Òî÷Rx ñ‹Ÿ8¹]Iš8æJmû4ÃÉy®ý჎‚Ü{yô&¡Ã`¾sÿYq“\yÅê†F,~Èm'wª¬_Þ]ü@›”ê endstream endobj 4522 0 obj << /Length 1762 /Filter /FlateDecode >> stream xÚµXK“œ6¾ï¯ Ö©ÊLÕŽ,!àª=äaÇñ)‰×'Û43$ š Ø]ç×§õIJoÙ'ôhµúùu ìüvöóÕÙË7qd(c! ®vÁш !ˆÑ,¸*ƒ+JÙúóÕ»—o™F@Ê’i¢ŽKEt†-ï×Wgÿž†l‘„Åñìãg”°ù.€­, n4é1ˆàæ$¢0®ƒ÷güæ_-;¥SÙ ‘€Å)"Q¼,({gB”¥Ä)qµÎ—ÝzÆx%væûú¶àRšñûjßTŸ0‹¼)¸f½¬i£ ¾_¡©ñ[ð#1Šqjdü•Ë¢­N]%O³QCߣi°!)J3bŽ¿é›BŸÕêtÂ| Ñ”}aõîÜ¯I¼š˜Czæ@&L<6J€0A„Zù?È|Ï%¿«‰ïß™& Ý'ãÛ‹õ†Rºº®ì@òaÔo%ïì¤Ì»ÜßâKl‡yÝñ¶É»êš_žw7ɪäåù°{:ä—Çv–˜ty^(=2‚ˆðgq§.ޱ¶"ò®Ù·<‡é¹Ý?µb¿ÍÛË«¿>¼öŽè» ¶keµ¯:i'!Ðèë7îþ"g›/ Ý{j¾GÞDiÆ;ÑšAQçR—%ÄKŠÅÉ?ÏÑ4klŽÍ¹M=ÄdCh„¢ÌYŽÊS[5sì¨øåí÷YàÞˆK ÇŸÚ5Á«}äM'ïÉf‘vuàÒ¦DÞ®i2ðÒK'Þvy5K(mfT5§¾{5!ÏÄ Q”Dæ¶Û­—Î ˇΪöŠk••¼è”cÕü¦ê³T ­¡+m*ïÖa¼Úq—õ²ú[Ñw…8ÎWóƱü{8ìðaRžŠaš ÀÊ}Þós뺩v!Ä fŽ =d´ M3ÄtÚ1D5G®«§oj5 Cc5J˜±šZ*DÛryp¬š½Ù“ùñTÛY <À†y[)ô“fI…. ¢h•¡Õ‰j·d£˜P'Ëí‚1 Š…CþT–»2¾bꌯÖÄÎà@…AÐ{@t¯GJầ8d R ÷°S`PÍœ€ü<¯„ s±œ$6–aiæµ'»¼)ó¶4¼mE+ÍŽrG#:þ lÅèJ4õC$n(tì&läßÝ(¼KVËbÐohzL¸Í+nˆ2Ø ôX@>ŠS±Ðw•µÓœ‡£&ÏÎKé#ÎÖfº<ñB—d^>ØÒ5u—®šO÷˜Ð½H^Ãõ)Ñö®Å¾*Ì‚… Øh3۪Р­4“ª šäœ¡-·µ+*ûJ­™P˜•ÐáÔ\’ú57ߊ5qçlÛé•ð•Ú«¬Ï¨ã^/,}ß͊뤰‚¸O*¬_Ó¼ÅOw’Í5¸,K¬Õëž›©Ö,c&ÍtŽe[ïkUÕ>ä£#ñ˜+ý,uk¿F=sOß”¼ÝÒôu½”œ‡u¼úr@']ò¨Ì ]*Û‚óúÚÚÖQáÇcßÄ4ô'mùÓ[ò6/:­Tµ&ÒÓÈBX<±-L,~E+ý´hÌÛ)-„MöçÚÃÞÍAg…¢‚øï1G€Çv³dG¯×#³^gCH’d Id¼ö‡²‚4µ›:é퉼åK•*Zo‚É[j·b†Ò4šà–u1ñ\¬|ºT„7!‹QŠc_çáYµp_¡”†³ºX™á¥Œ° 0%q7ùÓ±O…6 ¯~q8ïJL¾Ý‚©¼U XùHçÄLí˜Å'¼¿â9 ÉõÝ5qÕbõΡÏJßø…ð´\…çô­ßµO↷÷ ¶Fô¯A`ýúN¥¤4!™R6EYµ§ÄVß6y„ÐdN¬ôЇÌ>¶nkê0ÍO#³¢Ño:"óf8œ]ÇâÇ`2T©ø‡ùï;³×7“TåZo ÎìÝTumXo-'‹G•fºÍ¥‚ÚQšyÇÖcˆk¿Ï0Elx]þŠH×gìZq.@MP–‘G{°Zª±Ý×=Þ#]X"ýL›dºú›ô¬&Œ‘Iµg¾îÌ6ÕŒL*sþâü(ú¦3‹:?˜*óàs±ç ¯:K¯Ókz΄œZš„ÜRrˆa{ƒ8™ÖJ‰ š8½4°fý™êîÃÜ•’‡î03U¯Ì@J°Ôâ«`þˆ:ˆ£6èå÷±,Eéøbx~ŒM~»ÿt2} endstream endobj 4529 0 obj << /Length 3237 /Filter /FlateDecode >> stream xÚµkã¶ñûþ ã¾Ä d>D=\>îÒ+Z$m·è‡$EeK¶ÕÈ’#É··ùõá©åî^ô‹-’£™ápÞß7|óÍÍïîo¾zŸŠMÁŠT¦›ûÃFpÎT’n2!XªŠÍ}µù~;Õãí÷úê½Îf+S.Öálw=ï$žÎUxvø.m¹Çèç£z85ûÓ Ñe@ÊŨéÂYºLp6ÚÅ ýµ«^ó?B[ÌŒ±ÿANί˜³¹;{È )µ"±‡ ÞÜÆÍ?Ô·áÁóõf8—Ñ8ãé’¢Ó¡@ò U³Õ[é»Û„¯]c"uC«nx EÝpk#ó€n€°Ø4a×m5kPvVZbóá蟷¢•mugJãˆ#Å/]ÖUÚT«íÔîÑ%Àg°h«¥_½AK,- *mÊTf[b¿X@¾hŸ©œì"5¥K › YÝÈ=l`]{0oc$Ë`"e™zŒ’Ës#'’ ‹¢•ðé yD1̓Ӌ?@æQ˘(T@Í`¹ywóó 6UøFl‡ ȃ"Â6ûóÍ÷?òMkp. òç̓dÀ¶K J Bªû"¥fxZ™g`•ê%Š9Iº¢èË|Aï¹Tïc\É='$×Pù)¢¿´¡¿<Þ‚skºÑ8jî\%¨ðÊMÈf!g  H§&*ZqDN±½ÖèÃFçs©Ü1¯Óßb8êúáì@6A‚f89œEl5;²/#Š£°ò^: 6éSmÎ@Cg,"šÄНŸ",KgE÷Ṟ=Ö!ÞÙSLób©ç.ÕÛ—;!àB@ÍÒ"ÌÏ0Eh`#" *Ô·Êbñ4DÉ #É]õBu@½*½âstÅ&Œÿ\OQç1™Ì»ý6&3PáE¬U ÉÑšdèÕqÆå ~G}•ɹ&Àh‡;» Ç7«4IÉuë iÂéY«ih‚-Fð…ipkaÈImœ™Óš¤V4Ø=Fd'3 ¾ÜK^¤Œˆ/7ŽÃËÌáa£,ƒØq ÊåÄ$ ð¿jîR¯8W,Qa@2ðaW5h)–%1)N¡èJ­œ&YÀCÓÝ&Ü¥âc}ççIñP7ÇퟣK3xy´ &ö±®‚;_w¾w¢Yÿêe‘QS¸æ,ªÍ¼Pš¿¢Ì\½®Ì2ûÞêìÂŽ.-êm]"dѦ£ï¹Ô?ò{t…•,·Y‰½ÍJ–ãPÚNµJÜÕXX¾äõ-h¦¤;1—áÔÓ¤g©âƧsM—~k‹€£:{%ˆ@Îg½£Î  ¼öSÔZ‚ƒ¿N[Wj–d²ú—,æÄ•Ñi³þL®¡Y–Íü¼‹h)gi1gg®– 4ð?6?ø.¢‚êN²Ä}ð“‹5Àl‘zéKCBâ1»ü·"Ê¡“”`wÅ¢m1{ òݘ=eÒ ö”¾V*2iX—i5;•ê3¹•ÉýºL®Èžé˜*¥võŠ«7üž°)dQP‚šÔdË‹àŽ3_®‹ç9Ê!†/>8yöc š´ Mº"3{=tÚr¢Ï"rwéX÷)8my}?€y9º0ÊóìRàPd(*óõIž×O‘]%…ékðð¨uûêõ¥4"Nò§ßµ¹uO°^¬Î{Ì©н yx ù| ¹©¼Ì9Ô³ŸƒçÞ.Ömí¾ ÃW,N÷%Ì]&Y*WÙÇx=¯„]]WcøÝ™»6ôòÓI¤ÿvþèŒnwŒëµ.¸skgdû©ß.ü_i\ô‰HÄÂc¯êƒû ßÌWËáåÃC3Ö,z§øîþæ¿`"0ó endstream endobj 4536 0 obj << /Length 2445 /Filter /FlateDecode >> stream xÚµYK㸾÷¯0æsDR/.²A6@O‡ 4vÙ‘%¶­Yr$j¼½¿>U,R¦ÜêžîNrERd±ê«âW¥hµ_E«?ÞüáîæÃÇ$[)¦R‘®îîW<Š˜ŒÓUÆ9K¥ZÝU«¬¥Ì7ÿ¼ûˇ)¦Æ05ÍXÈN2zÀI7‘[ûjá­Ì…¾tJúèS«7[‘Dë²h©Q4CG­Úè¾0õF$믞¬uó@?G‘h+hÇjmn¯8¯hF÷ÚÝ“Ä<”˜§’¥*óÿ A³f’f,Ž¥Ÿ3ŒåV4‡Âø–Ûä´}¼ë\*PŠ †à©ñ(¿”zè}¨÷m' ”î«Újrµåg<†'g*IH ýï±hp—dm:’^Ê@z3…FaEs: çŒ3&]$ÑùPÛÃÂÒ$ÁõÒŠñ<õ_0-,Ê3&sîçìh¹Jßo8Øvl lÄÙf+£|}gµý`¤n÷øÏLI²ØgY4®hŠñŸþ«©µ¡NÐu},Œþ €R£ÌY‹¹íªY¢µÑÕZbKþ,p …i¤!èò ‚¦WÍð€óSGÙO£)v&½¥1‹ìáBµÝËjì¦è7<_ïu?ùO»*)–æù +…ð3õ%0¸ÐQ/ù¼P,^0b>søLLý~ÉpKøü?ÑŒ,@AƸ’3,ùFÌâT…ægnRÆI,seãd¹8ùãF ÒqbŸµ<Q‹xFÿàôÓí>ëò*•M1,ùz3žLJyfy·p"3M1Ñ^~ç¡îçQQ8pÔ>.–]kŠº%çuß5M‡6>OcЮխ¾»ºjf²o>%¸ dJÂ}yîrÊÀ”ù„¬I„v<î<|½Â3Vµv§©Û²+”ìÛÕжh†z`ÏJë6ßò” ŒOo¶Û º'‡¨ž‘?¸oÌå’zŒN£·o‘n¿Àâÿ,£×ã-Rˆî ’Òw3±>¹W<éÙÉ}ûzÁ,1x½Tæá¤çB]xR5¢b_oÊÓWௗf™ÿ„ðZþózEžº3˜áõ²ã5êïà ïRw$ 9׈œè ¾§|¹ŒM·¯KKò,¯E •¦ë}©`ÐL1Ñ“6/›ëÕ½^ð¥7àô Mñõ¾„ŽÇ hü6>ÑÙqðaãÞëƒHËãëã`H.%6>·¤Ukˆà½R)YE?ȪƒcÍ4{¿ '•³,Ï^NDãoQÁTœ­‚¹D&ŸU†’LZ’ ƒ1ör5 ÝÑß‹UUCtm=Æu£x«˜PC–¹@2¼É'~Aiƒ'ýÄzÐët¿—F@ôu;õžks¸b•æ1ËÅ„;ûíÿFzÉ'ïǶÄc=Aë"&„p´NЖ¸¿ÑýtÐK\3ë‹C•†$º…pñUÿnßk\ÿn€1ž„Ù Em,¢ëäí=ô¦õÖÒø4ÑŸßuS4йZ&æ’ú$ϧ,Åp•š 9­Á@ŸîÇPOÍ”Ðýª¯9/•p-8:†#àt®X¬b_,V¾œ®bï¤Ð¢ÓÇnih×3(ƒÆiÜ56'¥Çë]]¸¯w lc¸‚ V8C.e¯Ý™ Ómƒ¬ÀB¹¨äæÞ(Ô]ÃdlÇþ’8¦´íŠ"yT`‚.ú©y$®,Òõ¾ž×—…G4BOVÆÀö7‡p.Ý{ÝêÞ‹è»›–‚ßÕ" GrJK)’zfKá;°ÏžæœŠÞÔåØl8€…ºÊº/Çã`ÐÃݶÂö ã^&Ñ,-  u´ÛÍÍÆ~kj{èê¾Ã³ÕæaIt{ ÿGBíémYºfî ïÛдà‚ÉÎW¢‘Cá¦ì´¾^¤û<­F*M§ ÉþÙ°Ó*½uöù»vÒ|ìA'µ[œ~³pi÷]ðß)¯œÜÄÄ,¶è§òp7„§ò7šÃ{ò£z1¸ùôex²¦ö¹áVk³LLÃó‡M‚þwèz<Ïàóê|Cw×ÜÛðìãÖ›ÕåÁìŠÑ×Yp›…ËY%L^*¿=Ýýþ¨M!d ñMƺ~ÿ»Å0f‰”3Zr1$2Ѫé]óoJ^^þDŒ9 ß}øp>Ÿ™ßy³µeiûçJ<帚³Ø%MÞÞÝüáØ endstream endobj 4453 0 obj << /Type /ObjStm /N 100 /First 986 /Length 2160 /Filter /FlateDecode >> stream xÚÍZÛnG}×Wôcò°=}«êê@`Çðn€]À½Àn =PÒXV‹–¤bçï÷T‹c“!) ʼn`À–z†Õ]§«ërª©”‚gR ÅøÈDgBö:ÀWßC©¾‰†sÖA2âuV$SRÐïrÒQ6>8>ÁH°äý§X<‰NHÎxöºVô™¢Ž‚ñ"õ]4Á…ú.™à™tD&D§ê› à0’è oK£¬ÚRÖè;Æz’D?M‹è§D&úTtÄ&ÑR6Z?‰ê§ÅD. :#ŠZ#qÀ(ë †ˆ º#ÆÏõDî‘ÖÇjM *Š@mš£¢W9«ŽŒ­J èPÓI5;C¸TôPD.ÔbÈW|˜Fžë§d(xµ•xC±b‘¨'¥Ú`lÒíc„Uˆ2tVaR› æf§3 ärQ§,Eut”¨:œ]ÝyÁÑ{…– ̱~!Ãjlü0\ƒ°&ëqDì‘Y·G0g_t„wYÏ”Vïu„©Bj$‡ÕŠSÄK=!‚HvjêTØäàIUd“ãý 1™|ƒ…U ’³Ô¹ÉdQ{“'ŒÔû`9“K`a•¢A0—8µ¤8Ɖ¶x:#x#p?쑌À[àŸp‰ØZÄùHª;ƒËJª;Ãq ÕL Š …ug„CN°Içbq‘ê&0´õQ‚¥bÒóI‘ øJ :#kЩDX©ÎFˆ°Bu.„ ‘œœžž4ïþ¸mMób:-Oš·wËúüÏ›éo'ÍËÙüª¿wˆ~wÞü£ù¹ù齯'ÍY{¹4ïáÐÖÝh±Eõ•hn¼8 ¯…Ü szjš·¦ùûìÝÌ4¯Ìwg¦v:žÜL/¾7?þx‚Ç㈎,is¶»1[Í<1‹•¼ÆÝìâÿ„‘œ ˆ¡/0r°À˜¶ŸîfC²ŒäÙÁH>[BnxÆÅÀÖ!YFºˆÄÖÁá~“:³…Ç>à³Ûå|8Ȥ–ýWÈO–Réc2à™Y¤û˜’uZ_àK_;·ÃÇ_Ð ¿@¾ë@ °X­k`˜NÄà tjú ðdµ|Ç„0]-Ä€¬%Z²ƒ³Ú‘ÁlVÑ[Wö£¸»DÖú0`€xèCeìp VYÎc8Æ®ñr@ÏˆÅæÌ_€XÀSäQ$‹»‹ÛqûyÈXÅQ ŽE'(, 2ÎRQ:VÄñò%RÆÍ€áêážØ?BÔÔÏÉ¢FG—­e/Œ³ËkxÈ€( ŽÚÁÐp ê¨áø}2,*6!ƒ‚)[%8QÖðXÈz‰{aÔ3y3šÆãv<äÙ _)«G àU^ó8:€<æC~¶º)Ù´[éfð•ü8ktüìfA•WW…禕ˢ{BWm|ÀWn¦Ëöz>Z¶ëH^!Áò±þ™iþóß_LÁ–’l”NÐûéÝx|¾WØ;W¥)e ý„Aà‘‚6…_Ï¦Ë úµ6N ýuÖkª æê!Ö^põ mA'%Ú^¬Æ¨úŒ4²š®ÊB}€žæÍ|vù¶…MóæÕkÓ¼k?/Íù晼]·'ÍO€ÓN— mÁªF5ýbv7¿l÷­_}÷¯öêfôröÙÔÓRæŽöÇ‘c6Ü Ö“^@qm>Oí=Wî¹H7(up>PÊÅ oB³ŠpÒ~ ÜÙiïNy8}l‹›Ñ€Yv±”¶ŠUa£Öûûæ"zÿœ@‚å{®V›Gíò”'%÷œ8uI¹Ò E¾o/žˆ1‰Zz ¿´ ÔÛ "¹¿*·‹ËÑxH–â"ªpFÊ«Í3" 8¼ÚiŠ›OFönz³•à8öKp_ÓÐFæÙÈIf= mä§œ„ÜP¸{ˆ&û#sRv;r’<='±[åöÝ ËI«M •’ö§Å°€íéÝ^Vºëxuÿgt¯PI/#ÿ^diÜV09â\0véuÆ¿vk€^PË%ôŠº |Ñ#Ù4gQÍ«­Ô4/NO«†æÅåòf6mÞ6ÿ>ûYÿ÷q¹¼]üÐ4Ÿ>}²“v9ú0›ÿív>ûZìl~ýýÐLCɹãÁƒ<êÉaXàëÂu`äŸCOiBö”ÐWÚãp„Ó‘¼ž»l3ÿÈy;Ö3ëë[Ï|À¬ 9ƒ¢w þðĹf?“9oÄÇãì$aÛNâzÚIÒ–ÄZ2ú2×!6»Ã)„ŽØ,Wßlñ;6[ž¾Ùâ¾á“-e{³%¶ÙõÒ^⪗®ïXq—ó¡îã”ðà²åË(­® 5Fi¥ýÌÕž¦W³‰]´íÕ€zAKLá+o ÚP¤§¬ã¯ÙX k${‹†§ŽÉï[u³ÒŸ—]-·^+!fþibßW:y+(Ký¤õÛ%G}‘ÄÀ`+}m¢×%áq\‚ÛWïÉä·‹š~ùôl°¢õúÅéj Ý`Ы¤Þ_2~gF@êA¬qÁ|\ZèO´Ñ)YA>èˆ6ªº•o–fGr•v4;Ú‚®CÏZ ÖV¿{ÐöS/ ÛiK¿úî¶6„¤š{¥©H½Îê)­7ëhsûI£¨Xú"ѯeF©Ü’îC>öê¬4D" ;Qx:»ÖK¶þ®v¹F&wu‚CHÇ\ÿÆ §tÈV/˜úI2þÉT?i}4ÞôMרPv¸FOÆJ1l»†â»(†ߟéKŸxÚ°Ó†7Œ¶q¸q··qé—ôziÇ5¡Î–ãLyÛä1fò5Z N´¿ö÷¯¶_ÈîªÚV¶›Ó_QoëáG:ÀSÖ…¿:€s_é(Êᥧ´^'ñZäþ%±óÖ endstream endobj 4549 0 obj << /Length 1858 /Filter /FlateDecode >> stream xÚµÛnÛ6ô=_a¤Å&6CŠºóC·¥ÃŠmØÒ {X÷ÀÊ´­VU‘vê¿ß9$¥H±“ºöbñrîwšNÖ:ùùâ‡Û‹«— ›ä$OÂdr»š0J ’IÊIx>¹]NþŒ"•ª×Ón_]½ŒÓ8Ï’æ9³€œçtA=}€NÐó|¦pÈÒ\Évʲ@Ö…Ô#ü!W–Mæ,'I9 /[Q¥žMç㟠~Ãà-iH‡/ƒ#ndS•…0¥ª=°6°Ó+‡U¨ZÃÈ2eqp˜&qàAE½t‹f÷®£âpÞ•Bg$Z‡&dè¬ójÆÚµuÇK­Áß„ÙÈ­0s¤VòhsðAǹ“胕m£*5e4XN8&á„1Þqžyˆ¡3"’g¬ˆÓ4rë#֌є3'‹ùÛ0LX’{Í9 Æ)¡EwcL£¿»ºZª’¨v}Å(a”%WïÉûmCÐG„†„R~Bˆ9ã1@sX$p˜8Š¿(Q×åÒú<¢4x…Nòà)c,ÀMJƒÄß~ã.o§<Úòƒ¨ÊZu˜·Ó4ºGp€.rhê#'£µ‘hùOM¥ZaT{p‡Fjã0WªuGbq­ºÏu¹®Ë·”†…¨u;ûïêeY¯OGVJ’¬O»A¡ûø¸Æ¨¦¨ô s‚c²$<;.¢$Fh*>‹0Š1, ª¿.,Xš^±4¢iÅ4¥iEìdT$!‰ã|o¦ JYlÌ;±ƒšÑÀz9þšæ¡órÖÕÚyn~TõrW°6‚¤ÁV1§-µÃ*kwuã>w¥Ù¸ HÝ{$ïÿ,hDñA¬ÁûÁI÷ç(ËN$Qâ*‡EÆëqÉ¢Ákµ2w¢òÂíØViJÀg»œ'甂¡Ïz<ÊN9< !wçž%<½z¯5ÙSž²¯£¾ÁâD ÿ<Ì¡;uvÒñQiu²mPø¥$›´¸uËl&#6“V®m>?èc£®—¬Wʺœå‰ –CîÙ¤_·ô¶EØK 9ó4Ï*Ë€Copho>'SÄHö„H@Áªmeå›×WHÆÀiïY™¶Ü®ÊªúzÑ‚;² XûIH Ñ9JHµZ~Ô<‚²×çÀJ×OÉË axÜk¨\”jÛìŒ9+=.VØEY͵Xù£ßݳÄ*â—­À°¸ƒºd÷®¼”zHh€³U YHBÞ‡¡–ÕV-åÓŽ!{ØÈÈPeÑM34°dº®ó`~ ÁŽiêóÐWÝëObÛTLnÇ“(‘aÉŽúäË ùRGëÙ³gÓy mŠ[±ƒ0•n[©µ[´¥þàWÃÚ­mäX4ŒnÝ(Û9Ý‘FéúÝ^@gìæLÛs)„•Ÿs—Â8¨ïçî+5ÊžÜJ¡w­\\ÞÜ\Î<Órñ‰¿©Y¹¨û]WMwâU·b?d©Úº2:aBˆq0ÉS¸æä6nÔÀNVF?]X]qªXAg Ý Ê¾Ó½úˆ¾¸,6exé”Çl¤ô64œ:Üz× ÅÚ (!íCéõÚ—œqü¬¦à*/¶ðüW¥1½ð8Sá÷úÚ}]¼ÓC5BôÞxÂêÝ{ÙÛR=¸\íj—'ôm¥ÇF»gÀÕªÅåõõågl ,Î0Ú0S¢0  øî´imªD!ªr[wTÊm,ö¢ÚIw‰ñƒ_ÐÞq·‘­¿mæG ÜŸeªÝ‰ü¸Ã)ÄÒQþ+5U³j‹ SË(±Y%ëµÙ,àðf³íœsnññ«EÓT$á¨ÏÜqçÐþÂ’´WÃøÅý¾[ Üçá:Wt'HhÑ“{Žâ<*j¥ÌH*™(çéCEEu5¥)@óÜoàÊEáí‚ã¢Å~lÎÿ˜œCÚÞºµDj›ðy޻ד¨Ìaq¹TÆÈå4öŽZƒ€vŸ¡qT$p²–Ðn€šÛŒ ž¸VÖ½É`%ü/ܧOò¸UÉ ßÖ_jÌÌö” :W˜3’†Q×L¿í‡ß{f÷~†;–´Ø[ ŽiÃô ñ\Ê½Åæ<Ë tê±íQ±ÓÙF(›‘<*ã²32Îq8‘q÷Uà?fœ%´èÉ•q½TÿKÆ #šÐø«ra³€·Ñ˜×·/˜YÿÇËÁùlRl/þþ‡N–p,ϳɅܸ ‘axT“×>:ŠÙ?ÿŽfûˆ³ÕÙу!nôše0‰ð˜Æ—÷^¶Æ ”? l0vZ†79¼t·n÷ÆþYí¸D»QûWdhW/a¼èµæ “$I³/²‰Õ}4ÛöÄ8#Æj«ÊO0¶eÓÍ_ü¿d_j†ÚÞ>øèm¤wÛ­Àÿ“ìS¡7Xéqð½¥VÎ$#ºý›äÁŒGUoQ‡INªÖýpy¡Ž endstream endobj 4561 0 obj << /Length 1308 /Filter /FlateDecode >> stream xÚåËŽÛ6ð¾_!ä¨iQ²>ì!E³Šžç”(-Ñ6ITIjýúò)K²ãxµ^§À ‡3ÃyqHŽ}oëùÞï7¿®næwQâ-Á2boµñ ïƒp{ „ —Þ*÷¾NÂ…?ýkõÇü.†Ò0 A’¦R&´Ú*ÂßÊ—ÂãÇ̱̂D"CÃø…£-î±}ï;¿ î®RLAœöøæG~‰oþe:‹|‚ˆÖÈ; ‚-8è±Å=¶8Ñâ„ÂI­½p ÒJU XF‘Ñ¥lÉÊ–•çpîi ÀÚöä­r­âH 7[ µ›5Ǩå÷5By~ çMoßU´Âïœ8Fkß¿½ûðççu¯œÙàºÆU~»úô¥¥A T¨Ä\:šéi/cÙã…ƒV5åÚ¥•>ìå+ý ¯º…ˆÒH‚ŸgÃA8Æ™ .5ö~ƒ§ÕL¿‚ïEpeÅ_êðEûhº¨Þòö]to‹+£Üõ“TbœïËàUm8ðô+˜ Þ©µ ùA̪›mKô äÚáQïŸ`Û5ÂöxYÃî(®ê¶½òÛ§‘F`ùÖ#öÏH+ÂZ+¤u ãjFiØ¡€òU^Ö.µ ¡} ÷fv…ù·–Ú ¶g>ò°ï„^ïëç—HvÙ 3¤hì­F÷' ´ŽgÔt<ÔΔ”g숳è*GјBp½:0ân{aåÊñùð†û|½têlÍL߯ÅËö¯tiA®Þɲ(©LC¬«ò½r bD=šlÚ’ÎNté0`Cl Ó¶·hPkªX ߈D)Ðz¬ÉßŠÝ ¢ízu’©Éɨ¬ÖýßQê¦Ð¾B·$3{>É yùÆŒdºÉ«=ÃäXÇA~UßT5&uë4µETOÅ4¬ …3Vš¥ÄÙi¾£M‘+Ÿ¤ÊŠ&ǹ;c^;š` ‹†UŽgý4<ålÿñù•åùù~æ•ôaìÙ}Xà/ÎoÆ“ö?›óÌT÷~PÖé6ÞüYò†pì¾sªLÆ“¶Â¨ÁÃKƒ™ ó1ÅEýíaÈÕÙ  Y'KU$l‹„†×Ø|Ž-F2ZV‚¼ÔØ;œ:R*ÑJ;ìè ÎUú‚Çô€>HÒ¥£€WnOªBzøqß«›ÿ2‚‡å endstream endobj 4570 0 obj << /Length 3069 /Filter /FlateDecode >> stream xÚµZ͒㸠¾ÏS¸æä®šæˆ”(Š©Êa“ÝI%—TM:¹dsPËì¶jeÉ‘ä™ô>}¤~,O÷d+åƒ(¤ø€NvÏ»d÷§wxx÷ñS.wVØ\廇§L‘fùÎH)òÔî»îÇN4]û|÷¯‡¿|ü¤ÍŒ=µ¹0ÖÂdž1Í$2½Kxþðüø)Mg£îSSøa÷Ê1¥ÁåùìÚÃbüêk&¶PácM÷\WeswŸj KÄg¾ήªŸ^ˆøõèÆ£ë™ãèˆåPŽ%‘žúòä¨éÇýœ$ʈëK]Nã¼à T¦„MdX‹ŸóZ=*Yž¦²¿“ÅþùrríHsÿœè¤~ Š<inv÷ y«5 éZ\ŸÊ÷Çr Æ£s-µfK†y$Ý¥9Vzön¼ô­cêØ=­ÀÛ×z<2ýÈì~«}ë©ëOåHí !³X!Šà‡ªTíîéN&ûòÒŒD¨‡ ÝéL+ªîáóßÚP„¦Ò 4åË–e3tØ’^PO¡Gu,û²QD|íøÙ‚âûº¢!_î¤Þ»j cGÏh?øòõXWGÚ0=­ó¥è_M­ËÇÆÁî(€Eu§ ‰óD$yöš±(‘Éh,~A0#y…X¹ÅÒ¤¶`g Âf’WWö¢ûÞîQÝy¬»Ö»”²s5âë\cø,Ç.ô@úî}š&“} ½qísup(Ø@/]KÏÈyËÜÆ—³ccHÁÒþüDZº´3oø@4²JÜ”K[¡`ô6¸qˆªí»3¬{dÆ¥ HaA°ùøBÏ™ ÞÅ|¾6ó*ZñªtcY7à l\Ú}"/Ø;}€~¢Øõ8ˆšŸ¯ |&SѱÜèX}k÷ÓTÒþIM©Í@Ì¡êëG¿V£k!õk}pÔ ºrã qtOÔêž'°zê_Ã$Þt€Ô]ƪ;ñD'W—>°ŒÇ’ÇU%¯äÑ‘ êT¨´XšLs¾ŒÚ2‰x…įÞO öû úe¨°]H¯Pß9\N§²¡|&ù2Ðl )@áoÐËxìGý³…CGÙ3,¥æeË|«®K ,¶Å¾ö"š™o `¼Y /eu$×8>0€±êzøâ¹kµiè÷Ë„gIÃx9¼ÜåzòZ_ÆŠDfØÜ<à QLX=7ørù zmÕÚÃñ.(2Í¢ç4¶né8‰ŽXÂaï ”aì/UôKzÐ9ä˜Ï!ï~°SàÂ3¸ Î>¸‰CDå#"Ò>¡’ÉÕÞáËÊÓ¹q¨qex/d4ìî2«•æßt2\hs`×™J¸£+›1t¶"žÜ#xªÚµ•ÅøÓq4Ø&lïÀ„"mØÛ ~Ç^µŠÜ¶0ØB¥Kk|ëêÒ”}ðôÑûösGP4 ×J±4%Þ6Q8và쌶°9ÌAsq§¶ p9OŒ#ûñ•‘]¡g¦ÏEà9óQàJúÉ,Ø­õTaììAâ¡ÃÞ¥Ùjï  ÐkžµÛE2úË&6i@GWø¦‘ "1kK_ƒÈlZÆ6D¦K„d©ó¡A©\¶ÌDZÃçãØØÎÇ%¬^™ì·á@&Š×a@½u†ê k‰Š[(ØYè×P ô=//°ZÑ0!â¡B9JgA+®o!(ó.î£ÐÆGÞ”-k]›Z/ $·ùoß$·ß£³W¦¸ •eÙ\ñ ÝMøM¦¬è&BèDoj>d§)稽yêuÉ­ªwäb¢.‚|‚‹X­ê Cèdhs€ KÈ´¼þ#:«)Þá(r+üÇÏÚí~,”›”bAË;1ö:f +æêèé+[¾áš"œBfñÀ ,í> ¦ReKpé ®Ø"0)8€DBÌñí±BÓ¡3Áú÷=Ñõ‰öR˜Ç±Üªk)3SìýçÏï_-lm›sšE†÷½=KþöY>ÿø~»äd3+²%5ë°f­B`AŠé!%ÀŒ„£øûTAàcVA!•ÍîU6ƒñŠÞƒ¥Á‹¦o±Âœºý@Är '7t—Ìæ—†ìÑ=˜Õ›teëà !×GvÜÐà¤I±ÿ›sÓðÔäÐUÞàg™kH5Æï)ÎbL‡ÇŠ3`LÆ^gÞœSãÔõ!ëå-°]E"hÖ«<‰²º)½ŽÉ· …°ºÁ:,`q:“Kš„ÝJ“lª•ê1‰$tû*Q¢Ùã|Ë{öa F¦GΘH ‡` 8;ž?=0¢•T Áïû0•K–‰ö±,ÄœuXë–Oã盟O.±,jgTÝÜr8ŒãÇ)×.Ñ”)pª0ùLõ…š×åȹÈÁoç‘æ÷,Yä1€ In,Ù,ÎN,ÚÈ»,;¨Ý/ãw+ ­—î¤Xä4µ\ Qj¶ÇJ®ËêØ¿Ø8%C™xÊXè Fmd,ØÉ5×cñ…çQ³B$°H¦õ}êÖÕÇJÓù>–Ü×WR¨)|†Éå6§SZw;YL¤^="ÚÙý/ ÝŒù2³§ ©u&é\Ñè úûïoÜÜ@fSÈE¨•å!8Èt°Ù<"ütÏ„Ý`+Ïqá0¢½Ux‚¬*œéæÇ,`A¡½QÿmáU)ß„Mã=íz¯¡ÿ–W¥XÔ)Þ„fa™&"|}…@Y®9Æç; Ejõv™Æn bó[‚™ÐZ}7<à©à&÷ðOɯ-Ó#$¾œˆ¤ ²½Ù®D¶a› 1 ¯åãjd¦Ú.±ýæî 3%qaîÐs=;7se¢Ø€^l‚ÿêÅF( ;­Š‰XÓJhèX­By:Baý÷…ú¼³tD†I®š;:3NBíîu!ò5H_ ß…Ý8ö¦Ì —õÆÛ\ºWkÍ7Ë Ò¬®“å•QH/è Ia¿äô¸«cÙ>ûí"e²òV&«’Dè)Ë\\ž®ñ-ÖÊ9‘¤òúé2ð’y¡~sdÈò 1¿}ddƒ¤R¯º1ýb<¼2­ÃµÈU”7…tÓ5ét²Òo,¬ûKpÉéšy‘«n¤¤ñK—pÙ2…Âõ°¼mݼÅÛM•‹ÌpÉûwX2l.î¸ýÐ’…Î’ðw$Òå4¶\íÿì°Q3³ eߪ™Aj³J°Še©Çšo×ËŠd£^¶\dOo^)÷]¿u¿!t> stream xÚÍW[ã4~﯈:/‰4qmç¾Ú"v±Bt <ìºm–&)‰ÛÎòë9ÇNÒ¤ÛŽf­}lŸÛw>;6µÖµ¾}3MîƒÈJHòК¯,F)ñüЊ#¡—Xó¥õÞö|î|œ¿›Ü‡¬·Ô‹9až†ô"U%[‰+G´qÖÞŠÛê¸<‚AÏh¾qjïÕ¦¬>ЀÖðÇFzơƖËE¾1ó«S»Ü®ÖN`‹bí¸Ìþâ„ÔÎdºQ ±—•D7&!ÏëLñµù¼>_çR‰UY¹»ªü$SEÊjý•цÂ}€­FõÖ„O" VÑ7Ý&1ðé“$f­ÞF©]ýj29¤õì¸pÏý9¼ƒ00Ç’ÖIšh‡UH"³ª0áfõL®Û²HeýW p޵O ×§ ”&á6q\/Š5øœ2j¢sÁ¿ýmY,÷©Ê°h^Ù˜»+ ±ý\C$Z++ÌÔÌ4ÇLmÌ„ÚÈ“fFw"ýM¬e“}ôi ný8nAzçðÀ.÷x3vÊ*HÍ:vBfõƒ*«U–âj¤ÒC¹RGQ9^dË Äˆ"ùxqVŒ¼ð‚Dï”SM©‡ÐÝÿìç¡“ töa«Q~έe™!&Œ‡^4ùT×ä@½dÔ»Dpâ-Yš-û ¥ñÿf[—¹‚t§$Öìoº_²¿cPcVÖlúÅ=N¢ KJכǑ-°‰íÕ¾•…T¥MË|·WÒ –‹ZV‡¶\š¹B ¬`™åuö²N/nÌ—{F̨a°(í´¬*Yï€Áš¾Ú€Èw[” LĆF¡‰û€E• Üjú¼Ó`.D­ƒ‚®ÎÚ:˳­hέ¬€Ï­È)ÖiŠÎÇB_«Æ·ãÏRTcD¨CɽboÀÿ€Ç/O•¿ò^–ÕEüC‡Àóú~ÖAôȲ)üZ‰ƒÄ[IÁœêæÌ)œÓðýfW ÚˆJ±$In;V“BÀ÷«aE¶l×U¹ßu’<ÈBÕ¸SY.ÏYÓ÷ÿ_ñýám›Dæ„õDükäÄ‚e×Y—æ9?©sTïäÄ¢“:ø Ì Xš \ÈãÙõ€|ŠN¨O«ŠnåÑÝ|ôûˆé›ëÞx, ðaµÒ|ôþ#µ–0‘/‰­£^™[>\Z"/Ÿ[ëaôÓÕ­~GovJèƒ/Ï#,‰Ÿ¼ ®çŒñþžøŽ0ÌÁÛÂ[Í}o€\Ýóö¡Ç³á oo,í}cŽoíU‹÷£ ÕRì 2€Lþ4ºoîÄ endstream endobj 4592 0 obj << /Length 1312 /Filter /FlateDecode >> stream xÚåËnã6ðž¯ö²2PÉ¢d½9l±›EOÝôÔ-PZ¢m’¨’Ô&é×—OY’¬£U²<$g†ó&9 œ½8¿\ý|{µ¾I€“ûy&ÎíÎAàG›ÄIð“(wnKçO—ŸÃm…VÝþº¾‰Ó~”'~šç‚›ÂŒ6‘Dº Ì;`{Ý S1i¢ˆ·“fD<`2ÜdŽ2?É4õM×ŠÔ ã@ˆªÿ 1± ܯ+»ˆr=ɺº†ôAJÈ¡†°¡ÕÈ'Tw„Öùò²PŠXKš7{³¦l4 õÁF&⇱Ÿ$‰–ÿ÷è¬Þ§vˆ¢Çí`ô%ˆƒAÖQôÓÊ‹ƒÀ…Ø[ (-Ѐ -tßÏÝ÷s¼ŸãrNˆíl6~…Bàç±QªîÑêž”•à7é-@ûŽè½p½àÂ{vµ‚[ v[†¸+0ÅZ"X–×`ZÖäú]Cô⣤ ‚뛿}þdÅ wÌš‹TL˜œsgjí•KS½×º»ïjÔpö¤kqijÏøqšRÃlH?ÏB›2¢AêHaÁÕCÆ©Ré@–s-*ðîAtT‹U´[…‰»I Ç ÿ‹4 1¼HÇ Rt+ŸÞt’’/¹Â‡Þ-æcÒ磜^·[yÀmÛJ€•þÊ‹D6F†ðïˆC\±÷z›R&;s·$…²>4•A¬‘ÝGÛSüü̡ҬüýÄ!a–øYYóŠB«â)wx–b|»QÚÙÓÆp_3ˆª€ÌŸ°Éãw{`ã"ì´Óñå2­qw˜Ž•MÅw6 Ñ ‚ćl†ì}ÇáK„§LrUêÇ<Æ"ú›´—pXE)ú§CMÓ²¶um‹ŒðÚ™ò\ ª’ú´ñ@ù©Ê±õ¶oÕzïßo¾âM™¯"«0vï Àò-[ð;ƒèMÅíe)*`OIך;£8ø–€jìÅÃj Ÿ´!e|Àgmð¿­Û¹â.®cÿÕ·êr1ÍîvZÓÕ[Vê°ÿHʧiåUì /ÍÔ!üq:œ¸cž |a7¨¨1÷Di<Žkô¶çá+ ¾Áë… ..á͓槸TÊ^?qÃg꾨'–~ästQïHØ¥N[¬^ ¯íù¾þº½†Ûî—UìäŽb«n1*¿c¡O^>#fj%Àh!!%c”L´+RÂóº­P­TˆÌkx„0QsÈ‹G¸ÑÔ,Ð#ñ™VËÀõ*¯Ÿoº¬“)”8wƒÆ]Ïñ‚È®G¬n¿Â‚âŒq½ÊQ4§¼^˜q·]X8(c|=½á>_.ÕŠºX2Ý·±þ:¶•wÖ}³¸á7ÇN±ù«4 ¤X>šLÚãA&>Ò|†t²¾Á¨§¶D’hºRÁí\•w`Šì ¢ïz ‚©+ñ³ücž{ºÍ;KÜ ˜WèzœObA\¾Å…êôª‰‘bb¬ü þeïT6&Uû43ET-hÁ¬ 9§µÔ[ñ4Ëì@ºª<×Ý"{ºUW¢rü‘bšOñŽ6sû0=ãL÷qFg±,/·2Ch²ñ´ ;9^/îÂúÁæò&lúQšYüËÔÃÄßLŠ:y‹Ê›Ó_DÞ°÷å÷Ÿå+¢é˜ ©Î:ÚåG©åå\»ºY¿òœÐþº½ú¡‘ð endstream endobj 4604 0 obj << /Length 2505 /Filter /FlateDecode >> stream xÚ­YK㸾ϯ0f.6Ðf‹¤ž‹í “ìn€½èiì²9ÈÝÖŽ,9¢ÔNç×§ŠU”-[ý˜MÐ@‹Ïb±XõÕÃÁâq,þöá/nŠ’E&²XÅ‹‡íBÐa¼H¤±ÎåâK†«>ü|ûS,Ï–êT ©C äõ­èóMmp净êñÙ–µß³V jÚùƒé󪶓g&쥋µLEœÒ·?þDºèp5ïq¯Öç{3*éÙ5¶Èëâ’Ùó³´©LüúíÐ}Õ6«µÎÂe Û»jc,v£eN£Çª4ÔzZ)í*Ó?ÓŠvKf‹3[SôÔ·Õ<‘¶£¡vè‹vÏ„ö&·Cç—ô»œ÷9s²qX¬#-”FéH‘Eñ dCoJXÊåÖŽ[èïAìë¼Éëg[Y±ZG©tu“vØïóî™6”yÏ{KÔxná3¨ÓïZkhþŒq˜È;~v\—ü6  ;"Ž–UCß§•Œ– ±¶³7xi½4y±£9S›½izêm'Ú¦¬šGrlÆôBð±ýP>¯ ÷£È+Ð…¦¨$Tsš}¡#¡aÏè]É`éD€Ý]eé©4hp˜]¼UÕÀûìsÚ®"x¥¦¤HÅöÝPôÖOð·ëògj‚v9Þä¹}Ê(¨3÷u†}0Âl´wG>cÛµ{jõ;ƒOŠMTAW±™Ê ‰,¤ý?á3‘«¥Áοóý¡6ðf¡Jè539šF;XZú[(S—c/ ìàžç<Ú;½„ÆÎäuï'QB8¸7%*ulQ™¦0I>šwË%i‡eZžÿ¶£:Æt!Va<$þ-}Ûmoð*Iº„Swmßîé*0‡Ìoª ÇŸdKÛÒ$oâùAdX0DǦºUhbÀ¦SiÜ}Dµb¢eÅ€Ò¡ÌØÔc×~Õ«Ά_”^ébqvC/éM··£v‘‘¥S`)™W!ÅjNtLf‘_€o}M%s¾`JãBOÃDMôô†X"MqÌÙïØº"¡À?¬•Ó¤#¢âBé>ÁtPñ`ßö G¨‘ˆÁ]L4 ӓ¹ÆDŠH|æ`jŒ]¡êxÙÈjærkÞvýlž··N*üIåx’š=IF‰P¥2pÃì~;PžY*ÌÎnsMpòp734"#ÚŒ áFí¨æàà)þ””©Ìè;Ä[‘S°÷÷ç4š*~ú¢`´Âÿ¿P¹ÿaŽ cª’“&‚ïezy@@Dâè ÷&hÃ4гµV©P2šÚÍqW¹8=ö£QÅÜ$žßëÍ ­È-}ëÖD0ó2d gάº)yµS'XCÚ^z=X1–8pßÔÃK.¿sÚ>“U•má”ý,_÷YRÿ-5©²£¿£&^)I¯ë .go9òÛ·ÏØ¹²F 6jöEŠG )SÛçcÉa¥~çªFñ(]ʹHkÌ.] Àú¼³>óªºlßå½¹àlð%‡“P+_™à; VÞIy˃*,•ÄÊ/+ šëÁüÚâgW¯È<ŽbóXõ»`Ž„Gú5`†Øí?qÉÊM.eA ë<•í)χ>• a¨¹\îLG]ɳÜUôáð™‰re$[æþ‡C׺ʉ|B¢³”«G.MÂä²$WûƾKÚŸWøtý®í\Ç%ß.÷_W)¼{½}\!ª<Ò«ÿ²ŠA]L±ë7ù`ºSf0—ÌDB§£Ÿüþø´ù3–:A¡× „ßMÑ‹¶{üÓlÌ©§ñЇ@$΀ю¹ymÇ¥cp¾ëûƒýîööx< 2$èÁòìø×ŒÜîNE•1±¹*¦CÚ–"Ôž?½Ùç]ìÈÿRÔa°äBÖ¯hM‚jR({È€13†™¿øE?Ö©ÎêË® »\ ¦îéãìÉMpEŒ6Q¡:ŒÑrPþâkþhXqtއpz˜Ž€ø3A;@Ô]ûb/ Ѻ‰nAøƒs¥CT¨/í¶?B,£“å\Ì“@”vr 73O2Q¿p£5W ]Mé7¥â0s¾[ yJG¼†•m…Êt ¡¡LcÜþn­x t,ª@Ïšl¤D]¨ 9;8ÿsmÛYyßï+S=z—3K¢ñNä¾RWUizîÜ`йó4=ýÜ€ƒíÆšŽ2«’FÎ^ÁåüóŠ[Ìä9Š´´Ÿ€*í0uñû#€î«¢ ƒÇñD‹Æ*²/:³«ËÇ’ªw¼¶ÚWcy¦jà„«ïo0õ²}+\@ôš|¡ã©x/ŸøQ_pá/ØÎ‹Ìú¶_Ì”8.c†S$aþ,pE26ÑÁ}œ0¯~—’Id ^ñP<.h~úô á6àÚ\ñ±\È¿n–È2.ù~ÍKù÷Ô Oï0辡鼺ë­åÞzyä^Qݧ¹znOEïªåÕÑùü›ÂS°_ÝrÛ»ãsçNyêÙä¾iÍáÎóó‘dNp?>|ø/Iƒ•é endstream endobj 4615 0 obj << /Length 1484 /Filter /FlateDecode >> stream xÚíXKÛ6¾ûWÎÅFc­¨·€úÐ<6hÑíÆiI´DÙ$Ñ!¥l¶¿¾3$%KZe³NОzX“œ‡ßpZÇ:XŽõjñl·¸º‰•ØIè†Ö.·ˆãØžZ!vè%Ö.³Þ­nß[ØýruDq/ í(I@™ôü…ŽÑuíyV Ò¡Òωl'Œ­ÑÓ›¿•Ûô½8Ë¿hš5mX¶|ºÞ޳ZþÎ=ð@–~ÊËnóîÙý®Ý³’Â?´ÈÚDÄŽ×NbÒexnkßY}b|ïÎê ­g¹XûÁŠWzeˆ¿òú g 1Þ®ƒ`…g«Õõš8°|õ>~LìØ.ÁGá„3 ×\›D‡L¦¢85ÜnˆÅ“Q†xÙØ“Ho¿nëTí]45P­I°êáÊz¸ÅÚ ×ì,ÌXö å’9o{ð´mÊÅð²´Ô í òµ¥o$=°Ù+Þ¿òøùL®l^† ^© ÊAâ;ˆSQ,?Ó>Q!ÍêÄe“ŸM°Ùdùti»ƒÄè%v`AŠ Œ§h–Ùvwóæ¥Q„”W§ )c²8ÔCbUÔ%«·î9  Ö@k£ìšV¬ üêáÕ Ub{ŠriC‡Hÿ$àI¯mÅêF>ˆøWV/f £Ç…ŸnŸtúÌr÷zøyÙ÷{ˆÁåŒþ Î%XùùñF±¢92±Þxn²‚™žÔÊ.œ!ä“hðÜxE¥fS=¤PriÚtzd…ñ <¢Ö|ª^W¡ƒ•Íž‘LÏ ²ds/¤n«=ú8DŽç&(\ ‰š~Âc nc)#ßKOüsL!Húÿ!¢l}þüM@N{<þ\U MšïŒ€ô‰c€Ô,LñІG~gˆh4RáL&X2M77FŽj¸ZÙhÆÞÈóº›ägM3Ø*Eá Ra‡TpÆ5ኞ°µkÎ5»æÙ2ôóS¤Å¾pUqiÄrÁ>¶Ë;ÍáiÚ .õÁ3æR{®•Ø–©Š('î Õ¿Ë}lªÕåqF’@Û‚UWôt&H*ó‘Mõ0x¸Ô¢iÃÍëGŸÒ›Ôg ¦AL1Q¤³qrè—Cn1ÖŸSÞ@y9î¦/¸¬è¹Þ8×õûÀB–²FhÍQó]M28Qß\4GÆ{Çq?kBsT­Ȩ'”~„ešFsøb"+1ÑbܴΈi†ƒ0ü*œ}áž8íÒ´ŠðÅcªƒ.4û®(P×ã}QòC‘bªóOå3û|†‹Û#3åT‚ãoõŽS£¹7€jR¹Ruämiö†&²l|¢.C0Ñ™gºšyì-çʉR&mKƒe!uË7B :>ݱ͜ùg ©Û éŒùú$€O³ø±ý¸¡¯¿Âàì$ö@Õ4<ž˜T1°F {RKÓ9ç{f”h OÔ€¡ë_§¨Óop@ìÚ1|÷}Ÿº¾6ÿ³tw endstream endobj 4622 0 obj << /Length 2589 /Filter /FlateDecode >> stream xÚYKä¶¾ï¯ìe»mDê™AÄ8—ÆØ9Ø–-±»¨¥ŽÛžŸ*V‘zŒfg“È"Y$?Ö[áÃù!|øû»¿>½{ü”dEP¤"}x:=DaÈ8}È¢(HeñðT=ü²ÂþßOÿxü”F³©2A$c`d' mp7•ƉïBæï¾Ÿ¤œ­<È4¶K"¢$ªª*Ý›s³`±:_–E.Üžu{6¥ª÷!R8~“]Ó¥9=ñ~ÑÃEwÔQôá]ìdSíË:ª3êXk¢ô—v¬+šudQWóÝà{Ñ4§Ró?uêjq€cÇ"I踿†IHó“NqÚGáNõ@ÓÈ ¨’,ˆ²ÄÝ÷éÇŸ¾§IËGƒ¦ð“`—(Xa¸„?Jâ ¡¤‚ùjšZÿìM3è}”ìΈ®Ìr‹~=þ–ˆ×Ű7×ñJØè<\¨ÝžV3ønÐ Ýs׎7j6€kOÍSÛMË6 .Ûë ž³oW5•ƒgÚüñ{"½ùTö+ÞÆšA³P³ Q]@Wùf°Ë‹êT98¨¿ ðºwãÐ.fu­¯ºúoy<Î+ÏaªûC ×gH[pÎ0KȈF}ðZ–¾HÀV#=À½SÕh×é …ˆÒ,Ò û{S½S#>nð‰ƒ,Ï=¼ÛQù4mvÅ— EÄÂ[Ã÷tý-žx&ÑŠg§ñaÛƒÈe ¢h ñ`DzùúÙ 0OçòVÄ$o" džÒÒ¿éA™ºÅ4/Ëa×=”m3tªÜþê¼-7M?,V"¼Œíæ5Np–¦dSkø‰ h)O|ºlš”U¯ètÈ 5΃°(ܬmý² ÉüãMNÝ>àFggØ0VŠh7öփɚ^ L¦‰žÇÀÚµ ¯p>†W¦GñepˆYLbcG!‚8/m8Ê‹êé;s+"ÏQkAhy¬]Ì1^ºãAÓTx $âÐ'mDŽm=^Zqk{ƒÒîžüÜžg¯ý,²bÇ7Ä…¯ÊŠ–†áîŸ7܃@S/²õÈ(/™{>½-ß‘²H}˜ƒ Ç™{Θ"?¤LÏsˆÔ™<#ݽ$ŒÇ#~éî:¢š ýÈSÛ†YXÌ<í“F2 Â4e$Ò™„"³0#‰}0´Ž!Ó@ˆìMÉÆPÜÏš¿ ƒçb÷Ý×áÍA_E>ítƒP§ßr°—\ z„ñ`[jN ‡ÙBŒ±¯x¥¢¹ó ¨³ ‰¼j˜ã]i†•ò×3}ÏäeI°¡O‚ /ØÐö‚ÈÉ ·ßö¼b-Ü@2p±fÅx²ù–ª·_‡1AkÃ)iù€ø|HR¦``KOÚq€˜f3šíôŒ4Ýp;øµ6 ÖÃiŽ’Zƒµ:p{úØdË„CîWLw–iNïÄ¥CѾ¥B)Š w ÛƒÓ.œËfF瑩‰ølt]Qñ4¸wͧðq…=EãöÒDXçuK„µÞ²EŒEŒûPtÖ%BÇùXh.¼å´@îz ̪ǹct+Q #±û„¨“}ŽíÅ YOɉ’¯m§cÕl]€Aœù]ûÀæ´'HÁhìÚÉÀç+„è"4ÕÂÓ}@ôa’ã„Êö„½®ºâä:µ½U6JÏÇÕT‹Å<ÝfhÇÖ6,¼µ…¦•ª—ÞX†‘J£€€µA Ÿ©7Ê+g­mª,+Š!‰®À4ë0ÛΉ4 V[;ÀÕNÃbB;,}¼ŸÙ~¢ €E°—„sñÃ7Zˆjîöã†K±Ã¾cp½º\y+${U§8±8³ðr˜”ªuRÙ´,ã¦)ë±Ò+ß’tV+˜ÓÐ$L8~Y¨Ñ©k¯4Ãkœ?ƒdS€Ä#’—±û×! GŽ]§2`Çl쨔±:R‰ ¡öQÑnÐl™äs^Êx)‡Ç…Ae^֫𢌳F3w»Ídå–['Ö(Ü&Ðç¡þú5HùM ð„y¼„iÃü³ïBGP–c·Pûpe÷:Ð<ê™Z*û·ŠßÓ>'1AàŒU€Ñô"Khpá›ÒùØ–C¥™äΨ³ö’@²%¨«Iéâ¹Ý‡UE AÆ}¶35¿¦þY¶VHgêïU 3JÁêó¬bЉΜ¥¯HTT¤ }âœád~Ûà°µ‘Ñ>AÀ>·Z•tf ž(ÓȲéÀT÷˜×68X“CÄEÄ»^ û®K¹ˆ'³Dæÿ¿£Æõ#¦JÉÌç£ÑuÔyµWùÊÈ¢©lHˈ¶NÍ"—ýa£òîÃæ ‘ËøÂNäy°‚t4‰<š•A ·¥K Z«ßÞ\oõ3)"»‰’7¢“ @ƒSž±Ž8s¦FýéqOçY”Xq]EÓWÏd9núm›BZm’à5/† 37‰ï» }Q°˜XÊQ[É–Ÿ†JùªQø*d¡èE\²º,ñõJI/ŒßÕU¤O|õ¦ïpwHÅtlhߩؒ çÿ*×£¯¢Ï¬Nbûd(ÓdP:H'M§ŠÌq† ¹¸MfõsìÒs§®b–Š· ¹xÑ”-–œÕqåË:. ÛÔ¢å5}kÍÎcm^b“y™þ8|µêúGªYÑñqÐ6ÚèGžäjÎ>€uö@Â2£{É?l$šÂ~옩H£ûžíLY±NO+åðwèëùN³?J~S ¢ÎÛuíu½d]`@°V{=7¦S¸Ÿ®˜¸YÆ:î¼üó¢)Uúÿ,'ÂýàJ$ÿà²DN81‹gqÊ* )´—1(U…‘ÃÜñ‹ féþÞÀʆ¿·[×Þ@ 098lOÛ„0Ÿ%Äd Í.bn×ÊÄrB;X˜rß”úÕJ½¢ÄÁŒï=€öÚ„ÃÖ~ÿcýËDõÉBìîöó>Óåe8ªÑÝ wÙPÒ"#ùOº9þËÿ`F€ùÀYmwþóV¨)â ‘rñ×å]`M)|èàðÜüñÅ_2ügáãØË0Üú?<>Þï÷Àí¼?ÀgÛíÏþÝ,¢âõß¡îûýÓ»ÿáTz endstream endobj 4635 0 obj << /Length 1101 /Filter /FlateDecode >> stream xÚÍVKoã6¾ûWÉE,šÔƒ’‚æÐÇn½mⶇlP02m«•E/Iåõë;)GrÇYäЋI“ß¼>ÎŒ{+{¿O~™OfŸ)ñ TЈzó¥G0FqB½ŒDã›/¼+_KÖ¨ep=ÿ2ûœft\P”èêpq’Ð;õ€¦tØÃÃ(ƒÃØ ]ð%—É}Þ”\äz†VIî…$G4· þ (ö+^®õ kAU‚ýi&¸ðÿ ŠÈGAg¹ÿ §8ÂÃJàˆÂͯ¢Y´¥®š•dþ†k²†Õ 餪Æ^]Øå®Òk{¡×üIh)¤=ݲò_¶âÈREÓ!U`6Éóžª/A”ú¢•`Íê¿À‘Ã…ðEšZô¥fºRº* :J±)–úŽÉ Î|þ»d‚ø{[S‡¾E‚ŠœìÞ¾ £èžÈ! {±¡njí“oQD“ÜÇCÍ"8ê×ZoÕÙl¶r5#‘œÆÙì¥Ð-Ž)ªpü‚!I#”@üaDQR¸§¾äÜÚÿ¹VâÅTÁð‹QîIó×n/L\ÜK R4Zn˜ÞÏÝlUœì¢êÜøÁì²lÈ#ÑØZØô*-!ÃFØÎSîÌÊêÞîo˜â »íU9™ÓpçD*wwW-àèAÎÿ#]8À2*ˆ l 5SŠ×75[¢Èñ‘ˆÒd”aÇ™NdR/glÖbË¡2‹Cæh‚28ø1sÉМ¸‘o"l³îU{Êâü#ÂÛ²U]1)€ÐèÅ ,bòo >r8>èî´¦³m>yŒÒ./Ló¡ö¶ªëò:éY·I}—wÜìïÙf[s…^,â|\¿Ÿø•ÒÝïúgÊ Ïú¢Í h«ëôô4Sl‹ÃîLe˜µ¦¥›­Œ.8 â¢*vLYÈOáN͈ºc®JÓÉ4™ÆÓhšN©i‘×#éüIÚGÀ-É÷‚ܶŠVr{`šˆYm•¿3-‘3ÎÁÝÔ*Ý.ÎOºåÄ­äöüDKÎô†7º?•|y~²­YÉoÄyˤ:Oκ _sãPŒøPÏÕ[Îdÿ+ÂÇT7âoóU`¥Þg›žeo°=ù4Ÿ|Ÿ®AÝø'¦Wn&Wר[ÀÈ£êð®Cn¼J§ê@€ -ã‹dÔŸze´=»yô7®JYm;oÞ?Œ>¹>˜”îÓÞºïø­i§LV¢íÁ[î¶0 Ú#9d§Ç­Y?RH׉[Å—m½›Ül1œg÷g÷Š(˜^oί²`ÝFR‹GS÷Õ(‰ƒ­>j!ÖbUé£ÕñP&KU5Çi=ˆ¥#ìvéÌ»šnÞTþCh½ i&Wê-9õ]îqóì…¡ìþ`‘ endstream endobj 4541 0 obj << /Type /ObjStm /N 100 /First 981 /Length 1983 /Filter /FlateDecode >> stream xÚÍZßoE~÷_±ðÀÞÎþ˜ÙER¡* „Ú"QÜä®/²]øëùfKìÚ&gÇIy¨:wžÝùvv~|»—˜B4Îij¡UðÆ—¢B01$¢ITHFˆT`“ñ–Å™’=^$gÈyQ‰ IAò†ˆt¦ q2!CÍ×R„”t@CÁéôŒ_£W)%C‰ëP6$NqA™rT¨ P‹$˜``¥:HP†÷®‚*°®¨SùÀj (|,º*fã9èX!ã…u¬`¾\çÃz}N‚ùÊ_†•d\®vÅOjC°>] $6!Q‚{ÈN ï€QAÔµ Ž ’ Lä×TWçI•U(^_ ,Ñy :©“à_=•Y7I1eü‹z*‡:*XLèË•éâsõ|ÁØåÊ ”ëÊɱ®'“–6J6iiq‘ª vÎÀ—I%Bt7‚”L*žõCÂê!‰†¨”!a› ÃäÔ9Hu@cïtyH±ŽPI—À„X‹!Ä) &<–«3±Zf =&†$U_ÔùÕ~VÄ gŒìa«TLP1Š«ðÑˆ× b¸_|ÖY°( ºAÀIwž@¢Ôwb„CÕËFDê|˜¹¨÷t#²ÓèÒ`ËžÔSÁì7àmŽ¥îRª¦T͆l2Ã,f‚ ‹UAêba/K],r"g AŽ0€£““Qó¢›.Ìɉi^è^cbg^âq¸|P§#–sÅØÿ‚Ax,ÔÁý8öv¸¦ª…>|õÕ¨ùiÖ¿jæÔ4?=aš×í_ s6ÂOŠçõß×-~_¶£æ`k§‹¹fÑñ£æe;ïÞÏÎÛù²"Ôw?¶W㯻¿Ì©3(^qCãFC1ø¥â³é´Ãl§Ëê¥xjõºb/¤^X.ì#hu’Qóêý›E}þájúç¨ùº›]´³ À5ß5ß7ßœR}PÌçX-‘Xì,[Ô=Ô­h= ¢èYç ¯Lóm÷º3ÍsóÙË·S;k/í|ñ¹ºî(8<dKÄçh3¢ê^ ãéŸÇEJ²ì=’ÄF”Ñû,fWïÞ^M&ÇCBÉc3P´‚³„!.V»DŠdËN$oçÓ#º#“EZÞ‚@‹³â˽ æíä]wÑ®¹ã¹9­­º&à/¿þfJ±ñŒŠeµÆOßO&g;•ɹªÍ74LýÌjw¨M «:7•hµ<Šv Ö£+®iߕŵJ¸V#WêÔÐÇ9l«‘èo™ÂÃÊÓfùKåðò—ú—¸¤ò1«È„õÚð³³ðq"¤vÖþOV$îŒév~>žœ1·ˆlÀFhb ¸FÐ=Wâ)Ù¢Ü<=”8%R·8Ø#wžF` Šs#Š+ßGÍ*v{šUåû ÍVmÔȨ »›Ç¬%ìZŽ®R%‘œ–¯â6óu9çaùÊ}¾òq9 ö_D‰9Ùzpâl'3œ9,Xï“Å£wˆ8"¤×3˜  (–¤½Ã±ìŽeK€¹„ÿÓ@í¨ ¨‡ikÅÁ¿ý»ÍZ¼®EòŽà]ãí‡Gòâ- ÞÜ÷éCZþ+¤·ÅŽÿ†îjØ£×McgEϦE¹›çµ-ŸÝ†cÆæÙÉIµÐ<;_\uÓæUóóËïõßg¿/×ó/›æÃ‡ö]»¿íf_\Ϻ?`Åv³ËÏF6ûƒ@±ÛMøß+ Vüœž,çzQC nÓcA@g¦¼›|wv1~3i7²Nöa›²ÛܪÙê]Ñ0í„•8IrŒ-¨L ,P~XçZáçxñ›9^ÜÀ/²‘ã¹OíܳËÜg}~v‰“#αwô2¢Èæü è%úé ’„¶ÊŸ€]zË1¬°K´wŸ>½«‘«ô2–°o?/´GeYU¾¿²lÕNªœj§¬—ù§ÇÇ$£ìâFzëéáé]n’¹ä^¸y£×½7=Oer†{žÊâQÖåÉyjôÞÂ1=O!àp{ðiv8Ç °¯~è9N ‚ü¿¥8Þùz¡×Sò$?5Å!‰V¯úû+WÊ(Ëžþ‹âLºéåÇuH¿y ®CkÊ÷Ö¡­Ú`È`8y v½LÝVµ¶k½÷(µ}Á¾å¡H4+<ûÚÄè ß>Œ­}®Øy8:qbJ›•uyÕ7¼²®:ˆâ¶ª|w«J8]Ò£hGŽ–Â`mÊ8Þ T(üàCñÚì>:±ßäÅúaïÐÆ©ŸqÒ%—•ÎÝv¢¢eö1Ú@Ý1¿ÿZS¾³âPÉx 6©0tn‚SÂ!—»îSŽ–°¥„px´ø›3“~-¾zšzš¨ü#|«dœƒ3÷w¨wh¤»yÎ9œ1{7^ÿ’"ƒ@àDî]±®þÑ€^ãï>H\Œö÷ñ|ÞNÞLƨ|Dˆ¢™À&n1IF»“A˜&ÝuûwTŽ';PÂ;8g¿äò 8Ý›ÙU;õÎ…#žýR²N?¥Þà‰JÝ‘ŸCð\/'WãY‡ óÇCÃI(¡rÀÀ Dóv ÿPØà‚aŸNâ>\p«6øšþýÇ0íÄÉÆ4IˆT¿E=ж˜âS(ÿ Ÿ0( endstream endobj 4690 0 obj << /Length 664 /Filter /FlateDecode >> stream xÚ½VÁr›0½û+8ÂLQ$À>¶3Mgzö­éA A4ň‘d'ñ×W‘êÄ2I{’„ÞÛ}»¬´‚AÀàÛêËvus—æÁl2œÛ*@‚ä6 r„@–l‚- ~„Éí:ú¹ý~s—¡h²Þ˜®¡¤%iUeq+èÌßÜ%É !NrÔ3bœ›É)pYé{˜Â'þ)ŠSCÍÍY{ÆVlälÒtʸžBÂ%Ó¾@RèWpÙÌà«À©A‰µ8z!ZHì¼åŠÈZ] ²§Î“7‹¶5׋\öZw‚²EbÚE\ªÅyý‹Ä^µb‘‰¯Mqh|¡eÔ?–WõELycwôêr2,ÙZ‹^fØÃ©,¸ZÌ7¾ÏXè.ÒþVíáïÓy }šå¦VòÔ@W^pêXr ‹3ì¼ g$Ø£ê]Ä–ô–‹ì,Áß…‹]3 :F¤íµ4ÊëâyJ2ý8;í™È¶Ë ä·x0òYF†õ~ÇZ­&Ýv>κ¯5„Ö Õ<ñY¯ž¼ò lÖxì퇥!+ê(Æ) E5Œ‡§!iöL k-†±`nÝGlþ£àÍ—s£ @ä^íTd×5NŒâG¦üe¸|›#ôd ÓjÄé·y!–J‹ZŠ}· oø*V¬-}—`ýz;fÏ_¬ùn”J\%W¿®×Ô•þšL´ÍIþxk 79sªÉ˜Ø¶“ür”\\S䟰í=± œ+RÜIљ뉋6Š”ô)NyK¹yàtO5lVö6"Mc"Qö°[}‰ØÉKQÛýÁÚÉ®~´&İÛgOâ8Ü})%#šÑswkñ<«KÊËažüHl(àìUùu»ú ’Zb endstream endobj 4695 0 obj << /Length 2355 /Filter /FlateDecode >> stream xÚÅZK㸾÷¯Ð)c#+ß7Èe‘t‚’ ÙrØY ²-·…‘%$ÏL÷¯Oñ!Y²(·gl`/EQTÕWU_Iãè9ÂÑß~zzxÿ(I¤‘–TFOÛˆ`Œ—‘"I¦£§Mô뢭ӲÙ.{úùý£PƒÑLK¤´†¹ì8Ƶô€ýôÝõý#cƒ·b¦ûZLt2ÿ‘´~nF¯Ÿ}LI¤Ú}«È›vS_òvçZéf“·yU¦…¿¯—$Y<÷YÙ6®k[Õ®Ñî2ß°ÊUõ>5¯úQÇrmîÐ2f/~ÉüØÿý%kÓ¼hÞ!†ª¥¹ÐhŸ×Ê¿0ËH?’D1IN€E|ÂÊðRqf“‘)ÄeÒ™Ä …ê¶z øŠà`sÑýÑ!û˜7»¬~·báÅ®—/â¶Š_/hÚq]jÅàɺʶ©Óu~2û,p“î="iãä©BezÿJ۴ܙ׾ ú>J醛Ah '¸9CBI°ªD”%ßèk _‰h^.9^|^±ÈêÆ+\mϜޚÕ'lr”¡ÎƼ+Ô!+üÉu¾(× Öëòž%R_Ä“+Dq;žEõœ·!@5R`¯1 npÜzL7›Æªò¶›êêPՃؼÆF‚÷è}2b4—ð〣—ñcH};~ù€<:îá‘oÀCh‚¤îmu¸<”C2uð¨ï‡'­× (}%lC> ¬”6™c¹x¬³lŸ–ñÓ’‹Åñã´ÈŒü&gêÄ:ä¦:®ŠÌÝ{›ùð×z`¡%Yx#A·3¼02RÌ÷5<òŸ6’F±.†êK á3Q¹\±X„c˜[áˆØùtÌ·¥Ã4f´B‚ðNó¯yB‘Ö=ŽÃúɉ7î›Ç&óBµ•»6‡lo½HÖȦwÄ|æI¯L‘ Y ëòe´2È$̦݈½ÛÙ’¡9Tå¦/¦€jE€ùk6‰#ç\·‡QØ!oOã6†Æ•ê?ò¢Ò)Ñ* ‘žŠwà<£Úí¯¡ÁèT=&©UIâ½^= µ K4¸5Ú`]ìÒz_•ùÚuï3%Û:›öf6ÖÌýGœßxAÛÈÛ0¡«tý1ó0@.™‡Ü é 7í1ävÜS7U/‡i{9 iyßö™H2¬ 1!ŸóÔ= Ç ,×&'ƒtë¨3;Äݸ1¹ŒB¼ó–ÞÁN«¬Ì-|”ìªc±qíUX)¨¿ ¥jHCoÅ´¶Ëž É™hЍVwpÔæS}uíw]^Ÿ´ÏJínÅæ_¨¦Ó¥îR÷«¬Æ/äJÎïÀMõuÜľ”,›*núl"4¼\盬\gî¶N[C·±Äëçw7.a˜ø™|ÍF­—päÔgQA …3¢sy9#2¤™˜ÉˆâmF„4î3¢©*w=eDxìˆÄŒý÷Äij&§F“ÖH/I;+,ŸÖÏ \@Àoؘë™ñ^_•q›ï³nWÁ{w7/¥É["tο?BçkÍ{ÅOºûrM­I“i|í$6×Éþ…ëN‹Ã.õÍÆ]›ãósÖ´ÆéÌíêÅ]ÿž~lÚ<õÓZ—2ÿîÒ"ó>7I?Ì—6Ⱦ®³ƒ•A˜©·J2^V)Üï‚ø…™³!¢ËzŒ§“˜]@5`šG#¬øtBæ'"lú-‰øhÓÆPЯ•qȧ(Q"2Ke1Ö iÕÏóçé$áÓ^% •EˆSxúLÞ8 “˜–]Wø}+óΑ`ÍѽòÙxOZ3?™Í$¶á.P*U­)— [¿¸.`¤:KmeeAk$¥;Ã8S ãkjIЉ¦NFiŸ }òš“Ì¡ «Aq—M‹pˆÞ©ú¾PUßÂ*«ëV°”O³.¬jm ŒUˆUL·gÛlÜuÀ*ævõâ&ú©*³Ö¿eœ’ÂDŽ>bFɈ*ÌUŒ"8H3aFЈãž4ì–á³Ì@!ØN‰a†`a‰‡gÑ/ÿvgŸ£Ïu3Sh{ hHô„*˜Œ3yâ'ç<æÂ¼ó)LéTKHoæL#AXøo’?HÎðWbÞ“’û=ï)”$•²‡ËK`ÀÌTŽÁY±ŸŠ2¤ºÓÌÿ8ÁddN:É!á |ÍFˆéÁ˜d°bð 5t‰3á1Ä!xΖ¤~çÒ1í§+DË86WÆ 2Ù›Òk€WöƒæÌëVÜÕ¹è3¸+‹;ýfÜÇž :…Ï¡$Iz?eÁ=™†y4¤;»åÈäâ_ÅǼtÍ?¸Ëc^ZÊ‚5€ðÍ•9á=¶nˆ?¼g²#49<ÅŸR‚†Øì N€ÈD‰fwà„~¦'Œÿœ`‹Ô)lÍFEºn-_ƒVÛ®±®Ê&ob¿ÇžXÞ¥¤ÛtÌÊuwø0úCŸËŽÍ±ûÃåóòPоÓn¶9”¦¿Ë2]Ý&4ÊËPi¡ ´ ±[[Û>×Ü¡]½}ÖîªÍÜÿKæÑ'ÿ.ùgÕfï&æbÀw°Wöõ0£ùt‡^ž«Î”˜®0 ¯SÝ´ÝŸ~¯ n]p€ÅCÙæáiÌæx",ÓMxÏY3¸ÜéPÆžeÏ “s&ãýqî8àxà¸s Ü9Å&ý? pÀQ¨f'¼Xo‚Ô]ÿ~XxX endstream endobj 4701 0 obj << /Length 3544 /Filter /FlateDecode >> stream xÚÝ[ëã¶ÿ~…?]½ÈYá›T+’ AZ´É¥šäƒÖ–w…ØÒF’osùë;CR)ÓÍíE¾¬%rø˜áÌoÔ’ÅÝ‚,¾zñùÛŸ~)õ"ÏrÅÔâívA ɸP Mi¦x¾x»Yü°ä’ÜüôöëO¿T4 å&ψ40‘%êÛ¢î¶H÷‚øé‡ßÙ+.u¦ˆY¬˜†FîÆÿȘŒFú%çÁ(“ 5[,û­oÚlßlJ·½hgšÐaÀŸoVœ’åöP¯ûª©oVL’e߸ßMÙ—í¾ªKß|ïìÌö©ÙºßÂ,ú¢¾_ÕM»/v®åÝ “Ë¢­ŠÛ]™E|,VÆdTå‹U™Qì÷³[þúp’[‘iöÜ̺Ÿ]sw=§<£ÆxNéïç´‚E«þ³ xJ‰ÆmÕ_Ío'ËÙ‡Ÿì¦o4Á©%Ö*àTPéÇ࿜0Ëþv ˜›¢ÝT¿•láË}YxšMµEV¶e[Öë²s((${ÓÜ—õŸn¤\vn4´u&iÆÌ¸‘ï‰^¨,×Ü €pD&ráˆRüèLºˆœpw‡a;?IÞ4+ 8Á¤£€Q.¥Û|´’/in ÐÓìf%¥Y~_oÊz8wÇÌ9[]wØ?x1ÙŽ¢w=ž„/7`Ëî D:ô5ï­êù„°¶ë‡Iºâý’K¿§¾-‹¾Üà¶üê£íʵc‹Äü4HÀ˜žMÆ`캩û¶Ù¹É3Ë»¶9<8ê¢-]ªê îÞ»†MÕõmu{ÃÈòЗ~òǪ¿wÝå/«ÙÐ8j¶SlòÃéCÓ—u_ SëHƒúˆå˜Aeëp÷L]Ð(%3"Ø+”Ê”ÌC…ªêMµ†#°ü móд hîÌÚë¦^57`UïðOÙîŠ×q[öeYϦéok7G$i˜Ù¯‰YeeöÊi±6™$">ôGMÊÌDFô “#0‘ùä’ý¯a5m–$!*A ãD¯Fì;±¦bú"WÑ9tnÕAÝL&~C÷ÕúÞ=Þ5eQÊ)Ý¡,‘ò™ f@£&ܬê5˜eWv-bgœfÆ~°ÏB g ÷zÊÎb¸|2†«Ù!†s2b8Ãñ¡+ööIhÞ¹®¢ó· ¿rm„ÁMfä“´ž%µÞ@÷ ø™˜1üçW° ¬œ˜d™:†‰ÑÙ0)Fð—»1|*‘å_×e¹é†®Ò=€ØÀ-ø—hyx¯ê9u¹vŽ(^h‚2x•§` t/#àž.“&Cà2òpÉ·äÜÒôÒ ²+N0Ïóp9ÅEM|)0Ëä‡Ã™ÎŒx4£‚g¹Ï‘ò?XDÊ?nDª£ˆT©âGåÑ Ÿ"4s þw†f8óaˆ°Ô2 ¬åAŽ ð÷FZN,®¥p$÷Õݽ´œŽÏ½ÂèùB^ý Éª¨%òñ~b[û“$†Ir &5ÉØd:ÿËðÎ\§ò´fŒá¼Þ="rÜŸ|¦ÏÈŒqù,ؼۥ„®hr[ˆ‰„a"Ë¥K:à7ÆDlqJ‰OG˜ˆVh8Aœ©9µóÍßù:Ô‘‰á;RümýU[ày=ºQ/]׿o f}g%oÀ,r6̓ãÀc6îm]ìv–K©=Ðè‰o‹ÛjWõï]«gÂþe[5-tŒG9waŸ¡€!Ò‚Í㓈¼§á‘û7ƒS„öhQ×c4t®ŽlÓìwï]#èñƒÝ:vÅá€#ضÍ~¶Æ$ªLCt Ä¸7åÖÅ÷!€çņP`¢ öoÓ?Þ#ø=ª¡ˆc|Ö„C‚MÅ òRú‰ñÃ9>}\WÎ 7¤T?“+W*Ó®?G­f½«¶Û͵GGÜÌ0oÊá¢èƒ¹½Ùù^,`/}tï¯-v}^? –|¬k%ÆmÙm®c Àr”ìiIk>Oö ÇGÛðtœìÁ›ìAçmU7ûÊš´–ž±{-ÖžÄäMÕ=ì „?Êc襮Dÿ-„÷5˜?j7y¡çÛ,jkգ棖k ­¯´Ð¡”ÁE¼5µ-ŽS[c±>¹Ú kC‚t)g®ÃÛ¤aÙ‡MiÀÍàÜùy6¿pœŸ€Ð7UágEŒqˆÎ—fA(X™ž[9qÓ-Û¸ fº pö½· á^n_Õ‡1Â(Ç£LASäç‚ýæš2‡Íç °oA@Í5Ÿ)6€ôƒ€reì¼@vçü•µ§+œ)ø-FªôsÝ ùc#Ó*Î¥†Ê@{=Ô'ŒºBчr]¡bóL.Å 06–$ŸBÚ¢½K|Lg|rWE{CÍòî°s=•Ê¡w{Žcon¯Iå$¥Çˆa-#F¼ü±ïñÐHGöÐTu¿º­:ˆÒ,îAXY[îŠÕéäÍ&b¶X®—ŸÒêG !AËŠ5­Rш_Ž_Ô›Ä4(ëÉÖìò<›²v*ØTƯû[WÛwµAWŸU†°Ó•ƃ‘ Ÿj¯¤©üue Ä•ÇvÑ–¨¿}`K;›Œb¡Ž²å_· ¾AüÂ\’¸`¢.ȲEa.È/žïv9Õ6Y„Zß«°@4“;BB›®—]ò!š›*AÈ5ß×Þô“û<#”‡üÙ5ÕfXo¼¿àŒBh&cm…¼´m~­Ànð(uŽWìûîHĉrð)n= RsaË’a s°à0N†å®d^'æ‘tÁ³œñ .}ñÅÛ¿¼@U' º`Rfœå@+3MóÅzÿ⇟Èbàñ¶ÌâÑ’îm‘ÍbÌnñÝ‹ºÏª@lÁzã\À…¶ŸXSQȰ…¥S0Ã|M}†5QeŸ­ñ8Ì”>Œ¿H37°€•+–ç<º& Ë"÷4©‰è‘Rc¬É3˜ÑŸ?UnÒæ‰ŠQú"k ßŠž³?ȉ ÉJÒrPZié„ç o+ÎÀ0·W«— €5ã À}’ª‚TwT×ûTX :?™*2XhËÔµ* ׳éâ[U=i~ê)Ë  MpÈûc‘sÁ Î`ל2JüäŒS„/ouJâ9˜ãŠ€4UTe+XV NJ8¤ü"‡Je\Ðgáp˜êɦ?¥À+ì€Åâ⪵/<ô>iòZ˹&Ì ßA>S+¸„­§êÞ&ºÒF‡ÀòIz%àñ+±D1ÿh©© oN.–±¢lºäëbÝÜvŒ_úØ?Rˆ¬<£Úê¿n$­åú¾¿-¸ ²œªãú㦤ímuUu\ÒD9Fúr ~Õ1KNÆ»w™*Çà÷ # Ó1¤%>÷8®Ãx ÿ¦ú?ŽKfƒ`æw&a(õœ_&Ub†•èY…áv•óøn\ퟱ¹{î/Ä2œ‹ã\¸®ÏÈ ýÔÂÝ$*†Ôb\ ãrû¡å±UH“©é{£ëœû¨‘ƲÀÒ ï.¢ Tð²ÑQÉ3Ζà ªXÆÉÅ—›sÎv˜ #]®[?8Û)ÌG{®òÂ`ðnʼ‚«¼Ø×²É9^±MñO-:P°åR´3üƒ/Î=Ë?œ°€¹„Êóæ¿MmK)òŸ` +æ#û¿9‚=•Ó~¾"O‡8<›Ÿa¨ì9lMœ pW4§°;Ô—'F³ k+WèƒMÛO—O Ã\¡.<% :Ž<š‹çïGŒM¯ GôŽl <¼È:¼ ÍcŸiœâñǨ ""ã0A¦/ì‘qyª‹>ôØÚ¹ûL.ý—Aáç™÷)a#£ü¿EÕU ÿeÿ§`öa¸£°7 <¼dMÈVh8o}¥`D$˜¸r3JFLn”ëñ"öaëìÃK`ƒu¦îÑþ/v:úl€¶LÆùTü®ÍS”à? r‘/ÿâî6SœC’)’œ›sŒûët˜óuZ™éôOlÉœLä Å´—/ir61t<ÙŠCpÃ)Ý`¡FúoyÜ"Á»žÆgý’ëÝ6»«õÏÇj™“I-sšRËœÄAqdü›¸ìIGÃÃ/`ì°sün endstream endobj 4706 0 obj << /Length 2281 /Filter /FlateDecode >> stream xÚÝZK㸾ϯð)1‡O=ìa³ÉÉ!°=$³Ù’maÝ’!ÉÓÙùõ©b‘zÒÝ3;=Y 'QEªXüªêc‘6ßœ6|ó×7zxóî},6ËboŽÁ9S:Þ$B°Xe›‡bóï¨oóº;n~øû»÷&™ŒVYÌ’,]vœ2½áN½nv*6 6Ûìd+þAJ3ÿî½Rí)Óqêu“ ¬½îû¦ÝW]Àš$c þƒ?nwJÆî»¦}Ìûª©·;iÒ¨9ÒóÚTu¿ee[å’š¶-/vpG’¾¡çýq ¦R:ú¾ÝJíвÍγ3cȤÓí±¬{²|¶R%™áÚ[~­‹0$.ʺéK40VQ.±!£kÛ\›Ö­:ì:A^ÕEµ•&úX·üâ¾:nòË¥ªO~”]éTáÎeÛõSm“Þþ U¸oNms»v®ãœ»oÈO›6Œ§jŽÆ¡-ó¾,``–Dû_ñ;å (ªÃ¹é›Çê“w?pÃÏe}(ß@&c&P» ŽR²4•~¡#ý‚©]yhjg¤]#Ø ÀáÚðèoÇâʼäËL ¾¬ÜäàQš»»–‡Ê…‘{mæÈ¡[Êâ-B,œ¥&‹Ž·úàc<‹ò®ÛŠ® ÙÈc°QF~Ç™ •XC º ŸÎàšÄ&Aw€:ø\Y{MêÝ oñcYTym³'Ž@j—,T̤^¤Î:9ÏCÞ¶• $xin=5r×[”Ý¡­ö¾t„I“bI6Å]ª‰!»ÕàA6c± ®i‰N3,Í’¯`;0àºͯY‚‘ê4OAJSgS—®q¤'MŒkàå#’Y:÷Ë ªÜs ¼²À,•––Eú ÷Æ‚¥±|6aw~МÀrˆ:Ú—ô¼ueÊåv§&5I²æ¿Ôñ_ªVå!ö-(/¥R {Gaé”Â&'ðPijnå¾×r˜†³¥R‡}F ¿Þ­bÆÍ+ìV—ºÁcDÈc X '“™\´„+P…Ž.͉Mak èjqXGR[_ ¬ê~!Ézk‘Ò%,Õ³0:§¡×*âÃí’·îþÄÚ6sí0—[9žä殾ìÛæB/D™¶é ‚Ö§Ãù•GuYÎ÷TTsWËó)ýàc•Ó­LÄà9Tm‡pU©ÇSw>Ù©f]D@&™àòÕ" ýœHÍ*„?CrN` ò üy‘{ÀQB½èx¬ãÇcWNc'Ž·âÑË«8ðÕ&:^ ·!`cp¼±w<ÊÉlM¯Îñ8Üò ˆöN×Ìñ(°Ž÷ÓoðjÓ<ïxÅÄXÉ®¿3€Î?¨¤°a5N-_wË]«ç1ßwÇ-Bz ï k!l¾S ¡¬÷ý¦­ÂL÷#"ƒ€úe㽜Ž_+Œ Ç€u™f±ž•ßfÍfJºÚ žvV`cYÉ1–Qjãž‹}G ¿ï@kÁoä)gÈâ@hø„özÐ(GUEÕõmµÇ½ëfw>ŒŠ‘°~hþC/ Çuy¹¼¥¶ÈÒ,Dà«aXkŽ,c±œîù*:i–@ºL8‚ùuô6l#‰;¦&KàQBÀc+ <3ãŠ5ðv)À8Ÿý¹ªk5ÿ†PC€h¿Zxß[¾‚oð«¼Þ=ÿwáí1µð^Æ,&fgÁîòÂƒŽ­èÓÐ6¿Kh'_]€ôeÏ®îÎ#TifÆê#/Ï–›¢pع)PQPøÍ| pÜ;ÝÆÓ¶9œ€Ûj+¢ƒ/&Ç º×rÓÏ ö¿!t·Ó©ìz_ îÝa¼Qw˜Šì›RÄÇ¢:á¤:ÿa@@äÒ]BùlG­DîHd#ˆìï ³ë)‰x˜dÅü *ŒáŸíB&¦j@ÖÏná¡-R¬…˜áÇŸ¶phñåâê—çÕEØ”2Ö~û½«ìíÙîÐûóÄSÕŸ'‹Áá4à«Ô.hé`¥[¼­í¾ÜÀ‡ñ ߃•§Ö“jè±Ç²?7Åât”ß?”vbú?Ãáà 7g’N¯;Y2t£çJK“aËúRÁ1Ñ!B§d¦Æ["P?Ñ¥šõ[=Ä0s$µ°¼©a*MJþ5̳ oLèí¿vp>óN¸]¯¥;Šj¦%ú“3‘_ü¢Oe‚µ`mÍ“äw@o¥C¿¥tŒ7Öÿ+3ŠOÁLøËÛÿCs endstream endobj 4713 0 obj << /Length 3263 /Filter /FlateDecode >> stream xÚZmsÛ6þž_á79jÆ‚ˆW’¹Nçì4o¾ºí$žöÃõ>Ð,±¡H•¤â8¿þv± EÚ°­v2c‚À±Ï>û,”ød}Ÿ¼{q~õbñV''ËŒ0'W7'<Ž™Tæ$᜙\­NþI-fÿ»ºX¼5|d*ÓŒÅ:…‰œQ×äU{ƒv/b?ý½¹ç2áH SÒsû¶¨Ö³¹ÌTÔm,6tTÛ¢kéRަ0)Z ¯Ì›uû²¾µ ÙN^§S–ÙÛæÕ*0O™äj:ß~· ϧX’éÞöt6W2Žn7¶±dÌ'›£Y¬ã²Hdz±Ã\¿Ç:ÍÁÒdXÛ·ÐqÂGsðÀ¢–ÆÃí½}^Ùª-º;ê­oèšÓ¥ª›m^z»¢íšbŽóƒó4L*’“9@$Óš¦¾ž‰8ÚwE]Á2‰n‹nC­­Í]Ÿ‰ìŸ{7!tvuÈeœÍ4òÁ¦nðóÛž†õ?ò8 Ϙ– MóÛ,£º¼YÏkZͯ3‹µËMwïò®óÀ¡Ó0×Lâï»Û/×ÿÞÚ.ÏÎá3¬nÖ߇˜F(X‡<ð½[>KœÛÐ{¾ùÐ{Ãt`–M×íÚW‹Åíí-ëß âv¹ýSžåv2žM}p€Ì€•!Š&^øho`xYàÅöï8༮l×aÜsý¨±ŒÞù+cá‡1ò©ÇS,¢¶øfɰ6.»µU×Rlu¶íœÀ^ÇçØÀN =ѲšK±X0·/w›Üo‡Ñãx0‚eÙ°køl½oªÜsE?>å  5žÅÑ›Õ~éÂv¸eaãÜnò/,#3Rß§la¹Ë6" Þ8àï4à9@Ù!C‹$0IæÄÒH+(ÜðSÚ)õïB©bN?Òd÷±¸ª „Ýò­ä±€kb²,5±HâXÁŒEÌ+ã˜y K•¢_oŠª:%Áð îQ{T­ ÜH[8° ±°©WÔv`ÀƨVÅy`mCîÇ~§ àZ¯V-µt5;%„Ü8º§·}³÷æß·¾§¨†Uä$kâ)rpþ][´Ap%@ÎæŽüïð€SãõI»¨l`/!QéìxPðìP1F‰ƒ—<„ L\< ¨Y2…N{—r.[yöJˆïð%¯^åÅjŽMRõ½d1[Öÿóm@10”Ê<€¼ú]o¬0ш•ó,MG\7ÙP\Ëûïä<¾sò š|ð"   ›ô/Ǽ6gl‘_<[ÞûÁ1š³É®; SÙëón&¢÷EY¶«¥|šŽ~ºxåEJ¦˜Pb ¶s\ÀmczÅlö¦)!·m鿬mëe‘S²ª“-üzJ†ŽŸáú‘ùŽ—tùTÙ²ô]o¼Í;äMØìì±ÍæuÜÎΆŇ‘1>(ª¼¹£ö*ïò^5`>Ø:|â°u¸‘?ÖÕª®^ÑÍëM¾Ûbô¾æ=H-æwS‚~(Löã‡b}}‡B÷^Êè—·ºÙK]xýÉ_ýçK¿gÑÙRó×!ý • 4, RP5Å;`¬¦±¥‰hñ SDz [Ô@CM8(ɸIž¢ žé äQT!‰)¼2Ì 2S@&Z"{$P:ÈRRO%pK²¢)V!&ðL¼ö¶hA‡#ûŸ’’øˆMMtæ®Ú{Jð>Ê`ó®È„ª´B‚ó®}C¶i@‚ ¡ÈÀºsº É %+=u.€ Þ/(†Q_fk·XŒ“‰¡ok( AŽëóK€ÁLÁ*«ù¤,}NIŒtgè0`bàù€»4!B~†àR©ûܼY•l‚¾”áB(/¸æ&¼9¾ò^|¾m¬…˜vïWÑ¥ã!½E¥Ï|çKº\áfì?c}튕>ªqìÂ?÷Û èÖ· "ºWe0V¶ãZ®%[çXªo| $Bt½/ó¦¿éÍúáöÏ=U8Q]cüž 8«€9½Dè…æe3⪖ljIp“’ALò¿*&MìTƒáüQ1™>%W‹¼Þ¶ Γ$Y¢MX Ho™Ââ0 u ’œ+Rï\ßù’úÎsJ*IÆäŽCW³DQ;ó*”« P-œ‘UUw–l\XC!ÿœPm©ƒê_R¡%óT‡À@.»ºéa„–74П–a–щXP\ºçC˜’IÃïð/íÝ×°©¡ú†XN\†·¸ŒHR óTO<$ö9Ø(Hîå‰r¤‘¨`v€œ+óTvPÆ,»ÃõRdß‚Y‚gœ>Éûü3D‘‡I(7ét¼¤ûß6 ½z£F‘ú1=S$¦Gª,²øèqtJáwý5º Ç¢s³bÃØŒÁáNlž:á<…‚fH^mkAÈI(ÕzˆÝUðE®Ž}K°¾D ¥ô9Õ=áT7G<ý{Çwî˜æ¦Ý¢öJƒðÉ ñÐåò]Cg}¬Môä@PË?3ßñ’îé ¾ZûÞOÞìPVËžJ³þ$X:ó“XCm·ô£ ŠJ”ÕùÚÒÈä¼NçuØê \2%LÄIX$çxË ÆÎ÷ei¡²ìä5­ùs T¤?J:S¨$wKÈs/…ÊdÇRbˆe Á)P&„k¯”iq¯öº,àë:¹ FiïHÈS.'âX1>œu'©‚¯]oåË»ùÃâÍÙ­ê½+α7ËOHi‚I•N/šÅñ pζ@D ËúCƒg™¤ÈCW væx‡KqLžP#ws™ ëÃõÙìŽæ2Ö ý]*T!C®†Ïb3=™ÿ¹ü\ jR |>0ßÀˆÎ@=Ñ¡=ö8¿gôÓ^} kïÿDbu4p|KF]í¿ë(`ÌáÿgDazTrïüh®Ýo&Üs7ÄEÊbΧP:&ÁK æ¬çÞ‘í/’ÚÚ‰ÚD8â&õ{?üp"¡x˜ž Ñ²®H@èv'PìPžÆ¯™°í’8\-î|´.÷eî-¿~øà—àNÔÆÓŒ| c»èO@lr÷C}ÓÒ=&ë¨îèæÏ}^u†"½ù£¼£1Êx^Ìå) ?9àiS”u[ï6GðüVít~_µyÿó<ŽÐÒ„'&èøXßõO}ªAºwwƒ¡cþeÓ£ywíÃùŽõGßg/›”I-O Ùóµ÷ø”.\o»S:ý$™d颜Ê\@’B ~sõâÿ»t…x endstream endobj 4720 0 obj << /Length 1696 /Filter /FlateDecode >> stream xÚµXYoÜ6~÷¯P¶Ñ^šuÝ'±‹ÚÚnûäA–¸Z&º*R>þ}gDJ»kËŽƒ"0`ñg¾9¹Ô)êüvðêòàø,dNB’Р˵Ã(%܈1òĹÌ®îdõ‘R¯,Ÿ.ߟÑÎ ž„$Jà7Ðò€#ѵW8KÅÁÒ‹à7dçµÞ¤åÑbé%‘{NìàgøÄ0ï¯dm—Þ\‹ÝWÄì}¤eIìÁ—Á’ïq÷Äì(Yµ¥°Ç Q‹.-ÍÙ¶ïZ¸ÒåRµezgvšµY¬Ò¢–ºÏÅþ²X°À½mE'—¨è´h’ 0zT ÞÁêŠõ ܵÈ418…ÁNAHb0½CÒ¦ïêñ0Þ‡ßÓ¼ÏR-›iãu—¡ ›¦lŒºÅÝŒILF8²$á‰OÊG‚ÈŸa’ æ±ò€0¢I=—…áGÏ Y˜Xå8ßWއñxv£u«~9>ÎIš®8f”0Ê£cp!oIÓÈ'–3R,½0$˜CðØpü{RWŠl£¯Ò^t Ÿ‚ŽKŸ&î?‹ÄsÁ Àˌ̔Që!ì¼njT˺@°²Ðé2pï”P攬ÍÖ¹ùÜH½1z#¶‡ÖMgVÛ4û’bÎÄ®õãxÖÆÈlŒ.´éö<éBƒÙ•–Ùà²u/šµ¾I»G'|ˆSÐÿi‹'1›â2|ŽÅùhq¸Ÿ¡½ýxÎÜ>zO™;ÁÞŸ•"×”‡DR>#ß’ñA4¡10;½M1†Õ^yì;ˆÃТ!‰x†×‹/Ë€R0Íú2ÕÂL˦0ƒNª/v„1§Ì8­s{¬é:¡Zp¡ÁpI¡tÓì:ídZgFÚ!5P0¨Íšyª Õ¯Kó å@˜+‘ª¾«ÃóóÃ#{©\iÈPvv³Zv–ÉU¶ÝËa¶Ýƒ[Òü#WYÆ%ñÀµFL'ÖRêÖyS-ų•U»jrQÎ)Ò µ¯HW¥¨Å´2\Ë{Â<$¾'Hz ©¹³V0C†8J‚ŸÌàõ[óÅ»¯z«‰†¤PcДwV½‘VÞ¶k®e.&³Î)7‰$ öªÉE0fv¡9˜zV`{oÝèg9ñÃ.@»Ò´\“!~Pk©õJܶß×^MŽ=© k-Š¡Šn%iÀþX¡¾Uó! ¶ã^ÚjUBæÃ3:í½üGc´Þˆnµôí´o¡¯|„â«þ¾u…´T#M÷E}oÑg¥‹—Î~oDYþ?ÑÆKN/þ=ÀìO6uu< ç¡“U>Q'‡M¸‹ð$vnÒÊñ¡&E>…Ò¹8øóÑÔ;´Ž{EġϠ Æ„FÁ¶u\K£ÕNÚÞ+›Œy»•êr໕©BC2ÆÁÙÂ\ä4ÌN†Žøál(Î8x‰%Ü“ôµ|i–~¿ú<ä¸ÇAñGßÊ ü^-›˜1ŸPÛ㾄ßÉv •™êµßÃaõJˆç[?9ëël8;¨¡óÍÒ®»3Ãsà€‘%yšíÚíâ,dÅÇLÖö–2Uj¦ð{Oâ`ªü‡êÙÞÂJ>Q’¹úÏYDÂØ7õ?´¾þ—Âöìêÿ8~£ëaÔÜÚ˜!„ì…%‡°dcX’ >&o½il#0€5Tâ-.ÑÞ³ ÌD“ ¿œë™v}Üâ6Élaò#h›|âòNû8§­‚âw´WÝšnuøžŽ=G•ÞJ Éœw¬ä¢»‚gÒêìäýÅ©]“¥¬Â÷ —‹÷Ú¸“nx«ôø>zº—ûŠoïeŽý8P'Kë]~žCGŒð­Y¾ÑŸÓà„%Áþ­ñ|ešv|rHiÙ&íÒ le¦ ¬=¼h¼pè†uØ{¨ã^“;–b­ç”ã ¯7‘5³¬¨²åÔÉb3Ï pŠvÞ̈Œù ÅU­È䂹ë;3Çü†û7™m¬v(,›Uûž§“rÓ£à`Ý×µ’œç¶e£ïmWR™Æ'JÃÝ=„5sQ ¡ìò¦éËÜŒ¯ì9Yµ½9¾-Yì¾µ·"‚fÔ׃.˜bE~´½tæW‚A#È6ðØTæ›m𛧬ͺ‘ëmö‡Y.Za_!x¢¹O ]A_jË{wAÁ-þ†Pš˜jH sÒ¢G)1ú*ü‘Øé gžÏÄ,¸Æ”ÚD12~ÌÓyD  ±ôS!Êá•-˱eo3,djösÙ*ûÇQÌ endstream endobj 4730 0 obj << /Length 2576 /Filter /FlateDecode >> stream xÚYY“ÛÆ~ׯ`íKÀ*q —]yc)qÊåª(›¼Ä© H ɱ C«õ¯O÷t㢰+®Š˜{zúüºéoNó×W?Ü¿zó>J6™Èboî›À÷E¨âM"³Í}±ùFjûßû¿¿y³¥aª„›}ZÔ5¦úÕ÷eYâÚW>_1|ß¼ÃÙæ]Çn÷N&0ÒºíL•w¶YqEb‹,•õ‡sÞä‡N7Û]˜Ä^ dÔ'l'Þ¯~äkÓuCÔ/Èb¡ÔHüÝÏþ-Zrš2½^9&Q4.¸ûpÓ);å§ž]#*HEì‡ãqÿ¸á8xd@Oï,=»½èƒ9>òàYScb­[t´Í´îØì‚4a ß@dð$wxÝW{䬌|Ïé[™¶u,ÆNÛõ…Ñ-ußî>ìú¸ |/ïËŽL»öàXƒ‰_,®d©[2„Šð-‘H2IÛªü³éô 4ËÔÞ‘wrc°”þÄ`7è £x~ÕW4:2ÚŽq°oÏ;cë–ÆG  ÑP^4Äå+Ýmá¤å³œâ‘%/å|”ˆ y f¿Æw%2ÞÎ÷@e"Xrý“nö¶Õ·s½´'sÈKTNÉ*-ç*zgílÚÍØ¾»ô¯:Û¾,¨½×´ø¤käºæa[óÁgž¿4öÔ€^K(­aÅœÓl,Ä­Œ¼O¨šåUžl®Æ‰Oz}« ž`a_ò¦›«ƒ¤|)u¹&u×žä ¥œaתœe ~:³÷ýÛŸÿùnEÔDí'·‹:LÁm‡ÑRئ„—Ü.iS™Ž]Ù4F-6ÈÕq:ŸßyÙëV€tàÑ?±3êk§È/]¼¦±ÚÒw~~Þð±(™ç_ÆDÒÃ8. !n—%í¤k·AêúJ×]+˜íñü¶LÑmÂQÄáöGÝå¦lŸ£K E'A#¥÷Ž{J:¥R3R3RNkh!uk[ƒ®æ°¢1šA­kòúãnŸ÷(ààÒ"ïrÞÛŸð‰Î»1úp®Íï=Ófv±d°|ÿ¸fZ?ö,fX‡Lx,½ûmê{ZC ¡¤Gú¾Ÿ£ÀãÈÃöþ{lg^«yQ^¶–öçºå1.HÁw¡J˜g°cd ì9ä5 îy’-:&Ÿ„#P5®»‹1°gÁï3¡3ESè+çYЄ]^çåcëÄ”(¯p,…9G×_.àÁZbýì2%<Ŷµ\<ûÜ5ºâ)ØîƒiVž`kt•ÀÀÖÜr>¾äE¡qìëZ—Ô¾”¶ÖFaL¬Å±µ¼©¦kM{u˜Ý·º!çÊ[HÑ vXœw_¡aÕ{ãK3ÐëüA±ü±U=¬Æ}°Îñb&4.Ö–šÍTfœuЄÅ|VêŽ/Å÷‹T(Yû²1 À,Ò°Bûh¿€ÞFUGª ƒ¶.iÈ)-Œ°ÒBËÔ4Ã:‘AŒn>w4CZ“x9¯Ô¿÷y¹ã“ž£)ð…­v~íú@úTÙB—´MÔ-ÐäR5^ïV´kæ‚§u<‹Ü²±jËvš¨A™²™2A{ ùЮ-ow±?: ¾mAÓšBó* ÈîKŸB©ãô6>]”FL+Ig°õ?ö'¦øÓš fZ% ›“!°ÁEêÝäN p{ä%/jøÛw :ÚE¶ÌÛoö¼Ä! ØšSw|ÈüR’p^™šûŒŽV×­a$cºÅÆxZ59ÜkŸtíã˜C_æýZ]ƒÈ/aâ!!¯M[MÙ "˜^+üA_:"aˆâ‡`" º¢Ýó-Œ¦(IÎöfÑ’G4¢Y²æ´½ÃÕûÕmYZ4¹‡1…žóuUÁ`«÷õÝs¨M2IÂzúÑ¿®îŠßpkÊÿÍÙ÷“õTáFFB†SÅ ÔÇn­fJ¡ÂQŸÖ«- ŠSftטÓyý¨kMC_hêÂù bKL!?ÁžÍáLC˜Üä‘&Ù­Æ#XÁ¶+ËidøŽ5ÎEèX9Ç1OÖ_ ‹ Â8XÂ#ƒõt³Ì¬^žµZ¼D±Ú "/ݪ›Æ^©ÕGÿåJty —ݘ9¢ˆ¸ì¥؈ Ž[.úÃ÷o¤ÉŽJÂÔ á‚=£P™¢£×ê% üg¶™-úp°O)ž<ÚvFѹ»ë+²gH—x7´PÂó°÷€HúKµ•Büh•ØæÏOT)cððZæÜ÷k%#19è_Þ®…'°¹H-òàÓê G1Pª¥¨Íí‚ËËäAªì Zɘ?œÁÀÔ¨„²xôRöí¼CO#hrnvødÞ3ùñÉ_nsŸ¾… Ûnƒ¨RLŽ"‡dìÑ“×ݾرÜNÛ Õõ C:P5úsgŠ}v¢ØtV _² ·wb?í] >ºÿÒ¤keÀ1ÅÂó{®ÒPAA¯< ~â¶[¼¨Ú;ÿ H]Gëå°§ñ…?Õðî?üëÝÿ¸ª±ËI)äÄ À@-!¥_ñ¬d€'˜k ¡«Íø²#$…%ʱ™é?šùb†b8 lxS É 6¼îÒ˜z<3Å霛f(3MwG>§Ä2…å£C¼v™ s(ŒRá«d)´¿@6‡|;IH' dHðâ•"LF=$?3×÷Ûèä. ¥™9XÉtþ<¦ˆü”üI%š8jÍuÖ•J!!QYd^¿ØNSQ³¡¢^à†yšB…·1®µ´„*ÉñP_gÿÅÀ {(ŒMˆ:ˆ‚Œ“`xV³Œ))ÀÑE•RUÊ`Q¥\­ÞL5ËЩfÉÕ 0xqñHáZMC.%.©¥†"U´ %‹†;\qsí¿J©ÀA¤ÁWþ­”Ðîè©u œʯýi·<‡êmŠêjl@áå sj²)3À+ ›ôBð 't)é*~ÿùçnš|íoYŠd|¦Ëx*'Œ)þ]Gߥ)áHÎK 9ÎH"Ç–b…i ¶Î[ý„Bíx8ºñ–ÙÒR>±ôE”^¹çÿýÂ+ @’ O¡'oxÛº±bÕ.ßÝ¿ú?Íi=õ endstream endobj 4744 0 obj << /Length 2553 /Filter /FlateDecode >> stream xÚYmoÛ8þÞ_a¤ÀVÆÕ _ôZl×îf¯[ìipûáz@e™vÔÊ’O”âößß ‡”%WIs›&5$‡óòpfÈðÅnÁöæöÙå/±Xd,‹e¼¸Ý.çL…ñ"‚Å*[Ünÿº¶Üà\VÕò?·ï.‰’Ñ •Å,É2àgçª(ÂIϸÛb±RIj'¬d‹Mûu»\É0 º;,hú®höš¨{›¾u#½Ñ"o›ölU^çÕWS"ûvÝôõ†eÁqÍvì%}MÛê*ïʦv³óVÏ,[ëî¨uM#+:>+0KE¤C^Û¹"ø‹°Ìeph›CÓ¼…ç-ƼŘ7¸›é™ Øókj·¼Èkê€1hšÀ:C©‘3dœ2]猲*÷3.“’)©ü¤¼]Š4Øõ{]w´I×к‹N„î®1vKpdÆYfSkÀVe‡jG<8ÞYí Wî}WÖ;úº_Ê(È«^»yè;ÃZffè]7õõRDÁ—Bû¹$íZëOÖ5š .‹Xš9$ßp’`ßltE]¯$Øô-‰Æb‰?õœ‹’ÀÛ—zãÀš8Ž–›|ïz¹9ßoýÕmA“ã iË] þFÆfýI›Cá[]ñGA‰§*F0a+ýß>¯Vz‹VÝCdÏf–ŽtÈ ‰;÷Ăζ¯ µÝ%´¦G÷§}¤Û$«ŒãnÍ0£Ïàå%À9Aùs¤Á JNœ äiΰ¾Õ¦¯¬XÀf#”îK:¸`XIâAo?ÚÔž-­ŸÓV9«N]{Ô¡ú*J‚ãRpuÕ†>ךZ䬢8øèXãï 7tqóâŽ-W1ìýNY•·Õ×%¸ü¡Re½n§RÓ‚úÍ~*Ò7°Kâăב†^·-–s·Œ1 c)œ%÷H—'¿Ñú] z Øcí!o;k¶Dqœ„÷6N¶žÒàm\9òöx¥‡1#\EÇÉΣ\1{ŠÈE2ŠÆ.Âϵ¦6§æ£³.5/Ž}¤Àæo´üQãï="M·Kˆ¦h9°9Åt`E1Yè i¯¬¾ReïF{‡Á¦t.m)RÈ·4tQûÅÈY8²E¦Æy3ÃmEºU>wdç3 “eíLMç" ‘ù4¸ˆƒ‹À$!èþ^;)>^É÷‡J›gœ½eUõ¦km‚žÓÇ‚%â4ZwdFþà#Pî‹G¹o%RH`1 S—^/aEɤÅld0uL ßžåPd#R§Äåe ¨©¶»%¸Ë§»-c8º¸ëÖy¯ÛSΛÉÜYÄT*}Nþñx¿þÛ^w9ØgÊØèß´»¿Îds!C©!¿$éY¾hAx×½A&{†,K…_w×uóêòòx<2¿órÙãæ·Ÿæ\Œ؉¡Rð¹ýU–°TDÎ Î|7Pe&3ó'ìÿsïJ2Šgxdö*p —¾ìS†Qô’L+6sR¢˜©8;‡í¦)¡—‚3—Ÿø0^©P|aèNø¶ìËŒ,+%bgÓJq¨4#@¥Ò ¨Tœ lm#¿¹Pk¨‡,0¥njHƒ9™šf_¸ÈšúR'õÉï‚& èI]æZ^P»:;å‚ Pd$P°WZŠü>P„Š!Ú æ‡Fjú–2KäDŠ|Y_ï5(—»ßw°=€¸ðó_Óåî¿9å)“‰|kY6€1‹Àšc î.m `š!زtk+¥2–$S3ÎAާü’‹XŠ0Êo‚‡‰Êøœ@üa¨))-ÔOjÔ:E?PòÙ{ ŽZ°gÑBÓ)cŸÀâýZñ­ã{c[ˆ€Mwg:]Öv¼vt¿ÿû¾ë?øýýi ±‹ç‡’_o óIõ<è$, ‡˜óû±òè„^é(tbÜUqð{»„(n/‡÷PùkJ`mk Þj-Áß߀ R™ oŠÇ îÑcÀ¨n˜B&†§+&H¡ £ÅÓšÿ§»²¸ƒ >ªýxp]ï*%‡:ë)++º­ç§WV—Ù΋âò Ög2@ÁÁFbù©©7}AAA%ÉØxx½ÆUhWº¡æXvw4`O¯_d RùRÅç|§ç"ƒ‚ÃS ™Dd‘ÌåæMÌu bl¶Ý1w¾ýÖIIÂÀ߉ §âF=)©!*ð@Ø 4B ‡[>–€ÒX%—ŸŒa÷ÂeÉÕl!I)iZQ¡ û¿ÆKÁ\„¥g©­ì\÷ÛÊî¬:¢Bä±êMI¦’ÁžT•c%M¿ü¹–Æ=δ:ïô0£ÖÎuXï¸Ç_­»l„µÑ-]Š6¾÷~‡GÒÓ7y—3'ò4^9 &‘µÕ;,¬U<(­„»ä`§µGs×B±Ê+ø²ü„¯²Ÿ"Y¦X” OrpQùü=™`#ìÎÈ> stream xÚíYKoG ¾ëWÌ19tvÈyF'Û-Ø)ÐÖðAu6©[2$Iÿ}>RH–ä®d¥'q(îðõ‘ÃY…Ø8Rð&Dù¦ê:òÊH†Šr²aVN1œ•S'áDg|N$\ì`l§ì[U&˜”M,ÊI&yåd“²rŠÉ¬œjrv-$œD¦DÙ91 TŽ7UMN0YmÆäÔè£Z²!R³S¥v§jˆÕp,‰ÕòLðWMÏ,ž+σRãs0ÔzØIAÍÏÐÕþ QÈБԃ I]€”Õ‡Y(,AUtu£@GQ?°=Uõ£@GÅc!yoØq^5L>€ª„ŒxŠAeýÉñì¡£ÄW“á¨þVä0ª¿û%—LÈ0ƒ y¡°K%ÑV¡£Fý5JŽI¨l<#å  ¨z €/qÉ.€*ò±ñ—ì<`œqßçªäªXÅ ‡íA%AèåF‚‚"æ â‚æ$ ACŸb¢‚À"2=a6#$b’lˆñT!(qOµ2–Eý&ˆ”ÈÐÀÐU³(‘œøÈÉD"‡ G_„çÉÄȲ3‚c–M‘—˜HÀ5ã"Q]ɨªX(CÒ¥Ùö$õ‘=p€ ÷‚ 4ûjPú¬3I Š #~(Ȧþš 2'ö¡.‘%îõš×æP ¨èSÓüþÇŸ¨g=d½ 8¸»¾¾è½xñ$ü$ü$ü$ü$ü$ü$üÿ c¸²£ZGéPmÅT²"}2LÌÑ‘iNdÀ̤`–˜:f Ì:ßË£‰ÌÌÓÆ–¦ª°_óv4¼> stream xÚ­WÛnã6}÷WNØ@Ĉº ¨ZlRl¢hãôe»@‰²µÕÅ«Kœü}‡äHe%›,úbQÔp8sfÎ!m;Ã2~Yü¼]\ßz‘È·}c›Ô²ˆãúF@)ñÈØ&Ƨ•ãùëÏÛ_¯o}:2uü€ØàFšt‡„µœÔ– 7¸¾u#„%¾+–˜ŽÁÓ`ÊQ+[–Š%`nÚ”D4TÓkÓ³¬UÁ[f²’åÏMÖ¨©*UÏvÏÕ ¯vjPgÍ¿8bmV¡}×d%°þk™T…ÉÓ”Ç-ZUÂó>j‘ÈÃôkŽ?š¸º`[žõœ]©÷Ç~° üÀWªy O¹jžÚ:+Ò,Ï…;Øæl]t†Ñx:íʒ˵`€!ÄüiC‰o9ßñ2ÙäY#b²š}uÜ,ã¬YŠÆ»ÍB?àËŸXqÈ{ØCõˆXÝ[|íXnÊ_üR&Ôê߇ºbñ¾¶=àÒ5­,d©ž•ã]ç\ÿ?u¼Zp_%›åÍÍòµ }Oe… Oô¥bw’Ö¬à*:5»A¿,ýaðÙ·!áùì+F4ÛœÊp¯â¤Öõ^7ÛÅ×–A9qƒˆx‘kÄÅâÓgËHà#ìBœ(4ŽÒ´0\PœÀu`œw‹? ™>¥fªŒ4 bõ]j¸¾M(µ¿!H¾§-µIÒ^Å~“`Úžµºë¥lˆ·´ªÕàrm{KõúûÃ) /'‚ALïH\‰²?#Ê.õ‰åc¹>ð&®³ƒ$Ç8ÃS¦º°‡PÓˆž«–ßve¬ˆeûÁª­ÔS¡¦Æ’Áb jÿð¬Æ O×hÖåJääd jÙ­:#ôÒ@I„Ò#¾K@n©Ì´àà<ðü ·’Bܵéøtõ±Å+Á^ë>ÃQ_SoõJcŤ•L#\ÅlMW‚ â¥i«šcZ™ÄM bÏ'hç!åj(p% |¥^:­'›˜å9Z(Ì`0`ãsÌ`’‹Fz?,ï4¯¬=¹%Ö¸LQJ;‚ヽoØŽÏöÀyOèÕé{Âë•WÑúÎëʉ`€<`rÖ4*¬€jTr‰ TºœéwÌ5dæÔ ظîkNLê¸Ä|½`ªqêCÅ0ê¢ËÁWBú”°óÍöÏû›^»¾ôOµ¨ã®+x‰œ/ÐH>ãD˜4F>`5Ü®ÄywêF§Ø&§zh{”8'´_dàm Ì#ç—·1Cì@<‰ES‡üö\â=+w’Ë¢Û« —¦Pßqœþçܳ¼¹|=BÜI‹jþ “$ªÈð`Pñp¨ø|È#ú÷§Ä̲cÖîÑ^€:Ñ+oÞŸYßÃoOîÉYÜçÖ'Òxœ¥¨UÇ=pž×ºÅD«ø€R~?žÐÐÁø—85ªyÛÕå |³2¹*å1± ÞuàáÒ[qHȘB‰$JÚŠI0ù“B‹„î˜H¤+³92¹. ì«Wp2Ð\íò¢˜õ‘:'_•Ç˹SÛ&^i^‹Ç9Ÿøô&.Ef\Â…#“|¦M|ßè3ê{ÄTJ€üÀÕD×àÓt,Ÿ8 ˆúÁ[ŽÚi£5|¢}â¦ÿªI–•qÞ%=·²i«§ëü74¨Ë þ¿¹'Á›Î֑ܿ-yû=w¯é ä¡ö¤v<ÍÀ.þz»ao=$(¯amŸ¿vw©­Y3ÅTL¸x–\nÿ¸]ä endstream endobj 4775 0 obj << /Length 1564 /Filter /FlateDecode >> stream xÚ­X[oÛ6~÷¯Ò‡ÉXÅÔ}h†e]: hP, º‡¶´DÛj$ÑÓÅNö°ß¾sDJ–×u/ñrx®ß9‡4µµþœü~790+&qÀënn1J‰ëVÈ ÜØºK­÷ö:y2ýx÷úü•ŽˆÝ8 a«ŽÌõC$šP胵ӓ;<„EWºœúÔn›¥ª>PŸÖðí01‹f‘å0˜R£âé–¨­JÃþHdUx^oëŽ-ˆÃÞ€v•ŠF’TÎE›7û¶ŒÅ1 ÝÁðçS‡Sno²f©UH–¢\ÈZO ‘J=š=êïßÓÔÌç‹©o¡^|7 ¨ÉdÙÌD++½ˆ>ÑŽßQ›E! ¨ß˱YÏ~+d#æªrV•ú$“†¨jñë˜1î˜ ªwV’°súÊ ŸúÊñÐᡎg$ö}Í`Ù4«ú—óóÍfCz¦Ät¤Ç1O2ß#1\ÙÅ‘b×J›¥hú‘ÄAhƒŒ¢Í§ÌzÞÅ-CG"ÙfÊÀ»Õ}m¦]TFçƒÎ«µ*ä”ûöÙƒ~`•ÑD›h}JU:u#ÊTT©ÖƒmYÙÈjŽrD"õ’šë/ 9~ŒSâ³U!H[fÇÜåz$ â½è" l‹øXÐ"/Š£’bùc„ƒqà‡Ó%r ¢±Èb}T 'n8˜6oˤÉTYâRÂCN<€ ãRB#O¹‘sÈÙ²L ù¾¡Šìç GÑrƲ1· À'Œ:øpÊ(â–Øy©Ê´M ÃÐÆLpD)òÇËžÊJ½u£?–°¡ai´õêJ$÷b!äÆ?öHö¢Á¹¯ɪ­@ fhì0ÝÓí`ú¶l©›,Aj ë­š7QMÝЖJFpÁæöâàbCðˆ»Š¿Mrê¢÷ ¬ØÎ/"*Ç £nûb“ª ëÊ9£„Ežªk²¦n@2ê óàåVšÜ½Ì¡Ø‚ËiI¼¢³8ü†$ö‰·õb—QËcb8¤ð‘³’úb±`?BÒW—¥8úʲÄIÈý¯*Kaà e ó“Gñ¶>á’Xéå”òF •ÊÜlo–Y²Ôˉ(õ`&õ^»rt²r× v“o$©†é¹þT²r°."Ç¿zÅ*ÿL1|ZÁQ0s{\Ô™›Ú³gϰ±Ãínƒmzéi®zPeõ½AQµcpô1UU²^A¥ìÊ$.Õ¨Ý0[‹*}éHïØ?hªŽþÊõÀRRHQ·•¼8»¹9{n„fÍJÕf6ƒY)f–dÉv/…Ùv¤ˆ øGfÉ¢¿Š¢&ÐËbðÇ®æYÓ›[¦ªpä|cv}=Ô:Â7¯®ßœéåÌPšëæXÜØðJÖ»†d‘ãcft^g{Ê–-²¦¾p1›ŽÌó §uæá Èdºµ®[ÒÖáP72/víf£¶»UjTWÌj•·ˆ\ôdM›šY¬ÚYm óJ/áq°÷ËȨ‰î\Ôãã»1¼ꦂ—¶rfw— ø^‚›¦\á{Wáb÷.ÀÁ»)cðÖÕÍÑy©ðÝÙ÷J¤àöµ~ ÃTÙƒ^ÕORfÿ!W²tï©,}©¸šãà +¼ydÿ"ƺ—m¥¿oÛ&Gs}Äÿ.úÿÿ†E£Ê endstream endobj 4785 0 obj << /Length 1679 /Filter /FlateDecode >> stream xÚåXKÛ6¾ï¯ð­6kõ~zH‘l¢§d“KS ²LÛDmI åu¶¿¾3’"e±ëH‘BQÃ!E~óÍp8áb¿?ßüts{—‹*¨ò8_ÜïQIš/Š( ò¤ZÜo¿-“¬\ý~ÿËí]9ªIEÃDJé¡© ªÝ„zv˜:wô×fÀ:.@˜Ð°7L6‚÷ïZo°3‰·¾r±Žª Ž2~wn5vÄÙrèèÝt­Ĺè³ô®û^tŸù©˜Ö?èÆÃ »¯Û†­›nù"R‚q‚ÖSîè½e=k·¬Õb;µcæÏ’ÿŤ]ìö´h«L¯¿;MwbòÕjg¡Z)¾O`Ôêk¸dÇÇUž-ÖŽÞ°|®ÈúÔy»§/&D'$µ?…Yȼ²cÈ–IâÀ§e§™±åGRñ/‚´°Æ6PàŒÜž \´5ß¡ù¼ÿ$eP¤©™Eœêàô0åŒûÓ¸ ʲ4ú°•(ÐKó™•Æ0oÌ*ƒ°ÈIûƒ¬÷l–S_rÌ[ä”cŠÙã³0\6dz˜Ð_ò¼Ù‹îÜëÏn#ukxì™iò‹œv¬Û{ÑGcÓH/Fv ²FãàQg[µV‡N·úƒY£x¨…YHs`ÍŸýöÇûwÞjQËj’»×¿¾7"ÙÃ扂 @Ðç0O Z’‚\/éµXE°‘ó B> ý× ×¶{àO±¢Èƒª´\láw‚7HƼ\Ü)Uß²7Ú=â‡v{%u¼&õ<^’ˆ<-5#24.ô“-u¹.¯æ$—W£Ÿtù`²EµÞã:ʃ,Li¤¦Ýó¡ñÑ5¡‹FhöfYm£ˆÅcsdc,aÁÞÄ9œ·Ö)_´ã3ÏßK§ÎˆúhÖöŒm¹¶PÚFÃÖFmEn¨¤£æ…l../1˜>Ü€-Wm0Ÿl0hƒ9îI`¡3—ê˜n2§$‰GRdHšë#D†–$m:!ØÚ£¯vMÙwíÖrÄànI.eè4ÂîÑ&Î Ù­stNÙör¤1Ô^uTÅÔø{·5 <¨•.üWRc¾í¾\O;³ñx]4Ï ,Ž#æëi0šØ­a‚шÿáÇ`ŒgØU|s'J‡™OnèT,ùè½(TÛÄÆ*Zò“þè;Žg‹j_¬¥VwIè§d¨AÌ ¯S”®#ÕòÂT&†òÍPóVM r $ÔC‡Æ§0Œ…H£A?¡ÜûøÎS®¦K….o© a¬‡?ò(1žÉ¢´ÿD-Ý»aÃ…1Ò† ÔU¤…Êëb¹Êg¾C^d/ ùvdnxò‘ð¥8‘›U‚@2Ä—Ú.%@9ÔµÇGê ŽY{¡Xž™½¸3v›õÜ:ÿA,ø¶üÁøú$…Lâ·ºN „êšW`Š)‡jª œÛg}?Cá'ÁS÷5co€þUÈ_ç¸y9IPJ Tޝæ&ØAC#M•Sƒ¢í=¤ô=¤´ìw´¿ à/×£EæÄËbrÛ)¨þòÑ…‰#¨_™`ìJ­y@¦‚’žO—!PµLÔDZ QF¦”05DÀÔ8&Ü'×ã%‹’-·¬‚’ ãûƒÎÄ£*±y”Z6¬gêìÊD VÁaVÝõ(q(17ÿ“‰ÿIâò‹º[é¿©öVšêÝ@°íFîØOû» Xü¹öî¬ÆªÖN¸·5Lc¾¼dÌ\Höœò„°ýÊ=°«¨´¥ mtaǽ|ËâÐ=Çîïáïº6Œï‘ú±©ë¨Š1Üw5„ü–º0 +½êíg“bo<{q^E”ØË±€ÌêùÌí,LÒfhÎï—äIpóžiXÿxÃÀLGùÃËñëüZü’RgVàÔcfUšt¤õyè ©W9*túСī“—ÖÇ”²Ðƒ t3€fõðÕrÏÀ ¿é~ð/©ê«W¥­Y1…7Ë—;µoèÒøR<„o‚ÆáÖ£}‘ºëZ ~UÑ=Íl'Ðö™¥ N¹ª’JûT­*be9h`ÍSoI—ài®¥æ­v‚‡7Û¾BÜaÝÇ#uM£ŠÜè@S2lnX?ÊŽnÁëLvâI'IŠ É-ÁÛíÌ\`ರ:n‘r2WIÞ¢ùÄ÷-œˆ[º=‹jæýöþæof5_ƒ endstream endobj 4795 0 obj << /Length 2878 /Filter /FlateDecode >> stream xÚËrܸñî¯ÐÍTÕŠ&A$“Óº¼În*›JYJrØM•93 c9E’•¯O¿>DË^×4F¿Ñ]Ý_EWyõöîÕ›÷:¾*ÃR+}uw¼Š£(LR}•Çq¨“òêîpõ[𰯚ýõîþúæ}–Ï“R‡yY)BK²‘^EBÝ}ß¼O’Ù®›$/hÛʘðæýÉì?] «ãr–…r§5Ý} |]ߨTC‡ß$°³¯O |<™ádz^a ÅçȦS5ÈâÉ0èáZeAÕ×U»77ûî:Î Æ>WC_ï•SêáT·È7pvb+³L®ÔŒv0=âe0<¸t¶j¤ú€ôz0¿G‘jëAæ¿GYÄlÑâñ:c30 ¶¬Ž…`ã< ó×gÔ,ã»ã¾Z ’KDDò¸u]¢—FsWM#窼‚RÄ/ùè®H(3Ç ,8ÚÑ3ÊKzdpŽW냜í7ÃÓüHPjÝïdzðF›ÈÙ•Ý_ƒLÉËÆn#K¶»Áøa[i¹,B(Ú\Œþ×FJ.ÂDùŒ¼Nè1Fùál¶$N °V½,òÔ£|ýߟº¯z); i|ªÓˆÂA®œôsþW׳†ïÄ$—š¡*î{ùG ‚%þ%™m”šYÊâoªéÿ¼êÜQÌ\lβYË Á®å…c&㺋ÙóGâ/Åè]¸»FzBr5C7ZLpêòÓfüdP*÷'†|¼‡*x äkOÊÈã—r?Fy'®Ý©’œ»K©øƒÍÍ'"uh(—¦.p\D"‰ È,¯L' TàÒ§œÒʱ˜ê$ueù癹ïOw¯þ¿>â´ endstream endobj 4801 0 obj << /Length 3107 /Filter /FlateDecode >> stream xÚíZ_Û¸ϧطÈ@¬¥(‰’\¯H¢·@î D¶¹¶z¶äŠÒm¶Ÿ¾3œ!%ÊÚuúÔ—IL É!9œ?¿F<Äß?|yúðøs^E•Ñs×ÓººÞŸxÃ1Í~­›žèÝóÊf¶Rª8•ÉÃd]å9­×íÌúždQzQo$ŠiÔ·’«h8á’)ËÄ\»öдG$ås1Å›m®²è‰FçQß!£—Ç}w/-qhë‹6Ô »¶¿ž»0/£ˆ Ý-nÎA» Î3íh³•¹°ò´¿ÈcÛükäöt0úƸÁ·Lò,μþ½!¸"ÎÒ,\ßÔpGq «¸ù,NE"NJÖ|¹õë6"úëxš+^³¬Šhx½ÚýBÓî~÷]k†~ÜLÿMäµEVetézžxÔ­îëóÙ+•¨Ö˜‘øŒ~<è«n`DŸÆÀ ‘/õ«½DÆYž†—qª7¥œ€ÒÂz‰ŒvZãÅ'Itѵ{} zÓÒ/Ý=tÐ "ûn¼Ñj̸û§¶§Å/<­Ž1I‘ѸQZ´o†×p* hȈ^3¿<‹ñÒ `pRV¬E²Œ¾èýïDúiÆ¿¿¶›Ì¹ºþ•ȸÉ/?}e¹‡Új(ôÜî©ö6à·n¿7šˆ¥Ý,'Ùá—Û^é¶WE¿ õ ·kgyÚ !Ö ^jžDŸ={Pûµ­ÃÜú/O›*>Ûýãߘº¾>ÓïpjØ„è7aSJàb òáå¬Ãa5}_ôPoë¶>¿š Òô3Êãî—¾MóogŸÖgÓzì§Û±aï»Ëu4û´P·™ñäÈŸbëšÃÇÐxÛŠý‚Yœ’üÜo’2:Ž4“[—‘ɸªïÛûŠÏ2V•w¶V€EIG´­Ñ؃í(‡Æ àpÇÆœˆÈ ¾Ì`ÎÂE[Ö_ÂhÇ‘9ôdï…s ÖѪ¼lÐ7hî¾g-؃ ¯w¬—‘‡ˆ½!†–q‘ܦiM»K{-ˆûpí°Ñû=ƒu³‘ ÞYc5K°Q°F–@šÊ(-Ú¹1lœº ­9"YŸ5ûCüÂP¼r±UËê^´Ïøzb¤,™,Ý_ÈlMêÙiÊ&Þ°a 3a^¼fí °ˆeÞI#÷¸Ûá}eʇ]ì¤ü1ËÝóµK™ ƒwNÚB©±õüíãF¦3æpÆÕ šbªéÇÝ`Ï]-ýNK–³ƒ¹Äx’}²ªj™X=™õµ¡r\hhß]¨‹o(‹¾™SÝëÃGúš‰Çûâ­AÏEYdŸÞ¾ãs½I%·‘öôþÃ_µÛøüFÒ’X endstream endobj 4809 0 obj << /Length 2679 /Filter /FlateDecode >> stream xÚ­YK“ã¶¾ï¯ÐQSµ¢ñ Ò)ÖUÙÄ©JrȤr°} (HbV"e>f<ùõéF7ø Õ®kç0ñh4_?%V‡•XýåÝÏï¾û˜ÊUå©JWÏû•"Òqº2RF©ÎWÏ»ÕÏë—²8•O¿>ÿí»‰™-Öy™<Rn™N%.z'˜új£“4Ê2¹Ú(›4-+¶Í“LÖ/øÏ¾Ú¨<_÷G ,_—Í®ªØÏ ?œv4¼µt¼Ös^G-ü¡½ÈÊ_D"Ô{ pœ˜(5Úï(ê]ˆ¬‰TϨ*¢*ßË{TcÃÈÇŸž6Zdë×£…[µÄ=œ·¶íè£áÁ®oá®ÕkÍœ!=hÞ˜‘¢ÝÇ SÓ»8 ÁÀKUP§hŸd¶>€ìê¾ ÙI‘G 蛽×e”*2F=´·r²ž¯ê!”FU“þ [ß©?:›½ªÞ7íÙ¿ðTè9K“Iï‚Ôdœ9–‰Šà±®³!K‹~q€G¶l›©aíòÚqÚv}u¿¯Hl´ã£A„Çæ|¹7u´•ÁykèÙ>þxš¹]o,”ÑŽë4»5ßW&'ÍØ(ºÅEMK¶<°-H ÐmxŠé²ÃØðd»˜|­à­êM7lÿ §t4¸³]u¨£jÿsD×£azlOxÆ.˜”ÚÒ‚-=„ÙÓ2Å··Å¡ùmu:XwÑÉñš¨–; OSs}™ÿt5|†.ÐÖ}€Tf ª26¤YQ¥ÙhDw3Jê!¥îÈQ—ÉèqMî•Å8áfÀto«Úc&ðî!âXPó-Ĩ÷×Üc²dœ†_μíßH—µVQ¢®B«½ƒ$ªgá, öæ¸GU#Üϵϙj4DÞ £¶×¬Ž(iê]šÊE_óe¡˜!¨³qÎa\ 3é¿£ƒ†˜9s"¿2ÎÅcŹþªP©Ž|`°ŠÌ/B~B$a»@Æ.÷¯›Nü:µxÄ ‰8_>ø«B¦"ÍBW‘OÁ3ˆq Åj¤;qìb‚7êÔxC83v0J÷,A ÷G Ëã)öÄ>$-û@Ñ¡Üä‘PñòÎ Dgcð„YÖ+Qq¹†§vç¿êlIÎÈòéxè+ÚN ‡oM&&ïc˜’œéô¼Ó³RN–†Xq`Ô)NÐü³¦ì¯Á¶OiÖ¸ i‡É"•Ý*Çgaœš/HÕWêFjFݨêQê3Sše÷ Ó Yqÿ÷Uš&TrtPr}¥#_Š“௅òð×BRÂ¥n]=Îyô»„g_øe˜ÅØÅÞˆ]§ÄÙ"AôLok¹!¬qV£¨!TCGÓ’ªg›3ÚL]IkÝÃæ„o—§1¾sV—íèõ‡Yxx nYÆ£x/Ç*ƒµåyã°ž6N"‘dÁRB®©”€íÒ:«\‘û„)ï>Ýga°aè­‚}V§”p¶ð ÁÙÐZÊ aBÍŽÖú.¦l„ ŸÐì”™TÀÜÆ&›L©1·E¦ RòžÖÍ-5,¥('c®¡ã¯‡‘Þx=“ÍJfD€™ÁÇ|Œ‡ÌIú†Û.aª©Js!iº‹øÇãnC ®ôè«ÀCMñ?d‚€ |û> stream xÚµYKä¶¾ï¯è£Øæð¥—cÞÄvàb»“øàÍA-±§µ£–¢4íñ¯O‹zõhvfshŠ,‹õüŠÃ7w¾ùÇ›¿Ý¾¹ù)Œ7)K#mnÁ9S:ÚÄB°H¥›Ûbó{ "¹ýÏíû›Ÿ"1#U)g±”ÀÈ=äY•#Ùî¹_±Þ©(d¡›ŒaRѶKÙ‰¹R3b‰¼õÀ»}ÈZ»ÝÉßÑOþ‰‡¼oé«•Ã@  ‚//($ãÉÀ˜mw:ŠƒŸÛâ2èŽfE%X‹¥,Oã¥ÄÈøa+à kËl_KÌ³Öøþ¨ ojkò¾+‘ôa+ÂÀ¯[ÓÑ ¬'±Ü È:¿ùÐf''ëf'RÉ¢TÁä C:Õ“¡Êddû¹Ó¨Ô‘RȶÆšÚižÕ4è­ŸqgãÀ›¶;fuAŸuÓe]ÙÔ«¶ÓLÆÑ‹ÆûæY#Ŭ?ì÷ÒÚfå(º+'­\2©G’€àÆ^Ýíç²µW\ñéI õ˜‰4Zª¹Õë'FÑx}:$A•¹b¹pZCKãÊH >¾©büò‹YG«M]=ÒÈoAÕ Ó‹iýBÍRy¥Œµ\æ^ëðm»¾x¤¡‹~¸s1Öš¶0~æãbωî·.š9©8È:GwòÜ —§Þ¹Œön&ñ\a‚8<Ò×µ`ÊžM^¢/˜‚v>”ÙZ&ƒ}…½u2â ©uÚÓ½òQ˜›Y ¾HséätQ¸Hì EšüÑ*î¶‚4°"Gyò ôç;«Öù4¥Ƴ§¬ª+ù­Ö—#)²ÞµBܵëœVžèšûÌ ƒ½ßM®ˆüÖŸT ãSüåÝÊSWe=Å_®fŇ0 3Ï!š'=+&’4¢XÌ«oS(bUoÕþ™ª%q'ZÓf/¨ A5½÷zF±hª'è+LˆÊðŠÉ²¨°©ˆ¨s³Ë½&¦),2pYñ£ñïf¡ZÓ4•Xáâ>-$»²û‚•v͈Ê"/íþîöÿ~\ÒNœ†“¨ŒóÖ¬(DiFñk52FòÿH1¨wKÿýº2õ€6JV‡ÉéŸ^0‚/FÊõb©CµVˆ±‹:fØ“àÓÅ$Ä<]L‰vÜâü³Îž‚‹½«'>®°ø~—{Tûƒ9_:”Ž¡^ãoâLx S¶kû¼ë[ó˽œHÉ)IÃQ ‡U–œŸÙÑj‰àдkW§,I¦~lÖl•@ Žqg߬ò÷I˜LÒ¥ûœ«æ‡bªõêùÒÏ•vø=7Ö–äj¬ì`i€µÔéÑ* y9¾aסãQaíxfyU›aÖC£²ó²`÷âü ÖD`¢;-nß «¦qpj\]†ÑP5è ÝXù/ú‚ühò{WÁ Zx&‘ˆ0a*Ím;Ïf’”ÅS:};p.óãüôØ«…9 Y_u[Püìt(\ß„¶öbÍ{¢:§ Þ#¢¡M‰†¬3éSi½Ä¢J‡¾i‚•CÓ×z}4:»Z“Y0=‘¢c»YÒ£cwlúª å½ß“ËC_!€vŸs#Ý"Ï }M¼Nåݱ±ÖÌ´%zž‘Gp ³Ùù\á vG0'(?©!ÁÄ¡¯óa™äV< Ÿâx`Ý*ëǘ‹ G‚g‚ ÇuòBÇ#Åÿ1ÈÙU”$® pK¿¹ŽTÅ„~@˜AŸžBá’c®ªMÖ~ÁÙeÓ9Ј !›ÃK6-&u~Àܾ¬ÒV›¼cM{÷×U˜hrêñÞ~Áw¯Î„}|Œýc×í777—Ë… 'ow¨æéø/Å–Àæ[¤sLžAï1ø·¾òoÛœÀrZ@q¸˜ìÞâXagåæ ×¢«á°?{²£!š¼9{zê²´„oøû>;ÏèW,åŸ)†ì½oª‘æ;ÈD°hê;=Ó~Øûøý¥´93E¿jž²0IVx’—SÁdxuÿAïŸ Õ0¸ÕZèY¤-ƺwã‹Ð-òsç ´F9µ_‹™¯YsLך§à÷Ðpºç°ÄiTrÁ= ‰`åïM]ö#´ÆÇÚeuV=Z#`—{I…¥ôã¼Å-”ð›AÀ,dW¨>˜`ÙÊK–QŒeô=&‡¦oá@bUÚ¿"ÝÂÑ—lø ¢Tò±9tz¬0k=Z ˜ûÚâ {@D$c½VÑK¨@5´p¾ø$e¤¶âKZ2ÁåuìM‰az#8&ß|¶–=p±’«U ±Ç»ò—ÃC>魺˫ŠóµûÒ¿!”dé”Èä\Ñ£¼œ—kN ‚žê1 ˜Åk<þ½5-U…‚f'ƒ/ ‘ù—üòOzýW#ÁQ:à6̺gúºNY¼9:ÙÉ—m/ö=̪ۼtS}qÓîzTýÞc{ºc½EªãÃ¥/ÖÓÕ¬ïb¯T܃>o²ö%‹IHè©XZL¹{(™Î-¦8YLÍ$#"²™zÅ­‘h¸5îDÈs…ëè ¾à°Uå¡9Òå q7™—{ ´J`aÿeyО2vzx~ÆÓCi+ ¶àçÔ¦¢!JÚù¬™Ds=&¡Çy8r“8p üz”‰Dg:&Ü? 1›k qßC\À°ž\IìeÓìc…­æ‡oßü !gª endstream endobj 4829 0 obj << /Length 985 /Filter /FlateDecode >> stream xÚ½WKoã6¾çW¨nØdEK²ŠêЛb‹E o.i´DGÄJ¢KJκ¿¾Cq(Y²c»isˆr8ó}œg\ëÉr­ßo~[ÝÜÞEž•8IäGÖjcy®ë‹ÈŠ=ω‚ÄZåÖÃÛ]FÊìÝãêÛ»0>’ȉ“TubA(¡µƒtt =7âs?†Í@_zÿ•TÛ’ÊÑÍ—¾·wA`-ár´èÀ.A×ÂqCÔõã+þ(<`sî{NvŒþwóÐußJJõ¢ åö/7tsÒ8DJVñ]/‚OŸo¸ÀE+š‚â9m+¥þƒ×úÛ w@‘´9…Ž´Ì/ó^öÀ°¹â¹Nâ•‚’!ÚúNÒá;Ç4¶5¸ŒM  t³¡nJöEÜÏ 8 Ù´93DàÅŒ AKÒÐ|¸¡W¢à©ëŒ `ôÝwÁ¨íòÉÊV6T¤Êæ÷øZ¦T²Üž4^­]|Yðg½Ú„ùFVEÁ¾N¼=b¡@j$íŸ")x[wnº˜?uT´øV¿Ažêܳ}{àuYö…ùöø{ÞI”LNøwÄ3¸S6ëRnKÖt|¦H áC`ÞÏþã]ÈdA ¹ñÿÜ{»§ö¸ †«a&(´*¬ÜàRóˆ‡ B†dKÇ r& ¡!hÒ™²0Ãm–ïˆHgÛÍÞΩ¡I³=›Ù³›é^ ìG±ã/–c e%!UÕ[]ëîúöÂŽìåAé¶;´c;1ùÔ¿Îü”âSxà"§*.ÝQš³Šv¦Î×vA+¾Ã·®˜hð¹+Jd §}!âYF$¼FÉFðª‡p•#Ô˜„çTX÷lŒnÜ”Ÿ»7GŸ ñlTýùùãÇ+ˆ¾R¨˜™dE¶a´Ùp> stream xÚÍXKoã6¾çWÛ6 XŒ(Éz¤õ¡‹6 =ô`ø’æ@ËTDD‘ ’r’]ô¿—O½,9^t›6‡hH ¿yp>eϹw<çóŧõÅÕÍ2vRF~ä¬szÂȉ!Q:ës{DáÇ»õoW7ì©©bß@Jé¡2“jžA¿º 'úQ(õÝ öÕ×Åd —mK¶/ ÿÓ[z›ÅGwéy—;Äß3Þì^Ä$¼…×Ë; + ]èt™¾¾ÐŒ³úàg5=‚ñ!Ha¢a~øŽü¸Å×Î0ŒµPàr/½Þ‚T"‚*˜¦‘ôR+ä55BCyÍ`‡9"%ÓƒºÒO^ÖÆŽæS!ŠWZç'·Õí[žÊnÑÎ8i’ }åát m¾+Æi“q뜉ø€¨0•aWlˆõ‹GÄ)yÖ2b¬y$սѢÖÂJ?<E£ìà<ÇÖ#_0›Š£ç¥˜íëj×Úàuç§*ïöÊBx‰­îZcPÐ!“ -L·¨œÀñ#¤é))ÅVU»)gc‚àlgD^‹9ÿlWê†gõ£Ù*þ²7v}‚8 ‡‰Þ KL²€Ä’±lÇtÕ'¨]3‡Ñª«:Q+¹÷ýÚ뛥uS©B݆C!ÿÝ™µáQÁÆÿ2ç“s8¿Åô¿â%oLùÎðI§E·%6V‚ŠÊÔ3>sê˜PJðŸýS’¿ÇúÌâ×ùh‘,‚Ù'éÌŒ©†áv9ÓX¯æN§ÍñY$·ªª9¾¶§K{bÈ¢ø¤Ë'rЂ £½Ô–ˆ»ívÁÂV–Q<Õ¸†PYòÔOlŽ8ó|]ÁcQËšZBŠ0ØJ«BËm‘igDá#Ó‰5}ŠÈ]Óö6=Ð×» Ÿõ“m)æ©%a|Xsí.œ¿$#oªLn‘TzîØ<Ëó8–ÿ¶›†ÿëfúÇ/ƒÞ4×¼¢ïÚGþ}Æè7Q‡ —g“ò¨Š½Få7öÑðõ6ºçh;&æ›Þ¦Ïê¬ÚïÅí$~ë»´µ;•Z¡pëª]„׊øw³Ap™QŒ8Ö²mdzÄ i[JDð.Z̾°ˆ=hI5)ìHž“¬)ù‹¯·¤2}Ei2‹)-3Åg=æøS6Ò{i Hôa:šJž²2ÚR䤔Ÿp^{Žvå8øÄ;}˜~UÀ´d1)S7‡ Œë'G7ç¯òx|ð¢Á| ^—ÚsPo RY03ºÆ&öHðÝ“+mÄ&aïÀ;›Îä_o\“¸£Z —°ßaô°wç¶¡HY)\ú—ü©Ö3Ò¦Å'"¾7ŒZCµ$}ÂW¼ªll :bUà×ûMÿ6d™zÜÈzfí°3;}ßDíñ,"ZXàx<ÔïÿÎaŸ¿®/þ·wy endstream endobj 4838 0 obj << /Length 1569 /Filter /FlateDecode >> stream xÚ­WÝoã6 ï_aô\$ª%ù³Xv·ë†ð^ׇõŠÁu”Ä[bg’“¶÷×”äÏ8M\*Š!)òGŠ¢]gé¸ÎOî.®nêÄ$XàÜ-꺄{RJ;wsça´O‹1õGûqàˆÜ$ãÇ»_®nü°¥Ç〄q Vµ|ºpíAW7œ;HJOyiñ) ÉÒ»wïÆSϧ£y¶Xdén]¾š}±høBм4Û2Qÿ¨ Òl”äsÃt ‹ µ(ä Zm=ê´} B˜R—ľÅãv<õ]wôýÔ¬›¤”ÙËhâM /—Åó,ª6i±žE @­=ø×Ñ„^{]³·À›Ào=¾ŽpÀγI×;H¤œ©r7T!oéLÇM3œ*ÉÏt–ÿ¥¾V;»U:Ñ.x1áÔïúQ<©ÆM0l«$WÅìÖÒó¤Lf𯮎é•{Õ çi­¶ë •ÜûÆÐw:–ƒ:³%•{éÑ:êá?ÚýÖÙM]Yêu+ú>uÝïTßio({l5¢óQ:,òÃÛ§ Ë´8í óÎuF‰m"ëÞ ¯ïÄ&Yµ†{†#ñ7s¤\Ia]м0 nˆßìOÏŸî.þ½ pŒëÐzæð˜G8‹œtsñðè:sø_ü^ÏýU60r´@4ð¨ã¹‰h3Øì«¦5«~G‘‘8¢Õdó饔8 %ø(ð(€^G)%2+v 9áènz#sPÛ;²kÁ$OÅô#ŒTÐíÖHþн5­ôrìù£bc´ß™?Wß×ùñ}ãÔoO‹´TÇ¡å#8{ýh5„~00r/"eæè…Je¶Å7§ƒbƒfgN„ŠšÒ˜DnhÔovyªu§,‚‰«0«@„h 22ö}…±–4ø"‰ø¶e4¼ÕÄÚ°ŒÐ¦†w ‰ð²Þ`‹`ÇbºN”2Ãn§–¸ÃT%q i¹˜‰¡œãFŠÀPéòчWóÐðÐ× vò8 ¬ŠZ<,Ì·ý ‰ÓÑùÍ㌴¢má‹ë²ÔÃ'pXظ‘ÙUŠr's1'6¨vL1ƒ,&ad3ø‡J–b0õ‡¥Ð½‘½R¨Æ™ÏÜvIQ®ŠyÄiRv¾[¨Gü°¾¥ï²æµ¯qýÓµ2ž÷–‘)åñâ ›7ì#ØžMMšçpv¹È^ļD !Õ€pVÛrX ËÝ>GÔ›ðƒ5¨f ô©×á:u€ «¢Æ!W×ÑëÔÒ± RÂlß¼as>Ûp„œ°WB™-ôü8R˜¦¡üä!> stream xÚµXIsÛ6¾çWhœ‹4±`ÜÀNÜiº¤39ôàxÒCÝÎP$$1¡•%»‡þö¾€›ÌxËô"àއﭔ7Û̼ٯ¯~¼~uñ>Œg I"Í®×3êyÄ¢YL)‰üdvÏþ˜ûQ´øóúÃÅûˆDý8$4sŒÌ!“ ΋(œ“z—â†WžÓJ¢ÁÎ¥Ûºd1¬ùö€Ÿ…N‹Rö ö@òÙ’&„Sf·þ&µX,YèÍõ6Õªï¡&„%~ UßíÅå™\©3+::;dÄ÷:Ѭ©kQéòÎ/«vt\P˜Ö_”®eí$VŸE¦ÝxmŸY™*5Іœ$=¬3`4U1…*ˆ‰ÏX+™VùÔqáq<:mw˜: Øàa+GP,`oä5&Ôw&yÅ›½ÜÍ”›¬íókWã ÙÓnîÓVò|± ¼Ì(ìù»´^P>ßUZڕÂ…ó´.Ò*ËÖçú¥v›®‹Û1ÔîL0¼¨¸QävE¬ñ„5ÎAYB€P’„¡…¦ŠZ›[Jæ²Ñ™Üµ«…²«©æEº‘6ÎZD(p,ôÖ2Á‡æ‹9a=Y :Œ¸¥¬òVâÆó+Ï"’Ä`=ô_p擈:Üì¾*àv¡7Ú¨G ºøvÞ@˜ŽAS$îœb¡Ñl “–²ÚXVŒM’–,°?K‚ùq+j1A‘“ x”¡øe @C¼AvRT¨ÌBéÌ*rA>%^HÇN“îdSa:`Öñyã…^-T‘7i cjW·B‹ZnD% }× *avs-í¢gEeŸâo8eÙ;°²Ë;™‹Rõ§wcÄã1‰9ÿv‡$ ùÐÆ…ÃaÉ‚Jwû²0vg'kØc '4{‘=¥M xÊz0dØå±)X> ü.iB̙Ônò;S¥œfN8]âc§‰ÓAâãÌfX| ñÅqôÜ$Œi.E¥ë&ÓM-œ²´²ƒ•{¿“Ý+ ¼ „{kÐÒF&{QåÊÝÁÐi¨ANîÚt¹Pº­]¸õ­Ìàp XÖ“LÕB™‚ðAšî wÉC;€sœè¥}üÛâ,[¶ßôN(ºGO|B˜ýàT¹FÇø4±e‰¼îö#uA9?‘›IØQd…¨´"rîcîQ›îÒÚý‰ñ¼+Ø?+Ú[|=$¦ìŸž9âàloÜýæ 1.ú^â9ÌkÝ‚>`¯ÿ2„ö˜ÿ dû>ÆÆŸˆÍìž„v/þrýê?û2nQ endstream endobj 4751 0 obj << /Type /ObjStm /N 100 /First 974 /Length 1980 /Filter /FlateDecode >> stream xÚÍZ]o·}ׯàcûP.9ÃaáHøÞ-8)ÐÖȃ*+‰[[2d¹Éý÷÷ ­•¥ZN¹–lô!Ñìr–<œ9œ’9ˆq&äPLHúK¦~£_ŠI9*/’3ŒÆàð+¢/¼ TÀ[Ñ>›Hi!˜˜µ—MòU9™”T9f“½*ç`„Uˆd¼»•ØxŸ«V0ž9ªµ¯˜ŒOÞi÷Ù@MÑ& ©#C®•!µ5{CT“H†}¥R"gC‘*”êè$y‰@-ÁÁaúÙU}†U_‚!ÉõK‚qDûÅìIK†T[a%&¯ýB…IÍ”… ³Ë˜D °§óúÎŽ0fÂ©š¿¨•«ÁŠW›«ž6xV_(S¶º†©¾ZHHø/ø2‚S#zV÷@9y¯“Ž&uZ®:OƒF©ãbZœ¾CC!ýŽ‹ÎkƒËRÀxŒ&D&ríCÆ :®R¬­ÑDQkè±ÄÚ_6É tŸ¨öLIg.ϱ:\(@ª˜aâ*f£Âíh©Ô/ %µ†2+eõ‡0zVN £Ý"`ô\”…Žeçc0AŠŠ™•¢!ëg&Sˆ†Õ ™à“àŠÉ̵•Ôj$,E VÙ%X)¹²K  êbUÈÂê·MÖGHX®ú㈎ )ÌD‘à=ÕV1£ÚËERÑ™¬äê!X@ÁÑÑѨ{iN±¨OL÷˯¿aq9ËèëÉ ºÝ\\¼}ûíçµ):[À†-íãùliŽŽLw¬‹Ü«ŸcM‡¾cVö…¾³…)n4¤[5ô×½ZÌ'¯§KsjºW/M÷fúiiÖC½ùßÕ ã÷ÓQ÷=†Î–׊~?êN¦×ó›Ådz}R껟¦gçãïæŸÌ©Ã ¬cƒ%óøZ]UÜœz”»©—Rg—Û:Ý·Ó¦ro',«+îI´ƒ³:Fm먵oNÉ&Ä»Fm-s«MÈ›¹·lQó¦m‘k‹v[LÛ ×ßh‡, i/Ú! Þ£]æa´ë^Ìfsôvz›óOMy+!ôBì…´Rîé…²²ë_…¿Í£Ž8ê^ßü¾¬Ï?žÏþußÍgÓEEëÞvÿí~è¾?õõA'8i|Œ6hLJ@¤;ÊÖ#M¦ìmL ½Õ9¯M÷Ÿù›¹s¿8y7³7WgãåÔžMßo.–_ª½wáÙÀoüŸ-k¨›°ä)«ù²M.¿]O©Î¨{qtTè^L–çóY÷ºûùäý÷Ňåòêúë®ûøñ£½œ.Çïæ‹¯®ó?0ˆ/ÞùÀÁ#ÎVà§„_§•#a`yx·Á—c{3;ÐRÃäl³&ÄöóM@Þ_\^ s±A“tÜAåÓ„äò¯ÃáXQ)"ªkÉê#¨T+•hQ‘>Ÿg|ļQ/¬ˆz†›€\~8 ŽÂÖ1¯q+(‹[p\M—ór• ß!gµšlr`ª"ºs 3Y­˜›\³EÕšärPSl*÷åEåÛªM±&7j£ˆ´ºãiÓF²µB¥QÛ'P+î¥ÝRane÷‡‹€Cä}Ù‘÷e¼Ÿéi:xB,Óà–Åjë°KÔ´M1å­ á­ âíNmN¨ûR£vDbóax‘øYM‰²ƒeJˆ_•pÒׄ¥/êJßTJöÁìƒSÝâóZ=HHÉ[¬˜i3›Ž¯^îQÕ#ºuíÆöÝêÙÃÝÀ˺Éb 6oVtÝÕxò'\öÍOãåâüÓÁ ¼  è‘"Ä"p)§°ô4{ëÒ3x¬•¥žÿÀ‰¢@œîãt÷‘»ž¯¬ª;Y=èqøRO£þÇåùõÄžœ¯?ØÅtr}/•!A¨ì H+QZµ Ô㹃s<6®ˆó;âJyôɆžý5rKyŸQ)—BÚå¬w¥Q›|NÚDTß>'÷Ëý'=ýlò‹xß/'NûµiUp›©ôØJÚÏ äî›ÁË03l¤==,®¹­/ÑêQñJˆ½z!2ÿQDºÑób§å è%lõ„'ødcxºôÇHsi=.Ð[oúqŸ+û5@ Îê SÂÎ(Ö}@@Pe=çÈáßw³Úå{ñ6èÕ*bB%ê "Gòútz=_L~ØàµÀI0‚¥PôÞ f{¸²Z< rpÚ-Ø£Þº›Õûö<²©¼NÈÅfmÒCiÔf${Ÿs£6I°!¥VmX1»òdçÒÛ!:@Mö Ñ;2í‘©hÀÝÈ–òg÷ƒûìðm÷MÃôxÓ0Mât9À¡…°ì˜lÚc²y6•ïn¦ Mò$ÚœÙòκs§vB^K¹Q›0[ý›‚FmäÆöÝJ<é=–Äû› åñU\è‹·Ðo¡/ÞB_¼…Ü ò™*®¥&Á–{u‡ÊØxÂ9^ÿDC«(.ÿÚ’„“ØD¼¾xଥg¾xð`Þvj.KÃ^> stream xÚWKs›H¾ëW°¾¬¨2ãy®õÖ:±ÚÔîac%{HrÀIl!Yö¿ßž/‰(²ÔôÀÌt÷÷õcÀÎÒÁ·ɻÙäâN'D¡¤Ò™-‚1b\:>!H²Ð™Í¯Ó'—ˆiÓuT»ßg/î„ßÛÂB‰ü0„õb&}µh‚­ŽÛÙäqB@Äi—>CÄçN¼ž|ýŽ9|üèÀ§0pvzéÚá`ÏÈ™s?ù§=oÔ>0Ö÷`$9q¤ˆÖ…Îüv'¸.Û( Òøñ¾È]ŽacY»x™á‹K4ê¢4/Ò¼.+î·Qé2š˜ùßQ]¦ÏZõ8œ! Š_†vZÈâ$öQ£öá&©â2ÝÔ)øÒ÷¼C`À$ bD„ín›Çz¯G!´—0Æ”ëD6‘b°ÑbÓ,ÓJa“ympÑòË¿aL³,Í—fºÝXÝ«Ä(È —Šé.±çÃQ¾Üf‘o¢Æ b1ØÙhC6€ûÐyÊo†Q€‰ñûs-“QÀFÞ€6ê¾aŸÏ]O`<§Ñòêîú¯û[û".Êòêõº]±Î£uRÁ.rÔZj”\—.ÁÓåväuuÔêY뛃ž÷²c¾„ä MrØHÐ s :Œtaœƒïf’%ù²^¡=-“<«Æ#>â¡0Ê6§›–Ë4Ž2×cÂ×1«Æj“ÄéâÅLv« ,í eªú¾0€‹dšU…™@Ì×QšW{{”eEÞ({R¡eÛÄ.Sh4ËÁ|0Ѓ4…h íBYaÖe˜ÛPCµMUlµæÉBÅB´ÍìÖ´24ä=ˆBé³€é`©ë”£ûÍ*Ç©£¡±Ä-w¶©xw”rSo`l¹S“–;½Bû Bǃši¼(ë>·x©ÓVÅ6›ùÁ~/“Mʼn}»K땑ȯ®€’5FÞOa7ŒÙÆ0/›/àG>F äc@[jºb1ÂQ@Ø+øá>’©ejÍ麛h¨ßX,i#u0¦PÂ*Óo`j ;–£Å<䦂ôKäMÙ›U¯ê¶(Ît®û|˜Ý0OÇø!@ÜÒ÷<ÂZ€ü.©t+T‡™¶§"Эë–o#\ ½b¡ß÷Š…š›b¡$]t`ŒÌÐô[æ³6 Ô{ÿ@E´Ù”Å®M¹òd€£Ã¸o9R(`®ó`·JcufÖ!x?Oê¤\§¹v æQÕˆŠ_µÖ(†MXè‹T)ˆaz VÞ¿º™\ð¸O¦ŽžüJ>H²Ù§Ï£9ÆQÀZÅçÆÆz;?{Ï{xnÎÔÑ?Œgø[þ´¢)¶ endstream endobj 4878 0 obj << /Length 1985 /Filter /FlateDecode >> stream xÚÅYÝoÛ6÷_!¤b5+’"%=ä¡ÛšbEÑbMÚ—¶Àd‰¶5ÈR&ÉM³¿~ÇI¤";Ž_†?NGÞý~¼;ʾ·ñ|ïíì×ÛÙ«kz1Š9áÞíÚþhÀ½cÄiìÝfÞ×9åÑâûí»W×[¢ˆò"%ô#_K¡™ot¿¹ý3ÃÐô=Ü«åaj¹—îf_¿û^“ï<˜Š#ï^‰î¼V í»™ýÙë?ÕÞ)µ÷ŽaCö8 Øô¶Àæ¼CPáΈ/ Œñ<©ó¤LÅbI˜?ÿ£üæû4ióªÔ׋͓´­êöç\CO5.„Íë]r©»W‹´mÔ¦=0„a³ÏðˆFO Æ1Eo,ÿ]4iß©Û<á"yK#B‰~ýz_¦ƒÑm¥Ÿiµ»Û·Æ5ß|æoD)ê¤Èÿt±žø!àx1{q-§¼Ø ʾüqÝ ZzŸVƉº³6;)’¦Ñ´tX@ƒ…˜tˆ^ZÌ1—(öÃN  Û©KŸpì-I„0ÁZòs“lĤ?û×eçÈ¿@LiòÏ—‹%óý9BHYšáí%¡(6+¾x¡%n¨~îD»­2ÝV.’ Ë!vø öü¾œpX`ðÖ” ‚cJ–˜(ˆ940Š›´qÕ¶¦•ô­6Yâêúõû›7f¤¢ió]ÒºÃM¾súwuµY%õÕí§Ï0$ÝÞÉhÙÕ‡Ïïßwo%@ÖBWeuaÆÊônß\á—'M#Ë7yÛLÀ³ìR ý(_Ñ4R€BÄããH1@ èìøé®ÎËÖÆJ[õó—CnŸÉouP ¿_«ð¸ÙïDiâßsŠñìÏQüvŽqÈÁ/ýaOJ;`œ/B É?. ¥Ä}¸Ž’ >Ö†Cðí8'Ž#­sš†x7­#¹ ÛžA~j‹÷(!ÏÝ¢þP|äö&Ñ—U¬¢9Øo+἟Ž]¥2UR,–»!ƒ`6*ɪ¾D‘FòH–§¢ÑƒÒÆN È›V·Ú­¨EµÖ~•ïÈÜ%'š;‘æëÝI̘hµ^€A‚k™½ ]‘4WÜUãÆ—26Ûçæ~›§[€/TIÈçVBÔã£dòQ2‘!ê¾4ì-$Cà x¥ÙVûÂ(\5&gH[ð[RNí0)“»W&'úÑ´ý¦Oï(øC‘Wo¼®ùéÔ!AaØ3cS‹»c ‚ÜKK/26?N% +à0p¹”œÉ%‚].A_A ÏK„ \‚ Ã%h¹\’•~\‚N¢Uh.Y 4iRÝœ ÕV*QPŠ;ZÉf¢­ä€K+9âÐJØ´’}—Vr¤£•l¯ŒšV;”$Ó6+ZÉ–zÌOŒÑ†VÆ['Ó*féÉ´¢iÓjÉH0ÿX˜Z€ÿIwKϺǹJ•·–P»*…Å ( N·\!Ç®Ï ^£}™3ÇMÛOG[¸¥ ˆa÷ˆ¨RêôCRT›–ߺ }]íLnìhgvå\Mu°ìóh2°õ­ÎÊÙü%è9>ŠoÄ #ð…ËÕÀ’˜êq09Ø£ª$”Ù ’™ê|µ þ|oʘP%:HŠDÕRÐ9döeÖ)„¼-îü“™oÙ¾VÂT×<8î M9<Às.0; ¦!ÂÑyátªÄ)W3õ˜µ7=#í‚ãÜÝ(Ca¢5‚ƒo¡³­$YïÍM”äG¡kÿ‚š›Ûž#v÷%§óÈÀÏ ò,òYÒä=\Þ¹'Œ§1$¥NîåèôœFzá“ö‰û¾?ôäý›=ƒò#ÎF”7ßΡ=7´ç64<°h3‰~ÈejÑ4º'T¢=G¹áÔe -u÷\ƧÀ@é=TTåo¨á£:å4„d÷N9°ôsÂ8¦ê&‰Ððéæœ’ÇéuWg@K nͬZHµd r¦ê¤Ìdír¿[éLå›j\åÙ=Dp>dç#P-;Q wïð¦ *eû4_åEÞ><íSãÛ¥ÝׯÓÝšná•´UE «¶œ*;CÉýrj ¶·­¦_H™îªÄö0#}–Ù˜ÌâciÀ0NÔÇdùáïDÆ.T×2–ªè·, ¸e;Êcs t¹#Ÿ"WÞ˜ú¬CìS|Ñ”ÕýÔ¶(E”ôYgºL”¿ôŠ ¨·yZÕbJ `ÑÀùè­¿ÜÐeÞ0Qû¯U+.ŸM4õIõt–¹™ÏNR}xµSIwíÏ{‹q–6u?@Œ” PZ¯”hò[å›ÛÙW˱ endstream endobj 4889 0 obj << /Length 2977 /Filter /FlateDecode >> stream xÚÍ]ܶñý~Å"­ÈÒ")‰R‹¼¤µ ŠÆ‡¼8ª•x{J´ÒFÒÞùúë;¤¾Ngç- x©ápHÎ÷ /ÜwáîíÕ·7W¯Þ$r—‰,QÉîæv'ÃPè(Ù)E¢³ÝM¹ûÜW·×oþöêMlf¨:K„É2 DH:Éé*t´ýï«7ZÏVíµIiÙ^j^\Ô‹µ«L"²TùÚóPµM^_ï•T°òÒ×2°-ÿ^z‹ø³/NGOMä)žó.¯k[óUß´_mÜÕDÂŒ@83Á»[·SÓŸmQý†Ê–_#, òÙáød2hwÂ;w²º-rº÷n/qÁ@Š,ŽyŸS^ÜU "ÇaPõü[t6lÉ·mǦ ƒòÒåÈþjoWÓ°a-V¬^ŠÇñz/c)Ã)«c5ô¿GBZ'AÕ öZÆÁ¡µ!á±íöÑñˆm.§ƒÇÄó#¬Ä“§w®óÂöKRwUq·"tîpç’.9ÛÙþRH#4A×^ê’ÇË¿]{iJ[‚¤£T’¤u˜<‘´VNš¸¤´·×2 r ÌØ•£OgÄßüDpèãºûky}qŸ·]{Ú:ò(Âöð³-†— Qñ ÂvNµòîZ¦Áñr²ÍÐ gÉ|·,âÝT"è0ø«òªîŸñ‹e ME’òʺ¨IƒÛKS8U6&(ÚÓù2 Üqî§0¶±`·Õ¿m Ÿ’ј›]•7…#S5 /íé’˜Š¡íz^ƒÄ~|÷¦÷TRgW08Á5ö«/(M?çÔ–¶fv¬%õ…½I;¼”Áè ‡2˜éÏÝW9æ¬ÞpZ2IEªS/£O~*ašx„zF"\5à‰JËûãQÀIàiwϱCMVȼ)ýÉ;w‡á.o¡¯äü¨Zù-æ^ªay­Ôye€ }á/xçÛKÎ2“Aî‘îÜ,ƒŽ’" ߎ‹8|¨†»Å\_5ÇÚNx1¿¢_];:àU@H'ÝAü)í¯ç ×ÆØ²mHTñœ’ÏÄJ0)däUιq<Ÿwåïš²ÂÓÜWå…‚ÀþÒÚ[Ô˜¢B#üÓ†àñ€Z$™dÚß>ºp0wJ@ÑVН]TÙ ŽF ¥Æàx†ý¤‘Ž=ŽNMë¶™é8²Èí6Ý8ï|@b³~6žUÈ àΜ^ h¹%æMÌa“Üg¡HâlÉ”¿[w¹Èxb‘ÉѨ#Üb06Àˆ„2 ‘÷n?op2 ìfH¥và5’ØÝ¶ ’Q Ñcãpa,’ptË[ûF"1Ú#M5Ï">a‚£qßœ ªâRç#°éø`ÝŒ2ºöÚÆKùñZ‚§ztät~)-R5rüÃÆµ•0‰ù]"Iœ‘Y:—ÈÇ ö¡ôGþV”ÈdF´Œç†£µû€Y´ðçÜ‚ž6GF-«üèÒ@°µ%NÝ i$ÚÐUŸØ j6çâp䔜 üé®CÃÃ62ìâ±\Jã¾hï?þ•ÒsÁ^vnûð=•áÿƒÔ ƒ¯9ͪ·­*”ÂÈx-C½’a¼û”îŒá† Á¯AV¦Ïë?¨è¿‚ôY/íNCz»s`Ê+çÓ}~rSc Î¶,q«åâÌ%KÎAQ³Ìã§h$³ppT5üK$qàNû¼ä['ñœ¿D”hT\t¼N:i8ÉÀÚÆoGé@ùåÍ) £?gÍFÄ*{±9ë'æü{T᩽Ï4áã¶»Lää.Ý•—VL¢Ô˜<›teF3¿ Pú!æ«Í*hqþ²Ï>»–…Þ‘ãÙ›ÛàðHG“q,d¨)á£hÌ&6dñÿÄÑRöüÍvâ ¢v0Ñÿwœ¸z}sõë•$G+wZÏS³‹€¥ ´´8]}øîJ˜„ìPh ð@¨§2” „»z÷þêŸÜcY6N<­r†ì¿Ä…-óŠ´ú¢ye_4/c̼gÑÔÓÁ\ÈñòÏ:°W ê=£¨¤³„1} ef}ENÕÞTE|VË©f…´ŠÝʵæ(>”üé}¾2›>À%•ç*ábg1ÍPm—E[×Æá æá®‘¡tòL–gQéË’S½·C¿¼á‹ 8j.&ÒrÊ»%+=EðžËŽFÂ|ÑR„§#f»“ÃhýÓêß`¨ÎµÛ§¼œN<\h„kŽàÒÎý:U‚aÏN‰n[î·LcÔ¸øI"¤"Ì©r§[·^ÀC{´n3ÀÁËYqô%ìcÏmýØ´'°IGÌO—CUøº ³ŸÕ¤-5Xû”»š™{>S©ÓT }Ú¼S~â.-Üæ®Å;=ðÇé‚þ G,EÒéE{ >H6* rjH(WÎ×<­qç+gˆ 7ã0~n«f¨ðt!•€ížøÌUmÜ͹Éå¼78w!±|"И“KœZ&@‚ÛHo§~16‹œLÜNEÞ,º uÞbÖþ[©òvã*Ko=i5Ë ží'ÙJÌIê¼_æ1R8¢¨Ò²”#8÷öÊûî:϶C‰2¼­JFc…q369€°ß˶¹GðeØB"í³÷™bÒXzQî”/þ.l6‰ù=* ¾cßc§ØéËtFn18æñ‚HR‡G³gB£®/N”Ug ò"¼÷ _Ë(Å@<¦÷ q„<<ä½u…#Haã–c³6Ûêá9÷¬Cï7kö…ó×€l†´ô Ù"5È¦Ô “+-ÉV©AÆ©Á[—lÝ€ÌÜDA—W=‹Ôx˃Ádd”ó©³SÇŸííFÊÅ½ÌÆ>¾ÜH#jñ8„o¶’õÙ<ÞEmIEO¯O‰¤P¤™¹ÙöLB=ßè¢ÃV’«¡JJãÕnKO%˜1¸Ó¯¸ç_ëœ{ÙòX¾/–ÜÙ^ª¢\£ ŸßþÁé@èbOá¦î[ï•ø‘ól]á è4Qèî«~è@/(¤EšÏ³ÞyÂÒâŸ>,P*ùê-›ÑDNº¼ÓN®£¸tƒ¾ˆâ‡ J –v×®xoü_¯?å'Hûú?N¯X˜€2)4g)=T£¥ìû"g«õ`<Œ8µ€—2déËÚ–2‰Å¤óÝ)—¦ú\ËRª2WMKò™Këà ,Gðdæ™X,ÈzØ>Ð>‹³0{&g.ÔÀyãzHØ¡ Ó¥ˆò&¯Ûc{Áâ6Ƽ³iè½ÆT]Âïô2ž¸Ä ¡c8Ǫiãlšu²Áá–A %Š_ˆàKí˜þRØaÿãƒÝ.o½F½ dr=ƒìþ5ßcù6¦†ß£Jý†Ú膯‘µ[4Ô#.#q@ð8óx®ð<=9áó9#ÏB<öƒ£í~0§ "Çnw¨Îr·y±ÕW§ÌS«t Ó=’òN­Œ4è[jX訟`œð8¯öÐåüáÛùµ¢„üLUòÔÃøcDMƒÎîgÍs•N]”±m’‚BÙfS^ß\ý±œg endstream endobj 4894 0 obj << /Length 2821 /Filter /FlateDecode >> stream xÚ•YYä¶~ß_Ñð‹ÕÀ´FÔÝò°A¼›ÍC xÇÎC l5{Z±Ž†(ÍxòëSu­f6‹Fd±xT±Ž¯ØÁîqì>¾ûóûûI¶;úÇ4Lw— ?ŠÓ]¦”ŸFÇÝÃy÷O/Ê‚ý¿þvÿ!U3ÖXÓ,…ˆé©¼ Ó»@Ö^-|ˆ²Ä³xw3 F<©3u»W Ln÷‡HE^5؈½ZÓêöl:Ý·<íÃÄÓ]©O•±ÌqéÚšû½òÜ8¯ò÷‡$¼‡ki™joÆœeÞp[íZ´õmèu_¶°ms@Á@¨(å˜$|t[â¡NÕË>M<Ø$Žï¯-íÙàÿ'” $ˆïV BØCO[;Ô†: Ⱥg2";ŽÎdÇ‘•ìH:·ÌÙ´²LYßtѱ’Á‹ÞnÉÒ^à„I.j€i'^Ù0í¦»¾,† ¬»¿®Û¡é¹íë ¨hÐ÷®¦7]ûhSö/Lú-H‚vTìT·¬‡|®X¹4{ºAÊ\§‡Í«ÑMaî‹¶ëLE7‰òGtµmcšÞr¿lä2¸Ë›;ÆÊàf¸!ÑFÖ3Ww‰<Ú_[k\“¯ÖвëI†~ ‚°ïÍ™ç>—ýÕM1â6ðç绽‡›?£EÑ̉Vrvµöë§·¼. ý(Ë‹^†¦@}€â•OŠ;ÃAÅ~àÜýŠN—¦¤øˆvP¤ôðOû0ð†ž ¶èp¤e“S週‚©2/Z ~&Êrq⯟>ìs2 bld;V+nczI ý„ÇÜ?FNÜÎÛ—5œõO?ÿò#ó/Ô“Å~¦ŽŽ_6»`Õd‘ŸÆÇ¥ÊŸ¯%U)8 ]»r~«ØY+¦‘«©3³›GÞ–é Fvì\HÛó•F&¢îÝb.Éúe'Ò¢RÓ\çó060ò¶×HH S瘟A¾f°WÅDxôÂ_ÞØ\ÀÅh÷÷–l„†éüÐrÊ h„Z¿pã²W§Kô²0Rì›° Sw˜:uOÛ ]Ü‚SŸqÁ ‘æt“$9&|ëÒZ˜î/ÜhæNéÒÿBt˜—ÿÔ@LÃßàî‘ å#Bãsù_i‘²à;?“ýaÃ(ñÆœ7yêÌŽ^¥iGÃ]<י t;<>‚Õ[î±æ¹% ·Î¥¥ ˆÓ9ဨššÂKÞ† çGÜÓ²Ò*‰íã"ŠÖ\ð xýEi(UD™ËÐÎiU ¡cSØP.êeÅõäçø‚DÊì@m(h?îA!kÆ\½ù:"2Ÿ^ø[ˆÑVUÙp^˜!£$ Ñ£L)Ë4G%ñq•™B‚4Hß‚YÄBò|"Î16R”Ä6:[I:cžbè[Òã…Ç/nó3f׺lFÁÈ3ä[ÆO1_X<%p¸­¯ûJÊjÅðýïÑö¾GßN#ïs[ƒ±‚AwÍÂÉ-Ï”$ sµPîrVÉ=ð÷ª1w°^˜ãdLã!S¦À9[©*· ç¼ ¡>ÉQ\2ÚBl|*ðÁI– º/5Ö‚u–=däTöîæ}CP¼ëç,Lo„†¿”¶ïJ9/£”ד~iÎסù š7ÿé¼C$£¿GÛJB8œ„[W6E hç, ·[×B6&È•s H•hXÆð:T€|þB¤’ó›–½&ó£þÒàq 7n®œ‰‹>‰`Ü8Á34LbĦÁ ]Ùõæ£=dP3N”¥Š~àûÆ^{²¦cƒ”VçŒâEÌ„5–›,1Úße­+p© :€à ]"·üupæ.1ÀÆ裭I BR¼.ÞFr'14 Ú u#+Ò-M£ñëA2@Wþ1En„2I;£çæ„Ñ¡³¼3tíþÙðmeNýÙF­ è™»Ý $Ý2|,çáx<Ã,úLþZÄF¼†ÌÒ Nø6úñˆAïÁÅèèçÉ-æ™+ê å¾gF«Ð‚b:®’˽<[!fp²‘ÁmŽh˶ÜÚ†¹*ÏüÄšN¼qX•ùy;ž^t[”](YRDÁº1å\^¸ã<ˆðphYÅk“p¾ŽYLY$èÛk;Tç%Mz*KVˆ}ŠøgB‰/ÜéÕ¡îãq2Q “ËÀwé ä9@eãò2øN×w/ ÓÓd¢ÃöXÿC#Ó£ƒ¬·áMã:ê˜N‰‡7 ñCø•Ä´§RLÖÖE¾r÷ÛÛ ã•Ÿgcá#é}¨ ˜Ñ¶ÍyÚ‚gÝËY–n·ªt§þÚÉÒ£ŸÅ£MÒ’ßr¶;)ÌâÔOƒp©NÎa®\5™+‰sØ–¼š»* ,¶.®…¸¸$ D‚@e_“#ô³p +Ô†5"•ô=;^0Ý8RÝdA‘ìS”Ø3AeÔ½‹p‡ÈžžnBç*ê¸å 0̪Àzpá\¢­r† CËb‹HÛ«9_QÎÙ¯ ä.œ\YÞwã¥Ø¬M!=ÜWÝ!~ïXAë—°Ü¡¸ë±öf:‚py°©òÀ©#A7+„ˆpZVEÿÑ¿ãp‘Ï/„’nmõÒ´5 F{· ~büêr!66 :äEÒœ²ñ³*€âŠƒcº.h`6=¹áÀØÑþºMûcxk;·3½ÃmáÝY©ç (Æ>NoC0¢; ¶†:È…oVÑ`V)AoU)ÅÙZäxù:gã#zò 4ˆ¼O³°³a4sqç¦STüðŽv"&¢îF«j\k ¡¹ ÐÇhxº_™à$ÙàB¾¯àÛåÉfÅæ[€6q¿s`'Šq#s©^8ÛÎü‚±äë‡)|à(ÃÞ9;¡b´L‘«ÒÕøV×|¿O`ÒæEhüM†¢iºz±Rü†RøK$Ϲg»0J—ïS¡+âp¤ê¥ôˆ=i‹_j€~/«1@ÀR‘ùèÖaàw0æÆTŠ`x>îŠVõ+ï’²ßÛ=¦\”!I­/ÙiþÚ ~(úY3eÙ_÷øûšÅ+ïE‹B ~É¡²”Wå÷î%èô³Ž‡E¥­ÝȤXšÁ|É‘ß=•¿«õwÙ4Žý<˃g˜/÷tƬùSAÐqJ¯Ý]ÎýçÒVòëÏ86]å«ß©ç‡KÉýc6 |@Yÿ×OÊY SF¡1ì*%ÇÄÅcå€>¶è[nË÷ûݵ°zrÃ1~ˆP³ÇªÏ_ŽÙ– Içs‰~I¿â4è&›ÈšßÞÒ‹ÈxP©¯B5ªÅ~“^8Ra ›lZ~œ_ßBþí§ÎÞýþ.¡H endstream endobj 4906 0 obj << /Length 3046 /Filter /FlateDecode >> stream xÚ­Z[sÛÆ~÷¯Ðä¡CΘ+ì.€€àRD ,FV}ÏÙs7BªÔé苽ŸÛw.«àêö*¸zûâ«›×oby•Š4VñÕÍþJÐa|e¤±N¯nvW_ý^ì×ÿ¸ùîúMdFSu “¦°‘›¤ÄI/ÞÛÿ^¿Ñz´j£Mâ–m”NM‹»l[ÚÉòÙa&i¢üYÝÁ®7* VÇzgKjæµÝ¯U´ú-T^ت£nÚÙ5 ¢ ®Ê{úº;ØŠ¨šÜOF‘H‚°? —yóþ—o8¦"‘ÚO…í¥˜Ñ0%]%JDHºŒ„Š -k‹ãÓ Ï˜ì¬kŠÏLGјTÏØò\fÝ t¿ÅÛýúî õüŽŒÊʳmŸÁ%S!M䯇<Ä |‰äÓù¢u,‚ ™òåÔÔ§ç1&–@˜ŒV6ïꆾ™9±bæ@î[7]QW-uÔ{ús LxÃÝ!먕5¼U{ÌÊÒ6þ€¬ò3y<Ë»ói€[nÀ Ò(âÛ–ž×õ¶µ Ýúÿ+-kúTi=G‰¡ÔLXBˆ§Ëª­¬¨ÙnW $2¶a[Ú#Xn{=ìö½ÚðÐA)Úçãz‹PöÚ÷yb#â Ÿp·–p'dMj¤Wegx¯M›g= ÏC 4ëí?AÇxEµ£ÆXn¼[N¡V[Þ#¯§3k˜^íIKõj[“–j¯:à †Ct(©¦ÊDkBµò— å%¶/qÀPÑl^&j ³h©/£Ï²h;ê`C‚>/£%΃°sk»lûJ ­Ã%Ò.´|Ä0§<w Eô*΂=4Ì›åº>_º'’˜ ¾.ÑáÌ4nº'{ª¾o(šcöÅ’C0B«Þ!ôŒXÁàwgÛ¼)¶Þسm¶OÀª…Biãì+Ø?Þ8a)¹jl{.»–>²f ¤Q” ¼éUÜ85E޽¯P„Q l¦=©níßß÷ç*GUkäèêf¬/5œè.1%ÁÿÒÏ.ë2šµo²£}IQA*bS̼­„xƒÆ¹u=Ê“X"¹j’¨ùþÎ%MØcAÖ ¼p‡?h±jp…cÈä!\Š#pŸñ³ÝçK"»ZíÀ&AƒÖÀ£3# ;'¿¬ò‘¾ð#j`ÕÖ2_Ñï†zj§²îúÐa\<«‘tO*îø3B¹ NÄ™xì|d‰ðPœûëÎ>zNΑè´'´ì²,M˜³Ð¨›â¶ __ïÓÔ¡(óŠj:§ j^®F»;W»Ìá |žà»ÀX¤õe@¤OÏKœSS×–‡ ¨ïŠSYø‹:>Fì\œhݡʹÎÇ-„ôNçd˜8YNÈG¤ÕELñ{ÆqºvÚ»9cÀ®!Ä/wŠacäH¢$^}k«-NÇÑ0‡Øžá­úc_½_`=Y˜ð r5Õ=? IðzjO(„„CzáLQæCF±¿ËdÀoZ„ŠÏ'[µr’`G…+Ûžl^ø¹†cghÉæa9îYÒ~lôQ¡LƠ—›È—,¯‡všA$&×e·»[ƒPÁ•šÞŒi3è`X甸ü£(1B×A:Ìç£0oæÏ¡§×7j °ÿ®(yï­?®hÖ@­BPñwi0œ•mM]‡ ¼Q5IYcŸe8ç%CÆ~l4ôËƽž4h^f!Ô¿µ9¥€Ðq´õëwgn !ãïÌk¸5<ãpy&—F–’î}‡¹ºx!6 =œý5³Èhçüh¢œ òÎOKãWC"Çzžoí"óS]휬qp$>Üiг$>ì'ñakËç´¶ãëÔKvÎ56±wÕ~Ê}ÙmªëQà30´ŠvVO­«Yì/+¼¤¨fKËâXÌR ;ŸüŸNMÍáj°:ÙfßgKN£òº,A;²¦èîû²ÄÜØ~rn²sØU‰¾(luý½nâW`áì,b5vïÑ5÷Üpî8\æÆðË»ŸOô»åé {vn×À%2vZÂô>_ÀeÉÄPáCâ>e h~ÅTŸ¨›OøãjM0—Û¶µ”Õ/;˜]ø.¼mÖŸw‘ì¥B‡C²g–¥-¿ü¢­ê»¥ìÖ˜qS7K{ÂD [²@»´¯ ¶JôãP`¸n²WùéÜ.e¨‰PAïuHž’ O؇ðYb&¬n>hɵæüש‰Œ¦E§÷voÓÀ­ýøÿä&7Üc*ñ’xýA¿¯w|3ÎþúÆwÿ~œa£ÜOx/üÄAv2M‚qq4¾H1ž‰Þ[´ÅÛf­Í ›WÙ]‘¡ÙÞV5ëù’ÇM¥PI¿ ŠÕ–R%·ÇßÖ’àá ’ÙXÀõoز2Åq^H¾ÁYõg à`õp ƒlЩ\ý̉Gß ê%ÚSÅPc ¢{k+ RüÛÅu)1† “z€TOæÃTªDÜGß!}õ¹q+\í¼}ê« Ðx}´M B´Ñê ô|À<ÏóXðºmkÈu]q÷’ÑI"’0žØÎLa'F’˜%a¹—÷°‡Ò —X‰¤I~S*–‰KÎѸÇÚ™îêíí"@¥s­ÙÃxéð4`ài2 ä¿­›Ê…®!H—Þi~ô¢CrŒ#–#ìèF® ð{=z`AÅÒ»•cž»ô€ÝT7¡Y.‡$ÎWk¡¯àw2ã'åßâ²ò¾-•K.rx?ù¹½ÏQowBVúié +JE%‰ÕÈ=zN’> stream xÚ­XÛnÜ6}÷W,j Õ"-R÷ ~HÒ¸h´€ã¦hë>Ðw—‰. Q²ã<äÛ;äPZ)Ö®Ý& RÃápfÎðp6Þb½ð?=¿<:=ãEJÒˆE‹ËÕ‚zñƒhSJ"?]\æ‹¿?fË._žGt¤€j‡`È(ÝÈ•V:ò¬í/ »~ÂŒºËbú¸éeâ9üãÉ–=çÏ%e©Cà# œ+/ôhš2)ˆ"æ;/ꢕàlïP)—|]ÕJ*ü\Õ N8(x+—,tn–4t„•JõAÏBX×âu#”’uåòŠw`ìéÒ iâ<«¬±í¶ª­ ­u¤¥ YJÃcáJRT­Ž&rê޹F:¯2Ñ ]«+µ‘[”È G±•¹(e]Ôk™áFÕv`E‹B8Ê+‹R²¸Gám VU+355ú"uò¥K “ ²ˆ¶&% R¿7ub5¢‘F²^Ò©×j = 1E$‚„MGYì_1Q–Ä6Dß™ =PÚÛÜ´íV===ÍkIêf}J=EËN•,I'¥ðéÏxæZ;.ÑØ»eä9Rd›öšwMàAØnà¥P™)3¥'& fÑ¥+/ê*ï²VVk­;¥h¹­¡p—I=,]àp+Û .´±Û„% Ò-Ï>ðµ˜Ã؇cƒ$é3ðJtÝ5pÚ©W6»Vo’Ý¡"´6 =çm½joy³ôcg®â˜@ü‡Š i2ÀáG)kÀœO5ÖA2‡tÀKvé$òãÓ÷J‘ψœšú L•ÒQzjR µù`Î÷({}åGþV|rû‰Õ}Ep|fG, Ö³”Oçu\á*H¹@µ²ÎE¡pn7Â]ÍH5{LèÅ…PaË4kmzÌBYÈï*¨1Ê:áoD»©s5‡µO’dŠÌ`’0< þ¬Ùëh„u”Æ혆³;&¼5\ì÷* #6ã PÇæQ¡CøBàéÏ UOÞ¤ÝI²hô'N/ô‹5ñŽê‹”$µ\Ñ”œt•<ôÈAÝ%ñäê<î(Ø©>g]”åÁƒRر;ÈeP¼Ê"£l0>²¼9x #l@+؇÷¶«2óˆá'¼‹f¼ØZœ…m·™mpz£¹ tý2¢DV°Ý·¯­9dI¡GÈÚº±ÇÀ3еO}ŸøQ:å»k ~V—Û®9y|R¼ÉÛ°-êöPJƒç$šæÎ5ì®'f¿™•æâü?¡”FÄÛW$ç-'«†—âgQLXì÷lìÁ FÐ*yû…"4F]ÑZáýˆƒvÅnÕþÌ‘‡Ë<ŸD@0“ëùò#/·…P{næt4 IÀb wúG¢­ããcèÕ<öögè—ž­šºÄÙs^­EÓº?5õ­.V-ÓM™yAp‚Tîš¾P"+ìôNÏc:r.‰vOä³íT€”’ávG3V¨O‚à H.ÐoÀ dê;ÝY3Þýè“k 07ñé úîy I›&k%­‰R~¹+V+‘µ6-æQjDß[¡¾ÅCÏ;r¦ÑÍNDÆ™ 5“è<ÞÉ”ßô“R¿@Få Ÿq(DµÖ‘^y‚¢[Ýöêɯ„ȯ¡; uc»ª'»¶¢Q“m²äëÉÚ ®é"9ƒ Ö‡RµîËäf )¬ŒUa)Ê$ÔÒÓL†àg‘N$êÁ³:e­›û§'ÐÓvãsà—HSsÍF­¶RÝB|º¿·é"“¥w¿œO}<Áõ_ktÓUOu28zvyñûËþ;£ÀÕûcFÅ—U® üÆØÌšF}’„F¸Úâr.½ ¹v»0‘?è¶ÚÔ·½ ý6@àÑu«êS¡ãé„—ã÷µå7ÝUÑ܃vÛˆ\î-ÆnʶAÕÓãiI©Þ)Þäò^Yí9 ñÁøˆ1Ìú òžáðÙB¥Õ‘vDüd´ì0¿ÐÓÄüªæ‹ñŠvž2àWÿ‹ieÍ%{̩̯hv±oÿ MÆ;í««j¸ «®(,Tüºÿ§„OFû:ý›ý9·S`Ë€·ш9F›^¤¬¨>µUÝcsÝõoÖv¼(îút¬ xû†¢R2;d>CÃëÉÿLÓÖŸ¬áZ ÜØK¸ê/wÏ@3ÿÌ¥›íÊ,ç•MÓ`Îÿ{›„fƒ +™«®gßýõâ·‹ïúZ‘gMw+yVÉ}u>×!|# “ë=íÝVÜ»|»eÕ6]Öºƒ3¾Í5¡//þƒNWÏ endstream endobj 4925 0 obj << /Length 1243 /Filter /FlateDecode >> stream xÚµWKsÛ6¾ëWpäƒí©à;S]ÚÚôÐN¥=$9@$(±¡H†å¨‡þö.€"%:’;®Âkw¹owÛZ[¶õóä‡åäîÁÇV„"ŸøÖ2µ°m#Çõ­cä;‘µL¬7O,[oGõ–Þ~Zþr÷à='òQE °%vGMlý»DZB ö]I=w‚°%Ÿ“6Å´ËÒ¶g׌À%?ðÎ FÅÕÕÕíܳ훆35=áÙ¶É©ÈÊB­iUÕ%7š¬Ô»Í÷Ÿòš­2=:úãí7š`E^d4Qç¿–BMê¦x3 ;£¸¢ø~®Æƒ™³NõÅòñý½Y2–,0qܾúßnEŽìWy)¤dy®eåOÉ"–{dF¤8½½ªýÌœ}‘gxFf«ýÂF¶½Õ׋Fv(žŒâ¹/ÉÐwËÙ`R2ö•n«\;>-k}ª-)ã6ºsSC³-–y|;ô9€VªµÏf&³N„&]¨áýy‹²–H&±©›çlg¤*¤ý?©DW¹ñ·Æu«Ü`gÏhý²ŸsÙš‰a¬µ©EÚïÊ2~\TòÜP'Ù.Kš`±4ÍâŒâLêhu˜ÇÚò}«iÍ&¹Xñ#½e_j›o€{í”aßôÞkE1h¸.rCÇ(÷‰Aî·Å´3CÐÃÌœøÐ=ˆwÒ§†¾Z ±pÞ¸g›Ž@s®7¯Xœ¥ûŠ¡(vùn<äMuðÙxóÙV‡ bZO-éÖrár¸24¹õnò{wÕ=Ûë5„£w½ø.¶ˆc#I3v½îÝœ}oÀKPbÌËmÕÈæI<ûæÏÛˆÜ(1j£EŸœ\ßOîkµümõ‹U}{Æ|B:û/1¿5ÓóG^!6ÖÈø ZmU-¢úfÌ<+ €0„ú‰ðбä•*ëåwn4xåä©ó,Ö™ôÁî{7¬èsãC¹â¬V$‰Úa©äJÁ[j-_ Z`ë[96>ov“FÕ¤"Ã{*àÓÓAÿhÛDÅÐW©¤©ãœrÞewßÏ ƒˆ)„5E6y¤¹. b(g#²Ü>¸ZQÛÍtô¹‡B¿LRÅD9ªÈÂÎAVk¬¬I§B!·C(ývçõCš¢Î¹#ŸžN { V”ï9]³Q`žuT2¬<ïœîZ·)“£¦Ð‹h0xcy>-éϸW‡|D’÷£ K ü ‚A endstream endobj 4943 0 obj << /Length 2028 /Filter /FlateDecode >> stream xÚÕX[oã¶~ϯ0R´•5#^t+zÚ.6Û]ôIÐ>t T‘iK»¶äŠrÜô×w†CÉ’Vvr.èåŤÉáœùfæ£üÙzæÏ^_|swquD³„%¡gw«÷}&U8‹8g¡LfwËÙžŒÔü§»·W×!ï‰ÊP°(Œ@‘:èb7†ÕÛ…/|·ÇÕµ”½U ©”]¶ ÊÁâw~àW÷ïuÖ¼˜/ß÷šÇþÇå²H×U™n.Ý(c $9n[,à¨I¢O>!‘[IíV7yµ¤þªª©“mRcèFQÿFœ+Àˆ»Ñç$28¾bIÜ ÀUÙ6ŸP$Çñ9= ®¦Ôðð_+ìtSM¨’`‡€Ÿ·CvðåÿÛáŸdˆõf»ý ñ—Š€‡¿@@ ÊcÈ4Ž‘â¯ë9÷½õ~«ËÆ òÓ¸ ÎDàѱFnB£¶íÕÓr¾à‰ß®£þŠÚž{†1K’VÁ%Úx_—îšý­ •ƲÛêŤ·ÀT_Õ6ŸÒ4èó4aÐOž tqyÔµ¾ðyë´…I0<ÞÃÓÇc Ìw—k²£ƒ8ÃB„óe<„Ua`Eà{eÕPö¨‹;PlwàÐK°¡‚rœS€žÃö”çx±PñÁ0%íPf/Ôѽ(ø:rIC†p°ËÐï2ô1ÖP¶Ö¿ìµiìÅd¸(Äj#@ “þ¤í5½l úêmÜ`§+N(aó- ž*N£œû¿‹^=E,žRÄŸÏ+Ô `"‹„Ê$C¯N«<ýÇŒq™¸Â!b‰ÕsŸdÝ_mкù^àÀ`mÐ_ê.—Æ­*«$e<ê¾ó}Ñuë‚i6>F X¯¶Ô׫Y$™ Fhå(ŒÀˆÉ6û¥ÕÌ‚E´ñ Œ±´.Ò2Ó‹¬BKö‡H¨»¨°—ïk0))K.ðŸ®ëª6sîê0ÝÏág߸ó¸sU«Æ5hÜVµS•UÈËð ¿N¥›.Ô;b÷~ošaÞ™ ë ¡Âqñù4@,~MÅRx$ÉTÀÐg "µÔ´•_è¸ò sMúãß ¡C…:Î ˜öêLä¹"kÚ›ŒTt8TmqC Dq<̇¼Èr¤ÔŠr.O¤”qŸn0«ãp“»aW˰1źDHáæÕluotMÇ_Ò”^á©WîAáTü¦.tŠm÷ 8ŸF%’ÑÒ-5M7±ð²»åz m(…ÑѽX»Bûl0Äùp¶»þ!ß„!";PÝ7iaofe±OP5 [*ê’ ½UOó%x ¨#ï·ËœÕ/ᕤÄPý9ú pĘ&È8ĘN–Ù#/÷C˜yY•K¨Îô¼²Šw_¤,ó ®BãÔ 5D®q‚Xž[D4 Fwiö!…œ9÷œ ¦puüæõC§Vk h S(:¹A(Þ6Ó µe-Q¾…zx€×ð9=ãDüdÄ«n@A†:ûlêå!‰Ftœ¿"T1›bl‚q_ŒQ¶¬ Ô÷C]½7†=ø2d…/'v_p‰Ì-æi§Ë <:]Îé‚·/éPyÿ¢„/¥ò²\gÈû k] ­E¸Ž€€¹Ä®{ã¦_:Õß2Rr›åÛbéö¾›GªÝû¶)Þ—ºt3Ÿ‘ô7yæŠÑyѸOUxòWKÃÈÒƒB®Çq¿‚s_U†Ÿ {x.ÌTúˆ(ì{v·sßÌ€^¡cE œípð›*KIõMÚT¥ûbwýÝ4øòæ%uþ]kc؉Ï^JÈs€½J¢˜Kp¨ã‰R«»‹ß³o¸º endstream endobj 4951 0 obj << /Length 718 /Filter /FlateDecode >> stream xÚTMoÛ0 ½çW-$X­Jò— ,‡ hìØæ¶î Ør"̱KnÓË~û¨HNì´Ë²!@DJ$ßãe¬||YLnïSä(Oi,ª€`Œ¢8 2BPåÁ¢ ¾O_„\­Fí†Ï~,¾ÝÞ'Ù %ÊS”å9ÜGYbƒ&Øc@t:ˆûðf°¹¤G!f!Mðôs­Õ(ý¸Â± µ®3lñ(²gAHJ™« |Q×ÈS:#ò1bYOýÆG^€£„‘>ÏâlÖç`hŽcÿ‰C‡8[aÔÙ†)!G¤<åMy9$Å(Oب·ç³ˆ[«T O«®)ŒTv.Þ¯OS3 IžO7ªµ?>¤½¬e±væþ|ed³òAn-)¸ï4E0Â! lž$ŽEÁ7NK?VbF’éδ¼0¢D—k¡n‚òØ••MUw¢)º`²X†HõºüÓ †ò0•cÔówÁ("9_´¯ÌZx³WÌRòU£´‘…Fþ]^*Å1¢1#E‰Ý³5ïv|³­…þÃ#¯û¾TLãÃóÌàyúW}}= ¸Ð‚×EWs#œ[«•3Z©z‹Ã0ig[-]šj[¡·ª)÷£a·´ewðžy+9(çFÅ^¦mÿU+¹qQŸB· my<áo×]+æWW7TÎÍViï-ÁkÄÊ{…œdz¼ã ð9ü¡e±‚Ò¤gBa\ ;Ñ¡’žÒFîDŠª…ñ]û‹³æ‹4kÏj©UÝt‘LWŠ™¶Ý²–…°q¯‚·>fP$Ví»JÈc¥`­L¯Ò7ùÜPLJÎÝò«çY÷j—}eyøý¸çôæ¥Ý-&¿¡ùÄ endstream endobj 5027 0 obj << /Length 1256 /Filter /FlateDecode >> stream xÚåZ;“Û6îïW°tfr0‰'Ùf&ö$eæ:'$‚:&àÃ$(;ÿ>Éó‰rÏp•¹B* ÝûüvqqtŠâèãC|óùËÓÃûŒG˜"‘Š$z*¢$Ž¡<â˜#AEô”GŸÞýVçêëO=ýþí—ï?$4ÊPf]~G,FI2ÿ3ŽÉåô(ûõ@T`{t<#[ݘé!W‡Œ(£Ñ£ýÄ„Ïgó¼mô¿³HqušP”òìEæÏ3Dû‡Ò¨» ¾þññ!úôˆYü.½¹ÅB÷ã,Î¥媃6ÂZ0d^ “´ [Bh;•—GƒºJ:`dqÊ8ì2ËsÀYè…  ¾ Z˜‚ï­\yRõÎàRýQê£ã68Cišn#üÁ5Ë[x¶[ÓMQs€nLc¿òIàâæ}Y ZµæÍ Á@õb˜.0œC€0á%jS›¼%˜šãP©ÚHS6›!5{µ*ûãcÕäJ÷A²„s¿]'‹«šöºáÛD$`ߎ:ut˜ÝÀ½þåÖ,…û÷Їrø[š¥ p©(šNõA”'1Û¯_kG6½R/„ 8áðÇõ,Ð…c½sû#³†¿Ï](Üv Ö| Hüþ˜.£a¨k¥ƒD!àhÐòpP!ªvÂàmKë×”ýΫ3¾úE·7 à˜ŠýÈ®Pœšþy Ä¥ ˆÌïˆYà½)ʺ-†ºtI-‰LAu>ó³ÒYà=VuÕ`æ´\Acs±4Áñsš‰÷xÜŽ!6¤@=óÇ$Ï©ýbÔ+=§1¬)cP¤fÙ†1&‰÷¡z.‹P,Çp&ÒvMQjjlÁ˜ ÙçÏuÓU¡Z&ñþ–1#èd^Ê -CZÆË¤£N+e<Ãcê]æßEÍ7‚uOoŒYôµ+¥l»¢ j72j¸Pýìš—.ß@œƒn ÿ£¼¥eýqSPhUÃ$ƒV5?kÊÁñÖäöóÖýiŠ(µ=0cÙ §9 aØ8ÙàŸ.b-"úñÏT®uØžDªd]¶[‰4GÕAÛªt R•àv<è¾Õe Ú(È.S›ÚØ~"¡(ƒæ“U~Fø+¡\¼I¹e%&H3d1x|åYÕC‚”l .N2Bø"ub;ÂýÕܵüÊ‹®ê#àf«XÓÙ¦Šm„Òug€P*ûãΉòÿùb#ÞžWk›Ù)O';9^9Wßyáïðg Y7g¹¶ü'à\9è¡ Q(׉c£Š‰ëOu5„6š]aØÆc£am2ÄŽ »9,‚³¥&¾¤áx–Ô 0 ²ãOQÖÆ·’ù#Ûï—È“`"GDQšÞH„‡'±{©5¿˜Ø²ˆÂñüZä¦6ÿúôðK–” endstream endobj 4859 0 obj << /Type /ObjStm /N 100 /First 974 /Length 2254 /Filter /FlateDecode >> stream xÚåZMoɽëWôq}HOWõgÂ^/œ,²Á–$1 ƒ‘i[1E eïþû¼²(Ò²ì¡4ò%[5dõëšêúxÝÍÔrvÁ¥–‹KEÿV'¬›£Ø $qÔ„Â.&RúøWjs…U·$WJu‰¢«ðAv5‹~S\ Y…êZî7פª NR„Pƒ“¦Ê•…Øk«ÔT½VGÔÔŽag ×ä(õð5;Ê0·TY¹ÿH%h$ÂÈÆúj-@‚%¬““š p’¬¸‡ †´)‰Îå j ¦f¦^JŽcopËŽSoÇ…ERé¿­ŽkPS$ê”ú® xÒԽČ9¤@ê¿Å DV«®Š1ôzή=Js±ô¯&âb…“ \CCŽ*/§#·#H€ÇÿúŒÌêÛ~XVë…t¹êgðW©Š¢/S›Žè êG`Ysèç¥ä2÷óÂ%9&¬†Pq9é» œKT<&HM¹rÓ’.Œ0Pš f0O¼=IW‚ÅÈšZÂÅb¬†ÀÄBU-á>âàjŽÐãÒÏ…¡&2ÃÄ5.$":“ƨ^ÒÀŽ4ò$!`¨ßâ³Ú¿E„9’tDJâÐë!Š)ë[ 3*‰¾Eª®rÒ·H Rï[$EQ=ƒ\Y;®>Áµæ¢s`¬.6$$Aˆý·â•~ÞàZ$µS¶”õ3,lËAõr‚¤ *ÈǦ1Ÿ<„ˆîçÍÈ%ªGÇÇGÝÏî%²7 ©Ÿ»îŸÿú72)øˆ¡™’× æW³Ù«£üºv*ÉÃ#CµCôÄC±QF|Æ{ìi?]ÌWîøØuO³Fm\{ZÔ#uó ®Åê­°x +±~h}ZËxÇ"yó€ØÙGÀ¤Ý8;MX}€ݳåâôdºr/]÷ìç§®{1ý}å¶Æ½øãbŠ/&ï¦GÝ:¯.µNõãºçÓËÅÕòtz¹®]ýgŸ¾9›ü´øÝ½T ”]~…‰&KŒÖJÅkÅÇóùh/וUíùlÚ^á¨ûi±|3]öháU÷×î—î PÇ^©§0=&ö ÿ2U,†ãÄSÖ Ö|â ½“«ÿ¬€Ùýz6ÿÐ=>>îg蟮Îóî¤ûÇó_ôßïW«‹Ë?wݧOŸüùt5y»Xþéb¹ø/fñ‹å»G0ow _¯1¦Ô%F’øüÅðÙU¶€@íñõçA´I| 4PeË7„Ø@m8ZÛÆ0m”lŸQÌj#¥jŠÍ™}MCýÍ|E»%÷sn7÷rn'ƒöRóÎ鄽‘NµÜ=êÚ¸ž1l„ü•Û$‡ë³ãËùFýƒåOAWfOp7ñÑêaм|Ü;ôÄuY¼X8,ÈÏßÎý»åôâ‘»N¢{ZY×Ì‹Z”UoèvZ JýNF ¹ ÙFžzªDpIT:ãÑDoµby>ñWó³]Cú¨­õ€’²«|]$’o1?Œv,>=”6gÊ0L9׿C¨µS*^@n»ƒ²­–ÀeîÙQ±¸QZ½{ h–ùmÔÌ'E¥•¹yp?ìG°ÆE¹3*AI·†ûÇÓÅGù³_› Uñ .¹¢9*§F"Æxpâµv@âí*o8 ìP»goÙ ¬=B·GâöhŸî>yDv'éf, ß#ËC„`‰ÑtIÊZft»} å« þñƺK<`Ýw•mÝ5àn§‹Ë,BB¹±lºÁ½ó²m,íwâAÖ‚îÃ7™À&ÄQ»‘ØÜgÐ<ø‡xgÒM6{‘Û»ëäÒ¿™¬&þírr>õÏÞŽ[{¨±XóœBo¼xÎá«f]Ì«ñ­ÁØœ©x=KÒÚ,°N+"và·[3YNf³élD¿`y )…O^ÏGP—½r#Ê f·Úq>ù0}vòÛ“¿Î®.WÓåˆ=öTí=½ÖîoÇü:¹¸˜ý1âU•·–dBñÒ5ú†kNg_7䀽1Øé ™íÕ7™jo¬Ä|p]ÝSÞr„¡Ú -õ~ 6ëÙ² Õ¦V}Êéžg{i4:çÌô…4’{¤‘ËXL¨&4ì!… Ÿ‰×Ò5ù,U¯ˆê÷$Ÿ¥¿yÛ:¡¿ bÈùû1ï&°é¬×vpŒž°bÇÅtµ‘ïeÆv÷Ú½ à9d|¬'‡ú3=¶Ñk«’öŽ·›q6;»šÎO§ã‡ 3ù´5H¯>ƒþ@ä ƒnjÊî¾YC¿ôK…"Ù—HCµYé;Nn#½w¬f9pý¼šå`Ü÷.Õ,[5ËVͲU³lÕ,[5+v*ZìT´Ø¼¹(¶/†\ ¹r1äbÈÕ«!WC¶»^±»^©†\ ¹r5äjÈÍ›!7Cn†lwIÒ ¹r3äfÈÍÅÅÅÅÅÅÅíôYìôY6§Ï9lNŸ! lB4!™M(&Tš †L†L†L†L†L†L†L†L†L†L†Ì†Ì†Ì†Ì㞘gÐ4VD¾è/ Á†H‹òöåƒÆ $‘oVCþ% º endstream endobj 5203 0 obj << /Length 2125 /Filter /FlateDecode >> stream xÚå\[oÛ6~ϯðc, ï—ÇekŠÃ0 Å’­òe–ì¶ÿ~´-;¢LÑ¢Di݆<Ø0”s!Ïå;‡‡‚“ùNÞÜÜ?ÞÜ=p4Q@qÌ'³ ‚Ê'!À‰š<Æ“÷¯ÞþüÃëß¾ùýñÇ»&*ÅPJ“:Ü™{;J‚Æv,Ò|z»XÅI–±ÎÛ[ÄiöÜÁ~ÒÏ –éoBµ·ˆr)ÖQª¹6ç§@råÃ^Bwx84–ahß,’Ü&ÕÏ/C”W‚Ñ )À&‰Ói*8à+ñÉ6Ñ2™Ù\¹sâ¶Ã’ ¡ÿ&ÉÓxeyà p-°þÁCæ6Â’ ¹:ͳÅš‚€d>ì¹{ŽôÌ%؇äç± â‹Bî‘°¢û:)V!V^¡.+oOBÞÁ+Ö>ø”KŸ'·oŒ r§á#=Cí<Éá?À¢ÄZ/z©µÎ8‹Yšáμm»Ž£"  ãÞpp7]íø{ëϽW—ÚB=Ò‘™R/În_/ ŠJÒùs‘‡Juä"Ø!j  MÕ<î<æGÍ›W‘ âìsëhú1š—®ih…0 ¬¶›‹¤ˆ4À¿5þË„QZ‡¦N­”³´fÓ­´Ú¤ËâšN²ò,ˆ–«]SÑ⫆ns9Ò«£½ÓÕr¶ÿ´‹á]*`¨Ú— ÆjèpYDz³ŸWqAô®YŽ‚$ù4ʦ6ÒèZxÁ5äN˜%A‹ ³|/cä—ݘ¯òç&À¨¥&^°åJ- Z–áyê(c½«'|%•Z«§ƒYšáVƒw\Æ’ºƒaŠö†i¬Ä¹œsl ҹɯ¢@WrÝ‘ eIteõ±¡¸ì°1ªãÆè]i»¸Âл¸*…°.ï‘3=x¤Çm‘fi‘&yËY¦}°L>å!L])mÍ4ð.Zƫȓ$î%ÃÝgÕMJž!ftl‰Íke'¸¢NÇëUö%D1&}D®ioBaTKQ-wó"¥tÔDz3g“E®p éI&ä*Úׯ0tç„`¨Öµ*ÍE³Y´ÍŠ> Õ%›r©o<ÙÂ.”7æ;ién–EÁЪzõB±{K¡Jû–ö-]t?¯!GK2Šæs£"é• Ûh:Sý³žÜT‘ ZH%­Bš¼ ø,äÈ %e@ÐÜœ©µ‹AÔËš(²¥MTxåT· 8+MPR—¬=ExëÔ~ã»·ß÷êÒ¸ìAEYbd†ãÿ”?Z+¤ÕÇÄi^DË©mb[` !ŸhhxMAÕ¼ò:\{•â0*\ `¼áÈvÊd@À6Wö—'u›_—_°„0HŠºól@Ãm¿ö¹Ì=꽇Ц«Ö‚ V4bÉü Ùíb›5Íûœ3òpq–‚àåß(56’²SçwŒ)äQî?¨1Çé:õK÷N_pæŠ*‚¬õ5,ÃûãíCaꪺhõÏ×72%Ïå endstream endobj 5028 0 obj << /Type /ObjStm /N 100 /First 1016 /Length 2898 /Filter /FlateDecode >> stream xÚ½[K«¹Þß_¡e²é£z¨$˜ã$€™ñ"‰ñÂñ\ÂáÞÁ˜üû|¥ÓÕ×^X'uÀøèÜ>ý©Zª¯^ªÖ^,夽ÔDB>h‰}Гô‚åTØ|@ÉpNµûoLRgõ&Ê×k%u¾ÃÈy½àŠ0j‰J÷y¬'ªìø5'j˜ #JÔpåÄ4î­’˜Ç½U˸·–Ä… æ¨iǼµ&¾ Uñýz/!›?^ËI¨»¤’û“¨9^“$åzU“ÔëÕ’¤™?G3,Dw¼1èzÿ]—©ApW;&*â³¹fŽçÕ±Š]ð߸•<æÅ…©0а?e¯©è¹·TÊx¢ÞSñµ*9c/ž#JÅá1âd¾VI2ÆJb¤ÉSbT°ilwY2»^­ÉêõjKÖ1/F=Õ<®RN•2Qª2 ;®×«’j÷’¦ZǽTRÅb2h£š±?*µÔ|1ê© –©dΩv¦Ô¬øÌ©ÕæsàBëøjجž –ß)gÌ0F \Æsw_ vík}€@­(³ÿ[ADæÍ&âña õúÁ°\2ß,®ÀýiÄ\—ÍŨ0gßœŒ)‰Yü1³± Ål¬A1”ßD1× ˜Û@€ø$y hqÞ™b6|ñ]ÏêlT¸˜MŠ \Ì&6~P0›´ñƒ‚ÙÄɆ!fSrɳ)‹ïDÁl*K‰µëýîÙ³»Ë«ÿzŸ.ß><<~¼»üøéÇ÷?ÿüð¯»Ëwïºÿ:Ã6ä7—?^þtùþ5/w—îß}L¯©·ÍIW´o@OœËæO_úCŸ}›ž=K—Óå¯Óåyúݯoÿy¿õß§o¾¹Ã¿ÿ]&ˆ-(R7Ø É[s5ÓºAq¾.ñ:¨öÍw °nÃvÚœhEʦZ&BèB!Šo˜‡­ÂF‘Ù‘(cƒäë"Ô¶PhA͵µ­¸F`·*õë"°æ…24ÝœÓZm˜$Ær¸›Ñf Ã×¥ÑV оU76›ÈPêz­„cÚ &ž:¸é. ²Õ®­4;a?¸B=åi?@W˜‰‰•JaX wÒT6rƒmp'—² ËL [OQx¿MêÁì&kbª¸ž Bm›º›¬0U ²6³ØìÚì,›Ç˜â Ð=¶Ãtº RÍ f^¹RÀ[Iqi9º­„7–ÚL5s_IS7Bi«ˆvÂwH!5ÓL*'¨Ã#Ô=Ô¶£ÒÄv“Èz«)W^vz Fh1¡ä"+\cyZÎ3~”4̆ÐêI33ÃxÎøÑVÚŠ£‰øž[†îÜ1¬Wå=z^i*Þ!Âfk Ió4pkžðÁ€™J±0Âc‘­!4ç‚ÙÎsñ ŸPQ.m&Åʨ l«À£»ƒr"`(-§™ Õ‚¹mÍ< §áÅX±&Ù?aÁšÍ¤èëã &Ø yŠó¬ô‰`ñú‹³Áõ#ÆbX0™ Áe¹ªÁ…ËáAœ®ˆ='BÈ †Ióf^GÚ 'hÆÈLŠ•‰§WA¨f|ºˆó™LbàY²’§ðšP3/wmÝóõGæµÿœ'¥+"È6È«ެ$ð2À6³›Êë-1m ë‹`;Ìt¦ý­p_⥔РØy2. m…T2^%ð,Ú!à« Q/Í?'º)+ÃM1„Ø‘bä¡Bn¬ò²RÚ1Í턵EA ¡^/¹U´YI¡Å5^0<¶ãVÑf¥ÕÄ„›VŸÄ=¸—˜á7„èÈD3µœ Ä^9:„¸U;Ò…Q…txLÄuQ;Ò !俨­Œþ5C›Qª+ÙÁ~êyl"¼›i:ºÐ…i©žû&§·BÁ„_«ç>;ýXšïÆ*ŠFáÁn¤ž°{ÍèØ¯M“â~‚{ÑèâVѨž™ %»Ù¾š‰Q2ª³°ÿËòòóôºdöîºÒå¯û{ò]UK^À›Í>ýòË›¯þ˜Óú¯ òOûò·/> ^¸ÂBÀqÓ ì™Ai®_üØÉÛõ‹3&Æ¿âòòýã»ïñ éòòù‹tyuÿÛÇôæËµ{‰º»|™î>~ðf«q¿/чÇOïßÝ¿Ñõo¹ÿéç·ß=þ–ƪî@¬ÓË·ïq7òxáëÇŽ|ÀÄ£eËå [×äP 8ƒ¸ û±,5-¬¬¬¬¬¬¬¬¬¬\¹r äÈ%K —@.\¹²²²²²²²²²²r äÈ5k ×@®\¹r äÈ-[ ·@nܹr äÈ-[ ÷@îܹräÈ={ ÷@î;²7ËíŠÇ@b 1(1°Ô´22222222222222rð‹8999ƒƒ¤à )8HÁA Rp‚ƒ¤à )8HÁA Rp‚ƒ¤à )8HÁA Rp‚ƒ¤à )8HÁA Rp‚ƒ¤à )8HÁA Rp‚ƒ¤à )8HÁA Rp‚ƒ¤à )8HÁA Rp‚ƒ¤à )8HÁA Rp‚ƒ¤à )8HÁAÚ9øféQ¨5Úø©Óº³$'Ëú3aCÉMŽ3aÃßË,Ã×·X!²ß¼{;Z¬Ì¼ïnÖN³ò$4º7LGòèÞ0$óN=¡åÍÓºA“iCL[ú´±¨ ԖϴƒÚÿW3æ¡jµ¦ˆj­MÛ O8Ž-^ZÏý8Ž5däuÚý×òú–ÐÒ šžüí-¡S§%õv‚±(UCé¡¥É6= Í'ôÝù™°ù ;×Öqð¤õYÏ„Øúf3“ æþù›mÚÎSúúv?–ÖòÔ®àÓ}VQg“:ùa,«ëÄn°üdºO•¢ž!yÅðÉlúKyÖ2ÍK_)ˆÉPÍò´!Ä03µè´Þ`)tÔßH ƒåæ4í*êe}?Öz}Ëdïçñsš|Ñ =ˆ á¯ÅŽø‘9Íeei¿rHáåë'µð#sžÖÊŠ,ï»S…ü¬ïN ƒ³"îÒVáX É£òX ͈ûfKae}Ç›t±Ö£ãM¹m:ëcAPxÂ/î;¼ß+Þx!ƒ³:îRù¿çG’þòäîÉüÜ¡Ìõ ¶y+DðÓjk[©³“úÜÖÿ¢`=‚èÿæ¿• o‡n>½…;¤P?{áÙÏmþX’Õ endstream endobj 5205 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2144 /Filter /FlateDecode >> stream xÚ½›M·†ïû+xŒ/Ö?Á€I€œbß„œD ’a(ÿû¼ÅirtQsì¤]îvOóébÕ[Uì^K–C –¬õA œ«ZÐDd󅜛8Ô$>Ð$û@¥âʈ“¼a”qI)þ;\\K¿V ”S¿X Tį†QíGñ…S¿páÀÔ?[$0÷+ ¬É‹6©˜£dÐv¦R×ÔÏÃ4é×kAÍRMA¨õö+W¢~s©Jk>oÕ …ýŽª©9aŽšƒ´ûgKPb7N­AfÀf’æŸh)¨‰_¯QÐÜ6Zšß/.¯­¶_ªÏ먹­üÂý< ©õóðÅšßGà ?J~ƒ+ƒ4?J‰C&IÈlý< Y‰‘…lLoe,Ÿ©ÿ®„\p[Õ'µP’ùU(…Bý(Q(0›85ö‘„i(8ÑGJ5ØŠ(‡ÒªÏA%Tº­¡²9).U¥Å”Õp Fj6'`xU©N€›©œ€5´t?j¡QUÌåÁòú•±ŒíNÃ6ëÌÜB»Sa)ZíóÂÚJ~J}b YýîĽWj?|86l¦ýÜâî]CàÁX`Ç„÷ÂXê³*|—õi•0r*Ål¤÷0Y¿‚b6*ä8ŠÙpS³á,ا3`J˜…ÜÆŠÙø‰/0L· {ô»ÀýÁ ÝB0,ÒoëCt+`Áa‰nxÀ`ÃwïÞn?ýñÛ‡pûîãÇOŸßn?þï_ŸûÏÿåã¯o·ï?ýþŸ¿¿OP†ôÏÛ_o»ýù=õÞnÿøðïÏá=®,(Ì‘ÛØ‡­7Âyß…wïÂíÇpû˧Ÿ>…ÛáO¿ýüß÷õMøöÛ7üÛ@‘[ôJQ°ÈðÚ˜à(Â)–Æg²‘¢Ilen5 ˆAÓàh’*(Î t$76×n˜@á T( ·«œšÂ.0EѨö0Ã]j9u‹¼‘âpNtT„îpN.geãŠH Å–¢!æ!̱ qvš3ˆzÁ‚ƾæ‚("'ÉEÛ¹ ˜ ‚Çœ£¡@àd±C•˜ôÌ+8í „]̨/†X0~æLû}“¢~ᛉ|å¿NAy§de^PM1©V™ …Pü:…ˆ^`‹ƒbØâ Šš%˜ ÕYŽ™8*LÊ%²¬ÈÎ0E8b  kښƎø˜ G|BƒK ·y)j»V¼Gf¬‰L·T‚¾a:å@8*¼%ñF;„ ¸ØRB%Ñ,¿f%†L ‚‘ºV [Uj赯‰÷h™¢w·ø•Ojþ¶12“¢¼¹Þk:-½ÏÎQÎJ‰© ·3,‘ 0¼2C6Tå5¢ŒêwnPF”v/5t¿J©§z6Ɔ Ý0ßZw¬)¸ll;¤zÓÊ֢ä'lÁµît Žb[L·XR´aª}wâa õRÚšBÒÆ<®„x¬ð¤¯VZPäuu ä/£væk1îmhñÛ …red=eØh A®(ð'»ú¶ä bk€4¸&r÷€ÐÔúæÑ¢ÒNŸ?ŽikC ØÈ€B5哚GËbc:W¸%•¼²oO¯xc¨pKߟ^oʆ¨ÝRá–‰iB˜—ö„%vÊöLaŒb ê0SŠ+;L¾ … Š‘Â–;7—!L°(’7@†ÙöA*³Ó­Ìý‚i U Q•4E—åü"†C/­Zÿ®I£?D–ϪLÖýUæd8ʉ5„í¯&&„hd¬ÊBx§h£”ñ”âí%„òvÑž ¾›èL+†¼3q †óGÂ7ý1× ½ÛFŠê[ØÂü)LyÂdº_µ  êm«²ŽdûE{@𽆲¿í8 ¦L,!2] ÄÑt,!¤ì„@KŒjqBø¾ê3;9ú.ó÷,Eà}ôæ»%MÏâ Rè`8zŽ' .h:Åh:Ö[ûá{×1!Ž®c !Wl“˜øãñ/äJ=NÎb´] VbÈÕ ¢¶ Ôꀘrµ€tEU3 †\­ ö©oÈ éuÞ Ò{µóu «ûw¬üc †b–_¥#<Å%ÅÖFpÄÇ ñ±¤ØªW#@Š +ŠKöïÐ Æâ[ÜÇþ‘wêü²ý»{.ÕÖßmš¹Ôß(g/r´ý¹t2ýèBh€h©±A€Â—ÅߨíÌ)ö Ö„8ëµÃ%z+T‡K(Ø$é«DÓ·"¦Æ†Nhˆ¦ftDüšžxzÄ`8$sÅ@I÷+æ„8s±õaýÌ1s ±µ ;*Š qTkˆº¿ÿ™G´„ØÚ Â1ý=ã áïR”ul¤ z07HíõÄ!—†ì%ùUõöÐËAÑ4Š¿N¿¤ØYp‹o£–<)”@AOØBÒÖ.Ìõùa‹±¸¦ØZráöw¥©<„[Rlgʹ|@ å^APNH÷ Ò½¤¨vvS»×ùñC¼W¼5D†zŠ¡ÞKŠ­Ø”ïAqÈ÷bë›pNÿ£¬ áo¢õ§+ŠvÁ³RŠý§F R=§ØÚ‰IËÑ|{ß{’Љyˆ¤S:£(ûŸEyóSü¯ºŽ8•fþfä ÄÕ¦wdèŽg>•*1éÙ¶ÍT¬ÿ¾É¶´ endstream endobj 5441 0 obj << /Length 2376 /Filter /FlateDecode >> stream xÚí\Ɏ㸾÷Sø8RjîËu’™ ’CP‡“h›®J‹!É=©yúP¶ì–,j±Drª3ƒ>”ѰÈýþU›— ØüåÓ÷ÏŸ>ÿHùFF’!¶y>l &lÃ!Œ–›çýæ§ï0øÏóß>ÿÈ`ë«X€ˆSi:é¯ÿøóÿª¿ö 4§þãÖ÷Ÿ®'É8]îŸ`M—hÑU–qöf(c6‘]˜Y+²‹Ò[¤u Å|™µì#Gù—$bÆ/ü·ô²UÙ‹.ª}‘ÿœ•bæa°Þt%Q!-4î^,Ta ¾–&1nÍXF‚¾Õluñ¦ß¡”›ÕL)”ƒFYå™®*cÏÀer>am‘åE–ª,36Æ-¤qC@ë…†FiƶIíT$PF£ÌqB,¢m—'Iœ•P ªüÑFÇ Jž£ÌZÝpä ¿^"ÇBƒ16nIy;$eø-HyBRFõǾ•ê``à¡Ìa5Ô"‚è5…aŸa‹ú ½×C¨é†ý h:c³°(æTTq9jVæ‘ʾÌöê%/«8ˈ; ªÑ–Üöz[œâ:ÜH›?_xZ›s‚qÁ]@£Gš~1)—! z36AçÛZK£‡8ÓF™ƒI:õ¥6Ü÷$v(T¤áMbr™Ä^âm™×F†Ây§û !ø"{5éÜ)EoÌOyXš:”•1déÍ›oÇ¢MWYêd›¨ýf^D½’:¦L¹÷dÑ“‰Š™l‹þÏ@&¤ënÃl€Ð\¾ª· ÈUš¥o*Q±Ê†  sM绢—oZyæ#BKŠí–:ß2u<š¬ÑŸ:?Dïè J/{˳²RY•óS’—F¶Œ"ý§Ïƒ…]¢ò£Š·y¥!‚\âÎí7Úa¢õ@Óû‘«U;AV†}²â"2{VÃz_•±I6 ?a¡ÅÒÊêâЖÏ'ùQÿbD&½6i`÷aÃNfM ¼§ûTÅ…ö*b$È"姻ݩؿ¤ç¿jDOw{•Å:11øk¶ñév«¥žæI’¿àŒ›lc‚²d#­{ÔF›Ðc²AC$tQ²QÛËÏ:.õ@dZÕmBó;´ë+'Ž€a—€ð'öÁ$ж¼HU¶¨ì@ÚBDË·E¬³¡þ¹£%Äü¤l~²þR1ôà¨^’ØÔ‚FÿÈ[ØøØéƱˆ«_ ÿþ*Î^Ç-Ä$p$4·ô_êz|ì~‡äÿ%›í`CC@SÌgº(Ó¸z؈iêØo±«qÿ÷N(`ã>dC¹ŠlYÝû©<ê¹p¸ê.üXøær(C/Ìë¤R©®^ó½·’ûÏ·(rrÅæ§'DÁw¼ ÑÍGtC)ti—͵RÐU)YWïûPlý²š„þ]J •p^*×1ù"þ¢ªø‹öÖûâp^ï«£ó/±Êv6ššµÕ™‡H-Eˆý {x‰ã^”Xoè6;Àí Š»E’Ú4m:'ãÃÛwqUVª*-‡u­Âfët›|LÁ•0Áð>†¢B—ñþ¤’Æ9œÁ·ø°|#1Éî´}ØêJYiäfè9ÎÉI7–óu·»sh³;è˜ñÉ髈ç÷ ?3~¦5ýbÓ·1t$QxWöC;¥Ÿ3þÇ¯Šˆ2z¯ø"?eûUñùšjŒ£LsÞBÇM¯ÓT«¬tÜ“G²Ÿ+3w¬[Vdø8úèDŠd–Û:ÔåN%;ËåÈ*Vï´,‘a€Æìhtî0°8·þëÿÝ "èÈ1º¹¬.#)\bX(aÜ»R˜½?AN„_[‘´¹ {¯Y™ÿ&<§NËbá¬,†xºY½!9 ÷G8õSŒc&‘´kÌý&„ª †Xý§(@SñÎùël!6j:æ!êßl QÃsüÛÜ­e±ë)$©,DO#@· I¸Àæ$`s’-¡Lx¡ÌŽo-I×0’þ¥‡ x\z˜)ÊVçk˜ÍÙµDÝÒó vU^x+š|Â[kd30³ÖZåðA¥qòîO¶=i[ÜíÂ-ìItØcå\£|ª°£ÅßûåõË'ð„à¦}«ôÞ›ÍcÿoUA˜"‘æÜ•dóÜaá-ˆ¢ ^2mÀ2"ä³[öÛ sùà¤Ç50?9O%‰ó™ÇÄ!"ˆÛö+• g§3)hìŠ<­Ž ™,…@öЈ©Þ34ÜåÀÏZÐx“œ³»±pÍ.²ñË#,yx~…C~Ža=õV¿-õþ÷·À.¼Q©ËÊ[¼—SÓÕ›Ãã47Å‚ædþüL:aýýÔY9 °ÎI€Ž5¾ÚÂí»nh…(>h–eˆÆ$ ½¶eú°Ý~ÐõÞ<þaÀ…"¸¡›Þa¾OA/ÌîõA’Êßúë‹Çò”kQ•cÑ%ž;±Ìj‰këƒq ö>6…þ‡¿ÐÿNô·eÁãYqë&pâä¨1m{¸c2ì?ùú‘Êñq™›Ì±%ópħ—™i:ÕHˆÃJ£9°§­S¢|i ±ÃnÆB´¹¥ÿ¼ÖçupPéé9¯‰ö;ÜŒqÑ¢p§Î7G ô »ïë8kãŒÿ¦©æR«÷ ä b¸£ AWÊÌö;5‡ ä.£B0ÄJ 1 AJ¡oQbàJ€Æ)ËtâºW†I½,8:Ý>„»«m~ï||/½¯ëÊ]²¡?åÈ××Ú;3/*Ù*®^myþ~$þj«Ä62¨Q;ýãùœ&ð¾è*=äGÛ‡ ôÈTt褮;»šh°ñ×H¸áVà;n“tUš1¾‡*—LäùøêQ³ˆÝ‰5† m]ër29ðÃGﵑ>ÿý{oUßI¶·œ^òòÕf!uøYáOº˜H°¤0þÖ¸ Ã%°Œîú9÷xþô?´Ž endstream endobj 5206 0 obj << /Type /ObjStm /N 100 /First 1028 /Length 2855 /Filter /FlateDecode >> stream xÚ½[M·½ï¯à1¹pX¬â ð”HAÖ!‰ ƒc/#Æ®!K€óïóª§_O|H÷á4 ¬8ÓœÇ×ÅzÅ*6»H©!…"¥QõF¹oŒ ££Qq]³7$ÔZ½‘COþ«ªa¨y¤ºô.ArÊhU‡\úÜÚòƒ€çãÔ¤-WqAúrµIÈi¹ÚrÈ¢N£iÈyAn²%ñV ¹¨aŒVÁözµ…ܯWqc¹—†[H¼HOAóB¹KP]®öÔ®W5h½^µ ízµíµaŒ^ƒ¥ëÕLSô,/¶è#˜ŽÖHÁ®†ìj©‘ƒµëU ve5`°´˜x,Æè|e5@È®¿Åm]Y9ÀÂ*'ü¶;çì·:£™¥“fÿ.….yiµÐs)Þê¡kÇ}ä4BÇ_|'èW‹yKBo¸´0§#‹·0©©øhba¸!Ð*˜hÞªaXñ1¤…Qú‚ÒÃhâc ËèÅÇÀ@ctG¨$' n’òõº¢©Ý²;<›ÅýÈœP†û¤ÖQ†ÿ¤!>T†I2+ÃD– ]:(F3ƒMŽí¬a<0¥/FÃ!N¤—?^þtùú½,.o¿ÿÞcôèóÅW6q‘W“˜JE¿/ëWáòm¸üáùÝs¸|~÷ówÿ|ŒZ¾øâÿþZ[4¸²Z‹ŒG4L„–SË;ÚL9ha/v˜³­zœi1õ¾CbL$Ñ`ˆ"7Ã""À1 ÄÕ‰,FƒiëÆÂ,ä¦@œšÇÂ,Òͦ]ÕÇ,$MdA}E±èkç1‹<Ó¥EAÜØXÀ9S‰-úD‰ A7‰¼3ÉKlÑû„š-÷F -BMy"‹ž£a•ÚXŒØ_À"Ïœ‘\£a‰…:cEº`Ú£/Ìš5Š´hŠ”âðÿ´D ;—\-6Û|düEzÏ+î9s«±!Eaä„ ¡ß³H¬«)òœˆD”úÈ­`:vVt+w˜Ž•gãˆBÉ QrHØ7KTõgÇí– ‰U‡$ú=ür%±ùå Ii~vƒÔëbfÇ|$g…@1v¢U™Ibdž²‘°S”cmââa Óü~ã€E$·˜;J¨‰Q£#ÍöE„"ÕQbìLGi LJ’Ø<óˆD—ù©æFbM5IL–"E…W€MB© lÔОMþo5ßÁ)H‚NqDbf¸Úœb%a‚y/°ÄÔù°5¢͈ U}I=J†—H‰»$f.V4vßeé .Ä?ÅV%¸íe5b6•ê¹”mŽ)XO5ËNÞoi~Þ/K-´-æR=–¶½âcæBŠ´Ø²Uã‰LPä76HÌÇÎBZï×l$8G$$Õù‘‚,Ö…ô$Æü•t#±®¤Ç,fn˜˜Ç¥zó 3°x‡™e±¡÷íXä63hv_76%iô­âcÃî¯L½íSˆ)жW êTšeÙÇ¢JUüë=•Þ¡ü€ô— #&y‚uÝö×óß°ø&¼/9e`¿ —¿þíïÁ“«¡AõùÁÓçŸ~úÀίŸŸ>-¨¯±^Úh×_½FZá³pý êZ]?ÀmýyÔÚÍU¼Žôº\¹þà—7Ÿ¿ÿö÷.o¾y.ïý>üÖTo@ÿáò58<>}úÅõ¸IÞºE~yþüñûGÿkùî/?üøÝWÏ¿†Åˆ–iÃÝôÍwñkø”¯— ø/ŒœÏò¼hmt6ÆÚöa#³¡l…Ê‘…ÈBäLäLäLäLäLäLäLäLäLäLd%²Y‰¬DV"+‘•ÈJd%²ÙˆlD6"‘ÈFd#²ÙˆlD.D.D.D.D.D.D.D.D.D.D®D®D®D®D®D®D®D®D®D®DnDnDnDnDnDnDnDnDnDnDîDîDîDîDîDîDîDîDîDîDDDDDDDDDD+²RM^®Ì†²al6*Α©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥•TjP©A¥4jШA£4jШA£4jШA£4jШA£4jШA£4jШA£´Uƒæ$U^'LKíÈì|ƒ Æ„ê$tRf'^eÀòµŒèÑ]X@äl‡ÄÌD[üa(( òèæ[# ^QK‹EvKÀ‰å— ]vÖɹ×ò0ì¬6r@Œ Ÿð§~è*—Ø/**¡Röö‹fîOˆo›BÄÕŸBŠïØHôÃjUiz;g‘^á!Ê7¯@´÷Lrêt¬ ÊCÜ$Š2¨öâkÌäà¸@C!X|OÛŸÒbÂDÄ–Ëž%òX48b÷ýˇ^ë%¶º·Íßï@¢j¬2I¢iìr’[(ÔÏ”­|3yˆrÈ3Ÿ?¡ ‹‹ëFá¢ë±!Sßa6üÄå6U`q=y:VÛt‘˜kŠu)G2²Šb+åÞþúÔ@á›3¶‘È ¦x‡©“†ÈN¾mHChCPìg«5lÃÚ¸eV(Ëá {qⳑ°fú™…u6Ô²ž¶~e÷ÖŸ„õv[DKÊÈòvŽqŒ4ß' dªŸ!F¾ëtm$¤žý¤8±æ¹¾¿=|§Ÿ$Z2êÉò°ô­e²¨5fÝÙGó+3…DoIŒÌZÏUI0©9&ÑæB!ÔÀ›!,cµg‰cõËœü˜ÛV™¦ýG³½Î¯}ÌûË×X…r9ê^®mu~å³qX+ŸCsë¯ÜaY»±@Ýåo¶²˜zîN¡a!ß|"Õhé¬òk UþlÚ·ª©?þf6N^ÀühoÛ2Ç\å|nè¯XøÆ%WQm ÙÙ©•¿cᯃmRz,­µM²n²XCÅ!‰¹*]Ë?Çî¯e±üQ«È0ÎJ2× éÈý!-¡†Bä¤c¡RÆrFÀgúK?þ–]Î(ÊY$­¬,ÇÇ‹;&’P›µsíà‡ÇýGF̌갓ŽQ ~v¼ú[fkr—!Ô®ùܰíç¶Í·ÍH!¬·rÎZÎ’`vwHbò^*ZúR¬>^`ŠÉkù:!’Ô[ØÎ5Ç!»±Í_G³¥¸¬`×e4Ÿ˜³0z…çXrÛ/òCº)é©9–ŠXUn³‘ýÀQ9‰]"]_=ÚHH9ñ%A®äd±®_‡$æÆÌ•„ ¨ÁÃ#´+ú¢-Ýÿ= 8 endstream endobj 5443 0 obj << /Type /ObjStm /N 100 /First 1015 /Length 2094 /Filter /FlateDecode >> stream xÚ½›K‹7†÷ý+´œlôé\t$ $˜ d5ÉÎÌ"BÀÁ³È¿Ï{T¥*o\ú`T †V».zêèܥΜ[H!³¥@¢> ÀV|ÀAù@BÞ.i°íRu»d¡IöA ”¬ú¨âD/5¼²?XðríW ²þhá@¥?[$PÅÍià”ÄG90‰ÏU,0oWK`Ý®ÖÀY s”Ú~µ¦ÀTÅ4ñû*I¸JÞ®jéóÖd£ªÄû¨Ù¨j *ÌQÑŸm)(õ«‚r¶ALÚŸm4oW5¨mWsЪYÐ֥ѴQ5ÜBÍçhøÜ' «¡]äþXÆcáõ…ýÿüŠ•Á¯j­ß—ƒ÷û,˜/(F%˜´~_ –9¿`Ô°|S ¥`¥ùlDÁû[ˆCIÙßB áS1ÒP„ÕG9ÍÅGJÞž-¡Î>ª¡ÔŒïj¡lTœB%ö'˜BuµÂˆC•æïÔ’õ‘†jý‹ðªZú÷âcj'À Z²þD ZÅDÛd…[šZÞD×ò&D­øêc•C«.gWBJ} }å)õ51 û"Џúêvô7Aß1‘4Wê~ƒBƒSõu… §®õ¢ÐaÜáÓ*”˜º†‰b6’íÌÍï7`¶MõE1Û¦û¢˜ºš‰67œ>EÆlPEÆl›þKÆl›HÆl°ÿ¶ŒÙ`~þÞŒÙ`.-,$A!«FЇþ^̆…±—7o^?üõÇ»ðøêýû_ßÿï§ý÷ï~{ÿûËãëþòîÏ· ®!ý÷ñïÇ·oÞRÿååñŸw? o9Ilþ¾Æ±á‹™S¬ÍíW" ᾯ›7áñ}xüëÃÂãŸáüøë»Ãÿ"|ùå þýÿT[LÐRª)6Ø.ä›ûFþfk%ávQ=%Ãb·V覻jL¤Ÿ§hé†åØ!Žõ˜A¬u¦‘ÜL A“ŠÅ„ ¿‘ó|žBí5 Z†÷¬sˆ¥ª‰Œ"¶rŠ‚ $sеº9(|µòIA-*·ÏSP©+=(’êœbéŠ kïmM‘4iÒˆTÉJ´ðEËë4•èÙßÁÀ½$™B ß_(‰ÊQ·PßD 2gèdñÔë‘/ts%Dƒ(Pƒ …rx¶=…È –tâı3†²Ðu+#n÷ x‡@0ã9-\ 㘽´Ë½DIë³ã'ªrP\„$b7èå hP TIOP,µQèD>e¡ðR^xO)P¤-”EÁlˆb¦ZaAP¨—áÈm”/„ C3†|ƒF †=ŒNêú z0ì¹Õ”êúÔj@(!’Ó‹Á+óm*QÒ¹¨@a"ö„V®”„0JáÓ4¶@>Gh ´`qÛ‰›‡„',ce…Ÿ"9ÕR½Ï[ŸPË¥U`ñNê'jéÍyÆG¬ŒâcâS-=Š·ò„ZZº!lÀ03ŠñÃ["Û-tÅMnp—bÐ)„­ï ˆ½è˜2”ºEÃ^‰Î!Vz*fßE9!Ä·}Ú‚d¥u((R=)†³šRÜâ­…·šË3+½U…£ÈŸˆÂ{¼-?CQnð鹨Ñ1Êı¿Vßjï#«™SÈ iÍNqØé”b©^ CÃP§+÷a¨ƒbêœ"ß`¨ƒb7Ô9D¹ÁPÄ0Ô)Å5±6”ŸL§¡¦k*WºÞPŠa¨s [o¨ƒâ0Ô)E¥õ†zP CR¬l¶C=(†¡Î)d½¡»¡Î!l½¡ÃPçõC-™l> Uk5_¸ ázƒ¡ŠÝPŸ h7êN1 uN¡éC»¡>A¡7ê Ø uNa¼¾—§9÷&£2T³xuliD•á±o\O!ª­ß¸£‰5ƒ”nXÔÞr.GVäùWGÑîØT!ˆ"MWYT¯´ 3Z›ƒb/Õ§l7ìûþàœbåVéØ<(z[qΰt§tï+ ~(Œí Š¥;¥PM¢O$áäÜuÌ($Ýá5¿|¯T 1Ýí%âê ÍÒv"ºµ“ao§M!¨¦õý´A1ŽûL)8Ùòó>ÄÞúŸC,íeí½ÿƒBÐ=͘S¬4Ó C('4ÓnÎ!–ú èfjvRì÷¹¤¥§ÀÌO.÷áÖ‰Dÿ› ¥ ŠË 7´½ÅÏ«öyOn’yñ•(|¶œ^‰…ÿ-D![¦EùêD¯lßÁMzVCÑ’ŸË«ˆð¾•ÕöZCH¸ÍMcÈ¢$?ÀñÚ«æn{Pd(çåñŽ•#‰lˆÇV¾¨y1rqÈ}0ü üÍ»9 endstream endobj 5745 0 obj << /Length 2495 /Filter /FlateDecode >> stream xÚíÛŽã¶õ}¿Â)ÐáŠwò5M6H²Hí<H‹Bck<ÊÈHšIú÷¥mY#Ê”DYâÉÎî`ÖHäá¹ßx-Ö‹hñûooß½ÿ ðB#-ˆXÜÞ/p!ÊÄBbŒÕ‹ÛÕâ×o~üå»ïÿõ—ÿÜþôþ—‡©Hjm–:>F¥><ô.ªVÿÒÆÓ7çÇoˆ4¤§—Öy¼r,ÍOó«Zù¯ÕºæR‹ü°üéç?»Þx‘!­ðù=Ž{"æáH.n0A®áIöÁà!6<+-~½!<ú†Ö!,Àª3L «è ȰÂ} Q†”ÐW‚F^@£}›`ó0£S7!‚ nÂ&S_H€M.„pžMŒhÄ13?0Ò\T»)p$o/ uø“P¡z’ÖH£1(>½ò—Ïqö”¥ÄŒ€Q2ùäJœ<¢½'Iª*UÌœG·—ˆ’úÿŽxtzÈZ•"ŠÕù™t{oÖÚ.”obô´M«*†„j®Š]V¯¹ª–d²÷è˜*$XÇÑÀnž]°„Õ 8•† ö@€ôEÓ¬BÍ¢l;ü°tì|ü5 õdŒYk!Ã6­ókŒ7ÁLdC¸H/‚%Cë‡%yÒåçð©õžÙzòj¯ êÛ›Oz·àÁ· $ø,<¢DøSH| ÀQý\;¥ÅXr²bZT`垘?‰ëð À•(À&˜øË„œ„0@^&àJ€p–Aðr+fötˆúÅlžœ‘<ߘW¹Ä­ ¸rl Z:Äd\õ˜|úçßÿöó2{*L@7)­Ók„ùét †@¡¨Ä9PÖæ˜2OÖÁly¿+èó¯5cË/ÝÕˆLÌY³,³x¿Ïþ,¾*’@Äq¯]v±·ìæå´U¿Ø$e|¿Ë]^—DTŒ)^TKÝìãåc¼vDª>óy¹»Øøq˜;mCj[8)¹ˆqD´©DKÈ&’B¤a@b0¨]°®ó4ÛLA2ZyåÑ-«r´M~wy¬Õ+#L± þ0¼ˆîÃnU ¤XÆ™+|¼(6¹@§Åà…â,K‹ò%(à6|E¤q¿Û—³”@›1M ÑU%éøÞÛ¡"SÅc6ýÓby³Ù­’¬è*~ñQˆã#·†Ðén;|8Nq€!O–Å,EÙ„jÁ $ü·I;/%Q|”WÓ¦«½žUÔœ+5Õ¢}ûÿ¸‡â רœÍ­h°xÁ‚[D„“Ÿ»d.sÍq1Ôƒ1QHÈ〆Ʃ_¸ï²‡Ž>r×j/Ïv^1˜“T•Þ‰ÎIÉôdubøIz§ß“‹<AS¶E›$Þ¢b &îï¿Ô¨: ²é“ôc¯l@"Ìéy“e/€š*¨;²óÞ·¸Gi­é.˜ah7I&{Mž€4WÑèqÙm矾 WÎä×4ú`ÑèÃAæZÏúÒ™¿?íâpÕA¡!ªƒ µ öçw‚7«ƒgÁÞf›WÙÈÿ’¯yªA¾t{÷&€¯MÏÔ3ŽzþF½ÑÔó³Ëå™ZćZòŽ7[R»y|SºŸË%F_¥[‘nwWtxëŒ Êð˜œÅP/ p+RHUSËj‡ûIØLÊH¾ÒÆú¯Ç*áH#ÞNWéþ)Îã,s&,ªðø­yé³jÿ>v7Œî$óL3=1ÄÔ ˆ 5X\Á ãÚu'ßùv à~:è`籈œ,PÅÂ{¯~{r ˜é ö¬]TðÄ©1ÿe0‘"t–ñeõdßþŒpÕ½h©þà ‹`&ÿrFCWúš<˜¯Œ)ÿBnwÊG§Ù÷ÝÖý­ùlè6ã[wê”îÔc;¶„ücW#ä> stream xÚ½›A·…ïû+xL.=,’U$Á€mAI€l’:(ò"0bìÒ pþ}^±ûõ¬™žgÅ‚3Í.¾&ë+ÙÍÚC š-ÉÙ ’™RȽ{Á¿/”`ãƒi¨½zÁB_/Õ ×QjA¤·;”º›Lø®ÂxF«±è Ö¤f¿£æ ·¡TBŠëU IÖ«RZ¯ÖJöZH°6jwµ®²ÅZt- OÐǽ ǽ-‡œÆ½­„œ³zIC.ë½Ðãj ÐãJ[ øÑFë¡ÄèÏÝc(2®v %{{ eUÕs(:,÷ð¸Þn×PÚx¢n¡¬ª¼çVUÿ  mŒŽvËÅ+—êÿüa,/Á|ÍÍKÑÐu(a0bT/i0ÉÕK,­÷Ö`£r‰-ú饎ásÍEb°6®Šëã^I¡Æq¯äPÓhWJ¨y´+ñ2Ú uU%5ÔU•´P¡ mHmU•bh’½µ$¡% (¨×‡eTiƒ§µ”ÐcõçH«âÜNZvV¿†àxIÄÛÉð¼”Fø©¤<*À)%é°Ÿ—dêÏÁ‘T›?FQRxqÁ HŽ:nCk®êÅ6|Ûo+¨›‹úmÅëê¨P¼n]+xݶVp$zó'Sg2½exú‚ÖÐŽ÷B¡ —\:î?:ꢵ²ŠT´VºŒºhMãx Ek*Þeh Èõ~p¼‡Ñšj“»W¯îNïþûë}8}ûððøtwúñ뿞Æç¿þüðŸ»ÓwŸºÿü>">ħ?Ÿþrúþ½Œw§î?=…÷À~)JÖ¥Ãm€ãRJv¬)õ¾ ¯^…Óáô§Çwáô:üá×ÿ¾_Dþ¾ùæD´´øˆî"zYLJ"òD½.ª(°-w,Âæ‰€;-Ï:h-©ê±ë5¤º$+g"®è†¨5”º¢ö®ÁÊȯQ1³'‡È³žhe‰zKH™¨¢Õ%žEhÌK¯×tEšI‡¥E1%å„Ö ö8‘ËŠÞn(¨¢ƒQkÇ*’Ö‰©žûSæ’z¹BE©"¥%µs_`¢]’ô+Tô™ÎY  Ê®B»·~¬"Ç4sD»‘hd¨°sÜDIk/´8©b œÇlþ,–@FG¦pÉH ³D¨°—ê Š(gð$nר˜-í-XxœU(|«Ÿ+TÌœD“’Â]EÅ$Ү鋩ñ»"ÏÃÔ•0™tä¥X-¾ØH½A…¾Pž×8±ž¢¬€H¯Ð燊]üEèüؽ‹Øb÷±ˆ¹IÖ»w[ì¾BÅLJ‘Yø¾Å®™+sjŽ•Ù=ë ´Þû5®9Ó-˜daê‚ ä™è¨Bª×òÿWQË "El‹±CÈÏo0m*8]¡¢Þ /̳›sW`\¤É%·ð EZQΩwrp.ä=?óÞEl™÷±›ŸxSÄ»DÔ~ƒØMŒÝG"šÜ tSC÷‘ˆn7ˆÜ±EîC SGÃßCLC† 0ßîNŠìª^ÊºÓ Ö¥ +€^ôLGÆôQëK©€S¨o b¦¯Áà*Í7ß¡âÒ$–ú ÂU0\©H3'ô}D¨‚#r¨¢Ä¬MŰUh¹AÄ¢ F¬#9æ„,ª`È:T‘û bUl1ëP„Μѱ$Ô„ìÒ·ò çD¼gVÔ {&:s-Vˆõ³††\3•c6³#nûË*Šà‚ðHFð+BŠØ6ŽUÌÜÚäæÑ®blj˜»±¹íºï¶]÷cS76·]÷]Ŷë~¬¢Ïßu§îºŠ˜º¯É¹TºG-9Ï¥˜W.«ÐÌ¥» Î¥Ç*¦î) ‚dbXšyßY-Þ'ùÂ>Zš,dñ7¼jKGÌ(þêv¼F½ôްÌÏó0{®{y[ž'ªè‰|i1vƒ< «ožƒq×ÃÄÑëö!à ¼¢ãhœ€‰ÓÛÏŸ~¼‡öpzûúM8½»ÿí)|ø}w¼…È»Ó÷héþá鋟pR¿ßŸúËã×ÏŸîÇwyýîo÷?ýüñ»ÇßÂè(óÃZÝCÃÛŸq·W¬kÅÑÉ_Ðð8'åzÆ)©­ÐXè[!G„…ÄBf¡° ,Ðr¦åLË…u ëÖ){¶®l]Ùº²ueëÊÖ•–•–•–•–•–––––––––––+-WZ®´\i¹Òr¥åJË•–+-WZn´Üh¹Ñr£åFË–-7Zn´Üh¹Ór§åNË–;-wZî´Üi¹Órß,kŒ, ‰…ÌBaAY0* ZZZZZZZZZZZN´œh9Ñr¢åDˉ–I“’&%MJš”4)iRÒ¤¤II“’&%MJš”4ù ɵPh¹Ðr¡åBË…–É ’A%ƒJ• *T2¨dPÉ ’A%ƒJ• *T2¨dPÉ ’A%ƒJ• *T2¨dPÉ ’A%ƒJ• *T2¨dPÉ ’A%ƒJ• *T2¨dPÉ ’A%ƒJ• *T2¨dPÉ ’A%ƒJ• *T2hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF dº‚-“A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF+¬d°’ÁJ+¬d°’ÁJ+¬d°’ÁJëÆà‡9ÙµxNB·#»öì†Ô9ô‘¿{™ýä]„oÏø‘|Šðe¨\ZÎáo60~»•EÙ±ˆ‰›vâÇÌŠžETY"@8!mâêSü˜Ù³á€/Äh׈˜9=c4T‘šÓ5*&îÙ%ŠtöŠ”ãÒÜU½bæ®]Êyi sW¡q©í@lâæzÒ¼Ôú¬/*TøŒUÌDÔ‰™JÈvÛÙ/SÖ¥ùïÁDÌ\ùñË–Î~™T—jWô„œýóØuÊ endstream endobj 5748 0 obj << /Type /ObjStm /N 100 /First 1015 /Length 1979 /Filter /FlateDecode >> stream xÚ½šM‹$džïó+òh_²3¾òlƒmðÉÒmñÁ–! »B¬ú÷z#»¢fN ÎX–œîÊŠ§"#ÞŒÈjÓÊ©$Ó*‰D} ‰k÷%-샚LªZªm^ÜS/ó⑆øÅø˜Jó«%âR_0b¿¥_ßpsm>ÿQ-s†%j:gÔD½¹Öš3zbÒ9c$ææ3zI¬ä3:%†qØèì´>£KâN>£ã †Î–¤ô9£&ar½%›3z¿£‘¤’Ï%I3Ÿ1(Iïnc°;Âg IJæ3†&å>gÀMÊsFMjæ6FKpÍœÑ猑p-fXÁ7ň’1Û FøSløgr7„¦Un>²d­áöÆ1Âb”û·=Uªä£‘*È N¬Ê~?¢TqØ€ëj$F’j¿« ¹5²ÔÊðûÁMÅ­QKMª“Â9MïsGjuÎ…KZ›s™Rë£ÁÑËý[Iîßj‚1ŸË–ºÎ;sMݪ?¡×á~aDU·†ô1¿ÅÅ£Ìo…Ò`!ØÀ%Cª?¥HîXŒ4á1üÎbi´é ÄìècŽ¢³ø"¢• ù*™ Ù—ÉÔÃW}L¿ÅÌÑI¥Î;("‘äF•TÆ\+E cì©bâ¹ k$QH¤sEÖ¨²FôÝ×Ó`° °†¨CâÌ;¬ñ}Im¸í\qƒ5Öû°Æ6 Ö¸NDq¿›€5¾‡ì”ù˜¸# 3¿|øðrûþ·_>¥Û·Ÿ?ùúrûîÿù:ÿþÇÏŸÿûrûÓ—_üôëÇi(ÿºýíö÷ÛŸ?ÒüãåöÏO?|MÙzž‰Òkf(7Ëyd£f5ÁuߦÒí»tûë—¦Û_Ò~ù÷OŸ2œðÇôÍ7/ø÷ÿSŒÌžEM³ Ò±°™°ÚÖ5#÷Pˆn¤°‘ÉÝ­æâi³¤°±‘¢\ì/†åᵤ¨¶‘bô< ãAÁ èÍ’‚‹ì£`…kjPˆå.Oø‚‰7RHÏßøÂ,7—µ%龜L ŠÈÔ5…^©•³¸|E¦6ÎÚBdjPD¦®)Ú™‘©K ½"SŠ3S—U/ÈÔ ˆL]SØ™‘©KŠf䈕¬åÍnVK¶ÞQŒ r$("G–.È‘ ˆYSÈ9rPœ9²¦¨äHPDŽ,)Æ»YPDެ)Ú»YPÄn¶¦èd*|¢ÞD¦jÏUè…”rA¦Edê’‚Ê™‘©KŠ­Õo¬£ÿ@‡x®ˆÔŒÖþÑ>r…vE¬È’¢]±"A+²¤èíí<(Ní\QH± ´3(B;—¼S/X3£S7BÍMhÓ•2yÏŽÏk±½Ùع§ªfòã° ¨  ñ ÅÎ*§‚¢¼ñE§\ü¨oM±óäÝO9)¸”<ê¾€ÈlŒÎ"yžÒ—<÷ÖwvÄ€²É #üŒ¨z# *T¿ƒÞK;CÁƒ"|IѯPð _QlU­SÁƒ"|IÁ;\á‹*IA£~yè…öšëQtŽýrqBr±„€Æî—‹ ¹x‚¢í—‹“â‹5ÅÖF€%÷þÆ ~bç¹¢¼qêÿ†ês›}ã¾ÎUr}¥è%×¶†òÍÊ(´°µA0½1(yÜ5 0üN±yfÚB…€žRÑ Ù£ãgÕ 2$("CV\é‚ Š#CÖ|A†DdÈŠB¶ži! a@£¨þ¹`'„I®ªï¦›hd¼B0š€V×›£¢ç^߸BA‚ç Š­aÑs{ã DCã'\±7*¢²TÅPY Öeëõ½êÍŠÈìã•¡£Òc{‚bk¯ùqPD~¬ özGÑ«h¤¿$)lw­AkŒÖ\ü²€B«HZЪ3=zZö‡æIqÍ·¶?4O†Í%ÅÎ+B3("4W[‹›8³”ÄíìAd C~ô;ƒÍZqoBNŠ£ YSlíM+(¢ÄZRì=Q;J¬“â(±ÖWô¦Ò8kiGšJ÷þøQYarAšѦkŠ+*¬ 8Òt ±U±¢Â:!Ž kM±µ)<*¬“⨰–{%K4³K n?Æ‚`<ÑüÕ£_$í<Ý4ä&jý¡A­:­lë \ˆU ‚‚ò„¶4Õ'0A,…—¬õ‚P@ÑMö&¬g«íÑR\A!Ð'ÿUnP À²‡»×Ö¢&b2("*—;Ol","s ±µ²ŠÈ<(ÎØ\QÈÖÉa#'ưÎbÆ7òbîE†<Ú¾v¾‰—R(ûïÍãåƒw@ã|/èP¯¡z}AÇÃ; {¯2ó(vOŠ£Ø]Sô ŠÝ“â(v—{_ÅnPD±»¦à D Jè' G™É½A¾´@z…#ªeÿUùéˆfÙ´¿Ó ¨úOŠ£ê‚Âö¬ž÷ƒÕ%ï|™«'Äq°º¦Øzšx¼z8)ÒheÁ&Ø:ä<²q8“GwÝß ž÷]!õý­àÉp´‚K ¦¾¿ Š£\ClýÝOlbêÛÆë†¢Óø½^ׯv0Ķd¸B·ï §l/öJU¨öÁ¢½bxªß¿½ù endstream endobj 5749 0 obj << /Type /ObjStm /N 100 /First 1015 /Length 2086 /Filter /FlateDecode >> stream xÚ½šM«%·†÷÷Wh™ltT’J0œ’@V±wC¶3„˜1f²ð¿Ï[êV÷ݸuêà{º¥zºTŸ­Î¹pH!ç"„| ñ9HS”¹ú †Rú=jË>h¡±aPS Ô§U D­¼aÄXR|ñŠÅµøZUåV|”Un>* ò1ªZ_¸Z`Ú®¶À¥ÀÒ¯Îla Úâ2L×Îkx‚Êð•• ÔåZ "}e³ º]mAr_¹¥ U£  ‚ŒÆPDs4 ºi ‚”KŸ‘ƒâ²JÐ,þ¸YKé3,¨¥>£m‚%7Asá'È( "Õà %b¤þ_Þÿ«Ògà êÄ›‘RŸa¡ö-®>ƒR(š|Q(Y]1¶¯ú ’PŒ|i(MûŒjª}F •ÉeP *òv⣪Oƒá¤P«úzL¡šd0<®¯ÇŒÔ|¤Á…Q¦ÛÕ,«KƒeY1—†-Ã"}½¬eçƒù´d>joLØó" H_Ênº]ÕУZÝ®–Ðl» »J‰\œ†”]J‰Íª›¯²?I)g† e7꾂‚“‘«Ba©uv(Žð³ ƒ–ˆx»ÒHr_ Ò —† D¥?.Õ~Cvo1SH3qêÏ<¬Õ!Ù\ßÒX· ó¶¤qÙn€4¶íHãM…ð’M‡p^Wâ‡o~ûåSx|ûùó—¯oïÿ÷Ó×þ÷ßÿóù¿o?}ùõ_Ÿ~ý˜Ò?}üíñçÔÿx{üãÓÏ_ÃGf‰æ>§a¨¬)º/fŠ™qÓ·áÇðø><þòå‡/áñ]øÃ/?þûS”J ß|ó†kôÎÜb‚5³¤?BŒˆù B×!P…hh™©=Ž!©Æ,öóÇ׃SŽí *²p/’Ň: 8G«eNÁK)Ø¢•wªPP ÈÎ)êJ µXß©¢äXùUT[QP{PXŽbæm¡‹|‘}`“â±.—HˆÆn3м"·H¾ƒ¢ÂK‘øŸ X¸#T4Rò G¢x2œ0Ö$…Ô‹•ªF‡€pAb‹7ÑïC´²2b¹›J‹âÆ‘°<‚©¶z±TB k°oC†ƒ VCÉ‹Òá˸¹2xkóý=) (ž`X™G}JàƒaØÄœBÖ§±A±§±' nˆ„ÄÁ¨nF¤ œ£Ö+›(7 ñú戤5—WÅ0L¦È^nn†)UùŠ¡¬/ð¨Ò+»æ»BÜ^´Ð9¢TFÇ„0…ÞC«@#èª2•ë‹öݦKC纠 °Áþš× u!ÆQ¡tžÍûbP˜÷• (WµMºÂ½´ShôqŽ”óïSd[ GöF^êyD `%î¥W œ¦E|BG+÷ Øo(ÂÝ”õÊ(ÚBˆTQдP’gÔ 9ú[ˆÒÝôU’=Q ËEöÊè…N»ÓJ¬ébCóRTX…·Ýƒb7Í9EYé ;RËA¡ zB²RŠÖCÒ© íž2§(|ƒ]À2ÕÓ.P„Ö¤Wév1(†]L)¬Ý`;Åa3 Y´†] ŠaS ^Xÿ‹rôɹð¶#(ýÜJsåWÚ…Kïoqw Oç*OP,µ‹=¡{ZŸR¬µ‹Ä@§.ùƒýþ”b©]Œx‘(Ê/J…¼:^ Š/¦·Ä‹âˆ3Š{âÅ ñbJq‹]ˆE?48ìÂßö½Þ.Ű‹)Å-v±Sv1£¸Ç.Ű‹9ÅÂW*h…ø.²öÆyNqK6c¯µò™ÍÄk-~u6#›M)nÉfƒbd³ÅZ»Ùl§8²Ù”b¥](•ØOÞᡜ“{&›S0¯Ïdƒbd²9ÅÊ“2e§ºP?Z¦6§`Z¾u';)üÀHõŠ•YÖI"'…†RŸXø\aœ)¿SE³Øz Q¬4Nñ“…¢ yŽš3"ôU䤢¨éùÎÀi®!d}kx@ì­á‚,ÝPêqE¥ž â*V¬üìdtCšlƒØ»¡¹.)$ß`ƒb˜æ”¢ñ 9dPŒ2£àµºØÜTZ…¢øV? ~vtunHJëìÄ~d7gÈëˆý°l ±ò3e¦'‚'O˜Wf­<ïôà=p™C”•‡ê°Jl'„˜ä!t±ô3ÖÑ—ºKÔÚŽ¾M z€ö*ßØÛ A1Ú '(òò6è€ØÛ 9ÄRïØÛ ƒboƒ¦kdkƒˆ½ šC,uØfjå¤ð´ä U¬õ=…¹§ÔjG “™Y”ü´xe#G ã‚®tqC Û!ö6e ZoÈabÏas “’Ø èIlΰòËâ#‹ †=‹=AQnHcƒbOcSŠÅý`õÏDN[-Ï@Üp!9!dœçéÞÈõ™ÐÊš[½%†TA]aç·þû%Ň1ÄPÅ â]]ñˆëÀQ endstream endobj 6095 0 obj << /Length 2471 /Filter /FlateDecode >> stream xÚí]Ko7¾çWèØ ³|“×¢IÑz(|(Ðö Z²#TG’ôß—z/W|ìrɱÖ1rHh‡Cr8œùæ#YGÕèçw?Þ½ûð‰Ë‘FZ1º{áªB”‰‘Ä ªGw“ÑŸßQU}ÿ÷ݯ> \û©ù_$¹6‚ö?úå·Ÿ>þ±ûÙ»ê(ýÃ'Jk¿úà=‘æ?éá³§õl¹=H·! éJž„ÿplþ 5Zïäþùû®Ákšï>}‡uC#« ½W£g„YMD$þ|Oxõá!½òô’â}g8¡ïŒ”ï»(?ïoB‹âM˜õj›3–ÐÈ{L5bRš`¤9?¶¶ÉäÖì.1\¬ri„ô„3€FDЈ⠞«à  )™f› 1-lÛ$/?„Êò¶I¨è XD`ˆFÀœHYÊϺlY)€qÓ¬ü¸Ñ*%Ä ‰9¡ûÇW²ü Ó«-ÀŽ©Ûìnú ¼S£ñrõuŒÖ‹±#º– IÜjNk¥‚z:Ô¸_-v»Q ‰Ël·RD9 <(BêŠL¦óíx1Ý~^M²(‚«öŠX#2ÝÜç÷¸FRòN:à G6K‡Ì, Š;)@ƒ :x\m>{lB­©ê¤Ex‘:lâóýNô¼œ¹‰ù¬ê6<¼H£1[>ÌmM,— wœ}É_?æã–xŠ(>ÚNàóty? HµMÞHÅŽAØImd™n1ŠÁŸÉ0( ‘rZè|¶¹òa–ú¸2ß\t ŒÊù7NÇh Ýù±ÒCó¥á!¹ò§–þ§ok͵1«N3•ÑcŠÊ;Ù<ˆHô ‹ñv=}ÌãÌe¢3š®ÏÛéa8<Î ›x„ËNê„­ô(Ð¥Îzõ0›O}f$–´Ûª ÉãfÅjžmÉ;Ož3…Då 3Öãå¿»¹Èc–º½YZs`lÒ§„¯n†@ÂÎQ K çâÜÇ"-‚ãAñ(€_{-Î`r ¿¬‘!MÅÜë´ýôÓ†˜f^ÃÙÒ¨YEPCsþQÁ›°¶Fì¤Êø?1ðˆU+$•vzOœ¶W“eTá(Ðü1@ìÅ~™¬]É6ÿ$¼w‰6¥4/ÃØ×§…m9_¦h1/ÑÆ,2“‘ãÞ®‰«VC[ŸÝ/ËÕzácVˆ¾KL„!7bz­ÑÕ¯F‡÷æz@=$DOÔ}¯qÃa0#6\d}mI•ªK„x勊­5“+*¦U縩©eâÊn©ÁQ å ×ãÉl<¿ýEsî"íâsªÙ䟒k ßÔZ³°4ršøåô¡1ŽÒX4Ý ¡iä`½f¢v›Wñ.ìP÷¾‰9ŠBl’ Ø2gLcûœmR÷µIq!»¼ˆ“(IÅ£IB—<ŒóxI£A^X{Šãyüž’ƒ¥T6X{Ì(œk>-IVeÜ&€ŠÈ¾Íb¼‘æü~ÿ¸˜-‹ElD,Ü”¤¢ŒËäJsÖÓǧùjÛ -=›<vdÔü»1~{‚CÅG\š½E«óøù¥,bÉH‰ÀFJ¤JŠ”p1 öâX•×ùsœ-+*9Ø´@¡…`“¶&¨qlóÓ|1Ûlú¤=g-‰OõÖWëít¥uÙºuqj}3›<ç›^4†°+9u@†Ëp·{òŠˆí±ÐÒ$m¬¹,s¼®Ñw¢%œ¥ùŠà%Ë#|?¬ÄÜÓoݯ3¥)¢E¸sQÂÙt‹‹ÍÅ0Û3¹)±1Ê;—lG¹¦_G…4ÕWç‹…o À½‹v/•° ‡Ÿƒ¡T€€!ÈĉO¢ ¶D#ŽYó8®‚8Ä Tq àÌ’¤üÀ^øÌo·ÜÖ˜¦±Q~:,!NR Ž€B¬mB8ÄÙ_Ð… ’}*Ó—mý ÉF*ˆF8DÊq`C€Ê¢'B”¹§Ä¨$qt_Gæ‹ÏÅ*Áî[–•\ L_!îVHÑ+9fb¼å$­ã¸9Iÿ`±PÍs{H’“°”²Käb¡Ôëh^m¶Äk4 iSɾÖÓ×’&p= 4!\ÛÈ•‹xîë‘}rû°Ä[¾ðmå (_hÅ#çd¼ùÂ×ÜùÂyäMâøX}ÃWVYXæA«WÅ›ˆníß+ÞD8@JmÂSXx=U ‘Žˆ Èõ+fž'³`|Øtnoi©Õ9®ž‰Ð©’òqU†icýâtiM8QÆg25A²RˆË. H ¦¾µüÒEQ#e¸He—H¹¸6‚fdr’=­Hz"©ò¨ÐÉ? Œ°:a°ÊRh#¤ÉÙX§UL@¹.^E ‚ ·>m›œÈ$)¨Cl…œ]gOÓíªÔÑóh¥¿UÚß*í®´÷àÌò&´ÅoƒkLqÀ±X¥½<èR»«âFz+µßÞ0äR{ÖEÙ,µ‘ ‰Á{Ž?rž¤–¯%oä/,%?­¯Ï© ôÜ,žªçß,)'àÿ´|¦@xy~ÁÍfI´xß©LyLéûñ¾!mo”Iv8ÀÎ3; ¦¢¯%‡%)iR8óÍT›­@y¼¿Ò£¼íªí"ñMòi¸ “±±*øÿ"/·E6À(rˆþs!È7”O$î›À¢|ÑèæèAä6éA½¶ö8,Mbô·åG1‘\%Н ’F­&¼1Í ”‘”·^Hy‡òŠàU» a¸OªÏ¥¼=ÜÜÿ £›cPÕp9 Cgá÷L ŒNAÞd0¬pž‹Ñzaú/Ák Œa€h‚Ћ3’ÐQJ ÞZ£)ÑK„:—'¤§ /*€\ÓÂ5¤µ ÁìK2iaÒUáXÝí’ÃÕ9z«žwžgz¨I&vñô¼˜ÿ2öôÛoiìÝùÊL±jÞDºÙŽ—“ñzRì:h˜çå†~‰rûwµ¬YÎYüvnQÞlŸ'Óå¶Ø=º˜ B¡J‚ÝáñÓÁ½? âÑ‹?réyî*ò¬ÉÇ»wÿÄŒ4 endstream endobj 5750 0 obj << /Type /ObjStm /N 100 /First 1036 /Length 3091 /Filter /FlateDecode >> stream xÚ½œÝ‹%·Åßç¯ÐcòÒW%•¤*X þ`“@Kì‡$Ë>8öLÌ®Y¯ÁùïsªoŸžM ÝQ/˜š;·NKú•>ZíÖ{I9µÞk’ªh*Ý"hIs‰ §V{#õîX²\#ðäu 9I‘$)¹= *¬ñýqqÁÐ$=·ˆZ’Q£ Ñ“ØýÚ‘J¾ÿÕR‘ûµžJáÃr*šÃˆI*­:ʰ·ëµVS±õZÃøz­µTóýÚžj¹_;R½»2KõîÊ<Õžã><§:Ö¿º¤ W(à *b½]¯I¥F®IQpD¨&ÍáÀ{ÒV×h$EdI‡¯WxR/¸ß‘Qß¹KDøG\Ád-=>ÃeÚ<"4GCሠ0Jü·`mUAá¥.E#òÔK É©W ‘Ô[)(C š¯…Šö„Ž¿jM¨9M=ãŽúÝŸ µrE[ Dså1„h¯Üñ}„={¬å „ž×Ë,‰d•(ÉÊKCj˜=CPW¢kH‹–¥Év‡(M,j?nVÄ£qjEŠÜPZ)7 §Rê@?¥•–㲊ÒÊÝd~x7YQZñû¢›g‚q×ReDÁhRôÔõ.ÐÑÁÁZ:6{½ ôS©¨h”{RmUÀ­ ®EàQY+ -—µø´ŽÐmñi“¸¬ ýþ 0ÖªFȺDÁhAiY+JkðÐd-­.è^Qº‡4]:<´¶* KÉÚ¢´v7`·»ÉðÝMnéw“À[zýáÅ‹‡Û7ÿúé1Ý>ûö݇‡Û׿üýÃúûxûχÛïÞÿøþuF¾Èon¿¿ýáöåkYy¸ýùñ»éuµ²(j»Ö¾X€æ¾Ô¾b¶Ô\ñ½ÏÓ‹éöuºýîÝ7ïÒí«ô›Ÿ¾ýÇã‚;ÿmúì³ü÷ÿ»@ÖZÐn» _ º÷¹ k]”²{ª ­p0žá¢Ot¡p޽»hŽÊ~F]‰.zYØ“‹á €>7á:Ñ:gnU…ÛâHͧ.j.ó\TTE‹{/mŒm|QªiKU;pQ&6È*]ÔSC.us±ƒzîbf‹8Úù±JY¼† ]ÃU…‹qêÌqÔEôÆœCJÖŒ›*ýÀ…ç‰-‚:@·(40×)h F%z‡Ë‘‡‰ís)ôË諉¦è1¹C3i;213Y Á­cêÙu1ÅÔ 5"hž2Ð5ý c•63WŒc®‹ž‰Y¦ f0=Sªbfò®B´ÅÜ{‰ ¢*†˜w79sá33ê3ÓRÐ51Ô Ja £jµƒTQ²\Ð ÒW{ƒ”è›GcúÔäî€Ù–J H\裊åE‘H›å»è:ÓÄXZÌÒ½l&0Ž¡fr=öPl¢‡Q KÐ݃ÁVH§&°š˜Ÿ¹é‚™ûÜ…Èô̽›`ê>7aóSÅî‚©âÔE9ó±.¥ ôÌX>ž›h3Û}3{r¾™ësªÂf6JϱîÞ\´ŒìÙžS3gœóŠaPÝg¼â?l|¢Yg¼›‡m¾{ê¡ÌLÜœïÞ=p¶{î¡Êüeéæa[”>ÃÎ_”n¶%é¹™$Tb1“¤ÛbŽY³%¶©dÄ„¢¹Ð Èh˜P ¢‚iFµƒ©®_0†n¶Í©…RçÏíèpžy¨õ6ïv8ÏÝ^}õ2ݾyüõCzóŸò &n_¢¤Ç·~އ¥-®ûþùÝ/ï¿{\?«÷Ïþôøýß~ñî×´VUG# •Ö«oßãêx@8î_\«ùg¼>r ?ë×-h :ƒÁÀø”Ì@T.T.T.T.T.T.T®T®T®T®T®T®T®T®T®T®TV*+••ÊŸ´ý–ÕXVcYe5–ÕXVcYeu*w*w*w*w*w*w*w*w***********•ÊFe£²QÙ¨lT6*•ÊNe§²SÙ©ìTv*;•ÊNeß”-g 0¨ ”AcРƀÊBe¡²P™ìÙ1²cdÇÈŽ‘#;FvŒìÙ1²cdÇÈŽ‘#;FvŒìÙ1²cdÇÈŽ‘#;FvŒìÙ1²cdÇÈŽ‘S*+••ÊJe¥²RY©Ü¨L 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF 42hdÐÈ ‘A#ƒF :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èdÐÉ “A'ƒN :t2èƒ=o "…Ae  ƒÎ`00T* •…ÊBe¡²PY¨,T* • • • • • • • • • • •+•+•+•+•+•+•+•+•+•+••ÊJe¥²RY©¬TV*+••ÊJåFåFåFåFåFåFåFåFåFåFåNåNåNåNåNåNåNåNåNåNåAåAåAåAåAåAåAåAåAåAe£²QÙ¨lT6*•ÊFe£²QÙ©¼1øfÎJTâñ'úK·X¯g3ÔÝc9|øÌiÞrXT×§Ÿ»‰ÖAo>5Q&n)Kì ÒÝÄÀO4㹉‰24ö†vÖ—H!§êÄm‰°H4Qr^bü:5¡7¬â¹kŒË» iKLžÎML¬‰"¶Ä¤p7Qó3÷S}"¥Ö%V$» mK,OMÌ<€XÔ$¹ÝCÏËÐgôKŸxB7sÅÊnÂòÒŸÑ’'>¡—ØÆŽÚïøií)UÅÓ†qxp£\«èb O`t?Qh¼‚fuO:êbý¨*dÌIµ ¦+O#©vY†¦«©“ÍíÀzhìÝ, ãt¼õÒS÷{«q Íý©W€Y͇½bf×ÄÇž~œ:‹0ÜàÕÒb¥sTû öoøÐ± endstream endobj 6097 0 obj << /Type /ObjStm /N 100 /First 1015 /Length 2139 /Filter /FlateDecode >> stream xÚ½šM‹%·†÷ý+´t6º:’Ž`088¬bï/œx0Æ0cÌx‘ï÷¨Ju{3¥Z¨šnݾUÒSçû¨”k©!…\‹’>h‹bPSf> …}À¡”â µ5hh">ÈÒö] D­¾`T1¥ÿ“ë6i ”û¬–Õ>­Q +ÙG¨õ‰MSŸÙ40÷™-–íÛHXÃ*hKŸÅ×ÖgÁ4ö5!'h„šÏ×8ˆ°Ï‡¢ÅŸ¹iÜœHÝî-A¬ø­B}f€+±C¹`>K)¨ø·–(hö{-qÐâëZ’ >=F´mßââäÌ–€A­¼`T!c—¿%\¢ÛÌX(cñläý[òIû½„_­ÏL q¿NCá¾.åP6**¡dnXƒª«Ïg& Å£Jë3s 5¹ŽŒ)Trs¨]ƒÆÐ¸ºŽŒ5ÔìZ0ΖàóAœÐ tnÀ€Dú@ÖïhWøXÈ4ù˜Ô²83L·:¦2F¬‰`‚–ª?¯”Ð8¹¬p[íwXhZû-´â¢Ãü¡Uõ;”B³êøH)¹Äjìæ€!VcÈÆ‡Ù=Ûºá`5aÊ/ïÞ½<~øÿïÂã›?}~y|ÿç?÷Ïÿþõão/¿úãç¼O éÇÇ?ÿz|ûžú‡—Ç>üïsxOÚ"aAM |”J‰°’H¸æ›ðî]x|ß}úáSxü#|õûO¿|ˆÌô·ðõ×/øY@P4BøðÍ=>‘QL™¦ñä_¦ZJÑbBÄ‘jQ<ºY‰ ž!fÑä(¸rtÓ×´ÎÖ¢ÇZ©%åP]H¡œU²DMœ[l°x¦ÔÚ[ÙE•ÈⱢǂ} ôIæ(rfRB48ÜX¸Á=š(ÅäÉEžöDRl!…´ˆ‚ÔWcAJ L Bbc‹©–/SèJ}dø)ìÑ#ÅAopÒ0œtA5/¤€S"õœrl— š'‹Mž¢`ÎùgNÁ¶2R`5ÏQ…‚"Ñж2^yŒ~B”+_…$^QAO÷`ËÛ ^©„x…ÂO`“âÅ7#^¡"‚²œ…î•‚„bå» ?¢?€›¢¾À¡ y+ÖÈÙûнÂ$)H“ŒîžìËU×GîbÜsˆ¼>rs†cŒÀÍþ»œØe^™À>Ï*Ñ[!BN÷6µ/Bé‰Y–¥º€A Qb!d%}ê Œ³¸Ýì] ˆŠjEý ‚k]YZAìõÉÐÀæ‚@#²¶²òn|@xeÕPþÏ –íQÞÁ,¶Ø°—w(íbM'îÉ’n°‰T#ÆÓ&JrÎoE±»‡÷_ÍÓÝ=¨±÷"oìÅ.‹)Z…år@ì2‡Xꥻ‡ Šá!sŠ•~Ê ¦'…¤Ø÷8fkuO ÞøÖÚH dpX=k2(LÓ·6CCw˜s^Úî»%ľ[2…°•Njp´æ‚}«¦Ì%±Ö$†:2 nߊêðRël¯„„oÐÇ ú˜SÜ¡âPÈŒmóÑ|ÏsP ù°vA¸peO*Ñì•,|B–¶¤²¹ç€( }E¾@‘WÆî‚†KôIÿ,u±ÖO÷Y=ºŸ íÿ›¡¥Óm¼¶¾!Ýö~tÎó )LÐé³"íJú2ÅÊ ›#hˆ4g”Ò AsPŒ 9¥(tCÐÜ)Ž 9¥¨õ† 9(FМQ ®Ý4Å4§F7Í1‚æŒB ßÐ1\#½êƒÐ¨f;Û½*í†>hPŒ>hJ±rguôAbôA3Iù†>h§8ú )ÅÊÕ#ùÆ»¿F‰ŒZÔ³7A¼ô ÈHdƒb¤²)ÅÒú¿¶˜ò+Y´›Ùœbia¯ÖYÌ_—  R•P`¥Êõ1Ž k<(Zó—W(jÄ_ßK~ÊB}C YdJ±´ôVfÚSê>Ó¦L)¦UP î3zE+3ªÂ:ýäÓAá>S/@ä•¢€q¦üJÍz(RÜã¨æ`ùé¨þ·òõ‡£Šá¨SŠ,78êNq8êœ"¯ÔHŠ€]Ä%¯ VV?W†2ðlÇ9—(t+> Ô>ÜÎvßóÂÄ.•» Š—ýÄ4"§ ?«tºƒ³R# váž¹Sh‚u Í)xe2S?!¼eÍD±tßNŠPüJ~Dͳʔbe£™ý¸Ñõ–u±ró!¦Vž~ôD.ˆbiüV-?X•,n…x›0F1z-Ú ’œ†žB%f±·¢@q‘ý&š’Zü Xówt ò6þ¤Y+ Oܳ¢IGäR¬ý¸(²º”3}´rH.†‰+²:¢÷v„;Öz¢•¤‚¶p0ìdʰ´®ƒK0ìuÅ”áŽú@(iº Œ•Í©REàyjC}'E.Hb鿢JE?Qž¾“Rä ÅÊ:/×Hˆ™…ï¤ØYðJ øGª¯Ì¢õó6W(Úúú?£Ú,òlÔ³W›g‡Ò–¶È£þ?(†ŸN)–vdÃQwŠQÿ_ õúA±7ê(l}£~Pìúœbåé¸Ñ¨[£~¢®oÔˆ½QŸSXºÁQUcA‘s8*B¨•³½¬•¯GÃQgÌ74êƒâpÔ9E¾ÁQÅpÔ)ÅóÐÉ_Vˆ¿ endstream endobj 6098 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 1812 /Filter /FlateDecode >> stream xÚ½šK‹7Çïû)tL.=ª‡Æà$rŠ}39äaBØÆ8‡|ûTi»Ô¹xjÒ²hfZÒORýK¥R—^[Ê©ôÚ[Aêw¥·œ8ƒô+`ªú³(õLVà$4. rOטùAKM›¤nßi㬵µ$ ê¨Ús‚6zì Wë ck¯SB@ë«sB¬Ör/ IF©&,h}ô¦´eÔè [5t‚Ö‡äDyüªÕF]ÁD„Ö›P".VC8Qã“’¨aµRMÔ‹h DòøkO u%1›d¦A%:Y\¬_ɘ¸–j%JÜCKœX­¤ äǺú>hI! G ýaPIÖE¬=Е€ aÔ’Ñ2Pª0úNK±RI•úx®¦Z´hº|Å §ÚúhORµ:úœZ.6„Ô [+ˆ©é´Y‰Rãb}è𮣕Jj GšZ/º‚-5ýbOÐ u;ŽÙ œ: f‚Ô˘ ¤‹o5H­ª™T³èÖ¼–JÒù2ªIiIûPƒÓZF Æ%\G IRÄÚ㜤¡µÇ¤W#`L"bLj§@†À¬E¬£ŽY/ɨ¤æ› Ù|±Úo®f˜ÂÝÌ[FQ-8?Â5a}xÕ†áqÒŠ1Œ¢öÌÖ…Î;@i£¨½A³u­Åfj¦Ò RglÑuLZÄÑBÕÞš[‡¬fh¶ :>ÐAŒ´7lÍ:ÖQ©z̼Dùu¼4ªioU^¼x¸½ù÷ã»t{õþý‡Ï·×ÿüöy|þé¯÷?ܾùðéwŸÞfõ ù—Û·oß¾…ñááöó»ß?§·Ìxà0U>j7׌¢ð¡.EŸ{•^¼H·×éöý‡7Òí»ôÕÇ_ÿ|w ÷¯ÓË—ú·€¢â¡.æ¢hr˜’BˆŠ !:CÎ!ý3•˜‚ÖQNEyô"‡¹ Ò©`¶©ÁC}ÅжpAHç‚UÑ“Bä ÚŸ@!yáŠd<¨\sÁ Ú?…¢,¤@•H¿æBw‰Í™F”ÛB ªS¸PC („ê§PCˆÒ6Õ!\¨!E­„ªæ‘-,q¡R>t¸CÑ:-Ø£Ø&–û¡P¢ÊkPS kG_†X:í` ¡)‚m×ÂJwÕÁbGèŠ`QI€ +=¦"h7ÜcØ7øË“UþñJàÂy`hêø®¥`ToiAcÀ@+çAò% ÜŽx˜Wzë¦=ËE ²ŒgòÊíS…©a롪'ƒ‚V:ëvä‹¡d:Fp2”õ®š¥¨§˜éªsUÍ–;HëcªIá"¤  >Â)fLRp^SM ©b XSM ©BŠëcªIqÆT1­©&„ÇT1Å¡ª§ÂFS¨,RÜheƒNâÔiX6Èô„p™†DTê§JcˆºA¤qŠ4„(²A£ñ¨ÑaG~b2œ !–ž7\¡Míú¥Ðnß—{;¶R§p‰†;ÒN15SlHOL iD±%=1)\¥!ÅŽôĤ8eBìHOL×iH±#=ÁŽÚÿ·•¶|”{K·Ò3;aÇ¡¦Q¿g'X¿—J_¦hëÓ“áLO„ ²>?1º.F®1¬L’ˆÚ£\‹Á™Õðc\y.Îí ’‹Á]f±Ãc:é†J=† •›5ëÁê0ûÌréa°¨¿lÙ¥–ÂÎ,Å„8}vÈÀ\¶3hH•žà§v~¨¯„2s=rîÏ”4š¡•SxhSІÐꤘ~"¤Xé1§£p ­B Ü‘¥p ­b ÚZ9Å)ÓB6èÔ!<´ )VzÍ)T¤£×ëŠÖö‘\îíæ¼#Má.Ԣ¡žS¨!EÛ±£;… 5¦è„ê.Ô¢ç BuŠS¨1lÀaï:M‰ŒËÒ{WQyGšÀ)\"1ÅŽTÞI1%Rl zÂ%SìH8…K$¦Ø‘ÍsŠS"!ÄÒ¼¦ïeá{YL±a/3iØ[lS¨uaî½b³ò àB.Ô˜bCÐéS¨1ņ sR¸PCŠ¥ ïS¨“Â…RÔ Wc“âj ±!ï>!\¨!ÅŽÄ»½ ì"%±KõöÌï‚S ÏK0Ú¯d{L°#Ù>Na†[íƒàeLN‚ƒàQO(Ù¯äzL@¼AŒMÏ\.AöªÛó½7ià pR¸(CŠ¥×.Ê“b 3¦ Ât gH±t«pq:… 4¦¨ê§HCˆ–7ˆÔ!\¨1ÅŽ]³–ƒ¯c¨ÝakÏu vÞ@QíõzA–ìjNžçÝój"œ/ÈF}ý ²AøÐïB„•×pÒteëDଓ DXúŽ.¨»Ä ÍKŒ0§á?ø^·j endstream endobj 6099 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 1735 /Filter /FlateDecode >> stream xÚ½šM‹7†ïû+tL.•JŸ°œ’@N±o&‡|,!¼Æ8‡üû¼R«4{ÉÔºŒÑÎt«©õ”j4“{©.¸ÜKsÄq4º‹%¡Qƒã^Gƒ\æqM®o±«½Fr}ÞU³£PÊhG1„´*ºd¯¡óTf_ÝQ £³Õùn#GmÞÛ¢£Þûh±‹OK.@-»xµâbfBŒVA[òx­¹X{1‚>{îB˜q;9Ž3nP£¿ÎŽSÃèÉq #ZÏŽª^·’!¹Ï¸s¢8b PŠóÐib܆¹”c­èR)a´Ø¥ÚçuÉ¥çuÀ y^‡AS§´Ð=Ç4^PÊe´(c0%Àkäѳh¹ŽV<ˆÞ y/á¿8{&â—ÐUŽ1·T„KjŸw ûG1¸ ¹JóÝ]åã]<ñ4ïE šû`Á`jƒÿÕ–bàâ:&­æÍñbÂZÌcXEç½L®åÙ32þ¸ÓÞ*<žÖçLrvý ââ:¨ƒëXtóÞæúAÅÝõƒ*‡…:â&rX3£—]ïs6cÒ„N Í8ïNcõò °|ž"â¤:×ôž°€CO9a‡.c ÓA—±†é˜´ŒEL_F4:3¢Qž Ñè@Äs&j¹#*:˜C3E:z@4,ÿÝP>\ÞÿûéÉ]Þ~üøüåáòîŸß¾Ì¿úëãß—ož?ÿñôùC@f¿\~¸üxùöÍ?.??ýþÅ}H±úa%gòY øˆÅÄ…|é¸ì­{|t—wîòýóûgwùÎ}õé×?Ÿ<·¯Ý›7øwCŠ>B—Í“'L‚ÆÒ‰ ¹zÂß 5ù€T¤1P'BÔê²í†è€ ¾‚σà}Fc¬„ _¸vÌôH±ÝWη(ò‰-úÄñJÑ»gäx"ž8)DÏù:‰`ÇØdTŠSýˆð£]çb;ªR¤``©PäŽ÷ÌE¢)°:QŒ\)°:ÇbU!ò™Xœ#¹oˆÞü¬8t Q‘ÂÇ–¹Eåêk»aá©@ˆ§DÍš.ˆ­©c6°T ÄR ‚Ù@RIUˆbà¨@,G5†Ü QTƒ(ÑÀPʾð‹­4fJúEŠ …(ªS4GÅvT¥èÁ@R¡Iu 2°T(ÄR‚C5ÐT(–¦*eOB gfìêS¦+ÄÊ–:¤Ë±Ò¥Î Ò¥0¬t©B4‹t)«ÊU!Î=Í\Uî¦XUîñü*wSÉê‹l%«Ê½ƒÂ¢²ù»]˪yQrÝ:S%ƒÂJ(V•{…ÁÉ®PlOuŠn ªPˆ¨*|Ý"ªNaðqtS,Quˆf ª@ˆ¨*Å©»©ˆš3ÊÜ«§%c¿¬¯tÒ¾=]¢©a¡é±-Õ!’¥ B$U!²…¤ BÕ!ØÀÑ±Õ NŒ„A Õ!,ŠîÄ>Ö|U4ó(¾oPXm qT§èŽ.Š-©JQ ¾~Ùb©NaðS†M!šª-h*ËSÂàKÒ !¢ê5/“G«âi¢ñò- O„hªBtƒ/IĶT‡(–.‘TƒˆÁàKRGuƒ/Ib)ª2Äd èbCu CiXñb+ÝçoQTE…BÕ),¶ÒE±%U)ØâøH(ÄR¢X*¢©NÑ 4Šå© ‘,>• „ˆªR˜Ô¼¡úyμ<¥ñ ‹òJ¿ëØž.ÑT…(d é±-Õ!¢¥ B$Õ!ª¤ BU!ªÅï‚XŠê Š.1T…8µÎ\†¢nô)¿ØJCö%Ñ+ýÆFÝâ¨NaPî Å–ôu)–¤›B,Õ(˜ ÞM!šêù|M7ÅòT‡(ç{º!DT•"ZˆÚðY¸÷-*õñËŸr‹Âà'.›b‰z…AÍ+"ªNÁg¼›b‰zE6U(–¨:EÞsñ9º endstream endobj 6241 0 obj << /Length 1538 /Filter /FlateDecode >> stream xÚí[IoÛF¾ûWè˜õ˜ïÍ~--ТH}ö@K”CT”T’r’ß‘IÑ"ÅMâÌ$ $ Ô[fÞò½EÁìqÌî®~º¿º¹0ÓD ³ûå ‚€P&f€ªg÷‹Ù‡7¿üþóÛ÷?ü}ÿëÍ-—GS-ˆÔÚz~Œ*Ø?t”Ôon)=zúúðø5Jó!-¾”fùn­ó‚¼àG_`hDÁõ¿Õ¨RBAžI£,^ìÂUFÒ$l¡(‘\Q„6­ EuxæÇR#óGÔ,Ý+V¼}ww5ûp¹&R Ëè“Ò~¥!Pó61ĉ 5ê‚Z¢$X?ùÍj½mÀ5Ó°ë•0»~*»‡í*úÜv)ÆO&‹ôê19úÀä0“k"P6o0IÂô‹«ÔÂ=l | ¡<`é­)ص …ýqœÌzlî5ÒTÊõˆÜU¥šm¯óŽÄU»ٱ¿[¤Q(Zý›DIr—Æm°I2"AOµ]ÙŸ<¤Igtˆ–ÍÃÕ¼å%S[œ'Š+é$èN ôß PEk5C’„y=ZT½“ #ÕåxÕ«[ßnÓ(Ëþçÿ„ÑŸy˜æ»íoæó_Ö"0Ml  øˆhqb¢Û,ÙÙî9¾„IÚÁÊn@ÑD+¾’GÉv§ùZèé%°®Éꇔw\›•&‹Ãžøè-à9½:fZî-P1µ·PÅœ¡j@Þ,÷óèsÞf\æ-òÉÆÌCÃ=X0 ÿrŠSËAù†¬6ëÇI‘¤2m¯ÅÎ(ŒY¥J>¬¢®¦Ðd·bh×­^¢ã§x9 üÌN¥ViØïì&§+h4–ò4\gKgÉ÷,¸sý)×Î4Ëý]ôì–:êuh”#»€ŽÆL& 2)ë|é!‘‚‡f P惉ðp\Ìîà'wfœÇS&qÑÊóÒU <'‚‡-ôáfH}´S™¥ÆþÁzycFÊäøi¤âd¯Üí»x©ÊòKbKl„•_¼ª×Ý•ð²ñ€Ýzk[Ç`DXÞa8”2œök¦¶Þ{íQ“n7Oâµ»JÆåX¿›UE8kU±ÑÓÜ­ãt³ÉmWÛ8~c§@ê!H+/LÄ×XËj¶'ááùnóðåßð?q¸ìóó*í¶‹öU&Š„Ê³p©®ypÑï²¼ÈÄÅð<¸i²…”‹hîVmñMh"éän"#í‡ÎØ*Yû~Uýü,œÍ¡y”µŸ^¦ÆÖ«ú»vwð},Û@cf$òï_ú¶³¦À2¶ GŽò4ß<Ùž‰½ìqx&ÂGaóÚw©Ðó.•GÅÀϾªr®ÕÚëCC$ Ä9ëZ{BÙ¹6$´•œöM„2Y¥±ö,â"Zåaå7‹QÐxŽÞóM´ ZngÙÝVÚ²6ÀQ^vÏ“$X»§qºwÓÛWîÌ:((#‘À[Ôn>ãv#í®­aøÍÑœ’•U!G­4ÕԗΈ0€‹~¥…°„ú;²Kc¬Ú|m\7 "B€ñ\ Z«‚ͧ(~ü˜gÎz+€à£2჉—€úº+ûå/¬Ï>j†r²¬}Vò/IuýÌÈI"ý*k“t«Â]¿1*Í—KÐ|}{õp¶o endstream endobj 6100 0 obj << /Type /ObjStm /N 100 /First 1023 /Length 2620 /Filter /FlateDecode >> stream xÚ½[Mo7½ëWð¸¹pÈbYŒI ' dÃöaw GXH,ÙŸWœ®íÁÝ}à0äÒL÷ãc±>Iª¦ÚB 5U ¹z |VSKS6!)b…Н!” ÉnzKÈö ¤2%¹Ô r<pnã…2~BÒrc{CsÈÚl¥@)©I%Pf2‰@!I ÎFVk á‚1´Û§4ÙhŠt¶Ñz %o{…Æ»½†R˜M*ðp%Æs¬ã ¬ömÆÔ¹7½DAr&û¬!®&1t‚É@’ ’‹I5HåfR Ò0AH¤Ÿ¿5jã]£‘Ç·Ó/™1†Á3«}†‡Em´ -7 •ñ~íjür -çñ††F2Þ衵7(…&doP­ŠAZSãG%´Ž/ 1VR $hVã´œ¿mAYÄ$ *¦«L=h#›QIAU ¯ä ½'ŒQ(t­fLÎßš‘tÃu!Ã+5ô*†óé­< ½ÓxV’R5úX,E7D V€lI`X‚jsÆBc ºMëÕ“¡²Ù£ž€A¦ÞmT,tN6IèR5VŒÑ0¤ CÙƒƒ`´\kÆhÐ-Ô=£å>†€Ö æjÌ¡"è¹×ÌüK1\Lª¨ã5ŒFÒm`Lz-Æ ™ñˆ@³ÝæÒPè@84Z~˜3Ù4ñ498TŒVê˜f5okçÌ—Ï$á®Pá † I8*ôVòÍ‹7§wÿûã6œ¾»»»¼9½ýòËãøýçßîþ{súþþá×Û‡÷ !"}8ýtúûé‡÷yürszsûé1¼Ç"D[ë¬%rï[0ÿÜK¬ZñØwáÅ‹pzN?Þ¿»§—áo|üÏm,Ò¾ ß~{ƒH(Åd:v]£­ø}‹UˆÍ½å(°E¬Fd3Oͱ•¼Á¢Ö‰,  †y­,zÇz„…N\‘D¶Ä+ ^DP>ÂbâŠ0Q$½è‚ X Hî³h4‘ƒÁÊBz±jŸ…L´ iÑb/bQìð•Ò8ZEˆ06_g‘ÛDO-­E¶Ðê,:Ç‚œt€ÅDë,½A¹ueÁ,ò]Îô‘ é¢ . Ip—EI3­³´HôDÂq$ž}3cgCÔɪbeP¬)bg2V5Š´™jQËòÆÂ‚bgÉX̵ °  BÐ’#ªè<Ó,´ø‰*æ`¡tÅ\ã´Ñ­ü*Hìh¸èṲ́ÄÞ6B'ÍMìZj%\ŽV@Eè$+È2‚×VÐ⩉,Ð8 NZr„ÄÔ¼Ž˜e幓 ĬvˆÅÔ¼Ž˜e±³`°8Àaf>enpˆ'š¨ˆ›G÷XLX Ó´FqeÓL–_wYLX0Ít!!ɼóˆ*fF¬µüÎ) ›µüFé‰z8b½ ïkB©šÂ›púç¿þ¬€FÙ`ê‚Ïï¾üþûøÕýÝã@}%f†åüÖ«:6–_ÐÁ@ýt{õü N¯î?½½ûpzýòU8½»ýó1|ø…¼É›Óéöîñ³mWØÄߨ¼?ßyøtkŸÁ'Çgÿ¸ýõ·ßßÿ†ªÐ®[§¹¿þø€·ƒ4n燚?cà±éa|ÆžÇ"¬ŸØq¡ºÐ\Pú"ää‚#gGÎŽœ9;rväìÈÙ‘³#“#“#“#“#“#“#“#“#“#“#G.Ž\¹8rqäâÈÅ‘‹#G.ŽÌŽÌŽÌŽÌŽÌŽÌŽÌŽÌŽÌŽÌŽ,Ž,Ž,Ž,Ž,Ž,Ž,Ž,Ž,Ž,Ž\¹:ruäêÈÕ‘«#WG®Ž\¹:rsäæÈÍ‘›#7GnŽÜ¹9rsäæÈêÈêÈêÈêÈêÈêÈêÈêÈêÈêÈÝ‘»#¯¾Ó¹;rwäîÈÝ‘»#÷™Rr!»@.Øq¡ºÐ\PÙ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜÉ}ÜiñÁs2 T“pM±ƒFŽÉ¶È{F†iÏTfk± šé>Í•«å»\6XÌÜZÉÖ&²\X´m'Ÿ…ÎdÑØvWXˆ”¨¢¤‰• í2Žýå… šX "޶Ж‰–âËܧ¢aCÛ´Á"O,¿F›XÍHë¹]´”Xñ9Zȯ³à<Ó6û(ÅWn›»$x¾i:7Í=¨6®`š ‹Õ4wYÌl•gâ8nr%Åqp´Ïbb“‚Ì•/VA’bÓ#ºè#I‰­=ÑE ;òÜc afA¨²ÌE„XØ.nZ(rßêØ¦†,÷SgÑ*ò+a15‡ôÑ2¯,ºÄn¡»,xæŠØ‘•U/,P‰Åqp¼ËBx¦§‚ Ï•*-tQR™é©•žèB$6;Ýe‘gF-ÑØä‰.šÄjGà»,J¿‚§æk{’P)E)[»"óÓºÀJ‹Q8‹¤v¨ôu¢3U£u*¢èOÌQ­á•n[Ò§¼hPç&3»”"–ßÓ9™Ù Ûîºe3‹ Ûl´[&•Pôµq”˜ØHÁ6•Ÿ‹…LÀ™Ô.‘ØYuêRSäö\Õ÷â ‚ ‘8¯¦)¬‘7Kæ¶CçT¶²XRÙ> ½B*[Y,©l—Åä~èœÊœ…§²}S‹ · Âè£9·ÉRªm E¯ó»ä•ÄÒ‰ì’ÈS«½s+²’XZ‘]4óFˆ·"ÎÂ[‘}3ÏK¼YY,­È> ½B+²²XZ‘}3L¼YY,­È.‹©G¼f¶ï,¶2…‡]¤a'¼}lC”¯9S ¹øHFB͵ÅÔ>™ Ón vTáV÷ÚÿPMB>M´¡Šœ¯À¢µ¨½¬,XQû©n±hó“+:Ϋqr³û²UìÉü½V›n·!–$b‡½¥nÝ?˜º‹³¤2F°×—‡9Ã8·Zéû‹}œô›|vÀ\£$Øí”ÒÛsíg¹&®ˆ=s[õ¥ÖsK©·OBx~ÀrK¥·Kbj£î•ÞB ½}¥Îß³pË–Å>‰© ²Ýƒ±+©E;ïËlW!  »ã§[…Þ5vßW,,|í² šßœ®,–æô‹+ÔÿvÃT힎NJ$vÉø¹¶o–X±²ð`±Ë‚¯`Ð~°ØEAíU¶vN _Á.V‹]<3 ·‹f©ü’Ò Ø` Ã¡+ô…+‰¥/Ü%Qø ÕMÒiÝ¿a¢ÆÚìNgÚf÷Wn›»$ÊLÓI,nºOBæ§ô•Ä҃쒸Ɖ¡“ ª~À$fX”ÑËÅ.‰ÒèvIÌܯ B®»D õˆE¤™]ƒºž•DEÄG> stream xÚíšK‹d5Ç÷õ)²ÔM*ç• ê0*¸gj3 ˆÒ-C úíýŸTåVo¬Ô"w@†©ÜTrò«“óJúf*RÈT$¨74p®Þ° ‰½‘ƒIöF ¹ôÁ5ÔÔ·ÐÄ×(])§|@‹]¤¯®Å'T ”SŸakõ9P-¾@-õ50©x«f_™Z ¬ýÛFMk4mqyMWry ¿ ©Ëk$­„ÉåµDÔ¼Uƒèin ’]2§¤øºàªZ Eœ¾• ¤ê- Ú©8AMJä­Ô\2§´S1~ªv*N-hëßB”¥þ-¦c 1qf‡4­¾i°L¾Y°¢}ö¢V_°x¢.Ï‚6oùÕéÔ‡0c°a F®>ƒ1¤ú4fˆoæòØBIÕWã Ÿ¾-¡ˆ9=×çãJvñ,)”b>C(”Z+Ö†eøB,*™Ï€YUn}†…ªÜgäPÍ| )¡æÖgÀª*û ˜Em¹Ï€%Wqƒ®Zjí€KO؃ÆH}µæ;£NÐÈzf¸9«[NsC’ +i¾yhaœ+L*~tsHl·¡¥í€–÷åÞçãŠ+ÃòäIò¾ìÀÞŸi"½¯ eÞ‡Ÿß${Ÿ™;Jïƒdi¾†æƒ#o±!Ä7Åï@ËûÌû`*ͽ-HÖÚû ÙRïƒd£Þ‡¹&½s ¿ãÅ‹Ãñíß܇ã'O‡ã›?|êÏ_ýúðÛáøéãûŸïßß%D€ôîøÅñËãgwÔÇoîz w°ƒØàp”ØÝS,Vl”X‰Rã> /^„ã›püüñíc8¾ ýñÃ/÷‘”?/_ðo…ÔXaŒ…Y,¾;S £…Vc±gº(³ïÆœb¡.HZìÁ ;á&‹$®‹Jõ….¤° ¾ºQ”Sæ(j]HQZLöLÍb«uN°¢ÁGJÙ(®cƒKÏ)h¥ OÃS§¢;xê ž:§(;xê ž:¥PÛÁSYcFâÞ> stream xÚ3¶Ô32V0P°P06S02U01SH1ä*ä24 (Be’s¹œ<¹ôà ͸ô=€Â\úž¾ %E¥©\úNÎ †\ú. ц ±\ž.  ÿþøÿãÿ¿úÿüÿ™ÿ3Ô3ðq¹zrrJi` endstream endobj 6244 0 obj << /Type /ObjStm /N 100 /First 921 /Length 847 /Filter /FlateDecode >> stream xÚí–ËŠ[I †÷ç)ôç”TWAӋΙ!$³½ðtLâEÚÁíÀäíóÿ:np2¹ìfeŒëH_é¨~Uɸrë&Irë*Zù„C¿¹úmH ¿K¿‰‡_ES€"jA²h® Cª ÈÙ"&‰’ê¢NR‡˜’h32`Œ­‚ä ƒr,w±Ì ™sJ œ‡\A2r€´45Ñè’{&š­BKf«ÅIR Ù 2h¶B‚8ËÐ[ð5Eåša4©¤Jµ E*4[r“ M–F– ÍêîR¡YǨØ@Ö4k¯* šµy–ÍX›Ì=âa´N‚µš“@jO$Ö-NšµåŠ#!1žG³&}(ˆ“h“¡$Ée ög” ]F ‚˜¤Ê æ– 9H׈1ñМT<4cÞ©¹¢R§æÚLÍUhJЉª+‡DÙUCÆ%…'£òâ¥&WjÏ£Á¢øŒÍT¥ú\°†R~.XC{0¾Árv6%šH%ß5ÖÀ~R+á"³µ`tY†QŸùš X‡r"¯%8“ÖÉ©6£ ‚*;«lÇÎjF -)¨V£5h¡›Ú<•˜uX-ºŸ³>¦·Å?Ìײ<ßo/÷âþŸnoóÀÓq³ÉÝgÜ|`µ=e„®ã³Ê>f=â×U}8ç5bû˜qåhÊbºrÎÙ^¤ê@=q@Hƒä¸ÇÔBùÅú¼Þ8ì/3À­H[°(ŠV¦î½Ðõ±X(¡Û2ážv^ëÇó½«H¦?Ϥ†ðuŒ>BO5HAÔ÷#fª9äÕÑ¡¨T› £Cì/ÇÛéêjZþúòi‹öÝß§åÍçŽáæiùsó‘s½OðÇæxØý+oÓœâ–ÄS<³oר››=b„wj\—q5L¼Þ>ì?î¶ru%Ë«ÃþîÍöˆ¨åÕÓç²¼ø¸y¿½‘[¹¾FŽÝááøäÃæ€Ó–—›3çïÝ»ã‡\~pƯnZžÝßíßíîßÙŠÌü–ƒ!ëWÓJ½Z endstream endobj 6275 0 obj << /Length1 3107 /Length2 22640 /Length3 0 /Length 24185 /Filter /FlateDecode >> stream xÚœ¹P]ÛÖ%Œw'ÈAƒ»»»»ûA‚»Cp îîÜ‚»{p‡àHŸ¼ûÞMîëÿëþ«‹*Øc®)c5ç^» %Uza3{ „½ =3@ÚÎÔÞÎÙÞÆØÅØËŠ^hájcì­1³ÃSP¨Y¹Øÿ'/x  “³•½Ïßþ¢N@cEÌØ¦æ È{˜ÙÌœ<,< &fîÿ8Ú;ñä­L-6UKc' <…¨½ƒ§“•…¥ àïG•)5(‰ƒÍBP1v°Èݬ€vÿ 2·rrv±3¶2Øÿõ dakleÃ`joKM÷¿%dfþ+á?«z‚¨Ù€<þõ—ÁÞÉâÿ+’•þW(Çèÿ#Ã_[PÙ:ÿëAÈÕÔÙŒhæJÍð79+S 3Ð àjgt¨JËÌAç°ùËrHí€N )Í&ž€_‡&¢üUŸ“‰“• @eéââÀÃÈø+Îü׃³9ƒÐ…‘$±¸™¨½­-ÐÎÅž™ `feê0ZXÙÁ3þJ¥æ âÈ 0šÿ…å]œ¬<ºL LL̦_??郤0³·³ñüí®À¨­¦ª¥ Lû?tÑßÎ""öo&=3''€‰ÀÅÊðýgR%c«“bú(mgnøy3W‡ÿlÀí¯ÆPý«ñ¨ÿL¥`ïÒ@õûÔô˜Ø™LA¿˜ÿ‡6ú—Ãÿ©{~ÅþÙ&üOý§uþµöw÷ü#ÿ«þÓ:¿|þ»{~…0èêüßúæ—Ï)Bñÿk–þŸççÿmfþsòŸF W›u!ÕíõŸàß øß}!alkeãù¿Å€BþÛSøñÿ)‘êŸ*íb b%lgaó·ÉÊYÂÊh¦dåbj 07¶qþeWÿµ+; ’½³Õ¯%h$Ø™þkMÍÒÊÔÚèì ø÷ÐÎ쿈ƒØ›YÙYXØ9ÆNNÆžðL afagx3¬@™<@PmF;{PÀÁÕŤ ü¯)â`0 ÿ2ý…8Œ"¿'€Qô7â0ŠýFÜFñ¿'€Qâ7b0JþF,F©ßˆÀ(ý±e~#ÙßÄEî7q‘ÿ@\~#Å¿ˆ‹Òoâ¢ü¸¨üF .ª¿ˆ‹Úoâ¢þ¸hüF .š¿ˆ‹Öoâ¢ý7âqÑù@qÆ#VPœ±­èõe :Ô¿}@,ŒM­¬L­œL]mÿ¶3³pü{ÁÅÊÆ ø·å—Ùèdålýûp~%qùTÉä7E˜›Z;ƒÛòül¿ÌN@ê˜8›m€æ.˜Ùÿmþk ÿÎÊü—ÙèònÖ¿íÿÊôoÄ¢hjoš‚¿7ÆöËbkû[0f&š¿•b bfocó'gÐ%Åø[Ð@0ÿQ”ã׺£+èõw?ÐxØÿ!5H!óßY@æVn¤ýµlïúgY‹Åï" u‹_5À?]@Ûù­6HDKOK Ý ›ÕDþýÔ;Ö@^¿7ÁÆæ×[â÷:HÝ?vº7—bå²½]~‹*mçjkòë*µøƒ3H.ûߤA9íÿˆbfmÔá÷2¨†ƒ±ÐîçÏÆüoë?OŸDÔú ø®ÿ²YÙÿ>c6°6®lŒdqü¤ª£«=è³ÈÄæõé™A»û´ g ­Õ?»ý—Ðíó`%q}ýMÄø¿Ft1þ¦ºÆ],€4 Hwû?@9\O¨æ¿®4gS{§?e­ÛDØýù%õø‚ªzþAGâõ›3(“Ðé/ÿ¸6L]@gâò¯)Ðòlnº¸€@ )üê’½)oðûúà·Zá·îôûSv×¾Rd×n¹~rXk1‰GDÁóÖÅŵö< gh#?Üzk°ü­ÒTOm‘~¼ÑHÊLқ̗é}o\él³œLlBvþ¤4‰Ëy #™Péd‹ÀRÑO¾šÅºü5Å+*µÏšN…Z5ÅÛ ø¢Ë-ìÜåŸ\Â!°™òkY÷òk8tÄ®z¯E÷Sé„Ë«D¯?âñØßÝΧrøEÞ"í¾@shèE},¬ÂþRäÚÛLŠÍ UŽÔ/„I?=ßö(.b­’ìrj¢ØN;øÕ’3 ÿ>C«©ÔTY´Œº¢Œ|èIÕÃ.Ù†³»’.¥aav‚VÃz’”á¢9]Ï¿/(-t qRËγšßTÊh>Jžùý“±*IÜvÀÎqîçf¸… nØüEi‚^ÙžÑ6æÉzré#[î:œ€5¤}N{^˜í+Ƹ•­§QñD¼ÄäÕÔƒ&ïžP¹Mö{ìÙpM—9^E¨Å $¿ëÙµèaó—²e®:%ø}•Q„&Ñ3Út ¿/i°$/Vß‹0†ëOUëüà*»CCs—˜ƒèT—y¯"on]f|Iw­×é+Ô"îç|ìcqæ—î([øÞ5Jñ¦†¶gŠŠ|ŸùÒ®èȯ <Œž,Tã$™ûz1ó=v²ë b<î¡:– ¤_‰=E&]>»Z‚(·’ˆ€êrw!MT¸Î¸PHa´7rž½ÏÍl­>ßÎOgGÝZX+І¢ê-2$¾ˆŸÈ£@´Â;Í)Ø[FˆžMKLi&ÿÓ0öÀoIK#:iˆ¬4ÝÙ¼mrV†‹e¼o¥‡X_^y™ŽQu ½C8/n>¶/.+(ü-zWé%üöYY‹`dÀU•¦‡Ã OPÛ ï™"<“ðšxE$LƒŽ‡ƒNƒ5ê´¢פ+ìÌñ²½ã¸q†™ÁMáÝ}dJîÛ“¨RÞqøŒøä!Qúçz4G¢@ ݶŸøglä+q‰=÷#:¡ñÑ{º$ôΆ”zžQ!>µ<ïêÀ¿hØ(ì£CIЭ¦Ñ&:´®åJì ´|ϸîù¾Îsð©Ë³’+Éίï$ª¬Öï˜këXË;¢- xµ[}…ä«ÓÄÚ~5—h»hÙô1ØÀ¥Ü'´:ñ¢ÔLdáì†# CV/÷Ü Ï t+jlëû…ÞähÅÇôÖb¸HÞHeyÛV2¼ n­“ ‚Ûp”!ã”)‘=xÇУ¯ø×±mü±ïö|mÌ Dæ 4íu=2Pâm’Ôý1ו] ô-J`ƒÇ¯à|ô¯TöG™?8¿¿5^Med«¦\ [Ì!7Á¸â„UÈì¡Tá“3Œ@rbÈ«‚…üH¦Z`ã©#ôX½¶¶KŒÚ$ØJ–ÆD¶X€O-D$­›{JÇx5©ho•ŠœwSuÇÙýy¬HÈx·¿Ø´ye%°7‰†¼&œÖ৯þ–ù”[V¨uèÎ~4ø,æÆíôv•ý`¦Ã-AvÈL8eÜ1£^]‘©'ÿ­Dfç2O½¿LŸò7:ûèO¤ÉÈ[ËAöQŸ×? Hçm.2iá÷Ló‹!PÚf1Nu·¯Š÷_E»äñM^šäXy¨+…烷U'ÑÅŒžMC0`âëïKÛ«]x)_wíÙ}÷»ŽaŽw,>£üpaHϲª³T„Vˆâ^“Ú­OæÜ`~blÛå6ðõ ÷’èû&¹Z¡éz€¼5×Ë’ð÷6š¥†dYÛ‡Ÿ}4ÌÊ{o~ºö•H÷ƨ˜ ´:1xðÄÒždÂa}^|3 þ©±Ö$‰MÂ\FÏóƒÛ#‚«Æ±»ªy§…èµ”ÚçˆÌ¡¥ŒŽÙðÅ4Ê „Òˆ&Kå‘* ÷©—÷‹¸?8¥ÏR_« áEcÀY+>¤G(ª[_EÄk\\œžŸæÇ}»P$$/˽¢/LNìK›luug#Ì8yYÿؼÜJq|ŸlØ’o°Ø´¿Y‹…LJtzPùÀb/»“è |,X°‚K>Y81BjËå·:Žzy¼bM€¿OGm]‰#8Û¸§ìGpíÃlªuÐX ål›AoíÔCxmÚ|8Õû,k`þ&ŽE|ÑîPÀ âÍGrhy‚Llõo|U‡©òS¤XTrØš.ºÚ\ß­!¶„äý™†+׋‘8j89×e;H,U­SÞ[¤ÅËL½ä(:ÄÚªÐ6!P‘ðàÎD¤ €ùmZÛEÖÔvC4¢­ðÔ}‹äõÍ.&ŽD›ÐgÐVipn_ÞÀÅ›üø¡µùٌЅñ>Å1h4æzâß¡SÝse!œnŽÐI¦ø²ÐåÉ¡Y°]wd7ye:ì²ON  ÙÑþŽZþ[*FÛB©Äœß›Ðñgœã2ΜÃÿh©~Û! Ëиüuø;#l ÅÝ-ÂûA§("ÂϘà"ç >ûÐf=ûš; Ÿ‘¡)©:kN^vRl )œ¼©f©áåC ÍAú‘–_'h¥ƒlƒÆh”? ¦˜&ÿ¶ u 1ψõ ä ¼lªœŸN¯òpê›Q”Õ¢yœƒ/ô˜P«‹õåä-R\Ü)¶5·²”Û¡p˜àQc”C°‚°w%Ôj°n$RÇž5´e}™‹¬ú_—rÓûi+:Õqãq"îݼg'ìÙaX°øõ>#ãÂJÏwJ€?ùQKÔLvä¢# Ó\§ŒªàyŸp'q^,ýÀSõq÷ßoG#ïÿ1ó­¥ûqÕ¡ÊÛF1½ž–Þº¸¶ïeØXì~ž~¾–ìYÝúœêsƒ6EJFÔÛaŸÉkÒÜVœ<;ÁDåG´œâ?zœ#uSB(•OÑ^ó[£vGÀ¤ô÷VLË…{ßä½Ý—ôE_³¯¿š«dÁ<–wpa§KE-[ýZï6ÕÖeÏZšo2¨.— )ºÏM5¬ú ò‚vìœa{KÓI}esI¯q… b••€wÒ(fNB™‡çª+$¦:_ì<ªœÇ³WFCqIkH¸ÂéKe„¡à>àám /N"w½»g>ë¸Wz‡%t>&¯Ã]ßà`ôvýA{ñ´á£o úú›óýmcö5Ê1\VÌ4=%³ë­×eïÛÂåOÛ‹HØ›eI?žK ­HúÖe S׺ÕÌv^¾á¡$,Y;‚1ÇL}P©0JqÀ¨§ì¼¡œÖŠÃX•?Gn`çòcAÆ'÷<1ƒ^ËÎp¸zV ok»qæ !>+¾rÔQ–š›ežÓ5ÏÕ÷Ä÷z¿B4É£ê¸úžË¶÷bìÕåÚ<ž} ̵èK¬Õ² o‡83VGB4ï‹§¸>mjŠòq½Î¿c`KHkX1м÷I RëÜiŒ¡3T×Õoþ³ÞÑ -çÑ †m ¬N.cRœ¾*¿OjÅÐkíùeHî“_“šoA~YYpØÊnmó~gÍpˆ .¶a~›*»ê!”ÃÙ­HÛ³ú•R;N9%‰§‡Úîò‰Øõhê5…bø~Ä7äÃVcOCÆ`éîß"®ôƒà¼OÎBä*V¨Í ëÉaO‹î7’`í \r¯û~¬HÃB7{8¢ó–¥PeŒ¥ÌÈ—êÝSÄeÞéÕ¦~ùj¸-FÏ u«O{Û=–’’6÷ô¶±¢Êó'‚7¶“k6’r‰fTªæ’—ºMzÒèrÕ›YËB«cb´·wô¥ÛïÉàcÁß|• MÞ®7”N_ÆþÊZ†}s²áî%èðÅnšFàë)Š«±b,¸ògáÜpí'\RÍH¦uî 'ǧ» cÜyg óêŸÜaiOMñÐÀ6êÓµ¤Þ¢x,×ÜÓšáÞ-ÿ†þ¯ çãí ÷UB¤²öö- Ô£TÝRüàh¼´ËUÑ,ô,çkü?2x–JñNZš*î,ÍÙ3ÜÉoÀùŽ wMÉ1æj¹Éãî ôïM³ÎæÇ^¥j…–ñÕÁd#JM†:-£åŠ»ÃeWdÅaXKàþï†*Í{k¥ðĽ“"#hœÄO¡’mŸôÃ3Œ-F _Dlê6Dþr Eh!*…:'o|Fzh±OÝ«F8€®hŸšIa~Ýçe ÒOµa-úܶȥèðiäñ^aÔ2þ#ʦÔùd6:œ"f=é+6ø'7ó>€²ÉDûü¾%ø’­¸Fç;FåÂE!þõOáœ'VÖ•²ñz£¾QxŽX®ûþæ—¶(I|­Þfiíå±Ñ´ï—«!*tJ¸HUÇiKN&žû¬Ù›w:úUºé6ÀKêM"¥4±Â–u‰ÞÖKY¨èÖ`kl‚»J(ìš…"Ø1ê L…[fE°igLè•6£´ä`Ì!4•8_ú .ç»  ™—¥»›S¢Î÷¢DÄáäh®fåv XÔŠ—¡øVѺûS V(xšé#”ÏËÞÁêœbÖFîˆhÎÑq!‹‚háoޏœ8˜âzxÊSÖÕN_Ý)uºÝà±ã³j-OÓko©Ô”ÜvÜ’™' ðwø×…æ=Vy¡íäSêöÓVEŒdúX½OÔ«êPíPnBùDï'„P1rèÇòIX›šÁ½‘aÝ„S¼~VÊ9·¶„r[2ØùCÁ‘ó™h0¡øeŽÉÁß’…w']?6TïU†åjÒ…â÷‘‘ûŸÒ+12¬*7Ó2ó<¾+w´ Xñc?êlÛ_†|¾–&Q¬u5šº{µ˜%¯jF¸ePÈì}R¢²öŠŠýìºn¿š·á=‡Ý2ÿämÈ¡Ûý£ÐT˜peÿÙa{GÂt¶üÊË«™‚ôÛ®Ô·“೦yQªÐ’j¦©®šXú|ɼ¨¹,ž»dÐuòç”[†S®› 2[ÖÖ×qöƒÌ].ˆÄúÛÌÚ$J÷(~W8·°÷k=«v†¬ªáHÓN ´ëWb1Ÿ*‰Þû¾¬°¥•™*Ç[AôMrΩ%è'”¸Ý5sÈ:rg(ax|õy Ú[“z¯å–ôv‰»³sALïÞgÀÓE›È9üS÷e»Ú`Фuã@ÉÇØTÙ QöwE\‘4ѵfh)š&Ì·²Ý Ë3ÖûZ>ü°'˜=?²‹ÃâÃD$zKYð¿1'¢ÀÞ†–i%ã¤:‘¥Áñu‘ÒªgÝ':Öq 8ùý J§Qô”O`©ôeÚ\ÇŽh0\d¶N :6öñ@IÌ¡;l@”ÂTiБ½W,‹|$Ý^¹pT-T`A 3˜НŢZé )²ÇÌ1F›8^Pާ‹W(ÆÛO¸}­]nrã»äGç:j…¤Ç“(Ô¦" ^¬„ƒ;©sZ–4ÉÚ'”Rô“vÓ˧XÚaê!€5€‹ ößÈ[X— ð‚•nøáJMÒrd“«»éþ\!ËFnð ‚2( %QTëñލ¨Û>ÈJ,mã„UR`˜vÇ.îïï|¡,%ÇðìKÖÏÌO@³ª{ßå'¥\ëÛ»•#³Y¦Ÿå¾ÕXé·P†ÖI:æðì›àÇQðµäZÁU.zå˜Âqª#jœ p¼"6¼Zp"ŸKwú&›øðö¦¡¨kÁÓfx“¸‡f5X¼f‚Eç&¤æê“ÔÒÙO4øU‰HdѼ÷.ûǦ•Л·f½Ül¡çO§è‚«Rýmr-“ìQŸ:ÝÅ£ÃU¢©[K í'U앞¸åC×Î̲ëd÷Þú¾-iC†¿‘a2ϸÙE\ì×ÜvªIæ½ D \.”2h6o™làáÖêSޯ尅ê±EÕ¦õΛÐlwè{v2ÈÜ@”{÷ ¶Ú‰’l¬w·ú›"~ìÐ÷ºÁ8½šÔ”›•ñ\ÅAᜢ+}y·ØôkŽl| Žjó%ÛÁ„Ëu -ñ†Þ’ã°s¶NÃú$xÂyðf žMØY§2§1kD¹?_°Hí“>î ›–šyUK¯$ Þ˜Š«Ä¥v.œûôVqšbÝÔ aw‹ÄêåU?Ÿ—©é“ý¾®B8!ªù‚kgÕZçg³/z-ØÈòVÛk¨]áùŸ Pfe}Ÿeö$4eÆ¿² @IÌ™òÆÚˆ¤E A|šB±»¾¿º%›J™ÔÛ ñ[/qÜWk°Ó~4±…®xÿÖ'㎺™ á%`·R³l_6Ô׃.¼z‚Õ¢LÔRßÓQÏÊ!s±·‡EúS1F²Ô1œcˆyÛfèŒÕ¢gÁª’»m…Wß®W몇}ª'Ù–êV¼õÓ+«ðtÑ—q‚¿{45%Aº¼ŸÖ{­pLo/t&6”öÞÑèÖ¸vÉ“d¬ŠØÕoù=Nû2)¢¢“%e‚{Nû4)}â{˜±Ï½›¾Yçï’CŠò§^`ò)Çðî "¸š*|zã «JqO\¼ýΰI;´·&Ÿê¹ÿÚÕ)ëÀËÝgˆO.‡qQ˜öØp7 t«ñÓPÿ|,Ë÷LÂú'f£¥ZÜaêŠÛö).øV̳>9f¡¯'{EäVq¥U®/}2¤0ûeš½ß”ÊUY…ÃïNEYÈCÝÈML­—eEj¹"SY¡Ûo§¿(Q²£9spùâÀ72&?m ·6«òÿì2hòO&g#ŒÒœ¤rjãÓ¶ßp"N‡›h/âg_·’' ê•éŸ3¹¸JécÁp!PÔ¦íÒß1û¾~é_rßJÄÀ53|óŽ>p0š´R¾ór»ôÓ‚rƒFÚ ë“÷w… ¼àÐCÏ|éþÞås̨¬bÝÌ´æ¨ãïÏl°Î€+6ÍìÜÙí|¤êЩxå ™WÅBôd9ÝÐ ¯½¬ç°‰«(˜bÍ—£rz: ¯ɘØ1ðÆE´\_em‹ 3w>ðlnQ]$_–­éÌØ¯P¬D¥eŸ7'75²u 4Ädé½¾žn†¡É§$ïFÒA•Ólâ´Ô@{Y«ÿöyr„ÌI2*p¬œ(¬ª÷‘·fñ""S€`¿ü S5Àr¥1€mð ×TÔl•¦;Û§á¦BhÅR°ÜbÙŸáÙÃp¡F¦ã=AïßQ»}1¼¨ÇþZ®Šûö|{ƒ¾}âs÷Š·(÷¸¹z ã$û×g·+<Ï6¢Å3u …³d$ÞX4…è£,ÄõõÇŠù‘ÔßÍVºñ±/í­kuƒë¿•vîc… 7©'ò{Ý}…"ç¤BEÍIöjZ–ý)r!µÂF‰=¹ Þ!Ýù5%a{pyMÖƒ‡ß;H þQ˜oµÝö¸-5M»²“‚ÙP[€™ÇÄôƒ0³} 7–y$ýóÅ^ö"ÜyWXÂrcc½w*4•ûð€Bàó‘ý~æy…Ád»vçòAª{7×Àæ+ç²Û¥¸—ÿ;aÕøÃS­v£eî"„C¿Î/Ô O¢HçIÝÉlR}%_9Eîe?tki<Ïäwg$&Ÿ¨P­Í0VJ|ãìÈ<׈ÏÕ ²€ {Å`©záEǚ̞F5Œqðc†rˆ¥¨¨ÚJs.bɳ{âºH®²Zø(ŠCáÒßÅõ”݈éÐoK%µRòÎgJWš< ä ó ÔkD’Í>òÛí– ¸ÎBíè?ÎñÜòxóÓÛ;Óz.pQé&R0çßw«%Ш«ç·#ºùÉ#ü$*j:];j…3h;f›¶Qæç×jÕµd^¾'ÿÒ‰î,|è»Ëüa´`²ÅBPb^íò6Æ6 œÕÍç”ä~èt<÷à <@:A:—ÊCúÆ¢ß^ã¤Ë# ÎP1ð^4° ¡úÉR;çáç·©ežªÐ)Äç§Ü.ƒ¡Dæ#:]U¼uÔ*WL³œBüPSœ Š÷«¦yœVd%IÚgÔ˜·/¼=Z¡¸ùà¦U¨«`ù¹S9=­ê ùÃÔíƒ$|ù)HÌ™îâ¬R»LÃ=º1WÄnì68>b’ç¸ú߯q^½XE Þ®ßí«`žº/¾ÍÞ ·¤££eÎ_¢‡IóE-Á·W£„Éë ;Èêlj e¡8ŒÍvÝ¡ir 8£åþb‰¡—}7ð•K@£Ác™ú‚¶akÇ‘å3‘Uá >Ý—ÕÞÔê{ êÀž‰¦d‰ÊwϦ-kŒcWÑlõï2ˆgËªŠ¥¬L=¶y°?Üe¢9¿-‡&½§ôŸ~̉ 1ËÑùü…7ÿ€Z‡¨Ea6Á ®¡M.æ9þÂzº3~õãõÄwåQ¾‚§ ¥ŸléW)ãë—g•,U­sù©KIxÉEýš¿»íË( ·nä£72"]gž+}Z©êѯÈ:ÏUü‰jŸx+ÑŠ­îÍ,AÅxTvƒO¾ZÕ¦­Æ‚-’š¥<Âe¬/©šøNŽªpÌ=Ìôʃµ‚(3f‘¨Š‘xµ,¢VIñõ;ªí")UJ˜S´ÛænŸ–·¢¹ïn1Y"£3]c}¸ŒÍ.˜[´»ãnCOtqÓ´l<ôAˆ¢<ä=çOÿ7¾›9¯T×BG…HñQQžÊ‚—ä*ŠoˆG»—<-Lêò § ÙÉ“ ŽO:ð8MŽ\¾lÜ6ߘ¹*¸Qfæpà)$™œ¤æjÍÆN\]~»Î=O¶çF.ÈÄR\L˜3¥ ÿòù”5­’{!"2ØÈÈh4“(#è´V½0K ŽÈ %7d ¾2•´´ªm}¡Ç®Ÿ ýY­<±\Q†Ì–™|vwɲrºöe¹€¶ Ùª%YÚ©goåÁÛ‰„Mw̨0€ Áâu(ÖT8Øâ7ò–:û3¡QôDЧYgdžA{DŽn­ m<‹P1Nu%s2*à;pþ`½]·‡È·çØÒaõ}˜ïÁíE=aµL•±Œx†i9Ö«³Áìp.S«IA.§Ð}Âq‘ÓÛ›q®•ÚC:-ìÛG ±èI<õ•Xé;WÇ,CrÓç’&ª«8ªaóÚånÄ£’³¦õÎ.èÂ_1žJÁx½vS˜©Ã ðÀsuìr ¨ìIÏ©äÒ!I69IçÈò¥ør*¬÷ t†8MÞ‰WüôŠY½cÛSQtŠåÅvT#²·—ë~ìPÅ2þÊVš´—G0ZJ#×È&SµÊ7•ãÈcOãQî¸kPÿD J|êÑ áK¨},µå+—êí_Ë×î«ðQÔ0 'öý¹ùhCá¹¥Ã<°½âÃd-ÀÙ’JìÛŸˆgçqCöTZ›–IâfÚÅ®,€á’ˆr¶^ý¸ ÁR±Rû=ÂïÊ.În¤„§ToK8ŸüNé­¾è„ñÛ%u›=dㆋE™WÃá˜òqÖ¿¦bOX% Ç@çåsZ ÓÙÆó1ÂÍÉl²p t‡Ôº|ôbv*¸&<}R‡ª¡ ëÙ‡†ïÚPp¢dVHè G[Ôx|Mš/Ö!á¿#ºöÝg9ßÎ(>H˜³-ýwÓ ºèrýþ=ôM—u9`Ôžæ‹BË÷Bc ßhTØ´è:×9¼W¦Ûw:Ørç6çâ7A³êω}IXh²á²÷‹<Ðe•#\6¡t±²ûÃI„•gd”lR±†tƒéÙz]-iý9¤ÂzH<â÷й]`A6&nžøt$–9eòlóŽÞG‹G‡ô¾æxo­”Ôë‘‘V•S\[:F‡ýõoèµ­;ßÁäÁ5½ö Og%ð&çdkyú7Œáöª.I$Ð-¤9~FjfÛùÜçŽAò°%¼~7þò=¶ø0Âea\<~¨?QIjÕZÏ3¦Á0öñÌ–ÄÄæèŽKp@•íòî8NÀtáÐ0—b‚²cf–.Y"’¼Šæƒ@‘—#.B¶þ³AË*Ëk1zÿ[v§zN—W[@ÐZn°UâÜžub½ â@8Q¹Ù'¶àF—V7c¸@¶‘¬ÂlÖ±[¶ˆÃ˜µ}B‘ÅÅ‘Á ê]¦øªéŒ¥7>…ã×"ØIN˜*.âËØvÂ+ói±®yW°ê`f)ï È!„Âzn#—O»0XÈh8|¾"ÍÏ=3„ȶèiÏ`à™×k±îˆ²¥{8á­¾fKêQªxãÒ,b•ÈBB±‘A Ùd%v=R²Nit1è.%a4°QY ã.ãD3|˜ò2û$ÔP}-ˆˆ…;²ÛïOÛØûrßÜ”j¹iŽ4‘gÃAÍ–ã!¸V»÷€Nòhá©c_ça–@1§¸íɬ|l3ŽÍˆKOˆ–Õœdîá>›Ôô¢Uà__@cÓÖåou¬IF»ãÇš5Q™Š ô¾¨bÃ~­ÝžDôüL_A)Žû[²f[ñ(g.ª#r J1DãÔÄçøüØcɲwž4ð*‘¥®3»àƒDÁ«š|^‹í±ë†“r¡˜K•iŒ‹dÐ䍥רfÈ‘yUÇCÉ™Ø>ß¼ª?꣈Ksò.â;~ÑBTS!F£äÖ€Ô{–ëÃ$­ù†x'ùåM¦?/,'ìVf@ÑÆßßë?Pƒ“œÄÊC–ò°RLb VS3­uéçΡnšÚõ*cö/:Ó%E]¸õÙâÙ’[©Úíh¶Š“?Þ~÷E½{Mº.ÒM¦´Ü3^ G|dÂMz©ñôŸNì|á{W¯=z$gƒ}óN«knd‚zíËR;†E¦wåóe–Ãô‚Û°[,èÅ›¼¦¿þW¹æë^tjêàÆÓÏyÏÃD}÷„ÑÔ¥Ãw%ž¹LS~»ÄÞh¸v@É|Yù—fSyÒŸTë3Ü›ø˜‹3›ÖÌ pA}ÙFŽœòP…”wêfÜ¿©ÌcZ”[/) +9.å} à0Ç`{›+^‘V\ SŠæBöóÚS¡wÍ:èCkïdŸžÑ·¼ZSÑV «/+Oüò]"ë8_Õ Qq˜ÜGC‰ñðÊqÛ¾ ·ÖVgžý¤Ä.©žŒézZ‹šÎÀUËóÕŒyN7šøÉRÊI&U@¡&…€.¶š^%¡”µo59†ÉN`“®í'‘vcoɦöŽ9%¿@Ëû~ hdÉÑûYûãhqZ}ˆv• ºj?ûn?<”øñ lwaî™É`ln}oµ¢®Šƒrm¥ä>Ð5ÇŸ`°€jÞ댼¤Åгú!Q„¦þÇ‘?ï¼KNJº BÎFÊÉ #¿î錭ä]­Ž—¤Š©ÇBø&S „ã‰! t7ö9CTá¸÷*FùÏ,µd>»à>q}¤ùø:¹Ü!-¹.> ƒm{•î(ÅÓ†ïw/¯êj•{k¸à}vŸ;¯ ›Þ ‚ê:Ë,—2Œ“&OS–>õ¬Ú”ò·vξ¥cÍ{•-’ìÙÉ^’°ìV—ÉÒ»ä -€|ê£Gm6÷ õ9{ÕªxáÃЭg'Ö€Ùum_æ&«•n·æ8¤Ñ©y•–Mo2ÄNgÖ8b¥îHuË6ñT’>Ž`NÛÃ/Ï,W­úp™s2+k\LHwM=„uD SÞ²X@‹‘¸ I»Í—%4ý»¸³ˆï`¨iêyºû'ÿãl§Xháž„œšÊ(^5u—:ÇýM&=»ÂíÔCdx‰`f>"ÛØ\ƒúm ¼×AÃ䥯“¿oTøKÊ®î"š[>’£ê€ÜÑ]ôdœ©ŸÙ¬¦¤f$œf–öÙ%¯2iäMŠìÙ¬³z û‹™BšÆ$×­˜«$^…zW]Ô±V½ˆ/ޱäTK—ôuP˜¤±­2D‹8±_&¹}Ú>é¢zpÐ!Cëíf[´NÁM?ÑLŒ¹>Ûè ±–Gï´5DØ3˜ âµÄiÐ1ÿt++šÕ“OäS\Öš >[ÒÛq&?[t¤^*´í|¦nC#¬Ú…|”6‰¯`¾ÈòM(ªÜx\³t{ðC¯AVEòõÛæj`63VRøNðÔ2ÛJ,t)iÝšâ<0ªÍJZTNøzóÏ–ŒÊÑÕj)üü’vgu±¿ö<Ά;Ÿ)}< èd+‰ÆX¾ßnz074„ÖÛ8› AHáÁ*‡ôY"/c˜½t?ýl)¨)ÙqÈh9)1¾;.LôFƒ£Å86?¬ƒ”%ŸýxØT¸#Ëî²w:ƒ!Túf9Q*³íɺŒšjkW[Õôm›ÔìOõš½…÷Ýí’‹Æìs-¡bÖ2šPÐÈTŸ-†«%{O0+ "VÈh”ˆ‡ž…Jé´øêñCB%‹ÚÎ̱-bGZ€?XFk búž(¼øôáŠÜöº[À¨MàxNyÛÍñùÕ\BÜmÇIü¶£-` ¡ôyç&|GišÍ0qˆžcîÓŸÞ¹¹e7Rˆå£u{ ôáÎ?¼ƒnŒÍÁ¶1ÆÓÇkÉ΂p^–Ë4 7´gR)d´îv¢Èeém•g3á EØ‘ê|çÜ~Ë:˲³®‡Ž¹f€Ž4ƈ¯ƒW¢SÐÖ¦Z–*×O A•vb̈^Ô´ÐFˆŽÁG‹’q~mpU-•ð6N€¥­q+PZ­‚}:"\* ã’Þ¸¯å¬Âñ|Ê æzâížÙCrUp ä¸Ï·×²Wß^°Ç›gÞYÞpâ¡I²ÌñlëuËûÕžÈï#*h° `ú6í}¥ÊcÄjl… ëÃwÁ_À%Fš lPaŸ ÓççJ›÷Fº|àE°· ÐÝñòò¹OÃfàÂRínëDÓŽ+N†"Ž~t2y)!¤sti²*Áû™4n"s%Í—šÔŽuåà~#)©ƒ¦ŒŠ(&Ο#ê6þ¡^n}ú…Ìk¯ÀXÌÃçü<‘¡þÛðÇ¥ðÐ:†dw\•›!þ;¾jíQEô#Ù!IꚉÁ?ìâíQ'ÖöÓ«‹¾›9&AarÖu–ü¸› ßÌzVTÑäÖj,¾™{à ܨb¡ßS?pF4œ´³¢¯¨Î’æv³JZ·†ÝL—ꋨÚGFér†ÄLØï—9² C³¥.ƒñ¿ë3^JO¼ Ñâ9'I»Í@7K¨`Nêêt+^°#ØØÀ¤÷ñIê> èGÔ¿¼Ë·÷¿‹XöTðîÏØWÔƒ·èÄ«´Û„ÉOð;fz’uëÙ»ÃïÓÜHp¡‡¹î¹ÜnÇ'¹±õ(tÇë.:ÛðK­TN#35œõ×vŨa!^|ËÄâ[ØiÒB‰Kg¦à@ÅÀ‡J|S`/˜Ggõ£x¼ÜŽÉ®zGó²÷ÌŒÍ88¸ß^´Tžˆ Ü~pé»÷zN­£I†hã䞢}ŽŠ /ô¡}Ø„6’Oº`}'œô=X[›vSFkZ£SïˆIé)UíÍ{Ø7'ÔÛè-ÀÏ?%ÝÎ.9¶ ý»=ÜRFmû¢Þ&á䑨 q¤¥gŽÍÏ“ïFzEÀN¼û[QëÏ*z4Ù¦‡-ÜÈ´Y$ó°ϾöT¼ç ž¬ý.àCÜëbƒh¯®ç9‰„öÓ/Ðh5¯¦–œLµÔ6é¤E›]ÍNìÿ3UÖ$ár&>K ­/M¤ôøã­ïÏj~䉳ÍÊÚ«Í@æCOö)Op[+ve¼É¯Âù"F£¬t`3£³¥3X?G 7|wp!†>O‰ŸÈÚd¦Ò -·mÿN3Œ}½0zÚÆ‰ù5õ“ ”ŠÄΘÃüaÕ:­T’ÿ%ûPËè-¼ðyÙÇå:ÝÃÜbc.Uܸ=ù‹ëo_Oš í´Þac ™àC•}îš™ ›üqèH¬Ñ_ìƒGM37\r×öi¹Y±¬£×xÙi&@P{%8“,lß õD¥á9”òEØ;l\iQëÓ⪆½‚¯­æâ$û£XR`çÕׄKP¨8Ú[b°âªM!¾dH׫>¢÷0ßàês Ud)¢NÈóˆÒ™2Ô²Ž¯÷(p)u“uIÛª­¥}Ñ,`YqyÖ™KîKÆò˜‹aÈݧ2ôïL¼¥LïĦ’ ©vg3š}mV$ÜÝ?0  šöCSãã/Ø7Øã#;LýŽ–ˆöÜ ‚ï°©Çr´¦3–¦-×›M©5ŠDr[W)®ý}&ºæ˜¾ÀfºIä÷4Ç”>Ùh‘Ÿ%¦Ü9œiëÙfA‹}­N–ê?!Ð&¥b•àÌ)½<–[Ęà;JÒ˜ÀïêDƒÛvÜm=‹¯.Ÿ//-Z´p´œªzv<¸™(×\Þ-‹ÉŬ‚ŠIv@H{– |Ò„i=*éõü 3kà§i©Zý˜iÝÓqô¢œX¤»¤öUì°øã)ûU7Äú ˜jCq>|ŽÉ\ðÏÿvS.WŽHßN;°”^v“_0æ½®Û‰ÃT8Ž`­möoƒ}<§[å}Êt#<Š5»%á=%ËKÇ"Yñتîr3÷@‰2S‰Øé‘rs}!ó±.mïwb6 Ÿf8¹™¹Œ×¸a§à*||ÇÝ·÷*Øx©ó{y7Ø5‡üPš„šƒ¸“»~¸ÕéÃï @ý:6öZcØ‘œt·!QÑ sR’¥OW¹ tûk–%l/üës[20{«·°©@Hnâ“1ÉŒÑê䦱ºEÌHÒþH!ð¦tc+W¬{kì²~{ —}N‡ykævƒ¬µ|µŠVŸo:ÍÂ{:vb‹¬ ª"ª$„,+Ó"Hîƒ&®€P‡28€oדRì1ž"¿ÖšŒˆlÄU¹ÄB¬y 匷©&Y¤wûç b¨¹O˼ì4¾øo}K#1;$⪜"G'v”R©+‡8¿:¸/ Dá)‚Óçè¬Ï´}#!w$쿇¥ ¨ùéhòÊ/º½áÇRÔŽS, {¦·’œÆ­­¡&ϺȄ谫ÎJW 8Í[.øhmEÝhÅï½$ÏÈ/™®I_Êm®NBã=bâXÍþziE/¡RÎÈ%L"ŒÝ̤öyò5îÖ¶çÀé–í;] '×é`²üW6¥=Ø<ßÎ*$âþ åÒF™žÏ)Z;è^ØIZ‚ܾ4ú¶þÎÓµ|÷õºþð¢ Þm£`ašÍÎè2$½†³Y c4}[Â+wÀïŽòd§±1M#T¦ñ¼ì&)ùó¨Ãžòr>ËÍã$|+qÎZCCË=j\*= þv{çQˆ"úƒLÃÒ3Kªr_ºï Þn*c]ˆ–¶1y×B/7׿™I;Γ†í #–ãZ ¨.{xØ#QÊ" É?ÁñÞb¬kç«MaÞÝ73tq¯®Lò–̯ˆ²-`^môV1ƒ=Œ3e=ÃáqgS€ÞN‰•âóµÝž%h´õTþ-XF!ëz]É¢¦iƒjó•f…zÚéÀˆ£æzÓ÷Õà.ÆŒáØPêgès§ø™ýøÆMèŸ%½$ŸNãž‘wRŠ<ݶÄÁ9j³\œ!!ÞŸ6Ó]g_¼õ¶ûq%÷¡Åx¾PÐCf— a؞ʗ0ë$@úÊi»]k±°¤túH„”ðTßkoâ•ZØÌô×µÍé±W&@¸(NšÈ—Ò´s·•jÔ¡ÏŽPƒ¡Ð´Ãä0Cµ™g¥:E;ëó¨LÚÅ{ä€VtÕÅna´éy‘øbçÓ`µß?ÝXíiY“§?õvω,ÑÒÉLФ¦ô}턆—ÂÏH …§)?Fs™må­NïÕ YïXÃ Ž¶ë¿i¦cUnƒñ¼ŽžˆF·_a…È9­¾PF=eû)ºxÚ›3*F8¾ ÖiÆ‹¢¤³BŒã^R‰û`ÿ•uN üšê'^åöõ £^?çÁOÔµø`¢=¢Žì¸ÔÓd¡!€n¯SÎW A4.âÁ¤ÑE»Uwí;<5°M 2L©Pdé>ërþŠê°7Y[~ý‹÷p+¨¨ßŠwt4˜NÍQ;×øîoº‘¨oÕgÝ‘--¯j/D0ÔÒ,+sµÓ]¸€ Y›Dœ‡ØÉýøËÔ¯"øþ®¸Ž}FcÛå]YJ"ßÜ׸ZÁÛ 4¢ÞÀ©GÒÀÄ)ʽÝ*3M €•'À,©1 =鎡_)°–(ë ¯g ¨í†‘kË⶘…¯Tô;KØO—è¡_çupuÚÚwà rÁL£¶ÃX×È}£!Y=ÀÕÙIªl€ãþL¸Žœ=»H;›„ç‡í3‰¥2"Bá0²z­ºôµë~´ŽAåap¨/ÅHwCgqTÕ6Û0ª/Úõñå#K]µò¾é±H Yõê oã«È®A¬¦jK*[LˆåAÐÚÇL?\ >0ž;íŽê£n¸ZŽ\5x‰ ñXe©èˆƒ7œYÁ©´;_Õ”·)áõ ¼Ü&Q¢[ã mú…Ñ£Uf—=û`Éîו¤Ô ™ÞVW‹4´• ‘¥#Hé¢+0ï²Ä€LU1¸GŒv‚`(þRúpë°?¬—ÑÅÁ¯êŒ÷!íS7N4¢cK¬’93ß_ÀYì#ª˜)ªš•i™ Ÿu]uïñOj›ÎÔÇvw.‡—{~ü%†Ä ö†¬»çËBëÜöcçn°³÷òUê³Qµ=À6ˆ­£PÿM~>@ü¹nâtÔ¹) ŒÓ½í6õ‹· 'l.'ÅÄsqÕ£»Aha§wöéjnïñ0ª,4»Nå¸PÜÜ'\ÛP$L@ ù)ˆKkµ‰ÝØÌ·I$úóˆ¸\¤iØø!sƒöiä’Ôdˆö÷ൗóZí:¶)ÞzùÓââzô©ép,‰ôáG²’ú¡o€iJ:ó—õ7ææ_-[}-Ì ªT[ð…_/±®e7–0þWj•ãßïŒË †jTŸÆEí÷}¢©&<.|b01äœ$&]EJ: -¥òy4JÃľpx6HµÊU’áî#‰5JrK8 ;É3e¶tîm˜#L`;“³äÌpåøež@)×ჲðd·¢&¡Y¬>´9ê½û²›X±ý÷Í/V¡dæR¿“€è´Ü×: ƒÍ¼"òí¾™¿ÅH`•ØñøBöªÃmY5Î~ªøÅžpV„½„S%=TÀC6{ùƒuÀ;ƒÛLï!ð Æš,º™åÚ{°„Þ&¿(‰èÇ?Ts Ï0ªzª‰t>ž¢N•CInÃP%{§ž£Ó„(Åò=.ÂýSõVímɯÕí»Â½[|è( Ô¡‰Øöo¿ã¤ƒÊjj{_ƒ€SµUgSiœDÇ ÑµV lÙZÔoШ“iÂÍ#µæÞr™ADå²d™.=Wndð²ŽíŒÜ9`Mè­áÃIYkGgqÞÆ¾|@GªÕ|–i¶T7W¬†&ºžaÕ"?.Ò~œO–È7³8D•ª<Ý-šˆ`3È>ŠÉ¶ÐÀRX§ÈV°Ykh¥cpûÖû§DIÓŸPJÁ%6èS0˜P±µ©áÈ*gbç:ÐWPõ¡ ¹ˆ½}-ie' Ãj"ïAˆÅÙHhò„ô—ù9H·åî6¿½UX¾ –û?0 “N„QN à$wÕBÔÁà™]íÔ.C)\„à-…ÆQû»¡è8—¶n-àò¬ì?Ãþ/à ‘q­)ªƵ]›²@¨3ñõ+¼éU x¡š­. lpù]Hh„Ý6k C£Ú.fhàãOJm[ÐmÏc!! L¸ˆ¿¢ñF)©Ì.‰Y'¨Õ‘ƒ©‘ÚзÁðõ¨÷«¥Ü\dfrHIVúèE)“Ñ ¡Q÷½g–¬*­%õù- ±Ü\߀ù@žP.þÀjÄ'/óØ®Šâ\[IU³Bq±‹>ÙʇµM^¯ºífóûøî·ÿßÜ÷g2Gˆ‹kÛºÈ#–A†uà÷2Ö6¸ë;Å>"²“¨XëJ—Ò {ø«®–š'ŠƒÏåñ˜’ºûÏt3óûãÿÊn}¨ü[ŤPQ*Š©-cã…ù*2Ô˜BîÀÓF»ŽÕ‰¸ RO˜Ic{Øô‘³dùh§ELx-­¹1aT;±(†ýa´:‹TG)Ãòh¾¢!7-Ü‹’2ƒ”o‡Í2™üoöÙLp#`º7} 9^÷a¼÷ë1艃ýâ/ÿUcÁ]2®6æ xÖï%ÿ”Ÿ’{w"ŽÊ\«§/‹Ûû&Šz GP0ÓJ'ÀÀ$êGxÉZ£0!ìT²ÚÍà Æ 8ÞÔKÕXÑ)}Ì-Õô¹X›d-¦É©Û.vI&†€ä¿§gØá‰övn°Ü¶^C­&{a"ñzZ? HYøg÷]¥èêHN›Áæ¶Ž\CkFCæ ûÐ'‚vº âVw=ò„?³Ë’(Sé{ùAò´ÌÝ—a§4[ŸH¹˜N¸þeWÅiÙ’Ëñ9$/Šw~:Ó4[ã.¡X`½áSÓˆ_¿$GÞ° óýi"ÁÚ=ôf£˜øÙ±|]ÏÛΫGÁî:ÐínŲû|+U°tα¼ÜË]/’£úD¤rÃJ;¾Çõ“ÒÙ¼\È£ÜEÔ:ih™d¸€aNÝ{ÔY22Sg¯ã{ýâDr+j}JˆÕ*zj‘´¤a”ßàäˆ×/­ß4ݹSb Mö¸Þ×h Ü[v1ýty”ª¾âZö¶í«nσŜ¶Ÿ š© Àg Ž\Õ:ºiÇ–E¨’‹h>}S9÷_Ž!ðõl7g:«£ž§bD“‹Ò­)Èë>?ºí\£ hCæA¯dÛÃ\j%’ÝÌÏž¥¤4g|ú'¾`—Ìè‹‹¬Føã×s)cb— ®Ü%è='£où_}´Ó¿—صäè ô ’÷Ùÿœ½ÑØÀÅ{äáŽM­3ínƒ BìÕŒò€±´ÿ®Ej R‹”ŠD&s&Ië!"Kôb÷¨€ñâúPé•úÐm!u»£—’¯îæðqJ@ë=ÕàÉ䌚ûÚC%6¤£Î™F­¨ãŽ<4Ž9\{y¬øQPÞ; ׫7[%µ¶WóŠ„ÿî-ÁµÐb!M<ã‰\;Ӱׯ‰¹ÙŽl(õALÖ 9Ì®dÇn#ÛÛJô,ám?ÊTɃ﫵åjH&ª”ßw+r‚ó…®ÝçW}MóÝ·…­–ôHDÌ4€·ZSK•Ù`…Ï-ã,×P°4i:c^*3+)ܨ-~bÌOO„³Ü¾Å‘Òòy¦à¸Ý#ãhs¦ýÌ^+F¤º’±¬ç!é•…öI<#¹xßð®45};½²k¿ë…mí`àÒö@ÐZGõÃõý£±ï®çVp³Ø‡´¹O@FžÑ¬¹™[H!ÀQ°¬ôÚá.qRË´¹h€Ñ9M¡N.}·HÌGãªZyÒeiÆKœ±8ü›š9žŸýÉwÔý|T?Dˆ¡Å _‚ß(ѳ„vã£Õî'ÃÏÅ(U±ÇiЂ½A^¥nW”›YëVüÃ;¡õçRLèx:Ί§²{I,à¬ÐÃT‘©[|t·œS¤@Tq Ÿªš¿bE¸*²çîµþ¹êjàÎÁ)'"SËRlÎLÚ<¦{Š„…¥¬!ÉÒ»1‘ÛÕ#C~éÌßHÝv×Ó+Óˆv(Ùè]»¡ú¤Æ.¹Æk?áp&ã§ChEÜ ‹OUv˨Œ¯.Ë|òª²ãÛ(³ˆg¾ lµ‰‰UãçíA΋`éÕ9«7õ "éh塼˜½õéÖI$«ÈarçÌæVR|ByÁœh6mJéP©ý©2?Þ³¥ê{Þ >"Èû@áœnurðÌñDu3OÑ'“³Bx¨ÚZëÇ5¾Gî#)a~¸ ÿÃ!ϳ˜[öæ`3V‹ú9½5¨yb;!Bæ’ÎBÇùy&”*½áÒ“(Ç8ò`rÊ{ãWôW×â®AÊCN¥rX¿`¥T`!8³Y[¾õO„bô0ÆyôÆ(hσø? ÛöóÄè7ëÅ8 #¯où:ɨQÞºÙpÿj:È*.Ìõ´NÖÎAÓYª©qÍVÖ¸.08°Š¡ÙÛÏ«ÏraÕ†¦›’ Œ£ý™8ù%~#Š1~ï\MÈ]Æ+r-4œL¦•ó‰<²Tt”ï3A¢Vúâ™9—Ç3J ÐâÉvŠ,ô3¼(Z©™í„ė̘8²;´Q¾WO·½°ÙñBäŸõÕÒ™»h«>°;LÏ6B%4ª#¯Y[–tèZb+t¬œ ‘KuÊ?å0}xÜì^aЀ] @€TŒšúÙ&E¾Óu°¥Dm$É]‹B]—õƒRyT‡1ñRò†¶Œ(Šl·GŽÝŘãZ•_ºÆK‹`S2ŠåPÔÃʧ׊Øež•ªR± q¬Câ{°œØov (ïpøÅ˜¶åáv3£|O¾» 6ÓNÌKYÄâ`‰U¡.7,!Qü^½ªø;èH÷&¼mš(Ç“Š[QíòSÐÔó´YhðgÀÇÖeèÎ%ê$ÛïÔÌ?R¹rÞA·;Tçò/Õ†–¥@ ½/tÔrYC†*¶ÔÈc[YÇåÍýÂÿ«»¬_§ûý§ÿ¦%OyH,ýÌ,& Ùdï¹ÿs¥j=Dê‘Êz¬‹WQøÅ–‚Œ‰öU#ä\÷NðÀÔC …½sãÖ?Dô µ+ììBY/U>ÞÚÿÿ×?åzkyîò Ã¥ÂW·15/Å×tÀ‚ð¥¶Í±¸(Suõ™€ÚÉûLðÄ/ •惴v?¤~èÌ”Œœ©tñgRþÅ>ä\„nª±bô³B9ZÖ7^]uº‹«£pR8‡ëªa{¦ùu‘„o‡ß(øÂblm=}Ëvc¢£¼ ™„#e½Â‘€V9æLü˜³ "“Þuð3“¼áè®}¸áµºrÂW2ðⵜJQJ™=›ª­ÂÕ¤“\5»O§ob}RУĄ ñ#O²ƒˆYŽB©xÚIÂ÷S|Ox¡"À¶Açm›RºÁÀ¦#gyÏ¿”Œ@'È“)0y²é^…ýøW•P²n ˜‹Ìî0»íÅ2;Êá`RCîs§‘¸ø„Y—<ÊóÄ®Š~—ÍC ¼Ø$Foã£(B÷$eÀã¦Ç¶æçVè¯oçN¨äχq¾M[ !{¹´V “vÎ ¿£}Ã8ŸSž¿³”oóåæ±Â© ¹—‚ Ôæ­©Ÿkx sI_±  AIY0)2дG ¢eН Ò¶;\WÉTl_Ë·™0ŽQ¯›„g GMÖž½\—@ÄÉH¡ë!xÿ»ÜáÎ6þ)œh(£I§Cg}BšS×>h”q5ئf³sÜ=M³ÒuâÓ¼×`5uE¸ò§øå RpÌ0¡6xeÅ”U3»pX²qV[*·…WútThF+rvRÿ^ªªß}«åd“÷ò³º»”‹MüXêƒÒÝü»þ­íIºßÏÏË7J«Õñ+]OÏ*ƒti}ÜÛEÜên3Pþ_R[}Š!ØèÃ(\}ݺ²¦ÍöÆOk±(ïÒ4üº£ IÏñëWÁ J]ÍKÒƒsâ—Sõç@­!5ÞY„ÛU:¯m¯ÀEY„ñ&ÁqsɯS#¥u•öewžTfÄ„u7ðÏò±#‘cv$÷í$VØßh¹”3X‚D¾rŠ«JÔÏ.0£-õ>—ý8y‹‰åÍCtuo2ü“Õäå!Ï{8¤ÝaW‰øÒ‚|·ðrlK‚ãQûS¯ nÆ®kÉÌ‘1nŒKaÛ(Nˆ†¬L‚0™ÉçÛ õƒZŸ<¸óðŸm5åÕtUBç˜tT2>oÕôÿEVH³¯ò«£§ãÉCø—i§î‘ëÌ´6µ/Rë’*ýNÖr’ë*w-É“‡>Gôë y¡;ðS‘9mÝæÊ.Œ,+n `è¬R_zOH/hé×Mþ§³äŠ¢m7M |<Ò¢XÎrt¡Î_W$wWv­+08^}Ó DÄëüˆÕµ±¶ÉŽ(æZšV7Iñ]L/[Ù‚š\õ0OìE;Ì9äG×CMÆ|ˆmÝ/ަÿÊÚìQ}£mºG4Ô„òÀCWÞîZáX½54kï¨w™*~6–@ºbˆè““®I †ÈÌþ¿A¾(káZ'»òn¶Êi“we†"'ÙÝït–³Ç =Ì{$c˹{è eŸƒ«ñ§\/íçT’ö6 ýiš´<‹kúØE÷éät*ÖžÔH^—ˆ ]ä·2~@«°3ƒÊú=y³®æJQˆ›÷•ËJˆ.àìîí¼,Ì@ü\ÓŠmS‹G÷ºßmöÈ‹‡*¹õðfÒÒ2xív¨Œ`£o ¯ ¦õàq‘ IOå]÷áÀIß^É*2„j"¶æPñtœLœæ4óÀSÉ/“ÁæH-| sû»£³ëëÙ*²ú/’ÇMp…JGޏúÑçŽÌ6Y;±±><Ñê­[l8'®k³>~t؉?²mjÜm&‘H¡ «ñ10êP¢(ü†É¼˜zÓ]›Êå¨4‰ù_ZÃùª[üÊ[«mO¼B ì³_ôk7ÎëX.A!3ã#ÛŠOÐ4J5ëÎÇØ}þ¾KÀôy®òx¤½í¤°’KLÌaä fHq›œ ¡\Ë÷ˆ&͹‘UTYùöŒÞ¿÷í#f;kÓv@C&eTö_—Á•Sã‚( -}Áó{ŠqQn-”B‘¶ñŽ+åBÄï` ›ú3ܸ Bål§Õņxµû'DE¹ÁDï°© ÍCËî°ßW "ðj¥,JZ‚¥^·Ã<ôm=¾aT=qð_£9µßU1+0\Tr‘/× «¬`³Q^—‰_ǯOl7&q„·ŠàµØøl5¤“Ò¿øxv=î}á,’Ô«iZðˆ®ü²gH \ÎÁû| `ÖÍ·°œÎI·]Éô½áB±M*;sɰPáT­ )‹hFXËYç@ÐUö”ˆ¨ &· »!¹I,òn f®çìŒ.ø/˜SáÆBV‘}ÁŒ-$ åj*1Ãxá^ö“êF2}UÃEÝ.2¯›M/Îþ3ÞHÔkÇTÞð£Ðp)ÜÇZ<ÚíÝz»L ÕÒ#yQ4Ë 3ìÝøzd —–pêrˆ«ûŸ!a¨Øï‘[¶\B ŸÁXA†å˜†O ŸKÀ-¤h–¶ ã¡Eߎ‘‹€Z±‘]Iw“ìh(”;Sx¸¬ôL†mä)¬À[IÖe8Ù°gý¥ªÿû<0:ØW ½XvÑè®FzŒÁÍèF—#Â~ùÜÐ'`ä¸þ·Ý˜ØN:ÔXÙˆ„ T__­®‹[œVFz õQÙÊ[+T)’r\Þ£A7E:V#vþ‡t†‚jì˜H\Ȧ¹ü6ÅY7ƒÿ~à.«„x£‰O­ üƒC°Å¬ ·stVtAâk†Zîq' =;0#Óœmoè ¶ØGµ²JØ[+ßÁEZm^lÙfSj¤¡ßêã–×#ÓÈ%˜—ÂÀiŒvH‡ +`f7™Nü‹ä£xžÂä#ÇmA~bäNr†t0m'FÛʼ¾åAÃóbnz•ÍY_l Ëªd-_/ÂØeºŸð’°ýqÌo™?Uþ¡5ËJ^±ÓtÀ¢ùZËMJ㦛ƒdWSnГýô%5Âc9 ÌÃO5Famp‡0Ú÷mks£êt¾Öõš+Ã8÷¼måL©«1DdûÖè0/˜Å)ßnâ:ÅìaÅ”r²y—K´ ,˜A„Áz±jÞ§$HÞ²å2áóÀ’bÌ%Ú_ªã„æK¹½aó1õ=g¤xw²ðƒ÷P£cÁ]¥Þâ„ê]ù0)pj,yCËhÿžª|ó•Tð„¸".–ÐZ¾×ye¦mZ'Œ=%DáUÔ»$Ú1_Q©°†UZ_Â)”³tð†W`é,¿aSe¯Op5jëLÛUš9E–â_fÿ0ÈzºœÃRoXÂew­ÐÃ8šåù¾ø7®…ÊdÛízJ[±Sà鎅—¨,ðÖz`ƒR¢8tü]%µ- ÈY­Sš ûú¢Ù`¦<$g cÉe ž¦ jÐ|»$B@åm»¯·B¸‹á]ä'±øn œÇÞœ—©î?P5£ü`¦)¿ú•Þ\0…õm˜ÇDOÉ „Õèiã#µ{§`cž’s„@˵¶úNÖR¼rêgƒª;LÅìêUû¡0Vbý`Èìb+ã s„Äŗ³Ó7ŒboZ¤|0 ¹4°?õ›ÕDU£b¬ï¯ °¬Þ($ÙæŠ­2àFjî]àk)¤îs ƒ^Ö¶ÂQ‹ôXWš ®Z^›íJƒ??èï£ó@"jÐ:\LþøDžZ@êf5ˆnã¦Y 3ýx®^QÞF-–5÷7¬]ƒNí‚¥Á²§‡óBgÐÔ µÀ8 FöÿyöB] ¦éPSÅþ"”ÎSf²ªQ<Ѐm£c“aꑎšû`É%?º‡ŽÐ¼‡pFodÄTÝ»›l‡&oPH^RÂS¢“º™BüðnÔ.ýb`SŠwLš9`8d  ø'dùUpRÍZÕñïoFÖ3 1ö8ψN+eTL°^)< tì ICw£ÞñöýóÙÒó„ôaH2%nÝ€ÕQ2Óh;\îò?:Ég¬F¢ùü«ýµä «Ï¨ö£#©ð: :.ªrjr! Ä©båÉ@ª8Ë*̶VùÛÀ14ÈØ ’¿Z˜©5üÊÛ­ï3á„þRXÛ™™7g _>züiþ¢XÂåLDw4\†D¾—Φ'ÇŠì[}Å6~ÇN•‘GÌzòä“ö®EÜ+×yÔ¨ÜÇ_^©(8`uQ>.@lˆþKΆ.Ó‡fžIL¿‹½Æ88LWA ¯U< «ª/Q½=ë‹ü¾ ·PB{*§¨Ï†¤š¤N%Ãz"jön9µ˜!͇¦{ŒÕ;‹*PäOûs-ŸWÎNr|>åAv”Ld h™‘(;m(ï&•š!}•þ@ù±jôìÊ>Ú°Pã×&Ï †5' Яƒ^k@÷ùe](§ïX1 ýcÈ‚«%†¼òr|zMºÈŽ&¬2÷[‹SKÔšsy¸^Ü›ÑÜŽÊû³iRj (},kˆI®;.¥£ÃkJøØn·_Õ-‡Õ§ž”Îß—ÃÒ5tMó â4òN€tªZÁEs¡jAóUæÕãÃOQ‚‘_o{åÆ$alxr®H?^T!Q­ópðgåÖ Lm‹°pj²rÕϨeÔ˜CŠ\5¢òQƒ$Ç"<×kSïPDJ{+ÕÁ™s´º›¾Ò(µ–%GýD»} dˆ¼–u,µÍÚ5ð._GyT‡É€¦cÂ-˜´t¬Ûƒ¬Lnð½7Uc"L¨DAÒzËÇ=‰WÃræ®H"hKZÌÉ‹1tدŸ¢#ÕGÒ> stream xÚµTT]6L—”t3€tÒ Ý % 0ÀPÃÐ%ÝJJK§H7HJ "( ÒRúø„ïÿ¯õ}kÖ:sö}Ýuí}Ýû0ÒiêpJ[A-À P'8'‹G «&ÿÈàááãâááÅbdÔ…ÀÀÛ±õÁ0WÔIô?²00~o“ÁïÕ Ne7 ‰òðxyxDþv„ÂDr wˆ@   u»b1ÊB½`[ø}¿_,–¬ ˆˆǯp€´#±9Ô@p[°ã}EK@j ýþHÁ"n ‡;‹rs{xxp]¹ 0›Ç¬Ü  vÃÜÁV€Ÿ”ê Gðoj\XŒ][ˆë_€Ôî‚÷ˆ%ØÉõ>ÄÍÉ ÜWè(©4œÁN9«þåÀø½9 ðŸt¿£&‚8ý YZBAN^'€5Ä ÐPPå‚{Â9 '«ŸŽ Wè}<ÈqYÜ;üjPÖ€îþæçj ƒ8Ã]¹\!?9rÿLs¿ÍòNV²PGG°ÜëgrØò~ß½¸®½ÔÃÉçï•5ÄÉÊú' +7gn='ˆ‹XIî·Ï½ ë_› àá€]`OK[îŸt½œÁ¿@àOó=?g¨3ÀúžØb ¾ÿÃòq¹ƒp˜ØÏç¿ÀŸ+, `±„,À6'¬³ß›ÁÖ­ïÏñóÜËàùùûçÍô^aVP'¯Ý1·¶’‚œªûoÊÿ€22PO€'/?€“WDäà ñüþL¤ ‚ünä?ÁJNÖP€È_ýÞoÔß=»ÿËï aü™Kz/]0€å_¥›ððXÞ?€ÿÏzÿòÿ'óŸYþ¯JÿߎÜ~á,9üp#ÄÁë·Ç½tÝà÷c ½§ÿu5ÿ5»j`+ˆ›ãÿ¢JpÐý8H;Ù8ü³‘Wˆ'ØJ·´ýK1Ùõ~ΚÄ ¬ u…ü¼]œ@žÿÁîÌÒþþq½—å/|??–”w²„Zý4^AyaÝóýJ༟H+°ç/!¸¹œ ðûÀ==?€5†õóLyÜ0%Øl ·€ØØü„!¼!ö`ø/ þ/Âÿr_à„çîü/Â÷òKÿM'ð'ôß|À?¡ÿ$¹/u¯Y° ä`quvyýƒïI9ß_nN?›üË (üà¶@¡ßȯ:Ĉüù3èþÀ YýTî!@Þìÿ±óß÷åêrµý¯³ð=W7GÇ_Ÿ˜{òṁl黯ÿ5ˆ÷ ø{ýëjƒ=Á–X ³PK±»º¶‹iJÎõ1‰Œë¬œ> °v·¸è©¬ÕYAŸagÒ©C=øK_åYN¥>ÒÞøì47 ‡·$kµ^ù^›%jO®·bÍO ŒîH×÷ScRqêJmøÞ¸øêÚ#7#v*3湸 ãjæ^xô)zÖ÷—-¾›]×Ú¨Typ]6Å«cX2ÍøÊ"{†Œ ÎIÁFpè‰7}zö wüŽV9‘Ëo7–¯ÈÇh…7îrÆûS….¯kù#r#2jäS‚÷“L>2›iʤs>¥EËÓtqÖÎwŠ’Ægºp{·,f lMðû¨1W•ÌLê® ”'eç½>ãPQ,°à»Gîåi…¬š• :r“‰¡®ƒ{Žã  M^@¨EÑÿó+lö >ãþ¢Ð—B1|ýÙ$¢Lnê¯LeÖ0•ÁŽÝº_õ°|‰@RFPÂUÐàFµ7b•E*¶Lö.Á&TôÔÍÝãeNLÉBØ… Ólt…Þõ>»\¥tQÿÊçézš=êµÁÍlO±FSXöC©ÂDô»¸Ü‡¯ÑS«Vžï­û[ÿPæÙž¿ôqOQP;É¿¸øÒDŸé_ñ 5iÛã¥{Å—Áéð[b`ãÎmߎ¶£òS{ L{”8¢™­~ ±\NlÄ2Ù€ñˆÔÙáë3–½1â) Uqƒ§Kø˜¥$ÎÏ _BÐI<^ έJ%#[¦¿fV"žÜKùÑIïÕXÛϺlî¦TðP:uݺˈ~ê”¶ÏÀxMƪªY]ÅKñÖ¢Äl—Ì4ÝIŸcúÇ9!Up»ñ4ñ“ºézýPµ$; á¢Q€yø©‘ÌúK–‹MÈj‘ug[`£±&¦b!k÷ó 3¬ƒØoíÉŽ æaZ;éǸ& h³'#JÞçOB_×x=JÏCÅn \àâ®õ´æËÄG?]Ü_}ìý˜b£Oä\}2Ëóãw÷‚Ök]Ý96êV%U¿Ü7.T5_J-<矟Q»áúµ'T1m‰ŽíH8˜ÎÐ쾘„Š655„oÊ'GWBKöŒã¥Ÿ¥ßœáD §sã­Ëkн;ÒÞŠKÁ¥dé]¯B))K7úXÌÆ–µc[Ô|€)â¤õšöS—xéÆaX6 !­øGĈØLJ_ö0V¿Í‘p"^¦×µV4i.Ž–×Ÿ¾*áÚÖ½Ùì]W8+]qFèÔ£Pç,`‡Ð:­}{ïëSdIaíåËÏSuÕ³cê®.yô)Úˆ`ü˜òìR½94a.õ‚ ¢˜öÜ¥8¯Ã52›Ï߯ó.2@|õ¼ÄôÍ{÷œªYGt£óý¢¼!ìÌjÚ+‰v}[C<&í[ŸJ:ހť¶Mæu˜ õPm¼Elž}¡Y0ÙÇד_1¶jnIrI»^SŒ®î0wIEˆWù}pÕT>%<7;»2[èS}Òí”F¶@Žå1*•ñY+|…c5»ÞŽÆ«|–Vµöø ¤ý#rL¥B(f%c.>crž´[_ì]Íæn%»1‚Ì1Uj'† ¿¿˜P^½@9Ô@I缕iŽ/µtrùÈXu}ï²üìð³O̵&«þûÿW2™@#SjÝ«ØY^"°˜„Ô¡e§Õ‚X¾ä¹§34Kòó±·2V›áÊàŒµ±°>» õ$V|‘ríÒÓ«usHèðI”´ ³xÈÜeoÚë’{l¦QÐ"´EôEM…®S †Åu›ÌZ|Xž£õ‰Ç²ÑÎc›†’¾Ñ'hE$Z@Zõhºu1áR?¿}>^Á´ÍÏ"ÌÃÓtXzhm/KNd˜[•¶äIó‰YÂ3¬Û àÉ÷× þX®¸%QÄ7á—±±õ…íÏõ·«"B!™ÓÊaª+d~0&¥’ûÌx}Ê@R@ ¿¦Ūš/Ýödãã8ͺ†‚sVM9åÖ¹Ò¾gdY™ÌÒdûå|ÍV2•›Ï(/cÎI;8“S ×AëÓz4õÜ‘²l&¤]PüîÛE?ú!½ÜV§ÍLh…:ÂÍ.|\¸úxÉ0»=‰âi{ÕøÄvMåÙThGdG·¨5iùÓ‡jÝK»¸¯‚XJüáhþž1}›'–¥ìeæO,×Ü‰è³Ø'é6l¾Æ!S;à“‰1ÚoŽ5ã0żtᝀ z˸¨öºE:Ip6LÝ' ôcKªi,™ÜU¹ØÆc¥¶ú‚u›7tY¯du ›ó½Pë‰AÒ(27Q(_žWµÞá§ü¹CP.*I·ê.sòJ¤u¹Ôjæ ÷ù/Q·F7ÕvÔeêLƒ‹ˆ¹¼ÞBN øz¯0|"bÞ=¢G £Üš3¼6-3Ï£ƒ|®ëjBjœð|*Bôu8Ü«—ú¿p ‚ù~e$Zx<9õeU7@¶ó[Ú´=}A"-ÑWh›¶ÞGܬ`Äš8%?†yŒ§ÜÀa"TT~¾Hã£"È žVõÒÔãÛrÎi¦¬tYN*³é+‰«+þÔê}yé^‰ÂÚ1Ñ5iÐÀ»þÓ!ã¯ÅŸ¨A lÍQdI£‚"éFQ5¦Ã…­mÁ¾Õæ4Ãã’D$Ñp÷#…Í|ù1/ëÀ5m$Í,÷çWd ÷Zäþ‡ÝR^¯£ƒD¦- wˆs“ï.=ýÃ|è0G ¼‡ÄN¡q\p‹AëŠC­7+þ9Ã=ù5ŒSÚ¾&Ø26uÆCÿjÜr³)&‹…k˜8Õ )è%ÈZ;!y°ïGÝG¬(´W9"¬ ´qo›O`;ÏIÚZ xÈQoÄž×\åÔK>‰U'mòYÜÛ@¶¥ÌPJ_bp€4lzÕ'“.`<ºƒ~o€“gFAž"‚zóöƉÐxsÅoêÓ’Àƒ‹/ƒžFÆ+­…Nâ¼^™#މY7E£þHVÓͬp|.ZóäÕ|Ò¬ƒ!ŽBÚ€}bÕ»DЍ.rÑTE"ï'7!-ßë½÷"} Œt€Æk}o0ŸÒ—> Ñý8LÜøCÔªóm-¸Y-'hn¯z¸Ú]E÷A19Aj§Éõç ä^Ü[KÇÛú.³Po#Ë/þ~t›/tIZšëÕ11ä“Êâfè;¿HØs<>á\Ã\ÉK ¥\#•o˜Ž©I˜!©ÕâùGCàÇÁOŸRk°4á`ц]˜K`­M.œ=,L®#I¬«f"¦gÖ½®šпûÀκjCßCÛŸb+ô½èl³Ã|i“‚(– agñ²^!Ü·5’CÀF8´ lNká9¤ßÛhÅv+ȶâHtÕüXjÍj³/„¤¨¡â}šŠõ|m£«S'ÿÙaÊéT­öŒuÂî›[ù“̪»WÄz÷×zé#b¢ëÆZGÚÖEæ©ì¬:Â.=ºR‡M¿A<gÉ¿Q5Ûoj¬2Ô­>6ŽtIVÔÈø¦_o§Ly´I»¹½{ì£Û/g*Ôr·3thµºë“|Y‰1EþÕNü=XÍ™0,ò1…ðÕ9» )޳‘©pSgo~s¥‡¥ƒ™<Åîüu×Û±çŠH ”—sÓj»{ÞlW¾”05"`ËŠ›…kÝè ´–>„ÀúOËÎlW¬ÔDhº>8Q°µjÖ:¨â²V¢,>ó…”oÉ´x¢àñ±Ï¤€Ú¶v¨¡$¡—&ç£2^–¸Þ$Ù¸Ãv|pcã‡Oæ$ú·0SõR1ü‰œ·ÞËQám®sUØ *%W­XòÛˆÏnµ’®-Êl·\í˜t"ÉÓ”‡ ØeÃÞ„á‘Ëä…[=#ì÷(ë‰BZ€469òÅÐOy±Éè%û·±LÍÍjI^ÈÐ…5iM¶ÆN<2²X©‚EEò’gZ…èL“?•ô ‹aÿš£:dXª<þÌK x9¼‰K Øa±õÑ«£¸ž×‘;–ïq(p[­ePGMSÓ?¢ì±ÃÎÒ÷ :KãÅÚpÀÒhp°`Q0U|øãsí W?X¡Î´T¼¶.‰ÈBÊçýP¡4-"—NÎõãh×™jÁÀ+ÁtîOß:Szû 5žT¥W ÃQOÆðEíö×±„u 6âQ®uM<Óv§†5lI¢6ª_ÌêO)M.x‹=ŸekJoÍÜ}ö¯Ø¸ÈQɦEuƒ'éÜ%š¯(j›Óè¦Úðí>éæ_Ížcž«h㘗-Úg³7•/“¯.ã?´ó]mZ‚®´>Q×Ds!ˆLx¨l3Æ?°·µRàsIó Iãý“òÁÇy®­£cTä“• ZE¨ñ™¡{m"—R¶N{ >±Ý˜^ƒª{Dc²µ[JÛHQŸ¿£Ö«Zkš^WÅ#µ1‹ ÖmmCÞÕ¾ÇU^¼V‘(oƒÇÈ[õðRP^÷v毿7#‡I±‰³I6®mÐÆ'pízåšjÚÆ‘ªÏN”O ß»<ï=Ø€Úì×Õ¨Å5h~áŽÆ%ØîÆ:1{:4?¶ÖÚ±sc–þìì&d¡07Dì0øþT±MÐê â¼Ã? §óˆ¤Œ“µN~‡”rzô#K·ù"hïÀ,<´ÇîY4çÆ$³±S¡“±†Q¨ÆÚí´¤^\JY@IBŸ·˜ ´Z†Râ—Àm†“ɹ2!—Ë ­££ÒXÓbŽ®U;“ÊÀ~=ÏE§ç9ñݬm'¡'1V$ç²Q«Rü9‰)ÇMdë eÔ%sLN\ô3 ±:ú᪪E;_ÛÑ]@ˆåÚ-*ãGOÓò¹H1”ªÊî>dìCÒöuÐÞ› m¯°\œE£¢3±½‰qgÏ/æ¼ñqéF¸a×z1ÅH3Åûü¬ý¶MIjèjV}£øÍI·³Ø;@þÓî§W‘M® 2ú}éòŠÆÁS0ìÅê›$‡8du¼¨ù±Ãض* Rr2ÏPŸ/WéYtf™˜Ê—º»¢ûöJªÚCë ã4ª §o!ƒ ±‘Qž©£,‘ÞÀÕKb«àÞÂè˜\Ù‡Ïé³jU0žAB{Eºe}ÏM©•¿­!‘ò¿r†ÛõGõ&ʦd¼ O ŒÅꫤ˜V¤oF®sÓhP¾a~–¢«Ñ†Y|—¯å9ªìÎDšBד¬6¬Z~hß ?W .tN?å"4÷$ÿÎ>O”Ìëb$Šb÷µ¶x n FÖ^£R&6 \=P,…íºËärmu)m‰Ó·CÕ0Bªøì“9Ÿ’1õJÄÈ3°õbèëc·ç)­hj ï=?ùzƒüxz%‚=ÃOfáˆÙó°Ðr°þr¸c’KӼ΀gt’™÷8Œgcv aÌýÊÃËíðb"(`úòu?]•azºwæ,ýÈM°Âg{íÑofÆÖ9*_šÛ¯2Fg(¹Y€®Lnµ?†»‘Y‘/£âŒŠÂ—$›jv ‹uâ~\½â6xê@¢±[eÚíSj—€ÕUkžaé웲¾-a¤‘9ÈrÀ^vc¾ó«EÇÿeÖ$M¸•-Æ;¤ÎÙrSýE`ÃÌtÈnoþà 9–1ã^n"¸"– …¥g×;/Wå¥z6v³ûaŸ]4õã“8Õ’èÏs \…±ª |žå5ËÎúMjé´š”¥ ÝÑ%Õ‡–­ò ±¯5Øâ°yg(¸/P^c-Í‚8Ìë"ûf„‰šì¾é)#ÜȤ˜FÊkŽ–pãüμ%§€oc!á@þîJƒjÓcØ[,^\e¯øé3¬ Ü/Lñ†O.¹©hÊén£nÜÆw˾ö ãÕÓŽö³>PŠ—‰çD’f²ˆó‘qíâÚB]Z6ïíñy’½ìÅëß6³_R9Þ½Ä5{éœÐñæñlœ;¹¯'ƒ—bÆ ”=’íÞíUvôk$Æì7 éŒmŸa’l6ùÀË×oKb…OÎ|õ䢖_OùCü]ËOö3#…A¦_Íý›Díf‡·z%´±ÃÃM‚H@ê §iFL±Y_‘™'&ª²îß”6ãìÃöƒ¹<;v£ ¦dpÕreg}™U™¿©²ºD3#¬#·[>±|˜³D! Õº€Š@JÖhçSæ%Ͻà 5éÿ)÷!” ìJ… ,M \É;&k~ÞW;Œ<@xjyǹ/ÙmInO€»ª)ø¢-@Øœönœ¬…À˜óîíå«5óù‰ÖÁ~}I.­Ý£Ã7´á„¥)5 –/Åm¶•g¾Tê“Á.â'§LmÏ?®~†vÕä;‡š—Üà ,óÅ#r®—µã\ÔÓò´Ï‡/ ñ·©Þª¤¯Ù³Ê)6 <‚ÿtŠiÀõm"™Ç;¶£‹ôWI=#kb”Ûk®,•± š2 [¨œ1J9¾µ³—Ìmá w™Kôúè$-b18çŽ üuݕƵZ¾p`ô>•íÅ­æv¦{ [‘½)†À‚Ü•àF¬d…çߊÏ"cÓDµüqi#Dÿ®+ïÎnàCiusIŠfA0º§ñ˳¯NjÎ}R3 O¸eJ /w ¾²òN~›­ºwWÜ·мÎöààÊng°iE+¹P]èÚG>ä¿u#”Ñ?—Qi¬§uuX»‰êâ˜úJ` rž“gÐ.lî¬Û0@7Ì ²5–?´>.8¢òu»IƒKðŠÊÉØÀÙ£é5aµoÞùNÇlí—¬ÅxV+â1ͨf#x“ëMîNÒÒRý©y¿,¶G-†ƒ±Æn%q1}iYï±XLÈ´Ñæ™î £ðbŸE–+q°²¾å[€¤‡9‚O9qˆiÌÆ´[ •wwÛv¹°ø|߃]þ¤U‡ÛhÐiÒëöé¹J€Ck®p#zÛø€ÆTwÜÎæ5º€.b5 DgýŠÅq-[ÐDåXe£y&|•±›¤â‹¼áž]—š¸ð¡V‹\ÞK^œÊœ*û”Z‘É‘“K™ú˽úx‰ž )`\P‚‡0ÈZIhC«iBjn¿ˆGåFè Å™¦6j3_d%GDãá)"ÒQšƒØ£ÛØKúm·âšUò.Äåïï™ë·ô@ÉxJWý™”.ó'´¢ïÕM\®¸*žŸêidÔ¤ãhÔ¢ˆÞ˜´‹s0¯ã@c-[ì]jÃbã\#ôÒ?31ŸÔ˜2/f6/ÌtŠ2¼ LDxÆÌü¼3¯Cù »¬wï>¶Ã: Ž”p(ÎÛƒ8ýxuÇ¥´€CšÙQÞG,ñ†Å|¦‰Õ”©;«Z€õ2è VøöÍõƒÒx¢N‰*eÞU rN™†‹Œ¹²©c†Ìfq Ñ•¢t>—Àñe‡HlÞZ#‚Ùç!dkŽ á¼~ãªJ¼ó¡ü–î q…gBîÖ9lÛ 7ܧqÃuÃ\Ñbˆïiù¨áVêm/W0ªà-á'ÑšE¾0JTâžQ0¼Xz±K;lÀ“ßß¶p,p >Ï1(1}dÅÚì±Gq$" ¥º<Ûhíƒzª&ÔÔùà¬ZÿG¢öù•|§láøq¦rÌ‹âùÍ„KïQ-¦”À ÕìtÄl£Ð[ìxUñÀêYÁ™»/×ë’þ¸½•G)±&} 9VØ/«?Ÿôîνǘ‘.Òê¬ØÒƒr$.- зón]ÖÙö§mÛ.?™7ùH4ÓRn•Gõ£“üûœzsn—«)JÙáu§ Pwå“·jЇP4µ²† e]e¡R’½ßs'Bäâ$ª]'}ÐÌÒû`éQÎ9WÈ ¹Î•1Þ ._T\Ülâb9,JtV=ù "%UÓ»É{íÆn/T<ñ>ôˆ[é,Ü„Sðî€t)dºeny—¬²ø…A±ÖõªÙάLàb³^ξ‚^bíÉ—eɵ;œL -żÔ•ILЩ#Í™æÞÕ²j!f#O6‚g&¤!J:4-_¼Å§¾{áë¡Î—°½¤tÆ =LT}tv|‘óöàB@€ÃŽo—Û—QEoãÃÝ®µB餤ûàÞ#dýí1Õ¢×?Z!4PùfQ±“ųg[ŠíuÜÝtzêrB^ì nKÚËç_9H(ÄÎÃ5„>Pe–ÏShŠ–>Rf^SM.V6ë)ðïs¢V¯:¶&Åv A&ò—¯øx5:£ünЀäÉùJÓŒ-#µ­ˆ’3~^ÚuÉVÄÉñJ^r¤âÓÏó†1º½ÞnvBnn™ïÛ‰ÝÚÊñg/Ïãå6X€ïÍT:6rz\=dÜîi?P§ƒ‚KmP-SûedЉcU)vF\VºaoDªÞmL,r¸{uõ­&r0>>}z.GŸµ}¾ÿÌF/ÄÇÐxGôDå¢wS70‹XÜäØ ÍJf9†¤¿‹Èõ(K‘£˜mUU’âd»‹5›Ül«ë;MK˜,0d^ôqVF­9ú ØÑʦD"T)°Nv`0Æa™eh㫲ë3ãÑ~Þ1øò“Ê1¥YWs9Zdf3™†ülªõÖˆÊ{±Œ­ÊHô[¿TŠŒÚµNtˆJ¨Í)žG ³M§®ã½š ×Ûv«Ìtä’ö‡Y¸íñ8è1ùj„¬+-Þµ8 -¤Ø2NEM¯[c®æ¹hžJLÂÒ˜Ùb{¬XìʺبrpÍÞà²ýôüQ};•4Ňz¡ÁS0t£DÄpB$í½‰L:Ú’y®‡«RÞP?éÜãÖ,r^©ð¹×€9!8°3CÌFš 0i›ÄnŸÎO][Wøˆ¨sd )0ÖÖ$UVPóÔí&Sû]@Á‡>ÃŽ3¥ó_‚øñWÞaÙAÕdiÀ©êl®Ç&Õúc‡“²:v1B8^([XŽß´/l4§N^¿¯ÜÁ/IñmÀåe¡«Çü8Q(š ò¸*GLV@«ŽE·Ú”D wœÂ—WzA× †á,§Í¼Ìä3oä–²{R7â˲†!Í£V5ÂúÇ#NX6 Þ` `ù\vEâQ°CœçÃÝw}1ÈJÔqøÃ–Ãc­HOíyòUþ-Ef ñ­%3÷ó6õì}&ãQ‡göUùä;!Gl:‹§ùÕ›lL‡íª1D”{ÐÓZÓó6"ì:ßɼèœTMÚhEG¤è>äηZFñß›ŠÒY£É+íý–^ôn8^%’€æ>FA×Åï1e6ë¾hR “Z»{ß-…aè«mäŽÎ­U€žè„ùI½_©îÓô™Üwg½ÁW?Ý ÃYÑ@¬-££h}»7Å)º¶pÖÏHáK>yV¡6“¬Ÿ(H/a¯û¥:¸¼T|V™à›}³Dn#wCÁ±nÄ“çÞèc/-åwm‡AÂðñðhù´ñÿ`uá endstream endobj 6279 0 obj << /Length1 1509 /Length2 6214 /Length3 0 /Length 7201 /Filter /FlateDecode >> stream xÚµ4œ]6¬ BD &z7z¢÷ÞEŒ™Á(3ÌŒèD'Dï-"ˆNô‰DôN´½—D÷IyŸçÍûÿk}ߺךû>ûÚû:{ïsí3,÷uôyä k¨ŽæáçJä5MÄ@  /(@ÈÂbC;Bÿ˜ YŒ H —ø/y$„¾¶)€Ð×~š8@ÍÕÀ/à‘à•@ øH €è Ðä¨!àP!‹<ÂÙ ³µC_oóŸO;˜À/..Êý+ çEÂÀ 8@„¶ƒ:]ï9ô`íñ»”í,ÁÇçææÆ rBñ"¶8¸n0´@Š‚"Ÿ@!€Ÿ´@NÐß•ñ² ì`¨ßv}„ Ú „„® Ž00ŽºŽp…C HÀõæ}U €¶3þÛYã·7àOoü¼üÿÐý‰þIƒÿ Á'gÜ·ØÀ¡m% ^´;š‚C~:‚QˆëxÐÌd}íð+s@INº.ðOy(0æŒFñ¢`Ž?KäûIsÝeE8Dáä…£Q„?óS€!¡àë¶{ðý>Y8 îõgaƒCl~quæ3„Ã\\¡ª \®M„ÿÚl¡h€0P\@TDu@ÝÁv|?é <œ¡¿@þŸæë |¼œΛë" >0èõ‹Ð z ‘®P¯ÿþ^òó 00` µ…Á ÿe¿6Cm~¯¯ s˜¯µÇþ|þùzt-/îèñ¯û¯óåSÖÐR0~Èõ»â°‡î/a€¸°€_H\ **ðù›Gû“ðß`U¸  þ;Ýë>ý'å'Àþg:8si!®e °ÿ«r  0|ýÃÿÿ¬õ_!ÿÿÉòSùÿ&¤äêèø fÿ…ÿ`ÌÑãõj]Ñ× ‰¸žøÿºCO­&suú_T ºž9¸­ã?m„¡”`îPˆ ¶û-—ßvßcæƒCu(ØÏ{ÀÃþv=[`‡ë»u­É_ôztþÞRF@~Θ€°„D‚<×Rxñ_#êþKÅ>^8}¸.Ï`ƒ@þþ¿¡?„Õ vE"¯gý—¯›ðŸõ¯‹ u‡‚ 'Ç`É ûÊ æã 9Z7žo}BÄ÷ŸÞ0^R¤~²¢ /ur ø*bBîÝÈrÄÉ<é†@ÁUƒ ÐÁrÎ;5B‚b²ºׯz‘Û{€Tút¥á*°¬ÞÚjf%‡ØRìÔëu¹ÊsPr»ì}ÍXS–b­/ûQj·ƒÏV»É{«ïy>•˜˜àM¬ ¹Œ–²‡oä†GÞª2£öeû¶âé”ÖNR;z„¿~œ*âÆ„-¤Ò®¯;«f¬?HYm¡Q· ³,µ)ΫZ!T¦ Œ–ï¾{?ƒÿ=¥#¿ïêÏ+þÑÄ;‹óEEÚ†dŠ¥#f£mÍ÷ e^YÂæÎý§Ð¢([ïoìÃð”©I–…°ƒãeRT¤:ù›Íéi B'ÄÛ¸˜©…ø8íN]§X ã5]Ä|ÚŒ_wk»K}iXy„rA@ªò[áÛ¸Rr GãªÅZN³¾Æ•‹9TH=F:¹—Aqp©MXVUÓµð0õlÙÊ„5ñC’”«Yõw¯œ´Óù`&MÅöCKª}rýÄBJ†N)£Šô§e)ú0Œof%Ñ«%ÅM^k"Êá{Sú€û1¯×…·töT´vÕÌ‚w„ü‘É–ó¤‰ö¾eûU³1ìûQ–‹…C¡:ŒÝAHói¾]ËÅ ~p뢒ÊÂä|<ì’É©V°  îÄùçü¬›±mß³‡A´rM¢dÖl««Y` ›½º.6gÀw•`|nÜÝ«/!h‡WÆ:Š/„RýÓÕÐS6t¨¦®¸í×`ly3Ã"«‹Fï¾9ÑéâGŸ™Ó ¿FãÀ}—‰BY.ƒ¾æ–Uy¦ÔDÞÐ…„U3Iâ¿Y ¡|ÌÅ,nƒ½^㘡oÂ.×.Ä#Äsë¨È¯¯%W¹˜ŽlT©›so>žMp|'Ž]æòE‡Ü³*È®±[¾òÐ3VsSý¨¦V1;ÀþI4¹Œ›dÑ]jÛâŽÁô»xç‹‚s=5…âó†ûƒ"$x6ž¥Uj‡òî©:§¬èÈðÕj¿ýé¶Ô팺›kág²¶¤ 7/`^ùE0KÜ­:ºÅýímýðáh¿ÁêÃI|>Ò±n\ÖN÷„–âØñGLAØ* »o°¼ªºßÖ†¯îj_#Ifr™×^éQ¶[ðî‹™/MÌ4wûBùMÙ­è''íåNMxß>EG¨'a¦Lïõ÷fÖZÔÊIÓ½Ïn5*˜SJV2Y½!>J|åOÐI(¤Ô**pj\|a:Ý‹­ev''E•í¨Ã×á‹nÏȬʲ… ½"µ/'çgsæÇVÏ2hÌgåˆP¥¥âTN§Ö(Š"ûó0ëq„0ú û®„O—]Æq›Ç®õ ^OÆQ^!­îI´ôÏ'»U‰}ßߘ]Jnïó|šï©Å ^$³¨Kù¢PбMƒéáaÅÁá©ØÑkÔ6\rÙ¯"¤ÃáKÁ¦èA­©|ùVsÖuãÙn25Sˆj1©åË|õjéH êôCÕrâÇ=ïO4OA%˜'bV ´‹&!Æ Ã™ªDýUÅ—FùúZþño–KcxÚK9JÍXJ^Ò—ðçViFSùa3ÞÂfHóxRã>¼à¥ ÏÇ4™ùœßäbøœ•6Ò±'Ëw)|Ñ ælà;íë'E.REÇ+N~u(M0Ta›X‰Ë ßÆ2‰hÞÿœ¾GÁðçñpôV_•öÃm]¢b …è ðŽƒßeDö=ú ¿“š±j·\Õ¦¼¤•ÔÎF„Pv!ÉW Ù/„F€ðF¸SÊÌ›'‹\¼W”eW°Û‹"³å9ZèfμbèÊáOùâ²×¿à.9™`÷ýð¨EÖôŒ½ì…ÚÌÌ; °£Wœ¥àËR“ŒE¾.ƒV¹äúÄ[ øÂŠŒô" þáæ¬!ƒ·ˆ+ýì©Æ6ë­ ÇL¢ì,E…jäbX“Da锇ú¦¤ÀJ_}Ø&tØ18ža)_IŽBZÅ §Pû0g‰)q‡ðîËÉ% ‰Fµ@SÒ‹ÈlÝ™û<ÇÇdæ¡‘`­æãé’NZ¹äwGxÎ…d¾äþ{…ÀQxkƒ ¹>–)Ûï B¥î–»lhe]À·sVs!gŽ7I“|«õt”[¾¬ÞÄÎÇ{8ǯÈú(÷ „e½ç)}ðwô¢•жá7gms¦•¥qyŽËE‰Jgö˜©½âq­õÔFÓjnobd¤]&#¿*Õ#뫉à•¬M4Dz­§~ÁÂÔ:ë-3Ðqù™µ2•—ù.æ‹ÏÄáb] û§{X¢%ydýäÔ¤– ÖYµ09S¾[EÞ1ös GižVŒÉtkt3èQxxRÐQا¦-Áqt1YìÁbQÏ8fsgò÷¡í`ÓûR¤>oa/©Gb±^²ÒƪŒG{Q¬ ?pI¤Å¯K=Z‰×“¿w¾óNs…Á÷i' š„Ûv³×­ôýã*>m™ZCp˜ñ-^6mQ}{¦Ù[˜ë¦|ü*»j©Œ‘6Ò0S9ªö]uo×¼‹×ê§i‘IÙy¥¯äŽ8¶œíZåo½nô´ßcú¸b<áÕ”#våuP¶ÝtJ/ê«ÙðDÛcˆëèž… ¯ÿÈÜ úD·¯@y8Ðå1l¯9Ÿ˜ ™˜Ý߆iÎíÝõIïA6»T°=šˆ &¹ {­ßwÔ¤eÊ·cŸRÔ]wK%rêŒ6´äÙAVÖz™3Ò,à)J'”D™-öamøºa¨Ö©Ä>Œq*UÞl;1œî]ºþØeì*¦6Œ‡80eVÍ1rž6îõ•1+GHö°×™ñÙçQöE=““¹¢‚‘l9P#¼™KUõtw7ôN¥—¬)ÑncLsíJü‡Çß¶Žø®¢Ý÷„ªUç>FÄI öp¹¦àç%¼›ó;ÖÚô˜@Ñ)â˜XéÕ͘ËÛ1žŽî‰Ïè…PЖÆàôЄ w;Ë-§ÎK!K,kàæqSßð›D«)Û+9}âM÷/ht½RRc¯Ô?÷'(¼ÕK FRífª½B¡ÒZß ö\’(²ñ6£øGîé0„~šIˆ¯ô€³OàÖ¡¤9”Äð8ŽÏ¹rñòýŸ…Œ‡·³DÍ«h¦ÔÌzï(7¯hhÖcEí=šyÊ9Cü½i;Ït]ýà6ÖÙo’D]ȬàÐcæí¸ümµo+öÉÏ¿æã3Äf¤ÖC0¿Ádn UÞ ˆeëÌ~«|©)Whjbl…Õ•Ûwâ,0V5ðÖó1[uß’šhã‡Q†0<š—IÅÀ³<ë¢dïË‹1JQ%ÿÁ`cÅÕÔ¸³P_UÀžA"…1ÝÐÖ¡LÇéÉ÷;Ñ)œ`‹Æ‘xÆsk$»6ïTMT~U$Õ;–@ ÃNÛÅ š_'4”¯Žñj™ ¢ÊÚ—FgÙ3Œ· ™¬Ó§ÂâêoôÞ°ikÁ-ô³É&”dkºÇsfL%Â{•qÐ}³)ì«ØÂÖêèéWýÐmb¥w_Ê6Æ÷oe7V>—ÖäÔÃ8ùà˜¨;3®®;÷U¼ÒxŽL xÎç£>ü<ù¤®Iùq|ÓF×q3!®$¹Eä¼´˜-¯BÇIÔ%Ï{F±«pF=y»08õäTùûÙ$Pö6?›–ëVÀÍ÷à/1ïÓ;àn5푺O(±…{íIfåª#nU Íbæ²&ÿ˜Øƒëàì<Þ‡Õ¢ç‰ÚÓe½‡N’VUÒÓ˾7o$X”ßSÀl¥<Þ{Àt|p(e–{Zåç œ ÕlÊã—°ç|^¥q_Íé¤Ì¶ C–œ—p:¶°uÕ3ï)1<ˆ \ £3¤'…ÿ â13…nÏÞ–%ÊO0²»Ÿ\&¹d„!Ú®DœQaúØÀä)+ö>ÝïôÊ‚¥tjbŒy]>À=s"ÕJŽyH@@bù9w6¶gððDRÅâ,}ñ»p²&T,\¤ºë} +Q2›ä“q#ì*“ dÕ¥]ïÀOP—ÿ\ÝÄÖõ/}ìåD(A6,Àh\¥;‡+ðæ[60„rž‘mÂöbÛÛF‰ÓwuÐÂmÀ¿­¿!>}é¦zºÈåE쉞X,ZO¨?>ñaÒ3¥0÷™‡Bއï×’ãOÅ~¬ºˆ,ݲ„[ïäBûèÀ¦& a +¦}µ]kÄç‰iuÖZIEÙ¥ú mÄ®cl¤•bï±*27O0?ã|j»]œÖð 1VUúdeÒûXÂÉ¿7U;‚&z߉)¶Ql„dÄI@þ‹M~Ax¸ ÕaêÙoŒ(fÇÇâ3 PÃÃ3¡˜â&Üoiú0KõI•#í=³ê#­yáÀhšhåApØ¥RN¶~fZܾEßÂð•ûìe8§ºT’BRl=)m6Ù¿Ò‘0§ÏË´ä]³Ò“û…[ÞÌ-BÔìþCoªWׯ§ö–…ÿÍ`Àç½uÆÕLÁ‡S´¡¥å>ÇçF²šßÜ,Þ­ÚvÆ›éß ^ìq6sïØ TœàÓö>ÿn.ùÂ8ªÇ-ëd·ªÂ#…ÅxFNì«ýfw\»Ø(ŠÓbœkUgH½V—5Ù{ßòk@OÔQ§,‡ªb³Œ0-mšFV»¢ÁðÝ{?8ì¬ÚìÙÏ~ð uÍY…nssÛ3>I³>7š¶ä_@œön*šÙ@=Ûb6ô )ž‰{cZ¹'0ÈÝØÎ%?e÷(9~ïÐLez‰OË(Á||ð°òÓºl[Ãt†vËê©íQê`ºGàdB—h?:ƒÂä=Û/*­gÍ!‡(þÂæÁ7´î4Zo.ï^¨. o +~u\î]5ð¥þÔ=94@ÔyµO¦(þFíVÚ0ßm9+{¢hZ­;a­á|müT;‡Ù¥÷Áð*[ûŽ™‹éÊÖ×ïlž&½óïí#¿Üâÿ½ !'¯’®Y’6âHÍ=ì/¼5JÙÑÐ ÜP€xˆû2³„ô>fÓ9u÷Lµ&Kk¹÷T‰áδâ9xìiÞcEVg zâÄ6¬§DôAÓwO]f.Áä(Í=êT05àkž€Á¼ªmuL±Â­:UÕÑáìåÞ«±dË>wÍ¡ðáuo¡¬ø@³~ÿ׈{)þŒ¦ç…9¾júu!Ų“ÊhXú(b0÷ÎÁËÊOHÇ©ËOÐ..ùM¨ˆ/cqÖr: ûøÆ">ìü]­KÎæÍ[ÉTx<*¨ù˜„Íî?»jŽ~&žÔ‘§­(í65ÂnÇ¢û_[¹=oÅñ—QfÊkE©F|&ÚøÄþÖgœFííLtg"{Ú c¤´u£/DAmFN'Œ wi&ùNLû– ÎÛà}:-¡˜“\n•Ü”ñÃô3¢:ÛIÚº‡XÏÓ:DÍ}êëÄÝÜBøÜ‘gˆ¢Ï˜´ÌÝ&a좸Ûö.¥¶{?å+%ŠÈNKªdZ’»§5t†LáWÜ£í2¡%ÝÉ^¤V·;édgڋ䤻A›œÞ-Iæ¨Ü0jâ¨T3‘’ÿ`€Y8B`¡*$]ÆËK¬í;²á›Ð$±]l·úœMsb{+f,ºŒYOìžúѳûCÝIî`™¹'<Õnõ( '#ÒØñ™ÎM¸Ð,Më-!áÚ°ºL#¥rà1Ä¿˜÷IKd{‡ø`$ýks †O­9kÔ°H¾‘øo²ÏCçQ%ÓHê®ßø®Mbæ' I9ÈK»*2ÍòbÓµŠòEë뢥T 2“ÿlvz„KðgIþQt‘%{iÛ‰¡1¶~ NÒwôîBBG·£Þìž¹§–…蓚|ÃQ—@yî.X§î˜ø-¦7o¥®¢Â‰¹ÿŒ/‘nÔm4O¦¹eåÚ×°ƒ9:s™GÚ ±.µc³_gOaFoÆãÜ~q~GÕÙEïÖ9àÙ¾ÈÂðEyyb€‘Hd—œa5_‡ûŒs·1ø<’@˜úΙ$߀|LB“>!?«á@ †{¦–-÷¨¦SÕ Z­×;ªÙ'¾È…Æ3jÐ~UËnÜ&oqyç 56Oq‡â¤P&-ÊüŽ©®ïY]²jH̼D –\=_h»5vDÁ©¾ŸãPÒo;‡Cß}Œ—ÛØ(—Š®lãAmûÖÙÿ±ñBj¢t³fW·„j¢m¬Ð&Ïí¯éðsÚJ)^<´yH­ù¤'6~ø`Ur¿óuÕÆWÒf )— –Ì&MúÊЙŠnbâÖr'Tá.Œ6÷ãxkµÙBíµ­D²¬¬}ñ2P#²yÊHá$áG‡™"øj]Ú3ê娈ü‹%[%·ÖÃn*½é3sþùOMŸ`MY3–3YæròF<™¬Kvœ_^Yüx¾ÁÌÅÖ@FI?º•4Pž™f*X ¥m|+EWÆËø¹FøZ{À$êýJÿj÷.ë÷ͯ}ŸJmJE'¯ôÏEì^tˆŽ³.…*3ç½ß©+x=ÙM—÷KúîâFºßÿ»ª" endstream endobj 6281 0 obj << /Length1 2244 /Length2 17533 /Length3 0 /Length 18874 /Filter /FlateDecode >> stream xÚŒ÷tœo÷ Çlœ&ỉmÛæÄNÙØFc»±Ó¨ Û¶yÒß‹öýßZç¬Y+ó\Û×¾÷¾Ÿ ±‚2 ±¡‰˜­#= ,++ÉÌô@ ™Š…“µÉädj&Žv¶\Y;˜€œÞd" §7CY;[€”³5€‘ÀÈÆÅÈΘ€@ÎÿÚ9pD@.ÆYz€”­‰#™°½»ƒ…™¹Ó[žÿ<(¨Œœœì´ÿ¸mL,Œ@¶Y“¹‰Í[F#5@ÙÎÈÂÄÉýBPò˜;9Ùs10¸ººÒƒléíÌø¨h®Næ%GcÀoÊ9É¿©Ñ#TÌ-ÿ¥P¶3ur9˜ÞÖF&¶Žo.ζÆ&€·ìeI€¼½‰í¿Œeþe@ øwsŒôŒÿ ÷oïß,lÿqÙÙØƒlÝ-lͦÖ&y1z'7'ZÈÖø·!ÈÚÑîÍä²°¾üS: &¨½1ü7?G# {'GzG ëß~‡yk³¨­±°‰­“#ÂïúD,LŒÞúîÎðïõ²µsµõü2µ°56ýMÃØÙžAÕÖ⓳‰¤È¿mÞDdf&NV ;3+ÀäÀÄÍÈœáww{“”Œ¿Åo¼=ííì¦o4L¼-LMÞ¾<A.&'goÏ¿ÿ‹ÆFNC3 [„?ÑßÄ&¦ÿÂoçï`áо#øûóß'Ý· 3¶³µvÿcþÏ3HŠÊɈHÓü›ò•BBvnO:f&+Àdá°¿=xÿoÅ¿ëøËWÒÖÔð;ØïzßõŸš]þ=”ÿÞ*Àÿ“³{]åŸIײÞþ0þž÷\þÿùï(ÿ¯“þ+s¶¶þGOù/ƒÿ=ÈÆÂÚýßo£ëìô¶²voË`ûMÕMþµ»²&ÆÎ6ÿW+éz[A[³·‘¦cd¡²üKná(fáfb¬`áddþ¯±ù—\õ÷ÂY[Øš(Ø9Zü¾bÞ¼€Àÿ£{Û2#«·kÄñm6ÿ¥9¾­œÓ?ù›¼-ÕÿÖ!jkdgü{û˜XÙ ;ÂÛá¿!V€'ãÛš›¸ý3Ýz[;§7Àgo€©Âïƒfã0ˆþýƒØ™ óÛ°ýA,©?ˆÀ ûqäþ ·˜òÿE@ƒÂÄ`PüƒÞò)ýA¬Õ?ˆ À ö½åSÿƒÞòiüAoù4ÿ‹8ßòiýAo~ ÿ¢·•dYÛ›ÿ‘p¾E2ü£«ÇÐÄé/õ[h£ÿ"æ7w#s‹ÿbÖßÚ·ëé¯oGÊ`ü¾õÌØÄú¯€Ìoû·[îmþkõVãßIoe˜þoÇ`ú; Û›Þì÷ èmvÿ8½E6ÿ ¾5Óâ/øÖMË¿à[J«¿à[¬ÿ„ã`ý{ÿè߈Úü2½¥·qþ«©oö±ùÝDû?=z mÿ¶þvºÂüfoÿW3üô|cò‡Ó[åævð[éŽf·ãíX­Aޱg|srúãòVƒ诊cóÿiùï3ø›Ò›…Ë_ð¿ë_SòFÀí/ø–ßý/øÆßãø?›jäìàð¶Êÿ\±oküüÏKÓÄÄÍÄa~ÆÎˆ;в6°í®ZÏ•n{œú4åNƒ‰n¼@Ω_tR=N93cAºTl¾QLϲSNèÓ]ÖÊì¥çVQ½;Ë ‘Øž‘aÌÌë øt¼ç->É J3X®z’!W‘C?˜Aj<¿±Y¿2ŠEmï\¼+9f±»TP›\GWuq† >§Úц’S‹áÊ6ëEö†Í—€ÍH°d¹4ižŽ{„8×*ÔµÁá¡%´>‚î)—ÏÛg¤ÁNh¢ÜCø",°UjKyÈOÙE.‡i螆â‡Æýe«TIwµræ[‡ºÄ” ]ìæ ¦‘ŒG÷höK˜B)9ù;áÆ‹Y!DMƒ|ñ·Žj½©=+VR!AÒî Ó½kOÎÒÉ’Ú?)ieãx_Ê·Ž¼ÈÚ£\Lƒ!¾QT'¡m‰Ò`ePx›ä Zg.ÝPM«3is¤˜·©ð}]â üæ§ÆÌŒäb‘R©ŠÌа;[¨yãéÁò’wÙÑ!D¾ð©*Â6 =Òc­nÉ+­ ÷ᔑá{½QjM¤°‡«ÍúW•Ûº®Ì ]¡w…G› ëñÚ,Zt¤€(«ä 3<0 ‡þ[IÅâf_è5a9DŒ1X±\NÙÕ?ÖØ€]3‚K±äáÇó!D@Á¾ÞºTá=·Úd§Û`^?"ß<íë9ß·dy?)Aàè³sãL 5ægMÖ·-tN´õ çí² [ò(æÞt‹”ÑHŸ1‡öã¾D¶ ®]µdGPMÕàM¿k+æõ‡£ç,ÙÍ8¼b6Ãûp™Á‹L¤Ý¡Oôjøj§ÿþL_­`õaàólã…: Ñ1.ÄVcfzÏèbßNKÌQ>–*0¡€ìÔ˜é¢Å5R®µbJ‚ïZÄûú n13¶_3¹í¸¾†ÑR«2À¬¦“Ѱ£%CªäeÐaUdèKÕíªpj¤M´L8«Õcw¿3CÀH1ÇUn Ê#‡öõF·¡›<0Ñ€gôúñ¬Y<Ôö/÷l•.×: ô£Lªê¨!<¼’bÕ-è›8G©¢SÓ…‚•£W™|ùb•C«i—væ1ÒB bÑ‚Ù<À€F_z`<¥™X@›G9Ro¨e¶·ËyÌ( ƒìpã6•¨{Ð&ÒU½é¶LS ÷a yDÜÚÂ:¤¥ .[slyh,ÅÙ×^e§gJ«Ý.ù77úq³ä嫢̳rÑn>¸`~4’þB½4ÃMãñã=¬Fdº’»@qjÕµŸôiÀm›1Jò¡e\•<ˆßäç¯ÛXÞÐÓ–Fž3Ké§è)R«fë›2ý+R]ÔTÎMº¾€œml+̈û• Œž?ý1>`Úæ„EÿÊ[ð4Tim3… Þ8Ω𠓙<$íêBÖÈäÜþºöp{Ò°ÊÇï±°U¯’37dw¢äš6µÎ…B˜nÒrŠÀpöm¿Ëýñ¸Ù;0'ÄigA#/à »ßÅ'§À5Óï.ô‰ªê`(e¥)Dwltž Çz&ËDy½¶õ€o¨d]ᄄf~ Zó䛎bÈ)¯*¶±[ÝŽ“•{çÚ/bïzšc±ð…£‡Ã깊|=0Q¼2Fîƒ<YkNè­ t6ðÃÙ¿³`æÆ¯õêo$0y|$¼º~9AR!m´¿£€pÅ÷ôýIÅn‚·€£ùûȃ{ßüG{ ÒTÕq|ÐW¿Z¿LVE&-f.œÌ&¼!Mñ OÆ»W#5IÜjH6J}Y’»0§ c?¿€åR¹Ã`&]# Ðú Ëå+ï)Á˜Cj«‹ûb•¹u·„ô|—ÎÕœf˜+FÃÙÃ|fZꆾpVoúÒBίØÕÙ$l ¶z4dÍý4ïH¶&oéà‰¾Z5Öxk$ìâ(C[—ÏHðÂJ(.tàÅú„Ï5nEã€gCB3ªzÊͽÃÛoKŒŽ4$Ý“˜²ÁÃJDQÉЉ»nyß² ¹/Ó qK÷†¥b †å>õjµnéÕR:ÝÀl2D±´¦žòë.÷ˆµ"’*Q °½áÞ˜÷]¯0§É>¹˜6eBÞSÐ}ÌýWþqœ(°ðã”¶oúW•A°h“¦òpê+?!6‹³‹ïË·±QV q•äU¬×ï¾Oß7üšƒ÷¯¡[•ÑTÓ*5íaÜæKiãÄù˜Î BrÒ&•±Õm`ë3>äOù¸[Kð•i¡ù¿ðÀ!^ÎN÷¯º[S~Þ”oùáÔšCyªƒ~r´ß…[f#0Iõ£‚ɳ(ÚQ¨.oF·4Ó‰R-±o¿ƒƒ ’€!$Óñ(xîAe˜œ" µTƒöÌd »d P©IT“yžduW—öòð›¼ÜL>óZht‚-°2ÞRã­ô˜g^èR™‘òiÛÑ®íhxùÅlðì’óboë úNVM½4ý†~C“Îi/5e¿º¢–É#ó×yl`!X2›cƒuß²A«aÚN8Xö70ÉC¬ }ªL­ÔËi}TQde'¤BU#Ö£1áuˆÏvý¬¨ƒn2"c‚)á¾Ïýr_ ~*Ád"Ž3LÜv˜D(“>ÚæÔ.Ìd,Z,E•þ˜(‰tDêo‹ Øx wX«†$¼Õ.¡ƒ,n:ºFÞ (ö÷hOÚþâP r°6IZ(TŠ(Á³ËÕ,„u ˜Y™%÷ÇËšgtfê:ø#Ä]%z¥}‹§¬ÁbÉ^-¢Ü?ª}¦C³jkmÉH²*\¿zl•&¬´‰XXÑ/¤Ø™íÒú6Õ…GKªdo3-¢ YÕeï3rVy†£±/øÌa#è1½›eÜ!ÇM²•êƒ3WÜa¿Úv“ü¾WXü+²_¼ÜÏìêè¾U/n€4ì j—àêíô ÁV‡%"6˜VÝ¿×Õ¯dÔlx:s—B;ëñ ±<ÃÛ ‘¤ö–~]û®½NA4Å+•R¥ÓYMOÓ€vÕÂþ‘3Ç=Ío™–AÞy:=N°§Ã÷„© "ëÛ€ÖaxO “¾Íw©å<¹Ux?ž½zè=“ªC¬ï€Ñù¡”EX ¾Âp)4'cøÍøóZÍ/ö¤òsTPJ=©hiœ˜D” Õ*öJ3t¹ÓªÒ¶Eº5)ÌÍŠøY8•ËsWœ®ÕÛÊGfB`÷¸¼iDœ·O¯Ì|î€Êª*½ÅžÃp*öNÀQûÎMü•>6åGþ68M+âIJjS Se©í'-)è4àƒÒbõƒ£iB}~ÁœŽŸ‘£] ÍŽ/\ÈèÎ*”_·èAˆái­på§Ë^òàg ŒCÉüôé(‡vÅÆžÏß_7•Lì \âÖ¿9cÛóý˜®¬Ê0ý%<þ¦¦d¦EúÆ>xúÒ &/`|H0‡•r^Wv w óf)FÏ¿bâ—|bõòŸî¼øWÅz¬¢‘þ¸¤/ŸGŒŽW€#VÊáö_ÚÏ Ì‹ƒÚC  ¥Æâ_¬"ÚZFÅEͧÉ÷øßò1Ö*ñ 378#ˆSìtdâA*ɺJNˆG(U¨»oU¹ƒéD'>lÅÛµªn,w²nU5u>µ3%tð•I»}bî-\û®ïTDP‘¾óÓkB}–,˜?Ê»#+Põ-þ”IoÍ¡®+›’@‚¯ÜdoAat¹nš»êvnp67ÐÛF=cŸî¼Av]pÜÃÑÀÑÐ;&+rþ¹×±YS?Þ±"9kS,´3E>N´§,Ùú$bÅ\GÜÀüDÈQÖDJ¹r1¤§ÊŒQõ)­~úútóRš¤ìÕ¥3¢ùÚò ,Š?%ûaiD`ªi‡•¾Ø‘«Cw[‚©2¨½–ߺ³¾Ö}ëL¡ðöŠØ.ñ€Î‰1zŽáÃ`¬!OpbüÒ³Õ#öç*ÌþD‚]úxFà—±ÈÍ£Bq2´0ûñ¶ï‡M²ç\S‰¶Ï=¤FÊ~‡x¬Ä¥qY߀‰á AÄI>["ðS9¸ßùæ^Ô¿^:BdëTóš ŸåÅÖû/óßïÎzÀrGéëÆ·9ø˜˜$â«Âœž{/÷Ø„KØÅÍ¢[Rî¿ãq¡Ü ñr’^Þâ¦S7±Å^? ™; \À™”sï ûMª÷ÓûÜŠ¿ESÖÇáÁ V· £Ü,ªÃÕJ?½‹m®*K¨@±ß5+wu×]ÑÉXrdúdsòŸE?W(ÝøpÃíy}­ÒÂò5¸+»çK‘\Þé4êL‡ÕáZŸñš[·¤¹(ï`@Qh¡nœ®@%®ËéÛ‰äçÇãt¦eÜÊH…!P©/ýÚðÕɿ⌜ŸÝ[T•ü­Ö cÞ~‘4 ‡á•ùwzµi(L稵÷Sî{¬LØxº´G÷Ê9Qgž§¡‚‰¤ÖŒ~ˆCÔçv²š^¡KÏ<`! +*j„+¾?MÅ}w·|\ûRP>›²2Øñ»i åÒ£ý¸È¢ 9t }8¢ô©Ou˜áæ31¯³è¥â~B2å¡weußpÓÃê¼äö=“#&A^ãê£`½Y°xü˜œò`¸ÑÓôÓ·YtúàåMö_ÂÑzÂB9ë{Õ˜¼Ë1I˜ÖŸ*(™t—;SåLð2¥÷€uGüE“öŒI·çˆzQ)ȘïÑ |”_‰x¥—_ùEïw¤ñÒÓÉëh.ÃòtH™àIµg#Üfì™;À74UsË?@7PCä8Jn+âU9ûíb¨íßáß#‰ÞX[ Ø*Ò\Žr+ÅFÚfÅ…1¹ÿ®Â œoô&lݓޟ“VS øXÆña=2+Ñ^”«Ãu83kKÔ1>»·¼—Wòz?¬HjÐàì{‚•’ÛéJÜ~ dŸ<ëý‚yñG¸o"¸ÙóÀ!£Ÿî,©Âw›Áͧþ…\Ÿ °†ÌÝ¥—ë_ĸy4_³=ùôz]”5­ÂO£a\©08t>%ª:ì3±úáÂx̃èûÆÉ–S¶;ÚGI•nÒ¨—q÷ôù“xp‰${‹–W5#ó,]kòÅÕ\±Þe®–Tù‚}ÒCápÄ"\Å`h`AdT°˜ œÍtY·øç¡A}™ä~üctê®à)“.»åÑ7{ÄJŽ6j|z(V‚,ÇCžëè:]Å`à)õ]£ôqâ,M“Ÿ =Ý‚]éÔ—½aÜJ\¨¤Ü?ëaÔÓ \%š÷¤.½vI"…© fÁ«p/îþ÷9{ ŒE/Ûìx*>ƤÜjÂ’|Xý{/s—ÖZ’÷ N).‚·;ZÂèÁÅóDOà”¥~¨$Ž–~C„ÒÚ˜pºßØ$þnwÜŒuT@’ ñ,6ÙKwwA•Eª§‰¼^ãeñ T2 ÅúÊ‹&ov0&l âð .gúaòÂV°«;ý™0ÃþÒˆ<1\RÊ–·!OÚãýÄë¸!Âh=ó Åg'Oµa%r3;ä&IPi ÷âóÖDïÜ÷Ý [ÉýuØ´ÔnÄwc^ïHÝLýóˆzÚ&;r«æ ®Äg®ÙÝ-Uo8ªÞ) Ouò&úÂkpöD=-w|„ko P|›²Þ©Y¯Æ®™jHu„/³ïtšt{ à¾<ú±L3`)¥J†Z;a¸ðqèv•^)Ò2nvŒKD•¿úMpâb Ê·ËåS0ÀàÒñÈu“·g=¢ŠäW(Y=å{³ˆãvῈCN:†}6ødÝ÷¸WÀ±fûèP}ÑÉ ÎÉ•2µÜ¦,pæúÙ¿T‡Y$UÎ`(›[Ô²°® YYKžƒg vÖŠ/L)¨ÒU¿äòu&¿ZÈË¿[1höó’ sà½ÓdIˬùLé•‹Û23(iþ㊥î¥aD‰!„NC`{ÿŃO—tGŠÓÙmÅ÷juö²xG&£Yó«û6¿J _ÑÖö!é§$a?’Š@(¨Ø Äçûj™úQâŠnw[¿&V e·ÁÎC…}å@€AÓ‹…Gë¢^­Jfw1 #ÏwIƒÙļ;“7±¢Ü3YöSÈ9ý$7 lÈëZ¿¹ã.ƒ5šQqŒJ9ÛvW~¢74Þ öÚýq‘ü±( RBô"dFVªÁæ{ŽÑݲžX?©îõ÷möïb0âuîtú°ÚäU$u,Dˆâ{Íßï ±$J"V©B'iytXÊ≧Ÿù4ea½|v~¥òÉtPäqX]M¢è×êø°Ò˧*ÂnÃÍœ¶ô¾­QI¢iÞŒUÿ¬K.`,v4z^ŽùeõrpkO¢ÈãVù™y«‹A¸_½RúA»I™Bæ}ƒ Âtƒó¡äˆ'©~hÂöu̶nâZÿ˺O‘øÏ QÍÜ„è(Ü.jU…j›äò ¦Œúæ×r|CNÌ]û¦3º lY¾*,ö¤ê;/µ×¶^Ç늾ÁÀÆÜ(¼%Î}ºÌEDÇwdÄá{”“™NOa(¥eOûI9v:‘ âÝ0ý@òðNeÑ}ˆ °þ6eìgÉéï2§ãˆÑ£#ÃHÆ #Ò©+w ÷:ãeåâ¾øv4×tu31~yå“hº%G˜Ðàá•¿aWé‘9Wƒ;Ýœ¤™´òLß[ª_‡™PÅ,¬!ž‹ÊÁ´ä`ËfeP–-E·}ÒB'ÀT‚ûEÑšâR^b DòeehÃÃà½B>öæ•])ÌsŒïn“W2ï9ùº—~¡èô«ðô¹t o³î>:X2ZY9e÷†¨ËûÄam' ÖÈ”ýÅ—'÷4 /ͨ¸]¿¢@¥«œâÍ88±0$_Z»‡ºm© /NbbþUÆèjðD•ݨgî9 •kSã+zþ¥¯8Þæ<£L¬c+ºòS¬i%¸6þ<ÚË ÜÊÐ¥ÜÈ úàͺÿô®4™)¯Ø/;µ¬>ZT!„ þ +‰ùÚùA KLFr"0!›ôë…ª½ÿ|Î{w `\šCsµÁ?VÔ–ó7ÖS)… ¹ÿšõJ>§?S¯Å›ky°âx‚_—±[‚ÚߺţGÿ©~‡Ýÿ <²'ŽÒƶŠÂb Ö•zFYº×{S¢ì~Ä23€%BÞ£<³ .Ð'Õ&¾1Ðiå;ÉéÝW¥w»á=Dz‹¤öÅ宂©Äþw)‹w²ü}á2ÚôóžÇuÛôq¥H|IñE¬£àþuj]dÅ&«ç Ý¸[#·`>sî¿€Ø _ }‚-›yYÓA¬Æ¡® M‚Y¡½©Ä Úà½Ùќɔ£‰] l'ýÞ¯§‹ }–óâ®iª¹' ”ˆòûÉPaúì=%UP]ÃQ×G™þ¥È5htϹù«Ö÷™TÒä€A—©–.Ka ÊÎÑv ¢Ã] ©jfd,¤–Þêa®œO!„ÆI¤&)½Ý­ü‘=qF !žY8jŸ;½Í$8ä'aŒw—g  tÓ§oBŽ~‡gõV¨©ú+œL8…½íš{á­£f‘l£ jôz&n…Ðpù3ÝÎ…Ñ·U}‰\…U}n-¤a¥…Ø´ìå:çÚò*}4ü׈ÅÅ'>æuq¬ \Jïöœ^ë®áBXóÚLgáÖת\=[K-’¢™–ïz²,̼ךyy<ûP¶¹G{uâ–LÈD8/=° —ѹdK}÷ËéGQ_óÖ*jŻėéi‚w.€È£¹VÂJ±Ã®DiòÜaN<1{kµ‚“÷Ž„³+œé.évBÕFîJ“¼Wñ¥?¢ÚÂê.™±åuF¢T´V³é·ºí¯•áuŒ/ˆ¢[õ/Ÿdfl9ì'’ø³ÖsÇu“@ï0Z£c—™ç§j³h¦Ñ¾{ÓF;¬º¢9º•’R^jKî75jnœ[çY‹iåèÊjtÂÏe}¼7Zö(°8V}ôxh¹9þ(|#¼ÿù‘®Ì©Ð{û ü=,…9ûÚ3¯& |»MøÎ2Ðÿ4BoU‚W²”ñp‘ÑkìˆMMý0&8 B£ïÀ±a–³×œÞ—#¾ƒUŠŸ©‚²í‘Gù`ônxcV?âºÌ 4·ï>óö L5It&_ðàÔŸª{Y[WÀOÌu.ªóûÒë@Lv/=•5˯àK ¹ º;ö‘‡xÆrhcþ~xzº€%÷ÅÉõ‡z8;L¾ˆHkS ,˜pþhûX£Y0“í4-öKWx"rÞ °Âû+sÅx´é.7øEèbÎV©`6Š%´´gP} Øç‹€Íô%iuÝþ¦È"{[‘_—?÷»¦ncÀˆÞ~ØŒò{ §É¡¬]¼8†(ˆóÈ=œ,2µ¶ÃjªÎæ`×Þm®#”C£$Scö•ÓÅÐJ~N¬`'«eÓX.^šÒxèÁo2±J&ek{¼‡º×ŽEuP}î†ú4O3¢nÐ~ÇÒpÀ¬¼[å-ÓK"«ó*qZ†j_ŸUUÒ]œºlÇêlSCe ¤3’)Ü•ZPe{cæ8 3Öðˆ$(lµ—Ø_å^ƒ´ xß(øÝ†Bž„ˆ§ßCìõÐÄ—S,2f 4½ø™n¨áËVLë )vf(ŰXt7ªp±Ò¯µ{éÞ{½ƒžm-F¨  º¨Å Ãó´ÙáÆÙa ®ÿÚ[@ϦÔtö~V­##ŒGh«nf_ל„Ḛ̀Ôâð>7áKR%6$ôi¼Ìl¹$äªÈl-3i²o6Ñ3ôtS-—^cÀ-dAÅÕÇÛÏc;m³a¿ôººEB¥'<0÷cm„íîõ+ú& Îú6V›¬+Ï­?°L¯wcàÈ1h|CG¥$÷ÇyÊ–»âµfÃ|êh½Þ$qʻޔ7ÞD±½:Ý£ÉA„»y5)Ž5Ê×´E2çijnçËTk˜¶â ;³3—Èm±WÀ‚eਃVÔý‚)HEžküÚ‘Û»È΀æÙ’ŠãÃçvj-ˆÜUÌšŸå Ú±•_5kãóWZÎH=[‹†o’ËI³Nôlp³bIÀcLÄÊ"¨ŸQI ú‘d •%òŠ1ãÏ]šq×ýñ€²@hÕ_û3°ÅX¤X›Öñ©–”-¶Z Æ›?³Ë÷ðžýBè\+8vp¡Y«ž--/SgÆñµeQÈk÷IÑAü\àpô$ ݶ‰?Ûm2l”Sí†ÜëÆäv3Åsò¯D93צ¼[Á2yƉÙGäÅ ÛùîÆB  Ï~† ÃuÝ#“–·Y¾ßíÔáF‰ÝÑ·|SÛa„½AX¬ÂÅñ_íiµå|½QËn¨ Ì,ðšA6j©#è[v œÌÙës¡ä4–ÑÞÄrÚïüi[´ö¹^Õ0¸~ÑÒòÖ¯X;5/£°µiK‚b5n´ýÀ í’C‚ò;ëuÎK÷NYàáŽEª¿ë'-£›‹ešñëÆ”x½-á"´ÄGJŽ9ÙrX‹*~$•3.ð|—MZ™…>IîÑ6X{çΩÖ8¤p øç=“¡YÛò\ ª¨ÊÜÉI½Ý˜êh€ì4æ*.OsÕËVŠ>5ûZÞjd;uù”¶Ç±Fû/ÈÓ_„ôN¸ie|WÜ©6}õ~ô|A0ÜÊþôˆ¤µy‘ñ {#/*_ôm~Y‚ñÏ«šÊ&‹vÓ9s5æ«E””CXÛ5$»Ä=d³z²WY|R°¶ „ð =ùUOF†¦“^Ïv{ µ‰çË"çYW3޳~”Fz¼Ôiµ2@C1V™«ê yƒ™Ê£!Y£~Êb¡Kêý…À¹¶q OՆś{p¨å«P?´–î)ÙbSú:2ª¨.þ 8oú#1*ÔrO˺§•óH„KiÑȵYÌZÜ@cÿݵ¸tH²ÑÊq®.´³‹®qÿ¬;~þ `¯½0nïpý#¯UV…à{ÉT5.¸v¡¶ƒZué´ö¢ Ë%lS!q }Ö"/úN³„¶”:T´š4~¥o™Ïx Tëþ;l&g[lI ʦc†ØÀœãl ²±P»•wG¢ÒÅ[«tQ<}ÞËÌá¨|¯ï ¹ÀóÖS4rIÒ+¿$e&cŽù|A< JSžÁjh:Q7vmkÓ±PqiX¿Dyl%¹±ôÖv–TÒYPqÅš>LoíØßƒðžQYBþÊ3{DìzÜë.úØÃi‰˜Ûú«Á†©¢@Ž”ëÊɉᅠØç’¿gójÛH†7œ‹WtÉ ¼Ó¹x¼Y÷YØÁ²4š¾±¶™¸Ïœó@Èiuë‘þàMÅ¿Dƒžd¼oò`œ‡Þñ sËQÉ(SJ°¶ï‡\Ze¿˜˜zÚ“å°‡šOX†^»Ñ ññH’”×&Ÿ.ñUTL9ô±E/ÎJª/7Þñż5Vìø®ƒu~b9Ïô-¸}/“v:rkS0ñ܇<ßþc(싇¸xtH¾ª> –Q8«Û§º–á•­E*R(?¶÷öÀ;'gŠNœs+ÿ® Λü‡Q;¡uŸ'ªÊ­²#ÂþÀùÖ5¼ú»!‚I%·á 5¼µ¦Ñ&%ôã¶=eŸúYp?瓊™a­¼•(„ÞÔ ËÙxîáÀoeŸ‹—hèºHàæÇ¯„Â|¿øÌì>Æû…Å»žr ½.Õ8K~ ®+ ö«J—iŸ'7UÕ2‹óKNg"9£ƒ_·ÛRÈ Þo˸WiĵBF»-RÁ$þ¤¨îºä²,BÐÁ›Ob²HŽ [Ûyõy£€ÈdûpÈÒhóˆŒy¤:´ÉS·$¥Aæ5ŠB×ç”?š_Ži"hh¶i÷§&f/–nXë ÈÄ|%NÍû£M«"žw0A%™kö»\Ø –ÎYUÊI*8ÿWµÅ銜£—YÖ<‹RéîZŠ‹/»siG¯l*Gh”,Ü6'S%³ºyª(ž´ÓfôÃáïPw2…,t­; Ò¹Š>ANgZaE¯0‹ˆ6NÒ ¹Œc¥Ñ»}>Iò¨ù2ò»ê«CqtlH05oáPÁë,ÞÚy÷ž!DѤ å&ªFQEÊY,a¸›ÿZ9¥ƒõž üX-µh¬M)Éè­'µ¸^€¢…“½©NÕä®L£X#ô½–¯¾¥JŒ®Ç×&ø‰7Ê’éÝ@.êø/¥[2UÔ,ÈXé (ÅÍMK³Ò2ûÛð=€i5ÓÁÓ…2‚´üRŽIB‚â)µÔ‹|>q¡@¬xeÛ7ŽËÂÙ˜£+A[$q¡LÙ’”÷ƒIL ·)¯$¢­Üwè@›qæÉÂ;iÞœ./°ƒ˜f[4*]´Ãû8è¤ü½ø,ñ@LI¶³Êµ-x¸PãuI„Y%+3 ùФ­o ýܪÚ´ë¾Ò ´£,ŵ«éÜyM_ðôÞËe ¼…øäËaPû†ý»©Š¿¯ÅEÀÙöDu®–µž·[ÃP”üÜQ —]Ö“%‹¦'٧̲Ä_N¦ŠÑJ0ÌIR³Ý,žû«Ê’Av™¦‰\ÖÇ/3©x–K_s^HÌú`ûÁˆÃ½à£‹a;~eÖ%°:¾§•Š÷g¹-!ëV nÔ¶V0¹‘|ñß©ƒI±ëéùÖí<“~êJÿñ‘1w‘ËËØi@¯î½ ®BVlf³ú\`:ÊøÝÅx­ÂAWß³nMNÞ¶! Â×G‘4%pÛme+f!¦•WaÔâ’¦wo6F0¬¡·Rö›>eÇ1dyNgŸAZ”}±LnK´°™»ƒg`$²Ë³–Ùi~-Pô¦w+…9’nF9R«”v©šüØì:+7å"–ÃqsRëL .4\ê>s7í{¨úÙ » ±L¶/¹o\aæ ®hIË!Sȶò<,iÿ½ÅΫ•FU- ;O³Ñ¾¡>B&YH0;‡U¥10 ,„ŠW§ è°lfu¶F"$ßUÜ,y†E5鯣 [²·ö€ÚĆNjæÂ%,û#i¶$C5Úñ›§*d*ªlq'QaG »aæs¿Þ_žH. }í•V`€/Ã=ú¶k{qg¨øÁJ,,˜2eÔ{Z<¦©u^Ýù]ð“Ö’Ò&Ò=ñý¦g”ذƒ}W‘ÐZø4OqæØtÂþ€e–;ÊRL¦%!Ù£?W B‰Ê¶† ’Ò‘ÃŒ8üE-$AvGBýËPIÔÎXÇŒï}öÑ¡ ƒ¡!–_MÃK_"‹‹WAÓù,îˆzÔþ­Ýpó^àzî©í’ <–šy¦Ø®X}¼6ÉÑLº>e6¡…ÝQÇÆ’çÎàz2ù¡¯-ãÝÕ3GÙJޤ$ÈvrÎÊš]ÃìCÑ÷4¨Í{ÕSá'ùÍjvùl¶Õ{Êh¤²«°vî2¼ÈëšÅàÀŽ´˜¢®µÄ0õRV¾XôÎ|AÖ¹õ«®h°DW½BïÓ)ŽZ™wncíBÞ–¤8#eFUPÚä[Yž¦ñTª…[ÙŠ#M#ßÿœ7i£^ìròiÅsÉ…|ê#ݤ‡eåeS E*†>*o*n+ÞÃÆJ|Ab49š‘"5$Ô¯§L"LT2Gãw›ž›9%ú—öv—"ž‡RYf£?ž 5+ôÙ,¯«Ð5LS¨êЈÈVQ¨nSXƒ7:¦îÓ¹9Å ¼º~¾aNßd˧àÑðX¦ ®ÿF¹Ó—ù2[²,±»–%-ÈUÿÙý°<»H2Z²ÓùL¤¦Ï¿TS#;Ÿ)ƒ cJ×v<™¢âëœT¯3kžî· W/óÝ’ÆÔåÃ>z¨=Ìm©ëÇÐ H ñŽQÏffÅ_½Ã±3. íî5 $y·h*X"K-Íùp+:Z(QV\‡Ó4 æ3ÇÑÌ…Ôg«¢&¿r{~¨x%ƒ`,¥¢€Ps5—8ÍLtêÆî…M|ÍîêZ®1œ½ª<Ð^w”d6fQ·˜ø«qáò*µFTƒ>äd“vÐ_)W–{VÎ2Å"ּǷ›ô9þøY¨Ä³*‘´o˜ˆm4Á øÐBW:€>_³Aœ`io¡âŸ‰þIýÓùÁrSsõÚKu>¢ß(‘eÍzã{æaERS‚bºîLdÁ»¥»»Ù ’.S& ÙO[¶äW‡}Ü»ˆú½ñJÊØ¬~nàx›6î_„1ï¸iô”ЈCˆ gÐØŒŸ%åGÙ"#Ð S×¾Ë/IÇÃ%6óDuS1•²!íç¯ú÷÷$¶Úß©4ñ6(—<ÎzlB1¼ýc?Puå!.ŒÇˆÄm újJ’ï™üÀ…!ðüþ2+ÿ3b–4ÆTЖ•LO;F® §Î üW£ú+z€x-]}³¢y ê&‹Ts¸¬–ïR‰ÜǦ›)·­š§Òe6ƒ:!ô ²ul‰ÄýǾ23 Gm®Ï0¯»à™òÛ­9?;˜ ¡,ÂD=Á¬E¼–ßçåà‚­Õ§—sbÄCãB:95ìИ­ÀÜàc·ÁV<¿n˯B¾»´a†PlìI$IŃÃC~WßÚ7ãæ*Foç ÌIØGB#“÷šä6˜;¦.hÐû¹%ž:-F’T\Iuö†úå¨P}3žðwYŒ×þ‚[S=uBê›¶³ŒLU·êË„‚Ø øËRXöm’¤”w„¾oäcJÓ0½t¿d;æûœãÅ<8s×uR¬þiÖWÉQ¿JÕ¹§ÛZHCÊä*e¤q;Št»èZ¹—-ä¨N6,›oè~•ÌíᄉG3[·—‰ é}8F›É=œ·L0ÅÒ·¸vKdôf¼à.…u¨¦ó!ÜPƒƒ$σ•n _sì Ñœ•ÕK Àcå$2–ø3‚ƒeS¤7Õ9•Iv4¿`ˆÜÈ-6:L+âÞÞTB[1½ø$ÌAz© «²ÐŠh‹Á‹]|aßå ãz¨Ô¤~}"’T—ÅLŸ27PÁ°µÀ˜ñ ùp¬ÐÍ´/SAûa„)T\Iå§K”ü} *ô+ÛŒ$üGøËi3¾­¤î˜t˜vFö\ê1Üh+Ô„ö5оÛ»9>b‘´[+ÎPžžO¨ƒ¤Þ¨0û$´ú½ ¨TîZ?÷Ð*ô&“„Ï ÈjÆ?@Ô!¨H§%f.mºŸqÜX_JzîTÆœñÁ¨æÒ£‡ñ}ÝsZ(dtPæ{uÍx,OèÙìKèeÑêF¸‰,øÙdù÷Lì[cñͺ‚P èn Z¡» OçÚ¶÷öp-slw>lÓ uX̆÷y—*’·­ù7¡É™ÛËü2ÂðæÊh©)Å€FÓ²tëYZ„òq¼„Ûë)Gc䄲tË¥~ù,$®Þ$­A\çéâõ¥á¤íûYNÈj2Ü>Ú«(ê®Þ,}Ià·ß~gE]SaÈX ÜS–ŠÃʰth~ªº2viˆò4a…¶E]6uŒ€¬Õ8ŒÇ ¡çܞ⪣æåMJ/`Dtúˆ+ýðRîØ6Ó›tu%<ÆŽÑ‹Š&Ùzãðl yvï¦P—‘řݞ˜¦=XׯšOô¤ÀÏ”G94|¹šÛrDò—ßíQ?½ëñ¼ÐÜSAÖš…ÅJPUÉJ£œ~7MòãAõ™ÄcKëq¶ø^Dñ³ƒÖ:Çîùó·;ÿ¹Œ…œ†ƒÇÌKŽæ•äZOâ¯69‘|£W³OTU÷wx©åO*šš\|d@4|²¬Xhà!䡸§â%“Ò±ßÏ &€.ß Z¨]Ñ!èÄeÑoüŸ‘U< )R§eM~z° –!ö]ãVZ•ñoÀó2±ÕúƒRBËF$_““«ÝnìWEÕ<<{ÊÜ2²¡aý¯†Ç¹_%cj=tó•«•VÙHÈTý£íûŽhn™ïvѲ©í±Ì{›Ý¹!ÙÓ ½±‘=ZýÝ)“vŽüÔZ0O6`êé• Ìlpßû~&á° ÜàJ•‡ÏÜ*Œ»RNqÂàXºGϦ¯s7ÙãiJ÷;–Ãct@Ù ÕpÁ »ËÉãE§å8ˆÕ &åH¬þmÛŠÖXæãP0šJ1‘g¸p¤M]ÓÇWÎP3ìÍvͬ哼ƒ¤ÏrØ…º;rwÖkÜ~ªYDìØ:% h奡Ìóì Ë„¯V[ͺÒgAë[ÌWfÓ=s§ø*KpÌ`ÕˆŸ„òÄ4,íJq>#oè«j`ÚæDå œc3‰©±=“ ýòÅC!è³-,QÈ¡ K¹rW‚O݆ïÊŸO»oÚ…1Ü+¬j¡ ’±/jªX]ú‚^©Ž_Súê-éLô„ˆ4‹SðPÝ»ô&HÕXùN„ºNiavЛz¥ZujTkðÍW°Ü°šÒ±G¬ÿÅÿü¿&JÀç@†>ì,*ëcQ¿õX¯.^ß¸Ž Wmp”$ä¼¹ª~$·u.ÃnÍ{b#9÷F)é„ÑQž ׌`œ.úÝq'°:ž¡RêÝÞŽ»6DníO^3Q9¿h¢Ån1ÐÄä²§¶fò?nò>~Çò-`ˆVèªzh¦vÅÁsd[Õà—1W¬‚×wÃÍÉzyÀ÷tW«ÀÌoJª&ç`êÞ¶{Nbʸ'As—st†¬eùßõ†‚20/GC£ì¿÷'‰!÷åÒˆÆ?¥†EEp ÇRE„"ÖºÌisí^2ÿ"â8œDÞænáÒ¢Be!SÞG‚ñ xÇ ûü\/â †û 5˜Ntè/²È*z§†¶½ÿeøyã¶&|luS¨à—á{k {¤™Y¼ÊÇݤ½âkGÙòòC/iîy\?’”SoØÂñ£ÉU;Ÿ»¤=Í-ïŽpï4ß­?ãà¸j°!'É!lÕ¬tŽ_ kk æ¼GèÃø˜Áù%B€çjC™¬‰åúiûŒ–3£ºàïg³“¶v´ÆE#^ñ[]ôb_B̶oÏÌHõƒY>5zÒÕka”ÜêÈ/»U ´²LŇL‹˜¨ /ÜVÓþ’t‘æ%๮¡¶´bd¤–'›„ìØ-ÙßfO”D:˜ð«¡Ä™ \¼Ý3Ï0ßd1ä;Mò= cKêD@KýZÚV('òᛯfz_-Ø;z?U² à:5ÈZüá=â:‡Ê¬ÅW*-ýŸ|jò”à¼ç9}4p³;E§mµFä~…¹»/5çjúWpWµP4ð‹C»ð‹\û@I!}=íªÚ¹Í¾Ã11¾ ¤7µ³/ð÷J¬²fS¹ÔÀ*šËèÏr yvcXždËî†#|ÿ'ÕFAn^ç/äºâ§4‘F…Üã—©Dº¾y$Ìñé‚IN['&wCÿOã÷`;ðN¤Ì§Y¿U¹æ¦„˜[úë`‰ÕЦÇìÝJíòÅÐrbs~^º_íÝ09;Љà¯ø¸ßÒ6sÒEGe.ˆêZÞJ¬²Ca6T׎ŒÂº¥1Éi—›ÇV“‡jݸAêò0d‚"_<9Ä&†û¼ìúIèîzTtV6KÃOç%îý;òýUKÑAê•6dSÅ Oå_& -ß5¥>`+_a¤<•¡ý<ë2ªFA#ß¿-<“™6 âpEGÍ'ÓR¥Y³gÌ ÍÕÒ·Î#IÅ2z÷ãÛNÍ0òÈ÷X­ªm뜢 b+ö$¼û|±Ù^Øn/ÊÞVÀ  L¢¨7d-±-W˜Â2xNˆzÁɨÈÓ49¬ì-J¼SBTâ 5“&|6W¶ó–TçÖæ{ÀÄù¥ ÷6«\ÉäÅ)·y—%£ôî{È}CT (>yAÉ×ò;¦Ûÿ¾»m›_ϧ`€%¬Hñš0McͦÎ%RM%ÁÂ(V¢âÝ 5É$xpÆ£°OޝyñÒb€@Ï*•ùüoÿk)Ìå/ÊÖ˜mdßéܵŒw‡¤ SÕÌê™0@þMïu‰œ€ŸBCX3Ë Ë€ˆÆ¾î—“Êlm|©‹¡cÕ†áʦãÅy„ÆBmœ$,AÌ«ÈøÔ ~»ú=Ëb´2û¼«ïªÞ•Ì`JUÛ@øáõ&Ë#¤ÿ‡ëg.iÑyùZ°$pŸ}hPB$àߦ¶¡ Êk«õ½6³D¶” ÑѯAQà2É–æ RÊŸ?}ÛiTÿñ¤çÃ8o2œê¶7¥¤hò©ò,åë_£¶(Þâ³(äˆÄßðP§ç…‘TÀëÉc;N¡@Cl[k¸)oó8·ns'çF4ò­L ÇŸe“›¢aé@cXYŒTUñ]õ±~aœ †´%ŽŸÓï7êÒše ûÁ$zoûܧ$|Y €ÐA}Ž«"öÄøŸ%'Ç›)´ôz1ø¿UúëO~Û‚]êeeP…žðS¾i•ïõ‡4ÞI1éíIUì¶íé’ P"U¯Åžÿß|@HâÚäecͬ s hA2ÿC Ê…Š§•އâ»ÏïÐTþ¬4æ8^./­4çµ`Iò&v:}РLM É|"ˆäÞ†ðʸ&—²Ý±k ¡2‹ùA=÷ä³ÿŤ!î]O£gAÀ“x$Çb®õLû¾ 5¾¦ n/'Ä9Ä2@6¶¹è¹ål³BóOÂ Ò EkvœðzŸ:°o–ap´[_Æ£oÝ&¹é1o2W¼<ž¹Ùz!EX,VEï¥8‡æÞQ•(¾4F:³htN¸ìÅÛ²÷C!¯÷°OÕ,—Ö[\Hûú£ E >è]rïêy¸ÅÌ™(ƒ´o$Í¡ìïháÏÅù¨çÁ¶Ø—9WkŸ3: }æ¾köÒþÞIs£[³0äM¨ëÓ⌻¼“r·6€Ž2D£n5<ýÛŸ7F uµ®û ™HKÀÑm…¤t>Qmí¨Çöï(ñôÚžÅ{ŠoJÉêI É«mc³)äÿ6Ñw“êGˆÞÐAÔí:mèc–ïxÂö8±q¸´[¯†ñŽÍC?â[õ6ª}j|©óÚ¢ýŒ¶‹$,#IMÁï#+Ñœäû&Ðñ+y%,ª¼cÌý‰³Fû3: a„XKjP9f e€¹2nHoÆaMŒË˜L6%¡ ÜÉ´¸ÈDø€e£g}d@1$·Éy¹´hp¢Œh$h2ç9”y©¶Ð– ¶^®ö²xEµE(*ï4X½‚tÂ’ý‡“\£›ÿ½Î;¨°sË*}&èò½3¼Oÿ×'ü !¾Á­F¢¾uV€ޝò˧ï¼î^’VØßrëÙ风͒T‘VíGºAæ´pWÏ?³Í?8&#¿æËZáñ*îˆwžjb¼I=š0±A¯l¿½¡KW¸^ëâüߌ²Z…ªÁ=ÄÉù^ÒIÎÚ\÷ˆ‹Ç|Õ€`Æ’ô×9knq¥áü±öcÊ0Sµ‡^á9sÖ `¨—‰ÕL¬û8-Bœ6±¿^Ÿ² ©Ã ?[?\C æÛÔps9E„k…D?TZs¼ýÇÔ®ì$îñéC£ÓŒüËœÔŨÞÏiýÎÌ–&M®ª ЃçLö6°# ú‚#öjÒœàʃ5.zÓ>åȸ©Òé”ÚÇ·cl0r|Ά0§g¦9WF ™ LÛ\ÖÏÆðßm[¹3qÖ´U"ôWÎâK¥_T5ý†¶ô` endstream endobj 6283 0 obj << /Length1 1430 /Length2 6812 /Length3 0 /Length 7786 /Filter /FlateDecode >> stream xÚtTÔÝÖ>)]¯” 0€t Ý1Hw#) 0Ä 14Ò%¤"-‚´4"Ý ’ÒJ#|cÜûÞ÷þÿk}ßšµ~söÞÏÞgïsžç0Ñkér¬á–8 ÁÅË A!ØÕ싼z¤%ðåE Ôâõ‹ÙnL göØÀ]q^3/PÀýéûc xìÿ6yù<Îÿa"£ˆ_æ?š°rwuEvù‹;Èÿeÿz /ˆîìÜJ<ľ*¤ù¢Díɵ>,y˜vñ„k8ßÑ%?öt%Q÷UÖœê;…ÙN^sûV Y—‹×‹Óß|תéj¼θè¶lé,ã§îÎP'’|Ï2Lգ侔¥+ríBÑ¢‰&þ„#mmÛ¥ËDäÇRÕ1“äÉLúVAX%´Yãã§Š·YjäE ö¾ê ,{õÖ¿S²duŠ ^1LÕÈ`P•øx‰›èYN¼ÜÓß;OÒIÓý\Å#hýèQ‚D^¼÷¡œV¹Á|.áMv‘ÇnÆ_¾–Š÷ev­»J–Ø^^TiœØ­ìšÑ³»t¾®£ìÄÞ+PSL|–‘ÛŸ(3”Pñ-Átª4¶HêÅ;Ü* Ä »'ÙPG{¦í×öe,f]àð¼mÂ=ç¬dúä@ìÁÂÄâ½Èغ MÅ[V§’8¬ôê·üùåy§ÏH¢R]Â0£ÆÃ!{Û›ï±]çJ&V %W í»$óŽÀÌgí¼° à+J.è¾øUÒÑñ”âJÍÖ·,|}í7ælj(þØOsù=Ðç`Þ³J« gaJ'™5Øð(_šo¾b5:"Z¦ÁLåtÚ5F°¡ÕÿÊôNTÙô=àeâxʧ˜èŒgà ϮqòN^p3ã•tT@ö(ÓºD:H`å}oð(+ÿÐ,¡³ó÷BGkXªä¡"l´ok]K-Œ>1ÁÝVr¬v'ñSTUíÂ.Lü”à½Iq‰aÂLŒv0ì ܕùdô]~¸Bí¤G1Zsê8áÃ@• èªã°dnˆ1…B:åΫ篆ƒ^Tg<ë—dfäe¹”òh»Sxa EXÒÔÐ9çC3©š@u>_ª wÜ‹ºÄÊdD“?=}7t¦7ŒKÝ,›3K$FHþY~ß‘jdº¼·:nBM×ÌÎQïLü {‘ÈÇ&Ýeõ›²ôº@J„ Ÿ—äMWŒ [}3y…½#mÅÜ÷Ì%j‘þ™ŠPµ‰©ÙÏæâ½-×üÞ -"Bù0‹ E–{™åC Ëö¥m¼ ë_²=ÌTéãѽ°ªñÄV¥;FÞïæ ¿Åº»ëñÁˆ¡ÞrÎüÄP'¿Iùuë†GßrÑR>âbu}Ä šRs¤™š<‚Ü>ñIˆÓÁ÷[n5?*«m¿ Äl?˜p¼£ï™ŸO¥!Œð$Ç ¤}H⇺šÚïËi]t„È—©‰äÓ¶¨“³ÊÛÞ[¼èN$%èZ™ɹ*ÞPªd61Ñ­"¹†jˆà<ù ÆÕììÐPs*dä86gË”òt,¾v ÛûRPû¹~‰Í6öùœ1L©‹¼!öô(•z—“µ;’<­òÀ‹ç›ÛIæ!ø•Q¯ ¾ÎµøoR‚ßÑapr×-vŠ7þ ~Tÿx®«ãªý oÆÝÐÌ…[%Õ¶ÉÀd…ž>µ·’鹞™Í —­(ˆxõ¶` †]Ô<­ð ,gQ!ABú‰‡µ÷¨tVá‚ZÕ+…ô1^ØLð­UThùkÿ²«}1NT›Ê«A™ ¤aoEðËgÐÍÉlöPÚ°fÖòj ÝR^?×LÚÓ~ÝYX³ÓD9­3éfzl,y´Sx\îx/”ó„fî{6w,[ï YÝ‚”™ —T ±=Šý²tÍÒïSÚ¢ÜÙ L+ÒÌQÌé+ò“ŸÍ=”šÐ…5-)û«ø$µc™fŽu95ˆ º–³<½üŠÏE‰Ÿr¾² óŸÌa<{ÇØk¸/|qv»Qíq|3̲ܸà6õÁµ=¸©xúŽëöøÒ"¡™*įŸ©’ÒšìGÇ«¼Hva¦#΢žnÔ& ½'W”â ̽À;6šõŠ·³üºh‘r‚8Ê%3í´;Ý/¶VÃÍr)²:ƒ{º—{„¨±Ye”‰õ¹’˜±ÕDáðHöº4z™à¾HŰDl#”ÓU <.ÓW¸JîY@„—ŒæbdÙB8°|._ÿ^¸3Ç™ö­Xþy á¹›ÇÎÙ$súýÔˆ'–„í‘mæÅÍYq‰ÕMÕ¥ýSÎ ô햌ܭz•¡½§øJ™¬“(GN‡Fqx`ØXµÏ­š‹D¶f㺤]x­‡jxo5ï4ù¿ûvPhÕ(YHú|ÉØæ)¦ÚmÚ#²I#„ê×0íc‘˜&”£T¦5T=¤ÿzÅSS¾yÙÄ%ò—ÅÐxî f«¶XÎáTv®o×¾1½œÉ^ûejµÁ¬Ê±°P÷xXªöûÐËÂÐÛZWš~s¿£+þžÇ.O‰ð÷ÜAX-+ "És&¤¥´Ûã¯Ê¡äJqf>"ª‘,s«ÌÐsš@;˜l€¨¶À¦Ï|7IcÂ{U4az ‹Îx]£>¬Ft¹ ­\Ž Uý* ÅD­l­Óv:ÝÙËí#«÷ÇKÒ¿‚Åù5·–œkÀ€“ý³l­ÞR+ò wYn¯6dn؇?tƒbê,ÕfhmL¸õ”¬Gù€O\|þ]SÖþº¿¨£`3&†ÓÞ½}iEõŒÀÚ3™Ã €(Î?ôÅ™p¦&m,Ñ@Ï'ÌÔ+Ê¿²ºˆàݽҬW ñkˆÐ02±H«‡ ?3ákêKKÚg)a>Òé¹çUáÆiNü"ìwN+lGJëÖ³¥Û´ !ÄŒÉbÊÖ%†SÄbz˜‡#£»…!¤Èp$^ÚzûÖxPÔZè uÒÝvš¶5n½7¨ à“ a‘;_‘¯€ÓÂAy* 40éq^jf£å1Ç”¬iÚY²*ë¨< «ƒÈu–.-O?ùfüðæò6fò²£*=Æ@!n’ëâÀ¢;ÉX’¶¬ÇECxߥgáM…Ø#rÆ8ÅÆñÜ.´‡N§¡Æ—½>aªJâÕ·x‚æûzz2™ÞÌäÔŒ´kZÏ~0'ïÀG½é£EtÏÛÿ1yŠ—¤û™Áwxå£Pz43Ã'÷Ì)‡59Y­'ÙYû›63 2žøµõ)èÛLÕ¦({¬ncó*lØŒ×>µþûeƒ÷¼•“XX·2ú‹iVË3œ>®bpõ{EbÞñ`’%˜¦m¼IiJ{éOZ1_^lÉ­ÁMØÚc7ƒZºÄ:SÐ^{À³ùîŒç:þz¡‚ƒžîtÔ6éÊoÓ)´†'ÅÑP‰Éî2bª3O3÷@õ:’tzuzbšŒhên(õj½ØÇ¥»¾å¤LÎÛjæ£"wñ°ékA.ý×söh£‹Û·ãtQ(Æ&³âÙÊ#ó’ƒÃ¶8g|,] [ÚLÚÙ“–7¬vì`{ÑZ½%¯º±×íöþ_wÉã•1ÚLRuU¹Ô³ņbž4Ù¾½ú[çÉ–Ôg艹qžNÛqVÅÔZißï„Ë%¹É.ð‚Ÿ~“ž²¨»ß‡íåÏ€I¤Ã¬÷„%}´Â ¢^»1®Ù*ÇáOG4Ò ¥ò£¥[t„yЗä.×êWïñ1/W2¤ÂvÒã|t@G–ë*£KSûÌŠ}_ãnë‘a&x‡ù-Hk#½ó¥°§=„íL¹yr®äù„³3åÀw`ði+±z¹~»Ëý0ˆ óå¸òLøA5û¢‘È€h2Q…B>—ÛõK«ù±üËÝ;"ôo°ªå¢Ž0Íç¯Ï+BµéÙ¸”•x0ìõ‡\]nѸ "ì¬ggö c±_—ÝIî[‡Ìt€Âh/jH˜,÷ r寈Ñ?¸,Ço4”p–þ)aÿXqî;–¬!ªvâ`¥òC o¸jÕ]~á³YŠM{âìÜyvà´Ü›Œ Ý"¥¶Ñ¸L)3áÇm×<|6_Ñ™9m,}oÇ«DÀ뻌Ñ5ûÃ8s+Ý&åmiC£5f²C—RäMAãOƒh_+ß{öÒþªªD'1îÅ”`z]‡O¡Îu° ÎzK’ØÕ ˜”Ñ­K ’Škº‘mÝÊ·®£­œé/çŸnî¨Pì9¸ß¾9_ÊÑ̶l¼ð|ïªýÉ¡)ƒãuKÿщÃ!ÿ™Aa<£ÙA7ã vÆUÐ"û ¼!Û‹hz† /ÓBåPèÛJYÑÍILðëX¬ö}#\ª‰º“Ê’“x†¶+ôUé8™ÌG Tõ­#°ïo×Ș%¼²#ïI¹|J hGWTH ¬»¡Ý Ÿžþž^÷Qݔ䙢_z5\ëv(i© šn%ÝJèó!ºA_:Q4ÍL³ºöÇO蜎ôþr¶] £ÌÆ3Êi šk^:Ë áÌDüøž#äÂö’ž¸[{Véáþ—S&‚Œ}ëí§Ï>Ë–•ñ<{^Š/k$ÙAÐß!°¿}À2ËׇA0?š2Ef€µI%¬ ¢/VÓiÑ$,…߯ÏKP0ÃÉ¡ýëpÙÚ'Ô•ô2}u«a”³#3Ù¹ Ãóý+·F®éfj‹«‚:焉n°ªÊaôQÃf÷Þbé^ijðø|Ÿ¤3»bó§9$öqš ¾28BÔyûGf½)‚0ç¤Úß¡œ°âËåèàðH·yÚ¹cvÆC]6[#²YŸÉ'§R[˜ã ¹R›ñÚ:ŒKá05æf1O½)oðº5_j«ªžÏg½ö`èó¼+T0ßæ45žÜÿëü9SQì#.„€Ë—'ô2QuakE;¯W Cu%À‘—†O®9ýD¹Ý³Ø^ ®ÚDÚ9-wί2++ i5>P±ÄîÚ©u®t–ætn%ØæXýÙ´Ò¿ìéšKV5w9?®\}AƒIޭϼkJ¼f:M~ xQ…úÃ/òýúûDc tp ÞvtËy¼ôR ðäõ‰ ÑÈÆ]Š“+åO3ʳïïîósç®õ ÍÈIõ±Ô>QiRò5Ë'Oª&Ýd Fí©XTu€³ÿáa¡%ëŠ.ÎcG¹þøe ‰fM8ÈFÄ´ã,lésÕͪv1z-ÊFi›ŒÅO'7yÖjض^B)íŠA€÷÷J ¥ °ëå2E6¾Ù5“N~´ãífCâ|AÓûBoÁ$‘OZá‚©ÈøÙë3vÅA­«œÚØIÁŽå,A¾7æã¢½ÓxâiÖQCŒïR¶äKêuÛÛ>}ƒX.¨÷ô—À ÅÅÁ åÐÕþfݹp“gz’5¹ºH… +Uß àæt¼Å¶IBuåJ†ëá¥"6E$d^êœõ½ÊËÞÆa uo¦H*9« áâh…Ú”ÍQD–Ï…•‹È6‡7“ª¢-Ö' «ïñàËÊí4k%òÇßÓ¤Aó‰.íX”'ƒ¨$sQ‡w9¨Û¡–ysö¯¢džèÚUSÛO*Â[ÄïR¤N7c‰ëZ­QLØ?FÜOÁÅÎ /ŽE¡ÿ¼àN5I¶ÅG…e´e…-ßTq°y'$M|ßZ’7M+B±¥ {^Ð*%æÖÁ8Œ#9H+Ö¾HËܧn,³Œ½WÁs¾€±GŒ™ûf1±~Œ+õMy‹õ,{<Ò’19W½ïØwéŒ]:ŒøV€žüâªüÉMôž³Ä¸Å8 ­À¾Ç£²[ “›èžv>Ô†VNÀ¸êy°c%gˆÎO½o,Ø )Ú· lÚdYŸðŒ” 96ÄR}Ô&õBéyÏRÔüýÝ73©ò‡Iu`X— J‡nIÞ›Bù<W£“ळ'd÷H+&è,¸ù ˜`£>^¿¶!®åâgâmJη_X?GDyVДžzéãêרðÚ¼™`/¤;…bá[î,Š¿+=¢TS†¯ƒ¦Œúc*;’h…Þ…ÚHoÕ2®ì¸Ç_÷RŸ;ÅÎðwŒì³›Éàݨ?5ïóq”5xøÞTF~ˆµÎHòW£p(û^rÚ´C³ $dÌ84Ý%àõ%•ýÝG•ĶÁE·ÊÛ$1Éç_X M;bín<š©é&)Þ˜W`×s“ž0½P|ûÉ1¹ö× ”w2ñU.¹"®¼ÙzÛˆúGŠh9òX¶V¼¤ŒÔúc¡eL¯ß´-ŸLžK²0'Ð|2únà 5£N‹±¤ò|Â×:÷üRVsë\@àœÈÒXþA|T£¸¿¤\ÁøxÙ·†Ž©%À!àmÀ¹£b;fËÍodº-;JËŠ»"l6±™ž„—:zü ÷j‰jÖVVÒ¸¼¨N×…fr'Dðƒ¿ú\ËŽ“îݳp c: +þ®uåÀG®R¿JIPÞb­·Ût{߀-ŽwT«ßr3œ•†.2ŠKèbÐ>›R\-ÙÅ¡Ù)Lšn¡þ8ôj1 ¼œv‘§Å“Ì'FÙ|Ïö'Ü(jŒ##­«PÛmëÜÍ Þkë›ü’hlÓûøÕcy†o‚¦Ë¾ô¶†²±ØÞd{w÷rs÷–×ÿ˜Ï9à„˜Žºñ·GäyííDötDdëÙ-ð²d p£`ìy¼Å¥iu0ÖK¹Œ„# óÂ'4Ít‡ï¿4½qMÚÐM,'}¯þnFÚª;@[€<åÁWñUÓ“«‡j=W)qi†¢Ã≄[‡¥’Ú,‘Á¹Ã̓ÌüYSË ßy˜}š¶øò ²6$,.†ûñA9[Ù¸|üîûGùp³˜“LßIï’Ž&-£5Lê„÷«Ö«àškÓ¦ëMÜûa¿¾Cù=å¼Ýu<¼’R²Qš2ÊL6¾Œa<;KŒD9¸÷Àxq²é|g•Ýa:¸{+§4ƒÕ³½àF/åk>;ÖÛ6}F@°;Sæ|> JóQÜF]´Æ+…dDË_9¹å ,ùߎ ¬ð“G¤©ÚSøc/³îï->ß$Ì Æ?m1„2È*ËäRntØ8÷ŒcµO€À¯¨Eø °P‡ J£·šž.E)¬zPQÑ#mQÌRwž¯µz€"¹ Ró Ù˜îƒ>Ž&û’ð1 ~ò jíÂ|Oî]˜ÃxøE\t´w‰{€”MÓxe<Ê.|øÀÐ ÔœÎÂ, =õ½Xk;¶ï6ž´¬Ý“cóÞ»¼_b2ÊÚø&Ôs]]!E>&œ”ÚÊ8zî»´úå]ÈÜ ¦ûbk]£r‰ñJ •2Љ;‚5G¶yˆagðhÇ£3Øð¯¯üþ—õ¡etíã“’-8˜C]y.Ï=ƒä7è$X%w|*ÌSˆÔZÇùpÚÖ{møL…L7Ξ…ýìÑdCR{r †@kƆÿÆ wÑÌ®õxB+ãö•<`H'+AÏ®ž€üƒâ †Æçhú71nµ•†[¹™q˜ i«+X¾¾~õK–öߦ©»øò¾Û’³(çþ}, endstream endobj 6285 0 obj << /Length1 1385 /Length2 5996 /Length3 0 /Length 6941 /Filter /FlateDecode >> stream xÚt4Ûoû·ÕR£Z{‹Úµ{UňR{-‘1"vQ«¨­ö.«f©U[Õ.ŠÒ¢µJiÕl:žçùÿž÷=ç}OÎùæ¾öuÝ×çsóóšˆáh{ŠĊu==mY(%JRòó›"±®ˆ¿jJ~sƉF)þ/u Š%è4 X‚ŸÐñr€¤ YEœ"þåˆÆ(4 ÞH8@O ƒF!<)ùÕÑî~¤£–Pæ_G€LRPý»!0HЃbn„Š0¨+À C"°~ÿH!¤ì„ź+JHøøøˆCÝ<ÅÑGaQ€ë0Fx"0Þ8à×À}¨âÏdâ”üS'¤ç½ ÚëÅ …+†@y"¼Pp@(0ÑÖ¸#Pœuÿ8ˆþÞ $úwº¿Ñ¿!Q¿ƒ¡0ÚÍŠòC¢HWÀ¢+ŽõÅŠ (ø/G¨«'šõ†"]¡ö‡ßC°Jðïxž0 Òë)î‰tý5¢Ä¯4„[ÖDÁÕÑnnÖ“òWH F¸v?‰?›uA¡}P$ îðk¸—»„ éá…ÐÖøëBPQþGçˆÀd€òrRò €ð…9IüJoêçŽømü­&LàŽv8†@"„?ÊO¨7€Åx!þ·áŸ%€#aX€=‰¢üOv‚áðG&,ƒôX Ø€¿~ÿ>Ý%À ŽF¹úýÇý÷~%, tÀwDþLüo›šÚ@¨)&)€$¥A9Â!ðŸY ¡È¿]ÿªr@@À?Ý®é_{ÿ€Ð_rþ™LM@- ôÛe€0Âôÿ õß!ÿ7„ÿÊòÿù7ñruýmúmÿ?ÌP7¤«ß_h½°è¡ 4@ý·«âiõp¤—Û[µ±PÀ(G˜Å@Òâ@é?z¤'é‹€"±0§?ù£7ûE5W$ aˆöDþz[Q@àÙü‚¹ÞO.ÿ˜ ž²a¯ñ—Œ ÐéŸ}h¢`hø/ÞIÊÈ  Ô’°z‚$C@ p„ïod$ÄQh,!@˜9à€ÆPþZ3$ ÀþÒQþ#/Ì ƒ!þ BÑÉ¿É@ø"`”³Óh˜R¸smxëÑ30»ØÊˆò…Œ#KI±‘§÷(°½š¶KÉ&¹9s·ñÙäžs‡¾šÇQÞû·ß>Õq×ûIˆqCÖ¹í§Ïˆ'r\›¦m"zb‘¦Æ¥X‚é%2䌹òòÒM¸c¯ ?í}ÁÚî™Ç> ¥9ˆVýö—ÏJst™8Ì·–±Íö¦+2{,‚ùËn acm¢Óõ³®ÝVn?¦Lö©¾²Ø?80µ‡³3&DÇ;tå+ßCìUM¥ iòjóùÂË'ù%Þ›YtöZôêL&zOxŒY(Ô SšwXlNxÉ-s¢Sn²Ð¶f­áœÐÒ¥dºÂäÓó'¯E:> €+/@Œ´7¿œ`>œ½°8øÉ•êåX‹Pï}§ŠÒÝà ×`“çŒ*˜•˜¸EbšþIÝuê°Y ”®ì›×ût7£=BÑÌIÐæ<ÏÝÌ`ŒääœCÛS'NY mv}“ÈÛHC2§¤Ò±æ­¯ðÁíÓPÜ)ëåp¯Ý&..RUf¥Êâ]ÛïRiÔ0zŒæSY­“øXÓuÀl¶i‡•Å^'Ù0ÚmyG1ϧùe·€+{ð|xØ!S©J‰Ï~—Ò¡†Ù¿ÏîºW>Añm´–EžQ&8h ÒQ»[m6‘ëJ­‡'ºN/$÷À…ºð¡÷ÆÔ[#o°&·I3¨ŸuF=@ íÃ׊¹×á6s1”à[¯*Õ(î€ðeªæ g—Ñ ¬â0[U›Fíñ§¸~Úˆ¢0ØÀ÷»6EÜAŽN›ÕŒpJácƒw¢CR…F©e?!ÔÑ ¶Ê•¸ EÔ•T€ Í´s5¨rÚ–Æ#¡æè¡XÏ»ÝX]áÀÓo+oO“'Þë ÂÙç·n)ƉûPñEÜ~)D›î%Ì(ò"…4B{¤žš7ë‚…‘ªä«Tv-bU¶9â9©]{×]Ÿ.7›ýÏOss% mUþ¤®¶ÆÅu8¤½ø!–ì-— Üjöf‡>”ý.…®/ ÿ°QеR3-NŽì_ïé}êH¸¹ iûq*Í­¸· ,‹¨–®ÙVH¿¥ÁËÁ=s3>‘üR\íã¸È©!¶*ŽÎ\éƒûz#¬Û;ž7æÒ’+M‚¶7Ò6Å[)E0í¼æ£— ôSR`îÙrï¹p!.[Î'æI§°?ǘõe]þõâê-A¡ö·• éE´÷0!·Þ™“Éò‡ÅÄʵÉìF–jf=eõSVnaCas%Ä Œ' qŸ%ý”=^ׯDܨ?@Ý;ÐïC{êõ|ˆá›Ÿ4JI2jº&¯Xk{äÝÁ¥2Äóä*iv{\Òlùãs ð¥Óy”¯¡îÿõ؇g=|#ŸO–HTï…ŠÍÐWo‘yHš×í1ŽÁœ}‡· C‰ ­,oÊìÄ’]û}ÚjÒ'qÚ᛼æƒ1Ê> + G.²÷Ÿoä #>cŒDÒ\å²ÖˆîÖŠÈ:ŠŽJÜz]ÅsÅ¡ °¬ÝpR0’˜ls úÆÀ+™Ê”È ýs~åÞ#On¶*oLhìÆ:ýÝIVì0´½$Ç>œ.OY×:ÕLßÞÇ®©¸Qu¥Îê5".]™äUÜóÙ¾ñ 8Hîw\Ã`¥ù Ãc÷0ˆ(‡ÞmþQr’!uŸÒL'{2/–ÃæÑ æ%ôÇ{m»Å—mÌë%w„øýtÙKõµåž~Ri´˜Öíf^Åï;¯f<<×§žü˜Çæ*CÝ“Å(½¹!ûïè`xÎÜÚ´ÿÓ([#YW±sG‡òH¸ÎTt¬ÄÃ|ëçÐ{ka¶ò%~¯5˜†çMŽ–oH˜9d?ÿ"nšT¼"jèI&ºÁÆs¹ïRG[x]eIv·@/ã gÕ®GàmNÙ¶9¬OõÆgh®‚uÑXPŒŠ~Åœd×­á}.?׋&œm˜‡*n.éV$î²6ûZHw¦I>oŽ¡cd„óç2ÅD©àK.Lpgꆜ²}if÷ ®‡I®zÑ͘m²>q¹½;\¨+ñJ¢ájùÉà?‚§.B}ÆNÉè ‰SF³ùl÷¾°á¦3-jvõ¬Bœ~ò×j©¦èIhI¾Ê †¿p”ÉcÛ×÷B¹åûéyXiìNÒ7õA7šm¿å^¹—™ßçòBákíϤsM3Ÿ¤ê€Ë9Q<‚Uã]¾¢Êö3tþÂ$`ûÁÂVñD”¼àMÆŽÀz˼;²éŸW)O:>Äs ôŽÌŒŸéÊð³ÿpÒ wf–î[äma5»^t*Õ²7èÈžuP‘W[¸ÍíÄk¾øÂ&[Ê탵‡þÂeeY ÏyîkÉr• nëP’obÖ3ÙF[±>.‹îéž ÏŸL©ëBLö#z^¬z ˜tÓvò&VaŠ/;’] àÍár(°oZ}Ç:Yd«¡Ê_¡hÇé¶Ø…Ñ“˜Ñ^té'½Œ~ßד2Xæ÷Cw×m\{¬,QÂrãÖКdÛ›ÖESžê¯ ¬Â=§Öˆ± ó‰º%|7ß.ñ¡;yÍ¿¨;þ0aM0ÈÐÚs2ºÏÊö3‰Ì¸æ‰œÃöšW,uU²F¯Ç–˜o¬2»ÉîS·¯+†»²GÚÛÑE"{3=Ó L%O¢én-št °|Û‹‡L'GòVR@ §²·£ÆU´Âñ&£, åTÙËÈÆêÅ÷×{jH3œæÚü†D[¿Ójø´„ã(q„¿Ifˆg3}§4Õî ¸‹ÏÔÞÛùTfQwícõ”}¯¢s¹åU½Î>Æ=M•“dzú¶! éÑ}<ŒDÕ é‹•Â×2õ¶/=@5褧Wb/”WµZÊ£yT1×JËH.NÕH|«ÔÎjïViŸL‰VN †-n³u¤¬0>ÍZ. e0xÁ”JÚjÁ}¤~ú¸Ì«†Ÿ Ã›‰4 J«Ùô?á$#1kN雲!º·2ýÍxEe¨ŸÚz:ËâuÒÚÅÝ|ÐÉp§;³yÈ*·¬f¡?B}ÿ‘ÿñZ-óÛ›É/¸çÜ$næÁ÷ÅN¤cý½òjøÖt‡´vD/('îˆD›•–¾¡˜áÏ1q{ðm0P¹+’Ñ€ óà$2å˜;O¸‡F°­Ý¢¦~ñ ¢¶Øƒét&NwìÛÝ¥¿_-{{’ÕuGë¯Þ"(µ¬åNÕ†ÚD'£ËØÁŠK).ù7]|>§b¦czzȧ~T9_“e^¼M A2ð߬™¿?œµ»E¹–今øòh'œo:Ò¤[u+¡”Ï6ÞVî+YÝ¢’vŽŒâ"7£p¡ Àå5¸ÏhB›•:eÌ4ûÃå<}y„¿Ú8ç¢£çø£ˆ1mOb®[nbVÁ#Ç×ÁÛùJ#>VB|Ó¢’à¶]IpÁÑÐÕ—êzÇ´ßV|—¾¼~;ÀûôèQvwb`’Ǜ㊎öMï ÿ&žùè,Þ¤¼‘ávf¾kÇgÝàõqúâl‹!‘‹Xˆ£‚‹gþ¬„~qš›š]E¼°éçûˆ‡ ɳ0’ä(ûŽx›EaV@ÎŒ¿ðÐÌ=xµL=›ÚþTË?TyU‚B˜·ySti•1™Ù±› º>\êÛ¨Žaåf€¯]2ü¬ê-=ªiOÕ{lG^?çU_D⸶x¯X]xS°?ž÷H0S‡Äò8F8f^fgôþ"kèÞóèd>EÕÕiÐk¦PD d Ö¹pŸˆë]Y^\¸h£m®®)LòGöÎ]b}`«f⥞õ¥ýW-„×£yà ¯h—´Ú¢8ðÂrVý>ÞÝ ö@|‹½y1à æäÕzß”ä×Å “('©6„P&^¥CZuÃG›MºÞ&< yqÁÕÇéCŒíF¯Š‡iOkîU9Š“£º[ÔUyÊ‚¿zŸëh2xv=®áZ‚håa-CGÆEäßæÓ>|¸‰O}U+ýŠ™¼ª"”þq)›"z>¯ô>¼c÷êˆÿ‰$I‚õkæÏmø"†-_“²õeuEsì”õG®MænÜ&íÈÀŸ_‘ŠkÂñåö‡lå/Ì{‘¯tòH—͈»Ù¾ó{Ò]Çx¢¸ÐÝhú,Y ÅFŸœ*¥hm’Á÷FüáOF½Y…†[]^Nò¨÷2çuv8çÏëÛüÕïYH3oŽhùám•ð‹"ÈR‰å›ªŒ ¾ëz˜Ñë¡Â2aåa“·ž1S!Q>!>õa5zª—Z\zød¯}XU PÌÕ¾ÞàŽ¢Èl;ŒˆŸÚ©–$¯uk=ê†Û{ÜlÄfu¯XáÒàÈú5¨D*¶ ~_twç0Œší;ýjejÖ7»±’šviY?ñµZ4¯éñ»%¬Qhßà@=yû}8Ú„™8Ïàe õ3±*¦Kî¦å“ñ—Z;[e<p-y³þà6åÈVö)mšƒY¶h‘Š“M,KÐÅÊqïî¼f2Õ㡃T}v³¤k¾ør}gDŒÁNS›š,ê»óø´úKr4=Üc­íy~$ Œ„É·qN;–£Ý¸¼5÷vÉC¼5{ó›6— ÈÔµš;×CG.VRµ~Ѓ©bÌÏ÷¹Fó.ò&ûÞÜ}öÕ*4N¥R´î¦=šì¼¿Aɵ Ši†«@Î4Ÿäk“HL‰{ÃwN’Ö_OÛª7£]£jâ3oßct“² 7™(ÜDáatw÷L;yu!gB#L‡Û³Ž†ŸÝ Fòà_U„ûN"’ÞP˜åxÆÕå }O¶!5Šû⫉?_‰ «/(, ™*ª=\\_%Gߎ‘>¢®Íȧ~Í¡JFœÉ†í ô1"nx…VúëÅÙ·Gú’5¢U÷æu¹é]gõÏ/öL%­#˜ý( 5Šf—$áb•FŸ>“míªpf×(p‰¯{ó0 È-ÕDM_?¤óXûÜâªBÖw6¿ÍÔ£½Ì!"eùƒs~Øß;šŸ1¸,VcíéŠ${Çþc\.¹(wÙ.s6“ÇWVz•FaD÷½q*Á ŒÊ¹©F¼ßvŇ0/â\]œ?šÎô)‡r.Š=Nj£3Ú7«è—NtœoìÜë<"ÎNë¹`oLúü‰ÖY`ú‚Ê& ÌJ›² _Óp-¥x‡ÜŸ”< (qtàò¢=hê‰;.¶.C9ÂÚÇžŽÉßWÂ… Õ]'™ci„hÚ™7ðˆD\7mÀq“ØOªE˜ke÷8~ŸÁÝ ô´‹£ŠÚ[éj\è¸K¿%m-[ûâOÁÕk¼lx¿EÞIØË.ûg15RvÅ4NÍi5×ÈœºÞ+èëžíË['iÞ]õîǵK•üdtä/æ:ÞÄÓš¦YCl.y³Ä'kËð{wg/]aÙ9ƒå&žeÈœ' ›” oKÉGùZ »Z®–˽ÎÙ¨žÎ‰«éPœ¹3¡Ò?,w¨u·mù¨\Ümýä‘$Øa:±´ªÕE{eÉ!ìÓ}îê³kJÊZ:Ü6fêM€ü“xè•÷<››ª°ýaÿR_®ŽföwëÏt×G/l~D67S0KPm±Ý…“Óú’É ÝK*æ'-MŸöΧVQT§–á/ÇùØÅ;—YL£Ÿ5^.LŒ8Ë Û¸Ç­}¸” (ù±›oú]<îvF‰ïݧqûg¯ž»\®ñ ­fÕÃEÅ„® ×J3/n8²ØˆËœBI^̺vH·wwZzdà9ÿ•ÙœT¢ºõ“í̺°}MÞ‘ý–‘|¤+虦Æ!¿üPeXZ}”¶ˆáÓìB:oaSîÅï£ èÐ'B²ÒÁ÷ˆ\9lb¸ÖG»Þ åp0´)È]î °S *íš±,½eÛ·#ÞÂSL×pKŒ-Lnå¡$çм›‚>÷”@9 éš°I×\]¶±PMœ |Š£Í& $—6Ý~x¤ÒTðøý1»w­>.!-‡ø:öÕTZI”ŽÇ5&\þõaGõÉ’bñÕ/ÑhÙíòx²¯‘-eÖ7…„nàÏuÏ.ü,øv4tÀú§ÉðÙ¸ý盜êÜCr•ê¦"ܲùCxe] Œ_dó[ÛÍë¼D ¤M|òÝß³§Æå&4ñ ÌÓ‡B‹9|Â݇{žzÚëò£ ™ã,fN±^qc °Ù9Wã;ng‡SÒàe `¹ÝCÎÈ“çýDL|–ž:Û™™µ„Üg‡åÙö˜7ò&M¹}òž_t”× ûªNRwûÄVj®ÆêðN:á¡#8¥±ï+|¨9Eð0Ý×’k„æê)Qw8F×;I&µC ,éWù™#C©Ì‘±)2,ìbâùÿæB{4 endstream endobj 6287 0 obj << /Length1 1794 /Length2 11894 /Length3 0 /Length 13026 /Filter /FlateDecode >> stream xÚ´P\k·®‹»—иKãÜÝ\h\‡ î<¸»K ¸{ÁÝ]Ykíåß÷VST5óö½c~cL U 1sS´ƒ=„ÈÊ.PR’ã°³s²²³s ÐÐh‚!¶ Ì(4Ú g°ƒ½ÀÎ È‹MÒò§ä`wµ9@ ¯;;€ƒÿœ’&n`s€+@ÞÁä‚B#áàèé ¶´‚¼ó?z3ŸŸ—ù¯t€˜ÈlfbP2Xì^N43±h8˜AÏÿ*A/d8 °±¹»»³šØ¹°:8[Š00ÜÁ+€:Èäì2ün lbú»3V€¦Øåo»†ƒÄÝÄx1Ø‚Í@ö./®öæ gÀËá 9E€Š#Èþï`Å¿˜ÿ¼øŸrÿdÿ.¶ÿ+ÙÄÌÌÁÎÑÄÞlo °Û‚*ÒŠ¬3ÀÄÞüw ‰­‹ÃK¾‰› ØÖÄô%à/å&i15€ÉKƒÿ´çbæ v„¸°º€m·Èö»ÌË[–²7—p°³ÙC\P~ë“;ƒÌ^^»'Ûß7kcïànïýX€íÍ-~7aîêȦevrÉIþòbBù×f ‚¸Ùùx9ù8 'ÈÃÌŠíwyMOGÐ_NàoóK¾ÞŽŽ‹—&@¾` ÐË?o7âì òõþÓñß„ÌÁf€)Èlòoõ3Èâo~¹|g°@ýeö€ößÿy2x/s{[ÏÃÿº_6uU q¦¿;þO\ÜÁàͰpp³€@^ €÷åÁ÷¿«¨š€ÿQÁþoªœ½…Èþ·Ú—×ô?ŠÝþú–ƒðßÅ”^¦ ÿwÈõÙ¹ÙÍ^~€ÿÏ£þWÊÿß„ÿ®òòÿ-HÚÕÖö/7ý_þÿÛÄlëùOÀËкB^@Éáe ìÿw¨èï¥U™ƒ]íþ·Wbò²bö–/ÃÌäbeçúÛv‘{€ÌUÁ3«¿Gæo»ÖïU³ÛƒT\À¿¿-/YììÿË÷²_f6/ß——¹üÛeâò²l¿®ñ7ƒ^Öé¿uHÙ›9˜ÿÞ;n€‰³³‰'ÊËÕ¿7Àø² æ ¿&ÀÆjïyI¼ôì °ppFù}Í<ü6©ß¦¿ˆ—À¦ôzY 6õÿ?€Íô_zÉ3ûqÿ¦— 5ùåwolæÿ"× l!l ?ðå0‹?ð%Áêä°ÿ@›õø"Ûæ|Qjû¾ˆ³û_†œÍþ|9×ñä°9ý/2œÿÀ.ÿAž—\lM\þÐ |ù_„¹þ/JÜÿEŽ%àK9Ï?ðE˜×_ø_næêìü2íéË4üÿõÕ<@f( ³f‚ÖÕ­7•b$î,›£BðÇÉ7º,£y†H>©I£_±é‹ ÅÒ ½@iCëeq§›ÌŸsçÞ5䵞\W,äÒ;–ä¦Ñ³ÏWÐÓqÞפ”³˜P_tÅ_ :÷A©’…cu"¿1·ìÓ Áô¡«î™s§Å-’æ•jUnï¬,JWÄ'å×>XS‡4™hnr_Òe­ÙE}\ÐMRN¥Tj¿E‰u¯ÀZíXÆî%ë ÷—w Ø<¡þÁ– •äB¬Ð^ÎÁxÈ*tÛOÅñ6•y%.Ë 7ÉW½™Ö§³ç\1h·õyË5W°ûƒõ~ñCºØÀZ2LÇtcµáo›G5UçþËòäσ„°þ­Qåœ'¢™¯òÎd[ÙI+l{K0Zk¤Âwö@‹Tä9r/-ŽHŠÒ¹Á ”Íá&²~èülžåcÚC] óx½â÷á=–q?*'oóÃ’,÷ß=iš¼©õe$ °™* ù0!1d4Ì"–£¤4ߜLJ`ô·‰Ÿ_>C½ÕöÔ"·ŠåÂÜ ¹ôq¥LJ«ä±×h‚à½ÅòŒ}Æ;ëkܲÛôìÐ÷ÆÍô61.¢;ôH©Ñoeëw¾Ö…´{ï~ét™ž/ÊËâ¯ùy=–¤FOÓg:öµ.”® gÖ)SyZñR<†&¨1|ªc‹wÜ&Èü-OQ¨WÕ€?-ŒöºâÓÈm&;?8اïëN—./¹ªzžÝTï«<¡•îÐXáÄ iÓSŒ_¥\YHiÊýÞr÷Pfm=üÁ#u}4.‚·årËáLU¸>è+z x¸š:­Cic Ÿyi±~ÊǺoÉF/tnúO³d´Ke‹6圳Vú¼€Ü!~¤-ØS/J—‡wçü¼Ñ´×jˆõxÄ´0O[cn¤7lFq0Þ÷¤œ‹¾ýhý„ÍJ×cëÀ<‚þñ°ãYŸAèôN˜O1ç™$œ×šö}e;õ’S†j–‹YC÷înFpaTQ‰%©ŠÏ‘‡ó2µÙ)ñ³;ËäIáÌØg"Ñu}œHKCÀó(©×9” ?áGê"ô …ØÔâU-H.ŠW ÚÛŠtˆIËXy…øþëi´Ðk'ïùo·Î #ýÙCHqðà¢qî÷ùz=÷æ)¿i}yBfJëOX(k ôËÑÃ}õ€îóÝNPhE‰mqÖÒ$æàÝÁ*%E@Çm¸öû2åsi5&ƒuò—IµÖÝÏ_§ÝëR¿P€šBÃkç¥Uqyd«•?ÛɼÓ}æWsƒ1wzÚæ•ÐûÊ5ž©c@™c K7S~“{d£a9Ê$]ºÁ¨iJ£ºªomN׉»‡U,¼­};ò½“¢S‘µCêÈ(G"sÀÙì\Žr‘ŠÛÑö5FëFW0•ÎC~ðþãÅ\_yŽ6ã+âtC–w²VÑ·!J=æc´•î7êÞÕy¤Ô«äÔMÝÈ8hÇý¢Ïñygâ õjýôJc• ÿÄ›ÞzŒUAýmÄeǕ맣„¦îõø‚${õÑ™Ùø^EP½Ç~ÇÌvÖRà,r’6ånÔåF;üg€÷ÚÇ·Î{ÃŽÒ…h0×9Óô…Eܦ\A‚;ԧ¤„ÝØ(°xNøx†SÆP3ðÚµF,Ëp+IŽú}‹ùÏŸ#ï‚ÆO,xflá0§¤ª>ëüZ܇)lŽz\ØßÚ§œÂêöçZ‡b¿©4_*ý•|Ù| KxÂ¥ìIØú‹ÂÅ⯢àÃJÜ-/›D3’ÂÃj}$ †+~<ù"bkyDû´à^Yp4íó‰[B‡„!'") ßÿî,ddŽ'ÅÍ÷·€‹Ce¼Úð`ÃøÆPÃT¸&?g-›$¿åɆ™/‡|ªpm»ÖÝH¢žH9J`rëíûPsøæÖ§ÅÍôWÀš<Ççå7üÃê•SoÒfÜœ\Qq}Äæš¼šû•·$+q¹ñH q‹î¯Fäš`d²S·Aß ‘zjW?'VÌ%f|?‡ä“]´-yñÀ†qwÄoE|E)o:‡±AÏšSÇ88l‰Û1‘·n͘—À¶› 1O–UEš®·3ûX }ý¨¶~ †.[1÷:cAÒ[—V„4ùvGK +®\D²G㺮ŠÞ›‘†o쳿;˜§j1M ¿s¬r&²ä ´~­œôšÎW¨C0Q3cq­7Žäc&Ë„näÑoVš""¨jå òPŽù7_&UTòûËÝÅ%~é­×ß`×,´D^çµs}û~ÆÐõ눮d¨?eB´dZ Z¨b µûåK«…Ð>ö¶7FËpò» Sg¾ükió8Â1šöš°²ámáK)¥ð ¨*×gµXGm|GZ^=~§%l5¹£Ç‡:íD¸(%“Þ¨[@=yÙï>U lkÒQÎÅ·Hñ˜êÚn1†çp'åÈÐWÃ>½_Yâç=daK0?g ú½¡CÜ·ìðšÇ·­.Š ¾9ÙcÎÞ$­¡j,Hm«—.KI|k—dˆz Áúª`Þe¶9úX„Àt~N;{rJKæ±Ò•°ywF ?rÒS"ªµ\Çe½§r6´Ú_N“[zäƒüa;hèsç3-K5ˆZ;{̆† ¹wÿ0Ñ͖ꊎç4 5¼†ï&.]v¥],`ž7-× <‚Í z‹´è14¼±ÂæIdap‚²'ríd¸i{æWÝ …½õž®&ÃÖøœó ®k÷lš~kX2»Dþ¾{×kZÝZÌýƵ܄ ¢¸/%Da·¤¤1ŸU¨9×ItƒKSæm œÄߓӿÄ )ÌŒ×oPÕÔÑ÷¥kæÆø¶‡è_”Èòʈ Ó7ýÀë„'u±ÉÉÛq8E¬å§¼™ƒë8‘´&U_‡U¦×ݳ›yÕ(/B»J*pŠL¨a–:vAôzÐ×[ÒÓNR+±ÕjzWÁ¨Ä`óíd‰Aõ ‰†…ÍÛ²ߘüdÖvOà÷KÍȪsŪ úô³ÍYRpGër Y}ðw‰º*[ÀŪ ŽÖ†Ž½í8¹.é-ê¸Òímˆƒ ?íà<çU n97Ǽn?ŸóÈ߮Ï6QŠ&67X×&-f©ßÁ˜ÅEg½6ÆxN2œîÛÓîÐaÅštíÌDŠEŸxã¬ÅBPïr!=TME ¥ÚçUÓ QÂ>'¦XCÕ±ñ Wòâ^ßU¸@Uz8x닲Œò¾&”Æê‹ÓFYuŒï}Í2P¤éHûÞJ+|ä’ŒÕêÌ74,%OåØê³?gýŒÆrT½úÔ†m6Wàœ¦•´!|€vÃmü½kôj}[…¨¬Ï0e^*ƒýœbå1mIUkH°ZXe¶æß´ÉIHê(z±8¡ÔlSЦ‘Y9¼z$V‡›2Î7[éŸiZätž>[ƒRP¹W¯8IȪÞJ;dw8º „¡‡&д^|ßôZ’DoçΛ*ýž|°ÿ¦Sß»ºy_’ÅQå»PäDsPÐß”qÒç5Z-´¼|6´¦Aϼ„ÜÇÞ ±—´b²'MüÅv„âñ­e¹òbFK>Á½=ãÉ"I~gëiÅ@?¸-xª'˜X”ÜT9ñ0½íÉ,µzz»:£}ß7> ïŠ1rÝwŽx·¡Â²Ì¦µE€¼C¢¨ç«GŸ‚I¿àO3‡ønV ­ÞémP{’õg-~e g …÷pbW¸Üðßí}\ž˜kƒ”…fCÒ⢠Z)±Ø lJþqe³8Cî-‹—·( ïd¼Læp¤:äïs.MéyÆúCÞ,˜ZçÜ¡,µiÏX ³äÐ?õG {¼)xïкGœC¤ýÒ °¹|q5ý„¼À/Ûë¤Åqv˲ L2+øÐj~"YšG$±Ù©~Ãí¦°%uÖþIq׸}ÛT[%蔀ûi ý Bëãwžthý¾ªûXËò­SkàæávT¤FibíʉήÅÌ6X¥uøP$_W!Rñ˜ƒ²O„¿‚:4ƒLàÇI™àºB À8ÚEŠ]º² š”PÜÚ6 ÛGÒîN¨Øµ¶]a‘ä˜è€Røš‰•“à±¥Ùp›uŸküšÀ8h+^Â+öýDèqØôMég7¬7õ÷WZÍïï‹RÀ›3¬\T#ŸŽûGëi…‰í¢‘Ç4«¯—˜á·O"&„Gº‹JRq$2ð sÖ¬Ñï·V¥×,«O½ßÞÚÖfÝØÜWû>y_žŒîµø¶¤%sqÖ‘KwU÷pÒOÃ1›Ç‘ÈQŽ–¼ÉÊ69]þTkþmPŠÔ7í³j¨£:#õÜ´YéC×â:v·\ð<KtoÚ‡ÃsÕ‰aJxe—Ð\V‚|“gÂö7VC¥d”[㥊‹iѨŸL`Ó¼b§–p Oˆbù©‹næö £{Ô ù¸¶¦ ЇÈ$ü@1²¨{…^R[Ź>Ï¢榴-¨ì5™ËÓy)u§½9DºµéÓgwQÂñ!³w_š–zóæ¦ŽÏ;*ñGPO˜.zuFnRü10€yE¾ûìkˆÊzméùç†üÖRöìq3R Â3Œöl€qÞ.‚5´6çú—ú·v§T®TMaŠÆË *Ð…bÅ" ²1›gåA.‚Ãú¯Ê#ø'„Í6f*N7”a|$…´ r‹{±¢±¥Ùù(vôÂEz\\N ~Nï^»n²«±Å,î¿Y¤tk: ªo˨TŒÎÌoe…%†RšòÐ+G>ûškÓ‚¯H~Ó0Òp—àæ2³nnû… iÇ:X\™± æu5†¡’šÜ²…W8Ò lûÙe?/!3ºR* [Ýò$3o<„âòôýÌW±¶¸PÇ.¼$Öì:RÜ>ì+\Ĩ}5íä‚AÞShEßµõµ$Ž žƒf÷˜½/€•(ÆØ¡Æ[9ŽáŠtâjùª~?*NœnàΔ"A(10˜Bt€‘p—·Àœ„‚ÉÂ}'„XáèåÜ™°mDHO;`ýÁ}/ôËRlù¨¿ìû_‹‘6o\)þ ˆqêâôZõı̔E6Î(Âßãl¨¶ý —/ ä„™*MÿL¦|xȼ¹,LÅ‚±]ÐÃÀ± Ó ¿Ûˆ®o”ü˜{="d´äEbÖಜúÄ@™1QP%(ˆ·yõ*·ó©X5ÕúCíÖ5ÐûèA.€}éHE‡i&V]R{«˜ˆmèX *Ï+EØ÷˜¬õdæ…¢bdlU}Ë\¼–‘R>ðaôÊsÍr^S¤äâ†úF¯,G7Î[¸ Á;y£Pîö¨ò~Ê™kž´þ™žò´‹Lù‹Æ[b߿ܲ¯X•° <+ˆ£ùE‰ÒH†UVYK:y>.øt,¤·7$a™]9E‘‰Í¶ g]mè Ì©]w¥ú8ÍýbbÄPgß½÷á¤XMÒ€0­ç½(ß{úxʧw“ZxÜ]© ”ГܒšOç(à¤dWbgŠO¶ÒÌÖ'B~º„jë­ º¨çé4S¶¾·8 5.œ„MG‚âÇáìÜ :wx$ž»úCÉAí}s ÷ÍåŽh€â‘ühU´Ý.ºNŠwßmCZµÖ›W^'sVsº­èÞS5P1ª,‡6MÍo°3Ó35ŽýÇ)?µsÊ" ¢j(£7©©¹fUÞê ¼O½1Aw÷S|<ꧪ&Œ’£ë´;¹lÃR5Ë)Iž¢³µ}ø ­y”)Hæøä½ËÛ&#t]ÏïÎÅùYvÊŽCo’¡ôO—¬ò<ÒˆúÖ }’P|…#¡ÿˆÖù=ÿàz¢:òóBOÔæ›er>›t}K<’@xôÜ2ïÇlÙy'*ßbü‚ äéµÄ2T—´áŒÄ^¹¶ y´ø L÷TºÞ>ŠñLU!¨íäÏ2ŠÊòTA#¨µ^æS@ã^˜FËÁm³Ë©ËA„νÛ^Â×ñ罎ÎQÖg¡›H„¦ƒîuüuÕ´hÛ+žþQõ'\‰ìk =Zì¯Ò/uû—Îêž*Ü4ÅŒyx_÷1åÊÆ‹¾~3ùAC0B“•= ÷YÎÊcðŽÜïQÁŒÞˆ(U®ÛŠøapag‹:¬ðùÊö`ÏgrâZéËâMŽÛ â,qVd/øì‹®óԖΣŸf©ÿ¿ ¾ueS)φ++ *›I¾TyŒÑ M^FÅ£J¥Û<Še»‹üÕÔCèž`dÿˆî-~²ŠNôò}$+ŽV5ÛTr¯¤+ÒMÞàSÂ¥‚rã·¤oÝ’Ò¡ºD}/²…Mw“˜¿}x¾±‡¡q°‚aÉÕ&"›Qôb¨ä© ¼ÏÞrØÊd†‘4Yt÷òWÓØT‚Œïrówú¶º¤ËÐñÙ:S÷ôlàòYö_L¾ìÀ­o^‹¨ f$¼èqÌòb€×‘.îö9¬7þÙo'æoùwî»×P=Ú‘>¼?ÈÒw9´µg ±£Ê£‰6Tj¢ú¡¯òtíRziÔ«Z€êTQfÙ×üñÐó‘ ^I#‘1ØÙú¿®™gÙÍû·‡…où×ÇN ­j'üum-妯’7}âdâ½zå‘â.…ñ˜²+{M¥‚5jİu­Ùå¸6جb'S d“&-õ!A[µ×™}hÓ%äK×Ï=êð_ ‡Æ˜ŸÕRüšPÐZr<ê£Eâù˜³õX¼aV$!cùüï`“PÂá?yŸ …=1Ç{>ó`I¦/ñ9?z”Å¡ó£ñæjtë¥MçŸsåØšB7¬¯·d»Ÿéê”ø¤v öxû¡}K ±½Xie` †ÖiE€‰ÈÏlà€ÎÅi],θԩÜM-“¸‘'*ýªf ò\LÞG  ×РV¶Éšž¶ ÖÓª®˜OØ–i?sClF Š>7N"¬M'©4µŠÍå;ýfÙïСШ´¦Õ}œ:™þß-ú·irJ°´ØõOÞð«Ï¿etiwêžpëÕµ81MKˆ$Ï)?,T6g´…‡Öª#„iÊü죟~£kb¤3’ؘ• “Vo]X× bŒßX1胠§Á`×›k5ÍèÌ_:е‰9‚e;rì\.G½%§nF¦Ø–2ºšsHq¤q¥ûfàGs$SO54r¢O _`ö`²ã{Ó†î©ésæd%e)ø›®“d@§’ ÇW”ËÌœb­¤AŒÑ3ΚჰGœ5ÄÅ»qÙ¼U¾²~¹÷f^ºùÐ(W]Ù¯ê×ì¥2ȵ/·ni ¤ø^wüB‰/ÓZå > 2¸”‡ycÊÕZ>Èð™PPk»™Œ ?‚–5¼%n¢>Ð~¼K·‹^õ.ÇKfë†ä=ûôS¬èßù7{´b|×ü˜D¸%ƒh£½TáuÐRæyOoSR^ÌMa E]SMŽÜ<Û¿"o¿$˜Z«‡² ÁÜÿŠJx7c_ĉéZÐâ]yãTÊå7®s´Rj¬FEÔát (zÞ4š.¤lm–E'Ã?´°¯ÑÜ ¯{uuV%™ÇòOø1¯Ü—(Ô«žÓjÈhÏŽïwÉ'ÿò4?IDˆ|ð”þÌÎÉÎ*÷¥?hÊ£5!ëîj¤ü;g|ßÃ[‹ÇІÐnr?[|¤(à“£60ºƒ¡9c Å©1—´9wqé0þ`Z÷¥¢SUüYŠ]¥æNs6†É>K߆w:´É§È§Ò½£üyÁCÁBÍlga:M1Y΢„Ú:‰”ºªÓPêßÉ:cšÀ'¤!b1xz7 8{‰–»fßR–58[ÔÉo¡#=Ëaóu³Ö[Æ»ìe ûü6ÅzðZJ/ήœÏ’›Ý® §Vð†pi®íp~S@ VþS+^0é+5\ÜuÊèêvÑËæ%&îé¥i75‰õñƒ‘ðJu` Q†`[}÷Úòq2kv¼Ü>0ê¨-ºpÊÕƒsM½í«>!mÞ e÷«Åh‡GÔ(;^s×´Ýž¸ë×¾Ì>Zã)JœÛ¹Ñò…ƒµ×#éÛãB-¥íRu|•¶NÊêxÊ?ätÞŸ­âí˜ øõ(êÜ{ *º nÀ%±u%gÿ2cÒ}Î9uÂ"Êš1yz¶ùo:y;àÒ׿¹iµŽ·6úAT +ΗÙ*i‚…F™pÉ {$À\ª“ßG‡wiÒki8Ù¨ÕòÐùJ8¹ÿÈÉkáÔ÷$ÅïÛ¥Ä9Hñà>?ñµp ñd›JLeåŽM#•Ëx­8°•Øäµ ²¡º1婃[UåžOÊ>oíóÓà“êˆ .EM²ß<Àœ3ÄdäUãSA/KgKznærmƒ€N¨™O ¤©æåRæ×> DkPˆ£êŽXâú-´E2G{¿ï„—‚‘Rdü­ÜJõ̰_®KžÂþŒ¶‰Dh’¿Þlj˜¦ºp5¯€î£×6`Ÿ“e&¹Ü·0×Fu‰·¿¸èF$ô„¯ Öªp¹m·çµfh͇q?ú频Êçc=Ég)Pu¨¸Ō檙ÊóÔhæ]V+Š  ä›SØP(ûYÇT„j/²6>vO쩸*÷É$¸Ae>S7U%âÒèk†«pïj­Ú?0í©ÎHæO¡â\™š±©ÃËÜ+0WvWØdˆäßæ‚ä£?¹^há –-Zå4%ˆj}.A†êmð…εŒH^ñŪµEíkb/º­ã»øŽÿQT¿\N]öoñÀ»cô A 'ÃÕt‘x›™ëápQžávÀ6 3ÏÔv÷‘d]_³sçX¨q¢ï(ÄHê9½C@CSÜxTÍãT2ãä}ÕäìgžT&^WŽY0%ìàÂdö˜»IˆÂ0m)™¹3v HEݹG0 ml>¡9˜ïÝ9 ß]'šl³£Ã–~ÔŸ’Ièÿ’¯¹îÙ„‹—дòJÙignCÏëOÂÿ>=ù=/CïYõÝ<×+JùÏMbÜ˼½YÉ6bô;Y)Å£yl¤™Ø_¤n¼E³¼Ãw×óAÑpWó=eJëãòв#Žòâ¬H¿û ,°Ehfv-$ †#þ¾äëzéWR…42ùÈ`éï‘L̪¸ ¦Â3ÕaŠYH­‹Áí=׆ÖÿQ}ÏÿàðÙT:Œ*16­b™Ü”šÜeŠl}ÿMúgÔLbtÔíGŽBq3ÔoõcÕN–ùê×pû{·²£‘¼"I8ù3a´–‘¨r^Çoöä k„;›„]ýຮ­c±êœ‘“b“ÛdªF¥T2àí¶å¡u*ô ²—Ÿ¦B½h6§¿Ùç¦xÄ$Ï?(ލ ºó¬¦ÈÖüòr§Ü¾¾âosèQ¬ÊÛ±œ+honA‹WìRÑ:±Z=l!eBò «‹Üxý$¦þD–ßGGcB¹G¾L@f‘;O”ã×Þr÷OÓ´é{ĦDJ¯Pr8¢€ ÌæÁò¡x@sïôV,oFú‘KGß+iU°%;ŸÒ†µO1à”¶båÈÁÀYž.Oý!€¢pa‘ä¡ (ó\žó“éát¢RRSA¬&èûyf!.TñùÑHÉÕ‚ºocK›k¬¼êRüùEEa¼YÂsùž_ÍçÛ¹xÅm¡“† d1¯ã;òÖ7ÎÏE…È-»Æ¯ð¨è=ö*ü¸a’SA[è ¯G·x1 ;·ÏoÊTòôÂ'÷I¦nzûÎ@DúÔE5šBV0¾]®Ä6”fŸ¦iŒ:BÇ”Aª:ãÏ}J)MÞ3XÊ:&ŒwW¨AQæ K"?Û]ãss“”ØAG">ta ípÆ ÛO4r[}³·]ì¾Ï̺AUzý÷´ÒÐV­"r³Þ…£î­ŠjP„‹]L礪§Ò¡Ç™Ÿ6¡~ï9®ŸÏXQŠ:`Ž‹Æ?ºcbš{c3ôp$²p±¨o®dB‚©C²ÚÛ¾5<»ZÞi]¡bÀtzÔµ’þäŒtcAï>lg–Qàâg]A‚TD½·$¯ ÎjÎoW!"äút÷éø[\Ëíª ³‚ÊܨNL¯#œ,–<Ï ºxP×Vv0BŒÒY=;“-àÒñpÜöÎ4î”;Zî%W DÞûBt/vð›*±\ìgÁÖœrNŒ.dO2¬õ&a1” #…-YñI®Ù”ýÒv·æ•½‹9 “ç9G*Æ­ºK~™·Á[89GÉHw´.°…YX¤kÖHøì’jp‚a ßR?[‰¼éCŽ2h—–L2ì}ͱñÇÇH.tÀzʬ‰ AQê,‹ïv Wp¿ÈAõ¦kÜxí¾N·Q¤… G xH8ÔiÎël>3~à…}¸‡yÜþ(ìÎú Kó<%ÒÙµå[zß”ä4éŠ[7ßäã¡ÃqËw¿«‡ÿ«eSœe¦¦k+-–X/Tí,ÛC™À¡,¢·šKŸÙ‹ß¹ÝrG@òÁn*«àÓN:íH)¡“‹f©cUü Âßà­ë·¯¨‡<çö]›Í3QýÊQâWH+FÝ,”vrÐ+¾BÇýŠ“ NaýÅÆ¯¦¡ 9¤•%Ïd¥‚:ëD rÇ< ßEƒIöm€Ö_ÚÜmØ>S²j:½íAº¾Šh|ÅXíkf á8‰CîãÙ²UÄ0󠙬¨î¾°Ž·oé~8ÌÀ»þ¥ñe‰öÙq½Ÿó&H—ÝI¾=Ŭª[Y2¿½ç %I½†X¹Âì§qéç*;a´ÑŸ€·ïŸï(¸h¿ œmÒó‘ÇÉœ·Éõ¸[±ïU¤úâ¸r¢öÇnï«¶¿Úr[?KÂS€“nKû…¯üu+ý¥ZeÜ ×.r‰Žè½)H¹D›Y=_‡bŽõØRP(Jprøå3WÕ Hqqîy¶ŒO½Í£ïÉóK”yݬÓC°â}œY†Àùá5«º—” tùpÄÕ»P['gÞÔ^yÕ7 Ø5ƒ­<ðô4 Û;X¹Ëõç¾j{PdîŽÒ"tÐ a[HÞ{¬ZÞBÕ¡¾t½•P‹¦ø¹òè7Í;£²XùpPÏîy:åZÐvœ3ËL´¨xÓÛ?o§P˜”t55áAaó¶Áz }FŸ’1²}?’\”â$$Ç¿Ãql…oŒ½*Qôå<ýh“OW‹[é#4Ö‚»PxÕ­Ôá@m]¯GãÀª¬vof2†:)äöÕ¢MÁ3rX[w_9'wUíÓT–cîÚ êó<àfJ\ûRö”:š~§ºs,¾ü¨JÁ®Ô¡’\…Øé\¬¬“-À¿éÅ¥ËS.ì‰ÎAs,}=•Á9Æš ÅlU*¨«X4zÛµfÌë ÇË83;³ËB3¹’³d‹ }w™ž¯:Y ÚÈQ•íÍcL! ‡üÄšÕp]* }=ù>ú†=’°jŠçµú1@®íÒSƧXR°RRÚŽ½G%c¹aä!²üØ™‘E¡-ݵT›yº‹Ð·ïа4hƒÿÀ–›qûÅá+N8þ,2vµHO\ñðÔ̇úxûÝ»š×“¦I¢U°pr£óòóÁ'«‘>OЇäÉŽ^â¦5Ú¯vÕÔÛïŠcé£þàŠ?2ÆÌ&DÇÐÆÒüŠëuø¤Å„ÿžM|šŠÙú“n‚F3æö´”X°à8øŒ±}ÀÈ;•CÆýc «Ô’A¯•8pãµ³kŽŸ‹ÊîýçóícM5ÑÕ°9¬’®vI†ËùÑ1v¶îÐòÍ´[ìm0× RÜ®èeÆjæ9¿WQMh'×úw0ý”€m…’hýÛb tÇÅB¶Î×|ЩӔ»v'C;Ÿž¾„øklœæçÈ9c^GÖ’ TÜ*§HɲºÒmì½K9€J6óŸ&éÊeI¹¾6ÂôeŠ@õIòÌc2@ÈÏWâì$ASÀt ®Z³t,B5BJª®ñ½‡±ïùc¥ŽóÉ-ê¹¢_ºÄ HÏ7àßd¾óÞìÅýòü:ß7®z@§HLÅø–oÆfã½'¼÷圲yâ<ÃRT¿° ówN|HE´w†¡õ›ÆòÆË‰I½BUGCÔæ7-ËçÏÉi<5ò÷“5’?±¸úÆÏ¿+)oâÓÐÓŹ‹/L Y\õlk ÖWAšùKöõuÖ1\g¸è_è£8F :U-joßë­T¼Ëúî?y€t§W¥ïI* „] ž%>®üÞàÊ[™¦ q¼·Þ‹U•UǼI’Cm·Â…©5s!p&—ű3Ö4^¶‰öžpÏò‡ ´Ÿª. X)š~–!†ÆëJnËìqså?âõžŽÈƯl •^bÓžbaÚ½Ÿa%w´Áø, 2Ÿ¦¨”2¡]â¸3ÊX *P_DùÙOû©#µŸ›«mT\GÒdW— ›>üÑCk9¿9øW¤ ¢þÒùªàwáÖïÞR_×)R^íû´{˜¯Â!è멵¹Ê¸c?@µ/c£íeÃø•“3=DK‘ÅÛZ!núFxâ­¡ñ5ps5KI2Ÿ4Ç|òeÎÿùɆ‘ƒö§á0%휧9ÿg_{Ñ•ÕêèjhÈ˰^äÞ®Æ7‹/h¸«BŽKœ)z˜XéZ¶U¥Æ47]—ß'µvâ`‹ûšBW›‹ëÓc•6ÛÄôùÙ<ãbÖ4mQJ¬*NÄÑ(€·íõiçÏ+øÓZ­÷øÎÕž»Ð›†tô¼¯ ¸4÷ßÕ}œhEcWJžÓwt¡ç¨¬ã†ö$Q¸°Õp½«NM8G¦åÈ¡ ói£–ÈEbœU¯} g¾ÄÍ^îÚ³s^bœm¥:º\`·M¥8Â?>;Á“ªjf˜1Œ¬\ì‡f—F§9$!œ~'üŒÊåÜ·¤èv÷IC°9þä]¤Xé\×=${ÊI”d(«ª9H ÇŽÈȪ­²WÊÿ™ú€oæ(¢ßZ÷쀑ú ®Qƒ\¸²þ¾ EÞµÂ*€¦ÛiQÄåmþî` »›ŒIÆ Ù´†:âoKËþ\Ù²©†>Î:c‘Ï»0™b¡Úšú™±•ã½'‰;³Ò­•§ZÏt“[›‘¥ðD?>ç´!¶:0~#hlµ%åÄÛu9Õ!à3`¢µO=-¬ Ù3=e/sçsC^«Œ)\«hƒhLe”ZÆ’ “p §PY¦…˜nV!cÿ\ú¸^rWr,u|þõÕ'L‡œÌó/¡©d˪'FŸ»{a̵Äó¦‡-BÚ´oÒÑËÔÏ*§+¿öš' ˜Ã”~ÂA®)hpÚïÓp†:óå£W×K†Ð‘Á×ýrð*œÊ†M†7ïàèW†|Û–bÂPD ó±{" U4_‘ Kª!ö¯(ãt‡Äø9ãÝ-“ØE”þ¸Jš€Ì´ô[<(¬ýÊ]h¯Wã½:*¢^ _‡ý>1ó¼Ë¹ð€ÊN&À¸íØs#IŒÒ³< Üq¾‡cšs(FªãU s7zc ð3KËw„£e†,›÷ŠÜâ NšdÇžS·VÙ¢©¨û.€„±T[÷MñzV€í3!sìÅw‚)¢•néæ!ÙHç…Ô2ežíA‘§ãËÅÆÙvJ¡¢ÚÄ Kæž öœˆpjr‚Ðáç ¡:‹}GË*jÝ!Jú¥3ŸãÛFÕ5&êt‹¦€ú_Æ+‹rÉ<\2(»Òˆ|Ô¬½¶{,rà q¶} éYÄ̬b]Öø4%±úµ¾ÜÓaN÷F p4Ýÿæú]¨ endstream endobj 6289 0 obj << /Length1 1403 /Length2 6097 /Length3 0 /Length 7058 /Filter /FlateDecode >> stream xÚtT”ïö.‚€‚€C RCIHw7HŠÃÌCÌÀÌPÒ‚tI‡((Ý)ÝH*©t ‚”JÇŒsÎÿwî]ëÞ5k}óí½Ÿ½ß½ßý<'«¾¿a UEÀÑüB@)€’ŽŽ†$…É89ahgè_7§)‰‚!àRÿ  „„‚ÐXŸ2Åé àMwg€@è¾”¸%ÿD ¥Ê  #ÐDÀ¡(2N%„«7fï€Æó¯W7˜ $))Î÷; àEÂÀ 8@„v€º`OƒœF0 ŠöþG ni4ÚUJPÐÓÓSä‚@ íeyøž0´ÀŠ‚"= À¯º èŸÉÈ8Æ0Ô¿Âí BBX‡3 …£°îp À0ÒÐè¹BáÀÚ|€¿wúw¹¿Ù¿ Áà¿“A`0ÂÅ÷†Áív0g(@OU[í…æ€à_@3 Íy€`Î [,àwç €ª‚„ðïx(0æŠF  `οFüU{Ë*pˆÂÅ G£È~õ§ CBÁØk÷ü³Y'8Âîó×°ƒÁ!v¿†€¸» šÀanîP 忬‹ì?>{( ”‘@ÝP/°ƒà¯òÆÞ®ÐßA¡_nì~>®W€v¨ÌŠý#óA< 4Òêçó¿ÿ´È„„ °…ÚÃàdÿ©ŽuCíþØØå#a^K –{Bà¯ß¿ß¬±ô‚ àÎÞÿÿÞ¯ ¾…‚±¦ÿSTDx|ø…%üÂb@€P\ Ž}ñûg}ìoÀÿäjÀíØŒ?íbïé_-{üe÷_uðþYL¥-Àý–[Å€`ìCèÿ›ë¿SþoÿUåÿÅòÿnHÕÝÙùw˜ûwüÿƒ\`ÎÞXÖº£± ÐA`uÿoèCèÕê@!0w—ÿŽj AX%(Àí±læŠþñÃPª0/(D†;üáÌ¿É/­9ÃàP} öëã‚Íÿ+†Ø ûAa‰ù'BaÕ†þ½Æ_6«§ö¡# ¿„',vB"AÞdØÕc-1€V¡¨×ojà46€Ù`‡@’ýZ³ð}€ ÒñËùÇ–¢Aî¿ívG"±üæ¶‹Ù¿å…zAÁdŸ§à!ŽU!ÍÇ ·=ù×F¤ wSÍ„ùGò‘ {TÆl–Œ²2g´ŠT?w ©>rlÓUt;Î^˜þ¾Sã-zÈGuÃþŽmÜÔÕ!îD¢ÏÛUNîÃdE©·È}æÈëí¤rû#N*ß»U]Ÿ=¹h TÅ5C›u[Û+ 2µé™$M·W ѶýÆkb?nÝÍYq‰ ^²zž¢›Î¦%ÝzB–àY~}©o Žº›¹#2PÓ#hmãšZåA?“²(q¹éÜ+Êóœ·[é4>¶j7ä· =Å‹<ÉÇUº˜ƒ-kÖ{nÝÙõ·ºI¶óµÕž¦çÆ $ÈÇW|·š* ƒ/Ðz ´É9åx•3 GÄœ<ËUÑjÆÏ*è9¶–?—í Ä2Þ8sUxõô—´™Ùß_pHÝïµ7²âQýäËÕ÷èï‘‘ßËÈ 1R££ì`}±ù²É…MmÒl"¦È8}…¯dþ¶%vD…7Upô0)÷ —ꦃÎEy!¨ðoï™uèGÈÙ€¨ŸÁ/Ë›? ¾=U"åDuP_S-E¹Nó˜n†œ¿n;•ûn ‹h˜Uý°‹Èt†1îpOÎIædØ”fÜß` –RÌŠ8‚‘m0qSëÕÛÆGyGâ¶ÇÓ'ÎhŽå‰b$‹8|g`„E³R³êwT_Éð »_ Ô»:ñìN¾Té K½^K·}Ol•­è~[CQrßTUï¾$¿×ðT!>Cú$Ò+“eV;ë]®UŽÇñbI¡äö¦üF×.M©7ÕÝ“:] 9yN‹Æ¬´,ºÛ CÖ‚Í3e8ý‡\þ7íTËÍ'ôÓÇ%yœ‰v3Öuä6|¡æƒwž~Êfï¸i¨A‘UWSÛ™´ æoØØAÑ&‰O”ºåƒn'àVšÌ¤Y7§ø”µéÞb¾ŸÁú;ZEE`Ṫ~qnL=¿ƒÔ­óê“Ûá6_vRÆ n€66œë ¦‰[§îî-\©”Ò ø[“É^U~Û±u6 1{gYÆ“?ß/zSŽ3ª¼ãVé)¾ZpI29måÝÍŒkëàóu¾$a¯íµdiGkÒ…ê7 à^ªÚËfÍ”_Óì²Öíå@:áÃ!²”Ïæ=é«¡…T4õ ¨GdÍB²GгTä•…Ÿ€!+i¬¸â¦7µbFß÷IÔì ‘ƒÅ±¡á ñd·lž8.e9°õojÚå NŒì%Ü{YwìçæU†œd³sÝåÝåbâq­"Kž VñøÛµz/kc~Â'Ë‹T»5Œ’GŒ¯ìLÇ”š¼/ñ ±Y‚R]¸/qvËÅ¥ƒ¹¦šõ÷ðq½ŽÃ…m{¯QÓí›Ës‹Ê|9²¾&Kè-/­ÖІoˆV_ù7õ­ÑIœ ÈØPœúÍøåii\¾ÍqÍaåéP $î‡Xt°(¼Ÿ"Ìgûr÷_ÔVmp4´XÜDd„‰ÕÌ‘›²:0 º™DSé§á=7Ͳ~M´P¾Vµî¸š«ô8y<‘©±üS½|0ìK±ô溙þ§siürf4w¾~ÍÄO„îv o"·S¡â±[DOñÂJ²z„OÎð¦Î¾ˆd Rx…"fæzÈ”|Ùhgs|Ó…Rȃ¢kÄyü>9Ç }vøtƒ¤§O!ïC³V9»€K_e‚·&à²îiÓîz™ÙØ{g“”ðËßXËyv€oÀJ-p{[’‹lß-‡´^ކô3NpЦ}»å ÍšTóžçˆzê"8>aZiÌ”0œªÉCŸô&oð*›@@ꂘrfF1TËþ^ñdr¦£ËÖÙI?÷öc.%׊ ‚‡'GŽg|ý(æ;ŸÀ}ÅLõõ¶÷¼ŠˆÞð|¡~û˜…ºP¾Áã{ž®óã—§‡—Ϧž>±ýîŽHžˆ•I tÅ<(”Òx ¼õÕW9DuÆ–ÿ±¯_iwÜ‚¥"×»ïï5$׋ը1/G«:Ô8óKX‘ö6€E_[´æ„~Z°_­ª¦/zmóDJ\c™Ë×°`æUoïÙVÁôôÒL¸fRxO#^‘ŸŠÜßÀžþhg¶Ëc‡4(Ì=œo—pصŸä(p¥=)¶rö¼È@]ì¿úãøvötKùOâ²Ð#ùw7…%½ð‚ƒ‘ ¾êT©Œ;ÔôÆAD[:gßùse¶øê¦Ö È20Œ? ŒA:£öœ¿Z÷»^û![—4”âµáíbŒË!–ZöAkÉ]N¬F–‘r=Ö·ž‘V¢WÞü*\Ñbc‡ËV»·ŒC’êÕq--—V ¸"ç¯3¯°,¸jãž‹~¬·}[Bï’·F£Ô²ñÉí´IaÒ€Å~ £1_é&Jé…QâcƘ7 -ø ²!Ùç2y^ ¡Â62.G›IA´×®ây—;.¡õ1õJîq®TRÏ¿qñt5~¦»Ï;ýíû»Ÿµr¶)ì¤_:å‰-dªž¾—¶¦~þZ?ÿq«¨<Õª\bOÙ¨ 0‘íú°ÛÐñÓ] ©yó‰ú4ó£Ï*è×}ò2Ï€¢„,ÌO´¤ˆ×oµß}éˆgÚµÃpÄ4ƒö5ÆÚ›K?km?¬(˜¾#Ö$‘`Dó.`õ£÷Ì G†VÊ^ûì<õ¼Hòw8P‚mºº“ãrox2¤ä‹†èʨOÜ´¢OiÁ »v”5é KÇàD.¾ÆÚ1šoòqN%Wq¢„»º+9ë²mlHa¯OŽžNȯJºïÿˆÖ w‰•$äUOüIýMuˆ3Ü!¿!êþb³ºE_Ï­{Ö¤ÃN²ç©­vj‡H-âÌæÒvÚ˜2ö`ö Pi©Où§ÚC ïÎoκ…Ó1UH'תM`: ¶tÛõOp࣊Ÿâ›Š"ÏýM,‚.z"ì|N­4¦‚_U ÜEÅt çÒㇰJ“ï„Æz¨Ðͽ}æÛ²f}Íin¨} $oBèh2¦1–›nË}P_ŸgtÐ\Ô­²nŒXÁÐeøó×/gH×w¼<ÉUe27¼~µþг(Ï—Sr!ã2¿²š´’`ÔøM´cÊfeL'+Sòò3ÑôO¦B6QG¤þ„P„ë×8È¢J|Æ&„Dðr‘­¯OÃÂìüC úZwÕÔý¹ ‘m²×lNŸ>¸d!»ÍM á™ÓÓù^S¤ÛQ§ËžT•×(ïRVPüþržÂ6@ŠsΓO¥Ð¸Ú5»ãoeÚ"Êg‹!6ÆÆ÷l–8ŒÇe%ÙÙ¯kLûbyq "'‹\Ž‚á*=]È'·4¼2ú}sÅ ×s¤8çœÖB)Oé| ”ꃳªB ú÷àó.í44ª,$®ÇÃRÒ)™» xq[­—¾W·î»Ûd„—(çK—Ë»¾4[vºÁ¥ï}_|p•¯Üb¬a2:ýæ‰fXúÝñÛ;ÌÙGü¥JZ%…Q»4Rç}õ@ò¶çÖe¯[蔊îˆñãÏvwwõ% v¾É%ƒ8â>iذ6–‹à1õ½,PLÉ À¨=Â×u—©2èz^mäôð eûh¯aðek„'ÎoI«rýK|á#ºÇ‚« -M¼§ýrŸÑµ2•+h#iœú$Ávc™£_€NèÔ*óa AžCGeK. ZóXƒ˜QxÛÚ‘K–J^˜u«›™ãÂC<ïå¡E‚ˆôéq;[%œQ<]3séØi˜é=Öý?ÐŽ¸ä‡á½žÂPQþÖñÃ[Ônᆧ=“ˆçŠäN=âµüí@Bu“÷I…—"½Ó­Ã±‹g´Ѱ¢$T¡± ?ÕrJ ŸÜÆø&‘Ð1_ŸwÍË5m÷íé÷…5ÛSR«ÙJ%TxH¶ŽW̹ÆO»N,‹û¢^‚"#Ô.óhš;/¦Æ$³RÊ«Åä·w¥C=4VR¤Éî!Ä~Ü.V ¦€¾Ú/£f©»•Jaø$“@&_%œÈ^Í]©¶Ò–ŸBIèpŸoÑ\@S6½f³”¡í*¼ãÄŒ„Î.‘^¸÷ίã€/n»ì5äWŸ×Úï¸(ö;l¤1®U(%>æ¡ þÑé´®‘â÷Õ­w>hæk‰ƒÓx®»À’>ÑêGe¾–X5¼†’†ÃZi>"NC˜Í2© š@‡'Éý4z “~9îÆmlfÓ×äM•?¶39eÁ+ð( êÏ( Næþ<ÕvÞ7ÓÙ ÑãO¦_Ý¢bˆt2¾iõÕ=àè’R6@*5¢ “N‹Så„6¯±óüú¬ú~FégÍ‘WcG&˜ÍAüÉã—÷ ò¢~´·Êõº°[·1I<£!Ü?"£Ðlbô¢ƒP–ø^»—˜î¦_­BWM$…š\~é”Qw[èpžå‰zQ¶¾EÍ¿í~±ö0ä]´B¥ü¥Ž´‰6c`2!9õ÷qbAÖ·)L=,Î*COï~$á=(òJ¥ä;y#:•B´àL=ÎM•;Öû¼zÿ âK¿&ªÛZ~Fÿ*iɧæ'•V¡– c¢-Ï΃›û‰ &°[LH6Þ½pûžŽœO \ja€Wo﬿“ª‰Ø²ˆ}óÞb‰|œVö“¿Öxh&_s(Å= …k­·#2ZXÞ¿?Ç…|-RËx3O AI«£Ìs~ìE ý©w”pöìþ>& rÃìú„‘uwšÅãÏ#1ä´gûŽù„}a¿úóÆq–½_Qåj’µ[¸+r1ð +¥+Ÿ•\U¯^cžRöëµ›cÚ®ÏV¦áÌ<îMî"¢gdÃø¬çb’;a'+«d„iœÑ²'#^cšÂ!ÆÚµóåˆÐ¹é©çx…¯d”8Ï:rz-»]Z¿Ü/ÕdPý™`p8O Éà®zÚç¤f'Ù˦ä°ë'QóÄÀ“ÒkCiqùà!ÐmÀª‹K=uã–Uëf-¿™¾2î~Ø÷ƹ™v®Ÿòeð¶ŽàE¦S5e—dÜׯ¾ó,×zÞuÞ¨ š¿'û~2¹JNg‹ôURcÓ|tý'I‡Rà!“X¢ä¾ö'LE!ùRÞìC¥p’{ÎD2È‹˜|\.vjy*#Ðdäê t%þ‰£³­8Ú±…VãJšÁbV~¼M¦†@_Ü‘ü”Èåê2ÿÒ g0•ɬ]PKh¦¢U™p7aÎ e‡ÿ>»€!Œ|N{1üª¹k6åNss;ûÝÕàŒ'¦ ,NÝ‚}é¦m zšzßéó`÷`n¦4½zo´>õ)»ÜâË$v†0·¥SRþ¨r¢’·(=zx¯$&â¾þKÛˆdeíÞwGç\n[&Ëoë­3žyÎÎѺF”-¶µ¼Þ-aÀ%ÔÔ¶ßXá%¾ôÀtÁ<$$$})²oèµÈt¸Ÿ_0,¼ þð*.VroÈÊÊ2˜q–Qty£v´_[T4ÄCîYÛ“X —€o˜ŠŠUIÄÇvÈA{ç—S¢;-TW˜oÍ?ź^Rh~òeà!þ¦²§OMVçË&í€IÚOœ¥LI/UЦV½•𢸄—C²p™©kÃt_šI)–uÏÁÊÚOOe<$œKj>õÜÑc—;›•¢á»” ?Aœ•~ÝXžÚ¸®©µ3Æ”½ù†áÁ¡0;ôØ–7íÜ»€6Ç‘·n4ibµØíÆu*m–°RÃé½õúmŸÍÎ9w%ÃË_|œ)ô(&ü´ådY„2õiÔ[Ç V«~ÒQ|¥9—Ð¥`s]§ÂLï1³?8sÅE´âÃïR`ÄçL·¯z¡:ã>kNrïU£ŒÈÔ;¶§s;m‰';G3«­xí)4Sô˜–ÓjSíŸ{5€¸»áª3²±+ßt?3²ùQí¬}Ö¿å—Ãßø³º»¿ÛDÏ3®èÙõó÷{ýéü³]¯? ììv.¦¦Þ Šúióyq‘ððöŽ‘aêɉ÷¹IÒAu!9Ï)úÎÙICÜùÒ-)êÔer›W%\wÜñŠ5Œò^#ÍG+Jt>~àu0éªH"Ážø’ÂY¾†-y .1ac“n ɻߊ’woǵAbÈÌ)?ª,ÅÚ‡#-7× k×É?SFj«<úQ¨/Æå[:b‹ë•¸¤  (&J^1$|ÂÿjÙ™¹Yz0åTPeí®“c›/ á×H²†ø¯Ë ©ö-} òóN~0vÉ35àÐB㻺ÙÊM—Écha¦°ZãÔ^½YZìik#ç|ì4ð$@À¸–9øê=}ðºa¦¹ý´ho§Í« ¿¾Äg1IG,ãÇ AöÖýgí*éa7Ô« ”ð «ôó€PÁdóK{õ™›Ì{)-†4Š moûPÍ$Õ­|=ž´?aÙšÔÉÂ0ã猈‡ªU¶ñȬ¤ÜÓ0ßì`.9xµëÔ\ó…Ë~ÑÛaÛVœGKwëÔ€¾=ækjuÆÀ3š¢A¾(¶:‡qÆlðsj{bša€óÓ¨R×áÁÈõG @’|sÁ±Ê»NÚ ÖQ뫉ƒ b¬OÏ֧ؽ淣4' ކä6QÌœ²aÕðøáOv×¥7n¯™„=® ¯7 Âd²a°óؙà fCádˆQ‰¨0¾XÿòÿÒ± endstream endobj 6291 0 obj << /Length1 1976 /Length2 13800 /Length3 0 /Length 15044 /Filter /FlateDecode >> stream xÚ÷PÚÒ  Np‡Á!8ww·à:X`pwwîîÁÝ]ÁÝÝ%¸<ŽÜ{Îýþ¿ê½¢ ¦Ww¯ÝÝ{õž‚œXA™NÐØÚ(f r c¢gäË*11Yè™áÈÉUÌ,Ãpäj@;{sk׿„í€Ã{œ¬5 åh `b0±q1±s12˜9ÿhmÇ1p27ÈÒ¤¬A@{8rakW;sS3‡÷cþó@eD `âäd§ý3 h´372d Ì€Vï'X”­Ì®ÿCAÅcæà`ÃÅÀàììLo`eOomgÊGM p6w0(ívN@cÀ ä ¬€uFGP13·ÿ W¶6qp6°ÞKs# Èþ=Ãd ´¼P–”ÈÛAËü@ ø{6&z¦ÿÒýý‘9èÏd##k+«9È`bn È‹ÉÐ;¸8Ð @ÆXÚ[¿ç8˜[¾üY¹@LP`ðÞàßíÙÙ™Û8ØÓÛ›[þÑ"Ã4ïS [[YAöpÔ'bn4z»+Ã_7û dí rÿÛ01›üÑ„±£ ƒ*ÈÜÖ()òwÈ;÷f t°222²s²€¶ ‹‘Ãô*®6À?LÀïxºÛXÛLÞ›zš›ßÿÀ¹Û8vŽ@O÷;þׂcb›9 ¦æ ¸Øßa É_öûåÛ™»´ßµÇ`üã翟tÞåel ²tý'üÏûeUÖT–¢ù«ãÿú„„¬]ît_t̬Œ¦?DÆþþÁói Ìÿ.ã_¹’ kç_Õ¾é?;ý-ª¿—ƒð¿\rÖ直þ¹6#+£Ñû/¦ÿÏRÿ3åÿŸÂÿ`ùùÿ-HÌÑÒòO7ÕŸþÿ·•¹¥ëßï¢utx_Yë÷5ýßPuà_K+ 46w´ú¿^Iƒ÷E™ZþwŒæöbæ.@cs#³¿Ôò®úÇ–Yšƒ€ Ööæ<+º÷«ù?¾÷Õ2úöþtØ¿KòOð}sþ÷HQ‘µñ+ÆÌÊ0°³3p…{¿äw‹àÎô¾‹Æ@—?E ` Y;¼§ÞÛó˜XÛÁýq£3ó?°?M6ƒ²¹©•ÁNvÿ,&ƒ¡Ñ7àû[iâðÎò_ü¯ûþ¯ƒÀ`ôõåÝ2·3r´2±|/ë?0ë{FÖ–ï#øÂô.uà?UýaÙ:¾‹ã?Ëûï]YXýÃò™˜;ý“ÅÊüX;Úý‹õ=Äô_&+€Áü_æ{–ÿ2ßKÿ‡ùÌÊÀÈîßE¾oÃ?&ëû¤@ïwö/ÿ{ÙÖÿ5¿¼óYÿûÒæ÷;™ÍûS úŸÁ~aúýß±²¼Ÿe´{rÿúÞœ¥£ý¿x÷?Ý¿ ‚ÁèüWÅï~{óîáË;«½¥½Ù?ïÇ;˜ÙÿU5ó»DÌ-ÿ5ç÷Êœ­ÿòü‹õ}¬n@»¿üÿ£]#G»÷Îþ|]Þ…ýûÏï Ðh·8gmÄ`ñ# í¾ZÏ™nw‚wš|W=™šÎ}Ñ®ÝñécuUºßºÝ­`Âpϧ•mQªßKD/îÇÍuƒ[â[Ÿ<žõb”¦v[á&1~æ ÖöÀâÓ©ìy¼Øz¨ù~ƒhë”"϶uä@RÈE»wîw©í/] šÛUÜ«b“†.ýE©¡í[4Cžc˜1‹Mí@GóõÂyæ÷í4jÖÏ7"©8Ï“H–wÍ æ¨‡Y·Õrfû.2Mlˆß¨cSîB‰RXóîÅ+ .Í<DYˆ´I+tŸè˜ÓªÌ•ÂA½5Nc‹L;Ù €J¼´¸š’Ft=;yŒªV½p4‡–o@‚ƒ¡Õ¶[µn‹$ü%Î_µo€D ³cŸ¦n÷§:ÛÕᑺ» ¤–ûáÆ‘ínOõ"þ~~|Sg¦Ï¢fZa+Ë\iIP¥ãà]ê@IôO´KN ÏP<î~—B¸L[ùŒŒšP½`cøg¬Ù—Qžõr3(ó–Ψ:þoþlro†Iù8f,¢úéAT9i¢Ý¡9kÑ”ŠÜ?€õ3þ¥ ˜ô"%®D2±[¬ —ƒd_$Å{wç+‡Ã´ý\-8óèÏÔ*T[¿³æ)ÓÔû ùöqÞlÝ–• ébZ«=\T8‡ Gmª°ä„v(ùduÙ˧ˆ †ƒÞmÏöÂ’žª9[5F#««ð>nw>;Ó–JŠS,ÊöKò{,ê,ˆôâTû`†þnôaþÑ.Oõ!ýÓjyúÞ2©^ûp£Úå+®ž²Ê}.©ÛƇÞù_ãÛÄ£SÛdî–ÚE_úšÜ¬)–1ÄóÛ>©×ë¼Ta¯&aMkªÎ‚uKø5i3Àõ“¡1H!Òí,Œè|'€üÊô5™ô·¹¸L‹-· G¢è&ÞJ{íkè¿yËxµ»4ÀÈÖEøCT`'÷žÙ²~¹ˆç(‚ËðRÃpvÌ«Èçâ3‰ç§àd˜?`Õhe¦¢ÜlxSG˜~õƒ1:@ ‡ù°Í3K‰>ô#:ñR ME4‡8€Ž«…eãuRI ¹Šj±ï‡°ÔÄ)‡Ò½îìÐßÙjàH}Õ&{'»Žgç$fñâ®ÃJFÄæMIÄXã£/•CÈ<ªÞ|­y&ö'’àá§ô½x2™K<`RÞxZ­ÎëÒ׆Í.Ö²Ö+}`êë««Óø‡qôù¯Ù1áõƲ¡´:®9\x¾0Í\ó:ü¼—ø°„ŒÈÍ–ÒÜäi'íÈtÈò”ª*üÊ<³N¡âÇÔ´ç­+6áÜ«—!¹öºí¹vKËÞù/NÄZizw’-¹ÕçµUÏ{FḌëeW²R²YŒåcÑNîlëØñsÚ÷½p»,ÛáTÞ;ˆø •_Òô+ÒØGÃÔÝ´Xâ#Òî!šBâ™íp„®ËTHaÒ”A½ÌòŒÓjI•l’ dd–O‡åMtqXZ]ØÇ3ÀñáðûA\é±y frÓxÃ*·à;©1œZGk/Ùræ>l·5ÇØ”ìà¶Ï©­Ÿ û{˦Þ8;'Š×ùûò¤ã1¨±GÞmj_˜f9TPð—lGýì»yA«;·Çíµ‘eËi 7¥åO,ÉßÎý(Pgv!:à°%–1þU¹g}ìµÃ¤Æ1$Ä+PsóxJÌÛ­‘cíö@vú0y7èCÞWÑ95Œá¼¹¶É¬c]Ú»¨Ô{á—4Ev<Ȳ:ƒÆâªgB‚YH4†)re»óëZZˆ!`Ë€X•¯œ)J莧««2ÅÝî‹9°y‡(cw¨Æ^Ú$ŸÍäëæÜwäQHÉL2NF³VPæõ…]C$²'GV}ê³AØùV+†äŒ‹ÉPŸõS?öåÄ­Ç1˜üîͰl'WeÎá"T¤V’aØã)Å%Çt¨ùFYRYšVvg,þªˆ\%n:(MœÕÞ|y0ø¢È„U=æ(ãܲU+h*+ÄÚë~;͵7ŽJ!¹ÅtÃ|¬ÈÛÏçšÃ—ÉtÃщB¹(µƒ+È-õw’é—gç$“”1¥ˆ\0ÅÛY²¹‚KÁF‹É×_ñHÃî+ŒçËG b8Åy¯ý²Ì¥Ø¯¿×د£\œø ¾4¹ëOÑ•Ëè+ xÅÁHe0‡5_üåk˜‰Û# Ç1Øç&(Q0›ÅçJ¥•íÒ¼µêÀ$èXQš`#ø“^ëKžò³¡s<À¡$ÿLˆ‹m†/2öc¾Ÿ$…˜Ðk§Œ›†ÝF;ßÙUcKNw•U´r|å ?Ko¥9Q¼þnóâЇŠPÁ²mêŒI…ÑþÚ‘æl{‘äñšû‚ÖÛm¸nŠκµj=Ûbˆ1ÙÞenUIÌåçÙÌAÒ:ÀôÕ*&²ÞEÍõwýÊT‰©›vR‘ÓU7bAPLÊíB1½g(¨IC¸B˜é±Ï¡ÔX€ô®˜ãÃä7¹à™péj°ìiî¼®£™8K_±G*hø…¹ë°B0îÍã×òž§S°ØŠOÏëŸÛÂx s¶ûÑÐJ!ì» 9yêÅ£…EõÕsÍ6Ú‡ûÈ1ã&Ä ¬Úû¶¦Pü½ÉJ¿·“L±°´Ý)pÎsžhFÚsƒQêoW"žØ-©?pÉÅœ ÙOÿŒo$€6ñGH×%P_ ¤`þâŒZbé¿G6ì~ŽöÃy5pàDžÓð-o—D¾0 md\½÷³ªÎ*C¡¾ki„b lÈp¼¶bBžØçÒsÌËÈ]9À­±^ž¬¾~2¹J­\‹4{t RÊ܉–]AÚóÆï~´S [ g[Í>BAøÝ‚F°Âã Ü„˜ªhîÉõkÄÅ´´×,²Dåz>0ME dÉÅ ò¼·Äô.­bjö>ŠŽçl³ PB Ρå̲AOƒJï%åW;ï™õ(BJ&†*QîÇ~öèd*\E½»´Xýúò…î·4õБ橾LUž̲A¾jXs¿ûsªÓÖ¹ÌúJË^î—¸¦d2o4;+Á·3ûôžë+æ:Äç”VÞ’»ûßÖiè†î1®sð0ÄÂÂDáîXF0ôêÞš 'ç„{ŒX ø C›@S{…dc2º)íÛª‰™4 ›NHÔ&dK4f¯´:ŽƒGúá¾Ä“‰A7×b'¢M½Bn•#ÁYA7ÌüN3m0ÐàG×m¿çƒ{¿‚äsàÌæ[Á%.c›:/„ƒ¹g߃ÕpUÖñº ÌO©x°´š;,ƒ%JÌp"f|8h ‹÷CX]<+]7Ð ñ3¹Wpùâ#˜áqôQý¹Ž{Yœpý“ ‹Ð ëâõóÞý¦„6Ét™ô=SâDÊ©«Ü=g© 3»T«ÐËu½=ÄYXƒ)ÕM‰ †"-’ŸVåÇxœ¸}“/‘§:EÈ£•k%µy=N˜Óð¡EÏ­zq¸LŸ’.’eç±K­^ö¼F×VÙ¢*Èõ½³eôó°hQ­ÈõxÞÅO ùý‹9ÄžkúñgÇ"êø>C¥;sŠ_›É %Ö‹ö‘Ç$ó+Ú`½‡fé5ð/@ev‰ŸônN@+¾=0ˆòÏÛ‚rPt2ˆ Äð$~(½5L]½ÀeSôØz¯LÌhîH}ÂêÉÓbi¡àµ 6`_C÷ QUL_üe§¢MLnY®÷4uWPCÆC}ÁC$÷GeJÝæß\;R5Gè.eµþ¢TŒâ#Ü-ËŠ¶àQ%ƒñßT(›/2?qgò|·Å-ì8ú:XÊ3Å}í°Žã&ÁÙÆÌ÷Ùþ*ðåß ŸtcV¦éÂÏS`êõ"ƒ+3ó”I%Ê.$XR]NדÁ¶‡w¬läX¥ÙÁÔ_€aÔ½Ë ka‰šÍÓU_#U=;ûûö{oŠ¡ÑUSÄ£‰ 'GˆgÀ$af4v‹§³p¤ÉŒ D«šNŸÒx…Ç$uð|”¡™î¤×Ó-(fHcZŠA2f¥t»~^Êv¯®¬Y ñ’ÙInBNÈH|È’),˜á¬>±«ëST¸p÷é1|ð½þÃ"Á¹Ÿ¶í1ì0ü\Váöè{ø–&窪r~~Kª\²ìã¦H¬"åÙ_J­¾~§6™ÚsKÓoläÏÝ–4ú  ,A‘ÈóÕ{ t}à@óÍóÃ×ÞV«)eé¿6¨$vumÛæºœ¦AÏ4"Îs¹€Jô3ü)û:ºÉ`âɲž˜v4‘.ëÏO‚4Ü-–õY<,Á*õ[(%-³_¼7jˆwëžs~O+ôŒœ¸ÇçB‹V%ŸóNØèÂû.˜ËƒÐÏhƒVô¨”ãÊÛ="­c‹–®ÏDØìq˜¹¿ç„k+ú­ëuªÄYõÄÓ>Þ×/2>!;0DÌÀ¿nDŽm]Àm| ­aª…è=‰ðyÚ@Óì™”šrš‘<÷ƒéœË>è/èþj—¾åf-ƒÎw±Ê•JvÕ{z˜v‘Ÿ‰l¡©þìùîܪIÓþR®É5q¾ß÷3¿?©óªÞÒ{Ø…7¦ïx/ŽëY~B„1·rP—: »Ä†wÆé:õ¤op‘ƒZ8„¦U5öIÿWǘhf^3n7Ô‰!BŽÛžù•ŒAª§ÅHõþ°ÀS^Ø®g¿· òÞ¹zÔÇ”]P°}T2#è3’;R•%¿f‰ÛuxÂj8_Ó>Ç)‘ ÌÅPÞĹ´>@¿®˜¼G?1÷lµsؾ”¿Åi´u@Wû9ôs,ÆÜ‹âÈf±œ¡I Ír[ÇZ@¦5 läb‘*l›ÛÔµé‘é¸ÁNÔwÇ:±ì©ž^´¯®«M¥å“àŸÛÀ‡Loß¾ðeÖéùþ¥X"u<7mþ*U·{ÒVhý#=YõôÚ á® 6v’ï„z ÿ:Eô=¼¥¸BäÐ]$H‰‡ÙáE¶ðæÁ~·Ðçé§ä×›X“¼’ô)ˆ­·Ÿ/O4h‹…_EOŠ? ÑmwMö’|–ZVfGêZÒ ¬‚Á?€:·XF$ øµ(x …@S¶ÒÙÜ ƒº„Êû;Q.g—ŒÍé‡2®ŠJ(é2v¥LÒÛ—‰¢³}þ´?)oOîz¼Å°ŒÕÄeæhiö1í1ÊÅ_ó7tšJlëz!‡oÁÌ"ú‘Ë4 ËÝDJX©iY² |Ô<êfú;²m!|oó¹Ão^›ÀS5©Y¤––¯ÈžSEÂvaCX*C‚Cð&Ø/àÉy±ñ žÜPa$ÓmÒ·Ó¤1*ÙHbwÚû¸/wº3q¸ðÜ)°]GJí>?D Ƕ7Åþ—ÉdÊ E–!CnÒ¦("–k"å1®R C”Óeò&©˜ |#9òogévjk¾=8.:ÕÍÐm|Ô[çYÝõ:>–¬ÖŸ´ös&Ÿ?ÑÊQS¢™—„i×È)vK^IÌŒßLuñ«p ,ˆcí˽ÁTþÚ½ÊXÃSNÝj¶¡>íÛþŤYL¤Ñ,z™~¡VœZWjŠŽ0äìùB ¢)×$Š1) vSu¯©¬w뙹½`iû¥ ×°àpúúª±Éª%楗æÒ顚éNù5¶~08@\Yuî›$¼6QJÀþÊ-ß3×°šÞø0ßl!çgIFOÌézm÷ ˜sÕ%·ËaDZtˆ±ÅüÀß ëÅ#Ô¢ßC8ýžU Ò©+/LÑÂF1lg¸6Œ-H š«V0BÌ>Ú¤·Ù[#Ò5 ÄÂICˆ³Go“Tx(Nƒï•>î4¯Üì=ý<óúdfë”Ñ ¸|LJg­ÚŠzYΣç.”á™ûxqbæ´j➥ҵWj1 +ð¯0N–°}ž= G:,˜¦Ò÷í^Ã0*»¦*_qƤœzh¥‰<À`¯ê&¨­}ÿž—üœ¦P§µ²Æ£Úý• Òoi™ßˆæ–|£öT®uEH™•3èÞ¿»,²4“¤w®/½Öô@å°muG×°D½z™êÇg2@„3tùý5FXDÜv .º±]E¯†[OA–]· ±¤0ž>Cˆ¯'ŒÍM{Ôò yì%,]ú îçq_i:œùUõå]…ðñJÁRqJÿ>̾•G¬ÚÉ_c¢çÌ “ ìÝXU„§;êÃt?ĆQEecæuR‡„B·²ÈP?è\2“ó(6ïmyíA˜énnŽT{ç ’. ºÚ8O|04?"²†á´‹Wu¹z²)ë\ó*èmŸbú†Ö«ÚUl ä”´ŠÂîä­ó_ÔåÙJé6+pˆ÷ç“uq+±ö¥á+W„¹ÉVÆæ[ ö”išÔ µpk…¾…D“Z©/3h*Ôz¯«Óòæã>ù˜§‘¨(›UYžÏaŠycµêAí'§·@¾`_V¯vŒ£6⟳«£”–7ëÿjýYæ0|d!..H>5ÿ¢zÏ-ù&áÄpÛlÏ ºBRÞ‹£û] q­ë IðõYاüøÅ¦p\q¦5 rVr4Îkz…ïm ô¬:]õ©AücD!¨)ê(‚÷£&þBù¸DìÇÅ!‚C§¨2-kIöøNTzÈg%h9£I¨+)B ‡DOSWØVWOUÚžJu÷RÀÿ„4µjÉ`’ð¼#´i|î‰ÿûËõa·¯£°Lüê¢Õ4Ò ÈŸ<÷5ÚR\BîOF-îÊa¢¡ºII‘5éŒ,–Î>³Ø .þv³-"לÁð2’¾Y|:¦µQŽæ.cˆk=¹FFõø·ÀŒõ‚û(5}ô1ðüàëÇn‘¼”°–cVôQ¤`ˆ+Ðÿ£ —µk9hR¯´ßEþ ã,8ø|ðñ> ñ>Â>ªýBPu‘÷»õ*FE>&0Z¨´”à¹oø ß«=ŸÖÍoÓ=TpìÓ4ÏÔ0‰,w+«ö‚Èä}„8óƒNIû©vèaZCËŠêé¸Ãòè>i°Ÿú”osÓ¨ç€FI„d‹·Ð1¾Hv*ó7ûä/2mám+üLudB„s®]þÆ/·(zO#¹sT~ã°×£ÛtÙóA¯EÛ{mØ?Üœ Яä28‘î‚̇ˆžŸ˜µ´Ï¦!÷l]Ç&ß´{D4ùKãü ¦›l ¿Ÿ1¤­r•Œ”žŠÃËÑê§-5¸ó’û©6Ü”Ð3ÑU;vTtnöÄß«<êµ×} ƒà±½czI>¢ˆQëÃXLÚX4_bunчhñ@šWó®yËø·î¿ÛÌ8CAP+íÍïU:؇L%©BѤÕ͉±ÙCu«!¦Øùn¿ç3Pi¡ú¨æ÷„·ÙXÁM˜i•QvÀ—½Gýƒ‰#å¢WŠÛ–¦ÙeÈzHÛç·'šžhRŸ²VªÖ—C'"Ìv s +µßV󸪮̉)ê×âCª†`Ò¥‡·³Ô¤¬ÚÜ+ ÀTÎqú¿-"é W{)Së³VV¬4Ï5†Åꤪj†!Ê¡² \pŒ«Å:†~ÞÉ~nØÑÆU•ªø` ¹¡«„Ûö‰},úKûéÐÍC4$ȹ&ù8ŠkóÓ ;@È …^¯OºvÿjJ÷ÔpLÁrÄ[8hÞëÀ¥#èàsÈ…,¦Þ4-ÓÔóÂÚõfLSR·H'zvîQ]‰o–¸Q‡n£T31–—„0~õË ÛØÄÁ¨¬ ÀSŸ¼H¤@9æZ*•H™ç|ľ4:\¤¸X âí ˆgî~øŠN©€Q]†Ÿ’¶Ðss!z†¢zpÇHž´F¾OBv“¶*¤ÛÂ0ª5¿ßN8'|ŠÃDp“#×gêÁi½`lO€Ý‰},øRpU[ôL°£Ðšü0¯]$M c0IÙDX#f´ý‘/'S„Áw F±ä ¨æ&í–1“Y·T¼Ýb‡« E.1]X80Pæl¨D¢¾AN“jß~#VËŒ‰ˆ¨=î-6²RœÓ'ŒC7 ~’ÝV.ð+¼˜¡=ë>üf^”@¡€>y?^à”²¶ƒ‹JšúúæWä¹n1^ù*BŒ_¾©c¤–Û™à à}éO>„6êz·)ŸŒåŸ€Áb°a­UjèÎF¿Ì¸h¿P¨mo$ñßX°lŠ¡“t™˜ÑÍGŽB⸬R7àË„ö“üpO5i/°u;·¹»?t‘ÑJ÷'IWMÞR—¯C‡•†‘X2-ÿ®~Ù1D K§¨(.4­ÅØdó]1±ðÕ„žç9[dB¾‰n Õwgy©ÎæÚëZ¶qþgÝìXpq^?ªdc*—™*¨ødi,¨[šP}ý*×Ù¢|0«¹2ÀÁðIÓO¹QXú)ûD9†g°LÒ£æt´üýùn&Ñ“À€òRý^H¶¼¯jâiÕ©á<,âyÖgeܦ`?‰„¨¦‰‘'Ñû8Ö˜lúZ|(ß²K"C”«=OÿÝÇæ„àŠÞBÞ$7Cb{mø†¯ã±ãj0v%G±za³F‚®‘¿Ê­/zsÒi[WY§¾î#›|šàO1KH›lDmDØ%g¼ãee‰k&OÌØ_‘µQ",¾CËüÅûê IØšÃa=,…{:* ûè´Åd-Rx/¡·áÞôÉ¢6¯š¢`·Y|…74½×Æ1uÂ÷ª7 ÅGç—Sha¬›#¶jË7¹F:ó‘`K¯Öœlaj0ÙzcšÁÎBö‘è’8‡þd *ØÞ :E‹»`RP˜ÚÆ'×ð[ôUèMA´ÂÈ;Š"ŸAÝJ/0ü×yg«Qç…W¬°> ~\ð%9M“P`roH¶Âª›_· ÎM¶³àÖ7“ k%žÇØ[.M½ïëBGÀºEü€”‹“â0±Ìm(œÂßêË™…2ôªFÂ7àK˘G`iJˆ—KÔÃ’ÈÄ®d0UùM ž剞óûÙNHHÆy²©…‹ŠC4Æ¢™•Hÿ¾äa$ã[;R°YžŸ³Ö›?ÓKøTë“h|Tðh<¹¾#Yµ·ˆ_BEϱv©ä4&”êžÛσé>›ètNo„6å–À©Ã_þo>ûW?]6 >ôA ð_DøËvJ#ÜÌL}v\¶áî´¹½"«U%šb¼•á!N‰ŸÑ•£XOït¬³×(]?~ í?Yr¿ìiYt§­õº/Jßö‡+³Z~ ²U¢éL7Mœ7Ås˜-£Ìêh_^½)T΃×òMŸ½Såº_N›æ¸„FÕÑÒÅ4N ÒÀfòÎS0ã¾–ëÌV—¼lGT×a@¹÷\ÙºÛ>«"%9¢ ùtöa„*è…`ñß¶Ð×:ól´r’^|ÕÞ‹³Áòä.ÉÀïÄD4úLm‚ÚÖÞгê†}/!Ê)!NÖÐFkÐ÷è¯óÙÊ=4É@'ãÇjyôãyfŸ/%¥"©âìhóØÈU+d`‰éûAšÎYÁp6j®cå>â¾ô®K^ã5ô¹"=èaôiž±*U½±γӃÙô l=kgñ·hˆÄ€5T›êjuólÄ6Ÿ&5‘\³û<.9e¾vféS CÞ^7¿oN«Ú}l ¥–u¡18î·!¸”—R(0Ÿ(!xõ("TlÖ©‡oF$¥‹OæÂzÆÓ¨IXßB‡÷Ð[8"&wqˆaPØc)AÅ$"yf5]Pö‰þ¾tCâÈÌHAä†û©¥pk{bwÕ]’ÚKÈæd¸<¨ã§*9Á¾ã´aïy7šÀ+mnäƒ uÞ‰‰¹õÕH>LŒÃ§§-è¿2‘¢ u¡$Ÿ׌ƒ¤\°$qÿôZ!å"`6TlRE“VÇ›\ ÎW©nÒËr-•™g“±ÂI ñ"d¹äͺŠD¢»e}¿§ûÄ%_AõåvYÉ[íi>Óg´R›¶O)ô·%:Žž ÂÂõ—JÏU7®3 Ôæ½—çÎágŒø"õöáçWù›Á^%ưCËÉÕnG£¡+¼l­4_Wà|Z¦…›éÀr(¡)ŠÆ˜ÕùPi©ÃZ“¥ßæ&a¾àé–˜Ã0œ&›p¦Ìº¬Â\„s;E…ìy9þ« <²Á"àížxøXì–3ßê„êüøÆ O|Ú™ᜡbåí^‘æ(çéÒ©7“gx${(-[ØXúI¼8 ࣓óuÀ“ÌVØG¯ÙJfnïØ:£}º"ä øÊ¸Œök÷S*X‹Øàxr—d#Œø!¤“I`;ëèã3 õó„mýÑ­¿ŽŽ˜dY-®"K†Í#2àŽûvɦ•@ESAjD <Ò–©~€þQ}©“‘W§M«Sy—B•S­4^-8С­˜ \€ E»VÒ—è«g•Ðü£ 3NˆaÓe*^»TsõÇõ_ˆ¬ËžZY{@¸“Ù”§;iû€R©ì ÙN}õ±üTSõ¯áV)& úðIú†«øâ¬Í¿z…¹#tÕ2Zïëi Óps´24”­i­îZB`5 *^¥Š[”Yys‹Þd¾'˜Ë6?ªà^†¿—Õð\\`þ¡å6/©\ºº)Ú®‚Ü™B%üx£ýøesE àüË~±ÍÞ*Z+vöÊ×¶.Ö†6/ý1%£@§/:°(Ktú­R64Š2âÛRy3Õ û=sc»W)Å#&ûý„0u9šÃSÝ&$ÃEŽPL\¨{Ø82W­AšJ÷|1³L¾X‚ŠŽr0rñ^Xœ½©Žž1tJÓàWÞ©í}Á#á#Ͳ5V{ÚhÚîðJK„ÿ …„h’1EXä!>#k!–›Í–úîx±ap[{¶‡–e ÁÜ·“je¡&íHM…ƒïT•Ê’§pÀ„Í¢¿¤„,kçÁÞzµ£{:V†ˆlºÄWj4Ø®' Wì÷†ÆE®~§GmQºãDüËÅþjx»Eô¨Q»o)„‰ý X’èo! |NŽí[9;Š˜ Ž~-¢º¿]šMG]æ¹Ä=u÷EhnlÄß°¿%kO‰Ø“ І·«ù€1™£UЧëÙ4p‹5ôË;›Â}a§ Ÿ n96ŃuÿY¡Œ©k&8Ïnš/ÕÏ›"%ÙLj0<òýEÑͯ"'JbGPˆ #ÌcB7‡7ÃrrJìŽûiT]º¯(»ÊVçŽ´Ä ü†+:¹áÙíõÝËì1tšj ìNÂRÒ<¤6x•ìrÐót#fý¯/‚«JW—ÈÅ’É">ò¶{}íÁ-b+3LûxîQ×2ûÀ(«î"u“¹®WŸøíç¼tÏe¸©T®òXeiOëÒJü¥¬2Dšú³³¥ôÛ ìUö\È Ñ\„øããÌŠ³äíö³Ð°]žôùõ™åÂk–a³˜„ÞÜ–<|ÔK·Y—–hQÓD}áÆ =èJ°ªÄÇö…¢42Ä&©Ú€«ÎF[ë`¦Z¿ŠÞ„%z{# •ìQ¸Âl[WËÛè‚Þ£ÈB§õÃ¥gúbÈÞrx o1Âz«/YšƒînGk&,–+Õ¹úDëϬ¿¿«r|l£êÈöÕÇ ´Û³%O룛N'€téþd&¾Êá+Kº¿¯¤9”ùÒ…E'cÇACô 'à—êRÙ[>#Øë[g öêtÛ­‚³.V‘á³': V¸ZNq•‡’IC¢ønµZ¨ð®™Fæ~¾ýuÙÉ âYÈ®d>¤å7]‹ð.zË­?Ö­bé×5—§7+Ë)UÌ:AFÇñ‡ž{^}%|œÇS„nâÜcç1ÝK­1Ñ®LÑ‘¿æÙä­íÅ ”çëPŠHRÍÂÁÓÓ& -‚gŸÛ›˜eî·7A»–BóÑ4Ù¾Œs.!w¥ôd‰Øæ×ÙüþOY8¥…Íq‘öÞ¦Ð_‰|]w±iõë 4s¥ÔdD÷ÄÎXÜ­¼é³ü܌㖪IFb“šl´>(×Mó© CÈ´Z¨„è.ñFäóF5Y>“sÞ¾U_)n<*Æùl¤g´ô¬zSäwÒ8ÏœP¥ÿƹ0jýÙ„xzó€–öå½ øÈ=Ê),޼öe“#¾Ò;ÜE ïwd×}JN4W6¥,õܽ.ùv8?mÆ(•qÑŒdÑŸ²E$™Ÿt}:7e_ל»·™%ê<<¾žY“õ“»å4zú¹zëó~`¯Çm\w-13ûc„&Úîhâš%à.,‹•¬ÌÑŠIÄryÌQz¿ÁăEfÃ0y¥†µ…ÉËȉ ¿³Fß÷‹š9dãgbåû¤-þDFÕ–óùd¾p?÷SÒ‚\.‹Š¸·5©ÑK¡RPu¼©´Ôp^ ¹Û)Þl]…Ü¥õö2Ü PJ’i»™À¸RðQ3‰¦eÎ]Á¦ôtÄÖ¾è _å¹wyøW·ö‚ý´k£P‘B¹ªE W?Y‡vP3ÕQ0q*¸DoaRÏ6ížÖ}:½qMX~?*á7½I£¶Ðœ.4¶‹û7 úì󟶯]Âç½@‹?[ö~¼!׿47Jµä—$1²¤ÌBñºò4üý»@ádŸ§ŽâzlÊê<ëLtŸwHÛôwIæäìî®ó?f¸‘L|yÖá<ü2á!d¤…¡e”Ÿ"þ¿Ä¦×€ÃyçéÜðÁî&Àx}³8G«'{P•µ“,‘ Rn(¾Àa@¿\`ìx¶;9÷ÂK½ÿ¶Í³ÆyÕèM¡§Z&A)ÙTŸ‡zþÌÝ’hönJžºaÔÔ•üèô$x‰÷õyãÎ/ôùÛ{µ=:*È[âèô$çXC% #.Ó­ši÷Ïk¾ˆ-Ô }myÏí°ŒÍ£ÞHÂ0¤ì[ÙÅóO‹OJÁC0Áþ%™»Ì¸tŒÎÚ=%¿„áyo†\H\<Óaméc=’áÑ£õ‹ÐD£M»Ñèôî¼CãØ?#ñhyß7ËæYI–7ºO¥OâsK{ôeÆkÐвVŠ êß_!pö.;<ÆBJDÜnéÀñy ymñÅÌŠGÀªÕ›—©º(°¥{7yôå§Xþȹ!o6Ó*AzËšÝÈUZ&9«"âUŒùßm©p¯=Ž÷8üÆÆQês›Uw4IC¥å‡~—O6gYÌ1K*Á@é¡xRç^ “¾ã½aØ|üFYX°7—³âן‡öur5ÚwâÕ¼6Ó/d„CÖ¯d‘ÄUeQ•—•ÕQèê /›#=vdgZn›Î®—R»mùåd­PÜî‰Â¸XðD ¦¬}ÕÈ—˜xyè‹fÀê¯Þâ*”þÄÙáù ’ÖrüuOìTKñš?Fkb¿{n¬,ÁÈY›­±A[ûæâSsž¸05*¢ÛªZ¡I!1~âvøž‘—V®#z'§¯¤áÍ+¾ìÙç4×4iN"*}RDð7òÁÃàŸ¶…/ÛO­O§BűaC(ÕDI¸‘úÀ´I±GÎU±ç2ë‹aáWäa¡ üà»JÛùé"9Åmw £«Vè$6÷‰ÅG§=®µ÷y¯Fa~i׸î{— j³¡c-S6Å´J|Öi cs(¢Ô¾,þì%BÉ!m^$CÿGK’ëD÷pwÜÁ~Xýµ½MãdzˆÀ{MQƒP䀎¢ÒkÑA] &ægêe4•5:U;(£ä)vð™ÐÖåY+ÓÎ(¢!1”º®•Æš¢ŒÉqæôïÕúûU•ó.š‰6ù®v„·á5 ÝÈP®(.‹¤K¦VáðñšÑ§S=ÓÐlbh]®Ë¸I¸^£PΣ)ÄR„Œ²fNÙßB«!ZŒ_7-ÐÖ.c•ήazŽ£žáqV A–¶v¤°×7†ÇB‰ ¦s ÏÃÝ pF…©Ê>¶X²Ÿ”šU¥òlÌÖã߯o¯Î-Jø 7POüÞÀº û¦ðƒZø§)“`ùBè 05éÝzÐ+R/M¶Ì…¯Ñ]¦ ~e¬ÉÑ X•=L LÖñ¢g.—ÊñOͳ_f†þæ?}2"©zž~€sý±;‰# èC ø Ë &Οž¨¦y½x4Oy)Åq ¡”¤áu¶ð<ÊÉGæö '§P4X¯Ÿ€¿²¸xÚýéLÌAÿIÒ«£5w° ë§^Žä@¡sœ F,kèí»­2Ò¸AZ/Ó“O°0[Wëc ÞOi‘Á*äå… =+ü¹ž’§<à!´aC¾Í^ÈÎFôÌÞ˜¼(YG·ÅÃ|éêÏ]ˆL`OnÅbðjJ-ñú—ÁÁc,†n’dŸµ‹çÄ-W+“Æò&då–lâ6‹€³`«ŸˆX  ÑÁk9ïö§ÔöOxÊÏ*é è1ƒQ’Ÿ£yK7,Œ˜£|þÂ@O"tR¬pwø|ŠTzóÕ¢ ž¶ø)wG52 ™ç\¯VÈÕ ”¸àM“WÒsæ…ž9ÓaµÁI|©.°Æ;[bHÂ`jç‚Øæ#€ò”²ýtce¹¸îº’Üî¿é ,Y4M'<.ëÛ‰ëç_ïS¾j.ŒFšRÃIÕEã6lF0k±9Û§z95œÁl3˜o\Â?+x(Xêì )¹3±¦‰:q:SÁºÊéÁðºî9Wzfˆ¾ôJY(‹t5%ÑäÀJ\!Ô Ó×,e`ø¤j;Åïo$þ¥ÞAC”wg·±Ç²"Ÿ\»šk Ø\–ŸÑBE1ëÛœžÉÂzMCðÆww¼1®Y0.ƒ›©Ù@e’îë(¡@:èÇGÄ aÂï?:\ñök ?Éð\-BOĤÀôÙÅ1}­(Bˆ3˜Üó\4]ŶlU½$Å5& ä¿­Só‹µ ŒX4‰{%…ô“ùâúã£Z•7ÍnØü]KaÄßüÂÙmÜçx†aâM*£±‡úªÅ«üDI[q`¬Ø5gœ½gQáÏÂÐÕ7ï}Ö‚& ñ³G0>m =4ë#xŸîH÷†Ì“M0 Iý#¦#¢`¦¸m üºñ$ùþ1ôh Š–àf‰¶WsaX²cHÔ2›ÒÍi0º³Ÿ˜\{mûËc3O¿xLCõÿªÓ^J endstream endobj 6293 0 obj << /Length1 1408 /Length2 6448 /Length3 0 /Length 7411 /Filter /FlateDecode >> stream xÚvTìÖ.!´¤ÀRRCKIH‡tç 1C ’Jw#% Ò(ÝÝHw‹ÒJ—À?ú}çœÿ;÷®uïšµfÞýìxw<û]ÃH§¦É!i 3Ë pnN 0à•Š?äåy°µ p{ð_(6£ØÙƒ ÿ/ý+g0ŽÀ¤Ap„™ Ptµp󸄹…@(ô/C˜³0@䱨paP° 6ã+˜£§3ÄÚޏå_G‹+€[HHý;@Òì ±A* ¸ Øq£È  ³€€ážÿÁ"j‡; sq¹»»s‚\8aÎÖ/YÙî¸ @ìvv[~— x rÿ)Œ› eqù Ö„YÁÝAÎ`°‡X€¡.W¨%Ø€¸ ©  PuCÿ2VþË€ðwkÜœÜÿ÷·÷ï@èg…ÌÁõ„@­V{0@UV™îg€ –¿ Aö.0„?È ±™# þ$ÈJª@ˆúþ®ÎÅÂâwátØÿ®ëwD“e –¯``(Üûw~Òg°¢ëž\Æj…¹C½ÿ:[A –V¿K°tuäÒ†Bœ\Á Ò[ ìÿ`Ö`8€ ¾x;À6\¿ƒky:‚ÿ(¹Èü}½aŽ+D `_ˆñƒííràή`_ïÿ­ø§„ÍÍ °„XÀæ`kû?Ñ0Øê/1ygˆÀˆ 7øûóï“1‚[–0¨½çÌÿ —KSUQUG•íOÁÿVIIÁ<ÞÜ@?ÁU @qðýg5äï,€ÿñU€ZÁB%‹èÒ¿vû{ú,/+àŸ±^ÃŒXþCp# ?ÐñÅýÿMó?.ÿ7vÿŽòÿ øç#ëjoÿGËò[ýhA{Ï¿õ¾ºÂÜW!6úߦºà¿ÖUl quøo­„ØI¨µý¿›q‘…x€-Õ p ›¿¨ò®ý{Áì!P°ÌòûA ü/b«,ì† ‚T`ÄÒüóJ¨Ìò÷vñð @ÎÎ OlĈ?À›±†–`? pqBap„ Qž/À æŒý{žü<.+˜«óoôÀ'àB¼Sÿ–ã‚Û8ƒÿD î°?ò?r±puvFlâ® ý—ügíÁ`°öÂ,ÌB$ض&¸åªJ’Êc{LlŠq[7••Ã{Á¹Õõ#‰µ2#pÍùB2i°‹`yK†å\b‘öÎ{¿ñFHS‚zó­Ï/Ó8‰ífìù/¤}ãùû’µ½ÔXO9´$¾ùÜ9ùèØ¡6"·+2æ8¹¾ÀSË%¾rï‘ó¨í-]y7»­þ­R@ çWé$G”v¤Q@Ñ4ãóÌrzt85æs¢ŸøÓçSDÙã´ŠqlؾQ¼Þë<Ñ×3^+eZ<.Ï( È©QωF&˜¼¥v’Éæ¼‹ –ûæ=E h³³§,spî𼯄hD@뻫ÝFÚ¸¿æ$‚™©úˆ¿&T—Ô“˜:Ó«>©l6 †WóÚ©wÚ¬¤I4fé8ãϳ ö?¶£2bÇjôÆFrEûþˆuàz—+¹‰.åY"ßó©(r(ðÈôJ×Õ˜ýD^üˆÛ³a=¿j£µì Mm¹}.‹V#’”=¿êa¼)Æ*É´9uzz;ææu‚1>»!á%åhÁÛú t]LiÕ^9¯™¯‰ª@óUï’ІOj&»”»)àC¡º7G- ÀKÙ­)uŒ`Š®2>ÓéûN)ø/œ'±]ÔZíeû>YÒ/äGëAÌw I,r)󕯤B|ŸÆ&ÂÇÐør³žV¹<íZ’ñ°IÿÈ"È©+øƒè ·µ‡{Zᇛx_I ÀîMñœMgÌ‹<9Wúcì¢nsŸ¦ý‘Ýõ«åÑú}&f®&ÂÓB£`Êiô†—ŒŒ®Ë•ST»üç”Úï KTîî>5Ç)]bfëR¼ˆqF‹}c^R ÁùzÄW[€/}Ô7…A†èÅ<±œŒÏ¡Iú7û³>¾ÐóxŸ#'³ÒûE±’ê”gú±ÃÒzQÏׯ&njæ· í†dò=ªbVâêÒݘ2|’&ÈgKD%üñí\™;-Y62H åûûE1ìAÞߦ†çQÙËl]­äø3*Ì2¬[¶>Óðôìt&²Ä¤÷…‡gl ‹pñÄ›Ì`,Éž™ªeøßÙÕˆÉ|ÿ™gîZ¶¤pöù• àæCuÏçÏb—H»8¥X|'Ç­¥3¢1ïÃE`îvãEßd%€ë*¬ÃÍÑ5&f¼Œ}¤‰æf¯±Ö)´‚Û;m‰å®fÔU,oëøGmîÎ_qLõap ŠRÇœ+fèÄÍÕÆœêèÁŠ—M§­Kñ=³­+QS0ÆÃ_QÅmÖñN„ã+ž³­c̳1£·Ê=æ+¤}ÏQxSÚÞÒõ" ×mA}»ã¢oµ•"¯øá蛯H×ÜÚ*ѪÂËʵ';kz™çM|ŸÕ }7â8²é©sûVp4tH<6<¹ èUµˆßîÅsHd¸¼QÖxF¦Œ¢˜"Vó2 oþ%|Ã6û˜bS- JSô ’çã:ÊÏ2êcú‘À§~ú‰ yq#ÊÀj!¿Ì;z–CöyzM™èøèŒ zÅ'¤o®eaÈ?U«ÊŒ¿lg´Ð/t½r¹Ž¬2tÛ\N!œt;Æëôñcø}Î Ç/?¡Ï|°Sµ»rA•‘îЊ–¡%<¸Ÿ×?èp&RQh"ÄJ!ÜÖ„Ñõl rÀe1VØW¢¢B`™ÿéõ]kD›ÄV{ͱ•feÿû7ÈÃζEv—X±Ô.g¢¸GËZ Ú’k<Þ(ß¹i‘>YÄZE×b˜š»!ó§xzÇné JfE®Ëð‚>[ï”§¹+¹.±fÂä¨=±&³ÉKÚ–k¿L&8¡¤`Æwº—äô0×ï 54&sae¦¹¦ÿ Ëòõî‘qq"¤«1®ÈDø}½§%³ E§³{¤?šLË=ÀøØ9+~äUpƒbÎÅg“¿aZ7²=Úâ2z´²ïØXÈZ!õ‹BE»6ƒqœ(_G)ЊëQy4eœ—)½r~¯›Ëã‡öÎR®Ñys4 ®-xjŠ«£àø•Övm’—ë}Ö¤´bj¿#È?s¸R$_Q¡—‰¿ê¥Ov½³ÊJO= ☗r›ÄŸçªLY̸C‰#Ìð’°®é²"µSU•^q ˆu¦¸ªÙ¤Iu‰jªmðRy÷¤öí9™@ÓYI–j°XPä©`{ƒQ‘£{8Y‚(ê×`/¬å'O.Óí… (h÷ËúHël+·dI´VöÕÊâ4µ”Tn^Üÿ—çùrvóÚ=îºì ! ¯ügÖR}´n#$A±Ÿ!]13ÜáW‘®6t4rñ 18O}QWÕˆ:=+¾eCï ÀcË6'KØç»c=tUWrÂ~sm:Hv¥ÌCȲúJ¤¤^ó^vòËJ”ÿŒ¬SfF­Ú4ÏÝRídªªx÷íí½ã–ÁTÈÌ“ºwx†a&ÈFEǦ×È`ª »‰”mb",L؇”ºd›€¸Ü–[ ªÒ!‚5Þ÷ìx"\‹‡«Høã îKyû¯IŒJñöÖúùúH˜ÕF¹úÖ ~zÙáòž°½ÒûË+]7^B™Z£ÓͦâÑ›p™ñª'ÉÚaí‹r ý½‚M›ÛH«}x’|§,ò³,ÔÛõ5v¿"“°p¬—ŸÜÃy)øq‹žÞ.Ø´ ™È÷ö| ¬7O+£YÀ½¹R¥AÎrµ³v›w“ ýqoÚð"…?×3EpTPxÞÝõäèÜñH%>'óL;+Ò‚kòP`ð§ý‘Ò}ŒÓÁ¯ù/ }çTU+©¢—;û1BzÏ–nÑæåÍgS?â‘€É ®jœ"Ãüµ1>_mä8,}åA'øÂv=qcaßïöãáóÒä Y©Lžûãó„éð·È :¶»þÏ~ôG* %¡øMasqK޲^‰¼'ùáôY˜ÚÇq‰Óêõúq¹…XKÁkŸãñ™éÆœB§Ör2ää‹ÖîÍÄj“A÷ͱ=%ýzŠfAæžä+:¶[‹q-aý@ÿ°î!Ñ<›¿²#¼¡²\‡’’áí5Dâ¶$µfl-¶ý}c.¹ÅdãeæÖ^O EË /K{±øâ ³ï¸Û§Yù^ï´hW±l~ùêârßG%KßÒ³œÆrPüöREGöÜŒ[½h‹,ÎoˆSäí°3 Ê,bå—H¬üs7êÉ7ŸÚ½¿]¢ñ“Ó«~$‡áï:Cˆâæ¥êÌ#•¤2YàŒž0¯5ñ`«‡s³@ Çzš¿.©¼›2hQðj ¬"ø8}Hé[]Æû¼¸˜~Éùsn&¦bïJÞŠØëg‹²Ÿ»\ ÂuñÃ8„Œ ½«Pˉñú+T’µÐ^c&µâÎd£F:𶂤r²}èŒkÉrT\ vóCº šÇ©«ßVe)¿µµOø~7®ZÄʤvEͳºSÓ¤fȨÎ=нã8/¯e£Àúqû Íäý*¶EϦ:EôØb : IaZÝüׇƖú'bâi¬[^É8‹žO{Ÿ’4ÛÆ+êÁ9Ö0ö¨ë]øOéj.xæ|?xYÅö]ä#ˆ³iµK³Ÿ±6LÛh¦×–¹HÜìÙªlIéˆÎßZƒ½wê#ÓeDQ“M¬]â±—Àk.FÀ£ªQÍ:ß—9‹ƒ´Z§EM´ÔÖ1Ô ©î`‹£WTôî6T=>P{+ ‰G±wiöJ¡ÌVàq)Þ± Šöï(Öb†éNî…å§–)èx|•ÑÇ—ˆ—ždˆ¬ÞZnðh™ŸZÏ<Á0Ž£ü¾[ˆ“,~`Åä #ôÖ¾ b±¤òhM” À;2ê±éQ,Æã—ÿ²[;ŸXE>ÊŽdYWÇY›è<͘%[¸Ó ïé~g³ñ”¤a§¶KÁ–¿ ǬÒE(P_×`3s]œcÈ*]=îÁpÌOyÛtú ß}ÍJK²h¥EYˆhŸâ~±snr©(HA-‘mÝp´hOÅbè4,‹£¾B‘ÁŒ¿wŽ ³×аëKp$¯™BÆ2jÞ ¯!Æ YzÔûÖkÑ', ›i! $N9‰/íK,IÙ˜Õ¡ÃÃUbšùÊ·O/œRúòfôI®Å5¹Ú âÆHìn‰rõ&|ho3Ý7-¸‚B;Ì€Š`½\Íú‚ÆKAŽ»f‡Z4\¥Jv^¿7jâ—öñCËÒp{¹õ˜‰p4˯vðf³s½×ªFmBÕg졟 Ì;¾™VËÀ;¶í‘û,ѻɮ¼šÀ¹Y ÄýOIäŸPÊg´,ì¹Øx’©O_š§ìäÄTȺwç‚oõvª Ô¡uñÃ{‹û=£ðßÄJ¾i¿˜'¸ ò=x=°BJ\¥¡â/‰³™çeVaV¢ 6,Ÿª˜' d>àc´*$6~†þxƒWº¶09 ö2áó»*Åí—µ:R…~fÇÓ²¢N“d °ëîðhÚdö „BŠxÖJOyß÷ö³#»e ê²ìûþ”ÃM7ÃÉìVìPæ_Iéõæ&·iU %U-"¸—æ'kL~!RŠíÏ_D…T‡/,li¶FÌvM3EÚb†Ï©?=k²‘ÙÛ3§eçàF†Æ„UNNW­ù´‹r’2‘¼¨[]ÊÓšCÅo(« ÷n¦+]YÍÐñr; ‰ôoœæ“m˜˜>èüŒ´Jäw¸CßR”+Q°ÞuEõm¿*Ô“§´Rq1È[OZÏß–|ºó{6A¿PÙŠÙ0*U £Ae}¤äYkN_¤¤·p‰pà?Ý5⦭¥2¶íŠ‹iõåh_>U2ûâsJWÃ&¡ÒØຎ÷a"T݇ÁhsÃÇâ￴ߘ©cÇ=Ïhz?r™1xV:â4<:$2C"þ¢·y¹\Á6I°Èì<³v9úÙ½Ú=k«É1èåãt±Àƒdþn—ˆ‰xz\‚·¼e®vÌ9)A-IºBëcv%Ü9lR7Pô@½n´…±¯Åñ)ë÷ ?+ƒÒ ÌÀSç@ÒÙÅ/jñ¬ý~(¤Aå§.±J¼R†çÇ·k¥•Ur6úèœ ‹^å–lë~íÑdÆnƒèÛøšË»÷…9µö‚ÈâxÏ>z[/ßß JÖè\"éyw ÌwŠ ÿXÌP2’D66tÖ¦@/ö¼FjYÏ¥ƒéy¸x QÒFXùaRÍwï¡~}ÎÛ¦GÚib¦ïv0¦kxkª·2cšÑÂÝÂügÔ¦j)gpÉíà e·é²Ï"'Ñ;x›æå <Ù^Ï/7ïµ;ÖNcò‰Û×:ì,R2Õ@7=Põ>çF½ã»ð¢âêR:ʘ˒+òFJBÝÀzŸ^Ëkçj sP|K{2£"g÷Çg´8}L*ö͹տÈELŸÅeChìY ÈbKƒhi},*功=Ö0&Ûa¶Æ’ËʸoÅñMâoþž;R²ˆßsò±#æëÊ`ó.… érnÀA*ÿ1cA|×زLG%Šó,=zµ¸A2¤¯®žºYŠhHß½³+£þ+à.­¿àr-«ÐðeW?ü»œáë³–ÓMÇámF1´ˆ2Ûw7)KÏ&7‘b-©3’=°d¾u_’(î‹ù%ô¿s{b-ùQ!=Ý’äùÃ-PcûR-Ëæ«ÕÀ;!–!¤ã;[Q_ZoL±8/2À[|§¥÷[eÇ£‘J†oQa`L5ž«Á¶½Ó±ÖBÇ9üÂÚÏâ%‹,ลì=ô[û“fØ}Þ|‚îZª°†hx?„²¢Â‚kW—<1ƒV -;èttàÐÏ-çrÊ›­c†U¶ÉNkhíeõŽójÝ#=Ò:ªÛRµÚÔk¯Û&R˜°l‹Âý+FZ7ÙËÏÃOØÄÓl.0ìýš¾ñùÁë7)¿yj ¢©™¥36õ÷%Äø2ÑHÛx‹ª§‹£bäeÖ v¦Y©ÐÏ{(èäÛHöÂßV| tå|F¡>^¶ Dly#Šì~†êÁz|zôDJüÈn#£ù"‡¤4Ô›”ÅëåB”ÿ®¢ÀX’Ó‡ ¥ãã^c4¦ˆ~ªÓ•S/ôRg4t«žeoÍðSÑB%¥ùö¾©‚ ÷kRÛ–;†Ò½Cï¦Ð«üãq먮­xw‘ Îü»zngݺCÒÊéÓpî~îã¾bjxûÞ`•¦ãаÑTï2õ©÷ó"*‹$TŽ®iàwñÐí«#q”9Ÿ‘ì¼–8ý}”Ú·?_âì"ﹺ¢ÇùhfT*Ä Ì¼¶/Ëa'Ì™½…ÛÈ–CÔõÝÏ*%b1«¾„œ6Ñžä¯ûR|4î5M²1(f½¦[žlÁ Jièø¦Ö´*g}œÒŠn†‘óEÛûK1% 4',z&KvÑÛ\«u¤Å ýÝæaÎ7É97»½t­%‰ovO¦ fϪ¹4]­Zõ|ˆYÖí O%öH¶T°j6“\;d'ªpžr’R’ƤcÝžq÷'Ï!ô|:Ñ+$±yÍ:]§ã/¥.Ö÷ÉÔ…Io¿¸Ê¬©×€Lu¸– èÜÈ U«— ."&ψX«ö^mS :—G'Îµí¿²\Dö—`²QV+Lï¾ä]•Õù:Òɺ\‚d°Eå’È<÷=w’¬ÍV?‘צD[ɬ4Lª£â†˜~q‘Xá §²Ìà¼Ðšä°–n÷B{ñ¦”­Çu{ÚeTEbœñ Ë?´-×q9-Nð(®ä‚%q½²2mÿðEor?‹í-:ÖÎ#'ørݪžý]`„v¤bMŽZ_׈-þkÅg ýÖü4/… š½:7)¾s,ÐÁiÚδÎí4Æ36“œLÒP¶ªÄ~þh£>”²Ñý;X­¼á{ˆÓ”ûOëïÜØÖ´ï–N^b3h!)ŒƒÔ¡Ô[t°(œ¥,Ïj5¯~ýòÅÀ›qu¢Vt]AíºžHn$Xh­Ã»‹TànŠÏ©|Ùà=áØä“ÓëçðºÜïzþ`fˆq…~ÔÁTW|ú% e9VP5ç~!Œ]Ÿv_„NµÝ‹'°}ìÇÆŒÂ¶†¤ZE*ŠeuQõ°%F¶“¬:ÔO}¾Ú>\¸`*aË7úÍ·0;gè¸E='*x>›Á]ÝM¬§‰f9=²f"³x‰\…°~EŒwq`ž]rB£ÿõ¹'Çì95…ebfç¸@à2i·c:Èh*Eä‘ÍjðŽ?•ˆÅøJîø"L8]#$¥V„¯’Ö·§"­g)x$¬½G¥®31ô#sîeÊ÷há€ÌÓìÜ`ψ/åâ!Ò2ç2¹I&{üêÌé«8e«©–äñ½f¼x"}eά†K®Å¼(¡å>›\[|ÿÊ…è”ècŽi·PæŠf±ïéð>¯§{¯ÛC'¤|ƒF}bQB\kLËô&ÖX¸²¶P«ÁáG_¾à²Æë>Ö~ °N(»¨P‚oºål©nEXN»äçJŽêj¯ìyw}ºžJ0ñãP¾<ñïþãì/Ê\ýY}H…£>ÔÕ6šÃpM³«z½ü+Ò+A%h úPÓ"Há jÕ0­#5¾™z¼ï$)áCÝ76(»ß[…•Ÿ¿ç…ÉtãPÙ›µ ³s̵—w =?|¨³ää~„Q»‡cìPQ«à·9Wo ¯›–ËØ># zp-ŠgY.Œ@–+P‹îYx³ö^~wª;QÀ«ñ,dù(b•ÇÐÜ$ãæC¥Æä€SJ¼å”r]_×çƒc¨,!tíÌÜ„ú },϶¼ô?X…8 endstream endobj 6295 0 obj << /Length1 1408 /Length2 6441 /Length3 0 /Length 7405 /Filter /FlateDecode >> stream xÚwTlû7€€¤€ #FÇèîî)aÀ€ l86Ò"H "R’Št#%©Rÿéó¼ïûÞï;çûÎÎÙîëwÅ}ÅïºÏÙÀ˜OÑnQƒÃ|‚ü )€²®‘愈@(Ò òJ 4ƒ <¡p˜ÔÿÒ+# `$S#1fºp@ åŠI ŠK@!Hò_†p„@ìuèò´à0ˆ'1PîჀ:» 1·üëàtàJJŠóþq(ºCP0   Fº@Ü17:€ÝÆp(éóœ2.H¤‡”€€··7?ØÝ“Žp–ãâxC‘.#ˆ'áqü. v‡ü)ŒŸ0qzþÃÞ`€Ü ˜'Æs„ ˜»Æš:}ì/c¿ x· È/øïp{ÿ…ýq;8ÀÝ=À0(ÌàuƒôÕtø‘h$/ sümvó„cüÁ^`¨Øcð'q0@MÑÆÔ÷wuž¨Ò“ßêö»Bßa0MV…9*ÃÝÝ!0¤'ñïüT ˆ¦ë>Æê ƒ{Ãüþ:;AaŽN¿KpDy˜Â OPM•¿-0ñ0g Ä%$'ÚÁEàwpÈ¥ào“€ŸÜà„)u‚`~ˆý<Á^‚øýoÅ?%bAA€#Ô °‡8CaÄÿ‰Ž!NɘÉ# h€Cçß‹Áøg,=8†±çn 9`¾ÿ¿iþÇåÿÆîßQþÿï|ÔPnn´œ¿Õÿ‡ìuóù[á+ ‰á¾.³°ÿ65‡üµ®ºG(Êý¿µšH0faÎnÿn"ÔS І8@‘.Qå/Üô÷‚¹Aa¸'ô÷ƒàþK‡Ù*WÌ£á‰áã³4ÿ¼Ræwü½]B¢b0ö!ÆŒ#‰ü1kèAÿa0@€Gb\˜òNpñïyŠ œà(Äoô " À¼Sÿ–1@º ÿ aoøù¹8 Ì&þá &ÑÉÖACˆçgàÒáëÂÛÎjïyó­ÊN×ÍŸsñùÍ#ÚQd„é\ÕÙ¡+ˆŸŠéïî,®©rž(|bºòÛii ŒlM5|ûËÿÒ6Ùhbý-ñÜ8mïXÑŽbý‡D÷ùL6ü¯žø›…¸â¶`wjóŸ $È ©Î¼{ÔÑõʆ#fÖ 7ªÅ´I.Ë&ùâMã¬CJ> ìs¦éX|nqS É?žüœ¢Ì»aÒJæ!Ø.ö³\J8Ÿö]ª0òì¢g£·¤{€{B9<Áî§´ùLëî¬ßëâÄpÆ4mûÈg÷4A·MNßu=£3ÄÖGìÀ1)Nz:\jÍØ¸•V÷摜ƒE­´æñ{O^ýè¾›x^ÅÔ+æ {êû{´vV6&Fù¶UåÈ„KÒê„q2ëÒn‡Rï‰ÎŠõÓï~6æÖ—/Ù–?¶2ÿy5㸆2ï,Žiâ>ßu$þ¯R‚3o€3–ާr¦Y5ä‰F¨Hn(’¬ox“÷ÉêöBLKù“¤šj¢ w KñÁÖ}W>uÛ%ë/ÆCT5>êÙ':¹ÇWiYIz Î/v… ¤¶ÞÝÙð¿P¸ÉÏÏkføõq ÙíöDjO¼òÁ’]Wp‚Jxd‰|õ-­Ê(þ-nòiå¾RQÆö‰ÌuÏ:a¦ô®tîå·Õž,˜8 Z²mTNúg.n4 £Ý>UéG¢fÑ)Îê›þØR»ìz° 6­UÃ}ŸËoËa"7GåJ=|8¾2 ?»y ]â_¸œbè{õoH20fmtÄD‚Úȱ—V+“à4P³ÀñŸ¥V1¦øÈ^G8Ø C,ŸEŽ?Ï­)Ó‡¾ŽŠø¹Qù:Iƒ7âXÜîäYü†­¥Ì!•sΡeçÕÎÈeCÙsÁJ^^PÐt^è“ô(@‚ÇVª‚KD÷¼yûµ+ƒÓŽÉàî3rº Ò5ˆR@ŒòCjÜŒI‘f®4ÔÎs|áÇÛF “Lóþn‡öXÊ!mc¾¡5ÚŒ¶xeU8P^ŽÁ1ÃÃLñG©Â­ª-gSeû»A±$Ùp»,PM;úظ!wò)dóè²²å⨨µƒÃ“à;‚íÖ{œHò5Z~UFßDsÎ(ÖP]½áäF±OܳªÒ37ãʽô…ÕàG‚§>¢%K.->Nĵžw>ñK„ŒÕˆVu9@)ÔÙD‡œAûÚ&n׸—³ ór6ô7N_æqÌ'¿…/ˆ&ª›í¤­VÀŠîåÉÚàoY&ÙÅQî¥FpoàŠ“l²ä’çßJüç°1wêýÔ\€Sseêg‘ã´EkväW–X¼2´a°{“\Š×««ÇB¸èÈØ*òˆmh½Óz#ùm}¡3i&Hèô± ³€›PùËŒw_·;EzÓk»œo̰Súˆî®sQ/gKhæj9Xgïê3]æ”DL%˜<Û>¥YúE%™s_e’skÈgJr¿à¹'d–þiŽ÷w£H ñ%æºÑx²gJ =2ív R¡^‘ÓY÷ÆCçþBV¥zà( c²ÄyDQ:ôK^ZKÚîñ¥sñ©zZZ²XšøõÁ #–™x'X%ŸP¶ „«©o㥢y¯ˆ°Ì©onz㹊ý•wUtÐX°ÐSÐÙÞâ,°Ö²*‹DöCŵfÿÓ¾× åËïû5¡ r†ŒöOÕ ¬ð¶©ŽJ}8<òÙÛ±¸MØëçž1¾ÄJÛMhÊNç:~÷J³eš³f\0Ï)=UZm=©µ¥jm,ù³Ê<\aÿaº}ÕøZyð%Yïmµj´qàE©™ac¦ùz¥*ÂÚxoE3¡Š`Ë,(Ï“ˆ 剅G6Á˜Í¨ÿ ®?BÿS4v0¶ƒÃ–ˆæ(^ÛÌ6'Bät¤ ~ìñåՎ瀄bïæÛœŒodk#Ûon ,pDøv§vtÖ¿Ý®©î9À’ì/í©™Õú{Ѹ÷TñmoWfsÛëè¿7Ý="îKÓî¬TxàéTæ®õòP”~©:elÿ•£¢• ýãÕªŽÐ:|>s¼ÜïR+ä¼²4JÛ×îe«Ïw!,Q$Y%yUaðÀ÷‹%ux÷wåxW½çÑš¶€H½gtÅçáyô3#$VaC±!$º ßEúÀgÅ­îô m2›Ó®€ûüP`­M³ÎÏû@ú\Ìòë¦'~ßš*oµèÇwÆSpaW.±ôYAú½£eAÐ!C?#νå{è¼#sºÕgEìäU6\¯®'ã@ªTYZ…r€µ­wÉøVIG°_LE‹G·XöÊÄî5™N¡î³+÷$]Ö+b#â§[/‚Ú²Ë'ØÆów+ƒ÷#Žñîõú¿kÉôgZÏLêOTO¤ÖÌh²ëqr}r €lÆ·dÏáH~'ûõ–pqøG{<Íçû¦¹¢·Â Á•ý½W¥ŠíÕØ_ó(y/K~p}£•‚Òßêu8p±”rëܪž ½-£–%þO€G⨺Ӻ`§ÛŒ¿>;níú°ˆ‚Ý–ÿ¾ ‡òew±R#T¹ÛCÿI-%¹Ú`w†ZÅf$O†ñî;" KÐz4óAÿ6^¤•eàLhZÉ×§™ògGöMb’I!J§j¯yéÔÄÁ{w»Í,fS~í Ãú©äå 'DkÎúZ¸ôm¡ËV &º!Õ¤u÷z1þãB»ƒå5/1U˜g>Py§uy¿TÚ¤°?b}’cUKpL¼xLŸ\¥‘ÝŒ7Õ=„Y)ÙÒô =³Å'S€¡žËëLòÒ¨˜›R_Ç}D7cÑË¢ÒYÝÓÅL¡I áZþâR%îDsûÝ‹™nBŒ4ˆ¬¸-|2ZAëоJØÿêžxé€ÏLG´‡£k‰É§áY#àq¬½Ë[Lu‹ÌѵŸèœÎÔÈÎêË«X9]±BòÆ@*ÿF{`ÍÚõUFá®;²WJŽNUÐBKk_ ÿ¦(Å2!µlëFIƒ+Чm’Þcz8f²{-?°qTU*~59klº7T†fiüplÿ\$PÄæ!ÙtëFJÇéƒç’U’&2íó_hoã¾|ÚŸ'Ik¥é÷ÜàB.Œ!L”ÌåÀιWFûs ´Xæ•CQw˜Ÿ'}à·%|…Æ xk äïÀ³Ïƒ˜çïQ” AŒÑ»*Ø¡Œ/ËïÁw37?û-¼íÚjÚ̸EÐé ã578ȧ®ò}ó,.[z†Ç( ùÔläáášì‰õ$êU«R:á‡ïG¦œÊ^½¸Þò³D‘7X*yEthä÷‹©°Ö‹Uƒ«~49Vù”@|]xPS(WÕÏjCS&yÙÄ`íúé°HRÓi)Y’˜¦†s \u†#²pVg¿q¯ÇÚ­rX'ÅÅgçÒ^€¬L;ÀuÛ,ëzY…•O&ÆÊ³°E' 'įØ{7­§¥ätöu3Ž=Œlþå×ÑGHbÙ>ÊdM×Êyãxâkî̧“d_œçqú‹ÞÇzÁ—€ÓÙ¨DìÖ*d¿o´«B;þ͵úÝW²’¦BK%ŸÃhë[”k®^1%Mk|é†{$ 8Î?á©ï ðš¶ -²5ö¶RÑ“´¸HÏkb†Œ>+ •b„«œõ›¶WÒ©–Ÿ«5ûÀ¥AŸ®ƒÈ//L.¸ŒË1° ±ö¥÷^ÔR'˜ˆj1s3œ­ß=7¾«P¢»!Î*Á>³Ë÷ªä<ß'vÑ#ùbùø Ý€o±Oþl¦Í ™“-Vþ˜ÿs¿æ³Þ(©$­x#kYÝ—ÀÁ^ÝØ““ìE“Ú.ù%_š³F#-ù…†Ôu¾å¥³6”Tž±e&;ÇS á™dDOÕùú–F’ºÁ뾕ëGÁë\ÂäIY{ºm? ‹5*s Ñ÷Þݘq¦ósNyÖ\H¯ù¯Øè›äMç>Ü™”´cTÇ¿}Éf`>_±Ø;\˜uR~,Òg OðpT)^r?öíÇ/é±ùÜBQ÷f¦ß·+R;­IcæJìMX+u|¬ÛJ˜ï>1+2tYfaÖÁZpþ¥µ9«E÷²ðÀæÕw_áìKÉ5Š(<ä9(+ÂýÓÕYœm4«°$}i’ÇW& +{½Å¹T=‘ÅÞ@ö(ëh$4'”:VïÕ‰ÙØfíBnјb¿©+;Î;…ޱ‰çžïÂ"Z#l¥[ 3+š¨cžœpÚ–^5çH}o㟗âÚ ¥e´š bdz¿F~à×;xEàßõÑ`Þ½7à]—@ªz•U\‘Å´ü=Wc¸‰õ¬%zGƒ€ -<Ì›è œ{¶‡¨»š¦[uMÎò0ðî”×ͼg¤£ã½¥Oò]¸ɆO¥Áqù¡V™€B€²áº16ïvÜea÷´?o¡—lË~ÀVD6“rTYv¶˜™wóÆq"n*b¹K‚HíqHÜhÕ7>TjdvT$¼%¶SictîrX7Éÿ‘½œ×Xêˆw#§%ÔÝòHïqÐY·•Þ´Bz>·å›Ÿ6¤Y]\µÅ¿± IW+/5†þª"õV¦L¬NHf™bêµjðQ)×êçe±zmeÆ-@S¬<×þ*›0žæ3äœ.)¦É¥ÉBÄÆœÜ3-ðúüDÇ <…Ó ÐÇh»»"ÌÔø¥¹ Ó95³}LŽú«ñnHOhاrh=J±æÝ<úq·M”Õ3’³ôÇ3²‰ªY‡ÓyôBgÊ"À¡£† Š!G„á^ë$m!µ€twr~Ò§äóå?B‚üoØÂ?tîÇ þÒìǹ¯Њ-úy4”Y¡k›Zsè¦<1ÿây0Ã>ͬ9뫾¤„z²49/^ÝåCÁío]ѶkÕ »• ¨AðõHzú~\h[ÅadR³sq‡¥`T¢TðÓÀ (gŠ[\Ìš¬ë“*puÅ— ù×ì¹e)i®™e¦Þ±»(´Ã7yÅZpØü#æÒc2¬ºè–|m.Ó‹/ÄÙ²ÅcÊãÂáV~A‰+ìÅÇšç&ús†¤Ä†a74L¹i>‹œÅª4Ü]¿ä:+8V"WÂD£H]HƒÂÍ‚3–ìx7O¼Â&L¦üVnÚ…iô;®öslãdvFçTvyˆJn°—]h–¢ë„©C©d>¯Cù·¼5¤j¦FÙÚn ©p†4]½’-¯Ü+ŸbÔ†W串åôS–trKGë¤XÍÕHØ ¨JOY'ÕoRÐáŠÄ“ú",åî°±:žäS޽`ê¬ãƒ×7Râú"…«÷A º«áyñ èH\q,f¥‘<] *’?à«X¹¹Lfžˆþ ´›Ñ˜÷°l=õð˃½çïòûÆÊQvRÒ¥ØL0©]ýñ>ýžU¨ó‘¦ß{GE½”Þ ¢{ÜûÝ5yRÅf{TÎŒ×@wHyÑ“¥Ô$+a™1]%“"pÓ*B¯ÝªôtåR?˜JÄz¡g³:B ÞÛ<¼–¥VA’ø+çjá@.eˆã¡c ݦ—‘Ä ½“ïj«¸ü¢qº>¬¦Ð“Uºí“wÿÏ‘dll¡âÙå®õžSŽþL³l×ÕÈ-JÏÂéî¥&ÃÔ…æJ ¤ÒÎÊä.ËÚf«RQo“ƇÚáõ~3ä +[,c >þÒÅW—±·Á7Q=«@u#݇Î/lV%ˆ!ïfëôÀšÝTn$§~èXK¸¨Íš„ŽVªgKz¶‹†aºnÆxr–cý`Y!—ÔÁv!I—½¢â‡bw‡!ÔÛ5ÛJ_[IýLK=oÛÌ_Nv,ŽÈÓžµÕÚÆÄ4¿Áo ¶ß@Ý4ÄL·©½í«}¡o'æd)±])᱈bw»omߪhhåÖõÐï±—ÃIÝ͵¿eƒWU—³œ&é£`ž-{d³3çi¢öDƒ¯²Õö”³øæÚp¦§…4—ÿ௎}+l/6íZF«˜692Ÿ)âjû°#®N™¢Z?E•>©<õkã“¿èn-¶”[¾-È+·qRhþD-0nY”(Ò~ß"ÿ×—ñ—(,áB¥Ó2%Žbµ¦¨ÇJÙµøSɉ¦ è`¯ÅÊÓ‘}^³­•Gêmh=7&Ù)u×\‘^ú:|%›ˆZ 4Ksе§åvÎý!‰Sö?÷®Æ®¾m=سLœŸÊ •g§teÿÔU”Ú,¡Z·¨–2ðºgÍÝâçÑë­6¬ÇåìT¬…íáž_^ô¬_$(/ö4½!Ëõ™áÁ/ö5^eïÏM:â*µ1l¾ ï¢ôÞêF%Ò¼q~}¥¯Ù½Ì–’8,ÚWi†:Ÿ Ž~±vúÑqë D>Òxˆåœ0ù \¼:¯‡WåxBVS2j~¸oï~®#»úùcuž· é³u~$™àœã³&® GúÅ”úß_ñ*úJè׃Áó;A®6­I QXÙ ?ÚNam?ÞÊ÷ c͉í_bûÖöÚ9À´õj¦tQ»•4î9OùúÑõ¹HúQÎíTu˜µq Ý)zQa,m {mžcçK,¶q*hÒÇÝé´‰7< |—ǂӯñ?¹SR7 endstream endobj 6297 0 obj << /Length1 1633 /Length2 8330 /Length3 0 /Length 9405 /Filter /FlateDecode >> stream xÚ¶Tê6LI Ý CI334(ÝÝ)5  1Cw£´„H ’Ò H‡´HKHHKIŠ€„È7ê¹çÜsÿ­ï[³ÖÌ»Ÿgç»÷~×p°èðËÙ¡láÊ(¤?D, TÐÒ‚ÁB`° €ƒÃáåÿƒ8ŒážRò¿x8Ô )B½ÐjZ($PÝÛBD%!b’`0P –ø"ÊC¨õAص€ê($ÜÀ¡€ró÷@88z¡£üçä‚q!b|¿Ír®p ŠjA½á®èˆ0¨ ÐCÀ½üÿå‚ë¾£——›$äëë+uõ@y8Hsó}^Ž@}¸'ÜÃnüU.Pê ÿ]˜€hèˆðü ì½|¡p pAÀàHO´7ÒîDǨiuÜàÈ?Êšø€] "ùÛÝ_Ö¿!¿¡0ÊÕ ŠôG €ö8PGYSÀËÏ‹EÚýR„ºx¢ÐöP(Âj‹Vø8¨,§„¢ëû«:O˜ÂÍËSÀáò«BÐ/7èKVBÚ) \]áH/OÀ¯üpúÖýA¿ÛêŒDù"ÿœíH;û_%Øy»Œwo¸šâ_hðæ÷Š€Á`1 0î„ûÁA¿œú»Á“_0:ÿà@7”Ð]<aGÿ=¡>p —‡7<8ð¿‰Kh‡€ymá$àïhnÿGFwÞá|Fþõùûd‰ž-;ÒÅÿõßÍé+éh™óþ.øoJ^å äò Š€ˆ  P }þ·](â¯,Àÿت!íQ@‰?É¢oé? ûüÕ}®¿ƒøo_Ú(ôÄÂ\ÿ ¸X CAþŸÇü·ÉÿßtÿòòðÿÍGÙÛÅå7Ëõ‹þÿ°PW„‹ÿ_¥ž¸(¿®Nû1°¬x©hÊ»$VèS†¥JÈÌØ}DŠøk™l–M‡Õï{„ÍCH>•˜ªùô›×|•¡UnX"›[?À§y¡d3w*(kY;¼S8¯Ï¢^ Sgc¹-%uÊù”ùÈ#~Þ‡YzžYå„>½Š% D̬G¬L¢UÒgrebà)@Äså²² Ê»óa"”ÒD}E?ìRùÔ­*1ÐãðYFX¶hioàa 8nàqv,ŸÄrÒñÝnÿ侇Epä|—/uÓZ&,køç` Œ‰5)sV2:m“Ê›š>ÏLÙu{ôv ÁcçÞô͸4›ýÇæ¯šžö‚N’ (ˆ ÓyFdÒpCaAxŸŸn˜ô9 :RR®§o¿¯ªµíFˆ;Â=Ï;jôH—[…¹• R.(}šßŸ= Ó%2>Ø(£™MîrC8§4Û8N}¶éÊnèVª4âFá|i09"t’×¶ï^èjŽÔ4L˜Åm-ùµf?Ü!{E<è­hG5+”¨‡–!Oon`ïï-L´[æ×³RÒºº<¡}qÿg^d–áÃZéªsší¤Zv‹4ÃíàÉPÀ,ç†aÖ wy5»ÇèûÊ]5¶:~-ŠÔ±mc?çQ’¿¾=Ù¥7S 9”æËꢎa‡¯Öæ¥åæk–G‡q%É:Ù’Q¶3>­KT`x‡Å5ó iÁ>fOAßpêàö­S˜nµ|@`ßíB{ ©åóF;HÜ—E•gœ½]²v£Š!þ¦iŠU:æÉeJƒcÉŸ¤vS¹8¬ÊÚA‚Æ]Í´ÜÍ·ŸùÐ×ÿ™kùhßõ°•Þ¾•ï£~¢ ˜Îf)¶ÉPÓõ„yöY2QóÉ{ÆâY­;®¯™GŠ_çý˜%àµÚižñ‘«{@) ýTñc®ðaÜÛ7mRó“ÃüfRŸ÷oàrZÚo^¡§¢sWd'òéÉ!‹oÁ¤ÕN*ÑÕìÛâYŸ§\Ø'Â|üEðž¯o&ÛŠðe@ú±ë{2‰Šuîp÷îôòç+ñëø òËðý”ö€ì§Ÿ2Ó$ò¡Þ¬VeF˜Mñ‚yµ.¯Âú¤Çbb8¥òÛúÕÔ¯{ö–ÃÑ ¬žnȈš|ÁA Ð¥”Òy§ª],áÓ)sí÷‚ŒêSßðV™Ÿ˜'4/¶ØÒëó£p$*nß;ÔãÈÝâ~¦ëOB(üɪÁÕ›Aù g¶_ð2®àéË¿WÑÜûÆV.ØÌ£ÆIþß«^°*‹“ªlö}~Ûô¶C>Æ©dëM\¯A¦M²…éí›gW¼Å–¹ìÐ>SN]§§ó*xrp^€„;½íUEãÇÑñ´ÌCÒ¼»Œª›íöòJUûÞ„{m çX¦ íü$Ì2 G]È&|{@¢²héW4 "Qû¬1áV =Á»Ê?a}ß œ§´ë# ·¶Ì€§¦YÇ,Ø2Þ¶=J)½ÛeÊûÐc=öõhÚ¹ôçJRfá»ø*}2ÅA¢Ùe$YšÜpßžº”O½™ò¼Sòɰ­…Ü|¡GÝ>€ìŒ–ú—’à@ozMSoá¸Þ‚Sp »‰•æšÆ´˜$D ²~}ú½Ô\{ó|~&÷nj`ƒgµÔ¶«EDxDZ§7¹‹•Š£öó,®ìÕî cF²'±NÛ¥(uêãkÛK­èpN ž/øœØ%}¢2Ÿ7v‘rù-9¹5YÌ|mY˜Àl¥³˜=}?WmaúVçåM.* _Êì!°ÖYvgÞÂæª…F}àf«~?ëÔízÄkß‘àö2jŸTú€XújQÝdpÖÕ]x ˜U)~à5¡FžI§4Ù~€9DkþؾïrËøKÕtjå’“˜1Ô:Øõ픕?mrŸv³”?ü’p&¹Åh«“±ðà+7ùê«7xSr¦XóJ»mOßÞ”~7rÈ»ïÜà^Š¡Iß['_¹9óžÇéåd+¹#ÉŒZ'û­ÙyIW({G…› P> Ä@la¿³á­cÊh'ÑÈÛ8zæøô±Ÿ¥+ÖS¢ý-Vƒóô¦Î„{â‡"Þ!$™yUÂ$Oj•yYµÉã“·Cw£Í3]é3ä¼d Æ‚öÎÆò\x¥j*ŒßRªâšä뎯]a廹fYÛŠ;ŒìĶ?vÐ<06Í=L(ñj¯V~ßì1Ýèßb’_TOg?ßÐ>>ÍA=yÀ|úHEkE/dJ*QwèPqÌãó‰&¹¡[¿Ù;7õõ3"úkØ’ÞsɃe §Ôõ²eÉéKàhen~,Ùö…ˆ¤„©ÑÐ)K?{ÙÍòËĽ!çм¹,e½-ìY÷rr2_ûùö¡?kn,þn­oÿZÿ€EÖL`êÈÓPÿ´­Š4ËñvRó’Û ¾Jð'nøÆWß®‚€ÕA?Ô,Íí^nå€P›vÆêì²UA‡ñLíQ´ „<_ÊnwdûûÑ\“‘i䑎±N“€«¶w…αÝ}p2”«¬ï˜Ê¥(ŸÅ‹˜Èû[a‘'˜HOM 褹oâ”–†º×D%0°æýôP üÄÌ^*í¹‰·´Z„{ \c&[vÑ:P&rY¾MÖ¨Öž8‹%M9ìk+¢5®P¿¸É,'(Õ%!sPô¦›U?†¼Ðí`=ÈÒxõÝ]@)ˆD eŠÞCȘÆÙ G.ž{}‡çvýĦÚš¿iÒƒ„ìÞMÕ´3 >Œ2ù–M.°+\š)pÐfÅ1ÂS<~§ŽfHq.èÐ\¦nÿ¡ØÃDÈæ+"bÅûºë!'Ë‹ØÂõÊó´üEÜ/O¤ï|¥R¼'£k}sè5Ž*ù¦—–¬Ç «ˆ;mºƒqºDð‰q9:?Þ•ŽÊWšª›ÿyÂ,[PJ"ѽÐѵúìùÂø4›@ƒ¬,ªqyîÈxôF`ªÏxfQ™wÈWˆr1/ã3·¾))Ûæ’‹B‰bÏ᯦±¬µl¶k¤¾Øš¹0Œ(å0íW«NøœÙïòõâ¦R¼ZÎ/>Î#Cö+#;‡Ò‚*¬û˜(è–“›:q½R¾q ×Åyr0ša]° 8`„ìÈϾdÉ8ñ\CÀ;º¾Eœž†ÈlžÛQk¤QüÑvQõm£út¡ ¥t¥¥ ž»•#+†ã•,ÂßÎU]ñÎÞKoMئ÷? Rÿm,ñB%ÿ$G*(?ÉŽ-hKmÜ›ÝaÂ|rØ@¥ä}ôÌj¯Å²^L-êUgôÑK€ŸÕF“M›HMQšNîìø¡Ñ{IÔ+w¢:2 ÒŸï©¿n0ç¹Ça•ÐÒê.c¼÷ºJ툹ÞÐÓ?²ªÏçS-Oªd‹Ñ·Ùj.B%uûTº7û"/ë¨o&‡ê¼ˆºÍÑ€B_®nOZðín$¾Î´Œ )«ûé„â¨èSoçSlaë`æ…þ\¶r"ŒbíΘK°v%^Y›µÂÆË9ùûkR•»:$Ð%´eŸ%z*•ËF}èÕGz è~ý¢¡2ž^ÉWd†fÝw›Kû‹1š°ŠºW3!#Þmqê¯|Çè GV&bš7˜\ :U·Å=úBi÷@ 4ý¸Öø*w&ÖY(‰ÚFAzl€Ml¿ÞjôN'h¼Z3¶C¶XW*±G•F'(4ÍvÃm¿¬&%Óq—²yÿ„m/®àmóÜ/$sÅí fÀ½a Ž¿j^ß!yyržf)Ö˜±ŽÜ~t¶ÙI"E&{¶ ab³y…ƒÒ²iV[ùüDE!ŽÖ·¢öX¿‡Ëž³žB*³–¶#Í‹g¦Ç `Nõˆ£â©'·Û‡±ïK~Gg7ª:´Šúj^aÅ&D/¯•—Ë”ù¾œÉ.4%?ëïuá_ãð#¡l0YñÞz§‰Õe˜‘Ÿ#ÍlLÐüŒµ•ZCO$Ò4—ÁçÄB6=tÍÜ›îPöØ3PçÍ ÁKrõDžày“IJ4§”x…n˜iò±)}ùé94sÝ,.F*;~‡üÆU¦ü°÷á³µžæëÉN³ƒ Ú.±i+#ptÿW-›Ž9S¾¹Á3V@É3¢m˨²ŸŸ®pI Ž Ýlg†&;n,Æc.úèù ËE†wÕõ¼ï\ƒ³ÕÀ;FSƒ†®‚™Ô¯î¬Mò£žÓe茚¦+Xn"¦úA—ï¾\5è­J¢õp¡ Lˆ‚ÀÜ{˜«/Ê)ðÚ”FïßÈÖ™(,}wŽ4S]!{š¬Â¾«>÷öt*5C§AZƒ7œ˜‘Wyá›!‡Æ§ý›&ó¤$ó;K&æ·ˆÒ¼aŒzd…WÓú‰T%É[†/ ¹ /€‹Ò‡Û‘gÙéûq ÷”Ç™TfJ¿r^wÜ‘¬í+/²£Þ£1C©½9µ)+òsmÑAð£´z"J´ÙmÝÒÃ>¸5Ý7²=³ ¦”«*ï]ÔqöÂ4£Mªç+*(zKó>¢Ç°„S¼mÐ-í…Ð3­„.ñV WîGŠsFÁÖ„'Qò3y—ݹ¯B¹ä9ñx+5jÕ{–‰Üª:Íb±ßÅ<îØÙr2’aàA…½H"& ð6_ÐêÀñQ¨µ.ü 2ŒBÓð›>¼I_-o”êëžñ=OðìëÑ_åO¿ãé¯YZ´¿?Ä-ìSjWÆœ¼ÔÙ­Œ›0—±wô`ÿ¨Ãf°"4íÓužp/20}.„5k1õ}¶´;B§êì°šùuA 4´ªHŒ² Ä`¿ëiÅcx±]Šw\°X¤9d§u½kw¯®‘­^NET^¦‘¹¯Dq·b¡º[‚ýã„7Öº|o,ƒdN®³[µ¤ûÀ0”ôHöV¹Îæ8¢5­Ê 8ïFIÂôX¢É‹Z[(õÇ›}’>ý²pÞÉwðƒI€üjnDd“pØkµÐud~ÏehËÛ¨ æE×Ëê’ñ$dâK}­›Ýœb@½éõ¢¡º‘›À`L  ã­á]…*Q ¤B°WÎeäŽl¨ üL9!ðaѵâ°I =Í­‚[.P]eÅD˼à\ê5óï)µÜ/“ÄÝ"JD“øî4ðpU²¶=¸[é](9ȃýÜã™÷ÿAœTfY«‡‚<ÒÓašáìáQΈÃäù²¶¼B)`þ¾míh%”ð›À\ô/E-ú?ÎMÀØó©²pjòöA”T‹èKÔë²—´Ç/¦IªîØOX§&›ívƒMUË9„kxµT±½|÷é€ã ÝñÓø\Á.aßÞο†È][ùÁR„¼e™¶cßÒÀ½eϪ QIj”ÏN%ë4dØŽ-FNŪ˜CoË“žªiFèÍüx\àȽª=:Z¶@³^¡!Mnð*±^'æ±Ñ)Å—yC«µ—ûl=8%è|Ã\»Í¨ÿ{â. Û2±Þ‡vR…šô\µN@KÈ&Šá;!0('n]B‰ìò“ÈiÙŸ–x±ŠwÕMn°½E«A ²'wÀ¥ã'Éü°—p+sOæ 3 sÀúB–)°¥bW¸MÆ|[N}‹šC˜àþÂxH™Ëä ¥µàÐþS“§Š6;-ÞNæÏq ®ðr†ÖÞöeÂ1©BWÌ ‰Ô8Ø7ûAÛ GÑ2ËDi³;z¸²]‘X–Ù§õôº‚ŽÅ &»ܦ_}:S̓?°çx»Rï!5r–%š5û)ªx¨*mZùCˆÂx_cwgdÒU9õ/¨3ñ²Hø~ðnüX¥K=ÒÞ…~o£cW.ëØþÄ^*¢¨@Æ^.Ú²æâÜqÖÈ#|*à¡Ìd\g×Za¨,ùéºfÇŽW—ZÆNNÀoθˆA¡Ÿ~TÅs1ø ÅXìdY˜æ®Ë tf‡ gÛ [Vï§¥úD­GÎ B:¹“s¯åÙµ‹âˆ)·:+l‚V0 ³ê"vÙ›tð•Þ×±—·#Ý#ªÒ[˜W1|" –»–sµûǶƒd-Ú9°ßáEÁ¬÷¤{)ÙMOÅaòÇÍœöDÅyÈ<=¦ZsíwúuIȼ’`ýödÈž|ñæN­õxNÂÇg[=[ü¤“øJE§ÎN›c»Ÿ\‘άO>Š”:B^®ÛÆ'*U=’øÃÖ­œîj¶P¾¤­èö*ÃÑPÔœãëÕ¸*ŒìGŸ—SÅq€P^μ5ç)YÜÊX,¡çAö»B¡ÞiÐ lGxn¦b?CcéGµU](áªí!‡ümYö -»Æ=vq®]ÏÔxÝ÷&°³›#IÁ´ í»Çîä8#Ÿ„3O“Ù eÆf>u=ïTq[h €ô*„¼2I•境Ÿ¥×<î6U•Ë›}¾ªeûìG¡ªÊ«È‘àcb¢óXÆ_¨O[›PùÑdxŽÄ8&^>à+k[ƒ‡ëKxNLÆnæPàìÔO!MæÛbI[9Ïûë2ÞìêãØèiˆ¿f¶8?:˜O ³;žæ¿†Ý¯º§*xDì9û 3dñFwùbO1ªÅêU?Ds 2üÐâ;YB‡²íá7-=Ì€ÇÌ­CkGj Õ5âÍö>D•üs£+Xó¹Å:á“ò†ÆOphUËÌhy»ÜÔƒ ˃µ®nêôBQeƒf®¡…žD‹y=8 <zfš­òºÖ"TMpä)Þê9ØomŽ:CÈË÷ø /`'p°üÝÖ)>ùÂféìz¿÷³ýÞãCnVo;d³Ø¼}Çï ¯Û’ñÝrå ®p{ÕóH;%°Íþ$_),FÖ^;Ť@àŽk_C$]ÙKµ òÙÛž­Â"ô ü½FTƒd´Ö~ϰVnl†•ÙH–7:“G1’î-•{ÂCy˜ÇQ¯5z'J¸œmjÂ._7¹†`×Hž¯G‚ûn¹,&>]å¦t©œ’¡ ?š‹´|ŒE4ÙWÿín\ ä[ˈš€V–…N üõ!­+!êiÝíÏûÛlÇôóŸ†^–» <ø|`ôšÍ)„TdÆ%‰m93½,Â~ù)–mè Ê.z£ë*òäϜػᨇ›Âô™[ãT“›ŸíÍÄÙ˜¬èÝã€aç“Ü×ðŒÚ¡}KÕc’öŽ`øõ-ómóÓ |²3ÿw# WÄr Áj AS£ß …¬]©çÐEÕ$Ï[ºñãÎ4]#OÌ?<ïXtC9w')Wll½·Í•_‚?aiÜ—æá(ó¤’ìÿ𨣅šMýèÿy÷–oÙ½å½EŸ* Ø0Å,5†{ÁŠ®us¶øøÔFžAŽ #µÍL‚¾¦{^ +ø¯x0y›já¾gq(¦»“çk Æ¡É]|5Wyê™øð“£Í“7SÁS<²d^;ÌbO3v£'E†“pÅ-•Œ|2ÊQ°þòkà]@gPƒÂèûªüŽ!ð­¿ïs´‚üP&ßHrEÏÓºYÁ³‘óŸr–³ )C›î!EN Êèr!Ù`ç´¨³"Jfez¿âÙ8Wy“ÃΥ˄7¶GîÚ…Ûþ&Ôˆ×OÞö*Þ Ï«SKºØÉÛ=^Ðfx fºWgÆzë¡‘7ÜÃ÷õÀ. Ï{gW;iü§m’¢d)ñ{ãµ@¾ð¤%ÊÚ†bÈ “dOëÕ([Ä¡J¯ã4ĦWëØó¦àd©¦ÅR¦~ƒW^LõëùŸµWkÙ1WÃÏ{ܱ4j»e¬Ë .µbƒ~òµ·0´ï_õu¿ÉT7ž@ëµHÈd™¸“Ìdê·÷vl#Û–²î³ª<̦ģްƩô—ÑS(cö¤þàØ€c|pkuüÊ–œº"‹”XC|äȪ˜3MŤÜûø§¾>iH8nµ¯k"¼åÌ”E˜«„ÍcG0Ë^â˜!ª<´ÊÖ÷QÈ€îd}ňXÈñ¤¾ª ¨6ôˆ~¡Æ·p¯(”Ê´}fƒs)·¿¹¶Þå1x¤nlÎ1Lö94Ášª‰•D~ì+-Ɖ€(,›HöØ#2M)êJ=â„o¢ø " Á›Ã>«\T»¡.°Ž×¾u¯ýÛP £€×VéŽØœü9/l5 áçZMnšØ›ü :rXÙÖ—¬œÜò*¢ú…hÍ:´™å¤oTþyöy€/¹ÍGáDò éÌ€äÆ)³Ííö›uù'¸dÙ5 ¥*©láK•¶›õŽE˜ºVÕ;(wŒ«"ùëÊz–B¹÷Þµ.| ÛÔÛÒ’‚+ìÛ”\ö³éˆ³Ú l2WÓDëÏŽðË€"ëé:EväÞ˜éÕ¤<ˆ&YÚ»O£¨¢Q•¡cÁ?ͧsšo2¾ñžL5³õ§æNù9Z–|m b×a/I\6 Žïæ1TýöJäk¾ÔýÖ¸S°8ÎwßpHÒ¯ÈÁÖ‰V©ÙU}§Ü« xµ)…3óŽÔ+5›ìHWI« Ø‹vÒ‰…:¤æÌׯl$ø¬höAqÂÝ’ia Aa‡VF/¦Í~}_±¬œzœ¥¹{J—CiMX÷:¯æK)AÏU¸Ï)ˆ^,DZéÁφGÛpKwŸO¥†¼>g¦ØEn nŸm•¦D›íÀ,\RÕøŽ´_ Ø×n°z˜ï×LfÔo¸í_@~rj1ZÀ¹Ÿècæe=˜ø¸/Ì»”Ï!ìœò¹êó„r/cqÍ‘mà¾GªæOÒ=ˆpÒyôc‘¢&Šü-l„ÈjºŒ¨;á·ÅÝÕÇÙ…Æô¶çüæ.¨´²Ö°œãתãSìdÕœG:­—¹ÞíøÍ-ZœSÚÍcìÉ|Ï(6;ùØ–/1L¿•uèxAå•-¥bF4WÇæ#nåzèjß!Ê’Dâ8~38œ—e£– 6ê#Ž}Í68Ô ßѲì©á¶rí©DÜ=Y\rÌñP ¡,Ç Øï{Bì©dcÓáæài­ÚT,³×cryѺéžý’5W•.c]ñQâÓ=ý’ázkà¹S™¯åTú牞‚|×]]z)2V+êGT€Ÿ½L#VúB¶_»Û½1 àbnÖñå/Di$ Š'1“/?qÈDžT7I m`š‰%“UÇS_4m/c9ZËh<2Â2¹À…õpfgpß n?Òy1&¶Fµ`àùê%øL*0ê?_ ýB®Qh‘ºRn×Ú $–gNf*ûÄw:ý¤ÿd,©…¼1F¶F2£mÈð.1Δ’HÿJYœSÛê¨[ÖñìÌ»;¿Ö®èêG½OrŒÄKkõt¾¯=ü‘»Ž!#KÑK áq ™ÈY6c<Ú¸~0~è§Wƒ<ñv<ÚwöI7¸y'[D/&×Sªô$…w•f^á}飰„ûh7öˆë¥OO´ÔÔ»’Cåg‡£{t‘8+þœ¯.=ÜûÔ˜“Y–¿Ùå]öLFµ4# ‚ œÙH?à ’ȼùתRÆjµI㨌·ƒ`y| U˜å:z·"Þý˜Òà¶f°9™ÊZ—írTQâé ¸ÍÎBß'Ú¿ÉòÅ•)…÷<®ççô6]üRöyÉm°¿ŒÓRI]2ÿãkiÂ'l„•6"*Gc_¯û%Yz*°¥VÍ·”ß5;£Õß *Ë/ëo)z½ÅÜ| ã*;YlXaûs“+sTwPå½Å®ŒÖ^”Ký’¹&ö[»i³šÏûêš› téÔˆUÓèãÈš™j|vìBVA·ˆ34û=ô]}õœÞä†ùý‹å› ±aþ­v(‡’àPi¦418ž…8•ÿøÐfÅ^uqx²SI÷þèõ–¡o£W])wÛÖd#È^ú6ÙÚ÷.‘‰¾\œ¤þn=>SrÖ¹~i*Å•Uzbÿ™}U&Ù;#«ÃtçtŠ ôî–ò[ÖP»ºs3³÷ò3¦«–xƒ\õwrÊæ(õNt 4¸½½ÏýÅj¡ô;º/n†d5€Çeí¬Q¡mB‡Ú9Ðyš‚ù¬ÌŠÒÝ Ú¢ùiü$ù÷l÷â_?µqzAÄ#¾r°©ï"‘»Ð{©ew®@IÎò)—®”wÜï}¨bºäah‘ˆ<1Ìù ‡Æ!iy2qpú-2 šXuûä\,*±°ƒ¬ ß#QóÅ´áôø7õOç3¢ýs÷Þ߀,zUÖ>äñ’$Zö¤'s¹/×:÷²;P»SßïJ3jªä XˬãÕ®E>4þŽ¡´¤ø,6ãË›ï>llÇ0)³í»!¢Ø ɰ×*-²[Û> stream xÚxT›]³5Å]‹nÅ­¸[q·â„ î.ÅÝ …âNq§h-Šw)P ÅnÚ×¾÷ûÿµî]Y+yΞ=3gŸ™9É #­¦‡´ Ô ¨…À8x8¹E²j:F<Ünn>Nnn^LFF] ü ÇdÔºº ‘ÿ`Ⱥ-apLÎ'ªA!€çî`€GP„GH„›ÀËÍ-üê*³ôÙÔ8Ï¡ &£,ÔÙÛdgƒçùëÀbÍ àzúÛ ítY[Bj–0{ <£µ% µaÞÿ Á"fƒ9‹pqyzzrZ:¹qB]í$XŸ8J.ñiÓ)aqÒy݈/hÖ`£F/ðã ]M2Ýu•õ&î_‚â¯d:cÉxo˜Äg./¿ÏÌà;+Té¯¬Ž "ìóœ6o,y˜œ8)÷y‹“ŒÀ¥lyZ"y±SÓ ’…ÐÊÍLáPGÒ0Ÿ{“ºl0–FÀ‡f÷¨Àœx^ßÊÙóÍÝ\8d­ÉÑöOë2dkm.G3OjùÀùýÈ$ÔÔ†îŵhiÙ•‘*â—æX´€P>³íI²k‹¸ì$^Ó4qð³á¯od5ÁÔÎc¶_nÅÒDŒDšÊHê´kîcôO9¿¿UÒ¤@.v[ßwŽöEžBŽ©ˆ§ƒ »²ö“Z”.?è³É ÂêU>C{ÌYòfµóó5;ºE¥„ç'éôùð t >ëªî dªc‰„KÍàã9—SÕ|©üðZ<¤U<íYwÀâäé#9­Ãüú ,­¾(f‰V®§\¼èf*ùÝÆö¥êÌÏaü‰ æƒÄÛ]£éàS¡¹•|™{½@s¢²€ù¶q7ñßw.šNò ¥¢ŒÁÑ©=Óæo>PuÅ?Éì<ìïbNÛñRjúy‰|Jd5ª(2LV ®lNh—]"ŽÖ3²Tí¼hEwíû`Û|ñ›ÇäJ”3ØÙl·IýÄù¦ÂEF@ˆÇ<.Ì·Q­Ä$싌¥(‡óý!ŽådSï„ÁÞ¶s,©ò…¤ðÀ„áek AÃOEçÓËþ'ËDíõO¸žûX_!‡(<»ñÐä[úÊe¨!øÞ[ÚSp°cjàB)¢Ö†eÄ¿ZzÑJPh”0û¡ÐPSþTõŽwÜ· «º­ª”æ‹ÉCê5MþxdŸ¹§ÓܯŠs}ùÓ@†J;[>õ¬ä(«-añâ†)u#L£ð@ò"P•QÛž§†Z!Ïê[Iõ„?{$GöÚPR¼ØÇ‚öÄÃvÊn;A–«vpDÓà–|bͶEw\m¨]µmZ᱉ÿ T¦R¡12O«ŒûvæíÍÙwm‚{sØŒhVχo™ÃîR,ô0¶¥D3Xz¯s}ý6¾×ò·äÛR(#¥uŸ?óB®¢D+š†%+H—õU¯‹6Ð~Ñ_™¼Ç‘m}ªmÈXôhÏ;L–ìkH¥MÍ­[’x6´QZÙý‚®òGsZ6é”öЇ¶lÚ|1r®–œ=&9ùÓ¼a’±\¼.GB’8+[ðŽ´òµ¦bEC–çB6Q‰òˆ’#‹õ_¨×M"uÌHð¡Î¨ž¦rƒ­¯ÊxùG7ŠpìãFµG\‡ï&L Únæ©[U5 ¤²”B#RÅV4™ãŸ¿[ ôHš}:ÄÐHg¯Wª&yÑp ¹–âÌ6&äû™T|Q“ÇÍC/EªH=YÀì”/-Zw«á™m{€Â[«$2´Mƒ5¬§Š[hf{š7#L»èg²¶Ï¢ósÛ=ßÈI39û¥ ±ÍB߬¬u™´±ý9ÿŸ½C yn¼¶Ì²çÞ+ëuæÃ535R¦ÖÔÏRê!B.Ì¡äÛT¢nù5ÄIî+¥æôÉeKà§ËšPù—+¤ÛŽˆŸ²Øp…Ð]L¾Ð¢^ýlŸßyí1ûÌлu~fJ𠜖°ÙâÖÆöŽ+q}ÝŒ5›Vwk Èçq­êxa²a$¸K‡®@4a7íÖÝ A'SZà,KPFœ`±Ð²˜¥»^•P?ÑI>uUNdÊ…ú‘#Ðß7jjhD*&ýå“lrkËqgÈÈâFãÌ×Yß õò„{F·{§y„¶ÏkêE$!›[Uú_6LJC{,˳M/v%gŸb#YÁ À)™öø‚IQ}楨Ú{„ufHšG´ZÎWï)¯Ú\¯:߉7§ïö mzÌS ;b{Ä“4)%{;‹RÈ|Þ¤8ñäNŠœj‡™V-çXù(ÊJÒ1†ø—‹=iwëÓ? Ækkî2l·´‰â„܇k©¡yÁgZµß8̯-Zîõ?Þ5nù#çæ cŸ­çÒÃk‘UèQ ï×Èç[¥7SÛÞuÁÀÝõãJw&ºÁ^nãj…TášÑl¯Àò„Û’nOÇ/‘dÔ×J<¬Bèe º¸Éþ“nªùûàÆÊ~}IP!a´Ïùγ¡A¿žb ›oÝì¸àþ&}§áíŒ5r—Òv²£äIçI'ó½íÙ„}P:¶t£dW¹`íIƒ™(¥P*¶£ áØ!׉Yå—P‡Z½#•K"/‡‚vNŒ§¨¯Ù­xêæÞ~ÃîWÎË©žh#ñ_5kr@ g]Ìb“F]«¨@ŽC®kÜØ|¡àX6yú ›ÈoEÐøt_SÙ †{$ ;ÚÉ(¶7Ðv„‡˜Oê7ÁG‹?VCÏž% ªxjÙ-Ç9ç²ñ˜á†pÎÅD½ï;¨ÇVÕ¸xÿp{í„ól9ŽcÊøø“®Ä"±£Ü¼F«ô$bÓ¹÷r0žz Í-QÀ›Ó04éÉôÇÖoÛO u ŽJ.mxTò ++?Ä8,V¢SB¸}H+k¨Öh\¢[,Ë ´ö}ÂfÈž¿m›7,¢(ìãƒ){st¿áDž¡4I¡/¢ •£—ÿ’ìì\«ÀVYö½~%ÓãÄUcÆf"Á*"˜F²e«¥<4ùÞ½#1Ü™-ÂöqE•Êñcq¿p2“e²ƒ(;•/qw$ëäéd»þ:¶ý`C•>ÄEýffŸãóÒT_X1 Ç—X ³º©ýY‰‹ªã«¸ÏNÎöÌä@ew&%§"nb¯–Zyûh¿=^Ñ‹üé—ƒNúC@?ìÀvJ/fßE3ØÿêvÚOü!6þ{¦O@ÃO³u×-[ø[)u¼ÿæV &»³tÐÓº§ïÄý*ydGB„r¾Ïb'Ÿ¤×6eÌ?ÁäÜãR(£¤iã.L‡iç®µÇ rÒ=ñbÛS÷àj½nÎ99Ÿ?„6JÕÕ¯§?˜ŸîKOò•®kïõÈPë_0œ ˶“$:ˆc¾4•Tî¾òõD©5Çà»*V8¶›éià%“µ»™s(]VI¸Öåòvât fµweŠ¿ -†:²(qò˜§FÓ–ìFÕùÓ9Á|Á‹N”'¯]‹JM’–ßyX|Åîlª¿‰#½è ôºRdxȧ +ÞŸàô/hÇúÚRFº4Ñ­ð1+Õº®>;)Dœ¬ú--é#¶±® NT®OÔhígí,R /³}p¬[»¤úÕ™”2ò–ßHÒ¾wJ~•“à<ÐMëË*í^¿zöÉ‘t6 EÌû:WÝÇ2m¿¸¬k³dè¦ÞX<æ}‹ßê(­lÉJªvجS¸ý`”¾i¢‰CEÍJ˜e*c3‹§Nb¾µ–BÀ['»ejñ[,ʸꦞ¢8ª#|Ø_¨`OµÆ­j+ðfv:tËÒÛ v¦5ïF,Õêüò}“¹D=G±ñd %Sq°ìc¯ƒi#!äœÏPâyä‚ÜQ¸úuø£.+Uœ¯ ©•‹ÝÂ3¶Ý—Ý#˼ù®¡ë1×K€ óh¥>œ9Ïõ¶kÓ¢ ì.ÊDâ›×¾òÉÄ£Åý/=ƒÈײ8ˆõ×vì)`¹—>Ž ŽŽ ¦üµÄȧֶ­?kñ;d‘ Ò¥ÎÆÎoø^]f8Ó€µj_§hmgE#[­•s9Ÿ?j:ýD7Å¥[aê²ùý¬4Arä€HëÚC¡“J¼/“¨ØlOj°ÓÙ† HèÃIãAî›oÌl$w.†Aº g01ÊÙXÇ3.tÉr^'rÖ¼± Û‹¶Ú£´µõÂkoz–Z Æ/¾”ø¥´ZÔ¹\ÜLn«^m¶;2•ìU³®/OäWOL`S_ì4TžÄi½aøÉðVü1Å×Ϲ’û6R|Ö¬ø¦|é¸û³OfÙÔü•žôSdíç‰ÊÚ¼YËDquî"¯ãyìp—¯@@ßeîFK;Rd¾Z—}‘ÞîÌŠ\Íz‰zŸkN“MPÈZ?ËÒö3§¸ KM­³©! Çeȃ©¹vôJvu‹O¡YÕØ­ÁSWÓÝ7‰Ä­³}¢îZ3ï%;Ç«êò½—õ ßõ®5é:TÆ#"Ø+;§ºBD’Ü•,i—è JÊlÕFQ;G4áw„,Fʉ±`‹šïÇ¢³Ä;ÛÒ“èJ"5¯×Œ”¨¬xRšÖ;”†}[=C‡µÍŒ¦²ÉqŸb¾fP(û”®$·p¦O!é|†æ=•ÑöXs…QA¼#¤oxH&õrá²@Qe^Ó¾!@½Ñ¤YyÔ|?*HýT—ÄgeÚcCl&=5ö6ø‘?ü[Yžgî9sçÝÚ2ƒ…¿6*^Ú—ÀeAë꼎¶…–çP÷çB|¯ñ÷Ï<Öö{.U |sÕfVø$?'Ä•«™þ1 }LàA“ŽŸ‰b¸.Š&C“Œ]jH”À©¹¦,*™O«[àÄjq#9DºÔ3ݬ MŸ2Œ¹ÇºKhì r RƒIx‹×F°m[É"u˜átÁ)¥]ë ÀÌÍ׃%i·ç^\\ÍçÅÐ6é&Ì„ª‹9Ðo£ß3‡ì tòTÍãöŠúÓà†¿P |e=Ç"2L¨—¼ Ø 2Îâ§V‰²‹D.Ü-ê+ßÁ#’ŠÍÕ­JÌ2[^Ò1©øYh©ø-|¿qæ.‘›ëÎt7ðL˜ón®´cÇŠÂCÆš=P¾‡]{D $Š ,|aئ)1 ±»ÀPVØ‘샥Î'¢êèiŒ[á:ðÊ:™­Ô’v4øéX\XÞ…8fXËúö˜ª„$¸OL¯ôígõÅgªP‡E·Ï¸|ø‘ØYô”ßÒ§`̆i6ÄÂìòBõ§ê›¨èY6±Ï|MÏbÚ^qE’c }ÃÏëøO\lCáAþÒ1Õ(ýòžÆêLt±—E›%? ùJHAJ61à ‰'¼~VM—óÎ.E&æUìøà‚æqü…¨Œ™V‚Fy ß6,¾†PwHC˪òîþC¾¹*ðÞâ&M&CïªEˆ?‡0±×@ñ–Z0(OrþÝðÈþt]Ó#jüCûM$Ó˜«ÓŒ»½ŽýJó}^±©ëéCìÈø‡°'}u&¹õQäÏ îË5¤ŠÕ’”CVöp`%M󨡳/(Ú¸¬6¦úÏÔôˆG¹ÆÙ•·x „%lÓýË[ø“×Í|°ÈæÊ‡ö‡Šˆ’~?ºÒÆí‹ãÄ9ÌüáâÕû|Äx#BâÖy¨€#ñê} =c šRò „§U^ã~nµn^GÅJyb *›‘ó(ìK±ÚŒ'Éœž®LÙëp&à"?'cn©»/Û\òTßzÕ` ®‰f¸ÖXÕÜ óì7ŸŒ–玡UYዞ£3Ûšúaçr/Ì]o+?Ä"êL'~?jký™3ÇQÑíhVvì x#CãÇ· ÂQôRçäLßÖÕ2eARÙt•;Y$.ϺWNÑ*—Fu>1ÔhÝPOɪ^ž'µ’xezb|í.¡ Wh]ÉAa   Û”O‘øá×,jŒ7ˆíqÃxMó¥V×äÈzÕô$ˆC§˜¡Gá·Z‰æs óðšq·ÑJ"q7ö6üV׆.¥âûÎ;Óyp­×WfAϳ A÷²ø=r*Ôhäï"msXì¤iæ}äéósK·uåç÷Âòc+úËœG&9>Þɳ È@žªEÇY méC –Áp)ßDqo‰žÓ¨M‰ŸIµ;ÞRÛƒmzk?Ñÿ¥Ð¯$:lí›~*æ-c%T¦eòJh?E‘*üt’†ÎaS€¼Øå¾¹ÿ¡ï#â6]fà³ûñ¨1­Ä"ß wciç³ÙšT2ÖÙ,ß„¶:¹Ÿ¼øÚe}x^ïwÐi¢´Ñ/W€s¬N/}DÛê3•½g_ÈFy7¶íìZ樆Ý"…*Õdê}Í—– î†é\m0R±îr9k_¯,ôVБñ6¹cfÊ“®ÙêÜJϘ)Ð×·•~Ïüºc¥õ–ââ´NL˜ï0x H$§ðAó GÀ_ Z`ä$Rñy¡þ¸ &lçvãŠD~íéPŸwš@\JÄú˜#ø¹õ°þ×"‘i ½Þ©V‰ž¨ÏïSèðz´ Ú_‡jÜ}ŸJâgÓð¹iç´n=w°N­4bº]]šŸŸ J8Ü?"L5"Ëj¼¼~ºÿTZ2ª¼ª“Æ•+yû!&k ÇÔÒ³Që^v¶Fºt§®(Àí夲FÏÐ!gú‘[…¾̽åÚýµòy)µRPJð¢zõ‹I3~æãÜ]«ò‘Ž š^f•i Ogë ]¢ôÚ¥EóìK¥Lʺ똶¸å˜ˆ¤ó{*ßôA’/þ÷J=NÆ0hê×Ä•}¡ÑÊîÕ¤|­¼á–î+ÄR®±FQ)õë°˜›v…ÙkkLºÊL,¿S"{êçZè2Ì/^!5||ÌøA°oó-ßnísV4é;Ò·ìº}gѽǥףq®U¼ ÕìwꉩRMò>;J® å6,~íWïšØP}¢–` …n$l´Ù¨œv¦Ê¹ûÊXßW]“:V*Ù+qX„X!$Øò%Qcò ßVFƒU%¹F?Y¡T}L³š#IÂ]ˆ›»«âWù.ó¯¯å(èåjë“~j“µ„¦º¹XÅUÔ /‰¸ ÊP/æ_†dËΖóY-Ÿ ‰(Q/b9e°EšÍU dè%9Þ]Z˜"Ù©ÛmKG0R×Å?†{ÄÆ§¦ßwšœÓ÷]/ > stream xÚvT“ݶ-H ¤D>¤CèE”ÒQz I€PJè½)MªT¤7Qz•"R¤+H—" ÒA¹±œsîÞ㽑1’ì¹æZ{­½çü^.]ƒë H¬ J‹Á]†Âd%-q…Â`" ^^C4Î õñÞC¹¹£±™ÿEPrCÁqxLŽÃó´°@Ãà „%d„%e`0@“þë&(Ã=ÑH@ h`1(w¯ÖÅÇ mgÃoó¯¯?B–––„üNœQnhhÁqö(güޏ`€E Q8Ÿ”à—µÇá\d„„¼¼¼ pgw(ÖÍî–ðBãì}”;ÊÍ…~ hÃQ&ƒ‚xC{´ûÜk‹ó‚»¡<à„F 0îø  åà7 Ôï:.(Ìò?ð÷la¨ð¿ËýÍþUù G °Î.pŒcØ¢P€Žê(Îàä/"Üɋχ{ÂÑNp<áwçp@UA€ãü;ž; í‚s‡º£~(ô« þ”U0H%¬³3 ƒsýêOí†BàÝGèÏÍ:b°^¿¿ [4iûk¤‡‹Ð] ÚÕ¥®ü—‚‡@ÿÁìP8@&-!!& \”7Â^èWyCÔï ð/?A€Ÿ Ö°Å @Û¢ð ?w¸' À¹y üþwàŸ+°0€D#p€ Êý§:FÙþYã/ß í ˜ÁðÚ`¿^ÿþf—‹qòùý÷ý ©ëªj\û3ñ¿cŠŠXoÀOD¸.-&‹‰I’ÒÂ@À?«èÂÑ»€ý'Uc‹¤ÿ4‹?¥5ìù÷þùÿzCøg-m,^´(€ÿ?7‡‰Ãø7áÿo¥ÿNù¿ üW•ÿ—Æÿ»!U'§ßaþßñÿ# wF;ùü%à5ëÃë_ ‹wæ¿©F¨?žÕB!ÑÎÿUÇÁñ>PÀØáµ|]X ûƒ£ÝUÑÞ(¤.‡°ÿ£˜?øÝ_NsBcPºXwô¯G > û¯Þ^GüãÃ/Ëß!Þ=ÿÜWƒÀ"ÙLD\€»¹Á}@0¼šDÄÅ?a¼‘(ïßB„ ,Ÿàg l±n _׊W„‹?>ý£4ÂÃÍ ï°ß Àïû¯õo;£PÞ(èÃ$q#Ü¡&¼ù¨JÝëúÊ éübkT‚Iw¤8Žo*×ÏþY¦Ú¨«¢5²üÒÛ4Ý÷Å÷G&ýÙ¿ y›wd…Ì¥ÞÎÁ¨t/+n_úæø{‡ê2Ëf7,™µL÷-QLcmFlv5Ùhò,B²St­bõÙV÷5SéMÀ(< åJeÇ=TÈnݼcÂųˆë71§£w3K÷0T¿;üãB :îP±9–õØgÙ,.£v¶/«§;Mt7O³«R¢ü>+£¯WöÛ¤^V¦Ä,Wî|ŠâJÅ) WX œïóÍYKÎŽåõ4%öŠzÔÙi+…Pê¼ôxÁFB¯_ò%¦„3‚ÛaP‚¤iç ã'<‘´¢hÞKpU¾G»-ÊË*¡”[ïñ¡•Ö> S() è­¤Q)19JÎ+§ý -õÍË®²˜»4"=ª™@ã©Ä{O)ÇöþþÖ‡«-=J“µ˜Ø6‹× þßèÒ¼iγ§A¥ ±«—êY°^)øXyì8tzÔ»³%m%†D¯;&FÔ»Féf¶‹3^uV¡räYæj<ÖTéáƒH½©êµZŠû&—z&ÖoŸØ_@(ÏfÉ;Œxt6Ñx7Óp2ô¡n ôò¬¹ —AË”|yH· ÔšDg©œÊþɦÙéÏÃ]Dpwëm²þ`zŽlFokÑ\w„>Ë­ÈÃþ/¿ß˜|¯¯Nµ*c™Ò²mxÑPTcš†Ø¢Ðs_^0¬¿æ81ýÃ`Ê´R¯ÆBÐr–VÝȨ:ukºÜ)AŸ÷¦Ëòcú&É[3¤4U<ĦóöRænwóœ;Ú‘Gš^JndSf'ÿÖ®@+ËyúŪy“P“tXËÉ&Ü:­ƒÔl§ä– ›:Ý^Œp¤'y;~7&Îùü­ÝdÊ'swZa:Amí«¼èxMµžx´¨n¶­Û»3FzúqÃÏb ’à\ɱ‡_·¿¯ñõ0Û@»Î(_žù`)Ävèaé9a<Ådš Õ|'úü?Õø¾ÖÚëÖ»D[æêv _~Ì dvxðVvàEÕjc—ç±õSÙˆÖÞ™EÔC¿ì¶{Ð “j¶x例¿”J§ùã‹#½6¶¹ #QºOÎ[9ú¤´Š¬)™Ë­…Â9ž¶R#ÛþvUfŒ;¾âœßS+[iD-g))ü´··óßü´ô{0À¤¢{›³‚Œëu÷ñbXþû È~g=ÕË,ºC#l-* ä=Ô™·VlTÅèNÒ=IŒªÖ¿/õ1*™ lßÙå·A{” ¬µL|18)CÔÞ~('.gä#Y $V¹ÓEà§eq±ü¥ÊYú‚ðæ÷¦y~* ÀúÔ»æÏúäºM%Ÿ÷VâR½Í<ç á‡Q«lù°ôCSc0öê'åŒÇGö¹š#E믤ºËt½íåw+v”Ý4úç¦Q¸îöÌz®›.Ÿ¹ý½crcÚõÑu="‘{ÅŒ> {÷ˆ¢g[—Í^ª ßVxE±»ûp‡iYðaRÅÔ†:*ƒ‹Ó_ äï0‘3š¸GbÙ„fŸã ¹ŽÚ(‰øNÏé6ÙJïզ‚.W^HÙ°‘y{d?õÇb>|yÂpOViùýÜ^[»3ú่Z’{EÝXÙ–¾¸XøÜê#ŽV»Uœ˜íõyèj «îjtЬõc<äJµéíJ‘‘нj4Βݦ©7⨴33ÊèGŽØÚ6µšÛ†¹5Ô¿ð·úΖyq -R˜®Ž’oš‹‰Ðìª?èZÀp%9¥áÒæw‘úúÃt¬.Y²w'ؽ¨GØê¤«§ ™î¬q±iv¤PtÌ4ãÔ|0öBÏÍi^“Š~-“¿?Ìyêð0VÞZšêN…!…ªZ™Sߥ¤ycÙhÎßéž7 /‚¸g ÅùƧå³'/(ÃAÇ_+Þ ª y·R'©`´BP—,"h}7ŠOäƒ@ò\ l¨`,Ž€PV”IÖø^XÔ‚0‚öÍTuc2lËL3úƒ.A$|MžW‹ô ·¨Jç8#c8ã¹7\J•¢a9,þùiKÒÜö®½×ìñažŠd‡ˆhQA¦@5.Ž·Áä{ý÷ûsZÉ-í_Ò‘0ÍÞÈ?5µ®QÍ2W–K0•>“A×Ûˆ‰YsUuâðÿUoÿ¼·òIÚñBßîóŘeýìNï•Æîçë£!I Ïu¸hfIÊ6'¡Œ#H_[OO#sÏç’“zžË*ω!Hïìß#@33úÛH£“~ž;‰b—xá^2Œê‚ÄLrÔD^—l¤«þ$[?,α&\|:6DNïžeˆz´oøIj.o](\ÙŸõîœ}cîÉΡeí¤‡Ìô̇t›ük.ªÃêaæ¯>ˆCï„:4MÏ_ÑÔŽ¼Wñ¨qeáí;½¤‡«O=¦#Ì›ï^uÚ ‡xHËQ.†Âú?/Œ½K( Éß ßž‰ÏáºT¯ƒºMˆ˜TŒŒ¦ŽŒ&ª5œX•Ob[shHvµZõ¹O”l™êž\´ŠýÊN™ÜË)Ý‹#í±¾ÈÜIë'Uã$Ò±š›dÞ cÕ~;Pa;ÉÐìiå‰Ö8v ‡´'­Ú—ìËj\ªßÁJ¤=ç¶ë¼)Üöù˜¼² ƒ€E,Ê­ÉžV—æUQr.´å*ô)Ö~Ñ*(ZiO ¯FY_«Ö˜ ¨Ñî|SÛBázLÛÛ‘Â6}zmNµ¿3N[WËp§qaÞ‘G°>VÒ­cÐùÉ«>s¦ùN³ñ¾‰ä¾Ý°}VÒ«gC|7CÎUHE*#— ÇFõmÕÍ»ê3¾Lzbué˜uú1\D;ºáãì,þÀ¸ÎÑÎ¥x@L,ãËißG¥`âeš¡E€£bS]àµIåšbÕ½Ž¯Þ©Ò5‘.5"i9-1¹wëUYžS¬Ï“Çeg„’ Ëÿœ búä;}5‹*´4wfëÃA×Bz‚c´ Ä’\¦ä3mG¤»$:žŸf'Aêó†Û_õÆø‹_Ö¨UšÌ»,MŽœ†ø'ù-Ÿ²äM!“™mAäÞa:\DÔ7Š€[ÀëÊÕ9‚ ‘Qm…Õ ®Û= ÔVš°ÆÞ¹|²‚%…í3y 9œ—É@:à]=#þÅA2>J¯õ,C?‡ ÓMVë˜ÐQ^²/Úôê³×ÎÃLÞå‰Qçî»¶»{ôìõ¡9òÈ ¶+‡ åîn*¾{'ÒˆÆyð1E0L…Ä쀩í8—§ŸÎ–rÅôz®X`¼4üÉÖÞï¸Ö¶Æðmƒ9y?ã æfÛ­æ©!R–oêa7†j?6b„àîï‚+¥ w¸ÜëÉ=n²Gô$éÞÒôEYÙ¼äf“ò­°kû!Î!ý6bjÌH€ v+µµ@®¹Ñ™ˆn¤´”#ÃÍ¥†0’Z54áãǸ×>ªýåœ×fz£¢JÔÈÓ´¢ŽãÀóØÐqoÁA ÐÐæÖ„ˆÕã ‹(Šèù¥GTFJ…å(ÿ!¥–¨ äPQ‹t“ _\Mk»ôž.yö˜¬jIÊZH“‰¸ t2Á+øY_ß#°Y‡ªµàæåŠÊ Àó"#Ûl.d÷…&Ô„S±$ÁõòtÜÏëfÉ¢ÑÏ‹èÄl®d  Y'ß(ßOOlžÈ·Éy0ÏCÞÍ|·úýbêÕ!]Fœ«áF¥3Ä%¡h”aHæÎꤡO8²Ûº/êœHεËå¾ J³w_ê Lò”º›¸>» a6ö7 ›!'†Ïtéz4;û€'‘¥u ƒÅ<‹÷bÇëÙ‡è»aý»‡6%d–¾}:»óN…Œ`qš.¦…J%Ö°Þ¥*D¥bÐ^Âr“ŸÁÒ¾v½iCïÐSc«^©õiÀµõ3×Eí‹Ñ3ç+?Ø rHP¯{ÆÚÉbÍ5tuÚðήÊ^Ö(ïy2‹ÏôùWz¦†Àf-mεïÜÀƒµ›ßzxPzœ:Å:Š“†Ò‡ÍÏvÏHºW¼ z;è8ŸRº­dûú´Xß²6Ÿ ó>\îTõÕ)¥#¯)£Î.ðÀ°˜œï¾³·Ó”³.›ŠŒ2Ã~ÎÁ¹Ju¾y/Mv½ébr?ÊŒKÖ¨tˆYý4x]“qªÓkv‘^eæ‚þp'²N«n²ŠË«KWÚ{¾¬>tªÛM4N.Àe:K23QHèÞF¡×Òòû·ŸÉ/+:¿QAÓq–wœeiV´m£ùêò ÚXÊ€*ôSôqëlüBO³¼}»ä(¯G˜>{Gt˾NV­å„¹Øí£| e‚ÝÙ9ß¼­Çg0jCÁ+ôÊ»]–—?+]<ù´Nt­˜ Ï´ë¼>óTJ¯¾%lìx¥Srª¿Ì¾2®†eQ æ©gL§LÃßïôm®ö5žOÐ敇vÓTTdz!H…Ÿ"Í«LyÔ¢mByh'´_²øYÊ=çK¯›f²úf¤ãhÒK¡Mþëý:’#µj^1Zñnn:wó.¿©8ÌÖ-—L¹Ô÷4ÓÜñb¹çJŒå®´´ÎÀêݲäî² ÍUH`Ó ªDÎ89^Œ®ñ|äûd¹gÎJQËÓ¨AuÅ pÿ‡G°aKy'Ê’CDº XwIp*|ˆ^{!L“(¥é™Ìç‰é00`ÚÍŠ‹ó=Õ T¦o·»¸š²1y’ápÁƒ=+ÕÂãìb¤ÑgGSßD©;+dzÑZ`ûyl§Î¯ÍírVNº3ãÖy5EqG¹^ì­—/{2’t«¸9$S›,®ó—Îuûª³-”_{”üJËÉ祋CåÛ«œmEõÞŸoEŠúo¹7}äÁ("¶°Šdš…ókH­€³ºpÁp(kCÙ1ùt=ŸÙ^‘º™X-e-Jªç•Ä ÙôÚÑež6“Ôvgá¯`œ¯´EÝá= µ9w¿gHd`–.GøÈ¡LIËWaLx(ùŠug»©»ìÕ#¦ïyéql­Í¡¦ÒÍɶ‘»¦”r£­Í¾æ¢GØ׌ﹴˎ¨ÓòWü¬óúäî4óD&y“Þ¤ïýÊYòùSͧý~UÓZc±åwÑÂ߉#•Ižé¯ nµøEÍ »4EsTx| cþðªcçRjg5ÍYõ@‰š­·Ê¦ñ,JÉ`Îk¿Ü!_°"Î~@cDtÍ edê›êñ~b'"v5’©®Ñ+.ò).Ô°œ³6­L­1§£ŽtÐö¨µhØ,uâ&¸zÄR<±eÃ÷þGñδ27£²D9'÷]9iÔg,IÍbÓùR\ÉÜ̧jù^™Ë'¡.È­St(au툕e©rXýgoÚ͆Jĵ ’/×¼ó—XˆŒØId³CØŸÏ*®˜®o¿ô( µ­ñ§P6'ßKKÊá·pœâç÷÷ØFi\t:§ê“Ü–…ôkÜ0t¶Öí+íY˜Ê]®níÖÇLoý„¼€%ïmÆOÇV̾*íÝG• ]©Â2ßfš¿ëJ¡~²ÒsÁBßm¡t†Ò rf|‹nÄÒú2Á þ”ò±«¤Îïˆ{WŠ;ˆÒígò,=3éX¿­2?õúaGPUÂ'–ÿ¨2-¡¬ÄéÍ÷)1$èñÔòÞD/tûÙÚ”Pî]…ÏWkª'R¾ÕßêúEþtÉ{ëZ¼¢YÓ&çÚ³$:o•¦„Ž h›ÇBEkh Ù÷Îh"œ]áCí8ÈÕ²C¹¢[­JÛŒMF¦åzNÄd5ÙÌ’zâ[¯´Þ0¸mcŸ“ì²Òl}¡î°¶`¸r@œ3øõ‚‚E¨jH7m{U ¦¸RU ô¦MÆRP9“rq¾•Ÿ ½wª| ôš/&ã¢O Æ®)J˜Ù+í³9xªd´VœŸd³rÜd#E¸¢Ë|+Í™pW¾®4Š9\mê”ËrÒäY=8½¹NTøùü]~Ïñ|©ëe‹&ß…YjãWì"´7v·j!ˆfK9&¦ ‚©Š+­{ßJJ–2B]wÝ3 µèIKMº´(3"e“‡«w»ùÏÛ’7Á¾Ù ŒT滚‘ŒÅJÇ>QiÕ§ˆÜúmúÔ®÷­b‹2T»r|{¥Wký îBä-.‰,9~È/sZƒç*”+ö†M´¨›-½Gï_Ðxde ¾Í6¶º”›ÑEéÞ,<§Ÿç®=ù:°^îèG“ ¹F óQ2àhrhørwª0¯v‹VQa;…cø˜t—'ßž_… Ø Êç¨"í×2ú•<° endstream endobj 6303 0 obj << /Length1 1387 /Length2 5968 /Length3 0 /Length 6926 /Filter /FlateDecode >> stream xÚvPÓßÖ-Ò«4‚Ô¡£Ò{ïE!’@J(‚"½HïEš¨T¤£HGº€ÒT:(Ò¥~±Ü{¿ÿ}oæ½ÉLò;k¯½ÏÞç¬õ›ðó™Š)ÃÐŽp 4 '‚äªú¦ÖÒHIPñó›!pîð¿0¿ƒE Qòÿ‹ ŠCqL Š#ðôÑ(€Ž—;, K˃eäA €$÷/"#Pƒz#`} @‚c©øUÑx ÂÅGØæ_A'!XNNFôw:@ Ç œ (€>ç Gvt‚ºLÑN8ÿ‚Š®8œ‡¼¸¸ŠÄÑ—B¢Î`ÇÂ1Þpà×À(þg2 ?ÀÌýƒ›¢q>P @ÜNp–á…‚Á1ÂæSm=€¡õ‡¬÷‡ ø{60üïr³B ~'CœÐH( @¹œîp€¡†ç‹@Q°_D¨;MȇzCîPGáwçP€†²1JðïxX' ‡bî¿FÿU†pÊê(˜*‰„£pXª_ý©!0p'±ãÅÿܬ íƒòÿ»pF `yyˆ›£ž^pmµ¿DõÌŽ@@rÒÒR2¸'îëä*þ«¼Þþ;þ&ô÷@{œ CÀÎp•?ê à0^ð@ÿÿøçŠ ÀN8€#Ü¢úOu wþ³&\>á °´€~}þýt› /åŽÿý÷ýŠ«h©k›èˆü™øß1´/À_L &'%K«„@FVøÏ*FPÄß.@ÿIÕF9£rš%œÒ¿öþ{ÿ‚½!øg-4A´p€à4n‚€œ_àÿo¥ÿNù¿ üW•ÿ—Æÿ»! /w÷ßaÁßñÿ# E"Üñ Ízáú×G\€úoª%ügõá0„ò¿£Ú8(ÁÊ(‚–ÅÀR@ÔÕ@øÂaFœ“ëÅüÁÍ9Í‚¡±ˆ_¯Bô_1‚½œÜ¯,A–¿Cp‚{þ¹¯:Ê ûe3 ˆ4ŠÁ@ñT ‚š$ €?˜àGÜ÷·â@GHf 8£1T¿® ’ˆ;B1¿Ðß ŽD ¼°¿låä…Á÷[„>þµþmo8ÜîD55vRxx·úaÓa•2‡ØâÙÜBKd¼ug'ð᱿«y¦æˆ§Š¬ür_šÑä³°á‰áo‡ƒ¾víÙ÷gSµòpDê_T¶Äò{~î´»À¯ÂÐW\ÞˤE~aüž`ÌEï`Kj{=Érâ$T¦Cr¹b©è´»l#·@žì3ð¤ràb•s[Ö‰£­y®-àz­íâ.alӽ̴ÍߟG#âTšbØâ¿ØÆeôÎÌtg¿ëL“Ü.Ð}S)]ÆÄÎì§Ã“Û—ØÅÎ’­S‡%Pì«>K‰çe/F† Ì’ «ÇÀœœ×âÞ²ƒ€λ}ʈˆ ‰­ÇJW7îV(5)&ô#'žîú¥¬®å¸Ï1G¾™Îµq:-öñ¿Ídh»K¼`Um»iK‘>Ìf`Õ¨äûqèWä±—J”5ÜÉp¾ÎÐ}.›:gDaï Ôö’ùyµ„W·“Qêf/»Ú/ ï[œï^=íIæ¼(åóTØõr gó¶bâRVýÖ«"bi¾{L©M&¥—‡š ÉmœÀ|¨>mJtÝë€.»YAÊU ð̸+ðÞÅ’µ˜A­}ý³Ðqòì›6¥g)vºúé¶eÕO°ÒOçV¬äé#†šŸBBh/(ª¼jtL»N«ÎnØú:½¥I˜»IBuCbå&¦5µd3C[˜ë3)xØ4.¶<Å­“. Wýh=ÚÔ‹fï™±\þõ|Š´6ò-]¾˜ð%y4CÒ¶üàç¾ÊgìÕtß²yœw‰.¥lÈéw³‰bÃa»—[K¡æœ×fµô6ìÛ&/Gô@%Žƒ;™Ø6…ödEÇøå!/¾|¥YGÙZL0Ö©DÆ}%i¾"Å"É]ã¦&ZÆÑºÄÕá¾¶Aöw¬ lo/5ɧó—Ÿ&˜<Îë³!)Pœw4ô ’ª¨²Ž|×2xµL“˯U“×!{´—ÕÄ;굑ìqAèþõKTTÊspÎ][úê2Â%™ˆIœâ§ãuÕç”0Ì-cÕdtå¯ÔOÒçÁë;s‚4²åG ÝÌgró}ÃMU%×ÁTœÅŸ®‚Åñ*‹Ÿ‚ýí]a¡'·_”›y\ˆÂ§w':¦œ˜,ó5“´¾2F€”3׉ˆ)™lí]™/°õ¾19‰ôðgâÙ¢1×aU[±¦X<ÔÂtqp4ê:0C¬Êå3Þ‰Ühæ–”.v‘©á‡R—ÛðÃvKV¯—›RVĮߗ=‡ÝqZŠ…†—+\ºžwµhŽ‘O~æ… ‘7ó·ºr¨’ÒÃ:꧱Ɵ_UÃÔròò4œ óÑPVeE)7— äË…ìTM­…ñ@²ÓíT´„µÂ–3’GŒQü4DçÏ£]^=1ÜÏQÔu4žzd‘Õøƒ{ÍxÏWô ókí÷Ç S¹zô•îÝ »{=ƒÁ3<ԯŭ[–«W1BqZù0å'5Ô ’…ë¥Q´goRµ¹aEq*<ßH*%-µG{ÛKeV#± K2¥e «‡ˆÙGõ:JÚ*б¬Ãl#i®Ö ìÀçF0ŒyWã¯ð4fë{ƒèjD”âÚä›YÔ†«x«cKÜÔÏFêñм…X®,-’'Úe§nM¸¾cîe#¹}©ï`Àزº)mܵ®ÛÔº‡7V¢–eÝ?^ä\Ý­ø%­_¹Á. ›oŽÆR Å=3’žRD6žæY𨂆“²k5—„íwb?€ûü8>@ŽÞ‡ê‚ê¦p'²o7¸®ªÕ8‘<V̦H÷}¸ñh"˜íí`Û§¶ð|Ié»WŠ÷æücN{¨D!U²­ÂA}!œ=ɚ̟ôÎ*¤ÕÖ|OÜî%TŽÇÒ Jäû ÜišL Vû~÷Í½ãÆ±iZÛ,ß[ôUíT…)—Eúó-+cy£§ø2)× ˜¿¸ßÈ£K‘ô|(òGª Œ¼R^‚Ä!0”ò ‘Bþߎ¾¯»4 ìYEôÃöŒ)n+÷hò *sîR5]éèÏù®VÝ—÷IV*ð2ï­ç*÷‘Š+°Ã­³@ uØf‰{!=¦« =T^›Ý¾RÏ™½(U, ×° N¾1á,%ä&K2z’rÉ îšƒÌñ«´ô;ôÉÅLzÎçùŽä“£Óž»—\¢~ûÀ¦t™§«)×ÞÃóSz”ïñ~C]6å”Gô ] §£ÿS^È¿\לlÙ!“hÏ€º»Ù…'è¥Nmí;Id ‚¬«Ú,4_Öã)· \„&ço9Ñ_ÐL´÷¢x½½§lÌûù¾O:º^,ÖZw9[G ösëµÁïœf“ o‚ò——µôƼÇê÷Ã÷»:-npص쭆ƒIí@¤å´âŠ#x­é¹’[þ9§ocØ6/|ö× bdzÅÔ ×îtV·eŒ ël_«·—ÍÙ.æ;¸*ÉEÙ€( eèl`åZH4KQw§.­ s¼PÕlO-ðpÎÊ”5Wo\PzÍg1Dt™b/\™…Ÿe`Ö.¯‰3^‚c¶ïxŠsGT|Û-Ò´~p2Q×\ÚYñê9—·=+/¸ÈY_› =¯ÿõÈ@…¤¢òEÓ›W©3𯽫ßòV7FXO@-k#<t'^Éì¯jP”ñœ‚~åRhà ,;ï¤Ð.±é)bÞfheË£ík½–Øá¤;i¬Þ\ºÓIÁYÞL*7WØ^7ÇDÏ'{àCc·Ó爖3Ü–=îµáÂjÜÈÕx«ø-àSn[äÓi«ORëgci'–=œ7û&½†Ò¿Xlϯ‘ËZ¢‹[Æe-SÝ^öÅÀšb %¾wÑìÐ|$]enö®ˆQUòj¹Ý”+•ÒS]hH„­ÍkÏždOrp§«ÊüZ“I^Áœª¤ï‹®õ^!éª ýȵå{0û®n­0Öì.Ÿ{Áã¡3‡ð’Ø„"îÚíRAæËÛÛXØ.3µ½®Á1ÇŒ÷€ºÌ¥ZJÇ*žÂàˆ¤¯PŠe%°—Þ¿%ÆDÞV‘½ôB | 뼺½™5OÁürìÒÈ<;בi]Ãåð<è€L™òÚ‹ˆ(œ5ÿgñLR¹ÙjR_ká]ê·Ó†×ÚúP¹ùšurÛÏkixƒž–$K—’ k‘Øæ„Ý%™©p,b¦~.Õ^!âž¶|Gb££ árJÙröR¨óàÏkè`žX|ê¢@Å1,ÌUh=à¼IÓàÀœbœáWPsÜÒB¿U|¶BŠþZ1cUlz0Eòãܸí¥âŒ 7‹Íüƒ–pý:Òzîq5é¥+ü§ïðWfî¬zÞîŒÁUêæ1AO1ñ62²®X‡,¨F˜ >{¸§À𨠪%Ð'³ã¨7ÅçÀUD¿H2¼ŠìùµÚ—jª–eA•yU«Ìv¿toá¥ö®·~ Oîu‡ÝìûA5YŶ¢&ÁS/‚^¦§Q¼ûzìGþIüæØÃK~Œ¸{jziÓ&£´Œô2aÔž¼$RËDqwÍAÔКƒ…k3|D¢ó•Ð’Çï¼4 N6ÊIV!~¯?škäIpñIôO©Qµ\¼{ÇWMmäDûð=ÒÀÿhU‘,ªœ¯ËÑvtFÝǵ¿ª=[}nÈ9—Ü¥Pðèr·Í8÷tÚ×Qäl;ùè6pœ‡¥4R ‚Žˆ6a‘mÂf7!£FÌT¢L£Â·¼ÿE“sU6,ñ<Õ<%&mÊï:*4­ªIÊ-Ÿß-=IO7æ‰F›Ç Ñy)tÂVg4ùÜâË€§­vv/‡Ã‚³ú‰¼×æºjǬ=OAžë {ü•O¸7禑bßkãæŒï2À› ùD‘f·ÆœìnHcPâÜm¼\b۽ś–`Í©€¬äñ’#7+K;¦¨ªö¥”¼Ìü 1õ&Z“ÉHÕXþ8–‚”™1:Óâ¾¥=¾6ûà•¾p±ev©=·ì=i‘ž C·¯DNôÚyW/9s>ÊÎ^¬ínùâ|k× àcÛÎÛ ×;B¨/¥WŸvÿÜ©Yy3{®+&èôŠ+~¢9Ñæ0§ôÍ[ÉIïøµÞûìûŒŒ‘OÈËñMØŸt@“ÿKQ©,,óììoÍÇ©äRƒOO¿ EëhÔ2™¤§¸eG6]§Ýµ ï7J ìxr¡™˜üt>öÂíåtøkL¡ržÒVZ«ý‚«mñe ƒ5¤“GóÊO“›¢L8È&x¤©Ã#£HÅjKOjwËï†ØB"y>'Ñ4~{,ùf-Ç7f…1Úú´ì0ßUÛÓ…ÆÕŠpÍ”‰u·Å€vGz}¨sR&xhrL‚3Ë-Í_†<×Ië÷ñ`Ï|'šç¡•ã èW®ËŽèålÍ´­ø•ô~ë`o¹6’zp"˜>c.«“/M5zÒFÿÑQ$ü6ÛauŽý¤zY—-âÙg ¼-y¹¶ôuÖõäeßf²¡À÷ß»ú½ïHžz„R´[Yi¢òfÖI ôZûú¿Ö>FR¦üy}õZeô÷€˜/Wüñ­y©'t­ÁºM‹Ô=ùqCCÌÚŸSšGT½ýS…o?ÝLìÈ[‰Gœ rä{ùMi¸òËïMD;‚Ô*²}#®ûÓ¿ÉYáa8Û+­§ëÛ,ÖX;uT}3€|Ø)£Và+ãìk_>1[˜Æ³ùF+óŠÑù’ª‰–øWx¾W}Þne–Ê"â׳ÄÿsúÇD¡Á%i‡dò þÄŸtMú@·1wY^%ëöÑ­ý²¨Î›µ´üä¡”Q~·(í÷M»¾:€~ì;~¢›©˜ø*Ýà"hªž-w¹Á&Yàý_J0°÷#Çæ¤zŸ%?e>óÓäjdY±‚ ñbѶ6 bË*ÛÕG+¼Öî/ÿpG P:Ù­Ó&ئüãÀëÊ‚Ž”'ÏïÒ‚ÉáÈîÎYŠÞgwð%5Q²µZnPwR´¾°½·2,Ô¹xÿ…ØäÅ´Y•+[¾œGü/õå‘vi$mDæÉ;W8šž8ÞìqBèµÒBË~Hímߨó{Pb\ ÛAKfôïsã#ÈÑ~x©û¦G&Ý™ï Osf§n–8v§äQþa)Æ¢ZVމh©˜# ç·¦ J3|¸`ów]/ó‰ÈÖ[²D½Ÿ2r!«òkÑËŠåæ©•ø ‡YÉËæxª^–“C¾5J¹´;ݹ¯’yÖ4²†óLÊõaüdš»Vâìµ3œØÅ~ÂJe(&M‡ú:‚ÀU`~äq’´Ñ³™ÂS0Ø4½"˜Ë ø%‚˜ñ‘Ù¥ŒûÕO 7Α¬–û$‰ïòEÚõŒÑ^'X$…Ü^õš°lUœœ+fs–h?:Ö¿ ÷G IÍëŒÎ _}›-ýµIÌ̽ÿåá}—•"3fbù¯Õ(Ò ºíòŽÚ˜Þ²Ò»¼D×çNNBmÂl ©cCnI㜷érüä?áFš$JÛùÄvžÀ¨9ãŠ"ÂÛbº ´JYõw÷߆v¬ÖW5“˺dx§£Ï6…¸iê“Ô=…Ûï¿x§62J"I>ËÄŸÓÀG³yèê×·ôæjÿ R÷¬l:l{*Øæœw$ðÑD?ˆæd| ¨Ë”´“5»!sÝzÒ =?®?Ïbû”œK,ÌXH YOœBg5ƒxk 5ñ´šÿ“R"¹—«hª*4«cÎyûˆæ‹3]4£h}ƒöS;›µ»ztòˆ‰ø€ ~?Â÷W¨–6¸‚5ªqñÉËÜ.G‰,›&=Ž‹waÏñô³CûÈXûãG<+×#³ƒ™Ç„fG—ØC÷ðBûÝMàeUî´|©«ò[Ì×%¼k£ÄزœÉ¾“U?{îáv3ùmü ËÄ$ã ßÉeæ÷K¡óïj „³ðªPû%ƈ×’;6,x÷† ÷EÈÆ ÑÌÞW™Þ’¾>ÞúP÷FÃÝÕtRu]!gš-–œtµqª¢v‡Ek‹F“qïéé5v]üŒt«ö•ýˆcüx&ãeÑû<—áIpÜ´›ÿŸ2$ 7˜õúžµÜ ½ý—°¤t•<ýØ^ݲ+Ø"À½$S%•tn¨ýõIÝæ[ä;e‰òsëÊ­ÔŸõë/CœÓ 2äŠ.òWW5IÊþ’PÉéäCÐ2|!œÁf–コ•”›òªŸÀ•¿1»jXè°¾¤M,Éé‰5õR¬Eü|m¶w]äƒoVï’m±êé” (dfL‰Sò¾D!q½Š¢{aeœ.n+vSð9‰w«ä›á ·ýŸÃKj¶XRXÃÚü‹Ò’Iá ðÆö`T-N'üåýy1'º…éªfÈ&‹#•ºó'p<>ÏBs%¯oW»¬dÁEÕ²<ò· ¿â&m‡„úèú:zŽü,ŸÕl²Öìß‚5”˜ù©lî¬÷˜afu6M,Ð. ŒåUÏÇ„–ö}Pçng‰«IzüJR9È.ö’ñQ¢ˆL:[‰þzžõq«`v¿œâø/ý˜uÓy½Ç¢¸Ø Ö_¶½ÊhO7É‘ágû¾ÔÔîSįU0Ø­Á– ?¶)^3oß0§¬jþ¼œµBíà·ñ妧WÛÓ÷O(_²÷ͼô(ãlÕèí­Îä¾yRO³àÉž%¤Å:#ÿÉ~ÁÔd(øR<´ÅÓ¨#ÛdüìÝivËALN­Tç×¸ÂØÀýhÓ"Ó¶õx ö­ç5;Ý-‹,MÃ3%[æÕ›ç2eMšlM°<“çœêóKy&f¯lÛo¥3ÍßIº7 ÄÊ´0Vw[bª‘ÿ›ü`M¸íidÏÏG)þçô¤=Ò6bmïÍ;H¨zågóå9¹V~=Mº1ÂódK;âTÓá—d¬Î+æ¿¢G#ëpwAMX²;½·œY|8+Åó2¼#YÑ×Ñ]JýNT¼õÌæÚOŽì<·äíU|v@¨¸0ïÜÞÕHš|˜Ÿ¼ÉmN\Îp«VéAmð;o?wö=¹kаi.ò»ˆ­ð†ˆ×ݧÁ`=Í$#W¢[––™Q7ܨ,ÛÍתê~8pmxø~6-ul”e¯›”ÂCÊâIà ®Ë¦Üg®°‰¶mŽú ‹*‹;Ë mæTãÝî~°,ËŸ½WX›¤àrÏÈkèŠÚ¾»Äš£,9 'I*È›(B×1>8¦¥µÜ(Ô¯ç"ÔMtœLÝ¶Š•Xü RÕWNᯘæ"åNÖg¿ZÞ´ªÒRϾZ+.ô¶èÙ./’4Éå=ÒÁÖHìþ)/$”éT ­š¸‚ru»­ù“±¢q¶¼1·×}Ùg Mh—3îeÿ4¿Öb¸Ý§ŸÊth^CßKýT¥j]Ž[œñìIáW¶QLw…šè[Žh‘‚³RGU ^¨N½*)ÀˆUQXK+ Rj¶ÛXS|uc/ ëC @ƒIbeæ4'õàn­-eË»<“½ø+µ[e­ƒ›né-‡ª³j´d²ÖöW7.-¼,-zsàÆèœãÿÎÍ_… endstream endobj 6305 0 obj << /Length1 1467 /Length2 6488 /Length3 0 /Length 7493 /Filter /FlateDecode >> stream xÚtTS[×-½£ô^‚R„$@@©Ò{G¤ † ”Bè½#M@iÒTšR¤J‘¦t©RDé½wø£Þ{¿ÿ~ïñÞÈ'gÏ5×Úkí=çááÒ3’·AYÃUPHŒX$ PÔ64•€@¢Â ãÿ &ã1†£Ý(¤äÿ"(¢áP S‚b°WÝÛXÁ SðP?#fÛxAXv GyÅ|NÛêLM{?ª·Mü ŒvÎzÂ%{ÆÌºFù3uK`áN¯%ê»ØbõÚ@Ï ŠXÕrÃYÐw‹KKà÷ƒÏû*¬,¯´2P@â)VØ{Ù( áå-ëfƒX¼ ß饢 eÜJrCºvá껌4=SÀ8bϺ}Ö(Õ!i–›5kÙ@ó‘t±o …>M>®³C·Ô‰’ókzC&r|Ö˼æ.Iq­Ó„ÎuÔžÐ0>eèÙ¡ÊQ+ äÇPMâü{À«K¾}yk½Ü=m?ãJ®o#×›†6±®jfäÈí²žåÖñ=Åi¨xŠâ­£éì/W0ëåèŒ'ŠžÕh\`5Î?ºÎ¯ö©êÇ‘+4™5Mî~«ÔWRÎø„‡:¼ÊW¥\w§S·ÖÞâóAË‚0,‘÷ð$†/²«KeË{0„Å»o{MÛ¼£ÌJÒ S ñ¼%V÷.Xî‚Ê_i˜ÎHÖm&cœš’\0ß_´ Q«( ÷õ3†·ºçƒt‡ôç§ ÞYEE=ÍM«RƒˆµOˆ­ Òâ|ËÇÆS]Z€üaöô×?œJžk ÊwÓuÅør(»Öî¿w&L¨ÿ"pM‚ÄUØ^'E¾KMÍ—(DqGTW\ZÖžÞjÊ™}zÑ$YÉHPµ¡„¿rãsÕ\$öª5±•@N̪† rö»Ðõ£ÃÀàIcªÊ;ãÑÎY3„§Íý¥O$.('┈´¦%ŒóÜrrd/Ê?ÅÅ–ùM÷d2SºþøÓVÎñ !æ„õj1¸«hc’$|­½¥o“kÌ䮸ò-é5ŽäõVg^þíxfª~CO1.ÑêÍ­’¹þ÷lųÙU}ƒUá©Æõë)K®·Cãï—šµ…M™gh|iÒ×d&ÍÐJ½S6^5’Ë|WžÒM~91iGì×]®RñÈhnÉq'™öIŠHZÖpFÃ׸ÎÈÝқќ}YŸÖ¼¬;…šß#-þ”DùfŽ0t.BO<ÎM áŽÜYÝ4åbBâ[ŠÏæÎ ô”·Ü®gñ’ÈÞ\~®Ýg"^ªÜÇE¨v!YãU€ þfsïð½Ob©ˆ2¸K¡göÚpF=vH>Šœ A~‡?Ò×ûöÐbås¦ï×ÖjmHbËyýfxõEHÚê.ÎH|Ñm©[Á]{”+[ÖScèÍùs(‚êkwÂe2#>ÜõÃMö1.‘Ë)±bÃô¥%´^†Úûª½6¬¹‡!£¾6^{VgÃ"Bgh3)LØëû|nÆ“’8ZÞÂ1`ÞÄg­ú¸+.†:ó:Úuç~8M{«>v? BáQœƒ ¸ yeÑF_Þ"#¾kÚÇ8— ²Å8aùšQU¢Â5xof‡…Øßÿu´«2Ãõ~Öäoë¼èƒY.Ä™[³æq§°Œ_ñ²­;ˆ!“Þ¥ùj°¬ï"­Ÿ=Å#äo̽*Z«å7aWðeÄ$÷¿i„^ljl­ºl3±³pð`¯g”‚WÔFºêm¤R.‚caQžÚ|“ØW¿}-§ày ”/‡xÇXd¢Q‡"«t¨õƱ×ý¹ŽD8dO×?±Kà—“i~nÜUõ/©óBä(F³$Ç€,eÊDÉó~y*š{x‹ƒ<\¼›9Ce)áÉ¢¶wrÆœÎÖlBjd­Ý½Q9Eâ±ÓgâÜ2=VõÚpßn#²ˆ»²^ä¨2!|ëY*#oê*{a!¥;ÞÑGU@)0¨ç¶"y²Nú1¥¶¹ØÛ1aå…É£B‚ÎÔhöÆÊ<~ßTWkw›STƱ8}Ð0Ã\G8¿é€¬øg® ÊŇ~Æ=ÎÇÄ„Ö%Þ` ™ë «%Å­.¡‰ŸYŠïŽ1-+ "d”9]Œ9!ßy+0AOp #]Þ3—Q¶Ì¦’³sU>Œ>J«þDÔ;®»¶ÞO½YÌ|¹U×ÒîZ×MU£ú:$]µBE(-_´ñU½XÇy:àAåBÈ+‹P&´Á vù—o/—R2”XüDN5ˆÀ©¹x÷»Wi¢6jó|¶@(5\ÄìõgøŽ ¹—ãö¯—NÆdB‚£äzÇVY4LS‘òyør$O!Þ¼ÄÕ±sjâà÷ÜDl>¯b΀>’ŽõBÇL” â²¶ê‹"†ìpñ&¶«lJÇÆ ÄE%Î}ño¯žË0 •Ár˜O­ë_AGVZD¯‹eá P ^²ëGÊëo¯ƒXEðý&SâX‹jª3˜Ì…L¯|‰¡˜Î }ÖaE`0ó8×”¯Zòi>R|sÄj³¹À6¿$mÎìb¨þ¾!8Ð7DjìVVÔž÷á¤t•AØá w ˜}O€ÄÌjgC%f݉ èq}Á•±¨‰$ «DœÎêŸ}Ò:Fûõ=¶×í:¥ÙOiç†(ÛGÓ¦8J4®Ø*ÖÈ)VµìØfuúu/´×-Dª³˜Içí8z¥“üÛåü H¤æ3u}8Ù>T[>³ïèœÿ“žŸØ/ú­[<íN´J€œýã3ßÃ#wûo^<Ãb‰ó~A-Ä SË‘‡Dsòˆu#<úwÌ;΢¯jú%(j¢í6Œ|‡!±.O1ªt“ž£Q´û"ºÅ¢¤ûÌù«¶LI&ÌïÞiÍÌœ%*ëæá–QÇ¿®"œŽÕ›$|Z£†k-u Âþe÷¨ìýíÖ(¤U^ûòfÛÌg¼²Ï†¸†ö­si¹•I%˜W!%ä ›Y®ÔRÕDMÐÂÁ"í/A/L¬.¨*Õ‡*óu]žçC>¼„¾¦ŒPØàéüv÷õyîÃu3®iúoR‹ÀÙÔåÁš1bÌzÎÄÖÃxŸx& :|‰øÙIݪSç]ëÕž•áǼ” uxæ1ÄôÉwûdsÆwrU(ÒQPM—j‡°|æâAÁUô¾nŸ¤ªÃŽw¬ì[×>©éÝ»,bD„Ãì|ŽÍ„ gÑ–µ(ƒáã­é>s`@›b ÈEåþ*þ#©vMè¬o|Kè7&¶°’/+{pÏÚX6¹SöÆ“Œq]¿ºJ©Åàæ”]³Þ*“›ëàÝ"Ê]àWÖ}û‡ '{ϧ,FÚ5óµ­–ôìYé=–]ûÎp<µÒðVq¡áßî9Ý¿1Èeö­Û±-LVˆA†•ø…ú'Ze!y½{µ\î-wk¶ø{&ÛÆ<Ÿ澻¸àö9· OkIx+õàg>º$ó2²Jú}¯2i‡¤–Œ;öé²ų́9¹"øçš"ggæ¢ÏDWËjñ˜Äà~`ìDÈcÁ€ÅüQ}5GìÏ“‰þ8ÁI¿³'olÁ)’JV·xïA|pa€;™ŸaöËǦÝ$ˆGkã>h•6_UeËj1EÁ|yvþ ÚÃ㣠ÆB•e?Nm\é*Ì×£Û,)£¾FQ-6âǽÛ)'o%U Ê¥M_#–¬úkØ”ÂÞlv·î¨{Ež}[xšô¸9–Owg†?^>ÂDCÌhÅ4£è¯0[(»©ï±+:¡©lHqâ&š·…eþZaø{-Ô†z k£’væ!YÛÓB¨Ž wú¡â“ ùqÖ …þ€š?tÅh醯ÆIÑÙHÖÓßÊH S±Ÿðjï ñ0£-a¿"C_KDÇ5Çü>¹^ÀÁÃàc•ÎtþQöuS•äOï$-jÄ:\ý˔ʕ—‹þQòí„¶Î뽕KØ‹çtû½¬vªh5“¤9.©öš^]­ßo/ÕE³¯. E ýØy…!ˆuò< ~€o '¡§OÚ¸$v‘þ΀0†TûT<$¯iœcÔ'œ)´jÔ’€Oîãü;f ­gÄÎϲøaà;Ã壙E[Â,’ý¯T¯ß’mR,'ÝÊ¡ó›­MÖÜ Ý  èˆ0Ó'½ÛW Ž ?}¹¿D¤^YwÊ´ XÀ²tDJvC|½™zû,óÁw=Ü(8¸1{2ÊÃY¯Ž¦N¤àa“£Â?…zp*Tû÷(?p àC<¨V²IèÞ·Ðêäåéu˜Uj:þ´ôÄ?†§æ¶k¹ÎNÇé§a™¨L²¯ÏïŠk·–~®ÿ¸ zëÃ,ÜÚzóèHñ,ç²UÛÑVÿ.3U½µ¿¯l^¡ìN°W¨%ncU°u94þÓ7ü¡tЦ±®šdL­e¬ƒÆËÑ-ŽCž‰)Æ!tJ2c§…œ”¸'­ê½E~aíTµŸ¾†)´ûîE¾?ïÀÍFõ”²í° ,¾®ñ}¥^1kƒY".Ä)Áì¥öðAþD•„¼ØG£§z™.å™ÙÚoî|(Oi'²ÝŒ"žlHNlŽ/%·t 4x‡ôz_ë÷üj{“ °r ‚ŽÂß™ö6›[Ëd¡K/·Ùô)~öÎPóÃÏBÑ|~Fx¤¡H,ª0£ÞÔéU†»¹ß5ƒEówéÒ¤ó¬(ióJBœôÍ{”žûüíwÚ‚wQ™-ß©ƒH'Zøø·ÔøídV?úÎüz—SÿPN9À(°¦„ïèroÜ$ŠæVuô#£³–ù¹žÔ×¹7ÚH»åï1Cïr®Ì -ÜÏklã!ÛxŒàZüp–«jìjFGG½Fè6F›äNm0÷!Úÿbçtœ–“ðžy½@.% aµúÊ\UæVJþž†1|Òw¢þí‘ÆµƒJ¡oU›žzU+ý,áÅKä²CÎ&x8¸Ö^1Ïâ +¤)9%Ä5®PQm^ÈjJnÙ¼,LŽÔœ×ç,‰áš€¾ê6y‹)Í‘, 8ö ³X%‡„h®ô#tJTô3‚¾0ãf=ÛNÙ@4·Ë¬Õâ…~W¹³)Pù’n–GF»”Õ/âƒyaÿˇxµj!¡Àµ‘n¢b6ø³R`r-,ñ©òÏB £,û•^]¤áÎT•¥í·±ƒH-òŧ7‡ìŸ“y*\ï(¶IG~óûQí›…Óm´y©šiÞjÞÈ’Ó+\q†G}Ëžê,YzèTÙÙòi¿ôÎË+±ç8ôt—ÒxBª…Cí÷|HZözKv,ƒP°ì{ó!¨j³ýêêêïÈÞ赫vðñ¹ÜÖëîOü…4"Ù%ùúMw&³8 Xb–vº•lM†3ȪU:ÖÕ|úßÐåmÏ’ôç.GÙFUðèièS—L†²=}ÂÕe6‰ûø”’ÄÒáó]ÞŠeBêy€sý Ùjù›/mFW*,-eó`’m‰†‡£$%x|k—{[k±Û4Üñÿ=i25Â3@TÁ‘w­©¬­pÊnUÒÞƒ®ùðº÷œoHý‹è©ôÞî9( çTŽþ0©c~QÒkwGS•ÎjTÅ<†:ô)xúS@ì¡W+ûf{Ñ îÇ*ÒqQç½&ñW'ôªÃËúþ´w"Y'­žùlz:®YKªÓqî"‡¤—϶¯\¤¦|Ú)Ô«ìóód6Õ?hT‘³“MüÌü¹lBÈ(XÃÊ€“õ–'ŽZ¥}Ì|èSBFD2¬Ô-‰Ç8oW³ï[nºï/rE#{¶-¾3µBAÞ©™º«oäDQø­ãêiG–yaC{óãÕaKK˜?=›°[aq>û¬åX¦ªì•ÜIÅåvï¾…#ø!ùPÊ0A¬¯Àþ²Ó‹~ØgûµÇ‡ÆŠåWbÝÞ“Å}àìþ•×£íG±'+xãÙŸ<\5­æ³>œJ Í–N:Öù†,åJ m´ã¼±ÈTúmE?˜?*a‰ÑëÚ’Fº¶ßÀ V`Öݾ˜É ³š ÿÚ|6B|鼉/Ä“Öh"º“ÖˆJ«ôOK8"øÛa¼*—V2GÛ³ôÛªŒËœtçýŠRPº¢FHb¯°FÒ¦Üíu9 )Ðk¹Ù´×E«ßÜ¿jÎnÑœ¸ËÃÐôss®=W‰Þ¸E ¢]”ì òTÊßã.§z°¸!£—©Cc¥‘¯  Ð냽¢Qm–™V º©×.Xƒy¶šŒœ?o‘h3¾å)z¢ùå~‰ÎÛW/Ø ch2¦À4eû㟎3g™‹W‹§Eg×Ð4 (J1’»ÏtZ¸o°’#xòM-Iñ^Å--v hÖ)î ƒ1~®:릳+I?UÁwï‡ÓiÇlˤØÝ’Ë’É•UBâf9‘ýW­×`°ˆûÃ]ßW­¢{\BÕío·3¼m¨·}9Ѷn'$­7ûø<´¦xäç1ÇðëÌ:¹à×ÁíR›C5ŠÛí©¦L‹‘—ÅÒ7ª­~> stream xÚuSy‚QÊaˆ"AXHñx\dúƒDÄg€"ÀB+û1+à„ðÄ|ˆÍ&üW­Y³ö‚#]ü…œAĆ#t rÞt&T„A>Z4s:–¢­gBÂévŽPÈ#š™ñX4ÅL,Sš­B ]3ÈiâôÌœ!>È@››Í[ŒÄÀq?À,fδÄñÌ6ÀP”twþ'…¿alPà±æXÖ£p+ƒc62@ÌgHÜ4Lƒ™Ûãx`Ѹp;ÄÑŸbœ€ B¾Ü÷¿Ä÷;E`B !@Ùè5|SGa5»÷¦ ùÐV kŠÅâìô÷u‚^(¹âoá>´H0óÚèîáî²fnï_£Tƒ³¶0æ6xÔ)¨"o1W‘Bƒþ©ûí°;ÌBÂláèľ ò¨ “î¾WòA„L¾™d3Eýþp?5ÏwüO-47‡‹ˆËéßd¶qí\xÓ½siüÂi‘Wü“sÁYŸÿw! 1È0›ûuLÀÚ 2)Á™5Æ,¾fμ8‚ é7 `pxÜ.€1"`P @Ý7C0sNÊõ0aB0  QÿÑøÌ¯À4Íñùèxf.=ûeÏ‚ÐAp+ÈP¼/A¶Iág“ê'ϵc0ÏnY´Xm˜ø,Zn©¸—+ûÄt^³fD©¶åñ·6‡r)mûÊ`9o9ÙäLíõ{­c"Ž ¦ jê»Ôæ¹¥i½0=gçCT~µÐ¤ó5¶EkÿÍìcÏÄWÜFW”OÚ;ÝT£&#ñº“›¤ƒQ¾òÚzå‹|%«¿¾ß1âëÆýÍ(ßu½Ñ¾#%[ÉãÒ…ÛSÆ›”.¼x§^Ñ ¶¥[ÒꨂïJvUž}E×*µ&6Þ¼dþžÓàéÐ(Û´ödz¾±t̬]éӣ뫻”å5ì×íS^¬©Ù‘ˆ÷Š´½ÏX¨}¤ûDkÃm“ëÊ6÷0dxË0ýtŒ~zli^¾¦ÈKÁõÑÀƒÉšv󶞆{kŒ²'éêÒúšÖ©#%‘Ëúî„´ýíÔÜèùøI»LÕf=?xäôÑ$äÂÐ6wjØå‚ÃV®u–ár¡Ýhõu(¾±237káò¡<]iu4ôM¨Ñ‚µ”ò‰Ö¸­'ÿ©°" ^…õý&Ç?»¹öøÀ’êS^PZo“#f¹÷n=q-—Þž'ÂI©S£ 6Ɖg'v5+ÂÁ:+E-%F#/7óË삯Où—$1×èwßÔé_èHÒû\Ýå¿äWÏ8™¶·PîA¾›ëóîݓҨý©ç㊻ûØ@BþžT9åÆ>2…§hZJ?UÚ7Ç[qËf¤¶*íLÐ&½\¶û꺪#žo£ÕÎXlñ-¡ÿAòi÷‘Ûh\•õñ¯Fѹw‘ö)¼µ}Ê­ÔDØ¡x5{báÙË ºœ2+î:£ M¯¶°ê%wäû:~ßuxéþÚe[ؤÅé=Ãj×Ì*/Þ§ Þš¨z:…¬žŸV]Òùq[ÓeÅ"Y)¹saÚ@šý¸Ôü&YÔäDtd[Ÿ–ø«¯­Ó~³L²wñp[Í:e…MY1¦ušX|®Æ¹Úª~9qluL,a$+Üo”[{‘$Ýmš—r>[š4øÉçá|½x~âÝp7>QåiíŠÏ¾\ÃîÈXZñ¨T< 0å‹\ž8Øeë@<2}ll¢DùöÓU§Þ­®\™Qý=ðD-£)p#1Íve©9Èk|UßÞ\Ü´3)¨J)´º}©AؾގÄWÜ÷uˆÐ‰<ôÚ¯4kç©l×i3[µ}!òFW½¿7ýå=ÇÛ81ì&A¦ò¯[¹%îúEµ Rˆ9e§tIÐÙçŠ“Šš%?Hdö)‰¯g×ÖÒ{}:Æô†dr—±Þˆ‚ëæó>~¼s¢Ø@ÒžhReQ?©ÿäÝü âý– {Á¥Ìóú#¿†‡èn»q69WæxKëïKÔ‡‘¶ná7ûr§ê²œÊp=í*VømI.xžÕu$ #c|¥œ?µ­M>¯óÕ™e–†:éËïÈÿY©`Ž{Yt2öéCƒ eºÍº÷iÛÔ{6iÁ8UÒææž5 ØKßËÕÖ­^ô]ð᪉Û%´«+Í Ú©#‰õVEó–\î~Eù¥"P•½kù®ì£ÏÎ~%²lž÷¸LÍs+Ä™yŽÕoj† UVÉHFŽª`åØiÝéͶûÈó8Q¿ïŠO ³½6ÿ²ªk“êƒÕK½Z$ÖM‡îžŒ áßôàsS—ƒC]·‘Õó ÷×Ä…h„vöú~¸Bù1‰Jìa:™¬Àœ¼í`:Øö>°LcœKRÍa¿ºƒ-â–†4&¤w(Ù[ðˆnRç·×Ë(U¿ã’KÚÓ}ã5*ñòa㧬æ§'RÊ4¥ï¯>o R:`¬4¤VàñÌ·÷÷(Ö2ë語rn­çÇêx¨‰êåj¦Ï×o \sš¿ÌÍ“òôTÖÒ…Š Ø§P²´ÓPËÛhy£Ø`#qRãÈvEjÆÁA fRð[SiN¿óëuC%þeͳNyÕÕ©ÈsîáGƒ©ÝÅ9ÞÄÞ·h{ÜÏܶc¸dE>!¥Gm,)hiþ|êß-MŸèî7ÂQ21dÕˆáœÝÀ²Ç±êh½ÞEÍm ì©’ÿ\hŽ endstream endobj 6309 0 obj << /Length1 1626 /Length2 15640 /Length3 0 /Length 16489 /Filter /FlateDecode >> stream xÚ­·ctåßÖ&ÛvvlÛ¶]1wl«bWÌJŶmÛIŶ­ŠoýÏéî·Ç¹}¿ô}?ì1~kâ™ÏœÏ\kŒMA¢¬Æ bæ`”t°we`adæ(ZÙ™¸¹¨:Ø):ðÈ3(ͬípbÎ@cW+{qcW /@ hšXY,<<ê&eÝa“A bú¹V´ÏõoùmNfÍÃÝIUƒâw(Âé6g˜ëgš2÷ü ò'G$?Ó´ú8ÌN”F´Ú‚³sʤ“ç'ªÁ±‘ᡞ[Ⱦ|ºì8X >cl¿”3’dW/#ç‡ÓOÈWw.G17GÙU1Ƴ¦ö_ æU›´þLtUßwkªŸîíR4ƒô£E힊ÅUÜjNæë¤œ Z Aâ‘”A¾jÄ÷>Ç4¹B„=ÁÍr1s0ÕBʲUÖ¶RGZô¢Gž‚0C”Êy²Çy °r¤ÌÖ™øq(¾ šü:üìzè;å 㹄Ðþå½r8ŠlµVô­œæ–8F¢±cÙ gŠÊ?üg6¯|.Ïš7õÍÖ¨ÉÈOð\4(ᾄDš±o±U;&¼Ø£EO¤ï[9¼ Õ³'kÖ°^pØÓVkKé‡[©ß,*6¿ð¿–ƒq'^@ ~ÍÉÓ]J"‹+Xƒ ™ß$ËU'hy,Ö9ºÜ0hINr-P³Ëå¬Ã¶ß¾gRpõ·ýÉÛöˆþ§NìCB“of|Ͷ9—|ÀÄN“xáP}ÆéíKÚPÃOóžQ&Ç´Êq»_Å *M·›W¬ jxÏãí”oì¦U¾ø !$kFP& (t[Žpc ¯èvHÆ`.žO ÃuëìæUEbr>¶|âíŠe„´ðþ .2»*­U$·5>L‘ü»=,NÞ2Q^;…K¢ Cºò'k\¬…:pZH{IⲞ‹ïÅwÍ[ÆÛÜz׋j<ó{MÓ8=NUqléámI>Eå^uî½jÛ˜r£÷6 WaG<ÛºÚKA´ñú ɹ3PMÙ¸~2]AäÚº×Gó{ "Å4òSR! 'ƒGž+uÊýÓ“ÔÕG• ¢3®æ3©:.é2¥Z4Ëwt²BUhr<%bäÍÙL°"Î.êlnƒ="7OzèÔq CãM nÊÀ± ~åJ­™h€Z…}2ìXm\ÃJÛq$¯ý‰7‹Oðûm¶v±l/–(hwPpa’Ì~wêWs—«PÆ·}"è®ì¯tÍ“:&­¤ÞI Ö¹œ /Rn¡ ˧ ÉÜÄñYræú‚5×öüì Ç|W+¹Úµ(We‰{{)0® NüQ;¿ î§,5 ç¯6ŠD‡z.‰+û\Ûõê8¬dÛmsªÁ‚aô¬o§KY—Î Tôà›6Ìé=ç~)!=õ®ƒó¤¼‰!šöœêúøµý“²<3Äö?¿ KÒÒDÏ„­ö+ Ò—ÒVvŸ è ç\Ç`zÆ…p6—æ@P w"Ùʇ&ˆ·Jš^Nˆ0™²±ÑHWÉÙ-ô]·;E‰Èº·vœå^Mô1wMTs9ó¼¶í6ßDW4›§¦F¯`ðŒÙa³_2NðDoû¢u„g{ºx”sJ'·v + ï“´˜+³ô–Ũ0¼Ø·SéÈT/YǪœ>NÒ÷³Ât¾Üe+@.À)r”í¤×ÀæšD‡f§ó{Û¹uÞ~q¶¡)ª¤‡á¾µôié¿.œ…,/cì´¯RpŸ×»^m… gÒÛ… 1϶d Ë}K­7!>ÁŸµˆ•­¿ª6Lœ~¼›–`§C yÓGŒê£G#Û.-ÉÌ›+*øw±„æ½y^!½ó &µ‡^%)ÜE"¤ÈÝäÝ9ÌÑÊÝ£,uý&Ü$uzUNcׂ¡‹g,œ¿§ØÐ—ª:-c¦kê×löÐ!-ÏÙ3{`­çÚ0WÌJ ˃›Jë uoˆ7ù¿Ñqpètæ×ÃÚ>› I¢^«; L–‹…hú†‚oõ(Y¶Q0^sÉ™ 3Ê=·XúcÎ/ob‚ú2~Sɵi!›@ÅTeÆÅºÀ%•6Hã«F³)û¨¥?Wñ,¸ïâSÿ=;µ?Êv§îçQBåÀ¬l}Ä~MÑ™•X²„¾¶“+DúÝË~ê×–äàÑ-5Z%JNÞ†z T‡"úuÿ/ÿ˜!WUQñÉ]Ô’-ÑEº` rôdÇÛåk7Î1.œ¹v^ŒL÷ñjÔ=o6ßÈBè&š~•ªZev¦}rJ'z#+OeljÖ:X:Šv°û >Ü Ùöô›T¾<2-êš͉9±vJR¯ž/ãCˆ~;Sg`ýJž‡YR´H;òƒÌ+!hðä-£t”)ÿã|܈˜\å´kHÛ‹´쪪2ÔÍ8×ß~etÙ9–›’Kí¶2…âˆ1Û9ºö¸KPV4ÉB†S½5#v;MɪnPã¿"ÌúâœÀ’Þ¨§D+|V‹Œ|ó4¯F©š@(ÐSž-|Â!õ ƒØí­åÕà¯|5%U µcqä÷8~77`ôó±‡Ã ’‚¹÷Ä®ÂþP[EïQ3·’¾´3½ænIÍ Ê_.Uù´µ–h²dg` qKÊSxÿuˆ–볇'rãݾ:þƒ±kœÿ9Ófm舘‹µ ÖôôªMý÷Gan `õ”ƒ¯w”PÇe‡”¢Î¿¦m¥—,L¢_í}·¼knL"Õý%y@ÀˆAVÎ2lï7X((Xq5\Ÿÿ$Š•ªHAYÚ¹‹2ÝjÕšð=P0t< $K ídµã¯ ëñBq ‹ XcûFªUÇݲº“ÞhP ×—»;Mاœ5ý¼ÄXaZ“Rª†Im²0yþ˜ÙË«HUuŸhIÊ­ÚPê›|­Kí—!Zº/®`;Œœ5€—è(7JëmÑK[/ æ×¾²bÈö»&,go§#ÿZÍ&;ynäýYÍ®W Î+äfØŠ)jÓÈ:a‚Ò&d45"—ÿ€ ¾qo©Ã* $¯¦'£àð•ñVte…pµi“N® ²£µcfi:~m¬æ9$¬gÍzZúqëg K¡ºÐ›)]8I?‚¦ã¯ÓÂL=Yb‹]Ã{Ëà$Zv>µ…R¿Y3£=0­#|0âXeë.ÚNZ’c—ýgy‹“~“¹™ N”:ù9’JâY;| yžûÖ*á&öRër`Á=O¿ñ>Ô]N‰h!‘P.>m«"«‰¦š9åi{Ò•¶$\mxÒ°L÷EpؘÛþ|‘ž+%=½"„Ò:Ûe¾ad%*ÿ<“ïuGú®”ÖK.qf°#îvËŠ¬[Pj€^y5ÓîY{°nÞÖ¾:¶ó‹‚áÇö-m¹™Æ‡]1ÑiZ>Ò÷Ç™6.B¡Gªf”l§Ú°Ñ·Î$Kbß ð$? ©A­vqî4ôgu»SV'˜µF]C5ØAYcv“Òm•Xà•çDÛ?~Õ1¿I'TW'°gšyßÙc­8k\q:8ø×A¹r$‚2à´ÈÌváU–Ü+`Š«´·î–)BŸ{Ó,|åF™\3+ñàð¥©RZ§þ`çëñsð“ƒÿryi¡ÉQ¾Ž7¥¶=­˜žJ“Ȇ|ÉîZl4œdEŸuMúÙ‰{Xv‘ÔÀ¹-{e5S¦žÑJAí^çò™ju¯SS+›^RÆN£g8?ò΄„##óí1/èábhGš¤ø*h¹T`/:È¢f—ÏvÞºž»I»Õ*¢ç‹ë^kÄØ‚Ó—åót#êªõT¦•ÞŸh,Œ °õé!†7ÚœcYÚœpŸ¢íwŵôDìñè!KCԅć­ŠmR´8ì,æu}åþx™Œ^GSKøþ>˜Ow›ÌIF20#ÈRBà9L#O^íF4ð6]Óõǹ¤©ÝQj}{TRêë¤DÍ Xy"Ÿ}ˆÎÖSØ%®¼Û–±Û;^^?áÆ‚‘ÿáI å³ì\m¸e°«…̱œÑ"³lFüDMeè…h‰Åœ;‚q”¨OĨädizÊ#úU ìý´,Ö7´ðqÕ1‚®ÊE¯Pù9Â#{Æ•JÚN¡@7ÿ©ñØá›Ó3¶]Q1ˆîƒñOE€ÀÈ…í>©w ó xVÜ‹J‡I‡`bcÈgø‘.ÃÖŸž:¼ñõ)Ÿo¨ÊjcM J–Å5QRKl}ú† ÒûâÅF^Z)]·¨!÷ É£Âå<¬n@ ~œKŽªbˆ£g>žb|p·½È&gã£ò`K« éžôt_ð”=+3ÂjUe…Ï“,ÚªïߥÝT¨fäɲˆ{#p`¾©ú£½Ç0Ø OÇEß7â}5ÛÕ£d—ß1»VéØú‡­«“»!œie'£ö¢€ÂÂÉú¸uxƒb ÝÛÛk„óýe¹ÒâCƒ,‹u¿…oqJ3pCŸÅ4ÖÜqnî•NæîŽ\Sî©ôJï–¥Á%zD‡š³,;b’L'šI.a §oÓ>[A3áSá(Õýí¼#\B]I&ù`[éÒ›I¢ü•#šš ãüüÕtJ—üCß¶#'÷Ìo´ŠÞ}…i{éBRÕ-¡§M\4Ã..©@?*ŸØ%õLÇptÿ–†b5§ŠR½ÌýÈ‘(\Æßy.Ÿlè6xâ#PôjLx˜]¾„tƒaòi7YõC¶h­Av—¢‘ B‡|d ¾)oœkŠ˜7¦ƒËùž¤Ž‰À•Fäî0ó¼,o•ÕÕníÉ/Õ܃¦Ìñ® ¥h: y.Zè“Å[™ö³<æ;Œ˜aw.ÐVâŠì+¶îÎDY«Úô畦S$…*ˆco ‚‹) Ž{lC…!ƒH~ÕÄ—4qM¨Ñ«éKðä}1n{تôø A%Y•9½«¸Ñlb§qËêš{qE£=¡ê XIìnºÉ®^ôKy'ÆVEJÞ1s©XÃo6“A8ûC‚דæÚIºgÃH}YŠMûrÚ3|Ðÿgþ\UÁŠëŸS“…’ç!Ì»QªD %zŠÎšéjoUï•ÐC¹ŠÊË"'Â8!Xí0” Uܽ+ôÅ%N†Õ¤?«`cÉçÜ`ÉðßcDÇ[¢FçÂïÝ*Þ¹ÙCœ”-mŠ!<@L¹Ú"¤Áné+(=«…5Ð'±…¸V€ºž¿<¯ö…ævÿLæ+°68ÏË^ü$òhÄ{È¢©:>F½ˆ_‚€¡©º ô֕عåŠqÞXÌSÈ*Dș엲ðý›{\\4t¢´ Ô·úg©$õ•ÍŠ×áß[:·2°V«6˜'¼'j„|›bº7.XêcÞ80ß/ÖËS³ìHv¹tý.G“/®ìÃ=­GiÀ˜ª‰ìÞSHÂÐÞkwø†ƒ×º{ÐAû¨õÒHWKüzþ<á<0ÊH§´µ¡OÉ(ö†(úLj˜}‘äC3Ä’`±ñŽƒ‰-£<…k»ˆ ¦¸ÇØöÃdþy„Gbí+5€a’Șm]âø‚è „@µ½"K´˜HGÈÅ0U׈Š}Ízyòˆù—3êöN: Jc8· уš´`§¾ä ýƃ÷ýgå8çÜêÐ’ÄšnMOEµìý^Õ™Ïb‹Œg‚Ó‘ÞõL~E%pÎ>|W -Ëj&vFWÉš©M$ Ú£0›iãØµUÙ'bò&ò—JG^T›SIcrƒXb¼À‡@AÏ9W»ÈzQ™ïkˆÆ-q]öRÙŠÔhgû‘¸§uröìµK`)2O„sàhw±˜¯²B$:dÉÃÉW ©„Iƒf8 uq„b RØ¿^I¶{›íùÁNS¨¼MyÊ Eêarš,rLn9Ü–€šZc2·_ÜòÏ Ž6l˯ÖÀ]tÎ;‡^´t‘ôìHÂðSm&ëûŠ56$»`5"}ÄK¤¼/¿s 5 ƒÉ.9Aáì„-YŸc3‹J5ëïy<:z 6šçö˜]¼$ÌŒ¥«¾<Ê@ȽZã†ñ!Äf²2mÝÐS+æþãÜ8Ðæ×FšN.G÷LZ̸´úÐ}£ýO³€€ïßå¨Yov0+là ¶ºÁ¨ÃyO&ôóVf ZBs#)³7-Ùbàº* v–Å"zÙmÜoŠ%뜴-->ýhÇœÏ{{¼o²}SÙÃT´u”N Ö‰ ÈÅšVv.\“p#vvîsŽsEÕ‚³HÞb•Udñqà c:wŒ×‡¾ÍãcbàÈGnÈ›1¥u‰Gæ£L¯þ™ü¹­¤²Uh=é¥JdÅdïé ¿œËètœÂsekÄc:ðÖåsÐu‚­&üJÇdœÔ‚miû¡7+éûû|Ë!?£‹ÕoM©ÕÝ~=Ô†tŠC]= •ûËÝyi¨~'ƒ‰[ð~à†Ôˆˆ*Œ% wy28æ–°1 ˜,¿³Ó;ÎÈ‹4BCÆ(Í|©C‚–wÃwy#ÞƒVPK¯›ò"V‘Œ¸4ÕÞܧ| VÞ švf,g×d–´@tibg®˜®³¿ÄîÞ´À[ÿi´6Àß¾Ò¯dý aˆV9¬ãóÕ¸YÄãü¨«yp`ÂõÞsT MŠóoGÔfÆD„k´¤[Dqón[2Ÿþ¢ôŽDIÞ׫”¦1>cÕJ*“'Rš}Xw!FÂâC~Œ¸DŸdgy!ÏÅÿÖš6=6¯ñv‘ësô&¶ÓÉI.#¸×OZâµ¼‚e’E%MbæžèZ4Ó×"ž„òËÇì’µïì‡$O>P [©ɺºµà…Ÿá~^fDç . ® èØÙ(rÚ"SГעD²>—jeŒœYb_U0ŠmܰV8é\ÿ‰øÖÂ…ä º9¥ ZK Ƈ{ã‹c @»ñ )W +¹£#ŽgŸ¢_P*ÒŠ½*’Ðø€}Ö·Ð,_XVjK<.¢tºbÅ'EÁÏÉ>À_81"éúIÈå¹T3òÚ{9ÍIü؆v•™BZJøO«úœ œ¿ û»ðYyrº¯y==,1{§]ÑTIz‰ž_‰ ¹™‡Öüfþ¯Ë8 žp&É6ô…øw'“3yRR]šÏò×Û²× UÉðݽbÈ+l5Bó­ r·‡Ä®´»´ "'­@ö €“8#¹7íõtbs·­· #!Ó= 0eA†ÖoÄ»‰Ž¤=#F>ËW›r®I½®ffÉ“Sé™ÕAõð4$ËB/ÄÖÞ*k Ì’†{]Ži•›I„?m?«ÿäFïbr½Oû =S¶NYuìñÆ©BbΑ¨]»å"e¾¡ä––&:V®·`ùULo¦°‚ÛÓà:‡DžZso×­+’Ñ"<© iFR=Ô3娾½È ´·(‡Ô͈™—^7û‰î±H+Ï£ô5Û6©çËà©äæàyób«¦Bf)„Y–v:®ëÅhQ†fR)‰€Æ·Â×µš\Š³Ø·m…žÁùµ4"Õ|¯Îùè`±Ž^F“GMƒ²äØŸTåREˆÌî^_Ûí£/©ãÑ„õ³<¾8½š¡ð!Ê(„):õÝA$U=+¬$÷»åµg¨ë)…*PÛ§Èçjû¼ í³“¯Ìkäpߟùµ`_ MÔOÓg3ø)f˜A»'“f –zqƒ©Œiö.[2„!Æôkú!l’,i¶aýˆžH‘®õþËpCixÄ=EÒ¾³û£3Ûôùï]Ó¡YW&RYì;K®°ˆl+­UÜEËcæŒ}“+ DùóSƒ3{«¦§Rš`ÓcvGŸâr§Ó’,&I:^e¼7D3 ´ðSœ˜Ù.ƒÆàµÏh9 ø÷¡YDΗ?¼m¥ÛÊMšãÝ-6úoªòšLóê ‰°q±÷@x¦wuq 7ÉîVÌ"³b>!%~ÉÁÈ÷1g`xq™V7Õ€y"™¨°î©/4rSýÙÏéG˜8qSUfüû]=¥äS—S½å cî"µ¢šü¸† /Ì7Ë3þÌ¡E\H,£ø®Àj(0Ǽ°ßèËo[Þ—¨å4riàõk‰ ³5Ĥ]‚¼ÙO.Ù2èÎyˇ„1Óx¿Ï:^šœž‡ï*œ/ëÌö>7Â+Àõ¯ú5åΕáY/—„Æ3àØŒ#àq"BbE×ï5Ù:’'*j¶›£Gð~cÓW‚,jï̹—Ó÷¸ð;‚3ó½ øïF8úsW’\úH±ØóBY²U’\îXäâ÷åœÎö Mn¥8åƒaðŽÁ|‰ÎÔôq–³|æÒçÒ= ƒ¶$ÙÙpSí•yEµTŽw(*ñ·ÅçëÁ>úw~ßàkÀ£Æe¯+ìgApb§_:æÕ³ˆú$S–Ä0Ϭléäò=Ð? oGøßÐè˜J­î¥–¯h¥ø讽TP³t×äÄÖ b¾HJ uú:Úà½JIž£¹Ÿu"’Î$‡Æx¼DûZà@Kw‘TCGVÌÃP"¹ö8Š)®¾#2ÿ¦†AyºiâÔB¡CN~Û„ÖÒå6§µ…÷øÉ.höôÙDmaò™ªùq²$ø¦äa¦]kå 'B/ ùZž¿ªŸ{‡‡ì²tï­²ua(z ºg|'&ˆ_÷…¢ÔÕu}sdrøÉ£áòCh…¸Xz¿øÕ/X„n­i­xÌ®O\ …E©ìy!D}†\DŸïe1U*DÏ„×Òkï?;ܼ§Óߊ)ç~_¶Ã…ýÂÊ f§\sE±_s{«—geʆYJ:ŠSf ´ñrAwš¯Õe‘­¿"ÄÔ½šÚ’"åŧ4]%ªÙÙWê­ŽäöX~Á³¸fîøÁüø$‘WÍC—¶EgÔ˜>U ãÝ1êS»• «(ËBqˆ7Ýá8˜H¥kÒŽÆÏH„^iì™h0¹:w³H†æ5÷w}ãA£¾)ØéC†p9EîL ²£,öh$Sõ¾Ø@eN Xd“UåFÒP€höÂñôº¼5¿Ýãô“¼3‚µæ9"ëÿûO+S·VðSý-j° ¤[E9ÇRÅåÓ·˜Æ-Fú˜+Á“"à·&Qg;&ß¶Ð#ùüi:&íaôBêCHпT,€|–Æ÷¨[¹¢©ËCü‚!ß±¨r¤Ì5 wý«x¼dŸzŸ0+—b'¢"Ï÷o §ò¼œ‡”3Î'f¿IîËÉÛG5Ä%¦ì‚)Z´oÕØ¾ &?Ñi3‰ÔcÑ$[™õ¬‘Ùô2#ø½P¢“¨DÑaØ9îã¶Ü¦9èwmJ\g1{µ+l*Àà¾ÔÒi(¼~"µ½iS*çßئ>¯Ä±Mbêr>wÎÁEÀñ—çDv^ËùSw<%š ±_0F¸ò¸ÍŒÚuNÃp05~!ÆÓ}›.6‹é¿®Å‚Ê6QǬ¡†±lE\v»†4˜vןfá:¡·59íŒà?,Í…•›Š/7W“Šá13º™›xýÚå©'´°…ÆoH‰¢§Š@ĸĂ'pº†ÃîõD~]ü ‹ÎÂ!™5oZ÷KqÎW%™ìä‡xŠ>(‰À:~Z –½µRï[‡Ù=Û@žê;ÿCz5¹ °LqlÞš}îñWRta@9²¯^¸`¢f!øîaÛ,ü–þ2w÷– ™G†=aXè“£•rõèô+Ô£ éTÚlÂt±êlÓ¾E¶ðêÔr¾kãàÊÞ°µTüÌó¯ˆïÃÄç­ÛØt$r)@¼0°ð‚'q ¶ØûìØzªýþfmBU‹;¯«ÕŽ¥õû8¶Ç!¢\y»¸×¤Ù¡0W{½¦_iGt)—ݾ¬’-T}Ó¼5è‹0“0ÑlõbªGçVGvK}í¾,ÈÌe6_û`ÉH3ØšÒ†W)öú›½ £K/¶D…íC£q\OáOhaó7SÓEPóèåVyù—>JÁÏ‹wjñ‘Ë˶‚;Ú&¾zö”ýµþ±ŽzgîÉq® øþûwÈì¹–gHt)§o߉ÀÇ 1¿A;˜¬Ú*HÖ¦øÊ¨|Vîñ[W."lÏù,2‘ùF°ÐóDGÔ0*HÀü¶ô$­œHçVïfÂĠž£+½ KÇ× '© "]̺49o€0ðÚJ@ŠVK–+ï F¡žXš \Tž®pcƒ£%0뵌O”!’Ж9¶øîNÊÕ‡ÍõÊ)vŸ…Yº[Dk·Û?‹nÜ{›}þ0k)JìLÒªâÊ_©§ò-ìÕ¶Ï­(&<"BbïÈW£kÞÔ¡ËuXÎÁFã’0ýâêK»“ª~AÓ°;º‹Ë.ÃLq"ëIËtGc2@¨¼-ÿÛ ºù¹Nåò¢ ìO“{Á™æ÷5lqÜgaü8òHù„Bâ#¤@Ú4j;,=H%WGæ§èñKUøëÁ˜7 ÑtÂa§9@Ÿ^‚H`‹Ø:†<#‰O¢;pÜØv=¥}”v\%ímóx*„þ ;M&£uÙA8i-³´ZÎùÍüÝ´RÅê*ù¥)Ç.{ÇCHã}oåž·„,<¿–'þ`LoÍ{Y©ÌÉ‚*¤yš©!yŸµ­\Ò1Å «tªÎÏØÆ ü èÑd7ç[Ž˜ÐÈ&ý˜èã+̪ڄ€©píG„Ö »¡‹Åõ®ˆ6»Oš¨¸ÂHJ\Èx†¤¢ÖÍ“cíN[¬’ˆmÈ^œrÍ=Fã’|«;7´Ík R H:‘y†Ï¶`þ½úÇ<×SG~Øýã2hzàdÁ®'Ýx'EtUþyy·¤÷Q–—Ÿ6Ò‰c~-ð98á™/ˆù?¦‡†±ÚsðòéWJ?@W3±.cg£Œ QåºÊ/èf?ÜÑË~W]‘,pN|ïZ¤ ËÑ¢Á¤< ”‡ÊG^ºÑ)ÇXÒV=†0[dCC9º4)L¨£M×,ŒØƒ\€çý‰¸EG»ÝO&ÇxWUõ ž°ÖÀßÓ*½N¸ÕÅpÓ²¾3›qˆÅKŸÐÀÃhÅM{h4•F/îÀ¥˜Ã6²~3Ï»ÄU.ôâã¤Ürvf$"Žf£¶D›«ñ{¥º~Êméæ6=¤ ’m–È8™¯uLÕÅ\ $4p\£ ù¶kÿ4îó4CTv_Ïœý‰I½[~ÌxBF$!KE­é¸½Ñá,gº"^´©gÅu댹£Öž„»‹áXWœå˜…sþBC9 ¾WÖõHdz€éL)0ÙSãÉ9º´Æ'ÑìŒ;-’ãç¬b™u;ë³ý¸ÐÄf¥[ô‡WU@PÔNYaS6…æœl³ü¹]à¤é—Y›p9¤ ÒålU²“ˆ‚™ÔKÜ«Úô'¬XX6b¤Ìχ›ªg½d•w9GT×̆Ÿh˜Ÿz¦—ù"ýÎÕ¤M¸ †R ՑÓ˜Õ ’ ·ð'õÅ2¨Ð®SBˆ0‡ôñä1^^|`FD~¨œ›6$”³&Ëz׃‚2· ;®}4“èÙa»hÈžBìøøúvaÓ¬ÏëpsVM,¤Ñôf¹9óŠÙê>¦ëz">SÎÄ;žçÁÔãÍSÙ÷ÕCšërpÃù ݲe>Õ(!)‘ÛÎA\|ÞqµÎ)žÊËÓ’ôœ$ÏœšýÁZ³]^ŽöÎÚŽ<¬P[¨ ™â´ ÛÛS’½Ö}›âù:>ÖZ'#¶Fkƒ^{¶üt(ÝQNág£òO4ÁBm¼EßW~@¼JugÊÊÆ }ºYn¤g®wd,?F°)„…YÊ© Ö'ƒØ°‡‰XH½)).d^ %&n–XDê&5àåÀ—¢Ã6vÐ陲k éîq‘¿tY‹ãO`h¼0¤O_[¨ÚÌߪëÉPŽuÂ8ª<ïÆbÐÚò`4; [ÙÌ%« â§ íг2ƒª *fèZ]C¸ÝTªÅ±ÍŽ)t6Ó1ãVúm¹ Þ™ÂV[pߘޢo\ð;ÂŽ*­î=ìüŸ¯óøÃaÍ îW‚q˜èýz®ØÁÍi‚å“ɈmÜö³M¡\KC¡ÞFP œì4UpIk~ãi¡ 3ár”¨Šã*‚ÈJ}_JZdzŒÊj%` „Ö\¾ü¨^”`îÜRÉãVÇuë jse)oø~8Jò.½þ!}µ ó:R¶ÖÒ¥Ñ6>Ì«6²²ß/yԗצgÕ¢×îB›Ý6ëžÜËM®7³gˆ§?>GF_ ö®©sŽ}D§ÕÚ2ž>Ùz ÞŽ¨¿GŸ7”gG7‹dýu€.üÝ" ÀÈ•ãX’Žf©XŠ Ÿüî’vQ,G›ñH‡3#Cmeõ™Ùa–¿.›B^/Åy…؃®}>Ýëø¾®ñÊ”Ïùr.#{Ì#âpðpNiÜÝ¡iÓ€¯5D`*~­ÇG€BíÛ‚-Hƒa!¹„Ýû}AXäõ$šðÚvpÚ÷™ð2ËÁ*é®´Áî{R+â'””àbÆéÅà¹R¸^RÊ7…Œ^{0ÑKAy,ź£ÇH×…u48÷Øý=V<0ÆÒ–~ñcá?’E¼¨†™JaäN(ãümg\ÊKùfäõ¬ŠÇ>ããݧ4 g®QãÇ߲̇ü}ûöQ…¶ÿDaõE_©,Ùk!ÁÃfÕ%9»°þñ±·æl_þMg2'å¤4"`Æ$ú"4Ea;û¡qÆíÞD"Y!¿Ï!tpTwª§K‹þÕŒåÙ'vaÑÓÛŸ”S÷Bƒ&*sèèåؓe€ýþ[Ùùú<ÿ–7Mµ)î+ã½–Ó„ò9…ì*§YÆ 7æÅòôK[µã½Å%hÙm—ïÔZ£iôÔ7Hq2ØgÂêmkÄã+³ö­çûÈïÏ—¸¨“Ĭî#Û!W*šC)¾5C%”h‘Óš¯Ìgް]ñjAœù!¯è=jׂ 0œ^àØZÀIbÔ½4¹ctö¢up-kÄ-R mà./ ʵ؈’Ô5W—…DüWÃ×~¨Us6R?‡À8ÆtEúW)¸-2ô(Lð»v ·ú©'zâŸñWþë.,sªÎ¯*v†4ø_Ûz<'(!Li4M*äü±ç¸wFéÏpÆÍäs?Y±ƒØŠ•xÆMí¼;ŠÂ½Jû1!˜ 0Jzíø=žzÄ–Æ'Wž )B~Fƒšwþ13}38c éשüîã–òû,SP•§ >*r3ŽÉÉ££Ê7FSOIÂÏÂ=jˆ²¸ÙtQ€HsŽár„Þ&8tCwJ¥ðÐ]ŠûAâbµÆ/¡®’-ÊvˆÛÿ]‡¶Z8Ù÷}¶–h¸dF•~ MNÝ’ÄL÷ËËÂ5ùþ£¯˜T”Õ‰Äå—ZW¼Wꓽº˜ô¶~‘nkb9ÀËM™„ŠÖÜãÉ­Tï×/R ÑÔPO ]ÖÛ™€Í­+"§­Ÿ„Ýs3GBÓÏ)ef,²îBœGÄ¡Þp\sˆ°ûÉ=ÓP{maYüæA¬òaa=¹ZÎYÿDñê(rÇUÄj¤2#J(’&<'ez9*: “#fô64>‡¯Þ[©$åzÄþsB¸$é«Ù%šï úh‚1tj,Lƒ F„žIf릡:¿ŒÝõ 'ù9(оÕ$:6¿·B‡¸ ³X 3²}ñ†ÛÕ»rãrÌàŒgüæa¡L´é™å8!¤ùQ8û#=„OI%å2iÖ‚ÈpVˆäb#\é«•.c!«FU/‹ËËL/\ѱ›Y óx„;0yW™,Š}ÓÁœPµé"«š,iº `O•K¶sC((>¬‡±&|I=iFLmG•ÍIu¸étÂzrƒÃZwoèß¿²Äà1LšVÞk ”ˆ™NtöíÞ¾GßaÓ°rì2ò  ÉàöÊHÆ·Æ]1ù.ŒÁCwËíTµq—ë8ü«D“–¬™“ö^oc’:Y+b²›Œ¦šV!çH{!šÐ~^}&bã{»\²Å*^Îm#‰ýÚõ­Þø­˜‡â@Ô"WÁ›,³o¿X6ªeb³x|uSAL§—Vt Yx4"*€Þ°fHZîQ–r^'.TdãÞÊ#7 EoG ‘½L¯óM©'ò«¼i( ƒ›JÉÅËvvÍ ßO\U˜ø‰ºœ”Cý.|ü7\æ]¤¬ÐJ”‡o:™x@p)2QªëÀ¬¨ìÊ0epMúXà6#ðW»H¯äB¤]f 89cnÄ]䢺¾œòÖq%uË«´yñSÈ||Í•ÜÎÏ•í”í‡mR_}(y_¹‚ à –ˆzO”Uˆ_;ÙœmN86ÐÁ)ýL¹ví›UホE‰±b·CË¿]<£g‚æ]>“Î Âlv6‰Ö2Móö}•8Ôú!]ƒ×ÌÎYaF>r¶ÛÆ.ðÆ&ôô>i_Ùymè°»•w§öxã˜7"­>†Ú*-¼ÝûÄþúö ‘&ÔŒ§ÿ¶p±ñÝ? ›Y,Èb¶1W:~ÂìDkC]QžúA·ÂN¨OKÏ šBÿ–žŒZnBÛÇE‚{ÊÇŠãâÑ|_”â…ï˜"®mö¥ž©zµ@Ú“ SU¥çúÑ ¯\ºåˆ°‘·§ ZãùlX©ïÁ —#!YŸ˜¾Ô²^(àªRÑà-¡É —V1Éx$\¡ü‹&îä@hÄV=nÓL‹(Fˆn°DQէͽgìC¿¸¬S:+OäÛõ8ªª#ÛPĹbÄ3‘[ŽÛD^£Nrú»`^À’B¨tüæ£>½Nnw‚Þ¨`°¤ç$Wà¸$YTº#ñ>uª®³ y¹)‚ïWÿRJÁ' !‰8ènØGnN ëÈ¡(¸u‹/n#Õº:Ùû'@ îº@ŽÄÊK܇ХÛRâóf“ܓ֤F8«Çýìº"ß ÑÆX#q\ŽV8$‚ÿù3à2½ôÏTПÁAtndóˆ8=ô äƒEŽü@Ðñ¶òÏ[»Ý©F¹õHÄÛ O¨µplеÔ~€£S¸«ïrÑrS{öXœ" Á‰—{Ÿc+UÃÕNŒ;] u˜}u U¶â“²T‡s²0‡AÀÂÅfîSLñ[Œ‚Í.Î[/^ež£ËðšCÙ,—˜À|è£_ÑÕ h|Ö# ï R› ß¹éZ›l…GØ‹6Ŧw+é‡K€+=uy̓ ”Q N}Žƒž\§»ÃÅ̧z웪¥éæËl­ë¤-f¤?vyjÑ”n¨#ë¹Ê0šƒ2™5ÔíÛRå˜<ªðéunO*žVÔ×jß|軬 =ärè[I,»föÓ(ðä>$èW^jU[w‰Õ{•a ÌVÚA=íuެ¬×ï˜%m5ðdÓéÌ>91qÚ¹®MY†> ŽõŽˆW–U^€6†cU;(q}ùE|ªÄÙ°{'QWFͧº¸Ša"ÔÓéÎì¼°Ü@ØÝíC¹µÌ_Òå.(¢I&9—4ysâµ;}Œ­=…gå.¡€‚S ,®¬Œìf…‹·ŠÙ˜¶©¾ÿ)SqVŸWÆÉý¹ßˆG ©3º&ªalWÀ±t¶Äòw L‰ì¬{–¥¦lÔßäÀb1£^Xwྥ/ká¢/¸ —r!ÝW–L_7±Ld+‚›ò×ûðD¬;Ga1:ë"Ë© MXWÀöÈ/64¦©³¦iHŒel-$q¡pFùû*:ãDßz…gŸÑщvvWÑ–`ÊØU,Ü4Úyž ßsoHtÈâ­ãG¼½µšd•)–mõ~ËlƪážÅè·õ˜ šˆD¤IE6ZdwÏPË&¸œÇ\€àž}IÓµÈsŸc59Ó½rîÎNtMÏÇk©»±Í$¥pÁ£ƒZé‚gLÀÀä²ÃK‚—KÁK2'€æŠî+@Ÿ‹œêm¢„.±¼¡†6™Àò$,S,ù˜æÄÇô¸•NBeó¸µòªF÷3}?ÞöàÙmèT#ÿ'ße Åôu6]žU<þÜÔ‚ñ¨\ÀÒ¬ùË£fè{+ؾéYhĨªÇ»í…ÔÛŒõã8q‹ø¢/‚9j¤©~“{@F¡$Yªöó9Úø\_”OãÚ°öúòüëe´½ÁÆm@M”¯_^åQ]¡5"ìÌpm{§)ÂBˆ CÕÆæqžf­»»qõêrdØH€ôÐa¡vòÆ vÃS“o—fŽjð7lÑùh ¬ª=)ÇÜiv» ×Ù›oÈIÐB[¨2uèªRhÒMÙ0’›ÚyËz¸ñÎyØÃÑ)<ÒˆÅÏöu‚Õ»`iš,‰*Cš©MîûÖ»ÉÜ«¤¤½éJ)Ñ8Qгþ ûürØ«ìx´¿ƒÛÊ\ Îf„€?ý/Ö¶è•ï—~”âEÌ9oL¶9ùªç@‘§*éI]}.'YYèÈZu#ùG˪í“ ÏçyÒìDQ6YÍÆçÕÑ@p6rj1î¾ÁÔÐS YÔL£E;ÝÑ2~V|‚Ú‹ù@xº!B' eýÂ*NJoና7wE…»º1ôâèXVK‘Ò•­ÂMR`üÖëmø¶ÕΪN„ÝÚOƒMÕû…)KD:Ïèx {í³¸lZÖ+p“+¼ðZ~ÔX«I¹nAE 1‰Xöà˜÷PfBðß«ô–>é¼l-²'æšc¾yKêUÉîz‰é}tã Ý]“æà öÿL`ž6u¾\†˜=­æð¬ê;zû‘ÉHÂcéim`Ã:$‹*8X8š•[eòzMž¤'këiç% 3?zà!J+‰–ÚÑN¨M/õ §tÛ/ ­uýnA<óí²§îœjæ²Â…[½ è0<•ÝðF C;Š~²"Ö€ÓS­,”àþ ªíåýHÒ»€±JPKA°ÀVjØ1…æ«¶‹Pm’(²jõJܨ71 ɾ`”†ìÀaÿ9Z¯lŠÅF|W¦’M1–ŽÉD—É}:¤½ñšN4œ´ÙškÚ1ýNšïpšÐëžç³xàà·‡ÜÑŸV—¤“¶l_¾¯Iå0,Kªî¿€á©Ð»„~ÙÑóLB<‹ŽS{¢“ìÃBìœØ­.˜y¹d« ª^°#hCÃe£Á©ÇvO§¹oIgƒ‚Ó——!nš­ËlïÙ(²Á.yÚ¬G{5ÐÇvÑàu“ïv/£ â–ÍÏŒ *k+T0as§þ¬&Áñû@êMxˆyHÙüaÑùçŒ2-´ñë°,´mü}wRçbÁ}hˆR¹×­ï‘ÒåvÞƒv›lÑ9jAŒàaƼœô;²ìm*Fðñõ‹@[Ôšè¡ß\šÛÛ»ß7Ùgk ¢¯-öÕ¾Y‰’MIC5-‹mCÓ•‡¹O–IÌѸŸ7_ßÙÃ׆¹iš æÒðøÓ¼C6ŽÄ¿}„R`B‰ÿ¶n¤õè­i&Q4uyý>ùGi endstream endobj 6311 0 obj << /Length1 1630 /Length2 20367 /Length3 0 /Length 21217 /Filter /FlateDecode >> stream xÚ¬·ctgo³&Ûv~±mÛ¶m[Û¶mÛfÇ6:êØè8oÿŸgΜYçù2s>ìµö]¼ª®ºkíMF¤¨B'dê`l&î`ïJÇDÏÈ ·²3vsQv°“wà’¥S6³pü•³Á‘‰8›¹Z9Ø‹¹šq4ÌL¢f&ff @ÄÁÑËÙÊÂÒ@©¦¬AECCûŸ’LÆ^ÿ¡ùëébea ÿûânfëàhgfïú7Äÿµ£Š™ÀÕÒ `nekQPÔ’’—PJÈ«$ÌìÍœlŠnƶV&Y+3{3*€¹ƒ3Àö߀‰ƒ½©Õ?¥¹Ðÿ%ä0¸8š™Xýu3ó41süGE p4s¶³rqùû°rX8Ù»þí«ÀÊÞÄÖÍôåæÿäèìð×Âî¯îo0EWg+GWÀ߬ТâÿÆéjiäúOn«¿j€ƒù_KS·Jú—îo˜¿ZW#+{€«™§ë?¹ŒÍ¦V.޶F^sÿ æèlõ/n.Vöÿ‰€àlfaäljkæâò7Ìߨÿtç?ëü/Õ9:ÚzýËÛá_Vÿƒ•«‹™­9= óßœ&®s[XÙÃ0ü3+Röæ&ÆËMÝÿCçnæü¯Qþ33TA™:ØÛzLÍÌaä\ÿ¦Pþß±LÿßGòÅÿ-ÿ·ÐûÿFîåè¹Äÿ¯÷ù¿†w³µ•7²û;ÿÞ1€¿KÆÈðwÏdÿ,[#çÿŸ‘•­×ÿÉë¿Zk˜ýîÿ!˜”«Ñß¶Ù[ü¥†‘žñßB+q+O3SE+WK€¹‘íßžýK®fojælkeoö—Ûµ@ÇÄÈø_tª–V&6öÿÀöo•™½é­à/]ÿÂÏ ¦¡")©Nó¿Y°ÿ2Tü;®ª^ޱýjäLÿçáŸ0žo:&vN3'Óßû÷3«ïÿ&å¿1ýçYÎÈÕÙÊ ó·nF¦Uÿ?žÿ<éý—0bö&¦ÿŒŽŠ«‘½éßiûŸ‚Ô&nÎÎIþ×ø[õœÿ5÷ffžf&0«& ðg»Yœ¡nþP¸ ‘>;"ø™¤7Å£÷ µ¡4Ÿ_'Ÿþy¦ù9>6Ú>x„K“MÆc„é—zN”âêeèüØlòþæÎáR³’Ó®Q‡œ¬æñ÷}Õô)î*Sæ Å·ð!£àªq¼ŒÇuxlsI?-á¤Èœª´~cϪÔÅ:ûæe?w†Mö:Wœìï–èU‰ ’¶Ý/duJAÉ‘ålí°DSIuFN¤L%-õh¾9ÖF21~„hÁ†€ŸU)û‚¥±úÝ®¾P|}@µªùŠtc|V t±L¿=¢xµ¬Ã¨/bž!ß”+Yãxq@ÒvZ0„«f¬kÇ6À!2Zãz‘ë=d®ÉXްÑ%wìZ¹c¤òÉ|RõÛûuzû2ÄØ‚à— çN†ZdÊö¡¼šÇ´$û®€*d ùãä üXSµ/>–ëG[Zhu¢OuUãæt §e÷G±¤ðàgžoX1ÈÝÔ Ó&áÃ<£l–âFP¤?0X0ÚžI×iB7xºµ£±tÌ›^ £Äì@â×÷ýe?f¶!EÞAÔýARª=¶ :£ÉÉ¡}ÜݳW òkÑI{ V>CÜZ½S1µJu›3·çÜ!r¶Ò,KŒm&Lêð5ÒÀ€QUgø{•Z¥q+=óÝ=UmvŸes”¦ÌdÉ4bxd|húk%LIª5Gý%›JesEkÙììÃ* B=]Ô‘žÝ=ƒјžŠY„€m\šH¢ˆBW%/µÄ¨àQ,VÀ¦ÊX!yJ‚ ¦ò›~`õWÏI tµ¯¢G׬ö,.öžV¬û1B^÷ñ[üƒÖ4Ðü—J%FHŒßû˃…böüµà¸À?åõòÎdCup;ŽE‡ßT毇i/ËwR‰ ,e dèKërÒcTÑÙóp9œ™2‘nkúïB/­[œÝìJ ïˆ~²4È”œÏ\6Ÿ,ýÈU×6E©aüˆ ì‹ ªÅRÔÈ™ý2Òó!6*÷syâ¤×¬Ã)Ýý(—@(£IøEŽXõTùÃYµ!‘ëÇ,Uõ^IޝÛLur-³;OÑív×§à[ü›‡ÄEv+þ 0î€ :ÓÖö¹o“l(ÈÏHk<Úylœõh–ù66Ûä ¿ #ÀÍa£éXI1;ì#^>f“ñ»K’\ކ…šóéà+ êûBƒ È“w_WщÃõWAGNð 2†ŒJK`O¢àJ.:Mã“…ˆh!üø ^é®<é´ÀÇ|¾-éË,úD5â¾ e‚`´<4ÃNOÌ-èlV°]Â;üm²‚üâN¢w  2bwÌi0s!v†¶$J\%·B?RRV/PÄRbùŽÔÿ\4¯¥šg6¬ùU:dMµX1_i=KþÀ›>Ïô:| ë¯}h”öHGpC/2· Žù^ž¤š4«ÆÂí»üÛ0…Êä~Ÿ{s|\®À÷Ñ£ÏáÒvصìY¶±íI žA$ÚŽô©±áÇrþ²™.Ï-ìQŒ,|Ø Qý$âï~¦`;øÍ£\' [‹ƒùŒýj§µ±À‰uÝïl—µLÁÁîý™©³ñ«aÐŽ®èWòR/>Òæ¹z;§pŒ»ïF;:ãè-îÁ¢Þ«©,åÃÃ:Ú‘ [¬ã®÷X×× ‡·¤ 0dƒö¢õª5ÎWí¬ÕÅ.wmãèÇfYÚ[6/¿IùÈæOÈÃÖ©¨ŠºÚ+¼±ëN03ÍžÖ‰ùÍêÓä©SÄn‚¥÷lu¸Åcªþ÷âfšá_9ë‰|»ù<`À9¿ÖHŸ•±ÉzÖÑäL_¥aaAü$²z‘#Rh÷ÃîŠX?_j/Ôhüüª4ü–V´€aÎ%!¡ßMŽÛ'Y½´²ücgxйmèL㸤ÈÌÒôy|\{b$γ %OÒѬ{D-"Š'8‚þ¤ÏPÄí· {óc‚’ÚŒ½î&/’^ñ7ö«F$õ˜ØÊ'†5¹Ï-s3µ–Š1î¶-—å±%¦OÞð'þ$ýзÈ-jE>‘i«ñ¤~¾,ȘxQ…aN<ûq&À 1Átz ¿Ý;þÄðÅX„ IÉŠMìÕÁ¹;D‹¬µîDâm}‚åÛ¾o¦~# Š<»k=ÈÓÕ¦F´ Õde#õœB. €°ÔG}é¬Su¡Å‚•’ºÍàêdküS)z·ÜR )£É 2-}9%‡mOýí¨ê. ›az"~ÊL §ÏSz0ï­áõ\°Z΄ì€C^òŸÉ´WõõÄ#tlô@Ï¥LŽ^ßí@ýö}í3øÉÕ´Bȵûêƒèa½ùˆFÒ⣆/Y;š±¹`ñ¨?=Œd­-&•bìŒéÅÉÝUàÍÚºµÜéB”O‡Íž¹ã|$~™ºÏìßú¡xï³¥ˆÙG«mF¬¿]DÌ÷[¢žQByU_!:L•j¦]v¡7ÆWkÉÕšÎi®¹ˆÜ#¶j`Xa›ŠÝÑ ¾Òå×ÃPëÓ $¦¥*Âhƒãí±nÜUß‚ ?SgE$tK2êº?€yÈ®x Ðº\ëˆÓ±!€¸eÑKD•añj~Æ»Jt ÊüVT–X‹™‹¿Ê.dþ*Ñ–@±>ßóaN\¶uF”q@l¥e帱ðçh• ÅûÙm8 Ûwºë€&<æÞpÒ#C+¼ˆ‚ª3sô~ó¼bUö(΃2„¶‘gy‡::æCGÆ)ç׌ïu0bèJÄ™Aqð6¾u%RºÓ£‘îõƒpX¤äìÇZö|¯¿ 8*Q™&Ž#¿ÓWÀŠ£0'Éáå–‰r[¯ªw¶MWuJ¹Jmòwæ«?ÿXW³í\ å\›¬ z†‹×4J¾­¦Ñžžïˆ=tÚ±fPF3U ¸ÝJ¾ÌM{ÒÈ‘@Aê*ßc¶=Ù Qgf«õ/-l V !¼ÌÖ tðGK›¢ª%0Ý´i³™³è¤q@eŸ´p»¤wÐyq¢ôð†§ŸI­ÿF1|^ü¾vüϹ•aìKV ¸vÍ®Ãbá öbhô­ hâª{!×´`ûFgÒ²ÀÁµÉ“/xŠ^íÛ °Ñ<…;!H ~ÝRjÑ ?°v¼¾ 6Ȳ÷ï"4bùà¢×B˜ƒâéBw5Ò‘º?§%'2޶æŸÀ1#ˆ!õQýR@%±íŠOîER˜–ÔF-Ó/ñAí# ‚T7ÆhÙESˆìk«šëP€§Œ±XŽx»ŠíÿNêË"í[9ÛÀ?oã>“¿¼©Ã·Ó$Ÿâ–Q_;«ª ¢õPä×ÉÉ?¶ &(¥‘À x7 í}q¶™Þ—ŽÂ Ùè&GuVéŠÖÄ:Ñ*ŸôÂ\&•+Û3YÚfÇÝŒh)( ×W+¼iXWj9Âê±F br.ˆvKküL®ºC¾÷€ØTµ-ÜŠXÙÊ>3‹Ágª}¾\‚Ãö -ØYPõß ó*Û;Wÿ&@ÎæÅŽxp.‘@Iq©6Ÿ†¥€IzÆOêjz’ë>§Ç²‡ÀlzH"Ä)曡ÅÓŸîö…ÊE|=Rq®ûâ]×d{è×ÞÕ*3(tT²¥Àu¦f€ê%ÅõĨ‹ðTÿzrNÂÌ o²éœÃ/›¡iHÚc°>„3ê<é[XàW‘ÉÄ@*°(„¼´‰}s°•%ãšpý±Ä¨ñT9\y(S”êlâiKè9wËê]BÁ¨*iÖçÕ>bä×$sI cýG=òÍÁnšÉÇßÊmOŒ ¶”“,¸paL ® q]_mlß~)+l·Øsõ¨ï ü›!‡ûwpL`^ªûÑ ‘%ÈH%ê.½ã^l°›y‘‹ßXGX yá0ªÓù äÄ*炽ú D²îÐÞ„caù¡à Xây?ikOxž[>V„z1Y}]ByÒ»<¼ù$œ´i)„<^C_HëªF õ“à +ŒT" «%ê§^åïgû‚Ý’GÔ åËêy~ºÅ—SDþ‰•X3beŽlŒ÷ÒÜt•öÀ¯_#ÓFXT½“,²«)&Ä1 ÁûâNdí¼y´ÆŸõÁXNç0ô¿d‰å¿ÑšpHæ}û%kää;{Ë®a)§~·V¸NUr¬v 꿜ôâ$?„eGœýº¿áZrÁZ“8‰>æ†<­* ®êf ›qñâ"Â3 /!rŠ¡ÄÄQ÷-xÔ0´â[;ˆƒ |ⲇü)s¸}E¥;‰ÅŽoÛËÄî ^>²,ÿLÀ…©—)·Ô@ÞmÉÍ¢}†.˜×¬ IHc25£éå}Ñ<ærƒ¹o‚oˆ®5¬q HrÒò6ƒ$ð_ÇY?=äÞÓS–ª~Ù·1ÊÜ94·Ó¬¾„C í²)G 6 $ÎH,‹ìÅ“³8#Ð^]Ó>LŽDbGûàü”RKw¹A‰*ɪY[’¹ ”÷x­ò’×èE{ö,}Ø`BbÿxXÊJihâÉ FÏ75ØrW2ö¡dË5GMb…¥¡©l+`T/w‰,Èb/3œÎ`t†`No‘RªœøæÐíÀœµõlËÄi-½YÛ‘frBå+œ­×ê qRœÏGmá*³[^ºä£N˜Sv«Töá5.¨#-CÈóÅ4;ïu›ùÈBX’/ç~£‡š »• Ï ·Êï@á»J‡®pk¤ð¼½ÚM!¡¤d{ÍùþnU4óIìg¸ö1?àWx–½ªa6cŸ$t»ÂG±8ÿAþ)êŽvPXŒz[Oú³Äî ÃÂ4. —ÕnÛ¹ÌYJ2&‹~)÷uÁǬ#‘½l.UNüìž h|6±ÎiM˜ã™Òä‡ïó9\PØMfÞØ²N{Àž¶«é‚ƒG‹2{wöwŒ¬.º BMT¦ÇÍçl}Ôóì-k{†ñyUP/È“ùÁ^àˆùü£…†%6ÙX*‘NscR’Ø&bâpö¾¬(µ_Èf§KlDWUÁÒ þ kÞ<¼\u2}aY¤%N¢îÍKi7Ï^A]0ñYÃ2š$RñàHq€$þ„ô‡ ¥®9ä7Õ Bz¡©{Œg¸{^DñïæÏƒ1.Û66· 'Õ¯«ìáÃΞ¨¬~M®kug×ÂÞ…•aÛD~tˆzeR¶lzþˆY¶}URL˜zàà®GGV-·šÒt”¥1‰1%À9 %ÑÝÂ\ÏzâŠçï%Œüݲ%!¡M8Dù TD_M/‚UÒ^’_¶EÐBÙ3¾2™}# ¼ì÷]ýeoøýz"·Í:iõ¤}uÙ9nb¦Áuè+'%¯ayáÞÞ€J£Rcô<ÕÞïç.Í4‹Ú«Ùµ Ü={O¯í+v.|dÞ/«q=ÓNÃ?®•¡i(ÎuŸíòE|¡õšQ¿ž[øGœ“&ˆ|`æùÂ÷§‰{1¯!MR*Þô'‚t†ë£ÏÕO^ªO>ž~pÆ>·Á{ò©'hëy¤$ÈÂuêSW°¡)ÿ"nÔzs–¨ÒL@þA›•i!™ØÈêƒ SÛ±\'$†aÿ«Ò œ¶eŽôAàÃð$€ `#²×°Þ»!ÿ©~ ¨ƒÝÙÐÄ´5·£é*,n¨˜)hQ̉yÆÍƒÒËJ4m?°«}ñ¼‰:´é5E« Û_ã#Bv«£_ùv…­.¦I‡Mt*\Ígo(Dz…>wÈiÚ¸Ð(a‰þ ¾ou~áüÑ„—ð6³ïëA¿Ð"hdAP²—@ÈÒQј^¼î '¸zi 8¨Æ0uC÷ÊívØfë% Îõ«ö'Rz4‡€ Už[gÄj`vÛ-¨N÷æëKçóû þ¹Ó/•OM¢ùLù#&Süã÷Yƶ;vWYDHÈ"Cç}C]H†ôM©lc"…‚w¨•Aïʺ "î5lÖŸ†ä-ÉÖ¯Õè»G%Í.LÜTÛy±³Š£{¾þã¦,s+uÊ /©x9ô+Œë±©±ÛÒqgàå6²:Ç…Ž£Z:eÏçEÆLÐÛÖsøy¹Ûž¹ñ"‚ËTŒ}`ÖÊïäæßä>ú»ò:!Ñ»í6áʤybц´˜º§N~‘›à³Š‹*1¬Ïh °ºO ™CNmÇ¿ÑV¥}œ9(Ù.¥3»¹Êë¦FðA±vÔQÉ'°úwYhs€Î,ÔNP"}°;Cæ÷RÕ.¹œwD”“ËJ²²_GYý‚„ç÷ìq{: žï¨,F‘Š‚*‹—êá¶ã [ÄôadReÒß3F F–8êp‡¸ÉÑ ñèÖTYPDG´éÓTOà ºs?9ö(Ÿµ¿÷²B°!˜Q³ ÌÏлߙ»›넪X\ wË2M¢K¨n¥rý1>?ž¼»\ã•™éÂX™¾óSöª‰–ë¹¢Óbrß=~ÜóúýA-1³ãë~¶q…Œ#>„J{%™£¾ò#ïnî.ÀåI5Üx·¥ŠÑ9U©¾q˜ç;æÁ@¦p·ˆn×;,>·tRø Œ0gƒ™á•sWíÞ^Z:_ë€KDMr9ô!ºÞŠ#íØ÷ûð r…r¿.ìÚ.m•v’Òï›ùU1Óe}älÂŒJò$YþÃu+ze}Ë["#¹:yUÒž*™EaìNãoÈD0÷Z( nÈ)F‚â«ÏŒµ¢_øy3žÜih⟩2à˜¶ïëyðŒË5 TÔ•¥å¿+*ܱB_ ûÊ‹â Å_Ä-®¸–² á6êš—ÓÂÕöµz¹ë+Á•¬óÜã®Ô”"éð£µy¦­MõI›Nó%ùÎ(9« ô‡µ‚x¬Ò ¥Ä¬ÑñlEø÷¨‚~¤úíÒzÀ¤ýåäþùîÐLDzŽiîZH¦ö‹ÒïÂ#;™GuV ±66»XRhßš†x#¾C;¹[Á6Ÿ_Ã"œzP^QIéå2OZxMápúÝÆ/úfòö_g'WÌÙ‡±;áÅB|”‘l4²ƒ9= îOC„˜[ÈNþ'âÓÌLÎÀ;‹¡xZ+qÈÞ¡Ó˜úä4‘»[[þ”I¨eš„Ÿš}Çö±‰?“jÓ?“y{ØHÐËH@г}b¿©+Y ÕõO¯ëg„Ò|§O"°mΆxÚõ¯ýrõ« \±áŠ·›½À¿7 Š9Ç6œŽë^ÌÍy&ïcý3ÇÜ„òC¿”˜-=WºõGj)ÇÃâÀr.]ŠË4mù=68Ö¤»XPæó!ÄY á&/ —ƒØ8ªñ—-æ–"_t> ÿ¦N_?ªAï®`&“<«òÂ01W ƒßH&-®¢è 2¶÷W ÇƒŽ¨1泇5–1álëè 3 (¯#Ujñq E;&JþÒºÑlINo–[¨-XèÌøzó;©håV4>Ôeš|@9†ËÇšb¨†€/çò²(lj ¥x­”fÕšoá{¡À±ÿŽ$oèÑ5 ½0‹x–›H䤲¡þÓI h½Ä.MKï$ÓçaŸ†¢x„ï,í²&¦²Âs·…‡Ñiç°Ö‘cD^lœEÂ[M†EñMœDô%]ãÕo[ChÀ|ß ¨5×c]Õ‘u’à ̽ñlá±Ü7= ç‹bFëÕÑ’7Ú"8®f“õ*:¬tÌŽŽûSPèå-fj§m,õ¼)¡l)ò ›øˆ‹€ÃÁûëvõëcJ?¶›ˆ´€ ]Qeɦ:9->¢Ä¨òÍVŠ´¬eá(Õa‚žìèÙ¹d=ñ'#€„jMÐäª1ÿ• \ëÁɹøxÆ©?•îÃIä‰ô5}V&z¥…áªíÃóZ«“hãÕN´µ™9Cš!n¹:þÉê=x1‹§j^bž.;bÕLnm¡ð‹Â\]GëºâúOÊý´‰-ç§]óÏÝê0!è‹™’ŽNU¸b«€Q>µÛî×àè´rÓ4­gJÿãùM0±%ßž~—Ò‘¶6æD~‹´Vö"èo©µçãÁIV‰¾SwåQ¼$×’ðåáõfÁX ²É¸Å4ž&k;§XÅY¬„M2³,<"ºœŒÍ.oŽ•u(‡CGˤ6|Þ0©JÓ—®ØáŒp­ÂåÁÆý6m½áS‘…7*^d¨ÊX¼´qGÛòuÏ4dç2“7`˜è|vt¼~„–dN+!Z&÷OY: l|¨¨þ "Lµ¼’•ÝdTEião\Â¥0|Üß*v„× u=à ®Ã”*ߟ‘6·'5©_±2@ƒ·×hû8Œ#àz=ßóLi÷Æ—L¸Mß&v©Ý€Mêæ…YçR[w+õÉÉMPÄwæºÛ Ðõ øð{%x ÂÔIÇ«·ž’Þ— Cà­+#ºRï’Þ¸cv J{¯‰—r.crQ\ÉÝ{@?ròvÖýÞ&ýòÞ¾D»~8¿Ðqø4ù ÙÌËÏ¥‹£¤[/šñ¦Â™÷2yÅÏZ…QçÐÈ(}¾ÕϲûZSÞÔÍ»ëRBŒ>DÌF>¿pÛ|ž´×Œ ¦ÊPÊÝ…61ÃÂÌñ¤(5Ìì+,_Ñ)¡æÍPÿì·ü4ÝjgƒW…#š¹²"N.3à ß2Òòh‰Ú§vg7£%çkâ>tx¿O±«\SX±z!´<Ö¡hW@Ú¤,MzUû`Þ V}®ü+ÄâÝ.xͱ!‹&qž2m¿ŸÊ®„[0IP§ÀSw·32jÏþУØýŒÁuCÏA†Árjò4MÙ¬ Ë]ŸÆÈ™Öûñ‚+½·¥”ŸH†:Õ͉"ñ(nSË% Åc:xÔ+*VF´ôE~=±hðgß\ër„UÞ F! ô4¾fI¸³WïÇCýÌEyvˆî–mI¤C÷ÿ—l^v¿’ßTž½£àïTä ÂEÙ›e¬+T³9û¹.íí~É®Wk÷#‘5ã?q­Š Ðaû§”q ;—|ºí _z›7€úK¾:Õ%WýnvŸ-Á‹ï¶Žt·EÉXñSNC7¢\JlI‹ã9>°î®8 4°§[“r´’–ÐÆ4`,Ü‘«Ù jT¢<`É6ƒÏq”’ü—6œO2ÊÝÁ Þ ˜”LU\‡ÀŸ’ÇdOãdgˆ|ÁUï׺Xø@•Æ6lÕ`jý··Ða¡£“ V~„"p8MÝÍ„¡”Ûƒ…2…O}¡á‡Ü“ÔRøv™ö;&.š JƧ]Ñdæ´Ø±äî3e¸kóàêÙa ¥3L½Ê+rª©FT°CzÝÜ"Ùd¼Ž<õ”©`bn³„ª_šŒù—Kt œˆ#,pP‡ÖIôC¯\ ¿B&êÝ!ˆÏ9 hû$¢­ù ’{Y5çÂÎ…ÓŸd°æJc–¿ÝjDKÆu8e%‘ãÄs§£&«"A¨{ÎÛ¯æµÒüCî•GþÝÉVÍø[÷m ¥®Œn€²„³s¯€Ú,SLåso½÷f]åÖ¹!°ŠwöuƒŸ} ßT1Xèõ–$jt¥Ð¨ wõ@Ÿ+üêÛ‚1‡P‹s›Ù7®Ï Ì0´ÿªì–²(eP‘.´>¸·@N‹¥Ñ*dTîÁë·ÆwÛq¼¥À‘ådâ¬ÞAþãï;ù±À¾›KB`£Ò.Jm h)0:´!'ö|H%­"\Òå’Ï;ŒÁ_°äTb'ظµÉJTØH}—[ä…^XwðÇÐrP·ªÚ¾šb‹tå÷fHzDÜþûIŽ#™'$ÜŸUL¾5N ,@œOÁÖe ¡g+<3ÌNø^«Á>À5þSoÆ^¢iýÜo'>CL)Ea™§'¼ÂƒAø°eÚø|·Ö!+úÜ/®' ûîob'ÖCz$ãDô[Å€ÉULû±éÇrE…+ɪs~`¸l°Á›hP3ÿ£òzÐ Ì5M-иÍ\ްHì(ÔßBqÙ0Ѱü^°HX$]ºmÀ«…Ïþ¥ñ„®Ž¡ÄÈÙÔbv3£×ºU<æÅ×Ê@ñås)¢æûþAý9Çòõ,U妧Mºg]ï^æbßÛ­Öý±ÂYßê±èlè'c³*5t[Ö`)Ð*n B*=tÚÿú‹~2 †>×¥ïQÎú.…ERYÐ-ÀoìdMŒ•¶àæÏ!¬6k}f†ùXk¼Æí¼E/:WöøU/ÝÒáû&YS¦Ž5¯i ¹0¬ê6ÿ”Ô rŽ|¶D/\щNæP0àÝE`W^CÞfþE eò%8Û9ÖRؾΧ"‰L£iÄ*gvUÄßÕKÆ¿CHSÃÆ·ÚF(Öñ ãrÓ‡ÄOhÎ LŒ÷Õ¯š.Hˆõ,ñÚ*5’Í‹ (œ´ñðYÚ€6ÓåÙ»è'B~ØÍÊÚo5ÆŠŠ…ø’¶ƒmâ†ô ˜Óðãá“›f $é0ÒÇ“w½åDcÐeÐ?%%5ð> Úu.æDö¢œU†óK$àHA˜ÙIÛãÝDW$³éõ- FQà[TÊLÅÈ.µöÒáX–ŒS%œºIÓˆ…äÔS£m às@=ÂY¢½’‰+÷op$¾ô–Vµr®÷6ýÆ^À1ék·ti½ëi A@ežÇš¢A :Ÿ ÃÆ'üž5ˆè2±j {I¥OmͽßA©,¶ÿ¾»TÚÛ´óœ]Qb} ZUƒ;üÁ¹2Y!³ž±:¤¥I„èÉg'RdMÄ­8U¼ bm”´«G¶Š4ãÞ›ž•éd–é7Hh½½(PS—%AtUù¹À¾”k õ%Â2 ÕËõÎÜÿ‡éÄXYµàÂõ™—RŸNy5ûl¼VWÇ Kp7? Žé«[rCØífÂÐd×µZ¼8^­»Ìg—,'K+#ËE‰–-`ºVÜ”U½ÊPY´˜_û× &­síY^%Á*˜D1vàÛ¥±Åaià©¡aüŸÃð/ÃT=;â k]Prª Òi\—ÃjRùÔ‰uFÇz¢ž¼J\×KôÜ  ]ºšƒ? ðWßjlÖ#·áºV[ ô^ø•nhj³Òj€‰4³M{€°eWÓÅÜš91bgHj“){4S·=¢ |)‹¯–ÜC‚1´Œ`˜RÓ@»„Ì‹šÂvI)Vã\ýVe“ÞhDâ“Áh…',…»™‡”H(F¨ˆ$ WiØ'/…7–^§4LS«ä"G>!C𫟢ʪm¸è–f ±Tœv«èУ[âô‡>Åyz¼vÜçúEòëÁOy ¤*Œ._>ø7Ãå»ÏÙ‹ýä§Ô¯7òäÌ1æß²ð’ÌÉTµ¹mÎùDÍjô@ýÄÊðªOrùEj„âyH(¥bV¥¹&ñÂ@ˆN¼ä|Ðè´se„…ÔºÁcú3¢UŸd¬›Pîo³ì_\,ø#‡%SŒ£—ùÏ)´0Û ¹Ï°nõ§0ùý9ˆž’Ó•Ï^"{‘X´=k7ÝòÏuØ×±nÎUÖ½‚ѧfÜa[«³Mßâå==“®mKhÍÜõ÷XpcÈ&wÛÒÆÀ¼ˆvëŧûeÓöj"M0jIVx f[ Ê<Žtrð]l}H%¯1Œµ…݆Þù\Ëaãî­>™Ø·f™=ýYfèÖ-[Ü¥!&…ÏÉДXg@39ˆÍÃÓ•Üüµ4Œ•yž£þ§!äXÑuñzñ¡Ú¡!~þY•ù"w¢ŸlÖjm²¡œ¹YzÀê»Û Ï~.†‡ôœHÐX™<Š·e0›JÒЮÖ_­† Q]ýÑuFãŠò(`LvCYoßyœá~'b„Ï¿X¾Ýʰ'¼Ò3$¥á‚Ï8fKÜ%eöx¹È¿w‡tW£ø’s¯Ìjþ’ŠßJ£—fù<©O^ M—ŸÙmÀö;…qÉZÅëw)Ýö©_˜ÝK¦Ö žéxáïôÖ_ƒ%îîâr•ˆàõ©3Ê\—Ö…"›ìá\yÅ6ò§­IòÀ¸S&Óh$§ò“Ÿ¿¿+o’Ð͵˜7}µpÂ'×tç]Jü¶£„”Vý婳‚ÿ}äáb¹;c93®Xá[ÃåcþùÛÐõ²øRÿ Û³šwÎú$J‹‘ˆ@jí;—Ù¾-0…üÌ:O²â}ŽpLØ®ÉZs4Ý×ïùÞI°5äpRJî«à ƒao£•¸®"8e ßÉïŠÔ £ãš;zQD­<Ž’ˆÝt3@dyø  «Fиý½>Éó&Ê ‡Öo“þƒJŸK"k㢦Td½1®Hv‰#‰'YƒÉÊi]·ÙþbI¾Y¯Ã!*díð•U€Ò^‘M’‘<ÑÞåÏøýHé0QÿÙÁÊfU:ÜòHŒD+ÿì—JR¼r¼†jNL*ZAöÝv9Q¨Ü`ø•+{ðŽÊã‚Q’CƒæiÚùѯ}œö¿»ªðܹ/Bgö¯m÷ó‘ ÉœéÞˆاþÅ |±þ GS7žæIÃ}V¾Ôà.;`-ÛÞ9í´7fôM¾ôóZN=· L¬Þa™Ù”3šHˆ XánÌP¨ ý¨À”ræ$"E(¼,é–丣n±‰AMZÍÌ»Åey`ƒêün¶^&ga†cÁÖ“Ô›ì—p ®4/‡Ÿt……1=|™$2²ó¹„K.…VñGI–hÄY¢ù«m2·ÜâûŸÆšn5Á]–½›á¶E* f9¿ÐŸw ä-='7ŒB~eC°y|;Û)€4ŽƒÅ ;ŒuLf‰Ua"hT6w–Ž>²:ò”¯×à°pHF”iJˆ^l“ù¼ ÍÌüŒ ˜œý¢ï El,?Õq6=…³5ïÎC!¿%n—•ø…»u õ}ú›?ƒ{ÅSÈa»+‡ùah‰À[Dléø¶Ù#äk–eíºð±’_rðƒ:%·ƒ O»úþ)ÉdÃÙûŒ m£åЉ©D„w%)k®¹ Mâ6ŽÂÖ“ k$óܹð¤ù²W®?¬“ŠöMXC¹AÀǪ5QØ ¸Ç IÏ›«{ǹZø!³Ê uóiQAØYß^¶%}~›—ÒSzsP¡úc¸\›½ò‹2w”o`·îsÓ"²/ç¬÷M›bV܈£¦øA@þLkÅ¢ÌçÁ•$§hw'ÆmÎbÚm‹Ö ||»¸Ç¦tý… 4s¤èŸ5'«´ fUû¾$›!üd„¶·ÜÕêy^{"Ó1°óã2ÖšUùžhgKnhÄ᪪6æ¦p ÿ‚Ó• øýgjæwõ¢‡<ÎÔ}i’TÉ&A¸ûKcÔÉ>;{nЊSõŸÞY¯µ45»›Vó´ñŠÑsõÇelûBßZmóŒÒÇóÈ—q¥/·)îCÑÕUSÅîçEÌǡ״ýj©îr¬±ÅZÆjh.,pèµö57α$¤µóŸ§Â/ò“Ø÷…Ž™[ ßk8Rаß+,\8ø=®Œ¶j£Ç9,Œå³–4¥•â†ßîðf©=ek>WŽ,à^ºÁ‰Â p²bòë&ƒûÑ•BxªÇAØ¿¥ÙX¾Ž”+¡‹ _3ežŸ/<ò*…Ü÷Äo{¹µ43bt4ñ`Çð¯.­pñT|ij¢ø»pé.¢ÒÚuÏòµáæf½ï‘t „¬|Rïw\ „\3Ó×£ 6ðrªúŸz±Nþ26P¿‹–˜øDë7ÙÑÿÉ‹£ä#æ!iR¶gµ°g«\±V§•êœ,(ÉÐu(²rǧyRøÊ¦uQÁK”0¯mƒ+|ýÕec“Ie#4µ9\ò.ÞˆŸ’18Sf]»?Ïf,ªÎ›Èæ©§|€ áÄXé}ýªÏ“Ó!b¡sñ^Ìù¾ÌÞ¯vbžÀÙK­6ž^J"( eë!/e°òosélÑ[aK Íý©NX¸­ƒê(¾ÇULs&Ž[4F!R÷ $T¾ŒÆèŸ¥oGï¬Ö¹í ·é±s­À é믞½·ÝÈ"'ߪ§äÔ9ÝÇu}9˜±ÍWVêSê^àdùÕ†ç }w^¸®¬þé…òlkFÝÙá"ö›S£¡¬yoç[\Š•‘ TÉ'Ð$pæ= íC9óQ×"|õã‘ø“ËÏØÏ¯[ÆUuøœSÆŠ„0 Úže—nÅ_Pq4QWŸÒaª¬žø§›"B`¬ZѯF÷T¿ Ì7±xTÜ Þá»`/šT?”wÝ‘î“Æq–Û2Rû¶¤ìÀHšû·¹?%Â/µ™cådÏ1eM7Þkk£¥oÎRQP>óüEÕ1ú/СÇ 1ñŽõpŒÚǨh/ÿ·3‚ÁDŸé{†º hK8-SØÙDáQ‰ô5#É]lÑ"w×A¦{áܤìAض=âÑÓˆJãW´àâÀ––k\-é“eC<`ï~\ï0îÒê|!8Å‹¦IS¨$ì 0udÛ¥7g¹zJû+bpzªUD÷Q š”ƒpÇ%¤¬‡ÍoÕmZšÏãcñbâ¥2k”樢üô1ÿê?¦‚Ôu$`‘6¸Ìòqž—E=s%Ö|!6ò>ÈÁ//ǸîqPFéœ0 ÏGoý¶»äA‡€S+@}úôN[/C<*˜ ó¯óH5’3ˆ°ð^į¶íäo‘û,܉Ô=µ´ùñ{÷;6Eƒ¡ @®æ¨K&¡ÄFZ—Õ]Ný”´¾Œ¬—SHÇB;,eãøP®Ëk(Ô¾“ž¸æÞ{'³‘+ôïר0>ª‹º«¢Y¿ïš§*³µM·Èiõi…cðŽDMrAùgqÒt¤Avc.Úˆ¥§A–YE¶Xãöô‚þƒqåÇ23†õ×󨯸n _•W=â§í·þv~!ee߬‡ ™ XgM£ïFΊ”ðè@ûK·8§vÛ´í†Çd‚_ÓÛW×Q¢Å’Qõ`¡£ÄT¢ñ0Ð@ –~Y("?d¦w¶@³V«‚$@<41_l­Ê¨ƒQ¬ýÛ–÷´«/e.—^ "[2"ÜâÚoëû÷¿*ýM§á?¬S ÀMæ9ztó2àpUjX ªÕ!ÜÝ Ø6ÀTÃáñÝäè½¥áq™“9¼‹ žrb¼—¶‡È!BÆæîÕ9+šG‰L]¥nâí+˜®¹á?ªS&m•‚¼:ïå¡e?…Üwwb:ÄX±×)B¿{`2Ò6_Ùçbéä l«Š ¬ìÌ$lä%ð> €7œ…”–y·Æº+øb”Ž÷"¸5£ìûÛ©µº#«2ÖP—äg¢MlëŠR´—ø“þ¬·ê‰T[ÓÎŽdk'äÀs +fZ‘ôÝÚ¦Øæn*šÓ§œªr) dJ†€*Û”„gjgž›Dÿ |ÐѰ¯Ô“óÐq:_÷Eeˆï]j:ޱÚL¼BA‡“"øû‹Ñ>fv¾cÚLk‘ö' ²!¼ìYk3ßç¼E‚c2§³|tØpVwÞE\îš~¢j-7Ј°ßײv4[ç) y×0‡'€Ù„B>;ù²)K-G¯Rla0¦¯®Ó/«ˆoø«I||%Ïæ¬Ý&q«KÁÁtëÚ{‡üŠìð,¤áÔý=ŽÆ]a`%ŽÜÐñ°>J ‘?ÍŠ Û*)Ù(WI»'ú“ò@8X¶yͨU³ñ:rý8±ÕüÎS.îdx/öø÷£[ òÎ/ëä¨e»Öß ó¾5Q†4Ž\£­Kµx¨B`e"l/ÖE$’®O=+– ÝTóÓ#¤Z†“¶“EokÔ”ÍáÚa¯|u|C´gpfÔ”^1;.W@Sïñ5Ï Üpm‚µ'üæe/ìÜ«0Qf…r*(ª#j*?r Wü·£ ºS4™ƒiº`PŽy‰_ÙýÛÅz m 7Wã« %DÕï*¾ \«’Cóã7‘Ôlûˆ éH†ún8h,Lé7.)z©—uhÑÍVç€ßuõ¤9·›>?¤+»Äoªš[^ðWF´_§¢L>çhT'2¸ Z}‚¤{dd¬EÙMÚ­ì>{%0<åñðYȤz\݈ŠÂÞÚAé#Ç"î Ð.úláÜ:‡J3*¢ŠªÌøŒfbÌÑyî%íØ×øsÚüp%FâõâÖ]wC"«{KÙ"!Ѐ$ϸz¶( š,¨Ž~·y1ôA´ÆnåG¿˜Ü:Ê¢–( ù{íØ€øá°Êì¶lÉ—|GM¯ªLZ×ûŽ’0I†ÜŠÈÒ:‹>´oçÃÀùvè˺͉IK<|œùÄ8àeÞùø}tPͱA¿Þæk Ã×åtžüÑ¥µBð|܃î‚„ýÀз†·¦F¦ÔzM‘{îÚ{åøqð|ÿ¬ªˆH¤ÑåÓu•Å_”}“aÿa)S”Ó ·,°£²ò €n:–#%ïC½A,.f\ ”?d‘í÷'%z-°ÎU.5ò…½¥ÆMÑ.d©=ëm»q§í± I,ÀůÃFf4‰Z‘Åå@+Ž™:V&)Š×X±ü!¶ôíœCš‰èé] @ ÌÙxH®yÕ½T '¼ýúÒ_ƒÚ3I%©"m0}Ö…®˜ö°·ÿ†Cƒë+ÛëêK«:Õ0OTk8éIc@(Ks3GSï¦$lOǸäe'ÈÇ2A^@e‡­B–âFò²wǽ¼Ûµ)ðÃpQƒ.xSóÌ+Ä•žé-.A0 2 ðÅÁo²5 p`~éÑKD Ê®”Ã+J\Da˘ˆÚ/ ÄOÄ\Û׿ÉzQ"%|»'ß@æ:ŽÓטM¬ñôœC¦ýJÕþ“i#î±–Ôø‹Yb¾ó¡–¦FDáù©ëð:»¤œ›¤{ŠÉÕÁÎi/R",Ùú i ÑHŽk+bRYŽõ×µ=Gƒç^‘XBéù^ñ¦‰%ôÐÌhÿ1šGãB~ ÝÇÀ!Ád¯ƒ!¦D´ª<ˆë6w%'¿_5”÷5é8’{ŠNÆê¹!!L8ôS;O$·>Œ\6Æ•\×: Ž ŽMw¹M:^&s–v§Hæù %ñÚæMªEÁì£Æ‰ÌÙ[ØßùƒA-q¤æGX+ºT¤ޏ·k¯È_IŒHW/i„å¼å㥫,¿ ´Ÿf[Ð¥˜ †·a€[ÂË”¢­)í—nÒ"ÝdŒÖa¤ÄÙUt5;²´Gb×ÞSŸ=×PÌz££ 2—ŰÕ…ßáÐëP*¶v]§’´[Ø9šæw]bêVŒTvJ`ÁGaý%wq7™ýz—O+.@5bÑ6¢d½uG]/YŒ•Õ™Òø~–™ÁT{‹PC‹Â`š"Çž§úÊœ|ÑÛÐú eUtKå,*óÀ‘%’ä!ŒÃ‚aãŒ~T!,ä+mfYØ«Qg‚µÉ"[³ÎD²N5\‚™tN bªÍŒz7vÙ‰ãß+zvu3$²¦Ùer©±x´—!U“W˜t]<\£>ÂÑŠ­Q©fÐVuΈÐsÌÚOr¯çxª›òË݉/ú àï„J²f A æy¨ð¢nkñ¨ARž¥D‰è.åãäN´ØYÓ ëR3ÉÍ4üÆ> ‘r$͈FÛ¶fÊÑ*îææƒ*å–Šå„Ç:pðçJûIG›/z·eûæ¤iáŠÂ ÜáÕ]j1k[³ëûØÐ¡ ŽìL*ˆVí)ì\,Zd”5%ö”“óU¦…z{XŒ¯ ³aMÿ:7&^” Ð[Mý* Ðõ?¢¯e3t!%x/ŠôcT¯Çuî3âv'\ë3Ž‘:ëq±/ùÕèví% ÚÆ±o1ñ‰—̬A·<ý}µÁr\Õø²±üœë(Çi¿u‘ I©Ž!¢ƒc6j^•±aÂÒ„Q’²Δº¹ê(%Zn¯ÇΤ‚i¼$dÑ~š*Ü¥0‚J§ -E›,£µœÚå„Yno>Î]¨ú"To¥žú²`áq‰af‰…LǶNÕKûd¦ì8ODìp¥h3N÷Í *º4®:«êº+H…¡Ýì‘ÿSM¿t!1þ“PJvLSÌ{çàZ“Rk¸Ÿ`9‘”¸ì_~,pWò…ÚóÈ[z¤—B©‘åû”|½á*ŠÓ:ôd.¶¦´‹| XâªñïONNF¦ŽÊñƒ8ÆEy]=6 °©96víu­$‚ÕyîâjÊÿÛ$îÓ|úVtè í Ôý]òõå+:YKxÜ“`¿F•#*?-äà¼ÁHîé²¥Lãù>àÏ£ $Èi íq6vÚ&þ¬|Ö‡o„ß'§x?$|éÒë)6ž Êqy&Ê‚6Åœ*lïë=ІåÖ7Ñ–ž¼­¨j1ÙÙxó-/ƽô{d— 3š=úwë5 ¦aRHjFœ§\%Ç,Ê÷'w‰¹è«!5qè#’à/é ®z›Óh3à^ž)eеR~æ€m)­]ÀL Ù{ý¤!WN )Iߌ!uå¹ ^8³K[ÚúÐÑ—³7f°ø;û¦ä!ãŸÈvœ85BfS›µxÓÀ±Ž~®TAo6Àá‘Iò®6‰þ{Ù/Å‚¥®6¨•ß[á.á”÷ckLY2ûhh0ÖÂ?‡R§zóÕOårÞQ4òÂô‡Ê‹Ài™æT{Ì„¨™ï=•^?2m[üï0]åQQÂã½ÛG¶) Ë·hbVD†—Â`‘þÊw }²½Íca´õj1.”+ÀI[HåáÒË|à¢[Èhä¤ÃæØ--,¼*œ?kc¬}‚Å2Ó¾X\rþŠôسèYñ¥{.§©‘\§‹´€Ÿñ*ˆmϳz6N Z¥Y{º¹#mCni‘à¡aŒ™´:g¹ùi¸à'˜‡ò[냠a–²xáaÉji:¦+i0q¤îhèÇz—ø˜[h#¼•íI˜ãPh àX¥N«îœWˆAÐs(—‚•ª¢Ø:>x‚’u‰6q¹fþ¿º„(çj€ópèÙ߯…úïÃ{¦GÖq/‡¸HiD/¼K1SšxT ó½g#÷†4VÐá.åõ7VZ7‘¤ªX È*UÆ¢àÈt¯œV5½Iš3÷ÓÜ¥87µÀ™@‹—•hºÓ^߆ïzø}uˆpjá´xVF7•øù5b„€2Ùô”‚à4qºdX8Î]ùÍœW³¤Æ¬Ýt¥¾>OZ8NÒ9.©¡MàÔðÝs¢\Tî_Ú´#7UséñÁKÜi…Œ­;¦ÇåEØèùÍzE©rdÖ¬‰`5>2z˜Ú E¼ØÖè—z —5ÏàZÜæ-åȨ#BaÊÚ2aîþÕËdn¦ýõ å9 ªÌ¹¢ ìw} ¥PÉànÑ—Ï¢3I¾…€ÖØ eV߉ú™¬]sœÞ#›Å½?§ñƒ‹È¿ zÑ,k”{ltt\a<Œái7r)ªN r²Z¯ràˆÀæŠ~C&Rñ‚=³ê¥Ó˜*v-ß?0 FºÄÙtð8>ÿTÛ{ðU‰m]á}‘¼󎞧•( öÞ®•\ºËK’óqƒY¡®«åé6#\Þ rÕ!è¼QK™óMŒÄg£ív Èî8ßù¤éäfx«¨²@v NûyE L\ç^ógâôõ†q½ªtº^+«&ÂxEÿ¹w (+\¥iè Ò!mìÔÊ>¤áN$%vcziˆBe†EÀtH ÃÐP++ZÅBá1¸ßCBXvŽÞÌ“Y}‘*¼#•­VÌÎi1,!UL³Iš¨Á\¶ÆË‰˜°ŒN¤ƒ8U˜áûa@}âò«8\1÷9kJJpÿZÔH*É#Q±[So{ЕpǵwÖ ÄŒ'qÑË2¦=ª;Š–onœ½‹­‘Øe«ÒÎÕ 5™e'0Ì(Ü;eãh A 9ÌÔ!â„ïm…Œ’i̻犖ƃŒSïîóÅò\?ÄùC‡OJåQê?Àr,è‰ÿssBã žqU\\HüSömÞ²ˆ'1‹íD;|Ú=¨ñË?’fë¨dx¯k1’XC0>i|-—¹ø®ËÓ'Ïš@K!IRÐçW- Uþ›Ž±ÑOüèµy° ¥…\/å Õ.2óú+ÁÍÊ"â¶Aã´ùÑOõ€Qó; ö,×6­zæT§ /«E6Mbõòᘺƒ¸m<^¶š”)t¦RÅ®?Y6~ÒgÕq޳©#T£ “¯imñAß–_•¹çÆyPþ­Ùâi𒡇o–ì,*C…8x°2V-À½„9¡3q¶ŽøÿÉš¨á_l6Æ2ÉgŸ#}8Qœ»¡¢±b¼=ÿ²F¶o/ôã"ä¾ããZˆÏLò‚þä"‘ÊdnŸ´2ªÙƒá½Ñ…%X?0Lü:ëfûgÂ%‡üÄv¥Ö•w`Âòk¹ßLÅA«²Œbï fÅœá²èt$ÆÛ½1Î65~sað²×9cà}Öa~½/•1t˜ëÚ¼/T•Q%÷Eáщ}3OÝ“}ÌkÈ"º6/ºA(ž4+½J9ýÎÝÛc„;‹„Ç÷ªøˆA „‰I™VL¦cG§n0_Aå»3dÒ!Ìpâ#F´8âo²:õ3øn”´Í{·: àDßgèôp´Ò’Ð?ô¿¢wQÜ^Õd5º¦XØœ@…¡2 ¼‡FcôÝKó+.þÇÊ^¸’Æ*ô¶[³ŽÈ»ªŽÉ¸dÿâO¿…D½w$¸ -Ȉžvcp×¼kgúœžö²ÞÛˆHÎqvóÔXƒ»ý5ÆF†ÐŸ²mÇŠQÔû›½i|#§¡šà„e X»N Y`euYîCÃ6ô±^x˜^\¦¼Ñï¶Á§îq6%µ/± IÍp,hþäøºØf¡67ý¯Âø»‡™ÖjqKn øBtóÁð*—!¿‚éþÛ Ì›ZtúùÇ{Š«€â6ß B„eü¿Þ#Ɉ]5ºî›£ ѧêl<€ ½û^TÚ¦ _Ó_´o‡\:û\Ž1cÔGÒxT(Í­¤¿®Ï¨¬¿…óv´r­ªj{8e¾Et."ýR¢æŽÌlï#·FÚãcxìªwfd‚€†é ’¼>:3v|wså|)ÜæŸ@rÚPÀáHÛ+eëÎqø$[äh>³kòdV7…ÙC¦<¿Åüf”¤[QÚxVŒþ ÆÈ3$Í`X³F]hà¦ó7÷‘çÇÒMAºZÔp³z+ƒÄí´SP†Ú“Ø*$¨€/ÔP–‡t»§Ï§L ^ooÝîJÀ„ÕŒÏ"?§ðY3\Ò9„¦ý¹`§Î¹r‘ª <¥©ñÝ“WI1ˆcÑùWÐÓཊùWÿY‘ /{Úè9‚jÔ•·û´ x»Õªöy`’ȳ§¬ ±8ëjþÙà§ñ z΂މ_‘SzIÚEÓ€ŒšEIËèaËñAÊu6Üú¥KlÀ+/yçhD÷ý÷,SmèL]XÎÓ=§YËRÕûdÈÁ› ¥ÁX×r=ÎMy'#û-ñº—‘^gå4æã|ZÎ+­ÅºÀ-;—~™¿Ý;„Mw»Ø£Zð—þÐfX2õë¹,û›ˆÏ(zMÕ(G*èš}"º„k1_+Û«¯{†L-"¬#LíV;:°ËÇ‚l~óÀÆã†ýNžO§ðåïy»nØ­}v¿øìVH¥01Å»âmóðú‰ŽØ2ß iC$q~)µG…Âÿ4Ž~€’Ü“žm},1íé46?eؾاa5{eô±Ïà—­¬ö˜»¶p+U¼öwbÙœáOŸÔºÀÅ ÝïRq]o^¬kÛ‡• ûS]—žâ€ Ã2vbi{'Qwa¢®4®ê·4 õ)¿>§!2`ÔGZ©¹€RzO*z޹N}2)¨iI†Põ¦wí³!Ùï'ÚáiÍÞwÌ·½4RSûÄ‚GÈ!ƒjWGNxœêŸÔa…y¨LcbÎ?¬Í< PFV¤gB?UTÞé?‹™ÎqE—©Î5Ò¡#—e0Ò䈹HÖ´Š–‹¤­Êtÿ|’—kG—«•\éªôÂüîRÎ ˆ‡VÇ2uõ`Ã2‡ÅsÊ·²ÿžvßvâ:WÄG !y?î!)ÿ%’èÿÊ×r+›§^JåZmŽa— dìмmú\?g‹ÚÄXLëäG$•Sl ±l’%ÛÍéÏÒ¼4߈*]äæ½40¡†Øa<­¼z\¬ÿɇø ì†ZÖôå*7ôE6³G)رWͨUZð!ÝÉŸHÚ»çdà’v¨†Sb; î‘YU&…xü½•N]yy>NÈF³ åS¸¡8¶\›—Ü‘é}l8 ×»¥6t`ïIV‚. †Š´kk!×ÚbÖÍÁ•¶²g6»°žéa îç{š KóüºwÅ«úŽEjQer+Õû¼ùy*n«HA€8K– ™hÚŠ[[xŽŸ);¦€Žgµ¬Ô2‚ɬ]}™}ãSáëÅxV ãZ„_!h\ jxï‚9„¶1€oSkeX+øåb-a¶Pð‘ôVÁLáþ“‹´t‘ɧœByŸ1iÝÙH×ö{¨!U ŒÁÝÞVÚb»˜’O~cL ‰Ï¸ÍäÜ­ ΨücΓ  x©(ã'ùß"ET±6¥Ìû–È"ycâIRR¨ù7ï¿ÈiTy!;_ÏSÇá7TXÂYÆÝÒ%  FŒÊk%ÇðŠíƒGÁ¬ew¡ògb%¢)+Íy²ü4ö[Ÿ^!=ê͹ ÊšDùÜ­óào~R`Ú°–½*‚j–¦lwÖ…>JX‹~Wüɶ²G/÷‚š…Œ(Z> ÍZFüñ¦0»"B°€K¹•¹¼Kj‘ ÑÇÅÉF«Ýº/~µºµ¥¹Ÿ¢Èž¡ŸÎGa×ôÉ»'d¦jt0´²êw¼/º—‰ìØç¶MõØC°QFåéàâºåhOêô´ù?ÀçF5$\F÷ ”‹ùóZïlá ›Îý$0`õ´²ÿĦ‚8MÒ»= éq*«1‰I±¾‡ˆ0ÝÚt|‘âdÕ‹#Zœ× sG.¨È1w¸ J\B7(V¢Wí H(º³DtüP7RDÁà“ˆï2A©¨&ìSïlF XÎx2B4)‰þ^ºñ.$ÎÚ»•<Ñyõçr¡>-Èm܇'€sˆf ksíìÌüÄÁ©?¦*¥B  “Fõ%‡åîiÃSEé ‰ÌöËìpSU\XÉ/Å鈙ä†zD˜«Ù_Ÿ¶s´îS³è÷‘RRZ[Êfàäl6K\a¯_8«%¢Â…Ü·‰ÕœŒ‰º.jK)Z¡ÏÖ$%(¹à—Á':-¶_?²#täó£èUÔ¸A‡ÓÏqïî×0*‰Ø•vór Ñ‰‚¿8d€OY±\Yüª2s: G/â>Gâö-‘¾ï£}^U7­ý5;Áaót3cyçüù[³|ˆ·¨¶*X~íûˆL|ô-vÇ–‚©wV¡êƒå… þÉÜ2¶`Fyô…ø¢{v…i¡ôþ™·¡6-nÍÁXA“~Ãé_1q[9bë&é„ñœkFÞ>qrkÐkMì8„­÷izinÀË~z¢F{ÿÌ÷îW#µÁ‡‚>z“aâ22 ‰ød}óóÉ¥õ<[R“9iŠ™û±D*ÿ_¦Á‘[ož¥Ht±.àà À™ÀÅ#z›y«ºÛml(|†cAmAªGúÿú‡AÐÊjÓ`çßR z¦ •Ã¥V ‰gJ¨7ϹÏ*èÊ-Q×Kv†"–Sy÷õ™¥Ë¿G­,û“‹ \åÊó†.:þ#á,³1Æ I&m» c0?ø´l½\³ü¥¯„ÁÑÞ3³´œ)Á¥ì†‹;¾ÉŒsÇK[†·xí‰6&ºÃŠŒ†x~9yˆÆð»ªoµüϱÀ·Ô‰‚nk°ö;œì…z”ðš/òK§7hblè`­Ü–WF¶¬»¥»’·R˜´áÆ¢m”óÓ54Œ2yÎ endstream endobj 6313 0 obj << /Length1 1644 /Length2 11708 /Length3 0 /Length 12551 /Filter /FlateDecode >> stream xÚ­weTܲ%®ÁÝwwwww§‘Ðиžàîî‚wwwÁ-܆|wÞ{³îÌü™y¿ºOíS»dשÕMM®¦É,n¶Ê€ݘÙYØ*vî®`0¿³ÐÆðnçF¢¦–tš»Ù¥ÌÝ€] @ h àà°óóó#Q$ÁNÞ.v6¶n:m ]zFF¦ÿ²ü½°ðþäÝÓÕÎÆ@óþÅ;9ÝÞ)þŸ5@€›-`m$UÕôåUdt²*ÚY #ÐÅPs·ÙY”ì,Ž®@z€5Øú×` v´²û[š+Ë;—¸+Ààê´´{wzYþBL' ‹ƒ«ëûw€+ÀÆÅÜÑí½n`€£%ÈÝêoïvkð? 9¹€ßo8¼cïdj`W7WK;'7À{T5)™åéfkîö7¶«Ý; [¿ß´[ºÿ-éìæu3·st¸½ÜþƲ¬ì\@æÞï±ßÉœ\ìþIÃÝÕÎÑæ¿2`¸mÌ]¬@@W×wšwî¿Ýù¯:ÿKõæNN ï¼ÁÿÜúÏìÜ\ k$vŽ÷˜–nï±mì‘XÿΊ¼£5ÀÎö/»•»Ó`@—D÷wfèß“0·;‚¼V@k$V°Û{HÝÿ›Ê,ÿ}"ÿ7Hüß"ð‹¼ÿâþ»FÿË#þÿ}ÏÿN-㩘;¼À¿v à}ɘ;Þ÷ @ ðwÑ€Ì]þ7s;÷ÿÍëßoëÿ•îÿ…LÞÍü½-âŽ6ïÒ0ó³pñ±ñÿ °s•±óZ©Ù¹YÚ¬ÍAï}ûÇ®íhtÙ9ßõý§µfv6¶ôlí,íÿ Áý/èhõïU¼KöO ¬*ò²Œÿû’eÖ½›);ï¿\ÔÞÇÂMËÛ øŸñt•ÁVÿyøK(!öø2³óð˜9øØß_ã{jü\~ÿ‡àÿ±ÿ×YÙÜÍÅÎ `ÈÆÂÆÆþNú÷“íoìÿ4ŒÿFÚÑlõw4ÝÌ­Þgï? aKw—wÉÿYïõÿÇùŸWz-‘VÁ–‚!Ó2ÓݾãåŽKöv³C†:•Ök|þî Hû²Í_iö\ÊÒ0)ðÚâ½pìô²§Àðk¸DÛ•<Ï'ö£¤ï)ÀØ iãeüÄjRŠ’~¢å{1¯´cÀæókg\]ääŽd²ÓáâŽþ3¥GÁglª['TËÔºXœvôÌï…Ç'4‰‡w·´ý#Cƒ]¿a{öˆsb©Íñü“ɓܼÍ\þÔ[¾Â>zðºV-dýÐý†‘¨íéCô´èNFu³Åž~ÆIjó&ù“MlÑ"VÑó<< 9†£(A„‰lTrJKÁ¤¶}Qþd™gõ´ND Í>s™?Æy¿!rQ6²ˆ{óC‡NL®>Ó ,ÞJN‡=]]_'RxŠ—«–P”ZZ5Rìû瑊¤±âh“67?RáNˆj­´¾Úì5æAa;hæhö}ψ?ÎBlbbúÃN¢ná5ʹbDw…¡R6p%*&>VÍ®À‹¦5Æt`Ôx*žÿ¤æ|$ÇÛph ˆ’Ï¥¾þtlò£Ë°£3Mš;eNÔlê ·A±dÁ»~P_®ó ¢LQ$F%ÏŸ+ÙàäuÞ¢f ¡É0òÐh»’(«U"%³+‚g7I$p{Á…»Kã!ªŸ2Šæa:3ðSaòƔՆ t¤ðM± Øf‰oh]wŸ!ík±¼ ô<±/ù¥•T鹞×âICíôñ“‡GæB\^n5åÏÒ…—÷îFßdH<ý™b#§út§õ)¸¬µ”8Û" ûaËo$º)0XZ"ê Då^¹^Zö›·JYêc` µn” â'Æ®jY+ÊJ½¹ºb¥l©jnt‡À°2ÓP¯ZWô[¯`'lö›5Nq5@ÿ=t)´kñ³"Ýûj ,ØN;H+ |Óœ]u18(«<•U˜æš³ÛUæ¼ê©½s.GNWSG/;\®(qï«Ø5‘žŒˆ"§êEæèlo;ó=ùÒŽ"Õ°D#*Æ9GJ¡F×DÍ¿¤öïvËs—à æUZè%Qç2ºÓLŒøXp+˜ûùÁGVìTëz›ˆsË6G›ò½ÁR/œß‹Ž'Îëæîº³u ¬0«Øžc;¿—Cã«éfBM¾šÅ|¢0/õw½ácÑû† !Y¼ù\*‹Z·MƒVqSîã¢õ=žßg’¾êãVQ–˜{¢2±šC›—G°àr½õEì1öÑSö$³‘d’ž¨Û•‡}mýدN)jäëGb¦iÂåHÎéï܌ܠÄ4ÿs^ÀãÏZ«Á¢Bä?Ĺ˜é»5ÙÚÏžg‚uy**Ò8yÏâ6IìÔ¥‡©§Z˜&"l›²_ï"ÐÜRÌ:¼ñ„ŒyaüÕIäPòUküJm=`ѸBúÛ’å 'kÛ‰ibi"ÿýnÈœáÁ⟃ÄnéeÀ—¥/Ç^¶ÆáÍ*SÔê^³³ý?îBý´]ÜúŒ&7ƒ¢•kõ¶Žðñãñ>©R ºú—‡§sŠñCÈ»!ô¥ªÖA®œŽ§2Ä͘Q9—‡@·QÇÖrt ¨ÖóoFøîk{L”g?ý_¤>ñ®I³"ãe=õ1“J©u$Í>ƪäÕ Ò¸{`¥ï@ xïš_"½2.ö¥è·a!üy’‡ƒ†Šw=¢ÉÑJ(ä‰)ä¾´ÒZá°q“¸‰_ðç‘fáã q5¶‡#f U”Åñ_É+ JÁõyŽÍ\¸ÿè¹:˜}*;ÑaYh3A ˜§Y],*€À`O:VIÅ ï ûHôÆãÂB}ù®¥\ö œ#™­ça}(Hê#š"Å^Aü3/â-}èKîR<ÁÝ@‹÷l“Yk»€WÒ÷vxÑ™_g©þdªšå†3ý!… ˆª³*6m’jPü¸R²'’êÂç&ì©âCãóKÔp9Æ÷V¨=Ë`á»þq>:bD‡Ö*O ¨þaÒ]v Þª´¿Çÿ qR$øÄö»k™ç†»„Ê683„\¤[­êÁdb.¶«psG²gÐ9Âr='ôìBòã{Ñ`ìAF‚Òì/¸x͵×T·Eƒ9o­”.‹b¥$Q%ÈÊÌ@ú \ãòËØq^ÚYq–Ø9Ü'†7Ñßêg=8.Ë®›Û:"OÕqUVÃLÒÆ:MqîÇäoRSN¦wü”.Ü4aF2‰¶ü ¦o‰dã~ˆi¯Ñ^aÈ6ÌW³Ô¶L’÷žq‚öEÌ[~ŒGïæ^LADZ³Îy†]0ÑÔÒ æEÀ ÝŒmM\HþÙŒ÷ªÀ‡4¹?ºR*[ ³üï/²…3 ¦™8…„É—ùŠ%¶£§'ØhZyÿ•ê¢W9²¶¶hÓsÙå~€é$†'(Ã÷ÉyVâç2­ñ.å3éðÖ ã¶Ä«_LŽÄÛñh1‘UéY=}šÌŒ?‹ýñãŒh÷ÇîlÓ]SHÐi<òçøÎœ™SkéÔs”ÆsШ¿CßGÛbå*ήI:jÑ‘›â)$ã5+fÝÚNoç¯ï|ÌQçwÝJgæ=b÷ÀüÌqÚÇ_øð|Ë¡pÚ«-·7p$m®E`yŽt.)Ú³ÙVmïÞ6ÚbH­'­Ù$¦Û "H% þÚúXÙ6@”ªW®‹\4n6Ü–3iÕcºlœSöbn¼û –gblÍñI*óÃÇ ½0Ðð/Úȧ ݉R÷è3¤´Éâá¸×F^‡_ÚsL¨"ãÅeU"!Ö-ørO^gÙÆ+‡eÏha|3·…õ‚8T°õyèæ@³ ÓWÊ ð=úe'×5j1Sa‹Ý>UËõ<¯SL}æ+:êM_©ø + >—úÅèþ’zo õ¯“B©9Õ¨­vÁk–6È»žÔðp{W1ŠUð§|—§Ðz©OžQsŒµ˜˜\ãp.¯œ,k™r5t­Á¦8ÈôM=îZnb $Þ32–o5æÁåôº§ÖÔx/&?Í–W!Ëí¬YFka®Y¯qlð¡ÁÁ= = ›`ª N²àå'¸¡WÎþCeÓý'h"¹˜L1P—‚»y²êÅ“sr½"óY'Ÿ ­^)@žŠ×·Þ¾ºÂhøŠ†‚ɺ@þÁiŽ!f-ùK½]m¢öÅôÙʽŽv<Š;Îè7foY6³T cœú´¨r±6œxØ‚ùCœ:åÑP­ cu1£SbỪ*Ð1Uò랉=kÇ©ö76Q!…GÚÚïýrÒ¤¯9Yà¸üŽ~l¿~`¦–VJâÜÆÚ=¿hÚ rÀú®Äƒ…ÆáÕU®F2aÁV¯Ê…'Ÿm •EÑÜdg$â¶µ’<Ë‚ÑõÈ2šƒ/i·îo/^ÍTœ‘+°]f"‘“_²ƒ®¯ÑÂ6xùgö0 Í"1 Ê(:¦wôV³] sR&3¡ó¶éažó–ŽM?ú×gpCK£+¥h´Æ¾@j¼O—Äk,/ñ¥~IÛô'íSéàÜme%*߸Pú’ eoÖϬG@ž¶%/>±\UäüápѬk³Ð ÌŠ[úckÐú+!s.úÀÛ“³t÷öËâÒ>™2CwÜ»ØOÄ„¬†2h ¨ö?Á¦vñÞ¤5ëê ÃjâYÛ"Zš¡cyÓ©-3T}‚#Ñ™t³ù•ó %ü5âqŠŒŸ¸§ñ6£r÷Áj¬¨ûL · )¨3ŸgÊ]¤G¯É40}H nx2ž5n“?ì¥ç—ñé匩pwQG¦r7ÍZ™ÆP÷K0R±'´À^l” pyç|{p»W.F^NÎnsÔ|ŽfÛŽR¸í×t Î];÷%bF4[nçNóx~Þi ëáPEc³Ï[ÌõAÀeY~é«Ð;¯Öµ‚>å µŽ4‘ Ä•ðØŒX«Ç¦Ætk'Ë} ¸Í®ôPÖ Í[‰µ}^ãR“kã0á 2aûy6ÿêÄÕ¨ïŽSFÜÝ6tJMGÖÈ$͸EE°x—gcèÃtü…}‡bê¼wsÊ£¢¥¾óIØÂ5|0ŸËÒ4 ÑèOÕzÿ:IŽRý~Šøœ·A“7W­ýL¥¥±Ï®ÕÉ›Nú=±¢vÌ –¯Wá—«¤æ‹O—_•€æ—°ƒÏ;yGNÐf@Õá[Oí“‚ßHÌ"òàÂvAk•iFßäÅÄÙðÞFÉšˆøÅ !b‰XdÈ6B–9gÚ-ŠàØ–‰€½«žÒ´¦Cè¼ò¬Ê2¿BCMÆQÜôV¥BÛ¢çĉyz ?ãk¸è¾zXë9¶@Ám4|ã˜^ÆÛ¬!_8§nùG&ÜÄËÐEa²7g žÏ+&†Š;A f‡¥Å% ÁÛ¿?^ n(Ά CiÜ·yJ0µ†¢†+¹w‹îzZŠó­$z|WV–‘É ™TÄiá[¡7|­yö ³æÙÇA½1ñ§ àTŒ39zÚ- [¬êîµ[Û&›ŒÎÁaœ~P #Zc…dÞíØŸsè]^:¸Éž×¤'^cÏõ®ïlJÔ/‰)'o¢f™‘5;ˆÅUÝ îëøÃU_.¥ìðhOjÉÐá /mµ¬·¯—Î+É_|޳õß¿“·í¬(CyñÙ.A6JVPU| ž´ ·v\Æù´+3m”ãŽärFõIšHo &ÿê<¼oO¬-äTÕGS‘‡r:èMQ/É}dª$r£«³0¾_º£„o¦üŒÃ×(Jܱ$ó”™‘xlTòl°¬“¤z,•Ñ»IºÎáÕ†ocCçn6G±\P„è 90V jȉNð]™ïý²a\òqØê[ÀÏSµ‹iä”ÎxÕŠ”R|£ þÔ„V–Cýj®}MÜ0+*¤Í¢à>u«?uTÀé“ì¥HyJz-÷>»W]5¤¦°‡o^¬ D—>¼~ µµö“!Ñs¢?Ô:ØÚž¸F¶mmœfBˆs@!×jKS:g¬òGLšKðötT› ˜EP=– ¯½û8v?Üâwi[­Ï7hÝ„í´ê̘äJl¬ fØÑ’_T–Øz#©+¼xTù;ާñùi‡K«"Õˆ,ë{»©°]g'ä–Ëùk“ 'ÚµF ;a ”Q|Éd÷¥-:²êv.T‡>y˜ïþÕ!W*ÄØ‚f~m©I1sE#Ïøß6m"bå þƒÛ,þU|æÀÀ,‚!-§'K£´$_Íè`Kø¾ÕÆ2k°Ì$[ˆp!i/•ì*4¸35eóâ2æÛ¬Þ„ÿ2ì’^ÌMÆ<ÊqF}?ýƒ\ÀPl˜ÚºÝýëjV¢YˆmÕtô£5lÚÍ‹`Ì$ìè î×½ºYHüõÔój°†?fo&ObçË ‘­Cß:—«¦2÷Äîìƒ[_V%“VWÊøûUJŒ”“­'’µ? ÏúCjŸWú,hXúšÀ~/Æýµ-!8 $aYNÆJ¶-Õà]|:m¢ÓJ­œ®…ÚìL*„¾Á‘WíœNQmWëŠÑúwgr7õ†y“Ýçš}«¥Ï²X}ˆ<*#Õ£tþÓÞ?êU÷ÛÉ4W…?®lb“X3ÚÌNl+sŒí4S Ô5Ù%3©[íGHq]}Wu×IÀ–­ ׯV’BÝŸ#}E÷A—†û’>r]XCÂ_§ç8¯›UêÝ‹þm׉{_œ™kË7©›îºg›öíB÷gx„¶ÿa¯uP]œ ÍÈТÄÉΙРúÆ_;ŽÀzB¯›–c¥ÌjXe üÂËÌDÖÓÔ/•?qTZâ°$K ½Ÿ9†ä‡åšÑ$J•Œ?çS J3 L¬(6jØáP5eqbç$²Ö~ ~Blr;I-vÔ̼=ÿ2 V„úeú×_´ªz½ÒyîVQ™ÁPÄa#÷>t–sSFgo¼§ŠP×¢SîæñKD«+ ¶CÈNçæ“þ‰+ßAa¹_ôºÏ‚K‰$ÛHUµÒTHÊ\ùÎpú7ªÆ—fÂ_ºKùi¤D?¥˜u:ñ"3—“ÜæÐòÂC» 'Ú ®P_¿¥/ˆœ["*ò#ôx+ ßZr Ÿ‡ ë §²'M7qtTeP; ‹Ö=+»±Ö°žù b³"uM—B ">Ö™vR„Q0û~ԅ‘›§'>o1¨î¼·!¬ê[X<½a¾Cþ@A &ñàïSOµî é%§´M¨¤?+IGvX¬¿u05اÛMúÕƒÀ§€J!Æ[ ™¶õýW푚25 æsG^¢úâœÓŒ!’a‘3O ‰èúp{˜{׉ ¥,™ã<•µ^[!¤ÎÝd ½¥w™¥ß$c›˜»/zºN ö…´ «ÜàËÀ÷ÝÌg¾¾JÑš2ìÄßÍ;c„×µÚXì¹®‡G°«ºúðg¿C®k±¿Tu=)¥ƈÆ(±íQ¿ ¹ñUÑóg mðJÒ7oÅÅÕyí`ý¦ADÛúè“”¤3˜%KÞè£Mz[†¡|.T \fà†½°÷íé”Uë»(€T{¨A2^ÚДT|MyŽÅ)ÝåÀ©?«¦`¨UeÍC´~90õ¥·Ÿêœñà…r‰<äÑäÃ8£Ïë¶d¬lqš ëoûÁ9(7ulQ‰£a+‹f–ÀEÝó›gú‰,EßJN¦Pn®KÎ:MÆÙÍÏÙÝûü0Vsoòë`LtM>)¡Ño‰Òš—6Eò¼x·½íjçÀŠ^ÈOõS{Y Ëåšy̹BGà 6d_#ªŠy¯­±Ž0¢ÙÇa„Ú@Ê~hñUɬϓŸ.V·[‘°IÃ9,Ýh5º›ùßrLR6tišZÅEC>~ñᜤÁ^ =)_‘ÊRŸ®95¡çU'ÑÔuÈ’rXpœ4Ã×S5œl†Å_É%œtã}’šL4ŒÚþN‚7ØÏfHÀLÝ0Î?õC 2¸æg[¸ÉË—+·ýÁ-tÆN¸8:£v£4IQƒz2Uè„T,–I´˜Òé.Nœ¼!“$¯ ˜EÇ“xAtÒgÆH¹•íÅ{âÓ…2ôã¤Û{*ç—a÷ùª9/œÄˆo{ÑArÏ‚¬E±¸u7E 2ßÜ4ˆ !Êø êänàØ½´œÚÒ;¾â‘¨K2ÖÔæ»`ñ"¶ë«¹÷Æ~$áÉÜ D_÷C¯³\’\¨, D°B?$ÄÁ5-¥&ëLÍC¸VÙôXŸN@Öýpê…#š7C*úySN Ô“•€:) ÓL]=;+äi M,Úɦ¾e4É2ÙP˜îÊ84HóÜQÝ ù¸[NÇ=¦X«A‰t?wåÄ)aÉÂuñ{l÷¶ã¹½µÜ¸ÊóT÷#$}ƒáše8dï{¢¢õªO?kC£U*rõ¯Tï°$ˆRXIKൢ…$òÀ"ƒ&[#²è+¦4–M¥2u&P± CýÔkðZthœŽ:…x¯V`Ãk°mÍÕàVqó;ìU'[ƒî…^½DWWmy’eqžò.4óôÕ—°-¢­˜‰4Ç–,l{ ó^ýP÷]ÈT99ïL¿Õ¢þþ¶xg>èZ™¥(g_*.sA9»³ý•ÐQ:5lÒÆ«FÑò£Y÷Ÿ`Mdp†ëa°Zx^ hé4_çÂ8ãeýS¤ùXeìN½An1’zßlʃOsçî“àÙL×j3ýEìðçYT:ÀVsÒ.°œqUÉêÍL„ò)/Âv‰¸!0¤—Åa  £Ñ$f»5ÜUUe!$þ”M“¤Ã“kÐk_jr¸—-ˆ¥øóOÍÈüJü$q@¸ îÎÀeÈw¥AŽnÁbõ*×ôøt ¹R‹„>A™•²•˜§ÂúÓ ÅìÎJ^•!¬nÌÐM_´h„*·[}­ÍøŽE$ώ̾ãk̘/ùjÉ¡ø‹]ð›<[lÜ¯Ö <ÝÍÁ½ j”.p~Wu{•-8Šá}Pûê KyWXÄO^ïÓ%~.R‡½ósId‰ã¼j ËÀ/[€ºˆx'£aÓ{hú%±Aà°¥Èfz®ìß´ÆG]I<@¶G¦¡9oÞíE¥ 0d,ñ3%OÜC7ð¾×²‡U±ƒÒ“Š­üTäìÀËѹñ@ü¨" }ƒ;UÓWε5Ói‘Žnùv]¾ÀB¡Cý,øEn®N/š›õC¸ %r¾¡é*c8AuZ|ó×y8q†Ÿ"–”ÂYƒG½©¡4ɘ#îyYþu$Ç„éÉøH”|Q–ù¡zªuÑË–‚» ÂÕ'†ö›¼eª>{ÇIg§À…öj¢½1VJ@€òé|B1“‡?Ejhšè­T¯Æ˜ªrÞú RÜÕ–x>MÚ¯8o…Ð ÐOf ŸdÞ²UD÷‚ j´l±?ÒªƒŸÄ…,: q·ÖöÙqåºÝÌN§>´µkß°ïVêÞ7Lÿ£„3véHØõž>U8ßæ:.ÔѾî¯W¬%³H‚üᨋmÍ*2:á'‚ôÕa$2ÇÛ¼Ù”Ëë%XÌ‚^‘ý\5J‰²WŽ>X9ÃK‰<ñÄ»@—·xbô¾lEÉ߸ßwoCÔø~Y-C7Ãý\½LÑBs)­ÐˆüޏýœâÝeÒ[IoK^JÄ^ÓÏó¦çÆvkX¾…Òó)[¹*k¹´Ôi´L˜´}¯bK…CÕV€ô–ýM–ßÉÃÿÌ9yóèð)Ñ,¦’TFúÄÓù¸[¬œ–AS+ܦÎý–ÝX’ù[·nè¶9IP!8·åCêIïñ!&]П‡FÅ“©äEùõ]à>q*ße¸²]VQÞôKåx¿@f~¾ñç(ÊÞq„(R¬ÙýíÚZ/údž‚qÎ=N™Ä@¯®æÝ†ãRZß½n\Ÿ&ÄÞ%%j^Ë x½Ëpço’ž+‚_×$eâD‹ðao' ¨5jèº?Ëß|… ᜫ¯ *Ô.µ/xvÆûD‰pé…Ä;· ­]3çuÇcõ8‰W§¸#Zž)3¶Îú„Ïì,6¤§a(>°d(‡§2©ŒI›As^OeŸªÇ,ÕlA:;Å”ýD³_ùeëì«ñt!WI^Áü<± ¡ð±ðèeFĸSfš—ÑBTÔ¬«äI`³|óiÔp5ݧ¼ü G~‹“Ú?^Âtx‰ Û¸Ù%ZÀÁú½fʪ¾É&…ËwcÞ ú‡þaøÌjõš”eë•‚‹TÊ¿óÜ¿óÏOC™¥j7cÏÚήk$Yz~f'£y¶EýÉ\Ãç9XÊÞgظ#x'gÇEE5”I)íß@$ ãî1= @l…wìL n¡}m£´”ï+PËÆ|C M·îR?‘CˆÒí”3{ë²jRÊ œß1ÄWät²¶Á«¿üû•õB'Þ¥Ó÷±kéÚT._MœYÆß€(°ð3;ÆŸ?XTÕ#ŸO£oP³ w\­Ø×ZHqÆšRnÚêeí:§.ìú3¨¤{s`ªkn&Ù¤\aþÒ˜){ú¥ìðX‚¦g*9É ¾ U,÷üwÑírm#Þ›d|ažPæóÀ3yg½9ñâ]È‘°ª…Rk éXžCàÖÅš»¶HóUÁ×ãõŸÑla›ÆÞœ&—Â¥´(|Có¥ùSG¦‘„—„²š[ù- Ÿ¤9½³’>m+J;ŠŸ ü¤³e¾ŽÔ(•GHó¨PŒ~¶•ëÝmÒ«6þk‹‡7QdE¾Ýçœ#>aþRÒ¥3ÎIÙ“œ"C»f”xVBê+žÕ‹ø1¤~òsë&•zÿºrÏ%ùyŸ)êVz†_¦È½2­©vÚ@áË '¨Âgô:¾}´ÿL%$æn¥·ðÓ*Ò½f¢•F¥É•«se?Ï…­y¤eYd>ïÅA !SºXlÇîÅ…¡¶?üêšÀžˆ"ÓѳŠeßX+Ô~£‚ÑO¢•…&¶D7jÁS=’Š“:Q™×T3‡aKy¨›¾ý•!ƒÌ¿FŒ¤„*5×Uõ’«Ž›žv?ÈaXnfGÒ™è%a¨»$”<Ëböš… u;îÛLzoV:KCÚå·bœ†Få¼`¤Têìuø^O¶WQ·½ƒ-Ò7Ä¡X6qdµ¶ú¾^ŽdpÆœæ@ÍžËÀ?Nº²ð’´…Á³$1‰î§‰Ë bÕ^‡ôKÔIy¯æP¨K7ѨFÄD®@ÓË:½?*âVˆà aÞ‡Z°Éý¾¤Þf–ëi÷'í$SRŸûH¢â'æ¾6Nl‹Ó?ãÑ}ÙG"MTg²<@¸aÁSOjœô‘Z-\$߯ÖÓ¿.14õ dípÚº ®¸N^y%&¦^µâÂ{žÌÒ=K$‘Ö9ž ÁJøÿ¾'b^m’p‚µ¬–JP³&)ëež„DÔ¥­p(sÎßS›<2pñ;e:¶7½R&b3ZW4Ýr\8M‡{ÂqžÌÂß:™oF¡QÏpd4wñÇÐfµiiˆ Θv| ,ZÀ³*‰@üêbéí´N¶ 9¶rö! ƒ|iÈ7¤’#ë®cb‹æä«KPSB”’ÜóÄw¿H¦Ê 'Ý€ÊÁËã7RJ¾*©åzxü¢ïQèQ)WÏ­ÑÚ]ãíoÊŸ¥+`ÓV”˜¯Q%m™’“ÿLòd~¸%ÈÐZž×óƒ1'RÖÃÞŠ &{â¤⡬âñP’é#ÈmÄ< øééÛ8©Ûr{ÎÒ¹Âì{7J¾‹¹Uèà • µâ˜*@³ª±jÙ¸;¯ºË§›Ò˲[–yîtÙ(`LCÞL²•È~´Óé¬e»õÝ Ox`F:  ¬™Ž‡˜í ô¶“¨Âêh‹‘ΕÚ]ì÷®?×ñ!SGÏ›‰^ç<ºÿD¬'íÅ3² $èSöÕ -Ç# v¹‹CëΨZ6ø¸Ã[™?©$2<—\8*íONØú]q‘%Ž,YãÁ [ÓL€Ÿ]݇qñûS oIµ$hywF;»šýÕÅ?$QèiÔ1[«6o¦édË‹Oh.œÕpU4–‰aöœfV{=Öƒ,ò¡[^„VÒÙmå‹YLxUb’³º±€”i¡Múñ¼¼±q4¬Æ¯;‰¢Ac¾4·êöÀPP²Oi]ª§ŽRUxƒ’íiÒ²²ùnÚjd¦!ß/9ܺ7Ã3ó«ùN¸è™rhÎlëäðýú‚ã?ºkI âælÜÙ¸UæY¿åµÉó{Åøæ$†9üÑÍûp{´P„®éƒº5r;³¤äœ$ ·Åáš«õ;ø* ó5{¾ -«€ÏÊcW.Ï“´MµÂ;…ýÚjìË¥_ƒ¡ä˜}¢';чÇCÏðÆÝã)¾Ü'å`ɳØê&cŸ€JÕÜÑ&·rŠ ±´Oâ[ä'…sè’6W‚ŒèÏf(ø¢fh××(åî×íš $»í ¾ø7RyÊn™M/øâá¸óBì¦Ò ÿh…jɪۋcL+$ñš;7ûlHzZW§ˆ"Ý1ª»k“‘D9(ér·A:÷¬M!Ô’Þc‡¡E5¢$4*­«pœkîꯊ¢ÒÍ `ª§_´e" éÂ%Aö³37wس+EÕ$zçm4=ì‰9ѶÂîSðТå‰úqyÑ2ƒá[¬ ` Cž/»­Š_ú mìÇÖ|FE°Œ~Ã{I²n)ó÷±zWLX¿ºˆªìÏöpF±è!ÚÔ¤÷S|#_|+}Éhøõ*“T$àáxjól0?'¢8Õ¥_¯ν(iÐÞé7kí·Þ›§¥s XI24/×û¥÷ÇqÒØ\Ôxiúü©—ùàà4A-«¹ê{›;ªDNÃÑäô+9$§²#ÅWTÉ’Ú†ÄZ$*y½±¢AºŒˆ®=ù¡JUzé´Î0L]fO<%nmú’®”5C7!©•8ŒåçI¿¼L öú» ‚üÐd-¯É™?_y¬zÇ—t¿,§ñ+κ´£T`?j>ñFÉín…¼8äÒäR=>rSnÜìß—›ÓZ\+Rˆ]sB*X+cB,Çœüžˆ}ús —ÒQt@ü Ý)VÆüi­îøa¿ß½":Qp»VøÕAÚ>IWù) ˆ‡§÷[A&çR(9DOÕ#8êÎäA¯ÿƒ½$ r®æ¼„Ÿ5öY¾ÿ΋¥ôO•Øþæàvìí‘ÃÅjŸ *Û[*9€2Õ(Gd ÝÝè9 PøŽ½ƒLºÙz­÷3ßÇ»€X¦ÂƳ5«z¦ì^}ñÅD³íyºMì-{Ö¯YfbácÑAè«-„€ú ?“årÊÄÌ.¬ÑO±7¿jÜâ+uôÜLÒþîÏÕ»>DáR4 õ} þð÷rk¦†è£+6WÝ®(òÀŒFq[à-iE­ìRöä‚Ùqe柞AB…Û¢JÆL,…lùJíº Å ^å׃XîÃPÃä«úÏ›’eŒÌå«ù„ØNÙ2žÞÎáiL/Ëqpö ÅYÿצÊ endstream endobj 6315 0 obj << /Length1 1647 /Length2 16947 /Length3 0 /Length 17810 /Filter /FlateDecode >> stream xÚ¬¹ct¥]·&ÛNE;¶mÛ¶míØ¶]q*¶*¶m;©Ø¨$w=ïÛ§Oó}ý§ûüØ{Ük^k^sÎuÍ5ï±Ç&'VR¥6s41—ptÒ330ñ¬íMÜ\Uí¹åèUÌ-ݤÆv€¿;9¹¨‹¹1ÐÚÑAÌhÎÐ47ˆ™›XXÌÜÜÜpäQG'/kK+ €J]E“š––î?-ÿl˜xýò×ÓÕÚÒ@ñ÷ÁÝÜÎÑÉÞÜø—âÿÚQÕÜ´2XXÛ™D•´¥$T’ êIss—¿E(¹™ØY›ä¬MÍ\Í©Ž.»/¦ŽfÖÿ”æÊð—KØ` pu27µþëfîijîôDp2w±·vuýû °vXº;ÿžÐ`í`jçföOíŽÿJÈÉÅñïû¿Ø_2%GW «©‹µð7ª’˜Ä¿óZÿ‰íjý8ZüÝiæhêöOIÿÂþÒüEÆÖ® ¹'ðŸX&æ3kW';c¯¿±ÿ’9¹Xÿ+ 7WkËÿÌ€àbniìbfgîêú—æ/÷?§óŸuþ·êœì¼þåíø¯]ÿ+k «¹3Ëߘ¦À¿±-­àÿéi G3Ó¿ífnNÿ¹›»ü뀨þéê¿I›9:ØyÌÌ-àC¨þïTføïù¿Aâÿÿ[äý÷¿jô¿]âÿ×ûü_©%ÜììŒíÿ6À¿ç àï 1vü59À?ÃÆÎØðÏÀ±6ýÿ¸Û[ÛyýŸœÿënMógý?9ÿ+üï–¢gfg`ÿ·ÙÚUÂÚÓÜLÉhj°0¶û{xÿ²«;˜™»ØY;˜ÿù_çû׉‰é¿`jVÖ¦¶ÿ¨ÁþoÈÜÁì¿ÖðW·UÀ(#*-¯,Oû˜¶ÿÚ¬ô·+€j^Næ€ÿISÞÑì-þ¡qôøÐ3spèY8™þ^ƿב›…Íïÿ'쿈˜ÿs-o t±öè21011þ~ÿÇç?Wúÿ…FÜÁÔÑìŸ>R;˜ým½ÿeø6usqù«ø¿¦ÁßÊÿcý¯K`nîin ·¾âhÊj“™¬ÇΙÓèc s*kR+. ¬uì ÈŒÜã®2z¯ chžáùl÷Z>wú8”¡9ëò£ìM7¿.Ä÷#¥î/Bݦèä¤= f4(C̺Ќõ¹Y’Û…Ðá`Ò8ÚŸRV1(}‡"˜édu¹y¦$u/ Ä {rBò7ÍhLÀìBiA«ÿq~A‘rúüD94>:2Ü{ÙˆG›—KÎkŒíŸvNœ ô2rùÝdú ùêÎéï胞õáFä@’é(Úà½ðÂHÕYö2£'’áÚ´nÕÌä}3òÛJ”ŸöþÓ7H¢ž4Þ4üþåp€÷™ ?m‡VFý{·»VàcÓZ:¢¯#ë÷KiÏ{ãMc-6«V^‰ *•M‚lxÕ'7å–Ó€oÉ…¹«À©‘¹Þ8¢ºFÙþ¦qʤӷd¨¢ñ],S©R_ùQµiVT»Pr4ï¤ü×3’§K•ZU Fó†Í"¦Ò*›õØ{ï÷F+N)ÿŒôBô?ƒ!éjPßÑ;ÆçVæ–Ú"1“‡ÞÑnœŠ¼ ޹°°ë”<>¡·4åßGgšñq·µ¥û°(˽$ñú¹ßr•Y¥ï Øç¢m&UMØØM³«! já0r•øf4ò¸‰VQʈþFcðRíK`$‹6 ßŠÇ0bJ°t[q0Ùvá´}¦ ^VÄ>x`‹ðêqzMýM¤.Bù4u·œAM0ösùÁá£ójË#I®3Ö:¾ºUèy¤)Ó q²°ø8 :…A"Ïtt@Ži—žJtÿî§V+‹™±ê¯íƒñûí´Ê èuwZ‚æ%ïÈý l‰ê}¢RqhFàfí§êÚ»¶VL2¹yUQ¿WcîÌL ¹üª WL»ŒñReÜy!í‘}Ms½h¯'ÑOÌoòdI½EKÜ0 ±Ïz]¡Ü<Œ°u„ÖwÖóÝÆ”ÑÕNu2ëžY ¯<·#•:9,zN0¿LS¢ÛæÁŽœMá³ä3P1{¡BX¨ A³|/«æ¯…UsøF$õWÜ”x9N·ûðÔÙ߇£ª]1eÁÁ¬š8l&·p]×ÓÙg1ÑJè/™k-x·VKc[–ü§`A䈹­_šÃ/ïg0[­=Ÿ¯ä7ªÃ¬u¼‘{dBf%<@PÎâ\nÉÖ¬\ŒX‘÷÷ò""c‡„¤+•Š(Í!¬àw¶,‰DF¾xÝ\0[ç½>Æl 4*¿Õ̸|N+µ@›5~›z§W-Ñç'­DæQ0lÕÊsðrÙ9v­cr?£÷?èÍ¥Áþy>=É(æ%‘î)§Þ|7ìð#÷®®â—µ¶Àtã]E-SA0žF¿ç­6Ô ÀfBžâHÅÞ¨ŽèZ¬ëpÛÙz[>§va-@_ÝÙt87B•Hô Ô4Å­MXe ŠnË—é†r|E šàfDï4þ$Z÷M à«“Áž@Ž9·r¥Pt/IDÌØŠô»©ûf „5jp‚LîöɃx#u4®˜“8=ÊË@qf멱”EºÂì:d¾JN“ÈÀ≽ØDÛ×…"ì­fÍ¿rªå'õÐu^ˆgEù =bQKr¤In{[ÖUU-Ý¥° , %eé^èÁ’ö~å_ÅùŒ! ÿ±"ªQê“Ù1V{¿â¢ÜÙ ¥GÅëëÃ;çÖu±ôg1ëT‹ðüµ×0ñ†¡Å°{—‹A®Ý?QIÀÎ9eŒÿ—õPl^ÈçXå³1ü¡ûÂ|… 3ó¾Ž{¥ŠT´Ÿrv»…ê+ež“eh¥3¹Á\ANJyOqÍ‹³™°§!zsòbï£a¸g Ö‘t®ËÇ^au£`îÞÑKOþwEHÕ”T× )• ²æäávðô´ f-¹õ;$ Vêv _ ›âIN/þí­,‡¢œ%Âiò>H¤&^¼Çù¼ü u-¬¦ÉH$HË.ÍYjk„"býÓ#\ @‘MY;æiÏt™¾ÖxswºLÈ8q*ût.àþ£Å·~3[œvy½Ëç¬2º•޳–2SøVbè™dU1Ô,©$G–Jî—»)Ëý¦ò:x¹BO¼ET2¶Ö½pªÎ‘tä2#‹4Ã*ƒ‡¼r ôŽX8K d¸ÉŒ„’¸ÝØ Êη±ìýá|xJpúN¤ÃË—ŽSö­ê.A‰–)­YèêñrŽÃ§åϨÑgÀ=îØ £ O}ªY›â®îMò‚ù⨋÷˜ÞŠîeÛ>u3]Y˜í“–ØüšK†.å2t+› l‚\YͳÇ9fÆB!äd Ó{< v‹Éñ*Wv(&!Ag`&á@-¥œ_¤¢ÅÖ£ÖfÁƒÜ’§ÝÙÞÞúÁáHù*~’MD p@z´úS$X ½´Œž¦éœfR;–kÅ*šƒ3¯âÝi'‰ ?ÍÓ?Ì3¯Ô±M‚ö~æ=ÃÁ{O,øg ßÉ ¿evˆ1jl Ñ¥€Vˆt2 µêNYjÓ>w«³†þ–T ×hCŠ€“YŽ,ùœAò}˜cI ‰WDÐa-M…fÍz®2Û ó—Çx¼rèq˜¾ËÞI øWôfAê/ЈW× dƒ–Á¹EüûM(|æ%¬Ç*ƒ@z:ÎFe&bPí®8”,Fý…-4¹×Kn¡*ÓƒˆyFv2¢N|þÕnãœë‚HÔƒ<8–j†ÌªŠ„(âÎ%6*DúHLí7µ¾vDf\I1°þ»ÅÁºkÁéŒùj¥‚„åër£„±£»3ò±j47\(acæþ~ü^¶œ[CPæ¯ ŸügÓ&\Èð?X¬ÓÐg<*)¼×–$áÔÚp`§ "²ñ‚F÷áK1MUp(ÔþTñI©øÿ(Û4÷,«pM1ƒé9Ò"îî½ÏOó #“®;ÕÏ÷M^;Ò©©µœçlñE ´2tûîȰMŸNe-ÿ^aΟ©÷Jýºµ #2¢õSNà¹ùý:¦h´ÝÏ'm­<ÍM¢fÉ©zjY½"Úñ¯O­‰†"œ—÷§ÅUI!zæ³ Y•¿ï;y^5·¨;ZÍû“íúVÃw-UJ¶°Fóö ŸÄUõúKTóxŽ£aµ6xßp$¹û¬×̳wS ÄL^V BdJ’·jO÷X9ïq AúÓ°úA§7”v$Æ |äZøZå 앦­‰JV¾Ž›uŒfÄ·Ú÷ß’½oßݳ`€E¯¥Ó‰^d¸\£H4PÖ˧¥Ït™–Œ××þ(ßs§Ð¡ƒ7v§+3:õÏbsp}CƒpßÔ Lq÷üý¾Õʵ'íÀ¢[=jñ¨<¨ë^Üë/ñ•¨é'³¨™8’žžã\é Ë“™'nÒêàÅ(÷û¨³~3ýK{²`M0¬gñëu¼²)Ýäx¾lÀ„&bß(äçY7{SûYR÷ü¾£~'êøÅ|xúªè{Ðr&T)êÄ»}šnR¡ÙœŸ¿nÝuÏûˆ>0¸o’/á ö]7gëŸ}’HßS÷…4¤ˆaUS} BâïKê§‘ÒÇC->QzWô.ÞcàK}ûtR‚Ý$"†ŠAV:¯â0tÉÏU,µèË!­Ä†>ïÚGì² 8˜Â«=§`S“ýZ4pb#» ]\÷‹9úFöÞ¬^ä.–Á«¼_Ò‰`E¿ Á@íWn5x(¾MK ‰à¯ã 'R`–dR楑Ló‘”sB·|É ª&®«c#îÑá¼~Êú U%+f@ιjʈcÄøš.¥ÇA²ùÛòÔšUH›¦Óó™É^B)&À',îòÉ…Š[.ÂùÝ{QÚ˜@)‹H˜ÿŽJø½,ÐB8,/ç/šm¸’}GAùª6k]c,gvPÏÄMv×iàãH.ìRîzH£{UØT\£ëdñ‹®‹œ¤Ë×,ÌèÇ0Ü~(Ì>š Ç$Fµì¯ÚxMt‰ˆÎ[G…adUc-¥"˜}ûÈW³Iñ±2)bGDV~jÅdË]]Т´´*G9K?˱'‡ú‚Ko7±ÏhG¶K:´³ã y:EePp0B©tån¶Ë8>ð Þ›.{—% ‡Ûòô…vÖ‚e~®2U…c0S•ZâœnÕÀ– BÞvúÅË*'N´»ôÚ¼¨Sã@4²1†ƒÆ-t°3`TEd’›Óô°4T×™ž›¯GΪ19mþÞÓžF°á1ÓéÇ=A.¶0k¸Ú©B^““gx›ž¿”v$tjsÙÈêh_ü¥äªk²ÿ:¸‘•˜µÉ¾Ê¼³A<%¡Ø%Ö‰Žäœ“Ux$ÜqU‡¡:dÂoP;YçIÿ,[þÖçN3òJh­åø-¤®2ë©ìÕc#Ûë å,0¬»ÂñgÎ$W«OoáeR¶ÛRçT½ÀãoãÐíûÖOê«eñk|ˆIºŸ¨ˆMåqÞn,ž£cÁ­½^üÂT bAQçž+2Ò% Í<Ñ„,ìî¿DîŘƒù·AÅš%9à1ú4Yƒ¯!,˜Ë훑a éN.áଘÖmåÌá¥aHöB—Vµ½Í“:=h}©Ôœ¥cö]‘‡¸Pâ»Oa}ÛÑX%Àò>SˆI¦ >u@Hÿ's‰'×8}ý”4o "À}ú¢¿ë¥ÄArÌÉ.¼ÄÍhÂZ7»Žh…î¬%ˆU1¡ª¥ÎIQ™4h»Ÿ·Pdmõ7êtPꥺúfgå¹ÕÄ&ª¤÷‡ðr; ãD‰Œ,tÓÏkÿ6¸Vœ^<–á%5!÷ˆ×þ+X®žÒÐõrˬW7 °ô2ÙÉPéz’å®;G$ÖÄàP{):Î&žòK ÒÁÜ™‰5 WHÖèØ“¶MPZŠ"²UƒKÜ‘c]T⬡¸íøÉ¥CMÅ£|qâÕ1ÝÇoBÀ# ‹ê‹õ«">=ô]>à7Ê>±s#:ý¼i!r°€Wâ½Êu,øØõëØÊ­àÁ×þùò¾Ö̦ S:Ó÷Ò-— ³BÈšÏß´椎•K£‚É!Iø¡“ÇOˆà­ Û7½Ñíj~4Ömî(ÞÃÊŠÉ|û~vžŸ!JùéÕ&²…ö»ñ2Œw޼à‚lá>÷„Ö3½í“Ü̹aæ8&àjM¯Kc dr¤--«¥ÑøêŠëiRt‚«å•õÆâtÂE>¾M'wiÇ¢Gí‡Ã'CéÁ‡Ë~ÇF3–/œ Í;Õ.ã£h-ý:–òØ’eîÀ¡Äç¦5g«–¼sµu}äd#—wÉü K!׸j 4w=Õ±a²¡>£Ôð!¡~³÷ë ¹jÚ? g䨠%£Åzû³-C iÉ($R\ó–^ÕeÕŒ¡¦ÚãÂÅC‚VP [c«:æ§U¼¡‡à,9Iƒþ䪷*TYÍõwÕ£3ïËkµkf 4’ÒxƒœÞñÔ¡v{!ÑëµÖ²Ós)ÚìÁæcŠ™ ê£ko:ü¦åØ Ó—° IÂ×j§¹8¹“3{wþcérý&í\¹÷P%Aƒâ䢠ŸoÃ{‘9ßä^ThzètbE‚6ã. ‰sA\ƒÓºÁŸÒu#4Um…(õÝÞ)è®ßŒf©AŠ-¬ÊípÎ^õø°% Lö¿¨¤ÖÇ/ÇÌiV]?Ô÷â¥)ª&á¶´¸˜I`¸`ŽÍd.SšØ!w%yž<7ŽBžŠéˆ£+"Õ– ÇóÄ}Ôû4S‰¶t·PÈInlêÃœìØØ×Jê(ä‡#ί%‡Z«Ài¾§ÐšâŸ§°vóѱ¥º“w¡l÷ò¾V-a4õe$ä ¿V]w)H«Ù¤:6ôB#çT\ Ñ´Åë ØáU¡ÃŠ^"¤]Ãñ9HE?•§(oÐ^·^˜°}¿«ˆ8[”ÀäM¥Ô&òBl9 ¡ _Œuû=Ú„aw,Fù>é$7´ÚV³¶_Ç,`¡%˜ ,¨ó4\ø¿CÄ9.£xåóÄðEdpQʹ‚å†ÑÏü…®¸¼ôvö¥ß›’@ùÈØÿ d óøDÁêo´¡lˆJçåbíŒkëéZ.ø „/ð’}ó6Ÿ‘a3tÓWf©3ÍÇ÷òò„^åE‚%,î{/ù¬ #€åà³» »lx?›NÉ–»€“êY›¬Á¯õ‰V'x BðƒMkQc×§Œ»Mq2]£¶í±¶mo\D¢2ʘ‹Ÿ»¥üÃ/ ›jÔôî·˜èYá„¥ÈNæ$87c'†805×¹ÞeÎÏó"+‘Ÿ—ò³ôšÂ/½ñ/ô9zÙ!p4j—þ;jíèwW’‚fRQ¨qßÅ$f4LÁN%Y. 3ÀßpùÇ讂Ýí0'pÃ&NÏ4ÓV^7µiÙûíw¬yÏ M½9rÑ´*„Ïât–ç³qû&Ú› a5¼?a¼ 38¿­N­&‰Ú_«eòذZ(ú ñ!åÔiÛ9åm{sd"ôŸ;â™ÖY—‹+ëÊ¿ù¯ôÚUxÀ&¯»–v¦ ×Ëg³-×MŽ›ÏLjwï<ÔWÒßlaJÂ÷Wù‰QݪÐO´%=dfI?ÁºÄe¡±‡§Üº§ì¿‘“evв­£!Ëc»Žñ0„ú´&"¯Ãvdm(§¹h?%g`ÀJ@·ö ‡R°|`­”FÊUú†$ë½{òJt˜{êÁøŠ`ý–0¶ž» ŒH%†eÜ#U‘ï¯EøÞËâÌH@ù{»|ü3³ÌETQȺª@ý#ËèˆÙ<0Ò}hðQ$%EB3+Þ‡Vº$V íÍ5áÐDɯ*P(Lø,uy÷yTí„qjÎ@EЩþƒ—.w)Q`_ôö+ÔŠÑáZrÙ£¸9ºW6DŸ³`H“ü]Œ)?ËåÝÄáK)NÕž Kkyícô˜Bp¢ü·ãX.”vœ»p$îú+T•bŽ–[(¯Ž‘È?ŸÐ™[,ä E|×âÅ´ùÄšŸ™e_éåìËQhM÷ *$Ö¡¦û!ȇù‘*ÈVT8ÚèV˜{]³¯ƒ&ÜvCÆF;D¨W®†[WëHxÍ^ h7’ÐO ½Í‡JVä~nÅêN4ÃÄ:¨ PA–P> ƒ¹j‹eËk‡ ÊFÜÐë£åQLØì²<åUAƆT­FJõn'y—ŠICYÜÞ¶øÞOÄÅžù9jë›w}£VHØ0µ(?d‹£i¢ió‹Hvj=ãäª)>¿gž–ÿ(-%™È÷³w„áGûc†s{„0»À$ø“RoÎH˜dX»z6°Â?§J"`Ó ƹqúÆu•½óŠ8WÑ.›`ѯdäâåüí—3´¸6Ñ¡IÂsÁjÅ£¬m‘Åsìr¼+iG‰Ä ÀÉÚØR«rb}œ© mÌ® lRà_]Y¤°ñƒršÿ¯>þzVÀ˜O*äx Áv®c~M#qä”s®•P€<Þyœ+HýXú ²$c—@¸¦o‰bägèè`)ø•_aj&Ï'ʨŸÛýJâѲ§Ò¨>K}îYoEj‚-«à“!T7áT,›Úá]ꂜM/åûhé‘áiNêudåªüQÕ4èŸ+‡ÝLdÊ ÃTµñy¹§J›g#?ícñDùê[PGyÁÓiWçN,5'™‚=ÄYUki¦·lUBïþæ¸`a¯è²/®Ë“¢!Øú÷çrbû å¸~J·7‚Ý'’h–~šËËûAëZ.HÆÖ¸‘¬–fØ–Œ¶ÆA~/–ÂZè–”Ûó­2§E‚Ǩ>!޲¡Þ`'uÑå÷7-ùœ%˜›€­A ÷ÊørS$rSÅÚRyæ<——ï0ú¹—lMy¡¿àÀ“°ó×ÓŽÀÚJÅ!šÉY$qD/—GÇh´—¥Â¬b0þlF‰2 ¿uœÃƒ£¾ÍYêq„1ÞXæØ[”¡5j$ ¨¬ÐÆM’wd?Qƒ“ ‰Ò¿ûM`³¸Ó݉crá+KžCÀû œïÞ+¾™W‘HÚÎ=çk…K•ÔO€ôüZ¯xåõ­Ìãû¿dàÀ­×ò |ÿì…¾‚oßþ¶ó-u"d`I¯i$ù$V¾Ù¥˜#š£_ ¾jWß#œR3ìÊ¢6-'#Æ]±µ•åJü¾èáÌÇe‡‡„È­ûuÓ]¶‰´–€fëΦÖmxpMJ‹Í|܉&%´z†¶À§Ë¸’Ç…ó© ƒÃž6v þÄÐX\ÀÌ ¹êU YM>Ðÿ!Šå ½÷P:Ç­NÛ"j®Î®WbG]³Ù7k:yÍM~±À,I&eÛnú@ÓÍb7?XçJ"aÑÊþ‰riÂЃuxVÁpoe2ÄzÃR<»¾4ù1×lï“=½nz’(q¨êÆL ßÂXb`l¨'îþt#6ù6ÒSUZâaŽ÷’ÃitQ¨Qïîn\»Y«­eeåõÞÓ‹¹©ûa1÷e>F`]·UÔ7´rGœßÇÉKz¡îº\„úÔÁ!Àªœqoc +ðÛæ>ÖÞ’qVËH“¶¯INI8J[3}{ïÖ†ë,Óµe}ðýeý+Åå—‚à#É£Ç<”)3_'¼DÜYJXó-ÒÚ‚ÖàÄ UÒ÷âˆ9‰Ä‚ï˜Ü<)Z€? &×W›;°.™Ý ‘g]Ö´­OD­Ö=SLž‰ƒì³ ÊÚQh±_ÌEP \\ Û>ÎêÃäìÓ}=Ì ˆ Ê#ž° Óዤ|…\å˜öj ^¤“; æÂ ž&(µ¸.AÈ_" /}8âØp2Ò4h<ÒCÌ "Û:ÕøC_/[>ž9‹´Á&F'E¿õ¸±!ó¤¢yx’hÇñz£èõ+•ž§‡é‰`Ì${ ŽX±c²õ0Zh¾Ë…,¬C šâðÕoð¦î¤ó„Ñg|ó;¬òE×,i™ÑÛZÇK`Ój$[ÙR7¿èR£©tëÇI3[! G›…¦€µŠt"î}Yf¸Àè;±8x¬`ìE„0·ù}¿ýþÉùýiQžñ=úÑÙU|碟Í-èdö¶ eþÌ4Ÿ´ð-ÞtØ<Öµ#c,Ž¿—ß±baTûfMWò.§ -AV/[±]¸Œ˜@·ƒ^ªt?8ïC²85á0¹~Ö„]¬jO ~n+95£LýMyº,ÃÀè‚}(qoê‚ÐË`—„'lŠ, gK¸j¤Ž »9ÄZŒ¹’?f8ØÈÕ–k÷\1Ãçó&—ˆ§­Jø;WžëµÀè¬ôÐúì›3ÊðËj·¾æš¹ƒ•¸‹º+)g1!·Ñ*ˆ*.éOêž¡v\Ú|sì^P:Pœ0.ê­GW4ÆrôЉD¬!ë—ŠQLÂx‡õ6Ÿ +4ñ‚ªëïÍ—vwÆx1Ùäã¯$ •µnj<Ái;ñ( Ðùø„Ž<ïH ¾ò÷Øw;¹çLiRÓù]¯(?i¥³Ü[²oô›ñlÏ}ê5fF£a?©É®äePW}þTJ_UÿOèzñÈWd^a‡¨Äo¨ä‡r‹PiÛ?Nx‰#ûi! eŽ‚åMLD¬â¢~ñ›t×Ò §4‰†.Ͻ+pS™÷zb޾½FR`‹w \8=YŸ{É÷ˆ"íoŇý@Ø‘? 3Ä‹q2d£ÕÿP‰|UCÉO¹×ìÕeÁjuavßž/ËŽžgÄ=iDRX_4¶Cj&ÂuÜeÔ¤±õýyþ;Kç¡n¤JÖÞ±d望1o›üD$¿DßB2õÌvN;Ð7««¢”øb†õ¤Ò]»ÌÖw,ES—Ú$LýÒ ³¢4RÜ"7§É}´UéL7².G§»b¿Ž snG#SöbĦ׋”?å—þ—p@Q»;ÌìÒ–Ê WÁ¤A6Im‹4±ä±sÞË<%” Ù©u]žÄ9U鯧SL­üãà(ŠÜN{h˜ôT?põIàNUèEÓyNÓÓÜP¥ß¼8  ŽadK ö=Ps"f§³ÊMšïºTÝÓòvRÁ`Ws³š}lËÓÆâùm;k?Ñóȯ=ë¼Rž!@ÿ½ö2šœQÐvÚ´Åe#ÈoпtEá]ï·Ù.„UhÙˆªœÜ³m«ÿ/Æ{†:1}>eX­(w?‹ôÁ¼ygu,qfÒMšùÈËƃáCõˆi‰¨5R&¦ÞãÏÕ 7òÔ[ÿ”šØ7‡åmë=|w޲¼m*Œ 02ˆ Nî­ôž(K”¶ð*Æ3pYÈ%Uí~óD3Fá™FvÐeê¢ ýY̡Ҕ½sh¸¸˜Ûp¥›ôבûK¨„"ÉR¾ÕO÷5é~Œ*<{¾¡Ñx¸Ê ©Òºu'¹´=ÜE Ø44 $'ð=³‹á›í]¡xHÑ´óv76¦*fòÄ$åHS°î°Ü QŸ*­øœc¯b•Ø)9)£Éþ-¶zÎsÙÄ»¶Šåx6\Ö)Ò*,8*MyÓ$£ra€:‰°†*wa–ä 9ÙžJÕédˆëØâR’KË>Âð¡º},h 7Dx-O üì&JIŠáÇ«{4ŽÖøQ²€:PÛ4›sö„F†éq/82·Ò§§U;Òa`1òíy• 9`š3¢1¶<4²Ãå–ZŸG¢@‰»ò(Qê³ÃaÞÊòt¢voþTe\O{²³Ï"q¢¿Ô;ønÝçç2²ƒÏ›o}êæÕaÀ¤‡ éüWv³À˜Á}ÚÁ-mØ8º•’#þ@£¿;¸`¶QaŒýlÆŠ‘ÿÅ»JÈ2*5¦0(ïæ›Í•ÁrÅ]­ÿZH=Sà-Ë ;'«muœÀo0¶-K†MLF{M¼† Å6ôWÆœ1ühÏÞyýykJ¤Æ0 îý§Æ3ÙðZ]_‚!¤÷’ʘT½JîYÑ$[$ ž¨`7*cè+¦.¸¿•“ èOjdô]šÚæ/…­³÷Ò>ªQ|ÁW~±žë¸ø“ÁË Bñi¦«Ý;ƒôÝwëÈ«ÛÔÿ¢a_c´¬ ]âûzšãˆ§.¸E˜¦xߚ©ù5G°"›á¥Ö@Õú†0(HÉ-Ù;þóÕZ¹pæW—ÝID­;Iɸøœ#ý¯÷ðw©x§¥,ÐWú¿¯û/ FqLzÓ¦žÂeVìAœ±Õü{¸ÚßÞÔ6ºbÖ§46tÝDT˜k$'AÍ¢‰·;dBˆ>p˜Bˆ;h`ô5‡‘4†hó/Ž¥Þ­jàöÂàÐ þtüá±IP.ùŠÌ/‹¤>@Fÿ«š•ºtaéÚKî£Éy Á›{<–‚z2HA,7³)¿uЬ"rŠùC©º¡H(¾ïÚƒ3²7äT]ÒÓ9ðÅ'֦ǿÉm®£'yB.ÍÌéx.X‚ŠŸ— 醰ñSR)M×{|AFvIªiÜ µô£Ìù"ún¡0hWI¶RgJ¨„±ì†þ¤™ôf!†-–OÇôøtl~Êÿ|¡}m‡ÐÚ·žç…' • °ØÆvÇ£!FXÖfŸDD"¹ìâ‹ÆË׎ÙdØf¯Ì@äéð=3æ¤yî˜uH.‰Úè“ÉŒÜÙ9H‡[ ‚B5Œ LÍ..äXô^qSt–Ï&dôTk?ö‰˜²…©G(iÌÞ'dÞžó ÓÓºµqäLlআñ€{Àÿõ@4Šq^Öë»غâÄÄcm›Ý7ƒ`xbôê@Í¿sá;ÜdZ3#ô´ÞV‹$—––:ΊÞ$µpkó0»1°ˆ-åú¨ ­¾õà|#•@yD?ýÊú8#Kj¥:¿¦çü¨T=7oÿcæÍh€Y %¡Š ŒÙŒ™·ÖõÜUè¸3e (2DyE )NyE³Ñ J¹ü‘HCœ ÈŽW…s¥=žF‘JƒÊˆ…™ú$Ê¥Þú‡½ßüœ»!ÇÍÉ‹€>gÛ¶ÛFÌû!ÏÏ+`ï|¬È`¦ß8}ŸèÀ¯PíFŠV¾âR{xG©aÖh›}èÆÀ N€w°Í(MMº"—'#ÌJÜÀ0.–‰ÅÝâ³™SœPßóq†ötØ4 P¤°Wž¸ þ–á7ë!`ŒÆY-w&³û˜(H©p„ÓÙënj¨ét¡ç(u†*ÊÇ€ Ÿ ý^ù…b`5ù‹Nr§F%ð%-­.T_âéxr‰qÛ†‚ `üÏ¥þbÔÇ&âØØ¡ãžtÎ÷˜ÌÓ¹·Â*zËQÅÂQ÷ ÷Þ dn¤R»ÿ–J7tñ<¾öãg¼Cv™zÞ ªÔ­ž^¯êèÍvÔÇЇÛáÑå®#}·VQBÆ„}¨‰…Ì«l i èb›ÿU«IW¯Ùø!lØQ‰ú föÈ="'ԢłYf²òïnޝ"FA?„› àÔ‚¥¶-U&„ÂॼŒ]±CÎ`q—Ö` “»µU˜®Ê¬TÓΛ‘Ð0…Ó–9ší蜿íc#Æ8×è_¨tu §”¾eÑÄÏíˆ5ßÞ8“~Yo³«ºmä47Σ&W»¶GÇqŽÃˆŽBÜ"B.Ë1yš .A⣪¢ NZ^à),´ðmÂø¶˜ì­N1+ûƒ3–~ÚC­Þ¬ç ¯ñnJþÑ…Š‘„ìÒÆÒOÒ$nÁG¾á- ÖRÛ¾®<Ñ¥W£ü´†¿f±TÌL V8_ËÙjùÌÊ*ÌQŠY—F¸µû‰ò}Ù½y²ýådp’¥ñ¬ù7´ìdÐb„âOÂg5šÖ/Øeø˜Íú§¢þ ¦rL-vò°v8è!w(Uê]4ß¡ Ó“AÒÖ}â ²_†Ç¨²¾+¼<‘pDµºpŽy&_8±Z¨l 3!YqÌJËn§kÜÖ7¦¤dl‚Þ,³ÎË”qåTáš°zæÚr°m‚šÍæÜêMÖ—Úlù{5-ÃL=NÌ¢Hh¸îLj֯찄o“ªJ­ðµàåî¶*®oáñ£óõŠŠ<¸‡%¤AŠ+~ñð“ø‘Ÿh„Gèú~‘¼:/,±±:ëdá¥cîç jîânftZP} úZÉ9VKÚ‡T5‘.¥µ²´QÄ2Ƥd8¡¥âÒ†Â\IóHá8‚ÇyŽU4ÁycæÝ‚暥ƒ._ïN;+œÔ0Nú‚ñÇ>ÙO¹P GúNçóÓ„F”)íJä ÆPòû 2¥#¡á»xÅIÃ𧈪XÔ"½D&\TÆÙÆú8_Úˆ]¶vÇLœT™W®¾bˆÆ']èù™•Ó×¢J·ŒÜ®nz»û¦S­lõ\Ï™ˆ_îIu—ƒX©¿­2 0Ív&ÇÆ_3"C‡c0š(}Dõí-Ž4Õª­Ùe9Û¨Ô ëC›¸%À˜åF¦ ’<î Ú¥š¡Šns_“Ž> “vZ±gî¼@å b¾Ë$•5>MaöÉ3g->¥ØÃóx†?|Å•rZÊ'ã9Ê•¼ŠÊðpöÇãÐpçÜ7BHu’΂Âk¥%™ä¬2î*‘/½åø¼ N©1ïö£¾° lÕù,ŒÿÑ´Ï×°Òt¼%›=¦¦m0C†áRßiâhÅ·ñεx%¼þ=ä»h4Ú*ÚõÔ]}JS¡òY¡¥-m=_"ÎúÙ5¾`ïÙØâàs²ol•}Xy•Œh<}YK`JTï}ÇG‚‹×Hñ1Û9¹®CèO^>`ŧžº1ønëÃÇçJ l.¿A­Hõòfõƒs€~yJnú':^€Ïö8<•¤^Èioùl· ßt¾P­à·{H¬ß‡æ7`40»Íá‘Т©R²°¡*lÐßà+‡ã軨‹¯íƒ/âú t“ÐÜp2Pl¨‹í¯FºM~·]i_ù‹Tpùä‡Z®ký,9Õ =Éàhg§6HlñôGFˆmÄØ2\éVußœä YU #vX“\sFpqó ±¯ð|vú-z8=®ìè²€k}Ä£~ˆ\É^úòY²Xu«G¹˜$^M5³±*s—úRµ¬{lÓO\S²_¸ø"ܰ fýÎ C0l®&BÅ5ĦnÙ»ž#Ž.£¼âç ëJ?^±äÈæ2+Uå\ˆ²l‘2†>©ë†j=·³OEAkêðÈ> HHÜ)·µ†ºÐí2^¥*86=fÓ‡tÓ²u÷Ãà)j— ¦÷ÇDßÈ/J*Ä¢xÊ^¥VµŽä…+Mm{f)ŽëKާ°g¡¾ ¦×0i;…×BôïèçfZ%‡ÞÜ‚Ç.\_‘r]*, I×Î’Ò¬¨-7“-ÐmœJ“ ÎT¹_xÛHÒ<®8¬EFŸ]bI«t+¥Zö|±Â€qŸŸÜVRDIobẆ8Ó¬á;õx*xëí5y¢ÑÇL/ñó35L§ Ç„$ãç—ùTãÜ[,>ß_&Þ&@Ú‡fjïJ&-O´-v)z:v™âKAaÿˆºÓªâu‘(B’ºØ5 øì]H\ œ#R{'žîK$ãË (ÒúÔw¡Þ~[–Ê•¢!oì¬Zªü÷P4PTêÑYN+Û3= û]4Y¿zšOþÀ—̺†½èµ3·0%û¢¨nNtné‹–g‰°°‡ÑÂèÓ–÷ï®Åª—Îr2×ì±Vïšµ–ÄêlÒGß™èv$>‰$B¯;ÝþB'ÛeB+5VEï´8>Eõ¸ˆYw¾Y€Öì%i›Ç54 9òïåð£úÃl_»x‘j41¶é;‰Ác½6ºý³ïÝpð®?†+Ÿ-ÉbåC9ÒÀ£8² ucÑ¿áÇĘ$Û_Ì%œÍÓ9Ø3!·MܵŒ?ý°0^¯¶•-¹±Âz¨5Š à¸GÅää|Àð Òn©-ž7G•ÌÍ=½¡ÍC]!åM&Hð‡¢Ä?¸àdêøkëC€ÃÊÎ+¤Óš­oH&p›gÑTl¬ZTÈC4ã&—(»K9û“™‹zý†²ÏP:äÂk%Fµ4 H›néåßþa~Qˆ ‹– ت¼™¹-ÉPQK„Äžmƒ­D.æÓûÕÌši¸|`v…\ÝöûZ’Ú-“°DëRâ<ûJ]£*T,Ìû&>5ÂÌC9òÄqç¢]Òm¯‚5œsŸýªMS«}êÆãÄ> ¸DCÂtÓ–œd v&8›Óã’ÏNšXíŸqg¾æCÑÅøôeE€—u›?§˜5M7wõ¶â£Ðó€`7b€lþ³LˆlW 1ÂÕ4#–Ê?cS%¦ÜC 2Šb Ζ‰{YKyŠP>j'º–^¦Â&÷¡Ž1£û‘KÏ©¤1ÿ•ìU endstream endobj 6254 0 obj << /Type /ObjStm /N 100 /First 1034 /Length 5488 /Filter /FlateDecode >> stream xÚíଚ”Àg½¬¼ Hž×•Å/ÂSÏWAy¤ˆ ÖPà ^ЕàÀ9 ‚kgp$À-ÌYÅ9tƒ Øž…4 #%vá1áÂc" Ä0!ª<R¢.<¦à‰èÂcÊJ’¥YrOb(V…R20j8"FjŒP So¬AAÛ` §ê` HQy˜Æj|Àçü<0M2-"²\ázÔŸ…„‰]˜ 8¯^ ÊÀWNÀÓŸèð u ‡,Ù LЯp\û­%Z Fƒ €@`µÅ'ŠI#hg½YFe@S-‡ ² èÁ?°C#J Á+¯*O*½>ÈŠ7xÏ%v­°¥ê‘.!Q[`Œ%S£Jò@_(q€¤DëEôAI°q *A+”™Æµ`Å 3µ(r ä‚bQ%¤@’v„" Î<ð ÈŽHàÊ t]´6X†]þ%9x‡ä"J¼ê@J @€•DK”ÜKWIeðÖ%5Ð/Á@::ж=ú›C0à‰”hSø×`áÒyH0ð!X¯~Uá¡TÕ׃¿þõ€½ÿqSWìéä|zÑL.Ø“æÛ·zVOÎëyõk°lì׃¿ýÖŽÈÍ@$¼:Ʊ_ÁAÚjÐ~=øÕ(wÆû‡²rÆ?•†¹Ízè‚'s‰-Á–€Ý:K¬ã°ÜXõÐ! Ρ§‡ykÁ"¨v°²—üØ·mûð@§Ëú™ww¦óhwÌqËc»á!°ê‡º}Æ”2µ‚ ƒ‹ãÕhµ…ñØÆ5IJˆÔLDÜA8P®3ê!†X*ö><„Ð),h\ÇAõ¦‚pˆÚøe¼Ä• cW¹€­PZÂ%(à7€">,‘AZ‘@DÒ ± ‘a“p!é” FJ~W´… ¬÷«ÚB5ÚʶÖWÎ&8Ô³àó Ø«Öm78 >¶‘:jt„Z¯F¿uàfå|™L—(¿Ø–OYÒù°õEË)B–|ˆÙ[cÑÛ¼ƒ´,Ñ•×äöªÛ§M0‹1…ž[¼‡œ‡V<ÚÄ Çrò?‡©êl2¤•PX´¶ê!ƒA’"s&¦ã'ŰJàãÍÃðåcÔBAÒÒ^ò1ä)Ž `(°ÈCrOšiçÓS4j9ƹ8B^ŸkׯyÒz¾Àh y»ˆq%eÀÀ¬¥$M{lÆR¨6qÖáx\E˜ ’l­…â´Âl½E ŒUªv ˆ¨Ê£ƒc€xŸÕ˜êa•X&„•—½†nŸ¶„¹.g[6õ;¶ñÁSE kŠhmN¢ï`†Ñ)U@õD±…A~XzK\ÂÑ 8Ä °.Dˆ¢Aóaq s…ç°:Á>º©Óߦ:Äдîd€Øv%§#¨HV`_ÀøhF4†/ôlUÒ¹æ:ÅÐÇqe±òÄŒŒ kH*€™M Äl+ŽàI¥R3˜38â(MKt¨˜)CI ŒÑ’iK¢ƒê° GÖ8fY ® ¡)`Š†š‘ ž0;¢"¦`ÌÂVܺ —0ãnà°¾3³8‰TÔ *$A¶4)õä¾,99XìŠ&†Ö`9ßêS>ëZËJ3¤ôŠîì* ên _¤TM…·© RäN CC©Ñ°cÕ¨dõ\!œÈ(Þ²8Cë„"ij*d›øƒÖI" ÕTA£¬é½l—RÑ“ƒ‘P´ŒÖ@%'I£žµGJ5nÒ£Š òV\‚à)´ûº<,GžS²ýÁ8™,¨ eÒJGE¤!WÑ“{@Iöæ~"yWÌln‰Ý¬Ð»?v Ô¬Íøz¶Ø_V-+—JgÒÊ5¥à±Hˆm\A¬J,R[±aÒ…f,é’JkòÃX@8A‰:PŒ…µ6Âd‚IÂÑv—Ѹ€™Êª ɼ¼FG·T%"Úù hjÁGT*Å4EQúgub)²‚m–~iúÝŸ_ºx¬áБ©‡X nÐOõr!ø²Œ0Uä{EXA]ßBˆºiã û¢Êìj qäl#Éè¢ ‚¼]†®ä½ØFò_œ~€D…’7+¯\’»ÒážäøZ¹£XnXÏÓ¼Ú†£Ówo_>úLÙ•A±9’P|ßGÞ¬å¨ÏËvqýÝɧç‡Ä‹[í™áî±Á+^ƒœQžî˜:øÒ¤¯É”Y1Ùíí[Ý*†¾ûòèýËÇ$u14ä ùóž‚Äú8Šî Ùci«À÷ËÓ“/'/¥ãuqOóÌßËÿÚÄ`ÃZ†ÞAÜ9¡x3ÚX¤Q øm ) Vƒu© »[é…5×lXLÅRŠ O,¨¾¯¨ÂVðäíË·±v:6k\,k¿»YüNðë5@RCé´%cµ­Bá‡/ß½CÖìɬ‰ îŸpÙ®¬mŸ}xûú ²¶&0Êœ·„”÷š[¯µóÞeé› ½oàË] “Þ*P~xrøê„sòyív"%í„À×Xņdµ[¤ÔëÓzÞ"B-÷…°?¸F/y5ŒÆø¥Ü\E6“oͤYü )]7ØõíxÑÜŒ°ÉèløY_k£=Îz??}ô)ò´®R‚ý}Ñ-â¼¼‹™ÊFÞ3\Ò_¶ÏÏ[ÅÀW^=ûË›æúìv~2𼢦5Ü;ÜÿÓ/ ÀX‚Qû¢³½¤Û–})ÔºP_Ô¼Fª’ùãW[¯·_ž¿zš¸:ž^¿™†W^×ÍƬ¯(¾©!­ ô]½†2=KÖ0&:ÌŠÍGhëŽÏF©N.ϳr–À³«”$ƹPœ\]ßµ\Âc:œ¢YêÅÙx0µé8jÔâ[EÉŸN^¼øØÓÛƒD½áf5êMêBoÎwôfDÇ í R“Kï{ò9:¿]ÔÅèY{¦¹²2>»ëÅ*­G@©D¸¾@5Ô“xéŸiöíbÅÉfÁ­:à[‰“Ó‹â¼™ïrÌYÏñÈ«wÞ ¥yÁM±ÒìŠóÑíÎF[¢ïvJŠ?€ÚÂBß>_a¡NÆ£Éâ„uÿb[}î`¬ÑPÀ4OS¹ 6ÚÆx]¤hƒDŽ(÷E×É{²Û*¿¾||ôúï¯WÈÙ['5Ü;ÜºŠ¾ÔpZH o‹Œ«ú×´E¸/ĦÅî>þ¹ófc}¨Nnú/‹Ø÷§ÅŠªaÍÏÞd´¢J‰ÒI+¥rÊÞ])׆‡¥œ ’WñEP "QŠI<‰áÈRwÀVdÄI²%æI Qø$Ì8r¡€ÃfŽ9bûíꋈ^Õ êP*•ÁhîJϼì~MÛó¯E©:0<Í;†¯KÑËíÑ÷Oo{àwëzlÀ¿ƒð{ÇôËÓ¾À¯K÷|ö»§“ôz#÷¼vv0üÞAâ½Ý,üŽåïxÖžé ˜¡—%¾þÒÚ\-ĿͲ5m›Næúä‰ax\¾ò6@ È“›È“âÔ½÷³ô€D»Q‚Xï,î…Ä» Õ›U-JYò{!ôg_¯”«Y*µ6]:9 Ñ‰ eVÛed:´Y!Æw£Ëz~ÀOoñÌåîgtú¢D\Ì~i.`· %™ý ¯&]m ß•/Ôñtxýº'MƒråbPÂ×KñßÉU~$ž¾Ý~Œ¿iŽW9ñ&Ý'Ž|t˜‘¸DiüªGbB®Bt„*$"}­{G$!–Ìø¦&]]¼º„$~u&žHîŒΙÀ(ž:±XÅLšGJÁÃv¨|•à Œ 'þ靨1yÊ&®„ û  °ŒÅ ¡Ü‘6uTH³W)ÉcÉ—;ÉmDªØâHvG•R>þݯ$@•,M(•¨’wh÷B•u¯l†ç’H•Ï8“ù ëñQižk‘PélŠZ'êäBÛí¸ ]T.‘®}’¤ÉfadÛÉSJîʨ &E üKv¹“äfl^e»+ª­…Ífa³ƒÙ¡“üÊê}hM†g’®¬Í¨²ùÛl(ÖïÕÍ.ì¸È<’uå²®Ü^\¹¬— ° ¹—û©Ï¡/§&á³Ëy·ªœ |¶ƒaÈ$g,?¿ÛUÈÑ'dcÏÙ ÿÌ`î$!Ï÷A•‚Žä‰ÉãÛü{„.ubÞ…Ž6»£’<Yøw 3N—;™ŠœÓ¤û QüøW39#J+fèø<¶C%:¨r"”2 ¸&Àé :6¯qjT!ÉùO¦]!tR1(•²©£÷áJeq©¤rpŠõïS'eœQé̃–¹“Ò”Ô)ÄC'IRÛ½PeÝk—L[û$72Îø4|]å4%Mò\i|Â`yîdέÜ*áKÙAeSè“9‰ÈœD`+˜1øÜÙÒØ»¨\vO—R£Ì¹Cºlõ.Ú°ÿû JÉ\º¬+—UäyÛIfáå>\y•Ád‡õÙa½Ë´«’>,·Sÿ8¥‹ endstream endobj 6323 0 obj << /Type /ObjStm /N 100 /First 933 /Length 2080 /Filter /FlateDecode >> stream xÚ¥X]«%·|?¿bþÁJÕ­/0ÈKBbBÞB ¹„ã„õ:$ÿ>¥™î£«‹¬õÝy8Ðg>ªºU-•4hG8Ъ1”CBŽ¢UAä/ÔCQäz$I‡ˆ¶#+ÑŽÂ?¢šŽšò!)¶£eyHæ-†C b,Ä.×P ^s>¢4¢·Üލ!1Ê!%±¿¦ x¬ÄT4&Øíì"UfÆ\áJP@Ë¡Ip@’2j倲Í„GböZkÍ…5²ÎRÉQ ߨ•­¿ÛZ>R!”Ä ,±GF} jîK–¦ŒÀS@XLŽ¡GèE×õRÑ߇­ÉùKz¾Átc ä@át¾Ñz=’^V*=b 銘nŽÂ‡ ’Kx¥ÿ‘5ñ µÓÊVæ¢-—‡”—CœøªP¹”8B¾”3 ¦d©H¡È|¸öfá(§Úådš©q¤%qÄ»âì•Ø‡„rl½Yâ‘Qˆ,½&>(‡•÷òs DæxåÔ;…éæLø®+&2‹Ì59ðáڈ̞ɽ„– ™"–ƒý#Gïš¶"X`A)°ÀÒû,°¨ô.àé· ,‰÷A¬’3›–"ì7fPj$2 ,•¨`Þ¥±¿{‹Ö Dîs Rr°À æXÙd 䨒ˆÌ«ö6CŸ0¬,°&vX §‘Y`-ìjðv­±<¾ùæñá¯ÿû÷ËñáûþùòóãÃïþõËOŸüàÿO/=ê=Ž¿<>üáã?~>þ†ÆrøŸõ³A-ð+ìÂ+`¾WÀ‰Çàïo¿ýªâxµXÐ.` ¡Yµ@Ê»¨ô5uŽ“«Õ¯´‹\b´+}ùzª¾ª\0êÀÉŠáÊd“ÇnPõN9aìÜ+¿¥° éªìxÅ$B3Î>‰® z wªê³ü‚I–º8¹ç¬V§Ü@zÈ£Á´ÒèW¬ýXöÉ÷ª4Q©X¨W¥Þš¡x-Þ J.HònHÞ“)U*6Ò;ð • Wl |eÀœ,|‹ª¸DÅ%âªlŠ6¤%•;TÕŠ)ÍðªO°¾£¸XUUïPÕìÀ¾$ôýÄ4ŸÝÍ+o×Hþfª> stream xÚ…ZM“¤6½÷¯àè>l}ˆp8ÂcïÁ±³öÄØ{Ú𪢪qSP TÏ´ý¦RE‘ ¾ÌЙ©T>=IOˆ’©IÒD¦i’ç‰(²D ÿËD*‘k•Zø_'Êø?Mt&‘g‰Qü/“L@›Ì&Y¡žD¦!M §‰ÕÏdI!!Ÿ6i 5$KsøGƒUH©!\*ð+È£RHŠXøKº¸ Òb t¹$ÆN —ÃU“Cf_¦KõסÃ%%S@ç@ #%¥ÔOJÊ"O”TP5€’Z«@I(il‘(™j%se%-t ¤µ"Neaô@R©Ì(T¹Î¹J’Ú5J”tÿ»b DgP(Ä•C\& >øÏª'ˆÊJ2¥Üà‹Ô=™D9>e‰ ž C áÉ&Z8x*+÷µè³hK×VËÄhaŸàI̵‹™µJS|rI½-O2c1 $µ@$<Iž´L:(÷$’Ü|’0r}@ç6Å~abY xáÉ$Ö "K›ב‚Rù,Peð©H O0öEf-IasížpRå:Éiáz†aù´0ñ`²Ý! ‘ W¨›X¢®˜B -¡7¨¦¬vÍ ! RnÜŒM1Nå3@oJI|„Þ``Üðänšç0‘3³O(_™u Dh×ÔKD˜§ï¾{úö÷zl*˜.¬ÔÏOßþÒ?~*ûªã“¡¯Þp5ã_¿T_Gø«À¿¾ÿ>H&¦d¢°[ÉÜž@“™e2‹è‘Lo'“A²”K¦ædéf2kI²©Î0™-Él¶LÉ$—ÌÌÉäv2JÀTg”l& ß& Ï‚dšI–ÏäÛä2HÆÏäÛd9G@6mäÙL@¶M@qd3f›q˜™³M€ È8ÌL€Ù&@Ž= · І#@Ïèmt@€æÐ3j› 9ÔL€Ú&@hŽ5 ¶ Š#@ÎÈmd@€â3r› 9äL€Ø&@HŽ1 ¶ ’#@̈mÒ€ÁΤۤ‚# ØaˆðTg”ìAÀ¶V§òÖÀ¤ÉiY‘×u)ÄÒ}í«c}}¯¹M7#0‰Y†øÆ¹e=بàÐ.0Myäçs_˱z†“ôɾ«†CÙœ;[w»Ê¤"þ¶{ EÛ<À"•Œ“°d’*MxXÃîXŽåîÔƒ1èY¤ç êе§º½ó'î÷C\`SSTºžî­>ù ]ÐÙ²/o–@PaŠØèðûŹÀ¿'lÍÅÝëÑgdVî»KU¶»áèV'²oŽuy†ðBÆF¬ÑPëpmêÑ ÝîfŒf',­*jÁ£hnWï ¢ÛÕõ UdsãÖÖO}Ýþý¥Û^2Rê¡«NŽoJ’³ÁZjF¨`|éÜ¥þ½ÀuñX qÈ£®/åóýÙ]á\®•‰ ¾Výå6V~rNPè¿‹Â\&Šº/‰As¦ëÐïëœÎ~´·Ë¥ìßKêÇ…éÌÊ.ÌS •³.×Y¦x×¹¹\°i±Šòžoº‚rŽjœð òÝ_^Ð+V¼o蕼÷ZúW yöï·k¬NÍ¥1Îð#BÙN³6ÃØÿêZªìäÚµ zC0#táX—B/íÈkHùÛN~•.>R´ãAA¬ œKŒÛ¬zóóßõ–ǽ¡û3‘çT¿UíÍÍ9%V|Ø®ˆ|_Ê7éÌ2תd:mVu¯ 5 pe{µ•R[%õ>f©¼úY ÂÉ©ºúÛ„ÜA7\Ôo|`¶T|·ËÍMTæ<аlÒ†‡é\8nyÔǼ0uj9ß}áé´à¼~ÙiAÆ„{W6]%S÷²"²\F¾a¨ÛWðÂ;„Ì–¯2A½\+¡‹Ù—í¹êÇcß}ià^d¤Î¢î÷§3¦("sÕ¿Vï¢(Ü«ˆ¥ ½][#ôž:DTM½·o/eÛB—î-Èûo=Ô_Bv÷Þ”)vóYAÀgYƒC×4u;ˆÂ·X³4b†ø÷è‘¿/O4Un¢ÒåçÕ±ò£ ‚ã1:oýX~…‰Y?–çnë¶{ q±6!„• «p¬öý­v\ŸŽ Tg`p  û|Ùv›G$ÂQÔÍ¿Ô✎²žëýй>%bW¡÷æÆí"S‰³G¯JçZ¯‚~7(‹,î}ÉÚ7åñÎM°Åa¶Ø:j¯‡—òušØtwÎײ)ë²õó(Fåµ*û®çÅ(¬žkº úµ-¯W˜9î#ÑŠ}u"W¶cwínMkÉݯÀ¤à5ew-ë}çÈ ⽩*¿ÁÁoj?0"K³Ø„ »ºZƒMê_4\ +Ã-ÁÔ×nºkõ´/åÈy)ë¾òNem„òr€å{|÷sTÙ<ÝDz­«Á‘Þ ,ÙîÝCo¾™Tϵ]E}q{ç^˜Ž¶nWØ—ªªv=—¯ˆ†¦í@ËÚã}™<Ú»}_Wí}S´&š×òÜÔ0[¡µÄ±“kè ¾õ*þk_AÂÓQõCå¤ÅVª¨8XmÕPÈËCq£Ñy¿ ·“ÛlqèèØ†ïƒôè½ «K›Î4äñVíPïîj$Òª¯ßÊîÀAßëÕ[=½ðFŽ®qx£©†úx+›‡›&=í«±ð°ffzàãN¥r­xp$f:%Ò!?õÝ­uíýñfjBpuq÷î•KÓã ˜¯}uE³^˜1 /AqmQ3Ðt[–Y¢¥ó™ zr*#u3ú‚s*/µ»íT¹ ±P×XŽ2–.í>9»ÑL%Åñlýÿ4;LÐ×è.›EžéØ:݇Ñ;ÄÙã¯LÉ6rºŒŽ‚‹œM¢‘•ˆ°2Ò‚ÇqGÌ¥ƒ¾¢bêz| É­ˆ¾èEì|Úw3ŠªJì÷ عåË[kÅ#òq^aÓeßôŠšÞÇÞÝX´¥ê<;|›0%¼gÿˆëÆÆævQKv#ˆk®¼û±£µ;­\˜=,w*a]>m6´.\¦É‡+pHe¤ãã^V¥¥Vì„ÞÙÜÍ‘’i&Þ;>úêv.›}_‚Œ=»Ÿ#ÖÎÕx9uW—Jó©¾0œ…rnðÓ!ôƒ©Â=‹Þà¹Û°ßÿýÁ™é /(PŸ f¢³ùQÈ#£Gyÿ=R\4VÆò÷凞ð}ÆÝ¿ Ëå¥ßÊæV¡ÔÑû¹‡ƒŠ\óß%‹Þ7½~ óÅMalý/^&L‘ô%è†öR H=ÞhÓk·£Éœî_þ|Å0BZÝžÈýšG³§4_MÍÖýpÏã& ®³»ß£4k¶(¶ü>CÐÅXÁ»DT„Ž´ÏJp^¶Ô%€E[xSî÷8‚ô‹!±@zõì­~šKú…³ÙŸÎÃ^ðË'mP•o•ènŽÍàÂðáð}°Ëü^Ø"žGñ˜î¿ ÃŒëp¾ƒˆ|-ÂOV%, 8Wî('Sz±×4צC|t?ðVÇ Ì²Þ°²;¬_'ïâÖ¥¾ÿBýaAm¯Õ®uñVº=Ÿ~ûõÇšÛ0º RÞß<ù§:üY“–F°8æO@‚e.‡^ ÝÑQ za¯åÉ33zl»[wŸ%ì§×òðZž+#ÿ&¿é-cÚê‹ÛLµ`7’¹äe##‰ðH‹ Oxa'[‘jé?Óª@:gyÌ"#vdiªz8ÜÑã7ŽÁ}C`ohãzWšóXã0_GÎÖá~…ѹ—œ¼[þ·|H_W&[wûæ&öÃu© «Ô,6ÅÆ`@ШÔË¡pGå ¥¶þ /.ðÆã4­¿º[úîE}÷í;[™æ‹âù<ò(ÊS@¦}[•ý§ŸÜ^I\3îÖù¯Ú„®ÖŸÜè$˜êvVÚ¼Zñ@ÇËWmÈBi/xÚ ×fm·Ÿ_* ŸßQ¥Dã§²/›Æ³H/˜c+‚k»ë®<þys'Ÿ"e‹ CÙâ¯eí?<ômènÅߨÐ gð´e¨Ñ)@J·0}œ·çŒq|ü€Ó™ýò¨iÑdÂ4tRÐMÿñíßõd9‡Çg9ÏôXûÑAðÖŒŠ¾3[âT3׌‡Ä`éôw覯tŠNß4‹¼îHHùt:/0…Œ#˜Ñ‘™ed f+Íúx°¿ïRÇ•õÝ©nîÇQÎç÷Cfé¥Íd÷ -ãð?¨€V’qâ©Ò µ ž­|‘‘ÿ8 t* endstream endobj 6384 0 obj << /Type /ObjStm /N 100 /First 1047 /Length 4867 /Filter /FlateDecode >> stream xÚ…\M“#¹½÷¯Ðqˇr’àg„Ã×½ìn8¼Ç Ô]ªn…K¥jIÕ3ã_¿xÈ”2Ÿ’”O£@âÁ—̬NRd3l’”¸ñ¡âGÚ„˜ñ#oòñ£lj²uãüPôW6.ä€_nãr€¶ú«#«l¼wå‹þ :ktéü)Û¯´ñuœ%oÄ9_e#âà¾ÖD§Ú0 ÉaÀ/·Ñ™<~ùMpðK6Abú¢¿Â&$ç ‹›P¼àWÚÄAL–7ÑG›¯nbÊøå†M,@0³±(c„ÓÿMCTN]–h#â&;¤%¸´É’€Åi¦bfž‹aÖ`Ê`¿ü°)ÞÆz·)A2~ùMÑ©ñK6¥¤ >|ØÔÁ'È⦺bviS%•Ï›:æÅc9 üúº©%ÀNt=†xƒFí—1èŠ žˆþŒühúÜR…4êÏby’¤?kÅ´ŠÐ9gè¤èOñH†èâ»P€@ÃR=–5èä·|è9-û©Þ¼ N½õæeÀ Z%·A½ùäÍV½ù\m2õæ«…«¥è´6` ©SpÔ¥®~0©z“äLªÞ$gQoQ½iù!¶¨Þt}PTošJ“ª·¬‚¢z i€ãXQζ– •] YRoq(–Ô›–)~ª;èc1©z‹ÙV9©·X ©·4¸Hê-ù`.Ô›a Z„šÈŒ´ ]Ê‚üjñ¹T-gªryHˆM·›ËÞÛ0õ–ÅKÚåh®{Ïå<ΫÞrÁ¦ Y½•Á*[s¨k•áB1¹"bRõV‚…©¡8-Æøå/ùòçÿÙvçÍÿýÇß_ߟ?ÞŽ—çÓaû|øõ´ñE·Ã°ùû†U»ËÑ”±¡ü|ß›.µuÏçÝÛáø²{ƒ‘ÖÔc£g§fZÜlõkÿ KÌ ß?¾üù¿ö‡ý¥ÄzÜ?¾üõ¯íÀ'‹Ñí]‡íåÇ“6>í[³üýx:¨Mu÷ï—ó“îØá^ø|Ú}Ç\OÚ³,´§ÝËþÛé¾ëE´@G£ÚñŒÊçÝáðŸ§ý‹‚Œ®®<Žy̹­±<„¡­{;\©1>oß¿¶ã¼UJW;ÎÝ^¾{èñ¸aöíøþŠÿ í[áÇÂ`D²BªåwÑy/?ŽHzDßÀ¦ˆþÞbwþ¶}ûö¤}?·Uã¸ÔNÂ*ŽÖð9x=¿ëìÖ*Ìqî5ßçÓÖÒÖÓŽƒW)ýñmÑ\•¾~œ ôÃ6轡BÞ¿¿¾-@ø°ñ¶?S‰úJû|¶¡ÌëYåšVc} ë:¿j-Ô¼J¥6mè25ôÓÀᬇ?ÈÄh1z_ø±;>/»ó²c'jam3›®¬ªæãt|Ý¿íÆdˆs÷§íû?1j‡RzÚqöé˜cj~7Q¸0*GÿkxcT®¥°!Õ·4ßßW[ÚÃèüÐö†x=òQœÓ¡§s»–ßñèVm³U‚Sr¯<ÛÓ·²•!¦žÍ”/¿ÚzΓ>qŒŠNÐtfßF=øÆ”°l+I+Ç´OÛÖµ©Wµ=ÌŽ=MQhk^µ®â pkl'ÐÙÆVHcÊm÷L°Èb~¾œ¾ƒ ‹4ýÜ=vÛ÷ç3Ž8Yv±Ÿ7f³ÈÃÏI*Þùv„wH—£š±º+›“•¯ër¡žUÓ.óNšjÛf~Ib—Ê_¦ŒMå´Q¼kÎKØÍ‘ÿ&Øi½[¬ãiû²ß-–x/SVâq¯yÑ~¸{Å™´Ü¡&')ãY¬ÛuP3–Q9§qÉ gÝærgÎgR“°–J·hO§‘C))wÂÑ´¹@ †´ÃYðò¥ïQlŽü°–ù—e7¸õm OVâq&2ÿx;ìÏÚT$¤v(Whlß cÔŽn ¹9ž.»ÜÐRMr ¾¡˜—1Ð2îÎû—Ï-º¡Ä¡4Ó¦Ú'úic\'º…ɈxYãö$³ìsƒÈËSø*¶Â=:F¦miÂѶÉ*ÖŽd*Ì,áÎÓ¯ÑSañزkˆÍ~Éño –j]IGëvÑfy̶OǯŸVãqÉG©¹X>ZLâ[¯¨¥tfΗíûËöôbUVйÍG×dSW¨íaíèØê—MîzΧ“"RÏ"‹qûDÇ}¾ìÞ/&kù2¬ØSã†ÆK;êUÍñ½ðg£[t©ƒbzÒZöº³ò®àkYJƪ$zÙ½n?ß.f\I32ºéÐoÄvo9®‘"¿ô5_4I* ÅÌ‹ý@ze¼»ñ¦å5–ʯÇì°lÀçýáóm{AfâФ‡3DÐŽgÒN™"R·ÔY\ðñíý_6ûóç×·ÝïHÁò(›½Çkñòf©ý à ›cÛÁ]Î×£¿úµûųH^k¯O!q©úøÐf}þÛöÛ?·ßwÿ{Ùž.Ÿÿ­ý¿³ÝF²>>qŒÊbúËîðñ²·c´}®Ýc§QÍhí±È]SѸp$û]‹Ê•eÃÕîÿv|ÿŽXî¿IlS,Ïl•_¶_߬Ûè Û¶1OÚÑE ¿í_vØ-²æ‹$_”§•­æåB³mˆ·_Ñ0’Ô&þ®ûAí@&ýß0é’ \5§oçý»)ÝJùr9~ÝáÙIµ¾¥ýöfϼiyµÔî__ÇÑ¡¥SR®+ù}?Λ/èûÕr|´S?©…å0âÌ-Ýñ×›)KKyú:Á¯MíÇW(ãÐR~:Ó¹q3øõøø§7͵ûÓ­Wn÷ûÇóþݪ0†¦}ÜÔq¥ÞOõSC5VáØÎúôjÜ£@÷sÇõí÷§×Òz…ö(S¦¡£¼¦"¹žÁ5iæýÇè:ɃoðW#­Ï?¬¢Óz•®1§Æ žFÝz‰Pk—ã˼)SîÚ\÷S*““m©T…~ ¢9úQø“Ñ .òÐCpQó²ÿþõ3sÌ>vÛÓùhE”× y«“¼Þ/Óçõ*œüåø/Ó=êms(ë±R ½år´çõJšòÚ›òzOס¥¥šÚV®-¥ETÖ9ÿ—Ž3Õ£†v½ø(R\÷añMÇ·]X¤©·FH'ùixÝ¿½7‰kùx>§†bù,„:£noFüùí°5¦ºTÍOGÜ‘(»_`ý<~ýã'x µ€Ï—‘ˆçeÏ¥‹g’¼\ÂI;²íœšt÷ í~@;Ž›‰ KþþëúÒ0ÝÉF˸”áæ[*ËîÞ]IîôWîì†Ül?Œn5®‘Œ´y°Ã[œK¤»o^'DËå™Äf¾|dþµ…érÏá.ÝÌš'æ ha܆¾ø `±ßÛí¿ÿÀ›üP}Z‰§—u™ü…Ê€-_Â,uã­”N›Ûz<ù«¶yWË/îF5Ã#›ñÒ ƒk|šVϘ¦‡ýëIñíÇöã²;ýÉb½òãýûËî÷çÑO¥ú¡ÏWfÒ&í÷ð®ö«XF¹Îœ¯Ï“DEúTH¦þ"<Ì®ôv’ ÌX`–Wwd7ï³]aĤ™&M1êŒÇ¹ë‹¸IVLVIV1”D[Y_"ÌÎof€ˆ_Ñœ²H©pÈXIщÉx,RvÛ™“ IX_NÍf»Ê„Y+#BÒê@Kí´ê’U“ÑX &‹Gêú…äì6ì€ôÎz;BÚ*šGÚj¤y¤­&*ois$Bjñm”0öPZÚ*O[à‰óRYŠvá%(¤àé ±1?- ;ÅcŠ@ÉìNaïf™"‘hïX– ãˆ%ãÔ¡³³`6ì¡,˜Â1J˵š€R£<dÍ Èšã-P¥ÒƒXžvˆA0káYèÎ9’v{5:É4Ï]3d ¥íŠÝøvüφ=S$ò®€ oš8À7UZDÎ|å(á­Q:¡Ó~à}¶ë@ŒÁ¾=¤¤E$M8­=P¡EšðÂFl·À‘É¥ þgÃHøæn˜ûªˆºa¿ãc™7…—,iT· •³~ñuó>›õF»YåI»²k¤ìö‘Ý$+&c;ä,dÊ£©Äù8ìnê<ØœTgü¡ÒBgËX¥H²˜ŒíP8q ]”‘…:û:ÏÇaî‡Ù’Æ ³½‚cDžìc™&-ñò«Uá.Zu6už—ºtÏÂ2~HÉ(HÚíÚi’ <Ñä,ñ²–hŸ¥± *ÕÜFYæ³°tÏÂ’áòS³ìhÅJµ÷hoU<•QÒª%웻Ѓ8Ÿ…µ{VY NE¡åLkX̨ËTä,sÖd_í±Ì’ÐÁXç“°v7MEÎ ·Çju¶\k\+ƒå*t,{Ðw_"Ëfª|·cvm|lß—hVE¶ïëÀ2$±ÞÙ%ûÒÏ“,Û÷£íCÆÌ†=”ˆ8t$Ñ‘#ô"*œ)£ó܃òúZjàœF×cÞYÊØ7ÊŽ¨µÇÙˆyÉQ- Q'WI„ø}'ƒNžv=€H¯‹FÍÔߣ꒧t!©‰¶·Ç@qÂfYð„7"ÃBÐ|‚âÍOD´K÷Dĵ`ûR3m‰jŠð€?ëÓ6•ø{˜S‚¿‡¡·Þs&k÷ÀÝ¿}µ2‰&- (ã%É@ɉVÛUȈÇáF víz;{K é@Àöƒ£½.ƒ½Ä¡³X@Ÿƒ£GT×Ó‡ç öž¥ý(#·Qº×õºü÷dßÈQ&@÷ƒ§*‡·'ú=I MšþØÁ8§±×ÇÅÙû¢âì ílãžž™4:xºãðͬ–Úm\æ {é^Ø (:Ü?ˆp64¹ËP5%Ü.ìiYÀãƒÄÚycÒ½°o/¢è¦A@üƒpÖ@IƒÐI. ˆ! ,‹&càÉÞ‡u`Î7öÒ½±œu!DZ4tòåm"Þ&bþAC±B Î%boíJgÅçK{é—%–(ÞpÉ"VnDÈ[¤GX16OÇ©€Í‡Þ{$™ïì¥{g/ ÿo¿ÅÈ?ݦbt,AÒ"½þðù9ßàó)»Ä·î½€ý‡ÈÅöøH@ÿù–L@§?Û è|Ê,BR퀜ïì¥{g/ ÿ:õ¼­¢ë ù™n÷lZe´ óZ·T ó)‡ÆÛ(ÝK{ù™Û È`–&Fþ3‹,i]±ï@X†,äΑ(ó¥½t/íQå‘(š€ý‡ÂIû…+l:0qÐyÝÅlLÖ9pæ6Ù½¶—d•F+òJd–4Úÿ Ó‰.Ó\>>Àå; 2_Ú÷wu¶”UZB0ÿP¹Î²]Azö:+,BÆ*·(PùPc›êÊ|i/ÝK{óOte, þÑìÉ^ñy *ùsôçø€¯í{õ8ßÛK÷Þ^ÊxFÞáœ6§åg¹ªèŽŽß^¢9:—ÈÊÛ¿¿Ðé;ó…}·7¢5á_›YÎì¯15¢ebЕf.KÓ^eÒÅ º¢óž›b·'¢'9O÷ Ø7ÔÈí%&qj´Cç©*Ð •Ó8>½Õ\c»5Ãn/D+ÒñËpÑ PK±·—t¡ƒ>è„®ÑЕÚ ›þNm…nî‚Ý&˜ðçlK hŽß™¢:¡ó 0Òr²4Q§JyiŸ#· Ñí}ɲD¢h}ŽïÇÒ¸—d‰/ÇÐø\ {,–}ûien{½®‡ž©ý£å¹@wIèx.¤e&³}æD0@wˆ5 Û¹iϯ ÍÍ®ÛëÐj\¤ºA«s‘Ž&ëtl„Ezˆ… ½’A“s½×§së¶8ôéNwÚ½–¹ÄÕ†‹Ä qQ ¢euËÑ \T¸Ôy¾›{ÜõäÿB¥Œ{ endstream endobj 6485 0 obj << /Type /ObjStm /N 100 /First 1040 /Length 4178 /Filter /FlateDecode >> stream xÚ}œÍŽ%Ém…÷ýwéöBÊþ‚ž@ðÂ[C Á³e@z8x¦$TÔ©ËÍà6;3‚<ñÇ/˜=®©¯çåšþZý#^²¼äK+ûG½¼ú¯êyeiÿX¯õ”ô¯ýZ»ÐóÇ¥iýK_ËSœ_öZ™«mþÚOvG§¥½ÍåkktWU¯íqÚ³çyíŒÝ¿ÖK¯þµ_²=û—¼D]û—¾Äýùq~ÙKÒðœ¿ô1¼/ݶú× BïÖë¼zúµõ¼NÔÝÊZ¯ÓR÷»ö˶>ýK^¦Òí-}™‹Ÿ>–½,ÅÚvÜ}¤[^§©Hÿj‘¶÷¯óšïnoŸ¦r·/{½âé¿°óÇØý°GBW··õ¾ŽV¶íùàoý•ÏÓ-Ÿæs?íéÎWꃖëuÂíöä GT·rÊê‘1Ù¯ZÕþ‰¼Jª#}•eœ>NÙžŠ¿ª²Û“8c¹²]•™Ž¥£þdxú™3œŸL«M†–þüã÷úõ¯¿þãêù_ýùÇÿÈÎÕÆûù¹Ii“ö·´Mqùb0Åg“·)/b¯øÖ½îû_½q¯…Šç³PU0}ôò÷_þû¿þíÿýwëhsž¬-YÖWû‚Ÿo=žðï>ÞÜϒןþVÐûÙZöFþÕn°/²;ì›ì»=aׯÜžÝ/Laš³¯ÝýBÈÙ¹Óɹ‹‚X»(ˆñʆ êç—† 4/v šÑ‚æE³fµægDÈž°s;{¾£=»_ÂØ­9i¸tBSy·æG²·ækS[`§ ¶Â>±~y~ŠÁÐ{Û’/¡e±!9Ï´ É¿Q’+Ew‚ b°Ÿ÷ãC Å•”(®4mŠ?Åyi ç¥-Ю†(Ú³û…) H^4Ғ¼$ì,mK~R’¯vmÉ©u}ð´AøÏ// AèBs¤­nØi,´5ß<ÿ´5ß<ÿÔ`§ù§û~F{v¿0…Í…†\¡¹ÒQh®ôüñ6Œœ5h®Jvˆ§Ã6Û~Ý/ A4wrÖ ¹³³ÐÜÙ-hî4¡ š;M@ƒx1Œ…Ý[”Å4çeiМ—åñ*‚&ŽCó¤àšÛ!ÞtäÙ~ø˜~84ç#Ï¡9yÍùÈóÖ\·°s; û°Gù~ø˜~xk.›¦B´æ4Ï£5!§¢5Þ‹¢5£± } AÜéGŒçE(šc· vÒ< 9'§Íyª4ÿFˆÃXÄ~Ę~dkN«"¡9§v ÍùtÉÖ\ "v "öaqßË"Çô# ­ÑΖ\÷°st ;G×’ë¦èªµ“!†;ýǨ›| *Ÿ!`<Úqz*´¶@{*´ä|ªCu§5¦ÀEåC ̨ÆÝCr^EB¥Ut‚VÚÎ:W÷\¹ÇžR ¶T+êãàAvŒƒ³Oçv0´Ü7HQãýIÏî¦00áÔ Æ!8 ŒC±[‡ú:-C"Œ¬¯öÄ=k ¦Hn¦wÍéxÜ E¥ãqƒmq;ûûlžÝ/Lašãîvš:L£ã±/xä@ŠFä·AŠ&:q¥ýÂÓ„عûÖÜ”ÝÅSRÐû·{&Z/û·Ë¦ç}{ÿüòÂ.éx>ƒ0ƒ5oÂd§ÀŠÁšƒC(8°büvø&ˆë¼ë† €˜ÁÚ1C¹{ƒÃh̓2¥ V '‘ÀŠáÃòùùå…) hNÑ3'x'bñÃ+ñÃ+~³^ÀŠ1äOðë~aˆAÚ1#9 hN7‚¬Ä'¬É"µxù ëBõç—†0Ž·ùPç@̤ôm1¿{~ÃN΂óQ²+ìáwePýüƒ¡5š Ì\ìUÀÎ^%ì4Ó€ŠI· ½s}Äü&†;ˆñ¬`&ÝLlfÒÍØ`&¥‡¤˜BÓ¤˜Ê1@;}Gðì~a ’+» Éy'`&o Åä,*Zr8bư&üN?bL?˜ÉK€™¼„˜ÉK¤˜¼„AŠÉ§ H1§#/îô#Æ)ÀLÎ~˜µ8ŒÖ¼ˆ·û„Jº?Ü ÅⳤX>q§9¦Ìâ# €Yt;µ˜Å ¨Xœ‹O  bå°ºóN?rL?@˜Uì.4çL÷˜sÑ+Ý6m°bq^ V¬òÙ¼ÓÓ fñ„jÄ<”BÚ6bîçáçvJWšÖE³âá°aJÕ~Ô˜~4bžæ¾ºušpÊ2:áKZ*ÒHvšH²/Ø‹ì»í{ØeëÊ=d¬FJ3æinS7ˆ-dÇ@Ð&‚rxy0Êáa ô}:+w5RÆj¤<JC;™Nº¤‘Íé:\4wnšÓN â¹AÜc1–dAó`w¡y²½5çê¢4”íE‹B7¥añàèûE!w5RÆk¨Έ¤s/žç͘ÇNN5’J§UÔ8u(ÛQ؇ um²2V#¥“ÆÃü46$§»&ÙÜØ+Hn$ç™v‚ËmC W(ãt(Nççi&PœndD 8w"PœÎ;h—ñ>Š»)c5R’í‹@rJ}D y±´œÎÍŽ" ÃE!^MA\y ŒÕHQhN׎҄¹7ÑŽ4aîMé©4m.ÁJ£âæR«4**w5RÆj¤4an.ªJæÞߨX°ÓóŠßXR†¹tW#ÇÔC˜J»0•ÈO˜Jä§ EÝÜŽÂnd7ØßŸÚzW#u¬F*SiR¦Òm§0U8<Œþ%]A)HQ‡¡ô®FêXT¦R*¡Lý¦{hn¤-H‘Ká RT:6¤¨ùþÒ@ïj¤ŽÕH`*¥ä ÀTJÉ€iDAü&m½ R4b#)šËÄ•êXT¦ÑGf Àô‡í ;PÑy}}ñóûû]Vïj¤ŽÕHaúf vÒ¼ ÓhqƒWXÑyu}øÊQïj¤ŽÕHbº°[М2(b:ò Vtå ¡¹qxoøžKïj¤ŽÕHb:AC[Ät °¢Óa®`E§Ã\ÁŠî9q¥:V#ˆéÁnAód;4Ošò*XÑéû/+ÆPÔ»©c5²½MÞ8˜A§¹1ƒ¾fT°bð*X1è6KÁŠ1Üàè•AéXT&#  ÌØìUÀÎ^%ì$9P1èÒ¶G4m˜Ow5r¼2PfP)H˜üƒ0ù)ò Rä¤ÓÒ¾«‘:V#€¼´˜ü‚0ƒO"‚Ћ…k— RüøžõMwú1V#€ÉŸj*“?@P&€  EþAAŠü‚‚c¨€é]Ô±©Ì Ú•0£XÛÖœk½½%H‘«” Rüø4àMwú1V#€™ty¯Ì䀙¼ã“׌»©c5RA˜ü±‚0ùcƒÞä“' X‘o§¬È7( VÌáÊ@ïj¤ŽÕHb¦r÷МYˆ™¼€¿É®ÀŠßd`ÅSêû0îj¤ŽÕHb&QÁqÖi±ôAÈß`1i{2ÀbRNb€Åô"¸r«‘ÆÌàî1ÁÝc ¨a€ÅŒ$;‚6:,NŸKØ]´±i`̤+‹N2øc&]d`±n¥5ç. °X[† ‘Æ,â}cñ¾1‹’,–°» ;`±ä}úaw5ÒÆjd'pIÉ©1‹î. ŒYtwi€EþDÅ‹EÙŠk(oßWý6V# ˆYÆ^ArÚ‡ ˆY´X±ŒÕ€äT)ì$7‡/±í®FÚ8@˜ü•0ù+aÏT,Þ¡€ŠÅ;P±†Êîj¤ÕHaÝœ“? 2&d@ÅâªQ‘¾á1 bÅ0îj¤W‚Â,Êë „Y”׳ø´*Vq;М¾î1 b ÿNÕîj¤ha Ì"’´NìäyØ­‚Â;Þe‡Ö'äyš‚î]ü؇mö®FÚX´Þäáݼß±s÷ ;M‘ŽâØ9 ‡ÖK³â±¿OgíË5V#Í 9¥­fМÒÖöª(Ç6‡æT3‡æ|¶8ÄÛÃ⾫‘6V#Í¡ùfg¡ùf· 9Ýš™Cs>òšSRlñd˜Rw5ÒÆj¤94çÃ-ZsÒ0 9yÍ©\gÍé»\ ˆ§Swú1V#- 9åÞМªôÐ\9 â 9¹ÝÕH«‘=ýŠWEBsªïYBsº(·„æt%n ̓ío¸7ø²,Æj¤%$'j³„ätSh Ƀ¤MHÎÙ}Br>;ù#Ÿ|Ã~ŒãPPœ“ï‚✠§ÿ½‰OöŠ'tA»Nî»ic5Ò ’ó‰[œ‰£ 9‘Me²èˆì±NGKoÊ5T…í®Fú”zxæéxQ öMö ;û$°Ùv'»Áþþ¤ð»éc5Ò0e}#UÀ®dOØÙ]ŒÝ;÷yÇhä â­)ˆ{(Æj¤/h¾¹sh¾¹{hN·1¾ 9Uc|AsÂ_o¸šõ»éc5Ò4'zñ͉8|As"ŽÎ%˜ä|Csg;Äó‚¸Ò@«‘¾¡9홾¡y²šÑšó‡ƒÞ¨(üá 7*Ên5ý®Fú?«‘ÿšõ endstream endobj 6586 0 obj << /Type /ObjStm /N 100 /First 1041 /Length 3965 /Filter /FlateDecode >> stream xÚ}[M¹ ½ûWÔ1 ³¥J°ØS€$Àæä0¶ÛëæÃ;ÓÞ`ÿ}È7ÍÞ©~Õ:ØÙ%‘|¤D=In¢²¬KíKݺ”Ѽ1Åc]úÈÞH˰Ÿ­‘—”´z«,©(¾ªKõ¡†,©÷ñÁZÍõÁl蜺xK—\:†K–ž–ÖÖuɽ‰·Ò’G«ÞÊKI ¿–¥”¶z«.E¤yK–Ò%°V3{ßõ¥¦ªÞÒ¥–Ú½5–*ÕÇKëR{-ÞJKÕ{¤¼Hª>r*‹”â}S]DŠ÷M²H/Õt¤æP ‡ý zØÇ%cäaÎd9Û=ûwþ×𶜗žüãfŸôâ4ëÖ%¹¿Y–Þ“ëÈÍP6ƒ¬ÕM £è¢eEß±¨¬ÞÔk_]¯¤cõ%/#­Þ£”edÖZuuxß"Ëh£™ŽÒ,€£X¸×u¸æuZ³¢Ï°fU7ÑPIkSÇÚ J«zh[õÀ¯ XäSH-ô©f×U-öIZ2eÕ‚ŸZóq-±ø¤4Þ¾5myEÀl˜”“ø¸Ê”³'ˆjÍâyÖÄ´e‹•7M[noÝL›%ŽÃgY‘²v|`Úò€bÚJZbÚJFH,—R)Ù?°K¥¾5M[‘·¦gu{kš6KWÇÁÔr=;Í´•ñ&5mu}kš¶jfzÓ´ÕŒô覭d…%{ªõMjÚªw³›¶êØ[Ó´Y–ºb›,–Ì"¦ÍfPª£y†uÓ&+&M7m’ºãÐM›dË”¤ W¡¦M ¢¦M|2XÓ´Ù¬sŠ) {mH–âåÃ?~øáŸw‡×å?z=|:Þ??ýùÖñf)Ù&غü¼¼——[v_ÈË'IW|ÍòärƒðRž]n‰lòÿ~øá÷÷G¶kÛá¿~ú銥`8!5rV/.¯•ä r§CÎã¼78öÝp˶fns›1jÌ‹±#æB‘«À¼‘s˜7r®¼Ö&NŒ›‹'*0ol0ï,æ­sËôK90·êt)xc’RnÙ¶ÃÄ ³v4R.À|†Ì%ˆ8æ¾Î_Ê ä4_ÄÁ³eíºrsñýÌÁhìEƒœB!r¶V!gkr[<.åͱ˶N´™m…ò¡9âöÉx¡ôh@¼Ð¬h@œ—ŽìÊdV¸eÛ37y!È 畨r^‰ 畨;äätx"'ÚÍE‡‰˜ +æ¼u`Î+Qæ¼u`Þx|€×'n¸eÛ37€yg5À\YÌyűϯg ÌMuðêlj»]Û'4c8šZ §y¡rvB §©c^¹rk‡¼_wÃ-Ûv˜¹¡Ž–uÌ+OËá˜Ó×Ã1·íÉy%§À«“Z¡Ûíǘn?06˜ó|ÀœçËæ\:0oì6Àk“íÇØn?Ætû1€y¿\ÎMy§üð•eôAR¢'’#=“x+òW<Øì=¼ÃuúŠ@(«A ´ìAe¾¯•ù¾"ãú¤€eÛ37ˆqo_äŒä‘˜–;æB;ûžsI,/ëĉm,Òlh)ãÃÑÒ“@Îês¡¹j|rŠQrÌExœùÄTo.:LÜ0°Æ )‘W(!Ì30oü=0W–sÚäö ðôúªoYÿ~æ ç ɹ^\Ê;ä9¸¢l\ÊòžÈ;çŠ#M|Øìû4À0;Õ»†ÙioÚÁ0{f› äü½#nZH.O¼(ëÍE‡™yZ¡À0;'fWÊrPÅ®´D8U¤JUì:&NlöÞa⦮ 0L]É90L]Ù¬ 9娢®”g Šš'³¢¦›‹37óÁi †9„±Sê8U䪸S"A‡®'6û@ï0q s𠆹S-À0wV4pÅÓlÝÈäSçŠuM“y!Û%JúÔ õá ›;\^É\³*­œiÎÉìsòÂÙ¢Éùûìr©/6Aï0ñÂI¦ G‰ë$ÓäT dšœf·³2“S:ͳ=?£áè¥2É©¶Ý´éþÃwÙ5ñn­t𯾬‰SÍ÷+5ó’êµËää׋šëdÕ¶yÅðµÐ†c5:ŸuÏ©ÊçcÝÝ®™XiwºXù «;]¬§ƒ®}7úvÒ§èd­ÓÌÊÇf]:ou +ÐyÞ+Гµv;1tºq–Y W g™&§Ls–iröB!g/ä»ðdâÄv 2„³ÌZ+IS‚8ˬ|ÌÖ”U>fëN+³õðòdvídL· ˜óÆÜY¦qhš®Î2kŠ33“_ÆN.^bäÙj˜Ì‰±Ù€èlÿ¡Î2+³Iu–iòBò y%y|Ü!+/—«^À²m‡™ ñYrÆÐ!‰¿Ó÷ ˜+‰W|Þ&^lc‘¦ÁpšY™NªÓÌ*‰ÕÈ ôЉth虽zyâFJ7fnô’H @/ì@§ ‹/³i¥µ@3@§}Œf 'ëÄ‹ÍnÐ;L¼Èæªf€Îs5t!Ð3@§eͽñ÷@¯_¯°lÛaæ@ç ›:Ñh¯a:¥`è´7ÖÐé˜H ÐÓÉüÞÞJêôVR @'f  Óé’€N§KêܬúkˆKy‡œRÓ9cmëu¶§Û[IÞJªSÍÚhÓé´;׬ˆº:5«¦ÕIcmëÐ ÐyÙ©=³¹½°蕉ÛkI^KúvÅ@§UG:¯RЕ¼€NW*Øž Лpn÷Q:½—Tçšµsâ:×49{ç˜ïl*@;§Hc§;Ciœì£t{1©Ó‚ªÙ3AªÙéPMA5;'8c/~<œt=Þ¿~ºýùûÃ-ÒgÇÅõp¨‡C=Ö°Iwóç¬ãù›/̯'Õßž·ß/߇×s*³þiø§¶†qÆ©îY°¯ê ø·ŸK_?½û­gG8;"# a ¿]ÿCÍýÓ—‡³³oúýõɲ€uŽðs„Ÿ#ü„Ó[ V×uOçÛÐïV×üøuÇÃzºÓ³FŽF‰F†D£íiÃà¿4½~|¼{ùýöðøø·—ûÏ; { ¦ÑgN»ÆÏbÛéì¥Â³Ž×OwŸNŠ/wO¯_nïï¾þ•¦ð)…O)|:?Y# K»ÙtÿåÓëýÓIé÷o¶\4ë ·r¸•íXç°+ïæÎÃ#k¿Ýýrð ©ÊáLgr8“åæð3ƒÓ¸ëYEͬ£„ñ%Œ/a|Ùxïk¶¯Ã…OÍ.;:Âê(ɵ„ÕQ\k×ÓsaÖág:oͼvÖ¥¸F)®5¬ŽªY£jÖª»:²s²S³î¨££ÄÆík‹ëVk„¼?{Gî;áˆrÏ“[¼G¶F€۶ýç~GYwüˆÒY£tÖVG ¬QkÛyq|j–pDÅŒçÑíôÚQôâ=r«}?䥜ñ§"*dÜ [#ŒŽ:W£ÎÕ¾ñÒÏá±£"lŽ¢xzíÀ. YÕýˆŸÓvìÌð¨y5j^ÕÀ+jTUù¬àmÜ ­K{™E­FQ‹ÇÕ-^S·x>Ýfï¥Óöih’°D1‹§ÏMÖ5)9×ÏÓÒö‰WâðÄ}‹Kyk´hôhh4®¥íCœ9REL¢ˆI '¢ Å€vºôßÕ•·7®Yꎮð"jWÜ×·¸ oÕG&g/y{q’•Ã%Q³$jVÜõ·¸ÜoñZ¼Éäÿ—äíñgÙ‹W-‰¢%%¼ˆ2$Q†¤\O²°ÈN¸¢vIÔ. ‚(Qâõ@“r=5Êö¹dÑpE “¨a1ÞÍ·x(oë©Q¶·uõýˈ³®ð"jYX#@ò$r=5êöýB­;ኢ&QÔâEB‹ƒ†‡ MäzjÔ­[º®¨mñv¿Åc}k¨Q­¤]ÏŒº½J÷§¡+jœD“àyUK¢jÉä˜Y¶G‚RwµN¢ÖI¼8ëiñžÂ×SC¶¥ï„+ŠžDÑ“ wu,Þh4™üßžíºÛâ™Ñÿ… ò endstream endobj 6712 0 obj << /Producer (pdfTeX-1.40.20) /Author(Wolfgang Viechtbauer)/Title(metafor: Meta-Analysis Package for R)/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20250128132610+01'00') /ModDate (D:20250128132610+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) kpathsea version 6.3.1) >> endobj 6687 0 obj << /Type /ObjStm /N 25 /First 238 /Length 764 /Filter /FlateDecode >> stream xÚVËnÛ0¼ë+xl Ô&—Ë] ÐCŸHÛS‘ƒâ¨?[)¿/%y ’œÞÆ2¹3³Kj$ÅX#£q6¶ r’A²Æ·ÀöÔ2ÛÅÉávqb£¡[L”n±˜¤Td ¹ v‹riÇ¡EÉ8 y³Zkœ—Ð"gk‡È¸ Ü"oœ¨´ˆÓØ= ÆÅ,%#1.¥Td¤†lìÖŬºÿ7ë'ɼê¬!ïÛ½Îe¤¸¼,–Ÿêûƒù-!Rö}c2ð  ¶à¶X~®7u“÷¿9T«¦Þmß.Ĺ sò“ýÅmqu5äJÇ:¹§Gà #AFây.æ—ʘ+A|¸Hà¨G¬çR=åÊq‰u¨C€€Ìrå¡ ¸ØNp)êD¸pzÍsñ`^ªãy‰ƒ .œ@›?ªƒyE&¸à‚à‚à‚ÐU‚š?ÑÊ€ËOÌ‹à‚à‚à‚ÐU‚?6¢Ì+êļ<\x¸ðpáÑU=~þlDÌ+Yšà‚ .]eèáù³‘¬Ï\My·®vá&¦ÅðÀ£I¼l““i¢L3†ÀÏÏFC¸Þ­ÞýhÊ}“Ynþlõ¶©öe6ð·s˜B€€!è £!´õ×åÝ]uä: <1C8988F8BF0D974C1CF0225DD5136B67>] /Length 16322 /Filter /FlateDecode >> stream xÚ%Ýy|e^×ù|³UÖÊR7uo¥ö}ß÷úÕ^·ö}KíëM‹ˆ@LÄ@6[0AÄiº‡!ˆÛ‡´”L ¤˜ ƒ¶"›4ãèAÑÐ%àž LžŸþç•s¾gɽçý:çÞ{¾ßóý–”””üIiIIiI*)iXúSúéÝ¥%¹‡”%(Uö^ÙA³eP¾T6ŸSvÀlT*;¬l¿ÙeP¥ìº²}f«¡FÙ[e{ÍÖB]iIÙ»MÊö˜­‡åÊî+Ûm¶—ʦë”í2ÛÍÊZ•í4»2Ê(Ûa¶V*»­l»Ù,䔽R¶Íì*XÚUùùje[Í®†5ÊV)Ûbv-¬SvHÙf³ëaÃRÙp­²Mf7Â&e•Ål¬¼EÙeÌÆ?Ú¦,Žsì*^äÒ«¯Ø¾CÙ:³ñw)»¡,^Fœ¥£VÑ_©lÙ8°û”Å1·¡P¯¹ÕlzHÙeñöÑҒÊÁ5ÊrfÂ1eñšãЇÊÞ)[iö$œ*-YÖX£,û'pZÙ6e³gଲ{Ê"²sp~©¬ç ²f³ࢲ»Ê"îKW5š½ W–Êf×* U®Â5e”-7{–]Õ«È24» ·”Åq©3{î({¨,½ K/·jb…²³÷á²ÊBï‡ðHYÓ*³¡­´¤úÒ2eqj<§Êö)«4û ž+ûDYœV/ॲ6eåf_Á륲¡åÊâ”|o•Å1-5û–”ªiÍ*‹Ó¹°„ñ¥“½üE‰q²—(³t¼TÙÒÑÈ}ˆõìy|é_ÖôúGÞ›õªÆ+•íRæŒ{GãUÊòÊÞšu4Æk”yá¼¾qGr|é×Ì5({mV ãË•y-¼·q Ž7*;¯ì¥Yé7+s`?8.ãÌ_Rª¶mƒ²çfY7¾R‘>8¦ãŒÏ)»¨ì©Y¶·*{ LãΔñ%ïkGË•µ™u–¯SÖ¢L–ãÎÐñ ʶ*{dÖÙ=¾IÙe<w²oQÿ÷Y'ûø6eÄüÀ¡q'ûøÒy^—)QvϬ“}|—²Feüw²ïQ¶^Ù³Nöñ}Ên*ã}|éd¯ë^©ì–Y'ûø!edýÀûq'ûøeqLo˜u²/ìu3¤ùàœw²ŸPFÖ×Ì:ÙÇO) _œoãNöñ¥“½þzl{Ŭ“}ü¬²ÓÊœ«ãNöñóÊ\È>äÍ:ÙÇ—SýX©2çùx ¯Ì‡È‡‹fcK{^¾>¼ŠÍâŸ/½ªåÇ•7/|i÷ ½Nºñ/ãMßRû;k6ØÒ‘lì>ª,^nì{Ê|8|8m6‚ZJ°q²^Y¼Õy)ƦO¹0~8e6iSùÆa ¹–¬kr}É}8a6Ä|®,Σ8Ä!õKe×”3'Äke.x"ž8™–f›ïÆñ;b6NÄ¥3´¹ÏÁ‡ˆvé$N?ºt²g‡J,i)KPª,^äA³e°ä}ó¢O¿ÌV@¥2Ÿöö›]UÊâdßg¶–Nöó²²½fk¡êa94@#4Á È@+äRIÕ_óUäG[`%©ƒ9qÇyeͦ.šZ k`-¬ƒõ°6Â&Ø [`+lƒí°vÂ.Ø { ÞB¼·xÓq4â0Åñ; Gà(ƒãpNÂ)øNÃ8 ç ÞLj÷q òp®ÀU¸7`U*iøÍ88Ü舽\÷Ýl'¼ö­ªÀexáÔ¸ë{Î2ˆoFûà&<ó%¦VÀßAªa=|o}ߨ×|S(ƒ _:ûÐ ñ]àõ*Øw|Nï‡ÛðÂÇq+øÐ|µöÁ}Ÿ—pû¸+…=‡ø6Ü»pîÃxà1´Áx Ïà9¼€—ð ^Ãx ïà=Óø6œ ¾—o¾Ÿ®ßw?½ |Ëýt5ønûéZ¨ƒzX žO7A3¬€ ´ÀJÈÂjXåeÜL%+þ}¼ŒœñÈÇ{Üò9Ý[à†YŸ«½;à"Ü÷QY;á,<öq糬m7|·àÏ£zˆOº½p×_.1õÊGL5äàŠO †‡>Z`;ÜpmoSp ®ãW]¸¹Rv.‡Ë.´‡á…Ëk•kç'ðÀ;_ka¬‡ °6ÁfØ[al‡°ZSÉÆ_‹#éjÛqÖÔØkÖ×­¿]:Ž+Ûçj» ¶Àxáj{ÕÓ%²o•JNþçØé;ˆž2{.AžRåñØž+ÅsÍ‚@\Zâ¿Ý‚ˆâJ*¹vܘ?‘J>ó±rÍ“kž\ó!R¬ÿ’ó—RÉ_ÿÖXù ðož4óŒ˜gÎ<-æï‡æ-æy0¿t}ùÜoÅX2Ç”%óܘwž–J[b–̇%ñqÇóï}È•ÃÒ—Ÿ«)1• ÊRZ7e•àsð] T¤’‘¯Æ‚*ðµ§c¿©¸Qq¢V@m*ùÒ/Å à~Ä»&ˆ¯$—]âòz_Ù*Ȥ’¯üÃØÂ ˆwYpÛáÝjXka¬‡í°t½ú—ß›m„Ͱ¶‚ŸÒí¾š¶¿4»vÁA8ñ>v¤’ûS±—ݰö‚oïÃqXºÍ)Ö;GᘖØéI8ŸÀi8Kª,üIlvÎÂ9oßÍöøúq.A.à ¸RéïǶWà*\ßÌ;¢ì6ÜL©nW¬w ÚàNJŸŽ²{ðÂ#x Oá<‡x-q¬^Ákxo} Už¤Ôò·b§ï ”*Xê'Yûó”ûÅ\6]\›®JM“aº4¥íáÆ4›¦«fÓµÀ¦éå¾ìx¹Ó¤™Ž[W¼š¦ÀtcJû~%v@¸é¸aÅ—é¸MŦiÒL“fš*Ó¾ÜMdz¬KéÈgc›€4Ó¤™&Íô6Øîè:ØÓ¢¦Å4-¦i1}Ä=-îéc°3¥“?;¥Ô4æ6MŸi¾LõýÀÇg»#>Í’i–LÓbšÓç€4Ó@ÒÓÇS:¿?öÌ’i–L³dš%Ó˜¾ê»E›klì9Óò¾žÒomi1}â[.#¦~Óqœi1M‹é'ðÔ·Ürpe˜nKéÞáØ K¦Y2Í’i‚Ld:aÄ4#¦ ¶-䃾"¥¿ó©˜]KWšW?³•° ª j¡ê}ôÆ*ÐͰRz?{É@ ¬„,ä nR®wé:|µÞ1ë{ûy·!Ïo7Ïo·Ïï…%K¾ñoÄî·‚ûŽç·ÃØ »`7ìýpö¥ô-›cÛƒpŽÀQ8ÇᜄSà‡ÄùÓpÎøWá2œK©óHìþäá\‡pnÁmˆ7}îÕ”zþ[ìàž/©[ÀïøÉ:SÀ­Äöðà!<‚˜}Ò}-¶} mðÄÕÌäö'fŸÃ[xï‘Öp‚Re¯áYJŸ›Šý½€—àšÝáÍ GúoRúé?ŽmË€˜Ã©tÅÞ¯y¹—ëMsh˜*ÃËRú¹ÿ[Pj˜MÃõÀ¿awÕÚ½ða6 ûM7Ì¡a sh˜aÃM)ü½Ø ¥†)5¼ x5Ì«á5¾¡\µ¿Çà6A»6L•á%‡Æ¶Äâ–wÜã¦ÙpÜÙæÕpÜÏfÓpüªÜ;Rú'¿›1l˜aà &æ0¥†s†÷§4ýÓ±2͆i6L³aš Ól8¾ÖÆ:§Rúí+±׆;L³aš Sj˜RÃ\ŽÍΧôï~#¶¸L&ܰO¡ö~ªº÷?L¸a n˜ ÃKŸLøéØ–Ã÷€„Ã Ž¹†É5¼t¥Yü‰X™HÃŒ~–JÓ£(ãÕ0i†_¦ÒÊ=QªÜô»›RÃoRiíߌÔ.XPKŸ£Ÿÿ•˜*‡eP–JW¿Š² ¨„j¨Z¨ƒzX Ð U©tëïĶÐä@øVßî¾r{œ=wà¶¥hVX‘J_mWBr° Ö€[ÛW§Òsßë­…u°6ÃÆTzã'b©ê‹Ž[¦¶‚;Û·¤Ò»±t;섨Ù j=¶ïõÛ÷¦Ò'{ceUÛÂ8 Çáp*mÿöXÅO­v73Ûã°Ÿ„Óp"•~ËB¬r >³p®À™Túob•óp.Â%ð£pûe¸WSé÷ýÕXù:Ä‹wÇô8Î1ûžÀýTú™ÏÅfá<†6xÏἄWðÞø´ò‘µýi*ý‘·±—¸³óÞ¥úKü¤¨vÿ >•þ§/Z¯¿ JSéàçc–fý4ëgS?›úÙÔϦ~6õ³©_úýÜè¯N¥?³,¶¥Tp­dñ.´ŽZ?_úÑ¿2•þÜTlFŸ~†õ¯"õ3§ß}©þõ©ô¿7ÖÛêßnÎw8œý*Òú©ÒO•~ªôŸ!÷Kµ_ªýÇ`{*ýå?ûÛ Q‘F©þ¨>ãPÿa R¿Xíqµp[®ýª2ÒôŸ–ô³¤ŸýñiÑO‹þ¸W@‹~ ôO¥¿:ÿ—Rý±«¸çÆ’~wzÛ¯@lA¤þ[©trUlA•þx«w ýK¾|¥7–r¨ŸýRé¿<eO4ý¤égIÿÒÕgæÏÅÒ¸úÄ®–,©¬²¥KÐl.¦HÓOšþB*ûÝ_.±J)TÂÒé¾+ÊÊ *  j`Y*[ö ±JüèRßX_õ°  jSÙÊb¬¬&¤Ý]çöKpQY 4§²í+b•,ä`¸IY¿ÖÀZXëal„M°¶ÀvX™ÊŽ|9v¿üüêˆË¡ßÄíê¨ÚÏÁYpŸºÝëv·•ÚOÁIðiÕ~ÜvÂ.Ø;RÙå5±{U`íq:jvì‡pÃÞTöðb µ–íjœÚ݇›Ù«,¶u?¶þH*{!ÖS}[¯v¤Ý-‹úOàd*û毵SpÎÂ9¸§SÙwÖÆ*ñ.Ý’jïCñªòp1•}fu¬"”Žû¦®ÃåTöÙöXp®Â5¸ ·áF*û›c•¸îÆû½ ±—;©ì‹Kã`Ç{{î:×?He¿¼+–Æ—“8’Oà)<ƒçðÞA[*ûµ¿[¼„WðÞÀ[— ¾í»ýàˆõÞ§²ÿç§bªà½=HåGÔ–V2{0¥²ß-É?HþÁòTö?¯Eå)?X ¼¬¢}èƒDl¶6‹Y¥q5¬µ°6ÂNXŸÊŸ¾‰-6ÃØš–t<2µöÁ®Tþúçcå=÷ÀA8G`*ÿÓßë†c𠜄£©ü[/–‡pÎÁ©Tþ]7ci´ 9ÑDcÆK ‰Gãeа£ñœOå?x/6» Zw4^‡ ú»}'ì0ûn§òÏŽÇ÷AMÇcS§ð(•ÿø¥X¥ žÀsP[ÕZ¯àY*ÿé±ÞKx«B+#^§ò/.‹¥ïཥÜè¡EOI*ÿG;,í)K'f–f§Fc– =Œè©Hå¿e,é©õ¨M멆šTþ;_ßKЧ‡>=Ìé©Oåsb)›z´RéhS-ápö©‡H=,é!MÏ’H‹¥±¹zØÔCŸšõ¬"õ©G}^}zèÓ³ V§Šê㱃­° xÕ#€êõЧgwªhü¶XR=dèÙ—*ZG¹zxÕC¤rõJõЧG›¢–ôœL«<6ãZ}z(ÕM‡Ö †Ñs6UlúúŒc­†(ÕC©õp¨'n9jѯžk=dè¹™*öü¥ØAÔdÞ"õøeØÃ°gO›zØÔó è3›=I5¦HÓC¤—–^õP¥'T)¤Š/¸½l–4³RÅ…?Œ2×—Y"Í2b¶*SÅí¿K 2KY"ͺ´Ìòj–%³,™eÉ,-f%=[›*ž‡k³.2³ô™m–ÌfÝÍ+Sc·Ò7 U[w¯«Žó~gy0»*UÂÄYžY¾Ìòe–/³»u8³T™åÆ,#f7§Š?½*6£Ê¬ƒ=K¤YWŸYnÌòe– ³´˜Ý™*¾µ[¸6ÍÆgÏ6UμY¾Ìòe–/³T™=˜*¾3"›¯QñÏ]‘f94KšYÒ̲i– ³ÑpŒ ³Ñ\Ìe–/³'RÅgþlìʵi–f³4›¥Ù,Ífi6{H3KÙ|ªøÑ/Åf*½g™3{\Zfï§ŠÏ}iNæÌjÈÒÁœÙ@èu夙%Í,if߸}Û>Mýq̺Íi–H³K"-¸šU½*…2(‡ ¨„ePÕPµP+`I½Ÿo‰½ÔCܶnuô¯š ™%?ã’»6ƒßìí­Òë “*~ù÷bYÈA+¬†5°6@l» 6Ã^Ø ëSůž½l…m°vÀNØ»¼´˜: {RÅ?ÿll¶ÀAÐÖàÕ8 Çà8œ€Oà4œ³pòp*ULož‡ pâ;ðsSWà*\ƒhOx9UüvMlv¢-âMˆˆ·™]ëš[hmø*2¿›*~ïÆfZ¾z mðžÂ3ˆÿû^Â+x ï4«ˆ¼M¿ÿë1õ¢R¾>U¶ýe¤™ Íi&H3Aš ÒLð`"¥ÊÒÏÄÊšàЇ&84Á¡ ­z/yÞà„¸'ÒÒÏ­ØŒ>Í–Lh 2Á ZLÐb‚´˜àÐÄz ÈA&2!ý 2L¬J•ͯc÷¤™ c‡1Á nLib[ª\ó-±Þ.àÕÄàÆ7&¸1qd>±/UÆO˪ ªLPe‚*T™`ØÄ)àË_&ø2A‹ ZLÐb‚çRå¾ë±«K@¤‰Ë@• FLÄcÄ#&µTyì¯Äf·Hw!š£FÛ™h„ï÷Qª<ûõ• 2Á nLpc‚Œ˜þÄËT™-&h6ñ4ç툧% ¢-¤Ê»W£¬ Ê¡ª jRåÏ>V‰ŽåÐÍP—*ß<¥w7˜Ê@ ¬„,Dƒ—U°V¤Ê?û&¶m…Õ°Ö:Ù/˜Š]©]¿´ Ö§Ê®o‹-6ÁfØ[a'lO•=_—;`7„]©ò{»bÁ^Ø~õv¼2uŽ@4¡¸‡Rå_Þ[ƒãpNÂ)8 gà,œƒó¯þ2\«p ®Ã ¸ ÷áRªìýáøG·à6Ü»¿“×›zc4(~*ìÏÇfO ?ƒxGoàEªüL¬òÚ^â°¿ƒ¼M•_ø'±ô½ ´âÁPIªüå±`¨4-ûÒª-툶ÉÜ¢ÅPyªü§ÿ1V©„e@š¡ZþA†–ôùJ¼È!Ò ±d¨ h1´¤Ào¯¥T"Ȇ²©òßß‹|Z:ÅÿS}IZvóx”‰vhuªü[bv;0gh-x—CØÐ†´ìüßU¢…i†H3Dš¡­iÙcé. ÊÆiCÚ,::T¢ÊÐQàÆ7†¸1Ä!n }"ÈA†2D!‚ dèìLË_ÇkѪ¸ã´4|o·Å¡! qhˆCCâÐP4!˧e_üÁØ}†è3DŸ!† =€¸â,Òn}ˆ4C¤"Í¥†^Æ84™i(Z¡3g(T)¨œ _§e¿4ÍÎ75ù:’ªv}WÌ–Ææ­ ‰yë2а¼Õ=éVÍÉ[kAc·VŸ3­šŽ·6À X’°ø/bÚ·6Æíi×î¿=§l dÒ²ßúÆXy%Ä‚UÐ «a¬‡ °6Áf8‡`?¬M˾z'ö·¶ÁvÐ,¯U;¼Ö=°öÁa8G!]‡pNÁ' ]_ë´lþ×㜆3 q_ë98ÑRç­©Ëp)-[øúaÏÃUˆãëð®¤eü³±Êm¸ ÷@+ÂÖ6x˜ª*~%Vyá)<ƒçðÞÁx’ªšÿ$¶x ¯àµËõCßbñpAܧ®éMà„^2ôÆ“‘ùÛTµ.¤éåFo<~ÀÞxè :UýűXʃÞÚTuäH\‡¼–^ ôzp — ½ñU´½’îmLU'öŶšSöò 7 dèeIïZÐβ·5U»+Ó¢—½´è¥E/-ziÑ+ø^Á÷I÷nMUW.Ķ»½<èåP/‡zÉÐK†^2ôÊ·wªºýµØŒ½ÜèåF/7z¹Ñ·™µ“n×Ú¿=Þ#zÑËˆÞ óÞ3©êÉ×7z¯#z£ 鸞ªÞ|O¬r´5íõàT‡´ziÑ+é^Á÷ÞMUßô&V&RoDKÞ'@^é÷J¿÷5p£—s’ž‹mŸ§ªoý_b*"‹THK_Ô͑aŽ sÒŸs˜K©ê{¿;–’aŽ sd˜s¡˜#ÍœçêRÕõÄzñŒI؇à0 ®ÚNÀI8Wàxª.ù‰ØËiЄ»í,D³¼óp òp®Áuˆ*Ø›­^®¦êe­±«ÛpîÂ=xÑœ<žÂI¦žÁsxOSuý÷Å^ÀKx*ZF«!r{ªWŽÆzïAú1;j§£¥ éÑÊT}ó·c¤GkAª£R­JÕÛNÅRùŽÊwT¾£ò»ãhÜâò<ب@G㉯ø!!”ÑÖT½û}ìj=Äs^²§»d9ÏomYŽjM?*·Q¡ŒîJÕ÷Ä$8*ÁÑpd9Mæ?z$8ª9þ¨ÜF…2z2UÿƒØ‹G%8*ÁQ ŽJpT‚£‚ÕR烧Ú;*ËQYŽjÞ?*Áѧp=UŸýØ©,Ge9z€@GÛ€£²ÞèKM‘œt£ÏRõ勱ƒø(èhHp´`å¥P–ªÆÍþºL%,ƒ*ðô@¦"U?ÜKk ¢±V=D¨h‚fXnMf²ȵ¤ê§ÿ5ö² Za5¬µ°6ÀFØ›ÁE:³ <º‰ÇðvB§ð"äxÌã5DŒïàyªþ‘oŽ-ÞÀ[hf»…Ü-äno°;ò}Ÿªü/ÄÒrXÊ÷¿gcVæÝ é–t·¤»%Ý-Õîe©ú‹kb=Áw ¾[ðÝà^Á‡ØßzX‘ª‡ÿ{¬Ln¤t ¾[ðÝ‚ï|·à»ß-ón™wÇgò†Tý1Ž_7ºµì–~·ô»¥ß-äîm©úW¿)Ö£Y÷n E·ÇFÚ™ØY¤;®m÷þTý_ˆÍâáJFt{¤²›Ýâîw·¸»Ñ-ónIw/Eû›ÿ%¶¥@7ºßOÜÈ·;ŸªkS¬íc¥ß-ýîV˜¢@÷]в› ÝÚ@zΦ®ûvªþêŽØ 7ºyÕM†n–t?2t“¡[ðÝ<#ºßAfâ½LÕó¾Á×Íh1C‹ZÌ”§š§+bs†3<˜áÁ fx0ÙÊTSÑÎð`†3<˜áÁŒ«ÀŒëÆ fä;³"ÕÔì-x0ÃÌð`†3Nû ÌP`Fæ32Ÿ!ÃŒsFŒ3ëRMÓOÅ®x0ÃÁÏ~Fð3Q¯TÜ39˜jV½ŠÍ¢ †Ìgd>Ѻ2ÌÄ3·ÎÁψ{æTªÙü•ØŒ3Ì™9 Œ˜ü #fä;s!Õì] f1È™h£©uB{!Ï\O5G㤛¹ ®3d˜!à fâ-ÁÏ~¦ \f?ó Õœü[±FÌ0bÆåa†3<˜y‘j.þl¬B‚̼Wké¿K57þ(–ºÃ|=k^–j~AƒÎúëQ»TàÑ£ëõPšjÞþ¹XeTA5Ô@-ÔA#,O5ßøùX¹V@Sªùôߊ²fX ™Tóç Q–ƒUÐ kal„5©¦ûd¬·6ÀfØ;aSªù_0VÙ ª¢®o5éâåî†=°öÁ~8»RMßwÅÀA8‡á8M5ŸÿþX圄Kp"ÕüÄïÆ‚Oà ăÕç §¾¢¾~®ÀU¸ ùT3ð뱃ëpnЇëѪ3ì}xá<†Wp/Õ ýdì¥ žÀSxÏἄ7ðÞAÆâ¼N5þƒ½Œ1ƈ1FŒÅÃhsLÇ(0F1é-‡èA :Õf3vOŽ-)0öŸ£Œc´Ë€ôǤ?&ý1nŒ­Œñ`Lðc‚cÄØ&ˆúÆ•©füÿŠ2bŒcÛÜÛÒ“þ˜ôǤ?&ý±£°=Õüæ—b/Ò“þ˜ôǤ?F1 ŒÁy|rLÜc«“ù˜ÌÇd>&ó1™Åƒó,‹Çå¥?&ý±¨S:–j~'Åÿõ`æ˜àÇ?F‹±{ ó1™É|Læcò»“jf3±-Æ$=&é1ùŽ=I5ØK?öB(Ôkˆ¸¥?ö*ÕüÑÅzŒ+xì°DúïRmÍh”Å÷؆Tû©¯ÆlTÂ2¨ƒòT»ñy,­‚j¨ZX ÐMÐ + -°²ƒUÐ «a ¬…u°6ÀFØ›a l…m°vÀNØ õ©vÇ7ÄËõøi»Þ4Úu#Ю?€v=Æ´ë2¥ÝïÕö*ÐiA»'ùÛ+@íe'‹jÁ•¿ Û˜‚Š›‚> î^ûo{aì‡pÁa8Gᜀ=©öÄ»x¹Z 4-¼4{ >Óp<í¹>—!ºfˆÇ|uȰþ:œ‡“©öÊ•Øé8 ZM~ðö /ÌÞ€;p!Õ>¸+ß„[pîÁ}x!^Ús¸›jŸìŽÍžÀSx¯ Éx ïà=ÐqÀft Ü@™/RíËߌ¥©ö·ÿSL1q€fK~ë‹(#æ˜8ÀÄzàß@]ªýŽH€˜Ä ãè8@Ç:Ðq€Žt ãè8@Ç:Ðq€Žt ãè8@Ç:Ðq`4¥Ú芗ÁÎvì‚èx¥ÎËç_ø2À—¾ ðe@nÒØ›jäëŒ>ô`ÎÀI`É€|Îô¨2p:Õ~¾/6»¤ È€à$= éú \Jµ?ý¹X™W¼ ÀÀ]¸–j¿øc)_1Àˆx ñ„¹ô¤?À† Pe€ d ÃÈ0@†%6–@ÈÐ÷RíØ¿ˆÿæi˜Žxh\ËÛÍ¿ Ïá<…'¶-…2_ž¤Ú/:“;´î8`ÖÙýÁ¥ àFJÁî Ú³ÔÀ4X+ÜOu7/NvÕ{…»6«‚j¨‡åP ËRíÜåøG.(…;¦ 2Ð KN.fb=¿­ îïôŒ²±VBVÃX «`Eª«Žms°ÖÃ&hMu­;–n€°¶Â6Ø;`'ì‚ÝàA÷{aì‡8Láè7`ã8 Çà8œ€“p > p.A.ø «ßxt³ñ&ĸ qüâˆßƒûðÂ9؜궾‹÷{ÎÀYU[ñÒì7¶Ásx çSÝþ¯k}ïD‚/à%¼‚×ðÆÃù±Þ³Tw.ÅÔ[xï¡ê~Ðoçu' êNziÑˈޔêž,ÆÒ `N/sÔ¬4èØ©AµIC/AT–4¨,iPYÒ ²¤AÅHƒŠ‘u" ½u©îÕLì ½­@ÞU©îOýëX@u' êNT‘4¨"iPEÒ Š¤A}JC/#T–4¨,iÐyEƒæD º–jPOÒÐ]0B-JC/#Tª4¨6iPmÒÐ=I0BµIƒê†Þõ©îÛ¾1^‹T›4¨6iPmÒ Ú¤¡WPêIÔ“4¨'iPOÒ ûŒÍWôfÕ N¤¡÷tªûίÄþ˜£Æ¤AíHCoô&äìù‘%ºÞhPÒ :¤AuHCoô±@# *FT 4ô2B}Jƒz’õ$ êIz#xI«iP'ÒÐëÚäI¤†…â^÷‚Ž4ä»°ÌzwSÝ÷ÿµX¯2Õým1%ó™/Ðb¡X²@¯~Aú U©îo|OlÁˆ,ð` Å?Ä;:ûSýîï‹UÀ 8”ê|9ÊNÁ'p.ÂÉTä/ÇÒ3ýsp.@¢ƒ›+p"óhüp)ÕŸùöØA¼­ëpîíTõQ,îÉîBtJöÁSxêÎÅz¡ â3%‚zîQâþYªº/Ö{ ¯á ¼…wðø2Y’¿s6C¦Ê$U&©2I•Ée`÷“¥©þOý³X¯84É¡IÒL’fÒ!ž¤Ê$A&W¤úOÿplÁœÉ•©þû¾)fÅ=™Kõßq%f1É—I¾Lòe’/“kSý¿>«l‚ ©~öcÌnLõðÍ%iùÛž˜•ôäæTÿÕí1ˈÉèk»“|™$Òä6`Î䎴üÎ×bå#°'-Ö³‡@E“{R“û*“Óò‘?\ú¿¿^U’¾ÿVlÁ’É£iù¯~ýµ0gòrMž„S©á[7Ç*T™<“¾ãïÅì% Ô$¥&)5I©É‹©aîÚR<%ëiòrjø¯Å˜¥Ï$×&¹6É«Éë©qyfi‹í¿«°iòVjÌõÇ,'I3y75n|e¾†~ˆÈâéy:NFßwÔ›|”_ìŽõø7½6=IŸú?£ì„u¯€f“4›¤Ù$Í&i6YЦ¼”B”CT‚Ž˜>BUC ÔBèIçSË¡¡ šÁeiòejüæÿhd %5þÖ¯GYVA+¬¿j-l„M°²©ñ/}.6[›AQŸÚ Rãgs±t+lƒí°ö®Ô8x>VÙ {àìK{o,p‡ùC‹©Ãp05~áWbÁ!8GRãwFÙQ8'á\†Kp<5þƒïŽõNÃY8çáhBV¸jJ7WŸŠ©kpò©ñ—Æâ €pnÁm¸wáÜO¿òb‹Ç!>Ý~êF÷KTѧl“Îf›ôBÛ¤kÛ¦ ©qþRlKÝØ6éß¶I¹MzÎmÒ•o“~z›>æRãùû±2s>F· ÌÑco“n€›ôܤã¦Rôa»4E7é¸I7ÅMú/nÒ)rÓÇè€l?pããqôÇ=©iÙÙØÁA`ÄG–|ŒZÆxõdøH†dø¨#µy8–šê¾Û’áã`ÄGF|dÄGF|¼ôù(ä—SÓÊñØŒ)ð‘ÿñ!ÜNMk~/VáÁGæ|¼€yð‘£Lª||îkO¼ßG©iûÓØAt~É’Ñå¥à? þcÁÊz±¼›@ß•wË@wlw+@?•wuÇvWï”w«¡4©¿ëþÆÝzX ÐMÐ + -O¾d!º|»Û «a ¬…u°6ÀFØ›a l…m°vÀNØ»a)Úïþ»ñ¾ÔtdGÌî‡p¥¦ãͱà0DðñúNÀRÈç?KãKå98'SÓ_‰§à8 ç!gSÓ“?ŠU.ÀEÐ8èî¸ K2|ª>V¹·à6Üû S¼»á)ÜKMßô'±Å#x K»ûBèZï%¼‚×ðôpÚI?KM]ïb/ï@7§wÑýšºúaUjúW¿³¢ímŸhûDÛ'Ú>é÷•¥¦ÈÇz¤éãK_úøÒÇ—>¾ôÅý02ô‘¡ }dès°ûäÛ'î¾å©é‡~6öÇ>nôq£O“Ü‚C×'é>I÷I¿ocjúëkc ‚ô¤ }é#Cߨ dèÛ‘š>÷DZÅ>`D#údÞ·dÄO÷ÆRFôªôô‰»oIŸ+‹õ<“þ!^.7úÎUúÈÐ'ý>é÷]‡Ó©iô×b32ôQ¥/z:‹÷]"’¡}7RÓ?þB¬|Òwö•X@¤¾gp?5ýó'QF‹>ZôÑ¢9}´è£E-úhÑG‹>Z,F/ŒÏSÓô?‹Т/z¿¥…ÛÍ‹.‹ôY,K͇ÏGYôeK‹ÅŠÔô»‘Âbôe+øÅxöFð‹TYt¡XdÓbtÁ,ÚE"-Òb‘‹ÎýÅæÔôÕ_Š]dÑ…b1VæÁ¢kÄ"U]…¼(óÅõ©é'b36-’a‘*‹[SÓǹºÈ—EW‹EZ,Òb‘‹Žóu¸7á܆;pîÁ}xá<†6xOá<‡ð^Ákxoἇ¥Ì3ž"ÎØà ‚ÃpŽÂ18'à$œ‚Oà4œ³pÎø— —á \…kpnÀM¸·áÜ…{pÀCx¡ žÀSxÏἄWðÞÀ[xïAæ¾··äež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^æy™çež—y^Èy!ç…œr^Èy!ç…œr^Èy!ç…œr^Èù¸FìKÍφ#™K©¹ãkKW©ïù?b–y ä)§@žy ä)§@žy ä)§@žy ä)§@~I•ž]ùç”B”CTÂ2¨‚j¨Z¨ƒzX ÐMÐ + -°²ƒUÐ «a ¬…u°6ÀFØ›a l…m°vÀNØ»aì…}°ÀA8‡á…cpNÀI8ŸÀi8gᜇ p.A.ø ×à:Ü€›p nø ÷à><€‡ðC<§ð žÃ x ¯à5¼·ðރ̵{]Ù)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wʼSæ2ï”y§Ì;eÞ)óN™wÊ\½ËÊ.™wɼKæ]2ï’y—Ì»dÞ%ó.™wɼKæ]2ï’y—Ì»dÞ%ó.™wɼKæ]2ï’y—Ì»dÞ%ó.™wɼKæ]2ï’y—Ì»dÞ%ó.™wɼKæ]2ï’y—Ì»dÞ%ó.™wɼKæ]2ï’y—Ì»dÞ%ó.™wɼKÈ]Bîr—»„Ü%ä.!w ¹KÈ]Bîr—»„Ü%ä.!w ¹KÈ]Bîr—»„Ü%ä.!w ¹KÈ]Bîr—»„Ü%ä®øì¹œšÿÂE<úüþ°65ÿÕKý¿ñíKø™šX@†.2t‘¡‹ ]dè"CºÈÐE†.2t‘¡‹ ]dè"Cº–dȪ‚Í~9A)”A9T@%,ƒ*¨†¨…:¨‡åÐÐͰ2Ð+! 9X­°ÖÀZXëal„M°¶ÀVØÛaì„]°öÀ^Øûá„CpŽÀQ8ÇᜄS𠜆3pÎÁy¸áäá2\«p ®Ã ¸ ·à6Ü»pîÃxà1´Áx Ïà9¼€—ð ^Ãx ïà=È|Ræ*®³“2W U U U U 5^LVåsVåsVåsVwßYãteu¢UUUUq”¹Zé¬jèì¤ÌÕOg'e®Þ9«Þ9«Þ9«Þ9;)sµÒY5ÕÙI™OÊ\5tvRæ*•³*•³*•³*•³“2WùœUùœU+”¹ªä¬ªä¬ªä¬ªäì¤ÌÕ6gÕ6gUCg'e®î8«î8«î8«î8;)s5ËYµÍÙI™«1Ϊ1Ϊ1Ϊ1ÎNÊ\}rVsvR檈³ªˆ³ªˆ³“2WwœUŸœ”¹Šá¬Êâì¤ÌÕgÕgÕgÕg'e®²8«9;)suÂY•ÀY•ÀYµÃÙI™«ΪΪΪΪΪΪΪÂÎe^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæE™e^”yQæzxÎNÉ|JæS2Ÿ’ù”̧d>%ó)™OÉ|JæS2Ÿ’ù”̧d>%ó)™OÉ|JæS2Ÿ’ù”̧d>%ó)™O y*>è¦æŸhŠ×²*5ÿƒ^ú,ûøz ÿ÷ï.aòÛb¦È0E†)2L‘aŠ Sd˜"æÈ0E†)2L‘aŠ Sd˜"æÈ0E†)2L‘aŠ Sd˜"æÈ0E†)2L‘aŠ Sd˜"æÈ0E†)2L‘aŠ Sd˜"æÈ0E†)2L‘aŠ Sd˜"æÈ0E†)2L‘aŠ Sd˜"æÈ0E†)2L‘aŠ Sd˜"æÈ0E†)2L‘aŠ Sñ$C4sVŸWðœCÁ-¦ ÚI<QðdDÁ3OK¢™sÄà›1L-}>ÐçÃæ´òsÿ{<É¡1˜,‡>pèClM^£ÕZ<¥±'­ÐL(÷1†Ú¦Š–!¹TÑP$÷1Æ"¦Š ¹1”0U>ÆàÍTÑâ#§ÅGN‹œ9->rŠä>ÂÓ w¹ÿ#†"ýƒxǨÓ/Ö2$÷1ÓöÔàÇž9ÆŽ»=µð1†Nޱ—5&û£ÇÈž‘Ð$§HÎÀz9Í>rc nN-Ã~ŒÁ¥cTl—‡ù’´òïG´óÄ4\Î p9ƒÀå —3\Î p9ƒÀå —3\Î p9ƒÀå —3\Î p9Ãfæ ý–3ô[ÎÐo9C¿å ý–3ô[ÎÐo¹ðÜøo9ÃÆåæ]#Œú–3ê[Ψo9üå ó–3Ì[Î p¹y×üå ó–3Ì[Î0o9üåŒë–3®[θn9ãºåŒë–3þ[nÞ5ˆž9CºåŒ6—‹1Ö î–‹ÁÝŒë–3þ[n^ðFxËá-g„·œÞrFxËÍ-g4·œÑÜr1š›ßró‚7þ[Ψ¡9¹å ä–3Ê].Fo7¤[În9Cºå ý–›¼‘àrFxËá-g„·œÞrFxËÒ-gH·œ!Ýr|ËÍ Þàn9Óæ é–3¤[În9CºåbpxãºåŒë–3ܪÇKÁÿjy‰©¥PåP•° ª j ê –C4B4à È@ ¬„,ä`´ÂjXka¬‡ °6ÁfØ[al‡°vÁnØ{aì‡pÁa8Gá‡pNÁ'pÎÀY8çá\„K‡Ëp®Â5¸7à&Ü‚ÛpîÂ=¸à!<‚ÇÐOà)<ƒçð^Â+x oà-¼ƒ÷ ø‘¥à§ÿ©àG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"øÁ~Dð#‚üˆàG?"ø‘¥à[×/ÿï=úÑêáVÏ·zN¸u}9T@%,ƒ*¨†¨…:¨‡åÐÐͰ2Ð+! ¹´òwqé|õ'Kþƒ endstream endobj startxref 1501856 %%EOF metafor/man/0000755000176200001440000000000014746146216012475 5ustar liggesusersmetafor/man/replmiss.Rd0000644000176200001440000000147714746146216014633 0ustar liggesusers\name{replmiss} \alias{replmiss} \title{Replace Missing Values in a Vector} \description{ Function to replace missing (\code{NA}) values in a vector. } \usage{ replmiss(x, y, data) } \arguments{ \item{x}{vector that may include one or more missing values.} \item{y}{either a scalar or a vector of the same length as \code{x} with the value(s) to replace missing values with.} \item{data}{optional data frame containing the variables given to the arguments above.} } \value{ Vector \code{x} with the missing values replaced based on the scalar or vector \code{y}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \examples{ x <- c(4,2,7,NA,1,NA,5) x <- replmiss(x,0) x x <- c(4,2,7,NA,1,NA,5) y <- c(2,3,6,5,8,1,2) x <- replmiss(x,y) x } \keyword{manip} metafor/man/print.regtest.rma.Rd0000644000176200001440000000347514746146216016363 0ustar liggesusers\name{print.regtest} \alias{print.regtest} \title{Print Method for 'regtest' Objects} \description{ Function to print objects of class \code{"regtest"}. } \usage{ \method{print}{regtest}(x, digits=x$digits, ret.fit=x$ret.fit, \dots) } \arguments{ \item{x}{an object of class \code{"regtest"} obtained with \code{\link{regtest}}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{ret.fit}{logical to specify whether the full results from the fitted model should also be returned. If unspecified, the default is to take the value from the object.} \item{\dots}{other arguments.} } \details{ The output includes: \itemize{ \item the model used for the regression test \item the predictor used for the regression test \item the results from the fitted model (only when \code{ret.fit=TRUE}) \item the test statistic of the test that the predictor is unreleated to the outcomes \item the degrees of freedom of the test statistic (only if the test statistic follows a t-distribution) \item the corresponding p-value \item the \sQuote{limit estimate} and its corresponding CI (only for predictors \code{"sei"} \code{"vi"}, \code{"ninv"}, or \code{"sqrtninv"} and when the model does not contain any additional moderators) } } \value{ The function does not return an object. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{regtest}} for the function to create \code{regtest} objects. } \keyword{print} metafor/man/forest.rma.Rd0000644000176200001440000007420214746146216015051 0ustar liggesusers\name{forest.rma} \alias{forest.rma} \title{Forest Plots (Method for 'rma' Objects)} \description{ Function to create forest plots for objects of class \code{"rma"}. \loadmathjax } \usage{ \method{forest}{rma}(x, annotate=TRUE, addfit=TRUE, addpred=FALSE, predstyle="line", showweights=FALSE, header=TRUE, xlim, alim, olim, ylim, predlim, at, steps=5, level=x$level, refline=0, digits=2L, width, xlab, slab, mlab, ilab, ilab.lab, ilab.xpos, ilab.pos, order, transf, atransf, targs, rows, efac=1, pch, psize, plim=c(0.5,1.5), colout, col, border, shade, colshade, lty, fonts, cex, cex.lab, cex.axis, \dots) } \arguments{ \item{x}{an object of class \code{"rma"}.} \item{annotate}{logical to specify whether annotations should be added to the plot (the default is \code{TRUE}).} \item{addfit}{logical to specify whether the pooled estimate (for models without moderators) or fitted values (for models with moderators) should be added to the plot (the default is \code{TRUE}). See \sQuote{Details}.} \item{addpred}{logical to specify whether the prediction interval should be added to the plot (the default is \code{FALSE}). See \sQuote{Details}.} \item{predstyle}{character string to specify the style of the prediction interval (either \code{"line"} (the default), \code{"bar"}, \code{"shade"}, or \code{"dist"}). Can be abbreviated. Setting this to something else than \code{"line"} automatically sets \code{addpred=TRUE}.} \item{showweights}{logical to specify whether the annotations should also include the weights given to the observed outcomes during the model fitting (the default is \code{FALSE}). See \sQuote{Details}.} \item{header}{logical to specify whether column headings should be added to the plot (the default is \code{TRUE}). Can also be a character vector to specify the left and right headings (or only the left one).} \item{xlim}{horizontal limits of the plot region. If unspecified, the function sets the horizontal plot limits to some sensible values.} \item{alim}{the x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{olim}{optional argument to specify observation/outcome limits. If unspecified, no limits are used.} \item{ylim}{the y-axis limits of the plot. If unspecified, the function sets the y-axis limits to some sensible values. Can also be a single value to set the lower bound (while the upper bound is still set automatically).} \item{predlim}{optional argument to specify the limits of the prediction distribution when \code{predstyle="dist"}.} \item{at}{position of the x-axis tick marks and corresponding labels. If unspecified, the function sets the tick mark positions/labels to some sensible values.} \item{steps}{the number of tick marks for the x-axis (the default is 5). Ignored when the positions are specified via the \code{at} argument.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (see \link[=misc-options]{here} for details). The default is to take the value from the object.} \item{refline}{numeric value to specify the location of the vertical \sQuote{reference} line (the default is 0). The line can be suppressed by setting this argument to \code{NA}. Can also be a vector to add multiple lines.} \item{digits}{integer to specify the number of decimal places to which the annotations and tick mark labels of the x-axis should be rounded (the default is \code{2L}). Can also be a vector of two integers, the first to specify the number of decimal places for the annotations, the second for the x-axis labels (when \code{showweights=TRUE}, can also specify a third value for the weights). When specifying an integer (e.g., \code{2L}), trailing zeros after the decimal mark are dropped for the x-axis labels. When specifying a numeric value (e.g., \code{2}), trailing zeros are retained.} \item{width}{optional integer to manually adjust the width of the columns for the annotations (either a single integer or a vector of the same length as the number of annotation columns).} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title. Can also be a vector of three/two values (to also/only add labels at the end points of the x-axis limits).} \item{slab}{optional vector with labels for the \mjseqn{k} studies. If unspecified, the function tries to extract study labels from \code{x} or simple labels are created within the function. To suppress labels, set this argument to \code{NA}.} \item{mlab}{optional character string giving a label to the pooled estimate. If unspecified, the function sets a default label.} \item{ilab}{optional vector, matrix, or data frame providing additional information about the studies that should be added to the plot.} \item{ilab.lab}{optional character vector with (column) labels for the variable(s) given via \code{ilab}.} \item{ilab.xpos}{optional numeric vector to specify the horizontal position(s) of the variable(s) given via \code{ilab}.} \item{ilab.pos}{integer(s) (either 1, 2, 3, or 4) to specify the alignment of the variable(s) given via \code{ilab} (2 means right, 4 means left aligned). If unspecified, the default is to center the values.} \item{order}{optional character string to specify how the studies should be ordered. Can also be a variable based on which the studies will be ordered. See \sQuote{Details}.} \item{transf}{optional argument to specify a function to transform the observed outcomes, pooled estimate, fitted values, and confidence interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{atransf}{optional argument to specify a function to transform the x-axis labels and annotations (e.g., \code{atransf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified via \code{transf} or \code{atransf}.} \item{rows}{optional vector to specify the rows (or more generally, the positions) for plotting the outcomes. Can also be a single value to specify the row of the first outcome (the remaining outcomes are then plotted below this starting row).} \item{efac}{vertical expansion factor for confidence interval limits, arrows, and the polygon. The default value of 1 should usually work fine. Can also be a vector of two numbers, the first for CI limits and arrows, the second for the polygon. Can also be a vector of three numbers, the first for CI limits, the second for arrows, the third for the polygon. Can also include a fourth element to adjust the height of the prediction interval/distribution when \code{predstyle} is not \code{"line"}.} \item{pch}{plotting symbol to use for the observed outcomes. By default, a filled square is used. See \code{\link{points}} for other options. Can also be a vector of values.} \item{psize}{optional numeric value to specify the point sizes for the observed outcomes. If unspecified, the point sizes are a function of the model weights. Can also be a vector of values.} \item{plim}{numeric vector of length 2 to scale the point sizes (ignored when \code{psize} is specified). See \sQuote{Details}.} \item{colout}{optional character string to specify the color of the observed outcomes. Can also be a vector.} \item{col}{optional character string to specify the color of the polygon.} \item{border}{optional character string to specify the border color of the polygon.} \item{shade}{optional character string or a (logical or numeric) vector for shading rows of the plot. See \sQuote{Details}.} \item{colshade}{optional argument to specify the color for the shading.} \item{lty}{optional argument to specify the line type for the confidence intervals. If unspecified, the function sets this to \code{"solid"} by default.} \item{fonts}{optional character string to specify the font for the study labels, annotations, and the extra information (if specified via \code{ilab}). If unspecified, the default font is used.} \item{cex}{optional character and symbol expansion factor. If unspecified, the function sets this to a sensible value.} \item{cex.lab}{optional expansion factor for the x-axis title. If unspecified, the function sets this to a sensible value.} \item{cex.axis}{optional expansion factor for the x-axis labels. If unspecified, the function sets this to a sensible value.} \item{\dots}{other arguments.} } \details{ The plot shows the observed effect sizes or outcomes (by default as filled squares) with corresponding \code{level}\% confidence intervals (as horizontal lines extending from the observed outcomes). The confidence intervals are computed with \mjeqn{y_i \pm z_{crit} \sqrt{v_i}}{y_i ± z_crit \sqrt{v_i}}, where \mjseqn{y_i} denotes the observed outcome in the \mjeqn{i\text{th}}{ith} study, \mjseqn{v_i} the corresponding sampling variance (and hence \mjseqn{\sqrt{v_i}} is the corresponding standard error), and \mjeqn{z_{crit}}{z_crit} is the appropriate critical value from a standard normal distribution (e.g., \mjseqn{1.96} for a 95\% CI). For an equal- and a random-effects model (i.e., for models without moderators), a four-sided polygon, sometimes called a summary \sQuote{diamond}, is added to the bottom of the forest plot, showing the pooled estimate based on the model (with the center of the polygon corresponding to the estimate and the left/right edges indicating the confidence interval limits). The \code{col} and \code{border} arguments can be used to adjust the (border) color of the polygon. Drawing of the polgyon can be suppressed by setting \code{addfit=FALSE}. For random-effects models and if \code{addpred=TRUE}, a dotted line is added to the polygon which indicates the bounds of the prediction interval (Riley et al., 2011). For random-effects models of class \code{"rma.mv"} (see \code{\link{rma.mv}}) with multiple \mjseqn{\tau^2} values, the \code{addpred} argument can be used to specify for which level of the inner factor the prediction interval should be provided (since the intervals differ depending on the \mjseqn{\tau^2} value). If the model also contains multiple \mjseqn{\gamma^2} values, the \code{addpred} argument should then be of length 2 to specify the levels of both inner factors. See also \code{\link[=predict.rma]{predict}}, which is used to compute these interval bounds. Instead of showing the prediction interval as a dotted line (which corresponds to \code{predstyle="line"}), one can choose a different style via the \code{predstyle} argument: \itemize{ \item \code{predstyle="bar"}: the prediction interval is shown as a bar below the polygon, \item \code{predstyle="shade"}: the bar is shaded in color intensity in accordance with the density of the prediction distribution, \item \code{predstyle="dist"}: the prediction distribution is shown and the regions beyond the prediction interval bounds are shaded in gray; the region below or above zero (depending on whether the pooled estimate is positive or negative) is also shaded in a lighter shade of gray. } In all of these cases, the prediction interval bounds are then also provided as part of the annotations. For \code{predstyle="dist"}, one can adjust the range of values for which the prediction distribution is shown via the \code{predlim} argument. Note that the shaded regions may not be visible depending on the location/shape of the distribution. For meta-regression models (i.e., models involving moderators), the fitted value for each study is added as a polygon to the plot. By default, the width of the polygons corresponds to the confidence interval limits for the fitted values. By setting \code{addpred=TRUE}, the width reflects the prediction interval limits. Again, the \code{col} and \code{border} arguments can be used to adjust the (border) color of the polygons. These polygons can be suppressed by setting \code{addfit=FALSE}. With the \code{transf} argument, the observed outcomes, pooled estimate, fitted values, confidence interval bounds, and prediction interval bounds can be transformed with some suitable function. For example, when plotting log odds ratios, one could use \code{transf=exp} to obtain a forest plot showing odds ratios. Note that when the transformation is non-linear (as is the case for \code{transf=exp}), the interval bounds will be asymmetric (which is visually not so appealing). Alternatively, one can use the \code{atransf} argument to transform the x-axis labels and annotations. For example, when using \code{atransf=exp}, the x-axis will correspond to a log scale. See \link{transf} for some other useful transformation functions in the context of a meta-analysis. The examples below illustrate the use of these arguments. By default, the studies are ordered from top to bottom (i.e., the first study in the dataset will be placed in row \mjseqn{k}, the second study in row \mjseqn{k-1}, and so on, until the last study, which is placed in the first row). The studies can be reordered with the \code{order} argument: \itemize{ \item \code{order="obs"}: the studies are ordered by the observed outcomes, \item \code{order="fit"}: the studies are ordered by the fitted values, \item \code{order="prec"}: the studies are ordered by their sampling variances, \item \code{order="resid"}: the studies are ordered by the size of their residuals, \item \code{order="rstandard"}: the studies are ordered by the size of their standardized residuals, \item \code{order="abs.resid"}: the studies are ordered by the size of their absolute residuals, \item \code{order="abs.rstandard"}: the studies are ordered by the size of their absolute standardized residuals. } Alternatively, it is also possible to set \code{order} equal to a variable based on which the studies will be ordered. One can also use the \code{rows} argument to specify the rows (or more generally, the positions) for plotting the outcomes. Additional columns with information about the studies can be added to the plot via the \code{ilab} argument. This can either be a single variable or an entire matrix / data frame (with as many rows as there are studies in the forest plot). The \code{ilab.xpos} argument can be used to specify the horizontal position of the variables specified via \code{ilab}. The \code{ilab.pos} argument can be used to specify how the variables should be aligned. The \code{ilab.lab} argument can be used to add headers to the columns. \if{html}{The figure below illustrates how the elements in a forest plot are arranged and the meaning of the some of the arguments such as \code{xlim}, \code{alim}, \code{at}, \code{ilab}, \code{ilab.xpos}, and \code{ilab.lab}.} \if{html}{\figure{forest-arrangement.png}{options: width=800}} \if{html}{The figure corresponds to the following code: \preformatted{dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, slab=paste(author, year, sep=", "), data=dat.bcg) res <- rma(yi, vi, data=dat) forest(res, addpred=TRUE, xlim=c(-16,7), at=seq(-3,2,by=1), shade=TRUE, ilab=cbind(tpos, tneg, cpos, cneg), ilab.xpos=c(-9.5, -8, -6, -4.5), ilab.lab=c("TB+", "TB-", "TB+", "TB-"), cex=0.75, header="Author(s) and Year") text(c(-8.75, -5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) }} \if{latex}{The figure below illustrates how the elements in a forest plot are arranged and the meaning of the some of the arguments such as \code{xlim}, \code{alim}, \code{at}, \code{ilab}, \code{ilab.xpos}, and \code{ilab.lab}. \figure{forest-arrangement.pdf}{options: width=5.5in} The figure corresponds to the following code: \preformatted{dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, slab=paste(author, year, sep=", "), data=dat.bcg) res <- rma(yi, vi, data=dat) forest(res, addpred=TRUE, xlim=c(-16,7), at=seq(-3,2,by=1), shade=TRUE, ilab=cbind(tpos, tneg, cpos, cneg), ilab.xpos=c(-9.5, -8, -6, -4.5), ilab.lab=c("TB+", "TB-", "TB+", "TB-"), cex=0.75, header="Author(s) and Year") text(c(-8.75, -5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.75, font=2) }} Additional pooled estimates can be added to the plot as polygons with the \code{\link{addpoly}} function. See the documentation for that function for examples. When \code{showweights=TRUE}, the annotations will include information about the weights given to the observed outcomes during the model fitting. For simple models (such as those fitted with the \code{\link{rma.uni}} function), these weights correspond to the \sQuote{inverse-variance weights} (but are given in percent). For models fitted with the \code{\link{rma.mv}} function, the weights are based on the diagonal of the weight matrix. Note that the weighting structure is typically more complex in such models (i.e., the weight matrix is usually not just a diagonal matrix) and the weights shown therefore do not reflect this complexity. See \code{\link[=weights.rma]{weights}} for more details (for the special case that \code{x} is an intercept-only \code{"rma.mv"} model, one can also set \code{showweights="rowsum"} to show the \sQuote{row-sum weights}). By default (i.e., when \code{psize} is not specified), the point sizes are a function of the square root of the model weights. This way, their areas are proportional to the weights. However, the point sizes are rescaled so that the smallest point size is \code{plim[1]} and the largest point size is \code{plim[2]}. As a result, their relative sizes (i.e., areas) no longer exactly correspond to their relative weights. If exactly relative point sizes are desired, one can set \code{plim[2]} to \code{NA}, in which case the points are rescaled so that the smallest point size corresponds to \code{plim[1]} and all other points are scaled accordingly. As a result, the largest point may be very large. Alternatively, one can set \code{plim[1]} to \code{NA}, in which case the points are rescaled so that the largest point size corresponds to \code{plim[2]} and all other points are scaled accordingly. As a result, the smallest point may be very small and essentially indistinguishable from the confidence interval line. To avoid the latter, one can also set \code{plim[3]}, which enforces a minimal point size. With the \code{shade} argument, one can shade rows of the plot. The argument can be set to one of the following character strings: \code{"zebra"} (same as \code{shade=TRUE}) or \code{"zebra2"} to use zebra-style shading (starting either at the first or second study) or to \code{"all"} in which case all rows are shaded. Alternatively, the argument can be set to a logical or numeric vector to specify which rows should be shaded. The \code{colshade} argument can be used to set the color of shaded rows. } \section{Note}{ The function sets some sensible values for the optional arguments, but it may be necessary to adjust these in certain circumstances. The function actually returns some information about the chosen values invisibly. Printing this information is useful as a starting point to customize the plot (see \sQuote{Examples}). For arguments \code{slab} and \code{ilab} and when specifying vectors for arguments \code{pch}, \code{psize}, \code{order}, and/or \code{colout} (and when \code{shade} is a logical vector), the variables specified are assumed to be of the same length as the data originally passed to the model fitting function (and if the \code{data} argument was used in the original model fit, then the variables will be searched for within this data frame first). Any subsetting and removal of studies with missing values is automatically applied to the variables specified via these arguments. If the number of studies is quite large, the labels, annotations, and symbols may become quite small and impossible to read. Stretching the plot window vertically may then provide a more readable figure (one should call the function again after adjusting the window size, so that the label/symbol sizes can be properly adjusted). Also, the \code{cex}, \code{cex.lab}, and \code{cex.axis} arguments are then useful to adjust the symbol and text sizes. If the outcome measure used for creating the plot is bounded (e.g., correlations are bounded between -1 and +1, proportions are bounded between 0 and 1), one can use the \code{olim} argument to enforce those limits (the observed outcomes and confidence/prediction intervals cannot exceed those bounds then). The models without moderators, the \code{col} argument can also be a vector of two elements, the first for the color of the polygon, the second for the color of the line for the prediction interval. For \code{predstyle="bar"}, \code{col[2]} can be used to adjust the bar color and \code{border[2]} the border color. For \code{predstyle="shade"}, \code{col} can be a vector of up to three elements, where \code{col[2]} and \code{col[3]} specify the colors for the center and the ends of the shading region. For \code{predstyle="dist"}, \code{col} can be a vector of up to four elements, \code{col[2]} for the tail regions, \code{col[3]} for the color above/below zero, \code{col[4]} for the opposite side (transparent by default), and \code{border[2]} for the color of the lines. Setting a color to \code{NA} makes it transparent. The \code{lty} argument can also be a vector of up to three elements, the first for specifying the line type of the individual CIs (\code{"solid"} by default), the second for the line type of the prediction interval (\code{"dotted"} by default), the third for the line type of the horizontal lines that are automatically added to the plot (\code{"solid"} by default; set to \code{"blank"} to remove them). } \section{Additional Optional Arguments}{ There are some additional optional arguments that can be passed to the function via \code{...} (hence, they cannot be abbreviated): \describe{ \item{top}{single numeric value to specify the amount of space (in terms of number of rows) to leave empty at the top of the plot (e.g., for adding headers). The default is 3.} \item{annosym}{vector of length 3 to select the left bracket, separation, and right bracket symbols for the annotations. The default is \code{c(" [", ", ", "]")}. Can also include a 4th element to adjust the look of the minus symbol, for example to use a proper minus sign (\ifelse{latex}{\mjseqn{-}}{\enc{−}{-}}) instead of a hyphen-minus (-). Can also include a 5th element that should be a space-like symbol (e.g., an \sQuote{en space}) that is used in place of numbers (only relevant when trying to line up numbers exactly). For example, \code{annosym=c(" [", ", ", "]", "\u2212", "\u2002")} would use a proper minus sign and an \sQuote{en space} for the annotations. The decimal point character can be adjusted via the \code{OutDec} argument of the \code{\link{options}} function before creating the plot (e.g., \code{options(OutDec=",")}).} \item{tabfig}{single numeric value (either a 1, 2, or 3) to set \code{annosym} automatically to a vector that will exactly align the numbers in the annotations when using a font that provides \sQuote{tabular figures}. Value 1 corresponds to using \code{"\u2212"} (a minus) and \code{"\u2002"} (an \sQuote{en space}) in \code{annoyym} as shown above. Value 2 corresponds to \code{"\u2013"} (an \sQuote{en dash}) and \code{"\u2002"} (an \sQuote{en space}). Value 3 corresponds to \code{"\u2212"} (a minus) and \code{"\u2007"} (a \sQuote{figure space}). The appropriate value for this argument depends on the font used. For example, for fonts Calibri and Carlito, 1 or 2 should work; for fonts Source Sans 3 and Palatino Linotype, 1, 2, and 3 should all work; for Computer/Latin Modern and Segoe UI, 2 should work; for Lato, Roboto, and Open Sans (and maybe Arial), 3 should work. Other fonts may work as well, but this is untested.} \item{textpos}{numeric vector of length 2 to specify the placement of the study labels and the annotations. The default is to use the horizontal limits of the plot region, i.e., the study labels to the right of \code{xlim[1]} and the annotations to the left of \code{xlim[2]}.} \item{rowadj}{numeric vector of length 3 to vertically adjust the position of the study labels, the annotations, and the extra information (if specified via \code{ilab}). This is useful for fine-tuning the position of text added with different positional alignments (i.e., argument \code{pos} in the \code{\link{text}} function).} } } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Lewis, S., & Clarke, M. (2001). Forest plots: Trying to see the wood and the trees. \emph{British Medical Journal}, \bold{322}(7300), 1479--1480. \verb{https://doi.org/10.1136/bmj.322.7300.1479} Riley, R. D., Higgins, J. P. T., & Deeks, J. J. (2011). Interpretation of random effects meta-analyses. \emph{British Medical Journal}, \bold{342}, d549. \verb{https://doi.org/10.1136/bmj.d549} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{forest}} for an overview of the various \code{forest} functions and \code{\link{forest.default}} for a function to draw forest plots without a polygon. \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which forest plots can be drawn. \code{\link{addpoly}} for a function to add polygons to forest plots. } \examples{ ### meta-analysis of the log risk ratios using a random-effects model res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### default forest plot of the log risk ratios and pooled estimate forest(res) ### pooled estimate in row -1; studies in rows k=13 through 1; horizontal ### lines in rows 0 and k+1; two extra lines of space at the top for headings, ### and other annotations; headings in line k+2 op <- par(xpd=TRUE) text(x=-8.1, y=-1:16, -1:16, pos=4, cex=0.6, col="red") par(op) ### can also inspect defaults chosen defaults <- forest(res) defaults ### several forest plots illustrating the use of various arguments forest(res) forest(res, alim=c(-3,3)) forest(res, alim=c(-3,3), order="prec") forest(res, alim=c(-3,3), order="obs") forest(res, alim=c(-3,3), order=ablat) ### various ways to show the prediction interval forest(res, addpred=TRUE) forest(res, predstyle="bar") forest(res, predstyle="shade") forest(res, predstyle="dist") ### adjust xlim values to see how that changes the plot forest(res) par("usr")[1:2] # this shows what xlim values were chosen by default forest(res, xlim=c(-12,16)) forest(res, xlim=c(-18,10)) ### illustrate the transf argument (note the asymmetric CI bounds) forest(res, transf=exp, at=0:7, xlim=c(-8,12), refline=1) ### illustrate the atransf argument forest(res, atransf=exp, at=log(c(0.05,0.25,1,4,20)), xlim=c(-8,7)) ### showweights argument forest(res, atransf=exp, at=log(c(0.05,0.25,1,4,20)), xlim=c(-8,8), order="prec", showweights=TRUE) ### illustrade shade argument forest(res, shade="zebra") forest(res, shade=year >= 1970) forest(res, shade=c(1,5,10)) ### forest plot with extra annotations ### note: may need to widen plotting device to avoid overlapping text forest(res, atransf=exp, at=log(c(0.05, 0.25, 1, 4)), xlim=c(-16,6), ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.85, header="Author(s) and Year") text(c(-8.75,-5.25), res$k+2.8, c("Vaccinated", "Control"), cex=0.85, font=2) ### mixed-effects model with absolute latitude as moderator res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, mods = ~ ablat, data=dat.bcg, slab=paste(author, year, sep=", ")) ### forest plot with observed and fitted values forest(res, xlim=c(-9,5), at=log(c(0.05,0.25,1,4)), order="fit", ilab=ablat, ilab.xpos=-4.5, ilab.lab="Latitude", atransf=exp, header="Author(s) and Year") ### meta-analysis of the log risk ratios using a random-effects model res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### for more complicated plots, the ylim and rows arguments may be useful forest(res) forest(res, ylim=c(-2, 16)) # the default forest(res, ylim=c(-2, 20)) # extra space in plot forest(res, ylim=c(-2, 20), rows=c(17:15, 12:6, 3:1)) # set positions ### forest plot with subgrouping of studies ### note: may need to widen plotting device to avoid overlapping text tmp <- forest(res, xlim=c(-16, 6), at=log(c(0.05, 0.25, 1, 4)), atransf=exp, ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.85, ylim=c(-2, 21), order=alloc, rows=c(1:2,5:11,14:17), header="Author(s) and Year", shade=c(3,12,18)) op <- par(cex=tmp$cex) text(c(-8.75,-5.25), tmp$ylim[2]-0.2, c("Vaccinated", "Control"), font=2) text(-16, c(18,12,3), c("Systematic Allocation", "Random Allocation", "Alternate Allocation"), font=4, pos=4) par(op) ### see also the addpoly.rma function for an example where summaries ### for the three subgroups are added to such a forest plot ### illustrate the efac argument forest(res) forest(res, efac=c(0,1)) ### illustrate use of olim argument with a meta-analysis of raw correlation ### coefficients (data from Pritz, 1997); without olim=c(0,1), some of the ### CIs would have upper bounds larger than 1 dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat.pritz1997) res <- rma(yi, vi, data=dat, slab=paste0(study, ") ", authors)) forest(res, xlim=c(-0.8,1.6), alim=c(0,1), psize=1, refline=coef(res), olim=c(0,1)) ### an example of a forest plot where the data have a multilevel structure and ### we want to reflect this by grouping together estimates from the same cluster dat <- dat.konstantopoulos2011 res <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat, slab=paste0("District ", district, ", School: ", school)) dd <- c(0,diff(dat$district)) dd[dd > 0] <- 1 rows <- (1:res$k) + cumsum(dd) op <- par(tck=-0.01, mgp = c(1.6,0.2,0), mar=c(3,8,1,6)) forest(res, cex=0.5, rows=rows, ylim=c(-2,max(rows)+3)) abline(h = rows[c(1,diff(rows)) == 2] - 1, lty="dotted") par(op) ### another approach where clusters are shaded in a zebra style forest(res, cex=0.6, shade=as.numeric(factor(dat$district)) \%\% 2 == 0) } \keyword{hplot} metafor/man/cumul.Rd0000644000176200001440000001564514746146216014124 0ustar liggesusers\name{cumul} \alias{cumul} \alias{cumul.rma.uni} \alias{cumul.rma.mh} \alias{cumul.rma.peto} \title{Cumulative Meta-Analysis for 'rma' Objects} \description{ Function to carry out a \sQuote{cumulative meta-analysis}, by repeatedly fitting the specified model adding one study at a time. \loadmathjax } \usage{ cumul(x, \dots) \method{cumul}{rma.uni}(x, order, digits, transf, targs, collapse=FALSE, progbar=FALSE, \dots) \method{cumul}{rma.mh}(x, order, digits, transf, targs, collapse=FALSE, progbar=FALSE, \dots) \method{cumul}{rma.peto}(x, order, digits, transf, targs, collapse=FALSE, progbar=FALSE, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"}, \code{"rma.mh"}, or \code{"rma.peto"}.} \item{order}{optional argument to specify a variable based on which the studies will be ordered for the cumulative meta-analysis.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{transf}{optional argument to specify a function to transform the model coefficients and interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified under \code{transf}.} \item{collapse}{logical to specify whether studies with the same value of the \code{order} variable should be added simultaneously (the default is \code{FALSE}).} \item{progbar}{logical to specify whether a progress bar should be shown (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ For \code{"rma.uni"} objects, the model specified via \code{x} must be a model without moderators (i.e., either an equal- or a random-effects model). If argument \code{order} is not specified, the studies are added according to their order in the original dataset. When a variable is specified for \code{order}, the variable is assumed to be of the same length as the original dataset that was used in the model fitting (and if the \code{data} argument was used in the original model fit, then the variable will be searched for within this data frame first). Any subsetting and removal of studies with missing values that was applied during the model fitting is also automatically applied to the variable specified via the \code{order} argument. By default, studies are added one at a time. However, if a variable is specified for the \code{order} argument and \code{collapse=TRUE}, then studies with the same value of the \code{order} variable are added simultaneously. } \value{ An object of class \code{c("list.rma","cumul.rma")}. The object is a list containing the following components: \item{k}{number of studies included in the analysis.} \item{estimate}{estimated (average) outcomes.} \item{se}{corresponding standard errors.} \item{zval}{corresponding test statistics.} \item{pval}{corresponding p-values.} \item{ci.lb}{lower bounds of the confidence intervals.} \item{ci.ub}{upper bounds of the confidence intervals.} \item{Q}{test statistics for the test of heterogeneity.} \item{Qp}{corresponding p-values.} \item{tau2}{estimated amount of heterogeneity (only for random-effects models).} \item{I2}{values of \mjseqn{I^2}.} \item{H2}{values of \mjseqn{H^2}.} \item{order}{values of the \code{order} variable (if specified).} \item{\dots}{other arguments.} When the model was fitted with \code{test="t"}, \code{test="knha"}, \code{test="hksj"}, or \code{test="adhoc"}, then \code{zval} is called \code{tval} in the object that is returned by the function. The object is formatted and printed with the \code{\link[=print.list.rma]{print}} function. To format the results as a data frame, one can use the \code{\link[=as.data.frame.list.rma]{as.data.frame}} function. A forest plot showing the results from the cumulative meta-analysis can be obtained with \code{\link[=forest.cumul.rma]{forest}}. Alternatively, \code{\link[=plot.cumul.rma]{plot}} can also be used to visualize the results. } \note{ When using the \code{transf} option, the transformation is applied to the estimated coefficients and the corresponding interval bounds. The standard errors are then set equal to \code{NA} and are omitted from the printed output. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Chalmers, T. C., & Lau, J. (1993). Meta-analytic stimulus for changes in clinical trials. \emph{Statistical Methods in Medical Research}, \bold{2}(2), 161--172. \verb{https://doi.org/10.1177/096228029300200204} Lau, J., Schmid, C. H., & Chalmers, T. C. (1995). Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care. \emph{Journal of Clinical Epidemiology}, \bold{48}(1), 45--57. \verb{https://doi.org/10.1016/0895-4356(94)00106-z} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=forest.cumul.rma]{forest}} for a function to draw cumulative forest plots and \code{\link[=plot.cumul.rma]{plot}} for a different visualization of the cumulative results. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste0(author, ", ", year)) ### fit random-effects model res <- rma(yi, vi, data=dat, digits=3) ### cumulative meta-analysis (in the order of publication year) cumul(res, order=year) cumul(res, order=year, transf=exp) ### add studies with the same publication year simultaneously cumul(res, order=year, transf=exp, collapse=TRUE) ### meta-analysis of the (log) risk ratios using the Mantel-Haenszel method res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste0(author, ", ", year), digits=3) ### cumulative meta-analysis cumul(res, order=year) cumul(res, order=year, transf=exp) ### add studies with the same publication year simultaneously cumul(res, order=year, transf=exp, collapse=TRUE) ### meta-analysis of the (log) odds ratios using Peto's method res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste0(author, ", ", year), digits=3) ### cumulative meta-analysis cumul(res, order=year) cumul(res, order=year, transf=exp) ### add studies with the same publication year simultaneously cumul(res, order=year, transf=exp, collapse=TRUE) ### make the first log risk ratio missing and fit the model without study 2; ### then the variable specified via 'order' should still be of the same length ### as the original dataset; subsetting and removal of studies with missing ### values is automatically done by the cumul() function dat$yi[1] <- NA res <- rma(yi, vi, data=dat, subset=-2, digits=3) cumul(res, transf=exp, order=year) } \keyword{methods} metafor/man/matreg.Rd0000644000176200001440000003237414746146216014254 0ustar liggesusers\name{matreg} \alias{matreg} \title{Fit Regression Models based on a Correlation and Covariance Matrix} \description{ Function to fit regression models based on a correlation and covariance matrix. \loadmathjax } \usage{ matreg(y, x, R, n, V, cov=FALSE, means, ztor=FALSE, nearpd=FALSE, level=95, digits, \dots) } \arguments{ \item{y}{index (or name given as a character string) of the outcome variable.} \item{x}{indices (or names given as a character vector) of the predictor variables.} \item{R}{correlation or covariance matrix (or only the lower triangular part including the diagonal).} \item{n}{sample size based on which the elements in the correlation/covariance matrix were computed.} \item{V}{variance-covariance matrix of the lower triangular elements of the correlation/covariance matrix. Either \code{V} or \code{n} should be specified, not both. See \sQuote{Details}.} \item{cov}{logical to specify whether \code{R} is a covariance matrix (the default is \code{FALSE}).} \item{means}{optional vector to specify the means of the variables (only relevant when \code{cov=TRUE}).} \item{ztor}{logical to specify whether \code{R} is a matrix of r-to-z transformed correlations and hence should be back-transformed to raw correlations (the default is \code{FALSE}). See \sQuote{Details}.} \item{nearpd}{logical to specify whether the \code{\link[Matrix]{nearPD}} function from the \href{https://cran.r-project.org/package=Matrix}{Matrix} package should be used when the \mjeqn{R_{x,x}}{R[x,x]} matrix cannot be inverted. See \sQuote{Note}.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (the default is 95; see \link[=misc-options]{here} for details).} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded.} \item{\dots}{other arguments.} } \details{ Let \mjseqn{R} be a \mjeqn{p \times p}{pxp} correlation or covariance matrix. Let \mjseqn{y} denote the row/column of the outcome variable and \mjseqn{x} the row(s)/column(s) of the predictor variable(s) in this matrix. Let \mjeqn{R_{x,x}}{R[x,x]} and \mjeqn{R_{x,y}}{R[x,y]} denote the corresponding submatrices of \mjseqn{R}. Then \mjdeqn{b = R_{x,x}^{-1} R_{x,y}}{b = R[x,x]^(-1) R[x,y]} yields the standardized or raw regression coefficients (depending on whether \mjseqn{R} is a correlation or covariance matrix, respectively) when regressing the outcome variable on the predictor variable(s). The \mjseqn{R} matrix may be computed based on a single sample of \mjseqn{n} subjects. In this case, one should specify the sample size via argument \code{n}. The variance-covariance matrix of the standardized regression coefficients is then given by \mjeqn{\text{Var}[b] = \text{MSE} \times R_{x,x}^{-1}}{Var[b] = MSE * R[x,x]^(-1)}, where \mjeqn{\text{MSE} = (1 - b'R_{x,y}) / (n - m)}{MSE = (1 - b'R[x,y]) / (n -m)} and \mjseqn{m} denotes the number of predictor variables. The standard errors are then given by the square root of the diagonal elements of \mjeqn{\text{Var}[b]}{Var[b]}. Test statistics (in this case, t-statistics) and the corresponding p-values can then be computed as in a regular regression analysis. When \mjseqn{R} is a covariance matrix, one should set \code{cov=TRUE} and specify the means of the \mjseqn{p} variables via argument \code{means} to obtain raw regression coefficients including the intercept and corresponding standard errors. Alternatively, \mjseqn{R} may be the result of a meta-analysis of correlation coefficients. In this case, the elements in \mjseqn{R} are pooled correlation coefficients and the variance-covariance matrix of these pooled coefficients should be specified via argument \code{V}. The order of elements in \code{V} should correspond to the order of elements in the lower triangular part of \mjseqn{R} column-wise. For example, if \mjseqn{R} is a \mjeqn{4 \times 4}{4x4} matrix\ifelse{text}{,}{ of the form: \mjtdeqn{\left[ \begin{array}{cccc} 1 & & & \\\ r_{21} & 1 & & \\\ r_{31} & r_{32} & 1 & \\\ r_{41} & r_{42} & r_{43} & 1 \end{array} \right]}{\begin{bmatrix} 1 & & & \\\\\ r_{21} & 1 & & \\\\\ r_{31} & r_{32} & 1 & \\\\\ r_{41} & r_{42} & r_{43} & 1 \end{bmatrix}}{}} then the elements are \mjseqn{r_{21}}, \mjseqn{r_{31}}, \mjseqn{r_{41}}, \mjseqn{r_{32}}, \mjseqn{r_{42}}, and \mjseqn{r_{43}} and hence \code{V} should be a \mjeqn{6 \times 6}{6x6} variance-covariance matrix of these elements in this order. The variance-covariance matrix of the standardized regression coefficients (i.e., \mjeqn{\text{Var}[b]}{Var[b]}) is then computed as a function of \code{V} as described in Becker (1992) using the multivariate delta method. The standard errors are then again given by the square root of the diagonal elements of \mjeqn{\text{Var}[b]}{Var[b]}. Test statistics (in this case, z-statistics) and the corresponding p-values can then be computed in the usual manner. In case \mjseqn{R} is the result of a meta-analysis of Fisher r-to-z transformed correlation coefficients (and hence \code{V} is then the corresponding variance-covariance matrix of these pooled transformed coefficients), one should set argument \code{ztor=TRUE}, so that the appropriate back-transformation is then applied to \code{R} (and \code{V}) within the function. Finally, \mjseqn{R} may be a covariance matrix based on a meta-analysis (e.g., the estimated variance-covariance matrix of the random effects in a multivariate model). In this case, one should set \code{cov=TRUE} and \code{V} should again be the variance-covariance matrix of the elements in \mjseqn{R}, but now including the diagonal. Hence, if \mjseqn{R} is a \mjeqn{4 \times 4}{4x4} matrix\ifelse{text}{,}{ of the form: \mjtdeqn{\left[ \begin{array}{cccc} \tau_1^2 & & & \\\ \tau_{21} & \tau_2^2 & & \\\ \tau_{31} & \tau_{32} & \tau_3^2 & \\\ \tau_{41} & \tau_{42} & \tau_{43} & \tau_4^2 \end{array} \right]}{\begin{bmatrix} \tau_1^2 & & & \\\\\ \tau_{21} & \tau_2^2 & & \\\\\ \tau_{31} & \tau_{32} & \tau_3^2 & \\\\\ \tau_{41} & \tau_{42} & \tau_{43} & \tau_4^2 \end{bmatrix}}{}} then the elements are \mjseqn{\tau^2_1}, \mjseqn{\tau_{21}}, \mjseqn{\tau_{31}}, \mjseqn{\tau_{41}}, \mjseqn{\tau^2_2}, \mjseqn{\tau_{32}}, \mjseqn{\tau_{42}}, \mjseqn{\tau^2_3}, \mjseqn{\tau_{43}}, and \mjseqn{\tau^2_4}, and hence \code{V} should be a \mjeqn{10 \times 10}{10x10} variance-covariance matrix of these elements in this order. Argument \code{means} can then again be used to specify the means of the variables. } \value{ An object of class \code{"matreg"}. The object is a list containing the following components: \item{tab}{a data frame with the estimated model coefficients, standard errors, test statistics, degrees of freedom (only for t-tests), p-values, and lower/upper confidence interval bounds.} \item{vb}{the variance-covariance matrix of the estimated model coefficients.} \item{\dots}{some additional elements/values.} The results are formatted and printed with the \code{\link[=print.matreg]{print}} function. Extractor functions include \code{\link[=coef.matreg]{coef}} and \code{\link[=vcov.matreg]{vcov}}. } \note{ Only the lower triangular part of \code{R} (and \code{V} if it is specified) is used in the computations. If \mjeqn{R_{x,x}}{R[x,x]} is not invertible, an error will be issued. In this case, one can set argument \code{nearpd=TRUE}, in which case the \code{\link[Matrix]{nearPD}} function from the \href{https://cran.r-project.org/package=Matrix}{Matrix} package will be used to find the nearest positive semi-definite matrix, which should be invertible. The results should be treated with caution when this is done. When \mjseqn{R} is a covariance matrix with \code{V} and \code{means} specified, the means are treated as known constants when estimating the standard error of the intercept. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Becker, B. J. (1992). Using results from replicated studies to estimate linear models. \emph{Journal of Educational Statistics}, \bold{17}(4), 341--362. \verb{https://doi.org/10.3102/10769986017004341} Becker, B. J. (1995). Corrections to "Using results from replicated studies to estimate linear models". \emph{Journal of Educational and Behavioral Statistics}, \bold{20}(1), 100--102. \verb{https://doi.org/10.3102/10769986020001100} Becker, B. J., & Aloe, A. (2019). Model-based meta-analysis and related approaches. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (3rd ed., pp. 339--363). New York: Russell Sage Foundation. } \seealso{ \code{\link{rma.mv}} for a function to meta-analyze multiple correlation coefficients that can be used to construct an \mjseqn{R} matrix. \code{\link{rcalc}} for a function to construct the variance-covariance matrix of dependent correlation coefficients. } \examples{ ############################################################################ ### first an example unrelated to meta-analysis, simply demonstrating that ### one can obtain the same results from lm() and matreg() ### fit a regression model with lm() to the 'mtcars' dataset res <- lm(mpg ~ hp + wt + am, data=mtcars) summary(res) ### covariance matrix of the dataset S <- cov(mtcars) ### fit the same regression model using matreg() res <- matreg(y="mpg", x=c("hp","wt","am"), R=S, cov=TRUE, means=colMeans(mtcars), n=nrow(mtcars)) summary(res) ### copy the 'mtcars' dataset to 'dat' and standardize all variables dat <- mtcars dat[] <- scale(dat) ### fit a regression model with lm() to obtain standardized regression coefficients ('betas') res <- lm(mpg ~ 0 + hp + wt + am, data=dat) summary(res) ### correlation matrix of the dataset R <- cor(mtcars) ### fit the same regression model using matreg() res <- matreg(y="mpg", x=c("hp","wt","am"), R=R, n=nrow(mtcars)) summary(res) ### note: the standard errors of the betas should not be used to construct CIs ### as they assume that the null hypothesis (H0: beta_j = 0) is true ### construct the var-cov matrix of correlations in R V <- rcalc(R, ni=nrow(mtcars))$V ### fit the same regression model using matreg() but now supply V res <- matreg(y="mpg", x=c("hp","wt","am"), R=R, V=V) summary(res) ### the standard errors computed in this way can now be used to construct ### CIs for the betas (here, the difference is relatively small) ############################################################################ ### copy data into 'dat' dat <- dat.craft2003 ### construct dataset and var-cov matrix of the correlations tmp <- rcalc(ri ~ var1 + var2 | study, ni=ni, data=dat) V <- tmp$V dat <- tmp$dat ### turn var1.var2 into a factor with the desired order of levels dat$var1.var2 <- factor(dat$var1.var2, levels=c("acog.perf", "asom.perf", "conf.perf", "acog.asom", "acog.conf", "asom.conf")) ### multivariate random-effects model res <- rma.mv(yi, V, mods = ~ 0 + var1.var2, random = ~ var1.var2 | study, struct="UN", data=dat) res ### restructure estimated mean correlations into a 4x4 matrix R <- vec2mat(coef(res)) rownames(R) <- colnames(R) <- c("perf", "acog", "asom", "conf") round(R, digits=3) ### check that order in vcov(res) corresponds to order in R round(vcov(res), digits=4) ### fit regression model with 'perf' as outcome and 'acog', 'asom', and 'conf' as predictors matreg(1, 2:4, R=R, V=vcov(res)) ### can also specify variable names matreg("perf", c("acog","asom","conf"), R=R, V=vcov(res)) \dontrun{ ### repeat the above but with r-to-z transformed correlations dat <- dat.craft2003 tmp <- rcalc(ri ~ var1 + var2 | study, ni=ni, data=dat, rtoz=TRUE) V <- tmp$V dat <- tmp$dat dat$var1.var2 <- factor(dat$var1.var2, levels=c("acog.perf", "asom.perf", "conf.perf", "acog.asom", "acog.conf", "asom.conf")) res <- rma.mv(yi, V, mods = ~ 0 + var1.var2, random = ~ var1.var2 | study, struct="UN", data=dat) R <- vec2mat(coef(res)) rownames(R) <- colnames(R) <- c("perf", "acog", "asom", "conf") matreg(1, 2:4, R=R, V=vcov(res), ztor=TRUE) } ############################################################################ ### a different example based on van Houwelingen et al. (2002) ### create dataset in long format dat.long <- to.long(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.colditz1994, append=FALSE) dat.long <- escalc(measure="PLO", xi=out1, mi=out2, data=dat.long) dat.long$group <- factor(dat.long$group, levels=c(2,1), labels=c("con","exp")) dat.long ### fit bivariate model res <- rma.mv(yi, vi, mods = ~ 0 + group, random = ~ group | study, struct="UN", data=dat.long, method="ML") res ### regression of log(odds)_exp on log(odds)_con matreg(y=2, x=1, R=res$G, cov=TRUE, means=coef(res), n=res$g.levels.comb.k) ### but the SE of the 'con' coefficient is not computed correctly, since we treat res$G above as if ### it was a var-cov matrix computed from raw data based on res$g.levels.comb.k (= 13) data points ### fit bivariate model and get the var-cov matrix of the estimates in res$G res <- rma.mv(yi, vi, mods = ~ 0 + group, random = ~ group | study, struct="UN", data=dat.long, method="ML", cvvc="varcov", control=list(nearpd=TRUE)) ### now use res$vvc as the var-cov matrix of the estimates in res$G matreg(y=2, x=1, R=res$G, cov=TRUE, means=coef(res), V=res$vvc) ############################################################################ } \keyword{models} metafor/man/methods.list.rma.Rd0000644000176200001440000000343014746146216016157 0ustar liggesusers\name{methods.list.rma} \alias{methods.list.rma} \alias{as.data.frame.list.rma} \alias{as.matrix.list.rma} \alias{[.list.rma} \alias{head.list.rma} \alias{tail.list.rma} \alias{$<-.list.rma} \title{Methods for 'list.rma' Objects} \description{ Methods for objects of class \code{"list.rma"}. } \usage{ \method{as.data.frame}{list.rma}(x, \dots) \method{as.matrix}{list.rma}(x, \dots) \method{[}{list.rma}(x, i, \dots) \method{head}{list.rma}(x, n=6L, \dots) \method{tail}{list.rma}(x, n=6L, \dots) \method{$}{list.rma}(x, name) <- value } \arguments{ \item{x}{an object of class \code{"list.rma"}.} \item{\dots}{other arguments.} } \note{ For the \code{`[`} method, any variables specified as part of the \code{i} argument will be searched for within object \code{x} first (see \sQuote{Examples}). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ ### copy data into 'dat' and examine data dat <- dat.viechtbauer2021 ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=xTi, n1i=nTi, ci=xCi, n2i=nCi, add=1/2, to="all", data=dat) ### fit mixed-effects meta-regression model res <- rma(yi, vi, mods = ~ dose, data=dat) ### get studentized residuals sav <- rstudent(res) sav ### studies with studentized residuals larger than +-1.96 sav[abs(sav$z) > 1.96,] ### variables specified are automatically searched for within the object itself sav[abs(z) > 1.96,] ### note: this behavior is specific to 'rma.list' objects; this doesn't work for regular data frames } \keyword{internal} metafor/man/influence.rma.uni.Rd0000644000176200001440000002073114746146216016307 0ustar liggesusers\name{influence.rma.uni} \alias{influence} \alias{cooks.distance} \alias{dfbetas} \alias{hatvalues} \alias{influence.rma.uni} \alias{print.infl.rma.uni} \alias{cooks.distance.rma.uni} \alias{dfbetas.rma.uni} \alias{hatvalues.rma.uni} \title{Model Diagnostics for 'rma.uni' Objects} \description{ Functions to compute various outlier and influential study diagnostics (some of which indicate the influence of deleting one study at a time on the model fit or the fitted/residual values) for objects of class \code{"rma.uni"}. For the corresponding documentation for \code{"rma.mv"} objects, see \code{\link[=influence.rma.mv]{influence}}. \loadmathjax } \usage{ \method{influence}{rma.uni}(model, digits, progbar=FALSE, \dots) \method{print}{infl.rma.uni}(x, digits=x$digits, infonly=FALSE, \dots) \method{cooks.distance}{rma.uni}(model, progbar=FALSE, \dots) \method{dfbetas}{rma.uni}(model, progbar=FALSE, \dots) \method{hatvalues}{rma.uni}(model, type="diagonal", \dots) } \arguments{ \item{model}{an object of class \code{"rma.uni"}.} \item{x}{an object of class \code{"infl.rma.uni"} (for \code{print}).} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{progbar}{logical to specify whether a progress bar should be shown (the default is \code{FALSE}).} \item{infonly}{logical to specify whether only the influential cases should be printed (the default is \code{FALSE}).} \item{type}{character string to specify whether only the diagonal of the hat matrix (\code{"diagonal"}) or the entire hat matrix (\code{"matrix"}) should be returned.} \item{\dots}{other arguments.} } \details{ The term \sQuote{case} below refers to a particular row from the dataset used in the model fitting (which is typically synonymous with \sQuote{study}). The \code{influence} function calculates the following leave-one-out diagnostics for each case: \itemize{ \item externally standardized residual, \item DFFITS value, \item Cook's distance, \item covariance ratio, \item the leave-one-out amount of (residual) heterogeneity, \item the leave-one-out test statistic of the test for (residual) heterogeneity, \item DFBETAS value(s). } The diagonal elements of the hat matrix and the weights (in \%) given to the observed effect sizes or outcomes during the model fitting are also provided (except for their scaling, the hat values and weights are the same for models without moderators, but will differ when moderators are included). For details on externally standardized residuals, see \code{\link[=rstudent.rma.uni]{rstudent}}. The DFFITS value essentially indicates how many standard deviations the predicted (average) effect or outcome for the \mjeqn{i\text{th}}{ith} case changes after excluding the \mjeqn{i\text{th}}{ith} case from the model fitting. Cook's distance can be interpreted as the Mahalanobis distance between the entire set of predicted values once with the \mjeqn{i\text{th}}{ith} case included and once with the \mjeqn{i\text{th}}{ith} case excluded from the model fitting. The covariance ratio is defined as the determinant of the variance-covariance matrix of the parameter estimates based on the dataset with the \mjeqn{i\text{th}}{ith} case removed divided by the determinant of the variance-covariance matrix of the parameter estimates based on the complete dataset. A value below 1 therefore indicates that removal of the \mjeqn{i\text{th}}{ith} case yields more precise estimates of the model coefficients. The leave-one-out amount of (residual) heterogeneity is the estimated value of \mjseqn{\tau^2} based on the dataset with the \mjeqn{i\text{th}}{ith} case removed. This is always equal to 0 for equal-effects models. Similarly, the leave-one-out test statistic of the test for (residual) heterogeneity is the value of the test statistic of the test for (residual) heterogeneity calculated based on the dataset with the \mjeqn{i\text{th}}{ith} case removed. Finally, the DFBETAS value(s) essentially indicate(s) how many standard deviations the estimated coefficient(s) change(s) after excluding the \mjeqn{i\text{th}}{ith} case from the model fitting. A case may be considered to be \sQuote{influential} if at least one of the following is true: \itemize{ \item The absolute DFFITS value is larger than \mjeqn{3 \times \sqrt{p/(k-p)}}{3*\sqrt(p/(k-p))}, where \mjseqn{p} is the number of model coefficients and \mjseqn{k} the number of cases. \item The lower tail area of a chi-square distribution with \mjseqn{p} degrees of freedom cut off by the Cook's distance is larger than 50\%. \item The hat value is larger than \mjeqn{3 \times (p/k)}{3*(p/k)}. \item Any DFBETAS value is larger than \mjseqn{1}. } Cases which are considered influential with respect to any of these measures are marked with an asterisk. Note that the chosen cut-offs are (somewhat) arbitrary. Substantively informed judgment should always be used when examining the influence of each case on the results. } \value{ An object of class \code{"infl.rma.uni"}, which is a list containing the following components: \item{inf}{an element of class \code{"list.rma"} with the externally standardized residuals, DFFITS values, Cook's distances, covariance ratios, leave-one-out \mjseqn{\tau^2} estimates, leave-one-out (residual) heterogeneity test statistics, hat values, weights, and an indicator whether a case is influential.} \item{dfbs}{an element of class \code{"list.rma"} with the DFBETAS values.} \item{\dots}{some additional elements/values.} The results are printed with \code{print} and plotted with \code{\link[=plot.infl.rma.uni]{plot}}. To format the results as a data frame, one can use the \code{\link[=as.data.frame.list.rma]{as.data.frame}} function. } \note{ Leave-one-out diagnostics are calculated by refitting the model \mjseqn{k} times. Depending on how large \mjseqn{k} is, it may take a few moments to finish the calculations. There are shortcuts for calculating at least some of these values without refitting the model each time, but these are currently not implemented (and may not exist for all of the leave-one-out diagnostics calculated by the function). It may not be possible to fit the model after deletion of the \mjeqn{i\text{th}}{ith} case from the dataset. This will result in \code{NA} values for that case. Certain relationships between the leave-one-out diagnostics and the (internally or externally) standardized residuals (Belsley, Kuh, & Welsch, 1980; Cook & Weisberg, 1982) no longer hold for meta-analytic models. Maybe there are other relationships. These remain to be determined. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). \emph{Regression diagnostics}. New York: Wiley. Cook, R. D., & Weisberg, S. (1982). \emph{Residuals and influence in regression}. London: Chapman and Hall. Hedges, L. V., & Olkin, I. (1985). \emph{Statistical methods for meta-analysis}. San Diego, CA: Academic Press. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219--254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. \emph{Research Synthesis Methods}, \bold{1}(2), 112--125. \verb{https://doi.org/10.1002/jrsm.11} } \seealso{ \code{\link[=plot.infl.rma.uni]{plot}} for a method to plot the outlier and influential case diagnostics. \code{\link[=rstudent.rma.uni]{rstudent}} for externally standardized residuals and \code{\link[=weights.rma.uni]{weights}} for model fitting weights. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### compute the diagnostics inf <- influence(res) inf ### plot the values plot(inf) ### compute Cook's distances, DFBETAS values, and hat values cooks.distance(res) dfbetas(res) hatvalues(res) } \keyword{models} metafor/man/robust.Rd0000644000176200001440000002770414746146216014314 0ustar liggesusers\name{robust} \alias{robust} \alias{robust.rma.uni} \alias{robust.rma.mv} \title{Cluster-Robust Tests and Confidence Intervals for 'rma' Objects} \description{ Function to obtain cluster-robust tests and confidence intervals (also known as robust variance estimation) of the model coefficients for objects of class \code{"rma"}. \loadmathjax } \usage{ robust(x, cluster, \dots) \method{robust}{rma.uni}(x, cluster, adjust=TRUE, clubSandwich=FALSE, digits, \dots) \method{robust}{rma.mv}(x, cluster, adjust=TRUE, clubSandwich=FALSE, digits, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"} or \code{"rma.mv"}.} \item{cluster}{vector to specify the clustering variable to use for constructing the sandwich estimator of the variance-covariance matrix.} \item{adjust}{logical to specify whether a small-sample correction should be applied to the variance-covariance matrix.} \item{clubSandwich}{logical to specify whether the \href{https://cran.r-project.org/package=clubSandwich}{clubSandwich} package should be used to obtain the cluster-robust tests and confidence intervals.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{\dots}{other arguments.} } \details{ The function constructs a cluster-robust estimate of the variance-covariance matrix of the model coefficients based on a sandwich-type estimator and then computes tests and confidence intervals of the model coefficients. This function will often be part of a general workflow for meta-analyses involving complex dependency structures as described \link[=misc-recs]{here}. By default, tests of individual coefficients and confidence intervals are based on a t-distribution with \mjseqn{n-p} degrees of freedom, while the omnibus test uses an F-distribution with \mjseqn{m} and \mjseqn{n-p} degrees of freedom, where \mjseqn{n} is the number of clusters, \mjseqn{p} denotes the total number of model coefficients (including the intercept if it is present), and \mjseqn{m} denotes the number of coefficients tested by the omnibus test. This is sometimes called the \sQuote{residual} method for approximating the (denominator) degrees of freedom. When \code{adjust=TRUE} (the default), the cluster-robust estimate of the variance-covariance matrix is multiplied by the factor \mjseqn{n/(n-p)}, which serves as a small-sample adjustment that tends to improve the performance of the method when the number of clusters is small. This is sometimes called the \sQuote{CR1} adjustment/estimator (in contrast to \sQuote{CR0} when \code{adjust=FALSE}). For an even better small-sample adjustment, one can set \code{clubSandwich=TRUE} in which case the \href{https://cran.r-project.org/package=clubSandwich}{clubSandwich} package is used to obtain the cluster-robust tests and confidence intervals. The variance-covariance matrix of the model coefficients is then estimated using the \sQuote{bias-reduced linearization} adjustment proposed by Bell and McCaffrey (2002) and further developed in Tipton (2015) and Pustejovsky and Tipton (2018). This is sometimes called the \sQuote{CR2} adjustment/estimator. The degrees of freedom of the t-tests are then estimated using a Satterthwaite approximation. F-tests are then based on an approximate Hotelling's T-squared reference distribution, with denominator degrees of freedom estimated using a method by Zhang (2012, 2013), as further described in Tipton and Pustejovky (2015). } \value{ An object of class \code{"robust.rma"}. The object is a list containing the following components: \item{beta}{estimated coefficients of the model.} \item{se}{robust standard errors of the coefficients.} \item{zval}{test statistics of the coefficients.} \item{pval}{corresponding p-values.} \item{ci.lb}{lower bound of the confidence intervals for the coefficients.} \item{ci.ub}{upper bound of the confidence intervals for the coefficients.} \item{vb}{robust variance-covariance matrix of the estimated coefficients.} \item{QM}{test statistic of the omnibus test of moderators.} \item{QMp}{corresponding p-value.} \item{\dots}{some additional elements/values.} The results are formatted and printed with the \code{\link{print.rma.uni}} and \code{\link{print.rma.mv}} functions (depending on the type of model). Predicted/fitted values based on \code{"robust.rma"} objects can be obtained with the \code{\link[=predict.rma]{predict}} function. Tests for sets of model coefficients or linear combinations thereof can be obtained with the \code{\link[=anova.rma]{anova}} function. } \note{ The variable specified via \code{cluster} is assumed to be of the same length as the data originally passed to the \code{rma.uni} or \code{rma.mv} functions (and if the \code{data} argument was used in the original model fit, then the variable will be searched for within this data frame first). Any subsetting and removal of studies with missing values that was applied during the model fitting is also automatically applied to the variable specified via the \code{cluster} argument. The idea of the robust (sandwich-type) estimator for models with unspecified heteroscedasticity can be traced back to Eicker (1967), Huber (1967), and White (1980, 1984). Hence, the method in general is often referred to as the Eicker-Huber-White method. Some small-sample improvements to the method are described by MacKinnon and White (1985). The extension to the cluster-robust estimator can be found in Froot (1989) and Williams (2000), which is also related to the GEE approach by Liang and Zeger (1986). Cameron and Miller (2015) provide an extensive overview of cluster-robust methods. Sidik and Jonkman (2005, 2006) introduced robust methods in the meta-analytic context for standard random/mixed-effects models. The use of cluster-robust methods for multivariate/multilevel meta-analytic models was introduced by Hedges, Tipton, and Johnson (2010). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Bell, R. M., & McCaffry, D. F. (2002). Bias reduction in standard errors for linear regression with multi-stage samples. \emph{Survey Methodology}, \bold{28}(2), 169--181. \verb{https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X20020029058} Cameron, A. C., & Miller, D. L. (2015). A practitioner's guide to cluster-robust inference. \emph{Journal of Human Resources}, \bold{50}(2), 317--372. \verb{https://doi.org/10.3368/jhr.50.2.317} Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. In L. M. LeCam & J. Neyman (Eds.), \emph{Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability} (pp. 59--82). Berkeley: University of California Press. Froot, K. A. (1989). Consistent covariance matrix estimation with cross-sectional dependence and heteroskedasticity in financial data. \emph{Journal of Financial and Quantitative Analysis}, \bold{24}(3), 333--355. \verb{https://doi.org/10.2307/2330815} Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. \emph{Research Synthesis Methods}, \bold{1}(1), 39--65. \verb{https://doi.org/10.1002/jrsm.5} Huber, P. (1967). The behavior of maximum-likelihood estimates under nonstandard conditions. In L. M. LeCam & J. Neyman (Eds.), \emph{Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability} (pp. 221--233). University of California Press. Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. \emph{Biometrika}, \bold{73}(1), 13--22. \verb{https://doi.org/10.1093/biomet/73.1.13} MacKinnon, J. G., & White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. \emph{Journal of Econometrics}, \bold{29}(3), 305--325. \verb{https://doi.org/10.1016/0304-4076(85)90158-7} Tipton, E. (2015). Small sample adjustments for robust variance estimation with meta-regression. \emph{Psychological Methods}, \bold{20}(3), 375--393. \verb{https://doi.org/10.1037/met0000011} Tipton, E., & Pustejovsky, J. E. (2015). Small-sample adjustments for tests of moderators and model fit using robust variance estimation in meta-regression. \emph{Journal of Educational and Behavioral Statistics}, \bold{40}(6), 604--634. \verb{https://doi.org/10.3102/1076998615606099} Sidik, K., & Jonkman, J. N. (2005). A note on variance estimation in random effects meta-regression. \emph{Journal of Biopharmaceutical Statistics}, \bold{15}(5), 823--838. \verb{https://doi.org/10.1081/BIP-200067915} Sidik, K., & Jonkman, J. N. (2006). Robust variance estimation for random effects meta-analysis. \emph{Computational Statistics & Data Analysis}, \bold{50}(12), 3681--3701. \verb{https://doi.org/10.1016/j.csda.2005.07.019} White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. \emph{Econometrica}, \bold{48}(4), 817--838. \verb{https://doi.org/10.2307/1912934} White, H. (1984). \emph{Asymptotic theory for econometricians}. Orlando, FL: Academic Press. Williams, R. L. (2000). A note on robust variance estimation for cluster-correlated data. \emph{Biometrics}, \bold{56}(2), 645--646. \verb{https://doi.org/10.1111/j.0006-341x.2000.00645.x} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Zhang, J.-T. (2012). An approximate Hotelling T2-test for heteroscedastic one-way MANOVA. \emph{Open Journal of Statistics}, \bold{2}(1), 1--11. \verb{https://doi.org/10.4236/ojs.2012.21001} Zhang, J.-T. (2013). Tests of linear hypotheses in the ANOVA under heteroscedasticity. \emph{International Journal of Advanced Statistics and Probability}, \bold{1}, 9--24. \verb{https://doi.org/10.14419/ijasp.v1i2.908} } \seealso{ \code{\link{rma.uni}} and \code{\link{rma.mv}} for functions to fit models for which cluster-robust tests and confidence intervals can be obtained. } \examples{ ############################################################################ ### copy data from Bangert-Drowns et al. (2004) into 'dat' dat <- dat.bangertdrowns2004 ### fit random-effects model res <- rma(yi, vi, data=dat) res ### use cluster-robust inference methods robust(res, cluster=id) ### use methods from the clubSandwich package robust(res, cluster=id, clubSandwich=TRUE) ### fit meta-regression model res <- rma(yi, vi, mods = ~ length, data=dat) res ### use cluster-robust inference methods robust(res, cluster=id) ### use methods from the clubSandwich package robust(res, cluster=id, clubSandwich=TRUE) ############################################################################ ### copy data from Konstantopoulos (2011) into 'dat' dat <- dat.konstantopoulos2011 ### fit multilevel random-effects model res <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat) res ### use cluster-robust inference methods robust(res, cluster=district) ### use methods from the clubSandwich package robust(res, cluster=district, clubSandwich=TRUE) ############################################################################ ### copy data from Berkey et al. (1998) into 'dat' dat <- dat.berkey1998 ### variables v1i and v2i correspond to the 2x2 var-cov matrices of the studies; ### so use these variables to construct the V matrix (note: since v1i and v2i are ### var-cov matrices and not correlation matrices, set vi=1 for all rows) V <- vcalc(vi=1, cluster=author, rvars=c(v1i, v2i), data=dat) ### fit multivariate model res <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat) res ### use cluster-robust inference methods robust(res, cluster=trial) ### use methods from the clubSandwich package robust(res, cluster=trial, clubSandwich=TRUE) ############################################################################ } \keyword{htest} metafor/man/ranktest.Rd0000644000176200001440000000740114746146216014621 0ustar liggesusers\name{ranktest} \alias{ranktest} \title{Rank Correlation Test for Funnel Plot Asymmetry} \description{ Function to carry out the rank correlation test for funnel plot asymmetry. } \usage{ ranktest(x, vi, sei, subset, data, digits, \dots) } \arguments{ \item{x}{a vector with the observed effect sizes or outcomes or an object of class \code{"rma"}.} \item{vi}{vector with the corresponding sampling variances (ignored if \code{x} is an object of class \code{"rma"}).} \item{sei}{vector with the corresponding standard errors (note: only one of the two, \code{vi} or \code{sei}, needs to be specified).} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be included in the test (ignored if \code{x} is an object of class \code{"rma"}).} \item{data}{optional data frame containing the variables given to the arguments above.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded.} \item{\dots}{other arguments.} } \details{ The function carries out the rank correlation test as described by Begg and Mazumdar (1994). The test can be used to examine whether the observed effect sizes or outcomes and the corresponding sampling variances are correlated. A high correlation would indicate that the funnel plot is asymmetric, which may be a result of publication bias. One can either pass a vector with the observed effect sizes or outcomes (via \code{x}) and the corresponding sampling variances via \code{vi} (or the standard errors via \code{sei}) to the function or an object of class \code{"rma"}. When passing a model object, the model must be a model without moderators (i.e., either an equal- or a random-effects model). } \value{ An object of class \code{"ranktest"}. The object is a list containing the following components: \item{tau}{the estimated value of Kendall's tau rank correlation coefficient.} \item{pval}{the corresponding p-value for the test that the true tau value is equal to zero.} The results are formatted and printed with the \code{\link[=print.ranktest]{print}} function. } \note{ The method does not depend on the model fitted. Therefore, regardless of the model passed to the function, the results of the rank test will always be the same. See \code{\link{regtest}} for tests of funnel plot asymmetry that are based on regression models and model dependent. The function makes use of the \code{\link{cor.test}} function with \code{method="kendall"}. If possible, an exact p-value is provided; otherwise, a large-sample approximation is used. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. \emph{Biometrics}, \bold{50}(4), 1088--1101. \verb{https://doi.org/10.2307/2533446} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{regtest}} for the regression test, \code{\link{trimfill}} for the trim and fill method, \code{\link{tes}} for the test of excess significance, \code{\link{fsn}} to compute the fail-safe N (file drawer analysis), and \code{\link{selmodel}} for selection models. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects model res <- rma(yi, vi, data=dat) ### carry out the rank correlation test ranktest(res) ### can also pass the observed outcomes and corresponding sampling variances to the function ranktest(yi, vi, data=dat) } \keyword{htest} metafor/man/print.confint.rma.Rd0000644000176200001440000000271014746146216016335 0ustar liggesusers\name{print.confint.rma} \alias{print.confint.rma} \alias{print.list.confint.rma} \title{Print Methods for 'confint.rma' and 'list.confint.rma' Objects} \description{ Functions to print objects of class \code{"confint.rma"} and \code{"list.confint.rma"}. } \usage{ \method{print}{confint.rma}(x, digits=x$digits, \dots) \method{print}{list.confint.rma}(x, digits=x$digits, \dots) } \arguments{ \item{x}{an object of class \code{"confint.rma"} or \code{"list.confint.rma"} obtained with \code{\link[=confint.rma.uni]{confint}}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{\dots}{other arguments.} } \details{ The output includes: \itemize{ \item estimate of the model coefficient or variance/correlation parameter \item lower bound of the confidence interval \item upper bound of the confidence interval } } \value{ The function does not return an object. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=confint.rma]{confint}} for the functions to create \code{confint.rma} and \code{list.confint.rma} objects. } \keyword{print} metafor/man/formatters.Rd0000644000176200001440000001433114746146216015154 0ustar liggesusers\name{formatters} \alias{formatters} \alias{fmtp} \alias{fmtp2} \alias{fmtx} \alias{fmtt} \title{Formatter Functions} \description{ Functions to format various types of outputs. \loadmathjax } \usage{ fmtp(p, digits=4, pname="", equal=FALSE, sep=FALSE, add0=FALSE, quote=FALSE) fmtp2(p, cutoff=c(0.001,0.06), pname="p", sep=TRUE, add0=FALSE, quote=FALSE) fmtx(x, digits=4, flag="", quote=FALSE, \dots) fmtt(val, tname, df, df1, df2, pval, digits=4, pname="p-val", format=1, sep=TRUE, quote=FALSE, call=FALSE, \dots) } \arguments{ \emph{Arguments for \code{fmtp} and \code{fmtp2}:} \item{p}{vector of p-values to be formatted.} \item{digits}{integer to specify the number of decimal places to which the values should be rounded. For \code{fmmt}, can be a vector of length 2, to specify the number of digits for the test statistic and the p-value, respectively.} \item{pname}{string to add as a prefix to the p-value (e.g., something like \code{"p-val"} or \code{"p"}).} \item{equal}{logical to specify whether an equal symbol should be shown before the p-value (when it is larger than the rounding cutoff).} \item{sep}{logical to specify whether a space should be added between \code{pname}, the equal/lesser symbol, and the p-value.} \item{add0}{logical to specify whether a 0 should be shown before the decimal point (for \code{fmtp}, this only applies when the p-value is below the rounding cutoff).} \item{quote}{logical to specify whether formatted strings should be quoted when printed.} \item{cutoff}{numeric vector giving the cutoff values.} \emph{Arguments specific for \code{fmtx}:} \item{x}{vector of numeric values to be formatted.} \item{flag}{a character string giving a format modifier as defined for \code{\link{formatC}}.} \emph{Arguments specific for \code{fmtt}:} \item{val}{test statistic value to be formatted.} \item{tname}{character string for the name of the test statistic.} \item{df}{optional value for the degrees of freedom of the test statistic.} \item{df1}{optional value for the numerator degrees of freedom of the test statistic.} \item{df2}{optional value for the denominator degrees of freedom of the test statistic.} \item{pval}{the p-value corresponding to the test statistic.} \item{format}{either \code{1} or \code{2} to denote whether the degrees of freedom should be given before the test statistic (in parentheses) or after the test statistic.} \item{call}{logical to specify whether the formatted test result should be returned as a call or not.} \item{\dots}{other arguments.} } \details{ The \code{fmtp} function takes one or multiple p-values as input and rounds them to the chosen number of digits. For p-values that are smaller than \code{10^(-digits)} (e.g., \code{0.0001} for \code{digits=4}), the value is shown to fall below this bound (e.g., \code{<.0001}). One can further customize the way the output of the values is formatted via the \code{pname}, \code{equal}, \code{sep}, \code{add0}, and \code{quote} arguments. The \code{fmtp2} function is an alternative function to format p-values, which yields output that essentially matches APA style guidelines. Values that fall below the first cutoff are printed as such (e.g., a p-value of .00002 would be printed as \code{p < .001}), values that fall in between the first and second cutoff are printed as exact p-values with the number of digits determined by the first cutoff (e.g., a p-value of .01723 would be printed as \code{p = .017}), and values falling above the second cutoff are printed as exact p-values with the number of digits determined by the second cutoff (e.g., a p-value of .08432 would be printed as \code{p = .08}). Note that the second cutoff is by default \code{.06} to show that p-values in the range of .051 and .054 are above .05. The \code{fmtx} function takes one or multiple numeric values as input and rounds them to the chosen number of digits, without using scientific notation and without dropping trailing zeros (using \code{\link{formatC}}). The \code{fmtt} function takes a single test statistic value as input (and, if applicable, its degrees of freedom via argument \code{df} or its numerator and denominator degrees of freedom via arguments \code{df1} and \code{df2}) and the corresponding p-value and formats it for printing. Two different formats are available (chosen via the \code{format} argument), one giving the degrees of freedom before the test statistic (in parentheses) and one after the test statistic. } \value{ A character vector with the formatted values. By default (i.e., when \code{quote=FALSE}), formatted strings are not quoted when printed. } \note{ The option in \code{fmtt} to return the formatted test result as a call can be useful when adding the output to a plot with \code{\link{text}} and one would like to use \code{\link{plotmath}} formatting for \code{tname}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ # examples for fmtp() fmtp(c(.0002, .00008), quote=TRUE, digits=4) fmtp(c(.0002, .00008), quote=TRUE, digits=4, equal=TRUE) fmtp(c(.0002, .00008), quote=TRUE, digits=4, equal=TRUE, sep=TRUE) fmtp(c(.0002, .00008), quote=TRUE, digits=4, equal=TRUE, sep=TRUE, add0=TRUE) # example for fmtp2() fmtp2(c(.0005, .001, .002, .0423, .0543, .0578, .0623, .5329), quote=TRUE) # examples for fmtx() fmtx(c(1.0002, 2.00008, 3.00004), digits=4) fmtx(c(-1, 1), digits=4) fmtx(c(-1, 1), digits=4, flag=" ") # examples for fmtt() fmtt(2.45, "z", pval=0.01429, digits=2) fmtt(3.45, "z", pval=0.00056, digits=2) fmtt(2.45, "t", df=23, pval=0.02232, digits=2) fmtt(3.45, "t", df=23, pval=0.00218, digits=2) fmtt(3.45, "t", df=23, pval=0.00218, digits=2, format=2) fmtt(46.23, "Q", df=29, pval=0.0226, digits=2) fmtt(46.23, "Q", df=29, pval=0.0226, digits=2, format=2) fmtt(8.75, "F", df1=2, df2=35, pval=0.00083, digits=c(2,3)) fmtt(8.75, "F", df1=2, df2=35, pval=0.00083, digits=c(2,3), format=2, pname="p") fmtt(8.75, "F", df1=2, df2=35, pval=0.00083, digits=c(2,3), format=2, pname="p", sep=FALSE) } \keyword{manip} metafor/man/confint.rma.Rd0000644000176200001440000004377414746146216015221 0ustar liggesusers\name{confint.rma} \alias{confint} \alias{confint.rma} \alias{confint.rma.uni} \alias{confint.rma.mh} \alias{confint.rma.peto} \alias{confint.rma.glmm} \alias{confint.rma.mv} \alias{confint.rma.uni.selmodel} \alias{confint.rma.ls} \title{Confidence Intervals for 'rma' Objects} \description{ Functions to compute confidence intervals for the model coefficients, variance components, and other parameters in meta-analytic models. \loadmathjax } \usage{ \method{confint}{rma.uni}(object, parm, level, fixed=FALSE, random=TRUE, type, digits, transf, targs, verbose=FALSE, control, \dots) \method{confint}{rma.mh}(object, parm, level, digits, transf, targs, \dots) \method{confint}{rma.peto}(object, parm, level, digits, transf, targs, \dots) \method{confint}{rma.glmm}(object, parm, level, digits, transf, targs, \dots) \method{confint}{rma.mv}(object, parm, level, fixed=FALSE, sigma2, tau2, rho, gamma2, phi, digits, transf, targs, verbose=FALSE, control, \dots) \method{confint}{rma.uni.selmodel}(object, parm, level, fixed=FALSE, tau2, delta, digits, transf, targs, verbose=FALSE, control, \dots) \method{confint}{rma.ls}(object, parm, level, fixed=FALSE, alpha, digits, transf, targs, verbose=FALSE, control, \dots) } \arguments{ \item{object}{an object of class \code{"rma.uni"}, \code{"rma.mh"}, \code{"rma.peto"}, \code{"rma.mv"}, \code{"rma.uni.selmodel"}, or \code{"rma.ls"}. The method is not (yet) implemented for objects of class \code{"rma.glmm"}.} \item{parm}{this argument is here for compatibility with the generic function \code{\link{confint}}, but is (currently) ignored.} \item{fixed}{logical to specify whether confidence intervals for the model coefficients should be returned.} \item{random}{logical to specify whether a confidence interval for the amount of (residual) heterogeneity should be returned.} \item{type}{optional character string to specify the method for computing the confidence interval for the amount of (residual) heterogeneity (either \code{"QP"}, \code{"GENQ"}, \code{"PL"}, or \code{"HT"}).} \item{sigma2}{integer to specify for which \mjseqn{\sigma^2} parameter a confidence interval should be obtained.} \item{tau2}{integer to specify for which \mjseqn{\tau^2} parameter a confidence interval should be obtained.} \item{rho}{integer to specify for which \mjseqn{\rho} parameter the confidence interval should be obtained.} \item{gamma2}{integer to specify for which \mjseqn{\gamma^2} parameter a confidence interval should be obtained.} \item{phi}{integer to specify for which \mjseqn{\phi} parameter a confidence interval should be obtained.} \item{delta}{integer to specify for which \mjseqn{\delta} parameter a confidence interval should be obtained.} \item{alpha}{integer to specify for which \mjseqn{\alpha} parameter a confidence interval should be obtained.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (see \link[=misc-options]{here} for details). If unspecified, the default is to take the value from the object.} \item{digits}{optional integer to specify the number of decimal places to which the results should be rounded. If unspecified, the default is to take the value from the object.} \item{transf}{optional argument to specify a function to transform the model coefficients and interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified under \code{transf}.} \item{verbose}{logical to specify whether output should be generated on the progress of the iterative algorithms used to obtain the confidence intervals (the default is \code{FALSE}). See \sQuote{Details}.} \item{control}{list of control values for the iterative algorithms. If unspecified, default values are used. See \sQuote{Note}.} \item{\dots}{other arguments.} } \details{ Confidence intervals for the model coefficients can be obtained by setting \code{fixed=TRUE} and are simply the usual Wald-type intervals (which are also shown when printing the fitted object). Other parameter(s) for which confidence intervals can be obtained depend on the model object: \itemize{ \item For objects of class \code{"rma.uni"} obtained with the \code{\link{rma.uni}} function, a confidence interval for the amount of (residual) heterogeneity (i.e., \mjseqn{\tau^2}) can be obtained by setting \code{random=TRUE} (which is the default). The interval is obtained iteratively either via the Q-profile method or via the generalized Q-statistic method (Hartung and Knapp, 2005; Viechtbauer, 2007; Jackson, 2013; Jackson et al., 2014). The latter is automatically used when the model was fitted with \code{method="GENQ"} or \code{method="GENQM"}, the former is used in all other cases. Either method provides an exact confidence interval for \mjseqn{\tau^2} in random- and mixed-effects models. The square root of the interval bounds is also returned for easier interpretation. Confidence intervals for \mjseqn{I^2} and \mjseqn{H^2} are also provided (Higgins & Thompson, 2002). Since \mjseqn{I^2} and \mjseqn{H^2} are monotonic transformations of \mjseqn{\tau^2} (for details, see \code{\link[=print.rma.uni]{print}}), the confidence intervals for \mjseqn{I^2} and \mjseqn{H^2} are also exact. One can also set \code{type="PL"} to obtain a profile likelihood confidence interval for \mjseqn{\tau^2} (and corresponding CIs for \mjseqn{I^2} and \mjseqn{H^2}), which would be more consistent with the use of ML/REML estimation, but is not exact (see \sQuote{Note}). For models without moderators (i.e., random-effects models), one can also set \code{type="HT"}, in which case the \sQuote{test-based method} (method III in Higgins & Thompson, 2002) is used to construct confidence intervals for \mjseqn{\tau^2}, \mjseqn{I^2}, and \mjseqn{H^2} (see also Borenstein et al., 2009, chapter 16). However, note that this method tends to yield confidence intervals that are too narrow when the amount of heterogeneity is large. \item For objects of class \code{"rma.mv"} obtained with the \code{\link{rma.mv}} function, confidence intervals are obtained by default for all variance and correlation components of the model. Alternatively, one can use the \code{sigma2}, \code{tau2}, \code{rho}, \code{gamma2}, or \code{phi} arguments to specify for which variance/correlation parameter a confidence interval should be obtained. Only one of these arguments can be used at a time. A single integer is used to specify the number of the parameter. The function provides profile likelihood confidence intervals for these parameters. It is a good idea to examine the corresponding profile likelihood plots (via the \code{\link[=profile.rma.mv]{profile}} function) to make sure that the bounds obtained are sensible. \item For selection model objects of class \code{"rma.uni.selmodel"} obtained with the \code{\link{selmodel}} function, confidence intervals are obtained by default for \mjseqn{\tau^2} (for models where this is an estimated parameter) and all selection model parameters. Alternatively, one can choose to obtain a confidence interval only for \mjseqn{\tau^2} by setting \code{tau2=TRUE} or for one of the selection model parameters by specifying its number via the \code{delta} argument. The function provides profile likelihood confidence intervals for these parameters. It is a good idea to examine the corresponding profile likelihood plots (via the \code{\link[=profile.rma.uni.selmodel]{profile}} function) to make sure that the bounds obtained are sensible. \item For location-scale model objects of class \code{"rma.ls"} obtained with the \code{\link{rma.uni}} function, confidence intervals are obtained by default for all scale parameters. Alternatively, one can choose to obtain a confidence interval for one of the scale parameters by specifying its number via the \code{alpha} argument. The function provides profile likelihood confidence intervals for these parameters. It is a good idea to examine the corresponding profile likelihood plots (via the \code{\link[=profile.rma.ls]{profile}} function) to make sure that the bounds obtained are sensible. } The methods used to find confidence intervals for these parameters are iterative and require the use of the \code{\link{uniroot}} function. By default, the desired accuracy (\code{tol}) is set equal to \code{.Machine$double.eps^0.25} and the maximum number of iterations (\code{maxiter}) to \code{1000}. These values can be adjusted with \code{control=list(tol=value, maxiter=value)}, but the defaults should be adequate for most purposes. If \code{verbose=TRUE}, output is generated on the progress of the iterative algorithms. This is especially useful when model fitting is slow, in which case finding the confidence interval bounds can also take considerable amounts of time. When using the \code{\link{uniroot}} function, one must also set appropriate end points of the interval to be searched for the confidence interval bounds. The function sets some sensible defaults for the end points, but it may happen that the function is only able to determine that a bound is below/above a certain limit (this is indicated in the output accordingly with \code{<} or \code{>} signs). It can also happen that the model cannot be fitted or does not converge especially at the extremes of the interval to be searched. This will result in missing (\code{NA}) bounds and corresponding warnings. It may then be necessary to adjust the end points manually (see \sQuote{Note}). Finally, it is also possible that the lower and upper confidence interval bounds for a variance component both fall below zero. Since both bounds then fall outside of the parameter space, the confidence interval then consists of the null/empty set. Alternatively, one could interpret this as a confidence interval with bounds \mjseqn{[0,0]} or as indicating \sQuote{highly/overly homogeneous} data. } \value{ An object of class \code{"confint.rma"}. The object is a list with either one or two elements (named \code{fixed} and \code{random}) with the following elements: \item{estimate}{estimate of the model coefficient, variance/correlation component, or selection model parameter.} \item{ci.lb}{lower bound of the confidence interval.} \item{ci.ub}{upper bound of the confidence interval.} When obtaining confidence intervals for multiple components, the object is a list of class \code{"list.confint.rma"}, where each element is a \code{"confint.rma"} object as described above. The results are formatted and printed with the \code{\link[=print.confint.rma]{print}} function. To format the results as a data frame, one can use the \code{\link[=as.data.frame.confint.rma]{as.data.frame}} function. } \note{ When computing a CI for \mjseqn{\tau^2} for objects of class \code{"rma.uni"}, the estimate of \mjseqn{\tau^2} will usually fall within the CI bounds provided by the Q-profile method. However, this is not guaranteed. Depending on the method used to estimate \mjseqn{\tau^2} and the width of the CI, it can happen that the CI does not actually contain the estimate. Using the empirical Bayes or Paule-Mandel estimator of \mjseqn{\tau^2} when fitting the model (i.e., using \code{method="EB"} or \code{method="PM"}) usually ensures that the estimate of \mjseqn{\tau^2} falls within the CI (for \code{method="PMM"}, this is guaranteed). When \code{method="GENQ"} was used to fit the model, the corresponding CI obtained via the generalized Q-statistic method also usually contains the estimate \mjseqn{\tau^2} (for \code{method="GENQM"}, this is guaranteed). When using ML/REML estimation, the profile likelihood CI (obtained when setting \code{type="PL"}) is guaranteed to contain the estimate of \mjseqn{\tau^2}. When computing a CI for \mjseqn{\tau^2} for objects of class \code{"rma.uni"}, the end points of the interval to be searched for the CI bounds are \mjseqn{[0,100]} (or, for the upper bound, ten times the estimate of \mjseqn{\tau^2}, whichever is greater). The upper bound should be large enough for most cases, but can be adjusted with \code{control=list(tau2.max=value)}. One can also adjust the lower end point with \code{control=list(tau2.min=value)}. You should only play around with this value if you know what you are doing. For objects of class \code{"rma.mv"}, the function provides profile likelihood CIs for the variance/correlation parameters in the model. For variance components, the lower end point of the interval to be searched is set to 0 and the upper end point to the larger of 10 and 100 times the value of the component. For correlations, the function sets the lower end point to a sensible default depending on the type of variance structure chosen, while the upper end point is set to 1. One can adjust the lower and/or upper end points with \code{control=list(vc.min=value, vc.max=value)}. Also, the function adjusts the lower/upper end points when the model does not converge at these extremes (the end points are then moved closer to the estimated value of the component). The total number of tries for setting/adjusting the end points in this manner is determined via \code{control=list(eptries=value)}, with the default being 10 tries. For objects of class \code{"rma.uni.selmodel"} or \code{"rma.ls"}, the function also sets some sensible defaults for the end points of the interval to be searched for the CI bounds (of the \mjseqn{\tau^2}, \mjseqn{\delta}, and \mjseqn{\alpha} parameter(s)). One can again adjust the end points and the number of retries (as described above) with \code{control=list(vc.min=value, vc.max=value, eptries=value)}. The Q-profile and generalized Q-statistic methods are both exact under the assumptions of the random- and mixed-effects models (i.e., normally distributed observed and true effect sizes or outcomes and known sampling variances). In practice, these assumptions are usually only approximately true, turning CIs for \mjseqn{\tau^2} also into approximations. Profile likelihood CIs are not exact by construction and rely on the asymptotic behavior of the likelihood ratio statistic, so they may be inaccurate in small samples, but they are inherently consistent with the use of ML/REML estimation. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. (2009). \emph{Introduction to meta-analysis}. Chichester, UK: Wiley. Hardy, R. J., & Thompson, S. G. (1996). A likelihood approach to meta-analysis with random effects. \emph{Statistics in Medicine}, \bold{15}(6), 619--629. \verb{https://doi.org/10.1002/(sici)1097-0258(19960330)15:6\%3C619::aid-sim188\%3E3.0.co;2-a} Hartung, J., & Knapp, G. (2005). On confidence intervals for the among-group variance in the one-way random effects model with unequal error variances. \emph{Journal of Statistical Planning and Inference}, \bold{127}(1-2), 157--177. \verb{https://doi.org/10.1016/j.jspi.2003.09.032} Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. \emph{Statistics in Medicine}, \bold{21}(11), 1539--1558. \verb{https://doi.org/10.1002/sim.1186} Jackson, D. (2013). Confidence intervals for the between-study variance in random effects meta-analysis using generalised Cochran heterogeneity statistics. \emph{Research Synthesis Methods}, \bold{4}(3), 220--229. \verb{https://doi.org/10.1186/s12874-016-0219-y} Jackson, D., Turner, R., Rhodes, K., & Viechtbauer, W. (2014). Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models. \emph{BMC Medical Research Methodology}, \bold{14}, 103. \verb{https://doi.org/10.1186/1471-2288-14-103} Viechtbauer, W. (2007). Confidence intervals for the amount of heterogeneity in meta-analysis. \emph{Statistics in Medicine}, \bold{26}(1), 37--52. \verb{https://doi.org/10.1002/sim.2514} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W., & \enc{López-López}{Lopez-Lopez}, J. A. (2022). Location-scale models for meta-analysis. \emph{Research Synthesis Methods}. \bold{13}(6), 697--715. \verb{https://doi.org/10.1002/jrsm.1562} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, \code{\link{rma.mv}}, and \code{\link[=selmodel.rma.uni]{selmodel}} for functions to fit models for which confidence intervals can be computed. \code{\link[=profile.rma]{profile}} for functions to create profile likelihood plots corresponding to profile likelihood confidence intervals. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### meta-analysis of the log risk ratios using a random-effects model res <- rma(yi, vi, data=dat, method="REML") ### confidence interval for the total amount of heterogeneity confint(res) ### mixed-effects model with absolute latitude in the model res <- rma(yi, vi, mods = ~ ablat, data=dat) ### confidence interval for the residual amount of heterogeneity confint(res) ### multilevel random-effects model res <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat.konstantopoulos2011) ### profile plots and confidence intervals for the variance components \dontrun{ par(mfrow=c(2,1)) profile(res, sigma2=1, steps=40, cline=TRUE) sav <- confint(res, sigma2=1) sav abline(v=sav$random[1,2:3], lty="dotted") profile(res, sigma2=2, steps=40, cline=TRUE) sav <- confint(res, sigma2=2) sav abline(v=sav$random[1,2:3], lty="dotted") } ### multivariate parameterization of the model res <- rma.mv(yi, vi, random = ~ school | district, data=dat.konstantopoulos2011) ### profile plots and confidence intervals for the variance component and correlation \dontrun{ par(mfrow=c(2,1)) profile(res, tau2=1, steps=40, cline=TRUE) sav <- confint(res, tau2=1) sav abline(v=sav$random[1,2:3], lty="dotted") profile(res, rho=1, steps=40, cline=TRUE) sav <- confint(res, rho=1) sav abline(v=sav$random[1,2:3], lty="dotted") } } \keyword{models} metafor/man/print.gosh.rma.Rd0000644000176200001440000000242114746146216015634 0ustar liggesusers\name{print.gosh.rma} \alias{print.gosh.rma} \title{Print Method for 'gosh.rma' Objects} \description{ Function to print objects of class \code{"gosh.rma"}. } \usage{ \method{print}{gosh.rma}(x, digits=x$digits, \dots) } \arguments{ \item{x}{an object of class \code{"gosh.rma"} obtained with \code{\link{gosh}}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{\dots}{other arguments.} } \details{ The output shows how many model fits were attempted, how many succeeded, and summary statistics (i.e., the mean, minimum, first quartile, median, third quartile, and maximum) for the various measures of (residual) heterogeneity and the model coefficient(s) computed across all of the subsets. } \value{ The function does not return an object. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{gosh}} for the function to create \code{gosh.rma} objects. } \keyword{print} metafor/man/funnel.Rd0000644000176200001440000004305514746146216014262 0ustar liggesusers\name{funnel} \alias{funnel} \alias{funnel.rma} \alias{funnel.default} \title{Funnel Plots} \description{ Function to create funnel plots. \loadmathjax } \usage{ funnel(x, \dots) \method{funnel}{rma}(x, yaxis="sei", xlim, ylim, xlab, ylab, slab, steps=5, at, atransf, targs, digits, level=x$level, addtau2=FALSE, type="rstandard", back, shade, hlines, refline, lty=3, pch, pch.fill, col, bg, label=FALSE, offset=0.4, legend=FALSE, \dots) \method{funnel}{default}(x, vi, sei, ni, subset, yaxis="sei", xlim, ylim, xlab, ylab, slab, steps=5, at, atransf, targs, digits, level=95, back, shade, hlines, refline=0, lty=3, pch, col, bg, label=FALSE, offset=0.4, legend=FALSE, \dots) } \arguments{ \item{x}{an object of class \code{"rma"} or a vector with the observed effect sizes or outcomes.} \item{vi}{vector with the corresponding sampling variances (needed if \code{x} is a vector with the observed effect sizes or outcomes).} \item{sei}{vector with the corresponding standard errors (note: only one of the two, \code{vi} or \code{sei}, needs to be specified).} \item{ni}{vector with the corresponding sample sizes. Only relevant when passing a vector via \code{x}.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be included in the plot. Only relevant when passing a vector via \code{x}.} \item{yaxis}{either \code{"sei"}, \code{"vi"}, \code{"seinv"}, \code{"vinv"}, \code{"ni"}, \code{"ninv"}, \code{"sqrtni"}, \code{"sqrtninv"}, \code{"lni"}, or \code{"wi"} to specify what values should be placed on the y-axis. See \sQuote{Details}.} \item{xlim}{x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{ylim}{y-axis limits. If unspecified, the function sets the y-axis limits to some sensible values.} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title.} \item{ylab}{title for the y-axis. If unspecified, the function sets an appropriate axis title.} \item{slab}{optional vector with labels for the \mjseqn{k} studies. If unspecified, the function tries to extract study labels from \code{x}.} \item{steps}{the number of tick marks for the y-axis (the default is 5).} \item{at}{position of the x-axis tick marks and corresponding labels. If unspecified, the function sets the tick mark positions/labels to some sensible values.} \item{atransf}{optional argument to specify a function to transform the x-axis labels (e.g., \code{atransf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified via \code{atransf}.} \item{digits}{optional integer to specify the number of decimal places to which the tick mark labels of the x- and y-axis should be rounded. Can also be a vector of two integers, the first to specify the number of decimal places for the x-axis, the second for the y-axis labels (e.g., \code{digits=c(2,3)}). If unspecified, the function tries to set the argument to some sensible values.} \item{level}{numeric value between 0 and 100 to specify the level of the pseudo confidence interval region (see \link[=misc-options]{here} for details). For \code{"rma"} objects, the default is to take the value from the object. May also be a vector of values to obtain multiple regions. See \sQuote{Examples}.} \item{addtau2}{logical to specify whether the amount of heterogeneity should be accounted for when drawing the pseudo confidence interval region (the default is \code{FALSE}). Ignored when \code{x} is a meta-regression model and residuals are plotted. See \sQuote{Details}.} \item{type}{either \code{"rstandard"} (default) or \code{"rstudent"} to specify whether the usual or deleted residuals should be used in creating the funnel plot when \code{x} is a meta-regression model. See \sQuote{Details}.} \item{back}{optional character string to specify the color of the plotting region background.} \item{shade}{optional character string to specify the color of the pseudo confidence interval region. When \code{level} is a vector of values, different shading colors can be specified for each region.} \item{hlines}{optional character string to specify the color of the horizontal reference lines.} \item{refline}{numeric value to specify the location of the vertical \sQuote{reference} line and where the pseudo confidence interval should be centered. If unspecified, the reference line is drawn at the equal- or random-effects model estimate and at zero for meta-regression models (in which case the residuals are plotted) or when directly plotting observed outcomes.} \item{lty}{line type for the pseudo confidence interval region and the reference line. The default is to draw dotted lines (see \code{\link{par}} for other options). Can also be a vector to specify the two line types separately.} \item{pch}{plotting symbol to use for the observed outcomes. By default, a filled circle is used. Can also be a vector of values. See \code{\link{points}} for other options.} \item{pch.fill}{plotting symbol to use for the outcomes filled in by the trim and fill method. By default, an open circle is used. Only relevant when plotting an object created by the \code{\link{trimfill}} function.} \item{col}{optional character string to specify the (border) color of the points. Can also be a vector.} \item{bg}{optional character string to specify the background color of open plot symbols. Can also be a vector.} \item{label}{argument to control the labeling of the points (the default is \code{FALSE}). See \sQuote{Details}.} \item{offset}{argument to control the distance between the points and the corresponding labels.} \item{legend}{logical to specify whether a legend should be added to the plot (the default is \code{FALSE}). See \sQuote{Details}.} \item{\dots}{other arguments.} } \details{ For equal- and random-effects models (i.e., models not involving moderators), the plot shows the observed effect sizes or outcomes on the x-axis against the corresponding standard errors (i.e., the square root of the sampling variances) on the y-axis. A vertical line indicates the estimate based on the model. A pseudo confidence interval region is drawn around this value with bounds equal to \mjeqn{\pm 1.96 \text{SE}}{±1.96*SE}, where \mjeqn{\text{SE}}{SE} is the standard error value from the y-axis (assuming \code{level=95}). If \code{addtau2=TRUE} (only for models of class \code{"rma.uni"}), then the bounds of the pseudo confidence interval region are equal to \mjeqn{\pm 1.96 \sqrt{\text{SE}^2 + \hat{\tau}^2}}{±1.96*\sqrt(SE^2 + \tau^2)}, where \mjeqn{\hat{\tau}^2}{\tau^2} is the amount of heterogeneity as estimated by the model. For (mixed-effects) meta-regression models (i.e., models involving moderators), the plot shows the residuals on the x-axis against their corresponding standard errors. Either the usual or deleted residuals can be used for that purpose (set via the \code{type} argument). See \code{\link[=residuals.rma]{residuals}} for more details on the different types of residuals. With the \code{atransf} argument, the labels on the x-axis can be transformed with some suitable function. For example, when plotting log odds ratios, one could use \code{transf=exp} to obtain a funnel plot with the values on the x-axis corresponding to the odds ratios. See also \link{transf} for some other useful transformation functions in the context of a meta-analysis. Instead of placing the standard errors on the y-axis, several other options are available by setting the \code{yaxis} argument to: \itemize{ \item \code{yaxis="vi"} for the sampling variances, \item \code{yaxis="seinv"} for the inverse of the standard errors, \item \code{yaxis="vinv"} for the inverse of the sampling variances, \item \code{yaxis="ni"} for the sample sizes, \item \code{yaxis="ninv"} for the inverse of the sample sizes, \item \code{yaxis="sqrtni"} for the square root of the sample sizes, \item \code{yaxis="sqrtninv"} for the inverse square root of the sample sizes, \item \code{yaxis="lni"} for the log of the sample sizes, \item \code{yaxis="wi"} for the weights. } However, only when \code{yaxis="sei"} (the default) will the pseudo confidence region have the expected (upside-down) funnel shape with straight lines. Also, when placing (a function of) the sample sizes on the y-axis or the weights, then the pseudo confidence region cannot be drawn. See Sterne and Egger (2001) for more details on the choice of the y-axis. If the object passed to the function comes from the \code{\link{trimfill}} function, the studies that are filled in by the trim and fill method are also added to the funnel plot. The symbol to use for plotting the filled in studies can be specified via the \code{pch.fill} argument. Arguments \code{col} and \code{bg} can then be of length 2 to specify the (border) color and background color of the observed and filled in studies. One can also directly pass a vector with the observed effect sizes or outcomes (via \code{x}) and the corresponding sampling variances (via \code{vi}), standard errors (via \code{sei}), and/or sample sizes (via \code{ni}) to the function. By default, the vertical reference line is then drawn at zero. The arguments \code{back}, \code{shade}, and \code{hlines} can be set to \code{NULL} to suppress the shading and the horizontal reference line. One can also suppress the funnel by setting \code{refline} to \code{NULL}. With the \code{label} argument, one can control whether points in the plot will be labeled. If \code{label="all"} (or \code{label=TRUE}), all points in the plot will be labeled. If \code{label="out"}, points falling outside of the pseudo confidence region will be labeled. Finally, one can also set this argument to a numeric value (between 1 and \mjseqn{k}) to specify how many of the most extreme points should be labeled (e.g., with \code{label=1} only the most extreme point are labeled, while with \code{label=3}, the most extreme, and the second and third most extreme points are labeled). With the \code{offset} argument, one can adjust the distance between the labels and the corresponding points. By setting the \code{legend} argument to \code{TRUE}, a legend is added to the plot. One can also use a keyword for this argument to specify the position of the legend (e.g., \code{legend="topleft"}; see \code{\link{legend}} for options). Finally, this argument can also be a list, with elements \code{x}, \code{y}, \code{inset}, \code{bty}, and \code{bg}, which are passed on as the corresponding arguments to the \code{\link{legend}} function for even more control (elements not specified are set to defaults). The list can also include elements \code{studies} (a logical to specify whether to include \sQuote{Studies} in the legend; default is \code{TRUE}) and \code{show} (either \code{"pvals"} to show the p-values corresponding to the shade regions, \code{"cis"} to show the confidence interval levels corresponding to the shade regions, or \code{NA} to show neither; default is \code{"pvals"}). } \note{ Placing (a function of) the sample sizes on the y-axis (i.e., using \code{yaxis="ni"}, \code{yaxis="ninv"}, \code{yaxis="sqrtni"}, \code{yaxis="sqrtninv"}, or \code{yaxis="lni"}) is only possible when information about the sample sizes is actually stored within the object passed to the \code{funnel} function. That should automatically be the case when the observed effect sizes or outcomes were computed with the \code{\link{escalc}} function or when the observed effect sizes or outcomes were computed within the model fitting function. On the other hand, this will not be the case when \code{\link{rma.uni}} was used together with the \code{yi} and \code{vi} arguments and the \code{yi} and \code{vi} values were \emph{not} computed with \code{\link{escalc}}. In that case, it is still possible to pass information about the sample sizes to the \code{\link{rma.uni}} function (e.g., use \code{rma.uni(yi, vi, ni=ni, data=dat)}, where data frame \code{dat} includes a variable called \code{ni} with the sample sizes). When using unweighted estimation, using \code{yaxis="wi"} will place all points on a horizontal line. When directly passing a vector with the observed effect sizes or outcomes to the function, \code{yaxis="wi"} is equivalent to \code{yaxis="vinv"}, except that the weights are expressed in percent. For argument \code{slab} and when specifying vectors for arguments \code{pch}, \code{col}, and/or \code{bg} and when \code{x} is an object of class \code{"rma"}, the variables specified are assumed to be of the same length as the data passed to the model fitting function (and if the \code{data} argument was used in the original model fit, then the variables will be searched for within this data frame first). Any subsetting and removal of studies with missing values is automatically applied to the variables specified via these arguments. } \value{ A data frame with components: \item{x}{the x-axis coordinates of the points that were plotted.} \item{y}{the y-axis coordinates of the points that were plotted.} \item{slab}{the study labels.} Note that the data frame is returned invisibly. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Light, R. J., & Pillemer, D. B. (1984). \emph{Summing up: The science of reviewing research}. Cambridge, MA: Harvard University Press. Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R., & Rushton, L. (2008). Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. \emph{Journal of Clinical Epidemiology}, \bold{61}(10), 991--996. \verb{https://doi.org/10.1016/j.jclinepi.2007.11.010} Sterne, J. A. C., & Egger, M. (2001). Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. \emph{Journal of Clinical Epidemiology}, \bold{54}(10), 1046--1055. \verb{https://doi.org/10.1016/s0895-4356(01)00377-8} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which funnel plots can be drawn. \code{\link{trimfill}} for the trim and fill method, \code{\link{regtest}} for the regression test, and \code{\link{ranktest}} for the rank correlation test. } \examples{ ### copy BCG vaccine data into 'dat' dat <- dat.bcg ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) ### fit random-effects model res <- rma(yi, vi, data=dat, slab=paste(author, year, sep=", ")) ### draw a standard funnel plot funnel(res) ### show risk ratio values on x-axis (log scale) funnel(res, atransf=exp) ### label points outside of the pseudo confidence interval region funnel(res, atransf=exp, label="out") ### passing log risk ratios and sampling variances directly to the function ### note: same plot, except that the reference line is centered at zero funnel(dat$yi, dat$vi) ### the with() function can be used to avoid having to retype dat$... over and over with(dat, funnel(yi, vi)) ### can accomplish the same thing by setting refline=0 funnel(res, refline=0) ### adjust the position of the x-axis labels, number of digits, and y-axis limits funnel(res, atransf=exp, at=log(c(.125, .25, .5, 1, 2)), digits=3L, ylim=c(0,.8)) ### contour-enhanced funnel plot centered at 0 (see Peters et al., 2008) funnel(res, level=c(90, 95, 99), shade=c("white", "gray55", "gray75"), refline=0, legend=TRUE) ### same, but show risk ratio values on the x-axis and some further adjustments funnel(res, level=c(90, 95, 99), shade=c("white", "gray55", "gray75"), digits=3L, ylim=c(0,.8), atransf=exp, at=log(c(.125, .25, .5, 1, 2, 4, 8)), refline=0, legend=TRUE) ### same, but show confidence interval levels in the legend funnel(res, level=c(90, 95, 99), shade=c("white", "gray55", "gray75"), digits=3L, ylim=c(0,.8), atransf=exp, at=log(c(.125, .25, .5, 1, 2, 4, 8)), refline=0, legend=list(show="cis")) ### illustrate the use of vectors for 'pch' and 'col' res <- rma(yi, vi, data=dat, subset=2:10) funnel(res, pch=ifelse(yi > -1, 19, 21), col=ifelse(sqrt(vi) > .3, "red", "blue")) ### can add a second funnel via (undocumented) argument refline2 funnel(res, atransf=exp, at=log(c(.125, .25, .5, 1, 2, 4)), digits=3L, ylim=c(0,.8), refline2=0) ### mixed-effects model with absolute latitude in the model res <- rma(yi, vi, mods = ~ ablat, data=dat) ### funnel plot of the residuals funnel(res) ### simulate a large meta-analytic dataset (correlations with rho = 0.2) ### with no heterogeneity or publication bias; then try out different ### versions of the funnel plot gencor <- function(rhoi, ni) { x1 <- rnorm(ni, mean=0, sd=1) x2 <- rnorm(ni, mean=0, sd=1) x3 <- rhoi*x1 + sqrt(1-rhoi^2)*x2 cor(x1, x3) } set.seed(1234) k <- 200 # number of studies to simulate ni <- round(rchisq(k, df=2) * 20 + 20) # simulate sample sizes (skewed distribution) ri <- mapply(gencor, rep(0.2,k), ni) # simulate correlations res <- rma(measure="ZCOR", ri=ri, ni=ni, method="EE") # use r-to-z transformed correlations funnel(res, yaxis="sei") funnel(res, yaxis="vi") funnel(res, yaxis="seinv") funnel(res, yaxis="vinv") funnel(res, yaxis="ni") funnel(res, yaxis="ninv") funnel(res, yaxis="sqrtni") funnel(res, yaxis="sqrtninv") funnel(res, yaxis="lni") funnel(res, yaxis="wi") } \keyword{hplot} metafor/man/hc.Rd0000644000176200001440000001117614746146216013364 0ustar liggesusers\name{hc} \alias{hc} \alias{hc.rma.uni} \title{Meta-Analysis based on the Method by Henmi and Copas (2010)} \description{ Function to obtain an estimate of the average true outcome and corresponding confidence interval under a random-effects model using the method described by Henmi and Copas (2010). } \usage{ hc(object, \dots) \method{hc}{rma.uni}(object, digits, transf, targs, control, \dots) } \arguments{ \item{object}{an object of class \code{"rma.uni"}.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{transf}{optional argument to specify a function to transform the estimate and the corresponding interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified under \code{transf}.} \item{control}{list of control values for the iterative algorithm. If unspecified, default values are used. See \sQuote{Note}.} \item{\dots}{other arguments.} } \details{ The model specified via \code{object} must be a model without moderators (i.e., either an equal- or a random-effects model). When using the usual method for fitting a random-effects model (i.e., weighted estimation with inverse-variance weights), the weights assigned to smaller and larger studies become more uniform as the amount of heterogeneity increases. As a consequence, the estimated average outcome could become increasingly biased under certain forms of publication bias (where smaller studies on one side of the funnel plot are missing). The method by Henmi and Copas (2010) counteracts this problem by providing an estimate of the average true outcome that is based on inverse-variance weights as used under an equal-effects model, which are not affected by the amount of heterogeneity. The amount of heterogeneity is still estimated (with the DerSimonian-Laird estimator) and incorporated into the standard error of the estimated average outcome and the corresponding confidence interval. Currently, there is only a method for handling objects of class \code{"rma.uni"} with the \code{hc} function. It therefore provides a method for conducting a sensitivity analysis after the model has been fitted with the \code{\link{rma.uni}} function. } \value{ An object of class \code{"hc.rma.uni"}. The object is a list containing the following components: \item{beta}{estimated average true outcome.} \item{se}{corresponding standard error.} \item{ci.lb}{lower bound of the confidence intervals for the average true outcome.} \item{ci.ub}{upper bound of the confidence intervals for the average true outcome.} \item{\dots}{some additional elements/values.} The results are formatted and printed with the \code{\link[=print.hc.rma.uni]{print}} function. } \note{ The method makes use of the \code{\link{uniroot}} function. By default, the desired accuracy is set equal to \code{.Machine$double.eps^0.25} and the maximum number of iterations to \code{1000}. The desired accuracy (\code{tol}) and the maximum number of iterations (\code{maxiter}) can be adjusted with the \code{control} argument (i.e., \code{control=list(tol=value, maxiter=value)}). } \author{ Original code by Henmi and Copas (2010). Corrected for typos by Michael Dewey (\email{lists@dewey.myzen.co.uk}). Incorporated into the package with some small adjustments for consistency with the other functions in the package by Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Henmi, M., & Copas, J. B. (2010). Confidence intervals for random effects meta-analysis and robustness to publication bias. \emph{Statistics in Medicine}, \bold{29}(29), 2969--2983. \verb{https://doi.org/10.1002/sim.4029} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}} for the function to fit \code{rma.uni} models. } \examples{ ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat.lee2004) dat ### meta-analysis based on log odds ratios res <- rma(yi, vi, data=dat) res ### funnel plot as in Henmi and Copas (2010) funnel(res, yaxis="seinv", refline=0, xlim=c(-3,3), ylim=c(.5,3.5), steps=7, digits=1, back="white") ### use method by Henmi and Copas (2010) as a sensitivity analysis hc(res) ### back-transform results to odds ratio scale hc(res, transf=exp) } \keyword{htest} metafor/man/ranef.Rd0000644000176200001440000001211714746146216014061 0ustar liggesusers\name{ranef} \alias{ranef} \alias{ranef.rma.uni} \alias{ranef.rma.mv} \title{Best Linear Unbiased Predictions for 'rma.uni' and 'rma.mv' Objects} \description{ Functions to compute best linear unbiased predictions (BLUPs) of the random effects for objects of class \code{"rma.uni"} and \code{"rma.mv"}. Corresponding standard errors and prediction interval bounds are also provided. \loadmathjax } \usage{ \method{ranef}{rma.uni}(object, level, digits, transf, targs, \dots) \method{ranef}{rma.mv}(object, level, digits, transf, targs, verbose=FALSE, \dots) } \arguments{ \item{object}{an object of class \code{"rma.uni"} or \code{"rma.mv"}.} \item{level}{numeric value between 0 and 100 to specify the prediction interval level (see \link[=misc-options]{here} for details). If unspecified, the default is to take the value from the object.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{transf}{optional argument to specify a function to transform the predicted values and interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified under \code{transf}.} \item{verbose}{logical to specify whether output should be generated on the progress of the computations (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \value{ For objects of class \code{"rma.uni"}, an object of class \code{"list.rma"}. The object is a list containing the following components: \item{pred}{predicted values.} \item{se}{corresponding standard errors.} \item{pi.lb}{lower bound of the prediction intervals.} \item{pi.ub}{upper bound of the prediction intervals.} \item{\dots}{some additional elements/values.} The object is formatted and printed with the \code{\link[=print.list.rma]{print}} function. To format the results as a data frame, one can use the \code{\link[=as.data.frame.list.rma]{as.data.frame}} function. For objects of class \code{"rma.mv"}, a list of data frames with the same components as described above. } \note{ For best linear unbiased predictions that combine the fitted values based on the fixed effects and the estimated contributions of the random effects, see \code{\link[=blup.rma.uni]{blup}}. For predicted/fitted values that are based only on the fixed effects of the model, see \code{\link[=fitted.rma]{fitted}} and \code{\link[=predict.rma]{predict}}. Equal-effects models do not contain random study effects. The BLUPs for these models will therefore be 0. When using the \code{transf} argument, the transformation is applied to the predicted values and the corresponding interval bounds. The standard errors are then set equal to \code{NA} and are omitted from the printed output. By default, a standard normal distribution is used to construct the prediction intervals. When the model was fitted with \code{test="t"}, \code{test="knha"}, \code{test="hksj"}, or \code{test="adhoc"}, then a t-distribution with \mjseqn{k-p} degrees of freedom is used. To be precise, it should be noted that the function actually computes empirical BLUPs (eBLUPs), since the predicted values are a function of the estimated variance component(s). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Kackar, R. N., & Harville, D. A. (1981). Unbiasedness of two-stage estimation and prediction procedures for mixed linear models. Communications in Statistics, Theory and Methods, \bold{10}(13), 1249--1261. \verb{https://doi.org/10.1080/03610928108828108} Raudenbush, S. W., & Bryk, A. S. (1985). Empirical Bayes meta-analysis. \emph{Journal of Educational Statistics}, \bold{10}(2), 75--98. \verb{https://doi.org/10.3102/10769986010002075} Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects. \emph{Statistical Science}, \bold{6}(1), 15--32. \verb{https://doi.org/10.1214/ss/1177011926} Searle, S. R., Casella, G., & McCulloch, C. E. (1992). \emph{Variance components}. Hoboken, NJ: Wiley. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}} and \code{\link{rma.mv}} for functions to fit models for which BLUPs of the random effects can be computed. \code{\link[=predict.rma]{predict}} and \code{\link[=fitted.rma]{fitted}} for functions to compute the predicted/fitted values based only on the fixed effects and \code{\link[=blup.rma.uni]{blup}} for a function to compute BLUPs that combine the fitted values and predicted random effects. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### meta-analysis of the log risk ratios using a random-effects model res <- rma(yi, vi, data=dat) ### BLUPs of the random effects ranef(res) } \keyword{models} metafor/man/baujat.Rd0000644000176200001440000001154014746146216014233 0ustar liggesusers\name{baujat} \alias{baujat} \alias{baujat.rma} \title{Baujat Plots for 'rma' Objects} \description{ Function to create Baujat plots for objects of class \code{"rma"}. \loadmathjax } \usage{ baujat(x, \dots) \method{baujat}{rma}(x, xlim, ylim, xlab, ylab, cex, symbol="ids", grid=TRUE, progbar=FALSE, \dots) } \arguments{ \item{x}{an object of class \code{"rma"}.} \item{xlim}{x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{ylim}{y-axis limits. If unspecified, the function sets the y-axis limits to some sensible values.} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title.} \item{ylab}{title for the y-axis. If unspecified, the function sets an appropriate axis title.} \item{cex}{symbol/character expansion factor.} \item{symbol}{either an integer to specify the \code{pch} value (i.e., plotting symbol), or \code{"slab"} to plot the study labels, or \code{"ids"} (the default) to plot the study id numbers.} \item{grid}{logical to specify whether a grid should be added to the plot. Can also be a color name.} \item{progbar}{logical to specify whether a progress bar should be shown (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ The model specified via \code{x} must be a model fitted with either the \code{\link{rma.uni}}, \code{\link{rma.mh}}, or \code{\link{rma.peto}} functions. Baujat et al. (2002) proposed a diagnostic plot to detect sources of heterogeneity in meta-analytic data. The plot shows the contribution of each study to the overall \mjseqn{Q}-test statistic for heterogeneity on the x-axis versus the influence of each study (defined as the standardized squared difference between the overall estimate based on an equal-effects model with and without the study included in the model fitting) on the y-axis. The same type of plot can be produced by first fitting an equal-effects model with either the \code{\link{rma.uni}} (using \code{method="EE"}), \code{\link{rma.mh}}, or \code{\link{rma.peto}} functions and then passing the fitted model object to the \code{baujat} function. For models fitted with the \code{\link{rma.uni}} function (which may be random-effects or mixed-effects meta-regressions models), the idea underlying this type of plot can be generalized as described by Viechtbauer (2021): The x-axis then corresponds to the squared Pearson residual of a study, while the y-axis corresponds to the standardized squared difference between the predicted/fitted value for the study with and without the study included in the model fitting. By default, the points plotted are the study id numbers, but one can also plot the study labels by setting \code{symbol="slab"} (if study labels are available within the model object) or one can specify a plotting symbol via the \code{symbol} argument that gets passed to \code{pch} (see \code{\link{points}} for possible options). } \value{ A data frame with components: \item{x}{the x-axis coordinates of the points that were plotted.} \item{y}{the y-axis coordinates of the points that were plotted.} \item{ids}{the study id numbers.} \item{slab}{the study labels.} Note that the data frame is returned invisibly. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Baujat, B., Mahe, C., Pignon, J.-P., & Hill, C. (2002). A graphical method for exploring heterogeneity in meta-analyses: Application to a meta-analysis of 65 trials. \emph{Statistics in Medicine}, \bold{21}(18), 2641--2652. \verb{https://doi.org/10.1002/sim.1221} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219--254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}} and \code{\link{rma.peto}} for functions to fit models for which Baujat plots can be created. \code{\link[=influence.rma.uni]{influence}} for other model diagnostics. } \examples{ ### copy data from Pignon et al. (2000) into 'dat' dat <- dat.pignon2000 ### calculate estimated log hazard ratios and sampling variances dat$yi <- with(dat, OmE/V) dat$vi <- with(dat, 1/V) ### meta-analysis based on all 65 trials res <- rma(yi, vi, data=dat, method="EE", slab=trial) ### create Baujat plot baujat(res) ### some variations of the plotting symbol baujat(res, symbol=19) baujat(res, symbol="slab") ### label only a selection of the more 'extreme' points sav <- baujat(res, symbol=19, xlim=c(0,20)) sav <- sav[sav$x >= 10 | sav$y >= 0.10,] text(sav$x, sav$y, sav$slab, pos=1, cex=0.8) } \keyword{hplot} metafor/man/rma.mv.Rd0000644000176200001440000015447014746146216014177 0ustar liggesusers\name{rma.mv} \alias{rma.mv} \title{Meta-Analysis via Multivariate/Multilevel Linear (Mixed-Effects) Models} \description{ Function to fit meta-analytic multivariate/multilevel fixed- and random/mixed-effects models with or without moderators via linear (mixed-effects) models. See below and the introduction to the \pkg{\link{metafor-package}} for more details on these models. \loadmathjax } \usage{ rma.mv(yi, V, W, mods, data, slab, subset, random, struct="CS", intercept=TRUE, method="REML", test="z", dfs="residual", level=95, btt, R, Rscale="cor", sigma2, tau2, rho, gamma2, phi, cvvc=FALSE, sparse=FALSE, verbose=FALSE, digits, control, \dots) } \arguments{ \emph{These arguments pertain to data input:} \item{yi}{vector of length \mjseqn{k} with the observed effect sizes or outcomes. See \sQuote{Details}.} \item{V}{vector of length \mjseqn{k} with the corresponding sampling variances or a \mjeqn{k \times k}{kxk} variance-covariance matrix of the sampling errors. See \sQuote{Details}.} \item{W}{optional argument to specify a vector of length \mjseqn{k} with user-defined weights or a \mjeqn{k \times k}{kxk} user-defined weight matrix. See \sQuote{Details}.} \item{mods}{optional argument to include one or more moderators in the model. A single moderator can be given as a vector of length \mjseqn{k} specifying the values of the moderator. Multiple moderators are specified by giving a matrix with \mjseqn{k} rows and as many columns as there are moderator variables. Alternatively, a model \code{\link{formula}} can be used to specify the model. See \sQuote{Details}.} \item{data}{optional data frame containing the data supplied to the function.} \item{slab}{optional vector with labels for the \mjseqn{k} outcomes/studies.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies (or more precisely, rows of the dataset) that should be used for the analysis.} \emph{These arguments pertain to the model / computations and output:} \item{random}{either a single one-sided formula or list of one-sided formulas to specify the random-effects structure of the model. See \sQuote{Details}.} \item{struct}{character string to specify the variance structure of an \code{~ inner | outer} formula in the \code{random} argument. Either \code{"CS"} for compound symmetry, \code{"HCS"} for heteroscedastic compound symmetry, \code{"UN"} or \code{"GEN"} for an unstructured variance-covariance matrix, \code{"ID"} for a scaled identity matrix, \code{"DIAG"} for a diagonal matrix, \code{"AR"} for an AR(1) autoregressive structure, \code{"HAR"} for a heteroscedastic AR(1) autoregressive structure, \code{"CAR"} for a continuous-time autoregressive structure, or one of \code{"SPEXP"}, \code{"SPGAU"}, \code{"SPLIN"}, \code{"SPRAT"}, or \code{"SPSPH"} for one of the spatial correlation structures. See \sQuote{Details}.} \item{intercept}{logical to specify whether an intercept should be added to the model (the default is \code{TRUE}). Ignored when \code{mods} is a formula.} \item{method}{character string to specify whether the model should be fitted via maximum likelihood (\code{"ML"}) or via restricted maximum likelihood (\code{"REML"}) estimation (the default is \code{"REML"}).} \item{test}{character string to specify how test statistics and confidence intervals for the fixed effects should be computed. By default (\code{test="z"}), Wald-type tests and CIs are obtained, which are based on a standard normal distribution. When \code{test="t"}, a t-distribution is used instead. See \sQuote{Details} and also \link[=misc-recs]{here} for some recommended practices.} \item{dfs}{character string to specify how the (denominator) degrees of freedom should be calculated when \code{test="t"}. Either \code{dfs="residual"} or \code{dfs="contain"}. Can also be a numeric vector with the degrees of freedom for each model coefficient. See \sQuote{Details}.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (the default is 95; see \link[=misc-options]{here} for details).} \item{btt}{optional vector of indices to specify which coefficients to include in the omnibus test of moderators. Can also be a string to \code{\link{grep}} for. See \sQuote{Details}.} \item{R}{an optional named list of known correlation matrices corresponding to (some of) the components specified via the \code{random} argument. See \sQuote{Details}.} \item{Rscale}{character string, integer, or logical to specify how matrices specified via the \code{R} argument should be scaled. See \sQuote{Details}.} \item{sigma2}{optional numeric vector (of the same length as the number of random intercept components specified via the \code{random} argument) to fix the corresponding \mjseqn{\sigma^2} value(s). A specific \mjseqn{\sigma^2} value can be fixed by setting the corresponding element of this argument to the desired value. A specific \mjseqn{\sigma^2} value will be estimated if the corresponding element is set equal to \code{NA}. See \sQuote{Details}.} \item{tau2}{optional numeric value (for \code{struct="CS"}, \code{"AR"}, \code{"CAR"}, or a spatial correlation structure) or vector (for \code{struct="HCS"}, \code{"UN"}, or \code{"HAR"}) to fix the amount of (residual) heterogeneity for the levels of the \code{inner} factor corresponding to an \code{~ inner | outer} formula specified in the \code{random} argument. A numeric value fixes a particular \mjseqn{\tau^2} value, while \code{NA} means that the value should be estimated. See \sQuote{Details}.} \item{rho}{optional numeric value (for \code{struct="CS"}, \code{"HCS"}, \code{"AR"}, \code{"HAR"}, \code{"CAR"}, or a spatial correlation structure) or vector (for \code{struct="UN"}) to fix the correlation between the levels of the \code{inner} factor corresponding to an \code{~ inner | outer} formula specified in the \code{random} argument. A numeric value fixes a particular \mjseqn{\rho} value, while \code{NA} means that the value should be estimated. See \sQuote{Details}.} \item{gamma2}{as \code{tau2} argument, but for a second \code{~ inner | outer} formula specified in the \code{random} argument. See \sQuote{Details}.} \item{phi}{as \code{rho} argument, but for a second \code{~ inner | outer} formula specified in the \code{random} argument. See \sQuote{Details}.} \item{cvvc}{logical to specify whether to calculate the variance-covariance matrix of the variance/correlation component estimates (can also be set to \code{"varcov"} or \code{"varcor"}). See \sQuote{Details}.} \item{sparse}{logical to specify whether the function should use sparse matrix objects to the extent possible (can speed up model fitting substantially for certain models). See \sQuote{Note}.} \item{verbose}{logical to specify whether output should be generated on the progress of the model fitting (the default is \code{FALSE}). Can also be an integer. Values > 1 generate more verbose output. See \sQuote{Note}.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is 4. See also \link[=misc-options]{here} for further details on how to control the number of digits in the output.} \item{control}{optional list of control values for the estimation algorithms. If unspecified, default values are defined inside the function. See \sQuote{Note}.} \item{\dots}{additional arguments.} } \details{ \subsection{Specifying the Data}{ The function can be used in combination with any of the usual effect sizes or outcome measures used in meta-analyses (e.g., log risk ratios, log odds ratios, risk differences, mean differences, standardized mean differences, log transformed ratios of means, raw correlation coefficients, correlation coefficients transformed with Fisher's r-to-z transformation), or, more generally, any set of estimates (with corresponding sampling variances) one would like to meta-analyze. Simply specify the observed effect sizes or outcomes via the \code{yi} argument and the corresponding sampling variances via the \code{V} argument. In case the sampling errors are correlated, then one can specify the entire variance-covariance matrix of the sampling errors via the \code{V} argument. The \code{\link{escalc}} function can be used to compute a wide variety of effect sizes or outcome measures (and the corresponding sampling variances) based on summary statistics. Equations for computing the covariance between the sampling errors for a variety of different effect sizes or outcome measures can be found, for example, in Gleser and Olkin (2009), Lajeunesse (2011), and Wei and Higgins (2013). For raw and Fisher r-to-z transformed correlations, one can find suitable equations, for example, in Steiger (1980). The latter are implemented in the \code{\link{rcalc}} function. See also \code{\link{vcalc}} for a function that can be used to construct or approximate the variance-covariance matrix of dependent effect sizes or outcomes for a wide variety of circumstances. See also \link[=misc-recs]{here} for some recommendations on a general workflow for meta-analyses involving complex dependency structures. } \subsection{Specifying Fixed Effects}{ With \code{rma.mv(yi, V)}, a fixed-effects model is fitted to the data (note: arguments \code{struct}, \code{sigma2}, \code{tau2}, \code{rho}, \code{gamma2}, \code{phi}, \code{R}, and \code{Rscale} are not relevant then and are ignored). The model is then simply given by \mjeqn{y \sim N(\theta, V)}{y ~ N(\theta, V)}, where \mjseqn{y} is a (column) vector with the observed outcomes, \mjseqn{\theta} is the (average) true outcome, and \mjseqn{V} is the variance-covariance matrix of the sampling errors (if a vector of sampling variances is provided via the \code{V} argument, then \mjseqn{V} is assumed to be diagonal). Note that the argument is \code{V}, not \code{v} (\R is case sensitive!). One or more moderators can be included in the model via the \code{mods} argument. A single moderator can be given as a (row or column) vector of length \mjseqn{k} specifying the values of the moderator. Multiple moderators are specified by giving an appropriate model matrix (i.e., \mjseqn{X}) with \mjseqn{k} rows and as many columns as there are moderator variables (e.g., \code{mods = cbind(mod1, mod2, mod3)}, where \code{mod1}, \code{mod2}, and \code{mod3} correspond to the names of the variables for the three moderator variables). The intercept is added to the model matrix by default unless \code{intercept=FALSE}. Alternatively, one can use standard \code{\link{formula}} syntax to specify the model. In this case, the \code{mods} argument should be set equal to a one-sided formula of the form \code{mods = ~ model} (e.g., \code{mods = ~ mod1 + mod2 + mod3}). Interactions, polynomial/spline terms, and factors can be easily added to the model in this manner. When specifying a model formula via the \code{mods} argument, the \code{intercept} argument is ignored. Instead, the inclusion/exclusion of the intercept is controlled by the specified formula (e.g., \code{mods = ~ 0 + mod1 + mod2 + mod3} or \code{mods = ~ mod1 + mod2 + mod3 - 1} would lead to the removal of the intercept). One can also directly specify moderators via the \code{yi} argument (e.g., \code{rma.mv(yi ~ mod1 + mod2 + mod3, V)}). In that case, the \code{mods} argument is ignored and the inclusion/exclusion of the intercept is again controlled by the specified formula. With moderators included, the model is then given by \mjeqn{y \sim N(X \beta, V)}{y ~ N(X \beta, V)}, where \mjseqn{X} denotes the model matrix containing the moderator values (and with the first column equal to 1s for the intercept term if it is included) and \mjseqn{\beta} is a column vector containing the corresponding model coefficients. The model coefficients (i.e., \mjseqn{\beta}) are then estimated with \mjeqn{b = (X'WX')^{-1} X'Wy}{b = (X'WX)^(-1) X'Wy}, where \mjeqn{W = V^{-1}}{W = V^(-1)} is the weight matrix (without moderators, \mjseqn{X} is just a column vector of 1's). With the \code{W} argument, one can also specify user-defined weights (or a weight matrix). } \subsection{Specifying Random Effects}{ One can fit random/mixed-effects models to the data by specifying the desired random effects structure via the \code{random} argument. The \code{random} argument is either a single one-sided formula or a list of one-sided formulas. One formula type that can be specified via this argument is of the form \code{random = ~ 1 | id}. Such a formula adds a random effect corresponding to the grouping variable \code{id} to the model. Outcomes with the same value of the \code{id} variable receive the same value of the random effect, while outcomes with different values of the \code{id} variable are assumed to be independent. The variance component corresponding to such a formula is denoted by \mjseqn{\sigma^2}. An arbitrary number of such formulas can be specified as a list of formulas (e.g., \code{random = list(~ 1 | id1, ~ 1 | id2)}), with variance components \mjseqn{\sigma^2_1}, \mjseqn{\sigma^2_2}, and so on. Nested random effects of this form can also be added using \code{random = ~ 1 | id1/id2}, which adds a random effect corresponding to the grouping variable \code{id1} and a random effect corresponding to \code{id2} within \code{id1} to the model. This can be extended to models with even more levels of nesting (e.g., \code{random = ~ 1 | id1/id2/id3}). Random effects of this form are useful to model clustering (and hence non-independence) induced by a multilevel structure in the data (e.g., outcomes derived from the same paper, lab, research group, or species may be more similar to each other than outcomes derived from different papers, labs, research groups, or species). See, for example, Konstantopoulos (2011) and Nakagawa and Santos (2012) for more details. See \code{\link[metadat]{dat.konstantopoulos2011}}, \code{\link[metadat]{dat.bornmann2007}}, \code{\link[metadat]{dat.obrien2003}}, and \code{\link[metadat]{dat.crede2010}} for examples of multilevel meta-analyses. In addition or alternatively to specifying one or multiple \code{~ 1 | id} terms, the \code{random} argument can also contain a formula of the form \code{~ inner | outer}. Outcomes with the same value of the \code{outer} grouping variable share correlated random effects corresponding to the levels of the \code{inner} grouping variable, while outcomes with different values of the \code{outer} grouping variable are assumed to be independent (note that the \code{inner} variable is automatically treated as a factor). The \code{struct} argument is used to specify the variance structure corresponding to the \code{inner} variable. With \code{struct="CS"}, a compound symmetric structure is assumed (i.e., a single variance component \mjseqn{\tau^2} corresponding to the \mjseqn{j = 1, \ldots, J} levels of the \code{inner} variable and a single correlation coefficient \mjseqn{\rho} for the correlation between the different levels). With \code{struct="HCS"}, a heteroscedastic compound symmetric structure is assumed (with \mjseqn{\tau^2_j} denoting the variance component corresponding to the \mjeqn{j\text{th}}{jth} level of the \code{inner} variable and a single correlation coefficient \mjseqn{\rho} for the correlation between the different levels). With \code{struct="UN"}, an unstructured (but positive definite) variance-covariance matrix is assumed (with \mjseqn{\tau^2_j} as described above and correlation coefficient \mjeqn{\rho_{jj'}}{\rho_jj'} for the combination of the \mjeqn{j\text{th}}{jth} and \mjeqn{j'\text{th}}{j'th} level of the \code{inner} variable). \ifelse{text}{}{For example, for an \code{inner} variable with four levels, these structures correspond to variance-covariance matrices of the form:} \mjtdeqn{\small \begin{array}{ccc} \texttt{struct="CS"} & \texttt{struct="HCS"} & \texttt{struct="UN"} \\\ \left[ \begin{array}{cccc} \tau^2 & & & \\\ \rho\tau^2 & \tau^2 & & \\\ \rho\tau^2 & \rho\tau^2 & \tau^2 & \\\ \rho\tau^2 & \rho\tau^2 & \rho\tau^2 & \tau^2 \end{array} \right] & \left[ \begin{array}{cccc} \tau_1^2 & & & \\\ \rho\tau_2\tau_1 & \tau_2^2 & & \\\ \rho\tau_3\tau_1 & \rho\tau_3\tau_2 & \tau_3^2 & \\\ \rho\tau_4\tau_1 & \rho\tau_4\tau_2 & \rho\tau_4\tau_3 & \tau_4^2 \end{array} \right] & \left[ \begin{array}{cccc} \tau_1^2 & & & \\\ \rho_{21}\tau_2\tau_1 & \tau_2^2 & & \\\ \rho_{31}\tau_3\tau_1 & \rho_{32}\tau_3\tau_2 & \tau_3^2 & \\\ \rho_{41}\tau_4\tau_1 & \rho_{42}\tau_4\tau_2 & \rho_{43}\tau_4\tau_3 & \tau_4^2 \end{array} \right] \end{array}}{\begin{array}{ccc}\texttt{struct="CS"} & \texttt{struct="HCS"} & \texttt{struct="UN"} \\\\\ \begin{bmatrix} \tau^2 & & & \\\\\ \rho\tau^2 & \tau^2 & & \\\\\ \rho\tau^2 & \rho\tau^2 & \tau^2 & \\\\\ \rho\tau^2 & \rho\tau^2 & \rho\tau^2 & \tau^2 \end{bmatrix} & \begin{bmatrix} \tau_1^2 & & & \\\\\ \rho\tau_2\tau_1 & \tau_2^2 & & \\\\\ \rho\tau_3\tau_1 & \rho\tau_3\tau_2 & \tau_3^2 & \\\\\ \rho\tau_4\tau_1 & \rho\tau_4\tau_2 & \rho\tau_4\tau_3 & \tau_4^2 \end{bmatrix} & \begin{bmatrix} \tau_1^2 & & & \\\\\ \rho_{21}\tau_2\tau_1 & \tau_2^2 & & \\\\\ \rho_{31}\tau_3\tau_1 & \rho_{32}\tau_3\tau_2 & \tau_3^2 & \\\\\ \rho_{41}\tau_4\tau_1 & \rho_{42}\tau_4\tau_2 & \rho_{43}\tau_4\tau_3 & \tau_4^2 \end{bmatrix} \end{array}}{} Structures \code{struct="ID"} and \code{struct="DIAG"} are just like \code{struct="CS"} and \code{struct="HCS"}, respectively, except that \mjseqn{\rho} is set to 0, so that we either get a scaled identity matrix or a diagonal matrix. With the \code{outer} term corresponding to a study identification variable and the \code{inner} term to a variable indicating the treatment type or study arm, such a random effect could be used to estimate how strongly different treatment effects or outcomes within the same study are correlated and/or whether the amount of heterogeneity differs across different treatment types/arms. Network meta-analyses (also known as mixed treatment comparisons) will also typically require such a random effect (e.g., Salanti et al., 2008). The meta-analytic bivariate model (e.g., van Houwelingen, Arends, & Stijnen, 2002) can also be fitted in this manner (see the examples below). The \code{inner} term could also correspond to a variable indicating different types of outcomes measured within the same study, which allows for fitting multivariate models with multiple correlated effects/outcomes per study (e.g., Berkey et al., 1998; Kalaian & Raudenbush, 1996). See \code{\link[metadat]{dat.berkey1998}}, \code{\link[metadat]{dat.assink2016}}, \code{\link[metadat]{dat.kalaian1996}}, \code{\link[metadat]{dat.dagostino1998}}, and \code{\link[metadat]{dat.craft2003}} for examples of multivariate meta-analyses with multiple outcomes. See \code{\link[metadat]{dat.knapp2017}}, \code{\link[metadat]{dat.mccurdy2020}}, and \code{\link[metadat]{dat.tannersmith2016}} for further examples of multilevel/multivariate models with complex data structures (see also \link[=misc-recs]{here} for a related discussion of a recommended workflow for such cases). See \code{\link[metadat]{dat.kearon1998}} for an example using a bivariate model to analyze sensitivity and specificity. See \code{\link[metadat]{dat.hasselblad1998}}, \code{\link[metadat]{dat.pagliaro1992}}, \code{\link[metadat]{dat.lopez2019}}, and \code{\link[metadat]{dat.senn2013}} for examples of network meta-analyses. For meta-analyses of studies reporting outcomes at multiple time points, it may also be reasonable to assume that the true effects/outcomes are correlated over time according to an autoregressive structure (Ishak et al., 2007; Trikalinos & Olkin, 2012). For this purpose, one can choose \code{struct="AR"}, corresponding to a structure with a single variance component \mjseqn{\tau^2} and AR(1) autocorrelation among the values of the random effect. The values of the \code{inner} variable should then reflect the various time points, with increasing values reflecting later time points. This structure assumes equally spaced time points, so the actual values of the \code{inner} variable are not relevant, only their ordering. One can also use \code{struct="HAR"}, which allows for fitting a heteroscedastic AR(1) structure (with \mjseqn{\tau^2_j} denoting the variance component of the \mjeqn{j\text{th}}{jth} measurement occasion). Finally, when time points are not evenly spaced, one might consider using \code{struct="CAR"} for a continuous-time autoregressive structure, in which case the values of the \code{inner} variable should reflect the exact time points of the measurement occasions. \ifelse{text}{}{For example, for an \code{inner} variable with four time points, these structures correspond to variance-covariance matrices of the form:} \mjtdeqn{\small \begin{array}{ccc} \texttt{struct="AR"} & \texttt{struct="HAR"} & \texttt{struct="CAR"} \\\ \left[ \begin{array}{cccc} \tau^2 & & & \\\ \rho\tau^2 & \tau^2 & & \\\ \rho^2\tau^2 & \rho\tau^2 & \tau^2 & \\\ \rho^3\tau^2 & \rho^2\tau^2 & \rho\tau^2 & \tau^2 \end{array} \right] & \left[ \begin{array}{cccc} \tau_1^2 & & & \\\ \rho\tau_2\tau_1 & \tau_2^2 & & \\\ \rho^2\tau_3\tau_1 & \rho\tau_3\tau_2 & \tau_3^2 & \\\ \rho^3\tau_4\tau_1 & \rho^2\tau_4\tau_2 & \rho\tau_4\tau_3 & \tau_4^2 \end{array} \right] & \left[ \begin{array}{cccc} \tau^2 & & & \\\ \rho^{|t_2-t_1|}\tau^2 & \tau^2 & & \\\ \rho^{|t_3-t_1|}\tau^2 & \rho^{|t_3-t_2|}\tau^2 & \tau^2 & \\\ \rho^{|t_4-t_1|}\tau^2 & \rho^{|t_4-t_2|}\tau^2 & \rho^{|t_4-t_3|}\tau^2 & \tau^2 \end{array} \right] \end{array}}{\begin{array}{ccc}\texttt{struct="AR"} & \texttt{struct="HAR"} & \texttt{struct="CAR"} \\\\\ \begin{bmatrix} \tau^2 & & & \\\\\ \rho\tau^2 & \tau^2 & & \\\\\ \rho^2\tau^2 & \rho\tau^2 & \tau^2 & \\\\\ \rho^3\tau^2 & \rho^2\tau^2 & \rho\tau^2 & \tau^2 \end{bmatrix} & \begin{bmatrix} \tau_1^2 & & & \\\\\ \rho\tau_2\tau_1 & \tau_2^2 & & \\\\\ \rho^2\tau_3\tau_1 & \rho\tau_3\tau_2 & \tau_3^2 & \\\\\ \rho^3\tau_4\tau_1 & \rho^2\tau_4\tau_2 & \rho\tau_4\tau_3 & \tau_4^2 \end{bmatrix} & \begin{bmatrix} \tau^2 & & & \\\\\ \rho^{|t_2-t_1|}\tau^2 & \tau^2 & & \\\\\ \rho^{|t_3-t_1|}\tau^2 & \rho^{|t_3-t_2|}\tau^2 & \tau^2 & \\\\\ \rho^{|t_4-t_1|}\tau^2 & \rho^{|t_4-t_2|}\tau^2 & \rho^{|t_4-t_3|}\tau^2 & \tau^2 \end{bmatrix} \end{array}}{} See \code{\link[metadat]{dat.fine1993}} and \code{\link[metadat]{dat.ishak2007}} for examples involving such structures. For outcomes that have a known spatial configuration, various spatial correlation structures are also available. For these structures, the formula is of the form \code{random = ~ var1 + var2 + \dots | outer}, where \code{var1}, \code{var2}, and so on are variables to specify the spatial coordinates (e.g., longitude and latitude) based on which distances (by default Euclidean) will be computed. Let \mjseqn{d} denote the distance between two points that share the same value of the \code{outer} variable (if all true effects/outcomes are allowed to be spatially correlated, simply set \code{outer} to a variable that is a constant). Then the correlation between the true effects/outcomes corresponding to these two points is a function of \mjseqn{d} and the parameter \mjseqn{\rho}. The following table shows the types of spatial correlation structures that can be specified and the equations for the correlation. The covariance between the true effects/outcomes is then the correlation times \mjseqn{\tau^2}. \tabular{lllll}{ structure \tab \ics \tab \code{struct} \tab \ics \tab correlation \cr exponential \tab \ics \tab \code{"SPEXP"} \tab \ics \tab \mjeqn{\exp(-d/\rho)}{exp(-d/rho)} \cr Gaussian \tab \ics \tab \code{"SPGAU"} \tab \ics \tab \mjeqn{\exp(-d^2/\rho^2)}{exp(-d^2/rho^2)} \cr linear \tab \ics \tab \code{"SPLIN"} \tab \ics \tab \mjeqn{(1 - d/\rho) I(d < \rho)}{(1 - d/rho) I(d < rho)} \cr rational quadratic \tab \ics \tab \code{"SPRAT"} \tab \ics \tab \mjeqn{1 - (d/\rho)^2 / (1 + (d/\rho)^2)}{1 - (d/rho)^2 / (1 + (d/rho)^2)} \cr spherical \tab \ics \tab \code{"SPSPH"} \tab \ics \tab \mjeqn{(1 - 1.5(d/\rho) + 0.5(d/\rho)^3) I(d < \rho)}{(1 - 1.5(d/rho) + 0.5(d/rho)^3) I(d < rho)}} Note that \mjseqn{I(d < \rho)} is equal to \mjseqn{1} if \mjseqn{d < \rho} and \mjseqn{0} otherwise. The parameterization of the various structures is based on Pinheiro and Bates (2000). Instead of Euclidean distances, one can also use other distance measures by setting (the undocumented) argument \code{dist} to either \code{"maximum"} for the maximum distance between two points (supremum norm), to \code{"manhattan"} for the absolute distance between the coordinate vectors (L1 norm), or to \code{"gcd"} for the great-circle distance (WGS84 ellipsoid method). In the latter case, only two variables, namely the longitude and latitude (in decimal degrees, with minus signs for West and South), must be specified. If a distance matrix has already been computed, one can also pass this matrix as a list element to the \code{dist} argument. In this case, one should use a formula of the form \code{random = ~ id | outer}, where \code{id} are location identifiers, with corresponding row/column names in the distance matrix specified via the \code{dist} argument. See \code{\link[metadat]{dat.maire2019}} for an example of a meta-analysis with a spatial correlation structure. An \code{~ inner | outer} formula can also be used to add random effects to the model corresponding to a set of predictor variables when \code{struct="GEN"}. Here, the \code{inner} term is used to specify one or multiple variables (e.g., \code{random = ~ var1 + var2 | outer}) and corresponding \sQuote{random slopes} are added to the model (and a \sQuote{random intercept} unless the intercept is removed from the \code{inner} term). The variance-covariance matrix of the random effects added in this manner is assumed to be a general unstructured (but positive definite) matrix. Such a random effects structure may be useful in a meta-analysis examining the dose-response relationship between a moderator variable and the size of the true effects/outcomes (sometimes called a \sQuote{dose-response meta-analysis}). See \code{\link[metadat]{dat.obrien2003}} for an example of a meta-analysis examining a dose-response relationship. The \code{random} argument can also contain a second formula of the form \code{~ inner | outer} (but no more!). A second formula of this form works exactly described as above, but its variance components are denoted by \mjseqn{\gamma^2} and its correlation components by \mjseqn{\phi}. The \code{struct} argument should then be of length 2 to specify the variance-covariance structure for the first and second component, respectively. When the \code{random} argument contains a formula of the form \code{~ 1 | id}, one can use the (optional) argument \code{R} to specify a corresponding known correlation matrix for the random effect (i.e., \code{R = list(id = Cor)}, where \code{Cor} is the correlation matrix). In that case, outcomes with the same value of the \code{id} variable receive the same value for the random effect, while outcomes with different values of the \code{id} variable receive values that are correlated as specified in the corresponding correlation matrix given via the \code{R} argument. The column/row names of the correlation matrix given via the \code{R} argument must therefore correspond to the unique values of the \code{id} variable. When the \code{random} argument contains multiple formulas of the form \code{~ 1 | id}, one can specify known correlation matrices for none, some, or all of those terms (e.g., with \code{random = list(~ 1 | id1, ~ 1 | id2)}, one could specify \code{R = list(id1 = Cor1)} or \code{R = list(id1 = Cor1, id2 = Cor2)}, where \code{Cor1} and \code{Cor2} are the correlation matrices corresponding to the grouping variables \code{id1} and \code{id2}, respectively). Such a random effect with a known (or at least approximately known) correlation structure is useful in a variety of contexts. For example, such a component can be used to account for the correlations induced by the shared phylogenetic history among organisms (e.g., plants, fungi, animals). In that case, \code{~ 1 | species} is used to specify the species and argument \code{R} is used to specify the phylogenetic correlation matrix of the species studied in the meta-analysis. The corresponding variance component then indicates how much variance/heterogeneity is attributable to the specified phylogeny. See Nakagawa and Santos (2012) for more details. As another example, in a genetic meta-analysis studying disease association for several single nucleotide polymorphisms (SNPs), linkage disequilibrium (LD) among the SNPs can induce an approximately known degree of correlation among the effects/outcomes. In that case, \code{~ 1 | snp} could be used to specify the SNPs and \code{R} the corresponding LD correlation matrix for the SNPs included in the meta-analysis. The \code{Rscale} argument controls how matrices specified via the \code{R} argument are scaled. With \code{Rscale="none"} (or \code{Rscale=0} or \code{Rscale=FALSE}), no scaling is used. With \code{Rscale="cor"} (or \code{Rscale=1} or \code{Rscale=TRUE}), the \code{\link{cov2cor}} function is used to ensure that the matrices are correlation matrices (assuming they were covariance matrices to begin with). With \code{Rscale="cor0"} (or \code{Rscale=2}), first \code{\link{cov2cor}} is used and then the elements of each correlation matrix are scaled with \mjseqn{(R - \min(R)) / (1 - \min(R))} (this ensures that a correlation of zero in a phylogenetic correlation matrix corresponds to the split at the root node of the tree comprising the species that are actually analyzed). Finally, \code{Rscale="cov0"} (or \code{Rscale=3}) only rescales with \mjseqn{R - \min(R)} (which ensures that a phylogenetic covariance matrix is rooted at the lowest split). See \code{\link[metadat]{dat.moura2021}} and \code{\link[metadat]{dat.lim2014}} for examples of meta-analyses with phylogenetic correlation structures. Together with the variance-covariance matrix of the sampling errors (i.e., \mjseqn{V}), the specified random effects structure of the model implies a particular \sQuote{marginal} variance-covariance matrix of the observed effect sizes or outcomes. Once estimates of the variance components (i.e., of the \mjseqn{\sigma^2}, \mjseqn{\tau^2}, \mjseqn{\rho}, \mjseqn{\gamma^2}, and/or \mjseqn{\phi} values) have been obtained (either using maximum likelihood or restricted maximum likelihood estimation), the estimated marginal variance-covariance matrix can be constructed (denoted by \mjseqn{M}). The model coefficients (i.e., \mjseqn{\beta}) are then estimated with \mjeqn{b = (X'WX')^{-1} X'Wy}{b = (X'WX)^(-1) X'Wy}, where \mjeqn{W = M^{-1}}{W = M^(-1)} is the weight matrix. With the \code{W} argument, one can again specify user-defined weights (or a weight matrix). } \subsection{Fixing Variance/Correlation Components}{ Arguments \code{sigma2}, \code{tau2}, \code{rho}, \code{gamma2}, and \code{phi} can be used to fix particular variance/correlation components at a given value. This is useful for sensitivity analyses (e.g., for plotting the regular/restricted log-likelihood as a function of a particular variance/correlation component), likelihood ratio tests, or for imposing a desired variance-covariance structure on the data. For example, if \code{random = list(~ 1 | id1, ~ 1 | id2)} or \code{random = ~ 1 | id1/id2}, then \code{sigma2} must be of length 2 (corresponding to \mjseqn{\sigma^2_1} and \mjseqn{\sigma^2_2}) and a fixed value can be assigned to either or both variance components. Setting a particular component to \code{NA} means that the component will be estimated by the function (e.g., \code{sigma2=c(0,NA)} would fix \mjseqn{\sigma^2_1} to 0 and estimate \mjseqn{\sigma^2_2}). Argument \code{tau2} is only relevant when the \code{random} argument contains an \code{~ inner | outer} formula. In that case, if the \code{tau2} argument is used, it must be either of length 1 (for \code{"CS"}, \code{"ID"}, \code{"AR"}, \code{"CAR"}, or one of the spatial correlation structures) or of the same length as the number of unique values of the \code{inner} variable (for \code{"HCS"}, \code{"DIAG"}, \code{"UN"}, or \code{"HAR"}). A numeric value in the \code{tau2} argument then fixes the corresponding variance component to that value, while \code{NA} means that the component will be estimated. Similarly, if argument \code{rho} is used, it must be either of length 1 (for \code{"CS"}, \code{"HCS"}, \code{"AR"}, \code{"HAR"}, or one of the spatial correlation structures) or of length \mjseqn{J(J-1)/2} (for \code{"UN"}), where \mjseqn{J} denotes the number of unique values of the \code{inner} variable. Again, a numeric value fixes the corresponding correlation, while \code{NA} means that the correlation will be estimated. For example, with \code{struct="CS"} and \code{rho=0}, the variance-covariance matrix of the \code{inner} variable will be diagonal with \mjseqn{\tau^2} along the diagonal. For \code{struct="UN"}, the values specified under \code{rho} should be given in column-wise order (e.g., for an \code{inner} variable with four levels, the order would be \mjeqn{\rho_{21}}{\rho_21}, \mjeqn{\rho_{31}}{\rho_31}, \mjeqn{\rho_{41}}{\rho_41}, \mjeqn{\rho_{32}}{\rho_32}, \mjeqn{\rho_{42}}{\rho_42}, \mjeqn{\rho_{43}}{\rho_43}). Similarly, arguments \code{gamma2} and \code{phi} are only relevant when the \code{random} argument contains a second \code{~ inner | outer} formula. The arguments then work exactly as described above. } \subsection{Omnibus Test of Moderators}{ For models including moderators, an omnibus test of all model coefficients is conducted that excludes the intercept (the first coefficient) if it is included in the model. If no intercept is included in the model, then the omnibus test includes all coefficients in the model including the first. Alternatively, one can manually specify the indices of the coefficients to test via the \code{btt} (\sQuote{betas to test}) argument (i.e., to test \mjseqn{\text{H}_0{:}\; \beta_{j \in \texttt{btt}} = 0}, where \mjseqn{\beta_{j \in \texttt{btt}}} is the set of coefficients to be tested). For example, with \code{btt=c(3,4)}, only the third and fourth coefficients from the model are included in the test (if an intercept is included in the model, then it corresponds to the first coefficient in the model). Instead of specifying the coefficient numbers, one can specify a string for \code{btt}. In that case, \code{\link{grep}} will be used to search for all coefficient names that match the string. The omnibus test is called the \mjseqn{Q_M}-test and follows asymptotically a chi-square distribution with \mjseqn{m} degrees of freedom (with \mjseqn{m} denoting the number of coefficients tested) under the null hypothesis (that the true value of all coefficients tested is equal to 0). } \subsection{Categorical Moderators}{ Categorical moderator variables can be included in the model via the \code{mods} argument in the same way that appropriately (dummy) coded categorical variables can be included in linear models. One can either do the dummy coding manually or use a model formula together with the \code{\link{factor}} function to automate the coding (note that string/character variables in a model formula are automatically converted to factors). } \subsection{Tests and Confidence Intervals}{ By default, tests of individual coefficients in the model (and the corresponding confidence intervals) are based on a standard normal distribution, while the omnibus test is based on a chi-square distribution (see above). As an alternative, one can set \code{test="t"}, in which case tests of individual coefficients and confidence intervals are based on a t-distribution with \mjseqn{k-p} degrees of freedom, while the omnibus test then uses an F-distribution with \mjseqn{m} and \mjseqn{k-p} degrees of freedom (with \mjseqn{k} denoting the total number of estimates included in the analysis and \mjseqn{p} the total number of model coefficients including the intercept if it is present). Note that \code{test="t"} is not the same as \code{test="knha"} in \code{\link{rma.uni}}, as no adjustment to the standard errors of the estimated coefficients is made. The method for calculating the (denominator) degrees of freedom described above (which corresponds to \code{dfs="residual"}) is quite simplistic and may lead to tests with inflated Type I error rates and confidence intervals that are too narrow on average. As an alternative, one can set \code{dfs="contain"} (which automatically also sets \code{test="t"}), in which case the degrees of freedom for the test of a particular model coefficient, \mjseqn{b_j}, are determined by checking whether \mjseqn{x_j}, the corresponding column of the model matrix \mjseqn{X}, varies at the level corresponding to a particular random effect in the model. If such a random effect can be found, then the degrees of freedom are set to \mjseqn{l-p}, where \mjseqn{l} denotes the number of unique values of this random effect (i.e., for an \code{~ 1 | id} term, the number of unique values of the \code{id} variable and for an \code{~ inner | outer} term, the number of unique values of the \code{outer} variable). If no such random effect can be found, then \mjseqn{k-p} is used as the degrees of freedom. For the omnibus F-test, the minimum of the degrees of freedom of all coefficients involved in the test is used as the denominator degrees of freedom. This approach for calculating the degrees of freedom should often lead to tests with better control of the Type I error rate and confidence intervals with closer to nominal coverage rates (see also \link[=misc-recs]{here}). One can also set \code{dfs} to a numeric vector with the desired values for the degrees of freedom for testing the model coefficients (e.g., if some other method for determining the degrees of freedom was used). } \subsection{Tests and Confidence Intervals for Variance/Correlation Components}{ Depending on the random effects structure specified, the model may include one or multiple variance/correlation components. Profile likelihood confidence intervals for such components can be obtained using the \code{\link[=confint.rma.mv]{confint}} function. Corresponding likelihood ratio tests can be obtained using the \code{\link[=anova.rma]{anova}} function (by comparing two models where the size of the component to be tested is constrained to some null value in the reduced model). It is also always a good idea to examine plots of the (restricted) log-likelihood as a function of the variance/correlation components in the model using the \code{\link[=profile.rma.mv]{profile}} function to check for parameter identifiability (see \sQuote{Note}). } \subsection{Test for (Residual) Heterogeneity}{ A test for (residual) heterogeneity is automatically carried out by the function. Without moderators in the model, this test is the generalized/weighted least squares extension of Cochran's \mjseqn{Q}-test, which tests whether the variability in the observed effect sizes or outcomes is larger than one would expect based on sampling variability (and the given covariances among the sampling errors) alone. A significant test suggests that the true effects/outcomes are heterogeneous. When moderators are included in the model, this is the \mjseqn{Q_E}-test for residual heterogeneity, which tests whether the variability in the observed effect sizes or outcomes that is not accounted for by the moderators included in the model is larger than one would expect based on sampling variability (and the given covariances among the sampling errors) alone. } \subsection{Var-Cov Matrix of the Variance/Correlation Component Estimates}{ In some cases, one might want to obtain the variance-covariance matrix of the variance/correlation component estimates of the model (i.e., of the estimated \mjseqn{\sigma^2}, \mjseqn{\tau^2}, \mjseqn{\rho}, \mjseqn{\gamma^2}, and \mjseqn{\phi} values). The function will try to calculate this matrix when \code{cvvc=TRUE} (or equivalently, when \code{cvvc="varcor"}). This is done by inverting the Hessian, which is numerically approximated using the \code{\link[numDeriv]{hessian}} function from the \code{numDeriv} package. Note that these computations may not be numerically stable, especially when the estimates are close to their parameter bounds. When \code{struct="UN"}, one can also set \code{cvvc="varcov"} in which case the variance-covariance matrix is given for the variance and covariance components (instead of the correlation components). The element of the model object that contains the resulting variance-covariance matrix is called \sQuote{\code{vvc}}. See \code{\link{matreg}} for an example making use of such a matrix. } } \value{ An object of class \code{c("rma.mv","rma")}. The object is a list containing the following components: \item{beta}{estimated coefficients of the model.} \item{se}{standard errors of the coefficients.} \item{zval}{test statistics of the coefficients.} \item{pval}{corresponding p-values.} \item{ci.lb}{lower bound of the confidence intervals for the coefficients.} \item{ci.ub}{upper bound of the confidence intervals for the coefficients.} \item{vb}{variance-covariance matrix of the estimated coefficients.} \item{sigma2}{estimated \mjseqn{\sigma^2} value(s).} \item{tau2}{estimated \mjseqn{\tau^2} value(s).} \item{rho}{estimated \mjseqn{\rho} value(s).} \item{gamma2}{estimated \mjseqn{\gamma^2} value(s).} \item{phi}{estimated \mjseqn{\phi} value(s).} \item{k}{number of observed effect sizes or outcomes included in the analysis.} \item{p}{number of coefficients in the model (including the intercept).} \item{m}{number of coefficients included in the omnibus test of moderators.} \item{QE}{test statistic of the test for (residual) heterogeneity.} \item{QEp}{corresponding p-value.} \item{QM}{test statistic of the omnibus test of moderators.} \item{QMp}{corresponding p-value.} \item{int.only}{logical that indicates whether the model is an intercept-only model.} \item{yi, V, X}{the vector of outcomes, the corresponding variance-covariance matrix of the sampling errors, and the model matrix.} \item{M}{the estimated marginal variance-covariance matrix of the observed effect sizes or outcomes.} \item{fit.stats}{a list with the log-likelihood, deviance, AIC, BIC, and AICc values.} \item{vvc}{variance-covariance matrix of the variance/correlation component estimates (\code{NA} when \code{cvvc=FALSE}).} \item{\dots}{some additional elements/values.} } \section{Methods}{ The results of the fitted model are formatted and printed with the \code{\link[=print.rma.mv]{print}} function. If fit statistics should also be given, use \code{\link[=summary.rma]{summary}} (or use the \code{\link[=fitstats.rma]{fitstats}} function to extract them). Full versus reduced model comparisons in terms of fit statistics and likelihood ratio tests can be obtained with \code{\link[=anova.rma]{anova}}. Wald-type tests for sets of model coefficients or linear combinations thereof can be obtained with the same function. Tests and confidence intervals based on (cluster) robust methods can be obtained with \code{\link[=robust.rma.mv]{robust}}. Predicted/fitted values can be obtained with \code{\link[=predict.rma]{predict}} and \code{\link[=fitted.rma]{fitted}}. For best linear unbiased predictions, see \code{\link[=ranef.rma.mv]{ranef}}. The \code{\link[=residuals.rma]{residuals}}, \code{\link[=rstandard.rma.mv]{rstandard}}, and \code{\link[=rstudent.rma.mv]{rstudent}} functions extract raw and standardized residuals. See \code{\link[=influence.rma.mv]{influence}} for additional model diagnostics (e.g., to determine influential studies). For models with moderators, variance inflation factors can be obtained with \code{\link[=vif.rma]{vif}}. Confidence intervals for any variance/correlation components in the model can be obtained with \code{\link[=confint.rma.mv]{confint}}. For random/mixed-effects models, the \code{\link[=profile.rma.mv]{profile}} function can be used to obtain a plot of the (restricted) log-likelihood as a function of a specific variance/correlation component of the model. For models with moderators, \code{\link[=regplot.rma]{regplot}} draws scatter plots / bubble plots, showing the (marginal) relationship between the observed outcomes and a selected moderator from the model. Other extractor functions include \code{\link[=coef.rma]{coef}}, \code{\link[=vcov.rma]{vcov}}, \code{\link[=logLik.rma]{logLik}}, \code{\link[=deviance.rma]{deviance}}, \code{\link[=AIC.rma]{AIC}}, \code{\link[=BIC.rma]{BIC}}, \code{\link[=hatvalues.rma.mv]{hatvalues}}, and \code{\link[=weights.rma.mv]{weights}}. } \note{ Argument \code{V} also accepts a list of variance-covariance matrices for the observed effect sizes or outcomes. From the list elements, the full (block diagonal) variance-covariance matrix is then automatically constructed. For this to work correctly, the list elements must be in the same order as the observed outcomes. Model fitting is done via numerical optimization over the model parameters. By default, \code{\link{nlminb}} is used for the optimization. One can also chose a different optimizer from \code{\link{optim}} via the \code{control} argument (e.g., \code{control=list(optimizer="BFGS")} or \code{control=list(optimizer="Nelder-Mead")}). Besides \code{\link{nlminb}} and one of the methods from \code{\link{optim}}, one can also choose one of the optimizers from the \code{minqa} package (i.e., \code{\link[minqa]{uobyqa}}, \code{\link[minqa]{newuoa}}, or \code{\link[minqa]{bobyqa}}), one of the (derivative-free) algorithms from the \code{\link[nloptr]{nloptr}} package, the Newton-type algorithm implemented in \code{\link{nlm}}, the various algorithms implemented in the \code{dfoptim} package (\code{\link[dfoptim]{hjk}} for the Hooke-Jeeves, \code{\link[dfoptim]{nmk}} for the Nelder-Mead, and \code{\link[dfoptim]{mads}} for the Mesh Adaptive Direct Searches algorithm), the quasi-Newton type optimizers \code{\link[ucminf]{ucminf}} and \code{\link[lbfgsb3c]{lbfgsb3c}} and the subspace-searching simplex algorithm \code{\link[subplex]{subplex}} from the packages of the same name, the Barzilai-Borwein gradient decent method implemented in \code{\link[BB]{BBoptim}}, the \code{\link[optimx]{Rcgmin}} and \code{\link[optimx]{Rvmmin}} optimizers, or the parallelized version of the L-BFGS-B algorithm implemented in \code{\link[optimParallel]{optimParallel}} from the package of the same name. The optimizer name must be given as a character string (i.e., in quotes). Additional control parameters can be specified via the \code{control} argument (e.g., \code{control=list(iter.max=1000, rel.tol=1e-8)}). For \code{\link[nloptr]{nloptr}}, the default is to use the BOBYQA implementation from that package with a relative convergence criterion of \code{1e-8} on the function value (i.e., log-likelihood), but this can be changed via the \code{algorithm} and \code{ftop_rel} arguments (e.g., \code{control=list(optimizer="nloptr", algorithm="NLOPT_LN_SBPLX", ftol_rel=1e-6)}). For \code{\link[optimParallel]{optimParallel}}, the control argument \code{ncpus} can be used to specify the number of cores to use for the parallelization (e.g., \code{control=list(optimizer="optimParallel", ncpus=2)}). With \code{parallel::detectCores()}, one can check on the number of available cores on the local machine. At the moment, the starting values are not chosen in a terribly clever way and could be far off. As a result, the optimizer may be slow to converge or may even get stuck at a local maximum. One can set the starting values manually for the various variance/correlation components in the model via the \code{control} argument by specifying the vectors \code{sigma2.init}, \code{tau2.init}, \code{rho.init}, \code{gamma2.init}, and/or \code{phi.init} as needed. Especially for complex models, it is a good idea to try out different starting values to make sure that the same estimates are obtained. Information on the progress of the optimization algorithm can be obtained by setting \code{verbose=TRUE} (this won't work when using parallelization). Since fitting complex models with many random effects can be computationally expensive, this option is useful to determine how the model fitting is progressing. One can also set \code{verbose} to an integer (\code{verbose=2} yields even more information and \code{verbose=3} also sets \code{option(warn=1)} temporarily). Whether a particular variance/correlation component is actually identifiable needs to be carefully examined when fitting complex models. The function does some limited checking internally to fix variances and/or correlations to zero when it is appears that insufficient information is available to estimate a particular parameter. For example, if a particular factor only has a single level, the corresponding variance component is set to 0 (this check can be switched off with \code{control=list(check.k.gtr.1=FALSE)}). However, it is strongly advised in general to do post model fitting checks to make sure that the likelihood surface around the ML/REML estimates is not flat for some of the parameter estimates (which would imply that the estimates are essentially arbitrary). For example, one can plot the (restricted) log-likelihood as a function of each variance/correlation component in the model to make sure that each profile plot shows a clear peak at the corresponding ML/REML estimate. The \code{\link[=profile.rma.mv]{profile}} function can be used for this purpose. Finally, note that the model fitting is not done in a very efficient manner at the moment, which is partly a result of allowing for crossed random effects and correlations across the entire dataset (e.g., when using the \code{R} argument). As a result, the function works directly with the entire \mjeqn{k \times k}{kxk} (marginal) variance-covariance matrix of the observed effect sizes or outcomes (instead of working with smaller blocks in a block diagonal structure). As a result, model fitting can be slow for large \mjseqn{k}. However, when the variance-covariance structure is actually sparse, a lot of speed can be gained by setting \code{sparse=TRUE}, in which case sparse matrix objects are used (via the \href{https://cran.r-project.org/package=Matrix}{Matrix} package). Also, when model fitting appears to be slow, setting \code{verbose=TRUE} is useful to obtain information on how the model fitting is progressing. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F., & Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. \emph{Statistics in Medicine}, \bold{17}(22), 2537--2550. \verb{https://doi.org/10.1002/(sici)1097-0258(19981130)17:22<2537::aid-sim953>3.0.co;2-c} Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (2nd ed., pp. 357--376). New York: Russell Sage Foundation. van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. \emph{Statistics in Medicine}, \bold{21}(4), 589--624. \verb{https://doi.org/10.1002/sim.1040} Ishak, K. J., Platt, R. W., Joseph, L., Hanley, J. A., & Caro, J. J. (2007). Meta-analysis of longitudinal studies. \emph{Clinical Trials}, \bold{4}(5), 525--539. \verb{https://doi.org/10.1177/1740774507083567} Kalaian, H. A., & Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. \emph{Psychological Methods}, \bold{1}(3), 227--235. \verb{https://doi.org/10.1037/1082-989X.1.3.227} Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. \emph{Research Synthesis Methods}, \bold{2}(1), 61--76. \verb{https://doi.org/10.1002/jrsm.35} Lajeunesse, M. J. (2011). On the meta-analysis of response ratios for studies with correlated and multi-group designs. \emph{Ecology}, \bold{92}(11), 2049--2055. \verb{https://doi.org/10.1890/11-0423.1} Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. \emph{Evolutionary Ecology}, \bold{26}(5), 1253--1274. \verb{https://doi.org/10.1007/s10682-012-9555-5} Pinheiro, J. C., & Bates, D. (2000). \emph{Mixed-effects models in S and S-PLUS}. New York: Springer. Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. \emph{Psychological Bulletin}, \bold{87}(2), 245--251. \verb{https://doi.org/10.1037/0033-2909.87.2.245} Salanti, G., Higgins, J. P. T., Ades, A. E., & Ioannidis, J. P. A. (2008). Evaluation of networks of randomized trials. \emph{Statistical Methods in Medical Research}, \bold{17}(3), 279--301. \verb{https://doi.org/10.1177/0962280207080643} Trikalinos, T. A., & Olkin, I. (2012). Meta-analysis of effect sizes reported at multiple time points: A multivariate approach. \emph{Clinical Trials}, \bold{9}(5), 610--620. \verb{https://doi.org/10.1177/1740774512453218} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Wei, Y., & Higgins, J. P. (2013). Estimating within-study covariances in multivariate meta-analysis with multiple outcomes. \emph{Statistics in Medicine}, \bold{32}(7), 1191--1205. \verb{https://doi.org/10.1002/sim.5679} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, and \code{\link{rma.glmm}} for other model fitting functions. } \examples{ ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat ### fit random-effects model using rma.uni() rma(yi, vi, data=dat) ### fit random-effects model using rma.mv() ### note: sigma^2 in this model is the same as tau^2 from the previous model rma.mv(yi, vi, random = ~ 1 | trial, data=dat) ### change data into long format dat.long <- to.long(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, append=FALSE) dat.long ### set levels/labels for group ("con" = control/non-vaccinated, "exp" = experimental/vaccinated) dat.long$group <- factor(dat.long$group, levels=c(2,1), labels=c("con","exp")) dat.long ### calculate log odds and corresponding sampling variances dat.long <- escalc(measure="PLO", xi=out1, mi=out2, data=dat.long) dat.long ### fit bivariate random-effects model using rma.mv() res <- rma.mv(yi, vi, mods = ~ group, random = ~ group | study, struct="UN", data=dat.long) res } \keyword{models} metafor/man/print.permutest.rma.uni.Rd0000644000176200001440000000406114746146216017520 0ustar liggesusers\name{print.permutest.rma.uni} \alias{print.permutest.rma.uni} \title{Print Method for 'permutest.rma.uni' Objects} \description{ Function to print objects of class \code{"permutest.rma.uni"}. } \usage{ \method{print}{permutest.rma.uni}(x, digits=x$digits, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, \dots) } \arguments{ \item{x}{an object of class \code{"permutest.rma.uni"} obtained with \code{\link[=permutest.rma.uni]{permutest}}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{signif.stars}{logical to specify whether p-values should be encoded visually with \sQuote{significance stars}. Defaults to the \code{show.signif.stars} slot of \code{\link{options}}.} \item{signif.legend}{logical to specify whether the legend for the \sQuote{significance stars} should be printed. Defaults to the value for \code{signif.stars}.} \item{\dots}{other arguments.} } \details{ The output includes: \itemize{ \item the results of the omnibus test of moderators. Suppressed if the model includes only one coefficient (e.g., only an intercept, like in the equal- and random-effects models). The p-value is based on the permutation test. \item a table with the estimated coefficients, corresponding standard errors, test statistics, p-values, and confidence interval bounds. The p-values are based on permutation tests. If \code{permci} was set to \code{TRUE}, then the permutation-based CI bounds are shown. } } \value{ The function does not return an object. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=permutest.rma.uni]{permutest}} for the function to create \code{permutest.rma.uni} objects. } \keyword{print} metafor/man/print.rma.Rd0000644000176200001440000003103414746146216014677 0ustar liggesusers\name{print.rma} \alias{print.rma} \alias{print.rma.uni} \alias{print.rma.mh} \alias{print.rma.peto} \alias{print.rma.glmm} \alias{print.rma.mv} \alias{summary} \alias{summary.rma} \alias{print.summary.rma} \title{Print and Summary Methods for 'rma' Objects} \description{ Functions to print objects of class \code{"rma.uni"}, \code{"rma.mh"}, \code{"rma.peto"}, \code{"rma.glmm"}, \code{"rma.glmm"}, and \code{"rma.mv"}. \loadmathjax } \usage{ \method{print}{rma.uni}(x, digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, \dots) \method{print}{rma.mh}(x, digits, showfit=FALSE, \dots) \method{print}{rma.peto}(x, digits, showfit=FALSE, \dots) \method{print}{rma.glmm}(x, digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, \dots) \method{print}{rma.mv}(x, digits, showfit=FALSE, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, \dots) \method{summary}{rma}(object, digits, \dots) \method{print}{summary.rma}(x, digits, showfit=TRUE, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"}, \code{"rma.mh"}, \code{"rma.peto"}, \code{"rma.glmm"}, \code{"rma.mv"}, or \code{"summary.rma"} (for \code{print}).} \item{object}{an object of class \code{"rma"} (for \code{summary}).} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object. See also \link[=misc-options]{here} for further details on how to control the number of digits in the output.} \item{showfit}{logical to specify whether the fit statistics and information criteria should be printed (the default is \code{FALSE} for \code{print} and \code{TRUE} for \code{summary}).} \item{signif.stars}{logical to specify whether p-values should be encoded visually with \sQuote{significance stars}. Defaults to the \code{show.signif.stars} slot of \code{\link{options}}.} \item{signif.legend}{logical to specify whether the legend for the \sQuote{significance stars} should be printed. Defaults to the value for \code{signif.stars}.} \item{\dots}{other arguments.} } \details{ The output includes: \itemize{ \item the log-likelihood, deviance, AIC, BIC, and AICc value (when setting \code{showfit=TRUE} or by default for \code{summary}). \item for objects of class \code{"rma.uni"} and \code{"rma.glmm"}, the amount of (residual) heterogeneity in the random/mixed-effects model (i.e., the estimate of \mjseqn{\tau^2} and its square root). Suppressed for equal-effects models. The (asymptotic) standard error of the estimate of \mjseqn{\tau^2} is also provided (where possible). \item for objects of \code{"rma.mv"}, a table providing information about the variance components and correlations in the model. For \mjseqn{\sigma^2} components, the estimate and its square root are provided, in addition to the number of values/levels, whether the component was fixed or estimated, and the name of the grouping variable/factor. If the \code{R} argument was used to specify a known correlation matrix for a particular random effect, then this is also indicated. For models with an \sQuote{\code{~ inner | outer}} formula term, the name of the inner and outer grouping variable/factor are given and the number of values/levels of these variables/factors. In addition, for each \mjseqn{\tau^2} component, the estimate and its square root are provided, the number of effects or outcomes observed at each level of the inner grouping variable/factor (only for \code{struct="HCS"}, \code{struct="DIAG"}, \code{struct="HAR"}, and \code{struct="UN"}), and whether the component was fixed or estimated. Finally, either the estimate of \mjseqn{\rho} (for \code{struct="CS"}, \code{struct="AR"}, \code{struct="CAR"}, \code{struct="HAR"}, or \code{struct="HCS"}) or the entire estimated correlation matrix (for \code{struct="UN"}) between the levels of the inner grouping variable/factor is provided, again with information whether a particular correlation was fixed or estimated, and how often each combination of levels of the inner grouping variable/factor was observed across the levels of the outer grouping variable/factor. If there is a second \sQuote{\code{~ inner | outer}} formula term, the same information as described above will be provided, but now for the \mjseqn{\gamma^2} and \mjseqn{\phi} components. \item the \mjseqn{I^2} statistic, which estimates (in percent) how much of the total variability in the observed effect sizes or outcomes (which is composed of heterogeneity plus sampling variability) can be attributed to heterogeneity among the true effects. For a meta-regression model, \mjseqn{I^2} estimates how much of the unaccounted variability (which is composed of residual heterogeneity plus sampling variability) can be attributed to residual heterogeneity. See \sQuote{Note} for how \mjseqn{I^2} is computed. \item the \mjseqn{H^2} statistic, which estimates the ratio of the total amount of variability in the observed effect sizes or outcomes to the amount of sampling variability. For a meta-regression model, \mjseqn{H^2} estimates the ratio of the unaccounted variability in the observed effect sizes or outcomes to the amount of sampling variability. See \sQuote{Note} for how \mjseqn{H^2} is computed. \item for objects of class \code{"rma.uni"}, the \mjseqn{R^2} statistic, which estimates the amount of heterogeneity accounted for by the moderators included in the model and can be regarded as a pseudo \mjseqn{R^2} statistic (Raudenbush, 2009). Only provided when fitting a model including moderators. This is suppressed (and set to \code{NULL}) for models without moderators or if the model does not contain an intercept. See \sQuote{Note} for how \mjseqn{R^2} is computed. \item for objects of class \code{"rma.glmm"}, the amount of study level variability (only when using a model that models study level differences as a random effect). \item the results of the test for (residual) heterogeneity. This is the usual \mjseqn{Q}-test for heterogeneity when not including moderators in the model and the \mjseqn{Q_E}-test for residual heterogeneity when moderators are included. For objects of class \code{"rma.glmm"}, the results from a Wald-type test and a likelihood ratio test are provided (see \code{\link{rma.glmm}} for more details). \item the results of the omnibus (Wald-type) test of the coefficients in the model (the indices of the coefficients tested are also indicated). Suppressed if the model includes only one coefficient (e.g., only an intercept, like in the equal- and random-effects models). \item a table with the estimated coefficients, corresponding standard errors, test statistics, p-values, and confidence interval bounds. \item the Cochran-Mantel-Haenszel test and Tarone's test for heterogeneity (only when analyzing odds ratios using the Mantel-Haenszel method, i.e., \code{"rma.mh"}). } See also \link[=misc-options]{here} for details on the option to create styled/colored output with the help of the \href{https://cran.r-project.org/package=crayon}{crayon} package. } \value{ The \code{print} functions do not return an object. The \code{summary} function returns the object passed to it (with additional class \code{"summary.rma"}). } \note{ For random-effects models, the \mjseqn{I^2} statistic is computed with \mjdeqn{I^2 = 100\\\\\\\% \times \frac{\hat{\tau}^2}{\hat{\tau}^2 + \tilde{v}},}{I^2 = 100\\\% hat(\tau)^2 / (hat(\tau)^2 + v),} where \mjeqn{\hat{\tau}^2}{hat(\tau)^2} is the estimated value of \mjseqn{\tau^2} and \mjdeqn{\tilde{v} = \frac{(k-1) \sum w_i}{(\sum w_i)^2 - \sum w_i^2},}{v = ((k-1) \sum w_i) / ((\sum w_i)^2 - \sum w_i^2),} where \mjseqn{w_i = 1 / v_i} is the inverse of the sampling variance of the \mjeqn{i\text{th}}{ith} study (\mjeqn{\tilde{v}}{v} is equation 9 in Higgins & Thompson, 2002, and can be regarded as the \sQuote{typical} within-study variance of the observed effect sizes or outcomes). The \mjseqn{H^2} statistic is computed with \mjdeqn{H^2 = \frac{\hat{\tau}^2 + \tilde{v}}{\tilde{v}}.}{H^2 = (hat(\tau)^2 + v) / v.} Analogous equations are used for mixed-effects models. Therefore, depending on the estimator of \mjseqn{\tau^2} used, the values of \mjseqn{I^2} and \mjseqn{H^2} will change. For random-effects models, \mjseqn{I^2} and \mjseqn{H^2} are often computed with \mjseqn{I^2 = (Q-(k-1))/Q} and \mjseqn{H^2 = Q/(k-1)}, where \mjseqn{Q} denotes the statistic of the test for heterogeneity and \mjseqn{k} the number of studies (i.e., observed effect sizes or outcomes) included in the meta-analysis. The equations used in the \pkg{metafor} package to compute these statistics are more general and have the advantage that the values of \mjseqn{I^2} and \mjseqn{H^2} will be consistent with the estimated value of \mjseqn{\tau^2} (i.e., if \mjeqn{\hat{\tau}^2 = 0}{hat(\tau)^2 = 0}, then \mjseqn{I^2 = 0} and \mjseqn{H^2 = 1} and if \mjeqn{\hat{\tau}^2 > 0}{hat(\tau)^2 > 0}, then \mjseqn{I^2 > 0} and \mjseqn{H^2 > 1}). The two definitions of \mjseqn{I^2} and \mjseqn{H^2} actually coincide when using the DerSimonian-Laird estimator of \mjseqn{\tau^2} (i.e., the commonly used equations are actually special cases of the more general definitions given above). Therefore, if you prefer the more conventional definitions of these statistics, use \code{method="DL"} when fitting the random/mixed-effects model with the \code{\link{rma.uni}} function. The conventional definitions are also automatically used when fitting an equal-effects models. For mixed-effects models, the pseudo \mjseqn{R^2} statistic (Raudenbush, 2009) is computed with \mjdeqn{R^2 = \frac{\hat{\tau}_{RE}^2 - \hat{\tau}_{ME}^2}{\hat{\tau}_{RE}^2},}{R^2 = (hat(\tau)^2_RE - hat(\tau)^2_ME) / hat(\tau)^2_RE,} where \mjeqn{\hat{\tau}_{RE}^2}{hat(\tau)^2_RE} denotes the estimated value of \mjseqn{\tau^2} based on the random-effects model (i.e., the total amount of heterogeneity) and \mjeqn{\hat{\tau}_{ME}^2}{hat(\tau)^2_ME} denotes the estimated value of \mjseqn{\tau^2} based on the mixed-effects model (i.e., the residual amount of heterogeneity). It can happen that \mjeqn{\hat{\tau}_{RE}^2 < \hat{\tau}_{ME}^2}{hat(\tau)^2_RE < hat(\tau)^2_ME}, in which case \mjseqn{R^2} is set to zero (and also if \mjeqn{\hat{\tau}_{RE}^2 = 0}{hat(\tau)^2_RE = 0}). Again, the value of \mjseqn{R^2} will change depending on the estimator of \mjseqn{\tau^2} used. This statistic is only computed when the mixed-effects model includes an intercept (so that the random-effects model is clearly nested within the mixed-effects model). You can also use the \code{\link[=anova.rma]{anova}} function to compute \mjseqn{R^2} for any two models that are known to be nested. Note that the pseudo \mjseqn{R^2} statistic may not be very accurate unless \mjseqn{k} is large (Lopez-Lopez et al., 2014). For fixed-effects with moderators models, the \mjseqn{R^2} statistic is simply the standard \mjseqn{R^2} statistic (also known as the \sQuote{coefficient of determination}) computed based on weighted least squares estimation. To be precise, the so-called \sQuote{adjusted} \mjseqn{R^2} statistic is provided, since \mjseqn{k} is often relatively small in meta-analyses, in which case the adjustment is relevant. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. \emph{Statistics in Medicine}, \bold{21}(11), 1539--1558. \verb{https://doi.org/10.1002/sim.1186} \enc{López-López}{Lopez-Lopez}, J. A., \enc{Marín-Martínez}{Marin-Martinez}, F., \enc{Sánchez-Meca}{Sanchez-Meca}, J., Van den Noortgate, W., & Viechtbauer, W. (2014). Estimation of the predictive power of the model in mixed-effects meta-regression: A simulation study. \emph{British Journal of Mathematical and Statistical Psychology}, \bold{67}(1), 30--48. \verb{https://doi.org/10.1111/bmsp.12002} Raudenbush, S. W. (2009). Analyzing effect sizes: Random effects models. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (2nd ed., pp. 295--315). New York: Russell Sage Foundation. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for the corresponding model fitting functions. } \keyword{print} metafor/man/blsplit.Rd0000644000176200001440000000303414746146216014435 0ustar liggesusers\name{blsplit} \alias{blsplit} \title{Split Block Diagonal Matrix} \description{ Function to split a block diagonal matrix into a list of sub-matrices. } \usage{ blsplit(x, cluster, fun, args, sort=FALSE) } \arguments{ \item{x}{a block diagonal matrix.} \item{cluster}{vector to specify the clustering variable to use for splitting.} \item{fun}{optional argument to specify a function to apply to each sub-matrix.} \item{args}{optional argument to specify any additional argument(s) for the function specified via \code{fun}.} \item{sort}{logical to specify whether to sort the list by the unique cluster values (the default is \code{FALSE}).} } \value{ A list of one or more sub-matrices. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \seealso{ \code{\link{bldiag}} for a function to create a block diagonal matrix based on sub-matrices. \code{\link{vcalc}} for a function to construct a variance-covariance matrix of dependent effect sizes or outcomes, which often has a block diagonal structure. } \examples{ ### copy data into 'dat' dat <- dat.assink2016 ### assume that the effect sizes within studies are correlated with rho=0.6 V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) ### split V matrix into list of sub-matrices Vs <- blsplit(V, cluster=dat$study) Vs[1:2] lapply(Vs[1:2], cov2cor) ### illustrate the use of the fun and args arguments blsplit(V, cluster=dat$study, cov2cor)[1:2] blsplit(V, cluster=dat$study, round, 3)[1:2] } \keyword{manip} metafor/man/coef.rma.Rd0000644000176200001440000000432014746146216014455 0ustar liggesusers\name{coef.rma} \alias{coef} \alias{coef.rma} \alias{coef.summary.rma} \title{Extract the Model Coefficients and Coefficient Table from 'rma' and 'summary.rma' Objects} \description{ Function to extract the estimated model coefficients from objects of class \code{"rma"}. For objects of class \code{"summary.rma"}, the model coefficients, corresponding standard errors, test statistics, p-values, and confidence interval bounds are extracted. } \usage{ \method{coef}{rma}(object, \dots) \method{coef}{summary.rma}(object, \dots) } \arguments{ \item{object}{an object of class \code{"rma"} or \code{"summary.rma"}.} \item{\dots}{other arguments.} } \value{ Either a vector with the estimated model coefficient(s) or a data frame with the following elements: \item{estimate}{estimated model coefficient(s).} \item{se}{corresponding standard error(s).} \item{zval}{corresponding test statistic(s).} \item{pval}{corresponding p-value(s).} \item{ci.lb}{corresponding lower bound of the confidence interval(s).} \item{ci.ub}{corresponding upper bound of the confidence interval(s).} When the model was fitted with \code{test="t"}, \code{test="knha"}, \code{test="hksj"}, or \code{test="adhoc"}, then \code{zval} is called \code{tval} in the data frame that is returned by the function. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which model coefficients/tables can be extracted. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### extract model coefficients coef(res) ### extract model coefficient table coef(summary(res)) } \keyword{models} metafor/man/forest.default.Rd0000644000176200001440000004554714746146216015730 0ustar liggesusers\name{forest.default} \alias{forest.default} \title{Forest Plots (Default Method)} \description{ Function to create forest plots for a given set of data. \loadmathjax } \usage{ \method{forest}{default}(x, vi, sei, ci.lb, ci.ub, annotate=TRUE, showweights=FALSE, header=TRUE, xlim, alim, olim, ylim, at, steps=5, level=95, refline=0, digits=2L, width, xlab, slab, ilab, ilab.lab, ilab.xpos, ilab.pos, order, subset, transf, atransf, targs, rows, efac=1, pch, psize, plim=c(0.5,1.5), col, shade, colshade, lty, fonts, cex, cex.lab, cex.axis, \dots) } \arguments{ \item{x}{vector of length \mjseqn{k} with the observed effect sizes or outcomes.} \item{vi}{vector of length \mjseqn{k} with the corresponding sampling variances.} \item{sei}{vector of length \mjseqn{k} with the corresponding standard errors (note: only one of the two, \code{vi} or \code{sei}, needs to be specified).} \item{ci.lb}{vector of length \mjseqn{k} with the corresponding lower confidence interval bounds. Not needed if \code{vi} or \code{sei} is specified. See \sQuote{Details}.} \item{ci.ub}{vector of length \mjseqn{k} with the corresponding upper confidence interval bounds. Not needed if \code{vi} or \code{sei} is specified. See \sQuote{Details}.} \item{annotate}{logical to specify whether annotations should be added to the plot (the default is \code{TRUE}).} \item{showweights}{logical to specify whether the annotations should also include the inverse variance weights (the default is \code{FALSE}).} \item{header}{logical to specify whether column headings should be added to the plot (the default is \code{TRUE}). Can also be a character vector to specify the left and right headings (or only the left one).} \item{xlim}{horizontal limits of the plot region. If unspecified, the function sets the horizontal plot limits to some sensible values.} \item{alim}{the x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{olim}{argument to specify observation/outcome limits. If unspecified, no limits are used.} \item{ylim}{the y-axis limits of the plot. If unspecified, the function sets the y-axis limits to some sensible values. Can also be a single value to set the lower bound (while the upper bound is still set automatically).} \item{at}{position of the x-axis tick marks and corresponding labels. If unspecified, the function sets the tick mark positions/labels to some sensible values.} \item{steps}{the number of tick marks for the x-axis (the default is 5). Ignored when the positions are specified via the \code{at} argument.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (the default is 95; see \link[=misc-options]{here} for details).} \item{refline}{numeric value to specify the location of the vertical \sQuote{reference} line (the default is 0). The line can be suppressed by setting this argument to \code{NA}. Can also be a vector to add multiple lines.} \item{digits}{integer to specify the number of decimal places to which the annotations and tick mark labels of the x-axis should be rounded (the default is \code{2L}). Can also be a vector of two integers, the first to specify the number of decimal places for the annotations, the second for the x-axis labels (when \code{showweights=TRUE}, can also specify a third value for the weights). When specifying an integer (e.g., \code{2L}), trailing zeros after the decimal mark are dropped for the x-axis labels. When specifying a numeric value (e.g., \code{2}), trailing zeros are retained.} \item{width}{optional integer to manually adjust the width of the columns for the annotations (either a single integer or a vector of the same length as the number of annotation columns).} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title. Can also be a vector of three/two values (to also/only add labels at the end points of the x-axis limits).} \item{slab}{optional vector with labels for the \mjseqn{k} studies. If unspecified, the function tries to extract study labels from \code{x} and otherwise simple labels are created within the function. To suppress labels, set this argument to \code{NA}.} \item{ilab}{optional vector, matrix, or data frame providing additional information about the studies that should be added to the plot.} \item{ilab.lab}{optional character vector with (column) labels for the variable(s) given via \code{ilab}.} \item{ilab.xpos}{optional numeric vector to specify the horizontal position(s) of the variable(s) given via \code{ilab}.} \item{ilab.pos}{integer(s) (either 1, 2, 3, or 4) to specify the alignment of the variable(s) given via \code{ilab} (2 means right, 4 means left aligned). If unspecified, the default is to center the values.} \item{order}{optional character string to specify how the studies should be ordered. Can also be a variable based on which the studies will be ordered. See \sQuote{Details}.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be included in the plot.} \item{transf}{optional argument to specify a function to transform the observed outcomes and corresponding confidence interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{atransf}{optional argument to specify a function to transform the x-axis labels and annotations (e.g., \code{atransf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified via \code{transf} or \code{atransf}.} \item{rows}{optional vector to specify the rows (or more generally, the positions) for plotting the outcomes. Can also be a single value to specify the row of the first outcome (the remaining outcomes are then plotted below this starting row).} \item{efac}{vertical expansion factor for confidence interval limits and arrows. The default value of 1 should usually work fine. Can also be a vector of two numbers, the first for CI limits, the second for arrows.} \item{pch}{plotting symbol to use for the observed outcomes. By default, a filled square is used. See \code{\link{points}} for other options. Can also be a vector of values.} \item{psize}{optional numeric value to specify the point sizes for the observed outcomes. If unspecified, the point sizes are a function of the precision of the estimates. Can also be a vector of values.} \item{plim}{numeric vector of length 2 to scale the point sizes (ignored when \code{psize} is specified). See \sQuote{Details}.} \item{col}{optional character string to specify the color of the observed outcomes. Can also be a vector.} \item{shade}{optional character string or a (logical or numeric) vector for shading rows of the plot. See \sQuote{Details}.} \item{colshade}{optional argument to specify the color for the shading.} \item{lty}{optional argument to specify the line type for the confidence intervals. If unspecified, the function sets this to \code{"solid"} by default.} \item{fonts}{optional character string to specify the font for the study labels, annotations, and the extra information (if specified via \code{ilab}). If unspecified, the default font is used.} \item{cex}{optional character and symbol expansion factor. If unspecified, the function sets this to a sensible value.} \item{cex.lab}{optional expansion factor for the x-axis title. If unspecified, the function sets this to a sensible value.} \item{cex.axis}{optional expansion factor for the x-axis labels. If unspecified, the function sets this to a sensible value.} \item{\dots}{other arguments.} } \details{ The plot shows the observed effect sizes or outcomes (by default as filled squares) with corresponding \code{level}\% confidence intervals (as horizontal lines extending from the observed outcomes). To use the function, one should specify the observed outcomes (via the \code{x} argument) together with the corresponding sampling variances (via the \code{vi} argument) or with the corresponding standard errors (via the \code{sei} argument). The confidence intervals are computed with \mjeqn{y_i \pm z_{crit} \sqrt{v_i}}{y_i ± z_crit \sqrt{v_i}}, where \mjseqn{y_i} denotes the observed outcome in the \mjeqn{i\text{th}}{ith} study, \mjseqn{v_i} the corresponding sampling variance (and hence \mjseqn{\sqrt{v_i}} is the corresponding standard error), and \mjeqn{z_{crit}}{z_crit} is the appropriate critical value from a standard normal distribution (e.g., \mjseqn{1.96} for a 95\% CI). Alternatively, one can directly specify the confidence interval bounds via the \code{ci.lb} and \code{ci.ub} arguments. With the \code{transf} argument, the observed outcomes and corresponding confidence interval bounds can be transformed with some suitable function. For example, when plotting log odds ratios, then one could use \code{transf=exp} to obtain a forest plot showing the odds ratios. Alternatively, one can use the \code{atransf} argument to transform the x-axis labels and annotations (e.g., \code{atransf=exp}). See also \link{transf} for some other useful transformation functions in the context of a meta-analysis. The examples below illustrate the use of these arguments. By default, the studies are ordered from top to bottom (i.e., the first study in the dataset will be placed in row \mjseqn{k}, the second study in row \mjseqn{k-1}, and so on, until the last study, which is placed in the first row). The studies can be reordered with the \code{order} argument: \itemize{ \item \code{order="obs"}: the studies are ordered by the observed outcomes, \item \code{order="prec"}: the studies are ordered by their sampling variances. } Alternatively, it is also possible to set \code{order} equal to a variable based on which the studies will be ordered (see \sQuote{Examples}). One can also use the \code{rows} argument to specify the rows (or more generally, the positions) for plotting the outcomes. Additional columns with information about the studies can be added to the plot via the \code{ilab} argument. This can either be a single variable or an entire matrix / data frame (with as many rows as there are studies in the forest plot). The \code{ilab.xpos} argument can be used to specify the horizontal position of the variables specified via \code{ilab}. The \code{ilab.pos} argument can be used to specify how the variables should be aligned. The \code{ilab.lab} argument can be used to add headers to the columns. Pooled estimates can be added to the plot as polygons with the \code{\link{addpoly}} function. See the documentation for that function for examples. By default (i.e., when \code{psize} is not specified), the point sizes are a function of the precision (i.e., inverse standard errors) of the outcomes. This way, more precise estimates are visually more prominent in the plot. By making the point sizes a function of the inverse standard errors of the estimates, their areas are proportional to the inverse sampling variances, which corresponds to the weights they would receive in an equal-effects model. However, the point sizes are rescaled so that the smallest point size is \code{plim[1]} and the largest point size is \code{plim[2]}. As a result, their relative sizes (i.e., areas) no longer exactly correspond to their relative weights in such a model. If exactly relative point sizes are desired, one can set \code{plim[2]} to \code{NA}, in which case the points are rescaled so that the smallest point size corresponds to \code{plim[1]} and all other points are scaled accordingly. As a result, the largest point may be very large. Alternatively, one can set \code{plim[1]} to \code{NA}, in which case the points are rescaled so that the largest point size corresponds to \code{plim[2]} and all other points are scaled accordingly. As a result, the smallest point may be very small and essentially indistinguishable from the confidence interval line. To avoid the latter, one can also set \code{plim[3]}, which enforces a minimal point size. With the \code{shade} argument, one can shade rows of the plot. The argument can be set to one of the following character strings: \code{"zebra"} (same as \code{shade=TRUE}) or \code{"zebra2"} to use zebra-style shading (starting either at the first or second study) or to \code{"all"} in which case all rows are shaded. Alternatively, the argument can be set to a logical or numeric vector to specify which rows should be shaded. The \code{colshade} argument can be used to set the color of shaded rows. } \section{Note}{ The function sets some sensible values for the optional arguments, but it may be necessary to adjust these in certain circumstances. The function actually returns some information about the chosen values invisibly. Printing this information is useful as a starting point to customize the plot. If the number of studies is quite large, the labels, annotations, and symbols may become quite small and impossible to read. Stretching the plot window vertically may then provide a more readable figure (one should call the function again after adjusting the window size, so that the label/symbol sizes can be properly adjusted). Also, the \code{cex}, \code{cex.lab}, and \code{cex.axis} arguments are then useful to adjust the symbol and text sizes. If the outcome measure used for creating the plot is bounded (e.g., correlations are bounded between -1 and +1, proportions are bounded between 0 and 1), one can use the \code{olim} argument to enforce those limits (the observed outcomes and confidence intervals cannot exceed those bounds then). The \code{lty} argument can also be a vector of two elements, the first for specifying the line type of the individual CIs (\code{"solid"} by default), the second for the line type of the horizontal line that is automatically added to the plot (\code{"solid"} by default; set to \code{"blank"} to remove it). } \section{Additional Optional Arguments}{ There are some additional optional arguments that can be passed to the function via \code{...} (hence, they cannot be abbreviated): \describe{ \item{top}{single numeric value to specify the amount of space (in terms of number of rows) to leave empty at the top of the plot (e.g., for adding headers). The default is 3.} \item{annosym}{vector of length 3 to select the left bracket, separation, and right bracket symbols for the annotations. The default is \code{c(" [", ", ", "]")}. Can also include a 4th element to adjust the look of the minus symbol, for example to use a proper minus sign (\ifelse{latex}{\mjseqn{-}}{\enc{−}{-}}) instead of a hyphen-minus (-). Can also include a 5th element that should be a space-like symbol (e.g., an \sQuote{en space}) that is used in place of numbers (only relevant when trying to line up numbers exactly). For example, \code{annosym=c(" [", ", ", "]", "\u2212", "\u2002")} would use a proper minus sign and an \sQuote{en space} for the annotations. The decimal point character can be adjusted via the \code{OutDec} argument of the \code{\link{options}} function before creating the plot (e.g., \code{options(OutDec=",")}).} \item{tabfig}{single numeric value (either a 1, 2, or 3) to set \code{annosym} automatically to a vector that will exactly align the numbers in the annotations when using a font that provides \sQuote{tabular figures}. Value 1 corresponds to using \code{"\u2212"} (a minus) and \code{"\u2002"} (an \sQuote{en space}) in \code{annoyym} as shown above. Value 2 corresponds to \code{"\u2013"} (an \sQuote{en dash}) and \code{"\u2002"} (an \sQuote{en space}). Value 3 corresponds to \code{"\u2212"} (a minus) and \code{"\u2007"} (a \sQuote{figure space}). The appropriate value for this argument depends on the font used. For example, for fonts Calibri and Carlito, 1 or 2 should work; for fonts Source Sans 3 and Palatino Linotype, 1, 2, and 3 should all work; for Computer/Latin Modern and Segoe UI, 2 should work; for Lato, Roboto, and Open Sans (and maybe Arial), 3 should work. Other fonts may work as well, but this is untested.} \item{textpos}{numeric vector of length 2 to specify the placement of the study labels and the annotations. The default is to use the horizontal limits of the plot region, i.e., the study labels to the right of \code{xlim[1]} and the annotations to the left of \code{xlim[2]}.} \item{rowadj}{numeric vector of length 3 to vertically adjust the position of the study labels, the annotations, and the extra information (if specified via \code{ilab}). This is useful for fine-tuning the position of text added with different positional alignments (i.e., argument \code{pos} in the \code{\link{text}} function).} } } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Lewis, S., & Clarke, M. (2001). Forest plots: Trying to see the wood and the trees. \emph{British Medical Journal}, \bold{322}(7300), 1479--1480. \verb{https://doi.org/10.1136/bmj.322.7300.1479} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{forest}} for an overview of the various \code{forest} functions and especially \code{\link{forest.rma}} for a function to draw forest plots including a pooled estimate polygon. \code{\link{addpoly}} for a function to add polygons to forest plots. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### default forest plot of the observed log risk ratios forest(dat$yi, dat$vi) ### directly specify the CI bounds out <- summary(dat) forest(dat$yi, ci.lb=out$ci.lb, ci.ub=out$ci.ub) ### the with() function can be used to avoid having to retype dat$... over and over with(dat, forest(yi, vi)) ### forest plot of the observed risk ratios (transform outcomes) with(dat, forest(yi, vi, transf=exp, alim=c(0,2), steps=5, xlim=c(-2.5,4), refline=1)) ### forest plot of the observed risk ratios (transformed x-axis) with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05,0.25,1,4,20)), xlim=c(-10,8))) ### make all points the same size with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05,0.25,1,4,20)), xlim=c(-10,8), psize=1)) ### and remove the vertical lines at the end of the CI bounds with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05,0.25,1,4,20)), xlim=c(-10,8), psize=1, efac=0)) ### forest plot of the observed risk ratios with studies ordered by the RRs with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05,0.25,1,4,20)), xlim=c(-10,8), order="obs")) ### forest plot of the observed risk ratios with studies ordered by absolute latitude with(dat, forest(yi, vi, atransf=exp, at=log(c(0.05,0.25,1,4,20)), xlim=c(-10,8), order=ablat)) ### see also examples for the forest.rma function } \keyword{hplot} metafor/man/pairmat.Rd0000644000176200001440000001243514746146216014426 0ustar liggesusers\name{pairmat} \alias{pairmat} \title{Construct a Pairwise Contrast Matrix for 'rma' Objects} \description{ Functions to construct a matrix of pairwise contrasts for objects of class \code{"rma"}. \loadmathjax } \usage{ pairmat(x, btt, btt2, \dots) } \arguments{ \item{x}{an object of class \code{"rma"}.} \item{btt}{vector of indices to specify for which coefficients pairwise contrasts should be constructed. Can also be a string to \code{\link{grep}} for. See \sQuote{Details}.} \item{btt2}{optional argument to specify a second set of coefficients that should also be included in the contrast matrix.} \item{\dots}{other arguments.} } \value{ When a meta-regression model includes a categorical moderator variable (i.e., a factor), there is often interest in testing whether the coefficients representing the various levels of the factor differ significantly from each other. The present function constructs the pairwise contrast matrix between all factor levels for a particular factor, which can be used together with the \code{\link[=anova.rma]{anova}} function to carry out such tests and the \code{\link[=predict.rma]{predict}} function to obtain corresponding confidence intervals. The \code{x} argument is used to specify a meta-regression model and the \code{btt} argument the indices of the coefficients for which pairwise contrasts should be constructed. For example, with \code{btt=2:4}, contrasts are formed based on the second, third, and fourth coefficient of the model. Instead of specifying the coefficient numbers, one can specify a string for \code{btt}. In that case, \code{\link{grep}} will be used to search for all coefficient names that match the string. At times, it may be useful to include a second set of coefficients in the contrast matrix (not as pairwise contrasts, but as \sQuote{main effects}). This can be done via the \code{btt2} argument. When using the present function in a call to the \code{\link[=anova.rma]{anova}} or \code{\link[=predict.rma]{predict}} functions, argument \code{x} does not need to specified, as the function will then automatically construct the contrast matrix based on the model object passed to the \code{anova} or \code{predict} function. See below for examples. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit meta-regression models for which pairwise contrasts may be useful. \code{\link[=anova.rma]{anova}} for a function to carry out tests of the pairwise contrasts and \code{\link[=predict.rma]{predict}} to obtain corresponding confidence/prediction intervals. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### mixed-effects meta-regression model with the allocation method as a moderator; ### by removing the intercept term, we obtain the estimated average effect for each ### factor level from the model res <- rma(yi, vi, mods = ~ 0 + alloc, data=dat) res ### construct the contrast matrix for the 'alloc' factor pairmat(res, btt=1:3) pairmat(res, btt="alloc") ### test all pairwise contrasts anova(res, X=pairmat(btt=1:3)) anova(res, X=pairmat(btt="alloc")) ### obtain the corresponding confidence intervals predict(res, newmods=pairmat(btt="alloc")) ### test all pairwise contrasts adjusting for multiple testing anova(res, X=pairmat(btt="alloc"), adjust="bonf") ### fit the same model, but including the intercept term; then 'alternate' is the ### reference level and the coefficients for 'random' and 'systematic' already ### represent pairwise contrasts with this reference level res <- rma(yi, vi, mods = ~ alloc, data=dat) res ### in this case, we want to include these coefficients directly in the contrast ### matrix (btt2=2:3) but also include the pairwise contrast between them (btt=2:3) pairmat(res, btt=2:3, btt2=2:3) pairmat(res, btt="alloc", btt2="alloc") ### test all pairwise contrasts anova(res, X=pairmat(btt=2:3, btt2=2:3)) anova(res, X=pairmat(btt="alloc", btt2="alloc")) ### obtain the corresponding confidence intervals predict(res, newmods=pairmat(btt="alloc", btt2="alloc")) ### meta-regression model with 'ablat' and 'alloc' as moderators res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat) res ### test all pairwise contrasts between the 'alloc' levels (while controlling for 'ablat') anova(res, X=pairmat(btt="alloc", btt2="alloc")) anova(res, X=pairmat(btt="alloc", btt2="alloc")) ### obtain the corresponding confidence intervals predict(res, newmods=pairmat(btt="alloc", btt2="alloc")) ### an example of a meta-regression model with more factors levels dat <- dat.bangertdrowns2004 res <- rma(yi, vi, mods = ~ 0 + factor(grade), data=dat) res ### test all pairwise contrasts between the 'grade' levels anova(res, X=pairmat(btt="grade")) ### obtain the corresponding confidence intervals predict(res, newmods=pairmat(btt="grade")) ### test all pairwise contrasts adjusting for multiple testing anova(res, X=pairmat(btt="grade"), adjust="bonf") } \keyword{models} metafor/man/se.Rd0000644000176200001440000000252714746146216013401 0ustar liggesusers\name{se} \alias{se} \alias{se.default} \alias{se.rma} \title{Extract the Standard Errors from 'rma' Objects} \description{ Function to extract the standard errors from objects of class \code{"rma"}. } \usage{ se(object, \dots) \method{se}{default}(object, \dots) \method{se}{rma}(object, \dots) } \arguments{ \item{object}{an object of class \code{"rma"}.} \item{\dots}{other arguments.} } \value{ A vector with the standard errors. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which standard errors can be extracted. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) res ### extract model coefficients coef(res) ### extract the standard errors se(res) } \keyword{models} metafor/man/escalc.Rd0000644000176200001440000027154514746146216014234 0ustar liggesusers\name{escalc} \alias{escalc} \title{Calculate Effect Sizes and Outcome Measures} \description{ Function to calculate various effect sizes or outcome measures (and the corresponding sampling variances) that are commonly used in meta-analyses. \loadmathjax } \usage{ escalc(measure, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, fi, pi, sdi, r2i, ni, yi, vi, sei, data, slab, flip, subset, include, add=1/2, to="only0", drop00=FALSE, vtype="LS", correct=TRUE, var.names=c("yi","vi"), add.measure=FALSE, append=TRUE, replace=TRUE, digits, \dots) } \arguments{ \item{measure}{a character string to specify which effect size or outcome measure should be calculated (e.g., \code{"SMD"}, \code{"ZCOR"}, \code{"OR"}). See \sQuote{Details} for possible options and how the data needed to compute the selected effect size or outcome measure should then be specified (i.e., which of the following arguments need to be used).} \emph{These arguments pertain to data input:} \item{ai}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper left cell).} \item{bi}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper right cell).} \item{ci}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower left cell).} \item{di}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower right cell).} \item{n1i}{vector with the group sizes or row totals (first group/row).} \item{n2i}{vector with the group sizes or row totals (second group/row).} \item{x1i}{vector with the number of events (first group).} \item{x2i}{vector with the number of events (second group).} \item{t1i}{vector with the total person-times (first group).} \item{t2i}{vector with the total person-times (second group).} \item{m1i}{vector with the means (first group or time point).} \item{m2i}{vector with the means (second group or time point).} \item{sd1i}{vector with the standard deviations (first group or time point).} \item{sd2i}{vector with the standard deviations (second group or time point).} \item{xi}{vector with the frequencies of the event of interest.} \item{mi}{vector with the frequencies of the complement of the event of interest or the group means.} \item{ri}{vector with the raw correlation coefficients.} \item{ti}{vector with the total person-times or t-test statistics.} \item{fi}{vector with the F-test statistics.} \item{pi}{vector with the (signed) p-values.} \item{sdi}{vector with the standard deviations.} \item{r2i}{vector with the \mjseqn{R^2} values.} \item{ni}{vector with the sample/group sizes.} \item{yi}{vector with the observed effect sizes or outcomes.} \item{vi}{vector with the corresponding sampling variances.} \item{sei}{vector with the corresponding standard errors.} \item{data}{optional data frame containing the variables given to the arguments above.} \item{slab}{optional vector with labels for the studies.} \item{flip}{optional logical to indicate whether to flip the sign of the effect sizes or outcomes. Can also be a vector. Can also be a numeric vector to specify a multiplier.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that will be included in the data frame returned by the function.} \item{include}{optional (logical or numeric) vector to specify the subset of studies for which the measure should be calculated. See the \sQuote{Value} section for more details.} \emph{These arguments pertain to handling of zero cells/counts/frequencies:} \item{add}{a non-negative number to specify the amount to add to zero cells, counts, or frequencies. See \sQuote{Details}.} \item{to}{a character string to specify when the values under \code{add} should be added (either \code{"all"}, \code{"only0"}, \code{"if0all"}, or \code{"none"}). See \sQuote{Details}.} \item{drop00}{logical to specify whether studies with no cases/events (or only cases) in both groups should be dropped when calculating the observed effect sizes or outcomes. See \sQuote{Details}.} \emph{These arguments pertain to the computations:} \item{vtype}{a character string to specify the type of sampling variances to calculate. Can also be a vector. See \sQuote{Details}.} \item{correct}{logical to specify whether a bias correction should be applied to the effect sizes or outcomes (the default is \code{TRUE}).} \emph{These arguments pertain to the formatting of the returned data frame:} \item{var.names}{character vector with two elements to specify the name of the variable for the observed effect sizes or outcomes and the name of the variable for the corresponding sampling variances (the defaults are \code{"yi"} and \code{"vi"}).} \item{add.measure}{logical to specify whether a variable should be added to the data frame (with default name \code{"measure"}) that indicates the type of outcome measure computed. When using this option, \code{var.names} can have a third element to change this variable name.} \item{append}{logical to specify whether the data frame provided via the \code{data} argument should be returned together with the observed effect sizes or outcomes and corresponding sampling variances (the default is \code{TRUE}).} \item{replace}{logical to specify whether existing values for \code{yi} and \code{vi} in the data frame should be replaced. Only relevant when \code{append=TRUE} and the data frame already contains the \code{yi} and \code{vi} variables. If \code{replace=TRUE} (the default), all of the existing values will be overwritten. If \code{replace=FALSE}, only \code{NA} values will be replaced. See the \sQuote{Value} section for more details.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is 4. Note that the values are stored without rounding in the returned object. See also \link[=misc-options]{here} for further details on how to control the number of digits in the output.} \item{\dots}{other arguments.} } \details{ Before a meta-analysis can be conducted, the relevant results from each study must be quantified in such a way that the resulting values can be further aggregated and compared. Depending on (a) the goals of the meta-analysis, (b) the design and types of studies included, and (c) the information provided therein, one of the various effect sizes or outcome measures described below may be appropriate for the meta-analysis and can be computed with the \code{escalc} function. The \code{measure} argument is a character string to specify the outcome measure that should be calculated (see below for the various options), arguments \code{ai} through \code{ni} are then used to specify the information needed to calculate the various measures (depending on the chosen outcome measure, different arguments need to be specified), and \code{data} can be used to specify a data frame containing the variables given to the previous arguments. The \code{add}, \code{to}, and \code{drop00} arguments may be needed when dealing with frequency or count data that needs special handling when some of the frequencies or counts are equal to zero (see below for details). Finally, the \code{vtype} argument is used to specify how the sampling variances should be computed (again, see below for details). To provide a structure to the various effect sizes or outcome measures that can be calculated with the \code{escalc} function, we can distinguish between measures that are used to: \tabular{lll}{ \ics \tab (1) \tab contrast two independent (either experimentally created or naturally occurring) groups, \cr \ics \tab (2) \tab describe the direction and strength of the association between two variables, \cr \ics \tab (3) \tab summarize some characteristic or attribute of individual groups, or \cr \ics \tab (4) \tab quantify change within a single group or the difference between two matched/paired samples.} Furthermore, where appropriate, we can further distinguish between measures that are applicable when the characteristic, response, or dependent variable assessed within the individual studies is: \tabular{lll}{ \ics \tab (a) \tab a quantitative variable (e.g., amount of depression as assessed by a rating scale), \cr \ics \tab (b) \tab a dichotomous (binary) variable (e.g., remission versus no remission), \cr \ics \tab (c) \tab a count of events per time unit (e.g., number of migraines per year), or \cr \ics \tab (d) \tab a mix of the types above.} Below, these number and letter codes are used (also in combination) to make it easier to quickly find a measure suitable for a particular meta-analysis (e.g., search for \code{(1b)} to find measures that describe the difference between two groups with respect to a dichotomous variable or \code{(2a)} for measures that quantify the association between two quantitative variables). \subsection{(1) Outcome Measures for Two-Group Comparisons}{ In many meta-analyses, the goal is to synthesize the results from studies that compare or contrast two groups. The groups may be experimentally defined (e.g., a treatment and a control group created via random assignment) or may occur naturally (e.g., men and women, employees working under high- versus low-stress conditions, people/animals/plants exposed to some environmental risk factor versus those not exposed, patients versus controls). \subsection{(1a) Measures for Quantitative Variables}{ When the response or dependent variable assessed within the individual studies is measured on a quantitative scale, it is customary to report certain summary statistics, such as the mean and standard deviation of the observations within the two groups (in case medians, min/max values, and quartiles are reported, see \code{\link{conv.fivenum}} for a function that can be used to estimate means and standard deviations from such statistics). The data layout for a study comparing two groups with respect to such a variable is then of the form: \tabular{lcccccc}{ \tab \ics \tab mean \tab \ics \tab standard deviation \tab \ics \tab group size \cr group 1 \tab \ics \tab \code{m1i} \tab \ics \tab \code{sd1i} \tab \ics \tab \code{n1i} \cr group 2 \tab \ics \tab \code{m2i} \tab \ics \tab \code{sd2i} \tab \ics \tab \code{n2i}} where \code{m1i} and \code{m2i} are the observed means of the two groups, \code{sd1i} and \code{sd2i} are the observed standard deviations, and \code{n1i} and \code{n2i} denote the number of individuals in each group. \bold{Measures for Differences in Central Tendency} Often, interest is focused on differences between the two groups with respect to their central tendency. The raw mean difference, the standardized mean difference, and the (log transformed) ratio of means (also called the log \sQuote{response ratio}) are useful outcome measures when meta-analyzing studies of this type. The options for the \code{measure} argument are then: \itemize{ \item \code{"MD"} for the \emph{raw mean difference} (e.g., Borenstein, 2009), \item \code{"SMD"} for the \emph{standardized mean difference} (Hedges, 1981), \item \code{"SMDH"} for the \emph{standardized mean difference} with heteroscedastic population variances in the two groups (Bonett, 2008, 2009), \item \code{"SMD1"} for the \emph{standardized mean difference} where the mean difference is divided by the standard deviation of the second group (and \code{"SMD1H"} for the same but with heteroscedastic population variances), \item \code{"ROM"} for the \emph{log transformed ratio of means} (Hedges et al., 1999; Lajeunesse, 2011). } The raw mean difference is simply \mjeqn{(\text{m1i}-\text{m2i})}{(m1i-m2i)}, while the standardized mean difference is given by \mjeqn{(\text{m1i}-\text{m2i})/\text{sdi}}{(m1i-m2i)/sdi}. For \code{measure="SMD"}, \mjeqn{\text{sdi} = \sqrt{\frac{(\text{n1i}-1)\text{sd1i}^2 + (\text{n2i}-1)\text{sd2i}^2}{\text{n1i}+\text{n2i}-2}}}{sdi = sqrt(((n1i-1)*sd1i^2 + (n2i-1)*sd2i^2) / (n1i+n2i-2))} is the pooled standard deviation of the two groups (assuming homoscedasticity of the population variances). For \code{measure="SMDH"}, \mjeqn{\text{sdi} = \sqrt{\frac{\text{sd1i}^2 + \text{sd2i}^2}{2}}}{sdi = sqrt((sd1i^2 + sd2i^2) / 2)} is the square root of the average variance (allowing for heteroscedastic population variances). Finally, for \code{measure="SMD1"} and \code{measure="SMD1H"}, \mjeqn{\text{sdi} = \text{sd2i}}{sdi = sd2i} (note: for \code{measure="SMD1"}, only \code{sd2i} needs to be specified and \code{sd1i} is ignored). For \code{measure="SMD"}, the positive bias in the standardized mean difference (i.e., in a Cohen's d value) is automatically corrected for within the function, yielding Hedges' g (Hedges, 1981). Similarly, the analogous bias correction is applied for \code{measure="SMDH"} (Bonett, 2009), \code{measure="SMD1"} (Hedges, 1981), and \code{measure="SMD1H"}. With \code{correct=FALSE}, these bias corrections can be switched off. For \code{measure="ROM"}, the log is taken of the ratio of means (i.e., \mjeqn{\log(\text{m1i}/\text{m2i})}{log(m1i/m2i)}), which makes this outcome measure symmetric around 0 and results in a sampling distribution that is closer to normality. Hence, this measure cannot be computed when \code{m1i} and \code{m2i} have opposite signs (in fact, this measure is only meant to be used for ratio scale measurements, where both means should be positive anyway). For \code{measure="SMD"}, if the means and standard deviations are unknown for some studies, various other inputs can be used to recover the standardized mean differences. In the case that the standardized mean differences (Cohen's d values) are directly available (e.g., they are reported in some studies), then these can be specified via argument \code{di}. If the point-biserial correlations (between the group dummy variable and the quantitative response/dependent variable) are known, these can be specified via argument \code{ri}. If the t-statistics from an independent samples (Student's) t-test are available, these can be specified via argument \code{ti}. Note that the sign of these inputs is then taken to be the sign of the standardized mean differences. If only the two-sided p-values corresponding to the t-tests are known, one can specify those values via argument \code{pi} (which are then transformed into the t-statistics and then further into the standardized mean differences). However, since a two-sided p-value does not carry information about the sign of the test statistic (and hence neither about the standardized mean difference), the sign of the p-values (which can be negative) is used as the sign of the standardized mean differences (e.g., \code{escalc(measure="SMD", pi=-0.018, n1i=20, n2i=20)} yields a negative standardized mean difference of \code{-0.7664}). See \href{https://www.metafor-project.org/doku.php/tips:assembling_data_smd}{here} for a more detailed illustration of using the \code{ti} and \code{pi} arguments. For \code{measure="MD"}, one can choose between \code{vtype="LS"} (the default) and \code{vtype="HO"}. The former computes the sampling variances without assuming homoscedasticity (i.e., that the true variances of the measurements are the same in group 1 and group 2 within each study), while the latter assumes homoscedasticity (equations 12.5 and 12.3 in Borenstein, 2009, respectively). For \code{measure="SMD"}, one can choose between \code{vtype="LS"} (the default) for the usual large-sample approximation to compute the sampling variances (equation 8 in Hedges, 1982), \code{vtype="LS2"} to compute the sampling variances as described in Borenstein (2009; equation 12.17), \code{vtype="UB"} to compute unbiased estimates of the sampling variances (equation 9 in Hedges, 1983), \code{vtype="AV"} to compute the sampling variances with the usual large-sample approximation but plugging the sample-size weighted average of the Hedges' g values into the equation, and \code{vtype="H0"} to compute the sampling variances under the null hypothesis (that the true standardized mean differences are equal to zero). The same choices also apply to \code{measure="SMD1"}. For \code{measure="ROM"}, one can choose between \code{vtype="LS"} (the default) for the usual large-sample approximation to compute the sampling variances (equation 1 in Hedges et al., 1999), \code{vtype="HO"} to compute the sampling variances assuming homoscedasticity (the unnumbered equation after equation 1 in Hedges et al., 1999), \code{vtype="AV"} to compute the sampling variances assuming homoscedasticity of the coefficient of variation within each group across studies, and \code{vtype="AVHO"} to compute the sampling variances assuming homoscedasticity of the coefficient of variation for both groups across studies (see Nakagawa et al., 2023, for details on the latter two options and why they can be advantageous). Datasets corresponding to data of this type are provided in \code{\link[metadat]{dat.normand1999}}, \code{\link[metadat]{dat.curtis1998}}, and \code{\link[metadat]{dat.gibson2002}}. \bold{Measures for Variability Differences} Interest may also be focused on differences between the two groups with respect to their variability. Here, the (log transformed) ratio of the coefficient of variation of the two groups (also called the coefficient of variation ratio) can be a useful measure (Nakagawa et al., 2015). If focus is solely on the variability of the measurements within the two groups, then the (log transformed) ratio of the standard deviations (also called the variability ratio) can be used (Nakagawa et al., 2015). For the latter, one only needs to specify \code{sd1i}, \code{sd2i}, \code{n1i}, and \code{n2i}. The options for the \code{measure} argument are: \itemize{ \item \code{"CVR"} for the \emph{log transformed coefficient of variation ratio}, \item \code{"VR"} for the \emph{log transformed variability ratio}. } Measure \code{"CVR"} is computed with \mjeqn{\log\mathopen{}\left(\left(\text{sd1i}/\text{m1i}\right) \middle/ \left(\text{sd2i}/\text{m2i}\right) \right)\mathclose{}}{log((sd1i/m1i)/(sd2i/m2i))}, while \code{"VR"} is simply \mjeqn{\log(\text{sd1i}/\text{sd2i})}{log(sd1i/sd2i)}, but note that a slight bias correction is applied for both of these measures (Nakagawa et al., 2015) unless \code{correct=FALSE}. Also, the sampling variances for \code{measure="CVR"} are computed as given by equation 12 in Nakagawa et al. (2015), but without the \sQuote{\mjseqn{-2 \rho \ldots}} terms, since for normally distributed data (which we assume here) the mean and variance (and transformations thereof) are independent. \bold{Measures for Stochastic Superiority} Another way to quantify the difference between two groups is in terms of the \sQuote{common language effect size} (CLES) (McGraw & Wong, 1992). This measure provides an estimate of \mjseqn{P(X > Y)}, that is, the probability that a randomly chosen person from the first group has a larger value on the response variable than a randomly chosen person from the second group (or in case \mjseqn{X} and \mjseqn{Y} values can be tied, we define the measure as \mjeqn{P(X > Y) + \frac{1}{2} P(X = Y)}{P(X > Y) + 1/2 P(X = Y)}). This measure is identical to the area under the curve (AUC) under the receiver operating characteristic (ROC) curve (e.g., for a diagnostic test or more broadly for a binary classifier) and the \sQuote{concordance probability} (or c-statistic) and is directly related to the \mjseqn{U} statistic from the Mann-Whitney U test (i.e., \mjeqn{\text{CLES} = U / (n_1 \times n_2)}{CLES = U / (n_1 x n_2)}). If the CLES/AUC values with corresponding sampling variances (or standard errors) are known, they can be directly meta-analyzed for example using the \code{\link{rma.uni}} function. However, in practice, one is likely to encounter studies that only report CLES/AUC values and the group sizes. In this case, one can specify these values via the \code{ai}, \code{n1i}, and \code{n2i} arguments and set \code{measure="CLES"} (or equivalently \code{measure="AUC"}). If \code{vtype="LS"} (the default), the sampling variances are then computed based on Newcombe (2006) (method 4), but using \code{(n1i-1)(n2i-1)} in the denominator as suggested by Cho et al. (2019). If \code{vtype="LS2"}, the sampling variances are computed based on Hanley and McNeil (1982; equations 1 and 2), again using \code{(n1i-1)(n2i-1)} in the denominator (and in the unlikely case that the proportion of tied values is known, this can be specified via argument \code{mi}, in which case the adjustment as described by Cho et al. (2019) is also applied). Under the assumption that the data within the two groups are normally distributed (the so-called binormal model), one can also estimate the CLES/AUC values from the means and standard deviations of the two groups. For this, one sets \code{measure="CLESN"} (or equivalently \code{measure="AUCN"}) and specifies the means via arguments \code{m1i} and \code{m2i}, the standard deviations via arguments \code{sd1i} and \code{sd2i}, and the group sizes via arguments \code{n1i} and \code{n2i}. If \code{vtype="LS"} (the default), the sampling variances are then computed based on the large-sample approximation derived via the delta method (equation 3 (with a correction, since the plus sign in front of the last term in braces should be a multiplication sign) and equation 4 in Goddard & Hinberg, 1990, but using \code{n1i-1} and \code{n2i-1} in the denominators). Computing the CLES/AUC values and corresponding sampling variances does not assume homoscedasticity of the variances in the two groups. However, when \code{vtype="HO"}, then homoscedasticity is assumed (this will also affect the calculation of the CLES/AUC values themselves). As for \code{measure="SMD"}, one can also specify standardized mean differences via argument \code{di}, t-statistics from an independent samples t-test via argument \code{ti}, and/or signed two-sided p-values corresponding to the t-tests via argument \code{pi}, which all can be converted into CLES/AUC values (note that this automatically assumes homoscedasticity). One can also directly specify binormal model CLES/AUC values via argument \code{ai} (but unless the corresponding \code{sd1i} and \code{sd2i} values are also specified, the sampling variances are then computed under the assumption of homoscedasticity). } \subsection{(1b) Measures for Dichotomous Variables}{ In various fields of research (such as the health and medical sciences), the response variable measured within the individual studies is often dichotomous (binary), so that the data from a study comparing two different groups can be expressed in terms of a \mjeqn{2 \times 2}{2x2} table, such as: \tabular{lcccccc}{ \tab \ics \tab outcome 1 \tab \ics \tab outcome 2 \tab \ics \tab total \cr group 1 \tab \ics \tab \code{ai} \tab \ics \tab \code{bi} \tab \ics \tab \code{n1i} \cr group 2 \tab \ics \tab \code{ci} \tab \ics \tab \code{di} \tab \ics \tab \code{n2i}} where \code{ai}, \code{bi}, \code{ci}, and \code{di} denote the cell frequencies (i.e., the number of individuals falling into a particular category) and \code{n1i} and \code{n2i} are the row totals (i.e., the group sizes). For example, in a set of randomized clinical trials, group 1 and group 2 may refer to the treatment and placebo/control group, respectively, with outcome 1 denoting some event of interest (e.g., death, complications, failure to improve under the treatment) and outcome 2 its complement. Similarly, in a set of cohort studies, group 1 and group 2 may denote those who engage in and those who do not engage in a potentially harmful behavior (e.g., smoking), with outcome 1 denoting the development of a particular disease (e.g., lung cancer) during the follow-up period. Finally, in a set of case-control studies, group 1 and group 2 may refer to those with the disease (i.e., cases) and those free of the disease (i.e., controls), with outcome 1 denoting, for example, exposure to some environmental risk factor in the past and outcome 2 non-exposure. Note that in all of these examples, the stratified sampling scheme fixes the row totals (i.e., the group sizes) by design. A meta-analysis of studies reporting results in terms of \mjeqn{2 \times 2}{2x2} tables can be based on one of several different outcome measures, including the risk ratio (also called the relative risk), the odds ratio, the risk difference, and the arcsine square root transformed risk difference (e.g., Fleiss & Berlin, 2009, \enc{Rücker}{Ruecker} et al., 2009). For any of these outcome measures, one needs to specify the cell frequencies via the \code{ai}, \code{bi}, \code{ci}, and \code{di} arguments (or alternatively, one can use the \code{ai}, \code{ci}, \code{n1i}, and \code{n2i} arguments). The options for the \code{measure} argument are then: \itemize{ \item \code{"RR"} for the \emph{log risk ratio}, \item \code{"OR"} for the \emph{log odds ratio}, \item \code{"RD"} for the \emph{risk difference}, \item \code{"AS"} for the \emph{arcsine square root transformed risk difference} (\enc{Rücker}{Ruecker} et al., 2009), \item \code{"PETO"} for the \emph{log odds ratio} estimated with Peto's method (Yusuf et al., 1985). } Let \mjeqn{\text{p1i} = \text{ai}/\text{n1i}}{p1i = ai/n1i} and \mjeqn{\text{p2i} = \text{ci}/\text{n2i}}{p2i = ci/n2i} denote the proportion of individuals with outcome 1 in group 1 and group 2, respectively. Then the log risk ratio is computed with \mjeqn{\log(\text{p1i}/\text{p2i})}{log(p1i/p2i)}, the log odds ratio with \mjeqn{\log\mathopen{}\left(\left(\frac{\text{p1i}}{1-\text{p1i}}\right) \middle/ \left(\frac{\text{p2i}}{1-\text{p2i}}\right) \right)\mathclose{}}{log((p1i/(1-p1i))/(p2i/(1-p2i)))}, the risk difference with \mjeqn{\text{p1i}-\text{p2i}}{p1i-p2i}, and the arcsine square root transformed risk difference with \mjeqn{\text{asin}(\sqrt{\text{p1i}})-\text{asin}(\sqrt{\text{p2i}})}{asin(sqrt(p1i))-asin(sqrt(p2i))}. See Yusuf et al. (1985) for the computation of the log odds ratio when \code{measure="PETO"}. Note that the log is taken of the risk ratio and the odds ratio, which makes these outcome measures symmetric around 0 and results in corresponding sampling distributions that are closer to normality. Also, when multiplied by 2, the arcsine square root transformed risk difference is identical to Cohen's h (Cohen, 1988). For all of these measures, a positive value indicates that the proportion of individuals with outcome 1 is larger in group 1 compared to group 2. Cell entries with a zero count can be problematic, especially for the risk ratio and the odds ratio. Adding a small constant to the cells of the \mjeqn{2 \times 2}{2x2} tables is a common solution to this problem. When \code{to="only0"} (the default), the value of \code{add} (the default is \code{1/2}; but see \sQuote{Note}) is added to each cell of those \mjeqn{2 \times 2}{2x2} tables with at least one cell equal to 0. When \code{to="all"}, the value of \code{add} is added to each cell of all \mjeqn{2 \times 2}{2x2} tables. When \code{to="if0all"}, the value of \code{add} is added to each cell of all \mjeqn{2 \times 2}{2x2} tables, but only when there is at least one \mjeqn{2 \times 2}{2x2} table with a zero cell. Setting \code{to="none"} or \code{add=0} has the same effect: No adjustment to the observed table frequencies is made. Depending on the outcome measure and the data, this may lead to division by zero (when this occurs, the resulting value is recoded to \code{NA}). Also, studies where \code{ai=ci=0} or \code{bi=di=0} may be considered to be uninformative about the size of the effect and dropping such studies has sometimes been recommended (Higgins et al., 2019). This can be done by setting \code{drop00=TRUE}. The values for such studies will then be set to \code{NA} (i.e., missing). Datasets corresponding to data of this type are provided in \code{\link[metadat]{dat.bcg}}, \code{\link[metadat]{dat.collins1985a}}, \code{\link[metadat]{dat.collins1985b}}, \code{\link[metadat]{dat.egger2001}}, \code{\link[metadat]{dat.hine1989}}, \code{\link[metadat]{dat.laopaiboon2015}}, \code{\link[metadat]{dat.lee2004}}, \code{\link[metadat]{dat.li2007}}, \code{\link[metadat]{dat.linde2005}}, \code{\link[metadat]{dat.nielweise2007}}, and \code{\link[metadat]{dat.yusuf1985}}. If the \mjeqn{2 \times 2}{2x2} table is not available (or cannot be reconstructed, for example with the \code{\link{conv.2x2}} function) for a study, but the odds ratio and the corresponding confidence interval is reported, one can easily transform these values into the corresponding log odds ratio and sampling variance (and combine such a study with those that do report \mjeqn{2 \times 2}{2x2} table data). See the \code{\link{conv.wald}} function and \href{https://www.metafor-project.org/doku.php/tips:assembling_data_or}{here} for an illustration/discussion of this. } \subsection{(1c) Measures for Event Counts}{ In medical and epidemiological studies comparing two different groups (e.g., treated versus untreated patients, exposed versus unexposed individuals), results are sometimes reported in terms of event counts (i.e., the number of events, such as strokes or myocardial infarctions) over a certain period of time. Data of this type are also referred to as \sQuote{person-time data}. Assume that the studies report data in the form: \tabular{lcccc}{ \tab \ics \tab number of events \tab \ics \tab total person-time \cr group 1 \tab \ics \tab \code{x1i} \tab \ics \tab \code{t1i} \cr group 2 \tab \ics \tab \code{x2i} \tab \ics \tab \code{t2i}} where \code{x1i} and \code{x2i} denote the number of events in the first and the second group, respectively, and \code{t1i} and \code{t2i} the corresponding total person-times at risk. Often, the person-time is measured in years, so that \code{t1i} and \code{t2i} denote the total number of follow-up years in the two groups. This form of data is fundamentally different from what was described in the previous section, since the total follow-up time may differ even for groups of the same size and the individuals studied may experience the event of interest multiple times. Hence, different outcome measures than the ones described in the previous section need to be considered when data are reported in this format. These include the incidence rate ratio, the incidence rate difference, and the square root transformed incidence rate difference (Bagos & Nikolopoulos, 2009; Rothman et al., 2008). For any of these outcome measures, one needs to specify the total number of events via the \code{x1i} and \code{x2i} arguments and the corresponding total person-time values via the \code{t1i} and \code{t2i} arguments. The options for the \code{measure} argument are then: \itemize{ \item \code{"IRR"} for the \emph{log incidence rate ratio}, \item \code{"IRD"} for the \emph{incidence rate difference}, \item \code{"IRSD"} for the \emph{square root transformed incidence rate difference}. } Let \mjeqn{\text{ir1i} = \text{x1i}/\text{t1i}}{ir1i = x1i/t1i} and \mjeqn{\text{ir2i} = \text{x2i}/\text{t2i}}{ir2i = x2i/t2i} denote the observed incidence rates in each group. Then the log incidence rate ratio is computed with \mjeqn{\log(\text{ir1i}/\text{ir2i})}{log(ir1i/ir2i)}, the incidence rate difference with \mjeqn{\text{ir1i}-\text{ir2i}}{ir1i-ir2i}, and the square root transformed incidence rate difference with \mjeqn{\sqrt{\text{ir1i}}-\sqrt{\text{ir2i}}}{sqrt(ir1i)-sqrt(ir2i)}. Note that the log is taken of the incidence rate ratio, which makes this outcome measure symmetric around 0 and results in a sampling distribution that is closer to normality. Studies with zero events in one or both groups can be problematic, especially for the incidence rate ratio. Adding a small constant to the number of events is a common solution to this problem. When \code{to="only0"} (the default), the value of \code{add} (the default is \code{1/2}; but see \sQuote{Note}) is added to \code{x1i} and \code{x2i} only in the studies that have zero events in one or both groups. When \code{to="all"}, the value of \code{add} is added to \code{x1i} and \code{x2i} in all studies. When \code{to="if0all"}, the value of \code{add} is added to \code{x1i} and \code{x2i} in all studies, but only when there is at least one study with zero events in one or both groups. Setting \code{to="none"} or \code{add=0} has the same effect: No adjustment to the observed number of events is made. Depending on the outcome measure and the data, this may lead to division by zero (when this occurs, the resulting value is recoded to \code{NA}). Like for \mjeqn{2 \times 2}{2x2} table data, studies where \code{x1i=x2i=0} may be considered to be uninformative about the size of the effect and dropping such studies has sometimes been recommended. This can be done by setting \code{drop00=TRUE}. The values for such studies will then be set to \code{NA}. Datasets corresponding to data of this type are provided in \code{\link[metadat]{dat.hart1999}} and \code{\link[metadat]{dat.nielweise2008}}. } \subsection{(1d) Transforming SMDs to ORs and Vice-Versa}{ In some meta-analyses, one may encounter studies that contrast two groups with respect to a quantitative response variable (case 1a above) and other studies that contrast the same two groups with respect to a dichotomous variable (case 2b above). If both types of studies are to be combined in the same analysis, one needs to compute the same outcome measure across all studies. For this, one may need to transform standardized mean differences into log odds ratios (e.g., Cox & Snell, 1989; Chinn, 2000; Hasselblad & Hedges, 1995; \enc{Sánchez-Meca}{Sanchez-Meca} et al., 2003). Here, the data need to be specified as described under (1a) and the options for the \code{measure} argument are then: \itemize{ \item \code{"D2ORN"} for the \emph{transformed standardized mean difference} assuming normal distributions, \item \code{"D2ORL"} for the \emph{transformed standardized mean difference} assuming logistic distributions. } Both of these transformations provide an estimate of the log odds ratio, the first assuming that the responses within the two groups are normally distributed, while the second assumes that the responses follow logistic distributions. Alternatively, assuming that the dichotomous outcome in a \mjeqn{2 \times 2}{2x2} table is actually a dichotomized version of the responses on an underlying quantitative scale, it is also possible to estimate the standardized mean difference based on \mjeqn{2 \times 2}{2x2} table data, using either the probit transformed risk difference or a transformation of the odds ratio (e.g., Cox & Snell, 1989; Chinn, 2000; Hasselblad & Hedges, 1995; \enc{Sánchez-Meca}{Sanchez-Meca} et al., 2003). Here, the data need to be specified as described under (1b) and the options for the \code{measure} argument are then: \itemize{ \item \code{"PBIT"} for the \emph{probit transformed risk difference}, \item \code{"OR2DN"} for the \emph{transformed odds ratio} assuming normal distributions, \item \code{"OR2DL"} for the \emph{transformed odds ratio} assuming logistic distributions. } All of these transformations provide an estimate of the standardized mean difference, the first two assuming that the responses on the underlying quantitative scale are normally distributed, while the third assumes that the responses follow logistic distributions. A dataset illustrating the combined analysis of standardized mean differences and probit transformed risk differences is provided in \code{\link[metadat]{dat.gibson2002}}. } } \subsection{(2) Outcome Measures for Variable Association}{ Meta-analyses are often used to synthesize studies that examine the direction and strength of the association between two variables measured concurrently and/or without manipulation by experimenters. In this section, a variety of outcome measures will be discussed that may be suitable for a meta-analysis with this purpose. We can distinguish between measures that are applicable when both variables are measured on quantitative scales, when both variables measured are dichotomous, and when the two variables are of mixed types. \subsection{(2a) Measures for Two Quantitative Variables}{ The (Pearson or product-moment) correlation coefficient quantifies the direction and strength of the (linear) relationship between two quantitative variables and is therefore frequently used as the outcome measure for meta-analyses. Two alternative measures are a bias-corrected version of the correlation coefficient and Fisher's r-to-z transformed correlation coefficient. For these measures, one needs to specify \code{ri}, the vector with the raw correlation coefficients, and \code{ni}, the corresponding sample sizes. The options for the \code{measure} argument are then: \itemize{ \item \code{"COR"} for the \emph{raw correlation coefficient}, \item \code{"UCOR"} for the \emph{raw correlation coefficient} corrected for its slight negative bias (based on equation 2.3 in Olkin & Pratt, 1958), \item \code{"ZCOR"} for \emph{Fisher's r-to-z transformed correlation coefficient} (Fisher, 1921). } If the correlation coefficient is unknown for some studies, but the t-statistics (i.e., \mjseqn{t_i = r_i \sqrt{n_i - 2} / \sqrt{1 - r_i^2}}) are available for those studies (for the standard test of \mjeqn{\text{H}_0{:}\; \rho_i = 0}{H_0: \rho_i = 0}), one can specify those values via argument \code{ti}, which are then transformed into the corresponding correlation coefficients within the function (the sign of the t-statistics is then taken to be the sign of the correlations). If only the two-sided p-values corresponding to the t-tests are known, one can specify those values via argument \code{pi}. However, since a two-sided p-value does not carry information about the sign of the test statistic (and hence neither about the correlation), the sign of the p-values (which can be negative) is used as the sign of the correlation coefficients (e.g., \code{escalc(measure="COR", pi=-0.07, ni=30)} yields a negative correlation of \code{-0.3354}). For \code{measure="COR"} and \code{measure="UCOR"}, one can choose between \code{vtype="LS"} (the default) for the usual large-sample approximation to compute the sampling variances (i.e., plugging the (biased-corrected) correlation coefficients into equation 12.27 in Borenstein, 2009) and \code{vtype="AV"} to compute the sampling variances with the usual large-sample approximation but plugging the sample-size weighted average of the (bias-corrected) correlation coefficients into the equation. For \code{measure="COR"}, one can also choose \code{vtype="H0"} to compute the sampling variances under the null hypothesis (that the true correlations are equal to zero). For \code{measure="UCOR"}, one can also choose \code{vtype="UB"} to compute unbiased estimates of the sampling variances (see Hedges, 1989, but using the exact equation instead of the approximation). Datasets corresponding to data of this type are provided in \code{\link[metadat]{dat.mcdaniel1994}} and \code{\link[metadat]{dat.molloy2014}}. For meta-analyses involving multiple (dependent) correlation coefficients extracted from the same sample, see also the \code{\link{rcalc}} function. } \subsection{(2b) Measures for Two Dichotomous Variables}{ When the goal of a meta-analysis is to examine the relationship between two dichotomous variables, the data for each study can again be presented in the form of a \mjeqn{2 \times 2}{2x2} table, except that there may not be a clear distinction between the grouping variable and the outcome variable. Moreover, the table may be a result of cross-sectional (i.e., multinomial) sampling, where none of the table margins (except the total sample size) are fixed by the study design. In particular, assume that the data of interest for a particular study are of the form: \tabular{lcccccc}{ \tab \ics \tab variable 2, outcome + \tab \ics \tab variable 2, outcome - \tab \ics \tab total \cr variable 1, outcome + \tab \ics \tab \code{ai} \tab \ics \tab \code{bi} \tab \ics \tab \code{n1i} \cr variable 1, outcome - \tab \ics \tab \code{ci} \tab \ics \tab \code{di} \tab \ics \tab \code{n2i}} where \code{ai}, \code{bi}, \code{ci}, and \code{di} denote the cell frequencies (i.e., the number of individuals falling into a particular category) and \code{n1i} and \code{n2i} are the row totals. The phi coefficient and the odds ratio are commonly used measures of association for \mjeqn{2 \times 2}{2x2} table data (e.g., Fleiss & Berlin, 2009). The latter is particularly advantageous, as it is directly comparable to values obtained from stratified sampling (as described earlier). Yule's Q and Yule's Y (Yule, 1912) are additional measures of association for \mjeqn{2 \times 2}{2x2} table data (although they are not typically used in meta-analyses). Finally, assuming that the two dichotomous variables are actually dichotomized versions of the responses on two underlying quantitative scales (and assuming that the two variables follow a bivariate normal distribution), it is also possible to estimate the correlation between the two quantitative variables using the tetrachoric correlation coefficient (Pearson, 1900; Kirk, 1973). For any of these outcome measures, one needs to specify the cell frequencies via the \code{ai}, \code{bi}, \code{ci}, and \code{di} arguments (or alternatively, one can use the \code{ai}, \code{ci}, \code{n1i}, and \code{n2i} arguments). The options for the \code{measure} argument are then: \itemize{ \item \code{"OR"} for the \emph{log odds ratio}, \item \code{"PHI"} for the \emph{phi coefficient}, \item \code{"YUQ"} for \emph{Yule's Q} (Yule, 1912), \item \code{"YUY"} for \emph{Yule's Y} (Yule, 1912), \item \code{"RTET"} for the \emph{tetrachoric correlation coefficient}. } There are also measures \code{"ZPHI"} and \code{"ZTET"} for applying Fisher's r-to-z transformation to these measures. This may be useful when combining these with other types of correlation coefficients that were r-to-z transformed. However, note that the r-to-z transformation is \emph{not} a variance-stabilizing transformation for these measures. Tables with one or more zero counts are handled as described earlier. For \code{measure="PHI"}, one must indicate via \code{vtype="ST"} or \code{vtype="CS"} whether the data for the studies were obtained using stratified or cross-sectional (i.e., multinomial) sampling, respectively (it is also possible to specify an entire vector for the \code{vtype} argument in case the sampling scheme differed for the various studies). A dataset corresponding to data of this type is provided in \code{\link[metadat]{dat.bourassa1996}}. } \subsection{(2d) Measures for Mixed Variable Types}{ We can also consider outcome measures that can be used to describe the relationship between two variables, where one variable is dichotomous and the other variable measures some quantitative characteristic. In that case, it is likely that study authors again report summary statistics, such as the mean and standard deviation of the measurements within the two groups (defined by the dichotomous variable). Based on this information, one can compute the point-biserial correlation coefficient (Tate, 1954) as a measure of association between the two variables. If the dichotomous variable is actually a dichotomized version of the responses on an underlying quantitative scale (and assuming that the two variables follow a bivariate normal distribution), it is also possible to estimate the correlation between the two variables using the biserial correlation coefficient (Pearson, 1909; Soper, 1914; Jacobs & Viechtbauer, 2017). Here, one again needs to specify \code{m1i} and \code{m2i} for the observed means of the two groups, \code{sd1i} and \code{sd2i} for the observed standard deviations, and \code{n1i} and \code{n2i} for the number of individuals in each group. The options for the \code{measure} argument are then: \itemize{ \item \code{"RPB"} for the \emph{point-biserial correlation coefficient}, \item \code{"RBIS"} for the \emph{biserial correlation coefficient}. } There are also measures \code{"ZPB"} and \code{"ZBIS"} for applying Fisher's r-to-z transformation to these measures. This may be useful when combining these with other types of correlation coefficients that were r-to-z transformed. However, note that the r-to-z transformation is \emph{not} a variance-stabilizing transformation for these measures. If the means and standard deviations are unknown for some studies, one can also use arguments \code{di}, \code{ri}, \code{ti}, or \code{pi} to specify standardized mean differences (Cohen's d values), point-biserial correlations, t-statistics from an independent samples t-test, or signed p-values for the t-test, respectively, as described earlier under (1a) (together with the group sizes, these are sufficient statistics for computing the (point-)biserial correlation coefficients). For \code{measure="RPB"}, one must indicate via \code{vtype="ST"} or \code{vtype="CS"} whether the data for the studies were obtained using stratified or cross-sectional (i.e., multinomial) sampling, respectively (it is also possible to specify an entire vector for the \code{vtype} argument in case the sampling scheme differed for the various studies). } } \subsection{(3) Outcome Measures for Individual Groups}{ In this section, outcome measures will be described which may be useful when the goal of a meta-analysis is to synthesize studies that characterize some property of individual groups. We will again distinguish between measures that are applicable when the characteristic assessed is a quantitative variable, a dichotomous variable, or when the characteristic represents an event count. \subsection{(3a) Measures for Quantitative Variables}{ The goal of a meta-analysis may be to characterize individual groups, where the response, characteristic, or dependent variable assessed in the individual studies is measured on some quantitative scale. In the simplest case, the raw mean for the quantitative variable is reported for each group, which then becomes the observed outcome for the meta-analysis. Here, one needs to specify \code{mi}, \code{sdi}, and \code{ni} for the observed means, the observed standard deviations, and the sample sizes, respectively. One can also compute the \sQuote{single-group standardized mean}, where the mean is divided by the standard deviation (when first subtracting some fixed constant from each mean, then this is the \sQuote{single-group standardized mean difference}). For ratio scale measurements, the log transformed mean or the log transformed coefficient of variation (with bias correction) may also be of interest (Nakagawa et al., 2015). If focus is solely on the variability of the measurements, then the log transformed standard deviation (with bias correction) is a useful measure (Nakagawa et al., 2015; Raudenbush & Bryk, 1987). For the latter, one only needs to specify \code{sdi} and \code{ni}. The options for the \code{measure} argument are: \itemize{ \item \code{"MN"} for the \emph{raw mean}, \item \code{"SMN"} for the \emph{single-group standardized mean (difference)}, \item \code{"MNLN"} for the \emph{log transformed mean}, \item \code{"CVLN"} for the \emph{log transformed coefficient of variation}, \item \code{"SDLN"} for the \emph{log transformed standard deviation}. } Note that \code{sdi} is used to specify the standard deviations of the observed values of the response, characteristic, or dependent variable and not the standard errors of the means. Also, the sampling variances for \code{measure="CVLN"} are computed as given by equation 27 in Nakagawa et al. (2015), but without the \sQuote{\mjseqn{-2 \rho \ldots}} term, since for normally distributed data (which we assume here) the mean and variance (and transformations thereof) are independent. } \subsection{(3b) Measures for Dichotomous Variables}{ A meta-analysis may also be conducted to aggregate studies that provide data about individual groups with respect to a dichotomous dependent variable. Here, one needs to specify \code{xi} and \code{ni}, denoting the number of individuals experiencing the event of interest and the total number of individuals within each study, respectively. Instead of specifying \code{ni}, one can use \code{mi} to specify the number of individuals that do not experience the event of interest (i.e., \code{mi=ni-xi}). The options for the \code{measure} argument are then: \itemize{ \item \code{"PR"} for the \emph{raw proportion}, \item \code{"PLN"} for the \emph{log transformed proportion}, \item \code{"PLO"} for the \emph{logit transformed proportion} (i.e., log odds), \item \code{"PRZ"} for the \emph{probit transformed proportion}, \item \code{"PAS"} for the \emph{arcsine square root transformed proportion} (i.e., the angular transformation), \item \code{"PFT"} for the \emph{Freeman-Tukey double arcsine transformed proportion} (Freeman & Tukey, 1950). } However, for reasons discussed in Schwarzer et al. (2019) and \enc{Röver}{Roever} and Friede (2022), the use of double arcsine transformed proportions for a meta-analysis is not recommended. Zero cell entries can be problematic for certain outcome measures. When \code{to="only0"} (the default), the value of \code{add} (the default is \code{1/2}; but see \sQuote{Note}) is added to \code{xi} and \code{mi} only for studies where \code{xi} or \code{mi} is equal to 0. When \code{to="all"}, the value of \code{add} is added to \code{xi} and \code{mi} in all studies. When \code{to="if0all"}, the value of \code{add} is added in all studies, but only when there is at least one study with a zero value for \code{xi} or \code{mi}. Setting \code{to="none"} or \code{add=0} has the same effect: No adjustment to the observed values is made. Depending on the outcome measure and the data, this may lead to division by zero (when this occurs, the resulting value is recoded to \code{NA}). Datasets corresponding to data of this type are provided in \code{\link[metadat]{dat.pritz1997}}, \code{\link[metadat]{dat.debruin2009}}, and \code{\link[metadat]{dat.hannum2020}}. } \subsection{(3c) Measures for Event Counts}{ Various measures can be used to characterize individual groups when the dependent variable assessed is an event count. Here, one needs to specify \code{xi} and \code{ti}, denoting the number of events that occurred and the total person-times at risk, respectively. The options for the \code{measure} argument are then: \itemize{ \item \code{"IR"} for the \emph{raw incidence rate}, \item \code{"IRLN"} for the \emph{log transformed incidence rate}, \item \code{"IRS"} for the \emph{square root transformed incidence rate}, \item \code{"IRFT"} for the \emph{Freeman-Tukey transformed incidence rate} (Freeman & Tukey, 1950). } Measures \code{"IR"} and \code{"IRLN"} can also be used when meta-analyzing standardized incidence ratios (SIRs), where the observed number of events is divided by the expected number of events. In this case, arguments \code{xi} and \code{ti} are used to specify the observed and expected number of events in the studies. Since SIRs are not symmetric around 1, it is usually more appropriate to meta-analyze the log transformed SIRs (i.e., using measure \code{"IRLN"}), which are symmetric around 0. Studies with zero events can be problematic, especially for the log transformed incidence rate. Adding a small constant to the number of events is a common solution to this problem. When \code{to="only0"} (the default), the value of \code{add} (the default is \code{1/2}; but see \sQuote{Note}) is added to \code{xi} only in the studies that have zero events. When \code{to="all"}, the value of \code{add} is added to \code{xi} in all studies. When \code{to="if0all"}, the value of \code{add} is added to \code{xi} in all studies, but only when there is at least one study with zero events. Setting \code{to="none"} or \code{add=0} has the same effect: No adjustment to the observed number of events is made. Depending on the outcome measure and the data, this may lead to division by zero (when this occurs, the resulting value is recoded to \code{NA}). } } \subsection{(4) Outcome Measures for Change or Matched Pairs}{ The purpose of a meta-analysis may be to assess the amount of change within individual groups (e.g., before and after a treatment or under two different treatments) or when dealing with matched pairs designs. \subsection{(4a) Measures for Quantitative Variables}{ When the response or dependent variable assessed in the individual studies is measured on some quantitative scale, the raw mean change, standardized versions thereof, the common language effect size (area under the curve), or the (log transformed) ratio of means (log response ratio) can be used as outcome measures (Becker, 1988; Gibbons et al., 1993; Lajeunesse, 2011; Morris, 2000). Here, one needs to specify \code{m1i} and \code{m2i}, the observed means at the two measurement occasions, \code{sd1i} and \code{sd2i} for the corresponding observed standard deviations, \code{ri} for the correlation between the measurements at the two measurement occasions, and \code{ni} for the sample size. The options for the \code{measure} argument are then: \itemize{ \item \code{"MC"} for the \emph{raw mean change}, \item \code{"SMCC"} for the \emph{standardized mean change} using change score standardization (Gibbons et al., 1993), \item \code{"SMCR"} for the \emph{standardized mean change} using raw score standardization (Becker, 1988), \item \code{"SMCRH"} for the \emph{standardized mean change} using raw score standardization with heteroscedastic population variances at the two measurement occasions (Bonett, 2008), \item \code{"SMCRP"} for the \emph{standardized mean change} using raw score standardization with pooled standard deviations (Cousineau, 2020), \item \code{"SMCRPH"} for the \emph{standardized mean change} using raw score standardization with pooled standard deviations and heteroscedastic population variances at the two measurement occasions (Bonett, 2008), \item \code{"CLESCN"} (or \code{"AUCCN"}) for the \emph{common language effect size} (area under the curve) based on a bivariate normal model for dependent samples, \item \code{"ROMC"} for the \emph{log transformed ratio of means} (Lajeunesse, 2011). } The raw mean change is simply \mjeqn{\text{m1i}-\text{m2i}}{m1i-m2i}, while the standardized mean change is given by \mjeqn{(\text{m1i}-\text{m2i})/\text{sdi}}{(m1i-m2i)/sdi}. For \code{measure="SMCC"}, \mjeqn{\text{sdi} = \sqrt{\text{sd1i}^2 + \text{sd2i}^2 - 2\times\text{ri}\times\text{sd1i}\times\text{sd2i}}}{sdi = sqrt(sd1i^2 + sd2i^2 - 2*ri*sd1i*sd2i)} is the standard deviation of the change scores, for \code{measure="SMCR"} and \code{measure="SMCRH"}, \mjeqn{\text{sdi} = \text{sd1i}}{sdi = sd1i}, and for \code{measure="SMCRP"} and \code{measure="SMCRPH"}, \mjeqn{\text{sdi} = \sqrt{\frac{\text{sd1i}^2 + \text{sd2i}^2}{2}}}{sdi = sqrt((sd1i^2 + sd2i^2) / 2)} is the square root of the average variance. See also Morris and DeShon (2002) for a thorough discussion of the difference between the \code{"SMCC"} and \code{"SMCR"} change score measures. All of these measures are also applicable for matched pairs designs (subscripts 1 and 2 then simply denote the first and second group that are formed by the matching). In practice, one often has a mix of information available from the individual studies to compute these measures. In particular, if \code{m1i} and \code{m2i} are unknown, but the raw mean change is directly reported in a particular study, then one can set \code{m1i} to that value and \code{m2i} to 0 (making sure that the raw mean change was computed as \code{m1i-m2i} within that study and not the other way around). Also, for measures \code{"MC"} and \code{"SMCC"}, if \code{sd1i}, \code{sd2i}, and \code{ri} are unknown, but the standard deviation of the change scores is directly reported, then one can set \code{sd1i} to that value and both \code{sd2i} and \code{ri} to 0. For measure \code{"SMCR"}, argument \code{sd2i} is actually not needed, as the standardization is only based on \code{sd1i} (Becker, 1988; Morris, 2000), which is usually the pre-test standard deviation (if the post-test standard deviation should be used, then set \code{sd1i} to that). Finally, for \code{measure="SMCC"}, one can also directly specify standardized mean change values via argument \code{di} or the t-statistics from a paired samples t-test or the corresponding two-sided p-values via argument \code{ti} or \code{pi}, respectively (which are then transformed into the corresponding standardized mean change values within the function). The sign of the p-values (which can be negative) is used as the sign of the standardized mean change values (e.g., \code{escalc(measure="SMCC", pi=-0.018, ni=50)} yields a negative standardized mean change value of \code{-0.3408}). Finally, interest may also be focused on differences in the variability of the measurements at the two measurement occasions (or between the two matched groups). Here, the (log transformed) ratio of the coefficient of variation (also called the coefficient of variation ratio) can be a useful measure (Nakagawa et al., 2015). If focus is solely on the variability of the measurements, then the (log transformed) ratio of the standard deviations (also called the variability ratio) can be used (Nakagawa et al., 2015). For the latter, one only needs to specify \code{sd1i}, \code{sd2i}, \code{ni}, and \code{ri}. The options for the \code{measure} argument are: \itemize{ \item \code{"CVRC"} for the \emph{log transformed coefficient of variation ratio}, \item \code{"VRC"} for the \emph{log transformed variability ratio}. } The definitions of these measures are the same as given in Nakagawa et al. (2015) but are here computed for two sets of dependent measurements. Hence, the computation of the sampling variances are adjusted to take the correlation between the measurements into consideration. } \subsection{(4b) Measures for Dichotomous Variables}{ The data for a study examining change in a dichotomous variable gives rise to a paired \mjeqn{2 \times 2}{2x2} table, which is of the form: \tabular{lcccc}{ \ics \tab \tab trt 2 outcome 1 \tab \ics \tab trt 2 outcome 2 \cr trt 1 outcome 1 \ics \tab \tab \code{ai} \tab \ics \tab \code{bi} \cr trt 1 outcome 2 \ics \tab \tab \code{ci} \tab \ics \tab \code{di}} where \code{ai}, \code{bi}, \code{ci}, and \code{di} denote the cell frequencies. Note that \sQuote{trt1} and \sQuote{trt2} may be applied to a single group of subjects or to matched pairs of subjects. Also, \sQuote{trt1} and \sQuote{trt2} might refer to two different time points (e.g., before and after a treatment). In any case, the data from such a study can be rearranged into a marginal table of the form: \tabular{lcccc}{ \tab \ics \tab outcome 1 \tab \ics \tab outcome 2 \cr trt 1 \tab \ics \tab \code{ai+bi} \tab \ics \tab \code{ci+di} \cr trt 2 \tab \ics \tab \code{ai+ci} \tab \ics \tab \code{bi+di}} which is of the same form as a \mjeqn{2 \times 2}{2x2} table that would arise in a study comparing/contrasting two independent groups. The options for the \code{measure} argument that will compute outcome measures based on the marginal table are: \itemize{ \item \code{"MPRR"} for the matched pairs \emph{marginal log risk ratio}, \item \code{"MPOR"} for the matched pairs \emph{marginal log odds ratio}, \item \code{"MPRD"} for the matched pairs \emph{marginal risk difference}. } See Becker and Balagtas (1993), Curtin et al. (2002), Elbourne et al. (2002), Fagerland et al. (2014), May and Johnson (1997), Newcombe (1998), Stedman et al. (2011), and Zou (2007) for discussions of these measures. The options for the \code{measure} argument that will compute outcome measures based on the paired table are: \itemize{ \item \code{"MPORC"} for the \emph{conditional log odds ratio}, \item \code{"MPPETO"} for the \emph{conditional log odds ratio} estimated with Peto's method. } See Curtin et al. (2002) and Zou (2007) for discussions of these measures. If only marginal tables are available, then another possibility is to compute the marginal log odds ratios based on these table directly. However, for the correct computation of the sampling variances, the correlations (phi coefficients) from the paired tables must be known (or \sQuote{guestimated}). To use this approach, set \code{measure="MPORM"} and use argument \code{ri} to specify the correlation coefficients. Instead of specifying \code{ri}, one can use argument \code{pi} to specify the proportions (or \sQuote{guestimates} thereof) of individuals (or pairs) that experienced the outcome of interest (i.e., \sQuote{outcome1} in the paired \mjeqn{2 \times 2}{2x2} table) under both treatments (i.e., \code{pi=ai/(ai+bi+ci+di)}). Based on these proportions, the correlation coefficients are then back-calculated and used to compute the correct sampling variances. Note that the values in the marginal tables put constraints on the possible values for \code{ri} and \code{pi}. If a specified value for \code{ri} or \code{pi} is not feasible under a given table, the corresponding sampling variance will be \code{NA}. } } \subsection{(5) Other Outcome Measures for Meta-Analyses}{ Other outcome measures are sometimes used for meta-analyses that do not directly fall into the categories above. These are described in this section. \subsection{Cronbach's alpha and Transformations Thereof}{ Meta-analytic methods can also be used to aggregate Cronbach's alpha values from multiple studies. This is usually referred to as a \sQuote{reliability generalization meta-analysis} (Vacha-Haase, 1998). Here, one needs to specify \code{ai}, \code{mi}, and \code{ni} for the observed alpha values, the number of items/replications/parts of the measurement instrument, and the sample sizes, respectively. One can either directly analyze the raw Cronbach's alpha values or transformations thereof (Bonett, 2002, 2010; Hakstian & Whalen, 1976). The options for the \code{measure} argument are then: \itemize{ \item \code{"ARAW"} for \emph{raw alpha} values, \item \code{"AHW"} for \emph{transformed alpha values} (Hakstian & Whalen, 1976), \item \code{"ABT"} for \emph{transformed alpha values} (Bonett, 2002). } Note that the transformations implemented here are slightly different from the ones described by Hakstian and Whalen (1976) and Bonett (2002). In particular, for \code{"AHW"}, the transformation \mjeqn{1-(1-\text{ai})^{1/3}}{1-(1-ai)^(1/3)} is used, while for \code{"ABT"}, the transformation \mjeqn{-\log(1-\text{ai})}{-log(1-ai)} is used. This ensures that the transformed values are monotonically increasing functions of \mjeqn{\text{ai}}{ai}. A dataset corresponding to data of this type is provided in \code{\link[metadat]{dat.bonett2010}}. } \subsection{Partial and Semi-Partial Correlations}{ Aloe and Becker (2012), Aloe and Thompson (2013), and Aloe (2014) describe the use of partial and semi-partial correlation coefficients for meta-analyzing the results from regression models (when the focus is on a common regression coefficient of interest across studies). To compute these measures, one needs to specify \code{ti} for the test statistics (i.e., t-tests) of the \sQuote{focal} regression coefficient of interest, \code{ni} for the sample sizes of the studies, \code{mi} for the total number of predictors in the regression models (counting the focal predictor of interest, but not the intercept term), and \code{r2i} for the \mjseqn{R^2} values of the regression models (the latter is only needed when \code{measure="SPCOR"} or \code{measure="ZSPCOR"}). The options for the \code{measure} argument are then: \itemize{ \item \code{"PCOR"} for the \emph{partial correlation coefficient}, \item \code{"ZPCOR"} for \emph{Fisher's r-to-z transformed partial correlation coefficient}, \item \code{"SPCOR"} for the \emph{semi-partial correlation coefficient}, \item \code{"ZSPCOR"} for \emph{Fisher's r-to-z transformed semi-partial correlation coefficient}. } Note that the signs of the (semi-)partial correlation coefficients is determined based on the signs of the values specified via the \code{ti} argument. Also, while the Fisher transformation can be applied to both measures, it is only a variance-stabilizing transformation for partial correlation coefficients. If the test statistic (i.e., t-test) of the regression coefficient of interest is unknown for some studies, but the two-sided p-values corresponding to the t-tests are known, one can specify those values via argument \code{pi}. However, since a two-sided p-value does not carry information about the sign of the test statistic (and hence neither about the correlation), the sign of the p-values (which can be negative) is used as the sign of the correlation coefficients (e.g., \code{escalc(measure="PCOR", pi=-0.07, mi=5, ni=30)} yields a negative partial correlation of \code{-0.3610}). In the rare case that the (semi-)partial correlations are known for some of the studies, then these can be directly specified via the \code{ri} argument. This can be useful, for example, when \mjseqn{\eta^2_p} (i.e., partial eta squared) is known for the regression coefficient of interest, since the square root thereof is identical to the absolute value of the partial correlation (although the correct sign then still needs to be reconstructed based on other information). A dataset corresponding to data of this type is provided in \code{\link[metadat]{dat.aloe2013}}. } \subsection{Coefficients of Determination}{ One can in principle also meta-analyze coefficients of determination (i.e., \mjseqn{R^2} values / R-squared values) obtained from a series of linear regression models (however, see the caveat mentioned below). For this, one needs to specify \code{r2i} for the \mjseqn{R^2} values of the regression models, \code{ni} for the sample sizes of the studies, and \code{mi} for the number of predictors in the regression models (not counting the intercept term). The options for the \code{measure} argument are then: \itemize{ \item \code{"R2"} for the \emph{raw coefficient of determination} with predictor values treated as random, \item \code{"ZR2"} for the corresponding \emph{r-to-z transformed coefficient of determination}, \item \code{"R2F"} for the \emph{raw coefficient of determination} with predictor values treated as fixed, \item \code{"ZR2F"} for the corresponding \emph{r-to-z transformed coefficient of determination}. } If the \mjseqn{R^2} values are unknown for some studies, but the F-statistics (for the omnibus test of the regression coefficients) are available, one can specify those values via argument \code{fi}, which are then transformed into the corresponding \mjseqn{R^2} values within the function. If only the p-values corresponding to the F-tests are known, one can specify those values via argument \code{pi} (which are then transformed into the F-statistics and then further into the \mjseqn{R^2} values). For \code{measure="R2"}, one can choose to compute the sampling variances with \code{vtype="LS"} (the default) for the large-sample approximation given by equation 27.88 in Kendall and Stuart (1979), \code{vtype="LS2"} for the large-sample approximation given by equation 27.87, or \code{vtype="AV"} and \code{vtype="AV2"} which use the same approximations but plugging the sample-size weighted average of the \mjseqn{R^2} values into the equations. For \code{measure="ZR2"}, the variance-stabilizing transformation \mjeqn{\frac{1}{2} \log\mathopen{}\left(\frac{1+\sqrt{\text{r2i}}}{1-\sqrt{\text{r2i}}}\right)\mathclose{}}{1/2 log((1+\sqrt(R_i^2))/(1-\sqrt(R_i^2)))} is used (see Olkin & Finn, 1995, but with the additional \mjeqn{\frac{1}{2}}{1/2} factor), which uses \mjeqn{1/\text{ni}}{1/ni} as the large-sample approximation to the sampling variances. The equations used for these measures were derived under the assumption that the values of the outcome variable and the predictors were sampled from a multivariate normal distribution within each study (sometimes called \sQuote{random-X regression}) and that the sample sizes of the studies are large. Moreover, the equations assume that the true \mjseqn{R^2} values are non-zero. For the case where the predictor values are treated as fixed (sometimes called \sQuote{fixed-X regression}), one can use measures \code{"R2F"} and \code{"ZR2F"}. Here, the sampling variances of the \mjseqn{R^2} values are computed based on the known relationship between the non-central F-distribution and its non-centrality parameter (which in turn is a function of the true \mjseqn{R^2}). However, note that the r-to-z transformation is \emph{not} a variance-stabilizing transformation for this case. Given that observed \mjseqn{R^2} values cannot be negative, there is no possibility for values to cancel each other out and hence it is guaranteed that the pooled estimate is positive. Hence, a meta-analysis of \mjseqn{R^2} values cannot be used to test if the pooled estimate is different from zero (it is by construction as long as the number of studies is sufficiently large). } \subsection{Relative Excess Heterozygosity}{ Ziegler et al. (2011) describe the use of meta-analytic methods to examine deviations from the Hardy-Weinberg equilibrium across multiple studies. The relative excess heterozygosity (REH) is the proposed measure for such a meta-analysis, which can be computed by setting \code{measure="REH"}. Here, one needs to specify \code{ai} for the number of individuals with homozygous dominant alleles, \code{bi} for the number of individuals with heterozygous alleles, and \code{ci} for the number of individuals with homozygous recessives alleles. Note that the log is taken of the REH values, which makes this outcome measure symmetric around 0 and results in a sampling distribution that is closer to normality. A dataset corresponding to data of this type is provided in \code{\link[metadat]{dat.frank2008}}. } } \subsection{(6) Converting a Data Frame to an 'escalc' Object}{ The function can also be used to convert a regular data frame to an \sQuote{escalc} object. One simply sets the \code{measure} argument to one of the options described above (or to \code{measure="GEN"} for a generic outcome measure not further specified) and passes the observed effect sizes or outcomes via the \code{yi} argument and the corresponding sampling variances via the \code{vi} argument (or the standard errors via the \code{sei} argument) to the function. } \subsection{Other Arguments}{ Argument \code{slab} can be used to specify (study) labels for the effect sizes or outcomes. These labels are passed on to other functions and used as needed (e.g., for labeling the studies in a forest plot). Note that missing values in the study labels are not allowed. The \code{flip} argument, when set to \code{TRUE}, can be used to flip the sign of the effect sizes or outcomes. This can also be a logical vector to indicate for which studies the sign should be flipped. The argument can also be a numeric vector to specify a multiplier for the effect sizes or outcomes (the corresponding sampling variances are adjusted accordingly). The \code{subset} argument can be used to select the studies that will be included in the data frame returned by the function. On the other hand, the \code{include} argument simply selects for which studies the measure will be computed (if it shouldn't be computed for all of them). } } \value{ An object of class \code{c("escalc","data.frame")}. The object is a data frame containing the following components: \item{yi}{vector with the observed effect sizes or outcomes.} \item{vi}{vector with the corresponding sampling variances.} If a data frame was specified via the \code{data} argument and \code{append=TRUE}, then variables \code{yi} and \code{vi} are appended to this data frame. Note that the \code{var.names} argument actually specifies the names of these two variables (\code{"yi"} and \code{"vi"} are the defaults). If the data frame already contains two variables with names as specified by the \code{var.names} argument, the values for these two variables will be overwritten when \code{replace=TRUE} (which is the default). By setting \code{replace=FALSE}, only values that are \code{NA} will be replaced. The object is formatted and printed with the \code{\link[=print.escalc]{print}} function. The \code{\link[=summary.escalc]{summary}} function can be used to obtain confidence intervals for the individual outcomes. See \code{\link{methods.escalc}} for some additional method functions for \code{"escalc"} objects. With the \code{\link[=aggregate.escalc]{aggregate}} function, one can aggregate multiple effect sizes or outcomes belonging to the same study (or some other clustering variable) into a single combined effect size or outcome. } \note{ The variable names specified under \code{var.names} should be syntactically valid variable names. If necessary, they are adjusted so that they are. Although the default value for \code{add} is \code{1/2}, for certain measures the use of such a bias correction makes little sense and for these measures, the function internally sets \code{add=0}. This applies to the following measures: \code{"AS"}, \code{"PHI"}, \code{"ZPHI"}, \code{"RTET"}, \code{"ZTET"}, \code{"IRSD"}, \code{"PAS"}, \code{"PFT"}, \code{"IRS"}, and \code{"IRFT"}. One can still force the use of the bias correction by explicitly setting the \code{add} argument to some non-zero value when calling the function. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Aloe, A. M. (2014). An empirical investigation of partial effect sizes in meta-analysis of correlational data. \emph{Journal of General Psychology}, \bold{141}(1), 47--64. \verb{https://doi.org/10.1080/00221309.2013.853021} Aloe, A. M., & Becker, B. J. (2012). An effect size for regression predictors in meta-analysis. \emph{Journal of Educational and Behavioral Statistics}, \bold{37}(2), 278--297. \verb{https://doi.org/10.3102/1076998610396901} Aloe, A. M., & Thompson, C. G. (2013). The synthesis of partial effect sizes. \emph{Journal of the Society for Social Work and Research}, \bold{4}(4), 390--405. \verb{https://doi.org/10.5243/jsswr.2013.24} Bagos, P. G., & Nikolopoulos, G. K. (2009). Mixed-effects Poisson regression models for meta-analysis of follow-up studies with constant or varying durations. \emph{The International Journal of Biostatistics}, \bold{5}(1). \verb{https://doi.org/10.2202/1557-4679.1168} Becker, B. J. (1988). Synthesizing standardized mean-change measures. \emph{British Journal of Mathematical and Statistical Psychology}, \bold{41}(2), 257--278. \verb{https://doi.org/10.1111/j.2044-8317.1988.tb00901.x} Becker, M. P., & Balagtas, C. C. (1993). Marginal modeling of binary cross-over data. \emph{Biometrics}, \bold{49}(4), 997--1009. \verb{https://doi.org/10.2307/2532242} Bonett, D. G. (2002). Sample size requirements for testing and estimating coefficient alpha. \emph{Journal of Educational and Behavioral Statistics}, \bold{27}(4), 335--340. \verb{https://doi.org/10.3102/10769986027004335} Bonett, D. G. (2008). Confidence intervals for standardized linear contrasts of means. \emph{Psychological Methods}, \bold{13}(2), 99--109. \verb{https://doi.org/10.1037/1082-989X.13.2.99} Bonett, D. G. (2009). Meta-analytic interval estimation for standardized and unstandardized mean differences. \emph{Psychological Methods}, \bold{14}(3), 225--238. \verb{https://doi.org/10.1037/a0016619} Bonett, D. G. (2010). Varying coefficient meta-analytic methods for alpha reliability. \emph{Psychological Methods}, \bold{15}(4), 368--385. \verb{https://doi.org/10.1037/a0020142} Borenstein, M. (2009). Effect sizes for continuous data. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (2nd ed., pp. 221--235). New York: Russell Sage Foundation. Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. \emph{Statistics in Medicine}, \bold{19}(22), 3127--3131. \verb{https://doi.org/10.1002/1097-0258(20001130)19:22<3127::aid-sim784>3.0.co;2-m} Cho, H., Matthews, G. J., & Harel, O. (2019). Confidence intervals for the area under the receiver operating characteristic curve in the presence of ignorable missing data. \emph{International Statistical Review}, \bold{87}(1), 152--177. \verb{https://doi.org/10.1111/insr.12277} Cohen, J. (1988). \emph{Statistical power analysis for the behavioral sciences} (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. Cousineau, D. (2020). Approximating the distribution of Cohen's d_p in within-subject designs. \emph{The Quantitative Methods for Psychology}, \bold{16}(4), 418--421. \verb{https://doi.org/10.20982/tqmp.16.4.p418} Cox, D. R., & Snell, E. J. (1989). \emph{Analysis of binary data} (2nd ed.). London: Chapman & Hall. Curtin, F., Elbourne, D., & Altman, D. G. (2002). Meta-analysis combining parallel and cross-over clinical trials. II: Binary outcomes. \emph{Statistics in Medicine}, \bold{21}(15), 2145--2159. \verb{https://doi.org/10.1002/sim.1206} Elbourne, D. R., Altman, D. G., Higgins, J. P. T., Curtin, F., Worthington, H. V., & Vail, A. (2002). Meta-analyses involving cross-over trials: Methodological issues. \emph{International Journal of Epidemiology}, \bold{31}(1), 140--149. \verb{https://doi.org/10.1093/ije/31.1.140} Fagerland, M. W., Lydersen, S., & Laake, P. (2014). Recommended tests and confidence intervals for paired binomial proportions. \emph{Statistics in Medicine}, \bold{33}(16), 2850--2875. \verb{https://doi.org/10.1002/sim.6148} Fisher, R. A. (1921). On the \dQuote{probable error} of a coefficient of correlation deduced from a small sample. \emph{Metron}, \bold{1}, 1--32. \verb{http://hdl.handle.net/2440/15169} Fleiss, J. L., & Berlin, J. (2009). Effect sizes for dichotomous data. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (2nd ed., pp. 237--253). New York: Russell Sage Foundation. Freeman, M. F., & Tukey, J. W. (1950). Transformations related to the angular and the square root. \emph{Annals of Mathematical Statistics}, \bold{21}(4), 607--611. \verb{https://doi.org/10.1214/aoms/1177729756} Gibbons, R. D., Hedeker, D. R., & Davis, J. M. (1993). Estimation of effect size from a series of experiments involving paired comparisons. \emph{Journal of Educational Statistics}, \bold{18}(3), 271--279. \verb{https://doi.org/10.3102/10769986018003271} Goddard, M. J., & Hinberg, I. (1990). Receiver operator characteristic (ROC) curves and nonâ€normal data: An empirical study. \emph{Statistics in Medicine}, \bold{9}(3), 325--337. \verb{https://doi.org/10.1002/sim.4780090315} Hakstian, A. R., & Whalen, T. E. (1976). A k-sample significance test for independent alpha coefficients. \emph{Psychometrika}, \bold{41}(2), 219--231. \verb{https://doi.org/10.1007/BF02291840} Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. \emph{Radiology}, \bold{143}(1), 29--36. \verb{https://doi.org/10.1148/radiology.143.1.7063747} Hasselblad, V., & Hedges, L. V. (1995). Meta-analysis of screening and diagnostic tests. Psychological Bulletin, 117(1), 167--178. \verb{https://doi.org/10.1037/0033-2909.117.1.167} Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. \emph{Journal of Educational Statistics}, \bold{6}(2), 107--128. \verb{https://doi.org/10.3102/10769986006002107} Hedges, L. V. (1982). Estimation of effect size from a series of independent experiments. \emph{Psychological Bulletin}, \bold{92}(2), 490--499. \verb{https://doi.org/10.1037/0033-2909.92.2.490} Hedges, L. V. (1983). A random effects model for effect sizes. \emph{Psychological Bulletin}, \bold{93}(2), 388--395. \verb{https://doi.org/10.1037/0033-2909.93.2.388} Hedges, L. V. (1989). An unbiased correction for sampling error in validity generalization studies. \emph{Journal of Applied Psychology}, \bold{74}(3), 469--477. \verb{https://doi.org/10.1037/0021-9010.74.3.469} Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. \emph{Ecology}, \bold{80}(4), 1150--1156. \verb{https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2} Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds.) (2019). \emph{Cochrane handbook for systematic reviews of interventions} (2nd ed.). Chichester, UK: Wiley. \verb{https://training.cochrane.org/handbook} Jacobs, P., & Viechtbauer, W. (2017). Estimation of the biserial correlation and its sampling variance for use in meta-analysis. \emph{Research Synthesis Methods}, \bold{8}(2), 161--180. \verb{https://doi.org/10.1002/jrsm.1218} Kendall, M., & Stuart, A. (1979). \emph{Kendall's advanced theory of statistics, Vol. 2: Inference and relationship} (4th ed.). New York: Macmillan. Kirk, D. B. (1973). On the numerical approximation of the bivariate normal (tetrachoric) correlation coefficient. \emph{Psychometrika}, \bold{38}(2), 259--268. \verb{https://doi.org/10.1007/BF02291118} Lajeunesse, M. J. (2011). On the meta-analysis of response ratios for studies with correlated and multi-group designs. \emph{Ecology}, \bold{92}(11), 2049--2055. \verb{https://doi.org/10.1890/11-0423.1} May, W. L., & Johnson, W. D. (1997). Confidence intervals for differences in correlated binary proportions. \emph{Statistics in Medicine}, \bold{16}(18), 2127--2136. \verb{https://doi.org/10.1002/(SICI)1097-0258(19970930)16:18<2127::AID-SIM633>3.0.CO;2-W} McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. \emph{Psychological Bulletin}, \bold{111}(2), 361--365. \verb{https://doi.org/10.1037/0033-2909.111.2.361} Morris, S. B. (2000). Distribution of the standardized mean change effect size for meta-analysis on repeated measures. \emph{British Journal of Mathematical and Statistical Psychology}, \bold{53}(1), 17--29. \verb{https://doi.org/10.1348/000711000159150} Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. \emph{Psychological Methods}, \bold{7}(1), 105--125. \verb{https://doi.org/10.1037/1082-989x.7.1.105} Nakagawa, S., Poulin, R., Mengersen, K., Reinhold, K., Engqvist, L., Lagisz, M., & Senior, A. M. (2015). Meta-analysis of variation: Ecological and evolutionary applications and beyond. \emph{Methods in Ecology and Evolution}, \bold{6}(2), 143--152. \verb{https://doi.org/10.1111/2041-210x.12309} Nakagawa, S., Noble, D. W. A., Lagisz, M., Spake, R., Viechtbauer, W., & Senior, A. M. (2023). A robust and readily implementable method for the meta-analysis of response ratios with and without missing standard deviations. \emph{Ecology Letters}, \bold{26}(2), 232--244. \verb{https://doi.org/10.1111/ele.14144} Newcombe, R. G. (1998). Improved confidence intervals for the difference between binomial proportions based on paired data. \emph{Statistics in Medicine}, \bold{17}(22), 2635--2650. \verb{https://doi.org/10.1002/(SICI)1097-0258(19981130)17:22<2635::AID-SIM954>3.0.CO;2-C} Newcombe, R. G. (2006). Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2: Asymptotic methods and evaluation. \emph{Statistics in Medicine}, \bold{25}(4), 559--573. \verb{https://doi.org/10.1002/sim.2324} Olkin, I., & Finn, J. D. (1995). Correlations redux. \emph{Psychological Bulletin}, \bold{118}(1), 155--164. \verb{https://doi.org/10.1037/0033-2909.118.1.155} Olkin, I., & Pratt, J. W. (1958). Unbiased estimation of certain correlation coefficients. \emph{Annals of Mathematical Statistics}, \bold{29}(1), 201--211. \verb{https://doi.org/10.1214/aoms/1177706717} Pearson, K. (1900). Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. \emph{Philosophical Transactions of the Royal Society of London, Series A}, \bold{195}, 1--47. \verb{https://doi.org/10.1098/rsta.1900.0022} Pearson, K. (1909). On a new method of determining correlation between a measured character A, and a character B, of which only the percentage of cases wherein B exceeds (or falls short of) a given intensity is recorded for each grade of A. \emph{Biometrika}, \bold{7}(1/2), 96--105. \verb{https://doi.org/10.1093/biomet/7.1-2.96} Raudenbush, S. W., & Bryk, A. S. (1987). Examining correlates of diversity. \emph{Journal of Educational Statistics}, \bold{12}(3), 241--269. \verb{https://doi.org/10.3102/10769986012003241} Rothman, K. J., Greenland, S., & Lash, T. L. (2008). \emph{Modern epidemiology} (3rd ed.). Philadelphia: Lippincott Williams & Wilkins. \enc{Röver}{Roever}, C., & Friede, T. (2022). Double arcsine transform not appropriate for metaâ€analysis. \emph{Research Synthesis Methods}, \bold{13}(5), 645--648. \verb{https://doi.org/10.1002/jrsm.1591} \enc{Rücker}{Ruecker}, G., Schwarzer, G., Carpenter, J., & Olkin, I. (2009). Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. \emph{Statistics in Medicine}, \bold{28}(5), 721--738. \verb{https://doi.org/10.1002/sim.3511} \enc{Sánchez-Meca}{Sanchez-Meca}, J., \enc{Marín-Martínez}{Marin-Martinez}, F., & \enc{Chacón-Moscoso}{Chacon-Moscoso}, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. \emph{Psychological Methods}, \bold{8}(4), 448--467. \verb{https://doi.org/10.1037/1082-989X.8.4.448} Schwarzer, G., Chemaitelly, H., Abu-Raddad, L. J., & \enc{Rücker}{Ruecker}, G. (2019). Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions. \emph{Research Synthesis Methods}, \bold{10}(3), 476--483. \verb{https://doi.org/10.1002/jrsm.1348} Soper, H. E. (1914). On the probable error of the bi-serial expression for the correlation coefficient. \emph{Biometrika}, \bold{10}(2/3), 384--390. \verb{https://doi.org/10.1093/biomet/10.2-3.384} Stedman, M. R., Curtin, F., Elbourne, D. R., Kesselheim, A. S., & Brookhart, M. A. (2011). Meta-analyses involving cross-over trials: Methodological issues. \emph{International Journal of Epidemiology}, \bold{40}(6), 1732--1734. \verb{https://doi.org/10.1093/ije/dyp345} Tate, R. F. (1954). Correlation between a discrete and a continuous variable: Point-biserial correlation. \emph{Annals of Mathematical Statistics}, \bold{25}(3), 603--607. \verb{https://doi.org/10.1214/aoms/1177728730} Vacha-Haase, T. (1998). Reliability generalization: Exploring variance in measurement error affecting score reliability across studies. \emph{Educational and Psychological Measurement}, \bold{58}(1), 6--20. \verb{https://doi.org/10.1177/0013164498058001002} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Yule, G. U. (1912). On the methods of measuring association between two attributes. \emph{Journal of the Royal Statistical Society}, \bold{75}(6), 579--652. \verb{https://doi.org/10.2307/2340126} Yusuf, S., Peto, R., Lewis, J., Collins, R., & Sleight, P. (1985). Beta blockade during and after myocardial infarction: An overview of the randomized trials. \emph{Progress in Cardiovascular Disease}, \bold{27}(5), 335--371. \verb{https://doi.org/10.1016/s0033-0620(85)80003-7} Ziegler, A., Steen, K. V. & Wellek, S. (2011). Investigating Hardy-Weinberg equilibrium in case-control or cohort studies or meta-analysis. \emph{Breast Cancer Research and Treatment}, \bold{128}(1), 197--201. \verb{https://doi.org/10.1007/s10549-010-1295-z} Zou, G. Y. (2007). One relative risk versus two odds ratios: Implications for meta-analyses involving paired and unpaired binary data. \emph{Clinical Trials}, \bold{4}(1), 25--31. \verb{https://doi.org/10.1177/1740774506075667} } \seealso{ \code{\link[=print.escalc]{print}} and \code{\link[=summary.escalc]{summary}} for the print and summary methods. \code{\link{conv.2x2}} for a function to reconstruct the cell frequencies of \mjeqn{2 \times 2}{2x2} tables based on other summary statistics. \code{\link{conv.fivenum}} for a function to convert five-number summary values to means and standard deviations (needed to compute various effect size measures, such as raw or standardized mean differences and ratios of means / response ratios). \code{\link{conv.wald}} for a function to convert Wald-type confidence intervals and test statistics to sampling variances. \code{\link{conv.delta}} for a function to transform observed effect sizes or outcomes and their sampling variances using the delta method. \code{\link{vcalc}} for a function to construct or approximate the variance-covariance matrix of dependent effect sizes or outcomes. \code{\link{rcalc}} for a function to construct the variance-covariance matrix of dependent correlation coefficients. \code{\link{rma.uni}} and \code{\link{rma.mv}} for model fitting functions that can take the calculated effect sizes or outcomes (and the corresponding sampling variances) as input. \code{\link{rma.mh}}, \code{\link{rma.peto}}, and \code{\link{rma.glmm}} for model fitting functions that take similar inputs. } \examples{ ############################################################################ ### data from the meta-analysis by Coliditz et al. (1994) on the efficacy of ### BCG vaccine in the prevention of tuberculosis dat.bcg dat.bcg ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat ### suppose that for a particular study, yi and vi are known (i.e., have ### already been calculated) but the 2x2 table counts are not known; with ### replace=FALSE, the yi and vi values for that study are not replaced dat[1:12,10:11] <- NA dat[13,4:7] <- NA dat dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, replace=FALSE) dat ### illustrate difference between 'subset' and 'include' arguments escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, subset=1:6) escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, include=1:6) ### illustrate the 'var.names' argument escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, var.names=c("lnrr","var")) ### illustrate the 'slab' argument dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste0(author, ", ", year)) dat ### note: the output looks the same but the study labels are stored as an attribute with the ### effect size estimates (together with the total sample size of the studies and the chosen ### effect size measure) dat$yi ### this information can then be used by other functions; for example in a forest plot forest(dat$yi, dat$vi) ############################################################################ ### convert a regular data frame to an 'escalc' object ### dataset from Lipsey & Wilson (2001), Table 7.1, page 130 dat <- data.frame(id = c(100, 308, 1596, 2479, 9021, 9028, 161, 172, 537, 7049), yi = c(-0.33, 0.32, 0.39, 0.31, 0.17, 0.64, -0.33, 0.15, -0.02, 0.00), vi = c(0.084, 0.035, 0.017, 0.034, 0.072, 0.117, 0.102, 0.093, 0.012, 0.067), random = c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1), intensity = c(7, 3, 7, 5, 7, 7, 4, 4, 5, 6)) dat dat <- escalc(measure="SMD", yi=yi, vi=vi, data=dat, slab=paste("Study ID:", id), digits=3) dat ############################################################################ } \keyword{datagen} metafor/man/misc-options.Rd0000644000176200001440000003476014746146216015422 0ustar liggesusers\name{misc-options} \alias{misc-options} \alias{misc_options} \title{Miscellaneous Options and Features} \description{ This page documents some miscellaneous options and features that do not fit very well elsewhere. \loadmathjax } \details{ \subsection{Specifying the Confidence Level}{ Several functions in the \pkg{metafor} package have a \code{level} argument for specifying the confidence level when calculating confidence (and prediction) intervals. The default is to use a 95\% level throughout the package by convention. Note that values \mjseqn{>=1} are treated as coverage percentages, values between 0.5 and 1 as coverage proportions, and values below 0.5 as (two-sided) alpha values, so \code{level=95} is the same as \code{level=.95} and \code{level=.05} (but \code{level=0} is always treated as a 0\% confidence level). } \subsection{Controlling the Number of Digits in the Output}{ Many functions in the \pkg{metafor} package have a \code{digits} argument, which can be used to control the number of digits that are displayed in the output when printing numeric values. For more control over the displayed output, one can set this argument to a named vector of the form: \preformatted{digits=c(est=2, se=3, test=2, pval=3, ci=2, var=3, sevar=3, fit=3, het=3)} where the elements control the displayed number of digits for various aspects of the output, namely: \itemize{ \item \code{est} for estimates (e.g., effect sizes, model coefficients, predicted values), \item \code{se} for standard errors, \item \code{test} for test statistics, \item \code{pval} for p-values, \item \code{ci} for confidence/prediction interval bounds, \item \code{var} for sampling variances and variance components, \item \code{sevar} for standard errors thereof, \item \code{fit} for fit statistics, \item \code{het} for heterogeneity statistics. } Instead of setting this argument in each function call, one can use \code{setmfopt(digits = ...)} to set the desired number of digits for the various elements (see \code{\link{mfopt}} for getting and setting package options). For example, \code{setmfopt(digits = c(est=2, se=3, test=2, pval=3, ci=2, var=3, sevar=3, fit=3, het=3))} could be a sensible choice when analyzing various types of standardized effect size measures. } \subsection{Styled Output with the crayon Package}{ The \href{https://cran.r-project.org/package=crayon}{crayon} package provides a way to create colored output. The \pkg{metafor} package is designed to automatically make use of this feature when the \code{crayon} package is installed (\code{install.packages("crayon")}) and loaded (\code{library(crayon)}). Note that this only works on terminals that support \sQuote{ANSI} color/highlight codes (e.g., not under RGui on Windows or R.app on macOS, but the RStudio console and all modern terminals should support this). The default color style that is used is quite plain, but should work with a light or dark colored background. One can modify the color style with \code{setmfopt(style = ...)}, where \code{...} is a list whose elements specify the styles for various parts of the output (see below for some examples and the documentation of the \code{crayon} package for the syntax to specify styles). The following elements are recognized: \itemize{ \item \code{header} for the header of tables (underlined by default), \item \code{body1} for odd numbered rows in the body of tables, \item \code{body2} for even numbered rows in the body of tables, \item \code{na} for missing values in tables, \item \code{section} for section headers (bold by default), \item \code{text} for descriptive text in the output, \item \code{result} for the corresponding result(s), \item \code{stop} for errors (bold red by default), \item \code{warning} for warnings (yellow by default), \item \code{message} for messages (green by default), \item \code{verbose} for the text in verbose output (cyan by default), \item \code{legend} for legends (gray by default). } Elements not specified are styled according to their defaults. For example, one could use: \preformatted{setmfopt(style = list(header = combine_styles("gray20", "underline"), body1 = make_style("gray40"), body2 = make_style("gray40"), na = bold, section = combine_styles("gray15", "bold"), text = make_style("gray50"), result = make_style("gray30"), legend = make_style("gray70")))} or \preformatted{setmfopt(style = list(header = combine_styles("gray80", "underline"), body1 = make_style("gray60"), body2 = make_style("gray60"), na = bold, section = combine_styles("gray85", "bold"), text = make_style("gray50"), result = make_style("gray70"), legend = make_style("gray30")))} for a light or dark colored background, respectively. A slightly more colorful style could be: \preformatted{setmfopt(style = list(header = combine_styles("snow", make_style("royalblue4", bg=TRUE)), body1 = combine_styles("gray10", make_style("gray95", bg=TRUE)), body2 = combine_styles("gray10", make_style("gray85", bg=TRUE)), na = combine_styles("orange4", "bold"), section = combine_styles("black", "bold", make_style("gray90", bg=TRUE)), text = make_style("gray40"), result = make_style("blue"), legend = make_style("gray70")))} or \preformatted{setmfopt(style = list(header = combine_styles("snow", make_style("royalblue4", bg=TRUE)), body1 = combine_styles("gray90", make_style("gray10", bg=TRUE)), body2 = combine_styles("gray90", make_style("gray15", bg=TRUE)), na = combine_styles("orange1", "bold"), section = combine_styles("snow", "bold", make_style("gray10", bg=TRUE)), text = make_style("gray60"), result = make_style("steelblue1"), legend = make_style("gray30")))} for a light and dark colored background, respectively. The following code snippet includes all output elements (except for an error) and can be used to test out a chosen color style: \preformatted{# calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat$yi[1] <- NA # set one estimate to missing so we get a warning below dat # fit random-effects model res <- rma(yi, vi, mods = ~ ablat, data=dat, verbose=3) summary(res)} \if{html}{For example, using the color scheme above (for a light colored background), the output should look like this: \figure{crayon1.png}{options: width=800} \figure{crayon2.png}{options: width=800}} Note that support for 256 different colors and text formatting (such as underlined and bold text) differs across terminals. To switch off output styling when the \code{crayon} package is loaded, use \code{setmfopt(style=FALSE}). } \subsection{Removing Empty Lines Before and After the Output}{ When printing output, an empty line is usually added before and after the output. For more compact output, this can be suppressed with \code{setmfopt(space=FALSE)} (see \code{\link{mfopt}} for getting and setting package options). For example, running the following code: \preformatted{# calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) # fit a random-effects model res <- rma(yi, vi, data=dat) res setmfopt(space=FALSE) res} shows the difference. } \subsection{Dark Mode for Plots}{ By default, plots created in \R have a white background and use black (and other darker colors) as the plotting color. Figures created with the \pkg{metafor} package also adhere to this standard. However, all plotting functions in the package are designed in such a way that switching to a dark background is easily possible. For this, one should set the canvas/figure background to a dark color (e.g., \code{"black"} or \code{"gray10"}) and the foreground color to some bright color (e.g., \code{"gray90"}, \code{"gray95"}, or \code{"white"}). This can be easily accomplished with \code{setmfopt(theme="custom", fg="gray95", bg="gray10")} (see \code{\link{mfopt}} for getting and setting package options). Figures that make use of additional colors for various plot elements will by default then use colors that are compatible with the chosen background. For example, the following two figures illustrate the difference between the two styles: \if{html}{ \figure{plots-light.png}{options: width=800} \figure{plots-dark.png}{options: width=800}} \if{latex}{ \figure{plots-light.pdf}{options: width=5.5in} \figure{plots-dark.pdf}{options: width=5.5in}} By setting \code{setmfopt(theme="dark")}, all plots created by the package will automatically use a dark mode. RStudio users can also set \code{setmfopt(theme="auto")}, in which case plotting colors are chosen depending on the RStudio theme used (for some themes, setting this to \code{"auto2"} might be visually more appealing). } \subsection{Version Check}{ When loading the \pkg{metafor} package in an \code{\link{interactive}} session, an automatic check is carried out to compare the version number of the installed package with the one available on \href{https://cran.r-project.org/package=metafor}{CRAN}. If the installed version is older than the one available on CRAN, the user is notified that a new version is available. This check can be suppressed by setting the environment variable \env{METAFOR_VERSION_CHECK} to \code{FALSE} (e.g., with \code{Sys.setenv(METAFOR_VERSION_CHECK=FALSE)}) or with \code{options(metafor=list(check=FALSE))} before loading the package (see \code{\link{mfopt}} for getting and setting package options). By setting the environment variable to \code{"devel"} (e.g., with \code{Sys.setenv(METAFOR_VERSION_CHECK="devel")}) or with \code{options(metafor=list(check="devel"))}, the version check is run against the \sQuote{development version} of the package available on \href{https://github.com/wviechtb/metafor}{GitHub}. } \subsection{Model Fitting / Processing Time}{ The various model fitting functions (i.e., \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, \code{\link{rma.mv}}, and \code{\link{selmodel}}) and various other functions (e.g., \code{\link[=confint.rma.mv]{confint}}, \code{\link{cumul}}, \code{\link{leave1out}}, \code{\link[=profile.rma.mv]{profile}}, \code{\link[=residuals.rma]{rstudent}}) automatically keep track of the model fitting / processing time. This information is stored as element \code{time} (in seconds) in the object that is returned. One can also use argument \code{time=TRUE} to nicely print this information. For example: \preformatted{# fit multilevel mixed-effects meta-regression model and print the processing time res <- rma.mv(yi, vi, mods = ~ condition, random = list(~ 1 | article/experiment/sample/id, ~ 1 | pairing), data=dat.mccurdy2020, sparse=TRUE, digits=3, time=TRUE) # extract the processing time (should take somewhere around 10-20 seconds on a modern CPU) res$time} } \subsection{Model Object Sizes}{ The objects returned by model fitting functions like \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} contain information that is needed by some of the method functions that can be applied to such objects, but that can lead to objects that are relatively large in size. As an example, the model objects that are created as part of the example code for \code{\link[metadat]{dat.moura2021}} are approximately 120MB in size. To reduce the object size, one can make use of the (undocumented) argument \code{outlist}. When setting \code{outlist="minimal"}, the resulting object contains only the minimal information needed to print the object (which results in an object that is around 13KB in size). Alternatively, one can set \code{outlist} to a string that specifies what objects that are created within the model fitting function should be returned (and under which name). For example, \code{outlist="coef=beta, vcov=vb"} would indicate that only the model coefficient(s) (with name \code{coef}) and the corresponding variance-covariance matrix (with name \code{vcov}) should be returned (the resulting object then is only around 2KB in size). Note that this requires knowledge of how objects within the model fitting function are named, so inspection of the source code of a function will then be necessary. Also, there is no guarantee that method functions will still work when including only a subset of the information that is typically stored in model objects. } \subsection{Load Balancing}{ Several functions in the \pkg{metafor} package can make use of parallel processing (e.g., \code{\link[=profile.rma.mv]{profile}}) to speed up intensive computations on machines with multiple cores. When using \code{parallel="snow"}, the default is to use the \code{\link[parallel]{parLapply}} function from the \code{\link[parallel]{parallel}} package for this purpose. In some cases (especially when the parallelized computations take up quite variable amounts of time to complete), using \sQuote{load balancing} may help to speed things up further (by using the \code{\link[parallel]{parLapplyLB}} function). This can be enabled with \code{pbapply::pboptions(use_lb=TRUE)} before running the function that makes use of parallel processing. Whether this really does speed things up depends on many factors and is hard to predict. } } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \keyword{documentation} \keyword{misc} metafor/man/rma.uni.Rd0000644000176200001440000014752214746146216014350 0ustar liggesusers\name{rma.uni} \alias{rma.uni} \alias{rma} \title{Meta-Analysis via Linear (Mixed-Effects) Models} \description{ Function to fit meta-analytic equal-, fixed-, and random-effects models and (mixed-effects) meta-regression models using a linear (mixed-effects) model framework. See below and the introduction to the \pkg{\link{metafor-package}} for more details on these models. \loadmathjax } \usage{ rma.uni(yi, vi, sei, weights, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, fi, pi, sdi, r2i, ni, mods, scale, measure="GEN", data, slab, subset, add=1/2, to="only0", drop00=FALSE, intercept=TRUE, method="REML", weighted=TRUE, test="z", level=95, btt, att, tau2, verbose=FALSE, digits, control, \dots) rma(yi, vi, sei, weights, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, fi, pi, sdi, r2i, ni, mods, scale, measure="GEN", data, slab, subset, add=1/2, to="only0", drop00=FALSE, intercept=TRUE, method="REML", weighted=TRUE, test="z", level=95, btt, att, tau2, verbose=FALSE, digits, control, \dots) } \arguments{ \emph{These arguments pertain to data input:} \item{yi}{vector of length \mjseqn{k} with the observed effect sizes or outcomes. See \sQuote{Details}.} \item{vi}{vector of length \mjseqn{k} with the corresponding sampling variances. See \sQuote{Details}.} \item{sei}{vector of length \mjseqn{k} with the corresponding standard errors (only relevant when not using \code{vi}). See \sQuote{Details}.} \item{weights}{optional argument to specify a vector of length \mjseqn{k} with user-defined weights. See \sQuote{Details}.} \item{ai}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{bi}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{ci}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{di}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{n1i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{n2i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{x1i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{x2i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{t1i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{t2i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{m1i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{m2i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{sd1i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{sd2i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{xi}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{mi}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{ri}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{ti}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{fi}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{pi}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{sdi}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{r2i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{ni}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{mods}{optional argument to include one or more moderators in the model. A single moderator can be given as a vector of length \mjseqn{k} specifying the values of the moderator. Multiple moderators are specified by giving a matrix with \mjseqn{k} rows and as many columns as there are moderator variables. Alternatively, a model \code{\link{formula}} can be used to specify the model. See \sQuote{Details}.} \item{scale}{optional argument to include one or more predictors for the scale part in a location-scale model. See \sQuote{Details}.} \item{measure}{character string to specify the type of data supplied to the function. When \code{measure="GEN"} (default), the observed effect sizes or outcomes and corresponding sampling variances should be supplied to the function via the \code{yi} and \code{vi} arguments, respectively (instead of the sampling variances, one can supply the standard errors via the \code{sei} argument). Alternatively, one can set \code{measure} to one of the effect sizes or outcome measures described under the documentation for the \code{\link{escalc}} function in which case one must specify the required data via the appropriate arguments (see \code{\link{escalc}}).} \item{data}{optional data frame containing the data supplied to the function.} \item{slab}{optional vector with labels for the \mjseqn{k} studies.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be used for the analysis.} \emph{These arguments pertain to handling of zero cells/counts/frequencies:} \item{add}{see the documentation of the \code{\link{escalc}} function.} \item{to}{see the documentation of the \code{\link{escalc}} function.} \item{drop00}{see the documentation of the \code{\link{escalc}} function.} \emph{These arguments pertain to the model / computations and output:} \item{intercept}{logical to specify whether an intercept should be added to the model (the default is \code{TRUE}). Ignored when \code{mods} is a formula.} \item{method}{character string to specify whether an equal- or a random-effects model should be fitted. An equal-effects model is fitted when using \code{method="EE"}. A random-effects model is fitted by setting \code{method} equal to one of the following: \code{"DL"}, \code{"HE"}, \code{"HS"}, \code{"HSk"}, \code{"SJ"}, \code{"ML"}, \code{"REML"}, \code{"EB"}, \code{"PM"}, \code{"GENQ"}, \code{"PMM"}, or \code{"GENQM"}. The default is \code{"REML"}. See \sQuote{Details}.} \item{weighted}{logical to specify whether weighted (default) or unweighted estimation should be used to fit the model (the default is \code{TRUE}).} \item{test}{character string to specify how test statistics and confidence intervals for the fixed effects should be computed. By default (\code{test="z"}), Wald-type tests and CIs are obtained, which are based on a standard normal distribution. When \code{test="t"}, a t-distribution is used instead. When \code{test="knha"}, the method by Knapp and Hartung (2003) is used. See \sQuote{Details} and also \link[=misc-recs]{here} for some recommended practices.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (the default is 95; see \link[=misc-options]{here} for details).} \item{btt}{optional vector of indices to specify which coefficients to include in the omnibus test of moderators. Can also be a string to \code{\link{grep}} for. See \sQuote{Details}.} \item{att}{optional vector of indices to specify which scale coefficients to include in the omnibus test. Only relevant for location-scale models. See \sQuote{Details}.} \item{tau2}{optional numeric value to specify the amount of (residual) heterogeneity in a random- or mixed-effects model (instead of estimating it). Useful for sensitivity analyses (e.g., for plotting results as a function of \mjseqn{\tau^2}). If unspecified, the value of \mjseqn{\tau^2} is estimated from the data.} \item{verbose}{logical to specify whether output should be generated on the progress of the model fitting (the default is \code{FALSE}). Can also be an integer. Values > 1 generate more verbose output. See \sQuote{Note}.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is 4. See also \link[=misc-options]{here} for further details on how to control the number of digits in the output.} \item{control}{optional list of control values for the iterative estimation algorithms. If unspecified, default values are defined inside the function. See \sQuote{Note}.} \item{\dots}{additional arguments.} } \details{ \subsection{Specifying the Data}{ The function can be used in combination with any of the usual effect sizes or outcome measures used in meta-analyses (e.g., log risk ratios, log odds ratios, risk differences, mean differences, standardized mean differences, log transformed ratios of means, raw correlation coefficients, correlation coefficients transformed with Fisher's r-to-z transformation), or, more generally, any set of estimates (with corresponding sampling variances) one would like to analyze. Simply specify the observed effect sizes or outcomes via the \code{yi} argument and the corresponding sampling variances via the \code{vi} argument. Instead of specifying \code{vi}, one can specify the standard errors (the square root of the sampling variances) via the \code{sei} argument. The \code{\link{escalc}} function can be used to compute a wide variety of effect sizes or outcome measures (and the corresponding sampling variances) based on summary statistics. Alternatively, the function can automatically calculate the values of a chosen effect size or outcome measure (and the corresponding sampling variances) when supplied with the necessary data. The \code{\link{escalc}} function describes which effect sizes or outcome measures are currently implemented and what data/arguments should then be specified/used. The \code{measure} argument should then be set to the desired effect size or outcome measure. } \subsection{Specifying the Model}{ The function can be used to fit equal-, fixed-, and random-effects models, as well as (mixed-effects) meta-regression models including one or multiple moderators (the difference between the various models is described in detail on the introductory \pkg{\link{metafor-package}} help page). Assuming the observed effect sizes or outcomes and corresponding sampling variances are supplied via the \code{yi} and \code{vi} arguments, an \emph{equal-effects model} can be fitted with \code{rma(yi, vi, method="EE")}. Setting \code{method="FE"} fits a \emph{fixed-effects model} (see \link[=misc-models]{here} for a discussion of this model and how the interpretation of these models differ despite yielding identical results). Weighted estimation (with inverse-variance weights) is used by default. User-defined weights can be supplied via the \code{weights} argument. Unweighted estimation can be used by setting \code{weighted=FALSE} (which is the same as setting the weights equal to a constant). A \emph{random-effects model} can be fitted with the same code but setting the \code{method} argument to one of the various estimators for the amount of heterogeneity: \itemize{ \item \code{method="DL"} = DerSimonian-Laird estimator (DerSimonian & Laird, 1986; Raudenbush, 2009), \item \code{method="HE"} = Hedges estimator (Hedges, 1983, 1992), \item \code{method="HS"} = Hunter-Schmidt estimator (Hunter & Schmidt, 1990; Viechtbauer et al., 2015), \item \code{method="HSk"} = Hunter-Schmidt estimator with a small sample-size correction (Brannick et al., 2019), \item \code{method="SJ"} = Sidik-Jonkman estimator (Sidik & Jonkman, 2005b, 2007), \item \code{method="ML"} = maximum likelihood estimator (Hardy & Thompson, 1996; Raudenbush, 2009), \item \code{method="REML"} = restricted maximum likelihood estimator (Viechtbauer, 2005; Raudenbush, 2009) \item \code{method="EB"} = empirical Bayes estimator (Morris, 1983; Berkey et al. 1995), \item \code{method="PM"} = Paule-Mandel estimator (Paule & Mandel, 1982; Viechtbauer et al., 2015), \item \code{method="GENQ"} = generalized Q-statistic estimator (DerSimonian & Kacker, 2007; Jackson et al., 2014), \item \code{method="PMM"} = median-unbiased Paule-Mandel estimator (Viechtbauer, 2021), \item \code{method="GENQM"} = median-unbiased generalized Q-statistic estimator (Viechtbauer, 2021). } For a description of the various estimators, see Brannick et al. (2019), DerSimonian and Kacker (2007), Raudenbush (2009), Veroniki et al. (2016), Viechtbauer (2005), and Viechtbauer et al. (2015). Note that the Hedges estimator is also called the \sQuote{variance component estimator} or \sQuote{Cochran estimator}, the Sidik-Jonkman estimator is also called the \sQuote{model error variance estimator}, the empirical Bayes estimator is actually identical to the Paule-Mandel estimator (Viechtbauer et al., 2015), and the generalized Q-statistic estimator is a general method-of-moments estimator (DerSimonian & Kacker, 2007) requiring the specification of weights (the HE and DL estimators are just special cases with equal and inverse sampling variance weights, respectively). Finally, the two median-unbiased estimators are versions of the Paule-Mandel and generalized Q-statistic estimators that equate the respective estimating equations not to their expected values, but to the medians of their theoretical distributions (Viechtbauer, 2021). One or more moderators can be included in a model via the \code{mods} argument. A single moderator can be given as a (row or column) vector of length \mjseqn{k} specifying the values of the moderator. Multiple moderators are specified by giving an appropriate model matrix (i.e., \mjseqn{X}) with \mjseqn{k} rows and as many columns as there are moderator variables (e.g., \code{mods = cbind(mod1, mod2, mod3)}, where \code{mod1}, \code{mod2}, and \code{mod3} correspond to the names of the variables for three moderator variables). The intercept is added to the model matrix by default unless \code{intercept=FALSE}. Alternatively, one can use standard \code{\link{formula}} syntax to specify the model. In this case, the \code{mods} argument should be set equal to a one-sided formula of the form \code{mods = ~ model} (e.g., \code{mods = ~ mod1 + mod2 + mod3}). Interactions, polynomial/spline terms, and factors can be easily added to the model in this manner. When specifying a model formula via the \code{mods} argument, the \code{intercept} argument is ignored. Instead, the inclusion/exclusion of the intercept is controlled by the specified formula (e.g., \code{mods = ~ 0 + mod1 + mod2 + mod3} or \code{mods = ~ mod1 + mod2 + mod3 - 1} would lead to the removal of the intercept). When the observed effect sizes or outcomes and corresponding sampling variances are supplied via the \code{yi} and \code{vi} (or \code{sei}) arguments, one can also specify moderators via the \code{yi} argument (e.g., \code{rma(yi ~ mod1 + mod2 + mod3, vi)}). In that case, the \code{mods} argument is ignored and the inclusion/exclusion of the intercept is again controlled by the specified formula. } \subsection{Omnibus Test of Moderators}{ For models including moderators, an omnibus test of all model coefficients is conducted that excludes the intercept (the first coefficient) if it is included in the model. If no intercept is included in the model, then the omnibus test includes all coefficients in the model including the first. Alternatively, one can manually specify the indices of the coefficients to test via the \code{btt} (\sQuote{betas to test}) argument (i.e., to test \mjseqn{\text{H}_0{:}\; \beta_{j \in \texttt{btt}} = 0}, where \mjseqn{\beta_{j \in \texttt{btt}}} is the set of coefficients to be tested). For example, with \code{btt=c(3,4)}, only the third and fourth coefficients from the model are included in the test (if an intercept is included in the model, then it corresponds to the first coefficient in the model). Instead of specifying the coefficient numbers, one can specify a string for \code{btt}. In that case, \code{\link{grep}} will be used to search for all coefficient names that match the string. The omnibus test is called the \mjseqn{Q_M}-test and follows asymptotically a chi-square distribution with \mjseqn{m} degrees of freedom (with \mjseqn{m} denoting the number of coefficients tested) under the null hypothesis (that the true value of all coefficients tested is equal to 0). } \subsection{Categorical Moderators}{ Categorical moderator variables can be included in the model via the \code{mods} argument in the same way that appropriately (dummy) coded categorical variables can be included in linear models. One can either do the dummy coding manually or use a model formula together with the \code{\link{factor}} function to automate the coding (note that string/character variables in a model formula are automatically converted to factors). An example to illustrate these different approaches is provided below. } \subsection{Tests and Confidence Intervals}{ By default, tests of individual coefficients in the model (and the corresponding confidence intervals) are based on a standard normal distribution, while the omnibus test is based on a chi-square distribution (see above). As an alternative, one can set \code{test="t"}, in which case tests of individual coefficients and confidence intervals are based on a t-distribution with \mjseqn{k-p} degrees of freedom, while the omnibus test then uses an F-distribution with \mjseqn{m} and \mjseqn{k-p} degrees of freedom (with \mjseqn{k} denoting the total number of estimates included in the analysis and \mjseqn{p} the total number of model coefficients including the intercept if it is present). Furthermore, when \code{test="knha"} (or equivalently, \code{test="hksj"}), the method by Hartung (1999), Sidik and Jonkman (2002), and Knapp and Hartung (2003) (the Knapp-Hartung method; also referred to as the Hartung-Knapp-Sidik-Jonkman method) is used, which applies an adjustment to the standard errors of the estimated coefficients (to account for the uncertainty in the estimate of the amount of (residual) heterogeneity) and uses t- and F-distributions as described above (see also \link[=misc-recs]{here}). Finally, one can set \code{test="adhoc"}, in which case the Knapp-Hartung method is used, but with the restriction that the adjustment to the standard errors can never result in adjusted standard errors that are smaller than the unadjusted ones (see Jackson et al., 2017, section 4.3). } \subsection{Test for (Residual) Heterogeneity}{ A test for (residual) heterogeneity is automatically carried out by the function. Without moderators in the model, this is simply Cochran's \mjseqn{Q}-test (Cochran, 1954), which tests whether the variability in the observed effect sizes or outcomes is larger than would be expected based on sampling variability alone. A significant test suggests that the true effects/outcomes are heterogeneous. When moderators are included in the model, this is the \mjseqn{Q_E}-test for residual heterogeneity, which tests whether the variability in the observed effect sizes or outcomes not accounted for by the moderators included in the model is larger than would be expected based on sampling variability alone. } \subsection{Location-Scale Models}{ The function can also be used to fit so-called \sQuote{location-scale models} (Viechtbauer & \enc{López-López}{Lopez-Lopez}, 2022). In such models, one can specify not only predictors for the size of the average true outcome (i.e., for their \sQuote{location}), but also predictors for the amount of heterogeneity in the outcomes (i.e., for their \sQuote{scale}). The model is given by \mjdeqn{y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{p'} x_{ip'} + u_i + \varepsilon_i,}{y_i = \beta_0 + \beta_1 x_i1 + \beta_2 x_i2 + \ldots + \beta_p' x_ip' + u_i + \epsilon_i,} \mjdeqn{u_i \sim N(0, \tau_i^2), \; \varepsilon_i \sim N(0, v_i),}{u_i ~ N(0, tau_i^2), \epsilon_i \sim N(0, v_i),} \mjdeqn{\log(\tau_i^2) = \alpha_0 + \alpha_1 z_{i1} + \alpha_2 z_{i2} + \ldots + \alpha_{q'} z_{iq'},}{log(tau^2) = \alpha_0 + \alpha z_i1 + \alpha z_i2 + \ldots + \alpha_q' z_iq',} where \mjeqn{x_{i1}, \ldots, x_{ip'}}{x_i1, \ldots, x_ip'} are the values of the \mjseqn{p'} predictor variables that may be related to the size of the average true outcome (letting \mjseqn{p = p' + 1} denote the total number of location coefficients in the model including the model intercept \mjseqn{\beta_0}) and \mjeqn{z_{i1}, \ldots, z_{iq'}}{z_i1, \ldots, z_iq'} are the values of the \mjseqn{q'} scale variables that may be related to the amount of heterogeneity in the outcomes (letting \mjseqn{q = q' + 1} denote the total number of scale coefficients in the model including the model intercept \mjseqn{\alpha_0}). Location variables can be specified via the \code{mods} argument as described above (e.g., \code{mods = ~ mod1 + mod2 + mod3}). Scale variables can be specified via the \code{scale} argument (e.g., \code{scale = ~ var1 + var2 + var3}). A log link is used for specifying the relationship between the scale variables and the amount of heterogeneity so that \mjseqn{\tau_i^2} is guaranteed to be non-negative (one can also set (the undocumented) argument \code{link="identity"} to use an identity link, but this is more likely to lead to estimation problems). Estimates of the location and scale coefficients can be obtained either with maximum likelihood (\code{method="ML"}) or restricted maximum likelihood (\code{method="REML"}) estimation. An omnibus test of the scale coefficients is conducted as described above (where the \code{att} argument can be used to specify which scale coefficients to include in the test). } } \value{ An object of class \code{c("rma.uni","rma")}. The object is a list containing the following components: \item{beta}{estimated coefficients of the model.} \item{se}{standard errors of the coefficients.} \item{zval}{test statistics of the coefficients.} \item{pval}{corresponding p-values.} \item{ci.lb}{lower bound of the confidence intervals for the coefficients.} \item{ci.ub}{upper bound of the confidence intervals for the coefficients.} \item{vb}{variance-covariance matrix of the estimated coefficients.} \item{tau2}{estimated amount of (residual) heterogeneity. Always \code{0} when \code{method="EE"}.} \item{se.tau2}{standard error of the estimated amount of (residual) heterogeneity.} \item{k}{number of studies included in the analysis.} \item{p}{number of coefficients in the model (including the intercept).} \item{m}{number of coefficients included in the omnibus test of moderators.} \item{QE}{test statistic of the test for (residual) heterogeneity.} \item{QEp}{corresponding p-value.} \item{QM}{test statistic of the omnibus test of moderators.} \item{QMp}{corresponding p-value.} \item{I2}{value of \mjseqn{I^2}. See \code{\link[=print.rma.uni]{print}} for more details.} \item{H2}{value of \mjseqn{H^2}. See \code{\link[=print.rma.uni]{print}} for more details.} \item{R2}{value of \mjseqn{R^2}. See \code{\link[=print.rma.uni]{print}} for more details.} \item{int.only}{logical that indicates whether the model is an intercept-only model.} \item{yi, vi, X}{the vector of outcomes, the corresponding sampling variances, and the model matrix.} \item{fit.stats}{a list with the log-likelihood, deviance, AIC, BIC, and AICc values under the unrestricted and restricted likelihood.} \item{\dots}{some additional elements/values.} For location-scale models, the object is of class \code{c("rma.ls","rma.uni","rma")} and includes the following components in addition to the ones listed above: \item{alpha}{estimated scale coefficients of the model.} \item{se.alpha}{standard errors of the coefficients.} \item{zval.alpha}{test statistics of the coefficients.} \item{pval.alpha}{corresponding p-values.} \item{ci.lb.alpha}{lower bound of the confidence intervals for the coefficients.} \item{ci.ub.alpha}{upper bound of the confidence intervals for the coefficients.} \item{va}{variance-covariance matrix of the estimated coefficients.} \item{tau2}{as above, but now a vector of values.} \item{q}{number of scale coefficients in the model (including the intercept).} \item{QS}{test statistic of the omnibus test of the scale coefficients.} \item{QSp}{corresponding p-value.} \item{\dots}{some additional elements/values.} } \section{Methods}{ The results of the fitted model are formatted and printed with the \code{\link[=print.rma.uni]{print}} function. If fit statistics should also be given, use \code{\link[=summary.rma]{summary}} (or use the \code{\link[=fitstats.rma]{fitstats}} function to extract them). Full versus reduced model comparisons in terms of fit statistics and likelihood ratio tests can be obtained with \code{\link[=anova.rma]{anova}}. Wald-type tests for sets of model coefficients or linear combinations thereof can be obtained with the same function. Permutation tests for the model coefficient(s) can be obtained with \code{\link[=permutest.rma.uni]{permutest}}. Tests and confidence intervals based on (cluster) robust methods can be obtained with \code{\link[=robust.rma.uni]{robust}}. Predicted/fitted values can be obtained with \code{\link[=predict.rma]{predict}} and \code{\link[=fitted.rma]{fitted}}. For best linear unbiased predictions, see \code{\link[=blup.rma.uni]{blup}} and \code{\link[=ranef.rma.uni]{ranef}}. The \code{\link[=residuals.rma]{residuals}}, \code{\link[=rstandard.rma.uni]{rstandard}}, and \code{\link[=rstudent.rma.uni]{rstudent}} functions extract raw and standardized residuals. Additional model diagnostics (e.g., to determine influential studies) can be obtained with the \code{\link[=influence.rma.uni]{influence}} function. For models without moderators, leave-one-out diagnostics can also be obtained with \code{\link[=leave1out.rma.uni]{leave1out}}. For models with moderators, variance inflation factors can be obtained with \code{\link[=vif.rma]{vif}}. A confidence interval for the amount of (residual) heterogeneity in the random/mixed-effects model can be obtained with \code{\link[=confint.rma.uni]{confint}}. For location-scale models, \code{\link[=confint.rma.ls]{confint}} can provide confidence intervals for the scale coefficients. Forest, funnel, radial, \enc{L'Abbé}{L'Abbe}, and Baujat plots can be obtained with \code{\link[=forest.rma]{forest}}, \code{\link[=funnel.rma]{funnel}}, \code{\link[=radial.rma]{radial}}, \code{\link[=labbe.rma]{labbe}}, and \code{\link[=baujat.rma]{baujat}} (radial and \enc{L'Abbé}{L'Abbe} plots only for models without moderators). The \code{\link[=qqnorm.rma.uni]{qqnorm}} function provides normal QQ plots of the standardized residuals. One can also call \code{\link[=plot.rma.uni]{plot}} on the fitted model object to obtain various plots at once. For random/mixed-effects models, the \code{\link[=profile.rma.uni]{profile}} function can be used to obtain a plot of the (restricted) log-likelihood as a function of \mjseqn{\tau^2}. For location-scale models, \code{\link[=profile.rma.ls]{profile}} draws analogous plots based on the scale coefficients. For models with moderators, \code{\link[=regplot.rma]{regplot}} draws scatter plots / bubble plots, showing the (marginal) relationship between the observed outcomes and a selected moderator from the model. Tests for funnel plot asymmetry (which may be indicative of publication bias) can be obtained with \code{\link{ranktest}} and \code{\link{regtest}}. For models without moderators, the \code{\link[=trimfill.rma.uni]{trimfill}} method can be used to carry out a trim and fill analysis and \code{\link[=hc.rma.uni]{hc}} provides a random-effects model analysis that is more robust to publication bias (based on the method by Henmi & Copas, 2010). The test of \sQuote{excess significance} can be carried out with the \code{\link{tes}} function. The fail-safe N (based on a file drawer analysis) can be computed using \code{\link{fsn}}. Selection models can be fitted with the \code{\link{selmodel}} function. For models without moderators, a cumulative meta-analysis (i.e., adding one observation at a time) can be obtained with \code{\link[=cumul.rma.uni]{cumul}}. Other extractor functions include \code{\link[=coef.rma]{coef}}, \code{\link[=vcov.rma]{vcov}}, \code{\link[=logLik.rma]{logLik}}, \code{\link[=deviance.rma]{deviance}}, \code{\link[=AIC.rma]{AIC}}, \code{\link[=BIC.rma]{BIC}}, \code{\link[=hatvalues.rma.uni]{hatvalues}}, and \code{\link[=weights.rma.uni]{weights}}. } \note{ While the HS, HSk, HE, DL, SJ, and GENQ estimators of \mjseqn{\tau^2} are based on closed-form solutions, the ML, REML, and EB estimators must be obtained iteratively. For this, the function makes use of the Fisher scoring algorithm, which is robust to poor starting values and usually converges quickly (Harville, 1977; Jennrich & Sampson, 1976). By default, the starting value is set equal to the value of the Hedges (HE) estimator and the algorithm terminates when the change in the estimated value of \mjseqn{\tau^2} is smaller than \mjeqn{10^{-5}}{10^(-5)} from one iteration to the next. The maximum number of iterations is 100 by default (which should be sufficient in most cases). Information on the progress of the algorithm can be obtained by setting \code{verbose=TRUE}. One can also set \code{verbose} to an integer (\code{verbose=2} yields even more information and \code{verbose=3} also sets \code{option(warn=1)} temporarily). A different starting value, threshold, and maximum number of iterations can be specified via the \code{control} argument by setting \code{control=list(tau2.init=value, threshold=value, maxiter=value)}. The step length of the Fisher scoring algorithm can also be adjusted by a desired factor with \code{control=list(stepadj=value)} (values below 1 will reduce the step length). If using \code{verbose=TRUE} shows the estimate jumping around erratically (or cycling through a few values), decreasing the step length (and increasing the maximum number of iterations) can often help with convergence (e.g., \code{control=list(stepadj=0.5, maxiter=1000)}). The PM, PMM, and GENQM estimators also involve iterative algorithms, which make use of the \code{\link{uniroot}} function. By default, the desired accuracy (\code{tol}) is set equal to \code{.Machine$double.eps^0.25} and the maximum number of iterations (\code{maxiter}) to \code{100} (as above). The upper bound of the interval searched (\code{tau2.max}) is set to the larger of 100 and \code{10*mad(yi)^2} (i.e., 10 times the squared median absolute deviation of the observed effect sizes or outcomes computed with the \code{\link{mad}} function). These values can be adjusted with \code{control=list(tol=value, maxiter=value, tau2.max=value)}. All of the heterogeneity estimators except SJ can in principle yield negative estimates for the amount of (residual) heterogeneity. However, negative estimates of \mjseqn{\tau^2} are outside of the parameter space. For the HS, HSk, HE, DL, and GENQ estimators, negative estimates are therefore truncated to zero. For the ML, REML, and EB estimators, the Fisher scoring algorithm makes use of step halving (Jennrich & Sampson, 1976) to guarantee a non-negative estimate. Finally, for the PM, PMM, and GENQM estimators, the lower bound of the interval searched is set to zero by default. For those brave enough to step into risky territory, there is the option to set the lower bound for all these estimators to some other value besides zero (even a negative one) with \code{control=list(tau2.min=value)}, but the lowest value permitted is \code{-min(vi)} (to ensure that the marginal variances are always non-negative). The Hunter-Schmidt estimator for the amount of heterogeneity is defined in Hunter and Schmidt (1990) only in the context of the random-effects model when analyzing correlation coefficients. A general version of this estimator for random- and mixed-effects models not specific to any particular outcome measure is described in Viechtbauer (2005) and Viechtbauer et al. (2015) and is implemented here. The Sidik-Jonkman estimator starts with a crude estimate of \mjseqn{\tau^2}, which is then updated as described in Sidik and Jonkman (2005b, 2007). If, instead of the crude estimate, one wants to use a better a priori estimate, one can do so by passing this value via \code{control=list(tau2.init=value)}. One can also specify a vector of estimators via the \code{method} argument (e.g., \code{rma(yi, vi, method=c("REML","DL"))}). The various estimators are then applied in turn until one converges. This is mostly useful for simulation studies where an estimator (like the REML estimator) is not guaranteed to converge and one can then substitute one (like the DL estimator) that does not involve iterative methods and is guaranteed to provide an estimate. Outcomes with non-positive sampling variances are problematic. If a sampling variance is equal to zero, then its weight will be \mjseqn{1/0} for equal-effects models when using weighted estimation. Switching to unweighted estimation is a possible solution then. For random/mixed-effects model, some estimators of \mjseqn{\tau^2} are undefined when there is at least one sampling variance equal to zero. Other estimators may work, but it may still be necessary to switch to unweighted model fitting, especially when the estimate of \mjseqn{\tau^2} converges to zero. When including moderators in the model, it is possible that the model matrix is not of full rank (i.e., there is a linear relationship between the moderator variables included in the model). The function automatically tries to reduce the model matrix to full rank by removing redundant predictors, but if this fails the model cannot be fitted and an error will be issued. Deleting (redundant) moderator variables from the model as needed should solve this problem. Some general words of caution about the assumptions underlying the models: \itemize{ \item The sampling variances (i.e., the \code{vi} values) are treated as if they are known constants, even though in practice they are usually estimates themselves. This implies that the distributions of the test statistics and corresponding confidence intervals are only exact and have nominal coverage when the within-study sample sizes are large (i.e., when the error in the sampling variance estimates is small). Certain outcome measures (e.g., the arcsine square root transformed risk difference and Fisher's r-to-z transformed correlation coefficient) are based on variance stabilizing transformations that also help to make the assumption of known sampling variances much more reasonable. \item When fitting a mixed/random-effects model, \mjseqn{\tau^2} is estimated and then treated as a known constant thereafter. This ignores the uncertainty in the estimate of \mjseqn{\tau^2}. As a consequence, the standard errors of the parameter estimates tend to be too small, yielding test statistics that are too large and confidence intervals that are not wide enough. The Knapp and Hartung (2003) adjustment (i.e., using \code{test="knha"}) can be used to counter this problem, yielding test statistics and confidence intervals whose properties are closer to nominal. \item Most effect sizes or outcome measures do not have exactly normal sampling distributions as assumed under the various models. However, the normal approximation usually becomes more accurate for most effect sizes or outcome measures as the within-study sample sizes increase. Therefore, sufficiently large within-study sample sizes are (usually) needed to be certain that the tests and confidence intervals have nominal levels/coverage. Again, certain outcome measures (e.g., Fisher's r-to-z transformed correlation coefficient) may be preferable from this perspective as well. } For location-scale models, model fitting is done via numerical optimization over the model parameters. By default, \code{\link{nlminb}} is used for the optimization. One can also chose a different optimizer from \code{\link{optim}} via the \code{control} argument (e.g., \code{control=list(optimizer="BFGS")} or \code{control=list(optimizer="Nelder-Mead")}). Besides \code{\link{nlminb}} and one of the methods from \code{\link{optim}}, one can also choose one of the optimizers from the \code{minqa} package (i.e., \code{\link[minqa]{uobyqa}}, \code{\link[minqa]{newuoa}}, or \code{\link[minqa]{bobyqa}}), one of the (derivative-free) algorithms from the \code{\link[nloptr]{nloptr}} package, the Newton-type algorithm implemented in \code{\link{nlm}}, the various algorithms implemented in the \code{dfoptim} package (\code{\link[dfoptim]{hjk}} for the Hooke-Jeeves, \code{\link[dfoptim]{nmk}} for the Nelder-Mead, and \code{\link[dfoptim]{mads}} for the Mesh Adaptive Direct Searches algorithm), the quasi-Newton type optimizers \code{\link[ucminf]{ucminf}} and \code{\link[lbfgsb3c]{lbfgsb3c}} and the subspace-searching simplex algorithm \code{\link[subplex]{subplex}} from the packages of the same name, the Barzilai-Borwein gradient decent method implemented in \code{\link[BB]{BBoptim}}, the \code{\link[optimx]{Rcgmin}} and \code{\link[optimx]{Rvmmin}} optimizers, or the parallelized version of the L-BFGS-B algorithm implemented in \code{\link[optimParallel]{optimParallel}} from the package of the same name. When using an identity link with \code{link="identity"}, constrained optimization (to ensure non-negative \mjseqn{\tau_i^2} values) as implemented in \code{\link{constrOptim}} is used by default. Alternative optimizers in this case are the \code{\link[Rsolnp]{solnp}} solver from the \code{Rsolnp} package, \code{\link[nloptr]{nloptr}}, or the augmented Lagrangian adaptive barrier minimization algorithm \code{\link[alabama]{constrOptim.nl}} from the \code{alabama} package. The optimizer name must be given as a character string (i.e., in quotes). Additional control parameters can be specified via the \code{control} argument (e.g., \code{control=list(iter.max=1000, rel.tol=1e-8)}). For \code{\link[nloptr]{nloptr}}, the default is to use the BOBYQA implementation from that package with a relative convergence criterion of \code{1e-8} on the function value (i.e., log-likelihood), but this can be changed via the \code{algorithm} and \code{ftop_rel} arguments (e.g., \code{control=list(optimizer="nloptr", algorithm="NLOPT_LN_SBPLX", ftol_rel=1e-6)}) (note: when using \code{optimizer="nloptr"} in combination with an identity link, the \code{"NLOPT_LN_COBYLA"} algorithm is automatically used, since it allows for inequality constraints). For \code{\link[optimParallel]{optimParallel}}, the control argument \code{ncpus} can be used to specify the number of cores to use for the parallelization (e.g., \code{control=list(optimizer="optimParallel", ncpus=2)}). With \code{parallel::detectCores()}, one can check on the number of available cores on the local machine. Under certain circumstances (e.g., when the amount of heterogeneity is very small for certain combinations of values for the scale variables and scale coefficients), the values of the scale coefficients may try to drift towards minus or plus infinity, which can lead to problems with the optimization. One can impose constraints on the scale coefficients via \code{control=list(alpha.min=minval, alpha.max=maxval)} where \code{minval} and \code{maxval} are either scalars or vectors of the appropriate length. Finally, for location-scale models, the standard errors of the scale coefficients are obtained by inverting the Hessian, which is numerically approximated using the \code{\link[numDeriv]{hessian}} function from the \code{numDeriv} package. This may fail (especially when using an identity link), leading to \code{NA} values for the standard errors and hence test statistics, p-values, and confidence interval bounds. One can set control argument \code{hessianCtrl} to a list of named arguments to be passed on to the \code{method.args} argument of the \code{\link[numDeriv]{hessian}} function (the default is \code{control=list(hessianCtrl=list(r=8))}). One can also set \code{control=list(hesspack="pracma")} or \code{control=list(hesspack="calculus")} in which case the \code{pracma::\link[pracma]{hessian}} or \code{calculus::\link[calculus]{hessian}} functions from the respective packages are used instead for approximating the Hessian. Even if the Hessian can be approximated and inverted, the standard errors may be unreasonably large when the likelihood surface is very flat around the estimated scale coefficients. This is more likely to happen when \mjseqn{k} is small and when the amount of heterogeneity is very small under some conditions as defined by the scale coefficients/variables. Setting constraints on the scale coefficients as described above can also help to mitigate this issue. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Berkey, C. S., Hoaglin, D. C., Mosteller, F., & Colditz, G. A. (1995). A random-effects regression model for meta-analysis. \emph{Statistics in Medicine}, \bold{14}(4), 395--411. \verb{https://doi.org/10.1002/sim.4780140406} Brannick, M. T., Potter, S. M., Benitez, B., & Morris, S. B. (2019). Bias and precision of alternate estimators in meta-analysis: Benefits of blending Schmidt–Hunter and Hedges approaches. \emph{Organizational Research Methods}, \bold{22}(2), 490--514. \verb{https://doi.org/10.1177/1094428117741966} Cochran, W. G. (1954). The combination of estimates from different experiments. \emph{Biometrics}, \bold{10}(1), 101--129. \verb{https://doi.org/10.2307/3001666} DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. \emph{Controlled Clinical Trials}, \bold{7}(3), 177--188. \verb{https://doi.org/10.1016/0197-2456(86)90046-2} DerSimonian, R., & Kacker, R. (2007). Random-effects model for meta-analysis of clinical trials: An update. \emph{Contemporary Clinical Trials}, \bold{28}(2), 105--114. \verb{https://doi.org/10.1016/j.cct.2006.04.004} Hardy, R. J. & Thompson, S. G. (1996). A likelihood approach to meta-analysis with random effects. \emph{Statistics in Medicine}, \bold{15}(6), 619--629. \verb{https://doi.org/10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A} Hartung, J. (1999). An alternative method for meta-analysis. \emph{Biometrical Journal}, \bold{41}(8), 901--916. \verb{https://doi.org/10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W} Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. \emph{Journal of the American Statistical Association}, \bold{72}(358), 320--338. \verb{https://doi.org/10.2307/2286796} Hedges, L. V. (1983). A random effects model for effect sizes. \emph{Psychological Bulletin}, \bold{93}(2), 388--395. \verb{https://doi.org/10.1037/0033-2909.93.2.388} Hedges, L. V. (1992). Meta-analysis. \emph{Journal of Educational Statistics}, \bold{17}(4), 279--296. \verb{https://doi.org/10.3102/10769986017004279} Hedges, L. V., & Olkin, I. (1985). \emph{Statistical methods for meta-analysis}. San Diego, CA: Academic Press. Henmi, M., & Copas, J. B. (2010). Confidence intervals for random effects meta-analysis and robustness to publication bias. \emph{Statistics in Medicine}, \bold{29}(29), 2969--2983. \verb{https://doi.org/10.1002/sim.4029} Hunter, J. E., & Schmidt, F. L. (1990). \emph{Methods of meta-analysis: Correcting error and bias in research findings}. Thousand Oaks, CA: Sage. Jackson, D., Turner, R., Rhodes, K. & Viechtbauer, W. (2014). Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models. \emph{BMC Medical Research Methodology}, \bold{14}, 103. \verb{https://doi.org/10.1186/1471-2288-14-103} Jackson, D., Law, M., \enc{Rücker}{Ruecker}, G., & Schwarzer, G. (2017). The Hartung-Knapp modification for random-effects meta-analysis: A useful refinement but are there any residual concerns? \emph{Statistics in Medicine}, \bold{36}(25), 3923--3934. \verb{https://doi.org/10.1002/sim.7411} Jennrich, R. I., & Sampson, P. F. (1976). Newton-Raphson and related algorithms for maximum likelihood variance component estimation. \emph{Technometrics}, \bold{18}(1), 11--17. \verb{https://doi.org/10.2307/1267911} Knapp, G., & Hartung, J. (2003). Improved tests for a random effects meta-regression with a single covariate. \emph{Statistics in Medicine}, \bold{22}(17), 2693--2710. \verb{https://doi.org/10.1002/sim.1482} Morris, C. N. (1983). Parametric empirical Bayes inference: Theory and applications. \emph{Journal of the American Statistical Association}, \bold{78}(381), 47--55. \verb{https://doi.org/10.2307/2287098} Paule, R. C., & Mandel, J. (1982). Consensus values and weighting factors. \emph{Journal of Research of the National Bureau of Standards}, \bold{87}(5), 377--385. \verb{https://doi.org/10.6028/jres.087.022} Raudenbush, S. W. (2009). Analyzing effect sizes: Random effects models. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (2nd ed., pp. 295--315). New York: Russell Sage Foundation. Sidik, K. & Jonkman, J. N. (2002). A simple confidence interval for meta-analysis. \emph{Statistics in Medicine}, \bold{21}(21), 3153--3159. \verb{https://doi.org/10.1002/sim.1262} Sidik, K., & Jonkman, J. N. (2005a). A note on variance estimation in random effects meta-regression. \emph{Journal of Biopharmaceutical Statistics}, \bold{15}(5), 823--838. \verb{https://doi.org/10.1081/BIP-200067915} Sidik, K., & Jonkman, J. N. (2005b). Simple heterogeneity variance estimation for meta-analysis. \emph{Journal of the Royal Statistical Society, Series C}, \bold{54}(2), 367--384. \verb{https://doi.org/10.1111/j.1467-9876.2005.00489.x} Sidik, K., & Jonkman, J. N. (2007). A comparison of heterogeneity variance estimators in combining results of studies. \emph{Statistics in Medicine}, \bold{26}(9), 1964--1981. \verb{https://doi.org/10.1002/sim.2688} Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., Kuss, O., Higgins, J. P., Langan, D., & Salanti, G. (2016). Methods to estimate the between-study variance and its uncertainty in meta-analysis. \emph{Research Synthesis Methods}, \bold{7}(1), 55--79. \verb{https://doi.org/10.1002/jrsm.1164} Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators in the random-effects model. \emph{Journal of Educational and Behavioral Statistics}, \bold{30}(3), 261--293. \verb{https://doi.org/10.3102/10769986030003261} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Median-unbiased estimators for the amount of heterogeneity in meta-analysis. \emph{European Congress of Methodology}, Valencia, Spain. \verb{https://www.wvbauer.com/lib/exe/fetch.php/talks:2021_viechtbauer_eam_median_tau2.pdf} Viechtbauer, W., & \enc{López-López}{Lopez-Lopez}, J. A. (2022). Location-scale models for meta-analysis. \emph{Research Synthesis Methods}. \bold{13}(6), 697--715. \verb{https://doi.org/10.1002/jrsm.1562} Viechtbauer, W., \enc{López-López}{Lopez-Lopez}, J. A., \enc{Sánchez-Meca}{Sanchez-Meca}, J., & \enc{Marín-Martínez}{Marin-Martinez}, F. (2015). A comparison of procedures to test for moderators in mixed-effects meta-regression models. \emph{Psychological Methods}, \bold{20}(3), 360--374. \verb{https://doi.org/10.1037/met0000023} } \seealso{ \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for other model fitting functions. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit a random-effects model using the log risk ratios and sampling variances as input ### note: method="REML" is the default, so one could leave this out rma(yi, vi, data=dat, method="REML") ### fit a random-effects model using the log risk ratios and standard errors as input ### note: the second argument of rma() is for the *sampling variances*, so we use the ### named argument 'sei' to supply the standard errors to the function dat$sei <- sqrt(dat$vi) rma(yi, sei=sei, data=dat) ### fit a random-effects model supplying the 2x2 table cell frequencies to the function rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) ### fit a mixed-effects model with two moderators (absolute latitude and publication year) rma(yi, vi, mods=cbind(ablat, year), data=dat) ### using a model formula to specify the same model rma(yi, vi, mods = ~ ablat + year, data=dat) ### using a model formula as part of the yi argument rma(yi ~ ablat + year, vi, data=dat) ### manual dummy coding of the allocation factor alloc.random <- ifelse(dat$alloc == "random", 1, 0) alloc.alternate <- ifelse(dat$alloc == "alternate", 1, 0) alloc.systematic <- ifelse(dat$alloc == "systematic", 1, 0) ### test the allocation factor (in the presence of the other moderators) ### note: 'alternate' is the reference level of the allocation factor, ### since this is the dummy/level we leave out of the model ### note: the intercept is the first coefficient, so with btt=2:3 we test ### coefficients 2 and 3, corresponding to the coefficients for the ### allocation factor rma(yi, vi, mods = ~ alloc.random + alloc.systematic + year + ablat, data=dat, btt=2:3) ### using a model formula to specify the same model rma(yi, vi, mods = ~ factor(alloc) + year + ablat, data=dat, btt=2:3) ### factor() is not needed as character variables are automatically converted to factors res <- rma(yi, vi, mods = ~ alloc + year + ablat, data=dat, btt=2:3) res ### test all pairwise differences between the 'alloc' levels anova(res, X=pairmat(btt="alloc")) ### subgrouping versus using a single model with a factor (subgrouping provides ### an estimate of tau^2 within each subgroup, but the number of studies in each ### subgroup is quite small; the model with the allocation factor provides a ### single estimate of tau^2 based on a larger number of studies, but assumes ### that tau^2 is the same within each subgroup) res.a <- rma(yi, vi, data=dat, subset=(alloc=="alternate")) res.r <- rma(yi, vi, data=dat, subset=(alloc=="random")) res.s <- rma(yi, vi, data=dat, subset=(alloc=="systematic")) res.a res.r res.s res <- rma(yi, vi, mods = ~ 0 + factor(alloc), data=dat) res ############################################################################ ### demonstrating that Q_E + Q_M = Q_Total for fixed-effects models ### note: this does not work for random/mixed-effects models, since Q_E and ### Q_Total are calculated under the assumption that tau^2 = 0, while the ### calculation of Q_M incorporates the estimate of tau^2 res <- rma(yi, vi, data=dat, method="FE") res ### this gives Q_Total res <- rma(yi, vi, mods = ~ ablat + year, data=dat, method="FE") res ### this gives Q_E and Q_M res$QE + res$QM ### decomposition of Q_E into subgroup Q-values res <- rma(yi, vi, mods = ~ factor(alloc), data=dat) res res.a <- rma(yi, vi, data=dat, subset=(alloc=="alternate")) res.r <- rma(yi, vi, data=dat, subset=(alloc=="random")) res.s <- rma(yi, vi, data=dat, subset=(alloc=="systematic")) res.a$QE ### Q-value within subgroup "alternate" res.r$QE ### Q-value within subgroup "random" res.s$QE ### Q-value within subgroup "systematic" res$QE res.a$QE + res.r$QE + res.s$QE ############################################################################ ### an example of a location-scale model dat <- dat.bangertdrowns2004 ### fit a standard random-effects model res <- rma(yi, vi, data=dat) res ### fit the same model as a location-scale model res <- rma(yi, vi, scale = ~ 1, data=dat) res ### check that we obtain the same estimate for tau^2 predict(res, newscale=1, transf=exp) ### add the total sample size (per 100) as a location and scale predictor dat$ni100 <- dat$ni/100 res <- rma(yi, vi, mods = ~ ni100, scale = ~ ni100, data=dat) res ### variables in the location and scale parts can differ res <- rma(yi, vi, mods = ~ ni100 + meta, scale = ~ ni100 + imag, data=dat) res } \keyword{models} metafor/man/print.escalc.Rd0000644000176200001440000001313214746146216015351 0ustar liggesusers\name{print.escalc} \alias{print.escalc} \alias{summary.escalc} \title{Print and Summary Methods for 'escalc' Objects} \description{ Function to print objects of class \code{"escalc"} (and to obtain inferences for the individual studies/rows in such an object). \loadmathjax } \usage{ \method{print}{escalc}(x, digits=attr(x,"digits"), \dots) \method{summary}{escalc}(object, out.names=c("sei","zi","pval","ci.lb","ci.ub"), var.names, H0=0, append=TRUE, replace=TRUE, level=95, olim, digits, transf, \dots) } \arguments{ \item{x}{an object of class \code{"escalc"} obtained with \code{\link{escalc}}.} \item{object}{an object of class \code{"escalc"} obtained with \code{\link{escalc}}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{out.names}{character string with four elements to specify the variable names for the standard errors, test statistics, and lower/upper confidence interval bounds.} \item{var.names}{character string with two elements to specify the variable names for the observed effect sizes or outcomes and the sampling variances (the default is to take the value from the object if possible).} \item{H0}{numeric value to specify the value of the effect size or outcome under the null hypothesis (the default is 0).} \item{append}{logical to specify whether the data frame specified via the \code{object} argument should be returned together with the additional variables that are calculated by the \code{summary} function (the default is \code{TRUE}).} \item{replace}{logical to specify whether existing values for \code{sei}, \code{zi}, \code{ci.lb}, and \code{ci.ub} in the data frame should be replaced. Only relevant when the data frame already contains these variables. If \code{replace=TRUE} (the default), all of the existing values will be overwritten. If \code{replace=FALSE}, only \code{NA} values will be replaced.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (the default is 95; see \link[=misc-options]{here} for details).} \item{olim}{argument to specify observation/outcome limits. If unspecified, no limits are used.} \item{transf}{argument to specify a function to transform the observed effect sizes or outcomes and interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used. Any additional arguments needed for the function specified here can be passed via \code{\dots}.} \item{\dots}{other arguments.} } \value{ The \code{print.escalc} function formats and prints the data frame, so that the observed effect sizes or outcomes and sampling variances are rounded (to the number of digits specified). The \code{summary.escalc} function creates an object that is a data frame containing the original data (if \code{append=TRUE}) and the following components: \item{yi}{observed effect sizes or outcomes (transformed if \code{transf} is specified).} \item{vi}{corresponding sampling variances.} \item{sei}{corresponding standard errors.} \item{zi}{test statistics for testing \mjeqn{\text{H}_0{:}\; \theta_i = \text{H0}}{H_0: \theta_i = H0} (i.e., \code{(yi-H0)/sei}).} \item{pval}{corresponding p-values.} \item{ci.lb}{lower confidence interval bounds (transformed if \code{transf} is specified).} \item{ci.ub}{upper confidence interval bounds (transformed if \code{transf} is specified).} When the \code{transf} argument is specified, elements \code{vi}, \code{sei}, \code{zi}, and \code{pval} are not included (since these only apply to the untransformed effect sizes or outcomes). Note that the actual variable names above depend on the \code{out.names} (and \code{var.names}) arguments. If the data frame already contains variables with names as specified by the \code{out.names} argument, the values for these variables will be overwritten when \code{replace=TRUE} (which is the default). By setting \code{replace=FALSE}, only values that are \code{NA} will be replaced. The \code{print.escalc} function again formats and prints the data frame, rounding the added variables to the number of digits specified. } \note{ If some transformation function has been specified for the \code{transf} argument, then \code{yi}, \code{ci.lb}, and \code{ci.ub} will be transformed accordingly. However, \code{vi} and \code{sei} then still reflect the sampling variances and standard errors of the untransformed values. The \code{summary.escalc} function computes \code{level}\% Wald-type confidence intervals, which may or may not be the most accurate method for computing confidence intervals for the chosen effect size or outcome measure. If the outcome measure used is bounded (e.g., correlations are bounded between -1 and +1, proportions are bounded between 0 and 1), one can use the \code{olim} argument to enforce those observation/outcome limits (the observed outcomes and confidence intervals cannot exceed those bounds then). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{escalc}} for the function to create \code{escalc} objects. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat ### apply summary function summary(dat) summary(dat, transf=exp) } \keyword{print} metafor/man/simulate.rma.Rd0000644000176200001440000000535214746146216015372 0ustar liggesusers\name{simulate.rma} \alias{simulate} \alias{simulate.rma} \title{Simulate Method for 'rma' Objects} \description{ Function to simulate effect sizes or outcomes based on \code{"rma"} model objects. } \usage{ \method{simulate}{rma}(object, nsim=1, seed=NULL, olim, \dots) } \arguments{ \item{object}{an object of class \code{"rma"}.} \item{nsim}{number of response vectors to simulate (defaults to 1).} \item{seed}{an object to specify if and how the random number generator should be initialized (\sQuote{seeded}). Either \code{NULL} or an integer that will be used in a call to \code{set.seed} before simulating the response vectors. If set, the value is saved as the \code{"seed"} attribute of the returned value. The default, \code{NULL} will not change the random generator state, and return \code{\link{.Random.seed}} as the \code{"seed"} attribute; see \sQuote{Value}.} \item{olim}{argument to specify observation/outcome limits for the simulated values. If unspecified, no limits are used.} \item{\dots}{other arguments.} } \details{ The model specified via \code{object} must be a model fitted with either the \code{\link{rma.uni}} or \code{\link{rma.mv}} functions. } \value{ A data frame with \code{nsim} columns with the simulated effect sizes or outcomes. The data frame comes with an attribute \code{"seed"}. If argument \code{seed} is \code{NULL}, the attribute is the value of \code{\link{.Random.seed}} before the simulation was started; otherwise it is the value of the \code{seed} argument with a \code{"kind"} attribute with value \code{as.list(RNGkind())}. } \note{ If the outcome measure used for the analysis is bounded (e.g., correlations are bounded between -1 and +1, proportions are bounded between 0 and 1), one can use the \code{olim} argument to enforce those observation/outcome limits when simulating values (simulated values cannot exceed those bounds then). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}} and \code{\link{rma.mv}} for functions to fit models for which simulated effect sizes or outcomes can be generated. } \examples{ ### copy BCG vaccine data into 'dat' dat <- dat.bcg ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) dat ### fit random-effects model res <- rma(yi, vi, data=dat) res ### simulate 5 sets of new outcomes based on the fitted model newdat <- simulate(res, nsim=5, seed=1234) newdat } \keyword{datagen} metafor/man/print.matreg.Rd0000644000176200001440000000360614746146216015403 0ustar liggesusers\name{print.matreg} \alias{print.matreg} \alias{summary.matreg} \alias{print.summary.matreg} \title{Print and Summary Methods for 'matreg' Objects} \description{ Functions to print objects of class \code{"matreg"} and \code{"summary.matreg"}. \loadmathjax } \usage{ \method{print}{matreg}(x, digits, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, \dots) \method{summary}{matreg}(object, digits, \dots) \method{print}{summary.matreg}(x, digits, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, \dots) } \arguments{ \item{x}{an object of class \code{"matreg"} or \code{"summary.matreg"} (for \code{print}).} \item{object}{an object of class \code{"matreg"} (for \code{summary}).} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{signif.stars}{logical to specify whether p-values should be encoded visually with \sQuote{significance stars}. Defaults to the \code{show.signif.stars} slot of \code{\link{options}}.} \item{signif.legend}{logical to specify whether the legend for the \sQuote{significance stars} should be printed. Defaults to the value for \code{signif.stars}.} \item{\dots}{other arguments.} } \details{ The output is a table with the estimated coefficients, corresponding standard errors, test statistics, p-values, and confidence interval bounds. When using \code{summary}, the output includes additional statistics, including \mjseqn{R^2} and the omnibus test of the model coefficients (either an F- or a chi-square test). } \value{ The function does not return an object. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \seealso{ \code{\link{matreg}} for the function to create \code{matreg} objects. } \keyword{print} metafor/man/methods.matreg.Rd0000644000176200001440000000272614746146216015714 0ustar liggesusers\name{coef.matreg} \alias{coef.matreg} \alias{vcov.matreg} \title{Extract the Model Coefficients and Variance-Covariance Matrix from 'matreg' Objects} \description{ Methods for objects of class \code{"matreg"}. } \usage{ \method{coef}{matreg}(object, \dots) \method{vcov}{matreg}(object, \dots) } \arguments{ \item{object}{an object of class \code{"matreg"}.} \item{\dots}{other arguments.} } \details{ The \code{coef} function extracts the estimated model coefficients from objects of class \code{"matreg"}. The \code{vcov} function extracts the corresponding variance-covariance matrix. } \value{ Either a vector with the estimated model coefficients or a variance-covariance matrix. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{matreg}} for the function to create \code{matreg} objects. } \examples{ ### fit a regression model with lm() to the 'mtcars' dataset res <- lm(mpg ~ hp + wt + am, data=mtcars) coef(res) vcov(res) ### covariance matrix of the dataset S <- cov(mtcars) ### fit the same regression model using matreg() res <- matreg(y="mpg", x=c("hp","wt","am"), R=S, cov=TRUE, means=colMeans(mtcars), n=nrow(mtcars)) coef(res) vcov(res) } \keyword{models} metafor/man/plot.permutest.rma.uni.Rd0000644000176200001440000001573214746146216017351 0ustar liggesusers\name{plot.permutest.rma.uni} \alias{plot.permutest.rma.uni} \title{Plot Method for 'permutest.rma.uni' Objects} \description{ Function to plot objects of class \code{"permutest.rma.uni"}. } \usage{ \method{plot}{permutest.rma.uni}(x, beta, alpha, QM=FALSE, QS=FALSE, breaks="Scott", freq=FALSE, col, border, col.out, col.ref, col.density, trim=0, adjust=1, lwd=c(2,0,0,4), legend=FALSE, \dots) } \arguments{ \item{x}{an object of class \code{"permutest.rma.uni"} obtained with \code{\link{permutest}}.} \item{beta}{optional vector of indices to specify which (location) coefficients should be plotted.} \item{alpha}{optional vector of indices to specify which scale coefficients should be plotted. Only relevant for location-scale models (see \code{\link{rma.uni}}).} \item{QM}{logical to specify whether the permutation distribution of the omnibus test of the (location) coefficients should be plotted (the default is \code{FALSE}).} \item{QS}{logical to specify whether the permutation distribution of the omnibus test of the scale coefficients should be plotted (the default is \code{FALSE}). Only relevant for location-scale models (see \code{\link{rma.uni}}).} \item{breaks}{argument to be passed on to the corresponding argument of \code{\link{hist}} to set (the method for determining) the (number of) breakpoints.} \item{freq}{logical to specify whether frequencies or probability densities should be plotted (the default is \code{FALSE} to plot densities).} \item{col}{optional character string to specify the color of the histogram bars.} \item{border}{optional character string to specify the color of the borders around the bars.} \item{col.out}{optional character string to specify the color of the bars that are more extreme than the observed test statistic (the default is a semi-transparent shade of red).} \item{col.ref}{optional character string to specify the color of the theoretical reference/null distribution that is superimposed on top of the histogram (the default is a dark shade of gray).} \item{col.density}{optional character string to specify the color of the kernel density estimate of the permutation distribution that is superimposed on top of the histogram (the default is blue).} \item{trim}{the fraction (up to 0.5) of observations to be trimmed from the tails of each permutation distribution before its histogram is plotted.} \item{adjust}{numeric value to be passed on to the corresponding argument of \code{\link{density}} (for adjusting the bandwidth of the kernel density estimate).} \item{lwd}{numeric vector to specify the width of the vertical lines corresponding to the value of the observed test statistic, of the theoretical reference/null distribution, of the density estimate, and of the vertical line at 0 (note: by default, the theoretical reference/null distribution and the density estimate both have a line width of 0 and are therefore not plotted).} \item{legend}{logical to specify whether a legend should be added to the plot (the default is \code{FALSE}). Can also be a keyword to specify the position of the legend (see \code{\link{legend}}).} \item{\dots}{other arguments.} } \details{ The function plots the permutation distribution of each model coefficient as a histogram. For models with moderators, one can choose via argument \code{beta} which coefficients to plot (by default, all permutation distributions except that of the intercept are plotted). One can also choose to plot the permutation distribution of the omnibus test of the model coefficients (by setting \code{QM=TRUE}). Arguments \code{breaks}, \code{freq}, \code{col}, and \code{border} are passed on to the \code{\link{hist}} function for the plotting. Argument \code{trim} can be used to trim away a certain fraction of observations from the tails of each permutation distribution before its histogram is plotted. By setting this to a value above 0, one can quickly remove some of the extreme values that might lead to the bulk of the distribution getting squished together at the center (typically, a small value such as \code{trim=0.01} is sufficient for this purpose). The observed test statistic is indicated as a vertical dashed line (in both tails for a two-sided test). Argument \code{col.out} is used to specify the color for the bars in the histogram that are more extreme than the observed test statistic. The p-value of a permutation test corresponds to the area of these bars. One can superimpose the theoretical reference/null distribution on top of the histogram (i.e., the distribution as assumed by the model). The p-value for the standard (i.e., non-permutation) test is the area that is more extreme than the observed test statistic under this reference/null distribution. A kernel density estimate of the permutation distribution can also be superimposed on top of the histogram (as a smoothed representation of the permutation distribution). Note that the theoretical reference/null distribution and the kernel density estimate of the permutation distribution are only shown when setting the line width for these elements greater than 0 via the \code{lwd} argument (e.g., \code{lwd=c(2,2,2,4)}). For location-scale models (see \code{\link{rma.uni}} for details), one can also use arguments \code{alpha} and \code{QS} to specify which scale coefficients to plot and whether to also plot the permutation distribution of the omnibus test of the scale coefficients (by setting \code{QS=TRUE}). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=permutest.rma.uni]{permutest}} for the function to create \code{permutest.rma.uni} objects. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### random-effects model res <- rma(yi, vi, data=dat) res \dontrun{ ### permutation test (exact) permres <- permutest(res, exact=TRUE) permres ### plot of the permutation distribution ### dashed horizontal line: the observed value of the test statistic (in both tails) ### black curve: standard normal density (theoretical reference/null distribution) ### blue curve: kernel density estimate of the permutation distribution plot(permres, lwd=c(2,3,3,4)) ### mixed-effects model with two moderators (absolute latitude and publication year) res <- rma(yi, vi, mods = ~ ablat + year, data=dat) res ### permutation test (approximate) set.seed(1234) # for reproducibility permres <- permutest(res, iter=10000) permres ### plot of the permutation distribution for absolute latitude ### note: the tail area under the permutation distribution is larger ### than under a standard normal density (hence, the larger p-value) plot(permres, beta=2, lwd=c(2,3,3,4), xlim=c(-5,5)) } } \keyword{hplot} metafor/man/gosh.Rd0000644000176200001440000001516714746146216013736 0ustar liggesusers\name{gosh} \alias{gosh} \alias{gosh.rma} \title{GOSH Plots for 'rma' Objects} \description{ Function to create GOSH plots for objects of class \code{"rma"}. \loadmathjax } \usage{ gosh(x, \dots) \method{gosh}{rma}(x, subsets, progbar=TRUE, parallel="no", ncpus=1, cl, \dots) } \arguments{ \item{x}{an object of class \code{"rma"}.} \item{subsets}{optional integer to specify the number of subsets.} \item{progbar}{logical to specify whether a progress bar should be shown (the default is \code{TRUE}).} \item{parallel}{character string to specify whether parallel processing should be used (the default is \code{"no"}). For parallel processing, set to either \code{"snow"} or \code{"multicore"}. See \sQuote{Note}.} \item{ncpus}{integer to specify the number of processes to use in the parallel processing.} \item{cl}{optional cluster to use if \code{parallel="snow"}. If unspecified, a cluster on the local machine is created for the duration of the call.} \item{\dots}{other arguments.} } \details{ The model specified via \code{x} must be a model fitted with either the \code{\link{rma.uni}}, \code{\link{rma.mh}}, or \code{\link{rma.peto}} functions. Olkin et al. (2012) proposed the GOSH (graphical display of study heterogeneity) plot, which is based on examining the results of an equal-effects model in all possible subsets of size \mjseqn{1, \ldots, k} of the \mjseqn{k} studies included in a meta-analysis. In a homogeneous set of studies, the model estimates obtained this way should form a roughly symmetric, contiguous, and unimodal distribution. On the other hand, when the distribution is multimodal, then this suggests the presence of heterogeneity, possibly due to outliers and/or distinct subgroups of studies. Plotting the estimates against some measure of heterogeneity (e.g., \mjseqn{I^2}, \mjseqn{H^2}, or the \mjseqn{Q}-statistic) can also help to reveal subclusters, which are indicative of heterogeneity. The same type of plot can be produced by first fitting an equal-effects model with either the \code{\link{rma.uni}} (using \code{method="EE"}), \code{\link{rma.mh}}, or \code{\link{rma.peto}} functions and then passing the fitted model object to the \code{gosh} function and then plotting the results. For models fitted with the \code{\link{rma.uni}} function (which may be random-effects or mixed-effects meta-regressions models), the idea underlying this type of plot can be generalized (Viechtbauer, 2021) by examining the distribution of all model coefficients, plotting them against each other, and against some measure of (residual) heterogeneity (including the estimate of \mjseqn{\tau^2} or its square root). Note that for models without moderators, application of the method requires fitting a total of \mjseqn{2^k - 1} models, which could be an excessively large number when \mjseqn{k} is large. For example, for \mjseqn{k=10}, there are only 1023 possible subsets, but for \mjseqn{k=20}, this number already grows to 1,048,575. For even larger \mjseqn{k}, it may become computationally infeasible to consider all possible subsets. Instead, we can then examine (a sufficiently large number of) random subsets. By default, if the number of possible subsets is \mjseqn{\le 10^6}, the function will consider all possible subsets and otherwise \mjseqn{10^6} random subsets. One can use the \code{subsets} argument to specify a different number of subsets to consider. If \code{subsets} is specified and it is actually larger than the number of possible subsets, then the function automatically only considers the possible subsets and does not use random subsets. When \code{x} is an equal-effects model or a random-effects model fitted using \code{method="DL"}, provisions have been made to speed up the model fitting to the various subsets. For random-effects models using some other estimator of \mjseqn{\tau^2} (especially an iterative one like \code{method="REML"}), the computations will be considerably slower. } \value{ An object of class \code{"gosh.rma"}. The object is a list containing the following components: \item{res}{a data frame with the results for each subset (including various heterogeneity statistics and the model coefficient(s)).} \item{incl}{a matrix indicating which studies were included in which subset.} \item{\dots}{some additional elements/values.} The results can be printed with the \code{\link[=print.gosh.rma]{print}} function and plotted with the \code{\link[=plot.gosh.rma]{plot}} function. } \note{ On machines with multiple cores, one can try to speed things up by delegating the model fitting to separate worker processes, that is, by setting \code{parallel="snow"} or \code{parallel="multicore"} and \code{ncpus} to some value larger than 1. Parallel processing makes use of the \code{\link[parallel]{parallel}} package, using the \code{\link[parallel]{makePSOCKcluster}} and \code{\link[parallel]{parLapply}} functions when \code{parallel="snow"} or using \code{\link[parallel]{mclapply}} when \code{parallel="multicore"} (the latter only works on Unix/Linux-alikes). With \code{parallel::detectCores()}, one can check on the number of available cores on the local machine. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Olkin, I., Dahabreh, I. J., & Trikalinos, T. A. (2012). GOSH - a graphical display of study heterogeneity. \emph{Research Synthesis Methods}, \bold{3}(3), 214--223. \verb{https://doi.org/10.1002/jrsm.1053} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219--254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, and \code{\link{rma.peto}} for functions to fit models for which GOSH plots can be drawn. \code{\link[=influence.rma.uni]{influence}} for other model diagnostics. } \examples{ ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat.egger2001) ### meta-analysis of all trials including ISIS-4 using an equal-effects model res <- rma(yi, vi, data=dat, method="EE") ### fit FE model to all possible subsets (65535 models) \dontrun{ sav <- gosh(res, progbar=FALSE) sav ### create GOSH plot ### red points for subsets that include and blue points ### for subsets that exclude study 16 (the ISIS-4 trial) plot(sav, out=16, breaks=100) } } \keyword{methods} metafor/man/regtest.Rd0000644000176200001440000003204714746146216014447 0ustar liggesusers\name{regtest} \alias{regtest} \title{Regression Test for Funnel Plot Asymmetry} \description{ Function to carry out (various versions of) Egger's regression test for funnel plot asymmetry. \loadmathjax } \usage{ regtest(x, vi, sei, ni, subset, data, model="rma", predictor="sei", ret.fit=FALSE, digits, \dots) } \arguments{ \item{x}{a vector with the observed effect sizes or outcomes or an object of class \code{"rma"}.} \item{vi}{vector with the corresponding sampling variances (ignored if \code{x} is an object of class \code{"rma"}).} \item{sei}{vector with the corresponding standard errors (note: only one of the two, \code{vi} or \code{sei}, needs to be specified).} \item{ni}{optional vector with the corresponding sample sizes (only relevant when using the sample sizes (or a transformation thereof) as predictor).} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be included in the test (ignored if \code{x} is an object of class \code{"rma"}).} \item{data}{optional data frame containing the variables given to the arguments above.} \item{model}{either \code{"rma"} or \code{"lm"} to specify the type of model to use for the regression test. See \sQuote{Details}.} \item{predictor}{either \code{"sei"} \code{"vi"}, \code{"ni"}, \code{"ninv"}, \code{"sqrtni"}, or \code{"sqrtninv"} to specify the predictor to use for the regression test. See \sQuote{Details}.} \item{ret.fit}{logical to specify whether the full results from the fitted model should also be returned.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded.} \item{\dots}{other arguments.} } \details{ Various tests for funnel plot asymmetry have been suggested in the literature, including the rank correlation test by Begg and Mazumdar (1994) and the regression test by Egger et al. (1997). Extensions, modifications, and further developments of the regression test are described (among others) by Macaskill, Walter, and Irwig (2001), Sterne and Egger (2005), Harbord, Egger, and Sterne (2006), Peters et al. (2006), \enc{Rücker}{Ruecker} et al. (2008), and Moreno et al. (2009). The various versions of the regression test differ in terms of the model (either a weighted regression model with a multiplicative dispersion term or a fixed/mixed-effects meta-regression model is used), in terms of the predictor variable that the observed effect sizes or outcomes are hypothesized to be related to when publication bias is present (suggested predictors include the standard error, the sampling variance, and the sample size or transformations thereof), and in terms of the outcome measure used (e.g., for \mjeqn{2 \times 2}{2x2} table data, one has the choice between various outcome measures). The idea behind the various tests is the same though: If there is a relationship between the observed effect sizes or outcomes and the chosen predictor, then this usually implies asymmetry in the funnel plot, which in turn may be an indication of publication bias. The \code{regtest} function can be used to carry out various versions of the regression test. One can either pass a vector with the observed effect sizes or outcomes (via \code{x}) and the corresponding sampling variances via \code{vi} (or the standard errors via \code{sei}) to the function or an object of class \code{"rma"}. The model type for the regression test is chosen via the \code{model} argument, with \code{model="lm"} for a weighted regression model with a multiplicative dispersion term or \code{model="rma"} for a (mixed-effects) meta-regression model (the default). The predictor for the test is chosen via the \code{predictor} argument: \itemize{ \item \code{predictor="sei"} for the standard errors (the default), \item \code{predictor="vi"} for the sampling variances, \item \code{predictor="ni"} for the sample sizes, \item \code{predictor="ninv"} for the inverse of the sample sizes, \item \code{predictor="sqrtni"} for the square root of the sample sizes, or \item \code{predictor="sqrtninv"} for the inverse square root of the sample sizes. } The outcome measure used for the regression test is simply determined by the values passed to the function or the measure that was used in fitting the original model (when passing an object of class \code{"rma"} to the function). When using the sample sizes (or a transformation thereof) as the predictor, one can use the \code{ni} argument to specify the sample sizes. When \code{x} is a vector with the observed effect sizes or outcomes and it was computed with \code{\link{escalc}}, then the sample sizes should automatically be stored as an attribute of \code{x} and \code{ni} does not need to be specified. This should also be the case when passing an object of class \code{"rma"} to the function and the input to the model fitting function came from \code{\link{escalc}}. When passing an object of class \code{"rma"} to the function, arguments such as \code{method}, \code{weighted}, and \code{test} as used during the initial model fitting are also used for the regression test. If the model already included one or more moderators, then \code{regtest} will add the chosen predictor to the moderator(s) already included in the model. This way, one can test for funnel plot asymmetry after accounting first for the influence of the moderator(s) already included in the model. The model used for conducting the regression test can also be used to obtain a \sQuote{limit estimate} of the (average) true effect or outcome. In particular, when the standard errors, sampling variances, or inverse (square root) sample sizes are used as the predictor, the model intercept in essence reflects the estimate under infinite precision. This is sometimes (cautiously) interpreted as an estimate of the (average) true effect or outcome that is adjusted for publication bias. } \value{ An object of class \code{"regtest"}. The object is a list containing the following components: \item{model}{the model used for the regression test.} \item{predictor}{the predictor used for the regression test.} \item{zval}{the value of the test statistic.} \item{pval}{the corresponding p-value} \item{dfs}{the degrees of freedom of the test statistic (if the test is based on a t-distribution).} \item{fit}{the full results from the fitted model.} \item{est}{the limit estimate (only for predictors \code{"sei"} \code{"vi"}, \code{"ninv"}, or \code{"sqrtninv"} and when the model does not contain any additional moderators; \code{NULL} otherwise).} \item{ci.lb}{lower bound of the confidence interval for the limit estimate.} \item{ci.ub}{upper bound of the confidence intervals for the limit estimate.} The results are formatted and printed with the \code{\link[=print.regtest]{print}} function. } \note{ The classical \sQuote{Egger test} is obtained by setting \code{model="lm"} and \code{predictor="sei"}. For the random/mixed-effects version of the test, set \code{model="rma"} (this is the default). See Sterne and Egger (2005) for details on these two types of models/tests. When conducting a classical \sQuote{Egger test}, the test of the limit estimate is the same as the \sQuote{precision-effect test} (PET) of Stanley and Doucouliagos (2014). The limit estimate when using the sampling variance as predictor is sometimes called the \sQuote{precision-effect estimate with SE} (PEESE) (Stanley & Doucouliagos, 2014). A conditional procedure where we use the limit estimate when PET is not significant (i.e., when using the standard error as predictor) and the PEESE (i.e., when using the sampling variance as predictor) when PET is significant is sometimes called the PET-PEESE procedure (Stanley & Doucouliagos, 2014). All of the tests do not directly test for publication bias, but for a relationship between the observed effect sizes or outcomes and the chosen predictor. If such a relationship is present, then this usually implies asymmetry in the funnel plot, which in turn may be an indication of publication bias. However, it is important to keep in mind that there can be other reasons besides publication bias that could lead to asymmetry in the funnel plot. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. \emph{Biometrics}, \bold{50}(4), 1088--1101. \verb{https://doi.org/10.2307/2533446} Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. \emph{British Medical Journal}, \bold{315}(7109), 629--634. \verb{https://doi.org/10.1136/bmj.315.7109.629 } Harbord, R. M., Egger, M., & Sterne, J. A. C. (2006). A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. \emph{Statistics in Medicine}, \bold{25}(20), 3443--3457. \verb{https://doi.org/10.1002/sim.2380} Macaskill, P., Walter, S. D., & Irwig, L. (2001). A comparison of methods to detect publication bias in meta-analysis. \emph{Statistics in Medicine}, \bold{20}(4), 641--654. \verb{https://doi.org/10.1002/sim.698} Moreno, S. G., Sutton, A. J., Ades, A. E., Stanley, T. D., Abrams, K. R., Peters, J. L., & Cooper, N. J. (2009). Assessment of regression-based methods to adjust for publication bias through a comprehensive simulation study. \emph{BMC Medical Research Methodology}, \bold{9}, 2. \verb{https://doi.org/10.1186/1471-2288-9-2} Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R., & Rushton, L. (2006). Comparison of two methods to detect publication bias in meta-analysis. \emph{Journal of the American Medical Association}, \bold{295}(6), 676--680. \verb{https://doi.org/10.1001/jama.295.6.676} \enc{Rücker}{Ruecker}, G., Schwarzer, G., & Carpenter, J. (2008). Arcsine test for publication bias in meta-analyses with binary outcomes. \emph{Statistics in Medicine}, \bold{27}(5), 746--763. \verb{https://doi.org/10.1002/sim.2971} Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. \emph{Research Synthesis Methods}, \bold{5}(1), 60--78. \verb{https://doi.org/10.1002/jrsm.1095} Sterne, J. A. C., & Egger, M. (2005). Regression methods to detect publication and other bias in meta-analysis. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.) \emph{Publication bias in meta-analysis: Prevention, assessment, and adjustments} (pp. 99--110). Chichester, England: Wiley. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{ranktest}} for the rank correlation test, \code{\link{trimfill}} for the trim and fill method, \code{\link{tes}} for the test of excess significance, \code{\link{fsn}} to compute the fail-safe N (file drawer analysis), and \code{\link{selmodel}} for selection models. } \examples{ ### copy data into 'dat' and examine data dat <- dat.egger2001 ### calculate log odds ratios and corresponding sampling variances (but remove ISIS-4 trial) dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=-16) ### fit random-effects model res <- rma(yi, vi, data=dat) res ### classical Egger test regtest(res, model="lm") ### mixed-effects meta-regression version of the Egger test regtest(res) ### same tests, but passing outcomes directly regtest(yi, vi, data=dat, model="lm") regtest(yi, vi, data=dat) ### if dat$yi is computed with escalc(), sample size information is stored in attributes dat$yi ### then this will also work regtest(yi, vi, data=dat, predictor="ni") ### similarly when passing a model object to the function regtest(res, model="lm", predictor="ni") regtest(res, model="lm", predictor="ninv") regtest(res, predictor="ni") regtest(res, predictor="ninv") ### otherwise have to supply sample sizes manually dat$yi <- c(dat$yi) # this removes the 'ni' attribute from 'yi' dat$nitotal <- with(dat, n1i + n2i) regtest(yi, vi, ni=nitotal, data=dat, predictor="ni") res <- rma(yi, vi, data=dat) regtest(res, predictor="ni", ni=nitotal, data=dat) ### standard funnel plot (with standard errors on the y-axis) funnel(res, refline=0) ### regression test (by default the standard errors are used as predictor) reg <- regtest(res) reg ### add regression line to funnel plot se <- seq(0,1.8,length=100) lines(coef(reg$fit)[1] + coef(reg$fit)[2]*se, se, lwd=3) ### regression test (using the sampling variances as predictor) reg <- regtest(res, predictor="vi") ### add regression line to funnel plot (using the sampling variances as predictor) lines(coef(reg$fit)[1] + coef(reg$fit)[2]*se^2, se, lwd=3, lty="dotted") ### add legend legend("bottomright", inset=0.02, lty=c("solid","dotted"), lwd=3, cex=0.9, bg="white", legend=c("Standard Errors as Predictor", "Sampling Variances as Predictor")) ### testing for asymmetry after accounting for the influence of a moderator res <- rma(yi, vi, mods = ~ year, data=dat) regtest(res, model="lm") regtest(res) } \keyword{htest} metafor/man/leave1out.Rd0000644000176200001440000001246614746146216014702 0ustar liggesusers\name{leave1out} \alias{leave1out} \alias{leave1out.rma.uni} \alias{leave1out.rma.mh} \alias{leave1out.rma.peto} \title{Leave-One-Out Diagnostics for 'rma' Objects} \description{ Functions to carry out a \sQuote{leave-one-out analysis}, by repeatedly fitting the specified model leaving out one study (or cluster level) at a time. \loadmathjax } \usage{ leave1out(x, \dots) \method{leave1out}{rma.uni}(x, cluster, digits, transf, targs, progbar=FALSE, \dots) \method{leave1out}{rma.mh}(x, cluster, digits, transf, targs, progbar=FALSE, \dots) \method{leave1out}{rma.peto}(x, cluster, digits, transf, targs, progbar=FALSE, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"}, \code{"rma.mh"}, or \code{"rma.peto"}.} \item{cluster}{optional vector to specify a clustering variable.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{transf}{optional argument to specify a function to transform the model coefficients and interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified under \code{transf}.} \item{progbar}{logical to specify whether a progress bar should be shown (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ In a leave-one-out analysis, the same model is repeatedly fitted, leaving out one study at a time. By doing so, we can assess how much the results are influenced by each individual study. It is also possible to specify a \code{cluster} variable, in which case each cluster level is left out in turn. Note that for \code{"rma.uni"} objects, the model specified via \code{x} must be a model without moderators (i.e., either an equal- or a random-effects model). } \value{ An object of class \code{"list.rma"}. The object is a list containing the following components: \item{estimate}{estimated (average) outcomes.} \item{se}{corresponding standard errors.} \item{zval}{corresponding test statistics.} \item{pval}{corresponding p-values.} \item{ci.lb}{lower bounds of the confidence intervals.} \item{ci.ub}{upper bounds of the confidence intervals.} \item{Q}{test statistics for the test of heterogeneity.} \item{Qp}{corresponding p-values.} \item{tau2}{estimated amount of heterogeneity (only for random-effects models).} \item{I2}{values of \mjseqn{I^2}.} \item{H2}{values of \mjseqn{H^2}.} When the model was fitted with \code{test="t"}, \code{test="knha"}, \code{test="hksj"}, or \code{test="adhoc"}, then \code{zval} is called \code{tval} in the object that is returned by the function. The object is formatted and printed with the \code{\link[=print.list.rma]{print}} function. To format the results as a data frame, one can use the \code{\link[=as.data.frame.list.rma]{as.data.frame}} function. } \note{ When using the \code{transf} option, the transformation is applied to the estimated coefficients and the corresponding interval bounds. The standard errors are then set equal to \code{NA} and are omitted from the printed output. The variable specified via \code{cluster} is assumed to be of the same length as the data originally passed to the model fitting function (and if the \code{data} argument was used in the original model fit, then the variable will be searched for within this data frame first). Any subsetting and removal of studies with missing values that was applied during the model fitting is also automatically applied to the variable specified via the \code{cluster} argument. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219--254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. \emph{Research Synthesis Methods}, \bold{1}(2), 112--125. \verb{https://doi.org/10.1002/jrsm.11} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, and \code{\link{rma.peto}} for functions to fit models for which leave-one-out diagnostics can be computed. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### random-effects model res <- rma(yi, vi, data=dat) ### leave-one-out analysis leave1out(res) leave1out(res, transf=exp) ### leave-one-out analysis with a cluster variable leave1out(res, cluster=alloc) ### meta-analysis of the (log) risk ratios using the Mantel-Haenszel method res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### leave-one-out analysis leave1out(res) leave1out(res, transf=exp) ### meta-analysis of the (log) odds ratios using Peto's method res <- rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### leave-one-out analysis leave1out(res) leave1out(res, transf=exp) } \keyword{methods} metafor/man/to.table.Rd0000644000176200001440000001376314746146216014506 0ustar liggesusers\name{to.table} \alias{to.table} \title{Convert Data from Vector to Table Format} \description{ Function to convert summary data in vector format to the corresponding table format. \loadmathjax } \usage{ to.table(measure, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, sdi, ni, data, slab, subset, add=1/2, to="none", drop00=FALSE, rows, cols) } \arguments{ \item{measure}{a character string to specify the effect size or outcome measure corresponding to the summary data supplied. See \sQuote{Details} and the documentation of the \code{\link{escalc}} function for possible options.} \item{ai}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper left cell).} \item{bi}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper right cell).} \item{ci}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower left cell).} \item{di}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower right cell).} \item{n1i}{vector with the group sizes or row totals (first group/row).} \item{n2i}{vector with the group sizes or row totals (second group/row).} \item{x1i}{vector with the number of events (first group).} \item{x2i}{vector with the number of events (second group).} \item{t1i}{vector with the total person-times (first group).} \item{t2i}{vector with the total person-times (second group).} \item{m1i}{vector with the means (first group or time point).} \item{m2i}{vector with the means (second group or time point).} \item{sd1i}{vector with the standard deviations (first group or time point).} \item{sd2i}{vector with the standard deviations (second group or time point).} \item{xi}{vector with the frequencies of the event of interest.} \item{mi}{vector with the frequencies of the complement of the event of interest or the group means.} \item{ri}{vector with the raw correlation coefficients.} \item{ti}{vector with the total person-times.} \item{sdi}{vector with the standard deviations.} \item{ni}{vector with the sample/group sizes.} \item{data}{optional data frame containing the variables given to the arguments above.} \item{slab}{optional vector with labels for the studies.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be included in the array returned by the function.} \item{add}{see the documentation of the \code{\link{escalc}} function.} \item{to}{see the documentation of the \code{\link{escalc}} function.} \item{drop00}{see the documentation of the \code{\link{escalc}} function.} \item{rows}{optional vector with row/group names.} \item{cols}{optional vector with column/outcome names.} } \details{ The \code{\link{escalc}} function describes a wide variety of effect sizes or outcome measures that can be computed for a meta-analysis. The summary data used to compute those measures are typically contained in vectors, each element corresponding to a study. The \code{to.table} function takes this information and constructs an array of \mjseqn{k} tables from these data. For example, in various fields (such as the health and medical sciences), the response variable measured is often dichotomous (binary), so that the data from a study comparing two different groups can be expressed in terms of a \mjeqn{2 \times 2}{2x2} table, such as: \tabular{lcccccc}{ \tab \ics \tab outcome 1 \tab \ics \tab outcome 2 \tab \ics \tab total \cr group 1 \tab \ics \tab \code{ai} \tab \ics \tab \code{bi} \tab \ics \tab \code{n1i} \cr group 2 \tab \ics \tab \code{ci} \tab \ics \tab \code{di} \tab \ics \tab \code{n2i}} where \code{ai}, \code{bi}, \code{ci}, and \code{di} denote the cell frequencies (i.e., the number of individuals falling into a particular category) and \code{n1i} and \code{n2i} the row totals (i.e., the group sizes). The cell frequencies in \mjseqn{k} such \mjeqn{2 \times 2}{2x2} tables can be specified via the \code{ai}, \code{bi}, \code{ci}, and \code{di} arguments (or alternatively, via the \code{ai}, \code{ci}, \code{n1i}, and \code{n2i} arguments). The function then creates the corresponding \mjeqn{2 \times 2 \times k}{2*2*k} array of tables. The \code{measure} argument should then be set equal to one of the outcome measures that can be computed based on this type of data, such as \code{"RR"}, \code{"OR"}, \code{"RD"} (it is not relevant which specific measure is chosen, as long as it corresponds to the specified summary data). See the documentation of the \code{\link{escalc}} function for more details on the types of data formats available. The examples below illustrate the use of this function. } \value{ An array with \mjseqn{k} elements each consisting of either 1 or 2 rows and an appropriate number of columns. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{escalc}} for a function to compute observed effect sizes or outcomes (and corresponding sampling variances) based on similar inputs. \code{\link{to.long}} for a function to turn similar inputs into a long format dataset. } \examples{ ### create tables dat <- to.table(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", "), rows=c("Vaccinated", "Not Vaccinated"), cols=c("TB+", "TB-")) dat ### create tables dat <- to.table(measure="IRR", x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat.hart1999, slab=paste(study, year, sep=", "), rows=c("Warfarin Group", "Placebo/Control Group")) dat ### create tables dat <- to.table(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat.normand1999, slab=source, rows=c("Specialized Care", "Routine Care")) dat } \keyword{manip} metafor/man/print.deltamethod.Rd0000644000176200001440000000255014746146216016413 0ustar liggesusers\name{print.deltamethod} \alias{print.deltamethod} \title{Print Method for 'deltamethod' Objects} \description{ Functions to print objects of class \code{"deltamethod"}. } \usage{ \method{print}{deltamethod}(x, digits, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, \dots) } \arguments{ \item{x}{an object of class \code{"deltamethod"}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{signif.stars}{logical to specify whether p-values should be encoded visually with \sQuote{significance stars}. Defaults to the \code{show.signif.stars} slot of \code{\link{options}}.} \item{signif.legend}{logical to specify whether the legend for the \sQuote{significance stars} should be printed. Defaults to the value for \code{signif.stars}.} \item{\dots}{other arguments.} } \details{ The output is a table with the estimated coefficients, corresponding standard errors, test statistics, p-values, and confidence interval bounds. } \value{ The function does not return an object. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \seealso{ \code{\link{deltamethod}} for the function to create \code{deltamethod} objects. } \keyword{print} metafor/man/conv.wald.Rd0000644000176200001440000003762614746146216014675 0ustar liggesusers\name{conv.wald} \alias{conv.wald} \title{Convert Wald-Type Confidence Intervals and Tests to Sampling Variances} \description{ Function to convert Wald-type confidence intervals (CIs) and test statistics (or the corresponding p-values) to sampling variances. \loadmathjax } \usage{ conv.wald(out, ci.lb, ci.ub, zval, pval, n, data, include, level=95, transf, check=TRUE, var.names, append=TRUE, replace="ifna", \dots) } \arguments{ \item{out}{vector with the observed effect sizes or outcomes.} \item{ci.lb}{vector with the lower bounds of the corresponding Wald-type CIs.} \item{ci.ub}{vector with the upper bounds of the corresponding Wald-type CIs.} \item{zval}{vector with the Wald-type test statistics.} \item{pval}{vector with the p-values of the Wald-type tests.} \item{n}{vector with the total sample sizes of the studies.} \item{data}{optional data frame containing the variables given to the arguments above.} \item{include}{optional (logical or numeric) vector to specify the subset of studies for which the conversion should be carried out.} \item{level}{numeric value (or vector) to specify the confidence interval level(s) (the default is 95; see \link[=misc-options]{here} for details).} \item{transf}{optional argument to specify a function to transform \code{out}, \code{ci.lb}, and \code{ci.ub} (e.g., \code{transf=log}). If unspecified, no transformation is used.} \item{check}{logical to specify whether the function should carry out a check to examine if the point estimates fall (approximately) halfway between the CI bounds (the default is \code{TRUE}).} \item{var.names}{character vector with two elements to specify the name of the variable for the observed effect sizes or outcomes and the name of the variable for the corresponding sampling variances (if \code{data} is an object of class \code{"escalc"}, the \code{var.names} are taken from the object; otherwise the defaults are \code{"yi"} and \code{"vi"}).} \item{append}{logical to specify whether the data frame provided via the \code{data} argument should be returned together with the estimated values (the default is \code{TRUE}).} \item{replace}{character string or logical to specify how values in \code{var.names} should be replaced (only relevant when using the \code{data} argument and if variables in \code{var.names} already exist in the data frame). See the \sQuote{Value} section for more details.} \item{\dots}{other arguments.} } \details{ The \code{\link{escalc}} function can be used to compute a wide variety of effect sizes or \sQuote{outcome measures}. However, the inputs required to compute certain measures with this function may not be reported for all of the studies. Under certain circumstances, other information (such as point estimates and corresponding confidence intervals and/or test statistics) may be available that can be converted into the appropriate format needed for a meta-analysis. The purpose of the present function is to facilitate this process. The function typically takes a data frame created with the \code{\link{escalc}} function as input via the \code{data} argument. This object should contain variables \code{yi} and \code{vi} (unless argument \code{var.names} was used to adjust these variable names when the \code{"escalc"} object was created) for the observed effect sizes or outcomes and the corresponding sampling variances, respectively. For some studies, the values for these variables may be missing. \subsection{Converting Point Estimates and Confidence Intervals}{ In some studies, the effect size estimate or observed outcome may already be reported. If so, such values can be supplied via the \code{out} argument and are then substituted for missing \code{yi} values. At times, it may be necessary to transform the reported values (e.g., reported odds ratios to log odds ratios). Via argument \code{transf}, an appropriate transformation function can be specified (e.g., \code{transf=log}), in which case \mjseqn{y_i = f(\text{out})} where \mjeqn{f(\cdot)}{f(.)} is the function specified via \code{transf}. Moreover, a confidence interval (CI) may have been reported together with the estimate. The bounds of the CI can be supplied via arguments \code{ci.lb} and \code{ci.ub}, which are also transformed if a function is specified via \code{transf}. Assume that the bounds were obtained from a Wald-type CI of the form \mjeqn{y_i \pm z_{crit} \sqrt{v_i}}{y_i ± z_crit \sqrt{v_i}} (on the transformed scale if \code{transf} is specified), where \mjseqn{v_i} is the sampling variance corresponding to the effect size estimate or observed outcome (so that \mjseqn{\sqrt{v_i}} is the corresponding standard error) and \mjeqn{z_{crit}}{z_crit} is the appropriate critical value from a standard normal distribution (e.g., \mjseqn{1.96} for a 95\% CI). Then \mjdeqn{v_i = \left(\frac{\text{ci.ub} - \text{ci.lb}}{2 \times z_{crit}}\right)^2}{v_i = ((ci.ub - ci.lb) / (2*z_crit))^2} is used to back-calculate the sampling variances of the (transformed) effect size estimates or observed outcomes and these values are then substituted for missing \code{vi} values in the dataset. For example, consider the following dataset of three RCTs used as input for a meta-analysis of log odds ratios: \preformatted{ dat <- data.frame(study = 1:3, cases.trt = c(23, NA, 4), n.trt = c(194, 183, 46), cases.plc = c(38, NA, 7), n.plc = c(201, 188, 44), oddsratio = c(NA, 0.64, NA), lower = c(NA, 0.33, NA), upper = c(NA, 1.22, NA)) dat <- escalc(measure="OR", ai=cases.trt, n1i=n.trt, ci=cases.plc, n2i=n.plc, data=dat) dat # study cases.trt n.trt cases.plc n.plc oddsratio lower upper yi vi # 1 1 23 194 38 201 NA NA NA -0.5500 0.0818 # 2 2 NA 183 NA 188 0.64 0.33 1.22 NA NA # 3 3 4 46 7 44 NA NA NA -0.6864 0.4437} where variable \code{yi} contains the log odds ratios and \code{vi} the corresponding sampling variances as computed from the counts and group sizes by \code{escalc()}. Study 2 does not report the counts (or sufficient information to reconstruct them), but the odds ratio and a corresponding 95\% confidence interval (CI) directly, as given by variables \code{oddsratio}, \code{lower}, and \code{upper}. The CI is a standard Wald-type CI that was computed on the log scale (and whose bounds were then exponentiated). Then the present function can be used as follows: \preformatted{ dat <- conv.wald(out=oddsratio, ci.lb=lower, ci.ub=upper, data=dat, transf=log) dat # study cases.trt n.trt cases.plc n.plc oddsratio lower upper yi vi # 1 1 23 194 38 201 NA NA NA -0.5500 0.0818 # 2 2 NA 183 NA 188 0.64 0.33 1.22 -0.4463 0.1113 # 3 3 4 46 7 44 NA NA NA -0.6864 0.4437} Now variables \code{yi} and \code{vi} in the dataset are complete. If the CI was not a 95\% CI, then one can specify the appropriate level via the \code{level} argument. This can also be an entire vector in case different studies used different levels. By default (i.e., when \code{check=TRUE}), the function carries out a rough check to examine if the point estimate falls (approximately) halfway between the CI bounds (on the transformed scale) for each study for which the conversion was carried out. A warning is issued if there are studies where this is not the case. This may indicate that a particular CI was not a Wald-type CI or was computed on a different scale (in which case the back-calculation above would be inappropriate), but can also arise due to rounding of the reported values (in which case the back-calculation would still be appropriate, albeit possibly a bit inaccurate). Care should be taken when using such back-calculated values in a meta-analysis. } \subsection{Converting Test Statistics and P-Values}{ Similarly, study authors may report the test statistic and/or p-value from a Wald-type test of the form \mjseqn{\text{zval} = y_i / \sqrt{v_i}} (on the transformed scale if \code{transf} is specified), with the corresponding two-sided p-value given by \mjseqn{\text{pval} = 2(1 - \Phi(\text{|zval|}))}, where \mjeqn{\Phi(\cdot)}{Phi(.)} denotes the cumulative distribution function of a standard normal distribution (i.e., \code{\link{pnorm}}). Test statistics and/or corresponding p-values of this form can be supplied via arguments \code{zval} and \code{pval}. A given p-value can be back-transformed into the corresponding test statistic (if it is not already available) with \mjseqn{\text{zval} = \Phi^{-1}(1 - \text{pval}/2)}, where \mjeqn{\Phi^{-1}(\cdot)}{Phi^{-1}(.)} denotes the quantile function (i.e., the inverse of the cumulative distribution function) of a standard normal distribution (i.e., \code{\link{qnorm}}). Then \mjdeqn{v_i = \left(\frac{y_i}{\text{zval}}\right)^2}{v_i = (yi / zval)^2} is used to back-calculate a missing \code{vi} value in the dataset. Note that the conversion of a p-value to the corresponding test statistic (which is then converted into sampling variance) as shown above assumes that the exact p-value is reported. If authors only report that the p-value fell below a certain threshold (e.g., \mjseqn{p < .01} or if authors only state that the test was significant -- which typically implies \mjseqn{p < .05}), then a common approach is to use the value of the cutoff reported (e.g., if \mjseqn{p < .01} is reported, then assume \mjseqn{p = .01}), which is conservative (since the actual p-value was below that assumed value by some unknown amount). The conversion will therefore tend to be much less accurate. Using the earlier example, suppose that only the odds ratio and the corresponding two-sided p-value from a Wald-type test (whether the log odds ratio differs significantly from zero) is reported for study 2. \preformatted{ dat <- data.frame(study = 1:3, cases.trt = c(23, NA, 4), n.trt = c(194, 183, 46), cases.plc = c(38, NA, 7), n.plc = c(201, 188, 44), oddsratio = c(NA, 0.64, NA), pval = c(NA, 0.17, NA)) dat <- escalc(measure="OR", ai=cases.trt, n1i=n.trt, ci=cases.plc, n2i=n.plc, data=dat) dat study cases.trt n.trt cases.plc n.plc oddsratio pval yi vi 1 1 23 194 38 201 NA NA -0.5500 0.0818 2 2 NA 183 NA 188 0.64 0.17 NA NA 3 3 4 46 7 44 NA NA -0.6864 0.4437} Then the function can be used as follows: \preformatted{ dat <- conv.wald(out=oddsratio, pval=pval, data=dat, transf=log) dat # study cases.trt n.trt cases.plc n.plc oddsratio pval yi vi # 1 1 23 194 38 201 NA NA -0.5500 0.0818 # 2 2 NA 183 NA 188 0.64 0.17 -0.4463 0.1058 # 3 3 4 46 7 44 NA NA -0.6864 0.4437} Note that the back-calculated sampling variance for study 2 is not identical in these two examples, because the CI bounds and p-value are rounded to two decimal places, which introduces some inaccuracies. Also, if both (\code{ci.lb}, \code{ci.ub}) and either \code{zval} or \code{pval} is available for a study, then the back-calculation of \mjseqn{v_i} via the confidence interval is preferred. } Optionally, one can use the \code{n} argument to supply the total sample sizes of the studies. This has no relevance for the calculations done by the present function, but some other functions may use this information (e.g., when drawing a funnel plot with the \code{\link{funnel}} function and one adjusts the \code{yaxis} argument to one of the options that puts the sample sizes or some transformation thereof on the y-axis). } \value{ If the \code{data} argument was not specified or \code{append=FALSE}, a data frame of class \code{c("escalc","data.frame")} with two variables called \code{var.names[1]} (by default \code{"yi"}) and \code{var.names[2]} (by default \code{"vi"}) with the (transformed) observed effect sizes or outcomes and the corresponding sampling variances (computed as described above). If \code{data} was specified and \code{append=TRUE}, then the original data frame is returned. If \code{var.names[1]} is a variable in \code{data} and \code{replace="ifna"} (or \code{replace=FALSE}), then only missing values in this variable are replaced with the (possibly transformed) observed effect sizes or outcomes from \code{out} (where possible) and otherwise a new variable called \code{var.names[1]} is added to the data frame. Similarly, if \code{var.names[2]} is a variable in \code{data} and \code{replace="ifna"} (or \code{replace=FALSE}), then only missing values in this variable are replaced with the sampling variances back-calculated as described above (where possible) and otherwise a new variable called \code{var.names[2]} is added to the data frame. If \code{replace="all"} (or \code{replace=TRUE}), then all values in \code{var.names[1]} and \code{var.names[2]} are replaced, even for cases where the value in \code{var.names[1]} and \code{var.names[2]} is not missing. } \note{ \bold{A word of caution}: Except for the check on the CI bounds, there is no possibility to determine if the back-calculations done by the function are appropriate in a given context. They are only appropriate when the CI bounds and tests statistics (or p-values) arose from Wald-type CIs / tests as described above. Using the same back-calculations for other purposes is likely to yield nonsensical values. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{escalc}} for a function to compute various effect size measures. } \examples{ ### a very simple example dat <- data.frame(or=c(1.37,1.89), or.lb=c(1.03,1.60), or.ub=c(1.82,2.23)) dat ### convert the odds ratios and CIs into log odds ratios with corresponding sampling variances dat <- conv.wald(out=or, ci.lb=or.lb, ci.ub=or.ub, data=dat, transf=log) dat ############################################################################ ### a more elaborate example based on the BCG vaccine dataset dat <- dat.bcg[,c(2:7)] dat ### with complete data, we can use escalc() in the usual way dat1 <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) dat1 ### random-effects model fitted to these data res1 <- rma(yi, vi, data=dat1) res1 ### now suppose that the 2x2 table data are not reported in all studies, but that the ### following dataset could be assembled based on information reported in the studies dat2 <- data.frame(summary(dat1)) dat2[c("yi", "ci.lb", "ci.ub")] <- data.frame(summary(dat1, transf=exp))[c("yi", "ci.lb", "ci.ub")] names(dat2)[which(names(dat2) == "yi")] <- "or" dat2[,c("or","ci.lb","ci.ub","pval")] <- round(dat2[,c("or","ci.lb","ci.ub","pval")], digits=2) dat2$vi <- dat2$sei <- dat2$zi <- NULL dat2$ntot <- with(dat2, tpos + tneg + cpos + cneg) dat2[c(1,12),c(3:6,9:10)] <- NA dat2[c(4,9), c(3:6,8)] <- NA dat2[c(2:3,5:8,10:11,13),c(7:10)] <- NA dat2$ntot[!is.na(dat2$tpos)] <- NA dat2 ### in studies 1 and 12, authors reported only the odds ratio and the corresponding p-value ### in studies 4 and 9, authors reported only the odds ratio and the corresponding 95\% CI ### use escalc() first dat2 <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat2) dat2 ### fill in the missing log odds ratios and sampling variances dat2 <- conv.wald(out=or, ci.lb=ci.lb, ci.ub=ci.ub, pval=pval, n=ntot, data=dat2, transf=log) dat2 ### random-effects model fitted to these data res2 <- rma(yi, vi, data=dat2) res2 ### any differences between res1 and res2 are a result of or, ci.lb, ci.ub, and pval being ### rounded in dat2 to two decimal places; without rounding, the results would be identical } \keyword{manip} metafor/man/mfopt.Rd0000644000176200001440000000750614746146216014121 0ustar liggesusers\name{mfopt} \alias{mfopt} \alias{getmfopt} \alias{setmfopt} \title{Getting and Setting Package Options} \description{ Functions for getting and setting \pkg{metafor} package options. \loadmathjax } \usage{ getmfopt(x, default=NULL) setmfopt(...) } \arguments{ \item{x}{The name of an option. If unspecified, all options are returned.} \item{default}{value to return if the option name does not exist.} \item{\dots}{one or more option names and the corresponding values to which they should be set.} } \details{ The \pkg{metafor} package stores some of its options as a list element called \code{"metafor"} in the system options (see \code{\link{options}}). Hence, \code{getmfopt()} is the same as \code{getOption("metafor")}. One can also set \code{x} to the name of an option to return. With \code{setmfopt()}, one can set one or more options to their desired values. Currently, the following options are supported: \describe{ \item{\code{check}}{logical to specify whether a version check should be carried out when loading the package (the default is \code{TRUE}). See \link[=misc-options]{here} for details. Obviously, this option must be set before loading the package (e.g., with \code{options(metafor=list(check=FALSE))}).} \item{\code{silent}}{logical to specify whether a startup message should be issued when loading the package (the default is \code{FALSE}). Obviously, this option must be set before loading the package (e.g., with \code{options(metafor=list(silent=TRUE))}). Note that messages about required packages that are automatically loaded are not suppressed by this. To fully suppress all startup messages, load the package with \code{\link{suppressPackageStartupMessages}}.} \item{\code{space}}{logical to specify whether an empty line should be added before and after the output (the default is \code{TRUE}). See \link[=misc-options]{here} for details.} \item{\code{digits}}{a named vector to specify how various aspects of the output should be rounded (unset by default). See \link[=misc-options]{here} for details.} \item{\code{style}}{a list whose elements specify the styles for various parts of the output when the \href{https://cran.r-project.org/package=crayon}{crayon} package is loaded and a terminal is used that supports \sQuote{ANSI} color/highlight codes (unset by default). See \link[=misc-options]{here} for details. Can also be a logical and set to \code{FALSE} to switch off output styling when the \code{crayon} package is loaded.} \item{\code{theme}}{character string to specify how plots created by the package should be themed. The default is \code{"default"}, which means that the default foreground and background colors of plotting devices are used. Alternative options are \code{"light"} and \code{"dark"}, which forces plots to be drawn with a light or dark background, respectively. See \link[=misc-options]{here} for further details. RStudio users can also set this to \code{"auto"}, in which case plotting colors are chosen depending on the RStudio theme used (for some themes, using \code{"auto2"} might be visually more appealing). One can also use \code{setmfopt(theme="custom", fg=, bg=)} to set the foreground and background colors to custom choices (depending on the colors chosen, using \code{"custom2"} might be visually more appealing).} } } \value{ Either a vector with the value for the chosen option or a list with all options. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ getmfopt() getmfopt(space) setmfopt(space=FALSE) getmfopt() setmfopt(space=TRUE) getmfopt() } \keyword{manip} metafor/man/permutest.Rd0000644000176200001440000003443014746146216015020 0ustar liggesusers\name{permutest} \alias{permutest} \alias{permutest.rma.uni} \alias{permutest.rma.ls} \title{Permutation Tests for 'rma.uni' Objects} \description{ Function to carry out permutation tests for objects of class \code{"rma.uni"} and \code{"rma.ls"}. \loadmathjax } \usage{ permutest(x, \dots) \method{permutest}{rma.uni}(x, exact=FALSE, iter=1000, btt=x$btt, permci=FALSE, progbar=TRUE, digits, control, \dots) \method{permutest}{rma.ls}(x, exact=FALSE, iter=1000, btt=x$btt, att=x$att, progbar=TRUE, digits, control, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"} or \code{"rma.ls"}.} \item{exact}{logical to specify whether an exact permutation test should be carried out (the default is \code{FALSE}). See \sQuote{Details}.} \item{iter}{integer to specify the number of iterations for the permutation test when not doing an exact test (the default is \code{1000}).} \item{btt}{optional vector of indices (or list thereof) to specify which coefficients should be included in the Wald-type test. Can also be a string to \code{\link{grep}} for.} \item{att}{optional vector of indices (or list thereof) to specify which scale coefficients should be included in the Wald-type test. Can also be a string to \code{\link{grep}} for.} \item{permci}{logical to specify whether permutation-based confidence intervals (CIs) should also be constructed (the default is \code{FALSE}). Can also be a vector of indices to specify for which coefficients a permutation-based CI should be obtained.} \item{progbar}{logical to specify whether a progress bar should be shown (the default is \code{TRUE}).} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{control}{list of control values for numerical comparisons (\code{comptol}) and for \code{\link{uniroot}} (i.e., \code{tol} and \code{maxiter}). The latter is only relevant when \code{permci=TRUE}. See \sQuote{Note}.} \item{\dots}{other arguments.} } \details{ For models without moderators, the permutation test is carried out by permuting the signs of the observed effect sizes or outcomes. The (two-sided) p-value of the permutation test is then equal to the proportion of times that the absolute value of the test statistic under the permuted data is as extreme or more extreme than under the actually observed data. See Follmann and Proschan (1999) for more details. For models with moderators, the permutation test is carried out by permuting the rows of the model matrix (i.e., \mjseqn{X}). The (two-sided) p-value for a particular model coefficient is then equal to the proportion of times that the absolute value of the test statistic for the coefficient under the permuted data is as extreme or more extreme than under the actually observed data. Similarly, for the omnibus test, the p-value is the proportion of times that the test statistic for the omnibus test is as extreme or more extreme than the actually observed one (argument \code{btt} can be used to specify which coefficients should be included in this test). See Higgins and Thompson (2004) and Viechtbauer et al. (2015) for more details. \subsection{Exact versus Approximate Permutation Tests}{ If \code{exact=TRUE}, the function will try to carry out an exact permutation test. An exact permutation test requires fitting the model to each possible permutation. However, the number of possible permutations increases rapidly with the number of outcomes/studies (i.e., \mjseqn{k}). For models without moderators, there are \mjseqn{2^k} possible permutations of the signs. Therefore, for \mjseqn{k=5}, there are 32 possible permutations, for \mjseqn{k=10}, there are already 1024, and for \mjseqn{k=20}, there are over one million such permutations. For models with moderators, the increase in the number of possible permutations is even more severe. The total number of possible permutations of the model matrix is \mjseqn{k!}. Therefore, for \mjseqn{k=5}, there are 120 possible permutations, for \mjseqn{k=10}, there are 3,628,800, and for \mjseqn{k=20}, there are over \mjeqn{10^{18}}{10^18} permutations of the model matrix. Therefore, going through all possible permutations may become infeasible. Instead of using an exact permutation test, one can set \code{exact=FALSE} (which is also the default). In that case, the function approximates the exact permutation-based p-value(s) by going through a smaller number (as specified by the \code{iter} argument) of \emph{random} permutations. Therefore, running the function twice on the same data can yield (slightly) different p-values. Setting \code{iter} sufficiently large ensures that the results become stable. For full reproducibility, one can also set the seed of the random number generator before running the function (see \sQuote{Examples}). Note that if \code{exact=FALSE} and \code{iter} is actually larger than the number of iterations required for an exact permutation test, then an exact test will automatically be carried out. For models with moderators, the exact permutation test actually only requires fitting the model to each \emph{unique} permutation of the model matrix. The number of unique permutations will be smaller than \mjseqn{k!} when the model matrix contains recurring rows. This may be the case when only including categorical moderators (i.e., factors) in the model or when any quantitative moderators included in the model can only take on a small number of unique values. When \code{exact=TRUE}, the function therefore uses an algorithm to restrict the test to only the unique permutations of the model matrix, which may make the use of the exact test feasible even when \mjseqn{k} is large. One can also set \code{exact="i"} in which case the function simply returns the number of iterations required for an exact permutation test. When using random permutations, the function ensures that the very first permutation will always correspond to the original data. This avoids p-values equal to 0. } \subsection{Permutation-Based Confidence Intervals}{ When \code{permci=TRUE}, the function also tries to obtain permutation-based confidence intervals (CIs) of the model coefficient(s). This is done by shifting the observed effect sizes or outcomes by some amount and finding the most extreme values for this amount for which the permutation-based test would just lead to non-rejection. The calculation of such CIs is computationally expensive and may take a long time to complete. For models with moderators, one can also set \code{permci} to a vector of indices to specify for which coefficient(s) a permutation-based CI should be obtained. When the algorithm fails to determine a particular CI bound, it will be shown as \code{NA} in the output. } \subsection{Permutation Tests for Location-Scale Models}{ The function also works with location-scale models (see \code{\link{rma.uni}} for details on such models). Permutation tests will then be carried out for both the location and scale parts of the model. However, note that permutation-based CIs are not available for location-scale models. } } \value{ An object of class \code{"permutest.rma.uni"}. The object is a list containing the following components: \item{pval}{p-value(s) based on the permutation test.} \item{QMp}{p-value for the omnibus test of moderators based on the permutation test.} \item{zval.perm}{values of the test statistics of the coefficients under the various permutations.} \item{b.perm}{the model coefficients under the various permutations.} \item{QM.perm}{the test statistic of the omnibus test of moderators under the various permutations.} \item{ci.lb}{lower bound of the confidence intervals for the coefficients (permutation-based when \code{permci=TRUE}).} \item{ci.ub}{upper bound of the confidence intervals for the coefficients (permutation-based when \code{permci=TRUE}).} \item{\dots}{some additional elements/values are passed on.} The results are formatted and printed with the \code{\link[=print.permutest.rma.uni]{print}} function. One can also use \code{\link[=coef.permutest.rma.uni]{coef}} to obtain the table with the model coefficients, corresponding standard errors, test statistics, p-values, and confidence interval bounds. The permutation distribution(s) can be plotted with the \code{\link[=plot.permutest.rma.uni]{plot}} function. } \note{ The p-values obtained with permutation tests cannot reach conventional levels of statistical significance (i.e., \mjseqn{p \le .05}) when \mjseqn{k} is very small. In particular, for models without moderators, the smallest possible (two-sided) p-value is .0625 when \mjseqn{k=5} and .03125 when \mjseqn{k=6}. Therefore, the permutation test is only able to reject the null hypothesis at \mjseqn{\alpha=.05} when \mjseqn{k} is at least equal to 6. For models with moderators, the smallest possible (two-sided) p-value for a particular model coefficient is .0833 when \mjseqn{k=4} and .0167 when \mjseqn{k=5} (assuming that each row in the model matrix is unique). Therefore, the permutation test is only able to reject the null hypothesis at \mjseqn{\alpha=.05} when \mjseqn{k} is at least equal to 5. Consequently, permutation-based CIs can also only be obtained when \mjseqn{k} is sufficiently large. When the number of permutations required for the exact test is so large as to be essentially indistinguishable from infinity (e.g., \code{factorial(200)}), the function will terminate with an error. Determining whether a test statistic under the permuted data is as extreme or more extreme than under the actually observed data requires making \code{>=} or \code{<=} comparisons. To avoid problems due to the finite precision with which computers generally represent numbers (see \href{https://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-doesn_0027t-R-think-these-numbers-are-equal_003f}{this} FAQ for details), the function uses a numerical tolerance (\code{control} argument \code{comptol}, which is set equal to \code{.Machine$double.eps^0.5} by default) when making such comparisons (e.g., instead of \code{sqrt(3)^2 >= 3}, which may evaluate to \code{FALSE}, we use \code{sqrt(3)^2 >= 3 - .Machine$double.eps^0.5}, which should evaluate to \code{TRUE}). When obtaining permutation-based CIs, the function makes use of \code{\link{uniroot}}. By default, the desired accuracy is set equal to \code{.Machine$double.eps^0.25} and the maximum number of iterations to \code{100}. The desired accuracy and the maximum number of iterations can be adjusted with the \code{control} argument (i.e., \code{control=list(tol=value, maxiter=value)}). Also, the interval searched for the CI bounds may be too narrow, leading to \code{NA} for a bound. In this case, one can try setting \code{control=list(distfac=value)} with a value larger than 1 to extend the interval (the value indicating a multiplicative factor by which to extend the width of the interval searched) or \code{control=list(extendInt="yes")} to allow \code{\link{uniroot}} to extend the interval dynamically (in which case it can happen that a bound may try to drift to \mjeqn{\pm \infty}{± infinity}). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Follmann, D. A., & Proschan, M. A. (1999). Valid inference in random effects meta-analysis. \emph{Biometrics}, \bold{55}(3), 732--737. \verb{https://doi.org/10.1111/j.0006-341x.1999.00732.x} Good, P. I. (2009). \emph{Permutation, parametric, and bootstrap tests of hypotheses} (3rd ed.). New York: Springer. Higgins, J. P. T., & Thompson, S. G. (2004). Controlling the risk of spurious findings from meta-regression. \emph{Statistics in Medicine}, \bold{23}(11), 1663--1682. \verb{https://doi.org/10.1002/sim.1752} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W., \enc{López-López}{Lopez-Lopez}, J. A., \enc{Sánchez-Meca}{Sanchez-Meca}, J., & \enc{Marín-Martínez}{Marin-Martinez}, F. (2015). A comparison of procedures to test for moderators in mixed-effects meta-regression models. \emph{Psychological Methods}, \bold{20}(3), 360--374. \verb{https://doi.org/10.1037/met0000023} Viechtbauer, W., & \enc{López-López}{Lopez-Lopez}, J. A. (2022). Location-scale models for meta-analysis. \emph{Research Synthesis Methods}. \bold{13}(6), 697--715. \verb{https://doi.org/10.1002/jrsm.1562} } \seealso{ \code{\link{rma.uni}} for the function to fit models for which permutation tests can be conducted. \code{\link[=print.permutest.rma.uni]{print}} and \code{\link[=plot.permutest.rma.uni]{plot}} for the print and plot methods and \code{\link[=coef.permutest.rma.uni]{coef}} for a method to extract the model results table. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### random-effects model res <- rma(yi, vi, data=dat) res \dontrun{ ### permutation test (approximate and exact) set.seed(1234) # for reproducibility permutest(res) permutest(res, exact=TRUE) } ### mixed-effects model with two moderators (absolute latitude and publication year) res <- rma(yi, vi, mods = ~ ablat + year, data=dat) res ### number of iterations required for an exact permutation test permutest(res, exact="i") \dontrun{ ### permutation test (approximate only; exact not feasible) set.seed(1234) # for reproducibility permres <- permutest(res, iter=10000) permres ### plot of the permutation distribution for absolute latitude ### dashed horizontal line: the observed value of the test statistic (in both tails) ### black curve: standard normal density (theoretical reference/null distribution) ### blue curve: kernel density estimate of the permutation distribution ### note: the tail area under the permutation distribution is larger ### than under a standard normal density (hence, the larger p-value) plot(permres, beta=2, lwd=c(2,3,3,4), xlim=c(-5,5)) } ### mixed-effects model with a categorical and a quantitative moderator res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat) res \dontrun{ ### permutation test testing the allocation factor coefficients set.seed(1234) # for reproducibility permutest(res, btt="alloc") } } \keyword{models} metafor/man/metafor.news.Rd0000644000176200001440000000132514746146216015375 0ustar liggesusers\name{metafor.news} \alias{metafor.news} \title{Read News File of the Metafor Package} \description{ Function to read the \file{NEWS} file of the \pkg{\link{metafor-package}}. } \usage{ metafor.news() } \details{ The function is simply a wrapper for \code{news(package="metafor")} which parses and displays the \file{NEWS} file of the package. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ \dontrun{ metafor.news() } } \keyword{utilities} metafor/man/influence.rma.mv.Rd0000644000176200001440000001527514746146216016145 0ustar liggesusers\name{influence.rma.mv} \alias{influence.rma.mv} \alias{cooks.distance.rma.mv} \alias{dfbetas.rma.mv} \alias{hatvalues.rma.mv} \title{Model Diagnostics for 'rma.mv' Objects} \description{ Functions to compute various outlier and influential study diagnostics (some of which indicate the influence of deleting one study at a time on the model fit or the fitted/residual values) for objects of class \code{"rma.mv"}. \loadmathjax } \usage{ \method{cooks.distance}{rma.mv}(model, progbar=FALSE, cluster, reestimate=TRUE, parallel="no", ncpus=1, cl, \dots) \method{dfbetas}{rma.mv}(model, progbar=FALSE, cluster, reestimate=TRUE, parallel="no", ncpus=1, cl, \dots) \method{hatvalues}{rma.mv}(model, type="diagonal", \dots) } \arguments{ \item{model}{an object of class \code{"rma.mv"}.} \item{progbar}{logical to specify whether a progress bar should be shown (the default is \code{FALSE}).} \item{cluster}{optional vector to specify a clustering variable to use for computing the Cook's distances or DFBETAS values. If unspecified, these measures are computed for the individual observed effect sizes or outcomes.} \item{reestimate}{logical to specify whether variance/correlation components should be re-estimated after deletion of the \mjeqn{i\text{th}}{ith} case (the default is \code{TRUE}).} \item{parallel}{character string to specify whether parallel processing should be used (the default is \code{"no"}). For parallel processing, set to either \code{"snow"} or \code{"multicore"}. See \sQuote{Note}.} \item{ncpus}{integer to specify the number of processes to use in the parallel processing.} \item{cl}{optional cluster to use if \code{parallel="snow"}. If unspecified, a cluster on the local machine is created for the duration of the call.} \item{type}{character string to specify whether only the diagonal of the hat matrix (\code{"diagonal"}) or the entire hat matrix (\code{"matrix"}) should be returned.} \item{\dots}{other arguments.} } \details{ The term \sQuote{case} below refers to a particular row from the dataset used in the model fitting (when argument \code{cluster} is not specified) or each level of the variable specified via \code{cluster}. Cook's distance for the \mjeqn{i\text{th}}{ith} case can be interpreted as the Mahalanobis distance between the entire set of predicted values once with the \mjeqn{i\text{th}}{ith} case included and once with the \mjeqn{i\text{th}}{ith} case excluded from the model fitting. The DFBETAS value(s) essentially indicate(s) how many standard deviations the estimated coefficient(s) change(s) after excluding the \mjeqn{i\text{th}}{ith} case from the model fitting. } \value{ The \code{cooks.distance} function returns a vector. The \code{dfbetas} function returns a data frame. The \code{hatvalues} function returns either a vector with the diagonal elements of the hat matrix or the entire hat matrix. } \note{ The variable specified via \code{cluster} is assumed to be of the same length as the data originally passed to the \code{rma.mv} function (and if the \code{data} argument was used in the original model fit, then the variable will be searched for within this data frame first). Any subsetting and removal of studies with missing values that was applied during the model fitting is also automatically applied to the variable specified via the \code{cluster} argument. Leave-one-out diagnostics are calculated by refitting the model \mjseqn{k} times (where \mjseqn{k} denotes the number of cases). Depending on how large \mjseqn{k} is, it may take a few moments to finish the calculations. For complex models fitted with \code{\link{rma.mv}}, this can become computationally expensive. On machines with multiple cores, one can try to speed things up by delegating the model fitting to separate worker processes, that is, by setting \code{parallel="snow"} or \code{parallel="multicore"} and \code{ncpus} to some value larger than 1. Parallel processing makes use of the \code{\link[parallel]{parallel}} package, using the \code{\link[parallel]{makePSOCKcluster}} and \code{\link[parallel]{parLapply}} functions when \code{parallel="snow"} or using \code{\link[parallel]{mclapply}} when \code{parallel="multicore"} (the latter only works on Unix/Linux-alikes). With \code{parallel::detectCores()}, one can check on the number of available cores on the local machine. Alternatively (or in addition to using parallel processing), one can also set \code{reestimate=FALSE}, in which case any variance/correlation components in the model are not re-estimated after deleting the \mjeqn{i\text{th}}{ith} case from the dataset. Doing so only yields an approximation to the Cook's distances and DFBETAS values that ignores the influence of the \mjeqn{i\text{th}}{ith} case on the variance/correlation components, but is considerably faster (and often yields similar results). It may not be possible to fit the model after deletion of the \mjeqn{i\text{th}}{ith} case from the dataset. This will result in \code{NA} values for that case. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). \emph{Regression diagnostics}. New York: Wiley. Cook, R. D., & Weisberg, S. (1982). \emph{Residuals and influence in regression}. London: Chapman and Hall. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219--254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. \emph{Research Synthesis Methods}, \bold{1}(2), 112--125. \verb{https://doi.org/10.1002/jrsm.11} } \seealso{ \code{\link[=rstudent.rma.mv]{rstudent}} for externally standardized residuals and \code{\link[=weights.rma.mv]{weights}} for model fitting weights. } \examples{ ### copy data from Konstantopoulos (2011) into 'dat' dat <- dat.konstantopoulos2011 ### multilevel random-effects model res <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat) print(res, digits=3) ### Cook's distance for each observed outcome x <- cooks.distance(res) x plot(x, type="o", pch=19, xlab="Observed Outcome", ylab="Cook's Distance") ### Cook's distance for each district x <- cooks.distance(res, cluster=district) x plot(x, type="o", pch=19, xlab="District", ylab="Cook's Distance", xaxt="n") axis(side=1, at=seq_along(x), labels=as.numeric(names(x))) ### hat values hatvalues(res) } \keyword{models} metafor/man/print.ranktest.rma.Rd0000644000176200001440000000227214746146216016533 0ustar liggesusers\name{print.ranktest} \alias{print.ranktest} \title{Print Method for 'ranktest' Objects} \description{ Function to print objects of class \code{"ranktest"}. } \usage{ \method{print}{ranktest}(x, digits=x$digits, \dots) } \arguments{ \item{x}{an object of class \code{"ranktest"} obtained with \code{\link{ranktest}}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{\dots}{other arguments.} } \details{ The output includes: \itemize{ \item the estimated value of Kendall's tau rank correlation coefficient \item the corresponding p-value for the test that the true tau is equal to zero } } \value{ The function does not return an object. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{ranktest}} for the function to create \code{ranktest} objects. } \keyword{print} metafor/man/aggregate.escalc.Rd0000644000176200001440000003214414746146216016147 0ustar liggesusers\name{aggregate.escalc} \alias{aggregate} \alias{aggregate.escalc} \title{Aggregate Multiple Effect Sizes or Outcomes Within Studies} \description{ Function to aggregate multiple effect sizes or outcomes belonging to the same study (or to the same level of some other clustering variable) into a single combined effect size or outcome. \loadmathjax } \usage{ \method{aggregate}{escalc}(x, cluster, time, obs, V, struct="CS", rho, phi, weighted=TRUE, checkpd=TRUE, fun, na.rm=TRUE, addk=FALSE, subset, select, digits, var.names, \dots) } \arguments{ \item{x}{an object of class \code{"escalc"}.} \item{cluster}{vector to specify the clustering variable (e.g., study).} \item{time}{optional vector to specify the time points (only relevant when \code{struct="CAR"}, \code{"CS+CAR"}, or \code{"CS*CAR"}).} \item{obs}{optional vector to distinguish different observed effect sizes or outcomes measured at the same time point (only relevant when \code{struct="CS*CAR"}).} \item{V}{optional argument to specify the variance-covariance matrix of the sampling errors. If unspecified, argument \code{struct} is used to specify the variance-covariance structure.} \item{struct}{character string to specify the variance-covariance structure of the sampling errors within the same cluster (either \code{"ID"}, \code{"CS"}, \code{"CAR"}, \code{"CS+CAR"}, or \code{"CS*CAR"}). See \sQuote{Details}.} \item{rho}{value of the correlation of the sampling errors within clusters (when \code{struct="CS"}, \code{"CS+CAR"}, or \code{"CS*CAR"}). Can also be a vector with the value of the correlation for each cluster.} \item{phi}{value of the autocorrelation of the sampling errors within clusters (when \code{struct="CAR"}, \code{"CS+CAR"}, or \code{"CS*CAR"}). Can also be a vector with the value of the autocorrelation for each cluster.} \item{weighted}{logical to specify whether estimates within clusters should be aggregated using inverse-variance weighting (the default is \code{TRUE}). If set to \code{FALSE}, unweighted averages are computed.} \item{checkpd}{logical to specify whether to check that the variance-covariance matrices of the sampling errors within clusters are positive definite (the default is \code{TRUE}).} \item{fun}{optional list with three functions for aggregating other variables besides the effect sizes or outcomes within clusters (for numeric/integer variables, for logicals, and for all other types, respectively).} \item{na.rm}{logical to specify whether \code{NA} values should be removed before aggregating values within clusters (the default is \code{TRUE}). Can also be a vector with two logicals (the first pertaining to the effect sizes or outcomes, the second to all other variables).} \item{addk}{logical to specify whether to add the cluster size as a new variable (called \code{ki}) to the dataset (the default is \code{FALSE}).} \item{subset}{optional (logical or numeric) vector to specify the subset of rows to include when aggregating the effect sizes or outcomes.} \item{select}{optional vector to specify the names of the variables to include in the aggregated dataset.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{var.names}{optional character vector with two elements to specify the name of the variable that contains the observed effect sizes or outcomes and the name of the variable with the corresponding sampling variances (when unspecified, the function attempts to set these automatically based on the object).} \item{\dots}{other arguments.} } \details{ In many meta-analyses, multiple effect sizes or outcomes can be extracted from the same study. Ideally, such structures should be analyzed using an appropriate multilevel/multivariate model as can be fitted with the \code{\link{rma.mv}} function. However, there may occasionally be reasons for aggregating multiple effect sizes or outcomes belonging to the same study (or to the same level of some other clustering variable) into a single combined effect size or outcome. The present function can be used for this purpose. The input must be an object of class \code{"escalc"}. The error \sQuote{\code{Error in match.fun(FUN): argument "FUN" is missing, with no default}} indicates that a regular data frame was passed to the function, but this does not work. One can turn a regular data frame (containing the effect sizes or outcomes and the corresponding sampling variances) into an \code{"escalc"} object with the \code{\link{escalc}} function. See the \sQuote{Examples} below for an illustration of this. The \code{cluster} variable is used to specify which estimates/outcomes belong to the same study/cluster. In the simplest case, the estimates/outcomes within clusters (or, to be precise, their sampling errors) are assumed to be independent. This is usually a safe assumption as long as each study participant (or whatever the study units are) only contributes data to a single estimate/outcome. For example, if a study provides effect size estimates for male and female subjects separately, then the sampling errors can usually be assumed to be independent. In this case, one can set \code{struct="ID"} and multiple estimates/outcomes within the same cluster are combined using standard inverse-variance weighting (i.e., using weighted least squares) under the assumption of independence. In other cases, the estimates/outcomes within clusters cannot be assumed to be independent. For example, if multiple effect size estimates are computed for the same group of subjects (e.g., based on different scales to measure some construct of interest), then the estimates are likely to be correlated. If the actual correlation between the estimates is unknown, one can often still make an educated guess and set argument \code{rho} to this value, which is then assumed to be the same for all pairs of estimates within clusters when \code{struct="CS"} (for a compound symmetric structure). Multiple estimates/outcomes within the same cluster are then combined using inverse-variance weighting taking their correlation into consideration (i.e., using generalized least squares). One can also specify a different value of \code{rho} for each cluster by passing a vector (of the same length as the number of clusters) to this argument. If multiple effect size estimates are computed for the same group of subjects at different time points, then it may be more sensible to assume that the correlation between estimates decreases as a function of the distance between the time points. If so, one can specify \code{struct="CAR"} (for a continuous-time autoregressive structure), set \code{phi} to the autocorrelation (for two estimates one time-unit apart), and use argument \code{time} to specify the actual time points corresponding to the estimates. The correlation between two estimates, \mjeqn{y_{it}}{y_it} and \mjeqn{y_{it'}}{y_it'}, in the \mjeqn{i\text{th}}{ith} cluster, with time points \mjeqn{\text{time}_{it}}{time_it} and \mjeqn{\text{time}_{it'}}{time_it'}, is then given by \mjeqn{\phi^{|\text{time}_{it} - \text{time}_{it'}|}}{\phi^|time_it - time_it'|}. One can also specify a different value of \code{phi} for each cluster by passing a vector (of the same length as the number of clusters) to this argument. One can also combine the compound symmetric and autoregressive structures if there are multiple time points and multiple observed effect sizes or outcomes at these time points. One option is \code{struct="CS+CAR"}. In this case, one must specify the \code{time} argument and both \code{rho} and \code{phi}. The correlation between two estimates, \mjeqn{y_{it}}{y_it} and \mjeqn{y_{it'}}{y_it'}, in the \mjeqn{i\text{th}}{ith} cluster, with time points \mjeqn{\text{time}_{it}}{time_it} and \mjeqn{\text{time}_{it'}}{time_it'}, is then given by \mjeqn{\rho + (1 - \rho) \phi^{|\text{time}_{it} - \text{time}_{it'}|}}{\rho + (1 - \rho) * \phi^|time_it - time_it'|}. Alternatively, one can specify \code{struct="CS*CAR"}. In this case, one must specify both the \code{time} and \code{obs} arguments and both \code{rho} and \code{phi}. The correlation between two estimates, \mjeqn{y_{ijt}}{y_ijt} and \mjeqn{y_{ijt'}}{y_ijt'}, with the same value for \code{obs} but different values for \code{time}, is then given by \mjeqn{\phi^{|\text{time}_{ijt} - \text{time}_{ijt'}|}}{\phi^|time_ijt - time_ijt'|}, the correlation between two estimates, \mjeqn{y_{ijt}}{y_ijt} and \mjeqn{y_{ij't}}{y_ij't}, with different values for \code{obs} but the same value for \code{time}, is then given by \mjseqn{\rho}, and the correlation between two estimates, \mjeqn{y_{ijt}}{y_ijt} and \mjeqn{y_{ij't'}}{y_ij't}, with different values for \code{obs} and different values for \code{time}, is then given by \mjeqn{\rho \times \phi^{|\text{time}_{ijt} - \text{time}_{ijt'}|}}{\rho * \phi^|time_ijt - time_ijt'|}. Finally, if one actually knows the correlation (and hence the covariance) between each pair of estimates (or has an approximation thereof), one can also specify the entire variance-covariance matrix of the estimates (or more precisely, their sampling errors) via the \code{V} argument (in this case, arguments \code{struct}, \code{time}, \code{obs}, \code{rho}, and \code{phi} are ignored). Note that the \code{\link{vcalc}} function can be used to construct such a \code{V} matrix and provides even more flexibility for specifying various types of dependencies. See the \sQuote{Examples} below for an illustration of this. Instead of using inverse-variance weighting (i.e., weighted/generalized least squares) to combine the estimates within clusters, one can set \code{weighted=FALSE} in which case the estimates are averaged within clusters without any weighting (although the correlations between estimates as specified are still taken into consideration). Other variables (besides the estimates) will also be aggregated to the cluster level. By default, numeric/integer type variables are averaged, logicals are also averaged (yielding the proportion of \code{TRUE} values), and for all other types of variables (e.g., character variables or factors) the most frequent category/level is returned. One can also specify a list of three functions via the \code{fun} argument for aggregating variables belonging to these three types. Argument \code{na.rm} controls how missing values should be handled. By default, any missing estimates are first removed before aggregating the non-missing values within each cluster. The same applies when aggregating the other variables. One can also specify a vector with two logicals for the \code{na.rm} argument to control how missing values should be handled when aggregating the estimates and when aggregating all other variables. } \value{ An object of class \code{c("escalc","data.frame")} that contains the (selected) variables aggregated to the cluster level. The object is formatted and printed with the \code{\link[=print.escalc]{print}} function. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{escalc}} for a function to create \code{escalc} objects. } \examples{ ### copy data into 'dat' and examine data dat <- dat.konstantopoulos2011 head(dat, 11) ### aggregate estimates to the district level, assuming independent sampling ### errors for multiples studies/schools within the same district agg <- aggregate(dat, cluster=district, struct="ID", addk=TRUE) agg ### copy data into 'dat' and examine data dat <- dat.assink2016 head(dat, 19) ### note: 'dat' is an 'escalc' object class(dat) ### turn 'dat' into a regular data frame dat <- as.data.frame(dat) class(dat) ### turn data frame into an 'escalc' object dat <- escalc(measure="SMD", yi=yi, vi=vi, data=dat) class(dat) ### aggregate the estimates to the study level, assuming a CS structure for ### the sampling errors within studies with a correlation of 0.6 agg <- aggregate(dat, cluster=study, rho=0.6) agg ### use vcalc() and then the V argument V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) agg <- aggregate(dat, cluster=study, V=V) agg ### use a correlation of 0.7 for effect sizes corresponding to the same type of ### delinquent behavior and a correlation of 0.5 for effect sizes corresponding ### to different types of delinquent behavior V <- vcalc(vi, cluster=study, type=deltype, obs=esid, data=dat, rho=c(0.7, 0.5)) agg <- aggregate(dat, cluster=study, V=V) agg ### reshape 'dat.ishak2007' into long format dat <- dat.ishak2007 dat <- reshape(dat.ishak2007, direction="long", idvar="study", v.names=c("yi","vi"), varying=list(c(2,4,6,8), c(3,5,7,9))) dat <- dat[order(study, time),] dat <- dat[!is.na(yi),] rownames(dat) <- NULL head(dat, 8) ### aggregate the estimates to the study level, assuming a CAR structure for ### the sampling errors within studies with an autocorrelation of 0.9 agg <- aggregate(dat, cluster=study, struct="CAR", time=time, phi=0.9) head(agg, 5) } \keyword{models} metafor/man/addpoly.default.Rd0000644000176200001440000001467514746146216016060 0ustar liggesusers\name{addpoly.default} \alias{addpoly.default} \title{Add Polygons to Forest Plots (Default Method)} \description{ Function to add one or more polygons to a forest plot. } \usage{ \method{addpoly}{default}(x, vi, sei, ci.lb, ci.ub, pi.lb, pi.ub, rows=-1, level, annotate, predstyle, predlim, digits, width, mlab, transf, atransf, targs, efac, col, border, lty, fonts, cex, constarea=FALSE, \dots) } \arguments{ \item{x}{vector with the values at which the polygons should be drawn.} \item{vi}{vector with the corresponding variances.} \item{sei}{vector with the corresponding standard errors (note: only one of the two, \code{vi} or \code{sei}, needs to be specified).} \item{ci.lb}{vector with the corresponding lower confidence interval bounds. Not needed if \code{vi} or \code{sei} is specified. See \sQuote{Details}.} \item{ci.ub}{vector with the corresponding upper confidence interval bounds. Not needed if \code{vi} or \code{sei} is specified. See \sQuote{Details}.} \item{pi.lb}{optional vector with the corresponding lower prediction interval bounds.} \item{pi.ub}{optional vector with the corresponding upper prediction interval bounds.} \item{rows}{vector to specify the rows (or more generally, the positions) for plotting the polygons (defaults is \code{-1}). Can also be a single value to specify the row of the first polygon (the remaining polygons are then plotted below this starting row). When \code{predstyle} is not \code{"line"}, can also be a vector of two numbers, the first for the position of the polygon, the second for the position of the prediction interval/distribution.} \item{level}{optional numeric value between 0 and 100 to specify the confidence interval level (see \link[=misc-options]{here} for details).} \item{annotate}{optional logical to specify whether annotations should be added to the plot for the polygons that are drawn.} \item{predstyle}{character string to specify the style of the prediction interval (either \code{"line"} (the default), \code{"bar"}, \code{"shade"}, or \code{"dist"}; the last three only when adding a single polygon). Can be abbreviated.} \item{predlim}{optional argument to specify the limits of the prediction distribution when \code{predstyle="dist"}.} \item{digits}{optional integer to specify the number of decimal places to which the annotations should be rounded.} \item{width}{optional integer to manually adjust the width of the columns for the annotations.} \item{mlab}{optional character vector of the same length as \code{x} giving labels for the polygons that are drawn.} \item{transf}{optional argument to specify a function to transform the \code{x} values and confidence interval bounds (e.g., \code{transf=exp}; see also \link{transf}).} \item{atransf}{optional argument to specify a function to transform the annotations (e.g., \code{atransf=exp}; see also \link{transf}).} \item{targs}{optional arguments needed by the function specified via \code{transf} or \code{atransf}.} \item{efac}{optional vertical expansion factor for the polygons.} \item{col}{optional character string to specify the color of the polygons.} \item{border}{optional character string to specify the border color of the polygons.} \item{lty}{optional argument to specify the line type for the prediction interval.} \item{fonts}{optional character string to specify the font for the labels and annotations.} \item{cex}{optional symbol expansion factor.} \item{constarea}{logical to specify whether the height of the polygons (when adding multiple) should be adjusted so that the area of the polygons is constant (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ The function can be used to add one or more polygons to an existing forest plot created with the \code{\link{forest}} function. For example, pooled estimates based on a model involving moderators can be added to the plot this way (see \sQuote{Examples}). To use the function, one should specify the values at which the polygons should be drawn (via the \code{x} argument) together with the corresponding variances (via the \code{vi} argument) or with the corresponding standard errors (via the \code{sei} argument). Alternatively, one can specify the values at which the polygons should be drawn together with the corresponding confidence interval bounds (via the \code{ci.lb} and \code{ci.ub} arguments). Optionally, one can also specify the bounds of the corresponding prediction interval bounds via the \code{pi.lb} and \code{pi.ub} arguments. If the latter are specified, then they are added by default as lines around the summary polygons. When adding a single polygon to the plot, one can also use the \code{predstyle} argument to change the way the prediction interval is visualized (see \code{\link{forest.rma}} for details). If unspecified, arguments \code{level}, \code{annotate}, \code{digits}, \code{width}, \code{transf}, \code{atransf}, \code{targs}, \code{efac} (only if the forest plot was created with \code{\link{forest.rma}}), \code{fonts}, \code{cex}, \code{annosym}, and \code{textpos} are automatically set equal to the same values that were used when creating the forest plot. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{forest}} for functions to draw forest plots to which polygons can be added. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit mixed-effects model with absolute latitude as a moderator res <- rma(yi, vi, mods = ~ ablat, slab=paste(author, year, sep=", "), data=dat) ### forest plot of the observed risk ratios forest(res, addfit=FALSE, atransf=exp, xlim=c(-9,5), ylim=c(-5,16), cex=0.9, order=ablat, ilab=ablat, ilab.lab="Lattitude", ilab.xpos=-4.5, header="Author(s) and Year") ### predicted average log risk ratios for 10, 30, and 50 degrees absolute latitude x <- predict(res, newmods=c(10, 30, 50)) ### add predicted average risk ratios to the forest plot addpoly(x$pred, sei=x$se, rows=-2, mlab=c("- at 10 Degrees", "- at 30 Degrees", "- at 50 Degrees")) abline(h=0) text(-9, -1, "Model-Based Estimates:", pos=4, cex=0.9, font=2) } \keyword{aplot} metafor/man/conv.2x2.Rd0000644000176200001440000002770014746146216014351 0ustar liggesusers\name{conv.2x2} \alias{conv.2x2} \title{Reconstruct Cell Frequencies of \mjeqn{2 \times 2}{2x2} Tables} \description{ Function to reconstruct the cell frequencies of \mjeqn{2 \times 2}{2x2} tables based on other summary statistics. \loadmathjax } \usage{ conv.2x2(ori, ri, x2i, ni, n1i, n2i, correct=TRUE, data, include, var.names=c("ai","bi","ci","di"), append=TRUE, replace="ifna") } \arguments{ \item{ori}{optional vector with the odds ratios corresponding to the tables.} \item{ri}{optional vector with the phi coefficients corresponding to the tables.} \item{x2i}{optional vector with the (signed) chi-square statistics corresponding to the tables.} \item{ni}{vector with the total sample sizes.} \item{n1i}{vector with the marginal counts for the outcome of interest on the first variable.} \item{n2i}{vector with the marginal counts for the outcome of interest on the second variable.} \item{correct}{optional logical (or vector thereof) to specify whether chi-square statistics were computed using Yates's correction for continuity (the default is \code{TRUE}).} \item{data}{optional data frame containing the variables given to the arguments above.} \item{include}{optional (logical or numeric) vector to specify the subset of studies for which the cell frequencies should be reconstructed.} \item{var.names}{character vector with four elements to specify the names of the variables for the reconstructed cell frequencies (the default is \code{c("ai","bi","ci","di")}).} \item{append}{logical to specify whether the data frame provided via the \code{data} argument should be returned together with the reconstructed values (the default is \code{TRUE}).} \item{replace}{character string or logical to specify how values in \code{var.names} should be replaced (only relevant when using the \code{data} argument and if variables in \code{var.names} already exist in the data frame). See the \sQuote{Value} section for more details.} } \details{ For meta-analyses based on \mjeqn{2 \times 2}{2x2} table data, the problem often arises that some studies do not directly report the cell frequencies. The present function allows the reconstruction of such tables based on other summary statistics. In particular, assume that the data of interest for a particular study are of the form: \tabular{lcccccc}{ \tab \ics \tab variable 2, outcome + \tab \ics \tab variable 2, outcome - \tab \ics \tab total \cr variable 1, outcome + \tab \ics \tab \code{ai} \tab \ics \tab \code{bi} \tab \ics \tab \code{n1i} \cr variable 1, outcome - \tab \ics \tab \code{ci} \tab \ics \tab \code{di} \tab \ics \tab \cr total \tab \ics \tab \code{n2i} \tab \ics \tab \tab \ics \tab \code{ni}} where \code{ai}, \code{bi}, \code{ci}, and \code{di} denote the cell frequencies (i.e., the number of individuals falling into a particular category), \code{n1i} (i.e., \code{ai+bi}) and \code{n2i} (i.e., \code{ai+ci}) are the marginal totals for the outcome of interest on the first and second variable, respectively, and \code{ni} is the total sample size (i.e., \code{ai+bi+ci+di}) of the study. For example, if variable 1 denotes two different groups (e.g., treated versus control) and variable 2 indicates whether a particular outcome of interest has occurred or not (e.g., death, complications, failure to improve under the treatment), then \code{n1i} denotes the number of individuals in the treatment group, but \code{n2i} is \emph{not} the number of individuals in the control group, but the total number of individuals who experienced the outcome of interest on variable 2. \bold{Note that the meaning of \code{n2i} is therefore different here compared to the \code{\link{escalc}} function (where \code{n2i} denotes \code{ci+di})}. If a study does not report the cell frequencies, but it reports the total sample size (which can be specified via the \code{ni} argument), the two marginal counts (which can be specified via the \code{n1i} and \code{n2i} arguments), and some other statistic corresponding to the table, then it may be possible to reconstruct the cell frequencies. The present function currently allows this for three different cases: \enumerate{ \item If the odds ratio \mjdeqn{OR = \frac{a_i d_i}{b_i c_i}}{ai*di/(bi*ci)} is known, then the cell frequencies can be reconstructed (Bonett, 2007). Odds ratios can be specified via the \code{ori} argument. \item If the phi coefficient \mjdeqn{\phi = \frac{a_i d_i - b_i c_i}{\sqrt{n_{1i}(n_i-n_{1i})n_{2i}(n_i-n_{2i})}}}{\phi = (ai*di-bi*ci) / \sqrt{n1i*(ni-n1i)*n2i*(ni-n2i)}} is known, then the cell frequencies can again be reconstructed (own derivation). Phi coefficients can be specified via the \code{ri} argument. \item If the chi-square statistic from Pearson's chi-square test of independence is known (which can be specified via the \code{x2i} argument), then it can be used to recalculate the phi coefficient and hence again the cell frequencies can be reconstructed. However, the chi-square statistic does not carry information about the sign of the phi coefficient. Therefore, values specified via the \code{x2i} argument can be positive or negative, which allows the specification of the correct sign. Also, when using a chi-square statistic as input, it is assumed that it was computed using Yates's correction for continuity (unless \code{correct=FALSE}). If the chi-square statistic is not known, but its p-value, one can first back-calculate the chi-square statistic using \code{qchisq(, df=1, lower.tail=FALSE)}. } Typically, the odds ratio, phi coefficient, or chi-square statistic (or its p-value) that can be extracted from a study will be rounded to a certain degree. The calculations underlying the function are exact only for unrounded values. Rounding can therefore introduce some discrepancies. If a marginal total is unknown, then external information needs to be used to \sQuote{guestimate} the number of individuals that experienced the outcome of interest on this variable. Depending on the accuracy of such an estimate, the reconstructed cell frequencies will be more or less accurate and need to be treated with due caution. The true marginal counts also put constraints on the possible values for the odds ratio, phi coefficient, and chi-square statistic. If a marginal count is replaced by a guestimate which is not compatible with the given statistic, one or more reconstructed cell frequencies may be negative. The function issues a warning if this happens and sets the cell frequencies to \code{NA} for such a study. If only one of the two marginal counts is unknown but a 95\% CI for the odds ratio is also available, then the \href{https://cran.r-project.org/package=estimraw}{estimraw} package can also be used to reconstruct the corresponding cell frequencies (Di Pietrantonj, 2006; but see Veroniki et al., 2013, for some cautions). } \value{ If the \code{data} argument was not specified or \code{append=FALSE}, a data frame with four variables called \code{var.names} with the reconstructed cell frequencies. If \code{data} was specified and \code{append=TRUE}, then the original data frame is returned. If \code{var.names[j]} (for \mjeqn{\text{j} \in \\\\{1, \ldots, 4\\\\}}{for j in \{1, ..., 4\}}) is a variable in \code{data} and \code{replace="ifna"} (or \code{replace=FALSE}), then only missing values in this variable are replaced with the estimated frequencies (where possible) and otherwise a new variable called \code{var.names[j]} is added to the data frame. If \code{replace="all"} (or \code{replace=TRUE}), then all values in \code{var.names[j]} where a reconstructed cell frequency can be computed are replaced, even for cases where the value in \code{var.names[j]} is not missing. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Bonett, D. G. (2007). Transforming odds ratios into correlations for meta-analytic research. \emph{American Psychologist}, \bold{62}(3), 254--255. \verb{https://doi.org/10.1037/0003-066x.62.3.254} Di Pietrantonj, C. (2006). Four-fold table cell frequencies imputation in meta analysis. \emph{Statistics in Medicine}, \bold{25}(13), 2299--2322. \verb{https://doi.org/10.1002/sim.2287} Veroniki, A. A., Pavlides, M., Patsopoulos, N. A., & Salanti, G. (2013). Reconstructing 2 x 2 contingency tables from odds ratios using the Di Pietrantonj method: Difficulties, constraints and impact in meta-analysis results. \emph{Research Synthesis Methods}, \bold{4}(1), 78--94. \verb{https://doi.org/10.1002/jrsm.1061} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{escalc}} for a function to compute various effect size measures based on \mjeqn{2 \times 2}{2x2} table data. } \examples{ ### demonstration that the reconstruction of the 2x2 table works ### (note: the values in rows 2, 3, and 4 correspond to those in row 1) dat <- data.frame(ai=c(36,NA,NA,NA), bi=c(86,NA,NA,NA), ci=c(20,NA,NA,NA), di=c(98,NA,NA,NA), oddsratio=NA, phi=NA, chisq=NA, ni=NA, n1i=NA, n2i=NA) dat$oddsratio[2] <- round(exp(escalc(measure="OR", ai=ai, bi=bi, ci=ci, di=di, data=dat)$yi[1]), 2) dat$phi[3] <- round(escalc(measure="PHI", ai=ai, bi=bi, ci=ci, di=di, data=dat)$yi[1], 2) dat$chisq[4] <- round(chisq.test(matrix(c(t(dat[1,1:4])), nrow=2, byrow=TRUE))$statistic, 2) dat$ni[2:4] <- with(dat, ai[1] + bi[1] + ci[1] + di[1]) dat$n1i[2:4] <- with(dat, ai[1] + bi[1]) dat$n2i[2:4] <- with(dat, ai[1] + ci[1]) dat ### reconstruct cell frequencies for rows 2, 3, and 4 dat <- conv.2x2(ri=phi, ori=oddsratio, x2i=chisq, ni=ni, n1i=n1i, n2i=n2i, data=dat) dat ### same example but with cell frequencies that are 10 times as large dat <- data.frame(ai=c(360,NA,NA,NA), bi=c(860,NA,NA,NA), ci=c(200,NA,NA,NA), di=c(980,NA,NA,NA), oddsratio=NA, phi=NA, chisq=NA, ni=NA, n1i=NA, n2i=NA) dat$oddsratio[2] <- round(exp(escalc(measure="OR", ai=ai, bi=bi, ci=ci, di=di, data=dat)$yi[1]), 2) dat$phi[3] <- round(escalc(measure="PHI", ai=ai, bi=bi, ci=ci, di=di, data=dat)$yi[1], 2) dat$chisq[4] <- round(chisq.test(matrix(c(t(dat[1,1:4])), nrow=2, byrow=TRUE))$statistic, 2) dat$ni[2:4] <- with(dat, ai[1] + bi[1] + ci[1] + di[1]) dat$n1i[2:4] <- with(dat, ai[1] + bi[1]) dat$n2i[2:4] <- with(dat, ai[1] + ci[1]) dat <- conv.2x2(ri=phi, ori=oddsratio, x2i=chisq, ni=ni, n1i=n1i, n2i=n2i, data=dat) dat # slight inaccuracy in row 3 due to rounding ### demonstrate what happens when a true marginal count is guestimated escalc(measure="PHI", ai=176, bi=24, ci=72, di=128) conv.2x2(ri=0.54, ni=400, n1i=200, n2i=248) # using the true marginal counts conv.2x2(ri=0.54, ni=400, n1i=200, n2i=200) # marginal count for variable 2 is guestimated conv.2x2(ri=0.54, ni=400, n1i=200, n2i=50) # marginal count for variable 2 is incompatible ### demonstrate that using the correct sign for the chi-square statistic is important chisq <- round(chisq.test(matrix(c(40,60,60,40), nrow=2, byrow=TRUE))$statistic, 2) conv.2x2(x2i=-chisq, ni=200, n1i=100, n2i=100) # correct reconstruction conv.2x2(x2i=chisq, ni=200, n1i=100, n2i=100) # incorrect reconstruction ### demonstrate use of the 'correct' argument tab <- matrix(c(28,14,12,18), nrow=2, byrow=TRUE) chisq <- round(chisq.test(tab)$statistic, 2) # chi-square test with Yates' continuity correction conv.2x2(x2i=chisq, ni=72, n1i=42, n2i=40) # correct reconstruction chisq <- round(chisq.test(tab, correct=FALSE)$statistic, 2) # without Yates' continuity correction conv.2x2(x2i=chisq, ni=72, n1i=42, n2i=40) # incorrect reconstruction conv.2x2(x2i=chisq, ni=72, n1i=42, n2i=40, correct=FALSE) # correct reconstruction ### recalculate chi-square statistic based on p-value pval <- round(chisq.test(tab)$p.value, 2) chisq <- qchisq(pval, df=1, lower.tail=FALSE) conv.2x2(x2i=chisq, ni=72, n1i=42, n2i=40) } \keyword{manip} metafor/man/plot.gosh.rma.Rd0000644000176200001440000001212714746146216015462 0ustar liggesusers\name{plot.gosh.rma} \alias{plot.gosh.rma} \title{Plot Method for 'gosh.rma' Objects} \description{ Function to plot objects of class \code{"gosh.rma"}. } \usage{ \method{plot}{gosh.rma}(x, het="I2", pch=16, cex, out, col, alpha, border, xlim, ylim, xhist=TRUE, yhist=TRUE, hh=0.3, breaks, adjust, lwd, labels, \dots) } \arguments{ \item{x}{an object of class \code{"gosh.rma"} obtained with \code{\link{gosh}}.} \item{het}{character string to specify the heterogeneity measure to plot. Either \code{"I2"}, \code{"H2"}, \code{"QE"}, \code{"tau2"}, or \code{"tau"} (the last two only for random/mixed-effects models).} \item{pch}{plotting symbol to use. By default, a borderless filled circle is used. See \code{\link{points}} for other options.} \item{cex}{symbol expansion factor.} \item{out}{optional integer to specify the number of a study that may be a potential outlier. If specified, subsets containing the specified study are drawn in a different color than those not containing the study.} \item{col}{optional character string to specify the color of the points (if unspecified, points are drawn in black). When \code{out} is used, two colors should be specified (if unspecified, red is used for subsets containing the specified study and blue otherwise).} \item{alpha}{optional alpha transparency value for the points (0 means fully transparent and 1 means opaque). If unspecified, the function sets this to a sensible value.} \item{border}{optional character string to specify the color of the borders of the histogram bars. Set to \code{FALSE} to omit the borders.} \item{xlim}{x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{ylim}{y-axis limits. If unspecified, the function sets the y-axis limits to some sensible values.} \item{xhist}{logical to specify whether a histogram should be drawn for the x-axis (the default is \code{TRUE}).} \item{yhist}{logical to specify whether a histogram should be drawn for the y-axis (the default is \code{TRUE}).} \item{hh}{numeric value (or vector of two values) to adjust the height of the histogram(s). Must be between 0 and 1, but should not be too close to 0 or 1, as otherwise the plot cannot be drawn.} \item{breaks}{optional argument passed on to \code{\link{hist}} for choosing the (number of) breakpoints of the histogram(s).} \item{adjust}{optional argument passed on to \code{\link{density}} for adjusting the bandwidth of the kernel density estimate(s) (values larger than 1 result in more smoothing).} \item{lwd}{optional numeric value to specify the line width of the estimated densities. Set to \code{0} to omit the line(s).} \item{labels}{optional argument to specify the x-axis and y-axis labels (or passed on to \code{\link{pairs}} to specify the names of the variables in the scatter plot matrix).} \item{\dots}{other arguments.} } \details{ For models without moderators, the function draws a scatter plot of the model estimates on the x-axis against the chosen measure of heterogeneity on the y-axis for the various subsets. Histograms of the respective distributions (with kernel density estimates superimposed) are shown in the margins (when \code{xhist=TRUE} and \code{yhist=TRUE}). For models with moderators, the function draws a scatter plot matrix (with the \code{\link{pairs}} function) of the chosen measure of heterogeneity and each of the model coefficients. Histograms of the variables plotted are shown along the diagonal, with kernel density estimates of the distributions superimposed. Arguments \code{xlim}, \code{ylim}, \code{xhist}, and \code{yhist} are then ignored, while argument \code{hh} can be used to compress/stretch the height of the distributions shown along the diagonal. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Olkin, I., Dahabreh, I. J., & Trikalinos, T. A. (2012). GOSH - a graphical display of study heterogeneity. \emph{Research Synthesis Methods}, \bold{3}(3), 214--223. \verb{https://doi.org/10.1002/jrsm.1053} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219--254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} } \seealso{ \code{\link{gosh}} for the function to create the input to a GOSH plot. } \examples{ ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat.egger2001) ### meta-analysis of all trials including ISIS-4 using an equal-effects model res <- rma(yi, vi, data=dat, method="EE") ### fit FE model to all possible subsets (65535 models) \dontrun{ sav <- gosh(res, progbar=FALSE) ### create GOSH plot ### red points for subsets that include and blue points ### for subsets that exclude study 16 (the ISIS-4 trial) plot(sav, out=16, breaks=100) } } \keyword{hplot} metafor/man/transf.Rd0000644000176200001440000004354214746146216014271 0ustar liggesusers\name{transf} \alias{transf} \alias{transf.rtoz} \alias{transf.ztor} \alias{transf.logit} \alias{transf.ilogit} \alias{transf.arcsin} \alias{transf.iarcsin} \alias{transf.pft} \alias{transf.ipft} \alias{transf.ipft.hm} \alias{transf.isqrt} \alias{transf.irft} \alias{transf.iirft} \alias{transf.ahw} \alias{transf.iahw} \alias{transf.abt} \alias{transf.iabt} \alias{transf.r2toz} \alias{transf.ztor2} \alias{transf.ztor.int} \alias{transf.exp.int} \alias{transf.ilogit.int} \alias{transf.ztor.mode} \alias{transf.exp.mode} \alias{transf.ilogit.mode} \alias{transf.dtou1} \alias{transf.dtou2} \alias{transf.dtou3} \alias{transf.dtoovl} \alias{transf.dtocles} \alias{transf.dtocliffd} \alias{transf.dtobesd} \alias{transf.dtomd} \alias{transf.dtorpb} \alias{transf.dtorbis} \alias{transf.rpbtorbis} \alias{transf.rtorpb} \alias{transf.rtod} \alias{transf.rpbtod} \alias{transf.lnortord} \alias{transf.lnortorr} \alias{transf.lnortod.norm} \alias{transf.lnortod.logis} \alias{transf.dtolnor.norm} \alias{transf.dtolnor.logis} \alias{transf.lnortortet.pearson} \alias{transf.lnortortet.digby} \title{Transformation Functions} \description{ Functions to carry out various types of transformations that are useful for meta-analyses. \loadmathjax } \usage{ transf.rtoz(xi) transf.ztor(xi) transf.logit(xi) transf.ilogit(xi) transf.arcsin(xi) transf.iarcsin(xi) transf.pft(xi, ni) transf.ipft(xi, ni) transf.ipft.hm(xi, targs) transf.isqrt(xi) transf.irft(xi, ti) transf.iirft(xi, ti) transf.ahw(xi) transf.iahw(xi) transf.abt(xi) transf.iabt(xi) transf.r2toz(xi) transf.ztor2(xi) transf.ztor.int(xi, targs) transf.exp.int(xi, targs) transf.ilogit.int(xi, targs) transf.ztor.mode(xi, targs) transf.exp.mode(xi, targs) transf.ilogit.mode(xi, targs) transf.dtou1(xi) transf.dtou2(xi) transf.dtou3(xi) transf.dtoovl(xi) transf.dtocles(xi) transf.dtocliffd(xi) transf.dtobesd(xi) transf.dtomd(xi, targs) transf.dtorpb(xi, n1i, n2i) transf.dtorbis(xi, n1i, n2i) transf.rpbtorbis(xi, pi) transf.rtorpb(xi, pi) transf.rtod(xi, n1i, n2i) transf.rpbtod(xi, n1i, n2i) transf.lnortord(xi, pc) transf.lnortorr(xi, pc) transf.lnortod.norm(xi) transf.lnortod.logis(xi) transf.dtolnor.norm(xi) transf.dtolnor.logis(xi) transf.lnortortet.pearson(xi) transf.lnortortet.digby(xi) } \arguments{ \item{xi}{vector of values to be transformed.} \item{ni}{vector of sample sizes.} \item{n1i}{vector of sample sizes for the first group.} \item{n2i}{vector of sample sizes for the second group.} \item{ti}{vector of person-times at risk.} \item{pc}{control group risk (either a single value or a vector).} \item{pi}{proportion of individuals falling into the first of the two groups that is created by the dichotomization.} \item{targs}{list with additional arguments for the transformation function. See \sQuote{Details}.} } \details{ The following transformation functions are currently implemented: \itemize{ \item \code{transf.rtoz}: Fisher's r-to-z transformation for correlation coefficients (same as \code{atanh(x)}). \item \code{transf.ztor}: inverse of the former (i.e., the z-to-r transformation; same as \code{tanh(x)}). \item \code{transf.logit}: logit (log odds) transformation for proportions (same as \code{qlogis(x)}). \item \code{transf.ilogit}: inverse of the former (same as \code{plogis(x)}). \item \code{transf.arcsin}: arcsine square root transformation for proportions. \item \code{transf.iarcsin}: inverse of the former. \item \code{transf.pft}: Freeman-Tukey (double arcsine) transformation for proportions. See Freeman and Tukey (1950). The \code{xi} argument is used to specify the proportions and the \code{ni} argument the corresponding sample sizes. \item \code{transf.ipft}: inverse of the former. See Miller (1978). \item \code{transf.ipft.hm}: inverse of the former, using the harmonic mean of the sample sizes for the back-transformation. See Miller (1978). The sample sizes are specified via the \code{targs} argument (the list element should be called \code{ni}). \item \code{transf.isqrt}: inverse of the square root transformation (i.e., function to square a number). \item \code{transf.irft}: Freeman-Tukey transformation for incidence rates. See Freeman and Tukey (1950). The \code{xi} argument is used to specify the incidence rates and the \code{ti} argument the corresponding person-times at risk. \item \code{transf.iirft}: inverse of the former. \item \code{transf.ahw}: transformation of coefficient alpha as suggested by Hakstian and Whalen (1976), except that \mjeqn{1-(1-\alpha)^{1/3}}{1-(1-\alpha)^(1/3)} is used (so that the transformed values are a monotonically increasing function of the \mjseqn{\alpha} values). \item \code{transf.iahw}: inverse of the former. \item \code{transf.abt}: transformation of coefficient alpha as suggested by Bonett (2002), except that \mjeqn{-\log(1-\alpha)}{-log(1-\alpha)} is used (so that the transformed values are a monotonically increasing function of the \mjseqn{\alpha} values). \item \code{transf.iabt}: inverse of the former. \item \code{transf.r2toz}: variance stabilizing transformation for the coefficient of determination, given by \mjeqn{z_i = \frac{1}{2} \log\mathopen{}\left(\frac{1+\sqrt{R_i^2}}{1-\sqrt{R_i^2}}\right)\mathclose{}}{z_i = 1/2 log((1+\sqrt(R_i^2))/(1-\sqrt(R_i^2)))} (see Olkin & Finn, 1995, but with the additional \mjeqn{\frac{1}{2}}{1/2} factor for consistency with the usual r-to-z transformation). \item \code{transf.ztor2}: inverse of the former. \item \code{transf.ztor.int}: integral transformation method for the z-to-r transformation. See \sQuote{Note}. \item \code{transf.exp.int}: integral transformation method for the exponential transformation. See \sQuote{Note}. \item \code{transf.ilogit.int}: integral transformation method for the inverse logit transformation. See \sQuote{Note}. \item \code{transf.ztor.mode}: function to determine the mode of an atanh-normal variable. \item \code{transf.exp.mode}: function to determine the mode of a log-normal variable. \item \code{transf.ilogit.mode}: function to determine the mode of a logit-normal variable. \item \code{transf.dtou1}: transformation of standardized mean differences to Cohen's \mjseqn{U_1} values (Cohen, 1988). Under the assumption that the data for those in the first (say, treated) and second (say, control) group are normally distributed with equal variances but potentially different means, Cohen's \mjseqn{U_1} indicates the proportion of non-overlap between the two distributions (i.e., when \mjseqn{d=0}, then \mjseqn{U_1} is equal to 0, which goes to 1 as \mjseqn{d} increases). \item \code{transf.dtou2}: transformation of standardized mean differences to Cohen's \mjseqn{U_2} values (Cohen, 1988). Under the same assumptions as above, Cohen's \mjseqn{U_2} indicates the proportion in the first group that exceeds the same proportion in the second group (i.e., when \mjseqn{d=0}, then \mjseqn{U_2} is equal to 0.5, which goes to 1 as \mjseqn{d} increases). \item \code{transf.dtou3}: transformation of standardized mean differences to Cohen's \mjseqn{U_3} values (Cohen, 1988). Under the same assumptions as above, Cohen's \mjseqn{U_3} indicates the proportion of individuals in the first group that have a higher value than the mean of those in the second group (i.e., when \mjseqn{d=0}, then \mjseqn{U_3} is equal to 0.5, which goes to 1 as \mjseqn{d} increases). \item \code{transf.dtoovl}: transformation of standardized mean differences to overlapping coefficient values under the same assumptions as above (Inman & Bardley, 1989). Note that \mjseqn{1 - U_1} is \emph{not} the same as the overlapping coefficient (see Grice & Barrett, 2014). \item \code{transf.dtocles}: transformation of standardized mean differences to common language effect size (CLES) values (McGraw & Wong, 1992) (also called the probability of superiority). A CLES value indicates the probability that a randomly sampled individual from the first group has a higher value than a randomly sampled individual from the second group (i.e., when \mjseqn{d=0}, then the CLES is equal to 0.5, which goes to 1 as \mjseqn{d} increases). \item \code{transf.dtocliffd}: transformation of standardized mean differences to Cliff's delta values. \item \code{transf.dtobesd}: transformation of standardized mean differences to binomial effect size display values (Rosenthal & Rubin, 1982). Note that the function only provides the proportion in the first group scoring above the median (the proportion in the second group scoring above the median is simply one minus this value). \item \code{transf.dtomd}: transformation of standardized mean differences to mean differences given a known standard deviation (which needs to be specified via the \code{targs} argument). \item \code{transf.dtorpb}: transformation of standardized mean differences to point-biserial correlations. Arguments \code{n1i} and \code{n2i} denote the number of individuals in the first and second group, respectively. If \code{n1i} and \code{n2i} are not specified, the function assumes \code{n1i = n2i} and uses the approximate formula \mjeqn{r_{pb} = \frac{d}{\sqrt{d^2 + 4}}}{r_pb = d / \sqrt{d^2 + 4}}. If \code{n1i} and \code{n2i} are specified, the function uses the exact transformation formula \mjeqn{r_{pb} = \frac{d}{\sqrt{d^2 + h}}}{r_pb = d / \sqrt{d^2 + h}}, where \mjeqn{h = \frac{m}{n_1} + \frac{m}{n_2}}{h = m / n_1 + m / n_2} and \mjseqn{m = n_1 + n_2 - 2} (Jacobs & Viechtbauer, 2017). \item \code{transf.dtorbis}: transformation of standardized mean differences to biserial correlations. Like \code{transf.dtorpb}, but the point-biserial correlations are then transformed to biserial correlations with \mjeqn{r_{bis} = \frac{\sqrt{p(1-p)}}{f(z_p)} r_{pb}}{r_bis = sqrt(p*(1-p)) / f(z_p) r_pb}, where \mjeqn{p = \frac{n_1}{n_1+n_2}}{p = n1/(n1+n2)} and \mjseqn{f(z_p)} denotes the density of the standard normal distribution at value \mjseqn{z_p}, which is the point for which \mjseqn{P(Z > z_p) = p}, with \mjseqn{Z} denoting a random variable following a standard normal distribution (Jacobs & Viechtbauer, 2017). \item \code{transf.rpbtorbis}: transformation of point-biserial correlations to biserial correlations. Argument \code{pi} denotes the proportion of individuals falling into the first of the two groups that is created by the dichotomization (hence, \code{1-pi} falls into the second group). If \code{pi} is not specified, the function assumes \code{pi=0.5}, which corresponds to dichotomization at the median. The transformation is carried out as described for \code{transf.dtorbis}. \item \code{transf.rtorpb}: transformation of Pearson product-moment correlations to the corresponding point-biserial correlations, when one of the two variables is dichotomized. Argument \code{pi} can be used to denote the proportion of individuals falling into the first of the two groups that is created by the dichotomization (hence, \code{1-pi} falls into the second group). If \code{pi} is not specified, the function assumes \code{pi=0.5}, which corresponds to dichotomization at the median. This function is simply the inverse of \code{transf.rpbtorbis}. \item \code{transf.rtod}: transformation of Pearson product-moment correlations to the corresponding standardized mean differences, when one of the two variables is dichotomized. Arguments \code{n1i} and \code{n2i} can be used to denote the number of individuals in the first and second group created by the dichotomization. If \code{n1i} and \code{n2i} are not specified, the function assumes \code{n1i = n2i}. This function is simply the inverse of \code{transf.dtorbis}. \item \code{transf.rpbtod}: transformation of point-biserial correlations to standardized mean differences. This is simply the inverse of \code{transf.dtorpb}. \item \code{transf.lnortord}: transformation of log odds ratios to risk differences, assuming a particular value for the control group risk (which needs to be specified via the \code{pc} argument). \item \code{transf.lnortorr}: transformation of log odds ratios to risk ratios, assuming a particular value for the control group risk (which needs to be specified via the \code{pc} argument). Note that this function transforms to risk ratios, \emph{not} log risk ratios. \item \code{transf.lnortod.norm}: transformation of log odds ratios to standardized mean differences (assuming normal distributions) (Cox & Snell, 1989). \item \code{transf.lnortod.logis}: transformation of log odds ratios to standardized mean differences (assuming logistic distributions) (Chinn, 2000). \item \code{transf.dtolnor.norm}: transformation of standardized mean differences to log odds ratios (assuming normal distributions) (Cox & Snell, 1989). \item \code{transf.dtolnor.logis}: transformation of standardized mean differences to log odds ratios (assuming logistic distributions) (Chinn, 2000). \item \code{transf.lnortortet.pearson}: transformation of log odds ratios to tetrachoric correlations as suggested by Pearson (1900). \item \code{transf.lnortortet.digby}: transformation of log odds ratios to tetrachoric correlations as suggested by Digby (1983). } } \value{ A vector with the transformed values. } \note{ The integral transformation method for a transformation function \mjseqn{h(z)} is given by \mjsdeqn{\int_{\text{lower}}^{\text{upper}} h(z) f(z) dz} using the limits \code{targs$lower} and \code{targs$upper}, where \mjseqn{f(z)} is the density of a normal distribution with mean equal to \code{xi} and variance equal to \code{targs$tau2}. By default, \code{targs$lower} and \code{targs$upper} are set to reasonable values and, if possible, \code{targs$tau2} is extracted from the model object in functions where such transformation functions are typically applied (e.g., \code{\link[=predict.rma]{predict}}). An example is provided below. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Bonett, D. G. (2002). Sample size requirements for testing and estimating coefficient alpha. \emph{Journal of Educational and Behavioral Statistics}, \bold{27}(4), 335--340. \verb{https://doi.org/10.3102/10769986027004335} Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. \emph{Statistics in Medicine}, \bold{19}(22), 3127--3131. \verb{https://doi.org/10.1002/1097-0258(20001130)19:22<3127::aid-sim784>3.0.co;2-m} Cohen, J. (1988). \emph{Statistical power analysis for the behavioral sciences} (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. Cox, D. R., & Snell, E. J. (1989). \emph{Analysis of binary data} (2nd ed.). London: Chapman & Hall. Digby, P. G. N. (1983). Approximating the tetrachoric correlation coefficient. \emph{Biometrics}, \bold{39}(3), 753--757. \verb{https://doi.org/10.2307/2531104} Fisher, R. A. (1921). On the \dQuote{probable error} of a coefficient of correlation deduced from a small sample. \emph{Metron}, \bold{1}, 1--32. \verb{http://hdl.handle.net/2440/15169} Freeman, M. F., & Tukey, J. W. (1950). Transformations related to the angular and the square root. \emph{Annals of Mathematical Statistics}, \bold{21}(4), 607--611. \verb{https://doi.org/10.1214/aoms/1177729756} Grice, J. W., & Barrett, P. T. (2014). A note on Cohen's overlapping proportions of normal distributions. \emph{Psychological Reports}, \bold{115}(3), 741--747. \verb{https://doi.org/10.2466/03.pr0.115c29z4} Hakstian, A. R., & Whalen, T. E. (1976). A k-sample significance test for independent alpha coefficients. \emph{Psychometrika}, \bold{41}(2), 219--231. \verb{https://doi.org/10.1007/BF02291840} Inman, H. F., & Bradley Jr, E. L. (1989). The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. \emph{Communications in Statistics, Theory and Methods}, \bold{18}(10), 3851--3874. \verb{https://doi.org/10.1080/03610928908830127} Jacobs, P., & Viechtbauer, W. (2017). Estimation of the biserial correlation and its sampling variance for use in meta-analysis. \emph{Research Synthesis Methods}, \bold{8}(2), 161--180. \verb{https://doi.org/10.1002/jrsm.1218} McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. \emph{Psychological Bulletin}, \bold{111}(2), 361--365. \verb{https://doi.org/10.1037/0033-2909.111.2.361} Miller, J. J. (1978). The inverse of the Freeman-Tukey double arcsine transformation. \emph{American Statistician}, \bold{32}(4), 138. \verb{https://doi.org/10.1080/00031305.1978.10479283} Olkin, I., & Finn, J. D. (1995). Correlations redux. \emph{Psychological Bulletin}, \bold{118}(1), 155--164. \verb{https://doi.org/10.1037/0033-2909.118.1.155} Pearson, K. (1900). Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. \emph{Philosophical Transactions of the Royal Society of London, Series A}, \bold{195}, 1--47. \verb{https://doi.org/10.1098/rsta.1900.0022} Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of magnitude of experimental effect. \emph{Journal of Educational Psychology}, \bold{74}(2), 166--169. \verb{https://doi.org/10.1037/0022-0663.74.2.166} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects model res <- rma(yi, vi, data=dat) ### average risk ratio with 95\% CI (but technically, this provides an ### estimate of the median risk ratio, not the mean risk ratio!) predict(res, transf=exp) ### average risk ratio with 95\% CI using the integral transformation predict(res, transf=transf.exp.int, targs=list(tau2=res$tau2, lower=-4, upper=4)) ### this also works predict(res, transf=transf.exp.int, targs=list(tau2=res$tau2)) ### this as well predict(res, transf=transf.exp.int) } \keyword{manip} metafor/man/conv.delta.Rd0000644000176200001440000003276214746146216015033 0ustar liggesusers\name{conv.delta} \alias{conv.delta} \title{Transform Observed Effect Sizes or Outcomes and their Sampling Variances using the Delta Method} \description{ Function to transform observed effect sizes or outcomes and their sampling variances using the delta method. \loadmathjax } \usage{ conv.delta(yi, vi, ni, data, include, transf, var.names, append=TRUE, replace="ifna", \dots) } \arguments{ \item{yi}{vector with the observed effect sizes or outcomes.} \item{vi}{vector with the corresponding sampling variances.} \item{ni}{vector with the total sample sizes of the studies.} \item{data}{optional data frame containing the variables given to the arguments above.} \item{include}{optional (logical or numeric) vector to specify the subset of studies for which the transformation should be carried out.} \item{transf}{a function which should be used for the transformation.} \item{var.names}{character vector with two elements to specify the name of the variable for the transformed effect sizes or outcomes and the name of the variable for the corresponding sampling variances (if \code{data} is an object of class \code{"escalc"}, the \code{var.names} are taken from the object; otherwise the defaults are \code{"yi"} and \code{"vi"}).} \item{append}{logical to specify whether the data frame provided via the \code{data} argument should be returned together with the estimated values (the default is \code{TRUE}).} \item{replace}{character string or logical to specify how values in \code{var.names} should be replaced (only relevant when using the \code{data} argument and if variables in \code{var.names} already exist in the data frame). See the \sQuote{Value} section for more details.} \item{\dots}{other arguments for the transformation function.} } \details{ The \code{\link{escalc}} function can be used to compute a wide variety of effect sizes or \sQuote{outcome measures}. In some cases, it may be necessary to transform one type of measure to another. The present function provides a general method for doing so via the \href{https://en.wikipedia.org/wiki/Delta_method}{delta method} (e.g., van der Vaart, 1998), which briefly works as follows. Let \mjseqn{y_i} denote the observed effect size or outcome for a particular study and \mjseqn{v_i} the corresponding sampling variance. Then \mjseqn{f(y_i)} will be the transformed effect size or outcome, where \mjeqn{f(\cdot)}{f(.)} is the function specified via the \code{transf} argument. The sampling variance of the transformed effect size or outcome is then computed with \mjseqn{v_i \times f'(y_i)^2}, where \mjseqn{f'(y_i)} denotes the derivative of \mjeqn{f(\cdot)}{f(.)} evaluated at \mjseqn{y_i}. The present function computes the derivative numerically using the \code{\link[numDeriv]{grad}} function from the \code{numDeriv} package. The value of the observed effect size or outcome should be the first argument of the function specified via \code{transf}. The function can have additional arguments, which can be specified via the \dots argument. However, due to the manner in which these additional arguments are evaluated, they cannot have names that match one of the arguments of the \code{\link[numDeriv]{grad}} function (an error will be issued if such a naming clash is detected). Optionally, one can use the \code{ni} argument to supply the total sample sizes of the studies. This has no relevance for the calculations done by the present function, but some other functions may use this information (e.g., when drawing a funnel plot with the \code{\link{funnel}} function and one adjusts the \code{yaxis} argument to one of the options that puts the sample sizes or some transformation thereof on the y-axis). } \value{ If the \code{data} argument was not specified or \code{append=FALSE}, a data frame of class \code{c("escalc","data.frame")} with two variables called \code{var.names[1]} (by default \code{"yi"}) and \code{var.names[2]} (by default \code{"vi"}) with the transformed observed effect sizes or outcomes and the corresponding sampling variances (computed as described above). If \code{data} was specified and \code{append=TRUE}, then the original data frame is returned. If \code{var.names[1]} is a variable in \code{data} and \code{replace="ifna"} (or \code{replace=FALSE}), then only missing values in this variable are replaced with the transformed observed effect sizes or outcomes (where possible) and otherwise a new variable called \code{var.names[1]} is added to the data frame. Similarly, if \code{var.names[2]} is a variable in \code{data} and \code{replace="ifna"} (or \code{replace=FALSE}), then only missing values in this variable are replaced with the sampling variances calculated as described above (where possible) and otherwise a new variable called \code{var.names[2]} is added to the data frame. If \code{replace="all"} (or \code{replace=TRUE}), then all values in \code{var.names[1]} and \code{var.names[2]} are replaced, even for cases where the value in \code{var.names[1]} and \code{var.names[2]} is not missing. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ van der Vaart, A. W. (1998). \emph{Asymptotic statistics}. Cambridge, UK: Cambridge University Press. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{escalc}} for a function to compute various effect size measures and \code{\link{deltamethod}} for a function to apply the multivariate delta method to a set of estimates. } \examples{ ############################################################################ ### the following examples illustrate that the use of the delta method (with numeric derivatives) ### yields essentially identical results as the analytic calculations that are done by escalc() ### compute logit transformed proportions and corresponding sampling variances for two studies escalc(measure="PLO", xi=c(5,12), ni=c(40,80)) ### compute raw proportions and corresponding sampling variances for the two studies dat <- escalc(measure="PR", xi=c(5,12), ni=c(40,80)) dat ### apply the logit transformation (note: this yields the same values as above with measure="PLO") conv.delta(dat$yi, dat$vi, transf=transf.logit) ### using the 'data' argument conv.delta(yi, vi, data=dat, transf=transf.logit, var.names=c("yi.t","vi.t")) ### or replace the existing 'yi' and 'vi' values conv.delta(yi, vi, data=dat, transf=transf.logit, replace="all") ###################################### ### use escalc() with measure D2ORN which transforms standardized mean differences (computed ### from means and standard deviations) into the corresponding log odds ratios escalc(measure="D2ORN", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat.normand1999) ### use escalc() to compute standardized mean differences (without the usual bias correction) and ### then apply the same transformation to the standardized mean differences dat <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat.normand1999, correct=FALSE) conv.delta(yi, vi, data=dat, transf=transf.dtolnor.norm, replace="all") ###################################### ### an example where the transformation function takes additional arguments ### use escalc() with measure RPB which transforms standardized mean differences (computed ### from means and standard deviations) into the corresponding point-biserial correlations escalc(measure="RPB", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat.normand1999) ### use escalc() to compute standardized mean differences (without the usual bias correction) and ### then apply the same transformation to the standardized mean differences dat <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat.normand1999, correct=FALSE) conv.delta(yi, vi, data=dat, transf=transf.dtorpb, n1i=n1i, n2i=n2i, replace="all") ############################################################################ ### a more elaborate example showing how this function could be used in the data ### preparation steps for a meta-analysis of standardized mean differences (SMDs) dat <- data.frame(study=1:6, m1i=c(2.03,NA,NA,NA,NA,NA), sd1i=c(0.95,NA,NA,NA,NA,NA), n1i=c(32,95,145,NA,NA,NA), m2i=c(1.25,NA,NA,NA,NA,NA), sd2i=c(1.04,NA,NA,NA,NA,NA), n2i=c(30,99,155,NA,NA,NA), tval=c(NA,2.12,NA,NA,NA,NA), dval=c(NA,NA,0.37,NA,NA,NA), ai=c(NA,NA,NA,26,NA,NA), bi=c(NA,NA,NA,58,NA,NA), ci=c(NA,NA,NA,11,NA,NA), di=c(NA,NA,NA,74,NA,NA), or=c(NA,NA,NA,NA,2.56,NA), lower=c(NA,NA,NA,NA,1.23,NA), upper=c(NA,NA,NA,NA,5.30,NA), corr=c(NA,NA,NA,NA,NA,.32), ntot=c(NA,NA,NA,NA,NA,86)) dat ### study types: ### 1) reports means and SDs so that the SMD can be directly calculated ### 2) reports the t-statistic from an independent samples t-test (and group sizes) ### 3) reports the standardized mean difference directly (and group sizes) ### 4) dichotomized the continuous dependent variable and reports the resulting 2x2 table ### 5) dichotomized the continuous dependent variable and reports an odds ratio with 95\% CI ### 6) treated the group variable continuously and reports a Pearson product-moment correlation ### use escalc() to directly compute the SMD and its variance for studies 1, 2, and 3 dat <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, ti=tval, di=dval, data=dat) dat ### use escalc() with measure OR2DN to compute the SMD value for study 4 dat <- escalc(measure="OR2DN", ai=ai, bi=bi, ci=ci, di=di, data=dat, replace=FALSE) dat ### use conv.wald() to convert the OR and CI into the log odds ratio and its variance for study 5 dat <- conv.wald(out=or, ci.lb=lower, ci.ub=upper, data=dat, transf=log, var.names=c("lnor","vlnor")) dat ### use conv.delta() to transform the log odds ratio into the SMD value for study 5 dat <- conv.delta(lnor, vlnor, data=dat, transf=transf.lnortod.norm, var.names=c("yi","vi")) dat ### remove the lnor and vlnor variables (no longer needed) dat$lnor <- NULL dat$vlnor <- NULL ### use escalc() with measure COR to compute the sampling variance of ri for study 6 dat <- escalc(measure="COR", ri=corr, ni=ntot, data=dat, var.names=c("ri","vri")) dat ### use conv.delta() to transform the correlation into the SMD value for study 6 dat <- conv.delta(ri, vri, data=dat, transf=transf.rtod, var.names=c("yi","vi")) dat ### remove the ri and vri variables (no longer needed) dat$ri <- NULL dat$vri <- NULL ### now variable 'yi' is complete with the SMD values for all studies dat ### fit an equal-effects model to the SMD values rma(yi, vi, data=dat, method="EE") ############################################################################ ### a more elaborate example showing how this function could be used in the data ### preparation steps for a meta-analysis of correlation coefficients dat <- data.frame(study=1:6, ri=c(.42,NA,NA,NA,NA,NA), tval=c(NA,2.85,NA,NA,NA,NA), phi=c(NA,NA,NA,0.27,NA,NA), ni=c(93,182,NA,112,NA,NA), ai=c(NA,NA,NA,NA,61,NA), bi=c(NA,NA,NA,NA,36,NA), ci=c(NA,NA,NA,NA,39,NA), di=c(NA,NA,NA,NA,57,NA), or=c(NA,NA,NA,NA,NA,1.86), lower=c(NA,NA,NA,NA,NA,1.12), upper=c(NA,NA,NA,NA,NA,3.10), m1i=c(NA,NA,54.1,NA,NA,NA), sd1i=c(NA,NA,5.79,NA,NA,NA), n1i=c(NA,NA,66,75,NA,NA), m2i=c(NA,NA,51.7,NA,NA,NA), sd2i=c(NA,NA,6.23,NA,NA,NA), n2i=c(NA,NA,65,88,NA,NA)) dat ### study types: ### 1) reports the correlation coefficient directly ### 2) reports the t-statistic from a t-test of H0: rho = 0 ### 3) dichotomized one variable and reports means and SDs for the two corresponding groups ### 4) reports the phi coefficient, marginal counts, and total sample size ### 5) dichotomized both variables and reports the resulting 2x2 table ### 6) dichotomized both variables and reports an odds ratio with 95\% CI ### use escalc() to directly compute the correlation and its variance for studies 1 and 2 dat <- escalc(measure="COR", ri=ri, ni=ni, ti=tval, data=dat) dat ### use escalc() with measure RBIS to compute the biserial correlation for study 3 dat <- escalc(measure="RBIS", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, replace=FALSE) dat ### use conv.2x2() to reconstruct the 2x2 table for study 4 dat <- conv.2x2(ri=phi, ni=ni, n1i=n1i, n2i=n2i, data=dat) dat ### use escalc() with measure RTET to compute the tetrachoric correlation for studies 4 and 5 dat <- escalc(measure="RTET", ai=ai, bi=bi, ci=ci, di=di, data=dat, replace=FALSE) dat ### use conv.wald() to convert the OR and CI into the log odds ratio and its variance for study 6 dat <- conv.wald(out=or, ci.lb=lower, ci.ub=upper, data=dat, transf=log, var.names=c("lnor","vlnor")) dat ### use conv.delta() to estimate the tetrachoric correlation from the log odds ratio for study 6 dat <- conv.delta(lnor, vlnor, data=dat, transf=transf.lnortortet.pearson, var.names=c("yi","vi")) dat ### remove the lnor and vlnor variables (no longer needed) dat$lnor <- NULL dat$vlnor <- NULL ### now variable 'yi' is complete with the correlations for all studies dat ### fit an equal-effects model to the correlations rma(yi, vi, data=dat, method="EE") ############################################################################ } \keyword{manip} metafor/man/to.wide.Rd0000644000176200001440000001307614746146216014344 0ustar liggesusers\name{to.wide} \alias{to.wide} \title{Convert Data from a Long to a Wide Format} \description{ Function to convert data given in long format to a wide format. } \usage{ to.wide(data, study, grp, ref, grpvars, postfix=c(".1",".2"), addid=TRUE, addcomp=TRUE, adddesign=TRUE, minlen=2, var.names=c("id","comp","design")) } \arguments{ \item{data}{a data frame in long format.} \item{study}{either the name (given as a character string) or the position (given as a single number) of the study variable in the data frame.} \item{grp}{either the name (given as a character string) or the position (given as a single number) of the group variable in the data frame.} \item{ref}{optional character string to specify the reference group (must be one of the groups in the group variable). If not given, the most frequently occurring group is used as the reference group.} \item{grpvars}{either the names (given as a character vector) or the positions (given as a numeric vector) of the group-level variables.} \item{postfix}{a character string of length 2 giving the affix that is placed after the names of the group-level variables for the first and second group.} \item{addid}{logical to specify whether a row id variable should be added to the data frame (the default is \code{TRUE}).} \item{addcomp}{logical to specify whether a comparison id variable should be added to the data frame (the default is \code{TRUE}).} \item{adddesign}{logical to specify whether a design id variable should be added to the data frame (the default is \code{TRUE}).} \item{minlen}{integer to specify the minimum length of the shortened group names for the comparison and design id variables (the default is 2).} \item{var.names}{character vector with three elements to specify the name of the id, comparison, and design variables (the defaults are \code{"id"}, \code{"comp"}, and \code{"design"}, respectively).} } \details{ A meta-analytic dataset may be structured in a \sQuote{long} format, where each row in the dataset corresponds to a particular study group (e.g., treatment arm). Using this function, such a dataset can be restructured into a \sQuote{wide} format, where each group within a study is contrasted against a particular reference group. The \code{study} and \code{group} arguments are used to specify the study and group variables in the dataset (either as character strings or as numbers indicating the column positions of these variables in the dataset). Optional argument \code{ref} is used to specify the reference group (this must be one of the groups in the \code{group} variable). Argument \code{grpvars} is used to specify (either as a character vector or by giving the column positions) of those variables in the dataset that correspond to group-level outcomes (the remaining variables are treated as study-level outcomes). The dataset is restructured so that a two-group study will yield a single row in the restructured dataset, contrasting the first group against the second/reference group. For studies with more than two groups (often called \sQuote{multiarm} or \sQuote{multitreatment} studies in the medical literature), the reference group is repeated as many times as needed (so a three-group study would yield two rows in the restructured dataset, contrasting two groups against a common reference group). If a study does not include the reference group, then another group from the study will be used as the reference group. This group is chosen based on the factor levels of the \code{grp} variable (i.e., the last level that occurs in the study becomes the reference group). To distinguish the names of the group-level outcome variables for the two first and second group in the restructured dataset, the strings given for the \code{postfix} argument are placed after the respective variable names. If requested, row id, comparison id, and design id variables are added to the restructured dataset. The row id is simply a unique number for each row in the dataset. The comparison id variable indicates which two groups have been compared against each other). The design id variable indicates which groups were included in a particular study. The group names are shortened for the comparison and design variables (to at least \code{minlen}; the actual length might be longer to ensure uniqueness of the group names). The examples below illustrate the use of this function. } \value{ A data frame with rows contrasting groups against a reference group and an appropriate number of columns (depending on the number of group-level outcome variables). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{contrmat}} for a function to construct a contrast matrix based on a dataset in wide format. \code{\link[metadat]{dat.hasselblad1998}}, \code{\link[metadat]{dat.lopez2019}}, \code{\link[metadat]{dat.obrien2003}}, \code{\link[metadat]{dat.pagliaro1992}}, \code{\link[metadat]{dat.senn2013}} for illustrative examples. } \examples{ ### data in long format dat <- dat.senn2013 dat <- dat[c(1,4,3,2,5,6)] dat ### restructure to wide format dat <- to.wide(dat, study="study", grp="treatment", ref="placebo", grpvars=4:6) dat ### data in long format dat <- dat.hasselblad1998 dat ### restructure to wide format dat <- to.wide(dat, study="study", grp="trt", ref="no_contact", grpvars=6:7) dat } \keyword{manip} metafor/man/metafor-package.Rd0000644000176200001440000004124014746146216016013 0ustar liggesusers\name{metafor-package} \alias{metafor-package} \alias{metafor} \docType{package} \title{metafor: A Meta-Analysis Package for R \loadmathjax} \description{ The \pkg{metafor} package provides a comprehensive collection of functions for conducting meta-analyses in \R. The package can be used to calculate a wide variety of effect sizes or outcome measures and allows the user to fit equal-, fixed-, and random-effects models to these data. By including study-level variables (\sQuote{moderators}) as predictors in these models, (mixed-effects) meta-regression models can also be fitted. For meta-analyses of \mjeqn{2 \times 2}{2x2} tables, proportions, incidence rates, and incidence rate ratios, the package also provides specialized methods, including the Mantel-Haenszel method, Peto's method, and a variety of suitable generalized linear mixed-effects models (i.e., mixed-effects logistic and Poisson regression models). For non-independent effects/outcomes (e.g., due to correlated sampling errors, correlated true effects or outcomes, or other forms of clustering), one can fit multilevel and multivariate models. Various methods are available to assess model fit, to identify outliers and/or influential studies, and for conducting sensitivity analyses (e.g., standardized residuals, Cook's distances, leave-one-out analyses). Advanced techniques for hypothesis testing and obtaining confidence intervals (e.g., for the average effect or outcome or for the model coefficients in a meta-regression model) have also been implemented (e.g., the Knapp and Hartung method, permutation tests, cluster-robust inference methods / robust variance estimation). The package also provides functions for creating forest, funnel, radial (Galbraith), normal quantile-quantile, \enc{L'Abbé}{L'Abbe}, Baujat, bubble, and GOSH plots. The presence of publication bias (or more precisely, funnel plot asymmetry or \sQuote{small-study effects}) and its potential impact on the results can be examined via the rank correlation and Egger's regression test, the trim and fill method, the test of excess significance, and by applying a variety of selection models. } \section{The escalc Function}{ [\code{\link{escalc}}] Before a meta-analysis can be conducted, the relevant results from each study must be quantified in such a way that the resulting values can be further aggregated and compared. The \code{\link{escalc}} function can be used to compute a wide variety of effect sizes or \sQuote{outcome measures} (and the corresponding sampling variances) that are often used in meta-analyses (e.g., risk ratios, odds ratios, risk differences, mean differences, standardized mean differences, response ratios / ratios of means, raw or r-to-z transformed correlation coefficients). Measures for quantifying some characteristic of individual groups (e.g., in terms of means, proportions, or incidence rates and transformations thereof), measures of change (e.g., raw and standardized mean changes), and measures of variability (e.g., variability ratios and coefficient of variation ratios) are also available. } \section{The rma.uni Function}{ [\code{\link{rma.uni}}] The various meta-analytic models that are typically used in practice are special cases of the general linear (mixed-effects) model. The \code{\link{rma.uni}} function (with alias \code{\link{rma}}) provides a general framework for fitting such models. The function can be used in combination with any of the effect sizes or outcome measures computed with the \code{\link{escalc}} function or, more generally, any set of estimates (with corresponding sampling variances or standard errors) one would like to analyze. The notation and models underlying the \code{\link{rma.uni}} function are explained below. For a set of \mjseqn{i = 1, \ldots, k} independent studies, let \mjseqn{y_i} denote the observed value of the effect size or outcome measure in the \mjeqn{i\text{th}}{ith} study. Let \mjseqn{\theta_i} denote the corresponding (unknown) true effect/outcome, such that \mjdeqn{y_i \mid \theta_i \sim N(\theta_i, v_i).}{y_i | \theta_i ~ N(\theta_i, v_i).} In other words, the observed effect sizes or outcomes are assumed to be unbiased and normally distributed estimates of the corresponding true effects/outcomes with sampling variances equal to \mjseqn{v_i} (where \mjseqn{v_i} is the square of the standard errors of the estimates). The \mjseqn{v_i} values are assumed to be known. Depending on the outcome measure used, a bias correction, normalizing, and/or variance stabilizing transformation may be necessary to ensure that these assumptions are (at least approximately) true (e.g., the log transformation for odds/risk ratios, the bias correction for standardized mean differences, Fisher's r-to-z transformation for correlations; see \code{\link{escalc}} for further details). According to the \bold{random-effects model}, we assume that \mjeqn{\theta_i \sim N(\mu, \tau^2)}{\theta_i ~ N(\mu, \tau^2)}, that is, the true effects/outcomes are normally distributed with \mjseqn{\mu} denoting the average true effect/outcome and \mjseqn{\tau^2} the variance in the true effects/outcomes (\mjseqn{\tau^2} is therefore often referred to as the amount of \sQuote{heterogeneity} in the true effects/outcomes or the \sQuote{between-study variance}). The random-effects model can also be written as \mjdeqn{y_i = \mu + u_i + \varepsilon_i,}{y_i = \mu + u_i + \epsilon_i,} where \mjeqn{u_i \sim N(0, \tau^2)}{u_i ~ N(0, \tau^2)} and \mjeqn{\varepsilon_i \sim N(0, v_i)}{\epsilon_i ~ N(0, v_i)}. The fitted model provides estimates of \mjseqn{\mu} and \mjseqn{\tau^2}, that is, \mjdeqn{\hat{\mu} = \frac{\sum_{i=1}^k w_i y_i}{\sum_{i=1}^k w_i},}{\mu-hat = \sum w_i y_i / \sum w_i,} where \mjeqn{w_i = 1/(\hat{\tau}^2 + v_i)}{w_i = 1/(\tau-hat^2 + v_i)} and \mjeqn{\hat{\tau}^2}{\tau-hat^2} denotes an estimate of \mjseqn{\tau^2} obtained with one of the many estimators that have described in the literature for this purpose (this is sometimes called the standard \sQuote{inverse-variance} method for random-effects models or the \sQuote{normal-normal} model). A special case of the model above is the \bold{equal-effects model} (also sometimes called the common-effect(s) model) which arises when \mjseqn{\tau^2 = 0}. In this case, the true effects/outcomes are homogeneous (i.e., \mjeqn{\theta_1 = \theta_2 = \ldots = \theta_k \equiv \theta}{\theta_1 = \theta_2 = \ldots = \theta_k = \theta}) and hence we can write the model as \mjdeqn{y_i = \theta + \varepsilon_i,}{y_i = \theta + \epsilon_i,} where \mjseqn{\theta} denotes \emph{the} true effect/outcome in the studies, which is estimated with \mjdeqn{\hat{\theta} = \frac{\sum_{i=1}^k w_i y_i}{\sum_{i=1}^k w_i},}{\theta-hat = \sum w_i y_i / \sum w_i,} where \mjeqn{w_i = 1/v_i}{w_i = 1/v_i} (again, this is the standard \sQuote{inverse-variance} method as described in the meta-analytic literature). Note that the commonly-used term \sQuote{fixed-effects model} is not used here -- for an explanation, see \link[=misc-models]{here}. Study-level variables (often referred to as \sQuote{moderators}) can also be included as predictors in meta-analytic models, leading to so-called \sQuote{meta-regression} models (to examine whether the effects/outcomes tend to be larger/smaller under certain conditions or circumstances). When including moderator variables in a random-effects model, we obtain a \bold{mixed-effects meta-regression model}. This model can be written as \mjdeqn{y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_{p'} x_{ip'} + u_i + \varepsilon_i,}{y_i = \beta_0 + \beta_1 x_i1 + \beta_2 x_i2 + \ldots + \beta_p' x_ip' + u_i + \epsilon_i,} where \mjeqn{u_i \sim N(0, \tau^2)}{u_i ~ N(0, \tau^2)} and \mjeqn{\varepsilon_i \sim N(0, v_i)}{\epsilon_i ~ N(0, v_i)} as before and \mjeqn{x_{ij}}{x_ij} denotes the value of the \mjeqn{j\text{th}}{jth} moderator variable for the \mjeqn{i\text{th}}{ith} study (letting \mjseqn{p = p' + 1} denote the total number of coefficients in the model including the model intercept). Therefore, \mjseqn{\beta_j} denotes how much the average true effect/outcome differs for studies that differ by one unit on \mjeqn{x_{ij}}{x_ij} and the model intercept \mjseqn{\beta_0} denotes the average true effect/outcome when the values of all moderator variables are equal to zero. The value of \mjseqn{\tau^2} in the mixed-effects model denotes the amount of \sQuote{residual heterogeneity} in the true effects/outcomes (i.e., the amount of variability in the true effects/outcomes that is not accounted for by the moderators included in the model). In matrix notation, the model can also be written as \mjdeqn{y = X\beta + u + \varepsilon,}{y = X\beta + u + \epsilon,} where \mjseqn{y} is a \mjeqn{k \times 1}{k x 1} column vector with the observed effect sizes or outcomes, \mjseqn{X} is the \mjeqn{k \times p}{k x p} model matrix (with the first column equal to 1s for the intercept term), \mjseqn{\beta} is a \mjeqn{p \times 1}{p x 1} column vector with the model coefficients, and \mjseqn{u} and \mjeqn{\varepsilon}{\epsilon} are \mjeqn{k \times 1}{k x 1} column vectors for the random effects and sampling errors, where \mjeqn{\text{Var}[\varepsilon]}{Var[\epsilon]} is a \mjeqn{k \times k}{k x k} diagonal matrix with the \mjseqn{v_i} values along the diagonal and \mjeqn{\text{Var}[u] = \tau^2 I}{Var[u] = \tau^2 I}, where \mjseqn{I} is a \mjeqn{k \times k}{k x k} identity matrix. } \section{The rma.mh Function}{ [\code{\link{rma.mh}}] The Mantel-Haenszel method provides an alternative approach for fitting equal-effects models when dealing with studies providing data in the form of \mjeqn{2 \times 2}{2x2} tables or in the form of event counts (i.e., person-time data) for two groups (Mantel & Haenszel, 1959). The method is particularly advantageous when aggregating a large number of studies with small sample sizes (the so-called sparse data or increasing strata case). The Mantel-Haenszel method is implemented in the \code{\link{rma.mh}} function. It can be used in combination with risk ratios, odds ratios, risk differences, incidence rate ratios, and incidence rate differences. } \section{The rma.peto Function}{ [\code{\link{rma.peto}}] Yet another method that can be used in the context of a meta-analysis of \mjeqn{2 \times 2}{2x2} table data is Peto's method (see Yusuf et al., 1985), implemented in the \code{\link{rma.peto}} function. The method provides an estimate of the (log) odds ratio under an equal-effects model. The method is particularly advantageous when the event of interest is rare, but see the documentation of the function for some caveats. } \section{The rma.glmm Function}{ [\code{\link{rma.glmm}}] Dichotomous response variables and event counts (based on which one can calculate outcome measures such as odds ratios, incidence rate ratios, proportions, and incidence rates) are often assumed to arise from binomial and Poisson distributed data. Meta-analytic models that are directly based on such distributions are implemented in the \code{\link{rma.glmm}} function. These models are essentially special cases of generalized linear mixed-effects models (i.e., mixed-effects logistic and Poisson regression models). For \mjeqn{2 \times 2}{2x2} table data, a mixed-effects conditional logistic model (based on the non-central hypergeometric distribution) is also available. Random/mixed-effects models with dichotomous data are often referred to as \sQuote{binomial-normal} models in the meta-analytic literature. Analogously, for event count data, such models could be referred to as \sQuote{Poisson-normal} models. } \section{The rma.mv Function}{ [\code{\link{rma.mv}}] Standard meta-analytic models assume independence between the observed effect sizes or outcomes obtained from a set of studies. This assumption is often violated in practice. Dependencies can arise for a variety of reasons. For example, the sampling errors and/or true effects/outcomes may be correlated in multiple treatment studies (e.g., when multiple treatment groups are compared with a common control/reference group, such that the data from the control/reference group is used multiple times to compute the observed effect sizes or outcomes) or in multiple endpoint studies (e.g., when more than one effect size estimate or outcome is calculated based on the same sample of subjects due to the use of multiple endpoints or response variables). Correlation among the true effects/outcomes can also arise due to other forms of clustering (e.g., when multiple effects/outcomes derived from the same author, lab, or research group may be more similar to each other than effects/outcomes derived from different authors, labs, or research groups). In ecology and related fields, the shared phylogenetic history of the organisms studied (e.g., plants, fungi, animals) can also induce correlation among the effects/outcomes. The \code{\link{rma.mv}} function can be used to fit suitable meta-analytic multivariate/multilevel models to such data, so that the non-independence in the effects/outcomes is accounted for. Network meta-analyses (also called multiple/mixed treatment comparisons) can also be carried out with this function. } \section{Future Plans and Updates}{ The \pkg{metafor} package is a work in progress and is updated on a regular basis with new functions and options. The development version of the package can be found on GitHub at \url{https://github.com/wviechtb/metafor} and can be installed with: \preformatted{install.packages("remotes") remotes::install_github("wviechtb/metafor")} With \code{metafor.news()}, you can read the \file{NEWS} file of the package after installation. Comments, feedback, and suggestions for improvements are always welcome. } \section{Citing the Package}{ To cite the package, please use the following reference: Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1-48. \doi{10.18637/jss.v036.i03} } \section{Getting Started with the Package}{ The paper mentioned above is a good starting place for those interested in using the package. The purpose of the article is to provide a general overview of the package and its capabilities (as of version 1.4-0). Not all of the functions and options are described in the paper, but it should provide a useful introduction to the package. The paper can be freely downloaded from the URL given above or can be directly loaded with the command \code{vignette("metafor")}. In addition to reading the paper, carefully read this page and then the help pages for the \code{\link{escalc}} and the \code{\link{rma.uni}} functions (or the \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and/or \code{\link{rma.mv}} functions if you intend to use these models/methods). The help pages for these functions provide links to many additional functions, which can be used after fitting a model. You can also read the entire documentation online at \url{https://wviechtb.github.io/metafor/} (where it is nicely formatted and the output from all examples is provided). A (pdf) diagram showing the various functions in the metafor package (and how they are related to each other) can be opened with the command \code{vignette("diagram", package="metafor")}. Finally, additional information about the package, several detailed analysis examples, examples of plots and figures provided by the package (with the corresponding code), some additional tips and notes, and a FAQ can be found on the package website at \url{https://www.metafor-project.org}. } \author{ Wolfgang Viechtbauer \email{wvb@metafor-project.org} \cr package website: \url{https://www.metafor-project.org} \cr author homepage: \verb{https://www.wvbauer.com} \cr Suggestions on how to obtain help with using the package can found on the package website at: \url{https://www.metafor-project.org/doku.php/help} } \references{ Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.) (2009). \emph{The handbook of research synthesis and meta-analysis} (2nd ed.). New York: Russell Sage Foundation. Hedges, L. V., & Olkin, I. (1985). \emph{Statistical methods for meta-analysis}. San Diego, CA: Academic Press. Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. \emph{Journal of the National Cancer Institute}, \bold{22}(4), 719--748. \verb{https://doi.org/10.1093/jnci/22.4.719} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Yusuf, S., Peto, R., Lewis, J., Collins, R., & Sleight, P. (1985). Beta blockade during and after myocardial infarction: An overview of the randomized trials. \emph{Progress in Cardiovascular Disease}, \bold{27}(5), 335--371. \verb{https://doi.org/10.1016/s0033-0620(85)80003-7} } \keyword{package} metafor/man/update.rma.Rd0000644000176200001440000000464714746146216015037 0ustar liggesusers\name{update.rma} \alias{update} \alias{update.rma} \title{Model Updating for 'rma' Objects} \description{ Function to update and (by default) refit \code{"rma"} models. It does this by extracting the call stored in the object, updating the call, and (by default) evaluating that call. } \usage{ \method{update}{rma}(object, formula., \dots, evaluate=TRUE) } \arguments{ \item{object}{an object of class \code{"rma"}.} \item{formula.}{changes to the formula. See \sQuote{Details}.} \item{\dots}{additional arguments to the call, or arguments with changed values.} \item{evaluate}{logical to specify whether to evaluate the new call or just return the call.} } \details{ For objects of class \code{"rma.uni"}, \code{"rma.glmm"}, and \code{"rma.mv"}, the \code{formula.} argument can be used to update the set of moderators included in the model (see \sQuote{Examples}). } \value{ If \code{evaluate=TRUE} the fitted object, otherwise the updated call. } \author{ Based on \code{\link{update.default}}, with changes made by Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}) so that the formula updating works with the (somewhat non-standard) interface of the \code{\link{rma.uni}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} functions. } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models which can be updated / refit. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects model (method="REML" is default) res <- rma(yi, vi, data=dat, digits=3) res ### fit mixed-effects model with two moderators (absolute latitude and publication year) res <- update(res, ~ ablat + year) res ### remove 'year' moderator res <- update(res, ~ . - year) res ### fit model with ML estimation update(res, method="ML") ### example with rma.glmm() res <- rma.glmm(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, digits=3) res <- update(res, mods = ~ ablat) res ### fit conditional model with approximate likelihood update(res, model="CM.AL") } \keyword{models} metafor/man/methods.escalc.Rd0000644000176200001440000000265214746146216015665 0ustar liggesusers\name{methods.escalc} \alias{methods.escalc} \alias{[.escalc} \alias{$<-.escalc} \alias{cbind.escalc} \alias{rbind.escalc} \title{Methods for 'escalc' Objects} \description{ Methods for objects of class \code{"escalc"}. } \usage{ \method{[}{escalc}(x, i, \dots) \method{$}{escalc}(x, name) <- value \method{cbind}{escalc}(\dots, deparse.level=1) \method{rbind}{escalc}(\dots, deparse.level=1) } \arguments{ \item{x}{an object of class \code{"escalc"}.} \item{\dots}{other arguments.} } \note{ For the \code{`[`} method, any variables specified as part of the \code{i} argument will be searched for within object \code{x} first (see \sQuote{Examples}). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### select rows where variable 'alloc' is equal to 'random' dat[dat$alloc == "random",] ### variables specified are automatically searched for within the object itself dat[alloc == "random",] ### note: this behavior is specific to 'escalc' objects; this doesn't work for regular data frames } \keyword{internal} metafor/man/regplot.Rd0000644000176200001440000004322214746146216014443 0ustar liggesusers\name{regplot} \alias{regplot} \alias{regplot.rma} \alias{points.regplot} \title{Scatter Plots / Bubble Plots} \description{ Function to create scatter plots / bubble plots based on meta-regression models. \loadmathjax } \usage{ regplot(x, \dots) \method{regplot}{rma}(x, mod, pred=TRUE, ci=TRUE, pi=FALSE, shade=TRUE, xlim, ylim, predlim, olim, xlab, ylab, at, digits=2L, transf, atransf, targs, level=x$level, pch, psize, plim=c(0.5,3), col, bg, slab, grid=FALSE, refline, label=FALSE, offset=c(1,1), labsize=1, lcol, lwd, lty, legend=FALSE, xvals, \dots) \method{points}{regplot}(x, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"}, \code{"rma.mv"}, or \code{"rma.glmm"} including one or multiple moderators (or an object of class \code{"regplot"} for \code{points}).} \item{mod}{either a scalar to specify the position of the moderator variable in the model or a character string to specify the name of the moderator variable.} \item{pred}{logical to specify whether the (marginal) regression line based on the moderator should be added to the plot (the default is \code{TRUE}). Can also be an object from \code{\link[=predict.rma]{predict}}. See \sQuote{Details}.} \item{ci}{logical to specify whether the corresponding confidence interval bounds should be added to the plot (the default is \code{TRUE}).} \item{pi}{logical to specify whether the corresponding prediction interval bounds should be added to the plot (the default is \code{FALSE}).} \item{shade}{logical to specify whether the confidence/prediction interval regions should be shaded (the default is \code{TRUE}). Can also be a two-element character vector to specify the colors for shading the confidence and prediction interval regions (if shading only the former, a single color can also be specified).} \item{xlim}{x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{ylim}{y-axis limits. If unspecified, the function sets the y-axis limits to some sensible values.} \item{predlim}{argument to specify the limits of the (marginal) regression line. If unspecified, the limits are based on the range of the moderator variable.} \item{olim}{argument to specify observation/outcome limits. If unspecified, no limits are used.} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title.} \item{ylab}{title for the y-axis. If unspecified, the function sets an appropriate axis title.} \item{at}{position of the y-axis tick marks and corresponding labels. If unspecified, the function sets the tick mark positions/labels to some sensible values.} \item{digits}{integer to specify the number of decimal places to which the tick mark labels of the y-axis should be rounded. When specifying an integer (e.g., \code{2L}), trailing zeros after the decimal mark are dropped for the y-axis labels. When specifying a numeric value (e.g., \code{2}), trailing zeros are retained.} \item{transf}{argument to specify a function to transform the observed outcomes, predicted values, and confidence/prediction interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{atransf}{argument to specify a function to transform the y-axis labels (e.g., \code{atransf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified via \code{transf} or \code{atransf}.} \item{level}{numeric value between 0 and 100 to specify the confidence/prediction interval level (see \link[=misc-options]{here} for details). The default is to take the value from the object.} \item{pch}{plotting symbol to use for the observed outcomes. By default, an open circle is used. Can also be a vector of values. See \code{\link{points}} for other options.} \item{psize}{numeric value to specify the point sizes for the observed outcomes. If unspecified, the point sizes are a function of the model weights. Can also be a vector of values. Can also be a character string (either \code{"seinv"} or \code{"vinv"}) to make the point sizes proportional to the inverse standard errors or inverse sampling variances.} \item{plim}{numeric vector of length 2 to scale the point sizes (ignored when a numeric value or vector is specified for \code{psize}). See \sQuote{Details}.} \item{col}{character string to specify the (border) color of the points. Can also be a vector.} \item{bg}{character string to specify the background color of open plot symbols. Can also be a vector.} \item{slab}{vector with labels for the \mjseqn{k} studies. If unspecified, the function tries to extract study labels from \code{x}.} \item{grid}{logical to specify whether a grid should be added to the plot. Can also be a color name for the grid.} \item{refline}{optional numeric value to specify the location of a horizontal reference line that should be added to the plot.} \item{label}{argument to control the labeling of the points (the default is \code{FALSE}). See \sQuote{Details}.} \item{offset}{argument to control the distance between the points and the corresponding labels. See \sQuote{Details}.} \item{labsize}{numeric value to control the size of the labels.} \item{lcol}{optional vector of (up to) four elements to specify the color of the regression line, of the confidence interval bounds, of the prediction interval bounds, and of the horizontal reference line.} \item{lty}{optional vector of (up to) four elements to specify the line type of the regression line, of the confidence interval bounds, of the prediction interval bounds, and of the horizontal reference line.} \item{lwd}{optional vector of (up to) four elements to specify the line width of the regression line, of the confidence interval bounds, of the prediction interval bounds, and of the horizontal reference line.} \item{legend}{logical to specify whether a legend should be added to the plot (the default is \code{FALSE}). Can also be a keyword to specify the position of the legend (see \code{\link{legend}}).} \item{xvals}{optional numeric vector to specify the values of the moderator for which predicted values should be computed. Needs to be specified when passing an object from \code{\link[=predict.rma]{predict}} to the \code{pred} argument. See \sQuote{Details}.} \item{\dots}{other arguments.} } \details{ The function draws a scatter plot of the values of a moderator variable in a meta-regression model (on the x-axis) against the observed effect sizes or outcomes (on the y-axis). The regression line from the model (with corresponding confidence interval bounds) is added to the plot by default. These types of plots are also often referred to as \sQuote{bubble plots} as the points are typically drawn in different sizes to reflect their precision or weight in the model. If the model includes multiple moderators, one must specify via argument \code{mod} either the position (as a number) or the name (as a string) of the moderator variable to place on the x-axis. The regression line then reflects the \sQuote{marginal} relationship between the chosen moderator and the effect sizes or outcomes (i.e., all other moderators except the one being plotted are held constant at their means). By default (i.e., when \code{psize} is not specified), the size of the points is a function of the square root of the model weights. This way, their area is proportional to the weights. However, the point sizes are rescaled so that the smallest point size is \code{plim[1]} and the largest point size is \code{plim[2]}. As a result, their relative sizes (i.e., areas) no longer exactly correspond to their relative weights. If exactly relative point sizes are desired, one can set \code{plim[2]} to \code{NA}, in which case the points are rescaled so that the smallest point size corresponds to \code{plim[1]} and all other points are scaled accordingly. As a result, the largest point may be very large. Alternatively, one can set \code{plim[1]} to \code{NA}, in which case the points are rescaled so that the largest point size corresponds to \code{plim[2]} and all other points are scaled accordingly. As a result, the smallest point may be very small. To avoid the latter, one can also set \code{plim[3]}, which enforces a minimal point size. One can also set \code{psize} to a scalar (e.g., \code{psize=1}) to avoid that the points are drawn in different sizes. One can also specify the point sizes manually by passing a vector of the appropriate length to \code{psize}. Finally, one can also set \code{psize} to either \code{"seinv"} or \code{"vinv"} to make the point sizes proportional to the inverse standard errors or inverse sampling variances. With the \code{label} argument, one can control whether points in the plot will be labeled. If \code{label="all"} (or \code{label=TRUE}), all points in the plot will be labeled. If \code{label="ciout"} or \code{label="piout"}, points falling outside of the confidence/prediction interval will be labeled. Alternatively, one can set this argument to a logical or numeric vector to specify which points should be labeled. The labels are placed above the points when they fall above the regression line and otherwise below. With the \code{offset} argument, one can adjust the distance between the labels and the corresponding points. This can either be a single numeric value, which is used as a multiplicative factor for the point sizes (so that the distance between labels and points is larger for larger points) or a numeric vector with two values, where the first is used as an additive factor independent of the point sizes and the second again as a multiplicative factor for the point sizes. The values are given as percentages of the y-axis range. It may take some trial and error to find two values for the \code{offset} argument so that the labels are placed right next to the boundary of the points. With \code{labsize}, one can control the size of the labels. One can also pass an object from \code{\link[=predict.rma]{predict}} to the \code{pred} argument. This can be useful when the meta-regression model reflects a more complex relationship between the moderator variable and the effect sizes or outcomes (e.g., when using polynomials or splines) or when the model involves interactions. In this case, one also needs to specify the \code{xvals} argument. See \sQuote{Examples}. } \note{ For certain types of models, it may not be possible to draw the prediction interval bounds (if this is the case, a warning will be issued). For argument \code{slab} and when specifying vectors for arguments \code{pch}, \code{psize}, \code{col}, \code{bg}, and/or \code{label} (for a logical vector), the variables specified are assumed to be of the same length as the data passed to the model fitting function (and if the \code{data} argument was used in the original model fit, then the variables will be searched for within this data frame first). Any subsetting and removal of studies with missing values is automatically applied to the variables specified via these arguments. If the outcome measure used for creating the plot is bounded (e.g., correlations are bounded between -1 and +1, proportions are bounded between 0 and 1), one can use the \code{olim} argument to enforce those limits (the observed outcomes and confidence/prediction intervals cannot exceed those bounds then). } \value{ An object of class \code{"regplot"} with components: \item{slab}{the study labels} \item{ids}{the study ids} \item{xi}{the x-axis coordinates of the points that were plotted.} \item{yi}{the y-axis coordinates of the points that were plotted.} \item{pch}{the plotting symbols of the points that were plotted.} \item{psize}{the point sizes of the points that were plotted.} \item{col}{the colors of the points that were plotted.} \item{bg}{the background colors of the points that were plotted.} \item{label}{logical vector indicating whether a point was labeled.} Note that the object is returned invisibly. Using \code{points.regplot}, one can redraw the points (and labels) in case one wants to superimpose the points on top of any elements that were added manually to the plot (see \sQuote{Examples}). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Thompson, S. G., & Higgins, J. P. T. (2002). How should meta-regression analyses be undertaken and interpreted? \emph{Statistics in Medicine}, \bold{21}(11), 1559--1573. \verb{https://doi.org/10.1002/sim.1187} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which scatter plots / bubble plots can be drawn. } \examples{ ### copy BCG vaccine data into 'dat' dat <- dat.bcg ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) ############################################################################ ### fit mixed-effects model with absolute latitude as a moderator res <- rma(yi, vi, mods = ~ ablat, data=dat) res ### draw plot regplot(res, mod="ablat", xlab="Absolute Latitude") ### adjust x-axis limits and back-transform to risk ratios regplot(res, mod="ablat", xlab="Absolute Latitude", xlim=c(0,60), transf=exp) ### also extend the prediction limits for the regression line regplot(res, mod="ablat", xlab="Absolute Latitude", xlim=c(0,60), predlim=c(0,60), transf=exp) ### add the prediction interval to the plot, add a reference line at 1, and add a legend regplot(res, mod="ablat", pi=TRUE, xlab="Absolute Latitude", xlim=c(0,60), predlim=c(0,60), transf=exp, refline=1, legend=TRUE) ### label points outside of the prediction interval regplot(res, mod="ablat", pi=TRUE, xlab="Absolute Latitude", xlim=c(0,60), predlim=c(0,60), transf=exp, refline=1, legend=TRUE, label="piout", labsize=0.8) ############################################################################ ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) res ### plot the marginal relationships regplot(res, mod="ablat", xlab="Absolute Latitude") regplot(res, mod="year", xlab="Publication Year") ############################################################################ ### fit a quadratic polynomial meta-regression model res <- rma(yi, vi, mods = ~ ablat + I(ablat^2), data=dat) res ### compute predicted values using predict() xs <- seq(0,60,length=601) tmp <- predict(res, newmods=cbind(xs, xs^2)) ### can now pass these results to the 'pred' argument (and have to specify xvals accordingly) regplot(res, mod="ablat", pred=tmp, xlab="Absolute Latitude", xlim=c(0,60), xvals=xs) ### back-transform to risk ratios and add reference line regplot(res, mod="ablat", pred=tmp, xlab="Absolute Latitude", xlim=c(0,60), xvals=xs, transf=exp, refline=1) ############################################################################ ### fit a model with an interaction between a quantitative and a categorical predictor ### (note: only for illustration purposes; this model is too complex for this dataset) res <- rma(yi, vi, mods = ~ ablat * alloc, data=dat) res ### draw bubble plot but do not add regression line or CI tmp <- regplot(res, mod="ablat", xlab="Absolute Latitude", xlim=c(0,60), pred=FALSE, ci=FALSE) ### add regression lines for the three alloc levels xs <- seq(0, 60, length=100) preds <- predict(res, newmods=cbind(xs, 0, 0, 0, 0)) lines(xs, preds$pred, lwd=3) preds <- predict(res, newmods=cbind(xs, 1, 0, xs, 0)) lines(xs, preds$pred, lwd=3) preds <- predict(res, newmods=cbind(xs, 0, 1, 0, xs)) lines(xs, preds$pred, lwd=3) ### add points back to the plot (so they are on top of the lines) points(tmp) ############################################################################ ### an example where we place a dichotomous variable on the x-axis ### dichotomize the 'random' variable dat$random <- ifelse(dat$alloc == "random", 1, 0) ### fit mixed-effects model with this dummy variable as moderator res <- rma(yi, vi, mods = ~ random, data=dat) res ### draw bubble plot regplot(res, mod="random") ### draw bubble plot and add a nicer x-axis regplot(res, mod="random", xlab="Method of Treatment Allocation", xaxt="n") axis(side=1, at=c(0,1), labels=c("Non-Random", "Random")) ############################################################################ ### an example where we place a categorical variable with more than two levels ### on the x-axis; this is done with a small trick, representing the moderator ### as a polynomial regression model ### fit mixed-effects model with a three-level factor res <- rma(yi, vi, mods = ~ alloc, data=dat) res ### compute the predicted pooled effect for each level of the factor predict(res, newmods=rbind(alternate=c(0,0), random=c(1,0), systematic=c(0,1))) ### represent the three-level factor as a quadratic polynomial model dat$anum <- as.numeric(factor(dat$alloc)) res <- rma(yi, vi, mods = ~ poly(anum, degree=2, raw=TRUE), data=dat) res ### compute the predicted pooled effect for each level of the factor ### (note that these values are exactly the same as above) pred <- predict(res, newmods=unname(poly(1:3, degree=2, raw=TRUE))) pred ### draw bubble plot, placing the linear (1:3) term on the x-axis and add a ### nicer x-axis for the three levels regplot(res, mod=2, pred=pred, xvals=c(1:3), xlim=c(1,3), xlab="Allocation Method", xaxt="n") axis(side=1, at=1:3, labels=levels(factor(dat$alloc))) ############################################################################ } \keyword{hplot} metafor/man/tes.Rd0000644000176200001440000002466414746146216013573 0ustar liggesusers\name{tes} \alias{tes} \alias{print.tes} \title{Test of Excess Significance} \description{ Function to conduct the test of excess significance. \loadmathjax } \usage{ tes(x, vi, sei, subset, data, H0=0, alternative="two.sided", alpha=.05, theta, tau2, test, tes.alternative="greater", progbar=TRUE, tes.alpha=.10, digits, \dots) \method{print}{tes}(x, digits=x$digits, \dots) } \arguments{ \emph{These arguments pertain to data input:} \item{x}{a vector with the observed effect sizes or outcomes or an object of class \code{"rma"}.} \item{vi}{vector with the corresponding sampling variances (ignored if \code{x} is an object of class \code{"rma"}).} \item{sei}{vector with the corresponding standard errors (note: only one of the two, \code{vi} or \code{sei}, needs to be specified).} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be included (ignored if \code{x} is an object of class \code{"rma"}).} \item{data}{optional data frame containing the variables given to the arguments above.} \emph{These arguments pertain to the tests of the observed effect sizes or outcomes:} \item{H0}{numeric value to specify the value of the effect size or outcome under the null hypothesis (the default is 0).} \item{alternative}{character string to specify the sidedness of the hypothesis when testing the observed effect sizes or outcomes. Possible options are \code{"two.sided"} (the default), \code{"greater"}, or \code{"less"}. Can be abbreviated.} \item{alpha}{alpha level for testing the observed effect sizes or outcomes (the default is .05).} \emph{These arguments pertain to the power of the tests:} \item{theta}{optional numeric value to specify the value of the true effect size or outcome under the alternative hypothesis. If unspecified, it will be estimated based on the data or the value is taken from the \code{"rma"} object.} \item{tau2}{optional numeric value to specify the amount of heterogeneity in the true effect sizes or outcomes. If unspecified, the true effect sizes or outcomes are assumed to be homogeneous or the value is taken from the \code{"rma"} object.} \emph{These arguments pertain to the test of excess significance:} \item{test}{optional character string to specify the type of test to use for conducting the test of excess significance. Possible options are \code{"chi2"}, \code{"binom"}, or \code{"exact"}. Can be abbreviated. If unspecified, the function chooses the type of test based on the data.} \item{tes.alternative}{character string to specify the sidedness of the hypothesis for the test of excess significance. Possible options are \code{"greater"} (the default), \code{"two.sided"}, or \code{"less"}. Can be abbreviated.} \item{progbar}{logical to specify whether a progress bar should be shown (the default is \code{TRUE}). Only relevant when conducting an exact test.} \item{tes.alpha}{alpha level for the test of excess significance (the default is .10). Only relevant for finding the \sQuote{limit estimate}.} \emph{Miscellaneous arguments:} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded.} \item{\dots}{other arguments.} } \details{ The function carries out the test of excess significance described by Ioannidis and Trikalinos (2007). The test can be used to examine whether the observed number of significant findings is greater than the number of significant findings expected given the power of the tests. An overabundance of significant tests may suggest that the collection of studies is not representative of all studies conducted on a particular topic. One can either pass a vector with the observed effect sizes or outcomes (via \code{x}) and the corresponding sampling variances via \code{vi} (or the standard errors via \code{sei}) to the function or an object of class \code{"rma"}. The observed effect sizes or outcomes are tested for significance based on a standard Wald-type test, that is, by comparing \mjdeqn{z_i = \frac{y_i - \text{H}_0}{\sqrt{v_i}}}{z_i = (y_i - H_0) / sqrt(v_i)} against the appropriate critical value(s) of a standard normal distribution (e.g., \mjeqn{\pm 1.96}{±1.96} for \code{alternative="two.sided"} and \code{alpha=.05}, which are the defaults). Let \mjseqn{O} denote the observed number of significant tests. Given a particular value for the true effect or outcome denoted by \mjseqn{\theta} (which, if it is unspecified, is determined by computing the inverse-variance weighted average of the observed effect sizes or outcomes or the value is taken from the model object), let \mjseqn{1-\beta_i} denote the power of the \mjeqn{i\text{th}}{ith} test (where \mjseqn{\beta_i} denotes the Type II error probability). If \mjseqn{\tau^2 > 0}, let \mjseqn{1-\beta_i} denote the expected power (computed based on integrating the power over a normal distribution with mean \mjseqn{\theta} and variance \mjseqn{\tau^2}). Let \mjseqn{E = \sum_{i=1}^k (1-\beta_i)} denote the expected number of significant tests. The test of excess significance then tests if \mjseqn{O} is significantly greater (if \code{tes.alternative="greater"}) than \mjseqn{E}. This can be done using Pearson's chi-square test (if \code{test="chi2"}), a binomial test (if \code{test="binomial"}), or an exact test (if \code{test="exact"}). The latter is described in Francis (2013). If argument \code{test} is unspecified, the default is to do an exact test if the number of elements in the sum that needs to be computed is less than or equal to \code{10^6} and to do a chi-square test otherwise. One can also iteratively find the value of \mjseqn{\theta} such that the p-value of the test of excess significance is equal to \code{tes.alpha} (which is \code{.10} by default). The resulting value is called the \sQuote{limit estimate} and is denoted \mjeqn{\theta_{lim}}{\theta_lim} by Ioannidis and Trikalinos (2007). Note that the limit estimate is not computable if the p-value is larger than \code{tes.alpha} even if \mjeqn{\theta = \text{H}_0}{\theta = H_0}. } \value{ An object of class \code{"tes"}. The object is a list containing the following components: \item{k}{the number of studies included in the analysis.} \item{O}{the observed number of significant tests.} \item{E}{the expected number of significant tests.} \item{OEratio}{the ratio of O over E.} \item{test}{the type of test conducted.} \item{pval}{the p-value of the test of excess significance.} \item{power}{the (estimated) power of the tests.} \item{sig}{logical vector indicating which tests were significant.} \item{theta}{the value of \mjseqn{\theta} used for computing the power of the tests.} \item{theta.lim}{the \sQuote{limit estimate} (i.e., \mjeqn{\theta_{lim}}{\theta_lim}).} \item{\dots}{some additional elements/values.} The results are formatted and printed with the \code{print} function. } \note{ When \code{tes.alternative="greater"} (the default), then the function tests if \mjseqn{O} is significantly greater than \mjseqn{E} and hence this is indeed a test of excess significance. When \code{tes.alternative="two.sided"}, then the function tests if \mjseqn{O} differs significantly from \mjseqn{E} in either direction and hence it would be more apt to describe this as a test of (in)consistency (between \mjseqn{O} and \mjseqn{E}). Finally, one can also set \code{tes.alternative="less"}, in which case the function tests if \mjseqn{O} is significantly lower than \mjseqn{E}, which could be considered a test of excess non-significance. When \code{tes.alternative="two.sided"}, one can actually compute two limit estimates. The function attempts to compute both. The function computes the significance and power of the studies based on Wald-type tests regardless of the effect size or outcome measure used as input. This works as an adequate approximation as long as the within-study sample sizes are not too small. Note that the test is not a test for publication bias but a test whether the set of studies includes an unusual number of significant findings given the power of the studies. The general usefulness of the test and its usefulness under particular circumstances (e.g., when there is substantial heterogeneity in the true effect sizes or outcomes) has been the subject of considerable debate. See Francis (2013) and the commentaries on this article in the same issue of the journal. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Francis, G. (2013). Replication, statistical consistency, and publication bias. \emph{Journal of Mathematical Psychology}, \bold{57}(5), 153--169. \verb{https://doi.org/10.1016/j.jmp.2013.02.003} Ioannidis, J. P. A., & Trikalinos, T. A. (2007). An exploratory test for an excess of significant findings. \emph{Clinical Trials}, \bold{4}(3), 245--253. \verb{https://doi.org/10.1177/1740774507079441} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{regtest}} for the regression test, \code{\link{ranktest}} for the rank correlation test, \code{\link{trimfill}} for the trim and fill method, \code{\link{fsn}} to compute the fail-safe N (file drawer analysis), and \code{\link{selmodel}} for selection models. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=x.a, n1i=n.a, ci=x.p, n2i=n.p, data=dat.dorn2007) ### conduct test of excess significance (using test="chi2" to speed things up) tes(yi, vi, data=dat, test="chi2") ### same as fitting an EE model and then passing the object to the function res <- rma(yi, vi, data=dat, method="EE") tes(res, test="chi2") ### illustrate limit estimate (value of theta where p-value of test is equal to tes.alpha) thetas <- seq(0,1,length=101) pvals <- sapply(thetas, function(theta) tes(yi, vi, data=dat, test="chi2", theta=theta)$pval) plot(thetas, pvals, type="o", pch=19, ylim=c(0,1)) sav <- tes(yi, vi, data=dat, test="chi2") abline(h=sav$tes.alpha, lty="dotted") abline(v=sav$theta.lim, lty="dotted") ### examine significance of test as a function of alpha (to examine 'significance chasing') alphas <- seq(.01,.99,length=101) pvals <- sapply(alphas, function(alpha) tes(yi, vi, data=dat, test="chi2", alpha=alpha)$pval) plot(alphas, pvals, type="o", pch=19, ylim=c(0,1)) abline(v=.05, lty="dotted") abline(h=.10, lty="dotted") } \keyword{htest} metafor/man/coef.permutest.rma.uni.Rd0000644000176200001440000000412514746146216017301 0ustar liggesusers\name{coef.permutest.rma.uni} \alias{coef.permutest.rma.uni} \title{Extract the Model Coefficient Table from 'permutest.rma.uni' Objects} \description{ Function to extract the estimated model coefficients, corresponding standard errors, test statistics, p-values (based on the permutation tests), and confidence interval bounds from objects of class \code{"permutest.rma.uni"}. } \usage{ \method{coef}{permutest.rma.uni}(object, \dots) } \arguments{ \item{object}{an object of class \code{"permutest.rma.uni"}.} \item{\dots}{other arguments.} } \value{ A data frame with the following elements: \item{estimate}{estimated model coefficient(s).} \item{se}{corresponding standard error(s).} \item{zval}{corresponding test statistic(s).} \item{pval}{p-value(s) based on the permutation test(s).} \item{ci.lb}{lower bound of the (permutation-based) confidence interval(s).} \item{ci.ub}{upper bound of the (permutation-based) confidence interval(s).} When the model was fitted with \code{test="t"}, \code{test="knha"}, \code{test="hksj"}, or \code{test="adhoc"}, then \code{zval} is called \code{tval} in the data frame that is returned by the function. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=permutest.rma.uni]{permutest}} for the function to conduct permutation tests and \code{\link{rma.uni}} for the function to fit models for which permutation tests can be conducted. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### carry out permutation test \dontrun{ set.seed(1234) # for reproducibility sav <- permutest(res) coef(sav) } } \keyword{models} metafor/man/addpoly.Rd0000644000176200001440000000416214746146216014423 0ustar liggesusers\name{addpoly} \alias{addpoly} \title{Add Polygons to Forest Plots} \description{ Function to add polygons (sometimes called \sQuote{diamonds}) to a forest plot, for example to show pooled estimates for subgroups of studies or to show fitted/predicted values based on models involving moderators. } \usage{ addpoly(x, \dots) } \arguments{ \item{x}{either an object of class \code{"rma"}, an object of class \code{"predict.rma"}, or the values at which polygons should be drawn. See \sQuote{Details}.} \item{\dots}{other arguments.} } \details{ Currently, methods exist for three types of situations. In the first case, object \code{x} is a fitted model coming from the \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, or \code{\link{rma.mv}} functions. The model must either be an equal- or a random-effects model, that is, the model should not contain any moderators. The corresponding method is \code{\link{addpoly.rma}}. It can be used to add a polygon to an existing forest plot (usually at the bottom), showing the pooled estimate (with its confidence interval) based on the fitted model. Alternatively, \code{x} can be an object of class \code{"predict.rma"} obtained with the \code{\link[=predict.rma]{predict}} function. In this case, polygons based on the predicted values are drawn. The corresponding method is \code{\link{addpoly.predict.rma}}. Alternatively, object \code{x} can be a vector with the values at which one or more polygons should be drawn. The corresponding method is \code{\link{addpoly.default}}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{addpoly.rma}}, \code{\link{addpoly.predict.rma}}, and \code{\link{addpoly.default}} for the specific method functions. \code{\link{forest}} for functions to draw forest plots to which polygons can be added. } \keyword{aplot} metafor/man/macros/0000755000176200001440000000000013722772107013756 5ustar liggesusersmetafor/man/macros/metafor.Rd0000644000176200001440000000021514161317561015675 0ustar liggesusers\newcommand{\icsl}{\out{\hspace*{0.1em}}} \newcommand{\icsh}{\out{ }} \newcommand{\ics}{\ifelse{latex}{\icsl}{\ifelse{html}{\icsh}{ }}} metafor/man/fitstats.Rd0000644000176200001440000000705414746146216014633 0ustar liggesusers\name{fitstats} \alias{fitstats} \alias{fitstats.rma} \alias{logLik.rma} \alias{deviance.rma} \alias{AIC.rma} \alias{BIC.rma} \alias{nobs.rma} \alias{df.residual.rma} \title{Fit Statistics and Information Criteria for 'rma' Objects} \description{ Functions to extract the log-likelihood, deviance, AIC, BIC, and AICc values from objects of class \code{"rma"}. \loadmathjax } \usage{ fitstats(object, \dots) \method{fitstats}{rma}(object, \dots, REML) \method{logLik}{rma}(object, REML, \dots) \method{deviance}{rma}(object, REML, \dots) \method{AIC}{rma}(object, \dots, k=2, correct=FALSE) \method{BIC}{rma}(object, \dots) } \arguments{ \item{object}{an object of class \code{"rma"}.} \item{\dots}{optionally more fitted model objects (only for \code{fitstats()}, \code{AIC()}, and \code{BIC()}).} \item{REML}{logical to specify whether the regular or restricted likelihood function should be used to obtain the fit statistics and information criteria. Defaults to the method of estimation used (i.e., \code{TRUE} if \code{object} was fitted with \code{method="REML"} and \code{FALSE} otherwise).} \item{k}{numeric value to specify the penalty per parameter. The default (\code{k=2}) is the classical AIC. See \code{\link{AIC}} for more details.} \item{correct}{logical to specify whether the regular (default) or corrected (i.e., AICc) should be extracted.} } \value{ For \code{fitstats}, a data frame with the (restricted) log-likelihood, deviance, AIC, BIC, and AICc values for each model passed to the function. For \code{logLik}, an object of class \code{"logLik"}, providing the (restricted) log-likelihood of the model evaluated at the estimated coefficient(s). For \code{deviance}, a numeric value with the corresponding deviance. For \code{AIC} and \code{BIC}, either a numeric value with the corresponding AIC, AICc, or BIC or a data frame with rows corresponding to the models and columns representing the number of parameters in the model (\code{df}) and the AIC, AICc, or BIC. } \note{ Variance components in the model (e.g., \mjseqn{\tau^2} in random/mixed-effects models fitted with \code{\link{rma.uni}}) are counted as additional parameters in the calculation of the AIC, BIC, and AICc. Also, the fixed effects are counted as parameters in the calculation of the AIC, BIC, and AICc even when using REML estimation. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which fit statistics and information criteria can be extracted. \code{\link[=anova.rma]{anova}} for a function to conduct likelihood ratio tests. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### random-effects model res1 <- rma(yi, vi, data=dat, method="ML") ### mixed-effects model with absolute latitude and publication year as moderators res2 <- rma(yi, vi, mods = ~ ablat + year, data=dat, method="ML") ### compare fit statistics fitstats(res1, res2) ### log-likelihoods logLik(res1) logLik(res2) ### deviances deviance(res1) deviance(res2) ### AIC, AICc, and BIC values AIC(res1, res2) AIC(res1, res2, correct=TRUE) BIC(res1, res2) } \keyword{models} metafor/man/trimfill.Rd0000644000176200001440000001613414746146216014613 0ustar liggesusers\name{trimfill} \alias{trimfill} \alias{trimfill.rma.uni} \title{Trim and Fill Analysis for 'rma.uni' Objects} \description{ Function to carry out a trim and fill analysis for objects of class \code{"rma.uni"}. \loadmathjax } \usage{ trimfill(x, \dots) \method{trimfill}{rma.uni}(x, side, estimator="L0", maxiter=100, verbose=FALSE, ilim, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"}.} \item{side}{optional character string (either \code{"left"} or \code{"right"}) to specify on which side of the funnel plot the missing studies should be imputed. If left unspecified, the side is chosen within the function depending on the results of the regression test (see \code{\link{regtest}} for details on this test).} \item{estimator}{character string (either \code{"L0"}, \code{"R0"}, or \code{"Q0"}) to specify the estimator for the number of missing studies (the default is \code{"L0"}).} \item{maxiter}{integer to specify the maximum number of iterations for the trim and fill method (the default is \code{100}).} \item{verbose}{logical to specify whether output should be generated on the progress of the iterative algorithm used as part of the trim and fill method (the default is \code{FALSE}).} \item{ilim}{limits for the imputed values. If unspecified, no limits are used.} \item{\dots}{other arguments.} } \details{ The trim and fill method is a nonparametric (rank-based) data augmentation technique proposed by Duval and Tweedie (2000a, 2000b; see also Duval, 2005). The method can be used to estimate the number of studies missing from a meta-analysis due to suppression of the most extreme results on one side of the funnel plot. The method then augments the observed data so that the funnel plot is more symmetric and recomputes the pooled estimate based on the complete data. The trim and fill method can only be used in the context of an equal- or a random-effects model (i.e., in models without moderators). The method should not be regarded as a way of yielding a more \sQuote{valid} estimate of the overall effect or outcome, but as a way of examining the sensitivity of the results to one particular selection mechanism (i.e., one particular form of publication bias). } \value{ An object of class \code{c("rma.uni.trimfill","rma.uni","rma")}. The object is a list containing the same components as objects created by \code{\link{rma.uni}}, except that the data are augmented by the trim and fill method. The following components are also added: \item{k0}{estimated number of missing studies.} \item{side}{either \code{"left"} or \code{"right"}, indicating on which side of the funnel plot the missing studies (if any) were imputed.} \item{se.k0}{standard error of k0.} \item{p.k0}{p-value for the test of \mjeqn{\text{H}_0}{H_0}: no missing studies on the chosen side (only when \code{estimator="R0"}; \code{NA} otherwise).} \item{yi}{the observed effect sizes or outcomes plus the imputed values (if there are any).} \item{vi}{the corresponding sampling variances} \item{fill}{a logical vector indicating which of the values in \code{yi} are the observed (\code{FALSE}) and the imputed (\code{TRUE}) data.} The results of the fitted model after the data augmentation are printed with the \code{\link[=print.rma.uni]{print}} function. Calling \code{\link[=funnel.rma]{funnel}} on the object provides a funnel plot of the observed and imputed data. } \note{ Three different estimators for the number of missing studies were proposed by Duval and Tweedie (2000a, 2000b). Based on these articles and Duval (2005), \code{"R0"} and \code{"L0"} are recommended. An advantage of estimator \code{"R0"} is that it provides a test of the null hypothesis that the number of missing studies (on the chosen side) is zero. If the outcome measure used for the analysis is bounded (e.g., correlations are bounded between -1 and +1, proportions are bounded between 0 and 1), one can use the \code{ilim} argument to enforce those limits when imputing values (imputed values cannot exceed those bounds then). The model used during the trim and fill procedure is the same as used by the original model object. Hence, if an equal-effects model is passed to the function, then an equal-effects model is also used during the trim and fill procedure and the results provided are also based on an equal-effects model. This would be an \sQuote{equal-equal} approach. Similarly, if a random-effects model is passed to the function, then the same model is used as part of the trim and fill procedure and for the final analysis. This would be a \sQuote{random-random} approach. However, one can also easily fit a different model for the final analysis than was used for the trim and fill procedure. See \sQuote{Examples} for an illustration of an \sQuote{equal-random} approach. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Duval, S. J., & Tweedie, R. L. (2000a). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. \emph{Biometrics}, \bold{56}(2), 455--463. \verb{https://doi.org/10.1111/j.0006-341x.2000.00455.x} Duval, S. J., & Tweedie, R. L. (2000b). A nonparametric "trim and fill" method of accounting for publication bias in meta-analysis. \emph{Journal of the American Statistical Association}, \bold{95}(449), 89--98. \verb{https://doi.org/10.1080/01621459.2000.10473905} Duval, S. J. (2005). The trim and fill method. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.) \emph{Publication bias in meta-analysis: Prevention, assessment, and adjustments} (pp. 127--144). Chichester, England: Wiley. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=funnel.rma]{funnel}} for a function to create funnel plots of the observed and augmented data. \code{\link{regtest}} for the regression test, \code{\link{ranktest}} for the rank correlation test, \code{\link{tes}} for the test of excess significance, \code{\link{fsn}} to compute the fail-safe N (file drawer analysis), and \code{\link{selmodel}} for selection models. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### meta-analysis of the log risk ratios using an equal-effects model res <- rma(yi, vi, data=dat, method="EE") taf <- trimfill(res) taf funnel(taf, cex=1.2, legend=list(show="cis")) ### estimator "R0" also provides test of H0: no missing studies (on the chosen side) taf <- trimfill(res, estimator="R0") taf ### meta-analysis of the log risk ratios using a random-effects model res <- rma(yi, vi, data=dat) taf <- trimfill(res) taf funnel(taf, cex=1.2, legend=list(show="cis")) ### the examples above are equal-equal and random-random approaches ### illustration of an equal-random approach res <- rma(yi, vi, data=dat, method="EE") taf <- trimfill(res) filled <- data.frame(yi = taf$yi, vi = taf$vi, fill = taf$fill) filled rma(yi, vi, data=filled) } \keyword{models} metafor/man/plot.cumul.rma.Rd0000644000176200001440000001022114746146216015640 0ustar liggesusers\name{plot.cumul.rma} \alias{plot.cumul.rma} \title{Plot Method for 'cumul.rma' Objects} \description{ Function to plot objects of class \code{"cumul.rma"}. \loadmathjax } \usage{ \method{plot}{cumul.rma}(x, yaxis, xlim, ylim, xlab, ylab, at, transf, atransf, targs, digits, cols, grid=TRUE, pch=19, cex=1, lwd=2, \dots) } \arguments{ \item{x}{an object of class \code{"cumul.rma"} obtained with \code{\link{cumul}}.} \item{yaxis}{either \code{"tau2"}, \code{"I2"}, or \code{"H2"} to specify what values should be placed on the y-axis. See \sQuote{Details}.} \item{xlim}{x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{ylim}{y-axis limits. If unspecified, the function sets the y-axis limits to some sensible values.} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title.} \item{ylab}{title for the y-axis. If unspecified, the function sets an appropriate axis title.} \item{at}{position of the x-axis tick marks and corresponding labels. If unspecified, the function sets the tick mark positions/labels to some sensible values.} \item{transf}{optional argument to specify a function to transform the pooled estimates (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{atransf}{optional argument to specify a function to transform the x-axis labels (e.g., \code{atransf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified via \code{transf} or \code{atransf}.} \item{digits}{optional integer to specify the number of decimal places to which the tick mark labels of the x- and y-axis should be rounded. Can also be a vector of two integers, the first to specify the number of decimal places for the x-axis, the second for the y-axis labels (e.g., \code{digits=c(2,3)}). If unspecified, the function tries to set the argument to some sensible values.} \item{cols}{vector with two or more colors for visualizing the order of the cumulative results.} \item{grid}{logical to specify whether a grid should be added to the plot. Can also be a color name.} \item{pch}{plotting symbol to use. By default, a filled circle is used. See \code{\link{points}} for other options.} \item{cex}{symbol expansion factor.} \item{lwd}{line width.} \item{\dots}{other arguments.} } \details{ The function can be used to visualize the results from a cumulative meta-analysis as obtained with the \code{\link{cumul}} function. The plot shows the model estimate (i.e., the estimated overall/average outcome) on the x-axis and some measure of heterogeneity on the y-axis in the cumulative order of the results in the \code{"cumul.rma"} object. By default, \mjseqn{\tau^2} is shown on the y-axis for a random-effects model and \mjseqn{I^2} otherwise, but one can also use argument \code{yaxis} to specify the measure of heterogeneity to place on the y-axis. The color gradient of the points/lines indicates the order of the cumulative results (by default, light gray at the beginning, dark gray at the end). A different set of colors can be chosen via the \code{cols} argument. See \sQuote{Examples}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=cumul.rma.uni]{cumul}} for the function to conduct a cumulative meta-analysis. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### random-effects model res <- rma(yi, vi, data=dat) ### cumulative meta-analysis (in the order of publication year) sav <- cumul(res, order=year) ### plot of model estimate and tau^2 over time plot(sav) ### illustrate some other plot options plot(sav, yaxis="I2", ylim=c(0,100), transf=exp, xlim=c(0.25,0.55), lwd=5, cex=1.5, cols=c("green","blue","red")) } \keyword{hplot} metafor/man/rma.mh.Rd0000644000176200001440000003731514746146216014157 0ustar liggesusers\name{rma.mh} \alias{rma.mh} \title{Meta-Analysis via the Mantel-Haenszel Method} \description{ Function to fit equal-effects models to \mjeqn{2 \times 2}{2x2} table and person-time data via the Mantel-Haenszel method. See below and the introduction to the \pkg{\link{metafor-package}} for more details on these models. \loadmathjax } \usage{ rma.mh(ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, measure="OR", data, slab, subset, add=1/2, to="only0", drop00=TRUE, correct=TRUE, level=95, verbose=FALSE, digits, \dots) } \arguments{ \emph{These arguments pertain to data input:} \item{ai}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper left cell). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{bi}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper right cell). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{ci}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower left cell). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{di}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower right cell). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{n1i}{vector with the group sizes or row totals (first group). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{n2i}{vector with the group sizes or row totals (second group). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{x1i}{vector with the number of events (first group). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{x2i}{vector with the number of events (second group). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{t1i}{vector with the total person-times (first group). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{t2i}{vector with the total person-times (second group). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{measure}{character string to specify the outcome measure to use for the meta-analysis. Possible options are \code{"RR"} for the (log transformed) risk ratio, \code{"OR"} for the (log transformed) odds ratio, \code{"RD"} for the risk difference, \code{"IRR"} for the (log transformed) incidence rate ratio, or \code{"IRD"} for the incidence rate difference.} \item{data}{optional data frame containing the data supplied to the function.} \item{slab}{optional vector with labels for the \mjseqn{k} studies.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be used for the analysis.} \emph{These arguments pertain to handling of zero cells/counts/frequencies:} \item{add}{non-negative number to specify the amount to add to zero cells or even counts when calculating the observed effect sizes of the individual studies. Can also be a vector of two numbers, where the first number is used in the calculation of the observed effect sizes and the second number is used when applying the Mantel-Haenszel method. See below and the documentation of the \code{\link{escalc}} function for more details.} \item{to}{character string to specify when the values under \code{add} should be added (either \code{"only0"}, \code{"all"}, \code{"if0all"}, or \code{"none"}). Can also be a character vector, where the first string again applies when calculating the observed effect sizes or outcomes and the second string when applying the Mantel-Haenszel method. See below and the documentation of the \code{\link{escalc}} function for more details.} \item{drop00}{logical to specify whether studies with no cases/events (or only cases) in both groups should be dropped when calculating the observed effect sizes or outcomes (the outcomes for such studies are set to \code{NA}). Can also be a vector of two logicals, where the first applies to the calculation of the observed effect sizes or outcomes and the second when applying the Mantel-Haenszel method. See below and the documentation of the \code{\link{escalc}} function for more details.} \emph{These arguments pertain to the model / computations and output:} \item{correct}{logical to specify whether to apply a continuity correction when computing the Cochran-Mantel-Haenszel test statistic.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (the default is 95; see \link[=misc-options]{here} for details).} \item{verbose}{logical to specify whether output should be generated on the progress of the model fitting (the default is \code{FALSE}).} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is 4. See also \link[=misc-options]{here} for further details on how to control the number of digits in the output.} \item{\dots}{additional arguments.} } \details{ \subsection{Specifying the Data}{ When the outcome measure is either the risk ratio (measure=\code{"RR"}), odds ratio (\code{measure="OR"}), or risk difference (\code{measure="RD"}), the studies are assumed to provide data in terms of \mjeqn{2 \times 2}{2x2} tables of the form: \tabular{lcccccc}{ \tab \ics \tab outcome 1 \tab \ics \tab outcome 2 \tab \ics \tab total \cr group 1 \tab \ics \tab \code{ai} \tab \ics \tab \code{bi} \tab \ics \tab \code{n1i} \cr group 2 \tab \ics \tab \code{ci} \tab \ics \tab \code{di} \tab \ics \tab \code{n2i}} where \code{ai}, \code{bi}, \code{ci}, and \code{di} denote the cell frequencies and \code{n1i} and \code{n2i} the row totals. For example, in a set of randomized clinical trials (RCTs) or cohort studies, group 1 and group 2 may refer to the treatment/exposed and placebo/control/non-exposed group, respectively, with outcome 1 denoting some event of interest (e.g., death) and outcome 2 its complement. In a set of case-control studies, group 1 and group 2 may refer to the group of cases and the group of controls, with outcome 1 denoting, for example, exposure to some risk factor and outcome 2 non-exposure. For these outcome measures, one needs to specify the cell frequencies via the \code{ai}, \code{bi}, \code{ci}, and \code{di} arguments (or alternatively, one can use the \code{ai}, \code{ci}, \code{n1i}, and \code{n2i} arguments). Alternatively, when the outcome measure is the incidence rate ratio (\code{measure="IRR"}) or the incidence rate difference (\code{measure="IRD"}), the studies are assumed to provide data in terms of tables of the form: \tabular{lcccc}{ \tab \ics \tab events \tab \ics \tab person-time \cr group 1 \tab \ics \tab \code{x1i} \tab \ics \tab \code{t1i} \cr group 2 \tab \ics \tab \code{x2i} \tab \ics \tab \code{t2i}} where \code{x1i} and \code{x2i} denote the number of events in the first and the second group, respectively, and \code{t1i} and \code{t2i} the corresponding total person-times at risk. } \subsection{Mantel-Haenszel Method}{ An approach for aggregating data of these types was suggested by Mantel and Haenszel (1959) and later extended by various authors (see references). The Mantel-Haenszel method provides a weighted estimate under an equal-effects model. The method is particularly advantageous when aggregating a large number of studies with small sample sizes (the so-called sparse data or increasing strata case). When analyzing odds ratios, the Cochran-Mantel-Haenszel (CMH) test (Cochran, 1954; Mantel & Haenszel, 1959) and Tarone's test for heterogeneity (Tarone, 1985) are also provided (by default, the CMH test statistic is computed with the continuity correction; this can be switched off with \code{correct=FALSE}). When analyzing incidence rate ratios, the Mantel-Haenszel (MH) test (Rothman et al., 2008) for person-time data is also provided (again, the \code{correct} argument controls whether the continuity correction is applied). When analyzing risk ratios, odds ratios, or incidence rate ratios, the printed results are given both in terms of the log and the raw units (for easier interpretation). } \subsection{Observed Effect Sizes or Outcomes of the Individual Studies}{ The Mantel-Haenszel method itself does not require the calculation of the observed effect sizes of the individual studies (e.g., the observed log odds ratios of the \mjseqn{k} studies) and directly makes use of the cell/event counts. Zero cells/events are not a problem (except in extreme cases, such as when one of the two outcomes never occurs in any of the \mjeqn{2 \times 2}{2x2} tables or when there are no events for one of the two groups in any of the tables). Therefore, it is unnecessary to add some constant to the cell/event counts when there are zero cells/events. However, for plotting and various other functions, it is necessary to calculate the observed effect sizes for the \mjseqn{k} studies. Here, zero cells/events can be problematic, so adding a constant value to the cell/event counts ensures that all \mjseqn{k} values can be calculated. The \code{add} and \code{to} arguments are used to specify what value should be added to the cell/event counts and under what circumstances when calculating the observed effect sizes and when applying the Mantel-Haenszel method. Similarly, the \code{drop00} argument is used to specify how studies with no cases/events (or only cases) in both groups should be handled. The documentation of the \code{\link{escalc}} function explains how the \code{add}, \code{to}, and \code{drop00} arguments work. If only a single value for these arguments is specified (as per default), then these values are used when calculating the observed effect sizes and no adjustment to the cell/event counts is made when applying the Mantel-Haenszel method. Alternatively, when specifying two values for these arguments, the first value applies when calculating the observed effect sizes and the second value when applying the Mantel-Haenszel method. Note that \code{drop00} is set to \code{TRUE} by default. Therefore, the observed effect sizes for studies where \code{ai=ci=0} or \code{bi=di=0} or studies where \code{x1i=x2i=0} are set to \code{NA}. When applying the Mantel-Haenszel method, such studies are not explicitly dropped (unless the second value of \code{drop00} argument is also set to \code{TRUE}), but this is practically not necessary, as they do not actually influence the results (assuming no adjustment to the cell/event counts are made when applying the Mantel-Haenszel method). } } \value{ An object of class \code{c("rma.mh","rma")}. The object is a list containing the following components: \item{beta}{aggregated log risk ratio, log odds ratio, risk difference, log rate ratio, or rate difference.} \item{se}{standard error of the aggregated value.} \item{zval}{test statistics of the aggregated value.} \item{pval}{corresponding p-value.} \item{ci.lb}{lower bound of the confidence interval.} \item{ci.ub}{upper bound of the confidence interval.} \item{QE}{test statistic of the test for heterogeneity.} \item{QEp}{correspinding p-value.} \item{MH}{Cochran-Mantel-Haenszel test statistic (\code{measure="OR"}) or Mantel-Haenszel test statistic (\code{measure="IRR"}).} \item{MHp}{corresponding p-value.} \item{TA}{test statistic of Tarone's test for heterogeneity (only when \code{measure="OR"}).} \item{TAp}{corresponding p-value (only when \code{measure="OR"}).} \item{k}{number of studies included in the analysis.} \item{yi, vi}{the vector of outcomes and corresponding sampling variances.} \item{fit.stats}{a list with the log-likelihood, deviance, AIC, BIC, and AICc values under the unrestricted and restricted likelihood.} \item{\dots}{some additional elements/values.} } \section{Methods}{ The results of the fitted model are formatted and printed with the \code{\link[=print.rma.mh]{print}} function. If fit statistics should also be given, use \code{\link[=summary.rma]{summary}} (or use the \code{\link[=fitstats.rma]{fitstats}} function to extract them). The \code{\link[=residuals.rma]{residuals}}, \code{\link[=rstandard.rma.mh]{rstandard}}, and \code{\link[=rstudent.rma.mh]{rstudent}} functions extract raw and standardized residuals. Leave-one-out diagnostics can be obtained with \code{\link[=leave1out.rma.mh]{leave1out}}. Forest, funnel, radial, \enc{L'Abbé}{L'Abbe}, and Baujat plots can be obtained with \code{\link[=forest.rma]{forest}}, \code{\link[=funnel.rma]{funnel}}, \code{\link[=radial.rma]{radial}}, \code{\link[=labbe.rma]{labbe}}, and \code{\link[=baujat.rma]{baujat}}. The \code{\link[=qqnorm.rma.mh]{qqnorm}} function provides normal QQ plots of the standardized residuals. One can also call \code{\link[=plot.rma.mh]{plot}} on the fitted model object to obtain various plots at once. A cumulative meta-analysis (i.e., adding one observation at a time) can be obtained with \code{\link[=cumul.rma.mh]{cumul}}. Other extractor functions include \code{\link[=coef.rma]{coef}}, \code{\link[=vcov.rma]{vcov}}, \code{\link[=logLik.rma]{logLik}}, \code{\link[=deviance.rma]{deviance}}, \code{\link[=AIC.rma]{AIC}}, and \code{\link[=BIC.rma]{BIC}}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Cochran, W. G. (1954). Some methods for strengthening the common \mjseqn{\chi^2} tests. \emph{Biometrics}, \bold{10}(4), 417--451. \verb{https://doi.org/10.2307/3001616} Greenland, S., & Robins, J. M. (1985). Estimation of a common effect parameter from sparse follow-up data. \emph{Biometrics}, \bold{41}(1), 55--68. \verb{https://doi.org/10.2307/2530643} Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. \emph{Journal of the National Cancer Institute}, \bold{22}(4), 719--748. \verb{https://doi.org/10.1093/jnci/22.4.719} Nurminen, M. (1981). Asymptotic efficiency of general noniterative estimators of common relative risk. \emph{Biometrika}, \bold{68}(2), 525--530. \verb{https://doi.org/10.1093/biomet/68.2.525} Robins, J., Breslow, N., & Greenland, S. (1986). Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models. \emph{Biometrics}, \bold{42}(2), 311--323. \verb{https://doi.org/10.2307/2531052 } Rothman, K. J., Greenland, S., & Lash, T. L. (2008). \emph{Modern epidemiology} (3rd ed.). Philadelphia: Lippincott Williams & Wilkins. Sato, T., Greenland, S., & Robins, J. M. (1989). On the variance estimator for the Mantel-Haenszel risk difference. \emph{Biometrics}, \bold{45}(4), 1323--1324. \verb{https://www.jstor.org/stable/2531784} Tarone, R. E. (1981). On summary estimators of relative risk. \emph{Journal of Chronic Diseases}, \bold{34}(9-10), 463--468. \verb{https://doi.org/10.1016/0021-9681(81)90006-0} Tarone, R. E. (1985). On heterogeneity tests based on efficient scores. \emph{Biometrika}, \bold{72}(1), 91--95. \verb{https://doi.org/10.1093/biomet/72.1.91} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.glmm}}, \code{\link{rma.peto}}, and \code{\link{rma.mv}} for other model fitting functions. } \examples{ ### meta-analysis of the (log) odds ratios using the Mantel-Haenszel method rma.mh(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### meta-analysis of the (log) risk ratios using the Mantel-Haenszel method rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) } \keyword{models} metafor/man/plot.infl.rma.uni.Rd0000644000176200001440000001435714746146216016253 0ustar liggesusers\name{plot.infl.rma.uni} \alias{plot.infl.rma.uni} \title{Plot Method for 'infl.rma.uni' Objects} \description{ Function to plot objects of class \code{"infl.rma.uni"}. \loadmathjax } \usage{ \method{plot}{infl.rma.uni}(x, plotinf=TRUE, plotdfbs=FALSE, dfbsnew=FALSE, logcov=TRUE, slab.style=1, las=0, pch=21, bg, bg.infl, col.na, \dots) } \arguments{ \item{x}{an object of class \code{"infl.rma.uni"} obtained with \code{\link[=influence.rma.uni]{influence}}.} \item{plotinf}{logical to specify whether the various case diagnostics should be plotted (the default is \code{TRUE}). Can also be a vector of up to 8 integers to specify which plots to draw. See \sQuote{Details} for the numbers corresponding to the various plots.} \item{plotdfbs}{logical to specify whether the DFBETAS values should be plotted (the default is \code{FALSE}). Can also be a vector of integers to specify for which coefficient(s) to plot the DFBETAS values.} \item{dfbsnew}{logical to specify whether a new device should be opened for plotting the DFBETAS values (the default is \code{FALSE}).} \item{logcov}{logical to specify whether the covariance ratios should be plotted on a log scale (the default is \code{TRUE}).} \item{slab.style}{integer to specify the style of the x-axis labels: 1 = study number, 2 = study label, 3 = abbreviated study label. Note that study labels, even when abbreviated, may be too long to fit in the margins (see argument \code{mar} for \code{\link{par}} to adjust the margin sizes).} \item{las}{integer between 0 and 3 to specify the alignment of the axis labels (see \code{\link{par}}). The most useful alternative to 0 is 3, so that the x-axis labels are drawn vertical to the axis.} \item{pch}{plotting symbol to use. By default, an open circle is used. See \code{\link{points}} for other options.} \item{bg}{optional character string to specify the background color of open plotting symbols. If unspecified, gray is used by default.} \item{bg.infl}{optional character string to specify the background color when the point is considered influential. If unspecified, red is used by default.} \item{col.na}{optional character string to specify the color for lines connecting two points with \code{NA} values in between. If unspecified, a light shade of gray is used by default.} \item{\dots}{other arguments.} } \details{ When \code{plotinf=TRUE}, the function plots the (1) externally standardized residuals, (2) DFFITS values, (3) Cook's distances, (4) covariance ratios, (5) leave-one-out \mjseqn{\tau^2} estimates, (6) leave-one-out (residual) heterogeneity test statistics, (7) hat values, and (8) weights. If \code{plotdfbs=TRUE}, the DFBETAS values are also plotted either after confirming the page change (if \code{dfbsnew=FALSE}) or on a separate device (if \code{dfbsnew=TRUE}). A case (which is typically synonymous with study) may be considered to be \sQuote{influential} if at least one of the following is true: \itemize{ \item The absolute DFFITS value is larger than \mjeqn{3 \times \sqrt{p/(k-p)}}{3*\sqrt(p/(k-p))}, where \mjseqn{p} is the number of model coefficients and \mjseqn{k} the number of cases. \item The lower tail area of a chi-square distribution with \mjseqn{p} degrees of freedom cut off by the Cook's distance is larger than 50\%. \item The hat value is larger than \mjeqn{3 \times (p/k)}{3*(p/k)}. \item Any DFBETAS value is larger than \mjseqn{1}. } Cases which are considered influential with respect to any of these measures are indicated by the color specified for the \code{bg.infl} argument (the default is \code{"red"}). The cut-offs described above are indicated in the plot with horizontal reference lines. In addition, on the plot of the externally standardized residuals, horizontal reference lines are drawn at -1.96, 0, and 1.96. On the plot of the covariance ratios, a horizontal reference line is drawn at 1. On the plot of leave-one-out \mjseqn{\tau^2} estimates, a horizontal reference line is drawn at the \mjseqn{\tau^2} estimate based on all cases. On the plot of leave-one-out (residual) heterogeneity test statistics, horizontal reference lines are drawn at the test statistic based on all cases and at \mjseqn{k-p}, the degrees of freedom of the test statistic. On the plot of the hat values, a horizontal reference line is drawn at \mjseqn{p/k}. Since the sum of the hat values is equal to \mjseqn{p}, the value \mjseqn{p/k} indicates equal hat values for all \mjseqn{k} cases. Finally, on the plot of weights, a horizontal reference line is drawn at \mjseqn{100/k}, corresponding to the value for equal weights (in \%) for all \mjseqn{k} cases. Note that all weights will automatically be equal to each other when using unweighted model fitting. Also, the hat values will be equal to the weights (except for their scaling) in models without moderators. The chosen cut-offs are (somewhat) arbitrary. Substantively informed judgment should always be used when examining the influence of each case on the results. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. \emph{Research Synthesis Methods}, \bold{1}(2), 112--125. \verb{https://doi.org/10.1002/jrsm.11} } \seealso{ \code{\link[=influence.rma.uni]{influence}} for the function to compute the various model diagnostics. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### compute the diagnostics inf <- influence(res) ### plot the values plot(inf) ### show the abbreviated study labels on the x-axis op <- par(mar=c(8,4,4,2)) plot(inf, slab.style=3, las=3) par(op) ### select which plots to show plot(inf, plotinf=1:4) ### plot the DFBETAS values plot(inf, plotinf=FALSE, plotdfbs=TRUE) } \keyword{hplot} metafor/man/formula.rma.Rd0000644000176200001440000000305114746146216015206 0ustar liggesusers\name{formula.rma} \alias{formula} \alias{formula.rma} \title{Extract the Model Formula from 'rma' Objects} \description{ Function to extract the model formula from objects of class \code{"rma"}. } \usage{ \method{formula}{rma}(x, type="mods", \dots) } \arguments{ \item{x}{an object of class \code{"rma"}.} \item{type}{the formula which should be returned; either \code{"mods"} (default), \code{"yi"} (in case argument \code{yi} was used to specify a formula), or \code{"scale"} (only for location-scale models).} \item{\dots}{other arguments.} } \value{ The requested formula. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which a model formula can be extracted. } \examples{ ### copy BCG vaccine data into 'dat' dat <- dat.bcg ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, slab=paste(author, ", ", year, sep="")) ### mixed-effects meta-regression model res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat) formula(res, type="mods") ### specify moderators via 'yi' argument res <- rma(yi ~ ablat + alloc, vi, data=dat) formula(res, type="yi") } \keyword{models} metafor/man/fitted.rma.Rd0000644000176200001440000000337514746146216015031 0ustar liggesusers\name{fitted.rma} \alias{fitted} \alias{fitted.rma} \title{Fitted Values for 'rma' Objects} \description{ Function to compute the fitted values for objects of class \code{"rma"}. } \usage{ \method{fitted}{rma}(object, \dots) } \arguments{ \item{object}{an object of class \code{"rma"}.} \item{\dots}{other arguments.} } \value{ A vector with the fitted values. } \note{ The \code{\link[=predict.rma]{predict}} function also provides standard errors and confidence intervals for the fitted values. Best linear unbiased predictions (BLUPs) that combine the fitted values based on the fixed effects and the estimated contributions of the random effects can be obtained with \code{\link[=blup.rma.uni]{blup}} (only for objects of class \code{"rma.uni"}). For objects not involving moderators, the fitted values are all identical to the estimated value of the model intercept. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=predict.rma]{predict}} for a function to computed predicted values and \code{\link[=blup.rma.uni]{blup}} for a function to compute BLUPs that combine the fitted values and predicted random effects. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### compute the fitted values fitted(res) } \keyword{models} metafor/man/selmodel.Rd0000644000176200001440000013260414746146216014576 0ustar liggesusers\name{selmodel} \alias{selmodel} \alias{selmodel.rma.uni} \title{Selection Models} \description{ Function to fit selection models. \loadmathjax } \usage{ selmodel(x, \dots) \method{selmodel}{rma.uni}(x, type, alternative="greater", prec, subset, delta, steps, decreasing=FALSE, verbose=FALSE, digits, control, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"}.} \item{type}{character string to specify the type of selection model. Possible options are \code{"beta"}, \code{"halfnorm"}, \code{"negexp"}, \code{"logistic"}, \code{"power"}, \code{"negexppow"}, \code{"stepfun"}, \code{"trunc"}, and \code{"truncest"}. Can be abbreviated.} \item{alternative}{character string to specify the sidedness of the hypothesis when testing the observed outcomes. Possible options are \code{"greater"} (the default), \code{"less"}, or \code{"two.sided"}. Can be abbreviated.} \item{prec}{optional character string to specify the measure of precision (only relevant for selection models that can incorporate this into the selection function). Possible options are \code{"sei"}, \code{"vi"}, \code{"ninv"}, or \code{"sqrtninv"}.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies to which the selection function applies.} \item{delta}{optional numeric vector (of the same length as the number of selection model parameters) to fix the corresponding \mjseqn{\delta} value(s). A \mjseqn{\delta} value can be fixed by setting the corresponding element of this argument to the desired value. A \mjseqn{\delta} value will be estimated if the corresponding element is set equal to \code{NA}.} \item{steps}{numeric vector of one or more values that can or must be specified for certain selection functions.} \item{decreasing}{logical to specify whether the \mjseqn{\delta} values in a step function selection model must be a monotonically decreasing function of the p-values (the default is \code{FALSE}). Only relevant when \code{type="stepfun"}.} \item{verbose}{logical to specify whether output should be generated on the progress of the model fitting (the default is \code{FALSE}). Can also be an integer. Values > 1 generate more verbose output. See \sQuote{Note}.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{control}{optional list of control values for the estimation algorithm. See \sQuote{Note}.} \item{\dots}{other arguments.} } \details{ Selection models are a general class of models that attempt to model the process by which the studies included in a meta-analysis may have been influenced by some form of publication bias. If a particular selection model is an adequate approximation for the underlying selection process, then the model provides estimates of the parameters of interest (e.g., the average true outcome and the amount of heterogeneity in the true outcomes) that are \sQuote{corrected} for this selection process (i.e., they are estimates of the parameters in the population of studies before any selection has taken place). The present function fits a variety of such selection models. To do so, one should pass an object fitted with the \code{\link{rma.uni}} function to the first argument. The model that will then be fitted is of the same form as the original model combined with the specific selection model chosen (see below for possible options). For example, if the original model was a random-effects model, then a random-effects selection model will be fitted. Similarly, if the original model included moderators, then they will also be accounted for in the selection model fitted. Model fitting is done via maximum likelihood (ML) estimation over the fixed- and random-effects parameters (e.g., \mjseqn{\mu} and \mjseqn{\tau^2} in a random-effects model) and the selection model parameters. Argument \code{type} determines the specific type of selection model that should be fitted. Many selection models are based on the idea that selection may haven taken place based on the p-values of the studies. In particular, let \mjseqn{y_i} and \mjseqn{v_i} denote the observed outcome and the corresponding sampling variance of the \mjeqn{i\text{th}}{ith} study. Then \mjseqn{z_i = y_i / \sqrt{v_i}} is the (Wald-type) test statistic for testing the null hypothesis \mjeqn{\text{H}_0{:}\; \theta_i = 0}{H_0: \theta_i = 0} and \mjseqn{p_i = 1 - \Phi(z_i)} (if \code{alternative="greater"}), \mjseqn{p_i = \Phi(z_i)} (if \code{alternative="less"}), or \mjseqn{p_i = 2(1 - \Phi(|z_i|))} (if \code{alternative="two.sided"}) the corresponding (one- or two-sided) p-value, where \mjseqn{\Phi()} denotes the cumulative distribution function of a standard normal distribution. Finally, let \mjseqn{w(p_i)} denote some function that specifies the relative likelihood of selection given the p-value of a study. If \mjseqn{w(p_i) > w(p_{i'})} when \mjseqn{p_i < p_{i'}} (i.e., \mjseqn{w(p_i)} is larger for smaller p-values), then \code{alternative="greater"} implies selection in favor of increasingly significant positive outcomes, \code{alternative="less"} implies selection in favor of increasingly significant negative outcomes, and \code{alternative="two.sided"} implies selection in favor of increasingly significant outcomes regardless of their direction. \subsection{Beta Selection Model}{ When \code{type="beta"}, the function can be used to fit the \sQuote{beta selection model} by Citkowicz and Vevea (2017). For this model, the selection function is given by \mjsdeqn{w(p_i) = p_i^{\delta_1 - 1} \times (1 - p_i)^{\delta_2 - 1}} where \mjseqn{\delta_1 > 0} and \mjseqn{\delta_2 > 0}. The null hypothesis \mjeqn{\text{H}_0{:}\; \delta_1 = \delta_2 = 1}{H_0: \delta_1 = \delta_2 = 1} represents the case where there is no selection according to the model. \ifelse{text}{}{The figure below illustrates with some examples how the relative likelihood of selection can depend on the p-value for various combinations of \mjseqn{\delta_1} and \mjseqn{\delta_2}.} Note that the model allows for a non-monotonic selection function. \if{html}{\figure{selmodel-beta.png}{options: width=600}} \if{latex}{\figure{selmodel-beta.pdf}{options: width=4in}} As suggested by Pustejovsky (2024), the model can be modified by truncating p-values smaller or larger than certain thresholds. The modified selection function is then given by \mjsdeqn{w(p_i) = \tilde{p}_i^{\delta_1 - 1} \times (1 - \tilde{p}_i)^{\delta_2 - 1}} where \mjseqn{\tilde{p}_i = \text{min}(\text{max}(\alpha_1, p_i), \alpha_2)}. To fit such a selection model, one should specify the two \mjseqn{\alpha} values (with \mjseqn{0 < \alpha < 1}) via the \code{steps} argument. } \subsection{Half-Normal, Negative-Exponential, Logistic, and Power Selection Models}{ Preston et al. (2004) suggested the first three of the following selection functions: \tabular{lllll}{ \bold{name} \tab \ics \tab \bold{\code{type}} \tab \ics \tab \bold{selection function} \cr half-normal \tab \ics \tab \code{"halfnorm"} \tab \ics \tab \mjseqn{w(p_i) = \exp(-\delta \times p_i^2)} \cr negative-exponential \tab \ics \tab \code{"negexp"} \tab \ics \tab \mjseqn{w(p_i) = \exp(-\delta \times p_i)} \cr logistic \tab \ics \tab \code{"logistic"} \tab \ics \tab \mjseqn{w(p_i) = 2 \times \exp(-\delta \times p_i) / (1 + \exp(-\delta \times p_i))} \cr power \tab \ics \tab \code{"power"} \tab \ics \tab \mjseqn{w(p_i) = (1-p_i)^\delta}} The power selection model is added here as it has similar properties as the models suggested by Preston et al. (2004). For all models, assume \mjseqn{\delta \ge 0}, so that all functions imply a monotonically decreasing relationship between the p-value and the selection probability. For all functions, \mjeqn{\text{H}_0{:}\; \delta = 0}{H_0: \delta = 0} implies no selection. \ifelse{text}{}{The figure below shows the relative likelihood of selection as a function of the p-value for \mjseqn{\delta = 0} and for the various selection functions when \mjseqn{\delta = 6}.} \if{html}{\figure{selmodel-preston.png}{options: width=600}} \if{latex}{\figure{selmodel-preston.pdf}{options: width=4in}} Here, these functions are extended to allow for the possibility that \mjseqn{w(p_i) = 1} for p-values below a certain significance threshold denoted by \mjseqn{\alpha} (e.g., to model the case that the relative likelihood of selection is equally high for all significant studies but decreases monotonically for p-values above the significance threshold). To fit such a selection model, one should specify the \mjseqn{\alpha} value (with \mjseqn{0 < \alpha < 1}) via the \code{steps} argument. There should be at least one observed p-value below and one observed p-value above the chosen threshold to fit these models. The selection functions are then given by \mjseqn{\text{min}(1, w(p_i) / w(\alpha))}. \ifelse{text}{}{The figure below shows some examples of the relative likelihood of selection when \code{steps=.05}.} \if{html}{\figure{selmodel-preston-step.png}{options: width=600}} \if{latex}{\figure{selmodel-preston-step.pdf}{options: width=4in}} Preston et al. (2004) also suggested selection functions where the relatively likelihood of selection not only depends on the p-value, but also the precision (e.g., standard error) of the estimate (if two studies have similar p-values, it may be plausible to assume that the larger / more precise study has a higher probability of selection). These selection functions (plus the corresponding power function) are given by: \tabular{lllll}{ \bold{name} \tab \ics \tab \bold{\code{type}} \tab \ics \tab \bold{selection function} \cr half-normal \tab \ics \tab \code{"halfnorm"} \tab \ics \tab \mjseqn{w(p_i) = \exp(-\delta \times \mathrm{prec}_i \times p_i^2)} \cr negative-exponential \tab \ics \tab \code{"negexp"} \tab \ics \tab \mjseqn{w(p_i) = \exp(-\delta \times \mathrm{prec}_i \times p_i)} \cr logistic \tab \ics \tab \code{"logistic"} \tab \ics \tab \mjseqn{w(p_i) = 2 \times \exp(-\delta \times \mathrm{prec}_i \times p_i) / (1 + \exp(-\delta \times \mathrm{prec}_i \times p_i))} \cr power \tab \ics \tab \code{"power"} \tab \ics \tab \mjseqn{w(p_i) = (1-p_i)^{\delta \times \mathrm{prec}_i}}} where \mjseqn{\mathrm{prec}_i = \sqrt{v_i}} (i.e., the standard error of the \mjeqn{i\text{th}}{ith} study) according to Preston et al. (2004). Here, this idea is generalized to allow the user to specify the specific measure of precision to use (via the \code{prec} argument). Possible options are: \itemize{ \item \code{prec="sei"} for the standard errors, \item \code{prec="vi"} for the sampling variances, \item \code{prec="ninv"} for the inverse of the sample sizes, \item \code{prec="sqrtninv"} for the inverse square root of the sample sizes. } Using some function of the sample sizes as a measure of precision is only possible when information about the sample sizes is actually stored within the object passed to the \code{selmodel} function. See \sQuote{Note}. Note that \mjseqn{\mathrm{prec}_i} is really a measure of imprecision (with higher values corresponding to lower precision). Also, regardless of the specific measure chosen, the values are actually rescaled with \mjseqn{\mathrm{prec}_i = \mathrm{prec}_i / \max(\mathrm{prec}_i)} inside of the function, such that \mjseqn{\mathrm{prec}_i = 1} for the least precise study and \mjseqn{\mathrm{prec}_i < 1} for the remaining studies (the rescaling does not actually change the fit of the model, it only helps to improve the stability of model fitting algorithm). \ifelse{text}{}{The figure below shows some examples of the relative likelihood of selection using these selection functions for two different precision values (note that lower values of \mjseqn{\mathrm{prec}} lead to a higher likelihood of selection).} \if{html}{\figure{selmodel-preston-prec.png}{options: width=600}} \if{latex}{\figure{selmodel-preston-prec.pdf}{options: width=4in}} One can also use the \code{steps} argument as described above in combination with these selection functions (studies with p-values below the chosen threshold then have \mjseqn{w(p_i) = 1} regardless of their exact p-value or precision). } \subsection{Negative Exponential Power Selection Model}{ As an extension of the half-normal and negative-exponential models, one can also choose \code{type="negexppow"} for a \sQuote{negative exponential power selection model}. The selection function for this model is given by \mjsdeqn{w(p_i) = \exp(-\delta_1 \times p_i^{1/\delta_2})} where \mjseqn{\delta_1 \ge 0} and \mjseqn{\delta_2 \ge 0} (see Begg & Mazumdar, 1994, although here a different parameterization is used, such that increasing \mjseqn{\delta_2} leads to more severe selection). \ifelse{text}{}{The figure below shows some examples of this selection function when holding \mjseqn{\delta_1} constant while increasing \mjseqn{\delta_2}.} \if{html}{\figure{selmodel-negexppow.png}{options: width=600}} \if{latex}{\figure{selmodel-negexppow.pdf}{options: width=4in}} This model affords greater flexibility in the shape of the selection function, but requires the estimation of the additional power parameter (the half-normal and negative-exponential models are therefore special cases when fixing \mjseqn{\delta_2} to 0.5 or 1, respectively). \mjeqn{\text{H}_0{:}\; \delta_1 = 0}{H_0: \delta_1 = 0} again implies no selection, but so does \mjeqn{\text{H}_0{:}\; \delta_2 = 0}{H_0: \delta_2 = 0}. One can again use the \code{steps} argument to specify a single significance threshold, \mjseqn{\alpha}, so that \mjseqn{w(p_i) = 1} for p-values below this threshold and otherwise \mjseqn{w(p_i)} follows the selection function as given above. One can also use the \code{prec} argument to specify a measure of precision in combination with this model, which leads to the selection function \mjsdeqn{w(p_i) = \exp(-\delta_1 \times \mathrm{prec}_i \times p_i^{1/\delta_2})} and hence is the logical extension of the negative exponential power selection model that also incorporates some measure of precision into the selection process. } \subsection{Step Function Selection Models}{ When \code{type="stepfun"}, the function can be used to fit \sQuote{step function models} as described by Iyengar and Greenhouse (1988), Hedges (1992), Vevea and Hedges (1995), Vevea and Woods (2005), and others. For these models, one must specify one or multiple values via the \code{steps} argument, which define intervals in which the relative likelihood of selection is constant. Let \mjsdeqn{\alpha_1 < \alpha_2 < \ldots < \alpha_c} denote these cutpoints sorted in increasing order, with the constraint that \mjseqn{\alpha_c = 1} (if the highest value specified via \code{steps} is not 1, the function will automatically add this cutpoint), and define \mjseqn{\alpha_0 = 0}. The selection function is then given by \mjseqn{w(p_i) = \delta_j} for \mjseqn{\alpha_{j-1} < p_i \le \alpha_j} where \mjseqn{\delta_j \ge 0}. To make the model identifiable, we set \mjseqn{\delta_1 = 1}. The \mjseqn{\delta_j} values therefore denote the likelihood of selection in the various intervals relative to the interval for p-values between 0 and \mjseqn{\alpha_1}. Hence, the null hypothesis \mjeqn{\text{H}_0{:}\; \delta_j = 1}{H_0: \delta_j = 1} for \mjseqn{j = 1, \ldots, c} implies no selection. For example, if \code{steps=c(.05, .10, .50, 1)}, then \mjseqn{\delta_2} is the likelihood of selection for p-values between .05 and .10, \mjseqn{\delta_3} is the likelihood of selection for p-values between .10 and .50, and \mjseqn{\delta_4} is the likelihood of selection for p-values between .50 and 1 relative to the likelihood of selection for p-values between 0 and .05. \ifelse{text}{}{The figure below shows the corresponding selection function for some arbitrarily chosen \mjseqn{\delta_j} values.} \if{html}{\figure{selmodel-stepfun.png}{options: width=600}} \if{latex}{\figure{selmodel-stepfun.pdf}{options: width=4in}} There should be at least one observed p-value within each interval to fit this model. If there are no p-values between \mjseqn{\alpha_0 = 0} and \mjseqn{\alpha_1} (i.e., within the first interval for which \mjseqn{\delta_1 = 1}), then estimates of \mjseqn{\delta_2, \ldots, \delta_c} will try to drift to infinity. If there are no p-values between \mjseqn{\alpha_{j-1}} and \mjseqn{\alpha_j} for \mjseqn{j = 2, \ldots, c}, then \mjseqn{\delta_j} will try to drift to zero. In either case, results should be treated with great caution. A common practice is then to collapse and/or adjust the intervals until all intervals contain at least one study. By setting \code{ptable=TRUE}, the function simply returns the p-value table and does not attempt any model fitting. Note that when \code{alternative="greater"} or \code{alternative="less"} (i.e., when we assume that the relative likelihood of selection is not only related to the p-values of the studies, but also the directionality of the outcomes), then it would usually make sense to divide conventional levels of significance (e.g., .05) by 2 before passing these values to the \code{steps} argument. For example, if we think that studies were selected for positive outcomes that are significant at two-tailed \mjseqn{\alpha = .05}, then we should use \code{alternative="greater"} in combination with \code{steps=c(.025, 1)}. When specifying a single cutpoint in the context of a random-effects model (typically \code{steps=c(.025, 1)} with either \code{alternative="greater"} or \code{alternative="less"}), this model is sometimes called the \sQuote{three-parameter selection model} (3PSM), corresponding to the parameters \mjseqn{\mu}, \mjseqn{\tau^2}, and \mjseqn{\delta_2} (e.g., Carter et al., 2019; McShane et al., 2016; Pustejovsky & Rodgers, 2019). The same idea but in the context of an equal-effects model was also described by Iyengar and Greenhouse (1988). Note that \mjseqn{\delta_j} (for \mjseqn{j = 2, \ldots, c}) can be larger than 1 (implying a greater likelihood of selection for p-values in the corresponding interval relative to the first interval). With \code{control=list(delta.max=1)}, one can enforce that the likelihood of selection for p-values above the first cutpoint can never be greater than the likelihood of selection for p-values below it. This constraint should be used with caution, as it may force \mjseqn{\delta_j} estimates to fall on the boundary of the parameter space. Alternatively, one can set \code{decreasing=TRUE}, in which case the \mjseqn{\delta_j} values must be a monotonically decreasing function of the p-values (which also forces \mjseqn{\delta_j \le 1}). This feature should be considered experimental. One of the challenges when fitting this model with many cutpoints is the large number of parameters that need to be estimated (which is especially problematic when the number of studies is small). An alternative approach suggested by Vevea and Woods (2005) is to fix the \mjseqn{\delta_j} values to some a priori chosen values instead of estimating them. One can then conduct a sensitivity analysis by examining the results (e.g., the estimates of \mjseqn{\mu} and \mjseqn{\tau^2} in a random-effects model) for a variety of different sets of \mjseqn{\delta_j} values (reflecting more or less severe forms of selection). This can be done by specifying the \mjseqn{\delta_j} values via the \code{delta} argument. Table 1 in Vevea and Woods (2005) provides some illustrative examples of moderate and severe selection functions for one- and two-tailed selection. The code below creates a data frame that contains these functions. \preformatted{tab <- data.frame( steps = c(0.005, 0.01, 0.05, 0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90, 0.95, 0.99, 0.995, 1), delta.mod.1 = c(1, 0.99, 0.95, 0.80, 0.75, 0.65, 0.60, 0.55, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50), delta.sev.1 = c(1, 0.99, 0.90, 0.75, 0.60, 0.50, 0.40, 0.35, 0.30, 0.25, 0.10, 0.10, 0.10, 0.10), delta.mod.2 = c(1, 0.99, 0.95, 0.90, 0.80, 0.75, 0.60, 0.60, 0.75, 0.80, 0.90, 0.95, 0.99, 1.00), delta.sev.2 = c(1, 0.99, 0.90, 0.75, 0.60, 0.50, 0.25, 0.25, 0.50, 0.60, 0.75, 0.90, 0.99, 1.00))} \ifelse{text}{}{The figure below shows the corresponding selection functions.} \if{html}{\figure{selmodel-stepfun-fixed.png}{options: width=600}} \if{latex}{\figure{selmodel-stepfun-fixed.pdf}{options: width=4in}} These four functions are \dQuote{merely examples and should not be regarded as canonical} (Vevea & Woods, 2005). } \subsection{Truncated Distribution Selection Model}{ When \code{type="trunc"}, the model assumes that the relative likelihood of selection depends not on the p-value but on the value of the observed effect size or outcome of a study. Let \mjseqn{y_c} denote a single cutpoint (which can be specified via argument \code{steps} and which is assumed to be 0 when unspecified). Let \mjtdeqn{w(y_i) = \left\\\{ \begin{array}{cc} 1 & \text{if} \; y_i > y_c \\\ \delta_1 & \text{if} \; y_i \le y_c \end{array} \right.}{w(y_i) = \left\\\\\\\{ \begin{matrix} \; 1 & \text{if} \; y_i > y_c \\\\\ \; \delta_1 & \text{if} \; y_i \le y_c \\\\\ \end{matrix} \right.}{w(y_i > y_c) = 1 and w(y_i \le y_c) = \delta_1} denote the selection function when \code{alternative="greater"} and \mjtdeqn{w(y_i) = \left\\\{ \begin{array}{cc} 1 & \text{if} \; y_i < y_c \\\ \delta_1 & \text{if} \; y_i \ge y_c \end{array} \right.}{w(y_i) = \left\\\\\\\{ \begin{matrix} \; 1 & \text{if} \; y_i < y_c \\\\\ \; \delta_1 & \text{if} \; y_i \ge y_c \\\\\ \end{matrix} \right.}{w(y_i < y_c) = 1 and w(y_i >= y_c) = \delta_1} when \code{alternative="less"} (note that \code{alternative="two.sided"} is not an option for this type of selection model). Therefore, when \code{alternative="greater"}, \mjseqn{\delta_1} denotes the likelihood of selection for observed effect sizes or outcomes that fall below the chosen cutpoint relative to those that fall above it (and vice-versa when \code{alternative="less"}). Hence, the null hypothesis \mjeqn{\text{H}_0{:}\; \delta_1 = 1}{H_0: \delta_1 = 1} implies no selection. In principle, it is also possible to obtain a maximum likelihood estimate of the cutpoint. For this, one can set \code{type="truncest"}, in which case the selection function is given by \mjtdeqn{w(y_i) = \left\\\{ \begin{array}{cc} 1 & \text{if} \; y_i > \delta_2 \\\ \delta_1 & \text{if} \; y_i \le \delta_2 \end{array} \right.}{w(y_i) = \left\\\\\\\{ \begin{matrix} \; 1 & \text{if} \; y_i > \delta_2 \\\\\ \; \delta_1 & \text{if} \; y_i \le \delta_2 \\\\\ \end{matrix} \right.}{w(y_i > \delta_2) = 1 and w(y_i \le \delta_2) = \delta_1} when \code{alternative="greater"} and analogously when \code{alternative="less"}. Therefore, instead of specifying the cutpoint via the \code{steps} argument, it is estimated via \mjseqn{\delta_2}. Note that estimating both \mjseqn{\delta_1} and \mjseqn{\delta_2} simultaneously is typically very difficult (the likelihood surface is often quite rugged with multiple local optima) and will require a large number of studies. The implementation of this selection function should be considered experimental. Models similar to those described above were proposed by Rust et al. (1990) and Formann (2008), but made various simplifying assumptions (e.g., Formann assumed \mjseqn{\delta_1 = 0}) and did not account for the heteroscedastic nature of the sampling variances of the observed effect sizes or outcomes, nor did they allow for heterogeneity in the true effects or the influence of moderators. } \subsection{Subsets of Studies Affected and Unaffected by Publication Bias}{ In some meta-analyses, some of the studies are known (or are assumed) to be free of publication bias (e.g., preregistered studies). In this case, the selection function should only apply to a subset of the studies (e.g., the non-registered studies). Using the \code{subset} argument, one can specify to which subset of studies the selection function should apply (note though that all studies are still included in the model fitting). The argument can either be a logical or a numeric vector, but note that what is specified is applied to the set of data originally passed to the \code{\link{rma.uni}} function, so a logical vector must be of the same length as the original dataset (and if the \code{data} argument was used in the original model fit, then any variables specified in creating a logical vector will be searched for within this data frame first). Any subsetting and removal of studies with missing values is automatically applied to the variables specified via these arguments. } } \value{ An object of class \code{c("rma.uni","rma")}. The object is a list containing the same components as a regular \code{c("rma.uni","rma")} object, but the parameter estimates are based on the selection model. Most importantly, the following elements are modified based on the selection model: \item{beta}{estimated coefficients of the model.} \item{se}{standard errors of the coefficients.} \item{zval}{test statistics of the coefficients.} \item{pval}{corresponding p-values.} \item{ci.lb}{lower bound of the confidence intervals for the coefficients.} \item{ci.ub}{upper bound of the confidence intervals for the coefficients.} \item{vb}{variance-covariance matrix of the estimated coefficients.} \item{tau2}{estimated amount of (residual) heterogeneity. Always \code{0} when \code{method="EE"}.} \item{se.tau2}{standard error of the estimated amount of (residual) heterogeneity.} In addition, the object contains the following additional elements: \item{delta}{estimated selection model parameter(s).} \item{se.delta}{corresponding standard error(s).} \item{zval.delta}{corresponding test statistic(s).} \item{pval.delta}{corresponding p-value(s).} \item{ci.lb.delta}{lower bound of the confidence intervals for the parameter(s).} \item{ci.ub.delta}{upper bound of the confidence intervals for the parameter(s).} \item{LRT}{test statistic of the likelihood ratio test for the selection model parameter(s).} \item{LRTdf}{degrees of freedom for the likelihood ratio test.} \item{LRTp}{p-value for the likelihood ratio test.} \item{LRT.tau2}{test statistic of the likelihood ratio test for testing \mjeqn{\text{H}_0{:}\; \tau^2 = 0}{H_0: \tau^2 = 0} (\code{NA} when fitting an equal-effects model).} \item{LRTp.tau2}{p-value for the likelihood ratio test.} \item{ptable}{frequency table for the observed p-values falling into the intervals defined by the \code{steps} argument (\code{NA} when \code{steps} is not specified).} \item{\dots}{some additional elements/values.} } \section{Methods}{ The results of the fitted model are formatted and printed with the \code{\link[=print.rma.uni]{print}} function. The estimated selection function can be drawn with \code{\link[=plot.rma.uni.selmodel]{plot}}. The \code{\link[=profile.rma.uni.selmodel]{profile}} function can be used to obtain a plot of the log-likelihood as a function of \mjseqn{\tau^2} and/or the selection model parameter(s) of the model. Corresponding confidence intervals can be obtained with the \code{\link[=confint.rma.uni.selmodel]{confint}} function. } \note{ Model fitting is done via numerical optimization over the model parameters. By default, \code{\link{optim}} with method \code{"BFGS"} is used for the optimization. One can also chose a different optimizer from \code{\link{optim}} via the \code{control} argument (e.g., \code{control=list(optimizer="Nelder-Mead")}). Besides one of the methods from \code{\link{optim}}, one can also choose the quasi-Newton algorithm in \code{\link{nlminb}}, one of the optimizers from the \code{minqa} package (i.e., \code{\link[minqa]{uobyqa}}, \code{\link[minqa]{newuoa}}, or \code{\link[minqa]{bobyqa}}), one of the (derivative-free) algorithms from the \code{\link[nloptr]{nloptr}} package, the Newton-type algorithm implemented in \code{\link{nlm}}, the various algorithms implemented in the \code{dfoptim} package (\code{\link[dfoptim]{hjk}} for the Hooke-Jeeves, \code{\link[dfoptim]{nmk}} for the Nelder-Mead, and \code{\link[dfoptim]{mads}} for the Mesh Adaptive Direct Searches algorithm), the quasi-Newton type optimizers \code{\link[ucminf]{ucminf}} and \code{\link[lbfgsb3c]{lbfgsb3c}} and the subspace-searching simplex algorithm \code{\link[subplex]{subplex}} from the packages of the same name, the Barzilai-Borwein gradient decent method implemented in \code{\link[BB]{BBoptim}}, the \code{\link[optimx]{Rcgmin}} and \code{\link[optimx]{Rvmmin}} optimizers, or the parallelized version of the L-BFGS-B algorithm implemented in \code{\link[optimParallel]{optimParallel}} from the package of the same name. The optimizer name must be given as a character string (i.e., in quotes). Additional control parameters can be specified via the \code{control} argument (e.g., \code{control=list(maxit=1000, reltol=1e-8)}). For \code{\link[nloptr]{nloptr}}, the default is to use the BOBYQA implementation from that package with a relative convergence criterion of \code{1e-8} on the function value (i.e., log-likelihood), but this can be changed via the \code{algorithm} and \code{ftop_rel} arguments (e.g., \code{control=list(optimizer="nloptr", algorithm="NLOPT_LN_SBPLX", ftol_rel=1e-6)}). For \code{\link[optimParallel]{optimParallel}}, the control argument \code{ncpus} can be used to specify the number of cores to use for the parallelization (e.g., \code{control=list(optimizer="optimParallel", ncpus=2)}). With \code{parallel::detectCores()}, one can check on the number of available cores on the local machine. All selection models (except for \code{type="stepfun"}, \code{type="trunc"}, and \code{type="truncest"}) require repeated evaluations of an integral, which is done via adaptive quadrature as implemented in the \code{\link{integrate}} function. One can adjust the arguments of the \code{integrate} function via control element \code{intCtrl}, which is a list of named arguments (e.g., \code{control = list(intCtrl = list(rel.tol=1e-4, subdivisions=100))}). The starting values for the fixed effects, the \mjseqn{\tau^2} value (only relevant in random/mixed-effects selection models), and the \mjseqn{\delta} parameter(s) are chosen automatically by the function, but one can also set the starting values manually via the \code{control} argument by specifying a vector of the appropriate length for \code{beta.init}, a single value for \code{tau2.init}, and a vector of the appropriate length for \code{delta.init}. By default, the \mjseqn{\delta} parameter(s) are constrained to a certain range, which improves the stability of the optimization algorithm. For all models, the maximum is set to \code{100} and the minimum to \code{0} (except for \code{type="beta"}, where the minimum for both parameters is \code{1e-5}, and when \code{type="stepfun"} with \code{decreasing=TRUE}, in which case the maximum is set to 1). These defaults can be changed via the \code{control} argument by specifying a scalar or a vector of the appropriate length for \code{delta.min} and/or \code{delta.max}. For example, \code{control=list(delta.max=Inf)} lifts the upper bound. Note that when a parameter estimate drifts close to its imposed bound, a warning will be issued. A difficulty with fitting the beta selection model (i.e., \code{type="beta"}) is the behavior of \mjseqn{w(p_i)} when \mjseqn{p_i = 0} or \mjseqn{p_i = 1}. When \mjseqn{\delta_1 < 1} or \mjseqn{\delta_2 < 1}, then this leads to selection weights equal to infinity, which causes problems when computing the likelihood function. Following Citkowicz and Vevea (2017), this problem can be avoided by censoring p-values too close to 0 or 1. The specific censoring point can be set via the \code{pval.min} element of the \code{control} argument. The default for this selection model is \code{control=list(pval.min=1e-5)}. A similar issue arises for the power selection model (i.e., \code{type="power"}) when \mjseqn{p_i = 1}. Again, \code{pval.min=1e-5} is used to circumvent this issue. For all other selection models, the default is \code{pval.min=0}. The variance-covariance matrix corresponding to the estimates of the fixed effects, the \mjseqn{\tau^2} value (only relevant in random/mixed-effects selection models), and the \mjseqn{\delta} parameter(s) is obtained by inverting the Hessian, which is numerically approximated using the \code{\link[numDeriv]{hessian}} function from the \code{numDeriv} package. This may fail, leading to \code{NA} values for the standard errors and hence test statistics, p-values, and confidence interval bounds. One can set control argument \code{hessianCtrl} to a list of named arguments to be passed on to the \code{method.args} argument of the \code{\link[numDeriv]{hessian}} function (the default is \code{control=list(hessianCtrl=list(r=6))}). One can also set \code{control=list(hesspack="pracma")} or \code{control=list(hesspack="calculus")} in which case the \code{pracma::\link[pracma]{hessian}} or \code{calculus::\link[calculus]{hessian}} functions from the respective packages are used instead for approximating the Hessian. When \mjseqn{\tau^2} is estimated to be smaller than either \mjeqn{10^{-4}}{10^(-4)} or \mjseqn{\min(v_1, \ldots, v_k)/10} (where \mjseqn{v_i} denotes the sampling variances of the \mjeqn{i\text{th}}{ith} study), then \mjseqn{\tau^2} is effectively treated as zero for computing the standard errors (which helps to avoid numerical problems in approximating the Hessian). This cutoff can be adjusted via the \code{tau2tol} control argument (e.g., \code{control=list(tau2tol=0)} to switch off this behavior). Similarly, for \code{type="beta"} and \code{type="stepfun"}, \mjseqn{\delta} estimates below \mjeqn{10^{-4}}{10^(-4)} are treated as effectively zero for computing the standard errors. In this case, the corresponding standard errors are \code{NA}. This cutoff can be adjusted via the \code{deltatol} control argument (e.g., \code{control=list(deltatol=0)} to switch off this behavior). Information on the progress of the optimization algorithm can be obtained by setting \code{verbose=TRUE} (this won't work when using parallelization). One can also set \code{verbose} to an integer (\code{verbose=2} yields even more information and \code{verbose=3} also show the progress visually by drawing the selection function as the optimization proceeds). For selection functions where the \code{prec} argument is relevant, using a function of the sample sizes as the measure of precision (i.e., \code{prec="ninv"} or \code{prec="sqrtninv"}) is only possible when information about the sample sizes is actually stored within the object passed to the \code{selmodel} function. That should automatically be the case when the observed effect sizes or outcomes were computed with the \code{\link{escalc}} function or when the observed effect sizes or outcomes were computed within the model fitting function. On the other hand, this will not be the case when \code{\link{rma.uni}} was used together with the \code{yi} and \code{vi} arguments and the \code{yi} and \code{vi} values were \emph{not} computed with \code{\link{escalc}}. In that case, it is still possible to pass information about the sample sizes to the \code{\link{rma.uni}} function (e.g., use \code{rma.uni(yi, vi, ni=ni, data=dat)}, where data frame \code{dat} includes a variable called \code{ni} with the sample sizes). Finally, the automatic rescaling of the chosen precision measure can be switched off by setting \code{scaleprec=FALSE}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. \emph{Biometrics}, \bold{50}(4), 1088--1101. \verb{https://doi.org/10.2307/2533446} Carter, E. C., \enc{Schönbrodt}{Schoenbrodt}, F. D., Gervais, W. M., & Hilgard, J. (2019). Correcting for bias in psychology: A comparison of meta-analytic methods. \emph{Advances in Methods and Practices in Psychological Science}, \bold{2}(2), 115--144. \verb{https://doi.org/10.1177/2515245919847196} Citkowicz, M., & Vevea, J. L. (2017). A parsimonious weight function for modeling publication bias. \emph{Psychological Methods}, \bold{22}(1), 28--41. \verb{https://doi.org/10.1037/met0000119} Formann, A. K. (2008). Estimating the proportion of studies missing for meta-analysis due to publication bias. \emph{Contemporary Clinical Trials}, \bold{29}(5), 732--739. \verb{https://doi.org/10.1016/j.cct.2008.05.004} Hedges, L. V. (1992). Modeling publication selection effects in meta-analysis. \emph{Statistical Science}, \bold{7}(2), 246--255. \verb{https://doi.org/10.1214/ss/1177011364} Iyengar, S., & Greenhouse, J. B. (1988). Selection models and the file drawer problem. \emph{Statistical Science}, \bold{3}(1), 109--117. \verb{https://doi.org/10.1214/ss/1177013012} McShane, B. B., Bockenholt, U., & Hansen, K. T. (2016). Adjusting for publication bias in meta-analysis: An evaluation of selection methods and some cautionary notes. \emph{Perspectives on Psychological Science}, \bold{11}(5), 730--749. \verb{https://doi.org/10.1177/1745691616662243} Preston, C., Ashby, D., & Smyth, R. (2004). Adjusting for publication bias: Modelling the selection process. \emph{Journal of Evaluation in Clinical Practice}, \bold{10}(2), 313--322. \verb{https://doi.org/10.1111/j.1365-2753.2003.00457.x} Pustejovsky, J. E., & Rodgers, M. A. (2019). Testing for funnel plot asymmetry of standardized mean differences. \emph{Research Synthesis Methods}, \bold{10}(1), 57--71. \verb{https://doi.org/10.1002/jrsm.1332} Pustejovsky, J. E. (2024). Beta-density selection models for meta-analysis. \verb{https://jepusto.com/posts/beta-density-selection-models/} Rust, R. T., Lehmann, D. R. & Farley, J. U. (1990). Estimating publication bias in meta-analysis. \emph{Journal of Marketing Research}, \bold{27}(2), 220--226. \verb{https://doi.org/10.1177/002224379002700209} Vevea, J. L., & Hedges, L. V. (1995). A general linear model for estimating effect size in the presence of publication bias. \emph{Psychometrika}, \bold{60}(3), 419--435. \verb{https://doi.org/10.1007/BF02294384} Vevea, J. L., & Woods, C. M. (2005). Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. \emph{Psychological Methods}, \bold{10}(4), 428--443. \verb{https://doi.org/10.1037/1082-989X.10.4.428} } \seealso{ \code{\link{rma.uni}} for the function to fit models which can be extended with selection models. } \examples{ ############################################################################ ### example from Citkowicz and Vevea (2017) for beta selection model # copy data into 'dat' and examine data dat <- dat.baskerville2012 dat # fit random-effects model res <- rma(smd, se^2, data=dat, method="ML", digits=3) res # funnel plot funnel(res, ylim=c(0,0.6), xlab="Standardized Mean Difference") # fit beta selection model \dontrun{ sel <- selmodel(res, type="beta") sel # plot the selection function plot(sel, ylim=c(0,40)) # only apply the selection function to studies with a quality score below 10 sel <- selmodel(res, type="beta", subset=score<10) sel # use a truncated beta selection function (need to switch optimizers to get convergence) sel <- selmodel(res, type="beta", steps=c(.025,0.975), control=list(optimizer="nlminb")) sel } # fit mixed-effects meta-regression model with 'blind' dummy variable as moderator res <- rma(smd, se^2, data=dat, mods = ~ blind, method="ML", digits=3) res # predicted average effect for studies that do not and that do use blinding predict(res, newmods=c(0,1)) # fit beta selection model \dontrun{ sel <- selmodel(res, type="beta") sel predict(sel, newmods=c(0,1)) } ############################################################################ ### example from Preston et al. (2004) # copy data into 'dat' and examine data dat <- dat.hahn2001 dat ### meta-analysis of (log) odds rations using the Mantel-Haenszel method res <- rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, digits=2, slab=study) res # calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, drop00=TRUE) dat # fit equal-effects model res <- rma(yi, vi, data=dat, method="EE") # predicted odds ratio (with 95\% CI) predict(res, transf=exp, digits=2) # funnel plot funnel(res, atransf=exp, at=log(c(0.01,0.1,1,10,100)), ylim=c(0,2)) # fit half-normal, negative-exponential, logistic, and power selection models \dontrun{ sel1 <- selmodel(res, type="halfnorm", alternative="less") sel2 <- selmodel(res, type="negexp", alternative="less") sel3 <- selmodel(res, type="logistic", alternative="less") sel4 <- selmodel(res, type="power", alternative="less") # plot the selection functions plot(sel1) plot(sel2, add=TRUE, col="blue") plot(sel3, add=TRUE, col="red") plot(sel4, add=TRUE, col="green") # add legend legend("topright", inset=0.02, lty="solid", lwd=2, col=c("black","blue","red","green"), legend=c("Half-normal", "Negative-exponential", "Logistic", "Power")) # show estimates of delta (and corresponding SEs) tab <- data.frame(delta = c(sel1$delta, sel2$delta, sel3$delta, sel4$delta), se = c(sel1$se.delta, sel2$se.delta, sel3$se.delta, sel4$se.delta)) rownames(tab) <- c("Half-normal", "Negative-exponential", "Logistic", "Power") round(tab, 2) # predicted odds ratios (with 95\% CI) predict(res, transf=exp, digits=2) predict(sel1, transf=exp, digits=2) predict(sel2, transf=exp, digits=2) predict(sel3, transf=exp, digits=2) predict(sel4, transf=exp, digits=2) } # fit selection models including standard error as precision measure (note: using # scaleprec=FALSE here since Preston et al. (2004) did not use the rescaling) \dontrun{ sel1 <- selmodel(res, type="halfnorm", prec="sei", alternative="less", scaleprec=FALSE) sel2 <- selmodel(res, type="negexp", prec="sei", alternative="less", scaleprec=FALSE) sel3 <- selmodel(res, type="logistic", prec="sei", alternative="less", scaleprec=FALSE) sel4 <- selmodel(res, type="power", prec="sei", alternative="less", scaleprec=FALSE) # show estimates of delta (and corresponding SEs) tab <- data.frame(delta = c(sel1$delta, sel2$delta, sel3$delta, sel4$delta), se = c(sel1$se.delta, sel2$se.delta, sel3$se.delta, sel4$se.delta)) rownames(tab) <- c("Half-normal", "Negative-exponential", "Logistic", "Power") round(tab, 2) # predicted odds ratio (with 95\% CI) predict(res, transf=exp, digits=2) predict(sel1, transf=exp, digits=2) predict(sel2, transf=exp, digits=2) predict(sel3, transf=exp, digits=2) predict(sel4, transf=exp, digits=2) } ############################################################################ ### meta-analysis on the effect of environmental tobacco smoke on lung cancer risk # copy data into 'dat' and examine data dat <- dat.hackshaw1998 dat # fit random-effects model res <- rma(yi, vi, data=dat, method="ML") res # funnel plot funnel(res, atransf=exp, at=log(c(0.25,0.5,1,2,4,8)), ylim=c(0,0.8)) # step function selection model \dontrun{ sel <- selmodel(res, type="stepfun", alternative="greater", steps=c(.025,.10,.50,1)) sel # plot the selection function plot(sel) # truncated distribution selection model (with steps=0 by default) sel <- selmodel(res, type="trunc") sel } ############################################################################ ### meta-analysis on the effect of the color red on attractiveness ratings # copy data into 'dat', select only results for male raters, and examine data dat <- dat.lehmann2018 dat <- dat[dat$Gender == "Males",] dat[c(1,6,48:49)] # fit random-effects model res <- rma(yi, vi, data=dat, method="ML") res # step function selection model (3PSM) \dontrun{ sel <- selmodel(res, type="stepfun", alternative="greater", steps=.025) sel # step function selection model that only applies to the non-preregistered studies sel <- selmodel(res, type="stepfun", alternative="greater", steps=.025, subset=Preregistered=="Not Pre-Registered") sel } ############################################################################ ### validity of student ratings example from Vevea & Woods (2005) # copy data into 'dat' and examine data dat <- dat.cohen1981 dat[c(1,4,5)] # calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat[c(1,4,5)]) dat # fit random-effects model res <- rma(yi, vi, data=dat, method="ML", digits=3) res # predicted average correlation (with 95\% CI) predict(res, transf=transf.ztor) # funnel plot funnel(res, ylim=c(0,0.4)) # selection functions from Vevea & Woods (2005) tab <- data.frame( steps = c(0.005, 0.01, 0.05, 0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90, 0.95, 0.99, 0.995, 1), delta.mod.1 = c(1, 0.99, 0.95, 0.80, 0.75, 0.65, 0.60, 0.55, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50), delta.sev.1 = c(1, 0.99, 0.90, 0.75, 0.60, 0.50, 0.40, 0.35, 0.30, 0.25, 0.10, 0.10, 0.10, 0.10), delta.mod.2 = c(1, 0.99, 0.95, 0.90, 0.80, 0.75, 0.60, 0.60, 0.75, 0.80, 0.90, 0.95, 0.99, 1.00), delta.sev.2 = c(1, 0.99, 0.90, 0.75, 0.60, 0.50, 0.25, 0.25, 0.50, 0.60, 0.75, 0.90, 0.99, 1.00)) # apply step function model with a priori chosen selection weights \dontrun{ sel <- lapply(tab[-1], function(delta) selmodel(res, type="stepfun", steps=tab$steps, delta=delta)) # estimates (transformed correlation) and tau^2 values sav <- data.frame(estimate = round(c(res$beta, sapply(sel, function(x) x$beta)), 2), varcomp = round(c(res$tau2, sapply(sel, function(x) x$tau2)), 3)) sav } ############################################################################ } \keyword{models} metafor/man/deltamethod.Rd0000644000176200001440000001464114746146216015264 0ustar liggesusers\name{deltamethod} \alias{deltamethod} \title{Apply the (Multivariate) Delta Method} \description{ Function to apply the (multivariate) delta method to a set of estimates. \loadmathjax } \usage{ deltamethod(x, vcov, fun, level, H0=0, digits) } \arguments{ \item{x}{either a vector of estimates or a model object from which model coefficients can be extracted via \code{coef(x)}.} \item{vcov}{when \code{x} is a vector of estimates, the corresponding variance-covariance matrix (ignored when \code{x} is a model object, in which case \code{vcov(x)} is used to extract the variance-covariance matrix).} \item{fun}{a function to apply to the estimates.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (see \link[=misc-options]{here} for details). If unspecified, this either defaults to 95 or, if possible, the corresponding value from the model object.} \item{H0}{numeric value to specify the value under the null hypothesis for the Wald-type test(s) (the default is 0). Can also be a vector.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded.} } \details{ Let \mjeqn{\hat{\theta}}{\theta} denote a vector of \mjseqn{p} estimates which can be specified via the \code{x} argument and let \mjseqn{\Sigma} denote the corresponding \mjeqn{p \times p}{pxp} variance-covariance matrix, which can be specified via the \code{vcov} argument. If \code{x} is not an vector with estimates, then the function assumes that \code{x} is a model object and will try to use \code{coef(x)} and \code{vcov(x)} to extract the model coefficients and the corresponding variance-covariance matrix (in this case, the \code{vcov} argument is ignored). Let \mjeqn{f(\cdot)}{f(.)} be a function, specified via the \code{fun} argument, with \mjseqn{p} inputs/arguments (or with a single argument that is assumed to be a vector of length \mjseqn{p}), which returns a numeric (and atomic) vector of \mjseqn{q} transformed estimates. Then the function computes \mjeqn{f(\hat{\theta})}{f(\theta)} and the corresponding variance-covariance matrix of the transformed estimates using the \href{https://en.wikipedia.org/wiki/Delta_method#Multivariate_delta_method}{multivariate delta method} (e.g., van der Vaart, 1998) with \mjdeqn{\text{Var}[f(\hat{\theta})] = \nabla f(\hat{\theta})' \cdot \Sigma \cdot \nabla f(\hat{\theta})}{Var[f(\theta)] = â–½f(\theta)' \Sigma â–½f(\theta)} where \mjeqn{\nabla f(\hat{\theta})}{â–½f(\theta)} denotes the gradient of \mjeqn{f(\cdot)}{f(.)} evaluated at \mjeqn{\hat{\theta}}{\theta}. The function computes the gradient numerically using the \code{\link[calculus]{derivative}} function from the \code{calculus} package. The function also computes Wald-type tests and confidence intervals for the \mjseqn{q} transformed estimates. The \code{level} argument can be used to control the confidence interval level. } \value{ An object of class \code{"deltamethod"}. The object is a list containing the following components: \item{tab}{a data frame with the transformed estimates, standard errors, test statistics, p-values, and lower/upper confidence interval bounds.} \item{vcov}{the variance-covariance matrix of the transformed estimates.} \item{\dots}{some additional elements/values.} The results are formatted and printed with the \code{\link[=print.deltamethod]{print}} function. Extractor functions include \code{\link[=coef.deltamethod]{coef}} and \code{\link[=vcov.deltamethod]{vcov}}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ van der Vaart, A. W. (1998). \emph{Asymptotic statistics}. Cambridge, UK: Cambridge University Press. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{conv.delta}} for a function to apply the (univariate) delta method to observed effect sizes or outcomes and their sampling variances. } \examples{ ############################################################################ ### copy data into 'dat' dat <- dat.craft2003 ### construct dataset and var-cov matrix of the correlations tmp <- rcalc(ri ~ var1 + var2 | study, ni=ni, data=dat) V <- tmp$V dat <- tmp$dat ### turn var1.var2 into a factor with the desired order of levels dat$var1.var2 <- factor(dat$var1.var2, levels=c("acog.perf", "asom.perf", "conf.perf", "acog.asom", "acog.conf", "asom.conf")) ### multivariate random-effects model res <- rma.mv(yi, V, mods = ~ 0 + var1.var2, random = ~ var1.var2 | study, struct="UN", data=dat) res ### restructure estimated mean correlations into a 4x4 matrix R <- vec2mat(coef(res)) rownames(R) <- colnames(R) <- c("perf", "acog", "asom", "conf") round(R, digits=3) ### check that order in vcov(res) corresponds to order in R round(vcov(res), digits=4) ### fit regression model with 'perf' as outcome and 'acog', 'asom', and 'conf' as predictors matreg(1, 2:4, R=R, V=vcov(res)) ### same analysis but using the deltamethod() function deltamethod(coef(res), vcov(res), fun=function(r1,r2,r3,r4,r5,r6) { R <- vec2mat(c(r1,r2,r3,r4,r5,r6)) setNames(c(solve(R[-1,-1]) \%*\% R[2:4,1]), c("acog","asom","conf")) }) ### using a function that takes a vector as input deltamethod(coef(res), vcov(res), fun=function(r) { R <- vec2mat(r) setNames(c(solve(R[-1,-1]) \%*\% R[2:4,1]), c("acog","asom","conf")) }) ############################################################################ ### construct dataset and var-cov matrix of the r-to-z transformed correlations dat <- dat.craft2003 tmp <- rcalc(ri ~ var1 + var2 | study, ni=ni, data=dat, rtoz=TRUE) V <- tmp$V dat <- tmp$dat ### turn var1.var2 into a factor with the desired order of levels dat$var1.var2 <- factor(dat$var1.var2, levels=c("acog.perf", "asom.perf", "conf.perf", "acog.asom", "acog.conf", "asom.conf")) ### multivariate random-effects model res <- rma.mv(yi, V, mods = ~ 0 + var1.var2, random = ~ var1.var2 | study, struct="UN", data=dat) res ### estimate the difference between r(acog,perf) and r(asom,perf) deltamethod(res, fun=function(z1,z2,z3,z4,z5,z6) { transf.ztor(z1) - transf.ztor(z2) }) ### using a function that takes a vector as input deltamethod(res, fun=function(z) { transf.ztor(z[1]) - transf.ztor(z[2]) }) ############################################################################ } \keyword{models} metafor/man/radial.Rd0000644000176200001440000001631114746146216014222 0ustar liggesusers\name{radial} \alias{radial} \alias{galbraith} \alias{radial.rma} \title{Radial (Galbraith) Plots for 'rma' Objects} \description{ Function to create radial (also called Galbraith) plots for objects of class \code{"rma"}. \loadmathjax } \usage{ radial(x, \dots) galbraith(x, \dots) \method{radial}{rma}(x, center=FALSE, xlim, zlim, xlab, zlab, atz, aty, steps=7, level=x$level, digits=2, transf, targs, pch=21, col, bg, back, arc.res=100, cex, cex.lab, cex.axis, \dots) } \arguments{ \item{x}{an object of class \code{"rma"}.} \item{center}{logical to specify whether the plot should be centered horizontally at the model estimate (the default is \code{FALSE}).} \item{xlim}{x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{zlim}{z-axis limits. If unspecified, the function sets the z-axis limits to some sensible values (note that the z-axis limits are the actual vertical limit of the plotting region).} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title.} \item{zlab}{title for the z-axis. If unspecified, the function sets an appropriate axis title.} \item{atz}{position for the z-axis tick marks and labels. If unspecified, these values are set by the function.} \item{aty}{position for the y-axis tick marks and labels. If unspecified, these values are set by the function.} \item{steps}{the number of tick marks for the y-axis (the default is 7). Ignored when argument \code{aty} is used.} \item{level}{numeric value between 0 and 100 to specify the level of the z-axis error region. The default is to take the value from the object.} \item{digits}{integer to specify the number of decimal places to which the tick mark labels of the y-axis should be rounded (the default is 2).} \item{transf}{argument to specify a function to transform the y-axis labels (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified via \code{transf}.} \item{pch}{plotting symbol. By default, an open circle is used. See \code{\link{points}} for other options.} \item{col}{character string to specify the (border) color of the points.} \item{bg}{character string to specify the background color of open plot symbols.} \item{back}{character string to specify the background color of the z-axis error region. If unspecified, a shade of gray is used. Set to \code{NA} to suppress shading of the region.} \item{arc.res}{integer to specify the number of line segments (i.e., the resolution) when drawing the y-axis and confidence interval arcs (the default is 100).} \item{cex}{symbol expansion factor.} \item{cex.lab}{character expansion factor for axis labels.} \item{cex.axis}{character expansion factor for axis annotations.} \item{\dots}{other arguments.} } \details{ For an equal-effects model, the plot shows the inverse of the standard errors on the horizontal axis (i.e., \mjeqn{1/\sqrt{v_i}}{1/\sqrt(v_i)}, where \mjseqn{v_i} is the sampling variance of the observed effect size or outcome) against the observed effect sizes or outcomes standardized by their corresponding standard errors on the vertical axis (i.e., \mjeqn{y_i/\sqrt{v_i}}{y_i/\sqrt(v_i)}). Since the vertical axis corresponds to standardized values, it is referred to as the z-axis within this function. On the right hand side of the plot, an arc is drawn (referred to as the y-axis within this function) corresponding to the observed effect sizes or outcomes. A line projected from (0,0) through a particular point within the plot onto this arc indicates the value of the observed effect size or outcome for that point. For a random-effects model, the function uses \mjeqn{1/\sqrt{v_i + \tau^2}}{1/\sqrt(v_i + \tau^2)} for the horizontal axis, where \mjseqn{\tau^2} is the amount of heterogeneity as estimated based on the model. For the z-axis, \mjeqn{y_i/\sqrt{v_i + \tau^2}}{y_i/\sqrt(v_i + \tau^2)} is used to compute standardized values of the observed effect sizes or outcomes. The second (inner/smaller) arc that is drawn on the right hand side indicates the model estimate (in the middle of the arc) and the corresponding confidence interval (at the ends of the arc). The shaded region in the plot is the z-axis error region. For \code{level=95} (or if this was the \code{level} value when the model was fitted), this corresponds to z-axis values equal to \mjeqn{\pm 1.96}{±1.96}. Under the assumptions of the equal/random-effects models, approximately 95\% of the points should fall within this region. When \code{center=TRUE}, the values on the y-axis are centered around the model estimate. As a result, the plot is centered horizontally at the model estimate. If the z-axis label on the left is too close to the actual z-axis and/or the arc on the right is clipped, then this can be solved by increasing the margins on the right and/or left (see \code{\link{par}} and in particular the \code{mar} argument). Note that radial plots cannot be drawn for models that contain moderators. } \value{ A data frame with components: \item{x}{the x-axis coordinates of the points that were plotted.} \item{y}{the y-axis coordinates of the points that were plotted.} \item{ids}{the study id numbers.} \item{slab}{the study labels.} Note that the data frame is returned invisibly. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Galbraith, R. F. (1988). Graphical display of estimates having differing standard errors. \emph{Technometrics}, \bold{30}(3), 271--281. \verb{https://doi.org/10.1080/00401706.1988.10488400} Galbraith, R. F. (1988). A note on graphical presentation of estimated odds ratios from several clinical trials. \emph{Statistics in Medicine}, \bold{7}(8), 889--894. \verb{https://doi.org/10.1002/sim.4780070807} Galbraith, R. F (1994). Some applications of radial plots. \emph{Journal of the American Statistical Association}, \bold{89}(428), 1232--1242. \verb{https://doi.org/10.1080/01621459.1994.10476864} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which radial plots can be drawn. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat ### fit equal-effects model res <- rma(yi, vi, data=dat, method="EE") ### draw radial plot radial(res) ### the line from (0,0) with a slope equal to the log risk ratio from the 4th study points ### to the corresponding effect size value on the arc (i.e., -1.44) abline(a=0, b=dat$yi[4], lty="dotted") dat$yi[4] ### meta-analysis of the log risk ratios using a random-effects model res <- rma(yi, vi, data=dat) ### draw radial plot radial(res) ### center the values around the model estimate radial(res, center=TRUE) ### show risk ratio values on the y-axis arc radial(res, transf=exp) } \keyword{hplot} metafor/man/figures/0000755000176200001440000000000014661374401014134 5ustar liggesusersmetafor/man/figures/selmodel-preston-prec.pdf0000644000176200001440000013112714465413177021065 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20230811130742) /ModDate (D:20230811130742) /Title (R Graphics Output) /Producer (R 4.3.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 41605 /Filter /FlateDecode >> stream xœ¤½M5Kv7¿¿¢†ä@¯2¾#¦l„mÀê< 8ÈDºHZ¦lý}çÞëYYyZ”͆}ï]]UëäɈȈxÖ._ñU¾þîë?ýö¿}ý§¯±~ÍëkÕ_×õÕ›þUòÿû¿þðõ¿ýÃoÿúŸþÝÿôo¾þíï~»~í5¾®_­Æ?{½¾~÷oÿ×ßê¯[þ—ßþò¯¾®¯¿ù­|ýÅý¿¿û­\aô¿ü¶Z8õÕ•öõ÷¿Ýÿ¾ù²#«äF–ãWE^’X];ä´Õ5$±ºªdZµ_'yÉê–Cr"Óy˪ýÚC²#ùé.)Wy~Uɹ%'2Žyßß[rtÉ.Ù§$V-þv[µK«š²Ú*ÏÆ-±ºiU”MVUǼ›¬ªrwYÕ_cIvÉÞ%±jqêö°UÙ’XåyÞSV…ϲ*¿Ö”Ü’:KV…¯¿dUø¾ÛVy3Ü2­®_gJîšr÷i—”ó}Ú%{üí¹â²‡¬C²K^Ȱšç×çSÒê–9%{þrM«[Vd—¼šdZå=qË&«ýkÉ)Ùâ<Ÿ.«­/xË´Zºën¹%uCV+ÎBÊ)Yò§SVS§ý–]rÉ-Ùò0–¬&Ÿ»d5t{Ÿ-«ñklÉ.™å–»¥Ìçèܧ!dÿµšä”Ì;§\Wœ–Ðź‡¾ë-=Zê"»ºK_~÷ý÷Smé×ίsÐS:äR³÷ìms¿ÝºK÷ ~m©å,uÈÏ÷ë­ÓoþZ:Þ)¿·½tú õC¡·tÑß/ùuî[OiÝ?u˯qÕ-?ß·¾,tÓñÞ×#tQszJëyi÷õ}ñy÷Ü'¢WŸŸ[oi}ÿûïúù¾õ”Vûã¥ÐÙÂJwéì-B§_6ס›üF´×ÒSºÊ¿Ë¯ÇøD:ýš¯Ë¯©ƒ)÷‰L¿Êó'ZZÏ×}!Òï¾_.tú]':ÆvwãÝz†ÞßÝð^¡×ûÖ]ZýïȧÝã µ?£ÈoD·'=¥õyфN¿<ÍÒéW韣£‘Öó0šü íõèò»8ÿ·îÒ9Z ~ûÐÿßaøÝcIõw#¢vDuÜé%}MtøÝÃXµo·N?ÆJåî¨Ó¯ûû.ù¹}Ž>ôý|6tú¹=¹uñߟèXCëþ¹õ }ñù÷Àäºõý’¡þæÖ=ôæøo½¥ÕþÇÀ'ôâûÇÀ(ô}½ò|Þ©ôóówëôë\ï[oiÿÙäçö÷ÖéW¹~÷À/ýІ´¡»´Ú÷[§ßÅxäV†ß=šVû{ëð›Ï÷™é77×óÖá7ã[‡ßœ<¿ñƒÐÃdzä׿…‘´îÇ[§_óùÝqà-Æ›y=îk¡‹Ïω£MÞIÊýEŠtYè»am÷eÓó//¡y(zÕi1Þ³^ÒoÄKVèÉùŽ7´Ðƒç3^ïBwÚc½*¶û±Ðó/¥Ò:_zWnÃííӯÐÿÄ…}Ѿ¬õ·»ØÖK¿™~Ýý]ÜH¡—o¦ßÝlq|K~ƒþr-ù ß-¿û0:ýííïöŒî¿….Œ/n½Bß§9ÏÿΆ-t¾%…¾oôvw3ºßn~ÍÏÿý …ßÝ­i|pëð»»Aµ¯÷ƒZ¤u¿Äƒš—£Ðé—·yè&?&B§ŸÇ'»Ë¯Ò¾Ü:ý ýí­Óרr74áW×çÖá÷Œ?vXhÏv»ÇzÙù~Øîñ†ÆwÖ~¯Þ:ý:÷÷Ý0¦_cü ¥´žß[ß'¦Ýã õOwÃÚBÿûz„¾øþwC|ÿa»Çúþ'¢¡5¸uøÝã=ÏwÃ~÷xAßÿÖáW|?ÝAú Ú‡[§_g¯É ÈÐéW¹?J—_QzHçó:ý.ëý`†_ÌtøÝÝêÒßÏô›¼‡Òe£Ãoò~Pï† ýrÚE:ýºÏÏ–S¡ÓñVèûƒêd¢³–ìêä} ô’ÎñR½®úÒx)ôÝPÔ˜ï©èð»ûóœÞ¬wÃפsü:üÆR{^ãÅ+ôä|Ô*¿¡ö&túÑ~Õx‘“®~ÍßåWý÷]~ÅßåWüùC~÷GÍ^ùNU÷ï¡Ã/ú÷¿»ò[é×'÷{]ò£=«wG”~CÓñJè{àTïþ}ËÿDú ô ]5>©-;òÚ‹ÞGBÐô÷¡´¾ïÝ‘†ßÝßçø-tø5úËzw¼Eú:èð‹ù‹…¿»¿×óØšü÷ë­—´žçÖå×¹?â?B3 }¤‹>ȯrß:ýžï7åWÔŸ‡N¿‹ç=&·®n¿ãÀCoÍ—†^ÒUz§ß}™8¾~uªÿ}ŸÈ¼ òzÅ@)ôPÿz…îÜ/=º¡Õõœ8‰ÛTßG&nk=ï÷…kÒz¾âB†.êãB§ã…ÐCZÏӭï0¿7JøÝuŽïC/i¯H†^þýœHŠf…ßïò›öòc~4túuõßqc霿 ~n/o~Ï÷]òc~.tú1ÞŽ+ý.úŸ[éÒÐ÷‹WtzÞ{¾HD·²zIëúÞv ½hßâAÍ|qè#­ûçnÒ÷£ÐKZ×gTùuÆ £Ê¯q¼·>Òê?F“_Õx:túŸ£!+Ò|~—Ÿ¯÷èò»8_1Q½¿bØ¢û/ÊÐ[ëÑéj=B/ú‡˜(—ÖõЉôÐÌ·…N?æÛ¢á.ÒÕ:ýºýv4¬¡ñ;ñbÃHõß#'ŠbØ©ë/‚Ò9ž«ZXˆa¬¾o¼8J«ý¹;žôsû/š·ŽñM~ÞÝqiÝŸZ‰a¸®G,”Hçav|¡}>f“óÙQ†vtëôþ¼.¿Áó«@¡;ýå­—´Î,)…nþ~S~ÌÇ…N?Þߢ£oÒêoæ’ó91PH¿Ëdzåwñ¼Å²Ûõ¯}ºfNÌæká…Þ¡Ý?ÇÀDZ×7– C3>ÏŒ´îçX™ =9«Èo2¾¸Fé7xÞ4P ­ñP¬Æ†v°šü:í“Öã5]ß7&VBWú³ÕåW¹ÿ×ë[¡»toèôóùº´Jë~/rëû´èy\9ÑZÏ÷­ÃoºÿX9–Ó"úý¼±båXßyh>ÿDCÓ0_ç4Í@ïÐCó%1ð­Òúþû’ŸÇ?1ñ%­ç!n i=1Qºéý5ÚUZýÑ­Ó¯2ÞØM~•þíÖéWhÿn½¥õüì.¿‹ñÕîòóxpçDmLË©ýØ91ZÏËÎ‰Ž˜Ö;òˉœâõ¿ÐSZ÷C<˜¡=¾ÚK~‹û-&&C³®/6UZíÿ­gýŠiLÝï;r¡[E÷ÐÌ…ÞÒ:ž»á©ÒzÏ%?Ö£âEì’ÖóqŠü*ï§Èõ–x‘K¿ÂøîÖSºëï›ü<ÞŽ†44óO¡·´®ÇÝð†Ÿ×ûBOiµ'—¥cZ[ÏÏ­»´î5ô¡5¾¼;‚ôc¾>ô”VûGèÉxïÖ]zXoiü¶ü|þo}7EÊйM –ÎFwiÎï‰Xèü¾ñ¢^C3~ =¥óy‹ûK:Û›ÐéÇükè-ÝäWåGzJý}“_ÑûWèô»4^½¥³¿‹‰‰*}mtøµ£õá˜È¸¤Û@‡_Ûz¾Coé©ï“ ƒ¡ëF§ßR{)—ôXè.]+:ý¦Þc"¦J†ž=5ßïÄËb»£»ô¸Ð[:ï÷˜ø©¡;×ãÖS:ûϘ8º¤ó~~¾~±ð$ÍïWù5ûWùUŽçX^ÒÙþ…îÒå Ó¯ð}K—Ÿ¯g \¥óý$&ÊÒïRûºKçûCN¤IWùÏô‹õÏžÒº¿b!OºMt—¾¬Ãï~ÿX:ž-?Ú¿ÐwCVêöùʉÀXæÝÖ]zXoéO5-LƲq>ï9Ñ(­ã«E~ÌOåĤt¶§¡Óùè˜È¬ÒÙ_‡žÒ9¾‰‰Ïôëê¿Bwé¹Ñ[ºË¿Ë l¡Ód1ñzIë~Ö‹Vh=¯uȯ©¿‹‰Ûô«j_BOiݯuɯr½o~Åçgɯð|Æ‹¡´®Ç­ïÝк¿t!c‚ž¿šBs~sËTn[Èï7Žtο…¿û²é~‹Yé|ŸÝ¥ùû’~åøïsàÛ*Ô^ÝzJë|ßÎ%­ö¨5ù1þ ~‹ëu?˜UzUô”Öóx?è—t΄îÒWE§ßTÿ UzLô”Îù¦XH¸¤u¿Ý:ýÏ«6Nä¶}Þ–ß }oùb›Û\tþN¼Ïo‡îÒk¡·´ž—žq¡u<ý’ŸïÇ^ä׸>·îÒ9½¥s| /UºZOé|_‹…šô«ÚºKOë-­û-::éj=¥ÕŸiãLl;ÚÖ]zZoé.ÿ)¿BûЧüŠoÉïâüÇB•´î§[oiÝ1ñ%­ç±çºè|èøb›•ž[wé/æÂ™´î‘ÇÐjF~pnÛJÿIç|D.Ì…æ}·i Zç3ò¤u}F•ßÖzD.üIçûWèôóó0šüXŒ…Ä*ã¯\X”Öõº’—´®ÿöÓù¸uú1^Ê…KéµÑSÿ%?ÖkCwiï[ãWôý·üýÑ­ï5´ú×{à}Is~râ$´úOmÜ ­ñÈÌŽ.·õ]hütÿÍ"¿®ñ{è.½üó-­þ36"Jë|Å‹‡´¾O¼˜H«¿ŸÍ~ºÞ±12tãþ¼_tªtޝCOé/ÆÂö%Íç ù5®ìé”V{z¿ˆá§þ$6ˆ†®zˆ…ôKZýË\ò«ŒÏn½¥õ|Ü/†UZýÿÌ"årÿs¿Xiµ±°ÚýQ¼ˆJëþ^ù …Vÿ»{¥õ}c〴î—Uì×:?µ—«Úï:èôc¾86.iµ/±/[Zç[;ÀCOùuù¹}¸5~M~Ã~jÖ°Ÿîß[ã§ó¿òF?îo¹RæìJlÓ()Õßr¤Ì¹“'e×Go¬t%bÊ£„TúrÇÒ-9ŽÄ9zí yÀa—_n/I¹-WJõ™÷;wI9-GÊa)«œPˆ-²j–²ÒåÙ «b)«Ë2¬˜kˆM4-å¶\)9ªÜR䉿ܑ“rXÊJÄؿ“R­@,ÿ¥Ô¹Ú +=£±X˜R]È-ÃjÒíüjgòít!e¥³#eÉŽ”•®~ìC•ìHYUÿTVU?XéfˆwIýtau¤¬®”Õ¥o”ûiãÈû‹ŸâsuâíùŸ«úŸ«uŠÞb+o“¬HYåø76Ë*·—ä¾à”:uµ`¥)výH¤¬º>¨aÕ+RVm#e¥3y¿Ë*‡I]û£øØþ,«Z‘²*)+Øx×—¼²ºtT +Ý„šX8Ï`Í}çâ<ßoÃM²"ïQÑaotl/’9$ ò¤Ôi[ÉŽ”•îØØžRÏoLßH6¤¬Ô^µŠÕXHY©ùÒTÒ¹4!RVº(·”•öûõWVýBÊJϾf½ÎÅ5j+5m`•o±¥_VjbÇ¿džº¶°Ò³ów’)«¢£ÚXé Þò>‡‡%Á`ŠdGÉ‚¼Û“Í~ýšäD.Éü ˜æ”¼#¥®o/XåÐ0 Yåð#¤¬Ô ÷†•.woX©ê +=t÷[®¬tõ{ÇJW¿¬Ô|õÕ¬HYéf諱‘²Òz¿ÎÊJ÷F_Xé ê%e×ßn¬Ôñõ\S܇–°'Ò´™¨ 9Rªaì9A¸wÎÈõ9¯R†”U’î‘,HY©½+’²ªX龊•IY5¬jAÊJ·ÙhXYu¬Ê@ÊJwÝýê*«R²Rû<Vº ÇÄJ]ù˜Xéž «œ4 ‰Õ… +‰`¿šäBÞð½i‚F~—ÍȽÿ¿ÿ8 Ï¿®ÿò¿Ž}Xô×ý_þ×ì*~ÿõüþzÿW½ÿåÝÿø¬•Ÿ³¦€3±OÜ€âŠýÑÏõ°¥zý¸èûçåuÅõ ¹µ¬=¿€|ýB®5ý|òý z«~—üŸ_pŠ¿ðþÿ‚k›;ÃwŽÞþäÛJ ýó§ßVù×±Wðî þäÛJ+‡Ï‘ÿ ·­÷¯?ù¶Ò_'¸ßþùÛŠ†à·®Óò•d÷8Š hù¿Ôšþw7¹an}•œ/¿ð/ÿìÿüWÿÏŸßÿ÷ןýûïÿûþW_¿ÿ‹?þª¯?ÿW/×’>I\²úwøþ÷ÿùo±ûÃ×ÿü·ÿÇýŸ×ýŸßûÿñÿæëÿÃ×ïþðý‡¿þÏûÿð|ÒŸéÑv|þ¾¯m üÿ;"=Ø2N¤Çd5‘si@G¤Çdš‡HÍ¢?‘óRH¤Ç`6‘HÁÞ}"=h(‘ƒwY"=:ŸˆôèLéчFDzôÊQ)Ò£QéÑÑéѦn%"=;˜ˆôhU6‘W."=*Ó¥DzÔ©±0‘•ÍvDzx­—HÊ+‘eóSEz”©/H¤Géz{#Ò£ü$|„Ua—‘Ã"=®©+H¤ÇÕ?"=®ÊÙP¤‡réÓuy&és{yž5úŒYCsFzDßHø˜5YÏ”‰éŒ9Ôf*Ò#gg ü«íˆ‹œ;È)äþåHÄ.Ӫʊ(EzĤxçé‘Ì$aµ˜U¤G,l2<ÂjUÍù)Ò#–1Ú‘ûFšñm3ÍE—öåHX³i?‘m²«=«±¢¤£š²âÝ]‘Í ‚"=bù,'Eé«syÉé‹y{¬¶ŸHXšÔ‰ÍHXÉB§µ‹X)%"#'b¥õzEzÄJ®0Ez4?¯™R¤G"w~­9"¤Ë'ŒHÖŒh*Ò#v.ÑR¤G"s~Õˆ™"=b'Æ;Ò#vz¬‰N?&‰ôˆ(Ç:üÊ’‘±ó…ˆŽ¿ÇΚµÐ»g*$^‘Í[ΉôÈBŠ”È™ØY$¤X‘±sIœ"=rç“"*2Ò£‰lúv¤G"h¯HØÉ%ä[‘¹Ì:ý*¤"=Úƒ”+Ò#v² ©S¤GîŒÛèÞ!ãó2Ò#væé|*Ò#vö IV¤Gìb®HØIx9â#ý˜x#Ò£º+'Ò#°ƒ¿m$R‘òÅ^’ê-ÎDz$â¥ï—S±³”H“œ¨I¤ëéQ·‘zEzÄNYÝŠôȵúy²9¹3w¡Ão îEzÄN`=/Šô¨…"Ò£:މHÜÉl~“-\DzÄNj!Њôˆ×ûé;µ—#<Âo²E…HÜ)þŠôˆåDŠLù9rA‘±“½¿"=bç{{EzäNzGx\B¨š#>:ÕAîEz dR‘‰L½"=‚DÐÏé³G§Ÿ¯Ÿ"=‚”hŽø¿~@ÂÅê™!„X‘IztøõIû£H IQ H$Qôó.?G¾(Ò#ÞOæDo'ýþßÅõR¤G9ºžŠô€äùv¤G"NÖ[ˆ“ÚsEzI¤ó©H$“^‘õAšé‘ïî½W"LBféQ½%‘Ha"Ò#I.Gxô•“®¯"=Y"â##=YrÄÇ¢DÄF²5ñjLF•c7"=QÒ÷S¤G­l™ Ò#¤éKH]~¤V‘Õã,"=I"$YšD’tüÉ‚´ºK ’{UAâû/ù Gv,ùÉV¤G Gj¯éZ‘:ŠôäH÷›"=’ mè¹1Òß+Ò#´žEzr¤öW‘ ±×ƒšHŒ\;ªO¢Hê->DzR¤þ]‘¡…ø+Ò##ë b$Ýå׸žŠôÄHý‘"=ª·ŒéQ/–xˆô¤HÏ«"=)"b$#=B_ŽüØBŠš#<*HÑBO"}Þ–ß´ÿ–Ÿ#]éZˆ»"=!RD‚"=’DWDEFz„V$^ê“lEz2¤çK‘¡«#>¦"Ez„Ö÷S¤GñÔ=‘BD¤G’ÿ =… W¤G& XwiµÊÖÈdé!?_oEz”íÈ Ez„ÖõR¤G Cz>éˆÐv„G•Vû¬HLjÐ÷ßò+>þ-¿ËŸ—³å¡/Gx4!Cœß\–ɤ‰ü¹"=Êrä•"=Úþù‘V¥H@„ˆ¤(ò›\Ezd’Æ+Ò#´úoEz"¤ö_}q$&‘Å’Dzídúv¤GÚô‘Öx@‘qXºžŠô­öHlS~Më!ýüüâçÉž‡Æ?'(Ê|"N2Ò#´ÆCŠôÈËVÑG‘úEzÄe×ó¦H"²ìÛ‘qi|¢H¼Í^‘EË ßŽô­þ[‘q[+²L‘¡û+Ò# ]Ez„Öý¡H|¬zéç]~Å‘#]~—·Ë…S"=!êè%Ý_‘‰9ÂcHk|­Hк?éQžAEzÐŒ};Ò#›¹‰ÒÝ‘§¦ÖøZ‘ÙŒVô’&R"³0².èRd}@Ф‹ü|ÿj+Bv¯Hì&*zHRåçñ¿"=²è%­þ^Ûo²;è!­þM‘¡uþ鑈Ñ@¯bD¤Gh¾æ^»û{Ezíþv¤Gtãz?ÕŽµb„žHк¿µ“.‡¯H6èós5‘£W¤G©üíHÐBöéQAH¤G c„l)Ò#t{Ezä0(‘&EzÄ0iô&¢£Ê¯p)Ò#†]BصwµôÏH¶uôr$dZ‘¡9ž!¿âãò#â‹HF6ôb/ö9†¡Dšä@%´CEz”öD†äƒ”ÃÚ‰ÒB¾鑈’t¾¸$¢ÔÑKz¾"=B7ë!}Y!Iú>ŠôÈa»õYRDG•ßpäE•Ÿ#W鑯 ŠÜhò#b‰Hx­XŽð( L =^‘‰0½"=ŠÖî¾éº½"=Bóý¦ü*÷§"=izEz„®¯H¢M/ߎô(O$‚"=B÷W¤GèòŠôx'"=qR¤DFz„Öý¥HÐB”鯑DRd¤Gq䑉<)â"#=B—ŠBš¶~¤ùû&¿í¿oòÛþü.¿¢©H|MvÄÇ‘VÄ‚"=BëþP¤G"Qò›ò› ΊôÈ×tG~i!ÑŠôˆ×|"D–üŒ4ŠÕJDª¡‡´OEz„¾^‘L+|;Ò#‘)ENä. ™"Ò#‘©N¿Æý HÐBré‘•üªüزH¤Gh!´ŠôÈiù7ù1ŸF¤GN³èóºüª#EºüÜ~)Ò#¦m„ +Ò#§qzIa2åÇn6"=Šß/‰ôÈi"é%?#±Šôx+"=ŠßG‰ôÈi¨W¤GLSñ‘7nN[9âcI«½Q¤Ó\ߎô}9ò#ý|+Ò#‘¬ƒ^Òz¾éº9ÂcHqQåç u,‰hMô’Vû¦HD¶ñ1¤õýéQŠÛW±·9-¸ÐKúé‘WEi"C¦ü&í‹"=ròB/!ZÛ‘EZ‘1ŠôH¤ë #’¢ÉÖÀ"tyEz<ˆ‘9MZÑCZþŠôHäëéñ _Dz$ò¥Hj¿ëéÓ¶z>éZí­"=Ji‘å‰ðS{G¤‡¶Å?‘ó=Žô¸ >éaÄÍ‘—#£ˆô¸@¤Ç5";ðÓýM¤ÇÙáHkr>ˆô0çHËãA"=.÷×Dz\Ìß;Òãb}Á‘×ðñ(ÒãÚp¤ÇåH"=."|éáÈbGz™s¤ÇåÈ"=.G*éq9HÏ:Òãòû ‘WwG³_±Æï²N?*}8ÒãjŽÀP¤‡çéq5Ÿ"=ŒÜ9Òãj‡ÇÉJê8‹ ª×‡Ã$.9Þ×CL‡SØHé8OhG†t2–Éè8ÌOÑñ•z;Ì–ÐqÌ“Ïq¦Æ>ÄsœÉåVìÆqŒÂ9ΠU6‡£áˆæ8žVÉgrõÌq¦sH&VâZËqH"•ã<¡# «Ë?••ž_Er<¬¦9«grœáü¤5ÎðÉÉ8ŽCz;i^‰"ŒãñFsIÏ8Œ\ Ï8Ô^ ;ÃëàDg†µ$gÜ%8ãT'ÊÍ8Œy‰Í8Õ) +õt Í0ÖKf†#<‰Ì8OÂÅŠ‘…y +uŠË8l%-à 0a‡Zdeœê¨Ž|á?TÎ")ãIe˜&'ãFŠÉ8Tá %Ã;É8ÎØQFÆaÿ § „ ãÄdßÉÇ0]L<Æ)°XM‡eÈj¾²1´5÷û‰Æx’?&V Ê"£@4enQœÒ±±z’2"îÁ™WDc0?ëhŒB×F4F!…hŒâäˆ +Æìh v–9ÃÙDDc°oÃÑå3ÃA\Dc°Èáh æ¤AUGcðÆãh 6:£p›A££1˜v4›·áø¢1à¥á°0¢1œ5G4Æå¤ Ec8‰‰h ±Á¶qGc8†hŒË‰«å¤ Y©O!Ñ.Dc\Ž·¨XM‡_Èj¾£1X;r4Æõ“…!«é¤ ¬~!«ñŽÆ¸~‚3dEöÇÄJ70ÑPÜŽÆpê Ñ@ÝŽÆ`BÑѬ‡:ƒèŽÆ¸œÐ¡h ¿Œqi çh àDc\p¼Dc'ƒè@Gc˜'ƒ`GcPÇÏÑÆÅ‰Æ¸Àz‰Æ0=N4ÆÿO4†ar¢1.‡P ¬DùÁâ°£1Œšq9±baE`ÇÂJ Dc°Îâh *M9ƒ·r¢1.]Ñ.[A4ƃ©+cõÝDc<Ôº¢1öùIÊÀêBÊJ °¢16õVˆÆx˜vEcl¶ž±Y)"cIt[]HY-}ÐÀJH°¢16uˆÆ0«A4Æ> ÁŠÆxðxEcŽ™(XU'eÈJ­Š¢1ž°EclV6ˆÆUôíhŒ';@Ñ›*¢1ž(Eclêºñ$ (cçY ¬Š³0°êH¬”v±lå¤ ¬ +gaÈJ©ŠÆØl½#ã )P4ÆRðDc¨ùz¢1”YðDc q9)«ŠÄJAŽÆP[G4Æv‡¢1œw@4†óˆÆØNèP4†ãˆÆØ´„Dc8 hŒ—ÄJ9mUXé Vû eEöÇÂJÍ&Ñ/¹2²A;Dc8Xh "ᜢ1œ³@4Æ#‹­ÞÑNa Ã) Dc0óéhŒG6¬Ô ጢ1Èåu4ÆKb¥<‹a+'e`U‘ç-§­ +‡_ÈJ9Ñ/)«ù1?£1ÔÔ?ѯlˆ'ƒlGc²Ø®ž‘Ê?ÅvE*7 TŽõ-‘¬"•c5Lç[¤r,¥é~©œëpúüìišwºC*ç’ŸHà.?v¦C*çêbE§_µò+'"•³x®t®¸æš©uøÕý£Ã¯®R9sùü$•s%øE*·êâ¬"•sÑy¢ï KÔjD*Ç‚¶H"‘ʱ®çM¤òOR€HåXxi%R9–é!…s&9×ø+:ü¼óR¹¹x¤rl>€$®òcaR9÷9túùþ©Ü¼óR9öcèþ©ú2™~—‹§‹TŽ­ "WD*ÇÆµ"•sJG§ŸIw‘ʱÁ¥½HåÜ £ßßò3Ù©ìÀl“ÊgûüˆTöV “Ê꯾RÙkï&•½ÜlRù¸=†TöâžIåSM‹T>;4©|ØdRÙSL&•ýþcRy/ÈBHåÍND“Ê{š´©¼YK7©¼»Ia‘Ê›uM“Êû!‡E*o“mÊû2I,RyîHåµÈäKº˜L¿µ|>D*¯É󩼨‚`Ry9‰Ry±SÙ¤òj&wE*/VÛL*¯™ ©¼˜77©<ÙîdRù)6©<ÙyjRù!!•ç´¿He33©ÒLo¦øåC¨Ö«fR„îO‘Ê ´nt亸¤rõÎ`Håz]&E*{/­Ieïq5©|˜ë4©|ÜÿA*{7¦Iå³hO •ǛʮÓ`RÙûêL*{ÏšIåCñ@“ʧ™Œ©ìíE&•½ßƤ²·˜˜Tö¾ “Ê^ß7©| )M*o •½ dRÙÓÙ&•7¤´IåÍx̤ò6Ù©¼§Éb‘Ê›b~&•·É+Håm² RywÈHåM²‚Ie'=™TÞ ²RyןŸi~.Ryÿ\¤ò.þ¹HåÍö“Ê›¥j“Ê‹ÅK“Ê‹e%“Ê‹éq“ÊËÅ~!•×2I-Ry-ÈHåÅ<”Iå5M ‹T^.† ©ì÷}“Ê‹¢&•LeRy™Ô„T^&% •×C‹T^. ©¼*×Ry™€T^Ť°HååâÙÊ‹ñ„IåI2’IåiÒRy²ŒeRyò¾eRyn®¤ò\ðÊ“ñ¬Iå9! •§‹MC*O“µÊÓŃ!•§ïWHåiRRÙI&•'/M*OÆ/&•Ÿb¸ÊÓ¤+¤òtqjHåIÿoRy²Qʤò,$@*χ¬©dR¹ñþjR¹™¤„Tn$Ù˜TnNJTv±_“Êm˜d©Ü(öjR¹™\„T~’3 •›ŸHåæöRÙ+L&•ÛCR‹Tno@*7Š ™Tn.f©ÜØÆlR¹1ßnR¹™ÄƒTn&í •½¦eR¹™”ƒTn&á •›ï'HåÆnA“Êíâø!•Ÿ$ Håú"“‹t7™<¤uþ •+û;L*W÷Ê•õc“Ê•Èc“ÊÕ÷¤ru²¤r]´'Êu™Ä©\ý¤r…L2©\)çfR¹2ŸeR¹’\eR¹ÚHå ®cRùIÖ€T®Œ÷M*W*¤™T®A*WꜙT® &&•k7é,R¹vžHåJ”±Iåêñ0¤reþݤr5Ù ©\›Ii‘ʵÒÿA*×j2[¤r%ÉϤ²×:M*W÷wʵØO¤r-ÜÊ•ù“ÊOÒ¤ò“´©\ÙdlR¹òþkR¹šÔ‡T®ß@*WHL“ÊÅãMHåÂz›IåÂúˆIåÂû‘Iå¾1“ÊÅÅì!•Ëþ$• ëw&• »L*'A*—íã©\œ4©ìâÈ&• IU&• ë§&•‹ûkHåægR¹øyT~’7 •Ÿä HåB’¢IåâçR¹x¼©\þÊž?1©\ü¯ÉÏÅ]Å*‡nF™ñÑ&Z¹£ •cù˜H¾¤‡üx¾!–3™CŸ?åçb®b–CWSÊøCÌIf³‹l¹\l§†[.Þ¸œIF•/én’¹Kó}Óè§8´àå,½ÐéÇü#ør.ËWt—Û €9´Ìåzxçj?Ñ,ºq2™ãBã'DóO1iíÉdŽŽžÒ¢2ç6ƒÉœÉŸÎ¿XæÜ¦0ÑøóÊø‰Μŧ zK‹ŽМÉ}¿8e2‡>/'æŠQ‹iÎdŽÞÒ"v41\.j €5ç6 ƒÌé78Í™Ôq¡·ôz¡Í™ÌqÐSº¿àæLæ0ÎŒŸ{áÍ™Ìa ¿ë8g2‡‘æKz¿ç,nm½¥ç rΤküt¾„9gR‡5~Õ?ÖéœÛ`¬ïʤo.$üÃìœIÖ[*7;æLæ°ÆOçOÀs&sXã×L@ã'KÌs&uT4~º¾¢žŸ¤°ç'©î9“:Dwù±>ùœI/ô9·vÆÊzØ®zÚ’zÚO÷£øçܶdâ9ýHÖƒ€Î¤}Þ–ŸQ?1Ð?ŸAç¶(CÑ]Z “0èŸâÜâ 3©c£ñX)ú§X·Pè"¬èÛ,t&u®ò3}&:·qɯÉÏ”˜xèŸbÞ¢3©CÇ×í7LHã7^Ltñü?Ptq’4Tt&uèx¦ýÔ^Š‹Îä£Ïøñ}DF»û€Œ>ƨEF㘌>¥EFCÁ˜Œ†d1ÍF“Ñ®Ík—ÉhF¡&£A*LFÃA˜Œ†V0ÍŠ¦Éh¶ú›Œf¾ÉèmÊXd´ƒ; £Ü͆m“Ñvpd´;2Èhw@F³Ìj2ÚÁÑfÍÆd´ƒ; £·™k‘Ñ˵ÈèÅóí‚åѼ}šŒ^tFÑ®_Mè¶ÉèÅ÷…Œ^|_ÈhñLF8j2šü_“Ñ,ª˜Œv±sÈèEEvÈèÅõ…ŒfÁÖdôäëCFO}‘ÑÓ__d4“±&£]2šÐ,“ÑÔP2M„–Éèi\d4ÛMF3Ëk2šEF“Ñì±4=âAF³¢d2Ú08чuyÈèÃ2$dô!ÿ2úSÕ+¨êŠuà nºaõ€Ò²Ò­"2ú£Ð+`ç°óÀ ºy`¿<±‚_žX,/¬šAiYéF} бÈèÃ&ÈèÃdôa 2ú°Ã2ú“¹²âXÈèS ÿ¬.£Ð²Òm&2úP2ú°µ 2úP2ڱюõ€Œö¶ÈèÃ*#dô¹h‚DFöŒCF@!ÈèC¶5dôPŒ>ì瀌>÷¤ÈèCYBÈèûmö2ڱюõ€Œv¬d´c= £ë}X5‡Œ>”GŒ>T¦ÈhÇz@F;Ö2Ú±Ñçâ~ííàÑç‚píXÈhÇz@F{+dôa&2ú‰õýÄzˆŒ>`/ÑO¬‡Èè'ÖCdôá2ú‰õýÄzˆŒ~b=DF?±"£ŸX‘чÜcÈè'ÖCdôë!2úðj ýÄzˆŒ>OŠÈè'ÖCdôë!2ú‰õýÄzˆŒ~b=DF?±ÑŽõ€Œv¬d´c= £ëíXÈhÇz@F;Ö2ڱюõ€Œv¬d´c= £s‘ÑŽõ€Œv¬d´c= £ëíXÈhÇz@F;Ö2šéo“ÑŽõ€Œv¬d4U¹LF;Ö2ڱюõ€Œv¬d´c= £ëíXÈhÇz@F;Ö2ڱюõ€Œv¬d´c= £ë}>ÉèóIFŸZV°Ï«‡}ƪ!±*H¬ô¹ +µ ÑÄz$}óh½£Âó¾o²?"£ËG gÕR~j8wdpµ“uÀ%DwvÝÉKˆî¬ºXKˆî$qHðGÜÀ…ŸnÊyÛ/!ºƒÞ%DwÐã¯m¹"» ã Pz +6 M çì/~j8ç…þ©álšÎ*üÔp./2º‘Ì]y]ÙU×pf‘ß5œùF®áÌ”*dtánt g6H¹†3ûU\ùéŽÚ¢+æZˆîÅ ¶AtIAß º¶Ñ%ãƒè2HÛ*&ìXà­bž¹Ú*&ìú­®á ¤³©áÌvSÙ0ûC gjáj8SŠòPÙõT×p®z]ÙŸ΋P×pviej8›2¦†3™Ý®áÌ•Γ&‘Îs« p g¨a«n“¸rÍÊÄ]¶šj“–¶v'Q:$³ð2Àí;†ZfÍƼh¾VѸƒÕ€#wcF çN` 5œ;!÷®ál²À5œûOÍæ®ÍÍ?O·Ë5ŽEF72kLF7æ#ŸÎ&å\Ù ާ†sý$£#[“Ñõ©‘,2ºš¼‚Œ®Ó5£©áÜÙïμÊ'Ý“´\Ý“´ép‰Ä-ääaO²R$Ð%·˜D¸DâŽÏ%PÕ`æüˆÄ-®! }“á"£/׌…Œ¾¦I_‘Ñ×€¬q çþCJSsy˜„N?×8 øÔP®®¹Ü^dtl08ÖÔ\ù#2º:+ö©á\]S™Î&-]Ù•k8;!Æ5œ²½¨fðž?$tÖHî&¹U3x?5¦U3x“Œ™[LTSY¤IQÍàEgš[ZTcY¤[QÍàõœ_Õp^&‰¨á¼ºÏj8/×¥†óâÝù©álòŽÎó©Y¬ÎOCj8O×,§†ó4™K çÙM«†ó$4Ö5œ]ëý©áÌk”k8c?ÕpN: †óX®­ÎÃäX®‘LMèéÉ"_UªR\Ùò4©I½\#Y׫.×H¦öväbšÉ—Éé­šÈ"I¨áܻϷj8÷f2W5œ;1²®áÜË~û‹ŒŽ ÃýEFW½#~?5œ›Ï5œ›“ ¨áÜè.\ù1ëÎͤ5œ›k¢SùñªîÎÍ54©á\Ï¿§}‰[]#¸‰Ä­¬<°ö§Æq‰[»?_$n}ŽO$n­>þíšÆÕ¤´k¿ÉèBD›Éèâó]LÊCF—Éù‡Œ.ì¼6]ºk"‹Œ.ç2º¸½Œ.Lt™ŒvÍ“ÑÅ5Ö!£¯ãšÌ"£]cÆd´#HLF_&_!£/×…ŒöΈ$£U£ø2 ÝU“¸˜œÞªI¬û©/× î­Äjúv âeRº«æ°jÄ‹ŒNàJÇ\ƒX$•ÈèºDæ^òsMY‘Ñ ŒYoéb:ýÜ_ŠŒ.ŽZ†ŒNàm Óï2 ]åÇJ7dtñ dtyÈu‘Ñe»¦ÈèÐåEF—m\dt’\ ~¬¹†ó6é6~j/45ƒÕ~Œ§f°úÓñÔ †Ü¦f0Ñ­IFŸ$¯ö‹ŒNKZ5œ—“-¨á¼œTB çÅ2ªk8/_¨á¼2Y5œ×àù§†óê?5šÓÏÉ Ôp^Í¿¯ÎË5±©á¼|ý¨á¼òZ5œ×å˪á<=^¡†ó<®¡¬Î²Ã5œ§¯'5œ§kÌNÕ žÓ$85ƒ]SvR3˜šC‰T]I6m“ÐEºZ§ŸkÆRÃy²Ç5œ§“@¨á<ÝSÃy“¼ªáE ç-·1½—d´tÈhiõ?[$ns2Œ’üB?¤tú-לV çg¼#2:‡&¡‹t7)=¤uÿ‰ŒÎaŠIèVH“ÑÍÏ/dtóù†Œn~ŸŒn&£[³ŸÈèÆN:“ÑÍÉMÑ%6“Ñ)“Ñ“Ñí!—EF·Ë5˜EF·Ëd¸®Gu{¨Ž7I•Ž^Òi»P ku¾HÜêñdtÝ&«EF+Pèû!£+×Çdtå}Ídtìô‡Œ®”Ÿ1]$dte'©Éè:\³Xdt5ù]]ƒ 2ÚÉ &£kƒÄŒ®ÍÇ#2º6H9ÈèJ’¢Éèêeѵ²s2ºº¦dt}jB‹Œ~ÈŽK$n-®ñ,·^&ËEâVZ’Œ–ÖNÈèÂd»Éèâ¿Ñ™]ÎOÍæðóüÉèâ‡ÑeC¦CF—ÅÎ{Èh'C˜Œ.ˤµÈèbò2º°“Ùdt¡’‘Éè2M"‹Œ~j”BF{>ÃdtaWÉèâÑÅädté®Á,2ºt“Ôº…ñX’ÑãE6‘¸OMÑ"·4ÿ½Èèb’2ºøþŒ.õ‡„.ÒÎ"£‹kôBF?5A!£ óA&£ ËÎ&£ uLF“pÑårMh‘Ñå!ŸEF× ‡Œ.¾ß £¯ãšÊ"£/VYLF_&m!£¯Ãý}™¼„Œ¾LÆAF?58!£/öGV!o¹³_Z$îÅ|E’ÑS;ù/ô‘™ }-û‰Œ¾LÊAF_ ò2ú¢¤—Éè‹R“Ñ—I^Èhï´7}¹æ.dôSó2Ú;éMF_Ã5’EF?5-!£/JP™Œ¾\£2ú©Y }™ôŒ¾(éd2úb{—Éè«’Ñ—É:Èhïd7}5“Þ"q=ÿ^Õ±çÎô>ÒÔx}1þ7}™ìŒ~jDBF_NZ€ŒÖ4í÷CF_ì1}9Ù2ú*&ŸEF_Ôˆ1}QÙÅdôÅ>“ÑÞ n2úr’dôÅ|‰ÉèërMh‘ÑÞÙm2úºüy"£Ÿš‹Ñ—k¼CF_&÷ £½32úøñìÙn;ç%¹hm½~aч ¨èÃÊP´Ë ÂD#óB¢DDûµ úíÑàÐg›v΋yÜå†öŒ/,ô1 +Úå!¡½ú˜Ô´àY?š[Êù¢ ¡@AЮ!í‰ ho6†€öîbèãʺâŸÏ4.ßôLÚlÑÏ®ôü|ö;§RP ÏÞ ù|t¢å˜c®PÜóq]aÏÇ)¢žôìŠ{0Ïžxy>ÄtÃJ€£€çãVI¼³wÛ‚;{{-´³÷Ó;{-¬³wÌ‚:{‹,¤³kÛ:»˜œóq Ž0çÕò~ =Ýåšóã¸ú®çÓHçà!QÂù°N à|:Ç,¾ùt㼉7kãè·éæC8póõm>.Ê+´ù&»E.ŸbybEæ…U7¦Ü xA-»bв÷òU¥ú{óȲwëA,»ÌÀ²ëjÁ+»¸²·ØA+Ÿ‹¶]°ò![Vù¸h¼.Ç1‰.RÙᕽó NÙ[ÝÀ”½™ JÙ»×€”½] Fù<ʼnVÅ«n YVðÌ+ðé…•ž#ÑÉÞ'œ|œ-#6Ù[¿M®O §$“ë³¹ 0ÙU™à’ÏSð8y\oЂJöŽ, d﹂Iö&+äͼ.D²Ë’½Q y3IŽì½OÐÈÞìŒìÝM°ÈÞ¿мŸÂÊ+ÀçÕ0w,+q½­ Ùûˆ€÷Ã/¬„¬ Aö^ $ÛSÄ'äöTí?v]ðcâ>v©àã}gÄ»˜è±Ëå@»>à±+àÀ»ä ر‹Ú@»Š бëÔ°$ïJ4 Ç.=qìZ3Çûᥓ7v½pcˆ6vE`c×|5v‘Pc×m4v¡–ûSŠ¥iÁÅV3îOu(c×O2v…cWH1v cW90vYøb./vièb×".vµØb×-vÅÈb—,v¸b—ù+v]¨b—ê*Ö¦¢o3Å{s )Þ CDñf xoóÇ+ÝުΰM·×c«‚¼¯ìÞfóUa3a Jì¤BHâ½]Ñ8×ù¶‰BqÄ›±7ñÞ¦t«­Õ6¬„Š!ÞLïíâÈ«òˆ½{ ~x]>¼]‚\ôðæ•xxo² Äï F$tx›ô9¼ Þ†"Å ïmÌxÛÊT0V ‰•b¬®æ¾âm¾RÄðvtÃ{¹ qnuÛËülâÂÛi¢…÷¢6¥`ámTS¬ðvÉu¡Âo‰•ÀÝn«‚Äê… ïe y`¥vCðœXm#òzj%cõ„ß+}…m«~Ëc«ŠÄê„_R€ðf9@x³š ü–]r#·¤àâŠÕ#±?Ûle‰•ña¬^€ð[b%2wØÊ«ŠÜo9me^x¾å²Õ…ìŸRVó¿¥¬Ô +Ìð-û§ÄJ ¬Oû#oϽÌÀælÈ[vÉÜo™€ð[beøú”X5ä~Ën+K¬„ñ[YöO‰•¨Þi+Ëù–ËV²Êý–ÛV–²¢rôÁê‘ýSÊ BöÂê‘÷…þ‘9¼Ë!¹ç-sÇÇ[®·l¶šÈñ)Ï[v[Y®·¶Èñ)Ï[N[Yb%ªwÙÊr|Êó–ÛV–VÇV 9>åyÉ}ÙÊr½e®å¼å|Â?2á·\oÙle9>å‡U·Õ þ‘ÃV–ãSž·œŸVóÓj}Z­O«e+ÁíS®·<¶²Ÿòm%ç-ßV‚ËÞr|Ê“Ø6á·\oÙ°zäø”VýÓªZO«ñi5>­æ§Õü´ZŸVËVyÞrÛÊr½å±ÕÊ—UŸr½ey[¿åyËZßr½eÂo9>å‡Uÿ´êŸVãÓj|ZO«ùi5?­–­r|Êó–ÛV–ë-ϧÕù´:Våú°*ׇU)V”N~Éó–*ü’ë-U:ù%ǧü°êŸVýÓj|ZO«ñi5?­æ§Õú´ZŸVëÓjZíO«óiu>­Î‡U½>¬êõaUˇUý<í”N~¤J'¿äzK•N~Éñ)?¬ú§Uÿ´ŸVãÓj|ZÍO«ùiµ>­Ö§Õú´ÚŸVûÓê|ZO«óaÕ®«v}XµòaÕʇ¥“©ÒÉ/¹ÞR¥“_r|Ê«þiÕ?­Æ§Õø´ŸVóÓj~Z­O«õiµ>­ö§Õþ´:ŸVçÓê|XõëÃJÛº~dù°êåÊÒÉTéä—\o©ÒÉ/9>å‡Uÿ´êŸVãÓj|ZO«ùi5?­Ö§Õú´ZŸVûÓjZO«óiu>¬Æõa5®«Q>¬Fù°Ÿ§ÒÉ/¹ÞR¥“_r|Êó–ýÓªZO«ñi5>­æ§Õü´ZŸVëÓj}ZíO«ýiu>­Î§Õù°ªù–o«Y>¬fù°šåÓJ€ðK®· ü’ãSž·ìŸVýÓj|ZO«ñi5?­æ§Õú´ZŸVëÓjZíO«óiu>­Î‡Õº>¬ÖõaµÊ‡Õ*V«|Z}žváG ~Éù#Þw§£Ùøçݵ' œSÉÿå·¿üÊu—Ü®üÏü×_}]_óß*³L‚‘Ë,ÿÈý–*³ü’¶JŠw>VÈþPËO™å@I™å—Ä*§<)³¼(æG™åÕ?`âÕ?Ê,/ö÷/ ů®IM`âåúÆ‚‰!LÀÄ‹­ÜÀÄ‹sÀÄ«=lqG–¯&^MSÀÄ‹]FÀÄ‹u`âãL¼p&^¬·Sfy`QfyÁëPfy±O™åEÊ,¯.¼l•37{Ùj€ c5`‹±—¬2Ë‹x'Ê,/ hPfyïD™åE¼e–WÓ?e–Wƒ-.¶ÊIzÊ,/–ý)³¼à{(³¼\ ¹ÚJE˜›­Ä«Ì²«ˆSfyJ™åEbe–WÕ¬-e–M”Y^/˜X2g)³¼a¢Ìòb:e–W}Øb¬T„yÛªCc¥S§2Ë«jõƒ2Ë«r®r3¤àÁÄ© ºKkó¸`bÚ¤oÃÄ©_0qÖYL[åW\¶¸Ê0"`âÌDÐï7ûMÃÅø fLZ›Û‡~Ê.ã÷ÀÃøûûñ}§ý.ÃÅøis»Ê,Gƒ}˜XXyÉï2œ¼åÉM™å,4ßÐ÷z®Ò}¡§4°mÂÄ]1ˆß†‰C×LZ0·`â̧èð›,¡‡¦,sÂÄ¡qs—~Æ]èó“b%þâÛ0qöv/˜8Ó#*?Á‚‰3MãgçÙÑø &R™åèku—Þ†·´`(QÞ¡§õ”ÖùU™åÐÝ¿f}‡Öý!˜¸»L0qèËðð52ã¼`âÐÀ¶—üX&=_0q<ÛVûéz &î.CLœãÁ·Í~º¾‚‰c˜s^0qhާËoúxºü KŠ"­ûOe–s¥Ï›öfžö+†‹ñ» §ŸË܉Š­ë¥2Ë¡)S½å7|>rM>´à&ÁÄ¡_ &Î!aþ½`âД)N˜8Fú|ÁÄ9¢<[ä×¹‚‰C ¶LœRÃÃøéyLx·ÉÏð‘`âÐÛðð%-˜E0q‡ oiÁ~‚‰Cïû½Ë,Ç`ûîÒ‚kTf9ãò[òsY@•YÝ ã§ûMe–Cóy 3ôÿ6LÜO0qh}?ÁÄùæÐÐ]ºùçøQ¶¸Øï)»œ~†{ç{ÊBwéiØxKëþLœ¯9/˜84po·ßSV9üñJÀÄ¡ù> çKÕ &ݘXº>0±´Ú3Õ»ŠW6Ý*³œ¯p=¥u?¨Ì2o|ß.³ÜŸ2õ‚‰CëùLÜKÒÀÄ¡xø’–¿`âЂë‡¾-ö£Œq‘ßt™æ*¿ÉùLZϯ`â|ù5<\¥)ãÜäÇæ`âþS¦¸ËÏႉC ÖLZχ`â>ØüLÜ]Ö2Ëù"_Ñ[8zÉÏÏ»Ê,w—}£Ì2Óß.³z½`â 5Òçå«Ðê‡Öý.*54ðlîÖ‹9 _ÁÄý§ìr‘»C‰CëyLÜuY¾ Ç É6l¼¥ÕŸ &ÎÔ%ë)Ý^0q/¸8ý&Îéé!¿Ëeš‡ü<^LºX‡ŸËÒQf94~ wçÜ‘õ”lª2Ë¡/ëôÛ.K;¾z7¬.˜¸÷íó—š2Ãy`¡¯Ló^j‡V%˜84eš‹üϧ`âÌ­ºÐé7_ &î}ºLs“Ÿû[ÁÄ¡ß0qNéUô¦,t—e%€‰{§Œ0qh¾ß”ŸÃ9‡ž†‹´Æ#*³Ü»Ã2Tf¹?°­Ê,‡^†‹‡ôxÁÄ¡)SCs< ÇT)ppÂÄ¡ç &ffõÛ0qhàØ"?‡K&­öI0qèn¸xH«?L³¾zŸLÜàÞ&?—Lº.Ò‚÷Ç3ß'a✂Þè%MYㄉsÆÚpñPv™ú •YMÙé%?6ÍQf9´ÚWm Ëéò‚Òz´A²»,0qN¾ôª–¦ñ¤`✫¿ÐCú‹´îÁÄÌü&½^0qh=‚‰C×LË ‚á粃áâ%Íßwùy|&˜81üó#Íßù9\B0qhŽʯúø§ü(ã LÜàå%?²…)³œë1:[~̼åW S'õ—«;:ž|qŠÅŸc¸xIOÃÃEZ‡(©Ð”=ÎS¯.Ó*˜8´Ê´ & ¬›0q7ü LëX¢M÷Êû0qh‚‰C ÎLÜ+»À€‰C NLxwÈü¦Ë"Où¹ Ÿ`âÐï2˱À§½÷*³šï»ä7(#©2˽º,˜Ê,çjâFß.4°qž¨Ð‚bçÚ¤`ÚÜæþD‡° ˜8W:÷ù™#Lš²ÁU~Õeœ«ü ¿ &ŽeVàß&?æC€‰s‘VÇÓåw¹lr—Ÿ‰ÁĹä«ãòcþ˜8Vˆ—áá" lœÔgèú‚‰cùY0¶`âЂ{Tf™Õêo—Yîeûó¶ü\ÖQ0qh>/Î\?èÚœ™`âÐú~‚‰s¡½¢´àtÁÄý©‡¦Lr•ŸÉ-Áı迭´®Ÿ`âÐÕpqú1~&= éö‚‰sC‚¾ÏŸË. &­ûS0qhàä)?úC`âÐÓðp“nL,}=0qè˰𖟱ÁÄÝaMÀÄÝáxÀĹ¯ãw—=&Ž]!OÙå#­çU0qn"±N?—ýLzZéö‚‰C7ù¹l´`âî²`ÀÄ¡Ë &Ží1z>çîÁ¼C~.++˜8öÞGOù1ž&έ::ýš¿Ï’ŸÛÁÄ¡Åå¨Ìrÿƒ·ü\æO0qà_ÁÄý}Ç&$`Û„‰C Lœ[˜^0qìpÒý-˜8´ÚÁÄýº ûæÄ1û¥¾ g¼è…>ÒzÇf¬§ìò’Vÿ¦fîÝzÁÄ¡)kÜåçë/˜8´Î—`âæ"7ÀĹì‡Öý,˜¸=¼¨`â @]è%Ýiµç*³Ü\±ž8´Ú+šˋ(ÎDU1µIMåþºSÜ\‹¨8vçíUÜxPXqs©¸âöp{‹ÛCÛ‰,nN´-n€‡-nb&¸¸9º¸9Ù¼8w- Ý͉»f²À8ö<3ÄEZ÷‡ãfÆ8wPê÷—ü–Éoù÷·ü¯Rf¹m·ÿ3…Vç#IãÜìÙÑKÈ7YãÐú}ÁƱ“T¿/Ú¸m?ßÂCëxÄç¾Tý~•_s™æ*¿æß¯ò«.‹Üä粺‚ŽCë|Š:Î-´¦‡´Âć~ƒÇm3ž„<­ë+ô8ô»ÌrsXðqn–_NT‡®/ü8“zõùɾ„摇´Úȱ1™2ÔI³å¾åƒœÛšóø!Ç®çm(yJ«ý†J¹ÈÏH·žBS6¹Êo˜®òóøO,rhµ§‚‘›–¡‘›×RÁ‘ŸðaxäæåD€äÜK^Ð]Zí•4ôõb’3½x¡§4€ó’ßõC)wiñßâ’Ùÿm09«juô}ã¶y~XäKš2ÒÉ&·éþYpróz trnà¿Ðéçë)>94e‘‹üX¿€Px`›I®Òº>b”CÃ,7ùH ¥œ¤‚¾¥u¾Å)çŠÜåGKHåÐ× UjBýXåÐ ÅS~•÷5,‰d¼på$6^¼rç,‡Öó T¬)‰ÿÛe–›Ã`a–C«ÿ´ZýxÖ`O ‰s!0Ñ”ŠžÒÂô.زŒ*wéf’yK:Wù-ÈU~³½ÌÍyáË¡u?‰_NDG q—¥Ò ˜CS&zÈÏãk1ÌéþÄúM1?9Ú`ÌS/ù9lE s¢J›Ó¯ò| eÝ–9’¸‹Ë8u³ ͺšnÞJî¦,ò¥Øo拚C#Ì—¢½k iN¢k ýý‚šƒƒL® ÿ6%)¬9´˜;qÍA—‰ØZì£Èæ@ÕŽIç)Mã!¿ à(¸9Á7³Ï[ú]f9tyñÍAÕ-Í„“ áœaå~ͨõ–”Yn½º,s.¬$h®¹K ×çœøà t-E¤sëÌ·€:›¸_¬shÊ(ù& í¤#ewÝL4_Ò‚<'FÙÑ[Z…É„<„ ·ÜågÜGÐsóüÔsž"…=·Æú-ÜsèòŸƒ]f›/éfºK áûœ0ª>˯Ïz ¬Ç€ó%ý”]îÒ”™Nº9ü:48ñ%?ö›À@u+ŠPth á"?J!Aƒô~›ƒ-ôW tÁBEEBg8ýBoéjø9ü*û €¡C?øó%-W8t«† ÅC‡æx§ü\ÖZDtþKŸ¿ä7}¼K~ÃÇ»ä7|¼[~ÃÇ›|nÓ²þ·Ë,‡æx“Ð ÍñæÄ`|m¯Ðè Û±ÑyÚDøùÑ^BG‡~—YŽË¢ãš2ÈU~åƒnÚ&ñmD:t1Ò¡’nž‚’ÍñfÇŸ·á‹“ÎÛt¢·t3~F‡…J‡æx—ü–wÉoúx—ü¦wËoúxsá)‹ èó³#Íñ&º›µ ê½²ί˜éÐíM·â²Ž¢¦C6ݶ7ÍÒ6)]¥…L‰œMã&?jÅÁNg3x¡·´pÑÓÙŒ.ô”y/~:šaHíœè=^us¸7u4ó@Óù`„¦ló’Ÿ9xQÔÑmIFÝŠ>ËÏEnUi9»%}~Nt‡nJ½³X yB½¡§éé*­2ñ¢©£Ûó-œ:4Å‹‹üHM¨ŽnÞºÊ] ÕÙ˯ɯšfnò#ÿª:† TeîòsoqÕ¡©ø<äÇû=duhªIùÞ[óÖSZy¢«C—^Ã&¸î܈PÊ5où9"@%˜«ȨÁZ÷»Š0×§ ±ª0‡Öý£2Ì ¿Yç0ñÅYg1Œ Ý¥5>iÃPO„Z×§Ô«XëúÔ\lÃZOD[×§ì¨pë&SE¹Ë¯~×Õ…*!®««>‚\W×L„¹®-º®®¹u]]fì:´žq×Õ5¾¯«ëIA^çkÆ@ß_,‹}èóòÂÖ'gCÕ™ã5F÷›Ê3‡¦^qv´Õó1ð×u €ô¹ÈõBì|íÞ\åÇz6vh]?QØYld£‡´ž'qØ¡õ< ÄŽ×D×Db‡ÖøY(6¯™ßf±ó5Ô¨ö‘¦lò”ïàØ¡Õ^ˆÇ]_@v¼&k<*";ôÉM‘êÜ”¯ÝÆ®Kù)ŽBÙæÐåÁ²KKÑõVáæÐ”.¾äç´‘Ù1M°ÌbéæŸéëgç4ÄB/éö³cCãsñÙOqíк?DhÇ4É1±½¤ÕÿŠÑÎi•ŠN?¶ÁCi‡†øžòk.¨<åÇ~@íÐï%?÷{ÉÒ©°Ú9ÔÐ÷‰Êi&ý<±á˜†Òû˜êÅUï×¥ shõ—*ÄX½Ÿ–’ÎYl&ï!ÛL‹}›Ù®ÞÏ ´Zý«¨í˜vS%l;´Î·¸íêý£€Û9×ÐGZí©Ðíêý°ÛUÍзáíÐz½Zí“ðí˜v¤°ô”_çúàÎiKÏ’óß Üu¾J@iõŸ‚¸cšTi&*óšÑù TïW¤ÐsNÃ> ·´ªí©Ôsh•÷U­ç˜ÖUD{­Å‚¹C¿Ë=ç´±üç­}â¹C«¥€îêùˆîêý} Ý¡©ÝåG^ Pwõ~=¨îêýy`Ý1mNiç!?Âw»C«ä¥Èî:(?ÚÓö=¤)`½äÇøº;4¿ŸhÕÐTªq,#ðûIç2CCiý¾j@Wïw£tè§ìsú=%•‹üŠ¿È¯ø÷«ü\ W wh~¿Éïòï7ù¹¨Ú±L£ãìË8 ½¤ùý옪÷›Á{‡Öùð]=?ñ];!2 ß¹ì”×KÌwWªèôóõÕ‹KÓùmì;´î¥˜Wï£2t.“mô¦€uÔcYí]:´îgU‡®þ”òйl7ÐCZÏ‹øïЪÖ*¼ …ý6ZÏ£ð\F¬èô#ܼv !B‡.~.B,<—5/ô¦Fs’à±,ªêªBÁCS¤:YðÐ*k+<–YU–[4xu±pðÐ*’+¼z>‡ŠÑ¡©˜hrèºÑCŪTVVE£C«ªªF‡Öý§²Ñ¡©ý\ä7\¹Èâ€á¡©$]åçë-4¼º¸lx.‹_è¡âX”qnòkxxÏè¥âYOè"­²ª"ÄCëüj£X,óëüŠ­Š®‚Äkã}J<· ôæ|-ù¹þ±@ñ,ÖUÐke±.JK'³œÛzH«½W5éØö ûWå¤kÝ®ë|É^„‚Ò±­B…ÚUÕ,ô°>ÒTQ®ò›T ÖƒZ÷‹ ñÐTlnòcÿ4Øxhµ?âÆsÛˆõ¢¸˜Žwȯóü ¯•ùuØñܦ¢ï3åw=šï³äÇþføñÜSÑGZå|5qš‚ÔÉ2‡ÖõQ‘é܆c=¤Õ©ÌthÝŸª3]],‚BÓÕÅ"¨4ÅЬï<¥˜óE:´Î·XòÜfd½¤© ó±-iYén}¤9¾.¿åãëò[>¾!?æ›`Ês•õ‘VýcQåÕû™ÀÊCSÒzÉý–€å¡U^Xdyè"½å×]^:!çÜ&–÷ƒªO‡®Öãd±7Ê`'çšÚÎ9Îmi ½¤õÌTù¥áTùÙÊUnrª|²Q ª|.µ“På“miPå“§ª|2©Uî5o¨òÙ?¨òÉŽU¨ò ÜU> l‹*÷ëT¹&½ª|V f Êgù Ê'uÅ Ê'gª|²p¶ŸÊàâä© Î6¨òÁ®w¨òÁ¤=T¹™'¨òÁ”/TùXœ+QåƒêWPåcê‚B•òÿ¡Êo³Påc€‚‹*÷»TùèT¹É¨òa@]T¹‹´A•Û*”D‚*E‹æPå£hª|\j¡Ê5ýPå,Tyg~ª\»Ðª¼³ª¼ Uîw¨òN;¨òÎN ¨ò>õ"UÞ‡nB¨òβ>TywIS¨òÞMy‹*ïœZSåÝÔäÿÛÚ½ôÈ’]ן÷§¸Ã&`YçýxB@2à™ž %Ë(>@?¾ëìµþ'¢©KkBiãvžÊÊÊŒŒˆ³{Y•7ïâ£Ê›»0PåÍg•¨òV¬Œ¬Ê›»hPåÈ@«r®På\«rü}\U^7j[ªü‰Ð–*¯¨>«rvyQåu¢â¥Êë´j³*¯u.U^ ^ª¼ú(Ž*¯ý‰¬>*ºö'’ú¨èJĦUy%rЪœ³|TyE©Z•WªUyE©Y•Ww¢Ê+‘œVåÕ]Ǩòš‰t–*¯7Zª¼z=ª¼\µ.U^xý­Ê ¯¿Uùl³*/¾k†*/¨«ò‚¶*/óQÝ…€*/ŽäB•£PååF~K•sÖ*/ ¥.U^ˆ ·*ç,U^ˆ€´*gWU^ ŠZª¼x¨ª¼ÜÈk©ò⻚¨ò”«ò‚ªµ*/L°*Ïû«*ÏDÄZ•³ ‹*Ϩ%«ò¼x~Råyòü¤Ê3Ÿ«ò|#¦¥ÊóðëgUž‰x¶*ÏþÂD•gþVåÙ+¨rv]Qåtí£Ê³g± Ê3ªÍªÔíñ³™ãÈéP啬 «òJR…Uytµ£È‹»Ú·ëñêj·*Í(”ysW{r½Ôµ®ï©òS¿#ªO_ªülŽéx!U^—¯¬ÊO-u+U]ìÛõP­÷ƒTylÞ½Tyt±W×ëÕÅnU^ÅRå§Öï'U^—¯ê­ÊÏf£Õ{ÓzùQäEµT«Tylfêù­çË6«òS'þ}©KÝ‘Üqà:µ#¸ãªìÔVø¡ÊÏæëx©òØœåß·ºÒu|’*?õh®§jý½¥ÊÏæðF‘wÕŽ„NZï/©ro6 Êc3Z*¼h½þ(ó®®ôÅ¿oÕ:þJ•Ÿ:£Ì§ºÒ­¾›Ö#"Yª<6×Qç[]鎄îZÏ»nVå•]T«ò³™¯÷ŸTyeÕª¼Þ)KRåÑ,Ð]OÕz¿J•ŸZÇO©òÓ| ©QRå§¶RÛ118þ¥Ê£¹á¥ÊO­ï©òSëï/QïÔ©òS[g­ÇT ©òÓŒ¡ã¹Ty½SsôA8µÿûªõ|—ÞªüÔ5žÝÅ^]wu©”ù~u±[•G{u=ÝÅ®ÿ~h½Ê?´ÞÀZ)1Rå§öï;µ^áõYZ/óú,­ÇT©òh¾‘B/¶Óœs#«§»ÚQäYµ#Ÿ£]º²«jUÍ@/Uîf¡TytµKiÇñÔŽt.ZϺVå§9IÇ©òh^®§j½ÿõÅušŸÝ´Ç_©òSgyu—{w=_]îVå§Öñ]ª¼êkèU~j}ޥʣ¹«¹žêbߨñ¬ZÇ©òÚ™² U~šË¬Øcû2šÍšë©Ú*:Ú‡N­4?©òÊÔ«òSK­H•Gó[w=Õå>_ªüÔR Rå•) Vå§ÙNñyRåÎ5ù@•ŸZ*@ªü4ó­—*?µœTy4ÿéçu­7‰„îZo‰=´ÞD±­7ˆ¸Zo8ÁNªüÔÊ“*¯ìºZ•ŸæÆ‰2節ÖC•G—¼êPå§yr¡Ì§j©&©òSç—*w3æªüÔŠy”*?uy©òÊý«òhþl®»j«ï¢õˆì–*?ͤú}¤Ê£ÙTuÓzDvK•ß.z«òÊ.¬Uy4·ROuÉoÔxV­¿Tù© õV×¼Ô¬Ty4ÛROÕRÔRå§väöÒz޹±*æÞ—*.{êÙÕe/µªüÔº«.Ô±1£Rå•]Y«òèºW]´žïY•ŸææI½U[yW­G$·TytáK]7­G„»Tù©+õVíí®õÈ«”*¯Üϱ*®ü溫ë~QoÕRaRå•]Z«òZÉK”*æò麻K¹þüOí×#8E4«'×SuGçñtí[•ŸføwDu4ÇKEg­ÇÔ©òS[U­GJ®Ty½S+¤ÊO-µ%U~ºö­Ø«ÖCJ•GWuÝU;Bºi½ŽâîZÏSQ¬ÊO­÷£Tùéâß(ò®ú*ó­Ú?oj½Wdõ|uý[•†X®»jÿ~Á³O—¿Þ_Rå•ûMVå¡b}©òSëõ”*?]ÿó¥ÊCHIg­ç)cUžˆ‹¶*Oî"@•'TµUyòõ)ª<Ô¹TyâødUžPÖVå‰$d«ò”Is–*O¼¿¬Ê“·:QåÉ]À¨òäý#TyBÕ[•'«TyJ¨ðøÅBY$×Kµ¾O¥ÊOmŪ<0ªžO¨òPËuSíHé®õ˜Ò$U~†Uy¹©ðRåe;G˪üÔ…_ªõ~‘*? CÇ©òPú÷¸1Jc¸nªÿ¾r¨ «îPå¡6²ë¡º Æ“êôRå¡8^ªüÔý¥Ê¿TyÑF몼Ü@r©ò²ÝUnU~jýþR埫ëXÏ£½­ÊËÊ¡o…û•Vå§ÖßOüá(Ÿ¤ÊË“‰=µÞ ¶žZã›Ty¨ý¾Këñþ“*/7ÎYªüÔé¥Ê“£Î—j+çØø9µ®w¤Ê ©¾VåçÇ,”yS­ÏŸTy!ÚÕª¼njUªä¥ÊC• ×MµU{ÕzœŸK•—;õCªüÔNÑîZÏ*Öª<^öê:Öã|]œèÔe>Tëý$U~j½¤ÊãÏŽ:õ¸ž“*?µ®Ï¤ÊOíxíØ( ¥²]· e¡Î—ê"/ª+Ê|¨Î¨ñXÏçkVåñ¶_®—ê&¥]´žïÇúÀªEÿ}Õzž2f®V„E>På¡\ôß7­‡”*/ U-UêeÞTKAH•—å©RVåq˜X®‡j«ö¸‡•—*³]Ÿõæ"8|i½«èƒc—‰2”*Ãʼ©öï”8 J‰‡*?uG™ÕVàYëMB±³ÖÄQg­‡ª‘*?µÕyÑz(7©òP6ÛuSíêªõ<¥ÊªüÔõ¥ÊãkEë¡¥Êãk¦¹^ªõúJ•ŸÚ }h½J÷ÔzõQæ­½”ŽTy™žªaU_‹Óõç6ÔŽ~ÿ¸‘[HC°*/$X•‡âA‘—JGo©òP=RÔYëe?©ò23ê:k=”Tù9-X/U^˜²bU~j[W­çûVå…>2«òS[‰G#À©õ÷’*ôRåe ,¥ÊÏiÏz©òPBÓõPíî©õH­–*?µT—Tù9Í’ª‘*?µãã«pÿÛªüÔeÞÆKI•ŸZªLª_µ*?õ@¯ñRMRå…©2Vå…ûñVå…)ìVå§/UêIÊ9Tù©­Ä“ÖËDsg­çë%«ò¸LA™/Õz½¤Ê㲆ú¬×7Š:>ØqÔ]7Õz©®/U~j+ï¦õÞ]ëy?Ǫ<.˨—j+ô¡õD—*?—yû¥Ê¯²²*?µ•üÔzLM‘*/ÝS­Ê M‡V奿”yS-u(U~j}¿¨™/Tu¬Çû_ª<”uSݨ—j+ï¢õÜodU~.£½^ÕzõªÖs׿Uù©õ~“*ÕEëùüĪ<”uSݨ—j??©ò^y~Rå½ðü¤ÊQ`¨ò^u¾T{=©ò^xý¤Ê{FåK•w÷ÿ¡Ê»ª¼sþbUÞ9þ[•ß©>Vå=YqZ•÷ä÷‹U9SÏQåìw Ê™zŽ*oÛÊߪ¼yj&ª¼ñ}`UÞø|X•7>Vå …oUNß'ª¼-ÔºTy[žJdU.¬ñqUy›"oª;ê|©–zµ*oµ.UÎtT9½¤¨ò6H—*oÅ-UÞP©VåmøýhU~§Y•7ßC•·Žš–*oÝŸg«òÖý÷±*oÍçÏVå­¡Æ¥Ê[# [ª¼¹_UÞ<åUÞ8?²*oµ.Uުϭʛïw Ê›ï§¡ÊSY¬ÊSu¬ÊÛUëRå õlUÞÜ"*§_UÎuTyË(g©òæ)f¨òæ¦zTùªdUÎTuTy³ÒA•·„—*oîç@•7ߟC•·„b—*¯V¨òêþ*TyÝ(q©òÊ÷UyÝþ¾·*¯ Å.U^—¿­ÊëòÔ)«òºPâRåuñ|'ëùùJ•W+TyåûǪ¼Þs©ò:y¾RåÕSôPåuøüÒª¼”´Ty>°*¯\_X•W¾¬Ê«§ ¢Êk÷ûÁª¼v¿¬ÊëUáRåwª”Uy½J¼±žÎ?­Ê«Õª¼2Ǫ¼¶/©à§¶‚—*¯Vj¨òZQñRå•©+Våì¡Ê+SX¬ÊéwF•W«%TyåúÚª¼¸Tyu¿ª¼«B«ò«­ÊkA}K•W¡ÊkFuK•W_¿ ÊkFyK•3EU^3*[ª¼ºÿ UÎÔ,TyM_ÂÂCQf×[µT Uyq<ªœý:TyÙzÿ¡Ê‹§È Ê‹ïo¢Ê˶¶*/î‡D•ßïD•QåÅý¨òâëyTyAåY•÷ã¡Ê™â…*/¾¾G•§& ÊË´Jµ*§U^<U^PZVåe°¾TyV¸VåÅýa¨ò2X_ª¼tÖ—*g?U^:ëK•—ÎúRå¥óü'ëy}©òÒx}¤ÊKãõ‘*/ÍJͪ¼4^©ò⩸¨ò‚*¶*/¾¾B•”±UyñçU^|~‰*/E]Xï*òX¯ ª¥Ê‹ûÙPåìg¢ÊKy”ùì/¥jU®mû«Ê S ¬ÊKF¡K•¦X•³ÿ‰*/Þ_@•3µUN>ª¼ø~ª¼8…U^ʼ«ÖûêœýxTyrªœ)„W•ûþÿUå/P僟gU>¾¤˜—ÄTùàçMÖK(óXå*ïü¼…÷ÏÛ(pÿ~û*ðx½QåÝ?U~UxBoyù¢Ä­Ê›?o¨ò«Æ¯*¯(óõ3Eîõtüýª<¾2§«¢|;½õåÏ«rÙï«ÊAæKe{«r²E•{1ª‚nU^ôþG•#Ò'@=™Ôã?^õ86UîS{²ÊÝiIV¹oL‘Uît(²Ê½-AVyÒ_ Uî5ªÜ=.¨ò­? ªÜS¨ò­T¹¿¿QåË1àVåÎð@•ûäUî^T¹ ¢Ê§ŽT¨rǠʽï`UN¾U9Y¶VåŒ6³*îA°*ý‹*ÞA³*]'€VåÃ)“VåÃíTVådÊZ•f)-UÎÞ‚Uùpë‹U9ûVåÃ'ºVåÃ÷¬Ê‡‡MZ•¢OµUùp‚Uù ÷[ª|¸EϪœ«òá1†VåÃýÞVå#ëö£U9òߪ|¸¹Óª|ø^ŽUùHú([•w_9Z•ÓøoUÞý=bUÞcUÞQVå}¡Æ¥Ê;jΪ¼“õlUÞÝu…*ïÓÊÓªœÙ÷¨òNÖ£Uy'+Ϫ¼{vª¼²Í¥Êo6ªUywW ª¼£D¬ÊoªUy÷ìgT9³ÚPåŒ/@•w²­Ê»wuQå½YUX•÷öU•w²­Ê;ÙyVåÝ]£¨òî®sTyGñY•wÏzA•wT˜U9³ÞPåÅoUÞÉ’·*ïÞåB•wÏB•w²ô¬Ê;ÙíVålv«òòžÈ—*ïž…*o7+]ª¼]•.UÎ]{TùÍ*µ*o‹ßGª¼9 UÞÈv´*ç.=ª¼¡­Ê›ï"¢Êµ™õqUy›2oªõûX•ßlR«òæ®ATyVôVåm8kÖª¼¡^¬Ê[yQíls©òÖÉ2—*oL)°*oî"D•7²­ÊÛUóRå­‘=.UÞÜÕ…*odm[•·Êï#UÞ*¿TycÊUy+ü>Rå­ðûH•·Âï#UÞPÞVå-“Å-UÎ,;Tyó¬XTysª¼1%Áª¼%²Ã¥ÊY×Vå-‘M.Uά;TyÝþ}¬Ê+ŠÎª¼nºTy]¨u©òºø}¤Ê+ÙºVåÌÂC•×Åï#UŽÂ@•“u€*¯5/U^QÌVåzØÇUåÜåF•×A–ºTyEiY•WwQ£Ê+YºVåÕgÁ¨òJö¼U9w±Qå¨ TyEqY•Ww}¡ÊïÔ «òZÉ—*¯ÕÇk«òZ}¼¶*¯Î#«¼2ÅY娲ʫg¿“U^½‹JVyõU,YåÕ'¦d•׫à•UÎ]g²Êkö÷©³Ê«g“UÎ]f²Êk² uVyM¨ge•sW™¬òr¶²Ê‹ÏÈ*/>= «¼p~à¬ò²<µÂYåe‘Õ­¬ò²PÝÊ*g–Yåwjˆ³Ê SœU®æš›UÎl?²Ê˰vVy(xe•Ž·Î*/oU^8Þ:«¼p¼uVy¹YéÊ*/oU^8Þ:«¼8ËŒ¬òÒÈŠWV9Ùd•wU^ÜEKVy! ÝYåÅY d•—úE•ÇÍÙì:Ö+dw+«¼ þU^ŠÏ¿œU^Šß/Î*/Ùïg•“JVyq×"YåÅ»þd•wÕ’U^˜à¬ò’ü~qVyaJ³Ê…Ã>nVyv"YåyQå15e¸>YÛyûxé¬òÌTg•çEv¸²Ê³³¸È*ϾÎ"«œÙƒd•£TÈ*Ϩug•ç›e®¬r²UÉ*Ïœß:«Rå:ì|\U¾½k‹*'ËU¾ŠZª|;KU¾P®Vå7{תœ)E¨òÅûÙªüfñZ•/ÞÏVåË»*¨ò›ÍkU¾Èj·*_žB…*×Ö«Ê×D½K•/²]­Ê×ð”«ò5PéRåk à¥Êo–¯UùVQV嫣ԥʗÏQå %kU¾®²–*_¨F«òÕ<Õª|yʪ|Ýlo©òÕÈ—*_Lm°*_dZ•¯Jv·Tùª¨v©òUÈ —*_¥.U¾ŠÕ˜UùbªƒUùB=Z•/ÏZG•/²f­ÊW¶rµ*_dE[•/w% Ê—»úPå(TùJþ¼Z•/w¡Ê'ÙáVås£°¥Êçþ’UÙÃÓõVí¬o©òé)w¨òé.!Tùô¬nTù\dŸK•Og« Êçôßߪ|¢$­Ê§g3£Êç$K\ª|”¸TùdK•OϪE•Ï«¾¥Êµ×ôqUùì¨z©òéûèòé) ¨òù³¬r²wPå“ãµUù|e—OÕÎÚ–*Ÿî G•3U U>­ÖPå7Ùª|Þls©röÔPå“l{«òy³Î¥Ê'Sk¬Ê§ï£Ê'ïo«ò›¥lU>y[•O²\­Ê'ïo«ò‰²´*Ÿ ….U>}=ˆ*ŸÎzE•ßìe«r¦X¡ÊÇ&û]ª|l¾Tùð.9ª| .­ÊÇK™wÕV×R僩8V僬_«òá©H¨rª|Xµ¡ÊQ@¨ò´*G¡Ê*ت„*¾¿*G¡ÊQ@¨òÑ¿ªrª| „­Ê*Óª„*G¡ÊÙ©C•£€På( Tù¨¨g©ò›mU>*ÙáRå( Tùp×6ª|¿?­ÊÇ*7+\ª|p~â¬r6ñÈ*œo;«|p¾í¬òÁ”g•Oe#«|ø~3YåÃÙd•„ªWVygª³Ê»ïUÞeFVyçxî¬rö÷È*ïËßçÎ*ï(cg•wg‘UÎÜp²ÊûòñÓYå)@Î*ï5­¬òÎûÝYå÷»³Êoöµ³ÊÙï#«¼G‘7Õú~pVyw6/YåÝY[d•“ÍDVyg*Œ³ÊûUñÊ*ïî «¼7T·²Ê»».È*ïVd•÷Æë¥¬r²œÈ*gâ9Yåóqg•wg=UÞ+Yí"wÖ¶³ºUÎñ¬rŽïd•—GÇzd«“UΔ2²Ê³ß_d•gÔ¶³Ê3ÙèÎ*wWåÍ*OdŸ;«Ü;Ù7«<=м©ÖçÑYåósg•·íóg•7g…‘UÞ¬–É*gx;YåÍÙ3d•7g‘UÞn–û& <£Èn%¿É·êVVys6 YåÍû/7«|¢²U>e¾T;»»-®®}²ÊQŸd•ûx³Ê=Eûf•£xÈ*G½‘UÞÉúvV¹ßÿ7«U@V¹ßÿ7«œ¬È'«¼ ÈUž^ª¼2•þ•U®¬Ç'«¼QMa³B¿Yå›ÚYåÎFwVy±ª"«ÜSKnVyùYV9Ê™¬r²{É*Ïd‡²ÏëK•ÇÔ6)íJöù¦vö¹”‡³Ê[";]Yå-}Qå§VöYåÛï²ÊQnd•£ÜÈ*ߨðA–º³ËUŽz&«ÜSßnV¹¯WoVùÍVwV¹§ÀݬrYå…ï¬rïŸß¬r²É*÷Ô›U>PâÎ*d‘;«uCV¹ïÇܬrT›³Ê+Y¨Î*¯ýQçKµ””³Ê+ÙÄÎ*¯žJAVùU6Î*¯|œU^ù<8«¼6Ô¸²Êk#»|’õ¾^ª<¦Î½TyàkÕÊ*¯(6g•3…ެòJV§³Êka=e•WïÿU^ ê[YåÕÙQd•³IV9)d•×ì)Î*¯7›\Yå5³ž²Ê+S,œU^ë)«¼&ÖSVyM¬§¬r²ÇÈ*/›õ”U^6ë)«¼Õë¬ò›Mï¬ò²YOYåe±ž²ÊQ1d•—ÅzÊ*/‹õ”U^˜ à¬ò2ý÷pVy![ÔYåe~Qå•ýN²Ê Ù±Î*/Ãë9«¼ >U^PŸÎ*/žÒBVyñýJ²Ê‹÷È*/Ýïgg•>Î*/|>œU^ø|8«¼ðùpVya †³ÊÉF#«œýP²Ê JÚYå%í¬òâ©Vd•—êï3g•Ô™³Ê S1œU^Š¿U^˜à¬òâ®u²Ê ÊÓY奸øç¬òâëc²Ê‹ÏŸÈ*G©U^˜’á¬r²×È*/ÉÇ{g•—ôd—/ÕRÎ*/|8«¼]í¬ò¼­šUŽB!«œ©~Vå§®ÔCµ³×§Öc ŒTyLù{©òSwyQ]_ª<¦þéõ‹F®óµ³©›jg»G=µT¯Ty|m%×Cµ>Råñ5Gëñy‘*¯EÕEëñy‘*÷×誼fO™´*¯Ýîz©ÖûQª¼’’aU~êwVy|­/×±^CÅw­×PñCë5²×‡ÖCmJ•Ÿ:SÇzn…µ*)ƒúý–Ö«(öh<ª¹>ÙäYµþÞRå1up¸Þª¥Ø¥ÊO­ó-©òSK±K•ÇBj¯'Å.U§YRÒEëy˪¼¢:¬Êk¾YàUëe{ÕzL™‘*Ó¾ézªn(ò¬º È»j©]©ò˜bˆ"¯ªõy”*?u©òS×—*¯Â–¨ò˜j¨ç»´Ÿ©òSëó#USQæ]µ_Ï81<µ^O©ò8­.®§jÏ¥Êã4¼¹îª­¬³Öã|Lª<¦ N×Sµ¦rH•ŸZç‹Rå§ÖñMªüÔÎoZ¯ûx$USQäYuG‘wÕVñ]ëyÁª¼’rbU~j«ø©õڣ̻jg¹O­ç~«òSëý$U^Ù¶*©ŠËuWíß?n¼ŸZ¿¿TyLYÌ®c½BvxÖz¾~·*?u©ò;uѪ<¦..×^ÏYçUëñy’*¯ì[•Çe§~^ÓzNñ²*ËTÔx¬ÇÔ©ò¸¬Ý®·êŽ"¯ªõ}$U~ê/ª|L Ê÷öñĪ|o²Ô¥Ê·¯ïQå›ó7«òí”$Tù^(x©ò½PÙRåì/£Ê÷BMK•oO¹G•o²‡­Ê÷üšU¾'J]ªœýfTùF1Y•ï‰"—*ßþ~B•o²Š­Ê7ÊѪ|{ʪ|£˜­Ê7Jɪ|“]jU¾m2PåìG£ÊwG½K•o¾På»Y­Y•o’UùF1Z•35U¾½Ÿ‡*ßöC¨òíþxTùF-Z•ïJ¶·Tù®~¾Vå»|Í*ßÅÏת|£­Ê·ï£ÊwA¹7ÖKoU¾ÉNµ*ߨD«òy¾RåÛS=På•lU¾™*`U¾ÉÞ¶*ßd1[•“²ƒ*ßþþB•“ºƒ*_Õ.U¾6ª]ª|m²·¥ÊÙÍVåëfwgÖ“Ò´*_‹ìo©òEv»U9ûߨòµPàRåk9;ת|ÍG™oÕVìRåëfK•3ÕU¾&Ùáõœµ.U¾ÙãRåË)N¨ò5È.—*_N!A•¯ñU•/ï'¢ÊWG­K•/ï· ÊWGÅK•/OÑA•/O™F•/÷—¢ÊS¬ÊWóT«òe‚*_¾ÿ€*_ ¥.U¾ª•­UùªdyK•/²©­ÊŸ?«òåýGTùª~=¬ÊW±²¶*_îçC•/”°Uù*VÏVåËS¬Qå+Í*_™,u©ò•QâRå lU¾ü}‡*_ùÉ&?*z%Ô¾Tùòý;TùJ>Þ[•/¦X•¯„ Ϭ—Pæg½¹=uÀª|n”¶TùDýZ•O_¡ÊçöñΪ|.¸Tùt6ª|z?U>í På: ý¸ª|òy´*gÿU>ù‡ßßVåÓ×k¨òé)p¨òéý Tù¼YÞR峓Í-U>=uUNJª|ú~ªœ©Ÿ¨röÿQåÓý‡¨òéÔ!T9S@Q峑=.U>}ÿU>}þ‰*Ÿ%.U>}=‡*Ÿ|?Z•O>ŸVå“ϧUù,(t©òiï€*§_U>™âaU>™âaUNr4ª|f¿­ÊgFIK•ÏL6wa=©}«ò™<%Ǫœ~T9SEQåó•M^UëýnU>™ÂcU>˜ÂcU>˜ÂcU>˜ÂcU>öWUN¿ª|xʪ|øþ ª\xüãªò±X_ª|,ß[•>¯VåƒÏ«UùðÔ9T9SIQåÐ`TùðýyTù˜^ߪ|8Å U>ëK•ÁúRåƒóW«rüp¨òÏĹœ8YåëóÍøç³ÊÏoýÊ*72¿ýÊ*W‡˜)Þ|)¸xóôX8ì-ތß.s~ñÛsá·ãX>Í›-´_Yåñ$Ÿ¬òöíU.týd•çoï¬òbsî¬ò8È>Yåõ­Ê=ˆòÉ*—î¶*7ã²Êå·oV¹ÀöÍ*W„øÍ*ɾYåqíød•ÇVôê˜ä‰*·Iì=0Éú&Yö[¼¹û¬q‰7w#Í%ÞÜm2—y³ß¢Ë¼y^sî¬rý 7«<Îן¬òx»?YåñW «Üë'«<~²Ê=@éÉ*¯vãIñãñWx²Êã¯@VyÖiYå>Ê=Yåq'«ÜçOVy¼‘¬Ê›çt+/´±Á½å™›§p«¹5·—niææîè-ÌܦóÕe™›Ï…·(3#·$së*w¹Í¹³ÊEßUîa6d•{VÍÍ*' ›¬rïbݬòBö¶³Ê=+êf•“mIV¹»pnVy"›ÛYå(d²ÊYàRåu[)X•³Kz³ÊÉ%«|¡Ô;ÙâeYÛóÉ&ìîAºs%Ë0 ²Å¥0’síVoi’-.å–ÙâRmIй¢È*'K”¬rë߬r²zÉ*G-’Už­äÉ*G%’UŽB$«œ¬P«òâÙܨò²­.¬Ê˶ª±*/WiW²Å­²Ùâ_Ty™¨xg•žo'[¼¢Ì‡²Âý|¥˜ ŠDC£Bí¡Î—j?ßI¶¸Ÿ¯s©/U®ú*ò¦¬p?_g•ß××Yå÷õuV9¯/Yå¾ê¸Yå¼¾Vå™lj«rvmPåoUþd…K•³ë‚*ϼ­Ê3ï_«rvMnVù°"#«Ü³ònVyÿªÊ3ª·t²Àõy+RÌìZ„*Wö÷àß^®*wøpM¸þ}‘þd•«nüûRÖ·T/YåV/7«ÜÊUþd'²À3ÿ¾”ímµÉ×ûÓª<ù¬ Už|àE•3»UžÙá•,p)|«rîŠß¬rÏÚ½YåÍÇ+²Êmw³Ê«Yå¾Kª\ÙÝVàRÌÉÙ¡ÊßYÞj߈›£ÙõPPäÎîVÖ¸8û©3ÿNv·Tú&»»¼Tù¹Ù«÷ŸTyÜ ž®›²¸7ÿîìn+óLv·vÖzu]ÈîÎ(òX,Y©òÈæ–¯Zïªôªõj»i=ßÅ´*?õÍ._ª¥æÈ*gjYåîÊËjç:7ÿÇtÝTëû² ²¶5•A¡›•lšPåÊÒ–ªk‹¬mOš³±}×€¬òåÙÖd•/Ô«³ÊS\œU¾¼ëJVùº [Yåkxꀳʗ»ÒÈ*_U¾8;«|ñ}ç¬ò…òwV9ꃬr”Yå‹ã…³ÊWáù(«|ež²Ê¹Kt³ÊÊÜYåé¥Ê•íçs³±uüê7ÛÏÇÙØî: Uî,ìê:²±ÝEEV9wQÈ*ŸÞ5 «|¢,U>Q•Î*Ÿîú#«|’5ï¬òÙe>Tëýì¬r¦z‘U>+ÊZYå“©4Î*ŸÞ&«|:ë’¬òÉÔg•Og[’UÎUžUβÊ+ ÆYåõ¥Ìc½Ÿe•3뜬òâó²Ê ÙŸVåÅ£Qåe¡¸¥ÊËâçI•¡UyA Z•²¦­ÊËàçI•—ÁÏ“*g¶7ªœ)/¡Ê[t%úçI1—ÆÏ“b.•Ÿ'ÅÌlmTy!+Úª¼^O©òâ®tT9SWPåÅwÅQåÅ×ã¨òâ]aTyI¨k©òŒš°*Ïd­Z•kóøãªr¦  Ê3Ù‚Våùf}K•gÏfE•Óe‡*ÏãkVyö HTyFYZ•çö¨óÝž.8Työõy¨ò]kR& ~²s5ÞåtI­Y•g²L­Ês&Û]ª<ûø‚*Ï>¾ Ês²*²*¿Ù·Vå‰) VåÉ]Ȩò„J±*O¾•Œ*gjª<ͯª<ù|UN—ªœëITyâýnUž<%UNWªœ)¨òälTyºYéRåtAyèà=)æä]ßP媥~¬ÊéZB•ß©VåÉ»>¨ò”PÚRåÉ]¯VåÑU„"¯ª¥Ü¥Ê£KHŠ:Tyt5×}¼²]¥ÊO×Î@‘×ñtõX•Gv+Š<«®(òXÏ]oVåO6«Ty`¨í:Ök"Ϫ Š<ÖC K•c} Êk%×±^yùٵݞ²ª|ª‹¥»Þª­Þã‹ñt•Üìò©ú*ò<_Y¨Rå‘}:\oÕR—RåÑ5òRåe¹«Þª<º@¶ë®º¿Tyd—¾Tytq¼Tytmhý¦õüýjUY¤ÉõVíçßµ¯¿TytQH­çYëVåQæ[µÔ¬TùébÐ÷‹Tyt5èçŹèb®»ê«ÎÏ®íºYî¡Ê£ ¡¸žëÉú´*/WýK•ŸZï©òè²ÎÚö.£UùÍê´*]þ꺫v6yaWÞª»²+¯Ï¯öP"kS?¿±‹ÞQäÞ•·ònwý¥Êc×¼ºö®÷~©ò» nU^fE±­W¬¥Ê ä­Êc—ZÏG™y=»ÔVú‹]å¡×g³«¬ã™TyìKQ'võþ–*7†þ@•K ÊcWw¹ŽõÈ––*/oEë1õCª<07мªÎ/U\êºi=ï0Z•&G™oÕú¼H•Çèc=O\¶*?µ^_©òÈjœ®·j)\©ò e«òÈ^Ôï³´ž»vb{Î*Ïþ>!«<ûüЬòìýB²Ê³§t‘Už}ÿŸ¬òŒÒtVynVkÎ*çúš¬r²„È*Ï7{\YåÙSâÈ*Ï宬òì.A²ÊóUöÊŽÏÙï¬ìx²yB•«–âqVyN¨je•ëÏôq³Ê“§Â’UN6Yå õî¬òDÖ±³ÊÓ$‹[Y剿³Êg•3“¬òä©Ùd•sýMVyº ]Yå‰ìag•'T ³Ê ÐYå©ùóè¬ò„òsVyr—6Yå©®¬òÄçÇY婼Tù©3¯§²ãSæõTv|ºÙîÊ*OÞO «ü* ©òsÛÑÙß±Q|j)7©òSKµI•ŸÛ˜ë¥Êó&TªüÔRjRåç6©T–TyÜFM®c=²Õ¥Êã6lw=Tk*„Tù¹+E&UžwGÍw­Ç” ©òÌõºUù©ýó§ÖCeJ•ŸÚ?j½ÊÏ_Z¯ðó—Ö+üþ[ë~þÖz™ßk½LvwÈâ¶zu=Tw)éà^q[~»þü"9·íõúK•gö­ÊOmU|úl8û;nüœº¾TyFuX•ŸZªWª<¯«Þ›Ö"OªýÝµÞ ‹¼k=¾¤Êc›dºªÍ>µS¤ÊO]^ªülÓHu«ŸîÔÎF_Z%Û¶Ö+d½o­Ç”…¶µ/©ò³­4^ª<¶¤¸ãƒÛRÝuSÝQçKµ^/©ò³íå,ñPå§¶bU~j/¤ÊÏ6š²ä¥ÊO­ï©òS§—*?ÛtÎïZÏ—Tyló¡Ì—j+ð¡õ|ÿתül#êï+U~j?ß©õœÂbUž¹`U~j?ߥõ˜ªÑ·Ö«¯¬rÕ~¾[ë†þì_[•Ÿº ÆÓ©Ý_dUž'ª_ª<Ó¥nU~¶yõ} Uži3¶*?µŽ_RåÞFþ@•Ç6³Ö UÛÐÛõP­÷¯6šO}•y¬ç)ÏVå§Öç]ª<†­¿Ty c×Ï›ZÏSo­ÊOí¬ô©õ:YæKëq|Këu~¿­õÙì[ë5²Ó·Ök¨ð¤õU;+¼k=¦0I•ŸZÇÝ޶&=ŸPå§íÉYâѧj+ôPå§N(ò³^³z´*?µ¾ÿÄO[–•úÒzî§ U®ZϵµÞ ;}k½›=ž´SÀvÒzUª<Úʲë®ÚÙäq#á´¥éø'Užiß¶*?µ³»«ÖãüEªüÔúþÖ‰M´É¡Èc½›íÝ´ŸO©òSKÝK•Ÿ6=ÿ÷]ëe¿¥Ê3©>Vå§íO׫RåYÛ¨òSÔùY¯2ÅAªŸRå§vvw¨ò|³ ¥ÊóÍ~–*ÏL²*?Œd£Ì·j«í¦õP Rå§ÖñCªÎÿþóöTFÍçƒÿáÇÿõ??þù·¿û|Ýþæó½ÿão~ñß~úoß·Xž±Xì·¿þ—Ïñó[àÇÿûû¿b%í®Ÿßéãwÿò¯ü?ÿú«ïÿÕR\Qųùýï~ñíóìþÇûü?ŸOé×øú”þ=ä–íùõàïÿ ¿üýä׃¿ÿƒüzð÷_þþòëÁßÿA~=øû?ȯÿù¯ü;ëƒüzpúÏå»ßï!:ÿ£>ÊÂóòQŽýÏÿÏr•Iÿ åÿþÃÿ _.endstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 504 504] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000041970 00000 n 0000042053 00000 n 0000042176 00000 n 0000042209 00000 n 0000000212 00000 n 0000000292 00000 n 0000044904 00000 n 0000045161 00000 n 0000045258 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 45336 %%EOF metafor/man/figures/crayon2.png0000644000176200001440000027703214441312113016216 0ustar liggesusers‰PNG  IHDR hæ)‘Ý pHYs  šœúzTXtRaw profile type exifxÚ­›i–7v…ÿc^fà-ã9½/ßßE&)±[ê–l³+‹YÀî€îü÷?®û/þÔZ³Ë¥õjµzþdË?tÿùcï{ðù}ÿþã绿¼ïj÷åýy+ñš>¿hã{áàýòÛ?žæ¯ï»þýMìß}Áߟ¤'ëçýûAò~ü¼ò÷Fv>?Tëí÷Cß­ïßP¾óÏa}^ôo÷Ë(íƒRŒ'…äß÷þAÒß”¯•ï!>Çw~ŽÉ/)ý˜+ùez?^½ÿ}€~ òŸÜ?GßúÏýü8¾ŸHÿËú?üá/Bù§÷ÓÏçÇß?8ýQüõ;„þ/Óùþ½w÷{Ïgv#W"Z¿õ‚~܆NBžÞe•¯ÆßÂÏí}_Ý¿HùöËO¾V°ÉÊu!‡F¸á¼×CÌñÄÆkŒ+¦÷^O-Z\IyÊú 7¶di§NÎV<ŽœåŽ%¼çÚ{Þb’›¹òѸYà’?ýrÿî—çËÝ»¢ `Z±b\QuÍ0”9}çS$$ÜoÞÊ ð¯oúýï ‹R%ƒå…¹3Ááç糄ßj+½<'>Wxý´Ppmo@ˆxva0”}¾†TB ¾ÅØB Ž FSŽ“ „Râf1§T£k±G=›kZxŸ%Ö¨·Á&Qè¬Fn, ’•s¡~ZîÔÐ(©äRJ-­tW¬Œšj®œkU 7Zj¹•V[k½Y=õÜK¯½õÞ­‹–ÀÀbÕšu3#ºÁƒ÷|~ðÎŒ3Í<ˬ³Í>mŽEù¬¼Êª«­¾lwÚÀÄ®»í¾mÜ)N>åÔÓN?vÆ¥Önºù–[o»ýÚ?³öÍê¿|ý¬…oÖâË”>×~fw]k?n'E9#c12Þ” :*g¾‡œ£2§œyÊ•È ‹rãvPÆHa>!–~æî·Ìý¥¼¹ÒÿRÞâÊœSêþ?2çHÝ¿æí²¶ÅsëeìÓ…Š©Otß-6m;UeŸ¥ÏÞs™í2¾ÙC˜½¬s|á0Æâqu®âh³Ç‚×%j=Ý©Š¾‹Û;§ÕÚ sÇ[¼ÕÅpHFäRڮ촺A«™K‹¹5Ò9© ŠjågÎ{0Y7w!.>îX¹äð‘PÆtä!z÷œ”nÝù^³¶Oªm“)»Év}ÁÜ)`DD=ëÞ^’'4ãðˆ@¶ÏŒÖÖâ0`2ö½ÄcÜÇw8)16úPèÁ…[ VôžXa°˜o·D]YÌ¥ï^¬³T¹SŸÍºå¾!3:ã¼Ó\Ÿ[Ñ9µÜFõձǸ¤wlßÖ(«Gª˜9pŸ:æ<³Œ3ÊæqÍS\ÊÁ×D‹¨j–|xïF¦Õ¬ÀÙÛ:{…™)$ò϶ÆBYÎê2Bb–n0½ë á0IûBØÜÈ·•»×J{–ôhXiì:ëÚG0û½!&ê#×sÁ*Û$m­ä®ñPH6 ³›(”R[¹_o°â¬„ÅA,‰To÷,Ë/Qf'x÷r!´8™®Ð¿Vf(cîÊ[í¶™¶xiž_n½Žp Ð’ NL§Ö˜œùv¬øtÔd±¨2 %æsrnv­UÝ<-ÆýóéôpWŠeøúöV„šçšà“Vf´%ôè†KÓOðJ¡[GÒ¸c#”ªc`Ôm³z‰¡ÔSI%’p6ù쯕€*ªŽÊPèßN"'ijj¢Læ ä'š‹¹RÖ‡€ö3ÑBž*bðžôbª´çõfåýw^ߺ_cŠüIãòz©L°Ç¥‘+3N_ýg¤ÞËÈgRE9~ŒgD=_$ •(µ5L•óõ|°Sö<ˆNÆÆ}v?ôx%$'–DÙ)Ì1ô¾fÜÀh}R\»ÄlBþض‘¦@Àȱ!mTa´!ýzƒÜ0’Ëð;˜Ì&ÁD(—±¤~.,Τ ¾“Z}V‚=Q[WÉ‹È],ï8±ëtõ©Ñm™¨dn2øô(=`彡­èæ5i§ÑÙÊÔÚ¥Kk…û+/à"Ô퀯(Tb…c9›Ž˜SúkæÞÑ€^¥iÂF½ã¹ŒœdM;GÞg6OÖ¥zv¯Ok}§>ÇFÝñF²*éÞzY;h¸ü!wÎe¾HFÒ.ÕÂ(• ï» ý"Ë8 Ÿï%‡ƒË•’^-EÐê¢ïªc`ÝFH†#p?=RóTÐ(´2ÀûlÕQ(g®KkAË\ÈUà+M‹J¤3™¢Á0JRJU•‡ÞàQJx¯6=ÛŒ A囩&$ìüxUi­íP4 8&bÛ 8h©AÌ(å"fÓ`» `y·Œ‚„7ˆÝ%Á¢#E>v j2D4œ2ÄÚ›Fí½HUx‰¥¶$! %²->iᎰƒž°[Iݦº¥#QGáï„ýÁwú‹²¤#h†ƒv¹ZÆ8s;8Ú!ûïNuQõÔsTAÔ~Ï®¨s$*¥—Ô Þú)!BBøNÄý3Hù¨Œ»ngÕÃùß8{ø†6Õq£k—çL©^ ¡Fzæ 4à£ÇãÁü³râŸ=µL¸kò=ˆ¤‘àÑL ˜z¶ÉÓÿ”¬þ€ÝlÇ!= ]Z;‰Qάjnä(³îÔ‰Šô©h‡*ê>ªˆ¥lЬðjÐ/.éŒÙ6p0K%Öë‡BïÒÿy£<k.¯Ú±û"³ƒV'mÒH”n¦w´Ê }y )å™!Ê uóÔe¯ú}×…·yoC‚ªIú‘f'n0lmà Z°-aCV©íê_· czr(1aÌÃ#-ŒNO‡q7pDÖO Gz˜¶ÆÒ²”|•¨~4ä Q‹F0—ƒŒˆ7ÉÀ!û d'ä3îë†:˜÷1Ÿ¨î“Åv´ô삊%A²¦jÓ ÊÒò#EÜiy€)w­K2rUXC:¶…ý Ì—ø'’š#b-H óÕèˆZF²Þ"&@딩D-ˆŠKM€j<‡ˆ¢|Ò½NÒºDJgåªõ3fa¤€Ð6Ypz$èIáÈ ãßñMYž28©À´ZS:òŒêÆç¢Êiž´™Œð„Mà)pbú!çÊÅ€1Ÿ€²Ëã%À«UŠ äV %DÌmuº Rn8›yÃc(?SÓÓÞpÈ [:5ž–]–ty¨t5€ŠL E¹) Hùâ°úö(¤ è¨LiL #ÉF¸²:µØí­“*:ÿŽdÅPâå  ž À„HTÈ™ÜTB/_´'¤¹8õ ²¸ÑæÆ s婱9åÀn Ú ƒÒþ<ôyŒô…Z½cѬ8Â@©Ñ¾ò>×#ª<æ3Æ,ì Ù´àm¯WÁ6rŠ# ˜‰4ךÿÁaKxòl¿fŠA‹j@2Šä­„ t=üJ¹Ji#,‘ô(¤]Ÿýmu;, šÒ}~tõ9Š„<ú"˜í”‰3Z^ÎRÏÔúÄ^¨yk]¿À07 +¸Ð³ótù4±áS†á@¡©CÖo£1È Â1C¸ mi4þºuÌH‘ü8PNÀahiá~– ¤[SHØ^¿ ×Mвb>J½!ÿ¨msE@Ënå??à…ã/±ÿˆ¶Ç®rW„#ˆ_kj¾Àã¢@9òeZ:ó9c*µÑŒËO!e=$J]ÈŒ‘Ûž‘ÇÆ¬^Œ iÑ›ëB%Ý[@¶‘Žé‚Äicdp–7§œd |ij…†¼Ú:BTùÅÐ `rèY¸‹.ìV@즻,ôú[ßáÃp$°›dÌ@guû§–ÐãhE~,ÓŨû.ï×ãç¢[-ŒÕŽ2‰@j…¬ ì’DÔˆ‰’ Ñ7§ä¸ ;æhEÆý>Òµ*¬6 Èc|•ElæˆB ‹Áç·À7ÅÚ- ?РàééA»/¸ŠÞ´(©¡µˆ××*ºœ’FÀ )Å܈ñt´.—ηþbï±Ô*A…¿d‚£­É€b‚Z²²Z´Èb_ü–,Sø%*H}J^‚]ÊX‹h¬F¬Ðb£ÊQü\p²@€€™4Ø 9&/>°=zu>¡¯ˆL%­n/"9‘ZQŽæâæËiHöF˜ :E+2ü8Ô¥?I²œâíÚ$~Eº¬Á{ ¡6.%¥‚Ìd8ˆû™«6ó´ÇGcáñj°(¢™˜Ø VÅBÍaùî¦×®]THÁCÅ%4VÎèbR¦ÆØÄ~â«õ!”,¼½ˆ ·»OSåÂì§[@Ô1~žù€5°mˆD­"réä â€49TŸƒLÝE콈ߕÂôàÝ[‡0 ƒ°Þ:††`¢NÚoQ€!«bp©¹ ±Y´=tˆÅÃc/*{&¨ RshùcebÍ‘rv¾0D|$nŽ ‰.êÌ‘/B\ÏŠÿF,¢f¯qÅÓsE'Ü;îcÃÕPP¿ˆCl,Ѩò |[±:ÌØÔê×Ú±ÂÄhU ‘ÕÆëHWæü†l’‹ˆnü"nk]hß÷¶ê(ì¢õda]——ï奡ït–f´’2·Dõå2`PzjjuãpBZ¶pÂo²X-¨ù‰'’¸©c1íæ‡Nʈ}ŒwJ׆ߡ{ªnÁÞ° ÃSó~ì‹ÚÕê Rwy€«Jûaä ÅdÕHÀy"âóê~üð7^XŒh]ˆ©%€9ì:ψ`AŸé@E–ØÅYuR°ŒŠ…2@5k+$âÉ1•‡Áím£îÈrF³3E› iêâVD·X"l=¢ݹŽœe´xàÜ¡õ :¡`˜lˆiw$µx5ä(iÖ «‰»†kÚ6Lèÿíµ4³¢¬I%‘Çwb¶ãl¦Åý‘œä¥IÙŠÍiÔ® —dj-Å(°£PÚP âEø¡w*  䱈”’‡êÚ¬”˜„JÒáÀ5hÐÑÁ„Aí€Xª)ÛZ"z.BI9 $ÓÞ¦µoœsÀÝp·¢vŸ(v>{´}Ä%v÷›>¡[pŸð¨á4Þ^*˜õë™ Û¡–¤)bm̃olhñî–ÌÁš¹V‚ø5ŠRD±€B$KÈ“jGô‹¼°µ¿ÃÌ—Ž*<>îÏ}VûO€2pO ´RE‘>ZÀ‰¤ ;¢e)Ig­ èûÀ6N×ã«…Ù¤mÒf£¿N¥›^`¨Å‡""'§€@LвL¨ÄÈK ]á¶’Žà @ˆ4暧퀭(R«t"2pŒ‹( $´fT&•¼šMË>‡>çžeOAeú#Þ‰}¹rŠ¥àÝ03r‘TÒcê àR¿›©Žsòvæñ{»KÀ@†r+Ã0«VWhÒó¡·з…—»·G ø ‚|„{Fâùˆÿí+rîvd«E¶Í€L‹øÞ´T…3Cñø¹(ŠhhÂÿ4Њ¤E—c= È•DI7÷Á0ÃH××kÚ*^:E5¦ªš¾ø@­Á†°gG*8@åOLó¸*Súy(Uê•ߊFº ‹rJÖI•ooG wgë8äôÖ`h‹˜îpWÂÅfÈ=݃W8Ò—ÚëБèõ[kq‚ˆxýnQö9{Diÿì+:L„–ýÄÀTÙÓ8 ë;tŃ>äß„Üý_sÖ Æ÷þu A©s% >W¬#W €øWëážÓž2’¶)÷f­ ¢w½íGô¼Ì`÷7-QÁñkø[›-!ÊõÈÚM-Ý“AOdßeÌöÙÇî³…ï/G²~×0ZF†hÍW Ûu9$4s OüÿiûˆéYƒy¤òÕ@¢Ëϳ1BoÍî6'ϸ=ÙA‹ØÁÕ„i(±TØûuQðplm1(-y£õbý½T'/ÐÔÈõs°½ƒã¥ø+’‚|g=VZÚ9˜7j‘ìÄ_È@Hãḏjdæþrå½þ¨IŒ+tj[[ùè0ú¬Ð|ƒ[–C£à—ÉõêPà­Ù çΗ_›äÌÚ(²ƒ}ñÄ õ£cu0ÁE+a4¢N*Rnµ÷2¯oX Mä\-j¹e5à†}_©F>Þ禖ˆÍ%É ^_NtGn7}£SŽÀÀÖé #ÿÒ–(ù]„]éXÚ>ì¢ME4^Ñ-N§õHHæŒ?Êd@{'QïºÚk:(À“]´†—‚kx‚V!3i÷p‚¢“‰µÓ¼šFÅ­z)`¡-ˆoª…¸úNJ‘>nëÑpu–Ùm”ÄÈûuŽ’‘ G´RCì ´ÄUà ¼ŽÕ7Æß ÒðÅ€Æúéd˜Yºµ³`í• ›Þ´ }Nx„93­?"Ê+zÍC÷ujò¼•®@ñ:!Ä}«[ZÆîÏiE¡5‹¥= ô AÆmüÄxh Ì´GçÔÚÆTidmÖâÕFŽÛ´ÍÈÑ^&ý>Ÿ½¤AŠB›¦‡#¿ïš¸ŸB»ªBˆEmU’Î!CÑÁÜëà«=¯ýC),‰{Áà+ÁÙ¡.¡X&Àè‹n »B™a@:¡'…p }A{bä‘@$Su°Ð‘BzM[ãLÎä8bÂéúÛëÈ„¯ÚÑÑúœÖ¼‹Öð¨H±ÏöuJ=|ÎÜ,­ih> aâöï ãj6¾-ü´Š†\­ yâôÙ=WÎÈc•Ì5]µÏA¥ú\¨–ñ@ƒ¶È²Ë:㥪·iNµaæÈÍ´ŸP@3Ti³åÎy¸ö$A0⟪…¤cRak‡á4µÅ=[Ón³¶6ÊLË×á ’à“ÛRäoí†Ò%:-QM+ÌÚ:îos¬>â¬ñCJ.i@;“-CTZ8ÚSáúöv.¥CÞ¦ú´(‹n^D PÓ9p*|n £U?m iqXÇn €´ßR 3BW["ÈP…©ñ(ˆñ¤.:F(p°ë‡ŽÖ“%ü‚‚×À°æF jM»iÕI„÷Å­1·×Ìóî:Ûçêæ:ÏÛ€Ü]Ǽ´N¿u¼òzme"³šö»D„å§$뉮ß[påJÓE%›"[È`C œÑ†¿Ž§1D9èÌdââÞZL&«uÜ]å!€?­‹ôOEÞX:›ÎÌZ눙õ¹j?‘;,‘š õº[LY£óFíx'}gä„åÑ›VbQT=1àä“ñ9xƒT+F;"`tæÕ鸋Î{• »ÐÒYFXÁö#|†ñ‘/DH®™¤†´1ÝÔQ·‚šrs%­"ëLHC´  ‰¦Në­@dÁ/j p€4JÅà›-÷ð¶ÌÀà¥w: ÛàPçȸӂZ´8û¯œgBk,¥ŽµÜüIþÔ‘®@ƒP¾0ð–ÕtMÊb´öv€pRC+h¤Ã«” û¶$UB†0/Æ_‹IGç‹Ée O86qúë”äFµà¢À÷ó <ÒÊù¨„ñq‰ êä݆ªÔØq¦6±xV³I‘ó‹Ï'RGàj—²ZÿˆAg•µ¤÷–ÉÄúoï$…VgÂ÷îým]2Ðt—F¤åò°w¦(RD*ã¬ñ×>+Ó:ü„}›ß£ H+ Yÿq¥}6‚‚ ‡Ô²eÇeád-ÖwÀù›Ži‡ŠeÄ=¾S/Ÿ'CB^g]‰ŸQÙÐÖ¼šÎ|Ö¾thÚ«ŠŒ-«òŸÌO¾÷êþüËôÖYs™CPLTEÿÿÿ4e¤¨¨¨ÐÐÐbbb.46_¯äääÚÚÚÙÙÙîîîþþÿþþþŒŒŒqqqlllàààãããdddÛÛÛÀÀÀžžžnnn_ceÎÎν¾¾ÃÃø¹¹¯¯¯ÅÅÅuuuÇÇÇhhhccc““”»¼¼ŠŠŠzzz²²²ÕÕÕ–––‚‚‚¤¤¥€¬¬¬}}}ýýýÈÈÉ¡¡¡š››±±±çççÝÝÝ©©©íííËËËfffêêꘙ™)))Boª¶¶¶ÒÒÒGt­8>@gklÏÏÏkkk¦§§wz{………>>>AFHrssøøø”­ÏÍÍÍáèòÔÔÔ9i§ììì/574:<öööñññ ´µµ179EJLæææ‘‘’yšÃÊÊÊMRT;ACØØØÂÂÂGGGúûýÄÄÄZ‚µ‘ó÷ú'''­®®555›œðõú>DEŠŒŒŽŽõõõxxxíòøûûûôôô•—˜···¢¢£BBB³³³ºººùùùêðöLOPz}~6f¥×áí÷ùüa°###‡ˆˆÚãïæìôЦËâââÖÖÖ”••„‡ˆ'w»™²ÑÝåðXXXV[]ßßß|€---\abPz±QVX999~~~ŸÃáªÍžÆÌÙéððð+++¸Éà\\\ÇÕæcgi  ¡]„·bˆ¹///h¼QQQV´òòò£ºÖÂÑä s¹?‡ÃKw¯lpr¿Ïãjno¼ÌáËÞïTTTp“¿õøü?m©p·;„Áúúú°ÃÜrvwLLLž¶Ôçðø e²;;;ƒ¡Ç```÷÷÷HMO¼Õê‚…†t–ÁÃÚíS}²Y^_ÓÞìééém¤Ò´ÆÝ222¯×ÏÛêh´m¾3¿ªÊå«««Ûéôl¶™¿ß‹¶ÛTY[@EG¤Æã¯Íæ›»ÛbΧ½ØMÇ„²Ù­ÀÚuxzs§ÓÕåòÀÔç-{½ûÄ{ÏŃÀ‹^÷Y|›™$¤3“išÚî¯ï×I;m3™ŸW&3é?ÿÆ€ˆ@ˆB€„!`Ü…èåi)îÁåS¢Íc _´uج—*¥×ûËÔšjÊ_Œb¹=&<¾õ}Ìœý5Lj/ƒèÁ"Àø Ñ…¦iÙ™˜—{ÍþÖ¾¿Æø•Õ<*†RÊ_b¹U4“¢iµ¾Y°ù0'o¬îX_• ?×éÁ"Àÿ—mÒY„ ·Ï;ÿ³ÑoÖ´ãan(™èp¹ö½áÆð¨–2,Ê:F!òˆ D—$c÷³C¢eûèÛ­ƒ?¥b;¥æçQ –K•lv£ûå‘Èõ`z𨹃@nãöpÆP)¤}îŠü=Ç9ÐWú¶ã$DK4hzö€þŸg†òJi(BTÕº¸gÓ×}I‡J)°’Éäÿú™áe=BdmÐ|¦†3CdQ•]÷¿ºÐêœÑó\‡‰¥N=Ûù2»&abÏu¤ó‰µÇ\n=Ïtu(]ÿ)¤}î'ù›;sö‹8¤y!`ü„HK;}þ¸;H¯W^GRˆ^ÙsG)%ö0šˆKˆde›ýLÔKÙhBd‘ChÕùáÜ2K;5ç¢ô¯ d“ý'ž:uYËvµÍä:ÒùÄÚƒã-·~„¨ÝF…ˆßç$B¤7Š$ñ„€ñ"wåíCwΔìW®FQˆVi ¹ZÊlN®?5•R¢^þÇ'D’²ŽMˆ˜Ëá…È Ùª0qâ=…(åÎm­ó^tyÛéû@‹±v'ÐþÖœëHçk^!!ÒÌ…ˆÛçdB¤Ÿ9"_©!^0Btäôù2'HÏÜ+—Æ( ½/vÍù 8% åX…HVÖ± ÑJ!¢A'{¦EˆŽL­[ˆÖ¼fP(:ü‘:ugÕò4[wú€sí|âìÁåQ"ÍÜV"nŸ“ ‘~Hïš-@ˆ7!rV[EnÞlëAˆ*·,ËLòG’ÙÎÅ)Ø4c"yYYˆèz“¢o ð» ÑÄ}'œ±3D§$õåi}wæŽfpz4êÔ žn®W›ëÈç³ûNÇy!Züµt›pzO]>RHûœ\ˆœY¿ì,„€1¢sçRR‹¤,Deaò'’ÙÉžR"ÐÐb¢¾ÊzÀB4G}Ô‡!D3Ìdÿ¢†©eé‡Q'ÉѨSÿă¦Ý 6×ïu>Ã?ŽDˆ¨Á¤éÒm^:RHû\ˆéT¹,ã%DÅ éòSþ mìz0î]/t¿bý^¨¾p–LXÛ'µõù¸„è‰jOw%)â¼Ùãgêäjê`æ‡ÿÕ&¹â…}ÆìÊTãt.ÓƒñËšðãtaùCÒê©ÜÄçAˆG~Bdp 5 LJïºw™}*ï¹~%oº Ì-]]|Üìå`’:Íü>©Õ«z°…"ðþýF,¡Ä.VQʵøœ°NEíMp>ülзÌLQ˜~©}ð?»”W¡}Ûz½·Yóßj•tð ÓûÿnE"Ýxf—=‡·Ï… ÑÚ¹ïv„€1"íÌ[1ÉéçÎûOÿ²ÊvPÞóÇ&„%é<ƒYþèÓMšP:²r} ÑôÕ—‡»ó¬Ö½·^œ’·v|¸ðf(ZÍu2‚{ O÷yÿ—™0|äM ”šë–¢ñ˺1j7tF?ûØ$)7ÉùD¢º ú‡Lˆè ­2ûÀwrúFž³í¾c;g›µ?RU{ô ¼N÷Ž_Ý?¥§Õ=yïºó›,é'©e2Ÿ`¨çZ„°N¹íMz>ü|ko:3.ì»_wsº^³Wx²äeÒD­·BKjiÑYås~{Ê&¶ÝšŽ DNc}P"nŸ "}›,#*,Aˆ/!:d&B„È¢£_ÝËÃUº›Æ}øÙÚ†É<+„}¾ÞrÇSê} QRãp(O‘çMŸØ(ú>Sæ¯âdƒÀºQe_Qˆ¸e­§˜FæÆ„R¹IÎ'’•¹7v|Bô™úÐÛ¤?µvôYÖ×LŽ1×íµÈu-iîee®W§ÆKÂôm”o( Q’¶‹L¨çZðNaòÛ›´Š…¨þä´(ëÄyü ä}AØzí<·ôm&ë¾nçÁ¼© Ñ,ûmaBÄës¡Bä<ݵ !`¼„è¶3¬„ ‘»ÐäÒw›Å½Õ¾Z÷ ™…6Üxo!çMŸl>ó)4œ˜”cE!â–u#àc; å&9ŸHBtà[§Ê¢êC¥=ùx„ßWܨ¶`N“ Ñ g!mÅÝ>…(] nbú¦"D9§˜Éѹ¡œk.â:´·ˆBTrÏõÐs•iH#n½ö·—“ÿ¤ÐUߟބ(Íî: "^Ÿ ¢i’ïÂ4„€±"ru½ißx"w+ÒwòÝЕuž^k•cfaÞ7ÿÔJ‡Þz3ƒhZ¸e–;¯©‡•›ø|¢ ÑñŠ’!"LJÎÞ0øÂÓR-£–y¹Ýqž=N«ûMéëeuJývßü“¨°.-"4ÉW“ò³TsÍC\§¢ö&;A¦Bdæî½ID岆¬ $Ç·^*DN»ÍVºº³³þ9Š}a›·LˆD㛂Í™Ì÷"^0BÔ²‡^ûrsß7ƒ;ŸÖ8B”)»£žó׆oy£óüŸém¨fV)û• Sõ^„(›cðåãš|Ë,烼qÞÜ_>«L‘J«ÇÂz0 nˆË; .Ï.[ZJEˆeMCT‹.G=¤$Rn’ó‰&D ÁN(Oˆ*‡îç ͘œåBÄD´ý–+ñë´]©­#º:jâ‘y€LˆÈm“L{Ð)¢šj®…˜[§òöV•l‡_ã Ñ“{·ûmSO1s7‚2GÜz;¿ª÷šj·ú­äQ}‘óÑo„h›¸TqN:RHÇ7!ÒëLÁ ^03DÎûÑË*B¤Oœ¨uáŸ!¿ð=>öÌì<›åž]¯›9ïAˆü¿è]ˆÄyÓéN%:›]¶vCƒM9+’†ŠñËšþVvÉwKò1¤Ü$çMˆè“]NùBÔ–ß­ô×ð;SQ×… ‘U÷MHº\åÍü±Ñ¿u,c‚„òV¨]3?%O*ô-£škAÈçש¼½E¢%wyÚu»a;•”ø8’Öë QçAÙþ…^Ö—ªÙR}'ç\sæ>ç4Î/"oùö¡3H!{öüö溙y°¢txe™˜":MZj]êÛ[|!ê$4¹Ó%©?-}OõuÔ­×¢ª3!zXu¬„HѿّóÐK×g¼!r»ñRÃMª=°"g¦»›íXtL„Ï]CÙíþå}Pˆ"ÿàm¨›«.8L,D겉ÅlÌÁ³×=W/f­…HkwÔ¸>—æµqÓÜO2!šWí‘×ÏÛb¿k;Z^•‘þY!šÃ^3=8!ût/YX®"wòg?~•œû;a©µuªmoñ…¨Ù uך=] Ô×Q·^É—}¢‹H¹žöÚþÍJˆÜÀ”"€Ñ¢¼{j§;Þµ"wÍF§»¬GfØŸpÐíËêá!ÅNˆÔg™Å"uÙÂvf=x6ÿcùêµ­IbŽ®Aê} Ž›æ~’ ‘H—X” Q¥^M­g0«ÌÖÅ$U¥ILŠ:­U¥;í¨…è2²ß¢˜"ZLXjmjÛ[|!ÊwCí„…Håu4­×¢o¢“h¹*1~s¶B$Ö[l#D##D/Ü…L‰’u{!š/öv#òÈ+;ô›àÑÔNäÒ¡‘ºl"b?þë•¥ÀöÖ¹=K!’Äz%¸çn/mçR·|¿…HüùKE‘djÈB´"æ-ögA Qú‡bëA¥¹1+oEW”–“•ÚP§šö_ˆ®åB¤Œò:šÖë Q¦ŸB4ñþ½Ø ¢8o+Dòþ-†5"€‘¢%w$|èôÖB´qìõ—k½ÏÖ 3D3¿PˆÔeù¹øBälOZxc'D²X— 3D²¸­õ[ˆŽt¯Ì¢9 _ˆbÁÜ‘30!z޽ˇÊy¦ ¢îî~ß=*j£óÉ»ñd¥6Õ©º½õMˆ”1P_§lœ!ê«u F,é¸O[ ‘¼ã•H„hËÝ…Ç}γ¢^ç=Yyµ4ýÈÎ#³‚±®¡< )C"uÙ¼m„‰V$Õoü#rËVB$‹u5r†X4‡H7Íý$¢iÕù£BˆÊ"‹>7õk„(-ÆÀÒ®30!Z7ºÿb&Ya¢ËèDEÌR›ëTÕÞú%Dêrˆ.u9D}¢¹’l±A%ÎoÎRˆ6{IáŒ#!Dþ¤ðÌ]c+D­Àìýt8­è•rýLoš¿¢Éñ0ƒ"uÙ¼ã›æ ‘ãl¼;N)öx–uβXG§¨¢«ÌdqÓÜO2!Ú(*ò_ÝÁ§=¾,Öœ¾`ˆ›æ~’ ‘8Ò­¢"o )®Wˆþrï´à¿”ÙXÞ™ÿøö‰ÞȶPR"«ÓƒÀë‘©óÐ’s‘evíNÝy‹ßMBd,µuÚ›´&"M Ô×Q·^£‰4òï „ÈÛõãLÛShû7јϖDåuÌ­ý4B0BB$æê;i£½cîÝçÛ“µ¼x{È\ß\¼x¾çv ¯«½‰ä´x†ºKM$•*»«”W ‘ Zl_Ÿ\û;¿%8Ë,´ßIR/_:B#ɘؒ©2ùçÙMêNÕA™>´–Fˆ"QÖEŠüåŸ3Gäæ™QsÐ?ŽD{>˜»Îx€Áh1)öÝlïü)où><ò†zƒþ±+æ‡nBkù/"1²W›ÎçŒ$ Çî/ rˆ1ãB0ò0^ D D DÀÿØ;{ÝÔy0{ËB¯¥7ÅÐ%óYš™à"è„TÁ RA¨*Š*(¨¢¨­Î‡Ÿ8„SrÄßó U %¼±û‰ý:€KÇ€=ô BBBBBÑÑôK[ÞÿEõÝþZ†^š—Jµ¿õu#w¿Ê%j@ˆ@'!*í¶PùMT¹ DÓ ¾v#Dÿo}ß“»_å¿5¤Ó²m»õç«.ÇŸwåÖÿºèrX—WÛô Ñ¢túf!+!š¦ù}àýOùEõ¼ Q\ÔNÇ-¶v¸FÌ á£îÙoèRå#Çêì÷°Ù¯fú—ÁåÕ6½BôçX㌄èÝÝÎó÷îû÷¹!Š‹R©_¹åV_l‡ŽÛ^àÝÇàÛÍFnw~ÚÏþ·æepµM¯€ý€»$DF¥Xú4ò&DqQC*]ïÀ “Ît~¿=fïçëöL}ó¥<¨›ù7EÎБ¥u\`mÓ+ D—,DFt %Bd0<ô6×ÿ«¸t“¡ûÆC¤P‡›±”ÉÇkõî{Ò¢›ß—Bät%ïO›<½­Ëàk›^!ºh!2r)Dðç ®„XGgQ<Üzy‰c0ßö=çÝ{Ž«¥÷>½hFç“ô*ƒK¬mz„!Bˆ.€7© ÇC\ùz+§Mt©­€Ʋèþý­q\bmÓ+ DBts(SËŒŸE‰ë"å*¥m*+$DÞ‘8Ô¸ .±¶é¢ …ÈZ¾ a÷5úNõ{è8³ÏÆ–Aª½îþõõ  ”­ý”jwXvëqBT}›TœÉÂÆeGÿÝWÊiQ{…ó6¬ŒÞêŠ|Ëý_o#Ïî ?cëÛ³¡CwÞËhl¹ž1»Â1zBí£ºÈ¥<Š»†.„…HîñHß2ȼ¶Ï„Î!D­Ùî®ýÐÍ…^W¡"‹T!Ú/±­¢ÁÔýÕIÙÕÕæ{ _u£¢»Ú6†¢SOn­‡J[µñ:lîÞ»ZùºTwÿ®ƒQqûE£PƒþøTܬ¦.º‰‹-ï3f ã92S”ÔEJƒ˜Ú ‘L™ù­od\Û‰g Bg¢r_Ù~[½ò[܆¿>#!ªKz:iMWãf”¹ªBd½+›w;*„šf«©ä†&F¼…Jq¡ ѸÜôßšWÕm;9ÆáØòÌÊ-¨»¥ûuLiÝk5@"Y¿oú–A¦µx– Dp!zý%·»½¦Þ/þP‡—Ùþn,¿½Á˜Î{wl§ Ñx6¬|Õ ‘çC£“|¨lzÁVœ/÷—RO"ïÖ0¥Nåi*/?‹wŠÚ¨bÒÉR£–¼øU9+O~ŠUEˆ~»»Ql;NÛ‹¥æïO«³Ñ§~§Ö”ClFJl9ž1+nòI:±³(Ñ.òQØÚ ‘µ⺬mdZÛÉg Bg¢–”“ÎÆ–ns®\úI zðg†ÁëàCIÕ­ƒBäùPå´{þH½™{Y<ÖÛf«¬LZ˜›àʲÉmn ï;4™¾¶zpÛŸl¶luï•ËØúöªÖÛ¸í]êúóþ¬m²„Zcg˜P‰‹-¿SV„HÉž•iD–/GŸdbË+ß{1•#Ÿé]d[ÄÜÍ8çBä3· Ë ËÚN4;µ \·oûB$Ó8W¡¡¤Ý0×TI•‹ÎjGD)¬GEˆêA¹øE{é{(¶œò(ø§ô.²#«°t"ñk4Ö¸ ²¬íç̈"„(!’ù<ÕP§Ýñ¯÷ƒBoYŒõ¼ûN_q,£QWéÎ÷-u7$r–j—¯4SšçYLS*DïA!*…®…·~T KÅ–ß³¾_‘Y”ø1VÝ{BÔ›xTÚò0_u]Ë ÓÚ®dWô Q&Bd q¥f=ÈÁ–mâð«z 'þå©BTñVÚfÐ >„†™:{!’’qUô¹Rv¢~½—½Ø$ˆ!²>f£öºß4½ÕlŠ­ã…HÎ:6â¢>[~gÌœÁ'f%ÚEj0*"Ph,ïÜÐhZ™ÖvâY‚Ày„È*aþÅ}ávû«lÝ·9.ËBàÁ?¢ß² =ÙàGüy•ŸÜS‰)³'µ®îçÜFÇDmT3°1Eˆ:ñBT V;[.y íM/µ‹¬ä~Tì­uä’CŸ2È´¶Ï„Î#D­ÐÌaÈaíÑGA®š)[Vyæ¾Zø8Yˆ¶jqr ‘—Ìó›ÜÐ;$‹ý«Üc¢~Þ<[હúA!jÇ QxrOO7!²Ãw2¿o¥u‘!‘ÔLˆ¼\á`íkSÙÖvâY‚À™¦ÌÜþþ>0däþÇ¡$ÚÈYïg×8Yˆ\%ú}åªÕâÔ&p!ú ŒͪAöSr™W÷ËÜ:"j9K æ³ekïaéBtp„(1¶<ò9<i]äX=¾4"/m¬ed[ÛŒÀ¥ ‘|n‡z¡7þÍ ãc¾ûÞu`}øO…¨W÷óß?žØ>ˆ`nB0‡h"•'ös2îÆ¶¡žµ-Ç´¾,ÕhÒ…h%VÓŽ-‡È!¯awÇ0:‹í"åñ%î mˆÑ*<ªMd[Û«ìÊ€^!ÊDˆ¤J¨·ãi:úOS˜•§žóò‹ŸÞ©Z³ÌO¼Ésh?ú{!z‡•å:gÛ•ˆZõ[ëI"G$$ŽŽ-´î…0}»³ÌÈ,JÌóϧB«[UG„¨vm]Ê ãÚN{?2?zO?Ĺ‹ÓKŸ^¬ø›1ýÓ¹é‘i½9Ÿ04ç¯þmüèÎ'cFCdbÅG<}ñ>=ÿ¶“^ü…v¾]JzqaˆôÆpÔË«f3ôŲн¥%jYÒ÷—»·>óÓd:zGÉ›FÝFM ý¼ô~žj“þSÒõ®Lùy¯Bÿ±ÚÔ c+¼'fçÌ÷5f’³$s’¼™#Šf¾ì="èœñ‹^k9{ ÜYR!{§#Høðßæg ÀGCôÚ~¤Õá ÿªÈ.\ÿÜð¸¿w1mÞå¹£!Z´Î]–!Ò»h.yyÕìÎtöÒ3æÞNOçM˜ŸíÍê˞ذ£î5LW01UvQΑ aÕ×ÐÔ c+(è½6ëkBÙ§(=MO[fžWÕý-OÉ¥Ýúù÷/(s#úݥŜ¢1Ú™ÛÓ¼c¯Gõã¿}Ó«¿woè¦Ðû9}n%°7–náúk@w$ ©ËÆkþ]¦’œ!*›™]1lÓÿ5®ÅVPÐ~íŸ-Ëg¹ KdYÙÂÿ²~¶sîÝT QEçô³Ç3–s"(øóßæf À7Cäè.î~|·øÀtdžöw™X³±÷uèï6¬`ïŸ$hN·ä)ò…>XÈE™¹÷åç /ßÿðñÝÇ»Œr[s‡ªðêÁõ^hPp¿)7K`ˆkcˆŒ„BoMÍÔ´µë ¬5¨ Àù|I²N÷õ,ª@ë €!‘!ú²¾fû)ºˆÖC(CÔK ‘iP‘)ö`Cì"ú6VÚø>}Qþ1Z_  ˆ ‘>ÉYv⎱E:ëëôZ_  ˜ ‘>ÍDEú·×OfKëã. ñÀŠÊ•Ýýù£?ÝAÛ €!™!*›z’gbýüìS´¼"@ñ"Ẫŗ/?¾Z@ç! Àß‚rYP€!" À`ˆ†C0D"€!À †(„›¯”Ô¿´Î¼´úÊþÚ}Ý×ܪétí®Úîêkq¿m(¹üM©ÿêä1ê¢× ·ê(7u *Cä‚ -vŽIî»­î–¦sð°uoGL_‰þȲ7&[Z¾³-ݼ#³SlçßË#‚v³»åôåÕŽˆõø†j¯ê¨E ‚8jÎÿ§h4pPÇÅY%‘Y,­òÇw ‚” ¨ À¹àªfg—Ôž©ì·² ÏÖÅ ¼b»Pù“—ó H¹€ª ‘:U·4-*±])iÏ´gmËkµÔù•ßKh;Wk\I›Æ“ö‚ÛA]]þýùý¡o~ˆÁ.²Èå㉦m¼{¥‹ý¦<©£ ¢¨¹êBuÜŸU¢Ìâì#ÌŸüœAÊT`ˆ<8ÒýSb»ïÉv•¬—,ŽV+B%½ŽÜ{ÍV®‘æ0^é WŽ>u&åF Û°SnŸ:Ô¯†Ùf–CA•”ž•p£æ«S<¾ÂYÅÏ,þ>|uò¥ArU"u:4-.aGˆ‡‰:ÞÍ?jº{þí1p¸¼ÔVjL­á0ùk»?E€Ay=Y4àáÈGLßTE¯xš¯Nñh ·Fö¬âg–Ü>G]<µËAÊT`ˆ”ÙJïãKl·‘l×í¸U£f|JPÕn«Âf[ØN–l4]Qúôê=7Ú«»ÅÓõ69d“:^#ð5_âÑ@nìYÅÏ,¹}ÌêäKƒ åª0DÊ<Ò´ˆÄ홪!MwÞl?iæ† ­^Ï©eûc.ä"²Çx%KúÔòó"(Oy¬~ÔuŠH©5²g• ³¤ö±äOž4R. *C¤Ê1MKIlw´_ƒ÷Ѿ¬ ¿bvªŽ5/ÿ~ÅäŽ|Ám/‡ÜBß‹ñ¤Ž×IŒŽí~S½ܤ/íf: ¬ë"¿ñ·ýgDð8úÑMãp)Jê$|É1j:E§ÃÙ³Ê1³Äû°óÇw ‚” ¨ À)Ò4¤i ™ÇU´ã3€¨ñÈ¡mÜ{€ŽOû“LHÒ÷î¶’ßJ©úÂçöŸAŸÇaSÆ…•Ôéóqdf©¨=¢ià°Æ½!âd–pNþø®ArU"E~1Œ$d\ƒÿp—>²Ü䳌Mµ Ú/ Zª´Òmûö¶Ÿ c– WùÜþÛ#h¢/¹ìì·$RW^ømŒhÚ 'u¼F ‚9j¯†(Hˆ×("Nf öáæß*P€!R$J\É·ÛUÑWi“›²cëß0]H'+++uµÐáø7Ȏƨ>É£n‹üöCŒNg ˆ}ïzöí~㬠Jêx@…~æ,-ª†(Hˆ×("Nf1÷qÈ¿5T. *C¤Æ6:¤¬Ì†t<¹Û¿Òù{:âú4E¦ 2—›²þ?ä GÓpf§–<ô™°GÐÜgš‡c7½áMÚ›¹H×ÉmÒE`C|y¯èÖ50DåÍRõ?Ö–ürà ½1žüÁÍñ¶}úÎ{TÇS*X¢öhˆ‚¥hŠ!âe–ÐqòÇw ‚” ¨ À)w%ènû5íØò_ëèã®›†f®­­mgTŸøzx³TÐûRÇêOÒ}"?…óoˆ Ý™NF\N˜P:ië:J¨`Ú›! ˜‚5*g7³Ø†ÈQüh„\@U†ˆÙøî1Rcßà¤ôT’tÔ]ÃüD%kŒ•êËÔåÄ%Š@ë8}Ël;©úƒ³¶ä¢Ì´ šüÍêËëÙžÔQ‰@[Ôž QÐ4à¯Q:«¸™%ÒZ¨N4D. *CÄâªéÁ¼ý•—/ãšvC®×z­¯iõïAÒœ1LL’Î`Ùv,aÚŒg>úx\ròÿ QU‡ìËvú—¤CRÉ\©£ ö¨½¢ i PGå¬âg–Xk:y8‘ ¨ À©¢ òÃâÒ™‡ZºH°žóëã w,ûèk¶+ï–ÕÜдHÍZ"}Ø\éèÜÞ]Õ9SG!ìQ{1DAÓ@ ŽÊYÅÏ,­êø"P€!R0DÉ„¦Å${,Ðé7þ¦×wLsŒ¬øÕ±ÐÆðRö¯CîfLðÁ·´â"èĉÖÜ©ã>Q{0DAÓ@¤ŽÂY%È,'­ùêø"P€!bqm»‘k¬vGöB,7·Qõ¼f®qP[HÆÌs9jÚК"º^®wyù×dÓ[gr¨ŽëT`E­nˆ‚¦P…³JYNZ7ø{—Lâ›x. *C¤@iwºe7~¨?›…v…f^oe\ÝÙŠÀËlÈߥkiˆŽJߣ:!æí«\ªã6ØQ«¢ i VGá¬d–“Ö[}½K&óM <P€!RkΣÒ[Ó =ÃK!]šcvÝ#s‡ˆ.h³¢æµ4DôR·Næ@%1M‹7äT—¨À‰ZÑMuÜŸU¢ÌrÒzŸwˆ¤¾içª0DîiãOTÞzèJØ~=·êa6Çx7µë ¾­”Z.Ç5-âë½Neˆ^ÆrÔ ¼ü4„®›}µ«ª7‚œÁ‹ÚQ¢ÐÀA¦bÝ™åx&Ö©N´›ƒó ¹€ª ‘kÚI{g¿m2@oùß¶8”Ar¥×hlÌ~g¶÷1SwiNß"ŸÝ¾Ú› âkßç2´_³M<ÅÔ ¦…ˆðëÔù?{÷Å™p|]™„CQ@XR+*jkDvE¡r§Þ‘ô —Z-MT’â%œç&Öõ¢½ÓÍMJҘƋÂÑ 6*’CRM4µIé½h¤bâû&¾ò•éËË=Ïì30vØÙÙÝïçììÌ>Ïïyžy~;3;cV÷*oZj›èäD l¢cë¸YŒ,ÛžhúAVŒf€„ȱó»ÿ´«¿Jk׿’?°?ººQìÌŽÆ/ú©íÖ¼i·¼ßb§ý}ˆÊµ‡Ë ÄtÅ)¢Mš'¨­ïYz«:£DD·×ø«ë2¢cW·X”Úf’Î…ØEÇp,XÇ­Åê¾ZKÖI`ü¤:Y5˜"§ŠåÍ䱪Mêpñ£)ïÈŸØn+Î/‰l٫٫²¢çt…z´§`ýoå·¾£ì'õaŽò†m¥Õ×Äß׋=Nˆ®ï½S]&?ô7g›duzÞ²Aú`¦:‚åGÇ®.±,µuB”1°ŽñX°Š›ÕÈ2X'ñ“ê~UcY !r*dxKý˜ïÕàâÇ ½ÿ;õÙÕ×cÏdý¦x~7§>²¾ç»ø³Z÷žKdâè•»½G{>¾¦®ô¯?ñÞ !R˺§'þ˜í%?–1ˆÁÆK½³üèØ•À%–¥¶Nˆr ¶Ñ1 Vq³Y† ‘íøIu?Ȫ±À¬9%o¸ÒdÙ?Õ½Ríâ—ó¾YØù}Ù ½RãúÙÄ&ŽÑ=š•:7ç{uêJýÉ; ÄÀzòt»¤?!ÊØFÇd,XÄÍjd¬“ÀøIu?Ȫ±À¬9$ Òcö@£<™¬ìYzc ’«ǾÚujn¹?°_¹6·'ûûÐç‰NyuÿQì¬/Î÷:Ö%p‰m©õƒl‹m}ÌÇ‚{–9~\ìÙ3˜"ÈyÌ  !"$D@B€„Hˆ " !@B$DHˆ€„ ’›>CH‡o´7dDAêËËËgr¶VUÔ6)BÑšîÂÌìI·Ïéò¸m ®0,Þ[ÍͰq ¶ïÚe¼`ìó¼ÝÃZê«ema&”¤Z¤»rµóD*•9µÚ’nŸò¹†MÅ{×°cɰqš6ዞŒ_^íÒ:—fG^ŒÌ>t´µ³&f£®ÕgphâÁtÿÃl‰¨°ºz|d|ú„áŠÑhô¤­xSQ.}õðÙ–*uØRsÞñ—¢¢¢úŸD‰È²­"!J¯ÒuóùÒžŒÌ¶$Ý>õ-§‹ªHˆÒÎkZ(2"¥Í_µ?ôH=’°/vxâd’ëÄr›GSê‚Ç4³¶iBT›îûb«|uÉIáŸÊ|Hw’iè墴çGÏ"w#ŒÇ²›—÷ßo5(óÃ/‚‹"ÓVVË…OÉQõ<ÑÈСËã/þ'Êùè’6!º¡õ™"*R<™5?½¬¾ïòÒu_ƒ­ú„ȼÔ>*Ð'$)úK•›;M1§ýj¢è_?nQ¶Äÿ¾"/Ÿx?ñ‰C$Puç3±¦©ú?%D.G´Æ_Ùý”yÕã}ÚÔ)ʺÕRæ·bç©¢Sâֹ¥9#Þ|5¿ä…øoÚhcQ1›·ŽÄþî—çþpÙ‡ÄlWDI^Nsá”Ó¡{ g‡dBÔ廈.ÈÃ<“æg‡‚Á©cú„ȼb‡”DöÕ7€gD ãâN³EQJåÝǺWì?0ÿ÷¨Ø½'úƒãÀØ»ŠR™Ÿ‘5MÕçø)!r9¢oŠªÿ‘„Ƚ„È«ïמXÒ$vUc¾©äj1ýö Æÿ™“çídÖ9)Ï÷ÌÁ*ÙMßü¯œäÄlx=<@4ÐlíV¢eŠçå þ5™Q]4~»G ‘»þúÔ|Õ¢Æ#_ë"‹Vˆ¹,rÐæh^us§Y ž[£(æW+^qrÎìªxóúŒ¬iÊ>ÇO ‘ËÝ)ª¾™„Ƚ„h4g¢eÖT“Üê›J^”g²æÿ»-þ»Ä:ƒºS^?ˆÿiݦ#·‚ÁÖ…LILíÁÁË.·ÿbÑÁy€(Ö„È݈ª‹Ž[\ß1 N…oë"‹VˆûÉá©I$㣎MŠRY:ç€fQ¸¡¬1T¿­b·ö2×3âMÚ#6ùâÍCíŠ J¥ü€Ù'û M –N&Oß_4ðAÙöЎ—,ÿ"òëýÛÚ^Ï[•`Móç^оý—¥¥çE‚׸£Fýˆ™£5Å»èØDÔ¢ÔÔ¬ìm\ÿ¶“ רv¥6lx¾ãyî‡~æm*—Èð½Þ = ;¨©)£HvulU¯ˆom&M5”–þ' ¯"tnçæáäzˆq?°h›±`ÚC–›·‚yM—Ñ-#jÖrbcC£m‘‚ø'YŽu¯2-›EûÖT¾_¿‰1ñʇú®ðö®.4Šl 7c¼êd’ÄeýIÈÄäš37³™hÈ Äl6‚"˜\¸’5"b2rÅk`Vˆ£.(ìƒ4— $Qa!ևőAß…ûäÓâƒËžêžî>§ûÔéÓ=?îÔ‹ÎtºOªšS_שªÓ@dËÛ4{ÓV›8¶ÑkÜÌšŸžKe—à÷ôÓU]Zl#C}hç=ìjš‰ ÿï“c} ‚m%Ÿ$ß½__@¬D!CH´év_»sŽD-6:/¹•—§é罃å*K–÷üjKÄø2Vx}[-dÚ‚l©‘”þíelÔãäŽIßùY®”m=YÞ¢Xwsü?æ”b=M23­2¾ª¥Ô¬ªû•ZQùÓR­>îïnÒŽ#àúØHöYƒÛ•ór€ˆÏ˜kåY‡Ñþ`¼,,¡S¸Òª,´eÛE ’3E‰ÏAkaC·íi—$FU (-Y9Tú·Ôúþ ñ ˆ¹ZÀgêÓåkNûÕÄØ‘‰ÇÁ%ùø‚ IDAT­JÈ¢t¦¯ÛoZÝ'õÊ®^·Ö zĸË/PøžÃ=Ãiz·b?¦Þ‡Bó¼‡elÁŠ©=&B;Îpœz| z½¾€(X‰ÆÛñ íÒà<ˆZ`Àä%O«MGT;V}i:$ˆvfP‰ªv_@F-†²19;‘ݵpÅ[ÑMêÊ^†ï#3ÅÑžèß—_ÙŸ]ñ÷¹HG8Îu‰…Š’ÍR€á@ȵÒ4NÝSu\nŠX7•·ÊÌ'„ƒbçÓ$Q©²Õzäÿ"Dˆ~D¿ÌBü¢W øL}Z".QDs„¾«°tH<nUBÞý 3]€!zÿ"N†l±g Õªðá@ÀÚs6ZvQ¸ÙAàÈ\î¡÷¿Ø\˜‡ÐùÑÖ”è IâÆFæßB¾ðdP€èém']][‰Â,Õpw#Ó½ãHªF´@ÿ‰‡ìõ<ù¥j€È²­1È\™öjQ†ž¶Kcšii•DÛ[Œ‡|}üu³ƒƒª¶çÀCmsS;+«á%“ª¹ÌÆêk.µõhlo•˜©Rp²ùü`-ÕŒ·Tµ/,V{ÏOQ[}˜tDãà\7Á•çÉŠj¤Âë­Ú+þt¢.Q­ýgA !­ÚÙX¥qY–(J­ú`ÿ¢6û4™6{äiçNhó¯ˆø»éßBP;èGô[À,Ä/ jãjŸ©?KÄ%ŠiŽ€Yˆ&UýP’,ÓÂhSuû .ˆÇÁ­JÈ¢|¦Ðgè°íýÊ‘0T¦…ßÀ]D7Öz}Ö–ÄLàHz8‡{f¡f\ÿpö!ÁYD²VýI}†”©|ßef›‰Þ z ºrÒÌÚJô–pÈ¥lŸ% µ`Ò[Ù†y €"ÜtÄ…Šñ½ú²ßo€2€èƒ¹È—õbuóŽÏÓÿÒ 8éÝÚJôµÖPû­~Éâ-¶ÑÁ„Ù©1ª1-Ø"q³y¨²®€ˆÆ°k?]äöE“z;káFœaý‘Q)“V½›b0üQ‚óÄÔ†[©—lMn®K¤–ˆïé7¸EÁ eIßeCBb€ê|W‘Ö©4ÀZÖµ碮EŠF7¾Dãi(º·Îzë¢{[þb6¡¶"L A)Û½ŽÿùxDG»é˜Pÿ‡ ýÓ›b¥žµ¥4ßuôàùžá!Ý·3E™fãiÑê5=qæè¤PèšçóXâø­t<ôe€ˆ¡Ñ/Qè±øòˆºÍi¤QÂ)%C !Z èZ)ûËÓº¢F«FEàȪYnAâFœËd`Vœ’ |€'Jq°Û ¼QY~Š‚“A¢X<;‘lH}œßb»Ñ^aÅç:É–Ò½ôˆ,\?`ê¡å´¹máˆ({%'|"œƒQ™ …ð.®i@Ôè¬Áó ˆ¸ZÍÔ»%âhî2¹¼Ÿ ÂàãøŸG@¤ÔQÌŒQlŠž‘e¦%¾Vêç¶”æ>$î"Oü£}晓:2CËw?Î>yÞ7¤¾ºh–‚= òPóÛ÷ˆÇÇ:ZÛVr8ðÙ»=dDG~›\s@¬D!°Öž}ÖÒ‡fà˜³yÓ®>[í¦€Ó…˜lØ6úÿˆêdQ¸ÞYЮ8€þ ,»%kU¹ÙF»è=¡-TöK­–w¬  *2é›FÄê’X:ø88×3£ci½ÞQ ˆ0®!ÞöÆæ{$Ñ×Ô•*›Ë÷ˆprDÉ -„çpqýH¢ºÜ_ ¢™z·D\¢Í•Ñ}J©ø8þçãm¥ÖI>ÖSèbtl3¬ÔGˆ&a¯fàîuHJßåvº™¸žfòîÃÇôë¡¡yòŸëäªÌ)àå왾,úYù ˆîöQtuãKô¶6 P§ ‰jIá" -h‡œd”<­+ JíïHÖ—GŠZT@T ª©+%ª³5µ½R«b¹Ö ÿEŸ³öÁ"‹Z£‹iÿ¥wŒémn é‰ 7È•' âJçz¯íDÓY@Äã@À5‘LŒ†/ÍT_1 ª¸|o€ç @t1H á9\\?.€H`!Þ_ ™z¶D\¢ÍÓ‰ö OáãøŸW@XËH«®VÕnn3uØ—ûj3¬ÔO|d¼ˆîÑN&û¢(ý´úÿ’ ooíý,}2ƒ6ËÚ±ï©Ï×\=‹?y¥ïœõ1€hx“IºQ—žXM&Û©  ’ÒÂɽÉ<­ :ö ›×Ö wUöÚbr©’µ{HH“Žümƒþ&ίw:±Qã¬4zÇä ˆÊMh‘´"D:ø88×[lís 埜ë8q.ÝôÂä‹ @4 pàU(AZÏáâú"¡…xD|-ˆgêÕQ‰ 5Wkåù$¡‚4ì:ŽÿùxDÿ4Óª“*?©QQ –ío›a¥¸&jTy¿ÒQÇ“ôTÒ8};tî è™Ew€o¿#Áø;÷SS3 0ÚÞQŸ“2k*Q(ÈÿD1}'ZѽÝûP¨k”ˆä´0'™½ž§ÕD»õæý±ÈôÔXå8ˆÌpwêôéÓlYYù&e_ŠëJ3†¢—E³ø§ì‘µ?¯ ¤ƒƒsÝh«ë”D8×GmûŠOˆ uêº)ä  8ðˆxÃû·žÃÅõƒËÍÍBr;ÜÕÒB@T㈊ŽÿùxD©ˆ‘V]g†L7- ºÆé€sÛÿ=P÷4güünwQG¸³ô«½f~xæíÇÙßÃzñç`á’n†}"?}ˆ‚•h¿­÷²qîës&ðÄ"9-äÑ:¢2­£þå¤^óúD=XÞ„“@NÐ yÆŠùÇ ¬êxC¨Õ"ö©Û¿Õ7Š–® B¥#~/çsm?`iDa¸ŽÚ^þãªñÚë4P@$à X@äßBx×à·àb!A"·™z³D\¢BÍÔ¡Ÿ2c»$Æñ?Ï€Hk ‘À™Y5_¼›fË쩳Grèªÿ{ 4ñ;ã˜ùàf‰{ìÐŒäá®n[fÙ¿úDµy\@¬D'lÅñ׳û\pºÇc“ȧ.ø·ßƒæó[fë ˆ Å¢:’¢×6MK"¨ÏímõÀ’TÝì8³ÑIᛃ~-^@„KçPÀe›[uD(®!=äõŒóP\§Á"œƒ`‘ á9\\?¸ÜÜ,$(@ä6So–ˆKT¬¹NópÕúm2ãøŸw@t0ª§U¨lÉEåÚY³›l§hµ‡B‹þï ³M¡«`û_ìMHÙÇ› òa«™ÖȞҭöäñ£¨ŒÂóÑÄ<†ÀØB‚‰" ˜¶Ã 36h †ç€BŠÈ(ÁŒ "Œy‹! ƒ„·\Í*«Y½ºÕ_õuªnUʶÿ¿MbwW×¹çܾ÷_·nCÊ}AĶ-qØm¼©:EXöuÖÑXXË‹Œz”•5“;êUBÅŒºuYµlª>XAti‘tF´J¥ ’ßÇ*àD¥âüS|ÌŠaQýÇîKôóW«™ êÇlD´wèóÐVŸUMADZ``5»3 ¯º~"5-Ñ1uVÑ8+ˆì÷½ —Ží7³â” 2k©µžH{Ô8r5íBûƒò_~ýf’ï<öÛc]±'÷½3RÙöÃâÀä=4ï(¦Åt%0žcÔ•ëÃɒг$³Ê±Kåˆê¦}ÒšeÝÄŒìQÚÇÑ j=å” ¢½CŸ‡¶ZugðšŸC‘X= Ú s%õˆ3Sgm³‚È~Ñ›péøÐ~3ë!N "³–Z뉴G #×ãʬDÁ~{l¢V)Cé°O¯„k*¾Õ‡c¨ÞU<¾®Üìlõ˜1Õæà0µÁtÊg½7¶¸ó'/rì͉/8ífV9êQiIHæÂù„ 4D|QEbÆÌ!^ñzÕúÕ*À˲§dØ'²íEœ‚è¸8 ùNX´¬Y?s[âîà8ü¼:?°^Kí"Ú;ç!­fÕ%e.<Ó˜‘´ÀÀêãªõŒªÔ'蘚 "#êtÒg‘ý¢7áÒñ¡ýfÖCœDf-µÖiEn8_V®ƒë<öÛC "²'z"LÏÖ¨Ë+ÃÖ|8†j¶±‘úëµVeän­nårSÝ #¡ß ’óxæ¹wú†9Æ7!¯dV9êQI!¦ÕM¬3áà`¿±i‹ìß^þ(¬µàÀ>Чs ý[Žü<ù€ÎMð%Ÿ úš]‹·Zµìž& ‰ÄÏì~G¥!Mž¼>ƒÍV‘wèóÐV?PÔïãD¤F[ÁÙ,vG1±_0‹©™ ê³¶ý‚¶ÀYAd»‡èN¸t|H¿™õÇ‘IK-öDÚ£‘+¤ú+yûí¡ÝÙÞÅËâµU>ñµåú—]7Dzo¬^p»;“åFG4«½lv~ÝËwL®81¿MgUdoéîb›•; :œ³ô6ÏGÙ¦êÎþÌ "G=*=h?’*sÿYüßôt'½ZŠHyñª‡Í[zªy0T}µ]ú&oAÙËg}ÍufÒÂÀ;äyh«]·"qV±„~æÉCDY`(ˆÞIvy#"RΘ¼a—YLM«ué·”„¶ÀYAd£‡PýÀ0>äoî!çóB«qó¼Å‘ªÊîZ³\¥†Q {•žH{Ô r9>ù»ý‡wfç±Õƒø˜ôÄxÌC„s/z[ ŽIÇdßÃø1©ìWç²”Ö¹E½>¯“æ=f[úøÈò|¼–X[êfÏ”ôzËr¢JG‹|!§eyaga*~ä*·ÝKzî_Wo3~ûI®”´º†¥*÷›ñj­ AsADG!Íô¦GQ ^ô§Žò_’]ÿR15DDKIH DÖ{Õ ãCþè2 =™ãŒ£@ö*;=‘ö(¹hGHÙœKfç±Õ£ø˜ôÄ*­_R°˜´»±g¤ïéʾÁúÅfJ"Lªß”ÊŽi÷­Ç̶ÈÇ|z&^PH‘׊û>éC^ð›íÙÔI“¨Dò/̘ rÖ£®˜Ìwú9ÕÅ]©(¤`»¸6=.)¢We—ü‘ôp&1ÀTy¤‡é)?X’x+PâqÝÚOA$-„Wéu…`iÈ›Lw;ý Ð¹æüä ¼ƒ\-µ#ˆŒ¼C{”´Z¼þˆÛ]v%(=×ÍQËLßc«ÅÙ¦<~î+WZLÄÔ¼ž;ÑRʇ‘åb8á’ñ¡ Tq\ѽÊFO4ò¨~ä&ËÄï ÖŠ4—‡¤O4šœÇV{Ì‘AOdÏ‘ùô{gPüu­:o0¥ÛƒõZ¢6|Ûõ5íj›Z[büÇÄ&–“ñ¶l5Ã3îL.Úl¨dLbön ¯X2›-ÝWä½³á´îy^Êu„ rÖ£®Üõû yG­é¨…T]ä(9 Åssüì½3…”WI'Ζ¶ê¯ßv^üÙµßa¸]mº&] ˆÆŽ#ŠaŽeìy ?XdmÑ홆@¶`e\ÈBþ¥IŒÑ-ÅÙ7‚|£÷FtÞl ‡åôÙÁHn^–Ž`~)n³Øc@öѪÚµs–h™(Ñô2xš¥2g S¼gµÏrá 䆹ʫ£D…_š£ðÙÆG–fIvÕeåá²+Ã3+´ûžPõ·!Ì »#nw¸~à¦WÔC#{ðPp&‰<ÁZ+YËkØœ¬úí`)"Ù´åï$«¨R¦óÌ}ð‰8ªä €eesjê3Fr^‚Ÿ§¦6‘‘R© ÿ³Óßÿð¿ÓϤ,DùÿÉÓîD.”±ŒFMõˆö“ñbe¶Äî¬)7aQÓ=D ûK×OÕ©’¯&³Ç°„ ¼Œ`ÿys¢ñìÝšœSÙ•/,úñxOÍ©k€#KðÍÇ™(Ü€#ËÉo«X%r¡ oÀs ”VvgG™ñÚâââG¯DŠ\ÄÀ‘¥Æ—*@^u üè„|O6¸¢\ôAÝœù]qÞ7“9wfö÷ä©2ô§ñkø;]Y_˵tÌÃÑ¥Õé˜Þ;ýŸVV? é¼±¶57»òé!ü À>.Ôâ6ξSèMé!aà`;õÉ£-ˆ¾„í«]ÿù¥À*ö³jm(RàwLEkÅ_n ~XÍÃWmnÆÔû^ÞCú[‘ŽÙÜ}ªzkz§“½1òzUùúÐDâ÷}Í1Œ¹å–– üŸ½s "YpÓ¦ k23‰3“pb.›ÉeÍÅi3‰“€ºp"‰›M 0ˆÌªHbÙàFˆBLtáû ˆº„ˆ$+ˆ,h ‚>„<ˆ ä]Ø'Ÿd|8œªîééêîªîê¹ê¤þí®JÿõOýuùºn‹²UæÏXZ¿ÀzTâyžv/ÌÂŽÐãß7xiëÀP~V¬Þ -¨–¾„ÜqD©õº€ qL*/ÕXµ~_šGþ•²"©€@9¯¨Ù•·ODU–çØüöçÑø#â›xTô¾óúFPŸúµñÎ[£Ê—ˆ–NropÉE9Š2•Ôjž]<ËÓî…˜Ñá‚ìZ].ýÏ‘;€(µ^ð#æ©Ô‡ªSP¨Z^àÒ½¸i$uSf.HD`ˆ×ÔlJßš< £ Ζù¬‰G Ö|TçhæÐm9hFÖ)>Œ½A×ÌQe”híš^å…gr0".9)Í"ÔAœçãCð˜ӣٶÚõ…äŽ J©\ãÀ À¸~‚x aÐØ¡UAj;ˆ¦5#_  ÒTv–WÕìIt‚ÈÊã¨]¸¯ž1<ò ±Ëö„ õD|óP‹ú/Šúôþ¹0ñÖum¿˜+¢76Ð3+ºÙ¹wDD\rV.2D#°NóÏ€j3ó2Ÿ©²“\:ì@”Úß©´Ë €~n=ê÷Æ®o¡%>?~5@$ôðŽðÊš5yfÊ”¹­‰7ðúC=WÞÇ® ŽYTc&úE±A¹ž{‚Ç,ˆÛ·ÕëÇè™LáÂG0ψKŽ l¶3D«=Tçó Ï„¾ƒýàO¹Sv’K‡ˆRû{"„|ô¬ëBOè_/AËÒ»)>¥@$ì ß³Êkk–¤BÐŒŠ*o!“áƒGB¡øògD\rT–2D¿Á¶¹ŒçwF¼pæõ·¹Sv–2D)ý={åù07ô•È·Ò>g–Z ’GxmÍ’\ƒòOü-ºêLÁ|ÎlYûµuÙh]ÐmÒ3u¨„(ªÿp•—œ”K#UTûTéÅ¢¤¿½¤µ©â¾8wþ>Ê“ïÙvÑ£ÆÿqY‰ôÍ¡c'š†öç™VÔîm/“ƒ‹‹‹'Y, Z %äóm¢ÿW÷W”LþÖpÌ€ÿ`IËÅY³ÍR›+T¾Ó²SKØ@D‹±ð‚…дõ¶4ÀÌ®ˆiÛbüMÔ< ù‡ju¾tÿóNŸobB{K­œÄÖá¥ÚbA°÷œuîP­VÊN‡ Jq]à ø(¥úó´¬ÊÎ,¤vS² CNÛçˆlk°U]‚PiÒl««±u€7§é•—ºÙ+4ö™‚ ´;v}}¶ˆˆÓ‡Åﮯˆß¿„9D\rN~¯®zÑz¨}{¦.O.·†c±5ø»|$öŒw‰qg–…¶õcê¶êñJ=ÿ‘c,½`!dmî`·AÛÛx-Èþ±´ºN jĵp@Ø‘·VÁ?õËY÷]y³ÉªÕjÙ £ @”úºžI%ô -ÕAøDÐÎ3À8Èsüj[â)@dSƒmê嵯UŸµ@w‘ 1!mLç3Ú,ïLÁ nætSa‚°F™[Ô'Ó÷h.FIˆ¸ä–œ&)6õiJãx$i :N™¸Ù£Ké„ãÓzvÏéãL@D³ZA¿?Ü£5æMØ3E·Xˆ¢­mÓV‡øC§Â IDAT¿fSb¬¼`!mÅfm,@DÏŠ,­¦Qù!%¼jú€r4!¨µñœe:t«±²Sjg¢Ô×…’ùè¾DIyë¼o:j’ yWmK|"@d_âZÓpœü_]”^ù^jw…kÚp£ÜÀ¶¦¡!¡{XÜ9rý°”é ÆÛˆ¸äœüÔ€¾©{TéÄ_KAi¤kjLîÃÉÑ0gŒr ©47LuEä„´Áü¶"tÿj´e^T`"šÕ Â\<%‡V{Pgoì]]òC³%5õh4Û.ª¶|yØænkSk½|¡õ´+/Ð…¦­SÑ€f6cÚŽ¤çÍ?–Vç µ7€¨a<\×…XÅôŒÎbF4ÏY¥C·ZWvŠ€(åu¡ «jðAJªˆÛm½Sg`dôrPc_â"†ºP ÇÍx.QoSÓ)t«yd„™‰:Ò°€A¢ÿaq¯á=áÂú?“ÈŠ—\q!éjõx…Ò‰Hµè«X-IÑ*Ć"Âb#tTãl¬!í,Ìê»*ŸlA™ò].{ ¢Y­ L+T9v|À%Hme5q[Ð:Ñ"¿< І¦ <,ï¹4mëˆD"ʪžÐ+¼ï ÇXx*6Úœ.ª¦çÝ?vV÷€x÷B{!vTƒa˜Ú¨FXž£¦C·Ú\vÚ2]vâ âƒ?÷9=4¯gÿÜJݤ jÉXòÍ)1Ô…I˜JÀ<‰ÔÃ\M«\3=„ÖAv¤=¡î ë3L™=„÷}¦'¢Ûnâ@Äe7‘Щïxz’"Ô¨w‘ß~½Ø¼’vjã¿QÛ¼¥90Íj!ö©ËîJ“°ïV_m]hÐâ µ]Dü µ4ØŒm~§Ç$D6Ú‘EPý“É3nh‘s7Z&ÂF 鞣¥C·šPvÚ2\»µQ·n&“-ø–0noÕ4ÔåÑr~³¿µÌ7‡@ÄTjˆC½y= êGÞ˜¦Uñ}ò‚²‰þ½}Øšj!Ú/Šç0òA'Yޤ åó_?ç@Äe·&hÍ‚º> Q j5Ä@– m› jwÅbµŠ0„Ù£Ýa¨‹îf8;’¢mºH7kqÓ @½Ë&& ²Óæˆ,ò h¹ Ê1É«Oü*Kaâñ‘ÏÑÒ¡[M(;m® åXÕptV­Œ³|;m „ý´y6s¾9"¦º€¼×JH±9Ýò?EÊ<~˜"‹üø[7$¤ñÔ=Qw뚟Ÿ?³Œ°^û@ÐĈËî"¹Í<u냼· :«iØÇ{/Ço8"ÜêÂ4›Çô%ˆ¥Xð]|A5´ÇÁÎÇO"¦Ç$DvÚœ‘UÐü“ ¨c6¿¨ÏïØzŽ’ÝjCÙù!•@ÄX&{8‚G,T!´hfù’OwúO¥*òͱմü.o6³ †eЈaþrð<Ú§N+oСDQL·(jŸ~•b_v}¶H\¥ÄˆË.¢mUg‚@$¡>Šôym',£é7¥]JˆZtkQKÉCTÆ}>5º½à–@TI~•Ç7úœjOIˆì´9"«< ù'1 Hjÿ~H'ÔÜbÜiGJ‡nµ¡ìl¦ˆØê$Ö* ¯Ù€b´–ê4“]õ„ÕjC¾Zä›3 b« ë°*‡ù ³ / ËyNÂûwì_ëÅØÙ‹Ï¿G‹´åEH÷a”nO¿ Dâ¹ùED\8áÒ”4uÊj‰Mù•±<áíyÉ@ ¨ÉD„޽ Æî÷°íS§h Æ­Ô:íˆML"@d§ÍYåÍ?‰QQÜÚ[êõ%ºÕƲӓJ bª ® >g'ǘÐýÌÚÏæ¡!lnmˆ>ÏÖ”1Öt^?ƒñ«!ºúÄxã"úpëÌ›3gVàÅü#Ý.3×ÆÆÆ™g+ha‘øú*".ˆ&ku7WyŠÂ i *´×ÚåĘžv}—Uaø:i3+­Ž!Ìesò¨Ñx5 °}›€¢ þ–Ž›ñe®ô˜D€ÈN›3 ²ÌŠ"|qÆøÌ@Dó%ºÕƲIˆÖ…<ªñâღŸn´µÖf)ðjÀ‹Ùå›3 b¬ h&mo73/“YCt}Ù€SPž~TÇÄgÑø¯izìù_è±µ9D\v9 ,u“Ž©Kˆö¢ÓÉQ5êé‚y†î®»Ÿe"ŠÕ ÂTR/1Èj˜€ˆ M‚]H7à‚aë˜D€ÈV›3 ²Î²¢ª8…Œ@D÷%ºÕƲãNˆ×…:ãþw·±TIh©÷óÌÓX¼ø‡ ËÇ,óÍ1ÖT¿áífæ%™]fÚq¿m(o®¹ûòøäÏBtê#é˜G®G…ˆ¸ìj Ú¯|”"à¹;;V3Nïê’"A(þÍ;Øø÷xX‹abÀM"ÜšÕ Âúº†„¨ˆÌ¥ºdd“ÙjsDvy@òOªÈÂs”tèVËÎp’@ä¸.Lž={V¿­¬ †Lq®¹—ÙãhSA…|Õ¤_?oo,@¤ÕŸD_´Ü œCt›ñYOËæíóBôÁ» o]‚ð³îñ8¡ÝhO9qÙÍ@T)`áJHÙu»Dï"ìSfŸ:*8¬|HÊëÇzOÓ[þ–ÿgïÜBâHö0ÞôIƒÑŒ—L\Q÷(3^N.Æ1îxâÆN`@“J 0$kÜqBÂY]È äA‰ÂY !,>$``÷aÉÃA”@ö=àSžÂ>œ‡Ã©ê¹uõtUWÏôx¿Œ]ÕUÿ®ë×ÕuáZÍD´cê^'t¦ÈT)^ÓÀQ@K åð]2D¶¡9!§Azþ¸,ˆD9'!²¶Ú\v†²Dn×Êq:§n@>ã¤ÀÕzâ?z<ö¶É ¢03B$QðÉl›x›¾Sµú“Ü­tþǫ̃ÈÇ,Wâ|´8»‚ì%AD·•Ó†¢Æ¾‡Ó <ÍrRuò=dê2²à-3ôèÆ31rQʾÕ| ó÷ä«·#8¡Ñ©E+†¿“‡Sð]2Dv¡9D2i`Îw‘0ç8ñð­6—ìæ¹^}—"­§ÓI£C…JlË‚a ÛäQÊjɺ@µq'ÚÍmÀt–YHUßÈÝøšè—Ó…^¦‰—%K—I‹Cd!ˆÀ^D7¨~IíÉÖÀvÆo_¥r@”·ìÞÀz*Wb7»jSC^Ë"k øVó%LgíÌýš`v¡9<ºC6 Ž˜wBYíD sŽ×j«²Ü9ua?1ÏWè´ÄÕëÇwìc÷.²K7+A$°Zª”g6¦ ²ç<#M^¥Ï©>°¶¼f^¦|ú¢ª_lV£y~æ¯Xûj!~ ˆ@¾2d1%à¯Ìl‚bcC‰Ofˆ5®OeÑ ™ý}Œ+èo1'6 ¥ßÕ|Aô#ýêàø&^hT™ 2]ñQ[n.° Í¡ ’Mƒ´=DV;DœãÅ÷ڢìwL]8HÇÙN9®¦‹^ªlÈ“ùz¥lã "ÕRå ÎúÕæÂÔI´¥¹f^UûçÛON¨êë|j¤W¦_Bä&»íŠè ¢+ÖNú,´ÈWþÂLÓŒqÕpÊ’ç_Ìþ&tâf8þ½rB“Dstëœô¶¶è”a6B=Æ;ñ‚NÏwèH¬î­2œvÏ·@`5_ÂŒÑ×â‘Ô#xö—e!ˆè|mbß ý„QiëÂÍ6¡9Dü4àç­ÕN‘0çxñð­¶(;ÁR:Ifù¯fPO‰)‰–²òÆ.Ý,ßj™º@‡ßüékÏ.ú5=ÓC·fœ-ž¿Mט½`7õM…6™kO«ê„Í~Ö×ÿGnû’œ4m”OWéÚ6ìCö ´oí¨×[UÏ\¼q=Iw7i¥Íž§-Lú~CCK;-Lgôö’·ËÙ‰¤ÅɬŒ´i'¦btÿpöëÇ“Nô#›¯jŒ˜lųncÀj¾„QÚè]gº”hQ[û¿K ç};DÊ=ºEPy?ùu§¾”éŒø.¼\!Í¡ â§ ì¬î7ï´ DœãÆÃÏ9¶ìx¥QîëB?Ÿifè—¶­Ê8¸#‘nŠ2E.Ýb/ ¬–¨ 5æùû:è>xŸkèÐϳ”À’®SLŸwŸë‚ȸw£rs†\Y˜f¸™pŒÉ1úžúé[2D2ó쥾Fÿæäït|¨oM {ºoækºßTëÕã×èº`­ãéH3mèî·Ú.ýÒ÷=ŠIê–Dÿ0·ïpõÀš‹Ã}‡¹æÔ’™H,ž&:#äþ†Õ5\ Vó%ŒrÎÛƒÎçýŸ• ZÑSÓ9Ñ73,“páæ‚›Ð "nò‡kuY×H¸¹çŒ’·´öéý¡®  æ?u¸9Ç”ðÒ‚(÷u!h±ù¡ÜRýÑ£ä_„éù¶;Rnì‰%·"ÒÔp¹µ×ÞjûºpTŸËd¦@÷Åø¹fœȪö½Ñ7˜™Ò_Ñóéë¿j:É£ÉBoæ7ægôkÆA¤Wú•ÐÌÂ;5Í ‚ä;'#©¶9Ñ xêR׊û=†NàCCÊ©¡ÿ°lƒîid¦½ÄyÂv F)Й²+¼x ˆ¸¬"¥¬‘1¢<A¤Žù“!ùOD¥\x¹ ì…¡9D¼4åÏêöô.ÐN‰rN:ÜœcÊÎ!yA”óº¹ Ò· b7XÙ6œÏ¢„ÕvuúnLŸG?§ûîGcšk¯&uÍLÚ±iýú´¼ J^š7ÎÎþë}Õb²5È_¢Ýñãü‘T“VïšË=úü…T¨Š;5Vy”éù7¥5¥‡»J¯wÄ´Âee8æV{7 /pZ··€oµ@)špüp ­éâ%™‡…VV{ÍöÕ•I»ðrA¨a¡9D¼4åÇêL‘(çD©Ã͹dÙéèëîƒ;¤.d!ˆ.éf™§.ól"¡Õ⺠9¦²0Žj¬ËhJsÏÛ³ú ‘zúlúAãTá„Æ ¢ÐödÏÒ•Ó ¿_^½°Ú‚ä3ž SÕ7*}`ßú «kNY‚_¨¬¾¶ï’ÃH†8Ÿ£Šö_½Q~õÐI‹™3ž¶–ªö'TE0Ò ,X-¢ª¥ªæpÁ®$çXaKyû¡¨#^.dOFpÒ@?YÍÃ&çxñðr.UvvT]P> µ¦ªçÑ‹‚¼aø~s/®m|=OºYçrz½†½6Ð÷Þ¡ÿçl’ÁEÚå~ ú›ŽŠ«[ÐÔn :®•æY±ãåONž´‰Ò•½ZÁ³JÑíDö5؉ â‡&¨Áî•QQDÚÅÜ ¢ÑW±?¿ôéÿ…¤dÊ'[AôvF5¢%òûë2U^Ïc6’¿È¢ ûÅg,ODójZ„u¹GeÐHË¢'®ZØALT` ¶à‘ì4×®DMy'ˆxù“‹'¥¯úÃ{¶n7íRA¤È¿5I"nh¢ì^ Œh®eŸ&/±,2sÒÇn6^Œ*ógé Î¼LxËÄ㟩à–Ó}`û’‚ÈCâ›&ÿ? LÒ  yÉw¤¾Zé¶kZW±¦±CÄ+a­±0þ{Š~„ÿ§¼€ ªyl'<ñnDwüù'ˆ¶ðIhš·h¯ÖììRt;‘<2‚ÈœEŠö6“B8èöƒ_?­ª ‰ßóê§øïY*Ž^J°Iü­‰³MuWÿÃt¶ÑDíÁºî‹ÇO[²Åv:Ú1ÕXnÜ©äéã &Âe³= ½UŸ!ÏV˜  œ¦bÉÚžºxGSßž"¢lãźº­CÖ#œN/}Õ¢(ÁWq<Üõ%÷ouo…ÁÍ=u«S‡vçkÊòëvó9ç‡Ó?LNáycYòÏaÑ~Y¯("âr`Ã)WBÆON•Ív75ìËŠ¦°úÇí»¹d” ¯²Áé¬upå`fiˆÈg*Ü3[NIâúÁ;!£±.RkÓls Ÿp¥µÿ@í@ $eY „²<ÈIþ•³"ý‡DïÔ/ÿS·ê<‘G%ˆ*BJ¨ÝJE¹Šåd¬©_ð“rÈÞ?(§Cä[“áÑòOXX´!æþœ ž.\N¹r¯Õ¯%F§DRØýãæÝ\Ê2JPj²¨èŸïl[—Q|#¥ š•R…DæRòÆÁ;"£ÈrÐצ"v ͼò3催;ñè÷±oGTô„¹eö_Ï@äQ‰¢º< (Êè%$g „‰U2Œì®Õƒ×vż¦dÊteÑAéžêŸ¨<·Æ z騈 Œêe%{„QÄP‹¿o»€(ž¨Ò‹k¡7ÂéQÅB5­ƒ·hbžÊ¡WµÇƒæšúøõ?Gòƒ÷Êiœ/è¸Ä©²_ÜC8æž:0Ny’¹bHìHAúÇÍ»¹”d” ” ™VDÐ?þ¬mëà2ŠŽ`¬4DWvéïܽ3€h›2%ϰ®ÒÔrÜx-^/l,ôDëE<*ì¡ö£EIZ¦ª?¨[t!Dß3yTR€hOaPý{É ç¹öˆU2­¨;p,@tqR8Á*0RhêÙ7 žs´T×Ú `*Jã<êl¿2V3RÛ åS=³ÓQ†LTÓ¯g»§É—êv!@Ô¤¾@zàÊœZMj›€h€,ý‘ºîˆú.QŸ§çÚˆºõ·(eß:x‹V¨æ‡ûñŽx›úE×Ã5°Rœ $›UÁRG¸ü¿àç¨C~ðþÁ9…3\Ž˜pµ¸3†xÌ=t`œr$äåRnâžOGÕ^¨±OÁúÇÍ»¹“l”à1™ž†)Në 2Š`¬4Õ‡ˆ”L¯ÖuBʨˆ>àŒà‘ÑfÕDl¦„* ½.”ö1‚zž±“VSÍ´–sŽfÓo¤?%ÅÞæœ¸OA´¿g ò¨¤Ñ–¦*DÙL²sÂô)vb–¨½ê ʼnVžðI±DC«ö ø!Vתú=þ*mþ†ã—òJ$µ?½d.rY_¶Ôqݳ†Ø¢lp¾)÷T,4.ò]"x\ebC5ì³ç¨ŠéÆÉɃµèKðcHç¼S’¯ úJù§^p}=îùa÷ÆiÀdƒ„¹|XX²Åcîù ã”#!€©tö©ž2ãåÝsö)hÿ¸{77²ƒœš æ\ÿ”Û·:êq ÁJËa Xå'»ZK’˜¼ñFpÑe4CÞ9d1eº¹3íûAY^Cò­Û…Óçé7-ŒÈòÇŸˆC7é{;®?0”‡XçN®¦‘ôþƒz"ö‚g ò¨´QfŒŽ3ª¤5Žqˆw .×»Œ¾>F@Ôi]/ÇÈôPOý}Ÿr4 š:”pˆ®‘ÙÅYûyÜ9 RÎlQ38fl9ÅT07Ò¢fÝyý”ñý4ZÝG…Èàõ¸çÇád3>J¯·#NŽÆ޹·LN9² V‹_˜VU,ï÷ïæLvðQ¡€ßE°an?ˆŒŠ"º4énP—‰k‚¥  É( Ü/–ʆ£†Þà¶£oD´ò͆«ÌÖîêI ƒšȈ¤Ø+9y"J íÜ£•žß:ÄÁ7(x$L ÔTDÍlõqÞdâÉ{¹HW!,9é%!n.Q·É{Ô ¢ †‘I[N1Ì̓´èª!–^’Îê›-Wém†Ô¯Ç=?'©ƒz¹ÞÕC'á˜{{ÐÁä”#!¨MÁûÇý»9“|”ð¨MQú/Qýƒãø©Ç Æ‚€ˆ* ­ZÒ¿ÆDB2ú’¨Àþb]änB7˜)7NÉò‡»B…ÜœYÿùýʳWÇfTÃÏÚ"mdY`¢B%žÈ£RD¾.Úv®ª`‹Ð/ìÑ(XEJÁ¼êÙ~Ù ô.¡2®-hj5Îx®Ü'¬Nk£kÌ9 êØ> ª§~G´zxœb*˜›iQ°Ñmš&Æ´nœÓm¶­Ç=?N'› jŸâÏ£&zíàž{>è`sÊ‘:ôTv4ï÷ïæLvðQ£#t¬¬ IDAT)ÊH5…o„uX‘£% ^Z¤Zº- ¼ó€HHFÁß{¢8ûÄuì,êÅ5m^9-oáG¸V³ùüI~ü&qÑÇüÃ7ÿ¸àMŸ}ù€¨\Q‚—©ßE ™7¾U0_k‰mð‰¢€è²õoPÓ!¿N!zaýUîÔ‘±ž„ 2ƒ]úd¼´( ÊŠWv¶TU÷+ÛDÌz¸œ"*˜›iQÒf!Bn莩5´3nœš«ðzÜóãt²Y¾à²Ú¦(£ã¢2çèž{>èèt*!ðÐnfEh Þ?®ßÍ¡ìࣄÛr~Ý®D[‹¸ã‘Q a––0Å•M™ß§DB2 {“{‹£±T‘fÐ÷CîÍtlDyÃÒâ RÏD` º+={nO~•<òè DsŒy¥ÙS1.—sÂ`˜œ" " i3éoÐÛZ8½®\H™•™ŽŽ­D«£èY¿.ѳ>§lÌÍÃnÑ™øF V@òGþ{T÷óIBä Ï¶÷ü8žlþ¥¹¬&¶3›ÝsÏKN%$ŠúÒ`)œþqùnŽe%\šÓL[I“>~QÏ•¤4DsÔcaÓAŸ‰ÈèRѮջ@Èë²l¥½s³/{¤‡­½#¥ËDªèÄrÞûwoõèËD™³gÏÃÊ䟌Y­v /Öù€¨š=›q§ÕšÛùë ¢÷”Y·É”?"zÓ¡1w±@¨êþÒ\ëüö{RkwˆÚmQ5[Ã×þîòºs&ß‹g2±Ä—2l_{~O6™ª‚Ë*l”DEÎÙ=÷¸ð 3*!mèö–Âéwïæ\vðQÂ¥> tè~ú6ã§žG*KB°Ò¦k…·h‹ˆDd´x€è=Á!wX pÏý£ç®Êü]Û3¯lÝìÃD9À¦§+Ï<òÈ£ÏØBdKÐL„ÍÒɬB‹` t#¢;-Šf .Dw#(äa ¸DÜA&#ˆ3Böad‰,È‚ïÂ<ù4Oû´u«¿êëܪ{“hÙùÿ^4]u¿O{êÖ½çœ`¿=¤v3°e "¦tFp7UÛi˜#–ˆ‰6Šaaœm€Õ;*3Ö›¦)ÅÞ Z*M)Ì5¥2•ÓÏ#›b9µÔNsÓ=ʶmè·¯(zwNÃ¥À•]ÕnÊ‘oødÃÖzØ–Õ*Ÿ՟‹È™{®Ð-åHˆÄ"z|dê&#;ôSÂçP¡IU†M[ÜçGØ ¢së1Iܧ˜£Q ƒÈ…Œ¶j‘x7€~ûCï?2Ÿ‰w%3½S4ˆnûmy©¿sîÛÆ”ßW­^»ë` D-ªÞ.’"Ç;vo§aš(ÏÖFc®\õ7›_Ö`é¿åKSÊfÕštl–AäÔRê¤PJÐ b+öúˆãÕ†u(#—Ûî=Ù»è®ùöˆO6ìd8sÝ“¢|ûØ1)pæž+tK9òÄïÜé =>2u“‘ú)áS_¤‘4œ“ã>?›ÙeÊrÊëSDÎ2:«*ÍІ»êgÁÄ,°³aGÈfú¬ÖÑ z£™B?·³­ [Æ ªR­›‘E±2bÇŒv†duóy¤/hµ´¬ÊÌôÅîx´¤ê¯)†pÝ:Ç.,ºõ!ƒ&܃ȩ¥v*˜›†èÑK¦"CúÓ8Q¥µOdäÛ#1Ù°h™×}³»ð˜"gî¹r@·”#!ö¡<¹Wèñ‘©›ŒìÐO‰s_s¾ÜˆáÝ„ûüDtn=¦xñVMóI "G­7Ž¢+!ö ¨©#ºs§ÜçGØ ¢sÓ ¢ò&¢ŠÙeȆDò2ÚfÿJxr¡OL“Μðû_YN’Ý9ê÷Ÿ ]gŸÙžž§s}ì'‚£™O™Ý)ø+úoÑz®?“À3ˆë%:!\Æ2s³’˜¾gÙ‹ìtY»vÕiͰîp; ¯pTflÆ(žymÒÇñfÛ3Ó… V+åÉfB©-pSÙ<ƒˆn©Æ6»µ^ªGÙ|kñÄwOþ]–­NXùöГÍ6rUçÚ€¢4ÔqCí;sÏ•º¥< Ù;7¥Ê›^§¯Ðã#Q7)Ù¡ŸÚ˜4> ÜçGØ ¢sÓ "å}¡{:CVØiIË([~‹ZÏ垎*Ñv!Aeçãÿjþñ®j·Ì½¤ý¦}ö2®+=Ô߸ýœrèh6ˆ DlSµLmfÎïÿs(¨ öiŸ¿Ý‘ao«ñK2n2]Ý-`ùz™ß‘‘¡s§|¹šÞþ'u%ü½JøðB~ÓÀÕI6o|e®£ÍöÉ.Ò¤NCž¤¢„ʪ~·ö‚Év³fΩïÞ¥)¥ý7ÉTX 7­VÒj-¨?]^¿AD·´4O´ksA`9ásNCö({y7°ÑºÖ4L,ÒºÅãñ®ñ?¶_uùöØÝÒâÚ}’ݱ3÷\9 [Ê•Kš/õ¡úœ/QSß’ q¾BŽDÝäd‡|J`å4™ŽÏq{ÇÁ ²J[Þ R¦Þªÿ}+bcâdHŸô¼á2Úbª<¯Y³""ïÏ«ŠÅ¹Èœ$þp߀!¨Æß5ƒÈö»¹§¿Ýa‹F3kÚåçW\DÅ"vìþKð£Zps(¨†Úæã£M¡DF—æÛšSôظusõiâ¦Ó±Îªq,_1%Íÿ[6ˆ´_ãµé¬æ«-^zÛ®OM§ã£#Úý¡`ëÒüTª¨ÐOeµD¿t±LÓ·tª>•Ïî—QM­•ÛÃÖÀ•¥é8+e¾W§ÐÇÔ¦c…~ …³]ãI'•Ü©‹jižqíR×|WkH·y”NCö誖S({0«ùªÕůŠètäëU§r¤ÚÃNKËcžv+׳bgî¹rÀi)-!>_"¥:áˆóz|$ê&%;ôSÂ'¡¾—Ôé<œ;ö%£´„¹1ÔÀvRÔ®)±çÜè'x³dô b·Mo»–Fä0þ#æ‹ÚüãÿlvAÕ~2žÕ×f(¦¸§rÑXzGY-õ[ëV*q0[ú-½¢ß3óºC—W¦³Üž@[ùBm&.+ôKÖrVÖcQ--¼gm‹!ÓÐ=š8-Ý=¬{/Í¥Í9ìTŽT{xãÃi)£K¡ã†Z™ Ë—NKi ÑÞ6 FæWÈñ‘¨›œìO‰G´$F÷?¼Þ¡d”–27U#E¯öÅK—j\äF?Á›$£lÌbÖ•”e-ŸŒ€˜²Ï„ "-T™É»õ÷†ÛŸ~ësa±¢;ùÿCw”ރȭA¤-6wD "_¢%*º <]>JÖ™ª+šs¥NÙû÷¥|ªÖ¡„v¢¸¤êMk øNéÛÓX¸ohû$6Í ¢ZZ0W† Aœ¢ÙŒsïp{´¾­°ئŸº[Õ¼cÓI•T[Z»£ß¡©ö8M6TK}ù3:×Ç’¢„s¢!Ü–R’_oy_œs“›¼A$'£ f° Û\èPD|Iø|kìÛV@Ø bñZýG6OàñÙ…{_½!]  ¢7ºe¦‹gçXRœ¹[™#PB å”åc 2 ÝM-Û¯ší‹&v÷ 9: ôv7õ/ÚUùdcódÕ› ËÕÍ-ߤc‰–æk~r¡ùBãî×"if«»úw¬¶§¤£T Ç6àÜ[o9Riè–²ÕŠä¦)4| ©éìnè^Ø•qÅf|¤ë&%;ôS"ÁÆ>?ÜÜõc ýõŸb;‹„Œ¶SvÏlû¡¦ÕõW©¬•w2¬7|{ÿ×ûÖ5 ów×^üë?ÏîHöÚÏï^|³S"RêL}÷ŒlG?xÀAEi5LÌY*ÎÊçã†ýW¾Ý¥¾rÔBJtFõ; Gè³·: (Qo™)À£Ð2z<¦>P è!€ö‘}:~ð²8DW”°÷$g/† x\»ÙÊhnZä@`‹pš}eÇ‹¾·6+ò×#Ö€¹Ÿ—\«j¢ÇPïBÊh %àç °uh*J*‡~ð,úÓ¼nÝ.w€ Õþ¹`¡=÷c¤€‡¡d4§ÚC¡&ôÀBc6›½¯fž‚ùŒKLçÆ˜;•¬—¶zÕ°h­ ð,¤Œ&n¨¯ _Z(‡èüž¯¾~¿g^óƒS÷7Tm2˜=ØÊ<æ ôbœ€'Œ@Ű6z¢ïóJÍ& 5¸€Q5ˆ £P1dn–BDcÛ=7ÙLbŒ€· "È(T+ÕýÍ“ÝUõÞò•{»c¢»çË€wŒI2¿ý¶4‡ƒÁ`•îï*õïÆ;ö+ʘ5]æz:ªéŸX»p(еŒd}ïEƒ¨›iÍFM]¶¹%ÓÙ`”žºDj°æ~k0Øá¥¡÷Tï@ª,ä’ªöêþœ9sÿû9¿ÆŸ?üE$á?~?–OwÌîêC–!T/ØÚ$U=Ѩû»QýÛ°`½Z§(qó«Uboé…L5‰v‰y]Õ[—•Þ±o›¾Dƒ¨Z-9ârpœ§.2·D#9u‘iÖÕ£ÍjiÍ^“™Þñ4•$U‰ÿ³wu¡Q$[¸é¤ F'?ÎdÂæ÷Îd&×dÆt3'Ä€# þ7.(jD"Œ1aƒÁ}ˆF\ðATDâ²8,È"¨ ëCȃÈa äý¾î“øp.·NÏtwuOUwõä×l—tºª«k¾9sÎW§NUa“¬Û1(/>#òðîï¬éOÑÑŸ·!"Ä‘Uçi0?4ÎR¡@Býã.Ýe ŒÖÞŸ9Œ*¾FB$ùÕßrVuv]ìÖÎ1]ó™ !Ê’(Vߥ]§< ³»e/i•læØùç«,§¹Õ—½ûóÁ_³<ê¯W—^¡¢·eAˆ„q"Dž)äEhÊ<Á5 4(Ýž‘”®Ã¸¥\¼Ö„²÷~¥„Hâ窮‹Ùšëb=ÝBƒ+»Oy @g—Ë^Ò*%_s~gp<õó–µß9 ]¸½ œèå®çžøý6\_¸_þY–ÏB$D"Bt¡Þ2„Ìaå¥j.Í]߃‰ûÓü¦¨¶¹½ëLðk%DüÂ㺠qù[(CZòîÂŒ÷èìù ´j¨ «Í¹ç™¼ö“vý+DužñŸŒ•àÿ§õ¨œ©½â÷¯·[·*¾&´jS´ªßÏë@—j`º·Éx_å3ÿu®wßvÆì7\úI„HˆB´®›6P£ôÀÔò›˜Á¦²bÚ! §Ò“5¸£w5˜ªÏR%0‡`ÙŠUs†Š;ÒÎ%KÊfÅÞ–®°¾”S“5!³¢JõW]0uVž!Q£šY¢ÔdGõN„¨Á4—$àZÅÎè`WÓ‰_–>6ì‘”®š&Ë÷1Dq6¬Ö²ÖßR?ææ%çÖl\—í34D}–è$`pŒ[÷ݬ¹‡íDçsŽ®§.5ïˆù¼¥XŸ°Ë  qŒÑ¤Æ£²¸%²‹ ¨¸¹AÇNÓÆ<]ˆoÜ"´ŠS«¦qŸƒy¡ i`¤ÛufÚØ{ú?àzpLÙ'¯ŸŸ¢±ª/pñJ"!‚Ù¢‘¤1Z,#g HYÅ,gŠï] ¹tIw„h]+€Lãõj=fš1¨ÿwZ ÙÓl³ä X]ms¤‘¨‘YR`ßX„¨Ѥ6|ô@È@ »¦´ª i¹ÑþvÊÈþJ€ü—‰NöÌd«Uªã`´¦º.=ÊÕSaXoƒë’0{ v›0äÞôÓÕš{ìí½D¦­âˆN\›WÕHiñQ·ÄÜÜ"ª&BQ[®«ž{L#´ª­j¢…»¥âAÔxz[,÷g°¹ô‡·U?ª§u|º¤îUýê¾y;¢³²Üw.!"Ä­ ©&Q18ã¦5 v¡Šÿ] n Q›nŠÀR–ÓÚ…9~dе´°œµd®Âÿ¿‹e³gƒ}£ÚuÓ¦à “sŠýzÉ8!Rã]ƹ¼µ¬€¬ëbalg“ßšêºõ¢ïò×Ko¹ëª2%ÀÖºÚwÚÕšû6®¥”:q-ǤJ(‰Ü‰*n;Ü\"º&ÂlöÉø5£bç ´ŠS«ª¬‡iA¢-·Ùž………³/úààŽÿðÔWnÁ¢ûÇÆQfäVF¯ñ×’ DB„h$Å*¹Ÿùô ™‚YFZ)³YˆrÊÛL¹œ„ˆ°²ŽA57ðˆ¶,vÆ—O©±,V‰5r5¡ï½]xßh†VÁÄ«šP=Ò“-æ0óÎè'¹‘ÏÄïÂTp­èd]WÔS°ë"[S]—‘5bn{]×P’½‡ÝlßänÍ=æ¨Aަ t⚪@¼ï;í¬ë¸ùìpsMˆèšXGŽ@¾á[€'´ŠS«`1É£±ÙJŽØ¼yÎwlÇU\÷È#øåçwêfú^×Òõ>}kGAˆ„±!D˜'4*¤¡ôæ›ÈÚ pnü¢€i›vKˆˆ$¨º\™"D&h-3@Ä,Y´,¾9¯OAÞ7𡵮ÇkÒ3ô&Ú^êýþ‚iÒuAˆ„1ÑDÄ yÚÈY• ä%=…"µœ¯êAÔl#{ÒQM”„Í–ßl¿4ãìgî…Í,ÈÕª…¸¤6Ø7š¡­!g0°Ác=ÎFÆß¹ÑcOYDò\Wl®+bv]S¯V³Í®«„ ™cö^Ù"ï]s¿¢®kO;äËFHBT¡kÓ=MÏf5ÜÚlqsKˆšØ@…ª8·hZÅ©Uï=¼6Û³¼¼|öÍKõøú7ëÿ¤²§O¹ÿ.¿$@û„¯“!"Ä Dô¤êb„3D éšžkE¬\kŠTÒm’=éˆRKT™>ÔßYm,¯H{ý@¥Rêû™%IüÉHG·¢§xÜ7ª¡ôÔCV°™Ü?2ÅEˆö{¸9®·A'ëºf\».jk]–@c·® ü¿–‹1Hñj£ÛsîÏewÆŒwñ¡×Ryîêóc$! Ûâæ–14±’Lõïä\ *´ŠS«`Æûàšî·¯_@ÑÇŠȦ“Ì༵ìåÍ>Y~, B$Dˆ#! ›ÖÕf-­9»Qäß4wÔ¸Ôâ¸Ñ<‹t /&©›¶2³X% &&IÓ ßHl¤o Cë§LO6éT)di#c%­‡¶b–4(:ªë H.]£5p]i¢ZȲd{[\×·zl ÑÓÜèâúœûî&mßÎbtâZö]ˆ„hÜ7·„ˆ¥‰­Æ–@1X ʵ\hŸVÍïøAxžÈ:àT N2û‹H7zˆiTÖj¯ÉòÀUAˆ„q$DÓçÏŸ7/+ëÂw¦­>Ê=$ç%Daé(c˜úÚì!ÁòGóé¦)Â873Ù¬’!Ëœƒ$AÛJá}û?{çÕ¶Çñarƒ©ã8“h¦Ì¨“Ùä6óÏ@\cÀ²[0"dBRǃtÀƉ¥pº`÷\ƒ|$®Ä¡‘78Á%P¸ç!zˆH‚^Îû…žîÓå>ß½Öž?ûßÚ{í={ÆÔïç!uöì½×üæ×ú}÷Z¿µ~¬Žö8SÒLMLñ ¢|·}"Ÿnnºêl†.ÖÕ´=”Ÿ,cèÊøs °'T©ÊVòÆAûÀ£lyŒ®UkëØDz»ÙD,O!Ò~îjFŒO’msF¸>&¼ŠÏ«v^y|/S^LHųŠ¿ÿ)ýMgÚ¶¤_ YHDXw5ƒ,[NOðß*`\æGÛ¡'yDG ­Qp¯O^~ò¼¨"OPóx+ ¹!#Gm3!Þ–*0‘‹žª¢Y>A”‘âP«/ûËXáñŸm'¡‹yµ¸Æͺ5Úe]t©Š¬ ¢ÜÎxÒŽz*øêi¹üU0di Adn7·o"ó´ôß&¾ ¯âóªž2#|æ©Ý±àULŒIq¥‡äõ·^º'Ĉ IDATï“ä‘þ:G~^BTD¶鍯†lÜŠ3©zCt-#…ÙŒRi‘CD ”éµù" NÚÆîhÏèªFæ8-¨«ç&9ןÈ~¤ UBŒ‰u„.öÕâšÒtGm àr„.2Ö3›µÁ0¯/Ú¬s¯x&_¡5Yƒ+ëX"s»¹&ˆ<#ù¦±*ÞϯâòªVZUwgyÀSݵæ­z„èiV=ðòQ@ÙD-R\h¨´s« {Ù½r&­ŽCtÜ$Úª°9‰²Ósæbæ2ö­¬Ý]•¿¯“¶±;Ú&ú G4yšS²%zUëäL¬ã t±¯¦Ý2¡[SŽÐEv/ ÛK%XûO1ckͽšÕ¨"k‡i Adn7÷QϨ0z«íÑóæUþ¯âñªE© Š;Ü}Ò̆ó‚îTçCvÊ ‚—Q…¤nFWíÝ+j8guG½Y±­ »«?¯Úê—ôjùÎÙ¸è¢é‘9MÏp~]‹“¶±;Z²˜7Ê AŠ‹ Þ§Õá2£ª¼Zë8]ì«Å5•½õßoYB×Ýùp1ÌúÞv³±æ^;zPWPöLëX"s»¹&ˆ¦#B«ýR£ð*¯ h6OضxFˆèb1Ú¯^ïåD¸&ˆJE¸Ê潆;zE^ŠžèèUI˜!劗+äÁÍ00ÔŒÅò!ÌIÛòcn8xVÞ(ð ¢všêP¡Þ ÊÄ:Bûj4t¾P²xX²ÐehQ‚/MÔd¶¼®v×Ük8^ØW™i+Adj7·Ñ¢Ÿ«\¼ÊW…˜ã½eä¿’€¹¨~©æÓ›O5úq¤wù¿–.gG•ÄïUœóz_‘Ÿ7<@ÙD‡È3òˆÝ{Ý4Þ*:­Ìí×xDÇQU6N­ªs&+´j û8摘ªX@£¢ïtÐ6™Y£ƒûdžÀ°øÈ-Uæè,· Ú’ V¬ö3³ŽýО ]…t»‚v£WC×,3eƒd³ IjÛÏ]Fê‘Ý5÷j_6Ó:V‚ÈÔnn ¢z;µLàU¶¼ªÍxÃÆ++ýåë½’Í¿¨^ºñ’,Å׈š'^ïO—”"Ê(«Ìp$ˆ†¤ÏÈ´í{­“ ôÝ I¨LfuÊæ)GtL+*¨ùî©÷D©'óM‰Bz‚8ay„< ·æVäÇý “8h›Ì£1ˆE2D4_x›ï`@¹skx›nADºe¦N̬c?t±¯—ë¬gÍÓÔïüçfè:ÀÕ¹3(!?£ ©ö×ÜW()*I xŸ…u¬‘©ÝÜDdìóøºý^^eéUdP7¢_c;"í%ì¯+‹uüõ£¤m~U}¥Ó^_Õg=#u>²Eî_K"êò. ¢7éžS‘â}²îѽZO IVsêúš¤ 8DG?yS/éŽ|}I©/VuÎstGáá@Æ#VZug¬ÇІù wÚ딪ƒ¶4Ö`;íñ}ëù`ÚG.0:|}“©îxî/Ô$ Ó‰á&I¬ùâÒWäDä>Mšås¦Ö±])ÝÞì«É¡K˜Ý–~?lŒRk1׊täg Ì,š_cï¶`€ý5÷}Bé9±åö QÌ'­¬c)ˆÌìfÇ:¦Sf¤=‘±hwwwlê|ûmÞ ¯²ôªÙeÞ“.aÁû—Þ'O¡ÅǾðŽŒ]þ¤~ƒ\Ôþî4¯÷·77<5—.zõ³lD8Dqƒ ¹& þ¤YQ«R7òûí‡yDÏ׿»I´Ü§êœÅD¶MáýqÆúÈæÝ]&Ý•¦;¶Ô.Ó6zÅpl9ÖT¤ˆŽ‡U (¢‰´|ŸyCò>· ¥èì×îAlfVè $æ“Ýc£´]ÁºÖµåÙDÜâjÄB$çu¬‹¢ÖW?^›ŒŽÉf6¤cS½¬Î1³¨,WcÏ2fÑþš{ùáîÚdš~ÒîE+[[¢óÆvs`SO¬+ÿ“ŽžæL$‡WYzU—`”žUIÏ)ábü—Tïœ}òê­œý“6ú}ùšæÕ…W´ÊýGù¬";.ˆ|QU²Nþ±ª£pŽT'èðµN©Mù”³Ç3¬ g8Žˆ'"ùW#§2Eµ-ûœ.œ¨èhQ•Ùy¥…÷'7lä~œ¡§¨7j1³+t è¿ÓëW“ü r»¿;p­šãjsú#Vç˜Z”ØUHõÌØ*KYU·«cÃÒÖV‚ÈØn¬c扙ñ¤ú”Sx•+^Ez‚¨>q^'UºþúƒzEØÇ/Ú7<¦¯ër„–^Núð;.ˆèuL߈MÙ^)ÚäóLð‰ŽÆì)Ý!ÍyP "ÏĹn.¸ÜÜÏu$Ð&k¥p[ è¶ÉÁh8[ª)’VvbK2˜Û*oòªâÀæ-¨.´‹tÝ=§ ºJo¡Mäd[Ç~èb^-NÓ22ÇÆä²§“ž«9],‹zä?aî0´& vg5:þ\£‚óã¶¶D½ÆvsW­¶J¶ŠÎ÷J$Ú’Ô¿àUnx•HÛˆÁÁÎîöñ½¾v.'lþóò™~E©×ê=«ÏªÙúN>ëÅkÆ¥!ˆp„Hðå±qæ¬ršHÉ•Æ#3Wmµb½êHËstºº³'Ô³r(Åd±ª'4PŸq¥mrçueåÈÍÆú÷Ú×S+=M-•ºŒ__OÓÀªÏïÈÜ:®^Í |ep<–Eëù Î8§úàôÍÐt}¿X¬­ãÙv¥¶ÉXë(—ÈÔ©Gð*7¼ª¥{ÛO4m–¸½K¶õõóë‡Æ»B.=~÷xÉðÈ¥_¶>ËùG€oué9;\ ;W¹k8û­Ïõ-mœï„V•ìOÖζ½ê$5ý° (:#ÊŒT\`q4[Ž‚HA¿®tÞqAˆøà.E{Õ…¨dÈXP$db~^„€»>Õ¼{š[&AôgÝ&S‚Ðo)Ú«2óvRø€É$™™Çs*pL«è/@iÑô÷êâdÀ™Wù´ÌO{Dظ)zlµ·L‚ˆT[VŒÅfH ¶v¸K‘^•‘ôP° ö¸Bc:¾‹Y3à Õ¤¢Jkjµ¸L‚ˆî˜È-ÏŒ“muÒHß+Ò«Ä»RïUø†˜©Kwµ’]ûvS³Ë%ˆh¡˜Èòá“§ÿ8¼Lw!òÿ N³W½ À>]Ùöoîªf—KyVÔ;NõÃgö¬WØ÷¡k~hw5»l‚È“º—/‰X…Çìa¯°Élœî \Øm; …FÊu³ª#3=$íq¯ðM"nl¯g`°o©>#õÆ…ºÚ9Ÿù;×Ú`0™–Ž)”wN¯äKÛ%ðQØ÷lÆãÆ6V+®¯Ã@,zÂù2ã1«°$½§£\‚ÁÙ1m’/ÅKà£`÷ .,,üP²s~ør©6{““u2þt×áv£ÏÇa\ÿjêÇd„ö£ÑvÛe#[¤ÛõîùAúú`>ÖsDü:’¬v(‡ ²ã£¦dz¥ÿÓ=0~Éù÷Y=[ºw=õz½ßÙ¼²öœõM.æ^óDzãÛŸoäþþßÙ³?ã{{…ó‚‚HG@{|Ó/ÝÚv±¹¡pRô½;þ()©[â·g‰í¦›—[–LãJÝÞ, r¹Õ;O•d‹°¸>ii¾S;‚ÈŽZŒ/ôJ½G3ºÓRó/¯ž¯Ú7ýŸ½« ‰#ÙÂMk×eü‰ãHLÔuœqãïĉ£Ž‚‰ ‚æOP„h !¹ Á£®ìUp/¸ùYˆp²IÁ„I ,$…ÍCÈÃ%DÁ÷À>å)äaŸnþ­î©ê®ž™Ôyqºª«êTõñœ¯OSýç²w@”ÖfÕ:È/ZñgíúŸKêõY^>.ž‹ ‚DUÙ•Z5”Ö[Ë&ÂêÍJøò²€i·ìÄ-‘T‘ÃÞzñ4㼎Ž,Qn¹Þ ˆ×œþ:fº-ÏÔ ò$£.äÈM }ºÑË[²g@”ÞæO* zŠ~~þdP–o«›Æ/A‚  „BÿžÜjR½>ç­znU!4gÝàZ€ûf÷§¤Hw8݇=ŒëBd'®D{N nžç ïÍY¢öƒ ¾¯f¦ÛñL="O2êF‘YÜÛY¡P·—î_³Òc PîØîù,Ë'½¢ô6ÏqÏ_Ìž«ÿšx¼›øïO˲ü#‘ ÂDš‹œ.‡|“Ë69P†Õ…ÿz5—j¿o@(Ñ îáÎ`Õ¹¸âJ0§7äå…9s@”c®w0‰™æ…rêÔíD¨êŒÐ¨ù¤sC²üØVvG–ßO{D”6a@ôÁ~ß*ÆMJäõ¦,Õþ ‘ ÂD®º ‘ÕÃÅü¼¶4š82jü^ÇMÚxGK ÔX²#C¿\ÜïÒœmÛˆrÌõ&1Óœ"O2êN»âXQ¤„JÍ#ÝKß1»øL–ï½ðˆhm`sîªýƧú=7eyZ"A… ˆ”ͰY¢¶TÙ+Cˆ/yÃËžÙÏøæÚ¹ë¹5¸ðL¿Ý~@´þÕÀ1Óœ"O2ÊAàqj*5ô@–_½´½•å÷‘GÞ­ d³ßøQ–é?àæÂA$¨ä<ϵSí—$?B5£¬&p“ÎÁ<½¡…ˆDbÕ=h[]âÙï÷/bHÖÓ‡Ëë!kœ/¶w«k+dIrKúý~ÒU‚¯“F Ús)ØÚo;@éò™„ý:ò͇ÆÐh÷™<Õ:­· ^@Dç ÓXuG ëÒ±qÉ×ô61¿ÿ¤ UX8ðí]®ùàÎê{ë“ûKµ‘RÎã8¯5“·}"×ÓPg ÷[»Há’SŽ&oæÓ;1Y4ÓUW»;Å[“7IdÈ®ÍôÔözDN2ÊGÙUíÄÒ6Í6Z£cB׿œ>`ÐbËy¿‹îI="j›Û²<(QѦòã/e«N8ˆ6 º¹c„¢rPâeýÀê`7éäÄoè sWQ¹‘ø_fÄöI[JBÕJFÛwf£×õÔÿ¹zÓ×Rfj5ýRj@;z¥*jµÿÖM5XsíP%Ïtèô—u&l½-ð¢)*o •ë9€ë¦wášÚf¹X’®DãÚz7¹ÍG‘ƒ AëH}Îã°×Ú‘·°Þ}«åvæL‚A·ÜÚcßò¥]ÞôÑšŒÃy‚­“<5y“DÖºIc4¶¦¾‘f8‘³Œ2åÀAv_x|ÍâàÇm¡iŒdþ¶”|?¤@–Ç^½Ífzt’uËìÂA$¨ÐQ ¾1+ò#”¸Ìè ÒÆøÆ:Dß] [ÿûLã¶w¿ZÖ°¸O³È†µëž#Ú„ÇùÌÐáîr³QC?±"•é½q¢(•70'mDW7$®mT£V-•˜¬¹ÍÓ±FûH}Îã°×Ú‘7 bÎ4A+dÆbwbaÈ›ê½Y°TvqÔäKÙëæ7ÑME¬‡9Ê([ز£S+‚·˜4÷•r·ˆ.Ê5--ë‹_gI’nyDô6ôÝ1’Veù“²E÷ñ…ƒHP"HÄ ›v:®›¬Í;féák );pvªS¼@à ³#ð+Þo¢–¹xx´}õ™Y!6çJ”—صh[´Yù‘â2CGðÍUá@W¸B1»Ú»ìù l\«ZtêwŸ ‹ƒ~µØ=hÕzs=fx ò†íà€²<+¦fp)y’4šˆØ3õÛ¼“€¹Ë!]Þ€Ö•¯zõ)‘2£Å]³î5y“DöºÇ«Á¯Ì§VõåeTí$×,Ù!Ühxü`š+( ˆM|Ÿ.×ôŸAY~fYÕù!Yþ¢¡^@ÄjóÉ<ÚŠžN~\}ú\S?Êòòßâ1*\@Ô úÌ¥O˜/ÂX¡¶ßZð^¨/¬Vµ?b"eLM€%ЦKà©Ð3o7Ó‡ÝÌЖ^þœ br9 ¢òÖ‹IB¹ö›¢Ã•k§6Êû¢ÞÃ|€¹NmcÊ7L"cæ8™ÏÇ ’°Åšž‡w¶-4–ƒ„*o˜N(A4Ëͬɗ$²×í0 ¥ ÝÉ–- r’k–ìÔDu †B׿˜~“eù‰¥dZ–çáÇ? b´9‡;8ýèý«Á[/žé÷·µ“«‡VÁA4-ž‚ ÂD•køÂŒ”Ü‹U#ñ.ïei@Î//EÓ?’F¢EôèñÕ:ŠÄµƒä+,;׫jöñ˜¡NÃ\‚¿°'z€ ¬u'óùxDÕ–°ê=Þ¿QJÈ›æk¡o¹±jò&‰ìuƒÿÀƒFÍTv€ÈQ®²c QJyRhÚœÓcý”DàpiõDi~@Äjs•ünÇòmsœŸ ds^8ˆ* :86Ö_Y\«Dˆ´Ö!9Bfa}¾ÎP€íœ_âè4v¼ìÆ)}£¿õþK7[4_Óã´l3DhsMJf ˆØd ˆ¨¼E°ª!Öš-tƒÆµc0jí>/óÙKâØÝD`;{œÌçã&HŸPØÃwMÓåM’6`“ö.Õʪɗ$²×mc–ª+Fű쑣\3d‡$×^Z5tã’·dÁü á²áDÌ6W_Y>eölÕÅŸîÝ|$D‚ ´r™Ô &Ôñcµ›®g!Þ¶ñßHÐÜ®oŠ]FÀ*DÁˆ6´æ†ŸÓÅ^·d~KÒYc ÂÅ Ùʰ0‘1 bs1 ¢òfÏák²ž=@åÚ±M ÝMç0ŸÈÈå}„†=Næóñˆ¤6‚¹Þ áÒä¥."@zÓAĬɗ$²×-fMÝ|— r”ëwïküOµš€Dýž˜N_dyhÞ# b·¹:ýâ—÷žþvtZq =[²µ"AˆÖŽ™ï¾NÒ¯(ô´ »r²‡s¤~ÄmÔF¢ ÃÜÐ}L º¯iÃf.†9ÌP Q¶Z%€ˆÍA¦€ˆÎ[-¹_…©È–ÅOãÚ±M =Þa>õäiÕÄ{œÌçã•@a’cKÖAÞ”S&ç¨3kò%‰ìuƒ'BúnG²DŽr]Ñ?ç(‰3ó@Ç—eù!Yð†-¿JÞW›ùkx¨4oЭèꇋâa*H@TEf›#Ôx…¸ö“ñÖ*-¶"V¬5…*–(¹ï`´¬½¡¼"ŽH@¤†VÀi‘~ J`^H×ý;#4ÖÙ µSk2Dl2DtÞÀð«L Ú\4®Û€Q»âi>•dÐo”°‰ìq2ŸW@hB«nF(ÁyÄ8MÞT6K©÷3kò%‰ìu«³}¡u8+@ä(× Ù±ìåíjuûéšr¼´IKƒD<' âms|D«i¢Uéå[ØY{|_<Aˆ:b˜¢¶Ôñ°%YÕÛÖ£i#À9Ëí/µœqDÒØz‚r]~êÐuÃk€(‚ÍA‚ìÀ‡ âfh%W€ÈƒL·@úz–§@ãÚ±Må(r®ù´šq>1È)ô¹Ž“ù|<¢ÓFXu ÑÃÜxåM(=ÈU“7Id¯[‘ípî²l‘³\ÓeÇJÿö¡V·.b$2D~kl_ïñ¶‰pg¨‡€ÈîmoÖKÖ`E7S+Á÷|î 2pÄÕøDW ÆMLlLJ¾!v·ÌU ˆä9¨l@$¦•ÇDÊ4’FMYž 13â±L¹ü8¥—§„€hÒ^·s!êµ­¨¤Â{Ö7ÙÖ¤ÊWjUåç­àIôÉXY‘²hDmîR£:DÍw%7¥¤yjýþ¿…DÆ?sóÜþ–Ýò¨«€è¸%rA'ÕN«ù‰6°â%ñÓ9 ÍØµöýÚ®€iò=BÎ@)ÛAdÜuD¿rQPo‘=RaZcÞØîVëž=ôPW<—ûýktD³V@dß§/º¾|k’푸§ß Íü ÏAe¢OÅùúÞž¹V¥‘5jŠòì‘5±Òã”^y@$¿>b4Û¸m·hm˜%­oFv†V³gÔ%}¥V5Q~Þ®Y¯ »—³¹«ª^kDÝÞ‹cžYáV[9×O‡B/T¼ÁkÆØeñ˜íñå@iÖ= ¹¶M[Z_•èç\ôÜ9[ ¨—€h¦Åus•·Þ»øPÄ"'E÷ô ŽÝзL½€HŒ äæAoqôˆA²©õ–kõ¨©ß ½lgPy*-ˆ®ù|FÃ;Û ¿\«ÒÈ5EyD¯Áa¯á9Òã”^y@$¿>7ÆL³£E§â*ë›ýÄó¦d~€QbÖ÷•ZÕDùyñêXn¦{g¹»Ý«êµ@$º«bÅ3OÏÆÌX÷ÚŠ³à¿0Dïìbï4ÓÜwlËñ™ð„îu‰AÕöfj×ï„BrUPw‘½uQ»ßPéñÝwàªËŒÎ±š76%s+7ÑðPʺãjDÆM±`J‡8êžVç°RÑ<˜)1.tæ¢õ­|L»-ÁXÝR†h •æ ²‘1$Š05qqÖÈ4 >jqo!ákEi£&/ØÝŒMÇúÏý¡'¿Ûô8¥—Ǻl’Õ×çšBél¬®o‚BcNO´eŒDS[W²uØÿ•ZÕDùy¢£V°>~Ìúó-/ RÕkÿ€¨Ësâk‘õ(ÞWÊe+vQG ^Ñ_ì€è•fš»w¿[ÝI××ì„Ï‹;ˆÄ´û—â×OC¡ïÂ\Ô_@î7ý7È<î±H\“α~_¸á—M<ñ0ÇîÍˆÛæâ^@´zÎÞk$Ý—¶WÇiÎwOÚù‰þCìédÎMh7CöS3Ú¿Øi7ŸøFžƒÊDÆ©höGcÙŸîÂ;×ò4ÒFMQž†¨óRO½¿êwœ’ÊÓ–œO LOÙ¿moÜ[œK×ÚŽ IDAT»>Cöç¤4O¶¬¾Ù?IÓ•¹aÿWjV¥×t6=N¿xCêÓ2"E=ðˆúL¯áf;ìü2¿R¾±"’Ÿ Ñy; :¯Ù+PŸxþŸìHë_wÙÓÌþôðë_ïä7Dê) Ê~­íªR@Ž»(ä~Ûÿ˜æ™ð>­€ÈH‰m¤Šu|û|Ý›ÿ¸Þ™CúÍÐH:ŸP# ’ç Â‘ÑwêC#×Ò4òFMZžÌ©”ûbõ;NIå-®U5¯OñyQÔBI}ËšpïԬ&J¯éxþý©'{Ê ˆõÚ7 eŒ÷<°?k†›m…ˆ4žˆì É\«[«Ò|ëšyöر¤è ZÊþ3·uG~C4 ®"ûkmË'Õ ˆì‡ýÅ7Ìýë7ôް=,S' ²Ú‡îl ívBIt®\¼3lÌê7CFfb}‹«XZïæ-ËA…"#Ñ•jÏ-Œxö£‚´’\ËÒ¨5ïò¬D¬ÏŽÏ³$»Sö;F}ŽSRyü"Åõs›¢ú ®w}Ëõ·ü’ /ÚŽh½R«š(­«W[ìßF&ö¼û²"yyü¢„õ÷iNz¼Ðkj®‰ kâ V8p@$vr ¸­™&üðüéõhçå×"CoÝLŸ¿#ÞÀœ{ü?Ká RÎ=òYÿÙx k2pŸúBã`Çè± gö¸ÔðQð‚…Ï,¸²ÏëòsPi3˃]‡v|$ת4úåcWzó›1dÄŽ-_–{œ’ÒÈK*zEŽù u}k:4Ø1¸¼{Fÿ•šÕDÙy  vŽ®Tl GiõºG÷,ôé\å¾¹Énõê«ÛÞùóµ?ýëÙ’²VýøïîâÜ¥x`}“îàÓŒ¸€´ç,›ê¦×£XÔØn+tn™å<€–C1ÓXà䜀b÷Š= sÕ‰f<ÿÏëNYÓ œ„ÓW0¥|»ÄA7èÁ~+!ê‘ÏîX®ìZh™ûæ'Hñ "?^ yÝiÄ·¯ [ˆ¥¶ÀA·É¡Fa ÑÖ)§‘ùÊÜïŒ0?DŠ_€ÉØôQlvH»é›TòËböa _ˆýóüM–ÇGº SˆŒúý „hóo"a~6!D¢ŠbC«ömÈÃk-Ft8ÿQ—Z¥êµºmÿ!ªümB$ÌOB`*D—m½aÕŸ¼LÎS&¾è>ŠÍ9íÐ…hóëñi[+Q#êqÜ#ùæ?Iˆ|eîwç(¼Hñ ‹Ü’¢ù3 Dº¼›÷äC":;‘§F´~=þ“„ÈWæþH‚‰¿ !!jžoÔOžì9'—·ßÞÿ\éMŒuw4Á]my BÄö1ÝãØÿ¹±õ&Þ´üÝ?9tsýSý~;áMˆbê#yõ~ŽHU#Â#›[2ÍËzvÝ,D–ϪÖË“<¿¨×ïì„.D¢He™³ÝÇ! ¶™#¡¯o¼FºÞ´iɦÉeS×ßÔ·² —ßQi~l"µùäÌÉ%ŽŸ "ˆ Åût‚“^Y3×µ…ÓŠ1ƒ}eÛÔïÝœy NÉ¡|¿»ùØ»»J+‚Y÷Íz‹ÞßJ÷âünãÉè¹X,µY£{\µz¢ØyÕóé+ÓÓ=°¶•Ѓ•O›CˆRä­ãCw òýlTš4óð-L!²‹Ô)s‚«#Ë‚(s±ØâÀ’n%%k'E3µ÷ÀÎoXoºùŽ ò#Št¤Æ!®Xú‘>Œ?3|!€¨ Ñ^^çVîᇠg«¦ŠR=Œ[v¢¸Ý nCˆV†Üèü‚¹c‡Üihž„hÙ¼×HåB´5-ø¾!RŸ4o%}šÙG*ÏœðêH² ÌœzZši*%k‡\·þâÕtS'áâ;*È0Òòß™rï\Yކ_ˆ†ítLe£xal¹Ð-%å,!º7×ÎÊ7S)®Ä‹ŠûU ÍB” ¯º~#• Q}&'!JXAÿ’ "•fN|uÄYgîÁ¦©”¬rݺWü¦á‚ó¹y¢%«V7‰çU§}F;¬ BÑ¢fÅR7Š“1È;Ö[¥P„è_«\øR<ºã·%< Ñ.yÕö©LˆuÏBÄ$†#— EˆD‘Ê2'¾:â,ˆ3·­ˆ„HÔNÊf‡ó¹y¢X‹˜èªñÉ7d[ƒ»ÕÇVô„@´„h“݆ÐVv®Ø˜ÓSZ{{/™Nš{ôØVf é0¨e&8”ïïôS´@cû¬ÐáEldJ®;xL› !)Ŭg"Mþ’¯xTûȆ÷HÇ÷„ê×ÞݬMjt.3Њn…hl{î^´ªÝÃK‚"Q¤²Ì‰¯Ž0 ’ÌQOi]ÄwOhÎs7O‹ª¬CˆJ•þàŽ6WJ9ž› ?âHï-ùÉX'"6i¯×#„"%D«äügzârÁ—rV“.¯‡Ê ¿cÍÏ”fz˦÷Úôö’{B+aœ+Åä© +¯•¿?ílz¢CRÛJ«óE‹íÍ }|Vú_RË;.…èõÅð”.:°Ð·y¼­w!ÒŒj?š ‘$Raædûˆ² ÎÜ9ÚŒñ2Òz±éÐÎDˆ:$[ËÎïâ±Í0ÒfÍ4¬z¡8³T ë„"%D ÓbΗ¤ô´¦Ëüò;®†!DtÞO:e¾¹O!>r/DÍø ÄO2ó©mÁ%óì6*:yåRˆ.§¦µ@bÎ)DVÖ"fN¶ ’Ì]ÿ?Ñ güâSÂv˜µ’ü¥èÇ\ÄãMˆØè¦¬i$˜é’7?Öôá=¦Ý@¤„H­š]€”ïÒù¿Fþ._ä „è-yëÔxMÆx”øRÜò¼0cµVKOÆ·çŒÔ®à&‰k•'аåRˆxH£Õ„H©(sÒ}Ydî˜Ï3½™÷á&D‡üÝRú¼V§x< QBçß%']´>Ħ‰… bBDGµL‹ùB^¯p·ŠíD¨BD[ün¼¾!¯ßð¥øÜ³ñCiŸæÔ®àÆÍïìø¢Áì`ô`„H©(sÒ}Ydîšü—-å³ÂuɈۡ×íÙè…"½v嘋x< íÜÓùû¨=¬T Q"zÇàª5®e÷–N·asªuí>žU,%q~bXu¶Å£=gçŽÔ®àÒ£m™¯†;!ZXY{ô»ÚsXB$‹T”9é>‚,H2·Åä¢=I»í¤,óá§×Í)¯BôÄeèšë½‚@„…hÓ¶¬[å¢Ú^ Kˆ¦·F˜/dì7z¢vaþHí î­¥Ž\ ÑÂבd¹ïB”?˜ B$T9é>‚,H2÷“ßœiiß¡zÝ^l®›S<^…H-O‡U“Ú9BQ¢m±aãBšÜÖR/Š©Ü|¤Ù7ª–ž…¨@¤v·a¹‹tçNˆêUéúMÁL»—F*Èœtû,È2wDzqªã™Zj]çf±‹Û¡×mÓæº9ÅãUˆØ(ïq×á!ùßm BQ¢Œ¼Ø|âžÌ> CˆöLkIáçAW=7BMåíî.]oF_Ÿ?R»‚;°¬^Óuõ莇-ƒ¢Œ!Ê8 ‘fo‰‚̲–£SÀN툯[&h!zWœ¼ÿbY¥BQ¢¼C±9zË=4a+Œ[f%Ç"B4½Bú©sG*î!Š»¢ÖTˆÖŒGv‚,H3G2]Êt3/_/]µ#"çÌy¢Ï´ƒ/mžØ!€è ‘JjÂóžcýíZºb¹Yoð%DYËD2-]€±HèçsFjWp %Óƒ7²Ó…tÓXãúTˆú¦Ø‹zXBä©]æ¤û² Ë\!Í=»ÃU;b!rΜHˆ„ßQzzË@°)IDLˆ˜@p+±$®ÿ#ÿ.ݦ¬šðl]–¯<¿5É…éÉ"Ѧ¹Kó {æzG/RÛ‚«™îã´¦BD«pzŸíYV,ÓÇ?°°;¡Í2“D*ΜlAd™;ŸµJ‡v$³óâ ‘ø;:]¡2×Ǫ^Æ³Ì bB” ‹4ÎI¹9Z:~ÔÙßÌ»J©{²?YÝ·hýc;c2‚¤o!b3´ÍÏLÿŒ­ëÜS|Gj[piùOo“ÑÄ]îi÷ÌTú¤Cã’MæÏM¥‰Xj…7í^©8s²}DYdŽFRé ^98Û¸T¿o!rˆG,Dâïè¢!D_göj+æÞ-ü‚@„ˆ½§(Å«»ÇJ‘»‰@þÈ×+½öm;φßÌ +ÖµÆæKfT+û¢;xN{yd‹ÖdbÁ{ì›3æ#ÒÄçã‡F>C{šžµþ ý~í„”å&ý >ì7ú“ÕÓœ™(µîÁ Å Â…Q*Û¼± Ñzýìá ×­PÃÐz/›§7YßB$ŽT’9É>¢,H2·£›'ÉW²Nß7Ù‚–ÂsçÇé;ú8IÀ—™¢’e~A B¤j3K¼pš`¢\àÿ*7-º<‡ý½3 ‰#IãøÐ„ÀˆyLØÍm–ƒ[HØÜ2‡ !pМñÈBÏ ›‡Í’‰ä˜ÌJÈ$&ì2É(ÜŒ¸‹²,13‚LTdP0ž >xø"„ˆ7 ˆ—äe ÷â“øàÃr]ÝãtwUWMuÍ´™;ÿ¿'íösªú¦~Sõuuø³Ôë\;Ñ,!úëǬŒBO/zí€cÍ4œûš9a Q[/rÍ.²qü¹-D¯=^æ[u!âöT9A 7 ‚Ì1»)>».~‘qÛ&ÈO÷èã“”{Ó“G Dp¼„(ü§.IM¸â~Þù™f QøË+n¸n–…oYsß+öT4àÞrëzn×ÌœuiÂËkµý׉g¿&DÜžŠ2Çág›¹«/˜þ¼¿Žð‘'¼¶Õ"Á{tøuðÓ'ë¾À“O DpÌ„(ÜöÐ=¬õZe²wßQ«?Pq·n6IˆÂgs'/.‡›'DÕ•­Þaµž ÜßÙ~óÑ ‡…¿yàè͉oíýžc·Â·xœñz*Ì7FNæ>÷èOí)*Þ¯#~(.§mõ„Hðµ.ù»;lŸžP™Å'! ‡ÿüSïáPïÓoj21Y«Ž9yã£3ìÐñCWu¸¹ÙûKCBn›ü·õ¯®t—¸á[^ˆÂ_¸Ÿî³§â÷îKk”~õ]›yCSí®ª_W•èy[Ø!Dá ÿ¨ŽëOÞ1+\‚"^OÅ™ãĈ²à™9ë²}ýüÅKƒ¾¨þÓÏ…¯#"NÛê ÿ=zj5íõê2„þ…HÀå{“?N~ù›ëÔáÛçwô_üär›wÔ…ï'ûï_zt=Ü8Ÿ›ì¿úh88j=åôÿ¼ÑèϼΜ¾ÚÑqÏã©¡Ã&û'ï}> 8=fN#9sŽå•½eãoß1J¥ð:J1ÜžZ› üÍ+âÓ¿?í¿ŽÛîàx Íâ6ó¬.ê±gëÁr?Ëü)>AB€Î1 £?«<ç%P¾£F!Må’)ŽüÛ7¤v”DÖ3w‡!D! ΚBô—Z5ÖYëù%_´=c6…„€fÒf PïOg.½¹Úÿû·ÖÝa¯î´BÛî÷výçi—u¯ßƒ "€?zÜ óQK4펑ބ!D! °)"vŸê+o­&D¯Ã"€Ã_QOz{q:ÜjBô¯6@ˆ¶°ú«ÚóPnö¾>Û2í:S5µ·W¥Cð "”¹}îqGÇã7§‡[ªU×?¹ØqÿÒeøˆ¤zÒq\ º®÷PÇÒ#SQÍ@ŸénÇ ²©WµÐ0}å…ÕÅr_³ÿí†!>îC+Ú!S¢§‘…Õ¹ìT±årqba;|Û’s‹ãiþ…H¥RIŸ1-ˆ~øn*´æ{‡£r@ ,,™s6Z46îùåûM6tË8\ˆË Ñv¦æCZw}*Îëú+ ùNó¥ÇÖÜmŽÇŒ~L¥S#ÓÕ ¨ J¶CEgYµ w¶úB›ÌëTÉ“F¸­¸nL R˜ÞÔFˆ|æ§NŒÏ3âlhé%ÛQ´½eûD§FÑÉÄÎ’‘(’¢iòoV³}ÉžâÚhp}j_ËxWyÞžžÊ¹¿”Œc³_é¾½¨ãjŽ•%ÛæÍšÆòþ°7³º}p3ënš©Sˆ$bZ•È‘ßüˆcüže@s&-6]Ÿ²3qBD>¦ ‚©}Fˆrd*ø%™¾%Ï)¨s¹.c ücîõ¢vbDk¶j»:Ôetk"fe@²m~…(5cýºkùSÆe°<¦¹…H"¦u^ˆ|çGãû „ÿv=eŽŒïG“dúF‹¹„(ï„^‚Z5þ`)ò!D‹GRì‘ó\“‹—Œc¥¹x(>Aþ`‰º;Ʊ@W!̱ng5׊g׉•â’mó¢8ä†üƒêŠçéüÎD*éé&¯3ÍFu ‘DÌq"ÿùÅø?#È6€¦P!áPÕjÈ ˜6ç"Q¹Ä¸1p–„Õ&ŒUŸ†1˜Ø%]b…ˆøÛ”U8nN‹Qʲ1Èdd&´Ú2á¹Ô²m“}l•žÖJÛWЊ±s Qý˜c-D*ùáǨœáf@3è#Ö³_û•hD)"'D)ãü®¸ˆ¢ãÀV°=Š“>hkIFˆÚ&sØÞ2Y¤"³QMëLÙ¶²{ŽÆž«Û6 Ùr¬¡¤òv)Ø:±C:ëó†Œ-¹kˆêÅk!RÉ?FåŒ ÛšÀ)ê±%`PwLÕ¢úÊžB4lÈKD·BiFˆ\êGJfèb¦ŠkÅ0`æœÔo[=¦4me™' ôú—!<›‘ú.3q̱"•üðcTÎHf€"ûÆgîºã÷nÇÐ""2%NyÉUò…|%ÇÑrÏxÌ80²mPÙî`Ië,[åÛn!Zc֨芡ÈQVfôhŽUúm«C™;§“"ŹîCEóÕ¦ùBäã/FzÝŒ!î}°’ÆûÍ)¿Ï¯†FÓBˆTòÃQ9#™mjÄ£Tµù¨Õ#BÔžàÈCîð.þýt¨P¢ÜNi…ºIf/(Ó˜ÉU}Ã-Däû¶=6¿mxJÞmˆWt6@¢mbbì˜Uú4ºÜ$i$v'*ñ…ˆñé@ÊÞÏaGB‰F˜mÈFI•êÏÙ|í–ÇÌNöè…H%?ü•3’Ù F–¬/9ë¢#D[F%„¨ÈYU)ÛÞ£—óµîö®áºB´<Ê"½cà(#DFwt‡Ð­xM‚LÉV7Ô¶ÚdÀˆŸ¶‰HgLÇá¥Ø}S”¡©z:ã QVöF*³ö¾F»ÛuCr´ƒE:íÅÜ×'³Øˆ)eN%?ü•3’٠Ƴ]1Q‚E !Zò®:0GÁDaoßøA·¿Éæb&dMjÊú1V·(´è±÷Šô‚V–¢>êa! cdez·%k µ@JÒ£~Ú&¢Ûyw ›â¼óÀBµ°] DLŒ‚åç7ÀôúzÂÜr©þ&œDz²ÔÞpLiÓ±½s¢(šk@ˆT2§’~ŒÊÙlPc„)#ŽÙ"!J_Rõ¸÷°6oÎDÞzQus…h€r%¯e‡¸ñ<“ ºmä…È®G¿új›R ?Šo®eÊÄ̺Ýy¾Ñ1*Bdx‹¥¼ÛcR%Ú[”„Å£~jwlĺ‘Ê®ÇäbÐB¤’~ŒÊÙlPcˆ™ ÈÛUÖ"!Úò¾!kιÉñ\£BeÙ– f„¨H•“[ËÙÿ¶!ÙÀ†Új7wÝÛXö×6>«üçŽôÐõцhè©jz’1JB=܈;§ËÌh .ÚiïòÙ·ëüÕ1%DnœoDˆ2§’~ŒÊÉlP¤à,d¡çŒˆuÎ;Hº¿¿{l(´áÚxq_û·Ýó„hº3gȳ\h5àòÜSCCC±)b+¿mãS2ôƒ3¯µOmްX[å Ñ~£»Ü˜BdwhVªyÝ¥M«¼U;R[¤¥Ô…H•üðcTÎHf€"Ì—M2xíØBä"éúPÖØºÁ¨kÅi¡•„ˆ®‹ÉÛÅRTX[Gª—r©÷Ý6.ãÔÄ%x ÇÓURºÓwR1ŠBd¯¹%3Té¾'Û®IÇÏ7Øá™ƒ£"•üðcTÎÈe€*KŽ[›-*öö¸!Šæe—ÓÊîj‘¾V¢UgÑNȪLeç¸âdìŽ׬C!ÒCE¿mfqÀóÌ@”ÚM|ßÞŒ›'DLŒš9¯â´TMÒ¦cæ#G•;Øc{´©ä‡£rF*Û”‰yÎíÛB”ïv`ÉÏyW™¼§¾¼vþÏÍ‘Rc-\³N­¯¯Ç–Jæ#å7ÒÌ@ØôdxEËéyjk?Rúµ £(D%Êaê¯Á­9þj1tôBÔJ3DülPÇ»†¨~QuÖû üõìÖé¢9¹:u÷w0,/’í VrþÚâ‚çEœ¢Ø´îo!bbT…h†RÚÛ,»êÄq­ÓŽ¡~“®“‰g 3‰±NÝtÉ#"•üðcTÎHd@°w™ýjÏÚ „hÛû¹“yjn§!!êéf‘ž¼Q¼ËÌt¸í€ÛfN‘K?Óî«mÞô‘Û³¼òù/{÷ÚÆ•Àq\ ‹!A:Òü)…nh ]6°ôd¢zØ%ñšôbS·Î"¼¦Äí‚/K‹7–!VHŠLYV=Ø“ÔÂ\W`çà ‹aiÐ Á°—ìÅ \t 9øPVoF–ßHo¤7O#{ì|?—D?Í›yJæ§7oÞ7WvâîöHŒµ DÍeLÑkéõ®ü1+ºnÃ>.Î#Š[ 1¦7ÝóœwˆLZ.DO™y¶6 êyˆŠ¦¨ñÖÈëÍC4­˜ãeÆ8u<1c$–;¸}¥Y7µÝ¦^>érº /ºáêpP¢¦2¢².V‚Xª] âϾVeÌ‘¼¶Ä’•оbÃT~Î{W[n²íL×î@Ô¶Œ6&îgi"ë×Ú§êѤÖÊû4‘ìuÇ›‚´¶Z´hI 2iï2&[<[ˆ¤˜™ØZØîMÄ×\ib8ˆŠ2ù‰úEu¢²×qŸŠDb}Õ¿ö‡*Ùu^ø!‰/—äž0ɶŸáÌ~-ZÙÙGvÚMmŠSÓ¿¥[·9ËR.éißâìkøá¨˞ϸŒ¶ DíËØ#4SÇ^m[Q³ÑÝŠ¸"ÁnÃTPiq®æÄ‰‹m媡ì(‘Qûx—1ÙâÑÚ€€Œg]Cl‡’®@ä’hüúëõn•‘qÌí†+MØGÔ¿bOó׫z¼|ABÕ•kju¿Ù|mÖeW‡Lëº 9mÓô–óª·§9=Ñ&µ/³mé/°&Þí¾¸ ¯,8˶•Æ4ÏQ¼Z«Dm6¢º%ûÔäwì÷ÊmI¨0´“+%*ÎéìÍŽ,®Íu鎒Iûx—1ÙâÑÚ€Àþ«ß‘.‚7¢½@+©Nä«ÜøV¸Qd¦T¯\Võ8•˜´¯ëV•ž¹Ïfé¹~Ý2öÏ3z®;H<ëÕ¯™6ĻͦóõwÊëO%økÓtÕÏÚëƒJ-ŽŠÙyR®óâ2Ö¥Ö3iï2&[º×ÕïÙ;ýû‘'Ñ Dvш"<$3N¹•¥¸ýÜ}˜Qdý†S¹Ä Õ¥=ž÷µ¨ª_±å¡ú)­,Î'}ÔM¬Êjõ6Å 8Wb‡ˆr ËJ´ DsÕOŠóI(úX{kÆîìiìY­Åì|9jË#D&íÓ¢ŒÁuk‚4ö¼PžÏ5}5oiÍëàØÖ|¹Š†óHã©ÕÕ”ú²²ëãšohâ‡ùòöòtÜ_Ý¢™ÍŒv7K\ˆ Q!2ñŠ,»W{z<š*lôI˜x¾±ý(ÖÏŽwûx—1Ù8 â†QeZû×Åh‡ÊÌ :~ñ |bœÏúäX>VYßsM§Àñ"ºˆ²ú·ÄãÔù©sôëyËšdYeå-Hàê·EFôûHÄEr'~B>¹ãž.›Š‘="ÀÉ´a\ÕŸéDL7=‡ò±€Ø(oY¯µ™@8Þ쇞Ÿè?hµ;éš¹èøJVóÐ$«Dyõõüp̉e§Vôg‰¬–²ÙWÇÿ®YüU6[bŠ—'hbbB¿+@8îŠÖ“iÎ:B {«t”€@@ èÈX¹\~Äi‡ë€àÿ# " D@ jéÏwž~?8<øâñ½ ׺¾³‹gª~æÝå–óÜòß_þzÅïnLʈÇ+þôzOÝðénïî±ØÍu²LW[Î{Ë]qöÏúÛI™€ôÃÏˆàØ¢«gÔ®…ê²ú²GÒ²ëæ¦Sý» ¯"5»gŸšÇ玦å<·œ»%~ò‘¯Ý˜” Ѓ/^T+0øô}ùÇ¿s>|— Dþ@ôcÚo:»@œ?þ/Á]o>vUíN«_½âüN=Í|á¼þc˜QÀgÇ´rÎÔ…nîĻ強\¶2èk?&e‚kŸËÿ>8’ÿ¼#møÔÎi·ˆà D"†œ î²úB®Ù­Ï4QÏ»µ× a øì^õíƒìùò·]Ý‹wËyo¹jÿè…¯ý˜” ª}ÞýÎõ/çúyiÛöÏ.ˆàÍ DzÉÿйÐ<¼réæ[ÿòô”N úCíõO! D„ vNÌpw‡Ýx·\‹6½4(6=ôµ#“2µÏ…á†:ÿ“ÓÝßí>"Íšñÿœ´@ôy —|çîÊ·Z¿»ˆ¾’j¶@ôyÑ]'|Óݽx·\«6=ûÝÀð=Ÿ#çMÊÒ>×¾Üÿ'óÉ@í//åíwœ»f— Dî@ôÍ?kœ[?ÔÉåæ­@/ùïÙU»ê+ÕFé>_ øìqÆÜ ¼ßåÝx·\ë6½m°¯ÛGÔ>_"Žäûß¿}êöÙ9§õmy»sÓöú9„:Õ}kÿ¿ýu —»Û)¸KþE»joù Dÿ¨uô„/|vL¼óöÎf¥‘%Šã‹‘@g¯D'Š 2a> ( Â,®t„΄ÁÄ "ˆ$we„¸šMÆMÉ$/ Ùg\ønÌÖ·¸vUUuSݦgˆpþ0ÌLÒÕurªÉù¥êœ*^ñ¾ö§ûG.ΘþeÅŸ•2OùäTºÇ>Ö@xÈ^ëuˆH$é•QçìCëôA•Êœ{»µ0ø¹šMÙ·º9t1°|ýùaóMV7îxðtî–ŽDnÔ‚ˆÀ~:ûç­Ýu%)}à}¸ÎúçÖ`kUrÎÙy«58Ù6âxGiÞ8 ˆ2Ì)À^ùåóß 'K_#ü„À#§~'íyf…mš6 ÛÜKÓëoZ›»«S?½µ#÷ŸŸØÇºÕÚÂ"®}|ùe€ˆD"‘^e‡|6Áª­‰±p®Ys³'ª£]ç½ôч»~QLGªD*zjuùê–yëWé,þ~{Ó6SÑ«î= J]xù±)ûáÁiÄ;ª6; ˆÔùó4’öµç¾£ÿÝŒ’ê5ÞlCúQ‚N<¡ú«jîèÒ+!vs†ÞoJïÀ#‡Žé½ÿÒ·¨¶¡mT¶å9 îÜ9#1nuŒéž^ßM*ÒÜgiDåðFÚïlãÆ‹D$‰4û@´S²üØPÝfÅŠÅ5õã@®nü²ØÉÅ*¹ÝYUºwD : L…ø@¤îÇÖ¦£{Cˆ@ØûGð…–ôCÆ ±B&3äÐ6¨p¢d Ë ;¯Já~5­m€wà‘CǃÈ6¤Ú6öˆ çÛþ[½Ucª§7УrêïA.lKVÓ÷‰D"Í*m÷„àP>—ˉ}ý7MHH±î`z âË ˆ€~žÕ õcj}`ÃH-[¼ÙâsMéVÖç¶ êøf•½ðócévZÛï$D mpÀ6öˆôÛÁ·Æs Ñ’²xn‘]yQ¹)›îF@D"‘H³ DšÊî6~Û¦7¶§)Ÿä¸ÞÞ›ˆnXÁ½õ DP? ˆ`0Py¼ ¾çÌ4ÜÊ÷*æ´ÞmƒûF!JÎx*\¾=‘A.¯³ òNâ@Ú·lË+ %DçêGô›2‹hž÷Ð "‘H¤Y"'§šœàÒvòV›<ÂÜß>zf Ì}³`‹ý n\é¢È¢3SìîÍ`€:âíùùŒs·e=ÙçJ5ܹ®D`?^ì,F™²D°¨8W›õà*Î:ß ¯?zÊÔƒñlÒ4 ¸æØtO5”œö˜ËìÕÌÀÊbäxäÐ1]nýº¼½QÀ hҲ͢Jm8ºáŽ­ä_üô ºQ量b †°'Ä=‰D"Í8ñ¯ñ _ixÇ—,Î_üEçGúůqJÀ”F¼Âåk¾lÁ“uOy„ fîrÓ¢AÊ¢ÝØ€ödɱ%= ‚ûáÛò˜ŸØzA B|`¸ù;ËÏ}íe›½~\7yIùÜ0tx©Ò;˜À~ðQ@ËÊ¥J(–ää!-|gS2ƒayWgæ|ä1ÝQÀ hÜ´Í¢;uìmMÞ æÓ+¬˜YÞ䤨žpžŒ8èŸ ˆH$iƈ­ Xn.êû²ïÒrQ>›~9í°_üf^Ø3p8 Uí5«“çÿÙç—nº@„ôÓfçÚ B|à‚Š¿A²W¢}á“É»j¬ñê°| •€zB~$WÆÏtÙ;ÔÙ†y'Q ‚lCÚ€¶9@Ôujöäçíå@Ôáܳ~§)¤~y׿oXã•Ý“H$ÒŒQº.F 6QÙñ«·&+@`ˆR¤ ü*sÓ‘=3tìÃ… Dp?9qiÓ"̨t£ìùS×xõØ> hY%T¡¿ÂZæbŒê$´ nÛæÑ~pE2x.ìËˆÏøôXú3|¦‡ÃD´1#‰D"Í<­KÇRòâáåÀWùz5 â÷õö¶3~³ÿ¿™ˆì_ý¥çhS~þ÷Š Dp?Y1œnû@„ùÀ•3E#95WåÔ`?ø(:,«òY ã”Ýì.Îø ÞIˆ@Ûà6°mˆ&i« Ϩ®dUy[R¶Zô}D"‘H3 D¼½ÝuU ¬Ì;uØVf›ˆjÒJVÎq‰Ds++·‹  ÁýðOº)Úoê|ÀA¥æ./¯Ý†ýÌ$ ¡>ûÁGÐjJ~=‚°Kç7À;IÑH‡žá6°myq+''kz r6FPï|Àž‚ ‰D"½F ú¨*NË[êÔ¯W¦"yÉ‚ÿš.LDF5•*wXúpÓ"¸ÞÁ‰÷ΣD¨äièÇ#X¼­òê¸t­›:³õ7+g|Pï$ D mpض¼´|•­ðZ¼~¦þ2‰D"½F )CŠ“KÒ ¼[¹ÍODi¹2'ô €¨ÀNµƒâ‰ DH?—ÒÄD¨ê@I‘a´êÈn6 ïà>€ûAGOgùzý8ѱ õN’@ô¨;m7ܶ-/9  úÎëØj;ê·yVø!‰D"½B *àáîs`ë`óôå@ÄcY?ðJYÚHù@´ÁŠÆì‰…ï.!ýðà¹.î\hj}P>fú ÝÞOáÜuÄÈ(âUUïC¯ÅM£ØVø[@Ù†´)h€è.Y Úá3‚ hžŽQ‡€ˆD"‘^!•4áîp!p4ÂæË—Ì*`†è3‹ù;ÐyKfÍ QVD¥—Ñš·›ò¤ÖÍ£,™U´3D;áQt,™õ YضÒߢ^ü¢Ò_¢ßÒ¼@åhÉŒD"‘^%9ÛÆ½}ÖѳV¸„Ò糑{x„¹=]Q/Ù¢¶k ›ÙsˆzpѲøsÞÔú•ž\ÛØÈæ"W™¡>¨kÜ Œ ·ÊóGÝM–;qÆGû„$D mpض?Di¾ýfù¼¢Š&à‘H$Ò,Ñ1pä• ½/íThçãx!EþùŸ@•3¡¸lïfèÜOK:jì]‰ú^#>>&ë€õA]ëNå(@×Zêí[iÝ0‚mÚ'$) mƒÛÀ¶ý ú¦ã¡œœ§K@D"‘H³D<ðýÒþ:>í±/¤ð«yiÅiw: ²1䊋àÜÏ?"Lpd0µ>@åR,>¯F"ÔõîTŒ:YQCµ ¢qØ6í’µ‚v  l[ò@Ä?Œù)ɦåˆH$éQš-ÄLv´ñ /gx£Æf&~NÕ•XRd-NDïí¿žÿø@÷³WŽ×Ø ìTù•¡01oÉ@¤òêƒz¤Ý×åÙ¦–ä——øQ¨¹ã£}B’"Ð6¸ l›ˆâ=½!Ö³È%¿!¢Ë‘H$ÒÌ‘35ð-0—°úë_ ®òr„ȤÕÈ ©lÓ:ÓÝnùA…׬½s>\/Te¦òêˆ4£€Çï uÞoêvÏåßm˜w’"Ð6¤ h›ˆâ=½†1`ÈÛXǮɄN,fž}_·ªt–‰D"Í<­òÏXP9\:¾·œïôR•þéW粇²ü“º ð…vå¦â4õwSÑQÊÝØ"¤äÍ-–3Üžvû•f`yd©.»WzóDšQ€ÄƒÎîHOväÎ6zŽ‘°m˜w"Ð6¸ h›ˆb>½ŸX?EwIqoûh}KºfŽ]Ó—)yâ÷‰D"Í89¯¥RåöÍ}­ø‘{ÆVMj·×W×%'÷w(åÃÊ\~|*<6´?¶÷œ[3O÷ÎŽ†cJ â+&vØóî§Ãß±ÆÃË¡»§¢©ñ*<_$U»¼*u+Š}ˆ”ÞÁ|‘f ´<|Ü}Ç­ß·ŠÝZÝò©± ñN| Zýr|wY*Üó¹½Ìpt½±všÆmCÚ@¶é€(ÞÓ»Íï|_Èt{ã‰i¥¤»òIvxEÊû¢ï#‰DšQ JgB¹€HPu/ø{]بY¿ú°^–îVœ›ˆŒ{7õ×"¤Ÿe+ô‰L`Py”n$‘Ú;ˆP ‚GԗТ¤3udÊ÷û ³ ñN| ú Ú9(‡Û†´lÓQ¼§w^e€D¹†2mËiÚ "‘H¤Y"c§ˆLñàÍ…x@dl‰á®zdL D<…dU"¤ŸÁ× ½@~2äT²?Ü\K@x¶-2™g‘|”c7´öÃ7œ¨± öN²@Ù†µlÓQ¼§7 ý—R¾²Í/n‘H$ÒÌ‘‘nŠ¡°ÆSk¤èT“wèýQ‰DÆRpV¥¿mLD§îNxA BúYó)&3"ÈHõ×IÑ¿ú1ß”ðhÔv ñýZx£Ãƒ¾pCëA?> w"À6´Ú6-Åzz#ÑJж´’FßG$‰4³@d_¯jîrRíÒûNï ¼\›T9³>´ò¢à•Jí:JŒNîy³ð.F. DK.E@„ôstË£çø8ͲlLrøÜ/'·›‡,'¥Å;m`?ÿ³wþ ­$w7Cš÷ðui—)Þ‘+8^µ iG'R%  Šˆ~á%²!’I@&E”B2c !,ЃìBAàc#HoPåʨpqdfÿÎì?Í®¼+'þ~kw5òogÍG3¿™]züæõ½÷]¤ç›ÏM™ûÕ?vÞH]ŸÚyl!òŽmI¯Ø– Q˜»w¹CwßútŒ¾!€§$DAy£oÿvüÓù)_¾þãOv>ýÁ›—>3_ïüî³w_ȶÒ/^ýðxççïþú"n|ÿÏ'¯éCÕ¿s¼;Þ9~û‘ÿ°•w턯ƒ%WÁ“ïë)S¿ô^Yù÷Ç;Ÿ~í>Õ€ØÂÖNdüb ÷.V”¾{¿ÒxiázÃ_ôeоôšð÷‡?ï|i÷ð¿"DàÿŽëôG¨‰Øù.ŸŸI¼ßG!‰ò•þtö÷oP1óN<ýñ @ˆÀ“ã{úÂ>¿y…ªˆ•uúü%„ Dà ò }ŠÓ?ÑG'ßèIï?“ËwÇ÷@ˆ@Ò¼ÒŸ*òþ·¨ŠØx«÷ýKrþ¾Bç“oÍøûP1ñúOZ ÿ^öýø>Ï|„"" DÀs@)¦K9TžMUUÓŽ}¥Z;C(jwk5¤¸R öQb$?=Móý±—T|Ä]­ bÒ~Æ®‹Å‚üÛ÷nZóÖÍyØÿ²Yö[}ïë2‚õ¢š÷L3K³{:êW6©L”#ÖÄéPë³!™ì¡µ¯¤ý ßµ¶ûÚvÉYôšîlæä…è¦lùي󜎪ZsìËei´­¤jÕ+‹=ÿmÙO*MôëSÎVùÝEUÀU‡÷)½¢S+G°nš+5!*4ôJ«sP&Ê‘¥÷€x( mG!÷f/DIÛœ[ïÚÒ¶BtÂÚ(eC^ˆ:¬}Uò…ôÑø ¾sÚ—½ŒKiÒ½'‰ÔªO¼Jꈲ•±.O¦ÁUöhˆÅª3ëHjÅžÊiB4ؘՕËD9²ôÞÅ+¡Yíæx!šXoëz ј5Qþ.!ª²F½û9å‡>]P›ÌˆÆ Ôªoçu"¯#Mí“.®ô±Æ,ç4ABÔ×-ên°=ȤVŒà‰p¿¥µJ.ë½QõŠe¢Yzïˆéww[kç…‡V‡kq©ÑŸ©=Ë$T!Ñ=Ce#„%’R©ûŽÉ)¬ßd´Î÷T eu„UYùžõ"T'¬ãàL8²Ø·8äùPj\a¯s•Õ"x>B”ëÑÑëç6r-v‡«•‰rdù½ nÙwï¾a5lŒôM!êdHÙAK2¨;„èÓÞF!ºM¢ƒ¦uÇNɧI9§mQùph-ûUVVGÚÜ(ë‘ëXGætkê]¨Äz &ù ·àù3ü¶^kZÇéáJe¢YzrnãË=‰”}ù;~“; 6p°ŠE¸rGŽ b/;¾L”V·<á IDAT#"XMW¶‰Ùg¤ Q¾¬?‹þlB”õ^PèRXxqAÖ0í^¦I%±`¶WgÖRÓ!t$½m=ʬÆuÊU…Œ›¦Ý㥔٤û¦ý(³éª‘½ÚщTòDЦñéåb¹E¤]ˆ¢pêX¼i_"ÕÌ¿L”#"X—®Y?¬Y›™B¤õ éMQV¢ž‘{íøýŸÆ¢NŸªUˆß­x#(ªV¿ZÉe,uñ¹pâ´½u9Xö{—ÕtªÛÑÞÃ-Ÿ1!²e«Pv$è{r#t-v=o#óÈC²BÔrØYCxPJØ2QŽ@ˆ`] ¹IÏ:·ÆD&]ˆ&úWõ Ó&^ˆj>w ÑTÌ#É?U!bsÙ3Jò,ìE²CèˆrkªOOxRG5;lܶú£­¬–­50/»Pj™,´¡Ëúµøxôü…ˆ¯ÅŽÿ£D8®h¡iÛûml)¥Ýd…ˆuW}ÇmoI,«î_&ʬ‹¬gÑ¢¹þ½œe-/DìµÇ”ä¹#;"õD…ˆ%“jâ°Ä«Ó°:Rb#f™Æ>[2ªÜð\?©¸_æ:^4y2›Ø|«óhQÏá0K§j«Î=^;ØO^ˆÐCÏï"+©š}1w5Èä!ªxÿ´¯9žÝÚyªB´í˜ýH%•kÐ¥uD{úg‡Öbšo’‰çâàú”ucði*æöôAÐÈ Qס:ÖÍTñpu]*Û½ˆ|o‘Fîè¤ÙÝ®§TfI Q?B‘™(G D°.ܳ̾3úóu!R.ÈÅæFQkÂx!ºñ~òeÃ17[IˆÒ[n¤»u‚›”ŽÄ¢G€ÖFªVG6Ù\ûK}t²áûÌV¥m÷õ±iÝwÜxf %zB´à¶où›i,$87EÚ27~ªbu"¦E­ DQ®f™ÀóÅ{¢±%D,·õý¤mH ‘sÐdñ4×!’¢G`$tÈê›Ö1uRÜcÒEÆö•L;Vš.ZÒB4ç×ò¢3«#ÉÑ52ÊèæR½Îì²¾šE¹rõ"—‰rBëâÌ5ôÕ1ÒO !Úb[5-ÇAbÈÌÙC4|ªBÔ“2{ÌŠì 'l=öwÙ#nÛB¦ò™ÃAlNm *:Äaß8Ùˆ ÑŒÛ>á“…ý…(§Ò06{ðZË O÷¬n“„…èܽ‚4Ù‹\&ʬ –+ÌÓžeVµ…è”ÑÌ´]ÿeïþBâ¸8€Ë^ôµäÚܸ–+¤‡G G¡àii¡¡õÄ>$å¼´Çž•Ò4!WzØj4È‘p”šSi• Œ,y)”OŠÐwÁ'ŸBòPΙý7³tv뺫~>/qwvœßÌoÉ|ýÍïO$µUèT½»}ˆFûJ]I¼óntªÞÍ”YÍ-µs¯Ýöžx;Îr¥îG (Xkº(¦ŽÖ\‚íÑt¥Ú?÷(*ÖQèR¶yn6v k”üò@TSÍ­1ÖY:7d5ûÔ²E hôfÑ_Î#¹¤“ DCÁ=¯3œž1ÚBŽ[/v_<ááD“vª¾Ø€a÷µÅ‘±¢gš}±å"f#Ïa¦S™ù4³d÷©G ê**Ûj‚ýF²Öúò‰r DË…†’›{ß©:ìÝTˆÉÝE `ÕîSË Q­u9÷:ˆ‚fW23'˜˜q$¾Vì½f‡h¤3ÖGF‹:àöUjÚº©ÈÉø‡¦²áµ(:›ôr‚>7¡þp¼t¼!ëR¼ÃxWÑzìj,•LIQÝ>µlˆ%ø»|³pSKwåVVÈ¢­;ðdæ?ìKw÷¸HÆ|3/ÝÑ·Ç%èˆÙºÐ3Á¿±f¶¶•…•øDCCE¥‚ š®”ls7Ù•XŠêÉþŠ$%¨:­ÆZ::5»­‡_² Mk©ðæµX‡ü± »Ï °øH™Y´Këg›}jÙ"4Ê@g,ƒî§Ú£èV*µ˜éò‘dq×k±aüw›5=Høp§~%(;Æ+ÜoÆ#ÒÖç ud¸Â’òA'â”>©ÔpþaÔÃ’¹¦*— ¥åþäääådOÃ@T(ÍÃ2 Ô—7ض­ïÊæ½øW£P̵F¢àYcϣȥžÙ±~¶Û§–-@£­§&Û#/VZ¢è‡T®ßu,›KÛ‚OçW_O5i ²›/m„,>uóÃhkÂÀDdßdäÊŽÌÅ’h0rv‘ûÙ`••¡¤(è<ÏJˆR?g¿;7†­Ü‘ ¤]éÎx¼ Ðõg“XÛýTCQÐh5 içúK¿ªåêg›}jÙ"4J:ךZí[¸™*75Ω¸|.á¥éØ:vWv6¢¼[a[äÌZø»¦W"h¡omz¹+sžÃý7ï^»WŸ: /rÏ\x:cIêg›}jÙ"4ÌÐZ$½‘»GåÑ¥\†‰¢öåòSÝòÕôàJS¢ ¿Ír{¢pA²’þ>×;#õ3U§> ²7ãOņ"[\L\‚°¶{¦ MŽÍä33”øÚü\2]ãÖ7ê§ÈÙ ³óŒÄ®K̹:UÚ•åü!&F’ÕÏ6ûÔ²E hœ…µžìÎ]ùÞ#ù@t=7†;ˆÂ&¢þ2±"}9Ó”1w«#wßt¨c&Á¢ DÁÚ«©Î’X1ty.‡V#m=í7úrÕ¶ø $š¶-õgcél%SÖÝ„'ø(|„•Ζnî~ÃÕ®„=Å-#óÙ0=³Ñö3j@ j¹÷F¶%îÒXX¡~¶Ù§–-@ûaaãútÉíÛº[ÚÁ4{§^¹¾±0ÒÖ¬çº^Å=oµ ]þörÙf–±ÙÕë7JR@zle~iuv´|sW÷¥ÕÕõïØ¬"±>Êö÷nYXÚ¥úúa«Èc­…Ž‘ù¥ù‘öªê§ò>µl ±‚GI›£‰?ôƒØ¼²ïÎr´gëÏòAµ]þâÄZ "8X‚&¢‰ä#‚Ö3÷Ù9Þ›I¥†¿T×åmTó¨F à`ê˜ô'o= nŸkûêÓkñù‘‰ù¶LÏ€Ãf)ìÒÚøóÁüy×ÚöÑ ¶õ%Z êКI¥~Jüa€ƒ*½˜|Öúpaæ¢} ½•‡†7Ts%U¿ˆ8°‚•"æ’Ï'Ó2¿<1ñp¿<5ëx81±<«’+_ ¡¡¡ä ~×ýÔ⨫€@Àá6¯ @ HàÜÆÆÆ — I<ΞñmH "ˆ"àà¢gŽn¹³ãÇîÍûS³¥•=(›oè@ôUë–“;~ìÖÞŒÖÖ Íˆö l¾mЬèÍL«Èg¹»vöõíú¢¼„¡ãB®ÕæåSŸð䑺¢jË&À DÌ„€|šy?óúõæDŸµF½ýŸWˆÆ;öx j=ž½kTÇ@ôÚÑ«oŸü¨µõÃõ DÛ—-ˆ‰G"8è(דøvQ¤ ªÆ@ÔÚûR=;U,Ûs†@t>{×>[ï@ôÂ/ D­½§ëˆ*–í¬@‡!eÍŸiÂ@ôÜßÞ;ÿùÑlÉ®6 ½Ù+ÀaDŸfnÚO¶6a z2üùø©LÑžÞû@ôu«@‡!y6¼i?Q&½òɉçul¼ÌØ«Ó_xõé²hü_'.|ðãßw3=~äá«g’çÙ§^xâëO~ûlä­w…±ûGÂ×IÊöMðöïæìtœœãï}öÒ_"Ø?¨õßùÞñ@4~á¿™gU'o+ºÝ“•õöùñ—‹ѱ;™M½g7¾{èñÃW·ç±ógócõ¿y5»-sªßç?ôEISXiÙŽüóÄ÷_½ïÆtf‡ãäü>(Üw¿ˆ`ÿ¢›öÑ¢@ô›ï"ý™O=¹Ý?2¿áêX úË©ÞÈÜA§w/=Õ{tUù8¯¾K0ï¼Ws *íÕ Då“óiøækìŸ@ôyxÓþ0ˆ¾>»ãŸ-<›ºP’rèÅ«±·ßúx×ÑñðÕW;çãÞ¢¢}TŸ@Tá8¹òÅ:g D°Ñápª`òÃBNøCñÿÓ\—˜Ó½•ÑøÙ¢÷ßzz·ÑŸ#Ém›ã¼x²8ÁüŸ½; £L8^¸²e‚÷Ø’Ö6ìÑR$‚îÁ°‘$°y0ALz\ÉQj*I±>”¾¤íC G ¯É³äà¸@Η\9‘CmCéƒx*‚àÞîÌììLv7›´»¹úû’dš|™m“ù33ß|g:DÍÆ‰ŒŸ%)ˆ A4>¸+O&¼•tÂáø|ÑðÒÚF|ð_ËÖÈðàZïh6ˆâ»Æ{×ã?4×Ó¦ :þÔæã\Œúhcåáàb1õHG ¢þÁŠp§«‚íÇ 2O0ØD Z¯$EåôÆT妗¤Â#úzt3õ…(|¢wžèù°3ÓAÔž:ÚŒ®_Œî@ºÔž z#,Œ±¾VãD¡óBôÎåkë…cDAíBbÝ´ûfãT-d.ˆ ÛÏUì8_>fWõÓ_í„ð´G1>âÇôaíÁC…åxâù\*ˆ®d'}9Ì–[m¢ù£kcéIfÛŒ3±ålÍÑžÎQ³q’SD§§Kë˦Ý@^‚¨rfh*>Æ_®v¡̚A^K«Ì4;¶Éx5úkAÔ3™­„0:Æ/ˆ&§§‹Õ{–F­Æ gÊmöÕ}±vQ³qÒMäÁŒŸ ª”Àkåã÷hùí¾j'< óà\r@¿¾ÿ«Ê¹ì„ò3µ :¾y=ùœèkkÛZfcŸF¶'ºT5ºp¼ÃAÔlOª€|ÑþR¸HXeáŽÁ$ˆÂKB“©KBÉ$¯hÎ}6ŠµÙøs·ª¢gjWmefý7ç`ü¬€Rïò©NQ³qä3ˆ‚ñBat>\³ëbDáU©©Ç2‡‡ÿÊ«á[ç“-’ z®ÐÈT›‚h!YcÛqjŸ5¹Ð×¹ j6Ž €œQeñƒafœ¯QO)y\.­ð :±­Õ8g¥öèoD·?ˆŽ#ˆ §AôVåˆ8<#”½‡h±ù=DDziQL=Œðé²se}‘ýDÇG3ÍÑzœ`v­º´F±ñÒ‹m¢Fã"ÈiUŽùÃÇÊo^«Ñbf ûúYfµKDëÉŸœ ·<»M<ꓪ¯Ew/Ž6´§lä·sé…k·Ñd{‚¨nAy ¢ÊíC7•&’ Šjä`r@&|hë*«å (%AEÓµÑÈpz1µÖãDWù¦R뉽¾ý0ûô¤vÑ–qä5ˆ* §Ž—ÿ{«DCáAþFvr}©rŠf$¼½h½ºa(õ¤êðòÑæ@ûƒ(¸ÝWÍmk=NÝíMÁÙRæ.ñ™ÑpëÚYÚr:-^ÕD@ž‚èRüäàDó›áA¾ú æK©Yg½™+V·¶®eVx5µ¬×ñk¿kÏâ®á;‹=-Æ9rã…­¡²™êšâ+Ñ;ã;¢‰øEÊh>N²–ÙdiÜZf£ :Qo*ˆ‚‹ V»?™Š£â‹á½ÖKéÕîGo~0¦ÊÙ#S¥Ôt´Ç ¢¥ÔzÍÇy¹0¶t!®žàÓÑÔÉ•hyÚð´ÒåxÂüŽ‚h0ÓñiŸæãdnüþT@n‚(ºU¹å¸D#ñ½Âý7& ɳÊÉhKiýÃ+NÒAÏ@+Fçþ¸11ššŸbæ;¯®,MD•Õ»òð¹‹×‡vDñ‚eñ\®¦ã̆ßÙÄÊÂ…×⸞¾´W˜^zuíV¼ìFD-¾·™x‰Ž+Ï=|0Ÿ*j>Nüm¹¯È¿6èö Š/H ¥ƒ(81ºåA?ÃÕ‰íÇJuŠƒ¨§·nK*w<8h|WAôzm+Û3[?J¼âGÏDýw0¼“ïm`²Á†æãÄKÅù%ˆ ?AµÇñL/³GüsÉÑýÍôÇSw v*ˆâAKïm;N]¨“5FŽdoex§AÚIÕÆIÍb+Ì "ÈO]¨®mŸ¢àȃÔ)ýàÁgjqÑ»?DAÏÅlFMoWÅWê&æ·çÜfvŒ‰Ëµ¯÷Ætjoöï8ˆ‚7Çê6l7Nh.;Í_@÷Ñ‘ê³v2Aô,oD-P<™=ÞŸ[‰zd}ª'œ†•šsþʉê%µ‰+oÄlCÏgVµoˆvàð±å™¡Ùùú §N–7œhüIgÎ/__~ñ鑠ÚŒóÖÉKý3Ï=ÓSÿ‡úûÏ÷í~¤Sï-Ï\xivd§ã”Óò+3#¦ÝÀD´‡m ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆpºŠc3‚A‚A‚A‚A‚A‚(gþû·ÿ|ïU ‘ÏÞý`ºñ§±ÉþÜ,ä‹_ÄïîÝSÇfQÝ|jß¾¿^õ:ÐÀ»ÕŸ³Ûö§›ìÏÍòGþù‹ø½Ó½{êØŒ Ê¡Ÿ*/ã_¼4ðÅß?{û©'(ˆº~vùÓØdòDíù½#ˆ@íú÷ÆÝo›mZ-¿Š¾ÚùqÈ©«_>9AÔõûó? ö'AÔžß;‚Ñn}µïí¦ÛnÿþÝŸöbrêƒ'+ˆº{á§ñƒ\Q{~ï"D»õ§íBåꃀ°?-Oø´arDmù½#ˆ@íÒç¿Þ›PÙ«qö'ïAÔ‚Ñ.}·ooBe¯ÆA@ØA$ˆ@íÚ½= •{‚HÙA$ˆ‚hO¼ÿíW·ï}õÝ'u®®þôÍÏ?|ó¯/·LfýäƒïÛ÷‡ÕªÚ'~]ýÐ×™¯¿ºúÑ«÷ïÝ ÿäÍïÝýGf˜ï¿½û‹>þnëœÙ¦ãlû]w³f¯h÷îÏêVŸ$ÓÙoõóòGn¶þ;ýÿÄGåo2|±ïÞ¿ýóÝ÷dþåæp’Ÿ”¿¹_þ×s÷ËÏø{çÚÈuÇñ LRìÀ¦› …”m›t›v[¼9²&{*é­·Í©V¡NAÀ‡¶»lžÍa·JÉ¡ø² K.òIÁȇ‚”‹@Q#$ddŒ F’…‘„m¶óf4š÷fæÍŒlYï=öû=ìÊÍÌûþÞ¼yŸ÷o&¢4žˆAqSÔ©áù-9€!™S ÐÌŒœ'ëì;\ª9A™Ë´º¡²uÚñ„Ì¥›‚óU†>ÐŽ¦ È?šöÈüi7I>m¹÷¢œ³×|ß½I…ž'$Õ2+8¢rûYÒsaËüt {rY+…ç©x€ Õݶž=³×WxŠú••Ýä8y™vDi<7­éiçˆý´âN³æo ÔßäY©œˆ ‘€.‹cÊ{jn4嘸¼}ý²@tpbßÉæíO%ï.6éqÎÃOµÌâDTn? J›HÑb.$Ó\r;(Ùýr!“ó@dUò=³¶ßÐN ]_skŸí•Ú¾=xd”6˜fÿ<üTË,~DUñsBAÂÛÇe1]S“§¢È¼í§Ÿo’Ì¢Ò~tkÝYÞì¹gùf½UÏ DfÜJþ¸©é4ˆ„;A"J¯˜5±ÓÞ5H]¼OÝ"’Ô,Sã‚@dÕ5»¤â'활‡Ê¦Y0èDŸ'$Õ2‹QUüš0Ðrä—˜Wi–Wè?CóT8%®…ô²K=jú±{²´þ# §DãžK:nj:"ÁND€H„艣6¦¤ò£?ZþûþE€h@>tÍU«ÖOjZÛ¿'™·¡mGž'$Õ2‹QEü”ÍæòÒ*Ó^w«Š=RYíåÏSá@t<þó€êòRÒ]•WÃÆ™¦DõÀ¸)é4ˆ;A"2ÌöÏ2Õä"cæNÛèTÓæV§DÖ݆¼4òÀÙ‡sÏ[:OXªe/¢ªø!é§æo2õ“w NHž "wšì6™£–WØe(™ ­ÆMI§@$Ö)€‰PÅôÛ§þ&CZÎzx2ã¥Ö›ÍNc”ÕèvºÎô:T¢Î–j™Å‹¨"~¶¼Cy-j,ÒâTF¾< DI >ÉødOa?VOVX·Éˆ7†‘`§"@$B%OÕ»C'”­5ý¦1 ²|茑ʧ°ëq KµÌâET ?Mú†ðºŸ£òT4µ&ôŽz?nÊ95̃m°Î4‰u ‚DBD*€ZŒâî.Âé4dÉÇ$@´¥ÑOù(ø*›ÀóÄMµÌ¢#*·Ÿ®ÆN$y±Á™U³A=´'*O…‘ÛûsìYB¤œ»„ôσ yâ¤`LDü¸©ç´¦QO52† ì@ˆ„Œ†Î‰¾‹:Ʀs«Ï¨È*óêoga @tb~3tŽÜÖ|•Màyø©–YüˆJí§g2B‘Kk»ÄÆ2[}Få©p ¿2}Ô<ïePÍ®o’ ú ^i] IDATwŠ“±¬^‘à‡0s€($nÊ9%SãË:_×<@$Ø)€ «î´T{}[7²½£zn4ï1 ì@ˆ„èhŶ½1gÿï‘õm«P¬YO¥kåýý×ÚÒ°˜17;-µJ£_luRÖ‘Rañ´±DÖc>´•a¿EÎRìù*› óðS-7ñ#*¯Òx^êÐbÈØ0É.Ǿü),OªýL+·ayL.׆…ÓFyæ@ô‚Ì“ídZVÌ[l7ƒj~H’£;ׯ¼Ý¹QÙ»5ػω[7$nÊ9=uiرð§Í‘p§"@$FÖ pWÎdÒ •‚÷®®¹mGþh®G‘±K¤¬/{(è<üTKè°ˆJë§áËRvFÅŽõû²'~žîû¯ÙV7¥Ý`½_Šù±‡ñVèìD”F¦¿Åã”ëÇŒÛ|9,nª9ÕË:S4Éà@ˆ„È8+&Âßv[VƒFÎ I²°*ß½ÞinüÎÏó‘®7GÈÓ"ƒü»¾áˆ€ó„¤Zf…FTV?Q@d0Ì{ç½óòT jèÆ–Õ/ uÚFà˜š:~Fãš;N³a¡x‰ YR®RÙØ@”ÑÃ⦚SÓL×ÉÔ’½ ?+•S ¤òúI÷lpèííÏnžœuO6³œ{‚‘^ß;kn^|Œ kgÀ_PË;'Õ2+4¢ ú9wžŠáë=q•£îQE}?nú'Ý“õ‰.žìÖÚÖÄÝ“ÆMj§éæÞ^sUZ§"@AÐ¥)&ÔÍ€‚  ‚ A"@A"‚D€‚Dˆ ˆ A"A ‚D ‚ @ˆ @A€A€‚  «Üív ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ (½AAR u3 ‚ ‚D ‚ ‚D ‚ ‚D ‚ ‚D ‚ ‚D$ ˆ>úæï BA"èe¢Ï‰çOPuå½›?å­7'Úçý÷^ùËÏ^åòÎ;ï{¿|ýã›||'èç¿þôÚ»×\•ÕÏ›¿yøÊµßþùõKMÁ¬œòsAÉ+ñêÃ_]»ùàéD[¦|½©yÊì4T;¸Wˆ —ˆþ“0õêk_O¯M‚“¸ÿÉ?ãîò½¯î-Zû|÷§R¹nnü+ûÕƒoï’]¿¹éýñ~lmIÜýÉdôó÷Ÿ[_û6ýé·oÿr)˜•S^.üþ6£Î÷oÜöë£81˜Ÿ;¿¸g_:‹¿ûòjÌ-ÜëÊÜ$×hŒ<æ4:m“–Æè{€zé€èS³D<¾2Ñ5{ëŸIÙ˜Õy8zç~Âѽx<òä§ÏÆ»$¾{+°Ú]ôÑ•Ý}þýs¸Ç[î^¿"›Ÿ[ߎ·=÷6U?!6o\<³rÊÏ…ÏŒ®;ß•ðëÝ1˜‰ŸÏÞ¾K%ë_ãl ¹Þx1¿ÌMvFæ©@§Qi›´4ƸWˆ —pчwŸ}0Ù5{#q{&ecVç Ö¾°šÑϬVÔý§qZå³o/í:çÙ­€Á ë6HÑûF¶h-ñ_º­ö}ë«/þÏÞµô´±{q Ò´‹BB*…¤ÚÛ'¢TTAÁ‚TDH»tQU¢ÑÕUÈØPZ‰UX wE,誊t%ÄÈUŠøìúiþ>“ÇØ{ìÌdf\᳉3™óšãŸíããv§›z¤˜<ï:lÕªÅj Á;u»éi`¢’Ôà }"Ž"‘gíº‹j:·•iq‹—¿}Œ Å죢%ð6èÛ(«4 Òt#w™ œ@tP9Œ%Š(Nß7Ì¥I1u‰[¦ ´´&·M+ó]™ù• ˆ^ÀMã)s{oýwå´¼ˆ9žƒÑßCø¹—JÉó"ðÏM{h™ ˜é3ƒ|p•¤Vx ?1Ö§¯ýUˆ1’à¡ u< ¨·Í·VrI³‘.€åÚ a‹—¿ñt ú;7¨ l«¤Þ¼ ü6JÄ* ˆ4ÝH@4ðâw> ÕsØ´39µ“õ6úÿ›ø–¥²Ñî}m¢Ì.ý ôiûŠDë•&;ÿç`ø>Ûo*£«ãîÿ›0o¡’<£0Â}¸Ãºm‚ó– øà *I=¬ð]}—èáÎQ'ÖADòL­¿{ÿ€å&Å-þ&©ÕÞ9>êeÓ˜%õâmpIűJ"MÉIFT¢z“’h\Uê µPĸ™¿Ï:k-dƨö;h48Y'Ñ+ôµBïb_NCxШö¶ XèÎ|J!y–âu"õŒ=_œ¸B°/"’”o| †ñI¨ƒÈ,w@M\‰[<üMRª½sƒû¨‡Mã—Ôƒ7’Šb•Dš4 ’¢BD@¥' š#&²aÁýÞ`?ð–1$j[ BÃòR®«ý½8™&ú±&ºÊ¨#Ï âÅ[”ÍQWÌAˆ’ò­`ï ”Ø„~¡’ê ˽㮈-þ&©ÅÞ9>êaSµ$%y *é[…ÖÌt߬).@”^ë¹èÜ@ŸÀHq{eþaa’Ú’òíÚ0j½;ל€1³¶fÀxöüÇéWômfjw3»<þcïå³þ¬íÚš=\Ííe—³{9Sò9ÑÐ b5á9ºpÇÛ:$K’ý¶³Œ¢¥Š PÎwÿÏ@V 1ü¬Ž<ãÜiþTÑ8Ef͹Bp`“Ôà i,ËaViK¬ƒX,·`ðV~ˆ›ˆfh¿zØT-IIÞ‚JʈUiºq€è¨¿ï“pÉ ôIÎ|v«»?·4±Ýï)~Õ«ÔF‡¹þm? ãÂ1ÝÛòMbHÔìïöÍ—7¼nŽÖ;û]Œ–Óß{>'º´•€wÍÁ~`ÇÕ œ#!M³ˆ¢ÏÔWœÙóÒË1‡a)#O»Íë>tŸðt¸„'©‡Ì–TÉòëŒX±Xî5÷¢ÅÃßZ¡åÒ(æ£^6UJR‚·À’îÑX"M( zŸ9wÀHõ36uîˆ>™_ª¬Í¹‰)âžq'ìN;Õ0jM™çDCˆ­ŸÎUu‘gƒýÀ´kóŒ³7Ló DÓÔ.æCl,ޝã|'z«ØåÙEÞ%ï»Bp`“T`q‚ÇFÉÆºBÄb¹M|ÂË£…ïoåоóQ±MÕ”ä-¨¤ŒX¥‘¦›ˆF6³Ëõ2eÛ(:^ÆVmÀÔ+®4`GN³G øK>¿n—9©ç‰:K—©¦³rù4ï€DYtÃj¹ððЮ€òÅ”xN$t‡Ò â/?XÅtÁØ»¼ˆþVq@«3ûØ— ucû…Vç¡·A?oÕ‘ça_¥éœƒð$õ²BU¦ÔStÈX±Xn½b¥ŒD ßߪÁ«`ý>*aS5$%y *©;Vi@¤é¦&U§˜€vÝØ]Âm{r‡(sÎÎ(@€èÑ ©¯sI3ñàŸ¦“äW°‹~µ3ŒR#ã-l¦EäÎ^‰ƒªkcùyŒIÕô˜©>pNs‹Úª¼}ÚýÅk-P³åOtÿ·àâÎÖ…þé–Bòb€br oßÌfäBpp“ÔË 5‰¾b ù~Õ Õ[£E¡=n ßßj‘ô—ñû¨„M•”â- ¤îX¥‘& ˆ(@´¿nM9@dÆÑ?»öš;¶Ø€¨Ô[ [€¹¨÷ª¢Y¨ë]¦û8È,ä©ið+Ãø¹ÞËD ²L#d÷:«ƒëk/¶7¡ÊH3¡|T¦JHJñPRw¬Ò€H“D$ rvqfèÓq¼«ÐýYú—DNù‹cIà ½§*s@9׃ü@R”~cº‘=áÄB;yj͉TE; Ýî¦ É“€m¾ÖD?Áëô»8æ LIùVø€'²•–Ùg, 3Õž…ˆüêÍ»:„QFå®l Çߤt Ú;çÇG%lª„¤$oA%uÅ* ˆ4i@D"¬ Œr€èÐb¯G”Fy€È©w9C)EÑ$µª¾®¿8†Ã•±þ³ I@´êO`OÅJà ±y³ãV3JÉuÞ.~ÀaGeûL¦ZZ‚ƒrª¤|+äjDnÿõ‰ÿP‘_½Y]Žë¿Ò-“Ñr°© ’R¼”Ô«4 Ò¤ ˆ0sho—D‹ŒÏŸó6• *%ÈaúŒ"€h…J¼˜G×ÿ“¿}u!µ¿ÉAØé6 ¥N!ÙýÏ6äA×ãä[w+ÝN¨8£’*aÓø£‹‹·@’ºô¦‘& ˆ\€èÒ ª±<Þ¸û<@„o>Ý£^MÕv™ÉžHmÁ”vË"1áù ™ ÎøúIÒ:ŸVD;Oþ’úµ AÂA4’2­@Ò&#î.·ôPQp½Ùõ…Þ [dým3ð¡+@¿JØ4öèâæ-ˆ¤n½i@¤I¢0‘ç þœ'Tªaœ€(Ũ%»$w+T‘­âIèëhHW}Ò'tu3œ¡ã<¦7gÞ›`Õõ‡)Oç0È jÊ?-Á8ˆJR–Ük—¨¨Fé^x€hò@ïa‹¬¿1t0@¿JØ4vuó@R†Þ4 Ò¤Q˜€¨Å›ÎPO†£›Š"¨'Ÿ6´j×r7¬;'Î¥Ÿ3˜ô•qó §$¿U"SÎÏÈL÷å龄÷‰Y™웃¨$eYqÊn|Ð4ÃDCgŽË"Ö"ío  H'œNòQ±Mc÷Q7oþ%eéM"M… ˆ`VvˆN±ëGÔ¾ýXÀ8§(ïCö ÇÅ<Šu÷MŸ€¨m•nzÀgê´Ž+²BŒò˜öiÝx­NH½' Á~9ˆJR¦(zçž79âç —g†;§ƒµHûÛ»ÐNßGÅ6ÝG¼ù•”­7 ˆ4i@" ZáP»0ã6Ñ_TDwû•¥{2<‘¹m³+s¦O@t€>^ÆbXê rJÈÓ„.Sþ¥†(ûä *IÙV` ©§\rÍ0Qp½q+á-ÒþæÖ‚ïœOÛ4neñæSRŽÞ4 Ò¤Ñ €è ½p–< Ê¡qH>ÇDN=2È \µÄω†2D'rAa5˜¨žyóݵuç#9£Ç–ÖA§(¢Á_÷Y~‚Ä(5¬o;~ˆòtgœÞó^ɽˆâÁBbµÇ 5‰Ž¬7ÿù8T@TÓœâòµHû›[ ¾s>}TlÓ¸}”Å›?IyzÓ€H“Dƒ¢:{ìÈDö÷[I *ÁyÜ?'"BÝb©—÷<—w Ë0u}AÄVÑM¢‚"Œ]f]ú×¼K¢ïUœù³¹ •â†+€ÕÜr¿Ä!XÀA¬–ãY¤×}ÀÕ6êU*©PQPyÌt‰H—æ´Èú›[ª¾s~|ThÓ˜}”Í›I¥b•Dš4 ¢,{@qÛ[Î. kDÆ~wh¶DWºÎ†»÷U4z鄞Fñ×OuâÌq¡>%/<óQêÕÖr@ì"ïœñ2±â‘jívÕ~WbVÇÁâ´ß Yl3àtÕUÄnÓ«>ÔÑàò¼ÚÅgha)ºœµxø›@ª¾s~|ThÓ˜}”Í›Iåb•Dšn ºcдÁË\Ú³qŒ5j‰‘}Tq~<Ý0£Ó+W«û8 2Z0¶¹}·æÊÜà<'*ºÅÌ&Mk¤Í8ýpÙæ8þñŽ}ŒÐÿÙ;ƒž¶‘6ŽË•x÷P lX‘†¤hBQJµ(ˆDÛCˆ­„Þ[8 ¤%ªPjH+q –KTqÈž¢HHˆ/À5z%”/Ÿæ±ÇvlgbÇñXü'’‡±óÌ33Ïß3c{CÇ/ƒ‘²ÿñÓ*MAÍÍMò+5‹ ô¼¿Æé»¶j3ùC…”˜™|•|›1Ë+fÉÆþø9›(Ô2÷ñ­øOgÛÔQI792CÓJÔcA4¼?‚tº ÏöüÞ¥…È@‹M{³¯~ûœ“6:(¦~¶Qëß6´§Œcx6‚h¹õPÌ·Kù=i)߬¾ˆ2 "y-K¨”›e© üÎ ˆ®–:ûˆ+eR¨'ˆþ¢ÃA»˜—Ÿüø{ÿZ[ÿyÆ…xGO_hËï|ª×îZ²'­¾%@ÙÁ‚¨Þ.>%¹f çZÉòT¾‘UòäÏórpjÊÛ@›3,ÉÆþø9›(Ô:Ý£ófÃM9s¶÷J íÏ…òÊzé±ó®ÖÌù`‹M{³¯~ûœ“6:(¦~¶Qëß6´§Œcx6‚輿K|gD)©W„EMN^V´§Ñ¢X*¯~7NôšŸgl=ªg¯…Æåï×G!ˆÔnžr›Ö©ø†/ÄfïÛÆlbÀöø9›(uî_dû¶‚X<±h”‚hhú ÕÎ,6í;8îsNÚ耘úÙFm~Û°žB0*A4ùó²{)ýÍ$ˆ&?Ö:çÈ4WözrvòçZ[y‡Ôçþ!ÓóŒ_7äË8áîmÿK‘&´8:A”^껂¸Ñîø_ÜœáÍŸW×åÎoË1‹»_àcäl¢põµUèø^j, ÑÛ{¤+ïѰþ\å^Üt#V¹ŸûÉb±io¶uÀuŸsÐFÄÔÏ6j÷Û†ô‚Ó=DθJ}\ÝIœýgˆ"Ù¯sñ¹…ÐߺNIwq¾ZN\Ÿ‡_ê<£äŠü´\Øtš__\7ŒXW*¯(ŒçØ{Ú< õb!xR['¤ÖþáÓŸäÓêæûO£ú>FÎ6 3{?r×›!__9¬?“â÷ÛÕƒ“œ‰GÖëö6Æ:ð¿rS{†òÔÙXA ˆ¼"êõòäfA‚"D@€ ‚D ˆ€ A" ˆ@ðÌÑ?ñxü=FDü@¸¹@€ ‚D ˆ€ A"øDgétºae”ÒÑwtX"yaÊ¥¹p&ˆöAx°2¦…­çÐÃ÷žvV6²#*óúióúh‚(U£×ˆ;)ñð€÷®ÊlÓAçâøHœßŸ¢ÃY¹W攚fsI1´FÇ»ª:¥FRsæâe$+¦^Ð2µ?þXZæõÐ;WKS¹Q?•/¼S]~;«·8Í4³Ët«E õ/Wioè9tÝ_–·`žR¬-üEnÀy$Á{A4ZOÄǦŸrî逸xÝF–É8tiAnÏ@½ÎM½¤×MÊUX¨f9áËXæ°,Ôº>БvN½&%£Q¡³†¾L'7n»–cáþ{÷ïÍŒå¼/þ°-uC†põS˜ê¡VÔãÀ9ª·²fk'•¨EÕrI>Ù.»‘xÖª¦)ÅÚÂeäìÎsLC·ëµ ­§âcÝO9÷t@|ç<>çÞ­™ØÓAññº®+Ëu™|I¨?v6ÛýëÐ‚Ü üD{—Ó­Æbì:lD4;DÖ¦ÓkvAdz4ù¡ô›òOyV §‘c8Ï‚·‚ȃ>ç*>qÃÅ ÷£‹y|ÆÐF;³ÝD£-‘veAn> ¢£ŠS’ÅÞZE³‰b_™ãY“W rmÝMÈÖ‚Èêh 7ÛTm¼:¼×î³uY†~¿Õë6,éÐÛ¿ÿì_ѹ0è&Ÿýa;Ú!ÕmuéIÞªLoŽœÇo÷ÇEöz›§_¤R4œ×?˜±b“êu‹;cJ±¶ð9†óx,ˆFßçÜÅGÛO1º˜ÆgmTélt.õ ôÅy7äfà×"ÍLÍéKwZAT讓EÒê’¶‚ÈêhÁD·_0lf,s–ÑLv§ôE£{¬ûžz“= ¢´šäǶ£­è_ÛX“ßÖñMžsîbQÏc8T½…èÿVNÞÒÛz÷ÂÒ óF³V*I÷ˆBUAH‡:Í;Ïhá5r çñX¾Ï¹Š®Ÿbt1Ï8ڨ̴<¼nr[ÈPäfàß]f½+ä›ÞZ,ˆÔgãÈocøÏBIDATx`DG ¦ Ú1<ƒd‘á!mŒetÏæ¡39õ“¼áª÷1»¸¸XÍÓ]Zçɶ£=…Ñ{‹ö½é~¾¡n$«oy='õv&ßû›‘e‘f)bY·3®õŸ¦ÍRе…ÛÈ1œÇcA4ò>ç.>†×ðñ?º˜Åg,m”Bp!eÅdt¢9äfÀ ’÷DïkQoÅkºÿ'9” Ò-˜‚èÀ°à7òùz$eè¼I~^7™Vî&àc9íöîЛïÞèw’âʦ£}Ð7’×äc“î#ª7Ëò;™*=‹ž£z;¬*…Òº†©èî¸Ól§ ¥ÕåNCJ±¶ð9†óx,ˆFÝçÜÅÇÐOƒ0º˜Äg~ 99§\rÈÁ{ †BÈ?à«Y0ý|ë_óhä7¤‘ë%òòývI3IóÓÛÌŠíá“w“çC/sbt°ÿÍgGZÕìƒ?öŒ¬CàÌ:öJõè{šê¨´[yƒ¤4*ZßœÈñwqƒª›«õYoÙiôJ{áòöèíçý⻞ùùMÎz áú£k—¢þ$½-à{bDQïs¡ÚǾŸ.ÃÑÅ¥}’ÙF'G|s ÖÝCÛ¤wü„¾iD¿É¨iÛnßÞ-ý¶ì(®+D91]ÙŠõ_ÖÄ]šJ÷ò²[Ó´£t¯QßÜ|Ø»šSo÷ Ëu…H<‚a}+æµ6¦UÚ]°ã–ÙÝ×›ù,uí×#±Lå‘îö+«Gë#ð-˳ur—¢þ„+DÉís¡ÚǹŸ.墄¶Q±Ëmu'Þ3mÔÒÿ„¾÷ˆJk¯zƒêèªÑÑä@d}¯Ì9–‹"¹––ò@´^´Z÷ºcÿe»ü¶evÛÒØÍ¦íùM™ÛÒÐíÜÝ Ñ[7ÂŒVm}‚”vd›VUŒZmYH<>pGË-¶ÞÌÙ2ëÇFŽŽh]Ñxh‰Éeƒ\Ãò2šÔ¥¨?IsËøž¨Q"û\¨öqÛOÓtq´ORÛèøëÊx ¢§;¥0ŸÐ7ã¾ѷ͆ۀ‰Ç¶¾jÇ1‡k R”–ò@ôJú›g/EÅóHVÜF:³ß)z2¾£Ýü£‹Ñ×ÜÞlÑÅáo /^ÍÄß2Û0êtm=þ‰×†;æ?7³1´ÜBëM`üç–;ÊÎð}{þMFS^m¸v)êOÒÜr ¾e–È>¦}Ü÷Ó´]œí“Ô6%úfÜS *ÖÆZ\ ëgý¦ˆ¬#^œ;Fr DªÒ–3­»Œúá÷°ÿ2â Vuy üÃÞÊÎ_ôñèk}e]qªi}”öÂ~Yñ«íº£X&w ºÞ¶Å£íÓwí_‹—^ÜWγÙ=³¢t‚níRÔŸ¤ºå|OÌ(Òš†jÕ~šî£‹£}ÛF DXþ@$î"k£ÓŸãSD[ßöÈ/)K[Î@´ë2.쟢|—#77W½ŠØSMîj>SbîŽhëã_šnDâZAº)%wh^ò_=\omé½-åÜRåiª[m[û?3ã„[üÿØë“t·\€ï‰9EYÓPí㿟¦ñèâhŸä¶Q–>m4æ³dÆ3|[‘u×Ë;&¡r"ui)D­æÃæÜ8fºñ-Ëg,¯¼h9•&»°zhÈ…ÿ¶;.ã[ZÙ1©ªø%뢣°HÕr ¬7½¦iÃŒt;ïPyšÞžëâÂë“”·œÿ÷DˆØç´O€ý4…Ggû$¸ˆ°ìHœ:7ç§9][6ÑžãOg R—–ò@¤r&Í-ý§æ9Åg eZãˆöÜ»„®±šÜ‡Î9p™Aåþêã[ÚÀù„CÝ©z¦/›@ëí‰íê•bF¹ñ£à· w6Iµœÿ÷Äü–Y”5 Ñ>AöÓô]D@˜@t$¿µp-"k ^ÀyîˆÔ¥-i z!½.òÞßá–Ù¯«à§wÔÃC^!ж>~¥‰CóÐVÚ¯ÒKâ’­;ZoëÒÐìã@TP­‘?îl’j9ÿï‰;EXÓÅÛ'È~š¾£ ˆzÒÈôOlo™Y. ‰§aYŸ@¤.mv¢¦/S :–:Ò#fôƒ­ŸzðeÞˆÞ|Þ$Ñåy<$„쌢­_i]¦=iïáì§BM¾/—õæ¬iÎv©«š}¼?픲ã`(þ_òú$å-çû=±¢kºpûÙOÓwtqmŸ·Q–=奧Mö@Ô–ºù%3—@¤.mìV¾<°ŒpR›>eø²â¸àQãwJA—Yoù 5’wv&CÐfì¡ø«u«ÊÇߊ.ëÍ¥¦ú•Ñ Î¯‰þ¬(ÂÚš&MÏ&]U¼§Á‘±gMNP¾»LÀî DêÒæ÷KÞ-U ‹´Çú§¡sXå·fÏ.óÄ8æT|f.‰±g;ßféÈ:bAܶlë©©Oi§®#ùˆ±v«“ÁO¾ˆ òrq´›ïzs«é¬gßbЈÉG–WoNF޹’èl’j9ŸïI E[ÓÚ'È~šÞšˆ€EQAŒ?×§ÅúãÜ£aDÚ­8›ú¢ãò\Ëží!T¯Òæ;smǼñ¦ç²™e NÒª{z&»/zÕª-ü0×Ñ`˘]l7/™ ‹V0ÿ»Z¿SÛ·Õ|ôÝœlhãdS„ÒÚAjêãSZIt+.ïðŠ ‡£íRFÿúK%¶¾Õw½¹ÕÔÜ|Û{bÃÜ=À5§gçÍÊà|]ü°úà‡ø£G“ïl’j9ïïI E\Ó;·ç~šþšˆ€EQæosÊñá™9åSý@Dçb—»iwÍ1”»³N`ûrÐî^V®6«õÛÞäΈ²4Ë=3­S­WG5íñR¢Õ+³–7怓‡Û§ã©Ñ/ƒ-sìòãìòÈáMû¬Ý¬˜ ^ÈG?£Œfw2þwå"=õñ)í³bZs~ ­Óרþ>¶žÆs½¹Ö´5^ÿ£êµùéõ±å>ŸQÆáh2¿Šâõ£x;›¤ZÎû{’DÑÖôÎí㹟¦¿¦"`á@¤÷ç{ý`C?´¢Ê§Âpöáp~LÈ;“t£,mzÞt,’vÏ»³¿¸yâ¸3cþ{>Ø2ÞhöOuëȳ}ù×›oRTŸÒڪєrõy…úâi5ßõæ^Ó-ë¼3í?¥ºÌÕs÷ÒÙ$Õržß“D Џ¦)DqÔ”@,ˆ2™ò$¤tÏu³#™¢v&S:½ϰõ¬” ˆ”¥Íšž²772Ëa÷yJ¦]ýâÆ_ÌŽ¨5Vƒ-$5zò z¹w=ýÝÎà¯Ršêãý‰xläzç"£«ãm ]Ž«Ñ|×›¢¦«ù›ÉöÙnY®]ék—µiiý½ûêlj9ÏïI$E\Ó¢jJ B"cÇû}¥µ¦zûK¹]¼8уoËž¥å}ûoq¥üæifydUPv_…ü|.è2YAŸ‘ úÒ:ÿ¼÷ú½ë Ý*ž·ÊëïÓVßÒÔ¾~)¶ÖVãm6ïõ¦¬iaßh‰ïŸìÿ\*”‹­ýuýß°%ÆÒ¦)®é¿Ûc?ýwÕ4µè›qDˆ@ €@"ˆ @"D @ DˆÀÿÙ»ƒÄ8€ã$倒0rx0Ñ‹‘D©Ä‹<³!Á˜˜˜¸‰—ÞH &â ,GÀè+xßëž}š§…ÒiÚâÿû¹¬0ÎÐßÔÎþ:m²¯Øô+®X°FšßhÅ""€ófù½­XÀwô«{J7€¬y/ÿî$ÒZ¯]54›Yn§p£V«Y?z—>Úæ••üÐ;üøéô»óŽÕŸStg§(5]Õ-h­t¢MTSíŒ}{ 2–é…f¡¨¬¹k;‘²’„â‘×QÜ;jû-õÞI¬~Z¤Y>‚¬ëX-•¿Æ™ÈÉ~³ÎSÄû]UŸ%oíÒðò!­MBä÷v]sºå~érbÍ4ÍÚÜ’m»±’²ùç(ŒG^gqkçG¦ù+Zw«í·”{'Á>H3Ò3 ¯"R…ubÁj÷œÚ:q¶ Ⱦ‹ªÐ %*"OR6C$o­b—œ5‹ŸŸÖù胄ȧsäí›á B=QíhnÉ»äRY‰üsÔÅ#¯³¸µc‘fG¼Â£¶ßÒí$û ÍHï‚cØžŠHÕÕ‰{«ÝsjëÄÙ6 óÎO‚c‰öú…†aþQ÷q²Özö'ÝLôHÆ"Ë{Å0ÝSÌÏå+V¥;Òã”T£]䌼ÎÂÖ>;oG¶Õö[ª½“h¤ée섨ã}‘®aÏ©¬oÛ€¬»‡©Q/ý³Š…Ýü‹¦™37éJ?PÒš8ñld£K²•ÚûD{)œæú¥{û§ßË×,Û¿^ÎɲϾ²ù稊G^gak÷Zœa[m¿¥Ù;ÉöAš‘îØ/÷o=;*"UU'æ¬|Ï)¬sÛ€¬Ë‹ÙÒéÿÖè)íØVy¯æOJˆšâìÍ=«ü{%½\1OÝþízðTuØîˆ„T74ç–½Ó>¼‹]"ÿÕñÈë,j­$îŒÛ‹>l«é·,ôN2}…HwíW±Ž¯h[T¤*÷œú:q· ȺWûÏ: ?ü²·£IB4Ë>3&÷Tu"ɵìß¾ ¼S‹ÔßÿæÎ´j®Û¬‹ÙÁBìù税G^G^rz+NaߢÛjú- ½“Ld!ÒcûU/Öñm«“ŠTåžS]'þ¶×·ÿª_³°!¿¤¯ü¿¢ q-À{U‰2î·gž×{š,k`jµ—ñÏ£Ø%òÏQ¼Î‚ÖÄ”ñžëF¶Õô[z'¡>ÈB¤bº"ÞŠ®íOµ®=R¥{NuøÛd\wÑËÇ娼)¤Á{þñqTšüÊ›sî`ÿ þ½i¶ùRwÙÖúÖ?1kÛÿ‚‚l¤>ºn´Ú[…·àûzç)ßÊoÏ h°uݸÞcÕs8!ìæí¶vfï†Ô/K£½ÛãæÃœ»Á­ƒac°z ÇD±emËþå­™3Á°Vìùç(ŽG^gAký­Ö±÷]ôa[M¿e wêƒ,Dz if¼,ÒV'©Ò=§ºNüm2N74íJVXñž͕ʡ±qg’^ roõñ’BFãæûÖ¬ò•¹pœ3­²ï-jd }§±ýQmüö}h6j0‰g¿›k¢ËÃISÁ¼çsûÕÛäÃQ(‹Ó¯Ô,0<£´ìWÏËV-ÍLºu;ïÛíVý˹üÑjo—:ÝØ%òÏQ¼Î¢Ö¬Joü^Äa[M¿e wêƒ,DZ^0ŒETqxG°Â=§¼Nìm²îeÁÓîò„hçK“%DëlúîÑàÛÖŠßxFvÚ’´fÝûÞ®ø'|:ÓµÌε?!Òo}uÌsÿ†Ÿ-zÒwà¼y³òþ©O}íÜñ~ÙªçöœÏ+øã¤wçŠJ䟣*yï[»‹>l+í·4{'Ù>H5ÒaôG«âluR‘®cÏ)®gÛ€¬k,¸fV]7~ç$DE‘•›‹wgbåðvÛ½4%¢½+{À¬<¶*μÏPÿ®5«î*C÷ÇúîJõÝÌ˸?:óAÞå±çeµq{ >L{™^Ms ©6Zû¦8ýõ'D¢¤Vi<_‰I'cú„È›“Uë­ƒCç§Ðb’–³½UwÏg¨¿ªö6,{¯DQr¿üÀòѪ«¤Dþ9ªâ‘×Y¢µbôa[e¿¥Ù;ÉöAº‘¾jÚA¼#¬ã©’uGºŽ=§ºNœm²ÎÿÏ×Ìdôç$D" úåþ(—¿ž¼ßu'KæúÎDMáûÖênª~t•g­”~¡åe{}q+è¡{ÜwªAD õêä:ú®;÷5IˆÄÕuÓ½æo‰Kgg^OÄ,Ó8ᱞ+ái*SÉwÀC —ˆõÐî–Í ///ç¬s*ΦûvrXÑ”È?GY<ò:K´cØVØo©öN¢}r¤'¾QHI¤Êê¬r+ÜsÊëáGÊ;ׂÚ#$D"﹚Œˆvšðõ7yGÉóìõòõ'DbúW»ž3^‹G)*“Ãþ³ê»¹Ñy¢Øò½ð¢ž™“i½âÎ~aø®ºÍ|`áH{=WM#”í]®Ö䵓¦>Íy°$NIñÈë,Ñšºa{ãz'Ñ>H7R1¬TîMó¾<êå²d¥#8ËI ~¢¾»»ñ\ЗMˆJÓ "÷qÜ‚?!òR%ç²ÑYÒ QY²ÈXß´ƒœÞù\4¦×ò÷Oïû¢|àñ ±ˆˆ·÷Ë·ëœ*ˆ¦Z!DÜÑô°r‹÷zNœæ‡îˆS’D<ò:K´¦lØÞ¼ÞI²RŽ´ç¿›Ïh¼eh|]é&!¦·ÇdÕÚ½å¢'ò"ømBä»ÈœYdí ‘HÂŒyÓ]"‹;%Nî Þ·ã7¦cèÎ4!ÒÍàe¯ªï?‚߉¬VTÒ‚×D†¶Ò7ËõÌqŽ'.ùn‰S’H<ò:K´¦jØÞÀÞI°ÒŽtüBÆ£ì ¯+Á$D@âîêÞƒå½e¢cÿ½Aç¾ùs'!ꈿÉ&DMÙ*ô¡¨éÏbâç0¸‰ãT§ºãüÙ75&:áþbÝ»¦uÚ«vSk2Ë%fÌÏóÅ)I$y%ZS5lo`ï$Ø©GÚ«—÷¶J…fÛY@;êffp]é&!R`åÇ ôœì.‘½û&…œoòÏÕB³0Ýd¢†l±—ÐŒNÑKƒD¾’3ï7·ü×sî-“ÿœëZ¹ ¯uÇ(Ÿ!Êý¹78Ò^ßõUKþ73DØ;IöAF"µýÝ3b|›3D$DÀ”þðlÌýã9)Lѳôïk»¡ÅSHˆÊ²{Å-DzhKμs¶c_É¡—‰ÈðóµÿÜõ$Ïòë¼p¦þ¢œþî.Õß:UP’@<Ù¸‡hóz'Ñ>ÈF¤ÞP²üƒ\ëÆ=DÀF´œ”èòÛ„H,ƒ¦ýs×›¼…ÆDBTI7!JC] /îo¿ñå¥=[¡­¶¼é¦°é×õö'k<>¬mŸ¬á)³TmðSf×;Yîƒ5EêêÙ¯YÛ°HIˆ€ øK9WõoS˜1sÒ¾;Õ­Ñ—ÿ„'üÍh)$DWη‡ÌꇮæårbËP[Á;Á}_îZ_˜ÙcÂxVM^¬qÔ ¯bò±Áaqâ‘×Y¢µ¶ÕöN–û`M‘ºŽ³tÍl¥#˜„HóükæÙ©¹)ÌȽÛIŒéìJ"Ù QΘLù¦ŒN¼¢íÐ5!YcWð&ñî/÷ûÌŒæzvHv[­¿Á`qâ‘×Y¢µ¶ÕöN–û`M‘º ¡‰ê‹”„È„úÌâÒóS˜ï{MÿkïnVçÂŽâÂ6d¡èbü]ΦX¨ƒ›º˜eŠ` ¼Pha6î¡í ԥИ[pïvÖ^Íë‰Æ|˜˜ØkRÿ¿U§Ä9kªû9!W¾¢T}½'žàmÂ÷–¬f[nv✃ýDjÇ[It¤D@Œ7¿û—0™¾Ò¿,þ¾p=+ŠAAtïéîY+xÖëi¯µáyÊo¬ ¢\´¾÷ÖõþnIókeç}½'žàmÂ÷–¬f[nv✃ýDº”ö<¥J^¤D@Ün¼µî[¼*Ê“Ï,Ž1(ˆ&AaÇ3Rh¼~¥^u¿瘇H,è|áCÅŒuÍÚ^NÈ™ë-ÝFœ†‹~Z<ÁÛ„ï-YͶÜìÄ9û‰téᣳ$ÅæLAÒc¤GfbžôɧDÝ×èc–ÿˆÇW~3n·=½8âY~×ü©vẇK;–î¨.~ÌFøT}o/úþu­—Oø˜ê(ñlžíàmÂ÷–¬f[nv✃ýDºTüðd]»·;r#¥ âp‘_¸—, (aºËVì¥ ª‰‡]ùÈý/A}Ò%{®€UÙcÈ¥kî´GGA$îîŒíî_•fÿ¤¬2YYœ«Ö °~‰…Äã{¶ƒ· ÍNšm¹Ù‰sö©I¼;ÿørf;¶;r#¥  1vvlÜ]mšñ+aDo‹Þû¤‚(§xVHÛN›¢Ûçµ™£ªZoäÿ-;ºÂÄ&Mk$ö©sµû¡è"ÊÛ!hmkRï?Çìws÷šgÂx±Ï3 gHveÎKIÖ ¸ïÙÞ&4; k¶åf'Î9é7Çí™ZõÌ ýN;¶;r#¥  ¥(ÆÏIýnªõZQ¿(}O¡3õÌ>mÖ æ$ÍWףѨTüvú½ òÛ[HA´œñ2rHóØÆjíD멽¿þÒŠù†Ê9ÑÿõrÖwíR<ñº8]´YÚßóEãèÿj‰ôÇíÙImÐz½/¯Xu•þú2ði£¼Ù6ˆc•¹ŒqEâ²T_[úzs–¨ÚÿÙÞ&,;Ik¶åf'Î9©ÑÌçTñe›uÍ Ÿ$¬w¿k»#7R "à ‘ÛÅúuUÏWFÕåúÍþS©ò¨¯ïÃÒ®Õ¥û·ÃЂhÛÞ¶DËÙ£O´¦¯kîY‹dh> kφù‡¼Ý‹43Ìÿ_*‰i˜*g΂Ùù*/«ZQkùÛë|e¹·‘gn‘7gGÓ‡ÌÌEÓšUócʃÄ_rÛãñ?ÛÁÛ„e'iͶÜìÄ92#5VÍÊê[Z–1žo×vGn¤DÀçëxꡊݔd7gi¶Š¥Z¶âþÃЂhËÞB ¢å!vvj>r’:W«ud‡_ã¢ÛOÐÙÞf{v’×lËÍNœs /R­®[ßÑ‹b]Îѽ£Ý‘)p³VzÒÈeÒQŸïtmOÁ.(j)×{¥ò :—·;ßóõê™\¦þ¶ÑE3lgrÙ¶ÏØ­›É½þ:ý绳^ûµ‘{í|‡õ Ï~J«_45ÛH«Ú—¹ä¶Äx¶ƒ·!;IÍÄHkƒVº1‘™‚wµ;2#ÏŠRuÕ†cÁ{€#0Øxâ­+J“¼€#Rßíóè^¾à«Á>8!f%ªpDÄÚ<ÇèÀš¾± ,À÷,æ³^f¯eÅlôÆ´€cb.gÑ,\¦nS—s^Ÿ²JVÀq©—Ý3,>È 86Óï#{.úŸ-ŽÒKûµÑȤUbï ÜÓH0Ȩ}IEND®B`‚metafor/man/figures/plots-light.pdf0000644000176200001440000005577514661373527017130 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20240821161903) /ModDate (D:20240821161903) /Title (R Graphics Output) /Producer (R 4.4.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 19475 /Filter /FlateDecode >> stream xœí½M“.Çq5¶¿¿b6vaqÔõ]µ|É_[tH$ ‡¤ \¾$u/ ;¿ÞyòdVöSA3ÒÆ‹Yðg¦»¦Ÿ§+»³Nå9™žþö)=ýåé_?üõ¿ÿï¿~úæÇéùº®§û¿?~ó݇ëézùüT®ùÜÆÓŸþøáïŸþõIÈßôã€xúNIë9_Ouêoszî×SÎù9íƒö_¿žçšO÷ñ×ùëßüág~ý‡ßüïòÓÑžþŸÿøÏr‘ß~HO+ÿûˇ¤ó»üãc>Ïî<åçRåoxúµý:]å¹Õ_ø}žÏ¹üÂï[~^é~?~ñïþ>_ù9¯_ø}îÏküÜï/½G÷ñ•ØYµ=×õôù©Tù¶6þôôô‡ý¥Ù­“øõå&ÿ½ìf}~2øxæùu†<Ü„\Ž— !úùC®ù¹·§žŸ¯ôôIàÀåð·Ÿü·m>÷)ðOò©~ýÕ‡¿þm–¹ùÕŸúž`úÂ\ñ¯œ!_úWŸŸþñ‹ßýÝ·ßþÕßüñ_Ê|úâã7?ýøô»ï¿ýøéË~úêo?üÍW˜‰÷™ôs_Û/Ϥ|­çrÅW3Êséõ›90Xp/x@ÉϳÄoüì·?àþGãâ|sM?w§~ù‹•@¨(òMd|³_ȯڗO_ýßàxW0K×ÃÉùõ'·ô\óíäôê3‡DÅýÏÖWŸ)‘$œúsᙿÿóÿòôû¯úó÷Oÿôŧïÿ‡|a_úøO_ú€oxšýg'™DZšO³=_7X‚D‰3À(Ï+ãƒý9U;ÀNñ Þ(óy\Ok<—sˆðá€þœ»NSÂù\'øfØÃˆý}=Ë£ÚÎßPGÿôx0£?×ú¼ª<”×óH 7Ȱ} vÈÄ÷¯X¾Æé_”Ÿå‡¾’"4Éí»ô“Êsr,LJ\Ï«áÇwÜ®ÅÎòCß) “;•ú\w`WLJ¼ ð­nÏ-Ýžõvˆãû! ñ›jU‘™3?Òž{±ïE±<”›bgíC ßIíyÊÚ ZB©8~†¹pƒùÕ)Îx©Û²³üLJȈIgèµ4y,,Ç‡È «Û(ŠëóœþÕÙY~ˆãÛ!Y?m’H:½K×o—øñfÏyÇiˆ}h;Ëq|;$U<²D@ív§åþ~É·¢ã7ŽçÌõïO®ëmß&Å&×o-–~øÿ&ß+.øÏŸ?ÞæB}kPå’àRo7«Î×^¢¦"’»eÈwuéœ:Tªoj_()*C]°½ýª‚d¸ÀÚ”¡Þ~U›aøB9>ÜÁŒ˜Û›‡Ú„>`Õ;¨°¤·uã.ì.à»Òyµò›‡ÚÄA|íú]Õ7OÑMpá ‚Xô»zsîÏ/tS7°â¢FÌгIÃD·À †›ðÓ†ýy…<ØàŸžþ(?š àWÇžÏgÝMÊÓà§ '^ÝŸöÁõüÚ%õý(câ.ÐÚ†?mœtÓîÓ>Þ±Ž!ßXaæ(÷@Æ(®áO%¯%¶ã ó:ªnkýâ°­;v†?îºKÇæw‘0#ñÂü2v^  ?Šn¹ T{¶{›³ãOuóüSoØ¿S91Ú’Ž‘@Óþ´1öñ–}§8Þ±§¨láeúá;M7ü)pÕ­…8Þ0ưڒÌý «² Œ]„òÒˆÜ"RŽò¿‘£ü·ŸþôýÿôÅÿôåÓ×ß}ûô~ù4Á\~ýÃ#CùKCOÝ팱ï{Ûÿ¸Úÿôô›ÿíñéó ƒá}-ëuL÷>t°¯~ý¿¼úä‚×ÌãÉ¿zõÉmé#ô?÷—§&*ÿÉ¿Œý-ù{Ã6—óý|ÿ7ßüù»¯úøí«oF’A°…±šït|÷Ó_Ê´~úâû‡•Û¹?[Põš»”t=^ 1Øywäyùâé·ßÿðñÇŸžþîÓ÷?Ý  vìw¥Ã•P1ñXÜeù_»`{óÇëUØRGüË롽®Fãþ*a~5nW9p€)Ŷ\$ʾþáÛ§¿ùá‡ïxÛwp¯]Ó¿ÿâ³ýâXC÷_«±¿[Ö7¶_rÓÍv} ½<¢hÕ ñÃ!W±Š1;„ø~H’ "ß1üpÈÕðØCˆï‡ðêö·‹ý/N—2¶Á[‰ìígWL¿pnº²…<Öo=¯Q?ùgz¿pr¾vLJšõÖ“‘Xyvýg&±LÀ—埯ž€~KÇ¥¯Á—óoO ;âg¦Åž\~ÈËɵ§¨ò3StOt?ä6ÑÿƒB×Êå$’@ù å£]ùR(J ¦*€¨wëϳ*LÈlËÐâ!…¨Ïy”•…‘„òJ8’AˆlJ†Y&s @ù‹,iVѧ,`Æ÷ˆ*­eP^+HW’AIXCX`­e½D)ÝÒ{§p¦§z1m”l¿ZfZ%Ý–´®bégP²@?Uƒrë®nPrUIªÒ4(Oue” Ø}ä1Q©¥pÉüͨv¬Xå ÌÝ |Kë4(_xe¦PþDÕú\BI%_NÅ`× Ìâ#ËíØ|dùª^ áÒjÌÅ‘dY ädPr¬"ŠATfVðV„ryg7(·»2Êí®ºš ”Û]YÖ¥p ÀÁ‘»…*C(€UT7(o5e”Û-°-ƒr»ÎdP¾¥ª„áÌ€ÙG–?!°rdØu°LPn%J–AÖ¾¦d·{âbq»§V[)ìZÅ:|ä¡U¯ËG–›UbpâòZ N$èuqˆÛ½<'n·< -'¾Ã¦‹VB¹íòÔ h—ÇàÄž«ÀÅ‘óÁ…Û"ÂnP¾%m”Ÿãá¿ ÊŸhÙcpab Ì>²ÜJÕGž °ûÈr»N¹hô±˜Pn7ÞoÉ L]­”›%p4ƒry­X ¢DV>Qµ(·»±Q¡ÜnŒAŽ1ˆ½«…§úÕ Ê`ýÛ Ê´oÍbP $ºÇePpËG–oIV&ÉG–Ÿ7Ý~Ôª,ŒA¬Ç: cP Üʦ/>B¼z†Å ÖŠ1ˆµ~}"FˆÛm o@Üîi1(kW¹YËe0)áÂDÍ¥Ö¨3–¡tL3ˆÛ½,‹.ÇÛ²ˆÛ½ò„r§,Ó™3G–»£µñ¹”çv¿,ÊíÈ,ÊY\—A¹Ý=Y ‚%I€ÅG–[ÙõÖÊÅ d -ñìÆÊíîú*!”Û-1(P¾ánT  Ü,³”Ë“eÆå#£Ú¿X ”wœÀÆ‘;žêÜ¡$”ïP cP œÕ+×ä€r»2 Èg@Æ ÞË púÈ’‰Éšëò‘åI%1ˆ×t¬Í Üî®+EBùþZ ÜÊÞqkåâ{'§(ù@ïƒo@ÃG–ÛÝUÀAˆÛ=<§Þîá1¨:“n\ …@‹A]†÷é18ñTïÓ $ °úȸÝÓcPçª@&Hä2–Ç 2Øœiå£õe ³ƒ ·{\ƒ ·[`ö‘Á‚\ƒ ·R c¹Dd‚!Pr†‘,ÊP c°*_:’%È4 c°ê˜—,·{dRQ€KÉÆ Øœ¬ÜÌePžêg6(ϱQ,‘–L@Æ @¹Ý Ó†A¹;»,7z‹A$-r/ BÉ2%‘ØÈ¬úF8†Aùþ2‘ÒÈPÍb°êÅ ¬Ù ä £Y ”7 Àé#Ë3t5`Á7<ºÅ #ƒUÙa#” ÈD:$—1,Á5.Àâ#ËsL`ó‘q»‡Å $<¸Ý_>!n÷´C`Qmc¹Sd V¥ª¡ÜZåý(kä#ËlËbõÿ  dV1‘Dd "ÑOó²›5 1ȼk^ƒ,‚8}ds&‹ÁªËÙG–Û- ²² È(Œk6(ϱ™-ÁXµ1(Pn÷̃UïŽÀá#O¥õ/ûáÅbJ@˜`T}? ´˜-¾ÿY-Á(qVÁÛ-°ùÈ2³Z’/Pr†Y='žù³y NÓ²0ɯúnÍcpâv ´œ¶3Á$¿ê4˜}ä¡*–ê#KÎ0»%ù’þ]ºa1¸0Wçð\z»‡%ùq»‡Ç ’Æ-rËG–÷㜃K+6§Å`Ógàœ–äcžƒM÷³æ²lº{!I>³PŒA’3>²<å.YÆ\—Å rÔÈlJU d’ß”ýÈ)k}ZÉbr•,™Á®d wV²D­œ>²\ÏÊ–`4Õɬl1(Pje‹Á¦›×+[‚t·2 X‹Å ²ßX}d¹Ý ‡|d¹ÝƒÔ½p;ŸPr†U-›fƒ%®Wµ©rd d)Hò‘åjYVK(·{5‹AI†/­£b "‘Ö2&MåÐ5eƒrwV·lz=™ä3Í8}d¹ÝkX 6]'Bå#C15,%‘Nªßb " Ï€LòâvO‹Aää1(°éþ“|¤è púÈ’3¬e1ˆŒ½2Éoú6YËb°)I²–Å øÈ$š ìô_„Lè…‚A n>¸rB—Å¡à•3‘òCð•,Õœºb EÕ“[,L%`fû‚[QnÏ¢QW‰Â[âaÜŸ/sØrâ6[DNÜ|‡™ó ÎM1,$&…ÅËp£ÐØ¢R·¤ÒU-çÀÒ¢*Î>þ슫ÁÒU-íhú"¶Ð\H%À©Ylj.ÌÌ£±äR°E'·[xª¸xùøãuP-ùN—Sa[{‚™P²ÌíÕwΆa S3éçƒóa\Óè6±¯óaXÒuYŽ(Fj×700C«ž¡˜‰ˆ`lÍ^Ί Öùà´ÖA…ÞŰÎ'ư0šŠ»¿¸+Ä%ª×¨&dÈv}3f»ÒSÀ\tÍDµ‚ë¼¶XLeÝO>þà¶xññ!žKN‘uJW“sd²dÒmu'ɰÞ*м‚1’Ód]ÓY`†o'UŸœ(Ê ×ãLYׇ/pññ±Õ›œ+“eæCr²L0æCr¶ ‹6Œçt™àÚs€UÜPÌøíZ¤<}|ý&§Ìc>$ç̺2ÀŒß®I0W ºÍÔ,UéšG§ä¼YoÜfrâ KÁ®˜Ù ¶ð¦âéãc>$çÎd§óaXÂÒ­¬ÁÙ3Áy(füvê3gÁòŸÏ ´®\||ÓÒ–Þ9œCëóÁI´®ÙOâ51J’Óh‚KWlñ;01€™¼ôA«gÒc>d§Ò°(eIFóñ+á-~'CE±Å0”àÈ›áR[üê*ØâWÙm`®$ºЩ4×ÇŸYqöñ!&½ ¼páÀ¿KË*²Ój}mïeó!;±Öu)lñ» h‰‰o"ßåã/|>'׆:À\U ÍÝ€¿X/Ōߡ»ä);Á6”Vfü«uŠMð芇ÁHv’ kj|>gÙc>d§ÙKU²ólCo0ãwèµö\a }ðgÅÕÇŸMq÷ñu> ËpFæ|pºM°ÎçÛ†”3ÉŒrœìŒ”ºS1ãwèž”ÉÇ×ùà¤ÛÈœκÂù°,Õšy¢8ñ;ôÆ3~¥½ T‡aˆˆŠSoXÿÅËÇÇ|(ÉòÉ7™+µÚN¿!芙ïÎÜ”fü8(Wbü]3ßÕ+»?Xî4}|ä/`59¾ò`ªŸ†‘¿çá@34ÅÌw—¡˜ñ;ÔŠuÆ/ˆ‡¤¸øø˜ÅÉ80]ñôñ‘¿”fË¡d0ãwhÞ Ìø\¨mçJD°–g9%òb²\ë2Œü¥8)'ùKqVtFSÌøC·k‹órà7ðùœ˜ƒóÁ™¹18œšãÑ[üZQ“s¤@€³|¶8=N¤*¶øœNÐÉùà X’¤ØâwjþRœ£mÒùlu–Ž< 0—'C!`æ;CÿPªNÔ Íú-~EÉò¡ W`‹ß¥ùKu²ÜKU<||̇êtÝPˆT¯s)f¾#ùKuÆN0ò—ê”ÝÔÀLµX¾3uõ Ìøú"®>>æÙ+ḃê¼ÝT¥}Œ_P:—bæ;¬§fü‚ã±ÒÀaó¡VËw ã˜Zœ}üIUrõñ …™ïLÊ?ªxS¿70~gf©a·|g*ÌøQThô c>Ônë0GS-’ü¥:*)+æzeª¤>UgòÀ-u-mdüÎÂùà\Þ,œNæm*Š»ü¥:Gú)Uçó¦&ŠÀŒßY5Ÿ­Îè Öùà”ª¦˜ñ+XålNê Öêgõ¦ÖlwùKs^V×ò ÆïÔD˜ñ;žœÚ›ªI͹½©.`ÆïTÒÆP\¯€öZŠ‹|¶9¿'X0œà†ñŠå;SëR¿‚‘¿4çø@eÅÌw&˦š³|S™T\>>æX ±à‚ñ;µ”˜ñ;uâ3ß™Zךs} ×–b‹ß¡ùlk–ïÖjv§û@¸a<çûæ YˆÙÂÔÉòÜæŒßd9jsÊoêÄf¾3u!ˆ²Z‹_}Ð[üN·aùŽàÁ2Üáãë|pâoR3Ò¦å;SË?-~© nÎý F>Ëe;±Îgÿæâ|púo.Î+YFþÒœ$õÌø]šˆ£,˜ëpV&< *Á¿‚+ËŠ¹^;ýÓ€‚‘¿tçMkº‚‘¿tg—Ê´€¿Kyˆ¸¸^Y(ÀŒß¥ W`ÆïÒ0×++Qä|àÒH'&ùlwFpe/^dü‚„ÌŠ¿‚1º“‚`%‡bƯ`ä/ÝiAÔ'ÅÃÇGþÒ\šH¡r3ùø˜Ý©Á¥òÀÌw«RÜÉÁ¥ åÔ\j¬Ì|G0ò—îü `ä³Ý BYñôñ1ºS„d?¿¨Á^Š™ï, l`ÆïÒ…60ãwé‹,õiùTCqññu>8SÆ4)f¾ß깿 P»bƯàL-$óÁ•>Œ_ª™’”dóË$óa8_(ùËp¾´+0ó¥ `ÆïÒØ1~c>˜mḃá|!˜Ù¤xúøÈ_F¶õ ¨Ú®8ûøn Äñ‡æ/#Ûz><ô ²øÕJò-~•æzeé°Å¯aÀÓÇGþ2œ/ßÛ[üNÍg‡ó… €—b®WÀ'Å¿SçÃp¾P0ò—á|áR;>àæã#Î.MTÓp¾¤qÎ.-†¶ø]:†ó…K‰`‹ß¥ùËp¾¼rSœ}|ä³ÃùBÁ:Œ/l×Åù`|!°Î‡É|ùË0¾ùË0¾¸Q*¨ù0òÙa|!°Îã u>,æ;¥›Àãk𜆑¿0Í%Fþ2/VI¼ñ…ÀÈgçÅ|óa_Œù0/^”WޝWåÄÉpfIü,†‘¿0í$F>;/Æ|˜Æc>L–R*žT(.Ñ=+qüB9sa¾Œüe_œÍ]kÆ|˜•ëàFk­œ c>Lã ‘¿ Íóñ‘¿Lã Û¥E‚i_Œ|v6®W€1¦ñ…À˜ÓøBàF9Ìj†U÷f|!0ò—i|!0ò—i|!0òÙi|a#1Ÿ¦ñ…À:Œ/Öù`|!0ò—i|!0ò—i|!0ò—i|!0ò—i|!0òÙi|a»:çƒñ…À:Œ/Öù`|!0ò—i|!0ò—i|!0ò—i|!°š2_Œù°Œ/lØhŠÛeóa]Ìw€‘¿¬ËãW ÓJ¿ZA¬ùN£þ¸ùø˜+yüê•Vf¾Ó.]¸[üêƒØâWêÀ}Fþ²²Ç¯V‚¥U<~'Å‹&¬Æ|XÅãwê|XÅãW« ×0ŒüeU_­'¶øÕ‚BGfÕÒ+‹_%¶ÔþÍÇÇ|Xù0ò—Õ<~—;Ê1~¹q¬ù0ò—e|!0òÙe|!0æÃê\¯7šÖ1~c>,ã ‘¿ð5HŒüe_Ø’–3~¹ñ<‡aÆë|0¾Xçƒñ…ÀÈ_–ñ…ÀÈ_–ñ…ÀÈ_–ñ…-i™!0ã7eÎã u>_ Óe|!0äA—ñ…À½*®>¾p÷ñe"i…?Ç×Ò|_œ²bƯà\3~“Va*žËøBàžh$ì㢸úøêÚ—™ï¯¡˜ñ›taˆjúkV^a¾\ªbÆoÒD˜ñ›”ø^ÕðÀç3¾xfÅÅÇ_Uqãø ó˜ñ›´1_Æ«¿1ß®E1ã75š_܇âéã¥"þäã/Šú¿I¢À­N]1ã7ií0ã7uªó•)QÆÈøÅÆÑ–9ë|Ìw€çR/FÆoÒzÄ|_œ ½—áLïF‹ßÁù0=~çÃâzXçÃòøÕ…€»6*ž]ñðñü/_-L¶ø:’ñ…À˜éòøUSI`‹_-NÌÉøBà‘ÅÍÇ_Mñàøµ¤äñ«åà­Xü.ú*_Œù²Ç¯)[üj•bNÆC’ŠÇïRãËd|aÃÆWU¬ë`̇d|aãFü2¿Yks2¾¸Ō߬_ððñǠߦù€ýL}ßf5füfUj3~³–,ª§j7\p=Æ·K1ã7'Jf»å;Y¿hàáãc>$ã u> Ëw².ôs2¾°qã ˜ñ›•Øf¾“µx¾Œ_M–bƯàA_Œêãë|0¾xuŌ߬Œø2ßÉZ¨2ýl¸˜$¸†§gZ–ïäÂù`|!p§eiòñ1x‰%ÉÙøÂ–µ’Q-M«a™ˆ0'e¾“U©ÌøÅÆ_RÌø…ð¤(æz%kâªæ¦>þ˜t’öñ¥¹^Éú ÌÙøB`xIeã 7 ávÊõ ô'S1ãW0æC6¾ÂÚl|!ðhЧ?ñùŒ/^K1×+YÝj¿Y‰ `Æ/7¹^ÉZÝûdÆoîtÎ6¾xdÅÝÇŸUñôñ1²ñ… “S1×+ؘ¤¹Å¯9æÜ=~µÊQ-Ê“á6ÔX×âWë‹?“âæãë|–ïäÉù0<~'çÃôøÕD˜ùNVâ0çéñ«åŽÀ¿7"çeù6>§âìãë|X¿‹óaY¾“µæØâW‹¡À·øÕªG`æ;Øâ—Bëryü*ÑnîLĘÅøÂVôEÌø-ZèÌ|§hñ#0ã·hõ£Êë“aÌ8ØÅøÂF;÷\Œ/FþR²å;EK Õù—ã›\ßøÂf¥Øz…±ÀŒ_\xS9?㳃ÀÓ0ò—b|!0ò—b|!ð¢g0×+Ek!s1¾8MÅŒ_|ÐK1×+ÜÈfüšÍA1¾ùK1¾ùK1¾ùK1¾°-^æz_ >Ÿñ…À:Œ/Öù`|!0ò—b|!0ò—b|!0ò—b|!0òÙb|a+f‰j|!°Îã u>_ظq¬VÝÝ0ò—b|!0ò—b|!0òÙb|!0æC5¾ó¡^–ï`£y)fü­’ToöiùKM–ï­“füòF3~‹.œ€»ùP/Æ|¨Æ6Úq3ß¡¤T=­“aä/ÕøB`ä/¨Ûo†‘ÏVã 1ªñ…À˜µX¾SôÁ–«ñ…­h½$\M¿E_äÀÌw ý·kõøÕÄØâW«M3ëê‰1jóø:jóøÕzI`æ;Eë%-~µ^ØâWë%áþÂõ &ÒPlñ«‰/°Å¯N,àéã#©ÃãW¤ÀÙÇGþR‡­WŠn4[ü.Îç ±±Žñœ/ÄDìŠ-~µ^ØâWë%§ü¥:_X´^˜ñ‹ø¡˜ë•zq>8_HUm®Îrc^EÝ—aõ²p¾°ê¸ùø*uv¾ú—¬˜ñ‹‰^Õ¼ñ L§ùÿeó¡9_Xµ^RÍÞ‹aä/ÍùBpöñ‘Ï6ç «>ø]zý3X ¹nÇg1žþÇíïiýäíz´~òv½Z?yûÕÊ>>ߪÖOÆ|DàÞç+ úm>3c¾W­ŸŒx¨úâŠx©J$E«Z?ﻪõ“ñ>ÄDK·÷eœþ>ÅÄl·÷m]Ìgü}\ó_×Å|Æßç,܈÷=#òª…J‘/ ãºåÖä[¾Ñ.Ïg¿íò|†ùJ»órºå;íb~ëù?ò¥v1¿õ|ª%æ3žoµÄ|Æó1Z}E¾FaxäsxÍ[¾×Ø)hçƒ-1¿õ|Ѻjì|²%æ·žo¶ìöSÌG[f~ëùjËÌo=Ÿm™ù­ç»,4‰|˜âÈ—[f~ëùtËÌo=ßn…ù­çãÝÌ[¾EúuËç[á|ð|¿·çz æ·¾^h…ù­¯'Za~ëëV™ßúz¤UÎ_¯´êë®gZ}\ï°°%ÖCMë'c½Ô´~2ÖSM¶Äz«iŸ•X5uˆõZSb2ÖsMë'c½×´~2Öƒ,Œ‰õbÓ§XO6-‹õfSˆX6uˆõjÓúÉXÏ6­ŸŒõnÓúÉX7­ŸŒõrS‡¿XO7õ‚ˆõvSb(ÖãMë'c½Þ”õ|ÓÀ‹õ>EùÁ´Áæ.Î@3n|BSOˆàšÖOÑ´~2øŠ¦õ“Ág´Éþ2Îw4ZÃl>¤éÆAð%,ä >¥MÎç[šQÁÇ4}q_Ó´~2øú´ß=θñAmq>8_ÔçƒóIMë'ƒojZ?|TÓúÉૺ&&Ágõ‹|­ó]ì¶|-‚/cáPðiý"?ç|[¿œŸ›>þj7¾…EãÆçõD¾Öù¾žÜ—|`Oäçœ/ìôjÛ|bOäkoì‰|­ó‘=‘¯u¾²gòµÎgöL¾Öùή…Á‡ÒË øÒžÉ×:ŸÚ3ùZç[Q¸4n|,ô8w¾¶òµÎçöB¾ÖùÞ^È×:Ü ùZç‹iˆ|2 ‚oîlc´ùè^È×:_Ý ùZç³{%_ë|w¯äkï•|­óå½’¯u>½WÎçÛY(||¯Îß_ùZçó{#_ë|oäk}? 7òµ¾_=Î}?¡7ÎßoèóÁ÷#ºÖOÆ~E×úÉØÏè®æ¾ßѵ~2öCºN„Ø/éšÈÆ~ íb¿……Y±Óuã3ökºÖOÆ~N×úÉØïç¾=N¿íuµ˜ˆý¤®õ“±ßÔn}?ªkýdìWuÝ8ý¬®/’ØïêZ(ûa]&b¿¬«ÕDì§ÑG"öÛú¤!œïÇu­ŸŒýº®õ“±Ÿ=N¿í÷u}QÆ~`·Æ§¾_ص~2ö».œb¿‘f±ÉB²Ø¯ìê§û™}q>ø~ç¸8|?thýdì—­ŸŒýÔ¡õ“±ß:.Úú~,ô8ý¶_ËB´ØÏçƒï÷M\b?xhaCì}Ä~òHûÍpÁH·ýh®•Û~õH¬?ðýìÁúɽß=X?¹÷Ãë'÷~ù`ýäÞO™õ¾ß>2ë|?žV±_?2ë|?°~rï÷¼;Øq|ÖOîzQ¼þ€ù ãÊ­Þ`¯?`üŽâõ\¯ ÖOîz†ÁúÉ]ï0X?¹ë!ë'w½Ä¨¬?ðzŠQYàõ£²þÀë1èáõƒõ“»žc°~r×{ ÖOîzÑXàõ"(Äk·z’ÑXàõ&ƒõ“»e°~r׫ ÖOîzêE½Ëhœ^3èLºëeFç|ðzšÁúÉ]o3X?¹ëqë'w½Î`ýä®çê)õ>£s>x=Ðèœ^/4taõDƒõ“»Þh°~r×# ÖOîz%:D= ¯[½ÓP㊨‡ê\õRƒõ“»žj°~r×[ ÖOîz¬ÁúÉ]¯5tà¨ç¢IÔ{ "G=Ø`ý䮬ŸÜõdƒõ“»Þl°~r×£¡ððºÕ« µ«z¶±Ø1ÁëÝë'w=Ü`ýä®—›¬ŸÜõt“õ“»Þnêƒ)êñ¦žG½ÞT;‹¨ç£JÔûMÖOîzÀÉúÉ]/H;Ú¨'Daãu«7„'ßêgâ|p¾p²‹é®gœV?é|á´úIç 箟¬>¾ÕO2~gæ|p¾pfÎç ­ƮלV?é|á´úIç 'ë'w=èdýä®e¸¨'ìíºëMga=­ó…“õ“»^u²~r׳NÖOîzWº¿D=,ÛšF½,ô8÷zÚY½ž–ùÎdý¤×ãk=­ó…“õ“^Ï ¬õ´ÎÎÊzZç i!³ë…'â®'Fý¤×·ÉúI¯GÎ%ê•Q?éõÌÀuD½3p»ÕCõÒÀV_}|ÔOz½u›¬Ÿôzl`mìnõÚÀ¨Ÿôznàz«÷n=êÁûŒzñÆî'Fý¤×›·ÉúI¯GN#êÕ󭞸¦¨wÖùà|ádý¤×Ëõô¾]oß&ë'½8Ýêõsz~`ë…ÄõÊdý¤ë€­%Eöñ‘¿¸žxŽÐ¯›¡M]˜n½0æƒë€K½0ò×C#q½D£óÎÖSÏ›ÞxõÐc´Eÿ ×kç+ôÀÈ_\ïŒüÅõ Àm„^¸ßô$ö=[oÒø¢Ýz”¶èáz`Õ9_¸X?éz`Õ™¸Ýô2À½‡žxÌÐÛ¯+ô8m±~Òõ:À¦b¾³²ë¿+?è€u>˜^¨y‹ç ý/\oÔ˜øl=R[…z ç W¡ÈùÂU¨2½p顇®3ôRͬª]OÌô`Àªs¾pÑÿÂõdÀÈ_\o¬ú0ç ž»^­-­ŸÜz6`k;Áø]ô¿p=pÍ¡—n-ôtÀ}„Þ®Ñõhëñ€‘Ϻ^¯ASBϬzAç Ww½ ãwu>;_¸´~rë ‘¿¸ÞxôÐ#ÏzÅÆ…ÄÖ3§zGàÜBÙØp~ë%‘¿¸žù¬ë-1\ ¬óÁùÂEÿ ×s¶¥õ“[ï ŒüÅõ ÀÈ_\/ \{èIÛ ½)ð¸BÚèÙ´õªÀë¦gmËìÈ/\Z?¹õ°ÀÚÌËùÂ¥õ“[O ÜZèmû=.ð¸éu‘¿¸ž·_Z?¹õ¾À©‡8ÏÐ ×+ôÄÀ˜®7î7=r§QÔÖ+«¾ÝøÂ~%êÛMï œJè¡s ½4p¡§®7½5°êÛ/V}»éµ;¦¶ž»“HØzï~eêÛMœsèÅËMO\GèÍÛ =:ðH¡W6}ûòñMßÞ9¾%[œnzyà’BO¬úvã Ußn|!pŸ¡×žWèùW½¿èá~À©‡_°êÛ/V}»ñ…À­„°êÛ/6¿ƒêãßýúÕÜïຠ#q¿`ä/î§\fø-#Ÿu?àžÃ¯xÜü€g¿`ä/îÑ/­ŸÜ~À¹„ŸDg;Æí7¬½b/n7¿ `ó¿X>>ò÷»^=ü0ú¥õ“Û/8_á§\røm×›pëá×Ügøy#q¿N#¯íÒI”n¿`ä³î'œo~#À5… p+áWŒüÅýL€‘¿¸ß 0ò÷Cé—ÖOn¿”N"xû©ç~+Àe† pKá׬=ä’ǯ>8·ß 0òY÷ƒ^7¿˜žØËýd€s ¿`ä/îGŒüÅýj€û~6À#‡ß ð¼ùátm¿œžèá~:ÀæÏÃøM‰~MÆ«_“ñ…Àê×d|ag?¯í÷nÞp¡s¡íí˵›5J¶á­[ÛûØm G4‰D/ƒä1¨í®¼Á n÷å18­u…Å V5zë @ù–¼±`¶€£ï¦€sî–½¨A…7ÔLy·ÛÌm7ã,c·ê”Ïâ<åÙëm>åv{@¹ÝÞ"pÝ@¤WÝ0õö"ü7”™ì­IkßKÛÜmMǵ›žÎ¼[¢Ê|ó†)½jý¢·S”ïЛ­Ê3ß[±tVá{£ÀÖvÀ>v“@4ı0€2+¼ALgW;o˜ún.˜çn=X¯Ý˜°åݶ°GS@6Äé>²Ü;oˆÓ«ÙÞ.§³#ž7Ó餽Õ`»`6=€hˆcM|%r½Åàì»àš»=P¯ÚîÊ›âv;IG¶Ó¢ÿ‘StUkͼi ú9AW«õ?Z>2û1+Û]9;WÙîÊɹªÅ‰Þh ýœš«lwåÌ\e»+'æ*Û]9/WÙîÊi¹ÊvWÎÊU­JôÖQl³7–ê×xÛ)ÀVvS*ÀÞvË*@¶»ª>ò­ÝU¯ÞîŠ FÕjDo•(9ƒ7Ò,s·ÙêÔ y.Àžw‹.À ¼gßí½å=åÍ¿:ûzk0À\vã0@´»r ®²Ý•5lÑ’ ÝÍ–,OHog(9ƒ7;ë•í®œ|«lweÒ:71¼`&k€­ïl€ò~ôm€’3xû6ÀUvs·Þ´êÐ[¿ÊíöÆp€9ÚÆÖ´›ÊÊ“Ù[ÎJÎà éÇÜíêåâ½™]ošðx«»Î&†Þ0÷Ý&°ÌÝD=hkZhè øeêz{>@ soÞ¸¢µ_ošÂyã¿ÎˆÞ=a£Ð[ ²30c°éÂÇÛÎhV¸úneØ›šEx£C@öLd’ß´´Ð›$JÈx EÀ6vƒEÀígÚÍWÙ­{ÓÌÙ;v^€·}”›åM!kÞ-#[4”ì}·›Äí¶f”€+íV•½i1¡7²”Põ6—€òXó&˜[®Þ"°¥Ý@°—Ý^p´Ý|P>¸·æìM‹½q'`Ê»­'`ަŸ€¥ï– €èˆêüYSbËۉʴ÷f£€òˆðV¤€èˆjJ{Ó%˜·1íœÉÞäQ™ä·aQ-5ñðö©€ãÚÍUgÞ­WW4fíMÛ]yÛV@tDuÆŒ±é-_%ܼ!, <š¼], <ƽ™,àˆV³€+íF´½i»+oS ˜Únb (7Ú[ÜÖk7Àly·ÇìÑ<Pî·ÖÄívŽŒíݽ-/`Ê»ioç#Ñ[úvVRxÃ_Àí€{ÚÍ‚GÙ­„gÛ†רmˆ{×Ò@oR ˜óna (߃78î,ñöÇ€r»½92 Üno 8ón¬ (bo»Ü»r)Þ”P¢À[6–´:Ö²Û=¶¶›Aö±[EÎk7’\y·™î]÷d½ 5 ÌÕbDØŸžþøé?:‚Ç¿÷®ÝÖõ^þaÿî÷×ï=®ß{\¿÷¸VøÞãú½Çõ{ëËà{ë÷×ï=®?½÷¸~ïqýÞãú½ÇµŽüÞãú½Çõ{ë÷ןÞ{\¿÷¸~ïqýÞãú½Çõ{ë÷׆ß{\¿÷¸~ïqýÞãÚÇïqýÞãú½Çõ{kÿ½Çõ{ë÷×ï=®“á÷×ï=®ß{\¿÷¸¾ ¿÷¸~ïqýÞãú½Çõ4üÞãú½Çõ{ë÷×Ãð{ë÷×ï=®ß{\wÃï=®ß{\¿÷¸~ïq­ïÛ÷×ï=®ß{\ÿÿ¦ÇõµÙŸ_*·]÷ Õ÷¡ ?㇞üP›Zô¥ú¡c¡r?4ð‡BþÐÏêúC{ÿ Ì?tû/Tý‡æÿp8ü7Ãkàp"¸û./=„ÃápO8¼ç…_†Ãµá…§ÃáøpøAn‡—Äá4ñàCq¸T¼ð°8.ÿ‹ÃãðÎ8œ5|7WŽž‡£Çá÷q¸^!‡“Èá3òàBrx”¼p09üM÷“ÃåpN9|U\WO–Ž-‡ŸËáörxÁN1‡ÌƒËÌáAó¡æð¯9Ümï›ÃçðÍypÕ9A.B‡ÇÐ ¢ÃŸèp/:¼ç£ÃépMzðT:—^ø1nM‡—Óáôtø@.Qw©Ãaê¥ÿÔáNuxWÎV‡ïÕáŠõà™u8j½ðÛ:ܸ¯®ÃÉëðù:\À<±þb‡ûØáMv8—¾f‡ëÙá‰öà˜vø©½p[;¼Ø§¶ÃÇípy;<àâÿ¸îr‡÷ÜáLwøÖ®v‡ç݃#Þá—÷ÂMïðÚ;œøŸ¾ÃÅïðø{p<ü_¸Þ‚‡óàáKx¸ž†‡ãáƒâá–øÂKñpZ<|—ÆÃÃñpx|ð<Ü!_xGÎ’‡ïäáJyxVŽ–~—‡æ ¯ÌÃIóðÙ<\8ÎÃÁóîïy¸¾ô=œC_ÑÃuôð$=K?Ó·Óà õ…Sêá£z¸¬¬‡Cëáßúàîzx¿¾p†=|cWÙÃsöp¤=üjÜl¯ÛN¸‡Oîá¢{x켇?ïƒ{ïáíûÂù÷ð>\ƒOáÃqøð#>ÜŠ¼Œ§ã>ȇKòá¡|8,þˇ;óƒwóáìüÂ÷ùp…><£GéÃoúp£~ðª>œ¬_ø\.؇Göá }økîÛÞ܇s÷ _ïÃõûð?Ã?ñÃmüÁ‹üp*ác~¸œè‡CúáŸ~¸«Þëwgö÷ý¥«ûáù~8Â~ñ‡›üá5ÿàDøÔ¿p±?<îüÃÿpÏ?¼õœ÷_þ®ý‡§ÿáøô8ÛœíÛ œí^¶+8ÛœíÎvg»„³ÂÙná±ÃÙ®áe;‡³ÝÃÙâlq¶“8ÛM<¶£8ÛU¼lgq¶»8Ûaœí2Îvg»Çvg»Ž—í<Îvg;³]ÈÙNäl7òØŽälWò²ÉÙîäl‡r¶K9Û©œíVÎv,íZÎv./Û½œí`Îv1g;™³ÝÌÙŽæ±]ÍÙÎæe»›³ÎÙ.çl§s¶Û9Ûñ<´ë9ÛùüL»Ÿ³ÐÙ.èl't¶:Û=¶+:Û½lwt¶C:Û%í”ÎvKg;¦³]Óc;§³ÝÓËvPg»¨³ÔÙnêlGu¶«zlgu¶»zÙël—u¶Ó:Ûmí¸Îv]í¼Îv_/ÛíÂÎvbg»±³ÙÙ®ì±ÙÙîìe;´³]ÚÙNíl·v¶c;ÛµíÜÛ½íà^¶‹;ÛÉíæÎvtg»º³Ýc»»³ÞËvyg;½³ÝÞÙŽïl×w¶ó{l÷w¶|Ù.ðl'x¶<Ûží Ïv†íÏvˆ/Û%žíÏv‹g;Ƴ]ãÙÎñ¡ÝãÙògÚEží$Ïv“g;ʳ]åÙÎòlwùØól—ù²æÙnólÇy¶ë<Ûyží>ÛžíB_¶=ÛžíHÏv¥g;Ó³Ýéc;Ô³]êËvªg»Õ³ëÙ®õlçz¶{}l{¶‹}ÙNöl7{¶£=ÛÕžílÏv·g;ÜÇv¹g;Ý—ívÏv¼g»Þ³ïÙî÷lüØ.øl'ü²ÝðÙŽølW|¶3>ÛŸíÛ%Ÿí”_¶[>Û1ŸíšÏvÎg»ç³ôc»è³ôËvÓg;ê³]õÙÎúlw}¶Ã>Ûe?¶Ó>Ûm¿lÇ}¶ë>ÛyŸí¾Ïvàg»ð{;ñ³ÝøÏµ#?Û•ŸíÌÏvçg;ô³]úc;õ³ÝúËvìg»ö³ûÙîýl¶‹l'¶›ÙŽþlW¶³?ÛÝ—ÒjàÜBZ œrH«5[ZÝ–Ödmi5ðè!­Æ|pi50æƒK«1\Z lÒëîã«4ÛK%A›”V·¥‰Ë–V7²,[Z ÜGH«[ i5pÍ!­.WH«Ó i5ðÕCZÝVå|ðRÉU9¼TrUΣþ€Ûi5°J©½TrUJ­ýV)¶—J®J©¶—JRs³¥ÕÀ³…´X¥¿^*¹h…åÒjà:CZ \zH«óMZ ¬Òd/•\…Òe/•¤¦hK«‘¿¸´ù‹K«‘¿¸´ø.­6éõðñMš½||•n{©ä¢•™K«Ç i5pï!­n7i5°JË«Ç/¥:.­Viº—J.Zµ¹´ºQãµ¥Õtê–V÷›´¸Vc>¸´óÁ¥ÕÀù i5ð5CZÝ@ýöVÏ›´º‘)ÞÒj`^*9)Åri5pé!­FþâÒjà”BZÝ ¹»I«çi5°Î/•œ”š¹´X烗JNZ º´8÷V§›´ù¬K«5…[Z ŒùàÒjàÞCZ ¬R]/•œ´Zti5p¾I«Ói50æƒK«Û¤TÐ¥ÕšÉ-­î3¤ÕÀ­‡´¸Þ¤ÕÀÈg]Z ŒùàÒjàk†´ºMJ%]Z lRkÆïl”b{©$4£7i5p!­F>ëÒjà\BZ ¬Ò`ã Û¤TÔ¥ÕÖ-­nÜÚÒj`•&{©ä¤TÕ¥ÕÀe†´X¥Ï^*9)…ui5°I§¿Ø¾ºK«¡Ñ7i5w»BZ=)ÕÝÒêI)ï–VOJ}·´zJýTrJǽTrfJ˽TrRj¼¥Õ“Rä-­ž&UöRÉiRf/•œZÒê©!­žJ\‡´zn)µÅï–Z3ß™&ÅöRÉiRm/•œú iõÔºÀVO- iõÔÊÀVOJÉ·´zRj¾¥Õ“Rô-­æ~jH«§a…´zê‹,¤ÕSâ!­ž”Êoiõ¤”~K«¥ö[Z=(ÅßÒê¡U‚!­Z&Òê¡u‚!­´ØÒêA«€-­´ØÒêA«-­J<‡´šÛÚ!­Jä…´zÐê`K«­¶´zÐ*aK«­¶´zhÍ`H«‡ †´zhÕ`H«¹cÒêA«‡-­´‚ØÒêA«ˆ-­ú" iõè”ztJ{]Z=´z0¤ÕƒV[Z=hu±¥ÕƒV[Z=h•±¥Õ£SšìÒêÑ)]viõP¢ ¤Õ|p…´zÐÊcK«­>¶´zÐ dK«G£ÔÖ¥Õ£QŠëÒêÑ(Õuiõ É–VZ•liõ •É–V³&$¤Õ£RJìÒêQ)5viõ¨”"»´zÐjeK«­X¶´zЪeK«­\¶´z—J3~Gq)5ãw—Z7ߤØÃÇ¿îÒêA+š-­´ªÙÒê‘)wi5KsBZ=2¥ä.­™Rs—VZéliõ ÕΖVZñliõ UÏ–VD)¼K«G¢TÞ¥Õ#QJïÒê‘¥ÕC†!­:QCZ=T“Òê¡DaH«™¸„´zh½aH«‡†´z¨URH«‡Z)…´z¨ÕRH«‡†´ºkÕaH«»–†´š‰YH«YüÒê®/ºVwµ’ iu×GH«»†´ºkõaH«»–†´º«ÕUH«»Za…´šum!­îZ‚Òê®5ˆ!­îú` iu×…]H«»N´Vwµú iuW+°Vwµ iu×RÄVw­E iu×bÄVwµ* iuïœ.­îóÁ¥Õ\„´šå…!­îšX…´º+1Òê®E‰!­îóÁ¥Õ½q>¸´º«Õ[H«{£Ù¥Õ½QšêÒêÞ(]uiuo”¶º´º7J_]ZÝ¥±.­î•ÒY—V÷êRk®W¸0 iu¯”溴ºWJw]ZÝ+¥½.­î•Ò_—V÷Ji°K«{¡tØ¥Õ½PZìÒê^(=vi5ž!­fkH«{¡´Ù¥Õ½PúìÒê^(viu/”N»´ºçGiuÏ”^»´ºgJ³]ZÝ3¥Û.­fmnH«».TBZÝ3¥á.­î™Òq—V÷Di¹K«{¢ôÜ¥Õ=q>¸´º'ΗV÷ÄùàÒêž(}wiuO”Æ»´º'Jç]ZÝ/Jë]ZÝ/—Z[ü^œ.­&ÑÒj–H‡´º_”þ»´º_´p¾°k"Òê¦VŸ!­njÒê¦V¡!­nZÊÒꦵŒ!­nZÌÒê¦ÕŒ!­nJ쇴ºéB#¤ÕM?xH«›&n!­&ñÒê¦/ÂV7-j iuS«ÖV7µr iuS«×V7•"…´ºiecH«›–6†´ºi=]H«Y„Òê¦DEH«›>8CZÝÔê6¤ÕM'bH«›V8†´ºi‰cH«›Ö8†´º©oH«›Zõ†´ºiVH«›Ö9†´ºi¡cH«›ó!­nºPi5‰ÎV·ÆùàÒêÖ8œ/lú" iuÓzÇV7-x iuÓŠÇV·ÊùàÒêV9œ/$‘ÒêV¥Õ­ºôºùø*Åu¾°UJu]ZÝ ¥¼Î¶B©¯ó…­P ìÒê¦VÔ!­n…Rbç [¡ÔØ¥Õ­PŠì|a+”*;_Ø2¥Ì.­n™Rgç ©á i5‰õV·L)µó…-Sjí|aË”b»´ºeJµ/l‰Rnç [¢ÔÛ¥Õ-Q î|aK”Š;_Ø¥äÎRHÒê–(=v¾°%J“/l‰Òeç ÛE©»ó…ÔT†´º]”Ê;_Ø.Jé/l×£´º].½>¾I³—å›´ºjidH««n<†´ššÑVs#'¤Õuq>8_Xçƒó…uq>8_XµB2¤ÕUK$CZ]µF2¤ÕU‹$CZ]U-ÒjnT…´šRµVW-” iuÕ…HH««~1!­®šØ…´ºj+‚VWmUÒꪭ BZ]µ^2¤ÕUë%CZ]µ^2¤ÕUë%CZ]µ”4¤ÕU×VS£Òjn†´šŠÁVW}°†´ºj½dH««¶’iuÕV!­®ÚŠ"¤ÕUë%CZ]µ^2¤ÕUë%CZM1dH««¾8BZ]uáÒêZ9œ/¬•óÁ¥Õü`!­®Z/Òêªõ’!­®Z/ÒêZ9œ/¬•óÁùÂZ8œ/¬Å¥Ö&­.”boiu¡T{K«5ñ¼I«•8»I«µUÊMZ­­TnÒj}0Þ¤ÕZ/y“Vk½äMZ­õ’7iµ¶z¹I«U9s“V+1x“Vk½äMZ­…Y¿ ­¶Ÿ˜´úé8àéé°ô¸žîÿþøÍw?óÓ{olvÄ~zR+¶†‘ïçóý'…RL«Ôe@cY¡op4_„þûbÕš<בŽÍ£í'ê·¾ÏÕGì[‘íÛ~o×Ås®û›¿–ãÕŸ6í2å?ߢEÃjc?A®;•90„¿§¶î-~Ï&v®#›GÛOô¼ÏÕrÙ=¶"=Úÿ6ï×Ås®Û> ÷i—v!û|ûûR/• /]‹ªûl3 ‹{êþ[•jûy:*åÔÞÏÓ7¼ª€‡v"èo›wx«×j—O~4³Lóóý'šŸÃ{pMö"©CÄ?FÇÿ½öñséØ<Ú~ÒÙ[ÚÎUÊb­ˆ7Îþ6ï×Ås®›ŸeS”ÊD|¾ÿDm0”2%¥†ŽËÖ›‚H§±QÊþ{ó–´s éØ<Ú~¢ûüû\58Ùc+úÆ®dÖø½]—{¿nû,¥yz(¯³Ï÷Ÿè>·:Ÿ0]ƒô¶¨˜Àxxú¦¿§¯‘ŸkHÇæÑöÊ‹ýÜ‹Òk[Ñ7v%sÄïíºìÜûu{¸“ê.º4ÿ|ÿ‰¾¼´ë»vÈ#B{p G’Ö•COM?×P÷‡Ñþ‰òÝû\Mk÷ØŠx´ýmû½]—{¿n»/K;œ!mÌööŸh>¥ÛúLë0k¨2¤ßÝâkÔ¯lÉ>׎ͣí'º–Ûçj&±ÇVô]Éšñ{».;÷~ÝöYèÊÝç˜ÿD×nº„®œ¥è#ÎÞ$Dú÷hjá¿·Þpv®£ºç˜ÿDy£}®®ZöØyÏ1ÿÛö{».žûpÝþf§ŸÙý¾ìŸh¥:©s»èJú ÔÍÃé÷EƯø=û&ø¹†ºß—ýæ}®Vߗý·í÷v]vîýºí¾t]ãg*j>ߢúV¥b§.ÍÑ“žúhCü¦]èøûAÏ;בŽÍ'“ý„Ž~.{©ûØŠ8öØ4ËŠë²sï×ÍÏ¢²ÕK~¾ý@Wã&bÊ¡¨¢føFU Ô«Vö~^3ÅròCù%Oý<]€ú¨ xhv vßWcçÝ®Õn…ULí[ôùþÝŽÔ*N+x:X»¢’Wüž5˜v®#›GÛO´bŸKO[Ñ7v%+ïßûuñ܇ëÆgùû§ýð×?þþ¿ÿúé7?—ˆ¾L9ÓÓßÊÿþò„ùïØU¹ÀÄDàç§ÎzBÍnªC$Xê0²0èáÚ8¼°4)ߌ:Ëy÷E¼p¿ìøqÀ¯¿²¯é›ÿ|ý¯+_úÓW|ÒÀkÿ£P[Ø'úæ}õùé <æÚ—O_ýåÃß|¥ƒÿâÙSß¼÷³_2^â²TºŸüúsÙÈ$ÎM¯=³³ ;Î̯>sêÖhœYýL”´âÈøÓ³,2¾] Ñ>;¶øa\ê½åð˜ñ²‹?jÿ].%J~øøôOß½êv~†t=~bµ\•"ËEð1~ûoß}÷ñÓÓß}úþ'ÿ@ÿáÿI4vendstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 720 308] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000019840 00000 n 0000019923 00000 n 0000020046 00000 n 0000020079 00000 n 0000000212 00000 n 0000000292 00000 n 0000022774 00000 n 0000023031 00000 n 0000023128 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 23230 %%EOF metafor/man/figures/selmodel-beta.pdf0000644000176200001440000006441314465413172017355 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20230811130738) /ModDate (D:20230811130738) /Title (R Graphics Output) /Producer (R 4.3.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 22841 /Filter /FlateDecode >> stream xœí½K|ÛuÜ9¿Ÿ¢†Ò@Ô~?=‘aº°H ‚EÁ’“’mºÛ_¿ÏZ±ëì%Ræý÷°5à½7X•‘•¹NžÜõ‹¿þê+ýã×ûé?~ý·¯>1Ò×,¿Hé«Uü+ûÿ÷ßóõ}ýÓOþ»¿þñõï~ùSz~–¾Þÿüå¿û?*¿(ýëþô7û•¾þî§üõWÏÿþñ§l¿ðõü4«9µÙ~‘ë×ozþŽü˜l·\oÙQn9ÞrÜVã¶·Õ¼­æmµn«u[­_¬ü’ûå–ã%×óºoÙnù¶Zù²zäeUn«r[•ÛªÞVõ¶j·U»­ÚmÕo«~[ÛjÜVã¶š·Õ¼­Ömµn«çm//ù¼í·/¹Ÿ·ý–í–o«/«G^Vå¶*·U¹­êmUo«v[µÛªÝVý¶ê·Õ¸­Æm5n«y[ÍÛjÝVë¶zÞöú’ÏÛ~Ëñ’9=ï{Ð-èué|Ù™¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFð›Áo¿üVð{ªÑÞú)GÐã­í¶t úòËùö{ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚ß ~3ø­à·‚ßSþÖÛ¾ý.=Þº<õº}ù•|û=úö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üVð[Áï©Çxë§A·®O=‚nA_~5ß~¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFð›Áo¿üVð{ê1ßú©GÐã­ÛS [З_˷ߣo¿üJð+Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üžz¬·~êôxëþÔ#èôå×óí÷èÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üfð[Áo¿§û­Ÿz=Þz<õº}ù|û=úö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üVð[Áoýb§·Þ¿¨AÏ·žé9èôå7óí÷èÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üfð[Áo¿§ù­Ÿz=ßú™Pç {Зß3Å®Aß~%ø•àW‚_ ~5øµàׂ_ ~=øõà7‚ß~#øÍà7ƒß ~+ø=õ(oýÔ#èùÖÏL;݃¾üž¹w úö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üVð[Áï©Ç{~øÌÇkÐó¥Ë3ÿÎA÷ ÷¥óågúö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üVð[Áï©G{ë§AÏ·~æß9èôå÷ÌÇkз_ ~%ø•àWƒ_ ~-øµàׂ_~=øà7‚ß~3øÍà·‚ß ~O=ú[?õz¾õ3ÿÎA÷ /¿g>^ƒ¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFð›Áo¿üVð{ê1Þú©GÐó­Ÿùwº}ù=óñôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚ß ~3ø­à·‚ßSùÖO=‚žoýÌ¿sÐ=èËï™× o¿üJð+Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üžz¬·~êô|ëgþƒîA_~Ï|¼}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#øà7ƒß ~+ø­à÷Ôc¿õS ç[?óïtúò{æã5èÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üfð[Áo¿}íÌšnA¿·yË3ÿ.AKçÛïÑ-èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo];¶å™§ [ÐïýßòÌ¿KЗß3ÿNA· o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿umå–gþ‚nA¿7†Ë3ÿ.A_~Ïü;Ý‚¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üÖµŸ[žùw ºýÞ®Ïü»=./?Ó-èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹õ™§ [ÐïýáúÌ¿KЗß3ÿNA· o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíçÖgþ‚nA¿÷‡ë3ÿ.A_~Ïü;Ý‚¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üÖµŸ[Ÿùw ºýÞ®Ïü»}ù=óït úö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[×~n}æß)èô{¸>óïôå÷Ì¿SÐ-èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹õ™§ [ÐïýáúÌ¿KЗß3ÿNA· o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíçÖgþ‚nA¿÷‡ë3ÿ.A_~Ïü;Ý‚¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üÖµŸ[ŸùwºýÞ®Ï|¼}ù=óïtúö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[×~n}æß9èô{¸>óñôå÷Ì¿sÐ=èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹õ™ç {ÐïýáúÌÇkЗß3ÿÎA÷ o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíçÖgþƒîA¿÷‡Û3¯AÏKçËÏtúö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[×~n{æß9èô{¸=óñôå÷Ì¿sÐ=èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹í™ç {ÐïýáöÌÇkЗß3ÿÎA÷ o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíç¶gþƒîA¿÷‡Û3¯A_~Ïü;݃¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üÖµŸÛžùwºýÞnÏ|¼}ù=óïtúö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[×~n{æß9èô{¸=óñôå÷Ì¿sÐ=èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo]û¹í™ç {ÐïýáöÌÇkЗß3ÿÎA÷ o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿uíç¶gþ]‚~ï·™®ýaÓ-èËï™— o¿üJð+Á¯¿zùýÒõÿ€îCŽÿ€Ž¿ë·_í-?__¿ ?‡Ρû@ùþ9åë¬Eìõ ”¯_°=œ×/P¾aß¿°ã/´ßû^¿ð¿â{ôëßýž÷èw¿þ§Ÿþü/ËWþúÕße7IçЙÃ0¿úíן›=1&Ãó'ÆdøØòĘ`¨sbL†ç†œ“áñ'Ædxî‰1pbL†SÐ'Æd8”{bL†3¢'Æd8"wbL†['Æd8@tbL1eŒÉÈ((cLFBAc‚^Ïc2 Ê“¾QPƘto:1&}£ Œ1é eŒI_((cL°IvbLúDAcÒ' Ê“î+¨'Ƥ”1&½£ Œ1éeŒIï((cL0ù81&½¡ Œ1é eŒI¯((cLzEAcÒ=—àĘô‚‚2Ƥ”1&€ˆOŒIÏ((cLzBAcÒ Ê“î€Í‰1ieŒIÛ((cLÚBAcÒ*ª“¶PRŘ´‰š*ƤMU1&m¢ªŠ1ieUŒ v¯?'ƤuV1&­£²Š1i¥UŒIk¨­bLZCqcÒ*ª«“æ«1Ÿc‚Õω1iVŒI+¨°bLZA‰cÒ2j¬“–QdŘ´„*+Ƥ%”Y1& ý?'Ƥ:íü91&u£ÒŠ1© ¥VŒI]¨µbLêB±cR'ª­ÐŸcR½[üsbLê`½cRëÍ“êÝ„ŸcR;ëÍ“ÚYoÆ˜ÔÆz3Ƥ6Ö›1&µ²ÞŒ1©•õfŒIõݱω1©…õfŒI-¬7cLjf½c‚ռω1©™õfŒIM¬7cLªé>'Ƥ&Ö›1&e³ÞŒ1)^¶Ï‰1)‹õfŒIY¬7cLÊb½cR&ëÍ“2YoƘ”Áz3Ƥ8½÷91&e°ÞŒ1Ýô91&¥³ÞŒ1)õfŒIi¬7cLJc½cR*ëÍ“RYoƘ”Êz3Ƥx·ÒçĘ”Âz3ƤdÖ›1&%³ÞŒ1)™õfŒII¬7cLJb½c‚Õ÷ω1É›õfŒIÞ¬7cLòb½c’ëÍ“¼XoƘäÉz3Æ—ÙçĘäÁz3Æ$Ö›1&Ù§BŸc’;ëÍ“ÜYoƘäÆz3Æ$7Ö›1& ?'Æ$s¼¥“ìtÐçĘäÂz3Æ$sÈ¥“Ì1—bLrf½c’3ëÍ“Ìa—bLrb½c’ë͓đ—bL’wC|NŒIÚ¬7cLÒb½c’8úRŒIš¬7cLÒd½c’8SŒIòդω1IƒõfŒIâL1&‰ƒ0ؤÎz3Æ$5Ö›1&‰ã0ؤÆz3Æ$UÖ›1&‰C1Ř$§µ?'ÆôðçʤÂz3Æ$q8¦“”YoƘ¤Äz3Æ$qD¦“äôÁG1&¶»‹z#ƤnÊcbõÆÄvQoĘ˜F½cb»Ï¨7bL|wÚ_/bL|÷:S»ÇfŒ1ñÝïFí~õFŒ‰ïžãù;ü8>cŒ‰ï¾ãõø5Ö1&¦QoĘøÊ^ï„_e½cb3VÔ1&>ƒÔ õFŒ‰u Þˆ11z#Ƥ‚öÿ(ÆÄ4êI½iÔ1&Ö 1ýùcbõFŒ‰uW Þˆ11z#Ƥ‚–ø(ÆÄº5PoĘ˜F½cb:ùëEŒ‰uƒ Þˆ11z#ÆÄ–‹ž¯Ã¯³Þˆ1a7ÊG1&Þ­R¨4êïvÁóOøi¼†ï–Áë]ð+¬7bLL£Þˆ1©Kã5ĘXwêÓ¨7bL¬ÛõFŒ‰é6©74êëB½cR‘ÎñQŒ‰u#¡Þˆ11z#ÆÄ4êënB½cbõ¶y¶i×fƒßÀRcLL£Þˆ1±î+Ô1&¦QoĘ˜F½cbÝ]¨7bLL£Þˆ1±î0Ô1&ìû(ÆÄ»Ë2µûy7ÇG1&Þ†×ëo”w¯uê z#ÆÄ»ßu7XoĘԩñbLL§Bm~c³Þˆ11z#ÆÄº÷PoĘ˜F½cbõFŒI¯!ÆÄ4êë.D½cbõFŒ‰éܩݯ³Þˆ11z#ÆÄºQoĘx7$^ï„_c½câÝ”xþ?§'>Š1ñnÌNýü¡Þ­‰ç÷ïæœÔÓtf½cbõFŒ‰iÔ76ë&E½cbõFŒ‰u£¢Þˆ11Ý'u‡F½cR±›öQŒ‰iÔ1&¦QoĘX÷,êÓ¨7bL¬wùëEŒ‰iÔ1&µk¼†ëîE½cbõFŒ‰u £Þˆ11z#ÆÄ4êë>F½cbõFŒ‰u3o<ŸÇ˜xws¢žÐ^oƘxwt¡îÐ^oƘxwuwáÇñcLØýQŒ‰wooêíõfŒ‰éŒç÷ë÷z3ÆÄtÅó7øq¼Æ“ŠÝíbLLg<‡ÇkŒ11Ýð|~õfŒ‰uÃJ½¡ ž¯¡ÞŒ1©æ}cb:-j÷óÛîG1&¦+žßcL¬ûê ÝýùcbÚëÍ£ ¼ÞŒ1©ã5ƘàõfŒ‰Ó þüˆ1qš!S›_õ5ðbLœ†Àó{Œ‰ÓÚü*ÇkŒ1qÚbQ»ßd½cbõFŒ‰é\¨Ýo°Þˆ11z#Ƥ¢å£Ó¨7bLL£Þˆ11õFŒ‰iÔ1&¦QoĘÝ‚z#ÆÄtéÔÓta½cbõFŒ‰iÔ1&Fß Þˆ11z#ÆÄhÔ1&¦QoĘ˜F½cR ÇkŒ11]µù•Åz#ÆÄé£DÝ¡QoĘ8½ä¯1&N75ê z#ÆÄé¨IÝ¡QoĘ8]…çŸðãx1&¦Qoƽ…z#ÆÄ4ꣿPoĘ˜F½ñF˜F½cbtÙJÔõFŒ‰iÔ1&F«¡Þˆ1©XFù(ÆÄè7Ô1&¦QoĘ˜NþzcbÛ}¨7bLL£Þˆ11:õFŒIÅeøQŒ‰iÔ1&Fû¡Þˆ11z#ÆÄèAÔ1&N&ê ]ð|~õFŒ iÅbLœfìÔî×XoĘ8 ‰ç÷‰‚Ó’›zBw½ˆ11z#ÆÄhLÔ1&5s¼Æ£9QoĘ˜F½cbõFŒ‰Ñ¢¨7bLL£Þˆ11z#ƤbÙó£Ó¨7bLŒfE½cbõFŒ‰iÔ1&FÇ¢Þˆ11z#Ƥâkã£Ó¨7bLL£Þˆ1±ÍuÔ1&¦QoĘ Œz#ÆÄé`<¿ßœ.ÔÓte½câôq£îÐiP»_a½câtó¢v?Ž×cbõFŒ‰iÔ1&5q¼ÆÓµS?~Fg£Þˆ11z#ÆÄtÞÔÛôb½cbõFŒIÙ¯1ÆÄhrÔ1&¦QoĘŽz#ÆÄt[ÔõFŒ‰Ñî¨7bLL£Þˆ11zõFŒ‰iÔ1&¦QoĘ?'u‡F½cbt?ê§ý3õ„F½câi•ºC£Þˆ1ñ´½ˆ1ñ4‚I=¡QoĘXšÁNÔõFŒImñQŒ‰¥% Þˆ11z#ÆÄÒPoĘ˜F½cbõFŒ‰¥9 Þˆ1)Kã5Ę˜N•Úý:ëÓ¨7bL,mõFŒ‰iÔ1&¦QoĘXzêÓµP»_a½cbõÆf³iÔ1&–®z#ÆÄ4êKë@½cÂôŽbL<Ý£P›ßÔx 1&žÒ©4êOÁóûÆ‹§,j÷›¬7bLì_¨7bLì_¨7bLìa¯wÁo°Þˆ1±§E½cbõFŒ‰iÔ1&ùŘ˜F½ñF˜F½cboêÓ¨7bLìm_þ|ˆ11z#ÆÄ4ê“25^CŒ‰iÔ1&vY Þˆ11z#ÆÄtö׋»ÌPoĘ˜F½cb—-êÓ¨7bLL£Þˆ1±êÓ¨7bLL£ÞX˜³ê“Zñ£û˜¢Þˆ11z#ÆÄ4êûØ£Þˆ11z#ÆÄn#¨7bLL÷E½ Qoܸ춄z#ÆÄ4êÓ¨7bL춇z#ÆÄ4ê»m¢Þˆ11z#Ƥ ×câ·åL½ QoĘøm½RhÔ1&þµ0¨Ýo²Þˆ1á×ÊG1&¦S¢~žö5„z#ÆÄ4ê…rûZ[zA{½cbÚëÍûšôz3ÆÄ´×›1&öµëõfŒ‰i¯7cLL{wcLìkÜëÍÓµS»Çkhtocb:oj÷ãx1&¦½ë†1&¦S¥6¿ÆñcLL—Am~m¡ÞŒ11ÝuƒN›Úý&ê͆êç‰|˜†ç÷ Æuêõ2ÝQoƘø0qQh¯7cLlXéõfŒ‰i¯7cLl˜êõfŒ‰iÔ1&¦QoĘذw,êz#ÆÄ†Ñ¨7bLL£Þˆ11z#ÆÄ†å¨7&¦QoĘÐŘ˜F½cbõFŒ‰MPoĘ˜F½cbõFŒ‰MKPoĘl+~cbÓÔ1&¦QoĘø´ÈŸ1&>mÊÔõFŒ‰O»*uƒF½cÂiÛG1&>­›ÔÚû7cbõFŒ‰MQoĘ˜F½cbÓNÔ1&¦QoĘ”ÊñcLl‹z#ÆÄ4ꛣވ11Ýñ|>‘7z#ÆÄ¦Ù¨7bLJáx1&6mG½cbõFŒ‰iÔ1&¶ °2õ‚F½cbõFŒ‰-3 Þx¡lMþ(ÆÄ–)PoĘ˜F½câˉÚý*ë_&)ÔîWпÁ.³|câË0ƒÚý8^cŒ‰/ãlêz#ÆÄ–}PoĘ˜.•Úüòf½cR2ÇkŒ11z#ÆÄ–¥PoĘ˜F½cbË\¨7bLL£Þˆ11z#ƤdŽ×cbÚû7cbËp¨7bLL£Þˆ11z#ÆÄ–õPoĘ˜F½cbõFŒ‰-z¿cLL£Þˆ1±eGÔ1&¦Û¦Ш7bL|Y3S7hÔ1&\ý(ÆÄ—M;õ€F½câË®‹ºA£Þˆ11z#ÆÄ–qQoĘ|­|cb˨7bLL£Þˆ11íý:\(·efÔ1&¦QoĘزµ÷o0ÆÄ4ê“úø£[G½cbõFŒ‰-«£Þˆ11z#ÆÄ´÷o0ÆÄ–éQoĘ˜F½cRÇkŒ1±mÔ1&¦QoĘØ6êÓ¨7bL|"Q?~¾M‘©tÅóùDÆ·9õØ®QoĘø6É n}ЋzA£Þˆ11z#Æ$cøQŒ‰iÔ1&¶ÍƒzccË4êÓ¨7bLlÛõFŒ‰iÔ1&¶ …z#Æ$#-à£Ó¨7bLl[kâù:ü ëÛ&C½cbõÆÄÀ4êÛvC½c’·Ækˆ11µù­Íz#ÆÄ4êÛD½ÑmõFŒ‰o+&êmZã5Ęø¶d¥v¿Áz#ÆÄ·5;u‡öþ Ƙø¶¨¿^Ęø¶é¦žÐ¨7bLl›õÆF´iÔ1&¶m‹zÏ¿Šþ Ƙ˜F½cbÛÀ¨7bLL£Þˆ1ÉH÷ø(ÆÄ4êÓ¨7bLl›õFŒ‰iÔyÛöF½cbºoêç5z#Æ$£eý£Ó¨7bLL£Þˆ1±mzÔ1&¦QoĘØ6¿÷ë0ÆÄ4êÊ6bL¼ SOhÔ1&ކШ;4êocð׋osXÔõFãˆé”©Ý¯°Þˆ11z#ÆÄÚ0PoĘ˜F½cbõFŒ‰µu Þˆ1ɸŒ?Š1±6Ô1&¦Qo,¬™ÎÚÙœÅz#ÆÄ4êkcA½c’A3~câm/‰Úý4^CŒ‰·ÍøëEŒ‰·Õ4j÷ë¬7bLòÐx 7&oÛYÔõFŒ‰iÔ1&Öäý:Œ11z#ÆÄÚŠPoĘ˜îx¾¿Âz£ÑËÚ–PoĘä¡ñbLL£Þˆ1±6(Ô1&¦QoĘX[ÕÂëõ³iÔ1&¦QoĘX›–×›1&¦½ÞŒ1±¶/¯7cLL{½cbÚëÍk#óz3ÆÄ´×›1&ôñG1&¦½ÞŒ1ñ6¶Dí~¯1ÆÄÛà*õ„Nxþ?Ž×câmv“Úý êÍoÓÛÔ:ãù'ü2êÍÓµR»ÇklÌ4Ýõ31ñüþÁÈã5Ƙ˜n‰zC{½cbm^oƘ˜öz3ÆÄÚ$½ÞŒ11íõfŒIn¯1ÆÄÚ.½ƒ1&¦QoĘX'êÓ¨7bLL£Þˆ1±¶PÔ1&¦QoĘX›)êÓ¨7bL¼-Ï?àWпÁokÅëð+¬7bL¼-¶SohÔ1&ÞV»¨Ÿ?ÔÛnñücb:gêçÆlm»¨7©M£Þˆ1±¶_Ô1&ÛŽŘ˜F½cbmŨ7bLL£Þˆ11z#ÆÄÚ”QoĘ˜.Úý:듌iÝG1&¦QoĘX5êÓ¨7bL¬-õFŒ‰éŽ×;àWYoĘX›7ê“\9^cŒ‰µ£Þˆ11zc¢îmæ‰zŽ/oCÇëõoS¯ÔõFŒ ÛÜ?Š1ñ6øIm~e±Þˆ1ñ6úMÝ¡QoĘX>êbõFŒIF›ÀG1&¦QoĘ˜F½cb˜êÓ¨7bLL£Þˆ11ìõFŒ‰iÔ#Ë0Ř˜F½cb:áù&ü ëÓ¨7bL ³@½cbõFŒ‰iÔ1&¹p¼ÆÓuR?_܆ Þˆ11z#ÆÄ±>Ę8VR¨;4êb)Ř8¶2¨'4ê Pɱ—EÝ¡½ƒ1&¦QoĘVƒz#ÆÄ4êÃrPoĘ˜F½cbõFŒ‰a?sSOhÔ1&¦Qo4zF4*õ†F½cbXêÓ¨7bLL£Þˆ11Ì õFŒ‰iÔ1&†MyÿcLL£Þˆ1ɉã5Ƙ†…z#ÆÄ4êúPoĘ˜F½câX¦v¿Áz#Æ„ÙG1&Ž™uj÷ë¬7bLS›ÔîÇñcLL£Þˆ11z#ÆÄ09Ô1&¦k£v¿Âz#ÆÄ4êÓ¨7/ ãC½cbõFŒ‰iÔ1&ÛŘ˜F½c²9\cŠÉ|¯“½Yld˜ìÅZ#Âdk¨† ? 0Ù“…F~ÉÖ8 ñ%{ mƒé%{°Ê/Ù¤!»dkŒ†è’ÝYb$—îü(¸dk€†Ü’ÝX_Ä–ìÊòbœ¿5:ChÉ.hÖ`fÉ.¬-"Kvai‘X²52C`ÉÎ,,òJvb]ѽ5,CZÉNèÊaXÉÚ,*²J–Æd@Å—†dH*Y‹EPÉZ,(rJ–ÆcÀÁØð“!åÏ”óËV'†åHù€ÆÅ7‘Þ‰ ù­í["„Æ?‘„ÆÇÀ¡ñÁýBã£b»’Ðøàn ¡q\£ïëPâf¥­ABãs„Æ;ÁBãL5¡ñNlŠÐxc×3¡qm‚oo$ 7v<o¼¡oì·"4^7– W®F¯l¦!4^;Ö׆¥Bãµ €ÐxÍh” 4^ôD€Æ‹ y@ã…]ð„Æ Õ„ÆKÞ5¡ñ–3Bã…6¡q~„Æóâ_hç§t«ŒrwÔh~ · ï,AG–­oxõûò òçµÕoS4n‹5 â®°µ -(Bã¶–8‘»_Â=‚иC ‚ÄÍoú4^‡ A@ã¶Ûµù¦¿gÀï‘»_D?à'ÈÐxí[P½Ó ßP q‡ µùõ!ˆÞ¡q[ÛÄhÜöÞиí%(<5‡j§nÍ›þó¦6¿&Èиï¥,jókÜ”"4n{77¿Öøþ?M󄯽)~Q4Á'Aá Më€(WmJ·½¶!H¼ éœP·ïNú^üü•÷&qi÷T š×÷6_иíRÁè¼6·½Ø74î{¹x?¼[Õö~‘·½ã.Hà'ÈëÍðŸðK‚Ì}vzš —9/séõûnR™Ìc!4nMˆ¸ÿ·&ÃHÚ¡qk"¬Ò¶É; hœ½šAãÞ(ˆÜýT@ãÖÔ‡P@ãÞ{ú‚ƽWдÏËú[S :@ãÞ„7©Ý¯éùüê7$î~‚º{/0üü2?߀ƽ)N?7¿ó}hÜšÚ;4^´hMhÜ›Ø&µùõ!ˆÝG¸Þ¤†ß÷1{¹?‚ÆËÔ{¯x£nÐù{/: ê ?.:÷&1h§oJ[ßxƒN/hÜš¾ð~·¦®&í~‚ò; ¨4!ó?nZ/‚¶“eø/‚²›Æçи5Qáûи5Iáû и5EáóhÜtDn~U!€Æ­é ã%@ãÖÔ´‘è…§ýÝÔDhÜ›˜:µûqÑ‹Ðx9¡'€Æ‹ ;«“¨Í¯(иi\?€Æ½ÉH¹ù6÷&¢Eí~ !4^ŠBa[®/@ã¦1>4îM@Òî§ @ã¦q=·¦¾>µ;í݆ÞÄÓ¨Í/³©ŠÐ¸5åàþh¼â!4îM9€œ½ûÁšn0^4^´¨Fh¼Ê!4îM6™Úýôù4nš¿_à§!@ãÞ4#H¼B#dи5Áàý4~šb[LÕÏÍO ¡qozÔîÇ&1î;›¹¨;4!ö¿†;¡qkRÁçи7­àùüŠÞ¿?Aû€Æ]ÅãÖ²¦|^{  fßݰ¦|¾“­ýÏØKü'«û4žOH qg¥Ý›F„ÆÉ[“®7@ãÎ&ãïið«˜áwÖyPoh¼^@ãÖôÏ ñŒëGи5yàþhÜ›>‘›ßRè  qg¿+õ„Æçиýß|>‡ÆMAä¶)»ØEhÜÿŒBm›¼KߨäÅé1¡ñ|Æ#€Æím"Dáw è ¿Âñ ñÓ”AhÜË&¨|CŠ4neÇß hÜ/ü¾¯DØe4‘wè´©Ío.½/ôi² 4n—5ÆM'AâîǦ Bãö±ÔhÜ4!ô ¿Æëиé&ˆÜý’ Û4Æ è¶òÛ„ô„>P¸mò*tÐøi’ 4î·-AâšÐ´CãÞ!HáWÅOøýý ~ù"ïÐUÚ6eûì÷¦é ?@ã6 Æûhü4-?M „ÆOÓ¡qoZ$î~\$g7snSPzß$ôh܆ý€^{Ó ì?†"÷¦…E½¡ þÞ¿ö ‘Oh|ޛΉÚýª ï?Þ ›N/hܦQCPx†Ähܦe[¹mʶü ‰Wh@5€Æ9Íû7Ý u‡Îú¹ùU†X7Ï' qÓuÁ¦;CEsÚú4îM ð«ðãz¡qoj„Ýà§û q›Fó÷ü†~¿Ãoȿï Šðë‚Øüº ó¿ö ‰Wh@a€ÆMãz4ž²HhQ»ŸB›Æýи7àùü­÷&Aâ‘ÎõBãÞ”R©ttí7Ó„ÂÏ'ôиm[ì4nzJ/h|ÿ7]¥4ý*üô}hÜô”^ЄÐü² ì¿,(½ÃOãq@ã¦ñþ7û qßæIÔº §îO€ÆmÛõ4îÛH€À7MßiÓ¸÷¦šJݲ7Ñ`|hÜ›l9;4nz"и~›>8ý0¾4îM9x|ßäû hÜ›tð|~lB$4Îm¸ ñœ”Ýà7äßà§Ï&²¦û ÷m¿L½ ù÷ù%AäîשOøu½?~Ü?"4nº½ qÓø¾4n×  qÓég…–7ïg@ãÞTÔ©4Þ/@㦋 rúa¼hܶY •ø1„ŽÐxÖ~8¡ñœôù4îMJ›š~ohÜ4Ÿ¯ÁÇç6ðGиé!ˆ|Aóõ øŠ"4žOˆ  qo‚êÔôÃ|Ðx>!+€Æ½IjP?7Fnc›ÆxÐxVh+7¦|µ1™Î™Úý8!4îÛ胺AÏðSÓ< ñ| -,´™®€²«üÊ ÏX&ø÷m}ü=N×l1¬`Æ·< 㛫$Æ÷ í½Ê—%/¾·ðîA«‚'š´:p¸Y1딬ø>h¹÷ˆï…"ßaÒÚ #'¬½ëíßË;ñ&T{+¤ö✚ öbŽ9íÅŽ/bÚ‹©³¤´— >@Ú‹Ë{d´Õ½LD{mÕ•Vø8Ð^l= Ÿ½48ž½¶hñF+\Þ€³Ï’ ›½ˆÍÖ¦ÉìÅVv‚Ù‹¹¬ä²×fÉ€e/¦L‘Ê^›¡€²—E`²g[D²Hd/ZÈ^Ad]Š{޽6oª ±—ÂFc/fû’Å^ìÆ'н”|{qM ¶šÆÉa+–žöZ¬>(ì¥@Øk‰©öu¬µx1Á>D:ìµtZ­½gƒ–£µD“OZV`€½^K(»ÿÇ"}@òz1˜àõÒðܵšä‰]/¥N€ºV(?¡ëÅíD2×K@®âI\¯%à¸È |r¥†=À­×í\i…‹°õ"{DÖz1š‘¨õZßä5¬p‰´Ö19ëŘgbÖKãgPÖ`§?‚¬×S=i…‘ ~mñ Ö‹sÖ ÈW«ŽxµN7 ]½¯vÀÕ‹m]d«×Šœi…/Õ‹Aü«×âGÃEŒŽXõIAU½b…‘Õâr™êÅÝ8"Õkñë Dõ° z)o <õÒ\8õZ¢£½={MÞcS/’d©×AͽIÉŽ$©ƒ¹ R¯)ŽÛï k2v õbC)êu iÿ®Y\Ž!C½)M„zMÈ™VkRî·,´Z/|úÐ% §ûH O/fí‘ÖÑD§×ü&©ç[vY%JXˆÁÒÌÅ jú-a5ñ7OZ-2½¦ˆð)+È%+ñÓÏ,®\—~ËY(7ä‹•~KZ,β’„9èL«ƒEà T<(éÅþ'BÒoI«A¹ß²ÉêHË.«FÙoI+ÀÏCV’´ªyË)4z¿$Èç·œo™e%I«õü-‹¬$ç[VYIö[ÒJ|s½å|Ë.+É~ËËjÜVƒVM`s¾e¿å~ËE«#Ÿ;Õ·ô¾ò·ì·Ü/ Àù-i7ËJ²ßr¿e‘•äeUo«z[ÕÛªÝVí¶ê·U¿­úm5d%Ày¾å”•d¿å~Ëu[ù°ó[:Êü–ý–û%Á1¿åÛ ó[ö[^Vå¶*·U½­êmUo«v[µÛªßVý¶ê·Õ¸­Æm5o«y[ÍÛjÝVÞÖñ-}îó–ý–û%‚¾åÛ ´ò[ö[^Vå¶*·U½­êmUo«v[µÛªßVý¶ê·Õ¸­Æm5o«y[ÍÛjÝV>çú–›\ð‘/.˜´ò[¶[¾­H+¿äeUn«r[•ÛªÞVÿ‚VÎÏà̶QË—õl—?L+: ´²Ÿ˜¾D+Û ¤ï-SƒV.Z­\×¥A+—•\Èòöa'heßÎ_¢•z±¯<À6¾5Þ¿D+ûNüü­lû>­ì©ÍýK´²µ1àgßçqœd‰Vö¦‹ô%Zù$£ÉÖ[D¾ieÏv+o ò8àö%Z¹4Ž$A+{{?ÖiåÒ˜ ZÙš{ ñd·bÓ?hek5ò51ÐÊžkë µÓÊ~È=¥YUžÂZÙÚ®|Ê ZÙº´üÝ­lM`8i{Â*c|»&¬Ø›„©;ØD+RËž¾êÏëÀ^) À²SÑY¬ •‚ ¼lIÕ…á •y°¿½ßE瞀VöØR—¾0l}8Û¤=„4‰V.j­lRð²[±™´²·€Ž/ÑÊžÚ¿D+[C©¯\V¶~ÔFéV"ŽVöî×ô%Z¹$®ä`oÊzmýª­l§Vû¸Þ:uý£Í7kôm„—ÝŠû, •7ð?Ã9_“‰Ò"©SA$iekjF÷5hek‚&Më«¿ÖDîtÐʦIû6¯Óø}oÎ:Ò‚´²5}/ý|Ag<…»gH+;=¸Á‘R¤•Móïoðã'´rÖz?ieÓ|¾¿sµÓÊÞ´/šyAóˆmo“ðÈBm~KG‚V6nyÐÊFðp/ð‰t$­lšô·ÓÊNˆFN ‘/Z9ãîð­ì†èd÷ãîie‡:^´²G0êÍ#¥ýƒî‘‹ vèDz@WÑÈæ79ï&­œuäie‡büõVönÿN= Aw€VÎ:R´²iÐO •­»4hå|ŽXD[˜CB/ZÙ»û7uƒZ™PÒG´²Gvêg®nÝû¤gV6MúØo¹'â´rÖ¤•ó9"´²wóûßZÙ»ù;uƒæÖ~¢©Ðf˜uÄieëÞçÜ ~¢ý@+;”¦Ÿ/h>¾ÃO´Ú*ó¡1q{vHNôrƒæß?à§ûheïÞ/Ôæ×AZÙ¡¾Im~}]´²Gâ÷VÎ]ô=heÓøüV¶î|Ðy •MƒN­ì#hß ?Ñèø&3Mº¸ÀO´hå¬/xÒÊÞ­ú·Â¯êï©ðÝ ZÙ4ànðÓû ZÙ»õñ÷vøe=_‡_}=à—¾éåôÐÊYGVv¨µR›_[ßGZ'èö¢•š•~¾bª…öÂ9t[©Çôn|ÐH •ÚmÔ štq‚_çç´²wçoj÷½ ZÙ4€.ðSÚhåܸAOZÙþÅ#­+ü¸7NZÙ»óuƒæÔ ~¢ûA+Ÿî|þáþgƒðãЃ´²wç'êE'›_%MAZ9z´²wç'jó«lä!­œu$ie/ã‹Vöî|ÑÉi}G’VöÈÁIí~J³­ì—•èå}hd÷ë¼ßVöîüJ½ Ï‘ÖîwŽ ®ðã‘“¤•½;¿S»û/H+{w>èá?}ÿVöî|¼¾?Ñð •MÑËî§ïÐÊ~xÑʦñ}ZÙ4¾ÏA+ÛmeJ[„t=t·Óʧ;Ÿ´òéÎ'­ì·±BÝ AcƒVöî|з~#ÈEõ­ì·MÐÄ~‹ÏZÙn»ŒzÑʦˋVöa׋Vöî}ø9­lº‹^žÐ¤mA+çùM/m›™.Z9o:¹æïî}ÑʇF'­œ9_­œuD;iå¬ôÒÊY×+iåÜy½“VÖ„P´rf$¡håÜDƒVÎM~ •ýNZ93ÐL´²Ž¨­œÙq&ZYGVŠVV7¿hå̈}Ñʇ¦'­œá*Z93ØL´rmMZ9Þ_H+ç¢#¦A+ç,´rf$¯hå¬ù$iåœù}KZ9+­€´²ŽÀ­œE·“VÎIG@ƒVÎŒø­œÙÒ#Z9ëˆzÒÊI÷cÒÊIãSÒÊIŸÒʉ½*¢•“ŽL'­œ¶üA+'¥¿VV¤¦håÄîÑʉm¢•D+'Ñw¤•“Ž$$­œøù­œ¸Å(Z9qËB´rš:’ºÈ/‹^¦_ÒÏÝoèlÐʧûŸ´r¤-H+§!º´rbÄ´hås„(iåÄïÑÊ©ëˆjÐʉ‘­¢•“èNÒÊIGÂ’VN]Ï7åz´rꢱA++RT´rb¤µhåÄuFÑÊIG0’VN¢sH+§¦#ª“üHƒVN¤ÕE+:€´rª¢¡A+'щ¤•»HE+'ÉMZ9éˆaÒÊçÈTÒÊIô6ie‘"ZùФ•‰*Z9‰ž'­œDÿVN¼_ˆVN:bš´rÝFZ9q}F´rDZ9eÑÚ •=@Z9‰n&­œ²Žx­œ¸Þ#Z9éxÒʉ÷ÑÊ)‰­œDÏ‘VN:â’´rIZ9‰6"­œ’èß&¿,:™~éE+o.>VÞ›ìXå­ó*o‘I¤mvèTÞ[\ó¤U•„U\´Ê’°óFy/ýUn"Ö€„ò^|PÞ1OÞ¼áOÞ¢óA'o†ýNÞKPZIX‘.´¸0yOqºÎ%oaæÀ’÷9šÚ©ä=uR´CÉ[ +˜ä­sß$‹D ‘¼™N y3„<òž|'#+²’4ò>'`;U»Ù]°Èˆ"oÝkA"ïÁ €È{ðNya¾μ™RC y+Äò¬>äÍ2"È›±Ù$·N­€¼uH*øãÝ…ûL|3½Žô±°ÂÇ›Ïd•-Lôxë8OÇ[·v€Ç»“w¼u£v,ŠÔñÖmÐñî:{ÑŠçl{óáæ„ÄñÖW€ãÝôŠ|ixë ¸±ŽD"m¼¹GØx‹%k¼õåÔxóø1’Æbëp%rÆ» Ó­´õÊx+´ñ> ³3ÆZ4'b,ä„ñ®:UÚצwÕ¡ÕN¯ìÊ‹xñ®z½ƒVãox¶xTzѪ‰$†Uh¼=—(¸â]u–·w8 ˆ U¼9#T¼Å°‚)ÞúÒR¼• ¢XCŠÅG'ÞExoQ*5~Z™Jê&ÞÜß$K,\‚(ñVRHbmM$VÀ59â]øæ#ÞLÁ$E¼Ë÷ÉÔ°Âņx=i…Û&âÍS +I›ü°` âÂ)Hožè@xx–71vƒC Ã›Ç ‘[ApXl¹áÍ…ObÃ;‹²­´/hX‘Þ72¼5&1¼à`˜æG¼ð>gXwZáª-¼³`ÞA+Ü'Á +jЍðfÜ4IáÍÓ Ä '¼yÖ1áEûcŸ“´}þ®s2Ââ2ˆo® “ÞI@k¦îWàƒwN[hEz·Ðêœ +À\iÅóª+­†H`Xüm´ê/.xk`,x+5 Tðf¨#¡`Ad‚q Þ‰5Z“V~'­p£@ÿ³˜âÀ[´7hà­pÀÀû€íÛ<›¨'Q`!$$FX‡É‘ÞÄB‰‹ø ¬VBÀkë fg€Ï¹õ@€—F} €€BþWñߥ!"6R×Ö ØVS¬/¬ˆZáÛäïÚ:½zÒŠ‡?OZõö»6/P¿këäi'# #ó»6@~-âwé”Q¿¨ÔG¼¯òù‰ûx´ïâ(—°ïÒ‹`}×f+>PßµuÜt¥zïú®-¸Ñ D8ߥ£èÀù®Íîzp¾-ç»t.8_4óÄùj‹™œï!MÀùÒœïbº9ßÅp1r¾<ç»–Pip‡ñä|ƒ Èù*œïáPÀùœïbO9ßÅŒcr¾Kç»Á1p¾K§öó]Ì"绖Ψn´È Îwé`p¾Zç{ p¾Zç»t:-8ßµH?ó= 8ßð€ó] µ"绘Ù@Î÷ -à|ÒÎw1ð„œï| Î÷.à|áÎ÷.XG>P‚ó]‹p¾xç»–Ng®´j/ÎW ä|ÿÎwq^FÎ÷ð/à|Ï…!ç{pp¾ëœÊ“þG‚óuÌÊŸ·Áªã‚ó5é ³à|=ºÞéã+²0à|O«;8_ïlO_â|ÉŸ‰óµ¾ôשÄ&q ó„ÏœÀâîi:ǦÁé1ç{ZÊÁùZG¸/‚óõ†q’¼–.œ¹@ Î×ÃÜ¿9_ïwÐ5ÊI­à|½×Û^ zœ ,_â|½³›Øï‚ĹÃVlB‹‡°;Û`Å7:§Iœ¯÷d»ì°b— 8_'ÝyÀŠgÌ£!Ë$þª«‚mp¾ž>¾ÄùztºÿU Vì­çë­Õ¤€TÍùCl ª©Áùzµ÷1ƒóõ¾iq½ úpÀ :‰ëõÔdrIÎ7íëTbï“.Ô ºH/è$®· ¯y½9ß´äÎ71­MœoZ7相Ÿ!Î7MqÅà|“N1#相 $Î7‰ƒ!ç›xv¶8_õA‹óMC§2ƒóMCï'8ß$N†œoâ Áù&:IÎW)èâ|•‚.Î7urFä|“NE$盺8ap¾©‹[-ò+âzé‡÷‹œoÒ©­ä|ÓánÁù¦&Μo‡GÎW©èâ|Scß:9ß$®‹œoj¬?9ßTÅÝ‚óMâøÈù¦JŽ€œ¯RÒÅù&že/Î7UqÉK~ÝÝ…{¿×îzs¼ûmóø>º»“oŸ»;oëÀs·¾eAçªpîÍÝú š«–t’¹[As·¾ŸÁåªCX®b÷Iåž#×åªaLîæWDr·l¹ê_'»uZ7x\eôÇU;;iÜÍ£‰ãn ÀânE—ÅÝ:§$îÖ€ ®šÝÉábÓè# Wùþ¤pÕûNwóD72¸[C ¸[  pwã w7怿ÕaÄo·Î}»+aAÀ·»ò[ìíæÁDo7g$owåû ðøâGÜ­Úè‰ÝîÊû3¨Û]yźչdn·†B@n·Îƒq«&{·[ã$ð¶»ê0]ÇmÕsOÚvWÁ³‰VøìƒµU >QÛ]9bi«# ÚîáZ¥f«}R¶è‚ý²ÝÊÐc»5Tb»Elƒ°ÝE®O•Õ¾O¾“¿ðZv@ºvvÒŠlñ¤QÞE+ÜU@Ön Öêhrµ'†·»èL\¦ì¢#p}^½Ëuð.BB3­ðÁQ«sÔîÂÛ5žB`qÚ]D“VZÁµ°âÉÀV2¥Ýåû\`XÔí´â©ÀV((0ÚÍ3`IÑîÂ#·Ñn2€dhwòës6Ø@‚VŒÚ9ì?»~ì¾çlhг;ë¨[oìÞY쪳³[ëÕa$g7ƒoÎ ÜìÎÂB ­H¥Zô4»¹¶Bföà @f·ÎóÃKE˜=ôxYA\vëì$вf,»óu²¯N• *{ز:d‚ ìfN9Y9ALV)Z¤dùHvóÄ&2²›Ddw‘šh…6z²: ‚|ìá"€Çê¼ Ò±[ð&àØƒI€Ý‰t ÐXfA2öPc±àô»u'–t֩؈²ŠÝIÌê È ±›çm“ˆÝIÇOZ¡É<ìNÂ]­x6¯÷jâ0ìN¼ÌÀÂêØ ¢°;¾ »uì#@Xåž‘ƒ=<0ØMªžì>Pk¡0°›‘YD`uä ØCk€Ý/V8<’ø«à â¯:š’ø+ç|Â_ÏAŃV@ˆ¿2xGø«Ð⯌=þštæð¢Õ…¿&1ÃÀ_u` ñWÀ_øüu èþº—Iüõp À_—Žrþz°à¯këàÚB+`{À_×&|üõP"À_—qþª”;â¯þªCDˆ¿®ÍËøëâì˜øëaH€¿®-úwÒjˆ†…®và¯:q„øëÚä‹€¿Âøë!L€¿.NÉ¿àøëN€¿êxâ¯KG8BüUü ñ×ÅCÚˆ¿ G!þ*…ø«pâ¯k‹Ym´Â'øëÚ‚r;­xPo—•WXáƒüU° ñ×%œø«ÎA!þ*v…ø«ŽE!þªcQˆ¿ e!þ*”…øëbÞ#ñWšBüUd ñW‘-Ä_×7ˆ¿.AæÀ_ºèBüU'¬÷BüumžñüUÜ ñWq/Ä_Ï_!þº¸®BüU ñ×¥Óå¿.ÆãCüu Œþ**†øëZüÆþ**†øëâ‚8ñWA2Ä_É]B™!þº– ÕL+x›e’¶ÈªPÒJ4,¬ðéþ*„†øëâ10Ä_…Ð]Kõ6Yáy»¬ %­Ä»Â Ÿ}à¯kq|üU€ ñW6Ä_Ø`CüU€ ñW æ?Â_ÅÛoCüU¼ ñWñ6Ä_ÅÛ]ÜÁ þ*ü†ø«ðâ¯Âoˆ¿ ¿!þ*ü†ø«ðâ¯Âoˆ¿ ¿!þ*ü†øëÒiËÀ_EãCüU4ñWÑ8Ä_EãCüu-¡³Ž¿ Î!þ*8‡ø«à⯂sˆ¿ Î!þ*8‡ø«à⯂sˆ¿ Î!þ*8‡ø«à⯂sˆ¿ Î!þ*8‡øë[Ò d—Õ «CüUpñWÁ9Ä_çœCüUpñ×o¹dU)Ç÷‘9Ä_çœCüuM1«Ž¿¾åø>P‡øëš:vÖg(K¹DÄ_¹´+üõ%i:´ÊJ4,­ åzË&«LI+ ³VK4l»%¬0‚"þª“ʼn¿¿þú’´ê”´ÂKX²’߇ñBv¿¾äú>ŒGø«xâ¯GfZ·!þ*À†øë‘…Vlˆ¿Š¨!þú’íûlá¯G6Y5JZ†í²’¤U¡\o9d•)Ç[NY‰†…¨â¯G.ZŠ!þz$ðWa0Ä__r}Õ#üõ%Ç÷Q=Â__²}Õ#üõÈ"«J9޲ʪP¶[®·l²Ê”ã-»¬e»%¬ú}Éñ–“V Lˆ¿¾$­ü­#þú’£¿$ð×ùÍ»¶[®—$þ*ðƒøë‘YV’íû¸á¯GYIŽïãv„¿¾d»åzË&«B9Þ²ËJ’V™r½å•äxË)+ñ®í–ë-—¬$ÇxIà¯Sl0ð×—\/Iüõ%Ç[æËŠøëä¹zÄ_,²’oYe%ÙnyY5YMÊñ–]V’í–ë-Çm5n«y[ÍÛjÞVë¶ZD:)7‘Î#Û-×KüõÈ·ÕÁ_l·¼¬ÊmUn«z[ÕÛªÞVí¶j·U¿­úmÕo«q[ m7þzd»åzKá¯Gé¤þz$Nž¶+ü•GÆ =r¼¥ð×#aÕoüµßøë‘ã-…¿I«L¹ÞRøë‘´w*üõÈvËõ–Â_yb®ð×.À5Ý’V‚c×[ =H'îÀ=²ÝH'ψþz$­üÚ8øë‘í–´ºñ×#iVVøë‘Måz˃¿fÊñ–-”í–³:nfõÄ_;åEÒ®Ê=ø+Þƒ¿J’Y]”û%¿ñ×M «)À5ßVS4,¬0T;øë‘´ò×{ðWŒ þz$­üü£Íƒ¿R ÅHõà¯óÆ_1è=ø+ϵþzs«áôÁ_y&®ðW€ñåºÂ_)…¿‚À?øëºñWÀüêðWäü©EÄÀÁ_@pðW¤üußø+‚þŠX„ƒ¿"4áைT8ø+òÎ1·Hg8ÇÜ"»ás‹d‡sÌmz㯠‰X:渭€‰¥cn?±tÌ-¢+–޹E°Å9æ±ç˜ÛüÆ_Ïa´ç˜ÛFI+Þ?xÌí¢ä‰¹à?uÌmy㯊9ÇÜ"@äs‹´‘sÌmÁóê˜[$•œcn‘cr޹­oüU‘(ç˜[„cn§BüUa+Ä_•ÌBüUçUª ñWe¾Õ‰ÈÄ_•CüUá2Ä_—°Là¯\(þÊU5á¯\sþÊC…¿rùNø+×ú„¿r%Pø+× …¿rQQø+C|„¿rARø+W/…¿2HøëÒù²V<›vЊçÚZñLÜI+ ;iÅÃw'­xRï¢õþºt$0ð×¥óƒ¿rýYø+Cš„¿r)[ø+º…¿rU\ø+—Ð…¿r]ø+s¦„¿òÌ0á¯\ØþÊeá¯Ü#þÊ0,á¯ÜnþÊ -á¯Â_wãø«šK‰¿ª1•øëîü,Ý<úŽøëæ9”Ä_wÇÐ…ø«ºv‰¿ªã—ø«º…‰¿î¡'ò1HüUÎÄ_œMüu¾±À_7¹â¯{²¾À_÷Ĩøë¾ñWõ¨ÝóÝÜ{"þª$tâ¯[à¯[£௛tñW Ø>Â_7C‰¿:±©'4ÞK°'Ÿ¬³"ƒzCãK ìa[Áñúˆ‚u6§P´™Ø‚KÖÏXØÔ†m¦ÎóèAÂ:KåÏÖ,i÷ãn?aX?äEÃ:â´¨ÍOgÀ‡õ3{ µùÍŠ â—?ýùïþú?üÅׯ÷“ݵŸŸ¼þù»_ÿÓOÉÿëýOf}Hð?ú›¿ýJ_‡•ÍúÕ¸ ð«¶œuýï¿ùéë/~òÅêïßoþ²ÚcZ=°û­îûÐ|à35´7à[óýÀê3¶ïBó¿ï`=HÒ÷¡õÀ߃ëÉG‚ß„öþů~Ï»kïùŸÿåøÊ_¿úû¯ìÅNçÐzÿL=¿öÛ¯?ù»?ýúÕ?þôïe–þ—^÷c]ÚÌíùÒµrÅCóõÐõymÞó¼º×óþo¿ïyÿÀƒ³*_~®±ŸñÜ…—Èyø×ÏxîšþÕÿëÏŒ^³}ðþ£KeÇçKéUªò3ž·ù2–ª;ºó£¥ÒåÙ|võC—góVõ¼<¿Ÿ÷.ÏïÿÐåùýð¸<ÿЃÿ¨Ëó<ƒöåù]ª¸<¬T¼<¿\~äò¬¾8øC—g-çƒñó/ÏïçýËóûÁ?ty~?ü.Ï?ôà?êòüÁðàŸ}y~—ê.Ï+/Ïï÷¹> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000023206 00000 n 0000023289 00000 n 0000023412 00000 n 0000023445 00000 n 0000000212 00000 n 0000000292 00000 n 0000026140 00000 n 0000026397 00000 n 0000026494 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 26572 %%EOF metafor/man/figures/ex_forest_plot.png0000644000176200001440000024061214661374172017710 0ustar liggesusers‰PNG  IHDRÜ}*¤ pHYsÂÂnÐu>PLTEÿÿÿ ùùù|||ÞÞÞüüüçççüüüïïï***eee:::ÕÕÕjjj333nnn,,,ëëë&&&555XXX þþþÀÀÀ NNN………±±±‰‰‰EEE"""xxx¨¨¨¼¼¼111===ÐÐЙ™™µµµHHHZZZ\\\ÚÚÚ–––JJJŸŸŸRRRòòòÇÇÇééécccôôôUUUaaaOOO$$$uuu{{{...@@@^^^ãããØØØffföööLLLÍÍ͸¸¸‹‹‹“““¤¤¤¢¢¢‘‘‘ËËËÑÑÑqqqSSSâââ«««;;;‚‚‚æææ°°°qqq®®®­­­CCC†††ggg''''''888¦¦¦¿¿¿åååÜÜܧ§§„„„###tttáááÈÈȺººÄÄÄ888ÒÒÒÂÂÂŽŽŽ³³³´´´ôôôååå××ׄ„„nnnÙÙÙäääÏÏÏ<<< ããã000ßßß)))999¯¯¯eeeááá...CCC ¨¨¨ÛÛÛ ¬¬¬,,,ººº```'''ààà%%%RRR‹‹‹yyy###ÉÉÉÝÝÝÆÆÆ\\\}}}bbbÌÌÌ£££666ÅÅÅ‚‚‚kkksssKKK???···€€€œœœ‰‰‰qqqTTTšššFFFÕÕÕÀÀÀ¶¶¶uuu’’’YYYhhhDDDwwwÄÄÄPPPÔÔÔÒÒÒ²²²]]]NNN•••WWWxxx===ŸŸŸ´´´Â¡¡¡[[[‘‘‘ËËËmmmpppÑÑÑggg444†††˜˜˜¥¥¥ŽŽŽ«««¹¹¹ˆˆˆBBBHHH¾¾¾§§§222®®®   XXXÎÎΨ`«ƒtRNS³úò´þÓº¸¸´·ïõÚé½ÙëõØî·öðêßú³ÁûûâÑÅÐåòÕÇôÂìçü¾øËÄäÞÝ»ÌãÊùáö¶À¸ÛµßÜáÎó÷ðÖÔíçýÓܹ¼Úµâ¾ÃÏËÍÈÉο½×à¹üÇèÒ¸ÅÖÆÆæÑÚð÷ïêÈÂÒ¹»ÈÑñÖº¿ÃÀé½ÁÎÅȺ&ò IDATxÚìÝëWÔFÇñy8*—eua< ‚\–‹€XÊVÝU¬ˆŠ—§P´TP´}¬Ðµí‹_ò7?™™\wgW ž8ßÏ 7™ìÌ&AæG’IÖ0À¡”ža‹_Ëœe»ïÏ/ïÚóùäA›kµ÷We§öìÞ•ëù"6IönøU6ßÖ½¾Us€Ú{ÛâƒíMÀ>%DÀ|ð矉ùõ7·ï®{~v×:tA¸´m¹Æ»Òû¬¼×-& Eon>÷æÄüƒÈ‚ðŸ»Â! ÂôK+¨wç9÷¼Å!D£Itæçܹ·¦=×r7² ›êšvæ‹wBh‹ÏØ/]ÕkæÀ©)m}‚¢ðXtË7Õt‡˜¾jOŒµy=vƒÛ-?nq‹^”* aÿwjá§„z{a«á ¬œøä6Vç~u:% ã„7Ã'C;k‡3¿©É'MîÖ´l‚0´ŠƒPì1k·J[Ÿ €(L®ˆžXuæ§D7üÞ>43ƒAVÕûnŠ—( aꊷtIð¶Š…êþ²ý´_”IÎäEPUk– µ¶nØÐï„¢ ‰Ër«bÂÎ"cd,±pW,»'ºçQâŸ$´>Èíh‹ ‚ðªáEh¶Õ@,Üò¢Áy¸Í¢ÿÔ›ç-1 Byõrqù[q 7°,§å±íí;¡0GËÔ' Í¢ã½n‹ˆÎøbpIÂR*‡Ô<”…3Cꛚ¢‚ Tc!‡ÅäÚV±°nOSËÅ!aÖp.A:O¹YˆIÊA£ÍÅå÷½óËöÞ8&Nè–Ø …A¸X¦>AÑ’×îœd;çN^Hä6Õ¬[îQÊT¨š¦¨ ÕM ï:cQ«X×ÎÌ’¼ZvÜ §âb„™ÀQ\Ñ:39çðO· ‚Ь,SŸ €ˆœP7Éþ×T7KüšËûCÿçvÔ#Å}ÿH™ Ìûxê}E­ba³àÁeýª1Ë9ÔŒËí/7›NŽuUaû¨ß A˜-WŸ €ˆÈ§H'júìs²`KÝèЖ:)^¶ÜÔ«+º2Aئʮ»PÜj Æ ‚ð/güÈt¼‚pZŒÿl­ô‹çNþê×ìÝN( §Š¶>Ay":Þm™5ò‘/ïEbm®ýUm,‹² 7+‡ŠãshïA¨i5 ÝTpÜ Ÿ¨éq¹¡~;üõâŒnã”s×YWujsrOAøÚ©¢­O@Tä° ñ”6yEëšè€å±^;¾óoïæ6#}úÌèÚŽ¶¨ljZUù–± F¬æÕêîÖξ4¸3.A(Ïqž¿ëÌÉ˪b§uv©(qX¼Â&§!m}‚¢Òåž”wÅËLj—SÜȺ#os“§å}‡¿k‹Ê¡¦UÕÿ/z#ËŒïº{¿Ï\ûS>ÑZ†ãÇ|\‚0)³š”3?µºƒH§L7ßÊÒz÷® ]ú[ Bm}‚¢Rµëá^šâIÒUsÞÕÔÓ_“…Á'lÏ%K• B]«I'âê £¦)°ð™ªzÍ+¸Ÿ ¬nmÇšS¼Ô(T“Ña`‹CA¨«O@d’*¤Ü/ŒÍ¸™µzÉÌù·÷K UF‰¢²·OèZ½­J&Ä:¸ß¹dµv8í§‡ofš­ŒOÚrÂÿÒ ÿ™Î¾v Ç>ºØâpjê„u+tû“‰ùüéÜXzI”;_¬;ýûÅs¥{tɯVXT6u­¦;šZûsïä;‡š·ÇÍ–Úú*ÿG¯˜ÙΟ #NAhT¶WØkZ1:X,¾0[Ñgn¦º’F™ ô·¸ ‹ë„p@éöÐ]9ÕYËöÃç߸S{V¾ŽÚo_9È'=³¬mí‚U˺ú¶$#6ä…?ß æ»ýÿÍb>›P„ýY5³æ¼á‚eµ¾-ñ[±íUïJÇ6sjU6Ê¿ë;ÅþeÚõÆïêUXVÓ—B#! úîÿé=z¿o{ë}­–§Gæƒc»^qÝ#ˆCZÖÿÙ;×·¦•&€GZûÐV+H¥”Z¹õ‚”r-U*AÏ‘C(^yÅê—<ýØ¿ùdf/Ù¤›ß#m(ݺI›í$Ìogvvsý·‚µWÞ\ÿ2×FuÔvÓSª„}š[:^÷`æ¬zzaèrÖ¡ Ì»IWüå¿vQý¯ ìÕ.²ø,ª}6üûAèj€3ÏÉÁ*Ôéc BuS¿d¥X,ú«!¸¶âXÔ‹3@¨Þÿ½ $í•7×öAD" %ô’ønEø7·L>1ƒð³öÿÅ£ÁcŒõò¶zAx)NŸr£¬ƒß„í²ÏŸ½w[Mþ'*Éœz ÕŨޮÁ¿·l †¸#¤¾EŸ¿ŸÏ×ښfÃ;=rÑ]æÏíP×¶B«‘z©ÀCл?…GœïH$#ÿ/%í•7×å¤AÔ†àžâÙ†lÍZõÔ Z&©€˜¢hÐlP¨ƒ8dm”ÕÑë#É‘¡0ÖGEWµ€Ó€^]8\6˱î@kóáï¡2§\Zío¨½òÖîŸ]¯ñÿj®°£~8úò»íþ¯ > q¬Fê¥ò ä÷ý6Íü욟‚Ð^{‚¹¶WtAí$µ¸`j¯ø OÂüÙ’ø} ã¦9¶Ãá3Í!ôH‡†8¹ø:Cà±GÇ0 Z¹ <]æ Lè ºwáÏ&%Á@Z9;š Œ ™KWºfr³Áh†·iß‹z·îø™IÒË[ùgz¿Ý=0ÛwÎ#¢ysßîn÷ÅsÅðÌs5DûâÚÑNŸ_Ò3®DÆsñþ72fð>DÅ£7}4z×{66‘DÈZ”±óG„8[«M‚…B«‘z©"=8; 5!XYb 9Bh²ðÀN{%æË`® ¡Q³–€°›bœÀû€Õ€9šv];±ˆ€ÌQ‡ðªT Ë,OzÙÍ~ÇÔöDþ ïÎÑ<Þ'ô¢G-<àƒÀ’.ŒyoœQ&æykl2ÖSКÚ2vm¤“ïlFaì&9W XÍFè—–”‚PÁs2|O¹Æ ôŠWM–¢ ?ú {×[š …8V#õREæáhÜB‰%d œì¤#x하/+–Úh ÁP¨½åëê2Pަûׇ³úp®y׎žj"ö¤:˜ãÁP,ÿÐðž=B_}ÞFXhÐò ̱ [µ@æk“Â|ègIÏádª:ªp7›_½*Dho­‰»$»@ç'1–:àdz¢ÝQÓ_€}ôy½újü›•(Cç6½½K*ÎmW„ÁÇB!ŽÕH½T„wàèÀB‰%¤ Ì$I¡V하/ Jl´„`E¯a­ƒ›¿ÇØC¼.@:0L2uä gÙ%%‘QK»dØç4î@ž‘LuÒ„7‚˜Ù &y¦­l>Ç“2ódÉlž"^tWº6°™ÒþëÓƒ±¯£?N΃fÇ]t¨Àó‰XñÃ÷^N×3Å@ÊôLizÍŸufz&ýšAØ4÷°‡ƒ“<%áÍ%ò‹¼¢ ?²  ñ'qº¦NdæÛU!ÁÇH!ŽÕH½T„!WæóvŽGÝšd–€0‹®[:d¯½óe0ׄ2-!´v–ÃN @-*<¼n ¿ÞÕà;ŸY!ó]—´³òtüû*oÍÙ …4}¿ÓeJAX’,£æ`ó6Çü¼iLJц¾{pSqâ”°äBr¤¿‰¸È8ˆˆ—uKU;ç–uW; öì+\ü‚}D¼k¡âæÿ)0ÆÆ¡Ó g­A)AŠ˜·›ÙЪûhOÓ6œüÓB”¡ó5ÂÂ=n(™ >F q¬Fê¥ò 4”W.„2KH@ˆ†.è²×žÌ|É–OÈl´„0ûçÆ¾àÎ\£‚B£¸è0]`Aµ÷øÅ1¹ V­Æ}!¬Q›'plÏÚá÷ã yè=1ž×=®Æ’4• ‡`€Š¿ážªOÒÙ!©BÀSÕ³"ij'hZo›°âsKŸ3}BBÍë #’·–ù¾±s|VePàQɘDL'—¤ T¾Å­sàþ Up g-Dµ•[®z$C£êA¶* ¤‚‘B«‘z©&{¢‹ŠM2K ܇Íí±ÝžÄ|I@(µÑÓÊKÝ”[cè$ú W ]KN¥Çv|jVë?X-Ìs]q>s·VÐóBì€0Ëšêõ“Ùjùyê¬KÜ.!Ðù«ïO0Ï,èä[3f‘2qåÜü.ù®BArŠÞ5Ÿ>)!éÝ ¸ÃàÆ} ÆÌå¢ÄÎ]â*î­¦ds'™U„¥‚óZ®Ö¼B«‘z©<ã³dyX_&Í}4‰%äy’=/­Ú“˜/ ¥6ZBËái‡¼™¸±8ÑdXÔᚢ4Nõä:ûLûƒ [Öœ„Ù<2ƒðši>îGŠ¡ˆ¨W¼_ßKfueq‡ïMXd ªî–*ø-IÆ!åaN÷æ@r— ùâÞÛ»¦Ÿ“‹j3{‹G„<Åì>xŹV1bÑVYÁML½§j^!ŽÕH½T„Ú}¡yÌýe¡Ìê ܰ۞Ä|I@(µÑ2*¡Û˜xèÿ:~§±Oá“f¦i¨óôȲQÿ1åÝ»œ Â3‡8)¦-@¸!ŒRÔUó‰XaI=÷X\EKèÛ‘ÓàrV5¯Ÿø@’‚;ƒ§ùºÎAš!#Hžñ¶@8júÉßå¢ÄÎ×Ƀ7RyrÁáa*ı©—ª€× +fJ,!aånØjOb¾$ ”Úh)5^=ë^éPBa–š¯—ž™ÃvªZ\F³¸ÙcÞ ,£¾°Ykž9ýÖy LÍ Í2Ò5{ ÒÝIêvO–¼=B}‹ßp×y*’¦½7¿"é+ÜÝÝíï^²rtÇ„ ‚äÛv@ØSJ8™(±óµÂ1}—ˆÊ‚ vQ!ŽÕH½T „Y\Îë0ƒ°Ô>é~xìµ'3_Jm´Iù&¬eôz¼ºG5ySƒŠò©iŒ­íæ å÷……nè9é4ž+ÝÍÝíMýFµ0î”a·y"¶²„-ÒŸ,Ý`1õïu½cú$¢”ÍᘥÉ5jáEaOœˆâ#75TF”ØùZá¦!ô\A2ÁNá!*ı©—*®y¿¼XB³%l!¶ “á§íµ'3_;¥ ”Úh ³±g?>¢ÄL˜ôKøÇÝ4só0Þ~Ñ<ÁGäõ—Ї5ôy[øÝŠòz®Y‡0@£{ZðM}Œ7*¾Å/•c ìÖ³(% Üßr—l©ßÌÖ8ˆ,ññí­Ñõ¾]šGÔ§Ç`{;:,<¼ŒµÕr Ä ~¼oßrv@¸Í[SnöôßKXˆª1’Mþ:*B“àc¡Çj¤^ªB£–4ÚIÑ$µ„-Ô‹“¶Ú“™/Á\3Jm´„+ìR/ìe·ñ Ç29'fÙœ! ´ßiç×ÈL•!#ºsÃ6ÉdüÓ0O"uG!Ü¡l™)þŽóÄQw1–G•­¼„Äվܫ(ÍßçÍ,‰³i\ÌT £˜ð¤U\G¸á5Ð ³Šž™rs„ ¾=kI»]k ªb<8¾ÌîxÚBTm€0qW+ùÔ×;q£çqè ´|,âXÔKÕ@¸H‚™1MRKÈö}Täë£ÖžÌ| æÚ¸¡›ÉFK@ø|ø2¥dùV£ØSUs³ÓæuÚ£^^G‰³n^ NÜJ5~úÏäp§â6™šQ3xð®ÏF‡§p™¼zË „ä•‘í¯ûܪ-’yâ¥fÜ×·P‰ª Ë»ìØ~9U#õR5*½Eþ&v†&™%äoŸ˜6ÆÓË´'3_‚¹æ ”Ùh I eaíiœ¼ìcoÁõñFáºMúªŠn²6Ck¦`ÚYtÉôèƒï fp4a©&.jþ¯ŸïµÎ@ØJ9Ó,¡òp@ø­Äé6°äož€äÝ4¼«›NÔu™÷˜å ê»fB²ÂË -úZ„fŸX‰ªAöykL°cûåTÔKõ@ˆ[—‘$ †&™%ä ܃zÓk£=™ù̵>#)±Ñ2Nê_ ?#§¼Âöàá/&‡}Ú$ɉñ—¾"Ñ{ÁнmÅi ¼S2ÛÀòbtMHçK „Ä_ÄÔ&)•ŽW<õ”:y–eOè¹®þËÞÝÆHQßq¿âÅÖ‡¦ÖŠQM¥­m-b–ªÑ–ÓjÒÆZML›˜¦MjÚØ´MÚWÍþ¹¸ÛC“C¡' (ˆñ(ˆPû ‚ÏH5>`¥}Ñvönon1ìÝîÍçóævïvgæ~ó›ùÎÌÎìäÎV~eÞ¸o)˜¾©™ù;óâÌ'»%ƒpü”ô]•¦ŸPU6˜§ç—Õè ™'¶×ítÕkEÁ ¼²ÿÀ失yÑTbM˜»1ï·Æ«4¼«¯¼ÕuÞ©9ÅëèRAØt˸ô«Æd33·®» àë¶f¦¿p­éÚiÑæÝwoL–ºQýÔS³ÿåé™ –ê(¯|þÏÀY¤ý_>ö'W;áÖÓ~Ý” ÂñçŸ1áÂÓ¯þM¹ Œvǧ¹°ùçg}1sŒ¸0KÎÌ;y÷º›¿3©¹yÚS~Ÿùë£ ŽôE.?üÆ©×\sæÕ_ߨöËå‚°©é—\Ú^}5wÙàøoõçò¤ÏÓ¨Ö×’¥oL5àûö×±±ÓÏ;/wÐu¿ýæ”ëO¦Q7°hë¡ùWeþví'í{\â½GØè£¿«pltj‰[O0\i4iâĉ ïhòô˜aê‚Î Æ—þÓWB8E3ŒT>§pœŸ¹÷FœjºÞ寒9'„¤Oáh÷¹r§ËLL•‚†Á§ ÷ Ð@!‚СQ€*œ&(‚C£ñõ£0Aˆ¯›’3€›|¹@œÜ0Y ˆ¯[&)ñå:Bbí3á\E ¾ÆOù¶"@œœ|­_c§ýBˆ/×  ®.;ó³Š@Œ¤'']|³"_nÃ@¬¹Ž€X»)9Cˆ±É—«û$À¨uÃÔ`ô9îA˜­ÚZ+Âè#ªµ1t(‚ „@|­KA B ¾ZmUA(„‚A(„‚ˆ“9÷ª „@ŒspÁ|E„‚ˆ/× BAB¡ âjÙíw(‚ „@ŒÍSA(„‚A(„‚ˆ“®5;A B ¾Ü†I B Ö\G(!k/$w+‚ „@Œí?ª‚P !‚P -Û’!|XOÿ}ë#á¶¼§û_š»nÝÂ}ë¿lKw¸;÷ìè=«;Úwï<Ø¥{*jæXµspdûªèy [øÐê%ÉÃwüg–~­•W÷¾ÿ©í­…ëzö¾v KvÉž¾#¤úú1/\Z?Ñw`C{ÇÂwÖÏõO\hù ì&£ecÍÿh‚r5½ó¥B…ö—[ ^5¯3äuÁž–ô˯·RHT(TíçXÕspDûªÄóZjÎßÒ Žè×eFËáQ÷?½±d EZöµV½d—ìé¼ r˜X¶-Ý¥ÉÇZqá*ßú[IÿjÝõ„kCwÖÏü³%¯¦ó>ŒŠÔ³iöÎh·õž‚—½òº õdñ¢··E¯šûg«…ò…ªý«~Žd_•x^«Qu¥ÖCï.z{M´J.mà~=RÇ;]%®#ìkðóH—GͱzÑ£©Øx«Ú%»tOG ¸©·÷ýj†Y¸è¾uìÎ=ûR/Ÿ}l WùÖo›Eà3{E?ZúR‡Fz{{×CîþÉîðø½u2û[_Nm+gkú`T®ÞÔᣣQážË{ݳɼ.Xß’÷%Ò¯Ú$ûå 5 s¬ê98¢}Uô¼v£ÚBwÿJ`ÖÝ!<´¬aûuV²Ž¿¼¥ø›eV† ½ÜÞ¿9Z1§n.µ½=„g«Z²ËõtG+«æ ¼ÂãýoL½|å1,\Z?±3„ù©Ôëz1úU:uVÕCî aùK!¬“CéßQÎÔôþ!ìxøúº°ûÎÜN{OèÈuAovgã®h'\øå),TíçXÕspDûªèyíFÕ­|^xxçÚ>hØ~m Éú¸ÖE[‹6ð{zÁ½-ó©^âéÒçp-Ùe{:„C spçná‡;Bx±ú…+Q¡õaíœÝÅÕÙ¿ÖC.ëÝ]GB謋­ ç£Y»¤3WÓ¨l›3§D[Û³¯üoh¾-×kBx?ýp]³Ä_¢L¡j>ǪŸƒ#ÙWESYÃ^-ùy[ÈÏ4l¿Öu–:ÒÕØA¸8ÚAxÔu{H¾0ä’]¡§³AXq˜E8†ôÃ×Bx·êŽÏÛ)/ným!<œùժ΃õ„÷¥&°ë¡ve~³*,N,ßþÐÎþVÞ³jIûæÞìÊΟU‰®§;·o^³<óŽy}Û6·wl8w \5o+91añ®Ù¹šîÉ;r´=„C™Ç}!]}4›hÿ›Ÿþ]úðÎ?Þ;(}òiUo+YÓOu%òjº)„ì!hfdŽúoù{èœwWÁ¡ÑžY™}øâ/kp¡j°Þ/œcÕÎÁáÂ!¦²v£Š¶˜ÿ”=%ûƒ4l¿ Âáôï^É‹šCC.Ùz:„•‡Yi¡ØQá£ì ï+nýå!¼S—A¸±%쎶Hw…Ð}vªV­í?áµ+ÑõJôsþ¾ÛÖE;¿O¦mîŠìÜûQ´?œÞ¦x"„Ç÷>¿ã@”ž=ýÕ½­„‡{S«‡2«ÑÜÇ)ó:C÷?y]Шçý-sž\Âá¿Ê¿ì®úàBwƒçX•sp˜ 9•µU»£­ø†í×úÂ9÷Ž® |/„2ÿUüÉUñ’]¡ñ2AXy˜Ð×Ú7~¬ŽÜú[Cx3ѶgÅ’Žͪ§ œ>1vþÿÙ;·Ø(®3Ž·aI¹q (ÁJE R(M)¥iÓDI(‰J[©u+Uj«5}h%ç¡iû0ß®*l‰/ Ž7ر¹ÙØøµ 0Å16–C0ÆØ„kÄ-€…CHÒ3÷ÙÙÙÙY›Ýaþ¿Û³3gÏùÎùÍ™™sF¾—)åŠ6Ü®Ýyƒã.å}.ž°A_}©d4¢Ï„BéecÉ ù<­ø?mk’ ´ug•'¥L»u7i[Y!ex‚ ‹‚Ó9rs ÙÆN) *1[AÌL ¹LôWÉ'âk]¯Žaf°àþá*õ3Ž;«»×£e[Š0Fšæ ½vr-QÎéaE|Dèo"º~.(Õxó]çˆ0¿‘è¨ÜGh¹j–æ6]®Qïlf–É·5˜Ñ:%•ïHÙg’¿¡  ¶³U¦l$Ì”f³ˆ¿ï穇3DÁÐyÞfUü§`VPÉVŒi zS„«µÛ.ŒW&ÂŽ{N„#Khò [Ü-Âõ62Ç] j²Ù²-Ehf”Ä»\Íû‡wêú=DwxÊ)Ü÷Ó@ÎLjp§rÔÏä5¨æªK=ƒÏUö¼FÒ]Nf´Zö¥w›´¡t¨Îþa¶Ê4TO´OD´ˆ­Eø–jjô¢ ·¨„Ní=ٖdž›XªCƬ ’®³ô¦3¯°àÌto¼Ö’ËÈssãÝ®/8®è˜Í–m)BË4£%pJZæRh"ÔBŸÿ1‡ Ï«UÕ;fáqõ†]zýx³ú;ûôª²çz%£ hE$å#"Êq†7·)l!ùЦ–«°kœÒ2­ÑŒV:Ð%Ì>,Ëï°8Êt@|(g“áF€p¡»M›ûÁqÅXcM ¹ˆ‚J±bÔǪ<&ÂÝvê®=/ëÎx…“I¿zÝPœüþ‘Í–m)B‹4Í©K_ K„†Ð¿ªËB¹šõT‹wk]‘»)-W=º§Œêxé‰?+£µó¢ã=̺.2uõ_iÛuócÊÙvœ#Bc zO„‡Xñ7è†}îŒWG‹0´åÀý%B@»°]÷ËHDh‘¦Y­«ùneó`¬$Jc2†>sñjå÷£ê¢‹°<¨Þ³¨d#ÕÞ°\]Õ-ÉsBž€i´†‚eùÖ›âbÂö³U¦½ÍezcfP»Í*¢] ¿Cô™²u'îIé=B«ôˆ[ØÙt‹þSwÆ«£ÝŽ| “ÛÝ.$:#K¾^맦~‹z —£„~ÝrÏó%…­Zè;áż©¤…Ö#Ú äî9®Óöº·^9§ñh@rD˜ˆNÛã"ÜQR Œ˜ìÀyB2D˜NÛÛ"ô7ò·¤€³ÍÝ/]rÓi{|D¸÷.b0r"W–z6TU]sf§=TUUuÞã÷àU´…`!BŠõ¥”ñ¡ôH)D"„ˆ€ ^2±DD¼ìÁ` "„Þó!Bˆˆ"x•Ò·rQ!Dð0ù(ˆ"B„ BˆD¼DhËD¼ ^ÃB„Oƒy„!Dð4}|' "„¦eB„ B+¾¸ˆ¯€ ~>eÀ»<˜‹Bà]~MSQ¼Ëc4 …À»¤-x …€—û*Ê€w™ôìë(Þó@„€Wùþäñ(f Š/1晕(Þ¯aài0 ŸÎÊÛ˜ã¿ê[¼èQ>žµòñÅ˦Í|âé*["úV"3”ö2Öý9ÿµ sæd,̸ÛÂ)ôh콒Ƽ?MX65cAâ20cúäeS2–þJ·éÁ¥SçÌüúϬ7%•ù?~`šoîø§'%¡j ß5ÚÐÈFE 0|~Ë¿pÿýSV­Æ$¢£î>^ ¼'b¦iò™­V³u[uŠÏKÍâAˆÐ”±Rå‘o…é…Ùjž}ßž”þt"üákò×/›˜îïo’VçQ÷J _–30ç ª¦W”j§þ‡ß&m ,·Ú”Ô`š®D˳¿LtÕD|—…ÂŒìôcÉ}÷/Y´“ˆ¶Ø]'B«–ù™½V³u[vŠ!ÿ°Ž7¿#šöÜ#¬‡eâÁ„¢›2aòáçCc“!ÂǼɾwæ“Ìö=¶ÛDÒê<ú^É:£|˜)pѸXÎKȰ51ßìqËß.•·ý‘ý·?Y𣛒É(¡#x|ÁÊgXƒõÍHlÕD~×󺶌(#Í„…¬éÏöÃïsO®°h¹^Ä7¨šØ À=@ºÉŸEïá}]#¨Ë¢EÈÕÄÊRtZÕR# e ô³‘–ÉŒŒ¡ŒÉ§f%¾Ö­0(–Ћf¢øïË]™¿€ÕZP/Ï+ÌT¼… Ë&>˜dK=(Ø2go€¾ÊûÜ“+¼± ¶™ Y¹¼sùü£?šŒ‡c€7t¤ ¯<’¤‹!Wúç »FP—I-Ô»)ËßíË ÅÂÍ;W %V#Ò2™‘q ”1¹óÔ¬Ä׺ņ™Å }aÿi„®×µ[µ¹ûX×Ú·Î3ú‡•×Z7mF3À=ÊÈ—é"éÃÉ\g¬wǼ ÷Ïû•]¹É^èu¨Ôª¾%S¹É»oÝ"lÑÅ”€®ÌËéYæ‡ÐʯÙ–]­m묌b±ÆëSúä£]϶‰DuR²íãßÿi! ZYæ0À{Nüû&ïs/®°(‘ z÷Sd7ͬã Âõ<´±79AœUAR¨„tè®%Hn ²kuYÕ(f™+µ+K/„ÕùÔÕÂA™Õ´Ljd eL‚<%+ñµn•A±40žc›Hw9ÞÁÓ¼p ®IšÙúÍ?71“˜§§¦æxÊ4Â/YYî ,eDÐëýÛueö¡Aׄ­ÄŸcY;þçŒÊ_]Ew(í½õj›[Tfú"š[–4éãX$#fŸ{p…Fï Äõ–#Ú‹_-£QtAR¸45Ä»ö=Ys®kÜu1º—áóÈe)áÅ€ðÊ#”Z[ˤì eL‚<%+ñ³n¥A±$°oÄœO (jÛ¥bþÔoìÔ­Ò²Çx›àÑúó€Ô\ü¨¡g¿WµàB×¢‡ƒ]·)ÆAOέì‡QؼƒÂ– bEåÞpÅàëæA?„~ÂÏ/Aoœk)ðpÜÝ6—¨Ú~WÚ<€õq†ÆGIh{¨‰ûÜä –žjÕѳ®ÎÅh"àºÒ9È=Ç«–ië×IqRѨ¹§au ­‹Ñ¨-@t*K/„WîfU«¡Z&eg@(cä)Y‰œjƒb)á‚*ÃqBne„Š g_¶?að;a…÷B„ôgÆÈ;„ç_øa Ó(t¬‰Í]ǘ„¹?/£hÌ-7rHÝÉý >¸V¿:Ý.B€eüVÿ‡y wO©/în›[TO²aœí !3³@ÂÓßv4KŸ‹¹Â£û¯Ç3ô´Ñ›àêyœŽ£<·Éº&Î3HÇ ’ŠEåAo©kX]lî.ùSó§SYÊ@x1 l]ºZ@¨h5Lˤì eL‚<%+ñ‘SmP¬,­s„ëáP¬wB³—FbfÈôÎè|˜õBŠ|bq{O˜}äÛ6jPù}Èÿ¯¡jŸWhñˆdf †ÁUì?èaÆø¯vT“>ÄdŠÛæU ß±:HA` ûmݘ£0û\È"õ¢7­C.yxœG8Ü¥.Ƭwê6÷øúXÆC”,N*ÄèÙ¥º†×ÅT–óÑ„ÊR@øàÚÿOv ¼@A3å]£ž†$Ó2);B“ OÉJär*Š•¥u³Lµ#º=¡ÛP˜k$eÇ\ö¸–óÂU¾]®f:K¡¿ÑqVR d;^Pù§É~Tuz]qº¢S¡›£ 'Òrï §¢-‚¶¹DUÂ*¤~+d"µÏ0|‚ð“ [Ÿ‹¸Â¤}ä@/önþ@o3¶T=-äîš#£©ܳдWÈU'‡jšÇZNטuÑßmÖS>ne):ý%BI­LªVcj™”¡ŒI§d%ÒŠUÅÂ#K¤›(@W;s˜c _³;÷ÂiTÖy:a‹Mø¼KV‡ügX'f?9ö>ï ˜;Ûª¨C‘èA‡hñ.‘ž˜'b§^;€p›O®Ò¦ “½§‚¶¹DUBì@íx"{z:Ûˆ[3…·š}lp…Iøö‰Còø=ÐT=§ÙéYºH/~eëd @TJ 4³N×XëbV¿l ¢]ÊRÂ2ZIÅj,Z&eg@(cå©X‰´bÕA±×WjyˆùGºiË\×fc¯¦Þ½ÝÎÓïX-î6,VÔÀ_v¹ („ÛÐޡѵ1¢-Á ÇNÃWé—ø²5ý©°³ÜW'@(j›ST5 ÔÖøU§›1ÈG ¬Õœc›‹+TªGõV›ãð~ • ¾J“&[gJÄIÅ ê3d¦át½.jêæ¶/¡²”§F/45Z³¡])R°«–IÙʘ„y V"+SyP,A lt€Ås"æC’³üÀ7FéÄå䌱¶Ø`zÇI€¯°L ¼i•¡ª™N|w>‚œ¤‡ë…ÙÉÐ#‡&>ç@ØmBQÛœ¢*¡ö©‚œ¹x¢µa/h¬Î6Üc›ƒ+\êegÜ5ãb‚ÁÖÖÊOèY×Î+ÅIE ä2Mîj¡t³.MÛhãSïÊRl ü[o–Id>^- ô·›–IÙʘÄyþV")S}P,A DÁöÜ ݳ‰ù`L5íK_’Œá±Ô<¶ÖpK„ã|Au•€ðÌq›v䕳vuPš@Øà„¢¶9EUB-ñßÑG'íx:`Ñt¾Ñ cTPcãŠ+\ºo9ÇV ¶¶;h¨×Œå`¾çè5Y$…O›{È_ú¢yv`°uáÍræÅ^ÊRÂò9BN¾Vc×2);B“Gž¯•HÊTKÀ}ù®)¦9IjÂk欧 Y5ÏÖð"^? ~?Z§F+ùÔ¨Fù»¹ãÓ~ƒÝR9fs¿)¡¨mNQ•Ñ3c»Í}G°™r…K«–éÐ€Öæ"YË´Hà!¯´‡l•$…NHg ^¼xé]#ªkÑz˜ÞOYÊ@XB_«qh™”¡ŒÉ§>O+‘üŸú X‚@8jÝôýÙ)æ¡e¥c€¡eº4ãŒÝÒº½–ES(é@„³f(Sƒ/‰)Ø/ÕN4[!ëÀ% µÍ)ª"F–Þîöês'Wè¦Tg™´ "ý5¦ói‘SÒèDÁÜA=A<ARæ™ Õææ×5îº4­@Ï–0@ œjnÔ®ùXSˤì eLÂ<+‘”©>(– ¤˜ÉÞ„Îe»˜«æ%wSÍ(ñ1Äl­mc÷¾œȹj ™wè…± ü„Þ“á ~ö—ôJ·uJý‚? ÚæU ?g lE¢&cîH¡³épWT•2wì/Ùï{¾$zj×ôâ”$ÀŠ51Ú‚¤p© ßgM°k\uQß­VÄ\^#¼, Ô"Ú#©Õ¸µLÆÎ/Ý–1¹óÔ¬DźýÅÂlŠoM‰,Ó… SÌk9ЧM—d˜ z)Ö›‰Žõ»õAú!å©~zÎO„ ~ð_C/á„êÑù·ÚïSØôBAÛ\¢ªE„1ÈÿNžÖ,÷ß:Ç6 W(„"àe²61È·ªtþ9˜± @%òöw³­ð‚¤PémÊfR`]#¨‹¨âè•ÂKŒ§Ëê5_«h™Œ¡ŒI§d%*Öí7(–âk(vÈÿ†Ý«š9€ÜCÌ€˜„ÆÅ/ÃÔ9éÄçjŒHxˆD^¹æ¸·|¢ Ë8ÝWü‡XÂñ]%ù¾þ2ÄB¹~ÚλÎIaRvÁýéì ºFT—fÜ9°Uâ@Xþ0o‰‘Èjzº»‡<´Lfdæ‡y½Ëå ¬Ä=<ÊÊTKòÒíC¼md$>‡FQzTÒ"æÂ}%ºvøc‹F4pІà%9±Ò]½‹Úñ9…¦‘kQNÚ˜¥Ã·é4ÍÄïv¢ÿ#+q2 4V᱆øÐ¼íŠ™i²WO g5E t·Í-jl !Žk;ÅGb…aϱMÂ=CªY1ŸC=” DÑjÐKÏ·ü½sâºâ¸ÛTNÔÖ!uÄ£ V¤jSä€RQJ(¡jš†¢JMSµ’iE•‘VJRÔU¿Ìñ*Âö®amcÇëØ;6~óhƒÁØàšWx˜‡1/Á!„©Ò;;wfgwî‹íÙ×ü_v÷Îî¹wΜ{þ÷ÎÜ™]ú믳aÑ2îöWÙ4ñùŸ¦wÎÆ Š¢È‹r0=¡ñ+¨.ÿ0˜~çBøÖ—⡼þ&40l¯Y <Ye&LB›¢m‚^"Hf6#LŠq)„©Ï¸ø©þů›¹ˆÿm‘sé/ÕÓK&ò'¼,yœ/–I¯^-˜Â'ðÏÍTKžäw¾˜ aJú?Õ¯Oý‡ÿ‰0˃Wá=<#pA"ƒŸ%DûfhjDB˜ò1jí¿7Émá¿%^›Í°Ü¢ éO´‡Ì×&íOOQÿ]+Õ¤(z¼|ëQ+°®”IŽ0=Ž„0ÁI±4éöÉØk¸Àˆ£,|' ax›ÂmÆ^"Jf6#KŠqúǼ/ÿê…‡¿™ö–¨™© ÿšáÈøËtùQ–\¾Þ\º|òä'Ó¥<®­ýÑÔï-vdÌÏ üîûóžŸâXöÇ?¨K3””·gŽ›6yÌ'mü¸i®‡ÆL}E•ÈH„иo†¦F&„)Ïýé©Yމó‘nšÛÂ~+Z<û•Ç2Ÿú»u£ý×fŽ[0mÜ ½œ<üµåS³§~Ǽ(jL¦ k¸®t"Ç$¡•$Ýß0 { q”…ïd:! kSlÀÐK„éÑÌfDI1ÖB8"æ‡Þ+a!c£¹cßÁu,ÀHºûG½ÆezL8!üןŸVŸ,3v-›”aóãè <`4Xäú9œ!´"=&œ¾˜â.LÖçÄÿpât‹ésàƒh¡%é1á„0}¹”µ)[¬ÝB–\¤Ïv½®€F)=&Þ5¹ò Äyióe¯¿IΨI[‚žH&!œ™ùJ|¦Ç9™™™ '„©œ|©’sn*" â_‰?1þøYà_áŠoMX>űì¹/#¾qÂï¦ÃB°/;3àö÷°5Iùd R&=ó"œ€xä%ø€}IŸõœÀ¾à>BBÀ®<ûÄcpƒÿÂ0ç«@1êB( „"Å[× '@!„ûÒHep„B°/-ä „B€}9áê „B€éóÁB!!„„BB!؉>øB!Ø—\ç œ!„ì î#„B¶O–B¶&§ä#8B!!„€B@!„;‘ý>|!„l¬ƒ…p„B°/¸B!@„B°++WÁ B!ÀÆäøBoX`O!ü€4œ mÅ+-ÁŽ“þ×R¢¬¯$ÊŠÔâHìäl¥wtûÎä54 j`שf·§èš®,÷J‘§aíÁs‰HkN 'sÁ IDAT­t—m;o] }kË\ƒ«îf™ùªk=îžîÓ1ÄuÃgë<"QÌ Ç,ã¢L³VùSüÎûÚ ÙöãV;qÜôŠñÜ8B?}(/QÝè ¡fq$vêI—WŸQw¿?G-Û¼•—5ÜP‹.”ñ!áœDéHí|/\Û-jsöQ5v ? _$õ:yQi,ÐQ|¶Ê#‚ÐÅA˜dQ” r–QͲXè¶H…ÐĦ ÎC›'BXÞ­pxë1¹9ŒöŒ„F[5‹#°sÉ©Kù·Ø~¯Ý¸¢ÛET­qòX8íí-a/Î.¥¨’m®-Ù&Û•éHùg™v÷’ۼ’¼r*¹ZǺ‚kM¸"©_–À’«íÌ…yûb掠£.øl•G¡#йÌOŸ—Ÿ–ÓòåAo]g²é IÆE™ gé„pc}ýõûd1öyÜDU9ÜNAœšî«¯¯Œ½nCÍØÄt±"ù…0§_žŸh)ðC8õò`ÇÇBè€RÖÍ#ïI¢MþGV4µ11‘{ÜnÿIŒžô)ÑŽuoó:+jøˆEŒ¿f½ÇU¦¨ÑA.ÿKöðÆXeýà£nølG¡#йèó'^ì¤;R2þ “YÆD™ gé…pÝ}mšf¸5.ÜüàíŨéRM< !k­ƒh}Ò aîaÿT\MM…D½ÊÛó Ô³Z~³…hC¶2~©%à§ v*ßÚCt+!zRN3Ñåm'ÑI+jhãÞ‘¤Õˆnˆ‹äS|8ø.QalœrÔ Ÿ­óˆ tD1¶PiÆí–’ñ>B“Œ#Š2AÎ2 ¡Y3Û–[HÎ;ÞNAœ‹šwB(*FyÀwBØtÄCTVH,€ÚÔ“ßl,%w*©h‹:öª)>ÍÛ_Éçö+Éu"z’¨™¿=G4dA ëXçÓ R÷Š‹¤:¢ë¼¨!‚ÕPVŒ®CŽº! ,ôˆ tD1!‘žpõ$™šdQ” r–QͲ˜Ù¶D%Ãh§ ÎEM?!l%:¥úºº¦ÌÝvû’v4¿«½Ííi>¥[ø×¸­ê˜£ç°öRª‘¼{ŠÝmu•ê`ÁO«"„ÞõÅ…îæ£•RÀæ™Úc®ò gÖ„°àJtuDb'°ËTºE öêÄ7ÑEyÒîf;Ì '•{^ZŸ=É»¿k·µBxZ7(Ù¢ EÒ^¢¥$ÛEîXÜðzÔ Q`¡G¡#ˆ9áÈ„Pêó%—šeA” r–QÍlšmcÝ¥¹bíĹ(?ÄŸ¨ ¯¸¨®ì©åñu|H+iáßîw«%ç5!ü²€—U…°¯”T¾ Ú‚¤ö÷ÃXH%B!ŒÄN`— ;¼’.n$ÒþÛšéE{©$ºò³;Dgu^»˜`½ªÓ¢ksMÿVƒAºÁQ‚¢z¢µYj;ºc±ÿ¡GÝzD:‚˜KF!Ôze4„0Ù0Í8Æ(ä,£šÙ4Ù–UHô¿á´Sç‚üwB8@ü4÷,{Wp¨³½¨l—:9ÞqðHç)Kj^u/©`Û‘Vy‰Í~.„yUä*>xÛCÊР¥‹e¾­]]7ýB¸ƒœÅ­G™Sù™á–r¢Á3Û·ìaEb ­DgQ#;Î_/o#„ü›²_’r{«ÊŽIÊ9ê†(°Ð#‚ÐÄ„BD¤‡G™ g…Ð̦ɶkÚÌíÛyŸ8¤Œ¸Â/°ÉW_ä®yüC€ÍC|RÌô¼Èïß–M|ùÏu¦‘þ¥­êÏäß=9á/f38¿Qý5Bª‘¥,ûQžÄÏjw7ùu·š%È|‘€ *1^#ŒÀN(ºxD·Ždr³ 3óù…B¥ïøBýA¯ú­óºÓÜñÏÇ×û‹ˆÜWó®“\áŠÔi½ópK ]*|Ö ¡ºû‚ÐÄ„B¬‘d5Ê9Ë(„f6ÃoËu“óæ°Úi纔Bè)P¨ô»Ð?µû¤A»ðš½V¹¾ÃÿUç³Nù,[>Û ÞÊÉdO]PÒ£èÏf'ß3½*Rs]ʶ,yøMe«Ëˆ. LT‰A#°c–+Yòù{ùVöþ(Ñ]¹‹ÛKÙn¸Ïñ±M‡úãËD›§CùOrïØeq-ûò 7Äé‹|‡ù-´õMvBm÷¡#ˆ¹ØaÕ>+Ñ„ÐÒZî)B8З\BYÆÑ¢L³ŒBhf3ü¶mDíÃk§iœëóCMœ=Yæv£*Þ«ts²eÌøTøšBgÁŸñe³¥ê™IÿžÝ Bõžî"9h?é¨îW-Ü#ò LT‰A#°c–½Íì8+C•§•$–µ]tT–m_-›Ë—[µ€$ :–8ê¬ò°‰«–Î:²‡ˆj³Ã/)§³Ûû÷zXQ -M! ì¾ t1 nPr Ä\ç`r aD'e‚œeB3›a·e—íú?{gÅqÅñØZ¶¹ ±‘!©PÂ`ˆí $”LRv…$•DN•+G%8ÎGùC®ûv+…¤•@B2R Ä)!!‰CX©0·Œ9¢RÀÅaL0ÆVA6.HÏα³3ofWZí5ûÿ}Q©w÷õ1oÞ¿»§»§å´óó ‘PBx´UQçˆ>Q¿Râ"ïYÿR|º}D'.‡ˆ:µ1™—*rd±ë „ßn£~˜Ê4ìI¹¾Q¹Rã2±Û>aeÇ6$ž—C~ài¸u Ä5¯’O$Ržâ^o–Ÿvþ—è îr'Ï u«£¤w¯/°8xDw¯ø²eÒ¶:*ö/în±9~c ¡®úœë˜}B™:na8GçeLÌ2 ¡MËÏ„„µô·œÖ~2äaNÕê}DWµ©veȦ•QêøÏŒóÝ8þ^ަfAtÈb§®a>J´Ú(„ë:«îxqŸí>Ñv®N:ãƒ0.^ííØ‡ÄSªyßÅFò–ûâúrnðoù;ú €dÛ³Ô#”ðHÔ¬ç®R°a“ «µF ›¾ˆ[+ÄNõÕg]Çäs˜ljÔq'Ë„qô^ÆÄ,³ÚÙ´ül³òLª_å´òsCÈHœÅ29ˆ¼êYOk‰ÝûRyü¶écŸ\£]×:Ôˆž&wЦyN›ŒBصBèœÅ29e­ÎÂÐ'È˘˜eB;›VŸ½KTÙÐÿrò~n  ´j´PŒ }J¿=ß „ò6õûûKe-,^/'ŸÜ¡ÃZ·„pµÜFÍ·Û.ÝàŒËÄ,„¡í„ ‰že÷>êÉ‘†öR˜‚ÓÚ47QžÛÿØT[ rS÷5Yèî%Ó D«Ý·IÚ«ÛXQå%_Ü^Å+! ®¾…ë|B™:Ž'ØË˜˜eB;›VŸuÝ‹¤œœŸ›BF"mŸ¸Þ.Ƶæ©Ñͺ“T«zNI{××ú•îC£¹¾ an±è(ìèöè'N ÆebÂ0ì„ ‰±‹´$èÝÔÂ&yÚ»[—´5:wFòݤ…7:y´z‰ÖdÛ%ÖŽTÄ猵X ¡¡ú!\§G[†!„ºÃu£—11Ë,„v6­>«¶ÙLN9?7‡Œ„ÚGø)©sZ·¨ÁgXÔvÄç—É2ýrù³ýÂC¢W Ž¹W(‹L ÆebÂ0ìØ‡Äòl]·ªF¾¶ùjÒ䎌ÇØo×=Nè>e¾O[jt+Z |Ž ¯ÙYn›´]·Óh“Æí|±BcõY×1ùœ…068TCD£—11Ë,„v6->Ë%r5ô¿œœŸ3!#±N–‘özÝTzÚ©9çå=’;‹*ÕãToûP>@Ô¬Ž7VSAiß…ðB Õv“²B× `\&&! ÃŽ]H<ÛîUÛ »X~à\ÞX0ܪœWJtI¹¶a¶êî‡ZÝ%Hö‹‘æþI_Ý Ä^§?#4·ˆÙuŸƒF(„Ù›¦„¶Çäe\Ì2 ¡­Mþ³#º›·Ïådýœ  &„Ûê…èIîÔU¯íƒ¨Z+ï \Xô–_ãÚµMƒ…-D'-„pºÓ,„-“‡I™Œ5—É:ãöÎ0ìØ†ÄFò*mO©+F¢¥ò¸Å³K™>(Fóò·j’儵—öÆ“ÝÅÿÎeÿÅðê§=-’öxµÙ•ò"¢ZG !Ó"Œë0>!ŒH³‹‹&„v‡ñ2&f™…ÐÎ&ÿÙ^›÷N„.'ãçLÑî¬QéEâÇ•ÚWø×³ä ¹oôȃ¼UÐý¯ÖhUß¹(зÇBß!Z‘Í áõ(æ’ ¤ŽEÆd¢YÔ¹­ì”×ÔÔü/THlp]’ÚN¢¹Œ]B€ÏI›^ºDýïÈšœ/B.âl­©i²ð2&f™…ÐÆ¦E„Ûx…šÜ•5…T;›f?犞pB(½ÑÑ8s¹hKºqíø–Q~ÿ+G: äFYí)Ñ¥÷Ê;Ò¤M~kË:¯Hg³t[a‡Ðÿö·6pBØëQqùÖÏv¶K‡"ÈÍmÉ™3Ñ,ªØØi íÕ´Ö!Qô¼¼L\OŸú´¡G\Ó3W:¯T Óʺ)l×ímÛç ÙEJª¤‹uá£åk¤ŠF¸ý:¶BãŸäö?§ê;ß?CTÇ“°b „\õ×á|.ö䜿ìÁh:_èH!ä"Nž|Ð3ëeLÌ2 ¡M‹רM|*²g©66Í~Î=á^ôŽÔWhV|mT†¶ž jJ…2ÇV®î,¤‚·•J oˆV±Û'>t©G1ïͳ—Bs&šE k;a ¡{ÛFå÷íoZb—’¶Jê¦ “åV’F`2-÷£a¿:x›gŸ$:/GÕÿß‹csÄ@Ùê3®Ãùˆ¤Ó·b¥ãêdvE`x/cb–I­mò.Çg(.¤ÚØ4ù9_ôDBÿC6y$üΆÍ¾æ£º×ð~pº®À×ÜR(ñåSÕg|•w©A–Â’kùyE¬º{·×ÕûŠï–õº›¼ò|+ólϘ‰fQ7&´²žºK–û*[v=žü×Ê«¾ÊÒƒºGð¹ËWU¸v^L÷ÒºÃyõ[¢mëÍ^]Ï:ºûË“u®æ55q]Ñ!´¨¾Ùu8ŸPèÀ:™ÜF /cb–I-mònšMäÊ %„v6~^ŸBè|ö'Ëó<ˆ z!LÈ !Œ6Û© ÷B˜¸!BevWnÆm€&pH…FÏ.ßç¸ p<å[¡b „Ñ ©Â(Óö%îœã^Ã4ÀB¸³¶öÓÄ ©½µµµW!„)ÜG8 BHQ|[dœ×B 2º|ÇÐB! …éîE8!!„„BB!k.v£ „B@ê’뽊F€B© öB!„€”'Ë@!„€”&§¬!„€B@!„ „B@*‘½ m!„RX‹‹ÐB! uÁ>B!„!B! U©Z±! ÉW€$â+X1xæ24€ÔeG#H]~MãÐR—ßø¡¤03æ¢ H%~6m uäŽFº`!€”'ËHiÒg½€F •ò2ÚÄš´$´ p*£ŸúÉ·‰Ôÿ?”èaülðÄW™Ä¥#pÍyö¯¿™²ìñ9ã'?1ñïáXþѰ>Õd Ѽþ´ÀÐP¥¿HéþñÊÈiÓ²–¨¿yˆ‚Ic“bÏÓ™1.k–®j3~ðàx×ôGGlÛÐ"“&ŒÉ›5ÿW”9ºÚÿØò[\!«JÏKþ›»`ḌE¯ý2m€Z„Ë•¯«½s>àÈ}„ƒæg›6ùë?í¿oËŒðß‹O„´ÉødX7‡MîÎÊæ‡r¤”|Bø“,šiž™›\K¹Ÿ ›ª…F×3£C[N!ü=éüâ{¯(•È•žÀB8ûE%ïißT¯Îµ8Ïÿ"RëA-2d±zY‡§+I¿%“2ßb 9ÐXVzð·H,†û”o½>l@Z„ÉÕª®öΕ„ „°<7^n?ï’ô~ú¶Yml2>ÞÍaWNæÎ7d“¼B8‰!|hü‚G³D§0:¸HªêØ‘c¦I‡ i9a„p©Wçƒÿ&J?ùÉG§ºˆÈñ‘DYélR¬û‘ˆˆûìðY#…k>íOI“î„Çg-›)<Ö5)2ëÁ-" »¦_"úù‹øÀB•yVß2r ±®ô(Ò éŸ×ŸY¶X\Ó‘GÞ"\®Vu á\IÂ?=¶>7%Z¥øî˜NÓÁ?OX8ëûú»¦¾­Â'33no“ñÉðn›ÜoÌfnffætÇáï„Î EIû ÑóhûGB%ßœ-5ÌSß]ŒÅÉ"„飤‘æoŠ@–9Xºv"¤ýÓXvMŸ2)ˆ>É’[¥½J4ýe)åquü·Ë¼Çˆþ<$’yÑàyIäð”êOhþ?´Vz)øGÜ·Ì…h,+=Å¥ Ã\ÿgïêÿšÈ™x¡ûôs >RŠå¥€€ˆ‚‚E@ËËYá-EQ8E<½=åÑóÞ~˜OìßüLºÙÝd“ÝMéR¡v~iY²“I23ßd’IA+,Ó¦­ÚJïY­ò¶£\Ç™^0.ÎrÍG&†^i8˜ž@ðЩÕôF·Y ìðå)ÑI%ãðâ)³|±šP¨¶b€pà*ùì8%{ár‡ùÇkÁqÂÈvÁŽÍ›L4_ï_†¹4_6¹!¿Gå G¸°0¢ÏáY€Dï&ŒO¢µøèu ‹M¾GÚÑg_§1ºqÜë_Y)QȠɵÑuá©í,^Xë/TÝTé="©UÞÖb”ëXÓã"}€ðËazø{¥EsW/ô àÏÃè¶„<%:©f^rÊüƒXM%á4@”|¢Ñ /ÜçFeú$ádS'.d3ö€=˜0wüpnÏôZéLÀûQ9hà‘9q¬ÍlàG3(8—¼vèð“³G¾Äè×?Îßf!Ëï‹ÊJ‰BM®îmÑvÃëôëe€x©="«UÖÖ┫ „ß!½Ø¥‹ÝfÈoB·E ôà)ÑI5ãðà)õb5Çõ±•Ù-1»rÁµ%t¡>ûv{˜j÷8Çiî†mt Õ\سÿ2ç va½ƒö1“qõשl¬w×~³áÆ|6·½¦;eJÚÌÁ[°‰áOCÙ‰á_ì8Ê?­)m¢kÊ Ï‘øø—ÿÚeÂWf…cuÂû±ºòi<Ë©1(ÃÌz±õ°¬…Ñ7ÇL½j*údÞÔø{)‰A“[£Qçÿ×c;‹k}t6‡¬^jHj•¶µ(åªáwHK9H˜ê8îã(ê¶„^<%:©d^©Ý ñ2]°˜‰‚#þþ+}dZìô_vÍS}zˆ°6ëb_×y¦ì)+àñ¨,ô’é1kt­¤•ײM\e·ïèÎÒÞM’uðn´«í? î¥dBMòFÖÀ€ÞÃ…FiÜe»TzˆµJÛZŒrUPôá½Ê ÀsÎŒÔt[BOžeV1ož¢z‘ã „%†V¢Ñ.rÚ3JE=±pZws Û”ÛXå$c_«i@´êÚòˆf@8hsFLA.3Þ‹hç,WõÓM㹉M^¦°ÉL"x ÄæA˜Yx æ|¥û][ˆ¶¡´ w |ô˜è€‹¯rÄÌGÄuÖH K¯Rè6ÀZ(=8Û9•3Nã¤ñ°¬…a†? ÙŸ ßq&S[ðù•¸[)!ƒ&»Ñú$î†g¹ŒÆ¾>Z×?Œšs?À±j•¶µåª¡UÜÏ0-2kg‡Ðm½yŠÊ¬bjrÚþAj3Ƕ'É—ðMìŠ ½wIŸ Ž?›‡!éáü{$‘äôâT»'ò{„pþ Á¬ßÌÓ7ëg +¬I\€×:e¢Ì$‚Võ„û\ÎXá 4O‘BW‰™zoF2ÖÄì÷~ÂíEn$ 9ÇÄ@ò¨<„ v=EsŒvÿý7Z‰ Û‚Û¿?Öt€ƒOwï»Xq)å-dÐÄ4ç¸!ÎY<0ã ¹íÁ z„«Õ£­JÊUBª¸<Â{Öá)´Ós©ÛN TáÉ)³‚qøóäýƒÔfŽ:‰a\ƒÎ£Dú,À]*jŠ>“ax‘œˆmu™Þß0ò2k¶ou¨aÊÈÅŽhFé¸ö{G‹g #ÎÉd0“ ެæŒzFó«x4*ÆB1@ø«‹Û"€½xCL ¹á‘%r¤Ô ЧAvàÕ›jŸã²‡XéIj‚ÛŸ!C;dž'QéÝxÝê ÖŸÑå¥<… š˜F÷k…8ç,¦¶)H½HÕ#\­mUR®ã„3?˜$Bëß«G„[ù¹ÊÂ6k.º‹–s(Ýv¡ O^™ýß'ïN~îkkb‰STÔ;!w üȆuN¹Ô´¿ Ñ šÍøÞ³ÿ—t¬ºßÑã6ŒL3™à-öI,¿o¬-Íx÷f1@F¥[0NöõìÛ,S—2B$ÊD¨¹hdñÛ[æ¤:ƒS¶R]¬àö[KSö ]Æq~n<ß:aKy 41®»q‡³øp5ѦkXª! ájõh«Šr{zEvdb$§* ÇÞ[(kˆÃè¶Uxrʬ`þ<9Ë?¶@¨53¤ éŸÏÓ>¬µtK€pßé 㥖\6}t[Bž¬Nª‡?OÞ?W tÍ#üü)Ú;›¿ºá…<.ЗC/±µzè6\v9;´5ö„œbÑv€ðo;Ô÷1¹p /ÃÌ!x ]"]ø×˜¡ì2V¬„¡;–=?ˆANg†ÑyDHò¨Lt¥‹Øp¼mÿ'r€zÚQrò±w8öcŽgý(ʤ´”»AÛè+f«í,ôyšU3YËyJì¶V¶ª(W54ú}Ò>ä8W¼n‹@¨À“ÕI%ãPá)ñ'—nÄl=6𮆛i ºÈÙùóÀ¦ŒôM9ô¿x lt×ϼL&3Qp&7°?˜Û~ž„¡÷5Ƴ«¡„mÓ› ÇlIò¨\Ô vß À[ë8™Ø,½—3’mâ)Y]£ã*”r2hb=ZËgñŽ‘úÊa³„áºÚ£­ Êu€°šGxå¡Ô¯Û"úóätRÉ8TxJüÃÉÂÃ$ßþ]=caÄ ¯[ý#øÖ48ÝŸ¾µÃ‚„f,Ì|€° ÀÌ-†~äe¢Ì$‚{áÕâ€0ÿg¤kï]; XzÑ$^"Ð$»W Øež8ï„—H6–äP&¸„­/M+E¡I™‹æÅÌùùo“LOh‘‰¾-Û1{8ÈÆ×#zš ‹ä go/…qÊ3*-å"dÐÄ7ú¦Ã?“Z¯±waœ-þŽ5™Ž8ºÚ£­ ÊUB5Šä†* “ŒÚœcrkÔu[B?žT2ožÿp‚€pg¤“6Âìûá´=ç­; ™ÔýÎZšÙÉÄŠ1шÙSþ@8žûÿà„2ÁE gr—ë‹B=Î(^·i‚š# *yTN:Å„*æ­¹ ´³ïÄôÈó˜f…Eö ë{‘ÊY~‘ˆÛ¥¥äBAt‰m´ÌYŒ3aüåX/öký·Óð¸qÛ¼Zýt IDATö» ×PL¬1~ý±±€bí¶±¾’—’ 4¹7ÚÞGécFêa {„B­mõW®**RÅÝ,CŽZüA§H1ÁK©è¶„Þ<T3žË?Q@˜±áê¸rÀŠúÒ™+Þ·rõv 7„ð‹hÄ2ÍJ(k¿IaóOk—µ×B‹³„é!kz¢g蜄2ÁE L'Èí¤)&×°¹/Æ·;Ì\`Z¼Krº Wiº¶)c@Q|‚ºà_òÖEuáŽfýÌhʨ‚<ú‰NÒ;ã¹’R2!ƒ&FÛÎb0g±Ã¨ýKBI­îmõW®**RûÈí Âç–’v 7—)é¶½xŠ:©fúøD!ej':}ô´0`13b.)% 4ýŸ½s nâºâ¸ *JcêÈ@iICˆãòèP nhH  Lg´ÍORÚN˜äCÛ”éLé'k<KØ– üâaLl ×f?®|RWà—ÁϬb3ž’Ënš{ÎCºx1§3-5ðï âr˜¹§ÎY4‘&N–„0X3G7îN™1f¾`ämWy çá˘åUIϯ$÷é¯óHçò–°7 °Ò–Ž™Á2¼'ôÂ8öMýŒ0Ρò Cæ™/<€|˜´† ¡Ç& Pw”É"Æ=vÅ«²껢›G ¯ú”´Œz:i‰ѱªÓWÓà‘Ÿ˜.|}öõ•s';x@˜Ôþ ¡n:Ó[=9¸‰Ò¨NÎÌ?!Œ$^“¿K¿F6 1I™ýœ ‡Rã2QZ!L@æÐ³p‰É »0n…0‰B7|üP8!„0æ‰B/¤Ìõ¼/ <÷ÍÑpB „0:‰B7$-‡HXFÀFB8.#Ú[›-O”éiBÑBÒ¾%-NxQ¼ôBBýaÄôpû2ø^ÃôÜGÀÖ¼áY'°1ÓÒáìÄϦÁìË0wœÀ¾à>B¶O–`kž˜ù2œLù*@X.„. €€B ²·ÂB!ÀÆ:XX'@!„ûÒHùp„B€!„`K*róà!„`c|p„BB!!„€Bv¿­N€Bö¥žJá!„`_p!„B°5ç<Çá!„`cº{á!„„BB!!„ìÄ'Ýð„B°/9î›p„B°/¸B!Ø a )ýƒÉ{ÞKkô³lE›ôÍÓº&ÊÓ‡cÊbëGI;e®•Š_ݧŒŒ¶ì•ŽÕÝ‹yZñSÔ„Pã¾½î‡:S*D—[ФõõæÅBhP'gVgŸ‘¿þä±üæT 6'BèY«à~”„Ùá ¡ç¨âHe,„×”¾ á ·bÐ}÷Y«+›Vwzˆ¶ŽœPxÔK´Iˆ8ßeÖÙήSB"\å|¯5eµuæÄ³µ2¢§6²îW—ì,ÜÒ7š³–iÀ‘®ö»#Öyå…7DÖz„kA¯ûa\Çîêý…8èm¸w.±½ Rá±¼¾ä³6VdíQÓâL›jjîšÔ©Õ~AAï”|¶©§§Ü°±üæU 6Ó[SSsóá ¡Ñ£j;²²¦:&Bè Û=H‰!„k. ‹±à ïbI­FXï÷²ôvBmÍC7[„Ÿýu³ðá0ëôæ¨ÎŽ)«­ïÒ}C3S;Ÿdá#]£DBÄûÏíÞÛ¼ò‘'$„¼!²Ø#< üî« ¸îPwŸ…0[NYÒº4QáL© õNòlwII§É´xž< qbxQY@¾27°€­pEš +àM•ªøÂc"„_„힢üꜳOˆB¢.ñãÕ::þAxÙBr?Ê¢kâ±v¢óÑô9Ç”åÖÏhfQ–ü„ëoÒ òŒî!ªÍ—Šl¨?‰i^©¨¤|އÈjp,𻯠(àrQy_…0»°@³WדÐNÐN©°}HIåך ¡Q!m ¯iF鵪 :Œr¢q¼©bs!\]­ØeN;³>î…°á4˦¥Å¡AgÉ­Yþ…‰­ó‡•>@TøÐK´C:v…èN4}Î1e¹õZòª~Uc#·QÚ É%Ï9£mD{äµbUñŘæ•/É™ÅÂàYíŽ^÷5ú%„Úû]µS*Ä6"y÷¸NÊUFŃBhTHÛÙÂMqnwÄaN4®€7UâQ«h½«¼À»»³[þp=¹² Êò«Z—_Û°ÛÙܺpó–ªRoó7B½ó8Pèl>Ù+ ¡|ÝÀN¶*–Ýlñ Bu­!¬ß¿é¬óøÇÁŠv‡m"„ã7Å×ÑS}ÖSVÛSn*„Û…½ùc«CƒÞ%oMû D×U…wˆÛþc‡c$„SV[¯pÓÜsS™<;‰þÂ7šéU_Ž;:ˆv­Ó ahˆ,öÇ·ûš€B)âÑ!ñS¶‡¼>³â²ÒÆðEÅIÞà¹dB˜WwªÄ©v;…ø*Wac‘sÕ9~éÉ|ieQq]ŽÇjù…`G¥Kã¼7Ì„ðªâü¼‰Ê¶…P[«Z/yåW5íV *ÆmJompNµm5ÂÂC~—bЛˆ‚70±„¿IQ6³èšÚÊe8¦,±Þ-œãll?Ù”%_±ö€è²b^\çÝHtû!¥•–³TìÓ !ˆ¬ðÇ·ûš€ýŠܼÁ%„†Sª†¨2Sž[¦Åe!4,ĉá†å÷ˆ.¸"Ì‰Š“EmÜ©ŸBX†BH×V“ó~ûJGΓ'ïä¼!è¿Ìœjocgè¥Åd½r¶µ7í OY@;Øhííèø—FYÄË{£¾Ýô¥KBN­*!l ì?½s7QÙ1u»C¨‹ñšÒÈZy³§µõäqV¸ÝD÷ÔÐÂà~½ÈmÞ"ªÃKÞÆiMYc-'vV‰a÷ˆ~ú\±¶ø'Q1ßè>¢®œ®M¥ù›Z3cšU|ÅTö©K+„·õ×¹ôÇ·ûš€ýB—Ï5¸„ÐpJå°ÄXy·%ûà6–»þnZ\BÃBú1,°h—+œÈE®€k&>…×<¨ßóoWH™xäˆ}pS­ (Wê¤+!n±sÃÀ‚·å޼Ä<’+œÆùK„ÞþFè:M´=8.‚BÈ©5\ï2 د`gøUþÿ³wn[Q,gÏke%7Y¹Hn²’‡ÈMÖÊ ä6÷y†s{ÀÜ¡hj7döÆÎ0éîx«×wWåM…Ê´»*îè_‹ÓÎZe Î¹¬òAOˆÄ©œ"n–©K7mÓ'°KG‰0"N"ÜëÔè)J¬©Ñ¨&ÕØåv²YÑï½Ë“Üat3 ©ÃZê¨Ü#ê3E–A.Ì>áÓ€G\yõyDØA”»Sh1ßw•8·‰×·>¶Éº›"1 ñž6k^Ó!“«W„ ¾¦0â=nõÜŸŒáÖ¡ú\šâE¨ýdßÀ<ÐÚiV~x•¨=6ù©|Ï.•6zưŠu†È_~(îQù ·•›ô‹ÁÇ%bb“ºz8†_¢J„‰qú¡O„XGÕ¤^)xÁ^³Ù¥ó4S¶k§V‰Æ®æ=Þð*šA.Ì>a* ¡Öû”õ•W„­ùExΚݱ‡}Ž™\½"Ÿ­SHðeÉ% Šð˜í±ñŸg¼ü,j‰ë­Ÿ½Jš³ î:Âu¢ü—·EïX¦ÆÄ„Š;ú¦Ud‹Ê³ô×Ê^oÐn²ÞY±Q]y ATÂÞ Q½šæò_¢J„‰qúá^E¸e¬,F5©ie-ÃIŒLž(E˜§™²ux'-zµOù7´ Gdà†©xz&1{­Mä.)S£wó‹pH7çF7¨CÓø©Q;W¯¯˜+²Â[Â% ˆ0Õ$sç¶å6EŸ#BåFÍ݆¨Ë·R;Ó¬ÌIè%mBL¨˜£grÜ¢ ËtîLßY¹ $ô%UÿEÉèöõ›Ma—(Öa"Dœ>D¸WjÛ»K„l“rXV7þl³:«¨ä®#ñuxJ':Q[Àñ†Uá@\˜Šá†òRÖ°žÂ*+Ìßç}Fh¦©IdÓôL!“«W„­ê˼·BEÈ% Ê’¸_‘—Fäþ¦hfj•.W¾‘"ªQ¦Ýë ÷µ7¥U*æèýMz·:½˜´^Er'…Gí'òLPÑëåGßxwáù"ô]¢˜K„‰qúážE¼(•-B¦IiÊ¿Ýõ€=bD˜ŒNîŠ0*_‡¯‰ò=_Ð{æ!UØŸ¦âEøƒ²gÏ{…æÿrCî-£Î]ÿ·ó¢‹#B&W¯ˆÆåpã¥[BÊ’K8”û¹ 1AÎËîEˆðÖ¬.·½¯mʽ !ÎHÝQï¬Òïõ+gW˜P1GÿNtèÉÜmÄœ3 ýÀ¹/¶/:43›[L0Ïf×Eá}Fè»Dq—H0BÄéC„¡Ÿ`“ry§T¬ N;‹HžÛt;"[‡Eç¬Ïv¸|dÀ7•ŠáÖ »dýd‡½Ü°¹ÝÝî³U®#ìd.KNèôvƒŽjŠ™\½"ÌκK'í#áÊ’K8”ÉÜ›TËäÌÉ3"&Ýy|Cqì´·£[©qd¢ÉÝM§$0¡bŽnfçüðâHÚ™_tÓç,Þ䂊 Ñb·‚ÄXøï•I„Óñ©˜+&BøéC„a`j'Ф\.êîœ{FtÒýy’çD‘ˆ«ÃzÔ/ Â`|S©xšŸ´Y‹ Sâfc8áv»y~Éy]Šð2ÑáÚ  ¶9/3É-Ö˜\½[¬MÉ_Ã5wç®»V–L²À¡tËýk›­9´×J°L__ßÓ|}†èÈsSµëDi÷ëRîwRdØníªeîðÝUÒõL¨˜£‹ìÒÖå95,WÆeëE§of|¡NÖn&è–¸3¹m®´ÜjÉm»ð¥Dè¿D1—!üô!BŸóü;þ¯Tüó›”v¶¯oĹeo³î2o‰ÆkÃ’D•g°gWe­LkÒ'Ê<¹ ئRù"Ì´˜ W¿¿vFØ=mWÅäM¡ŸŸgu‘Þá|sE(qöx7/Â)¹²!'B&Wß¦ÛæÁŽÖõÇOHÎl²eL8”]CT¥Cg:?knüa÷\N”,¹¿-~ÑÍ1kúîµVQŌ܊þawÂI%ÊR¿ÿìÐ 3ÚPI*æèfvÔ°4sSdwÜ:¿˜ž¹¤»£ .è+Ñþ6¯?n¥¾°ý—(îa"„ž>DèájèJ¨Sú¿H~ܪìR6)­ÎN%¬•_¬ßÝ$ÜMaTžÁ:löÌ«‡]¬[·‚úD™'—ÛT*_„ZvÙÝAU.‘¿Ô¤÷Êon˜ÿ>Ê‹0%.Šó˜Íý¦`®>f^N‚t_DY“廹íù)géu1"Ô†N;ߟ½à~–4üGcÞºÙL~*qbBÅ}åŠÌî­»¥Ü‚|%¸»1"hç˜óÑÑ¡ò÷,/QÜ%ÂD;}ˆp¯×V>Á&%¥¥Ô·á¯Ã“EXXžNîòÞp)Z„\lS9"Ô´ËݽmÆø•;ÊŒÛWsãÆøÜÍaó÷õué#¼Í'¸ó>s ü0ïÃ]›Fûû¥OÑeéOÆÊîèÀ Ñô¾uWÑí_—*J„ZóbK“Ñ>yNy¬XKT“ôÏ—/× Ÿ¹P†Ä„Š9úëåúÁÁŽeõQNêÐѶš±cÑA³ÿjxb´·,ö|ŽÅ#BîÅ["\„Ó‡÷ʵ¼“ 4)WZšöam ]3~¢¯'²D™§¯îU„\lSùÒ"y˜÷϶ö!ÉÖ)Bª÷eŸîsFi…€KØ'B„û›‰ö^",eŸîkcÆQ ˆ°”}"D¸¿™ù€2 ¨íADˆð|<«fcïwûûûŸ@„°g6A!DˆÊ÷ãoEr]ùUxˆ>›ƒ¸Ž"„"¬n B(”“‡P!D¨bQ!D"„@„!ˆ"T™3K(ˆ"T/òg˜D…‚u„!D¨j¶ŒUDª˜í]”D€!B!D"„ÕÄÎ6Ê"„ÕKJ‚B€!B@õ‚u„a!ü*¿¡?¡¿P øóßPT¿þ;Ê@õò»¿ü… zùý…"ª’¿þþ·(U̯Pø?{×ÖÕD„‡$映&$„•@`!@ˆ DC@ntQñ‚+¢.^㺺ºuò˜ß¼5÷[Og€É2‡t½$̤»«¿®ª¯º§{`„I=IhhŸÀ„ &LêW"ÐÁ@`„ &õ+ì!&L˜0©kyZ™e 0a„ “:–Áq†&L˜0a„ &L˜0aÂÄñ3˜0a„IHï~sïH_ìþG½ê~b÷ëF€•†V›…ëßln+z „¶8£ûsð^,“)-G´+ÐäŽ|­§«…O–&69÷d|ª˜âg·7t™Mp¢”ʤ;¸Ý Ž«{1>UŽP ÖNL*£È  Îø:Ù¦î„Ûˆ˜¶kÞblLŽ kƒ§¯OU]u$ ªºÇ5‰öv±jvd”:IÓ¨ú-éfðd¡Žô«j®É‘àn †ŽG„á&¹ÊUòýx¯ü‡,Ò"Øä=>Þ&_ÚËx†Ü¢m^í ­ÈJ¾V-ùF‡t¥¼ÜæfS$8Fäk™Ëk&•ˆLîRþÌ?t|3ÒÄæ ÆV_d94g”³§šª®êÚ¹›)u\Ø™uRê$N³êž ÂȬ C2Ö’>ÃR^Ç%Âm€Ž©ó%„´—x¿I€iïXÜjYÁBߊtëùþÀ”’*4¹)þ +Ð]Œo£=áâ^Û_ÄžÄÎJ—þÀïÅáiÔ6‚F€#x}òzt8†.rÕVÇš‰U¥[ç4áJ‚Ûú… Ñ<¼?„Îèq| Ò¤æIÆVGúù؆¿åWÓ)£GŸYš"À‘àÿê:ÖLh#„jĤUÐ ]Ò÷HMm]@„†´Ö<ÉØ2"tâª9€/—T6!º›™iuüÅ‘uRõ´N‚ê Ânì±Æ$‰#“&"Œóò_¾M3~|+ßjµ¦ÇYqJ}' <élÚþÇ-ëJ" ‹ÆÐƒ…g_(Ž«ŒfnìC³ú#yó©£bÄ–ïqºÖ  .² EÌ ŸƒB¿íl=CØF¼O«þ%BSO„¥Qyµuì>?ébýå£^kSV8^ ª`íÄ›d¥²6ƒ é1à@f‘}¿bc*WÒâv?ç¿(´¹ÝËtôÊŒfi ”‰ïw¡þiqêí¬Am TaC„Ê£5œÆúDÿ¬Ü3ïÊñÀ?ö‚çXzÂŒôúH¸wắtD¹ûüè‹ÓÖ¦¬p̬rÁh©#5M8(XÃhk¡aòÔïæ©®OAZ×<ÉØ‰Ã+§ š*®êƒä]Nc¢»™‰Ð™û«þâÈ:©u§Yu¡ð–Æ ç?Ôg„ëH*bê:†s^_È@„H;—hÈEk½èë|²Äíèçå]¶XÕe (}ŠicÙ¸Ž1ëVS8. PA-ÞmŸ FÈGx•C°„.Üî&ø¶H›š§[u.§ :š«^U^P©± ÅÝ4"tèþš¿8°N§!EœÕ½D„‚!mäåã 6™ló±#É\2L‡[äg-¿‚°w¶O>\¯È¼±Î%‡»Òí4€–—cÙOäÆV†åÝÂÄÎ!Š9Œéï¤s¸¤%k ,o[m=Æù³ZáN¯«Òîç¨ñɶ¯D¨ÀÑ¥;¼7ðæ‰Ð0B›Ió;2Ú1 ,lº ¾Ò–æiÆVDÈŽOØÅUG ´bbŠ»iDèÔý5©nNë”'IuaèéŽî¯Í€4qRˆmtæ¶Nn:"ÂêÖaDpL¼1g´÷+&ÎÉ;i8Y»Æ>v÷I\(&òŽ‹9‹é‰ŸÃûmÂTßrx¦ÁòâÊAŒm^$BÄþ¶ºrT†JH|–ªž¨{®{®ê&ÊpLéÖ#ýüI¡~„âÖ·<¬=Ãð£»àÛ!mmžflŒëV(®ŠµØ$ÊëÿØ;Óà(Ž+Ž/°QXA@Ë!EF¡8„Œ8ˆa†bBYe±ƒC ±)*qU>èy‹âX²ˆD8 C)Hàâ´… ŒS¦8 Ä.;%_’žÙ™Ù™ÙžÖ¬vØíþ_öšížyýÞû÷ôL÷°ü—™9]na!´þºxi×;m§9qòv=ñB8-HsôŸ§=§ÂáÒÔí a†vSœ/tË¢aù¹ûˆòJTŠIÑ Ûa™~Œ³«6ÆÉ­,}ÞLéâæ_t‹"§ÏSoÊéîÄ3ù•—Kö•é‚nÂýôÉ~ˆRPde½Âw*ý\¾®iïoö2X”ÕÀg*=‚E^eýçñ¡µÖ¥¯”åJÆ”†—Èq•ŽhÃpÝX»UÊý>Íýòc~ü‡®*ž9FU„¢À?Î8s/.BhÑB“Lk2þ4è`ëéŒoisõ‘Î!ì&߃y턪NM¬ÃM'„‚2yñbË;Û)Ó”8Ý)„c¤9s¥}H›+ÝÆ"Ÿ%êëWz§%ÝJŸÌNÝFØBiq‚À`Ÿô€Vz)KÆ=Â÷!üB›9¢„y|®Á,SäÉkĤ±žF–Ÿ¯hì\uÆ/Õþ¼ü¤[óøòóóÐ^c]—+¥³‰ªz«NV%ëì}YêÀ/û*GnØ SXWÊ=÷n›ž>‘'û¶ºúÐÙ²ž,K{û“ÚÜ 'ªâ˜cëGH•ΪP–üŽ«Z´Pãì…²rËÇÇh¾¥MÕóœ-•pîÁ¼OË“Ì6<”Ÿ?ÂBM¬ÃMÿ`^A™œxáxgd m§Lsât¥z&„îŽõʯ“ä/»3ñ*í']|FêšÊžÌl¬Ìš´!„ò•ÁòáÏKÊê])MÔWçóIkfk-=qBg‡nR±ÏCÙŬQêFV–+Íìè3ªræ2&ºcmÿÍSf5OWŸÁ¤SÊs²G±¦ *ÓüÓ¥§Xdfd,dûß/t‚›Î,è¿ä‡½ØWK]”ÁôGâÿÛí©£³ç°V.T:Ø X'mʤŒþóðIlUñÌ1F—ÉÙ“s˜¤Å_ù-ÄZU¿þ”4›§¼¯Æpç,·´©zž³¥¾ß?n!„¿‹vjîÈ ÉfŽÍÐΰ"ÕÄ2ÜtB(*“/ïä¤PQ™‘‰ÓBèI+û^Ñüðˆ)ë’I~::¨üV¥ÜhC=~­—W°R^Ÿf…zK^¶yž‰ôXäéF;”•hS+”™]œÊüýÕòEñ7[BèéÝU5ˆú¤KO÷ájéÃÕ 'ßÓÖ¨ø‹¢Çp$Ýjó“µ±’òÔGSùœ¬ŠgŽÅãÔî}oOü…»K¹^cÈ™fóôpÐ"ß\Û"éB@Ùß-Ž&Ü5¨V©ÿ—òÕ9Šðøc%X í]ýñÖÐN.9Ü’Ç^S¯ånîbíšµ%Ý! \”‚ÍuB(r{Îo¶ˆ LNZ0ožx!¬;OtÈpú@T»£SávŠ]? è2SÝ׬-^:¼úlèåPGe}˜¢]R£Õýeõ³.I©nu'ˆ¤›’7~~’ÔúsžŽKõeãçû˜G·k-ry¿ŠlöHcñL? í]½“Ùdoã iç>s¶¿žIà»ÙKàŒ}wKg\¦ ;îž«båE `s¶õáææ¯Úq{Îo¶ˆ¨ÌÈ´±y[ssó„ aõj–ŒôŸ¿ ú$úöR…ð̪U\ݱú>±B¸ö¦Ô×Ñ2Ó!–¶š¥3”6–À.šk ÒcÒ›ýy·ôæ-–Çw»>’Z½üSµrP‡+÷ ¢mrô½ðG¢£;T®2n%4–fÒ¸‹ÛûÀ¦ÎuÊÎýÕÉŠÎm’‚ºé³Í+q·øÒF îòÚCt "ØŽ‹r"P´ùF5Eq~³•@„¡™¸›ïI¬¾Ê‚ó/ºnÆQ¢ÛÂx³®{_>Wé@=Ñ…ÐÛZèü‹Æmë)ð9›$ú8ôÝ;D×\JÍÚéÆˆêÓæÊ·”¾ýê`úæ K3i¼0µ·4J{*ôîm¢¯¬è8Ñþ5¡pÚ«™)*w‹÷"­w—×¾Ù "+\”"Ö„P´ç7[ DJi¿y‚…°z³a„Åðž4X'«%Úº9œ™Ø¡Q¯X±žü[†­O5*g:¨|w»#·Å›}D_)o[Ú¹^ »Y®×uMß•ßì§š&Ó™†ÀXšIãÔ¹6·wõ¢J÷o¯8WÕI¢ãªmölþ°îÖù„Ðxå7ABxëj’ ¡ÀEy(òhMEq~³•@„¡‘ø›'Z/†“ã:Ñiéµî̽—ƒÛöߨ®íûžê¦·7ß©9²o§¶uÝÅSõÞ#ﵯ2•ÿ·¶ÅQ Ó_#l=±ë²÷üûŸ6iý€-ÕÛ7ýŸ½k}kZiâ_øÏ3ÍsJS P¨Tè©T.r/ Š\å(ˆÜŽ"Þ}½T/鍊M6Ùé’BhCOæSÉ ›ÝÉÌüvgoѱ¥ŒkKòÙxlÑňMF¨va ìÓSßw«­Ètùßq$ˆ‰p–¦ÿ’wï\$ \0>¨¢„5ˆzv*ñc®2aôïÒ*Û¥dʲTZ¾÷¶ )fg#=ž½)E:“E™[„§ˆúº²pPf¢ˆJ-š¡Lã¹ Ò‹a/7¥v8Žné]ù~Ó¦gºþn4±©ýecm\ô• õBBÖ°mOá€ðIÔ(£û¹ „;Uúƒ?1.G „bµe@ŸM*\d˜T¬°ÍÏœ†â?…æ=t;¿Ôè•«î’‡¬›Ãìç'€G4œ’!^ûüêèHvÀ©,\¥ç „Žïýš&ƒ)ï¨àý™Ì-ÂÓaÅí#”š¨èRq„2!Œç&€H_,†\¼Ü@¨çeÌEksT£Ã_ïær«+Ä¨ç ¬Í€–Xý†áiRõª™ùÑ,h)۪р>£ÀU€Wï‡Æ©õ‘1€Ô]£ùyôŠ'1®ENÞð"ù.7yG«]'zuFÈäH‡¿7sÚ-¼ö½/Eˆ!ß¾Ftóð\^Ñj,<&}“‘Nº(z7t’²P•ž' ßû_®uðìM“ºÍGîeÚb™\è4æá逰âN–qk¢†JÅÊ„0ž›"}±pñ²ámŠByú@GfÉ–†ò¹­Òú#­ Çz(ÛJAY^˜xu¾ì:Ù¢·’Ÿæ hW Â~hË/žH“qgÒh>d¾ N|F¹&!8ؾ¤‚6htzLêŒÈ•%ª´4Ä}ïjs±Š¢<ç&\ÎLÄø^Ä©¦onžkZ&+ ]š(ó@©8B™Ês@¤/Ã.^v TšÍ¥}ÃÙE i3vŒ4µ¼1€p…BʸJkŠ‚vÕD “Ó mQ%`EŸ7\`[? œ>6š?Mß…qa<±j„í¤C6~ë9ß°)40cÿ·—ù wûBxÓÑc×mïÐy¿\Ë2 =#ÝJ?[%’h*KTiÉpÔœüP”7cž½cà»ÑÄÌe¢‡è³¢Í­@˜]>#Ùð¬¥M«FÝ›¨éRq„2!œwr‘¾X ¸xùp`ƒþzK¡úÝlÇÆ<82€íNj|Hi_-X·m¨'-Ë3øEŸó£æ}cÔH [ÇÔûŽE¸OB¬ÚEa2K>í—Ïæ™É„SÌۣdž¼½‡nµ¤`/÷d!Fòç°²7ü”›âÉ*öÕõ‰|®#ƒ( QiÉpà3{¼ °éÙ;HÜÐ`C_ wÔMz–]Eš[èøŽJ@îLÔò@©8B™Ês@de"a/?.GiþRßö¥:v8¿ë4ôwÙ’íÑÕ5«fõ²6 üÛ0äðŒ%­çóëæðM…¶Ú|ca!Æe„ñdÛ'Ìj„ùïÔø"4tø b$P›KIœºáø·Ã妣)ÍX$âkì‡x~™ï6ùlÝž Cd07V6EvÌ“žvy•!ÊBTZr ü‡³ßm/'éô?Œ¶¾³¯¡scn@X„‰r(g@(ÂxnˆôÅbXÀÅË„ú¸í¾‘­±Æa[;÷súõ³0²c˜–.Q<47RÌ8ŽXëUoÔ}¶UÌ\DcO ÐæYùU'—+_àá@è¨v1@¨¬±âµ§¤K``ºyZshJ‚û¢Ï]©!c~¥!¢êïifGÇØ‰ô„´!‰² ©´”@¸fOÐxw^s+i|ÄBüEš[=uj4ÜUY@èÂDy”Š3 ” !›J¤Ï—è¦BYÍǸŠR˜'!Ví"H-°ßÇÎïd7¬W}îJ ü¥Zmž±FhRhå;&­Q^ÀxaeeJ¼™ýÞ;\Ö²ÏËccÿå î²Ï˜¸0· T\š¨Ã¥â eBÏU‘×S ¸¸€p0?€»ÅŽß&¸˜a•¯£KD áv;°OÏ&̵7ôy ßÌ–³ù—q <±j„É0שgk"U\o®V3—í–y´ á¶ìt‘‡·Ý#o”ë öÆÕ>÷YSPY•– Cª•á¦ï½_&®<´õN6·O„éºz¥¢èuz Tœ¡Lá¹ ²2‘°€‹û•=YË[É·gµeŒuî"þ´ÆÀۚȨæI:ôù€16B¸±„½ù—ËN <±j„[Ó*›bÇ­å‹`;*¯‹l½ÜQA>¥ï\í'9mí ™´Ÿ,~²¹@xz T” #©‰ (7Ý– ‰q‡õýÐuû4'›ÛEBo)¸†éd=P*n¡LHä¹ ’2‘°€‹û ¨Õ·B[ÚÌÔÐsV›:ôîÝ„zsRz»jfUIï!flO´žO²»HÓ/¢7ÍG¸&!¼Ûu¶ã8°j@˜ìééysR`Ì4¾Ó¡vÔÝìÕܲ®!aQ.•?7K?á;ãûõ¤KЖǢÐW2ªöìø’¡Ûí]L3±üõCW³l#®,§JË„Cµõ:MD¹énh›tÛé¾´à.bqgne¡àb^Ÿf¢}==Ã=³™YÍnÎÿ…YÏvÖ³›Uÿ ³œW¿+©W/U´…„ú~6†[¯Rïݺ÷~_½ªŠ¼šþïýû÷?Aø+„´cÿÛ¸«¾BàgòßÿÀB! ¸ü¡üœ°û€€[ð!„B4»ò—e„Üòû¿üN€B@!„ „BB! Hüîïð„B°þùOp„B.xB!@„B*ûãp„B0?ÂB!!„„BB!‰¿þã_p„°&¿€ÝÊ[ê„v—üŠ:àÁåöæœ À åá‚Äò| ¸DËY8@pÁ{„M#u ‚Kûð œ@ˆ/À‚K*÷ N\ð!!TÆ6Á L .ðÌÙ8&I{Œ?6;ö›9ëÜÒà¼løÂúÕyÙr¸vö5~È!µÏÒë“ýý¥yë!òç Å©õÕ°iŠŽ—:ú{º–êý|ŽZNÏeDZñZ¹¦Ê{{ª‚"ìècŽIÜH;JÃ>»e$M„!Á1mƒGx™ uF²MÝ)Ô&àPÒjU-nó&%[kV;waê­ŸNÛŒ´¼ fJtç ¡BzÅ¥~iýêýIÅã‹Z_‹Ííº-±©ÙžÇ=Ý©ZÊóíu1÷È.qö±ñZ¹¦Ú{ü²Ïñ1Ç42«™úøê–X™BÈ ^”øïÎQã}§ÜuÔ·—]4ÀŠ’fâTµ¸Í-B(ªv®ÂÔc?¶™iùñ…ðÐ>•,§öñ–’Êýêɬì˜ò SËJ!Œ|b±ô|!¼V¶x<ö†õ¡§mÿ±Ñ9ÍÖ,Ÿåç˜)©õ÷!û\>/—åñºÎ˜£D ³Ncã´rÍ{ö™‰Jí>昢ûXœJ 'ÕóùØœC‚%þ{„sÔ°\­Z†g•*r !´—4§ªÅoÎB«mmm¥Fµs¦ûé¸ÍLËüÚÚZö£ ¡“äOÍ¿˜Ï_}ÖA”;´´ !KzËľ—>†¶7ËÂmxü[Vb×ä[èyVlß)¦ÆE”næYnSç<£,$äVƒl½õœ2l¼—*-¼±Ù[¹†ã=‹ oRvÄ¡oÇu¢grì‡o±[ðÏ+½‹rB‚cÚpŽ:C”Vôï좧qH„ÐVÒ„™-h΄ðPÍjç.L½õÓq[EZJRh‡ ¡$=bý½æB½1 ót§°íB]Wr@÷øXލYýxµŸ¦&´Ktmbs˜(§|¸¤¯KßT ¡þÈØB›7¶ÌÖåžã=Óù9*¿rjÅ1Ý`3MõVX˜EʲoN‰÷Ð#ã8!Á‹ÿ=Â9jû¨á†‰BÕwP!¬*iâÌ47„PTí\…©Ç~:m«H˺BÙ‡§\áþem”%uæÓm±fvñÚ9kzü:Ѩ~Ó—]u(ËoljV4S?‘RˆŸÝ×ÉÒæí:ΚÕÞØì­\ÃñžA+Ñ ÇVÓÑ Í4š]õÍ)]¹dd'$xQâ¿G8G=Äfú®3ÖœAB[Ig¶ ¹!„¢jç*L=öÓi[EZÖ‡Ž[ÿa²6:Ä&·¦ÆN."é¢yã#ö®5íÊBbß{toñéúw‡ØÉÑbG2³êü²Ðyû7ûM',‹UƒD“ò¿§ˆºµ)É&å/»\¦´þ¥gêz">¶I-•ÞØì­Üc÷žÕûɸc+»)U¤Ðv8å$Ñ·‡Œã„/Jü÷稫DÇuÓ cÞ,„¶’&ÌlAsC…ÕÎU˜zë§Ó¶Ê´¬!lu#„7-—Úm”^0„ðuÁÏuû'ÚƒÅk!’Wé(o‡—-º¡ðÖ9jrÝ1Éâñ6"ãÿ¬^"šÖ®þµ¹ÇÚs¯¯,Ã;â¹î$†ä+û‰®¶=ú56olöVž«¼§s6GtÚ¹•Ýôˆhx|2Ò@}13ã8!Á‹ÿ=Â;êØ€Û_e qÂê’fÀ­ZÎÍ !V;wa꩟ÛªÒ²>„°è–!”JÆÚh,K]’.„oÓDÙÅD¢kŠÅgBp°aGæmIÚLBø¹ò i.ÌÛ¡•Y&›g˜Tö8­ëÝX“O¢ƒê‹ÞQvÍß³2ï=ξñªlaègôVw‰úê7mä‘„Ô÷?S’ÓØì­Üc÷žÎ°%Á8­ì¦ùÎs4Qêì˜Nø÷Ö\¬ÒW$¾j!Á‹ÿ=Rã¨Ø„x!´•´Š\·U-çæ† «ç0­ÝOþ¶ê´¬ !\&ë£ "!l6ÖF™‹_B8G´>&ŸcþU®Ë™[æeË 9f5!$*½j¼ñ‚·›Œ””j9%º ŠÅãÍÿ†}½rè墖)åõeË/ÛÁ’t•]qÖoÚtYê@(ê46{+ؼ§§P‘Ê_‰ZÙLìÔÞ=ÓÞš»ï—KØwU²d'$¸Qâ»GÄGý¾L‘F ]m%Í@Pµ„B(®vÃÔE?ùÛªÓrç a,^~í$æJŒµÑ3²~iB˜ŠPÇ=Õ<ÑItERîEÔ[·²èB˜S›qv`—/ô5£r›Û¨yľR¿Ø—bÕ6ùu­ú>˜Ð/ºõ¯0á­ß„™–—’ï§âK“e¢Ù˜ÃØì­¼Pí=q¢9q«jS†u-Bž'¬EŸ~Ó§7¢¬0šÇ ~”øíáQï%·òF#„0@B(¨ZB!¬Qí<…閅Ж–;W‹²Ê ¡Ø+¹BVcÕµÑpNÎcM¿ën3æ {‰ä ÁóvÊM‹Ϋ&ΗŒ‡èâù ×QfõdN]Hí–Ç¡ôíå‰45%šOu0}oTE[YIºMÔP·ùfS–_«WI™rñÆÆiå›÷´³’®x%ƒÓÊfbÇÒAþa›×ìÔ'üðH¼‡FSÇ n”øîÑQã-¬^#„ FPµ„B(®vžÂtËBhOË+„V’K’K!| ­^W$ÐþúÄwŸ«§cÒ¨ÅòÃü†ÚÎÕw¸ôÍɔר‘+ýÞÓ©‰¯º¨#­Ng ”{¨D ,ª·,¹ìùÑN":ô\ÿ¸È.öÆfoå»÷$=If…­ì&ùWT6´³œ%ú̇LÒ¦rPKÆqB‚cÚ85Ŧ޹›8¡@`UK(„Âjç)L·.„œ´ÜéBXÌNO†%·BøV[=E£í•BørèB"S(“z:ZwY$iÃÂ×Ö¹IÅ’òƒw‘–Do»§¨™×YNR9&I±i¢‡ê¶±ºJ0_¹X0µ+r§— y¬æØ´V®áxψâQ+Žé;vÔTuœ0Ht^ªÎ8[HpM¾{Äù¨Ñ«O‡ oB‘À2[(„¢Šà)L·.„Ü´¬‡§F%×B(=£ÈYIZèTV9 !¼<ž4T>,Õk™ÚèBxŘªTï - GÔ¿FÇïy‰š ê;KRZ™ý<·<Ê7¨>œ¨¼}Ú¹cî¨96­•k8ÞS¸I”žµâ˜2d¾Î8@ôôÃû`¤J öŒ« ¾Éo8õÐ r\BÅ#Èl¡Š*‚—0ݺ:¤åî‹ʯ±-«·Gt!<¬zòé—‰¥»ž0…Pw„}Æ×Ý}ªÖ˜-WÔ»á®ÇÏÛåe€iµŸõMceÚŒ)CßÜŒ¼¾hP\\kl –áŽ÷š‰º„­8¦s–7åÂDÅï‚a–½M OXÔ45ÍñCÂÁä³GœŽº|‡¨ô5Ô B(Af …PT<„éÏB‡´Ü]BØX–×F3êOEiBÍõ\Ji&miôÿì{lÇÇ/áJ¦Á@»8.” p „˜‡ê4)”GI * •bHH#Ñ¢>Ô >‚Té~9!°÷c°Áƒ!&Æ8B ó#æÕðr‰š¦HMݦ¢½Û×Ýþvomß{¿Ÿî<ž™ùÍÌï;³;;÷Ššr†I™!zΚ&¿i?¤=ëóY¡í6£‡)dn¸/7ÐøÊd磛¾“†Qu3År c½ õWÇùXLÐ÷ E›—G³OE¸Æ\¾KD Š“E,®:I³dì“Fsi6^ËVí¼ónÚ!´–]K=)äM7€æ„p¾˜H¨¢"ú¥'¸uI{M3Å$„L'„ïî¸5z¤¼bVèÊ©šû•È›!&<’¾‰XüûÕN;^^ÎÕß,‘oÍñucb9†±^pæBäͳʼnÙËpfbìíÁ8S—`ƒânþª©¢˜ý{x„0ŠÀØx-[!´óvŽ»)„0ª&zæñÐ+ªöÑ÷)¢ÐMÓ'õ ¼à5 !“ Jºz<ìkÆ]ö­ñë\iº˜Ì mÍåK1Ìp‚îw(ÑïÝìã_ N(3‰úª²–ªlÉ4׋åÎzžà¹)ö±˜ n9úû“´Ó©ãƒþ0‚éLP,Â^UÄó†²AŒµ×²B;oç´›vL¹aÙõ„p”Ÿ† ¢…ƒNÖ÷)‰µwp9——%ô¬X’¿=;9â¸êx !Ó%˜ XÄ|Õ¼ Ìo†a˜ˆ ÌÊzÌÞkÙ !—NÍÓQ7uæzµ<Ý*„“äN¸È(„ãÅ$ç‡3Õ?W>K„žÿ•1—ÈÿZê·’ˆI™òë×_‘?mHÌ!¶#ð'20£ßáñ%åmý´oŠ„Gö›qQ¶ò°qŽ|ŠÜwRöÇù]¼é)¬C}RS犕Å×Ò¬êÆÅr g=yÖH?Š‹K8KŒÄûžî÷´|Äz|Ç€aÄ1]‚ J€EÌW•‡Î„‡4†y„Ð$"SÕ:–^Ë^¹tjžŽº©3׫—Ó¥BØ]Òn4«¯OÌôª'¹öŸ¤¾KÙmF(HzyŒùõ &AÚÃjÏ؆Öè}¿’*Gý XÏsµs´Ûqg*A|£ÂÃÔº {ɺn\,ÇW`¬—áìÃL,.á+c• …q~0kqL—`‚`ÓU'†{òH„ÐN`¬¼V!dÒiy:é¦BGB(?Œ.„žñc†d{sSFüÁ³È¯ýàñ£Sr¼9Sæy!d<9hÈloÎäüîmi OÞ‹Cs½é“¿g\ùÌ{仼?0kºÔý+ 3½c}£Ó™9£{egý¨Ç¶nL,ǘ­—FÚnI;3Aã¾Ô'Ç›>ôÕéq¶J؈cº×Kâo‘È«fC;FWÝnk%0^+ššÓòŒÞM»´vFwêçy(ŒBxOº^a{Ó¦ÓÁBxº^a;•~?Œ‰¸¸^aûH+ýV(ôøÖ|!B× !l'©ó`€JoÊ„l„°~þs÷¦ëŸŸŸŸ!€Žò< €l„ ¿²toñLhŸ4„:Æ ÒB.føxØ7ñãá°÷ÒÝŸ#p/x€«ÁÉ2\MÆÈI0n¢çtØ€{IË]#€¨|º*‹h6ŒÐõˆ¹ú «òÁ]!8eÃò0„Bp1Å0„BB!!„€Bn¢|ë0„Bp/Û©F€BîïB!„WsA: #@!„ÓÜ @!„ „BB!!„à&>n† „B€{)ô·ÀB!À½à=B!„àjp² „Bp5eûa!„„BB!!„ÜÄÒ7`a²„°MH¾–¬„ „Â÷n¯nñÖ74í?ÞV<|1f5.¾µâ¼Ôp”;B¾ŒüEUo9ÓÞR¢wøÿ¬$ú“³"ì£Å†?›¯,«¯/=³Ý¥ñÒÎ@Qéß a­›kŠ']Nê¡ùfM…Ô²â?¯Û—¾,¦pŒU}g=­³Ux»´¨¾ê£kÉ0‹^8Aƒ¡lâc¦*/-¬/=pݾ±@›é’ïÚ³ïa:WˆÁ^y(jž\ïtê7"¼¥]ƒN‡ÆLa²…ðÚ>müÕ¶É}ÿµ”¶ÆlBj+òÞ² ›ýÜJ,„°– M»êŠrýÀÕͱª¦«¿£ò+Ak·'mø,=§Úªä6¥‡¯&{!¼Q¡ÌiÎ$Ü.†Âù|Ç)ÞBÈ4ƃJˆônucaÔÁbö=Lçb„Ð&O&ƒ6ø0oi[‡ˆ {DÏÊžÛ_õÅÚ¹4M;ÚÐN•;!l"ªØ¼DÈ—ô'„ËdNÉel(LŒÞòš¶øsqåª=KŽID›Õ‰Í2Ñ ž*þÆPÐUYË>9(b-;ž¤áS.wûOË>Ù*ú›TiYúösz™N@ÌL CD®ÿ:›XEjÊȃøv c(\°óž¯Sy=ášá/âë±Sgäê/±l,wÑh=¯%ËÈÇKöu5ÓØ ³ïa:—Q÷ÔÖ~fŸ'“AüF˜·´­CdPkmmmKÒ…p‰\ÓmKƒKC!Ft.9Bø_¢õb U. ‰Â]jû×z‰î:ÈðNmíÒ aÁUy† 5ínÑá‚ëåVÑõN‡ÂŽ­”›¯ü"ÑÛÁGõÛ½$mó)±ö$iüì¶ ºÔ×׉rm°*}L¨”¨Å0áøP2j9ÖŽ1ÆŠÅ—#B.>L°] ·›ŸÀÆÎ"L3üèÏÕ>¥úÕVå*ªiSl„ðMú¨‹™Æv°˜}Ó¹ŒBX5O&Ç~#Â[ÚÕ-–d á Qü£«ŒªØ˜!ü€¨Lþ\#VRvBèóý“ÈÛ¡ ¼3!,l Ž;µiwˆõò©Ð×ëõt2h±½Du!±-¯!úX¹= LœDEJ’3~ ”Âø|«êˆîX”>&–ÿ߆{+UTÄ¡k±ú Â÷>Ñ牵KDáÎÅG‰µº2ÍP°“è†Öß/ZÄrk¨.6Bx¸MsøÎ€Ý`1û¦s1Bh“'“c¿á-mëÀ!ÙBX¾œ¨©XÿûX´&E½+¾EÌÀÂráÍ®Å[wœW©X­7­èx ê£01;"$Ú«.¶¬¾,n%úL ª'JÎî‡jƒ Åzã¨EécÂ!eþ¢p—¼‹!Ôc­%Ú¨õ<éBBíQ¸: Äc?“VW¦Z‰v*!׈>µˆ!„F,fßÃt.Fmòd2pè7LÞÒ¶l’-„·ˆÿ w¢’rϾzó–Š@ÿŒ›4·ØtÞ{²I R7ìò­ 몋¹ÈVA*—‰J BŸwí…Px0Zc‘áZë«\xûX³þŒ°¸ñJÍyi}Ý•ÊH!ÿ6Þ.ÛäG}'–èM{Êp§óÑMù^V€¶D¦;Jt8ôm©D⤌ŸË†éÉÞÐì‹)}LfÚi¸›×H´{YõXü´^m«]Do&Ò,…Ûà§/âp½®L3”Ÿh<áj˜XBa´ÁÂø¦s™…Ð.O&‡~Ãä-íêÀ!ÙBx(ò¡àûC»e6ÜT{^ö0ûj@ º]#"[é÷­ZˆÎ +UQàDÔ¡ÿ‚E†B›½r@¥&„­uZÁ¾&„—ÿÏÞÕ¾5±+ñ/üç;ÝÇGè(zX¨T„‚BA…" "rD® àû¢ UïÕ›ìn²ÙÍdÛJe=Øùp¬³Édæ—™LfuÐ?*§61kjÂÔŽðš¾d™Ðsn€wþ÷úº",ºp;$ Ê^a?~´\é+A‘ÀÿÜ_Ç× Ù$¡Àõ`[Оç'8(~á6¨çÖ=¿ ƒ§kd‚”·=êÅÅ€°¸z(Ën`@ˆô‡‹2.^Ž #û™8^Ÿ#½ï¤½ú€ðQ=˘C˜±÷ÚíµKÛŠá÷§ª>èp®h"¾íy˜¾¤J¹E&L­9Llœ½!šµôÑ*@Ì+=®,á‡íÈGm)Øžzr‹àloØÛûZâÍ÷Ö*¤¯@ód ]ë¼c=\Äu?d?¯¬ÔHÈ™5N@`}YFDž›¶íz oÌ@®?…v bÔ{ºF&HYPÛ£^\‹+ §²ì„H¸!áàõÇ‚»ÔRú#ëüt•=ŠèÐQ'¡Iü²mÓ‰×KÌØû.m»Ôº¹f—cY¤,ˆíQ/.KT@·2ì„H¸!á8ù ±mh—ø˜ ÏV¶Õ¥?Î M„{Ÿû’ ÎñHÐàjÒ¹\!a>xyo0ã @¸~¶Þåa@¦£Ä©=\³Ú¸´«¥ o»Íü¶Î5;ؽ/$ Î…»E=¿0vG-ý±é@ŠÃÇø¤/`XãáÒ¦x¤úé‰Å²”±e(RÆŽ3"Šià4*æ—*¹þ ¬Þ#Ä)HYÛ£\\"–ª€n¥Û ‘þp¾GøRðS-zvH°Þ„ç¬ÿ._(â ô9á?3ö>ï”xÈy0 þÒ/Þ õCºR a8 üËžÇÜç©Ý÷NÝ#°]ô Ï7µ‘{mßßì×Q‡žB\pÓ$ЪYÉ<¾S#¼O1í§7ýCSKlZKêm´¨Ìecã4ÊEÏžy>È'áú×’R8FkRmÆãˆjmÔ,ÎUÂ2€pûtL² ¶Gµ¸<@Xª ”l70 DúÃE/y$-1=¡Ñ^«(ãm'!ÔÑtðN‡èÆ!ÌØûŒæy²]“sùY Bú!¹=¼A £ ²™¹²a¡l» „o¬¥Q´ÖåY<£fß.…µ'„$.ØÁî[âµÌްj¬ºN6 ã©û*ä•/Ó÷øÌUå¢úŇl@*ˆø«Ît·å—J~~Dði0[„¨^|²ª@X2Þ•àà_NAÊ‚ØÅâòa°4P‚ÝÀ¬%Ò.BØ@8PóJø½ [\ ™=YÃ:k“»ù&ŒN׉ÈågÆÞg4éîÖ¶‚ü%&[n,Ö „bÓÌà58@HΧ±âŸaðL­Y+Ö>{Fy}ðövé²pGæñëBÒ¡»dG=î¨$ýq)JVN¶(z¹hR¯\ö#NûzÒ¬«ôˆ`Óp³Þàù]|äɪáOá©»G¤,ˆíÁ—ƒÚD(Ãn`@ˆô‡‹66wï³›5RGÂzÓÚpð8æ}éq ×Âo<éBš0šö´3ö>£C€<3!»ôK4Çuë!Ö „ÛîdÓóÐi¬:±^2>ÊëÍ «öAµ™w“å¯ÛG¾‚[Àr"¼3ÂY²Ÿóœ€"Ò—¯Õé=†ós%yÁtš™=tòV— ÷‚,ô:) QÙ‘¦a@XýLÅ$®*þžºÊ2AÊ‚Øtqù0¨M¤²ì?CúCEø->Ãt‘¹å\©Zä—Õ;»ìÒdÙ<+Q¦5]ûÛ_ÝÌ‚<' "¦ ÌØûŒ† +ZIi±®öÖHÞèÈâ J@xÕ͉!¯Ùñ^éWo–îƒîd3¬0ø'b%mc³¿ésMçÑ1“tÓŽuëRám*¸þ(ª~˜W­Èˆ² ôõ(l¼¸ ji±%YKÞ&Òj¦-«2fWs&&|¡Æ:áýë»Én9îäÍЋ{]m«Ï_‹7.ÈÊ·÷ì‡îÆ•©•6›&qfì£ZZðjéöçEå¡~šæYðÚûB}CÎ2Ó©hPÂ-wvàp4OK1؆І‰ ÖŪ,ð/Rª§–zÆñ­»md –»O¤Y{¾újÚÇ_eñYv^˜½Å+³ûMæ;ƒ±±SÓ‡VsÓ»Tã fä§Ègööã·Ö¡Mk­Eº¿®jP¾>ñ¢†Á½îx’××쯔6µC§¥ü„ýsžµ²…·x›I9üOHê“öŽV³RúãP¡X¹ D¸æ:AzBøZ£(œ;SG‹¿bDÐi ›®þPsU©J eqSüdÛ#-. ƒÚDíF™@ˆ)<òèwB-ûáVkÊl8ÚÑg¦§·ÃÈÝÞ|ì§+é5#õmžsËëúX¼B„}ÄéË­áÁxoíEõ iêñ\reFÝ  „Záò¥A#ñ­­ èöç–Ý/Ô÷‘7JZ­åf2a¤®zn@fÏ4¾4þÏÞ¹ÅFqq|¼¶Ù5Á‹íìÅvÁ°mj ë ŒX/†`îCâBcJ¡@‰š/ûÐ&Û–VizQC/ª”¤¨TIÕ´•ªö¡jy‰ÔªR¤ä­OyŒÔ—DÊCÏÜgwÎÎ öÎ2Þùÿ^¼>;ó3ßùÎùŸsfÎìýÃxÙßË_üû·ßÿø³ß¼õ°ZÏ=nßÊ+ýø6‘øª£òŽzí[o¼)¾ÿá†kr§«ÿ»ÿÝ{÷~yÿçÞx„_ /ÿêþ»ß¹÷î;¶? Ì£Þ*¿k²4ӳ'/¸¸BhkÓjÀÒo<¨ò¼5ÉBèCþ4ù²7ìïá~ ˆ:ø:F¹]œWFx×[B½âm¢\ü{z€EÌ{üÒEB/zK¡Wü2?t{ìŸî¼¶„BøpzK¡G|ö¿mðÊûÙÏÑVXÌüâ{·á„¡7½%„Ð ^¹ýáëòFÍ¿~¦ÀâæpþáîÝO‹b«è½ågwïÞýBèŸþ±{žRþO3ù†)OLC‹Î§dïüç×€øa‹!¸å§ïüN€BÁåwô&œ!„‚ öB!„€@óQö8B!˜±_ B!!„€B@!„€@ñßá!„\^Ë|'@!„€à‚}„B! ÐàÍ2B! мú“¿À B!!„„BBhåKP¶D¿ ”—Ä“áÁå5 „@ X±N`"pA"²yN\ª© N\°@ 9“…˜îAø€ q´>\™N8@pÁ>Bo–>§rX,f={á0OÖ’N¶£¿mGuñ³ˆ´ž–ÿ®$ra}Ñv·b'‘¢%¦»'j::æÆs Ø5S“nœë©¶=ÑÏ=ƒQÒ%”KeÑs(à1Ž_y®.–Âõ›²_(•GÂ;æ;64l“p îáP“ع¼5î"¢—Ëi«\…[n »k%Ž!¼¥–ÿ­oY‘n˜ÛqRùo·b=ì!”I·;‡s´¹¸B¨[\ˆ'ÉTÛCÚå×&ôšK©ik ŸèkL%õHs}aõǯ¦`I×g©s‹9X=Æñ+ÏÕ¥€S¬(û¼õ¹5Ó¡~Öö¥ËïbÑB$ÿs“ŽÛ@VLŽf®.°Pуe¦ƒv¡±—õÔ²þm_Fôµ¨SD3íYí*ÜòcØM+qá¢I÷±Ö F:ü–šò“²î‰ø|Ù axZn™Zm$‰j•‡:htHúp‚Í[”µ÷Ê¢£ü}LÁ’†“”¹æEVqüÊsu)àUgK±uÇÙ#R Ü§ž!º)Hò?)ê-¶6Ñ¡…•)ž¼XfBh‰~½WÑúl›ˆÖ…Ð!Ü,ý†›VâÂÑ ô¸.„ 6Vgÿ1¢ÓþBi[_æB8PÛHÔ”2jû8Q¿vÓŒÝåE¬1¢ÚØ+”šäŸè[lJºŠè+žä`õǯ6– )h'â%òÈ>Óøí ¢6~„p~D„òÂmh,c.§ˆÖ„ÐÞ¦µßpÓJÊi£†O{Ó”>åG!¼*M¾Br<í j”§[êÔÅ46€Ÿ“]±‰IÒnéÃ1¦‘ò1}ÚiÒŒ¯j“4}L±‰£lÔ|Ö=Ç>D¿N´TN#šuw'S²OÀ8™Xﺰ“©¶k[¶ÒÝ^bç33OlKªÛtÎ:ÑçXKNSæ²79p<Æñ+'©ðª³ÙÔG‡Â¥ñÈcú£B‚pHi œ$!܇ÆK«"ZB76Íý†›Vâ`óI¢IÁ"„‡zkçˆÒÚcˆ~ÂÆ*…P§tµòÔîz‡~£?º¨Uà~C›Šg¤ m„}qIo4©ŠÝ¨¢?[²ê•™…0©ìÈ ‹Êwq‘Ï*†šˆpŒ—‰E]ر«í§YÁâF•Ÿ•j)Ý6s!Ãjëp¹!ÞŒy”Çc¿r’J¯:÷HËèçâÑÃÃ,-)‰Gꕦ$s€µ5~Ò¢Â#ØÂBûæã.4ÎÖh;rí"ZB76Íý†›Vbos£(/Üæ ¡|ç­Óx 5ä³7ËŒUk£õå¦9YH™oU¥qp(|I}l–‰Ý¬qe—ó…ð1õ»*"é·Ã®·ÖëC –4È0^&!taÇ®¶+Y()‹½­r‹•žeõ'Éö v5ËC£ EÞ1`Êã1Ž_9I¥€W86ûªòí$©#,Ï=Ò§&á Q?iÐO°Ú—ƒ«ÐˆÖ±9˜<ž´hMÝØ4wnZ‰­M6ês„p•òÆ¥ÙJ? aûÞjc4«o£)sEÙ7{Mëij¦q¹G˜ˆ®‘ž…ér§l ë”y„ü’H±.¶1¡«YîÒ‡"vê3¦B;ÑKùBxËÐYýÍWºwÇZF2Ä0^&|!´·c¯ãšyñh e"òýg1lÈÇty! ¶c^åÀõ˜Å¯Ü$ﱩNyõ†}=P Œç."ò“°4:/Êîg˜\„FxŽ ga‰hMÝ„[®`+±³ÙE´Kà ¡²ÆÇ”°÷ÿì{pUÅÇ/p›š@%‚)"¤á!‰È+CAiA!cª8Zma¬­ãtòóÃã ÏDÁ‚ÂDíEK;ÚÚBÅ¡ŠŒÖJqìXþp¨>ö<ïyüÎ#ɽ7'ç~?ÿx³»û;¿Ýïî9gw%„’VÅîV“K‰æé× Væo3+¢JD¿Hñ™1-šB8À*„ÏX…pÆø|ˈÐ"`\&ŒzÚñ¸ÛOtQÖ…ÌŠÉ#š‰.‘¡DKC!„󈊪R•ï1«_ù¤”ãr;幄ì¡éðH®ù³‚®|R§B¬#L9Þ¡qó$ÑÏãfÇÖˆÖ„ÐO¸9ôpŽ­ÄÅæÈ.´b¦³J¯ûM#ÙbN]¬üîA†°³oe™ú÷ V´P„ˆä S Üé-„=-B8@é—>–;«/`\&v!ô¶ãu· Ÿ­¸eÉãÅÒÔ^ZÜV˜³GºM …Ý’²±È™;]Z»^š-+Ýl«¹Ö a–ȰtʰBõ_9ã2± ¡;~ïö\å“ ožŸÍ4?öî¼B89I‹éÙ\dÖÎ2ÒÖã ÔѬ>ý_Ùßµo÷"m;ÕË]ÜNT®u¬¨_Më…0/ñ¹ÑHR§ã2± ¡;nwûÉʸ¶o}N¥òC·òÄ,xªy›êN+„wXvÓKnŒÇ¿2Ié€)Ül¢üâD—òHZ<"½nZ{å«ÍI‚ÏÐD3¢îÑú¦Û>ÂÍÃþZ‰ŸN¼#œm˜XÔñ¡ gÑÄ™âÇŒ2ý»Î±¥ÊÚÀß=*ZU®mgÉ®Q_?1B¸X[Ämš„ÉQ¤>Œµ—Ébë²pv\U"Ÿb?T~M×4VÌDk”(c^|×i…ð.nÿÔäåÀxŒñ+“”ì…[U÷GŠDæ÷ÓwÏOµGêÝA‰¶@–I‚¯Ðx8n=CÝ5¢u!ôn†ö×Jü„pB%›ê†2#+õJl¯Qé áµ×ì/o-“%ä>¿P™›M{\‹Ègéˆanì!inž3AüÛP!¼¨w!/„ÕÚmUòz'`L&ºEÃÜÉNvIIÉ=^=–ëtJºXT¿N)ã !À¥çï3„ʉ„Aû${ñ„9ÆcŒ_™¤tÀNÈT<Ö»9ßðUKŠ=RÕCŒF¤h¾oÑÃNIÁ'óÎ2!äBãÖ’©¬šd? Þ-¢ó:ÛtÌYmÚ»T6_ ›E²¤Ž›(&‡ÙBéQYmºI`õ_0\Œêä+–V2ôQ;}™&e<øˆôÙ̈‚ ÒÞl #BxCŒ¨ò¦jN¥c€ËïýDßJiei›ÉÙ3Ñ-j¸Ø©"‡/DLgˆIo¿oŒ÷:®-¥œ+îi— ¤í¼³B!„¢v³R™ƒÝcŒ_9W§{ár¤SRòrsCë› Óä‘ÈŸïÊíKxâ€âo,­‹–×Ô&Jüé“»D‹zåjõá„°j|iuËX!ŒŒ]Z­ì>âG‘gbÊóVæÝž5Ý¢aNèdÇŸFª®ŒÕL1Ž£Æ~%¯p¾µµÉYGœô.u\mmm9„Ú=S©\'¸!éÛ™»•O_!„Ð>¸ŽBBøalï<8@ƒ êÈ(²‡/d.¡<† ð ÖÈhˆO‚d0ÃÆÁ€¯@h™óø |$]ë ¬¬]„üò j„ „B@ær€vÀ B! sYÓt N€B@!„ „BB! “Xý*|!„2X7m„ „B@æ‚u„B!B „B@¦²óùõp„BÈ`6ÀB!!„„BB!dÛöýN€B™ Ža‚B ÖB!„€Œæ|üœ!„2˜ ×á!„„BB!ÜÖ -ÈL!üíÕ­W¢-GÎ{'ybõ»‹¾¯ÝHô«äZ~žè9·_ó­4üyáƒu--[Þ; þ¹’Ì…÷è‹ôB°#ÇR·ë{ö66œ:yÉX‰ùyCã–Ï´Þøƒ[Ϋik¯nilÙõǬ×2®2'qEK½CÊÆ]å‹ Û»#~eý—ÏyOÛ£øàà ᫓SÛòe ëå«ÞrµÉ4oß1éb“kææÐ?£_ÛÑBøÑzE›“Ôüþ¾…ö¥F}YöÂf2ËæÔÚ7\^ãe¶RÐ…ÐT·úÓ1µÛuÙ;ªÝï–k­µýÙ…ðãÊŸ±÷Ö˜®e\eNbŠ–‡8•¹Ê«ÏiîØôO¯àisÔe<Äbé‹cWBWo§¶å;Ê!t´É4o¿1éb“iæÖЈ¾/4¶ëßÛ7I¥9{0)wð%J•ú²ì!„ŸÄ Á²á Qí]‡WŒíQF(ë4ýÌps/SÐ…ÐT7¹¼Û›>}SÔm:Ý_»NHàñÓMâ?±­¿­Ú¯¡xøeazoÓ¯%q½jº–q•)‰)ZâT6î*?'¤æMŸî=Aü%÷ài{Ôe.ÎlóÂ?_Û©\Âu„ŽmËo”…ðpsóç®6™æí3&ÝlÚ›¹-ô¯777_ép!\%•êµÕòÔð¬ø}.ôB¸æ²$ýz°‚ O„¯ i8cÍ-NWŽ&þ|7p!´Ôí@”â¯Õ«u;¬¤$Ú(Åܶ‹D¿|µuæÙÙÁ#D«¤pÞ åÝzWW™’¸¢¥Þ!ec¯òÃ1¢eý{îáÍ.ÁÓŽ¨Ë`NÒ<„ð3úR ¨Ðí,ãØ¶|G™Qw{Û<äÒ\bÒÍ&ÓÌÙÐ¥£…ðcá·ã›ªx"÷0ÀB¸ö¬ÜŠ´;~PL„O+?ÿÚB§6›¯ÝD±%þܹ‹-„–º{׃‘ IDATII”éFýO‰6É?^'Ú¿Z™Íì%ú°uöÏÙ}¥öæ¡þ÷D_¸ºÊœÄ- áËÆ^åKfè.ܼŸèšsð´#ê2™õtÉC/ÒoÔ{Ñt,d•wj[¾£ŒBW›çœõÖ-&ÝlÚ›9ú-„Û„dœ5œhù–˜ã†Z¾/úÀ[Á"„áˆöè[Ì‘Þ6]-ÜÑdøó¿]`!´Õ­~ÑçêÏÕ%o½®Mg^Ùz©u9ì§Ëk‚íD/ë¡?ïæ*sS´48„+›ÃU~Ø-F†Éáq§àiWÔA} aøpj[¾£ŒBW›öæí+&ÝlÚ›9ú-„Ÿ5üÏܲãê »÷üŸ½3kbçâø/ýÏçt»!-•J.PYe) ‹ ÙDà"•å""‹;Ѝp—×ûf–d2“3éÌðH)4¿ˆéô49ùžù$™$ÓÖ>y“eÕ­Uò×j“m­>û·GBÃÛ{懩¹‰áD²ËXDŸ±¢†´Aq][ohñd.j!éP¨ÝŽöåÖB‹+æ·í–öëÛkñÆžíߊ‚°[›²^¸n‰e‰›˜›8p\ÜÏMwÍÜ»uA(ÔMy0eü‰CBëð„ÐøšTøÇž³¡B#m×A€.‰«YbÑÎÃ!XÙð«<¥—\¯ì>ë‹â9‹ê* ¼¢ t‹-ųÊDJmŠáíI“R›b˜ãÒ/5; δ«eš¨Ü:NjͬXÖ\ø“4ºë‡ìê®DCJ{+]HTæAøRÕ¹ñU‚~{Ï„§=,6&Ú‹‚0=•U8± °)•]€wm˜ âÿgýwt 2©‹ BGÝ´‰‰fóOµ[>þM­[Ø2» ~ØrÏTWáU¡KlÙ’\e"¥6Åðö¤I©M1Ìqé—„Ù„óÁý`‡­æùìÏ6Lš ¬ê€Ðíí©âŸ¯^~§£\ÂÓñåÕÙ­©6ɘ#µ~07÷ 5}ªõ\Æ ÚB¢Ã¬Â×qPÝž!íÛc«ƒ# ŠÍ2Ko· …åErñlÞ¿«}àrKr<­údëã§2ÐøN¹È ê¦Äˆ×›¿ŒF&;‰‹þ0'ðÞ(±¥\C2Wð=Iº!ƒmÆ:émãËŸ¹>É1@ÆÕUB–X´ópV6ìªé6hº‰'¸ê* ô ÂHûåª;[ö$W™B©M1¼=iRjS s\ú%á)©ôöÁ{2ØÓ»£‡tP\O®}3ü¥B†¥]RË}쵺çFÌu@ìIbè;@¯>oül†ð·¨3Žb|!ôÜרdÌÝ–µYfi‚t5ôal¶•8;%¡‘8±¬° ú3¶­21R o¶¾ÍKåBƒP¨é\еºb´3qÑñ~ÚÈÿ×§éeî.Ô3l‰~ºÇ˜!®³„¢‹C\›ñ¬ ¼¥BœëH;ÄXuza$]s¹êŽÇ–3r•‰ ”ÚÃÛ“&åå—~‰AxD rÉÿØË–TDšÍY^Âq}¹a´ þÞV Æ0ã;R‡x\a†úºçr„›I€ÏŽb¤ÈWŽÌ¿3`Ä„Âp’æ>´› ï|‚°…tJ"æßÚF˜»h `ÂúÊd\ŸD.3*§+ævï»Æ”÷ €¿ãÈLÔ«‰]¦sÚäsK¸iw™|9“2ºwSôÓw#n®Â¼ç,Ú¹8ĵÏÂù*¶<O`ÕU@Ø5OBí“ùm ÂK·-{*¢2„R›bx{Òd‘r:×~‰A8¸z©«¹QY› BcÞQ[ ô”M ·ƒcsÁ\Ó©Q[Š+ÄЀ*scf¶æq]Ö¡6:Úh™+s~œj}EÿþàÔ'³„ËF¯dJ.zM„”h’}£©†ÃåÂõºFØ)¼zBzúx…¨’ @[ÙuÚA†è¾f“²!c¯è«Dô~É ë)ÊÀš‹«0ï E;‡¸7ãÙ@9$µˆpÿ·‰'°ê®|ê‡â©ó’‚‹-‡êЍL¡Ì&Þž4)/§æ¸ôK Âi€–¿ÅÎn†@]7@xŸÍ¯²ï/›3¬?æxôP\!†î û§ ÷Ç® Ře?D~*4Dùö‰mf{û¡Þè5ûáü·Ÿ$-ÎÖF‘VzÀO¨-JÙ°¯Òz±7vˆóFDÐ5GÜ–¢¹¥Ø&Ÿ+Û†wþd±£AÚÅUH–X´ópˆ{3ž „aÒµMïqvñV]„ÞAØt£úrÕ‹-{*ª2„R›bx{Ò¤Ô&æ¨ôK B2LE‰AÐd`ÛfôêÍÑ–>R6»û} iüpé÷¨„ˆ¡!Îoì×’šs„5ôιW®o>+lõh‹Q}ƒPyNÍÇ_÷ƒÊžÖtð"Bü1¥ì@˜Ê±>yâ|íŽÛ¤š1Kà+Aåwb'¯ûŽŸYÄ]…d!E;‡Hšñ, ŒÕŒßáslâ ¬ºJò15ª¤.YÝ‘Ør¤â*s‚°¸M[x{Ò¤Ì&æ˜ôK ÂQRš=$¿™ÏÎüe€p€°ËÂöOq£jÃïçm D mY[,-$8wrÍgK87®WY×ø¡ò}MÿfÏ®Òã4s ‘Iat ríåÂ#n±×´ñ<–xÿf=Ä·ÎáÙþw \U~ýf€°Ï „ŠòßTÆ`aúBÄÐ ÂÂ32,t>*"_X¾Ç¥0 Â[†[G~vP ?«ûùá(ª ìÙyà'» Ž´oµžˆÒÕÕy9W·1nE“ ñ¬¾¼‰mÍ’îGàŸYÓ]=Ã-9ÖŸ#®Â¼‡í×;DÖŒÁAø:IdóŸ-Ë&žÀª«¤+ B1¶É“Êì ,jÓÞž4)³éæ¢ôK ÂN€'{Z3šÆ trj=z®íloN¹M†–±©Ñz[9Ͼ{ªmzs$„±4é[ÜÛÔÁW „\ÿ…’•ã·¶:B0}㇫Û~—hƒî“ÏÜth»ïŠd­ža`T߃ËÌuëë¢WaÞCŠöë"kÆÀ |¤’ÑeÄž—C÷ûU]%]iб¥V¡Ü¦Þž4)³Y$Ì-é—„÷Bï¸ÿŸªú)Â/¸…@ù¸ñp®(µ47ÈGq…ZåN­»6x¯î#ÜKÇð×ñKÒ×]@8Kz´ ¿ùa6ÂñŽ®‰ÇäË„ƒÜŸvҋꪭ¢Yøœ’¼›V[ùi™¨¾„‰Më ê= DŠVž \"v†ãY»x«®’ü€0Û9{¹ê.Æ–•9A(³‰„·'MÊl¢aŽI¿Ô L‘QÚë)s” «²ú¸šóÒÜ#)áPM#=jõ‡1ñIq…jᦑkØÉ2rg²ŸØ: 0B·9Þ‚dáŽå{í‘ç¤O®«t#n$m-$™üܽ²zFø7W‰ûõ²ãÖRèG>w~cm|Ѻæ ®y#êgqu••…í")[@N¨Â³mñW]„ÅAxù^Ã$‰-o*A(³‰…·'MJl"aŽKÿB¼†©“_?ATSÞF/ÛÉÞÔlð¶µÐ…\uË îHÄö‹i6¨î‰2j/²±|šg{SÌÁg‹ssçëÇÉ@ܘ‰õ3"ìÕ\èðœcì˜ $Ê „U6«‘%N¾k޲3†ÜÃÃ’·œai>ÄÆìIs5Ø óG—ót%)±¢•![TìŒBñW]„ÅAxù^Ì+‰-*A(±‰…·'MJlbaŽJ¿ä Ô§‹ªf4lÜœ«e»rHíô]ƒ1‚ûþp’NCâˆvõÓG'nD\ ¿5诉ػa¢‡nƒõŠ 6f1Þá¨ÝÐ/b–¹ ǺÞÔg¾Ž9f»ººÞ»7’hÍG µ«ürÇÂ’ž2¡Ö3hÐß—>!ƒkÝm¤s±¥íÝÙÈ8ŸM¢I½îôÓ݈ù*'Z ÝOX±ã„XÑÊ„ùElû«›x‚«îÊ&/æÝˆ/^²Êc±ÕÝÕ5à]e"e6‘ðF~F¼©Êl"aŽJ¿ô Lé{Õæš¶÷ú†,¹KÂáû¥NÒ5Hn*E@ÕNÖ>¬»ûœ MÕ_ì;Ozãõ­¨!m ?d>¬NÈJ”¡æµaû-QÛIØ\·zðè(³LÓiœxøz÷÷¡qíУÑLæÁ8 U*m¤šÜ^ª#­·Þ ×φûå °v†nîÓêö@¯éý#ÒÎk«Äm1¦›´õ½Õ³…âçzsÈ}Lþî+{ëÞµw“©™Ù9 áµ7>|ó†xóƒ_ë–_ ^\BxíÚç¹u]¸óÃwtß*ú«o¿vW¼ùæ‡óùÙšÿ~üÊíÛ?ýøÇº¢—¾ó½±›ùý\•YÄ©ÚLos…Ð,xæuÀ¥r+-„¹E™Q­ÎÉIoƒn£juNcšsB¿(„pó‡¬u+pz!,ÊFBè,ïÑ»È\À??…ò"„N4ªBGùíÍ·‘¸€—’wá„|¡#*„ÐI¾õ¾ø?$.`á=GXœBèL£ !t”ߎÀ ,¼o–±W3;kÏ3ª¶7ª÷fggïBàAyñ­ßÁ BHº_D*.þœÚs !!„BBså…_ÀB!ÀÅ:xãu8B!¸€B@­øðÂ90Þp/¾dNà^¦:8€{)§z8€{ w à ¸‰Ò½ð÷R{Nà^ð!!àVz—WÀ \Œ.ÀMø×ÏÀ Ü ~† %%¨; Oà9Bð ´ôD…HÏôð1ÛNé_3•ó±eDmg«X$ôt?kxãшöâ i¯Ú‰BÜÝÔ ¢N[ën Ç#[<óQ);SîÐé[˜×•Ñ¢Xf¶±iááÆúÔ1É]áû&G®Bhn˜WÏl3E"„A)Åæª31©6Ó½öt»É.!œ&ªXÊLhɸ-": S8¢sê«eDç-„sª{6cI]Øú/³J5×.mˆ”2ß.ÝŽJŠëL²møC´hHe³m§-‘«ªcf=K*¡)#š(-„œ ó³ ­]Râô سÏñÇϼä±3fv2'U~ÙeÚu¡½È+øÌ¶ó…®BF‹b™ÙƦE/„µ““Ù'Yœ u òÀÛ–¤‰%Lúކ9õ4˜é›œœŒ\’«1y:çj,.!"W5aRºå%SDѽfGÙ;÷¨A3ÌîŠÜÚof^¢T7JtBȹ°QvÑ+å©–WÏå?Ú³Ïñǧ¨\ AîF÷±Ö¤Ö]:X-û²^ ÓWK X¬Å2³M‹^W¦&iz˜úø•l™Cr4‰í4¬˜æÔ“kÆ[h!ÜÈÜܽE}µ”½ZWTB8C´Aú»Šh §US'@Ljº*©Nº¯dÚî)€ú¦å1¾¶½lŒLý»?BÛe/fUK-"• ›e†h·%;{RU—‹]Åã鹕f:ª !çÂÂL7*‚DSùoVœ²ÏñÇÏü m´ÌB<æ.!ôQ²Èkè•çûÇ·ÊC™-Šef›ŽŽª+…ž‹D—sO_Œ’L*ieØXO¾™B aÉr¢iݺ`~ËI1á Q@ú󮄦ý¬k¡¹[<Ϻ#§´îù@þ…°7XGT?’ÛCD=ê¬ú”ÒÃ`£ØÃê Â;2ar”m QÜ-úŽóu·öF £šr.ìY¢J¥äQUÞÃÝ1ûplñ̯':¨”Eˆª!„ófÜyV¯²šjh*ÀW™ZËÌ66-!ÞÓ:¦À Jx¶Œ–…ê¼iªw㲨гOÝ^äï:ݯ«lœV×X7qO$MmðF„í­ë™BÈ:)bÖž˜ƒÊÌôQƒ¡ö¬¾?e>Fg<눵;£ôKÊûw,¶Ok¶%!¬x#¡² ¶bfU÷ìÏ{i…§©,þÄ4'éVK‹=Ï,M‡m@7×Å*·Uš Š“7ëcœ£ìË$ѵ™Ðuk]L§‹è©Ušr.̤Kú…BÇìs<±Å3ßM´FN‹w×GÛ*„¾dÔ9!”ö@mZ•ïí]†Å*³9M‹Qw'ÓÛé7éçr&•f3Ä–†õä›)´Öd/½]<™Ú-Ó»U €¡>M¯$RE^_‰²ðèIù½óUÚÑW²ÄÄx"ÏÞ¤RTQ­ ‘’Ù»Žz£òüÚîfŠ7¼³J¬V»K=Õ“j™( ©®u0®òÑ„ðÑåJ`Ãs¿º?Ï„°]Z£&^ØÆÖø=º°­%ö¤ïùü”GGÖÇ8GÙF»Ô;h¨]lï†ÄÞ¶+ê¿§#¨s­õ§…ÐúÂf ¼"f³}¾GÌmiE'´y¥™ô"7„pî8ò¡7cÓdOmK^ýchQ¬2›Ó´…ð‚®ÛºÚ¼×°›cÚt¦KÖ-ÎL…°$®JIöL!©lWàt„Í[!\2DÂå}eÒªâ [kDuò‹ÝœidÑÌ ÚºØ%Žtuåž(Ü*ut;ÙÇ«üi!(ùCMØ(Co¯$ñ ±–WÕ[ü#Š3¨ÖJ¶ƒ›˜˜†Ž¨B¢ºîà+НòX×óy/}µYVQ΄ãáI©A3Beh˜hÌã $êëvªM²Q&è©\÷94ë¶Œ•®ÞZ íñð…Ðpa]qŠ?\ÀÈwÐ~Ú#æ¶ÒE>–Í;K[Ö³8Ü!œ7÷ýfUÎæ/„R8Ж?ÿZ«Ìæ4-F!U§º­Í19:túiÀÒ°U ¤7S`!ì#“å¹~¢:¹ ÐY¥ŠW°cG|©1S’†$a8IuX?!_e“ŒmÒ?Ú:çDçˆ"²ª =¦ aSœ’qªÂnB\¤h7‘”Í*ª/‘åpµ2ÃP¦UëeÛ½›Xû!¤Äi<¿,¥{Vuç|^º§‰ å‡Ï™ºT¶AÝ’3«±3 °éƘ2$=nv”m4èSØ‘@{>I‚Ò×cc› NM/lW݇øx¡¢ÞYû:ðme«³Éé6»°UÃÃyB)‘Nä·Éæ ¡1³9M‹QÒö¯É[,†rKkšÏšÖÏÒ°Y ”m¦ÀBxˆU·!ê鈶þYÚ¬,b0!ŒÉŠf%B›êƒ@ªOpNJÖêÅ„w¢J©¡Žöv¨BØ~”¿Ó¿dTÚ?\Sm§Ié9ŸjAžTbšvZ*e}ki ÏÏ *ÓŸÒ`qBÂØÓrÉ–æÔ.óºó>ÏîWìX®a{JõØÿÙ»Ö­¶‘$,Œ†Å6ÀÆl ž†[L€01 \B²ž0¹3!„\X6wf2Ëžs¶ú ö ö×¾Å>Öv·ÔR[*É&‘Žëû“!uu·»ëë*U•´H„ÇPõ©d}pïU.ƒM‡»<Ã2moïY"²¹@Å­úðj7fÄ% ¨Ü#h¡ãÀ¸³<3ت÷U¾4#²¬—fwt%ò<§Ô(6ž„>>Î3‹B1ÿ0Úw6 ZìDØi¼‘V”[f¬a™ÍqÕ©> ‡«`' d0R&ëôß*þOí¢N„zy÷QãeÆymÓß0"#³Úfd4ÔEH“þÖ9|Ð1ÖˆY‡P!¡ßµ3Y7\5bL³H'42 ×io‚§µdÓÿ+|hº­þJÈŽkß¡çio6*^¶õT'®i>Ô>¾yÆ å V`áï´©X¾Ë3Ï·ª™Ü æ <_?jæ/FÄ9g:QB„ŽëЊPìURÌOùÒŒ8ɲ\z?–$­-ñÉnú`•–¹LªS!°³Õb'Â+RÕ‘Ç„ÔU´9"I×$,7ÁŽÈ*&`"¡cp yÃ:Ë©šÙuÖ°íÆ ûzD‹ådÖ£ Ùhd4ô«-r€!3­¡JèDÞ­£ÜIí°Ý.«êšÒEéñ‚ûš÷x©™fýü²/¹EÒ“ÒˆPx¥£ë åÖwèùPÙüyÙ²ß>:•Ƚ=Gº“Ü$bõGötùBÒð]Þ¹/ “–­z½|ÔÐË>G¼"œ2‰Ðq`ows³óªWµŽåË3â$«ôRó"Éò‰{L×F¨¶lB$Â/¶í;R-6"üÅà%E¹ $ ¶Ï]u¸ vÒ@V1!+U 9£šsQÃí<@‰P/|=o+¦ô¤Cª¶µ ¤,d4Ô)ý†´n¦3í®»ŠÔäÌ+/錵†•2l sJ¨<þvZOâ¢FÞsžÂ¬Y–n#'BÓÎjµïû=2&¡¢e»!žUïÄH!Ì)Ôs}íÀwùÚüŒ·M60Gs—q$šW,Dè:°7ô7péû"_žwYâRx™-òZ™ I~+t·jÈ5jßÙ j±áF©kt©¢Í2S]!¸ vÕ@’˜€‰É 2üýòåAB>jDøÈ Ât)æÇU=Àøên ™ õÚ¦5Êë2Z€¥ûó÷-i¢põ  md=ÇŒº9ñÓvð÷³ÿ'8N˃¼íÖwèyú{Ý:β}W§%fl*I~üê•t.ò¾Ë„U×o||º–èœé¿îå:r˜·¡ëÀ:Ý"ÑN>È—g¤œ,ýÒé/#'ÏTzhŒgÜoø¦‚eì;V-"l) – U²9’tóT¸ v×@¦˜ ó3Vólê#‡&‘©Î°ªeÍ5êwÚ‰PQ>ô j|¢ˆ™ ­DØríf»çS·§·Ì!®ûÌâì3‹¬ÊZ¿nRq ×%üh!Â&1 ‡¾CÏ—ÿ½,Ë6ñÏñsûoRÌÁ”Üœäs¨§ìßå ê<.îyg›Cq0¦¿Ïb+Ç+:­­kåÆ>•äÒ÷^~ÉŒ”“¥_š7ëå*3R¬©Œú“Í#¬¾ô‰ÊˆPßÙª¥”?I丹Hñn 6Õ2‘à*Ø]™b‚&ÂQkï Ÿ©Ù£2\£.DH¹·Á< ýa‰L€†ÎÙ¾ åa8ô·ú›¥w-F´RX‹¬;²öÿ³#;ˆª¿#d³ADíÑ©&¥d£¤ä†ú=l"¸§ÅäÜ\y»þž\¯Ì Ô›G9µ’O1VŽ•"5ý"Òf(ãÀÂ9É3S<ùï£üÒeÙ.MÊå=zj¬Æ&Ô9Úv¶«jDxIºé¼­ (¼9–˼u×iV8gÁ IDAT€‚ÄM„÷ Qe_ßlW'ë•‚‹fhÿw+!B† Uc>)XÆÚP\*DðÝ•_›Eáíu=ÏļyÖˆ° À¢mæ‡Éhý¶ÝI‡ónBijŒËqìïQ_ï2‘¬C¨ïÐóÇ$ÂpBbŠ´¶›$×Ä2|—Wxž-tÊKDÑ3 é +îDhØÓ˜jxfÞPcÚOù–d—®Hîþ|‘¨)¥†à)δ·úJ„”Xs&B`gƒªÅJ„‰¢™2qÅb‘8ljX¨¹2®GÁ@?a1Aa˜vàÈܽ)j6Õs’7VÕ½ž° vF“‚^Ž4ǧ  ¡R'å¥ÏFeªI²¥ßŽ}G¯ˆß`“­Eû\uÅMÓï=³N~õÕFɈ§¿'Ý«º@ñ¡£eû=,"|Ÿ-Š×‘¬öB¹>cF"¯hul»¼ÂÏ„ÄR¦žÞó®å>B p`‡ùŽØÏÒ>Ù à¡òm3È.ÑÇ¢’ÙŒï¿B—ùÐÃ`‹n;!°³Õb'Bæñû]Ÿ®˜å[u›cBZ¡°×ÉE0ÐOXÌ©ø Ó¨ˆåáDY®ÇÍaBôïlÏôëùƒ.DxÆ tyEÈ GåNM ¡p»‘‚@Ïý)ƒYŠ{iD{sÑÈ]Üe…mô02®“¾”åÒJÚÚÄ«Û\Æ8m‡WuÓ•á¢6ÚFú×'®}‡ž?žE#…ÏÚÿ6Dµjf®j+#1­÷¸Ë#쪆‘ý¨Û(;ï^Jó•ËØÆ:¤“¸œulÂ?ø'ß>#€,àÒÅ‚áxª§û` ‰ðT!èÏ09!´³Õb'§ÆöL[+¬9lŽy·R¢JÁ@?a1!¯§ûÄAr#Ìý8*Fßóè"–(C„ÔvZ#Îżúè!í ‡†>ÑK¼`ÚÃví‰(ºý„˜ßóаÀŽÙaöˆ%jRµÆ"Pã:C²†Ïâ9é^7|MôxRxÎrÚÎúEÉ{ÓÕ×Kßçß+œN§o•[¶ô eulÂq#è&e×^Ö›«âõ,p—W Kt›ŸCºb^¦Íå–œ¿ï.!00Ú¡$ßµ³‹ô`xò‡l¿äC3È.MÒÝÀõBb­ôÇ5ü0ﱉð|:}ÑagªÅN„¹&ÊkláÝ_7òv¤6ÍÑa n´k>H°K?A1Áa˜çÑû£!^óp-¯NYM¬¶«ñQJãÛZ¸‹ ¦X¦AÛØÖÆ¥žÒHI+{vlˆå½“Áýø=ì¤$"dJaºdÕñ7ƒKCGÆÖÍ[¬*¥ÄL*Kd3ª‹ÁÏa‚úÇâ ìñ§º/¶‡òæ\ü\Õ:üÍ­Kßçß+ç”S+/[fwÿ£k (òðïÑi®[ˆ/$éXïò‘ö‰––j¯œõ.c…ý*톈X„þÖ…Žý¿œ¡z@¿äC3È.%.ÐG—Çã?ÕQÓã’R[øxÚüùÚûÀûPB„"ÚÙvÕb'Bå Õº‹ó-Ó‰i´ nޝR"ùìšìÒOPLðDHÉ;c¼îîç€Ü¤¸vAOŒr –Itˆ»{tS·—{2Á†”pgQ¿4šSd"|\g­:“8O÷þÆ“%­Ç3FVfpgŠŽ¥Ç8è‡Ç… m=4ï,mêõaõѸôÝþüñˆPiï2¦¥ûrš”v¼Ë#4‰Á íz×êridLÔ¡ýh”)XýÄb÷I>8#€,àR㎸P_~¢Ýÿ6!¸³íªÅN„ÊH~“Ùe´ mŽ”j¡(HóÙ»õsˆP™¹;y˜T‡Û‡nÈFÃÀÜbúzç(kæ5:ÕÛ¿­fV·ÄhrW›Ö·À†˜á6·Ø­N÷¾þ‘˜¦¶ƒåøq26ÜšÓ®¦§m§øOôx!Máhi}ØÛËuj²­EL8%B¥a¼i=;˜6ýb.}·>L"TrO³jrõº<±3ßµfÔäà§¼ë]^áÉdÓðpÿä^¶9\!‚{9[ŽÞjµû"ßaFYÀ¥gçènx}&G6û ”ý Ó·E„àζ«;* >ì¡Ê÷{¨MûêLK(3¨ùl‚Ýûis*ˆ°ŠPzºÒ'\ì"pø’Gø­@&ÂS©ù«WÈEœâ”àqq 'áDˆÐ͇DX­¸œ á$ §—fqN‚}Ñ|H„UŠÄtñ#Ψ-"ôGó!V+Zžá ˆ*!Âέ­»§SóÍnmmeá/’€?{æŒkZ¨5!@|%î\Â9@"D ˆÚEC!ƒ“€@ ˆÚæ"¢¦ñÍV–A ¢¤ÆWp@ @ @ ˆZB$s€@ ˆÚE"{€“€@ ˆÚæ"‰@ ˆZÅL{+N@ jaœ@ Wü @ ˆ*‚çDø/@ ªH„Q)þýŸÿá$ ""ˆÚÅÿÏÞ•¶5Ñ,Ñ/üó©ÌãÉ„—@ ‚¬11²¸‚"¸"È"‹â†âõ^½=kzfj:"!oê|qè™TºOUõéîéŽÐA$’„êE BD ! !@¨^¬+‹D ! !@¨bläˆBB@ ’„„@ $„$„¡š°»A’„êE@>$HI Bõ‚Î’’„ªý² ! !@¨jøÛî $„$„@ !$!$ ! !@ HI B5¡îq@BHBH ªXÃMD ! !@¨^Ð9BBB@BH !$!$ÕŠ®ˆBBPÅh$ H/ F*Ð2@ ªSï¿i=¬[¹·P:±š~^ô³MwKkùŸè¾ÿ\âþÜØ®jY6þ¼v˜Â;·y#jy?\á³ñ2Ö¡6üô‰[t:8ØCxÉõÇBÁÅù­ˆ°è\ u0‚¸½4ŒxP4ß]£1îsëÔ¤À›–ÐPwvhwøbI¦¡A‹©©B6±ô´Y¨[¥¹­è‰þ…r áÞ«ñ¡x‰f[¯[`àïaQ– a8Ÿ5o­îø}Ù-“¦¡O=}êžšUÿ!´±‡ñ²$Eí¢ó$ÔÅâöÒ0‚Sín>R£ !$ð8èЃA^v…(¾H’¹…P` @o›ânAÔ?8Š.ˆ®ª-•»µ‡ÕÚ¬$KâÁ«ð·„°(Ë„ð•Ìù¬ñkv÷hí¼ЯPêóôj¨g~{¸ÔÆþ‘ç.vúDÔ°?j{;ÀB^¹êÙ¢ÓÂÆÆËŽš6mo3ŒÐúÏ¢ó$ÔÍâöÒ0‚Rín>R#5´×&|$Z?(ÖdzE=çûT1Ôö°x‰µM¨²ñÆq _$É8!Ç?Šmb(°)ìDýƒ³(ÇË.„µ*¡ƒuÚÔp…]?ý× ¡G•~Ëg#ÌÚD8ÇóÄùm ÞÒ®æšTWEžŒ_ìß°¸Щõ­¾+¬®]^-:å* =„—áP%ƒÐQÉ£è\ EºýLŒ¸©Fšùh<Ö–ª×!+~Ü ³Òöä@­ºèQ=¶ßCÂK2Nû ÚDPd³¸$@ÒËüh¹…ð€Uÿa3¯Š%_`! ¬hÙbú,É&ÂKúåþ,6ÛŸ ƒüC»º ¨ÓGž1€Ý‹œ?þ1«‚Í €O-:ìa¼Ä­1êe€°äQtž„"ŒÝ~&FªÝÍG}ôÔÝ5U=¦ ÌO,„°\!m¿d¾Õ“f¾Ù5 _$ÉÜB(°‰ ÈfQI€¤9šù哌nßñ›7ÿ«…0¹èhÍûŒ¹eÌ|eÆF(lO3:Úô« ÀmszmݺÈùÓÇ› =ôhѩƨNö0^>EC†¢ó$aDèö31‚Pín>ê£iC4 ¡…v€«›VÖúâ _$ÉÜB(°‰ ÈfQI€¤9šùåÂWÁ?ö.CÉ—ýÑŽàØ÷WË--RòRSg(šV 9¸2^3¶½oÜlœËŒC76õ½E憛¨!u¢ÝªYü>ç· !¤ÈƒŽOô®Õ,®Ÿ¶[–¬oߎ­)‰í«…pP]ó~T›÷Ù7åðÒñð }ÕÊ„h¥ô[ÜPá¶5t¶èTp±‡ñò`Z¿ªS ؈+¡#"·Ÿ‰Œjwó1uÉð‹”„Ðĺ fŸyà: _$ï\B(²‰ Èf1I€¤9žùåÂ)çKÁ™}·L×K3¬b9KS-FQ bìY éËgGÖÓ)‡\¹ I×úÍH >^·dw‚æ§÷=…0—°r s­ †§#ç³Që¶Þèå]øŸ~Ùð¾b:äÝ”yù `oÑ)»}{/q€nýY€y¢ó%Ô͈Àígc£añц:ƒì™ÍŽ^–$„?^pRc«aá‹D™KE6±Ù," °4Ç3¿ÌB :ß!™7^°€jZžÍ° qÇ}CëcPóm»I}«ø”†ì”bNЙžNfWg7ko¬ 5Çh»37÷5äŸWiu'ÒQ$/„» È×õU?=±zs ó‘d³l!Õ p¸NgÙó„ðv\½á!„Žuð÷ùéÔ=€WR`©·#Ô›®¤ý|WFð .ö0^ÌÕÝoÕÝ`~ùGQÙ5¸ýlŒ`T#Œ >bƒ¼›Q}gû6í%!üÀ÷?´z ¡¾¢(3…Pd @qäL,ÍñÌ/³æX£SØ7l²§go™+<íìÙ;/ª,í1šô1I‹Ö¦Ô¸±…Éz“‡ú 0¤-<a 6c áÕ È3Žj|dêy MPÙ<>±Yæ—¡çµil¤Ÿy«Q,„:8Ÿ­XôglGì¬B¦à2ËŸÂzžMþ·bº‘Ë2(Üô‚oÑÀ±‡ò²kÎâå•”WQ¹5ñvûA©Fqû(ËõåÑ€D¨r!¬µöÃHÒ>÷NÙ³×D™)„"›hŠ"·` iŽg~™…ð˜UÛ0÷nÈz¡Y×m,3!œÔ6ûøÊ]³Qi]俚Ë<ò(/W˜¡ƒ–ÎõšB¸øà¨F#ûˆyÚ¸` BŸ!ã„KsÀë !›©‡ëŒkõpM—11¯ŸüT Øši—‚{Ò‹,ÔÛÏÈñ-*M·ó’[1ŽŠÇ­S©Î¢2j1âíöÒ¡ƒj„—zÕ¥ý_×^–QÒJ¿œiafADÅ­!µÞÏIÒk€qÇú"¾ÞQf ¡È&€Þ6‹B$ÍñÌ/³Îþ—°AF7+‹BhÀ°–‹õ$þ`íMìÊét™r…ê¨7tGš¦Ú"ºª³CüäýØØíëÂwÓý;æõ/€Ü …0Ât91’NÍ"ó™:V£ûæ,xªn²ÊÅØÌ¶2þ/ì:6 q=¼­E¥éöQ^žµu‹ôÎC6´‰óQWQyÍ3âéöÒ¡ƒj„wjôõIÛJ[Aï¹KŽ•ÊhúMkz!Iëkü=4|½£ÌB¡M,6‹B$ÍñÌ/³>¨ÁÊ7¹ÙYs ÈÏt!4ævïV­ÏgÖos¼ô˜r…qÌdBx0 PëªÆ¬õElâ'C‡_Ÿx5ü}!ÔœÞtàK~ù !Ö}uåÇ¢p‡$s×É»qçn« *†÷m£k®E¥éö1^†ÖöP­¿`Ù“Ä‹ÊB(ψ—ÛK#„vªF6ÌÕi»Dž"!¬`!|né’&ZöרHøzGY^…6‘Ù,F‘4Ç3¿ÌBÈfبb0iÚ¸åÛûºæ¬ecXq  ¡¤í!UŽ–ûBˆå|a}[Hõ«k5(ã\óðÂgOÒ› u3ꉅPZ6Í+»7@¶^ÅøQùv7ïä*!•-“}|I¬Dó Ž=„—Æ^ë¨R’yü'^TBíŒx¸½4Bh£i¾§tGx蜞|U…«Þ¡_Wu!öBIú3ݪka¸BÄPÂô6-t.B³dG8øP!¼¬GÄø·ôÞÑ©„Pò=iûýöد.X¾^ø¢Ÿ;oaª}á³h—ͱ{ÿØŠì-*M·ð2ÁØè’A‰ EçO¨›Ìí¥B;ÕHó½|dbÍü%ªÂn§Ûgn¯…GøzE™M Ùt Ðf1Bˆ¤9žùå€ïNíéw¬hÆô_  ¡ÊÔñ²z²½»ÑkiT7”Å–Fßj¾rþöݼzäÄ—ÂlX4²¡ _û鄺[?HÖk;zþ[½û?{÷ÅYÇq§g4ø¢C¦C†:­Óji28SÄq”,S;T‡êÈŒʈþá Îøï=¹é4aóãÈ/’’ÈS &)HKPŠ(Ðdl§ŠH«V[´DÛ?ܽ»ÝÛì~os—l.Gž÷ë¯d'yrûÝg÷³»ÙçÙ³v–/'cJíö< ¹vƒéÅê uuMíHlaQÞ *UDØìááÔR «/~¢öôEdD©ç£Ð:'\»Èa×p‰ Ý7C/›„Ámú:``›ÙT…Ý\Þóç;+yÛõýd,1 êU×ÃE}FòŸsÓ¡å‚‘L>;®„†Æ\³]>5ðÜQ{áõZß[ÚÜOÿ¿ž!Ï›'Dö4ðß9a{µëüÅ~jc‡Y˜¾)²Îþú³¾€˜s—ÍÃÁ çôͳFáö…º ¸†*0Ï"kÄEù.¨¿"âf'=¥V_øD=M±.÷­Õš(´ªXúŽý€ïêÁ×}å^æ  6…Øf6A(ìæòž?ßA¸Ó¼Jû ýJyAXמHmg&ž7Rã.‚p°±Óž¾õƒäO;®„†ö¹nM·(õª3³Ìióô`ê,°g•¶‡9îRñV1ßJoOë_žgr Â×Gb©/«›Òÿƽ ¦Ì»×>’~þ䬿­ÎÏÑCÅ|ÿpõ¬Q8‡}¡.ÿsýãÉŽ.,ÊsA}ɰÙà BO©…Õ>Ñ_Óʬ“»£Ð;­»sNífýÎÁ7c÷{™7ƒÚ:``›Ù¡°›Ë{~A¼†é}öš˜AÔzÚm¼×ɾgojü`@îN?èbþÔ®dÚ%öd¡!ë…gó…#5NZÚëûFœ±‹;O¤.>÷y'Òܼ’OÞ‰Í劰_ÅRÏ+\qeì)ÏÁÙ¼8mMö’ª¡B[ξ˜4qÞ©ÐâÆ]=]^ˆ9÷ÛÍ-Û#/ÊoA…ŠÈ›=œ ô”ZZ}ÿ'ºq;ë„úá9¥v'¿êöΆ&t_©—ùƒ0 M¡¶™MJ»¹¸çÏ{ZÖªîœÍ¬9µÙ»rGbÔàó¢¿jš 4Ï€kß³Ïs³žQª¾:CCæ¶èH¼&âz}²!{Òí[*ý‚çŒ!ùúIkêîÚÄ9-»V 9/l³µ*ê–+Û»»»ßžn›™¢·¢vÌý¸ÎKžGzÆÍLþ£5Zg¼ÕûoÕBÓwI“é[£pûB]ÌÓ‘ŽÄ[ƪn›WôÕå³ REäÍNzKí_}陈x¢ûÿ¦êTé:Óúżuæ •uô;^ëœîî>–¡û ;™?ƒÚ: ÐfVU§Ma7÷üù‰1€±½ÏÖº^ßÐn~Fõî;—™§ñ‰è4AXcͬýn[Ï3Òb‰û^4O%Fžé² U­{Ñ<y­Æ„VÙ‡¦n@k$áÞ¶±7•}ÔiÙ6i˜›èéÃÿ±¦,HRAا’s¡n3ëJ5þæå6³‡g]g\ö-„”÷Ìò\»1v£Óük…=¤yö .Õ;ngZ£pûþºTY÷îÿÇØ›×”êÈ´(Ÿ•*"oöp‚Ð[jÿꋟÈzzºáüé×Ì^ü ³n'5ζo“'Éò©zÿŽ©í-³'9uú¥Xúƒý …Ð}¥Ì„mú; ÐfVU§Mi7—öüùÂhôýaç\*þ²ýÿ¾QgúÕW£Óa´ê-û§;RÓˆ^µ¾iжÚ¯aJÞ”u‚püšwÖ™v{€¢ŠÛÏ38-;÷¶#ö¼°ƒæñåT®A=úlê÷GÒ—£5†oÃìJýXK¿%gÿÔóãÆŒkÎaß_—‹¯Ø»ÿ·™å± bE¤ÍNEü¥ö­¾ø‰Ò?uûb9ÚSß°àÖélGªCtíôŒÐ}¥Ì„Am ÐßfŽA(íæÂ¢BÂhß¿F[:ÞúÛÿt_Žé:Øa ¿òFúżAOþåꑸ1|¢Ç^›æwêjãbCÖµw×ÁxdèjêÒ<ý†ún3Í<ç2ׯì¿ft~xÞoåjÙ¾&8Òk4}Ø6=KÞ™Í)£ÍçZ›ŒÎϹΫ•Šx‘ê{ªá¦ÑÙz®Ð'íƒPZ£p®„º|ôû#ñÈðîîàEy+¨\a³‡S©ÔžÕ—?QôÖh]oïÞÑ_k3°§)ßñtK‡y Ü%ŒÔ}…Ì„AmJÐÛf®A(íæþE„ ØËÊ·•Gj¢ˆ{]Yñ\_d³CÝÿ£i~â[ÖŸø‰{ÉZkɽ³ZÕR¥¾A§fä{¿ü´³ó/ýõX´¨hÝöå_úÂ2_?/WŸMWñÄçÊË·?æ?<•$Šz÷´m>ðÅÒË·¯{2xQöŸóãžcú]R›©#QaÂÆû -6ßü*ýEß®*³ Ÿ¹—|† æÍ—¿VîÞý’GÊt/É#÷$k{,C)ŠTé üæöQüóe™ƒ0 ÍŦˆ,-˼(—Ï)¡·Í Âå%ýø»³>Î}ó„ÿÏÞ¹}5‘lq¸ }XtP ’.ƒ.¢!  *PP‘ñƒãQ¢q<{å1ó©[Ww§+'3dÅú=5•ôî]ER_íª]• f-‘b?úJä–®L.tÜPm6•Ä$¥¤ÎGÁ“ØÛ_û©å ™˜_BM1+~G j§¸ÉBñäòœ„¡'Î65ô.uØ·jzMPT‘Ÿ·Mýy ÙœÙÙÙ‰Ÿ?[Œ†ØDçÂNÁ5Ú‘å¢z ÌZ°?„RR硯óa*{pÕµïzµJ:…H¡¡‹QÔS ƒhÕÂÏ("ÛÁoŸA1Ã/—µ¹'ï¯ýUªè,~’>¹ñÊ„‘5IDATÉ’6=µBÔ„jѺٹƒð#äX/ªÂa€S£`^f$¥¤þéþ>ÑÊì7»‹)“ïê¬aVôU=åÄÒSèÁKÂé$@€^>Å´„6#ˆŸ7é¥ày‰¢³ø‰Õ”„ü§Ò6k „Ê. ¡k „“(ž¶^T„=¦¹ÑH ú;%¥¤þQ]›OBE§.»0TûßüF¯´(¼°¿¡ÔÂ-€”žkû`T B›ßüìò?í%ŠÎâ'VÀ¸RÚf­p  ŸÕ)±‘iPÙ }n¢L‰›—âjjcÛ‡õïÏ&û†‹[gï4¨‹»ü 8–÷Œ¨‹Ã£xZ_¡"Õ8He£þþ§š„>ÓÜèÀ¦ „Å•WµØ B))÷Ò®îæÁ:OÊæÔ×òÖŒ~Ù>S—øÜÇAè3Å0£ B:ÙÔ¶:=1B ŠÎà'ß«”¶Yk lÑ[ó[†Öu~|ÇŠôo^bSù9¦øœÆ áw¶îijd™M/ßœ„,ûããt}Nÿ>µ- 1xXr®ÐÍ[I>*¶Yc ÜSÄ7|¾žETâc<óßuhaù%߀çEî«Ë¾ aF‡FC˪ï` {Ýx!êéÜxjÛBWÁÆ;p,q‚F‰DbK¿’ÿ8´Ì¦pfPóí¼oÙm×”k ÔÂK‰Ä Èã Ã~ Öh¡’ãs£Zz„‚Jª*pD‚PJÊ•"WT¨H…¶„ã6{­ÎZh…Îi½*®î„ï+b¢Ò¤„elê¡f²Ïʹô“hÂK¡ÍšáGáxÈçi`—LF4Î!”h”gè½øð£ceÈ :ð8­qP f¢ý“íz0Œo\µD‘Z2Fì·k„OœÈ½ÓSº·Fpj°r„ µ§k„hd” â‹kV·í ð¹QôüÄA(¨„ ªG$¥¤\èÖ‰Πø|ëÏÓFxò‹¢<Ô»\CûO¦l5€&a›¸4Èd7‹*ð“ÄþYÈ9>¦@m¡òÄÉG„6A¢¯é;ÒÝ÷Ïi/?Y ^³ ²eìeF‡/ˆp¿Ò"o `€Ý˜$4Š •ž#8§Ç™Z€bjÈÈ{vËù,½†Ù ƒÎ è ¼ð¾ðäCv^ãs£S÷ „‚Jª*rD‚PJª¬Š¶ÎWþ4ÛìC¬ÿĺzæ¢6TI6‡Âßõn–öGàÐÙ&YŠ–)rï§Â"‹eçÇxjìd™e:âú2âo˜a<;4¼>¢!Ñ0+Ùft@C>S^öXo¼ÎoøÅ¾çÓ%ÍÁ÷{ʱËØ·C{×5® DQû F´k>1¡r‡Í6&±? „‚Jª*pD‚PJª¬æàÿÒòOÒLS|¯(/,/¢z*ha# –éÜñn¦fmu‘69lt,rí'u6lÛ_Xl³¦@8|O0ñðå kÃN#BÍ:F©¾§¿-Céа¢¥UÈÓY|5ÁƒèQ€;³“›Ý"d TBPU#„RRçBíúa}5ÓsSŸ³V¼è·’nh€PyŠ×®nÓG= —ˆm½NÏÌ«|ó@‰"×~ê`^*ó˜Y#ŒxûpZ‰uïÉñØm_§cê Ôó¶†þK©þ›þæJ‡ŠHª+tÐÉ6=ø°±ÃM!ݬ.}-šIl¾'¡BrTÕvß`D Âï,”»©¡ ‚ª ‘ ”’*¯¿ej´î~†iÕ:å¸h~ óJñ ì ÏM?ä…k„N6Mz•([äÂON¹'eS;É24NËù$k³~ãÓ§ƒ°Õ!FÎtêÎsúj ÀØ!8„PÈÏ8|z- ìÖŸpË5‹O¡xF"¸'%@¸>ÁRÓR³¯E TÞŠž½Þ « ¡ ‚ª ‘ ”’r£¿!Y¦îöú¬I(s¯Ø¹u• tË×#%\"kÔÁ¦E!{–gH”øéÊæ6@8]æ15”5ª¡¨GýýÑG›ôÏûµ»á8}õÀCn| àªåÆj€]¸kÒ-›•¡¢|¢,L^ð.ɳÙä±kŸ¸‚ª ‘ ”’r§ªoŸxQX¬¯:1­ø¼2¥-(d)ÓFôulmmúlqðÇDÏáûž¡ï#t°iÑbWù¢²~RìÓ6›µ´}âKŵt‰µ ]ÆîŽK€‘S'žƒl%–iVÑÃñREó Q®€“’ Dòn­âãbš„­y<7ÚOÏ1e TBPU#„RR®Õ´ßQÅ õÊØL}5¢Ä®©Ÿ6ŸôY¼ÊZ¼.·Å“‹@è`ÇB·ŠÎM¨fº DŽ«Áé(Ík5’eŠ+!¨ªÀ B)© TÍ#ÖêNÁ‚±aÊ:ÖƒP š^ï‚ÐÁ¦²çWùçµ)(ªÈO:ÞPÓŽ©5â#·ák·=ƒD4õÕ›FüB¥¯®˜Bã§Àã¬*‚p ®7kDq6ÒÓ.ÎÀW„¡–°~ìiÑü©Â€Û£Æ‘>q%U8"A(%U™ªvèvýiˆÿ ¹æ/uп±Fxœ,è?¿áM‚Ú$¡“ÍǦùÔºx'(ªÜÏ„õô2±ÍÚaëBʺBÖ¿ôD ÀB);ÓaºHÃ#òê²°Åb©ð8«Š LÇù^|m‰ZÑ:øaë(LEÈæR2m~ɨÇ[šéjád†ûÙ3•TUàˆ¡”T¥*÷3LÞŸ´aö8äzKž†fJ–ñCþ+½ZµMˆq:Ø|Føì¤—É$ÝV&(ªÜÏyÓ„]I›5vÖ(þÁã ­c$ÎN“ ü•„¸Âx7Kd ¯Ÿ;†jÝMv 6¡q‚?X}âÓbòûx¹Ï»%Õœ ‡LmwÐcP:‚4jËÒÍŧ›ê DÐéfiOúk‚Jª*pD‚PJªrUå‡y7Çêm„p!w0¿fØüÒÛ{­}¨/ÿ‚‡å¨ÙZ„N6Ñ?L6‰ÍdPÔ¦•(Òz{{ïWâgWÑ\œÀfͰ1C»tü½ñ?„²õ½Fv N}³9ÈÇôC·ñé>í³ëQôßS*¡ÚaÑBâ}|,à#áöŒ¢¡ÃÎCÛÅÛŒš­’sJ5ÛÇwVß!GŠ„÷ð‚Jª*pD‚PJê, žäìŒí¯¹·Ð”×[£¼BýYfÞו×ËOQ²Eg&›@ˆg¯¢q?@aT)B'›ÞÔÇu>¸Tø“vq‚¢4ØÎ‰vöùóÈünÍÚû¦ÿ±w¯_M]i€š²zTÅV°8–‹µÐziíŶv¨ÔzéÕéši«k¦ÓYóá]|Ìß<ár’´æ„àyž/îµ·É›lüØ'Ùç|]~—/ÿùqúÕæ…Ι•½›5‚0IoªTº?–ŽNžKã?¯lÆÛz®ÓW;‹#¥•¿0ŸÞûªØ™vYþØ®w±]þû‡Ò'ë9–Ô–Re*·aª~µÞjõ „ð­Ûfÿ{¯*úüݘ7I†Ò¯Õw7Âdoº7sð³ä©A¸Ñs¾U¹HÈìO+cÕ]5‚pÃ×Ù]XŸq5Ê4].}$¸¸t:?Öª0úÒ¿&¿-,ŸT¬„IrüÝÁÂà»÷’±Õѧz ?ܹ•ž‰¬w&ɇ×ÞÙUè:ÐöÓê£_œ:RïMïr8yáå+óKŸ¿ÙÛ?_œ[?Í• \ü¬·o]V¿‰Úouý „ð‡]\¹ïèôÚÿÜ[òÜ]Yfé·ôWõ”¬½^éØ(“ɯF ]³­¾¦äš Üð9¿>·ïÊ©}gÖéú®ZA¸ÑsvDÖÿFS]f»ƒ YÇÀŽðIÌnã™Ñk1ÖÀS£ó{c³ñ‰c `‡aû6V?:V«¡×„‚P !‚P !‚P !‚P !‚P !‚P !‚P !‚P !‚PP¿Î_ØÆêC…·Vkâ`#ÿÒüyÇÀÎPÌMõb~¦šLË…GGNõýhkcã±êzÆÕ‡/ïî) ¶÷udV½¢{6^hÜ”ŸíŠWxMâÍžå\Y¸Ö½…±»Qß(Ú zkoZgôÓŒª¯º Ââ@B€fñ 15ri¶œ,¶0vâÞr«x0J·7›Š+{RýpDÿšÅá¹ ª/›Ø$¢g¶qAx4 W!@“¸¾]Å•öXºîÚ`l¢SýVÄ™´ýÙʱ¾ÕW+/¿ÿ×+ ¿D<~]4‰Ÿ+ç&—áòfcÃo$÷ÚŽv¾°7ãêÉÄéßÒæ·½õ¯^)<ÚWL„gwÅ@Q4‹«ciûËˆÍÆûv/}¢Vú #Óêk½Z^DÕ¿zºÜœ[|ªFaq ºÞK!@³x?bÚþ0bj³±£köñínɲúÿ[ˆÂÞúWB£‚ð~Ä­D4Έ¾´ý^Äàfcï”#è›{­]^ˆ˜-fX}ÕÝ}“úWߎ (/Ê2¬žê˜-|¾Ü®oõmÂËQzB€&ríÉ““Ó[+;Q˜È®úŠ–Gå<\Ý_‡ê¡ˆK‰ h&mO~]e÷VÇÊŠ…ˆÓÙU_vx:büó­Cõ†áÙ]ñè† h*¿Dt¦í/#Ú·:¶hWij«¾äæ|Ä£Ÿj>öÙ«7<G"¦Ú—|_^æ¶·¿ëøØvÃwÒö±ˆ/6Û3Y/¯ÉÎfW}ÑL©¼rj]ÓQ×ê ‹ñ¤QÇÀ¶ë(­nZ‹øe“±û£ •%Üç]ÝÙUO–ΜFçšMu®.H’ˆ/·Šû"ön2öqľîÕ˜ú&ËêI_ÄBßÚŽzWot®ò!@Óøªò#ùµªkœUÝ-D¼½Üõ·#•;GdSýA)âØ=õ®.H&_ŽY<ýøÙ•ˆË}Ç^{íôSÆF"æ?]lÞ·r!쬪ONWß´¾ÎÕ!Iòey™5u©íÐÂâ–]I^Õc­#¢½­íNy¹ö§Ž,«Ï” M¬8™EuA@’ õ¬|w£ò½”JÖ{ñdúU“w3­þΓ_,y)“ê‚€$iyåQOa¼÷õJÇjV•qç^>uªÿÜñŒ«Ÿª„u¯.þÏÞ½~5‘¤qo õp‡(„1ÜFEŒ€€( „ QA… ®tÆ™9Î ‚×Ù£Îî‹çäeþæ­¾_Rĸg฽ßÏ MñTµôñw*]]Àÿ©&þ ß‚Óâ« M ZÝã-"çuí÷:¾w%Tÿß¿P-jL&ÕŸ"?Ð?ËÞ]­Ë®HfÚJýBF*iÜÝ‘ _„g˽«ßJ>0Í×\6¨ ìt¬Ï7Xvú¿Bm%]°ÉWa¾CžßJªÙéNŠë’„-þ©GÃ*Íš­—ã‡e¾:µ•já^½Dd+ÿíá¹ÅuÉ BØ6Ež×j_gÖ®äa]î–¤ÿKét€A¨r¹3Ã… Bc]$û§a­J_„“2”ù–‚ðnEÒ\8Ô œé ^j|cªÔs¼o9 Â÷"•¥z*Y5îÏ6˜³÷ÏÚ_rWÓL†cõbcoijp©úöÛ®)—ãéTݺëñ§ ská©qRd$Z ~ Ötu¬qÈœé2´# wÕZ¸Ñ`έ‡vB:ó\9Ð lqçqnD½m÷Î~ŽárEʧëªd|œõW’nÜÓaþšßÍt|„m"?EÓIÓ:3àɾaÕ)÷Še÷ȱŒv„¡ l+¹ßh\ñ+.ÕXøßÂGâæˆQ'D†¯µmö™"¹¦ÐñG¦”OÖWés§ªq?þaNI«çÇ7EæÇÇ_ûÕšT7Òr;½1$Ò{.6ÂYÊG‚PÓzæ…ˆ9¸9–9ªSèT?ÿâjz¡"ÒžÒ0¬ÕÕÕ¶Ik韄‡Ë2À•I ÂwÖü§1ÞC‘{Òt^%ÁõàøÙ’”©³Ò‚ȺdME•7ö¡øã‘ž+Ö×—Ôìíxt­éŠš·‘ Ô´V³Æ¹nõwjS$„Õ§ðFdè±õâµ À_ô#t»z¬¢Öî*?éŽåŒT~åÒ€ÄaO‹£qØJ‘á•PDÝyã´{.åà-ÓÑ5‘Å:+eLéqSc¦Wä®&wÕÔîoN“f5§‹>ˆ¯bëb$5­\³Û9TŒaõ)¨9£{ss\ä†~„NW)Uÿ•[g^dÙ«yYä—$&#ÜÑœˆZo¡JóôŒÜšIª·Òn¶Ík¢~xZ„ïƒIŸ5kŒ”½ïÇ–›NšÖËþºãH)„U§Ð-rÔ]$“Ú>1–ÒŽÐéê©ï¾ùä½þ RàÒ€áà­ÖP"¨ˆšV?‡ŸšSǯLhs`¯JÝ3"Ýš ì Í/gL)¿ ÿP»ÈÃHjZ_yìú ªSøPã„NW›"~Df*Òë-2½¢bžK„Ö½®æSÖ¢’#„Ö|LÄlOŸë Ž÷X HRuW²¼½žî›µÖjê‚Pý9ê7UQY.3'ò „šÖÞ<ÎRˆ/–‰ŸBÖ¹1¡ÓÕBl’{Äm<*²Í¥‰ B+ÁŠ"åë± ¼wÑt2`ªð«w\¤¿‘W«’q§p<È]æD‚gDþ.«bw7„šÖªþaïÈÍxÆO¡/4}Üs„NWÇbAøs0ËÌqé@Ò‚ÐH©™œù{4 ã]ÿ€$Ý^¦¯‹¬µÖ[锽·l½L?l×áÑ`Òg/J9.«:ÏG‚PÓzKäÒžA?……ª ÔŒÐéJU¿v3ÄÛl¦U¤ƒK„Æî„ÈÜ‘X*Í?ݶž8Ï¥œã›öTée•«—¹›£öMºïõA¸~³³1öÖhoðŽ¤“NšÖêÏÞ‘¿Taô~yùžn„NWƒÁBˆ‘Y.H^Z‹0½M@ã{ŠŽ›Nþ8Ç”Ügò¾\iSäFhJ÷Z„}þ†‘WýDžÑ›i¡¦õFh’7¨ ÂÐ)´Ïc‡&?´jGètuQ¤èÿxh ϹØ&:€„¡µQ¶< ET¶¥sÕýÖ''lÜ€L‹LÜ©«Ò±`mÊ%qg{± \ =±¿ý6LtÒ´^ 6ñÎ÷Ä‚°ê~ MçvDþ©¡ÓÕˆÈðŒû­SÒ3ïýØHð¸ QAØ:¤Râ^Qß«b^ˆü;™\UìQi>(qYÜPûÝ{üÀ©vgÈßN4Ÿ³ßz ¹&ò¯HjZ)‰é.MǨ¯:…T‡ßbTåh—v„NW3ÃÞ–kFJµúÁ«Ù$ !Ah½oè<:çD”šú”^yÿ÷O5Ah=kîíïR»RQ…}ûmÆÚôÅ™%žéȽWEzíb‡DŽG?ìïy|g]ë‚za'áb%„Õ§ð^ý¼½g¥ÃþÈDÝÝ®n‰”ŸY·F›U—ü÷Š/øQ HX6ͺÿá;Õe=@Ð>öäö¶J„ñPtÙ“§©æ:*YÐ;ü×¥7Ù õÒ.r¤,2ñ}1Øt{Þê¦Ðv¡Gdm4:ÀŸEæ£A¨i¿¡Š/¤oï¨#±íϪOÁº¥(›mj8ë]úz›n[Mscm׬=ã‚§sb6sé@"ƒÐz×Ò^êFTæ„÷ ]¯óÉC~®6ÄvhÙ«Ò’ûŸ”³j‚uÕþ^ŸõõNPmæ²×Í™•øψ™‰¡®õªûYKåÍ…øl­êŒT¶â¹`ßÔŒÐë*uÑkºöܯØÚm ° ´o“‡ïJ_nÍžâ>±¬&=)R­£’1=™2'ZÆ>ŸËΛ“ÆLáhim;\í\q¶×ÜZ_nªáw’þ´ÜêÖ©¥—ÃæðÆ¨µJçT¬Bì”îâl9Õ÷›ûeõƒ®ܾÑ`v¶§ßõCûo°ÏV‡¾jcÏùØsû =XK À¾›”Òjí<ñv–išRÓþŽg%´7û®µô¥ày*òûrIöýÓã‹Òá·88e8_³A¦$ç®Ý«µ}ÿÌÜÕ5¹Éïp€2sò¡v‹‚µµ˜.Z[‚ßß÷Xnlâw8H¤ámÍ©lÙ{¢Úß±|.UFùVV&¿Ð¢;»Óknmì÷P½M×à?íÁ!€ ÿ¯}a€UÃØ™Ê°¬¦]IEND®B`‚metafor/man/figures/selmodel-preston.png0000644000176200001440000007245214465413203020144 0ustar liggesusers‰PNG  IHDRèèz}$ÖPLTEÿÿÿÒÒÒmmmÌÌÌ"—æaÐOßSk\\\(âåfff///­­­wwwUUU™™™ÿÿÿDDDŠŠŠ´´´XXXªªªçççþþþ›òóüüüùùùKKK ýÿÿ———‡‡‡NNN“““á]t*›çÏÏÏN¬ë ã•Æøøùýø¼¼¼îîî[[[%™ç—á‹ßTlãi~ðððSèëGGG888@??ØØØ7¡é###âcy™Ïôóüòùþþýö÷þúûÃÃÃàààó»Åø×ÜàYpaê쥥¥úàåýòôî÷ýhÓW0žè***kkk÷÷÷___ºë²7äçüíðµõö§åo»ï¹¹¹ûèë®ç¥1ãæ*âåäääéõýdÑRmÓ\bbbÌèúV°ìâòüv×fíúëG¨ë,ãæªôõöûþ@¥êÚîûÚsóþþ훩?åèxÀðFæég·îRRRöÍÔ334 ÓõíýýàVnÓëú§ÖõÈïÂpppÎùùî¡®„ïñäm‚ðòÁíºá÷Þ|îï€Ãñï§³çøå|Øm”ññçyŒñ±¼‡ÇòÕúúŽÊó´é¬qÕaõÆÎås‡è„•ìììÆäùŒÝ‡Üy`´íÜÜÜëŸò¶À앤’߆òõñ000óóô›››síîãûüð¬¸ôÀÉMçꢢ¢ÜõÙóùþç~èüübÑWÝûû[éëꊚ£óôµÝ÷ÎñÈlìíÉÉÉÐïú½÷÷ÙôÕ”ÍóÈÇÈééé­ÙöÑòÍÓÓÔLàÌzzzƒƒƒÀâø»ß÷6àͱ±±±Ûö+áß;ݸ4á׬¬¬ÔòÏÖÖÖ’’’gëíEÚ gäÃÖóÒêêêVÕsæ¿ÊÊÊŸŸŸN؉Tæß’ëѱðÝPŽÆäòmèØ>“Ùj‚·Xß°ƒ~¬i*4wßšÁÞõQ¨ŸÍö憲\«íÇ\ºt˜—^œk—Å^~f¢ÚžžžmDKZZZ±f‹&Äæ£žÃÑ„ËËËέ™mp’‹vŽi…:¾áñïqÙ IDATxÚìmh\U€Oë弜Ä:Id˜v¢í¤Êà´’¥­&š¤iCZiš@ Í ±Ê *±D XìBë MAÛ@Sl+R¸+Æjë†H…PêBûgÈþ«ôàÞùHÒ™|̽31¹¹ó]$ý\- O zÇo'vÚ¬Û¾qÓÃKÂ&D_:Ñ ŠÞ–™vS¿X§m°Ô úÒ‰^9{éþôbÿìÁÒÅ>­úø·ß6Þ½{÷¿³Ü½»ö!€8€èK'zýìdÜPþ¢+5f~OnC]{v½Z­µ®Õ çÏ6q§ Ü£{@ôòXr›ëñZ.Ñoš{¯§öB‰—î+Ãu¶ìºõÚÙfF, úJ‹~N:“Û²½ Ñ'̽¯²Þê¾0Øj»^=¼‡1 ˆ¾²¢¯I‡À–æÍ%ú¤1¯Ì}·éʵ^ÛõÝœÖÑWFôOʶ&6›dçêèɕԒKô)cjÞšïƒ}§õS] \ð¶è#×wT‚Ñõ»µv–ÞíÑKå@bs8*Á•Y£ ý)cö¿·Àg{‡íKøÖán†.xXô E‚ñX@v8òÜYz·wDWCö/SlýÓª0ÑÕ¸¹÷ZÕü…Ô¾Ë Z÷¢:xXôr ”Û—µáo>qÒÚaz÷ʉž'9E5÷¬þ¸ùB­úÑ} _ð¨èJlÄqc§éÝþ}ÂŒYï.Ö y·­zõe¦åÀ›¢Å$znW‡³ÆNÓ»ý'ú¤-ú3U‹6i>S­uÝYF0xQtõM4²#Ø~ÈI[§éÝþýc¶Xäh´ï^­¹UŠ.‰·¨Ð®é¹«Û2˜9ß;MïöŸèUcæwëœýtjÝz9Ì(¯‰~=åîH»lž}³,3ͦoú}§éÝþ]Ý4£ÖþÆÜ=·oÕö2Œ!/чê ͉ œ›ÿhÁx(5Ô%Î)ºÓônŠ>jFk¬ïtÕl_¿÷žbRòý£@ÁÙ¯óOŸý4ýþˆ8p7P¼¢ß17XôÚ;ÀIò¼t¿µµPæˆÖ#=é½Jy0çwsšÞíCѧŒ9imyÕ‘éͧzuë™cÞ•¸ÿž}6Þq;ƒ™ß§éÝþ=ü¹1S5ÖûÛÓ¯õ á3àÑÈÎÔÎ6IK¼Ø=ºÓônžÑCãfòCg×îÉ;õa­H`¯ˆ~I‚©óõ£"‡sŠî4½Û‡¢Wš‰¯­-Ÿ:îòlµ®½Ìå;xCôŠ€$§ã7”:ÉjqšÞíCÑÕ„ýt‹õµó>»Osù^]=$òøˆjÙ(²ÕAk‡éÝ~<£Ošqõ¦õ¦‹N›jÝÏì;xBô ÇD•öõùf'­¦wûñŒ>eÌß¾°jžwÓí•V]Mð;xAtj[Wˆÿú€³ÖÎÒ»ý(úsÆL½ºßzÛU¿{ë¸Qoˆ¾ øBt5nÖwﻪõyÂäÑWè£fT}gÕ¼à®çÄs¶ÓLÉ¢¯Ñ'ÌMÕ¸ß:é¶ï3µºŸÔU@ôU"ú¤kTo¸½v·9Ûª˜|D_¢ÿbÌ/êËzÙuï{tõqF6 új½jÌLªªg¬g]÷ê®Ó½ÅèD÷ü=ú”1Ï)õžõZ^‡h¾¦õ; o@t¯ŸÑ?3fJ©×-ë­¼Ž>é°r¢»+²º´#¼x#\Œ¢'ƒ`•zÅz/¿ƒ„†1VJtwE7liŠl £è£‰iwõ•µP¹ELÏŠî®ÈâC]£Ô¡ˆºúu5+Q úrÍU‘EûÇ eèÓ÷—u)ÑC'ƒ`•úÚa¹Å…ènÐu] uD_>\Y äRr'L—U-²3z:V}ºÅúWAÇÛ[­û›눾l¸+²Øž=”5Å(zU*V¹,Ù2ϵÁžV}•U }ÙpWd±SJ’Û ü¹(Ïè© X¥Ü–l™kú•Z}žÊˆ¾lGsUd±\*ÿ™Øö_5Õ“f,ùlâÕ-.K¶Ìå Á°ˆ¾Œ¸*²Ú)'>Rª- »ŠSôt¬R­ =æQ­ œAôåÂ]‘ÅŠv ”FíßUœ¢§ƒ`•úÞuÉ–9„u/Ó}¹pWdqäz{0¶½XC`g‚`ó*Ù’MÓ€®¦„ ¢û‰ž‚Uy•lÉþ‰íjÐý”eCtD÷žèé X•_É–lö´êÁ0CÑÝk¢Oó—äN^%[æp¥VeÈ#:¢{MôÏÒA°ù–lÉæ”ÖTpAtD÷šèÓA°y—lɾO¿ÆÔ;¢#º÷DŸ‚Í»dKMýºüDGt‰>«Ôûy–lÉ¢»ZŸ&êÑÝ[¢Oš±§R{y—lÉâx­fØ#:¢{Jô¿OÁP²%‹ËLÈ!:¢{LôÐtl¢dKþË>gty¥¥ѽ%úLl²dËKrô¦~]G„¢ÿ‘lž^3nËŸì×ð¹h0Þ†è³LLÁT²%“½ÕzätD_Aѯ'ž8„è3TMšñi'OZÏ4.ÍñÏ’œŽè+*z©”Œt„}–)cþšÞ-¨dK&Gu-k½#úʉw·ÄDˆÞhÌÿ¦÷¶ìó}4Ÿ&nÑWPôXîÕÞ‹Lt5>3§Þ.pÙçûèjЧIdCô?PôŠ’x0Ú—Zìñ‡cñ@¤½¯"-úŽäÚ=v«ëv«@´ïvÊÓÎh ¶1¹hìKRv¨>xâ£ÍòxKg,x±M…6·ã%Ûü+úèìlÜó5ÖKõŽ×R:Ñÿ@ÑKã«iOTRì‰_ŒÛ/C)Ñ¿=”udz[•Ä%K·úw@"í?$E/ ŠD:6KOLbön[§íÏvúWôÿÌÁ¾ìóý¼Ãm:¢«ã» ¥kÑ¥Þ¾ ÿ!Yš¡\‚‰ ö­)˼tO·ú1 (õs@¾íP¡¶ ÜHˆø?{çÅqÅñ±ØîcíòÚx¹åŽÃ6ÆN®œ- èή8øÙ ÎçˆâH4FêDЈ‹S’„JÓ0NU ‘l?¤ŠR!UUJ0`À¦–Ò"µj"!UêÿˆúWwf–»Ý½³q|;>zû¾ÿœ÷Íî1úÜ̼ù¾æŠrúSñ"’H‚¦=òSïèk zêHº¡»Rí%·úàÇe:‚Þ!笓S~~vÑÒL°€;é…ôI~W!Õð˜ÝU ¡„:/å`~OÀ(½ŒÒ_„ý K6®·VúÒµNl[)_Æ·éÞýåËksÔ¡3S€'|­M“r^ };Açw•w43ô@ù=ÍôãI©Æ$”,èé#éÄÛç”tc™~À5º˜5:/Åp–&Ú-HÖ@&ès_F†øÏ1lŸ5@˜ßSʦŸf½—Å… úWÊ¿Sßʵd‹M{Ñ…Azut½,D³ìÃÑLЫS ×j>ô¤õ{ З:èº5ç†ísZëäµX{A ú @×£?Ñé@wŽèžI)uá‚í³5³I> èbA7Ý•ì¢x:ЭkôzO‚~\Qþ’ºpÅö9­ X§ A ú3?¦ôN:©†ùìbøž}ù=K6ÎÛç´®`õ]0è~tú é.:Ÿôk* ©Ð(Ì^Ýr$¸eûœÒfÜ ‹ ‹^£÷ÔDúT(¥oÓ¦HxtýÓrÕŧ‚ÞДjhHè¶¾Hm’?ßÏCq6Ô{tg6Îuë8S'å¬èà!Ð/gýö© “® ©oò‹î"sõÞhoa3÷âbˆú-SÿbžÝ™[î¶u\jòþ92áÐý¯ý Wýõé wÁ0Åï€ö€$ùXíSÐm-¤  a6y_jŒÏ0ñèK• [6Îuë8Sgä5h‰ktW×ètF¾k±*A1!ó@­ÔɺÇì=º­åº÷ ©õ:{½6l~G›fæ^ˆ ëÇÙ8òŽ$ýH@Ïô£h‰ » :-Ê õ5hÓmr=|g\”ÕIµ´øûø3èóÓrÉš:l4 oè­¯;²qä-é#]ëØ>ïºË “¦âUë+ãUw”ú´hù gË YiäXFéóu‘`(RO<:™pdãÜ·Ž3õ+yb ‹Ö(ìšÁñèÎlµŽ»)¢oëÉGuäA¤È0¥a‚žeí|Ä™`ǵq|¹@Щúb„Œ,ß=‹Ž+Ê/ì‘÷¥­½Bz÷9î„EÐÅõ£Ôæx‚åAÏ¢ÌlÜ–ÕÒU!½ÛÜ‚;ataZWÕçÓš;›‚žUÙ8rJÚ'¦{çeK· èϼ ôŒl¹+Õ^Ó¿“òZ|™Ž #èù=3×[+À~‚iç&ù ¢ #èsº~ #G¶ °Žã:‡/Ót=/#z«âÌÆ‘[Òê7Ät_¦#èz~@Ï’kÝ*½/¨‡×ÈAŸ{Ð3³qä]!öL§å•XJAGÐçtýˆ2æÈƉ²Ÿ Â“é:‚ž—=K6NýžLGÐg¯*Óäq ™‡Ú¬Š²Ç½úžÌlùDŒý›A ȘCÐçt½Jk@ÐMefã¨ýÄ¢:Ù‡[tA ×UUØ €†lqO‚þPÏ(D%È~‚ýÈîÅÃ-ºÐ3d‚Žktª#ÊØagL”ýÕæù4‚ #ès :Ý÷Š3(Ê~‚iæãôœ@/ê¢E‘ùTÝR.™¯Å›ºâš/Ú“ 5بêRÎSÍZhY›WGô=ŠòŸŒ (û ö_sTð#"úlAÿ§ Ááð²ŠÖrÉ è¢ ø˜1¤ŸœMT'c&èÏiì3»ïQгeãȇ¢ì'(è˜CÐsý*ÜH½]ƒÛŽrÉ èeÐ0nòÁs©©;‹Ç‚П þAæõîIÐ*㫜1aöL{q‚>kЫá1»¨„PÂ^.™]Ã+#÷,¼c}Y¥% •Þ]_ªŒeVºÚ'Ê~‚j3îCÐg z@¾Ì¡Í^.™] Ѷ'+C+èq³–r,¦{tDÏ–#W¥Ú-âzŠûã ôÞíÏ窻S‚>Àܱù¬­\2ºMð%Ï>p‚®™? OUÁ‚¾çõ,Ù8qöl1€çU ôw¤œujJÐë@5¯"Ðc+—l&ÝŠ@Ý5b}¦©«è ÐÉ„òufp»ô¦À®âyÕ‚žº_}1WížÙˆn+—œÚꚨ¿Q0ߺ`Òë ?TÆ_ÊÞ”VïØ×ÓXI×è9¯Ñëíå’ÐC¼õ6Ô[§îÍæ½½±Ì« /UÆþž\þCéE}ݶýãôÙ€NªéXmhøörÉèn€%42 j€>{z§iõ™¶ÂbAƒ~@Q>ÍŒ~$½%²³ÇÐ?AŸè×T °Š©eŽrÉ èF(5H_—doÓThñóøFóšE½zk¶½qäqöTëÉ'‘ý»ƒN©àë Ó|®µ\2:j¼DƒÐÑÚ;̵û}ú˜ÑèÙqDÿi¶ly[úDdoßÃzú¬@'uóÃj¸zYÊ%s cÅͪ_ÀÞ¯M6j¾ O’t“]a5´°ŽxtšûqfTä6ª“ò!¬ç€ »£éË%'0èP&þ˜9Î߈ìnÇ~ù’‚ ç¤™•KFй(ÊkYÂÏ <ÂFu-(ô5³rÉ:Wk¶½q¬‚r«Èþ¾Ü‚[Þôÿý•KFÐMýKù:ËŽÔ-«¥[B;¼A^ƒ¯Øôœ4£rɺ¹ÿ2þq–ø)‘GØÛò~YAП-òˆþeâçYÂâ*(›zO–O ,:‚>G W”²„Åa£º‚%Ót‚ÞÐ_£†wÙÔÅv…ÕPòš0Ð§ÈÆ >Âfhç~ùÒ‚ {ô†8h%>ðY7ðÔùXLm:ÍÆ­Ê¾)¬‚òá+6Ý› '!Ò@]М6JÕã4è­[è¿TÆ/f >ÂFð‚îQÐ'!HÖùã¾çÊb%Ð#týUåÞ+Ùaû{çþÕyÆñ×™ã>yAëx´¬»‹!DE«1d½D¨T%"$ï¦(V+^R/]/•FMŒ‰÷4ÑÄx0jHZmbu4Vgˆ,kcËTÇð_dòKêyÏ.ížs6‘÷í9ðýÎÈîìó:ì»{><ç9ç¹0³«n±ô^zÅ>¹šxõ¬Ð]Ê1«bµ·2<úež8H—\Â&þ|íÆ-6€Þû@Hÿ0¯Q #Dyt‘æÑYÖbÞ–Ð ¹„¡Š  '¯gèØýì@¨°1–ÞÕ1±¥¾/ô¹Ä±º¿RT± 나Û´ ìœtè9ËåBÔ‘¼¡Ì±¢õ|`ˆ,ÐÅÕ¸)‰^?"¹„™UlÜГ}KÈ?°H§§ÄÓibËW±^ï"sš8^"jQô?Q¨ÒE ‡èf쌶s/»¥Eä7vTñˆI}ÞNôºì6†AÊý{€Naƒäk:×ubK.å ONdzöjÃ\¢9 Œ ˆ‹]5¤‡ÓsÓ©;Qü¾šN7ØŽ÷÷‹iqÿS3?c`g¥æüðß;·,JhX!¹„ÍÐ4ŠèÉ‚n2Ð(NÑ»LlÉ]ÛûQ!U¯äÓ6'>˜¥‘Âfš>.‹Ñõ ?¨ ÌÜŒÒ: Ý”æÑÏ[\%lµ’¿>4ŠèÉ‚^h>føé~—‰-†¯ýÍëÖ}("bàXÓ×JÝ8›¯¡ïáÕ€è8u\SG3ˆm¢zi ³Å¼-áH¹SØbºà+[fz Ç™K¥»]ú»Î\L] e„©” ¢cb^Cj¡) ¸ ôpÇŸãí¯µÿqz^§“Ò@ÿo};¡a³ä6Æ‚Ó&ùN€žèMíl7v™ØÂôPúRçjdEÆÉðRêÐ ô-n=3>ë±ÓíµôÇF>‘ú~Þ¼3¡áŠ6®\öxY3=)ÐëbO*hpWÎRI#=ÍÒ¨ºAÏ7¯Ëu*Qw!èÇÌ« bÐDÇÉFˆb /3tz$ ôë‰ Ø«­m•ý¢0½G¾mB-ÙozŒŠJ»Ll,«6ÂÞ¿P¸¥¯æµ§–Ž™˜îFÐûÄS`S;¥ÀfÓÌÇo(! ômVWãØFÙ%l†¦#k¦~~É“‚ίZ€®—Æëÿkb ›HE¡táë Ìè·ŠêÍ [wÉÿÀ o¿è8«¬Žµ4çê7ujj`ìïãÔDèì×¼mtBÚ¶Rúƒ¬™žtê~yÔ“jƒèTo~×/Xî2±…±°nvoŸC$ÒâØ}?U?ÏXIžðïn}iù# ™ayªÈúaìœN¡HQUP"èWyôFBCV±vDú3ãU£'£‡ýz}˜bãÓºLlaudßâU"ÆÄXZTéNÐÙñº=ïDZ+ qÐYîOòõÀÀ4‡ÿùd åÍG[ik³¤‡ÈšèI€ž[Ê+ˆ_“î:±…èߢ±&¦äèþÈ áÞ] úד>Šó³‰-ë4m¹ô7?·Ì·Üt'Ðåÿ’žú†%lb’Ã[òßý>_zÍt€.t¶‰·®Jl™,y’ƒ)ôšè]è{y4qÊ [&{’ƒ©Ó˜˜Ðº|Ð×ð{¯X˜>ÒæËûé»}Ÿƒ€Ð%ƒ~˜ó¦[²'9˜ú½Ï7èôÿ³z<è¢T┓„‚|€@èrAlŸZ˜æ+Hƒ5a1¡  tÉ ïáÑ—,LwT¤ÁŠ MH„è]2èóxËx«ÓúbíK;˜¹‰° Ký<ç­l‡´µ*¶pÆ7 C:@— :{™·Y¤ÌˆI;äï 8· C:@— ú?yëN+Ûji°æÐÅYÀ t™ ïçÍV)3l²V‘@—ºH™ùÔnÁm£²=ýÁw}"!€.t‘2sÔξU›]«Ð¥£O$Ðe€~•GÏÚÙËÇiS¶)´~†ºЇòæ_ØÂµYûHÙ¦Ðúèr@]fÞ´[ðWmÜ2e»úÜ·.èݺè2ó†í‚bm²J—~лt‘23ÞvÁ[ÚjuÛ:囀i@ï~Ðwñè/mìдʶµp;¦9@]èóxKßU¶+V«]¾¤ IDATÎ$tÆ7Ó €Þí ‹ÁL;mW¨¼•.\úin@ïnÐÅ`¦‘¶ Ô gz š €.ôyôû*o¥1  è2@ÿ‚ßë;Åv…Ò[épé@—úaÎ/ýÙv…Ò[ébæâp@ïfгó¶Wì—(½•Î0sò蕪²3ãòèìç¼u½ý ¥·Òƒ³àÒ!׃þ ‚:ä Ð÷ðæWíƒt¥Uépé@¯#½ºfX\Þýº¤ß¶_¢ôV:Æ(Cî=‡úy,F7[Á.²_¢´*c”!÷ƒ®ç1¯Î>q Ò•ÞJ7Ç(Ã¥C®=?ä=Ð÷ò諣헨½•—¹ô*ñèY¢®åkû5S6x‡K‡Üúüð}¯ytÑ Ö!Hg‡´ÕY ?ï ¾2¸tÈÅ •BTQ“G@u-'–¨lðsé¯ã¨ƒÜ :‘ç­`‚tÅ·Ò…KŸ‹Ãr-èÏt–W@ÿ‚7÷ý—õ·ÒÙ “àÒ!ƒ®JÝ ºh뤗«›•nê \:änÐ+KÎÕœSé!ÐE]‹S®rVº¡à´I¾×pÜA®=X“gÆçš g@u-ŽAºÂYépéëAO! †ˆæxôýF~ÃÉíkGT~äpé‹A¿KþaÆcÆ?ñ 裌 ý¨Ó¢# g¥Ã¥Cî½€fÄŸ¥ÑÏ€.êZ>tZ´RÓîÀ¥C](ÿ84ÏÏ÷ èb^Ë‹NA:[¡ÍWú¡Ã¥C®]¯ü4¢{ô]<ꤳ[Úðr¸t  7j¿¯VðGu-ŽAzílm«ÒOý4\:äRЫ¨)þ¬‰žòèÛxA:Û¨Pú©Ã¥Cn½Nß•T²Ê’ïHïãÐÙ&Þæ¤/WÙ$.r1èì[ˆÌß0¾7™ ]í¼E¸tÈÅ ³kÙ~sö#æ%Ð×Aú"ÇU“µÙS»ôí qôAn±Œ“¹'3$¿¡îý²¤;¦»³eJç-Â¥C®]…ºô¬—y›cº»ê&‘pé AÏÌL?:ÉC ‹æŽ5éÊ›DÂ¥Cîèiv˜CUƒô,µM".¼C®}ذ\ñ£“¼ºªê¤³CŠ+[àÒ!Äèݤ/N*H_§i J‡z=è¹¥íÏÒ4z tÑ|©»»êʸtÈ wÔ¦6PÀS ‹æÎAº¨lù Q:Ô‹AÏkˆ²ÇÆt|ù=ºh>±ÞyYípÅ•-pé»@?é§®*òèSE>Åyêʸtè?ìmpTÕÇðÞ}z‘ayYvÝd3KÅ@JD &ŠÒdCÞ佈҂DPäMAQ¡”¨ !"X±¼:P;RF>Д¶Lë´éLg:Óé'‡ï½÷î&DgÏM»çìÝüÿs7;ÏÉlrÏ/ÿûœ—çdÙ£û½ßÁÜ_Öî)Ðé„•¤ŸI¦|g ,Ê.ÐC‰D‚×&’ÊðØ €¾ÙJÒgJÄ©ÞÙ‚R3Pvn«î°š”ÐG‰ÆÏvHÄ)>³–e!èD7†ÚUãìmòèv…HS"IŸVb\…¥C=ôk¶§Ò'p¤¯Ç@·+Dš$âÔžÙK‡²ôJæ 6èÕ¥Þª0ck“•¤”ˆS}f ,Ê:Ð ùRêÕ%ä1ÐÏYIú‰¸èJµg¶$-‡«BYz°8œzŽÇ=ú:;I_*¸Û˜…¥C=tsçK/ÕuOꨕ¤o‘ˆ[\b\†¥C=ôòκî^ªëÞ‘¤ÿÖ+xÀX£úÀÒ¡l½ç§^íåz¯>C4šóeN{>­ºÐŒs^:,ÊÐ'¸tp{Uûà"´{ tûs«D`…òB3DG|S¦¢#BY:õ¤Öº<7nãðsºL òB3ÈÒ¡ìªòkÌåu-ä=зYIúA™@õ…f`éPvn«5œé”Ðgˆ9fÔgW^h†hò0ßkè‰Pö€Þ2°šÂ7¼úq;I?/©ú夥ƒ¥CÙzu¹]èyb OÂ{ [Iú?eêIi8B–eèùÌ~?Óhæ ÞÝNÒ!¹ÝX¦ü.¼K‡²ôY<–(c¢¯ã|Å{ ÛIºL=)¢õ†±–õTÐKy4‘ :Ur³÷@w’ô3R¡#ÔÇÁÒ¡l=£èTñèN’>S*ò%åuŸ‰¦óAg„²t^'èÍ‚n'é;¤"Õ×}NZúdôFH?è±@k ôåÝNÒ¥¶ªÚuŸÕÇÁÒ¡ì½×%A×s‚î$é[¤B×+¯û K‡²ô{SK·WâÀD‚î$écåBG?U}B°t(+@§^ÞÔâ$é•Ûªj×}V?G¯ø„¥CúA§–º˜…y¼¾< º“¤o• ýå—ÔgéS|o¢?BúA·ÔÚ4&Ó(c ;IúÛr±êaKZú#èP6€®@ÝJÒÿhî— ]¨c8îIX:¤ôÝ!O‚n'éóî“‹]¦~8ŽèyX:¤t¾CžÝJÒ?3¿”‹Õ2gYúè‘6Ðï½Cž}ÿ’\«g8–!Gÿ?訕¤ïŒÕ1‚¥CYºw+Ì8Úd%é’«`õ ÇY–~?,Ò º§+ÌXŠžsæK®‚Õ²:βô}¢OBZA÷v…'Io´’tÉU°z†ãèCX:¤tW˜I%éÿ]kǩ߬JOÃÒ!½ {¼ÂL*IošŸHëØ¬êXz½Òº×+ÌØ:'–ï«KzjÇY–>Î÷1z%¤t¯W˜±õ\£ø³¹J6ZÇpÑû¾WCè–6н^aÆÑx+I—«KNí8åG9P–iÝëfmãkÌ ’Á:Žr€¥CšA÷|…[£Dã~s¤lôvcYTýybœïôKH螯0c«b¹•¤ï‘5ÌõNVµt–iÝU…™1cþâUßM?—E‡®„5‚N'D›l™Òr²*,Ò :ÉW˜S˼ ‡wy¯ ˆ¹ÖúSQÖúNqt‰l™ûdÕ’iîÉIß»°tH'è²ZË¥c(QÏå] ÎçX/¢Yî§ô—…)yØ"9ÃqÁÒ¡z¨ªÕ¾TåÞü6ýJ÷vŽì³.áZ®î|¯Éïwžù/q™FÐ+房ÉO°Ñ[ÆÊ(,ê1 ‹Ù `i`ÀŒ«­J~‘9×E\ÔùÞ^¾ß@ ÓuÑ6Oò°EKÏÆWnÊc>ß èšrÐ/Yx&áâ‹ùq>”n5vþ½sýœƒï•ò@©”aÐO‰Õ.&ØècŽ»òžï tMH5èü<è‚u­ã`“õøçoÒ4ˆ¥ Â|ãÖ{UU½óbE³ô‚¾Kˆÿ˜{¤ÃO%‹aéPϽ7:yzœ/&ý½0Mƒá\ÃÌsq!æÔDü^­ GÄNlÑIÆnX:Ô3@¯edžïb§iÀœšWów¼ Væxù¬DÓFæk·EÏÊ蝹å™ýÛÄYl´Û˜TK‡zèAv†ßqÜù²‰ýiøïýsÄù.õ\{[ô»ºj@mfà¢ÁÅÍ-1Në¸/ŸÂÒ!Õ xŒ})J¥Oì2Äö}:Ý'ÞrôÞ©ÖܤñÑ>²“tù 6Zc<£ã¾X–þz'¤ô˜“it,uÌéL·üÖ`ܾŽÝχ“ðR4N?;çIï`#úÊ0žÕc韢wBJA¿›ØvXqaÚmª…<Ô¹v^«M $3}m o»™`‹®4¶ë¸1/ÀÒ!Å ÷åHßðÄr.u¾:ÆœnŠl/×;×+©&ÉÜ<ù硊ýh}†˜3]~ÑCÆ¢ãμá{ÝR ºåаþYðáÁws—ånß÷MSK`óº,ÈÁߨ×]à×úsâïò%"‰¦i9 –©=Qçg.¯´ufîßš¶AOØG‰ÉM-ÇØËgC¸¹…¨ÚÏ•zA§ñb³› 6=‡¥ÃÒ!õ ùâBrÝksÑ5‰rÄM149âdãyv*¢!µìÏ‹1§9¡1ó oãgÊ—ˆ¤žr°°tHènµocÌ”œ[KN­—jñRÍK`É©'õ¥i>,ß`„–ú°t(ûAï¾2zÅ1£Fú 6ÒTÖz”€¥CýÐãbÛAé3ØH[ý ½ë;‰ ônê±z‹Yãâä#Mõ'è߸'ÐE!€Þ=íâߦù'ù‹KŒË°t { ôhƒ8µÊœé¢Å〖_,èÝW›8;ÛÜá¢ÁeÃÐQ‚B¯úÞG…^=+œ[ ¯ Ÿ˜æë.ž4-x§aé2Ћ9A´`hî€~\ˆ—÷˜Ó]´Ðµà–©ÝÏ­D¼6w@§£bçHs¿‹º¼ÃÒ!u Ç¸®r8÷~K^}“8qÆMõ {Áû2-÷–)ý"ß.¯ƒ~N4¯qQ}Â9pQË‚÷eéO£›B*@_Ê+Žs ~K^½b¹8çjqœ®KÿÝRº£œÊÑíU°[Ìùn&®%sµÜ¡GaéBÐË.æè÷ˆÕKM󼛇MÞ)|?,Rº¥DåáE‡G'rô]BüÊÝâ8]ÞmK–)=´(î Ä…¼ztµ85Û\â¦ÉÜ㪖[ô,RzæHYiY„Su$< :µ‰ë[]-Ž#zJO…w¢`é2пæÀPûdô‚~çeƒ>CÌ©Øã¦rÑBÃX¯ÇÒô=ž ©½´³¢ëàŒÀ+}]£åæh&[ºJJY–>åItUH èÁâÎÔ¼¸Øû Ûµ`çªrœ¶’R°tH!èþC/›ý9úfq4ìªrœSRê×°t(·A/ŽtÌ«%‚¹àè/ q|¬yÐU›·tͰÁÒ!U ×sÇŠ™‹üƒ=Ú Vl0kîsÓf±¦3”‰Þ„¥Cj@ïå盕 JTÞd¯Ί¶‡ç™g\µY£k† –)¾õ3³óÿÊÐWˆ†¨›cUmý\× ,R:}^°0ý…rt»ÌÌts¾»e~ËtͰY–þ z+¤t¢‚–á-þ@Ê@·ËÌ¸ÜØ¢q† –©]…Ô¾IŒ'—[4ΰÁÒ!€Þ-ëÞv·±Eã¶eéSÑ_!€îVöa‹[Ms««FÚö°ÑdX:л£ë¢–˜³Ý5zÊ¡é7s–ônè”hˆÎ4W¹k´PS•HËÒ‡ÁÒ!€î^ ±ë¼i.u×JÛ6ËÒ‡ÁÒ!€þ_öÎü7Š#‹ã/›î®-ذb <Œñ¯9b0޹쎮°ÇNÀ„#Ü„û>²Ü÷M¬ ¢pl!‚°9Q ‚°b )‘Ø?#Êï;ÕsYŠÝÕÓ<\þ~$Ü­‘zÔÍÔG¯º»Þ{žY!÷E¼ul!Æ*‘é¢k¡^°yMJWU""¤EŸÑCDW/ØnyëØ’à;¦>lnHß! ‚]ש¥!8WˉÑéÞ’Òû°!¤ƒ@E¿ãòšÈ­8—öÅK9"{”!¢»/Øúz궨XnÍ‹!¤3ïÑËBí¸;ñU¢£)¢«l×½ÎÝ#‹,ëG„t`¦èíCß'÷d™"ºÊ`ëí­Û¢b¦u’éçBH‹žùHÀ5aSDWlô©Ç‚RDw-kB:0Rô܇U`£¹yƈ¾M$¯¥ˆb ­åéÀHÑ EVrïŽhgŒè½¤üjè4Ïs÷µliéé XÑߢâÁY:[öªõ0Fô’ñrðÖ)8ÓÒÒA°¢S‡†—èá42Ft:/oÐvÏsw¾ÂÏD»ÒA¢Óƒv骙jå 2HtÕƒÍs1X7-ý&B:0Rt¢h§A¿F>¡g,ºêÁ¦1wgLKÇ]:XôxÙ¹YçúÄÊ-‰¹ûô¨ÇÃ6XV B:0PôȬ\÷=}VÄ$Ñ÷É”˜»ßòzߢ„t¤èm„È,*,Ê¢Â$ÑIy…>ñØÈXÍ ¤ƒàD¿'ÂYª¦{Æ_âA¢Ç–ÉÎ4ÎûÜqÑ B:NôBѳ–&V$:í”#iî4û'¯Ç1.šA©˜èé—ÀR^žI¢×É)KtæîŒµ#¤ÓD}öpwMÈ$ÑUõ ¹»êåÀTi!&z^fÃ{µxºQÝ­>1×ö>wŸÊWi5ÞAP¢WŠÛɽÛâÏF‰®ú'ëÌÝ+Í ¤ƒ D!$~/‹S¼ìwzÁ(ÑUõ ¹»ª4s!˜%:ýB¸ÿþGF‰Nå65w÷¼f†NZ3¹~7tb‰Nßd‡UîZö2Lô}ò"iÍÝk,kׇ~é щ2j{Ôf|B ¢»‹ãtž»3¶gB¿t˜èF&µPrqœÎzwºiÌFHF‰nhR‹b§¼J:¹ªª=Ó.ƾã¤\tC“Zîâ8:3DCøÖÁ"¤ƒ D75©Å ÌjqœF¢/ùŠÇ!¤ƒ D76©EqCž×›»«âq\ë`é4B:H¹èÆ&µ(Èê½¹ûÔ¾u°é õ¢›Ô¢p+ÇiÔw'Öu°‰¾~†0H©èæ&µ(®Ê-¤Ñ›)ç:ØÒþÎ aRÑÍMjQt–Ëbôw¯}U]Vò­ƒ CH)ÝܤÅ)Qï1övï‡ÖXÖûéÀÑ NjQ¨¶ªÔ×>¡qhOk%ÛÏ7Ìé‡R*º¹I-Šm*±åº=m®÷CÿÅW–¢ýSÄ ¥¢›Ô¢Ø$åŠN·Çy?46¯,}îô{ £¤Vôg“è±eòÑ+öbc?´ ¦²…ô­é ¥¢ÇÏÍÈ.Lbžèõ‰-¿Øö¼nDHfˆž_.a èurÊ:Š|dÑ8–3µ%rÔùäLô"T9ë\E/©– ˆªì½Çr¦¶ÐÇé …¢çˆ{&ߣ—7ˆvØöc[cÙR[!ýÆ1H•è¡t2[ô‰²z Ñ^»JãØ©Ý­µl¢¯vœáÈ E¢çå.ú’ù²Žèˆý‘N]Ö„t`€èmD™Ù¢ÓH•”¾Ç¶Ñ8vvu“í7DH©½S^ñf‹¾@Ž/Ñ+ûœàÆlUÚï\ÆH¾EÏvi+Dyaýn¶‰¢Gܤt½ò¼Ùª‘ᎳCø]4ÂȈ^Ÿ”®W~Be«öäû/;G#ËÀ§èk„™¢»Iézå'ˆÞ·¬¶3GH©ºGV0Š~Au[Ô,?A4Ó:É÷¿v !@ô梺-Ro­6¢±EÞêç|ŒÁ ü‰Þ¥Kšú󆊾O® Ý6Þôµ³!ø]ˆ®O=‘3Tt· }«•ÂÆ[€‚!ýsŒfàKô¬¬êÏc*:]Ts÷È{²ÎÁ±y|½U‰N9[£Î÷èÍa›;wŸlÏÑšsöVLêç Ãp½9¸Òu—ÁRÉBÆšRtÆé_Šñ |ˆþj#LV¨b°´Xo,­e¬)E“Ö;§1žÑ[ËÊ8JƒÕ]K0¶K'Zê FH>DïÚcEßäÎÝu—Á&Bzw¾>a„sà½Ä–ÉΤÛÉÁ éùN~³Óí Œhà_ôÚŽ£(ú«É¢Ó90ñ÷–mÏÕ:ü;Æ2‘4º›³#ø}T±º;n7Xt·‘EõªÁºe"óün§Ûh iàOô—„…õâµ sEOÎÝ«4_¥«2‘_²üÝœÍÒÀ—èïŠô/âE‚è^®ø·¹¢'çî;lû[­ÃßîÎXù™8#&`L?¢Š>DJt*k ½—;w×~•N9Czé`g)Æ4ð#zz%E§âLƒEOÎÝÇi¾JW!}ßÙŸvÖ£2ð#z¨íCÑׄ =R?w:FóUz"¤¿ÎÖÌJÑFø='|6)ú€p±Á¢7ÌÝûÚŸè?•5¤£ç"ð'zQQ/z´R´1YôäÜý'ͬtÕÌ1¤G¶¢ç"ð#zmX¦µ÷G}&ƒL=ùÜ]7+·?“깈nÀ‡èÔ13™Ñþ -zrî>Y¯9{H?ŠnÀèT[‘“Ð<·ò>™-zrî>×¶oµÄ¾¥Ÿ/Ñœ}/?èâ=9w§zÞA•5¤Óeg?êD]Ñ¿´; ÂlÑë×»kxçéÔ~Ú¢—wjØ»—'Ì=9w×-ðž`9kHGég /º(ÏÝvj—¸O7[ôÄÜ]Õ™¡*{¯æÌ.à é(ý ôEo/Š•é¿¥ QùÃE¯¯3£2[.µÈ~ u"®èñ.¢øÍÚöB”—zBσè±ú‘ú™-Ìwé¨ ´E§èË"/,Âw2ÈxÑ“5"U‘È¡z_Àüà}©3E¥€žè!DQmÐ'ô\ˆ~Èíͤ2[¶·È>aŠJ]щ6мA­BtZ¡z3é÷[$æåq(*4DÔE5,rMî¦úˆ}rY,±¹dÛ;ôC:cŠJ¢ \‘r“ÚîÕ~ÇÒ ð*zV#Œ.Ê-j£]h†;¤—öwÎ`t½{ôgÁs"zçú¹»Çq¼Õãh*PˆÞ$¤ì¥¶>Çñ„luŽax/¢wé’öø¹Öð0ŽèªÜ©6—ôWÇE[cùÚ¶ ð*º]Ÿz"× D¿&Ç—¨­Çqo³¶m‰ìwöc|¢geõxê‰\+}Ý|Y§¶ã´WÇ©¶-ŒØ® pÞ ~–7ÔfèídUÕ‰í ãCº*ð!züøñV zl¢¬^¢v^ÑNV%ÂÙ/]¥«Ãº¢ç·Š{tZR-¨­v6rû¥ïb¼„SÎ`¤«ˆþÇœ—#Ýíb»¯öw¬µ fó]Á¤Î qÑÿ:9å+µÝ®];Î éË/a3r[Do‚’ñòšÚöžnÑþ’­‚E|—0¹-¢7E²ì3UÙs´Ÿ^ÇZ+/áŸh˜ z$KÇÑíV þcYø.¡t0º«ˆÞD4N–Ÿ ö ý/éid¼ä¶€f‹’N­Eô†òt]»³j‚»–UÃw ÈmÍ]£ðDþÆœPÞŒ7}þb(§‰ÞP~"2Ç®Òÿ–™ÖLÆk@+6œèùå"Ü6]¤÷xê󌶢%‰NëSØèˆ=½·ö—ÔXÖ]Æk¸ìÅBXÐÑËÑÔ«Da>Å+EqôÉÏ‹–%ú5Yí¦° ¦_‚è¤5/Æw ÃÑ·”Ôr_dªf.Ñr1ê‰Ï…[–èëæË‰îÜÝÏ‚wÚP`Ýd¼ôm‰~[¼ìng‰ìÇ?މ-Ktº!v·~¼½c-,ỆIë±"z{ñ_wûHüãâOe-KôXü?{çúÅ•†ñ7©î>Û I9[FÇ‚ƨA"^¢"®2¬º¢(FÝÅ»¸Qƒ—#šx7êŠ$Š—5/åmMU²1V­k™/òe­Úüû윹v2”§Ç3Sçy> ÝSS§æXóóœ>ïó¾ïºÁ+û䞋0ÂB ÝÇ2‚û3ö2ön‹åkM1У6XÞ,}ÍësP›,±N$Œ°Pb@Ïfÿ íÕk¾é-fÕ”j Ó×alÖi}ékâ;LfQ):nÌB‘w€î¾ ÇÕ<,`Ëe .Aþ®]i%Iõï±ÁŠEØxQ©Zy“˜6FX€ž€A=]€>#;¿¹kÐßr€^™\ Gl°^±Û-¹(nãP »®ÌØÖ=Ú”qëG”z[÷¨ V¨¤”ì Þ3ÆmüÖzOÕ’QNY/ã®$v×~«-iK=Я/ Uƒõ~¥ëÿyýaÊ6j‹%Îb&Œ°½§*/áæ×IVš?Þ'±PAh[x-Ïf žJ ÓlóZèâœ~Y`˜ß4m•ÄY4Yøµô¨7c£ÑŒŒóѳ¬*ø÷+мõŽ”‡1Ëz+•@VƒËaãéª2s[æŒ3.â×Ð㫚e¶ù'2¢çùìY¼AÃØôØTܺój°¡PºX›ìÜ–KFéTüÜz\±ÑDô¬ ñ>œÇŠ›É¿2”ÔÒÖwt*ƒ ¥{Eš¶ìÜ–…pÍôž(“J²ã}x¹Y ™,;¸IOg•) z4”.Ò´% McµÏ%Nã{¸fzäI‚Þ`Åýtó>Oþ{¡ØZªƒ­(Å«DŠœh}ªMÞ opÍôžÈgµ†AŸ`%ÒÓ’| ÇBé‡Wè{Æ©•k„…k ÷@i|]æ gU±4µ@¿¥]Ö7‹ $×ë=cC­€G-+ê—ÎÚ˯0k’Z ÓìPcU¢Ÿ„ÒÒ¹VfßôQè=PFvØïbõ"Å@_ÉJ§ÍB¦É}[è>jÍô¬é•¾æùUí¤èe Ì¡«=B¦ÊY+µÈ;jÍôž©uù˜D¡dö™?„Ÿsëô‘"ÉO5í©Ä§tÔšèñÔûÉ›ùBI ú7áïD‚¦É®™Š¡Æüæzwb,½oUAxç­U—Š ´[®k梱 šzwªâgq}ÚZÕýA$³…– Uš ºf$–ËjDb:@ï^þ~Û-Ƭ÷«³½¾Æ\z̲BÈË]3'$Nšz|Mø½ÈÃXáÕ®…3[x¥™:!ÛÉÏÚ0‰µfèSþ¥ IDAT6ÓzôKn2ÝTmÚkšß„®ëB>XÚ°QÛ&q"sv!1 Ç×ò!EJ‚ž³ÕܾôÁòZ3û(Ó„Øz¼å|H1c¬äl‹z ÓsA¸­ÒM]!ôÆjmD޼‰ Äл՘«|Óž™6=±_(YAô[$^<î;¡¡vkRClÇbè¯Ö åž¼^ý…’tºfÞ _ýªë7…†Z,5Ä6­Ñh ¿BŒMÒü¾PÒ‚>*Rh†¼GÄR[bƒ’ô„>˜§è¶ã8ÁÔé!¶&£Yl]®’tÛqœ`jK2„ØÅÐ;?žêÇ_lRrE·Çj¢ÐC©Yl±ô®Ïó›”\ÑéQô8®à´P‰÷€VkkËäͤb¨q ¿}€ÞA¹¹Ãù‹Mj‚;ŽÎV嵟wHœÊEŠèxFÕæ=v'š­JtP›7WÞTP( ¿BÃgD®²ªÛÔÝvG§D—ô¹ódŠôÎ4Œøõô.Ô·G®Zc=R}çºp²j°k‹à’þ¹6v·Ä¹ÜG/6€ÞAÇÄòÆ„Ô\Î,EA·%«  àíUeZÞÎ2áçÐíj±˜SŪ‚KVåKú)±ÁVɵ¼B/6€ÞAƒ˜{&¶« :ý©Ç± .é²-ïãûøýt»¼~¿Ÿm÷‡”à´–ä=V;ŽÖˆõV ¨vžvPâ\þË;@ï¬Ê«oæ %7èõ5æƒØ’~ZpIÿHîyÜmXÞz·š¤,è´ÏÜšYÒWˆ.é9kµÕ9òæË;@ïBÍ}W¾Çµ½h>Sô»¦9ʽ%ý[M{,q2_C€îPÿÂØqœ¥.èt/ÒYÕ%ŸÇIôÇM-5.€îÐÛ,»ò,›ø¯´BÖ§UaЙËîD®G /éµÃdžÇyoÀòÐ;¨„&ò]!j-æWÊ‚^ö7s¿‹Kú©çqÞcÆTyèvY…—<XÌgÄܰ ‚NGc†wñ%Ý›³V¦?Î;gª¼t‡<Åœz³¯ …*ƒ~'VÂ%]²?n ÎãºC…œîwÙï×"Ê Û ï.ØãèS©ùª¥(AÐíÊcÕDÓYQ–/_iÐ÷F›¥íq‚Žwž¯ºXâl>Æy@·ë9³zûýù,÷I¥ºI-!}h^³/éS‡û\j‹&œÇt§V260œÞ’¡6èëÍuw"×âyé¼E“Ìúq8èNeTþÿ?›Í2ÿBjƒ^¶À<½Y*Zj&X?îg‰K:ÎãzØ?±½ÝasaI§Rû9TÀÐß¼Rt{„M¼z\°ŸÃy‰ÓÁy@êýNRtG„­àÑïDO¥&·x8èÄ:IuÐí6ïŸDÛ¶´Mjr òU:×àNRtú0–ÃÆÛ¶Œ¯VjñgúÒ˜…ó8€ŽgôNZd.»½9 ¯8,:à©Áô©¥¨ÐcjÉ(§¬—=˜Ã¶/z“U'Ø/‚ÁôäÍõãzTå%üé|’•æè¼iK}ôf®ßpÓXí¤Äù4ãQ? sõfÌãa4š±âÝ^%’¼›õsÂ#žÔÆn’7Ÿ%èçЃªf™mþ‰Œèy>{ÐíU"‰^èú¯ÂOR3Óé{c×àЩˆ×•á ÓtÖÐéú2›i†¾Ó7']%µ“ò´FôWèeú( :•dt¢Gæ½ØÍWº¾Gt@ïA©NØÏƃ€îI‚Þ`t§i†è½N´Ý𬗏y¿` ­ʃî³ZàO°J:9M3¼¨Ô)áÿ-µ¬TÅP$·tJc•!гªX@§¦7*Pð2ïójåMÉ-=Ø;¹¨_:k/¿Â¬I= œ­6Ó Mq!·…—•Ú&oB<¹ÁtÕA§ŒìHŸ–^й˜5;cw§\0ÂÒošöPÞ„æìB0 SK¥/€y~U;ô êí•f¨ Nÿ@|L¹il‡Lè\­ËÇ$ú ¥è´ßViÆ#,Oc“XÁt€n_Ú‹zP;í>Xn„Ý,NÉc™›wïLÓ•½9÷íʶp.‹ÿ¬ÅzH_Û}°ô“ ®¢ó27ïÞK¨©0èå?„+ >œW—0æè!Ýuø`é² ®É›÷ d¦« úh7\ î§Ö•âû´ô°ÙŠÇvÃ5Ã:H¢LÖ”xÛEСèË;  ÛUßaIwÇòÎ뼟6'žÆ†Í»b ¿Q¥ ètÔ¬©·ß»cyçMšäuXZjÜÆæ tç’~Ô~_pÚ•ó¸œÚä[Ò&õ™ ;´ßÞ[•‚U¥\8óþu˜ÌìÔ èÝ©5Î%Ý¥ó8žšþXÚ¤*J&lÞ:@ïfI?¼ÂÏn‘gÃæ ôNKúÇîøã$ä.`óÐz·KzA+ùªôíXí$6ï@OÖ%ý…®pcà2clؼt€Þý’þöÎö©ªë ã;í>{÷Œu:%Í®´ÞN®¨¤‚FEåB y‹Q”, DAAT4A“ˆ¢€Z„¡ˆ“Œ£0â[ÌÔN«ÉSgt¦Mï>—×û:ÓY9{ê~ÖïxÎñîÙ8?Î^k=k-¶œbê"cþ4ä† ›è=ä•>7ð^GÒ?ޱÝ>M( !›è=ö+ý´e½ øâ¿qÞ¢óð~”t€ý•î I¦«&úêØ†Q° ÐzÈ+}N›‡*™~»‘×7èÚUn–8n3 O[h›“Lï øæ¶ Þ¬m[ù™â8è}ÚÎ…Ô¥³ônŠùªkÑ)…=ˆV‘ Ï}¥Ÿœ{e²¶P|³÷ˆF7]µŠDŸw€ЧmÁÜîq[lS(aY‘N7=¿U|R:@Ÿ2ÿ!ûÌÜ+9½Öe’Ã{N7½Cš:@Ÿe÷æŽm Øc"%,[¯ÑMO>/²0a ôéWzÈØ¦”°$m¥ôºé; Ä0Xè}ʶÙ;{Âï$_­ÕM¿"ÄEÀÐúÔ{÷¦ý<äÒªÃ{›ÆÆRž~”¦t€>cãsç¥SÞU6]ÛäÅ2”¦t€>ËÆì1oøá†‘rîkÓµ¯‹¨nè}Æ>µíñêðÞPϵզ‹ä:@Ÿ²çöMïuxßïãƒ^MûÊ…@ ô»³ÓÞÇÂï4‡÷û\_ ¹üVqÀt€>igìCB.=&Ò¼«rü©®Ý™GA @èA í@Á”æ¦`•ùky‰.ÝŒgD¬CŽ  ôI;Z®êtn¢ißP™­O7S–Š@èSv`khm c·ˆºÍ8å-G¼š^éȱt€>cáµ-N·™ šo?Îùz];CŽ  ôGúp˜–%7Y{rh¾¾™g<Ñ´³¼vÑŽ@èA·í¥¡×ºŠ­åD¿Gjõ^Ü„:6€Чm,\5ã9mY'h\e»­ig„øØt€îXO¸j†y®R äXO_@®Sš:@Ÿ²káªG GÔ"ý¸>…\á:Ha:@Ÿ´ÑŠÐ&ïÌ™°J”ccg9¿¯ikù™è Ðú¤³+®‡]ÜN–cóê+Yí„ ôIó kçäØzsh¾¿¨‘gWjrÓGÐn ôÉWî¶ð^3NŽí*‘ˆt OÓ¤…-[‡yl O’!ÅÆØ ²:6ö$ƒ—{õìí(Üt€Ð'-RŠy[U·ˆhÑz‡›Ðú” ™£ìXz7™–5sþ>7Ùt€Е º¨¬ƒÎMW¡÷}n:²é +»6ÎAÙi:7ýv½6Õ{ÀMGc)€Еùo†õ~V¶œÎMßÍë5õ…½á- m©moc‘Üô^*7½ÆÇkýzÜô~‘ŠÚt€ЕE’¼;ÙôËT-™îkK²f‰vÌXè9’÷ñ8•M§½«yÊš’lù­bt€°ãql»e=¦Z¢YÛH¶+h!кcQâqÉVuÑÞAm­¥†Dk>è݉Çí‹p¹®×êN'Z¢!MW%[^:½t€îصHú8Æ&ª¨ZÈ1VÙȳõ¤Ów¤Š”·t€îèãÎDº¾…N7£*ÙôŒYõ@7ÐzÐöEªWeŽnæÕ5>]5«h к2U¯IÓ’ÞdU×Q-ò4ƒjÎxú1Ó te={ç.*««¦ È©v‘z„3…í"«  ú²ORÞÞµaεE?IIHZýžy ³SöÞ;‘®OT‘²1öˆó³Zv· 9cA_V*ç%ɤE³®½— K“¤ÜeèþÓéN!™BN5†}¤e{3ôå;ËØæäÚ™ßôåû›û&QþÌ8нQ’éjn:ÑôµJ¹.‰r†‚þ½\x)ð‘\*gêóå*çóŸ²Ô8Ðdúh¤ëÉV1UÉ*óò -gT@ 9Aÿ‡|ÃùüH¾5}m•ü(è©KùKó@?¶Õ~ñFΫ—,ôÞP«I ›Û…œ‰ ÿ\þÛùü«Lš¾¶è§ÁÐÜ·R&›:ÛfÛãotU[Md¡÷ÛiÜ÷…ŽííHEg)AO‘¿p>ß”òeè½ùFÝ{±2=`ÏCz^¢Eö~4%«æ¾P~ô@¥ü>äÖ†ÄÉ#¼i VDVÂ:¡÷ídËT6ò’ý:öwAˆ ÀÉ0Ð¥œÌ«%ÈEs﬘'¿ÜòôË϶×K_ÑŸô¾h‡wUœ~šjÏîlž­…ôa´z7ô„h ¯X%—ü%ôéßÍŸm¯}EÒÞ±h‡wÏU«Š¬ …*pÑRÊ–w=äL=iæè¾föõ7¿”KÅù·¯êѱëQïéMVqÙ:m%¼Qé…Y" ¡w£@_;Œ»4ëòšùöß™± ³{¶½4ò:Ê$›*ek¬Ô°¿M½ú¯ä¯ÏÙé5Æþ³D–n`ƒýð®’lÝ9d }¡‰tz÷€)s@ÿ³üÀùü—|gÖJIrÕ%f2è1諭e ’ôz¤_¢L™úk“Øy³$°+Räꯘ٠«Ã{”È»êMWÉÆžøôLp9(2¡z7tö–\}‰mÞ,jùæõßþü‘\²fYÐ<Æ‚îݹœ²-–µ˜ý¿“žÜ¾°&þû™ø‡$¹ð5õ—yò}ƾJ”ÓöÒXÐÙh4Í{À>¤¬Yõ<ÑszÏíC’Í ÐÙ¥OR–¼Ì­9 ÿVteÛ"Nc ²¹˜P8|§k ½l’lþ¿Û+:{¥`U{¯V§ëz§{6 ÉÐú±CQºÍ,}ÀªzFúN×eS ï"ÉÐ Ûö‚h÷rº­â º¥T>]ƒFîŠ@k)€n<è줽·'Ú½º=Vu)é:t’  tÿÍÈ}Þƒ¤÷ÒM_ XM‰ŽZ6ÏÒéÝxÐUŸ÷3QovU[½„¤·Hw¿EÞˆhEÍ*@7t¶ º@ޱŽjkO!éÙ¼¤Æõ"к#z÷V1)éû³¹ÏýŽ‘eYbÝàÐ]5…šccl¢˜²”ínä÷]ßâ¦TÑá @7t•c;ýî³*RÒ+ëy†û“ò D_.èFƒÎNÙ;—ºFzQ-çë]ßâÑV1‰@7tÿJûбè·Ó’Þ0Èùç^·÷øu¦¸‹é‹ÝhÐÙõ­öÆè= %Ý_Îy¹ëóÓ/1 1,@7ô8n:5éÞ³œ6¸½ÇN!>cÝhÐÙɘnºC:a–MÍOOs½ÅA!n2€n4è7=F6ÝñÓ)óéìx†û%.ž!ÈÞºá +7},–ßüŒV9ÞúÜ—Ã&ß™ï3€n2èl|§}2ÖýŤºwV“Í}O]Þcވȼκɠ³SÑK96 °jÕɵ¸MúyÑ ÒºÑ {7Úwb=ÐQmUß"\°(ó³^w7™Û‡R6€n6誱Ôá1î{ºz­âg„ 6áüˆËi¶Â>QҺɠ³ž ûaÌ7l׫êá‚ÞÏ9O«tw“eí¢Ý޺ɠ«±éçb>P×mU¦\ñx†ëÁ÷²,‘ Һɠ+ÝÌxÌrš,ëO”+>)q=øÒºé ûÇâäXúeËÚN©ßßÈ3¹»Ë  › º;ó‰äå–u5pIU·ZÞÒ:@wÑz*b²)ÛnY9”Ljf×Cr  ºÈv2Î#[,ÚÖ’Á³k@:@è.Ú)ÛÞç‘UV/¥tÆ Éé »gÞ‡öÞ¥qž™¨¶ŠP.º»žó³~—I‡r  :;°ÒÞz'Î3J:³…rÑÛG8¯uÕQWÊÐÍÆ ½ê‹)›°yÿè¶£ .Ý`ÐUè},Þ9:}¹e]Î!vÔÝ-g+ë­ËÐÍ]§_óÆyÆó¡euSV¨;Žº«õÂ>t¢è&ƒÎîÙö©¸¨²ª_P®ÚPÎy½›WsÏ‹Lt—èæ‚ÎNÚö½¸Ýê%ɱ÷}çâ6óú…èyÝØÿ ïÃxõ-êô^G’cmœ7»w|÷äÝâ ú½tcͿҮø4îS*$7@ª’+ä<ÍÅã{ò°CÿeïLzÚh‚0ìÃtKýs²Â0âb$9ÀÅ`[^dˆ%,Æ„XEØ a3‰E, ˆ€øˆA$rC.H‘ò{¾éq’+^jæ®÷<ÓÌÈz¨ª·ª{ð.º°|»®†Äž’SÊ‹%Ë“qï) t¿Ë†  «Ó8‹_½}Ù÷àÃ(ø±F¦ï¦3JWÞ!~º¨Zodç£o_öqY-Ô!7®šê†$©ËÀƒgªløýt]`…XYÿÛ—ñB= ÚQW¸û>¢ö¢Ÿk¨Ã"è¢ê>ÌjÓØj"{šI è&Óx—$íG {Ñj3nfCÐV7{ã`ØßzØ$Äê]÷ H’ݸÓäÜZƒã°º°ÊcoÃò˜îÜSÓwÐ>›)Ù`¤'×4ƒCrºÀúÄØB:1¾§ï‘}Iê5lC[Å%¥1l¨#è¢júí³¥RzmQÓwH÷]VÊ-Rñ†QçQTPº]?8‚.¦”…t6¸puîB»ï¦¾çää%J·°Í† ‹ª“·>àò—”D3©‡žq­K–GÅ 7­Ã6‚.nLO›tÓC!ÇNпÞÚk`P¯6Óf¡,Ï/êjP_üjÈ»›qAGÒÓÕ§õlP/${Òw Ìà”‚.,é éͽ§tÑÔùæUi¨Ýˆw­¸¡ô u]LÒ§»KÛ³úx¥Þ¾/I–r#L9y u]X}b¬¶?í«/ÔJ}ùö ’vIêÚ1¨P;ÄŸARyŒ•¦}µ5ØLˆÏ ú_‹%É1¨PÇŽ:‚.¦ºÃìü*ýË磄lÂn^5·IRƒù{Å¥[8úŽ  ©û‹_§y~¢žcØ)”'ž¿?ð²‡cÔŒ}6]H5²Æ© ®ç›Wëa;m²–¿á¿W—RÃôAQëqòfrÃä&!˰ѧæï–5ýçgÞm«é{t]@ž³p^&78}Í„”Àæï¦d¯$Ù'½_V^ÅôAT£ÿe0$§‰›rÀù»©çÑbH©ÎÓ÷Û|| (ëF $>G3<8²!êº`º:aŒ\åºÌ…f·^À>]ßš=U®ÃQ8ÐPÇA)/c,ô)çéSëä.Oá;€]xeg€»ðК“MnŽziÚrº@ù;oªÇ½JÎ uz¢„—ë Ø#*\É!‹Æú ä,| utàtÔ?ËKõ"€•æƒÜ…'{XÖ¿>ísÞÿ×Gc”:Îp„AG§¼T¯]XI~(lуõº uÀ^6b5”šc8‹ ‹£õZõ»k‚^õe}ḣoZ2S:vàÆßAF÷猅NAÖÊÿžb=š€õæêž´z½¸­ª¿^±ê ”^â&V])ÞAÆÞ¡nÊÿ×;| }Mú¹/u­í( V~ÙRQ/]Å!x]Ի〨«õºOóæZ aÇá]ϼ¿.5øÀ$ñÕÛ6Jkb˜Á#è¢ÈõMCýlÁù ÖskÞõ€&ñÊø†67WÜö8Ø1³–Áã ‚. ê<ª‡OÖáVìôh³4jÿ4°G&´‚]²ûŸ"Åúጊºc =x]Ôy³­pIëmá&g½8°÷@Â^—HeñvÿDn°7•ª¨× Ë:‚.‚N§C¼X¿W€×µþ Fµ,¾~/ø öö ¿=ûÐH.i¼\}P£¥ðnAAý߸/ÿt¾²óÖ·L~GöWHØûþÀÞ°_Þš­A'›*ª.y ¿u@ÐtŠõ¢Ÿj¾+RL:ÂõMv껥mí%’í*3Þp³­¬6!èºül£Öuë)ØSi<é(ñ\6¶ÚŸº4Ø¥^ÿÈx–ý÷‡Æúa‚Ž ÿûryùÞ¶p­WŸÏ Z_ƒ)ƒN-Ú}·€¡½îe­Íò'´'³Ø#«åz,ÅújAGÐEëq•õÆ…)EŸõóç=%Ú`s“¨uÊ|û\1uÌòfÝÉÙÝ«¦{~â= £«zLwñï¶[ÄžÀonr²}­ù(D‡è&«WÇØc}µò{]4uHá5:Ì“Ã{ƒ—b~|wMðËN 3ëî}òjyžmß÷œ1Éî°ëöùÀ=¢ —vY}£UÓQU`¿ËnhÕDûd†Žú^Kò]3Çyž{ =$±ðBnšùðÎæ{ÿÃĸIe¼^ÇÞŒwøó¥SÍÁ΢ •¹Ö7Ö$»<Ë®—N*lªó=´²)’üÜð®Éõã}wO»Zî×Ugý̾ïÚ×ìÝx‡u7‹/u†è] ä÷–°·çÈ_¢l³÷ÕSûJI¾ßYái§ÎY¹¸ú»ÕQž;Ä–Âg÷ß­Ož0½<ó)Ú©íÍÁ.¢ Vv.Ù%ꙣ›ç˺ã~y|J£‰ø9"c ¯<×3lLxñÏÜr¿‡‰ã?z±ø¦Éöý—®<Ñ!º É’WqgvIl‹®Óž§v üYá-ž3¾F3T1·Ûv7ˆð¢’vx7>»ºp  ÎÕ4ÈmµÝaW]ñ¾ÀÝ¢ W½JÇÍñ¬í í¦üÞP1XíÕ`ñdªç”,óŸCÊ$'Þõ#o1Ó‹ÅÞ¬òy‰É'D¢#g®ß6ÛþXwj_àˆÑ…í²žÎvINVÙÅPãk¼š2k-__›Ùà­ ΧºÌÁø‡yåQI'Ý-•''ù¤Üòê®ï×í2Ùî°î/ß^¿¼¢CtÁÚå2Cwl—¤·d½ ¤ûhv»¤¶v“'ÊÇs~yBec“IúY÷!õ$ä£’ÒÆ+Or>-idäÙ³¯^¾d~×Ík×›y{z‡è`¶Ù^¤ÒuÄH̺÷hUEù _•³Ù FéÓPù[çÉpŸÙàI¬¿×Z1›ùþDrâ@auynRÚØoßxs§z÷á'Ožé©õ—nŸúëÅàƒ¢ c¯ÌàkÖ]ák¨R.¸ïf‰ý+ú4ŠèHŸÆ‰Ò“¬§Ú{E×”j†Êfì}@\Áý»y²s“N†‰'0Lµ'Þ¿~ý¹ÇÞ¿ ZôÍçÜ7ß;åD®Fy§®CmÖ]Óò¸¤³WŸÏ£ý+Zï•*ÈtoÕz÷dÈçÄ¿×W–:ó]ã2ê» û©õi–·í½Gß©ɾÐ_Øu?1#9ÄU8¢ogœVH©Çk]Xü^Yeé;^W¥’·gñ¬Ð ©eCÝ¥5Ñ^> ™) Ö¼'æ×’ÈgÕW°îWøOë#¹à>ѾTþF2ð{EÓä× ý'÷Ÿ îc?Þyýúõ³§OŸ>y2<,ž”0"ÒÕ(bµ_áÝ®ûõ$ûoð\ôGÌš+äÃ%œ9`s ¢ š|"¼ÖСN·0^’®ö}¬ÓÊT½EÆ,¾îì_QÖwOC"ŸªßX9YèúŸB@×È ¹7ØJ{€¹ Pçw6Ÿ/¾V÷æÕ«W/^<3«oÃ}6üÃNÒ@âŸvÚêIˆ 9ÁÑÿÁ|Â~~Ŭµ¹Ñ—Æ ¾_¥{Ü!Oºº¥£‡Z¯”ëù®|þ.þ©­ƒÝšRø©ý™)Séonµ)•™™ l }€4ògÓÿoÞ¼Ù¿eË–ý/_R÷‰üœýDwoñÔx‡Ñ.À¶Òªãì/ú*æŸìçŒÔæD_‚Ê«d%†Ç¾êÉbÔ-¾A]I1¿W®ooËâ£ûãîÒù“ìo$á_ZÃÆ¿OCC&m¡ËgB|hhBBÂsŽ_ŸÿjâíÛ·ŸQXÿ¹@Z€ûdÞ—Û_t7æcöó÷ ó/[k})Ÿäz¹²³ŠZŸ‘.±Nz‘¿#È@ô×ÿUJ¥\®×·ó³²xþõ\H M`PCºH`û@#mµ3è·FÛÁèqëÖ/·~aù¯ÒÞ³¿èk˜;Ü—e˜G¶Ö úx íÛÚ‹z•*™Vgè òͱø'€ˆˆœœ_Ò‚zH+Бf %í@&ëT©hO ]P¤§´)mY&øp ¶‚в²>Ú Øn@Ú×|šèh@Zé ÓjñÏí/:Øž¡92¶Ö :˜<ñÛŒú"¹’È_¥-¡úwø¶ä¨'ÍþÙBºÅ꜉øÎž y¤ƒãg ~úù'KþcÑ­Hí8©èVYr6ÿÆ-²òF½žd5é*Ipä$Ï Ò ˆÄ0*¨šš;ßmaá^-ˆ¸È¡µ¿èÒ±1ýO¶ÖìVXÚ’ÏÎîÆv=G‘|å8TVé”ñž|û‹¾sìÆÛ[kØg‘³°¿Ý”_ïxõ)óöÓòQšµ5ˆ€}x'^]f³Ÿ˜­6× :‹Xôe¦_w]añë®ÖÖ :‹XtÑZfûÑ¡ãÜ ,ß´iÂD`ñ‹~Ìq:+eÖ,£YÁ|1a ¢°øE]9çæ¸þî9šIôqkˆ. ‚€èˆÑ€Wˆ€èˆ€è@tD‡è@tˆ¼‚è@tˆD@tD¢£ :D¢Ct :D^At–”èÛWÚä܇ïó™­¼®n-6oöœ>Íëò>´íÍe¾‰~è;Û¯ZÅëí^ÏëêÎnÇæÍšmÛx]ÞFÛÞ¬\¶ÈFϾäuyÛy]݃°y³fålD‡è›Ñ!:D‡è¢CtˆÑ!:D‡èØnˆÑ!:¶¢Ctˆѱy¢CtlD‡è¢có :D‡èØ<ˆÑ!:D‡è¢/aÑ?à÷[8—y]ÝÇÿÆæÍšMŸcó°ÊæsnŽïrGåy¼ïæ(Ý~€§ÕQÞstãëæ9·mÓ߸𳺽Ç7:®?ý_äX%ñUŒïv8ã´BÊH=¦XãQy§p)Ãçeu”Õ+7žþlW¯e˜p7†ùÔ…ÕyHÙ5Gžü—°1Òiý¼§™­›E‡3;]l¯ñ§¼½ṄD¢ï˜•|Ü<Êe†¢[+ïwŒÛ2‘èË5¼Ü<çpº¶úãtŒn|ÅüFt‰1Sý¿½»×i#Â8>â‰p â…0Ø2ŒˆcÉÒH†4È¢ÃM*cw4.r ˆŽËÀ+›ŠHC$D¤ˆ&b¤ä2Véw>L dÖ+oÃÙÕÿWðšƒÇ~fæ;Š‚~´Ûú0µf¨½EÕ“õ‹Ú»‹]9ßBгÚë9w›¯n°»rI-§Ï?¾»ŸztCÁ˜ÙµÞŒ^¥©5CíÕǯ‚Š´a¯»ø…P׊… gµ·2Þðô^¯ìîf<¶®NŸ}zûÑ%úÇÇA7ŒÙï6èdýôàOʪj¯ò*½r)íu—„i~ßBгګiÕð+¯’žÑ½gôs-­_=~b cfåñ¿.ÝM«jor ß6ÙÝÀ/L=û¹mµæsåÒ¡ÉoîxÅ3åן½¿ïŸ¢=ØãD ÆÌ]¦—›Òí´š¡öÆZþ³ö3»+4tè™zF{i5PìÌâ+Ïë5äCµüçVO‚n(3“Æo8U¦Õ µ—ÚÍiرØÝ–^z6‚žÑÞH ÷;½Sé›Åáõýø(T«˜ º¡`ÌÌeôîìü=ÛÊn]áÀâðZAØ7ôŒöî¤ ¹ÃÑ}ö}OÖðîÚÚ¬l´N\Z ºû=?¹iN«j/Ù% VLoSkž‘ g´Ñç“M©gox§:Iî¯^kh1膂1³½Éý…þ´š¡öâ—iYÕ+“ûHßy1ôŒö NçékÕ×¥½§¶œ%£ë5§Á  ÆÌ6µ•¬ß1ȪjÏó¾‡j·l¯¤‰ŠÁáµÇA/øš3×]t¦7UÕ¶Á  ÆÌÎÔMÖ¯ªM­jϛ˫Þ7:¼%?á$ߟ38¼®Ò[ r»öº ”¾í·áôÝ`Ð cfsãOõå|ª/«f¨½Ý²#³ÃK™¸tÏjoUùÏén¸f°»’–’õ‡òƒn(³+©Ñ÷:Géçô/V¶«™ko^as'U08<;AÏj¯ÐÐÉ ù€û»»tºŽŽáßòzë™ º½`̬W–’W\gætð[ÍZ{#² ¾38¨_&µ3m¦ºZŒ¾ÞW]Ð>]¿ú}Ú¿¨/­…² 7%`9èÇ¿ÜpzYüUÈíÄk'ЕçIÕa5úÒÏ úa ?WVrH`5èÚxÞ§¼Î'ÅzúÍšrž·*?>[oZÉ z+ÐÁ(úq^&`8è•x½Pùaq9^ŽãlŒÏÕ:Ê új^úû{ °ôz²nøºýUì;÷Ùóv}õâŸtÆ÷7YA/k-ù¦ã4`š€Ù Ï§rºéÜ&¢+ñ’ÞyÞô¼îuö_/G»ð¬ ¤\=á´Ê4³A¿¾ß—_ì+±íy¯Ôð¼š.¢za%Œ‹ÃzfÐ{š`“Ø úiú ­ÕIÐ7òê}vþ(¹dW÷ÏËQëIÐ&¿q}Gj2DÀ~ÐÓ›i#§Öƒò‚Þm%'î@[ãÊ}ÐWtœT^Æ{ôðþD¾Ý,2MÀlÐ]+]‡Ëûª-+~[m]ñ{éÑ Ç; úôû(ŒƒÞÕ0 øü;¦ ˜ º†QÒoü'÷Òöœ«Æ .æu­½eŧþ$èMé¬è Šƒ~ëëh7:0„Z`˜€Ý ïùn¸e÷q=Úš§›÷R¹vâ´¬öý}¸®Tå§ŸŒ[óåŸD¿ßè0LÀnÐK•ZÖ¶ŸÔÒ‹ôÑj#tÕÒöÈWsôâל.Ýn§Ÿuo.”²BÎÓAgA@Ðtð?ôéÅÈ1ªâIEND®B`‚metafor/man/figures/selmodel-preston-step.png0000644000176200001440000007250014465413203021107 0ustar liggesusers‰PNG  IHDRèèz}$ÖPLTEÿÿÿÒÒÒmmmÌÌÌ"—æaÐOßSk\\\(âåfff///­­­wwwUUU™™™DDDèèèÿÿþªªªXXX ´´´ŠŠŠþþýKKKýÿÿ›òóüþü'šç“““òòñùþÿýôõOOOÏÏχ‡‡ õüþ———Åøøþùú/èaêìfÒU—Îó777[[[äj—à‹GGGüìïøøøá]t¡ã–àVmìììØØØ»»»õõõøýøSèê/ãæòºÄ===óüñ¥¥¥àYpª×öN¬ëðøþíúë6äç7¡é+ãæpÕ`v×g___ÌðÆàààúäè,,,¼ö÷êõýDæékÓZåp„´õö³Û÷W°ìãf{222m»ï¿ì¸è’ÉÉÉååä’߆麟bbbñ´¿æx‹ûûûòýþ'''E¨êÄÄÄâawœâ‘ùÞâáöÝ‹ðñæøä>¤é«ôõ“ñò_´íiëíÔòϦåœé‰™Kçê=åèÅî¿[éëÓùúÚôÖyíïËóáûü¬ç£¼àøãòüqìîÃãù»ë³|Ømð­¹ppp÷ÑØî¡®¶¶¶íœªŒÝíýýÛúûÝïûøØÝu¾ðë f·îííí›››SSS{ÁðÖìûËçù‚Äñô¿ÈõÅ̓ïð±è©‰Èòì—¥£ÔõÌùùÝÝÝkkk€€€Kªë¢¢¢‡ÛyƒƒƒöËÒ¸¸¸èüü¶ê®Úr¡òôhhhÐéúÑô„ÛvDHA@@]`¦óôzzzïïïÕÕÕ±±±žŸžÛÛÛ–––ľÃjjjÊÊʉ‰‰ÁÁÁNׇ-áÝXÔlttt9ݼ¦Yz½XšššEÚ1àÎlllEÝ­¢ŸjÈbw¾¾¾?ÖlÈU}}}[‰Ç^ØÜéÒtz²tÞ—’qŸ@ßÑdæÏ®fŒ(¾ånâ²a¹©NåÙ¨Ó³aN°Îm¢Ø¿¨ˆËº ž§jÀ|€·Îƒ“Ѳ¯ÜͼÁ‡¥¨½Þ±–¸chôøø3supPVik2¶Dx IDATxÚìklTUÀzsÿ9w/é0ӮР* í¶ˆYТDMj©”Ç£[—meM7ºêúÆŠàîÊFd|lV¡¡‰T²`ü¶ö‹ûº÷N‹LÛ™9íLgæ÷ûà¹sçЩÍù͹çñ?¥`¶ ƒMÙ0}ÄØ+`sÅpý žj Þ+D@t@t@tDç@tD@tD@tDÀ+D@t@t@tDGtDç@tD‡ü§><ºÐ(™‡è‰”Ž-¸ÿ¥²qˆ€èˆˆŽèˆˆŽè Œ$¾Þ¶)æ„W5!: z‰þ¹$о­MB% \ƒè€è#ú#ÒGô2ó˜šÓ(m­ˆˆ^¢×_/}DŸ-¡z·hm–DD/Ñ$òH¢èG%þל'刈^¢o—+F$Š>ZÆûåò>Oôˆˆž¯¢¶ÜýɉFÇ$žü©T¤ÑÑ bŒ®ú‰’å~Ù*2ÑÑ Tt‘žu5G®¹ Ñÿýá_ 9ò#Ê}ðDw’ŠÞv³4–ê‡VüKD<цî£JRÿØÿ|hÄwÿûîÈ‘ÿ^ž/}ðDÉ–Þɸm—#º!g´þ§m/jg ŒÑ³)z¹üÍ/Ó-¯ ’è/k½as]·y*í={¢ï•F¿œ'3³ zPuêóí‹èÔѳ*ºûÒ{d¦Û;H=º:«ÏïTÑ•n§¾1HSDrÑßwƒWL’#õªf•ÄZ³!zôœ>¿Ç-½N½em†‘èöUœPlìq£ÚfáÝÃ@ôyÇ+VÄ$´4"*+=ú­ï÷Ê©/ÚöÚý4f6¢×, …#ŽÜdä¹Yx÷ðÝÿfŠŒ­²!zðê¿jm½â_ï_kÛ+£4g&¢—‰Sæ>ÖF?zפ¶axwîD¿D©G>©uåáøõ¬5îã{톇èc$2Á¸²ixw±Š vêóz_l¶í%̾Ãð}[DÂ{Ï1«lÞ]¬¢ûÓî• z_쮵çï¦EÃp]}Tœ™7˜Ô5 ï.ZÑ+ÎéóÖ}^.œáÔYgƒa ztd¸IE—È—ݬ9–À…þÞ4¼»x{ô3ºÓzíû—U-¶ÝÁ69ȽèûâîNhîé¬}Æ%†Ùlê½oÞ]¬¢£Þ´û´Š‹¾G_´í5¬¨ƒ¡èõm—ç|=ð§…Âñ5 QަÝ4¼»h{ôàA­+­ßZ]gÏXH³#Ñ?u.;úuÒ€Ÿ6¾÷þ1p×Aô4¢Wtºƒô= ÷ö×Úµ¯Ò®ÁèÑ}ö —ÉW/¢­’U=W•öw ð螎³ú¬uâ­öµö|vÉANÇèc{»<‰¿_ŸSŸÀE“qfáÝE,ú9ÝeõlŽ»À¬vÝ.Z6äPôwäHüâ˜ôHœjŒnÞ]Ä¢ŸÑÝ·[‡ûܬZcÛ«iÚ;Ñ·K(þL?FdEZÑMû‹Wô轺s™µ¸ïmo™m#mr&z©#{½²¦DªÓ×6 ï.âý Ög,kAßÛS;l{3r%º:)2yŽj*ùÊ ¶axw‹^Ñ©¿™vÑæ¸ ]ýVÛ~‘Mr+Ñ[wˆ8÷ù|¼ImÃðî"]Õß¼n-à¡þmL‡Ü‰®¢ £#Nøú+Íj›…w³èçt×-Ö´‰ýßb:äPô,PT¢ŸÑݯXÖs ÓÑ Xô»´~x±õ–Jb:3r€è… úA­ß›n­WÉL_IDÏÑU§þæMËzs`Ó·²žˆ^¢«O«õÖôߌv°G½D?§»‚oY·&y×Û9þw@ô¼ý!ݽî9˺;™é-v±l€èy.zð:­ïœ8ͺ%Y…ª5ö|âÓÑó¼GIë§Ô2ëõ¤fͰk9sÑ=¿E÷¦ÝÕ}Vå”ä¦/±—pŽ¢#z~‹îM»/¨´žNþtß^k/"‰ ¢g•Ì’,F·WB%óZ=ùŸèYÝu£Zl½‘¢Î uv §@#zÉ,ÉbM¹HsL¤<ŠèIy_w?®[·W¤¨³Ë¶·²íѳøXQ’Å«$6B©ùÑ“öèÐúyõŒe}ªÖF6Ã"z6É(Éâ Çñ#T÷™õÿEÚ£ÿBë(u¿õ»”µÞfã ¢g‘Œ’,>Òs8ôŠ–!zr:=Ñ÷XJÝñ·°œŽèY$“$‹3¥ìR>¢ØDÿVŸªúú܇ªEöZÙ=Kd”d1,MMW4ÇÊ z ‚Oè®uª¢ÿ©Ï}X¸–E6DÏ™$YŒŠl øw¾Fô<¨;ïTêþ§>÷áÕ:»ƒ©wDÏʧe’dq‚H¤í@ÍŠMb¾©ˆEÌÛ«ž¶*¤©8—©wDÏ%Y, 5yÒŒèÉ™âO»OèÔç>l¶íÝ4yDz2J²è~Ä }qZDï7H¿MŸr‹O}î3CÒbÏo§Í#ú“Q’Ũ#Û{/–#zr~«O߬ÔÀ§>'R5Ã^„¢9™%Ylë=$#=yþ€îz\©»>õ9‘öZ»%J«Gô!&³$‹rÈ/›Ä9†èɹWw>ïIN}Nd7G@#z>-£$‹[$Pê•'ɦ𒗵þ•[L·ÖW¤¯Ì„¢gŒ’,Fo’ê?*ÕàÈqDOÁÄ;¼iwõJ²SŸÿ¨-8ƒèCN†IÛÄ)‰¹ß ÑS Òïѧ®Vé[â¢W-±œŽèCLfIçìkEÌ6Ʊèê×úô:å¶ÜjRûÕ:{+ Ñóž¢=ú#Ýý¨[î´¬gLê¯&«¢#zöèwéΧܢbšõ{£ú[Ù7ƒèˆž¢?éo‚Uê5kƒQýªEö öÍ :¢ç™è?Ó'¼Ò °%Nû|»ƒ¶èˆž_¢£OÝì–S*Ó¶ÄÙÅ0Ñ=ßDWO讇½Ò °…a:¢#z¾Šþ¾î~Ï+M[âLu‡é¬¦#:¢ç•è×iý¯4 l¹0Lg5Ñ=¯D©gÚÝ,°%Îj€FtDÏ/ÑÕmúÄ^9ÝZoúO‚lzGtDÏ+у?Ö§÷.Ì[âT-±×›ŽèCÁ…3ãú1Y®wÿÛº7æ„=cÐ]?÷/Œ[zxÃ"=7¢ïóžØ‚èó îü©‘.cK+í:²· zD/‘‘sjZ=cÓúÏþ…i`‹Ot GÈ!z.DË/£_ µ>á·+n7 lñYÈ¢çBôHúÓÞ}@îÑ'Öù¦-qær°¢襇ÂNìdü°Ç'…PÛ¦ÒÑ«ý³!W¹µö•Žtkmª{Úv"å~*§y2î@,Týéx™ÜÔ •4¨èøf'<òXÑ‹þ¬>ý¨aاî%õ"¢¾è%a‰DDšk”—ÎAÂîk ×ÇE?ºÃ‘Ñ;®uk KÀ­Õæñþ‰#¥î‹¿û¢ ‰jÆËªˆD‘†F ¹ïÝTô¢?¤»Ÿò/Ì[|f­µ[HÈV´¢¿0÷2Ù5+‰èsGáû©Ê$äåIý* Ÿ'>º»µÚŽ»:8ò…RŸ9r´FEB2ÏÝiSv­_c„ªÙ!¡Ð'­ÞÙÑË‹]ôÿ³wöÏQióмIâ.9IÈ&¡`/Ä…#Aϸ„ãä%(°E¸ãå.z‚ЧBÀNR\°•: †R!U©¢Šßîÿ¸íéI2“°Kf&©ZÉ÷ûËöËtc•õÉt÷ôó|—ðkÊRÿ[LEÛÐ}±ê[«“Þ"~«„5ÓOtÝlüITzn=UÅXØì`ì £ Ð¥•CžüÍ jÕýb¨ƒþçí²ÔÿÀ©“ê¸ 7DA/X]âWë“€.íëÌC¹hԬܡ1½Aïy*jXñQÚ [óÔŠŸr˪ñ0Õ uÐEÌÒ“ãûØ"ÿg—à‚öè¾G—V ‡äo´íÆÈp1õ]>5‰Æ±SD–[$±Ü¯°zòh”ø‰[~/cè¡¡:{ƒw>+K+”#®FTÕ@XÐÃ= ‡ê‚â”=3Òôp7è…¤YcK›ô :lŸ'úh€.µ“wü[–.(‹r݌̪WË„ è DUß­Ég©@oíõFèIô_~óYÚ­(߸:ù9X:ôA=®Ó$³Ò” ô¸m~ '×—œ?c_RN¸{° Ñ-}°@_k ççz“ÎÂ4Ì¬Ü ½ '×8o\w)/¹ü"ï}ßè§CŒ­EbŸô5݉2–mˆ“u€ž\KùÕWeéE9àn,ï}ðöèuDÅ¥šÅ×´¤ ›7ã"9DM!€žJÛù­s²”»H™ærð&,Þú`ÎÆVµœðìrf¥ËIq=¾wÞ:@OÐÙ\ÞùžU\®ŒŸèvøäuV:@OwÐwòŽW¬¢Ë t©½Xè=ýA?ÏovƱmî‚Ò¥N"Û @èiú#œOc•Ý¥›*X™$ÐzÚ€..Án¶Ê.Üm:ŽT‘ §;èì¯üêó]e·AéR;ÔÈóÐzzƒ¾wÎì*Os”.õè õ$˜è=­Aÿ#ïøº«|ÀmPºÔ:ÏoNí>¼ð”.õ1>¦tß ÷äŽYK=šÿéò‰— ;zDcÉ“÷Äø;ò±è}ô%çSÿÔ½vŸâÆ)Ý&|L2 g›éWoÞôKD³º;fÅ»ßèŽÑi³äø=²©–öô>—`_﮹sJ·ižªCôÍßúÏ=AgAùºflvkŠ Mt40€~-á×ݧql‡„RR+Õ` èlÖðbͨ©“6éûFéFdl^ïžyU†Å jã Kõ`élÐ醴§qOŽWÞñ6OÖq·ôAU#­ëÇ ÐïªÜߨNãDPú?=N”µÁ-}0TšyÛü­¤+Ý»Þà¶ï_(Sr=N´¸ iÞú hyÊV>’‚£ºw}Î;z"U=&”’ªWŸÀy@øÿŽbÒj« Ò÷1€î]vœÆ±…Ê1¯3MÆy@ åÕÚÓ­  ûÐß8ŸÚsǦ)[¼®ÝÎãzzk(ƒ>áiÞn;ó˜PJj5<Ó:@OOÐÙ_xçE[Õ[B))œÇt€ž® ¿ËoÙNãØ o ¥LeÕã~@èé ú/ùÍÀ枪ׄR¦ 6ªƒ€ÐÓôG8<ßSõšPJê3Ä«t€ž– ÿƒóö™¶ú1e¡÷ɯ Ðzz‚.|™¾¶U?U”ÝÞAߤªóÀ@èéúvçi\î"å‚ÙN"@÷ "+ÉcYAmvÅ¢woèI´•wØOãØÉ`¥¡î$}°A—º+-ã×ì§qì¯É`¥ÖÃÏ 8è…EÙΆ(Ñ¥»µô¤!靨ê¦( |L'ü@ @XÐûÈ{ôþK„¤¿ooX¥|âg¾³ªz˜t€žf ‹ôÀ[}¹×d°–‚ {=£*G ޳ò;Úì’å^|VU­¡G*¢Œ6= »3O5 /å6€žRŸóŽ€=«¾÷d°R‹‘ {ý;ôš Ñ÷¢Én—l¡S°¦–„{ê¡0QøpÌ}„!‡è©$BÒß³7xO+…”°Ýè?hôm”…æTÑË.Ùzí‰'ÒÐÖÒÝlé´'Êâ f®w€žT"$}º½Á{2X©‚°hè@[õ+Œ:í’M ‹¥3rÝáËNЯ[.-•4  §Ð„_ó«Ïؼ'ƒµ´^-ÛRºKУ½lV¢:µ9í’M ›)Ò·ž·ƒ^my)Çb!€žJsygàq{Ã6ÏÉ`¥BÏáÛý úÄU ýjyRÐO•ËZ„9ì’%Ðm‘~øÐèÞ §²Dè6íä‡#ÖÊ” ¾fÄ'¶ûô£ŠomK z!iV­”*vÉÖ¡[ƃˆ´uåÐË)…¯"@·é<¿8goð“ Vj5¢ØîÏ¥ûòi~u )è­ö7ºÃ.¹ûªkôö·™Dà‡oôþI¸¤¿àhY¡ñ7%>±aîz·íÑo;í’M OÉå¤ÅK÷Zk>¿ù!€žJ9oÿ­£å‚²(×ßœûÅÐ]‚ÎÂâ]Ð ÒËvÉèµD¦×Z iQú¿º@?m½îKS:,t3Adà){ÃnEùÔ׌¡‚j=`è®@_£Ñ(cÙÕõ²K¶NÝ›¤_ ›_Ó4š_—í­݉³x£eºГê]~+ð¬£Å‡‘ƒ¥ÅÐ]‚nÞŒ‹ä5‰»]² ô© iÕ™…—C íëº'/Ôi¸w‰‘o;Zü9HM.q @w :+–£å„-ó%›]²:ÖT«µ×Íïk-•†~¦ë®E\‘°ôÔ "?t´ø2r:ŽD‘}”Ú.Ù•†<è"Aäï³M~Œ¤²6¨²À @÷¨þÙ%tWZʯڭÚåÃÈÁÒAU=^ºGõÏ. »Òv~+ðº£å¨¢õ;ëu%Ӻ׿_vÉÝ•¶òÿ^s6mQvù^l݇úe— Ð]i :pÑÙtÂÿÚÕ«ÿgïüŸ£(ï8þ0ݽOˆuÉ&=Ï q€z ù’&@bLˆ1$P"¡1¢m Ê—R Jlùâ Á"*í Ã÷©ûƒ3:Ó™Î0NqúOtŸ½ É]ö.´÷\žíæýžaöf7¹ ™{åó~ž}žÏ»«fºgÐ/pþÕàæî,Å6GX5к—@q-1ÍÝS a‹*½Ÿú(½·'b„Zc·ÔÕ·†ŒpÁzÕ óocÛI¥Âæhú,Ä«ôÑzo;Çšd^À3Å´Î…ÉX¢ôþ/ý¹ØS)…°õ «fú¨ý*½Ê*꨽íΩÜ*íem=lQ z¯ÒWÄžJ1„Í1ï¿F¯€>º@ŸmRÙÖ@åûGdôFyß¡t×ÛN*Õ6Go¢× @] _¡èonÑ \¸ë±uѽ·ê@q-±í¤Û'û£× @e £‰öq}3,1D'ÃnEݬº¢Û³qïÇÁ_¤Ný‘˜ÐïBéìµÓ,é‹V…Ä–º!NüBâpÕ–1VŸ!‚YÎGËæç#Á’›=BѤ™,¢>óÍ4þ*Ë=Kf–bÐÅlÜÁ¸sGdxwv aú]€^`ãt }PbËÇÑý«ÍD¶9TÀØy1ƒ!º×ý³ ‘Yæ!Ѓ}ˆÖF4ÿÎÉ–Kö¬{Ã-¦t1·-Õ娲ç,ÅBX€><èÔn‘¼>LÇb[¦PغÜKdWöVër½IV0¶ ,&»‘ÑžsÿT/Yw"繚AØæÝkˆ´¸Ò!{æ—Œ¬±‘tÿ¢íÙ¸Ø l"@Y‚wÇBX€~W Û ô‰Y«˜Ä–h™I‹©Î:¢ö…ÌÒGít§‡¤w@7\@Ïj§ñSÊê{Èܤ¸¢Û³q;‡x÷-Þzryà¸èÀ^bË‚t-&±Å*⋘·=o=F|UÈiúZaÐM ôÿ¢Ž 見uï¡fû¡újV :ëâ߯o`³¼{jÊŽ6æ"t ºÃ\]Il±Š¹èèlk§zöW:Ë&5”Ø2è~ ôR¯¡èÆÚ¬h£Z[ýœ&‰?NjA?Éÿ¿-ÛòîË$¼õô5X ЇýŸýl÷Å$¶Xl˜m-ÎÔÇ.Yf¸…´Äý¯>Þi‰3èñZîFˆ(]ÌÆÅm`cl­ïÎÞ ºГƒÞ}ÑNˆIlÏ¥7õÑOYµN2BŒ]<™íEÐÏÚ³ ,Æl˜t>:1è–bЋٸÝq'WËñî]ô è‡yŠªéLziÿÀ»>&±E´}>Ûj {³(’IÖÙpÿÒÒ7Û¼ú2å®K` èÇöñÆ0OGô¼*þ·ø l¬PŽw¡‹ØÛâÐ÷Ö¤ :ßšt£>zlŽKlaóiq»Ù&Fï¥öR”:gbëºXSîAЭÿÒËôîÈmèÝ Û³qC–̰e²¼;ÛXŠ’ÐºjÐ;x¥ßóY¦wŸ¾&p t€®ô&^=#¾ç³LïÎ"Š  tå ïånKf$z÷\D±t€®t{6î KŸwG €ÐՃΊù÷úŒ¡{O¶HóîÙ¿ ¼ „:@W zïrY2#Ñ»£@èêAoâUµC—ÌÈôîHWè]9è{yÍw.Kf$zw‘®ú& è]%謚ßvY2#Ó»‹¦R€ t¥ óî¡]f¤zw4•è]9è¼rÆÐ.32×ÌØM¥Ð' t• ¯äUç\–ÌXÞ½Hšw>ø0è]!è8ih—¹Þ}":@W :ÛÎo»t™‘ëÝŸ‹>‘ +}+ߣ fbrçÝÙÛYè кBÐ;yå ý“4{w«¤/H «}¯yNйy÷£òîr ­Ÿÿ@/¹Ïoú ;Ê{š[ƒôZ—+«ez÷9KÑúÙóÊÍÌñêz¿y§®¿fï.Z?£¤CÊ5ŠAïæ{Vé;ÓíÝ­’¾3 +ýA¾í þ°»w_.ï6¿GšÐ‚~†ó÷õ7\.iËPÒ!€îÐ køm—V°–ÖÊôîVI/GI‡º*ÐÙ6ÞéÖ V¶wŸŒ€& +}ßú©Û¾ÉÞ]4¡¤C]è—ùv×}-»o‘x”t +}ç;]÷µ°Wµ OH¼Ñ~”t +=¿Š7¹îkÉΗëÝ'?‹ÌE «UòN×}-ŒÑž”y#d.B]è'y±û¾Ë»k½{öt”t +½‰W¯Ók]]}‘v%è¾}/ç»]÷µH÷îVI?€Е€žWÍS뺯…í“êÝÛˆ’tE ³b~ò)·¼ëoÀ£Ú_¤–ô5(é@Wz'¯üÄ-¯ÅÒµ_H½J:ÐU¾’×ìvß×ÂÞÕ´·PÒ!€îÐq~Æ5¯ÅöîI.ésQÒ!€®tÖÈ/žÓ_r½tBûHê­¬’~ Ÿ7 «½›wÿNÿÔõÒç’½;J:ÐU~‘7þV׿êÝ_Ô^AI‡º@?ÃùݵùchÏȽÙB”t +=¿†Oso>ÁØqM;Ž’t€.6°%h>ÁØ3Ú(é@÷è'yñcîÍ'{E{1OêÍrg¡¤C¼Ç IDAT]èM¼úç®Í',½¥iïJ/éã3ôý0ç{ßpo>ÁØGÚ ©7ËFI‡ºÐóªyÓÃúA÷‹iÊõî¥C] èbÛN}U®ëµ×4mŸÜ»aâèJ@ïä•èúf÷‹OjG$ß%ò8è_׌wä#ë>×ä¯Ð_w¿zZ+ÊGI‡FèóÚi@>ªèOs~&A‡HÆž˜ ½*ù~Xñyô2ZwLuä#ÐÙ6þà:½6Ûýâm­äÛ¡¤Cž=B™¾£³=¼û…"[¦¢¤C£t#Ìü úe¾ÕêëÜ/.Ÿ ­FI‡Fè!Ó§ ïâüÂl}v‚«G¥F¥£¤C^=ƒ¾ô'èyU|åëzm‚«r£ÒûK:ºÇA^=+Ô~Í— ³.Þ±9á ]vdK´¤£!,äUÐ?Î j(-ˆÊW wð®ìU‰é²#[PÒ!oƒNäÏçè¢çsU~‚fG¶¼†’Ð'–¯@¿Àù®ÄƒtÙ‘-vIGäUÐGJ#:kä—­Aú# ®žÙ‚’yô²/-:ö ßÞÍ»sW¹g-2ù‘-NIG^:äMÐs…íñ¹¹#×g _ä,ñ ]zÛg!ä¥C^=Ãb¼¤´Ä$úÂg ïâüP¢¬E&Ú>Kn‡’yôëœZ&üû×AZà/Ðó«øÊ$ƒôãšöy:Júd|ú ï^JKœW9ä¯çèö’™$ƒté­ã,e[%}>}÷@‡î ÍC!ŸÞÁ»’ ÒÓÐ:Î.éå(é÷@7šï¼,1|ºX2“d.¿uœ¥Éå(éA™eΫ2Óo],™I2HOCë8KPÒ!‚^GWœWWèŸ.bÒ“ ÒÓÐ~%ò&èc 𹩂UlšIÆ¿ÞÍ»“ ÒÓÐ~%ò&èì†ADö¿Ìo ‹%3Iééh?a—ôýøB^­/Z˜ n1ßþöÎý9Š*‹ãì¾§® ëà$ afBXa@ !Fž‰/1 h@¯1D§lyëÊÃðP¬,¬EAXÙÚZ~à‡­Ú¶Š¿eûvO @M_ÜòL÷öœïéÉÔúu>9}æÞó½ÊeÆ­H'°Ÿ°Sz §t–ï@Hž/»“"ž' Os \ŠôÁöPÃ)åGг!O@‡Íò´[‘Na?aiŸhÊ!Èò èñx¡úÑE}¥™{Òiì'F׈¥‚,¿€Ž8(È3J3å´ÒÌÆq¶ýÄ‚Ûîç”ÎòèC†”©]8ÐHyÎÅ8NÙO,'¸-§t×èYÕ§²/dvw·[ؾ%¸m›hä”Îòèeu¯R­ƒúVù d>‚ÍÒòß¾…M¥ô 1‘ƒå#ÐñDç«* ôÕòÍâU.E:M ›Jé£b…,_€žì°„;«ÆHð@?(åv˜žéœt ja¨¯'9 Y¾ý|Õà^ü¦\mé‹2 ia8Â)å—G÷A`Y<Ðá¹Õ*Ògg.ÒIZØ8¥³|z,™LâÀdZ´ò ô¾òSxÃ4?Ê8€¦…M¥ô9‡,?€®táxv&äèç¤|f˜?eqÔXKqãz!Nq²ü:À¸!ª˜ìóCS A/&g‡æW™Gì4úÍ¢¸óNé,žAµ”>ÃùAÆË•°É^’ùOÁ°ßþ6¥B\æ@dùô»ˆ“èÕåt˜Q:-7ÃÓÜ’yÄ7§°qJgù ô8¶§_µc¯ ‚®¬`a·y&óŠSØ8¥³üúC_÷T4DÐHù9¬7/eQü±ñ=É­ˆe‰,€ÞÅ×}^(ˆ ÃÛ²/¼e%óˆm§°)b/‡"Ë 'øº§çëîHõµXEúºÌ#¾¦Ù«RúE–/@¿†÷Ò¯îcm A_-7ÃUs‡Ë¢m°°WˆC‹,?€^ÁòÂÛu· ãºHÐí¾–æU—!gi¶Á,ã”ÎòèNïusÝékYgšS2¡Ú —9¥³|:ÔÝk!6_¸ÁÝîk)n¾å2d>Í6X•Ò7p0²|ºRyK¥‡ «¾øÊë2d§alƒ-°Rú ŽF–?@¿Ó»Rã ú9)¸žÌP:•f,Ìá”ÎòèÕÍÊè¹2r-PÐK'È™àv2(7Øin~ŠS:Ë ÷@ …^F¼‘ &è°Y®„‚é.¦Ï×iÜ`í”~„Ñå9èW0z±j$ü-Š“ ú9\MŸÊ ÖÒIQQÏñÈòôr|@àÈ€‚þ‚œ6ØÝOŠÌ  6J´q<²¼=š€4èô÷§ÉÜý¤fÆNš»O£9 YƒÊ{z@›Z@™O¬w?)€µÆ|š›Ç9¥³<=©JƒÞIôÓòE€±n~RPüŽÑïuš»/5œÒYƒþ,^p@OÕâ³A}®2ŸpoU…ÁÃŒ³4wÚ(öqD²¼ý¼jjiÀÊê<ŒÜ *è¶ù„{«*Àaã]š»pJgy:ôzS‹’2Ÿ€ŸÍõnc¨¥¬”ÞÂ)å5èpþEæÑÚJ.èÊ|Θ»ÝÆ9Jì58&YÞ‚n©Sõ„¼]ª [ÜwÁÂ6ª¥t0F,æ˜dyzä-èÛ¥<%³ÍMnƒ¾ r”X,ÆpJgyúKO(° ÃFy`‘û.Xx—j)]¥ô=”,o@Ç'\ÐwÉ]ï™Ó]OTx•l)ö‰–¡•,O@ô„‚ úM¹`•û.Xµ”þ*ÑýG׈¥•,®Ñ‰e;DêvÁÒ-¥ìç”Îòô€;Ì(Ù‘0ÖíÀK$[Jç”ÎòôÀ;ÌØR‘º]°j)}ÕÚD#§t–w ç€ÃŒÒ_äÛ¯hvÁ.¥Ãè 1‘ã’åè¹à0£ô¹”¸ä¾ –r)=Ö&FÅ80Yž 3é"}®Ú;Ã}ÝR:ÔWˆ“˜,@χ™‡EºÆ –t)Žˆ9™,o@Ï ‡%û,eWº•Ò…8Å‘Éòôœp˜Q:gé0¹;l¼F6… œÒY^ž3J¥T‘¾Éœ]â:Œ®+`…—94Yž€ž3¶^”§AÙÌlqULfðniXÆ¡ÉòôÜp˜QZ£Št¸jîp6˜ZJ5…CBìåØdyú¯r˜9öe"T´¤î‘÷bÇG†#y“R~Ý>kv¸ÛÌP¼Û)}Ç&ËÐáéfŽ5c$/Œá².ï%㈠ÄxÌç Ûg-jmf”ÁûQ²9ìâ'Ë+ПV'°¼ªj±¹Kúî‰nWÂø/Ÿƒ›U‘^2[³Àïýf‘Ía§t– ÇêªÔ¥®Gü¥_ô=-•Q=n©¬~ð^S(d?ó·ãd¿ƒîéšÃ­Ì?ÌA6‡ËœÒYÙýbÿc]Z#ê˸†:Ýð[ØË¾NÂøƒ÷>Ã%ðÏõö;èN‘þžn ¾3–ÓMb™ØÀÑÉÊ.èíÞ…£a,ºÕ#ŠótÝk=ñ÷öu!>Ü,[޽ŸjB>Ý)ÒßÐ-°Á·†ñ'Ê”¾‚Ó•Mл…°—U^ÿ1Üd=¾GñÍi¨ŸG|`SQ„uuÝñ+þÝ)Òa·n ^3“Í¡`§tVvAïî<Ç¢xßÉïqÍ"¸Ð¾¦;×âbˆ­ÎBü}ÿƒ¾F޵ÀvU3î¬1l0Ù$N QÏñÉÊ"è ªCàÄnεHóÄôºZ¨óôGŒ6_I6}‰øø~›+=ºj`Âûÿ§H×/°½ÞÌ$ÒúÓ8Gáødeô0Ú_¿}†Qû×& i>ztë)>bÿ+µØðØèqÏtUŸïÿSœ"]¿ÀóéL"NŠ Né¬,‚B{›L<ý]zex·¿ O<º[½{úÓØä÷Gwg»»~Ò$ÒJé£D(+{ ámëg2ŒÏÙ¿b³æ líLãÇ:£6„Ç;_,ô=èÎJº¶ƒò¼EKEŸ¢ÌÊè'ðŸŠÀÎT×¶©ÆñïöµëòZs'è§Ò÷5èN‘®_`#íl¡b?G(+k çc8?UÙŒåöoÑùnÎE?`­}”þˆS›_³¯uêð=èNOº¾ƒ fõ#ìl¥¢†S:+k [Cˆ«ÞNþµ«kÐ Ãê‘=Öu l+†ŸW×{]à÷-èé"]ÛÁpÔXK7 +¥ïãee ôä5‹óÄ]°¿^Þýµˆ7ÆAr &Ôº‹}Ô@l2Ž<P»ÿ ;Eº~ vÆtÓØÃ)•EÐ:vsºKçÅóŸÂt¼)‘yQ ÛÕxž2¡²ÞkÆP^QsB£?@wŠt­E$@ñTº3[´ˆÅ£¬ìþk¥Œ'¢½œµµ4èPÕÞ‰–ëê{€ž.Ò?ÔYD|o|\L7=bÌR–oAÿßåЭ"}+èÏ`³ô5Ý™-*¥á”ÎbÐéÔWÁ¦,"×éFžÙbi1§tƒN'ç6¸dŽÕ$5šQ)}G)‹A'’südN×¥P:Ìø+áDö‰>E™Å SÉ>‚ V™æGº‘ßË ¿Ž]#–r˜²t"Ùç¤Ì0ÏèF’Íìç”ÎÊèÕ­©ÜÝ*Ò·[—õæÏÚ¡”F3œÒYY½“K†äèÅåjë²Î4§è†R¡l©M4rJgeôVà‰ÜvÉ]`»OlÒ¤Ói{sç?fNV¥;Žsñ qƒÞ#$Fnl †#E¨‡! »EŸi©Fb‹úwu1°t(ÐéiH¤Z°‰ÐS2ôtÑg¶ªÄ];.eé[°7èô~E$‰y¤â9º[OŠ~ÖHlanå@^àìFÀBì %n éà.×¥@/Û+ªç{¶Æ¯y[9]‚¥C€„ºèn=)Úª“ØÂÜÊ–t.}(›SïÝ:‰-ñòaÖX:лèíRPO­ÄæÎª)K?‡…ºÿrSUê$¶ÐQË:¹˜xÒÒç"f!€î»ÜTÕð,û¸Æ¯?²>b]M|,è š'[Ö©çû–ƯXÖQÖå\tÆÂÒ!€î»ÖµÈyê©Ó±…¨l»õ·¥_EÐBÝw}"/«‡VR:ÑkX9ër&ÂÒ!.ÐW½$ƒ@ß!÷¤žuöi_¿;К K‡º'èÂÈN-®HÙ®žZIéDK¬÷xד´ô7¶è·Sú³ˆÝl+ýñÕJQ1Å ÐËšS]UURú~Ÿ_°¬ó¬ë©YK‡ßÑ7†^{œ$þ&úºw –VØu:?ßÀ\‚VÃÒ!FÐ_ õqGƒ"µ&î݂ݯ·wç.«,ýââ½$ àâˆI {·`'k”â¯?‘´ô·aéèÙ*°kcQ“@÷nÁê”â¯?A5›`éèõ¢Êݽݽ«WPŠÊ¸ëOÀÒ!NÐâæó¤jÆ 1 ôj÷ì Né¤êO|Ç» ¤¥…È…x@§{‡è‘R2 ô²ò¦ô-XºeÑ™À~áNÀÒ!6Ðéyï’$æ±Ö2 ôL-X:®µw§²™ÌÞaé'èDñ>ãúÄ™ÔAwkÁjïÝGXƲ[ú`Ä.ÄzâEÛ¤¶ßŒý)¿I îëíÝÙ/¼+K_‰Ø…X@OŠ¥^ÑKöÅ öÊ_RÏ»ö,­ÿûY憋†¥C\ ÷L2^[_›|Ofè‡äÞÞý Îïen¸H4x4,bý‰ˆT©6‹‰ß"b¼a /”Mé,s­F¤..a^Ò g4,b½^x9k¥¢Â0Ð×µÈjoïÖ™À]á–qž½KѨa {efº{÷ò™Öaæ%­„¥C ‡g†µ!Ó@ßá°iïÝ[3yKJÁÒ!У% w”(1Îѽf‹º{÷2þ6X:Äz«x䎉WLÝk¶¨ýÝ–XÓ˜×K‡8@ï#76PƒJjéaètHîÌoï~Á²~…¥CÝtzB¤þ<%ã@ϰéÞ™ à„ –q€NïWDTîZÅs2ôÌ›öÞ}*û ,b(qcHÇZæuMн6íûîAœ°ÁÒ!ÐMMjQʰ%÷î´fðŸ°ÁÒ!Ð Nj¡œ6Ý\ÕrØ`éè'µPê€-Á¦[g&€6X:ä?è&'µ(ylºuf‚Èaƒ¥C¾ƒnrR‹ÒBÙ44¿½;•HX:ä;èF'µP¶Qºv}w•ÃÆ]%–ù ºÑI-J™¶¥öüF½÷úíÖßaéP÷Ý褥þroz Ù›‰RU"§3¯ –ù ºÑI-J™‘ɽ{Þ”éì}Ø`éÏ ›Ô¢ôWÙ?=Ð쫚Ô÷Öö2æUÁÒ!_A7;©EÉëÁnnï×›ò­e¥CÝ t£“Z”¼lD+ìÓšs¾³Þã^,òt£“Z’*o’ Ó£9¶=YoÎ1þ´tX:ä7èA¨ë‚N;åçéAã|{©æœ°§¥ÃÒ!_Aoh[UQïÊLÐÊf÷ÓÚfû–æœÒÒQãòôÇëEVf‚Þ.åõôècÛž¡¹ßgo­š²t4W…|ýKjÝ׿ÊLÐi‚Ü–ÄgÙw5çð·VE¿tÈGÐ+ÅÓßÑi‡ÜãŽvÙ_hΙ>кÆnéè—ùz(Fƃž©>ÞjÛ[5'pi–ùz çTŸ Ùög𓂏4S³É9…X†ü½§Øh<èÙêtE³Ý"ri&¼–ùúòh忌}^ærܺeŸéå@5‹`éP± W¤ÔKˆwêÓà SAš¹§]ö™‚èå@K‡Š]¼$SAÏ^ŽS¥ã5'PiFYúUD3TèzIÆ‚ž½§_~"J3IK;á ýŽ”º6èíÒmͤRØVèκÇ_i–t5Á«Ÿc×La£¡Ã¬ì+›K‡Š½_¿RõWŽÌ=ÓšI¥°×õ{&ªåœCò% zy³üÐæq V݃½À¾¶K°t¨Ðq3.WŸËÞð¾n6 ¤ã",* ô×_’É gÚªª.lº¨ìˆe}˾¶;Žs1 áÝeÛªªk°ûu§•m°Îò[úgb*ô޾Shí[†ƒNoÈCÞ°N»“C0õ`Ã'ç$‚* ô)ª,‹ü3a6èe³wÍM¿lª,j ­qÖ ¨¡b@UˆPHÐx!¬5ô¯³‰-fÙW´çÐD™èŒãÜATC…ƒþ“ˆýØP+ˆžÄÄ$£AÏ&¶äw”>}˜u˜qËœ5a„5T0èõb<‘6ŠZ³Aï/÷z÷Yó9JW©-ì%Þ•¥_BXCƒ«$tª,1ôO¥<àó9Jw uu»°t¨`ÐC½2 /™ :íñ:¶äu”ž*ñΞ­J[ç"â*ôÊHƒ úãH¥á g;¶PcGét4ˆlU:猊#°¡Aï)n¦A_Û*zzNR:Õi7VMjIÙª4w¬3 úˆ¨/}GŒ›ÒKD: ½,›”®ŽÒµ³Òé|ÙªtÕYTƒÈ† ú–¸-‘?á ç$¥ç••®²U§±/.þæÛÎjD6T ètãY4‰y¬uúõlRºjÎ4@{âË:Æ¿¼SÎ&X:T(èI Zþ˜{AÝôœn‹4ÃÖ.ðN*[•¿%-ýB*ô>9¸?3t:$?ÉŒOëx':@#6¢¯œÑƒÛP! ¯Ïþ$*Œ½Zʯ½ñ{ø ý™Ó(@AƒG;+ÛP! ‹õËÓÎÞ;ùžn<èåÍò¡70ß¾«?óˆeç_ß ô\„ ýAšô§%B´¾e<è9Ò‰vå‘Ù¢ Pð÷V¥Á›ÐF*ôD?Qù—ŽB¬Áº nú<ْٻç•Ù¢z«ò×”BÏE¨@ÐiíE4""·Г{÷¦L1X•ÙR§?3šRè¹ :ÅW QÛÁ½ nzn1X•Ù2YæTkàQþõ¡ç"T èD_Š(@wµP¶¬óÆùô[Ln¶[ßó¯/ŽÒÏPž g»¨FDÌðnª m’ 3ÿc‘ÇÔkX:º9@y‚ŽÿK;söî[óúL™H”~†ò½ê%ôT#‡ÌÞ~ΣРѽ*?¡ô3Tà;zê6 ¯ËÝ»ç÷9î?ìíwTÕÆ7öÞ»{‰Ô ܤ3D"!aˆD £‚DË«¨ ¥TRf·bU^DQQ °¨(/Æ "ЕÕF ËÚý懮åßÒ9CBî½3“;g’l›Éó|˜É½k欳²æ·ö¹çìgïj™Ž:‘@ïÛµ»Þvœªü,Ò7 N$¤úèÑ#Ý;rØŒ»µvï.ꪷW}·qF`†¯XËQT Êtæñ¾9€î_»ëmÇÉ4s@Q)H ô ª|;rÝ¿v×ÜŽ›'Ò¡¨„gô>X»wï»ïÔÚŽ£×EB:ŠJAùƒ¿p §­Ýgj™U…ú3EZëQÊôv<£gZ»k™U¥B:*P@½o×î›Mó¥ÿ»NÏ£Ð{)O¾;}©S;N*¤OZ»*Ð{)·W•7MÚqRï¨@ôޯݻ½ª4f±N+±~ìª@ïd`ƒNÛìM®«·4OØÊÖÇ&]ŽDX€Þ× gXºæ‘D…¸t§­öö²î+Ý6Õ/ýªÀ,¿B߀ž«:J(1=øs±äÓ¸Òæ–Î[­7OÚ ô=¶}Öuù²ù˜V1õ²ß/JL‰°=754«ä×:çJ<è“£ùFêÝu¼VéJ ­*,Ði–½Ûu¥{ÂFû c¿À,‘ ÐsÒ0æPˆis["ࣸ1õ>‡k»ný*tSj!ú7ö‚ ×¥¦‡h¥±RbšH„è9è"GZëk˜èz„ç ÊaµdúS` séN‡Ù¿u]êzØè#ÃØ+0Í©XoãÐTË3ˆèIXk‚>\ÉmÓ)¾šc*ö·þzFaƒî-û¬è¯•)òŽvýgÖ½bý熾µ…öÊyWí¢øõtïãùè‘êÅ%€ž1âu¥}©ÙD™Ä²f6àˆ  §?žW/.ôŒò»ÒõK¼§²f>—˜+ŽØº_&T©—zfy]éDÑËæsºcœ4Θ*ŽØ:žÑó•¯9‘¾[U•;#1×?ÂÅÐ3¨jI×_‰÷Zzf~È^á éévm!šb”ï˜+\l=ãƒú‰®¿ê9 гèÏödïú!½b‹q\b®p±t¯âíIqeûMµ4°гÈWà=U€B;¤ÿNèˆí¸Øº[çöª  gQÙv{«÷ÎӺؒƒ¬4¾8b[: …"º[ã=˜‡jêz6ù-4f±nM)¢«BÆtŠèEãñ8WÆ;Õ¿à ïñ;[TM)Ý®Œé"Glë­c@ {tþC™ pÐýE"‰f.6_Öä ¡v§-ë(èÙ„¥{v­°]ê}HŸ"ÒÎ!Õ‹ )ïÝ£é?¬¥t¢vR`³«Â×o1¿^!ãb‹n°¬Ù€ »ÔTêÚŽèÙµÉ~Ò·eþu!}¯LígúÌZ”w€îÒmþñ'®ùÛ•Rn«èÙuĶ'ö>¤Ó‹Æ– ÙNEÊ;@÷¨™ÿK[E4¶MýгêU_¡™üBú_Ê)³EÊ;@÷È)M¾Tr2˜/éΆè”Vh&¿~F,å}M18è] %ƒ9 ãg“¯«JzªXàߎËkã½z¡L{Õw-ë48è]*UtßÁß%_kC½'¥oÇÍÌ#=N0åý÷Øè]ªäDÿæF¢D,Ð{Òž´í¸¼BzÙJc­È~Ü#ÖA€Ð;uÿÄãž0ä ? Ð{TZv\~!ýT¹qMbºo£Ê;@ïÖjæx§½¥ ÷¨ôì8ebÛ¬=Î_e·Lº%(z·J~$Šþæðè=ª"ͬš—/]5n‘Úû(tM èJ3«æUj†èQìÇA?èý­‚ýÒ"¿YU…t킰؃$A¿7M=@iµãRa7jsJ(?ûqÝ×» rÑDÛ>â»U|Y¿m‹X~ܤåÖ3Èì O@Zs?ékå@©¶-»´ªÞ"ÓuùqÏèyèN{AµÿÞ—ÚÍU)•'âW=¿*@ïRGI%¦ôtø!ûþ{»ôû¥SʯZ-0aøUz§šÕÓys%ЃµÛßY5©çÌú…›ö•£E$ú0æPˆis[ ê5Û>ë¿·Ñ4wê4Å(?%0aåWEý8€~‘#­õ5Lt=Âsz°ÒëO½`.ž©=PÅZc¥D?‡£Z¦tªUî5:­ã€¬ ï4ÿóký‘>’k™Ž~ƒôHŒ:A§š,æˆÓÞ‰^6Ÿš«?Ô2æôsèD¡¢[ ¯ ô´ÕÞž–¾:÷)ó ý‘¤Ì-§-ë] 1ÈA9õ ·;1€žƒ.-²ÿ”vóÓ<*PP™ÐazñôWô åó7AO4òP€ž‹Þ´g¥Ý›¹8»ªØaúÒiÖó`bpƒ~Îáڑ˸®¡ˆ€ž‹2°)»ª¾·E¦‹4c{Þzæ–Á :•„;-ÎíÐsÒ¬ 'lÑùx[èša\˜±*6sËàÎ}¯º2Eë ç¦L'lÊÛò’þPe_È8ÓanèImjïï èÛíMéw™ÆèuªÜx]bÎ0·ô.uÔôÜ´Õ^†7›æÓyŒuF¦“òÔp˜>xAo¹qÛ­^–ø… Oä¨L6¢óI„UÎt‘LØÙ8L´ 78j.ö­úûb3Ú&ç®Ýö¶t8çç•5Cû ‘2ï8L´ ÿ+‰öª¢$éÿcï쟪¸Î8~ÒîžÓ3Ö–ÊPÃÍê%ŒâËÄ ¢‘ E‰¢ F| ˆ 4**8ˆo•*¾Tñ%”PGËÇiÍÔN;ý£zwob÷åܳ=g÷ûý!7ÙÝœ»w˜Ïœ—çû<Ï"2sW‚ø§Ëº ^í¡lIÊ5CÈ #_GY)Óà ú/؆ç„ìÌdÿ˜¶•±é«”¾Ð›:™ûj•HBŠd*ÂÚNØ.‹÷&d¦‡ôÜdCô?²¯ž2ö¯™ ‹Ë¡J$±+ÂJ„ØÈIÃX­áç 3=œ §¥Ù•&Ö³46ý?ª_è =ÖÃûöÁc2µfì46 ‹÷2Óà :K¦¥.blÏ4ÐSÓ^üªiƪ5#b³ï:^™éa¨í®ø†‚îlš±jÍH$¦Ç4-ÞsÐv1Ô /è)ë Cág;ÄvDf´mzjP<€6Ô ·ô”5TÌÇ.?’iº¨ïä½NX€ÐSÒ^ç€fVµT›®“w8aC ú2[Œ}ŸüfRÑ@ßìpù°T;{ñ®Ã6s›ÒÀ#d £Éb 9Uš!V;‡ê¢×wñÙžé § XŸ£6ºfž”åÝZ¼ë¨þ\SJïƒPþé+è)阓Ö¶¼ËœÇY¶ «ÍHc è$#Q‹¾ø$=%mä¼Ïár‘äy\¹ž„U¤±…tzAõ8#¶å]ê<î´aÌ׳x!  k3¯pº.yG†õô]§]š:@Q¬‡Ïu¿»P¶£!WuôM¿RH/€Ðýµ‘óÙ®7ÄØâe:ÙÎÁ кŽñÜwÓÇç™K$Ç­­ÔP6+,@èBês¯@‘Ð#Ó\'9ð-¹‚v”›è]D§\ÓU­)ó¢t›Õ½åžò·?OÑL t T¹ç¶ØylÍ’yXGe©&J€Ð}u‡W ¹ß=lÊZa­ÊRÙU¿}Ût€ÐEäi„µ­°²Ûôò6£R¹ÖÚ¦#šÐº¯ÆyÕ%)3À6ýr¾/lb›Žh:@辊×ñC·×ئŸÖqôÞ„h:@èòtÍØÛtÙhºå…U~ônEÓazèÝWÇ\û¶ü¸Mï•zX}µÈ(Lï ‹¨»W„µ¦ÌFéÂRvµHå®÷+…ÈMèÝ_ýüh«Çí’j³ºHrè¼Q ®÷fôXèÝ_CÞ!6«°T£l[òÚJc­êmz7-íE ûh†gˆDzMó®ìØ7ó2ÕA¶œzÚ€r û(^畘N¬úϲ%äôÙj£Ò;@è¾ÚÈùF¯ûYOÌM²U(¬ Û Õ‹÷tSèÝ_‡¼²Øˆí›‘­BAÈ= ¥¥‘Þк¯ŠÝÛ9Ø:à@.¶M}8½¾€Ðýµx>°=À\¼K}8½ Öã@.œ _ÿ]nÚô]ë_º6ëgÓÓÒŸ®è“”wÔÓòNì9ÙD6R>jä«ÎYí,¥Ý°BЯïaSÒYú¬ ×V¥±´ ™Œíè“´ÙÛòNHÖ˜¼CŽÔî7*Ugnã@.œ Å>xF–Ìö´¼¸´>}³œoÓØ/ú$Íõ9³r%²£_ÎWnœ‰\À\A_Æ2–&>Z6°ÿ-Ô§²ßÚŸaú$]ªò9³rcY²Ã?Î7F·NîÆ\Aÿ;{Ûþ\ÉÞ}qm[™Ü©3ÖÐ'É÷<ެ3ÍéáOg[[ä Ðd5| ÿŠýÆþÜÉÒ_\›õóäÑÜgýUùúãìÐÒGïVëôkqµ?¡³¹ÐžË~mNcléä{S±twÐFÏ*ï¶:½[9ÕÝGP:t g°ög cË&ÝZŸñ࿤CÞùª$yô~\zü/Ô›a›ÐN9l 3öC\-Ízùγ)lÊ¢IOOûéD½³!”‡‡>ùªÄ>z_»Fú †•×–ŠtÓÂ+ *L §¹þlË|>ùé§NÔ{¹áüCŒsþ'ŸG>ßdž•²Å®*·½çÔÓv”zèé.K÷i[Yæ,Ÿÿ7¤Kwûˆ÷ø—d³lï_«ý íð† ô\öû$ØŒ]ŸpyY.›þ=èÎêó ¦Òkš ¥½¦ñ.å .W i7ŽÞÃú»ìŸöçÄð!ÿÎd{Ö€î¦}¼ø’ß3Ló„ôämQÞ”mŽÞÃúŸÙÇöçJöÁ„oJg ®€î>ãÖñc¾!°%¦y&éÙŠIDµÈþK·ŽN´ÀÎÌeO—€î¡ÙÞÅŸmEƒ„ÓËËŒì“Jƒuô~X…tò{º”,ÚÅr-Ü·ï|˜øçOXæógIEº³úyÅC¿gŠ…ÓËGU“>®÷þi.ËØšÉÒß²þc û&1¡g°Z ÐÕê›™žPÉYsÓ^yÒÛT¢°\ï²…t»ðDæÛÉØš úg  ûKÀ k‘[+].’Ô*'½s1ú)‡ty…trJ`ñngª×¼Æ¤?(DÁ€н4T!°x·Œ3ò9›tµûôftNèÝS›Eïäð<óIÑkLú ¥Í`  twY¼[u(.f½¾¤Gº)\ »/ÞòC™ãÛM³1飊3svÓRd²t€î¹x? ðØ™ ¶w+ž®Ö ›Sp:@è^:Å+»kšH/SœáRÓ@NèÝU­G<ï 0Í%Hßbß©ü‹‘³ к»b³9Ÿ!ð\ôˆi‘ÿš¼.Å•(ÎÒ0Ît€îª;¼¸Oà±È’@¤Ç¯Æ=•#G(²Ó:@wŸÒã=þÕflÒ;‚¤§“ø6ø¡’ôfJïÃ"к›úª|KE&WïÁHÝ0Œm*ë½7¡'@è:è×wñGÒ#ýžat)ìṋ@èãG‡Dçôût2ß0Êöe‹v£Ø;@èî ?¬2È’e‘`#¼Ú0Ú¾T÷Cæì …0Ãt€î¦Íœ‹Mšâéäd¶QyS!é»i)jKt€î¦~±[2ÊÖ Œu+ßÈ¿¥n›žSÛ;@è®Êëá=bçd‘#¦¹0Kþ›nV*Mq)xŸ.îÄß tgõó~ÁYó„i6ÉÓ—mJí° ´ . »èobyl–îšæÅ¤[Æ÷auÖ™ÿ²w./m=m?‹™ÙgÒâFjŒPu#H¼F‘¢F£¨ ÔW$š[¯x­­7,õîB[«VE¤Zª‹þi¿3Gkµ*$y漿ŸuÎåðaæ¹ÌÌËL‡èý1\ƒIÜÝrÍç—éŸ.e5ÉmÛWPïË-0¢Cô‡énH6L·N¢XLÿÄH«u¦¬ÞNÓq4D‡è…éádÃtèõóš~»ŽKØWfÛ€é¢?ÊÏ$niúßWÇ ïzïc>ûÎÞÁtˆÑc.ÙjºI<Â#C„wí&˜Ç¾Ô—C¢¦Ctˆþp˜>*V“ýq ÷^V_fç¾U˜Ñ!ú£¬evÒîU,r~FxYf+cÍvíqqÂtˆÑ¥IÊ7Iÿ8°Ây¡Ö5ÃXbÝ®å¦CtˆþûRÖ%=kºsiMrFÔÃ|¶]î°ŒŒD‡èà•kIÿZµÃž êÆ¯*Ær\0¢Côÿ3«cr´;ùŸ·qZA½¾™±ÖLMGD‡è1LòŠ+†ˆe6ïc=vê膅èý¤|ÂÏãÕœ/PÞwdc nšîUˆÑb?©Û”o¨8ç¼ÀMxßg3PŸ±)Pïƒé¢?Œ+;…9“@.ç+„ÝlV þÖ¦Šz_Läã̈ŽòÝ£rìG ¿WÉwRJÎû…±Ä/{þ™—-"tŠo ÑÁ}ÞUÊ¢”Ráµ~©¥¼1ê³­õ=ïΆ…èø(ò<œRêÝ0â5œPnDZïa¬Õžå{^£(,Æ7…èà>2¹{šnVï%'Ä.9ÕúÞcÏõŒ.!–ðM!:¸Ïë6§[¸ ˆºQê±kùžÕ.ÄGÜÀÑÁ=\ƒ2\—Ú#ã~î'ê»¶-ß³¶„ØÂýéÜÃ[”Z‘í:Pv—ï [îwp|¢=_¢ƒYmcïR{¤d…óKÊ&£ÔÇ<ö4Ï, Ñ…-.Üc­2…g®'ÎΫ)­ïÆúwÆšm¹ˆq¯[\ :x€ã`ŠåtÃÚäÂg)ËwÕ<ã³åÒ¦Óˆ¡I¢ƒ{Ô…e¶7Åg*.9?!-ßç«lÊÉõÅD­3Üc@ʹT#fç0'¶ÉÕo3–°ã0è—B¼ÂW…èà_Þ¤Ø8s³|P^[êcì‹ çQ¨Ö™ON|Vˆþa?•ã"o–ï'œ/’šgÖ›ë±a›‹*¨£ÌÑÁ¿¸¦¥ü™òSÎÎým”^4Wއyf¼ÚÿG§Àé°ÜÃ;˜ü…Ê·˜ªá¼ƒ²IÝØýÎØwšß÷|‡èàÓ³e¸)õǽœW“rrÞC{&õ˜íá»Btp—Ì¢”ÛÞ­å{m„óÞåÍ¿zl‰ÔUòý#RrÜ¥Û4ýyÏU¬p^Cê“óÎxìH¿g´ 1‚”DwY•ÁtLw,ø‰…6‡ŠÔõ×Ô…hD?,DzL7ú/ÍI}Š4©ç˜“ú¦öF¹½ÈÇQrÜåGº¦;Ϩ“ºUS÷•jÞÒæèk¢‡Q@tp×ô†4M7úÏ©‘ºK5Ê5ë¾Î%¯ :DÚætí&õ^RM½¾•1ÏŒæ¤\Ö'!^àvˆî™^—Þ£ý'Ôšº1Ÿ`,¡ûæ&3PGE¢ƒ»¬Ž¦Õ9cEÄmÎWH›W­JÛ¶æ#)ú^ñ gÉAtpÇô"HóÙŠÎýgnÊë×ßê_¿gŒà„)ˆþ¡»(.×ÔVs¾Hª´Qµ~×{úŒc©u6ˆήÕkÜš”ËTë÷f½;]–cB|Äò¢ƒÛ‘ò ”ûi—´ãçœGH]æ¶c;õ:ÿ§¼vsùŽ69ˆn¡ö§Ï¥½£ÌJÊÓÖïó=ŒùrtnjsvšËw&ÑÁmÓ÷¥ÌîNûñ’sýžKÊ¿»Ž|*T×Ù*·Ü"Ä7,ß!:¸Å3)‹VÓ<~ɹÿ @ù Ê¿˜¡z™Î+]TöÍ3Üf ,ÖÒŸã՜׌“úÌ×[ÍP}[_W¬Óñ*$ —ÐûÑÁ_žeå1áùÀ¬ŸóKZ¨þ¹ÙT}ScV®¯Qˆv”Ô!:øËä˜ 6žwVäš¡zé XW´‡1Ï¡¾ ¬ª÷=±üåݨ”oHé°©s3T&UÕ]GUŒù4öÊÆ°¡ ¢ƒÛtgSÊlã5œGhY¹ÌŸ©ú…6ÕUN.†>9ˆnðNK9±J½á¼zÁM£üÐT½êB[Y}/_ˆ-LêÜð,,Ç&I#8¬¬\Í8IõzUk«:Ò¥ºê“kÁ¤ÑÁ u•´”œ¢¢ÀO®µÕïèTÝQŒI¢ƒÛ¬5HùšÚ¡VÑË9_¬%©þÁR]W¬®&õZb!:øƒJÉeÓuÃaôçêR=GO±Í¡"õÔÔ!:¸ÆõZʆIò0ñºêV¬î;ÔÓB“7"Dþ+4ÊAtpMSP MªÓr*ïÙÑsÜÔ×!ºÐýÑÁŸ@}TÊi¯&ÕkÚ”1Êsªc­Z®kËø&D!N¤€èàO >'å蚆¬X½úŒ¤zæEÂT½ù½ŽM¬B´ )ÑÁ5?ÃZ–ï¦êªØ™¥mW~7Uï)¥§àÎ¥í8|¢ƒ+&Ìå{·Ž‘*†#œû{ã¤Aæß2My9•”+ìÄú¢kîëÔ’}W”œU›+ø•!RÊ{wÓØ‡¬;ŒÓjýŽü;D¿ƒ2üLÏñNî¶E•‚§ååêgT^®¬”œ&Ìê !ÿÑÁTö}âž±œC+œ¬{KËLÕ«Éå6µ~ßÐ?Ñ%Ö¾”•zÆrñ^¿:›‚t «ñ¹Õ£Žœ"çà—…!T‡èÀâù˜”ƒ«ºF+9¨Öµ‚OäsÎ☪ï!T‡èÀduΜԛ´ ç®=1U÷rð®¨ÊÁ{¶çiÓz† Õ±¢ES¥9©ÿÐ7^\UÖù%mZ_?´¦õZ´ž·e†êíøÆ˜“ú ŠÔ5Þ®XP9ømZ÷FÕ¡±ìm””„ïk7UA Dדzö;#NY‰¹óÒQ’¬hÝ·Cª­/w Q¸Õ!:¸ŠÔƒÏtÞŽf”XÓº?wˆrC£ë½•„ï¡,á_MÕQkƒèÀ¤®AÊÑc½cÆ "jÏË0é0øò ÕÏšKÓ?¡â{-¦êŸ :DF÷~XÊéU½ƒÆU¹„'õÑìZ™9Ïv4í]/Y¯LÕCP¢Ø,’²ò·Kó¨5Êõ•ñe ?¿éSáúæ{/EõÂoˆÕ!:pý®”²èXû¸SÖÞßQKq=3ºí±\O·º~¥:Òr«ÓRʹÚÇuÖæª,|$·ÖM ×K­Š›o'M׳Š[T± uuˆ&'¤ ¾îÖ?p`¼Ãr½wˆâzýÑ•ëi®á{¦ê]§hŒ…èO~ýÞ4&å˜öP]QÒf¥æÌy²†¯¿¸r½5šNÞñµËT½±Û] úSÇû&(åh-c_»îï§´Ò\Ïëž·Géì|YVÝr±N¤à!úSçÇtXʉcÃ.×ýVžTs+/µrs¬lf7õ‡û¾…„máh ˆþÔY”RfOÚ4zÉU¼Îgã„h93jÕÜXÕÎû” ìy1¬uâSCô§Íñ„©ú ]ªÚ^µwW÷Rv×ü—ÄÕ"þb=ÅG³ŠU^®+xˆþÔ©+²UuÃ15»hì'g”}nëÍÖ">‘òľ;åNÿ/Ý͹šØ}­G©luËúªrð…#§NˆÑŸô¬®ðu.[ßÒÿ;÷ÔTvÇgn3ÛYuaÖnehÃne«#RP»-Hx,e (q—]”eDá%Ã+WW X„LKËc€qhg¶Ý¿µÿÈhí8Î8Ó±eµõùWϹ7!@\B„HN§×IDAT ßïf=ì=¹³ŸóûsoÖRØÃš‡ßàx.¨¾«€ÇvñíY+xî–vþ$»[Ot@÷hêôX®J#^ÝËÄTT²;v~f„ê ~×Ú Ëa»x^A×ò±seÝûø¾@@tŽ™>lÓ–¶¬öu⪠¹.>ùM° »ÇËB¬Ø—ÛÆG~¾“P?xúF0 ºç¦Õ ¤ýê_©X‘ÌaÏ59½qŽ…[°—´´-kßá{®?ŠXê÷ÄSx@G,i)UÐͺRìåBì™Í}gbœÆÞcÅÒÞ³œGoÁWŽí¦Ûõóßø: {jÄz¯U׺äjÅ*î>¤²Úé—eIoÙ³Ä_^N™GôâqÖ™³Y7&ÑÇméb×\N^ÍБ>~ØùÒÞ&³œÆó;×üÍ[äÙÃë~€èš¡R-[Ö[]uÁ¸ŠºæLN{S´ªÈßÉMBc¥ç´-ÑȧqÖOö{ÊÙ # ºáôrZÖu“ù.»¤_‘ªÐRÚÃ&*«‹¬´BRÚ9ìƒí޵§e{ø¨ÓWÐ=µ¬gêR£«ZxKiïËMžÕîlmêÏ)±h'µ½'ÁÑ~=›Û}üì)@tÏ,ëfú¼M è5 ]z]yêL#6RhrvßžÐnÕÎ+鬩o°û-ü¼|¯œŽb7ìýWÐ=1AÊPÚÂk]mÓn©íü”ܺT'[yªÝrHÇ ÉîX¤¸Ÿ»@ߥ¡…}ãžÎ:â -£ôEøµ°N´“N>…?S܇+œ{Ô3Ð`ážXvMfwçž–wì ·cß—è€î©qÖ ±‹¯LŸsÇœQEO„Y¸gND;É]Ø–UÓimåy%”û‚ê|ã{ï}¤ãJ$ ºÇZW•-kr}_yj_DSØluïK-öw¦¸É.—%Z¹'fw7ÎÛ»G^é8iÅžè€îyÖGut¿ž¤é…k þá_lËŸÒ\©ª;ñv[BÏ€ ÷€Áœk²›ŸÁùžÊãŽç¼œÎ;åè€îiûuM¹”kâר°{ùùrÜ G2­ÜÚrëœòž0&»ÖY`Ý»óBâsjf½Sì\e?xìó€èž±¤—>_bÕ.߱ϼBUÙl=ªc½WšR‹cV¾w¯ïÊž)ï¼€‚ÎËõmô»ù¦íë8Âb÷ÞÙ‘÷M0 º‡5ñ\a—êJÍâ5ž )ïÃÑ6ÞùɤÀ¯xÔÞnãìßICߨ&޼záønoîÙ[ÿ¾õÜÈ:âDaWÇ&Y°Kò×~>þŦÊÜÙí;ÞTQ·Rïõã—Ëfûyüø«ï:vr¥ý ѾNk; #N%?½—=Š$Åö*kÝcNò3Õ}…×m Smª\@žFê|DeŸŠ¢_N}7ŒÕÔ´Ïkëéóø’ìήšñ¬Æî† @ô«}t¦¶ 2BÕs‹›Î”läSU}¤±ŸožÏÏ$•¾ª¯(’/ÞßÓýü|ýug½züìþý»wç™ç$fçõ²ú±¶CB@ô ±^©Õ ¬Õ]g)õAn<_yQE5iís'R §µþ:eoª&ÕÞ®{_?öñzà©«g_¾|úðÁ{èi­/Ëéº>ÕHÜ‹7ô‹_íØòÞ¿]r Ð7pq×ô†Z{y@«3”*ÍCB7Ÿµ¿¼˜­ôöÕ³å~¤™…O þ|ùäËù§ÝÈ;úpÔÁ©GZÔ,dOÊ}A6_Vß8Ö°êòWúÅ/™moù0>.1è=Aze©1V1ã]šj(ÕHZÝ÷ÔÊv‹WLj=Ëþz“}÷T~ÓDsDaeݰªš4ûÅò8®ÀðÇpïÕMÙ°±çžÈ)¤ô/ׄ˲ˆý¶†¡ÛC¿Äìú‹×G3_žp<è’³²Ô ›içiG[NħëݾÆÏƺOU ×Qø#‹Á§í>ÁOê~D4Ñ?l2=yòäûc‡¹_ÄyϸúôÙ³éééÁ‚ÄÞb!ø âË:‰~Zù)ÿî†CÎù_è{™m{ÈljO˜ÇÝÓvï­’IµQ§M²/ÐV•Ô£J‰~H¼Î¾N +¿Ú4\]˜Û<ÒäÀ>Wü3“o“Ü"¹sçοÙL‘ìžšzùòõëÇ$ÓeÙñŽìsþKãËÊrÚé @—€¬ÆÆn¡ë¡ÿ™y—ýÜϼïp Ð=4Â!³r´×¨Ë æDšAê|oé$Q_Û"\ß,&N^t†à§u?:"·yb$%yÿ0~˜½€ïÞ=ë"À.wþþí·ÏŸ?ÿMÕ?X²ÿp×CßÊüŒýü”ñq8è8²k•(GÕ†òعUžëîµUºrc¯Z4©I—è[‡ò…ëõ[úÇÉ‹©ÿT•i¸¯.š®×IœÆ_IÈbpï¿4ÿâò6%d û~™ë¡ï`~Â~¾Ã0{:bc¾Öœ®ôº*­T`7REFUlh¹ÑЫ.%ü•J‰D¯¯­mɯÛoMZv ]€j˜îÿé*ÐÔDª;u½‚e Úõз1Ÿ²Ÿ'f¯£1@GÛ͵šÓ•“¥jƒ14¶*C!X*I EYbu¡d!0 d-P«E"ѨFC%]$tY i­¥Êçâ†mœwó|þÎg}ñâ=Òcs‡ ×ãߺ}‹6ü·ï‘Uá{×CgË3´-Ì‡ŽÆYn‚Zjõf‰R3)"ø‰~Ê_« ~¸H³Ñf,H¬“!+ÏNgûÏÿ´Ië¡o±ƒzË¢ÐlµÍÑOð5²‚ÒŸ?TÛª×K$éJ¥F3*‘BNê¹Ñh,'´*‚TKñ 6b’f6Ô®‡îc§M÷Yfëîvïä"ê € Û»ÓõYbMºÒ&{!+‰›f´e-ã¾¶¼]t4èâš¬Š«÷™¿±Ÿ¶Òì:‚¬cè`>f?÷3»Ž:‚¬cè›ÚžûÙ¾îjo ÐdC÷ú€¹¹ÇëW_0;èXþøÓ_/tYÿÐ?ÛÁl;ºñÙDÿòóûc€Ž ë:û?™Øþ.÷Í}Π#È€¾&„ €è耎 pèè‚:‚ €Ž  # cB耎 €èW€Ž €èè‚:‚ €Ž €Ž ! :‚: # :‚À #ˆGA¿¹Ùa¾zûGîœ]n=».áæ9Kî}óÞvìæîý£ß9žðÖ›n}»·»õìŽþ7ÏéüÒ½oÞ{ŽÝlÞ´ÎZ_üÉ­§wÓ­g·ÿǸyNgóÜ<@t@ÇÍt@t@t@t@t@t@Çít@tÜîÿ·wÿ:m¤_Ç_’â‰bØ}aDïØM,Ù;ÚΑ,64 zËríKH–Å-p H©Ø ѤA ¢MRl±Ò+åZvþ˜@È„¬Ópòû}?3œéøØgÞC:A'èát‚NÐA'è 3<‚NÐ :Ã#è t‚NÐ úÿqÐçmÿΑéîVÞ1¼ï¶ºÃð€Bû{±/o÷¿Y3Ô^ãQÙ§›F»K=ô±ÕáUšAXZÛ쮿]öQ}ËJ8g53O{¢°(h|£f¨½M/?ˆ¤m“Ý¥Æ%ÅFŸÛvUÄRµb±»FÔ"y#ö½‚ÿô|ÿÕ:sk=MÆw×ì´×÷z±æÜ±×χ—:’‰ µ· xι“@ì®2Pkß÷Ž,dcW·‚n(³ê*줇 6ï¬joAÙö¥»KûÐBЋÚyß͇·a°»‡òûyÞwï|gºtCÁ˜Ùk=ɶëªÞY3Ô^Sëùiž4¶×]ú:mê½… µ·;]ðŒ~^1ØÝÅtl=íÝûô>Šv?º¡`Ì~µAO³íÖ‡TT3Ô^c>¿²sïAÿÊ võ`ÇBЋÚkiÅð+¯!Ÿ2ÝÐÀý@‡£¹ÏŸXCÁ˜Y<}â—¤Î]5Cí]ŸÂLvwÆ5A/j¯¬~ÿÁ ®ž˜ì.IxõÌUŽ,Ý{ï¶œ»tCÁ˜Y¨üVÆXêÞU3ÔÞT?œžÂë®rªçÎDÐ Ú«HÏ¥>Z|å¹ÑivÕ}`ä?·ºtCÁ˜™4½UàÕ¸«f¨½ÜYI¥¶Åî~Ó#g#èíÕ¤hrÒíIó‡×Yðé»P«a2膂13_л·óx¾ÚÊYSÑ¥Åáõƒ¨c$èí%'av…£wï랢á-MTm´û{ v,ÝÿÀA ÎF;g(_kei¨¨arxU-;#A/h/9¢?ÈvºÒÈÞðö4Ì®¯¾ÖÐbЃøÔ=N”Ó·úý»j†ÚK_¦±Êç&‡wœßy1r1î‹ö*^W;[öžÚrö.™¼y] º¡`̬ª·Ùö惢š¡öœ{iÒ·9¼º®5 orôPs溫誩²V ÝP0fv¤^¶]WëΚ¡öÜ\ æ¾Ñáýäs’÷s‡×Ó«üR‚ü™½îå·ýÚ^ï ÝP0¾ç¡L?t¸ygÍP{µX§kf‡—3qê^ÔÞóé-ê?ïýµZÔ]]?eÛ7 Úƒn(³«ë´ãÚÛŠÓ« Ç¿¬~Q3×ÞE—g¹ŠÁáÙ zQ{• 5Ï~ðƒÁî¶¼^'ïáó~u¦‚n/3Å ‡‘‚ì<³¤_Ô¬µW ¯WÁƒÃ3ôÂçv"_Še IEÝxIM½Š­ Û ÆìÒߥžto>žÏjÖÚÛ‘ ÏNÐ Û[{9£ÖªÑîÏÊ>X\¶³°uVƒ€oúUÏ@ÐtAð}žêè¼ÍãÊuí£ªùNO É׋zÙ‡“½¥« _¥ý¥zé¦ÿ8öQõ„Q–ƒ^üâ†×£ë¤_Êï§Ûv 9ç¶¥r©œ|éý$PXŠ•½%°tM~wn+ÒÁu±™³¬’s+ Ó£õ?Þ½èÅšs«‘6&`8èt{¬øºøV‹éæP»Îý­?³ÚßÚ. új¹üç' °ôf¶m‡:ÿTìxŸ¬Èk¡Fé¿´§ ÷'EA/k9ûfÍë’ifƒþ ßèb­›IÎÄëzêÜ›ü¸îÚþZ¨'«ð¢ ×¤A3ãµÂ4³Aÿxµ.?ÞQæçæµá\KÇI½²¥ÅR³0è#]c‘Ø ú^¾3Ñóë ·–|XKêGRïÍV-‰õí ¿N‚~&u"`?è­«5vÿFù±ž¾Íò<ô[Vyõ)迨žU¥kôOWÛW/ÇL0tßϷÛ嵕ÞVKÎÍçÒB­¬ÃiÐßäØkQôž†YÀ/v˜&`6è&I¿o]K‹½/ó#ú‹J’÷E¥‡þ,è—ÒÑØ]ž* úy¨íä 'Ò+† Ø zúaœd÷óz²4Ïï»RÜjzjpµ<ïIAYaþɸe¯0ýù6Ãì½ÞhQkõV=9l?Ì÷V6"_®¯&‹øî4èãõRvWóϺwÇ>î’sÀtÐ@ÐtAüú°#Îû"yðnIEND®B`‚metafor/man/figures/selmodel-stepfun.pdf0000644000176200001440000001536514465413201020121 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20230811130745) /ModDate (D:20230811130745) /Title (R Graphics Output) /Producer (R 4.3.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 2962 /Filter /FlateDecode >> stream xœ¥ÝMoÜæ†á½~—É¢ _ò|n´‚¶@bY]©ƒ$µ6IÛ¿_rfdÏC=ÇF–t‰äÌí¾²%û Çôå4¦§?|5ý{R´yòåqž'Y¯ïÆås?¿š¾™Þ>|öË×ü|úâÅüm›§û·/¾øËÃò¸èô¿‡¿þmš§<ŒéËí×cßaúóƒ¯û-‰ËãX§7G¾~ØÞÏ”B„ú¸P¡3€B„~Ìa3€BãyæãBiÏ3¶ç™R(ƒp2F¸3€B„ë1h„rÌ eê1h„vÌ eú1h„qÌ e,Ïs;½)íyævzS eŽCÒ—cP(ƒp=fï¿@]¹æåKÞ•Ëó”=’P(ƒP÷HB#´cP(ƒÐ@#ŒcP(c}žÛÉOiÏsÌÛÙßXõ8Ԝ٨—Òƒ–ÆA½–´QKéAKã ÖÒƒ6j+=hiÔ^zÐF¥-C˜·ÕÐØ˜÷¿7–ÆA=Ž='6ê¥ô ¥qP¯¥}ÿçÅÍÃäÎÂ,{/µ4jÝ{©ÚJZµ—´QGéAKãPæÜ¿3¤6æe[/¥qPcωz)=hiÔkéAµ”´4j-=h£¶Òƒ–ÆAí¥mÔQzÐÒ8Œy[yÝÖCciÔãØsb£^JZõZzÐF-¥-ƒZKÚ¨­ô ¥qP{éAu”´4gÞÖCcc–m=4–ÆA=Ž='6ê¥ô ¥qP¯¥mÔRzÐÒ8¨µô ÚJZµ—´QGéAKãæm=46fÝÖCciÔãØsb£^JZõZzÐF-¥-ƒZKÚ¨­ô ¥qP{éAu”´4ŽdÞÖCcc¶m=4–ÆA=Ž='6ê¥ô ¥qP¯¥mÔRzÐÒ8¨µô ÚJZµ—´QGéAK㜙óqmìÌ>?ŽÆÚ8©Ç±çÄN½”´6Nêµô ZJZ'µ–´S[éAkã¤öÒƒvê(=hmœƒy[9¶õÐX'õ8öœØ©—ÒƒÖÆI½–´SKéAkã¤ÖÒƒvj+=hmœÔ^zÐN¥­saÞÖCcgÎm=4ÖÆI=Ž='vê¥ô µqR¯¥íÔRzÐÚ8©µô ÚJZ'µ—´SGéAkã\™·õÐØ‰—yÞÿ_µ6Nêqè9³S/¥­“z-=h§–ÒƒÖÆI­¥íÔVzÐÚ8©½ô :JZ§0o롱3m=4ÖÆI=Ž='vê¥ô µqR¯¥íÔRzÐÚ8©µô ÚJZ'µ—´SGéAkãTæm=4væe[µqRcωz)=hmœÔkéA;µ”´6Nj-=h§¶ÒƒÖÆIí¥íÔQzÐÚ8y[yÝÖCcmœÔãØsb§^JZ'õZzÐN-¥­“ZKÚ©­ô µqR{éA;u”´6NgÞÖCcg–m=4ÖÆI=Ž='vê¥ô µqR¯¥íÔRzÐÚ8©µô ÚJZ'µ—´SGéAkã æm=4vfÝÖCcmœÔãØsb§^JZ'õZzÐN-¥­“ZKÚ©­ô µqR{éA;u”´6ÎdÞÖCcg¶m=4ÖÆI=Ž='vê¥ô µqR¯¥íÔRzÐÚ8©µô ÚJZ'µ—´SGéA+uî¶ÔÒ8˜}Þ§©z{N,ƒz)=h£^KZ×ÛÛ¼ÿ˜Wüæ –½—Ú¨u稜ÆAm¥mÔ^zÐÒ8¨£ô m0ç>³K-ƒ9æ}ž˜Ú¨Ç±çÄÒ8¨—Òƒ6êµô ¥qPKéAµ–´4j+=h£öÒƒ–ÆA¥m sîs¼ÔÒ8˜sÞgŒ©z{N,ƒz)=h£^KZµ”´QkéAKã ¶Òƒ6j/=hiÔQzж2ç>ÏK-ƒxç}ޘڨǡçÌÒ8¨—Òƒ6êµô ¥qPKéAµ–´4j+=h£öÒƒ–ÆA¥mœû¼.µ4æ1ïóÄÔF=Ž='–ÆA½”´Q¯¥-ƒZJÚ¨µô ¥qP[éAµ—´4ê(=hSæÜçu©¥q0/ó>OLmÔãØsbiÔKéAõZzÐÒ8¨¥ô ZKZµ•´Q{éAKã ŽÒƒ6cÎ}^—Zó:ïóÄÔF=Ž='–ÆA½”´Q¯¥-ƒZJÚ¨µô ¥qP[éAµ—´4ê(=hsæÜçu©¥q0˼ÏSõ8öœXõRzÐF½–´4j)=h£ÖÒƒ–ÆAm¥mÔ^zÐÒ8¨£ô -˜sŸ×¥–ÆÁ¬ó>OLmÔãØsbiÔKéAõZzÐÒ8¨¥ô ZKZµ•´Q{éAKã ŽÒƒ¶dÎ}^—Z³Íû<1µQcω¥qP/¥mÔkéAKã –Òƒ6j-=hiÔVzÐFí¥-ƒ:JÚgæÜçu©µq2û¼ÏS;õ8öœX'õRzÐN½–´6Nj)=h§ÖÒƒÖÆIm¥íÔ^zÐÚ8©£ô }0ç>¯K­“9æ}ž˜Ú©Ç±çÄÚ8©—Òƒvêµô µqRKéA;µ–´6Nj+=h§öÒƒÖÆI¥í sîóºÔÚ8™sÞ物z{N¬“z)=h§^KZ'µ”´SkéAk㤶҃vj/=hmœÔQzо2ç>¯K­“XæyŸ'¦vêqè9³6Nê¥ô z-=hmœÔRzÐN­¥­“ÚJÚ©½ô µqRGéA»0ç>¯K­“yÌû<1µScωµqR/¥íÔkéAk㤖҃vj-=hmœÔVzÐNí¥­“:JÚ•9÷y]jmœÌ˼ÏS;õ8öœX'õRzÐN½–´6Nj)=h§ÖÒƒÖÆIm¥íÔ^zÐÚ8©£ô Ý˜sŸ×¥ÖÆÉ¼Îû<1µScωµqR/¥íÔkéAk㤖҃vj-=hmœÔVzÐNí¥­“:JÚ9÷y]jmœÌ2ïóÄÔN=Ž='ÖÆI½”´S¯¥­“ZJÚ©µô µqR[éA;µ—´6Nê(=hæÜçu©µq2ë¼ÏS;õ8öœX'õRzÐN½–´6Nj)=h§ÖÒƒÖÆIm¥íÔ^zÐÚ8©£ô =™sŸ×¥ÖÆÉló>OLíÔãØsbmœÔKéA;õZzÐÚ8©¥ô ZKZ'µ•´S{éAk㤎҃¾ŸÇEça÷ÌÆìóa^øÌÒ8¨Ç±çÄF½”´4êµô ï{^ìWKï.†~ùųC¿^j=.ÿOïÍíÂëO—Ϧuûåñ¾ênóm þiûÓ|üû./„´¾ÛáÆ».“ïïáÆû®×d|·Ãíïwxºžûm‡ûßÃç/oÑ·¿œœ·_ÿðýO?ýcúé»éūׯ¾ýõ‡ŸÞ¾»§ß¼š¯_në$÷¼¬„ãö«îk6gÝ|»êÓöïvXŽ·¿ÀÈiàÝ¿ùIõËD‡\®+t9e?ü„½\øpìãø˜ÓŽÖ?Zj÷»{ÞΉé~¹ì?³ÚßËç~~5}3½ýГæzûkž|ÈésÕÓº{îü¸ß~~‚Üïq~†Üïq~ŠÜïñÕÃÿJ¢Dendstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 504 504] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj xref 0 11 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000003326 00000 n 0000003409 00000 n 0000003521 00000 n 0000003554 00000 n 0000000212 00000 n 0000000292 00000 n 0000006249 00000 n 0000006506 00000 n trailer << /Size 11 /Info 1 0 R /Root 2 0 R >> startxref 6603 %%EOF metafor/man/figures/selmodel-stepfun-fixed.pdf0000644000176200001440000004065614465413203021221 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20230811130746) /ModDate (D:20230811130746) /Title (R Graphics Output) /Producer (R 4.3.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 12740 /Filter /FlateDecode >> stream xœ¥ÝM“Ç‘ á;EÉ9þq±™5“ÍìÚŠ0ÓA¦„LЀĬÄÑüý­ÌªÒݳ_Ò@?Df×…DwåÙn¿¹µÛŸoÿï‹ÿ{û7ñof»Ö¾q»µ¹}Ó×­ÙüfÈí/oo¿»ýôÅ?ýõ·ÿëŸoÿòíÛ7Û¶ÝÎ?~û/ÿû‹þM×Ûÿ|ñû?ܶÛ_´Ûoîÿýù‹¶pû/T¾‘uñÍ´Û‘ïwšg'®õ:õ›¦ÄÑ+û7cû5<–ð*͈³×zöXB¤Ù7›?iÄ} ¯s_Âë4#ÎN\ëuzŒ,ƒ(‹hFœƒ˜"gŒ, ‘…º͈s¼Îµÿi†ÈÂ1ˆº͉)òLÛBdesâD݈æÄ)¯³ÅÈÂY8„¨Ñœ˜"{Œ, ‘…CˆÚˆæÄp1<(÷ƒÖ“ò:Ç7[#îKxCˆÚˆ6‰)2Pbda›Ä!DmD›Ä©¯Scdaˆ,JÔF´IL‘÷ ªCdáP¢v¢MbŠ ôY" ‡µï?SdàŒ‘…m‡µmï_нÊ# Cdá0¢v¢-bŠ<ÓïŸñY9Œ¨ƒh‹˜"[Œ,<_ÀOŽû‡ž'ûFÜ—ð:÷%¼N߈Ó^g?–ð:Cdáp¢¢oÄé¯sÄÈÂY8œ¨ƒè1EÞ?- 1D'ª}#¦È@‘…½‡UˆÞˆ)2Ðbdaˆ,“¨BôFœóuzŒ, ‘…cU‰Þˆ)2ðþiQ‰!²pL¢*Ñ1E®YØ;qL¢*Ñ;1Ež9·Yyެ‹¨JôNœëu¶Y" Ç"ª½SdàýŸCdáXD5¢bŠ 1²°âXD5¢âÚ^§ÄÈÂY(Q胘"5F†ÈBÙˆêDÄxüó0DÊFT'ºSd ÇÈÂ.DÙˆêDâj¯sÆÈÂY(¨Nt!¦ÈÀû'¾I ‘…Òˆ:‰.ÄyæÚBdå9²RQ'Ñ•˜"[Œ,ìJ”FÔIt%®þ:{Œ, ‘…Ò‰:‰®ÄxÿÄ·ˆ!²P:QÑ•˜"%Fv#J'ê"ºSd ÆÈÂY(¨‹èF\ãuZŒ,<!÷d»qßž4¢ ⾄×éF\ãuú7m#†ÈBDÛˆnÄ8cdaw¢ ¢mDwbŠ \1²0DŠm#º—¼Ê¶m¡òÊçÎ+‹°­±ÝÙ¹7º}Ó;öV‹°­±ÝÙ¹7º§Þê>Ù"lklŸìÜ=Rouì­e[cûd/%Kê­Ž½Õ¢lëlŸìÜ­ß´Î޽բlël_ìÜm©·º/¶(Û:Û;÷F{ê­Ž½Õblël_ìeä™z«coµÛÛ;÷Fß?Ëvì­cÛ`Ï{ƒÛ{/<6¶Û{nìåä–z«coµ8Û{nìÜÝSouì­g›°çÆ^íÂmß&ò´“}¬,Î6aÏÆÎ½Ñ’z«Gc‹³Mس±×$kê­Ž½Õ2Ù&ìÙØ¹7ú±·–{«e²MÙ³±so´§Þê}ÿ/Y&Û”=;;÷FÏÔ[{«e²MÙ³³÷=Á¯{¥ÞêØ[-‹mÊž{ƒûvì&‡Þ Ëb›±ggçÞè–z«÷ýÂdYl3öìÜÝSouì­ÖmÆžƒ<Ž=ÄäØ[=[7¶;÷FKê­n΃­Ûœ{£5õVÇÞê!lÝØæì)dK½Õ±·z[Ûœ{£ýØ M޽ÕCØÚØ6Ù¹7z¦Þê6ÙCØÚØ6ÙSÉ+õVÇÞê¡lml›ìÜ<¶Ø{áÐ{á¡líl›ìÜÝŽÓäØ[=”­m‹{£{ê­n‹=”­m‹=i²*Û;{.²¦ÞêØ[={ß5MöÎνÑvì&ÇÞê±ØjlïìÜí©·zßIM‹­ÆöÁνÑ3õVÇÞjÙØjl쵑Wê­Ž½Õ²±ÕÙ>ع7X·c89ô^X6¶:Û…{£[ê­î–­ÎvaçÞèžz«coµ4¶:Û…½y¤ÞêØ[-­“íÂνÑrì''ÇÞjillWvîÖÔ[Ý•-­“íÊ^l©·:öVKgëd»²so´§ÞêØ[-­‹íÊνÑóØN޽ÕÒÙºØnìܽRou7¶t¶.¶{ ð>‹i±Cï…e°u±Ýع7ºû¹É±·ZÛ6¶;÷F÷Ô[Ý-ƒmÛ{‹Wñx¼èd÷Ø×ƒ¾¯}_Ú6¶;{ YRouì­aÛÆvgçÞhÝ÷{£coµÛÛ{£-õV÷Éa[cûdçÞhO½Õ±·Z”m퓽”\Øk#Ô{agÇõTËÆVcû`çõDKê­Ž½Õ²±ÕÙ>ع7ZSou¶llu¶ ;÷F[ê­Ž½ÕÒØêlöjdO½Õ±·Z['Û…{£ç¾{«¥±u²]Ù¹7z¥Þê®lill×Ìy=Á}‹ë¹pXÏ…¥³uþcve¯Nni=Õq=Õçõ|»ßÈü—nS~$þÂmÊŸwAÿñöò¿¿Ý¾ÍG<¹ÿÍd>˜Ç‹ü?ðäé€}ÌW·OG¼ø|ÈãèŸyú|Èþͦq:äéÓ!±þÓjN‡üó›çóõý_/ž¯¿~ÿÓÿôoýÖnoþx{`ßòúxÀƒ§žÃ)^x™Uq:àqÏ<ïçy:à‘ýñ€Ó*~ͳtì˜{|aõÙ—×ól9^öÙ—×ól?^tõÙW×ãlÙŽ—4}öÅõ<{·Qø;®­ãl?nWðÊ¥õø˜pÿqÜ]âå#Ü‹e·Bxÿò{øÂ?ÝŽ²ëÚëOy{ûÝí§üË1,rܺ3Ýî‹øý—ÿõõß¾º?ÌíËïÞÿ÷Û¯þp{ó›ütœÎÿúôn×ñ׆~Ü‹ùxO¿}ûþ»Ÿß=ßÛÛÛ¿¿ûÏû›ÛýÍ÷ïþôá÷¼}ûöýÛï~÷á§ø@ƒš÷»y÷û“uŒ?è?>üðö/ßýüöö~zûõ›¯îðîõïÞ¿ýáâýïÏk_ëôÛ³oÈêë¶ï[¿?ÏgöôùmÞ/Ì}äæþ£ôÇç·ã&C¯~~Û±…ãåÏdòûÃûQò>‚“¼ù1‚–<ú…ÉÓ¿ÎÇzÀûˆHòììµÈµÙzÜ¥åicïë!ïë!›±gg¯E^©·zI–Å6cÏÁνÁm‹½½ÞG`’ÍØsÛñU9öVÁÖ½À$çÞèžz«›³Ç`ëÆ6gï#0_÷H½Õ±·z[7¶9;÷FKê­Ž½ÕCØûL²9;^/¿ÜSì°õ‘InÎÂÖÆ¶Éνіz«ÛdakcÛdO%{ê­Ž½ÕCÙÚØ6Ù¹7úØ"‚޽ÕCÙÚÙ6Ù¹7z¥ÞêØ[=”­m‹{ƒ÷Âêì¶ØCÙÚÙ¶ØÓÈ-õVÇÞêalíl[ìÜÝ™äØ[=Œ­ƒm‹{£Gê­×ûÓ/#6wŸG€^ù<ÂôÊç Wö=Gà^9öVŸG˜^YÛ7öt²¦ÞêØ[=œ­ƒí;÷FÛ1"“{«‡³Uؾ±so´§ÞêÞØÃÙ*loìÜ=Souì­“­ÂöÆž“¼Rouì­“­ÊöÆÎ½Áûze‡Þ ÉVe{cçÞè–z«{gÉVe{gçÞèžz«coõXlU¶wö\ä‘z«coõXl5¶wvî–cD&9öVÅVcû`çÞhM½Õ}°Çb«±}°×F¶Ô[{«ec«±}°so´§ÞêØ[-[íƒ{£ç1"“{«ec«³]ع7z¥Þê.lÙØêlöj`Ùbï…Cï…¥±ÕÙ.ìÜ}|S{«¥±u²]ع7º§ÞêØ[-­“íÊνÑ#õVweKcëd»²W'Kê­Ž½ÕÒÙ:Ù®ìܭLjLrì­–ÎÖÅveçÞhK½ÕÝØÒÙºØnìÜí©·:öVKgëb»±× ÏÔ[¾Þ”ø’‰ÃÆ>ȼ².¶{ ò #2¯{«e°mc»±so°n±÷Âç™W–Á¶íÎνÑ-õVÇÞêóˆÌ+ÛÆvg/!÷Ô[{«EØç“WvgçÞèFd^9öV‹°­±ÝÙ¹7ZRoõyDæ•EØÖØ>Ù¹7ZSouì­>ȼ²5¶OöR²¥ÞêØ[-Ê>ȼ²Ovîö0"óʱ·Z”m}‘yåÜ=Sou_lQ¶u¶/vî^©·:öVŸGd^Ù:Û{ØâˆÛ+‡Þ ‹±Ï#2¯ì‹{£[‘yåØ[-ƶÁ>ȼrîî©·zll1¶ öÜØç™Õ#õVÇÞjq¶ öÜØ¹7ZRouì­gŸGd^ynìóK˜^ü|]ÁÃNÖcD&y_Yœmž{£-õVÆg›°gcï#2_·§ÞêØ[-“mž{£ýÖèØ[-“mÊž{£Wê­ÞGL’e²MÙ³³soð>‚^Ù¡÷Â2Ù¦ìÙÙûˆÌ×ÝRouì­–Å6eÏÎνÑý‘I޽ղØfìÙÙ¹7z¤Þê1زØfì9ع7ZRouì­ÖmÆžƒ¬ÇˆLrì­ƒ­ÛŒ{£-õV7gÁÖmÎνўz«coõ¶nlsöòL½Õ±·z[Ûœ{£×1"“{«‡°µ±m²soðýÐ{á6ÙCØÚØ6ÙSÉ-õVÇÞê¡lml›ìÜÝSouì­ÊÖζÉνÑã‘I޽ÕCÙÚٶع7ZRou[ì¡líl[ìidM½Õ±·z[;Û;÷FÛ1e‚{«‡±u°m±so´§ÞêØ[=Œ­ƒí;÷FÏÔ[Ý7ö0¶¶oìéä•z«coõp¶¶oìÜ›½´Úm´wï#è…½¯‡¼¯‡¬Âö=ÜRoõ>"“<œ­ÂöÆÎ½Ñ=õVÇÞêál¶7ö>"óuÔ[{«Çd«°½±so´#2ɱ·zL¶*Û;÷Fkê­Þ÷ÛÇd«²½³so´¥ÞêØ[½È$«²½³ç"{ê­Ž½Õc±÷Y0dïìÜ=™äØ[=[í{£Wê­ÞG`’Çb«±}°sïÙ²m¡÷ÊçÞ+ËÆVcû`¯ÜRouì­–­ÎöÁνÑýI޽ղ±ÕÙ.ìÜ=Rou¶llu¶ ;÷FKê­Ž½ÕÒØêlöjdM½Õ±·Z['Û…{£íaI޽ÕÒØ:Ù®ìÜí©·º+[['Û•½:y¦ÞêØ[-­“íÊνÑ+õVÇÞjél]lWvî ÞÍ-vè½°t¶.¶;÷F·Ô[Ý-­‹íÆ^ƒÜSouì­–ÁÖÅvcçÞèqìç&ÇÞjlÛØnìÜ-©·º;[Û6¶;;÷¯j;^µ[õ÷õ÷õmc»³÷ýÞ¯ÛRouì­aÛÆvgçÞh?ö{“coµÛÛ{£gê­Þ÷{“EØÖØ>Ù¹7z¥ÞêØ[½ï÷&[cûd/ïó´;ô^X”mí“{£Û±ß›{«EÙÖÙ>Ù¹7º§Þê¾Ø¢lël_ìÜ=Rouì­Þ÷{“­³}±—‘%õVÇÞj1¶ ¶/vîÖc¿79öV‹±m°çÆÎ½Ñ–z«ÇÆcÛ`Ï{£=õVÇÞjq¶ öÜØËÉ3õVÇÞjq¶ {nìܽŽýèäØ[-Î6aÏÆÎ½Ác‹½-Î6aÏÆ^“ÜRouì­–É6ù¯j=þ˜>¼¯‡¼¯çu÷c=äÑØ2Ùû~oòlìÜ=ŽýêäØ[-“mÊÞ÷{“so´¤ÞêÑÙ2Ù¦ìÙÙk‘5õVÇÞjYlSöììÜmÇ~orì­–Å6cÏÎνўz«coµ,¶{ßïMνÑ3õVÁ–Å6cÏA^Ç~orì­ƒ­ÛŒ{ƒe‹½Þ÷{“Ç`ëÆ6gçÞè–z«coõ¶nlsörO½Õ±·z[Ûœ{£Ç±ß›{«‡°µ±ÍÙ¹7ZRou›ì!lml›ìÜ­©·:öVekcÛdO%[ê­Ž½ÕCÙÚÙ6Ù¹7ÚýêäØ[=”­¾Þ¿pîž©·º-öP¶v¶-vî^©·:öVckgÛbOë{/z/<Œ­ƒm‹{£Û±_{«‡±u°}cçÞèžz«ûÆÆÖÁö=Øc±ÕØ>ع7ZRouì­Þ÷{“ÕØ>Øk#kê½°³ãzªec«±}°óz¢-õVÇÞjÙØêlìÜí©·º [6¶:Û…{£gê­Ž½ÕÒØêlöjä•z«coµ4¶N¶ ;÷ûvì'‡Þ Kcëd»²sotK½Õ]ÙÒØ:Ù®ÿ˜óz¢{ZOu\Oµt¶ÎÌ®ìÕÉ#­§:®§ú¼žo÷»ÞŸoi¿mÛíüã~Kûãû¥[ÚÇNùo/ñðûÛíÛrÈ‹·cøòãñx¡ÿÇCž>â½æyútÈþršýÛ±[ž>²Çiœyú|HXÁ§ùç7Ï'íû¿^ýðpß_x)÷ŸŽ×_¼ùñöåýu{óç/þõÍñÞùôý¾_÷ë"œÞ?ãôÇØËpº|Æéë˜ÚN·_ú¾éà~цÓçgœþ˜Éy:½}zêöçuß°ÑŽïëþx{zÿ-œÏ«±ò˜1÷p8DŽéSŸy8ò˜DñéçdŠÓ!Ï›E|<äåæçCä¸ ë§C‡Ž[]|öåörºw’xír{|¨øBæã~Ï~/~þôþãoæ‹ÿt;>ߺ߇½üé/oo¿»ýôÈÙ_T"ãÖí¸eù}!¿ÿò¿¾þÛW÷‡¹}ùÝûÿ~ûÕno~“Ÿ“Óù_ŸÞmßÿÞ}ÿíÇ·¯Ž÷õÛ·ï¿ûùÝóý½½ýû»ÿ¼¿¹Ýß|ÿîO>üpûðÇÛ·oß¿ýþçw~Š5°zßÁÝïÏØÜ7šôíÛ¯níþ {{jþÏOo¿~óÕmÞé»wïßþpñ û,Ç[=î6Òæ1”¼Ù1ûîùôž>Þÿ ßömyvÛ7ÿ=>_&¼ú9p¿‹ÂºõÇÍžŒ|¿óþI8;q­×yìnŽ^¹í;2%¼J3âìĵ^§=–ÙŽWQ?hÄ} ¯s_Âë4#ÎN\ëuzŒ,ƒ(‹hFœƒ˜"gŒ, ‘…º͈s¼Îc¯0DŽAÔhNL‘gÚ"+›Ç êF4'Ny-F†ÈÂ!D݈æÄØcdaˆ,B¼µ4'†‹áÁíxMãƒò:MÀ} ¯sQñþ)˜"%F¶IBÔF´Iœú:5F†È¡DmD›Ähû® `ˆ,JÔN´IL‘# CdáP¢vâý¯RÀ8cda[Ä¡DíD[Äût¯rÅÈÂY8Œ¨h‹˜"Ïôãß`€çÈÊaDD[ÄØbdáù~°­ãÞÿj¼/x_Ð7â´×yìE†ÈÂáDD߈Ó_爑…!²p8QÑ7bŠ <öCdáp¢ Ñ7bŠ ÔYØq8Q…è˜"-F†ÈÂ1‰*DoÄ9_§ÇÈÂY8&Q•è˜"=BÀY8&Q•è˜"WŒ,ì8&Q•è˜"Ïœ[ˆ¬ˆ)2pÄÈÂ>ˆcÕˆ>ˆk{# Cd¡lD5¢bŠ ÔY" e#ª}Sdà±G" e#ª]ˆ)2Ðcda¢lDu¢ qµ×9cdaˆ,”FT'ºSdà1ß" ¥u]ˆ)ò̵…ÈÊsd¥4¢N¢+1E¶YØ•(¨“èJ\ýuöY" ¥u]‰)2pìó!²P:QÑ•˜"%Fv#J'ê"ºSd ÆÈÂY(¨‹èF\ãuZŒ,<!÷äãˬ(ƒ¸/áuº×x¾o#†ÈBDÛˆnÄ8cdaw¢ ¢mDwbŠ \1²0DŠm#º—¼Ê¶m¡òÊçÎ+‹°­±ÝÙ¹7ºí£ѱ·Z„míÎνÑ=õV÷Éa[cûdçÞè‘z«coµ(ÛÛ'{)YRouì­e[gûdçÞhÝG#¢coµ(Û:Û;÷F[ê­î‹-ʶÎöÅνўz«coµÛ:Û{y¦ÞêØ[-ƶÁöÅνÑkˆŽ½Õblì¹±sopÛbï…ÇÆcÛ`ϽœÜRouì­gÛ`Ï{£{ê­Ž½ÕâlöÜØ«UëqÇâ§<öшè}=dq¶ {6vî–Ô[=[œmž½&YSouì­–É6aÏÆÎ½ÑÇÞZtì­–É6eÏÆÎ½Ñžz«GgËd›²ggçÞè™z«coµL¶){vöZä•z«coµ,¶){vvî ÞGï;ô^XÛŒ=;;÷F·Ô[=[ÛŒ=;÷F÷Ô[{«uc›±ç ãU(äØ[=[7¶;÷FKê­n΃­Ûœ{£5õVÇÞê!lÝØæì)dK½Õ±·z[Ûœ{£}ß Ž½ÕCØÚØ6Ù¹7z¦Þê6ÙCØÚØ6ÙSÉ+õVÇÞê¡lml›ìÜ<¶Ø{áÐ{á¡líl›ìÜÝöÓèØ[=”­m‹{£{ê­n‹=”­m‹=ÙKÉ3õVÇÞjQ¶5¶Ovî^q¿÷…coµ(Û:Û';÷ïsž:;ì÷¾°(Û:Û;÷F·Ô[{«Ã~ï [gûb/#÷Ô[{«ÅØa¿÷…}±soôˆû½/{«ÅØ6Øa¿÷…so´¤Þê°_ýÂblì¹±so´¦ÞêØ[öÛ_Ø{nìådK½Õ±·Zœ^/pá¹±so´ûÑɱ·Zœmž{£gê­-Î6aÏÆ^“¼Rouì­–É6ù¯ê—¸ïž½&xŸa/ìÑØ2Ù¦ìÙØ¹7ºûÕɱ·Z&Û”=;;÷F÷Ô[=:[&Û”=;{-òH½Õ±·ZÛ”=;;÷F˱ߛ{«e±Íس³so´¦ÞêØ[-‹mÆžƒ{£-õVÁ–Å6cÏAöc¿79öVÁÖmÆÎ½Ñ3õV7gÁÖmÎνÑ+õVÇÞê!lÝØæì)àµÅÞ ‡Þ akc›³sot;ö{“coõ¶6¶9;÷F÷Ô[}žé|å!lml›ìÜ=Rouì­ÊÖÆ¶ÉžJ–Ô[{«‡²µ³m²so´ûÕɱ·z([;Û;÷F[ê­n‹=”­m‹{£=õVÇÞêóÜõ+kgÛbO#ÏÔ[{«‡±Ïͯl‹{£W˜Å~åØ[=Œ­ƒí;÷žÝ·-ô^ù<™ýÊÃØ:ؾ±ÏÓΫ[ê­Ž½ÕÃÙ:ؾ±sot³Ï¯{«‡³Uؾ±soôH½Õ±·z8[…}ž‡~åÜ-©·º7öp¶ ÛÛ/x¼åÆî9ÉÇ= н±Çd«°½±so´íû½Ñ±·zL¶*Û;÷F{ê­î=&[•í{£gê­Ž½Õc²UÙÞÙs‘Wê­Ž½Õc±UÙÞÙ¹7x¿ù¦±Cï…Çb«±½³sotK½Õ}°Çb«±}°sotO½Õ±·Z6¶Û{mä‘z/ìÕ/7óÛÝ[6¶Û{mdI½Õ±·Z6¶:Û;÷Fkê­î–­ÎvaçÞhK½Õ±·Z[íÂ^ì©·:öVKcëd»°soô<î2O޽ÕÒØ:Ù®ìܽRouW¶4¶N¶ëçûåÖÍ»÷õ¼ê~Ü·Ý•-­óïðóvÙ»]Ù«“Ûc=à®l9½¿ãFñçÛ”ç[Àï·)?á6å}ò?ÞžðàûÛíÛôëOS—_žÇ ü_~ù©O¿¼øêöñ×_x:àqçó[>ãl9¦3œÏ¶Ï8{׿ùìùëÏîÉ›ŸÎnŸž496ýØñ­Ûo½\ÒûoXúõc„ÜC§_^Çd©—_~èôËÏÉL/¿þäù€Çý<·ìŸxü#ÂÇžÿ¦ðé€gòËçüšçgßgÇ—·Ÿ}M=N^Çkï>ûšzœ¼OVó¿ãšzžýxÝØg_SϳçqOŠ¿ãšÚÏ>>'ûõ5õü pÿ˜pÜAâùaì…ÏŸÞüý{òO·ããèéñºöÓOy{ûÝí§üãÈ1 ò~%w±¾÷ÿþËÿúúo_ÝåöåwïÿûíW¸½ùM~&N§}z¯kÿkß|:ÞÑoß¾ÿîçwÏwöööïïþóþævóý»?}øðÃíÃoß¾}ÿöûŸß}ø)>Πâýå÷O?Ãö]¢ÇýLJÞþ廟ßÞÞ|u³ûüÏãq>|}÷¼¿ñÝ»÷o¸x¬ýùík}úMÚ·^í[kíøƒù|ŠOŸÉÚ·ýÅQý¶¿Ä¸ŸÉŽÛ ½ú™llÇf—?–Égg¯E>†Í¢G¿ðó‹_ãc=`3öììµÈó±žä—¿ 6öèlYl3öììµÈ+õVÁ–Å6cÏÁνÁm‹½½ÖmÆžƒÜŽªäØ[=[7¶9;÷F÷Ô[Ýœ=[7¶9{ y¤ÞêØ[=„­Ûœ{£%õVÇÞê!lmlsv¼^Ãk_6[²›YÈÍÙCØÚØ6Ù¹7ÚRou›ì!lml›ì©dO½Õ±·z([Û&;÷F?6ƒcoõP¶v¶Mvî^©·:öVekgÛbçÞàý«:»-öP¶v¶-ö4rK½Õ±·z[;Û;÷F÷c3 9öVcë`ÛbçÞè‘z«Ãõþô˰Ýça˜W>+½òyØç•}cO#Ça·W޽Õça’WÖÁö=¬©·:öVgë`ûÆÎ½Ñ†a^9öVg«°}cçÞhO½Õça˜WÎVa{cçÞè™z«coõ˜l¶7öœä•z«coõ˜ìó0Ì+{cçÞà}ؼ²Cï…Çd«²½±sotK½Õça˜W“­ÊöÎνÑ=õVÇÞêó0Ì+«²½³ç"Ô[{«ÇbŸ‡a^Ù;;÷FK†yåØ[=[}†yåÜ­©·ºöXl5¶öy˜dµ¥ÞêØ[-[íƒ{£=õVÇÞjÙØça˜WöÁνÑ3 ürì­–­Î>ürî^©·º [6¶:Û…½Xâ0Û+‡Þ Kc«³]ع7º…a’W޽ÕÒØ:Ù.ìÜÝSouì­–ÆÖÉ>ürî©·º+[['Û•}†Y-©·:öVKgëd»²so´†a˜W޽ÕÒٺخìÜm©·ú< óÊÒÙºØnìÜí©·:öVKgëb»±ÏÃ0«gê­_o>½ÿ1/6ö±½¼¯‡ìÆ^ƒ¼Ža˜äØ[-ƒmÛ{ƒu‹½îΖÁ¶íÎνÑ-õVÇÞê}&Ù6¶;{ ¹§ÞêØ[-ÂÞ‡I’ÝÙ¹7zÃ0ɱ·Z„míÎνђz«÷a˜d¶5¶OvîÖÔ[{«÷a˜dklŸì¥dK½Õ±·Z”mí“{£ý†I޽բlël_ìÜ=Sou_lQ¶u¶/vî^©·:öV‹±­³}±—m‹½½cÛ`ûbçÞèv Ã$ÇÞj1¶ öÜØ¹7º§Þê±±ÅØ6Øsc/'Ô[{«ÅÙ6ØscçÞhI½Õ±·Zœmž{µêí˜qû´“õ†IÞ×Cg›°gcçÞhK½Õ£±ÅÙ&ìÙØû0Ì×í©·:öVËd›°gcçÞèc¿5:öVËd›²gcçÞè•z«÷a’d™lSöììܼ›Wvè½°L¶){vö> óu·Ô[{«e±MÙ³³sot?†a’coµ,¶{vvî©·z†I–Å6cÏÁνђz«coµnl3öd}¼r {«Ç`ëÆ6cçÞhK½ÕÍÙc°uc›³so´§ÞêØ[=„­Ûœ=…ï÷¾²(Û:Û;÷FÔ[{«Ïû½¯l틽Œ,©·:öV‹±Ïû½¯ì‹{£5ì÷¾rì­cÛ`Ÿ÷{_9÷F[ê­[Œmƒ=7vîöÔ[{«Ïûí¯lƒ=7öròL½Õ±·Zœ}~½À•çÆÎ½ÑëØN޽ÕâlölìÜ<¶Ø{áÑØâlölì5É-õVÇÞj™l“_ðª~y=üîO7®¸öšä~¬‡<[&Û”=;÷Fc¿:9öVËd›²ggçÞhI½Õ£³e²MÙ³³×"kê­Ž½Õ²Ø¦ìÙÙ¹7ÚŽýÞäØ[-‹mÆž{£=õVÇÞjYl3öéN9—νÑ3õVÁ–Å6cÏA^Ç~orì­ƒ­ÛŒ{ƒe‹½n΃­Ûœ{£[ê­Ž½ÕCغ±ÍÙSÈ=õVÇÞê!lmlsvîÇ~orì­ÂÖÆ6gçÞhI½ÕçyÙWÂÖÆ¶Éνњz«coõP¶6¶MöT²¥ÞêØ[=”­m“{£ýدN޽ÕCÙÚÙáëý çÞè™z«ÛbekgÛbçÞè•z«coõyžý•µ³m±§u‹½½Æ>σ¿²-vînažý•coõ0¶öyü•sotO½Õ}ccë`ûÆ>σ¯©·:öVgë`ûÆÎ½ÑæÁ_9öVg«°}cçÞhM½Õ±·z8[…}žåÜm©·º7öp¶ ÛÛ/xT¿ÜÏd÷¾ßûu?î÷@Þ×C“­ÂöÆÎ½ÑóØïM޽Õc²UÙÞØ¹7z¥Þê}¿7yL¶*Û;;÷Û{/z/<&[•í½ï÷~Ý-õVÇÞê±ØªlïìÜÝýÞäØ[=[í{£Gê­îƒ=[íƒ{£%õVÇÞê}¿7Y탽6²¦Þ {ñÇû1îîƒ-[탽6²¥ÞêØ[-[íƒ{£=õVwaËÆVg»°soôL½Õ±·Z[íÂ^¼Rouì­–ÆÖÉvaçÞ`ßöýàèÐ{aillWvîn©·º+[['Ûõóýr?ïÝûz^÷q¿tW¶t¶Î¿ÃÏû©ïve¯Nõ€»²åôþ¾Ýoz¾¥ý¶m·óû-íKì—ni¯Ç ÷oÏGxðýíöm>à…c߸÷8`/òÿxÀ“§üØeþñ€'?°¿ŒÆôSÓ§öï3Oýðpß_j)·q¼àåÍ·/ïÿ÷«Û›?ñ¯oŽwÎgï7úº_ç³ûgœýsy>[>ãìu i8Ÿm¿þì}‹Áý=Ÿ=?ãìÇÎOg·OÏÚþŒÎv³ã[è?Þž|¹¶÷ß´rÄ1MîÁóë˜òõñ€Ï´~ÌÉúxÄÓáÇ¿|:äùoçCÖñ¯Ÿyø|ȳþã!çÕüò³ÕýØniÇ‹6?û{ž½Ž[Ê|ö5ö<»õãŽ-Ÿ}‘½œ®Ç Q>û*{9}Ÿ³}þeö<½ïÛÝý•ëìù±á ™Ç='žá^Ø÷|û‡ü¿‘Oÿév|½uíôùöó§¿¼½ýîöÓ?þæ¹o&Ü/Íû~ÿå}ý·¯îrûò»÷ÿýö«?ÜÞü&?§Ó¿>½×¾ÿ½Ún~|wðxW¿}ûþ»Ÿß=ßÝÛÛ¿¿ûÏû›ÛýÍ÷ïþôá÷¼}ûöýÛï~÷á§øH›ûqƒÅ>Ž}¤Ç#}ûö«ûepûòooïOÌ›¯nv”ÿy<؇¯ïž÷7¾{÷þíø¿øÿ.r{endstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 504 504] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000013105 00000 n 0000013188 00000 n 0000013311 00000 n 0000013344 00000 n 0000000212 00000 n 0000000292 00000 n 0000016039 00000 n 0000016296 00000 n 0000016393 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 16495 %%EOF metafor/man/figures/selmodel-preston-step.pdf0000644000176200001440000006426114465413175021111 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20230811130740) /ModDate (D:20230811130740) /Title (R Graphics Output) /Producer (R 4.3.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 22751 /Filter /FlateDecode >> stream xœí½KvÉuœ;ÿ~E É>åý2ð„†m@86`± ªeQ§HÊ¢lùç;׊ˆ];— [­3:ìî`Õµß}É·'Vþø³üñwÿíÛþøo}~éc–ï)}´ŠeÿÿþáÇÿòñÛoúû?ÿ¿øø·¿ü–¾¯Ù?Ò÷Z쟭¤_þÛÿô­|?òŸ¾ýÅ_~¤¿þ–?þìüïï¾ådFÿñÛ¬æÔfûžëÇo¾§G~šl·\oÙ¿—[Ž··Õ¸­Æm5o«y[­ÛjÝVëûÊ/¹¿—[Ž—\ç{ß²ÝòmµòeuäeUn«r[•ÛªÞVõ¶j·U»­ÚmÕo«~[ÛjÜVã¶š·Õ¼­Ömµn«sÚËKžÓ~Ëñ’ûœö[¶[¾­v¾¬Ž¼¬ÊmUn«r[ÕÛª>VÅdƒUý¾6dƒrAž»íÈ«ú=H·*ß·ÿtÀªð³Vå{] wÂ*_r@öirÁ꜅ Ù ÏÅp¹ê‘éût«sÚ![…þ}s:çýè±íCÐ ºK/èR\g· ßÊô€îËußú^µûÍï»R/èÏWø/<©Ýoè÷ü†üü†} Úýú÷…Ÿwøõï½PèŒãðó† ºA·J½ Sw=áwkRh?÷9-ø«œ©4ÿþ¹Íu†>'ÒtÆÕ1= «kkvM'úÝ {¢^ÐÉÿ~Îî×7ïè]üøsq¿îÏ"tƒ®›ÚüÎ;dûùÉ~“Çô€Nðoðv t^Ôî×ùýr‡_çõ=Úýtþó€_û^µû'nR/è†ßŸð;ç»Pè†Ï/øåï»S7è6¨Ï#Õú9¿ð÷eº-êó|¶¶¿o×%Ù`ºMêfzñóG/hø—ì~íœÏF= q•¿Áççè]µûu<ù¹Tøuޥ¯}Ÿøý¿Æë}´ûÕï3Q/hÜÿ¥Ã¯XC= ~>à—y¿í~IßgÀ/éx§ûÕm¯ è]ðûËýêâýytƒÆý{ôGŸû ŸßÖp´ªçÿè]ýûÕdÚ깿uƒÎ“ÚýšÊ\3ü*¯×ѺBø•ïSºAã|ÿp¿s>ð÷+üïèësþ°ùÃÆù?ºAãù9ÚüpLw÷;§ ÏçÑ:ûù9_Üý†þþ€_çýô‚.~=Ήt¿Æçóh÷;ß~ ~•Ï[]ð;÷ƒ~~<Ó Ÿßöà¶só|yCsºŽß§_¯s#$h´—GŸ¥ÇíKKîw;´çÆ*Ðüýì~ç1Æýd7¢éÁówtƒN…Úý:ÿÜØî×ìkB»Ÿ®÷y04ÎÏÑîwÚçMí~™ÏcëðËÖÝ„v¿Äûó<¨æ—t¿Ý s¢6¿´Ø^5±5{mljó;¯´/§áHÐh­!1Ýy½>/¶–¼Y5½í‹˜ÆûäèaZíãiÈ’ébÿ7t3­öðè÷ùiÝOï—£Ïëé&àù: k‚Æý` ­éóþHÔËôy~ñû~¢+ú3Ð:áxüÎõ«Ôî×x=ìÅ`ºòûö¿Êöâh÷+¼þ}À/ëó~IŸðKúûÓýNïÏ« žL/ÿr¿ÓÑÅûéèõé ÖÓMÆýd/ZÓ÷‡½ˆMŸöÙ/êºt?Ý qí~…á—y?í~‰ý›Ó‘Hиߎ6¿©ïs´ù!OÇß÷ŽJ=ã%\OëȘÖýghOƒ_·®<´û©=9)÷Óõ9z@ãy>3÷+ìÿí~™ïÏ£Ý/ñ}`¿£­ÿ¹¨4®×ðEµþä¦6¿ókMú<¸õØâù:¬¦;zì¦'4îŸé'®ž¯U¤»éJ¿£ÝOÏÏ9p÷Ë<¾£'4Úsë±›N|~6¿s ?€î=·wûó9Qæwn;œ¿é/jÓx¾läazðù<Úýt=Žv¿Æþó¹PîWÙ8Úý ï·sa34ÞgG»_æó3üûûçF1¿Ó¬ }·Çôâù<7V†æ÷_î×&¯÷ѧãZÛ`ÌnLÓ>‚ž¦Õÿ³Ùtåý¸¼¡­Oe%øéy?†ûeöOv¿Äë$ó³þȤîи?—wÔëyÍaüpDó;¯I´ŸG›_Õxã<Èî§þÆÑî×øþ?zCg?_§!p?½oŽv¿Âûá4î—ù<í~‰ï“£Í¯¨ÿyž Íó1ÝïôÐ~ž†ËüŠúOÖ™¼>…zú Ÿ÷†Â4î·£§éÆçÿ4”Ùtåûøènºð}t´ûÓîŸß~‰ïÏá§övûÀ§fG¶Œj^lï¶wäkÖxð4ôægïÿEm~ç}÷×nðë¿Ú‹Ãt³Óí~•ýùÝáWØžî¿Ìç82tÊÔî—Øÿ:ÚüÎûýŸó¢3¿ó~çù˜îwÞï<ËýÒàøíèöçèsãÔ¤ñÐy±VÓýA{ñš®¸?JòzM÷‡én:£?gzC{ÿ·œÿp¿ÓÔǯ[”c”M³?fº›ž8^Ó:Á¿š_Ù|ß™v¿Žö¼¤?ö¿L»ß¦7tÂ÷éð+hßL»_FûVΉr¿„ûÁ´ùÛtI›ŸÝÖ8¾é~ö,jó[ìO–s¡ÌϳIí~ý}Óg`Sì1ÆñokhLgéiºò|Úaº ¿`º›ÎhL»_¢_ÎðKô;Úü&ï§rnLó³fTÚü¬Ù]Ôæ§÷uÉÞq7í÷§i÷ëh¿Êyܯa|gÚý*úc¦74®:Òe<Ÿ¦ÝãårD÷ãûÚ´ùÙûzSo茿7Ýo°}2m~ç}Ýá¿ÜOqþó‚_çõ<ú<è¦ ü¶ üÊhxŸ˜ž¦9SNC“MÏÑÚûǦÝ/cüXJ†_BûnÚüÎûçç4t:ujó;ïoÜÿG›ŸæGŠ5”¦¯ÿÑ:ùõ8 «ûuŒ‡M»_CûdÚý*ŸÇÓ0»ßߦ'4ž—Ó°»Ÿ®†¥s?Ýà ÓËýÛ/Óæ×t¿}ŒLóø·=å¼Ï{¢ž¦¿õÝ4»iΗ™v?=?çEè~ó¦'´÷o âÅæ&µùUŸ6ƒ6¿ºØ~UPMãù8ÚüìýŽÏûƒ]Îû}vêÍãmðëxŸø˜f« #`¶Þ´fh´¿Öq0Í÷½i÷Ëú{~ã Óî—пñ?ºl¶ÿÕ&~¤Ïaº@{Cb—µKOÓƒíï9q:KwÓïÓî§ë×2üúw¦Ýý»pîW0>÷ íïOÓî—ùü· ¿„þ¯ió;1îïs£d蚨Íï4Þ_4m~§Ùø|w¿<ù<¶¿Áöîܨî×õû~]¿?à×ä?áWù¼ØƒÍãYð+¼ßÚ‚ŸÞ¿6¸\óûn;Qö‹zBãþ:êyQùkfQwÓ ãEÓï_먛ž¼^G›_ìXÇ ̄ݯó}o ‰éÆç£Wø5ô? öZÇõ9 S†öùÓîW0ŸcÚý2ÛïÓ°UèÜ©Ý㉂‰aëÖðï{ÇÚ4Úƒî u‹p¾º¿¸Mãþëþ"´nž§¾à70?jºCésa¬›‡ëÕ}"Êt’ž¦õ>Þѳn&üìÅ]¤ÝýG‘@ãøl"ßtf{n/Ó‰ï£Qà—ØžØBÁÑèv›®îw4žÏ£Ío©?p^|æwú3¸ß†O”˜n…Úýô¼Ÿg…Æõ=Úý:Ÿ×1à×õ÷üšþÞ€_ãó|^ÜîWyÿí~\Õ²}†Fûe A¦ý´˜Þö"4÷ÇÑÍ4ÇkÞ‘€ÆñœŽÆˆØ0Ñçs¼ã÷±­r™^ïxGÅôd{bKfи¾Ö±1ÍùvÓïë™î<XÌóau¦v?η[Ǫ@ûx×;Z¦+ŸßóÁ÷-:f6 €óoï'L¼Ø´ú3GhôÏq?µŸsÂ/ñy›>QeÓ¸ßω)ÐYú4Œ6MŸo»°¦³t3=¿~¾ á.L1=ø÷íÂAãøV†_çó»2ü:¿ßÑîר?97JÆùY~:çFKиíÆ3]x?½ +>ßàÇ•RÓíë¹ÑÝëi¦4î£Í¯s¼m…þÝò‹é„ï;ÝÏæsuƒæùšð›¼ÞçA.ÐhO–¿Ø|Z?ßÖКFÿôèfºëx½cjíßiH 4Úg(™nìÏž†(Aãx¬a2]yþ^Ðxb æÓ¸z@£}Ù~…ýÙ£ÝKÑ>ЃæßkðKìOî?µÛܦ­ñ<Ú@íçÑ íëö‰0›Gû{ô€Æù´ªé©ãŸðÓó¿'ü8k_÷¼ßíÅS]£}ÂD·Mû/éöoûB¹i¿l ]L7<¿¦´Ÿ_˜»w˜nÐÞ~™^Ð>Ÿa}÷+è/šÐþ~ì˜nÐÞŸ1½ ýûØÄ‚û%̇™ÐÞ·‰ˆµù¡ ½ Ž×Þ³æÓL›Ÿ­ïáx|"Ót­ÔîÇöÙô‚æñ.øqýßô¹0¶¬µñómÎtŸÔ ºèçË4×ÿmâ¦@{ÿÇô€öù-Ÿè1Ý0fºAûóΉ!ÓÞ~ÙÄ‘û±PÑ4Í߯ð«úý ¿"ÿ ¿¢ãið+ßšv¿Ìû#wøñù2Ý K§v?®?ÚDYÆùÌ~|ÞlbÍül>qS7豨t…^î§õJÓ§á·eÚ‰ïãÞ—q¥t–^¦'¿ÿéøè.= q½Ï@Áýï£4ޝdø ô?m"²@ûøÐ´ûuô‡mâ2A{ÿÓtƒÆóP*ü8ßãŸÐü{ ~ ó)>Q íó '[†_zAãz•?Ž|":áx&ü Ïg™ð+X0½ q—¿¬ãõ†Ðô„¿¿˜L·JÝ ó¤^¦Ÿ§schoOMh|_˜B{{nÚü2ÛkÓ zàç¾ÐcšŸ÷޲i~¾º_æøÜtƒæß¯ð[xߨDzöñŒi÷ã~ ›ˆOÐøþµÃãÓ ÚÇÇ6‘_ S¢v?ÎרÄ‚ÆýR'ü¯_ðãú¥/˜æþŒŠ ¾­ÇïŽižß8bšßÇ&l› ®gó…#ÓÞÿñ… h´/-ÃóÛ¦´M»ç#l¡¤@ã}d= ýýe + ºH7èԨݯ`>Æj ôи^ö"„.Ò :I»_Æüš- è!= é7á—yýÚ„_æóc/zÓ\ßµ…¨û±ù@Ò·MáüúB¢i´7èhø6«E}NœmÃBû{:*ÚûK¦4®Çéè$hï˜nÐhÿz†ßBÒÞ ´÷÷Lh|ÿÓKЭQ7ho¯òC{×ü&ŸçÞà7Ù_°Ž!t_Ô ïïÞá7Ùö!?œ>àÇõ _˜„Æýytƒ¦ÿ„ßàõÃD©é2¨OÇÀ4ÛkÛòð<ÛB)ô\Ô çÇV¡}þÎô€Æó` ±Ð8ÿGÓ/éçî§÷ý8h\ßQà×ø~~ç æ‹~N?¼°lÛñþ:z@ãùÁ³okÜÔ ÚçùPmšoÈ× Û¦Ñ?~…ïs,„û¶ÊN½ 'ŽoÁ¯ðz}Nß–‰ß÷+¦k¡îÐèÏ oø}[§ÿ3ð¬¦3û¶Í÷÷ÌðãxÖt‡Æ÷~zÞm,4Ú[ ”³Ö³lcýÐß<ÚýÔÿ9zCãýÆãçÛîÐx?Ÿñw†Æ÷Ÿ]~è¯M?´gsÈ÷ïôI[Ý©3üÎ.Ñ»>²»ÄËÅf%\¢mš¾iFKq&Ï=ˆ†I_BÙÜÈa²»D?qúÚæ6#ÛÿQ]&I³â"½íÉ.§dw‰.ΑÛ%qÙ$a…ñÆoêHÂ*K Ååo)[K\”Ó%^M6çärJv—¸PËG¼¶rРÔ#a…·êeà Àš´Â5[“VxDÏVxƒ,_ú܃ ͼ¹Ä󳼡ß\ž2¹]âÔmßæ·r'Zá ÏØV¸µw¦î¬#a…ï.´Â™Ü…Vh†Ï°V¸¾Û‡››þLn—xž1vu‰»îÈé’ÇÜݪcÂÂ$¬ð>ƒçî|ýØÑºÄÕ·óà²àûNZá<ïI+ ÷¤n»…Žl|Rìn¬Xž7¹­AÛ§}û~óÍY6“ÒŽ¹áéÜ܃dVÞdÛ^6XyÚ$¬ü*4´TvŠðË…VeSªà—+­ò „UÚ”°JøåæV\909!q̾Caó=àú\ú}erCf—ƒV>)aVþ„ÚæAXõB «6(aÕðw­j£š0 +ï#™„•÷ú )ƒš/¬­ÅÛ{TZ¡5;V¸ÛG¥îö3h…Ú:[¬ƒôK†µ¼ÅƒŽÖA&JX ü¡A+¼ÊmŸ$þФú9cÒ Oʘ²ÂZ²J”gˆ¹úÞN$B.Êéhz{²¸KÓéGÈFI+ÿC3Ë*SÒÊÿ.ÀêµøÐ +´ÏG ÝYi…gðôâäÎ/ ×~ÓØé¿ÿi4¶¿pþ/46é7í-??>~~EÖÑ~ì8Æ×Ï)_¿`™^¿@ùú[Ðxýåûöý ;þBûƒßáõ ¿øçèW¿ÿçè÷¿úí·?ý÷å#üð7ÙMÒóè¦ÊÇR?üæãgçG?ÿøáï¾ý»Üûÿüa'€îO—þ§mcUøtûçÚ·ߟ?áÓëûôúçºÅ³–¿Î–OÅþ†yB¦íŠ…ŸãaÃŽ»¯g\bý<¿®8~Á÷–Õç(_¿à‹M_òý {¼ÿåëcÀ_x‡Ƶõ­áË{o?ù¶Â‡‰ÿüôÛÊ?m›O_æ'ßV…{Úûבÿ„ÛŠŸÞåëÈÂm…O“/ÿƒ·‚omíWc&É}êJþíZÓÿυØPxð/~ö÷ò?~~þïŸýÕçÿñçùñßůúúøŸ¼\³Oø8`õç?~þÕ?þšv?~ü?¿þϦ󟟿þÛßýî¯?~÷7¿üñóÇ_ýã¯÷Ûç/ýÔLºìï¯smmRð™Ìôøc¦ÇÌôHïLΠ0Ócp`ÄL11–e¦Ç ~ËLÁÕfz nÞf¦GçZ3=:·¦0Ó@ì“éÑ9ûÂLÆA3=ÚÄX‡™­af™­ð¨éÑ’2%éQ—26éQ9O­LÊ5.ezÔB¦Œ™UL#3=Ê M™…s×Êô( «LR”1‚L’”L¼ôsdzä=ÊôÈ™ÌôÈE™ÈôȉŒ3=ÒbF3=ð¯Ï'Ó#5er Ó#q‚Q™‰{Ö˜éa3Ö`æéa½‰­ÌsÞ«&¾™éa=]0ÑÈô° 0¯Èô°µ„Ѩ[c,m~k1F¦‡-Ÿ0ÃÃ3=œ†_Ÿ|dzØzÒVæ‡ù¡yýT¦‡3½“Úü´g•™¶ô&™¾Ô'm~c)óÃ7ÓØÒ$ÿžo¶¶¥L\dzØR)2&éaK±Ìðã%fzøRñ¢6¿>™IL_ÊVƇùu1ÈÈôð¥vhŸ{ð¥ûA=ú·|*Óö0sÂg×l«Ž™¶ÕÏ2=*¢>•éa[/À¤"Ó÷vjó«‹ß™¶õ„¾ù¶ª¼3=|+ŒŸ_dzÔÊYkfz8#º©Í¯leŠx¦‡mbf‰gzØÖ£®Ìó+Œ*2=l+˜YdzøÖ*|¿ ¿¤ïë™ên+Óö†ñ|úp·>™ Èô°þ&îdzT1Ìôð­t~<Èô°­wå•éa[û˜qá3¶Î\"£ÂѶò÷}öÛO¸‘éá[µû=™~…Ï2=lë&3E<Ó÷~"SÃ3=|ëh¦nÙHþ=ß\`[W™ùá#)Ûúúd|¸_Õçü2¯2=Šæš™éQ4 ÈLÛ:Œó‰LÛjŒö™¶•™™$>Qž dzØÖid Óö^ƒñE¦‡mÕsŽLÛêç™¶•œ~c”'S™¾u]æ7;™zdzØVyÜÏÈô°­õx^ñ`ÙÖ|¼éá[ý µù ÝÈô0ÔÏ 2=MhÔæ73éQ0qõ©LG)ðù¿Êû™†j4e|¸_ÖñOø)󙥓ia¦‡3ƒƒÚüúÔ÷õLò0þÈôpF0SåŒ`yezªƒŸ#ÓÙ@i÷ãž)fzJ„÷2=œôï‡LC—ž ókS™žéQžL"l7Ô í º0†fµW¦‡¡]¸_7–'c™†’1“¤ÃOÏ2= ]{2;̯’yc¦‡iÜÈô°ÑpV†‡ùiO03=ÝÃçüô<"ÓÃæ¶„LcöÐâB£Ç Ïô ºø©LG•áqntcöŠ2?̯(™¥e¦‡1yx#ÓÃ¦ŽžŒÍL¿Æë‹Lcò˜ÑQá§Ldz8ÚªŒ÷K_™ ý+dz”'³™Îàáø^7æï/dz˜F™Æàá~C¦‡1wí•éaÌú§Èôpæ®S7hfxCS²2½éáèt¢žÉ™:|™¦ñ< ÓÃ;ü}dz8c‡ß÷ÍFÎØjóK“Ï2=Šö¸1ÓØº¥Œ ÍL ?Ý_ÈôpTºÁ¯²=E¦‡3u“Úýô| ÓÃÑþM=¡ÑŸ@¦‡1tC¶‡i¯¯Ì Íïã_Ìæ%ÐC¦‡Gàï-ø ¶gÈôp†N;ƒ¡S†GÍÎС}@¦‡G5 £ÃMge|ôìÌÚWdz3·^™¦qýéáѯL¬EAfzd­V1Ó#ký‚™ѨÍoM¶OÈôð¨ éñ2=œ™ƒîðSÆ2=ücÈØðk˜¹b¦‡3s…Úý¸G™¦Ñ#Óƒ_ûS™¦yü ~IÏW“Lãz`aÎ.ϯÅ~ÙüçÈô0Í Ïô°ÛïOdz˜Æû «úváû#ÓÃ4®2=ì¶ÊøèÐYî§Ì dzøc©Ý¯òú"ÓÃ42eéáÝ ÞÐh‘éa-®'2=L§W¦‡7Òúù¹ùý•áQ¡ñ|"ÓÚ!¼éáÍÖ¢ö¹Ü'³Ä_TÎÌá|{¦‡3szB3£Ã3=¬™#XÖ›áJí~b²‘éaL22=¬Ù_¯LÓ̼(ð+dÆ‘éá¯exThfrTøe2dÈô0•áá~IÇÛàÇ­ÌôÈO†2=rçû„™öšeƆo¶7 F™Yó&ÌôàküS™þšÇçüļ"Óû •ú<ØÞ@¦ˆ¯c{7#QOè‚Ì ßÇ`Ý0†Èô0]¥Ý¯*£"Ã÷/3=L3“£À¯ñC¦‡w³2õ†ÇLï¦Uê ÍLŽ?ŽÇ˜éáÝÀM½¡™Áá™Öƒ‡LÓõ•éaÝЭ  &™ÎØá÷'ü¦2?&ü”9€LŒ­ ŸÊôðns¦>/jïVÃÏ3=Lãz#ÓúåÈH|âÌ]¢îý‹¹c¦‡uó™y‘á×Èô"Ó#?ÈôðaĦîÐU:½2=lXÂ߯ðãxœ™>¬©ÔîÇþ 3=LãyD¦‡ifŠtø‰‘D¦‡³”áÑ¡q~éáLü<Ó#×­ ßüoL.2=|Ø×©;42é‘•ÅLgô¤'43(<ÓÃt•îÐOƇû ~dzø°¶QOè¬Ì÷#CÃLŒÝKŸÊôða425*ü¸•”™¦q¾‘éáÃòBÝ¡ù÷ü*æó˜éá ߢžÐÌüðSF2=r-Ê8ð#³ÅLgú µû1s‘™>M±¨;4×;n¹ŠùF¦GÖ|3=œñóãA¦‡3~“ºC#ó™¹p#3=|Ú%SOhÜÏÈô0•áa~eéó~KŸ¯ð[ú|…ßÒßoð›l¯éáÓH•zC£}E¦G.bΑéáLà+Óãa™éáÓXzC#3™6 ¦™¹¨}A¦‡3‚…ºC—W¦‡i´7Èôði·F=¡Ñ^"ÓÃ432¼£æÌà¤v?Žw˜éaÏ 2=œ!„_Ÿ2Héá á¦v?ÎG2ÓÃ4idzpòS™Î6êÍL’?Žw™éáӜҺ)Ã#C—w¦Gá¦Lez”¤Œdzî‡T¦GQ{ÇL’ä‡L’”A‚L¬þ3=²2r˜é‘÷é‘·2'é‘•!ÁL¬û›™Y$ÌôÈÜò£LÌñ”2=²îwfzˆQT¦G&“¥L<ïL¬ûŸ™yòû3ÓCãkezä¡ãE¦GÖóÀL<˜‰ÁLLò@™Y™ ÌôÈÊÜb¦Gî<¿ÌôÈ™ÌôÐx^™YÌôÈO¦2=2W«”é‘ïfzä¦L dzdîàW¦Gn<~fzde²1Ó#s¼¥L¬ fzd½ï™é‘+û+ÌôÈU ÈôÈOfG“2˜é‘™ñ®L¬÷3=4Ÿ­L¬ (fzä¢L‘)¿'ãƒ~I?w¿ÌëÍLÌÌxezde00Ó#“V¦Gf}ezdõç™é‘3Ï3=27F+Ó#s=Q™Y™iÌôÈO†2=râóÁLÌÝÂÊôx2˜é‘”ÁLÄÍ·ÊôHz¾™é‘63ǘé‘ôþb¦GâSez(“Y™‰ó#ÊôHÜI©L¤LDfzh½A™‰›ü”é‘3o˜é‘¸> L'É™‰ûÊôHSÈôH“Ÿ™‰ãKez¤©ŒŒ,?|fzˆéT¦GâxT™i~ex¸ß`ÿ‚™I™|ÌôHÊ|a¦Gâz’2=´¾ªL4¾2>èW”ñA?œfz$½Ÿ™é‘˜QªL¤÷53=’2˜éñd\1Ó#u2=×ה鑔)ÈLÄõ0ez¤NÚŠ™©‘yg¦GâøP™©)ó™‰óAÊôHœW¦Gâ|™2=Ò“R嗥闤ݹÊôHb¾™é‘˜¬LÄÊôH¯*Ó#1óX™©2c™IÌôHœŸU¦G"'¤Le†)Ó#ex Ó#‰)g¦G*dŠ™é‘XE™‰ó?ÊôHœ?T¦G*ʬÈò¦ÆLT¾2?è‡ãe¦G£ÎL”‰2Ó#ee~ Ó#ee` ÓCóµÊôHÌ W¦GÊÌxa¦Çü2Ó#qýX™‰ëŸÊôxXfz¤L柙‰ý-ez<ö" ŽQÜæ–yæw<ð.â;6·®3½c+Lá{ñ9AvÇæ¶Fwl&)1¹c?Á•Vø‚ÈíØ,ÛÀØŽÍT:¦vlN 0´csüÇÌŽÍH}Fvl®Ö2±cs²[ù@ÈëPyÆuÈÕØŠA¬ÆæŠS5…3Tcs¾“™[‘#ˆÔØÜÃD­Î5„Œ3OcW6›ˆÓÐÊ/Ó46Ò ÓP¼²4”+KƒÉ×ÊÒ _®, æŽ*K£(xYÜ«,¢Pdi°Æ“²4Ôýd–Fá%c–FùJË€ú¦ÌÒàÖQei¥VZáÁa–kÁ)KCQ_ÌÒà,²4XFYE‰VŒåè´B{Å, …¸0KCýafisW–wÓ*KCefi%|LZáú2K£|EkX>Dá3È, eÅ0K£(xYœåP–7Á)KƒsæÊÒPÌ ³4X¥IY™WŸYê¯3KC‘SÌÒ O¯, +Kƒx½²48Õ¢,̳4nÃ,Ì÷³4mÅ, ˜¥¡`?fip [YY±“VMá°jŠÖ°|ˆ¬ÐdihxÁ, ‚ûÊÒ`/ei0_YŒ¯V–Óx”¥!¬ŸY§(K#+L¢Ð h/³42Ñ^fidEMTZeF£UV´¬ò;KC‘ÌÒÈdy™¥¡„fid¥t Kƒ{i”¥¡Àfip'‘²4”À, fÇ*KCqÌÒબ²48èR–FR²48%®, … 0Kƒ4ei({€Y\.T–w+Kƒƒ9ei¤;KCÉÌÒàJ’²4TÀ, î»Q–†r ˜¥‘”ÃÑi¦–Y‰L-³43ª, ¥0K#‘\g–†B˜¥ÁŠ¥ÊÒPæ³4&+”¥¡fi$ÅT$æCdg–7¶+Kƒûª”¥¡€fi‚P–†ò˜¥‘qQi… fipECY,*£, ¥)0K#)£Ó*+<V¹RÒ ÎƒVˆ¨a–Fú Ï€žfi(‰Yœ–ýÊÒÀƒódiÇC–Æâ YON²4«N0Kã‰m@–ÆÚ|¬°Ðù¤8 Kcq6˜Y‹Á˜¥±˜°Å,µù”!Kcqr€YOä²4žÈdi¨” ³4ždi,N,0Kã „@–ÆÚLaA–Æ“,'Y‹“ÌÒX›O(²4+¶2KãI@–ÆÚŠÙŠšh”Œš(”û-‘5qgi0jBY]Ñý<¡, óO–¢bž, <ÝO–F¿³4ð°?YxØŸ, ÆT(K£)-VL­P–Bhž, †X(K£ÝYÈ´x²4Ð2YLËP–Z•¯,N9ïð ZÊ?˜¥È–¯, Ek0K‡ñdiLÊ~'m0K‡¡, o(K-Ò“¥‘žA«LyÅr,År¼³4ž”di0|XYOh²48ɦ, ex0Kƒ…*•¥ñ’´*”´BZF‘U¢d‡Â3˜ð¡ðŒþÊÿx²4ö¥±ï, ´„O–ZÂ'Kã‘WXˆ²4ÐN>YÌQ–³C”¥fóÉÒ`”ˆ²4‰Ô $åYÈy²4Ö¥±î,ugiÌ;KcÞY”ÊÒ@ƒüdixƒlàs>§õUʇmð.>ÿmþ#Úü¯m¶gDhsA·„hóÌÚ<¹ì"´™•‡„63(Xh3×l‰6kK2ÑæQÑE'Ú<¸ÀF´yptC´¹³@´Y3ˆ6÷æ…hsçÞ,¢Í E´¹3fPhsçÖe¡ÍýA—67¶ÎB›Û$J´¹ië?Ñæ&ô†hsÊA´¹qk•Ðæ–¿ÐeG¯Ù?Ú\U^˜hsºH´¹v¢ D›+çi…6W.Í m®<ÓB›+‡™B›‹ÐA¢ÍE(Ðf&<(³£ÜèöD؈„è´ï¡òÑÍ ÍËãüm¶qÐ?ì ñò߃Úü²Ê½m¶Ñ!Žh³-_hs{Êy‚²a+Qà?Æ möòÜÚüûbD›mäÎÏ;ÚÜT>‹h³Ï(àï;ÚÌéˆO¡Í6[ÁãðãTÑf›Eá÷Ú¼…RmÞ, ´y«¼=Ñæ­óO´Ya¦B›57+´y … Ú¬i¡Í mFS÷ù ÍKh8ÑæÅµ¡ÍKåy‰6/NQ m^œ–Ú¼T.h3ÞJŸÚ<—Ðh ÍS(Ñæ9ø<mž*J´yr–_hóäV,¡ÍSåh‰6ONRmºD›‡ÊÿmB͉6NÔ•hóJK´y]!ÚmV¹;¡Íƒ[“…6®y m…ýG¢Í# ÝÚ7¦.¸^@› ´¹´,ô×çݰi/´ù)GL´Ùˆ<Ï@›*ÔæW'ß?@›(ÂõÚlDÒÒÏ74¢1€6Ñ„çh³Çt ]v?õ€6;qµ¨Ý/³½Úlž_ Í¦”Ùü g/‰6;Q6©Í¯Ì m6MtÙÑf#Øð¼mvNºCeö¹/#èê m6í/Ðf'ö\m.B[ˆ6—¢ö hsy¢l€6;a(ÔÙü2g²‰6±H4Ú×îpÔæ—'ûç@›˜Äý´¹µ ÚìQBݯɿÁOQW@›ËóþÚlÄ(ÀOQXØ f*úg@›I¬~ m.ÚšO´ÙX´ØßgíÐf#hÛ mvßgÄMçÚìD/Ð__¦2x¿ÐfÓ(7‰=ªF£Ü)ÐfÓI¨³û©Ü,Ðfû׃:wè"í~\‚'Úl:I»ŸP¢Í›ãs¡ÍÚå)´y/Ðæ­­üD›7££„6k<'´y«œ'ÑæÍòFB›·Ðc¢Í»éø6o•ß&Ú¼+Ñ¢ÍÚ#´y¡ß@›Õ¿Ú¬|¡ÍʱÚ¼"´y ½ Ú¬ùz¡Í VÚŒ™µÏm^*·N´YQ B›1‹÷ù Í‹Ñ'B›7â m^Mßhóâü€ÐæU…nm^*oJ´y Õ!Ú¼ŠÐj Í‹Û?„6?劉6/¡ºD›cò…6ϵÚ<…¢mž*ïM´yª|)ÑfE) mž,(´y~?¢Í“åé„6O¡[D›g¿ÑæÙˆ mžMh5ÐæY…þmž,."´y²Ü”ÐæYˆRmžEh6ÐæÉB›§ÊÃmž*ÿL´yr]hóØú¾@›×å„6®zm_mº‰6¡wD›ÇÄûThóB‰6n‹Ú<:ï?¢ÍCh:ÑæÑˆmÜ:)´y4ý= ÍCåx‰6£Ûûù ÍCh'Ñæ!”ŒhóàüÐæ¡öhóàž¡ÍƒE.„6$ôhójI´YýK¡Í}ßhs_òÚÜÑ¢Í}±ý%ÚÜ'Q"¢ÍO”Ñæ>„ mîƒ( Ñæ>„&mîì?mîºß‰6w]¢Í½¥"ÚÜU~šhs:H´¹Wý} Í½Þhs/B‰6÷"”hsZK´¹«¼7ÑæžÙ~mÚÜ“Žh³¢¼„6?哉67.Û mn[(4Ðæö Ü@›Ûú ´¹q×¿Ðæ&4hsã†{¡Ím]$ÚÜ8Ÿ+´¹ ý>Ðæ¦è¢ÍOye¢Í­ó}J´¹©|8ÑæÆò}B›ç+„67]O¢Í[y…67¡þD››Ê‹mnEh6ÐæVø<mnŒFÚÜÝA´¹ Í$ÚÜò6·Ìû—hsKŒ!Ú¬rÌB›ë®m®Ü+#´¹ å'Ú\¹3Ahså:·ÐæÊZB›ë* ´¹ª|9Ñæ*tŸhse9I¡Íu …Ú\§þÐæJºAhsUôÑæÊù ¡ÍUýE¢Íµ³ÿA´ÍÚçƒ6Wn§Ú\…m®º?ˆ6W¢vB›+÷… m®U¨6ÐæZ¿Pçû‹h3šñÏm®…ï¢ÍUè=ÑæÊrŠB›+÷µ m~¢!ˆ6×åÚ\3ÏÑf•Ú\“>´¹ª¿K´¹&ý} Íeó~'Ú\¶ŽhsÙB—6µÿD›ËÚ ´¹0zKhs!$´¹,ž¢ÍEï¢Íe Ú\t¿mF·àóA›‹ÐV¢ÍE(+ÑæÂèG¡ÍOTÑæÂ¨@¡Íe…Ú\Ô_'Ú\MB´¹t¡¿@› i¡Í¥Ýhs!**´¹ Ú\8?!´¹cÚ¬rÓB›5Ú\5&´¹è~%Ú\*ïw¢Í…;ã…6—Â÷ ÑæÂõ¡Í…»Ã…6—¢ó´¹p=NhsÉB—6?ÑD›Ÿè¢Í…»u…6õWˆ6EŸm.º¿‰6½‰6îxÚœ¹}Phsfé&¡ÍYh9Ñæ¼¿PæþÑæÌí=B›3w¥mÎäó„6gާ…6çÅëC´9s>WhsVûK´9³J¦Ðæ<ùþ&ÚœÝ)´9+ЉhóSþšh³Ö_…6çÁrÜD›ó ´93Ph³¢º…6+JBh³¢$„6ç. ÍšÚ¬¨`¡ÍY0Ñæ¬r¾D›³(¢ÍùA±6gF» mÎŒ†ÚœÙ_Úœ9ÿ ´9W¢|D›³ð¢ÍYÈÑæ§¼6Ñæü Ó@›sÕùڜżmÎ*ßK´9ó}"´9‹(!Úœ%&´9‹í ÚœhmÎ,D(´9s~@hsà@´9«\/Ñæœõ÷šüÀ mΙPÑæÌíöB›óƒ"mV´„ÐfEKmÎB‰6gnÑÚœ9_!´9sKóƒ6 ÚÌM¾Ú¬’¼B›UÞ[h³ÊÙ mævÍmÞ_(3ýp mV%^ Í-1¨ôÍœ ð‚nöh‰MM?þý&?ÜOœ¹­ãS„³GM$ê øŒ³o ߀ß!=à7I!sö¨‰LM?ÐB˜øý*ÒÙˇOêóàû6•ëüUNœÄ»‚vö¨ 0ʾÝÞ·½$júmðìåÅ…8ÓÄgšô[àÇè1BÏ5ì·ÂOˆ)°ç âäSܳGM€)nò«ÒôÂôù‰š ûüUžðóWÔègß&$= §€ç=^´GOHÓçkɯJŸ ïÑ¢žt~QоIzMDO€öU=!= §Ðç  (´GOHÓ÷`èŒiÛOÑÐ¾Í xp•Aä*?´×¢=jºÁO\ hš@ÝáW„[wø±ÿC*Ú£'ð}†üÈTù¤íQB¡é‡rô@£}›þþ‚_fû8Ú5þ¾ï„öè‰BÝ g¥^Ðh¿H{ÔĤ¦"€H»~1Ò=Q¨é‡ó JÚ£'5ýð<“Ί&&(íúEJû6<ø5ø%QÉ ~Ir—î.¿.zš~͇üð>0íQ8ž)?¼ßLEO€™þŠž 4­è BÓz{šVô¡iEOšVô¡é-¶7ÑŠ u¦® ¡iEOšÞ_”4¬ÐèšæÆ~AÓ[t¥UCmV\P4Í悦—Ðf@Ó*Ohš9H‚¦Y¼QÐô$>h…–‘Ðô>iÕ„Tà 9¡i½ÕM/}A@ÓŒo4Íô]AÓœá4ÍoAÓŒ*4ͤcAÓS 0 inv4=ÙöšæPTÐôŽ]i…ïKhzŠ¿n´ŸKhš»MO¸„¦çR +¼2Ms‡š éyCÓã‹’î.ùõM«·Ohz°1$4=x¹ Msè,hš+킦átBÓœç4Ím<‚¦õÖ&4=x{šÖ;œÐô`Dhz0h…Ðô€\i…›Ðôb hšÁR‚¦YCÐ4ךMsj_Ð4Gþ‚¦9Ñ,hº‹ Ÿ´ÂÃNhº Ÿ´êohZcBÓ¬f#hº³ÇGhZI„¦;ßß„¦¹Gдz„¦™K/hZI„¦;›>BÓJ¢ 4­$ BÓJ¢ 4Ýx_šÖ(ŒÐ´:-„¦•DAhZI„¦ÛC +œIBÓ톦•DAhZ½BÓJ¢ 4­$ BÓJ¢ 4­$ BÓêšV¡iMs•^Ð4óeM7ÑÊ™VÄ“3­È#šf… i&Qšæôµ i&QšæfAÓ\û4Í¡ª iöÌM3LÐt%WHhšÃZAÓ,!hšù‰‚¦¹F"hšK†‚¦9#%hšÌMWá瀦+Á:BÓ\½4]IÚfAÓ•…Ð4“(M3£LÐt%hFhº’#4ÍY2AӅ׈Ð4×ÜMs‹ éBðŠÐ4ô‚¦¹¿SÐ4»£‚¦‹@ïA+TZ&4]DvOZ%4]„r/Zá š.¼‚„¦‹`m@Óìå šæ&JAÓœÃ4Í.° i®x š.®3­HXZ$4]„TWZ= 5¬.hºÜÐt%Ýhõ`ѰÂ3Hhº$$4]>Z‘t4…6šfµ2AÓÜ&h:óêšÎ¼ú„¦™ÜIhZ»1MïL8ÐôΚޙ7 é…gZMQÒ°Âã hzgQÃ…V¸7MoNÊšÞÜ3DhzsʇÐôÎ|ØMofÙšÞ_šÞ™Ï> éÍÕ BÓ›“G„¦wæhz³ª¡éÍPõ ¹iQÐtZ„!Ý¡úЄt› eBºŒ©óÕ(@»I4!]@‰îeÒU½ÂDHWëAë­¢zÐKëA/NK=õ ¹ é©])³´êe³ôä&=ÕƒžÜ¤ªzгbW=hAêª-(–õ ÇSoõ Ç ŠöúÍMõQz¨žŸêA«^/ëAwÕ#Fá›k hƒj{—? Ýþ|ÿñÔoÆïOÕof½g@ºí9^@ºmð~ÊKõ›éšn‚ÄM«>“ éÊYAÓ•›”MWA¯„¦kSýe@ÓUõX MWÕ£#4]¶ê'š.Üô!hº<þ€¦‹Î7¡éRUÐtQ}@BÓEõG Mç¥zÖ€¦³ÎO¤›»êUÒÍ•PG¤›q@ºYõ³ ÝÄ„‡¦Q™4 Ý4¾ ê†úË€pM'ζšNÏù4Øý#4ýeš¶½1ø¾€¦‹r€ MMÏš. ø$4]”jHhº¨ëFhÚö:±^sE½åùUz ¾2 $Öƒ^ÐëA?õYzå/HÚýt½XzrS¦CÓ¨§Ìz̨?<9«íÐ4ê'zFýáY]£þðS¿½¢þðä¸Ìw{¢~2BXz,B—¬=1±ô誌zÐCõèYzp~Lõ 7Áªôx àüÔGÆÏQº«^9ëAwÕ›d=èþü}Ôƒî …`=è®öˆõ {V}jԃtäÅzÐMõ´YZ›ššF½ãý@Ó¨wÌzÓ€tçRšF½ã¢¨wÜhõŽ‹ é†zÇ€¨Xº.Aä[õŒ oÕ3FûÉzÐUõtYºrÑ]õ «Ž‡õ k¾ icš ió+[õ’QZ›6M—©úÊ€¦Ëš.¬ÿ#hº4AÉ€¦U¿JÐtá유é¢PBÓÚÄ'h:ï/ÝPŸøÑ‹õˆq<¬?̸r§P˜õ¢YXýƒþÔHh: *$4­z:‚¦sâû–ÐtÒóEh:-Õ?4­M6‚¦µéEÐtêª h:5Õ[4­M‚¦SD h:qÓ— i-ê šNœ{ 4Ÿúö€¦zÃçšvV°S ÈíMgå¿›f½à¢Ÿ{ýa…B Öæúi¯?\TÏ™õ‡çë…W¡q}MgMišÎ $4më{Ckê šÎO{hÚ 4BÁ~ªW hÚ 3 iƒÊš6ÍúÏ~ E4mÙQ»ƒc M;KÜ©Íoêþ4më/ûêŸAa„’šÎs ºF=èÉM›ª=¹”éÐtvÍúÓ¨? é¢zˆ„¦‹ vBÓ…k‚¦ Û_AÓ y4]¸ $hº<1 é¼=šÎ‚^ M?¡é¼šÎKõ§Mg=_„¦3ÇW‚¦ó¤ hú8Mç©zÌ€¦ó dBhZ† é5 éÜ!šÎÜD,h: "'4YõDÐt¤Dh:WÕ;4ýÔ×$4‹ a@ÓYP¡é§~&¡éœõy@ÓYÐ-¡éüÔ[4ÕÞšÎIõšMgµ¿„¦3 MgµÇ„¦óQšN‚Ø M§­úÖ€t“ ö H7©þ2¡iA‚¦“êÓš~êQšN‹÷7¡iA‚¦“î?BÓiÞõ CvMk“¿ éÄþ‡ é¤PBÓ‰ï[AÓi|AÑš~M~IÚý8¾4:ŸGBÓO}GBÓ©ëûšN í4 šNMõ£MkÓ|ýì›ä u‡F½TBÓ© Ò4:Ah:UÕ74:'h:=Ðq’_$í~ µ4X¯Fд6© šNEþ€¦SaûOhZõM'îh4íš~BTM'V4² è.?^BèÀ¯§˜s¥Õ›`¼!*ðÅk Gî´baä.«JI+±Ä´jL+†Ï¾.UØX¼¸dN®xM öó¿¦(hƒhÿ‘CÅ·¤U£¤•$ˆâ5…Àúöí5Å÷úž®¥xàÄK´%hâÅ=k„‰ßV녯ɷ3Hâ5UܸÊêÅ¿%­pÌ]V‚†Û-i…¯0d•(a5_ñ[ -ðá/¹h5Ó ßhËJ’V’V€\uÚy:ikòµzø-d¡\oéÝN$ï~Šþ’UV‚‰Û-a5^ôð[ *èá·„kwYAY &o9eÕ)Û-×[.Y5Êñ–[V•²Ýr½äL²*”ç<|Iï…¾e‡Ì”û-rzKZÓ­²’ì·„ú“ ‡ßr¾e§¹äN«Gî·²’¤ß)+É~Ëý–KVƒr¾å–•d¿%­@µ&YIηtzø-û-7¤pázËù–UV/zø-iå7èá·œoÙe%ÙoyY YÊù–SV’ý–û-×mµdå·ºoÙo¹_•NßòmÈé-û-7$xY§‡ßr¾e••d¿åeÕn«v[õÛªßVVM¸p½å|ËI«Gö[^Vë¶Z·Õ¾­ömµßVNßr¾e~[‘^“@èá/é`å[ηtzø-û-/«v[µÛªßVý¶ê·Õ¸­Æm5o«y[ÍÛjÝVë¶Ú·Õ¾­öe•“¬&å|Ë,+ÉÓ&¼å~K§‡ßr¾¥ÓÃoÙoyYµÛªÝVý¶ê·U¿­Æm5n«y[ÍÛjÞVë¶Z·Õ¾­ömµ/«’.«’.«’/«rŸvÐÃ_ÒçÓÞr¾¥¯/¿e¿åeÕn«v[õÛªßVý¶·Õ¸­æm5o«y[­ÛjÝVû¶Ú·Õ¾¬jº¬jº¬j¾¬j¾¬Xrù‘(¹ü’ó-Qrù%û-/«v[µÛªßVý¶ê·Õ¸­Æm5o«y[ÍÛjÝVë¶Ú·Õ¾­öeÕÒeÕÒeÕòeÕòeÅ’ËDÉå—œo‰’Ë/ÙoyYµÛªÝVý¶ê·U¿­Æm5n«y[ÍÛjÞVë¶Z·Õ¾­ömµ/«ž.«ž.«ž/«ž/«~Ÿv–\~Éù–(¹ü’ý–û-ÛmÕn«~[õÛªßVã¶·Õ¼­æm5o«u[­ÛjßVû¶Ú—ÕH—ÕH—ÕÈ—ÕÈ—ÕÈ·J.¿ä|K”\~É~Ëý–í¶j·U¿­úmÕo«q[ÛjÞVó¶š·Õº­Ömµo«}[íËj¦Ëj¦ËjæËjæËjæÛê>í¤‡ zø%Ç—4z8¥ôñþçéá?ÒÃÿ:éaÉv[µÛªÝVW_r¼%èá—l·\o9o«y[­ÛjÝVë¶Ú·Õ¾¬D¿u z]:_v¢‡¿t ~%ø•àWƒ_ ~-øµàׂ_~ ‡¿4èá·nA¯K;=|éÛo¿üVðÛÁoß~,¹üÖ-èË%—ßúö+Á¯¿üjð«Á¯¿üZðëÁÏéá—vÌèÒ-èui§‡/}û­à·‚ß ~;øíÛôð¥[ЗèáKß~%ø•àW‚_ ~5øµàׂ_ ~=ø9­úÒŽù^º½.íôð¥o¿üVð[Áo¿}û¾t úò=|éÛ¯¿üJð«Á¯¿üZðkÁ¯¿p=@_º½.íôð¥Ç¥Wð[Áo¿üöízøÒ-èËôð¥o¿üJð+Á¯¿üZðkÁ¯¿üzðsÌèÒ-èui§‡/=.½‚ß ~+øíà·o?Ð×nA_~ ‡/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃_¸ ‡/½.íôð¥Ç¥}gÀ¥[зß~ûö=|éôåzøÒ·_ ~%ø•àWƒ_ ~-øµàׂ_~=øàç´ê¥÷¥¾ô¼´oܸtúöÛÁoß~ ‡/݃¾ü@_úö+Á¯¿üjð«Á¯¿üZðëÁ¯¿üÂõ=üÒN_z^Ú÷Õ\º}ûíà·o?Ð×îA_~ ‡/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#ø9­úÒN_z^Ú1ÃK÷ o¿üöízøÒ=èËôð¥o¿üJð+Á¯¿üZðkÁ¯¿üzðÁo¿p=@_z^Ú·¡]º½/½ƒß¾üH_º½//?ÒÃ/]‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚Ÿ³.—ž—ö]‚—îAïKïà·o?Ð×îA_~ ‡/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#øà®èá—öMœ—îAïK;=|éËôð¥{ЗèáKß~%ø•àW‚_ ~5øµàׂ_ ~=øõà7‚ß~#øÍàç_Ú÷Ø^º½/íûâ/}ù¾túò=|éÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üÂõ=|éô¾´Óמo zøÒ=èËôð¥o¿üJð+Á¯¿üZðkÁ¯¿üzðÁo¿üfð›ÁÏ·¤_º½/íôð¥ç[ƒ¾túò=|éÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFðÁo¿üfð ×ôð¥÷¥ë¹ô|kð×îA_~@ˆ/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#øà7ƒß ~+ø­×rñ§¨âK· ×[,¾ôå´øÒ-èÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Á/\àÆ—nA¿—’I_z\:ß~€Ž/}û•àW‚_ ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·¯f‚È—~¯1E¾ô¸t¾ý@#_úö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[Á/\Ê—~¯7“Q¾ô¸t¾Ö¯‰)_úö+Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿}­7“]þÒ€—/=.¯õkòË—¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üVðÛÁ/\@Í_Tó¥Ç¥óµ~M°ùÒ·_ ~%øÕàWƒ_ ~-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·¯õfâΗ—Î×ú5‰çKß~%ø•àWƒ_ ~5øµàׂ_~=øõà7‚ß~3øÍà7ƒß ~+øíà·ƒ_¸à /=.¯õk¢Ð—^—.Á¯¿üjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿üöí@úÒãÒùZo&#}éuéüJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁoß~#\ Ó/¯õfÂÓ—^—.×ú5ùé—®Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁoß~@ª/ý^o&T}éô¾t¹Ö¯ V¿t ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·ƒß~ûök}éË´õ¥{ÐûÒåZ¿&qýÒ5øÕàWƒ_ ~-øõà׃_~#øà7ƒß ~3ø­à·‚ß~;øíÛö¥/?`Ø—îAïK—kýš(öK×àWƒ_ ~-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·/?ÒÙ—ž—¾¯íKïK—kýšŒöK;¤}éôíׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·ƒß~ûö¶}éËàö¥ßëÍD·_º\ëÍ„·_º^ë×Ä·/}ûµàׂ_~=øõà7‚ß~3øÍà7ƒß ~+øíස߾ýÀs_úòÑ}éô{½™P÷¥ç¥ëµ~M®ûÒ·_ ~-øõà׃_~#øà7ƒß ~3ø­à·‚ß~;øíÛ ÷¥/? Þ—îA¿×›I{_z^º^ë×¾/}ûµàׂ_~=øõà7‚ß~3øÍà7ƒß ~+øíස߾ý@€_úò~éô{½™ø¥ç¥ëµ~MüÒ·_ ~-øõà׃_~#øà7ƒß ~3ø­à·‚ß~;øíÛhø¥/?Àá—îAß~åZo& þÒõZo&"~é}éüZðëÁ¯¿üFðÁo¿üfð[Áo¿üvðÛ·˜ñK_~ Æ/݃¾ýʵÞLrü¥ëµÞLvüÒûÒ-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·o?Àä—¾ü€“_º}û…ë¤ü¥ëµÞÜ.\ܨò?ýýŸÿ‡_|üê÷ß²#åïþþW¿ý毷úöù‘>þÚ‡ëv{,§è¼ÆÀúø‡PÓÇ?üøíãß|þÿë ûO†c‚¿ù°þÒ|ôçLJaíëü Ø?ODZv}°:/øõAh~ðŒ¦­Žv¶jÚ5߈÷õAh~0Ÿ>®m$)†”ëƒÉ‰Ã¯B냠~7?hCµ÷w¤öþâ‡?@ïÛéýÓ?>òÇó‘½ÌxzþmÝ;ßÃweÿð›ŸýõÏ?~ø»oÿî³ü¿}¸‚múúð¿¹>\þnXùúpú ™‡Ý|óû¿ð°¿>ü/8쯟ðavõ=pçÃñ³¿ý«Ï¿ùíïþáçrîŸýæçùñßý4³âŠÝì·?þ×þQÓÇÏþçßÿ œ’/•ØwúüÝýõïÿñ׿úÉ_ͦ'ÖÀÑüýï~þqºª?û§ó¯sH?þÃsHÿùÛÿÜF›3endstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 504 504] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000023116 00000 n 0000023199 00000 n 0000023322 00000 n 0000023355 00000 n 0000000212 00000 n 0000000292 00000 n 0000026050 00000 n 0000026307 00000 n 0000026404 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 26482 %%EOF metafor/man/figures/selmodel-beta.png0000644000176200001440000006326314465413203017365 0ustar liggesusers‰PNG  IHDRèèz}$ÖPLTEÿÿÿ"—æÒÒÒmmmÌÌÌßSkaÐO(âå\\\fff///www­­­UUUDDDÿÿþ´´´ ‹‹‹ðððþþþ®®® ÏÏϽ½½ìììÈÈÈ™™™cÑRííí›ñóþüýüüüÁíº ùÞâ———Rèê___KKKóóóýÿÿvÖfýõö,,,àVm888kºïGGGÕÕÕgÒUúüú‡‡†àYpúþÿ@@@“““/èåååXXXùùùoookkká]sàààqÕaõüþ~~~¥¥¥èèè'''’ß…„ïñ÷÷÷þùúŸã”¸Þ÷222‹ðñéùçlÔ[îúì×××ÈïÂüþûøØÝÕùúé…–DæéÃÃÃzÁðãdzeêí˜áqìî}îð“ñò'šçç~ãh}8¡éóüòcccªôõüïñMMM¨Öõkëí5äç²è©`êìÆøøwíïæwŠöËÒ‹Ý~ꌜðøþäm‚£££êüýLçê…Ûw=ãèèõý£óô·ö÷¥å›qÂÇPPPår†ÙÙÙ···úäç¬ç¢ñ°»÷ÑØó¾ÇñýýÏñÉò·Á.ãæî¡®ë“¢ÙpÂãùzØk勤Ïùù¾ö÷›››àöÜ[éë™Ïô효Ëçúáòüãûü'ÑåÔóωÈòýòôôÄÍ&½æûëîâ`vªªªbµîA¦êÚïû‘Ì󃃃ÜúûÝÝÝ÷ýö:¨Æ·ê¯¼ë´ûèëÓëú4Þçîîîä÷â±õöIªë,àæ ÓõØôÔ»»»ÀÁÀ.¤Éžòó¯Úöq½ï€Äñ[³íVèë>ªËO­ë¹êøU¯ìIÈêÜõØ(Úå=Åé­æöÄîù‹ÙòÎñúbÎíßôVË쉉‰~ëðÊÊÊhhh…ÈÛpÑï}Õðuuuêêêv¿ðsssyÅПŸŸyÀð-½ÓÌêIà¿¡¡¡#«æ3ßÇÇôæFÚœ<ܯ¤îØsêÜiªµ]Ý¢„åºpá¬Ý©¬²qlFËÑÉ ­³èÀ}BGpÉdÑ @f IDATxÚìíoTUÇOÀ{~hZ:”±Ý¡BJ‡ÂD«´ P¤­PÂSŠ!VZ×à D^ðB4¸!&E‚Qƒ‰&f7D£$Wv57àk/ˆ¾¸›MøÖdf:ÓvîÛ¹O3vÎéçóæÞÞyøMÚ~zÎé=ç|•ÖþôÔš &ú¢áû Æ\[Üh¢/¦W`½Wˆ€è€è€èˆÎ@tD@tD@tDÀ+D@t@t@tDGtDç :¢CXq`9Ħ©ÑÁjæ{àÏäDDGtDDGtDDGtËÛÜ_ßx"ÕÚýÈ(¢¢[$úq‹~〴7µI[¢¢[#z³xD_&›o¨±GäÀ ¢¢Û!úÝañˆ~DÚWçëúäUDD·Bô£m’mv‹¾W†K-ýIDD·BôdÙÐ"·èËeçÔ±ÓÓ£Gt@tSEÿ±3ÿÎn£SR Ú/rÑÑ­£« ÑÛ¥sê8(rÑÑ-]¤t_­U:ˆ>ö¯¿-ƒ…À¢)z뜢¿êZvs8Uå=[Zþ±dɈn¤èm!»î6U{´å»%K~ýu)ØÏyD7Rô”\˜þgÜÚø¢§ó¢osÞíâ'ÉRôGeãÔ±S²*¾è*/úÿçLGthHÑ÷Ê#SÇfÙœPô5ÿvœgñ³DôšÒ»m ÛšI ý¥q–oÕ¹Üü‰¾Hz ]ö®>Ù—Tôõ1ÑkÌÈa‘Lw.#‘_gùV½Ë͇è÷VÞ.NÊŽÕj설“Š~LåM~. z ûºÒºb]¾!Úr/ê+c-ߪw¹ù½IvC)i?œ•žE*©è{ZÔÛŽó¦#zí¸&¹Þ8¯‹¹|«ÞåæQtµ6?”È Q‰E×7•º”7ýcl@ôZ±6'Ý{¿‹ú²¸Ë·ê]®ñ·’ }þ2òI¿óú‹è€èµbKwÏ@OëæÛÑ^{ùVËÙ ú1}0’>ÝïœÁtD¯]tªôÑé±.f[â¸Ë·ê]ÎÑÿ£ÇÓ…ÓÓÛ3Ÿ"¢×„mE_zûJ ¤›•îÙ¹OøR‹„Z¾Uïr6ˆ~Sëo§ÎßÚî¼ðF z ØßÞ.–•\W2óÂ,ߪ{9ãEÿfÉ’××/~ñÌnç¹7PÑ“³SÎOzE:"¾6ôò­ß°œ -úkOê—¦/HÑ;³I×ĵ?ä[턜(µIñCÙÛñÌ ³|ËS®kc_{ê§Õ5,gE‹>¡·NÏ Øð™óÙ¤X0¢ïK¾úõŽoµáÒ m¥zŠS7‡ú¤Lô±».z«™fù–§Ü^ùåÂÎ\ßHíÊ™.úcÑk}KÍš¾ÓN×½óvBŽú¯‡Ú%;Š'7¤ Nú^.[.z”As˜å[îr#í…ÿ½¯‡jWΊ]½§ßœ¹ðÆsÎîgЂ1z2>öb»yMd(¯Efñí¸¢‡Y¾å.w÷—Bïû‹’±5)gE‹®ÞÔgg/}õ‚³ý-¼@ôDìÏÈÞÂq¤ij™ÉªÑ| sŒfù–§\ÉÔûjWΆýOêª^s}öÒ§yÓO#¢'âçüè½W>*ò»Ò !ºè–oU”S=ËjXÎÑ·êËe×>=ƒéˆž‘e"­mù~òN[ôË·*ËezkXÎÑÕY}®ü⋯;ýŸ ¢'!½oy¶µ{x¦û_ôPË·<å®e6÷Ö²œ%¢ŸÒW\W?Λ~ 7½†„½¬”ƒ5}CKDÿVë§]—7½ä8o#¢›)úFù¼Æïh‰è“ãzÂ}}Óó˜Žè†Š>”I5¸Ñ=¢«ƒúIχò¦_DD7Pô‡K÷ËW"ºWô/õï#‡žuœ÷ñÑÁÑÿ’?ÜÔ…ý¤Üt½‚éˆVˆþØ÷EÑUq?©JÓßiᇌè`K‹®ŠûIyM×q>ÂtDÓEo™nÑ'ôø¤ÏÃ9³!:˜ß¢O‹þôô~RÓß!˜ ÑÁž1ºº¢Où>ÓìiÑÕ¹ò¥ªå¼O0¢ÇÀŒÅŽû»[Ûvì ,gè—]KUË!‚Ñ£cFÈâ¾VÉôeef#ª9ËÙ#úõ5®¥ªå¼M#¢Gîëš²8š‘]cJÝËÈÃålý‡â™g©ªÇt"=F„,.-u>—¾€r‰î]ªZÎ¥~"=F„,Hñ›Ò!2R½œE¢W,U-‡FDˆ !‹Ž–ÞZ«—³HôÉq½~îçÁˆè‘0#dq¦ ßPÎ"ÑÕA}¬ÊOow^ ‚ÑÃbNÈ¢R£íÒPÎ&Ñ¿Ô{ªÍk'‚ÑÃcPÈ¢ZÕ$Mc匟ëþìèOiýaµçÌf¡è_mHÈ¿…,®ÜAåljÑÕLª*¦/ÑO;‰ñßpÌœÅý‡%ÛXΦ]ͦªÎŒ¶‰þVbÑý÷7&dñHJº·—3¾E/½,Uuf³­ë~hSBæ˜mJÈâ99àžÕngÈâcå¢×úªÂô%z½0$dqQV<Ý;C]-º+Uuˆ`DôP#_wêáÆ Y\•’½Õ­ Yt‰þ¦~/ðýfCô0²¸Xr,M¢I[²èý–ÖÇßðÅ3N?¦#z&„,ö¶ÏvçïZ²˜ýû™/&·z[|M'‚у1 dñ¨ø‰ngÈ¢KtŸÀ?>~‰FD !‹#z:`ì4D0"zC‹NÈb@‹îØâk:ŒˆÞ¸¢²X9²ù½Ktµ'`ì4…`6"½1E'd±è³`ËM'˜ Ñ ¶µèzëd¸÷ fãÑÝÄ=Ä,ØrÓ fCtD7±E3 vÆt"ÑÍlÑCÍ‚†FDGtCE¿Um/Ø Ó fCtD7RôÉñ0³`gxÓÝ#²×VMÏ€ÝPÎø1ú_=¢ìëg:Álˆ^‰ÙkG}D·3{-/ú7® !gÁÎpÑqžÇtD¯èëš½¦6ÊpÅVïVf¯¥+DÚ ¶"Ý#²×Ô.ñ lköZ…è{ÁVp‰FD¯Àˆì5µ£´d`9ûZôð³`gMïw^'‚Ñݘ½¦²… íÜXš½V)úe½æzÄD0"º#²×†$ÛyÿÔùå,ýú}9j‘ÓÛ3³!zFd¯]LñÊé€rŠ®Îês*†éD0"ú,fd¯Ý9±eä‹]Rö?9;³×ÔŸ+E?¥¯D/C#¢—cFöÚ…ŸŠKÖ‘¶±êålýC­ŸŠ^‡`6EŸœXŸ ÿ›Û•Ùk±E‘½•Õ³»D[š½æ'z˽>zô†Ý³'úz˜S¾Õ*²×Ü!‹uÎ^ó†,V-W¬ñjõr6Š®Žéƒq*Áhžè7ß{«šN#¢Ûƒ­¢_ÕkŽ'©:ÁH\¢#zc‹>¸5þ ¶¢é³!:¢7¼èêeýd²º-yÓßÅtDGô†=jŽƒéD0":¢7ºè‘s|L'‚ѽÁEW'ºÁV„`¶,zÌE¿„Ã-÷ç2–Þ­G¹ô=íMÍë‚>‚½¢'¼ÁVä"¦/TÑc¦ú%®ÈH¦)'Ý‹j_nä¤H_JäÑ®êÁbÑ/'¼Á6c:Œ Rô˜©‡> ‡£=rrµZ·Mº{k^îgIåÿ|\葇«~›EO|ƒ­Œ Tôx©‡~ ‡OÈÿÙ;¿ß(ŽŽO)ž)¿Ì³=×§ÔÆÅ5Jm*c°Ý&FdÙ`«•,UANí*-H(‘倜€‘Šü}håP!^-¤Öå¡}+/U[‰ªE¼ôèÝÞž}wÞ;öfgfgf¿)ødÏ®×ï\vw>¹Åߦs‹Èˆ®Ûq¼§QL,,–=ú¶H0&St¾êaPápÀ_ꛬNôpÛýU¢»wm«¸ vˆþ࿉~-Çï`L¢è|ÕàÂa¾‘Ô]©½Æ7Üa¶-Ô&X úͲgô'Ñ/°­˜~y¢%Lt¾êaPá°‘õ>.° ‹Àñ ×Ìúú¾ÚQ7YØN¶4²x³ì]È6$(:_õ0¨p˜ŸºocžãÎeìz«÷™‚wÿvFß® º l³%NtÎêaPáð«óNÁ‡ü„¸áö3Ö2p=Ýý’±-¤Ò&Ø}Fs-gzoÍ9„Ù’$:gõ0¨p¸bG×÷\;æÔ—?£ó ÷‚±”w_L{ÁºîNâDtÍ F=Eÿå?‰È_>³zX8ü†1wvuø)l¸Ìo…œ®×¼œL…M°ZtQØ<fÓRô?~%2_ŽÆY .žùh``ÃzÒÂúÊí_dÑuØïÅîÆÕß!–F+‰.ê[Þô^˜®›èÿ÷{ùóoGãŒ,V *ö±Ö²;ÇYðEwٺʛ`µèC¢.°y Ì–¤÷蜑ŠÂaëuþûðÉÃ…Ž,¶³ù¿Cœ•6ÁrÑ#.Y‚û幚ÞÏ!\2DçŒ,° Þô{ üÿtç,^gõïg?¾,ÚÒÈbEÑÅ]`ó@‚19¢—T‡,sÕÃ3Nöâ×›“ùÙyˆáüSòk—{v²ÁBÞkdO‰å‘ÅŠ¢Ï‹»ÀæcrDçŒ,ýûÜ2ïºÁF¶é­j† Yì`Φ:ÆŽ ggd±¢è"/°y Ì–Ñy#‹……Ãü ­ަ;î¯n¸p‘Åý;RmþòVG+Š©ÁȽOfKˆè¥ ²¨±èè°+vs²a6˜Ñ%ƒÈbu¢ŸŽÔ` 6ýC$!ºdY¬Rt2GgDoÐH0Bt¹ ²Xµè3ô¶ð-B˜ ¢Ë‘ŪE_¦ô4L‡è‰ÇxÑXYtw˜î¿MH0Btˆ®•èdŒž”°QH0Btˆ®Õ}„vŽJØ*„Ù :D×éŒ>ÞDç L‡èÝnÑÉU:%gÃ`„è]¥è«ø/œ§$mŒV‹.0²Ø÷Q³Ó6½SÕpAMGûE¿Ké¤MC‚ÑbÑFZ2ŸkaÎ5Ã6í½¶Ÿ.y¦#Ìf©èâ"‹nGös=ÇYª[ÅpÁMGûE'§è%iw a6[EY\ÏÉ—í*† n:&@ôYÚ´(mën¬¹€0›¢‹‹,nóãŠí«k½É.¸é˜ÑE¯>QD6Á8 í]\d±9ÞÂ̓ï]—ÜtL€èB—w_ËE$­]\d1cø¾Çd÷C!GÙÃ7“ ºÐåÝLG‚ÑFÑÅEI÷Q–ÚÔÆ:ž+.¸éh¼èï¾^ô!ñ«O£…¢ Œ,’77{M¦Ã J† n:_S !ºŒÕ' qf³Ot‘Ål_COßqÖºSÅpÁMÇ$œÑ¥¬>QLKôßþü»ùõGY<οý¸™ –ýï¤7!º”Õ'Š@‚1&ÑöµÈü4p4‘ÅföÀû¸Ãa×Êí_d±Š¦c"D—³úD³Å#ú»Ÿ|+"ŸÜ M\dq7Ë›Ë/FÅY ßtL„è’VŸ€é¿GYlõO»={n¸Ð‘ÅðMÇdˆ>B;»do'ÂlV‰.0²8Érm¥W¬¾'Üp¡#‹á›ŽÉ}¼‰ÎJßÐûçf³Gô’ê᎑ÅÛœ9]o©ÏÒ 矦×ó ÜtL†è’oŽË›Ž£E¢ Œ,ÞqXë`cínÃ…Œ,†m:&Dô%¹7Çù Áh‘è"#‹ š–7T7\¸Èbئ£ñ¢¿Jô!Jï*ØV$-½D ÌÑó*66›`D˜ ¢G‘ENѧdß—7 FˆDyE—sœŒ=2ˆ,r‹®à渼é³Aôˆ ²È-ºŠ›ã|¼0¼´Nt³±Aôÿ„ù2#´sQ¥é³Atˆƒè‹*nŽË›Ž#DO¨è¼ý a¢«¹9Îa6ˆžLÑyûE¤äæ¸ü9a6ˆžDÑyû¯„]öÊq%Àtˆž<ѹûE—½r\)H0BôĉÎݯ)ú Sú­Í†Ù`:DO’èüý ¢?“—U æŒ=Y¢s÷+DŠ^ÛOÕ¦#ÁÑ$:w¿B¤èR³ªÁÜ8Xó)Œ=1¢Wׯ¸òF!›êD‰>K›Æ{‘`„èI·_!öŒÞ%5«L6Áˆ0DOˆè¼ý ±¢““tLù7øâ;5ç`:DO†è¼ý Á¢ï¡Ã£Ê¿ÃH0BôĈÎÛ¯,ú8¥óê¿Å³Aô¤ˆÎÛ¯,:¹J§L7Uô—ë7[•ˆÎÛ¯-ú’Ê[VA‚Q ›Až«»_!Xô'jV}.ÅE˜ è†Ñyû‚EWµêó`:H„èÜý Á¢Ï(Zõy H0‚DˆÎPÑ•?زÂl¢GýßῘú[VÞ§O\®9ÓDW!z ¶¬€#€èªDáÁ–î]@‚@t%¢Æð`Ë H0ˆ®FtrRY±%Èt„ÙDW"úíìŠog²a6˜ ºtÑÇ[ʘŽ#€è²EWZl FÑyDÿC•¢?Šã¡ôU\„ÙDW úiJ—cÝ!˜ º|ÑÉíXJ/ FÑå‹~žˆy—jf]¶è1=”^ôFa6Ñ%‹ÛCé…ÀtÑåŠîÆöPz!H0ˆ.÷Œ¾ÛCé… Á ºTÑkûé’;v FÑ%ŠNNÑ«:쌢Ë}žÒÓ:쌢K}t˜îÑbß.¾ƒ#€è²D'cñ-(U„‹0€èòDŸ¥M‹zìL]šè‹q.(U Âl¢‡ýïÕÑX”*æ;½³ˆ.Et7Þ¥JLG‚@t9gô˜”*a6ÑåˆN.Ñ1möÐýò\MïçøÑ]¸è{â]Pª$D—!º›™»Ïk´“H0ˆ.ãŒN®Æ»l)Ù#Âl¢‹}‰ö»:íæ=$D/úPÜ‹Á–’ ³!Á ºXÑã_ vé"Á ºhÑÏÓþZýLG˜ @t¡¢?¡ô™f»Š#€è¢E'st†hh:Œ¢‹=þÃZ¼#rM¢‹ýnü!‡Óf]¨è:ÎÝ ©ýÂl¢‹}†Îix`]¨è™¹ûŒ¢ ½ö€¶ f]œèdJ‡[îg0@ta¢?Ó"ÂÄg³ˆ.JôÚ~Mçî^‚a6Ñ…ˆ®íÜ䌳ˆ.Bôemçî¹0L]€èš”Ëš~y?¢û¢ÿ“ÿ‹OéP FÑň¾¬I@9„ÙD"ºÖswâ"Ì ºÑÉ)çî0@ô<¿$ºÞsw„ÙD"º«õÜ=gz/L=šèšÏÝ Œ¢‹}^ó¹;Âl fÑÓ»Ú§÷ù˜+ºös÷œé³˜D1ÀV1WtýçîH0‚8E?ÎÛ·ïõ1Xtýçî„L Ì⽎m±á=º s÷\‚a6‡è-Ä ÑM˜»#Áb½¹ÕÑ— ˜»#Áâ}#;k‡èµ&ÌÝ ù F‡èï7|ß Ñõ~VµÀt„Ù@ ¢?ÜÈXÇáéF‹®ó:3E¦ÿ¦å¢3fÇutcæîH0‚8DÿA!F‹®ó‘%¦#ÁT‹® ¢›2wG˜ Ä"zúé­wž¦]ãõÝa:ˆ[twk›÷þ¼~»k¸èæÌÝ Œ@µèk=tøP+c'Lý™¦]Õ@`*E߯R{{2{v¥ØŸbý¯Ñ9`ÌÜxa6˜T‰~˜½ç¿zÀ¦M}†Î™sˆÜ[H0e¢·´­¼5on6]ô»”Þ5è !Á”‰î ®¼l4]t2GgL:J7"ÁÔˆÞÜš¿®–®7þŒž™»0êF”l‚q?­@¾èíl³ÿêGlƒñ¢?¡ô™I‡É½ˆ#P"ú:‡;›&é³Ç˜³ÎxÑÉm:eÖB‚(¼rcÞ?¯ˆù¢Ÿ§ý†ÝDŽ#P":Ù9™Êhžš|N,}ˆÒeÃÂl@‰è„ô,4,ôHÞ E¢“«¦ÍÝa:P%º T‰¾D‡GM;XH0™¢ïÛ÷ ûGˆ~šÒyÓ–‹0(:cGtZaFŒè™¹û)óLòDß»·!ûG6ˆ¾‡w™w¼`x^ãMtÖÀv F Sô†¾ü«®ëÿ³Atr‰Ž™xÄî_®9Ó,ÑÙ×ó¯ö³+D¡‹&2$Ñ{g`“s¼u…¥lÝ]ì¤#F³{`D_H±bŽZqF''é%3Z6Áˆ0>u?R¤yã¡3vˆ>K›Æ 5 F At7N³étÉ÷À*½k˜>2ô°!Á$ˆžåÄ5¤Pt3RéeLG‚üŸ½óÿmâ¼ãøã´¹O ’Ø ÆÌ*bãÅKRB Œ$ ÉB½A€šªTZù¢”iíÓX¥Š%¢ETZˤtˆIPQ…Ò(¨ Q¡B¤¶Lh“úË4?À*öÿÃîÎgçb'8Á¾ç¹{ž÷K$w±ìøá¹{å|ÏÝóy;":ckªqUÝ­Òˆ~Þ3‘-Ù˜ÁlØAÁE_"ãRúfŠ-“EtÏÄ-Îj:‚Ù@EŸ$j2Dïi¦p‘$¢{*²%ÛtD0‚‹^OãÖÚ8µÉ"º§"[²? ˜ \ôh<µKÕD㲈ÎÖz«ìs¦éf…=l«ëî—Fô!•}Î øg˜ +z ]×½=‘Ft–Ž›"AaE¿O¬µnª*ú÷…<$z²ü„÷‹‹ß„é `¢ïQó؆ΠcƒÞ Pô?TtvÕƒ¥ã¦ƒFPHÑÙ²˜u¯{h'z°À¢÷{³ü„½GN!‚PtÖù 1LÔÛ1ÁŠ^è#ºWËOØ9µ®øˆ`…Ý Áñ!^Þ¢¯ñhù ;ˆ`}¸²‡µ<”Kô+µ5žßŠf…½§×(ô<¾ŸIt¶Ï«å'2LG0(ˆèeD~?±[D›Ûeý´¶ªßûÛŒ 0¢Pôq¢‰[¥r™Dß»ËÃSئ@0(ˆèÍt‹1Ct6@}2‰îí)lSüx+‚Ù@þ¢GÌbR‰îí)l6ÓÁò=\š½/,•è쌧§°M`6¿èpƒ%úÒp@.ч´® ˜ ºÁBêHŠ^SG å}§”gŒ _Ñ'ŒI-´»§”ÂÃr‰Î©­•ðr”Áˆ`6๠3ºèGyç¯4í¦„[Œ€y°ÂÌOJ.¾ëÐ[ËSQjˆ`ŽU˜¹þRÀ©ëœöXp´)*-¯q­èò]JO‚FàP…™ë½*­¦êå¶ÇÚ‰Dõ«óý¯õÅA /¥› ˜ 83{m15_g‰:êµÕ\|@"ÆFb´2/Ñÿ^rñ²S±O¢ŠRÓMß Ó!ú\v6‹Î²ú¶ÑÜwºï¦Ðsú¢¦‘~—~¬Õï7?óSS¾¢_sª3¤¼”n‚Fˆ>—g=ÐôÅHÈŒkìÌõônj3—å4˜~¬Š%…_YéZуR^J7A#DÏ͸®÷˜îhŒ"ÝâÔ—c<-¡Ÿ›ËT~¬™*çÔ \¢ÿ¥äâ9ÇzCÎKéIÓÁÑs=ÇOmúé5ë êVýã{œåxAÀ’zQºLE„:;Ÿi ޏYôr^J7A0DÏÁ3To~°S·±|1ùãÑ sÙB”º$I^ˆïÎ[ôëŽã²ÍJ·ñ·ýÅ[?ÀÑg¥Ñ˜¡ÊسDEÉe$Ç ˆ¬ëjþÔ k ŠöŽ$Z ʼßf¤ÌΉ@NÑw8ײ^JO™ŽFˆ>;Õd¿UQÜü±•rÍ^óg‹þ(dþ–:jÌxöÃgíÜm)úY/¥êô. IDAT› ‚¢?‰0™·É Zcé»)šó/CÖGwýˆž|§a¢ÖuŽî§QseuØú+àNÑoÊUà=“Oa:DŸ•ÅtWÿ¾,u(®Ï9MµžjÍå Û±¿×=Nžéç!úaû£b­\Þ31‚ÙÁÑgdÅÕ ÷R³ùÓcJŽÍ=nª3—åÖK’çæ÷Íe'ù—æ)ú×NvÈÖµWjÓßD#DŸõMaýŸ~¾Ý2¶˜l·»ÍöK)f|d_ÝH=éÇF¨z›±üÁ&¿Eï_¥–z‹ÿŒ}÷uÏƉ:-iÈù‚AÚüK¢€1©åq•ñ ¸™ú&ë Ód¾¢Ÿu´G~«m—{“#‚¢ÏÊõEÉÙ¥}ƒ‹æP*¼5@¡¾(Å̳ñR£•þX/ùKD9s‰þë’‹_8Ú#{dÊJŸÕtD0BôBðüK¼-ymÍ5Œ7†â͹Îï…‹.WVúŒ˜Œˆk‚è"™ƒèœmÁ{ÚÙ%@#D‡èŸH<³%…Áˆ¸&ˆîjÑ¿s¸ ÉY$r:ˆ`„èný5‡›pUæ™-iÁÑ].ú·7Aî™-iÌÑÝ-úz§Û ÷Ì–4ïÃtˆn§g¤ÅU¢_rº ’Ïl±›Ž`6ˆž&B ÆÕºFôÛN·¡âŒöž[ÿÃââ·a:D·Sc´Ø5¢ßqº Á/µ]{•Øü§Ö!‚¢§Ðýå´dùbE¿áx¯ô¯Òö¨±ýÌÑÓÇ·nÊD¬èŸ;ß-ÛeÍlÉÚ¸ï¬+>Ó!ºAÍxi$NáøbE?à|·œ–6³% D0Bt;.:GßÂá@×%w¡;ˆ`„è6šÊ\#ºC3d/4cÁl}‰ÉÑòÑÉ„XÑ_×Eßäü½_“¼Ð L‡è³ìûåqs ®º*(Zô£:FúB3vÌÑÓ,$Š557ÅȪ#!Pôw9tÌié Íd˜Ž`6ˆnPI¡Z#½}e(gX§E¿Ì¡cöÊ¡<ˆ`„èIšÓ]Çè„`ѯñ虓ZWP¡ÁlÝ$Oïö‘ˆ`ÑÏñè™* Çé|¶Ál1_zµ/,Xô¹tRÃq Œ=y¥®«%ªEÑwpéš=J Ç1D0Btƒ:JÝ1ÓM ‹þ —®Ql8NçÓ·‹×!˜MqÑ‹üÔ6`‰6ò ý{ßa>}sR[Tko0"̦¶è쑟ˆÌ¯GL°è_óéÕ†ã"!ºÎŠÁ®yhð-úœ:Gµá8†FˆnÐ>±|¢ÝáåýŸ¾ |ú&xZµá8†`6ˆÎ‰¹ˆþ?NmQo8ŽYÁl¢ ýß¾õ¼sR¡ÉªÓMG0D+ú]ôK¼£àpC#Dw‡èÿòýƒ[k”©7 ³At7ˆ~ƒ[kª7Ít³Atᢿî;À­5*ÕŽ›L‡èâE߯9C*Ç ‚¢ ýˆÏ÷·æ¨å "•ýPBEÃÇ¥hœÅv5’UgàCD0*&:¹)©åHÉo|\ŠÆYœW$YufÓÁ¨’èã&›)Þ1:ö¸,@'z„Šþ—¢qÊ$«Î"5DÄŠþ¯8%¤ÛxE;£|dD0ª º¿/½Ú+:ã<«Åà+M;¯üÎòS³É/z$–º®–¨|DgwøÎj19®^àb6F0L—[ô:*³Öºi`Ñ/qžÕb°GÍ ï3˜ŽF©E/òSÛ@‚%ÚÈ_$Xôo}ÿåÞQ{U­ð>D0Ê.:{ä'"óë,ú~ékS i»Z°¿˜¦#˜MfÑÙÿÙ;ÛŸ¨²;ŽŸcËùEXŸ`ÔqÈh±Ê@!€V+‚øÄ“¥«•ßhj-UŒÚجkpbb(fâ&_hMÜm6ø°£Ý` Ú„Õdc|ÝÔÕ¤û‚ÿ¡÷Þ˜fæÎÃùÝË÷ûb˜ÜÝÜür>{îÃ9¿Ïº3>sß™ÿÝ g}±»™ÝR*št(]ºÍÁÂ`s†O(>èÇÅx¥L‘,è–RQ‚Ñí ³ØÔb‚>œMWËTvK©hÒ!fs3èL6µ˜ kXkoØ&cŠÙ@ºKAg²©Å]ÃX3=ªèCŒ˜)Ò!fs%è|6µ¢7«Ý'ƒ7l‘|–“óGîFÐùlj1@¿'Ïê(Ö9ìa› Œ.ϦôWòŽbá [T¾€‚Ñ• óÙÔb€^#ÔR-ìa‹&}kÎ_ `tè|6µ kY'°‡mz `t#è\6µ|d‚>&Ÿê)×……Þ%rZ>þUÎEˆÙ\:—M-èYo9™« ¾KäLÒ!fsè\6µX 'e¿–r­Ø¬>À ‰ F÷ÎdS‹ú%)ïë©×cUׇQ ŒîǦ t]ãByØ¥aÔDâýňÙ\z6’èºV̹¼À=l1‚Ñe wÞ85XŽvÐ_jh&ʇEªÃ&:³¹ ôÑŠD;èïä÷º*vL `ØL'ýHw軨 båp´ƒþ@¾ÒU±×Ø–>3P0ºtå3¹GÿÈøÔÓc&lK ŒîÝŒ@¿%e‹®’õ¨"4~žSÁ1›+@/.纾éB†Z56_CÁèÐsé#Ðõ½H¦Z‹fbI?Ÿ“£ @o*÷¼ÏtñTŽi«ÍÌSÌ££A´’G´¥6ôuP?èwå }Eâ™Y²â7P0:tЉ~Ð_hÚ‘n‹ff Œ}GLôƒ>&ïi¬Ú1¸æ" F‡ß£g+ ‚>,{·ë;É×è43k,#šmô4€~<úm)ok<Ëtš™tˆÙ zeåˆùý k}¿†N3sf…Aú_Aº3A'Ú6㉜~е¾_3Æóutš™£2P0:ô²²Bó#* @¯‘GuÖ­z¦¹H‡‚÷èiý+ùRçiÖCÏ4g fèé]çþ53Ð3ÍÏ@º#A_ý {µ5‚ §¯ë`ç# FçÎjeÜäŒÞ/å-­•Ã:Øy£Aß ‹“ÚúC†rë`物`„˜ ÷è©€þûЭÛZÌS×ðÂxÎü Fç‚>”ß&êß2]ë¶37±6éO£ ½Íì+†üo:Y€~Vócwã Fg‚þQA‰çD Í@¿¥ù±»w”z4w fs"èW(0ÑYMB¬ Ðr ·è~ì.Ä5ôƒŸô=9' fsèµô\tq„r]ÜÓºÚÝLRè;_ `tèƒ.<¥,@×¼Ú݈å8˜Íq ûó¦@?ègúùƒnÐKT¶¶Ä#}HwèUôÕ~ ÐÈÆMš«W¿-Þã F‡žK»C o¬ \ ÿz ôÛ%á¬@‹÷¸ù牜=Ÿ£ Ž=è£Ú‘-ÔÝ–Gþ! oj”t—ïa—:‡A—tˆÙœºÈ/ ïhñ-,@¯´IÒ#ùTuÕcÍ(ºî.60/¯èL@¡·÷„•¾:õ£(NNCÌæ$ÐT5fú„’}\6j¯Ÿ÷²ÚŒÝªñb*!fsè푯«wóý¾Þ–Ï¡*R%FñòK(zÇékЉèžÆ™»U¯c·j|Ò¡`tèÔÑšÙ—x€Îâiœx¢Ð€"@ÁèÐB¤ßU¬e:‡§qBìGŠ„H‡˜Í wV’go°¨ã_=¡ø ÿiêû¸þµq±]Å@é.]Ôï¤bù¿ml@g°6ÎÌ5€”@ `tèbÃ)¢ê`¦O(Ð75Êq5|¦Ô3Œ¤DFŒN]ˆ]T<Ä tý "C[5Á@ÌÆôˆEÕGåºmªÓ@׿SÕ zJ%C:Äl\Ag%p˜ú°ìmáPEô”J8P0ò½,&\@ï×ß7ÎÊU¥nb,%(ùߣg#I.žÊ¿³¸"Å”žx `èIƒþ£n‹C8=J=Á`JœtˆÙ8‚^Y9ýDŽÑÃ8&Kf„ð^WÇ0˜Í—99çA:?Љ¶Íx"Çt&KfÌ)½SzÂùb+Œ A/++œñDŽ èÚª“9Œ)=™˜ ÆÓ(îѽF~Ïã¼KTd‰çc(ÙƒÞÙÚÊô1íªÅÉ)2‡äH‡‚‘;è£ZïÑ;ôï8t™Á”n#P0ô$@g²¯SzÒñBÌÐ]ܕò±*‚Ÿ)™€t€ž8ècò“RÞ‡)=¹@ÁÐÏM:¦ô¤1@Otã&ý,“ZbJé=S óy“Ž)ÝFL1Ûç(Ð;§§]3è¿3nÒOnbRLLéÉç(Ù€n£ñÄè.OAqÅÞ˜ã?-ð¤ôû\–»‡¦t¼KO–ô‹9[AºCAí _Þ*ZU8ãxs¥tqRŽq©&Þ¥ÛŒ\@?“xÿÆRªÔ1C)ü-eôwLö¤›Áò8ùú<Œ,@O:Ýä3e.·Ð'ÓŽ¿ï÷eôqÙ¸Sº“c*!fs è­´Óú»œÎDÞPMÿÎèýRcJw6éP0:ôe´Ãú»ŽVE^I?9’ÐÅ\‹‘)ûÒ“ŒŽÝCùÖßv¢·‘£AŸ§*# %Ÿò)h ºÇÙ"b6‚î£uÖßz¢î©ƒÞº"2ú-)/±)(ºÇÙ‹%fCœ:Qø½ZE^°•Ñb1+è…?‹Î›Ž¤AßÎg¬°¢ǻ]Ò!fsè³€¾·´|íì /JtQ#køT=Þí’£Ó@_5Ë¥{%‘™Kwq–Ñ 6KÛ›­ÿEBÁÈô¡ü6Qÿ6þï<ÆÝ¸™v¢õáC¡7m™ý3ÓÔ”¹ª½9b6 ·u˜‹_‡üo:ãý²’B ¡×Q`òÐ`ÔÚÂtƒÎê›%W…/Ý^@º~Ðß#*( ñœ¨¡9ÎO[©Âú»œj'-õ‡Bä÷/J;èØ´™±2 0²ì FÝ _¡ÀDg5 ±&@ËãýG©Ô¼dß°…Úfü“Ì\º›mfî3*ê3¥®bhÙ‹)féA¯¥çB˜ °Œ÷ã3Ô°Vtž"¹©ebåó´‚þçØƒ›Nò°ªN悺†ÇÇ6ó%ŒZA˜„Z  Oi¼7yÈw0@¥ÖEzíN#è˜ tqT¾âTÕ›Jõ`lÙ' F} ûó¦@?èûëõ»<å;CïÖ²ú°”ýœÊº_]?ŒÁe3P0êÝ㯠ƒ¾ÚïÉà Ù×â8!ž© .»‚Q#è¹æ¼l‚¾±‚rÙ.juŸ0óÚWÑe7³é=è£Ú‘-ÔÝ–Gþ!~ ËÞNu=T§at¥Bú ®t‘_^ïâ["øÞÒ+°*ìeÕõÃËv `Ôºî.60/¯è Aw9ml1ÒW§>Åð²ˆÙ´n¤ªi4Ó'dô³²‘Õµ»÷œªëÃøJ‰tˆÙ4€þßEÙ9!» ÷s»vØ¥.c|¥(µ€N”·²‰1èâ%5S(°9¤xM1›Ð+ÌgqË&ªØ‚ÎíÚ}"SH×qÞ92è'ò-¾²‘'èì®Ý½h*•j `Ôº‘Õÿ«- *ßUÈt~×îè@‘r¾¹£д—-ókµ©Î :»kwï¥î`ˆ¥”ÓP0ê½iG­nÐÿ&ríŽíªé  ÆìƒÞ¾£šˆ<­A– ³[3ƒíªéŒY}ôÆ2ã={$³'”èã²·ŸYy©ÍØÛ’b `Ì*è•åþÁ%Í™>¡@oéåµWÕÈ¡"ìmItˆÙ²:QõŽõY8¡@5ò%·ú^V]X›jL1HÏè­CÙ9¡T@?ÀIÂJ¦‰t(³t.øƒ¾½‘WH3°6 ‚1 WVŽ˜Qa ºxÁI J=¦…tˆÙ2:Ñ6ó#*\A¿Å«¿»•¨Ø@º3@/++4?¢Âtq•›ÉŠw@ `€¦(qÉyr;·?ê™ô1[6@/Ü;u×ye‚-è·¥fWãýj3š¼§ãÚb¶,€NK'¿UE©ì@/Ù-ƒÅª™ô¤gôæQ#tf4”õŸO#è?Ÿt†Ë`±j&}‚1“ }4= |Aoi”c슌U3i Œ™¼tß6 su7_ÐÅQ~¯Ò­öqOþÏÞùþTu¤q|f»œ™Ûañ—Zv#êV¸(6¸X‹€ˆ½"þcÜFÝ’Åꢭ¡ëÔ¨Ö_) Všâ¾XÐ*Ñ%*ñG´Úãk³¾X7i_ø?ì=bõÒ.Ü{fæÊÊ F­ ¿õ8÷=WoÊ ·6ò»ä.sʵ,ç î65 À˜M#è3³_ØŽ£ :û–?$x¡kqĦN_Ìéº@EL.Ÿ#¦ó$[ÌÈ£ z€bf ŽØÔ ŒÚ@¯¿a,­Ž±¼îo„gôüŠÛqnb:ŽØ” Ælº@ÏÈýØ-B“yÅѰ$Ag§HnÇሠ¤Ûzfh2g£ÄøÐϺlÚ ·Ò+éêã §L0fÓz¶K÷ÛâûÐÏ"Ú›qîvÜŠ×zj?+Tà_Mšý®ƒjÐw‹[ŒÝ¹ŒMH›BôÓœŸ&x­¯e9pÇ©,u€þ¦ÈøO08E¼ó‹'>'µ :ë§æ·8 }NñÜrê F  ³…˜Å‡ÏÑÇP½™b²*c½•(©T0fÓ:SZÍ™,ÒÍ|ýŽÌ¾‘ª2~âÕžä87qÏ)Ô¹=0fSú€fÍÔ»¡¤tÖE°v\H)Ûœön:•¤oJJé:@×-5 Ÿáä,”Ã:á ä]­\c6X0ªýÕ!":+$ðŽwõš FU ‹!¢zÅú,ò^‹»N-é0fSú‡ˆ>èTOØØ·€t¬ÑÕÞÌÛ(^ð@;öãT+lÁ7u ïSÍJžÚzU=w¦°a?N=é0fSzu»:ß›ù$hèìÉ6†ý8J ‘þ%HWú(!RS»%ÄŒY6€ÞÖH°Â»+ìÇé ŒŠ@ÿ\L|œ.{s¢í#è;F :û÷ä“\¥#>N‡`Á¨ô"7{ÍýYÔYúy¢A3áø8”„U.³)}b¥M¶tÖM4h&p®‹:.ë~®ôÌäç ×eÚ:Ñ´tæº."_UƒöØÍ;èi™yƒ ÍL³tö€wÓ¼ê«+y¸÷Ôë0ŒÙ<ƒþš(}B®xÍWÐ·Ž¸­$ ?»j€E“˜–´ Ælž@¿”!ŠþY ê«“Eæ^K@Ïï!ëZ4¡~œŽuú?`Áèt6fò`FKÆëÌGÐ×Èå#o¬™7ž¡yݯ;ûp÷iPˆôÏÖâ2x]*w]™¦äÖ3k@/m"éåàjüôŒ^A)oæUÝ_h8ЯËíQ´vƒhj c%Î6Älê,½ƒ> ½E>‚¾3*Ðɦ¶0öµãLÂý§cc¶˜Aÿí;¯”?Ìe Îɾ‚¾>šæ.ð²V¢—~¥³‡é èÕî&\Ú»îïŸ×øk›|<:Ð[‰ÖƒeáäÖ#³Åú¿Ch×%‡H²¼CÄϨ÷ô#QµGxJŸ„Ãt¤ÏéÑ‚þ†(ØËØø)âû¹uBdWkýBÃÞ%è„§ô”ÍÎÔ^Ü‚Z Æ@O·Ý—¯ÄîB”e>ƒ.£k°‹î”¾¨ØÙ…[P`Ì=虩áJ"UdßÖý…†ý˜”Ñe™žÒÝÃtTŠÔH:ŒÙ¢] ¤¥…¨™Ë€¥ á)}i;2Óµ ŒQƒž>øªÕ]q„ /“2ÊRp”§ôGpRÖ'X0Æ z ÐFÙ$á)ÝÍLG$¬.Á‚1VÐKüý¢”[¢l’ò”Þ;‘°úôX0&è”ÏÒÝHX”y×G:,£}r}XB¼;ð‹Ÿ3g¥<m›¡)½‹ìÔ¢¬”FÁ‚1Ð)™,n‰tvŠl[¸¬Ôf܇úH‡1›µ _ŒºÑª&þ!Ù!8„46rÙ@úˆ@Ÿ9D>‚~0Ðݼô3dÇilÚI‡ãH@DŠù ú²è[-¥[=ŽPV3é°`´Ð6¹JÊc14{—ó>²ƒÐà8 àQŸ`Ìf!襱žßOµÆ»«yxx×;§Ã˜Í:Ðó¥l‰¥Ýdm[X¸Þµ*áI·t#èì!Ouxx×­D·`´ô#1‚~šª¹*ÞÈ5f›Ðí}½<[Ë…¼§”ì8àá]ûSÓá„¶`L ÐÏ7òt¢a3º•ÐŒö¾]é{„s[6c@‰lÁh#è×clºµŒ¬AˆyGª^¹Œkº /t7·…n ¬óŽ„UÍëôO§%ª1› ¯‰µíÒ^Hx,jâE€Q¯Ö‚Ñ>зÆz€tÔL¸Ú JEjV¢Z0ÚúŽØ[ÈûóéÆM¥"µ+AÙì=GÞ‰½õ>Λ Æ.'ëPé=¤ïäï<4ÿ_ÞDøˆ­¤Óé,Šš•Œö~Òèm¤ØØ‰,˜4iW Ùlý#/íŸâç Ç8¬P’nèŸx½´‡ß§<Ûls*WƒDÝJ< Fû@_!zê ƒt[„ìJ8c6û@_çtÖÍ›ª²[Œ<9­ý,iÚ§4èxëáL#a;æf·ÀŽÍ€Ì‚Ñ>ÐWy] ½·z*¼”MèܦD²`´ô¿x좪‡ß'Çnf9ûÀ¡~¹Œ‡:UÐ7Ê^ûèàü.åAÙ‡363¤'1›}  Wyî¤t|[Š363rÙötª ¯óÜI[a/66pƆ"†H? ÐI‚¾P~â½—¤óUÃgl(BaBac6€NôäIï½”öóþRÊãRë#Íé‰`ÌfèwdŽ‚nú8?Ey\z;Î^`h‚ôİ`´ôr«Š~î‘®ÇØ‰bg%(4¡Ä°`´ô5r¹Š~ªšh¦³+…5Ez"³Ùúu¹]E?ê‡élBa )p4Dú|€N ôãr½šž yYå¡Y=åfL)þ-í³Mn‘GÔôÔVFºø3c²œZ0hFqoÁhߌÞ"¥¢µõ]Ú™éŒ]†™²1Å»£} “RU:y7íHX–‚eº¹uúø¶`´ôeRTÔWèáý[Ò£ã.ÓqšnH¦%í9ÐÉ€~QÊ-ª:k¦þðZ¦ã4Ý”âÚ‚Ñ>зHyVUgù÷‰?¼ã4ݤâ٘;]÷ƒR^TÖù‡w·°‚Þ ’¯ÆlöÍèUR.S×ù‡÷ÞNg*rÓM)~-í=_ÊcêºËïæM¤Ãfصb䦛SܳÙ:;"[öG>lÆÍM‡Çª1ý~v|³Yúzy\e‡w©Ç¼³](!g’ôø´`´ôír§Ò yé„U·„ÜâE ДâÓ˜ÍBЗËëJ{lmâI'¬²%•N;Ò[@z‚¾UîPÛeñj3áJ1§x´`´ôOé?¥{¼±ö0]F±H“ŠC F A÷è›üªêç=U´Çi¥“u“kÁh—1[KNK¼îÙeq¨úù´Ç±¤Ý©\éœmŒ‡q*³ôžÍ׆êõ9×Ór&I·Ì‚1AWáÉ©ünâu¥ûrFe™ãªø}¡\¡¾Û¶&þ°”öP^vœËàÏ éVY0Æ!èJ¬Z†¨ƒó ÄÇr¥“…9ƒ²Ê‚qÕ0;W‚®ÈÁ!R]œwÐË’mÎbT–2LúQ€îèŠ"Uú€z›!׉”Uƒ²È‚q]ü¾SUa÷)#îÝÂØ£bgóRðgtkŒÙ|ýêûi©Ù¹/½7îÕìÔôÕ^AWWØ=R è/Ógð3¨”é_¦XúB@¿Z#2’ÓEú¸Þ«N™…Èõ:£“RÓþø=òËt¶5ä “n‰£? ¿!Š®²`®¨ù1Ä£"S”{–)ù=•I IDATÞöºÂzÏö-ÓSæaëÝð·Ã‚q… ×‹Œ·B/ Äߟ¿7JL¿~# <‚~VaØ¡Ëtê§é½íØz7,+ŒÙ|}Žx/ü:Züíù{ÓÅ蕺³¼~PiuÈ!Ëô.â#º¤Õ"Í*°ßÒ}ýWâOá×ñ"ýù{ã^¯|O”x]muÈu‘zw·Þ·aëݨöÓ7f.§S èibLøu®O#?åùÑ]uѸ—ÿŠÜçeç‰ßv ޳uaо£/ gˆñá×!ê#>ªÈ|„÷úr¹Fßkmâ=­Äo»Ë¨ kZ®ã9€!!ÏÕRŸ—?›,’ƒÿúé/_Ôã‚a›Ï‘w4.Èúy!ñ¸V ?e㤷`<éè©?úØébÊ¥È}kÔ‹Úæù—G5Ó›YºgL‹¸£/ §ÿÌ£ûÜ:1qÜ0ÿwî«Ô—˜yIÒ›éíÄ!ÛÿØ;ߟ¨–3ŽÏ܆ÙIú¦›Úts_´A›Ê½½¤÷ÐZÚ%Ù›mÓZ¶I±‹P¡FЭX­üôÌòÓ¤mì$ LLX1RØ`ˆ!þ}U_ø¢ÿCϬ^å"ôœyÎ3³Ï÷…Fãqç|vfž__há¶`œð˜¤¨)÷×—`‡B‡·üøw‡Bßý ;8èg5LžØªØ&þ€œJ²Ñh)X¡6fÛô—ýýÛ¡£[~úïB¿þ%ót-“'¶ª×€€Ü­¨¾GðÁ’~/é€þ«Wí_ ýxË¿t4ô£ÃÌÐÈBÍŸÚR’ÏaÈÍäS'´[0zE¨µ€þ^è…ôw~zÓ«öÍC¡O>f¾€®©!}«ã¯cB”S:VxÙý)ôÉ·Øoþ:¤Šàþû¹¿~%ôÑ_þùR‘‚®«!}«fÑ[/2Ö"Äubœôãâ½/Ðz(ôþo†>xOýá«¡_0öñû¡×úÏAo“Rû¹Ú™ãÉIìo]9ù·€ «1[0 ³Ã??ôõ~ö2·–ý÷!ÿ@_”2¥ýƒëÌ`7Ye,RF…3àBjÌÖ èû×;€®³}í¦y{轤[D©;H·tgH¶<Éd’¯#oNgFEô±+”Œ] &‚Îz|vHßE9vG6ƪŠDå)bV—³ÕÙºÖ®–-Z@oœÎØr%•ÈKY0Þ Ðµƒî5MÃ/9O H²ÝŠÒ°wp)c¶ºnÐÛe;ÌÃÄÖ H²ÍP1l¤ÿ™cÇuÖHе»¡ˆJ²aïoaƒù¢ƒ•õ)2 F+A¤½Øýµ¦ÑO€ÎΖ*£²whÒq³õØz¿ì{ž¥8þt:{ D}„ØËeÒ­]ŸWËIòõö—®…\à•µ` £½ß>Ð5Z8ì Çÿ9eÕtH‡&‘£• ÇtNv[«œŸFOú5²_„"c¶fA‡*ûB³t§‡Ë©i\<¤Û z¡ÇÜŸå¼0 D.\OÓÞ F/W3AoÒ<ö-Ò‹9¿Œ~{!Òƒ F;A?!›`Ÿ*¶Žß“Õ” qŸÈƒ F;A$»€wËÄ&OŽé¤IÞ˜mÈJÐ!¦ÆmSg†H'í¬›yyW~8èm‚^+å8éiŸ$ÒI;èÆ±À-íf˜Ô6õº¤/餼1›´tϬ¡M5â'=¢H§Ø;øÇþÙ±¼«—tßA/Ôk¨j0éÙ=*gÀ´£¥ 7@žø²æ ½žH@ÁZ0:^Uᆂ~Nn0"ýÿN.à Ô˜ÍVÐWàók‘)§®Õ#=f)èAä× "]u¸ÔÓÌhhÁh+è ØFÕí¤£Ï§«®Uš.é³%,Õy8Ðä<é-BtÐlXhfÁ˜ðª,1tèþµ­RY6ôÕ°ì¾Ý4ïZA³ Ø z…l î§Ò<‰¾—ä‹aòpÖÝó³Y z`a÷¬z3<‰ÞÂ…Uç‹"òe'ýjÞ±Ït¿@¯…ðHß]&Q(—RòZ…V Œ.è‹V‚îxõßê&}Ó€éRìY¥¨|HèëÎx Æ”­ ³@ªÝß(1Çù,úÙ°Ë¥":HèKY0Þ$Ðýý,ô4©íŠsþ<†ý«â¡M:¸£½ _´eÚåöpšó9ô.º…¸Nå°À·`Lyyš z-¨[ËΚå|½/[I•Ã@:°1Û´µ ;̞ئUÎ3SØß9ÕâBErÐʳèµX÷Z'“¼}‹‹*‡¥Ò™ Hè½" –ô/k2nB9lu>%ÔáI‡´`œöª+1ô6)1DÂæÓ<‰ßÄåa%¥ÙÀi̶h/è^S²€Ô›1"¡^$ò)ÍM:œ1›Å ³BYâ‰UéL1ö4[X¥ÙÊ)ø,0ÒmÇ%Ý•³ÆùÓ^ì§÷’z!:¨oXPŒ6ƒÞØ8©·´ÊñßÃáëBŒR7°”1›~ÒE/ =1„ “þJ#qÇß¡^•3Ĭn‚X0ÖZ :;#Ï¢yì¥4ç èCrÏJ)$éú-­½OöàAKõ­¢ɱªa ÉëÆ±¼?ßÑzÂVÐé ¬wS$ö€zذ ÉÑ(9`X0Ú :c]÷¤oÓj’7¢¯’ ·QúŒà•~c¶1«A¯]¨ž}$ΓøÇÎ VŠhÁMúù»šAÙ z­W·=´zŸšpQ_¥‹:´t[0Ú :«Ãuvg‘Ä÷¢>ý­»Wæ^Ô© TzÙtÇbÐ+d¶”–{QÇŸQÏ^Ô)£Nº>c¶6»A_ ΂mWM6r¾†~–ÜL¥Èo¡ SÒjÁè‚Î,"ª™y}Q_ç|{é;«ê¢ŒòlÒiÌf;è}²_ìËYàøï‘šr!Š(Ïf émrÈjІäE„+:bÄñ½:*òÐñPú,mµËBŒ+ªŽïOÑTy6:¾CêîUMŒã¶ƒ>†0÷úøŽÞ‡±„ŽïÀº¤É‚ÑzÐÙFÐŽ-»IEߟ Ÿúލã{K„„#]㸗»°ñ ÷#0rØYsœ§'Ñ߇…è â8é±`´t§a†í•.'9ŸÅ“+¹&D%Mˆ…“ FÇ~ÐYŸJa]Óù çOÑWÄV QNV.p¤k0fë·ôXÞ-Åf9O®bŸ·t6Ý,›Ð[Ÿ±Øí$çs؃r3EB S¡ˆü²`ÌÐU2½Ï€…šã<¹€üü~ïZ¾È¿FÕïºác_΀ÎÚåИ +«2miìÎMφ…(¥–6Ò}±`|ä5iÉÐ]²'eÂÊ&f 8¿×Ü QF™6ùbÁxN¶æ èl±YnÄŒXÚyu~ŸE~~?Õ!D”]ä‡ã ¯~‹@gãR68f¬íÉ4çØ‹b«K…%?ÒjÌÖàÕ«mèîEEV²¶‰…8ç䃦TPŽÎïúüøAI?ãõæ[º{€‘GLYÜÞ'œóbäãg–³ç÷BQ³lÁ¸áõâÛºÓ`F’í¥–6Ý«úòþUu~/ª&õ*òáñƒ³Õy™Ø:‹1‰tG]Õãȳê÷®G…è¾E0êÕ-›eNέR>2ç‹<¶ê^ÕWq' N• !Ê骮W2fs¤lË-ÐYÂÝÓÏ´¾*«ž~Œ;?3¬®êT*§—ôóyÇ?ßçßð²dè,Ö$åYÇ î}ᢞ9‰ú‘k Ü«ziYºèÔ,§¥LåèÌi—òÌ€I+<_Ì9Š»,6{U¥ªXÚ¿㘔‰œ9ç¤ìš6j‰—æ\Ô7q£^Uï^Õ»©«M£”㾌Ù<ý¬±•!Ùz±\´Y_ ëŽÛ¢07¡ ¡®±=ÐoZ`Ìaíf7 3è@[zd]ÀË1ðᯉ*üR9ASÖ7Wáj}:€Þyé^?yû¥Ÿ5ÌfÇTBz›÷¾®dàzÝ[8¥3ë#“ ØJ’³†Røn5Új£Ã(õQjÐY,aDJ°îÑE™÷.++'YDÓõú¼¾Þ6&Q *|wj>˜MÃ\B:5Öqd=¬öåËú”¨DËæS#EÙ¹\Ggæº$ý톤ûÚ]C ×®×­uL¥ó3oƒÝ[ Öë‹Ç…$¿ÞíVáçdÛˆõ««ÉÆ\¸ý›èô:ýv"‰Çx”Y°ÂÚ\z‘8K“JÐ1‰¿ÃwŒ!Ö»SÃÁl3.LD wœÄ+Õafž¹ül‰Lât<8·¼ Òpæ4!ôæúÕI¿4˜M¨ÆÂTs#Ðë%¶éc$ì.]ža›ìÂD ¶Ÿ‚ƾNÃÒâ<Éú„DêðWÑ #á4Q ~us´áUØ=&žYÕx¯Q4E¬ØÓñ=úm»-“9ü˜ã.jÛ¹~^?˜ r®g!лtöOmÆHk·û”Lz‹]œH•xö’ÈH³òÜ(`]AÔæ8"Z°w(8‚ñb0ÛŒ Ãp½ë<ü—3è\$ìaÎa·¯ÈeHØJ´«ÅO†dÓÄ‚]ÂGý§:Ò·ž`Üruâçô¶ Úx&²½gs2c¹¼3YÍâìFºu’Ù´ÀãðÎZ`Uç: ý|cÞŒ… ,zåŒêMª*í+nP2ÄÜ…{…tvQœn;oó|ÍQsÜÝDý¢)ŠÁç’x:kŸ‚@ïÄÛµÕLÃT&<Ï Üì"bã½XIÉéµõv» *ñœ9 •稑þÓ—Þú³¹óñ¡ôÎ$Væq«çwµÔÀ„d^¸c<"×ììÌQ^Ö¾¬°Okøè]·özýËÿ½Ê@púÕÌÝ'}Ž»Y Õç•´?aã•—+‹¤µŸ–K;tÚ|›åk¦«°ïî£4¾UÈŽ 0ìþ¿ÿ3‚@¿FÜ#\}¾t¼ŸØõù½ý]œ(ˆªÖ>U)—öèãí#û»’92wXŠèu·†šñÁµ£ú`D w]«É¼Ÿg?1_ðv™¤¾(×ïÞõlš\µo_($fh{ÕÙÇÖV³ÈÚ륔Â_™)Òá`6zoí]™×ÛcéÈä*õIÕ®0VãðjÞ`ËÑÑâ½òìy&Ìý,¾N“¢üm‹ƒÌã9ÓËöÐÓžã`õ]Ê×)éôþÈñóðÏ3z`ñ.µ]oˆ*4;ƒ¾’(<:]¬â>p—'é°tÙW¬ºÇÎi„†5“Ÿ‰J‰:GZ×´˜úFúõdôQ®©j, {NLRš!/Ls?8Ç}ñ@”2&ݳfd”uû_¶V¥}Î-ãY•næü]Jô…1ïwF:ýš@ïÃíõă\?ÌÛrô`^¼S‹;°÷£l)1ðtþö&_æž içŒKŠÍaÀÝ=‡2Ö¸yéG0"Ðäñ9[ž'5]F0oµCŸä]¿&× ÇKì ÞDåÂúÎ`‹ £ûŠ€dœsŽ»c•_\þâ2®?¿Â%mÞ…ÚF:-?Äíj—§yÛ»¬Z©Þ—·)ƒÃkfOž=«<ç½t*Jä;ƒÌèïù«ŽésÜçÜËËÞƒƒÔZ-ì„cíúýö- #è´Jìó>½Ît¢2c ¨7éðCèõƒÀð/§3‹ì‡O?Ê×Gü2ÄýÂÝ ÞùÅyFë„[µ‡-á[ÑTf PÁØgÐï}ï•ß|ãûm¯!Ð_\';•$ô1—'Œ5À>f²C·F”[×˜ä ½‰RöQðì©ÌñQªPJ &«ŸÜTX4î¹ Þ'62‹¢8Ϭ9PAeô°v?Ö£ÆóÔûœü²íÆþ‚~ïî­/ÝäÞ|µÍ5z»ŸÁV$ ¨—jÕ ¼žØ³S ¬üCƒßv=ŽïÝ“R¢ÊR-ñùЍœ5ÊÀüò…Eæ¾Hç9œ±q·&°z@k‹ŸÙ"*55û¯a• 7D: ÝmG0öô¯p¿}õ£7¸ïL¶¾†@ïÈTƒ9{ÜnŠ sÉwÅÔZч¦ß7ö…øìYú`‰]§Å¥ƒô ½÷÷ã'÷C»I-ðœ±i·dÕÂmÎÓ¥i¬Êøp»õÒù “ÔgÛºâ¶K›Œýý]î­¯ƒ×ßä¾×ò½;î·”6¿áP/µ›¬ü0ÖDf Ø>„ŸgÈãô÷4ç{rc¶,ªd¦Ø—4µtp,ZHÅòõ½äŠðZ€ßæ[dŽ9N­¦7È|qÿºKõbg<$ðŒÔ‚K+1xšÂçW:»ü Z fë7è?à~—øü*÷-¯!Ð{ü›äËçá:-DßÓ}˜)ëXÕZ;äßÜ€­`—þ?ãÝ[/ÅSgéГÜWÒül¡Èßñöý;ûÛŠ»«÷øDòÀç7ÜYà.?´½9Ûìgœ ïòÇ@„ßË÷89áóGœ=Ëv¨‘ÞÐ_æ~‡ø|{³å5zÿM?Ù7ðôR~W³Œ¿.¨0huRAµÙ”0 ;âR¸²“— ©òQú43µÈn¨Å©ÌAåXtàýÿdÏø=G¾¨Ø È^dž(Ù¯9$²U¾"TäwÔÁNüüþ‚઎¹šRbpßî–ö#²5ÁØoÐ_á~øü!—û×V×èƒ£ßæ'žv­òïiª¿Y³‡ˆ`) ÕH€ó@:`ðÃXÁDƒ`3³'¸Ï¦DéÊACïóþLæ´rœ! œJÅã@Hìí%A X¹jâq{~s[±kYÕ8Ü—’ûô§7ÖÜL°ÜÝø‡¶ŸÙ¢QpÇ|ð–Áy"huËÂ׉–HópO´ï+–&ƒÙúú-îkäz‰Ë}·Õ5:­2ÿ HýÉÏ ÐZ­Je¦êâÈ @@Ĭ071 qFüŸ|òðáÃO?ýKùìHt||šÉLµÁ¿>€Á szzz| ‚Ht¶°°ÊÆã00É ­Cµ“ÜúL ô™-úäŸ@Ïž=ûüó§OŸþÐ?ý­*JÿØ0~‚Ø¿€pðÇ=y²?;;¿ umým)ÞйÜêÚ î«­®!У ˆ9e„¿Ápâ06;Œ'0xÌæ0ÖK™Ã„îÿÔÇPv¨/©Ûïtÿ>øð[<þðqU=þ¨#ýþ ú%ÿñ×úPßh ú{/×êÇo"ª @4ø{wóÚF~Çq|ê>uäØ^ÏXVäŽGBDÈ ¡àùSÁê⛹¤¸…ô¸ô²ÔØÿ@1-KO ¹¸>úPpho{ÛSH k¶â½í½ó Ç+QØÄ_g߯…ù·xùúg¿5£±6><ù*¸.. nÝ Îã¿ ÎçÁYý?þkp’ÿSp®®z|nøç¯?”ÎóÀë'ˆoŽüøÍ>ü•y?}üÐÓ —ééw¼t7÷ž\|Ø¡¿‡þ^O‡Ï¡'_uüîØ­w÷¯ãÏ:ú=‰üñÛÀwo¿û:\Íý—c_|ñïà¯P|üýyþvŽÿ½öŸSþ{®?ÿ\~j\Ä͸­£oSÝÖM&rbá³»ç½uîîÝ“7íOÖ[îðÇ?»ˆ·áÞýø¡ÏèNtœT¾ë¡ÇzÃL):«ÖuÐKzŸ áåùtEË]׸ġ;ëªO8­GòÂß$Žî¿±FèÀå½á)ÛΫÐ~Òâk„\þЩÏ-ÎÅ¿Gë„~jÐO ôOh €Ð  tBèŠÐB@è¡„Î@¡:@è„С„Nè¡ t„:„Nè¡:@è„С¿¨Ðë7»Zì·¬fzº 6ï“ݼÁîÝ,Y ½µÝ}à¡!ÓÛ]4=]»Îæ½·jÕôx¹îÝÜì»d— ;û¦Ç«›žnø›÷Þ¶¿dóÐ Í#tB'tB'tB'tB'tB'tBg» Ð í&tB'tBgóÐ Í#tB'tBgóÐ Í#tB'tB'tB'ô_pè×mÿW8K¦§yÁæ½·ý56H´·à¹¹Ró­k†ÆïϹéú²ÑéBW]Ïêæe¶«…ljø¶ÍéšrnqcÒJCiÇj=ïöв©´ÒãoY34Þ²+¿’—J&§ ͧäýÞίKOš™¶8Ýx>XËË5òGÂ>Wú¾ß—Á j{N«¤•ÙîkvÆkúZl9Ρ¯›7/´#¡'÷½¼>ÇÙ*˜Ü¼L%\›_P¶a¡a ÝP½ZUv"8Ü®èË®k†ÆPµSSÅàt¡{~ÖBè ãe®»o^Õàæ]•;¦+½øí;˜Ó™Ð …ѳ%Íuž¼Ö»®¯ªáø2Oš·7]øsZÕs ¡'7ªGѱqsÄàt#m+iáÂwo-­üðéÐ …ÑûÝÝŽ“'¾¤¤5Cã_ovÖ4koº(¦+kBO¯¦Ã?yãrÃS¦Ó6pFßÖ`£ïô7ÖP=ó:ßøÒA·5Cã_ÂWLN·›õÊ&BO/§fóJÅ[ß29]PøÌž3½£ôƒ ŸïŤ㜠ÝP=Ë*þUƬ´ÚmÍÐxÍlçÞØt™º¶¡'Œ—‘¶ -YüÉsueSEUŒüϭ΄n(ŒžI_¸ï¶fh¼ØXJ©–Åéî¨ß±zÂxe)¿²Õjü ]·¸y~ø,T7º¡0zæ&ÌîÚùzÎe¬ªâ®ÅÍkŠFBOï@ÊFw8Jþº'ióV43>ß\PaÒbèî%=p5’¶s…rÞ(Úʛܼ=uŒ„ž0^pF¿=Ø”ö6oAíÛñí—¶ÅÐÓ—øÒÝÓÖÑý…©nk†Æ ¬zÊÝ3¹y‡ño^ŒÜŒ{c¼Œ«íèÁ´¯I{ßÚ\ô,\¯¹Ú4º¡0z6£;ÑqRù®k†ÆsœE­4mnÞ†Žܼ•Nè_}榛ÖÑP9í ÝP=[ê¼c|Xµ®k†ÆsúòªNݼA?&ù~ŸÁÍ+ée|+Aé S漫C7Æ{|)…Λ—»®oÌS½lvób&.Ý“ÆÛêüŠú‡ ÿYMšn]ƒÑñ•ÒóCàšÔ¤JIDAT7FïÖUŸpZä…ï2;ÝcÍÜxWTÜÜ‹e nžÐ“ÆËÔÕÞuœe_Ï N7éj x¿žÖ玩Ðí…ѳ†§l;¯Bt™ÒâkÖÆ+g_Üæ«þ“Vç…û\Rè9=>h¹Úd7³¡_‰Tt£µ)‡çòûŽó*>¯;­g76‚WáI¡—¥J5âj„Ý̆¾tôºüpM‘gŽs=<Ï×t¬gF‹ábªšzCÇx‘Ø }!~°¢­ãÐçój> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 26217 /Filter /FlateDecode >> stream xœµ½K¯-ÛuœÙ?¿b7¥†.ç;s6ªCÃ2 T`ñÕÔ0( –¼)Ù¦«ü÷+Lj/råÚ"é{N¡"ÚgÅzäk>Æ£~üÍGýøçÿöí?~ü·yü´ÊÇÑ~*åctýWÍÿßÿÝÇÿõñ/ß~õ‡¿ý¿þøw¿ùV®¿•çþæßýŸßÚOm~üÏo÷÷åã¾Õ¿¹þïŸ¿ÕøÿÇ·£‡Ó8ÆOµüþÛõßå–Ÿ!Ç»<ŸrþÔÞåzÊõnµÞ­Ö»Õñnu¼[ïVç»ÕùÓYrÿÔÞåzÈóúÞïr¼Ë§ÕY߬.ùfÕÞ­Ú»U{·êïVýÝj¼[w«ñn5ß­æ»Õz·ZïVëÝêx·:Þ­Îw«óÝêúÙÛC^?û»\¹¯Ÿý]Žwù´ÚõÍê’oVíݪ½[µw«þnÕß­Æ»Õx·ïVóÝj¾[­w«õnµÞ­Žw«ãÝê|·:ß­®Ÿ½?äõ³¿Ëõµ\¿û=¾èóM×7»Ðï~í‹_ûâ×¾øõ/~ý‹ßøâ7¾ø/~ó‹ßüâ·¾ø­/~ë‹ßñÅïøâw~ñ;¿ø]Gc<õu8Ð ½ž:n»_ôø¢Ï7]ßý.ýî×¾øµ/~í‹_ÿâ׿ø/~ã‹ßøâ7o¿Š^ozÝ~Öã‹>ßôñÅïøâw~ñ;¿ø]ÇcJ—Ô;ž~oz=u»ŽÇ=¾è7¿Vßý._Ù©›ýn=¾èóMwûÝúÝoÜ~'z|Ñ盞·ŸõzÓëö;Ðã‹>ßôqûYÛo¥>o?ëñEŸë©¯ãžèõÔ½Ä?|Ó=Ðç›®·ŸµýòzŒñÒ=¾hûåùÜûíg½Þô¸ý*z|ÑöËó£ÏÛÏ:ýúO;o_ò{èñEŸè<~ýßCÛ/O?o?kû-ôyHë÷½ŽÇ½Ðù{ŽþMtGŸoºÞ~ m¿ü}F»ý¬íWÐøùýG·ß­ñ;óûa¿ó@ãw.ôù¦çí7ÑöÓ÷[·_GÛ¯¡í§ÏÜ~ÖöÓ÷9íwl4~lj¾¾Hj}þëx z¡óóÎrê莶_~ÞYo¿Š¶_~¾Ùì·N4~ë@ã·òóÌn¿5Ñø-}žqû5´ý*Ú~zÿi¿y¢ñ›zÿe¿¹ÐøÍÆoêû·_EÛOïwÚoœhüƾN´Ôú~×ñ@ôBç÷[%nÔ© zH÷Ư§ÿªöë_ÏÏ¿šýzEÛ¯ ñkùùW·_[hüZ~Þ5ì׿VÐøUùMûÕ…ÆO㛵ì§çí¥ñÓóêÒøéy±ûéþ|iüt?]§ýt¼tú5î_—ÞEZ¿×Ž"uCè|ýQâÁZ÷ƒKOôDã§ëù¨öÓõyiütý]ÿ?]o×ÿÀOדÞ8´®¨ÔŸ® BÏÆOç÷¥ñÓù|Í©ñßп_öŸÎ¿Kã×õïûé|»4~Mÿþ´ŸÎ§Kã§óçÒ»¦ÖùrÍ®;z¢tþ>ׄºJë|¸ôDwtúUžw×»£'ú@˯ɯr|/=ÑŸî¯g·ŸŽßÙí§ûß9ì§ãuiüt¿º4~:>×d?Ý_.Ÿî×ü?Ý._÷ßñëúûa¿v ñÓï}M²ñ«¿ê¿ï–šßw‡qêŠ>Bžÿ×L»¢ zJëú¸ô–Öõ°«ü Ï—Kã§óýšnã§óûÒøé÷ÚÍ~ºÿ^püt?ÝÝ~ú}ö°Ÿî—ƯM4~:ÿ®Y8~ú=.ŸÆ×Ä;ü®Û„ίKOtCoi¾ÿ‘~q[9ÑZŸç´Ÿžw—Æï{Æ@(´®×k>ÞÑ }H÷x}»æßU:è)]7¿¼žÚ5Ç/¯ŸÐéwêzi×ü»JŸzJ½Ñòëò;uüBã7õù†ýÆDã×4~ùÿ´_ΗÚ5ÿƯTtúº¾CoéSŸçß¡ó/ô!½¤Oùº_†Æo ô5p Íï?|èf}Hçó­]óï*]¬gè¥ñmè-­ÏwÍÇ»ôa}Hçý£]óï*çhüòþ?ý~×|¿¼ÞCã—çs»æßé75=¥ù¤õû·&¿®çahüô}[³_ÞO[ëòk~¿.¿æ÷òkœ—žÒú}/½¥»^?í§ã{iüt=\óïô«üž—žÒk£·´Î÷k>Þ¥u=^únò;íW:ý ÷‡K_†Ð‡~Ÿ?Lhüw „Bë÷ºæßUZǧç>´>Ï͸†ÉùÞ¥ëCzJ/ùþþK~‡ÆÇ¡Óoqÿí‡ü–æk¡i>ß)¿Åù~é)­ûû¥¯ k\Ó ­ï¿ãÀM‹¤i]?×ü»Jë~vé)ãëÐé74m£Êoh~úÖýq4ù±ž:ý˜o‡ÞÒ:ž£Ë¯ÇÖ€ô!­óûš§_ãþ9†üçóòkܯ¯ùx—Öùuéô«ÜïÆ’Ÿ¯‡KOéá¿oéªÏ{ȯpþ\ú^úýNùÍßBOé:Ðûš^Óp]/×ÿèÒ« iÏ™“к_]z†>¹_Ä‘Öýèú ]Z÷ŸYåwð}g“ßÁï}é)­ó1~Xiݯ®>ý–߯Ëoi<ÒâÀJWëô›Z_ ½¥u¿¾N¤.ݬÓohý©Å‰+½ô”æó-ù±>×âB ÍzEèCZçO\¨Òe£ÓùXèk ZÇûºQti¯—>BW­§4ݨBëßÇMZ÷—K§_Á?n¤Ò9^ }Hçúi[yb޾ùü+'r¡»ÿ¾¥5~X¹0®ËZ¿ÏÊ… ÐzèA7ºïGzP†ÖïZé&¿)¿¥õ¬Ð‡´ŽïZòóý$¡§æ?¡·´ŽO ŒBûxÆ@Kš÷?å7´^:ýXïj1-©ù½vnÍvæ÷¡Om[ëùyiï1q]¿ÄÄEZçCL¤¤s} tú>_LL¥u½ÇDûÒzl…Î……к¿i¡f´“ñ¦êB½>¿hh]¿—N¿ƒññ5ÿ.Òº~.~¾ß_ú”îò_ò›¯K/i¾ß!¿Áñ¿ôžþû)Íç9åÇúYèØ±m¬Ï´kþ[¶×0FçÛ¥‡´Žß¥cÿ·UÎßkþݤs¾:ý ÷³Ê¯hý)tøÕÍñ¿ô)­ûß5ÿ¿zj=5ô’Öóøš‡ß5l<­‡ôý÷ô[þûßò߇ü¦ý§ü¦ßÊop>]ú”æó/ùy¼x.ùuÿC~Í¿Ï!?ÿ~—N¿Êï{Í¿›´~ÿ3'R£úü¼æßEZã÷3'‚ãšvèø^:6†ËÉñ¿æßMZçÇΉõ(þ½®ùw‘Ö÷ÙU~‹ë{Wùyþ°›ü&ó‘Ýä7¹ï.?Çw—ëí¡OiÏ×ü;ýüû\zIëy¹§üj 3¥Ó¯øûMùyh Íúuèôkº_öë‹é>ÐéÇúRèS:¯ß~ýPéWt|C‡ßÉýª_?t‘®~ç©ã:üÎCã¹~¸&]:ý–Æ×=tèé?å7u¾†N¿aÿ%?®ÐKºêõ‡üšî÷¡ÓûIèSºèóœò+º~C_³~0è×…PB³~zH7ë3ô¡ó©_R ½tý‡^Òú>µÊûkèôK§ûg=.li½ß¥Óõ×^»ü*¿_íòc½-túÝzͧÇzÐF‡ß:uýöš^hßK‡ßb<×ucë^?è×/ýx~„^Ò:×3ý¿‡N?öSB§_Óýº_7â&]&ú:}±þدy Íz]èqé¹5Ÿ}†öñj¹0:¯×Ðá§a^èš~sñ{\:ý|>¶*¿©ùcoM~Có×ÐéÇø°_ºôkü>­Ë¯òýZ—ã…~=8ÓùjèðÛŸo¦ßàþ:üÆ¡çyèð¬ÿôëÁÞ¤õû_:ý¦Öoú50H¿¡õ²ÐéÇ~Xèôc¿¡·S~Õ¿ç“Ð:?ZN$ú5þÔñ¹ôu¡ö¾µÞú }r¼¯P ÍzYèðëKó·ÞóFºttúMŸB§ßÐø´÷&¿Îý!r¡›Æñ‡ôóõ¯صM/}JëxÄ@òÒ×Ç® ~Í×ûõA¯ZÏ~õ³Ðá×&¿çõEÒoøý—üØß"ýšž?¡‡t9ÑéW9?®2ýŠæ;]÷¼ ôþ;.ü¸l¦õ}ø÷ȉb\¦ºßèÀåem~Cóû8ÐéÇ~è!­Ï7ªüØo‰'ý¯…N?ß_G.\q•¿’ËÔÒáWüy¯5üâ6¢Ã¯LžG׉~ƒûí˜òcý-tú5þ%¿ÆóîÒéWy>i¢šÕоüⱫóûÒgè“ûYLŒC\ÿ—¾>h ô|‹‰vè©õ•Ð#ôð÷ÛqâÇ0&çûq#h¡÷³YäÇ~QÞ8B¾o,,\:†i~§ïרIëüž¹˜ÃH½_Èv2þÈYèÉýR + sCù1 ~M㯼Q†®o$±­£ñÇ™… ±-¤ïwvù±zJk<vù±Þ‡ôóõtéô«ϸхöýéÒáW6×Ã¥Ã/¦Ò¹p’Û|ÖáWçsLtBO­ß„žÒÅ:ý¨O‰Súu­Ÿ…¾n\± ªç噑ØFÕõzéºpþœ¹QœÛ¶ùþ׃¡‡>µ¾úÍ|4&zUZ×Ç¥gè¥õƒÐé7¹Ÿì&¿Áù¬S½ç›×ÿH¿Æùyéô«Ü?w—Ÿç[{ÈÏãÝqY ¿Ïô;OÍC‡ßÉúrèð&z¥_¦}Hëþz}ÑôïK§õU9QÝìÊzÐ×À­žÔ+äÄ?tñïµc"–e&½C3ÞÍ…„Їž?¡ÃïXú¼±Q¥«uúM/C§ß°_“õz,tT×'ÅBHúq¾‡N?Ö—C§û ±°~~Þ…>¤«^Ÿ7†(sÊó1tø-ÖC‡ßZú½ba§K—~SãõXJ¿ûûòë~ý!?Ö×c¡)ýšßÿŒ…¤,K“ߎM›ô”® }=¸£,Nß?¢¡OBÒy|s¡,4ëW¡ÃÏóÃÐéÇ~D,¼uéj~Cço,Ü¥õ–¡§t­èô£>*CW]O¡iýžuÊý Ðá7¶Ö×Boé¼¾sa24ëu¡Ão°Ÿ ›UšÏsÈñAèô›ºÞr¡TZç륯e¬Sï¿c#3Ê`wEOév¢wèÆù×rbe·~Ô'ÅÂoúÞ¿Uùñ¼~ý®XHîÒ:ž-oLYf,ÝÓ¯S¿zJ·N¿¥ûA,lwiýþ1‘ Íx)ÊÓoèyzJëú½túuþ%?ÖsX˜2ïC~‡ü¨W ~Ô{…ÞÒ:¾í”ûᡯ[=Ÿ…ëBˆ2öq ghæ¡·´Î¿ž ŸQFŸó§Ð‡´~¿^å·4? =¥‡uúMÿ½ÉoúõM~Ãþ]~ÃïßåG½wè-÷ëØèéÒú~—N?ÖÃbã¨Jë÷‰ڿߥ·´~ßëÀ¦õ¡iŸžéÕû ¹ñ%­ã«±À:tüc (­óãÒ×?±ýûNb#=¥[GïÐÔïÄÆ^—ÖïÒúþ£ÊýÐÐSºZ§ûë±Ù¥uÿÓÿø'ì~÷ñ¿ÿÓ¹þg¹þçç?ýçý×øø×üøÍï>÷ÛÿñOÿú/÷;}oNÉy=0b%-þóš“þÿ˜SÏÒGNIýxæ”äÈ+§$ŸÃ¯œ’;¼rJrÃô•S’ãcç”PNàœfWÎ)a²îœƆÎ)aiÆ9%T^8§ÐÓ9%]Oiç”0pN Ô¤sJ€ SÓ蜒®!œsJ¨ðqN ¡sJ¨çuN ËGÎ)éú5œSB±¼sJš¾ sJ@éœSÂÊ sJè:§¤ñ™[u$Vú§­ÞrJšæÎ)©š2;§„?ç”T+SRµÞ✦SÎ)©ZmqN ››Î)a-Ó9%”Ú;§’Ê9%,4;§¤hžîœ’ [åùLNÉÚZä$§D¥–wN‰%rJ+䔈£¼sJÖ~Ë)1NDNÉ¢z™œÕ€Þ9%‹µrJ¥Ì䔬S9%‹(rJÖGEN‰¹甘ÓqN‰¹甘ÃqN‰ëfœS²˜×;§d-¸1rJÖ„‹#§dQ'뜒5áüÈ)YÔy8§dM83rJÖðçQN‰×aSâ:ç”,çHS²Ì¥“S²ÌI“S²Ì “S²º_¯œ’ÕàØÉ)YÍﯜs(Î)qsJ–¹IrJ–9GrJVåxS²Ì’S²Ì’S²XGuNÉ*ÎéPNÉÜü^ä”Ì ÷JNÉÜ~?å”Lö‰S2OÎrJ&ë Î)™'Ü19%“ºç”xßÖ9%óxÏ)™ì“9§dRwàœ’¹à^É)™•œïû:§d²®ëœ’É$Ì9%sø÷VNÉü{rJ¦s È)™Μ’Ùù<ä”ÌF9%“û©sJfsމrJ¦9YrJ„'|Þ9%³Âm“SbŽÂ9%“}sç” œS2ÌI’S¢å¡Ï;§dœä(S2X7uNÉ8¢œÅ-|Þ9%ãàú$§d°Žêœ’±ø}É)Ôe8§dLrÈ)ì«8§d°®êœ’Á¾³sJ†shÈ)Î] §d˜ã'§d°Î眒7朒á드’QõÀwNÉ€órNÉ0·KNÉ`]Ï9%}sýSÒYŠqNIgñÅ9%Ý×9%ý$7€œ’Î>‡sJúÁïENI_pÚä”ôÅñ$§¤Oç˜(§¤O®rJúôçQNIpÆä”÷ú¼sJºs-È)éÎA §¤7çn(§¤SW㜒^¢œ’nn›œ’^ÞsJ:œˆsJÚ†['§ÄûÎ)i'29%íä|$§¤±.꜒×꜒vp?#§DxàçSâºç”´IŽ9%Í¿'9%møïÊ)iÎù!§¤õ×ß#g£uû+§¤5¿¿rJšÏWrJZuN‡rJšïä”´âœå”TsÚä”Tÿ~ä”T&Î)©¾?SRáˆSRYGvNI…›qNI…ÃsN‰ëôœSR'9ä”Ôáœå”Tê8œSRïœå”Ô—NNIõ󘜒êrJjå~NN‰pãÏ;§¤rÈ)QyôçSRXKuN‰¶s?—휒G휯³;§¤ø~INI™ÎáPNI™Î9QN‰†AŸwNI¯\’ôcþ✒â߇œ¯s;§¤Tîä”âÎ)ѰðóÎ))Åï—9%Q. ñˆrJ²¼  Ï-®@ïŸ9%Y®ðÈ)I®@~§üXè%§$¹‚Þ%¹×4¾­å”ô;9%±Ò¨Ï¯€„к_) !V0tÿUNIh]_ °ˆr=Ï•Så(§sK¦t³¿ss~*§$tyä”$g Óä ¬§4ŸoÈoùóMùQWLNI,ïñ}—üÏw唄ÖóD9%Yn¤’C~pä”dù’sIÒ}|rJ²ª£¯A?}QNI–Wô!­ñ‚rJ¢\K¿^ú™Så^:ÿ”S’åbÎ-9¤õ*§¤{*JNI¿s7”Så~ç#§$´Ž§rJ¢|Pç¯rJ¢ÜPã{å”$§ÐÑé·¸ž•SÒS@NI–CVô5pŠòÉã‘SZÇK9%”c~:§$¹ç’Liw”SåŸänTùçzTùQ7ONI”Ÿê~§œ’äœc²¥»sIÂo|?å”d¹¬þ>äGŽ9%Q~{øï[Z¹HÊ)‰r^rO¦üœ ¦œ’Ð:~Ê)‰râá¿§ŸÇ'Ê)éæœÉ)‰rf”SBùó§sJB+WF9%]¸ó§sJ¢üZç§rJB‹‹SNI–sôìÉ=lç˜liqÂÊ)ÉròGNIäÒ‘SZ\™rJ²œÝ9&éG.9%¡Éñèòc¾INIhq§Ê)‰r|qfÊ)‰r~å(§$´88å”@®IEœ’ä&&:ýxþ‘S8Ã3§$´¸lå”$QÐéÇb9%¡Å+§$ñŒ†>FrâL•S’\ÅF_7šÄC9%]å*ŸÎ) MŽGNôOQŽHg!O9%¡«sLÒoúßwù 8J唄®Î!I?ÖÉ) îB94Ê) Í¿Ÿò«Î™ò+ä(§$49-¨àíç”—q>rJºâH>S’x”>oþ!8 q¬Ê) ]cr tÏÒçÍœ’~s¥Ê) ]KRgn-’3’9%Ám(C9%Éq(w£ÊõrJzeßœ’Ðâš5Юc>rJ‚ëW¬œ’Äí :üŠsq”SœÇé\’)MNÈß„ÛTNIr}H‹CWNIp Ê‘ÐD$9ç˜lé&¿C~.V9%]·Oç”$â\’Ë/¸q×Ê) .D©rJ’qnɱ’Qî‹rJ‚Ùœ’ÐänùM8^唀¯~:§$8r?šü˜Ï“S’øìD§ÏgrJ’+™èCZ׫&®Á™ ç–„ß¹¹>”SZ節ýàLtþ*§$qd}Ÿx„Öù¢œ’àN¦ÿž~“؇Vnˆ&òÁ¡èø(§$8”íÜ’)Ýü÷ëFÞ\×KNIèâÜ’ãxq*ä”´nœ’к?*§$¹åtäÄ;¸Ý_èº>rJšÊñ?S‹®å”$~ï\’ô›š‘S\ ¹"C~æÄ•SÒ<ˆhÎ-$§¤9gœ’à^t¼•SÒœÓFNIp0:~Ê)iÎ#§$t{ä”dÜ‚þ}æ”$3ÑSZ9Ê)i‘Srs2ä”'CnFÞX‚“ÑýO9%ÉÍ5¯ÿ’SZ÷/å”ÿñ霒vçö(§$ãD”‹2ågî[9%íÎÕQNÉÍáSÒ4ÍÿtNIhݰÆÇÒñWNIh]ïÊ)iwn>hü,º•Sš\—,`Ÿu=rJB+7I9%q˜†sIæ~q<ä”äi \ŽÌ)‰ÓdZ‡ßðýN9%¡»uúMî/Ê) _—ßûÑåGn19%qÙ ëôkÎòc|NNI\¶º+§$4¹(K~>”S· ]Ê)¹9!rJâ¶³9%¡Ë#§$ncó‘S’·=çqD?*§„Ûè§sJBëù¬œ’¸ “³‘9%¡Ë#§$nëúüÊ)iZ¦ýtNIèöÈ)ÉÇJE/éê\’"IÏSå”4דSÒîñrJZóó_9%¡›sIŠ8%]Ê) ­ñŠrJâ1Í÷[ò[Œ‡•S}¯”S’Ãç’ i]Ê)‰aÇé\’&­ç‹rJbآ㧜’æ8·dˆsšþû)­ß[9%É=è%îIÇWIÓœ[2ÄAézTNIhåì)§„aá§sJB“óÑåG:9%9 ­èSܔޗÎÐ:¿•S’Ã^ùMù‘ÃMNIèáÜ’S•Æ[Ê) ­ç§rJbØ~:—¤ÀY9—dˆ³Òø]9%Mq ŸÎ)ÉiDC¯–º>rJšëvÉ)Éi‹sKΖ\–æsÊ) ]9%9MR®F•ßâù®œ’æº[rJÚ+‡¤Éo0^QNIhå”Ä´Oãe唄Öõ¡œ’˜6’ë1äÇú!9%ÉyIOùÿ}ÊÏç—rJb¼KÒ¤Ç#§$§ÑÒ ¨†Æ?7“ ³>¥ù|§ü|¿VNINûõ}2§$tqnÉèÉiü¯œ’Ðâø•SR]¶INIhrGªüÌE*§$tÞ?É)‰eå\’&MNH“e䔄W«œ’X–!÷¤Ë¯ÀÝiâP_9'¹0Z¹ Ê)‰e"qgÊ) M®Jn¬Æ²Óé\’&MŽÊ’ßrŽÈ!¿‡¦œ’ÐŹ%éÇùHNIrm}M$bYM´rJrn£ÇHÎÜ“\ˆ­ï£ /–ùÄ *§$´r ”Sˆâè•SZŸW9%ÉÅ)W¤ÉÏ\¢rJrÙR¹™S’Ëšœ’ÐäšdNI=üû*§$´8få”Ä2«8lå”T¯É) MîÉ”ë¿ä”ÔÜ£rJrXÿþß|Ë)Éeä†>¥Å%*§¤ºï9%Õ9óä”Tçš“SR朖H„&ç#“X6ßœ’к^”SZç»rJb^œ»rJêa.\9%7×GNIh?唄.Öá·¸¿PZܯrJbÛá´^Òù$Eº8—$ý×£rJBã·äçÜ唄Æïûä”Ä6ËrŽÉ)M®É)¿îï› åÕ¹ªä”„w«œ’Ø:9%7gHNIl+‘ËQäWcRåW9Ÿ”S’ÛT }J+çB9%¹Íu ÃOÛ`ŸÎ) M®Iæ”TדSzêõ¹qº9·$ý˜o“Szºüœ; œ’,ƒhèô«Îýòs.rJê[¤œ’›+%§$ô|ä”Üœ)9%QÖ±­—´r~”Sº[i=•Se#ºÞ”S’e%}ÝjwN•rJ’SunÉÖõ¤œ’,cy䔄Öõªœ’({Ñù£œ’,‹è!]9%QVCîF“ûÅ䔄Öï/@;´î÷Ú‹²=Ou#=9%¡5ÞRNIíÌ7È)É2¡ÒwnÉ)]õ~K~ÍŸwÉ>䔄Öý\9%YÆ´ÑégÎ_9%¡u~*§$´r”S’ÜíDÏ’œ­r*”Srs¸ä”„ÖóI9%Y–¥¿gNI”mœ’ÐÓ9&[Z¹CÊ) MÎIÃQÆë»üN¿—ßé÷ïòc?‰œ’(CÓçWNImÎÝQNIhrO¦ü<¾RNI–¹éý–üœÓ£œ’Ðä¤ò[ÜŸ5p‹²:=¯•S’evÎ%éÒ:þÊ) }ç’Ô*ŽØ¹$SúpŽÉ–žÎ%éÒú=´ÐKYà§sJ¢lðt.É”Ö|C9%¡5^SNIh]?Ê)‰²Äí’*­û‘rJ’S®è-­ëW7·LNI”Ej|¤œ’,“è)­û»rJ²¬Rï·äçÜ å”TïW‘SZÇK9%¡ù~‡üØß!§$Ê>•³¡œ’Ð:ÿ”SzZOéîÜ’-­ß‹œ’Ê~‰sJ*ûÎ)©Î½#§¤Ò×Á9%õd|@NIu.9%õàùFNIe=Ò9%õàùKN‰×WœSR}?%§¤ú|'§¤z~ANI]ÜÏÉ)©ï’SR)SR}þ“SRé‹àœ’J½¡sJ*}œSR§¿¿rJ*\°sJêpNŠrJ*ûÝÎ)©ä:§¤r}8§¤Rÿ휒J5ç”Tú€9§¤ö÷œ’J.¢sJ*ëmÎ)©æŠÉ)©ôIrNIeÿÙ9%µéürNIe?Ë9%µÙÚå”Túô8§¤:gƒœ’Zk¢œ’Êõ園J¥sJ*ã ç”ÔBn9%•ëÍ9%šfÞ9%•ýç”Tr:SâýUç”TêœSR¨—qN‰×ÏœSR¸SRØ¿rNIáù✒âÜrJ õ'Î))¬W:§¤œP¹ä””Ó9 Ê))ç{NI1MNI9;¢œ’r‹CNI9ü~Ê))‡ßO9%…ç•sJÊáïwÚÜå”rhSRç¾(§ÄûÏÎ)qn±sJÊr‡rJÊr®†rJ ë÷Î)ñþµsJÊ#¢œ×+:§¤ÌW.I•Ö÷%§¤°žëœ’bÀšœ’âœrJŠs È))Ó¹!Ê))ÌלSR†ß_9%w®9%Ź=ä”8—Ù9%eøûöS9%Å÷rJ `šsJ }SRè+蜒â\ rJ óEç””þÊ!ÁOÄ99%…œ=ç”ê…SRšsG”SRàUœSâ\iç”Æ›Î))ÎÁ §¤øþDNÉ‹@NI¡„sJŠïWä”x}Ø9%…¾bÎ))ÎÕ §¤°þ霒;Wœçˆ9§¤°ÿ휒BΠsJ 9yÎ))Îé §Ä¹ÙÎ))Ôw:§¤Ð·À9%ŹSä”ö“œSâõmç”ún9§¤0žvNIñý‘œ’B½‘sJŠsp”S²™¾S²ê¢”’;B!%{;%3JöæÖ¦ˆ’M‚% %{¿”8/”|’½ý1¬ªÓHdE˜IVlzÉŸl¢ê‰&Ù'W„’I¶ƒLL²;¦\’íÕቀût*‰CL %ÙdÜ’I²ZI²ÙÉ$‘d;0K$›¼AòH6e¹Ä‘l§Ÿ)dû&®0’Mï²HöÁï¬(’}89eaÕ7RVý‘C²ã¤’}8eåÀНpbÅWÈ ’;2C$ÛO%l i Ùˉ!…@ Åù(~d/Ž‚ÒG6Eêaîð–Ü>²¸C>²"|Ĺ1„óìðª›><èðg2> æð‘鈅Lnü„·êð?†™þ‚Vº4™Îb9±Ò#Šð‘éH”MbH+H%†èy}‡ÜY$ )Î"Qbˆ¾/á#d;|äÎQø•¯ðÐ;|D÷©WøHE¾…ÄE¤úy•˜aŠÿ,8=5Í‚³” ¾˜ùÂ맻YðÅ8| n±à‹*FXðE3"XðUø«XðÉ” Ü+İàsò¾bÁ'ü,¸ËK`Á'£eXp7%‚ç >Ý^`Á( >ÆM{‡•×aÁíÄ`Á”&,x§Y ,x'»¼sÚÂwV`Á;A¡°à¾¼óøo¤HÁ‚76›aÁÛÒ=Üg°à&•`Á[Óu ÞÈ/„w\*,x=ùÇbÁëÒS ÜÙ_°àžÂÁ‚WXðJ,xe¾ ^¶î°à….°àeéd€/SÜC9XðBZXð ^ÈÏ ³WñÜSÝ5Hƒ Þ¦-<¦ÖíÅ‚ÇÌ<ŠXðœø¿Xð\7Hnþ”UÑ#OOÂ\µèfÁsÑãÅ‚çšIû0 žK.b»‹zLܬtQ ³­‚~rÉ(k×Å‚ç’ÓF‡ßÁÚ1,x,q‰m Kbb/Ä‚ß=$`Á“Õ8ÑégVG,x,Š  Þ½— K’bÄ‚'kñ`Á³„Yïð{±í¹©K²bÄ‚wÂgÌ‚÷e–JE}¹§°Xp– ?Í‚÷›Å KÜbł璹Ùðè11™ËÁ‚Ç’¼Ø?±à±ä/VOE˱E Ï+<¶Änˆ- Xê&¿+!¼³ZbÁs Åìwø¹Ö <¶lô{‹-±\bÁ³ÃF§= `Á»{ˆÁ‚wgb‚Çìz(’%x°à±å†ÎQQ²':üú²ÎEᛀ-Åa6U /Q,xh±SbÁÛvk±àÍ=‘`Á›c“`Á£d ¶='Qâ¶­×ñª}‡’9]obÁ£ÄnZ§Ÿï§bÁÛI¦,xÖº‹½nòóýB,x”êz %‰§ü»üœu!_²àÙ¢¢—jÑÅŠoî Z,¢Xð¨E×ù-T[®û¿XðfÖ<¹‚vO ±ãÛ=5”=$<4,vQj•`ÁCëy%x~‹ÏZõ‰>¤U‹.ѱw{N³ÙE~fÕÅ‚‡.¼ž,‚‡»&¤§Ùï*­ï+¼Þ,­Xðæ™ýîÒ:_Å‚Ç0Q׳Xð¬½?ÐSº?XðvŠîò#[¼:¼º‡,x]ãÏa°Ùï.­ëCcÖæ‹U_ò3»+<‡Ý½U‹Ï÷?äw³Ü‡üš¿Ï)¿fÖý”ßͶç@9´²Ä‚‡®Ö±·¼B…=­§´Ø<±àu²þ ZϱàÙsHlw²à¡a­•Ž<݃\,xÖö‹îòóù ¼N³ZbÁC¼:+¼z}<§u }¯žF°àYû_ÑSZç‡Xð˜FŠE Z÷±à9í4ë]UëÿdÁë„Ý€Ïi¬Þ/¡ÈÐ|ÞdÁo6<§Å,xfÇÅ‚·› Þ†Ùw±àÍ=raÁ›YYXðF+³àëÙ,¸×/Í‚7²ñÌ‚7³š°à­¿Øðô3« ÞšßO,xk~?±àý³àëÝ,xsÏyXðÆóÑ,x£¡‚YðVÍz‹odU›oÕl·Xðææ°à7[ Þ̎‚7ö/Ì‚7³À°à­À¶Á‚kÚýy³àõ³à­ÀÁ‚7z˜™ofÉ`Á+Ï_³à7› ^Ù?1 ^Yß4 îl³àÕl>,xÝfχýÔS¼º5,x¥RÕ,x=aó`ÁÝ#Ñ,x5ë ^O¿ÿa?Þÿ°ŸØXðêìXðÊþ‡Yðzøû‹¯¬,øÍÁ‚Wسà•ý³à•ñ€Yðêû,¸³ûÌ‚×eÖ[,x]f¹Å‚Wߟ`Á+,YðJ)¨Ypg½˜wOH³àÕ,',xuÖ,x5k ^Ù¯5 ^'l,xfÓû5³áøÁ–‹¿Y$Xð:üyÄ‚W³¢°àuøóˆ¯Î ¯d“š¯¾ßÁ‚W³¥°àu¼³à•ýs³à•¶7fÁ+Ù@fÁ+YífÁ+ã}³àÞŸ0 ^Í‚WgmÀ‚WسàfŸÌ‚Wê)Ì‚×Æõ ^¿,¸ëEÌ‚›2 ^o6þ°ŸØ9XðÚ`KaÁýh¼šE„¯ÕŸO,x­f“Å‚»^Å,¸K Í‚Wg'À‚{Æ,xe¾b¼²ße¼:k¼VÎ7XðjÖ¼³ÚbÁ«ïǰà•ñšYðZxÀ‚k™úófÁk1«½ì§ç,x%Ò,x-üž°àµð¼‡wýŽYðâû7,xÙfÓÅ‚›í2 ^|?‡/ÔÓ˜/›û ,xa|h¼8Û¼0^4 ^6÷Xðbö¼8›¼œZ6 ^Îw¼f¼œfˇýô<‚/dç›wV³àfÉÌ‚—“ë ¼œ/Ö?Øx±à…jO³àåðç ^~±àfÏÌ‚—ß_,xñó¼0Ÿ4 ^³ÐÅ~°ÙÕ~ºŸÂ‚ÖëÍ‚g«À‚ö[Ì‚—e–Z,xñóÜ,›YðâlXðµ`ÜÙúfÁ‹³$`Á ëÉfÁËò÷YöÓù ^–¿Ïa?¾XðB¯ ³àerý‚—iÖ\,xa=Ò,¸Y9³àe2þ‡/~¾Á‚²ãÌ‚êõÌ‚gÀ‚»ÞÙ,x™f£›ýt½À‚;;Ì,xf§Å‚ø³àîM`¼ ¾,x¡ªYðB¯³àe0Ÿ‚/Î*‚wO`³à…l<³àåfãûÁ’öSö,x¡!Ypg¡™/t™3 ^<߀/¬§™7ëgܽÌ‚—Î÷…/ýņã§ñ$,x!»Î,xéfÇ»ýºÙoü4ß„7+h¼tŽ/,x†0 ^šÙk±à…ý*³àÅÏsXðâ,(Xðâù,xaýÃ,¸YC³à¥ùûŸöãû‹/ÔÛ˜/Κ‚/žOÁ‚ÖÍ‚—Š ^ÜÓ¼¥a¼Ð+Ä,xa¼`¼ÜìµXðRÄ`ÁïžÐ°à¥šýîöS?dXðBv§YðR͆Oû‰J‚¿ÙGXðRÍŽ/û ‡ƒ/Œ?Ì‚ö Í‚ÖSÍ‚²tÍ‚—j¶],xa|büf'aÁKñï#¼~Xðb–¼°^{³àÅltµŸ˜-³àd=Ü,8ë»7 nÝ,8½þnÜ=µÍ‚߬ú°¬õ°ŸØ_³àŒ‡n¼˜5Ÿö+f¿ñƒuÏ—£AÁ7ÉšàûáßäöÂo¦Â`à7è) Ü…)@à7÷)|o#ω€o:ÀA€oµÀ7ù§ðß›’ ðï½MG7¬t‚ þÞìÃ~o†c ß{ëî ù}#¤¿79Spß7Q*ìÛ©äPß7`*èûî`.æ{ñW=œ«r ¾÷i þÀ >ýÀJ¤pïÍÚ{æì½ïÁzïÓ(}¢Þ7«*Ò{³8è}£«â¼÷ù†yß$«–€7 •@Þû4ÓܰªF¸eݱ*ÀÊšnøî}Ïgõ¦;t÷ÝÏ]p÷v–ØîÍöh÷&é²{³¹ ؽ7®ûFf…uoR¡ ºo‚VP÷&#¦ûj…to'&ˆèÞ@"ÝûàwϽ)9çÞt߀æõi˜{†žVz|åÞ$³Bro6¹7¬·cHqS¹lŒ{˜ƽ´Î`Œ{™ŸžXé. ÆÍ¢±1nò²Œq³dcŒÛ˜/7|ƸMý‚q/ó⸠ƒq;8ŒÛL07mAq³SjŒ›&Ƹ'?7ÛLƸŒ›†PƸé'aŒ›-XcÜN«ãfÀnŒ›¬RcÜ ßq;ÙŒ›Á¼1nÖ¦ŒqOóâV§©nYéÆ=yîqS–dŒ›UycÜlãfN`Œ{Ô. Éó‰qSÀjŒ›ý7cÜ7å\±ÒuÆM1›1nj¥Œq3µ0ÆÍNž1î‰6ÆÝLu˪½cÜÕܶ¬t•Ý·®²ãÖ½1îbP[V: `ܬßã6] Æ= þÁ¸ [ƒqn}`Ü7{]`¯u|Á¸oÛ·ŽïqCfãÖ%ycÜ€ÚÆ¸õì~aÜæ¶e¥Ãýo1îzµ¨kãn”E‚q;ÑZwß4HÆS§Z㎙«ziçRmLì T÷e•ͦê‡1îX&Ê„0î>)oÆ‹€ùãŽ5Í ·Vµa܉êå%ÆÝ 'Œ;ÖïÕZ;1îØn˜/Œ»Wr„qw¯z ãÎ0Ȱ*=­㎵³ ãνñaŒ»ù¹,Œ;·5c܉g%ôœË¶¹‰{|ãÎ=c¨î°rí¨0îÜ_Ƹ›+3…q'Ø´?ŒqGù€zxçzI¶ØÈ׿rLvÐèƸ2Êœ‹IQº‘W½0î¬ êŽ´ïŹ*Œ;ëXʇ1î(ƒQ[îçF•MZ ãÎ"þVsAfç&T›ìý ãΊ¥¦›¬Ø¹ÆõTywÆœLþ51î¬îªƸ£8l¼0îl°€L«ÕV~£)+v¤„qGÝݨVzmaÜY¸?ŒqSDhŒ;kLJ1î,aÌמ²¢í©‰Q ™'’†® ‚ägNŒ;Ê7åœãú&óÓwV‹èÑã†(Œ»‰ý4Æ-*:ýª±æ&¿â–ÖÉÇFõíý÷ð«§_ŸõÍÛR`ÜÍÛD`ÜY]¼Ðé7^˜wúkƺX§_36¾äGYëyínÙ)Œ»Ê À¸›#¾À¸£Z\Ø€0îÐÂ>´^Û ÛT`Ü­°ÆÕí|ß\¿nŽ|ãÎÈ|cÛc$– lAwó4Œ»Ý-6…q7GqW'ó€qWÏQÀ¸ëÝRSwh}~aÜÕã80îê± ûQÕ`0î¤+„MOù›ÆX€°ë%¿æ–âK~ÌAwh/aÜYößÑKZX0î»ÌŒ;ÊøcÞ±Mzž~ÿÜß2þiÛ®ç2Vœõ(UwÉOcÜQ–·ø>¥õù„qg™þF/i¸£ Ì»ÉÏç«0î(Óîò3†¢ ±žn±*Œ;ËîOô(Œ;Êêù¼SëÛ-³§"Öß[zgäüã®7öªGÒ^Ò‡ü˜–0îÐÂVTeñ:_„qgÙ¼±îØ&=†[€g=gFÌwtl»ݘubÜ¡§±î!]w=š±ä*¿¶.ŒïÓw–Á/túùzR=VFÊ cîŠ0ß´ÜÆe驪"Ñ)sã®ëuŸ”¹Ûn*c§÷”óSêã2RÞz¬W¤<÷)Æ}Gʃqg»üOù1ãÎ2öÆZÇWw”¥«E¼0î»lŒ»jDÿiŒ;iÒŠ>¥…) ãÎ2õ½T†.ŒKwènl{Hƒ}7ùî_¸CƒMwE˜ß-¾‡"Ìo z(œh20F>‰~CŸòc1Œ;ËÐzHOcݧ´Ž‡0î(#×õ+Œ;ôz`Ü¡…5 ã®Ó-×…q'½,¿Ü¯ ¦žüLhZTçþj”‘Öƒ2óÆeæÂ¢«ü:ÇKwFÐK7ùub„q×ÖÜäDz<w–•wôz”•ƒqgYùDéa¬û”ÖýYw|ìm¬{Ió~K~ÆÞ…qßõ`ÜYF.,ûP$:AS`Üù³>0î:ÜrVw–‘Wô©2qϸCóy³Þ7³~aÜyØzHcݧt5¶Ý(ßè% öÝäçØaÜY6²q0î<zQ6nl»P6>у²ñŠ>¥…- ãÎ˨£×~EÞƒqÇe¨û£0îЇ1ïSZX«0î;Œ;´ÎgaÜyÙôžÆ¼·ÊÂÁÞãMËòäQâ6³iWÊÄuOiÝoÅ?åmJs•-®xpÜ‘ù`ÜY&nl{R&~¢7eâòïŠD÷ýIwèØv•žÖSZד”¡õý„qÇm{[Ò`ãK~§[l/ùùù.Œ;#÷¥ù¹Å°0îÐøòc›Œ;t·Þ*§Åwò|ñ˜ÚÖ‡´¾¯0îÐóq×ÎbwFô »®òóýQw– [nòc‰ Œ;ËÆ;zS6®÷ïöÓóUw>¦å?äçç£0î,7Ö½eã`ܵcæS~7Ö½äçû­0îF ô¦l\¯?ä×½öÓñÆÃO¸Ck¼+Œ;ËÈw½c„q‡ÖxDw–‘Wô¤ŒÜ˜÷~”‘ƒqç°êq×;Iw½c „q‡Öù!Œ;ËÈ…EwùùúÆ];‘©`ÜYV^Г²òÆL|ÚL;ù¾»¬Œ;ËÊzRVþÀ¸C'Æí–Ƹ›¯G0îæX 0îv2>ãn§1paÜnY`Œ»±ÓcŒ»~gŒ»¹¥"w3& ÆÝcϸÏcÜë×w;ü~Í~Â>À¸ؾ1î¶À À¸ãcÜm½Z~oéil»S†^Ñø/û cãn”uãnÆDÀ¸Ût‹naÜëß÷Ý"Œ»M·(ÆÝ¦±qaÜ.K7ÆÝŒñq·aÌZ·×KŒq·aì[wnÉ]í×mã'l Œ»¹%9wë~aÜÍwë~aÜ­“ÆýlñŸZ,ƒq7ÆwƸ[wËraܲLcÜ͘ ·ËØq7ƃƸ›±0îæ–¼`Ü2LcÜ­¹Å·0n—µãnÆÒÁ¸±HƸó;cÜwËJ0îÆxÓ·ËÜq·jŒºÙOç#ws‹T0îVüy„q·âÏ#Œ»aÜn9aŒ»0R0n· 0ÆÝî–ÛË~´4_ö+Ö›2x}~aÜÕ-[Á¸+ã cÜ.‹7Æ]Õ€qW·4㮌GŒq×Íý ŒÛeòƸ«±0îÊ|Ë÷ÝŒ»²jjŒ»ž´´ã®§[f7ûéóq×Ó-Ä»ýø|Ã~´ìö+Ö[eí´ÔÆ]+Æ]cÕ¸«ï¯`ÜõxaÝøé|㮾߂q»ÌÞw=¸€qWßÁ¸ëñjá²ÓPqWßÁ¸«[.ƒq»e‡1nÇØãv¾1îJ>³17ûéó‚qW2™q×å–ܸëäøƒq×i \wnÑ-Œ»ã®w‹ði?ZŒ/û'Æ]Ùk4Æ]ÝRŒ»seŒ»N·<Æí2~cÜÕX!wþ½…q«úçóƸ]ÖoŒ»·ÌÆ}· ã®ÆÂÁ¸]æoŒ»cÓÍ~Š㮃û7·Ëþq»…‰1îêX0îj¬ŒÛ€1îJ¢1nUG}Þwíœï`ܵs¿ã®Ý-É—ýt<À¸+-…Œq×k?íÇ÷Æ]ï–縫ŸO`ܵùû㮎¡ã®´X3Æ]ɃqW·¬ã®ÍØuµ-«›ýÀ¨›ý„!‚q{?ÂwmÜ¿Á¸ãdŒÛ-[Œq‹6û¼1ncƸ«Ÿ`ÜÌËw­þ~Ë~ã‰q×êïwد?1nc Ƹ«[¨ƒq×jì[w56 ÆmLÁ·[Æãv̧1îêç)w½1maܵ¸euµx³ß4Öv·ß0Ö-³»ýÚã®ÆVÁ¸«ŸÇ`ܵpÿã®Ì?Œq·,ã.Û-»…q‹Nü¼1î²9Á¸ïÑ`Üeƒ]ƒqöÛŒq—mŒ]wq‹d0îâ˜0îB ¦1î²Yû1WûÕ'ÆíVcÜ¢1?oŒÛ-uŒqÀ¸‹±\0îÂþ„1îVgŒÛûsƸ‹Ç `Üåt ði?ÅP€q—“ç·[öã6vaŒ»Ü-ÊûÝX7~ºƒq»Å1nǤã.'Ïs0îâùw¹1baÜÅ?w9Œu ã.`ÆÆ¸ %ƸËaì»ÙL»ÙïnáŸæ`Ü…õKcÜ…9cÜ…ØncÜÅóI0îBYœ1ncƸËaÌ|Ùl[·±cÜ…ê7cÜnadŒ»x<Æ]¨x3Æ]–±raÜÆBŒq»å‘1î²^ØvCW4~`ÖÕ~´À®öëþ;~ˆÁ¸‹[¦q»…’1îâ–•`ÜÅ$wYn)>ì'쌻ÐÃw™Æ®…qæ×ƸݒÉw1F Æ]¦±öÃ~ÂòÀ¸µ ÿycÜeºÅùi¿i¬;ös ±:ƸÝâÉw¡ÔÅw¹[V ã.¬ŒûÆVÀ¸‹±M0îÂøÏ÷±€q»e”1îB•˜1îB ½1îBa˜1î2Œ™ ã.Ô‚ã.Ã-±§ý„€qb¾qc¢`Ü7ÆíUƸ 1Ƹo,Œ»+ã.Äžã.ø0î2Œ½ ã.ÄÆã.ÆPÁ¸‹[â‚qbŽŒq»%–1î28Á¸o¬ŒÛ5UƸ ãYcÜ7fÆ]:XwaýÕwéÆÄ‡ýh‰=íGËíi?0êi¿õĸo,ŒÛ-ºŒq—îä‡ýôûƒq»…—1îÒùýÁ¸ciŒ»³ã¾10îÒÝ"[wéïwqKp0nןã¾10îÒÝ[·cÐqߨwi0îBÛcÜÅ-­Á¸ ãucÜ7Æ]ˆ 2Æ]Ú;Æ­ÛæçqbòŒq—f¬ú°ß|bÜ…ú cÜ7FÆí˜PcÜÅX1wq‹f0îâ§`ÜÆŒŒq—fÆí–hƸ ëaƸ3oŒÛ-ÓŒqÇ@€q—fì[w¹1faÜŽ95Æ]Æí–kƸ‹[ƒq[2Æ]ˆñ6Æ­eèÏã.¬ ŒÛ-ÛŒqk2Æ]ª±óÃ~:~`Ü…X2cÜÅ1`Üî¼bŒ»0¿1Æ]nìZwa¾cŒ»T·´®öË®öÓóŒ»8&Œ»T·oöÓñã66eŒ»8VŒÛ-çŒq—ê–߸K1F-ŒÛX•1nm|Þw!ß·[Öãv=™1ncWƸK1æ~Øï­¥wa½óƸ ãcÜå…m´1ïSZÏ/cÜå…uãf\í§ãmŒ»û®ö£nöÓñ6ÆmŒÝwyµøÆOã cÜÆÜqî·Æ¸Ý2Ý·[ã.ná=í§ãoŒ»Û^öÓøÃwáú6Æ]^X÷å·7ÃQÜ›Õ` nSc0Ü{s.áÞ›SA÷ÞŽó'ØäéÂo›)ßÞ¤õAo1ÞÞÛlrà ôºa¥[¶ÈíMc ÀmhpÛn›¶½ïŽá+ ‚¶7“]˜í½¤O¬44±½#`Û…“ðÚ›uopí½9-Dk»á!°övvŒXmG=ƒjïýêâ=%ä–|pÚÛ1´7-ª ´ ¾ioÛa´ÍÁho¦ÞÚî: ½™ˆÃgïó ÏÞ'é%¢³·Ãgo69a³÷é6Û+ºdO¬tªÌÞ§{„/¬tÿ–íPÙ®^ÊÞÎÔ“mà${Ÿ¯nÜUòdoò á±Ý+Û84ö>ÝØºb5,ö>ÝF»biݰ¢iuà î¸cõİ7©”PØFù€°7‹ 0Øût»î‰ÄöĪЖ•òÄ_ïÓ8÷ª˜¶–•Î+Áׯa¯ÝýôÚT äõ¦‰1ൠŒá®7õQ`×ûpÇë¼ïÞÌ  ë»‘¦˜ë!r½Ó+q4‚íý¹V7N-+aS¢­ïžœšNlM`­÷E%ÔúÆEZo‚0­oQœõf}Ìz𳢬÷aHûÀj˜¹–•(9!ÖN|‡°Þ‡›s'”ºóÜy¹IF´oÒ7 «o°Qpõ¦ˆ¶úæ…VïÃ]²+VÍ൬š9jY‰6V½Ù΂ªÞ‡!莕ø;1Õ›µ êÍÖDõfe zS O½©Ã§ÞÇ‹ž–•áS/÷õLMMƒaj·B¦6_ L½8c©[S“2l˜Úô%0õriÁÔ†1©—Y㊕N``ê»wÅJ\0õr§ê†•0@`jµ S³h˜Ú '0õ2¶<°ŸXÍ'LmÌ˜š‰†©ì-0õ2-~`õìž½‘ S/³ä'V£"^FËS»‹,05Ù,†©MŒS³äf˜z½èiY‰ã¦6O L½ Ô©—S“ùb˜z¹ÝvÇ òºcUMOËJ'?05ëz†©  S/xa`j£©ÀÔËÔöª—ÆÊluX\¦¦ Žajs¬ÀÔìÞ¦6Ö LMí©ajS®ÀÔó­9öž“+V§éi¬*RV¢Å©Ý­˜ÚH,05%A†©§ûZw[‰€X-³Õ²Ò˜Úü,0õ|ï‰=M@/[™­–@ô½¾¬æ¦fÔ0µÙ[`j6¹ SŦžï0µÉ\`j SÔ¦žF­+Vý Sk¦¦öÜ0õtíŽU7=UAÊ L{`¥g 0µ™ß¦¦‘µaêfÔ«w˜¦Û0u5.-«» ¶¬ªQkY颻aêúSëtÃÔÅlµXc]ƒ7L]LOÃäñ„‹ S+¡˜úf«YcqÊͬñB’rL}“ÈÝV‰•Àä•.I`ê›SžXi¸Lml˜šJÃÔ¦˜©i‡`˜ÚPó SÓ^Û0µ.ئÖ{ÃÔt7L­¡Ú SC@¦^¦§Çˆ6L½Þajøè¦[}ÃÔ)«iÔú|§§©ò+L}]Þ±‹=±Ïë@þI˜º¹Ç­`jJ4 SGEOŽpSGA–èé¼Íd}[YÁÔQÞç&ØaU˜ú ¦n…*ÁÔÍÙ4‚©ïVA‚©³·|¦®›às‘bõdQ0u=¹dSG•µXã\–ˆ"îüýSG¸eXìÅ ¦¾;¨¦Î‚ùüǹ‚™õ÷/˜:Û‘ìÃÔAœÐÓaµf ¦NH*Éë,†Iª}¦ÎÎóÃ0u€yú ¦Nc~¦Nþ(?dî«Ýx‘0Á€DòôL=* §Ãj2ÔOx£>‚©CVØê´¢°\0ur9éœk Iß¼`ê¤l’N˜ºÞt7$3Ã_Ãj¼(˜:¤šBçÊë ¼¦NLi¦N|åü0LôIž„‚©N醩ëà1-˜: «öa˜:É’ýa˜º ™t³Oœ ¶zIê¯KV„ƒ ¦Î^õÃ0u0¦§›dž*š·%Á‘=eE_SÍé“Ï8? S'Ž=Ý$óiÉ*a‹Lp…ul~öÃ=°‹Ü ‹ ¦NfïS'Ó§×7ù-÷ˆnò3ì#˜:àzjwùM÷Ðîòãâ¦N˜áDéa¸ú”ÆÊbcvqC ~LpBE§ >0uÂú÷‡ü ‡ ¦NÓðtú¹¨`ê„ 6:6+{õû%LðÀ¦NX@0o®’&#jxzHWÃÖ™aMñ 05Ìé§aê,þ×ßS·mØY0u3<LÝ ‹S7ÃbÀÔÍ=¼©Å†©™›†©ÛáÚ‚©›{S7R„ S7.GÃÔÍ0=0ucf˜º1×1LݘV¦v±½aêæž|ÀÔmÚO0u›öL}÷ˆ¦n7ì+˜úÕÃZ0usQ`ê6 3 ¦n†k€©ï“ÀÔÍp 0uëÀâÀÔÍp 0u3\LÝ ×S7Ã5ÀÔ­q½S»ØÝ0µ3Û S7zì¦nd¦nîÙL}÷¼¦nõ­'v³7ô xý S;£Ý0us]`j«¦n…û0u3\LíâtÃÔÍp90u+î±Ýì§÷¦®Ûð°`êÊ‚aêêë ˜ºR¬f˜ºæ¦®Û°ó°Ÿ`"`jg²¦®¬Z¦v&»ajg²¦v&»ajg²¦v&»ajg²¦v&»aêêžÀÔõðï-˜ÚÅㆩëážÑ‚©+K|†©«á{`êzУ˜º\oÀÔu&L])Ž2L]Yb2L]× ®^‡ëó ûñy†ýº5~:ÿ€©+Z†©ë2Ì-˜º²~`˜ºNÃã‚©+áV†©«{2S× ÜLíâoÃÔuú÷LíÌvÃÔÕÏG`êÊÀÐ0u½{> ¦¾ÃG€©ë [ ¦®÷¦v†»aêêç-0u¥¸Æ0uîAÝí\Üí§ã LíânÃÔw 0uíþ¼‚©+±2†©+ƒ,ÃÔÕáÀÔwZ`êJqŠaêꞪÀÔÕ=Ù©+=  S;óÝ0u%3Ö0uõø˜º‚d˜º6®_`jgÀ¦®{¦®w¦®íÕó?àáf?zX7ûéú¦®7\ÜíW Oеô@¶>)ÞÖëSWÃðÀÔÎŒ7L]Ý#˜ºV÷à^ö†§ñ놫ñÓñ¦®+¦®†í©kåz¦®Õ=»SWÚÀÔµ¼àêI±vGoеõïSWŠ S;sÞ0uu]`ê»G10ue3ß0uuOx`êê0`êZ sûéûS×bøyÚOǘÚõ†©Ë6l-˜º°cn˜ºøùL]n¸û°ðùi¿õ„© ³ ÃÔeûû ¦.Û=½S¶¬ S‡»S?/©qo˜º°×l˜ºe˜úÕóY0u1Ü L]N®W`jgà¦.§álÁÔå4ü=ìGîa?ÀÔ…ž¯†©ËiøzÙOáÀÔåäþL]NÃä‡ýt~S?Ï©Ëéßç´_õß7ÅÚú¼‚©Ëéžß‚© ;¡†©Ëñ‚§'ÅÛ†­7Zð¯`js¦.¬¦.ç0µ¦QŸ7L]fL]ÃÅÝ~ô°öÓõL]Ø44L]<ߦvq·ajw¦.‡áëe¿ê¿ã§ß˜Ú™þ†© Ût†© I§†© °›aê²ÜÃ[0µ3ÿ SßÅÞÀÔ…M3ÃÔ冕‹ýS÷l¦.7ÌÜì'x ˜º¸ç0u¹açn?Á¦ÀÔeS»‡€aj‡‰¦.†í€© [H†©‹á;`jƒ¦.†ñ€©ËtÏjÁÔÅp0uqJ`êB˜“aêÂxÍ0µ‹Ã S»8Ü0u™îù,˜ºNb˜º0¾3L]&p0ua[Ä0uqO@`j‹¦vOÃÔÅ=›©Ë4ŒÝí× Oã'x˜ÚÅㆩË|õÀƯ®Æï ¦.óÕ?ÁPÀÔ.&7L]Xê7Líž †©Ë0Œ-˜ºÜpº`êâÅÀÔ..7LíârÃÔÅ=j©Vg˜º¸90u1ìLíbsÃÔÅp#0uaük˜º ÃÅÝ~‚©Ý£Á0u1<Líž †©‹áH`ê28^ÀÔ…ñ´aj÷t0L]G2L톩 =ä SÕÀÔ¥sü€©KçøS—îžÜ‚©‹{üSÂò S»XÝ0u1œ L]Ϧ.ã LíâuÃÔ.^7L]ÜS˜º8<˜ºtà9`j³¦v1»aêâ°`êÒ뀩‹aP`j·¦.'¦v ÃÔ…° ÃÔÅ=5©]ìn˜ºt÷à>íü-˜Ú=- SæÀÔ.~7L]ºafÁÔîya˜º4Â1€©] o˜ºj˜Ú=1 S—öÞ»¦f˜ÚÅñ†©KsOêa¿Ãp5~wlüÞ`êbø˜ºc˜º4ÃÖË~ÀâË~ºÞ©ÝƒÃ0u!x×0µ‹é S—fX[0uq80uiœÀÔ.®7L]îÖ‚© ó7ÃÔ¥–®ö¼ Líb{ÃÔ¥½ÃÔîùa˜ÚÅ÷†©ÝÄ0u1Ì Líž †©]Œo˜ºö¦.ø˜Z…mŸ7Líâ|ÃÔ¥ËS»§ˆajë¦v±¾aêbx˜º¸g<0u!œÏ0u1\ L]XŸ4L]ª{T ¦v1¿aêÂ|Ö0µÃL S»¸ß0µ‹û S—êžÕÍ~:¿€©]ìo˜ºÜ0ó°ŸÆÀÔ¥ÆL]nØyÚOç0u©œoÀÔ¥r¾S÷̦vÏÃÔ…ý ÃÔî¡b˜ºT`Z`êâð`êÂüÜ0µaÃÔî¹b˜Ú‰Ó†© ¦.ø˜ºÃÉ‚©Ë g ¦6L`˜Ú=[ S—Þîö£‡u·pó°ßù„©Ka¼LmØÀ0u¹áïi?Ýï S;lÅ0õ ‡ö£‡öa¿eØ?¯†© ç«ajÖ'n˜ú†Ë©Ë ¶>Ñ‚©öb˜ºpþ¦.Ü SN7L] '7ûõ7˜˜á†©‹áån?zFwûé|6L] 7ûѳ{ÚOãaÃÔ¬ÿß05á[7L] C/ûÑSû°_5<°ôa?߆©Ù_¸aj÷Œ6LmØÞ05p0õf9–Ú-u@©ÍJ@Roö.©·9}qÔF'À¨ÝŠz;tGõ6Ó/†ÚÝy@¨ V@PoÿªNÙ›G¼*ˆ¶ã{TÇeÎzzo÷°^X-³Ô²m>°ÒÉ/rz³8½·¹ç+Í„…MoRÒ ¦ eM»IÌôÞ/Dºõ£!bÚ-„¦÷~ñÓ²ÿ­X©ð^´ôÞî™Ý°¢åtÇJuøB¥7ÉÒ7Ð!buosØ+a^¤·›EŠ’ÞÛöÄŠVÝ «fd+9X‰þÐâËMh-È}ŽÀ£oDtô&l8Ú]`£÷vGí<ßö6¹œWíÞ€œ£oTDk¼ÛÝ-…Eo77}“#‚¢ÝP &úI„Dß ‰ˆèÍ!@ôÍ•ˆ‡¾¹mìI4ô™†vo&XèM4(ôMˆ„vç&@è}Â%Šƒ¾!aЛÔ)(è}ºÎ‚¥›I½ÝÉSô¨ˆ€¾Л%Møç›Xþ|+¢Ÿ7áÃÀÏ7À"öùX„>oÔC>ß<‹Àg·—‚{Þ'°ç}šBXé¢ô¼O3É«a$+9/[€–U7ß,+]ƒÂoF´³ûX;ßhŒXçMT)¨³»\A:ïó>Ÿ’æšÛ«˜ó ΈrÞÔa9ßç}r… qÞ$z@8»€ó&O ¾ù¦l„7ß”èæ}ºGôÀJ¬Øæ}rÁ mÞ§Éë‰ý¶Vº`Å5ßHްæÉÕ¼®_AÍ7¡#¦Ùm¼@šo`GDó ìhv“/xæÍ78óvrÑÌÆy€™óÀ2o¢L@™õÜù4ɼ žd6ìÇlØŒy»Y­(æMH³Ùæ}Iž¶ªH¬ 4Ëêæ•eE×é…Õ“^6(¼¼Yž‡]67ºlnryó6nŒnÙØò¦0jÙ-Ï€–·[ñŠY6d²ì†hËfŽ–ÍÁ+»]¸²$he#HÀÊn¦«¼nB•÷aÒzb¥…@å}p£§l^ LÙ¼”òf_HÙøŒ²ñ%å}˜Ø>±Ò}C€²á&ødÃMàÉ› èd³NÀÉ›Žo°Éûxu–U}Éû0\±Ò]E\²I(°äÍÆ T²Á( d1zŸf’ÍI$ïÃñÀª@–<ñÄJ ŸpdSTÐÈ›ð`dCU°Èûxë(í.u&‘×;‰ìvÍÈ W&‘—9e‘È˽©E"C`™D^îŒ\l%·bE芕îHÈì™D¦àÒ$2º&‘— èn«†ÄJc`ul¤¬tƒ‚D^Æ¥'V4ožXAO/[ $VF±ªH¬ž$ò2j}b¥± $òâö‰|÷À‰LùIdvÃL"/öÅV‚‹«­ RVÓœ²¬¦ÑcYAæ6¬hÝܱš“±2˜Œ•>ưUEbeôXV4žXi؉¼Ü{a¥{$2›y&‘éQhÙíÀ!‘—»KŸ¶z’ÈÐj&‘·>Hdà5“ÈNˆ‚DvŸqHäÅ™ ,“ÈËpqµ•@Ýf«‚”•nŒÈn`‰¼ÞIdçRA"¯˜Œ•>Õ´UGbÕX=ƪ eUŸ$2ùï&‘¥a‰:“ÈÔG›DvËuHdªÑL";9 ™½S“Èî ‘Ý Ùü$2û¬&‘ãA"ǃD^nÝmÕXLÆJŸJ$ò‚D6»‰lvyºÃ²Hd£|ȉ•>äa«ŽÄª!±Ò‡m5Çzñ•Èæ+!‘§±å ]+ÜÙ¸%$ò-+VýI"Æ„DvOUHd³™Èf3!‘Ýqù!± ç;züçHä_ýáoÿï?~û‡o±Ë[>žÿù‡ßþË·’ÿëùŸ*çóÿ~û»¿ÿ(ÿ eÌþ1NñX#džuæìæ¿ÿîÛǯ¿åÊôëßü‰âH\çúï?bRZnýùñ|ôy½CLmâ?¯G¾­_8äz½Pš^3Ï@ªk€Õ½¾¿°çjéë…Ò¼ðµ·ö …‚½^HÃ[^øGPn¿°$óöz¡t¾ð×?ÿ‘_7~ó_ýõú¨?ÿãGÍã\îÿŽÉdüÜ+'¾?ÿþã/þá/?~þçoÿþç°üÕ_7½ø|­Z`ï,ÑŠë¶ë¥õí¥ö}c’s}»Çûþoì}ÿÄ‹™þxñø©|Ç{7N‘ûåßñÞjïô'_üçßYUn?úâõåÅ¿øPÅXáB=UûŽ÷UÃ> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000026582 00000 n 0000026665 00000 n 0000026788 00000 n 0000026821 00000 n 0000000212 00000 n 0000000292 00000 n 0000029516 00000 n 0000029773 00000 n 0000029870 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 29948 %%EOF metafor/man/figures/selmodel-stepfun-fixed.png0000644000176200001440000005115214465413204021226 0ustar liggesusers‰PNG  IHDRèèz}$ÖPLTEÿÿÿ"—æßSkÌÌÌÐÐÐwwwoooaÐOììì÷÷÷GGGSSSQQQOOO»»»DDDÏÏÏ^^^&&&äääJJJ «««ØØØüüüúúúCCC 333[[[“““ûûûccc555çççÄãø777;;;£££$$$sssîîîïïïâââXXXþþþ™™™WWW‹‹‹IIIÙÙÙ………§§§???gggððð@@@\\\ð¯º===ŠŠŠåu‰þÿÿùùù›››õõõººº"""íííÚrÀÀÀÖÖÖµé­|||‚‚‚###ŸŸŸÜÜÜÞÞÞ+++rrrUUU³³³‡‡‡fffuuu˜ÎóvÖf···TTTÀì¹N¬ëËËË///kkkÃÃÃAAAÛÛÛbbbLLLÕÕÕ¯¯¯öÑØêêꈈˆ{{{ÓÓÓÎÎÎhhh(((åååéééËòZ²ìôôô)))…ÅñÖóÑÄÄÄf·îÝÝÝ---öööÈÈȼ¼¼111```±è¨æææýõö¬¬¬ïª¶•••ùÝáMMM¨¨¨———lll’’’ÜïûP­ë°°°‘Þ…¦¦¦p¼ï¹¹¹ƒƒƒàYp¿¿¿ttt*›çšÏôüïñúäè999¨åžÀáøð°»æwŠzÁð‰Ü|öÎÕÇÇÇêõý¶¶¶EEEñññpppŒŒŒ ã•—ዾ¾¾gÒUààà€€€õüôãj¢¢¢æøã“ÌóòºÄç|Žç‘W°ìmmmàöÜL«ë÷ÔÚퟬÒòÍÈåùÄñžÒõ鉚ñûïi¸îòòò²²²ñùþÓëúzzzÅÅÅþúû˜˜˜nnneee¥ä›‡Ûy¹ë±”߈øÙÞÙq÷üþùýøõÈÐ$˜æ>¤êËðÅôÃ̲Û÷lºîÌçùîúì|ÙmoÕ_úàåêžåq…옧Åî¾è’âaw.çßUmâ’öJœ IDATxÚìklÇÇÇ2æÂpg›ØõCŽ_øu26à&˜72D ƒ KŽÄÄ"ƒyÉ¢RTŒ!r‚„I¤æSy} ©­"µ)”æk¾·ªÔ/ÙÝ»›õù‚MêÛÛ›ÿO»œgæfç7ÿóÎî‚… „B!„B!„B!„B!„B!„B!„B!„BR‘MΫwä–NY¦77t÷H‚o|°-˜q­{ð-C”åÚËó=‘¯?ß·ÒÕ¯†²¶<)uITUë÷ÏIk ÚÌ¡ç”:ÆäΙ_ô–›84å7²?qœÖöÏö¨^ëÔ¾Y:í àôÛÜ hÐf =û!è÷äÎò_ôõHô*ÙjæªÐ|å mü©¬¬l‘”/7O´—ïåçMk¬–³¬¦»µ¸1í àôÛ~I4h3…žS?èÃøQˆ‘f\… ÷Á»r»³¸<îlæMùiL€›À>¹y tÍt˜K¢A›!ô샠/F“£@Žô[Y—?±Îxª†+Ùƒ>œ×\<_-Ácï®âà€» óBYK„(´N¥†ôB6ò„îcûÔî°[¾[Å‚cyÁ£„ˆ/ëšÑ¦Ý§tZ½o ¯åfû‹²õ®’ñUGî÷¯vŠõ;2Gb‡îêi“`Ð íéZ§4OÏ> ú3 Et£ö…ô|{T¹Yˆ yÖª+K rK›õrqX鮭ΉÑ]´$:Z!›ZÀ1üðB¾[sä9FE|Y}ÄšvM­ŽÞ7yE'WÿÎY”ÅJÆUi°_?yh‡®÷4I0h×2ù‚œýS™§g?ýðRtaá}+èrÔñlu¥õQ.dùèu9ruÂT´îÊ{Eتt£cõýWâ!2JŽœnŠ9²™ýz!‹Ç@}d ä«w;0W”E\Y׈5íšZ½o6#•–¾¦²„«d\U9î¾ x1Òo»ˆ~èzOÓ™ƒ¶}ò…ä•NežžýôÁz|žÄ:;èɱÈÞ‹Üý¥¨])Ä5Èá\TÉ⟢9[é¾­êž(QWX¨‹¬ôBÏ{w’Cr Þí¥ï†P_Ö5´¦µ  ÕÑûaâA†5ò†\­O®*›Í˜¢äÑŠÎÈÚÍ~íÐõž¦7 í;5æ}S™§g½År‰~Ü ú`‰°OÚ÷k…å! ü———7g•î!Gpã—½ÀµHÐõBƒÒƤOzõaôºÊHn»/ÒD›Ö&€VGï[Œìñ¾kP—ƒôÖ'WMºHcÑ]ïiº3å U"VL¹ˆyzögÐoH7f[ARž$;€;‘}u!¤1zïsTé¶\Cj ´> íÔ Y”Ö:E…èS«>ùn–µ^WÙjs_ŸZÓÚÐêè}sX0tBmæÊEÝÞúäª{¬s¶ø  ºÞÓ´&Ñ ‰£(n¯W?i§0OÏþ º<ò"t +èáØÇݽkí$D‡ä»@w¤ŽÔýX}¬Ö#øÑèζة»^ȦøÐÚ¹”§®•Êw;á «^6nèMk@«£÷Íæläù‹ _o}rÕ1û/qOýÐõž¦3 MÌkëNõæéÙŸAoÏ‚{þ¾½€yE-íøZ-Ô'`@­Âdñ3Ow¼«tO¨;#–¬öZeépW¸ EWlÍêÞÉ„¬ÓÛ®k|YmèMk@«£÷ͦúªuñV„ëßè­O®*òP±@ˆ=qúí¼‡vè¦L€„ƒ&CÈBp¥˜Ê<=û3èêìr‚þ è8}»ø\ˆ§@ÍuÖ ÇæÜV?ù#º—Z!¾µNƒNn{®ŠÝ`Eݹ*)'ôJ¸†5¾llèMëWcµ:zßlä'4–üs«<‹¬s•Œ«zøígY…#ý¶‹è‡nÊH4hBäÀ¹ožž}t9Ò¡ 'è¥kì%ÎCitsÚ 5©Aîì°^Šê.•CU\Œ:ÚÕUQ`\/¹}úpk|ÙØЛÖ'€VGï›ÍöBç­®’qUGêìr·E¤ßvýÐM™‰Mˆïá1=tc&@‚A“§Èì5ožž !„B!„B!„B!„B!„B!„B!„B!„Ð3Ì:ãtNç³q™m6̧s:÷˜-<©™uæÎ§s:§tJ§s:§tJ§s:§tJ§s3_ÌX¦ýmûº‚àÞuÕ”žÖÒéÜ<ç#Ë¡KoEù¼:ë÷ÄRzÚJ§sóœÿªºô~ÔQšƒÝ”ž¾ÒéÜ<ç¯3r—èÒsÐ"¿vÚ¿–ÒÓR:ôÞ‚Ý%ºô@“µÉ+¦ô´•Nç}WµÐ¥oÆBk»<7›ÒÓU:›¸F.éϱÆÚbP+ÑùNŒËÚë-õ–Б¥¿½ó?ü7󫟨ÈïAßã,Ôìe[„ëÚ³÷z犀Mtäó ÏÌù¿233ÿCE~ú~´:Ÿî+”ÎÐÿ²g€A÷}Ðgèü›¿2èþú*¬µ×k(ŽtÑŠ`Ý*ZòuÐgêüß™_}û%ù;è¢ã¼µÉkÓ’þH|û•ø"è3uþwyòþ7JòyÐsrÃBÝSÝ:=é#§€¯iÉßAŸ¡óüÄ û9襃›å×SøTî~‚ãÓ“.ƒîã ¿¥sÝÏA_ŠJµ9‰®y ê™H=ýƒþ–Îô4zv÷`Á¶jÝ  ÏÔ9ƒîË Ï Ý<é :ƒÎ 3è„A' :aÐ ƒNtJgÐéœA§tΓô“‡côñÁw¤cЛáâ•1è$ ƒþä F¶QƒNÒ0è.êt$Ùùž¾œ“… º)Ò“ãœAO%ç»BÑ…3ƒnˆô$9gÐS)è3®‡'ltC¤'É9ƒžJA®ãÝ4éIrΠ§RÐ3^3è¦IO’s=•‚¾¨A7Mz’œ3è©ô?^¹¸Ê‚A7Dz’œ3è©ôúZ^u7Mz’œ3è©ôÅ1tC¤'É9ƒžJAŸ%tó¤3è)î|¬ÿÔîAÝ(éÉpΠ§”óçkÕZ­¨°…A7Fzrœgfþù÷1¾¡0O‡ëqíËu}uh[À "=IÎ3Ýð·({ôsο ß º!Ò“äü/î ÿ‘Ƽ z}¹³SXÌ "=YÎ¿Ðø5ƒîmÐC9;}AÝé^8ÿ–A÷ø'ú#g§¼žA7å'ºÎtƒ¾ ;Ô¦}Î1è†H÷Â9ƒîqÐ/ÐðàÃs—‘7Æ "Ý ç ºÇAû©{ª¹kŸ Ýé8gнºá]×ÇÃÿç1è©-=éÎt¶Ë?Qt¤{åœA÷0è@Xh¿UA7@ºWÎtƒ¾hÑ*ù' ƒn€t¯œ3èÞ¯ÑgÝ<é z*;?±ÙÙéìgÐ ‘î…sÝã c™³S^Ë "Ý ç º‡Î÷ôô`kÅúZÝé^9gÐ= ú‘"ýWÇ  Ý+ç º—gqãÈo´¸õJ0è&H÷È9ƒîñ}Íø¬tˆAOaé^8gÐ=º¨>uE~­¹Å ›#Ýç ºÇÎoÁ!.‹³tC¤{áœA÷8èópXý¦–cèfÐ ‘î…sÝã ïpvºøÆ™"Ý ç ºÇA>pvVü½ó‹‰*»ãø1 ?fpÊPXYþAÀ*þkFƒqÙR J¢ ¬–]ãŸ4ld·Õ¸®u×ML£­õÍÆ?lb0»5M|jâÃj·/ûØÇm“¦Iï½óFs/ 0çÜsÎ÷›pÏÌÉ/8ñ“ÏpϽçÜ€èš@Á¢ ½(öížéôü°pw·¿»bÁ0ïûš@ëì#ˆ.#tÌ!º`Ñgi»Õ~IãU-T–QMåñ÷žË´ëî^ºìèBÁ¢ }}õ—Ÿ+o "‡‡£JÆJr¨/Ö±ŸnÇ£´¢K]sˆ.Xt6Yiî–ºrÑ¡&‡Ì]ºº(?Ö±“ÌIU/i'D—ºæ]´èŒU\J/®p¬Èn°ü"íwÖƒÓˆ.'tîÌ!ºxÑÃg'Ø”SAeZm½/6>ë ­}¼îñšÖ‹]NèÜ™Ctá§îW¼DìÎØ¨}ÉuXm!ÅÇt£Eƹ_«ýã‚=kkb!×SwþÌ!ºhæý46Cl›/tÚ¶æPt ¶™9x»ùýÙæÁ…eׇçãuú7ëèõÔ!Gè"˜CtÁ¢¯±Rbìv Å¶f€Z¢ßî±+5¾ßÇ ¾ Ëš.ÍÇñ‰ÿhèMH6…€#tÌ!º`ÑkŽ3 :ëhµ­i¢ÎÈxJ"/|õV»ƒ&—s÷z@t®ÐE0‡è‚EŒD¡5ÛµŸ·Cü¼.2â …èòAÁ¢ }pWzÇŸ¹}O펾_ï‹ ¶}!º|ÐE0‡è‚EßLûÚ è%‡iÖ¾è d¬ä8MÇIóYÁ'è}ãømô D— ºæ]°èMÓÔ[@ù½Ô¿Þ¡êíͨ3çD²<Úd‹çë)¤ìˆ.!tÌ!º`ÑYãÑv;î·ç9<è-ØW‡ÎæNúþÊŸ2ˆ.#tÌ!ºhÑ ¯ëK?°Ê¢»:wæ] sOb ºÐE1‡èEmzD׺(æ] è™‰è@Å¢‹£§"]?èÝåÌ]²Ñ•ƒÎ9DÍ| K!ºbÐ0‡è¢™/aÉbêEO:U€žÒeª«/úëùyо”%‹©ýl0yÓïzJ—©®6ó¿¿!úA§èKY²˜jÑÙ¡ If†Þô”.S]m毞=¯èKZ²˜jÑ“Î^ˆžêeª)f~¢ó}IK!ºRÐÝÀ¢s}IK!ºRÐÝÀ¢s}iK!ºJÐÝÀ¢s}iK!ºRÐ]À¢óÝËT!:wè™Ctþ¢çr£s]3è‚™Ct®Ìo ß2Ž¥^¢]s]èî`Ñy2ÿ'чŒm§ªüÔú¢ëÝ%Ì!:Gæ×¨ÿX˜}R8kî•ù¢kÝ-Ì!:GÑ;}æ³øoѰqœòŽAt  »…9Dç(zvy¼Iï˜ÍLD׺[˜CtŽ¢¬Ý´fè‚Ù\At  »…9Dç(z»ùí^ë³6Ù*Y3Ñ5€îæ£è…¾Óæõ×Í̵µ@t  »…9Dç(ú-êýözUs±ñ2ÏO·!ºÐÝ¢s QðKÆlòÑ8ƒè:@w sˆÎStöéӧ댦­ùü~Ñõ€îæ«è±|²Ú¢»ºXæ]ˆè ¢:DsˆèÌ!: CtˆÑ!:D‡è¢#©d>†èºAw sˆÎQt&cwF!ºNÐÝ¢s½¹Œ1z¢ëÝ-Ì!:GÑ ‚ãGèÆ‘X¤ý\ºsºÝÕÌ!:Gѯy6(•JôEós@w3sˆÎQt69±nÆ·(•HôŒÅE/t73‡è4ï©ú:çjrȼãÚEù±Žüà%³9Ú Ñe„îæ·èŒÕ¾{ív­cEvƒÕøãiÛëùÝÝÐ…3‡èüE_4=”iµõ>O¤ã"í,έªê˜ƒèªBO5sˆîBÑç¨Ãj ):=:r«jr¦);aexÁ¢’*á¢û7%™ï#óûii¿H2Ïþ ÑS+ú¡è@-2l3ò1QÎ'¬m„†–mÛ8ŸfÁÿ!¹”t|o:?æ?¤%Ÿ==µ¢D·×-¤ÆHÇKòšßóoÕ4{\zê>÷õ‡ÉeœÈè™ÿkO’ù&ísˆžZÑ›¨32^£’HÇiú•ÕÞ _»Tô¤ó¢»œù_!zÊñÝ~Þjü Ñ÷ž` úˆ®(t×1‡è©=ÇgÞŠé¢Ý±Žº ÙQÒÚ^Ñ…î:æ}ÙÌËc_x†NˆÓ„qœì1:Ó°{0ˆ.ty™Côe‹¿àÜl>o$èPyŠöfÔY“óh“qlË¥±»4ý¢K]^æ}Ù¢×I÷ozwŠ=zr¯hÀ¡ÒsxÐ[°¯"UlŸöÖŒ72ˆ.ty™Cô ײŠz¬vª¡p5?Dw1t9™Cô‰^õ·è‹ïC]èr2‡è+}ml¢Ó©lˆ® t9™Cô‰~sˆÎ0VŒèr¯b Ë:v±ü÷9D· ¦À.7ã"D¯šZèr2ÿqñ}•?‡èöß̄ÿ´æVºœÌ_=ÿÀ9ÿ†èÁXý +ÊüDw¦Àê]QæÝ1˜«t5™CôE‚)°úAW‘9Dˆ®tˆîjæy³¹ˬ@t] «É¢;eC0~¢k]QæÝ)÷|_oñDÑ5®(sˆî”Ð)ŒÑuƒ®(sˆî”ßTBtÝ +Ê¢;åJ͈®tE™Ct»4)®Ùñäj“ˆ®t…™Ct»¼¶2 ¢k]aæÝ.¹‰è@W˜9Dˆ®tˆîVæ““mÆO<]è 3‡èöãµZ†1ºncte™Ct»de5?ñ@t  +Ì¢cŒè£kÌÜ“ˆ®t…™Ctûñî£ë7FÇ}tíDÏLŒCe¸»ÀÛß]‘Øùʃè²AW˜9D_yZ¨,£šÊúþ„è*C—Ž9D_$á³lʱâU2V’C} {ÓÑ¥…®"sˆî˜É+^c¨vglÔ¡&‡Ì}7»(AßGÍ!º¤ÐÕdÑ™÷ÓØ ±m¾Ðiû¢ì«ñ/تk] ctI¡+Ê¢;eè`É:‰Î† xÝNÏ Èñ™òuÑîèûRk‰cmÌ:Ñ%„æŠÎXx]_ºóóÏÐIÆþÏÞ™…ÆuøˆÈú¢eglM$Ùc[¶µm¶¶Z[ËŠä WBUÒÚ l9vÜ!Š‚Áq"‰$5uS0Fn iÞjJ¬BQéCZ õK!…:i^ó·(´tæj´!ÏHwFcæÎÿ}à{Åárru¿|ã{Ƴ†e4´ vÎrëî\é8×úÂWdù0ÆQ¤;»*üšH³YvºÃ¥ã\aèƒ×#à•±Þ²˜srÐå?TJèi!ç C¯¯ÜÚ6l”¢KëyB„žÂÒq®0ô£%ùcÝåR‘i]‰tœ+ ÝÜß0Q!¾BW#ç C7c^Ù\ï"ô”–ŽsU¡G>ÄÄ[2Í8( ç CçÃ!õ…Žs…¡ç-‡ÐHǹÚ5zR t}Òú«6ùÛ÷Î\£ó%‹úÖè8Ÿçû8Þ×ú_g®Ñù’E}ktœ/ðí+6ùá™GÎ\£ó%‹úÖè8Ÿ83tÖk¬Ñq®-ô¡~¤k ç C™5ººÐqNèH'tœ:Ò Ð Ð Ð Ð Ð×ÑùKKGº†Ðq®0tÞ²¨/tœ+ ½n9HW:ε¯Ñ×B×']Eèÿù"6ß}Eè@èŽ}U~Aè@è绿¬Âo’|oO脎s‹xB'tœ:Ò 焎tBÇyú‡Þ36j®!]Uè8WzpÊ%bîžAºšÐq®/ô`ŸœyOL«§äM¤+ ç C?[ô±Ù.ÆLû‘®$tœ+ ½rØXÒMKÒ•„Žs…¡ûNG¤¿Vt%¡ã\aèƒ#Ò«Š‘®$tœ+ ½N5‡¤NÊ Ò•„Žs…¡ï—c~)8&}Ï!]Iè8WºÙ{ªDD|]ëúÅšHOåÐqžÄÐmó׿§º1=Y½™GÖùFz*‡Žódñ(Žobþô©8ŸÉLÊ/ŒôçIã«¿ÿÜ_<­ÐE.ß@ºªÐqž:üîi…þÛ"ŸÝ "]Oè8Wº1¥CSâ»ðÒ¤«Y£ã\aè!znLH ÒÕ„Žs¡oºT‰t]¡ã\Ý­ûtÙñÞá6NÑ­;ε…þÁ© ‘ª_¯òÄLO‡ßÕ×Qº8på›J_~×Ò:Ά.R»ýUj”Ù²kѹWrïµÉÄu¤;0tœ+ ýáûk8hHÊŒ ¸¥w~ Ln†¶7eé çÊB›Cˆ~ [BÛv)˜xÇk½@7¿é ç CÙcÖôºùµÖÎ;ÿöå@µ¬GºÃBǹÂÐóòö…þ,õ¸NɵöÕžœåÿU©BºÃBǹÒ5úZ˜•k_(ËnõÝré\£ã\aèotF~hŠz̉ÈBmnÙ6O󔸗Öºi‘z¦nè8WºìŽü°#ê“,f@#î{K»¤;úë-xtOáÐq®,ôÑþþ~éê·x±<ºô}Ò6·^“ÀÂØµ\Éñº*¤§hè8WúHÑ’ç_åaô÷_¶vÞÚ…‘ãR°Í Ýq¡ã\ã­ûtMÔXÜzã8·gOxE']ó7ªätÌ™‘žª·î8×¹Fo™^ÃAå¼1a mƒágrž•KéN]£ã\aè‹Äúèß Ò]~M¤Ù,;ùÐ'U/[ô Ýy¡ã\cè#g[†óòÜ¿üÌã œ“ƒ.ÿ¡Òyéwy9Hw`è8×úíy}®MëyþHOáÐq®0ôꢚÎìš=ZQ>€t%¡ã\aèåyÆœ-6¦Ó;…t%¡ã\aè¾ìð{Œ3ãGº’Ðq®0to™1χ?] ƒ Ô:Άޒ‘e®zÓV‰t%¡ã\aèo»ŠjL¡´u/~”ÒÓqçeÅÕÃ?Ý8íã-‹*Bǹ>çíÖ{’·ó~­ñ ¬é8Wú.ÉèùC¾oö–Oxƒƒé8WzSþÐö–\òùþ\j®A:Άîj oƒ"Þûë}BHOQé8Wºì oR4f®D:ÎÕ†n¤Ú ]Wè8Wz!ÒÕ…ŽsBG:¡ã<­BŸl #ãÖ®éBǹÂÐù0}¡ã\_è/.é ¤ã\aèIéú¤ãœÐÐÐÐÐÐБŽsœ#é8Ç9Ò‘Žsœ#é8Ç9Ò‘ŽsBBG9ïéð»ú:Jc =ݤã\aè²#»"òÇ' =ݤã\Ÿó!)3&à–Þ¨HO7é8Wº[BÛv)ˆ:€ôt“Žs…¡ç×Z;oqÔ¤§›tœësÞ)¹Ö¾Ú“eéé&ç CŸ•k_(Á( ™‹”ãÄÙÒq®0ô‘uÙÜ*íI·²ÙgKǹÂФ1ò`¾7ÊÀ âÄÙÒq®0ô}Ò6·<“@”¤§›tœ+ Ýì¿®ÓWt IDATlí¼µQžnÒq®0t·g ÿjWÔ¤§›tœ+ ý¢œ7&0,£¡m°sùÒÓS:Άn.HwvUø%f³ì\>€ô4•Žs…¡çœtù•.J_@zšJǹÂÐmƒt}ÒqNè@è@è@è@è@èš¡Ÿß´où†)a‹rÿ’ËÚýGœã<•¨ËLt†·ÞMt†è ­?Mt†Ý[ápSþêÁ¹>çH'tœ:Ò 焎tBÇ9Ò‘Žsœ#é8Ç9Ò‘Žsœ#é8Ç9Ò‘Žsœ#ÐqNèH'tœ§Yè¿Ht†[¡f,ѶŒ$:Ãí„ÿ×úÎqúôtø]}¥1lÏpå›J_~×@3„yV6'2CME‰7¯=>ÿw¥¯iæs[ójÆn“À•Ä9ΓF£ìÈ®]1ìÎpÅ+¹÷Údâzüçâ~‘é+fxKüu¯e Ä=CΤ¼×-“96®åjÙm¸’8Çy²’2cné:`{†2¹ÚÞ”á¸g_óq±!}Å #žs![·ÂÃqÎpX> mOÉÖ~-_¨’¥Òm_Iœãc²|Ûí¬×V̰¿*Ñëð/9Ú>»kžâ'þÞ-K¥Û¾’8Çy²è”\k_íɉ2`{†ymReâž¡tr¼Ç†ô3\•[7–—·ÌÆ=ƒi/Ùð ëAFÓÕ5_Ë£¥f©tÛWç8O³Òbí %eÀö ‘Çøn¹câžágEí<»b†Í²±¼Ò=.ù ñŸÃH±ˆ4ÍÚºœK¥Û¾’8ÇyÒ8YMÌ­-ž4`{‹æ)qÇ}f«ë[ÿÔ²b†wEÜ7Lóiy=îs8~ÎU×?S?8¯tÛWç8OÒyÚeÀö ÖmX—t‰ûš«›¾´%}Å Å~HÝVYŸïoáö„¿?äyϹx¥Û¾’8ÿ?»vûÓD¶Çü_@KÁ*HË­X Ê“UPA &,J4f]tu5a@| ZQC$¹¹",1†°jbˆÄ}ÃË›õ)¹ÑÄwþ˜ìfïýOî93m9ÓiWZ.¹;ðý¼hËxæÌñ÷=g˜™ÂÌWÌ^´š7¤ØvÒƒ<äug>†çøU¤º­‡8g¼Ïàj†=,xvïíi]„é¡§]IfÎÌWNø®ù˜°.冴{=;Q¼mchGLc†=äúb¡ß˰‡ÓÑ?z˜B$ÃÐÓ¯$3gæ+¦Àê‹¿c)7¤ÝÃx-./k åùJ6ç÷d:†ZŸÚh2ìa£gÀìÈÓ“ièiW’™3ós×dq~Äù:|ĺ!Ã6`d™c0¤óª­‡·¸ ã>¾ôÙgëagåë§è÷%é…ža%™93_9×ѹ¾Öø³Á-¨°nȬ‡Ç^Ô¶º2Cº¡Ûzh)ÂÀ/­[ȸ‡¿MzZ/—•ÉØL+ÉÌ™ùŠÉ=sÞ]r¼rq¨‹2ëa6~·•›ñÒÝÖCå¡1wÍàžeôðáZ¡·°j«È<ô´+ÉÌ™9e(¹,3'†NÌœ:1sbèÄÌi%¹úÃM½ñ Ï0¡Þ^á{!î4Õx«Û/FC7ƒa¿|Ý[ïohþÜÃú1srFèîàÔßg ]ñÔá’zëÀ:qÅum}ÏsÊúÞ1´_Î÷Õmd™99"tÈ×ßþø–ºÉJ!*'ï qÔ—#Þ[è—pK~|‚k, 3'g„Þ¯Þ†Üb[ÊñRˆ>Ì ñå“úy«JÙzWðd‹ú§`+ÈÌÉ ¡{ŒÜ6È«¶¨«¨b ÆuÝýMÓƒø11ô””+a™99!ôQãm=þu³D Q›½­+k^nìñþÈO ýb®°‚Ìœñ`& Þª9k¤(ïÕž£ï¦…”àÙ«ña1ônÙò;ú:³rÌœu¿f\¿•To‹oöŽ{‡…ø'ZÕ'Ô£ú BòÇ/2ônïIcª8ØÍ 2srDè¯åÅÙ4µm¥5“×å[:å뛘1C¯ÇsãÇýBì@¹ü§Mž™“3B{W€»{´m³Àaù@ëõ5Õîy3ô^ßõâpmµ =äÇ|}“7ØÏ2srF葼`Íg=sÑ —g[K¦z7Ëk:ã¡Ìļ;<òfT}ý:¼ÁßP³ÿëÇÌÉ!¡ïe˜91tbæÄЉ™C'fNDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD´$älIÚæ\_ïèE’ƒˆÛõÕR4ÞœŽ½þùØûÚ'½ÙG߬MRíªûÏ›¬j)Š–æìˆ…ŽÇòÃíe-ôÆ\üO€ÊÖèÞ3%O€è¸×îHU´¿ðBgÎ/ôYùaײú!$]è¿–——çË<åÛÛ¯%EãÙââÇKšû€êª3M Àô’'@tÜæ1Ö¢TEKsvÂBÅ„oÀäÿ~¡+‡õKNÊÆK˜3ÀwòíЙîX»R-}Ìù¯¾Ð‹P'ÄP]è?eþ0n\ñì æEÌ"‡.6ø7 ËOEøö„ß=$Ä©ÒBov{™¥Æ¥TDo”˜é.4ËWy&dl*³Ç>â][/é´þõ±ò€Wò­ëcù!KKû®ãsçÜ“7Ç›#‹Cê@pã`¡{àð*Ï?EÑJÍ‚´MI“gÎ\èïFqÕÍ…^lÞUâ^¡úT­ŠÜØllö‡TÜÕA`DLxͦeñBj3½´ –‡b oôãØ'Àb×–  õ¯Í$ÿ¾ëûþ½)[liÛu¼ÖìüPâІԆ:È«CL¬îüSí P.7È)Ñ—,yæìÄ…Þ|È›3º¼ ¿ßWaœÊeAvM<‘•s© &ßÁG|8¦âFxßÜïbYeý2رNvó±oAo”˜iDÝRÝ-¢¯-DZO€Å®-@ë_›i¼Âˆ¯®¼GXZÚvý zñÉ÷ýظÍ&úä?œÏåÀ…ÕŠ¢u¢Dn(Aa YòÌÙ‰ }¸S¹n4z ¼²¹ßÂÓ¢zýªÈ!vÈæ×Ыâ~ªö½ZÖ'_]Ø»ÒÙ2õ£@LË€F[ä\x®'ÉкÖ&€Ö¿>¶˜…_²Œ)P±Œ$qWÙmÖ‚e¯ëÛb÷næ1ô!u¨³ŸØæEÅ*Ÿ)ŠöYM†uÀådÉ3gg.ô&øå-úc¡ß6 ó¢mw/Ð*Œ\⢼Ú¾}{pGÅ1÷þ°ûÙ9à§ØB×Ù2}†¬À´7äµW¯~1T"=µ>¤‰w­M­}l‹r_^þI΀‡–‘$îúòõ!ÑÄ2¤óÿ0Šs«þ1MÒ¢ÝQAÔ'T.–RM ÀßR£~Ó&Iž9;s¡Ëÿ¹ÂXè¡ÅÓÝl£q爛¬¸Ä àLl÷uZ­ûû‰îæÅKw½‘mtqLžâGÄo–ãØ'€Þµ6´þõ±™îÄþþ¢ èÓG’¸ëcóÐîŒ['€eH².W×ÀHY4U™?Œoª“$Ïœ¹Ð[²¡ÊcÞ£Ÿ4o`NÂר2ŠÉJãñŠK|jeóÛï¾Ù¦â^PߌaµT«”ž/„¥‘ý›”"y:i?ËWün9Ž}¶è]k@ë_›©rÒxx+B5òªQI⮢ÁBœ…ïmtÜÑcèCZ# eÑİÙpïÉ’gÎÎ\èêOp"ºÐåUøÖÓ `Jˆw@UOÛN£ÈCÀວê7,î-Æ!ŒË ëÇ?èì@¶‘×L÷åk8`=Ž­±Þµþ4Vë_›Iž¡±ùßǪ¡¦ÖÒ¶ëm`lú}6¼¡Ø¸Í&úÖÊHU4! }mOž9;t¡ËJ{¢ =°ß¼Å™—‰)QŸ¼uªÈmacóh$w@–Êï‡áõTx©7²O€x+Ę™¹~[c½k}hýëc3u•FïÎ\m––¶]ÇwšížŠØ¸Í&úÖÊHU4!¾ ú×dö䙳Cú#ãä8÷_öî>¶©ë ø‰EySˆãÒ5ò¹ð•d°$Œ/>JKÊ•”ÀH Pd† ¬c¥j   ¨¥|ˆ Á¤D%DA TúÇV¤vU‡Ú¡®@[Õ*MÚî½±“k¢8vbŸ÷Øçy$î½±.Á¹áÛÇ×ÿθ¬g\-Û¬N¼¹ofgÝoäikÊJÊF¿,zê.œ—œ×4sÑÛBlKuí|Û¾Sï€È·Þ»ØLÔ&žúwzílûÖ}û}ëJy}Ö›ž„ÖåSEÀž½ÿꢫi®äçÛÍÍ®ûÝýŽ©î»¤Í ƒfœ"'Sr׬‘ÞÍ£gAAAAAAAAAAAAAAA‰Ô'"QO;:GçÌ™5‰v~ñ,:GçÌ™‹“š¨gè³è£t”ŽÎÑ9JGéè£t”ŽÎõì|WÂÛW5Ui®ºª”×¥£sý:ß;‘쥗RVb¾uX”·¥£sý:¡ˆì¥7R®™)T‹Òã·tt®_çß$¸Ÿ·—žBæ…ë*»®‹Òã²tt®!ô_§ÕþÄ^zòdk•šÒã¶tt®!ôÅ9Â^ún­'º“Pz¼–ŽÎu£‹€Ò;i†µN'¯mÊ‘=i±ÝþýÎŽÇèhð9àt.Í”Yú€;¯>ÿÈqú |~÷Ðñ›r6èË|µ®a›?m¶÷ÞgÛnÿÔét^FeƒÏR§³ãôð:ÿú¡Ãq >GŽÿÞgƒ¾‚J}¿Ý§ö±w‚ý‹ëzd _þ^pA³ó#¿ôÈ@?wžïÔ½˜*ºÆk”Jé⊳cé5”6¸\_ëtþR°A·óŽÓG¿BkƒË‘G¯2ŽÑÅôÖ*u²©ôÛÆÉûÔ6¸Ü5â|ÐÃíü-‡Ãñ9Z\¾0âNè)îBa¾¦:/´Ò<ô@_ûY5#ô0;¿Ð#ýÑÙjè™Þ9Ær+m66×ÑÆÐJÐ#ý^à Ò ¨ójè€~CvçþÒGÑ8sµ…æ'™ï‰ôø‡>ÀÎ= '-_éJ[èA·s@IèáÐãúà:t@GtÐ@t@t@t@t@t@ôèA?~¹'gðÆ÷rý¶í Ýt@Wz‡3 wÑa(ù_àQ[ 耮8ôõWlù!pÒW®8×ÚÛ@tÅ¡d) ‡ =Ø<~@ô0²¬!eKº@׺œÎ]%è‹=ä k]R瀮ô¿$´Þì  k]R瀮tWÆèºA—Ô9 «=á@× º¤Î]%è#Ò]7è’:t• ¿6ýÛ}»Š­º&Ð%uè*A/ÈóîºA—Ô9 «ý¹žº&Ð%uè*AR]aè’:tÅ lÜZët­ ËèЕ‚ÞYaŽÕƤO“ ýö§y€NÍ|ùÔa9%èr:w<üâëžA½!¥úˆí ½9è…Ôz¸ª!ŸÊ†I„þtî¡`#×:z˜¨@—Ô¹ÃñÐaËYJ>q$bÐwÐÖz!M‘ýL¯Çs 6r½×q ¼ØZ¤ Kêü¯Ù?£àPr"ð¨ý=RÐ ²|éÒ ‹×òÐýЯ™ Cš¿¼&©ó¯l¹è¡B?a?n®yVù6\ò ?•ÏÝýË0vpéôP¡Ÿ‹Êó2|Y€® tŽÎúlZh®Ê'Ð@×:Gç€Î ýd*:õ«-”zÐ5ÎÑ9 3C/_0_SuWt @×:Gç€Î ]ˆÂÅmí…¾»€®2t†Îº×[nüé k«s@g„NT(ˆäOSt>è\:#ô#Š?Ýt  suèücôhÐÕ£KïЙ¡¿6Ç·QÙèš@çèЙ¡ÓßFV k£s@g„¾±¾¾žæÕ[™™è:@çêСoc{þ•þè@çêÐ9OÝÛ'M¢Ñ“¬º%]‡Sw¦ÎyŒ>£=*wУstèÌÐEÎÖ}Æ2÷ k£s@g†þÑ\ú­»‰žKtM stèÌÐi9‡iZ3-tM stèÌÐë6ù6ægº&Ð9:tfè®S¾)@×:Gç€Î =ÃÿÛ}x°Ï«©JsÕU娆yÿ*ð”]úÐc:Gç€Î ýÍ´ÖïSs½J)+1ŸÆwÔJsOͧÖ$@Aè:3ôaT7~ÇøÉ”äC)WˆÌªõß°Ë5ô3@Aè:3táÍ5¯–½W}RȼJW%öß0›Ì7UÝ¢Ù€ƒÐ9:tnèBä¼3dlNÐ=’'[«Ôî'iÿi}`ðE: 象s@ç‡^³}£Øl‡94ÜZOtûÇg•ÙÏ\z1¡l Ç&té:û©û~‘8Ù´¡ï]:i†µN§î1݆ ãܯ¬ï ºs}˜yœ©~e×~ ó‡: íÔ]~ç€Î Ý[GM-$~îÎ~½Ï}–ùj]Ã63/mrM©¿T²r…}·÷V÷Ä&ô°³^ýÊ.àÇ’£s@g†Þ<¦M¼HB´{JûÜg•ú~»Oõ?Sã~×XŽto²ïVüNOÂúDƒkwÖ†™çõ+ûÎÙîÏu¥ZtŽÎzÁ:a•.f”õ¹O1Ut×ÈwÂ|Ó=ÑZÏ"o$NÝÃÏØ€~;ªßàYdèЙ¡{|¥¯*é{§é;­Uêäîóº®÷Qì§í€{Ð9:tfè+çúJ/ 2Á!Åm^¾§’æù¾æn²ÖEî—=ö stèÌЧЂr£ôÌåt©ï¶Òf!2×ÑFcé5?+xÕË}/ÁzlAçèЙ¡ÿ–¤Ñè%T7,È^[h~b‘ùžH1ŠÆ˱tW4¤Sò @Aè:3t1uM6yæ½Þ^Òò•®´9Ý¥‹ÎÍ©žÔÜ Ç tŽÎº5Ck‡,ŠðÝt•¡3tèŒÐ“è@çêСS`]è\:#ôát  suèücôhÐÕ£KïÐù¡÷;eÐãºôÎzS=Π3tèÌÐC™²¨"ôþÒ±'Ú¬ïÒ©¢Ð9:?êx:ÿj#÷oô:0|ÓTÕƒ~¥dQÿ/ÿxÿ÷ᮚÐ9:ÿG¯Çói(7r¤×qq|è¡LYTúƒ=ýäž èßõw/„šÐ9:¿ÿùOò* û¡? <2ÿ©Ž ô¦,*½ß|(úÞŸ1ºÓT£ÜùY@÷C?/åy™¦,z\AW¡s@— =¤)‹€WÐUèÐ%CmÊ" Çt:tÉÐC›²èñ]…Î]6ô˜œ¦ è"Ʀ©:?tã\nC' k½s@— ýØêcÆòEÑÜN@׺ºLèßmb&åžEe7]èŠtè¡·Q]cØ›çÙn^+ó* k]•Î]"ô ·ùYüÇhµ±Üíjt  «Ò9 K„žœf.Ó$sÕ’è@W¥s@—Ýc]M«…Þ0W­Ù€®tU:t‰Ð§›¿Ý ÝÖE¶2VºÐUéÐ%BOw¿n>ÿ:EX£¶R@׺*ºDèÇhÉÇï啌56G¥R; k]•Î]"t±ŠˆÆ¼/Ä¢qnj€®tU:t™Ðž«W‡«ò’  k]‘Î]*töFúþº²ÐÕèÐY  @׺t@t@t@t@t@t@t@t@t™ÐWÔºnÐUéÐ%BO.ÄÉ €®tU:t‰ÐK²„  €®tU:t‰ÐÓÆ4¿BzÅ@׺*ºDèm.²Ð5€®Jç€.ºðnI‡Gúè@W¥s@— ÝHÓ!ŒÑµ‚®Hç€.º‘ƒ[k½€®t:tÙÐ;+̱ژôi€® t:tÉÐ ¨õpUC>•ájªº@W¡s@— }}`­v}Œ k]…Î]2ô‚,ßFz k]…Î]2tÏ*ßFƒ Ð5®Bç€.ûô ¾¬‚ {ÕT¥¹êªrl·LÊÿ?{gUvÆñ£A¶; óÂ/e,#ŒÈËà]EYêKµJÑTHy©¢™¬U·»Ðìê¶.5Æì¦Ûn]LmÓOfÛ¥‰¥ýКý`7YÛÄ´MöÃ&Û¤µéÇ~è;oL6÷Œ÷œçÿOæžáäD/üò›¹Ï½çÞô:;!º’ßè6`ÑWYô½ô•hÓ¶•ÎKFµPEn-U¦:^¢’Çýë† º‚¢Û9D_eÑ/æSøÖ×Ï_&ïUëA#T-DÀM‡cžï:„x;Ú Ñ•ÝÌ!ú*‹.¾ñ›è5UOÇ‚dŒ›¢W\;©8ÑQì¿mNtAtE·sˆ¾Ú¢ QwàÚ\tD~ƒÙx“'iw…WòÄ D_eÑmÀ¢¯¾èÓMyf»Ýãˆu¼L{Ë jjÚ º¢¢¯9sˆnCѨÝlK)>=ºˆ jBîÊO›CÙߘJÍš‹þ߯f9¿×Zôl3ÿõúϾ³Ä¼úSû{»ígKü¥>´“èGâ…Z¬l3ò‘û Ñv’Ž/¶»0•æ5þƒÿü «k,z¶™?^¿ôüÉþ¢ÿ{é¿ÕgµèCñåuK©1Öñˆ\ÑÏùÍ¡f‡MÝÿóÉײžOþ¨±èYgþ¯o/1ÿTAô×ß[êïµÍ6ÌEuÄê5 Ä:ÎÐ7Íö-:eSÑ9$«ÐíÇüž¢ÿY]æBìº`6Þ†øÏúEˆ®§èöcѳ/ºÛ½ÓI=‰Ž°?Úh݀蚊n;æý©™W¦ÇzàY:m ¥Icé6:> ãî>:) ºZ¢«Ë¢?µèÉg6GŸ7â—Œœ¢Þܰ9ù±ˆ¶Û¶¿ÕA3!ºb¢«Ë¢?µèuFr¼[L‹ßÞ½½iH2ÒqtØUÒW•„.ªžŸq…&DWLtu™Côe•kÎMÝf;ÝPº’;Ñm\£«É¢/Kôšûñ7Bt&¢«É¢/Kô ‰‰NSù‰èj2‡èË}ÔÖl?°¾Ï¢k&ºšÌ!ú²D/Û@½Çþ0_K­W!:ÑÕdÑ—%º(›ò‘«ò¢€èLDW“9DËœ$ÕýÚû®ðAt;‹®$sˆ.°öDן9DX{ ¢ëÏ¢ ¬½ÑõgÑÖ^ƒèú3‡èk¯Atý™Ctµ× ºþÌ!ºÈþÚk]«ot%™Ct‘ýµ× ºN¢«É¢‹¬¯½ѵ]Mæ]d}í5ˆ®•èj2‡è"ëk¯At½DW’9D˜ ÑõgѦÀBtý™Ct)°]æ]` ,Dן9D˜ Ñõg~/㺤ÿ{í?ùG¿Ì¸˜‹ØºšÌß˼ñ÷³ÿ…1¿²ë7:¦ÀòûFW’ù§¶ÉóaöE}ýÇvâñ‹6S`ù‰®)óWWCô(ÊS`Š®)sˆ. ¦À²]Sæ=C0–›èz2‡èkˆÎ:D·5ó¢ù‚ 3‹èz2‡è²<ç§D :Ñ5eÑe¹íùÝNG,‰èš2‡è²§P£s]Sæ]–Wª!:7Ñ5eÑe™ í‡èÌD×”9D·J“‘²Ðž»W›Ì@t¢kÌ¢[…Òш®1sˆn•‚ô@t¢kÌ¢¯A :?èÝ®Ì#‘6ã• Dg ºÆÌ!ºu½V'P£s«ÑµeÑ­ât6¯d :Ñ5fÑQ£CtÔèŒEw¤¢3]cæݺ^Ãut~5:®£³=/=’‘ý]%®®ªôÎg¨¢«]cæ}ùi¡ŠÜZªLë»ã‡è:CWŽ9DÏþs“bZ:b„ª…¸éðâbo† º²ÐudÑ¥‰ÌºŒRíæø˜dŒ›¢ënvRñ¢¾—š !º¢ÐõdÑ¥Ìhü2‰ÝžàëAù fã]´T×F_9jtE¡kÊ¢Ë2á¿&ÊIˆ9_‹å˜nŠ´ÙîI^Ž©zs¦¢+ ]Sæ]–Ш0¡‹öVË1 Ôn¶¥”œý-ÿ#œuWUtM™CtY|'ãÐ5[Ž9/Ôbe[4e®Ÿ|þRËÝ/§„‡ö…®)sˆ.Ëð¾8ô°õZÙCÔÿtoŒu´mo}øyè9_J¢Ûº¦Ì!º,;¨¯Í€8Jó–cš¨#V¯Q Öñ½/0aFYÑ5eÑeiš¡ƒ%T|žµ´ë‚ÙxâŸ?À® IDAT?ïIN¡Ü ÑÕƒ®)sˆ.M㉠Ï×#{Û]¯“zâ?—›·86P¡óDWºžÌ!z†ôo<œ#þïY:-D`”&m¤;Ñ‹Cwu¡ëȢ˒\"ûá}ɨ)êÍ GçDŠ"ÚÑ]Sæ]–áKñðì–EÇÑaWI_D×BtM™CtYšCeÆvgùϯäAtC×”9D—å@0ÿ\`k ÕæˆÎDtM™Ctiîl¸RKþ‹èš2‡èòœóREd¥w¢Ûº–Ì!ºUâñóç°€Ñ5fÑ­‚‡Cò‡d(º3=è3‡èkˆÎ:D·oŽEùÕèXd‘aŽEùÕèXd‘aŽEùÕèXd5:DGÑ5}d¢s]/æý‰²5:;Ñ÷ F‡è¢CtˆÑ!:D‡è¢CtˆŽ@tˆÑˆÑWŽù ‹3Ñ9ˆ®1sˆnܦÊOtܦÊPôéè Dט9D_ƒ@t~Ð!:DG :D‡èD‡èè¢Ct0‡è¢CtˆÑ!:Dg"zÿ¹I1 ÑY‰®#sˆ.MdÖE$nŽAt6¢ëÉ¢K™Ðøe»=Á3‰èš2‡è²Lø¯‰rbÎ×Ñ™ˆ®)sˆ.KhT˜ÐE{+Dg"º¦Ì!º,¾“qèÇš!:Ñ5eÑeÞ‡ÞÑ™ˆ®)sˆ.Ëêk3 ŽÒÁ ª"à¦Ã‰Žjºnl¯Ó( +Ì™1DÚŒW2ÖÝ´ÓØvRq¢ão[´É¯tÅ ƒ9CщêÄ-¡›ß`6ÞÄíËÁz³ntÅ ƒ9CÑÎ&㕌å¸nÊ3ÛíGúÿJa@W :˜3­ÑŸ$ Ôn¶¥”v¨è¥€®)t0׌ù©îø›ÎË1Gâ…Z¬lK¤m–ÜiÃv¦Ò &ö…æ E§­ñ7–'YĵÄ?ÝSU=Ôk=ߟî6†æÌ˜ORÏ ™çk¬¡7QG¬^£@²o:ò$óªÝ¦ÐÁœ¡ècþEç_é¾õÀ]ÌÆÛì9TKÅ› +Ì9ÅÍÕ×Sq½™·Iƹ=uÑŠŽzo„é¤ô_t»Bsž5zûÜ :K§…ŒÒ¤±DÏä ï1Óè*Cs>ÌÇ&ÚGN÷[·}’AŽ£Ã®’¾ªôÉ"Ïè Bs~ÌßMàs®äº¡ƒ9CÑ·ûë¿8^¹p ¶fЙ@s†¢×8…˜Ø$D·wЙ@s†¢ûr£÷b¾Й@s†¢{«…x.út.<( t0g(zûºâeÏ}!:B€Î:˜3ý{.½(¥ŽÞÔ£D]sè`ÎPt1¹ï/bçe¢7¯:è`ÎPt3;ÐYAs6ÌétÐÁœ¡è”@gÌŠž—@gÌY×è+@çÌmμÿܤ˜tVÐÁœóȬË(ÕnŽ:è`Îù_&±Û<èL ƒ9CÑ'ü×D9 1çkt&ÐÁœ¡è¡QaBí­€Î:˜ÿ¿½»ý‰êÊ8~HFæAt¤S…3È“À‚@ׂ R ÆÕR[I4¥¨aK}ˆ)‰Ù¥‚ÙlŒ®&Ù¦¾ñ¥éª›4lÒwýl²fwÿ“½÷Î CÇ1ž{wgÎ÷óâ^9mNnÏ×΀Z=4™Žþi'Ñ ‰Ns}âH:z¢Žè†D§¹ƒÞ&G{¬èÑ“ò‚è†D§¹ƒÞ± ÇÃR{\Nm"º!Ñinà «ö³1 Í)¢›æºR#e㥣JE‰nNtš8è)_-Ý´è47¤y²±n©åŠý£ÅÉdшè47¯ù@‰óg’ë•ú¦U"|Ö„è47pÐwKUrä‡êÐÊýð̈Ns½»zѺޗ«¡Ð?ÑMˆNsÝ×o_çD‚OÿßDô÷4:Í tÙm_£™WD7$:Ít%-Šèf :ÍôíD7nÐiΠA§yQ úò›,8·D7aÐinà ó—ù›7è47oÐ?ZèD§¹ƒžGD7/:Ít0è`ÐÁ ƒAƒè4§9щNsšè4§9щNsšè4gÐÁ £ š †}§Þ²@ôb‹Ns½K>(oJÿ Ç7/½Ø¢Óܼæç¤Q©¨_Æs.½Ø¢ÓÜÀA÷Ë~ë: µ9ˆ^lÑinà W·:·`]΢[tš›×ü°T:÷–@EŽ¢[tš8è+ÒçÜ·Ë\ŽÇþÒ5qšvtš8è'ÒïËRïÒÞ´à¸_¾¦—&…æzRºÒŸÌÛs,d9B“ÂŽNs½CúSoÏ$šcèÅæºê½æÜ‚­9ˆ^lÑinà û{•ý-Ô¡œ D/¶è47pЯȬRÑórѺÎ^¿@ôâŒNs]]’áò„ý[ ÕVùpýÑ‹4:Í ôŠ“¾ðцµèk D/Òè47pеݼè4gÐÁ ƒAƒ :ÞÏAŸ­ÉŒoð(ÆŽx8ãX‡ÿAsš¿OÚJ½îðå-¯;üî¶×|æu‡=;¼îpl_¡üÒCsóšA§9ƒNtæ :Ñtšè4§9щNsšè4§9щNsšè4§9Ñtš3èDgÐi^dƒþפמïôºÃ¾y¯;ì˜òºÃ·žêžû‘æ4àý72ölxË‚ö×ÿÛªJzØÁ¶Q¶zÙa_S,X5àa‡gÿiu¿x¦u˜7Jö('IsšçM—|PÞ$»ß² »Ãõ T>î—¥?ºËÓˆNô¬¾”pÛ™HIÒõËräñ°,Whœåb‹ìQN’æ4Ï—sÒ¨TÔ/ã9´wh”»Öõ®œw½ƒ}æ ¢=k‡©ÀŒUë¾½ìr‡còÀºž•ß¼ûYnKHft퓤9ÍóÆ/û­ë€Ôæ\ÐÞáf°Ç¾UÇ]ï`vî¬ÑˆžµCmÄùµåì ëÉ+ëúJ½óCü»$P“]û$iNó¼©nunÁºœ º;DO§þ:̉N×Ï TY¨^çýZÖ½ ¯çð/9f]ŸËwï¼Å'áñ™ÑµO’æ4Ï—ÃRéÜ[9´wXÍ& åz‡†å…èY;ÜC;7Çã}+®wP± ÏËž—tßxç³ü¸AeF×>IšÓÚ°ö¨k îvxôúÝV…ëgÐŽžµCÃG ¾æ ívX™ †‚Û”ûèÚ'Isš\ª” æ :h¢ƒæ :hŽ|Ú\=u$ÖÛ•|½ð@nÛ·ïåS¥¾êjÅ~–Žž ¿Wú¬kG[]g÷ÏcœÍQÑ}±;·«_WÿFÎÚ·CRª.úJfËý‘ÀxVôŽ98YiÝÄÒ]üÖµ,Ò÷z¥u©A©†¥kJ‰”Yï“«YÑÏʬþEf9@š£0¢OÙ·ß׫+õò7¥ÎÉwJýò“ýñ6»òúè#±ã=ö?šŽp‚4G!D8Ý6Z¯ÚÒ¾F¥îˆóºîÆ–»¦åü¯£—I¸Þö'™çiŽBˆ~Ó¹•ËW¶¨R‰ »FJžX‹É{‘ºÝRõëèã²ê"'HsÄf¢ö­QæO;­÷jåÜ·rW©hX|?¦VÖ¢Zÿæï­è¥RËÉÑõ~ÍyýŽïz½4ºZšSê©ôÛ~léÆŽ~OöZþbE w~ªåiŽ‚ˆþwëÅÙ]¹±¶½yé’u+“aëú¬I·ÉCçÃ>¥vK½õ¶¦9@š£0¢ß\xá—kíkD~kÝ¢ÓÒÿy[sÜ÷$ýr(r©¶7·¢ï­“'m]¡ØHsFôùÊXóÏ™ÍÕh,æ¼<Û6Œ…ï$k¬×tÎen?ñõ^}vÓþöëÜÆºÎæ¾ËœÍQ Ñ;8šƒè 9ˆšƒè 9Þ;ÿ}\±ánÜIEND®B`‚metafor/man/figures/crayon1.png0000644000176200001440000033037614441312110016213 0ustar liggesusers‰PNG  IHDR  fò,æ pHYs  šœ¤zTXtRaw profile type exifxÚ­›i’9r…ÿã:öå80Ó t|}™ÜºgF3fêj’ŬÌÀ—·8‚îüÏ_÷_üWkõ.—Öëà;þË#8ù¦ûÏãý|~¿ÿòóÕ?^wÑûô¾‹¼¤ï>óm~?8y½üúÀ{„õçë®û÷Bßpá÷_Òõ½ý¾H^Ÿ×Cþ^hœÏ7uôöûR×÷BûûÆ·”ï¯üsYŸ?ôw÷Ç (YáF)Æ“Bòï÷þYAÒ¯”&V~)ð>~çû˜²ã”Æ÷bäíýøÓûßôG|çþýÒÆèàÇù}GúK,ë7F|óÊ_^O?ï¿qú¹¢øçö ýoÛùþº×ú½ç³»™+­ßŠzÁ?.Ã!Oïc•¯Æ¯Â÷í} ¾ºŸ~“róÛ/¾v!’•ëBf¸á¼?wØ,1ÇƸcz¯õÔâˆ;)OY_áÆ–F²ÔÉÙŽÇ‘³œâϵ„wßñî·Ù¤y ¼5.øÈ?ýrÿê‡ÿÉ—»w+DAÁ,ýÅŠuEÕ5ËPæô;ï"!á~óV^€|}Óï+,J• –æÎ§_ŸK¬~ÕVzyN¼¯ðç§…‚kö½!âÞ…ÅPö9øR 5øc 8v4Y9ý¥Dc‘1§T£k±GݛϴðÞK¬Q/ƒM$¢ÐYÜŒ4IVÎ…úi¹SC³¤’K)µ´Ò]eÖTs-à\«¹ÙRË­´ÚZëm´ÙSϽôÚ[ï}ô9âH``u´ÑÇsF7¹ÑäZ“÷O^Yq¥•WYuµÕ×XsS>;ï²ën»ï±§EKLXµf݆ÍÜ)N>åÔÓN?ãÌK­Ýtó-·ÞvûwþÌÚ7«ûú²¾Y‹/Sz_û™5^u­ý¸Dœ匌ÅÈxS(訜ùrŽÊœræ‡P®DY”gA#…ù„Xnø™»_™û·òæJÿ·òÿ¯Ì9¥îÿ#sŽÔý=oÿ k&žÛ/cŸ.TL}¢ûÎH›­•U®…µóm6ù?·:«g>G~Û(ÐåivfèíÄrV¾,Þv-“±ZU°/W<¡ÏÅ÷-Ý^ÚLû’îv›ðw¶AyF9q¬SUZ·”{×áÍ\hçOÉËÆ±k­¦Á–K>µ²¥\›ßë¤kÕ§9ê:÷ ͯ•kJ¤ r³~ ì]à‘ÛW:°vî7νî¹{µ{ið3Yð\,™Xj§Ã«›…MO –H™btî ù¤>f\mÖqo9ÔÏ gæUg·pòÕÛ=IÜŒãŸ{¥¦×CÉínæÒw7. {]oì¾£E[“ ¼'àyNÙpyëÖᄚ£¿9ÞÇ®O×…î,ä¼MéÎiU÷P¾ÏáÆéž@t}CòF»v;o9qBp½,"ßß'Ž£¼ïm'°Ù>ç-ýÒ |ŒïyƒqßôÊ4óŸ[æuÞÆxO§½ Qƒ¶Û°:Œ ¢ïC#0‰R1^õœN_óWÔÑjá¢Lϼ üÒêÚzxOÇ“ЖéòÝZ!‚™ ‚ÖNî¶¹‹ä×&÷ãVw*õ´–ãUéw ,‰V5Òž¾'p«óÙ\+áÚçm´Í±S!ƒŽRlQ z ãìyRwôÝ* hm,蚀[HüŒ-î:R)iB…tËÕ´¹ig] ož<“·iËGô”µ9i}Þt¶åáÕ1ö¦N#øÎÕ<íÇÒóìûœC÷ÒA™– ØL¾t›ƒ%÷M .üdÊl©ÙïQÝ®~lw]ŒÝÒ´\–OGø×0.=€¤0v» ˜ùtt U©CfJ.U·S<€Ñ|ÇÉ{“-:*•” J'uu[ßäô—±àŒÝOõ- ʾô# ßèêXw’$¶÷¡ÒiAë¹¥§Õ¤ L¢Í;å0|c*@´Ë—Ø"ñ4»5IàªdâX'ß  ¹ÄÊÒͧð&·øY,/·[Þ‹Ÿ}QЪ º„EHNò ¡ÞÀà¤ñkʶI>hBs•®ÀL Óí •åf%ei´…&é+P­/¶ïÒ/¶ÆŠÍr²=©ëk¿?uÐ(jF_]<*4b†À" *&3t‘È¢o *Š{ÇRÀ7EʃÄx`„B¨Ëù~H#ËÌ 2Úž7a•4ìí¬lÜvŠU?b«îi§©ô¯OÅÙº¿æÃË¢n {Ag­-èœö«(ÒN’N »¦³¶¥OR¥ š57É|–Žú­ {"€hZ¹‡tLÒÊд=k°¡Á&o cÕQHcžž`B°;À1IBS€¨¡‘$Õs«W1Ÿì3´:åY=qe‰.ÛšƒÌ“EMÆÒ¨èй³Bâ6TÉäWªáÖ_A×zúpƒ»Ck-U¡ÖTª© ¨ÂØëÙ È âa+¿ÓÈ£¬TÝÂÐuø}4ÂQïÑ‘Î(éïi˜‘Zœ ‘êgü¿'ps‚€àzgm;¯‹L>sKÛfÝä1Ï[cW8Iƒ–§ñ oM¯Vlx½±È#I3.¶³#d}3AoÀ»µ ÊEš½R#ñ¥‘:žŸéæÜVq'GøÕWÌ‘°ŽQ+Èv5$¬1ż¬wÖ-g–ÙØå²|“ïB^ËJÖÄ>û²`Bðm¼ðîÎÂÃbÈ/Ïw•ãrˆÄ ÓÃCPÕ¢¥B/·@hÌE‘#7»û‚~|H¬–:¥€¨²Kªø°[ÖA(‹ä#Fb“{áÄep PYáç¬4IòXQ8ÇD8WÉ[ßÁ£ÝÑL¹«*Á‹rc¼*”wÁ~â””›žÏïô.?=l$Š…BãBZßZĨz˜PÛíç]Û.㢼‡À›,OÀˆRE@îÇýëÌEûÞ¸R¼ÕÔUx’ÍïYÑÒûP‼ÖÀ4_Ìh ]Nõ°‰Ñ)@ j´mÁíf‘Bí´Ç]íY6½†pÛ´ì|”iXñ,´C㽞JÞ Ãr§;gïE¤4 M²èh£3±FÜ¥ƒ‹ì–:"ôO(ˆ4kÁá úA$hA¥ò³IY“,ÅvPÎ{A"8àNUvYÞúŒ“ÅaÒ¸À-îß äÚ&k·ýfù†›ú[ÔT®AŽ:žeÆá›¦­=žØ2€Ò#ØÉÙŽ¡¶ÐåJL!=Ÿ–]¹H°!!äY„ ä…;§õ·Z8`ï1½fu _ú'©è:º%m’‚ ˜ÉˆiAyÕèkEv¥5·duV ?|i3xA¦”P6 Ei³UpXÀP§Òl_Kòjï® r!¼2J2lÀ\÷\dG‘9`ïéºÖøÿ6@YUŽ”Yü;nM39€ÕÁtH«J,%ôï¨ø†Žã;pn‹ Éé•·ŒÅæ«™à@f‡þ"¼0ŒŒ; ­#…$ Q¥®ñˆ“\!Þ# 45–ª’˜8]d}Á™ÐÖ Ú{q¼›*RЫ"œãkí„”|ƒ[¼*«Y{Ôª­!Ï“ÜÞ…3€YU2T²fUú›¤!9•²¦’Yè>³E!¦JÐh¤üd¡,´WÎÌŽýÆM>˜‹+…MáQìh—ˆƒM’)y“ŒÙ±?>âH6ùŸø9îxôSE9ÌJİã°2Ù©(à¸üT.Äû‰ÂXëErƒ{8ÐRÑqUI] by‹ý¬sŽtKv? KZwp)dÿ@U¶6ŸºÃcEÈ96 =â|qYàÑѺ(Ø¥OcA% F%\ƒ”î$Ïåøž{Ddn8`pGïbm)5꿸¦.VL®Ým!À(ÆMÒ–Y_ŽèB:Ô+:]W"ï*`¨µ6–2 }Dú蜭2‘@2hVCÛ 5x‘suöÚµÐ.M ò–>*‚Lí"©ÑЬìzÿc¡©nòfM2{3ÝÏ´2}2OCd¢pà„ì(/pîHɨñž óÍ¥P³Ý tbÈó9Ú›ÍÐuÀŒæ8ƒ@o>¶é1ªÊN÷³‘ë´7{‚­WGuÈ/Ì ÇÏ…î»kÓ¯Ü+:KJÇÃí]ê‰>Ç ’¯ðUç<¦cžQ»æìžfÏN ¶¢•ÈtG¨M¡H"êÄÊjB™ï7‰O _Í2ðyß•>æà€£3WÈÐ1Gáÿ.Šg¯XQ B âE¥Uƒ(5Á•uÖÝQaâÌ œ™Ý¶# nðIpï.0–r|V}#¶ nävµ«±©Bè Óc @xEá\AösÍ %îèñ DHmc‡{7z°xFPD@¼à‘;Œíù(Ä’¸ÀO%TÙÊ N;Ïj‚L”6È€*#jfQ¹â‚Ëæ;D<$¢uD-4IñQâ X¤&ÜÍ,„SèÂUÈ›µV %íL zDü½¦ç«î–jr¼DE ¢¬bŽá®Ž2Ç1€%t.OmÄ[»GµrxÒs˜kÏ^©…w­&ò˜Æg\$È$N#+d‚’ZHOã$àÏ# ¡È¢W­/ ªÌM8.ÓÏôEÖ°ÊFC ò"„ômø<å¥#äUñI·©ë¤ÝL#fÒ-}Þ(è‰1v¡.àú ¤¶ä¼úVu/:ÓÉ’»Êu ¢S-&]ƒ|ÝQ+ýrï UŒ^Bͬñ3&Yn^*âŽÔÁÁZJeLƒVDÀ›¬84È@¥À[ä­Ñ x Veç í6A®©z„šð«$"}ú]0#"ôŠ©YÒ¨õ¦bé@e•­%ç…„ õžè) } ГAî*þΪ ¶Æ'4é ÐÚLä± eƆÃû˜šÞ`0à8A® ¬“ŠäPh8'G¬‰¿&ýô0rb:Šê¿žTk„AòOÚ K‹š=¼'ñ©Jútr¨ØäU»•W[¯0Ù»?þœ¦Fh Ö2_‘æ)z6w¤‚­ ¦Màã¦Mpuäÿd,0¾?ä2±Ò€f8h&äá‚Ê(°°xëÍ ÕêéØWtk^šx£Eƒ›H¡ "ìF_€ lJF´Îœe<í ·9¢ã]‚× Y”‡s¬lLÅ‹ŒƒÁ‡*ñÉW$Êâ§¢PÔÖ1±…‚1®cËWÇe"¢&ýà·áq4ªðú¦ölœÎ†|$5MMâ+Œ–@\ Ï7¦†‡Û45„˜²Æ¡\˜lƒª+Hr¥³ÙðOÖ°¡' ÿ²6¯YU€‘|8„†ø)£‰Zå…”ÔÆš ñ²_ÞÁrjCg¯áM"þ­mtö•ÉÆ‘\|Ê•O…B 0×,9Çïéê³ÔŸI;rÌWzç>µ”Ô"âЭæw”¡EJ h¥>G/:QKçHŽL‘[LÅÚ³ôqû;7Ú¯©?c˜°ùˆ‘°3€h߸ª úÓÒð";Œðù ÚÓI÷Ê0AÎ]í>v‘RÆ–RèÔò{Ä!’Ä«+¡\•Èd\mÃ$ˆ5»'ïgÊl˜ðHÏ@Ü¡ÓK˜$þ<ûÀE/¤¾…kC!ññá |)C<Ö廎ånA£1±!0 EÙ5*‡ØÐLµb¨Y÷ªAhÌhp:¦Ÿf "a³kn\{`!Úf`ž¼n9FÒ6`ªöñǨ(rݺæY\` ;º C,¯…>Ê4s½ù.ñÒJô œÿi€Rgéän æp8½‹·NP‘4žÆe ©‰ª%;š`ñ¶Æ¥or¤viÏkj­•'5-”·z¸ÆFGíêUDl¿N£Ö¼hYÞA$=FÑѵ˜ Ä_ƒFEÐTO^U¥1œvz§¬á°•èþ´±Èù£WuBÎBŽ×³Èzšˆ@¦ Í´ázüÞdËî@ }å"ÚKø¦÷ä¡A'±AÖ>u¬jÄ5…þhê¤W&S,³É„a.òuDŽ‹ˆí ¾®GgS…ˆá+¥&¶ÖL†ØpUç-¨UÜ€t±Çzº$·Ð2l”ëݦ}Ï'—02U —e¥ üèôÎR¸ôâ&Zõ,U‰:§íò=霗Æ|#M(»ŒõÁùŠ}Ø´1 Q±©š Ót¨NdXvuÉt¤ ‡×7Ѫ¢ ™%¶GSEÌ9.ÖkÇ¥! š½ê, éÑÜû‹Þ?DF<ˆ ThM¡^QuÔ@†+÷8h~'Ö ŒNÕÑ•¦:døÆ;E¸ü%Á—)h¨’ØëΪ¦ö9#F]åw’€Ï”:è­ÙˆwUJýÓ@^à}’sѲÎìZGé'nCðé¶uþ óêÛГI3XÔ‡ö:CÂÑqrMšéLô·7â Ë׫¡À‘ƒÜš\¡5pMõç¦N|«éée^A" ¢4Ŭ_”$Æã‚q¢ÆLì¿0XÇFTªu Æe*cm»B_öÙ[Ó8‹x4,+šm k»ä?že¾C =-qtdSÖ×U½ çE£½1S*V`à”_“d=gµôØ¥«i u«ÑC{Å›m<§‡ÎBJìù!™A8Ž=m´}¦žØ,`uÃ](rCçIÐÙ®Ã3ÇN Ø?ç ¦!:½ ¿s7Mâ¸íA’Á"ït?H ´à5°=,ànÊȾYsµÔæ„–Bðžç*9ð=ÎA'Mšü XÌ-ùÞCDðM[èÖ)%ØG ûEÝ |ã›ý8„$WÉ@L#˜¾9• )E‚û2£Ø®t¤ÆF GuYõ0@C)I=@i\‰1c³ÓYèAÒ£}üÁ,Èì^…ÚõÀNHW¨?4'Ã$vw)ûp/úá:–tÕÙ˜y$í=Â]`@3‰ f‹¯³“q*Ù" ;¤eN7‰CÕS÷Ù2?5ÎõoR7%Kèo :uÔ)db›—ÚRÉo PÙj Wôx’‘V^ã3Ï^€æ^š ª@sÕ°ëüBÐ<‘™4%Œz“=Ì]–ÛˆUˆ†X±± ¼RÒãù ¥|E•ÑÔQ#¾$Ó‹ ]³7\%60Å”‡ÜØl6@A¢½ÎÎP0r[ϯlÀf§ôQó:#…¼ºöz=RÔijtÆÏ Áïš&Cx–Æ‘qßãpÄPg£ª/ø¡©àœ¦ æ,?jøXÃ+˜NÌp ¸ù&òzŒVŒ¢`šÛêt°¸1 T‚l ª¬a¦k³ðäÄÅúƒ]x*LîÔé9qÚ;p¬Ý:0¡`B  ͉åÔ 1÷y~A@…„†["A5@¯mù•0½^!‹\ìĤ$!¯1œ&à$Q¹V¨tntEÓéï9° 5ú³LC¾á Ä€ó‹ ɦp Âu©C3ǦqßQ1ëâ=¿©'Ç@œC¯iŽŽE@5:H•ái–c'pœ¢•²»•Gð±`#„…j?S‰½ºÿÑÀ›–0Ü£úúg˜ÛEì­#þ‡ªŸMáQI2CN å¤IÙ‘Ãà„Ž/æ.;ú6×wUãzÅ“x4=S$¦@(ô×H”›èG8=ÅåECÞLL÷ÒH£è´ó )LîUü…¯€šCUÐÃ{Þãînù\b¾@ôÉë1g=Ȥ“¿nj×P5æácr‡—0¼9^Ò£†2…éZ€­?çìkm=ƒÀôùÊ{œ‚zp½ “¦GÊ@íw¾Zðeêêä½Sp5ž­¢ÕŽ\Ù¾sx§SZýŸ*0 " ³l„Ø”š¢Þ ¾éš¾4ncá¶D }ƒmG99Ä0¤M(±¼eQ?7ÃÏUG²‰SҌꮛx›Ñï¸mˆdéŒ9ªÂ½£XM ')aÃûP÷z^ý×E:õõžSA°#{¥Vò+­C|Ÿ[`×'µÚ#ܬ+–¬‡åM‡‘ö­…÷&©à÷àû;UÅU|Äb ô°g-yáû‰ææèúרzéûÕž@<É š)Ÿ æÔTbÇ·ƒÅ"uœÐ}©·½É cü}×ÉãI €d>P±¸/Zšœoè¯UàBBÆøñÑ èpQ#CnRˆéꈂwܨ‡úu²ú>bÕ¹…ÁAìóvÝL#-9kðƒIǹèa<Ú3ë¨Aç mz^¸z%Û>oQGá2²††ÖÉ·X&ÿ’û:ˆÈöÚôÔ¥©[I´”‹¦ÀìÄé’‰A5‘Bvç¦ó7æÐþ׃³4MÄ_íÖ†¡þ¤2BÈ”VÀ³è‘Ԧ镣D Ø¡çœd€–¦cIOg~Wžð’T/𣃨n QFÓM@[ Íù÷Ì º9ô@”þ­Á«Žr3”àuZ+#ÖŠ@£Ài“€wôª³¡VïJeÆWÁO:dö ³NÉ–ª{—½Ý±óç‘Vÿm@CéæÑ}‹Ú¨2zÕÙ@«w%ˆžcs³NËÉjÀSŽªû†$vþœ Òë?° è "<ºwq@ûUF¯:›gõ®Ñ¥^gIübƒˆr A¤Ûþ¼m m]—Š~c4¨ ¤ÙCË„ñÇég÷"îÓüÈá¬?™LëƒmõíìÒ6ª}H¿Å ³f³_]}^ÅŸÅNÿ“}Þ¸´~¿Þ‘Ûªw¤‘Èߘñ¢+÷™GÉÜKæøf$}ADG•, FùTÕy—Œ‚[º :º¾}w|ãÑú`2ë0£óåÅÜfÐòºzó¥ëŸþ<[˵GDÑh9çlÏÉz£:vø9·,pR‹WSy›²H÷W»§=ÌlÐñ&§ÏÞtm{僽ÒÝÛÝò{R­1Ô…xQ{‹Ü毶íeôA¼Ø}Xw×Ïl¥oóö¹ Û‡ô[|ÔÎÙ?Ï×m,GµÔú?ºì›âÚ¶½CDbÆÊ’'1©wÈ*U… Š TËÑ‚ˆŽ~N>ÓØ¼þ.¤ôÌ£pÂkÑ.Gˆx#¦?ÊŽÍXì+Ë«^b"|ÏüØWŒµ@á^Ô:£õƹlx÷ãƒQÃöa“­ômÞ>%ª}H¿ÅK7ÎÏó!ˆ²-Û-S¼CÛžw¨HäÞ™åÞ!ó(õiÊÁŒ¤)ˆè¨"âÀ`Ô™ÏTAtÁ ÷q§ÕoF ¢ú9‡¹·|¾âB,ÏoVb6øàgÓýKýÓÛo‰Ë¹Œ%ïò­¶u^ù‚("P-G ":v,Aôż6[¯s+È×½÷Ū‚÷ù {P‰ûˆ7‚./¤‹röxwy–³ËÅÝz‡¶-<ïP‘h­!b^J¼CçQêÓ”9>‚IO)ò&£Ì|duÞ5\óŒV×”VïhQuC¾àŽ…PžýíN‰è̸æØ÷2-qyåæñz1‘í%b‚ÈØAÑr´ ¢cç`¬M+é­áת÷¦ïÙ“»E¯è=Y—ÖüÆ›¾¯iÛ‘&:ËÇc>‚_ìÍ›á91ØÚËåñÂP>é4ˆ{û€Ï… ËUw0ØNßV´Âo¼ÐO»ìᇯ¯oZ‚¢j ÈÓ¥VÛ$ï¶…ç*ÞIu%ÞQäQuîmDnQµ~-‘Qå"LF•ùèê¼kfŽIw§¬s[mœ bƒ“:9À’¹\ñ)òÌT÷oØù¹ÂúYñf3‘\`‡«C‰hŽ"Fƒ[ DåÕ`ó")ô}…˜K ³ù‰íômEûÐ~ã'}­ bbàÆÏ’óŽuáÑýo˜àʶð¼CE¢åÔ±Ì;ª<ªÌ½ÑDúµDrDUT ù Di¦kϲ6«Ï²QDôàx¹œ_!Œ½AE±å´ÑWV¬~eÌ$msߣ{Ÿßx“pe[\X _®7^éq“öŽÑà¨ÑÄ6¹QóöÇ>l¿oÓí£ð[u3²(P%ßþ*Nåæʶð¼CEbƾ’¥ï¾ ß+ºso#Ò·Ý«%î#ª¨¢âÀhèÌg° ²æâ:6«?âDO mAdÕ΢"´œ¶ tÅ?ötQ`fËŠW´ÅâoÄc32â™-³L ì³’ÂGÝS ‚ì1ܵ Ú,†­°\N{úà– ü2á"iû(üÆ«üúív>î„ò%ˆvëҶмCF¢åc™w|çQWî¶ VKÜGQEÆÑ™ÏhAthÓž¯î65_Íâú‚¨å^ A Zö%¦Z‚HxÓÓzx×tÜ|cÚxÄ›Œ‰0/ä6k-Žרk➎Q T‚¨,Ìó'=OLÙãÇ^(‚HÚ> ¿MÅiŽ{H*£N ¾ ði[hÞ!#‘{'%õŽï<êʽDj‰ûˆ"ªêQœ ¢3ŸÑ‚(ÎïU( VÇ£&ˆz?D¢ˆ2ù¹ JJϹ·öxÙÀKÌÏx“ñ",œ ÆŽ:>©»i'.AÔûþËڽ#£=}P´v^iw[íÛtû(ü6§=®üÍ4m—˜Ìòi[hÞ!#‘{çQêßyt²g‚hò3A¤ˆ*2̆Ê|f ¢¾0ù:•,O0_U ¢l§Ÿ?yzhÌobD‘BÚrº‚èIzοX,'–³¢°@Ã+Þ¤¼n~ ë„x©Ê¥6äìÃ@*Fu,P¢Wáùt]L•>8^ì>ÓøÈlYÉÛGá·‘sOʱm»0f–wHÛBó‰Ç}eS×>|ÔNÕtî¤ Ò¬%î#Ѝ"ãÀpˆÌg¶ :Hm"›Y}SŒš Æ ¢Bs¨Ú ‚ÈXˆ–ÓDÙ9‰œ3¤Ø 7>ãMJu]+ø ¯¹zùÔÝ“6ëRéÕ±@!ˆ„[{­Ù…OoÄ µÕÞq­ "iû(ýö½YØÒËÙ§0(¾©Í‚ ði[hÞ!#1ã¸47ví*Í£ÊÜAA¤]K\GTQõýó ­v‘ùÌD–ü¼X[÷²Ú8A4(ˆê‹=È5îíÚQt ZNWIÏI;®FÄã|è—ðoò1äÙjqáDé+J—"F“zUà ºZ]^Qû€gŠóåÏ|m©oÓmªò[‡‘òõK6›é3‹s~ ߯àGíÀ;¤m¡y‡ŒDÒ;Ê<ªÎ½ÑDúµÄuDUd˜>{&Ï|† ¢Œ›¸¶NÚCA4³~)fz´˜¿kBE²åœåaðAO‰Ã}>t‹ C7-9r½\\˜MŠwðó±|ÿÂΛwŒþ² }°Ù­O郅ÿ¦‹_I]m§oÓí£ðÛb¿fdýõµìB9C´cï(gˆBñ‰´wyÔ#÷FNý –¸(¢*ª3DDæ3\qcVÞ{.ˆŠüÕÛõíD‘n9gy¸ÿ‘ â‹tÄ«Ýoâ†kZr¤ZŒ¦K¶_üp­ºð£¿,ˆîékêíƒuG±~÷45ÚJߦۇö›5 ²þ‘Чc__Þ¦v;0À;¤may‡ŽDÚ;tõʽQD?©%î#Ѝjûù‰‘g>ÃÑz:«$½sÏ¿ƒñqw¯DQn¹Çò×ùÑÀñk6‡â;õäHUÆk!kjcט¼—V£¿,ˆÎ„çùõýJl8ú’üdöÑXyruûwZ;ový^­jQ·[àÒ¶°¼CG"í:zåÞ¨ ¢ŸÔ÷ETµtn 4iæ3]-/ÿæÝ['íŸ šØú ‚(*Ð-W±ß íܤ%`Á}vÜjÙǾzr¤c øFe² ~SêWÀÿô÷‘¸·î×zf^éq8·ïÕ† ¢ýÆ+~.ölµEݱÆ$ï¶…å:iïÐyÔ+÷FMý¤–¸(¢ŠŒã‘f>ÓßÖkžg‡ÒñŒ!‚è‘å–Ä/¢¼-ì.p—Yd [.a»ËÇZßiD²Ø¡KÊ¡c¾éI¼AYSŽ<ò»¤«Ž_Kx§~=A£ú¸|`µ™íé<áí‘óßXݬ}h¿±þ~ø)øÞk©%ˆvëÒ¶°¼CG"í:zå^"ÇG0#é"ET‘q`>ÒÌgº êZ‹©K’­“ÌD·Žm«þgï\¼¢¸î8¾’Ì0bµ%>Ò$ÆÅÄŠ5ŠM¢¦­ƒX‰zÐ6G¬¦‡äDóòuô$zºMÚˆ9J˜zº(lˆ@µ<V•ˆ b|%Mš¤í¿Ð{ïìcföÞÙÙ‘™;þ>çxÜÙÙ~÷7¿û»ß;sbè”ìû!DÜ rå:¤s }JAD‹•&å¸ì‰}•,„tÊ\Ã>«P¼'Ùቮ¤º- ù€4j¡ ’‰Bj>pÑÝÖ¿u[åú0ý&6*e:þzK™ì–mFy‡‰*ÞaæÑH¹—‘ãyÌH:‘ZT±âÀúP3ŸÕQM5^$à°ÓÙ鵬 ºF_j>jA„ÅêùÀÅé†uˆøAåÊááŒmþ¾ei£S)ˆh±£Ò¤àTÔè••õntÊ‘šfÔ—<ª˜‡SŠ;óM!C ‹Š5ĨN h>(ß™îw\ËÉßaû  E’Ú.á—AÆ¢n«\¦ßü/"ŠR‚áÁÏ¡¡ …W­ã–mFy‡‰*ÞaæÑH¹÷šž×‰X3#éD*y‡Ö‡šù¬.ˆðЧ£xŽÙa V›$ˆp´Tw‘úWXP¨µyð*Vtu¹*ñê8ž [ÛÐÁ ˆxAåÊ‘î*‘è-ñ¡8Q"Z쨭]„%ÕÁÜ9¨9}S¾¢˜N9‚{ásg[±¡Ÿž-¹êò´Öþóh`y~ÕÕiÍb£ælÂw ¼§›eqÏôA«ó`c‰¸T¶·þh¿4aÑ^–ßP²ºIV…éóù|çÏ|Ñ¥mEï‹deé³<ètÅõÇnöZÈ; ÛŒò;Õ¼ÃÊ£‘r/#Çó˜‘ô"µ¼Ãˆ f>Vëlp$v1¦ö)­6I‘»†ÎÎóíÇÏUK^]ÀjŠ+šÚ|=åd1›=¾ö3eâ²G³¯É‡óF{«´ßw¬©­ï¤¸ò葃çÎ_9SábØWο]çy2«¸é¬òI%vÔš”RòûêŽÛdÅ–C¥w/ˆZNÅ@‰b Dªôu#QA…”)Ó‡ME{,ÿê‘=#ð1Bâ´…æ‰b›‘µQ§GM´Í æüýÙ!ÙK”‡ƒØ1$ª@$ˆÆÿÀDߊ?¸¥ý”îŒçHô¦þcÆ#v®ÞšH‰Û8/W[-É ãå)‡LFž‹V¥-Çðή#ŸVÛx|íÓQ¤GÕ¦? AFQû0é)Êæ!á“'‚ÇŒÌØab™Âm3²6êõ¨y¶dAÂ|Ï[ìU ˆŒD7˜‚èkñã5?3{us0z'hÒóîÉ#CUAxt•¦Z2C1U~ʧ÷ü,JAä^AãLZðiµíx“\…Yv)=ªÄÊ•òùïYÊcŒÜTAÙ<, ?¾/û·äÿi敉b›µQ¯GÍ³Í ê~)¦ëÑb[0ô)¾bLj¨Ad  ÿ_– ºáÿÖgfý…Ôí¡qä&‘†ÞNÖCbUHLoÝ÷ –Z2IM},ö(F?³ñ™'†E'ˆò-p(-ø´Ú~ˆñ:Ö&¥aDÕjü]ÎÌ\Gæ¼èÓ_ÃÜ€zòòæáaœr’p_e®æÓM+T¸mÖFÝ5Ï6ƒ,˜L*N^¦#aÐ8@¶ò;D"CÑè‚(펿Ögf›†#W ߷Ʊå,šWD>b6êÅ]¶=ͱ&1ø×7i¨%ÓÑæËƒì—žñ ¬‡’—O$ö ŽJåF‡®çMZðiµý¨CAú<’öŸÛ¢4Œ¨ªC™Džø9 wf†('d‘7Ðïæû?/GŸ?0«PÛŒ«º=jžmFY°e«ðzzè Â;<ÅŽQ‚ÈXA4þ[ú¢À3­ÏÌ–!OýH¼/´3}N×PE„EAߎÃu!OC-ym­¢Ÿ/ßy~\qoJ“ Ú4+°Õn¾¤ŸVÛ‘]èüý[fƒ²0£j7úæýÀÆ\\ÝGÎÙŒªð YóàF•750É"íO1i¾Å6Ãj£~šh›aìœ ‰Åh÷Žb'öQ‚ÈpAô=]}Dšž™¥=Š:ȱ>3Q(¿ á ™’Ïø¦ÐÏ#×ÒUXJ?~ä­¶#/BvÂAXdƒ²0£ uØG$·ðx|ù‘‹±¦Èš‡|ô«1²l:ÈœRQl3¬6ê÷¨‰¶™’«Þ@»·q;±*D† "‰m%’awèD¹Ï O#u–Ä—´àÓj’™"9Ž1(åËoOÎÍÊ"‹?˜õÓ=“wçÕÉv&ÌýÛÚœµK&J¿[“••…ûÄ™Ë>||ñÚ¼°%'þ”7ýÀå³>ߣãlÑEÕÞDYÅþCÙ¿#÷x·Éš‡AxŒLp O©ZhÊ¢ÙfXmÔíQm3'WÕáá§üÄŽQ¥ µ¼³ãÕ]{lؽ?>ŠL‘4/cAÆ›K)‚ˆ’w¶geíu8&­Í™G²áìÝïÏû /‚èûÐ ¹ J»N6¿ÔüÌlµô‰—cÚz-:{fã!H‘k‰cš ¥Ÿ!‡ú NÛ¢ÙS–ú« OÒ‚O«íÇkè ì'Aÿ–ìûdAxÏáø|š2eܨЮ-ó“ýÓRZ·ë~´½Ýqàωþé 2¥§›³$50— nÛ|iwYÏÙ¢ª…²»Ãñ’ L‘îw#£Ê‡Ëš‡5)Ò_M@’1ÁŒ DµÍ¸Ú¨Ó£fÚfN®rKËÇŽ!Q¥vÞ™˜ñt …¤¬¬1S$ù§nǽ|?y 3C=ïü…[‹¿L~åFbÄjNÑ×·ð-¢Ê"òÄìÖwšŸ™á{BIÁ-<7~Ttö¼¨ÈŒZâËÒM;еÉvèD"ïr)-ÞAd2ëP²ÎuÄÇ)ç ˆÜåȪ!#¸ç±TÉLÉ)nibÚ7hXh×fI§xð0ÙüÊõÿgïZŸ¢8¶ø…tÕ(/Y^òF¤Ü°ŠŠ²  Td•DW£`X¯h|D¹Ñ ¹ÆF¯-s¯?¥ü’Ï~¢Ê?ÅX–‘Èõ‘áöéÙ™éî™YØYvNÅ<›¦çôé_Ÿ§° Ö,sÕJæ„R„Òèûx§’–)uNÕ%×ÃÇcx€zlù@Ú}Kðl´<¢vöÍY5ŠoJÞI WYDÚrg‘ 95¦$Eûˆr9­¯DÚr¢ßއ› fKähg’hˆ^((ˆD¯ÃîE¯ÌÚÌòÅ÷B½ÖúóZ­¹Y¢½ú'~lfa€h}RB‹õ. ²—žåHÞC~,À»¸Iñà.3DtŠl¬.õ/køÔý˜L›Ï"TÜ3| 9dôéý(J/ªÚÐâ'Mªî&±´f«À¢s‚:¯ÂçÔFò—°~¬Œ]®àËC’‰{²kÇÒé[‚g£ÕµµoöȪ+ Dt8ï$’«,"m¹3Cô6?ÜÞPMî–øLHŠVr>Ñà>ȯ¢‘ŽÜÁ€¨ª·dðç ÈÌÖÊû!‹yr¢✠xX@$YÌþÞ™´™uq@x³ã YéÎþBÅ­&fÉ÷zºÎh‡­ZD+’Z¬p‘½–Mø÷ïŒÙXL-ÍUïÉõ 7Ö\¨ÓJLAŠ ¿dwï› ’TdJÛ©a²,N’ä¿Ð;†ž\éØwÔ¿Nù+1µf«|œ ÷*>_£Îß­aÂrvyá±ðbÈ‚5í¶ßG¯o žGÔÞ¾Ù#«†˜bgóNB¹Ê2 Ò”;Â@eY­´ÈÞØ \´Œ$Ø~:ö’ïq¯’<Öj,wÆAù´ _+Á€ ¥h§S‚É¢?…¿$àÃ"b1›…&mf+¹ÔC‡,:£‡ª¹Ý’î, °jf•ÀÝ ´v¾ok²—»€È¥„fÐtðCü” ,B7#^x€/¯{(ï%@Øß¤Ó š¥«(Á”CéŸÄ…µf«BX¾M¨§Sàp„ÖnäçÍny˜…üõ¯žÃ†±Â–ò º}³th "_:BuÉÂ; å*Ë€HSîÂuõp?¥·1ÀR&k’êi@¤'wÆe{>4“ÞÝcüNѱ€è¥0?Gpˆ¤“?ðÑSßC—²ñ¿|Ÿ:‡PùOL÷Å{Œ‘UA³d BÎZš÷e¤• íbÂï÷!T 'È7+¯v‘K ¡éb9 ²¡†I^05E¼̧´ÕøûyÚçUS¡"ùÁ¯@>ÁwhýùØZ‹«üøÊ-å ¢=Ñ^ù ’ K ùåáÓKÄ!ÿ4|}ÙŽïcÐ7›A‡Ñˆ¦" :ÆOóNb¹*@Ôå!±@µÐHŠ *;¦ô…€HWî z ÷äL:"†ú“IF±ÿq€è…Røõ¼QŸ¶3¹‚Òpí1Ñ qٲ慠ÀJ™±ßÔ,ù‚ñ ;©†9ßÀä’Ø¯ÜÛ:æ"—éêª IDATAñø?'GµÜNSi¤ÛÎç\a¦!%ó(L÷Ô;P G^ã•AË [k1pÕNH/¿/yMÊq*³ùÊ–2ry˜ª’fd¾=ùK ûf/è0ÑTDßDNÇòN‚¹Ê: *ê.8¨*{ô%Eïö“«gÅ@˜ÏˆâŒ·.Fk±pÕ¶JE5;êÆÛI­›™†P¿ ½<ÌBDî:Üc_‰cItn=£¾9tèŒh ¢ ”rÝÌ xÇòN¹Ê: Ò«3zº«e°´¬ ¡Ó€H[R@ >íþãW‘®ÜÁkÿFåcK>qÝɈˆ}ln~žDj3³õÌiø}e¾3ÁpRÏð™˜%4ÍP>ï Û£*™?|µ ˆ\Š;U –ªÁÐØ¤cV§/xñ…E0õèB˜\ùOõüº­ÅÂU¾þÉR}Ô+lUòÇaI8­½92SuúCkºQ»Ck–°Ñþᔽw¹(ÀeaHæ"—âIÜvA¦69õ†‘`?¥Ë êiãÍ>‰YrF¥µ˜¹ ª9×­Ò¤ÿ!‰w¤—¨—êt+3LJŒúæ8СŒhê¢ßÀÿd7·Cv,ïØÀU‹ˆº šþ’xã¾@4ÃUfU}ˆtåNò¢ zù‡ ˆ$‹Ù«72™²™0 4ošõê%«ø‚°Z³„#(s5ü'3lDhs8©‡ ˆ\Š#+º£z†0FL=\¾™Oðù9+æÈ>Êæ¿àÖb㪳òÿm´<ìæ*.üŒÏg]@eDS]Ä?ÿwѹ¼“¬€Tuªš¢Ù ëàIêN™ˆtåNò"©~ǽçܨÿ4c3ƒÒjâè5ŠP6O}œÍKs–pô#e©[ÇæáÔÕ. r)¾TÃ)&Alo‹"˜°YЄ]JYb³&o8Š//Vk±pU»"(–‡\Ðî|žë¢(#šj€¨>¡Œ#Z:“w’gÂŽÀ‡?: ‚ÐyÊC*˜®"]¹³ÑkP)>D¸‚®oÌØÌö3Ζè_;ÔÉjˆ´g G D’GºÍ‹P„—Œ ˆ\Š/má*¦ÖÐûZÁt‹‹é(R¢1LCªèô"´f«ÄF¥ê„8ÍЄºá7kYÜ&çl¼ËùnôÍa ƒÑD·*ªŒŒÀq.ïØÀU‹ˆZ³™D¡@X± Ñv5®[Wî,@.Ð!"RÝlí+õÉ·flfË83éSíí«3L­õ3Wtf G ;Íì(V—„3lº€È¥øÑT€6‘ RÐÙÈ”±`"²ã3FÈ4FL Rbjá­YçªZÝB±LÌ·†škðˆG±pÛBŽŒ2‹:¢K­m§FŠ–¤á¤‰2;ƒÿŒrvÎ N2Q‰nôäÎRDo)@$YÌÞQ¾4c3»ŠÙZη 3o7{;&ÇA„¿¢„*Л%,íªå³:„r|4¼:ã"—âKÛ"–±ÃT°¤ ‚$Yå¹á“Öê‚)sUíûÞ.lÐÚ¸*tÒ äšX6Ðû¤®:.dÅDfFti"þ(;ÉÂ;Iˆ@{]–"ÞƒÈ Ú‹KdÍåºÚ½žÜY €H ,{!~¤ýËŒÍ †Ç/ÅóM_RŠ˜(ôÄÕ„™§ÔI.ø‰6z£Î’ÍTšÞÑïô )ƒ'Âé²~Åðª$ËD.Å—@ ýæÊ—”S‘n>õyMÀ«Ïv¦Q)¼ SÊ?-ÿéÎÌ'¡µØ¸JÒIÍvöBE…z3ËC.$'ñgv 6ÓB†ç"3#º¤Q)²TËPWrñNÒ¢/`@û!l[<ý~Ä "^‘ xe—ciW¬"=¹³$ÑGEX̯)›ñ:/Êö b=`›".âIˆî³/”gh×èO0ÐÅ}ÑgI¯g°i=LŒ»í'ÁÁ«ã±Ú ¸Íwl»,x}OàÖÁD.Å•B#wO2—{ÊEDS GBÅuu$Ñâ¹`t3F&P ðœ¿—dW+ .¤µØ¸*¯Ü_í/ƒ¹…rjÌ-ÿgï\›šXò0¡bº¼„¹ª£Hˆ„=ÊMDñ¢ž#«€«+ hRàºzУ,ZˆX%Z¥¯,ßìGð»ì¾Ü[û!¶{r›™ÌdzBÒ™Àó{C2M'=Ýÿÿ3O÷dfÂÿÝ^*=‰ìÎêÍZ¬gˆxztS"¿Æ¯“í¹;¹scÆEÖ‡þIzTVý8Ÿ!ú!Ýø¬òÁ^ö”™Ža™!ÒÑMaˆ"§Å¨!JqêJ¬wºï¨ k¤í«òMª‡@ÕµñdÉsÅÆsªÛøÖÇ‹<‘ŸºÂŒÑ/{žp”^{ð£¾!ÊËÛã ?×óªg_|c2aú¾|"ÛeC­ý´¢ü怉ÇšŠˆd6„^ew¸,kˆ’öèÖ5D¹;9ô莼õð}îIIãéÌcˆòþ^^¢{Ú·CºîÞŸ\w6‡!ЬýKºIã¡ÿ(¯û/—!ÊûõCQøyÜÛ·á`f?_qc­—ÏÆuqâ/\Y²ãûéòÈ–k§ú[ŽÌì çÏÌ"ÄñëÉgŸ/›¹’ؾTýú]uÛè«´|šyFÇBï&œS¦M®—Î`ÈÓÖ£›‡1Ž0;ÆqòúÀ¥A³ƒÔóì]õ­#éQ±-ÝûZg{4ŸÆZ»zpÕ¡1<Ï:ß |ô½2‘%Ì„¼>퇾ë ]’=ï†["ÀÁ††0D0D€!‚!  `ˆ`ˆCC""Àé"€­ `ˆÐ€!€!’ãØäÀ††0D0D€!‚!  `ˆ`ˆ@N1¼2çE/,E•ÛínC7l Côb,4óùN®í_n¶z“áj›øvÜn®RíÉê™Nït—FÑI!gí–ÜÕÎÆ€O·xÔçó½0YG öñ/¡àkïL~GרDðz«_³cÆ®/†œvS%¢”BÔø¤¬UšQ²ÀO„£¹¿ƒëŸúÞµve<Ó›Û©ho‚òq¢5¥ô Déž<–;ãjÝVw¨¹±iEbWs¡45.þLùÔTIÂ\[T$ÙöìºÜûEg¶¶ž+cM³­têT{CKKLÖAuK¸·wgì+|÷JÃq`›½¡ÎFÿÈn©èéWw‰(¥4>Ú-X-Hd˜'ª„0¥lØ6ž"¡Šdzä(ûÖ¤ˆ'…žî:©Dbª¹>íÕP>.CTû0ŸÄèvæHpZ¹ÕDÍÃͪÕ±}l¿ÅYglVÙ9ÍÊâuº©r4›Ë)ÛÙÁK- ®Óñi®ƒ´ÚÔIi\GÓM±6œÍÐWøûËeã¹LQè-Š•<èá,¤‚ÆG¯H"}ÆQ%ˆ“ʆ½á)!¨H)Œœ£vÛáØö²‘QScj*SÌíôi¯¦òñ"_G¸Êá°¦åçÆIRK·zë¢Öb¶w-³’-êà[­®TuN¯êN—å7fqŸüsR«TIi'—íªô§AcM²ë)Q%¥q „°²b¶âpKf¾"¿BwxäÚ¼¬ðrÔùRQ»Ÿ«DRÝð¢Ä¨źî!r†ÈŠ”ÊÈ9ªÂ ÚÖ`™15‰)ævú´W[ùx Q?«ÔœrÔ.mc‡·ÒœˆMK·š¢’ãrZ7©D4Ð=­¿LCvø}õgž*Sl¶\|3øyÉê[¸BHAB€gõDÎv¢•”÷ضþ]ީɷôÕíÄŠ%¤\™”Æu2O5S÷=iY•¡…Ô6ªT¶¦á»ãç2“Àºø*¹«Ž½ír ¾c¢5çà(¥‚ÆG·÷*aòÙ0ªDÑÉ%Þ¸ž"qŠ”Êȱ#Sq3[ÊŸ^c‰ÚibLÍDbйFíÕV>C4XJê¢ÇëjÖI÷s!6-Ýjvý[A!\e„T„׫œpèsœþcÑtü`Z³j©] ²¹Ó/ Ié£ùV ¿¾ÅDž%8éþM‘”Æu2Ï6«:é³uAÒt2ú:IJ1+¦ïž„¿ß×M_·r”R QãëU®z1Œ*aü“¶tÌd ‘0EJiäöÒ’™ÍhàSS‘˜Zn§Q{u”ë7D¾7ñœ7Ó9˜ÁiåVoCä¤;:~9Ê;{¨ uæ-ëðÞ³ÉÈ=BRž‘ÿÖé%KwUÍ4SƒsŠ>0¬#€*1©áU-ˆÄ&qöý„>ŽþuõÆ%¢”BØøpjU0ñŒ™FT c;mÎ>“%0DÂ)•‘óÓ4k®¿Û©ÛºxÇÔT$¦”ÛiÕ^å3}¢êœ9gfåVoC¢;]à¡Ó[7G•.Z¥Â²;t—¶®¼×q'!)éÔªl<öŽé~¬¬¹LHwíŠ") ëdž1*F³£âƒâA¬Šó™êê—ˆRЬŒO­¢í¹ÖeUÂ`×í¸L–À S¤TFî±â„Ó}·Ä;¦¦"1¥ÜN«öê(ŸiCä³ôáJwf±V¢ñ¾m§ûOuªVó^ÒÍ^|;µÖ7¸KY¥wa¹ùkãz ŒtÃ}!ŒÇô½<¤kÁš_nÿ6p »ýåêBó¤ò‚Z›Í¦†^^ò]ö>Owô}dòA_®pTÙCÿïœ^áãÈþMë Žõ…æI©ËÚî6O^âéѤ} Í±Y²ÛK?O”ƒ…„ìU&ü#Eź哣Tž”†uМ¹SQº´Ù™Ÿ{R¿DY¤ï K)EvÆG_«¼ì|Ã(ªÄA§ØùfK,@2õö¬U<3sÇ„òOŽTÜØqG“먱V™DO‘R¹%Å5½l ¥‡sLÍEbJ¹NíÕS>Ó†ÈOOc[«µ:©!j-ü¿°y|»›Mãªð]"ˆmHæšlÊkf¢ÖB¾YOßÇ?qçjEô¿m¥–äöÁ)xÚkW•Ç Oa¤qUS;:XIȉZéå6¶ÜÉQ¥¶œÚy½ÂŽØ•šò­ÇÙYã¶Ù=OÓKê {=š¤ôæû"¡Hʺá¦ìýU•ûó·ÒäpÔɓҨŽFÝI:;SLÈ÷û9}¿ÃQvÙ¬a‰ ¥ÈÎøèkÕm¥Êõ­¨G“®¨6Yù ¡¯£ÎÈqØÖsNNå\ºm›Û#9ˆ£ÉuÔH«R˜_h+RJ#ç¢Ç‘ŽØ»„”ÛùÆÔd$¦–ÛiÔ^=å3mˆ¾Ó/¿˜s†Èj­Nbˆìe¾¦ Z™È}ŽóOc…#±’ÎÃêks ‘³EQA6ó¼Ü.ÛÞá—ËÂë%Y­"ž»Gx¢æ¿‘¦~×ÍO¯R|Ǭ!ZýiÔ±go8iÜ£ú}`ÄyuRÎ+Äáø™·ª9Yíûýò¤4ª#€û´ wEGÿWú¥§dQ-›xÚ i7,¤Ù]­ÚS˜°tªUâx kˆ·ö¦ ‘¶Ž®(Ô p†Kù¼WãÚòrDnˆ´u4¹V¥Îy3†H|ØÙ§èÞ©ÝÑJÒ5'3‘¸‘ÜN‹öê)ŸiCÔ¨úòÜÀj­Ö7Dv4yø}m¨›MHÊZAôÈwBºqB K¤Ø¡ý;óC+ÃÞ/½Òd¥áýdÈodˆüìƒlOnö{¤L?7iZ3[õÞÓ-½x!“…7Ôe—=_îïx+™Ž«ßçiKÝ»öú·x€w=—zMB_Gªæöj¢Ûíå+·Ù•ý‹³¤¨Š]ì_dØ£ú}`ˆS”lvAöþ&}/›H^ÜM©Bž”uDpFG‚˜¢Ý^=lìTe —A‰(¥ÈÎøèj[b )¶hF•8*t/­à¼ 4[†H[GÏHBQêé?'ÉAù4‡ò•n§SRÕ?G ò“"MªUÀiÆé‹¾¦?¤—ž(Ä!阚ŒÄ åvZ´WOùL"vÈý’s†Èj­Ö7D“´äí¢”oKìDOË”<‘=t’81nwŒ^¾1‹ sñU×I¹š&3Dl–þ<²h9ýðÿÔ]ëOTÉCf§cXäéòÄ8D‘DD×€Ïèˆ<”Šàp טÁhtãõ®É]MôÓÆ/þþo·ë<»ÏœêÓçÌLÏ™ú  MÏôtWýί««ªoÛ~^(Ѥû‹w™Ø·:}3óVЭtÊM‰¯ %DWÃWi–,GòÜÈ·Ož³.„ˆÔP¢³K{võ¨NªÎyÍ(:ŒrÄá¶…Oš°9@-! ø¡ž5Jq%A@žW÷ù㚌°øµå(BrÕz¤à-ª¢4ëƒaU¦‚6n â®Uê¤Ýev„y׌âèJjtP×°ÙL0ùàì§íü”ü¡ûéûÄ8*Ä*U„_Ÿ$(ù ¸lqŒ¯“"ZS¿š˜—m{1äóKˆF(¥n-;>ºQ£„hžUÖ<\¾à–^Ûqdgrú@Ô}wÒèB•!Õ+Aˆ("ÔT1v`ý´Aÿh;c2y0ŠþÍ*ÔœÄW6£t*7egG;aÏöú"DSæ ²1ùÅ*u#˜Qtå«fÎÜ2û¸ªwéîQû:Cì_‰û(ºyŠÅ.6ê.üÁâ_ýú0gþA_ýÅ´¿¥¯ÿöhQ…%Y«^2bDZ¥L2ðÄo?}>[ù| «E®%$„ÈGc± üÆ´>æ‰|¯ØÌÂâ›,!ÂpT„Uª‘h}z¡ŽOÇÒÊWpa]Ÿ•[S¿š˜—m{1äóKˆn—é„^B7j”°ïy…´’l†3äï¹}þÞ†~`üê"B4‰¤²ôW0¾bª| „œÚ°ÐmYÂI]ôðE»¼ƒŒËcæª~“ÎÜÍYyB¤Õ²»df&©ìñšÑÉੇ¹ðÛ’SÖ+ÈQµ_ÂrëwœáŒRÔG‰ÌÒµYKvZ‘µEt£F ìRÆ’±2“ð:çêc‡¤f´—q‹¯±`È.a;OØÛ¾n2!z"BDm7âæþwÖ“°êæÖ9.Rª”«5b$aøò Ïž4:ÎlÌË¢:s¦ï¢k-hF±9d”°¥l2çãwmôfžJo…U܃ A5²Ágƒ9qº)«EU¯ÐNÒ€žõ+¬Ö|rèÆQ3#@Т )J°>(VAy¢_¹­<¦Uªäå`ý9‰–°¢FÏðÇC¶³G¾~Êel–ú›MˆP`•2B$^ŸÌœþëŠ>É>þ51/Û.öbÈçm¥hÇã寇B8êœË]5ÛrÄ_gs2÷º\s 5^³ÎÈ BF]üi‹PërÇrk°Àd¸×ó›>ÎÔëk‚Žß6ò/šÓ-R„(’4@úèG-ˆhF±9d”g!c÷™†!+@Ȫ½¬]q A5%=þŒuÍé¢9{-!Š4N1•õg‘–’ã-ÊBýúàXÞ‡kW’»V)“ùÛïný¾ùr£]{XÖ×I´„„y+RÚžoùzø"šlB„⨫”"áú$˜ysk=r}ükb^¶]ìÅÏ!Z¬·#JÊGÂ8jŒÝ¢?ždþî{´¶‰¶¼Èæm~—ôÐ*nŒo:wJ 8Â"´eòðnl¥é÷\U#Dº´»ŒáM_è.çÁD"ñ³Ì­þtFŸšéï2„¨Rûá›åÿé6&N4£ØƒŸG@áÎÏÝí®!dê½íq¿Èa:í£Hžj3lÇnŠT¢éôÛöõI­ðJ¢%Œ¢\¤P½>8VAhQ“Óê­R/½S ÈÝ·xKI ‘÷6è OˆÜ‘ïWÇ0;f"GX¥Ž Ög¢jšoLFŽF%úÐÄ{ˆ`/†|~Qÿ2¤– 娥ö2’¶ב[`o³†¼ãòfߨðævÆÚ…uˆ>ë®›¡£|t%k°é9f½ÛönˆÀi?°Za¬î§;àç².…+×\/qv#Dg,[ÑO' Î(2áç7Û©<§ŸѳWëè”vÆÀ@ú¨Ø¥š•Äcº¼Èyö1dófÍÜk—h‚+- ‘Bíú°jÊy+Ôªˆ–²~Ü_K ÑÒÔÕyh¬m¨RËc‘;òÁwcÚ,B„⨫Ĉs‡•êB"çúh7­nÓï0r]ˬ‹zö ¢‰yÙvA°C>„( NÛr 稱 ê_I®$Cîp}·e;.frT¢2„(6Ÿ0k†1ª˜¤ý³Ü¾žþ"e½Û „h`¥çQƒAÇ__çå÷.k…ÿy¢zËVz8ΨûÞ­vꉷõO¢`¿ʸ†QÀpï£J`ßšÊØ¯[ ™.º­DáŽÆÓ†’ºå›œðhQ‰*×G€UUÓ„Ô²±Wb­R/³Ë9Ipž-¥#Dܤ³P0„Èùn8Š*Ž›„ÇQV å#7²…#DÜúDáEBg¯§ÑbµlŸ š˜—m{1äóAˆ`ÐÏÎÆÊLÂ9jŒÍy¢J×w»Omß`_|vâ+ÕŠˆõlw"ç!×µ9#vyyåü ¬ gIoz…n$Ö4‡ÀïÔ‚–i €¤<…вcQOBÔfÙÊ.2ÂuŸƒ<Ô™ý3>õDõûÖ-'™Í¶\Ã¥2 ‡™×ë2Ç ù3¢&Û‘]íøÒöÍŒx‹Z¤P·>¬úÀ÷–Ñ*å²-ñG²@‡BB䎣ÿìÓƒÜάm_Î"wä»ìÈW[7 Ž£¬* !âÖ›Ì|º§”Y4<õèHó²í‚`/†|ò„ꤎöÆÊLB:j‘‡¨k„Ê*• ºôz²VaN†´ís§!ÎyÜ->Ô«5XWëÕ8¶O ;-áor•6ûh¸] ¬žh 䘿êÇi¼?B$œQd‚¥%ûÍØö^ºçl{b Ýt ÁÿoD}Ô \$Úɼþ¯š<·ûñî\Ë1ªÁ–šŸï­ IDAT!E±×G0‚è(!5Lv­R%Þºí³%\„âMHÛÒB¿ö*-Cˆœ"»À Š£á#DìúüÂmX8v.}‚ib^¶]ìÅOšÁeèB¬Ì$¬£ÆÑQÇFPng‹]±î(cÚQc„è‡(#C@ˆŽdIegb.ý;÷CfïãûÓÂ,œgÎÈ_8‰[q¶þ Ña‚.曟ÏÏúœ«®œ?„è‡\Ž 70ÊnºVqŸ€aõQ(Û|uM¤TPYx—ñWp9Á„uã-¥AŠâ®p§1!$D›èâ¦ú£à „Ü–­6‡y/Cˆþq‡zn"Gƒ¢|Ijå.8ª'A„ÃÏÂ>51Û. ö"È'Iˆ6kÉ.ÄÊLÂ;jŒÁE¾Ýþ Ñ‘is©`¸Ã¿›VNÃÂÌS‚Þl@ý†£Pn—UÛ?!:NØ Æg=XÇw±á‡\©i¿„H8£Èäo”=PÊF³òž ¹Á—Ö£“  Ïí%ã!úÀ¥úÏ0ìo) Rw}„#m›Œ…›}@¯gÄ[BEˆ¦øÌ§ZB¡¹l]±ˆEˆP !bÖ§ÚQFѼ°O@MÌǶ ƒ½òÉ¢S)BR'be&!5zuÔ!ùÍ/!ÊÔºûò!Õ9Ⱦ„¢Øm;‰òdÅ8E1•ý"p3û€$Ð&=çY?„H8£Èäm”Ñ_¬”Úä0't¥Öàÿ¸¨Bôxk½jiVs¸ñ/föÞ0äHWªsž-¥@Šâ®xo×yHk•:I 5¬ŬnU8BÔÉMò"CˆâÂÝ´ 3¢8ªœEw,D%WnÑjÜš°úÔDOÛŒº0Ø‹ Ÿ!ª†Ýó•X™I˜G"`έqŸ„¨»+¸•½3/¹†¢CŒYC•˜Ïœ‰/{Á*õl­‡8‘½÷ü.#Åœæáà„H4£ØäKˆÙbGœàYxŸ¢ U‘š–¨œT`™ûØR Mt}Mí½acð– EQ×G<¨^Q)Ê” A–Ù}â¼jÍ»%\„è$§üãR„HcQv…Á«Ì宎ª&D¯à¸õ}\nå¢C„LÛµG"È ]SiMô°mѨ „½îÈ'CˆVé;EÂDñ¥$Ô£F Q?pˆ›gDOmy"ØÜ]ti€ÀÀ&ƒggÒ„!Du÷™PžspkM:§Ãõ&k髵Ý3|dÄð]M¼0¢¾½² f¾²›…¾cŽcm¿„ŸQ|ò#Dq¸O6uÏ×£KÔ§¨5c ¾y…n“š‹ñ)'1/æ!^kÙškP¸&ýq?¼Æ9ðåHQÜõñÁZ¦¤„è³ Ûªg™ÞbB¤Ý/i Bt‰È"€ÞfÓox‹½íÃQÕ„è!9×ãës™Í+«jer`äÖTZ=lÛmÔÆ^wä“ DU£†1ÈIUèùP¸G¢ØØ=WvèÅ[¾I×2á3(!ê‡héÈP÷äädãúÔƒaÎuD𠶝ê3Õº}¶!ï’ŠËûuŠ?|§–Ó0°‰½—àMvT2´¢7P1òn+>|" >ÔšËnrä'BFo\ÜßW5[·ðiNåÿÏÞ™~5õq¼íœÒÙZ)e‘ŠGY6±‚kA…вŠ(XT†ÇÄ…Gœñè£_yž7¾žWœÃÿöÜ›´iÒÞÜ,4!¡¿Ïi®I~¹¿%ß›åf(î$7s,½ÈHö(¥4•îúRõMyóÊN]JÖÑüðhq§ÛålKsh~ Aަýèsv䙱ЂçÚ,X‰5b¥|ºÜ骘ÇJé‰SI‹Q•ÂÿÈÔ*7¶;ÞšOµ;ÿ̃øêÊf:Å/å[L,ˆŠðLA¥xÚge>ú/Šû”MÉh=Zé­…ˆàZ½D5Zq3Óþ­Ðsã¸òËñ„I]ÝáÅue>U‰ôÜ&YìÚK¬| Q-á¹$S}¬ˆ¹­–D®NnÆM¦$òuS‚È5/úñ/þ"Ì·©}¹ìœæb}°Á5øÏä·³sAûëùõ>`?ªêÝïeŸ‚>S¯]qŸ2CåœûÇ?^‹'?]—Db®òOnôM4Tùs‡ØÍå­߯ºä«•/2R=JéMå''7mŠÝIö¬ÂS—’uôeÆÏö‚—›£wiX—tpŸÏn÷GfÎk&ûѺÂ\Ö 9ãŠZŒª†øG¦VÍÉ>z·C‚ˆõ¤½8R|rÎ*h1± âŠÕ‘ûgúñjiC™ ª^ä*ìi\dªÖ‚H¢Ž-ˆ&„ßÊ”÷O‹õâ'®é­:Ÿ*Dzn“¬Nví%V>DfD®¾s"£—å‘»3_| ü¦þ[Ø‘q'Ö7Ä+t¿Y9|ÈÁ78Zøû¸Z‘ë7Á¦zÐh©OMTN]åaœ×ªb©7›èÓVEF¢Gi} Iñ›Zz¤ôÔ¥d™\ŠõÁef>¼,îj¯ø[,gcþi_PØb” 2Â?2µj¿ìüG;#ˆÄE§c¯’3 "gYÌæÃN»"Aä:ïåWÊŸ=ÍI®£F ¢&vÿ…žC§¦5AÓ½JŸªˆDjn“¬Nví%V>D¦D®Š`UvtšÅ=µò‰|£%ܹ3¾ÒÒÒ‰²üÑ[[‘|õ:ÙÙ9£}pÇw2Ú- ñoa-”qUJ.÷ÅjD® ÜZíÍ ¼Ü±S'ÀëýpíﲡëS5 "©¥öfA´æQ~êR²ŽÞ8—÷qE;ÿn»xãóD»úÈáÿÆ¿¸Òõóø±´.Å-† "}ýC¯Uø$[ì4¡ rÞ™(Œ^Ä-+WÖbfAär,FŠåO'û"•AäêmâB;÷@ûÞ}-½Ž-ˆ&ñíºµL—bÿd6åFDܽà°ZŸª‰DZn“¬Nví%V>%UW`œ<.k`M«#d”×mŸŸ=®äÿ® 8íˆÍæN‹›ÕöÖÈÀÍyÒKh{OÔ t×U‘î’Ô·Öýœ=‘”)i2ž—ßô©»S}c$¸Ü=7ßæÔ¹Gi} –¢‹Áî¹òGÃz¯£mÃ:áf²µîGwðMñX+ú:—GœªZŒ¨ÆøÇ²µÊ]´1²œÏrªh15“­Á°ÚO8Wê¶$^ObÕ\–ÍIuþŸGQÿü¸î>¥ä6Ùêä×ÑøÊ§â㮀)Áó.äŠb×Ë0íÐ/ DVg<ác]×Æá„ŽD©~RzN´äèÃy€ Úõ\Œ‘ýàxúu@ívÚâfq_L/ ¢”àžÁ*ú®WøEBo=t € J%6ð\ŸŽÍiÇÍKì¼'³ WQjQž#žÓíÁ8ô € J52¦ýüñço@‡¢”äå—º›æÿ€‚ õA"è@€ ýØå€ "@ "@ "@—Çãñ©_Íï‰f¾C2³mXŒTKº RAÝê i\µØáYÓjsâdæ’úÕ<ÑïÎÞ5ß!%ß¶?B­å¡÷5î[•áÏmÄ-~=þ¥³²º&²äÛxå׳.u-ŸjÃuwÇR Á¤û@:B¨ñf¯777¿)?ž]‹Õ’ã»äÜHôir³Qså#Ú–”èU&ˆÞß~‘Í}LýIÐ:¥ÉŠV·süê¯:|µQK‡ßî0© ÒnÛB±Ý¾ž°´ñA!ÞZ^C+a•¬£¹œú:)Z¼8É.õnMíî,9õ³#ÝQÿÀ˜Ò[ÅǶ%»¥W÷ž û”Þb@ïP"„oFÒ„¬Ø¯ôx@½³>ѧ2Ù¨6K¶Qù¶IXpÁ.â»ÜÖ”¢Õ£…L ÿ-kĦ5­nØÌ8&wÊŽ®¹Ù$ "V‚ŸH¦ "ضáÛjFq±ß·ôéݘë|ñ#¯úË|Û¯Âå¿/òË«zwq–¤ß̉í§FQ‹-ýû¾¥0ðZמ û”Þb@ïP"„o†Ò˜w‚¢"C£WkÖ'øT&UgÉ6*_¢m’gD4ÉmM sÛÊöp’ÿ—½VMkZ-Dhì÷c‡ìØÃØ“(ˆlÉDÛ¶UÍUÛ¶zuN\ê¥s’'oˆý§C<îÚàjIIû“ö#¹‚åרurØëTÞÕ]›%›g¸•p•8§^A‹ÍÖÃÕ•ý·EWeHô)½Å€Þ¡D5Þ eÌˈOP´ãAdhôjÍúŸÊd£ê,ÙFå#Ø&iA­¬ oM êBç(yUc›š¹‚{ðþS „¦5­fQóÀÀÀÖ´{ÀåÍÎØ‘obA”¿Ã‚hæCJ½ÛxÙ`Û˜íBÐŽþú[Øöë!Ïh5;°Ï ò÷¡åû>OÙžÝÁiy}×fÉQÜ9eá ¶ôŒ=x?/´ØÊqÅtãëkq“Ž7†$|Jm1¢w(B‹7cyÌ0…¢åx@½š³>Á§ôlT%Û©|‰¶I[ЊM¤ñ|•Ûš’[faæ2ïäJ,èÂVˆMkZQgdX~ ®väZø¿yæD$ÛŒDá´ÂÄÔÛDYU‰17‚eÅÚ\xˆàÉ´<Ÿ[þ¾ýݸ[³äÙ æ~ôà²ð~ä[lUèWwäïQô÷_úuÙ§ÔCzG:Bhñf,ÈâþRÑ Šr< ˆŒŒ^ÍYŸèSj6ªÏ’mT>‚mÒÔ¡E·TlMÑCÕmqƒ™fK§%­¢ÈÍÍàN˜F¦D$ÛŒDOÓð0äöjBê­£%ï¢?Îãtµá‹Í¤7ûkü “}¢͡½ÍŸ%ï›b÷t® ý<–oYE⾂’¾ˆÆ§:Ý’ô)¥Å Þ‘ŽZ¼Ê)ä™ðuñ JÚÛ ˆŒ‹^íYOð)%5X°ÊGŠ7i °tV±5Õó­àg ,¨–±Z$ˆØX-Û 3Þ™X½ÛQA„ÏC…ó6WBê¡T›ÿ…ïgóÏ’Ž£„Bz$x_Ïåá/*R!K¡ý,É·Ì ¥¢sM†>öHú”ÒbPïHG%ÞŒ žþôâ[?2ÞA¤oôjÏz‚O)Ù¨Á‚mT>R¼I[€O¨S*¶¦Zuá[– TËX-Daü¼™°9ýüéÁéêÄÓ߆»¦vn$Nüá®Ûswð@«ðŽÍT(ÂjÿÂÈ?‡®L‡ãÖYm,f˜«¡(cbAD^Çöú÷=׿º’#ˆVKÛ&Cm;ÍCã+w|ê}Ê•œðÿD J]¾-ºZ݉~ͦB–lƇ5¹%?#Ã7áWªzõ±Gʧ´ƒzG2Bhñf(7X —¤‘´·wˆó¡;طή‡7e+½Z¢ðzsÃAD¨×¯B¡O6[íô`-m]ëï‚E:E¯æ¬'ù”’,Ð^ùˆñ&mA Ãä¨ÙšjAÔ'ŠVÁ2V‹Q&úu5Öø¬;:“ ÷¢x6«S^þ]ý¥nÑ@ºq)ÒýÎ)ºÚóÊöíÏìHSϾ²þgbQü`>S[g‚¸¢:pŒ3îAæöÑjiÛ¨$×¶®†áHy¥^o\„ 1LC´È"¯õ·…GF±Q>~CÔ— Y²*)¼D-Sy±>d¯ˆ¦ë¥É>¥¶Ó;’B‰7CYÍe/bï“D«fŒ¢t\±Ùþm‰¼zîðÉU éjÉʡȄŽ '{oü8½^ÿ†ŸöšÆ ={m¶YÖˆÛ:E¯Æ¬'ú”–ê-Ð\ù$âMÒ‚2jð%nMµ ÚBû<`9Ad«Å‚_¦Œ½¤}Ð+P ÂK'™¹"•ðP0DI,·g Süs†`­Å^Ò‚¨…¸ŽÍvI´Bvù6E‡„ÕÒ¶ÑH²m/ãSo/ZüÞ»±·€šÖ¥J³`øR³öò®õ)Šc‹/PÈÔ]yÈey(En!nDÁ @ˆ¼‚ÊC1Š@áV€øˆZs *^ßZ&7•|²ür?ó‰ªû¿Ý>3;3ݳszºgggwÖ®²ÜÙašÝçwæ×sZQN} ,™'¿ç’ÀðºzrÒ…\EL-¬‡¨Cè§ bÚµ޽ùZÈ<‡ YqA„÷vúÑËЊéL»œ<î-Iéž1=ÕP-ˆìý5D®Ç«™-ÒâÞ½Ø(êÚFYoß§Žl”AàÚóqíÍA w X›¬ #fQ”ääDÍ "ˆt4ìnEn¬îê€]ùÊÀŒÎUr+¢G;zTÖš› bêP¤ùuí$ o*Û)Š¿E¾œ:ß–£æÆŠëýÇQ(ÁÕK«ùÌÛg´5\eÏ/OÖ«ªZ“j¯x‹MKZ©kÿ¤®£ä:>¼‰…õ[VïÉK-²ô °ägËË»WZƒÜ¯ ŸH-¬Ã¨C?ì§ ¢Û·޽ùY~#¿öù¿Dxo§O½}®ú‚é²ÍMÌSàÞ2êT¯—GÏÏ‘¥QJ!þš¢è©ªñ7yà锚ÑäCM*­W–õHŸ:²QkÏÇ·7?ñò—ÙÔ&)ˆ–ê-< D jVýZ·Ý€Ä =ÚjôÐ2“º4þ`|²õZO³YÝ0Œ[úÔéÚÝ=0Ý4fRœ”)õò¾š6ä7Æ1dS5öÌX]õ~TÎM3‹ÍnD†ÇÆe¼§Øô99+õZ-ÏÈõAí#l,€ñaë E»­³JtŽKi= É?–L ¡°ì04â ìñ(ü4Ű Q‡^è§ ¢Û·޽ù©¡OÄ÷ÆÖà‚hÂ)ð9 ‚¨£MQêÏ”ÄBÞ­]wò<Ïk?_žU­õeúc|½“Odˆ7DvÓÊå°ƒº’Bë•d=Ö§Žl”@àÖó9Ø› ‚iŽ·«MJÅ®Ã$`4`gÓ 5#ˆ: Ãrõ yoÉæwºÂ® s6R÷S–k|*!ä•è_šæ¢QÜàA­uDÈ3Ô±kçlF{KD°!Žm“y9Õ#jDá]»~ŒVÀì`Þ¹àH¡¢¦Ñüµ×l¶”Yí)Œ(ʤ¾Qo€ Rlkƒ½{w«Uhˆw&ÅË ›îdö*ñç£ÕËgï¥DŠÚ¥ òN=˜ÊzÂô£rVm’®Z » NÃå/,Z`çÔ™ìgÉùUGÄî|µ¦nW%ÿÝHy¦ùÌDLp,µ7 ,é7è¤Ü+ÛÛiDG$<ÇóÕRÙ µ¿5.ˆP ‚è#|x©çÿ 1{ÑoA„²žÓ§l”@àÒó9Ù["‚ Ì®°ï¶kDñ*/_] §58¶‘’’Íù¦ßÕà…½úÛûËñ1Tþ×ËÄJí¦ËÄ”{¨Èœ5cÁ\¥øKóœ+³."ˆ8Ïeubcªgˆœí‹`çN„ÞöŠÔ&e6Û›ÃòZC*ABM ¢bñ3b„´à¹OoáùZ]ŠQÊÙ±H‰H±YLƒÈ·œ}$*ˆ8Ï,}éß[]–sHINtà¨] "ϰq©w²Î躉¥2øZ2F‘ÔIfMæq,ïmVÒ¯f7KfáˆÈã‚wv ^¹™Øtk­å“â•—ô ¢„6àZbo~•üE q_Pxo§[mËx ÜóA >½ý§ÇD¨¿&ïþc†Qi»¾DÑá>ºöÈF-¬çõ©#%¸ñ|öæ€àµç«M6‘š2¯- V jD ‘ÒÁ&†s‰ÙÒ?#_2'kãžqðOêgþ‘˜È0¾I;_ak‰ "ô™’©<^ÂDÑ£v)ˆ<ÄÆ§^ëè!m¥úZ,tÂ8¯–ë6ÌŸjT”Í™ØÅZ´g5KÂpæV}XìN ^§µÚ[þý ›p4+Qbð-ÄÞÞü*ä ¿Å}Aá½nA4-å)pÏ×eIªx[ãâþzQ^£ZD# ²Ïl”a=§OÙ˜d”Y{Òöæ„àQ‹ÙrXmÒ™ªÃp¦ÂDÁAmD™Áν&SÉ[fmC!ð…”¯Ù'–o¹b|å ¢q‚{¦OKƒ96Ð\_[œèˆz,ˆ¼ÄæD½¢ÇÃ×»ÃÚyñà ᬠÔÏ\6Ú­Ð’#'túÄp|³‚w`‹jÛ³BÞø‘Ô6NÚQb8Yˆ½ùTú˜A½í ïít ¢)O{¾ó–xµ9]áþzQ †¾J¿ ¢YÏëSg6J páùìÍÁEc±­MZ…ò쎠 6Ãî?@Æ/3ÜœÈ:ÆŒÉíæÑ‚WZªøH=×2Ò/§IÙÜÜ|ž Aë±Ê—f ?˜ä ‘=jW‚ÈSlÂÔ+2Û|n‰7Ùe61_kî»lfÉ_°ûÿ¹èÏuW )å§[Ù´°…ù}¸ëN{Í(3dÀ ÿïêíÌD¨§À=Ÿu†ÈL0ˆúëŒD&ë¹}êÌF òžOÀÞœ@´3¿6yA´/ÝGPº*AAm ¢õIÆÇÁÂ7µîƒ³p,ÇŠæ IDñ|üz}¿y+ˆúa6ë’‚ÿ:9ѱèðV–DÞb¦Þ s~/–g!ÕÅñé2fËñ$‡æ²4~ÙiÑ;žeºnäŸ[xAdÛ:¢rƒ™OöÉTlÊDz;3î)pÏ÷Êkî!Býµ[A´ÝI—mmÔ`=¯OØ(ƒ@Úó9Û›8Úã¿6yA4dYF j*1ãU8NÇPÀƒ–<#Ÿ‘ëÛ‰Ï_™¤Ö»Ô_)D0Äh4~[r¢GíFy‹M˜z·噾ǵ™Í` Û½âa6ßLŸzоK³†%÷ˆZ/}(|ç´å|€7äz'{‘}ëˆZmo™!ˆðÞÎPA„{ ÜóõY|Gµ!ˆPíV%ë‘XÏëS6Ê ö|ž¢_õ•:/Q_ gˆú7C¤Í¿fò–Í ¦Î ¾²© „ˆíÊø0ÿ½åƒ ºÃ„QÁþÎdDŽÚ ò›(õºé:»ØÜ ÒAñw×9&Ú’sü+{YÒT¬(yWÄïZBš?'×%Y+ˆÖ´n76œRA„÷v¦ "ÜSàžB穽,³¹† Býuæ ¢>‘"6Ê ö|ž¢z/Ñ~tèY jZí®¤¬æ‰%ҡˆQ°úÀeÈrÒ j$/í°ð3 ùO'É…¢Æ±áÅclbÔ ·Ðç*¬2¾ä@•™Ëm7#@ÆÓ¼§:µ,yR§(uíw ,ÓU·RXžNA„µŽ˜…°öæK o1¥WQàÿuÇÞÎXA„{ Üó-M›Ó½!mJÜù¢þÚwAjXˆ ±ž×§l”a‰£][Q;Ø›‚Zý…Š×&-ˆ «˜ÍU)AÍî S e³£¾f¨×b[Ã8EQÐáë.LNm ?s“|ºi|;YѢƱáÅclbÔÛϦNj¤sJýHz@Ä®^÷E-³–%‡aæòªÌX™¢ “V IDAT̘¹¯DâëÿÙ(ˆðÖ²ýÖÙ}/–¨üïÉ\A„{ Ž·üŽÉ0x‰Jtƒùk¿Ñ,Þ/¹`=Ó§l”b‰ƒ];¡vevNaûƒ_›€ zõ‘z´ö¨´ £O0Q³‚¨¿—¢$ô«Ñ');{©éü3ÔÉÃÉÐì„>2 “-¦Ò ?™D]6A+ø3r°7Ž!v1é\?(j^<Æ&B½%8¶®Äüò².Ç“^üIÜO•q tj&y·ÖÌÖÙÇ’Vâs" rwŽÒ£ÈþFK@O6 "¼ D,$ÁÞÒ.ˆ8Oæ "ÜSp¼åYØè©ÏÍÝ¥O»Çüµß‚èwÅr›0ëÙ>uf£KìÚµ+AtœJU<ÿ“%?¶KA4¨T/©Ú°þß°ŠS9eLÔ¬ RWw‹W(‹ÜsÞ«ÛÃ9tb«!¥ô|‘&|·úz›Xõÿl¤}'´~`¡aªW?EÞI¹V «º*\vzæäØ…Ûðê/ÄÛ$Šˆ n 5Ž /^cã_›—Ûé;ÖÆ„üüŸ½síŠâHã8 g˜:ކTnrˆq¹.‹b/ ÆÈ*j¼ qXIŒ‰EÌ ê9ÞÎú*'oö#øé¶ªçÖ=SU]}†!ÿß让®§ªŸç©×t÷°4ûº~*hmÿÄî2ø¤wSBÂÖËKaÿ’ãÚO¸Õ8nRRd§®?ÀÆäR[§|Ù0¯‘d d"ö· "i6­ g Y¶d7GéÌîß¡§Aw¿‚ _o´ º­I‹W6¢Þ(:Ì£ÑZ”È3Çj[‚hxÇé¶fèzn³ÔÛ÷Ñ A¤ýÀmåBü-ž›Wú§wþY&ˆüa’zdûgöö*RÑØÜ¨½‚q1ùƳY­ƒã;û‡µ7‹íÔ½ -ñzÿqO쯢 ÒÞ”EÆÃCáÊ òÑ´Î#öéƒÛ«ý4ÎYèèª]üõ|yì'‡KB•»‡¾‹(¼©M`µØ6 nÛ&þÒªþ½ý•šÉ%Foûf§frcÌèô>b{vU±´DJƒ[5Jº9w0zMJ FccÙÖ~«”nÏî`äLÉÆ@â!b˱ ’ögÓ "q¦eËÏÚËßjîìf)«B'ˆùz£Ñkmø_Ûˆú4ÑaÖ¢Džù8VÛDZÿBâ?z_úØìh ‚¨ÚèÙùqQ~Z&ˆ´Ùä/3?]Þ‘ìg2¥Ï/»ÚaøÇ=ç …Š‚(X™ªc.ˆüWRŸ>}¼5”õ™©ñ£Â0ð­Û&ÁuÛÄ‚(y˜éw¾úèÞºmxÙ\ª§ÃW·l”ØD u{›÷ey06§ {ˆÄß ˆl"a¦f˱Æd¥þozt‚H¯7ZŲܺ¨OfÑh1J¤™cµ-Aô‹¡§C^Ó£)"ÿÛÕc‰#Öœ¾ö}A^ŸV§ ¢‚Uº},ù›+eÕ±¥“ñjÃ×>®Jtµâ\úóYþ¥þøzðÅD°š ¢‚ïGâ—žÊç uÞÅEÊζV-àœŠ®ÕbÛ¤¸m›‰ *Œp~ý¢u~wÌâ_ߦ•\zSûeÞm—¶n”ØDŸë«âgºyéi¶c“ "¡‡Èü ‚Ⱥ f y¶ü¹>¶dò`į=w¯ËV¼|½Ñ‚ÈÇdLágQŸ!:L¢Ñj”È2Çj[‚Èÿç‘]ñž^¨(Mñ)3ßá‡k£o[žäùiµÜ‰?lûp6Ó…½+uÏÖêz¦¸]=~ïáÚh`î¹µ¦üÁ{ÏÞõü[y°§GÏŒ¹ØU™Õ¹¶ËÔÌÒÚµÀœÈÛÚg–Îð~ÉÀ¿§k¾·Ì¿¥£ÄŸ¤•¡T_|2Úv-ð¼`+c6|1ñ·MÜŸÍ÷¾£&®;Æ9Ii® ¢ÚæÊß=›@Ý*/*:š±·k¨‚Ùæy9 Û¹^”É„IIv¨;Õ;«¥ú½ÛëÃÚˆ’áëí–ǃ–›á˜¿y.Ž6gìf±J™Õv0ï)'Sìy­SRR}Âñè˜X é©Û8$çÔ¾WAÙƒï!æFA‰°ËqÚ=Yª}þÁ'õ©IXGâoâv8%ÖQ—'Qެ®¥­Në¶§év­Óƒö\|déó eCHßeÅ:3 Ä@ľm® "M¯MçZy·1—*NÛ<’³s©ÕŽ7$““’lp·#ÙȱÔÞ†¦X¸äŒA÷©]º®TÎ芻ùB¥ŽØj;(ô43S4LÖ©˜œr4:&HzjÉß6á9µïUDöà{ˆ“¹‘_"lÇzœ6•'kÜQ½ÖÕ‘ù›¸^‰%A4ø€ä¡ Ê•ÕYDŤȒ¿ï`}ï\ÐdQ¿ÚÚd]MÚ}Ò¾mYD¾® ¢îEm\ÒÒ‚7–<ãÚŸæöM&ˆFc3{MÕBÕÁÎÔêL¬Ùƒ1UR¨|o zã ¦$»X»p?UöN0yÊê­¶ƒBO9™¢6fÔp,&ªŒŽ‰’žZó·CtNí{‘=øâdnä—Û±§g‹4ï-Ô¾¯ÛQ™¿‰Ûá–XD· Ù•‚(WVgEýhM53Ar–&ω ô¿ªT™cZ{Ç·Ñ+¥‘åó„µÛ·mK ¢@᥅›lß©·ƒ¾¹ë¿Óÿ®$ößÚo¤‘~0)qŸ:–±B7µ‹§`êê3º#:çkX)fâ9¬x8îôйÙÓ1qÂëû-°ÊÒLcjz€n.¦º:¯RGhµzš™)ÚX,DØÒêÝ×̸£#·@ÒS‹þ¶qˆÎ©m¯‚ ²‡ÀCœÌÜa;Öã4È’]ã³ olI¯EGu$þ&n‡_bEÕyÈðwy'ˆrfu6Ñc%A¬ ¤*v7èIÕ Ü¯èËï¦&¹úu¶mEAe«ÿȼþ§ù£"ûÿ2[öx(8'4 -–8ç*[G8’y6&]©H!ä–Òác%‡ÿ/±£E“Eÿ£[3ÜC‰ë­¶ƒyO9™b7ý\½N€4;™’ž:ô·,"<§6½ ‚Èq27rK„íØˆÓ ZãÇX–aú—“:·Ã/± ˆ¶Ó¨‹.æ› ÊÕÙDôŠÕŠ Ð&'cÿN©®’UÑ:÷ݲmë ¢à+v5r³;#-Õßmõ„› { ¿‹fñ3æŒÜ7´¼H=>}Hu |Mi "©e‹mtk÷hâ:b«í`ÖSN¦è¦Éµ/ñE³—F†gÐÉèH,öÔ±¿eñ9µãUDöû›ý¹‘W"iÇzœz+ )¹—È¥YBRGèoâ:‚ ‚h•ᆗù&ˆrgu6QÄš Z¢M&x: )T¤Uª\³më ¢ôS»Nú®f¤…Ýô‚}6¹Å¾k¿Ç=ýÜ…A‹%Ž™¡¿`zKpâ·Â1Èp¾;É-öÌJPÉaïX´Ú¼žr2Å=ƒ>;G·VÜ£âž:ö·,¢vNëþBß™åB©ù›µ¹‘W"nÇFœÎ¾¾ê*ku þ&®#(QD£´Ê{_8ÏQ­6DSM#“¯k÷O{¬ýIo¯ö"‡Ç|ýúÔ躢î.*Ükz˜Ož÷i“¯âué¿/¬ffˆ%B›ÔçÜ{t;hb[BÍMüpdu9šùÿìHñ‘S_t+DqG”Yí•X0{}²vòâžø|gžÌÚHi­–žÆJÙm Þ¸ë!lÕÙg­Ä9¥EéE1,#=Dÿ †Bó#ëD—Òm¬eö”—)V ÏX²€>áÖè-÷Ô©¿e9Ãú\óª C–]\Î!Þ'ëË‘åëú»jNôöŽù|ï–#×µ¤×s#rýŒ£î¨ù›¥¹‘["nÇFœÞÔZHðˆn=r«ŽÁßÄu%Ê‚¨»“Ÿ¯1¿Q.­– ¢@ü ì6÷!Ã]h!B–h°ÖVÄKã/zž9ºX•ö@’yÕr¨Aû·˜-w*Xݰ‹^¥’~µçÝ.3±­L“á«KâÕΕM8þñ’H™ÂH‘`DË´YLdÁlüaQÏb™v¾®îzú÷ħJCZ8Aw|«ÛèÏ+´1~+âÇL…D'Õ-Dñ&&Á¹f‘¥Cê(Zm+/dô”›)‚ôÒ·?¹u‡^!{݃²ž:ô·l¢vN•½j£g—sÈØ›Ä{dœL:ÎWìn¯e¶3tŸNÄš7õGÉ߬̂Q;vâôz”Ôk`¾d/Žp«ŽÁßÄu%Ê‚ˆžê":iUæ— Ê¥Õ2AôÒ Jæá:âûûƒdaü ™Oh+\XT'„o ¼r¥ïcβãª5A$¶Õ©]éLí/×]b{÷ë*Õ™L‰F”YðLdAÓøÿÙ»ÖŸ(’- }§²Ñ”—+OÔˆdE‘ *‚*–§ƒd}`ô.(àÖ1ÖW“]oâ~Úìÿ‡ýßnžéžªê:ÝÕÕ5=p³ç‹ŒÕ§ûÔ©S§~UuêTîûÛ7Ã,wŠna]³Ÿw2%–b pxItzL…{üØ_ô±õ·ú»à?hq'‹&lŽGQjòÖTî)`_ʱ—yEÕ'ApMuí-¯¤Ö¦!­*@$÷.†}ÈX/ó¶¾ó9@ôásö5í/3¹&ÈBôZ †DøØè;jz¿£ÓOp‹‹V !½¦x8{ÃyU@t+›¦nO¢‚Jíˆ.Ø3„êúá»›Zâš}µíŒÔ¡ºK(LÏÁÉ’Y‡–‚eX§o8°?a5Ó+o(‹Ýá²Ï]:Ó¨ÙØî{ggÀr§JV½­„ÍãC0õª9¨?@„i$ø‘à;;EUãð -(š ˆ’¢[€=‹Ÿ™ß³ô÷¢—êÖ¤oÄK¢Ó¯etÊ‹=C連EÚ~59}Ö©räy¥Ö!OMOÏu¼¶ÿ<ú<œ8þÚá%®©®½å•”Ú4¬UňäÞŬ´—‡–­²ÿx墻½‡Þß…<([ˤ¢R£TD¯U2$ ÂÇFÿQ3) ïÙO÷q±‚‰DžÊ ñ°ö†ó`%Š€h±œ&ø£b/¢ÂJíˆ[{;3gf¡OM»Q}!î[‰™±Ûã\›_ TH@2Û“IØ™ªy¢ÆñqçÃ"\¶ƒ™ ÐŽýº£vºW% ôÇ»-Û³¼»Õt D˜Fý$€UÓº‹ðWêïLb1}@Ô#la@ÆcF; ‚kªioy%…6Õ°ªXâ]LúUúçæ¨³RpzÚD“ÎkÒÝý…O¾ ÂÇÆ€QÓû~ú’>ù‘ù½Cÿn†‡³7œ+QD° uÊõö *°ÔˆŠ*rT„»Ous«Ývwýš0ˆ_ìË;ÈÀau?7’¹¹iöÖŒ@Ôâ¾B׺ÜuÛ}ŽX¥G•t|ìžÕ¨pFö“Ë´ ÙSô‹î/;¬ê¢‡m‚Vù ÒxItš¡6°œjtãÊåö¦y¤.Ø:~üøÜsØGH³=sÑB79¢Ô:$ÖÔÇSôØûÁÎJ룲DTíÈ%P¨©¦½å•|ÛTÛªbD_ŠêCÚ‹¸Hˆ$mâ!ËDvÞÀëNN‡ŶßÄ ˆp‹5=ßÑé§·„ÄEMúÀ go8V¢ˆÚŠÜt{ZêFÉMUÒ¢¯:mÇND¼ ÃÁA§·¹æ® —óá`1"ÜâGMÏwtúégaL¥<1ÂÃÛ΃•(" ºÊ÷ *´ÔÊ€¨‹;1vÀï:Õ°€èI:ë¬ÚB‰~v.{ú¡¦ëpt@ÄœYƒ•ãŒ(ëBìö8{úô€ÿ•²€¨‹?ç&—àŸ0îhD@tNì>·_°Øá„x¢ÞWг+j§õR‡¼+&+öÒþ9ؘjñQë­T賑]°nŠ«&¹»$îÌuürû§µ­Õz{­8È£$µyjêç)R Î)¢åcÆ(A…šêÙ[žÉ¯Mµ­*@|auDÒå.´dègÓŽ¼Å)‡7óD¯‰TÞ¡nñ£¦ç;:ýtZ8°ªÐ$J<‚½ámEÕŽ\…šjÙ[|ämSm«ŠoëDô!Јì¥ëët:í¸É¿Ü5ñÆõňp‹5=ßÑé§ùZ!í-/+DK˜|Ï¢ÂK©ºìqsã‰þºî’VâD¯Ì"X>$õG—Šœ„Õíô[/™S7Æ+¹«uQ¿”PqiŽÀ»Ï)éDRâÀiQvë¾:" J\Îm!t”MÐ꽘D£''ÄUbsQ'cy"³V/fÞ|6ˆGAjòÔÔÏSØ·>nR«è·ÏY&´ã‘@¡¦Zö'IÛTǪâD˜w1æC¨Q³Ö‹Gg²#ï%·I3Q_*€(ùKÉ(€·x…QÓó~úFÁs#:ÇÞp¬DuÒ}~Ï¢ÂKí ˆîw¥‘$‹´»6$Œ¢EèÔõ´W>®Ìâæ7$Ônõýa{Òþ[4@´!åù·dC±II B4ŠKpSHˆ6%–3o+žZ BÏ}S„”Ksñ#³ÓÖÑÜïZB¦øUílÙu„Ü‘òwÁÜÙ'E3?"Gê8ž`©uÈ[SOa Mœñf*ÜÕ*¨v¼(ÔTÇÞb%Y›jYU,€ñ.æ|HŠNðÒœiÓÿhÍ¢ ·I©¢OœdŸ¢"ÜâFͤ,EhØ~*;ãu.2×Þp¬$mq@l¯¢] µ úóP&hâÒòæÀø •˜D0}Y¶‡Ù§`³óö‰ÊlT¤g [¿%Dï‘DÍ¢’€Ó(.Á°pÖd%2 J$FL/|>feòǯ…¸ÔÍj%FrÖœjÊÇ{€;xöbÙlU  GßIt¤<ÁR맦~ž‚d«ÓEÏ(æ¨|];^]+ÔTÇÞâ%I›jYU,€Hî] ú+D¼K°k*ˆêÜ&Ý. Â-^eÔ”fÄ ÛO“‚¹ªÜMÌãµ7œ+ Dm3×=u‰N“ºáß·‰]M»Aj@;µ¤îÑ|»ý«+O€¨.·ÉZoVUr&\ò¿dƒ».º…“‘¬5÷PZ¢t5Cmú€Õ(.8»1ˆ\:â½lÓê%¤TUƒ—ê BôÚ¯â‰$È’ÝÛöµA:˜Fat…Í ž@©uÈSS_Oñ-78ÅbvmíHt­PS {‹™¼mªgU…DF}H©° ¦»á¯4jz¾£ÓO¯y¢û) Ê#±7œ+ Dß)=IìjÚ Rã€hœÛq·H>æ½.Îå6…ƒ›·æÔ»7Jˆna9 :í·(áÅ%x(ܪxÒ$ z佈ã¶,âSb†¬4?Vý"¸,X ê¾úµA:ø½²1I°r†'HjòÖÔÏSX5„,3ÏÖ*Ýî®jªao1“§M5­ª`€È¬@%v¸^tî`×D¯¾cé•> Â-^iÔô|G«ŸžáÐà&±àÛKx¤ö†ó %ÿ¢"˜׿zËûü¢1„ÜÉÞ»<4²Ính¸ö.Çw‘ÑßÒS)º€×(.ÁŸÂ[^˜D-´BPPºOÞ§°ƒ‰6s™ä€ @˜YºF‘sÑ Þ觃ma-=GkèËã/µIjêç)® ¹d`Çy4íÈu\S {‹™Ä6Õµª‚"³>dC€¿;±Æº€(joÌ Òê§ÜCcJ&üyäö†ó %ÿ¢¢I>½.x ]!ú@°!€åñ•ZkÌ–ÔÔÏS$…CÕˆîDÒ¢ëàš†··¸IhSm«* 2ëCV…ÝÍΕðÿ€H§Ÿ~àçO+Ý[ä˃Ø΃”¢Ôyލ™,ÿe‰]M»Aj5rå*QDµÔØTƒ€`‘–ÁÀ DëÜòŠ[ 88Ál‹_‘L6Ÿ“i1â²)@„k— ¬ÓÏ-bYßz/RØA¯0ØÉûå0^×°›[ i=—ü´¼ ÍUÂòøI­CÒšúyŠ{ÂWK˜£í2í`º®ix{‹›ø6Õ·ª‚"³>ä"œ—Lp0!Ž; ²¶OÍ[J¯4jz¿£ÓOßr“¥ÞëmE©x0{ÃyÅË]Ùe€½s¹ka¥ÆÑ.)á@@A{ÊÛòl~ˆ2"î‡íf´ÇלwOî6½Ô²ˆd²ù"@èµe†®Q ¹Ü\#Q'›T) Oi-‘ž¸ÁKÌmºÒt¸ÊJ–оaÖg‹åR6ðô€`·ñ<¸ÔZâªÔ”óV7!S¹l‡ó¡²gJ´ƒKXÓÐö7ñmÁª ˆ ûÈ©õ?öÎí)j¤ ã3c t ƒÀ€‚¬ƒˆ¥à r„u'á™QþXP.öêÝË?ôo¼TÞfè«öþf’(ˆ´l㤒zª×Äà=4k^±=ʱ€NâJ"óêKÄ2A”Oß[»7AzN1W±™2¶¾)躬Åa]{JšÂ•D^DpGž:‹Rpû͸1º¦áíÈ$o%γ³…qgN¶Õfk©:Sœˆ®,·ÌÐ3 ɱ@·¥†ã͘}šRT¥MYœCè=U…‘N ú¢'§ÑwB¸W -DfÆ)u_™¶ÝK¾`¬i5³ 'ÞØõhï Jƒ ÚFפø‰> è­–têqAD;±ôº¼ô”w\oõ«?èzŒž•Ùü¶Öf:ón)K¸IT‹,B:‡C`îÅ-Wþ飿‰_»4JüôNÁÜR•&"-Ûx‹9~¦ØPÙZ›¿ís]³/|«’€ $½…íQžôžŠKõR¡?¶KÃ8UA¤\:¯½ÚI“äLÂI«Eê ÍUØ{¬„Þ"ZÞŸííÈòÄ™žKm­jR‘kÚ]¤³a^¾¢’;ÛLÝYò,²«Ó³çëf:á«÷Ì× IDAT­>H (ª_†iµ[ªÎc4¬üÌ=Ç}œKš"ÞáZ ×R£ñæÌ>M)ªÒ&ˆ¬Î!TM§:áéõ ±eDÊ ¸Ú)ˆLS:Cï x³wÎÐYÐc¯ˆÕŒ2Üxc×£¹‚( ‚HyÇØÞ{}ƒT,~Dò-=¤¢wáqy ïåqÕH§[åOÕX.¶»ª+ˆÔœÝ›pMþ ¢¸P~[@eâ\¶qW·îVÖÙ%aõQ÷å>ÿÑåyî¹â…_êÑñ(Ï‚Ú9¥=½ÔšÕTQA¡¿Ïß)7&/ñöý‡Ì¸ZôJ >ÓUrSË”•x#Ï5î¡ÜbÚ]Êká;«ÂëýżÐ)o»ËÃo›(8"P†iµ[š)BJo–?ö)f®IÞáZ ×R£ñæˆ bõiJQ•6Adué—óaIÙÖ2ùy–¾úô"%i_³U™§›ä—e–Ê/C(²šQ†oìz4÷@¥CywÄznO®×-.ˆÆæb%uQö/žè—='¤¹J7]š(À-r?!°jŽÄöízû¼+÷fbšÓ°ÿº3GUU-éú )9ðŸêx”kÁ±²h!ÿtuÊ‚(z°Å¤UW·2׉ÙêÌ 2ã‹1í·äԕ䃳ê•ÅÝ@äWíéÚ"R†iµs‚(»îUÜ÷o¤r‚â[ ÓR£ñæÌ>ÍPAdu¹¸;.ý6G®-:-ˆ”œÙn« 25NIJ笠ÕÚeøñÆ®GkQ:‘´U_½ò¢‚(ûyex*íélÓ·áÐå­îƒ³Q¹ãæÞ•Ýÿö?-Ñ0¹pù”êRæÎïáÑ_uÉ+¯PºEÇ6÷Ÿí Õä…«êÝÔOYlAÄô(ß‚þ&eê_X¹S~fÖ Aôj{òû*h¢,×|<½Çb¼KÅJßø_– ‚>ð¾Üî‹eïžâÈòÞ¼V¹ä¸# V†iµƒ‚({SSa8¦o‡ ]¡2(ˆtZj0ÞÙ§*ˆ¬Ï!³;”‹àgcùÝiA4N®{µÉ^AdjœöÜWÎ4-Y=ÂVk–щ7v={Œ "`Ù”½u(4if!WïDàËÐȇ]bßÎ-½žžì¢;"Ît/Ìz Y­UF/ÞØõ$í À ˆ ˆAA""@A‚‚DD€ ‚  ˆX‚àÇ‚Dp ˆ ˆT›ë"@A‚‚DD€ ‚ ‘¼<}ùŽå=áóùzœnI•/L–øžÌd½µ€ Œ`A´ió²?Çê£n'„´9Ý sK|Ofb}{~h ¼6TdtâÌäß˶7–]S¸^ŒýÝ]]»Ï¨ûò'ª'?tüæ€ß¾}û´&CÕ9Øokzg&Ì‘ÅáÓXõÇ#Ù™fµ™2| $ˆNºUü›1bÆêVw"!ÁÚæé¨´<ºRDÙrÆ£ÛÕò¶¾Í]Unf’aïÉLÌ·g¶Üí^Mú´ñ×Rz´¢­q¹“‰ì|}}!ONèžÇ¡Q[Ê®ÇR ¸cn¹ý°\QÙ÷F,ØÜP¨œóÛMR5[ÅzÎBïè×Ãñv$:‰–NÅõzËHæ`,?í*’Ë Šô)/FMêV³ÊèZ 9J´| $ˆÚˆŠ¦ ¹fcÂêy’ÈUÁÚ‚ÒwÏ¿°]õ<¼+\Ø+7 .ºý^ÞöŠéðC¬$ÃÞãF|JK9ÓõKt mLøôÉ­XØlÍŒ“d²ÜP÷aÕ„m “YÅðÆÜ¹èç5ýÂÔŸîÛo{d5©§ç,õŽ^=hG¢£—®4,p*®õF°µ™"ý¹ŠcdqȹZëŸÁi>åŨ9}`Üjv 4G‰¶„Q0#QÐQAäºUZ°¼ I‚h#qDï¢Û§ "W#S&4¦[ñAJ-eê‹Ë²'˜rÚ*º ÿéÕO%åÊVžO™¨lØbÃØõXmgÌíz%{§@žÏ—- Zðy¯üiEçãν…vÖh±UÍ "Ž´#ÑÑ‹8׺#ØâL‘þ\¥ cdqøÖ§tP…¢[ êõû”£¦ôq«9eøhކ„Q«TàZV”™!ˆÌXMÑí_âi®/dž6$ "¿1A$%¤Þ¨LvâY‚ÈŸfA4}”h†®Óφ;F]'C’§ÉŸ‘Ïÿ›¥¦XÚyD™>JÚɳcäù>×ésôÜqï‰=ÓTf=V[ÀsOh³‹?Üpý~“ÊŽË.! P-à»T+a“ÝõˆÒxAÄî9k½Ã¯‡ãF$:ˆ¦Nŵîö§]9`kdqh ]¶cò¤+'w#íŸý>åŨ™3­ «9e¸h†„Qôý W¦aÆj*ˆÖPÑÿŠŒ ¢7¥¤(r©"—¹£ë@ò ‚h²B*p?yÆ!KK&•ÿóéy3cTJƒ:r(r6Ú»ÕtÚ3iËØõXl{ÌH{üÊœîõ ô£ˆÙôjÛîe‡k³‡ þ/ˆ8=ggFR×Ãñ#„aSq­3‚­ÎéÏU†F›ßȽÆXÔ2k4ªT1jæLkÂjNžŒö0| $ˆ.I_¿˜q‚ÈŒÕk]ˆ1ATSCH0¼yŠƒ-ë@òå‚èIY\_N`«Ò'+‘ctè²Ä !o# S–ƒ6ùŒ]µ0Çܾ*Bò"¿ÓwHùç´ˆ'¤MÇž§þyN:q_æ"UÏÙ˜‘Ôõ0}ÀŒDÇ`[àT\óG°Õ™"ý¹ÊØÈbóº)v'õ9É{ŒF•*FMœiÍXÍ)ö€Ým "úìÅ W¦aÆêµ.ˆV ¢2I oJ‘1t~¢•´ "ª{Jg\ÙIL’ž%ùÑ-ú«õ´æ¤ïmÐ|îæ½SÐÿ±ëIÝæ˜£×´£[ôçûúŒIIïñ §âJJŠƒ98‚ˆÙsg$U=l0#Ñ1Ä,°?®Y#x%í‚È G›R‘E£Q¥ŠQgZ3Vsʰ-kOÌB‚¨™‚ŒÓC¦¬æ¢cò" Ÿº+ß5¬N~‹í™£úÿùÀÀ_.Wpj8$_äëY] mS0çØ—©á©¡ÚäªòCí'Ú^LDË儜Ô6 —œ%Atx2v3Ë"!wÔ÷±-0%ˆòë6Þ®l]õí£õ‹;oÛßx´ú1;eA4ÚKZ¤ùo~âû+O•öéà}¯Uþ½~«yä’â/2‚°ëIÝ昻®úݤ[Úº«oÁ°à¥tK¸"[¸ÈDìž³6#©ëaû€‰Î!f%qmbs3…¡\uC*N¾99ò~÷¹©ÿSw­OQYü¤k‡· ˆ5%BÂ:|„ˆQá¡& F"ËW”n|¬YEƒÑ¨ÑÒÚTí'Ë/û™OVåÛ>÷ÎÜéîÛïé;çË<»ûwO÷9ýë×éùt±Y 0MËË{Ø lX§tµèimPKÒˆè=O^Z„¨£8žÚ±Ø –¢z„xÞJö@iy;ÅUƒ“€äÿÏÃ.’ ðuýÏ»ê'û!ÿóÝÑ\L±ÖÃt”©ºì!Ûò¹ ¾< Dg~œ»Ãlò_¯&DzÃÆ~»µ,“§ÌĬю_²¹ÕþV¡§7é —›…@º‡rO]¯.tÆëË 0Õ*ÖÀŽâ/ÒÄç“exÉ?Ç*àG–:Æä—ˆË)ÐæÀFòógpJ¶]‰à!n:“ÅòËux^“˜‰kέG¢Ê‘é@Ћ(Z´kc Vx C_Çu—¼?×f«±Y"0MË’´|š°jÕ)m =­ jI ­çÉë@‹m8÷ÒÔrBôÌ»Ü6ï!5!z;|g¦&8ŠÂ0›[ KÉÄ]'ÃïË…„¨/zêQƒ¡$†„Þ]ÐÞ‚‰Ø¢d%‘[Y–ÞÄ"ÈÍB^.Ú@Nj; $DÜg l óhëø“åØ©^çgùÎacìB\Ná„6WO ázž t@‰àŸøÃó"Î'—aÓØ$$D’šsê‘èrÔ:¸ÿã)ÞªÌ-Xê)Œ}8Ò×UùDwŽ*±Y"0MËË÷Ãi³:elÁ¢§µA-I£D h£yh"LuûW!²A-'D/ŸúF1ݘ¢mùkèâì6!Jh9òGÿ0<‚ÚÆ~ÇoÚ²?^ö'gnUöÃny4’¿.`Žl£Kc'æð›†tHˆ¥Aà$S:'½„hf¡cþ§gؾ?Ê"1BÔÓïO…m}Ñ> èµ;tô&Qn:ð‚UdTÿËã¿wø(Zz]¢nÖÀ`ìñjn<šî¿øë-ÜÇ1ºµE¸¦E\Ž"›ÛÇX¦‹©‚õZ‹yƒËº_[…„H\sn=]ŽZÝœÉ8hUæ,óæ¾ iß5ü×ýS'2¾Þ–Ta³D`,š–¥èó†Ìê”±óžÖµ,ÂJò:Ð"DÓzãúÔrBÔŸA¨ãX]÷póOíLh!Bµ¸©ÄF1f“Áy‘`£í]¨°7Ø»sðR¦›ö|í#žmðG¤3Ùn¸©-ŸÊ-Ô]D¨³.$D6„èŒt†ý…·ª½ø}㸮Þx"ÉÍTà‘7´n tø6•£.Q5k`½ÌÂÀ=üys$Ù«\»Ü€U  £ŠIÄå¸@ ²¹5L ;ͽ’†Aè`æ²÷5U1³Äì~Í6!ל[Ä”£ÖAõ'DR.Z•­ó=…¹¯ "Ü¢)ÿ7ý6oô°#0=Ë’ÉïȺ´NY[0ïimPËÒ((¬$¯Bt¶`÷g&e­£«æø½j9!B(ñH”’Kˆs>-{õÎ…›Âà­¯rÌ·Êåûl%7”ØR8!ú³&׊0ªÈ"1BT‡©[¢.7¼Ÿj| ½qD–›!ò–òo³tn Ñæ½—ˆÖÛÎD’]Åßþ7'6óô陸B\ŽB›«¡B¦Ç\?U!˜Ä]…çݸä[AÛÆ8Ã¥jð·Ð6Š‘¨æ\{$¦µJš9j×–Ìõ¾* DH’šÖÃfŒÀXt,K*½åm2kULµèimPKҨȭ„Ð!ú†Z%½¸ì­ ±B­"DŸyF„è¼y–‹Ã‘Ää)ÿ¿ Ô¼ou ¡Éž¼±†¿ÌNˆö¥‚ûn¦°­†„H‚À†ÁÞñŸÂOp!ñJSo‘åfCˆI6FW²Ü"†z¿†Ÿü-_G’ ÔE/N&++N7Ã<|âxœæ .Ç!¡Íí¦bø! ²+¹bq£¼• óˆ/6l'ξ3׸ø„(Zsñx$º ”(!Š«]›X0×SXø*Ÿ5…±`;o£6cÆ"·, ™ã>²´U1¶`ÑÓÚ –¤Q#[ ¡B´4Mí k»¼*‘êÈÕó!Z—4#D>ùxòé/²ÃŒÃˆ^òœãdάE(µþ°³pB3C®á+Õ„„HŒÀ†%1½ª'Ts‹Üø ÐÇ­Èr+ù{ c!D0~/·즯æ r>až6Û>g¿‹7Ò—¸‡„67ÏìS8218Ù›-2{þ­Cq9ž÷ á_Dˆ85‹GbÊÑÐA©¢¸Úµó<…¯ò ’nÔº­…ͱÈ-K-Wù,kU¬-Xô´6¨%iÔ”3^9hí!ªKOôšßrõåcWK[…·Äuär×?(BtÃ3"Då¾’wá_þåu Kq§˜ê'd¯PA²¼›Ñ „vzþå|oó„HŒÀ†Áêîñ¹Œ0 Ð[T¤¹JˆNDO¦9"D3pú¶Ù¯¬ñ~ÜsáO‘ß³ÑÒsGù¥ÅX7‹Ëq‰@dsß2í Vl+@c-K¡9_‹;`é¥)nðq`\Nˆf5C<ꑘr4tPâ„Èy»6°`ž§°ñU>!"‚ ­ÃŸja3F`,rËR;Û.ìªÍfT"¶`ÞÓÚ –¥Q"=¥-BDŒ¥SEŠ–ât¨ZAˆÎ™¢À¾GMÙõ¸&¦³„ìõßÁòÚñKcá„è³ %¤Ú•'Db6„ès6xˆ\x¬7½èFš[¡„¨26B佃F–šLÞT‹Ðb†sÊìË«eÜqLMMõÏŽø‘OÚ?ŽÏÄå〶9Å Áeßs:n6…ã ×rƒØ$+ D¼š‹Ã#±åhè T Q\íº²0Bdã«À‘Ö3AZØŒy†è#¸tñ[Ý:UÛ‚nOëx†H@ò<´ Qö˜á ·ÊD5¢®zB~£ÑŠ!ÚÖE°›d$ÛòŸàŽ“èÝ ¥ç)â—½z„¨{˜”nŠuw¾ÜA- yB$F`CˆÀ¤Sµy¡š¤BoQ‘æfGˆÞöY×ÚXÖ…â#DÞÎ !žXÀu]Î.,Н¹œé„í‰Þ¸ A\Žs¤Í½æ¬ÿ§@³¥Ä-^p #•T”!4æÉ Ñ¢ó Jù‰-GC¥}ÊÌU«²²`ž§°ñUÌÍ„ !’`3F ¾×³,¡7€`1}†u*·½žÖµn.ñó0:0&D·QÛ~W‰è¢–oªžöÌQ[XWHB”,Ç.‚ükþ¢+4–CÄ/×õÑ(5«5J¢ä4zÒ±Éïy!!’ °!DŸDƒåƒˆ*ôin6„¨n*! æèŒy½c]ÁöÙo€Œ‡Ⱦ“ wTøÁÚ2=±›‚¸ÇH›ãÙ¡@K îæÜ„ÐÉ8ÖÌ&ðX`YNˆä5çÎ#EÊÑÐA‰»wÒª,-˜ç)l|8Òý"B$ÅfŒ@,|¯kYüªÅ¯Ž¤Y*lA¯§µA­›†‹@ø<¬Œ ‘±lÚ[m¢‰ZNˆÊ Ñž°.’„h†™õ<èGý:9ÁlùŸ+œAd£A[öå ‘ !J+œŒI;&DÃA þÔö‘­í­q"Ï»[óèÐü®d ~Žùñ¸«sB§ß¶®:B¤‰º(„È«ÅÃ>ÊeàœäÎv@ˆþ{Ï6úë­á’™í ÑhoVŽbYZZzjMˆ¤¹™"Ø!‚öœ:7¶ÿ 5œa.wMbwY+ÛMñ¨HwwˆËq‹€°¹™h”ÙòW O™“•®^_Þãñ}ëÙPðð·^«ŒjΑGŠ–£¡ƒ’'D·*k ÍϘú* !R`3F`Lˆ´-+*oºõ©a*mA«§µA­†‡@ô<˜"‚}oÕ"MÔÅ!D°TM̃{ãp=Žÿî9sâ@sÑÊ )+4!z";ú† Db6„è¼Ìã¢ó ÿiFˆöÁÙÓá!ÙE"D?D/zØ­:­7¿˜ÑJÄå¸E@Ú\#5%ÙS®AГ ýZ/epä?F5çÈ#EËÑÐAé¢[•½ó<…¯"6cbáûx}ËŠÈ[Ø7zÔ´N•¶ ×ÓÚ ÖMÃC xž¨Ì ÑÎ=¥/š¨‹Cˆö3níS”»+o˜1íÖÂO™Û‡ü=Ó!!#°!DaèI'„Hš›1!‚áé¦ü@"S$Bt ¡'ÌB{FµN~Y‰KÄå¸E@Ú\à!»‰.J%l¥7úÃñd÷ÇðtQÆ`_F!‰SŽZ¥Oˆ lUöÌó6¾JLˆTØŒ˜‹®eEæÝÊj¸o\§J[ÐëimPë¦á!à?Gæ„èmA§?”h¢.!zIÇùògCŸûïàø;±‡a¦Ü!òî ®û­ ‘ !‚«„¯9#DÒÜŒ Ñ"uLö:ƒíŠæ '¨G¤yi†H\Ž[¤Í§ÎÈBH‘+ ѱ!šZë>x¥!RלÄ+G­ƒÒ'D¶*{ æy _%&D*lÆÌEײÙR‹PâŒqªmA¯§µA­›†‡€û<<˜¢vÃP˜¥!š¨‹Cˆ~eN-4‡çЦ©!ànöá&ìµOÚäQ!ìWÏ’„HŒÀ†Á•˜~ôG'„H𛩼~ŠúEE!DÉmÔ=¾L)o0ù¹H]›¸·H›«¢:Å#Âí@$‚+TP®[¨˜¥®$¹LÉØßÃëm£šsã‘xå¨uPú„¨ÀVeoÁ\OñöÎ쫉,ã!H£!"h–¥ñ á@YD†AÅ¥AqeÜE„6L»+v»6Ðö—9íSŸ~™çyò¯›{«²T¥îïVÝ›ª‚Äßç…$—ºõ½ËïWßÚ%rlˆ¬´ +Ç2²ZFjgM7ù½¬Q”šñ1µŽ{[ZÕvsK«=Ì>6DÇ•ì_êã=vU{cˆTÿñƒíI.zÓðô©ó™†ˆþð³¨!"ŽùŒö(¤ôË]a2†ˆz÷†N"^m¢}à»CþûNêÛ¢7†¨Î|¢ýÈ^EyË}Éåz¿JÛ/p=Î*0ÆÜ²iHÎäåÐn¦QÙœ”´é7«w\ïÆ]fÖ#çLFb¯Ç²6¼!ÊvVÉG03SHä*ØYiV Ed]£—GË8¬- M‹©u,ØÝÒʨ¶—C˜ ía÷C´O·Ižy˜ñ¼È ‹”j }ÀZu8ñ±ƒºÛROÏUÉc qÓÛî˜o^²6DôüRùÈ`ˆ`2†èÝé9™¾8ør& CÄ«M´Ô÷vîH¼—±åœâ…!ºFßÞX6þHWýcÆ?®ý¥û>Eg+Ï!‚×ã°NÌÑ ×¯¥ÒW÷u\æ) Ï¦½•xDÐd³ZXCÄ972{=–}° ‘³³J>‚™™B"WÁ†ÈJ›°  ÈJðQÉx¡LóòZ‰üÆœ£R[Z Õð2Ö ÌíúÀŽ!.?Ö¥Žöמ›ô¢–¾œ8@$¥ZÞ f<Í”kˆ|ßѵÒ<÷¿Ã†N½#ß&âdÔƒ›»ˆÉ0DtJTVÂVç’†èQeÒ¬¥ G½o|ŒY-«d–î¾íøâ{P?[ûýAÝۜН6Ñ>ðMÑ',Ñ+ƒ·Ÿ)æt ·T0ah§:¿ Sÿ™q‹Ùƒ2EñoÎX`H‰\ ©ï÷œyC©rÄ•P€×ã°^ÌÑ]¾ŠP‹/ØH·A; èœ}Ý|-mŸiuŸÝÏfCÄ92´«>Ø€†ÈÙY%ÁìL!ž«`Cd¥MX\x3#+ÁMÕZÒû úR¼:ƒvf{ŽÊùaÕœe¬˜Úõ-C¤>yªôa╲[—sÁÉ©–0D;ßìß^]èWWWððþÊù×1KCôè¢zÔ¦¡¹¡„~XL…üQ_j}k}DÿdæSÈÕå&*†*"•ŠÕ¼K"_sÒ×ë ¨ û›Å§§Ê´^+)ìºØuÁª$ýÚŠ ¿ö7+CÄ©M´|¾gô¿÷þ}·úZ¥¦Y]ÊâµGÆm­îßÝQ%—Ô2vôw³r‚¢”FϺ-wéÚ‚Ù™B8WqžCk“S Yº=lý;9éÆ]¶÷Éž£rþ@X5gk¦ö@}`Ç=1,5”ﺗS-aˆ>™;¶ÃÒù~¹Wžúwÿiý åñ†TAÿ‘žLCޤWcÛÑǹÝÈ0D ‚:s{þcUB}á)CÁ@V†®M´ÈžÙéÿ>6ØRšNYÜöÈ¢T5M¦«ýšÍÏ%Ò®þÓÑàÖDðzVÀ¹¹ô˜ÏØThÒ=Í÷ßd ³!bŽœ  \El@Cäð¬’` Sˆæ*Ž!‚µÉ)‚Y†>Zsı稤?UÍYÆZ£†(øWgUb‘3»B¾AJµg†ÈçÛ¶KÛM˜Ø•qøQÝ~µàáhP½ïÞøžºk£‰Ý.ä•]CD}8ÓA $ ‘/¸Ô_’øµâ\̺ß,F¨M´(Ii{k‹š¬]6D]æ÷Л…úL§÷‚ï_L®¹æØåk®…¸‡ðcîÂïejQÙ¦ ¶´ÌïÐFúé{O²†É±GÎùÞᬇßÐ9>¯¥#È‚¹Š÷êP›œ9˜‘•ôÓô<^Á' 0Geý jÎ2Ö 5D„S³½óKÑ /—Øàª/t¨YLw*Üš;Ð(p´qæ›×ÜT”*¶íK<1D÷×Ýy @<‚y³ ÎÎÆ©LÞ—áÕ©fÇ=C4C]Tg,[ä¢êïˆä²Ûé4^·f(^ö¯cˆ‡+¥Z»Òî°içG”DÖBÞœ3‹Ó}§ïMÁ%™¿2®}¾DGÉa)Ô•C–Æafù*¥¹É¯üO-0ŒqBÞ2vEâeõ…–0 c MU×M1‹ÈI¦˜Å«h9!£Á @kê®§ú ÚÖGbèí?4Ïå`úG®,ØœÆ[)¥‘úJ?a§=xŠWygÑìØ†;!R´–ˆEr²6EÞůs#µzõT5žOAQcú#CˆàøQ³6 'jX¤µYHƒÀÉøt^ ÎhQ`*äðî‡ÙI˜ÄÔ1K„Û_3Ç„„è »Õí¼¾”|k& Ïü§TAÿdD[èßø´l•öcÙ*Ñ9Q]7À·ºÏ˜!"†"loM˜ :›&&Íû¨‡¡ Èóô¥Ä)ÓrM~JsŸ³òÊk®Ï˜ïiú=?‘¬—qÉ[£¨ëÑ1†*Ån÷ý/ÍíÏ™¦®àFF íØª@ 5u×ÓJí„okXúÜgêåL¨¾Ö‘ì 6§ñVBYÉ­ûÖÛhž¢dÊÉáÚÄ¥ ¦j]w%DŠÖ±HN–æˆÀ³øÖ`nÄc–B¯žª Æó8”†¢ÆôG†ÁÑ*˜W¯7÷þ~jNÔ°Z{µlç…‡ôîÑ!p¢¦=s9{‹LzeYVÅC]+|§¥” !j+<Ž¡I]mò9ž9íÁ³s¸.ï­|•®vž}µeè+³¬ŠWÆÁißõUÄH­4…W>L1þ]øf!È}=n9eÀÅ‹vvv^ç—ÞkBBÃ4b^‘û]Š‹Ó+\8Ûp7 âšJè©6BäÞÖ0D‘ð¡Ml|"½­#× 6|¼•N`¥7o˜jäR|Jë}oÐ!r²–ˆE’µvljöÚ‹øÕ`ûˆ[ ½zª‚σ§8 FôG‚탋õlz&k—ÌýÕoð“„5ôṜ3Ãù­R*ÞJ_ù‡™EÏMÛ¶)Bˆó^.)ǸÓÏ~–jýÅü4`qŽÌšŸš¨0Cº”‹ì„:Cuxy¼÷Ò^ù0=¬ÍçÿÍl§œÏÉ”õzºê Kïå~ÍLëºj1L©töAeìÒô'®7O›Á ×TBOµ"×¶nƯM‡™ôxk0ý#Õ <6|¼•LºË Ak8Úƒ§ø–“öÝ/„ÈÑZ"IÚRذ©Ùk/âSƒE#^h)ôê© j<žâ€Ñ BáÞFHƼÙð,,7·µß½„µ)?_ä.<.¡âO¹sس6—x„1Þl°“Ôí lc)÷JïöP›Lá„óSιò°Íß”ÁÂä2+· ËÕN¨!Åèg]¥)¼òÇÀûö¹iCÖè”HP~aêÆõþ7×~ÛÞÛJ˜Ô¨úˆà%©™Óu÷‚˜ŽÜ›Ï=i³£øëw˜fKÜ%Z ‘µ¦zª¡mᜣ%ë¢]ús@ý#Õ <6‡ñV*i¢Sî5!íÁS|Ë ½¼"Gk‰X$iKaæf¯½ˆO Œx±¥Ð«§*¨ñZ2|4th°}T¡–B¯žª Æóà)ΨEú#AˆÀ]ú󸌗Ç7“p¢¶Êˆ™:uQ°´"!:é ÀÒÆ¦©®½°â5oÉ"” §5©/÷Ë…þ‘£µôLˆÜ°©Ùk¡ì÷°²/?vp±*ÜRhÖSÔx4EšôG&Rõ®5¶:n|÷NÔœ´pND ö?Îo)B4C˜C 7r·ÇO.»àïk €‹›ÔUt|6¤\ÌÏ7hÿ*œ„“D}s’Ùó÷]šÚ+¿ÍRoV¶ÑÍ?¸õ]m/Ü).ìuæ¼û-j1£ÉõÀ­uØšºëi„HÐÖIñ9†‹”_—Mh]÷µÕǵ’ng,ðñzB‹y'Šsšwþ‘£µôLˆÜ°©ÙkOâCƒí£ÊÁRèÕSÔxéì71ôçcÖ Û,ù[Ö ¢ÓêwˆBé "f¶´-ˆÌlãË×¶à`¯bd gã”Çjzú‹* ?VùïWɲU´!ÿÌ";­Öp[3÷³ZìPÝ´¥ÊpK‘GM q='Xõ—4öG•w ”ôÓKÞ ¨œ8ñXÛ²ÕÓ©WÛ¨Íþ%ß¿…þ!…mÔ±®9tá×Ù6«‰¤^ÑþM% v&ÑtW)ÏÔi}ïHk:µñ]ÔŠKÊÅÃKíS¤œBÚ'5nMb¥øâ¡ÔEZú¨t_$±Ömé-GœÈÀ¶˜lUͽl‚"n’>›WY"5[ñŒ;0ÏÔ,ND̶¾k4%®Å`nðfWú‡Ù w)Óõhþ¶Æ‘œxçLjŽx²¬ýÓƒå‡÷ËqU”û ìñí­üÙ’g"ºm|ðÀŽàKÒô¯µQ¼Š‘)œS«éeè{èVÆ5A˜}’J §FYBöY}G“~›†´ þAj§b&ÊèaU±•e oéz'¿ø§/Y‹ïh—Ödi¢°É°èmƒ Ó‚‰ œýAq¨Ž …ÄtA}–n¤U§ Jå‰jÕÕrµi©cœR]ýÑ'2²-úFq ë'•»†R¾Ó·è’ì35‰SG‘I[o1ZÇÇCAÄê…-”5†hþ¶Ö‘_ñùŸþÜ”èh×÷Ï3þlÉ#ˆè¶ñYÀ3‚å6ÒÏœ¡y#S8§÷"°šÔ ‚Ð¥ÚÒå„=ùöjá)“u„„לªñ—“á“om9y4þ©mi5ÛáÏ–xôjÛy‡jûÏLÃç¡@¶µ_g>õ74ïòâP»‚—â{~qÓß<#“mó,÷f6£G0=xz›'²è¶Q÷0²‹Î ‚h"WÏTÆwuæZýZ´dX³íßâ¶3®å#rÍ·w…â*“utˆäú¸ÑbMnî{/ñ4õ IDATÝÖ¶Û•¤¶Ò½V=ñíÜã"I’ùîÅίR+ÔÿQ!™PÔ1’~e?~;P*Õ66¡:Ÿcêø¢ØEiÏ#ظO—ºJÆU¿âvGî.‘õùÁtüÍs2Ù¶õ#ˆŒ{ÃßhÌŒžÞæˆ,ºmÔ=¬ k`A4,è‰f¼kf®Õ¢%åšmÕâ¶O®e‹¸eüW{µð”ñˆ»·œ¼ÿïµ/ˆv#Á·Q³õþµ”«Õ.YñÄ¥Ý•Š‘Ë«Ñšù_“Tv§Ùãù‹Sç3vC±§KÝí©¤Dk#ظOsn>H¼iÄÕŽh=•<ÒžtüÍëA† ¶mý"Š÷Ú÷7z3b«·íGÝ6êf†5²‚ÈsŽ‹¦U›šÅ-“Ý Êk•Åa»Õð”ñ†B®“ÕµÙDKÓ’;iÒO¾œ`J'¥Λ{âÉù¯¢|s³aó*´æQùÐcãÒÏŽ´êú{P>¡:9 ·ª¶‘ ¢··lܧ9;ÞH}Z,#V»ye_–ui]ß½¾Æ’tüÍ[2Ù¶õ#ˆ(ÞkßßL®Þ¶YtÛ¨{˜ÖÐ ‚è¿yjÊÄâCïšlõÑ”˜jËû´/E&AÉ3(c'•¯² ºqX0J?sdÛ™žó9Çb¹âoÌ=q@Ì ¾mS/vå\¹qšDìü}Ï3Lr¢Ï[ÿ &¤õ€c7i‚mñc9ùIeS»È¸è¥T#|N÷QÛÀÓ¦ôé}rвWr^%ƒ¸ÓîõÃÏäú:×,uS:þæ)™lÛúD”^àð7FÓc§·9"‹nu+Ã[`Rõý±š¬óÔL²š\U[®‹[z³ý.Å+þWºº‚(^'¸£K?‹w'qù÷ ¹1)4÷ĸp*ÙS äF%îyk6‰G]™ÑvNüý÷t*{øX˜oKü^HÎg1¹+*þeøHÐj¸Á”>Í™"·å{Ç·câïmn w×?,¹ào®’ɶ­ADó^cD05¸z›#²è¶Ñ÷0²‹±öQ\,û.ë<5“¬þs\¼)?¦Ø0âä³5/ˆÂÂj ¢ûyändnI—~È(ßë•?ŽÌ3òÄÍ Ð>¯sILÕ+/Yä?3­ÇoÛSÅO‹çó¯ä_Dl5,c± \Œ`jŸîŠBÑÊŒ„±©N¸ÕäÁež+þææ]fÛ¶~µ¸üÁôXàém®È¢gújv¡X`_‰·”þOÞµ5E‘dá¢;ÀŒ-DZlDÅeD‘Ee@ ¹)rÇKë,Š@(âxcÇË8;‚ƒ—„pCcöÉðeŸy"Âÿ¶yª»«3++«2ëÖÅnFvUuV2ÏwòË“çdn¾5áPI kfmÄõ/WÌþç ÑÛ¬"@ée c~°†•êW°¦?#§‰¯ ¶/èÆœÁ?§Tg«W¯~„_ö›~Õˆ¯ì“I,ÚÀGsûô¬óéW¨°× n`ƒütÁ}ó±„Y¶ÿBÄíGúÆE0 NzÛ5²hë"ö„². ¤ Ñ=ðÎm:E —Ô°fv¸þ_Ì\.Ü[jYéùeù™õ>Õßß3ùÞ+«†¦'˜„øÂ®–ž–Ç— œéO*,îÒ{O|ÆwNZÖÑèÈßîŒVŸ0x[;S/üÜV½rtybC¤ŽuáÔY<^ÐpZÂ~±!Ò´E¢DjƳŽB£ùY+ †r€Ûªœ&¶£,¬ên…Õý ’Eú¼zõ„*êWMÙ×á·Ÿæõ©‘ñ±·á«Y$å.¸Õ7?K˜e³(V¶ÊKÛ‹‹Úùeztzä0qk¾¿MQ¾ŸíÒL[ûòÛ®ïüÑ^GúÆE0 ŽzÛ5²hë"ö„². ¤ ÑE6Ÿÿ!\RÚYi†¼!4¦Ïž·4§sjb2”$_Ï+Ÿß¤Âæ{z)H¦R(#㹚7ô$É|“y…ä×ïãÿ¤DjÁwF,ë¤ØÃo©gosÉûÛz¥(ëM©$ÇH¥@K·Y÷ÇŸÒŽDl §E"¥½árŠHPæ§rµ(ÊB ršxÉð†@ÊTŒ”ÏõJ=‹¥_¤ÈM•Ûã·¯æô©†„ÌÜv¨ôå÷0|ýÑ7_K˜eã¾­òÖö*/ºÓ;¿–_Ð÷þ›„›i¸¹}‡¢ÌjBÜöE{éÁ\,8êm×ÈZäNøO(ë‘@–åb¥x°éøPؤÆÖerÚgɳ‹Ôx_°‡åÇ­Å™Gω©ü©1ývNg‹=!ê‹ ÔAÞP!TÒkKˆÔ­&ÜZuï:ïË/ÿÿò²/úD ³lBdn«<¶½ûˉ·5,fÑ—‰ÔkùÉlpCÒ±GÚëFßXs±à¨·]#ë¦a•Eä e]8È¢ãwÖl:B6©?Q±£¤tËÚÜá·7G«4–Ö lüÓ–sC£ 9]Ñçò'µë»=£ãøCQœeÍ·–;×1ä¦ß¹iàΕ6u°Ö4iÂ\©„ÉRÉqJÁWßkÇÈD‹:Ü«ó:râéRoÿ6^‹º"D‡æ<ÅÓÄ5ôB¯Œ&öbéJ‚÷bÂŽäI÷äÜ.üù‘§oÎÊç"arü6ÁLŸž5`›ú˜/ÛUß·MÍqªoA”0ËÆŒÍm•·¶wFs=íÉk‚&ÔñY'Dñó¥?D!´Uô@ÀD…½àJßó±à¤·Ý#ëW xBYž’„h­¡3›î„«ÐI kfú"ÙY<ÂGumèÝ]^ì´…‘a"À#79•ÒTmNÛxá_¤èL¿æZYÚ­}T ¹ybPš&f¼I˜¢.˜µiÎß­­øsq/idš0˪ºTX§,ì\ùL ·X×9&9ß䵨+B´Íh~ê Žã—øz¿„&NUìJ@EAÏAÅàCo¼{ó•h?̳_Bm‚·™y:È R®ù2 ¡'àA¨´'«—úH ³lBdn«<µ½/`››ÖdôPçÝŒ&M‚ó Oñ:±ÙF×ÕdÆ×Œ÷½àJßó±à¤·Ý#k€·÷ m]xH"XÝùϦs…OjX3û+õü§=™Gó™#ÄÜ! ÊiR¥ÓZøøCz6S#Dˆcý˜É2˜ÃPn^°#D…ø[ÑÂô@zŽ 6оfþP«:¼bSG–ñZÔ[B4…íÛÝÌå ˆ ¸!¬‰uà^g#r²†o÷~ƒ)k¥w‡µÔGÚ—iHýhjŒæ”t›§ß[µA fú4ßX!®!¡÷{?~y“~#¼~mÐD5e”®ÿ4•-e|OŠPäårÐ,­óÃTÀjÅŒTƒ`¦O' Ë“T.„we‚n«!~¥¡5ªÉ4ã¾e‹…G6!*S%,…Û{Á°·Ü@zÿdP"-qö•îõüÑ‹År B$ o ‚-°à ·Ý"k–Û…ìsë“@Ž]LtW £Ôq}#ˆzÅŒ*£É5P;`”áË÷º …؈jNˆ×´4=O/Œ°ÏÙ:°ê:@\W’ù¢`dž°€eN±«ãвºà!J@Æî.­á{›°ÁWõš˜†käîÃ,o Ž¤ód:îyöÒµ¸ H-,Œ4vMÔÌ®¾Ñ"-*reÚ 3}zÅÒ« |øaØB&'†Æ5}9®ýª'ú–-BÙx„艌¥pb{‡ C|[Z—ðÈQÓsÒ_µgçig…ï„H@ß[`ÁAo»Dc]¬ž˜[žR„¨=†Pë¦ãC¡”ú“¾ÏÜŠEþL Êí† LrPY"–ß  ¢o„gñªÉ©l.C®&¤˜%Œ‰ãÕ²§ØÕqEˆò|#DÊWÈX‰ ÆØY€û¶Á$×ÂLÕ¡¡¡¦ëÚv$•{³ ‰[À¼—´< b“u½Ž4ºbþlãăi×!8k¢Í`§ƒZævê#¥K}Ë! l˯À1/EÛ 0³}ZLMóër<9c-uQš6²‰Ëô-4„(›²IØ*om/*«RJ/J:%Dë'ɲî†Ùé›)‚E± ÖÛŽ‘Å·.v‡´. $QƒO+èþ–ÐJ ³ñ6÷ÿESØ}k”ð¶ l3 èå‚„èfjsz8¶£]€-Q°‰Ë:œbWGŽñ[ÔWBô3»¹”­&v<Ù”>Ãiðõ†»W>‰`Rõ»õw^üÕ–m‚Ù>…Íþ3Ûjïÿ/{çöű…ñaX8½3 wq!ƒàåˆ ‘p@Q#(”%—à… F8‰5&ŠbÁ³$ºâ£/çù<ñ×®žkÏTUWO÷ôåøý^˜žfWï®Ú{Ï×·j)W/˜mJÎôG ··7Ž7Ç";}ÓQ«Ì­½i"ãPëÏ}•öØ0y¥LÐP‹…’”Sà0ï°`X—Á™c:®z˜L]òKN¶|RýŒvH’ÊæÆ›c‘­¾é¨UæÖÞwiS™ ÇoÙt‚ âÆ#ƒsAp´³Ì,vuª;©Õ…Ḡº,0ß¹óp°×{e™N^ü’>íª4•D’’Lu"ð»%QA4®œj¤Ïé@±!s°.ƒ3Çt—JžÏÑ=ÕÑç “º´¡\5Û_–ñæAd¯o:j•¹µw5íÉ´Pü™2ËQËPÝL‹x¼±2X,DG[³5Š×¼ê"VwR« ÃaAtî $½ô¸ '{­\3K›á¾¼|?±ôP()=wUsL}+,ˆÎ•‘'eë±I!ADTxEŸ âÙðŽ86dnŒÝ£9Dõ™·½hGâW媜-¡¥D’®&gQ»Yʺ·GHž¬V5'¹ ±^M–Ùf0eLŸÉ»Ï¥ÊÒܪ’E~a[jÙ¾o4Þ#ˆêw'£V™\{‰ú§J*E˩Ղhž\¼;?/oì ÊáÑÖhê5Û7±º£®.t„Ñu“æ(±'{M®™‘gÌVÒDREì)è–ë’XR^”?–ÇUù’$,ˆÈú‰•bº ØL’S7—’ÏgúW§5φÙ1|›“ºZa÷hÎѧ,É ‰ÍVÏCt8õ8©?œöÐŒ^ÚŽHR)õÔÏ?R"rúIʯˆVX˜Á”1%§O{£rìõcÚ„¾&AæÍ½›õo¹l—ûŒÆ›C‘ݾéD&×^:Õñï<•xàÛjAô—$e¾ˆ€oì É£­ÑÍk¶oÌ5¼êB÷@T­È‡’Þ]nÓCÎö::áŽê¥•d¶Š³äÑAÿ÷Ïå¼JJåVر%ylý»ÚeÙ›!ˆúÓfZM ‰3Œ[Vi63Da¿>¶íYi˜©»|*åô̹=86Lø6Äëò3ÊE3¿OóÚ»Gã8/“ÓU~¢§Î·ûÉ»0"q@ªú. œŸéŸ^#ÃV6du I÷ôH7N¶žÈâtž*f”×"Õ«è®,=ß!MÿÞu—ÜhÑóQ¬¬Ì`Ú˜’ÕP Åão$Õ4äÏÕ¶É-¼=+ž–¶O¤{>7»‘S|Ó!ˆÌ®½äX£¨•¨ŽÿžÉKNhµ º«üÊü)oœ æåB6£ÍÏ,Š×lߨk¸Õ…ê¨ š¥Lïí|œíu2èê}¿¯~½OyõJÓŒXRnW)¯,¾WAfPïO&e忥Þ=Õù^eº±¼'ÿøöMªTò˺$6QžM|Šö1oô¯€ âØ°áÛÜPV…BUeÒGͶ˜=êéØûðù7%Ñ×°WU ÜhŸ4R~Šª{÷õV).Ö‰Dâ@ô%óUbóã–ÖY„#Q{B'ŠŒˆNÊ”š±Tö¯øIì¥÷E/ûÀÊ ¦éöâTyu™âuîÎtœÛ£u8Ú M/ƛ݂È)¾éD&×^ÏÏJ* 7‡ ɇ‡“ö¢M%¢6Åâ“Á¼\Èf´ù™Eñší{ ·ºP=DÍ›KB g{M®™©¯˜ÉåVrLÏ÷· %¥g4œ0ê=וLÊ™¢:t[ùJýúy®Må7ª}‚ˆmÃk¬J®ÑDÌU®w§ñÑÐ@¢™¦¡H¬Qo<ÜeG>ÍKq¡y¿‘¦8åô™êËÑ>°2ƒ©?) ÉHœÎáÆ}M)ó²ÿÛp¼Ù.ˆâ›Adníõx^þTšX彯óV ¢h•Û‹7® bçBV£ÍÍ,Š×Ù"~u¡y (ˆÈmé=~Ëpº×{Ó¯˜¶b?÷{Z[”IJÏÏõÑü'Ã~åÙOAA¤DRiP\yü˽…±oC×;µ‹ φ+cx6óÃ1Áï­z-УGs%ˆòÚ»#ÑÿþÍ©ø–kÏÏÚ4WËv}u¬7›—_j‰SNýŸ—Ǿ¹ZîK3˜þ“2ù®Dq®dgnoínY¬ˆŽÂó÷ÆãÍ)‚Èvßô"sk/awMôT÷XMò2½Õ‚ÈGxò¶Åâ/ˆ˜¹Ýhó2‹âu6‚H£ÂR<Ðõ¶{` ¾c×F.Œê4ò=]¯»iÅ=¹ýž®^Ûiã>ê{µÕõ¯\ö¨n&¦–×g /uöÓ¾õ‘÷‘—vF\ðבÖÙÀkÃíø´Ô+W&fº—#~gög¯*;»w[ ËÚ¦ú–/üžÛx³'ûfeí<ö´õÃE[§¥lØ8°á7n3s!ÛÑædÅk¶o\¯¹Õ%Ã"|ñ@‚‚DD€ ‚  ˆ ˆAA""@A‚ˆ%ˆ¾< ˆA„.Q*>€ÿs ˆAA""@A‚‚DDÀì-..îB7P‘€¥‚htë¯áõŽÓ.Û?wz „Ø'IÒ!g¹´¿»¯µ;¢/'¦®ý²(ȹoæn'›ÌbÛp[+˜ù{yéUã~Ó:"‰¼9ö«z‡íÁ‹©åÅÓŽÌÎÓS³K×::Q‘¬ ›ÜÎÆ†oVyÀ¶Ñhšõ6¢‚¨r³L"Ö ¹(>ÝéµôåÓ¨SÖ5Å„{×ÖÛ„lXL+ÿócbyYYžvIùñùî”äçŸÌø¶c@‰7ï}â‘Øy¥HYóäSШS êØ!²®ÎÌÚ „Á¸Hpó´îì e¥TdÖà­Éí9ö«z‡éÁ®úW±œk³±fÐr!r;T¨¸æ}p½íË)Ÿ6U¤lj߆Zß8ñf¾zm4[£d=ÅFL5ì8(Å)»2á’èt§×öÒ*јUÖ…Tß­í°a±[ùŸáÄòÊòn—¢‚¤0¤‹‡àñäÞ_êŒÄÆ’Äš{FUû1õ¬‰l‡g£7³ÞQÂ`X»¸yúýÑĺS&^‡7½4²GŽ½ÆªÞazÐp?/¹f0`WÅ åBçÙò”¬š‚ Ê)ÙÔ® µ¾ñâÍttÛh¶–™õT1A´W1º:X«ü­qItºÓk·"I*9dTm&–›Ü$ˆ:*Þ¦Œ‚èO·wLùÓÜ&‰ó›<åÈ«Çàõ…-¶¸ang+AÄØîO>»xy:Õ µÕªž0gôN?‘ÒJ#{ä8cjQï0=ˆôF›8Õy6ݺBË…îØMaqô„ÂÕ!ˆrH65„kC­o¼x3ÝÝ6š­ef=ÝFH‘_¼Òö›äxm“X÷¹"8ÝéµÍ|>£Yî±gñ…C A´cnn®þò¾Á¨"ŠhÚp‘<&e?_Yv‡ ôH4At›|wöýißÂÜ[ùÓ-‘H †åÅð« ot$ìCcŽõ‘&$Xô l‡m£?³îPC6úA³xyZGôPñmåp4hÒI»’T®.ì‘c¯±ªw˜œ%+Ž.-øVw”ÊC¶Ô j.tÉêÍ{t|¨À÷[à Ùpð )ŸvT¤lj׆^ß8ñfººm´[ËÌzº ªÿ¿>%A›]œîôÚ)œ”{ì¾ú«PJ¶T(…ZÓ†#ˆšË¤Òø¤«²ºêq‰ Z"Gñ—3 ä|+[Š~¾I‘Ÿ D⸼ô8zl!"³Ãgÿ‘[ _ž`o‡mc8³‚'ä‚£mÃimšœ9nî}¹u^ið†ª4²GŽ3¦õÛƒÑîHî“$ݱ¡J0raI:z,þy™ø¶A”3²©!<ƘrâÍlôÛh¶–™õ AÔ)ï~OüFì‚jYý»á©-wzíAä› K…Ñ=ùW`+¶xF>ö-r… þI”àíÎŒ‚Av¾=¾ð+I6íH,¨’ûðQl¡Qþ·&C¾í”·ZI[ÁÙÓÆxf-¥\bÛðZ#’˜;~»dU±ôPUÙ#Ç^cUïp<ˆ¬%n7¿£Œä‚¯1íÔ­/¤jÚP‘²©!ö˜2ãÍd²°Ñl’õ AôHÑ—ä¥UĦ;½v ò ‘‰E‚¨G> Ùˆ-ÊY8Wë Aô¼Íò3¾éŒ‚!Ë»²™Ä¹ ÿH3§T§w{õk5ä9 êÅ Îv˜6ÿcïZ{¢Hºp2;ƒÈp[a¼ÑW IDAT„ˆAa‘‹kä&ÑAî Q_`1ø Cäfܨ!^>¬›¬ŸŒ_ö?ì{ëtÏôT_NUu÷\ºã[_t¦8UgêÔyê©Û)÷žE[dæ¦P†SÚ#ØUMóeˆ·„ ÆNtЈ[ÏÉVëHjp>'{f¨/èÒœYý?!ÊTr‚!9›êú[š5p #,ÍÂëBô;KQfm~¸ÄîO­ýCˆBôãu„¨x;5 ТëugˆfëoOŠ6\j¾‰¿´<¾61rh ÷ô(×ÞŽ¾µy¼}šá”ëÙ¾0ÑpêÛÉ+ÿ-¤˜Î—Œ€/$äg½»m {"ìŽ|Ñré§C76£EçYfpêAe\{V=¬¼‹e8¥u¸ÞD4¥;JK”³Ðˆ[ŽcÓ,µŽ¬M4£*ëù‚>ufoÐ É6RõôôÀúÝÚÔÖµ·»Û‹’ˆËÇv;v—ÙÓoC==ñPèÏÝŽeey½ûqÇò¨›_ãC82r6Õõ·4kà@FTš…×c22„¨ˆU}šè*eÁ÷“?µö!ú¯é‘=BÔ¸NÈ^ÂV•¤²‹¹eNć€Kýú³´K‰kØÍeäÐ:CȹhE"Lá”Vð¡JË*ÿ,µ„ØÝw61„écˆ~1Ï|ž$äDØ÷©ÐC-§.V»±Y6òpêi³?ZIzÖmÓf± ž3KM:˜Þ^ÝÕIH[(TÇB#n9ŽM³Ô:²tå†t ¾ O¿~CΓm¤(QêQuaâò\tM ‘BñÏg¥í k Îí—g^ÐXQbÅůq‚!<)›êú[º5°/#(ÍÊë1ÙCÕÉiÎ#ïz9ùSkÿ¢Ý´Ö>!"A jèÐQB.¥щîjr!»/W?©}ŸNo¯¦V>ídçXhÄ-dzivZGVƒïôïîæ *øƒçWšÝî1Bd)¬ÞüÁ`EdH‘îõ2¥õu¥ч/‰bZ^©q Ȳ«_cCÄ2›êú[f4°##(ÍÊë1ék÷m¯Á‹/éÿÏûbH÷§Öþ!DQÓú½MBÔ²™ŒVô/E¥Å!º®ÌŸÊ«Gúª\Oy%tDYtdó=íÏ „h«éª´¦3Àš/­ þ<ðr~¤ú²’5 ß:íþ})š½wLó¼4˜»î'–Mן]>p3t6 ±î zâ CÈŒ».dÖ £"¯ž#©ŒgÅ󨥂22hÈ€yõúù+¯Òr!b­˜ZøO„…FÜr<›f§ud5€]›¿=IˆŠÚ œÎ„ÈR¨QdÉ[…Š^TòÌ )anÊÕ}·ã²”¶ÂâÓ¯ô» JÈÈfPY8ý1N0DBF@ˆØþ–! lÈðK³özLF.RuDÀ¨YYû ´vÌ/`øSk¿¢çºMX„èèU²ORì(YbÎ1+ÒËìüé ¬K'C¤î˜!3Sua¥ÁÕ‚ÂfTr3¼®Ð-ÈÆ+Ùø>HO|¥ Ö­Ü…Ð8Hq@àê¾Á™ü½¶ ì5 N=¨Œ[Ï:d"ëd°:±î …†ËÔí…v÷áˆè^‰%ÚÉÚ ·צYiI º„œËTpÏà8£7ï­€'¶‘B%D»,QŸ"©¯6]€!‚`4‰@õúðsM„hXX/SšzO®×Ùºƒ0nÂÝ—Š:kQ8@Ⱥ 'NŽWlIý<=|ÐöîþöÎáVµBs"%õ`2.=k“mg‘Œutˆ÷²©lHü [/u®}:­-^³"D¸å¸6ÍJëÈhð¢‘fü’;¨à¢@ÙÄ+A›m¤P}ö¿šˆÔ¡-L¨é?I¤#o –”Uÿ¢×E˜q'"!Ã#D†þ–! lÈðJü“‘#D‹°?R1=ÇF­~‰çãO­½Mˆ˜Tº"!Ã'Dÿ¨^7kM!jHÓmÃEÿ«FB$&7 ìPtQ‰:Ò¿ã kXÆØï(œ_¨+$dâ„Ý›CzbšWˆØÕ‰R&ø±\=zwž‡ ÊeeœçJ/›JÚªÎ0ÂØMÃÌQX=!âXŽcÓ,µŽXƒÅÓLž!DÁŽŽ·Õ›ãJ˜Ú³ž‚6ÛH`u†É:Ñ  G$è®ìƒð/’Ô‰:_¾òÍwí‚[éUH/¯û›§WˆP¯wµB¤¼}v@ Ý=¦œ¶÷·ð§Ö¾!D}Ç22|BVƒàDHÅk!*zr!zéVUg¾rsc4Uþ)ƒB:Bt„ÔfYM)[1¤³Õö–ª`ü–Ú~j+§ÛkAO|c±}'ö#¿Ø«‡•qçY¦s¢¸ –3hòQû3ØaèwÞ%ù„DCÖ„·''K­#Ô n{¾Ë%TðVn>…(3ë^‚6ÛH`u‹ù£KTáˆD»[€µ<,]MŒ¼7´fSσ» DN0DB·©©¿eH2xîõ˜Œ ! BÔª~øfÒ^»Ü%jíuBTÑØØXð¬YN†Oˆb5$?qàËC:B´Ô1£#_ `š6„0ë7¢ëºÒ =¬MÒ;›DÄ0Ö£êÅÛȳ œ ØõD«›ézªbv5u‘I¶VÆ•gÐo‹‹ädИS7ÆSEœ#dÒùžYå½]!Â,ÇÍÉJë5ˆÁö[[,—PÁ?€„×Bû¼4µVû–„E¤X€Ò@]3Ð/„(¢5[½kBäC$dP›šû[†4°!ƒçà^ÉÈ"8*Vž²Ó<`ÄÏO-©ª±í7E=1lˆ…!÷z¨d:•º,]Ï)©WÄžõÁœ—As ÏeƒÖ%N[ãP75"Är‚œ,´ŽPò—¹½Ö.ˆY,gãöxƒÙC «K–„E¤›†]¶PXmL%DUZ³»&DN0DBµ©¹¿eH2hÇë1Bô³î>\c«õÁˆîO­0BôœdkW‡¤ìû’ª•G-ʧ|…è® !BKK¦ÅÇê{f¥‡6qˆ3(÷ˆ¶D=ñ¦!Zê- Æñtp.Aºž9s('žì%¤ð¬¤ šHF™">ÊÞñ²HMtæ_õLK“tâÿþ!°œlNæZG¤D¼îmÊ-Tˆ|aÊcowØF œáˆThX†‚Cæ“¡ô"'"!ƒÙÔ¢¿eH2XÏë1 B¬ dƒ=gÿ}ì$jý£¢9ØèW.ßk„¨nµÞÕ¶>¥€é±áÄË„/é+ç7áèjá÷ô +©§8=ñªn ïéDÒfÀ0sF¶ž01öuâYs¦…&\†“3£ggï\¢Qb™žò-'“±Öi‹MC9† ‘/Œº}´8;„G œáˆ•Ø!~-ù>|š ‘# Ë 6µìo™ÑÀŽ ’ÃõzDF‚ "*,Ðϧ=? ûSë†8O s¦"˜PžKaÉI ˜¾·ìI"¼4]z4h8'àr¨£Ú {"'I­ÜswlØv˜5aÙzvd6…ÄžÕg:€ËpJ;HÅ¿ƒ4¦û#DŒå¤s2Ö: †)ÏÈ5Tˆ|áØ°÷éQB„#NˆpDÚ7Ð÷?“N—nBäCÄ2Ö6µîo™ÑÀŽ ’ÃõzDF‚… W LO6x1ùSë…"¤q@0k„hBþ¿8LpÌ– DxiúôN*þÇÞ¹=E´a|€'38œdA-D¢°Š"* ,XˆÆOQ´\•EѬ'öPîç–^Y{ãõwe•ÿÛ×0C2“ît&ÉLFžß Ãdºó&ý¾o?ét:~SîÅéêT‰’ã‰kšGÉÇ…¦4‹Bëò™ÛºLâ‘E0*Z†SÛ„vÑ£}ÑiAT§³f¢ÑçÎß‚…|IúñBÊS…‘ z’#DìLÁDìŒt'fñðäÿÿ8!ˆÉ!ÆetÛ”áoÎX`¦ c 7êeÑå_+ôðiªIO«7 "¹B)D;4©ä„êi¥FÕOI‚ˆ][ çÅ9ê¼ÛU¯Xàxâ MW±ÛÊKã¨R¼è~ªDÖú1Œ¬ßâ_$Á.éöÿ¿E7”•ÜÎcQÓ©tv·é_?¿å·8xv¸ª—¤úŽÔ§ #AtÝ`»K;S°;#¢ÏÖù4r^™&f· 2ŒmïJÓ¯É2ºmÊò·D²˜½V3¶p£žQFdÑAIÛX ìB¦…Ä”<ÒÓêM'ˆˆNS²|TÑZº¢?<¦–0;4«iDœÚ´ì6uG†ß ÐNœñDrJK"Gp:S;“ÄaIýº,±ýhË$Yó$ofõ‰–áÕ’¤ünu·ÚeÓÉÑyÊL¯å·8xvxäÑ1Ía¤ A”GŸÝzç~AÄÎlAÄÉHtý¥÷©¤Ìáµ[ÅöSz‹ößTÝ6eû["YÌ^«…,ˆ‰zý2"O™ ©ŸzÈ ÅL¬w+éiõfDïh )Q "úMÑú3ÈÞkš•ƒèeWIäùœ$"ˆ8µm «ÞDÞO:ª€øj)¼NÀŸ ‹YO¤“vŠ•î±ó¶Å¥˜}/U³Ôdjæ~8e¬kzkï°Ëpj£«É­/#2\Bšþ²Ã‚(¶åD¶8{vØÜ$‘Ùä†T ]sªfèì¼.[‡È\¦à"vF¢!Œ4×Þ@téÛ‘Aù*Iñc’†y'>¿qü-‘,f¯ÕBÄD½~A4C—P(®¦‹(ô Ò– ¥Ã«ãÓÓêÍ&ˆFèÚþÛ}jATFn}´Ó[Gv™¥Ó¡³+*Ï5“M/*H&DœÚV¤Œ¡je@¤óbÀܸ¾ž RÆ—.öÐ$¹ æ‰tîåÑj¯¯fö,õ=™»?çѪêÐÉ åªÁÖ~xe‹,ÿA’8_ˆ—áÕF'¶–÷ú}Þî-™vÞw‰D¬–ãmIÎÙaZKÿ¯mÓëAtXêiùEñÊ]l§AZ²â¦Ôf:Sp'#Q•[0Hõü¯W²6–´]ä²´øÃT6åú["YÌ^«E,ˆzÝ2B¯î “Ë%)¿üüî'©àEZtééiõ&D¾‘+æuˆèüC©þö±Q:Ö¾üA-ˆʯ=/:J“מ5‘uˆØµ}ý¢²öXqüÊ¥Úfk‚¨ XLªR¼î– 'n=B¿) ÊX›õß#¯¦”Q¾þ®‡‚~Ÿñ~xe‹¬{úOŒ°Ëpj›¯•[(¤¬¼<é” b¶gK’ÎË‚½:³E·¥&Uè"JFOíúºÏ…·\•ÚLg ž bg¤‘ŸäÑïÐö¼ôë±f§?‡\’›à’©2:mÊõ·D²˜½V‹XõºeÄ^îÚôJunœI“>==­Þd‚ˆ¾Cæ­Vy«6šmw®7C=ëçD(º©x¾ND±k»  ïÃó&N® ŠVµ|WØûG7ô,Zk²˜wÍi»GÆ~¸eЬíŒÕzØe8µ]^ÞØrÖ¶5+ã³åØ[’uv¸YÕšzç®Ôf:Sð'#M~—Ý”Ùó³_ñsH›ü}—©2fQBYÌ^«,ˆ»Q®WFLù¶¶×öÆÀ¤/]HO«7— ¢—̳ZAäóM=TÚ­ö³W~ôI5 z¤M¹ˆŸr5~u»¶¹Š#‘€(Ùßk­Øèº^UL™ñľ;•7Ìn±úïÜ¥Òõ몎ݪ¿~™"‹v å^se8gÇû¤HÙRüÜFçf"–ã´i’ÎÃ7 "ïóŠ@ĦúÝÿuÛý¦3W±3’Ï·X¥¼†®òìFs@qsÈez»îÕVSeL ¢„²˜½V[?sP§Œ  "Ì, Þû¥3Íúõô´\îë/Áë]iú÷Hf¢µm;Ô4>ØTWf‡^.&¾V}wÒ¬'Öœî}2µhË´SÙ‡©' yº•1öÃ-cod±Ëpjëþ4vöíì–ã·i2ÎË‚Š7Šû¸éÓàÀó¼Éo&ïp®DØ©¹£éó­CÎKBN)ë:ÐuÙg9ïù["YÌ^«m±@\|£@‚‚DD€ ‚  ˆ ˆAA""@A‚ˆ%ˆ6D€ Â)‘æ_€o"@A‚‚DD€ ‚ øføuÇþqÁŸ> öà„ìa(ôá4l Aôó™Žê3¯ÓíøÜnµ¶n®×ô·àJK}§{ÿõç¤ÚŒbI’òÄ~:&IÇ“éo¤µÃﺎùú¯½á¦¹Vç}àŸ™º÷ý¾”Gɳ/_¾ücâç3÷Ö54ºÒ¶$µÏôìéðß­«æÚ4åVoF*HòéLÅŽŽ–Ç3r•A¦HBl'x¤Œã‰³ZTµþTJÚZ*Üß‘Nþér«'Ê%…‚ëy9é ¾LäËGòêÉU¡ßOdDÖ.}Ýf›!%ĈOŽ ¢ÅòŒŒ5sþ–×TûˆæëšßKäoóÛGœlŸï?.”÷3:>íT”ŒgÄ3÷«6²¯í¢eV»ŽÈV‡¾^M†kmóxNj ûèÜÙa¶Ïë+•ÈÊ|00-ܦIBß1?€ ² QëñÜ\e˜)ôk³ÑjF£8eŽÕb‚h麥b5m†,ÜmõÌ1IM°ÛZu}÷n¥ð`¦Æ¢rÜ/R ]Ò¶i€jÌ9‡Qã9Ú d›ñ·æ³ÑmûT_ç|¬~_ÚõÌ©æÉ¹X°aÛè¼CQ2(ÅÓ' 5I“_ææÃè—{Fœ÷âÛ<žN­amNfû¬¶”ª~^;+Ö¦I‚e@Ù†…(‰óxN®2κµÙi5« ?NÇ£kµ ÊQ*,üQþs8Mnð¸ÜêO™ÚF >²V_¶”‘¡8ù:1xT–EûE¤M{\Êl·GTä_¼âHT­ž— Î6áoÝSÙó §>¨ú~Hþ:kTÑ“íN ß­kïJ¥w-hv&JD:Âé$.ˆv½’m+C%äø5M¬mÏÞä"fûœYBÎ(1YÛDÚ4I0-€ J*¢$ÞãÙ¹Ê8SèÖf§ÕÌ2Ü8eå^]«…ÑZb¢{Úsr ƒ|ú#=œÓÝV_SÆE²OÏ?m}þ‘´É€Å ‹S)ˆÞc9µËãi|žE>õ ¢—㔵–Š€|2ÖìR¢?LPÍ—ôÏßîÒ˜ œk/´¶ªÔï :¤Öü;íòºµÛBM« ŸôääfÓÝ}¤÷ɬšzÚè¹:ÿÝr{I M“Ó?€ ² +Qïñì\eœ)ôj³Ójv^œ²ŽGßjAô…ü¾$¬üÞ_.>g5µ¸Ûêy¾ÍÛHßÝØÚbq€è…)DK%’Ô£\2 tPA´ùçjõ>zË(ÙÓYDáJbë8AÄó7½ªúNç*hù~pýó9òù3úè±t»uýs½¼ZLF”,IúŠùŽì}t'ijÊL{Š•³öz”|nuÖtlk"{u(fTGÊnŸ°t6ÚÁÖÑ-aã6M¢èù‘mXˆ½hdå*ãLaÛ–­f—áÄ)3÷ê[-"ˆÖèÅ|¤ü jT:ø¦«­ž§ªuŸ¡S-¥PÍ“£éR>>#qsì òxnÒa÷…4DK[¨”½²'ˆxþFoŒmÑ©l•t#¡È Æœ‡’TèÐÝ×mÿ@Œ¹ŸŒ( “êÞj¿úžcø<'iªË4ÖJR~dfJ79U§õ=Û¨Htfwš³ÃlOwÌÌã6M‚èø‘mXˆÝhdå*ÃLaÛV­æ”áÄ)ëxV‹"r[âÖ@çO̧oºÚjz‹iÌÖÈy™JA´¢z²‹\Ì "9•t¥ ¢y¡tÁã‹D›!ÁûàCHîМ‚\çú.ÙÍr2¢„Ô#ðH·9š³Ÿ“4Õefè8xt °Rãäyѳ>rÕ±ü”5mØ>qa¶Çc®L²àXÀ±óÿÔ]éSKo €GåÁãÁ0Àz„Ǹ(** B(ǪÜx «(‚á¹ò|>ôÅ.°øt%44v?møå}æþo[Y=ÝSUSY]=3Ý3f„!3=Õ]ù«_UefŸW—Õ†5h‹?§‰ëœMyD&7“,–NšÓ D@4úÝ58?8HKI|íl\=²2½áˆ³w¹ \lñÁûöÕþg+_J„hZn¸éï6[ɬ½\$D*{Ç–„7î¼ó ’8.úo|»€—<€Eþ«ëtÏç74¹6·Ù"£“|zèc·Hu#VZéÏå$½#y>¼t™ØÞÞ&(Á5Àï4G‚b†³`wàÊÇ}#w¦SŠ.•÷¶÷·?¹,!D$_\3ŒÃwÆ{)´u­üÞûS&w“¾—H-Ã*W¤põ팵V´Áýt\½—¢µ!ºÈMc cBoÄ˱äµÖoÙ°\¬ù¾ ,ýØo‰#e¿'móÑÔK!¥ã'fÈGŽ`gs9‚°Or*+ê¿°¡”!êåaÓ ‚¶ZoI$#Fì[Ø»œá.u¨½Õ>~¼#D±W¿æªxWóå•Ù¤io‹Déaé¹fìU’9ØÎªQ-3êŸ^r‚<~¶¼\EzØ0ªqÐäÚÀ09'…ÌÚˆ½"Õ­Þ·è—ÔÞ‘=^. OK§MP‚k€ßiŽÅ )ŠÉçã뛲$õpt(‘Ô]8UL÷gÚÔH>Ñ74¥¦b›a<¤JÜÎànÒö©Å£Xå†î¾±ÖŠ6¨ŸâØ‹h­Aˆ¶ ›»r¹9£-ù¬õâ¨bhO 3²7³ $¡æHÁVv¹0 B„œMyDIohnYqðÚ¸f –aSsq * á~²‹ÚÝ Ñ®Êä„hãïà`ÚÛ#ÿ ‘ÂÞ~Å3è€ÙËY· M³'ëƒå¼kþ{I1>§<óBow£ É·©à¦}±·Ù¯+îªÛA¿¦Q’Þ‘=^¾“#Û%¨Š;Í!’c†@ˆ>m®JzÉ,äžšH"Õùv–É‘œ¢ÿM'NßjUSÈ$Å8m/‘Z<ŠUnHáêÛ™k­hƒúé¯êìåT­5¬ŽÝaN%Ÿòžå³Ö [ÙºO'ÏûKZ ŽÞìNf^Åh鞊ý«‘a˜ªì°—¢ µÅ©ÒeŠ8Üt;›êˆ‰cWl¡>òø?ºŠ!D!â`á6w Hï||G¡i´*̦:¬¿ÿ£±}äõžs"!Z¡'ûíÍ‘zÚng“Œm@oЯ)* IDAT„tH$D {{„'o½"‡†,öÞ9òsÖ÷Š6½– ÷rß|NÄÍ×  Éµ9+DÌ€…øV®Ñí¥_µ¡R{Gú|8 ö»£Í[›ÀÕ@q§¹#Dr ÁÑq2aÚÑ32Þ\@«:+¹môó½þñ)òGe”!D’B=·óÂZŸ¤Û¬í‡xÒÚ´o&m/‘[<ŠU.HáîÛk­jƒúé#eâ¬Dk BÔ$,–½&Ÿ÷ä=!Êg­Çðîyظé°öœÏßãŠ-À¦RA']zÝÜe¹‘ë¨ëÜ k*æ~6õuÙ9ã[`ŸkGƒîü„%DWÙ3…dZšM³þRyÌXÜó$ò"åÄÿ Ñ@]M£R‹c£\ÐN’•fíó°_µE$D {ƒÀ ¿M?7l‚¦Cð³ˆb(>ô&ëbRTýó’µJÓ<Ãuè@k"&²M¾Í6¡<É5V1ÝF}⩽#>¬ÌÖ c’F›àÓ@u§¹#Dr Á¢ØZÆ¡0ô”–_úl·}œ3ƒÔ—ß×ÑŸµ©‘|ŸÈï<™ÂŽš“!+*íT†t½±x«ÔHáîÛ™k­jƒú©{åZk¢Y>‘zv=ÿ–÷„(Ÿµ—º+?ô‘Úo²œ…Ar)ñ¡œ¸[Q¹=öˆ²+!ºOŒfø¬áz6—ë ²l‡1½Õœ ²„èÅá(™©uœÕÐ€ÎºŠ–'N!DÆOEkS åCϼ¼;$…)으Ê0~¹Gû§¶‘[Ü€~½=ð&Œ‘ÅŒ¯©Ð4wûï%É™þà¾!sÊJÀZ…&ßf+ù´Ê…ÄîÃ>u ¢Û<¤Nµ4Ô õe3ý>µwäÏ')±iØ€‰Æ½´ rþ‰i ¸Ó"C¤°Ñvµ¹Á'˜»Ù+I{YB„!ùŒ=õƒÓAt÷-.XØ£¤ë%ˆÅ£X¥F wßÎ\kEÜOUØ+ÕZ'í&éÿrÎBCVóžå³Ö'ÐX€x%·§³…ð„áÄ8 qxOœ#ºQ´æ-Ÿ3͉$ ÇÏærLnY»áus>ÕìÚ¾}ûÁî (ê¶sÓ¢»n 0û³á‰±+2UìJïh"à®t·ç‡B„ÛÛ"é™ç¡~'š •›Hw=§™äßÛ/‚0¾)®}ó’nrC\¡M(ÊÝ`›ê.6§…Ê6WvÉŸ>Át»ÌÅ”ÜÍÞ»CRz{>`³%%Ï¢Ûag¦hÌÐl¸ (î4§„È­»X¤ „¨ÚÁ'ç­bÈQ× B„"9¢oðÇ{»ªTˆ‹«éÞLš^‚X¼«TH¡áÛ™k­hƒú©{¥Zë"ØÁxmƒµ¶%ÿ Qký˜èrCzD¬ó<äÔ «`–žŸ ›£.„(vŒºÉCàgs»"åõ||¢!JJõ鸆n 0ÛJ›ѸÉ6†Aé”âÝ(Aõ@ˆP{[‡ÊFˆNhî(¢/ÕáÖÇç£VT“‰óï@¿¼¦sû¸¥°JgZ¦ÐfZ°§¿²-¨n |RBm¶j4¥ôú|ÀWŸ¼>kè¶ ZP wšSBäÞ] RPBÄ”–„`LËgâ;L3¼î8™$D(’ƒÛ@e­ýÝ u—ô¼³xV)B÷³ µ¢ ê§*ì•k­Cˆâ‹¸>ç2ŽÁNi“‘÷’ÇZ¿Fg(#‚at:Kµ°ƒ:ĉٚ.„h…¯ŸÍí:rùR”0Åwé"³¢ÿ³»n 0S´V¢q!ï1;Ãþîñ¦"ÔÞ dQAØœ¢ŸŽÁÆG5ƒÆ¡1;K¥ûA¦·íQ­Í/™J<Àä¹u@ šB›+BÈ ìAüÕ¯å D·òèÐñÞé½?¾¡ñ!µÅÙ¹`Jï Ï‡!D…÷æ¶ê¶ Xp ð;Í-!r/ŠÏ %DLõ¡]ä£tør”O“„Er2ŽRÿ?E¾yEË Ìxz^‚Y¼«H¡áÛYÐZÕóSöʵÖz¹ë7Ø GOT—™æ\ó‘e–ÏZÃäC¾ú]- HÌÚáôæ$xÑ&Dð¤ú¿œ!?›Ûu¤B_o]Ê÷X Ë‘HdÕhÙt÷}§÷ä†á®A…kô¨š•„(j¬„òœöšJˆP{»O‡3;dáiµƒƒ ¥®;Úç`K><óÛòJ¡§¯øï%]aÛnò ˆŠ€¦Ø&°" ÝÈ|r.ŒVʸwχ¢‘‘‘–ÉnZ°&ò'½6Á ®~§9&Dîè%ä¿—œ%÷ÒÊ«!2,«A3¥,«Ä÷ÝkèFeñ @›ÅÞQ?ŸäašcžÚ Ð;Í5!B0A D=RBÔ.U|lÅ8’ÏØÙk!ô Q§Y_&^‚[¼«P¤Ðõ#CßÖmÃú)~?˜Öš„È0æ·.õNŸ Y5Ú§ŒDòSkà°û¥ÌÅߌ HŸ`4Bt"ež†Ÿ-êÁí<§áv7 Yê–uÁžMݰ֘£.„¨À#!ê´Jô‡vï¯Ô„¨À:¿×"9!’Û¼êßÌo&8¥A˜vöÊ}‚1a__@ ²=€—Œ QêÜdNšbÚÅ“B¿ùÐ=:ºYr5K{fcX ?ö|êu¾N{kã¿(4óž­ !’c†@ˆ.H Ѹ :e"É !:ãØ÷ùŒ Q^¢°xVaH¡ï?ú¶vÆOÑûAµÖ&DQû^îšÏZØ=!)#„–ƒ@ø¥³nÒ×”‹DÞ颩é_øÙÜ®#(¥ó%Isjßí úóFˆèöûiW ¼"Ø+6Ï\½wЛ±IA{˜KÀˈÉìíoR’td˜Ëœr4øLÚ¡fpÍ»¼$D“2&ÚeƒÌ»kn82A¬þ߬jc)BeÚµ¬wŠŽn 9Íc2ëÏg)…`¸·ñ[ wšŸ„E œ‰+DÉb(’g™y÷•Å+° A þóöÎï)Šc‹ã³K!S®wuqù±€‚@ – äŠ(A*àˆŠ„’0x£\#ŠÑ%j jiLÅ'+/yö‰ªû¿Ýé™ý13Û§§gvfwÖ=Ÿd±{Ît÷9óÞîÓiú6w•ŸB÷[m^]u]*v\e5é&ñÀWEÕ Ÿ0JN¼b~Ä|Ù‚Ñr‚¨nF®í{Ó/u ^é¥*¶ó Y#Ü|ˆãtžAt6>QôÀ´ ${d¿Kdøù]/ˆön InÄY{‘j¼E ´Ïу‰ «$É}A3¡pnÔ‘Û žÊ„—ôê¦RªD*ïYe‰¬zÉŽzÒ9á„Ƕ世Gö·Ž‰þ©ÒO×r”q–½¶-CÏ„ ‚#,ˆ¶t{p“kˆÀHnU}êVóɺ—°F<« HaÂÒõmÞ2*?…î¶Ú¼ ZÅ9±¦ÚÅVïRUéà—büdÄD/³‚hRrÍjýÎ!¸6£ë¤Ò(ªž”ÄÎwþÖ(érŠ :ç`Z`Z‘—ê†7𫍑l8™ø®.²U©Ç[s2¬ZR^›OéNëx%ý¾íÔ˜[‘tkàIF¼ä€îÛ}ž y uEIm5©fj" ÿ¬›³·©uLôψîž2δà€C«¾œDp¤€Ñ€.‡‚ŒäV„i/aŽx0VA‘¢ ²âÛ¼eÔ~ Ü‚¨>vŸÌjòÝzmVñµ6˜2ÅÁXÅ)ø‘%«2L?ï'}Aä9Ô+än·zñ‡áxGyj6“g¯î®Q&H&jªô.»ÒW+šÒŸ3¹p"öéMœãÊDŒÚ˜×¡qfŸâû볉é–À/œ‚¨ÌÞ{~”ïN-Ý!¼‹IÅ=mQùCDÂù`1έf ADoÑ¥J¥o~z«ÓÅõ±©BodeÝ¡Æ#ˆìò²­ã¨Ïœ b”™~”Í îÌÌò\­m¾¿;+bíu±ÆïXëÀýã{ûkü“Úñùn9’uAÄ1Ü&ˆÀHÁDÂÃzez÷Á Ÿ¼ï^­h‘ÜAÄô’"òÊåÙ6ñzÅ*žHaBY²š^†í§`ìµ.ˆ&gV6çý‹ëBN‘V·ß©ûãiSÏ.]ä˜îXk{†º3`ðÎÚæ˜qƒúŠSrgà點ÿò_®ujMþ±¥·Uv¶µY @A$¹WÇ¥±Ó§²<ÞÚgVNÓÎ8(ùy¬mÞ¿á e¾QBNy‰¯ªk©wwÖ­«“s½K+M­ŽÀêið® l޽m]7Q&3=“u ìÇR¤ð¬mÖ]¦6#’gÊKöo}±Ud²:j¬²?RX±(ÃöS0ö¦`>S5‚¸š BADH^ñVD×°ADH>C·ÿƒÍ€ ‚  Bò™½'é ‚  "äs†,!*ÞÀv@AP!yGݼr^ͧ×dŸëlA’ÅÚై’dxAAA„ä¥ Jæ{.Áö@AP!yÈÿ‚q9ZZÇæ@AP!ùÉvGÓüÀš—S#‚ Î"AAü‚ ‚ (ˆ° AAA„ ‚ ‚‚HM‚ ‚ Èg "AAP¡ BA "AAP¡ BA "AAP¡ BŒ™ gÍ b|á¾[r³m‚ä>ç»Ý„­W‚hræÒã¡+ïÏͶå»EQl6_,?vµÓ}·d¿m½m½­À çþZ¹û´©1ŸGÐp»1[4#¶e¿uà(æ’ø6ÙÚÚúDÿá“™•¥÷³y5;¼¢ØïÊçÏ×3ów/uug³6+£×B†m)µ™Dÿ I©²ûB©üLyð¡$‹½ëfṴ̂£@¡?\ÙyuäsD{#á^— "ë¶ÑÇ[×P9©ÍûÛ¥HÝÉÊú*å¬-^²UÊy§¼n¸Ý˜-j/4ÛµM³ÃÁX·Å\ßžKFìÑ|²«>${–8|µ=ŸQiƒÙlø6“Ök¡b¹{¼ËSí¦âí:@mX½Ô2L«Y¶QjãD…;ÉO MÁø[¶x#kp7Ûf>²$ðöÝË–=SmD²¿d§ ¢Ø–ÎË­Ûèã­¤3Ùugõï#7$þÖÏ7z3á%¯ÅTN8ä`ÀíÆlQ{¡ÛÖ¡mšçÎÅ*x„ÀQÌ5ñ­Ë«Dûoy’­6ìwQËôuÞI P;™­' $+NV¨Fux†?ЮÖÆÆÊ襗aXÍ´V· ê¾-Ô7ù™ùÉí‘ߎvggܻٶt‘(–mek¦J,°QuÙ)ˆ(¶¥ÍMÛFo…ÊÍ;!ÿˆhßFÆZäOk«—«[sÞŒx‰‚¼  àvc¶¨½¶½³]™mFsM|ûú¨D­}J{µ(O#O{¢XƯÓYîiËÖ 7&ŠÊ$ÞÅ{ÿgïZ{¢HÖp2vÅx`¸è€pP"G@.:‰‹«¨/Èbä0°  F ÇKrÖMô“ñËùç¿mU÷tOUO½5Õ—é©Möý4ÝM½õðVÕÓO][–xùÀÞ„æ¦öi`ÔBl\o²‚¨bñBiÁ÷ZÞE´ñÿF±R’j¯267‚hfnîã÷&cËdipl*,ˆ6K,ˆ€úö”ÜûoJËÌ} ¥H?k&o»ê§zW9R!ã-˜V2ßÊi2¥5Â1€ã&Ѝ¿a»Lˆ#ž¥bqŒf1uøíßÕ3‚hŒü‹‰ÕŒßÙwÿŒjʰXðù°€È!‡ôáF(19ÖÞVì9Бãn>°7‘¹©½Pµß›¤ ZmÄI&òC>‰omÚª}ÿî)A­W›+AôÈø?C&8ËJÒóÛ©+ˆxØ‚D@}kÇUã÷Ò1y™{ö˜Œq\èuR{ƒj%,ãtcŠ(R>P ฉ"ê¯åó?|ÿa¥"€YL~k¡áûŒ ¢–žÜS„æ5UXì¶Í$@‰óæï5R>«R|ä#ëÍóÛY2 Z€ïMJE>Yø´7/á£U>Ï^œ ¹aº7•±yDÙ©ù¹RÀ8ƒÔDѺÿÇõü-ž³×ö]ëºLÇGúûûÉÜvfòÙ…ÝU[šÞÜékì7-Å "~íÎÉkSŸc­—û#ˆ8¨alÌGlP}¯Dè0ÛxŸÑ}ägµ7¨VÂöôȈx‘òbÇMQß_h@ùÄ* ¢@0‹©Âo×uQXµã?8&éŒÃbWq+gI`ßé(Ì|B¦Èg—‘þþqMûc#9§ßì{’œ»!Å!`>ÏÍ[ü]v©ùïS±±®{w·ƒhÛ°õ!hžœå¹|`ožßÎ’i`c°ÞäÖõ õ´“Š-|çuÕA6ÇÞ UÆæUUm'ÔËã‹y’à‹Qv©ÞǬ½úÑ/;Ìû>š}P™¬aF{F´í†Êì£XÆzï\\9f[°#—f…›† Ížè@ UxD\Ô06¡ù‹ ¨o#øFšº¾ÐžI¥¸Ô†ÖÞ Z c38@ÅÉŒ7ADý5Aù$<¯©ò‹)Âo½Ýú v ,ˆz‘l¹,v_u16E/$à3_¦à±K'Y£¶AnV¯ã¤~üÕÓB"ÌgÐÚÓÍîhª´.|/~Û†í7[;ù@*؛緳d˜Ål€7'3^Í E5Ó —#4P"!¡26÷‚ˆüW笫_¨v7H÷š*º™6Iéãp+u¿¼™Dïv¨Tµ#XŸi4mIP¹äQt¨al"óPßÖñ)êú B²?çñ£'koP­„¶LÑCEÊŒ7ADý5Aù,C„9ˆŽ€Åá·n XT…ÑOüÏý"ãŠÏb™z„ºãô(Ò%„ê2bæ2Ÿ]° úø5Klg_»´-Ýqˆ0 ŠŒ1iÆŠÞ¶ö=Oq ù @> 7Ùzí5€Ål€7'‚¨ÂжÂ>„ÐÁ™ª26÷‚ˆsºeÕD}xh9ö©aXÿ‘ií=Gú›é±†Ó:?\Í•sƒÞåyõùæ0éÔõP‚è=îÕÕmíŽ ~ÐmvÈi2MŒìïI›¶˜K3ÃMc¬EÕц±!@ý¢'Ñ¡†±‰Ì_lP}#3:Ôu_gršy ª•0¶?]+R>` ภ"ê¯ Êwÿ(ÌbŠð9ÕtÔ$ˆÎØ„-8Ö°YoþèçCiDL° D3õ{3ÓdòdÕÆNiT€C„Œ´ö}*¶r˜'ˆÆ· auôôBUHrœÛ[Û†-ƒCX×!Ïâ|`o’õÚs˜Ål7O‚hÝv€À/øºC+‰©ŒÍ½ ÚGõÆÉ± Qc´öÍ!æ¿#Êw+;ü·øûéW9wsøÉ‡×ºnÙ!ÃÄÝ™œ¸Á¶«_žÐ»+wi—€EÕPšLÛ@—Ý;sôæ W¢B c¶x_±Aõ­Ï6TLpÿrz IDATjü¼‰’ñ¼Åæ3/wÔDãe )0pÜõ×åÓ(÷./Zt`Sƒß2U5‘µ° "§k~“©à±ØIÛ΢g®d>˜)vé$ ‹£7u5¢•°¡Ä®Êpˆˆ‘R³q7åÔ˜²õëABÓæDix+#CÜlЄœ–D@š–pj½ˆµ;Aä+6°¾½­cOb©Ï`3ŒIWÓFÃñ]½Š "²®ðx±òcÇMQ .ŸqÒiž.‘8~¤x¥"€YL ~›A¨Lÿðn7(ˆúB•ñ²K(·ÚãD5…¦™b—NsÆÛ4Ñ*ߨck„âT‘R4°mCþJ–@¥Sø@Èknj¯\ˆÅìØ ožÑ]Û dnö7E‘BØÜ ¢ŸËÔº±³eÌlOÅA„†Í&u ÚÆAÖÞÓè®ÖôxNÜ´Xû|É’²n)A$Hc±Rwþ܆#Ñ¢v)ˆüÄÓélö3嘽¼ƒ‹j9³ T}SSáZÔ¶]¤|1ã&xâ« °aVŽ\è <:0‹)Áod6ìŒÙ(AÔ${¶ÈbätÌÜçD'é݆·„ظL±K§y~ä5ó´š8Väûe8Ä© "+’îÚ¶9¡µµõþ&ùxÅôGG|Àͧ°7ÖÜÔ^¹4ù¨ùØ ožÑWÛì0©SKZILelNÑ—ÙÙ‘õµÿër:d¶¼QÄ.gHPç¿®à.o2!ŽET5ÕY¶–*ÔØ>RSn;oD‚4–ÊËt":`ÔÞ‘WlZ ǨUýÅf îmã_{]d Â`tZÿ\ÕsQ³GEåå#ˆ7Á_M€m¤‘YûZ{5èèÀ,¦¿µ—YÝ‚ˆôدÄe¼A,¦¥pLÎÅ©¤ÜÌ)˜d ]Hõ-gkÖCú'C "2\÷¯ ¢x¶N¯\8ãn>½ÙÌMí•JÃAÍÇyó$ˆ&m†Ï²+ìTD as*ˆ(;muJ“Vg̰GÔÿGŽTàLÓ¯ÛfßoZ;IuqC¨AfàÚe‘ FC½á^tÀ¨}D± h!EöånêD™‰‘ezäàŽ!´¢ᲇ ܶÄD+>-îäæ#ˆ7Á_MT>î'Þß[]{ý¬A—Fµ5Gf1ø­ ¡ªŒX­·á‚;/å b1£÷þÎ,‘µÏDb ]ð17 ¦à±Ç!ѹéÁ¢Ð¡‰—Žø@(ˆ@o6sS{¥ÒpPó±AÞþ!RX-_ÎueÈ’ê>[ÃŽfŸÐÏÈZ³ÏJßcÆš<Æ,qSmÄ­‘D¢4 y0jQkÑ‘6Oö‹NÏ´T"4±g«?g>Ò{¢Å¦lDd©G´hùˆbÅMôÄO“(22qЯïË:ˆŽÒ#D£Ô¶ @=®•ÿ>5ÄbÆNosãþ~Æ!œb ]:Í?þiH·ð7Ä·zDŸ™I» ¢p2¹Û°rK?n©éˆ>àO™ðÔ5[QFˆÞqæá®+"ˆÂæVUÒýár,qéf‚>¢èO} uw²³A¤±‡*s²æ®‰¸¹b–D‚4‘ùã±SWŽu—·!o¢FíZù†MH —s,‰È-üO¼ÕÌ'údý‘ROMH~”Ñ]>Âq>ñÑ$ÊG7}ëõù`£³Xéù­SRL ¢³ äxY‡‹iú!zæ²êa„n§dÒL² ~#^²ŠÇX«v‹Dq(ˆ†\­¯xD[…WAdÂ[Ú$‹kåù@”èÍnnj¯L‹Ù°AÞ|ßeV¢o.«ŒÍ© Ú÷[»-0Žî4£{ñ6ëêA“y^#]E.äfl’ÕÅÍ– A¦™MN‹Lt":`Ô.‘ØÄ´°k3Öšü&ë^äÆòÚ¨UáG1¥ÇUDn#T)Z>âðã&~âŸI”nw|Ú†ç :0‹•žßX‡ô QœL`$âÒù,¦‹·a‡ö=ï`€)@vé4÷Ž‘â9iDBq(ˆ˜£âdí “ÿŸ~‘o¶†¥ù@œß[ž¹©½iÄ,Æ`ƒ¼yD¶½üEüþ¢c’Q›SA¤ï2Ë”3L¥lóUšFÞ×ÜHg‚_ÈmMN Ñ)‚Jó£Þ˜¦½´üjèæ o¢#í³ ò[!Zÿ‹½kíŠIÇöÄÎQh¥„FméaŽ€6¨ ÊMq¹®Šº¶Â®¢îŠã}eX×Un^fœÑÙÝ£3sœOžùÂOðÿÛ¦’¾$z«*I¥—÷ù¢ªž¼©zò$©¼•Ì\ÿ¹Y1ö+È?²†²µh$n ›!z#–`Öm?¼ÐâÆ+‘óc`“¤µ¢«Xàú¶d¹A§"r‘yäh³`šŠ‘§3±Ü²ê¯òn…WPŠ¿0 Q"Ù•"CÄÖ‡†ˆäÕ !Š*5ÅYè˜zÀé‡Úµ§£W GÅÌÜ Ö<¢â“=¨ ™Ó!1D!âæÊé'7Q`\iÙÕÌX*vÞRuú¯Æ¶:ñ%óÝÐî^ ·57Ðæ‡!"« ÔÄ+íúo]ÞŸÑY»2DR¹ ËO²ðq0ÙÜr§©è'û×R"¥_U+ëýëG ¶¸ —x„07ò¥îbi£«XÐúÖvQ›UwóÐnÍ‘Ÿæ´’$­l›Ãví*FЙ½;¬¢núF¯?!¢ª Ëq4ä³~Bd¬/îÖ^?‘[+7£—_‡«b&nPkž Qt¿å±Ù¤: #fnî QÕˆå @öí0Ÿþ[”=¤•ä}òJ¼ò÷ìïàØ”kˆÊÉÓ¬SùG•ÿöf::83Ê™!’ËMXnžï)­×ÑïChˆ&å~øbëG ¶¸ —x„0· Uκs'ÑU,`}W©¸c½]?tÜÅù(R1‚ú¸±¬zJ»G©CW P]†ˆ§!.Ö9»¹¼ÏŒe‰†hܾM*CxýŒ mÔêfôrëpUÌÌ hÍ›!"Ép ŽìŒ*ksHRnî Qô$IW‘¿ãzZ$ÓïèteÄ´Òçø]Œ\CDŒwCÁ­ýèÍt|â|ÍãÌÉå&, )dNA­,ÏZf8 ѹ+Pìýðc`›h‰Wˆr›—ôÒÎIt` X߸†hTs(eÃî·¨˜Ž]ªŸÖ3cǧEëP•T†!âiˆCCÔeÚ5¶s›‹•¢7¶l=àõCi7£—[‡«bfn@kÞ ÑË'ªy¹ÿ% ‡ðpsiˆôíUò§üAQÂ×ÝÀÙSšÕ­Í^8È窩¢?YWìǼ™˜µC$—›¨,4›Û¼`M 3¨ Õp"ò÷s¾öÃ=n‚%ž!ÈMW”%ެbëÏÍWªêE×;­˜ULǬ~|í;–ÔV‡ª º0 OC¢Œ/«áÜkÈ’í™Kxý, =!r3zyuø*fæ´æÍ½°üWïFýááæÖ½¨5³>²B>jÍâÕ….›>&Y@Ü¢M[á:;-fí¸×/¹@Ö07’¹‰É‚²Ý¼Í¹–—/«¯µ¿x Ú}'º½‚ë~ø1°ÇM¬Ä;ĸ›P¤KXÅÖ·¦n 4“püÌ’¾UmñðÌñrQв°ŠéXÖþ²+:œ:T¥€Ô…aˆxÂR$š!zK€7%5µù7·õESEONzæL¿L‘µWß(Âz`ë‡×œÑKaÍ«CcÍâFoÍ£!Ò×ú&•hÓ<éí‘Ô„ 37׆Hß°¬2—káIE4FTsùúsZ©µìDÒ¸uí¾³â=ñÄvn‹VÕ¿OwÅr)ãy†ˆ –ºëzæeº‰W§žäDÚIfµÒ¬ùî vÓ‘,ú°˜ ˆ5Ì †lnŒñfܶ]í'«áçÍ%dfb *ªônŒÐt+XCTuH»|½ð»8pÜเ¸õGö¬UÛÔ¶æ¯IAb¹ôÑU,Lúf1Dåä|¥:-(çµÀP1;µ‹Yñ[NºRêÂ0D< a)RyQ~ôìÚÿù}5:1½¹öªÃGCdd¢4ç ŒQû;žè»à”/t‘uµ+âz`ë‡Óö襰æÔ¡²fr£¶æÕ}q”¯«Öw Ù2Ø„ 37÷†H4¥>9Mž´ªµ ÛôDdCíù®ž©¡š~ýPSí…öŒL¿êŽˆñSÐéOuÕƒO%jÕen²Â[m¹7tŽhÍâ{“` \ª9dìÀPYöxÛÓû;Þͬan Èæ·-Õ5Ú)Ð)WZ7Ù¹•Ò)7Ùn'ÂeˆJÿB‰Ö8np‰\@Üúõì6e‰ì"[†ˆ¬baÒ7‹!ÚGYmÍÝ—¥b†ùQmixuèJAWV"XCà~ƯhMU_Ôûˆ¿JÜk=Õ˜ÞØÔ¨Z(øiˆ®é=\³Ú‚²þT6ûvüŽ= "fkØ£—šS‡ÊšÉÚšWCÉùþ…à&d˜¹¹7DúRêü–¾_EòÇé*¼_½b•ž#–0ÇG,…K‚†hêq¡ß)» ÿ½§\)+F§]Eî²é¬an Hç¢|3‹ÅYW§ }œ=-,f¥1DÛ¥gø¡öÆŽ#¢rp«±N¬­AD‡¡b!Ò7©bäæP]sTP ªº° ¬!p?wì10-2ßÝb.ðÓ*gYwÖJ«á­=°õÃi sôRXsêPY³¹ÑZólˆ¢Ç2ö×Ûx,À fn Q”ÜJÄò;-ì2æÑ޳– 9×x4wbkAÑ4ÚšMm¯nÊÝ£p QtuwÖTGú»êLf%!µ¦èŸãx5TÖ07&dsã¢W”a”¥mãšçĬ$³„|â”PJ0¡ÀqcET.èÜ”¹kuÙ‘q~W2˜è°T,<úæÝ±U,j|3ÝÒí¬ 4uanÝjÜÛEÛþÑýküéÝzßF•æ´É¾W_X†ÚóÆXŽSËžŸWé=­(³5X£—š]‡ÎšÃÒšC^¼Æ–&¹D'ÌÜÜ ýpzíNŸ}ÐmíKgÆÒÍõ´JåÉô§Ñ'ÃÝκRf’2“o¿½É>œ=.ñPY¬ƒæFEýÉѱ‡É¿OŽ'?ŒÎ¶E×5¨1€ãƉh ¸‘u&“K£óJ` ˜*N}k"Pò®ÇT±fúZ?fX)k"GC*’Î|îõØëdE·ß²ÔóuÏ4åpÒÆFŸWÈ™[.[cŒ^:k7#žÉÍÖš C„@ „8aÉ;‚@ø4D7Ú/J³‹@ !B Äç²„è ††@ ë«ÕªZv ã€@C„@ ˆu ²Áê  @ Ö/¦ÉŠêD7†@ ëW74|S'‰†Þc0hˆ±N Q.¯^c@C„@ ˆõmˆÜÆP Ð!b½¢ª·/ýp¿/C„Ã!@¬? !B †C€@  @ "˯@ ÿç@C„@  "@ hˆÐ!@C„†@ "4D@ С!Bø…DZXkhÉ¥bYlÄ…@ äãù©Ë·1 hˆ¾¡j¦ynøËKŸÙóª:Zr±ìNÚêMY-~{æpòÌ.*>ûøñã¯þí÷ͦçãf¯6ªfßö~+¡ŸgSïšÛö:?Rj “µlH; ¿N5ÿ2 |TŠ’ž¹°¢;¢ªû7û?pÙsކK3ã³ï¾tT‰ç Ö®êpf£™µC´(+{Cm.)ÂÌMî^Hd/â[nVl?ßP¢®#©²ˆ+CDUïבÖâ›þ˜)³cÒVµS«·ÝϹÐôS­>l*»NÛ«TtTƒê¨H´Ìo–—=Gõ–>ý^>RJ “µd¥€¹9Ô?¬‰ë¬Ïe.9ÒGU€Ú+ÿÌ}–xBbõ¹á‡ëO+õ*‘G£—K€‘èZÅœ³æÕ¡ŽDúl„X‹¢½&Ín¢Ý\‚%¥B˜¹IÅÔjFu¯_{x'´†H7ãö Ï¹!¢ªÞ,œ™ÆÂýÕ˜jGÚvÑ‹Ë2Dtn›kÉw^×óÌZØ~6_¶_è®×z0æ²Ûóo¥^ á#µ—0YKV ˜›C Ù|uK!6çn‰ù£*8í•æ‚W WýìÓpÞçãçÎ9›­è¨3 ›ÔŒH 8ݪ˜cÖ¼:Ô‘ÍFˆµ°!zyYo’" pI©fnRñ!bUÀêý½+}Š"Yâ ÐáÈ!0 Ê1à"† .Š‚oYW9t•Óc]Ÿ >Å ŸÊjx-ꮢ††Æî§ ¿¼Ï~"ÂÿíUöL÷ôQY×ÔFÓS]Ù]™¿þUUVMªjZcæd-!Òf[<¤ Ý«B1Z>aýëʼº¢5¦&B„xüu6otÜúßåÑý{wÕÿ°ðö ‘:và„hóKë”YŽZCAMüN)–Õš‘·MCVâ}–úØ›¥¬MÔô{U±W{ËeR(Õs©º¬1µµscÎ/Çã“ %ëbC'yå| (&m5¯ ÕÑhĬ%Ds‡LpMº$›mÓ*c£…kŽÍ=é|ö7iÇ”UU•Å„¨*Äñª87¹/j äOoìóŸ ¼RI”?ù.y—ô£µ"ĶFÀ‘ÉR Z¨syß>´ît‹Õ ,©d/)p.qC]H¸¹Ê÷³Æâf¦‚eñ; jXVkF Ü6Y i‡/7L¡µkÀè‚~¯Êöjo¹¬@ µzR×À¹À€á4¹ §ž´³scÐ<×ïq5¸'ª¡˜¼Õœ2tOD£³ZMד‹ÍÓ`פK²Ù6­2ûò•`­í) úÎ^B¤Ï65B„xÕ ‰ªõӱϥÐÑ*F¢º‚µï\q®9ÑAˆ0ßNN Æ?Ÿ&ŸÿL¨ ¡Ç·eI¦–ïI‰óTÍ)¢©Š]ëQò¹Ó¾SІaµf¤Àm“ÆÅæõÎÄMóޤÀ«2ˆ½º[.;"Óõj1Gi6s¤ÛþÜ >:Í×ð=Q Ŭf–A<‘>«…ѽxÏ,פK²Ù6Í1èÉïìNK]¤‡—µ„HŸm*„õª×äÌ ûà0„.F¦ùÊ{êÀ}a„è \oEè~K¿_C®µ×?—ò •§W^õ,Ý}ý±0iB„yÕ»¬@𾥕¿#»ÞSg­‘é‡É"Ôã×Âì¿s‹E~¶&‡«ÝÒešeTÅŒ{ŒÝè#GWaX­)pÛ’ÅÈù3ø~¯Ê$ö*·‘æH”{Aà9ÓŠQÐ…‡–(† õÌÙ§è‰y4´T^Ìqe¿‰Í¶º5\O”C1«eÄ┫ÅrˆöwœŒ»¹¿:\“.ÉfÛtÊsðNl?ªÅA{Áš#Îw.À<¯•ˆ½®Ü0®Zyö3®Á‰{yJîÃA» wæÚ¹û¾Å+9õØ%ëJìáí_©„h²âÞ‰ Û<Œ_ªäE~¢¦m¨´ôìq »Q”$!¼êgO§Ø0N˜f­ønò´½Ã|Kä™F¥†"ÌãgÃnkH_¯ÚND{JÚsT¶š A¡×–èEÂêü:±;¥jp«u#n[’²„¾l|~ Ý«2нŠ-GE$XN·Éóµrf"£¢ - aÖãl‘B¡£¥‚pbŽ/Ç|>F×ðÚI.>œŠÑÑ…‰–†0ëa" -„s|ù`œ4 Ï%QLÅj~Nœ£1hµ !jA«kÉ8éÈfÛ´ŒQ†‘µ@sÖ°ÍÂPAäÞ›ýŸœª>ú&œëë7k‡ ©ÖÅÍܪH{W¯…)ö„ð³¬(ˆØÒÆ©Ç:ŠEISïösݰà"D+Pê@¾Jk—ÕQÛº\7 ݨõ¶áòÚºØÃçí ÖV·é D¯‚ö¹è:Žãá`¹¿ÉéfÏ™äÌ-ò¿F!¢x<ì—;c¢·«Èç›¶â¾p —ûÈÎ2|àO@3<+r§ˆµZ?R°[AC~ó½F~ ×«2Œ½*-‡!€Á{dÜBÅta¢%†!LDjþÚsij;¡h)/œ˜ãË0¹£õÝ\ Ç%QLÅj2œ8 D#ÅjBT„VW”qґͶi‘ tðÝX„‰¨ÞXVÏáˉ .@Ì‘p?LvÜœ ÅVÍ%ØÿÁødÛ¯½[½—ÜIë‰bõ€@¿YõÑú)¬hóäˆ$D…À‡¶ˆŒÃþ9}Ö”ÜÚ^Ør˜k+âëk6ÅÂúéÄ8¥;¦Dˆ^ÕæR~@Ž7н+3Í<`xO WÞ^½yÖPF1 ]˜hÉÆ"Ei„EKyaÇ_f|LѰ=QÅT¬(ÉS4Ò¬^%D߈´ã¯í·DµÕNÌ9ôÌ ñyû­—Ñw>‘–Fú(%\&%X=FlæÅì Ñ_ž‡|è®Èò•ÖsKmÃúÛO–O¼´²6%„h–àèey„„3bWÉÙÿyΞV™•e^‘JBd¬@ªÃøÌðWè×%FéH£TÆ­ËVµv“ÐvD‹°X£«c4/§fdнü¾˜(–}¸¿CàNQ fµv¤à´‚*†´‘îMô½^•qìUh9‘ˆs†K£Ûõ®)4ÃÐ…‰–l ‘%D8ZÊ ;æxÒ: I‘(_ÃöDYS±Z  ;NÑH³z•}#²é–yæŠÂ¦9Új‡øgøðÊÞO"DÜøtìký¤S‰×F q´"hbÞx%¸r’öœ¸þIO>Å¥‰ú—oŸÈÕ8Æ¿SÆ3 [­ýéðZACÎa¿§ð½^•Ø+ßr("Á> ×œ£SîõMò(†¢ -Ù"Kˆp´”f̱° àn¤ ¶œÎ›Ò°¯·Q¾«óî~ƒÀëÝjÝO‡Û jR¾¸A7òî§&ÒjòªlÀ^ù–éÀ•V]êY³&b(º0Ñ’!’„¨Oã3æDQîåùb! ÃåQLÅj2¬8 D#ÝêUBôÈQ÷æ©ô$,.ì‡xŽs¦Øþn{ì[·­}5‡„¡­Ç0–=ÃÐ~B1¾Œ’øý%ÚßJpØv¤]!*H!2>ÃRÝðhdwe‰iÎwPÖí;O,&·È—>é D… [Ú3Sÿá N&ל}v*ØíJç] (+óaº3úpø²žbµæ§Ão% )„|:EÓü@¯Weö*´ŽH\Ë¥O»SP E&Z²1D’1Ð2#Dccc]SýÖvKu߉hPOT@±ô¢±z•}#R‡n󒸩n›V¢¬å1;G›ïíO„øOÖ‰Yq¡[JÐzbóy;PB´¼Ø+Qá’„„}*B4ûy°ëè†šŠœmfꑱ·Þ™F™%O:×?=ïÙjÕ0òsLsÈH!²v<ØJZº üȳÛR(\¿dÖlZû”Ɉµ 9îBï)³üg9wÊz˜ÕzŸŽ@+¨`H\ü~ ×«²{•ZG¤ƒ‰´jráQ‘2R èÂFK&†H¢Ry϶´ô¹Åù¥<æÄ¼´Ç䵉hOü?{WÛÅ‘…Òº½¾6›‚HQ–,›êÑÌ,ñW=…ç<ëÊ“®!N6Ñòu3½÷ù¦Îe1k!4YßùÊñ‡—Ò+KÅqÑžÀÛìÉ’9~SV€V‡Z;"­ Á!„®+é'í÷„áU¹À½Ò-0ÒÜþô²jÒG÷]0E#CÁlÉæ€‚ˆÁ–Ás⊈œcrH¬„â‰R,&cµÀ5›7»£´Qž€ì}¸@ý¯ÓAƒËÉ_rCÜDdÙ<Œ#–äS øÞ ‘~¯ƒ1U-> >C4Ôiᔎ§OŸ¾”Dä[±Ú{q2•‰Œ, "×pÆs §¦Wu©ã›üŠ>欽’>® ÿnÊB,´»º‘&»[}éÙ9øY`:5vöÒÉ›Þè¿1ß”Y ÕaÖŽP+ç’;ºö%½òøA¸^•ܻЖ£3R³•Š{Žzô^Ù…Å–YÏ"(æ`”ÔpIÆåXLÆjk øñE#l5 ¢<éºÔ¿ÓJÈyޝÊ r  R”DÉU’,¤t‚K%às̯â]° j\Q>xvÔúÖLöªÖED^4“-AD9q{ ±gÑU}áYرÇÃk'ˆNyNOx£ÿ¿•¥5³0ÞYpºágÇL6Iöo§®þ<í r‚ˆau® ¢Y½wŽB“{àþ0¯Êî]uËù骪Æ"ÆbÑk¨L² ƒ-yP1ØR@ÌÀ ç»¹HIÆ%YLÆjþ5ôø¡D# ¢üY+PM›‰$ù–©&L^Àoê*aY¦€m Ä!;ÉL˜T…éá{Õºpo-çc¤+$꟫êá9ñk¨L± ƒ-yÂb$ÚYf0[Ê€sÓd©Ã0Cn®öïÜã”4ƒ ׄYLÆj.»Pâ‡~«Qå ¦É*"uØ1Z4)•†uéG÷áÌVI– ÚxÚqõ]Dïw)­ƒþí,ðsÈ*YÒøÜþ ¦­ø‘²K¯bDÈ)2ˆ;kïþÖžMpmA¶¸l³Þ5qQ] A4MÎlð /ò²±dsÛý—αUܹ†äýÎJÈñ^o jþ:¯¯.8ñÀ•?–¸HŸÙA/Þ‡Ò^ "–Õ9,ˆ:õ[Ä଻L?߫և{eZŽÃHŸté×±ßs>´ ‹AìÂ`K‡°‰&ˆ`¶”'æþ0ìu®uP–?:ç«ÈÌ}{‚WÂóÄ ,Üjvñ{"'Qå3n–Ç‹_MNDú;ÏL}v¿ø¿6ÿ”w^íÓ±";}K ªÑó%æÀ~1yØWEÄõªì¢E4'ÏQžCð«‘/vhbZ™lYØ[t"ˆŒçmç©O’‘É‹¡®enÇdÓÈaw–kºmÆH¶¤ãdË¥vë±™É#ˆJ‚ddy•9:]I’sÛª<›æôAsñ¦õDe¤úJHe¥H¯â"“%¢½æ”D矄§ÿäßÿhl¸c'¹ÁËžä’^ÇIëd`WY’P´¦•ÚjËêœDýÆpÍ.ô‹úAø^µ>Ü+ÓrFRnè³÷+‰‹ìÂ`K‡°©Ÿ„÷]A¶”;ænÒâµû‚Úk%Æ ^ÿÄ/Uį¹%O Îb­`Ÿ'r¢Q~£»Î³ÌÒóɬZo)ÊfR|A4i\?ºu¦ï¨‘slkÊ?««ŽVTÖV©™þxŽAû,“bÆ?TAdA…À.¦t’øÑbóßómñùë¶#ÛÃyZ'dv qæñ7æÑí¥ÑÚm—ö¥Vãoåu}Ûûj “K½ƒ’)î¡Y=ºã¤iUo¥qö“ZîèDO£q3oë¼€ 2r¾DX‡Þ—;7p¬ì&?U×U%AG‘ž†Õ9+ˆº)k57ŠúAø^µNÜ+Ñrß¾QÕYÊ®‹é!kP\»èø™öœ´ZûWܺalàÊU)¿‡ ¬'Ôfû¬„üjåÅn1Û ünÑÕÖŽ„òYDEûüyðÉf®^m‘²ÒlM/·Ïzf··™%ß Ý_û¸·Úª¯ õ%ÞÒÔ¯æy›K~S_ Ãê¼D?ß«Ö{ƒ·‘Èð†Å`×LAcöˆCàç°À–’`Å\„HÓ"×*%ííóÃi›†§¦EJØž(Åb­`—5Dˆœ@罦?Zz6y˜0Õõ¨ãÝ™ »[7>kZXjêøJ+»—\ø½ç?Šøs6~¼Þq½äæb(ïÙïÑÒIàf€m"]ÿ8yúT¶fìòìÒTÉÍù\uœ²ŸOvL•Pë³órröôKñ[ÍMº=Û²“Úk5nÚ¢eß꜄–A‚à/ïUa¶“‘zèkýäXŒÉ.2‘ÂfKFÌíXþb9ByGÉ¥“ow΋—„Ì.£@ r_Bg!¡@ r)rgë‚@ ŒÛªª~Àj@  B DcºNU£)¬ "@0È«ßb5 P!¢p9¯ë¡‹XD(H$‹âíH>ØêI¬  "@¨ ²òéµ-`] P!¢°ÑÙN¬  "@*¦;Ÿ5MÕàþ2Dn"@ ˆÂ "@ (ˆ° @  B @AäD@ â/D@ P¡ B ‚@ D(ˆ@  BA„@  ¢ÂC]4ú]nZÖF±DþãÜ«™¬…‚DO.ÏÞ~7‘›ï·–¶¿Ÿ]zwæëühøU핹®¬gêÃõÉY´l—úê®õ'Šd‹‡™ ]12 , ¯QF!ÂDÔæÁK‰¼œ¸,\e@ˆryT@PâF7.²Éâù´Ù/û?ÜÿíVuO÷t÷Ô©®nú1Öº«¦êœ>}ίO:U tágµ§Ë½·;zc@c`ñÇöÖÇ–Ëfúü„ÅÀæ¦c±Ø·Üæ–¶¦Ò>ŽÍ€Òé08;þ~÷Ô@1JÇû7W 妡[ÇÉLÏ=|·´@‡j-æ‘Ïn®MÚ© /ÀŒCô´ÊïïÖp¶¹Æ'þ;âáåkêç¼=ÍTIÿ–•D^ŠßP­9De‰rñýÍ!ãúýþ jƒ¸vô§wˆ¨ú&¤ÃD:¾¯·)].f’’‚Tð÷q¾¬ú5¥ô´ãÛÜÜXÍ'·ØJ¤o¾oÐÅf@éÀtXÔ‰rCå#E&ïß\‘”"§gäél…(ìý“Ù®kZ˜HaÅLsÍà€¡oÍÑGãwˆgȰ:ÀŒ¾(AJz¥užó6÷©K²Å)B=3ï­p“cNQ*E~ï¢Ô9ñá6D·¨ß0 V‡Õ\Pû/®íqÈ!²M:ôMH.ïø§];O¹'}»š6Ú’œ}\)Çv:D67°t@ É 7˜å•’uMí¸-›9¥Óar‘ª†¥YJcñHÇû7ç.0ét…K:œ¥>îí§DvŸ©YU¡5Â-0RXB1 \C0ôHǧrˆ‚}ˆòȪøÖªýTJ>–5ž¨½ç¼íJ1“Ò¥àHj²s³ì©=/¢vü”WƱLNá«ÿÆQ°f j»±„rˆö\@º¾ +¤.ó×€°ºü;¾š×ˈ?T¹"NPBA¾>î”Û˜ìf«RÖO5‡Í=C¨V ´ z0¾úâ“#áCð3AºK!—ec3 t`:,Èb̹ Ô®‘¦ÛE#ïßœ«x`@Çéü‰Ð%"á!aìâÄlšé[hp ŒVPÌ × }c }4N‡h‹ÌBî|ÆjÐ¥”Œù„“§h½ç¼ÍˆY5ÿ“?Ê8 :ðyè…Â5Hù›£\SR¬óƒ•Ÿªœqˆì“Ž}‹aüoI׫´ë‚ dîÔU8 bõq©€mKÆ6‡k‡i€–ÁŠß”¯·Éh[®C‹­ÀÒé088¯ À’OR{ñHÇû7ç"¸G‡^&±|÷$l‰ ãë×Bkd´€Ha Ŭp rë‘è£q9D¡oä“¿’.œǾä78$ps«ëêà=oCdöëª+O‹g…Þ9DAüœYérºJÅS—M8Borˆì“Ž}ëÆ5 ùæ=1÷|[P?V—ÊLµÎ¶ÑŒlî,ÆË­Mî0dТ ¯¸@³—X:0°%á½O™„5à9ò@ñHÇû7ç¸I‡€ªG¨ü•,w¬W¸»R¬‘Ñ"…³Ä5ŒU°¾Á6GË!z‚»ÖŽ ”DRµSéÉš™÷¼‘…¤¦›î§t¼{s —•„—ÑœfÁ©ßÌü†bŒ)¬ ˜%®ù° Ö7­ÍÑGãrˆ®m  ìƒ-²Žnnp]<ç¼Z4»Âïw»Ëêôö‘ÞÞ1A8ÞM,‹!Þ'‰åß4}¢½[Í÷[Ïü}O·]3ÂŽ{S¯\ è(eàéI6’éœyx9Dd<£C$vðƒ~Ëq‚/¿І¬%.ê+KRíW_¼[Ú•é¼Ö9DéG–³‘ìráþ+Ò¡Ñ!Ó™Þ^ñP ƒ¿;2O¶ÊN¡ocå×jÅKõÌ„fõq«D*qfdŠÍÝÃUß…5ÐòÊ ‡¤xêÙËŒH0MË'õ¼\ŒAާtÌÈbÛCØ–µfKÀêªíx`„ÊÓ-w³G‘ÖîuýzÎ+¹Š¾Ã™†ÊÊŠhSry‡ïxwÖQ¬‘Õ!…%³Ä5VÁú¦µ9úh|9D=ýu9d8io ËkÞÉÐPâÜØŸ•¹$öýQå7×É*«˜ˆ]¹ƒ•A<ÀaE®š™ƒ‡ØNÇ?¸ùW¯ìÑ3Þ¦›¢ñ>•¥ô§ó¦wø]ª«ºö:·c_±ð`Rc_÷U>Ðôèt$ÜÌhúdhQñ‡.#eG¾ÃE•qÊB²mq}}ýªR—‹–ZUŒù/ª­ãY便éX5¤ét$‡è®0´¯4f­ëÛŽ®û„~Ï]>ÅMO ÐǵòÜ1'¬ÐæðœÌ?@õj å•ÁIÁwÑíb/0"Át´-d¥Bž,Ìi¼£â’·Üè¶½Z‹PR½ð½…|Õv<`¢òWÍPåÊþ&&†C¡²…R© tüÜ©4kdµ@Ha Å,q͇U°¾imŽ>š‡(Èv::L}Ql.žñF"„>à…!1l³ùÖ8,^(¦7ßWûužì]·ª"$ IÞy•¾AÜ›Í4¶‹¶>”«Ÿœ%…äóÏÊeÍ€Ž‘NŒ,¯o^áS›«Ê!*#½æ9ÛÁ#T– fü÷Ü=ã߇ÎÉÑÓ¬²+-¥,ÅéØÛ£‰a2Y §TÑüDM5‰®jñX‰¡¼oA:É,_Ænˆ^WÒG g™Ð7¢»ªûY|ŸCínhdF×Jƒc'ØØÜC\1*‘¬6+ƒUü–ÂW‹Í€ˆÓѵâÄËË{¦”×UépË ²m²øˆØˆLTî»Ô4fE2µkt„í“ldó<Í!QÙ|9«#æ9®œ@ª5²Z ¤°‚bÖ¸æÂ*†¾imŽ>š9éG‘:DÎñ¶ /Æ‘ÀK_}_Ï"»Nl›áû0þ£Í€dóCyÿöM.˜¸ö¢ý­vÈ[´ô=ˆ)$}í­‹™2Û‰¸Pè-¨‹+ÞN$m’xs˜ëÀš}9ïó?OD[J¢5‘ÜïïÄÊOdÈäjÞ!ÂZ[þjÐl(¶ Žä5âyÜàÒb@˜Ÿ™Y×·] –P—.IÂ+q™×.v¼þÄÙǵÒäØ,Fos«¹ÝƒUj å“A(®C]׋Ý@ˆÓÑ·D‰¨ÞÄ¿…;^ÌhköÌžfÛ-H\ÀÑÄ©ïÙLT^mëë”>²ÓËMšä-˜ŽThˆÊæËŽîŸ_ñ=ûI·FV „VPÌ×nÃ//#Þäߟè•ËqœµõÑ‚t@:’C„'íзa |ŒÕæO¹ÀN ÂhµŽïLóôq«”®šÆþá)ÿ~¼¹ÎΑ ln¡1o?©~j¾½›õð_˜Ú΀H0JKŒœùÒ´²zB‚ÓÅ(3rmŽ/Ÿor¹Mµ„f#0QYÑ:TU§rˆ`T6_^㡎T÷Ÿñý1G?º52Z@¤°‚b–¸æÀ*¦¾imÍ>‡è" Åé9ÈÛ<¸by­D[Åb—`8 ›žx>Ô]yçlëÔAŽ¥0¶ÃÑL¤#Hkß o[Lô]¨7³šøCüçhóÓ™ÉmΟĀKQ¼/9±«É½"ÓÀ©±¼C”Ÿ‚5«%2/˜Žìýk¾‘‰Q¯r'&H·ÓXfш’0Pñøk¥N“ÑeãSÓÛ‰Wwȯ©Zà“A µµõÑ9äêУ½3 LnéÙsrÉ&X ™tÌË ´mr‚^~cê¤z“xÀDeu‰&õkBf"•Í—‡ºÓ¾H~Ô’q7Èá), ˜%®™XÅ¡oZ›F³Í!";çîD‹Ó!r’·A<ö j‹þ4ç¸lqÄôÄÍ ÛÊY³J˜o#ܸ)éHÑÌpä‘àÍ/õfREãærñ¯ýŸ¹«í‰"ÙÂaHow W^fÄ8w‹^Eq5€¨ñ‚. ºdAÙåF_@%,1¢h4ëÆõºÉº&ÞOÆ/ûüo·NUwOõË©®êó¥é®Ógê<óÔ©:ç°(÷PÊ í“ìäj¬M4&ëö)Jˆ>ÚvëÉ;XíqÔ­ƒc¢ýZ<ó Žëké1µÛÅÜ…'`ÏðlfžžWzxOÅd2ë8ÝÙ4׃Ý>W¬±Ëæ8Vhƒœ©×Æ•„š?”U­™ IDATI/"áã4˜Z`—jz«Î:êvC}ûü¼ÝÊ‚B¥™ñ@ˆÊ9êÞßQ$DTV—¿\x<àÛQÛ-¨7âWp¤b¡´bUð|sùò´¸ÑV¡rÕ U QYuË Á§A›j3¹emn’O?•³–'ì/Fm F?©¸8:Ž®Æ3^³´­F#¤§I'}ÞŸ7'OQò†› ¼´}F6—gÁ팹êÚr ¸fg¹!ªçf5nìÑÃZÇ$Dcšoç!/w›åÝ8†`,l%‹~K´¯à„tó¹ {*'‹?óýãÍçÛ)@45ÆóXÏ‘åYÃ]? ÚÀ‚¹Ôþ™§ÉKY4ðA$|Á•+s½§Ú¬£n7Ü·p»æ‹)¾Ò}Œx DeàNG DŸã¬ß0ç:2óP ÒPo\A‘"Š…ÓZ„UóÍãsþO‹‰-7ñ'Wª‹•W··\ùf§ä]mÝ·¬:™–ÿ|±£y;õò0­w1¾©I»8:Ž®¿ÇKdÁ)w/´"ûªÝ´…- ·Ã,œèìì®t&X¬g  ŒÜ$¿:fäúÞgyh—mB4꟯zXëà㘄èS\ómö.š/,ÜÎׯÌ[;®þˆ:ª5çyþŠÝ“„gšck²àñ9cÞÔ}Vdmpð×öïhQ˜ÎCIX¥ø!>zeN¥µ\Ÿ+©­º¬£n7Ü·'¸té=ÓňBTöð³(„è½°’o%"D¸7 üG u ×aUÐ|±þiñ¢þ5réM‚|(9Ý®¹¬$µ¦xG=Lþò˜ùék+Ív[¿+¹ÞG†95Ð+éâè8l?ïJˆÞOýSÅ5!äh´¦§œiÁê~¹Ÿo™JÑc‰@Tè"}Å\³î JÕ—$eï«!âÓEöðV¶>ŽIˆvc›oçJAØãiò‰¦XN4¬8­ ßfD~<èžd„&ÇJõø\c-—zàÚ`œ¿yåó÷’3Mœˆ Çs…öÄ|Fü`0ÈøU«Fë¨Ø ÷íÒ±jòÒ³çeîQÅ1*ëzzµ»ãèXÛ©Ú‚‘Kž{–’W>§q‚*¢àÞ(ôS)”Q,ŒÖRX…Í·PzZ,„(ýKŽ'w€(IÝÞcmcsÄÕæk&ò‹‚ézM¶Ò=×[ì´*,^‘qq|Z{Ê.Íá%D3H;$_ô.A;AÝÕf“k¿ N¨=F·ãßÂkNÒóäT:é-ifžîuµW« EëÆa„(ã|»×Q`[Š48ð¤±+pUÀ[ ¤çîIFn¬q Ô#ˆ×玓ï¬ah%l AOݳIÖbŽMƒDÂÇq^ÑàÃêdß<¯f¹¢„Uf»¡¾Ýg¯‰–Ü9ï±á•œGë^«"*«‹_¾VPçxÜÅ~Š#…*Š…ÑZ«|ç[ (=-B¯³}>ILN·Ó®x†ÃœýOaÎä˜ëµÙJ¿ð®Eô鳬ûÚR°‹ããÐå”·™˜MˆjÙ ÿ“Ñuz´ç|Ã/±»ñM;€ÓýŒÚÝ‘¿ Í t². _£â’«”«’uã0BTë|›êš[ù«GcUâÍ—qTRbÝîIHöÄsºÁãsÏ @  ¶–á‚ùÉ|çǤA"áã8®œƒq+×þùj~TÖQ±âÛéëXõ/æÄ„BTþ|€PùvýÙøµ' ‘•Ãц ]&î~Š#…Š…ÐZ«üæ[ °Ÿ!‚ÆV£E=QIL7Ø™õ]ÿÔ»Âpìk6Ðõ˜,ÿ‡Uüi~ìâè8A"ò¬ë)âåç¤^´­´ÍÛNV_m&(¥ÆÏ ´,@Î T¿o•±„•Z÷‘{D&™mB4Î=ã'¥b|œr"[ºJÉÁEWî¿XFWÍ]rc÷Jâñ¹"Y]·=°e–,Cáçk%Ì%Þ»# ‚ ‡¿rÐA úxž_eÖQ²›¿oC’æ&0#ß¶€±à•ádÑvg‰%»VS„Èýü1è⦔¸7*ø)ŽR(¦®µ‚ÞùìsöÓb Dð…u*ÑNËIêVt&‰sTøù®ÕkW‚žÛµÛÛõ_]‡íVá„háÔ@Ù-‰÷|™*UWŸ‚âÏ:øl8ñÎ@ Š^…EÁе6€¢doéP¸ †îF²òÖ¡qùÑÁA×y§ç¾ÁwO‚^”‰ú¯ÏM¾r_ÉÓòm+Ë$±h Hø8Ü­Å0Ö¹K­RÀ±Ž¢Ýü|ûP3;V½‰í“DÇ*×A,ýßin•ù ÑPlv?æØ €®`MÁ”¿7*ø)Žr(¦¬µ‚žù&ásöÓ¢¢‹d&ÖLè KrºAÖÐI¿ ;®/¾VäCŠY‚ØêN ‹£ã°µÌ JˆžXÒ´üšW nkxqs• AåqûàUϲÂ!/³Æü_ ãgzå+šÑ„¨û»J¦¤u¾Š2§ÊGˆÈ¬¨µô­TmË5»››àždd3†M;ŸSZÜ/\;•—84A$|îʤ«úØmëp^õYGÝn^ßî$˱eú–Í˲÷¨á•!äÐZZs¾Hˆ%V’òrÜ'W]áõr")äPLYk ÜóMÆçì§E&D›õ†1¿¤'-Ééôó€_Tñ¡«BQ·Õô\–é‹„8·¤ƒ\‡yòJˆhnû pïµàpå¿ ~ ú‘mÛÝ2Œl.k¾î†a|j·Vxh8Z˜‘ËÛ¼€D˜å¬ƒSNBÔóäëÎÂcDí—A÷$#ï"vÞF|Nh6xžx„( ¤ ‡»²×uºÑbuZ'„Ý<¾ý õg„="PyÆ™8Ó‘ÍÅzVð£ Ý\pZD,„E ISÖZ«\óMÊçì§E%Dg †QÒ—ätÛ=€dQœßëŽ/B¶é/MˆôÜ©…­Äç5ÙqtýGØçZ"}˜öºÌ8ŽÓ¯R¤NØõXÈ}‰ÌúÛ¿ .Ä9”•BBp&¹Ö7?@Ê:ø8e$DÚA¾|=`įöµC-þ¡^ç=ÉH§«Æ§ºøú\nØ!ä e~¦•lðs@L®ü]9DÂÇá®,»–Áù„K6Èi--nßÖF cLÿ]x<;P¹Ã±äœôd™ùŽƒ"*‡×ޝÿ£ÞÕ£ö¢oI“òFi?Å‘BÅ”µVÀ*ç|“ó9ûi Ñ^`åWôä%AÝNÐäuŸ¯ìmÇ颛¶gÈ¢£îÝè <); Êãšé#5h)%7ØÕtÒ°eì Ε ”ãkâ">Ðjc pòÖ4FˆJ”á²§¹´šuÐqÊHˆN8›‘—®áÝõtð=I,à »‘ÜPÆçðì öºãÏD!&²rˆ„Ã_ÑNÆl)Žº”ŠáôWy¬Ên߆ÔÖI‚: iù{”ð@€Ê§.;î!D¾ãà„H€Êa$C&•U…i:åŽ@ƒË|^Y]k¬çR"Z'”Ý|{—üæï×üŒ¨ )|ûÍ‘´;Þ:D׉U~„Gå0ðŸa)åÃëÞ°ÉWªï¥È„H)P,„Ö¨‚ù†#ò´H„¨:aåO8¤®JQuÛK×wÞú²\7ræñ‘õÔj ³ö]‚oÂÝ•ÚR)*!zaÔ\îb”aøVƒç[¦ÑÒ–s|Åg‡´Žë_^ê7–·ænÿ6àCˆèn!¨…Åk¨Ç˜z³•~ªÕu¬ÓWÚ¡÷¶ùp«"€®‚§Ôvõô¡O}ƒ VÍì^³ä)ÄT¿+ð{Ò¡¬ƒ;!b«Óâ-˜y-›ü8§Õv.­k#ߤœ7â÷TFFSGÿÞ ±bÏIP­-J€HÒçÜŒØà¬1:ð”R麭A(Éßò¢ÂƉWÜ:ø8 Á32]0ÍÏ_j„A+oPv ðmØ·òä«Ç‰T>¦îÖ¢õdXý¶éàqÌOÖîwEQ9”Àêt¬KÓs›À¶]Ü“U¢|™‰" Š©kj€Ï7"!O‹Dˆz}N`5ê‰H¢ºõ6¹2 ÑÄF–Öƒ­ô òx0!úDïÏæÇ3£´-K¾ßm5²c;Ûm-¥¦È8tñÑnª”MѾ„ˆ:è© †CÝf÷<ö#¿Ø;‹¶qã–‘÷Á Ñ>”öµs‡j»!sO…­ßRÓfÖÞß7Éä|Î Áˆ βFî£y³FpsÅí¯¸uðqD\dkÛn`Ý몱N(»ýŸ½sûj"Ùâp+Ћ;ä" È,¹Š H@QÆËPn Š™qoƒŠ g€á€ãå¸ôèÒ'ÖyñyžXËÿíTuÒtÒ»º»RI÷‘ý½@w§ªvíªÚýëJUÇhlÿ!IQ­EÆVT–C_͹!ª¥–?G "Ýrú'šk«¼Wå2ò·Jj/•5Fe.2OÓ<м² ò"'MÈ%LÄ.ˆ‘‚'ŠY·´îoŒˆ䆂Hu­nMAÊïí^û!tÞݪ<Á±†ÞÏZ‹;#%o|)t14ÄõË ê˜šð õ‘‡¾¿u¯Ñû¼ +¤ÇG ]XÉN#¿ÒLù̵díëãú/h*»¢¶œÛ7>¤ž^}ÁÄç ñ‚H-a9ò­«“Ë¡âûÌ¥IZ‡Æ6Bx‘¾µ•$~‘X `ïÀå0-hÜ »twÀ9Þáò›ÑØ–7‹H_-¥±XQÙSúôá OR¤ Ò+g>ºµÛ £2çCõ9õN9y‰+c¨YAÄŠ\Q̲ՠpcD$ 7D‚Ê¿|J)%y°[ý9˜ÔÅŠ@Ïß?BÌEÕ3e§•Œ ›uvC¬Ê`÷)_Øi½rµö¸$˜aþ‹ßŠuQj4ú¢ÿds~@‹_T'–’Ø/¼¢;¬jVÃuø/ìô×_»/MkµÜ¾ÔÔœéÀ´›7-\ßqzG·œx ¢­20ž•½» ÖM§Iž™‰¢ g®TTÆ:S“ Šôg½,WÉ¥æðlØB%ÖØ;p9l 2§¦Ýwý×ä>¿mº›ºÆg-…xÀÞê2”¯æLÿ%/TøÐ¬iÛ,û®Oú—õ|Qûš©+6{nSï0} ú¶Í§ÍêXƒa{ÅF ®rˆ®¬Å·ø¹%Õ×µ}"ÒX뽜­-ÎjÃ(ƪÀ#O> Ú¸!—£Ét 8Y‘x„IÞcO¿w²mBÙvk[Ýû,^%¥IIŽDÂl ŽË‚H¯¿‘[WàÖUþÓ9fr¸~Ü ÷ŸzrªÆ§ÖÜ êèýÈ•w$vA¤ïF}zÃpèŠü·ÕÔ›½·)w˜¾†|À°­ÁfAGXÇÄ^Á‘‚«œ;Ey•ñ-ýЖÜGóä›CÉFìi¬õ^ÎÖhµQc•ÌX‰Ä!ˆf/HÑ™v‘8á®]­wÝž½L½±ðÔŽnïdÛ„2˜-LëŸ]mYÿBÚÑ·¢ ,ˆ lDºýÍåºEÏtŒ¹zýIä¿·Êùÿ¦hÙK.žWS= wüÜëuòtDfœZ³‰šV1ÕëJÏH£cá…9Û¬û®O%d#9tÎç 5¡ÍÄ»½·)wX¾}À°­N„²û˜ðé0Â:&ö$H1ˉ÷º†§´#í}Ûõl†ÞÚoÄœÆbïåkm‘VD10Vx,IE–ÑÔ~’áý¨L§¤AŸò5•mS6ôz'Û&?mÕ­WÊ«oiŠÛÑßùÎDâlãD@Û!£ª0ØÇrèCS0ª½dP«G©tîá‡x¯<}öBZh þŸEÇ¢Û¬û€QŸZr¾;øÿuòÿ_&®Øî³mjÖ; ¯A0Z®‘Ùºް‰½¢#…Ýåè3Jü[#/‡Èÿ-1¦±Ü{¹Z[´Õp3¨UCåÑÓz+¾µiGăÖñ„w'Û&x"Œ>-õ%¤,òÄêXA$Î6Aö·×ä̦rðºÐmD’^©Gô«’ìùy,ômÏeRäc3¶qŒ9°>$P–([CÒ—$)ÌðŠýÞ1Û¦f½ùšá¸å¨pºfkD‚#¬3b¯èHaw9ºÔWIR¶²¶¬ƒt¤K1¥áè½<­-ØjØ6£úüHFÛÔ ‹‚ˆÆ…¢G®T¶“þ +Þœl›Xþ¢Ëó£‡\›D›¶ "°¿‘‡üÂõˆ~k=«›ù\²z'ÃúÉZbûÑbÚ²ËØ6ž1Ög–|¶\=*#G†Wì÷ŽÙ6åˆH_3|·ÝsÛ1Ñ Ž°öÅÞÍ •M;Ñ8ýæT=¢KÎÆ’†£÷ò´¶`«aÛŒêC2†Ò›- ¢±³Ò ¢sØNê’Lη Åɶ å&Uºð¢¡ôŸ¶§G¦‡ëÂN­ ¼s¹¦Güò4c×ëM±6ÍŸSÝ÷S®Ÿù±-t£¥”h¯…1ƒrBm±ø­ýÎÈÿ‡O ú›æ·cª¾9i$¯¶ÈïKX¶¬Í½jÓóøõÇÔ˜ÔßÞek¼ÿÖK?GçoÕ£““Å"Ù¡ëÐ\ƶñŒ9°>t-ŽzD·nõ^±Ý;fÛ”'"i|ÍðÜr­’”çœðGX+±W'"Í’Q® ŸÈ_lQL'ºEK0†€åÌ*§ô¿éEKni¾£:CŽæcIÃÑ{yZ[°Õ°mõùYÎsÙꢮækÁaËpR¿æ1'q#ÑÁ¶‰ä_´§Aï£zÖ­¼c°ä¢ú™_éšy!vî—k^Þ§r+l²p¸DY’ï^îVIÇ›XŠX°_lPŽ’²,[I‘_ûMWíÐånïÌLÛ,³ÊÞô„J`ÚR×~B5ì^fŒ‚êo}=ìª$5ë%?N¼­Fó5âÍ¡Dw¤ 0dilãsp}nç‡ûƒ<Ã¥^±Ý;fÛ”'"i| û€ÑrŽzƃ#¬ùØ«‘袚µ“3ñD1ÝèÂŽ–@ a–£¾"EoÆD?Zr@K ÍbÒw1”Å”ÆzïåimÑVö1ë³á%÷#—k/Ï{ˆ\®²ô-ªç&'Û&„µ+Œ ¢C%a#²y#4Ä·§ç–Ʋ{"CYdz5ãXÑÔÇ¢w0”#ó´I“fDOí,ÐNlbš?=%,«$u%+Ó6KšÙ•1 " ¿í!'ÚÃŽ÷éO£{H¼§-’D¯Ý“&I¡ÿpÚÆ3æõ¡wùUe²Ó-I猯Øî“mÊ‘"| {n¹Zsò,AÀÖtìÕH½DšxÃõaúQâ¬Þ¢˜~taFK(†0Ëa"(Zr«™(¬ß2³DÁ8¥ÞËÑÚñ±¶ ¨O+éDWñ ¢:¦“zI×,ôÙ5l›è|}>°ßfVž¶yÒ“ÒJ×ÞKg?©C¼üBÑ¥·ÉäÜ™³Ri]…T¦%wAySk§S”Åë庻¦\áˆA9òÔQ`ôgWuÖžv‡‡…0A´CS½5±&¤¾U~P;ü¦lˆ>F¶˜°íÔ]ëSG ”®ºòrE”Ç‚X@®{ˆ$H‚JÐE DT|ÀnĨdµÔwã;uc™MUöÓ–_ö3Ÿ¨Êÿ¶}fî;Óݧ§»™¹39U–Ìí;wNŸîþͯ»OŸƒËûÇþñ¢w‡]ÑÆ\„ˆëoÐ>õ\gèõßèÇîÕ åƒK!Ê÷ÌkÑÍdÌIêOp¸ðú÷·Á%±[G±MM‰±5n¼å¾cc6Å)8Â*c/†Hï‘5CÐEŠ–†H©ó÷C_Ï÷ˆŠ–ú2Ìü>%íé¥õߣÕ{õ[;"­qÝÄõù…~z›þßdFˆªdFZÚÁ Gi%ɺ…"ÓøÞì؈t¼zF¯4,˜£Ã}”Ø)2ŸrNí,™üH~2wq°Ëÿ“{Dsaì9 p†4üj§›šëürÂâ Q%ð¡]*Q9 ¾@Ù½%·iâOŽê&ÃêÖ¦vgˆ>™žLÇŒ×ßrÌRñCz½“»í]!G‹&÷Y ¹¹oÛª7•ª'M ǵÝLÆœ¤>)0ȸUÂÿ…BIìÖQkSDbm[o¹)„ׯ!8ªc/†H‡,úgõä‚eŒbºHÑRŽ!2Dš"-õe3Äç/ôz`ý÷hõ^ýÖŽHk\7a}Æúó^ÚÍ¡¢ìØLÉÄ—µ&ɺ…"½økûgZÔUpÌ@}êñ•›¥Fßå¢[£Ô {YJ°çXÎî9$#.!²ùÐ]•¤|µ­TÝÚ‚b#lËê"뱟V6GBˆ–(Ž^óGðA8ÏÝö ýôÅKj’z˺}Íž/6·—$fŽNI;DŒn&cNVŸ5p¶˜º:ö;LÁ[ž(”Änµ65!Dœ­që`-÷Žœè;[QÖ4q2Þã÷8Âê`/ŠH´¤kÝ«;­ž-4ÃÐEŠ–r Ñ%D8ZêK5ý©· ×Ú½þ{ôz¯vkG¤5®›°>Bêì>õ!¢ÔÆw3 Ƶb:Æ1™dÝB‘ýèÞì\o¨*MÈÙlaˆ€?^bC¤(¤Ï:_;N‰4þ4ÑGŸC¥u¥›Ê;ÆVvÕ-x6þݽ‚CïÖCˆ¼=¢žßõ‡Y0Ù|æ^ÙÎæn£Vï.n4>¡&¼—:åºô—"ÎÞ– äõùôžíùJÿu_õDz—$À:JmjBˆx[ãÖAtûÊçÕòuŠ¡è"EK9†è¢¾øa¢ŠÔ™õߣÙ{u[;"­qÕÂ÷02Îp¬ãº…% °ŽJ›š"‘­qëˆu{<åóËm^Ž•p„ÕÇ^‘æ*¼nÕ}Þ}K}CÑEŠ–r Ñ$D´Ô—+Ìku.-‚•_[©¶â“$ëŠÇù™òLÙ>ÿ ŒâáÒÍŒÏ@‹?ZÀúÑ—¼ cH„hÎå6Ø@9v€¾½éUN€ùÞ§CpŒ²4Y°¿·–›·Døhs7Umyi:wr6×'5=“ǯ3ãTX’먴© !Ø·Örµ™‰}'®t~óó‹V›mˆ‘ñ«½8"mô¸U×úÎà飊.R´”cˆ&! 3Ì9Æiü¾Xÿ=º½W³µ#ÒG1A}é‹€MNN˜?n‡mhùØŠK’¬[(2î ¾á“- LÃáÜÁü/s?©.|·×ùÖ;®ÆŽG)e(AŸcYo}ËÐ,!ÊX«géXQÍD{‚9m aGzÃ"D##DÖ8ª›>›Ù¿¥†•>Á‰¤OÓ®ÅlY¶A¤àˆug‹‹Ä‘I%$ä:'*au3±´>•Û`b|hFczÑëK†”$Á:ÁmjBˆ¶Æ­Ørt®»’Ž)ÎްúØ‹#Òžp³^×ECÑEŠ–r Ñ$D´ü#¬‰B·µ£Z!BQŒ¯ÏmúÉ/Vø„¨Ðîmàd[‘³b’$늴 AY^RõÂb;£Ú=fkÇ÷áxqˆfoCúÅE(AŸãìçíF ÑÛƒ:•®) ö„héÃÉãÛšê˺It„È:Øên`L,QK—³ËÇ+LâCp`ðäêê$v”°eï­è§àäl «s¡‹öµôd2YìIXI"¬ئ&ˆÄÛ·NpËØÇÂã‹+‚#¬öâˆ4Rt«¦†š™S¹A ]äh)ÅMBtKÁƒ˜—O†¼âf x/ð¬¹ðS ÷hõ^ýÖŽHk\7®>Ê9eEGˆòá®ú²1 É$ëмÅRr¦Êiô~¥tç‡x³kœëܯmÉ#ýÈo*P‚?ÇIÖýJˆVìR­é.>Ø™/$©6!ª¬s Y¹SÝŽ?ÇŬÕÏçÇž!¤ßûB…åûÖÅë öQî ¥`Ay‡ð œn&6Ô'ÛSŒÉù~Æ\-I†uÚÔ‘x[ãÖ n9[žÀœŒžp„ÕÀ^‘Ú\·j8ù5©t‚(ºÈÑRŠ!š„H‚–9é{¾ÛÖ¢³WAénîÑé½­‘Ö¸n\}&(‹~)!²RýH" Q¼º…"0ìÂFÜG¾OÁSÎ?êg”ŸóXÛ3ùðñ=烡Ž=móUg Q™óÕøô™ ÑP£ Ïñ®-MQ"ËzPýôÄ•Ã)'ËÂS8Íú•ƒwåOžëù‚_gDÒ >;mʳ¤>aµpš|™2‹tÁ -IŠu¤mj‚H¼­që·œ#³qç&ÂV{Dºß_p«†÷ía¥{¤ÈHŽ–r Ñ$D´Ô'DULt• Ä ÷èô^ƒÖŽHk\7¶>C¾å¥h‘õ4ÆüIÖ-³3BæMá Õ×%á›CÜ‘Ê7N2ŽôP0” Ï Z!¢¿u(MHùAõ¢“¹¼œ¦òøñãWæ„öŠÉÑÙËsî›%BBä›Î0‰@SÔÔ5¾ýõW̹½jéÔMb¸6½Ã§›‰ $õéñ½ÈÚ<Ô-IŽuð65é![ãÖQÕí6_*™à«…½bDjχ¾/Lo§ƒb(ºÈÐ2Câ\!šãã7—%‹T¸G§÷´v4ZKtcê³VAÔEWf(߆ÿ7…Kˆ¶+¥h‹‡Å©[(¯ò™¨òixv¬1ÈÆ£Hˆ,+[½ÁOj.B úgW|/Nˆ2kÖ!îÜ%¥š.Œ(=B4ü<2ÝÈ.oKDˆ®òäp“øl…ÿ-¶OçX·¶@ÔŸÆß§™uÛ¯„t¹ç)épÓá%ɱÞ¦&=„·5neÝ 5ÁÃX GXMì!ÒWiÇ­ºÙTG1]$h„!>D{µí»:à•U÷ózßÂ}¶Œ<ËKð=½×¨µ#ÑZ¢SŸíD(¿†KˆF™5î$¢8u G¶`ïíæE±›ä³Û)"*ça w$JÐçXÖxâÙ©¼ßœUm®T©¨-B–ŽâD¢¯D„è&!/™Íì>»\·t[À"²Ã·é£›˜ö™`4o´>§™|ÿ¢×k%ɱÞ¦&=„·µÄªº=böJ/8Âêc/H „¤+mˤ+Uï"Š.´ ÂMB$AKdÅ@å;‰J‚æà{4z¯QkG¢µD·XÑP‚Wˆ†þè+Döþh£(¥Äcxͬ­¾Ñ!DV-%Û[ï qô9bÌ£„ÈNÝñâô¼S¨(²½!ZñU¿ØR¢ÃüoÂ)òãÌ×ù#4Ðfˆ*„hg !ç‘B‘n&6@ëSÅøÂîwÝ(ð’ÄXoS“"°µÄŠºÙ‹H½±âްØË!Ò;ZâÜ”„ö©¡Š.´ ÂMBô4Tò:í;}ÁzþÂ=½×¨µ£ÐZ¦[,„èn@yœ„(NÝ‘Uðë4yÆÌŒ §$” ‘íiè;·ÚA±%¥ú'Zš'݈YÏa·_å´ D\‘ø‰tÃ倯&%!D©_Î[&‘5¯ûÞ„7:Q½£g­„´¢3»I4ê§ž ÐúT2ÓÆ›îv¼$1ÖÁÛÔ¤‡l-±šnÎòY[¬ø„#¬ ö²ˆ”ýœëožØ1†(†¢‹-ƒ0D†HB$AKÙä# ã¼£]v´írVóÞkÔÚQh-Ó©Oê¹OŽQ&ÿß•U5ò'’BˆbÕ-$i·¯ ^ƒÏ»èˆ;Õ Ñ8»™„«>Çr<þoe¥„ÈÊÕ¡¡”ø™@Ç}´X¨*7|‰n•†µó›ÙcÝ„¼œ»šœJnDÓw>Ù3èC¬›‰ °údë ™)Æ4<Ÿv=^ð’¤XoS“"²µÌJºÙ (z‰èB`a°—C¤‹0ê_rì¾ú=B¤ÀÐE‚–A"C$Q.3-Mä!í ¸=Í-’,«Ãø’Ö=Z½×¬µÃ×Zª›¯Ã:eö惗÷ @Obâ%H·d ¼ˆÈ¸gôÜ ¤ž†Í…ÇÀ1÷Ø£Œm8ãɨý„öû˜Ö!Ñì9TƒKã‹â†Xj'DÖn:VÊ‚ ÏÁ$n¢xÂ:õìR n¨À‘mùºfgI)Ñäle¦€³‚è2NôÕkùp¿Qó4VFÒurtħñ±n&6@ëÓëÝ wx¼(ð’„XoS“"´5n\·} ¸ôræäðGX#ì @¤UúºûS?SKÃÐE‚–A"C$!ÂÑÒD–"ðüÎýß¶¾¯µîÑê½foÚðµ–¢XiÑiZ¬¶g6×~Ü ±çGc› $X·°dùÿíÝýoSUÀñvÛXRöþÂÞ¤£b¶®éÄM]Ó! œZEØtBpq*›sj6FÄ CLøÉðøÓþ:wîméÛ9çöû–ôûùeIïnï¹Ï=}îÓÛ{Ïi²&¶¾¿áKŒ\Z|ý^Ù|ÚgŽÏ{3ÃWé ¢sþæ«Aû+åvülAo]¯ë¼•]¾@vÞ–lGxb;}cɳékÙ:áýJRY?ž1gù‚ø–ñÇôèžgõèBèÊÙÜQ®åmS™£%½/¬ |³a‰”WÝŒ©û€ÙßN÷âb޶μǑV[÷‹AÉ`â>ÀñS«žèÈ ‘%_”¥ã$¬‰Àr$œÛfÕþ4ŠÃ0‡+)Îk™/éê%µÝ15)ˆä±VÆ@Ó¶©¶ ±añoÇn‰àŒWú‘:Ãå^‡Œä¹µ¢Íÿ•Ä(‹)²‹&[:å]FJˆ¤ò÷U™- Äþ&‚QOà˜¨F:qËÑÐyW½×ðL[êVë³X¥ "kzæžoS£x¶UïWìZn[ÉœîÍ» ,U›ÿ,®Áú;Ѱ5DÙ¤sA´`­?×~gbÊs¬=YxU×?×1ÙÑÓé•iÛ±ÁÉT“úÛ¬?Ò‚ÈJ­E<)”ž0a®Áþû½sÛ”~ÿ=ôÞk¢Á…¬dvêÍ;—[íIÃ5÷žüìdÒ¸¿íkê82Ñc5ùPHr)H6ñÄÖe¿¹°ÝK7ËÓo$÷pn›I ”û3cÇe¼Ãš}Êßt°ˆ%5Ý15)ˆ±VÅ@Ó¶)+«5¯¥&½oú­ÒÙHar¯SF:g-ßpµŽ·Çäwˆµ4ìÓ€mvªÝ·<>Æ5 Ñ™½’ö+ÇD·×Wôó1/ ONt]ŽÊ>Ѱ“>mohð¨ùÊR°¨ýÖíl[}kŸÃ¾ÎzgßLãÍvß•£‡quBtD¿Euʱ˜ê·(ú¿ŽÇy}øÔn¥ë~ìÜäNî×ÞuWí>Y<×a›ñÄ .ˆžÊìG'«Û{)¢}Ù*–Ù®$ÿVsY‰ê¹–å[:ÓÅ =¾Ëag|;Dté©ÜdO8VƒèÿØàoûNS*{çÎv}íisW›§ê*MÎ5Â[†r{Û‚æˆþB¿MD…§…¦“ïÄ™H%º–å[:ÓÅ í³P¡G¤h!}‰¢?<²G>¸h¦‚+ïM´¨Eƒèg6ùûÙ‰n¥®ß8k¬Ë:ÏÖ22ïx±+2ÍÆ?[Z.¢W‰[]gh¿7[/õF‰TªGD e•äbEײ|+&w¿Ç>4[‘0ÝF¡GL$ªÍ7|Eÿ03ó7ßò?+¹ ÃrU¿8Éš ÖŒf—rå[Ú~”¢û¶¾¢x%n¶ÆgËò#÷¨=´FôÃ*VCOFns©Eײ|+&Ý­²Û‹ÍNOm‚t…v—#fzŠá+º,ú{‡øÏ“ Ûß%ßlkà˜Ã{¿mFwÌ.–3/:Wµ°Eªãß„é h#˜d™¬'âZÑ7è4»Ö¼6þ¼Ê'^¾¥N¶Ëcïw¢M‰MúèñCßwR_lމŠÎ}Ä|à†Ó‚Ðtn‹ÝÙ±ÝCJ³Ôæ«a\ôí¢ˆì‘º$‘g»e-hÝV¨ }Ñ>kRiY¾¥NWq[n‘F-ÞDô¸¡3Dš^×t0|Eÿ³,úüGzBŸº.óŒþâ‹{ï´<o©¿‚èÉs×Bsò±ÖD­r¡”ª¦æÉ,ꦻ–å[1éÚÉœ(Q¼Ð%4°~†á+º"úçü¡÷t5s/t BwÇ(]öˆë5=YnSÙƒ1.PI´'ÚIH^ô$–o­KÇçÛgR…ޤË"çÑèÄ+[ý}î­ƒü·ú¢K]õ¦kûXU;œÓ(ßw+tå”Cô¤Kým‹HTÖÌé=‰å[ëÓ‰­î¨B+é Öü–I[ý}Žû„¿ª7þ‰‹‚pìÇ.å¥6ùÜ‹½ÕVˆžV_®hq4>k>ë]Óò­˜tÁÂzM÷H׆VÒUˢş×À;Ñ"]à «Îù*åxÿ£Aˆ®›$Dß:G¨7µ¿hxѧˆþ6Ïן¢ÿ´ t²\Ô%~ÒÜ#©^VŸ†è;_ôýô(ÅYý—R»çuþµ­´Òæ;¥¢¾mÕ9wžüs5ΩDßᢖ´Ë˜!zŒèÜÇü™-e–Šú±IÆMçÂw*ˤ²^¹h…è;Yô¢hûDÆŸ"¢¿Æ¿¾Å‹w^ê©_;ÀºêÜàœ\ÖýÅ=­`EôãÉ,UÝ §Þ-Ø?åáÒ\Iõü›ˆÑ %ú¯äãù¯¶šÉ:Ñ$´\H‡³îžµYl÷!:D7šèÉ.UKÃeAxw_:œ÷Њ܂ŸY†èÝX¢'¿T5ûºárCZœù°Ï$©Þ“ã…èÝ¢ÿA>êYªù¡éBšœüåIõ>Ÿ¢CtÈÎýVÏRÕ8œ½.]ÒäôW¹Œ£:D‡è2:—ªÆo¾_?›.@†­LR=h…è±v“ÅšÕ©îLŠþkþÐÏR”òBó3b×à–U7-At5ÆÝd±šUÑÿ¨€¶n@'“Š“%°ÉbÏä©W›]Èz*³`§UÞ̪ #Ìð¼LЭ’¸&‹kàþÄW1— ô”fÁÎxß3Â*ǰ‘N¶¬/B º¸&‹/À\íÏóPF$ý×YYLýÒ,Øi…3ßûБ~|s衾!ˆtqMn—’à7òà¡´ o2_ –«ð†ú-t¤“ÁÐC½­)袚,jóüìßtO‚žŠZ°\Ut2vÅŽôã_ Ý3÷q‚.ªÉb8übŸËUãW2ÐSR –û5Ô3v édÜ û6JУ¥LÓôë)©ËÕ1té°š r¼ƒ te²è<è[§:¸‹^·j £Œu"$Üφ¼ó= te²˜F “Sô¢e#¹…«êÌ”º†ö(ЕÉb¾ƒž´n(ýŒu`$½ô6€ÿëØA[²¾—ÒVëÆÒ‡”t2î˜×£@W § èî´Ž(ÒS®=Cm] tzš€NÑÓD‘žzõ„¦ïÞ% tºC ÿ2+kõÌŸïÒªEººç×K tº# »£Ao¬¡'ˆÅ¤£Üe#¤» àÅ|ºÝ¡'úÿ"~aA™Eú„Žç4ìÁºÞkaÍÍ&ºáäÝŠ23‘êg¬Þ’tòFø q€.†÷ZX tn8ù@·¤ÌL¤ná%ý ?ä±Úm9‚•ôâa€›nÇA/¹SgRwùµÇb½× )EÞkf@÷K;uœ¶ÄÇ!Fî–fÖÜ‚•ôü\€µ=Nƒþ€šÖn´ïµH“E‹½×¢Mãy¯ñ@ç‡ôW8 Û±Á¦©¼š°’œ°r»Ã oz…IäoÑDy¯E›,Zë½c²˜ÌNøÓk<ÐmÙ`Ó4PÉvV`%<*–tå½fÐd1EÞk†My óÃIùD''íØ`Ót–±N7ZÒ—æAæßå=Ê -Úd1±Ìz¯Å˜,&³F燓ò‰N.Ú²Á¦©oÚ{øùウ=R‚e†öl&‹¦¼×Œ˜,F‚ž(œœOôKöl°iÅ› ¾<ÐÞ-%èN{¯3YŒ=Q89A/©²þÛÔœ¢qŠ!‹<à}SFÐö^3h²ÈNNÐm9ÁöT;'΄nêlðÉz´lõ^3l²hxê%'èu—ˆŒP`qâ !³üàËP §VÊdÑè­5vm°…Õ²…]Ø—ô^Ÿ-¤+“Eì ÿ‡óë÷mÛ` «¼óv:ɰ…te²¨@Õ»öm°…uo9ÛHW&‹ ôX 5­v޲Ÿ±[7éE’ƒ.¶d½ÄZ¶XC½ÉF–ù,ßeS £}9trˆ~bë0ƒ¨7ÙH¯¼µ tºÝ ß¥UÛlgx“­ñT˜ kºè t›A?XC/Ù:NwËv&€øVZâ¦×è t{A'§èE›Gº¯óI6Bå@f±]n/è;è ›GêÃkë éž †¶Kº&‹½³½.ÿð*Ýpò‚¾‰ÒMvõ îWïdU¼Ð# èb˜,®rAN™¦ QÅ '/èîsôªÝc ¿z/ÇLúKkƒr€.„ÉbmlÍ¡çÀp2€þ¿å#ú¡íƒ Œ°æý˜IpSÐ…0Yœ79xe:ádýßü–ët×AÛG{d ê¬wBæüS Ð…0Y\&Vê=‰ÃI ú¶]ôŽýÃ`¬3èÁµe]“ÅÞçk'»ž]R“Åè7â4}bOy÷(õ3Ö‡™ôÒ¹à—t1L§¦ðe:ádý²]åÝ#ä®g•˜saÉüLðÌtqL ©õLNáã‡ôuñA·¯¼{„*ÎàÎ…%]íà«tLIq&dæë„“ôuqÚì­>1¥ì/äŠüÐô¶à  d²X¼|Ýzá¤}yœ6›«OLi ÷ 9²$ÚJmýðÖÕ&µõ(7š8&‹]™àïÕ 'è¯Äi;Ai«#cÆþB.l,4ÛmèŸ?gZ[¹Ñ„1Y,ZÞˆê>’š,†A?§ÍöêSêDþB޼ )/oÈÝ}ø_/›Ô—׸ÑD1YüÊMµQ“ M5ÐÆk´»úÄ”ggȅ梉òÀÒ.ˆÉb††¢¦ ’š,&ýŽÉqšÂrAÌ ÷ CN¡À ‹a²8!´EoªËi²¨~-^ãÁ]ôºCÃ>€üÈjø Uj7Ù”Éb¬æ€ïÍÉ$·ä&‹aÐ_‹Ûú!ýÈ©q2v5éÝ~È<..è"˜,Î÷LOç $7YL úeºÑ©š/îV}5éƒ.XtL—t9MIô÷âþãµRº×©ïof#¨ófÈR˜XxŠ z´”É¢ã ÿ,~ëIg’ã4íÞ7C6ƒ–?¢@OZÊd1IÐJŽÓÔ‡=o¦g<½ ôg™ )“Eè?‰ßêXrœ¦zV‰º²)h‡öz²R&‹Iƒî>G/;7öÀ»@Mú2ÌíQ ')e²Èý§ š9P9nZåÕ¸K½k™^·å]lIú¯4;—§iŒ±~ÜwؼTåÂ*Ðè š©7­cØ·W‚'C®@7 ú³nü6Q»3•ã¦TþxKA;¬)V +Ð̓þy¢ö:G*ÇMëúeú,,v+Ðè¦AÿK‚fwc#•ã¦uý2ý>À#ºÝ4èo%ü€ý¶ªj™¥Ýàt1L†Cºý¶ª±Ëtä»éù àí t1L ‡“ô~À [ÕØe:îGz·†ƒb.„É¢ñpR€¾5ñ'VÐ_Ãö¤wrà¼X  a²h<Ð/ÒSN_D=r;e­‚ÊC¡@ÂdÑx8)@_ø—hM£ÃÁ~6½g=øºD]“Eãá0€î\Õçi•£?›^뇶 @  b²h4œø ÿ ëÆ—:]8Võy†ú;‹~™þ©@ ‹a²h8œ ¿¬Ó…Ã[&¾‘NVÝ‚›ô›7( 肘,'è¿×éâ Ã[4íoF^é”6€·@ÐÅ0Y4N Ðÿ¤×‡Ã[&4€½Ò;éÎ6“ôÎýoßý¦IýèçÜhb˜,'èÖ룎V•8%£Œ à&}pW &@'Ë´~Á&„Ébá¤ýz}4ÖÐKÎ_Ip'ö«äEÈÉH)èËßù–Iý†ïÅ+„Ébá¤ý¯ºœrαe†ZЧÂÎ_eùB¬Ñ…0YL"œ ¦ÛÉUz.΄Ÿel 7é….˜#èb˜,'èÐíd“ƒŽ-3Uݦ‰|<9NwÐÅ0Y4N Ðÿ¨ß‹“Ž-3¸ÀÎàN… ¶ïu@Ád1‰pR€þmý^Þ¥'ÓâjöUbßc«õ?Ý2NoÐE0YL"œ ÿP¿—½ŽJŸÔ-µÇ°@Ðc^/(“E§AnþÏçèÕô˜ºîd͸Ë͵àéV '–2Y䂾\¿›48”>!µÇVì…¡ =‘”É"ôÃúÝ\¢5­éqAcè÷ؾøXž@Êd1èGõ»)Ùè¤Ûb„Ô9¶9àêU Ç—2YŒú5ý8ë¶8Sásl¸-¶7Af©h ‹-ñAÿNô× ôsîjL“K@oéPèJ¾V¤]þž~¶UÑérMWX%òZ‘çÁU¨@—tžyDín¯Ë·¸ðÿìëoçÆg𠧈`í,8¡w׋7†bŒÛÜ*0„Ø\l9ŒÒ”PŠ0‹p‰1ņQ*B $DU()qÂ%(5´Ó„VIKû±útgvv½v&ö\ÌÌŸóH°3¯æ}ž3;ïy—@‹‡±\õ2ò^‘…ÐPà:ÐÂ#Úcñ‹2Õ9è»ÌŒá®8£ËeŸR.Ÿ§½ðڸà:Ð Â#‚“ d“ÐÚ ¡×‚þOé-3c@a(•Ô;ä7ÈÝ„ì\}n1½›®Ò1è;L…¡Tò×ù r­ñâ= .ÐÂ#îÃÏ´Ï¢4OK» Ÿ65Šyˆjw5¸Ñ{¼xÏdÐèFáí ¨wy¡vîèçL¢®^¼ŽçÊß’å \¼3èƒ tÃðˆZ“/ß„À‡ ÿKúÄÜ0Ž¢0”JïMòBÚrñâÝŠ¯ƒŽtÃðˆæÕʈ¤G‚cÐ×›F‡8žK¿v!õî–¡Š•ì?è†á9™£Ôý¼%ßÙõÇ™áôKÓLމlªx_!7Ñîn—m¾C‹AǺQxDXK“„‘ ´8ý[“ãhŽ˜®þ1YÞO{ýU™w›aÐñƒnQœ C’Ä?ïôÙfrP|ÕåßIÝþyähdÐ èFáø»öY¨À#g ÿGºbv ËpÕîªý3ñÖôgºL‚~g(˶žst£ðˆ<}·\ ‚~Ãì@°9¤ïÄ[Ó1s>ï-™,zäè=Ã#¹ÙYç8s§ ?4=$AÝ:/—Ó.ÞÄ`:WÖîëé€Þ#ŽAïô/Ì&8$µeíNÞ*rST÷d1èF _1àªÝ'c,’ÇR÷yÏâýq ú÷ƒ¾{¶é‡„‚ø|fRÅ;é¦âZ É-,r O“îY<(ÒÚ|HS.@3È è‹Í»ëZ†³v׊wÒ˯¢ù !ƒn _ü`÷é ‹ÅZ» dù÷”—_s:BÝôõÒc«GÅ–Í”ÒfyáZÊëï Œg tCÐ?±à÷œªÝãü~{íBy)åõWøRZl‹AOýœô±Åƒ±åªvë–,o ¼ï<Ë2èF ï>³|X´µ{°I^1–ò ,ÞòΠþ–¿g]Šó'àœ•³ä¤W Â[ÞtCÐwIR©ÕÃ6VˆgNÁ~Y^Cy V±%,ƒnú+–l`uÏ"‚àrùRá%˜ÓÃùX zÐ/[³M¨mí.l/—¯Q^ƒ•üŠA7}›5wÈ„ê*ÄëX'á6m¹Ö~ÅÆ €>Q’X?ðQq+ÖI îþ|Ÿ#ÓtÐ…ÖÜ!š'ΨÆ: Ô ä.Â$îbcÐ{þ¾`Ñ2¡-õâ]´Ó°“v[{6w±1èßݪ;dB£êEÉ02è½@·ê™Ð]±~ ÚyØ@Ûƒ¢9'F½è-ºCj VÏ¿Æ;Ki·±]…ÐëL#ƒÞôVÝ!Ú*Å;ÄÛØÚÂlÉ ÷ýŠEÓ8]×ÅŠ:¼3A¼- ²ÛG=¥ÇA¿gÙ4NÓ„ùbÞ™6É' ï„-žÄ»fô^ O³l—ÐYñâ©Ø>K>Ox%þwÍ0è½@?"ݰu콢؈x.Þ¡½ö"dð®=ôõÒWöªãã£Ò»«×wIï„ ð É §nÃ4.¡÷PÆ-¦D|'ìta"ônÐOÛð’ÒôVÛg]çIï„mQà&’AïÝŽ—TBû°ZÇ%D<Сb›I]ýEÁŽ—TBhmŸuÑtÈ @&#É §@·å%¥ ±u\B›å…„=a?€Q¼–AO~Y’.Û<ü!¼öª‚kI{¶…á5f’AO‚nËK*¡Äöšh{Â@6ÛÇ1èIÐK%i—ÍÃ×a¶ŸÐîé¤=a[ ¡dÐunΉ IDATÐ…Ev¼¤Âl?¡iJ¹|›îz\ËT2è:èö,f4ÝëëpOÉ5¹|;Ùõ¬…ÕL%ƒ®ƒnÏbFSõ qî));)/§k+õ9÷¶0è)ÐmYÌèÚŠº…MÕ1Ò¶R¡6È\2èè7¤Å¶OpF¬hD>)¤m¥rV1— ú¯TÐgÛ³˜I<ânaSEÛV*¸]•A×@Ÿ&Ͷ†=¸[ØTÝ¢ü2}H6t1˜Þ^“U”7F—§ ÿIÛtžÐ´y ›@ýeú0nWõôœè–× ¯—;8ÅAÜ-lªH¿LoQ`&“éèo‚RTY ËkÐm;Ohúo‚rJ×äYt_¦WA´ÑôôÑð ’gô8è;ì:Ohª«Ç› œTÙIÂMÍ!˜Ëhzºð€nßyBúm°ñ§ôc”;Óï@,ŸÙôôpè$i¢ƒs NaKŠrgzN®2›Þ€>Æáý²$½íàø·ÁÆEº3ýrNO@nt éšÎ¢ß+ÐîLϱ©”G ?ÐP’—× —JÒ'À{Eqú© R¶y¡L§  zî¤!]ch²¸ÿÜL)§kó>2 L§ ÏL—ç f¿!]Óq²^^Q¶yBÍŒ§ »¥þAÿà¨!]Ó‚ q/þÉ»BÞLua¶E¡ŠñôôÈ©¬Ê¬S5@è !]r7X]g¦W²õ³7 +£Úóy 2è%è?×@¿â !]Ó<ìn° 5É+¨¾L¯ ØO@güBÉœ<Ý’Êè÷¤ofK½ø¥¦g%áÌô™ ¼Ì€ºú}Æ? ³Bð¹ç /–®8<Ïañ¨æ‡pfz„Ó¼½¦ê?­‚<ÏA_/=tx8J©*¾D×)²”&ÔmÐcÑÔz ‡=ÝYŸªª ø¥4­¡ëY8šoétX«xúiG}ªšüñ*´SdßÒÝ=HÚûDÞßÑö©ªZ úáU:i§H¾¥{zœÐ:Ã<ÝaŸª¦CâY_La§H~Jwô! LW#ÔŒ›ÊÏAwاªÉ'¯Ò5§H¢Í-|Kwt¡+õÏ7‚ç ;íSUµ¥^üÚsD¸¹…oéîƒ.äæ…â˜‡ò Þƒ^ºÑvpr·¶úãU:åæ¾¥{zü²·´·´>åõúoÔuÒǧòÉ«tÒÍ-¼=ÎÐÝIÐ?–Î9øõEWº*ºÍ-‘0 gJ]}̘Uê_iòôÇNÛ×Tíûd×Y“¼‚hrËLnbs tP]¶±8Ìü:ºãö5UâLÓÊYò5²·tîKw ô‚‚võ¯4yºãö5­v?Šßà]×m¹œhrËs0Š­f>£ë ;o_Sõ¥ Þ5•‘mn©a÷8WAoO}ùÙúç_zºóö5UÕ3ÄŸLÝä–%lë&èݽ©mótçíkšÎŠý2SK©&·´Eáƒêè…ùqA^~B›¦BÈ{ÐwHëâloàÏJO~Ÿ@7¹åå0©.€Þ‚žZí=軤¥qº}>él'·ŒŒ¥ªXOµtŸÛseÎxïAE’¶ Äé:ÄùÕ>™*5¹…æ÷q7!Àáªn€ŒD"I¨ðéÈ$èo@W‹ª:˜Djš"ËûI.ÒMx¨ººªª.wdôRiºZTöKgKü÷íNªf3™mcVÝ]r ÔÂqÉÍfAÿ«ö9]-ª|ÓÙ"6›y5K˜U—@&ê¦ãÕøÐ¢«E»Mú¦³E l6Ó áÃê èÿgï좺Ò8~.ÜÛ'V%s/ƒ‚egœE ãL ŠZÒJ‰ŠZñ]G±kbS5íº ÝHÝj4P”Ä—4šu±%¶5V“VëkkVj7¾t+®Mø;öÞ3w^”Æ™éœ3žã9ߨw à!÷œsï÷>çûœè·jfj«_lÂLt"»Z,-WŽVrsñ.jØLØ ³%¬YÝóC†¡ˆЉìj±´n®r‰›é6lf4ttKZ³ºÏ}+ ú< €þ›úoB#žSÎñ3_¢†ÍtéðDÒš Ðõ¶ØËšëþ¶ úbõ*¡osdlj6S¡ Ä5  ×ÅrÝ»}n@¿£þLhD^z¶DtDÓ ¹PÚ%®Y} ¶³àð3úIõ ©!yéÙÑ&í˜a3¥Ð&qÍèå.¨n/o*o÷‚³œÐw¨›I 9Ÿ› K;´"®ÔIƒ’Wú £ »ÖÝ51:©bwKüÍXº(¨7–êf* zLá[!'@ݺ‰úÉAÿ;Uõ<©1o+^ÉÏ”Í<¦mq©¾P&Íè–vSw>S}šªî#5æ’yÊçÍ™¨áÏà•Àfô®qµ¨{" +v·tœ+;mÓ» 0UKôÚô¼Ê9PÂ褊Ý-ñeÇ‚†?¨—ÄR= Xtàl7  ß'Uìn‰/;NÔðçP,[.Ò}|[Á¼€òÁx@¿ N'7êO\Ùq¢úqÝ…0 ‘¥ z5¼fÙ!æ«2ª• )ƒ>]}ƒÜ¨œÙq¢†?ϖͨƒîë@6è¨ÎÅèÕ Ë™‡¶jk nõ@žd–.èzn ô6'  Jv·Å—‡›±p¹ƒ#_BKôBçnô g  JvŠ3;ÒjÄ[®[\ðXBKôÑVSK ô ŸjÇê”Aß§ªÓŽËWuœ9 b6c“™R´Aï²6µ ¼6œ«^(è_F^œWÕN‚ãVÎãi³*Â~ÜuñÖkX‡I-MÐÑ/.&6µ|ýM‚5°–>á(;KÌfl~@AtÔµÀmbîñ—#&@G ÕÇ5¸Ê޳´¡EÄflåÅ0FbKtSùaê­qRd ¬%®²ã,íÒ+…F‰-mг ÔA'ZkêOÙq–‚½"úqe`•nIQ½~„˜h ¬©JžZ9`­Òë‡jÉ-Ða„˜}ºzìÐËùé¬jk™ˆÍØänUZ ¿5BL€þúˆìИ)èŸEÿ¿EäKãL}¤ìçnk´C‚-Ün7¼/ñ¥:J=afK\¹pô$|®Ê Å¡Boèè/äKã.xßÃÝ4žÑæˆæÇ-×É/%ÐSU)TW V?Ô%ËæAaBCŽ$)ži€N85.ªýÊGÜMãä5ÂùqùøŸä—4èFÓnëДç­P•ô«ËÁ5Ñ<Pû\X×ñ5ÿ0ôtj\D¿r–ðŽ% wÜU`² ?éÀ9]ƒØ $Ý Üg;¢ÍàM¸ÒZÛ ~!ú}ò¥q7\\ÎÝ<+´¯óãštx"& ú°‰w»É¨Ü}yÈM¶¢ÆÂl|œ¾ØçªS,eJô7§ÆÙâ.áÝ’€~\=äJ€I‚žS Eæí5Z>óͼɓôi‡ õ=€‰ÑϹ¡©éÕ@‡w(CпL}±z•Æ9YÇá6ìÇ­kí¾"ó`É‚þjä Üð@ŸuüWÂùïË“ð± ú,ÎtàÇðßýŽú3•“Â_¤Â~ÜVÁï»2–(è¸iÿ9º“|C1ô<óåøBC%áË0¢ÑÆP^¢JëRpCÕ˜ø‹”²tD8?înüDŠèÀ•/ÍàÁn=É7è#AÀ…ÿ?žùꉯ$êOÔA'ÜP5.Ÿ°a?n¦P‹7¢ºíB8ЀËd¼¶—^ž`±ý¾|#/ÝwDFZ°Ô¥{§ªž§rV~âñ Ú)œ7œ÷$ÃÄ@wc\«¢¥.íJò u0ˆ÷¢ÅKF´ÝmÐiÿ :…0©ˆ–p¸‡ÍÔEÑü¸V\“ ½›ÿNˆ<@÷&½^òÂ|L|¼²Ã çóûl¤:ºB>L*"÷°‰èÇõG†Ç}¸ÆW…l‹ó D¼¹çèøñq|‚+ê‡|l‚âŠÌ@;þÁ#*3ïaû•ÃÙ<¢i µ|ï9ex9ÐÍwhpšÌ øîö"Hút å€ÃºdªvøvêV’G"É@ÿ"tJ3ˆÏ=l¦6iÇÄòãüáqÄ@/Ðêʶ×`l~Òo(…³QÉêȦ–'K­²£ÚºªÕá9Ð)U̘zÇ=lØ»!Ôúí’“¡ŠI9‘º×6ï˜JªÃàjóê§C¹VBÛB çv@²èý´@ÿNýŠÖ‰9 œãq>…óãÎÊ¢’ §«-— uOQäÙš :j¸<ÕÉîïÓý¯42f"â1%ÒÔLÑü¸q9ãúWZ ï£’1ƒUùºrœÇ ýP0?N͈:Œ™ˆ8ìÆµI[#”7\ïHŽ_rÐ)eÌ`mŸ¥|Î㌮ÌkõÁ°äøeý[õ;j?Éq·¥›º¡5ìi çÉ¢™—ô«º2Eµn®r›Ç)yLÛ$Òˤ™—t]™bâr[º©Ã‚ùq2i†赃ݬ‚þúˆÞ²‡Ï¢dlÕÖLh ?„$EXR©î^3ïVOaô“ê÷–üµVÅZ;G»(Ò"î‡RI2ÐuhE([ç2èÿy ôiEO`ÝVæÎçrVoh 5-âv(î’(gz! ”õÀØž¸˜ZôVåëÊ).gU0?®»P¶g"z<+f@Ÿ±™Þƒt„‹fVr9­‡5íˆ@«x)8*$˃Îu{À鉋Ð)5k‰ŠË^Xbùqùh–,g :;÷èKüðGõ ÍŸæåè.çuííŒ@ËxÔ%ÌD@oÌcôßh>Hç6iÆÔ!¡ü¸UÅ0AÂLtS%' š N´2:ÕéÈJšù”Ï“à×Ú ²W¼ð®„™ èF³qŽfƒ!Ðé>HGhþ\åŸ3{XÓ®‹³ŽoôHš‰€>Úd¼¿ºÑvŽ û¨>H7uŽÓ:X„–i-âøqFÀ$•Êô»àšbµ£®*p%M¥ úߟ~G露#‹×:X„6´h»ÄYȲ—Ыc‰®íT ø4A§¹#=¢ýœÖÁ"´WÓÖ ³å¶tB û<±[s·›!пRïÐ=CÜÖÁ"£WëÇËw•ä9sÐõ8€m:C _ ¸#‹Û:XdÔˆäÇ…õ„.Rt·#ãQâ`é}±zò):ÍeÇE¬]ZËa–r4Jž3Ý}ö«>ÅèÅhw[KæqÙqÑÒ†m™0K¹ žß¾S‚žÚêP_ÖŠZËêAÏat´C]8ƒò9Z®ÌÛÎéô^Ék´ûzKe:zP ºõ—jBWº /RÕNÊçh%§y°ÖÏ ­W˜"ð ‡%уŽ&•ºLÌ]¥K O£Õ#=A¼æÁšªiÐöв–»Ý±ÛK© @G¨ª«§‹v|\º £+T7ªb­ãvk‹åÇÍÆ»&ƒŸÉ€ž ¥ :åªXÜnmAÿgï\œ¢ºî8~®œëïZîK¢ »¸¸ƒ(Œ‚HDT”úÀ E¶_6©Ú¨D­!¾(ƒñA¬1Ñ_4ñ•T£bŸÉ˜¤Ö˜´cM㣓Ìðwtï•E ìÞÝeö¼¿3: ‡aÖs~Ï=÷ü~ß$Q3¶j‡ê–.èKÿÿ£â[¨ji:§ïæ)ý®%š{Àp…´¨ WáûñÿTç´]¼®°óý¼,ÍØº+ãgqA¯Á+âÿ©ê5í8¯K¼I¢flê†MÐ÷¶}füZ'·Ñ>m·k|E/¬$œóÀ1EA-$èÎlŒwÆÿc×´%¼®ñXyÞÇÕy ‚ZÌ}ø\üV«"´JžflÍàó+ªÅÄýÏÕª­ÖIò>n– ’Õ1‚¾°ƒ˜ÄýZàˆ°CÛÀí*KÔŒ-KµVt`©SKGЫðm3õ@[°˜ÛeþF/Ø$G@«¶ØAo¶t¼%I•+ûôƒ´<¦@¯Á3HÌ¿ÈjÆ&‹ù³j­Úµ3zzrïÇí­RÒà)¦@'P¿féÏ[º<ÍØò YݰuôÞŽ Éf_÷¦@'Q¿fª¬A;ÂïBKÓŒMݰu twÏ87S £«øK"su–×Þª¦^.”Åü¹YÕ°utŸ'xÆËñz¨‚¾¶ý·®ÅÛ2¸¥óë)…,óg9š±Ýq©¶.€ž ™­ÿcög ôR|ÌdÍÑÆ­ãv¥å1î¡nغú#H.¹çG[MϸmA¿Øô/ñU2“µŽÛv首钘ÍtHWdÇ :úoðÝU‰Ø}3^“Mf¶¶ók‰$2V5l]ÝëŸÀÜ—51zÜû¯µjÞ8ž·ôA²˜?¯GµB;fÐʹ3V¼y1€ŽVàBÓØÒËø]ì뒘ͤxá²B;vÐSŽ&'õ³ú}\Ehº8v~F–ÙÌa)Š[.«¶ØAw{­#zb±“5Ðo)k±t„ë-]³Õ‡­  ÷ 0~&wBàœ^Âè„ÊZøßÒÑIŠ[T¶˜A¿îL³-í°$7Ü` tm™Úlé oécé«eët€{ î˜@Ïm}ªŒkyP, _Àø±-}×[º,f3 ¥àŽ tŸ·õhîñ0ú˜x=±ã{K—¥¸¥ \wݱ€îhSÔâ` ttÿ›ØŒq¾¥Wê§$ˆk¿N+ºcÝ“¼°HIdmGG¿Á¿›2ηôýz Å-}ÀS§ðŽô¬ÖN•A¶3Љtki³¥ŸàxÅsJa63%z)¼c½›F§û‘ß,jéÆè„ܤĨÒ%)nIƒF…w  £¦dp˜~FTAÜñ›¤Ü¤„8¥KÒIù@7Åw  £iîæî´ø^PÆ:Ñ×î¼§Ç9å(nq–Ã'ŠïX@GhXí¶Úx¿áˆ tt›X¶»µ¥ó'IqËxpg(Àc‰¢–ÎA¿‰o’œµ#\×¥#$EqKßDxZ=茵t:Ál÷–-}Ï«.GqK ”;áQƒÎHQKç “Ìv7µó-]Šâ–!áÑ‚ÎJQKç _ f2#Æ–>ö°¾ZüÝ®RáÑ‚ÎJQKç 4™y¬9<{¼#I:·ô‚äZ…x” ³RÔô‡Dz'?Ñ:®=Þ‘YÜò¼ðÅ-uøV!%謵œìôQøÙ‰ã}Kùy :·œŸ_1謵„˜·{PeÓxîƬÎ-ËDnÕ´%zÐY)j úfŒ'‘¹³<7WE–SäùÑÃ[5m‰tVŠZB€> ã„·ôŽû¥›Y ï=¼ª¦-Ñ‚ÎJQKЉµT}¢©Ú‚é\¯ý)½°Bôøž £äÑÎHQK(Ð/áQ„§nèm×k?H§È&p(K©(Ag£¨%èïà‡¤çî{­ˆï-}•ø—é~4+Ê£„b½†p¬¹¥ïÐÎñ½ú8E*K©hA÷'-LËmUЗwú}’–ÏA}®iõ\¯~E¡ð—éÊR*JÐ3Êá‰(‚¾%èÄ“`r¾¥íã{ù%¸LOU–RQþpd'µˆ*è;¸‹K‰ÏÞqM;Îõò;ê¿L0Dq9èýàgô=¡@/Å×ÈOß>mßE`â_¦;Ëã[W-èbtç1¼‚üô-)Ò¾ç;Ä¿L/†Ä¾ ôÈsݽl€þ®ñbçd`ƒÚ­Êuˆ™žá†ñ ôˆAïI(—0fÐ ;Á¶h:ßÝ —é=•¥T W{ó»±ú{Æ+!Fî.I¬¿rn*eU¦‹mó¾ àz §YJžûøË4&A'^’n‰wS)*ÓÏÄÕIСƒ(‚þ¦ñZˆ‘ð×4fp;ç\¦çã%ºýÏŒï AwÎÄx#…\7órU«2]h›÷aÞV3:+²ý ÑÓNçmB'8w °.ÓŶy¿ Þa tQ@§ô6Î,WÝÍyˆnó^íhõ0V ‡Vjj¥ùWÑ=;Ä·qV¹ê¾£`ìaÁ{¦§Áº­&·{#Gô· #”9ÜGøïtθ»´·8ƒº~]ä0 »ÝN™™Û̿ڈMÐéäÆT¯iŸs³¿L=è\Ñ?5Œ÷C ™A¾Rõ±Îi;øN„5/Ó_9Îǃû tž@ÿÑ0> 5v—ÎÛ8„¦ñž‹éú*ã¼o"+Ðm4ºƒ(‚þaÐKñ?)M#ÿ‰°hµØ¶R%Ÿ£@/¦2ã ÿjìy߸ÍÇy+6ËVê”À.{åH@ŸÜAAß0> 5FºyrÍÑÆqž5ƒöë"gÂþNî„wîÎè“€ŽVàc”>vYç&ïåˆm+U ÉSè‘©ö©I¡ z¶a|r° ߦ5‘Î]¼;ÂZ¶RgÂþ¼) t{õHvºÐXGô1á@_×dÓšÉãšö/΃AìLØj¬T ÛêøVú'B·|ð4« o\ƒ7S›ÊsÚˆ2ΣAìLØþ0An«\ÓŽÇ¥Ã\Š #Ãx3ôàg¸ŠÚTN_ å=„΄=*sÂ{Ä û~Z@Gùnš ¿ô_(°Y:Â½×Œà™°Ãa¡ÝNŽ„VÐçºh‚þŠñ^èAZl¦œü{Íž ›)qÂ{äZ\[[@Ïpå3 úL ­Ÿèï}”‘Ø™°[á· tõ4Û˜ çdŵâÏôwÃŒÒK™AVeî¯Ø„n°ú+yÞ#½Ö ¹•ÃaH^¸æ³ ú%z)3Ⱥbã½0]hOØ!ÿQ Ûè'wKE‹;®ý¦mAŸhì 3Z…?£9\± í Û© tÛ=½ÄÀÜ›ß&´]}3Ïç D¸bY _5Ü{Ar­Ý^}_ʈûR؃¾%Ìhö:žÏA pņ¾Ñ F îò&¼G ú6¸—Ð}yXÐÑC\Js>×M㾊 =/n[³¬ ïƒ^^üê–è‚~2Üp)¾KuB§jEõ¼Å2]Ø2¶jü¬@'h!ýNMЇ}=ž‘MsBMïgî C.c“5á=bÐ!ßlT×äÈ@ôgà oÄëZLÕi¸x·Œ-àž=ŒRR!Jm#@ùѸ~ [Ð×ÃŽÓ¬k±´AkàÝ(Ò,cû³ ŸY ôpªë7¸šãÜ­®Ë ÂרΨsÞ8í÷q1[/¬3â3Á=@N9 ÎÄýÒô¥ÆÞ°ã5Ô¬`ƒ:«-à>å}Ð"}µ˜/iÂ{T÷è_g>uÐ_7Þ;þ'ŒwÒSRÞÑ*]?$fÈË™ðY7Õ Üà¥ÝMÕtt•ö!]W)„^ÕƒbÀO ôÎÄTôœñbúÐn­÷”w=(z˘ðY7Õö¢ úÇáàõC:ZÌã=(~-cÂ;w ÐÆßã‡t³q ÿïã„õ Èéß*Ð9ý;Äú!•à}\E¡>[È ? >¿½£RS+Û¾‘£ü2î;ãÄü!]Œ÷q×}xà‚&zGLn÷FŽ&èÏÙüD åtwK»ÈsŠúð>è•™¹­Ý9š ÿ`¼nžÔÓÝM-!?NT¹茟Ñß°¡ÛøúÿòãL¹"†ý\è¡@·SÊåË4Aßk,µû´kÒ- Ý!@½ªóý°ˆïMàš¥@·QÝ3úEc­ÝïX×L¢?µõEÚTîãc“˜ï~ŸùÞIÎ2è'ÁvÛmã¸mЦqï‡ö‹ùðþôËQ 3 úc¹í/¹K×8®Eóðõá½6n)Й}1Ñö—PvwJÿ8óáý”€Ÿ ¹ ôÿ±wîOQ\Y¿-Ý9½¾ŠG„b†L "‚ˆ(*j)¢cð¢‚qUŒÊ®ø˜%+h¬(>¢ñ]Wãsãj|U0VÔÕhv-I4Q“³»Uþ;=݃XÕ·gÀ¾}º¿?Rãår»?̹}ÏùÃþÏo`áݰ‰Ûbøâ)xGغ%`†:Ë ïç«R°„?ÅÂêN˜ÉM3ü-â ïøZ·øjàº:Ë ßSe?‚‰åÝ„á0}]!ÆàýUð4X œó% IDAT·“»½ê úVq•ú(§ø%,,¯TÜb|;U”Á{² úZ ·SÆuˆ·%eéðýWœñу.ªO™…RÕ ŽrÆ7F¼gA¶z” ×U‚+&bŸû~} D úUQ¤(Y¹ÈBl@v ‡év”ÁûO©èáJí µÿá…ÜtRžùõí¿ ¢}»(R¤½MæecQ¦ã Þ‹!Á=*¥ÉÖÙ¾lÈkÿÃl®èAÿB©Oa ¿b-+ü„ãŽþ6A™6S ¶•èÑèSåOå¸ö.|¾bçoуþ£(SŸÂà2þ#ŒìárŒ˜Ž1çÝ·,УQ/( ~оãTèž=èÇDñGŠ9|Éßcd‰'ÌDP™Ž2çýSHª·@B5üü ¹í»~W|C'€~H¿ ˜Ã5F؈äY²À ÞÔTY G!—âßQÖv§ÌƒïH'€>J·SÌ™6B2·qÛ2­àAyás ô(ä„Æç¾ Rs»ß‘‚ÞØ7\ç*U/Å«4“xÀÈ[@ JdÂbt›Ih¹l/½:6%ùÅ Ô:Å­4¡æ.þ3«|C&l xÇfi¯„è‘Ëó‚нp;Ô ¡;Y%¤™#lAMÉA`+…Ñç½\uèäË#õÉê¯ËìÆ%=-c­|ÒÖ ¿GzÁ?ùkÌ,óæî„ñßÿðù¼÷‰…qèÏ)¯RJ~á8çV{e ¡ÃŽ×¼a ´Ñ>_ÜM5ß{ ôqhÕqnØ\㓾\˜¬Ãj)äÛ-ÐÛ©7€ÓäÀµÃÇ[üܯÍÅ#Á” Àáè#ÅT^Ï—bfWÀPÆ6]‡Õ4P¢O tEOÁS[^ „Ü÷@?µA!V Ù;¤ÀvNè>RÜH5ãÁeüzvú+'¬Ô¤i?.ÌÒC™ô\H”Ê‚°V¨½Ø g’‰{–\Ôòß©‰ úbñ$Ý”o2“'é} Á;ù“0Wðn–ÊÔ {jˆ:Éw©½¸º\ˆí&ý#J;ô×ÅßÓMù;Éqh‚÷E…å¨6µ¾sôP¦ÝÓ z…CõÕu×ãm) òÙZgƒþ®ø1Ý”7°aï®ÈŽ"x·/„oP0Ú–RÔ Ç;ÐÓù]8!uÐÿ"~H9Ö#þM–ÖGðþ¶0|&’¦°”¢½‡ô¾,îËêÒl"uÐÇŠg)Çjáo0»Ûqï¯ÍÞA¼g™¢‡25è~äVeCZ^ 8fè úgâ¿(ǺÌNaKP8ž¼ï„O0!`K)úsôŸ]J¾‹«'Ñô âXÚÁ0Ñš [ðþg¡ð L ˜ÂRJCfœ¿4)€yJVÑôÔ¤‡´”ÿš©ÕƼ½$ìÃÔ¡0Ï –RÚŠZúT§wõ„ÔA§hÒ$ÆbwrCÎ;YX(\AÄÀ h¶@©w·—3!uÐ)¤·ê"c±»”ónü‚Ur[(Äd Û )ƒ,ÐÄL]Éèê ÒÛ´‹±Ø¬Îᚌï6ãÛ‡ÊWj¥­C®¶yAÏŠpöªmÐôíTÃb÷Il-øfn3È|¥ Ø=$w•×àòÔ§3è;5€Î^ì.¹Íß*Rò•BTšž ð“z›ú<Îu¤\oÔtš¾ÉìÆîdÊ MÓíËQU·T(…Õè!=ÌèeÓ·›*];Õ°Øý#Æ–| Ÿw\¥éÁñÐ=\ÕE¹zƒ~U5$¶>`.v—|Þߤ‰ìÇTÝRîgèmoçEŸ@~³_WÐéº,†´”©|÷ 2›¸«ë¼- _‡†ƒo±7m¡½îq¯ÀÝÓ£‹ó‚ÕA§ë²Òežÿ€µEŸ;ŒÛaü[GªnA“ 7Ɖ¼i 5èý»ÍÛ³Ë ÔA§l¾Ò/lÕªJ²?á¸ï ëØ Âm4 `oÚ¢!a¦¸èeX`«ƒNÙ|-¤¦|fí@QÝrQ‚\"À+è5¿$g-uÐSödRÄ–ÏŒ¢é¬9Æ” ³,Ð_¢ÔA'«¨z2µê&?‚½u?Š%AMï– p%›ôþý«¤aÒtÊV-!áËÖ²·ðhä°Ø?7x`´ÉAi \ú‚NÛÁ!ê—ñ§Ø[ø)Û¸㟱I rXä®C|½¹AÏÈh”>„I_ÐSvpéÿˆÁ•Ÿ0Œ{ßø÷Ï¢‰häüNèinÐYÛ£S»+ZÃó—\úÎØÈ2<r^˜gNÇ„¾ªÿ®V_ЩÝÜàw±¸öç-9¦tG¥ÿ§9@oëS‹¶©ú€>VüAÛ˜“ù¯ \{glC/ —†â€ó  èƒÒoº¬ºøâSt}¾¸[ûÀkËøkÌ^†Ã’Þ‘¤ÂV@‚™A¿®oÝîgF·szµ‘-fd½É_dö2d6qã_›¾EK‡<°U›t2 œƒÈ‚çèq:ƒ®ÕbFÖ$F‹Uåmúx®Éø=V÷ ÂÃÿõIÐÛÌ “¸Ò@tÖì‚ØqDgеZÌ(zÄÉî…8ZÂ7þítEöþ—xž3ƒ®ü½[Ùµ…|4 ÏF2ôz~Åv¯Ä4 r¾w„Ù†o›þ–2,лZ4 _?‹dè‚ìµPn“ý<7l‚áï§9…å†?)œ•v3‚>¤ƒt]»ó„¬¥Ì&¼KZƒÁé}‚ŠÕnOÍ:tΠkwžÅô ±ã(o9-~›Þ rÍúèÒôÚ'd±| ý{ .¶é÷ÒL:s{ôH ÒƒšÄ3ØY5L‡¹’¯Œ~GÙlÓ}ùÐÃÌ ûãòH}²þ o  ]ÖMþß,_Ì& älӋеVÕz^¥´;Ÿá8çÖôí¢aÚúvkØ‚š~€ÛbürÆß¦ã3~¦½7€ÓRßš3õ:ƒ~,’:UYuxiÁLälÓÑ?Sƒþ<µåÅ@È}ôÓôÈêTƒ:ÂtÒL@O8Ý[Œ¿MGW–N z®ä+#NR¡BgÐÉ*ñ`„ó4#é0Wr×ڦ뮄.½ËÝSCÐI¾KoÐç‹;#¿…Ѧ-­Ê܃áÜi£'½H5%èA‡ô ‡Þ /OF:þ¨%löPnÓô.ÇðÎRmºÁkÓ‹ÁkJÐã èéŽ|½AÿcdåkAíb:–Èr{ ßN9°M7vmz8ýf½”Ê û²º4™€ ôËׂZ[Æ·0~Qîb(YÝ+§<ÿúènFÐý.ȭʆ´¼pÌÐô š'‡½aNæo füªL㸆¿µn Â~#ϸêL:ù9Ô%ÝÕ“è úÇ⻑ÿ„ +X.m‘ÿíàfÞCÎ¾ÜØNï}báU3‚Nü¥RW¦”ÿ³wþOQÜgß|6ÏVGVLpD¥ÑZaTzzЍ€€…â·#Ö µø ((Š_Ä(jýÖ£U« õK«‚Í`AÇÖ56I§fÆ¿£·{Ø x·»·ï»}ÿà1‡Î~äs/>»Ïó~žgœ¾vÿ^þ_«ZTMâ­v“oKþ>–z_±»Óû?‚É4ózE-—ŽÖ{A½ÝçªUÍe&–î¥â`ðÂ.Ÿ"/?#˜L3¾T¯mM4è{}˜¾æ¥‡¼ÅìGºP ¡÷=¢¸xùÁdšéèëÆôµÒSËs;"Ð'|›¾†u¤Gè½znús¢?…èÕ8\ŠúpþŸ¢@OjQ¦¯í÷ç"Gºz¿ˆþñšÜ]Þr>xL3½ýy…Ï s‘#ìZè"þBB A·û4” ìH—+‚  ÅæiâZ\ßÌ›µ „@LE[aD,}ótQ´¾Š^îÛP&/ý€p¤ç×3G úl òL‡ñ)ô·ý÷“Ê Š¿@Q³ &ݳ{û‘~Óü›3?‰5ÀjºŽ.HÆ3½èÕfÝ?¬ªßóÜ*„ª`éß¡ʶᶅíCô•zÀ@ÿ\’ü¥¥µñI;4ö~%Ûdà~3É´$t@OPEÔÇýEÀ 3ÂIú³¿WºÉËš¶hã>øtº¬²ä†ÐÍ6dѯ†Ï²·ðÏ ö(ÒéòrÜ€Ü<l(Ðý¶Æ)ÚÂùvJ²³Xz»È=°¹‰AÑ<®7 /}E}”ŸÖ8Ußóo1v©ÖÉêóÁ?i°¹êH¥]b(€n¨z úékÿ¯õç§0¶éF:» nœQr˜¹™ÁàƒEÝŸöJ5ŸH2«ÏçÂ:ävÅÑm ô~MZ¯ÁÅšA\3‚jœAŸÉû˜b ,ÐúAi†WCq͸t¿ÅÐ’Õ 4Æ=0 ï•Ê5((—m­<d§ÆÀ·È5‚¶zïG)ã-кŽE§@Rl.åaNðŽ3JÉêÀu'DÑb ô€€n×À1£êlÙ«õðfØ'0{ÈÅÃ÷ƒEÝŸÉÉ]”ÑkÆ­ùuðfØÍÓĹ€CF ±@èë¥kÚ\p/­BÙ­â$ô.ò1Ì¡K(Ù=  Ÿ‘îksÁÊRþf»²àmïG!‡:ü›¨Æ= ûßc¦]ŸâÄãÔ.rIà¤"zaåDðÒXÐwj“HWôŒ_µÃ|àJè.“ç"†ÞW‚—¶À‚®M"]U^_…s´Ô:Ð;îX$ž€ ½WGb·x‡ý‰$=Ñêš³yn3ΖÝp²zlÒ'LçÂP¦RÄS tãA÷w*“·l-üK ={Ž^´ºFÄ ½ÄR tãAfH;5»è&0‹­SÒÙlÒ¶¡xIZ ºßÃZ¼õ(™îRf:»ŒMz!Þ ¦uè¿èƃ~I“Št*KAúÇyt½bèýòÔ\ÐýŸáà­Sœo"±Ф+®w°ÐÐÕª¸ ×.¿¦è3ÞV‰´qÑIߜ׺¥T[  º–ù5—ªJa*ÓÝšƒNú±)âZ¬†3[£h¥ºÑ ÛË¥ãZ^íæŸô;¢ØˆµâÁ”([  ºð;-:>w¹y‡Š¼é×Ñê[jp±ƒþK銦W®‹¼ã“.Ã%Ù†Ót t£Aß­I#X/mÁ²ÍépI¶w‰îZ  úAÿG'wS*”çÝC:´s.ɶ„.X  ú~IúDÛkW¶òïíXûwœôÍ9bR%Û]¢w-ÐÝ&iWÖâÑö2˜í:î{_ÖDn: ·@7ta†ÆawA)X-ûtäªUy5¿å+¢7,Ð]ë°»r—ð˜·T‚ma&6éÊ@e tºFñèÆ‚~Hë°»Ky¹`9—9Ù>äîRPéôÅÕÇÝPÐK«µ¿þ§p96AxàduÀ#å‘Òéã‹è膂þwmÝî¥òÜ<´]¼á€î «¤Ó—ìöE-°@7tûjé°ö HkáWÓж±ÖÁ€';Œls`Œ3Õ)4ÎÝHÐ…QÒ!n$Óå’,–<­éýE@Æ™A¾ÕÝHЯhÙd¦S79Î8¶e70ðÆ 9bJuúÏ#©Ÿº‘ k8Ä¡ûc:Z6]‹“˜ó.éǦàgÆPøR tA×Þë–í*o­Ä#½Ž¥gâ’®g@š½ÇDÓ, tã@—µî=Ñ!×cú-;*ëYú\Ò÷ˆâ6‹ÜTŠXjn܉.ŒÒjvrwmá|6*ù—;)Ã’þ…(^ÇXiÞ‘Ž úi‡N˘ÖXÊMzc¸êÛ`Æ:Ì„;Ò±A×¾$½]ö[€¾×ÓÌIÆŽÀߋ܌#=–úZ º>Þ8U•-€9—æ¤ß'¯§`˜a]Gú tÃ@×ÇçV^.f„å;'K‚5Éüƒ8í˜u¤[ w×2é’n+ÙRÆ@„å´ƒeÕ¢’¾¢ ¤‹Ú‘ú!i”~KYÅù?a)i¶Î¼¿HÌÙléè]u\*·é·–‡¼l +ªuæ*é›s0lï`wpÐÓÊ5ïç%Û3Èл ̯gì$jšmBŽx _$X.t} Ø:¤„Þ«aÉ?ÀØÔž‘˧At†}‡"2,Ðý’´LÏÕä•ò«ˆI65¡›f;6aÐjL4R:臥Õ6=—³=—iƒ¤%Ó‰Û‹b D)ÛT ϰ@7ô4Iú\×õœâ<ÕIËisÜ%ý¢¸Öô¤ÇDÒB tƒ@×ù!]P“l³1iÉN ¾ßA(ZDá ,Ð ýkz>wÕlÎWaÒ¢ßÏ‚ß÷Ìu¨NÁi úq©\çVŽöTÀÐn)ÁwÐù¨(šô8=ÞáA·éÕ|‹ô[¼l &éòœtXçûæoD1¾fl <èÂzíîZlßòÜí »¨M#åëæ'}1Ì$6|ЯéÔ!Ò[•WÛEzTÒÀÒ/b.½QÍMºFÉ! úºßF†Gëše¬ùItxÜ…‰Zƒ¾_¿šôNUµðRTÒ•\¤KNÞfúù‹o£ÌK×ôuE44l ¨ñzob8E$ÆQOS.^tá7ÚOO~UÍ­¼4”t¥ÁÔ¾bTÒMÞFn:aÐã)y´P0ŽRª;Þʈ Y‚ð"‚i ú}}]°í¤·ñ6TÒ…sNÖY¢.šô!Dÿ YÐhè0×ËøDê¼QïïùÍ÷’5]ÿ›ª”F¨¯ÕD ݾ•1Ôs ¯!èiú›ã‚áLj³Xú“t3çÓRtAh‚E5ݾh×è0 ‹éö·õ†·~šøú×[&1è#—׆›O„âzÆ.#ZßÍMúÒz/4Aÿ1ÐGO§ØWfÈßíï­ø”׿ÞNƒîÝ5ö^º–ô±gK*<Ó·™Ú {âÖ…$èq?rë¾!Œâjzø·>ܺ Ÿ”wWÔÜÊs7Á’.‘º€>œÆ¨¯Þé5AxKE=ÿ8|ý ´:Í8Ò󲛸¤o¬`¬¯rU©e3mÏ™‚èžœÝÁ úmÏûïÒž>qt¾O2>n[-í4îgVù ¶çŒªL'sÞ¾+¤›µÜ7õ³½ PîbIKz“„ð táŒî ¥ºü^¹Åù$;.é%I®Ûw¼èûQóvŒt}Ô“Ct!ž. bº‹Z^üzˆëϾ»`´[²ö ï5¢VµSöÿ±wöOUWßwgwÒi©ŽÅ8c ‘H *¹¹‰P.Ô74D,!QF—P̯ƒ/(¢€(Š”—ª@4F…QJ”€ÅZbd¬ÚvœéßÑ»WÛI›NÈôÙçœËî?À®ÞÏsÎùžïž½ÃX ^Ò·7 TßqžtÞû}!fNBÐ?üHÌ^?_„¥·)êéš©³Å¿ÖÜÿ?èÄ-jýwËfl—t•¾çv£3ÏŒ&òf o¸| ¦ÄN>ÐÉo¾™1ãyo-ú«Â^Ð/ ôæÒCel°1éJ}ïE÷”Ë©D~æ Œ„øx‚þã×]g+ýùÚåa#xMrÄZÕEi :ï{io‡ùªò[°°¡:IÓ2~âû«v„y7Ôƒs#S«±}?™Äó–@ÜØgÓÄ—tûAo•²GóVû®0Öˆ™tå}?‚­¥¾$“gBÜØ-öЀn;è nÛÇ>ÿ`ùo3–ŒX|'ÑëR©k%2MngO: p_¯Í— 趃N¾ÐéŽûç×%ž±Ç•˜ƒú8|šÜ¦vžx à¾ÞáQtÛAOñÊÅú·;T†Z’{îˆMGöèêÖfÎÁÛÖç»fBtò@ºp«U3Ï9̤“±tJ»pùääp~ ^ÅqðDؽÓ':°a%ÉaöÃ’ßDi®iÐË·¼ÌöÜñq!:9+‹œ.¥Ÿ± Ô…ºÕí¢©¨î®ª êð®¸,œõb,ªÝNÐë¥nÓÌ‹U(Ô«0“N2ê(­Áe~¿Éy8;ìOÀΚ %ÐIšŒtfÓB½¬5éÑërin5ª > Ðû0L¼d@·tÇB:é{ÌX¿5êG°õR€&¹5P[l!:ÙãL•X1ñŒ £î³YÑÕØ‚za&O*…µ¥76ŠŸÐmݹNÈiöôlVA“ü¾³'ŽÂÚÒŸ…¸o@·ô@•îv¬Ó•5ÎØ Ü黪ÔQÉï[á5Ôç‰es èvƒþOÇcéÿ#}©@Mz°RCtyU5ÔaµÙ¢ÂÅß èvƒN.É‚ç6¿«˜±ìÔ¤G_ u<å,5V›í–˜ý¡ÝnÐÛ¼òƒ»¯œ`l< 5éÁžzËžýâ°fQL}ùÅ«átA'‹¥¯ÇÁí'””1Ï]ÔŽXb­tQÚ‹ç‰åÒ$ž éÞêÇE†è1ní£fþ}Õ2v»wPßÐ@©ë"šá3Kò@‰ïÖ€–÷]š9îè³ÒäŠq_h#äz ¥GÐtÚ65ƒznu¸ø«ÝnÐIš£zœZ#ŒÝ@Ô·w¤ÒT4·W(ñÎÈ÷—àéq!z§WÿP©ÿXþäêÊ>“þÉœ)õ4çûkàô¸|!å€ÓÇØA=ºÛEi–á‘£‰€†F.â/t»AOˆ”nÇ›Ù*¨{†pËïdÃJs;äï…™p$9ë+hþ¸PôøOÞU¥>ÌØSä=ur¦†Ò–{8òw%Éí2v&*\|m@·t²XÊÃÎÅÏXY#n£‰¾¨òw×W•ŠKî·bÚ{t»AO(—dl¹ûä7PšÚ…b$´u“C¹¢¾ú#X÷UCtòW¦A8MLccÉ•ÈQ? ô÷nþ™Ò$žcæû·°^] QÐÉQéà5¶ï¯¬ÛŒ#÷Ä’èîtJkP\jÛÙÎùy…ú 1×€n7èäOÒ7ãD§GÇ=;’ ]©”öbhµ-øH¡þi˜Xd@·ô˜"énƒq$|(äïMHZmÁBBGýuH—[BtÒã•[ dÌYŒyJpëï¹(Õ1\u)Í䉞lн –­6 Û :9.½šþÃü}õkêªT¿(ÕãÆàwÕw6s¾Öù¹3QÓÄÏ è¶ƒNJGÞhúï+%ÛÃØD-rÔ7täRZÿVÛòµœ_u~Å×"|¿ÝvÐöHßa8'ëëgŒÝA_ª7PJà«r‡ôÙÞxS¬ÿÜ€n7è$%Rz{­jSˆw èöƒNZ}²XªÜw§Œ±qìw]‚|Ü=Ш[ÁôÝYõý²˜ýžÝ~Еë} ´¢8K ðØm±ù]Ôk`·ÕUúžäè8Š©ÓA$ï¡:Ù tR{#PÏØ‘Jé‘ë Q/lç|­“s#ÿ(ĺÐéå)à~€U·Cõ𨫠±íNzß/CPÞ'èŠôÈ6uìµúæ^ õÑ$žxӹѴ–»#IDAT î[À63)@'Ç}²¨“E}|W‚AÝÞ¥¼ï9εÔ_%þ`@׺Õê•îzˆ?Á*U«_9¨–å–Ÿç<Ó9Gì-þÈ€®tB ¤÷0Èß`­Rà‡±»å‚¨×n¶Ìsð-—9oŠ« è:@·zÜÒ·æo0KõÕ‹‘{à7+Y.®…fë6Îóœztu¸ø¥]è„´EJy hŠÜïaÌýauÕlkékŒMrÎ'÷7!¾5 kĤI¹¥ èÐßXÈàûQw۬깔¦¯ƒz³mSŽc¶ØDį èZ@' Ç$PI.øTü9ÜÅz~‡‹RWG>ÐOщDžxÍ‘ ¾b¾˜gе€NÈq/ØB]}ˆv©nÛHc%jÔ7T§Sš»èÛ.Kš9¿êÈK…xÛ€® tÒS$eZ \Jj•.W–ŒÛ/·J]b¥Mg@vÛbo:Ô‰i èš@')géû`J*GðgðÑ÷jT·í H].Ô¨Ô§.s²Ç6Ù@'do }?Ù ’púiõbܼu¦)€z H].ÔÏëêÂÅûtm “žH)#{@cRûÌ£lð§Q‡õÍJ‚wuAœ#©‚z»þžú!~m@×:‰y ¥w1lשÿ®Òà‹³Q‡õ|¥ËÑ&€.øØª§®Û(gÍaŸеNÈ€;ÔëcR•\`ý)êj}ÕJU¬Çuƒ$iíÌáXgzSAfðÖ¡@PߦùJÛïÂÅeºFÐA½HJw+xNªî¨j}°¤1ë].•ÁA³ÁoÚÆyÒ!½cž¾b©]'è$æ˜OÊ=ßÇÄ?ô8€zÙ ÌÊÜöî|içÍZí3±¿³£ è:A'¤g‹”ÞƒøÉÊV½uÏ*¼×Ö­3êr[n,µ`7×,ÊÍ.6î3 kãn) Ž"À'¡"Y¥ðØUøüje˜‹»+¬«N[æ¨ÆÏÏ+ÓÄ Ë€®ô@þ¨'þsLM£)éC‹zô˜rÑÀ ëVP”Ëј¿¿îÈTØI:!g¥”å(@é+¹¢X|·-ëéàÂúÖµœ'ž×—¿/á3 èºA'¤~Oõ=õ8@ÉÊV¬O ¡e}Õ½º`X¿F„·ÈÉ«:ó÷ÕëEÄ úýóp¹BGT' UñJš+CÌúó°ÞR §·tÊ5ëºé²"B¬_m@w⯶F"B$TÄY¿‹µ^_5¦l4´n%ËœÊßùZMþ™™áâ-Ë€NC½¼•àb—`Õáó×ÅPwí£ÌæpžtSÏ¥¶Ÿ ñŽÝ¡B­U%ðEGÑøR^äðl0»gÝ:°Ã)…·Fó8Ï;¥åÃó¾˜u߀îÔP²\Á±6‚‡õlå†g#Ï*púæ¶?iR)ü‘n*ü‚kªÕ¦£TŸsA„-4 ;¶êÏú¤ô@ÄJVã¸bÝÓ®eXžÂ§öÞ1Žf“*Õ·ixQýát1ýSºs«í`A ¬ÿƒ½sÿió:ãxÉì+Ò&âF•º‘¤Ýºw+‚˜Ò(u½d FRJ3.Œb Ø+Wƒ±¹$$\æº ÄÍv ,Ñ064-ÒþŽsÞ×rk¿~ß“œGù9—>ù|¿Ï9çEf&ɶéy .ì"C¼´²7×uAœ¸¡ªZšÉùŸókopöÇñ7£½\ΰ‰$XŠuáx97³¨#ñ'¾øM6$AÖ£{+ù_ÍIs;ÐVŽó 4ïø€w(è¼Î”5iÝI,°°ã‹sšÍlÅÎÖõ[ü³P+ÇÖp½€?À?(褠 cLU˜uûi¼Djƒ™Ÿ>­$Žuœá£{'ù<_Êãõ¯ßG¿¢  ÅŽSé8ÃWM‘E ̾%]‹øa«h†8ØS†ðnîtÃ2O_28Fýoü[ º€X_Å^Ok#oÃeXœaÌîX"¨³Ãÿ¦Rúð™[Rso?ˆYÊ ÎYW¿s\z›‚.¬ ûzŽÞÐCëo)³ÇÍf—“ôUâãôôÅ«®‚·åFý&WøG‡ÀÝ taÍš<½‡øU#¯H ÙØ5›*’.П콅 {Ñ/!^Ê >ÑÊÍE¶}ÀÉct¡Md“öœt¹‰<ÖagÇÛxѽÅi%19^ZYñIÍCüèb¨Xû‹ç.¿ãžt úžÅ>†·s’«™DØCj—ØÒŽÔ^KHq†ø¤Ñ>Ä~¥4L,äà{SÿàÝ2 º`»A‘ÊÂn!ö·JtªM&Çk6‚»òRø+-¾ž»ç{æw±bqhû?Mñ-פSÐ÷9¦~öT½|Š´‚ãÕ~OÄy•ŽˆÏM^[`Ä~®>ÞÓwç|k:ði›”0Ò)ènHÁ.Ø óW›ë”»f%<[g <ì·ŠúbK>ÿ¡ “>!kMv«ŒÍòIDú°ÁØCœÞClÚì-ÜE÷gƒ§ËK„÷×LYî­>Çäø†!ŽÕ4ˆÚúåÁ }ÿNW¿à÷eô×÷6ùœÌæ%9jEäD»Ïψ¶Ò<Ô»ÐÞÂ]ë®`K;Tûr ‡ß®8ÕšŠ>PQ³ßìSþz•‚þúL»Ñ°ª(ÜÆûª¼ú^\; rÜÓ8yÏÚ|Û» ~Æ_LT«öèæŠIîNß®´L Ÿ×º¿gëÒ¿ðɇô×Mï#mýcé΃8‰¤0"}ÎÞ4ÕNØ¿B©Ë~²îÒ»hfò.¿K±ÚãÙ òÝ\=|Ë(Å[øûªë_Þ(è¯åøCÞ‡õj—ß¡àõcrÒ€/®í²,nd¹xÏÚ· ”—„ƒviÌr'óÆÕË++ÚOå [š±žðã|@AýÞc4WYó]ý1|£Ù8âOï›[¼ÇÏ/锂¼_ZT󆡃$ïûÝ™_Ü;ëÿ¼ ÀÏ®RÐßÁ¯*dÛ€—¤ÊôÃróÔš?A¼ÃNsãM:)ZÍÝdX¿±7Ö?>Ÿ‘RÐß´H?Õ$Þ©xIND¾JÞ8BÆrG‚žíˆôÙ]¼vøóiQ½õÌœWR]ÑP·;å~a=¶4w/{øÉ¿JAs‰‡¡~§ãä톶©‚}É3Àk«–tµ|ï³\ÑÌܤÃrªtÛžîJ Îða­»?_ÿóG½CAçÝÔfnÓËRw /IUç[‡a²>óÅJÝ’*|cëLŽg⻇\QÞ+p´b9Í=·é®Ôà«4¡ -»þ&ͽÏCA§ƒ%·CËçì@y^?רo6šÚ…| ÇßVÞ•ìÏÚAü†¦zÏ÷x$÷Ñ@–ös îÁ=³µ½|w ÞØ]ˆÿú,?8@A§ó3k0ØCÍ?Ã<}•š~M°Þ_©°ÀP¿xQÜ=$ù®rOݶÃë¯k•QÍÑ.ÜGÝæOÝ(½Ì„ø»ù2|Ùmpø/et:/fyÞš®~*ÛK$…0Þ+êGézìx•csÛÉœyOZ>±²¯×…;ìî½C“)ûÙÌKƒâÂ.žØØþ —PÐé|ÿDŽLµì«V½ìÓ#×ËÒÃ0áCì×ëK°ä+Û‹< ö+³O,ÓºrO0Ÿˆìî ó^IÕ +÷~Ë&³õb,{^KÐ+ž]ø›8tûήlÙc26 êŸK½$Ú^oe¸7 €{)KCHI­v"¿±Óò¢8XæŸXP´çvw-m¹¢¡:É¥÷ú¢øå´½ÅyiÆÃ„P|ìvñSü‰d’JA§³× i‡®7Ë«ÆéÏŦ|äû¹*;ßhêD½/Vj»–T‹óã;5/͌χgs)z¿”É¡^×AËû^üî›[ÚS|G髜»»}€OÿDA§ãìa¯‡¶_{÷(è#ã±ä¯µóêü˜ìa™_œ]™Ùéy‘CÓ}‰ûÿŠçÓâ‹ê]íÝët]CET÷nú; *×Ä:aÿ^³¸ €÷çet:n Ë.Œ"×PÊ—7˜Ÿ¯~øØùùzBßÐdœ2­Eò³Þ+V–ëP¶_ß¹´g¶x³‹ªl·Sí)Þ“›{ãv#xiP sî&î¸øàå§ìÒ½óû;t:œý~;Lú/!ßÅþÜp•Ü`fà÷¨ø¡èË»ô0Ýkž¡þþÊ,týR—¶ÖVâ&ÞažLÚ|õhïÐBÚ+Ô’ÇÀ[Ð’ñ’·©¿<óû¾¡ Óñ8ù=#SÆ&s#F_ñÌAÞö{jY:4ÿj•ªÆþ‘¸¿ØV«ÈV=yžêE¢,({„ýÀþmï—ÒUѰMðxXá_!ÒKƒjØ–ð]î Kû“ø|ôï5Yæ}¤}+lúê—ÂÜ埮€¥¿Qnø?{çE}ð#'>¥ÀÜA’šKrÉM JLбPË  ¦–X¥¤Š´¢DSÁ2˜ §hùa©¶âX¬¢J*XZ Tè V‹¡XtlMkuŠ BÇéwwïB~l.2Í;ø|†™Í¼xywŸ÷}o÷’8þ›½ÿøÞò ‡ÛZ¿â•¥ÃFlmÓ¸ŽÚûãº76ïHzßÅ;z·Ý¸ò‘ûµþâe‹gßµrãQŽøð·^áÞ 3sü½×{?hßY&’Ùk¢ƒ>Îqåÿ‰Ùö[ìŸqš/É0zíšëíù¹½ï_Û¾áíñfÎ7â§:è»Â/^vqÖK¼k|§OÐo¸éwWºsüùÞ±õ+ùò¦\‘ÈË»Òdì8©ÿúk¶¾óXüwžó›`ï¿4KÀz{ ¸¡=|î&pž}ÚÏyáÆñöqïí½Ùï͉?bØø_X1Ë6ÿ˜þË˯}ôÍI?sÏW{´6~ñ}üúÕ»Ç^î¹´ß›<Ú¿våSlÏ5ª7Ö#:¤÷ñÿ´Ûžºàu{¸åØ:€3Ø7nqºÀ³ f7…÷ß?oÞС Ü.pÝ A£RhÉV`ƒ[’½ÀìN30cÁïí¹àáÖƒ1ßÌúö™ÿöˆÍ{|Ô?e¦Ùõò¿òäœYGì?ûÚ»7®¼kö3÷\ÒÚø/[ôÀl3Ù?ú]Ûycû­‰I¾ç7®¼ãÞë¿Ýš7x¸ˆT7å!:@bxØY}à§f#Øf7{H±$„–v0z­ÝÌpðļyfÖxÿý?üpéÒaÃvlpÜŸyŠý›ÖíÙn6~Gÿ+8p×ãÏ,^ö­6Î÷¸ÄœóOZùêî¯xðü„îWßüÔÖë¿T~ÍH£zô幈p¬ÀLN+°3¬±‡‚;í© KÍ Õ€0jútçߨQÿrøàƒwlþdæLóïHC÷½Mϯ۳§¹¹yÿþýÿ±ù·Áµÿ’//ZtèÐÁƒŸ}öO÷t¿âãhŽHŸÊ(±¸ÊâÈ5%¢{¤7_¤—óÅU"õúŠ7MªËÝÛ/A¢ÇÒxtnÊÄý…:¿˜¢ô ÅY’›¡²xßwŸ¼¨Ý#½°•ø Ly¦ê{is.i6 Kæ*]‘)S ƒkë'^1E黣RS¥³xEr„¸ÂâÕH“k|¦œ¥.»òÉH¦Bщ‘2[Ÿ ¾1Eé2b²ªNiñ²3,‘Ì̳¯T~ã\«$§D_v!qû ±d·Bщѕo%ñ¡ÃJߘ¢ôúeÉ” j‹ç¢bt÷JogâõËÝþ^õÊ®(ñѳ& Q(º"1R§HVçò&»ŸÓß7ñÌ1uéõ’èU%.a…ÅÓ#ºWzáUR=×ùÀ_(Ì®0GúšÞ;$T‰®OŒ”™Z+‘ꘄœå((—vˆiK¯_äÈœ¯°xŠD÷J¯¾F¬`­(0É+»&KBÕQ‘Ò°.Ñõ‰‘:uYV4»¸õ÷Ó&¦-½¢GtÏâéÝ3½ ï–E¢/)Í.~n®ësžÅ6 U ø_»vÌÒFÇqü¡ýamäNO«x— ‡¤‚A ”¸:dK‘ "ft*t â«èânÁÕÍ¡`·’A2Y:ôuôž;cR(t:Ê÷3ä9ÿ’åož\à¯ÞjM¡ t„àßì뺕ÜúùñìZëéEEsñã Ê{áÑÍÇQè£Úªb—ÆlÇ+­ß³•@–C\?whf÷qÖ•÷Á®WÏŒy/åbü°65ôûP¾ÓQò’ «¡«Ö5f£¤Åñ°®¡]Žå³¤ÐžÖ«®¾O ½áªÙÿ]Ò6Èpèçv=Sgr˜³K¤¶1Íàk2kÚ¬ÿ ½©ªIŸÄfÙ ý2Y·}•‡k^pgÌ‚ØûòíÂÃûÞ´Ðó:Nþhê²›@fC‘^ìhÐ*'Zö,ß7f˜žë¦p±8-K+SB_vê OKì&ÙÐ?îËÏ6•¸0æ¥=ç«:‹çóíb< œúÔÐO5ÆM:ÝÐoÒ‹#}‡¾]Òé]ö“·ìAe¸Ñ³~ú\úkM¼ãÙÐÓÓúžãYío%=÷\m%“«ÇÐÛŠ’ÉŒ½G/ŽòÕû d6t¯‘®ÎäxSÕœì×je¿K7f!oóNBª–LŠ6ôŠœä øü5vÈlèrâÒá“ÏÒjžWÜMOôf¼žædþ$ôCéKÏtOzÙWe!~a(éŠÍ²z-ôœZÜîïók=ܼ¿“–«>kgt{^‘ܼÂô—qǾƒøù'6ÈnèÑyÕ-UoŸÌ»Òóôjé¤èå£Õ–ý¢= ½÷ÊñK+åÛô·îåÙŽ´éÈtèl@è¡ tÀèëÆÉÞ·ã¾IEND®B`‚metafor/man/figures/ex_funnel_plot.png0000644000176200001440000007034614661374172017702 0ustar liggesusers‰PNG  IHDRÜ}*¤ pHYsÂÂnÐu>ûPLTEÿÿÿ ççç***õõõ èèèÜÜÜñññ‰‰‰ÕÕÕþþþ|||ûûû¨¨¨fffWWWpppÞÞÞHHH›››kkkÏÏÏRRR&&&ZZZììì:::„„„ÑÑÑÁÁÁËËËããã¶¶¶<<< ccc111___±±± 333¡¡¡###+++ñññNNNxxx®®®¼¼¼ÙÙÙPPPDDD---ÇÇÇKKK’’’«««–––???555"""uuu888'''888zzzÌÌÌÿÿÿfffÏÏÏÓÓÓ¿¿¿åååøøøgggÅÅÅþþþýýýÃÃÃËËËöööpppÇÇÇ———‘‘‘rrròòòùùùÊÊÊíííÉÉɸ¸¸¬¬¬~~~©©©¾¾¾zzz»»»kkk¦¦¦ˆˆˆmmm³³³uuuiii¶¶¶¡¡¡………éééžžž£££www“““¯¯¯ÂÂÂÙÙÙºººnnn™™™ƒƒƒ²²²÷÷÷ààà‹‹‹ûûû•••ìììããã›››ÄÄÄôôôÆÆÆÎÎÎÜÜܘ˜˜×××ÑÑÑSSS[[[îîîððð---KKK555$$$BBBaaaFFF;;;6ˆGNtRNS³þò¸ï¶ü¹½¸öн´Ó´ÈÚß׺äËÙ¾áðõÞô·ÏéѽÁÓ¿¹ÄèúþÛìÜÅüëÉñî¶â÷ÕÆÂ¼áåùíóÀãøÎÇÌçêòÖéïêòQQ¥ IDATxÚìÝÿkçÀqeв2¯Y×µËH[š&íZX¿llQ( ê{ìøÉH²‘¦MìØMb»!iLÝǨ-möÆÿê,'ö”X’¥Æ0îîõúÅgIÎoN÷wt;€CÛ/ŸŽñ#! `!üuŒŸ<::ã¿…€‚…ð÷1~øèhèh<òºP¨¾~=¾9ôøøDŒ'…€B…ð7{ߌ–J¿ŠñïB@¡Bx*Æ»ÇÇxF(T_Œñøîñk1žB Âc1~°{ü·ÿÕ¹zÞçµþ3ŒŒ ›ìÈhOÄxjoáLŒovúÌÐ+qŸÏBK€du!]5hÉGÿÑñCg„ºYaÙ Ã!<ûäW£ï÷ûw¿ aÔ÷á0<|ùÎ˦¾Fx<Æß¶-–ù…Â`.¥é%S€ ‡ðdŒÇÚ¶OüEa0c!Œ™d8„oÄø§¶ õ'„ÓLÓ¦)@†CøÇÏþ·@f[¬ !l[žßH*•dc~Ù, ³7Ý>³÷ð¥Ö.‰„°–Zkå–šY@fCxjï»Ñ“ÜaMaÛÕ4}Ð áƒ4½jÙónŸ¾ÚzþÄ»§÷È$„Зé½GÛ§î¥7L²ÂÒÇGbÂSÂô;3C…rd|µãÅÀrµZîøÆªÛ¬!„ByÒmYÌô´…£ „PàÚABù÷Ó\cð6æ~29„P!¾ £ƒ‡p4|er¡B,¦é­n¹«Õº½s+MÍ!BÈzXêV»fš6»½·d/!B(„ •«»Å®Û>–‡W+f‡ !ä@ ½Î­E…r¤R±…„rm*ySæ‡ !dÛçéèÏïàhú¹ "„B™>¼f~gÃMç„¡B–] 7Çz¥nk«×»c7Ã3D…2ì›û=×Ê”''Ë=WËÜÿÆ B!„,ëýÝg¯}„Ž"„Byï`!TB„P!Ç!L&&<Ž „òêÂ÷É3Ûøþ‚I"„B™ôuXö®‡¯M!BÈ¢å…0òì! Ëf‰ !dÐbXKÁZð\B„P!“ÎX¹zýÀŒ7I„P!“>Ûk„Ð8øS&‰ !䳃ýì#TB„P!“.oõQ¸rµZîãc[—Í!BÈ–Åt¾Ÿ•0ÓÓý|j>µ^!BÈ–•p;94·ÃЉ"„BY2®m^7¯ù/ƒ !dÊøñämÿsfŠ !dIŸ…«Õúü ‰"„B9ì`3M›JB… aŸû…!BÈ’©•õÃ?#\_™2Y„P!–Â~WÁT*ÿeïn›š¸ŽOßôÃø¦ß¤{RV’L‘ ˆJ¢¢ÕV[ZÔ¢#øÐÞy«ÓÛ’(ö&ìnvÃï÷V²${vüÏ’söü¿?y/ÜrfB!„"¨ÖÂ…(qBí¬ÌýþÚOkž¥#„Baóv7ùvo7ÏF;¯^—þô¶ñÜ¥$„B¥äLœ¼‡çJy·àRB!„±áÁöX-ýãk%B!„qï`¹Ñ(+á1ksÇBXzWq5 ¡Bᬯ P¶Ö~°²>æ'¯zXêÑv= ¡BÑl´Ã³´Bø,´7ÆûìÝíí`éµG¬ ¡BÑ<›ƒÌ™šä§7Ããñ>{í¾–V\QB(„P0«ñn”šÝxu¼ÏÞQ·\QB(„P0K/£½\ï³÷GmH,„BE¥l¼ÏÞ^·]QB(„ ƒg¨„û:8·è’B!„"ù¾2hÖ&'}Eeœ7¡¸p®·ƒo\SB(„P(Úw«ÚtÓƒ½âN{¬¿6û½'„7Ö\SB(„P$ëaù`°¬ ¸ þÃ3Ù–Ã8¯ªúöx÷\SB(„P(·Ã€ç,×jå_²nó9ì+á‘­ˆ…P¡XV&Ÿ úßÌÌ ¯x69Þ‹Ì7ö¾úë©2ó®(!B(˜(#c~;«¾9j=uA ¡‚žá} B!TB„P¡8®=Ü"iõú/ÚxÍùF…ò¥^ ß ž´nwÕw¡VwÆB!„\Y Í!’6ø:Âùl+ÍB!„|yW£¬î£jüÂG…r¥z0Ô´—Je¨—ع!BÈ—(cÎ8B(„ „ „B¹P_˜Î:„Ó &Ž"„By±®Ù³ƒƒ!_x5l:ï¡B>,Æñ/_ØApcáÂÅ“vŸh4ÊÃ…ð—8¶{;B(„kaûÄ`=úÏ܇fß\›HnáGÛÖ"„B9Qéœôtµ+¯þÙ\o?Ùîw*Î;)T_÷…pîÓ&&'OÂg?†u#€ !ŒÔÒüÆIšøª/„¥Ÿ?yPZ§y8ÛÆü’@…Fë z××Á×I®#4]!BÈy£W}!<úôkµZÙÄQBÓ^ë á­OdfÆ B(¬Ùí—_ŠT¹wÚèa7…í˜^nÏ„PaDvÂã/Vêüñy£çRÙ¼÷qØ1¡Âh<¿f¿œ© ¯ÿîà7T6è ן „Pa$–ƒ‰éÔî«M”ùá³ÿ^¯Ÿ2„‚%¡ˆüzåßKõÃÖÞÑ^ë„ï»q|Ú/¯üjB!„9õ6O½ŽÐÄQ„P¡ÀLâŽP B!„ÑX|šÀ\—J%ƒ<]4¡BÖ–Ú¢œxÐ6_!BÈZ+¼ÈK_„–ñ@…²u9Ž/æ%„ãø²A…2U]ßH¢aIecݽ¡Bƹ—+7åDd<B!„v0™u„Jˆ !¡A…²Smý”Ð<—©©„ôSËׄ¡BVB­åJ¹Œ B(„‘{¡åL'Ü3.¡BFšÍKy á¥fÓ¸ „B™(G¹Sž0.¡BF’Ë×ädrÇ2.¡BÑ:8´‚B¡tVüf/±u„¬tŒB(„¶Ë×ÓW=$¸ãI¸îÙÛ¡BÚ¶ÃÉänâff’;ÖÄðm|B!„”5Ãù(§Î‡¦ñA…Rvÿ·(·~»o|B!„”E¹f|B!„B…°^ÏQ/o·iÆ B(„p’jÂÝêÆq7á²½ EµùºôÑë{6²@…>o«}1Ù'„&ºŽðOÛ[C~´ç”þöþ¹¡F…>£Çwò}Gx'އ\UT:æÈX#„BŸ»! k On©T>àZî–°UêÑ2Ø¡§V6÷£œÛß\ꣽí á;ƒ !|**„a>ÙB©ÏŠÑF…ÎP›ý!¼g´B!„ :xp†þþn¸B!„^7[OOV¹ÑH~³û'­›¸ëý!lp„P¡Gu5ÔoVâë?®©«¯ˆ¿Ý‡F!Bè±V/#„—VÃÀS]–æz;8·dÄB!„;áB _çMM¥pÐ agà÷¾7„ï 8B(„Ð÷§Ñ;QaÜüa¡ëçŽwðܺG…zE…2øçkûãèÜmã !œ±~»ùõß÷ƒ[†!Bè1»>]¬N¯Ïü!ï¿úæC¿yuÕ€#„B½¶ÃÍt‚59™Îqo†í!>æ÷w77ïÎn„P¡ÏF;œOçÆ-„tn5χö†qC…r+l¥sã–Ê:¶Â-ㆠ!$¤²žÒÚ‰r­VNçÈwÖ+Æ !BHJj“Zffrµ ¡B¦ÌÝvL „BãÒA%D…qµ¶TÌ.Õ,D…NïAXI/VõzzÇ^ ŒB(„pZÐNoBK7Ž»éMÄi‡ŽñC…Niñ^'½›¶ôÖ~й·hüB!„ÓJók¼TïM—A…rÞÁ(ªTL!„3B+(@!Ϫ;/‹—;U£ˆ ! ính;„­p×("„BÚ­…ÅtCupîñCÍþ‚¡°ãfª“:£r£QNõt›±%¡ÂÐv÷Ó½aKwáû»F!BZÚ_á¥BGB!„üv0Ц¦,¡!„œª\ŽÆÂe{Õ#„BCØXžÎ/oM„Pa`Ãæx„p3<6š¡ fã°;!Ü ±µ„¡ÂÀ¶;Djr2ƒ_ÒÙ6š¡2ZÕ[?îí­.ëMgq³6´goƒ2öZïJ¾ÐÁì×*!B(„ŒXýUén„âì…IŸÊµZYAsÿtðOËyÓS;™jf&“_3±3åBD…Ù:ÞÁÒÜ­B¼éGa9“ïî²2½¹B!d$ªïzBXzSˆw=¢±²æ]‹¡2·z;Xš»_ˆ6®ŒW¯4„!BF£ÖÂR«ïºÜÍ(PõzF¿¨[v-"„BÈHìõ‡°Q„wÕZ7޳J®‰£¡’“®êàÖ*!B(„ŒÊj7sÿ–—²›(“åa´°ärD…ì-ôO–ÉýØÏÖÂÅÌâT©dö«.†šgo#„BÈö†ð}îßðZhfw—–¡n3¬¹B!${/nïàW×rÿ†çC=Kuk B!d$Âñà¿â«O'Æ3„O¯ºB!dªíÿ²w÷¿MÜwÇ›veS¨–ÂŒ–22J+ÒÒ퀭H]Õj›„?ß r‰ù “8ŽcHœ™˜€iˆKR Q:Š)U×þ™sBâç´„†»ÏùÞ¯Ÿ"á“ïƒÞÜù{wñÒñ`ÎÛkkœ [ߎi!$„pÄÄ£ÕÆH¸akí “?õB€Â®GÇn¹b¯_°õÍÖëW\`A !ðs²ãs͹ñ,û„´ÄÖú"[ßnN¬Aö2!!6t[²¾¦–•ÛìeBBlhhò\s‡ðÜä{„òy{„„ „„PÑÁp˜„P¢~Áî&ÅDbv¿çÂ/:s¤H¡#oåì(!!*e$áDò–•wâ}¬—!$„@¥®´ô9$'®#\Ñ'é.ö:!!J†$×í¥#Âîœð BB”ÝI.:³j%pæ}“wØë „„(óyû„^î %!$„!!!ŠÇ®;V£BÁ±·¾>6Ⱦ!$„@ѰdœŠ‘?õ;õÞf߃B x@hY眊‘S×®8gY‚BàÌ™³Ñ¤Ï‹!ô%£ü;!$„ÀgWÊD"¬—!àݲr „!$„!Ó3±ìå.Oð8&BBoKJÎË!ÌI’!$„ðôᘌ:Z¢pØÑ·•1 A !¼,`E¿p2D1‘˜“ïÿEÔ 0 „„^¶|ÎÑ#2G¯#\½ª~™!$„ð4‡¿£óƒ~‡7!$„ ƒêíå €N …|ð…BL!!„7uͤȠϗšéb@ !<),7É ÏwSÂÌ!!„õ\’oœ—t|¾‘K\KBHáI_&PÞ²òŽoDòKf„“œ–tü:BŽ‚BBÏBBB:è˜@€Ç1„pÂy¿ë7¸™¿ÁD€BxK¿eÝ%€ëîZV?3BHá)“’¡e™d&@ !9zr?!„+;–Ë€nÞ±wͪ‘#u/íÿЬùè!Ü´PˆúCxªÅ˜ÓûŽ|\¬Ý[5/µ-þá{ûvì*¦²åeB:¸Ù»¹XVžÚCøbk1€mÅvwó·ê×~oÌáÕþýö€1'Þ'„Ðm0² íN×Ê®#,Zˆ 2) „u±ûüñOíÆü«úµb#w¯åò´1Û !tËÉeŽÉeÉ1) „Õ^1æÔÚ‰ÐVÓòFåKy­¢—»!T•qmG„¾@@Û-ŒË(³BXés¸míç½Æ´W¾öŠø+8B(5!IV…þ²¤L0+ „•^®Üvc>¨zñý?ý¥âµ !TëYâñKOrºv‰'ÕƒVyݘ½ë?jÌÛýÞcþI¡cå(áÓØaÌžõŸszƒ_{gÄ´¼DA7©P „€öî4æäúÏ7æ“Æ¿õ«ÆìlüRÛ u^™þ`/•¥÷G£~gG/2/°âî5æõÒÂc7ü¥ýïßd­í´©×wíšÞ•+e:uþ[HÊ&vsO?jØÁ‹/Úà/ø7!„±)9KŸÔY™Š13 „ëŽTŸ=ÑèžÜÇ‹<ÈM·¡YB¦T.D4nU~JÌ øŽpÝcþP±Xæùúß8x˜ÖC<† ªu]¹Æÿ¸ŸÜµ+]Ì áºöŠU0Ÿs´îvo3æøïx!X2ÚT˜Âòó9PqÑüÞº[‘Æ‹¿°ÿ9B:H æ áþxyLí-ÖŸ95;ÛxB=!!š5„Ͻ]zøRÛ«ÆÔ\4Ò˜‘“›þ+ !ì5êך›pXë–õ§¦™ÂÒ=Ö”¾.¬¹ÃÚ©ø&¾Dá”Û’ÕzU‡ˆÖë²r›É!\{Ò`ñ8pßÊÉÏc¥2moo_¹Ûö‹'êZO¡ï€Ð­KF;õ^S{M, A×׊¶súÈžÏGŠA\û£bÿüø„æDkÉg„:C˜¾¡õü£?ôkݶiBBXº@âݵ;”VŬ…ð•êÆü†B'µ­ñùz{õn›ŸÉ!,ß:fÇñm-­»Þ)ýÁZ·B¸+@Y9 B¨ !!$„!ì‘äÞjO¿`&Éü€B¸Ý¬¤4§&Ò¼u)™e‚@ !\n@ås×å-+¯xó’2ÀB¸Û=+]P\šNÝÏæ,¤­{Ì!!„»-Ïù8"|jsËL!!„Ë)_ްp „€w;È%!ž¥¾>Bökõõ1G „„®íàØ”Ÿ’ýÊû¬MQBBB·ÊHª[yg 娒 “BHáRA¹§ýx+Õ~ÌzO‚L!!„Ke3Ú+£ü:ÂÕVg²L!!„KéÿÎ!dá(!!!|†"® !àÝr-!@geâVž‚mÑànM0O „„n3hÉ Û b 6øˆ“òÓ÷¿› 0l „„ÍK–‚m•¬Ì×}Àý?Œ7Æ<È1m „„ åÆݘpØ [¹8^»äSòßæ „BØ·n(LL$æ†íü6Vóñ^¯è ‰[Ì!!„:î8çèŽë,ýÎTŠ'8BB:øT·m Ýr[ðª÷j¼*„æG&„B•Àl·KòÒÛë’ íž­\:SÝAÓq¡!$„P¤'%×Xê¹µ®IªbIÌ5!4CL!!„" ™9Oº¶ÖùI”?áGµ!äÆÜ „„š ËUʵծÊpùþ©6„<³„B“þÙN·ä%rË–vÎö—?áû5¹ÎÔB(⢻xZ–‹îˆZþ„³5!|ÈÐBÂæ¾Ž°:„}ßW‡»¬BÐAV”0Ru!áà L!!„Wf–\”–@ÀE»4s¥ô1§+:øà2cBH¡F(-_³ÄóÙøZÒ¡Ò=ÐQ:ìgì@ !ôÈHÎO²VO»NüïþÔå-üÒŸ“ŠË$.ß_¹ñvüÑäÿÙ»›Ÿ8Î;€ãµ*ùT©9T=Dê©•ÒZª¢öX©—ž*õÀ³¶ÛÝõ.»ZƒcÂKð‚ÁàÛØ18¿$Ž_H'ÊŸYá8 lRgYfaæ™Ïç¾+Fü–/³ó<3ž= !Y2yù‰¾Þ÷÷f=Ë‹{éýcðäò¾»kW'?2r¡’1ùÊÕÎÎ`Þ·\Ûó¸À‡ƒX.B(„è` ½j6óEîÔÞEOG”!B„°Pû‡?Ü4!D…bøèÞ’îúzÿ~÷WémV\ºçª B(„dWþî¶Ýh â]ÿÝõÜÜÒÙôÖàì½÷6¡’-kI²e¹èn­º±žÚ[o%‰l#„BHVÍ„eÜÕ}OìR'½÷^‹ !YU=óܵÝÂZŠ—5ÏØ@ !Y¥€o´»CøIªooÒB!DÓ2::ˆw}xª+„g„!Bâwi3l…ÐÄû~³¿ƒß¦|ÓK¦ !B²g"¹š¿jáÖɽ¼ð Ýw¿šL˜7„PÉšêJ˜Ï_˵Ú`n±v{ïN”ß|>¬X0ƒ !Ys;ÔîäðáØØ€Þxþýï3xâ^Úï}§n›8„PɘáåÓV‹î»»Lçu O=Àc©N/›8„PÉéûÑJœ3‹<Ì{›7„PÑÁb3q¡"„i¨×…„íÑz;Ÿ9ÙL’Í|þäíõGæ!B2c4lä3'ƒÚG8xaÔÜ!„BHV O‡ÓÎÖé0må(B(„dEeîîHN/µU*9ýÁGîÎULB(„dE«<ÄQß§eîB!$3dÉÂQ„PÑA”!B éÚ|Ž[²³“ã~þšéC…ã×Nš9¾ÐÖlæøòf3i›?„P9vëa9¿)Éï>Â]ËaÝü!„BÈqO:KBx<–:ɸ D…ãöù“¡k4òüÓ?ùÜü!„Bȱ³xÓÂQ„PÑA”!B ©Z•¢ãU­šB„P9ÆN­´´è8µV¦”!BŽÏLhnæ;$££ùþù7›aÆ"„BȱY k9?¡ !ç§´kaÅ"„BȱYmä<#ùÞGø:åUsˆ !Ç&÷—ØÊµZþŸ eB!Dû66f!·ƒö‚Bß&› ¦é IDAT”‰•£É4~Ÿç×j!B8€ÊtØ¡,Ø Ó•Ãþ6/…¯.”J¯žNl!BèÕj˜ "õz1»rôÆÉÒw.<ó< !BèÑ•äzß*&Ißï^O®îwÙ)ýà[%B!„ÞÔ—"8—Êÿ>Â×–ê‡úUÎ~¸'„¥gf[…biO}ùòÛ§³¿ÈÇ:“(ιptøÅÞ–.LúT¡R ÃÏN|÷×ïÅT!C8T©ØAq£´ßSŸ !BŠcí‹þü}ykCõù«5³dd¾ÿoG¿î á  !B ãÑý^ZgÄ'K΄õ¾Çà«®–.ùh¡RýÿnõüÂùй/>Yr¿æûƒÝ!¼æ£!„BHATNîÿû÷²çWÞ 3‘dg'’™ wS;#üÈgC…‚Øèúûw¡Ýë+Û“ãÈG¹Ù,Çq$'ÛýÎÁ—]sðÊGC…¢ø¦ûLà“^_Í7Š‘ì#<ÜÊÑîˆl$B!¤0ºÏJSBXÄžßÿÝè© !BŠâiw{]xÑ"“F#¢ƒéw¶O삚O† !…QëárO/›h^"ƒ®7û}vÄ ¶Ó#„Òd÷Fêó½¼j¼ˆN=Í~o˜}ëÕ›xÊçB…"y¹?„ßôô¢«a¥%:YÔZ Wû…ñ+_¿:ùâåe„P)–Å ûN{›Š‰›UÍɦêMÏÕE…ƒ™ÚóüS‹=¾(ªvŒŽFu8F!BhöÔÿvQϱƒ­ZJBH‘µŸ½¾ÓäW7‡{}ET݈j¡"„BH_ÎOÜÚîy õðöRTÝ(×jå¨hi{ØH#„BÈ5¢¹ÛöccqÏLh˜R„Pœ³`3}¶7Õ‡Ž7B(„ ÎdhhM¶5¤9E…©>~(5ÙöðqÕœ"„BÈÀÄ×z=ºC2¦¡"„=ÛL’M%!„ÞTÊÑ5#º}„¯÷„TÌ*B(„ Â|²ìŒ0–“yÓŠ !p1LÆw°R‰ï˜&ÃEÓŠ !é[s;eæÁÎ\X0¯¡’ºG·†5&†o=2¯¡’>±p!Bt0º¯w”„ŠÂr³YBBøYã³í({å>Â]íÙqS‹ !)Z7„0On„eS‹ !)žÞ â¼–ÖˆôqÂM§„¡’žá¹q^J‹VùÆœGÕ#„BHŠÎmjK¾lž3µ¡’"a±p!Bt%D…BZXˆ7££ñÛ‚;Ž"„BH*ÎvæFbmE+„V¬Ç62×ñ9G…4l„F´'MÑî#|½5$l˜^„PIÁt²ï.ƒZ-Þ}![É´éE…œ®F¼ dl,⃫ž6½¡’Ë/-E…D B!DB„P)šõ©;Q‡¢^úðîL­›a„P9Œ‰0u7“$껨ޙ ¦!Báb¸õSÔûw] M1B(„Âêì¹!g„9vnvÕ#„BÈ!D¿˜¤R±^„ B GAA•„~ʵՖŠä_kõšYF…~Ôo†O£¯ÄÎNô‡øi¸Y7҇͡[áb9öH”›Íøñb¸ešB!¤³áqôgKÑï#Üõ8Ìšf„Péç«Ñ‡„0 ûj!BúQˆ•$†…£ „PàÚAB?i|A=b²0n¦B!ä@6‚3˜ÎÆ™F…ƒh'É–|Äc+IÚ¦!B`5l£££Å8Îíà)¡r 3ÂÅç…èC+„bÜFîù¢3B„P9ˆ¢|eXŒ}„VŽ"„BˆþåZ­,„ „PÔ ÙLB]n¯<±Î2>OVn›m„PéEu%¬ÉF|ÖÂJÕt#„BH&CíœlÄç\-Lšn„PéÁDr¶8u¨×‹s¬g“ Ó !½(§ ›I²Yœ£-›m„PéE‘¾.,Ò>B GB!D ~F(„¡òóÆïjI¥R¨Ã½¿èqL¡òvŸ…eë+ãµ>3ã¡ò6•éðX.âõ8LWL9B(„¼ÅD˜‘‹xÌ[(B!ämªãÏ‹U†bïóqw—A…·*ØR¹Ù,ìÍ8B(„è`q÷*!B(„¼U½*„ñ«ÖM:ÇÂ÷Þùµ’}kí­i4 wÈÛ5³Îчð¥?ýAɼ+öc/á³Îчð¥Ò_„¬»:K2¿¥N¸dÚ9òž*•~%„d]}õ•(‚V]%äèCø¯Ré!$ó$ÂÂQ„pPÞ9Qúë/…ÌžÑQ%„£á/Þû]éïþíïÿö›ï !B˜­ZBGÂwßýgi?!$cªvƒPÄ}„»Ú wZãˆCXú!$cfÂTƒP®ÕÊE<î©0cæÿËÞ½>5u­O@2gÐ1Ôª (ZÃ¥¼â V´uÖ+:[MHÈ €r)תÚ u(¨#ŽS?ñ¯A !·’ìl²žß'rj挫¬õt'kí kCX…Âf„A¥åaG¿–íä’Ö†[¬ÁîüãÃZ~W¦«Ðð8G(@ù—Ž}¿QüÖÇï<!ÿÒ4°q„0ûª[JJZ !è øý”°(„ç.L¬ïm-=Aa3#ºÆ`Ù0–uý»Œð›KCØrlûèıB[ñŽNëºSF×s„_÷ËLzù݇…!¼áZ  ónýõçÚ®Ó„v2§~çŠP?¿«9~÷a]Ý­"·‹Ö?"½U!r×Ma#óê‹¶_”y½ÚþÕ¿¨y~÷a]OŠ\?·õma½È-B|ÍJ½äwÖ…°M\ÿÛ~uØ%m„6BØ8 d;„äjøË#r‚‚B£ÖJiøËRqBÐA[X]¥„€!tICøË:ù‰Â.þþ¤qºƒÁnÿúŸ†ÿaÀ¢Ⱦð—g…§OÀ.&Õ´Î×DŸ#\¿žV“ÌXÂC"MÛ¯šDBØÄßj¬ƒjkLýÍ€5!¬qm•°É%-„617¤÷—d€Þ_‘q¨…Ðq^D«jNŸ®©j\ûñ*ø˜¹€ì‡ðŒxª!lç5«ûaH)í‡`VýÁ\@öCx3â!!„M,)¯î—CºŸ#üÊ«–˜ h·à^£r€Âv}éÒ=Ý>_·îcÐõåsÙá=‘BÛa£HGG?cÀÆQX§4BBBèBGM…\k8Zyùð&Bˆ\ëaýǦ‘f²žòò»‰"׿”ŸõüŠ[Ž"Û!”(„9ö`ZýIÖÀ¬ùSM³$ ÛÏ#ŒB‘c ê=ëGDza,3 ïÕs‚ê…¢}`á!Ë?ç7=\`NBn±ݰøsEÈÆQXBn±:hS^/c@ aE¹Åè (!´!·XƒÍ¾ êdÝG¤Î!¾&$„Üb úRoYøé­bfBn±]¼U£«,üV‰Í‘Uo™„[¬A¯ŒIÖý ÝÁ`7£°aÒxÅÜ „Üb º±êÃ9Â0!f!äkÐK>!dã(¬!·X!´©@€1 „°ä;Bn±ÛèûÀ‚Ø>Œñ8&BH‘ÿ^ªYðÛ¿ê%3„Bä;ÿ¼ZaÁGl+jÞÏ!„–Øñ"!D޼UCœ@¼Ó$Cœ%$„™wáÂõèÿ±˜]£ÈÝW„^¿®·—1óÐË—„„0 'Ž}ûÉé, „°ûˆ£sJq¨’£°*„"­„tÐf8GH A¡—Ç„pÇ—b>_™îácæ !$„È_Æ9:±C?c°ãÅ8«!$„È_Kê ={§–˜)„"_y c‘…‰-†—¹B !òõÂ÷ƒ¬óHfð ßBBˆ¼Å"Åïg Ø8 B:¨¯eÃXf(!!¡¶8GHA¡…x®ÍY`¾BBˆü3¨|,ðѼ^Æ šO 2c!!DÞV¯XàaÎ+5ÌŒ!„ amù†íŸÊ„–ë÷}b‡9Ÿ|ã<…‚f0„±BXmu•õf­®2c!!DÞaq³â3lEvCx2B:hÝÁ OŸ „Èní‰jçÁ_,ì1qŽ0®¿X$!!DñÏO³S†¦¶_fzÞÏÌ!„„ycA u±´Ç01u )NÕBBˆü1¥zXÙ‘š5ÅÌ!„„yãé „Hõ’pæ)3‡Bä Vu°q„B€‚B:ˆz{JBˆ<÷n¶=žR!F!ž¾ÙwÌBH±÷Æ –ôx8G˜È ÃaBBˆ=oI-°¢ÇÕíóq‹µøÔ3ˆBìýOF§¸ L ¿Ÿ1HpI8Åg£„bïc5ûeÓˆƒ‚‚B‹òðxøKÅ3u›2©¨¨$„xßCµÄTTZRg„ÐŽK"yž|‘§µ Ô5K}Åé8]xmfëCI,'„xO`V­2U#•VÕl€‘Fmèæð-]itûì<ë´ôçnˆ}¢š—C±—ÑÅ9fjkÖ×¹ÖÌ-Ž2Ò¡ µÑcÛäFä³Nol?˜„åkÊ4² ê·ŸôKÓ´E½CCœ>Áó2p"„FôV°0¶AZž´ïï"}BHÅ:BBÇî#!,)‹>ê%„ ƒ„â@}Gx>¶ILMtƒƒB¿ùI¦hË9ªÃºÉyF!´ñÔèåŒè)J‘ƒ$NI&!„v÷Ô,_wÁ‰/VgÙ{›ZwUÄw8ô³DJÏ…2ä•BíÕæh8áZd¼BËvˆd~¾”â-¥;·Î&„ÐãñÔS4œ°6õ˜ñF-«jˆ¦T]]Xw’B»‘ûÌÐpÆýÆ!´®Òg„¿¬”Ð(÷BhÇôlÇ›³òà( a(>ÕÑ¥ñíyB:è ÃJ s(! ¡›Â?žŸn15ÛÁ:B»nýĨ#„„n2z×\gn¶³Àïg͉ëæ]¶%„„n2§îrк-##\;–ïª9Æ!LÌÑ „Ð*¨˜›á¤dÜÂÄÈBhusœB8{K8~“qG !\„y<8 ·†ð“˜ðúÁ޶¢ã—Î"¥Eì,Bè×€"µ!Œ)7ÄÛM¦úøÌÌu–tÇ|¦É‡Ê”N„°³NŽo½k‘±zB}æƒl2jë“°ä8&B˜¸óR’³ím“ø!´éšUϘ”¹#tÞ35ËDB–µý†0|ÅeBmÕsædÛúú¸¶=WƒŒ?B˜(C ·¿-ä„zh´r‡BìÏ-áÆ!LTíÎÏBoH3!„>=ÌÈØ=Œ>B˜°kbl;qâÂŒ´BhÃt …ûCxD$«jãMn­ÈB:è ëë\J'B˜sVÄð¸PUu!»QD>c!4éšçéÿdô qúD2¾žg.!„ :|hûþjÍ!„ÐdBu3'3³Ž09Ýj‚QHtîTÝFk+8† ºê 3c? º‡„b1ƒGA !!!Ò"„ùU5õ[!t|0Ê W<:ÊX$„‰¨èà„zèö@-0'k`€k¬õ€ÑH?®H„B³ÀcÖ&ÿ¨‡Rý%“/ÜãËéÆ'!Ü{¡•„I[øß机7óL¾:\æÕs(!Üû`Þ¿K{!D’o·-EãØ –M“5(:<3Í[ QB¸§Öbi.Ìí<º‰Â:µcS†ß¾aöMëuybÞcˆ½:TÂÎ2HÖdÝÎDO™|¹#tÑ•\cˆÂ=‰°Å’ÜõèW&_ úú¸<9 'BXüBËÞíþß©—L½ „H›ï9É{½;„<ïWYûžQJ !!°%õˆaJ !øh4ݬ¯s ty¤‚ýŒSB˜øÂBBËxX&z‡†8}B—W~5É8%„{¥¯µ³*âbÍ•«§³!,cùD °ŽP§ÕIî á‡e»Ìò $‹õ„G‘¾!ôíúPk†º[¬ ̺: r (!œanhÞj8û…H{qVx Ë®$„°aÛ¦Ûÿýs.!Ò(„—Dò2<ù"5OkÈqž…-Ç0¿óÄ(\i%`œ¸:¤9üœh©†ßåÉX'!„=O~yœ¾¹Æ„ wZT?2J a\µÑêÛäFäɯœ&„°eôŽêg²…{õ«;£ŒSB½,”fOô–°–þ‰‡=L¶: p têy8Á Bø;ÂHËE"Çóž/!„=Ì´z +5ÌUày8òáùðšÈÓ2Ï1!¡°Ž¡^’Ë¡Õ"-á·§$“‚ºA¯ßÏk”N„ðªˆïpèg‰”ž eÈ+„6Üžc’Õmd„k ÛÜmÆ*!Œ³Ñh‡Hæ§á[A)>ÑR*RDaݤiò}Üÿ½«i²÷6!Œ£ªA$Ïã©®î Rw’ºiõ3³,Üïg5Íh%„qTúŒð׃õ‘åì,†Ì¯˜dá~_™CŒVB?>ÕáÿæklÏÛç}eaºzÁ¾jú\í^¾`´BN¨GJ0Áê·lšË\…!,*ªÚþ6¯éB:è¬#¤„p(„"W·¿-f!, t1¹rG˜>º8„‚îÂ2¯ÔBXÓ4_0»¦@_× ^˜A¶%„ ‹ ÂDÚ 6ù²DJ !¬¹©ü?0½"]üàW7µ„0¦Eâ:FaÍ„ºÇìŠôqOM0j áÆ-aSœ δeBX¼#œcS¤‘á9î ᦣ¹!¡[ÀÜM.fù¬bfM‘õu®Ž"Å!Œ÷Ô(ëA]¢whˆÓ'!œavv%!t!ÖRB8Bv–ARnO¬1«Ât³6ÁqL„0žúŠëg2!¬éžR«L«)28È5H‘U5ÕÍè%„1O߈Ư>ò©÷!„%êiÓ*ÒMÏS5Àè%„Ñ}d|¡øµ†_å±å§!,…p–B¤ã-á,!$„чÓÞs»ì²ˆá;_zû9!„,!DZfìÂèI¡î5V”…^ŠxOz<9¡ß4Ÿ#„H*Ò£—†O¦7d,ö`ÖÆ`ñ¾/+$„„1\BˆÔ†°E¤(úª*t#˜yU.R@‘ ¾•Á_Þ¾~3ý&Õ”|x§<§Ð×úÄðZôûÁë"yÑWù"‡!óí»Ø3Vcê¦ÕLÔ¬#L©[êß bBX²yï_¶>­“ZBˆ„t¿ÝÚ¬ýõKæUízý~¶XK¡û¦ya|àC˜)%±Wµ2S{éƒ"!ï¶[òöŸL¬ÚŒp RiN=aøÖm„°S¤cã—Ææm"!Äžžï<Àk‘yiæU»ËÂæOA³7ŸšñüI6o !öôëÎf¾bbEÚaøží*ã¹±õá‘B$àûÝg:?bV!Dº…ð”ÈõðÏjCêÊb¿k)$„HÀÒî™Uu ¸©6ÊP>à!¬i¨òxr΋øb¿*™9I‘µ;„¿3©j¶lšË\…ÔºeŽ3–vë&þÏÞÝüFqp‡KTUQS¤öP©§ªŠÔ^r¨š^ÛC¯É³1t–µ»/~¿íÚìÅ6G Ì“@p£mú"õÏlB §¿°3ÏÌ|>§œ8<Ñü¾,;³óÖ/Îü®R9ýÝó„ïüút¥ò'¿5Ê!L}½?„u«ú†yŽpø:ayÊÕ\îþêýgvæé¿þþÇßüço~&„ÂìB¸cU}"Ìß_6–ü«¹Ü!<õöÓ×Oœ~ÚÁSï~ûßïÿÑk˜8ŒÎí÷ö…ð®U}ÓFGÁÐï–Yí¸šKÂS§~zæ—xû»ÿ|çtåôÏäż·s/eðâ×6•|¦Ò‡ðE?ùó»§N !‡ëà‡/=Hø–÷ó¢„ä?„q¼„ðÃ/^øÇÑ‹³ö!D…°4ªÛ#ßÈßþþ¼ƒ_uÌé Î #Û~iM…£º¾{clÿÖ?.~ûꉞ·0 Cm|ÜÛ'RÐ ×]ÓB(„ÍæJùþCËÈk¦t8îíiû J«ž IDATdÁµ.„BÈLdêä ÝM’ „BXzëaÇRV;ž%B!äƒêÌÀRVƒ™ª B!,=[H¹Ù!B!$Û$> !Bˆ–Xm|ÜÛ'”!$;[+;˜)Ïf®³²e „PËk¬¶ ¡–ÛVhûÍQ! 7ÂlµZÎ [o …PËk¡·i)»Íž‡ê…PÝ*n—A…PA B!BB„PË¢q}Äf¯ÙtÙ¹îuLB(„eôi¸o37¤SÈÜýð©EB!,ŸG—ÔÌœç£0.?² B(„¥ÓInŸ7€™«Õë~b-{ço'› „BX>†3ˆÏ“–ô ¡‘u‹Q?IúN!FC…PI…ç…!D}"D B†îʪ;Fã4:ê ¢´¶êuLB(„…2¶-Ë!„B(„ ÿ›(Ï !BÈÐ]˜5µBÈqþïÌ^°B(„…°¶LZ´Z-g­­°c?„P‹`s%Œ˜48º‘°²iA„P àZ¸gÑà8î…kD…°ª[~] Žem«jA„P‹ÀœÁqÙ!BdÈšMg „!:X^“!L:%Dž™›3–,fž#ŒÝ7—B!̵^X2e1«Õë~b-jK¡gG„Pó¬VüÜvܦ§AÔvWB×’¡æØÙv×’ÁItÛÖJ…Э2PjvD…PA B!B†£ÑpBˆ2$c·üØvôúIÒw ±¹åeõB(„ùt-¬š°ØyŽ0Výö¶ a>]¨‡æ!'·êÞÐ+„B˜Gg“¶‰ßè¨3ˆÿ¯+íÄb ¡æÒÝ' Þ„'wí‰ a.™/xSì‰ ¡‚"„B˜+›UÓ• ƒ3È…ê¦UB!ÌYÛ¦kÈÞ¨ùe{ádw$ÕÆÇ½}"Ú‹J(„B˜/÷öéªþöW•§þ9{’?Æs„y±îÛ!Â<¹„Ǧk˜&¾®|o±&„Å÷8$ž%B!Ì•¦×/ Uí…V*'ø“Z-§™ݦ]B!̳5\;/v°òñgN¤ ìŠ ¡òÜä¿^ aåߎD B!Â2é¼ÜÁÊÅsÎDB!ŒHkÏùÃÕÛÂÊ gR†o†÷ZÖE…0¶Â¢‡+ÙÂëÇþ£šMÇ™Y [öE…0æÂ¼Í®›ûCøé±¿m aÒyæÅ|˜³/B(„ùáò„É®íý!ìûC†çsdbY…Pó¡æ5„Ã6òr?~ëα¿vª×}¡›ýš}B!Ìs5|ÿy¹„Éñÿ¤éi§™'öE…PyªzñŇ'Þóô„"„B™%S•ö·„gœGy,ÍX!¸5êá­JÃÞéçüªã4ÊãA¨7ìŒ aÔÖCÛ­2éxüåoŸf°¾{¢?¦Ñp”yÒo‡u;#„Bµ¹`WSó×Ï–f§Nø÷Ž~’ø›K®4ì !$„„ä÷s !!*f€ªo€­!„„°QMŒÎ²Q@µÍŽN°6„6¦¸#„¨~ʼn³7„6¤°ÞÙ|¡ë!¬—¤LqÉ(PsÞ)I²?Ö„ðüY]6ܵù³?\yó™vî'„õ:#Œ½`“€Ú{ãŒÐš^lR½z¢k©xŸm:W<®Ú|¸íDñÃ_B.ÅNƒc}l áÞ}Ŷ8Ò©úû²?Uý¶µøÏ–£ª×öB:ˆÉ9NŽ£@ Ñè!<¨úõ›ŸÚU¿)ûÒTõ£“Ë?µ\U=B !v†û !ÜÂcªßüÔ²O›>ÙðÙWªçW{¹çÊ aíÅÓƈ3BÔK&g…,á'ÃÚѲòóQÕöÒÏNvênŸ¨¯”d#7óû9n–•+dAºöͨdz_õÒ†ËhT»a}O§‡1ê¥Çq8%´ „§T®þ|]õLÙ¯îim»ÐÜ|¬í$!¬‡éA¶¨ŸÁ4cfA?Pm[ýùWªWK?;¤zý|Ç›û/ÿšr¥ `VÈ‚c÷ÅÚÝóª×J?;\ü¬I;ÏtVíºVvE骥 auxãy‚Ëq¡òqökz»6~5ú»ÒÏ>.ž¶®üü…êÇoý´üd“"“Æ®Åä6ÿß!„¨·Ûc*¡CئúaÉÅ2îìVýÍêÏ?+‹$¿#¬ºÞ´Œ0Bns ÜnDÒ¼¡×ðß¶«*¹}â\Ù…4Ýk'~ª„°¦üNä)#ÔÛÓˆãgÌáé’¯<÷—ÜS¸rá§kÏæ.ûý!!¬¾Å16¨¿±EÖÈðž¼µ¸òG¬#y¼ä«Ñc„{'±F†‡ÐsfíåK-ÇU7¼ˆ¾åòú‹™ªž „t „0/„§Ö¾m/{šÇsBõÊʉã¾Í/+$„Õtsñ1A(Ä10Áïª7;„{‹ç'–Þ?q¾sí…LûÛÛ±|÷`ñ”°û󥮨~Å“ejÙÁéqî]2@T$ÊQp?ïø4%4:„žëMªW»Ú¾^ÿò³séiÛž•8v\úðR‡êµVBXC!yÂú€û ñDB¬’Ñ!ô9»òD˜C-å!ô\Ü·òÙ…fÇñtþRcˆ>ÇɰN„ÖÈ}ɲ:†à>Bƒdå>ëD aLMÏ3:œ¢ÑÌOO±N„ÖHî;6Ç~?ÇÀßåX'BH¹d°ëD !(!!!¬²1Þ:4(oŒi#„„°êzÓ²ÈܤPàdQÒ<{›ÂjKJ„Ëí â‹Dxû„Aþ‘$+E a•Ý—;¬IÃÉ}„f¹Ã½„„VÝ£8·B4¬\ü+E !—Œb'ÂaŽaX)BH !@A !(!!!¬¼—£Ü:4¸ÅÑ—l!$„Õ29*yfhlyd­!!¬’¤XÓ„BÓ¤$ÄZBBX%±©YFÆ0Q‘(GÁ0³S1ÖŠB.•Á6q¡‘Ø*BHé ¶Ëðˆ5JB:h±þ~Ž!!Ķğ1/€;Œ=³Y„VÜ”d˜À22ÅfBBXi#2:ϼî0?*#¬!$„ö@Yƒ ÊV‹ ë]äõK&Ê9°FþÁ.ò¦zBH¹dÛÁ}„æbµ!!$„àŒ‚ÂJÉð.SùýCE3,!$„•¼R&ɬî’äzBH+g 7˜À]nH`€õ"„„°Bb’à÷H€ËäÂ[(!!¬”›É‡¬Š© Ž©&o²^„rÉ(¶à‹Dxû„¹Ø.BHé ¶Â}„”„„‚‚âÿð'xë„ÉÂaŽÁ2 ?F á®=— æp§ yΆBB¸[“ŽpÉ(àRÅ™dÅ!!Üí7£ÓmÙŒ§#‰ÿÜM½bB{¾ù'ζBB¸ms2ÁnB˜eBæØ6BH·íÉè fÃá0ÇÀ/FŸ°m„n[´Àj¦)DÙ6BH¹d°ÛF !(!!!Ü’ÿ{/{˜Èû½Ÿ…#„„pk½ É3ö…8öÈK¢—#„„pK1êc0¬á¡röè’G á–R2Ã^؃ûí2#)6ŽÂ-=Êp†`_ À#Ölú óˆ#„„KF±A?ÇÀ.l!$„„ „ „„”„?ô·y0ôLöpèKG á»- §„– 9–ÊÐ[G á;eeŠKí’sÞÁlß”dÙ:BHß)6ÎCe,Ã}„öÉsS=!$„\*Îíþv„ÒA¬ñû9”„„ „ÿcïÞ—šÈ×¼Îü³o‚µª!‰¹U &A1„Å w¼+Ááâ”à0™­šñ1WvtEDMÀtŸï{®:zÎtŸÓ2¶¹¾l€,¯oZñ„P/Ð Ä áÝÛB(„©'Éž">Ý®1ˆÏ^’Ô­yB(„Ÿ™ +Ö‡øäªUGG#´æ¬yB(„Ÿ)ùüR„œ#ŒSíÈ—ê…PíEãfÍB!Bþ§R1BˆòÎ=¯¨tîY÷„Ð?úYðÐÂ1y¼rTý£ŸÝ(³, “…°fÃŒòÑv(>·0@LžöµOù¿W­ ‘*—A¤Žú@¯bË(7j!8?-+Ÿ¢ƒ8G¨„!B·\±èkBˆFÿ€ðÉ¢!^SSÆ ^‹O<&BN•ÃŽb´ÊV@!dll¢nZ F7CsÂ(„ŒÌ¿˜´ @Œ&_ÌX…±±ŽƬT21—°cBl\'I¼o=jV@!D#ç¡"„±kxÙ¶_„F!j >B!„‘«'E AÜòyc·bR· aԶŠ…b¶¶¬„B³BÒ^¶@Ì–Û‰ï aÔnY nG·¬„BhË(1ëvAô¬„B¨ƒD,W­úúÖB!Œ÷ á´ zÎòδ§„Bkgø6¹ !7jf•Pã4ªŽRS©ƒèuªaΊ(„QZ ÷­À÷ÚQ£´»îÎ(pzot}׊(„¶ŒQ³" ¡B(„B¨ƒD¨\6(¡FéîK9}8‚ÿ œþOxyW…0.ùfØ3õqŽöB3/„B•õÐ2óy'W,zŧZa]…0*­ä‘‰Ï©©)cÀ©GIK…0*%Ÿ!>±\B!´eˆš ¡B(„B…WÛ“¦<ï•JÆ€÷&·_ ¡Fb+›òü­“$¾AÂ{ÇaK…0 ¡ý³)Ïßœ#䣟ÛaA…0 /œ_„|n.¼B!ŒB½qhÂóA>o øà°QB!´cˆš ¡B(„B¨ƒ€ ¡fU£xd¦sF·k 8ã¨ØB!̶éj80Õù(W­úúg„ê´ a¦­†5Ÿaå çùTm-¬ ¡füΨg„!_1ï½Q!´U†8U*Æ€s)B!ÔA@ …P…B!¬™xæ»ôÀ7-?›B!Ì¨Š·mß6*B(„Ùt»™âœS.ÎyÚ·…P³yt"ØÈyµœ,å¼Jh¡fRáØç—8Ï9B.px\B!´c”HäŠE¯Xãsž ¡©)c€ a6;¦6ЫΦ aÖ,$û¦6ЫýdA…0cfÂ]SèÕÝ0#„B˜-õ0ß5µ¹@©d ¸@w>Ô…P3¥´o¹ãÂ'AIâé1þ‰´_B!´e”8Gȹ5*„:ˆ_„(¡ ¡’uù¼1@…0ó¦[‹¦4ЯÅÖ´ aF¬„'¦4Я'aE…0#?Ÿ†Sè×Ax:-„B˜£ó[^«Ì—t»Æ€/ÈmÍ—„P³á¹m|q©«Vý™Ä—tž»5*„¶Œ’uÎòUB(„:ˆ¢„B(„)·°`*ó•Š1H«åƒ…RwÐYXB!L»Ûíæ¤2g²ñö§ñññþÚìešíÛB(„)·üÁÙsò×øÖzË ì¡¦\3Ù³f@Ötÿè߃ܾ—4…PSî–½2=oÆÏšä¥Þ-"B(„¶Œ’eå²1HŸü'ÿq°÷}„Pu,«…P3 ©óë§!_ìå„PÓ¬`Åàëœ#L¥ßÎ…ðí`/WB!L¯­w,|U®XôеÔ9<×Áñ?z¹;¶„PÓªæ…o˜š2©³|>„¿ 6„ó¡!„B˜R3aÃ’üÿùþ>Øëm„!”ÚmZ2 ƒÞž ៾ÛÚB!´e!/Ï…°>ð+ ¡ !™U*ƒô¹óÇunB!ÔA²¬“$¾ÛœB÷:ÓÁ]Ã…PSh£âœ4ßæaJÍýøqËèæ5\¯VÙB!L›ÒÓðÈb_„™5ö~ÃÌ?ßüë:.÷(<- ¡¦Ì³0ãœ4=ÈçAJMϾùϯKG×s±ÜLx&„B˜2­pÓB|/7CK…0m·F}†øŽöÜB[F¸ ¡ !™Ôí„P³gzqÒ¤¥'¹jÕ®*z3¹8-„B˜;Á‡és„ô¬v„PÓâq’Ø*ƒòí%Éc!”Xûæ,=ªTŒ=ÚëB(„)Q_=1eïídµ.„BhÇ(5!B!„P…P%B!]Ûk·ÌUzW.zwkm[…pÔÖBÝd¥gµ|¸’ÞÕÃZA…pÄ5BñŽÉJÏœ#¤/wŠ¡!„B8â6š›æ*½Ë‹^±F6›B(„¶Ê)SSÆ€¾xF(„:(¡ ¡B(„B8‚J+Ë&)0XË+%!‘õ:¬˜¤ô§T2ôg%¼B!UÍð‹IJ_:IÒ1 ôå—Ð<B!Õ£aÉ—éés„ômr)l¡ލBÁç—ð‹;)„Pm%3òyc@ß<#B”P…päLLNàz&„PGO½ýÚä®Çëv]…pä,9CÈet»Æ€þ­„%!ÂQs/´½U†þåªU_Ÿ ËípO…pÄ”Ê÷ÍMúç!—s¿\B!´e!$fn ¡’ •Š1@ …P„PS­ðrѤ®×âË‚ áȘ ³&%p½fÜ áÈü ¬†ºI \¯z¨„PGÄôülͤärÊecÀåÔfç§…PGÅáss’K®e!ø+ŠKz~èÖ¨Ú2Jê9GÈU¡ê ©—+½b %”{ìèW05e ¸¼ÅÇB(„×o¶=ㆢÖnæ…P‡n=´ÌF`8Za]…pèŠáÈd†ã(…P‡®‘7¹‚RÉpù† ¡-£¤Z'I:F«B!BRÍ9B„Pu¿A …0µvÖÍB®öˆÇCf®æpmG…pxC»kÃÔm‡E!¡٠«f!0\«aK…phvgNLB`¸Nfv…Pí”!Å÷µÜ]çê„P…ÔÊU«¾> ¡/çQB!Lñ–Ñ] BÈhü?Ú]B!¼~ÿeïÞž£(ÓgpÉîË!@ˆH0Bäìx`uµÖªï“lI¦r‚ XD‚ˆ()E@Wã^p“u‡$Ä$h-‡žž™žç¹j®^æëßtOwÏ©±pÌò㩎šOíX;%„B˜º/Ã5¿CT„×—B(„©û1x"P!ÃB(„©¾Ñoñ•¡ÿư ¡KFš&„B(„T§‘3@…° Î[u$âD.º"ç B(„)ú: [u$Á}„$e8|-„B˜ž¾/ ˎ$ yĉ¸¾èB!LÍTøÉª#'OšÉø)L ¡¦æÛ«“PY&¯~+„Bè’Q –ùŽPuPB!B¤º ›J(„Uæò9¿:AbîäówL¤;wY…0gÃuˤ¸$]g…PKïûpaÆrÃ!•hæBø^…°ô!Ì_´ÚHΠŸó"AóB(„)ðù¨Üs N ¡KFÚ&„B(„€ ¡–Lá+ÏV#Y33f@¢&¿*¡–ÐÕàWTIÔÀؘ_Ÿ Q#᪖º]¯ÔwmÞ¿ã^{smo}×ï4Ö@‡o—ø‘(÷’´ÁpsX“׳;Κè~øµõ§ç^‹ŸÍ~/†³>½#„TöY†³á¢&îP.ÆÞ¶î#ÅÚíZþZÓý¶­y·øO6=“ù~ó! 5’5ù[A“¶rU1€÷O|¶tÅxxékÏæb®aöé¦×fÿ;BK ¨|¾#LÜs1¾7·ÕãÎçïå;3Bë PÂZ áÆÍm5®Š¹íK^kŽñó›õ1¶g;„§ –P §„0QÛ'bçƒ+B[cìXòâ[1œÛjÏÅ®ÆL‡°ïó»–P î~Þ'„IZ½pf´®®!Æ×–ŸÝ™fëC^ á¿ÇªÊÔ¸7)PMƧŽU™ áú›],³âÏn­h‰qã#?µ-„êz:ú™0dYÕd(œñaR:=DôhŒ{–-¾ÿ`{ßDÌ5f5„ç‚KF)áa3 $®‡sB˜”1nYtC}ë²'¬5,üá1ž±Vm!,Ü›¶¬(…;ùüS ¦Çn„0!í§¿@fù#ÖZÝc¸òtÌeöÔèñãV%á>BJæøqG„‰yiáÇ—î_ºä‰ƒ1î]øõÞ,GhIáˆê#„I>cmËÂ×…KŸ°¶a"ÆžùHþeÑE5Y ¡õDÉ šJXñ!\Y<l»LO×ÂÍ [ç}bwËì Ôwc<ОÍö¹u¨Jã}B˜£¹{»×¿W<ük›ÿ«bŸŸíß?cŒ»›öwÆØµ£.“!¾™w¥ P…¦ó7‡…0!-»çŸ³¶qYëžÙùài1›×e3„Sál¿TŸþ³aJ“²nÍ+õ¹UÍ//üÅBëê^Þß[Ÿ;°¥ce]FCx)øezJgfÆ (™B¸$„ûµc5…ð̸BJf`l̯OPºCÂñ3B(„.¥²¹B!B„!B!ÔA*×訠„BXÉî^š±Ž€ê5sé® áÓ8ŸÏOZH@õšÌçÏ ¡>…ÛaÊ:ªÙT¸-„BøF.9 ªûðÒˆ ¡+e¨`##f@© ¡ !•ëD'L!B¤f¹%ÂJ¾dtêë‡òˆ5J퇩óB(„O¢pÍÓ¶)½“'Í€R+„k!Â'ðIò;„@L…O„PŸÀh¸lýYp9Œ ¡>ïùîÈ„{ ¡ºd” 5²pHÃࠆ…_…PÃÕp¥ß²£ÿJ¸*„Bø8OW»{˺²äÖÝóB(„.j™ï…P©D33f€ ¡R»ÆÆ<Á!ÂJóéw÷,Râ>BRtï»O…Pɕ𙃒=Ÿ…+B(„b<ä'-Ò2:j¤e2Æ…PÁżB ›‡„ù‹B(„bÚ½ô@&õO;5*„®j›VP¿ù¸RM—ßÏÿ¦œþcæŸ]ãÿOùvεBXäÃ+á‡þ˨åÖý?×ÔÕü7ʧ¹k!”ÑÞ®C(£7º^(×®¯¼ß2„2Ú› ¡ŒöÆC(£Îø¢! „B(„B(„ „Bˆ !¡"„BB(„¡‚ !B(„ „Bˆ !¡"„BB(„¡‚ !B(„ „Bˆ !¡"„BB(„¡‚ !B(„ „Bˆ !¡"„BB(„¡‚ !B(„ðXVç¶BmË­6„2j«ß`eô¯í†@h4ó7Ì(§¯­¨Ï½½ç`»Q”Í‘øœ!¤nÝ®Wê»6ïßaÞúÔ¸ö×ã¼7zL£Lš¢½AúzvϽñ'ºÍÂ[ŸšÖ¸§¸'ØÛ¶¦¹¸SÈ­6²x~ÂÞ }‡r1ö¶u).€]¦á­O-{.ÆÎÙþýuKŒöH9>ŸŽö©[¹ªÀÆâFKWŒ‡ÍÃ[ŸVÜ´Ìïzcl0Ô­Û2{~ÎÞ ý€ïÍmuÄøyxëS»^ˆqó¢=C³‰¤l_S}ŒõGì R·1ÆCs[«bn»xëS³ÞY¿ž…Ȥ¦¡ø‰xã›kì Ò¶}"v6Îo·ÆØa"ÞúÔðDz [½1_7Ô÷ëì R·zÑǾâ;ÿ5ñÖ‡¢-1¾o )ëiºû¦½Aê¶ÅØú`ûhü{÷»ÔD²Æx"ÝB‹HPr„%€«ˆ°ºüwu¿¼wÁäþkg&™$à8Ù=Ç­çùâ¤Mµ]]Sý³'Ý=±¥GÜú$/;Q»§¾ £Á÷èòVqý"âX¸õ!™Xˆhê£AE4#ö‹ë÷§zÄ­KoÒÿ;dÍhP"V‹ëµˆ =âÖGE¾ÐFƒŠá¡qëSuvÒ¡`E? *cûò£Ñ==âÖ§Z~.ŽÙþ¡W°²1m>ø½ºßhð´"æŠëwôˆ ¤Ú#ñ|=bçGý"+äÙÐÚ°O¯ôˆ ¤Ò#ñÌEÄSëda¥¬§7}q}whO!‚*j¥Cr³¡Œ•²t1X ãˆ5·>·ÑÙ× FƒªÙê¿|©±á( ·>öË…—/ ªhµÿlô™ÖÜúTÚÔž×s ªyë§óÀ'ÙO¯Ûý2áÖ§Šf"boºï\ ªâS-âx»õ¹“¢ÞpëSaã’I=b4¨Œùbý®µbn}*­.•õ`v§^›~øRO¸õn¥¡ øëžD<úk5ܾ‹úôÖæ½^ùdÄʾ]ùõ5•Æàþ£j€ÿwæÚûC^ª©Äûx(ø‡áÆy×Ó£,À¥5•¸‚€LNö?4æOÓ4ÛÍ.Ïff–þë ,­iT^÷¯À÷Â$9©E<õý[áèšúAÿ¬ L~Šhþ-A8ª&AÀÿ2Wšwêíéóå¡- ¿ÖöÎ?%Ï"æGÆ×£ˆƒáÀkœL·ë W‚0­éâîmjÊêx{¼QÛ8~{?ÿ8Ó[Móh8VKÚ ãáî¯ÅºÍã“^ÑÒV¯¤ycNöæq½ˆZ{Ó¯ìù¥ üx»·ª)Y9î¯$=˜*Â’6ÀXAØøœÆÉävë Q—M=ލÏ>YŒX¸!ç£÷…^D¥•þ:7{P‹Xl •Ï×¢såÀëjz¾qú¡Õz»—–´²‚³Ùˆ£³³•~m%m€ñ‚p3Í’×ÙÅû£4÷òu›­ˆ½•,of#Fásíˆ;C·±“/ë|~±<(¿ßŽÎj’ܪ¦óˆŸòf4ši"æEW·O”´Æ µtRõº{¹”γMí?Ô£¶Ò-j–a}²ëÎi–“‡/†"j&bµø^gðÈt½Þ/¿±¦¥ZÔ'ºß˜ú9â}I–´Æ Âg¯Šë餬ûG±Fs¢]„—œ÷NFëFÔjćîçÝ“©~ùÊFÄLR„e5­í7犯¼‰8) Â’6ÀxAx04W›ªEg-IFœE_FáùLÿ€ÐnD¤…_Ά÷¼§å¯#6“ÑA8TÓÐlõ·ˆ•’ ,i3Œ„i´¬÷?¤Áón0Ël^÷áîËϧóÉå LÞf©V;j½*¯g+[eAXZSëË­ƒãN”aI›`¼ \ŒxÑÿ°q?I"%¿X,ÓŒè,_ ©íZwŠ7½9Q”G´Ë~È»®¦dmsa0U, Â’6ÀxA¸0*Gy¨ìõ–¨Ü„Ù&†Ú/—ƒ0I~ÜßêfáÆJ„­åtZxoD^ªée~wìýÑZ?*Â’6ÀxAøuø1ãü1ã¡G£³£¶O¬¦y5q%S»¯·³=ñùF´|6I^Eü1"‡kzæàâïëùïŒËƒ°¤Í0^/<ÙM§ryÑÇ¢è|ä>³è/0½z¦èY­›VÝòí޶›kJ£÷q±3púæÅ2½6ÀxA¸zy+Âb·¨Ø>±[}²ÌÓ4¿> ETsr£XÂù¥»ö´­ˆÃµä65½¤ÜûèÍö®aI›`¼ \k÷7§ï.æ1³Íƒµ“nQkôÉ2ɽ4(§õt°*æqÄËAN-~ó‰kj:Tñ0zÏ@‰8 Â’6ÀxA˜lÇ•=ØŠXÈšÛL/ò$\½¸!“¹Þy ½ˆ:‹hßÏÿb?bº1ÂäSôÃktMÍtŠ—·b*;Ö¦;K|—V¶4øWÊÚ · Âúô@&t G›­‡ÙÖÝ5(»ù¡Û­í|àÈ l§Ñ÷|Q¯²ÊžÌmèœ EW>½›^ºEMÙ zOgï®6ÓFô¶öOt"7‡nÛf¸]Ë×ÄL}(>þVlJ(^¦Ô™=¿a—=µÌ„ö"jésQY½ûÒ¥~®m\yñîu5-÷v"F§9±ÿÝAöygP[I›`¼ L’wÍãzm遼Ó_ËœÖNֳׯ¿„ùygC÷úáb½vz4×Û“?XMš½™wý5%'ÛµÃ7ON’çîóÕdjs¡]ÿ:\Û·m€¿ßÑ•]ð¯·27_œ,Ó8Œ¶9Õò)âiïr9bK‡P-Kí¸èþzxÿ›E£ðï·™-Ñl¶šÙÙtUÓhvŠ ›~! ‚Vš;õÚÞ×M+FþlHýÝP)ØóB¿4”“IEND®B`‚metafor/man/figures/forest-arrangement.pdf0000644000176200001440000001570214661372026020440 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20240821160508) /ModDate (D:20240821160508) /Title (R Graphics Output) /Producer (R 4.4.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 3034 /Filter /FlateDecode >> stream xœí[Ks¹¾óWà’Y¶fñààƒíZ'ÙZ§²²*[)ÉZ¢,YC2éÝ­üútÇxIšÐVåàâÁ¢?²»Ñè'ÀöìûÏä§øÞiÎ„ÒøaìgÚrüx\°ŸÙjòÝæü/¯Øõf_zÇê¿›ëôóëw;~~÷úïðmoد“Ë÷Œ³›‰`?À¿OÁ;ÎÙÛ î]5º4ÅÁ'ìý.µÇ¯öþ®xÐwÿïð?ð»æª“‡~7ú ~†›=úá49«ÿ¢MˆKkÔjÉú8<á±wÙj‰)øíg¸îŒLîZ2Â5«6¢3š Ë£t#lç3I2ƒé»²Ù)bH2I–YH~?S ÝëNe&ÚV¶l˜h_ÿ>äßE†ÉØðÕÅä»70gvqË„èH~ü±qhwdâž],Ùåô|¾ºY/Ͼ¿½At°éâz»ao×7‹aöž]ü0ùþ"$@»»üt8vµðê+_XÑIŸpôÅ$ ˾ãŠH4ØÔV$„k’ÞvBW$„+’=q1"Q²ó¼"!\“ŒfPfT‘ 3J=Øåò¯øJ Õ ²35=S3vñ ]òuOk-:íGܲÛúÎõ#nq<·áƒ¶âæ ̆65sËÈàRÕÌ-“†âezæúNEÞ×ÙùýæÏ·÷ë$¨¥<5aœïDÏ$è%cq„c¨ ¿@¨'Õ™\‹"W"ÉR &ˆqL*‹ª Ö­>á1‰F®˜S{ŒÎ8Pâ"’Œ ‰v®³žI¨ƒ”vKá1 G.œa¥”’—¸ˆ$ãB¢Á5àD Ì<ûÈý¡Ö²¦Œò S$ǽ¡üzüøì‹Jß/U\èöD3B'÷UnÓîx5¥taÝF©¸zí¸•Àþ'<6ÈÀmZ††n$B±°:®º]C-KšCqQsÑ¢yäÆRàâàÒ7«Žù®#·á-3fSðÇ#{“ÇâØ¹Ùl qIÇD•‘]5dyâ†D$³Ù†§š7&™­ehb†‡2ZK°Df̃¥¡ ჈9Bj ëšBÕ|DÄ4!Õ¥ö-S'J¦Àš½)ËI¸gà[â=òWÙÒë¾%èâª|qýS,XeŒ4ª%݉¿JÕ²p þ*k WMúTy#”ià°1U©©ØÎ^’Gñ&ÿvLŸd>Ñ> ª¬õ«j)¶ r£¿dOCê(¨–܄ԡĺÁïIó’8¶¡Îw•6º‰;¨^%nÉÙ4xIÑàñ4xIÕ7Tzó…š³nÈV¼ÊÙRíÒà+´¦í.¯R¥)X#wÕhšÆg™Q¢ˆÞÉ–˜±a?±î4Jµ˜Ž(Fö°nW î4-•†øëN«Íwß$ Çm·*mlS©#ý«FÃûvþºÑô-Šæ_7Ù80ÿºÑð'°ÃsOÏ K-b¯MK›3ÞwÊ×û%g÷d.áÃèç hx¼<Ë%nš— “)üªMçȃU¥kg¼Euªý¤tÔÏ>gð!ää• ’3gX—ðáyçt»¼²A‚úé>ÎWyœ·Û¯ì‹ ý¸ò„þOÑ/o‡à|-úWvÆýúý’¼² ‚|œo”gÛüâ¯ì‚ <ãÏÚ0_©Úõ+û8_­ƒ{ úÁÊÈ>A^ÙåÀx1Á~VDÿ>!žË.Ê3>ÈÓä'دÚÖ8 žFy\<Ù~åð9øWûñ>è§ŠýÂÑŽ ‡Wà³%àƒ•ð1h'\À‘>á;vã9>oŒËe8S6á¡àp,3zÂ(C{p² UÂk<—÷DxÈžI\<§ô ðÀA§I\¡ XÁÓžgì!Ðû€e:m 8ȈÇJ`Õ zh ÂCÁ£s(ô„ƒ=ðXH† `m°iØc'á ¸O¹p¼dà©§5 [²O¢'dôád3ݹp×Át½JxÈØ«Î£Ÿ}ÂÑ/PÆâ¢Öõa.ñ¬$â¡`‹Þ¡ÐŽ~áá;åÂaÊOQ8OxÈXü2}ÂQF8ÞÒ6¨eô*á¡`˜Bô-ÑŽ6…I§$Q†4øAF¢'mšÏH¢_œH"Ñ/„%Vù`Ó|†"tŽpªíL<Ä¢Û6„óÊuÄ^(L?m¿Œ[­Ÿ·wëÇ«éæjÆæ«ö¯s¸;o´n¹ÆŒ(Òñˆþòüü=»ôæOìõ߯åè ,)5vû ËY¯ž5°c@Ë1ûÙñìJªÎº'ŽéðÔÑ¥ìñ‚†„ƒ‡ùt’añ$ãúú~5ß.n¼‚gʇAšJ'9«íã ª5›®Ç‰êS8䎒ÒßÑ)œæ¢Ý°Dˆ²¼ÆÚÕv²BÀˆf•bgç“Ð~NXz§FÝ8&^Œ –¼óáç'Tj¾;÷YpºÜfw.ù÷sâ]²Ð·Ýœ*/õwî¦à´yQ¿óùö§ËË÷Ï&û9µÈ õÏT;9Õ,< ' íÞÆ9Àjóê{÷^ÄVŸÚâè0‚"§Uèd¤‡âèH¦S‚ÐÏÄ qt8»Íëå‡gò…8:¦ˆÝçåñÃ3õBäÀʬ~_Eê VQ`¹ºï^mºN.tñrY(5A" XSŒ¯rå¸éêE¸§ &uaÕR¨‡„,.º†I;|±«2$E!ùWÃȆ°µ¸nF{þ6Ü/u†V¸dάgâèï9>žÖœßû<”¯‚Bƒµå*hmò|ý’H×$‰ –®²ºOÊ-nåÔBE’YQ|qûw,qÄ>2.ŸÆôC‚&쥡»H@üb9VgÈ0®½Žð®†žòµ§½ÎËéüË®¦ëG–.>¬>.®¦óíÕìj¶óx{§\(“N¹{n¡îb50·pÛ'±Ê¯ùž:e²1Aºõ^V ‡ ž´ñRVþ—†•}X÷dñ6‰ïÃ]àJ|î: ”•* 'Ø"\I•ðœeª72³ð›„[÷…æºfé_xa4v+P¤è‡K¤“€écyéè¶ðˆ‰V!Òï‡ù‡Ãû'Ýoÿ^oØ/°ô4ïÃçÅæè@§»ñ?:VªçÆm×l{·8:棬٤\¾yóñnËÖ· Ëî¥xß­˜U;a¥ÙËÕj½Å;É«Võ¬î1ÄŠ~Óaq[Ô’ V¹æüÿ¸êü-¾áñ•k†§W=N¯zŒ}uzÕãôªÇéUÓ«§W=N¯zœ^õ8½êqzÕãôªÇéUoùUÓå¨Óå¨Óå¨Óå¨Óå¨Óå¨Óå¨oãrÔO“ÿG endstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 720 612] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000003398 00000 n 0000003481 00000 n 0000003604 00000 n 0000003637 00000 n 0000000212 00000 n 0000000292 00000 n 0000006332 00000 n 0000006589 00000 n 0000006686 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 6788 %%EOF metafor/man/figures/plots-dark.pdf0000644000176200001440000005577314661373527016740 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20240821161903) /ModDate (D:20240821161903) /Title (R Graphics Output) /Producer (R 4.4.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 19473 /Filter /FlateDecode >> stream xœí½M“-Çq,¸¿¿¢7ó °ylU~g.i⛑Ç$6²g’àò‘Ô½€ €fÌæ×OxxDFlê–6³è/áÝUÙuNeTEz†{¤§¿yJOyú—õãïÿû¯Ÿ¾ùñÃõœ®ütÿ÷Ço¾ûp=]O#_Ï×õT®ùÜÆÓŸþøáïžþåIÈßô〿úNIë9_Ouêoszî×SÎù9íƒn=_õéþ/þ:ý›?ü̯ÿð›ÿC~:ÚÓÿóáþI.òÛééoäùôb~÷|ÌçÙý§ü\ªüíO¿¶_§«<·ú ¿Ïó9—_ø}ËÏ+ýÂïÇÀ/þÍßç+?çõ ¿ÏýyŸûýõ¼êzºÿ‹¯ÄΪíY~ðù©ÔëynüéééûK³['ÿðëËMþ{ÙÍúüdðñÌó/ê y¸ ¹ /B.ôó‡\ósoO=?_éé“ÀËáo?ùoÛ|îSàŸäSýú«õÛ,só«?>õ=Áô…¹â_9C¾ô¯>?ýÿÿú»o¿ÿü«¿þã¿” øôÅÇo~úñéwßûñÓ—ÿôôÕß|øë¯0ï3éç¾¶_žIùZÏ劯f”çÒ ê7s`°à^ð€’Ÿg‰ ÞøÙoÿ~ÀýÆ5Äøæ"š~îNýò+P%Pä›Èøf¿_µ/Ÿ¾ú ¾Á÷®`–®‡“óëOn鹿ÛÉéÕg‰ŠûŸ­¯>S"I.8õçÂ3ÿçÿùé÷_ÿôçïŸþñ‹OßÿOù¾þôñ¿ôßð4ûN2‰´4Ÿf{¾ n°‰œGÈ`”ç•q€Áþœª`§øo”ù<®§5žËˆ9Døp@Î]§)á|®“ü;3ìaD‰þ¾ž×ôó7ÔÑ?=ÌèϵÊXòP^Ï#i$Ü Ãö-Ø!ß?¾bù§Q~–bø~HnˆÐ$·ïÒO*Ïɱ?"¯áÇwÜ®ÅÎòCß) “;•ú\w`WLJ¼ ð­nÏ-Ýžõvˆãû! ñ›jU‘™3?Òž{±ïE±<”›bgíC ßIíyÊÚ ZB©8~þðŸ¹ÒU‘§ëØÿÛ×\Þ`_ü$ü‡ýéOý¯}’oEÇoÏ™ëßž\×Û¾ å¡ÁO÷Å«óldQ9Éÿ ¼ 4Ñž¯~TÙ'ùVWãÉo¸dž+á^xn^o½hÉò:£¤½~Ybß"W÷8ùõwÈþ®Dg™öe½zúžÉ&åÕqìçJ°]¼K=¿ñóæKÞjœoø³ö žX¤èŸ}ë©ö-¿ú­’$»™IãÀ¾ä>ß0'³$ÊCCÁ¢¨®×`þé[4´«¾!‚ù·ñB¼’]úzý¬¶³#"F¯Ÿ^vés¼ýk»E…,'^Ìvö-0Êë_ü~vDF»Ê®œ<ÀÑM†‡Íïúú»Ì+¾Gý3ÛÎШo8—Qß“ö‡#,Òëï¯ýáŠ2^ÿÔ¶?,1aO¢úúh´?‘ßð ãF<ØWÞz‹oáð–YÉsã…ñ†¿;&Ö÷7Ƙ¯§åþÜëýQÊë¿.þéÛ#Isßø·Þox‚ØÙ·7†¬bßzéoŒõúÓ±ªH÷Ðèox|Ù•ß^×xóÙ·ÆxÃëÆ>÷í…‘ßtéú¹ï/ŒëÍ'K„Øwž_¿Üö“o/Œ×¿ªòÊ`ï‚£¸,ÿp=·)Ë™¼ÿôÆ‘6CñEzn#•ñ_åˆVÞ:Ò¸ðfÂEÉP’ò®7\v0Tjª¾ýª6!C Æ\øª®ëÍCmòA¾«K?àÔ¡R}óP›pøBIQêšø€ííW$ÃÐ>  õö«Ú ÃÊñáf|ÀÜÞ<Ô&ð«ÞAý€%½u¨wpawߕΫ•ß<Ô&âk×諭yŠÞh‚ O|À¢ßÕ›Cpïx~¡›:¸5b.€žMö ºV0Ü„Ÿ6ìÏ£(äÁÿôôGùÑ¿:ö|>ënRž?m8ñêþ´6¨ç×.¨ïGpÖ6üi㤛vŸöñŽu ùÆ 3G¹2F©àp  ,y-±o˜×Qu[£è‡=hݱ3ü)p×]š8Þ0¿‹„‰æà—Ù°óbøSà©[q¼a#OlÐ!Œ'?‹>° Ú)œnŽÛñŽù},<Ä¿U¯£äã†?m< xìOûxÇü>dܬ¯Py |Ök—ãOîŸâxü<|4b“îì•‚'¦áO}zøñ÷ùQtˡڳÝÛœ ¬›çŸâxÃþÊÁˆÑ–tŒšÆð§±·ì;ÅñŽý;Eeƒ /ÓßiºáO«n-Äñ†1†Õ–dîWX•aì"”—Fä‘r”ÿå¿þô§ïøÇ/~üÇ/Ÿ¾þîÛ§ÿñåÓsùõ å/ =u·3ƾïmÿÃjÿËÓoþ÷ǧÏ/ †÷µ¬×1ÝûÐÁ¾úõÿúê“ ^3'ÿêÕ'·¥ÐÿØ_žš¨üÿ2ö·ä ì Û\Î÷wðýß|óçï¾þéã·¯¾IÁÆj¾ÓñÝO?|)Óúé‹ïjTnçþlAÕk <ìRÒõx-Ä`äÈþøÓÓß~úþ§{¡CÁŽý®t¸2*&‹»ì"ÿslo¾ñx½ [êˆy=´×ÕhÜ_¥1̯Æí*°1¥Ø–‹DÙ×?|ûô×?üðýoûþÚµ_àkèþs#örËúÆöKnºÙ®¡—G­Z!~8ä*V1f‡ßI’AäÛ!†¹ûqñý^Ý>âv±ÿÉéRÆÂ6x+‘½ýìŠéÎMW¶Ç:à­'ã5ê'ÿìBïNÎ׎I™Ao=‰•g÷×dë<Ë?_=ý–ŽK_ƒ/çßžvÄÏL‹=¹ü—“kOQ;äg¦èžè~Èm¢ßæVÑÏÿbnU.'‘ÊßP(½èÊÿ“BùP5UD½[žUaBf[†)DÍèxÎàä¨,Œ$”WªÀ‘ ¢@t`+P2Ì2™kÊŸX|dI³Š>e3¾GTi-ƒòZAº’ J"À’ÂÚk5(ƒìÝ Jé–Þ;…3=Õ‹i dûÕ2Ó*鶤uK?ƒ’¢ø©”['puƒ’«JR•¦Ayª ,Ë \€Àî# ˆJ-…KæoFµ`Å*O`îå[X§AùÂ+³0…ò'ªÖçJŠ(ùr*»V`Yn·Àæ#Ë÷Põb—Vc.ŽÜ ËZ 'ƒ’ûcQ ¢2³‚·"”Ë8»A¹Ý• PnwÕÕ¡Üîʲ.…kŽÜµ(TÙB¹¬¢ºAy« ,Ó Ünm”Û-p&ƒò-U%ôgÌ>²ü •#ëÄ®ƒeº€r+Q¶ ²ö5%ƒ¸ÝCˆÛ=µÚJa×*Öá#­z]>²Ü¬ºƒ€—'Ðbp"A¯‹Ë8@Üîå18q»åQh18ñ6]´Êíh—Ç ^@»<'ö\.޼˜x .Ünvƒò- lÓ üÿePþD˃ [`ö‘åV ¬>òl€ÝG–Û-pêÈE£•À„r»ñ~Keê lÅ Ü,£”ËkÅb%²ò‰ªÅ @¹Ý5ˆ åv d ‚t쀌Aì]-<Õ¯fP.ëßnP¦}kƒ%Ñ8.ƒ’€ \>²|K²2I>²ü¼éö Ve d b=ÖƒåV6}ñâÕ3,±VÌ€ŒA¬õë 4BÜn[xâvO‹AY»ÊÍX.ƒI Æ j.µF1(° ¥cšAÜîe1Xt9Þ–Å @Üî…'” 8}d™öÈœ9²Ü­ÏÍ <·ûe1(Pn·@Æ`QÎBຠÊíîÉb,I,>²ÜÊ®·†P.^ c°h‰g76Pnw×W ¡ÜnŒAò w£Råf œÍ \ž,3.ÕþÅbP ¼ã6ŽÜñTç%¡|‡ƒå¬^¹&”Û-1X@>2ñ^n€ÓG–LLÖ\—,O*ŒA¼¦`måvw])Ê÷/ÐbpàVöŽ[C(ß;95@Éz÷x >²Üî®BÜîá18õvAÕ™tãB%(Z ê2¼OÁ‰§zŸ–` H€ÕGÆížƒ:W2Á@z —±<•ÉÀæL3(­/K0˜-´\¸Ýãò\¸Ý³ äò\¸•ƒÈ%  ’3Œd1(PÞ€ƒUùÒ‘,Á@¦QƒUǸ|d¹Ý#“Š\JÆ0Áædåf.ƒòT8³AyŽb1ˆ´d2Êí™6 ÊÝØ}d¹Ñ£X "i‘˨xYJ¶ 1(yˆÄ¦@Æ`Õ7‚À1 Ê÷/1ˆ”F†jƒU/^`Í%gÍbP ¼NYžù£#¨ ¾áÑ-)È¬Ê Ù …@Æ Ò!¹Œa1®qYžc›ŒÛ=,%áÁížøò q»§%‹j³ƒÈ2 c°*U åÖ2(ïGYë$YfãXƒ¨ÿ¿™` ³Ê€ŒAˆ$* c‰Öxš—%جY€ŒAæ]ó²d¼Àé#˘3Y V]æÌ>²ÜnL0•e@Æ @ùà`\³AyŽÍl †ÀªÕ€ŒAr»g¶¬zwy*­ùÈØ/ƒÈèT£êûQ ÅàÀlh18ðýÏj †@ù‹³z ÜnÍG–™Õ’|’3Ìê18ñÌŸÍcpš–…I~Õwëlƒ·[ Åà´ &ùU§Àì#U±TYr†Ù-É—ôïÒm ‹Á…¹:‡ÇàÒÛ=,ɈÛ=<•4h1¸3\>²¼çô\Z±9-›>ç´$+ð ÈlºŸ5—Å`ÓÝ Lò™… d ”œAàð‘å)'pùÈ2æº,‘£@Æ`SªZ “ü¦ì·@&HYëÓJƒ”{¬d1È v%K0¸ °’Å jý3àô‘åzV¶£©Nfe‹AP+[ 6ݼ^Ù ¤»1ØXÀZ,‘ýÀê#Ëí9ä#ËíȤî…Ûù„’3¬j1Ø4ÓÈ(q½ª%H•3 cP KA’,W˲ZB¹Ý«Y J2|ic‰´î”1Áh*€®)”»³ºÅ`ÓëÈ$Ÿi¶Àé#Ëí^Ãb°é:š(Š©a1(‰tRýcIxd’/·{Z "'AM÷ï˜ä#EO€ÓG–œa-‹Adì I~Ó·ÉZƒMI’µ,‘À'@&ùÐT`§ÿ² dBÌ( VpóÁ•º,¯¬˜ˆ”‚¯d©¾àÔ[(ªžØbq`*3ÛÜŠr{º*HÞãþ||™óÀ·Ø"râæC8Ìœ_pnŠ™p`!1),^†…Æ•º%•®j9–UqöñgW\}|–®jiGÓ!°…æB*NÍbSs9`f%—‚-:¹E(ØÂSÅuÀËÇŸ¯{€jÉwºœ ëÜÚÌüƒ’-`Æh¿¨¾s6 K˜ª˜)H¿8œãšF·‰}|ò®ËrìD1R»¾ªXõ ÅLDckörVL°Î§Å°*,ð.†u>81†…ÑTÜ}üÅ]!. P½F5!C¶ëk˜1Û•ž檠k& ̨ÜXçͰÅb*ë6xòñ·Å‹ñ\rЬSºšœ#“%“n«;I†õVQÌàŒùœ&ëšÎ3|;©úäDVd¸gʺ>|‹­Þä\™,»0’“e‚1’³eX´a<§Ëצ˜ë¬â†bÆo×"5àéã£è79e&ó!9gÖ•™füvMB€¹ZèÔm¦f©J×<:%çÍzã6“gX vÅÌV°…7Oó!9w& <Öne Ξ ÎC1ã·S(˜9 –ø|N u ,àâãë|˜–¶ôÎùàZïœN¢uÍ~·¨‰QšœF\ºb‹ß‰Ìä¥Z 8“&ó!;•†E)K2š¿X oñ;*Š-†¡¤GÞ —¢ØâWWÀ¿Êns%ѵ€N¥¹>þÌŠ³0émà… ¶ø]ZV‘Vëkëx/ØÙ‰µ®K `‹ß…EKL||ù.áó9¹6”ÐæªbhîÌøÅzy(füÝ%OÙ ¶¡´:0ãwXݨSl‚GW<||F²“lXSãó9Ë&ó!;Í6Xª’gz#€¿C×0¨µç cèƒ8ûø£(®>þlŠ»¯óaX†32çƒÓm‚u>8ß6´  ˜IŽ`”ãdgÜ ÔŠ¿C÷t $H>¾Î'ÝFæ|pÖm·e©ÎÐÌÅ Œß¡7˜ñ;(í¡: CDTœzÃú(^>>æCI–ï€H¾É \©Õvú AWÌ|Gpæ¦4ãwèÄA¹ãwè ˜ùΨ^ Ü}üÁr§éã#«Éñ•Síø4Œü¥8š¡)f¾#¸ Ōߡ P¬3~A<$ÅÅÇÇ|(NƉ芧ü¥4[† %Ó€¿Cóf`ƯàBm;W"‚µ<Ë)9“åZ—aä/ÅI9ÁÈ_гr 3šbÆïº][œ—¿ÏçÄÜœÎÌÁùàÔ®Øâ׊ œœ#œ}|ä³Åé9p"U±Åïä|p‚nLÎgèÀ’$Å¿Só—âh“¦xøøÈg«³täQ€¹<š3ßú‡Ru¢nhÖlñ»(ªH–ï ]¸[ü.Í_ª“uà^ªâáãc>T§ë†º@¤ê|ؘK1óÁÈ_ª3v‚‘¿T§ì¦fªÅò©«_`ÆïÔpõñ1È^c>Tçí¦r(ícü‚Ò¹3ßa=0ã•ØµZ¾ÇÔBàìãOª’«¿X(Ì|gRþQÀ›úÅÀ¸ñ;3K »å;S¹x`Æ/ˆ¢B£‡ló¡v[¯€9šjá||ä/Õy Ëw–á_烓š‘6-ß™Zþ lñKepsîO0òY.Û‰u>8û7çƒÓsq>XÉ*0ò—æ ©?`ÆïÒDeÁ\¯€ ´2áa¸P Æø\YVÌõ ØAèoœŒü¥;¸hZÓŒü¥;¸T¦Ìø]šÈCÄÅõÊÒ@fü.]¸3~—¾€¹^Y‰z ç—nD¢81ùøÈg»3‚+{ñ"ã$dVÌøŒùÐ+93~#éN ¢ >)>>ò—îÄàÒD •›ÉÇÇ|èN .Ýf¾#X•âN.](§îìàRc-`æ;‚‘¿tç#ŸíN‚ìÌŠ§ùÐ"$û ÌøE öRÌ|gi`3~—.´¿K_d©OËw ÂŠ‹¯óÁ™B0¦I1óøÎPÏÅø…Ú3~gj!™ï®ô¹`ü‚TÍ”¤$ØX&ùø˜ÃùBÁÈ_†ó…¤]™ï,]è3~—îÀ&ˆñ+óÁlƒc> ç ÁÌ&ÅÓÇGþ2²­W@ÕvÅÙÇw!Ž?4ÙÖ+ðá¡‘ů>ˆP’oñ«Ä0×+KwЀ-~•ž>>ò—á|!øÞ¦Øâwj>;œ/¼s½8)¶ø:†ó…‚‘¿ ç —Úñ7ùËp¾pi¢š†ó…$Óp¾pi1°ÅïÒù0œ/\JD[ü.Í_†ó…à•›âìã#ŸÎ Öù`|a».Îã u>Læ;ÀÈ_†ñ…ÀÈ_†ñ…ÀRAÍw€‘Ïã u>_¬óa1ßi,Ýî_«0€ç4Œü…i.1ò—i|!°Jâ/F>;/æ;À˜ÓøB`̇i|!ð¢|¸r|¸*'N†3Kâg1Œü…i'1òÙi|!0æÃ4¾óa²”Rñ¤Bqùø‹îY‰ãÊ™ ó`ä/ÓøBàlîZÓ0æÃ¬\¯7Zkådóa_Œüižüe_Ø.-LÓøB`ä³³q½Œù0/Æ|˜Æ7ÊaV3¬º7ã ‘¿Lã ‘¿Lã ‘ÏNã ‰ù4/Öù`|!°Îã ‘¿Lã ‘¿Lã ‘¿Lã ‘¿Lã ‘ÏNã ÛÕ9Œ/Öù`|!°Îã ‘¿Lã ‘¿Lã ‘¿Lã Õ”ÁøB`̇e|aÃF@SÜ.Øëb¾Œüe]¿Z@˜VòøÕ B`Íwõ×ÀÍÇÇ|XÉãW¿¨´2óvéÂØâW À¿ºPîÃ0ò—•=~µ,­âñ;)^4a0æÃ*¿SçÃ*¿ZM¼†aä/«züj=!°Å¯ª82®”^Yü*±¥öo>>æÃjÌw€‘¿¬æñ»ÜQŽñË `Íw€‘¿,ã ‘Ï.ã 1Vçz¸Ñ´Žñ+óa_Œü…¯Abä/ËøÂ–´¼˜ñËà9 ë|0¾Xçƒñ…À:Œ/Fþ²Œ/Fþ²Œ/Fþ²Œ/lIË ¿)s>_¬óÁøB`¨˜.ã !ºŒ/îUqõñ%Ѐ»/I+ü9¾–näËøBà”3~窘ñ›´âx ÃPñ\Æ÷D#aÅÕÇW×¾Ì|x Ōߤ CTÓ_ðÊð óàR3~“&ÀŒß¤Äðª†>Ÿñ…À3+.>þªŠÇo˜ÀŒß¤ˆù2¾XEøùp-Š¿©ÑôÈøBà>O,ñ'QÔÏøMºnÕpꊿIk§€¿©S0˜ï¨L‰2FÆ/6Ž¶Ì‘XçÃ`¾<—z12~“Ö#æËøBàTèÕ¸ gz7Zü·éñ;8×+À:–ǯ.ܵQñ슇¿àÏxyüja"°ÅïÔùŒ/Æ|H—ǯšJ[üjqbNƤ¸øø³(n>þjŠǧ¨%%_-‡lÅâwÑWÁøB`̇”=~µHØâW«s2¾ÒT<~—_&ã 6¾ªb]¯c>$ã 7Âà—ÉøÍZ«˜“ñ…À­(füfý¢€‡?ý6}|Ììgêû6«q0ã7«R˜ñ›µdQ=U»á‚ë1¾¸]Š¿9Q2Û-ßÉúEó!_¬óaX¾“u¡Ÿ“ñ…oÀŒß¬Ä0ó¬Å‹ð½`üBh²3~úbT_çƒñ…À«+füf­`„Ä—ùNÖF•égÃÅ$ÁÕ0<=Ó²|'Îã ;-K“ùÀÛH,‰HÎÆ¶¬•ŒjiZ ËD„9)ó¬J%`Æ/6þ’bÆ/„'E1×+YW57õñǤ“´¿è,ÍõJÖaÎÆÃK*_ظQ·S®W ?™Š¿‚1²ñ…ÀÖfã GS<}ü‰Ïg|!ðZй^ÉêV ÌøÍJl3~¹ÑÌõJÖêFØ'3~s§s¶ñ…À#+î>þ¬Š§ù/lؘœŠ¹^ÁÆ$-È-~µÈ1çîñ«UŽjQž ·¡Æº¿Zç\|ü™7_çð|'O·áñ;9¦Ç¯&*ÀÌw²‡9O_-w¶ø¸9/Ëw°ñ9g_çÃòø]œËò¬5À¿Zô¾Å¯V=3ßá@À¿Z—ËãW‰vsg"Æ|(ƶ¢/ `ÆoÑB/`æ;E‹¿E«U^Ÿ c>ÀɨÆ|(Æ6Ú¹çb|!0ò—’-ß)Z©Î¿ßäúÆ6³(ÅÖ+܈füâ›Êù¿Ø˜ôž†‘¿ã ‘¿ã =ƒ¹^)Z ™‹ñ…Ài*füâƒ^й^áF.0ã×lŠñ…ÀÈ_Šñ…ÀÈ_Šñ…ÀÈ_Šñ…­hñ:0×+øbðùŒ/Öù`|!°Îã ‘¿ã ‘¿ã ‘¿ã ‘Ïã [1KTã u>_¬óÁøÂÆcµê¿ã ‘¿ã ‘Ïã 1ªñ…À˜õ²|ÍK1ã·h•¤z³OÃÈ_j²|§h$0ã—7 ˜ñ[táÜ}|̇j|!0æC5¾°ÑŽ˜ù%¥êi #©Æ#AÝ~3Œ|¶_ŒùP/Æ|¨Åò¢¶\/lEë%ájÂø-ú"f¾Sè¿]«Ç¯&®À¿ZmšYWOŒùP›ÇïÐùP›Ç¯ÖK3ß)Z/ lñ«õ’À¿Z/ ÷®W0‘†b‹_M|-~ubOùK¿ú Î>>ò—:l½Rt£Øâwq>8_ˆuŒç|!&bWlñ«õ’À¿Z/ <}|ä/Õù¢õ’ÀŒ_lÄÅ\¯Ô‹óÁùBªjsu¾ó*ê¾ «—…ó…U–ÀÍÇW©³ó…пdÅŒ_LôªæíŒ_(`:Íÿ/ØÍùªõ’jö^ #iÎ2€³|¶9_XõÁïÒëŸÁZÈu;>ëüˆñô?nOë'o×£õ“·ëÕúÉÛçÉ:?âófñ}è‹äö}iýäíûÔúÉÛ÷­Dæí~èBáv¿ çǾŸ…ócßïâó#ûøÈgö|©Z?ó©V¶ðñùVµ~2æ#÷>_Q˜Ðoó™ó½jýdÄCÕWÄKU")â©j¢ñFqrÄ# Ò-^øåÏ(lh·x¯Z?σªõ“ñ¼¨Z?Ï“ª KâyS5Ñ‹çÎñ¼b!D<Ïx¡ñ¼«ºçaÕúÉx^V­ŸŒç) %Òíy[µ¯B<«¶CˆçuÕúÉxžW­ŸŒç}ÕúÉxT%â}Q烿Oêä|ð÷Mœþ>¢´:ÞW,¼ˆ÷YÕúÉxßU­ŸŒ÷!&Zº½/ëä|ð÷)&f»½oëb>ãïãº˜Ïøûº.æ3þ>gáF¼ï‘T-TŠ|…×-Ÿ€´&ßòvy>Ãøm—ç3ÌWÚõ˜Ï Ó-ßió[χø‘/µ‹ù­çS-1Ÿñ|«%æ3žÑê+ò5 Ã#ŸÃƒhÞò½ÆNA;l‰ù­ç‹ÖUcç“-1¿õ|³e·Ÿb>Ú2ó[ÏW[f~ëùlËÌo=ße¡IäÃ|G¾Ü2ó[ϧ[f~ëùv+Ìo=‡èfÞòu(Ò¯[>ß çƒçû­¸=8×­0¿õõB+Ìo}=Ñ ó[_o´ÊüÖ×#­r>øz¥U_ïp=Óêãz‡…-±jZ?륦õ“±žjÚ°%Ö[Mû¬Äz¬©ûC¬×š“±žkZ?뽦õ“±daL¬›n<Åz²i!X¬7›š@Äz´© D¬W›ÖOÆz¶iýd¬w›ÖOÆz¸iýd¬—›:üÅzº©D¬·›C±oZ?ëõ¦Dh¬ç›^¬÷)Ê>  6wq¾zœqãšzBßд~2øˆ¦õ“ÁW4­Ÿ >£Mö—q¾£Ñfó!M7‚/a!Oð)mr>8ßÒ”ˆ >¦é‹;øš¦õ“Áç Ð§ÝøèqÆj‹óÁù¢¶8œOjZ?|SÓúÉࣚÖO_Õ51 >«_äkïb·½àÃh)| ‡‚Oëù9çÛúåüÜôñW»ñu(,7>¯'òµÎ÷õä>¸ä{"?ç|a§WÛæ{"_ë|cOäkì‰|­ó•=“¯u>³gòµÎwv-Ü>”^Á—öL¾ÖùÔžÉ×:ߊ¥qãc¡Ç¹óµ½¯u>·òµÎ÷öB¾Öùà^È×:_LC„à“Yè|sg£ÍG÷B¾Öùê^È×:ŸÝ+ùZç»{%_ë|x¯äk/ï•|­óé½r>8ßÎB©àã{uþ~øøÊ×:ŸßùZçû{#_ëû½‘¯õýèqîû ½q>ø~Coœ¾ѵ~2ö+ºÖOÆ~Fït5÷ýŽ®õ“±Òu"Ä~I×D6öShçû-,ÌŠý˜®Ÿ±_Óµ~2ösºÖOÆ~ô8÷ý èqúm¿¨«ÅDì'u­ŸŒý¦>èpëûQ]ë'c¿ªëÆiìgu}‘Ä~W×BØëê4ûe]­&b?>±ßÖ' á|?®kýdì×u­ŸŒý<èqúm¿¯ë‹2ö»5>õý®õ“±ŸØuáû4£ˆýH’Å~eW?•ØÏì‹óÁ÷;ÇÅùàû¡Cë'c¿thýdì§­ŸŒýÖqцÔ÷c¡Çé·ýZ¢Å~î¸8|¿whâûÁC b¿xè‹ ö“GzÜo† FºíG£p­Üö«GbýïgÖOîýîÁúɽ>X?¹÷Ëë'÷~úȬ?ðýö‘Yàûñ´Òˆýú‘Yàûùƒõ“{¿äÝÁŽã³~r× ŒâõÌwPWnõ£xýãw¯?àze°~r×3 ÖOîz‡ÁúÉ]1X?¹ë%Feý×SŒÊú¯·•õ^A¨×¬ŸÜõƒõ“»Þc°~r׃ŒÆú¯A!^»Õ“ŒÆú¯7¬ŸÜõ(ƒõ“»^e°~r׳°P/ê]Fã|ðz˜AgÒ]/3:çƒ×Ó ÖOîz›ÁúÉ]3X?¹ëuë'w=ÏPOé¨÷óÁëFç|ðz¡¡ ³¨'¬ŸÜõFƒõ“»i°~r×+Ñ$ê™PxÝê†WD=ÔP犨—¬ŸÜõTƒõ“»Þj°~r×c ÖOîz­¡G=mL¢Þk¨9êÁë'w½Ø`ýä®'¬ŸÜõfƒõ“» …‡×­^m¨]mԳŎ ^ï6X?¹ëáë'w½Üdýä®§›¬ŸÜõvSLQ7µð<êõ¦ÚYD=ýS¢Þo²~r×NÖOîzAÚÑF=! ¯[½!ô8ùV8çƒó…“]Lw=ã´úIç §ÕO:_8wýdõñ­~’ñ;3çƒó…3s>8_hÍ0v½æ´úIç §ÕO:_8Y?¹ëA'ë'w½(»ÀE=édo×]o: ëi/œ¬ŸÜõª“õ“»žu²~r×»Òý%êaÙÖ4êe¡Ç¹×ÓÎêõ´Ìw&ë'½Xëi/œ¬Ÿôz^`­§u¾pVÖÓ:_H ™]/Ü8w=10ê'½Þ¸MÖOz=2p.Q¯ ŒúI¯g®#êÛ­x¤¨—¶úêìã£~Òë­Ûdý¤×ckcw«×Fý¤×s×[½7pëQÜgÔ‹7>v=90ê'½Þ¼MÖOz=:pQ¯œoõìÀ5E½;°Îç 'ë'½^x̨§o|ðízû6Y?éõøÀéV¯œ{Ôó[/$®W&ë']l-)²üÅõÀs„ÞxÝômêÂtë€1\Ï\z耑¿¸ù‹ë%w¶žxÞôÀ«‡£-ú_¸^8_¡çFþâz`ä/®n#ô"Àý¦'i´ïÙz“ÆíÖ£´Eÿ ׫«ÈùÂÅúI×»«Èô0Àí¦—î=ô4Àc†Þx]¡Çi‹õ“®×6=ó•]Äø]ùA¬óÁôBÍ[”8_¸èáz£ÆÄgë‘Ú*Ô9_¸ õ@ήB=é€K=p¡—jfUíz*àQBo<[è±»­×j«Ræ|áªÔ‡9_¸*õa¦V}˜ó…‹þ®'Fþâz3`Õ‡9_¸ØðÜõjmiýäÖ³[Û Æï¢ÿ…ëá€k½pk¡§î#ôv®G[Œ|Öõz zœz>`Õ :_¸ºë¿«ÓðÙùÂ¥õ“[OŒüÅõ†À£‡xÎÐ+6.$¶ž8åÐ;çzÈÆ†ó[/ ŒüÅõ”ÀÈg]o ŒùàzL`Î.ú_¸ž³-­ŸÜzO`ä/®FþâzQàÚCO ÜfèMÇzÔFϦ­W^7=k[fGî|áÒúÉ­‡Öf^Î.­ŸÜzZàÖBo ÜGèqÇM¯ ŒüÅõ¼ýÒúÉ­÷N=ôÀÀy†^¸^¡'Æ|p½1p¿é‘;¢¶^XõíÆö+QßnzgàTB œ[è¥Ë=5p½é­Ußn|!°êÛM¯Ýi4µõÜDÂÖ{÷+SßnzpàœC/\nzrà:BoÜVèÑG ½:°éÛ—oúöÎñ•(ÙzxàtÓË—zz`Õ·_¬úvã û ½>ð¼BϼrèýûEÿ ÷N=ü€Ußn|!°êÛ/n%ü€Ußn|!°ùTÿîwЯæ~×eù‹û%#q?à2Ãoù¬û1÷~ Àãæç<{ø=#q?ˆ~iýäö‹Î%ü$:Û1n¿ `ík|!p»ùU›ÿÅòñ‘¿¸ßðêá‡Ñ/­ŸÜ~Àù ? à’Ão¸Þü8€[¿à>ÃÏù‹û}tym?N¢tû…#Ÿu?à|ó®)üH€[ ¿`ä/îgŒüÅýN€‘¿¸J¿´~rû¥tÁÛO8÷ð[.3üX€[ ¿`í!—<~õÁ¹ý^€‘Ϻ ðºùÅôĶXî'œKøÍ#q?`ä/îWܯð³9ün€çͧÓxlûåôDÿ ÷Ó6ÆoJôk2¾XýšŒ/V¿&ã ;ûym¿à™Âx•ð êÉšÅ_¬~Mæ7¬~MÆ×~EÀíægÜ{øc>¸0æƒû%õTè×d|!°ú5_¬~MæÇ|÷kn)üœ€{ ¿'àÑ XýšŒ/ì©Ò¯Éü¤:7‚¶ßp¾ùQ«_“ùUc>¸Ÿ°úw_¬~M懬~MÆ«_“ñ…=5ú5™ßVçF×öã6ÿ.ÆojîßUºaõk2¾x\ḟ\Oô¿p¿9à”Ãù‹ûÕ#q?;`ä/îwÜSøá~yÀ³…Ÿðá·×ý&Ý8çðëFþâ~~ÀÈgÝï¸ÍðWøÏ~‚ÀÈ_Üo°g­ŸÜ~„ÝÛ¯¸¤ð3®%ü[ ?Dà>Â/xÜüW¿Åžµ~rû1#q¿Fà<Ãϸ^á÷ÜrøA÷›_$0ò÷“VÿQã ;qûQ§~•À¹…Ÿ%0æƒû]×›&°ú_¬þ£Æ«ÿ¨ùm¯~œší×ÙYX±ý<ËÍ︎ðVÿQã ÕÔøB`ó­>¾ù&Ž_Ù«ÉøBàtó3VÿQã ÕÔøB`õ5¾¸ÏðSžWø­¯~¬=ÓÿÂýZS?W`õ5¾XýG/n%üb{ ?Y`ó£]>þݶçî~´Œß¬õ’Û϶³gûÝ—~¸ÀêGk|!°ÎóÓ7¿]àÙÃù‹ûõö<ØæÓøBà\ÂïXýh͸Žm ØÂLp¤m5 (³Äˆ%Èܦ¸3Çpc@yÄ»Å1 L7@¬a Øú6O” pke@¹{n¼ ¸Ê¶eîYK$Ý´¹3urKçÎJ17|¬iÛA¶²Í¢å0·’sMÊKÅm¨{ÑÒH7©Laa ˜û6¸î,€sûk@™/nŽ ˆÎÎF J¶áÆÚ€slÛmÀ¦Ü½¨Ã…[vÊ wCoÀÒ·Ý7 <‡Ý P^cn(³ÚÄgØŒ®¾MÈ{Q Ü-Êávn<`g¢Û›JZâæç€mlktÀÆé€3m[u@Ün3]ïE+ Ý’æöÆÿÂÜÞìÜanoì` +xÀÞ·Q<à˜ÛFp]Ûd¾}¤¸}çŠÈ êinÏ0,õnnHs{aQ 7ÆD/³Í„¹½1~½hÅ£[îÂÜÞ ùsØõwÖµº™?`Ûê°_» Ìíêœm7\c·èE ½ zX{@ô20–½ Œä”·›7>”œÃÛ"¢—1|€+Z*töqó† moÇX®Ý¬P² oåØÚnôØÇn8¢I z$Amwå &q»/Ái­+,µªÑ[WÊ·ä-{´½}7Åœs·ÌèE *¼¡`Ê»Ý`n»`»U |oä(Ï^oó(·Û›€Êíö!€kì"½ê†©·éäo¼ù ÌdoMXûn\Øænk8®ÝôpæÝPæ›7LéUë½  |‡ÞlPžùÞŠ¥³ ßµ¶¶Û¸ö±›¼¢!޵€”Yá b:»ÚyûÀÔwsÀÀ­ýzÓÎÿu6@ô¶€€è™è ¥€ÞRƒM>ÞŽpF³BÀÕw+ÃÞÔ,²g"“ü¦¥…Þ$PBÆ[(¶±,öh¿8ÓnθÊnÝØ›fÎÞØ±ó¼í# Ü,o Xón Ø¢¡$`ï»Ý$ n·5£\i·ªìM‹ ½‘% „ª·¹”Çš7ÁìÜrõ™€-횀½ìöš€£í曀òÁ½5goZDè;SÞm=s4ý,}·DGTçÏš[ÞNP¦½7”G„·"DGTkTÚ›.Á¼içLö&§€ìˆÊ$¿ ëˆj1¨‰‡·O×n® 8ón½ ¸¢1koÚîÊÛ¶¢#ª3fŒMoù (áæ aåÑäíbå1îÍdG´š\i7¢íMÛ]y›ZÀÔv[@¹ÑÞâ°^».`Ë»=.`æ¹€rï¼µ. n·sdlïîmySÞM{;‰ÞÒ·³’ÂþÖh ØÓn 8Ên% 8Ûn4 ¸ÆnCÜ»–z“bÀœw c@ù¼Áqgˆ·?”ÛíÍ‘åv{ëdÀ™wce@y{ÛåÞ•Kñ¦Ì€Þ²°¤Ýа–Ýî°µÝ °Ý*p^»‘4àÊ»Ítïº'ëM¨e®#ÂþôôGôçÖ.Öñï½k·u½—Ø¿û½Çõ{ë÷×ï=®¾÷¸~ïqýÞãú2øÞãú½Çõ{ëOï=®ß{\¿÷¸~ïq­#¿÷¸~ïqýÞãú½Çõ§÷×ï=®ß{\¿÷¸~ïqýÞãú½Çµá÷×ï=®ß{\¿÷¸öñß{\¿÷¸~ïqýÞãÚÇïqýÞãú½Çõ{ëdø½Çõ{ë÷×ï=®/Ãï=®ß{\¿÷¸~ïq= ¿÷¸~ïqýÞãú½Çõ0üÞãú½Çõ{ë÷×Ýð{ë÷×ï=®ß{\ëûö½Çõ{ë÷×ÿ¿éqý‡Gmöç—ÊíC×ýBõ}hÂÅø¡'?Ôæ‡ýA©~èØ_¨Ü ü¡?ôó‡ºþÐÞ?(óÝþ Uÿ¡ù?¿€ÃMàð8œî>‡‹ÁKƒÃáðG8Üo…ÃyáÁ—ápmxáép8>~‡[Äá%q8M<øP./<,‡‹ÃÿâpÇ8¼3gßÕã…gÇáèqø}n ‡WÈá$røŒ<¸%/L“ÃýäðF9œS_•וÓå…cËáçr¸½^0‡SÌá#óà2sxмp¨9ükw›ÃûæpÆ9|s\uÏŽ<‡_ÏáæsxýN@‡OЃ‹Ðá1ôÂèð':Ü‹o£ÃùèðE:\“<•Ç¥~L‡[Óáåt8=>P‡KÔÝCêp˜zé?u¸SÞU‡³Õá{u¸b=xfŽZ/ü¶7®Ã«ëpò:|¾°°ÃAì…¿Øá>vx“Îe‡¯Ùázvx¢=8¦~j/ÜÖ/¶Ã©íðq;\Þ¸‡¸Ã?î…»Üá=w8Ó¾u‡«Ýáy÷àˆwøå½pÓ;¼ö'¾Ã§ïpñ;<þÀàḻÞ¯/œaߨÃUöðœ=i¿Ú7ÛÃëö…îá“{¸è»‡ïáÏûàÞ{xû¾pþ=|×àÃSøp>üˆ·â/ãÃéø…òá’|x(ˇÿòáÎüàÝ|8;¿ð}>\¡ÏèÃQúð›>ܨ¼ª'ë>ׇ öá‘}8hþÚ‡ûöƒ7÷áÜýÂ×ûpý><ÁÇðÃOüpð"?œÊ_ø˜.ç‡úá~ø§îê‡÷úÝ™ýðméê~x¾Žð‡_üá&xÍ?8Ñ>õ/\ìûÃÿðÇ?Üóoýçý×ÿ…kÿáé8þýÎvg;Çvg;‚—í Îvg»ƒ³ÂÙ.ál§p¶[xlÇp¶kxÙÎál÷p¶ƒ8ÛEœí$Îví(Îv/ÛYœí.Îvg»Œ³ÆÙnã±ÇÙ®ãe;³ÝÇÙälr¶9Û<¶#9Û•¼lgr¶;9Û¡œíRÎv*g»•³Ëc»–³ËËv/g;˜³]ÌÙNæl7s¶£ylWs¶³yÙîæl‡s¶Ë9ÛéœívÎv<ízÎv>?Óîçlt¶ :Û í†ÎvDíŠÎvF/ÛíÎvIg;¥³ÝÒÙŽél×ôØÎél÷ô²ÔÙ.êl'u¶›:ÛQíªÛYí®^¶Ã:Ûeí´Îv[g;®³]×c;¯³Ý×Ëv`g»°³ØÙnìlGv¶+{lgv¶;{Ùíl—v¶S;Û­íØÎvmg;·Çvog;¸—íâÎvrg»¹³ÝÙ®îlg÷Øîîl‡÷²]ÞÙNïl·w¶ã;ÛõíüÛýí_¶ <Û žíÏv„g»Â³ác»Ã³âËv‰g;ųÝâÙŽñl×x¶s|h÷x¶ƒü™v‘g;ɳÝäÙŽòlWy¶³<Û]>¶Ã<Ûe¾l§y¶Û<Ûqží:Ïvžg»ÏÇv g»Ð—íDÏv£g;Ò³]éÙÎôlwúØõl—ú²êÙnõlÇz¶k=Û¹ží^ÛÁžíb_¶“=ÛÍžíhÏvµg;Û³ÝíÙ÷±]îÙN÷e»Ý³ïÙ®÷lç{¶û=Û?¶ >Û ¿l7|¶#>ÛŸíŒÏvÇg;äÇvÉg;å—í–ÏvÌg»æ³óÙîùlýØ.úl'ý²ÝôÙŽúlW}¶³>Û]Ÿí°ÏvÙí´ÏvÛ/ÛqŸíºÏvÞg»ï³øÙ.üÞNül7þsíÈÏvåg;ó³ÝùÙýl—þØNýl·þ²ûÙ®ýlç~¶{?ÛÁŸíâÛÉŸíæ_¶£?ÛÕŸíìÏv÷e„´8·V§ÒêF Ä–V·¥5Y[Z ëÒêFMá–Vc>¸´¸÷V«T×K%'­]Z œoÒjà4BZ ŒùàÒê6)tiu£frK«û i5pë!­®7i50òY—Vc>¸´øš!­n“RI—V›Ôšñ;¥Ø^* ÍèMZ \GH«‘Ϻ´8—V«4ØøÂ6)uiu£†uK«·„¶´X¥É^*9)Uui5p™!­Vé³—JNJa]Z lÒiÆ/¶¯îÒjhtÇMZÍÝ®VOJu·´zRÊ»¥Õ“Rß-­ž…Òp/•œ…Òq/•œ™Òr/•œ”oiõ¤yK«§I•½Trš”ÙK%§Ö†´zjA`H«§×!­ž[Jmñ»¥ÖÌw¦I±½TršTÛK%§>èCZ=µ.0¤ÕS CZ=µ20¤Õ“Rò-­ž”šoiõ¤}K«¹ŸÒê©EX!­žú" iõÔ…xH«'¥ò[Z=)¥ßÒêA©ý–VJñ·´zh•`H«‡– †´zh`H«­¶´zÐ*`K«­¶´zÐj`K«‡Ï!­æ¶vH«‡y!­´:ØÒêA+„-­´JØÒêA+…-­Z3Òê¡Eƒ!­Z5ÒjîØ‡´zÐêaK«­ ¶´zÐ*bK«‡¾ˆBZ=:¥».­Ò^—V­ iõ •Å–VZ]liõ Æ–VZeliõè”&»´ztJ—]Z=”(i5\!­´òØÒêA«-­´ÙÒêÑ(µuiõh”⺴z4Ju]Z=hE²¥ÕƒV%[Z=he²¥Õ¬ iõ¨”»´zTJ]Z=*¥È.­´ZÙÒêA+–-­´jÙÒêA+—-­Å¥ÒŒßQ\JÍøÅ¥ÖÍÇ7)öðñ¯»´zЊfK«­j¶´zdJÁ]ZÍÒœVL)¹K«G¦ÔÜ¥ÕƒV:[Z=hµ³¥ÕƒV<[Z=hÕ³¥Õ#Q ïÒê‘(•wiõH”Ò»´z¤GiõÐ…aH«‡NÔVÕ$…´z(QÒj&.!­ZoÒꡇ!­j•Òê¡VJ!­jµÒê¡E‡!­îZuÒê®e‡!­fbÒj…´ºë‹.¤Õ]­¤BZÝõÁÒê®Å‡!­îZ}Òê®å‡!­îjuÒê®VX!­f][H«»– †´ºk bH«»>CZÝuaÒê®-¤Õ]­¾BZÝÕ ,¤Õ]­ÂBZݵ1¤Õ]kCZݵ1¤Õ]­ÊBZÝ;çƒK«{ç|pi5!­fyaH«»&V!­îJ …´ºkQbH«{ç|piuoœ.­îjõÒêÞ(Eviuo”¦º´º7JW]ZÝ¥­.­îÒW—V÷Fi¬K«{¥tÖ¥Õ½ºÔšë.ÌBZÝ+¥¹.­î•Ò]—V÷Ji¯K«{¥ô×¥Õ½RìÒê^(viu/”»´ºJ]ZÍ…gH«YÀÒê^(mviu/”>»´ºJ£]ZÝ ¥Ó.­îùQZÝ3¥×.­î™Òl—V÷Lé¶K«Y›Òê® •V÷Li¸K«{¦tÜ¥Õ=QZîÒêž(=wiuOœ.­î‰óÁ¥Õ=q>¸´º'Jß]ZÝ¥ñ.­î‰Òy—V÷‹Òz—V÷Ë¥Ö¿çƒK«It„´š%Ò!­î¥ÿ.­î­œ/욈‡´º©ÕgH«›Z†´º©UhH«›–2†´ºi-cH«›3†´ºi5cH«›û!­nºÐiuÓÒꦉ[H«I<…´ºé‹0¤ÕM‹CZÝÔª5¤ÕM­\CZÝÔê5¤ÕM¥H!­nZÙÒꦥ!­nZOÒjᇴº)QÒê¦ÎV7µº iuÓ‰Òꦎ!­nZâÒê¦5Ž!­njÅÒê¦V½!­nZ§Òê¦uŽ!­nZèÒê¦Ä|H«›.BZM¢3¤Õ­q>¸´º5Îç ›¾ÈBZÝ´Þ1¤ÕM CZÝ´â1¤Õ­r>¸´ºUÎç I䆴ºÕGiu«.½n>¾Jq/l•R]—V·B)¯ó…­Pêë|a+”»´º©uH«[¡”ØùÂV(5viu+”";_Ø ¥ÊζL)³K«[¦ÔÙùBjøBZMb=¤Õ-SJí|aË”Z;_Ø2¥Ø.­n™Rmç [¢”Ûù–(õviuK”‚;_Ø¥âζD)¹ó……´º%J/l‰Òdç [¢tÙùÂvQêî|!5•!­n¥òζ‹Rzç Ûõ(­n—K¯‡oÒìåã_ù&­®ZÒêª!­¦f4¤ÕÜÈ iu]œÎÖÅùà|a]œÎV­ iuÕÉVW­‘ iuÕ"ÉVWUK†´šU!­¦T-¤ÕU %CZ]u!Òêª_LH««&v!­®ÚŠ ¤ÕU[„´ºj+ƒVW­— iuÕzÉVW­— iuÕzÉVW-% iuÕÄ5¤ÕÔ(‡´š‡!­¦b0¤ÕU¬!­®Z/Òꪭ$BZ]µÕDH««¶¢iuÕzÉVW­— iuÕzÉVS Òêª/ŽVW]ø†´ºVÎç kå|pi5?XH««ÖK†´ºj½dH««ÖK†´ºVÎç kå|p¾°Îç kq©µI« ¥Ø[Z](ÕÞÒjMß~À¾ÔKeÂK×¢ê>Û èß➺ÿV¥Ú~ŽÊCùõƒ÷óô ï£*à¡Ý„úÛæÞêãµÚå“Í,Óü|ÿ‰æçpÀ\†@“½HêñÑqÀ¯ýAü\G:6¶Ÿtö–¶s•²Øc+⳿Íßûuñ܇ëægÙ¥2Ÿï?Q ¥LI©¡ã²õ¦ Òil”²ÿÞ¼%í\C:6¶Ÿè>ÿ>W NöØŠ¾±+™5~o×eçÞ¯Û>KižÊëìóý'ºÏ­Î'L× ½-*&0Äž¾éïékäçÒ±y´ý„òb?÷¢ôÚÆVô]Éñ{».;÷~Ý‹.Í?ߢ//íúÁ®òˆÐч¤uåÐßÓCÓÏ5Ôýa´¢|÷>WÓÚ=¶"mÛ~o×eçÞ¯ÛîËÒgH³=†ý'šOé¶>Ó:̪ éw·øõß+[²Ï5¤cóhû‰®åö¹šIì±}cW²füÞ®Ëν_·}z'€r÷9æ?ѵ›.¡+g)úˆ³7 ‘þ=šZøï­7œë¨î9æ?QÞhŸ««–=vÞsÌÿ¶ýÞ®‹ç>\·?†Ùégv¿/û'ZG©NêÜ.º’>uópú}Q§ñ+~Ͼ ~®¡î÷eÿD£yŸ«„{ìê÷eÿmû½]—{¿n»/]×ø™ŠšÏ÷Ÿ¨¾U©Ø©Ksô¤§>Ú¿éE:þ~ÐóÆÎu¤cóÉd?¡£ƒŸË^ê>¶"Ž=6ͲâºìÜûuó³¨lDµÅ…Ÿo?ÐÕ¸‰X†r(ª¨™¾ÑC•õߪ•½Ÿ×L±œüPþ@ÉS?O >ªš]ƒÝ÷ÕØy·kµ[aU#Sû}¾ÿD·#µŠ…Ó žÖ®h‡ä¿g ¦ëHÇæÑö-…ØçÒÓÃÇVô]ÉÊû÷~]<÷áºñYþîé_>üÕ¿ÿï¿~úÍÏ%¢/SÎôô7ò¿¿| aþ;vU.01øù©³‡P³Ûã‡êÉ–:Œì ƺF¸öo,MÊ÷ã€ÎrÞ}‘oÜ/;>Eðë¯ìkúæÇ#_ÿ«ßÊ—þôÕŸt'ðÚÿ(Ôö㉾y_}~ú¹öåÓWùð×_éà¿xöÔ7ïýìןŒ—¸,•î'¿þ\62‰sÓkÏì,èŽ3ó«Ïœº5gV?ZþütÿÓ³,2¾] Ñ>;¶øa\ê½åð˜ñ²‹?jÿ].%J~øøô÷Oß½êv~†t=~bµ\•"ËEð1~û¯ß}÷ñÓÓß~úþ'ÿ@÷áÿN08endstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 720 308] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000019838 00000 n 0000019921 00000 n 0000020044 00000 n 0000020077 00000 n 0000000212 00000 n 0000000292 00000 n 0000022772 00000 n 0000023029 00000 n 0000023126 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 23228 %%EOF metafor/man/figures/ex_bubble_plot.png0000644000176200001440000016601014661374172017640 0ustar liggesusers‰PNG  IHDRÜ}*¤ pHYsÂÂnÐu>PLTEÿÿÿÒÒÒ***888ÁÁÁÕÕÕÝÝÝüüüâââ>>>êêêñññããã 111ÆÆÆ‰‰‰ÐÐÐ VVVõõõ YYY||| ¨¨¨RRRüüü---îîî444ÙÙÙcccùùù–––žžž[[[ÌÌÌxxxHHHMMMKKKnnn@@@ŒŒŒuuuaaaÀÀÀ¼¼¼åååCCCkkk™™™eee"""«««:::%%%ßßß„„„µµµEEE¡¡¡+++¯¯¯qqq‚‚‚OOOiii“““®®®___ÝÝݧ§§………\\\¹¹¹¤¤¤ÔÔÔ···SSSççç¿¿¿;;;'''±±±ÂÂÂgggÃÃÃfff‘‘‘³³³tttœœœòòòÙÙÙÿÿÿ¦¦¦IIIÇÇÇÛÛÛOOO666ØØØ ñññ ‹‹‹ààà>>>×××ÕÕÕÒÒÒwwwuuuRRR___333GGGˆˆˆfff'''[[[ÍÍÍÄÄÄ;;;ííí™™™¤¤¤ÔÔÔ+++DDD¥¥¥UUU˜˜˜###»»»111!!!@@@mmmkkk†††æææBBBgggÎÎÎ’’’ìììÅÅÅ)))èè說ª{{{   ///MMM–––yyyšššrrrþþþWWWððð„„„~~~µµµ©©©444···±±±888pppaaa---KKK­­­ÉÉÉŽŽŽoooää丸¸¾¾¾dddEEEÂÂÂîîî\\\ŒŒŒccc“““êêêýýý¢¢¢ŸŸŸ¿¿¿€€€âââ,,,ÞÞÞ¹¹¹¬¬¬%%%ÐÐÐTTT°°°YYYjjjûûû®®®½½½ÁÁÁiiiºººËËËõõõÆÆÆ………úúú³³³øøøÚÚÚ:ÄntRNS³½ýï÷êõÁ¼Â´¹è¸¶þ¹ûìÀоúßµûßÔòÇá´í·ë¼Ûùô´ÌÊÞ¿ÕýäâãöØçÏÖÜÁÂ¹ÓæÙöËÚñÇéðºÑÄåóøÉîôÅ×ÒáÙÍÆÜ»ÈÑÝÃȽÃà¸ÂüõèðÅÁÚÀÚÎÎÅÖˈ–è IDATxÚìÝml]uÀq †H$Fcð…‘7hö¨1Jx£`¢ Dx§/4ñ&åþºntÝz)}”¹vn-aRÊÖn£tŽBÝXÙC ìQf VžFæ„e‹@ã¹½÷¶÷¶•‘õ2çóysÎ=§MÓü¿9çüï9çÀ§ë¢‹ü HqgÍRBÒë‹_ôW@@@@@@@@@@@Ïß_øRìú¯!r¿ Ríj!RîÂhšKj5ÆÅB¤>„ó3¤V !¡ ¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „¡Bˆ ! „Çq¥B!ιŸ|looßÎŽÃó*9"ŸÜÞ5'Û¼béŽ7&2¸ãÄÇXqAÄ…ÇyÂ&„B|Ò!¼;ŠÚn­ÔxüÆüñÖïÛšﵡ¸G…Ps+„GVE4tu¶ok_2Tµ£•éàœ\›ûêr ªÆÞ\B(„Bœc!\Ô=/Wçm¨‰¶C‡{“ .|-y6r´³&¢ãLB8øâ‹[…MÏZ¿y‘ÑÒÂGVDÓÂê ›âþ LhI’×x´øâÉdŸðä„!<›!<ÖoÂ¯Š¦'ªK-kŒÅ3‹èœx5Ñ.„Bxއðæ â†H_£ñpu¹Í‘ù™¹]Û'^=17“y±0wfmn°ŽCÕ+ü¸‘û–¶dßaÑ4çïXÜÛ’½óï龜¼Õó~¶µoKµ¯caÅÞ×> u!¾;zª'ëçg<ïˆØ92þjëÑ×FOÂC]ùÅ/M a¶°ê†Û t»Š3R7ØwÂJ…ð[m_5|@êBx2^žÂþh85ÓÑøŽúˆÝGÊß›7¸=¢mppÝ´!<õ׈lÇìÕ}QÓ<)„«sóNÿ·³)¢ù®±•–Ftïß¶}KÈ·?Ð>!¬LÏ«ª2|@êBøXtUOÕÏTâ$ad÷n\>!¬de㧆HU;bÉ4!ìŠþJŽÌÇ«»#††?:„{"ÆÏ%ž( áÀ¤æn®Ï¿˜³é^éÂÊ…°jø ¤+„‡chjïk¿Ìt49R¨»²1¶ÉáPI÷•…°-bÿÂùŸ{vU¾…-ë´O+ÂGV^fT…p^ÔoœÂÅÑ=Ó뵬¯‰Ýå{žñÄÿ áž|—F¼Rüô’²Îx|Úrê_í¹ûG­?!¬XM…´…0ÙݘÜÁêò‰ÁˆºÒ˜îŽ8\¾ˆ‡ ‹Zò!\±¾øée!Ü%§,™üƒ’Ý¿‰Ÿ !p¦!¼µ¶fÓ¤n‰æ߈éH}~°x–0 ߇¥!|=âùE·D>„ÏD ”¬\ÂÿD4¿#q0ZÛr—šYÐ\¼jÍ܈§ÄO+ÂGÏ7ˆ@šB˜ì‰5,+ëà¾Úxræ£ñ±ˆìÅÃEtçZöJÄ;Å|õp,„£Í+óoí*ÿáhwÄì™ǶˆÆ®; Û~:f~BS…°4„ók~a4…p´-7—ÝR•¸TËsw&5k{Û!üÆuß½àk×^9mzn¾òÚ¯Ïúù ¿:»!¬Úøü¥†HU3™yÏ7²ÒÝ~¨r#òòWÔ5Ô´l8öÔø]F7­È6<=6ýsûPkëžÙG2ã!ÌdV¾ÓTßÔq0³vÊyoiïm©oÞ9û¹ñxìí†ú¦®þG•ï3Â/]]ø×»äÆ© ¯úr~YíMg7„&ŽBúB˜ÉœzæÕµ=«ûºß»žU—]‘$ðâÝty’»+'/üå%×û{Ó.û„C¨„¾"„ŸŠFüìû¹'×ÌŠø]ù²Kœ0w™—k.ˆøBÈç0„F\•vcį§D²p'ˆŸü½³Žª:ã0C-u2ƒ RD¦Å‡‘b[u:N­X¬T±ƒ…qZ±_CéÌra É®!!K6R ¦@L!bøH’@&‚ ‚¡B JTL{îçnöÞÅM²»l6¿çöì{ï{s–?ÞgνçÜ<anz……„ŠP„aç¯À­ù2ð|烴õ|q?Å  å.pë‚&„P„„" qcÇ<©5¿Õ{ƒ§µGÓ#;"܃_²’BŠ0‚̆w LƒwÜ!À‹‘azÎdVB(BBFŽ1ý1®ó+>ŒÐÛ€{"+BÛñm¬$„P„„"Œ cÇ<òÐßï¡ÜkÀ#ÆÀ¤‹G ¡ E)^”ÍÿÚÄpàGzûAq<â"¤ ¡ EF*¯ùÃÌÑ¢#€)>rj™ú<¬˜N½“Å„ŠP„àÕÃîýÙ àÙNÑW|D8e•ùÀdKv{?ÁN¼É£YM¡ E!¦ Žñ ¼ÔùÖè–Y£g˜øÐí‘\'nK ~Í!„"$aOî³\Bf|çÉ2ß ö:w†J„¶E;D¡ EN~å÷ðà>½=Á;)t",ÞñVB(BB†—¸a>·?í~bü“Þbzi$Dȉ£„P„„" 3S 2n¾ê7!f Ý»dbð EHé]"<ïÂgON((o‰è_÷îèÛŽï†äBa°ˆ‘žñJÏüoÞ¼¬ ¿»-"¤ ¡C!B…”3!EhbFc¦GC:Í—¦wá k¡áŸ˜Â‚BEØm.LT9²*MVáyŠ"4ñ0TÙkéÞIbp¨n61dúôïÊŸÃþ<$‡žL½="<€¡YQ¡»+Â$ãK㧩‹í‘ûëÛÏž­ ‰»w!Š0hîúà9óµ§whþ£ÄǔƜôÒo¾íB þ’!aåZïBEØ}JÒ°7Ú b!BN– 7Õïžÿà·ýüDØïÉ»µc÷=p›Dh«M{Œ…Š0"”Ê€BŠ"´`êÃÆððsFÀ+Â~ñÔýýŸx¶KËùB+BN—!„" •—û´fú’¼4—§lg›q°"~NŽÓ“õoi7pM¬Å›Ò†¤OÙ\Ë„ÆOr¿r¹ó÷Å·xí]ÞtÑíJHlÒÏ|k¥¶Ý©®„•‚Fheþ!ajÒ„„P„¡a’1",ri·»J^׎٠´H¡ßSNÛ`•P¼J¿›VÒbÐEØ~Â8°Æáñ-¶©+"4g™EHB(Â"¬…¦8©P´’–|¹\ž>ó†éŠq&Vjæ"¬o•“Öf• 䜨ªÞ'DÔzÓ2 ùëæI97svn2à~Ka~œ'²DÈÿ©å­DhÎ2÷‹"ŒM.?˜E…Þ*ÂôCëÂFöÆÁ‹ðxU pQ¹ƒx@hãke°¶\Už-â³­0D”~ž¾—UÂQ ^™Ê9O8¨É* û«\ø¯VþÞ,†Œùíª:ùXq†Ê/BS–Å¡cS„ÇðBz©ÓsNò:¾A„î$•’TùôeÔÔ¸¸¤"œ/>’áÜ¢F®úˆ0gµ a+°K ì…£Ð* ùk›¿í×Ë| ‰ÐÓ „šíÀæàEè—eÑ/Š0FExÁ1h,« !½S„Ç^šºòf™¬t%|(ÐO¹ÌñÀ-Òâa¦(a°T ´/Vdl hþÚ ¼£çŠÜEM„ÕZè"°%xúeYô‹"ŒQÚý^yCé5", ³7-ÂÄ­éZ¸¨ÒOY`Ç I: ÐCs¼"¼0a¸âœO|Ö¹›š¿ö#EIêpÁQ¬*MÈ­¾^„~Yý¢cU„ÍMÜ©ž^*Âaáþ žV´Ÿ: ¤^ÓÃÿñ»Fƒ$Õ‹õÃå^þ=`‚tXn8Wm¼¡ÛÇPý%þ}ÏèP=pCUš6TJþ¼ý²¬úEƨ9s”^+B[^X=x¥"¸É2›‡~õ¿‹´HR¾Ï£º3^6L:ö8Õ/ åêƒDS@õ×zÀ»°¡ø\UZ‹Wi§‚¡_–U¿(BŠ]"”:š–„û+‚5Ú˜-†kŒy%'ù RพµÈ+ÂÍäi¨¨êKÓžòù Î2:”¡.J •­ûEƪ&²®Ò+E-ë·åˆ±Zƒ®‘~g^4nƒJÒ“-´y1f®â[ßhPýUãû°Ä¸5ìE“" !aÔ‚:­´ù¾Ï¥Xù7×gñA¢I„ ^¶;}ŸúT]ñ™,Ó.ެ¡oÙ/Š0æD¸Ç»0!„"ìΛeŽ^—×€T}ýá)¸3Ôŧu[¹M"´H(LZxÎ;Ëô€E@ó—¸ò:½ñ@«BZô‹"Œa¶¸ñ7VB(ˆ0=X!{£#˜­=:Ì>Rº´i£Ã$B‹aÕƒÚuk”)œ¦€æ¯s)À‡šb[µ•€¡¡E¿(¡moâ VB(ž¼k´Úº»­€cY›ö>l×!¤£Y„4!!a¸æË–ºžšòÿÑbat‹ðñi¬/„P„„"ìÃ"ôØg!„"$aßáJŒd!„"$aßáb—㇬0„P„„"ì³"´Õ6±ÀBа‹G ¡ EØÇEHBаo‹0.Ž5†ŠP„}W„ Z's;&B(BÒcÚ(Â^;"ÌÇ ,2„P„AñÅáü”äúÌoä+ŸmoÏ©>Øš—ìNÚ]¡ŸqÙî¸èzo•g¤º’Žl]ÝÕžœÊò¸Ü+6$™v;Lòn¸r<À†€<øYȬ‡Š0²"Ü‹Q,2„Ä’ßøl¹™C«{^¡;–jÆséš[ “sÕ/Yúé$ö¸ÞÑ #5yYׯSïÛ•´£Q#ÂæR¬¤{­+sÌ"CH,‰ð]X±»ÇºqޏÌú‰NàªÛ¤­ÐQÊ÷N`éâ×EÎèg8ìPÿ¥,3{k]MšÜ¿²ö®ô%_d–fÔ·GÅEØ{Eȉ£„Ę?BF¦?­ØÕã½pÉ·5BCÿ4bg;ŸU‡zy¸˜VåkE ­/·Cدu§Mí+]èŠ pn‘ÛÏž­¤)BŠŠÐO„{fù“Ýs¶‹[•Úœ•OÇÿÙ;Ÿ§¨–+Ž/²KYd‘¼Eª²JöYd™JU*‹d›? •TÖx¿y:wf`ø!òCŒ(8ÂÈOä—€(ˆ(Š Fð¡øƒá©Œ£ã3OœJ÷í¾÷Î\zpL¬ŒdÎwáÜ{é>·ªÎÇÓ}N·qõH\ ë˜ãŸOƒP'XRš{ÏØw?OÅ[©e’³[E $þG $’HÂê*°±iϾ¾2.jáÙLÄ%ÐÁ?§b¾¬ØjÂÓ¡Mæîo†íû»@êcy  „Ÿ„¿$?C"·WìIÎWÀ‚=®;šé¨àÙ›߆_½ö· xæãî×½A^v®<_å.›é3ѨEÏ·ù=_Õ=6äšëž4k0|¬ºÐ³ñ°,„Åå-…ž’‘¡¤† 5Ì­x=%¹·¬4Wg·­ Übè‘P·Ò@#j'ó|%#³°ÿŒa?\Æ/ <8Û_¨ÔΞ$¦„:þJކD"n«vàŒ•ï ´ðÏ>`F{ý°ýQÄŽÈòøÇi„Ø¿…hV[«v. ž,ˆ¹¾`b®¿Áâ×ü”|Ö™„‹GÄß² ÂSÓо$†xÈúÒ-ŸœžHÒM ÂDC Üb€°Ïx6èƒ'ß!óϵV>SSŒ@˜Æˆp?#GC"Sá= P {Åpâ®YéáϱÀ±k`(b7å¨U—Elú€qåî2cyÙM^ pXò«µzÛB%{dtz;xÈÌ7A¸ÞÈÌÊìöV¸ L¶sCåïù‚ýjCš6Æ¡:Uñ¤Ò‰ª»©@è0´wp(ìQhÄUþ;*Œ6CÖ_ɸŒ°ñú«žtïK–S†-uBŒ kÆ2 ‹ñZ×v€ë¼qo©¹h­Jže`,ãá¯6@x…qè½bV¢I 1lû®ð‹¤fu7·²Ö¥1ü]ñåsÚ5 ZF¢ðòŒÙçfáÈæKFÄ00} ÌŠÌ“£!‘„Ûê1Ì’×¼ž_·ð ½×ë_p³ˆ(,·Xéw»VÎð›Ù-+ˆ¦î°Ž1Åóc]–%!à¶ÄN‰ ÃS·u)@8ჾ&zUJ†Yïgöh¿Lb(Ç ÑÙ^U7%†Lª 0Å~Ñ ô^ã꟢ý„Ž@½…F<%¦„”8J"íöÔ5 ½¹ãò¾iADdëí­X­æ’8|5®ýhÙ¦GÂmÒ=Är¬íb¦yÜÅœõ¦æà öä„ÕT4kpácE•ßÍO4öø©^r8m^³ØjEbgR>Zz ¼b'¡ì“ üh3 =v« ­!™$ªž‹*»)Aè‘ B• {~¹ÙÜçÿtç)»e´‚HH"ívZS‘ÒI­ãfà&å:l€°.åãÛ‡„_òů÷±žYXôÂ'ôºúÌè‡E8âèp#š¯kL¬&|xTï¸;tyàîØ1ßrx«á윜ZÂIØuù.Œ) ÁQî¯ê¦¡sD&UÍbM{#9™å…ß1ï:pX#¦„üùéóáÀtйĶGÞ×4‹©ÆðДÜYf\D„}£ÆÎ2¹ÛôH¸M® “˜úµ¸~œ¹x}Ý1—êjàé£Þ¡â£49çY‘¯®ì³nnˆj}†™?ÊóEÿ¦á]àµÙ©I€ð¹c‡¹E¥¡v8²ZUÝ” tŽÈ¡Ê@#Ïo•ꇫKT\°Ìö¾]î¸X˳W{„iá¼ë‹³!‘>{¦o§–»‚¢vV€ sæTw¦¿äᡦ!^ ÜGE<ö)ÞŠÜ|'°±±sOB3–âú—h}Ú¤ˆÒ @¯$¼_ÕM BçˆLª 4ÊÅ?£¶˜f»%ô4mi´ÕnM LsDx?&gC"·Uþ±™ÙÉgcÚ’¬#ŒWaDö‰o^Ó¼l|/ðMBk¿3{n—á.ëQ©à·A8÷ê9Ñšõ](ŠÓ¢ÒP¥„ªnB•F™PcŒÜ͈zu±ü©i÷Äÿ-Jª;ö!¦„—ñ{r6$0%ݪDhO§zââ^B¹±›ÏhœM°PÇ7j3jÓ§ä’›œF4§F?ÂjÀÚ*¦J´Îµ+ö,m5ô8šÐDÕí£@¨2Bþ=‹yÕF‘q×Å8¸úàm¾´J L3³ÆJΆD"n—7jVOð”~¬SM¡ÛÜ¡EÛÄÔ’G(œ0¸T w^›I°uðÄs³Ì \36ñ¶º®õ)°;®Öÿºh=coðd |{Xº‹Š•Ý> „* ü†Ï–ÊíÕxnM˺½µ0Ý ¤ÄQ‰@¸zƒ®)ó¤ tîÚ‡€V~ÙHȇaMˆz¯:#Â0 ÷vÛ›n±@)5 ÜÇe©®j)ðš]t±¤‹Ö¯ÌÚ'Pª6ô8n«ïa^½ êöQ THa–m].ó[·gˆù²éaÚAH$$‘„ÛŠà.³ÒG ¯_ï–Å£H .sÓur œDyßâ&3Ú¬‚(>_ò‰ú:®Êj½ƒ×¢Ë"É™  š;–iáRð´•!^)+úvÇ”ÝR!Cês-É{@È‚^ý”õÛ(¹3\÷ÙÈ÷ÓŸ|Ÿü ‰D L~üD‡Zøà-6±ã½jœÁ¼÷Ÿ¶]^IÈ"ä©ë©Ã¯ˆl=Ï]~ìÖ ˜;”•ck™.ƈœ‰Ô@¨5|•pì¶ÛLõdv×Då.Þž½I e ¶íËu”Šn)ð0mV’÷&‚ð*û†b{5ñKX5¾dÌ(ý–@˜vøû r8$ÒΡØY&^þOÂõsá³—æZ— £Öù §³ŸÜtãŠïÆpØ,Hœ˜÷á¾Ó\xÖ¨ú_Ík4Nf¨Š›|÷¶#£—êX„éÝ£¥±› ?»;F‡á™­›˜¡ÐÜ¥?ÌéG…!£UÛä¥&6†‘1u·”@¸È<Ø©4¨öÙ… :à?;t®’ìr@˜v.ñ;r8$ÒNá TZþï“e"+ÒVð²ùhÑ:)·>®å>ÝœàÔŠ7Œ·,nµ7î·F˜6× cUæ³ûµTA¨Egån:5Ýfëè—4äOjH‹¶›­êbIº¥BžæÃ†¬4Bí¬é_M2Ïlr·³X²œ@˜þ©Ñ"ü™‰´ÓAX?~t«Žm~‚ª‰Xs[¡^PZû}}?äó†ªOn¯´w Õ^–xB“ÊãyׯT èÞœÜsYñ{Ô¼ìè%#'¢Zê Ô´“Ïýº¿òžÖm·ÞUц{={>¹!ãàþ€gã…}T¯³[j Œ†<Þ)¥×¿½ZáUŸ¼>w@‹¸±%¦„õ•¿"‡C"ít’þïD ü‚GI$!‰@H $‘HB0ƒAH$$‘„$aFƒp¢Ž– I$!‰@˜Á ð€ö%‘„$aOvã{ätH$!‰@˜¹ ŒøCN‡D"’„™ ¬^r:$D Ì`Râ(‰D $3„DB‰@H"f6ýò;$D Ì\Ö»~ø#r<$D Ì܈ð&þBއD"’„™ Âý r<$D Ì\f|LއD"îhEw¤iáçBJ%‘„ ½mõyoTDì'°µ$(q¦ÅÈ;?f¶Xs¹ßlµôÈêå ü›½ó{Š"»âxÕ¾¦j­<¤’‡¼¤òª¼ì{^“?!©ä!•üØßeVF`†q†~ÈA (8ŒÅ«XD IDAT#¿D@@ù¡(º » «€£ãÝQÙIîíîÛÓÝ4#V9ß»§ûÌí£çù}ν¡Œ‹s;t$SÝ7¾1¯™Uc¯¥„‰%¶àM4ô^ð sÂ} B"!‰”¬ <þúäfWí>nÇJTv9[檰 „Aåƒ_¤M÷1(%¡¬ì/÷„˽¨øH Ô†&~ú üÙŸ(öHI Â6Xéê®Ãvø&Ôx9Ã$Pèðn#>ûúB>)‡sÈK ‰Ç€\þZ±^À3!¥³@ @¸ß@˜’ÓOÁ‡D"jjB|’ó0#cφ;&3Šù!U‰ñßl5åia‘ò±'¤ó™î¼¾4~1·¨ÎëÌëë‰w+„Ï”zïæ ,ÞVO­¸œy÷t•8mzƒõæŸó«Œ%1Ú ÔH‘« çW¶á&#ÝÐjþO þöÀ6-ŸtOtzÙåç „ÉB*%‘„:5Åù×@?^Æ¥W©ó «ñ\-“. Äþò✴ö÷\rrÎpT´8Uètf©Vs•Ê÷’„±çvÕøÂ%£3¢j¨³Záô¨z­9FnòPó¿Û ç±x y– ˵ʥ`Œ@˜, $’HBKÎ^ m+J7à„÷¯°Ä±µ‹-GNôÊ#Ûaƒ‚–L®ñѼùyÈ,z{ÒdW¦]k§?µ±¶l#2˜ñhñc¿ ¨ŒHG»G€üîîvÍ`ã>­85è|§TÖ×ÁÑ0ãg—p}KšŒtC[x÷?ôhÿòé*óÙSò¸ižT!D"%ßZ#ùiË#JŒ×TÓ¥Lö)ûØýi7¶êŠ0‚ð6ûÂm$@ï¹7˜³7]~’ñwX‘qzH/àTçЃÑ×}“ng´9gÑ>ÁÀì»-w²¤²>ª0¸Ãïuä³”nKn2Ò†¶ð0î?û•ªÝ—Ùp¥°ãSöo"?xã9#b˜@˜, üõ?(‘HBQÙHQÏÀÏëø4ß«¡è×3v–'…Õ…W:í¶•‹üÃĦ7ˆV 9e HJç8<‰?÷Û¹áXW®øM L×ò¯neÒÖÂ.–ÐÝP RØÀߨŒËS0´ÌòÈÖ-Ah6C[x¨ó?€£C>ûb?䀯JC#– „ÉÂLüž‰´¯@Ø^,áˆ6åÂÍëÁ`Øp£ƒüçwÁï/bÇÙ ¿¢0Á7ÔïY`3][.fŒgd,„o8!ÞÖ²+µš©bVmÃ,#H‰Çê?fÑPŸ.Ë#¿TsŸRAR¬Ü 4Û'À%¿ dA¸„Ôµn"£¥S‘M ¼ªË?Ù0+*ãFÔK+@û– 4‰¡-<ÔùÏçMω•v¾e‡®±æ–x¯% „ÉÂÛ8DëËHû „Í ejçÝ(¿P™ ¿‘Ç~ùBv<ÉŽM „ ¿1ºhü%%öÓP¬}>–Óði¾ÖK"'bÙ*M_¸‹>IZ (§‹ —XKOSß±©mÒâ}ÇlÈfœ›A¼ò¦Ü˜»öM D<#Ž9aïP÷$Þ¼ñfKšÄÐêü—~T9™â‚Çôž´kX'& S&þøŠ@$Ò~a×XÙŸ” ÷”åò iee/Œ7Fñšÿø¾ljªåÇ£eM[|C½ñ> l9n§ÃnŠî,ð;¢¦¹T[5/uõäžv"¸ݺ™{Qu Õ“§¦âæø¢¥x%¾4€°æâTÙŸ—´{“Ê"Œqjý¨”ükKšÄÐêü—¤NØøTêpM¶ãÍRÓ`9/pm'& ©^†DÚg üÿ½#ä5)^9ä—§IÙ˜gNæU=31/I…J.Vûj¢ªQ­OyyÆùiÔª °uaøÚB–ðÝLÂ¥¯PýAaÜjœq³[‚Ðl$†¶ðPç¿$µcìpD›v]ì¯[“ „DB‰@¨éØ™ñ‰‘'Ò¢ÚG¨—WÇ)¥lÅ=-IÞL~ø~{ lÕÊOfrtbÀèÕ=`ÊBÿ6@xX»—¯@n· ´ðPç¿$-Ûy©P‡Cy#)I³Êoy¥Mi•B!‰DJR }+VD‹Ä´kN]6Ä›B(’csËvÀå0#Þ‡'T hKÀ”@8œNÂQýKÀNmjtW ´ðÐBžyæòÆŽùS+ãàÚÃ7ÇÔQ „Iž/è5!‰D ”i&º'x ßÖ©Ìk×Öd9¥^$N:ïL¬luåµñp\¿ÜK‡Xàô¢®îR·ˆ¾Ð–“» „ÏtÅ2QPµ ´ðÐÂïùÜh¾º¼¯­©‹Æ—V#&ðg B$PêØDmiJð{€z¿Têa˜ÉC¥‹À%ç‡;Í_ž˜¶Ž/_éº_Yt@øH×ß+·&˜@xE]åL-~]“ö„A˜âBC«M<øl¼ gêžÂdá¿ñÙo) ‘HBíZù¨Ì‚*§¶{ÒªOWÓ)'@é2%.]Jã_ÏŽ@ ˆuȤp>xÙ܇~^Ëõ ä-ŽjÛÂ%†¹Ou \t+Í|_íôu7H;!oDhjxÆ1©8p—¡çHS/ì!Óîܸad8ÈRÔ>>Y;ÇP8Ñ_t›/ WÙ?\ÁWWš´jC[xha„ß{V;Ïåž+,‘d§Ý¤!UŽ’HÉÂqXii× ”VWÔ±7Ä¥¹ 1~F•Î2Ë!f"¥Üwòíº¹‚0rͦí{CD&” ¶²6#¸"¦NK2Mêöi*ŽN—vBmh  ”®A›‘•¤±g“½‘å’EB!‰Dúh ¬º~z³ÎlìA×Dì\ƒ×‘Ÿ£Ïý¾{r»B%ÆýÜý:Êu=Ïs†F¢ÒNA(I‡‹ëØãî¤NëÚ"žzÿ¬Ô¶icÞõæNŸóÝ3Ñ`ë9]£zƒŸwúy}µñy?„bh M \‡~yµê“knGàÎT¡´jÇ»0É@Xð‡Ï)‘HÉBÒ''á>áþFˆD"’„„/ðÙ/(‘HBðÀ‚0¥¥HD"Iƒ ÂÜë¿¢HD"Iƒ Bª%‘„$!D"I ¡¿ÿŽ‚‰D $.ÇðK F$ô?öî>Öêºà8Oac÷!ǃ OÑÏÊt F)`ˆAÌtä®·\5˳O]Ûõñ …lbkÓU®Û–Á°’˜ô4i.gFA媩dÝ5+L©Íþ`þáêF]ò»ÚÎo¿s?¯×_gçwïùçóÛï½sÎ÷÷=B˜7„/FóÇ\@´!¬Ü³]@¼!¼õáÑ®F „aÞZ9 Bˆ ! „aâVÜABˆfáýmë\@¼!Ü×Þ±Ö „!ÌûÑè31Ý „!ÌÂ{¾:Ñ „!ÌB+GAB!„!LB%!DS‡ð觸("„yCxà®x¿«!B˜÷£ÑïÅE®J „aÞvÿ`¸«!B˜7„ÖË€"„B»o!­MBX¾*!luÚ|!,]ž7Þ• 4ºá-$6¿QKÂûb¡+yCøx´­0Ò†°²§y´Ù7„ÝU£ q­@ qw,¼ÔxÈÂñÊxÈÂÚcƒù6„•GÜU@æîÅ>k$¡•£!$aç¬F@Þ¾«}O@ÞþfK\mF¤ aå` 7#ò†°óË7˜yChå(ÙC¨„äá5C €Ä!¼eÞXs oŸeæ@Þî»3ì/@ÞV¾ö's q- y•€Ü!ì\aT$ác›yCø|Ìl5,Ò†ðè_âà m+¯ŸcXä ¡•£!$a¥Å¸HÂV™yC¸ãΘe`¤ aåG±ÜÀÈ·_m`ä ¡•£d¡ „$¶rݤ ÍWNŸÛxæ¡¥ñ?o¬!Üu•dHlÚªÞÒÍÜxú±ÖÈÂ=áfB€¼Z¦÷4nÍunDóäÓNŽ·ºWã` á›b‘ «‰=­;Ù¿Æe#šú¼9bÉÉz aå‰û|6 ÖÒèÝ[eüêˆ1}®ŠXœ „ÖËäµ(â¯{s8¿ïÑÕ1ìMìJ]‡!TB€¬>þºø½7bzŸƒMí±æM¼f=†P ²j;´÷á˜8mùäʈÙCÖ®_wþÄö¾pÕÅ΀ì–EÜÜç‰%L:yëDû‚Æ¿N=†ð1a†3 ·OtDsßw~ë^wá¤/¬¬ÇþøŽ¸À)ZëȈóú>µ¼'€—­mlº~]GÄÔ)ýþÛÐÉg¸©¿#|úës™M[±zZŸ§Z†E¼ï?{Ú7õ÷oSÎþ ­»Z/[ãÔˆ™sN{rÅÊô>\Ðó–°ß^qÙà¡õ2ùlh?ãÇ—zµ‹øïœC'D¬ÍB%Hfüˆˆ·Ÿþä˜k¯=¹BtvDÛÆ?8gäéûq !ƒÂĈqÑ) 'Ÿì}'ØtcÏÑéë׸9bùÀ¿=«ë>4ü g@"Ëûn6¼O‡´6ôhhøkÖu·ÅÒiN €<ÚÎÂ!C®˜ÿ¡ymW]8ù¼f]‡ðÀîx·Ó€ÿG]‡°òÓ­~†€Ä!´`!€Ä!TBr‡ðÈ…£Œ€´!ìì fHüŽð;ÑÖjޤ aç/Gú ò†Ðz²‡P BHÂçÖl4Jò†ðq¥•£ä a÷£1Û,HÂÊ ŸYh–ä ¡3!$¡;„/k2Oò†ÐÊQR‡ð•ŽöÑ @ÚV~}Û  o­— y•€ÂBزþ7„‹cë=¥ëàÎIsÍ€BB8寸béBøP4/6TŠá ±ééÒ•ðxL5T á/ÄžÒ…ðØS þãÎø‰õ2¤ aõ‘ØÝ­„¤ á¾®Ø+„¤ au[l)aŸXºÈ`("„›ÿ͆ð™˜4Þd( „=JÂc]±Äd(&„e,á¡o\o²ä ¡3ª:„þ\ÆN1[Š á/>û`ù:ø¥ÝË›L€"B¸'n/_nëL€"Bøä¦ø[ùJø«h_a¼Âê®xôh ÷—ù]‹ñPDOlmVŽ6„Õ½±õ˜6„;#¥¼›Ð·„Âê';ÚO”q«µŽu& @!¬Þ»é…†ð¹ö˜eÄÂÏŸ(åG£‡c¸P@KºåèþÃï2bò†ÐÊQ ¡;„%-aÓ ¦ @!|mÏ“e á®x1P@÷ÆmÝ% áóÑ6Öœ¨}_Þ•0„Ÿ‹õæ @íCXýYܽ³„%<ö);­PD«?Z9 @Þ–ó'z•€‚BX=/í/e¯5jjÂû»bo)CØÕ¾Á¬¨y«ÛâŽR†ðH\4Ͱ¨y7?ÿj)Cø­Ý±Ò°¨yK»ÑÚæïš5…„°¬›o[9 €@ÍCXÖv^2Ù¼( „¿ýJ)Cx"æ6pjÂ-q¨”ï¿78µá®’î/óÏ®q-&@ÍCx¢¬ûË»ÕÀ¨}«Ûâ®–Ž6„›ï(ëï1 !„°úÚ¦øk9C¸£Á=Ô<„Õ#±»»”!|<ÆÍ0ujÂ}[âñR†ðèSÑ`êÔ:„Õï?û`9?}yË|Sà_ìÝŒ×uÀqA2‡â¡‚‚ ?Rm*i‘þš4%JRIµjßÏ^uèArž7ï@RqËIÓ™ ”I¢ÑM0û1‘Ʋ6NÌ)S[˜ ›L«ã—ÞÁÕtã}¾?|¿>|?Üýó}mÏ}¾÷þ¾ßÉC˜ï–£ÌÐ)!TBª;„… „Y.ív‰w€ä!,–¯È3„÷ǰÉÞzR‡pKÝs³ áÃëb€·€Ô!|亸7ÏGÂåÍÇyëHÂbAÜ}£3Tmçÿ#ž·t€ª añúÚŹ†ðX{Ž:„Å›q×¢LCøbÍpo?‰C¸¾!ÞË4„ b˜gB‡°x ®[–g-‰Ó½ÿB˜8„s®|9ÓGÂ9kôþaâf½ù¶•£tB•!ÌÔáç!LÂŒK¸.z™!L¢%×þ(úö6B˜8„kWeÂ5Í1ÊaâÞ 32-á²-Ý €&ἕq³•£Tm‹ÖÆ% jCX<3WdÂ~C!LÂÍÓcm¶!lŠ“ €& aqoÌz7×>5ß1 B˜4„ÅÂhÎö‘ðùúËM€¦ á†~’ïr™‡ €&ánšŸñž£VŽaâæ½ù¶aúf]Âæó›!LÂŒK8wfœh„°jCXY<+Æ!LÂûgnʶ„«þt™q´!|)îZdÁ UÂõ7Äo…€ª a±1ê—g\ÂÞ]L€¦ aÑÍs³í`KcßF@S†ð¯õñ·|Ÿcú˜ !LÂâÉh˜‘mg\ï;B˜6„ó_Õù>ný¹‘¤!,þ8»¹R±t€j añîæŠP½!ÌüŠÊèÑÆ@“†0ë¶ÌŽQæ@“†0ë>Ó4BXµ!\³p¶¯ÕaÚ¾w×µ8ú‚¹´!|1–´X9 @Õ†ð‘ÆxÆw(¨ÚD}Ö_'l¾²‡áÂt!œsGÎÇPT*÷Å)†@Ó…°x»>Ê8„›fÇXÓ „éBX<ó2.áã?îi:„0aç-‰›m: @Õ†°x¶þ÷B@õ†0ûc(*‡;¥@†0÷c(*ï×^bB„0a3/áƒ1lˆ„!Ì»„/ßÇ!¬ÚV^{´»”!|hæ³–ŽP½!\Ó—)!UÂÍïÇKy‡pãÛoa²¯ÔÖ}uŸ‹ƒ €& añ³˜¹"çn¨^æ@“…pùôx0ëG§šŽ6'B˜,„Åãuµ¨X0@µ†°X÷­Bª6„·/Þ’ù#aŸ.F@S…°¸ó¦Ì;X¹¥Î‚!LÂüÏ¡x&N¸Ü°aÕ†pî5q©aÂt!̽„ËÞ›jX„0a‹¹¹ÿаaÂ>Z¿@ ¨Þþ®®ö/™‡pë¤Þ@…°¸'–®È;„OÆDQaªÞÞ”ùž£•7¦ÇçM €& añt]mæ§Õÿ»a’‰ÂT!,VÇÌÌO«o±`@Ó…pùôÜO«·t@†pÛiõ²/aϦ@Ó„°øUÓæÜ;ø÷š/›!LÂìwZ«TÖ×ÇÉÆ@S…0ÿ®ŠiÆ@“…0ÿÞûª±Â*¡¥£B˜2„ÅŒ7„€ê áwÏÈ=„s¯îet„0Mç¼×äÂuugš€OÅøIýûÖœsÌÈŽŽA˜ó n÷Ò€ˆ w]qD‡?7jÀ&d ·-Ë?„‹O9Ü@t²ƒ"†hÿÚ¥mBسõvG?7°kt¤K®!¼%nÎ?„k〞F SMÓºÏîöâÅí?íÖáO?uGfüD¸eV<}o\Ú~ù.©Ö-⌻¿zzûÅ2ý?îoËùo„ÅŸóß}»RÙzßÕ†  Ÿ1fÏ“În³zfìn_¶/mç/)ÁîÛÌtª~µãïùúøˆ+v]÷ЏtŸañN)vßVB€ÎszDÕ½ƒ=j?úÊÄ€ˆ³÷nÛ}ûÚ2”ðªƒÌ&@gQ7²ã[‡E|sÇU÷"¦î#!,~¯?œ7Åù_2é]T»ûáK¹ðÃצ|‚Ö²áµwG dzaf6Ð|¤Ö§[‡Ï÷š2¥÷ö›ßŽ8~Û‡¦çžqÑ>ÂâUeøht}cmG’ëÝNúÐÁÛ_ì1jûÅØšˆ‰í3u­Aüø¿3û–d«µå›Ì'@r_m¿#ÌþíC¸ß™‡î¼qä'ø”N-(iÿ?„ûõ•1}»ž1áªOò;ËB% ™R„°$%|k_¢Â$îYÝR‚®ŒA}L€&Øj­1+AooˆÑ& @س6• „ï<1ÂDa OÄÒeÌPµ!ÜÚ/Z: @Õ†°øEm<^ŠÎ:ÄTáÞ÷¯h˜_†>ý{+!Üû+GWÆÂ2„°hŠSŒ€î}‹¯«Ÿnh¸ÂXao0óòc „U½é¨¥£BXÝ!¬Líi´„°zKøZ}·Í€&ðv)6˜Y´.ú6\B¸×½Ï•áŠÊ¼¦¸Àpá^·¡1”cƒ™WÌ€&ðPÔ>kéèÙ»ûتÎŽã]ß @{yë(¥ÐB߯›æ¶bK[ 2Øx 2Vq »Í/ÞŽ‚£Ð¢0Xqa C–MëD)Df! ÁÙ:$Apˆ1ÉÌjXf6“-dÞÛ®/t4‚=·§Ï9ßϽ÷´¥9!Ï×ÓûÜç\ÂÒió³”àÚ6îÕyCBøV$¯!´ÜºjF÷)–õ!´ÜQU­2c¯µgĶ£@-·®VšqIøîͧa@­¿]ýÉj¯—3·†Ð¤MG)!Bw—ðÊ¢Œ2 „î-a£|2Ì€º÷’ð}e~•q„ÐjgνiFn–å3΀Z퇪YÍŠ€kC¸u§j!À­!,}s½NsI8e*c ¡µvhí?M á‹Êb¬!´Ø÷TfʙήÕBkÕíÕöJCJøsß 6 „Öúôl•NóÆúzB«mª¹eή£¬Bèêí·½Þü(B÷†ðÆúG1›¶„‡+‘kB „î-aõf-`È!´ØªƒõÆ”ðT†B‹]Öq–ŽÜÂ*´‰\ÂÒÓª¸nN•LgØ!´Ôv}rؾ.Oã¡•v­ÑÓ•Æ”ð²"w@­~™ðccBØðkŒ; „ÖÚ¯µ½LÈŠ „V;®«^Jpm«Ï4ÂqK|@]{ ïa%E3ú€º¶„«¾¯ÙŒ> „î-á¥í9Œ> „‡°š3‡ðc¤„÷†ðTyùÏL áŬIŒ@ „ú›66šôäùb IDAT:¡|+‚@-|7áz»Þ þZžQŒA „Öy§F5(„•îÉBh¡k>ô²bàÖ–>¯ªw(!Àµ!\÷š.› q¼N„Ð:uÏ›õ¶zï>ç3€ºuûmï§k4„н%ܺ3›„ÐÅ%dÁ BJ „Öù¨æ}ÃJ¸8c£¡Un÷¾ú÷4‡Ñ„Ð2'Uqݨ¾ìSáeï«ÿ©ÊÞ5ª„'ª¦3€Zf×^Õ^aÅ ôPSr ËYJƒéÏõÖŽ@O‘X®€¢¹Q„0x–—3­„ g2?8_N¤ZE.!„ÁsY{ ëàjnYÀ%øš;0)ÑãR’Nƒw¿ú}WM»"ü‘<9ÌÎÖ§Hóh|àiôÊb)7•²ÁL«†mU„€ÃM’’¢[¢J+ !%lŸBVÌp¸~*™ßv4?Aý!%dí( WaûÃB…BJx»úÙßd¢p®PÍm8AB\çkÂ3Š}‚™À±4¯ýaŠÂàúDÇ+ »"Ü­ÑQLN•¨°ö‡³”HƒëH…ŽvIx`÷BÀ±â¤±mGc¥8Bd›ä;bÚË„•¬˜àX½¤„Öm´f&¨Üæ·¹ „¥/jã.ÖŽ@O1GRòÔ‚ôô‚G’ýO³m>7„°ú í¼h\×=Ü›ÙÀ‘¢“ÕÎÀxB|Êôtƒi!<ªÈQLŽ”šRÒ’Á’”T»ÏÆ!,ýS•~oZWïQ.³€Cõ^V\ü©Sì?w„°ôÄÍÆýnô¹ÃÉÌ „nÞk3@)!8FLLLTÓÇ!!ìÜ’!}™:œBÒЦBJع›J¤„!!´Æ©²SÆ…°q³"˜;",,,­éc„°»üJÿ6®„uoÏcî!´Äº¿hÃ:VÌÜÂÒºúe=%[ ~Û=WãrùÕh7ºô½Zi` Wdõgêp )­ýaža7zy­¾k`k•K 83„#G+“v§ýò1/„uTÈÜ`ºÔdz¤¤¬VÇKÅ„°›oNø‚—„uµƒ™BŒ—¡;ZN»÷æ„'¹Å +f˜¯Oî2X^hó ]BS÷Z£„ ÷0?ÿ%à°Vå,µý¤\BSK˜2p>³€ù:¬µ¿În ¡¡%|FÅܳ€ù†éQçãΖ620„Õk4‡„Ð çjþc` ŸÛö F,çI%„6Ø¢=ϲdl2bÔ ^_ô{"§`ZÚ¼ ¡ V•iËK”ì¿|÷#´ß­ú£™!|-|³€Ñ&v|'!!´Å ŸvÂ-M ˜l˜¿}fåJIyãýO=Cï#„öø­|GL áÇ<`°l).>$_Z2*Kgóù¸7„¥¿ÓF—Žz/î¨f0X‘ÂëDÇèK£8ùlþ5—‹CX}ÎÐ_޲b€Ñb›ßý€"ñ£µˆÚ¥ñ­zSCèíÏ3Låi¾œ«ð¦Ã!J"„ìµvïÞËËd`êaS'IQÇ©M)á½»)Ïbf#);ðP +”RÂ{wåUÍc60R¶fî@8Eʦ¨„ÚëRµ‘%¬üèïÌ&FJ“únB©1Ñ!!Q3TDmuÝW³•µ£Ð}FI ³—‚Ê{$£XzœÚꕟhç SKøí4fóô éÛ¼ÃZh:!´×7k÷!CCXÆ …LtßDOàåÁ¯4•Ð³Âæ³!„¥g×k›¡!¼Z®ÉÌ(Šêø˜¿<9)Îöí“ aÓþÛû -áëÌ' „]uZ¾k†–°3ŒgórB°MUÆn2Ã`´˜nÌÛößÞ^uÁØz§fG9}žä, ‹õ H¾Ì‚Ÿ•7ß%ÝßÙ—GĆFŽëßá³OJ [žß/•·|=>Sc>ÿ3â¥á–œg©¹j{¹%ÿ ‰%™¹)ùm_^2'23!oÂÈοºè…C ‡<5¢m6LÈäõ=ÃVs·õþFy}=oÒ“[ïcýå®þ›ýdhÿ®…p^ó™„w¸“è45oîÿúÊÏž/Óîù?Cx·çùù“k áÌ„æ3MXÐò™EåÍŸ‰Lïì;€ Üü–‰Ä–wLL+ BöZëšU:¿zq‚±%Ræ×ž¼<Â#ïݵ–"u-„“¤¼‡Ë–fuH[fëæß’B[ÿøé¡ÿ#„w{ž·ûŽÚB¸Ìÿ·5qlÁô¯ÉóÙíã¤â…Kföó?Äßù;€ ›Üò¿ÚMsyiVÓA!¤„]TwÞÉÿŽ„ú£±´éiL˜¿B©]úiÿeïübÛºê8~ë8V”Ô¾iâ9v“ÔvR×Nj·,ÎÚ4M2'Yþ¸IÛÔý³’y©“®[ÛlHßÊ 1†&†â$ö4&ÁÄÐ4àx@š„ÆÞéL Á!xà ‰óïþ±ïuÔ­rj{¿ïÃf_ŸsüÛÝ=ùøw~¿ß9§„9$¸16×Kй­gŒ™YA^]î„îÿ <õ)@˜€Âîu`¿ðß„W¬….WpS˜rD~âlA"5\Ø|öìaSYîòå¬^~ÄVÛ„íœ2Þž7ÞÄWéG B#ü_ià\õÌõ3¸n‰×ÑCµ®cÃ@8Åþ¶è&Ç€³je¹‚ iVFžbé÷ Ïµ‰Ôp]¼üËpöL²'¥‰ä£¶Š@héûý •I˜lÏy3ñW[i¹;ïCƒ0!·Í¿bÎT8*^2H/Š77lo,Ÿ¬·MvÕ'kȱöèæ)àÓwÜZHWÌøÁ8 Îñ¨õN×£·Š@héÏxù·­ Â"çÚrÞ ö\ÑìÀ]IüžK!7«âoI  c¡H.Í>~î`ÞÊë<~x¨”ñfït³×dpbÄ9ÓVz-¯{³›U Ü`­v{N Þ&èèŽ(bor­Ê/á?/Ùc O~§5A˜L/–Bki#9´žÕã@ê™…R~Á±ÇMóø‹ú`0FÞ@9.‚›SU-H¤ÆË‹„|”¯ó@¾)6L&ZzåøÆ—Z„„>׆ӆ¹Vy·ë•ðˆ¾^Âà‚¼°£](ËÜH²k/\7{«S3s6êÂÉn „ãµÔF#¨¤ÎÏ¢4UkÒJIÙ'ÏÝ-è—ED\\ΫÑ×®*žˆÉ ë2ý´ž5ƒëì]e´öë³×Ïh6ŽXG> Üà>¬‡Yr`óÜ­N ©ñÊ ¦^‰'{¡92Þ „ö“(¾‚o¾Òª |ýMûbÛÈ dUi® ÏÀf1xÈ$gqì‰Â¥# ¼©ô,0Îý,|KËS…5`…ñÇÏÈvÀp uè׊OûäZ¦áQAOÞe‡Miår ñ®c*†˜Ç‚X!Í teøÆK+ÀP\‚°‚ÕàÔX'°ØÃÎÚŽ „ÇYËÇ_/~f[ \±ÖV„-;ØÖv;R‹î-H¤Æ«Â~ªJñª‰ÃÑæ°Š@X%ü;~Ö²g2½ûëÿ¶á´4"oUò'P$Šž”¼KB!‹9žÖy5ŸÆëÜ+ —±CfoªØ›c€î!èóüÂ2g'\8¨=ò³[N£nÉ$LæÃN2`é’Ãòîè*PKÀ) BÄÄÐÀ¥úv::ƹë×¢£î·Ëá‹À’ºYÌ÷Mñ8àÍ ò:=)×$RãT¯Ø¯²Îf±Š@X}LïøÉë”;ÚDb,r9`#-ù¢‰¤ÒŒ_€°"ä0¬V*‘äѯŒDÙæõé- 0ŽÎÃ8Ò*(Ö˜9Ó.ŒNx8Jr[Ü™cýÁ«þc"«'(ÁÄðTúÄZ)¡.í Ï"­k§£#ácõo—ºªÓâaN^Þ?„¼î™è ¯ ÓïÖ‚DÚgî›Sÿþ>jå*ŠžT›%^€[f'ô¸EÊ1Â!ù>'Baš¨–ó 2tž¶õT€q `mÉîOʥы. 3¼ÎÖÅú¥6\Þ8‹Y±â˜ãof€Q¾ÙZÞ²ÅðÔ–w,‹nÕµÓÑ‘/jB÷Ë{ÃSYx…¿çcì6¼ì¬[ iŸA 6ï™L÷[„ßÅB ­¦Í̤›¼VÎæ¼ eÒœ^‚FšÈsa 9Ã#ò³…­jÀ8ØA&Z=]g+¬Lñ$Ò-­?«#ºOL]äì‹&¤k¹ Üáô9¡¦¼M“„ß ¢a;ãµ_Z„accºû†M‘~»¡>’™<µ-H¤}aÓXE ¬ÕŸ>x§…Aø¿W¼[Zó®ø3ª8©_2iÖýu`ÛB­_²D¹kŒc€ŽšäTJã5Ušbþ˜ˆD–¡_K×®Ú>ÆÛ;wv‡w® x o̦ABŸã¥‘ƒuíttŒï]€h¡–¼Äc#ã»"'tÍJˆ9 ]ZHBa[l1óÃ×bm5müºQv¤<ÄO?UűDp/iº;µ d¾Ùõ!YŒv¡`Ñ Â¾þ½UW¯(°ñõÔÐ,Ê5sgãììËâ÷ö®Ê¼§-õÖ‚p©®ŽŽq×=¼]AȾeyn7.ÆØâöàu}ÚdbU ‰@H l~üa{Í›>3Õ!.ÛÊæ°±4Z„LW'W˜{wÁuiT0âX] ð°ÜJ•1Y{u‚s£àÏ!Æ1i³uXE.ÍÀ¥‰(i ×[|Îa§£ã'¡Ògÿ|06tL+°¦‰D $¶Ë¶£í•<¬ŠÔ]òÉÚ\—¹=@¾¥Ü "D!¯k²Ìœh­È/¦UùD2gî*uÂHIÕ‹ „ÇklD)\R{«ñ…ÒË‹¢†Bô;¯Ú\{"%=Bƒ¢‡gêÚéèøÀ ì¼­ÌÛÒŽ9g…%7PéqiA"íCR Ã°)êý¸•Ax¿s¸mæMÒgV:hZ϶|c«~ðÁ³U„Ý3,!^zÜ3ë_ɘc± ¯ýìˆi3b^ƒíB¥Q€qÛHþôá‚®8:iö‹®‹:Â8žàuõìtt|`ž–õ‰LOJ˜&Ø–[ªÅC‚µŽ$Ò~€Ð]Â&Ô?Ëïÿ¼…Aø=x m3qæËÀY?þÜ:û É— ý!DÄ⯇çÉ#u=Â#áeSdF’Â1@t±ë÷!Ókn±6€*_‰u“½Ñ>1yOÕØz 9+Ö¸!Ãï {Õ‰GÚuI6^PŸåÿ%Ý+rÄ:v::Z L&£{.úwmSW[1×w#ª¾²àÚ‚D"-Ýÿ:¾øaë‚ð7­•¿Ö×R…'SŽOŒóÕÈU‰Äà9|­8ÙÁ®öa¿úɹâ¹+%”x!ú›˜v ×‘¹>|~Ð+}E¸×\ *𚊋Of€¾‹ìõJ¸ÊÔga‹*¦s[Åyõ›+¦:™'Ø%AXÂZ¡X0vרggmG„)×tZïÞéÝÍ#:rwÑ$sb;&‹©5c±ÙÑ‚Dj|¬£Ž„ͨ÷^Å-ì¾û›ßµÑÔÙ|ÜüÙx¶× RI]éUíõ“eRÕ0$ªºøÛ¼sMS»p—/iµ9Àg¯Ì ªáÊφ5FÂõêdKÎ>sFo1WvÆxs.¤¾nV¬œòd™œ¼  ?ëÙYÓñÁA¨ÍTdGŸ‘,êïTCeuZHŸMëè—eüŠ2fšDáÂÊjD?”°øðÔíÅPf}EÕï‘5ÚueñžX›PȺ‹”„X=SÏmÖpöÄ”f¡v*áŘ1ׇØ¢ìnÌW“.s¦"ö“QºiOxõOÄz(ö„Z+.fV3¡s »žÕ?µÝ³^=KÛ8>wÐëñ.ŒíÑ‚D"-½ü¡ÅIئ¼±z¤ûÙåOÒÿ‰@ØXý /¿×Ò üO¥£‡žð¶ÕS•º $°Áçôþ¯¾ÝÊ üöµ!,Rû(¼¢§»@"]Køû—ÚÒ.áÛ_Æ=âû®ãwç¿f:Ÿ Ò­&‘„÷ ßnñ-fþzÿ ôˆï³âGʼʣñê½t¯I$!íµö=«·¹µƒòßÞ ªH ‘„DÂf/Ë&í—vñÕ·îÝûËö<5D"‰„û¹y»ižçwtå®{†äº a¬Û,Ï©¸_2SÀ­õ‘1·}#ëÉCøU]qßQÂ¥<†)| ÚÏã=„¿,*dú"óOžS¥Åló tMžÊÿ÷™ÎóããÆú•ªßç!l»’ñ‹ŒÞ\ ÷¡ÿKfö({$ .¥çH9yCX&g"'„Aº.÷é¸/áÕF=Ã4ˆK™Þ‹ÁÅO aš[3C8#! ÖÏT{"îKغ‘%3â5„ù£z;†pš4Â1»b^î€g a8­_©=&l2C DÝàiß^ì{™3æø–ƒ áxéáþÏÝcR­Ÿ‘ÿ(Š?3"„®'S†1†¢¡ $×÷mÑ,o³J'„r†€!œwÛBÔS!{ÌtkŸ’¿É<ˆ¼¬çäéïpôËo¿zË´+„“½g{|vjÚÂy)o0!¤„ÝÙ°K“H‘¿,ó+Ãá˜/¥§,–šü9…°À)Ím?\âý–üƒÓ{Þ£”&n mÚËDˆ¸)93ÍáH– ŽQÒ›®§L{ºópŒ÷’0ПœðŽþ„0;O_eÉ „`¬œ¾U ¥2ß‹'+„Þfœ÷j3-пè3îù" Í+ÚfF «La,DROM÷}«æû¾ÏW¹ý!ì.YÝË›ÏCÔ²Z~fB¯¨ts ‚ªÛŸ¿4Sò¿“Y¬tûCèÈ–¾OÃì»uî!\¿M9U &€ÈqªØû55]Nÿ›—¹Ê±+„ýoûKdõ1B²¯Ö¨ñ¸%¼°rkƒ r’5ÏûµPúº£ýʰ̞ÎÉ÷|£óx¤”mõ\„0t_¼¤Ãm.–Ì@Pƪ<ÕáH‘Fù~š!¶'„%RÏÎã éqBÍ«´l‡!%¬â…"Ä{-øÔÜG¥ôGŸQNi†=!¬òžª¤ý°GŽ4›F§õ:mFg—Oc:DÄà™í7ïùÖŒf{¿§„pŽ;B˜YYé_!:Bªö?Zçk=Õ¾2•F „[V˜ÂÖ}*zšñßêëàßÊ–$ih(oHÝÂÎ+Á´ÅÞÓ­¨¨I—&[ßu›²ÅLû.3¿ñ/ã€HX8`|†ÿ wRH{n¡£ªoçV1}ƒX O)a»ºåg˜Mñ"pމ£Ÿ+ªžõè `ÎE)!‹G$4Bhƒ'L)áé3˜ a“•••êÿzB÷vi“!!l’{£ \äCóÞ‡?¸wE:iFw\”s0³ € m’Þ0äšðWÍŒ*€pIJJ*ô½ !4@“ôÖÌ@<"„öØlÎ5¡Ëuæ‘©LBHƒs@žË¦„p½G£û3"¥šáºj[M)áåZ=ÆhˆŒ¬Ë³vôŠ9Ÿþnår†@8¤UæNÏ}áÖòôþÅE¬e–ÌH™Ùþû%Žìøyb·OPÂØ5l*O®`¯Ç:ï,÷§§j´ÿ‡ÑÑ}Q„v¥AOe1¶lÔÃ)9kNòÆo¬ïr0Ù—Á²ïDùUB›}ÜlL[V«¼€Á`ŸùR²ïñKŠ|í)I÷f°º8êÿŸ!„özKîOŒ)á_bnØ(Oî?xB0Áãí`M¯è¿*Bh³“JÈ’¶JV~ûzÑRßr©¼0^!´Ù‹Þ3ª„Ï2¼ìQ¤¼Ž£rß§ƒ“úÄÄ«"„a¸&ôœ7(„~Z½„é` j:Ž|wMäÆÈÃn¡ý>çcsBxf™TÉø°ƒÔ·ã(IJ‰•WEÃSBƒÞ=³É=žñ`{—B“]ÔOLú˜pKfؘٲƒ†ÅÏ÷º ãàÞzö†0f^!dKΫ&•!@ a–ðl½f aŠBB˜°%lùqý¦!$„AXÞxÒ¤¶­cÍ € avR»)éBhªzt Î°%3¼= àAB!4Ö^5¬„9…Œ2BH­:èVãB¸EšÃ,Qf¡Á^vë_­&…°µÉ3‰Y`B^çkµe‡Qׄ׎35!!´îT­Ž˜¶ËŒËÑŸÉ@ ¡Eï®zݸ^«ÎÆì „„Кh\7¬Q~ÀҸÝwÔåÚ¸O% BHà·„;ZꄾQ– æ-™q¤1@!¬ù£öï4®„/{F°|!„%ÝÔ¶›Âw=Ê+`†BXѲG»ß2­„Ík뫘!„–,ߥ5_šVÂux4B‹nlÕª¯\æqôOeŽBXp­QõŸXÂÆê© B 6^ÒVCøé»LB 6ü¶ÙÀÖ½W›Â$ „HÔMf¼®¶±f!D"—зf¦wR „Hà^uægžBX°ópC›y!l;'O¤@ae»µz½vȼ¾ùº{.€‚·WéÜ:ß}ÓÅš„V|±VÛ6˜ùQaïáý˜*„Ý9»Z7ÂOUþ c€¢;Û¯Ý-&†pÅ.y–2W!º³üC­m5±„m×÷Œd®Btëè²e.c1X!x“¯^O,`¸B$n (Ó€"aK¸aŸÒ‡1^!ºuâ6#K¸ã†Æ !D·v©ñkf€&¬_¼¤¿›ûQaÉØ f !Ä}ý~·nn75„ËT”É „¸¯?ï×Ú/ áŠKÊaÈBt³É̯Ußlh ÿÇÞ½ÇV]ž?cè” ¨ÛœÃT@&ctʆ‘±)ΧN3çeuÙrž<õ`Ï:zz¡=XzJéÅ A'…µ…"—"ׂ#„  “‹\„0²…€Ð Ód@¡çÕd=—ž?Üóû~þáš&$çé·¿þ~ïû4ÿ›!@Gtžæž±»¸žgfBÄY:f8„þ_w¨ „èL©Xá"Õg™5æBxEÿeŒMf:‘¢!p-³ÀZ–¡Zr€|Q„”íàN!c!|¨›ž7ãýJŸåg£–cèëÇêz†Bømz9JÀÒ¥Z‹ë ‡po~ÆàŒ+!|T/™´…‚¥Ik“2\Âݪ71r¬„Ðw]G ub KÓ‚ÂY¨6\¬– Œ3!ì}UFG s·M'béYP¸OõÄz¿é;…`$„>ß×*c…5ÕyT,-ʺz¹é ¾“ Ø¡/orM,…õ'‰XZ, i•é¾л®`ò˜¡ÈôŠÜŽædS±tÈ*^d:„þCÅ:‚É`$„"mc…á•2–Ž…yb»„½µÉ`&„"[&ÅRØrˆŒ±ËL‚Ͱ¤€•Jtq(–ªÃDŒ&t«ðú1·2l„Pä̼X Øj&-6ÏÓt”hÆ #!y5'–Â’%T, ^×/Ù¾Sø±ÞÁ0B)[›ïl5³™ŽuÙ¡°ÖFmÿvT X^ÀNEö¬Æ–RßNɺª­D‹wÚf¦ÿO™BFB(2{Y좰ˆ¥]¶´IC¯Za«oêÅ0B‰Ì/Š¥°¶™”uQôEÕòÛ!\: 2‡¬„P¤µ"Ká¢3´¬kòN«V[¿&¬›s˜9`'„"m[c%ÌÝÍ©]4ù³~` ¡È ΩJ‰KëX^ÿÔelÄ ÀL¥ìÂX —±ë)L`%E¾Â8°ªAÛD IDATÂÏ/¥ÐªS¤ŒÆS6OŸeØ ¡È¦¦X C/7Ò².‰|¼ø õ´îåV!K!”¼jçÔÞšÜ*ìŠÖnýÈÍÜüsf€•Š4žæVaº4‡õ³l„0ªú½Û˜JVB(²«*VBý€U…]°3GÛ쇰 ! ˜JvB(òÚëΪÂm­-õߎÎÐÀ|\î9^ÇT°B)]àÜ*,z› HS`fŸêº™žXTè÷e2™Ì„P¤Ñ=À¾ö¯-eósu“7B¸¼ûOîd6˜ ¡È®U…3Ú(Zªf/^è‘~¦ÁNvB(’u4VÂÀœ¥$µõÛñrà†€¥Jiõ¤X ó߉4J'…œ^ÀVE¢ ΪÂI“Y`Ÿz #Ë=Cÿ}wôfD˜ ¡ÈžiÎY…¯³À>Uµ­Þèàގ框B(ròoÎûE§i)Ù^¢áÞ(áÉíËŒ°B‘9Îû?ý‡ª¥"{¢VxãñÑ-¯0£l…P"+‹b) ¯å©™T×Öÿa¡Wnú}¿|‚A`'„"Û+r§fªyj& Bº,ê™ÎÕ?Ĩ°B‘3î^ÜËV‘µlªÑ¢ˆWB85 cU–B(’õ®“Â)ì5“‚WêC­ž¹$ÜóA9£ ÀV%f>ÞCØ’VÚ(~OaX˜ ¡HYy8–ÂÂÓÓ)»ÌÄ1àú«9•€¡~á©™bNh"…qìSÏİB‘º*çXŠœ%yt-iÓß{a½WB¸~IqIF€©Šlªwžšiz°%«-¨UGgÒPE6uK\«jÅA…0[»=øæ€¥ŠÔ­vÖRä74¸„­ è»Qo…py•êPæ€­ŠœœâÜ*,^ɲ„­*Öðl]ž|o#s ÀZE5±¬0µ­ *5Ø0Óï½[…c¿Ë00BÉ;P뤰–#š~òöàNü½÷JxwÆÐÇg–Bxî;úÙIN 6Ó¸D ë;Þ á:Õkg¶B(R6µÈIáÄM4.1§><ã½ú7Ï(gœX ¡Hë…î ûÍDŽÅõß*ìч™`*„"KÝe…÷Ž‘8JØ™ŠÀžš`+„"»¦9Ë sØl&áŸ!ìõ^7õ½k¶B(Ò6+èn6³”Æ%¤^·–z¯„‡ç5q&s!Y±Õ¹UX¸x;•K@sX‹WxôV¡]× ¡È*w…}˜}×QwTƒo¼éÉ®ö}”á`+„"kZœ•G ]\®j}™C¸³Pƒ÷0ÝŒ…PJ÷ç8)¬a ÒD~z(Òp–K9^3Žé`-„"‘ îf3“æ³i\‡+µÄïU>_ïŒ8S!)[éža?¡šÆýááí5ž ¡Çõ£û“B¶B(]ëî»–³¿”Ö±º>æÓ†Ê¢Üð²mÇÚ+¬U½?åÙ60‘ÏR‘–¯×§Ós3Çh¿ŽÆÞrÍ“ÃÇ ÛþÑuÝÐþ—ÝùðAwäáYÀdÏï»–ï ~ SPÂK¦Ïëx_|pᎃg'¼•â»»÷óÝú¤3„ñ¾^ç!|Pc!¼gPûqÐÃÿ3„\\y{ù0¾Å&C(’½ÛÝ‚ôkHa\GÞ?æEçÞ…/–o˜:+WuB$v¯0ó¶äß݃UÓÂx_¯ÓþNc!|&CuÔq?zJ3†œÿø†¡—Ü®:úÂeâPÕ{ñØ==Ïý1ïq€ÍŠ,­¹g4½JéâØ¢©Öw\«;÷žØöÒ…—ÑJÕ¦ØÿwTÆýIï@zKšCxKê!̼pÑw1„=îU½úü‹^Ok÷Ïýê3s¼v{âü‹qA}úÂ>sߺø©,†Päð:g7nmâ¸Â8K §©N´½¤ðà\Õ©—>XØ¢º¿ãŸÖª^™ìÆk_žÞúUÕŒŽQ½½ýÕ° ŽüÂ5ç^\§Ãۻ߫›öå{`7„"§ÜݸµþŸÔ®ók°†›-‡p¿êçxBÕçbqÞ”Ìÿ×þ0¨zÙó!¼Jõ·ÿe¼Žq>ï‰ ÿíó/¾ž¡\ü»ïü ßãË!9¶ÚMaå*j×é5t½êñ…vC¸LÕ½ºzwsûïF?z«²(T²z¶ßç{n /Sõ_ÿk¯4æÆsi|¦çÝÝ.z1PîºæÉáÝGý—½sŠêºãøuYw ^²‚¢<âDV[À¨TŠŠˆD´„¡ˆ:ÆW²;ßu›¨T±S5F›úŠX«øMª&šÇµ>R3ÑØš±vÔb¢c'ÉL:N{ï¹ïÝ•@GÙÝß÷Ÿ=÷ìÝÃ˽ç3¿ó{œbÂÅhé™Jb`a5™3rÔ¿"­°€7g”@X$œm°:_J°™ &38éÇS-½.¹6Þ×}jã LBÇ,®¯ ÂÉ€â÷+‚[·6^)èO3‰. t:O½¢Gᙄ»ÆR w¹Q¿"dkÉ‹ýõ®•ŸŽå·Ã’)€0z°Ô1™-==K“ÉË'Né`W±¤‰N20»ÙäŽ>m5¦zspX|Váx¿ L.R÷Ó(3J…ËÓ@˜“òÍ/€‰êi3ÕL‘˜Æ·*ÑŠæ7)@ètž½¢Û£ ó …éôl UžVùéÞäFÕÚ—· æð;— ²ñlßⱕ@o˜ÓSÒ²%õ2Á2tXÿâB Ÿãb"²µŠЖㆩsYyô —‘®œßyBùÏ-À‹*{xsp¢•%Ý&¾œÄ%êÇST"Œ7fЬ­Ó3Y”óµ%VèjAÕø‘0WlÆIܬÆàršáH¤p¡Óù`…MÔÛÇCÖ"\ óS[f n'~ì9´{ýÈÈê)4r+„ÆøXX„éð<Í,µð‘šO/Ò†JVµ4¾Dª¶qà‰,°A˜îÍÁøá°Iä <çÇGØŽ—¹Ê•J¡çj | *µ"cÕüyŽKÑJbJ´lÝšRhŠ#‘„Nç¿– Ã>¹þ$ðƒoï[À[jPiõ_Ž/OOæB³Ý¯[²èp³K`*+ͪÐÀ•¦„br1“`9 (‘:¢ÁçH Lóæ ˆÙh¹Ù ±É¾ œ`á‹¥V?iÀ¦‚°‚6ŠW39•~n%y>¼)½ML¯TìQ4Ç‘HáB§óôzBa˜£ðŸÀlßÞ-X ÄÍN3¬Â`¹Ì•Ʊl»H†šÖýtO· ®Öà•€Áì멯ñ•,-Žñá <¦b ãüD&ÇKŸC€.Í¡è,ˆîÓ?fÍ",2”s-/!¾«®—D"…:½Q¼a3wžþÇ7{Ç> 9¾ìñí]†[Jó!p’ðÓû !FYfKÏq*ƒÖ1¸%»¨¸ÂB³–¢0bÞÞdØãõoð#xcT„¡îY&ç?}"qjNz† èÜÆ$É£æe•¦`ª«¤q0µ§IŽD :®sa^á¶(ûHU_¼ðqà6T¼÷ž¯B „çæùöVc§Ò¼ÄH)€ðžãݵ‡EVMÒƒ‹’àÅ'ÍԃЮEzFAÌÏ‹@g!`s2 ²@ØÕ_èmV¾o¹ä±bkljû™ZÔhlÉÚ*©CÓ x)œ@ètn5 pGpU›yã“#ì²jëê—Õ±ª85÷NÊ,½çÁÁ!¶å’KNè-Äß]Õ¹À.ÂÕÒq¬ÏèAÈqÃJã¤$‡¿ œÆœyy¾ ìU ›‘rÙ0÷ÓÔÁÇŠÑΕy}†¾Ð\ Fá°œY‰b|dûuÐ]ý6˜&7³tq¥$),@èÂ#ÁSƒt…¸‘¢ûâ½ÝÇ]¢nüy×–%BÇš;ºžu¨úäDH‘p=°]wx8ëp,Ö–FÏ2'¢BáSj²„‚Ægæ æÝh¿K£ÝØÒh’ÏÒh^{јox7T¤·ÏQQPÅÂ[žn>e%á§ÚàÝÔîqr3,B)ü@èÂ[A²3Åé îÚ6—^[Î÷ ê~€HçnÖo%~¬ÑŽN‹¿4Ë|l5‚°Z*Á"0fªlF• Ü#‚erØÙ2’Úä¥Ééɹ,FSo`”ÜœÐ7ÅEØ ©Œ†Ú¶é:]­àU_`LÚ6# Ö -‚§Mr$RØÐétÂf¾ø­{_?ïFí7\>ZºC`õö]ÕÞ…¨ %Gá†×ÔT ‡ãv½t°WKŸx U¿2‚°þóë‹¶h˜l¬ÕhÇÒ',0U°ÄˆRÇËì+)¡¾Ü s¤îÝÈTã5ãGÂÓFO‘V¹ÕYZÖl*ûc¥Öó*lcxõâE¢ “$,&ZÓI$RØÐ;‚´á³£ð5Àò]~u¾µ®]׿ן ©Åчnà‚T0àŽÀÁ3DÏa ^f õׄ/^ dŸíŸea¾ðR&Yh%ôDZËVÅ„zXñ“`bö‘Ø;¨%Ö:k¡š Mfe¤R‰‹›¹Š#/G¸ê>z&'Ç7º4jù6Ëxuk‰þFˆ ¦k‘8FÛ|Ÿ ‰. PhH±¯_º" ç°`¿ëQºÞ€êº2C+ƒÂ¸÷};{–Ôð:ë»TíÿæòÆ7…žC~Ax ,ù=ʾONùˆ’JTŠ%f†¹éY¬d‹©Ë„òÌ`8KEÅÃ^ÚmTW³d+Ê L4ëÝt7ˆ&ç”§´¬ì SÆÓ`•Ù«UYo1f&C¿¹:ÎÌY³Êºó°)ÅDgYº““ ˆÌò”Bß´‰> t:ßß©¯AúŸ6,Lf9ªº­ÃóQµ•²ë‹ÌQÿã«nË}ÇÊ=ûX/ŸJ&YŠ]>Ñ:½â¡ Z\)÷·–—6{ÊU¸Ýl‰RÙ}"°èsöFXåŸeKiúêx²ÉØI)¹ý|âšBn üd[¦é¨jðPF¶–Ï ,B)œA(Ö Õ£pÙÉE¥üU»]鯛¨ÝH¾ÿ]ÈðÇ¿^W뮽¸öªÖ÷êÊ#5Õõ«,r<„ßÿuˆïBI^GÞV˜.§$ŒKˆ­d6àéyVûÈ|5ak7]81»·´×‘ºáS^N¾ÈôoMè«ÄÚ¨ãÉf[Va,ß1·s”è=œÚr³~fæcÒ´±J}6^ÊyÊl2îI‰æ t:¿¹¢ß¤©î×wp ƒ{¥«qnÀ­À%×;/y ]õBa U»¾éö,m]gp-°wèûy˜OkÒœc›LH$aˆÐ霻¿V‡B÷š-ñGá¦qÐu5›|‡þrÀIdÕ¹¯]¥‰D z%ÈÕ›¼4¾Gn¬}dQ³Ê͇ ›gW¾ÜÌòØ»÷ ö7„›j »FU_aJŠY!‘‚X£á„=;J3¼§„@è_ﮬ3lX¸ñ—O8CÏíÙÖDºvâ‹ ¸GŽÛˆ‚R¾½û'4×HÁªL_Žãá©Ï%@­ŽO ôÑÝ“Ëô(\÷Ù-Búæ4•ƒ®=8wèÔ‚†íDA±é‡îªÿ+­0òì{PTç‡ ÑŽ1ñÒh¼tR¶66jgÌ4Ç&^šØ“h;MâôbššNÛ™Ž8?\ñde÷°Ö5€¢ÆMѬˆrUÑ  ¯Ü4Ä •A45‚8N*ƒfÊrÝ–å,·ìžó{þq‡³Ã{ö¼Ïžï¼ïûÍûñßÁ0¥ýõbàqаwÎF9!•ýú Ф\„6œö¤òÚd>&°b‚ËM!Þy ÙÝNj½„_2m28á?ždÌ–*¡î/ô‘ ^Ï8ÇÉk( oÐÛQ¢\„!ð÷´ð¼O:ð·Êò8ÃS°trV£àûö#„x^*³;V¯:šÿP7ÞrÖi˜H³ BÛÆŒ•=žÚÒί¨„Aá`¢CûÄtŠÐýÆÂÇÆBlÍÞÜïCžDX¦2Ö㌧ƥ!N‚|‡ò¨Ç»;¨-ƒÜó©-Ápæ,B†D„¿V·¿¬¢ûÀþz¡„4þAr[d\QäÁLb<7.{`¦û¾=ü«ãJ˜¢žÏm2æ2g2$"¥ël™˜,¡ûDã]aó^[nCÿŽ—›¢[ÂhDX<8,[R›è¾.œ­ú̯ýJxÞUŸL|™³ú<ü¡õÕÈ¢ûHZްcaHt¿ÝÕʨSàÁ}!HöøÈÐ}Ý9ºôgóGÛ»x£\uˆb$“!C"›/­tcÂEèd=3\ئIp¡; ˜ÞEˆ=/ˆŒßZnT(òÕú–çñ¼#$äûáø•+Ÿ°ÿ;é¯À3öožËæ¿§ûCp^‘0r °u3‰ˆÈë̓%0Üó†¸|$çQ~Ç*÷¤ð!!ß·}Ñ6Öwñ`雿.5 ч"ìo i™PBšÜ׺™‹øºÚµ3 ÈñŽeãÛ@bí× —U£Ñ¬%dÈDè³à‡mY{âTаÿ\ŽqT¡)©»÷7ÂêÒ„…Fd{GLvaÌùŠæëz_h`!!ž!BŸ—.šìûâ+sçX¡‹›¹b›£ ƒòÏö­™Ð€.VG‹ °Z¼&&ûÍÍ·Ç÷¨¾.|âr²ÌÌY„x4¡Ë¶‚x[föå(×C ÷T1S%áP­7ŤJJ¨>‘lW³F1ÍBzuÝ̾@¡n&=|wVGeêœ&Êd=¤h‹w…$­D§§úD>Np±ûĦB(BuÕÍØr/º}ˆ ‰Í¿WÒM…1EB«¼/"5l*ìÂõž÷#|Y†ŠÐû©)¶,4ÖßwûGdûV‡7ªf²¿Ü!AŠÚà­A¡üÙ”Ùùõsæ1ËBª†HaÞŒîPµ»G¨-´ÁX’[¾=ÎjÿIWÖäÅ1ñû¦êc°ŸÝ̓;¥ŽR6BEèíX*÷ˆ cÜí,´äe92Õ•~¸Ë»CŠôS4`; &˜ ºŒR7?eŽ!„"TՇć…ån/kn>Wp%ÀZ˜Xùï¯ÇyPL¶a9)ðˆÃãÁrÆ,gŠ!„"T·ò…}š‚êšÖj™†:„$¥[9'!¨(¥åQalr– {lÙTæB(B•q1Wh²GÑlßëÅÜ٠ij¿¾³ý3ªO öaD©¹À볘d¡ÕÆîðtA…úŒ4 ›08¼ù‹A#ØNENiëÇ"4¿ú ßͤPÌd’!„"TÿðèýVaÚvóM Ð/*Î]¸dÙÔ6…´ÂÏÏÇgÖÏŸfª!„"T÷¯ ¹uŸT¯Õ4ÔŸKÒ1Œƒ· ¡ÕÞYˆ¶h\…Ü”¢çQ¤2¤QL6„P„êë,ÿÔŠQÌT„P„ê!8s›®K›ý)…€nsRàÕÑLU„P„ªZ!L’ÅÛÂ3•[´”°HnѤ˜RKeª"„"T–l«x[ZrKKÿÎæ¿¸Ó¸Ýãé×^š=–‹ŠPEýWÄA¤RàçÚ¹- ξ ØRÑnnpÌ,bÆ"„"TU?Ee ºÜjg(÷æJ= Wrã^7¸yÞZî×|ݞʼõöÎ?&ÊûŽã×ÄmÉ\Úlº®?–þXMÖýÑšló—.m²µq«K·®‰m¶lé?K–î–÷ãsrîŽÇ!xŒ_ŠQ<á«ÀáäÇ "Šhùá‰AÐ"èl%jHöœ®?xŽ;xžãxîýúãî9Ÿo¸Ï‹ïóýü „"Ô ­² ¾ÆÄØ9-tT€ËÔÛ¼ÿû+k^`ä"„"Ô ã¹%²maì$‘:UÐkóÆáÞgä"„"ÔÓ3·…øOLÕÒlóåʧÍÿˆôÝç¿¡5³-”w_³ÜŠ%×Poó¦ /½ñ#!á2dê“É[ÃãyoùdÛÂë‡vÄÌ’¤¡Ô½‹f›'SùÀ&F0B(ÂeFÜæJçÙ„Eg‹|[XÙ€ !F–%7ˆ§ çMÿ¡mznåÓ«Ç¡—Ëa`½ÉŸjwÚ ­¿'ßN_’m ‹âbãÙðvéïƒøjS,„“À«RAE¸8’-Jfó5_a_uYºÛ7g©)§i[L¨°AR¡á"µ¶€rŠz3V3’B.ƒí`)X!|ÍÕK6ˆe–€lÍž9ÂiåÃ1¡ÂÉè¤ÖTi?zJ¯×ýîW«9¤‚Š0ŠÙmGJƒ0“&PïüÙŒó§3T(vÄB}FÓ8‹)Î~àIžBF-Ç“p¬Q J’f IDATD‚e¶Ÿ?Xå”×Ù·ÇJ1…~×Zm|Ör,©›Š0JéOAW­0 ™"zf‹Ãíš9 E›§bcµêìÒk á”ÿå™Ç×nd`#„"Œ2,‰ˆ¿*ÌJÄ Eý†™*4×ׯBæL:`ÍsPk ä&`d¡=!a´ÕÉÁÚ!!cŽà­=k–eΔi?sÆr 0]š¢Ó¶-¼˜ç»"}=yS*¡£G|Á<(4Ú‘êÍÝ'ŽA–9ãÕ~+ÒÚÓÒ&pW¸¾d€#„"ŒRa« *BÁ‡â9Þ?)o¿f÷×~zÑ^y´Ù"8aÃclËME$Â܃B“sjm<5qfAÆ2k´¾lÓåwXM±ŽÞh×ëuº?lzqŽŠpi™ƒ!D("/Œ«œH–="u j ²(ÌÀs t„P„KІP&PÞQcSŽ,sÆvi2ÖÏc8t>[8Ÿxì]þ¯ëOí¡—Š¸BаVK˜— ÈœA~ƒæ‘ö2 …¶ˆM¡¿¾ðù~ôÅáî“õ"5jù¸ðø(;r+I«<ÀH(BŠP%jìA1¹m˜PGJdÛBS¥¶°é?ä${e82Ry\¯Ó=ºþm¶ç&!E¨<^ˆ=³zðêò•-ƒH“¹Ð~sh›v—öŒ®¶SÔ˜b43y†P„¡òø`êœm(o>R?ȳì¾)¯¨HîÖìn»Oâ›™Cª[³èñ½¿ËèH(BŠPI[ Þ 8'ÌMƒ]•vÙ.ä#í‡5º¶ŸöÚë¥~:L!º¤××{uÍJHBR„ šÐ7ÏÜf™¬ÚN-®¥N¦B1?»±U“†E€‘&T6yÆ <ÅI(BŠPIRí@]gí—ô&Hÿ®ŒSóG' #ÞÏòîÐàê¶ÕwQ„Êr­)/N¯×½ðÖÓ?dœ$!E¨ÐiV–˜¯çôfg:%)•ªý‘ÁóÕ_³³´4ùÁᡵ~R«9¤Dqª¥ß˜õ ”„"¤âvÞ×&WuDr9küý×l}ÕO(lOþF×­>‚.ºßò!í¥d¹}nºuPú¶?»‘'†„"¤¡µ¢7!'Ç—Ù¡Ùç¥aQæî‡“Í…"ć6E/ý‘Õþ¦4nˆ¿ÿ &¡)Âe—Eâîo,Ûè(’&4™Fš‘êï)PÜüÕ¥,S%Fü™“P„á2ãÈiˆY³€*·ú;°µÜÕâmOس—îR˜ ‡¥×~°Ž} EH.Æë`mÖãô|òƒ$ÒŠ)-ÞyEnÒ\ªÐ&‚;CBR„Ëå¸,öS/Üÿno®“‘{Bµ8Ú¿Kz}Ïøý_|‡•P„$zÈ…shn ÿÅÞ§Ü…†<íõ"½ëóAg©ÈÝd`-*¡IôO`Ëp4eÉù"þ‹vM.‹Þã:p˜ÒR…SŸ§:ôzݪWžûùoX EH–œ8Ñ8Ž÷¥ ÑÿìðjB€ Ù‚öÖe[ ä›>Em©Æ¨ xƒ•P„dÉé@¼•¸üðãÕ9V¹ ‹Ë§µ¶0;;ý} ™Gh,µpTû¦¥áÊïýõ×O0ÀŠ,ÙØžËP÷Õ›Žx+Í1àÂ6÷›Gc©Ë´´È/3ÀŠ,…áäŒ>(ª‡ý›ï›ÊM7iß…Õ.±’ªR™öª®ÁýšuL&%!Y  O„C"âf¾µû^¡¨}îp<Ì"½ÆãBµÏ ¥ßŸ·h EH"Ž ÞðD($a40ÕæÐé–~qKƒë4*N²ÀPÝdÒŽû„´3Ô­þGÜŠDá³ ÖŒ$¸0>ïœÖÖiÚ&ÝWW³ƒ¾R8Àø.¡Iİ¢:LÚ¬b°¦%Ð…†ËÇ-;.Üköeì¸BU©ËÀö.cŽ?l¼ö6“I EH"€¹aŠÐŒOƒ_fç,.Lδ՛{ªÙ“›©*ÕÙ: ½XŒxi/¡‰êä#3<6B =–·fs  ¾ZmÍlú|{å$°EhgX•Œëþðñ?öÎ5¦­ó À¨û3µJ"-kTmÕÖ%š¶¦í¶k¢Uë´IUI+­š¦¥ÒÖ©›*MÓþØzÉÀØØÆ‰ ;@BHáZÀ ÁÜe.æ†Ülj 2vHÀ ¹ R¡î\Lø`H‚Ï÷ùÏbô;ïs¾ï{ß÷Û¹ÿ§!>bÀ½1–ƒaÝ7cÛ/ÔÝm‘àY¾²…ŠéÓèªpã¿Eþ¸üìú`Eˆ„èߘÝPµ‘÷[ðç‘ê'üR»om¤âͽߠ«ÂO’YùTÙ³Ã0‚"DÂ@è 6$ÂhÞà[ÆväÕÚk\cóÒZ#5Sgqä.¢ 9X$¥²u“~Ÿ`6)‚"D6ŸT=X7´E¨ûÆßu¤²4¨›ÒØ+©;çiK&‡eÀŠ ®Tƒf;N¾|Ã1‚"D6wϸBÞs¦Xqõæ&¬^I¹p²PGœBCqÅéÇ ÔË›ðÉ_ð{Dl"ܳKŸ—Q]™;ŠÖ àÜ@%¡':Ÿû­ýMÁg6AQ…¤óM¥f¹dpþ®×H¹¢L ÄA2°lÛù*ÆeD4"üþ®§E*àȪõEè„üÊw9ÆæÂ’¬:É}úAw²kí9š? ^vîÈí™±,¾1_—™u®D ºÓtÐhÊôÙŠSÑA‚ K¡(_w‡PÖ}ÿ³6z/mU±ý¬MZŸ¿ÊÑßõ\FMqF9ùŒõ2¾üìŸØÃaà9®æ6sá`’'âŒf/zˆL µ­#˜yo¥zÌÚ êã%UT‘ÂŒQÓ†K¤f“öP/‘ðÞî0B#"áS¾ë+sÔÒ™ÕL9ß´èG!ñňr Ö©!L|Ù.ڪ鬒 jª*¥”HªêrÆqÅ1-äÈçd˜Ùþ9žZˆH„ )ö‰CL·ªQz±,ÁÔjÁ"D)ÁʃW/¾0ºû@^ ‰î´b)ÝËÅ9&yæp6 ŠÃ4w¨Ÿ{þø_ŒÔˆ¸DøŒ›ãÇuLXTºqÕ ¸dLkÏ +hÛ¬¿ämîj<3÷‡%—<EWãY¾œ²8D@ 53üß~L'EÄ'BŠ£^›u¶¿0‰¼”ËÝ Ï‹Á‚ î°* a}Â\“â7ó‰…c"[òÌYIÝQ35Æ|s&ÏpÉ­Qê§`×§±1ŠpÍK³µ%Å G” ídóà•Z€ñÍž¯e÷ÅUèc®„µ ›½c0¦Ô?p>›“;Zci¤Æ¨1£ž¸&;C™ÔÌðÇÀMCDÄ"”ÝéªÌª*QB¦Œ*çŒnkËõ³(¬°QgEÎØj žoT‚z,-?È…Ê~ëð ïÔ}ómI£…›sSëÍÑ ¹ˆfâ>”î{w@ñ>FnD¼"\*œ dàe+˜fè@e…‰ùYÇêŸY° “jj [.K •dDm6 ç©…ÊÄ)‡Ùél3REE-œ%Ï92·‡$ªÔ ‰±¨PNC?}ØÉïT$FpDü"d¸]ܲÈ\5Ò›JS121¿t¹žeX±kWXÀÁõ•Á†®Ê…MˉMmóŠ_[# §8½µÔDT1”^ŒõöœÓn‰N#g†oüæWìÁHŽˆ]„Ëfˆf£™IdÒò±cÛæÐã›Í9m˜é¾›6ÍÙ-Íîs'ÏZ7)#¶{rõæ§UŽs’ï \ rÀ†’ÐL<¡"ïÿŒäˆtD¸”PãŒ÷R—òÕ±íds“}(NRm' Á†ÑæÉ—ͲÏR#Ùg€¡c\2öˆC7ƒë£¼ñÐêꔑSÃÝ~åˆDD¸œk9Kgßi¡TÄÊ\YpçÐgd¾L¶ëú5×°è!ž‡1¦Ð™@2YZ›í6š‰§œRò‘kÕ§û_b\G¤$B™,)ÅÞ”njиIUä˭چƊ̮Khqá=”“ȲHšþ¢‹¤ªn¨õ°w è$ ž·qªÔÔ°ÒpǾžNë#_"ÞR؋餈”D¸ŠGKùµ“hqQc‰×O nÛ‹Ìõ- ™X«u\ ä©xe¯³–ÚäÖÅw¡—xÃM~¯“ñéµOb€G¤(ÂöØÜŽÁÒ8€©ºÞ^¦Åݼá™"ˆdœzgßo_ÇHHO„ψj550+nLêÅB_n œ‘1–ª È7Y6Ü-4 úC/eQ‚91’MgÑI|íÒ=Ù²ÈG­_b¨G$,Bêˆ si¢ÖÚN¸Æ}“Xp!äEÒz3Ë"©²?­gCÿ¼î‡:h1ÓÔÝI+¿dÜs ­Ä)eý†YDÄ¿¾ù.&”"’á2ì¥q~&N&à DÒ“ž@°”ºmþuk4ÐJ„.¨Žò»ÊŽSÃÔ¡ y§‰ü~D®m˜SŠH[„$§ýsc1è´=ùˆ^¡M0 \™Æ¦d~¬‘%“TSê }X…”¡Dh† a%Ìž7ÏÔúQD¼sÇ×FuêØ¿ãßo½¡‘¶Wn-…×"?ŠGˆ‹¤Ι`BÑxýÚ½gzAʃQÐ/ÐÑÊNª]˜?Ã3~-Àn*€ýãm¬¯@¶„é ÄNwŽ’¯Ñg Z¦ªÌ¶Ç¸ƒ( t²nzRì¿? ù!E8ÝBªƒ™Î‘y eÈ#Ió6*‹&Eð*Ù" p3P×(É'¢s Ð@ÂÁßÔ¦e™žpzXYz@R„Õ`ê8U½Ö*:ÆŠ>â›ö<"AF²ßG¾¿U€"Ü "\âbo_Y㔚 EƒLhê,ëŠE €^懠¦¤Wo-‚ÂJ„&(ôjðpºQ­´£ˆ„ð|L¢xeÑ0‰E¸EDàðú£ô…œ‰¶µÎ&TfÏM ó¡<” Mð[£óÌžá˜6¦r;“òÌH¹ÉÙ.“EDîxó'ÛÑ (­#Âe9Õfc43ñ2‹tlÙÆo½Á£¼àÓíA}®Üûôw2 0„sõÐ%–Ñ:™ÝP_ñEÔÿ˜Éãc2°üáÇèCáÖ!½@2?}¤:­}é?aH(lµÌ¥ •xâTe†ž-•ÔèÐý¾ !Â4HM.”j:½”ª—J…°PTWÄÄ€Wþ„n@n5.ç^ÃR D#ñ81ô°–UhŒÖërù¼­-Âp‹j¨)÷¬ÉЉ@Úˆ¼ƒ²W±ÿ‘ïþ"ÜŠ"$¹}Ãfíÿ– Mr¹?Z3ã÷ÙŠ±â‚kv¸Ô,24´M˜ oMZ!ñøÆØ3¬Sθ›²QE ü¶í¥"ݯ¡)P„[N„+¸½Ô ³¡Ý$‰!A¬ÙmÔSfñŽ÷ Ý 0ßñ¤8 =Ä;í÷:Ý£äëßðáè áV¡ìªe›£V‰rº$ßcÄ–m\O Yv +ÙExôbþlæÏTwÓÝƒ|ˆñ>Û÷×Ð(Â-)ÂI)‡™‹«ú¶)GJŠ«‰anuíêTÒü&ö>£„Mì£=Û•~Îà“3ÛU±X\!¾ö^£öLÈïà‡tè{Í"Üš"|¶V:Iµl£Â²ƒ‰[‡°e\Êt¬¬1L~¤Á‚Y…ðkŸ;ùÄUš6}U$¢œýÎÿ³wæAQ\y­l¥Ê”×x&Q¯D1É&ºåf—]tk6Q1&î‘Äü‘²6©Z›ú±ŽÜr 3ã  ¬Ã1 q0 PƒT‘ctÄBPÎÂ*P”Û¯{ÆlŒ./Ó¿ïtWuiMw¿ßûôû½ßÁ$‹\V" „¢!¯µå–ãÜÙ-ÂDéP|ot ÒêÇWÒGŸ ÌÓ„"¹ Ʈ÷ ˺â*Cô(}%KØp÷Ú=K!B‘ºàD ?3wðÓun >;ÕV)þW•T›?ƒ7{ÀOmwðÎPhÙo­D44ŠYÎ}˜48lBˆ QVÝ«7Ê{®q…½Ýê‚«k~Ð<‚Øz6ŽŽ·µ«ÐÄéZ‹ä¤˜uøe»¼á¢Ì\’]Á0ç¼3ʲÐÞ(Qk\µ×#‘|4Óå­)!j„ ¶¸ŽFdÖ3óš”¶V“ÒÄ¡ ûa¥‰j³=ß7Y KO(s` EjfßÊvvFœ·í£Y‹*B¿¸×]ר×ú’Œ|·Èó^q…F,a:áyƒžB%ºA£4ÚmÊg¿\Îÿ Ú=:h°€¦cì‹ù¡‚ D …™†XW.A ÝH¯ Ϋ0ÔUH…2Ûm$ï)ãÝøÐ€VnpeUbcCztåŸÄ|†‘Lßü܆5!j¤n•å RÂTÆÒú®7ÝbÀˆ¥cœ—ÐÂ0TŸ?l·7íoõ/İkCUaù=´2št à92EþÃiç.„ ‚5Bí fþ¤˜Ÿ§Oxf×#Æ&F *A/i¢·}oº™NpEÙ Ès/ZE^ ”ær ˜‰$D¢¿3l=õÖ(HÓÌÈj/iç_!jãšìø¾£ ÿVt±£© ‹>µ(4‡N3Éé‡o „¨jÊu™ÜW#åàëq-¿¨yöt±¤G•B5ºAZsÓ®÷g»ËÃ8Ø3‰úâ–(´/º”ο°S攕k_Å’4B” îæY3ò}ûfO+³Ú;Q†~>ÊíÝ]Ï7® ŽÈìG»¢i_¤Ò´šŒfßÍV2w~2Ùƒ DÕþÈáæ ÞÕ©í ɸ°øù$çöaß§'ÔpašP'CH+¬ô·ï[2d”Ü&åÂѪ(äa¾wE{Ü$çmH!êa2Ú2òÏ!ÔžtËÐ=3U(±BTmvó•j¥…s•2ÊšöEGÆÏÈb•Æ=ˆ|><9¯§ ‹•R¥ýœëZξRœmÉÜ·_›xB¢¦›´ÖÜñdÜcÄϤûø ¦æ] ý;3â|¸f ´# uÜPDöCÂØ´’L²»ŸŸ‡”B¢ÆÓr.…e'Ć1$ß"²+°«‰]¶ú#î~ÂIhŠ© &•ž¸˜,ž•akQqO Vz:/HŸÙÜš…E•²t×"úØã,8`? !ê‘tÕ˜Z‹°û) •]2á4ד‹ìaæ{£È¼T:´#út%!ô ;Ù::;®E\!Q'awŸån“Ƥ<˃-fdÞ¸Ú›Û«ŒŸ‘ÞÓʬ‘ ¥Êx®Ï>««áÚM:@âαCóW줻s®ÓÄM ܸ\Ût‡)e<´V™,äׇyªì2„Þx2[’†`7©¨hXÕ¶´qønL#H5Å&ói4'št:¥ù9Ƴã“pÞÎY¸yHg¯p!¯&¿G^‰•2Š%&§Iã'ºÌÇÞ,S“f(ÍS6‹ò‘ Z3M¤Z´j 5­¨!…àðò‹×èow¼ôOrœÏÍ-öÕÔêNvã@¥*ž¦Sm­½|< ´º Ób8Œð«]A e]qU§Ä÷ ¯¦1âz Tº´ßl*LJ%q5ü\w´íL+rß3ô†Ázy¹èËž{Zç)0$€Bu*ª¿mgÉR€eöê+çÌp{ò‡©ëÆ\üÀ»“²G8þÏݽ‡,ÒWhâÏ.+®jÀJ•ÚûM|ÉÉÓR¾|i¶zIÈêŽNá! ÃÀóé-Ýb~4‘u¶ª‹Ôª+å£in¶ìÅÔCêTî%…"Æ>Aø.€#öÀ†1ÿü '„6MYóÕ{äH²õdÒuo¸…•2…©4|ùRi?bКZaINºßo¯E^Â'òŽIÍœ!ƒÆ#­Q}éšUQþŒ‚ðK>—’8 c\À›aê :AhÓº¿mp$-F dFò¦`Ò.MºšÓ©nLkÊbH8N~¾·°(EäžÀSUqÂåØ@ÖU†ÎdV9%Õ¡ü#ñÕÑwé;\,Nªì’ƒ/Ê`Î4ëùB€¿Žº8C Hè¡M_8:;¬‘H˜#¾25ŽU:•kþ}5UbŸékÊÛRá¥aPx#hFåZ”ë²U± 7.œ¦10¶©É'ÜúȤ^%FL¼@N vÞ÷ŒJ$/¸ŽŽÕ$m;¶lw]ðò§´ƒÐ¦O~!a˜³zÊ‚c–2¸“,WTôòs]i]Õ÷âÝË)ÊNõ†ahÄ…“˜†2BÖ¤Õq‹E¿¬Rƒ œÈ-Â…¶óõ¿|àâ+ü'Ø›Ó ”Hv­#?uÞ2váAzf›zŠÏìÇÁK“öGÖgq'·8w`x|o¾A¬|wKz|À8›†©F¬aÇ«³‚xI ¢“Ý9å+ÈNk5¢A8Aú àmÛù*€Í£.ºŽ0ËW6þL@hãáúm;GFÓìÓ™Ì8†)SÑ5¾côŽ5\Bœ!“Ñú`aÊ4=ºzÜ1,‘‚¯^ç>Ja*v5¯<‰f„ |z-p²/xÔÅ?±¦ø»-Óg|æ*X¼Hð?X¿õ}LïûJ_žû9i5Âþ(à|¥fÜj§Ë]šb,.(¹ÁEÓBHE’ÜØ!>ú—eWêI—‹ÙO:¬Y„Ñý%'=ç~u-‹Ä||á“j!À6Ûù sF^[1õþůÙ÷µÐ¿_4UÐv§Pw£³]/'KÄ2vùQL^çÙÿ²wþAMÞwO«w›?fçPÏ¿ùx7 IDATÕm¶=ÛÞézW{×UëìüÕëzî<­nîô¬ëÖm„û„?xeÂ/׬Ûœþ7 û –?¢ßqÉ"|X½oˆDâ®=Ò3ÔÓqŸótë~zykœy8jó²eÐ@©º¡)Eh´I¡ÕޱÈ鉎z™"‘ªY:i<+0lmžèÊZ¯0kf4Å'Ñ ÂÉ;ï}€ù„/¥¦µ¾MŽeÓÜ¥ªA‘æai‡×rVHkV¡C!gašé‚ šÐ’AÀX•w$ÅL¬µ;p¿Â£" .ª$øÀ1iv;‡£ …@øD­˜˜,ós¶×ýhÀÏxB†ûï}dE/à« ±Á^¼&Û‰¢‡Ó¹þ:*§R*4¿à¡±Ö ¡¤ Ó/ºû¯å”‡M¢BÈšóïµ2vu&ý˜‹€ˆ@È®µsÇ•O,b}a À_ùBÆ>ܶ`ÑRàt£Ã+öZ²9$¥ÛŸcR¡²iä¹qæö!¡˜D¾s,AC0tdó?…FYÁZlRZ!øøñàÃ2ÊÔI©z›,{AÞêÑaU—ДB |Dëv+¨ß>ñ·‹ç…N§¼ÄK2úÍ[ ßü?¾†/2¤_® ˆ\“Š®*ÈTÜLíÀ5ÖJC5VŸ/^û­ØTœ#a¼Õ ÓÕŽjň„@8Á’ü·db!ÀÚñ¿ÛðJÂÜqnÓ¯Aº#Û?•ð_’¤zŽ)뢥EOlu[F§Úî ™Fy»‘ÕO ©ÚÓÍùü¼î;2Áž(Ho†ñf}MöÝ^mkºÄBZˆ½©òq–ÀÔ« ‘ý‰>0¡•Ú2€ç™óË…ÂPTtz qùbq¿´¤Å8¥ƒÇj)×(™4¯5·ßæ¡Ïªi•[uE‹•‡QÃÏ ·ðÉ ÄŒPÿôïýy(©y~Em¾´õák;¦,£NŸ›Ú¤B( $ +É<Ùåø\yÿþ«ž èé‘[:饓i SU}y¶&4„i˜ñ*zZ%ƒš08ˆY$ǾCnn“½'Çc4$ú Ql‘=Ðd_½=Šö¯"ç} ð:‘,òÁz÷á9[·’¢¯ìÜFœLÃÅõ"ÁI/ÝDÞ——ñµ¦×¨õ=wt ÈÒ¢O7^«›_¦ñÚ~Ó𲥈­î¤­¼ÙüQ%XXª +JÈ¢|úª,””kA³Jx ½7 àý͘@l5JŒ!-Á™Á‡Å¢wá/Y=C° d2‡^|g#±_ãJü¦xˆqñè0zxä˜<Ôæ ­jÕ(¯a8j7³¦Ð@ºé+'.?Þð@X™)ÿûŸûó«LA9\ ƒˆ§$—*pq%Í „¢•³éù3÷P´c:3·¦ï „! ®»ëU¹•#”’+ßu4;¸=tªêƒd$ííLä¯ËTé.ßWÊCI‰ºüvt_{7Hœá°VîïïïÒáæ¾PzRÚ·Ôàê=‰&A(ZóÛUó§¼»þ“ñ¥Ë{qéÇKv~øÆ‹Oó~<aH+½;?ˆ]‰¤¯5ý冎´½YÄYì˜TZ¢äq.MÛё󬦡ÌåµF¯ŸXA ×7ZóxÐèÆ2„‰˜z4ýzx߈¥v¸  ð N…%ωÄbmCœR–ÙÓ|ÇÕîui ÿv*£3g´>\|—¼Ñ§ÕUsKÕÔàú¶;öKB$BF3Éê;øZ´(•F½æbG¤tëZôé©Ôjv6ãV%?MC»Y/gu”Õ=CÑæ(=N!%<‹O?d«ñÖNTÅ’&"þ%Ýs¾¿L7t ÑŒ··,ÆÛð•'ŽÈgTµ4 Í€¹¡Þ³YÔIÙ—æ›ûÕ|Äá¡&KQ®„ÕQjÔø£)£ôô„  Gà¤2÷ÚMŽ­®bçÍü“„H!£Oÿ¹hÖöc|š¤#çk]³±ˆršRéBƒO¥•Ç  !Ma.¾’á‚Ð’”H|D¥¯ÙZÓâÑR-á-T9g]\ÎmB$BF[þ¶tq|_vûðtj¬òBQÄuý®uД)»LúÔ^ ¥ÝíÖm 2µª(ÊÀ.h%P¥v%R7=‘iµ*³oïBB$‘èµõ«@”Ÿ˜’‡ˆ¡t ñ+²ÓM¼½º*ÞåÐÜjÜÇžC# ªwWs:™Víá‚ÿ¹w—›Ôy.í|Ø£G D Db,ÄÕó%+E"ñY‰´´1ˆ:b« ¥u¼t”Ž:ËL鬦¡ôÆ€eŒ«I4©` „Vqñ Æu"ØC4q§äš…Ã)W…,²{é´¢cXÜå*é°"E^/ŸË9¡;ÆzJ´fk¿Êð‡Û5F+ e‡5þ›)ÜûÔ7À.á‡-s_u€OîP"S E“mQè7E«8á÷¥ÖýŠÈ2 C -¿vÄŽpÄ Q½Z¤AÏi~ÁP9Ô£fmQ OòZ‡¹õ‰ëa \zA¡Û@†J£5fJƒJ²£i™.ONMñuBBÁjǦ9d?ŸUøJT…±9ünÔž&²ºäÖi\dA^…É«ŒR•–ucC€4}ÅUîìæä€¤pAhoT~ ¡ŒjôÙmCñ{©?¯Ýüw¢q!>#_镼¡¾ˆI”òVy#YÛr×™ž<õð®*T¤±Ó0]a¶qbÛûf† B8£ÕP÷]´õ˜û; ÉÝ£·—Ìtuv!" ˆ›ßüå4üø*>*Èe¸ï ‚Rd «Rõµ|ò”koq±‡ Á`Š< •òð¶#Ä0 $ód#Ƶ"—Ì®&rô¹Kê´šl?vLyPhZ³~Õìøñ  ¤û‹"«“UN‡61 ŽŽóÜäKðP9f`Ýôž4,Sx Œc¾ž|/¾jÝî¡1ôeQ£1¥iô!¡°4oÑNøP$‹ë¥¥ýhïÃHêø°=…H.Mñ6žTV²=‰ ì4”ŸÿÆù™ÇÒ Ô+Ì!{4ñ?½*ƒöX)«»ÙÖc® Ò·lÌ·“G?¨eG D ä¹2ç­t6M=1(‹ïcÈBŒˆº|•ÔIP¾R~´h­UÅía‡!ìwitîg~|1.qôš¿Õ¥¥2€/ìãèx\)±BÕ¡«Ù-ûôÁt€DÒu*.=Hò´œ>wï@üÇËK·ŽS|iÚC Î,,¾ Á)"jvѾRƒ“/«ëè5•v2&ß8ÓSýöÎ?¦éôŽãUï–‹žwY÷Æ<“;­àXwɃasÃê&D ‡¥ Øë¶…„¬gÓàÚÃ%íS„¹ßÞ6 $M¾«£ bÐV+n 8oHRš,kè ‡…Í„YEPGÒžvÈ(}‡Î×H‰q ’{V'5˜«ûr›ÍÜÇ™[ºŠÏrïãÞ;!D( ^Û¸f ]öý‘töôšKÔ*¢ôŸáV6k|P7Éÿa·±†aËmy Âá){¨ûg³Rò$F,Î éOE˜JèO¾:Eˆ ûÁùâmqh2‹RåDâñ5ž²Ü¾,õvEÉ#+D „w¶¬ÛÅVvÁE>}ŠÇZê.à<ïˆbŠ{âK¿ ŒÅîj—^À†¤¸Àáá}¿Çi×W·d¤gÚƒÇ$RsF„¤×Ác¡Ë€Çû[u‹¦dWp°9Iû¹­úØUg4Dòœw×½¹v]ߤÏwËÞYïgCˆ‘âË‹îÜÃ)² _®ôq§¹<™ïQ3ën£à 8cQÒy249á^‹„2%˜¡†çI‰4ñ,ô¦aŒîöŒ–šîÓÀÌß´"„…Áòµþr]OÒÇÚÁëä£g ªÈTý§Cư¶Òßw4ð¿º5a®4bÁrÂUƒ!Ðþ…Dv8¸”k›«Y­R× cE„£¥Õm¹ÍyÅ ûˆ  ‡%Û¿óÍýtý2…H´ÜQ)PUdPå6qe6IŸ@šJ[ódl¨Ð[ Öy^pߨ%!Rc†XÜGßèsœ0ÔóÁ"«>|‹»àÂNRµý°T„6‡½í6c*Ý’û"K©®»ïÑ1ÛÛá:œÈ†ÒØÊÁòù4 ÕjYÆ•}‰Èì… Bˆ„tsÈj‡¢Ñør€Æè[±]ã*¨*"‡\‘öŽ”Y½&ÇÄûèž\^÷¨"5`ªTÑd‰™{åÐjdƒá™&Ø"„AXØ·élyŸF«ž£ã4m!«H“éoÓ+ÊB ì5å$ŽL•¥±¦gnø…×˳á"ˆ"aæÀ–¾G—]4^ °0ÝQu­² wÝÐÚ˜xJšÖï‹4C:þ÷Ñz«s“¦J‰¼>QÝž±@„!xqùeE)!é,‡çÔY‘2 oªÔßVj'DRfÂÅNCf›6AP‡iI®Žù6Òˆ"áå_{_ý9[·Òð̶†çFœhª +Ý'üu¶bçXƒa¼+ðæPk¬é™Â!1!D^pv}°õ/ìÔ6¢É—ÎÕÀaã³û†{yœ’ÜnåÿÈáus_°Í¡,¯Y}ì:LB„à…çŸ+w¾¾Z$Šº+%é(+ŒL_ì4ÂÎðŒk@=ml¤Ã¤rHÒõ%¦xø"„X°CB¶‹¢¢n&ÈG«`­0r§y:UZ%ˆH:ÔÚfÒVJÒ.¹qiD³b›@\ñ'BÞZL㵺¬¢ ÇӄɅ݆’< iâB‘S§³ÞÏpdž9$$µà‹êtÒ@„!xáYüÊ/ÞeëË4rý—íI£¥åÃp¤JþÿÖT®«TùÃ^O§E$W*­8’áÅô D>l·mØð6]÷ÓàÕ¦ªluÉÐW¨ôï¤RµÂØ-]7Ï•JNÔ¸ïC‡!Dø!Ä-ïeÀ§4|U°¸}\gý ö mW©×à»/~„k+-/ä|-œr1ÆJƒép:„!BÀ£”é'k_ý;# ØiÿaóLJ0ÊTiùîÈò[²tãr¶ü†F³ÐÀ>‘×U2¿=sª´Ùr†¥J£Í®j¡] ŸUÞšcI*žÅöP^vÂÑáɇó BˆðóáÛ³f1]VÓp6ÎFòO8¼PÜ33îÀW›·;zÜ «ÑŽÎb{HõqtÖx¨"„?Y¶e3{_y%‹ìî›~›5ý­•Ü\žZ˜Ñ<«¼½Å’”: ’ô+Í•î´Ó@„!à+{cÿ.¶~ƒF´ZáG:=7 ºY‘ÜЩ9|Ñ—*}œh¶ ðÜZ¯»Ê^¤˜Óšû®yáCˆ"üÝ!®ûöXÎô=Òi?mp`äbÖLù&ï´}fAšÀé1\®H‘Yµ—R^} ˆð–wÞo=k«Ù@cš……ø†Ò‹ý]0ZÕÚØÿ±w60M¦ww—3K.›¹;ÍÅœs~eñN»©û8oÙv›Ó›—Üô¢;ïoÉrÙ-[ù¿V(--•b9ºB) ì:Qˇ”:-¤•/)_rÈÑjí…5–è¡C¶çé*Ÿo±oýÿòißòjÞÿ/ÏÿùÿŸÇ#‚ÁÐðŠ»'’­-¬Ò¥Ÿ/Ô9+:Q„Šá.ë~³íýíd<ÀÐÒP?Ä8PˆsóEs‘»ªÄÓQ/TZ¡è‡nÙZ…ùñÀný°c$)C"(B„Ëì[ú^¯HNÒ:Ó†{ß óæEàIªÛÒ/„j¼ï¬H‰d·|’Œ´}å× !‚"D¸ÌÖ¾øÓK–„·ˆêKqÓ¹6+Õ—{ÖÔø¡ö˲Ƨeıò¡H+¿bÎmHB"(B„Ó¬þý+¼7ˆÄfÏöc7P{3óÃ4"ÏWxR¥‘mé!t®Ó4¾í­ë±³ê>àIc†[m![Pƒ1Eˆ<П–|ç·/À[Dˆç4 z7äDõÍŽÞ3#¬VZBùx£Øþ^=ñ!»ù!È®G–ÔUö+P„(Bá*kvÒ~‹ky𣗖„‡ç€FŽ“ÃY·í&“Co¾0°Ê”—IŒ¥óôrvë‡ ¨ÝÉ®æR!ŠA8ËÊÍŸÒá‰i»HÈ·Ä%ªûÑ|3và_Ô§ºä‹ãµr]c'ŠEˆ Üåí÷,#ÃòÞ§1_˜qú0šo*Žqw•Çq¢w­þV ޵U2Œ%áJ9x™\/¶,½ePZ[y,…()··®¹„"D"wyù³Ð=jÖü€G{ñmU‘­gÑ€q¹³¯6Í}ÙSVš^U­¬™Ì€Þ–‚¨8—™ÄÇòþˆPàdwM½ªxÆSI~ʨÒlÖYÕ¦|iªp„SS|òQ„2Oß]ñ ß!a-‹„ÿ/Õ…ChÁ)¸½…”©V}iDDæŒ2ž ¥SGvÑHuÕã‰ä欷›Þ1eiQt¤e¸ËÉ8bQ„(Bá.Ë>ùÓª•dÜAÂÚUZHiêî¢ýe¥¾ü®ˆ 4õ1S0Á‡^ÇEi³+¹X ¼Ó®)÷kqÏXu*Öª­J[ÅŠEˆ fÍŸwüm37“°–GP4ÜU‰&¤üwÌRkí¼&€ë½Ì4LÇ 8$»"Hgf¸áÔ9–ãòä™DˆQ(B!‚p™ÏV|“Ž/’¸¦ ¸ànuá>¦áá… ­ñª «K>Xnð‰a\ ¦ô`Ô}ÌLdgòç­©!Bt!–¡Q„Âe–oÙô«5d ó…x£¤õ«èç׃ 1˜}ÙP­7Ø«+½?§€6ôö­vñ 2›™ÛSˆÓÊ­µÎÆ XCÄEˆ Ï-›ön ã ×rˆŽêuÎÎçO„W¡Ý·J&™°¶°@M¾_ă®4Ä_ ‰ŒßYÝ—=¯+"³}Ä6ÁåÃîÉ „™›ôN{_Y…Mé–牢X«ÖUÞMB¢„Ãløùî¥!ã×ìT–úškÍoƒ¯Nß—4©Ï 1à]©<Þ—¼Ê]vÁýìyDÈØA=ëûË=B d†šö4•Ñõô¦ˆøœ¢dX¹5ìÕèÈІ‹~³éL¨ˆ0 ŽûšÄîýî*\÷I!jzéÿšÚZâ¡#ÜÛŽWø×’¥ )ÎçAÆÀƒîù.4vÓ ¼R0( DˆbALJa¥¡Eˆ"D³ý'ëHÇWI\k FçM®w"Æ@­ÏMÐâÍ‘J!“ñ×ÏŒN{à oªô(ñ§KœÝœ¡er=t.òa”í;o›Œ*û©ø@„²ŒwkBö“(B!‚p—]‡~·þ·’°F§LçÆ+£¹>#dÆy ¶1Ùú<ˆ·Ì8#|”F:;ôäJ'¸"BœžßƒL!dzᡆšãÕùR^ BäkÚíªd[£C"D"gÙ¹ÛZÚxñ1 kUžÆ snWצ„Äq™˜|Õ1Ó×g$zÂÙ#o¹á9ÏÂ2¨Vé³¢‚Y„ƒþºØ9Éåó÷.wzÓu9jm@‹ˆÀ“æG¶]×!ŠA‚—>[ëi¼x @D§†QJçíó«%ÔUÆ<ØZͬ/Tçkˆ±6©“x`b!B&úžô£Æ.ºÌ*ûuM@BQbjÇUjÄ¡Q„ÂU~½wýîdÜM¢š…ÈáZò€åZp‹ð HZ7ëK°=ôS:Äc}¡£ý¦®4MÚ½ÚÑd´M€Œ™&¨_0÷v[Š SZâ@˜©2XeMñ©C"HP²üà¶¥ô”`º{›ÕÓ…§´Ý Òe¤þ­F§3 Õïä°Ô{³Ã¥q ʳ—$\ š]Ú,“ý‘s % þÙe]FUZ•†˜yš*»JéÌ>“„"D"7Y·õ­¥ôÄ‹þÝÛë+‚Ì„=“ÍS±È<ÓÚÇär¤ÿ¬ÛŒ Q¡ 2X‰0®<½Ž;Y µî‚ ȱò«®È2qEˆ"Dn²ýõ¿n¥ãHHsÐEDU­álpˆ06’gÂàå';Ø¢ÙÙ#—‚$ÚÓyxÛÚj˜x–‡(g%Âap?ý?f¨&MÕ5ç{Ͻˆ7º&Ó¦øp¡„[üòïa{—‘q?‰hõD—TmÆg}â…nò<ÂG³׿tÉÌÍõÝ—·ÕÝ{V©Y!úÇ IDATQ-+v@Ïbnû6qB?"ŒlDž¦½8³5ýÝeøX¡„‹¼¼åõ°Íd\Mÿ£–PVf?#^ÓÎvB}Ç‚~Nô@f“·óÐ7áJZäéáM8ÆJ„jPZ†ÓUÝ$O©{¢?/êVîÀècñµ=ø<¡„˼±ïc À§¹RKÕxn‘MØ)ƒ&ËTØŽ@ùSHÞF7Ø …tWžðˆ(ïˆ\5PéX´¹ð-lD¨S@×eòýs´œ¹—¨æÜ‘”ÖYÓW¾ÏŠAB€_¬Ú¿ƒŽß#­—hÂS¬Z´Þü›qpßö¨ Ì2HLzºŸzIë ä’‚Eê³Hô½8'}"8ÀEcu|7]Ñæ ò!¾ra³¦5u…ÃòÁù*kÞÄçEˆÌÏÛŸïÚðþ3pâ¿êßm¥‹>‘ø¦"¶8ÛòöÎ=¨©+ãˆØîˆk\¡ò^D¥VP׊݂Eñµh}®«ÛíZMæÇ†˜"P$<•GAQ”‡ˆ€Ò¢<" P© µ:JÔqÕºJ…Q)ãv÷œ{’ †‡Mà÷ýƒsoîƒääœ|îïœóûý~Ž‘õ9 ¯û€(爊r? T½ìóûUe^fLš?Ýg‡.ë#e?õe–§í°ý5@»4¹i=@ŽÂO?ëˆJúdeÍOwÂJësj;ð¾X†ýAˆêB‹ig±YÊǺÐ!-š6v[+}€©ÉEõ}àûë$ fMn^Š·÷°ú|øç¾±hââw³©Ìð¢oxô½>ZM#oÍ/Õ™2 Uƒ{þDª‡… úkŸæÏxv.¯àfqÇCßr„¨.´Àü¸'“ŽÃ›h‹Õ¡s²Z3j&-=È/Þ$B ¹¿Ôï9ãº~ WqT]Ää ¤F‡¤8þwXµ³÷Ì/Eì(`´"PY/'ñk„uÉÁ²@HÔ`ô2Õ.¾“¯žà¾/U÷¢$;³<#?ÙÆÉ{ ‚Õ¹–ð@Ú\æíxÖO–c±BtUc½ì˜°é„³ô‚»þ"i,³èsO/ñyA:cg„fÈ÷ü~Î/+ó.§ÞeVÓÜ €À|qsì¹^‹ä]é]‚°Žiü:|9©~/‰àÉ›] ‹]AˆêJ+x¤\ïcè¼F¬_D‡Âø£œôô·C@”°ƒ®=9º·Ç£™7ölky)Ð])òW þ=ê%G‹£"IW&aI(Äj”ТMªß ¯ŸÍAˆ D½3b*„«úèYXuÒoäêE |3K{0°%DŒ¤ëLo{W6ú‰¾?}-ÃG$=ÅĦ¹ôÍM=³Ëá·.RóæÀ# Ö°>QŒL(B"QZ¥Y\È ™áuÒÿdÈÄ™õ'û ^¤ÌV­”ÉžÜï<¼­ümT¤x?,în.àºwÊÁR‰$Eƒû=i磟 R!‚¥U Ñœa‘›B?–ýÃ2ßf)7dÔ2Ù‚#åGûOy_CìCòÁjX„e^ÕÌñˆDÒÜ c5 ¯vvµ DB!J›d˃Ðq*–øH¥Ø„¥"¹œÒ–ƒß§ÄhœBX¡œV¥ô‚AˆÒ*9s½œ `V J¡>÷ü-×1á*@×ôÙùø:;x:,7&.˜~¡°ec –ýÊ`šè à“«n&Fc2Ks í> µ‰ªûäC“Aˆ Di•fñÎüÅB¬T;ØôgÆR4fù¤D‘$ñª<±E§-Ä!ÊIµ êðØ{9 ½¾àV¡w⑬}áÁ䔨ýÝáPuTýGÙÁ¤ðs‚AˆÒ²gþw ^mew ŒÂ:Au¬±†ô¯‘ÓüÑóè†Á]oºm_Ä­Sºi Ök„ÐŒK~^\xcdÞÃm–È4N‡äè§Ý‘,’›o]Yqø>"„(-Óµ%rr)˜cœzÔëk³“ù#ÅØi6M›$×è¦KâEhLe Ä8™ðqD’/“ÖHšÐt§Oï"Öe~BÕ1bHg´„B”Öi €_,ãL_ob… 4—•Ø÷þHÊw 5ÂéJÍpizoZñ B·€x R‘zAJUÃXˆ»SÊÏÈ÷ _{#|Ùñת2¡Aˆ Di¡xä‘7½*<ûŽÕê‰\V:МP¶úF„+Ñ ò¥³ˆçï ujÄ4þ<;Ô{_Ö;4.ªGq½+8sO¶M(D"QÚ)¾“=Ó×?öĺ@õŽ,ÖÛ1Ëkþʉ‹žžài_ŒKb™C|³@öä;!‚Õ•lÝçªÚ®¦š\þæ@h Ð}n?ç8Ú¹ÍýðìêMTÊ àCZ‹x`oýî2cà¹` p2ä3éƒW™Ž6¥óHÛ)¡©0Š£r÷ëÀ$bKu5;ç™ÊYÄH!‚Õ¹V˜¨öæLî-,^5nùêW»§Ý¡-cô)@8t¡âÿ ,8§y€þzºá <7ZzéÃÇØ@ºÞ^7luMô$mèG—oÓCòsä<juœÓçbGUIEUŒ'¢°æQÂ/™Ùe•'„BTñq‘4FÀ$EL"o8¹6§þßa Bá@Ó\E±Ž‰oP~Ñ„b„“È;?â·—ŒŽJsÁ“=…(-;ÇøëAÞ0y‹ÒÂV£‹uÑ<ý«Pº)Šs>Ñá%wN¸UÁŠ(_ÖmÞ$¯Ì¦ã4*ŸÖNó;Jìݽ_´É’³ïô½mS?\ÑõôÀ7ŸÛ… DÞ º‰ÊÄV!QoØ5ˆÄQG”Y[ŒíñÕˆé÷+á×7ÄMAX®ÍΟ¬´!õ½¾6 ˆ@iA«!åfK¾R{IÏ%[ÁrÐv7ŸGhágˆšÅV¶W›?/ÝÔ óÆè8œðÿw ~ªµ„ŸsåœÚÂWGÛöùó¬©xäÈ¥Ÿ$Wn9ÿúO^8zž?ùH[så‰k}BaŠó¹(C|’ ŸõðdÈ꥾D"e±ÈJ‹H›.}9ši¦ ô¸ÕÎËVŠåè{'‹×ä’7(‚pœ˜æ’Æ^°¡í ašLq–±¾U}Æü|ê­Hü†JÞ<ëžÂí“¶h<ÿäU­|~d×.*çØ7Yâ üãíד°…øÚ‰«§_æãbqï_¼ôÊ/¿¿ÿ…ëÏíD"SN™:8ROŸ :re.Q¡Bu>ÝJÑnª!Yí¤\ožP¿BÌÎ/މ§boQ¶¤7ÇZDרxn+iìÛ¨QËA: Bve0’?Æ3³†\F‹p9Y†Ë¦-ÉéQÂUÓn±”\R³:ƒõfËD[ÙœÄã_úì¾>–@ïœÛ™4qø•7ÿþÂ_ÅæÛúuù3ê𚾃 D¦ˆ ¢ö8‹búuºâžpuM@‚úÔ;ekšÄÆÔhÃk<½¦ lÝ”µD½#Lk˜Õò TSÇVÒØ ƒMŸH}÷ç’aüéöË꫞×F×ÐEžuo8óƒc7ê9ÅßA˜ÜºØçP)Ÿ(ÊŸ.ds#bMÓšÒƒ°Ý„##æ ¬&ZƲˆÑ7bo=¹fÆð ,ßm+iìkZÒy*–ðz¥í»–h¥ØÑ¢G³YÇ  E€;d]Y;o*²^Œ™JSñQåñ-¶\Ì“NœO’ŽÓSÇö_»ú½ËüÙjÏiÿ•ãBáp#®éåÒþ,L ñkcãn„¨Mû›nÂÌ8= çƒOõ½ ”nnmAh+M1kÁ„¶ƒ¼• T•Ð=ÆŸ¨ï^6ïA=m&X ÏšF~=Úˉ-WÒæKžÝ_9ÊÖw;|ýÅ]I‹g.ìùÙŽ­üèxøíÞ¶ãÏûv8ðÖæ>!‚0ÙM'wpn¯ºÂL.ÅÕ%V¢7ÂYÔ«eɳÞ}¢„FH~Z-%áT­¥)I÷–›Z„¶’Æ^°¡í aæøµê˜•²>cb¥{^ ҆ȴõàì€ä“ßQÄz5)ͯL¥©ø¡zŒ³¿¾püÑ}9„=§[;Õ'6ê×7E"“Ýb¢Î6GÂEnuwè1´á"ýeÖ Ì§øÌ8…ƒ°Vã[@ñÌÄ ´•4ö‚ò›—·¤Ó œA´PlÍÖÃÖ#+ñmü#æc(²¼ÁÉÉÜTÌ‹ò»sþ']ìžaÝêäýí¿‰?þÊ·”¾÷¿}n(¯&ö]:òêÀÁÝ{ui#þZÂd—A%4Rl7h+Í„{Å([æd—3iI·aNŒšH¾?1=.mÌRoFÚJúûÛV¨3wnÚRÂ`Ðw³ Tþ©øÝ2媻fšB´8BU¼ª8×4€ éùUwDÕ7ˆ—uÛ\U’ñ§J"ízbßÕ“ü¢Þß.Q(⯃ Lvu‘µIuÕDõµiÝSÙp”šÁ‚Pêì¥Øìhô¾*Y¶Þ˜—×VU÷6ÊD«ÂËËG¹3MAh+él…f¢†ê^·¤„å4Ø 4‚p‘+´¾»H¦€v×O…¾8'¹pr´2C9„Q87`X&âÜ<~ÃíÆ¿Ÿúl©¤Ñìb≾ûš²ñâ™cï"„øÒ+yP/“yrµY³³›ø„A{Já*ñ]k²…Ãæ ”æ¹ÕŸXÏ×`LBkÉ`-d²ßhtTÚÒqJubÁpÊX“ª“¿º6¦þðiœ׆Ø¿Q%^jcïØ@T¶œÍÉþ‡.²œ:ùÇSA"ïn% ½ƒÁÐ|¯<¶¡ ]˜ë4¥Ò¥ª«‘lA(Õ“Ûc B)»ÚÝþ{Å|ýÄ ´”X ‹ýÞX›±ê¶õ ¡´~–Köú+Ÿµ”M7‰bUÓq3BHAâí9£¬½h¥èÿàoÇMqõ.R_>½ç¶*øöÇ~tAˆ „a*2 ¯€Ss{aÑ8ª0·O¦õ+MÅ(»…òø›ÄüOñ«‹ˆ DÂpy_Çëð"ü¯²ÂùünØ‹'yevÓŒ<í†ÃÏÓ¶C¬ótÓþ§F"!‰yZe,” pû,ª›Â¯ú×¥³ËŒJ2°@|ydzâ·ºuóGB!$‘ƪ|¼ƒœR>/*­°µ†­3Q‘N|iá;ˆz¿¦$ÝÅg_ÚÃñß×/F"aÁKp'ÜßåÉš3´Gm*VJJ*{Xô];½ç)¶ÂÍá“ç7!„©.Ø2o ĬÑM|¹F7Q_̾¼¡Þ…¹HB!‚A€ @ „B@âU!‚A€ @ „B!‚A€ @ î€%e ÞªíËoµ† €T0y,qñŽ[«! ,–‰Ú¦ÜçWâ®ìVjBHžz%ä|ÊF8h¦ó‚RBˆ¨Dl5Íq^C@JXM[£î!9Ëq A©`LœÜ£Ôí"¢.§5!¤„N½÷S’ò‰ÚÖ„BDEÚv#Q®Ó‚RÂZ¢jm»‚¨Íi A)¡¨RÛ.%Š8­! %=¨mg¹Öte%6~! +Ân QÀiMã‹Ñ`JñÊÀ°Ðaîþt9­éÖ”Ûteá•€a¡Î< f‚ÓÚÍd!`¸h&*жæ þ·‚RB Ñ*m;Ÿh…Ó‚RBv¯1-¢ˆ¨Ùi Aðöî÷«‰3 ã8DŒ=©I!$)ò#X‘S9   b8€¿PD°¶v»/®sx‘?Ÿ$“d¨ÚeÝuÚ}îïçÕÔ´©÷ä¹f&CÀ}ÒËæV".íŸù1Šà…§í/Xzþɧ¨ýÙc^„ Ý_gú‚1o ì·Û·0½2Ýýµã"̾“¦êÁÍ’´Óü³þçϾôØÙŠ€Òß¹ WÒÒúîöùš+½àbÒü—;ƒD‰‘þoаkùRð×ýc~æ±35áמ:Ïë±­« UUl.+o*ïš´f*p^e[{tEU[kÞÇK£Îê½r.¶TyßþƒN~úØ75¢²­wh¯ý'gÚ>8§ISySRÊTàI³µGOéš­Àepk EHR„!EH‚"¤)BŠ"¤AR„!EHR„ )BŠ"¤)BP„!EHR„!(BŠ"¤)BŠ!EHR„!EŠ"¤)BŠ"EHR„!EH‚"¤)BŠ"¤AR„!EHR„ )BŠ"¤)BP„!EHR„!(BŠ"¤)BŠ!EHR„!EŠ"¤)BŠ"EHR„!EH¢£˜©Ú ¼œþh+ðPnÀزaìÐn 7d+ðÇô²­ÀÕL‘¦úÖF L`0`€¿ÆÞµr®ô¸úÚDØ1å­D_«çÒ…™¤•QTnÆ2åkÓ¶öíbF÷m^RG¯/ß—råûFWëHM^jîZµ]a·.BŸ£_­´ÖŒñW&FºäMo[Ú·Gû*BŸèÓ"ô{Àű m©ßäj©´´>õSýG~Íû°óµpú}¢àR=zñaÖ½pÒ#F=ê§/.î†ÓYØ·ç*B¯H™õ–¤sg§â®÷– ®Ö‘Ê.¹éhý$<&-xvîD¡"ô:zÞ­þKÞ—zRþúŽ´q»¾±\’~6³o/¤CEèwàߥ;¦¯#éxµ~PûÆíÛYs«uäëG¡¹õ0|‰ÅG«G‹ yÑÝ+f2X-Ö¥~ÿGoÞ–ÞXÙ·SuØÉæwàÊ'k¿ßy7¥®6¶&ÜKøŸÆVë¨KOš[‰›JïoÐÔ\NÊ…ŠÐçè·Ý‹(tr8ëý¨‘âÁæKé‘•}û†bw:K¢ß×›°´xÝ’6[/áᱦVëÈõÖ”IÛW¤çþ&íw'ƒÇ—ïuŠÐëè¿åY¼ubúzð6J×kiÌȾ}]úý}»ýœ: ŽoŒ,^ɘ†Í®Ö‘{Ö>×nTEÕç"ŸIt…ŠÐïè©îP¸Š¥Q†lìÛÅŒúF;Eèwà5iªëÉvu(¿oâ¼#½0»ZGîŽt¥µ½"õù›ts«~£Y¨ÍD¿ïN å½S©ÛÄ€Gû”)vuŠÐïÀõtÃwùOn$ äÍKó]«‹å\îÁbÒÚj¹_¥¹Öö´´î{ÞPZ‰þšÒûFòN_Ÿ+K±IÞ’~ë ¡ß«¡ß"^õ?ï ´29ü*ð“«u„†¤™ö…iÃP‰~—­äm,– 6¼n\òî¡ß¸ÑÞ}’L½®Ö¤±QïóV\º´J}w]ÞØk‹«u„®HO[ÛßKCEh#úÕGîÈñª•¼…ÆñóᇠS?h)yª½<k§ûèfüÑûIîH§×mý2,ųWë½ ýh{Ý)¸¡"4=9æ’M›Éûö {ù§tóæ ßWu²Óuªý¼ºö¬µy£y_°ßyëuwƒÒÛhÞ"jmµŽÐîé“íCEh!ú^Ù½\.õ3ׄ׽¼,5?n²S„f&¼àN–R¾ç½ïBîÛ3Ò‘ÁÕ:B‹§ß~6T„¢ßî‘–¦Íz¨y—¹×‹•³(B3N¸CßóVÔù½ÉfëY[­#ô0¸“¢n%ô[*ŠÐÿ蓇RyÏިךoŸxø…´^h8v'ý…Â-SÎ4>NÖ#Áþº )fpµŽvÍ8jm÷·>£ÑFz=âήšu"Û>[’N|<¨ÓÆýŸðD{À]1©è{Þ;¡tYþ+%O:7á^‘*Bߣ/ºåq(aeÔOãéöU£·ÍeÃëÀŸ+B¯o×ÚgCÓÍS~¿÷h×zïB\­£Ô'½ ލãÒ¾¡"ô<úŒT›±3êþæRÑ\3ƒ«F6öíÎ{„^žï|ªzýûEîz?à‰Î·mäë/goµŽôHºý2zná3{ÂEèuô“àË—ŒŒú Öþ¦âxÝÆ¾*BŸ×<ßÜìÎ_Âà÷€§‚wg‚KA'[­£”}ç6êÐ6KÒŽ©"ô9z¶çÓ¯°ö{ÔnÙÈ4VÇËëîä0agß¡×Ý€_Õ7.Ä[·‘ø=à^wJX©¥vï˜tÑâj©•´´¾»}¾œ}Û)BŸ£ç%õÜl»èÿ¨Sç¤Záï÷]Èžï íÛ¡"ô:pêØíÓ…íí#—ñAÒ€_¹“àLu®š‘6V-®ÖÑZ¾¼ß>8j¬=Žþàô­ç Œ:y«•vlÏÒ¾.B¯\l øâï,éÊß™\­#¶z¯œ‹-UÞ[Èzºý~øÙ"ô|Ô;³ñR)>»ikß>U„~^™}W:|ü㈙§ò…t¦ïaÖæj 6"*àIDATà‹&¾ÝSMðÓüWVÓÒùÐ?—¥âW<ÍM)ù…‡3oþí>%]9Ãÿ¥õT礳>uãßÞgЀÏÛ’Tëþ†EX,köT„í§ ŠðLOMâ_íÝÝWG€ñ5zÀ]²€@D ¨ С†”¨ T{¬"¢Òj{óžãEþüÎÎÌ~„M8µí>¿’%ÌWÏ™lfI¶Äyð/†ð¦|·†CÙ¶54!$x"ò‡+µü+„¥¡¡,!|;"/çD^ü·Bxž¡ !àl½ž¸S¯Dú! ®‹Üsºk"ýñŽí¸ËaÙFK+k¯«úµ;üÃÏÃ^fíÊbwsc=4×ñ†Ä0™»<±áf:»Û áhinË͹[s7õÓØPzìØó§Õþ¥³˜YÛé‡ðÌ Ò© òÊqöDc!\Ÿ7…)¾2‡–·mrdË~¼´w'<ÒŽ–3öÙð6BøûVpYÉŸ?„ûóëÙÅ(„gOJ7Ò1ê8ý"noBW¼{åwj™˜ù¤uŠÔvÊGUU‘ºÞÀ>5®Zrqowå@Ä[J áÒ‘H¡Tz¯Ž úõ <¢Fvï´ áWvnwu§CýÙ®Ó4”;öü”ö«ù/ìvIÎ B˜0@*ý(2aëq= ¡Tü«„ÙÇ"“~÷Þª:37T@ýª·ý·Ôª««7)„± y/D®ý¬5¢–dÝ­B¸ r¨‡žPEmêøö‰SN«þµyµ:5í¯k5@®‰è•ÑsµRŠBXìÑò“æÓ¤C"ÏÍï®Kà µG-6GÆê"3í…p´®ß†ÕT?¿¶a6'Þ¾y˜¿f?ÀsŽfg%w),ªaâiôF¤`ª3+ò> á_NÐ=9T?ù¨Ñzûõ~ßDƃ!Ô*k¸½®Ç>›úªù¶n§…°gf <Þ¶æ9GÕ¼®Ø#wl'H£‘׿Q5 ‘ apõ×ÑW¥³Û¡^ü(xœÏHc¹­‰„eË~“k-Bo¢šÓ¥s†p'\Æú7ÏÑ!Lœ …ö32kû¡’âem½ðE‘«êÇœ•-WX]ŠZó$|ŠÔR[!\fûm„pùÉâju«¡^ýðœ!yëýo­&H¡¡æ0<²a[ _P7—ó¿æÌ+Ö&öc‡>sá­uÇuèB«^èŠ^}Þª>zgB˜8@ m4‡¡r"„D.ë¿Ìô™šÃQ "7Û ¡záÎý˜l‹~rõ;:WßþY§M'HŸK"Þ½À]±ïwVbÏTŠÆ‚ǽoöü îõQÇùktøø[£Á;Ž•c!¼b÷^œêd7‹"“÷Ÿdm±[†ðØi;E^CÍ™&N>ƒj…äÄWvwmHzì¡[[úJ9Àjìƒ(½9Ó Â.‘Mû›â±ªÖ „#-· á‘ÈF°ÉÞ~¦õÌž<íˆÈP0Ô¶ aâ©“/ÆMŽóZdvÙ„ð‹=4$RõƒyÑ ÒØ©w>ŠmŸøªÖmNBµ>üÝüÂß´ÐÂ$ú¶§OâZ„p<ª­ ²^už“§½ͱ'gB˜8@ê”Dß^-0v rß„pˬÄök"ëêçc»gÞÑoŠþé8WgEÞØa]ä(ÂÎp‹B5áK‘Þš¹Sš2ZhZŒžÂBtÖðmÛ`¨ „áó“§Í»æÚ¥[‡0q€ÔQñØ‹?W¹©›Ê¡epsÛn@W+©YsG–‘5ÿ¦kD<}k™Í>‘®l,„êž¿mal@‚.‰ÌÙfã™c3ÿ–Ý™-B¨¨ë‘óz¨õ¦¡lÃç§œö¹ˆ«¼3àkI¤Í­œÝ¥X½†ªˆW“â@yÎS+FóÍ„þ¾ƒÂô³=µl”üSþ;&ÊwÕkÌçfl÷ÕB¬Ñ7²à‰WµEÚW!*nøWçVüÛL—wÔÊ,ºÈ†Ð›Üvœ~5¿ÚןEÔÃRÓP6„áóSNëªC«iÔƒ›n'L6e{o´H—~£±"o‹v?…ýò¢l¸ϳ·æÎß ÷\ØÁ†§fÓƒÔž–ƒ"Uƒ½ÝÁ~D9xíœaœ‹ÓÅà+“ƒj)÷ i¨`kF8ô)§š3‡¾= B˜0@ÚÔc73vÕÒkÓ¡³9ý!Sì{}?ÃíêäA®Vx¶YØòr‡_¦œæ:ËGÏ«ìö8a‘ò2õÃ;{nÎÝÞýÅiB§dr6WÜžîw.4Ì[²áPA£¡OžÖqn.Ôrµ…§ÎHôżgNÿkDK­BKâ"IEND®B`‚metafor/man/figures/selmodel-stepfun.png0000644000176200001440000002752514465413204020140 0ustar liggesusers‰PNG  IHDRèèz}$ÖPLTEÿÿÿ///­­­óóóÒÒÒmmmfff\\\ÌÌÌöööEEEÕÕÕwwwDDDµµµôôô ªªªýýýîîî»»»ÝÝ݉‰‰ooo×××WWWþþþ™™™iiixxxKKK———‡‡‡[[[¬¬¬ïïïûûû÷÷÷“““ÏÏÏÓÓÓÉÉÉUUUÃÃÃ777ííí___kkkOOO@@@ùùùìììøøøãããØØØüüü###èèè ¸¸¸ HHHëëëßßߥ¥¥ÎÎÎXXX 333›››"""cccNNNFFF AAA---)))MMMäääSSSÐÐÐúúúvvvƒƒƒ¤¤¤¼¼¼,,, {{{GGGaaa¶¶¶111¢¢¢¡¡¡ÊÊʳ³³QQQÈÈÈ```†††ÅÅÅ€€€^^^jjj–––hhhZZZ%%%ÜÜÜdddppp&&&òòò‹‹‹ÇÇÇ555ÚÚÚIII000ÛÛÛ´´´’’’ðððæææ±±±ÞÞÞ«««+++!!!õõõ¦¦¦šššœœœÁÁÁgggåååñññ888lllééé§§§ÙÙÙÂÂÂLLLPPPááá]]]¿¿¿©©©:::...²²²···¹¹¹ŽŽŽŒŒŒJJJŸŸŸqqq”””BBBžžžºººÖÖÖ¨¨¨===444TTTÔÔÔ***zzz$$$999   uuuààà‚‚‚ÑÑÑŠŠŠeee>>>˜˜˜}}}êêê???CCC~~~yyyâââ¾¾¾ÀÀÀ‘‘‘VVV„„„222ÆÆÆ¯¯¯ÍÍÍnnnRRR((('''<<Q3îÆVAÍ´°²]ÕÜÐom)¸àbw»~‰§ÈŒk¸ÑcP3-Hlè ‹ .¸ØÝ–½ÏSdæyðj§ë:º£»ÐÝÑÝÑÝÑÝÑ]èŽîè.tGwtGw¡;º£»ÐÝÑ]èŽîè.tGwtGwtGwtGwtº£;º ÝÑÝÑ]èŽîè.tGwtº£;º«æéÞØ>õ×-­«K‡OïBwtWBt¿-¦½åh4ÕµGûntGw%C÷×㊡‹ƒ+³†Çã©tGw¥A÷⊡/Y¿wãð±ådœ@wtWt¿¼&V½>uè§bO~‰ûÐÝ•Ý÷Ç¿öÑ©CoŒó³+Ö ;º+ ºueÙCßæç@ÄNtGw¥@÷rW }o<—ŸKÐÝ•Ýßeè¢säÆÚØ]Á'´åÍ;?V¨ƒÅìŽîèŽî³9ôRzçÔ;žhœÜ™þ«~Ô?EÑÞ‹îèŽîs>ô5qnŒî›¯öÛ®«»ú‡}ué¢"‰¥èŽîè>çCï‡ós ¢»’¡üªûò‚CGwtG÷Ùz[<™Ÿ]ÑœU2ô‚_u/:ttGwtŸÍ¡?½ùùPì¨hè¿ê¾ÝÑÝçaèõÑS&ûâ{⮊†Žî讚¤û#Ï>X>ÄݳMOGº£»Ò£{]ÜQ>îßMûVEO}†îè®ôè>:ô¬ûâêÒö=›³Ê†Žîè®Z¢û Cwt×µD÷* ÝÑ]µD÷* ÝÑ]èŽîèŽîèŽîèŽîè.tGwtº£;º£»ÐÝÑ]èŽîè.tGwtº£;º£;º£;º£;º ÝÑÝ…îèŽîè.tGwtº£;º ÝÑÝ…îèŽîBwtGwtGwtGwtGw¡;º£»ÐÝÑÝ…îèŽîBwtGw¡;º£»ÐÝÑÝÑÝÑÝÑ]èŽîè.tGwtGw¡;º£»ÐÝÑ]èŽîè.tGwtGwtGwtGwtº£;º ÝÑÝÑ]èŽîè.tGwtº£;º ÝÑÝ…îèŽîèŽîèŽîèŽîBwtGw¡;º£;º ÝÑÝ…îèŽîBwtGw¡;º£;º£;º£;º£»ÐÝÑ]èŽîèŽîBwtGw¡;º£»ÐÝÑ]èŽîèŽîèŽîèŽîè.tGwtº£;º£»ÐÝÑ]èŽîè.tGwtº£;º ÝÑÝÑÝÑÝÑÝ…îèŽîBwtGwtº£;º ÝÑÝ…îèŽîBwtGwtGwtGwtGw¡;º£»ÐÝÑÝ…îèŽîBwtGw¡;º£»ÐÝÑÝÑÝÑÝÑ]èŽîè.tGwtGw¡;º£»ÐÝÑ]èŽîè.tGwtº£;º£;º£;º£;º ÝÑÝ…îèŽîè.tGwtº£;º ÝÑÝ…îèŽîèŽîèŽîèŽîBwtGw¡;º£;º ÝÑÝ…îèŽîBwtGw¡;º£;º£;º£;º£»ÐÝÑ]èŽîèŽîBwtGw¡;º£»ÐÝÑ]èŽîè.tGwtGwtGwtGwtº£;ºËƒ‡îèŽîBwtGw¡;º£»ÐÝÑ]èŽîèŽîèŽîèŽîè.tGwtº£;º£»ÐÝÑ]èŽîè.tGwtWmѽ¥uuéðé]S®íúôÙÒöǺÐÝ•Ý[ŽFS]{´ïžt­³yøÚª<îè®4è~,®Ì§:&ŒüõøjKöÀ±õSèŽîJîKÖïÝ8|l9/ßÿR÷ð±øž¸„îè®è~*öä瑸oüÚk±-?{£ÝÑ])н1^ÌÏ®X3~mw –_å³ßWøŠŽî计û¶x4?"vŽ_Üm+³ÅoEûº£»R ûÞx.?;"&dü½DÓóÛãäP67tgQ‘Þxk™çº£ûŒÚ#7ÖÆÄ7Ø6.úd w°óÊ{ŸhœÜÏþ0+tÿaí;ž#èŽî3ªÇdž>>ë¿_ïÛu1>ûŸ¹ {çK…Ú7yŽ ;ºÏ¨5qnŒî›Ç®µÆ¾-åóí83tŸN2c5:º£û ë‡ós ¢{ìÚ—âæüüþ`¼PÉÐ Ò}:É:º£{¥µÅ“ùÙÍc—oˆú‘[gãÁ9 ût’ëý†Žîè>ÞˆÞü|(vŒ_ë‰_ægß` ¡;º+º×GÏè_w½küÚøW~þ:ÚûÐݕ݇W}÷ÆlÓÓÑ_þG-<[¶ú¹µñö7³ìCíq{†îè®èžÝ¿-šö­Šžümy]ÜQ>¾=‡þ½=¢wYECGwtWÐ=˺/®.mß3ò½µÑ¡g»?x¸Ô¼ðåi~'º£»®ºWº£»®ºWqèèŽîªºWoèèŽîBwtGwtGw¯èèŽîè.tGwtº£;º£»ÐÝÑ]èŽîè.tGwtº£;º£;º£;º£;º ÝÑÝ…îèŽîè.tGwtº£;º ÝÑÝ…îèŽîBwCGwtGwtGwtGw¡;º£»ÐÝÑÝ…îèŽîBwtGw¡;º£»ÐÝÑÝÑÝÐÑÝÑ]èŽîè.tGwtGw¡;º£»ÐÝÑ]èŽîè.tGwtGwt÷ŠŽîèŽîBwtGw¡;º£;º ÝÑÝ…îèŽîBwtGw¡;º£»ÐÝÑÝÑÝ+:º£;º ÝÑÝ…îèŽîè.tGwtº£;º ÝÑÝ…îèŽîèŽîèŽîèŽîBwtGw¡{êtox¥÷Õµ„îB÷4é¾ó˜Ý…îiÒ½5Ö¾´b4tº§I÷Õq]M¼GGwtWé¾îãYM ÝÑ]U¤ûážÚ:º£»ªH÷â2º ÝS§ûÀÏŸù-º ݧûgÞŒõÞqçHè.tO“îµñ}ttGwU‘ ÝÓ¤û\…îè®y¤ûp›þ¹ÿÈþŸ4ÌïÐÑÝUEºgËŽ¼”¿?o¿´l>‡Žîè®jÒý»‡~ú¹Šø"º Ý¥ûk±õo}Ãgß+MqË<ÝÑ]U¤ûŽøÖè­›ã1tº§I÷Ußk~ï½è.tO“î¥3ã7¿²Ý…îiÒýì¡ÞÚÔ~Ý…îiÒý ñ—Ñ[§âÇè.tO“îõ¥¸p¾!k8!ëÑ]èž&ݳ߬ˆÁò¿fó8ttGwU‘îYÖu ixæ[ eó9ttGwU‘îåún=þåªüù¢;ºk>é>G¡;ºk~èÞÖörù§I¡»Ð=9ºGÜ§N÷+:Ë?M Ý…îÉѽ¦Þ££;º«:tÏëÜ5v«ãŸGw¡{rty£~lüñhFw¡{rtï[ùöî=¶ÊúŽãøÆødŠm­B¹•Ó2ÀÂR­…J¹v@k)×r¹› ©0@à¸È¸ dÀ ^À‘íu›nèngFÜHØ’]²lK–%[¶ó<çéáÒl$?žg¿¾ßIû{ÎIO9Ió弞¶Ï¯‰TÓ-YÿÇ• Ý º;G÷}º¶_Bw‚îîѽó5cÿkt'èîÝMN~~¾Væ'+±û|¡;t§pèî7ðèíy¾ÐºSHtO6º“·kÜsOuС;t'Kt÷ëZ¡‹‰åª½ Ý º;J÷‹õ‡3‰õð(ÅÙa† »£tï¨9ÁÑ%ÝÝ º»I÷¼ f.ﳺtw“îñwR‡ãcР»›t¯.jØ×}öÝìëNÐÝQº¯ÓûÁÑGZ Ý º»I÷¡™õZ«ZퟮÒV!:t‡îd‘îæßµÁïºg67!:t‡îd‘îÆ\|ÿÝRÿhàæ CwèNé|eÛÚ~¾ÐºS˜tOôüŽS¦ûèpºCw²J÷ÊMÞFϧ³×•Aw‚î®Ò½ƒT“i'M™â CwèNé>\yË2úɘ=}4ºtw“îÛ4×oÐM_mîÝݤ{ÞA º©^Ý º»I÷x³Ô /…îÝݤ{Aö]Á ïÊ®†îÝݤ{K Lzùjµ„îÝݤ{{©ÊªÜ®ì­Ð »›t7­µT„zQ t‡îd‘îÆì[³61æ#d™0ºCw²Hw¿Í3ºÙ~¾ÐºS˜t¿MAwèNáнK£ ;Awçè®FAw‚îÎѽs£ ;Awçè©stèÝÉÝS±Ã AwwéÄ3Ýݧ;;ÌtwŸîì0Cн Ðfº7º³Ã A÷&@wv˜!èÞèÎ3Ý›ÝÙa† { ;;Ìtotg‡‚îM€î7·ÃÌ=÷Ä&}eÌ5÷åýqQÅö_—CwèN‘¥»ßî0sÏ4e6ËUî—¯º¯dº¿[ ½ÜºCwŠ,Ýo¦™šÐÍd<¥gº_¹ï1´0fx­Ž@wèNѤ{Îÿk:掎ëÿV’ö£³ŠÇ=œXÊçéñÔ}Cb1ßü—ôgèÝ)’t_~PO,K2½oÆÍ»˜îÃj¬¿NÖôÔ}ßѳþzüÖкSé>'1ÞmŒÙ]¤º…ÔÒ4ßO3wêþÚ[=R÷mÓŽz¾ÐºS8tïU¨±½ë7Õcˆ1göêBšŒÐþ:LJmS±VcÆ|~êÁéçoqС;t';tÿ:úçé;õoý§¾›æãôuí.5ü,.§XKŠüÃtkƒÝ¡;Ù¡û úž·üVú©ÿU—æƒÕ3yP¨†°m–úl:Ÿ?ä_R×ë>úüW·²ºCw ƒî¹:ã-µØ¿y\ñ4ˆiVào>–ÆùŸe€æ]÷Ñ£¿pu?›Ý¡;…A÷Rù¿&3]÷û7‡*/ÍzèɺmøÿFJþK§¥ãкSôè¾VÞ´¤Hø7ÛhZš<¢%þ:LêßpŽ>QUþAÛÒàÏ8èк“ºÿ@÷&Þ_VñÿæËúyštÔWýµ·îNÝ7MG“Ÿ<Óÿ¬ƒÝ¡;Ù¡ûe-h^~z“ù·–+ù½¹ÿÑÓà¯ó5*uß­ó×T¸ ºCwŠÝ¯Ð*•²³gÝoý¦øª_wûoŸTEÙÛNUeê¾%Ê=é­ÿÐÝ¡;Eî¦ìÁ¸Tý­ÄÑìbé‹›Ó> FS6eÏêåÏÍõÈþ¶¶ì3æT¼øÅ[tèÝÉÝu{²Wò•tüô®7ð’:c„2Ç穨…w£™· •1»§iâÙRš¿ÐÝ¡;…D÷›¯ÿ× b#Ç&¶ º9ti^ÅÞEéÎï¡;t§è~;ƒîÐB£{tºCwŠ Ýí :t‡îÝ¡;t‡îÐWtèÝ¡;A÷&L÷Êow‡îÝ]§û$åóh'èNÐÝeºÇuÈÍ„îÝ]¦û÷õ`}OÝÙóJР»st_¨ëƒîÝ£{ùOÎNZ¬ÒÅW‚îÝ£»_TÎÑ¡;t';t÷ë÷«h :t‡îd‡î •}Z5¹êÕŒpºCw²Hw“3y¯ÿ¸Ü9Р»£t7ǤÚר•Ö@w‚îŽÒýœ*>,I¬%G2Õ.ÄA‡îÐ,Ò}”Gm´ºtw“îyR§æuu!:t‡îd‘î±¥©Ã-ñºCw²H÷UµùÁQYî*èNÐÝMº¯Ö{ÁÑB½Ý º»I÷1­¯Ï0õë5±t'èî&ÝÍ›…’&zoLˆƒÝ¡;Y¤»1½k2c^Q³Â„9èк“Eº{•´Ÿµa¶åç Ý¡;…I÷Ût‡î*Ý£1èк“eºGaС;t'èÝ¡;t‡î¼¢CwèÝ ºCwèNкCwèNÿ×t´QР»stW”þR t‡îd‡îsüÞÖÈUû—u(РSР»st÷«/üd—?SO@w‚îÎÑÝï“øÉàè¥q' ;Awçèî·àʾ“ Ý º»I÷>o4ì[¾ó èNÐÝMºOP§àhŽ‚îÝݤûp ¸âù\ß.Š÷„îÝݤ»¹·X’÷–ý– qС;t'‹t7fÅC¹‰1Ï{j« sС;t'‹t÷j;ìôÇ9–Ÿ/t‡î&Ý)û´jrÕ«á:t‡îd“î9“÷ú¿çž»1'ÌA‡îÐlÒý˜Tûú¢µÒèNÐÝQºŸSŇ%‰µäH¦Ú…8èк“EºÒáà¨VBw‚înÒ=ï@êÔ¼®ºtw“î±¥©Ã-qèNÐÝMº¯ªÍŽÊrWAw‚înÒ}µÞ ŽêèNÐÝMº·ˆi}}†É¨_¯‰- ;Aw7énÞ,”4Ñ{»`BtèÝÉ"Ýé]“™óŠš&ÌA‡îÐ,ÒÝ«¤ý¬ ³-?_èÝ)LºGä¢èÝÉ&Ý#rQ t‡îd“ºCw²H÷¨\ÔÝ¡;Y¤{T.jîÐ,Ò=*µ@wèNé•‹Z ;t'‹tÊE-к“EºGå¢èÝÉ"Ý£rQ t‡îd‘îQ¹¨ºCw²H÷¨\ÔÝ¡;Y¤»W.jîÐlÒý6Ý¡;…I÷Œª?ZÝ º»I÷nÓt%èNÐÝMºß§Ø€UAР»›t/йHœ£CwèNéÏ3‘tèÝÉ"Ý'íŒÆ CwèNé~LõР»ëtß} ú‡Ð »»täwVÅ/,J‚îÝ£»Ý º;G÷/5 ºtwŽî·5èÝ)ºGjС;t';tïØq¿÷;Awçè.u¾î;rР»stïÔ©§÷;Awçè©stèÝÉÝ#5èк“ºwit'èîÝ#õ›qк“ºwnt'èîÝ#uŽÝ¡;Ù¡{ªçwœ2ÝG‡;èк“ºUnòÎÎOg¯+ sС;t'›tï ÆdÚISf‡8èк“EºWÞ²Œ~2fO͇îÝݤû6Í5ÆtÓW[ ;Aw7éžwЃnª@w‚înÒ=Þ,5èãK¡;Aw7é^}W0軲«¡;Aw7éÞR“ƒ^¾Z-¡;Aw7éÞ>S£^›ª¬ÊíÊÞ Ý º»IwÓzApEKEsâ CwèNén̾5kc>r@– sС;t'‹t÷Û<£›íç Ý¡;…H÷“W_ZÝ º»I÷ij8ÚSÇŸd"èî(Ýõûãþ:ì?ìÝ{l•õÇñ_ùŒNÓÊé`´Åõžc)”–2K[h)×]ËÆ¥nh•Œk*7&,²0Àˆ›]ÔÉœ™ÁH¦.Ë.1[–ÌDwË–m-YvÎsz9mMÚþÎóðëûýÇùþzž”~éë<=ô™(M‚îÝݤû½;#ºü;MÚVÝ º»I÷üçÔøüÞ+ÒÊsVºCwò‘î&w‘–Õ)ýÓ¯ƒÝ¡;Y¤»1£öI/îµ}¼Ðº“tõˆ–ô{С;t';t︊j¾ÅÕT º»I÷@]ÀºCw²C÷¬nAw‚îÎÑ=©AwèNþÐ=PƒÝ¡;Ù¡{FÆ©Ä3rþžŒƒîÐìÐ]šÐåŒt'èîݳ²"]ÎÈAw‚îÎÑ=PÏÑ¡;t';tïRþٳР»stïR6/˜!èî>ÝýtèÝ))tÏæ¬;AwèÝ¡;AwèÝ ºCwèNкCw²D÷üÎÍ‚îݤ{/~ñÄè1yË6/èþÏNqt‡îHº_ÿ ^©PJ¦2vÙ_÷’ú:èк“ºOîVO±FK³Mê6=œÛyÿ7êó CwèNvè~Ý…ËÇ.æR³Që;í_-©t‡îLº_w÷h‘·.×ۣ݉¦TÜÝ¡;”î×Ý=á­E*LÜ~U7M†îÐ\¡ûmõÖYÒüŽÝ½uƒ'CwèN®Ð}±óÖ\)ܾ9ö.½b&CwèN®Ð½B‘øbuü€-K?4Ÿ:è‘q‰íÙÝ¡;ÝtÏÓÚ¶A´íý¾ìXÕ§ú×5èкS@è^¨‡Úè>³mï5½e t‡î|º9zÉäÎïùqµº×[gI¥­[-ñŸ´qÖºSÀé^¿?öâ×gÓ÷T÷ôÈ íòÖ"¥µm})á´‘¾ :t‡îd“îã¥â<™[¥¦u=j…껼ºCw 4Ýiƒ1±Aëã==x‰šªLõ>ÕÆþSË–G7ôã CwèNéžó´itÓØÜÓƒWÏQ¨!GeCbo¤hZ?:t‡îd‘î%)íƒÞPÙã£K)È›»(þ³µþtèÝÉ"Ý ÒG¶úñôF‹Ç Ý¡;ùH÷¡±ï˱A¯Ù¡¡>:t‡îd‘î·…4ï… ×VúAºCw²HwsKsëë]êºCw²HwcNîÜó¹SÃÆÏA‡îÐ,ÒÝëÀêlÛÇ Ý¡;ùH÷¯ß™œã…îÐ|¤»”òê‰ :t‡îd‘î;ʤŠÏ¶ ö{С;t'‹t7ù§>I—BwÌ®îÝ]¥{¬ó¯/-–¾û“…Р»›toíâ®%\M• »³t7ã¥þ:t‡îd™îßøk¹T{v/t'èî(ÝG?3"ú=íûß¶{¼Ðº“t.O*¹Ý º»I÷ÿ*ô‹üü¹Yw~A¿‚îÝݤ»ù›*¦›ÿy?G? Ý º»Iwc¶^0f쯛•ùãã CwèNéÞÖº¹ÆÏA‡îÐlÒ=IAwèNþÐýŽnAw‚îÎÑ]Ý‚îÝ£û„nAw‚îÎÑ=PÏÑ¡;t';toïÈÑK&w¾¿ƒÝ¡;Ù¡{kõûcÏΟMßSíç CwèN6é>^*Γ¹UjZÝ º»I÷ÙÊiI"cžœ¤MР»›t?¤ ÆÄÝLÖãР»›tÏyÚ´ºil†îÝݤ{IJû 7øù[`¡;t'‹t/HÙ:èÇÓ¡;Aw7é>TÓâƒ^³CC¡;Aw7é~[Hó^X¡pýa¥„îÝݤ»¹¥¹õ´Ô 2>:t‡îd‘îÆœÜ¹;:æs§†ŸƒÝ¡;Y¤»×ÕÙ¶ºCwò“îY Ý º;H÷Ò]7]hÉ߯Þ^éç/ž€îÐ,Ñý{¡ØI¸ÆŸÅîÿø]ÉÏ+µ@wèNvè~…JKµÕfðW¢%ìã CwèNvè>Qï1¦è˜~zñOÒËõVºCwò‡îsô£Øòe}Ò¤Šç¯ƒ݃ӖŸ§ Ô¸ºÏƒ^Yìý¦‰çõ5í>gû‹ºß8=( Ncú<è*ó–jé/³Œßƒ݃Ó$½4‚Òk‘¾zfëjõêŠÐý†«P_ä“”úá¬{Ç ŸñС{pÊaЃӰþô\ÿº‰î z`ìØ CwèN–èþÕ°—t5~‡ÌtwîAºÈ"t‡îd‰î\M• »ûtŸÑ-èNÐÝ9º'5èÝɺjС;t';tÔ CwèNкCwèÝ¡;t‡îР;t‡îÝ¡;t‡îÝ¡;t'èÝ¡;AwèÝ ºCwèÝ¡;ƒÝ¡;t'èÝ¡;AwèÝ¡;AwèÝ ºCwèNкCw‚îкtç;:t‡îÐA‡îкt‡îР;t‡îР;t‡îÝ¡;t'èÝ¡;AwèÝ¡;tç;:t‡îР;t‡îÝ¡;t‡îÝ¡;t'èÝ¡;AwèÝ ºCwèÝ¡;t‡îкt‡îР;t‡îР;t‡îÝ¡;t'èÝ¡;AwèÝ º3èкCwèÝ¡;t'èÝ¡;AwèÝ¡;AwèÝ ºCwèNкCw‚îкCwèΠCwèÝ ºCwèNкCwèN‹î£Çä-Û¼ ÓÞÚÏìÎ+lºÝ¡;9B÷Ñ+JÉTæÂ„½úšîCTéQ+Tß¾w¾@w1}tèÝ) t7KÔTeª÷©6ö"¸-nˆÞ~¬§fÇ Ý¡;9@w³zŽB 9*{#EÓŒ9P÷öí=¶Ê»ŽãøÓ ý.6+Bd ‹ë\ ‡"kºu”âŠPÂÂ&%Œ;›\\ä6èÛpè »âP·‰»)Kœ™š8·14„hâÌ4þaâf–ÿ1^MLŒÙóJÑ5gõôûœæõþcOyhŸ”瓽J¡ÿ{2‹ÑÝ5èž$Ó7åv¾·–ý(ÓÐÑÝ•º!tGwU Ý+8ttGwe†î•:º£»ÐÝÑÝÑÝÑÝÑ]èŽîè.tGwtGw¡;º£»ÐÝÑ]èŽîè.tGwtGwtGwtGwtº£;º ÝÑÝÑ]èŽîè.tGwtº£;º ÝÑÝ…îèŽîèŽîèŽîèŽîBwtGw¡;º£;º ÝÑÝ…îèŽîBwtGw¡;º£;º£;º£;º£»ÐÝÑ]èŽîèŽîBwtGw¡;º£»ÐÝÑ]èŽîèŽîèŽîèŽîè.tGwtº£;º£»ÐÝÑ]èŽîè.tGwtº£;º ÝÑÝÑÝÑÝÑÝ…îèŽîBwtGwtº£;º ÝÑÝ…îèŽîBwtGwtGwtGwtGw¡;º£»ÐÝÑÝ…îèŽîBwtGw¡;º£»ÐÝÑÝÑÝÑÝÑ]èŽîè.tGwtGw¡;º£»ÐÝÑ]èŽîè.tGwtº£;º£;º£;º£;º ÝÑÝ…îèŽîè.tGwtº£;º ÝÑÝ…îèŽîèŽîèŽîèŽîBwtGw¡;º£;º ÝÑÝ…îèŽîBwtGw¡;º£;º£;º£;º£»ÐÝÑ]èŽîèŽîBwtGw¡;º£»ÐÝÑ]èŽîè.tGwtGwtGwtGwtº£;º ÝÑÝÑ]èŽîè.tGwtº£;º ÝÑÝÑÝÑÝÑÝ…îèŽîBwtGwtº£;º ÝÑÝ…îèŽîBwtGwtGwtGwtGw¡;º£»ÐÝÑÝ…îèŽîBwtGw¡;º£»ÐÝÑ]èŽîèŽîèŽîèŽîè.tGwtGwtGwtGw¡;º£»ÐÝÑ]èŽîè.tGwtGwtGwtGwtº£;º ÝÑÝÑ]èŽîè.tGwtWUÑ}ìåM¹Õ;–¼ç=tGwU/ÝÇ®‹úš†hXö÷ÐÝUÅtß=“’Úq¨±ø=tGwU/ÝÇ·/ïì½ÌÝ[ŠÞCwtWÓýöèN¯·Ä†¢÷ÐÝUÅt¯‹GÓksL-zÝÑ]UL÷±7½Î‹X\캣»ª˜îËãhzmŒ_캣»ª˜î1­ðFK,+vÝÑ]UL÷\lîõ´b÷ m©»°?<Žî讪 ûÔØßÇô9Åî•ò ¡;º+#tïŠéu^Äôb÷Jù„ÐÝ•º_ÓksŒ.z¯”OÝÑ]¡û1#½nEEï¡;º«Šé>*Úò<³6–½‡îè®*¦{²2Öt&7Þ]ùÀ²çÈÖwÝCwtWÕÓ=Ù¸ êWL޶QùÔÄÌwÝCwtWÕÓ=I¦nÊ-ì.|íÜÐÿ㺣»ªŸîCùúÝÑ]UB÷ ÝÑ]™¡{冎îè.tGwtGwtGwtGwtº£;º ÝÑÝÑ]èŽîè.tGwtº£;º ÝÑÝÑÝÑÝÑÝ…îèŽîBwtGwtº£;º ÝÑÝ…îèŽîBwtGw¡;º£;ºgwèk®(ÚÙß^2¨¾:¸wë9t‰JíÕ›Afúlñݼ•µ¡×>]ü¾ôǃüuîÝ|ÜK¤ä^ø“3ÈLë‹ïæŠQU&”ÏÍÜûÝ0¸wk¾ ú*öe–þÝ0Â~=†nè2tC7tC7tC7tC7tº¡º ÝÐ ÝÐeè†nè2tC7tº¡º ÝÐ ÝÐ ÝÐ ÝÐ ]†nèYë¢Aþ+œƒ{·¯íñ)¹O9ƒÌtÂH’$I’$I’$I’$I’$I’$I’$I’$I’$)½¼)·zÇ’ =¥®Á —rx_‰sÍt<ÃØzùŽ]õ5 Ѱ¬"O†^Òá½cèh$½|7EϤ¤ö@j¬ÀS^C/íð®ŠîIiµÎgØI/ßñíË;{/s·Å–²?eñ½aè%Þ]ñk'3¼¬—ïíÑ^o‰ å~Êw¦Æä— ½´Ã;/9™am„½|ëâÑôÚSËý”›âg]cè¥ÞèxÎÉ k#ìå» ö¦×y‹Ëü”;š“ÄÐK;¼ÙqíÑ«u}âÇ3\°—ïò8š^#ÆWà)†^ÚáíŒÖöôÝß?Ñ _#èåÛÓ o´Ä² <ÅÐK;¼qŸ:3ë‹'ßÉzYÊÅæ¾WÙ´ <ÅÐK;¼—îùRzýW4øþš¡—¡©±¿Ïs*ðCÚoAgG¼í„ }èuÅÎô:/bzžbèCü-øiüÓ úл2¦×æ]‰§z‰‡w빿%ww|È úл3f¤×í±¨O1ôÒïæöSº·Ç'dèCoT´å½8fm,­ÄS ½´ÃÛo¦×ŸÇ6dèåhe¬éLn¼/ºËö”=G¶úÐ7f%c¶w´Ïw>†^Ž6.ˆú“£mTùžRÓÿo+ ½ÄÃ;Òm+FÇiÇcèåiúá¦ÜÂî9e|Š¡—áð®Ûw,÷Ãßßáp ]’$I’$I’$I’$I’$I’$I’$I’$I’$I’$I’$I’$I’$I’$I’$I’$I’$I’$I’$IÿS‹«‚dè’ ]’¡K2tI¥õñ8qfåè¶ë÷Lì¿÷›x¡ðÆâ¶Þÿß·¾uùº×þÚ7ô¾µ:fä/Kž]Ðzí«ó¥”å¡ï[õɺ³-ñâ˜ó÷ŽÖ±ùë”¶¸&Iþ±ú¡'"Öw8ôùŸ‰ 5OF|ÔYJz¼þá$iž7õßüv<¿|=j’doÔÿ¨÷í·WŸ†¾¤-f^–$['Ç7¦”Ý¡·oÎ_wÇ“ý7ÿuùËã•$9ÙñFzïdìhèwÅ¢¤ðñ_v˜Rv‡þƒô:kB|àüÍÎÖ–ç“ä[:žËÿÌ”ôÞ[ñ†~w|?ýAmK<ì4¥Ìý}…7ÖÆñÚñißH’ïÆé$9—¦?3å™§>¸¯)â# ýþˆµ×§åâ§)evèïûº|÷u‘ö½$¹(þœ$=±»÷þÄWŽõÞëxè}côç‹t)»C­ðƺØÙ?ôY£Ûg?ßRqïýÑqà'û/N~uÁÐïM?âw½CŸ1Ç!JÙzOz½,K.¸ýlœ>˜þûÖUqUzçžóC?ûÒ;/æ¿F_K ±õF§)evè¹tà§c×…·?=u‘ÿK0Eþ{éIrÿúØtnè§âõôαüÐgÄ®¹ù ‹¦”Ù¡Ç®_öî´þ¿þ,­«µõ‰ü‚bæ˜$™ýfăç†þÀ¿ÛµC•£0ŽÃŸé_,CXpW0 ~DT† j“çXD bÑ ,âÚŒ^€Å$VÁÕämˆn½‚yžt8ñ…_8‡7ykƒÕµ¯Ð'9¼+ŠV™sÄê†ÞëözÉéïûÛŒïÉÜÁåBsýów–,,×^¾7ã¦Úéîl$ÃYÄꆾ2µ[n×ÿÜ’Ñéx¸5³w¿ÓNgzó}¢Q>O×G»î×ÍÅÚÓúYB•C7: t@è€Ðø‡>,šý Ê ¨IEND®B`‚metafor/man/figures/forest-arrangement.png0000644000176200001440000036546014661372061020463 0ustar liggesusers‰PNG  IHDRÐS‹ª pHYsÂÂnÐu>PLTEåååÞÞÞýýýõõõìììÿÿÿÿ\\\ÿDDÿ™™  ÿõõ:::)))CCC"""ááá{{{GGGLLLUUUâââ@@@RRRÈÈÈÿ ÿýý555ÿþþ___¼¼¼‚‚‚$$$JJJ‹‹‹&&&ÿJJÌÌÌnnn•••ýüü„„„+++ÿ---ÿÃÃÿ÷÷777qqq111ØØØ¬¬¬cccËË˯¯¯ÿ åääûûû†††¨¨¨ÿYYY£££ÿŸŸwwwÐÐÐSSSÃÃÃ<<<ÛÛÛÿüüÒÒÒ333¡¡¡»»»ãããÿääééétttÔÔÔÿêêÿ»»———µµµ···òòòPPPÂÂÂÝÝÝÖÖÖôôô³³³///xxxÿ ÿ´´ÿààÿÍÍÿ77[[[~~~¦¦¦ggghhh>>>aaaÿTTNNN“““ÁÁÁÚÚÚœœœlllÿ±±‘‘‘ÿÏÏVVVÿ€€©©©÷÷÷eee000ŸŸŸÿlliii¿¿¿ºººðððÿÿ{{èççÿ——ÿ00ÏÏÏoooëëëÿÿÕÕ‰‰‰ÿ¬¬ÿ¢¢ŒŒŒÿ$$ÿóó999ÆÆÆÇÇÇÿÿÛÛïîîÿÿ‚‚˜˜˜ýÿÀÀÿÆÆÿ--ÿØØðÿííÿ¯¯ÿrr’’’ÿ::ÿúúÿhh›››ÿGGÿ[[ÿÓÓÿøøÿèèÿPPÿMMæááê¹¹æÜÜÿWWî  ÿððÜÜÜÿ‘‘ÿaa±±±ÿCCÿ**EEEÿ§§ù22ÿ««è××ÿ^^ÿ??ÿvvÿŒŒÿ‡‡ø??ÿÉÉÉèÐÐî››éÅÅùùùÿddÿææÿ””ÿooÿššÿ¸¸õbbë®®öööê½½í¨¨ÿLLþõWWêÂÂÿââ줤ú((òuu÷IIû&&öLLñ{{÷UUGb77jFF- ðr::—»ìν1$ IDATxÚìÝÿsåÇq@ÊæÑ!PÀ«5ÏÑTÄÓH…rІ¦¶(`Mª0UÚ¦¹¨S ¶êH€šQ°‚2&pH˜D‰| ñE¾  ?ø gúÿC÷yv÷nïnsù"¹ç²û~Í@vŸ½ÝÜ=ËñÙ/Ïóì {#¨t@ èè€@: Ð Ðt@ @ }¢Qö HŠ_¯ôa wF"ì[@€tˆ#> ôP[[ˆ} h¤Þ‡n„Ès@°j-Åà::\=]u¨Ý*JÛ©}(44°€ÀxC”S º£4»rx§½@ˆö-@ #kjÅëT‚f¢Ô‡Þ,D3ûŠqŠJÐí°ØO%hVáË@g` PöǨÝžüž:ÐÍŸË0ô+ `ü9ô+ Ð Ð ËÎr“M»ÅT>ªªØG@`ÄD• ÛIÁ»ºu^¬ña wu±o  z º~gE~è@%Ðõc¤8ýüÙ½Lˆ2ö- —©Ý:N§4kŸú0Ð}ûص€ ©ìT;Z¹à::\EÇ;©Ý–q @<=ŽÊðI*A·EG©ÝÚC> ôâêjÆ,ƒ~è9€~èúµnùȇN?t€@0Ùè‡þ W2,î:_‰´Õ·gxIAu8>]ÓЉl½PF °´ïí¦tû.£è•[…ØboïOW(>"âÞa¾4,„hËôØ×P[[ˆ} ·ØØ 0Œh¤^s _'Âe¡Ö6QÞÛIuWˆztø4f4É,êBê|Ý¥ÓYôjñîa+ì{2Ýü/‚¡âÙC?tý³Ôm­ë:±]õKS‰ý…ØëNìv™Ðßuö¾…x oå¢.Úí"Së|ú¡AR#NQ ºû©ͲÔ=V*¶¿¡fÒ®©ËÃë¦Ú°ØÒ}¼ï@ß#Ôv#ô™ˆdèˆÞ‰t²oÀØ£t{ò{ê@·q$~P8¿Ç+ÐeB_ŒˆƒFŸ—Ü‹DQ»}D.*2üÊh”] ’â×+³èÂ<µþÞ}‘~ÇëŒM*¼óÞuɽÖ.ª±÷øaè{£[EusÆ@_ïôè§ÄuvÑVACv²è­rÌÖO¼=Úè4¤(w½ E<Ð?Mñ3t:ž°œå&›v*Ì= ~Å0þ+D•G ŸS·ÎM•[Äù>ý²15QãÚš‡ª*ö±ø‘>´9)øoW·Î‹5Y ô‚¦ÄEwW Ÿv_‡¯ÅžXŸ~<"ºÕsWzDù²ÞcWQQûC&´‘Ï›S臞臮ßÙÌO-»ŠnT ¯ÛÞfÎoo,0bG„¼…ÞW ›S¢.fT~b?Ò¥ôC÷³Éy¦7ó+Çšóù›»¹rí­réŽmýxÕ|ù>ßÊ‘D~{ÞŠ’üIw­ÿpÕ Öîßç\]^G tý)N¿l>ý„ðx Ö$„ˆ˜> õ#ÐzûÕŸúZ&DûÖ¯fÉ œ˜ÿPÎß<èÍ 8„Þ_0*o˜ú³Îs\³t îïçÕè —ùbèÖq‚féÖ(>ÍZ ·ïM#²6_¨U÷´fØ‚+Ðè‘ò¢òî>†$Ú·]ë[#e.MŸŸ"çf-Ð?Î\aXzèÅ<·u»~ÞïÏ«3И*{ÕŽa5m>±tÈ™#¯¸û*k~(o¸ú{yÉ– hí~^žtè󊌘)ÎÜ«rnÓà·¶máÂ…_ú9Ð7X—Ú»f×—ó&ªé|\ Сò¾<'»Òž›&çÙûíÃ-Ð7ÎïcZ‹š¹ñz9óÿýx'ß Ý–q @<=ÕÏfËŒ™cM·L0§o— ½ÞßqËŒü±ïY??ñÊÍÿ™R2}fáÍóG÷Z¡̉ÆâWo¹5ÿúµ?=$oõ¯ñ × Õü/ÿ~ÏÌ™…Kæ»ZšýaÉíù3V¿+®Ú >àÜ7X å}î¼Õµ“Çç—œ^ÚbϧWAÒç]aþXzߎÂé3f?í¹¾¶@¯ Ÿäk¡Û‰¢£T‚ní¡Á¬•ã^\]͘E>ö’ ˜—­é7åô_̉5“âÙ3Å ˜—Æ9Ew<Ñ[Qr ?ö kᨹÖËS·šè_måll¤sB¼Ä.¹ó¥ÜôGåÛXŸ]òм ö×÷¹œÏ2î+Гª =Ðתeÿö\_[ Ó=Ð]¿Ö-ƒzÆIŽ:ýÐýíG3e¦ŒHœ­/7O•§»r[¯ûØUTØÒKQR Ÿ¾=¾ôYužºÕ¤€=;±p†•è¡DQINúÆ|¸÷y,Ù=ÉõÙæÞUè+ÔÌ£Þëè:tÊF?tW™ ž¼¥rj³LÜ̉‡dÑŠM›Ô iž:ù¾¤./—¬{Y¥ò‚^Š’]ncÁlõ¢i†×V3í~9uôi»ìñoZk©KøsÔ ïÙôÂ5ÖÖ´úmI-]VÞjvÜŸ¯~~ì]IŸwE<¿—z¯¯-ÐÛ÷vó­Ðí»pŒJ Ї@¨­-ľõ±gd„| §—S; c¹üù¢,™¿Ä¬šËÍ2ONÿ$›‚]ä]”èÓmN½-/¤O2¼·šh$Ö"/üë'æ¿·²ì³ht¡ZÃÌöͧs#п”ïb­Ç‚MrÁäÛ ãù©òãŽá]îFqV ß»kͺ‘ÞëëkÇ-¶ÀNÐ.©÷a !òÜ×˳ÃQ7šSëä„™©ÆkæÞ©:£ÿÓö 9q“zýü¼Q…«/y¥úTµP…ñ*Ï­ºnN"ê¦ØƒÕ]JŒb7f\Nºjcð^zùyb=Ãê* ®«?ÕK¤úµÖ§Û0 ªè¶­^“r·a¬’±r‹{Éc¿ršÀ«FiTáÆ]«ÔO¢”@·ZoÏ““+=·ê ¸õ²{·µ\ž¢—ö-z»›÷Úœtõv_K/<~׬ y`r/Uè·eXŸ@†!ZíV·zí„vûßÏæ®.±îñÎqΟNZÍ£(%Эî]êû"Ï­ºNÞ]žP¨¨ûÉ-v Ú+¾’®:ÏÝ™^~¯,ΞY-gž÷®‚”@Ÿ°8Ãú:@ Thu§þ©¼çkµ_ßö»üD£ë?:gñ‹ÒOìeôüÄ ·Õ°.m«®€+IRõskc2Ùâ—´ú[N£t›3Fîç’º¤‡é])^’i}mÞUwï„n¥íT>ØGþ¦ž72÷ùñæß«UÁ!Õ.;oÒé©ÎIûkvʤúÈ >É*»;žfi[uÜSý;Ðí^ðr"Ð[d‹µ‰‰¡îgMžªÞüµ®Cët{d/Uè÷Û«x®O·µ ãñ©ú]9¼Ó‡^ CÅùÛÃjü3•™j·å2yKv<2ÚX)Ë^u2wúaÀîþºÇV]w—+ßlOýŸ½³}ŠâÈ㸂ÚÓ\í >¬Š$j¡¸+«¥¦ð…Ó:ÄSÔò ÁR9bT¼3QÉæ‚O âqg´yЀZ¨…18}‘òÙ”¥W©ð‚Ë™TùÎÿá¦{vv™ÝEØ¥—ÙïçÍÎôL÷Ìþfg>;=Ý=†ŠèÑ1°ÌqßÑÛÙÛä¥êß*óþú5‹i~=–A?tñ4 :è•ðZlL³þÌ÷S ¿÷®µG_Ì&þÎWv¦®rÕ·™&ºI©ÊË`¸àF±¥Ê-Z¯ n¿ÕÊtat×çj·èü9 Yµ£¶ì•}…þµZi~aBßMŸâ”Í-ÚŒ ÆšýÐ=[kS¬UtóÑaø§¹|*_Sï»l"›·áÚ¨öV7I *t“R“µéªäidî¤òùòçVþî.ù¾öèz-ÐmÔf>ó×d­Ñ{VïVÞ*Ÿ¥õV3º÷ûr¡Ñ.fùÅ5ŠknÄ)!šu¿!¢¹No[P褢‡Öâô±IƱؘzÓVÈuCõ§Ý|™¥²sðQd†›'…º©{•[Ó%d-Û…ô¿iÒKÐ+ö¿&dK¶%¯Oåog‘ÆŒØx>/mˆ·'”r§ò:‹?f/ tï÷õºi~´r@$™Ÿ”YQèÀú SGLW^šÆÛY»‹óF(ï^ù‚¥)ã¼ÊMóúÕ')˜ÐÍJ¨øÑvPmc—èú`,+-™lW^V2rß )Z„N\~÷”G[Æ)ÚW>oñûúÝ,?„@o¼=B€`ª;­WæVØ}œ¥Œ¤b|ËÐÚIÁ„nVj­ªê,B¶ 1,¼¬d=¤'$D‹Ð§òùõjò¦DCâHè†ïë#t³ü::oM­"Û3êlžæÞÊuØ2™Åú»R‡Õ‘IA»­™•º^I9ÆöA{Wª”\­–ï\¯¾Qu~{´#ݼ©Þ7©ž™ %Æ«{oÃ÷õºI~qBއl¹V„ÁÜ!ôˆ°aŽ‘åyGòš[fÞ1‡Ýž:ö±sKŸ¦$6ÕN4nJÂ&o6ÿ¤ B7+ÕYýur¢cé)¾æ…÷r“lggÕy7Ж0>Í](›EDs‹6#‚±f?tOAÇ€˜¡¹1ͺßÑ\§·-(tRQC –Èü¤ÌŠB„@èг<ÇC6á\+Â`îzDذÇ€˜¡‘~‰ ˆæ ÅeW4žŸw[Pè­­8¶Ä 臠ºxžÓ:ú¡KÜÐŃ‘âÄcÍ~è³(…c @¬à©ùAÍõG÷Á4Ð{:¹t ‡@,Qö¢KíÐʰ:¡@¹ïA D³Ð!ôÈ08¬oOuÅ Š)Ëy‚ ˆæQÆA4-Έ }&¥o‚,žõðå¹o.Þú1ÈŽ Þ™£MÞ¢*Á’Èܹ3ô˜Eýܒ̉Ðûß6á ÿtÉ«ëJ´.KÒqÓ•’´# Ç0}‘“Þùal~’÷_È!6ï®ÅXôC"Û½˜]Ū»–—]ºY„|&é Jq [Rª®bž^­& T!ÓWºÓ’f/:ë]þÌ[–´ˆ§Ô½çH‹¹I_c¹$tûxjÎ*·=eRÕåÍZÒHVP]€ñåÊéo }ÝSJOȆ¾p,˜ÌÛTúÅνSýÐ7òà¤ô±ÚÙùqR÷„^20Ðq¢$Ù¦…_è+ì,a†6[jc³ùÖ¸hl’:°Ôx6Æ¥ œR~ó¨…6Œx@èz$„αÍqú ÝZè+rÕ™ø#úò1þBàVfê½þäΫ÷õ¬ñÅηzOôC*tçšS4˜¼©¡ôû«´¾ ºÐ×QúãΧÝúR%:ƒ¯µL¶q7…ž IIíæ‹²%iHø…Nf°„Äwÿ+-rÑå…ÔiÖÙ0âÑ Z.Þ…PEó*§±÷ ]’–˜ ]I)ô-IÞ¿°ÚÎý^òú>IJ[š*¯¢žû´­vÐá_|v¡òhïúµKµÉ]”~Î'jèé_L³_ûõ }Íð„Þ¢óêÕOJ)Ñ™|µ›Rw…>Mζ>È4/üBoÏf)ï(3ùl:ymL ]¸Å2F<:^ Dô tWèéUUUùfâ–ÚÌ…ÎÒ—¹\.‡©Ð•✫øšI¼Ô>OY¼Ý_è[åÏIŸ4I:ÆW8)ßn•˜î¨ÿ^…n¾3¾T ôëÞ ²ïµºók”>7»=¯ù†æü  ýý®3›t†nð…³?FXèUr¶­– ÿU¼~¡“óqzRû$6yÃ*׌NzDåͲÚf³Í±aÄ£çã¬Jw…>Ҡ̽ke†?hÛÁE¼?XºOæÅ=fë=ëCê* ¿õ,yÒ±X¥T•ÈBdùgk7èæ·xG”ªö%ÛÏ?ž“̧„n¾3aùSÕ¡µ‡Ìì ô†ÿªƒºÝ§´ˆPìŽýJ§îþ§.ô»ôU˜~CYÔY EVè}mšÄ1&Ëen ¿Ðɇ,){¡<µˆMMèg•ÓúèZoQ¨LPÏÆí›ejK¦àõ_ÞGT¬¦j•ˆ #=¡‡úmÁ 67%Xzp¡³©ømì¾é8{î®Üv—Ë“.ãúÈ ý %Iµô:Ós*ר7ñ™á©zòÛ½ktAè_}Gs®t¼C×ÙEéL¡ÿûåB¼BßIÿwøiFΈîÖîœç?¹¬RðµÑ®©†Ã¾ …|MèÎÕÃ’ìŽK½E­Ù?4Ñî~VܤγZ˜âéõŽ´ôÉ¥JI‹Ô%'çç´%ºGgõ1^\ÇúïÛÙúÑév[ò”*­6þÏòZóɃ£ÇØS÷{ŸJ®)oO/?e&ô&þÓ(&¤Žýѳ©µ >š2nœ£0ÏxS¾;µ,xH|jªô³±R¯G £Àº°aÄCX<@ÌÝÿò+³,A¾0ŽzL6³,‚ ½Ž? –\èÙJÅ”zVI—ùdª•è9¡‹ÞÎfGKÒg¦_ñ2+#WkH:W<ˆR¡~éõ¹™Ð3÷Ð?¬”ý}Ç€G[¨ ]¾ÏPd?µ›=Íç³ËÛ>öù‘tFèg—«].«™¶ÑÞ48q?¿;©#ÓÇèµúýËõÒµmÖÅÉEùÝÃlOÑ×ÖäúйjÛ µùúÑBu%×ÞŽBW*oRê”öJŒöcqjŽ }nÊgç{©Ðgh'BO ÌoÈGÅ£õÀOPžhЦ¶ô¸Ð;^~ÉôÔ”ª!…^ÂæÆK.tvuWä|FïÝĦòŠ]å'òŽzσ&Þ:yŒ<÷'ÙëæånÙ®ÏΞs¤O”Þ¡·þŽž«`3ÜØéE_còJ–  ½™Òs[š§RúC°MÖԄاmɼZ¤‰uðòB·çêm•; )†ç…st'*m%–ó R¼RæXÚqùê6YÍÿbßKd𱙣.ôgãõD^GϻM„οŒäjcwð®yý¼¤ô¾6å³ó½Tè싺§ ˜ß†‹º­E‘}}ª©ÐM.¿¬W‘ÖüÿìûST×Às3,EE„…Q| ‹,h% %Aa}Œ6%ÈP@4Ä"£ñQQ¢6ø+Uh¨¨%E%qb¤)cªMŠQc'c[§ü°m'™ñ·þ½çqÏ=÷î},î>¼ß_XÎݽßsÏž=Ÿó=çûýS ¿„þ+5*7º‡íÙŽ°1ó,àq²Wâkh u Ùä óõ¶y}ˆF©¿—)ý_~hÐoü^$qfAkêDžBø˜½ýï¸iöÂ[úïŸ ¡‰‚2y¬ mº@ß’‹ýÅçåæŽ±`…JŽóîÇ39rè)ÇEd¡eëPõt‹á[âEþÜú-}µèË.¬¡³0æÊ(I%zß6¿Ÿ,4K@G…ÞÒ¶€»œ°Ú \T}AêV%l€]5g^/y¢DUŠÊG!Ð_ž½¯/ô‹¦¡ØnËÚÃzˆõqèZÃ/^¯²ü›SÉ8¦tw`|÷¨ƒÝT¯ÜèhÏ -d£W—¹9FN¿ NãM$9H ¸´cŽ–ìnÓú%kÂÖþáŸ>ÐÝ¢}þÕ3àõ—Ü™l¿ 2â˜Ç¡£…šl7ƒ¨©Êtä'8i=âìn?î<âì«+a:-Ž1±llϱYØ¡‘Þ/³zW BæÏiˆÃëR7¤}ø #ðt×â«A¤%ÙÛØ¡ï Èå¡Çš@GZøÐ‡ñeâËÓ ÅÆE…;uT)*]@ç…ø¤\Ã~¦~Ùé4`‘b»=,n}ð[¨á–/á§]køÅËAqlŸ¯ t…¬¨1*7:ÚOÁC9V–®\!@UÂÖâIú_A~ãaí'|ȹÖOèÅ¡Ãëþ —¨öÐçíó >èàœQÅ'6nœ0¬ ö".¢…ìT_è@'áذ@"{~ 6¾Œ™˜L5¡i"ÙÜiE_xzx(Ã{ +²²6ïy¥´ÇYÆ@'©1½w0)¯ %¥j½æ4Ý[j‘‘ȃ̗‚Ô5T)*­@§f¡Wý·H±ÝV·Ç§7l †[~ñÃLÞ]èZÃïVÙÌMJèq†åÆ@¯BóÏá*²|‹}ÞÐŒ"µ~“o¬’ídúúÉJÂz¼P›±@û ±_Ýùçúç’å<³@ÿxÿ9ØsEèy˜ÐA£Óöï7®‚k<¦jŽ ob‡tâ߆Ò±#5qkÓ>Ô}²$&.¡]Nvs¸IvUΜR8›È÷WI8{‰l ¬¥š¿`AŠôjLÆó©ðúåÍ|d¢{tTñ•^ =³;€IŠíös{Øs¢t­á³4 ës —\—ŒÇLœØF[å/ÅF{W¶ì[<Ö]tøD±È¼:OxG/Šz @_þëíVýØKíªú¸ô’ñÐ?üçßhÑ·ðÉôûF €ílwÆËþ_¡ó€b#” \ÖìÄÞE˜˜A—kðªö;Ü|¯µÊïT:6y¶ò•šýW:ÑŒÇ7ÑŽ´‰¼½Oèd¡çQCóÆŒl,ÜX®VÅW>z.¥¾°Œ*¶Û#ÌíaË‹t­á·•‹¬Ðz‡¤mq¾­ì¹å&@¯©•œìÑ(š¯¬òenrAåš ¤t0Þ½Ú‘¹Hy‰lÃ=Ч)ÓˆCÿ„íZ@ß×/¾ Bú#)¯Ü>¿Ÿ~õ«Õ£În5ÐOêÝ!۸ȉl3]—»Ä,ÂDÉãrÑ :e…è. ÿÞPÔn¤Ö!¿q‡t•f/= 9¤ô ìD @ü1y¹¯­j›Úz ã|&I ÆŠ3¥¥+‹¬¸¥ŸÊy»=ÂÒ¶¼@×~½\¿Þià×€?ì8¤è¹å&@î÷q6÷«åT4’¼ÇÈÂØ,"{¸Dá—Oå¬*¸(Ñ@Ÿû‘¼èÎýÞ9xñ÷fw`@ÿBl¢»Â‹W¦_ýRõÀ¶–S˜ùu€N3Å­¢XMæ°Jæ‹èåüwDç‹à~QÓ˜N÷Q|‚:níN Y¬|ŒwîH@ÏTjæûí©P€ž®zä­ÚªøÊGÐYÌÉ´êâ`Ž Ö…i1ų¤VζÛÚöøn¿¼pËíŸÍd2w  k ¿xÿ‘eúÐ0ldÛhÆåf@ô³M#Àí Fíó:f¿Ñ@?Ž‹Ï+Qg G?§¼GUœ•3¹@íjD‡?…ðƒW©üÇèâ¬`ãﮀÛ_Q°ëI{»ÑÕM)j 'ø$ §ss?s ¯ Zó™M˜¸‚·Ðå”k»ª{çP•ÔÓo²óç³4¢ÊyF·&’ä't€ÞÊiþ" —“ZK_ùh:ñÜc=À˜âÈú Ð7 S¶ÅyÛ­ºÖð‹ËIÑC û°?¼c«q¹9Љ̒3xÄ8’jûTvYeJ Ex»Á®Tõ!˜§9Ç(@³“·M èÿÚgÐÁÖðÖEΠ@Gîn„ðú7Fï-]zÏàrqð¹x…嘼²=Oú C ¨½2Ê)¯RUmÁÉ/›·,æ7 ×ïq—‘#‡ûë-Px¹«€Ž'MÜìà èyè¾$iÛ@_ù¨úa¶à`1À$ÅôØo;=Äò8t­á÷¦œ‚•#é'–Yƒ »Š€a¹1Ð}÷ÏnÅô¾#Yf* S蛹NŠ–ùn²rP‡éž ¸ï¨B/ÞIÍôM èßÁ£–ý³áGê|/·áÔ€®<}wãÒžß5Ôh‡îF· Q> IDAT qÃTðºÌ"‰›>E¼Ù!}@&²ÐãpÔB’DyY¬ tðv×üÝ ˆ‰¯³/ 1ÿ¦òèFv¯ìJA¤Á¡øFOꥭí€Þ5»íM=UQ t¥ìˆ1Åv{Øb]í÷¤1üÊÁ™ñR–,ÝÃYÞdwÒ+7z›\'‚k¹L3“*»Úß·Ê 87ðòIÅ#Ò·ór0éSA€fÿE±à 4<0sKtb¿ãMM ƒ6 H < &¢È…ïÀyÙ»Þïãt*êW-aöX2M=§ tw+= Õ è`h3ëfºªbè‹cL±Ý¶Ø@rd~A€š¹®›x¿t½Ð}x³1H¿ÜÌË}0UJÆØ(“Ω^­È¹yL:ÈÒáÈ…ñê@t$§²ÙΑSl É:µë!Éû†Óÿ®Ëtþroî¸êLË®Ô:+ýYi.Ïãzi;DÉÄ9tƒIÕÁ#.WúÕÖFéj’ø¥¦ª²cVù³Ž9‹ºñÀ= 0™\èòlIиVV‘ž’ZY<¬¯*F€ž×kŠíö0”¯'lä…[ÞšÉ-t ¿Ènïð8 {‰T£ÐÁµxºù­Wn¶6œ³Îé(ÌkâGñ¶²ŠL—'÷Ä3þS#tˆåž%uaðs6xËÅQ:«¨:RË„AæÎ˜ªäžDZ­s¾Ž-ÓäH|JZz…weì)¶ÛÃH¶ÿô‘ý£·sÿùZ°F™ŽãÁ´ á´{1;›î?ô‹'·VÍ='ãz ~¦±±ñµ~³g¯ý£-KzAßn}–Þ êé Ù³7×Þ¢o˳;[}ÿ>^€õª¦4aÖN²ùO|ñFßz‡ðªøà.ô‚¾Ýú,½37KFš t/dQžÏŽ{?²ä–|¿’+è°aod<)úî×—ÀeèþRUÁi³_Èw[Ü7>Œlˆhüò»kÓî§~·Þ.¿@/ €tÖÈ5LRÓêk2@/†TŠj0¶fâ>>«1Óßâ` Dô ÐQ2vÌ¡ëÖÊ:€2—“Á´~领¹9‡žD²ôP£+M LÛs‘˜Ö'º—LÒZ€&Õû¢.: РР´Æ¹Èf\o=+êèE‹Ñ#@´´QÓÆ„—]Ó²gz.ÌÑ[@ æÐ-ÀºyãÒà` 3‡h2H ›ÇJqæ¹9‡^+RKo-²©iŠ`ZßèE0¬U† t¯³“Ö4‰Ntw¹à6ÐH–˜¶‹Kèzqxz* G4Õ¼™þ= ÂRqŽÒaݼVæÐ”¹„œ¤¦õKE0ÌÍ9ôl$’¥·€]ij`Úž‹ÔÀ´>p0нd’Ö4©Þu1Ð¥5ÎE6ãzëYÌ@/ŠXŒj¤¥"˜6&¼ìš–=“p0ÐsÁ`ŽÞZ0‡næÐÍ—9t@“Aݪü§$Þí%Ë+«ô¥­5г Pè¥ôÏû£Hl½Müß[L$–»cÿe>|h²÷ýh‰=Ð6ÿ¡{¡>w;%w¹° Yú5&’Zmbè°Èc¯RØèÞ¨H`Ã'uçv¿ÊÚ}ë­g1wMžé¶@i=£G€iiÓq Ïù•ÖîÛ˜ð²kZöL¢è^z¹`0Go-Ô,,ó¬ÅÎóÐ͗硚 j ô»ï±vßX)μR<½ôjEjé- E65ML롆µÊƒîuvÒZ€&щ‚îc¨ r”?JÿÒûj€»F²:޳®r³µû¶‹KèzqôP#Óq 6Ï¡9MË„ ôêxœ5‹5ÔÌ¡?Ç:–ÑÝ|ÔÁ@g ÐôݪÛtäåæ:h’é8®äHwÚ»kÂiÎD½B==!z ¨Á%6šÏKFš t/Džø¥ªüè`¡§·l¥ Ð8+×0©ã@m~|j}M†3‘@/†TŠj0‡nŸjÞL‹ƒa©8€@wÍ7ý*k÷9tóZ™CPærRÉ‘~ïQkw­_º8 ss=‰dé- FWš˜¶ç"50­O t/™¤µMª÷E] t@ €{•€@à®q%Ù¶[|—{o=‹¹èE‹Ñ#@´´é8P›çÐÇ„—]Ó²gz.ÌÑ[@ 5sè6¯ÇºyãÒà` 3‡h2¨%Ðwî¾ÇÚ}c¥8óÜœC¯©¥·€ÙÔ4E0­ot„"Ö*Cº×ÙIkšD' ºÁú»Ü? €*O{Nz8ç…oQä÷" ÌÖqœÛ+?gí¾ Ÿâ<4îWNzà÷tPãlxJÇ~ݯ´vßÞ}ç g¢ñßlCzuüÁ:Z hqB^"ÐM{S^çL4ìróQ½]„·è«î Б×'çÐ t@“S/ý]É‘Þiï®] ŸçL$Ћ ÔóW>rôàÿ;M@Eʼn`“‹7Å…8µº¸y—;ck@ íýü'(tÎþç¿tèý­™be½(R—è, ÆæÐÍcl͸º³S-z€±5@5sè÷úU:òJÂ:€2w^þ¡äH¿ömkwmJ.s&èED†é- ÆeÖ41îìûÔÀ´s2àâ5ôä Z Фîõ(w¹Pö[€2ñÔo©tî:§ä"Û÷-[ûËVÜ&Ћ"ög: ¨q^â:Ôæ9ô)áe×´á# =|‡»Ü5ÔÌ¡ßÏÂ2XÆ9i`@Y»"ê8Ð;¿r7Ž¼ÜœC¯%ÐE†/½GŒ¿;|—µÜÍú‹×Ð;ÿFkšœýwŒ»Ü({æïrß!2³ÒÃVâá¹ûÝÞz<éiʬ?Ðïõ}ÿ6›ZñÍþÂëc¿ùt•ïßþËnýkTú›æ¿:°í®J¿jÓ“{9•gmÿ¸ÿ©âþ„ºûü/-óõ·ÜþÑO>óY³eXa'‹÷“ýé¶ÍU›úñÿØ;óØ(Î+€ÏŽÿØ÷íáµ f×l "aÓ „1ò©•0—Àœ4ÐL¹*•cŒEŒårA-IÛE”T‰z¨HD"4¢Ð*iÕ H­ªV=þïûf¾¹ã™Íú“,Ï|;3ïÛ7oÞï;Þ›­SªNή˜‘,¾?/1n£PÖŒë`ýÚ0±øj³ÏL¢•'å"f¸P—à#÷«œ‹Öùîa¶ÝDpQyøðÚUâÞ¡Áðb†ý…;DúÆÓ„œZFÈ»»G ôªšÅ>2SlbuÀJwJsT"T@o“ŽŠÞÎéƒuÜzhÙ¨Ùc÷#ÙåiN®m#Ý“tx›d9{¥º <«ÚõØÅ/ü KÒZªø¾mÛGc´„¾P¶¨”á3£C´ô¤@o.—Žç›‹Öøîa¶ÝDp{±T5)õõúÝO‰ ôgHÍù—g]¬¼d;¤w—Ôí"ÿ<ôfÉF‘ÈÁ½XáÌiøoŽæ°nPîD«kém}ƒ/\¸ ô£¼–šýÔd”_°îÌöP ¶tOR‚ºÓµ=g¦ç¡=6(wdWÏ™JÔHÁ×¾ð“šGÙaà~ÎCÿûß¾ 1e´¿¼`Qµ5ýgF‡híI W—”ôhê:)åóÔ–Rò9­ñÝÃl»‰à­šÖ¶‹>S˜~())áíþ`–ßþ>Ê% ã±ŸÐÿ¯=Oþl7¤ueÚñÑ9Ô¼_&°RÔ£ `( Ð[¨CÃQPýn7rì¨êqœs[B.}y}Üæ[íãp•'qXpÐ+-¤i¤{’Ð]å ßö;Mx´Ç $L/R,qí+gMzCÖç¡ïÀg|&]¾éCÓ;ªýÌÄ!ZzRè›õ—¯ÄGXÀéã\Üjw"Z织ÙvÁpCh =ü6;.l ô§§>ð7ÐBj~%ý89û‚°±‡|:Â<ô8@ú˜ýþx^̵Qt Ÿl7÷b_SYl©^"w:W€ô1+kâuèÍ“…Û4ßbŸv²ÙlYkŠÞh!M#Ý“´¼ WÜ T\`]æE—D2è½K}kâí!ƒWÔgП•íhºaºÜè-=©ÐSˆÜ¹âf]à˜Ñ:ß=̶›¦U ŪËÊô‚=Ð}‡Î€~iYöÍàÛDU¾Àê/yéµwä)÷!þ?M>ÐÛqtÞÙ…# ?< Ýhv|¾bMh{RTÇ€>u7äYè¥Ò|ZT=—í¥bó]zgS@^­L0ý>·  <¡ÌÂñBiéš$® ®¬·Ðÿ-×XöµêÜúÖ~ôïѻ؀Ÿ;džÐÂ"(÷IÓ¾¬‹¥G3*c½FÞ!ÍgF‡héI-€¾ ¦3¤mðÝÃl»‰à#ØvV³Ÿ´Ìú¥›¤æzÐôn  ³rŸÙ\rÖ{ÿJ7åÞHuÀ{±Ž“å^Ÿ+Œ,n†yM›oE˜ëlÉǺÒ2ùÙÚW>T¾_Š99Í´1]7S1Š6€BéÃ>€ i{âj…ô€)l¬„WÈú(âÛEK]újº|r®L0ý>·A5ãƒOãw¼PBÚFº&‰›0Sú6Ýôÿs¯ˆ5‡CN¹öµG3;&dõ³]œøðð&X•íˆOÉ»Vè‡ÐF‡håI­€¾ ”SçHZÑß=̶›¬Ú×7T üüq_}âCç8W•[Ò!Z ¿üþñò]ÛµÿYiM »T]÷–jé~N˜;)Âñ{…]˜ì•ÉÜeuÌBZóäƒX°¼£ÓLÎW8•QTªüf”mná!?±B3åSpœ4-Ûy^Ë)w)›Ê©Y©Ý§¥ÜmÛ°À §i¤k’pÌ>øCióÀqüâ¸|¡ìlý^\:(åk ô±(E*Ê6ê mtˆžÔè\Ç÷å̧c ü0mðÝÃm»`áëT;ºO¢Üï>CÎÚ$¢i€þS:xÿË­‘¥­-anv™:dE……j¾S 8œñÖe,Édd!˜óã4X’u­rðÃxw-M6ˆ ³:ÎN3)JèìЕåñD>ð;9Ði*}lÉÖæ¥xLC–ó<5 òë97¾ª‹¢I!˜~_tW—ŒGÒH×$iÊd©ÛŒþ'¾¹êðÖ4ÛÖq }„å€ „¯è—LÑÜ“Ú]Uru¾ÄT´Áw·í6‚¹7TÖ™ô«/‘³oýÍ‹{jÈ©_þfD@ŸÉòf°¨HQQ.º·aÇ­Å;FfÑü›v‘ÌÈjªÓVÛ'Y/,,[/æ&Ð G§Ù¶I2ŠnUŠÅt¼D@êîçÔ@§Þ”•ÜÅ\–ìþÎã\º¬óùûMª8Z:Û3Õ3eØ4ÒeI¬;ÃKiC½I)¹öþ`†X’ŸÞY:)»>SrÂÜ’kÔ:DsOêèèha©CÑ΀nßv Á =ÝMs¹ úMBîHAoé§ÜƒÁYXFnŽè‰@»ÇQEQ¼èrN¢þ6ˆ•Í16Qˆd=–æRa='D.l“gH ŸæèeØ–¶M'ö›éÆ q•E t®7—yË’\v—­!ávx ôÅ9uÊ$ÎV w(]›“÷E¹õÿÑÿ—@7þ|ª€þ“Gcðf™BÕÊÍNcnÞ!šzRG@ éWImD;zš¶› –qù\&\!ä¯ÂŽ!(ÎèÁà'„|Ûæš'¾´×l“cP¸Ž)j—¸Õ¢š-]‚ãpFæZE£óÄùÙÞ»ÃùiŽ€Þ‰÷´X ά¤÷“vÚcª×½µš‡È¤î»{þMµ‹²&åu^=Q P™ €w,o~x-@ëÍtôäCÛ†®ô¦î½ûè«ÑL[C GF¹¨€>² å.=ʘ¤­UÈã(Ž;d€¢Á!šyRG@oFM'›Švtû¶[f¶SÛéèOýÀ@w÷iòꥡý[5äm›Å¥K[+gI5B¢C…¬¨ïÉŸެC]¶ŠdîR4|Žöé[÷Õk.êà4G@§«±0caýŽyqàÑ8éô}œ-Ъ€~/¼Pw/žÌê1z#ð›§@§qÞ°h]] ¿òò¼{k‘§@¯CKÎÙ.n?ŽCD¸1íms\£jzdVñK’ݘ}Ž*•b»þ»›8DOêèõˆU~•cÑ΀nÛv+Áóëz&— ik׃»¯Ÿ;XCß}þǬj¥ÝñéòÐQ?ìøôÝ^U’¢Xâð 5z±ú†Hf¸ÎMXÁ‰„¥/ëk;šÒiŽ€Îí’×¹!aå§OzO­ôDXÂêÀÍûYÌó#RŠ©·@§y…b õ–Ÿkè…Ès¶º”ª–£y: å ¶Ñ/"ÿÕúôQ.*üŽðJ‹&é*ârB“×åyê¾·´ÓÖ!õg¦ÑàI}=]€½æ\´3 ÛµÝN°øå}™ôƒ¿'dSz ?”–Î7ž"ŸY_òÖ²e¶¿ÕP©íáµSü8 t‘òÅpݨ§ ‘yÍÉy¯Âi΀Îmßâ»Àñ´+·•‡ðлToêß̼yPª"Pðйsâ Y|'Z€‡¿åç!Ðû‹q4qˆíì(QuºÜ{=ñÓQ|§Éx”û°Êò'ÿtëÒÒ/šÀcn{Á³®¤{&QçIM€®º¼X6#úC«ô­°í èvm·Œ¥Z^ϵú¥h4¯>ñ"›t·úg„ˆCôÏÉ•«6×Üý±­bÃZ ‡uŠB¥îuDæþ)ùlÒkóPNst®jö‚xmWŠÎÍD9;IqÍ /ÉG"ÅxÄ"Õ¨¼]Á™U¥ ¢M(ØÏik«ôŽ•u{Ïì]NoÈïâÐ{Ñ>«Tnõuiû·<„¦f‚5ÝoEEÜUĘ>õËÂ!j=© ÓXùp¿¡6¢Ý®ív‚9!i†wôå¿Þè“W¿n"äDZ #öÏžŸ¼z‡Ø-¡§‹r¿†Ê)J)°™rEQQõÜyR|‹¾™Û›vÑìõXbh§9ºTš„à»B“u³uj;/¯"da™­ÓŽ›.Î!+±þ\½ ípòaµ » ïä¹øî×q g ÐÏ©b‚u? –Æ!6é_åjt:›Ûl U+Ñ΀n×vSÁùyÙ)[N8S~>õwÒèÛ.ýêEBÈ2üû`Öð^¨zç´àf ´Š*W#v "Óù ±O0ÔÓlPµ¶Å誴Æ5X—â²µøèSÿÏÞ¹UqÝq|Yh9ë̅˽<‚Ñ€„ hê¤ã Pñ1QC$Ò˜Vヨµ>›Ö¤FEbtœ’阵ñ1M|$-ñÁTlkj±3¡Š™L[MÒ¦üݳ÷µ{/»{/z÷î¹{¾Ÿ¸ìÝ»¿³çñûž³{~çLP%i$‚ÞH3¢jÞ/É)9t„^µ‰iAß¼CAW?¸TM&+ ÌmüßÛ!†zR AFÞ¸<¡o¦#t£´kâPžÐ?á!A?yDz'3ìÂ2û?]]]Ð|õýp 4à)Qµ —'ŠÜ3!]ɨM*EØà[3¿·2—Š/ûŽ$zöˆìg úl1ðphVèþ·Ê;ôË„ªzŸNXûý¹D±Å÷ñ'‰ÄÑÆ ¯ ng…úÛþ©œ‚gywó^BôœgZУÆ"†ãп8‹þZ:!Oú=Ž•_4¢‘'Õô\¢»F±¾éÈÝ(í†ëTó¢ò"|‡Î€ ›AÓƒ[Þî]öÕOñ¾yQ2ê$° ¦¼]éXmeNS²ßé9ÙÏ"¡;»Æ´¨íô­Ôà›Þ‹ªÙGt«´²ˆˆ;½Ÿ^WE¨p#èòš‰O}{P „yä´(!œQç†Ô½‹-v¦1[¿{ï‡>]d¥áwKwb`eHÀÿÕ‡¾†ÖrˆžTSЇeñÐÈMG(èi×0|PY n‘øÒXÐ;O¬´¡ wÜ5˜åNÇÓ-êÿ3èhº!(£ÆÓ†çIa)íRyVsÑPfyÓùåþ®•g‹¾ˆ~&$Ô××/ 'èY´)KCÎzjåO:‚.§\ôÄÎO¢gAέôFZµäbhÇ×xô„Aª*…€ãr{}ÂBòM[:/ºû¡3LÃ[»Æf?ô%T¢+¼Íÿ¤µ®¾¾JÇ!xR-A—¯^jÒy-Ó½}·®ƒ7L»–áJzžÆµƒS"ôi£ Ý0}Q¶hö°†x¦âª2j± ºnÚ5 ° y©™"U_$ÌZîß4ÙQГ™®#‚ß¿ˆ5aöCgÓÁs9ËmA/#UhL€¾Ó†gqÌ º©‚Îϋіˆ&]|Üç(±Ù´uvÅYfš$èæ:x.=ówìÖ¢IÏ*ï€hq½¢›ÊpØÚ½»·!è¦;ø0‚ÞUbCAÚ<á5&³F €(ÂMúTîãУ+èåyyÛãÇÁïÈËË ýÖîy‹C@Ð㓹vWnGA'ÄÊ]ŽûJ?ïxîâÐ!èðDׯþÍÉ2üw³âF|å%=N½äØ¿jàäà´w„ó¯ÙqR\ ª¾@ØA‡ @ŒX\”…Lt€méüïÿø¸Q–·O=ÑÝ…šA7ƒÖ›(Y¸á6âЭ'îÂÖìGÍõî·l(è™[€#¸‰C/%:ÐJ‚8t@œsCú'w:e>³Ië–n¡&BÐM ½ººe 7ܺ<°šëÿDXMtÆŽïÐWGÑà‰š?,Ä,w îAØÄ ›÷!`_z8yɶˆá°µ/N`Åmº)4ÝAÉÀ 7¤f>n”å8ôn n×j:O¬´¡ wÜÅ,w¸›8ô*,, è‘6"×Ü–¦ñq£9•CÐ.öŒCA€#:o~…L°|txk¹[/èçìøýè×(Z´¹y(Š^ø™4 ‚n5«¥WP-æýÝÚPÐ÷KÒ~”-t›±À‘AºÌ°e:ž8yä·œÜi-»Iû[Å!ÔDº ”;V‚²€ðŠ …’“WU¿fCAO.ž@§*þt`myÈAØ–ŽŸòq£;[›ñ“¨‰t3hmEÀ ˆCg€ßH/¡&ZÌ—§ß²¡ gJ–Š‚n7f³iCºõ¼8t@œ³Rú„“;ýÞRf“vZz5Ñbì‡Þ^]ÝŽ²€Þ;„<°šgÿ<°š¤36ôäU«P´xbè+ í(耠‹,?…<t€}¹ÂÉK¶Q Ïr?>‹¹CÐM¡© e7’ÞáãFYŽC¿$ÁíZMû_WÚPÐ; :P¶ð7qè,¯‡8të¹"m´¡ #ž8Ë‹ ×ÎÌlÚ°RœõØ3}Œ$AÙÀ í­G&XÍ/ ,æmé\zfsE@«ÿø—_¼{äôŸ78D”¶i¥f÷»Yú—_xõ¾æ1ÄVЇž‘ü‚þì'’´»Z’¤sð’œaAß“èKÓZ­ogRÝòHl}Q5]e~ó—“‚û!©D©åºg™LÕ–Œwec‚iž©ËHI]¶\Ýp…åËÜβ‰×ŒÅ’_nïŸîʰo—rèà†l§Ó„Œ 1õãvU«:µ!•Œ€3¼R€I/y5ðEš‚¾'þ8ZgÈ¥vuY#úN.NŠ@ÐCS^Ð zÇUÉ/è%«¥Š™É_¶JÒG&è.iìTÔ|ZtåYNšÀiè¹§;(º¼½ÂÂ=±ôµDÕtjÓäœ[–%÷+ʃN»L”Z®–©ÔÌñÕ}çs ¼Xï3àZx>´4Ý×ÞÅêü. m‘ïжÇü×)%¦š2ô¤<AŽë}yì•FÒV7ÐON8_D}Ynî›AǶÉ*ïž7'CÖݽš¶Õ®Nâ1¯ÊÍpüXÙEþfJd'–¤•šÉ¹¹¹b¼ úñŸKAI’¼»ÃµJ»?Ag4˜“ºDqvrò·h5,êý˜‰ê¼8BøÕníOKx¸çhãàÁ˜÷dK®½JÓ¡ýb’û™\±h{]uÞ|¢ªåºg™ëè²i+è7lý#V™’hµÙ4¬Qî7<ä;¶“ö­ú›)Z®(†ÔÒD’¬qk~H]†ëoºåò(ÛüÐ&GtK£·©éÙ )„´¨ºSˆÉ‚~¡)«Ý̦íé½BñJAãö-½Žèú"ª–SC¯0„zŽçС•c†ñ W§aÑô fÉýÜ™ô"óõÎ’{ ×tS“ß‚ÞÑú®Tñ{¿ ä7=.IW ~•™Ÿ‚¾žñòß'¨Ô*g²ÕÿÏ£-ææuÓù6íð~|ƒf¡òLwKUËuÏ2—M„ËÏ,j×2è3 Ð2Éo“?L4©mETÛ“|‡&éŠ%tê×ÃÔÕ ÑWÛÅ)ߥž£}馚R(uüåßI.“}aÅ%>å8ô‹gca&Ä+©Èõ‰†¾HCГÎú®„lèm"ÈÕiX4f !‰ÞOý4ÞÞûh}´SFÐOÞ×S¸Ø úçÒÿÙ»þ§*®+® ²g™yÞÐ"´ À¾¨huâ ‹QÑ$dZH+`«¢VS1¥ëS"ÐØR­ÕÍH‡IÓIË8¦“ä·2uÊOí8ã¯ÓNgò[ÿ‡Þ»÷îÞ»»g÷=}<ó ËÝûöž½_ÎçœsϹ«½ræW ßývû«¦½æþ£u§O¯›—€ÞP®›y%Ž›Äè+´LÇ™É*"3KÉK§†ôÛ2~]°ß¬!zª9Ë]kùJ]‘ý*Nmžýª ò/Wžx×p¨L±¢q¯¢R5Q'ž°Ëé†Ëäï7d¢Ô°¢¹Pó±)I>„@ÿ¯ƒJ{cyè[”]ÏÑuSá9W°vÁzJòÐRI"‚zË,ž²ô½’Ü%æq±³ ‹¨CZô&² &ØUœ€õ1¼R·ê\¸ñô?üòÏé è_ýãGªjºI?Õ´î?J‡îèrT\3Ì» äªß©„@)==9s DnÖR7pW*cÏÄÜÆŽvÖ@ T  ±i{ü®ô¼Q’ A5–M#Ù >t²0Ìd#Ž›ýâ?CÅãçfÇ®ä)J°œ²uª‚´P×íún«vÚE7êO¬K§ ×¸¹_Ò.:‰°ÞbÎr·Zþ™ð]ürb[Ÿv@¿|°B¿hàÙõÜ%†¥F¥yC,èlò§ ÊãwgQÕAš4 ïM^€’÷ÓÐ7B]úË3æŽ@Æ‹ è©$è€m?ÂS!€> 9UÛ]muH‹ž´“¨"q¡_lp{A.7pn¼}~ä¡;}Ý;Ú÷Þ˜e@Ÿ2ƒÞ»M@× îÎá7{³ÝýRžù.Ôoš%Í& Vò²íÎ)©èÞΰ€'AGÉìqFeMÏÆ¬€þA7u f„v~èönNV±™¥«ÒÒéXcÜ¢Ap|S '*f¹K-i$èwü]ý±¦f “ÑÊ©çeט‘Š¥’ú~&ù,¦˜‘2`5\ó±)UöbÉßD–P›¿€þùï¿~1]¦-ž«ÿùîÃTºM* §¦íD¤÷¥65 Y„í¡g½üÐBqL6Q‡´èIw$a—‹­³R!:(7 Ðÿ©iw½ÜŸ}V=]@聾 S…Ô¡ÓÅ{.X¢‡+ÇÔ1ŠÁ¥ýhî€"u#EýU4°RwÄ,Ó£×÷×Ò§ôq@çäDh¢¢uÒˆ«ÇaI ú„Ü‹8Ü4& ‡ÉH‡ê(£ÅDÈˆÐøNîor¾›ƒU„j¾E£í¬€~Ðt\‚!‘¢9 ¬U-€ŽÔò™†:S6ÏlfîOcƒ +‘¢”Ò7¯›¹i—Y¼Î€Pë¨&ÒècS…Lo<¥ïg@y¦Ï€®&ÿYyèéL©ø6‹C* ºB0’5u{Ë" Ð%ªpÎX»¨CZô¤+ˆ"(€ÕiÇ27Þ€~v÷/æ! ?Õ´¿yþ ºZ& ÿ† ÷)èÆyÏAîOjZu×M€~¼ÀЉêçC ßd½Oªk[Ïò ? ÍHË¢6r>šßÎRžÐŒ =/«¢µ9t€|³¥ç3–t11 §ðws²êJÒÒ™’R?²ÉÃã\@RíCÌr¼–Ï4AƒSnÖ\ÏÏk¬ñ; ¯‰hz?á"⼤QôãEsEYhÍ€¹m§ªm¸°˜­¦$­T2Ø3Ë!§LmK›´µE@_„zD>[äÍ„²ÈÐêmÎynuH‹žtØ ÑÓUÿ¤Ê(ž±,q“ (nfJÕœz5±Ï¿~ô³å¡Óó¢Ä(ná·ó¹}LzN™dn0Ç~›; ¯h5ý#tëæmQUõ&yþE蕆¹£vÖ–é¹½¡2×i¬Ã}Åê« +ú¨dR¯ÛÒßÎBìws°šÔÒ9d´Áz"ü>¶Ñ#f9ZËoº0t‚Êú±í\ºÚBz5ÈìÏUf¸™¾=VˆÍµ) &ôV)]‡î Õû×”!‚ ŒZV[Ÿºè‹€î; S£¦v¢¬câl~4‘,òôɰsKÔ!ê=©—ƒ¥µ¸ó²ÁHGvå&8ï–±úò÷ˆ}þ~¾Ç!€Þ/9Cö®Îd=Ç)–‚vC®€ÞL­ÃNɸ®’Æo„ܼĀ·EL¨ÇVÆè¬1 O­ì*–bTÖilÚ(÷l€ÎMÃvóUö³@däݬ&·t(y§ÊÆú" .;˜ÓIߢ•ÔV¤–ï´šô´Þ"Wo’USà››ŸEæž‹rt?b®v¦¼!EsB=dØ uìŽï`ÔðŒù×ÿ?`“ùßñTøè_¾÷4Ùªµ&4£Mçϧ¾öÊçsj¡7D«ZG æD²ÈÐˈ9¯tÛ Q‡´èEÛ¤@Ò( ÅžbåfúÃÓÚ·ï&üÁG%ô@‚U¾”õ\“‰Ø¦Í|ß=(ŽÅ–罕i–«Ò8ìcÀÛÌKJ%á¯=9f[.w3âêA,u)wÛôÓ_ß·z³é´ájÄ9öìÝì¬&¹tÖ›YÐw¤öÙðÒ,wÖòŸè©eW8Ž–:¥Ù£Ñ¬ØÛûü‡oHã{‹¹>¢¹ b‹‡øÑÒ}¤kNŒÄF/@ÁÚã>6e¨ ‡Å»@¡#~ú4ÒÖ 1s².¥™?'o†€žÎyè)ü|* èÑóܲÈ"w@¥˜Wm…¨¨CZô ÂÌQãz-šjDì|7Þ€þ¿/~7¯ýÌiíöŽ„õ—kÚòézŽ ô†XÏ­ewÒn÷jw@ïi7üá÷'éÿDðwË-ÜaÀÛ&}‹Å›à!ôìíFúwïZœÚñúy¿ЇL@ß`tìÝì¬&»tZÙ·J.« •,›ÈíqÎr[­ÐFb¡/ˆ²Úׯ†LÕë´ú×kñ¢9 %½dÍUßi |øI(õ~6ÅýŠb'©Ù8Í£m1ÝB3ÝC?®gb©þå¡ß3•Iz yè.‹ @w<~/Yß{Ú°‹¨CZtç¾\ŠÆb¢»tÛ]hvn¼ýîüJ[ûò×Úíß&®?ý<ô|‚}«%Zié¹€äDD½Òü>ÊèEŽžÊ^èÃr à¯Âr(Ú6€ý«+Ñc“Ö±× |èm.€Ž½›Õ¤uá=7#‡[2©Ç(Wg4È,ÒJFF-Z+ÔjœõBèußt³™âÝ"yÐ ñ¢ÔÓh-@•”ßx„Ù•‘µD· ùÛ”¾7˜cîíÉ€ëñTúíï/ «GN¤- ¡}š.€NÓ”@¹ú*º©æWvuH‹®ÜgKvhÚZ‘Ó+ëàfAå¡?Õ´wpòø8ˣݻMÐK‘œaÑsAé„­Ð—ŠŠz;¶®§qæá¨ôå§½å èý&E+/û«$ªeÇs%ôR·|h‰Õi;·¶êauÛmÆ¿‚ÖJ Há qß?ˆû€-ÆÇ’lˆ* E)§'dÞ]·¬Ð‘}¯^87\M7}nй8ûU¢ÓéDäa¨¨ho/ýéÃÐÓ˜~ð_ž›4 ÇÆäqz–@¹:ý¦b…35už-:¸—l{ô`™\q¨Œú6n¼ýOÚ_æ ¿q[ôoœ=«NÐå$…Köž«’Ät)ô°èWÅnKS'ç¸on¢L)šôôq4ÑM=ðÍO„c@ÞªcžåĀ޽›Õ$=¾DšßÜf¹½V h‹äfû´w]ožeìMH²|~¤(Õ4A¦ãÆôV÷,ÖT£|¨Ì€m~¤Ã±¥‹€¾ôŠs]<°ÙKá{è4§‰ûÁDÚ¢í‘LžBûqɪ~¼´-háÆÐ×ýü‡óÐÿ¨% èÞ„úIÒÕ#&8(ùÖžkÊ=œõ$¿Ë=,ÃÜ9Þ›§ÎÇß*I°~Ž€ ·J(ôPÅêö9f=Z.fIî‰y7«I-K T‡ý«¼bcÉ«–Ÿ6³©~_šm;T§ñâÀVãz” ìˆ"îó̃¥˜jÈ4ÙlÙ(¯ï‘&ác_›"CNæylÐ=õ€~ l@*÷vzÊ"Ð/‚”+îjéLЛá]ã*ý˜B:-žý~•êrùÈo§®)]îhûNH½ ¸$¨ÅjWöòAý@e6f¹Ÿ¬.·âÝÎ=SŒôë[¢îûíi#ÔøËaýl‚‰W¹Ÿ™W¯[úŒÊJ÷úò©‚¼Ç+’òöRË©úIÉoqmpô*¦NåŽa ©;~2®›J-ñFßÉY~ÑÍ–ª¦†MAokª »½µ3öäÒLd³çWr#Ý{üu–Û=îÞ½0-§Š8‡G%Sébâ¬=Îrz@Šû¨t»Á¬ã¹z­§g­%è½4z©0^±ÐIgÝl€¼¾Bþã E!è¡y MêIò϶Hgàªs÷?ÁçœûŸ)þ*ýx ÑçRë×:ýœ=cÜeHso*»‚t¼¦ºgš»óˆ|ÑÿVÛŸ• 8Ò]²ª†NŒ—Ó 5R'ã–¯ë­Î0ν: ú ñ 6†¦föC¿*¶"èÊ8yµfi.º¤Ø>6¢-Rt:ô‘|D¯bêTîÖº9F=è\ôà¬=A©÷Ì'씚‚Þ÷Ùf zqqÿPýn«w"­2´ä6(ÇÒ“Ó<Óèçy=Ÿ+雼ÛNp3ä>Vžwë~Ù“PKÐù±éÊå¥+Üoe‚v<ìð[”!ϾG#è¡y IjT‚Î/´)¿ÚvJë*YCnšÒ3©'M uÙ>þGt¾åÚ¶15t;IYÇC1~þF'çëZ«Å:GWåðâîØŒ¨„ÌO!MQjÔ÷V¼{SÅA}~艙wŠ‹Ëyè‚Î'*V­ðãȶHEÐíoT2# ºÊµïP½×7‡zª¨Õª©‰ è×Åôa‡Î,·“ávfçaµ¹æçÈÀ™+½@_?Ë2üB§ãlø\ï*÷mŽÒt²œ¾ƒwžªµqdÔÝÕÍG!è$iy’ÀÙj=£ùJ)dºѕB§ãmŽ#Ê.†ÑzhÞB’ ó‡¶¦‘x² Ù56`·…°WéjêJ•G%_Ÿœ\§Kðž©j-ÆJÂQ<ã˜Ý­E˜YÐu7¤ôpœº%Ժ꩗Bµ5³èz8HX>êc#ŸM\¦iÓöý„z…N½Ý錹+Šž†´Ñétr, zvvlãkn÷®þ9~—˜Š•uWÙȨ™ýÐ?)þ Á]Ð騽ØîÑ -A?WaAA/Û´)Ö{½ÒN½ JF„ñÀl0ã‡~~èt AÿÍ«ïYPÐ#ø¡ è‰È2)Å´iK0A·$ÖôC‡ Àç~ý[FrÚlÞ¤ý¥îZ"]*NŸ®@ÝÀ e(Tà·Ì|Ù‚‚ÎW@Ï S•ø‚:˜n‡ … èËÒ¿óOldÔÌǧÎûî9´DºìÛ‡:€à‡nâx|*Ã?ÞÝ‚‚ž-ŠÙ¨[ èc ™6mðC7žŸÃàlÿÀHNW=kÚ¤½/¾ƒ–h0ÖôCï›9³u 3¼se`4?øÊÀhÞ/ZPÐù-[PµX¢ì§+­(耠€鸀2t€u¹ÎÈK¶ &^å~f6s‡ ëB[êf8!¾ÁFFÍì‡~U„Ù5š¾Ï6[PÐû‹‹ûQ·°3~èfÞ)~èÆs]ÜiAAÿ…(Œ0—â62Ú۾˴iû±ø9Z¢Áœµ¤údQü]€î}…B0šÛo  æ¬xÉ‚‚ΟúU €%n}ÓfEAçQ³Ø¢—‡ @Bpx1Ê@ÐÖåÆùœÀ•˜6mx…Aׇl¬‰€nÕÝd#£³δi{øÅ´DÃ{¶ô²MsšPµ°ÂeñmºÑüQü-Ñ`î¿úž5ýÐ1D‚n5–Hitkú¡CÐ`‰oÿ›‘œæ›7i÷êî %BÐu âô¿0å;àyG%€¤¤ËÅ/[qQ\š¶€ÛA‡ @œX_:… èË2ðßÿ±‘Ñé&v[;{;Ë@Ðuaß=Ô,Ìð~èÆ·5Ãiºuóu z6ÜÖ`füÐÇ „Ÿ%: Á¹#þ‡‘œÎzÚ´I»)ÞGK„ ë@ßÌ™¨[˜á>ö41œ[ÿDÍmñ¢ß¡o¹ŒªÀM®Ä*w áÛ$]ÇP‚°.·yɶÆÄnk_žÅŽÛt]hû5 3Ü7±‘Q3û¡ßavfàìf Åè”3 IDATzñXå30ã‡>Ë n‹;Bг7Õ…ù`V?ôõ #Öà8‡Œæ×?AaI?ô²‹búU&k ú\Á)«¼1öåšìïþk„(b—a0Ú%ž¥™‚¿98šG~`ÛÀýU’ÀÙêýžiµqBFÞ"Ó·åÙ»ª ²rº~¨ßžÝ:>SJoÙ8M3è@euIAáµ'ó ,‹¦a’ÖgÝÊãpWN‰Í1wµßUW^rØì9û×3¿÷¾‚17|tø0n{¹Y2/cÜæ«õ©›è%Ð4¤¹ÃR‚£8V]À \Úµ jñ‡šG­Ô¨¡eNU¾Û;ž¤FJßáÍòäcœ– _JAïÿTôixÀ‡0œú:)ZA§\‹¹¥³ ¥±toŒKðkxÓJö;—*ak2•°¹JÐNi_jjk²¸Fé¡-×iiÎ ë”ÂIùIø ¤åÞ4®4ÆüY§òHzZn@Üv¥’_’/*èÀ’)#,™—%…J‹­«7…¡ ú‚*åbn~Hü*æQ#5ªh™S•ïZ”Ú¯D'è·¾i3¿ Ÿù™èÓð€Ã[åN+òžÉ…ÖOLìiŒÝã#ÄC›ƒ·áå§O9åEä2ö†vg-õôÏ~OÐÔ×O¥-¹ÕÌOøRÒô%çòí $¡õ™ì¤WkÏ‘o“²f‡ Jê dÏ‘R†Ž F•Æn.PÀƒ?ëTIÓI®«{ºh%tÉõ’K›ÔމNòM%„Ä„Kæk‘T¢‹ZÚ©±*—ö[Ÿ¡0,èµ.WO@ØzEf}C)•…1ÁèPó¨‘U´Ì©ÊwTÊkh?E¢3\{].§)è °Ê½߯ĺßËðá½Ä× ºH qK¬/èKiëð5´±¬OŠd1 Ù@¾,§sÇûÉå»MüˆÏ„ôƒôŸmÚ ~Øç-Ë­[HÑ-4˜!Hî)³A˜aLY4uPs4)ìgÝÊ#™ o&ÒÑÅ‹‚°Zi·\ÇX¹<ž‡=2‡3_A–ÌË.ÒÖV%ÉÆê‚×Ì…ÓZ¢Ý«‚ÃjHnLU…Pó¨•5´Ì©ÊwW”±&µÑµòu¶Dô?ÿŸ½ó‹‰j9øîáÁO“³À²ؽp¹€ª²‹×"‘K‚.Â%X ,`V%a[5‚QlÚ(QÐÜX£TH“öÆTúd“¦IMcš4ñ6MLŒö>^s“ö¡Mÿ¼wþŸÙsfÏž½õìæ…Ý™eæÌœ™ï7óÍ÷ÍìÜùÝýœ1<ãË{:j-ÔlwJèí• w¼’ñôãšþ‘]Ð)´d_§Õ¶Äú œþj·b»É;a° €ÝZq`—% X­0-rÀ#u~Olv4 š®Àa´Ž¼éÃÙ¾»Ö¾Ã 4* PÇW wªHf˜F½Õo´ÒÏÊ’¦¥g·  ïu¡„.€Ýüó0]‰*¢|\¡1Ë:Š`G8Ž÷ðW €›¿»ØI BM½ÑUÍ¢$p¯ºUë~èg6=ÐËIKßê~èI&‚øú3Г&QŸè‹Ò²iʤaSˆG»§Q;qªJ«¨gZ6TNÄ Ðßýì·%ô_ät[ËxË­nÉnTØÀ´‰c®±­=ˆ¡@_«`qµV §yZl Âì²ñd› QÝI>F•µ~ŸÔñjH ¨ ë¬«^ \jµŽÍ øŽ¸´w=³ñKþñÀ,Q¨Åªãü9ê‹Pýq(6ùd g~w±=æ„Æô©«TBЉì9kÿ* ‹qè>Гz¹gG^€n’dªÐËu®iü!ú8\ûဠûRw¹˜÷Ý1–y\ Õó͞Ƒ8U¥5;y…Z|N€¾YîCw臸M.1ql½ÿj7™ž ´ðB/öeRÕM7þÍÑ…¬jf@׳Cal/NfV}ó¨ý«æç»ÐÑC1MØÒ÷áÿ¬®©ÁNàðX bs!RŽ"8ÉG„©f¬°Ét¶Aso>·O4-PÃÔ;7¤^wÕcðüY6\.£ÎjË£FÑx Ÿí\>Ÿ¨+Bý‡gã´OVw±=†$ë…>Ú'e »iTðêWÿÚ@÷E¼;ô¾ú¤—Ò[$™"ÌßûA+¡Ž}7áN@—B%3‘TðfñèìiŒ`'NUií;ÇÎ>mCúøú¾_ÿÓ±Ê} /†DÙq 5ÛC²–Àž8IºÎôszauýæ_ÍÓÃ+ðVÜÆBhEͧ[bØZk´Œïð éBeŠÌ°±dDbE!Ö=tù˜ƒÔñ g5l„~²•~…»Bj‡ù?Lð_ÍñÊy7Œ=™­5´+®…:‘(£V¸ÞD{¹Q¼–0ÜU óÊ?pèUPù4"9«¡Õ4¹õ ƒ¾-t/‡Â4¡Çï- ×Õ°ä…hÏèhvšiþ¤¹ŸÆòÔYÅ©2íxøJ¡9°úßþI }ǾA{­ h­$T47D—Ú« ¬FƒT_Šfe„«Ó#(a–ebûƒÚú®T¤’CºF3hgiý(†Iú8*ü’ĪB,@wÝ0ˆ¢_gŸñ¶Â(1Áx‰>…ÉÁ8[Ç µñ%ððö WI×?ïr)©j‹Kµµú’ÁòüÅk‰B]T~QØîÙBêeqC ËÅi€Ó{\ BìºYHÈû@/\ÈŽP²kª=eß°(kŒö'Ç1ÙCç@ßÐ%##â1_ Û‰SuÚJ%›A4_tôÍrÛZž@Ïé¶–ZÈ)<Ø@Y¨Q ˆÂÒ1¹BZôš¤(™eÞè÷Ýe:·Ðj¥fB«õµb£±•yþ˜@¬*ÄtùØ ƒôÛÆ®KB¢ˆè˜P!xúwçõ“tt\àÿ¼ä} SËƒŠ‡®ª%—O¡ÅçrÖ¨Ô½LLÍ&Ð,©cOÑZ¢€@7*¿ Íc“t0E<áSH€"µ%ê¶Až¡ôü7è%²m„éæ~0OÃí€>ІoèYoùÝNœ*ÓÆº5(¯Y¨F+¶†m ;zË,:ÆìšÈ¢¥ŒQõ²ëýÆ¿öJv?¨Ù')´g>’6ýCEnÚx] 0'ˆU…ع­eËÇv,â‚#ý»Â ¡þ’¤C!ÆrÔ¨#ÒAÉ”yÚû@_KùWoëÒkt!ÄQ#–Mgz†r¢KN,Ú½p@—*¿?èd"Ú…:ÕÑÓqÿÚ ¨ éT”ÒúL[Í6ÎíÚµ_9*$Y{š‹f¬}¯r ôþ*a!•1S0‰Ç|n'NUi/‚ ”%TxÃÅm g:ÞCŸL¡vÒnKë\!p³={0UŸM *g„=Ú|×¶`È ôgÆ|ÁØaL憎qg V¢º}>öÃà²ÈÿNöÐ+ÁØj¬¨DîgêôÍ0Öçt£ÍßX¯E¤:“5j²[¸bÏÔJè’º\ù™*÷FòẸi¥ 4·öПÿç¿[CåîåëSóº`—³ä@(>ùº)î3—rô3HúkOL‘ ñ˜/ÐíÄ©"-&¥©€¸qdKý§_9:–¿H Ë\FcR¢ëé“=\Ú`ѡϗqxŒ è}f Oï•nRXUˆè9óÉ1 .P à#ŸF¤DLšÂÞ¥sÄIW° ŒâÄvÉ‚k:4ÙŠ-eB$%»õÞÏ+òÐ3*?e¨ª°Q3ºLS%høê×®5øõVq[ÛŠ~èüÎI¸åBh·Õ£Â†,κ%û³HŽêÃæ,âÑÑÓHÙÛ‰SEÚ¬tšÜáoô·¯?/A ˱Û¹¢„Í‚Ðkœ3‰¬zÆWrL0ú®“›Ü@0}ˆ¾a­¬æQUV [ ±=w>¹æµû{½³“XÃSá#f1ž4C¥SB² Ù$nkäd·t½Ïîu›(4îø)?¾?k 7© ôÌʧ¥Sdú¸n8~óÞ‰‡sƒX ¿í‡þÿ½ÝÃj2=­ØÔLš»l@Ǧå5K– ñ˜/ÐíÄ©"í¨th’z"ù¶ýÐíN¶C˜ÃQ…¬roÎNŽ\Æjí`„ÛrPx~@oG_¦;Yª ĪB,@wSEÕ5ý»!é‘NÒ‘–¢NHŽn M~IÛëÒ*&ŠÚ¼nÙ.*ÁN5'¡ª(g¿è¦Ê¿ì¶Æ­}­;>r«¾_îü÷Öºoè´g‡àëïŠ t\RZÓ—1sQ~KçÛWŽZ3WˆÇ|n'NiÕòar(›Î- ôß}úés‡@Ç>ß •1ÉÎ0…b3܈ñY÷=²3ÃØ7z/šþñ­Å›@¬*ÄtùØÝ¿.Í=´K‰Ùÿqªáé”:nG¦!ˆ·BºZ kn`2…úÀ±&Û¨]ÆyϾZ¡ë ð‚Ý\ù¸fÈ$añÞ$„ì~€]«ð»/‹ô‚Ïû¡¾ýGÁÊR!t·n(­»¨àªÓ I:ÌÌ‹-@Ï øRàn¿zÑoNõB%j#Ni’k:šBÀ¤ ÿuçï7Ðó ?þÂçèÄØá›‚ ,ÒSú»[µ%SFÊ¿šK¨!ÐBY€~-;ÐË kFì¶þTbU!×Ì@wÝ0Óˆš‡QvÃîŒÆ²¡ÓT²ÿ—øÆ€Ï “qi¿zÖ¥=ô+èµ\É…"ŽJ¤§XíQ [Ûã±X5µQ[ÎT™vŸ%.—¾^¤æ(ËY¶CV„ž(ÛLe9šVê“Fçlôåz=d;±Y%óº­8µ¦½”85\^Û}ðOß/E çs}*¾t6ˆÝi¦AØ¡'ƒÔ·¼Òx»„Õ5~̪/RÅî›R=Ê;èUF–ÕÀ´&« ‰š»£ƒ|l‡.î½Ïç =!Úýûu¶ã°[(‚žÞBO…«Ag™é؇÷ðaã¹¢64ñ‘û’X ]Ñi¡sÿ˜÷à6ÐViÔÉ/§Ð¡t®OÝYºaw^£mo6ϸ»Fs=*Nè¶…xÌèvâÔšv=ÌC6›¨Ö¶¥aåî"ÐÉq$Dµq-9ˆÂ´Í–ô~*„˜P®g×â–f¬‘!¹ÜÍô›ÀV#V ×¢éqlc {ª0ƒXQˆÈ‘›|ü‰DâR®aPƒ¦|XÔFpõ©+þ4êó±ÿ±w¦ÁQg^F2êvÕ®–]  ŽH qcœ )œáæ0"r&Žd Ü8Ç€q…âÂ`; ˜ÄÁ¬ " )ì2TÊ„«R±!P˜ÜÇïtïîÌ^½»BÚÙ™~Ÿ?»Ó3ÓÓýuÏ÷ÎÑ_Ÿñö›ê·²,+;ø¯ö7ñ¾KïÊeWÏ:ŒEëÐCsQ’øÉèö(úHÖˆ¯eý]TùìÒr·ý$‡:¢˜õ›íü…ä ~‹qÃÚ˦ðAˆ„N¬®åS\;\êŒÙ•êMÚOì!ßZ :wwaŸjT³¸GAi":ßHîTÍ^°.SªÍ„E™Ao óÏÕ{ÜÏ>žÝ][S¬¨·¼3xÈ»<;ŸîÏûÄ‹‰»Ê=ßMñÝqG¦*Îl‘ ó¹j”>çg{KlÞY‡DËQ%J> ÙòðX§¡äÖ”óзþç:D)ó~Æ×iVò’ŒÈâÁåf>ßçWckÈaõ)ÐC8øµ{yâ$ïåUåêç6³žãxÑ0sè/è¢ÊÛ¶2ëçî¬ËW´/Þý–9%÷æç¾Â~ìu¬ð­‹r(Ù\‡­=:‘°!#A‚®Þ†O+â3.ëÃ_¢*Þ{”iÜqg¼Å“œ£c :¿“²û)Ê^äÃKÑùFr§ZöáëóYé•ks5A’UÐë<† {|“'àoa¦6‘¿/ qpºš¢øžÄt¨ÔÆ´n¶Et®Þž7:‚°µ'µýËúÞ¸† zøA´5"çÓ*A·q¨5«ó[Blw|¨Ý¨£4³»˜ÚÓ-¨šc˜.&+ƒç!Nb帢.Ï1Îú º°ò¶êç†×©¯.{g«Ÿ—˜¤c}oÓ9ÝÌqè×éCÝv£@íŽn5쬷–Tú­$ ;ƒ;uQpö"÷ø˜‚.p§þìÃ×õî¤Mˤ=â.è-'–YPЛ ¶z”»ïц÷×öþ n Q:õ] ­^ÌoeÝù~#®ÚîdÛ½½ÛYÐGÖÚ=£‚nÛQÆs,*ßȃu=Ïñï¾C¢åp)ŸÖ ºmd¯ vwNà…ë¬î<-£WÀýú8b/oz_7ªºØá(®ÖI7œáæjšmÌÄÜ"WAÎSF^é/è*?å™l·kÀü€ñ>f¥Û3†­Ô5‚/Fºu%áÄ2­t&¹™|R˜âº€M—ò$Wf×°<‚N¢ ºÈ=>¦ ‡»Ó€ì®vH®‹ Rµÿˆ±F¹¯·  ÇˆC·>Mý¾€8sŸN£¢]*»›¶l ôxã{èfu¾ÖˆC<†Ê.èeÁ“`mZîþ F0š[Ÿ_M¦âê%è:;ßX‚~ÁŠïÐýSê3kŽÒ î-èz;ßs¹ÿ¯^¾QîVg´tÅù tÝ/ÂÖä#kNW¬Èþçaƒ¸ zy~þ¶dr¾;òóó:ÀÚ\m‘£žƒ•"Ó–­%©^¡Û¼É)ÉTd_¨²|‚ÞùWpqHÃÍŠërTÔÌqèŸ?¼A7ZЯ–ZPÐK&Œƒ“@¤‰Cqè ÷öžF:‚ž L³§›¶ltã±f:™¸úÓIRSOÀ|·â6z"]JÿÜœïh`³],ÜbÅAq¥èZäak‚ bAqŒ èËÒòŸÿÊQQ3>õÄõ«è‰t=hº‹–@î#Ýx¶f8ãn^‚ÞakH„4qèýˆ‚"?%A: ɹMÿ-IMÇO7mÑ®Ó{è‰t83vl Úi¸‡9M çæßa£¹EÏ[ñúò‹hZ21î7³1ÊHz¶I¦ð€ ¬Ë-I^²Í5qØÚ£˜q‚® õвHÃmÚ GE͇~ÂíMˉeôæÂ‡å€4H‡> Ë€(ܢ뭇ÞÒ è9*ºoñÓ–m}€žh0ÖŒCJéÐ4€$œiúF0šS—/Ásˆ^°â;ôcÇдdböµz+ : è`J×;6t€u¹tFŽzŽSܦ-Û×ð ‚®;£†ÙÉQÑÝD1mÙ.~€žh4'K-(è% %hZdá5:‚n4+è«è‰ó³½§-(èoQúںŘiO ƒˆL¶d:™8ùÎ/%©i•y‹öçŠ#è‰t(=~¼m €4थ-»Å‚‚žV =€‹ªät@ÐÀ„4fæÃ‚°,Íë?‘£¢»L¶6ùé“è‰t=hjB ˆC7?§/¡'Ì_ϽaAAïL)¦Š‚n5¦»iˆ8tã9„8t@’³ŒþN’š~ãEÓí}=Ñ`¬‡~fìØ3h[¤áÝ#°Ñ|ý3ØÀhNÑóô´åËÑ´d¢äÕÙVt@ÐÀŒ,9 :Àº|,ÉK¶Á&åþÞdLæA×…úz]²mÔ­ÀèS´™#ôM9*jæ8ôh=z¢Áœùã²$ôÎ Úÿ—ν^Øð‹è¥n.,l޲ºŽGಛ¾­(Åùåá‰U«ÓbÏaŸI5n;Q\æ»59; ™úX†±Ò¥-uÇ:Pjé°x¶ÌÅlÖGݧ' ¦Q˜”(FmÎt¸+ë:øS~´-;ÃUsxO{³.­!/,¾01Ó‘¾xÉHJq@•q+QãL¤*ÏH'ýK³vf»6¬ªŠ=D×4dÇ®Ëu:ãiiâÐÍ¥^78CÍ]ë=âЛ¯QMÐOéw/¥½¶‚¾mtþPJ‡Æ]ЙO ôÖ’åYLˆÉ*žÛ=-íòü¢}1s6 ¯&ݪª—§ÅYüêÄû$aËwީ¤„`Ëe{²ÿpö£x“Tå°ãg _ù-v.¸^hWæÓ•JeùÚ7ô¯ã’ÕÕ—Ö”A*G#m^Æx{ùˆUO/ÔXÙ‹õšÜ£í¶‡è ‘jlHæ³HÙ¦®X9vÆëIcÓ§ Õ."$MnN]¾” #ù§P®0õ$y}q^ÞÖf/òpü¢À][“ɯ”Æ£ôÁëöó#åæŒà?ulyL^^žUÐÑ fô÷¾O5A/y“^æ¿—&ÐÓÑö9v,-!‚þ2s\LŸ`’Wþð„é³2ð÷}[³Y‹ HAOåýßß­¸ÿͻû“+Ü?Åêx#f’~l ¤¿Rªb¯=x!Ó¾CHºG_޲‚XÔö¬KÇóÓTÓ¡/2Ÿ°ŸÿãÐN© ψ[…—1ÎD¬òhW€ wéFìžûæYLoŸi·=D×4dGf4eü—|嘔œÚA7ÿzÕIÂÔ[äôg?û ׋ýñèxvggŸÙîÒ‡®c÷PEÓø…Óež7ÍUÐg_kÓ8†Ä zsÓiůUAÿŒÒ#ž?ŸÐwÚ>¢2~‚¾–>7î5;Ùª.¬c Ó“CЧÀnÕ‘yãïßݬ׿¤Ý¯„]™ ’ôc!ƒ¼ýëóc¸zò¡w%? 6¶9ë}Ý=fPu¨”©oÖÍ¥„¬ñþ›HÈè`Ñl^Æ8±Ê‹ÊH‘_Ðj—cS Ii·=×4dÇ¿0GÚßûw¤“ Hžá 3ßOm­ ïùê4 !þ)´•\aê-HŠ"èѳòp©ví1Üžn¾§âí)}èºþ„tóJíLÆ—´FÐÛHâýO”>½ì{ª ÿ6xÿ,§´íq*ñôa„x>O¼‹Y>l‡B²ƒºÏ°dôŽ9¬»*ÿgïlŸ¢Hή³ÀY$pÑBoI-Г%ϵp»˜fÕýåî´¯Õ ?÷##/Ðÿþ¯ªª ô7È’™ßÿŸ,=ÞÛ€m+6©¤ôBê¦5¨"ÆQ.¥”RžþLxL+À ý«Ð°¿`Œž»ž[Du Ï¾ŽÍæKÐ;o·„PHíåY«Nhb‚â!”ÅÑB-©Í”â×Â( 6ãôv¼Ür­Vå§ÈŽ–h'šÚSž{ò@&‚`õ<8 ðKfüþ$Ô¯âõæþ•”Cým;¬¨ÎWàüm’X=»,·¡Ä ô׺õ_‰€^mÝ”‡ä¡Òœ 7¢â¹¸à²7eðõìW¶µL+œèMz?? Ò¡”Ì[Ö¾“‹%t¡}Úö[xzK‚ìž$y¾…aÆx)Íz9%/\ë°pê…º&&Ðëÿ«´Íï´L^V–ÐÛ*Ìo³>AàyWû»J ôŠÖ”m/¦?ý¼Ô IDATC*ÇJ¨PuÛ³;)ýQˆ"“Ÿ•‚}*¯ÓM31Qqô©5FP³‘ÒRb2ùž#Еã³*S­N¬bZçw…B-¿ìƒ²(cº­?–|Ûô†º”®‚¯»Q])¬‘c9C– o´h9·Ô>–LGEžåw}P“w€›ro˜ ª}àº<ćJs*܈ZA³‹ù̫ٜlûÇâú|öCÿæ;_æè–ö‰“g ÅyzK‚µ…+XžÎ†ĮÒJ^¸ÖÍP e ßËÈqd®€~Ú´…Ûíÿ·}üu§O¯Ëèçñ”GCMM ›¥¥ÔX©ôõDz{Ï IÁÊGÅÌ ƒÊ§èZ¬ß*}Œ¦Œ­èÐï¨f49dòJZžD±nÇxFIbÅCPŒR+ŠÕã˜zwåpó~ðT@{ŠÐ7¼‚ýëx ï'ÑwÁ¶'‡Ä^é¡L–g3–Ø0arÕHIëÉòÆÌWóuâô¤@oC/àÇÚ¯s¨oÔ¤;­ MØÅJ¢£ÇB³œWEÕ*ôIT!vu$6¢ÖmØ»ò0*Í©p#º9ýtÀ«Ú’ ?ô—@O"9ñCÚ'VâE ¬V9zK‚œ€î˜¼S WËú‡f¤½pm?ö†î))J¨¦:E ÿå7÷Ð?V­h—H†~è~UÚT*j¥•¸Qzºùé†.·5üz˜:ZEóÉ­íÚ‘çt~ ‚ئj2L¬ì®£Äµu”Q0lŒÄ$Šã¤JÆÐáÉ-ª*lƔߊõr^¬gªÕ ©@§Do½)¹_¶äÀØIc+€ð¬W(p·w‰°áKͨ³•Ó•÷P‡œ27ne\%ðLSãK §!‡>u¾J7–±!îFmdÅÑ[ätÇäZ¸£†ý“S¹†óî3ÆÖʹԀ¾0ÎC7þ‡ÔFèÉn ôjTlFC7ŠqµQz$L ô|mspµíËÑ^Fmå¥T®èŒõ Û°÷S þ;èc€ÑIOL¦8J*°‚LkjIUS£ûút€ÞR_BU ®Ñ¯ÅÁ;/ ‚JÿV1k^=„ò´øÊ,—Nœ¸Øe­¶Ùø ÷Œ^=?qâY;zü`ž<–£Ž “åÍÅÐ¥ò@Wèöæà»9êQypuÈ)sãú^L—7áEÆïýù«Åt5®Î[ùß¶Ïæè{ô†”¥·$ÈÐå-Üt1]Ùô 襠ZUT¯­^}þ f ý©}üº/¾¨KèGŽ7?aí3F齦Úýª>æQflžt¶ž< @&M’ý ½†Uº…Þ'I¬Ó0«ctÒ“)¢yA½K‰ÆúUFH_:@E1œ‹Žãœ˜cÞIEp#–eU ·ðm=QTˆœÅyå!ê’Àtƒ†Ð­Y­¸k¼h®ßÎÅrÒÑca²|"k',@/¸^å…¨ŽD—zSÜCrÊÜGíÔþ8é+Üñ$ë98¤*|Dä@7/¨éb’ÜÍ"Eâá Tóô–¹º¼…›DŸTpÒk kNl¥x„׆Úð@" ÿ|ç¯пòñ2¿ÿ÷7Ô9Z` ÁmíHÐÍR÷?ÐGðùzÅÅh€<}I6ì©îÊ­T€NæîëõŸƒ¦¸fô¨äñ: nk¦â!:²÷é}ƒc–\‘е\– Tß9åÕ4aGxXn“eUðfeO·JÏ&‘ 4ú ow™¾°©‚Ñ#{Qo¼KÿŽo“ C´/f‰å £ÇÂf¹¼àÂ}E |ZØa¤RtÔ“òàêSöFÜùi991:5%E'Ô"ņԪ/%×@æ– ½%Aî€.máª#ØÊÊíü‚p w C»#ŠÉ¨$Fq™uªæ è“C•²æ‡>üèýšµšÍÙ.£ôÚlŽwŽiJhã ß,6aˆÉŸ×ßÛ0·ÖHô6s~OÛ}£ÞÒN,åub³(¢¾¨m=ªWÓ©> «¯™_`ÖЃâŒvÐõ$wz²õ¥H]D¯¡’©¡§g\»wÈ׌Çô ù.ê#>—Ʋ×Ñca³¼ƒl@ž× 0¦ÿ|ÞpË›ò`êSîFs†¬x¦”FuH”‘Sܼ\Äôî^JŽ€¾—ìôAé- r tY 7…—J/¹íŽÈGèS´#Q›Ð3l;æèŸûýßj?žú?yÇ{ o_Æô ÐWÛÏEkæbø¬‰VµÎfñ8^Ûþ7 ÐÏó@/²4c¼N$1Qqfô-|?›[¤tµK·Ì¨¸ *ÔÈöªÅ–éRIPv¥ËÜâEUßf·¦P—em¿ëôm¬ºßýÛÑ«˜–ƲÕÑca³Üáƒ+³ ¼BâîÈÐ]Lœ±`ËÙ!§üGõ)ëØjT¿Ã "ób }´´F]lBŽbf#%Hܬ@(ÁÓ[$zjÉÛ·p»Ð§8æR{Ù5ÄsÓõè/ Ð×íöÿÿÿõnÓÜÝC oÑË>®¹¡@ßgô3èåê‡æaS÷0ðlJ¼š¯ Ú@™ú Ðð@GzÄ*YÁëd$&Q\:3üW¯¤tµãZkì`gžºñC/g$Êm')²$#dò÷™˜·:ƒŠöŠ•Ôè·Ë¦yØ'e§£ÇÂeù-€h¹&¨j†ËËWé£sTž¯@ ÑƒòàËÙ!§–'ö¼5tf¼N½á•úß~õtq}>Ÿú½7îÍ!ÐQMê ¨R*>_½4È%Ð%-ÜJl.3åV{Ùµf†8ùfõz¡€ŽO[»Oý2ÉikêGeô}¨è+*uРC””g“½…î 4©¾ñî‰h”` }ô殘¦¨$z+ë 1lt™â"УÌ1%i}v óѸG4PîñÌf9U¹Ít0†ÍÑޤǛž,Í2º»<`žx<¥#ò¦O1×ÓúÑp¼NK®£Çbɲ èï™g¢ 7ŠFèuîÊCRÎ9å{FlÇÃ#ÁEô}dæuÊÜú¡g ôÔÇ3’‚žšu¯½ìÚ]æÈ¯qsn4˜äøÔ嶆ä§?ùÓîo>sŒŸÙÆ2>jŽ}·÷XJo“è]ÌzÊ\]øy—~Þx~´XßiŸ.e“IúMö@ÿ JvÂ))ÐeŠ‹@_Iç‰ûÓq[V` é·0gñö2 <öAY<5BœÂ?ãð ì8ßíMú ‡®2„êÔWÇ¿F°8 ˜$–TGÅ>Ët ýs:PŸkèÂCrÊÜXVˆ×e" IO àgþæèçèêÑ“óèýŸÏ!йy»ÚäA™]há°ŸøžjÏ: 3.r«®¤ô…ᇞ®<ܹóaú@7B–ƒ1t`J¯ÛjЄ·v5ŒY§µ؃üþ2ø<s—×là?lT• ›)‹@¿£˜þäñˆ±~#]¦¸ôÿ³wî±Qw7k‡µtçóãŒØ&Ä6¶Á<êª` !¶y•¸Á ï“ð.  AIx…‡P) *i!$”‚,(˜*TQ‚* ´‚ ¤M_wæöö¼w·»~ÝÞíî|?ÿÜÝÜÞ<~3ûûÎîíof_綦{"謀)QÍiª#5¡:–û¬oƒ4Ëšº¯8°•é¡s†( zÿüàv¡u©r ,)pÂ5¦ËÏ3j¥UÇ(cÐäNAŸ-«v»¤3¨±×‚®Q¨~KÕ?ôaEðD\%œÜ˜Õl/âùj¢j•â_Ït!í÷‰? $ùÃOë½J¶ÆQ‘uŒ2FMÝm-£Æ?L–÷ðé½=´ Õo©Ú#)a‹$¥æËmI‚b)è“ËÊö˜(èªìÃ<Üq—*®#€®KífíÕßM¢¢RÌN•I«‚ ú°×9QÐÑôvÛ¼aòŒ•òc ¬×}íQ¯ïÇv» ®A©ìø´gòØ÷5ê|k”uxåù†çÙ§”¬rÞ€BsÖt$zÚÎl¶9Kàr&Bе*®!èIìѽTß[ÐKþö8MYßÕ;œÆ¶~ÉÞÉ"ã:wCwE^º¢wiÜm–Qk$î»#…Žøʤ¹Ü¤oªÖ¡—èô\¸º~à(¶rž¬C/±ýìÕ« hÒÜ}zGEÖ1Ê5Y%èþéÞÄc_¥žÌó›¾ÚC³PÝ–ª ùØHBÒ_q(‡ž<56u!t :µüF]•}˜‡ºBÙ C—ÚÍÚ‡|7–yö,¿óê»%è½Ä‘‚./ÁígåЀþª­çß=䇃S•/ô?›¶üßA¯ê åîûYEæÏf+nJÎZ‚~{nÈú´Z‚®Uq A· 5*«'‚.>ÜÔcu0-‰DŒ+¤°§XÙ$6W¹M¥¦:j‚._®dÚ Œÿ㛕¤åýõЍc”1j²zé×ÎÚzŸê³=´ Õkiˆ!ûS–S[jW?A_uNqôpç íþô¨ º8Ë¥ìœCл-èbMV>U­ô5â/éÔk{˜õö¥×¨E¡Y½›ã"‚{œ|’•¹>/ªÆ—ÈnÇ»½‡‚+¦Š¿jö‚»y…t%g-AŽ%z9ŸÞ|PÔtŠk º(Žf7Ê·ˆ=tqߺú»ŒÕ3 ô—Iaƒ"2)ü}KöWŠï£Ûš'YÊUrŽÛ““¼44ÉãY6Ïø¨°:FO7]_œ<&=¿|Ô¹Û}·‡N¡:- 5äöèi‘Ò0:Š»É~Ý$rA……Ÿrÿý̘-æA÷pÄtAû?Î\oJò "ׂ¾xq\Š}Ì~b¹¼Ö1v昲&´Ó±rú—Òb;™Ò@ЭìR½õ›µô‹……áäºEÙ#»‹8tK`å•âb‡neA7Ù¥ ú×Ò& zqè È Á #ÛsAŸ2÷qËÖͬ•âì%èf»TãÐÇKÒx8¹n0ØܯûÒºûo0B¼9óźé.µ«•â.9PÐÅ'pzu ߨÀTÐWæåE}å 3]jM^^ž`(è‹þÜ«ç0ØXÐ ±Ñö½”òãô[ðlA‡ œË•V>ÚY'¤[¶n?¿‚qh×i¢Åë—™‰>€U~ÉGC­‡þEáŒÄxsº7Û"[]Ї­Y3 ] /p‡¾qèÀ€ßíÿÄ‚Ž8t èäyW"èâÌ8t:uæNc$BÐÍ`÷nôÜ€8t `³íSÉ£Oßs  gJ–Š‚î4ê‰Ë²uCzüyq蛳VúŠ“–.yÙ²UûT:‰‘gœ‡ÞZ[ÛŠ¾€Nƒ âÍsßÂñæŒtÞ‚.65¡kðİ×9QÐàAOÇñô9ØèSêLAOðCÇe>Ú¹Œ–­Ûw-uˆñæ¸#}ñ}ô,ÜpKZÃGC§YXÐÛ%¸ÝxÓÖ²Ö‚~±ðAú^¸,}ÌGCŸ´° ÿIú#1ÎtH›(è¿–¤? oà…{Òt>š[UAº´82}<Žh»ó=Œ÷«Ã‡×`„¸ ú%'þ‡~ât-ž¸ù¿Åxʰ=¶öààlØ@ÐÎå'a-B‘eëÖ†¿Ð!èæ‰gâà‡›•í|4ÔÊqèÜÃHŒû̶Ԃ>lÍt¬Y7p‡> qèÀ€»û?A:‚næ¸R è@gÆ¡CÐà‰kÿ‹“–æZ·jw*oa$BÐM ôÔ?qË~ÀùŽN — ßtâCq¥Zøak‚1¢±xŒ èÇÒöŸÿòÑP+oŸÚÒŽ•e 覰ûzn¸‡8ôøƒ°µ¸Sw³ý= z&ÂÖànâЇèß%A:ÀæÜ’þÍIK§>kÙªµKw1!è&ÐZ[Û†¾€îbM“¸só°A¼éÎ;ñ?ô¦ËèZgòqÀ|“Îîi›Ëó3²¶¾hœÔ{ÊUmšH;¸5«Èí±´‹2ϻӳ6<{ßZ‘A²åwcú%7ÚöÐ+@»ñuÕd¬ í½%­áCЭ‡Þ.ÝI9„ÀP[áSꃣSxZ?ÉXÐ ²OX–®d6à )juwŸ] z[ËZ; zë;Òo¯_מ—jê}±ðA[‚îR‘h’ Ór´¨½\Z,]«*=t6š‚‚ž›H?¥e• ¡/òµ²Ê¢l–ÄF`.;e†4¬dc¾Ä”“{ö¨Àˆw-¨ÓOê I¤ ?8‡…FeV”(ÆY±v­ó³=ÂÚè5žD3›8ô'±°Ì:ªò«&²spnØWÌߤWU3Ù¨—¤ôq>ߎngŸ0y6oC{y[7)jupŸ»|>Ÿ`(èÒ&; ú7’4Óÿf“ôYïãЩS1ZaCAÁS& ºj.w–ØCÐç7µ gÓ¾~lŒÑ_•…»žjÿêu3}³ÄWŠ~Î åj }™·`c5ÍÿǺI}á-BRrVÈN•6y䎭¬€­úeôâùÙ‚ôE8c׺Šý¬·“|êÀê¢mÍô¿M0GÐïIÓ¥ÛDÙÇWp.è+èÙW’ð)ÛB¿£ÓjÁ¯…7Ré»9:IjA_Ò“ìh¦¦ch^³õ’¢VwM÷é6t›Å¡_’NÉo.HÒ#ýÃÆ÷IÐûL‚>$ä.ÏJ:e³ O%jA_HsƒüöjÍI¡óX!0ÅœOsœ §U.ä£ËTBR÷²7¯ǹFR-¦@ýÊ©j³û¯ÑŽ[ª[æUBvÖ3œL»<7¦žu©«SÐÕZì"©Ñ·‡VÚ¯[Å®>Ìô¶;ßó!èV¦ãa,Ör/ 3JùÝÐðÛåÌßæÓ“òåG•4’ŒÝ û„„¤”/§ó“y¤¨Ö=Ò}v%è—ì$è_I»ï ¥÷ Ž;ñC‚u½$_uÏvZùÿÙ;¿Ø(Ž3€Ÿ×|çêÎgû›³q,c‚ðßZ6²qdãÀ¶ðß’àÊN0#0HMŒ± ÔRDF‰Z£Ê)V«ŠViUhÄCÒJmåŠTµ(yh«6UÕö¥ªÚ>wfwvvvçÛYη{øß÷çïææßî~¿™o¾™­x ÍK¬Å- &]h†Í79}MÔ“¥¸buô @ÿ=} €œÕ ã¢JKN˜ÐæÒ 0c|Z`ØÄÊìH㜒€›™4¬Ã ˆ!@ŸÏí|ý€7¾o³¦ÖІ0O–¶7} ïÕ¦ÖU§‘[»Ž¬‰Áº,~uŒÐU˜ðâ*5ÐÙ‡ÊFͼ¢ñ•ouÇͧèŸþïÍÕôÂ8ÐßO'Ê]zb¡©hywÍ5ôDC§^¬Ò´hÅ\gž‘B+XûQq”(*s²¸¦¤&›h7ÐÍ ± èE‚Ï0¡Eº3W èK¯ÅH‚<ž@¨·(ödxUJ¦4¨2?1å ôòãØë;, ›_ÞrdLG ×VVï…[½Ö§Œ³U)D•–4@™cz} i|ª¨7ZŠ•IJóf©k긔I“×ù­Ðgn„褬ñ‡ È=бtKŠ\½V)½ ÖÕ UO’™E¿íSîYaÚ2jL†•èªì›¥øiLå_Ýqó]KQî¿ ÿ†»Üÿà7ÐôǦTz2jÃôJõ¶›V1Zê0fR>ì t­1+$½ 1dÝl1!í'd2Gʡܵû*—]±HºÃE•ŽüJs Žh¯`Ÿsîâev•Y#ž Ë#r3ì“N.SõpÈÿþ@ @?HC{çZ6€žÐç‡×7ÐK*÷8­ëØõ¤ùñ@½‹JtUöuíŽäˆÊǺ£æsMý÷áð›,(N}fí2€ÕÃ͵ 肼ìÂbl¢¡@4°Ûp4ë‰UïÜ£» 4cr„¿ü^¡¢¦=9M®BÁôô. èôš0Ÿ{‰‰ t$WÐÛh‚=3 ÔÞ묷%ÎdXU’ôË¢"º™îy}t+ túA°EÞ¶;ÇÁT¦Ok’N€½Þª”e‰Î:“=³­æ*Éyîq×!õ6^f`úùX¼æ\¸7"ýT¶/޹?ÐÆBn]E(( ?Y/oXЛµª ô3±„~QáY€¸[º#ĸm#U°Ž’¿ìc˜WoÌDý‰8WMKË ºè©J]ZÉ[lìQ»ÖeŽ_øÊ|Ò IeÖÑ(־Ѷ‚‚¶Ñ®LZÕ‘"ˆw‡d O ã_û)m|ï$ýÐ?Ýýt}]Þ‡¾r€þÏü-øBvðh\}l]æ’ì i„U*èªì‰¡=€þdçª:XæKßëòþßU.÷—Ï: º¸ý$ë&Y èš¿8B§À×͉)}z怇Bô‘/·ÿ»‰ê>G¥ЯsŸ{]Ta@Grµ½„h'Y>q€YG½MÁ’IUé¶~×EnÈÓ)½Îì"t©¡'"£’rûÏôuíapÏøÀýÉbaíÃEµ<é,j“ÞÊ;ü€ŠÑof+³† ©_7®€ì}´ª¥úxJú|h·}È^î¤Eã[6ö¡¯Y gdÛZ1³ŒTNƒÛ®üÅ8W}tUöÕÉuˆ—Ó¹ º¨ü®»Ó|ªþ×÷¬®£_¿ø.™¤î/›~ª ŠóÞ‡.J-ë¦3!'Ð;ø…¬äæŒvu¿àUÞk„EÜàihˆ¯йÏ}B£ù1 #¹Ú>%xi&Ù˜@¨·)X2©*s[Šù„­ŠùJSúI[>az„¨ý>2:x(=6T:;Lþmš}ÞqÕò¤îÕKv ÷†uÐÍj³dP. ‹*ñ2OTˆ½x†ü®l^"ÒÀ†® …Žˆñ¶2ɸ Uo"}Ÿ©}èà ¨ïB€þ•8€Ã¬?èO~ðïUôlðE²WHs>Û—Ò7 †ö¤ » xŒ‘B…]•}®eÄæˆÍëÇU~×Ýi>×пÀ\ïá°â4÷þËÃ厭¡_‘€~…C˜ ¬:  W 6þò¡~eëLM¹'Гì),„È:’«èåŽù%{½…â¥d8ÐrŠêõ˜ºc©æVå‹ IDATnÞbÒÖÐ˘ß)ôì² =ã·Ç²æ®F„áªZžÌ/ñ­Û׌ö;гñ2‡¬Sxú*>Ÿ!›Úš<ãúYði'÷R€¢ñAÅeèµ þJDrqÁ¸í’4Äö‘•{Þ±»­±EŽÒuÈû^*èªìétü¨5qÉÃU¾×Ýa>Õ@ÿùö¯¯& c÷9ãÃð!ÕâÿNå­åôÓГÂý6 ç[ÛlõeêRý÷„˜ èæyü—ÐiæäaM÷—3 #¹Úw<áI{½…ŸJÉ ŸÜ±Ò¤ôÐ £YùwIûøX³—ÜŽ§\ŒüH‡Ë"ªtdÜØãpËîr/ÇËÜLÏ[°Ûœ‹zÅ<ãÇ ô&g¤¢ý hüƶ5A6ö¡?£´Hð?âeÇÈ#éõR‰@Æìëïãuc‚¨”×{uwšÏ5åþJ8ü ýÿGûÃJëõ©Ðk% ïs:éõó  ·y}³îs¿jLÃБ\% '6 ò ~y±d2еҲ‹î, è¡æšöDÇäuÅ·sÿñüZ‰½r÷^"»™TþYÔO}˜ä.ù@[VæEáP›Eq¥=HiÎ…¶ è—âY~—Æú)@Ñø  o=- ÷ cèÖ¯ºïç¶—Ê èªì‹…eà ゠*…,§î’ù\S@ßôVøÜ_þè'‡Âþì9=&:ÇËôcö³—{¡7Зt_m½qÚ:’«è•ÈQ¦ÈåÅ’I@¯%•ʼÐÌÊ_ÐM9,œ¨u*“Õ%¸˜‚=zI~B–{=—!¹z_/‹ I¬)+³Fˆ)qß¡â¯ÜhÒå ¹¿††…KÔãq¹Ö½g/@Ñø  §ô‰ê¢õ ôÁ±Ýƒ¼ ‚Æèæõy©\®Êþ¢ðݰXD¥”뎙ϵôï ‡·7þ曞#ÐëƒE_'¹¨0róY幆®§éÓŒuG+(Ι«èíâv†×Ë‹%“ªÒA†‚cìs„¹KSzÖ¼0p5ƒAjIµû¶ˆ5CÞÌ ½"Kpknª4¤Äšxæ4ëÄæ“ßAsì$•yà±À´ÌÄ-Õ8W]Ÿ‘_§ÉKý h|@@ÿø?ÿ]@O®àmk?~š“eš…gºAC£ámY^*П1û¯Û•uÇÍçÚú¦7|°}ÿ[¿VÏÏ7½ûY @¿(ØÊYãPý;Ödð²¹mmJô-·˜d@Grµý*¹¨]Üfjq—Ë‹%“ª’k\ŽÛi–Ð4îfï^Ð{@<ȪG¸Å·±†¾Pá{Âo ª4¤4W›ýÖômû|˜Í"Þ‘2—·Åd(nÉ è}änòÇãŽôR€¢ñ-A½>ucús—̼>5Î÷{Óœ8Žx fÕŠ;sU)€®Ê~BØ’ÛhÜֈʿºãæÓãå,O¿½ê¶­yË ©¿>5% Ÿ~¸È‘|#¼·KãÇ©·›@¯“B¦, ¨¬g׋ÉÕôS?˜¬¤€-V#—K&U¥Àºy Á8‘<¥z„¿_ìa¬°Ç~´ñ¢uÂÑq-¯ï ð M‹×ˆ* ù*A“`ÙÉš¿o¬¢ÚØC€”Y’gmãªóáÚž†þ`?ùbý! hüÆ>t›·#U ×J¦«#ý­« è۸ߺ_ZQ#7›ÓÊ *%ÐUÙË7Ž^莰÷™#*ßꎛϵ·Ý[¾0ЩFÕŸ/2æŠt³k¥ÑUô‘-üè×KB°¯蔨Ãyô+’«ýèWºÆ²•΄ô·¸\w»¼H2©*ÅdN¥—Ð¥ä9%–ÕßßÚ èE±9j»éîë%S›í@W»y âÍ|óZ_e,Ÿ»zÿÏÞ¹7qÜq\œz Y²ñƒ06±ü%-6‰Ánðƒ7Ô)ŠÁ   áìd Á¼Ã08H ¥M)$­ ÁSÌLè$”hÓ^4…ÒIÚ¦mÚþÝ]éN–¥»³eétý~f¬Õi÷·»·¿ïÞÝþöÆ'f¿ I1 ÍÀßñJaA±|Bš9)•¹‹NÉÒW]ªþÆÑÄú¾¸¼gM­= P¯¼N‚~WüÊ‚‚>¨¤:ZAw4Ì;´ºdIªsS|€RVR75‘U¹¹ç]YÓçÌ©‘¾*ޝ— ×ш۔B©= P«<ÄÌØb—@}JCèügpä4¨P9©/AWÍž±xózi£CvmOÒôhlWvŸ6[åA}PÞSo~jæ¹\Esfh'ÅT@ºËž;5$iö“™^Oéò)Úe®˜‘êLËè–øFé%èÕ„xêâÙàáí¡T€Jå!è±^žCÄ‹!ñ{•8ÿ AÑR\í€%¸s™z.Õy¿ÅXøÛY‹í¨¯— ëê?¹ô–¿ÂÅ œç„áh`%îŠkù¨èT úMÑbnW'A××j z÷Ùu6ô®‚Ï»áäÊ3N9¢k`Í8ôPcbAOLºé]gÿÙ×*÷VþâÐ6xÊ ¬ÅCq6q=Ž‚^‘—·+ÞÙêç?÷äåå Æ¡? A€#ºïÿ`4w¾¸a-ƒ¯O²ŽÁR¬±¦ _²ã3ôÓÿÂðÀ“ ßþ_ V¹–ak`?‹6t€}¹ÁIXËx¡Ð´¶ußÀyA×çý©X?Ü®¼ÉGE͇þÅçq&>³õÙPÐǬV‡®€¸‰CŸŠ8t Áƒƒï#A·óœC è@{Æ¡CÐà‰?ý7'5f^ÓîWÞÅ™A×ß™â–;ü€ñŽNÇå‚7ì¸(·S _ l € CÐ A¬(Ê@#:À¶tÿç¿|TÔ̯O={;Ë@Ðuaï}ô,ÜðqèÆƒ°5é»}ó- úP„­ÀÜÄ¡%N:P¿K‚8t€Å¹+~ÅIMæ›Ö´›âœ‰t謭íFßÀ °§‰áÜþm`4wÄìø }ýet-ž¨ûp V¹–ak`¶CuNÙSÐðÃѧø¨ç\â4­m¯¶ '¢Ñ´ÛRÐ[ZR¼pR|›Š ‚im»*Âí¾üÓu6ô®‚‚.ô-¼ðº8Šî7± ¿$¾†3Ñ`®‹­6ôã¢x} /\äEÐë›rMkÛ/ÅïãL4˜™¶ŒCZŸFßÀ {?C#Í{]A#ÌQñ’ =åôit-žXò»­cp åëA€Ä»ÞehAØ—+|Ô³NðšÖ¶ïà:]†EÀ K*¯òQQ3Ç¡Tpg¢ÑœóÙPÐǬ];] /p‡~qè@ƒŸ|߆‚Ž8t è6d‘3 ‚T±g:ž8÷ã_sRÓzóšö§Ê“8!è:à;sƇ¾€ðˆ RRÖ×¾aCAOñAÏ`Re}ALH{z@ж¥«õ|TÔ̯Oùõs8!èz°w/ún@º ÀëSçïÞ²¡ ElÝnÌ&NÓÚ†8tã9Š8t€ÅY'þ–“š~ïÓšvA|g¢ÁØ3½³¶¶} 7¼{m`4ßý3ÚÀhÞ?°¡ §¬_®Àc^[b-A÷Íü}妵>¥Kæí8!p…a‚ÞuIÅJúïtŒÍhô:‰àI]þj0éÞò µ£½„ŒíG¦õ›‡Ä™]£òõlBHª™º19ä†|<_æ!ÄU<·'ÅIz¨–Ò:Šhù«–o¾¯‘¼òqñ¾L¯«´mSÈn׎5«½î²oÝŠwQ ¦§»†¬^SzHÍŽt—wbó ÍêF˜E¯ÞHmòÃ]™ižü¬coƹ=ÂÚY¥ôw¶f»Ý-¢bÍyÞ[àð ·@<ãö„§ç†uíj^M"ÉTj³ï¿‡õ~š™ou5…ä>Ó%!©­ÎÿiK  ÙöôOă8ž²®UŒmAåÜ‘=ݰ{T í17IMÐ%IYnVþ¾œ}÷ª‰†5¨GÐß,“[äZ²”ôqº.*•?ç%m~ U•A2¬i˜œôBZ Ehöų¨Us¤’*FAϧyVd¸i–›¿NhoV™gn&!‚^ŸÊô`u›êÈw*ž .ã—Éz6 Ff³S/Ã`óç ¡ªÒÀ¤üÈÆÑ´O³O’öÓ¿3'ÍbR»&ŽE%gâl+ifù>*ˆl*åƒK&Ñÿ„Uu»ÓaÑŒì\tÒÊ$´>‹uÚ¤hçyıé#ÚY©ôd6-Ûþh=x_Ü[à¤ø6‚næ8ô«b‹þ…ü€M 'W1t¢÷7[<=°™u²ŠW ôÕ99Gú›}?=ä@­§×îÌêì¬Éì¿fJ;ó¶Þ¦Æt6 è  SrrrMAïüt•}|eþ+Í0•®‚‚.-ÿG5W(g÷ëwfÒ¦*íSЛssGõi½.榤:K¾ ÎÀCÖôð³.™žƒµÍ4ÐüC#üæU¥#8Ææ’$O°®§Råq+ÊGIŠ~‘-þ?ž#d\`¢vŽÆ)*6ê6·Q°¨g¨¦á€ÿ(ª»KLÜ·¦×jç`é¡î³$Ví&¥ñ^~zÑä‚Þ\Õ®,è*¢{Wß”kÚJ&b§¸ÿ³wýOU\W—/{3oy<ü‚ˆB0 5":"’A@±F1ÑÌ”§#bK%:­ŠÅd™” !"†)Úqj“˜2c:¦˜:S›ßDéÐÚgüáeÚfÆ¿£÷îÝ{÷Þýƾ÷öñžÀý…åíÞ{îÞ/çsι眢»[ζwHš”ˆBkÍ՜ݡyw2öÞW\ÍTˆ© s[Í8^Äìð΀þ¢Å¡ÿÛ÷Åãòߟø6Üuxj‡Ï·Ãáö!‹Ò53xÜ€ÞPJ„h(²¸Ý‰´óÌ6¤%¥ÂÞË*DËS 逎–“?S»Fì~¿zVQ¦P­ ØÞ(@^Òºÿ|k@¨ŸC•l]F ¨»ísX¨Ëgòmü¤ëëä=w@¢t—öÛt}ŸM&›Yôˆ•9bUœDBgùËölèÆ™Q?PA-¿Òe¯Ê·Ÿü/¥½F­½É‹¥|óäQÂi”L“«‚»ë‡Ò5ÕÊš«9ºCóî8d콯8­]PBXíÛà â0«Üúï5ÝÔô?ïõù®ýÎç;ë·ö'G'øF€~ý?"+Q ‚ô·øËF( ÒÎРÈÃÙØ“=ÿ#s³ƒJù[kAõ-<%‰)Sxjòåà/VW›¶+¨áâ †Kfb­áj?HþŠÁˆŽ±.ªYvÊO½¤z!@/½¹_†&ÌŽt…÷ë€JëÀÜñHÏU^è WÝ~2 7$È©ÓîŽÄ®‘šHÕõ45às\z}LT±èß‹UĺÞpŽþÚÅ”êøÇÃiœuêUœiª`D^Z%¬½Ñ|–º\ìË.¤†DtT}ÍŽ¹ir¥Wst§æÝqȘ{ß‚Ðà (LÅ<Ít{g@?ö¯˜ü’‡~ï¾—³ñ¸_œDÓ Ç6•4=»cô9ºÝ”F@Ÿ,×nm75‹8f“»‚ººÆ¤·Ér%·, O©mÝD• Íf†ÌFbyì!M'rUÍrÍK'#2软pl8€ÿNaAwº¿¶÷esÌ6¹÷&ÐÓ;êä5¢É½†XÁÎ|¨ÙÅæ¸7ñŒ”^ÎkÇõcÔ‹ÅmÅ„Ú#Zîä2;»üü0v)º£?Ç×rgŽ:bNL¾|F¨e@_ôèÊM†k*n[ú­–˜¥ÚŠ«9ºSóQsÈèzßädãóY¯³ó˜‹Ì1KYTakw÷nxú“‡¿þÀwퟱ7ò9ÚHµkÍX!T(î#Sy sØ*Ý%z0S«†n™¥Ã0v2~´>&GLߤˆS¨Í,èJ‘ên?,gªþŒ•ý¸e©OCf1Ä¥ÚÂþ ìm©ZzÜU³(Uk±“ŸèèÍ-@GyDL5“±™Ø+íÌÓ뺚+@G£”¦¿5Lh²AõtIç(^·!ýB5óKû’Î@D°kb$—p¨ð½Œ¨ª¹t쯕5~Ãi“,¿‡~Î~i+×îdzF#óÑ{޶ Ñ¢)¸Ú+R¼ºä'3¸ Iqi:Œ­K   =bÉD“Ö‹@÷m‡Þvœ ÔÃtygóAòø ýÞWߥ4 {fr—[S÷%ÿ»íËD“@Lê$½^VyíQSvàj€îÜ|”2ºÞ—q¤H()ã$uœØô²¼(ý©Ï÷ƒvqÍañlüúk·' ¬S«i) ç¶Ü˜èu°Üb4Ȩ>ø¸‘Rþö±Í!:5ëé~ýs9ÄÙ‚X÷zNðÙLÕܺÜNÔˆ¢KHŸ0о³S{oÒ}•ÅØ©µôçfU¥›*àGʛĻ‹þ~G”Ði¨U/Çx,2‰äÕŠ/‡ÞnœMÔ“£šÚõh©zþÑÁWå”.K#l-A“ÀÌ«åRny_µrúíBà'çØs5 èî›’CFÕû .¤ýuì÷ dñwÉ.ý—»ó"úÏøv?~$ûÔçs<*Øèˆç­=3âPY è!ÄsÖqeµ+@?Ïôn ºØ -|Í% ncÅ05AÍcNÖ:`‹Ì“jò†šQÝu5W€.·\i¬=Ô–ÙrÀbYR·OA²ó8TÙO´rµdJàG àNTãŽQ¼ôÛÄßb3tGĺЀ~›óÙªTÐ2[ðqš§Co7Îfêãûv^<u#6Ì/Ç¡/Ç¡ÇèÙ\r ˰µBSV/[®fèó5‡Œª÷Û¹,2™\’ÿ5Ø1fRv è1 UI‹CÿòÚ÷П¼sH[®áÿ¯&y0) [$!™Ðû™bÖZfþ,ße~ú¨@³”ëSSμ*$?°±Î­•8z=Ø]5€Î±bâ|7¬Ëºˆ¢ê½çlFÜΡJ6Ÿ¢,¤æ~½ÍÙ¾GM)Îãô:¦x–¡f G*"Nýº©GjiÔ“Êheq—MÝÞ½Ý8›©ÓrÂ!AÂ2 /HœâŒÑ–‰e¶á´Œ«9ú¼Í»à1ö~ˆ»×­oblÚ-œóWbyåãûÛ¾øê»âhb'€Ÿ?©!‰z#ŸamÀ- 7è>bª³pxÙ+È!m9èS“Ï©xY¨òÌ<È&2A´Õ=’Æ ‹˜án’ôè"Þ為Ö—Jú.:‚4ôH”ôra>÷À(HM­òo¥?O’c‡Û¯ÕÏ…t‹©ë H´¸W¡5òfÇCo3Î&êuLŒw6–0 ç—.eloá˜NÅ (L\Í è®›wÃ!cîý÷I¯«Ì€Ým{ÅÓúEè”1…Úps¿¡úûhÔ©º¤;@oçÎn.a“8o%é–8Ç!rÌ> LM;w=¨e0ëÍ“èég®úÑ wÕ\ú€ÄÂã'´/%–! ÞâLMkSé ý÷¡ù¤–2‘¹.ß±©Q±ÛÈ¡6ÊЭèçHÐ-z„K7&ÔÊ'ux>ô6ãl ž•+UÒÝ þ ‡àáOSšçxöq–Tþ|êt/á4rXŒ6þ¼‰)ájXLNŸ- IDAT®nÁÕÝ©yw2æÞÿŸ½sâ¸ã¸½6Ù]¤=¿îÀØœípllƒ!ÔD7ÆÄµMLíÔż /aAÀ@Ô¸ SžB$UáP $²x©*D)! ©TÊÕÚBˆ’¦ïöïÎìíîíÝííö=öv¾Ÿì›ÛÛyîï;3;¿»Ý‚°Kþ‡z¦o ¸“‚¾{·Ù·.½Ï`zµ"Ås•éá4OîéNed^Ðév²Ê£ù±üÂÜ1ÂN@·:5EðÎ øªf QYG²•èƒ#é[$Y,¿÷ìg‘Ð%íÔ˜R¥gCWæ+¨tkº” eF«’ÕYFÐçqÚo_©²JËw˜çù€%ŠŠê±-ªÆ,å%Üé]¶±¿ÄÿLðxºQŠxy]ÁT?-à‚6¬ˆŠ —s`ì.Aí¶ëœw¢Åk¬Ÿje?ôxŸºA›™.7z…^°<#ت™ ºÙí#²ýO}­ 8½½ƒ’r(+­‚ #èß^8fCA"Šf[ÅUR_5gC7mÊTÇë/ÕMQúGÂ:Í1?W]Û^Ðå]·Õî›JîNß›ûÆèYÚ2^ò¼=;]Õ†ÈÉsÆM¤'0Vf:Ñî]P¼\9Ê/¢Ÿñ}ååå£Â :g/ :Ëó–ÚļÙ;$õ…B­º/a=‘Ì>Ë:}@œõ²¢’²©X&÷yI1O¥ÌKÞw^Qï yפÎkåì#¤¯5“ºVéÔy¦ÄKÐRäBѬQÜ­WŸ-ãrˆN÷—R×Ýô*ÒÐòYt^~ÇjÀ£Þ¥ÉÈUË"ÄÁï!—ZjwÖ Úq?uåå{ýf.}X5SA7»}d2¤± wûiD4Jè2Í©ì·Ø#†Ì‡?>5¹ÎCŒp~èõêž¹Þ?Þ©ÁTI߉POôì]Ãèá,ÊX"A§§ƒRQýQö7½Y½Ú|‡uË'OúUÍ º™ óÍa.úsï ÆàÈÒ©ßs—»´Xõèg|ùrc8A§C|nü°]äznð|OF§‡®òËôN8̧罥57Ó éíW³^UöWÓ’íU[He* Kò2qöZ7ð”0ª—h7êÆÆáèÖQŠ4-%u™Ö]ÕMúUEã.èF)’»úU:´»_áÒXµò0.ç€ØùAã!g˸Ã$\ªz ¬?eCÐùÅ«,›Ã â©ØGBmgA‡(·2--—ìfß(ÚoÊÀª™ ºÙí#³!mØÔWQÍÈ•e‡kRG–’¢H}–-½·¡¡×ô‚C.ß#Åui“‚ŠCY_«ö¥ò®=AçGd©?*Y ¿RÑ6ë»èј.ÉÓûúªéÉÓ\ÚŸCƒÈÓ´D×=ÂÏ"t~ŽvºÉZ5(µH½{ÑÇJP¾¶ïŽóP¢«ÙOUz¶© siSÞõN%¨+=ªQ-W£jÖ„½%ꑵù|ÜÝ0Ee’ÿÞÕµþJR½ò0*çÀØIcš¬\4rI JàÔ FÝÂüè/ñˆeºl¼zz § jg`ÕLÝìöYHsA7Mý\Iµåo«¦\ON$‚~N¼hCAç;:Â]QïI£Sã×am;Àýof«§ì+Íä.§SÕ¬HçæI䎓½#årI›áÉ:òSnxþUóüdG†ø]êÒ`ÃÈ6º Hªî–GùYd‚ÎïßA2í,Ô.37$>;ï¨_Ýé o\âk9@,WÔMÌ)¨˜p^÷"ààðÕ΂’™s¢ÕÞÁyŽÌ¼Ázeúò•a#¥ Ï»}|Ý(EËÈX@¿CfìÝ œc'ì|—+-¼Êý—³Æ$SQÆHÐcml™ôE‹`â|Œ„£(`cNˆ?g#£VöC¿.&•Ù ÇÜØš zïÖÛPÐ/}F·ç”°3Ià‡¬¼S\<üУ+è«ÝîÃѾm,m½ÛíæLýsq« =ÒóÐvà+‚>½õq˦-;ÅEWÐѲ:›½ëÝ™óCZŸ†‘€zwÿ…hÎ}r ‚ž`ACüІ‚Ο<‰Ç K,ü¢_ë°Ê°tˆ¿é]†2t€}¹ÖËF>¹˦í×Ð!è1aÈÔ̰pÊu62je?ôOF_BKL4gËl(ècÖ­ƒª€˜ñCß?t`Â/¼oCA‡:t2_Jƒ ƒØÓ‚Kœ}çWŒätºu“ö§)'Ð!è1 ìôé2Ô-Ì€Wl¨Àó ¯ÛPÐù2è9tª’_ÐA ²ÓåA!:À¶\Þú{62jåãSg}ç,Z"=ìÞ:€à‡n’ìøT[òí…c6ô!¢ˆ­â€ Û&A²lÚà‡žxÞ€: ÉY/~ÊHN¯²lÒ.ˆ§ÐŒ=ýÐ{– 0—W_C!$˜—NœC!$º>/ÚPÐùŽ«)VhD$ž6Aâëà«…vt5 €-òtH ºŽ£ `_î2ò’m©ÀY6m=ƒ7ô˜°è+Ô,ÌpO\ÇFFgXXÐo‰0»‰æÊ™õ6ôË£¿¾‚º€®Šï±‘Ñg,,è¿?BKL0wÅ­öôCÿ5êVx(>ÇFFó« !è $glé‡þ4†¸rÿo(„„¿¹‰BH¸ hÇwè'ÿ‰ªÀwþ·«Ü€¤nk$š‡2t€}¹Éˆ[K%WlÙ´]Á+tzl‚5q°Ã)·ØÈ¨•ýпùú!ZbÂ{¶e6ô1ëžÃžE03~è3à‡Lxpà}ø¡ èÉ@‹”A!±§:–¸ùÞ¿Éi¾u“vÊ=´Dz (;ýL¹ÀxÞQ %åêè×í¸(® M [Àm € CÐ N¬,ŠBt€m¹òŸÿ²‘Q+Ÿzæv– Ç„Ý÷Q³0ÃCø¡'¸­%œÆ;·ŽÙPЇÀm †`Æ}¬ AÐAèYø¡’œ{â¿Éé³/X6i·Äh‰ôÐÛÐ`׳V¢ÍÄìi’pîüehIЯ‹>¾0¹®ãjè, ‚Ó?Ä-9\rÅ‚P¯üÝâûQ¯®T÷İ×H‚pÛìû¶¡P÷ñhùcW½ò±PðGé@ ¯ÎÑú¼•ÛòÞòñÅE7žŠö^Z«6LÌ‘²š×NÓB*tÔ¢„ÍØVQàÌíZ¡|¬ (ÇønðÕX#Té>êÊ-v¸f.‰z<ç K9¹›F™Æþ›í.GfîžQ°¶ Z1{dCU]ï 9>¾€¸Œ•—fÈfZ`pÈëeÓª±"d9?lupBvÞÜÀð†×ÿòÁÞïÆš<ù-LVAÿc?W¹Ï&%²Ï/Ä!Û“BÐW9„’ ºGÐ= Ó\jêl Ý®ZŠÔCÛ,ûŒ·sJWߎæm¼\Í{ÚËJÐ!HÐçMP>Jíôá‚^R_Èñ¦ÛÝý–*K•Ì9憎=u»rQÁìö¢„Ÿó±4G}Þf*!MZç››‰ ›\Ÿò–¤ÞAæLÕ¬T[$‚pyxAO²Uî—¾«ð;ñõýô|¢x7ô¯’ÊkI A'–rÀ‚NÛ„ö,ä§‘OÙ¹¥#ÉïØ°äƒšjÚŽòiÓÙ¼š>-¥V}Ä×ÐVß}xIµëÅèÝ6¿™Ü·µûð$óÒ oØAÈÈS‘ãj#WIîöÍ5äâIò5¸|Â上ÙO9½¤>CŠd|wM[W4c9D:ƒ™ßoï&¸ó¡boF¢um™ä&‰(‡ œ®ã(#¦ýR“åj®¦öÈ!+©éÊ©®)¡Â8b'ÂùÀ b[Ŷð!'­b0Ô6X‘9È T-VuªSSUª+YQêT–Z©ŽªVEõK‘"â~L•4©ª¶ú¹ovwvßîÎîÜÌû´7óngvföýÞ{óÞ,s¨XdÒëþàýÓyP¼Ö…ZDZ’'jµy¹’½‡~òéÓegò8míŸåFmµ1ƒJPÃdo_¼Wò®îÅ —WKlfb÷)ëÜø™´´6Z®1£˜ÝÒ$é»N\ºà²û·  ÿòUïg® o~íòÈÝ8:$TÔƒhZ/ô{RÓô¦ ïÂ(>ú z9‰&fÔ¬îÊšŽzïx@-»Ã ù¼£j]!9ŒösæÀÑp^['¾NƬÀøZƒ¾¢Z Ù's8±*eŽuHÝ0­^%ª2×N@P]1¡ˆ>HÖ֙ţ¹.üPãÉÖCÿÍûVRž•¹üZ²έãOùœ‡þ¹÷ë\4cb”.©Ë.¬z£˜èR=fR4lÝXº+? ±‚p‹ . h§.›v vï­‚WÌîè?úÞ&ôx?|Ù­þ÷Ïãå0yŽG,ûÖôÑi\*rÀxŽ"Šó°ùV)åbôÜ×cë Ì õÜÕ.‹¢™ºí"¢1Öû•‹„Í[âMƼœ¶ùÒМ¸‘»qˆ-Ã9ê"€~ [½ªmßpÆZBc†ÇH6·v]·Ž¨ß2ü¤YƒÔTòÐ}°œO+¶ J×ñ¯î§ý`›3¨`„/N€é÷§Àd\¯åÉÝ•_ ë¡jnEn„¢©Y3PL_3é‚WÌîèO¼?Ø|€þ¶×ûv:yè@Og@%k¯bgLYxcið¢>ú~)ÞÁ×Ьs‡ ° 8oÞCGªNçÀw†î¡¯¼QŒ))ôè*V±t±ä’Û¢Z“Maªãaæý[·½ÿ\||ñ. TòÊ›–#³&ý=}—næ= ? pA½šõiP™ v€]Ä$ULÝ?ËVÌ®½ú`Îts˜YÃPîÆá %XØg@ê° ZRogª!´`*“·ŽÚò ¯DÅðl=öWÞדòèŠÍºÉ¶”¶‡c=ÐêÜ)å+åÐmBL§6»e6C, «çNè®üÃõ~A‘EU„ËùˆS$¶!xÅìóÐ_ø«÷wŽ—Ý}!7ÁÂ2 ©;ŒÕ q@_,ÖŠ¸ìÚÍÃ( M€¾Š%|›ô¢ºt@Ÿæ· ÷逞P ªEµfÛŽÖ ÝÞm7@—÷z$ò.TjºŒ&‹‹ ï*ŽÑ-Ûºtå1ߨõé(wz?“A‹wùüò6ÀeEÍb&w÷Þ™ý‚L¬–üñÃ@/j®•¤NêweŽ3©ÝSÉ[ŸÑm E×éÌÖc?üò_O ç3=ù6g¹Û„˜Dç×Z’º+‚ ¿æ;Áʇ]Š’©"‚ÛÂÈ-"xÅìÉý›Ð?Nf ïØñ«ÿ¸l+Ù îWç­›9rÊ+*XV6ÜÑ݇x²pM=ö3à¼ÓL²)ʽÆH”ª»¨Ð;ðõ§#ìþ}ÚŒøK•¼ˆ¸¨Ö k]÷âiÙÔT;«ön;úÈs,LÏÐ{À$`:E;ÑS¾PÌÅpf‚§ÚfÏà|– d¥‰*mkk?Np¥šÙrÝêÛÿ²eȦs9}¬KR{Ȧ~7_# f¶{é(+ë‰:¶N=£Á ë‚ãm@ßüdbñ‘JMƒ~YöWâ‘K¬$"@wãGƒ*âW§>ØæXäF— ˆ_°‡b¼bvw@ÿâon:@ÿÄû“4¿¶v_ES…ÊT1ˆ\2ª˜d,B2¤í`@=“4’f\G>foÅØR@¿¥- !ÄÆ @¿wS"ʆ#~6#à¯^Öê$¨³ï¡ º,¼ ÓD±Ù…½2:pµ›þv䯴_OÊÊCšç® ùQv¶JËàÛÍ~œZcÃÀÝ Äù°É_ ƒ¼˜ûÁ zKJî+ŸCLˆÇ‹´ ýÃN­%ÉÌ-U» èÛ€ž:JÀ ¡5Ðöýz[¢ZN¢: ‹º½@G+K^20Ðé €óß"Ê{r?ßñ…Gê‹UT•XêÑrŽM,Ķ;:tº‡¼ËØ®‡µ^rÆô¯kIJ1€>£(Ë¥.SMŒá}}à¯ØyG!|Ú¡u|½ ¸ýÎág·=M@_’¶Iè Lj”}RËQlË>°Æ|¸º€ŸÝ¶¦ùÐð1ãC‘U’ÝÀs œ*xÅì[Ð?ó¾úót}¯¾?Ò¥jA ÏTêžÑzm×g«ËPÚU£¹NÍËTòè©Í"RË/ÇÊ„fÅãÍΫ%¢ZN¢: ‹º½@#oMœ€¾'C!}ß¶üuåëaò£7082ÑŠI$ §ŒÎ⛙嚖qhnµòP|‹¼×³%@r#½Ä‹ gÐé²Óc,z§ M£†¸õJÙ½!®=Œgë‰'ÿx@YQzdô4oV¶.• M®—ò•æîsè"@W²ÙØqm,°ÈgR|b8ÚáXê€.àƒ Ûªr/(r%4ŠÆøõU! ›¯˜}Ëú‡Þ?&ÿ~j’­-ss”%ZÛXðkfx±a"©R1HbžKÍ€þ®†¿1™¨–w‘-Ô6¬:©ÎÈ5]›°ÕJ’s[ÚšÞí5:3ß þÀ¡ñö Ȳq.¹ètûöåèüA°Šä ­¡H1À†Z3n£GqÔ ´£—Vô´òë4¦}qÔ³pͧEΩtÁÐ 7 ÐÍ€^©&TàXÀ‹âÖYš<õ,öBj7Ù2/¿xéó5Ú×ù@ëxÐ|ÎCÿö›¯6Ћ é´ óSÍ5U&ˆQrt!Sb‚xßˊܨ•àÇY! ›¯˜=  ?~a“úï¼Þ“ñ|÷­×“œYÔ¢… 5S7(¬hQâÕNi€Î÷CQbõ¨K@ñ©±ýV½ò…<ÔR–3ÑnuFæ ¿½µ–ÜßV'tK·×è,IY£}>²‡¶øÿ‰«.å£,9Ù¡;Tã•ÄÉœ!ZÂ{œ°—Ÿ&‰ü*Múèaz­ÖH„ÜúM³Ë½&SMTá£/zK• K—øóÍ7€œ­=ôTòÐQCÞ•™ßÈ4oV±.h>ò´ç¡»[è' `,1jN°]λRÊ€.æ'„æŒ&-²ÑûfºàËö&Á+fwô¿ð›Mè?ö~ð§ô¿‡ÎØAý8•³{ȇs8 6ºŸëV  O«»¥|•¨å ,w«wÑΈÕrÕ ÝÞí5º4¦F‘”Þ–dCTôáz;G;68RÙ‰&žã×sÏ­[Díªåª ¢Û‚÷ ñ¬\x6b8Ì™àº1Áƒþ.“t–Í{ó&@—ª§:x—tA¶85@ß{èþ¼|ÿ² èü%D®‰½…X·ïQû÷¾¥>{V0tÛíø yìé>§ rû "„AqfÁ+fßjyèñÞÛ‘> ³/´4)§nháî=ê¸Ë·ËRô  ŸSÎÐ7Ð=XEhÕ4#¢Zè¶:;  º½6@—Ú;ƒ]'™O§˜—M“óÑÌ”€ü´Ðåë°ƒ_|µçq%t, «Šlo× ‰}8j$3n 'ˆÎß P‘©&É_È,œÌ€.E¯Üè½5ùsøg-ýñ¯ÿûtº’ò–¾|);¥OÐ+É~`œÌÏ>‚¾(¥ èNü–.=H^dí}? ´¦­™¯˜}«ú=סkGÏÜûw²ÏÜQ êFŸÖ„Ã^ú(Ѧ¹ —{¹õkkˆÀ+,ö·Šzího:#¢ZIr®³º¨Ûkt>备¦Ce ²¶–mÊÒ·YRôËÄÍ>d¼…,Ü·$&¥ èŽüR|œ®„ÓE.½OöмefÁ+fwôOŸÿá&ôŸz”ÂarI—ÖŠbPðó¨»P)ã; >mãÓè’„dû|j/Ûñ0¢šÕòNšü0`Q-'Q ÐEÝ^ {–ˆ~ËÃHšÌáÈ»|†ç§=O-ôBãgvö®/ƒ¢eGãbñWÉ3Ô§ŽM%Ê}z®÷¢±)CmkC<îR£²!hÄ{º´BÀó&‡ Ðk£Ä¦q#×È6 oz‚ìJÑ=¥,x³Ã#¹º™ù«dC ÷©QÊ‚"Wj#Ò3bÛ ^1û‹rÿ­×ûT:˜”p:ÿÏÞ¹ÇFqÜqü¼¶â]¤;ÎwgΜ˜Ø€üHJ[ÀÂ`¶ƒq 5àÆ˜”$ ^ÅÁ$Ò )áB¥hIIS ¤µ¡ÁHMR¤P©qyTêD•´MÛ$ý»3{·»›]ÛpëÝÛù~þ±=;ž×þ¾;;ó›Y9Nu©-(¤Nç¿d úaí3É÷ÄxA?D..Ó¬y$|i“:uL#„b[„uUu­+^ÐYÙ‚ ?&¨ŸÙêŽÙ}.v‡â&ÝÉEC_/Š3tVMRSÖë^ J¦¼/LÔå7t‚¶N›ø:§Ë”m‚N¿EEG–Æ®»¼'ò³4¼ŠØýnuw_ž.tGý~º¶Š‚AOº ¯Ò¹|U+Odh¸4SÐãˆìX¢Rè«sR—mõUÞÅ­* {{ÞØäPD_õF5¥›4y/è&ñ©¡… v9cÕè-¬)ô8ÃËŽAgCÄ9”¥žaŸ#Šyÿß:y—î.¶ Óh³µˆ‰‚Þ,oð¾0FÐå™"ú‡nà‰©kÆUƵçŸA+ÛQAOkiiY3гE?µ·ùtS”ËJhzÜ#5ÊVŠ{ Ô:Òヲ¦Ö‘z+NÚ†di…‰»Ý%óË5ËJ§s’{Ãþ<24xPûœñ„ý‚žF^õöÐ,Í÷%u'þV2DßFýÊ[kã5ú»·‹b7}$ÚÈÓá¿fYû¾ø’%sòñ©§û‡mg™Aoji‘ûõÓÄüVRƒþt(êv±Úø¡¹ 3ã+ÉÓ1œ<³ö¦WY~Ç2´»Jú5i‘ÇBÑ%y†áeEçSÐ{n Ü'rô'—í¥KÅËšžÊ‰,aØc èmÔ×1=\F*5 èiôÕa®NýÉSä#V¢#}‹$^Õ(®£¹ôëv$de;*è«Eu{[ãg¡•”BÈ[D›Ñ†î”¶–Ð}±jËhá…ËÎ4&òMͳͻÈcê[“´dé{a¥Š¬[‹»I`xz{.}Ü"ƒ¾ÅäÝZøîáÃ4¨øš6:e/“^A÷ü€d*o_{‘g.î•Í÷“^±©yµž‡Œîþ[ò:ÜÕ<‹üðn·®Àwá¶æ à‡ž(èê8¹™¨ªÈqV•A‘W£x AgÆW’o¥½†Ž…©ôGNaÚ]™.jÓg„ÓEm’Nå'^Vôgé?âBA5 ÛšG>Ì^W#Ô©±)ÕÑ©O† {V)ÛñçV%ºö¾¦O«QSfh›xU7:L¼V)Ÿ ‹ÃÈöPÝ3Û§iÒ®†µ‰ñ]æZ±r—à§Z“ÕW”<–&QEkb§M#Sâ« ”¿ ”‰««• ZUÛHKØ4i»Î|»ræï–¶¤Þef¥r¸ð5ã»Ë‰FÊšoa/ñ"èYÛ‘@У’X¡lÊዌ;ü±oÉ@‚ÎŒ¯&?N5ƒÅÊæ‰Aæ‚îÙ¡,zÏÉOÈ}¢áeDwáyèst0‚N[O§{«èhµdÊvù¼–U‚N^š Q(œìaú›ºéuá›»ýä_JŽ`¶HüÕ˜1Püµº%ÞØcËÙ’ {êÆ†È-‚¹ºó‘ÿŒ·üÙØJ¡ IDATt³…Òv'ÛºÙMy%â܇“é©ëg :‘²–lŸ?{Ì\½ºµ”ú|¥-:Õª#o× öTEœãØÂ¯æ•OÍNömVMgyCáWòÍîžöJx¤7TÛeéöMés>Ý3g©c³Ö/ݶYÐ=Ë æ,4v±zeH‚.š ºÇ³žšÁ@öhÝ¿Ä 螉e>XÒ9ŒÜ³ oBt.½·¾¾ÏÃ=ÕƒX¥€+¸}u`3 ×?K©üŽ´h‰‹Åv×\ÐoHçÝ8‡Þy Ï—§*™K ÀEX%èÛ]sAoøM§«Ü]Ï·…ûQ 0Œ‚nµÝ…ÛŸ<êG£p;^C8YÐ-·»tN OF^¸ÁÉ$ÛJ»­ýãtC*U%ô)EEIßúÉJ»»·¨¨HàQÐWü&n¸)m࣠NöCï—RÊìFŽõMO¥,G½”M½ïôF ú…ñŸ`•;ÜÀúLl,A7]徕[?t€;¸#Í㣠ù5@Ð!îôCŸA€#úný •`77>½ŠJ°]Ð/ºqýäдxâúÿV`•;òÀm R„C‹Q‚p/W9qk™$”86o}˜B‡ [t~*ÖÄÀ×§öóQP'û¡úÉôDÛßlË](è6Ìk@ÓÀ Üø¡Ï…:0áöÁ·á‡€ §­Þ‘t`ˆ;ýÐ!èðÄÕŸý—“’æ;7k·¦âPzº”Ÿú7>¹ÀxÞÑÀã¹4þ%7.Š+G×Àp[ èt&V•†Q ‚p-}_|ÉGA||êé~ì,A·„ž[hY¸áüÐínk¶Óp½ÿˆ }ÜÖànüÐ'Š^:0þJ?t@ŠsSúœ“’ÎYêØ¬õK·Ñ!èÐ[_߇¶€ncOÛ¹þêÀnnHçÝ8‡ÞÙ™pÄ×wv¸r•; èà@ÖC:À½|ÔÉG9'‰^Çæí & #BЭ`Å ´ÜpBz‚ÇæíC f×nzÿ¸Ñ…‚~aüø h[xáEiÝï`AFÚ‰žh3I[](èG%é(Ú^x—Ao\2Ʊyû•ôôD›YàJ?ôi’4 m /ôöü•`7g?x•`3¯J](è™'O¢iðDÇïïjV¹.‚ÃozŸD:À½¼ßËG9„ cóöML¡CЭaÔ(´ÜÐ1õC> êd?ôÆ¿‹žh7gÊ](è6lÀžEp7~èà‡LøùÁ·](èðC‚îB÷¦CÐ!îôC‡ Àg~ú'%mtnÖþ2õz"ÝÊO*GÛÀ ˜bC#€ÌÌÎú—\(è™åÐsx©J}AÈîì"T€ \Ë…­óQP'Ÿºà+gÐ!èVÐÓƒ6€à‡îp|ªýüó#.ôQ’„­â€ »…¢×±yƒºý¼šrnk{^¯¯ÿáǦç›ú¡Ÿ(ÌÌ£ý% [òcªÔÒ€-ú¤gÓ¯ \† (>–Ì:ɉcô%¬ ˆ¢¯L‹ËS|‚è-ܱ[ :tÌ/ˆGöâ!)ÏFéwœ”ô‰5ŽÍÚ;Ò[Ãv/3ëep-ÎJFH—ÍzÖP’g¥ÅL{È7Jéš Ë¿<Q¡…ÆÉ§œúÙzIš*IÒ©“H½õõ½w/貨鸞Çt…°M‚^-ê:ÁËUJf¯d(a¹JPÉq%¨Kˆ•e¤ Y+յɔN¹nmÐ_5ëšy¬A³|_NÐW¹mst'çãzB#3–APæÌ]Ù¾`M{šµµÒ6R¬Öþ:¾%Ïï½'#Èúú`ÜôÇ{rBâÜ×^NZÑß:án™8+ßúÛ°ÝÊÌz]‹±’æ‚> qŒO‹™öP3n”RãHqЂ~V:ŸR‚Þùéâ‰Ì£®—¶šFë4¾67Ölôלˆ GþðFª¼Ý(f¬ ‹z;°GПu 1‹ævm¸ü˜ »B¥|Æ¢Jz%šßÈï¾µ!òãXê™·ûÄD©^о‹µ—›Ä4Ê“·$ßDÀâc±ƒEƒü–~É(5AßýPôž¾9åÆAÖ×ã¦O6)ÿ”µÜ#èÇ™õ2ºc%õ‚¾¶ àðà“g¦ÅN{ˆ7L‰šïˆ Ï.((L}ÂÎŽ”ôg¤÷dÏù?H}I‘·¿ötu“äû"•&ûìž[Y/‡´(+É}£›âye9•íî‡;–´ L cñ £ÌÐ{µÊé÷ÿj®ßuºªnCUxRèK#¼55¨÷•p ï¨¶d¢¾H!9ðMPÆÓ±úJ A²#æí.âÌ =õ2p:R3Z PŒ½XëÐ#Xë”KZ–”€OMïA~)º;჊ݹx'ž¨™Ä$C iéŒg•²6‡:ºweC3ý›TÞ×ç¢h”Ð9~ 5Ìúž¬S@w)"ëÅO‹²’b Ïb£Ër,ÛÝw*©+gýçZü¾Á :~ÎE@_ìg|îé>ÈÏJ0Ð3 ±3!Ïjuˆâô¸` þ‹Lé%Ë.”á¿U·ˆfu%ÛÝiBÛÓÈÑ “jö\nz t<¹5²aàÆŸ ʸS.Žj?@0Lê=‘u^ÕIOT™·þ5à:rØ–õ£|•÷õÁ¹h-êzMÓ^ª3ñ¹û¯{S@ŸoùÓk ÚÌ]d½xi6+)ºÐ8F—%(ÛÝw*)0²`þ}ízí7]µê?ÿçÛ·oŽ@G°Ƚœñ¹#’[@u7øPJ^4O]ÈVÀœ6îGå¾X¾¥w¸'„ºë} øª‡Guíxvüðb«Nuâ×) @?H4“t²³ µœ û+’ͼ€?ªNv ’£æ|ðu9ä’Ôþ¢G»õÀìqrqTËöSÕ­–þ>¯êdJN›@?P=c5ßu|•÷õÁ¹èEÔ¿1NEƒõEq¹ù«ÚoR@ŸoùJۗ눬7Íf%…@Çè²e»úáN%u£wz¥<Ðos"™€~\ûèïš.EÁÏ++?ŸÐ³ÿ €~€ñœ%l}M‰ùÖÕ“á™ú,Ú‚“ Ðoèš)Þ C¹†Â?è tåàŒÊ4‚#ËŒÄóôw7ätèš~§?ÅÜ^;Å~I†Rò±fz|–ûì¹äeÀ6rö?" ÕjQc.»jÂo'z)kP+Új½`ØHYp–¯ò¾>8íxÛPí7ý*s”¿=€ž¨uè"ëÅM³YI!ÐÅÆ1º,AÙ®~¸CIa ¹ú×âhñ§ è¿Ô6iïõÞ콫i¢¯ÄI}]ô[Ý «–Ï=¤ ‘‡ôAì=i(/úÐkׯ§wù1«û bݯc\å4ÁÂ~¼ö*'Ãá&êž+#Ýè?4ó¸„KM“›qT–îanoëŒH¹‚Ç„ƒÇÚ‡Oóã ÎSZÙs¹² dúÀ)6åZ¶é1æå²«Æô^Ëî4(O·€> ð¾iZù*ïëƒwÑ'o˜Ïã ÀH\nÿ³Ðç_µSœÈzqÓlVRt±qŒ.KP¶«Î/)e¹êèI¶ýwšö_ü·ö m½ <ÿM{eN@/F/K±Ð i¹þ„¦L ×£¡p¦>LlA ÑA¿[¾ŒVü*R £’§>©ë䀸ä×ç»ÇëßÞ ÓX‹Õ°fŒÛ!R1¦§l7#çt–$™u; p²…¬Q˜0ú.fãíÙsÉË$z ;ÂM¨+†¢\`¹ìª[8žu²î\^nkÝ„W5’^25è·Œ4:ŸÍQy_³\´QwNÅAnÿôq èó-þò^B®#²^‚4Y ËÇè²ä€î¾äFÝÃåè¿Öþ™L@¯Ô*Éþÿ'4í5A¾ë×g/Ëè¡i¼ Í’ú÷LŸ{ž¡@/C¹OÔÇˉʘ`¬g€N³qNXÐI4̼øl@GÝ Åx:ØÅ?©MWÐ5Ú׌q¼9ÌZOñöÐ|iglZË$í²Ô©m´lÏåB¦ýÆC¥÷#Z¾”‹¢\6Õ€±ÃitÝõ½óBö© Ð_fV¦áYf®Êûú_t«¾gÕ”, 'JDÖK& tãÐ]—¼ _uô½cŠc˜?—ûOèÑqí/s,ËtðéB·ÆèS¥€Ž®Û¤QV«Ð÷\m[r‰Kò’µÍÜè5DÅ9aÄ ´ïšže5ÓF}`D04÷½jU ­üAº5ÿVÒù0: ªz(ù€Ž}ÏNô5æB6Ý÷ãK²7zòʸq8°]ÕýÚ7 ÕÇô‰ØsÉË’ ¤éá]…ˆ:VkØQ'—]…÷E¡]¥w<¨vPôkZ@×û0?8<1zqrt{ø*ïëÃù¢hĞݯ*¸w;ôù–73….´^‚4Y ËÇØ€î²ä-èÕQ6ÐkÚUýà„&\óø]‰¯§ £ÜUi ãÍ– á†¢{ÏM ·-α޻Qðn±€¾Üì±EŸ †wî‚ßÞwtµ“L”œQ½¸YZ·…ÜJ9É4ŽFíÉkèÖ¢êy¢‡f±.÷z~.iIo áƒêô°.³N³>Q.Ž /|Æâ_iüë`Ý@ˆ:®"9Óù 4;¨¼®ç‹>s5˸Y¦½«¾J}¾åËÊÏr‘õ¤ n|ƒÙrãÐݕܤ@VØ5ÐoÖÆR¥óô{ëµ»ú~¨mzÓ9Û ÇϾgQ¼€^ªûÜ’-  ¯$ Ä—]~&4™,èç, ÏÆ~’‹§Ôi°ÑÐÕŽ ­ÁíÒ±W'‹üÎRfôŠí‹Oø› $¯¡köÜ×'<60ά~.iAoÛs .Í%^‡P]ŠrqT¤™èò†½¯1wéHƒs36 «o‘@¼àr5`tè8*ëÃñ¢ëªã·CajúS ‰Z‡.²^‚4Y ËÇØ€î®d4žó§é‚ÆŒJZZ½ Ðÿø³˜bËæíã,iÚ{WÕ½Ó4Ñ^qs_‡îèŸèà|ÈQ- ¿ŽÚGIéªÂM&›C6Ø€Î9H×Ë5Ø ŸrtC^&auEìdÐu:ô€c³Ë—„ËD½‘¯ë_º5ëƘÅ!‘¹¤e 3 ÍPÀ×lÕè€0G5ÌDÂÌxá y=ÀB] È.,46šØüêÀ;㵸×ê¬ò¶>œ.:lÔ¹8Z‘пE@Y/Aš,ÐeŒcl@wWòꨇ­È=龇þ¦ië5ñ¾2‰:ŽJ/ËTÈ\"z?:#“fó¯dœk:çK°×ò†4Ðġ³šì.XÀ.ŒŠJGƒ:&"£ ^Ûo&PBÖ°uwvë›È˜^ˆóƲ}[.7c+*2ÏÚë´ÕÚD…Ÿ‹£ZÉü´/¾„3õâG·ãö½}¸Üî7æúp¸è-d?Ãq¬ƒ›¿¿«.hI ÿoÕÕ„\Gd½i²sè2Æ16 »+ùÛtµ÷›*7Ýýƒ0Oí§ŸÎ>“7 D首=Í g|Ä_l¹X 蜎ä*†K2ÛúºÊl@R ŠNÒ/çžÈ5rÖÑ[ ÐOsã¯lM.ã6•¦˜Ãqìô­Õï›}ß“$òŒ“KZN2ËÚgÐX“ž; P2*ÌÅQ]a¾ó3äv‡¶ØÞfÒï8©¼®þEQ+„—šãZ /¨ [’"Ê=QAd½œÓd.ccz,%cq1‡Þ»þƒ$º”ÔJX︽ `i>u¥R çYáŒE@ìÞ/fÊ×DsB…¥ªbeÍÖPC9LŽjÈ®xïcÛ»Œ*:Íù¶ÙDV$ßú.„H㣷^@—x7ç“Õ÷¼\²rÙˆ/%KÂk5?Gª°Vv½?KÏlŽbÍ¡gf+5†Sæÿì{lÇÇÏkÊÍZÚ³Ïö?¸ÃáÛøMa,Þ²Íà ¦685À1åU¬aÀ-. `†‰ …5 yPHZ J "R jB+Å­©i¡DIÚ´MÛ¿;{w{w¶çÖw¾Û»ÝïçŸ;ÍÍí<÷÷ߌH'ÙAÚ×3Qyó£V`:AjÖ+ôoa zÆq„‚>‚+G(è#TYLÐ+b&è² ¾å‹>A¯&$ÝãA~Â3orÖטoðQ{ÉPAgüAžh÷.ôjõ‰z¿´´tÒp€*[áYGdw©×”!‚àñw_N|Fõõtjpï{¥.°Û¶AíòŸçÝ–á;e-phêeBÜ¡b…ËJÁ?—|¿8°Þn)!³Õc±þ8›ïÈâDÑÈtLЭ¢Ìï´(“?Œ Í냕¨¼•ñH4}ݬ×üÒÒu˶ «]> Ai¦GtåH}d@Ѓýûò½õ“`A—7…æ×oñ®µðX½Qòö«v÷˜4y£‘Á‚ÎøÃ(yupæag1}ªöïñ:ý²s8A?.Ÿò’sXv‚ó:3Yë<{Æ7åTÄ?ëyVvl›å¶ÓÆk:*‘…ä/ËŠ÷!:j™-Ïâ®·)¾SŒXaCЙ5 n —guºû±A§iÃ×Ëا;‚üP5ô)„Ë› šNk!/Töõ14ÑCåÁç$zä0¬QV΄´la ºêå‡ôfzDW† Ç_Зÿ[jÅm­ÛÏm™¨LDªðMÍê¶ÆøC]²9Ä|kØ‚n]îßO{›””ïßo•¶UY×Y½ÀpM÷#yóœœmÛÆI„4ù–^•ÑLåÒmNÁ?«ÍŠ.ž‰’9-ÓwÓ6Hû¥šëŸ×‹õÇ ´E’»§w§’RËz ôïÑΖ±{ÊK4ËRMÈ íëch¢ûåC~b3¹¶çs«©1‚ /yâR¼’j½ºʲ…/誗JÐ#¿2]æhûÂÆNÐåµ­ÝZ“í¢’šq¸FÞJNò­z¼\ By§•!èÌ?ìtÈa™ÎFk‚n=ñ\*M&s\𮱕.HJ7‚Ç¤Ñ ÇS†œsÛ«˜´ÖÑþ TŽ›ï¥+òþIòI9ìF%ë=EÊ]œ§iµû¡'U)ì­W Ò¾>†$:g &ÍŠIÉᶦâu|*ÓzébË «^>*AøÊ ú߯œ1¡ g‰b–)oëVýïÖŠž”Ü´´ŠÒÕAA'ÇnÉtÕ/W6ÏίÌp•O½Ø|}#!®’ac±‚þÖ™3AJu¿y_ÛJ°±Ì¡7ÝÉRjÃãAsŒ íëcp¢iô(X¦ã}šãå‡KBºŽÍôpǧÍm-ÂòC7"Ù¤ZÀ`vˆŸpRÒg6ë6kWÄ·!èš›i³ù¡‡Comm¯oæ? 6+`oŸC$š§ÿj¼yûöÉhZx?ôãðC*¼óâ{&tø¡A7!?”’!è $æôC‡ À—Þø€“’.ÐoÖ¾˜q=‚®%.” mà¼bC#«µ½ö€ ÝZ=€A•ñtÐ!‡nT€ L˵=ŸóQP=Ÿºä‰Kè‰t-8ú`4€¾óQÐyDÐmÞ>¿DOL0ý·Ï˜PгDñ·'Üß⣠eDÒmÞ>o¢'&˜‹fõC‡ À ÷Äï8)éÂUºÍZŸø=‚®½µµ×ѶpÃÃ{¨ƒS×ÿ-*!Ñܯšñzû 4-®FU7ךr•;Z_œ´BÐÀtE:À¼Üåä%Û"è6oß\¬CG„ kÁº/ѲpÃ=q;]¤cAïavÍõ‹;L(è× ¾Â*w¸?ôy:tø¡'ž»âø¡ Í#q1Í«A!1§úL:qýÁ?P :üú*!á‚þ¡ß¡ŸÿšOôÿoV¹†nk`N­D:À¼ÜáÄ­ešP¨Û¼]Ç+tºFç§bMüÐ?£‚êÙý믡'&|d[bBAŸ¼}1ö,€¸ñC_?t ÂÃ߃:‚n¥T:‰9ýÐ!èðÄ·þÍIIóô›µ3p(=] J.üSîðîw4°Xn0㢸t-|·5‚A€8ÑV4• èÓrý?ÿ壠z>>õbv– GÈÑÇ«j±Ž>Ðv˜Œ~€Žx?ôÄ·µ„S×ßwÆX‚þF8‚žŽÛZgS¦@ˆdŸúZ„•–䬌Yä¥ÐLHŽ}ŒŸªˆŸôü”¤°.g#d=û—BB†—¥æ |äò˹!¶Ã5ÁQŽ•KD°U…©tÑrØw'`¨³ù¹Ê ÉÞ°mn èÖ [Zö±IÑ_|:H°ÓдL’£ëTWv¡ÍQ¿>7v o”ò ¬5jRŒ6X´·Ü•™Ýõ¬zKÅ nüÐˈĻ ¯n² $=wEÈëb÷~7¨»0O©ž äH.Ï2†SŒ*÷Œß¥x‹Q¦2Kb0·µ§Eñwïxøyt~è+2ÍìNФ?m¶‘¢XõÍe©¾,¤¨ :Åv$^‚î&A‚>סd £Y Û௺z%¨A I»g#òÓV%éäç•× ¾×Ö¨T½ùD]ÐWùêIØwŸ‹ ¼Y,kˆÆ‚Îhƒ•S}!RK]è–Š÷Äï8y[¸J·YëÆ!•Ù‚¯miñ”I¢t•˳Œáà£É=ã·AAæô‹½ÃÇê­­欆ï“oaš§Âìk"èPcIìÝNÍ}e1•aÒÉtAòàÉ£´:>‚.÷¿ ç%˵”]<~(Ó«é •8ªåcÚL«š•/gsR\mHž<”hê~i"Oi‘WÌräüí~ÒI3Xíõíà"¤*Hš·¿h2cÍ£éWtw͢ѺâmZƒòf±$$5WaSìëƒÕ4Hr¶ì’ ÿdÈ–Š% ¼§ Š!ËÑÿm™"Ô«çȃå¦Ð¶Ý'¯)Rù©¨y W¹ÝÝa_že ‡¤Eî¿ :âv»UA¿+^5” ŸN´öêõZ,7Mý)Ï£:Õˆ:†‚NŸw„‹¥ö”r– W(ólô©™ä†qÁz·ûTT‚Þìéø=G™¿8PGZ_irj«¤¹÷œåxKyX—cUÅՆПéQ‡M4«VúÚGØ:ž~éq°ÆI#æ DìÓ‚fÙ¤`Ñ+©œj™l@ö¹B޲´b`Þh…L× Im°¸ãò—}6Åü0bs z<ØD¼Ú;# IDAT»v±Ë§ÔþIj‚n±ÈÓ•Ó¢I*ÇæŒk Ø5ø_ˆ± ¨þs‰¶Á2` —‚°1(jŒ±T!X•PäÊÅnx iš*ô¹3ûgvv÷ÛÝ»óÞqöñ½x½ûíÌÜÌì÷›ïßL(ª,T©ø¾nȦö,~Þ“‚Ⴊ€]ôÏ>€:}lW\ö«ªQãG*¶(܆µÁõ:@B½ª¨ƒ`o6…ž¥mõP– Àù/EÆ ÆøDŽkÆB„+¯¨Z|ôµ(ŠåÑ•j­¶.¤R|ÜΣâ ×°ÝvˆºKñ˜0t«1ÕÖ#ÏPöeè¿“åjûË/¤èÌM<)ü¸ö0W"\/•Ïаní–fQ/­4}k1f§[:in͘AÝè]îu(0i8då´áCÄÊÂØ°лÄ`6+DW€~ TxSmN#m²õ½b€5êU§%<ÓÔ°A¿Þ§ªÄGÆô[—Þô©¦£;ñ]ïﲺÁÕK ZaÌ·lj¤–¶ýž89ýéd *Æç.€^íÀå+}úëÜ¢J—@ŠT}&‡Íñÿü ãÑŸTãð…*\µ1œ§¯^©h³-ª@w+†n5¦Úzäξ¬ý=Y~çѽŸ½÷²,ÿÖïØnýjsYwÕªQq½õúU6!h"Ú­}Þ€nav¸ekˆ"Ú(ZïóÖÐÇ ¤€>¥ÜXÍùm5*ï1ú˜3žÓYO’è¥ ‚¨ÚÕë{ë U@3Àú¬ÊÁÙé—ÓÔX+h²ÃŸzNð5£Æ0ÌôÙ]à:'€ÖÿÖIµmóL•N´tŒmó1^QìûÔ°Ó›kÑôWùl~ú¡ôå/2]Åjn„V@ºÞúü8]GÇíðú”ŠÏ;’7 »C—Sn=ò gwô‡¼±”ýØŸÞ¿§¾ò‘,ÿÄ™í¿t‰rtÂ4æ~…Ê3,Z›\ä° •­£õÌÍ41BA«hd¤IîÐ)J—53~˼ž„­ÓAA©tôŠÌN† ¤xqÈ è ö°¸¤„eMÂŒè[ÁÅÜyt3—;ºæo`>Ñšƒ!BB%ºq½†…î<Ñù Šò¼ú¬ÄÉ*ÕI&ú.á‹X˜”ʾˆ¶Kv@¸ö ©ˆ }²A¶¶m£-)Uóç®ú–>‚+Ù«¬ŽÊ¹2Ízr-žr>Ý/@¯Îa@ÏBúA(žˆZÇ£@NKvxÝ ÐÝŠG„¡K)·y†³‡<¢ÜßZ’[¿~ë]ùÃtóÐ'€»7m«_¢¬ãŽéšëôV‹®¼‡ÚRÊìC? šaFnYg“´˜|ã€˜Š›6²¬·Ðêù£'yÚZ¹ž‰§D¢Ç @Áòé,2ÖÖžŸ±¾P¼GgôäH¢Ooå‚heâYI“]DM™Û/D 2ÃE……ß.2iZM7Iv@¹îðÐA4e aÆÞ7Ù.({ qdæe"ª6ŽHG˜ÌòÁ¦€ÞnÜh£;ÍÜ…$fèµ´ = ŽåBv*p ô*Z0âô&4ÿYwê “þb È©:\ .Kƒ¾äGéW„Õ¹$ÂI t‘kŒ.|ôëö,:"ìmckƵ‰¶žãt.4÷Iþ÷‡m TzSYáðàò‡~ö¯\ôÍ/:莼£þm‚á;}úUÆ÷r/åá:’tÚ–Ró@Í6x=Ä훀îV<" kL½õÈ3œÝ е4ý±üØ-]ý?.ÝzÞ!·ªK°ËìTc¿†»È–9`ôî î¨E˜±÷: ººÉ„7 ÇÎ9ÕÁFøuIô[kJG A¢ú: 70íêê è, \ìTvþzQR#ªØ†žÌOTôÝÛ „KF‹iùe»ž‰,¹D¿Ùz»ãtÉÑ×?A?V—èÚɦžÔµ!€nâZ0¥_÷úfù÷${ÛØPkÉEð)1ßÜö1à* [‰Þ‰»rå ð‹"RS=(ëU…Æ­r¼·‚í¼vÒΠ»CÇÓh=ò gwôOþwl)úþüGíêòGéF¹_q0iÕ êkåéVT<´Kûl€>He[8 ëƒVfì}ƒX€ZhŒm(OõéÙûƒ6@wŠS]ßX!c+2ÛNq·èû 3KyuRv¡µb +[ÚO5Å€eßPfP§•M´FÍQüÖã,ðYèèm´ÑÚ¶áM´…­‡Û“PDÇ-LÎPÕÖø¯ˆâX°º‰k³г•k„´íöP4xt@WhMj€.TU‹ÂiªcÕŒÁW»×ÔU£èK¸‰¤©gœ&é2§nÜøJ=v!všv—ªñ8@”Ç36†a{M‹”â^ëÞÏ™"ǶiTAgŬÏýá0œvŠñðŽ\‹¦'sÐý ŠÍáãSfȅέO¥a6YÂÊNõ`𺊩S.€ž\ñˆ0t¬1ÖcÏpöeè/üPÞýý»_ûé/5`wäûÇ1‡z·œdVI*íÎÙ=¶J §@ß/ž¼0cïóJéÌØW*ä𪒧UÐÊ{yøgöh"BD¦-ìÛ.^ï¸snkyèûÅ4ÇëtX*Dì6 \,þk ëZ-SäØ6A†ÕøÜNc Lܨ7×bé“W>Î@Ïå<ô¯¾ü<Ó€Þ%ìîbIü¢R´,¬e$.7Ö@ø9 »CÇÓh=ö g÷ô'›–TPܽ³²,ï–åw¹q}ãìkn{UY£Ž£JÏED“{™²þzä`SÐQT#ÌëуQUšá†ØøJì ?3 Kª3+Ðè5´Y… SÊj!bz³2‡=UÖjuª¥U®Â£¬è²öë>Ô°]ÜTf³Eô†Q.†c\E>à2 |%¼mñ€h„jô¹?ð1¨þâ=R‹¥¼ÉC?”‡yè$N â§Ãlø*µt!äã$Ý¥xD:Ö˜Fë±g8»; ÿã{.­(÷»ùÎîgÿösw&÷óÐYâøiQ½Py¬‚ Ùҳʌ¯‘¤n+ ³÷ò>q‰heÆÞשÕÐu;Y*¹5Ùè]x6@oõ¯5i€~MA8Ol1zà¶ð½t©“Œ»~^UíëõBº$Åxè˪aƒ¹Óä(¯hî¥Å×ÐI—GO@7s±|Aþ1ŠïYôÕa2&ÚÊ÷øÜØLyþ$ï"ûH=ô”}]›Ü³‡Þ(Àf½y,'x­qJuA|è.Å#Â09@O²xäξLóÐèqª~Ña}Q5Vè‚ n©Ç¥\¡]ªÃÃ^ ŠÑcXtàvê@˜±÷¹CFpíL³épÄ ÐO€â”Å ´zØp)°x 3· Hл ©íÔŽáR@Ô*…¥k$«Bä ýAgÄýä†vy©‚>xçôÐ ™ýÔV®ŸXQe‰†Ìmû.U&toI&m1õþ°Áá$Œ!Ýhãò“žüø¿¹ èþÎRœ³¿ñ³W2(}”o~ÁÎ+ÁsdÍíó‚xòt·âaèPcz­Gž¡ìùè›Þÿ·«"ÂŽO­ÒuØÁbPýÀw÷b'â5Ó¿§ßµ3^¤¹bjuS9]41Ê aÆÞŒ²zòϬ²KK¨ÝЋUøÇ ´z‘ûÆ~Û´èm…žgʼnzƒyCoÕòT¼=¨Ò{ ¸MkþuÙ”! û)tU@n©W7½·ÅK†nšÏYst+—qhêKÙÜùÕÖ¶þB¾›-rØ"qqýaV§f”o,Ð&{^ ;í‘r›òâøÔ, Â]ˆƒ×V§@ ÐÝŠG„áÿÙ;Óà(Ž3 K#™í¡j—Õ}!‘@ZX@RI„CtpJ#ÀØ`‚R8áJˆË”«D\€¨‚à˜¨ ¦bQRS1I•®‰Á¸|ä´ó;Ý;;{öÌîZ³»³Óïógw{z{úšïí陯;VA×KžsŒ]_ЯWî±  Ûܺ›,±·±7Êê²én—ÚôR»çªa÷ì3¼7¡Ê¦öž}[%ÅŠÿA•#pG26‡Nr–,tIÄ·á%süήóì…â½Ýcn£’³p{FYTÐU§0™¤âyrn¯È`‡ì3ËC—Œ ]XƱX#Á0AgïH£æ¬)Tþ¸/PЙúÚ™ÞuÐ#S# :›©ŠÖ1'¸ƒþYu"Õ(»Ã(çÏ âœ´¥8 Þóá/«öá™—ø#-aÎîùÓYA ٠ݺZWÐÃbýŒVZñÁörIË $HÐu1‡©íEÌ:Ô_¼6XÄÆÆ[Že笸« @Ðc†­Þ‘=­ ƒø넾,èv­™!ž ë%Ï3†ágÔ´«sÏ9Æ ‚ ó™ã_ºIªUŸ§wä©aÕ#=}’/žú*wµ'ÂVÎ%È‰Ì ò1#C=T}Hy•­5XÐÉZ«•`¸ÛÚ@_”ºZï½OÐ")#*AO›éP+©ÝoÁUw‡:LáÛJÖþrB¯îIÁu¤<Ú¡¾¬’5×yDZÜΉõRŽ7[—%Üìæ­£T­ŸÒq¨ntÔª¿§tkÇ1ó‚«@ðØ©ZîÂ’h}Ñ@® ë%Ï3†1 ºnîÃñ‚ è|VìËs°UW+¶Z§Ëã†HDʰžÖ‹]NTuÒ7^¿„š4çVî˜:,27ÈÇà<;‘†ŒSîjÛì7Óø‚.åv]ÖN0\ÐÓö×°ÑdUÝKÌÚ³8˜OÐ=ëØ¼­ §ÕÏ¥'Ë) |¾¿b( ˰ªê„âlVom‹{q;¹2‘~¬`=wÊfc6 ­§ƒä¦ˆ‚΋ÕúÍœìê5ÉXÝ>xö ¡-ÏáÌ6+.õÁozN—Ãáj›«Ë(z¿øR 9k0ñ[îúî$â4cFQÃmwµÎph z·¦ß _Ðõ’çÃ]7÷aÇxAB úG)9úîw Þ¦ZÔú7 ¥ybv·5£˜%¶Ûš‘hz¿‰³]°9Kßq z¾¾ÛšuBHô_Ô†4¬ÀuQ}Lèãt³ zœí*üÐBâïôÎeµ4B¬Áù¿‚”´e©i³Ö'?† ÇÝ®Š(è=½"šµý$úñû ;[Kðøê É4ÝûgJå7>‚w»ª/è÷å«V|†Þy]¼ëiü j‰Ä°ŽTÁØ € PA¯+/ßgt²ñ´«ûËËË%]AoúÃJAßr·ƒI¨';-A'Äý•†×nk"0ÝN¤¬7p`av¾Ž:€ CÐÖå¾ Ùž3±ÛÚgšÐ“5}ÕÇhY„á¼QŒ‚šÙ½O†ÙM6½6YPЯU~Ò‹¶@„ñCoÀÂ2@‡ûò6ø¡Rš'òl1 Z2i¨ióAO>ÖôCŸ A@ zý•ô»ÃOï ’.èïXñúÙ£iˆÄ½ÿ­Â[î@Ê·5Hº¡`]îâÖ2^ª2mÞzñ‚§ýSñNâpobŸ5³ú§ŸvO@VN¼%FAÍì‡þnåÛè‰Éæ¢Û‚‚>rãF¬Y€0ã‡~~è@‡ßyÓ‚‚?t èd¹=‚4±¦:‘¸ø«ß RÒfófíoO£'BÐã€ûüy7ÚaÀ#64°Ù:÷XPÐmnè9 ªR_ÐA7‚½)" µÌJ^9*XLÐ/É•ýùût€}PÁÓÆçðáš:ϧ“(R·RmŠýI'3—îÕôVM6!ŽQAlwÙ‰äXò´îM‡{!ÙáýºƒÓlô <4ìÎsäLjO÷‡œÚZìt…ð‚AXÞ\Õñs[‚ê#mÃúgÍô»6Ý £¸¶í1,¯™·O÷‹‰:•–A:ÆÌ—sÊsÞŸÃBŒAÐ=Q†'(+–ä9³û¤S"ÙãöG›s½ø7ë±—í ½u»+‘ Ï—+Åhµ˜ þZ$A?p jAgl7:‡#œ$ÏXA÷¥ØŸtjI@?}¥F-þíL5l|®¶Uû&䉳 œ€Ò´Ð›¸S½.÷Žö†8ZÜÚA‰ lë¼=IjwëüÐM@·Oå¤åÕj7/Ïì— ó“çYÌÍ’7hTfT׋_¤&_u*(¼y‰ZÐ?¿r<å}ä_䂞/Ëùú‚.•)Täz*xºñc° ûRìG:?"ý´9‹þÊ^_PF?Ô{ÿn:þ$ÅEÓØG»ÖMÈRɯ/s‹ý8ér}Úû‹©t ;•~H ʈžZR³sðvÚmZA ™; Ë›m !ãTÎØQ¶C´Ô…Sç3¡ß`Ó ‚ ÇL+±›6o‰óCç¤f&ÑeE£ØÀ±@Àl?l¼™"èëKKFŸ<Çb¾ÌìÓ¦°3žŒ&ãzño3)Ÿ¶ J²ÓC(‚>³´´TÒô)è¶¶GnŒ èüЩ ûDnÞ@kHZn}AÏdýÂßO™Þ”>d$Û§8´«V-f7—…´Jž×ø£ép·°AÙŽðcì¤bYN°Ž¯_e]‡˜Ëz[Gjù6ý²‚ŠÚ\›FP"Ï[ÈÝtBêc¯‹ÁÌzΤcª6 Ù$¿—Œ®G‰÷)Ÿ]gÚ ñŠ|.!çÑ2H»é%7‹}™O7„ü:=ü°‡ ú¬X’çXÌ3Ôâ4{ϸ4rÎõâŸRo,oÒä׎ž‰OÐ]AOA?ôïy탂ÞÓØØ­ Óö¡õ5Úò‚¾¸‚öÓÔ&©³xÄþ û2–!JË>åðßF…üÑt¼:Ô“¿pÍJË"Òá8œ`5!ã”ÑÎC:ð™I??¢¶a¬r°ÞIª÷òƒAxÞl¶9 häú`Ï=n+ß ¤Ö¦d$çNÇ¡6;"=YÐ÷.xʺ³Ï|˜Óh¤Ljþ6+_·R|°›Ú»c¶h]+yžÅ¤CïÂ}5&ïÆšñk}÷ýß"ÏU–gÇ"è—ä«)&è76Ê»æEz†ÞÙi‹^ÐÙéz‹ ú€"6‘ëï§T¼íªm¡fx>û¬&äûÞ 6GîNþMÆGrÉÝÂt:Ð> 'dµ÷ëåº-/þŸ½ëÿ‰*»âúß“†™ÁD¤€"ŠJ à’EÐn\u±•Mê*¶~ÝÚXש5E]qR$ÙÔF›e—¤»Ù®±$kÛšµëÖdÓ¤Iýa~èþп£ç¾{ß{wÞÜ÷e†7áüÂpæ¾{ïÜwïùœsî9÷âŸõqƺL1MÀò‚’ûF^o žÉ´Ù0J9­Åà0ae=å‰M¸úUU«Y¦4É\ ím;â¶AÂ+èÝ);tóêE³àåÄQöž²í¼Uù2]\á4ªÒøÍ7œú¦_Í1@×÷gùG¹'¼n|=õê¤hWâ /i0:ØäÉ_?®ËćA,SsSå! O¬.D^ñu…¡†b”P@7*ß=’õ:·a+RŶæ@œØW#GNêÑ2ÔyEŸ§¥œ³ŸVÜ øClÌ2Â¥ ý§Ê€Žß”Î@±ìJ^ë㜿禘å ú&Hζ÷\ [Ùç›×Ĭ짠Ѩ[0 ?H‚•eJYx›¤øñÁýú$ŸJR"…€n^½@bv!öÇu±uóZ–G@?É\`|,ï Àö瀞&- ëûç·=¬¾ª™uY˜I5Ö8£ºáÇ8'4@Ÿ®c¼öd@Ÿ²ûU¥¡B[ýMC&@lhDèNêѲt2.sóô,ÀNFñOŸÞE‹³ÐóúZe Ï<ËD“‰ƒ„Æ®«Ÿ_PS@Àò€}#{s÷äÑó{Çß[){4wA7DoSmFÀZôtèÜüRtiÄàs]‹fw¹ì ÐͪHÌ4º*%v}·,¿ Ô­ö¾R“¨G_b@ÿôû%» èåjÜm‰’ 7Œ8C‰º+¤æÒ’É*Pß+„;ž—ÏÌq¶ìCˆÙ…ÍJÎѺ&ñ•D‡@Ç‚‘’bIK%On«®nFø…1ájÔÈI=º ¹Žøpý ú%Û³9pI>\”¤`u•éƒYFÇ{bô}Üñn&5ðˆ„³Lm½ wni€®ù_Þ¤‹VÀò€}#›×—vÑ|±+1oÆ£…Ì$ïGÄ,W雟/ @ß™ÅQáÁaîN®}˜äý¢(tóêóÊhÚõݲüa‚1÷vNí#É"jìO´¤Zùåô'¿õýCvèÇŽ9ôi’ýG7àH*zÜ‹óР&P°mÑó2ùpËœW­yú±ÀÃdþŒET§5¿‡—:…ªAHa!îW®Rô³RTÄ‚F’÷ÐÔc$nž>×S/H€`#XMŸš&)½gö`VR2 ¯€4‘î °8CsX¡è' «ËL›Cv«å ú–pê®)OÆ£\ T釟ï IDATÜŒ%b–›ô¡ï÷Kг9ýkß1¯š2Hww?GÈK´Ç§‘1ì ÐÍ«HÌCZ˜œâ‚ª°ëµuùrmÕLrfû¸œ  ?þÏ…\ô÷}ßÝìПlÜøÄÐ¥°BuÀ¨©}´ °©=mf@/å\¡Nœ(~ÑꉰmRm?ÅÑXôÐ¥.M#ßU!ç)­ †× €XÔH ;¨Çjž¢‚(­ÐÛ”ôÅø›ñSa“²p;·ý§O»Û@/Àýª¿ÓÃxÁL΢!}ÑÂå ú&w’ÝÑØé{‘7’ïÅxŒ£jÈÍÓJ1ËMÊLzz6Ÿçá}èæIÙ5•óD;šä…º@bžåÎ$«û7cSþY ³¦¶«§Eì£R?@ÿÆ÷núÏ|ýEvèöyè ÔôUíÊãläõ‘”QÆÀ3eïsŽ’–yÔ=ˆ¦ ò€~ˆ} Û_GN¶k®à0Ûæ5±¨‘$@wPÕ<À²,™ê$ƒ•²¬L§b¢~ìÁßáÊe@*Ø™™Ö„ —œ¸v…G1ñŸDQ:U—=À¬å ú¯˜£ß • ŒÇM€·Õ’tU XnÒt?ó,IèÖøUy’.Eû³w!zxRœ¹@bïä—(:% O‚HгD³÷dù”@·.?Ö)A^õó2¢ÓÔ¨ ðW¥蹕‡þwGŸ›—{Íç{Í) WnPÏÙ«ç†;†ßŒÑõ¢A=…€Ä+hN“n|%ù´{ô92otUÉoJJ„<‚ïæ× 5b•¶fVå<'ç«f‡›AÂ)4@—‹ö?"%Æ`æ ÷éŠ”Û -š ™*Ùû&PÙq&61}¨Jœ³2O¢¾M=Ô’ñ¯¸6*ÖãqGÓ!dy†j¤–›ôøýo30œ¸Oaù¥¥?}õåâúðÓØ³]’1üÈ tÄÜpQý¶Ë [–X’G{ ;P €fY› ÿÎ÷·—Ðå?–­,«ü:égçÎñÃF”:zzo¤ô­| •h%í×ÙS•Ìá}®/h»ˆcó—«ë• õ€XÔˆЭ뱞§ Zýå~eG¨FÝ0 k &—½Ä5[4©ºB×Ö+Õ± =+©Õ„•qöM§ïøÿçÁx &úכĬì§t®¶$`[?Päö‰K”lROÂÙÕ.…t€ž,1´L3Å…n®hU>ÔòbV¨k~?šrŠ€~ô_iÅ1, ½@éß¾.¤³—ß,Ø )pB+SHíé¡~õR¶O;&å„ÃcÐ[Œ€>jô®WBz" 5"tÛzlæi/5@*®¡%"ÑjæÃ–Äé–k€~  p"C ôªE#ýPƒ¦·©«¯¹ß^‘)+Ó$î›F­8Ažz0[uŸ•'`e?-ç¡giŽ’µŽÒYnWç8Zm³€î¼z£Ä¬æ2iîŠNñ0ToU¾‡s[íW²âvJJÐÓ¤E¾>Õ½´5åÀý> Ðõ“B#ªƒ|ú*ÃWå˜`d7¯çh­= ¿iôú†ýEÕ×"b 5’ èöõØ)žÝw:›õäK²*Û¹& ES®z›ñº8çvfâúªŒíÛ}åw7r§9+ÃdÒ7^†ð`<æ9“h’î XË€ž–èZt{4Ç9´KQœÊ®ºQb®f0çT¡]ï­Êwpµ%ˆmɼ¨Ã_“—×´ èö€®ìûé‰ulÓQ6íðü¶âÖEľ™¼ìSôØ`Åúùnö­ˆE$ºƒzœ:ªÚhèÀàPâO®z§;‡ÊháV^^€Þ-eï&ü2´…îqãÚ9 µÜ› •IÐ sŽ“˜¦ËpÕ[•/ãm|¦›X $-a@_³Æ) “xvyZÌ™äéç$ÙSBÓ±ä±t}•»UŒåg;½ 5’èê±ô¸öÛ)àÌ©™òÔ!Ì]@ŸB]g"S <=RyLµ½[‡8#yÞŒ•qôíƒôrû.ã4íÿlXROÐ/RÎÎ?‡ãÓL)bè;Ì=Ot$iëû@,jd‡ÐÔc5OÇ$¨Sáݰ;Áewl¸•»€¾G&ÉDÑ=#î:½PaU‘Ô ®Å"ðO‰Y oo!Þªkü¼k¯Ñz<Èf!»ª²µ˜uŠX.Ò’ÉC¿»œ‡n&örFÈ:]–še¤è‰I¢Øyä²ûk¸,Ê_庹5ÑœJeý¿ù<ÝŽR¹]¹‡¶‚XS]ø¡òfB4·¼FK¬SØg%-é<a{3@ïS’’=¢WYÌT1±¨‘>cˆ“ƒz,ç)–e7+7¨ºB'@„FóWù¯ëÍ1@ß°;s ìÆ·C!2VÏn&-UñTõ,ËJîÛª MMûiXÑÌìxè7¤ÎTË&¬¬ô~ÿ´Ë€~^OªIüyY» ПêÄí”ØÝâ²²9Ýé ‹$æE iœüjY~‹ÞûÄšuizÞ‡î6 +¡”²W/)qkP“R2ú‰£çžd—ç¡é ÛÉáäH¢-&€>Œ¥Wˆ½ ¤$¶Ç—Ê} Ñjä¼>fõÄkíæ)ZLuGˆÊ@òˆi*~.ƒzrâmWÄp–WŽú:°»÷r! Ì š×KòÊgFT¥ Uê2pùm8ªkÍX oˆ·uJöÆb-a<Óã1:æn’©w< žª-`¹HŸ}ô×Řw)º N˜ì]…ÿ}õÃEô½“Ì ¡GV¿ŽJlP½Ö¬Èìe§€®V/˜³høuÆ©ï‹%™ _“òZõej uU\zKÐ7òÉfç€^`©aäD¿ÈƒRå&ÅäÍ'™G‘[ëê´ÄF’$ºUJîMa†—ÐW’-`»ÐÉY5ÒÿÙ;óਭ;ŽÛ2žÜÑú\°wñѬ©OS×$€‹©ÉØæ0SÜpCMcÃàÂÒ¸ ‡sL&0Z’@Òñ@ÓIf’”6d¦u9Ò饓ôNÒ¿û´ZÉÚ]ía¼Ú•ô¾Ÿvõ$½ó§ßWÇûIÍ4uÈ“%¦ë^Y¢æ¨&ŸStyc$;•nBp•¹{¥Ð7嫃“¥Û—Ô="L±tÞ­¾’+[}V2‚„À¡ º®ÇìT&±×ÌŒFЃ·Ì>¹P©½¸ˆ¿_A¿Ï“ª$K[C  {BË]çNqpD,ìœ#½Ñ™OG0;¯EM9XžÎ.k‹b3z‚~è=+Ñt¾>GÊ1ko=ÿ»=¼î³ïÀBÔ5×è¡ò‰NÐùCO§Ñ"² 4o¶åøš”––ºš·° ¯¦gÁFÀÿu{n‘˜æ9󉚲çŒ'ELkþ†æX')×?êJO¯»8ŽýÁ¿0º#;¿´I;ñG' €Ø :½"qQ(ºÆk¤Ê;c<&‚®ë1[FQG-:R–#zÐöÚÚo¯Ê§ëŠÆx_û¿XD`ò€`#ö8=è„Øó™6qq¾tɉý´#ÌË•m¿c£¡fþ|ê£ß¼`¥®4JÐ v¾L úþýL»·œ>0„1ak&ÄÌqèqü|ª‰Ýhç^ÐÿñÖ1 úHAɰw{PŒôB èVd~äoz%Œ8Æ¡›WÐ w¾‘>ŸÊ`ºíñl‡‹,±Aø#-]ñ¤i«ö–ð†Å½#//æ!”F:ßú¼¼<ŽÁ8ô¾††>89˜á“èƒDóÝ¿XªºrDr†•ª¼Yk #è…·m(è|W/, zÙ—ÙQÐA3Òy } èûò#ÙªM<Ëý§–Á!èF°|9Æf8)ü˜†š9ýCn7Ñôý~ƒ ýJqñŒ-¬ÀLº™ßg±8t[ò‘°Í†‚Îz:lq™AŸÙjÞ¯$YìMq¶ÄžqèÓaÆVèÛÿgtB¢¹øþ{è„ó²ðŽ ?}C €%–}|_ó0˰tˆ¿ë]>t€}y¯v6rY¦­Ûwð‚n #GbŒ`†eS?d£¡fŽC¿ø2,1Ñ\¨°¡ —­_wÀ ÌÄ¡D:ÃÙÃoÚPЇ݆ `ŠSt°í¥£Ð 4/@ÐÖ¦ÿ‹/Ùhè ™¶nç®Ã!èF°ÿFf¸'¼ÎFCg›XÐ#¼ KL07ŽÙPÐG Â/1¶°ÂUV}!è ô]»Æ¡CÐ`†ÛÂ猴tÖ"ÓVm@¸ K„ @_CC?Æf¸{}`oþ hn oÛñz×U -¦ÎªÞ]†Yî€åAØX„îãèAØ—[Œ‚¾ìEA8Ü ¯u SÐd Ž'96–ö¤ƒ”#èQåIÐ=Dc*uN¥õ[Ú" º;›˜RÐkÉdÍⱕ%ù…×Ò>e¼TPêÈÊyæëCÏ|‚¦/Z|iGºsJΦ•ÛVg“ܰIzU3¼?BTMo«¨lðéª,1£y]¼89À^Ü!Kø`§Ó‘žÓ«ŒA˜ADÚKG1ÞÓ9Ÿát´®j)TŒj”ÿ:]¦/èa²… ú*UGš†[{/=_õBÜ<{ úW…©/O«8{N˜ó“a úoÇd–¤{û7ciLLm41JУÊ9‚ KÆ šŠ;Ej~Nyý‘¯ýSÅAh¢£Í¿³Ì(è´W4±D=TÔ^¨.÷%9 5ï¥$XÐù^n³ÿ¶$P5ý“tªf|„ªšÎVQðƒ5Jg¤lФË~%$ïômßÙhœ ÷ñ¥ ´Šèâ·‰™?Ÿz~ o–/™RÍ·¥C±5`•[’è¢æi]y»×ô)OOÔÙ'm¤‡~¦‚|$/–|¥³¹Fúé^íu¼t»Ô ¬šÚRÉŒ¦ û<g'Aÿ– üZúÝP,ü1Üvûï„ïWÉÑg6ñ^ªg¡è°U½Í{ £šJ®rcbÝk¬Žáj®Bws úN+’^öHÛã\ë» v’þØ’úÃ]bæ» Is)ÈùÍ YWöt×Ò‚ºý¶•ŠPM¿$ªß¡ª¦·UdÜÍ’ ê9:†º"q¶”ò3ç ùÔ56ê—Ð&Yšsë¤<ÕÎBï8 îÙ"l- Ag=}-µ£ré°—öÌÿuÏÒã|E’oö€×÷`T-W %{Éi~»–ŠGº$¯íU´ì…꽎—žH3•t<é-‡ó]V8 zãÍcVô]Âʼž>÷¢¸akÓ%'S§U÷ÞX›‰}\ÑšÊRês›å¿›¨‡®óÛv1'Ÿ*÷±2M)èÒi«*72‰è½ ?@åû9í!{çKjDO{‹ÜCËÙKž@È$é¾ÅóT†´wÝWŠAªé—¤W5Ãû#DÕt·ŠîÊ"Û«ãk©W+ ð\»E’Q¢Ú\烾ÆoO ³ã°¸ÊŠ #"Ó‚^@O´åco—·QcŸ.ÿ=¡Üw çÁô=LöÞ§p"¼„^‘/¦óOó‡X{/-5h’ü·Žf¿3 A·\ØÚÏ/Ë¿/ ¸ÿ8ôvÚQn¿‘Í·µ /ÝB,—=h*ó¨Š+É«Og¤[QšEÝÍ|‚>?×kûZáðÝh¨W𹄏äSw%!û†–ÿÑ–oo‘ÿ½ä'’ ]$=@Ðý“tªf|èWMw«hÎ&¨˜Lûò¸ßÊ#)„Û¢é¦á<ùïãR˜zÇáq[øÜÂB>žK èG¹£¾mg-2m3„»†—Aíy¼Ï©¿{N»êy¢žì, $+¢Óô0Ù'%åûO¦²D¹švdNíu¼ô zº ¹XwÚQÐ}œ„‹aV÷54„ûVƒôœâ fù QÝÕ¥GÄ¢ÔduIk J8Î1JËét­S™CéÞ\(Nœ°5Ùwöå¥R7#éîö:bQo›¿ ?¦3¡âƒÖtºw†ooÿœÕ» Ï¸¤ ™®½‰îœ¾¨|ÐTš ÉQVödL7[7SE˜e6AoŸ—EÙZ4Ñ^<3xÔÔýŸ½ó‰"»øìì¾!YÙõ€]EµõÇ‚%HDR`9Ðxb„¢n‚wJ£`{WåÇ©ÔXk¨¹þiÈi¥5é¥M¯©mÍýÑzIÛÄÄ&׿zU›&MÚÜå®iÓúwßïy3óæíÌÂ’]à%$ËÛ™7ß}óæûyßïû~ßÐg€Ý©D]ó%W¨å6›þ,mäSeØC x· èÖ*‰hÙï™h.Gy(·áÜH0Ö»-_N0ív8©ª‰›Ý·ÜN\pùg>ïi²‰ö®;Ðo€¹ÿ3žÿ'ë—‚È ðG”­”‘ÇoÊ€î¦Á$@W5¯õ`{1N=€xX$é%ZzR0ã¸- ú ーúWú=ÆÛÊ=èßüPÕ¯A¨e,Ý ×_Ë¢òô¶BZµc8F¿%³¬àXÞfî³!­¯ŽU…ÛE OJx>ÁÏ>è täø¥¥¢/-ÐõM*¥ìÔÌÁ_$û NïN[Dã9ôÃhUúÖ.M/0J>M…HD_²Üœ´ø.¿×íA+ý°#*M4q#õë;¬@·U9E[‚þ‰&?ÊKi`‹f2zÂvíê>·+@=4)XPßt;qe—eô%(ëW§ÝÄ1K³àdtÕ` +›ŸC&îÇJ7v˜sۦœޡ¥µã×ÛØÇkœYj ïûíëùôŸ°üý—™§­ »åà Âª÷Qòƒ~‰=Á\W„VÝëP  'îjøIM4£Ì‚bXÑ6‡Qdl¬AÚP Å“µ– ªHÀ:T~6ƒGÓÑÙ­µÈƒˆ.´ÌKúr]I J&÷Ó}`šC¸Žu1ΦÉâŽG~FËA ‡•Ú.«ËFE´°÷c_à 2ÛZ:'w³l« Ç›hªƒû)+ÐíUNÑ– ?d¢Iòè˜ÿûx€‹Â7§ƒÂr†ã “ÜÇ5«UýYN\ú*н”‹GˆÊÜ›¦Ð` +›‡vU-5îbõÌ^ íè-DÜöKïÐÒbYËŸãÂe•¶Ë·ï½µÇxç׿Ëè3Âí¶”#mØ8=angòÈ1f%cƒ*4{µza;ckÕÜÕn ¡¬ì_lЉµC€~¶-Óðìæ0( XZWoH²ޝŒ«NŠ0T&„ ‘-Psaàü¯AT5ÈÂÊ9 I’ÉGSç±õSƒÝPÖ:}¾ªu 4F"¾ýÜ»á--%9j×’lÞSÀgSl¥¥J@´]³ÝQåm úC&šì(ÿ¥Ì2‰”ç„»"Ðmc6K螀~åîJî©­<˜O±%¡O¯MO êîJ¯Á$@W6îI!f*T½£,±\ß½Ò»Ê:–)ÐÑήÙkü"c ò•Ì[€‡8tS[ ]ÇaŒ))y™·%dzvŠ»CJEìÊ q¯À4YxÁ@ŸVsO)á)#ôs”z,@o‡rÑî’pDñ ôûY° …ƒ.qRSažò\wnæ¡[Ð4Ö ô§¤c¶ÃiÛÑ0ÍîðÙt§ððÖá޹ã»4­‡Ï´×ãéèÎ*‡hKÑ2Ñ$Gù.: ûôÌ–ý¶»‡„¤H4Ø+•'. ¼øpe}0‡ÓÖþõ~ÖwÜ.|\g€¬/ðb§þЃ“]Ù<2î*íý‡٣Ȇªà)ú\¾‡Az Ï‡Ì §åô5kþ`_W|ýÆgŠŸ<îÒ•Ý‚ñ* w€wª™ÔÀ›·™+ûRâ?¡q‡ý3§5»’†Þƒ–:]= èÈZwܽó‚/f„&78€~kC)7oª¨ëÒÐQœÅ0sÀ5t”ˆ? (ß#Ôž'@×n=¥! 뉿áœ>‡@aÉÆ³ð7•Ÿô×tÊiKöì„'7§ˆ­9*L§ÈX áIHMI•C´¥è™‹ôãë¬û\o$Whƒ˜MžQÿ”òÄÌË_sy ô Ù‚Šèè›0[­Èå<ôOŒÏ²}‰ZnEiÚe©§Søæá´LtUóæ3Ú ø!ÀYfÕhÏ8Ñê[¸ôr wA£«¼Ëпÿ¼ú×ößUløþÊçŠ(÷+öÜNZjk9 é!@à*ž"ô& ùEžûุt°+i¨ Ø#´ †‘·f«CŒfÁYïzJS§­Ý*¤QÔ>€ŽCñªZÚO7Ä€®›{›jìù -O€~|: zFºáدÅóQÈ4ôËvÔÁî󕇎¼$säã%@ò§ x ŽwÅ3¶¾¨IZ©)©rжý!“c€>uþ†)áÿ(ƒ 9âp¼3μBœVž˜yÉï<ôÍ }‰²ÒŠÞX¦NX¡’"±a>9Ó X™JƒI€®l~Ç܈ #tòPCµ°îŒ…Ê@z)ÐÛ#4˜ÊÐ_oçз½ùîéÇƯ2ÍCGšE¶E• ²Q·=$@§©6­|vÕBsxÈšJ¤÷jÊtICŽ¥rxZ}©r€¦Âö$Éè=s%5xÓ„~Ž’°hÙÖÐË…¨d4siÕòèÏb Œ#ú{¨C¿§×Ü¢¡ j̯øjzö O¾Ff]Û­@_ޝ)PSRåm úC"Ç"= ÇPpH¨å,—+4À»Ðz4¸Ý "á}Ê3/Ÿòè7€FEŽrôMˆ¥ Æ›6®d ß°:­Ý6ÙA$ާÓ` {lo=wœXèÇLShíbHïú1ˆý=ÍÐó,ýOléüõwŒ‰mJ Ÿf‚²XŠÅê( ý)âñs­|Æ€Þ×DŸ¸Ð‘y Ð% Õ8Rn«èÉŽ°ç¨íyn“}h«ðîÿ@×N‘`Žâ»šnN¡èAöå ÐSüF —çx¼1³&>Ê2½ÊI’ÕpÓêr¯ÐpI|5©)©’ˆ–ýþȱ@Ÿ…òÙl޵çdœÑÐL5Ð+•'f^ÿãßy ôeåþâ‹ììåÎÞ„Õ[‰à¾¼ Ø¬ûÐÔŒ=ƒæD/×þÌë.·ßæ@?õzHàU: ÿ&Ÿ€þ±aýoÆ(ŽûÑÓ «¹Ürêâ Ð;Ü€®i·7Pú’-„v% UH^‚¶¸yâz¬L(Ϥ@ßOƉ,¹ÉèZýö¦XóH ù~ŠXÝ„°Zd(džC…†Ã9 tøxlÒL˜¡$Ô‹Âûæy„ÿR ûugTs[N¨ƒÆ¸•š’*™hYï™ úm8Šk.‹5—ˆÔ@׿ˆá;GvP}âJ-«i¦$u IDATk^Þ-,]º§­áL=“ÝkóèœG8È­†Õ »,äúmÞt”×\(FªþüoäÐ_ºg|ïÝ—Ö<øÀP-¡§{ÛZµ]½GqG‰žòr²o¯èÈzè,rzÇìJŠÉ\îÍxPÙ·ôÝ,äGi6g¾¹ž‡IñÓ¹zz¹L€ÎÊ!܇‹¹©L©M±äÜâh?³ óЦ0¡Jì#ç(ñ…lîÆOМ°цó¦¨íÅå,¼‹½½;¥U2ѲÞ29 ô8Ðgíc§SKt-yiºóÎ…}h¡¢I}â*ÐW®Fâœ`iwZ6ldžsRphƒtLtuóÃæ›•Þú¢pxŸ ]ݼTK£˜åµ]šg ç[”ûƒ{†aì…?ß–9С±E½˜¦"y‹5ÐÛ3ç½´Áœf г74!(³µeOX:4ßìønãçz\€Þ §mì¯!ê½ôôÀ¬ÀmͱC [Ê+ w‹ŒGpZâ~ž @úk;nÚÅ8äâ‰u˵ëjYë”VÉDËzÈäX(ÐP3•M9<›3i.8_VŸ¸ ôô@Ÿ]Ñ›ëÕ j¨Ö†¶%d:´ðqÞ€î±ù2ÝÔËI°òœ°þš‡m`UÍËŽ­®¬e–¶öý?¿µ÷•süI:•Êmþf£¥¢d•ô¢ ø&é¾ø  7VéÌý$õó»’†‚‰ïÈQ¾S\ ¼ÇCé®À¦ô÷ûeÎÛ6-~ðÐ'Ð{tîfïÞ¯;îØ­˜‰‘ëkèæ[´84ƒ÷a¯|ä¾\ÝëÃú¤èÞ‡Óýyˆw@—ˆ–@G³àWmÞ….8¸i€^É'0ÛÍÈD—P>z¼2€^¯WåìÏx¼¯Cò|oôzËöR7Ù^ƒä1(NÕ|™yŒÞæ†Ü÷ÃB’ïN/*FѼè$AVË3=k^ùöTüúÔjfà¯Ä›:øÞ!è…{Íi€¾ÖìkxÔ~Bm¼J#iÝ¿›|y§8Åž,¶³ú´Î÷!‹G¨3 aÙî…XzìâHü»~-ôžTUa^¿ÕeoâÜú( g%Ógô+âkÍĨ„Ï÷–^…“}æ`ÙHbšÌ^Y-dî£â\¨ª$¢e¿?¢etø+ôQ{å#á§É¯p<¨3Ór*h)ºœ˜yy¾ç“<ú5Úî@/cw1—óпøüÓ¬_c WEÝöEèysƒ¸Aݶ¤ãèiš§ÎT´7h‚zS£òí!é ν7/ÓÒ Ù&åi€þѶeô/Ÿ; ¶ƒ/&Ôð—¼ùöÎ=¸‰ãŽãòñð^g$Ë’üÀF[àà„´±=8°yƒ)© N ´@Â#åÕ´P „éŒÓ·š”@hH˜3…†„´3¡<ÒN[:IÓ¦éãïîžîNgùt²dÉ:Ý~?ÿX^ööv÷~ß}ývÙF>EÏ©35žõÙ§‡tvFý¥%íî¾SYW­-JAšJk÷³£β–hzpê´‰—õ_¤#^¤‹vjVl+à’â­‘†•6i=¥±±ñ…pUÅCˆó S½­ÚeyƒBèžù½KPÇps÷ÉåÒNÛRþjPSÚë0Tc–¸Ô¦w—[^¤84u‚Úâê‹ ë%-é™°Þ;aÐ?.M{ªóÃèIn?ôÜ’Ua}åÚ•æô8}µrU)òˆ‘¼«p}cãTY^ý°îw){fG*èa¢÷÷Ó~fWÃ=G_‹R¶ÕÅsʺ¬æ7\ô½­4»º÷>%Æ‚þðð9 z˜óÐéä÷!w9´Ç•­dkÖÝÍ }‚Òé5ô¶z×]áÝÇöý“ŽæiœYº±‰u’Q½•y™§·hõ°í=V=Hžè® épÙª1+°ia\ýŠ,ÿ’‹v ¯’÷š7t6r ä,¬`®oÓÐí!ö/L?tÚâuK²YCÛCÒToí¢ï`%ÛTñ¡(´1à”\Eû”]‚RhAµ³1繎ೠ]/iÉ&è)#5»ck‡Š{›Ä ;P˵Õî–y4Gï„ù!¯‚®ZÐUšìi\ ºtú…kЇ‘UÈ6©ëÜÄ<‡ÒªÇ1÷pázX ¦'è†Ñ3CŸqÜâwÊбmÄ…2ÿ9Z~™ i~ÃEßÛJ³ž=@A_=IÏCﯠÓv‘X*Q®Ì§¯ÊT7ߟk 'èÌ7H‰¡> ÚÒz»wQÅ.æD%øG$è¶šÑôîlÍÞµô—-I*è¶U7Ô“ªSK•·çNÄC{yJtyÊb Û.·´­%A×MZr zUOÓ"ÏÏ 5®3\:Æ( ÙôÀæ¡~ØfØ,@_ÝÌ L!Œç`vt–6ÛI,ÉdÛ°øZûbÁôÝ0úµ,zW¦ö´Á%#˜Í­8„tÃ胬4‰BЯîµâ¢¸bK¼ßÑR8²ÒÒISm}N‘« {‚¦³òIOº=Ãs$šnÍÔÆL‡3sÔlMÐü'²Ü®ÒµáU3(H'iI%èN]A¯¡ÆmFØt¤ñ¤Ù3ª7iÜõBý€#-Öó>c~¹\åžÊuM-Ó?î@|=Îæ‚Îßòñ¶`EVú<ÈS z¼Í/3¦ÛÉp¼­€+.ÿç¿|<¨™O=sûV2ee|=îæ—KAïxÀ±qóÔÌ~è·E˜ÝDsùÌz úÅÂO°ÊnàÆ}*6–Ü·ÃÔ<çðñ ¹U# è $ÖôCŸ A€#.?ø2!á½ÃOo!.è—¬8‡~ê_(Z^QÑçkÝ„Œ7h‡oIˆ=gj¯/Ê ÉPÿù*!$_ý¢¤l÷ð´7p@¢?´ï(i]H¿>ðoJ¼n¯“:·Ò»;˯æW7¦Y”s2DG[¦—÷,øk7O©f]„ã¡­»*è¨-ÍWÈ ôÕyy¯ö9z=£ÅîU4ea)û&% sÙ3ÕA1Õæåå Vôw”cßÅ›ýˆ‡×4é)öSìOç4‚¾“ÖAÚñBë/ø;Z¸#äM´Ú2R#õ]‰ôÁRëh”¦ùIòؘG­KU7ú51s”EŸly¨«ú›ù;ãc=Ò$Ý:É@ž|1Ý¥tzsaÖWè‡%9„Ì•‚¾L §“}¨uÄã G¼n¯“:·Ò ÊÍ'vi“eѱ~Ü‹Û?âCÍÌ||jÃãgà.'i‹ÐÃfmæÑp‘Þ‹ˆVÐi=Ý"**è³#‰^ÇhuÑ iìÃu´: s©¢“nä+ ú±?ʧ®\Ńë::ŒÇlXQô¨ÝF³úVB¦ÈvÑü]}``½¦ÛEy~¶ÎÅ!èMD[C‡ÒvE¶ÿã!ÚM“r¹„|•B«ãšWõš/Óc_áŠ}ÿgïú£¸Ž8¬ 7kéÎöÙN|@L° ˜ÅvNnÀ21¶©ãs 5߈R›0*_âÜØÌ! ÛŠU¾Ô%R@X±"EŠJÚ´ý©VÜZŠª**?œTµ¿õè¼}ûÞ¾ÛÛ;r{ç3ÎüâóÛÝ™·oßÎçͼ™Y€Ó6*W|#¾ãuP#ý1j†MügkÔ²ý® ['xSÀûÙ~Q2%žB%}B®Ûöxžz•Óikí žñʽ<ô¡&±ÙœÏ§^’Ó§€ØÿFêÆzYØOè.ì)¥U/muTÖ©<›ºŒ[-Ø9‘ÌÝý_ý~>º¤_éúÖÄGŸÑu·RqKpV‰{®œôf€*¾WbÞä--NÕ¡F€½ü¿ÕMÙô¥!œåZ©5C¼ýb“U~—éUè3›vJ£ ÎJÊ!ó~žÝ+Æ©µ¥1ç$ X'„¿Ðν'b<á’?ÛïG¦ÄãAˆ¢¤£z¼lÍÇ1ï7§½\ žL“v?ÇînPÙÉCÇuôþ+†zü˜ó„0šä  W(AG)º {JiáÒU¸ì¦+ŸX]ZDp"™»úù™‡þ»úO_K|8I:Ûø¡ü¸Fjk2‚ “º§È7y©DÓUlû¥¯Ö‰` HO­4ÿº¨qö*3|¡œdÄêWñYøŸïÉôáW±(Š+Œ|þ7ìè=N³Q.^ƒßÛͼ½VnWÞm.BÙÕWb  /ª €V3+÷Üún¿>€ƒðb výKçXng»<'žµfhHñ#»î€í2â¬ôè.[ÌžïÛ=·ØÓ™öøç’ßk3î<¨Ê·=*¦G°–xg2°güä­xz<‹’Muc¢é¬çwùÙýè9G ÿâ¿Y7¡lØl'LGF@ŸbïãƒðÉU{Rt7ö”Òªrµ;`…3¹ºM]ZDp"™»úúæ! §ë߸žpú´›1G@(?ÀÒJÖ° B­ßÄ `q] Ûu/gÔ,Б;^ð— °üç 6Œôਗöôô“ŒòYddMsk*Y€¾¬2aÅ—AÅð³èº0ÛCFX©ém8,ÔO2ÙͳåÌ·sXºÚ²P# éÉçÞwâú*ŒÕ‘i¹é9¶<‰ôÝ⠹󳛥ßíiZQUe³ңs(ƒ/™´Á±Ì̺z¹¢É¯‚ÂJ_ ?g9vˆÛpø~9wïJæÄ×ÛWx„(«igaÝ«½ ¨l‡| ‰² èæb|.=+tIAY´ m‡#… ­ñ)€ÎÎ7M²ºŽä€îÆžRZû™½Ù0¾­im4iïêÒ"‚ÉÜÐ_øÍ›óÐ7 }þç‡ßÿú¦êÀ'8l†×ú¢¤¿ÛÄB(½!lØŠÃÜ01v„q0àiD3ä>4Áˆeïû!ý÷Zr@¦B86&1{ÊÜ&/56d®N Ì€›xYŸp7ðmevEkðGe5ÞÃ÷¾׳÷¡hâÞ¦ ‡T™¡³JÛM@lŸ_$wjç•mW’MÇ31íöhà_,—ñý>з(úÌ—±Yü3t¹³ GqfŽÞ”ŒŠWƃekš1Õ*h+§žÿè^Ò>˜fÄU8W™QŸ èaE1ö't7ö¤ÒZ!¹W¤z$ Sœ(æOU”;£g>@û< ³Qù¦wY[-SÀͽŠ#¿Ü(߯5 3í‰òÕ;Šé |¢Ì©ä^˜ fj[Û⎠@Ó­ÎŒ÷¨¸‰ƒFËd_V$î;u= Ô¦S¡{ňq0ntí,þ*¬e~¸–à¬ô¨…EŽž;þh;®ò½ŸvK—IICÐ= ÐGðYõZÄo–‡€ïbÃ\½*™¯ŒGQö¦ƒ+Í-§‰Vd8 û{F×;Ý›°8kt6»€~RÙ°YãðííäjLtfÍÔ>¨ì¾Æ½4’ ÐÝØÓJk¦Ú\§Ö§\]tŠÑô´úŸÞÕõÒâГÀÅ[ 8Košf0N‡ÞR&w1¶ópòKËxC÷̤OE‚Ñe€ ‰2±šâ«1èÌZ§žì5nÌh´iu•G¿õpPŽh<ŠÃÏÿ|¬¸‰:ͼ‹"+azÏôÄ}§®ÇÞ¬Oy†ãÒ¥–k죆f1*Þ ÷Vî/}VZÕÊÿÙO”ãIŸzñË9Pú±8@àäØ/=À¤²¦gÞ3sTì4ƒâ•ñH$ÊÖ´ôf!„ú: pâ—/ö¼?ßžÎ]@/…§›DÄëç?ËB1÷r¥”Ö1»&ï®e /±\ ,Z)š ÐÝØ“Jk¨Eƒ¼ªÙe¨Ê©V±¦àD1Êýþ;úÚ;IÏ:tÈåàÛ l;9¶ó†f©¬Î˜Qi<æ½4ôz¾  F'[å%,R ç‡Ózbûê½F7ób,¢Ì–º¶ˆÏK¿YGf£+WLµ¶—m±qÖ¼Ôx=ã„}§®Ç[h{‚º^^¼Âol4U+i‚GÅ«æ8Ë3ú €ÿ±Ç X|~ÅækÔ.Òæ@7¢y5á™2Ð6Ç]<êO:~™¤LˆWÇÃ]”hÊo‘«ÊǨ4?ö¸C9‡î¥Ë½´œu¹g%}½Lå2|âqYù]"‡Wt…X¹¥IÝ=¡´"E2Áei åì Ð N4sw@ÿVÿ`>ú׿Õoÿ.ùiîyèðy!Úƒjs!ᵌÛf.½÷€ùpýŸLÇ"ÁhU"ÀtƒŽÚ»Á;&RC »¾Ê¹òc¡}MbÚkÓó¦¸81n¯Þä¨[ß©ëq ­y’ºƒÀU\ÀåƒÆ=2ôGò%±ŸåmÆœöÖÒÅeÎ:³ÆDG\9Ý÷ÿÐCx Ž ½|ÕaN󖼯ŽG2QfÓ(Às¢©Ý‘Ù—6ý1·Ý»ñXå~ÂÅe¥R\•2ÅFã \4hPÔëè1{4´tñ5XîÆžRZJ5¹®”Óo)@'8ÑÌŸª<ôïtý£­&¹|œåe]Ù…‹f7—Ïìµ°NºÉL@ß“ÐQ±5ñO{ÕèvFµ$ W±¯çØë¯#{­Cxù¡œåö1ÀYYG¦‚E»W˜ö:Š ¯Th¹Ðï¹õº>ù®m†v\o ïëÌg>+6 ›”¼ÿ%–²±ååy¼Ë4SpULùmå!ƒðñ‡B"3ulç¶Á3£X! ;ZÝuf×d“<7ÉD™M]ŠU¾Dÿfoïñá‡ÿY€ž”æпøæ¯™W Ä´å•á È3'¨–—WK(þ¶$€îžRZÍÖ—5Ø›Ÿ¢§‘t‚Í~bs؉íl(%`‹`‡‚H+8Á@¹B0„”£\J“(„˜#F•  m‚p B¨,¨* JQ!”rø¶ ª¤GšwÞì\Þ};k{gwgç}?ÿÞμ{Þ÷]¿÷ô3‰o‡. …Æöþ½7Íô…‚ß`ŽiËK*&¥súÖW䬱ñ pR[¾g (é‚þ„YðIoîãBi²æt ·‘Dköâ|H~Ђ¢8mÖw—ÊE/Ыyv€ ÛH“©{šßw˜DôZÎhÏ–©›|ýÞÓ­|Ób¹Yúg/KtŠOtÏ]g‡nÃ`ŽþflFËè9»”³_ÒMÍr o-è«}œ&“ÙÁ õñª(R,?(AQœëw(“ gT’¡ zWIèÁòGÝìêŠW± ;_f¸ì©iäž%ø|ZÑwsºå|s®:• ûâ ¦v\ÊŒwÚû¡KúÕ™UZÒäîFnð«%©—RžŠ…a%zŸa¥OÝh ä(½Ý|Açý‚ÖAZ¤îÏ RhÊŽèE܈[ðáùA Šâô§;õVgÙÆåç67v^ŸÚÄù–:ãúÔ/'"¼ ºX"n1ýŠ1Jªî¯¢ º•÷áÖAßÊ4´Â´ïsà‚Nñ‰î9“‚ž—gý;™œÉÉ$¾º‘im¿¦Ùœ2/Ø"wÓ” ¬LVÛ¥võt÷Mòß´eÊNã•á‰ôH»œ…X§ ™¡„íÍrÃ7M š¶U„ŽÑ7)‡³ëÓ;µä©Rc,Ô’í óµýt¤[PF†->µŽZÄò¾^…zÀãÑjh©ar.]s¾ã¯QŽßhbµÙ˜«m_ <ÓdÿÓ‚?ýð½Á±Ë¸ÃÎJÐåþsI_Æd9EZ„²V,–˳á‰Dq ž–” (Nró˜;ƒü£K®rãìf.©»ÆÆhßy÷¡\-?Ÿ€Pºå1RC¯:,S­º¦ûè‚®!©´¯oKÆZ¦… [yOi´È)ëÊbç(ùËPææ"·’tA×<§øDqŠ*è§µ˜åpA¯ìè°>³¨9h‡ã ɦ¶/CÉ ¹ø‰Š·µYz1TÊí,®"š.RÆ¿d‚Ü[OõˆØn Y­Äλ,Ã$è¤Ô¤>'Ÿ’k,iD6y9çùbâ錾ÑÏàó°v– ˜¶á‘r: Èå*êf~/9›R0Av’”Á‚EÜ)ïëU¨[vÚ­†’I ®¦ Sþ£ßsNNÛåò?¹–ˆOÅÂ*b"Z°vípù³m³oÇÕ›¤vøuÚ#:™åñm{”¥ZV«H¯îúÆGkÉñRE ÿâ<-?(AQœºH'ºaÑä­rÕó±;¹Ž¶CgEÐs:Y½Jž,%·duªN¡;‘L‚¾4qY[JÉcï¨è‚nå=¥ÑjR.ºh+¨1šúˆ­$]Ð5Ï)>Qœ¢ ú‰ýg\(èQîC'l匽íÚzzw¡~ø‘zm©Õ¦¸¦t݇éÚÌ«znR¸G|ïjÍɯ¬ë‚þ zŠÜ¨líÑÑ‹••OèQçDt7÷Ñwý_¾·MOY@K„ô5¹^55q`‚Î?¯ß±VwÓ®o—øOÍJP4'½€üß·=µÌúB)ݱqK ók´¶»¾9º óCFhõnľ‚nå=¥Ñ2¼—æñ±:Å'š“;ïC]Ðùa ½dÄ:âsb~0ÅÃÉn¯kV7Ö»Ü7úKä²Í-Ö.ñéúPî»UP="s>õÄɯNãè‚® s¶oäJç™t HaSÒä®S©öÝíñn•œ2η倞‰oiȸ¬€a'i÷Ð÷(è|׆,ùýÜáæþð°‘Ä-+s¹åS1±/³Ðë­ Ì·³&yû)èü®KÓ¥¬Öñ]}#äñf.KÒWà#ä%(ŠÓŠé|%ãjÏöÚŸÖÓ¿ø5‚Î7;7jª;š˜€æ>â%-é¤pQ¤º<š(”›¶œÂð«+é‚nå=­ÑÚ1¡D~¼, 5mƒôpŸ¨N, zõÉ“n2‹Ꜩ´kËJ8‰Jd a Dtg·’Ö‚¾~æN :_]¯+.ä û /Ak+eSÜà:Ui¨ Lr›ó ô$µ’°Cv1J!H»ü¥Èg zœ[I:°ÒÈà@.lû Ýç`³µg¿{:å}uqñÁÔi%gs, úž=hã`Ø¡;€„\Ÿj³ Ó.¿r.?—Xúß?{ß…‚ž'Šyh䀠»Œ–Ë•œD¢ìÐ!葟ø€Y;t€[X'þŽ‘”¾ôªc£ö™ø jb’q§zÏÌ™=([˜á“£Èƒdóÿ ’ͧâ9 :¿~=ŠKT¾±Ä‚:8‘5g‘‚p/7Yd›èà]î¿|'êCÐãÂÒ¥(#˜á¨ø36êd;ôk"šÝdÓóÇu.ô ååP¶°3vèN>).åìÐ]È q› vè°ÄyV½¹m¤cã–r'ŹwÚ¡OÅ©([X¡gÏŸ‘ ÉæÓ«—‘ Iæñs :ìŠK,ùrPû°ËptH|Ó»y è÷r¹‡t6q>ÇÆíE,¡CÐãCnO€–Ô]c#¡N¶C¿Z~51Ùœ®v¡ WvtàÌ"˜;ôwa‡,8±ÿŒ ýç¢Ø=À«Nˆ³ÙHi‘”îØ¸ýH¼ª˜äá;®´C—ý7iF¸yü[FRZäܨݯ»‡š˜dN¹RЫO~Ó„²€ð½£@ZÚ¥ò.t¾U [ü”w£ ó(Xt:8•£A&:Àµ\üÏÙHèSçØ¸ºu5‚öÜGÉÀ Åãl$t–ƒý÷⨉IæÎ­÷](èy0[€!.±"èc ‚"Ï’ÀâÜÿÍHJŸžçبÝ &BÐã@ÏÌ™Q¶0Üi’lšîü™lîŠçܸ†¾þŠS½ª/–`—;òÀl R„×#à^î2²Èö²ƒÍÖþv 'nCÐãÂÒ¿¢d`†{b u²ú-Ín²¹xj ýBùWØå30c‡þ–Ü·ÁÒ<g³‘ТúátwÚ¡O… Àïÿ™ôÑá×8Ë=ù‚þ¹×Ðý E €%îüo)v¹)ÌÖ E8ðò@Ðîå&#f-¹ ÇÆí"–Ð!èqº?{â`‡;u·ØH¨“íпþê!jbÒ{¶Õ.ôÊŽÙ8³f`Æ}ìÐöŸº¬LAŸ€ §s¥,:ˆHJÚ¡çuÔÙ è;Úr9A²k?²-7‡Oè÷³‚ð¶½>K‚pÛê÷>Á|(Å¡BùOç õ¿Ã…¾hˆ½ã$óÔÏpl~uß”ݺ¶1øßÉ!é(ŠÅï¦'…ÉæÿŸ>ÚãËßü¸á²/PSQ2âú¤"K'Ê‹‰ÊÂoßò{¼ù{cÝ”ò™’øð3½7×–Dß<þ-#-v‘s£v¿.A—ÒÏoópBNáœ~þv¸¦„¸¬ëCŸÍRj`ú¼—L5w…ù‡eœkÜ#yn4Ü™ÁǸKÐ+ωQ½úä7ѦÜçøŒÌ+bSSêFÇGÐûås4A/L‚Þè×R¿e… ¿¬gÓ3ÎlD^k×"˜¾É~AT0 úÄ*ÕOþ9.âT§Õ·-œ(/&,?äÎà[ªKÉšX¢LùAÏçðÄS"´X°]ÐÓ°ÄæTÓôJ¶ ¿µèÝGî¹~ º…÷ 4·(W蟠Æs£áŽ.è—Êw¦š _øRŒ&è|u´ªµEɘœ ¯’¿Ù‹m©hrs'Aï—ÏQT]ЋÒIòó«Êä?Á±¦d@¤G©oóÉ?ý­õäÏ^GŽWZ嘵½sð1¹ã!ýŸ½ó‹i#9øzyÈG¤5Æ6ÅØÁñÒEL)A¡¨ûÈEwaˆKЃ(%¤ºª@óW(ŠxiɧH¡}ÉKóUQu•µª‰§>D\"õ¥§;U•úÐö½ßìî¬Ç»ã]/Þølüęñ|ì~3ûýæûæ›õ'¤æyMº„ºò12Ë" ô \y†&Vðñ…R5GžÌ•Gm¨ŸšÙ¬UœŽ…Ó‡ª#c¸t²¯èD~ÒY}põl¼yÎ ÷ª‚´Ìîsp¿Ø*-dmÚÝK\sÖm3„Ú¾îØ1bé€ÞÕа’»økø{iÙÑñ¤:ÏkÏ&œ1Ü« ¢)ÐK/Ëý÷¿©´ºÕ±5â1yû7dW½ìp¸Tž’—0Ðëh`b•cæÉÌš–?¡nÜ~³xGº+¼/AuGþƱi oŒzæÜeG<1›ÜWé/Cn@ß…páwYýËÏWùã?ç ôâ³ÄYº;â~1Л«“hšG”óè9Å3¾;.Ò¥ì.{6”u.:aw‹0Æ× °ª–£37*@œß½ìd¬2 =AEQ¡¨úWi‹¡Óèt Yª8 ¨⡨¡Æa7D\Žéƒ£gãÍsè"Àô>£3ÊÓi‡~él¹ªê0}®„£†p¹±-…Vñ¤RGvÏèfâIòÇ2ç’Æ¼9ݾpá.; ÿ½²òGŸý:O Ïà W‡2Æ5\Ö@Ÿ\DF‹þô¼DŠÓ¬·výr†¢”O€ µ²Íí?Q|÷:²’qN‡2qi»²kÉ3ƒ>_Œ.õèŸjÉ®îÀSµÊÏRÅéX@}àr¢5”ÞÝqL=ož;@Q;§xùßÿ•2¤.X Û@¯‚ç¿‹go ñfœY-ê-Þ-‹¶)ôI˜'¸Æèfâ…p:Y˜-A´¬9Ý®pƒá.; ÿéoŸ8` ôÏÿa¦V²)±Î.As#^Ü"H]Ú¸…ÙÃM¢è®%°ì©ÆÖjžC×#ˆRë’K]}É%ÊD¢Û]8RãÃT&Ї8g¯Ïy°wµÚ;S2-¡… IÞô¯Y½;{ÎOÏ‹€m|¨Œ_–”ÈTàÝué8ÊxЋlÛY\í~—à,Ù ^;™®ïú/}pUùt[R³ŒU¼ŽÔÇÀ­ºðK§ôÁÓ³ñæyôWѸ˜où¦´­Ý±:]nè,ø]äØÚ%$5ªQËÍi[b\¡ Í?Ît3ñÂï=}×ê>Îè¶… ·ÐÏ|õæ‹Ò;¶f ôï™[«@§%£b¨EÉŠ‹Ò§%¼ª=áV«šg‚j«²ÊÖ2Àà v‚„ÑvZUÕÇ}‰ÃóE­÷@V ß kvdÔèb›K`æE 1Èæ»;¸&|¤¹TÝEn g¶~K?>¸Á´ÌVäÞ> U-G` €NàDݹé¨ÏRÅëX@},iN Lï~@ úà陣ν&}¢§é”s§ø^í}ýCå~MäµMÞOЪ{z»Ïº™xa“Ä.[ž‡ÙS¼Ó"øC9ݶpƒá¶ôÐKòº%ÐÍÏ¡Ïd;„%'D6=x!GnªÏ…„ନñ]÷v’KÒÕp5~ƒ‹1r*‹‰…€oa¡“+(EòÉ=½µ¤ÊçJM¤.R,]¤wïb”„[ÑÉZIÆšÚZr˜žX}¢¬!²§"kMºÓ“® à Ð<â&ñ‰¾¢7Šu™I¬ :‡Ýf˜‹+£s*0^’]>_×Í9HâÜê¸}açá,U¼ŽÔ ôÓz%}ðôÌÑg€Ná´ (çˆî9¥w•ÿÙúw ô7•_¿ÿ?rƒáU®m‚œâ[gtSèYEU÷.¨eÛ†ü ^rºmáýGþ‡>2ù­†UTY‚×pMŒìœNûhØ™€Ü7N½dÙaFGzÏÖÝGÙzP]€Ë&ˆœÆ•w;E% ©ý01Iµ¬`ï0p»2$k%BÛÉ è!s +…™‹ô°š §g@zc`ÿG(ù*=7){^òi$ÆãÛƒ¸ž·P`'pÒœ¯ROTÓ5ô* “ˆÛ[Ùª¸ §Aæ:pÄ!}põÌчq€ú*µ'ºÝ¯ß %\Êè_ý»世Î+'ô†sm“=8mtSAFýnJÕyO+' Û®7Ü–@[ùÇ2ú_¼2Q+š8àyk å€%½jÈ.ÊyÞ)’ÈxŸº·µŠÿzQ åXìòIZT`EÙ™–N,ì Ýe„°ËœúÙ¯n€€Þ‡×¥šÌ8"÷²M ·ÐÛÂB6’ì¢&B?ØÆF„,k ¸Óf'k2ßÝebŽ WdW%p×¾‚úÓ¤äµmuå¶&ÒWñ;L \FÐÙÃ˺í,ÐuzæèÃ0@Ý$k7îG…ÄRÂ~) ¤èf–Ë™ÁEÓ6aK}2 è¦"ˆŒ´ô%ðõ+‰ÏÓœÐm ·ô3ùY9Ý4Ëý:ðŸ!& ù¡š†ZŽitkÔv?JüDÍ™[Xìr=EO]5].OE—K:ñÖ G¯1±˜9õpƒèkõ-ÐÙ¤nbÚ:ÉóÌи:€æÚ&ñŠž3!*ü»äEdÃ^*æb¾ ‘(ê۸ºà(БT\$Ñ–ævÔŠòÀM®øadbnEQU‡†*nÇÂé#„·-D—q³郫gŽ>Œ„ ÖM¥ò&äw2¾l š‡*Óºy±O™:Q¢š%·t–ܬ-‰s2œ´º™ˆ™t8õ¨ËÓ1/H}¹Ý®ð]½$>5O ßͲ¼me¼å8~gXºêkwk{…•£8$r_qÝ[¦Øåª3¬Ã$œ}Üp1fS²G=%˜[[s«‡…l]NÅkêé›í ‚(2ï߬ð±óf‘¬‰Æ­þ"*q¼· öm‰Wµ…˜S@IŸM6ü|Ø B•¼y3†­í.~¯c!õщ¿÷|ܵÞ>Äï¨Cúà陣Îm¼ÖÞp÷ìÁr œ/m婪vfò’Š&m}>5!Éèfâ…æÍ9&@îSÿmrº]áû@Ï èÄQá½@¬Ióµ=W€®žÜíÕVW=êÙZeÓÃ7²œÒ#¨Ë°UŽ_"ÛÓM-¢{0¿ŸèÛk[åwLÙºpE“RböÐÃÌ!'ÙCO“¾ºhòâb\÷èt: t\’IiŒ‘ìšT—–Œ1PNlqª8 «ët¤¥Õc :»‡ž¡gÎÍg ¥L3ïCȯ¼}Uâ!÷£¦…lóÒwrÿ׳¼ÌýAfØZÊ­mͰøT°º™x¶wÃMÊÎ]¯3Ðm ߺV>ýÖä–ÑŠÀ§ÞËVû•”\f¢z5•}´›Ês[@çj5¼ä¤Ií\¯¿ ¿îÁMð~é8óã<ö.\T²Ý¼1½TÀi?ˆ,´…â}(Þb^Ç5Pë-¶æ€ß‰_Üavƒyûò–²ý2Ð6ÉòÛx8UœŽÖǦ± ^ƹUá”>8zæÜ|¶RËœ³ŽüØá»ÊŸ—8ÐÍ¿P"Yîß¾'ÉôMÐÀÕ2L}bYÖ¶)œg’ÑæS ç(ž-.Ù2_Á=š;Ðí ßÐ_>û¬ þåþùÒ|zdºË=ç Îs€~:ÐÑPÕ«ô§X sE¸@¯%¯¸ymz°Ž);\ ¬LB±¢ö±oW@:Ntcs)ûñкEæÅ^rG+»ÅS¤Öp©k#£jС_‡ËÌr×ö¿BÊÈËsúRò¶é·ŠÓ±Ðúˆß\é4†¼»¢Û)}pô̹ùlĘÔf'îyÿzýýCgˆ;Äl^ê~ek#gƒÝëB.@7¯¿¤d6¬ä,ì骪ˆùmؾ+ ¿­üÕž;‡Îä·¥᎔‡•ëšËØàôö†ìry!÷˜<¥ô>S£zŽ- 7ã{·7;Ô?· 3F¹†™,Ò-7˜UçhÑzè-¨Š:]îv—CïLg†Kðm†ËÊóùXûªO>:Á©ât,¸>Ò^ÁŽ=SÏœ›ç^PÈÅFÅ:œ¸éo*ºô=ôMÆ(õ3§oåP¿äýV'…œ€n&ÝšYvD¦…€nL,FÑžð]½<Ï¡ÿÄè ô¢È/ðoe\)ò“Í[¹”PÎ$Åé-2¾ÑáhÝkzM¬ßÝlþÜp ÇpÉIwY$uÓÐ]ŒNÓÝš3³ 7™mžOŠõ5°d0?ü?{çÅqÇñóRÉ7¨ç÷b Imð# ´ðGl‡‡)Ø›‡£¤: v’, Ú&” àšDF"Š a™ŒSƒcœR !0¥˜ª* ˆ ê´é#RZuçîvo½··ö™»¹ïçÌ=ff37ßyü~3ºá¥òh',wÜkìc͸çqïzòhÿQ÷Ž yFZjø’Á­µÇ·Ô͇ïÕ'O'è:;<¼AÆÅK/i—ìòïÚsã :kA¿vÇ‚³ÜghdsªÎS×ø=ê•Zã0ôa&?Vò÷Ì‹<îÊ! zh‰PÐOÛqýð—fvÍ ‡¿ùÑ*S¼®9›5Ñf/ùÎô7ô‚éß§GyÔ7úd× ¡|ÍZ«\#O©'Å¥Ëu·rPé¶È¯«ÓBɳ.³Q/èñþ?u x?DA\R—Ù—jî×ýéàã„WibئE^ŠFÄÙZkô/~ ¸ª„QÐ3ýZùÞËA×h²Yä±¼dðE+í±b”TïûóÕQ~÷¼°ºÎÎoP ŸÉEÄg¹ŽR4‡>|RÔ#1è'ó‡|o¼‘£RPA7K~´?öØq@s^‡o/ñžÊn’x(‚ÞÿUuô úp h ½>5W™à®Juz]»W:Õ‹&é}x³†ôD;‘?µÀÛ]{êÁ !Z;ÕyoR¥*èÅIz­®‘”³\ɾŀ|]ó¡ šJæ´øï†:Cwy”zMþst{¬EòÊÛÈæ¹Œ/d =¥/ðÄ›÷rÏZ0Û!פWˆŠ§xWÄJêŠsF½÷4 ƒ— ¾h©=rÒ›ªY&†Ïv6zøÀ­HR‡‰“ƒœÙ(K'ä†YÐ縞·©­&ªÒY° mð^¾3¸?‘ ›$пœJ›u~è‚>²Ämïå~Ï‚îY*qUPù+ÞIÏÏÍUôLò¬N¦söyC:½£þe è ¾yY P2HH®JÉã1´Èå½fG¹œeS³P©L†™t‰ÈsÅ‹çC/;us+ù’<é{V}6j=¦¢¢bõP‚žît&Ðn>ãE­[Þ(Ýr¥Ü²¦Ðõ•)–¸g‡LÌêmÇZ2 ~¨÷,`ËäÜfêÒºl–2š’•É+–ë,ëÕ /|ÑJ{<ãtÖÓ ÄÊ%rÿ1¬‚®·sàÃHà$x<Ž¿ŸxN" Û—¹Ÿ+Šñ6lE÷Ê+*æ¿G_ zÔ‘ ›%_¤ÌÔ~áÒßó¢ô ðH‡ )èÞò¤œ8íue«¨Ïzòò'r%eÒk&è•4(¹ ³žžÙç¹OkÝEIc˜ÝXw¦Ìz‘F™'Vjΰ]ƒ=6èg’ <—³ø¦TjÊ tÛ_z¨üGc¼þ;4‚^ã;kÞTÐéÊtß4ôͺK?›¢§äJS½×ÄLæðÇM‡ßLQ¯NJÃ4$`?žàtÆoX²n¼£+Ïhªè'K^—›BÜê`/|ÑJ{üVn`ɯ/ù.mg¯…Óv|x£=YOηƒ[*:<Â9XÀæNñå3F™èÖüN­Ôç‚¿dðE+í1Iiy‰‹Âk@;<¼ajÆ+ÿ¿"LÞ_Ø'Æüt!¿ÇA8îܾeI>[”¾{L†^ÐÞKÜs†t³ä'e) eéŽO¦ (ñ½×mCAÏ«-ÒwvÅŽÔ8Ù¸®¬ÍÚ>éýïLœRâÃÊñUæ^î³séD79S1pñr—Ô­Oˆ.¥Œ‘_råúVZTA§ •šp>AþvÎ5vR“²2GŸJóÎ)x^¿áYñIÐÅSä,’ÇjÆ‚oËßÔß•±â~ú±”‰|äž`(èÅò(8‚€@ôÜøF`>;¼Ó #0ôÓvÜC?ü%ª€HôU /w êAØD o? :À¾ô Ö2CÊá¶l=ØB‡ GèþTøÄ ý…}b<(ÏqèwnßBKd>²uÛPÐójËpf LúBÄ¡n6¶#A–¹â!è (öŒC—}ÿ7‚ÐÖÒ-È“þ‰ß¢}VøZ"c®ÚRÐÝGºcxä]Úe}¦G.œâÖ—¤ûœõ™6u0¨y4~~~0kêJ¶ÛÑ)Î =’Rb}¦'Èa^íÑJöYŸét²-€(T9`8À!ëH6 AßΫ=e#è‹Ñˆ" è€GÚµXŸéerŽW{œ"ë­Ïô 9Ž–)ÞHÍ„A+ƒíìýM]ÜÚ£ºÙú»šÛ¢u’#h‰ŒYlKAï()é@ÝŠÈÚVëó¬ú&¿£ÇO·1׫ ~|GšÑøYóôç°kŽ““6ôغ:T­ˆT5î±>Óvò^í±ì¶>ÓMä"Z",ÈÛZeGAb‚8ôÁ AQÉÓ,NŠkàù¤8[˧qR\yáØ@и۬~×iæÕ]'hkõÉ*ë3½(È&Û Ž½Üß[ŒÃÜ!è‘éSªQGC3‹½ð‡~ ÛeMÇÕu6ô®ìì.Ô-¢ L:Ï'Å!=É& :âЉS¢úcËä¶l8)Ž=öŒCŸIÈLÔ­ˆìg±2Ãñ Ög;¬ÏÓÍÀ AãgÍñógaÆì%§m(豇£jE$­e·õ™žã7îz ä´õ™¶7¶¢%À‚ªK#òc€—;àÄ¡qè:€ CÐ!èv½?„ ˆÀÌÚß[ŸéÕCÜúýyÏIë3Ý^ &œ…³ J¥dnËö=l¡CÐ#CnO“ûz Ö´¹£LÐ×vîÉ®=a=ŸW[‹3‹aâÐßB:0¡µ±=º};!%„>jö!Ä¡A·!?p‚ ƒ D[ú§„ì:»m=ÙSAxhkéäIã·hŸ6£%BÐC!o9Oÿ=[FÌVÜGºQ·’wi—õ™¹ÀíÖaZ÷9ë3mê`Póhüüü`ÖÔ•Œ(䆕 Nˆwx…´˜µ7ô\HX\Ÿz‚çëS™„­áúT¢iPÅJÐ/“Zß@„:TÐ8ôÁ À­ OWvÒ¹Šj:Úµ°ežãÕ§Èzë3=CŽ£%FŠ7R3a`AßMNøþ*$8®ÐÊ`;{¿wõV7[Ÿç‡[­ßKíÚtEŒÎóõ©‹§·ÅzÔª¾peä²ÉçPGâÐ9×§²g ³)º}W€´FŽŠ‚n7–:]Ü– qèìÙ]akû†7CG:"±Ž|"È“>»šÛ¢u’#h‰Œ‰²8ôõš=t“M³Ž’ÿn äë»ÖçYþõØCÃ]ö¸{Ÿ5¯£Øÿàÿw2š½›t«‹êfÁ®uN $ÿgïlc›ºÎ8¾:0߃j7äÅ - ° Œ«‘5 ´¦JĨ0ÖÐ(ce‰œ– M@C‚Zšfb*P”L,¬ab”9®’˜äC”%MAQxQø!ègFâÓîõ[lÇoqâûßóÿ ‰›ëc?ç>çøüÏ9Ï9:|éQÊ/b]Ѽ²g“ _ ÆÕ&‹CÏBòò¥ú6_½|Å«;ÖˆÄ:}6 z/cþm%Ÿ°ÎØ0Q¥Ø)®ç⦖ǰS\9u>+ Ù^îûÙÿ”ÿ'ö³«(ÅõX}£Mã^ýá$ÐÖºa»úFgÙ8r'Ç«ÜïÀfîô¥ñ€1—S?’ä´5}]ÊapPìqKÏqèÓ Í.5î¹Æ¬t½‹1f•ÿ%ì{ÊÊ<([DA˜8tžwŠC:=3¬%»]z¨³{ÿ”#aÄ¡ #¢ºíÈ&nó†âèɲ8ô©b¬ e+"7)Ff8ÞÁz­¾M ?Üm/Pù©˜š€ˆ¹ÁÆ4(èúÛ8¹EHL=êd3¼úÃkSߨ«½5 ì³i­cø <8ç¡G‚óÐtA‡ CÐ9lzëáA"PÕðP}£sÝÜ®zÖ9¬¾ÑKV‚˜pŠÅìÓås›·Ã˜B‡ gNO³0Fápì•ÓbTpžãЧÊFÐQã´hPÐÍ Ø³a&ý âÐAúÚ]tÄ¡A× 5†:ˆ‹6ãÐ!舄³gT'µñ›µç•ÔDz°ô÷[P¶bž%8³§wšÛ©CÓè¤úF»†¼%ÊÏÁ×. ¦ÉšVÈ ï‹â,Ðs!ñRŸ:Èóñ©$ak8>€lêT!l ðâÐ#A:‚²gwúF±I^ý1ÂΨotœ  &fŠÖÂR8@ÐôLgßìâ÷¬Þ:‡ú6ïW.ÕÓòDŒ Îóñ©v8õ‚žÚÚPFâÐ9ǧÒãêÒ  ›ÃVq@еÆAÉÀmÞ‡NÏ Ä¡²œFöƒ OúÑ n³6ÄzQ‰ÑfºÛju£lEä4ÁQÜö×ùí=>¸H ®s_¾^*?5G„¨`iÇÄûzSŠVDìíêu±Ç¼úã"ëPßh ›AM€óy»ˆ âÐ#A:‚²’£;ŵñ¼SÁÔòvŠË §î‚DÀâ"ýnwðêÏ ¶Ö ÛÕ7:#È$ÛNŽW¹ß9€ÍÜ!è™iSêPFƒƒbnžãЧš]jÜstOY™e €(‡ÎóNqˆC§g†µhPЇ€HŒˆ"è¶#›¸ÍvŠ£G›qèUŒU¡lEä&ÅÈ Ç;XO¸Õ·i!ð‡»í*?5Sp17ؘ]û6ŠVDL=êä7îÚkSߨ«½5 ì³i­cÀ*wÀ#ˆCqè:€ CÐ!è6½õð€ ¨jx¨¾Ñ¹nn×=ëVßè%+AL8Åb öéò¹ÍÛaL¡CÐ3ƒ §§Š‰Y£ðG8öÊi1*8ÏqèSe#h¨qZ4(èæ†ìY€0‡~qè }í. :âЀ kCÄE›qètDÂÙ3*È“ÚøÍÚóJj"=Xúû-([1Ï^Ußhï4·S‡¦ÑIõv y J•Ÿƒ¯\@M“5­ÞÅY çBâ¥8>uçãSIÂÖp|*ÙÔ©BØàÄ¡G‚8td%Îîõ>b“¼úc„Qßè8@MÌ­…¥p€ !è#˜Î¾ÙÅïY½uõmÞ;¯þ\ª§å‰œçãSìpê=´µ¡ŒÄ¡sŽO¥Ç;Ô¥AA71†­â€ kƒ’Û¼!žˆCd9ìAžô£Üfmˆõ¢&£Í8t·ÕêFÙŠÈi‚£¸í¯óÛ{|p‘@\ç¾|½T~jŽþP3ÀÒ:މ÷9ô¦&­ˆØÛ;Õ7êbyõÇEÖ¡¾Ñ6ƒšæóv- :Ä¡G‚8td%G)vŠkãy§8‚©å1ì—ANÝ…ˆ€ÅE0úÝ4îàÕžAm­¶«otFI¶¯r¿s›¹CÐ3Ó¦Ô¡ŒÅÜ<Ç¡O34»Ô¸ç5(èž²2ÊQ&çâ‡NÏ kÑ  #‘EÐmG6q›7ìG6ãЫ«BÙŠÈMŠ‘Žw°žp«oÓBàwÛ T~j¦&àbn°1 ºþöm­ˆ˜z:Ô7:Éoܵ×:¦¾QW{j"ØgÓZÇ€Uî€G‡ âÐtA‡ CÐ9lzëá -A75T¢bÒ*øóW5~¯V¹g© ë- WD ºÒ:É• ? Þ}óåe z‘1lÌ]®E…¹t/Åñ©ƒ<ŸJ¶¦ãSWtëô[ë·K±Ù¾¾•Ï,sÇIúÎ5/·;ŠH–êÝËŸ®S` Rô陳˜fî÷„Dë/õI®.ŸîýÎXðe*‚žf§Š6l-¹ '&ZЋ%i«ÿÊV[nÔIºåï^Ê•ŒúÖ5oè$Cá…PzÛß×Ê7*¾W¹=ïÉo4”œ½1Wë«|ÎXª¨Ý'›åWË¥$è%Á¯y^ðb¯rûßÕ¹òglþë|ØØÂßäÒ5”Ô*s7ÁžÇPÖÆ¶~9CÐKÃÆÜÿ#IëÃ=ú!b?jtF8tÄ¡G‚8ôerlÅÔÑœ8áä®2tEË‚þkYmçší·ãµï†š…kiˉ¢”=~úD¦Ã-¦™ûùk?XtßRª}’¬>‹H"èé¡-AÏþBß³q¡Ï\ôk[·Þ $-8jv6¤rßßgÜôsÆÀ­ƒ­åW/¤/è÷C‚Ý‚úwƒ·r~!èÉ¥=·XÐ… öœ”tõ!A_ü±uqF8tgwúF±I^Û¿vF}£ãl‚Å÷Í)ÆæsÉ?¨µ°TdA¿³ö5ãűҼ%wœÖ/$ÒŸ×/EÐã¥O`:Ââ2s¯÷ ¹ûôè÷’t‚¾tA_/æ'Î)£-奥Ê—¯9 Ëy²à½Qá+ó÷¨jÞÞ|RN¤ ¨Üjebþ¶f%•î³àåtkË•ÞÀ›²RæT¬Uúá«Sô»µk䔵µµ¿ ^ìS¤W¶P}_éåë>ö%[¥ÿ–êRÅhÁ¼þÿìûOgÇuDæÒÃÍst¡^@A‰K Ñ/ÔبõBªM¡[H±*k‰ÖZ««ëe â6⚨ÁZpÖ( ÞhýÁ¨õҘ?ÍnöØ÷6Îyçœ9Çsfæœy¾?2sæyßwæÌç½<Ïóö4ãçÀßÜŒÍcKRuÁÞrÒ'˜tYŸso”Pµ¬]P AUq“SÜ5–³ûϹw¯ÞÖûm~Èþ@ô‘}¿ºè}í~dMþŒ†׊<¡îÐ×¼•ðmyŽ0ˆy—%:g“›ò¼B<؉èæç‡1=Æâk–žÅ,÷_Öᔼ± [’²KKR èý/˜Þ· ôînË@ï+ c:‚QVœNنǾR#ã2>—´î¿:ÿo¶ï 9iù RÊ]ħÓÚo~uî…|Ðß'ó‘sAß—H_ tÑúláuÍJ» _ŽÆ\ta¶î–õ5ô¿á3èýïÁö„½@ ÓÛ@<9T  *!¨ª  àårZ‰ [{} §/Ž¢Ñô¥_×Î݆íS›*Ð+ŠŠDÝ'AdÐäh¼ÜMÎ77Ýg5)réO.}NQl¸)´A[—ö[ú«;çÜôë S¿U ç)J^x K“¨Ê2i{±¡f þå;£ÿy&ç²oªÊVÔÇÎBGÙYUœr[uR•ËÓÔàJ´•ÒÈ4þ\z°¡ÒP •èø²+ùG0nrŽr./eg©@ŸÐ*và³`o? ô¹Úœ{>YÒá@TBPU“‚ÐA© t>›Õ0¾þÏ|ÒGÇ[8aá\,)ÿÂ#S=Ôu*œqç€nCz‡! ØL$¬)~ÇUYt´@77-²cé骧´šý'€OÇÿͪ*3& ôóɶ5Ð#Ç¡õ1½Dÿ¼µ½ö¹zÊ$„žp.ïÕ²‹ Q‹µo;£\†aÆå Èë hX®¯ÃG ô †ù™•ŒÇGÊå‰ FËrNŒê@?‚Ðv`Ë“A9è¤lô}pL"åá@TBPUAAè ǵKy–ëv!þ ÌçÁÁóðÏù¤Óë³r Å*S‹¶E0žéÐï(Wm"_¬ÈòÇB$~…{P«tSÓB‹1–že¯CM4èNíêðoïçç6+@O¶8tk@®¯¶ ôâ_‡ž±5“M³õ)nëÛøG5›ß¦*b”+7ܧ^|ÉìƒóØ_6ió,ï!T-z‘A™b ï5ÌÕ4à'!f' еSNâêsšKdqïu2ý(ÛÏ£(ç@TBPUAA\ôlÅÝòF¿kA÷ÓaàúrØ~£W<ôˆœúæßnb‘á•T'Db;w;ÐMM -ÆXú®G½OHö¯r•î<üj«¤9ŇúM%¦í˜Üî×v¿'¾†ž¶¥7™´}̱·÷”–Óïá»è+ø‘b„>d­üzr£Î_Ñ.ɺkú—h¤üTt+kèÁñ«ãéôÍn1ÐeæSï/ø M ô/øÐz ò¥i@TBPUAAÜô–Sgí7:¤üâVžVNÛotŸò"eFþ®›r| ¥½Üç Ô®þ>SÜ6(“/Æ覦…c,=ÕJžèu:_å彆éV€>ûPK*=¼t§¸´Zdô«›œ«¯T ¯×^ÃÚóC‹ÅÒ#̳XÊ lî©H!Z9èÚW|ªe g}ç{èˆúŒ ÐÛ6©Á­‰€Nò`Ûmš#k@TBPUAA âÐÇâЊ³S\d¥Ð /ÌR„žë„iÿ wˆ£ºñ}æ|3Ób‹±•ž«ƒ-–œ·çjü‡°µ0@—I0ÙþŸ¾eBNé—~S g(wBúIíâ~ èëãt|Ñê7 šJÇÊf@—å¾Ï9y¥wE@“ιo׿jÄ•TUP7}³™âºÝœ)î™ýFï§P¦8×…­ÉÛo{è7$aàWAè,hœ€nfZl1¶Òs]aÓñµ†ÔŸUÿ*zX ÓÅ ›¿Z‹-zóv¹ Ðsô™Û^ϼ·0ÄèØöñ sªÊ0:Ö–…sÈÊAn£è—èœ{€å‰ç@TBPUAAÜôŠ!f¿; ¸õU8r˶¶Þm±ßè‹N÷]Žcb™¦µÎýúšÄ$ 0¼0¯h3Ï&©Y²…)^ât3ÓÙ’ÊX.ýh¯úÛLFï#†ÓÛ´%wO½µÕ*Љ+7w ߋ陮CªK ô|„Ö©ŸåéÓ²t|¹Gán”E /3úÇ ÿ>7dž–?ÿ’(—;IQpEtRð’t 5€.¨„ ª‚‚€—;Èq $hmÁu©_݇þTiM´‰ƒ+Y~ÈF–7⦌貵óML›XŒºô»suwã.vÞÃÖ\'5P„úðË]ÉôÈ“Y³F¬º\à7x·NT‰ ô?èS%óX®U†ˆ¯ƒ<_@|¾ßaµÿVƒ$âTùà 6¶îàGÞ1IRÓþçÍË«@oGhO³™W#®„ ª‚‚ÐAŽ+Qqè®Ûœ%rzR98ñð€l²½IÈ~QÍAY½ãtÓ&£.ýr Ù»ø˜!nB'¬ý…²/Í~èò×$¼¤M¦ëêâÄ' CÞ«o”·ŒS®ÿ\Èþô\_ JZX{£Ÿ]…<ïi“AEitU¦Š÷PÔz”1Ïü /@¨8À;è‚Jª*(ä¸î%èvlŸ:áxÛ§6nš±ÈNmŸjC¦8y·6 ])Z„^"Þõ,.@›^bmŸµˆ¥¤%ˆ“H<®¿uý,R©Ä§íŸž‚qèµXQ[:Ým„ÌvÔ"”K£·{‰ï;µ‡Ü‰l²’ö¹–ßT‰F¯Å]0_IüN:hh>I´º%_M<—ÒMá>ò1 ]Øö8ÖgäÁóíÁÙãU “΋Ä=.ÕÔ¯‚Jª*(ˆ›€ÞïDZõîý&<¶ßf…í1Üý¿dé{|Ôd\NÏnߘ2½ª›?>L¸A<ØXFÞ?Ÿè{]-¯¬äE!S’ñºzy‘éP‹£•••3c)ý25¿ëŠ"üXФÚu˜ìå$ w_Ïñ)SÜýºüϰ~ÇA@'›Ç“ø+’EjZ¾ªƒ­u-5z™£Ï)œM·Cc›³n·ÿbA@RGöQùÆè3!ÐixÇÈæ+YMäÈtÒOÊŸ]+§‘„þ…sÊx<£èëH ¿tA%UÄE@Ï»|Ú~£Ýwýªþ¾ýF‡N]“AáÆÐêrºoò6h(uL¨.)%ÑI|Z6„ûô©qºvyéP‹ƒøè§±”~ Ù#sBSyçúXîRy!MK@_¶ÒZK@où9&?†qIýLoŸº±L+ǵ~sˆ.1º¬m†:?_=:8EsUe;Eô±j}t“v†ºîh‡ú—óÊÐÈrÃ-GÅrY ôµHkmûÔÐJˆªZˆC‡8t£R)=Qêm.öU× ½¶«¾…µ!@OCbÚÅèÓ¡Ã=\é§jþ> MêlNæ%ÙÐcTj.™“ùŠü"²oˉ$™šï˜ ÐeùU’ªöËùúÑÕ‹2%ä+>¨:·Äè²|rN6¶:ioŸþ飵Äh@þ齈ÇÑeÔR€TÄ_<§¸g´=´âª€@ Û¥qm^o“³É[¯F@Üqø×´Ä=Ôt¨Å@WzyÃü.õM™g8=}Z~Ùfeèw€òŒïø—ýF_~³Ó­íñŸ³wí7ú×úNû:á,à„¤I®-Ûû“ª)ÃýµÔ®/°'Bžz^ÀÍ“ší£ÐFµ¼ýÔ¸›óÀý8ëD˜÷8ô)ôÙ;vÌ–A G”¨8tz²#Ýý@ÿMÊLh±ÃýÚ©¡z„8t@OFmñM »è%>5w‡#@OÍ8t:ä%ݸüƒGjêbÏøÿ¾=d@ï(,<ïË–îO\‘WJzÅ·ßVÈ ïiöÏ·ßèÕ§®]:Ìûá±ýFÏÝyåÀ‡‡ß_¿¤*- îÍI¦"ó ¨0@ï¬)äÆíNqÀsOê•Û§Þróö©Ž„­‡'@wè1vª l äFAúXA: ƒ’R7¾¹l¿Ñ+ÝÚ÷”?ÛoôržÄDéX @yB×XÎî?7âÚöh°ßæ÷‡ì_KÙ÷«7ð‡­­yë†  '@ÝÝp@ ÏâÐ] ;¶O…׫;çRèyŠ©â@ ˆ’É2 IDATzªi-ò¹¶lI‡ž’:qè (ɵKy摚~èÞWï(WáItX©‡>\_? ÷Ö‹ÚéÀVÜ-o¸·÷øÓaàúÒ/ßÕxøÖæß¡ œÖM%¦í˜Ü¾†ÞÙ ·Ö‹j9uÖ~£CÊ/nmÃÊiûîS^À“9¡Ù‡ZRè o âÐÇ âÐA ””ÚìD¦¸n7gŠs`iù>dŠK ¶ß†6ÐA^PųßÜÚ#·`këÝû¾ðÈ"Û{¹__õè‰y§´Â=<£'Öœ›ãП*ðÚý?{çóÒHšÆqè>Tž¶ÖÀÂ^†YÈê°;‹{Êt`K¦wÍžd=æ´,iãiñ&"s =d0˜CÜQ‰Á¸Ñh"Š"â/<©Ý}êCþ‡MU%±ê¦í˜¼ï›z¿hÚ¤Rï[¾où|*Uïó¾¢)^ŽºPèeŸ¯Œ¾@”ÉC—y¦8ä¡‹ç˜Æ](tä¡ ›ªýå÷_J{l˜)N<îÌCÑ·*’qgFâ¬w‹üëÔ´G1þ'¿hV÷wÑ‚IQÅ…B×ѵ*âÍÎò¯tOÞ¼ëj¨Â¿ÒBb g""ˆœt4Ž£ÜŒ Ý òÐ:€Ð!t]ÂÐû#Ú@è@‚ÑSþ•^f¤ tÜà_éTH@N¸ˆÁ"øöÉ ´Ç6ŒGèzoðbõT5ñ+S)ÚÃN$p Æ .sú¾oH4yÝ…B÷G£˜³eP&ýg䡃6,% .:òЀÐ]ÈO!tp/îÌC‡ÐP‰|v[‘ßô¥¼‡ö6°€3Bïúò²Ž¾UÿÉ4ÿJsÒ>:ônïñ¯t®TÐó8ù%øóCˆ&ê(åFöAq:|®$U˧®Ë¼|ª´5,Ÿ @?]T!m ÈòÐ ¡ƒ¾$ŸÉò¯ôŒödmMã_é­âLì?}ñ@è@ –<ÎNÏÉ»VïÈÿ:·&ø?K-_¨q‚˼|ê«¡¼ ô£Pä¡K–OOµ4çB¡{‰0UºÛø‡g@ÚcCºxRÈCô9£t¨ÈoúÏI{h%ÊáLŒ;óЋ¡P}«"o,Åy&ïÕãѤ¹^ øãË-àäÍë÷hѬRGË1Éþ =CתH$‘ä_iÎemIšå_é8ãL@þ‰ˆ…ÔyèN‡€ÐA_òZÄLqq™gŠðh¹‚™âzÈ¿ÿ‡6:P½ àîwlgAÖö(¯ pëÈF„¥ÇŠ”ö؆ñBï ^¬žª&~e*E{؉Ô8ÁeÎCß÷m"‰&¯»Pèþhs  Êä¡ÿŒ(N‡Ï•¤*bùÔu™—O’¶†åSè§‹*¤­Aºä¡ tЗä3Yþ•žÑž¬í±Icü+Ý¡Uœ‰½â§/¾B#(Á’€ÇÙé9y×êYà_çÖž¥ö ™—OzˆÇÑG(ß?Ú=Ÿ v±´çŸwñÐ<ž.Úožü¡›¿è¯ÿ†3Q0ÕÒœ …î%ÂTq(Ãß=@¾Æ™(˜òÐ}Îwž'¿ê¿÷|ÞÅÒ<í^a¿õxºxhô võýÎDÁ¸3½ Ñ·*òFÀRÜ‘gò^=Mò¯sô’ÿßwž.–öÏ7],í¹çÏÝ+¬»S¿~íùSK„Ð…³J-Ç$û3ôX¬ý÷÷6‰Ã9¢ë6ÂhóÝ?vÜ/ˆª8çzéÖD’¥:—µ=&i–¥ãt ¡CèRáuz­w\d@ï•,ü7 ½-=út¢Í,eÖF½×_‘‡î@™Z wød¬Ð;BÿĘ2¡  :„Þ†s ëšïh…þzñrÔ…B/û|åOúÖÔZ2X>{ÝúÑX(pšªw¿~TJf²• »ÐƒçkLv(5Ü,㌠¢Få3§ÉLxÜ~IÑØhôQ®’ôÍŸåï(¡Cè]çÞj›Dï­W/j¡xd([ Ñ;^:#øm\·[ÂÐÙ=ZÊã*‹cw¡ÐÛ硳B"JÔþQrÅúQ A44?]"ëåx¹)ôàXm@íýR±QÈÍlˆÂ³M«.×·í7·57Öú(NVmµ– €Ð!ôn³D4©ic´Ýúy= _·¾tFðf\wXÂЫìly|eáÎ<ô QðÁBÏ'i-æ×òçÚ±„NŸ-hé)ª]ÕiÆŸì«´–~ ý¦Ð/(ùÆo~ä’½QR>¤À»´v]ë‹ø]wQè4—=«ot– ºp)'âÊ(/o{ìùש hB¿Ÿ+3{s†ÕºÐ}´6’-­·¾d#¸ºK8n‹3{0åñ•EŠ*.º¶¸¨=Xè7ä‹Ô»=l }ÌŒ‚S”Ù2 ²Öû˜ Úlý€ æ{q¶ö(‘3_N›Ÿoé#«ì!3ˆ)<ov–¥{ò®H5Tá_i!ÁvB¿?àèÆ¸¸ Õ\×Âðšyÿ{Û¼íͼd#¸ºK8„ÎìÁ”ÇW‘“7 ½}ÿ:…^}3ÑÌKèÖ£–]ÍkA6BbØH7¶„¾MËæÍÇ×A«ÆèCÝ-û¸‡f¥êUéULÙàÑ Ý òÐ!týU=cmƒÂźÐêaØ×ú’àVèf,á:³S^_ÈÂuikÁ•Õ©C³ár”¨ß®3îmD)”µ0ïµXB_%ò•Î'ƒ&ÍnÐ3Íű?ÐÁ}d]\ ·” tB‡Ð»ÌZ=ºÖ¾«kö0œ"jyÙÁmÒo-a:»S|_ÈÂUB×W‡ÂÖèKèÙúûÛÆøÝRjŽr¿1FGPx}’í£<Ñ\3Î/ßÑG£>*¶” M0zÊ¿ÒËÌYÛã:¹Á¿Ò©P B‡Ð¥aÅfO5Í–vÔºíeK¯ Ýi »ÐÙ=˜âûB² Ýë}¸Ðw׈ó¦'Î[„¾­içt<ôÝÔN¶Ö²‰¦"·}teŸG›I-´ú(#ï$àýŠ_™JÑ:„þÎl*¤• ½%‚[¡›±„= ³{°Bç+‹|GÉö’ Ýú,ô+òÍì?4„ž)ZÆŒAŠYç˜BÛÄ2úæE¶1R¢Ù ÷wQ†è³ôQƒÛ€Ð!ôRÌÒzÚbÅÊ\j+ô–n…nÆö€ÎîÑ"tž²XJ\(ôOÊC˜É5NêB¯/ËɃ>PÖÍžKÕ…ž¾‰ÿb¾7B4Âtƒ}œÃÙGúˆ)¡Cè]eÕ¶ÎÚ¼zK·B7c‰{űåq–…;óÐ?Eèþ„•o®ý¢Œ%ô!ó®Eœ»f§XCž¦oÓÖŠz&Bí³1[7}²G‰ÏÇ4f#ÓGLÙBï*3yÌ"e&ƒ·:ÁÍÐÍZÂЙ=œåq–…;…®//ëm…~õ¢N̪]9•ŒÇEkb™×Zþ-™÷C†×ˆÎ"ÚüžuËý¬vI×ü¹y²Õs@ó¹˜æ=¤À¥WÛ*8ç °62}Ä” ÿdš¥¹i¯Æ¼Û{ü++ñ_°B‡Ðïæ:cË«}žý˜ÐÙn…nÆŽ€ÎìÁ”ÇW±PG)7²ŠÓõößß›„5m)D”œ÷QbŸhÁzòÄšbϺ ²µf̸g -¼úÕ{j¼—©í¾r[l­¥Çµÿ’µŸ¯ì‰‡ÖF¦˜²Á£©ŠX>u]æåS…¤­aùT]._h÷¯Âí…ÎFp+t3–ptçì_Yt6"µßÓÖìB×6w™ÐáÕ¤¦ Sèú̬/9Ôxà1üª”Í$O/Í–ªŠ+sêÆ.ì7öËo³¾èhíÿ›Óÿ³w¾¿MœwŸB´{¾(㇠£­¶–bjÜmªÆ^¬7ÂÖVs;²QmCé&Qä¬R54Ç1ekSMZš²JµV0ÕDN%gN•2Î’8É‹( #D”½¡ðŠþöœï.¶/Nâøž»{rþ~^ñŸçñ÷ë<ßÝóCtFz‹êT~©ÏQqÙˆapz1U3ý²ƒaiO‘C K;H¾dWØÿ˜ ý9òÃÒ'WøûˆN“e{}-¡ëzpµ_/¶„®C/z…¾¼ ‹ -tı$ã ë+ƒi^ã1 !ë+„«ÖWú†Òö~“aiç^¨eXÚç±ìÇOÿˆai??»€]ÐÆ…ŽpIŸ ·³»:ø½aÒØm}c­xÁ APèì‡1G‚ H5‘îp Ð].Ì-‚ REtVá3T{}ÓÍP7‘â‰áYoùfè„  ]è)kÜqYBo´¯Z”ÎLYi%us0Ï(B¿#InzŸQë+æwÞuÖ7a}¥ƒ‘>ü$"κÚë›n†“3Ôë>ZÌDºl3øoW4|Ì£ÜZZ’k = «¤mܳÍ+JÖO›¶ã}ú6¨Bäu9Pè•‚óÐõfœ‡Ž l…®öúf›Áñ¸KȆ†Ì6ƒƒ§­­Kè-+Þ±hZó6~^èQ@¡£ÐQ貄®öúf›>QÙ9- ‘Eº%B‡IÃBO‡ã N¢ÐYPÈX_é|¼‰×x,J#ÖWzÞ‡ /#ºÚë›m†!íÛø(7õªXè®ÕvOm„XjH”ÓÜ=ÕÓï“÷f—nnôNHîØœ|Id.w+$qúRFŠ×·änTdr¿„YõìP„h*×ÁÜ/ºS"Ÿ'µfD1DŸ9:™pÇΧ „¾p8x …ÎOÕTŠñ@‹„î–≉ւ^?`º:ï©#Á¦@¹æU–’^ ÝxVúv½Gzw ÀíÔ"VS6&÷£>¨æGeû""ýåuù{Q¤hô¡v¦pW.Îã‚>míJ‘—š|¹Ÿ“BËÐÏ A„G¡w Ë÷D#-é¥^Â|3´âH¹fè‹ :Pè«ÏCo„¦çzÔ ¦f qµÁóPþÊ¥D2½]Azn^va%=âƒ.a1¬þ²øÂÊ8¸„†kPŸÔ§-‡›§úb ŠýÉúñÕ¥ …Ž £Ð' q¼KèÚ"Âõ‚^ß3ÐÓÓÔ7”kgÎC_KèÊ]Q‚z Ümê…5ÒÊo+·0ŠÒ6 ‘ÞÜA{.òº´ùñö(O)N„ä+­ô¬_nW2—Pè‚ ü ½ |£¹ÿ¶õúÖ˜!wÛ·³l38SèÞþ~ïªBŸòBÏh[ÂÏi‘îTSä[–¶-Ï”O,¤„>—é4DŽhòo^–¶ãò}‹Rnâ A¬¢–Êî=åð}Bö0(íIåðÂÓ„|`¸yoî'ÆÕI¿³lRŽ6ò-AcÒ*sÆ—Ðgµ1èíºikæš!éŸÂ:…ÞYóÐ …žŽA}“ÇÛ;%…~b½KkS»f@œw cƒ¥–й€Óä]2.ôΑ‘)쨤^¡ç…êá§„ì4XÚ1Bž.8÷ü¶Áâ¾¹·†žÀî2ªÎƒ„ü[9Z þ|Wà£UfŒ7¡7\˜ó SçÕÛàj¯o¶î´QY,× Îœ‡žòùRe ]H¸}Ï\/tšEˆ/•¤ÚÓSy¸—Ö§Í“iL>_·a¡‡µ¡øÈºþmØŠÛ¿¥‹Ûx̶Y_gp>eu• oŸz#/ô]Kû!»µã?-WÌ«ô4øàŸ0¨Î—©~Ôã=„¼ pÑ*SƛЅ±kòÒ¯ò÷Â^ßd34Hƒëï—k†«PÑvL¼ßCo^m¿'½Ð…ä\Ì->êëÌÍyÒ =ýuÂ.½8}?#º#ʪ@Ei»£­H“!Ô€B·D²¾ÒAÝ XŽh˸µ˜eo(›xŸ3†Ï^¿÷WíðBž7¬ÎšÓ ‚Qu^)嫯o+0j•)ãNèBÃñáD\ÊÌ{ {}“Í0•ÝÓêw¢Ð׃'wK'íê—à/:RÑÉ!ÎC/¢úöC?EO<ÿÁ°¼ý„¼h°ˆï?õ ýר:?.øo y\à¢U¦¬Ú±Á Núõú¡Üφ¨nv }ÃqÒŽ•âÂ<¯7c}¥v­÷ÙOon#Kó˜ðZÞo˜”dT'Ù»ôF îYÛÛ*†BG¡WÄ€¿ài{îQ‡§Íñxm¸úÝ<ÙÍk<ÒC6¸µqÄoϻݓ[ØäW Küj!?áCgùP;>@ß&ŸBg0: =ß§4–ÿÜ”¼Ù­/ vX6QÒ/lvG’Ü(t©€MÊZe'>aUàÅ„l»È‡:é·•_jÇïò*t–«j¡Wl†Ô|ÐBO»ÝëX¼ËÓ:óIýíAËÓÑ=Ø#?ˆBGõsî« ÿ=JØ Êzf'£µá «ó%BÎjÇ/s*t¦«j¡Wl†[•ÙcCÏCGÄ©ü‚ý“’.o§zú;«vUç!BNkÇòÓîy:Û€!•àÌyèuu˜Ûj¤ËŽeÕ“üÆc*e}^‹â¡mUBö=|¦²‰ÐËJ;¶•jómfM3ªÎg ¹©FÈ6þ„n$`#:—önw’Ð…žLm5âJD­¯tÚÖy׫’õMX_é`ÄšÕ}Vú—•]Ö—ö$=Ü~™]ÓŒªssÁh3ÓÖ˜ ÝPÀFøo7Vò²o`äÁyèÅ8zz‘5.h wð¯éÑþ‹LšÆFô{Ê~í˜ÅÂ2¬…n,`ˆ½ Ð: ÝV¡pvG~’ö9#ÆöR=Y`ÙD£ê|­àmí!d3gBg0…ŽT9uŒõ•ÎÇ›xÇ¢4b}¥ç}ÍVWùöÎí7®âÀê&pæ œÄ6hp`²,4¡’Èek¥­T¢E"f­žNšbL¡1†V`A*л ÇA¶£õªû!JL‘e.r"ïþ:»ë]ï&Ç&]ï™™=ó}öÙÑz~Ç3g÷;—ùÍÈKÖu¹í—a2ñ—EAÖ·!ê\+Ä[Ù­ôâ,²Wþ5 ô<á0}d%k‚Ò\Xœ îþ¬°º×Dù×]±:_Èßs¿«lÐË%t? J"  Ð#­­ºÀ"ôçôÆîÍòb}…·~OÊ+àõåÞëód¥ÿ³ç¥=_3Jè¾4”ÂPO2€B'À&öÖJË­züñ[寪VXÙméJ©7Dÿ’»µùg[«å¯79Íð¯Á ‚™‡ŽÐ¬âÆí¹åu+NZ'Ѝ5Eûrƒçw5™%t_ zŽèðp”¾µÈìõA§ÇLmðÄ”ú ½£ó:þ×Ç6¥'6Ùô“•×$ ºóÛõëB¢ê†Ê×håº@è¦Ð+)åÆôAqQ|n%ó:–O=còò©ZÒÖú8ô\Ó”ôW¤­‰‡^Œ-yè°:˜HâÄ€ú _¹S¦¶Ç˜{P}ÐsîG"BXCgï7¶=ZúÕÇü´“œQ„^>º»é#°‰ùÑÞ =ìºL6ÑG:@åÌ<ôT,–¢omdÿú˜ñëÍ={ü¢K}Ìs|ø´0â–´“éÏÐÛÚèZ‰÷S4é~mj{t¹GÕípg8téŒQè`'ä¡C: t¨HžÒ1S\·É3Å}®>è$3Å t€Mj¸ûÝv®ßÔö?£Á­-g㉽|ß)-ôØDjî@…>ÞÐ0N߀E̸:yè`ÁÌCotÝFúÖFŽë¸3“0·=ΧÔÇŒ&,ùG¡˜'ÎÓºés'(tçÔ)ºÖFÂGÕ27ïz>6©>h²Gýì>ñÓýº¹Ø0F#h&>[Òð1F¹ƒ‰‡^Œ5yè]î/9úusÐí¤*„¡#t@èÀ[¿TtîÄ~SÛãÛcgÕ}#¦~âåÄÀG¿n¾ÛÙO# t?³zªD¬ J{TJðé…§¶Ñ =ÒÚʱ61Ô“  ÐÉCËf:B„¡G‡‡£ô­…Df¨:8mlúmxbJ}ÐÞÑyå1Ç;¾áè×.“û4‚fÚb%¥Ü˜>(.ŠÏ­d^Çò©gL^>UKÚšú%ÞH[3€»ûií×4%ýik`"ä¡C:¨ƒ<ôŠ¡ƒ‰$N ¨ú•;ej{Œ¹Õ=çŽh8“ûœ£_7£î €ÐÊÆ†ÇÙÇ{Í]«·¥_}ÌO;5䌞æà×Íè1õ/'&8úuóÝÎ~¡ûA˜ÕSí$bMPÚ£Rú€O(<µPè‘ÖVŽ-°‰¡žd…N:XF0óÐ: ô=:<¥o-$2{D}ÐÁicÓoÃSêƒöŽÎ+9Þñ G¿v™Ü— 4Ó+)åÆôAqQ|n%ó:–O=còò©ZÒÖÔ/ñFÚš°|ª ×4%ýik`"ä¡C?!êø IDAT:¨ƒ<ôŠ¡ƒ‰$N ¨ú•;ej{Œ¹Õ=çŽh8“ûœ£_7£î €ÐÊÆ†ÇÙÇ{Í]«·¥_}ÌO;5䌞æà×Í&ÜÖ͈[ÒrL¦?Cok£km$ÞsL}Фûµ©íÑåU´ÃQ³ß¯ü¼²=TŸåÖºPÚÔ.tÏšýŸrÃÌ×ìÎ}!®](yîºzíÂuõ‚j_­ÍWöJ‘ÐË¢—®ª&çáÍùïÛŸñºÇ>C™q;(tòÐÀ¡_³Jj±öÎöíòWèP¦èär»¾ý¡!ª~@è7‰…7,¨¶ZVrïÆöm²¸æš‚ò›®|B¾TM¯¤‡ÇíØºõ^[´Ë‚·›Û…¨kn>”¯ÍcŸ!ˆ3½Ñué[9®ãÎŒÁ«@ŸO©MèõúÒ‰7¥7þ['ýg¾Qnì‘¿/µ ±¬Ðßݘ¾F¾´(î·äËÌ0ô·¥•_\,¿G¾ïǹªš¤¥ë¯Íœj<(w­)½uyÚšÇ>—Ÿ'x„®>w2€BwN¢km$@złС#t…¾-M-¯ˆ¥V_uœMB¼—+ª^Vèõ·}XàÞ»³ÉäÕÍ…s¿Èò?JŸ¯w–zAMwÖñW¡{ì3B„fÓØú¥ú s'ŒOãÛcgÕ}#¦~âåÄÀ„*¡KE~œ!úëÅëâ4,ñ }õÞV Úç ÝÙ‘ÑsÝÆ'W/–§ï§×6y ݳ¦4¯~òâÖm™Áî{<„î±Ï>ðÝÎ~¾‚º„Y=ÕN"Ö¥=”ļRè5Bü!ÿb­ï;N•ïæJn^zPÜê]baà[Пù]nù´.äÊ3<»”Я¨ÉùùúšÅKw/¡{ì³ekHD(ôHk+Çø"ôwò/êrB¿ÿ*„î4UKá>V,tÇy÷å…$öОœÐ·¾(|¸´Ð‹kz ”=#¨Þú—º%…~ù>C êIPèä¡€/B¿CˆOò/Öñdæçî\ÉúåÒÖž–ê­úÑeB—ìýééÛå5MÙòÇg•Õ˽°¦ßÈÍÍ7ò‹ôö:o¡{ì3’`æ¡#tðEè7 0»VZøBfÌÙá\Qý²yèï‰ü¨öËçloÙÝÙòwŠî©/[S»ë®](­â‡Ð=özÅ=:<¥o-$2{D}ÐÁicÓoÃÿcï~_Ûºî8ŽuÙ½_’´i›jkYà êTî…Ñ*uK7z×’¶ltOÂ76Élc5Æ[‹Ø¢¬†yØ­3ìÙ`+Ø&òd«Ñƒ`ì93&þ÷`K›çú&ɲe9nb4霣{Þ¯'QcG_õœ+}t¥û=gQ}ÑÁ\QyÍ|rSU ¿¹§ìÝÒ¹ñö_USÚùKàþ+Å)Åé‡{¢öâã Õ=º}­|5èO»nàUç0÷ôPm š»Õ Þ¾]è<æV„ÉóS¼i–ðj¹1ý¢¸yn¥¢ŽíSgMÞ>UKÛšú-Þ¶­½Z ͪéýØöR«åæóêeî§ï¿Rœó·ÒÏOý¢µgjW¿=ãº?«úåS÷l˜ö÷t²vO¹ÕÏÖäºßØè<æ`ûTÎiúW´­ÁDô¡×£½ùî¼\:w~®|ㇸîñJ ùÕÒVOß°–û¿J¿ðd-jË´¿QùÁ/K÷q¤èåLvŸ;Ì=uÝÇ*ârùÚ÷í³ö_—îìsµ*=ææ£½mè0ÑÔȘú¢ë²hêxÌK·ú¢7eZÃ;¹[- ôÀñšòzèGN–ǯ>ùD`ç|Øù‰òÂm¿}öDåró/ß/†<\ú?îFíçË»¦œ|ÿégËÛ»ütOWN·ÿù÷T^›&ðãï½yqûb÷Wœêggk›³Üû˜›/'¼è@ÓLjø:{xÐܽz;GÕ×ü¸GCÏèĵ–ú^•kßþþÔîV¤?¯þÚ…îñò~f/Ü/Ð+gÞÖ‚ûûíÜY`{óóÝ@¿ØÙõ÷ôÞîûøU×}¹ò³'*¯vo<æ¦+ò‰;Þ©s î8o½øpÀ=þ•wÿ°û{¯ÿæÑ€øÚ?Ê_Šç¾^ù¢û•=Áý«'N•ÒüäÓ?qêÝùú¾³éϺ'çµ/•ïáñ÷_s~W:«¯<¨ËWsÝgöÞÛ½þSÌ ú0Ѓ",@¹“ûºÑ…†èC€ÿÃw¿õƒ•âŽ\—s`èâÏ>ô¬çe™[]R¿·;fî»Ç•^õ5ã[ž|« £ü¡ëž©Þ|Ïu±õÉwmˆ·u›–†¶c2ý;ôD‚©µQ,= ¾èŒl˜:½Ò¯¾hRV•×ÕÑŸW{9Üývý{ºÖ,²,¼iî‰ù1Ða'úÐëч®ÆÕRŽŸxñôÙrïÙ7­}öч޶t˜è¼Ž•âR&¯wK}Ñ‚†•âæõúëw¯ƒ¿úkŸ}¬G M™Ñðéwâæ¨©ã‘ŸUŸ­Nç\LyÍlê®Þ‘þýÅ÷ø3_ü“ÅϾé¥^‚ô–¼¦ðeÀ*Ù­¸= å™[€EV%éÃ@§`ö¡wˆt0·6ÖñÉŒÁ»@/dÕ׌LYò?ŠzïðºvCRða ;ããL­‚cýê‹.jè»>¤¢WP_t&­~uŸXt™£_·¥Ð<ƒ YìvC—q•;LDz=úС}èm‹@N è Ð t %:ºÖÔÝ1v=;sê‹öyê^ž»ÁѯۧÑQ@o… »§Ú)lMQÆ£]æ€g¾µø0ÐÃ]][›L¦g|èô¡,ãÏ>t@ û Ð#™L„¹µPøöõE'–m¿ ÞXT_t0WT^3ŸÜäè×&ÏO1š%¼†ZnL¿(.Bž[©¨cûÔY“·OÕÒ¶¦~‹7ÚÖ Àö©&œÓ4ô¯h[ƒ‰èC¯G:Ô¡½mè0ÑÔȘú¢ë²hêxÌK·ú¢7eZÃ;¹[ýºåd‚A Ц™Ôðuöð ¹{õvŽª¯ùq†žÑ‰küºùÄ@oTŠ9Xõ¦*7èÃ@аTÀ&Cô¡ÐþüÙ‡žõ¼,sk£Kê·âvbÇÌ}÷¸Ò«¾f|KÓo5ÁÁ¯Ûµ!ÜÖmZÚŽÉôïÐ<½­K¨/:#¦ŽG¯ô«/š”Uå5Guôç¡Þ²t2š…{b~ t؉>ôzô¡CúÐÛ×±R\Êä•â4´g4¬7O ëÇJq:ÐD‘ Ÿ~'nŽš:ùYõÙêtÎÅ”×̦îrôë6½´À è-yMáË€U²[qz>Ê3·‹¬JÒ‡N:À2þìCïé`nm4¬ã“ƒw^Ȫ¯™²äõÞá+t톤àÃ@wÆÇ™ZÇúÕ]ÔÐw}HE¯ ¾èLZýê>±è2G¿nK¡yA³Øí†.ã*w˜ˆ>ôzô¡CúÐÛ@'ÐA è@Ktt­©/º5bìzwæÔíóÔ/¼<5vƒ£_·O££ Þ AvOµSØš¢ŒG»ÌÏ>(|kña ‡»º8¶6™LÏø0ÐéCXÆŸ}è:€@÷A G2™sk¡ðí+ê‹N,Û~¼±¨¾è`®¨¼f>¹Éѯ=LžŸb4Kx µÜ˜~Q\„<·RQÇö©³&oŸª¥mMýo´­€íSM8§iè_Ѷч^OKúQÙÒècýºõÓ‡Þ®t˜hTÒꋮˢ©ã1/Ýê‹vɺòš:Þɡހ¹Oèà ýP†ÍÝ«·s”3tp†ŽöôTŠ9"СK¿ZŠ¥_õ+æ}èA–Š#ÐA ƒ@·É}è ÐA ƒ@oþìCÏz^–¹%ÐÕˆ3÷ÝãJ¯úšk|‡n§~™f4›–†¶c2ý;ôD‚©µQ¯ˆú¢3²aîxô«/zNf•×쑎~Ý¢æ.È`pOÌ;MŠSnM Ç µ.cê‹Få¿ê?‰ô1h’+¼µ'&š §|â?`ÐM°ÄK4K\ä¨rÝc×jùÜ-õE£¢~]õI9 Í< OÀŠ@ïìdŽì ôƒ W¹[Š«ÜõËnÅ}èùP(ÏÜè ÐA [dU’> túÐ tè Ð-ãÏ>ô‘æ–@Ý"CRða ;ã4Dè ÐA [%v»¡ËǸÊ:tè>@ ÃDçÅct+Èòšóº~×åƒ@ Í™Ù`t뜋)¯™MÝeàu›^Z`ôV²{*À.Sz¸«+ÌÔ,2™žña Ó‡°Œ?ûÐ tîƒ@d2æ`‘„×çÃ@w"ä9À.]@ @ ýÁR)æ`“bnЇa©8€M†èC ýù³=ëyYæ`‘i™óa ;‰S °I¸§¡­¹Ê ntG£ý›Sõ›“ªZ\>òöZtä\ò%#Ç&žúÈóú7;„4Í“ßèö¼LßT‹Ë\ª|›÷’Hñ¿üWoIÝD\,±Z>B7«ÃÎæëX\Ë­°¤W;"ÐaŽbF$«ÿ\fLQ˜ä ¥¥ò2nàØL{Û-£bòâÀþ@W5N¬¿t x÷Z=Ÿ‰~¬l¢.v%}¥üGŸlmÿ÷îf;k{ü¥ç‰@–í—‘Í'>'^|ïKŒÈÊdEokë¯Kzc؉'EzŒ›ÄˆFáOø±FA2Û7æë>—ëJÊÇwÎÌgå–q'è:_¹±pwp¡å¡šØÜèªæ ô^b \}ó?öΧ'u,ŒÃËæÍµ_¡ aË®Ñm7M\ºrŸ%;cX±ÁÈ¢“K`Q‚‰BЀQÆ`†Aã ¼ºráw˜¶§§´ç^™¸ð{’‰eîp^nÓçüyßÃý¢ýÌ’éLø$ú𔫹/üoí©Ôˆ~à‘4?~L·‡:t°0t‰Ÿ (Raü¯Ûôs&áo‰ÍÐÃ)º^´[³ïZ³ø>ÄiwÓ#ôYõ \]rƒ }o:ÓP5©:Ø í¡¯ëÛíKRª§&o*b1ã\ލ‹dM–Z}USÒlÕ0FÅæ™¤~ã &Ž×®@ëb½Ñ•ýp{X•ÕÈÑ»õl ÷ÎU­r½ë æld`¦/Ä™qϸzƒX/ íÿ6ñHšËY‡¾A´¾]Štj Ý1M‰Ós¦+JýB(àø}Ò:ÂՉNjvk"t~jHR¿|¬´n ¯ÐgÖœc¢Ÿ›|•­t/µöQèû,åï`G6:sÈ;”gUÙ1ð1À5E†ªD©Å{’ÅéÀ*»Z©/Ô]ó }v}ÀÆñµŒDiŸë¦ê*5’!¡þ ™ºv ]£Hòö¸H’TÕkú­¾tþZ²qf«KÒKIeÉ\IŠ‘L©ÎÀ~@Ù¯=Öõ[׈Õ§,ͬ٥ÊÉVè5NLè×TÙ, ¥¿$¶'΃y±—Ü…µ¹/!”"e ¤ù½Ÿ*} Yî`ax$ŠYsDÇ1IGú$¥S®EÜó¦ ¨7Li¥/S%…ÒÉz²M” xT#‹{‚Wè3죌Nøé÷ôó™D¶æ=$åƒÐ)eŒ“võY´!ÙzŽÆ£ ¾ÿÓ¡3è¾éû˜þ&çg´_{é7L5¶Í5óÍB„d~€’ÙØa×lÔæid,t¡Ë¯ºAníȹëþ t°0Ü*$?Œš{iRBõ«eãgøž(Ø¥ðcE|Ünéás½E»5šµf¾!9ÐBôVž:¡Ϯ öŠ)‰rmŸ“ÿÞw¬mêI…nîøp)î8Š IÄJâSôfM’%C¥ºÀ]¥àökO ž·¯¿Í)ø…­LýÜØ+«ŠÛæiÄ!ô¾¹z3Ý.ëïð@‚Ðø*¥ }“´Ž/Ù›”Õì=ö@Â'dkÛvHR}ÁnH"ûH‰@r•Ʋ zÀ}àü`„Ÿä@òê7j'™.É…njtƒ»·ëX9±J.š9Ô1x3ö†tïy„¾7)Ð:_¿/™­XÀWóÄI®0̵õW}Ǹ‡Ð³”ò\øNXl´›x4Aè¾³†oO]vjÖdÆZçvVŸ¤{WóALIÆáϸBêA×@ý³©öÃ;„Qí@;T1³¶?z0}àú°èíø¬©“ˆÂÂLzÂúÉ¡o™ku^¡m$˜WM!µª«‡¤ùÚ ¡œuØÝß2i_zK´Æ0Ê­s'?º7GèÍ9ø•j~€O¬gµp<˜·Ç~P‘«½ÄÂx+OêßxÍŸ¤ªÝ_·À—³Ì“é’ÇP¶‡²B$jDyöd̲¼á²q¨–L¤u‚_´¾ýnÏÈʰ›ô¹2^¡ÏºX'ÑSŸÇòÇz£jQ¤Ü¹}ñûBæÙä ]š>±¦aë¿„î äºPÓ-Ê”k3S_5¬_ºó–3˜§³ûµ¦ÙŠÚ´š³.üdKuäP<ã‰ôÇ¡ƒ"zZåT§å’‰PzLÉb|xxøµNCÒ*í×…¼7É ETÚG³ æúìúÀŠtïÿù5—7Š&w‡{‚b¤Hü¾Ðë2OÑl=÷%1~qä¸Wèž@^¡ õAQ”ÞŽ Ö-ÞÚ<¯hjÿ)äænDhý¬ˆq£¶.Í—ÒAÖ/Bè:,§~=Ø+©váÂW‚]iòÈ}ÀŸ#ôl}˜#W²ìß1´w K_ßÊO>\õÁù¼üp=€¼Ÿ_B¡¯á¨8À<Éø˜¹ðBtB{o$^~=ØmE½r_€å¤€:tðŸf^Þö­-ãkpeHú>E°¯2Pý²Ì,gzS–›è[À<©É¾µÚ½.Êju?1E°²xá¹KÊ MÕ˾‡žL¢k¬¡Ý©¾&YîÀ¡: ô_‹¡¬ͧÄ ½%Š-ô-€â¥—Pè¨C°b,gúÑúÀ Q ë%ºpxˆ®°JDï§JC–;°@è„ý׬áÛS¬õð =‡Ðµ (Ö‰ÞagRqäÑh¦Ÿe%šÆqît …Ž:t¡VŒå¬C‡ÐAÔÒé:„€Ðg@¸Z £oÁT ¡æERÎ,¡Ð…0| tÀj1]òÊÖÀ ãÞC¿Ê4TMª¶¹Ð{)YêcÊ„Dù¦qñDô¬¿[žò²Ú/l±?nôUMI[Gå\?ŒY•¼õ£×—iœªÿ²ÎmÝ:àA/(¨'â×åïÜ'ÛØ¹½-Æ zvu8§Xôzú¤öõ_­…ºô1ݺ÷”½1M©÷"Ù·xûY4ßM¹o¯l¼$óFßÌ­ÞtO—ÖïÙ'Û¬jà›b‘¡Å@‚ÞY“*ÕóéÉ£[Ao_Ý&|vx>žlë}Øä/ƒ~ªÙèCg~'Œ¿*W_±¯êØüª(ú±¾qÀA߃^‹fÃ_u×>X&3™·1èÀ€‚~*o¦=Ø z­•<©”œO§òu-§é~+/}ÊšNÍû˗܇ÃöDvó¸Þ›û;OÞ´—dÿÚûA3SqÐë×_î¿{Ÿ@ÐAÐûA÷{Ý>Hƒ®¥¤à5Í_Ù¤­z¾­¹_ÉÖÉS:^ô”«“âÍÂYùSüÕ¨4z¹ù‡Š¾”âµì7˜ü+Fã×äããDA?W=¹Ú¾P-Íß·O è è½ g*ézóOjIЇãÉgeùË-ÞI?ͯ¹ø²z¸uruýPA'^¶ö6þrZ*š–Ÿ.1[”®^7Z×ïhº¹uÀ$蟤¿ã½8èûÒToŸ›÷î^AÐG9Á`ÎÐׄ?l[ûÑ%êVrc™¦ù[É+éóøÞ¯IÖg’Ë„OéF÷ OÌ÷äŸ ™í¯ÉeÂGM“Y¬êÚ í«Oo»uÀôêyUþþBþ]=ˆƒþ~M:Ì›ÎTrÝþž}°KëdÜ oyKn1 /Ò\ÕSå/éKô¹ƒä¦«‡&9Q×/“éjn;9ϾD[wÃm¢§ÄyQZÂI"IDATß“jsažO£Ú¡ntÓÖš”[¹zÈ_éý_o°wÚdb{}?¹SÜöZ´—hŽû?ì€]~Æg¶uèTÐÍæN®ì~4¹èwôì̬77œ¾FýHéõô _¥÷áÖãgË^®½Øûûó¬ë{…ôËVôV-~éøÆOð7ùé÷ëìÍoßÜÈy…òöfúæ,ïß­×ksÝ“Ì?í€Uì\‡>"0¶xÉÀ›ïß#Ò¦ ›Fƒ¡Aà’üÁ£¦1Ë è,@Ђ€ úÆx÷T€[šºÓÄ z¦PÈ0´‡,U¾ZtÖ¡cç:t‚ è=»Ì=«N)SÝdé9À-›<Ʋ5,@Ð 耠?¬\fŒ.¹XÿlaЇ$npÉ<ëÐxýì\‡Þ ‚c pȪ6, º)Z€K2“yƒ:ô'1:Ê\Ò:·0è[ž·ÅØòSuèÇØ¹}Dal™×w ƒn †à’üÁ£¦1Ë t: èâÝSnif- z¦PÈ0´‡,U¾ZtÖ¡cç:t‚ è=»¼œel)SÝdé9À-›<Ʋ5,@Ð 耠?¬\fŒ.¹XÿlaЇ$npÉ<ëÐxýì\‡Þ ‚c pȪ6, º)Z€K2“yƒ:ô'1:Ê\Ò:·0è[ž·ÅØòSuèÇØ¹}Dal™×w ƒn †à’üÁ£¦1Ë t: èâÝSnif- z¦PÈ0´‡,U¾ZtÖ¡cç:t‚pÌ®J}Hâ":À% U9Càµã%w:A€ t:A q¤Y ƒž—òŒ-À!§ª[ôm©ûwää[ô¦pL`aФÝàŽuí :“â.a–; @Ð : @Ð è/Z+ZŒ-À!«Ú°0è¦Xdh.ÉL>ê¦çÿâ;ÀëGÐ 耠‚:t@ÐA€ ‚: èô*øýÏÇËÕ ˜=aÌ€g5&-óVºà{ Ú]:°)è™ õƒ¾H~ø?¸œgÀ‚ØôS‹‚¾u ~Ћ5}ÿbÎM0àÀó}eb¢É÷´Í·©®êãö}eV—A/©‰>©²ÍˆÏtÿOûª,þé6/6è[åšü^Ћò>ÄŸtþþÜa¤‚ØìK Ã?ÞèÅý—4<>Ó ú´Ú 0ðLÆ}Ͷ¢ON¤³k×Ðߪj&»¾_Ú7fs§îU§Z|»€çw®êŸO±AßîŽÓú°Ù“5ßïî3ÎÀ“ C~œœ´ÍÍ O'ÓsfÆ‚øãß-àÙ…¿…c¾ÕË^¶ÖzA3ëé4þ C <µ¶¼ó~M¹æÍ ×4\ì,Uåûˣ͕ð×p“ïð̲{Z{Äf¯$èsÊi¢Ø,¶¥)ÆxjùººÙF2 çzÐUŠþ†žÔÛ»{Ö¦¢ŽÃãå~€tu+¸f)tÌ?AM:ºŠ“K¥J;4Dˆ•VTÈR¡Cñm´èÞï`óÖ!v1Ü4½åy¦Ë»äû»y9çfcøÃúÛ­l{µ`Áæú€^• ïOä­§n!:”î¢â¿÷ó¼ø7èëñ³é­ôF^y±`Á³3Ïi7+è{§cÙ ×R¯‰mM®/@©~%9<º"èíáØƒdüÿ•ß‘Á¢µ“—Õú›Éö8{³Aïds2´‘wfÊ¿›î%OŠ+‚Þšý@Ðáz|O}®¥£ úIîL†vòÌlCé]î=ôsA‡ëµ;çj’Šü†~œÝËOè?Í6”­ÙK?y!è°tŸ¦o·[ô?IwtÐJšn(Û ½æ 3A‡å—ok¾Q+ôÏõ V†_³Ö0ÝP²õä´8ë侠ò}I¾+ô‹£<îÍ÷ÓÿÚåi­Žcx‘õmA‡%ëÿ÷ƒÐ+ôâi’áÖ“®&P¶{ßÒ=ÅðCê]A‡åêŒw„¸ÅA/Ú×jkƒ×æÊöcºêõ|5› A‡e:JîÞÆ ‚‚: 耠€ ‚: è 耠‚:: 耠‚‚: 耠‚‚: 耠€ ‚: è èÀMôœï´Z¶æ‰xIEND®B`‚metafor/man/figures/selmodel-preston-prec.png0000644000176200001440000012641714465413203021074 0ustar liggesusers‰PNG  IHDRèèz}$ÖPLTEÿÿÿÌÌÌÒÒÒmmm\\\ßSkaÐO(âå"—æfff///­­­ÿÿÿDDD´´´ŠŠŠwwwþþý®®® “““›òóßUlýÿÿSèêøøøNNNüüüKKKþúúýõ÷&™ç———òòò‡‡‡™™™úþþzÁð/ãæuÖeÁíºæææá]t÷þþàXpààà[[[ùÞâõüôbêìbÑP666ûéìlºïâcy7¡énÔ]"""@@@iÓXüîñÑÑÑÉøù+ã娨Øíýýåp„æy‹ãi~jjj5äçúãçðøþùþø„Ûwëöý=åèòþþ‹Ý~”߇üþü÷ÑØ222HHH¥¥¥0žèöÊÑÃÃÄRRRëëëEæéeÑSÉÉÉñûï+›çV°ìöûþò¶À¢Óõ,,,ÉïÂôôõçüü___~ÙpM¬ë‚ÄñôÃÌ'''ŠÈòøØÝâûüìúêtíî󽯹ö÷ÙíûkëíàöÜÑùúÕÕÕ„ïñÁ÷øé†—‘Ìóýòô耒뒢pppÎèúF¨êbbbf·îä÷áÓòίç¥Ôëúð«·ÜõØ›á¸ê°èøåïïï?¥ê|îïŒðñµÜ÷¨Öõ«ôõ¹¹¹WWWÎñȦóô_´íêœì™§šÐôMçêÖúú²õöªªªñ°»yØj:::ÜÜÜ››› ã–ï§³³é«íž¬¯Ùö©æ ¾¾½s½ï½ëµ¥å›»ßø[éëØôÔÈåù¢¢¢ãòüÞðûçôüÜûûÀâø–ñò’ðñ òô¶¶·öðñ7àÏ|||ŒŒŒÏÏÏÑôÛ±±±ííí,áÜ;ݹÄãø¦ÛóNàÅžžžQáÔoåÁDÚ¡XÕs’ëÏqèÔ®ðÚN؈N‘Åe¶>“Ù]Ï]§lÃôãX߬záŸÙøìš–`‹s£ÀkНØó=Ç˃±YZ´~„‹·+»äPv»ØÙÒ[p¢™À&¨åeªây…šËÉÞ^ Û¥¾(Òäš?O­—¦‚ÇÉz›ÎDS‘S IDATxÚì_LSYÇïèÞü΃XkMÛ´ ”y€”aSÃFR hÌ&òG”„Å!„¬ ™4fc‚\}^4qWé$ ACt4™¬'fcpÅ ‘yZ_|ðŧI6{Ïímé-ª-Ê´ßO¢çž{½WÛOçwî9I…çui€D³}“‰¾eô @‚ߺÙDߊ^ IïD¢ :¢ÑqA@tˆD‡è@tˆ¼‚è@tD@t :D¢ã‚€è|¶÷e€ØIß ÑÁï‘];ñð!ß‹™@tˆÑD‡è@tˆ®#è¯?Î7^.…è¢'‘虤ýy™Òd| ÑDOÑ¿¥ÑORÆU©»‡ú²!:€èÉ!zë×!z5™Z•"»‹š!:€èI!ú #Ù¿Õ‹þ„FµHŸÑDO ÑoÓÉâ-zÑ3h·Z¶Eôè!:€è¿WÑÛÚ”WÖO_þTLÔ ÑDOŠ]Z!º‰ÚÔ2›¨¢ˆž¤¢;èiÄÆG‰Þýöm­ÛçŸð4LùýƒØUUV‘ƒw¢ƒM!ºyUÑ›uËn]k½¨áŒ½û¯d¨·ÞPá”å’*qläÎT Þbˆ>§èÆ»îÛÒ×|ÕïÞ2ö~l ¦Ò¢¹^2X"ËÎ åP™¨Ö+¹ƒCx¯!:Dÿ ¢»è±Z=CtëÜ,{©ÆöªÏ!¹}¬7WÙ35V3&:ñýbŸPß;6æoÀ›Ñ!ú§}}©–md—â]š{ûP”G­jµÂã«^;z—õÞ©!¿Hß[”¯²‘ãé-CÑ!úÆ‹ÞI=j¹“šâݺÀ~»¨”øµŸ‚û*:œ"®ûú#3úß OïQ»ñîCôØ)Ø[nw˜\£÷bjm¸=i4¥ïÌþ$—–aÜÌ¢+UÑe7¬7v½ˆ¾ÈØß”âAçç–÷æöª®»=Ñãv…ÒÇw«1¾Ò=Ôk úz؉L……fšŒ©u9ºò‰ö>Á¥eÒ&}:SýVÌ¢ƒ­’í2¹²ãýØkÆò¾3»pþ&/ÒñvÔˆ°î¯Šþƒ^õ+`"ÚsÊr!D_]2oW>¨† Ó±´ÞAù[$醑¾Úø+[±ZlÓˆžNu¢(Î'S£Œ[¤¸"úÆÞŸ[blAšÙy¬lH ëN_Å]¬†‘¡^±á“-nŒÓAôÕ'{AÌKÍæê@z:¹Ñ×µrµØ¦]}ð„}´ZŠOti–½»fglI­/z ‹Û#•²lYKu ‹,‰ª„vˆ¾‚çvÊï¼×[ã_è²Zµ}ƒ/+Êj±Ï.úG²®èóì¿tdþÐkµVÄùþÃá‡s:j•¨~Ç»Þyr:ÔN¾[¶ÔÔÃ#ˆÁ…|c¹ÑÜt#–¶M´ºà»©óB–ÝX>mP»Ý™7\¦ò[J' M‰z{´W¯®s)•1œ)Êj±¤}ýÆÏJÒŸµ‡§8¿¨oãQT/™ˆñvšO íêì¯6AôPŽ—–_*N¤S¸¶«:Bñ>ŸJK·v¹²nDý¤Ñœ1é ?„èi&¥çmé¼)ÝE´Cý§™ÈØXH´mÝE[-–´¢/2ÆXCUëÝý#›äL”ÈrmŒÓasÔ¡úª‹{Ä¡ ºÊÞ@.èÒVW«d’Žáà—Ñc£ºçI4ÑÉ¥Dð6;Ý¢;\ãÛ¿”JT§Ø{Ï.nA)•a›”Ýx2ËZ'ŠÈ‰“\ô׌½çÄü›e1­ºþ»äõ;ey âÎë­Ô&Ј.› Ÿ­]ThXOô"{ß [épxP]]Û1M.uÄ\‹®Ó&“LSŸ²ÏP+“Ú”2ˆ®)=§$éêµ¥CóG‚{¯ð¢£ºfJª>’û‰s¦Ôˆ^V3Ô‹ñ¹}wð9HDO×kÜJdRnÜC]Q^)0o3ÑEt—Ö×WËnÝ’º´JiilÊT]še/ùñ}ŠñKìÐ|ðÿf?çÇgôíZ”TÝ]öÁСDöˆ•Ú¢_ÖÆÑÅb¬]ë5V¾ U¯]3¬‹ž)¢gh?ÐU®bV2ñ ð!¤Œèól>?±ýUð&›²}æ8ÿ>2Fû-²Åÿ¡sÜs<Î!±QÕ€éñ©*ú¨6a[ˆ¾<“³»UGpŒÌàù·Ø0kK4u¢k‰{9M+¢ŸTƒ°nys7ÑŠßu°Ê‰RLô6{Šßr{9û]h÷陕MËÜÔÔÈα –’¢×ÑÁÀÆUÒV]®•:÷E7ÑWŠ>lô8(úÕð¥ÚZÑ‘£«©9cgxûéèÏ\<¬ ÏSÙ9ñqƒéÊÊ#0,%E¿M¦ÀĸñðÞøjþõPZ Ë&ÇÕ•¢†ÚºÍJàÖD—ìÁn½êlÉ¥åèÍ3!z8o”{ÿ)ê±Óœ¸«ÛÓ¯õÁªº¯ÇxrM{Љ^l¦NQÚÒc™Õú˜Œê±aMj½èæÒ@Ù(…Dï¡ÆlQ>·Ôê´¿¦À)‘£‡˜c‹7ùþ`ͺôçðˆÞÎùa}Îí“åÊx¦µ÷˲ewØSJti9övK¥{ˆbX§j˜$1Û­ÙLbvÛíÌ:Ñ©Q1ý™IܘŠ~ÁD—•à »è Ü2Ñõ>º±¢ë˜e wy{PçWìE¸é?µF´ï-‘-q̅ɹS);1.—Z¢ÛN9ŒÊŸÝ1uúÈ‘žO´WT\ùn!Ñ]&G£‹Ôp]7“Iì• ºŽ}‹lNÚϯH¡Î~l3Ó~ízD÷½6Žio‚ƒÇ̦ˆèqÑ©ýs\CRDt%†¿¹ÎóB©ø«…c+Eç긧\¯¤õcN ÃCôõ(0>ƒè ýÆ–Nç_£‰uæ ÿ‹nOYm\‰z€Ü~ñ 9þ‰*˜ÑW¡iÒÑ"º“îó›k7:X_÷*‰úPBÆÔdÙ2õ ztÚÂ=‡èñˆ>Ïæ¥GT¢oˆèVë[”¬øa¢þ±´ÖÏ×ÀÔ×ÊÎÞ„]ln‡Ošƒè}ƒ"º:ì.Õß@[stì"¿¯¥êUnÙ’è(ÜâlÁàD‡è‰] »K—8?뫞ã¼ýR`Ó[#[&{Íâ¡4>|¸ :DO°è¯Ø¬ò÷µÈ=KK/~\¥·÷@hr|ΠüöÎ66ŠãŒãaüìÚ/—Ӟ}ÆöA ; v’ÚØF6hlób15/1` E„lS^[P"\‘Ó®i]ˆQix³P‹™H¸Å ý*”~é—ªêÇîìîÝí½í®¹ÛÍžçë»™]3'ÿnfž™ùÿio‚»ô6×5üãBÐôƒþ ǽͺéCaïrwþk’~0ðcf¥‰æRÚ‰cÛ…#xAOè›%±¸Ý|¸LÜ˸{´n¼ÕÎvÙØDÒ/šðßAiÕ6ü#{@½Í%^ÿõlÌqú–#è&ƒncÚâõÚ9YŠO8•Š\”èäW°m6l“œ ¤gµ¹h2ù€¾‘)<ÝFÐÍîÑåliç;ÃE&Î.мïÒ ž?¨nƬºú"®«¿ §Ajs†A7ôô¿IÙ¸2µÃ‰š­ó¤%u³H—ãLZ2?× û`Ur\ÏK>Ä °´×f·{fëÝ?5‘ÞkR2 (­Dñ©çô{º ?ḧ„Y)Iìî‡î¼«CzSgÉÇž.J»MjDm%u¡rìÈ}FªÏYz@–o¾ßàs ­f( I"̇™%òŒÔgÎÙqt ³B–ÌýþÈÈ+lñ iˉͱÉéK= ô©eR6®Ÿç¿Š,ü-wgñ"mÐÅ©ú:‘t×z³š1k²9¢AOóÏ °‰.? à_ƒoµ ú„'Œm˜,ÖJõ]¬ÕʼT:e÷ã…$èì€Ãnð9–·€ –õ èÃ]ÞKÈ:Ùn14ÎNã|¦}{ÿe~ÅÔÌ6ê2k5L^OÿEñq<Ýf&èsgÅÕ±@‡Rq~ßÉtè.Öj]%©¸N!d­&dÛr^ú#³£™¤¬ <ô07ˆµúð@—Óîdƒd·û¦ .Ò{ÀÍâ\Za›ªöXAi>áÍ}¥‹Æëc.ù$µ0³Å—¼²¬ëKìEèJ­B&I„LwFÀÙ!_ßÕžÅ1ÿ}x Ë›`É›Ñ-[füeÍÿþ6ßÌ1vǵ|Žáͽ6nÐc éŠò]))—!‹C} Ÿ†ƒ¬•!(‰ø »øƒßÙ!_›ó帋 ty,!*Ë–gˆ[<ÿU›Ùœ¬¹ª‘ÿL÷1MóDÒ«Ì—t=SpucÍݬð/¯I ÛîúÀ›Ö ú¤è÷À«Ü[? 85(5ôgîÑ•M°¤¦‘?½ÂàÀ#}ÒÉÕÿ~G+LO˜1ë‡Yë}#x[®Í¯ {ô"©GGÐzº’#G‚–-¡1‘x´ÇÀ“j èþÌ©æ6*³»Ø…{åF(èâ¤{²ô"U tõ½AO\.o‚%DmÙ;—è.²É±ÍEÿßÞm2ê˜|© ÏP2è¹>Fo,ÐÉ$#½˜öf=q=º¤˦ٱ,[ÞŸ8dìWvÓïx>û’ë­ÂuõºÇ m„Ž6Ž úZ/s?&ç–YGÐÖ£?ñ[+êZ¶èÇúmIĉW“æêÅÕ훣ßÈ©/òÂ|¶štòÐ ö"@ª AO èÊ&XB®ð|œ¿ÓÖF þ7Õ‚Æu\+ èÇ:Ò@'ãæ»¾I}ÍN(×Üã«I§Ôô„îßnÙO-ž­ÿ¬¬ šÏzÚcÛo˜Ü¼×wà’ú}ÄÇsº?íjÙ>•_Â=^¶Hÿas‹iEKágo·¢gß…çÕtÝX(›`I˜eKXü™xô‘§í( ûmäj'Ï[‘”«¤´ ³r:‚n ¾á8Y.Ô²%,¬‰î¾Û\LE®©ýô 9K$çê:‚n (›`#,[Bcç¯Ï{^¯ÊG-ÝôñûÊnT AÐtý`J°r6nX–-l£þ“f§Û›¬hì¬mˆ;‚Ž kG Ų%<¾00|Ϫ ÅÊÑ“-<ßYcAc‹iŽàt]³dãÈv¾S»î¹Çs¦ë?qn¾_Ò±i{vöM {ÜE)n AÐt­â”…³HË–ÐXZÆ=žc`ß{­+à•Ø¿Û’ÖVwUböAGеâ)Ç=Q~<]ö9ïqe>40HèV%äXlØ0Õ’FÛp ‚Ž ÇˆtåH:a–-QdŸU1s"÷õÛF€ë 97Þ/NÕoYÐæÌŠªmˆ:‚Ž Gÿ&XɲåªfÕ¥ç–zdV­ê¾ÜžÍ7¦[z>eÛu0’ô0ÅöÂT¦Ø~J.ë{Å'óCKF;!½sœ£Ùý{'¹íE×mzü ÒîdK4Ùçgš4ç‡ wó²‡ÚÈÜ.W>.´%èjÅöSvÒJ&ÈEàKsBƒºº$„ "ùvvLÕ vçØ/Œ±!èqƒ>ÄÝñŒ¿áK ̦?_ü3Ý:Û¢955™Þ­ÏÂä{r®RlÙ](òÞç†å„¼á…—mdõ+À@)ñA=±…ù6Y^¤~­›éÂ#èq‚þ„ãŽgÓº“éôþ™òª>éi„êÓîÆCVLÕ‰m=žuIЃŠí ±×ëÐÊNš2'’QÊ@)!{p~2¸ åûïÉ¥z¼ §ÏäÊ2ëøËzõ7sÜßS–éO˜+ûfüq,›×Ië'&j)mCÉ©ä]¥ëžç¥Í^¸à±ËºRâ@}~h‰x>»üŽC1_Êä/ =ž]•Ó}Æ÷øO&ÌÅ´2lfµûtü26"k?¥•ÈtR€TlÏØT$…Æ‚WþÛ¸-‚RÂFd= Øµ8@ájÜGÐã]•«ÉŽ%û¬¼Ç}b¨cuEZ§«±¤õ++»‘é¤=¨3‚±|Øå«DÐCJØ›Aμ‹÷)W+‚ëzÜ 7ÁjÈ>«Ißiì¹×htqæþ­W‘¸dý­w¦Çï,Òý@y  ¼ž@R ¡\¾ÿ€üV+ÜFÐã=p$]ŒK±dŸ#bö/ßÒ©a‹œ¦KÑÎóGúÍÿlµ½¸Øfôé)qǯtA'n¹»&¤¯Ü#Nºå9úx6GW—Hi÷ÔT(ò€ivB!‚7è;GÒ%ÙgƒÚ0¦üDoqsn~Ô ,7Öñ‰Z¯×Œ^J«p¹ÍèGß}5ÎøÝú ·@Ô‹ßa5iûjÏ&zH É߉>iðîg¡üœ:‚ Ç zðHºóŒåˬœ“òݹ²‹6ö?yä ŸAfoA”Å|ýû™£“½ÎgånH%d”×;ÙFr_“ÖÑCJF;ᄜç^iy­N$ý¾ %éôxAWeãÈ>ûM#£€2n0eŽÞà­¦Çö;N¯1ûS¨îî@¶“trÞ B]©ˆ6³O¾ à« Hœ«J¹@¯Oë“®=à@Ð-=½Œ )jÊ>GÄžÅÓujtÑü˜Cç&+„¦ˆm}~ŽÞ“ ôR–­y¸W#è–®Þ«#û;?JÑ“‘ëˆÜ '·š½ªÞœ'è3rÀÛºIûm‚ [ú×܃à‹aÈ>Ÿ-[³,eÎQíJµ.E®¾±Ý] ²Õ“gŽž›WçZ–Ý¡ûwGµ‡Q_ö9СOã&.û‘Þ™ÕkZklb\)ÑQ¥LLì ®k™:~Ù½À=ú>¿KºÛùN£ì¾2îœn%¶Æ¦IXSû-P쨠±WtŒçtÛLN•c²Ï†W½Îý|~¥ê‚€þ³VüŸ½³ŠâÈÃx_ÎÙo·ZF'ëž»¸Èq‹/õD)_ºßÅM@A|Eˆ1FðNLÔòý-žÄr1)ßШ9ñŒFŒo)”ÒœU^]]òÛ½ü·½3ȼìËìÌ4Èn??¸Ð³,ÔŸéîït?Oa!Ûk’Ú0î+:§7{tu5.ªí³^·"ÏÓ/žèQ*UeÌœ¸s$=±AW.‚nû¬Ó'Ž©ÚÄÝždW5²¿ Šró.ø9è\‰ ú¿p›bÝzTÛgµ’Îm혺%Ò[r2 L«êV½Õ ï2ë9è\‰ºxc%¨•1m#ÝŽçþ{t˜Éª„ Ý?Kª$SJ8è\‰Ø£ÏPUãÐ{¤,†2øŒb\ü¿¢ö£GÌU#¿f;U÷ï™ÃAçJDÐU[Ò*J‹iúÙ¹x{Tº& ;Œ}Úó.Jpâ 3×Ùä1ŒäMmJeyC·sÐm]]CM$7–Ÿ>ûyô¹õ†ð»[4Sþº4²Ÿý/Ô‹ôW tq„ë8)è?wƵP}kÀöY¯#‹pôŒáÁ{ë‡]°©m¼ ìösлôöçÕ ^€ã¡Ú9è¶þ þIù(¼Ð°uœR£yHßexð.ë0Ó©º¸'Ýß_)Ðu’Açstv ¿¯0ˆ¤Ê5`û¬ÖŒM›·ä9þ¬r£ƒwI'Iã ¦OÛÊg~ÏAç 'èšj:aÌ:N¡s¸`û–">d3>x§ºF ï®áz•Am E–ýqÉÒ\|úºZ—³yµ—f°Qµ¿tžš“ø±%t[AÿþòÛª2r2¶;Š’ìãà½5·+@ßàç 3ý…œ¥é Å**ã’ƒ@¿í„äÒZ é©—+†TdÉ tI?Ö—ƒn'è?ã¿«ŠÐ-­ãc÷eg£¼eƒ¡e3ŠRA\©Âär:CÐWø`€‰‹]ð†&.9ôoao 3_á„/‡îÁö,'=²&èõÎA· ô¤_ðOªBÚýØ­ãHúŸ®®´ið.ŸIÓ©zIf”íòtk ‘'êC!Ù«ŽK=LJF~RñT ú9¥¥†rÐmìÑïaü{ù1YÇ)õM„øtfì[Â[©lex©ü;h¡\׃îu4Íö:a‰:.9ôÈ^’"¿_ úZ9K9+Kä Ûz’¦“uœJŸNu\œî`½ Ä:Pþ!—˜½çp½°n¤E…qý£ _¨Arß|Y—,½Ä ସ¼T zwE¢Ç;èÚj\,Öq m-þ º5uÒÊHSâ˜MÖoïd?YëÇ',èï˪ z;øäïÁjU\²\t{í øÔ¨@¯nÊUŒû][Kj4Só>‡ñ#t,‚ EN¦`Òæ¥è6Ë©z¹àiô¢‘¹Õr×@ž —UqÉ/—ºz¯?îÐKº¼GgÓ£ÒTãb±ŽSÜ6á‚{ßQ&5=ª*Éz†¹.ÔQ³£_WÇ%¾$%9¼AoÊ¡{¾fë8…Ž-¿f¢>Ïl˜ñ¾Ê²V–×,¼ »ç9úc/Bç]ðD—,WݧH?^|šæ†Å5)Rû%ý±”ŽÐEº] £6M5.ékbÁÙéØrG8Ò¯žW7JÁ?ƒn/èè…œÙé½i D—, îµ}\~)p´~”çî}Ý\8ÈWÆÙ º¶G­ãž›üõ÷2С厫azΙÑBš"ª¥ò6à 7Ûs-•ƒn+訽Wº;}ˆ¾¤ˆK–€ÎêïvÕ>_ÛÖìrÞé(Òm[—îKþ¢qÐm]| ­Æ¡JÒbî·ŸÃ3Э#aÖ͈=Bµé¿,i!¹ìêïgKw!ºÑ[Àžp¹â²Gߪ­ÆQë8s[·c¼)Òñ¯L¬„}©Ã•„1»pbƒ'3•ƒÎJÆâ’9è,AÏ(ÀÿU·¥‘æ~ýŒ#mpÙ5ÙJ8RÒM¦49ñ¼ ¶»A7—ÌAg º®G­ãšüýƒ>“ld. 9~ßûJXn²œªÇk¨Kwƒn,.™ƒÎtÝÚ8j—Vhí<.†Ùá²ÛäÃôNÝ%äà]fׯ:NkrÝ>G7—ÌAgÚ£?Ämšj\ÕªXí'´º55´»TÎ8Á¢SU!o1»~Waæ.z¢+.A§éªq(—4™?‡§ßž÷Nȃ Ö¦ß\?’Ùõ<±ydpÐ9è=¥G‹µÕ8t“LŸÃ ¼,|¦²Å‡éì5¾:•ƒÎAGÐCTã2Ê,l?; ŸìTâlÉ:ü¨¬é0ÿÉAç —¾‡FšµŸ Ú^€%w©ù7Bø½ï2í˜?'$™/…ÿÌ‘ƒÎA/ÐҸM»“ü6!JÛÓ6K¯Gyú-ê~Ó;ÓÕº¿ßJ!!²Êã-Î…ƒÎAp©¯Æ™³ŸÐêXž#Oÿ”­Ú&WƤûÌʉ×<öÜ8èôWôÕ8sö:?ÉsÜÒS4K˜ißÀ¸h'[ŠòY%tz|¢gÒ~B¡{O ü»òVˆCã­lnÑj'!-Eü¿æ+úo`Ͷ!ÉÎì;Òý¼3±%^І0Œ¾÷¹¼t=zŠ6¬†þ§ò]Ù—8èl@§kãt¾0û­ØO º gÔÖpÇ,mnÑèîzbñL#¨¤„ƒn ô §»_³zQÒ‰-k¤ý«¥æóÔLæ”\}òAïípz9èŒzô‡¸m‹¶Í’ý¢.¸xôå­Å®ÉÂÛþ䤓M¬V¿ïòq²"¶«A‡üÉ+’á²:±¥Ò‡Ÿù سÎrœ„®'Ãb º/ÿüëCèÓ0¾¡m³`?!Ý‹çJëfÞÍ›zHs¬Þþ””$ãwq‡cä3]=èqò5‰-éÔ$²/4ú@K:ŒAs`’ÞZKA—=$9èl@U¢CÃÇ IDAT3o?Ñ¡òú8ñ¢c¹†t{ëqAÕ±Øë"6xvsÐM€Þ|õº`›*±%Љ¯¦þOé$ýmȦÉL’ék/0š_Mo tv ‹Åúj:iÖ~B§• 5M¶ÖãdÐIƒ!¼ŸÝÍ€.s±žª[Ð@êUëòÖBêkÐp€µÙA¹áõèý8è,A§kãtiJ…¦í'ô¤ÿUW|·³'éD£mçêjÐK_dÃUb îv¦Œ ŒÖ{Ã4%0¾Z½‚ƒÎô¸íS]ãAÓöÚ=…ƒÎô±!ªqÖí'½ìD\ ×ä¾­º—ˆ³ØìWÝOÈÈ »'ê»ÏïâôÓØ²†Ý%½–j[Ðth®u¦ÐÙû" KhÖAi =ú\K9èÌAG¡ªq¨…TZ>¡¿“±»êP¾o´i¿ªFû¤ß·ûCÅêz ==È¢-zÐ ò©‹²¬JlA(ßtoÿ5€‹é·¹ƒx„–$ÓþƒÎtº6n‚®õ>!­öÚüwŽ-ʆ=&’”ü-'ëªW÷ÎÑó]¾Ò|âÓT‰-h/¥¨/ÈkçÝà¢oâå wA>·Ò#ó±sÇ÷»ß,TÝLü™,sL[ퟪ¿âç }Hû"gò¢SÒ·ªÄ–S¿ ¼<xSj˜Þ{˜ÛUú„®{å 3}+Æ!‚”>´b?¡¼cL 9k¾À0Œ-©Ìþ4»…É9èÆ@ïÙ ø=äÚ8´ì8«xb¨uó©³vëΚYUhïG–d ãr8èô ºXŒÿ¢y?©³ã¬6cüYÇ×þ[çF¹ròÂvé'íž«çÌœìç sÐ{0ètm\ˆ´ã·°uè!ÆòC¶ù“ ;áí°œç‘uû?²§:ÉqÐ9è’Nã¶/õ­w ±eýxÒ£— äŽNryÙ>Ï#\`{Aª*í7‹Mý?{çÅ•ÅñŽÙžs[,"q´ÁQ†˜ø‚0jù@QWŒ¢àkEEÝD² jÔ˜—¨1*J4&–Ï,«‰®‰F >’X&”ÊVm•ùàg¿ï·ý´Ó¯énè2soÏ÷Ti?nÝsk~}ï¹÷Üó§ SÐ{+èCè_&§k8ìb ã×ÞЮbyïd÷R±ç¥è²M4•]6ÓØ8IAw˜£Of“’=体ݮáVáíÃfÙù)t z¯Yƒž™8 KR9lZÅ›~ÚfÒ<²‰ÉVIÒMÌÙ#EÙ¦ :½W‚ÎoG&j Ìn®gÛ­“jZ÷r3~kKj‡¤“«}5Š‚NAï-ú)ôt¼Éékøf£E©&µ}È1ãÖUÃwænÿýåRÐ)è*†]19c ›j{rǪ‹ ÌpÌR¤ÈN±©Vp†Ãæ§Zýá| :="{ÒèüMù@“Oð¬.'úhóÑ8,KØB/“ ¡Ýcã&+©.¦f‘žb“íæ¼Rm_³™%t z$œ×+Î ÎvݹvOðœ¼Å¤@çÏ£g‹Ìû¼÷|G~RH•ø›±iÇõ‡òóØÄ" :=|[ ñÍLU5Ô%k\TÂÊ'Œ»\B 3'Pǧ&§1/a3±”luÎp5¸Fåê(èôl®˜lƒa’+Ak¾_á‰Ìû¯¤Zô‹èéwfµx}Û=Ãwj¤¤‘ä§ØtxŽÃ÷âê=³évƒž–>Åãu圾޳ßÞåV§+îõdâeæ·ÿÁ'8gGô_à´´ý‹.ð±¬VÅT«i÷ð·è÷‘¹“Žk ›b-hìœÐÁ Ç!ƾ)6ùëlÀìGAïdî.¿_Pò»wwõðVúF’^I`æ Tzšì=†JÛrpj¯ðŠ­<³‚X‹Î$EÏM 0-aSlÙy´ðMõàˆC"½ˆµ1%é}¬±~[ó®òôÎ]_^ ¶Ïü‡?ôäêð DØÞ üX&>q@$¡~ 7·tŸ”5s^—…N®€‘Í _Î R 3Ãѳufçq-aSlÓš5!Ð 8þ*n° ·tgŸ|üž/µƒeR(èF»ž´_)åsEÏÚ¼>q‚rÓ ¨´tÈ“hÉúœ×3¥Q÷Ênæ×"oAÍ Ú0-a 5©:Âø/¤¹|ìÂ-ÝY-ÇmhÃñ‡ø¯í™ìM ?ñ€¯âzUÏ.þUé6g¼ñÙ§2ó‰[E(©Ë n»A÷B{§ •%¢šE|{ç«‹ãõç ÿ¾;ÑÓC¦6xµgÉ$Š´¶{s¸<’’}S)èìCŸsŠSP“ƽÜV‚5à¥uM>]§©l¨äJÃô‰ÉCs¥Évƒ.˜€^V#ÛÝFp–ëºo³—°aÏ«ú–þàÀ¤Ù™¬Ý ûkÛ˜~c6ƒÎô¾4ô|¸› V¥¹ªÀ«•9#>7]§´’O×kª3C\²üú ÜÈÄ'uáíïº;MºîJžû1%>!Й…蹩§ŒQ…MµŸÑníà ãïŽR:¶‚x†æø¢z zÈÒe¤Ò*•6T²Á`0uúˆxè”ÎübºNi]•O7hªÝLr…ì¿ìFæ>±2NàRºðv‚žÕÏíe$«Ë¦‰ê²„@ç¿GÏŽ™–àPaë :úQkÐ×:Æ#¾0ÝܦqDZ¼Äv°y)èꀒË/·CÀÏwz€§îs±·ªk”u kJëª|ºAS=A‘j…?vº©O,YsĹm}¤òÈåà 1èUâ}pX‹þz4Þ´‡ ›Ñ’¶£\MåãÖ,ÇÑ6FÍèìd*‡¥»21“ÍÚJAWñ‚¸½»‹Ë@ ÷¬6ôžÕ¿¤)­‡äÓ šê•ÊA Ðí¼`zs+x í§= W@µ´}]yqÉÝyÙƒq{¡œè{̰1ÌÛ«¸˜¿äèÝ»uƒïŽN²5jFgw§MÇ‘˜‚Ïϳ{â vAo …Ÿ8aHw_2Es2º‚®)­«òéFMuñ O,u@V€ÇH¾= §ØeçõÓ}#”™ÿˆc¤@Ëj4Žƒq ›•Ù5CÀRŠx ºl§•¦JdKû W•¬Jë­^–w„®˜^i]r1hªWtYýaq#SŸX|ÁøÀßéeaÓ¢–0³Œq7AN²èˆ ûêå^H>ð '¤3Ä@g–¢ç‹L nsù¬ {ÿ;/z¨Œ™~n4ÓwÍ^ÐÀL¥O [/sëTÐ]ð§® kJë*èMuº¶èV72ñ‰i ¯®ó»Â&Ð3|àZá§ä–ÇÁqsÙ Îà9¨æ ‚¾ uÜ2w©§sø¢ËNéÕ88^D¯ó»ãŽ/‰üÏÌ>[DAg.ƒKŒ»¤ï[ñW- ¥½lð6w]SZI³4Õs½xæàîndæ3<Ðú„‰èÒ"Ïiùµ¥€Î´Oð žøKÝ|22Ї¡GGÍK¶pÇ È!´ óéü ÇäQ &-¨Må0øêï°‰‡ù~z† 먺ãzÕúœÒÌX£µtÒº ºAS}2ð·R¾åïõ‰Ó|0³k__N%%Ú„–›—¼Ïqûñ?íœ\½([á‡ãNôª® Gœoý|–ÝÑïAgÀ›^ÅFô`*ß b´[±b0ØåÁ¥ÐuJë*èMõºDùõänWXøÄ¯‚g®XÃ÷Ðß̵XÀ&*9ÔxÜ‹(W"÷¿YÑÖ6»öQADŸu6³ˆ‚î^ àuÿ íQ ¼q>‡Ÿräx·è:¥õª²^S$€'èÔ ƒÂñ‰Ó\Z¿¬ÿ€.&wϼä%‡ íÙ£?²5׌¹­çVcúžÙëÎÇ{ÿ„WzvuUE¥KUSï ºNi]“O×iªøj¿×sº½'7êâ—Bÿýêx×¼äF%‡—º¸ù……ѬÀ“«ì˜`èó G`ñFУñ }ô/ÑÓE•¬-9Ý;nÜѬÁ‚-µ‘;n;ÃSÐò4çc :qÐ/ ´ØÊyŧäÐù¦»´ÜR›ÙÄŽY·¢_‘mm‘t\c.Eï}e«›‚Nt1”yÈ V%£µ ±¡|ïü|vþ8ÇŸ£^ëSÇD0­ÎßIŒ­€ØÞz¹!ò“‚Ntæ{ôìS‹¢oI…ÁnZƒ–†’Kme7_9õz]ÃqÓ#}ܼo6=r£ ½uX„̈JmdúþÒ…ZÜÌ^v^,¸·I§ÿ=2_§ ÷Zëû]÷èér«22a°¢-ÓEÂæ'Ê'…QG=ò19>Ÿ§ SÐc±E߆ÐoVeµÜq;¾Â>6{ÃÜZ»|Q ÔgAÍ™"¿bê)èô]L'e2Ã|B$ Vs‹•íÔ,ö°˜^ʱxRôëó.ÇEX’ÈæÍ¦ SÐcô]èÙ»VedÂ`»˜Û¢ìÝa3ƒíàøÉŽïb Bo×pÓÃÿtI–-âït úïµÑ#«æ\dÑ/·Ÿ&ïÕg²Wƒ›ƒWÖÅB&=ˆD*OA§ Ç è{¬CfȆÁŠYä6©®­œ6†Æ­ßÞòYRoþåRÐ)èF[–‹~³#;zû.¥¿0J—vQlÔëMŽ« {€bö;õt zl..`³Œ@%k´lb¾¼whò7±Ñ¢OãÂW>Ëæå÷+ЭÃ\ÒaBðÿä Ÿà/¦ GôÖ!3Ã`–<Ý+ïÝp8®ÄFÍîÿöZ¸-Êb3§RÐ5Ð+ÄU¡)èQýKë‚a°¡þûN)v¦„eå$ébÖ™c±TÁûÃéÒLÌNœHA×@ƒUîd zTA¿€r-Cf˜ ƒUl.’ÎÏW“¼óGÅR,é5nÕÆ0fR¢-Ã[ û¡”‰ië ‹ Ø,ÛP‚a°²©YäŠX6&Ó©î_Ï‘—–í ·SУ º¸€Í2d†P6X]D辸m0¬m)œ+¼dLj¸¯º¢(Ê+ÛzÆ@¿Ó(§o~¼Ú/¸ê3ЧH‰›šDIäŒ>Á×(çpP-J!K〉>òPHTû]qÅ ?´Rðl¦ c½u\±,|ŸllÐvž’ÝÚD}LÙâY_ÄL‡ý¢k`³·öÐãüà÷TŠ‹Ë›üÁcð—É '¬þÏÞ¹Eqeqüjì>÷â–ÉÔà0a@@G|¨€%€¢&¾@P£¢øBY듸îº(htW×ͪDhÔkÅg­–Á²4Uné‡ýý¶•O~ÏÖöí˜î"}§{rÏ—iæœzêþæÜçÿ@¿IRT”¬RT=Õ[~nWªOAÞúÈÑ°× n;À¼Z°I¾6z‚¾?]«î]ǪçzJ(ñ¦ôbVš¡>çû9#ïv÷žŒ BØDnƒ>.#cÈ[]”ªyÒ(ü‰Ö`é6*íØn…þ]w)ª~¾¬â:\)E‹,ólð®·>2èM%em¶çñ´ÄbzϾã—ê=eÔ`ß´Î㪲-™!æêsn%¤ªÛ»Ç• 1è•1‚òmúË/–«.×Iª¥Åßq)²®ïÐ^ÝUK%×ß—£’ÀÛU9ZyýPQ{–úüÃ9è=:­ÀÖ¬>Fe¡»qó¤Î㪛¾ÿ C}ÎŽã9zžðaú\‰Ôâ·ºˆY¯ºR¹Cž”‹UÄ¡¾§uBýA÷FÅÚ<ñ±V颳>r´òZã)¾¼:8è=ú6ül¿ºwÙ§ûS Â);èqÕ¯ ŒNõj³ƒŽvï¶¼ÕE‚Z×])nvQy?|à‚dxôrOŒ.x #µIÝ}O}äÎÊkñž nƒô}~¤¡ÎxŒ$NÓû)>úOý]F¿ÖÓ]’i4€Œìv!§KÅ¥F]/ë\^“A·t¸ÀÕ·íMÐãº@ .Ͻ尬«Rƒ'‚ƒ®è“0þQ]È©º‚¬Ð¿ïþIÊFT0Z¸äÏy~îAƒ}Þ# 9ÙÍY¹"! E›ÂúJpÕ>_YÂk™¹â¢fc}Þw–’în!Ê(F[~= Kƒn¥*y”è¾côv:ÐÑ{ø…†¸ËŸÙÊæa†( ^Ût^œm´Îû‘·»yGÁ.öæÂú(Ï úP7¥W t}䆃µ†ƒÎôüLƒ'G ù-£§éT è4KæåÃÈ6ÍàSsá=Þ S¤Lz? ýxUлhõctÎFgÖ9èl@?‹Ÿ¦j¸Or˜¨­LJi( {uÕm?Ò8ׂ¦U‘o=WTÊÇšRÅËm!WëB-ÂZpz=ƒVÐé–­Mhº+Jy-PJGKVO7h ÙGHÕVþ_tz£[fš5ü÷õV”òš¥ø?»LÔBF¬È!ÝÚ;$ƒÎAètËÌ~­Á³ÞŠR>ä¼Â?]èÉL[bÀ&⨾Óð‚Ñl” 9èô@Ö€ŸÍÒòë®(åµ{OñOc9.‹¹Û ÛRZOþ"èÂè tz˜@?‹Ÿ.Ò*P®¿¢”×^aü*ÐûÛsÅü&£¶”FBN†4Ÿ1A8ÅAç ‡ tºeFskC-ÔŸ“Š9œ*6µ¥XJB«\*å sÐÃ:Ý2óg-ÿ RÁls÷A¨ ÌHà sÐÃú ü(W®}ä$³‡¢ÒÏG·¨8·_?làSArB©VW)‹ Ð_SlO¢Ší'_û`·-û\/˜èïém‡aô[`ïMïßç´fß²pÐun™Ñìß ä.³§:%üŒ'«~HÌm6.è­U!ÞÏ+L($Ð}ÛOXÁÖ7` âw_;,A÷õ Û‰|+=¦ ¬ö~m.ècá ë ú˜ü2M+`DieöT¥11ÿÂ)gúšrÅEÎé×] E{Ãh}•0Yƒî£Ø.±;Eâ½Ý óúÐïZÐÂÁ@A÷óÄgC9²ôƒ‰E^¢~±“êÂsÐõn™9¤PGÙ=Ö…¢/ñ¤À¾Mks7~Ðw;XZ·¹À]fƒl¹sîã‰/Sî)§Y>òl.êX‰LzÍðÚ¸Á3èèüb­vË¥t9¥4hö¢kfHì#Æ_ÕØAS$œJˆ ÐQaT²ÝVÖ¡”IØÏjkëýºg%Xeíöt›D·tÿãr«³ü2è ë}ÖÌú?¥Az2ÅL—Ò½)ý3õîûlQ¼n†ƒSv¨ÅLŸ-feš€ô$Q}RnyLO×[5 èå}Ûå×6ˆŽLГéLƒ©Æèhædüò[í¶Kée”g~Чªî‡µ\K3Cß9Ži‰Êeôô¡U£€¾Gže«Î…‘ ºÝ‰Ì:ú¿˜$„éR:-£,§ôŸà("ÌÑz|“?dÐG%ƒ«~• ¬Qd‚î¶šô£øÙ¢ “Øl—Ò;S:º7h¦vàá/Ì!I³•–jιs#t4tX™ÓV?¥E(èQ0ßt ŸÅOƒ©/²]J§)ý»Ï‹³§›tG]"©R›’ˆ.Y"tsØ/}”»~§Ù@§R°ûƒÄÔ‘F–ˆŸ c B‰ûVg˜#§ß®[¡6Û°KPF*t¾2 `Uyœb&žk 6HßÊt)Ý7¥;þ¢ñs-+Ž™ZÖýH?-ìâ › tÓ­£S)Ø ƒtÆKé>)]êo4hÒ7™©a d|aŠŒ!t“íkfý~$;彂éR:2A¸â¹lÀø¯‘Ò°¦­#¤EÏ?ÀAg:+ëQÐé¹–`ƒt†µÒeûª+¥;6ã¿ N;´Ä$-ËqlÊN¹„åtSÛ~qÙÅöNÏµÌ 4ž]­t¹Ý{SºcM°àT1õ ¹ZØÝ7ºGë…±•tó€nYæ”ÇçÖ‹i@§çZ‚ÒÖJ-¥·æ|1×Tsr[+^/í²»Hˆ©ä ›ô(‰ñ¶òl+(z·ÿgï쿚¸Ò8~—5óÌ Ç †Y&D ¨) ÀR‘øBÐ"nEÑuÕòRP‘7QDY´¶jE·¶¢ëÛª¬¥‹/[«(Ðz\m«.Ȫë9–ƒ»žãþæݳ¿ô¯Ø¹3dBBn&y"Ï9À¹““dò™ç~ïÜû|q€þ„A¤ëè•îžÒi$¤ÕøüÎu¨ÌœºŠ„A¤#ïÉåò0>[-òè%ÔEm®‘föü8:Ð{AŒ§ïÅü¶-h@§ëZnùj¤£Wúà”ž°v-îJîCueƒ&[çE†8葳Ŧ½ ¯<i…4 Óu->Ez— ¼XJO]Ëoò)Õ ¦î{å¨\5ƒ ôžÙ­ÚÌMžGºÅÞU¶ÛÑ€NýZ|O<)êzª\SúÁ•ü_¬_²YbXTîvñ\pfiÈ€>(TÐCA£›ªÜ9Lx@?ÄÿÛ§H'·Y¼ FM¥gÏÏöÑ>rÇý è‚à6é+ÊUc ?è3æ¾7eœ‰ô}ü¿8Ÿ"½²Hظ”Îé브ÕÈH/w”Û“bHYŠ ô°ZjЬÖwt±KV´xNm½hl«0S6=ý•§rÒaÅ8A¯íóž Ï`Ðc–ó "$ »t= RJÿʯ"¿ÃÖw'ä´[/iÞ¢èU¸@ic¾]½Íäj—,ý®,ùõ@ÝS;JbKÒTУDå° (A3Á;Å5¤¦ø°…áÉèdÿÊ·H—:š§õNéÚ,ÙûHHFwybÿzÿé:ÐKma&‘…"Lv³K–žG¥d^j„¨þ®»üxš‘î°V˵ÞñN^Ú¤Þ‰üó’ ý#‘NŽ uMé1IücßG˜»è¡lDdQ@U…zpç{E^Ðfö«”üÁz© ž™ iáG7»duÔ=K"½©D¾›f‚«òx»H³ö™.b½§„Áú´è´ø„¯êî4Ê…»úž )=;‰aìlYÃqçñjõòÓ„Ì3DßzÐéÔ£ÃNÜ]í’ -`Ú6^{»´7_´OUí>Á–|i'ΙqkSkÀ‚ ôÇ’HgXò¥Î+[<ªôÃIÜpê› HAÏ»"P­nýÌ`¸ô “žqv“=V5_r±KV€N wšÄúùþZC›hìì¤k¨µÛ,{6ÐÍMR@l“Ï ADz6›H¯,Óye‹G•CB=,¤µ8§ÎhYЇºÇð)¿èí"h# è Iü+'b½W¶ø¿ˆMé—VãÅ=¦¹=èlvɸA—®b®arä Ü“Dú%ßÍt_Ùâ^=®/RÙjKåvîE z³w· èlvÉÈA4›ÍPbVct_á(€þ…$Ò¿gh§÷Êo)ý?…åàí\&ZÒ»ŽÑ"’Gn,À:›]2rÐiävèó GôÃü²Ÿv2´»ª¯g‹×”~ÑÁå~fÆ'xûî·w]%g ){°ht&»äñTUMªNÆ:­™Á°ì+/N_Ïo)=a>¿–M¥Ÿ'¸cÕ"ÃÏÉH@ÇÃ}‚(OÖÏc2Ði…HŽ¥B‹Îž-^Szê¡ëoÈ÷qÁ…²Ýyc èÅmôÂ0…!ý$Ò¿ah÷Hê|Bn kà]îÀï<‰÷ ¹¿H`[78ºN O럹[ ‘¾_–1‡E7þÙ˪E½Sº?q‹ãÖ#¾Ï–÷éâº1ЃôºîV‹èË%‘α P*,Ö{Ɗה~íЦ'X}–ãæâþVΫšNºÆ@ Ð]êºç›N¾–D: ]‚ðC°¤ôL \hÌ]¿÷·ò=Ãg/„Å[Æ@ÐuÝ-3±NEúY–†W„?ê}J¼¥ôì$~êò­¬Š6ü\& ýÑ®èá¡n=ƒZl S‘žÉ2dÕ,Äuë|J¤”îyÖ÷áe+ýж#¾×öû_§t%ÆÝ=@Ï¡ µ!­¡5L Ø@§6Ü †† ºšB¥¸ÃgÙÎ-ÙŽ÷{¹@ú”ÉJ•Aú¯ º!Öbtt*ÙaÀ±År±ó{µM6ÑLW±Ñ½²ÅpLjqŠŽvÄ “(£:×]Õu¶£:Ù$‰ôs, u/43DJ÷+öÎA?&GãtÙ±æ˜`½ÄhšØfƒq”tÇ–jeýj>…¹•“i1‚8Þ r·ÂE£3è$-b› À™;º—«Ñýÿn=KÇ:[(Ó83ì{é4Ò×s·pCþÁû„4Æ ž €è :8¥ïy©:´Ž-=@o9=·œÙK»ÓŒ[CÈ õ¯›³õ­x‚t5£>7ct@¿Î'qK˜Š5èm¡,ÅŒï)ýzÒÆg‰‰D>ö¾4šVÙï¥ð¶î Ëu#:Á鿨b§E"'@›=è6€,3>ЩH_ÃÔ²N8¦ûiùÖ{JOýh¾?®p{7sKN¢Íé{¦÷m6 ‚HÐU“ptj[È,“Ñš,õÖá“dIýûd—’,…è%ØAoKgéµÀd| S‘¾™Éæä´ 4QJ÷7îÏa¼ wÄ4–k—ê úQe£žj[™Å0›´ÂñY&;!M.KÔCô¸Cß)¡ëØø@—Eú%¦¦»ô®û—©ic†ãÈ߇LéÙIüAÿ2úf.ká™#ïk^ycw @í)0Z Z”5Ž--¿þ<ÿ?{gE’ÅñT£*³Ñ²í¥›ClÀv9FAEX\Á päð¾E\q¼ÖQ'×sÔñÄÁ[gFů4Öˆ˜ØˆÝØˆÝØý¸1ß÷ÃVU7‡•YÝ]Ivçû@uwdUvSù«—ÇËÿƒpŒëƒÜœ6ë‚—êZ”€~MÝÔR sAk.ƒ kƒô¯ñŠnzseÇ,—ÞWŽ¢-„!ø‡«K€Ù㘠:Ûÿ/ÖÑ?fyS‹{Žéä*(LÇ).=# p벩KÞtë¿pÐM\›íT0Øè[ekŸ® Ò°Š¬’N™ß²SÓâØœÃ¬ößw ç½ßÿ—ƒnèŠwÔ×ßÐg kƒtÌý]?P˜Ž·… Gß¿ í)é5KÄâ26[êw‚°»÷Cj8ÝDÐM0Ÿ® Òÿ"ã5? ŽKoDˆ”ô#¢˜À(ékí)º© úŽ1 º:H/Å\]¦1§ëÒCëšFxÍõÙé¬.³ÕŽÔ@gÞ ß1&AWé¥âA¼²ÒªrÓoŽâÒ×öY n{üÒ‹–ð–ËA÷=蟼cL‚>¡cFÁÒ™ŽôFé .Ðìø|:£Ú%eÞŠY–ÊtÜ$=—nÔÚ2o°»Ëž²™ƒn:èì*Ìh¶…‰˜Q°t¦ã—>Ë¡[hëtâë&Šb+“BSŽ™‚½žƒn.èL+̨¶ Ågb+¥R™ŽS\z½^™ªœ¼â )ÅÓ×éwµ[hâ › :Û 3Ú =G¤ã†R‰ŽÃqéE…¨°ŠøÂ w]eslžÊA7tÆf܃ô¿aoõ( ±YL²ë»ôËyØDíׯA7 tÆfzé¸ú+46«°G˜¥û$Ú±s«±‹Ë÷Íc²ÙʵQt“@g]aFµF_=V¥¡‡çÒ ÛD±šIØzaÆ"º9 ³®0£ oÕA:¶t" í8<—nØn¥³©Y›"üƒnè¬+Ìh¦ ÒÓ'`>Ee:.ß.lÆ)òÌHŽ¸ÃŸa²ÝÎOâ ›:ë 3š@aÙ"nÒÑòÅ4¦ãÀya†KOFèxh5ÜürÐÍy…× =§WfFŽû=–0]ú3„BŒVÑð#{qr|2Î$ЙW˜Ñü`<ú+¾–ÚW’ô°ßºt°í4ZCµX}€ƒÎAÿO'P˜y½×i‹ÝŸúÆgòõ«kаHŠ ƒ¨N±9…̪£ôÃÝÄR1»ŒƒÎAÿ á*̼®Ö ´¼êõYø]©<*FÊAŠ.%à§¿#ÅÌí¿.Ý;Üš9ƒÎA÷Ø–Á!GÁ†°¦—û†Îœ¶t‰äR}B7pefèdVUl¼½·°yŸšl¬ ™¹Àº) Ë©Zž¹Ôà‘Ÿþ¬éž«f§ ²²+-•zªÍ¦õù×¹3OÓ=.O¤—b{³Ï¥c4¦¶›„™˜.=-¾Ñx5rÛ:½·ý”¥À‚Vu2®2U¯x'<£×ôRÞz ÷kÇqc>¦:ØŽêJ1“-*Ö.IOh¸t×¥?@äš3Ýö£˜ÀN>ÆÁÁ¸áÛ0C ¯Sð¾¢0j±Áî¤r}Øø+í¸ö˺2ÒaÜPß‚þ‹7°‹Ÿ“¾¤Ñª—ŽW°j 3\K[©˜~–ЯwÛÞ½Áúö‹b8åüÕ}`4<£ ¯Á hQœyjüYç§êq.ïù,5uPeÖˆÓtA¿ŒÐ-1»øI)æ…V]+óñJnMûÆx5ªEåv%%Õê—zôC •ÅÑþj8 Ò²G9vªÇO\oû0+\©#{’Ä˾p-ÄwR=´=#X` "5Ó¸-»q]ºg6¯ÁüQB ÎcðçœôJ¨¹áþÆuŒÕ9!¾zë aDÍéðÔ½¾osú.Dz,ßþà:´` l‘¦ÐdÄwé^° ŒÅÉMšáVÁ±æcÍs<Ð-0Õ5ëîëí^³½ úr­ÚU6ÂÊ·J/cah¥oð7(` <Ž‘Nö{—ÞRä ç™™ëÙj´»næ̲H‹¿âœcnƒZ˜Ì÷\z.ŒÐ}2¼ÓuW<ú ÷ÙpÅ®»š™éïø;ØøRZMá¶ÈD.= =H6^לW›A+ز˜Î£šAÐðwÊßð®P—+°Fç„,øÂíûáë®– ¯»^ØÜOJ ƒèi©ˆïžHÒoé¸ôÝØe·å íTUVB0=Ùl*®(Ø>Ž9èËàPåïpèêÁƒ‘ºÛTGÂQÚqe/ß_ÓºÕ5Ò§úq”F°ƒ „“>§qcæ B-vae<âQeÔYbo"I3}qÕØGô¾m8´ ŽÌ­ µw?A¨·D¶nÔŽÃܧ¸Ææ®ÇC*Œ>Jôm(þþ6¥…H‹ËiÜ™™.ìèðB2c  3 H+I1÷9èzÚ ¶ =òʨŸhr ´¨]v¹wì hÑÖÔ÷Â!€*èE9è_"f¢t­çG%;¡K÷†Ý*eK:²s—ŸËâN£sY=|¶ÂyÖRõ„pÈhÝFÀ_/áûaV¤Úª†ÏÊWáÄk,²Á¥tAaèD+ÁìLšKo2µ¾{¢XÍÔž¶ù$黃¸víPÎAïÃŽ®èêØ-1£‡7Î ­ " E§Aª•òY ŒrB¨“¡Ñ÷ Ÿ@awI4÷Q‘ƒUú¦‚0žhL’÷Ü£úæÝMÏú}ƒ¯Î=ä {ÍTቈ3®µ57è`úJkÄBÊ!°@ݪšsVL'^ #KìÒŸ"ô­gNdOö]v•¿(ITöû)èÆÍ÷ 'Ç£–lìl@•ƒ¥¢?AêÒãÒPNUÀ5à=vBü'«9è:HCÇK°s°jú@&téÉÛÓ’=¯µ¬µ˜¥Ä«çûw„§hÛã8è~zZ‘(fôR)éOÈKûxÓkmH³ª;š»ÃÀyw¤cqt¿ý2BÿIÛðOh—$*K°ò á¼ùµžÍ$Ø @ß"o®5rÚ“‰ÒÔ Ý,ÐC Ñ·Ÿ‰w Î8'£òÏØLîÒãZ¶zZë„[ Ðò]ÕÌA÷kÐÕ­ª‡ÄV‚îKR;#.½v€À3ÙpXß¾¹t·-zé_ · ¼Q$ˆï¦ð®ºô|²3¶æ¡ÂéÞ¨úP+C›W£f͘dìÌûÒª±9èšÅÂpöòЫš–I¤¢D+àÝ€K¿œ‡½Qu±(–0³¬¾+IÈ06oÙ>E¢ùØÿ@·Á Àeþ:¸„žÝ šq¢ð.“»tÐÑâ•%‚²QdG$¶6ÉhÀpyŦfºfN8{é+8äU±úNôà,¼; ð.ÏöÐjë0´Ÿ-‡Ú['<èðmcôF”S•-’ŒA)%\ žÜ¥s3`Ê Þôç=r]Pl,´Åöë 'Ç£m$ê€VÂE£.½èA—¢A¾h-) ÐËUq¹]3¿£«Q°‰b&É\Ó)†Îä¬âÒÉ'”;ªóN0_›(f¶±Òšç']0>ÚØ7¹™ƒÀÄ`=­(# Žq”ÞAä,á‚‘èéV¶î‘:Crõ‚Ðäðð tÅ¿¿¾æú÷üôËuTÇf: ï]:xš×èêCË`¥5Ë7Õ™÷Ù\¥ßРËk"´‰8ËK™}ÐC Ñs²à8Uáý•[ä0äÒÔêÏOõð Í‹%in ƒþ‘ÂøÕ…-Э#Á4èjlAj&Õ&SQxWl­2‰zC¹›™(Ƴ¢àbE {ô?Aë(53zø«® , · øä²ƒ)IJG†Q—Þ±Ãk_¢X‹ç€²æÉô…ÝŠ®W|:oèÓsд{$Êq€ž¤”a—Z¼õ&|ÍN ÜÍŒ%ž_DéÁ¯.@Ð#b»{n쯣M ö ‘r=I)ã.= ålóÚ·hc¦ïÞ$êK½¯·šVŽ.è¶Ý/'ÚüôgèÒ<"å8MRŠÒ|¬âÒ Í1…y”«é}ÆÂ>—©3{”ç—ÙçO °AwZÂݯÂ-N?}BUDÊq€ZeÍ¥ß6tbQˆ—7§‘]ÝÐÿ[uÔžÛ^»ÖÿÈ»Œ úFØùö®÷)Š# ¿eezºsUÞÝ–ÅÄ€sw+°QW\…Šü”5žˆJs  ˜ˆx"êAP1jT$P@E<ƒ¿>+¬òï¹OKýàÌvÏÛÛ»O•Ö|™™Þ¥Ÿ}ßî~Ÿç½z¤¿¥ÑÝù´§†dYÚ_ºãÁjÌi7¤sÇÑt’~  }Œmk#¢Ï‰Ö—UÔBmÅ2}áˆûè—i•;tb°ÙéÜÑRRŽrÁÃè»|3ŒˆOêºnþ{ *½‡æ»- [Œ¶.œ¿Ó• BúÃ[<ówß…qƒNÈËã“ù;Ùîâ0!:l‰ Ð<*~ (Aô”ÒVÕÚ [0!=––4ñK~¶Zª­áXhÔÀªnºÃ‚èqW_< LjnØÌì±&lAÄÍFîøŠˆÕ_J§áúIÓ¾ð\Û¨7Bô :l¦÷]Ö:¶¢Kd°!ýJsøÓèTV‘ìs¼:O„aö=Æ2F#D ¢lÃEé†KdCH†tê1(ŸÂþqËP‹è_¿Eˆn°Y¥•8}Ø‚é±5,:-¿„é¶{j]W®S˳àœD‡|™ÖDéÅH}Ø‚éâ0BÒoÈm4U[.huv>Q„è_˜øQŸ¿öÚåÿþq‘ÿEˆn°´¬ÆZÌ:ŠžƒéM+zE ìt±fží8úy¸Î¼öwßÃX•[ ¢›¨X8÷[ó"îSý÷ª½—æ»-v[  ™1¬œ-è>Ä­±ÃK+õ‘ºcROtÃuFŒ¤ÿIó¨Cô¹ÑŸÍ^½µR¢ ¶BkÝ ô±>¤?WÐ!Ý»"ð‘!‘x¤ Gw™:V¯_ ¢Ï{NÀO¢T!º¡`«†R7kÕžº"iPÜð&ʾpE•gq³Dî»@ Øœ£±PC*-î#¹;Øb¼~=ÈGˆ,ó¨#é7\aJôzÆ<]¡Oô¹ú{³W_èß+CtÃ"2­Òrî¾mÃZ•I»ñn¢¥Nr÷÷þÃÂšÞøÏwlú%ô‰þ¾pí–Zx¿b™ýX¢{óiX5””¥óé 6 žoâ¸Ì4®íÃuâon¾Ow„2ÑáÏÑ£.ƒ2D7z°Á‹f°€)K‡ëBúŽì$±;r>IówWcŠ–'ølSƒ?„‰[¾Ÿ ùüƒBD¢IÞ­éÍ`1eé\BzêfšWà·fþpLÒ˜¾.ïŠà7Œn“ÑsÊR­»ëƒ?ýSí0Ñl6rwG“¥sY¥7•Ðs‡¸§’XôèR —:›Cšèq?_ûüÚϵJbé˜ YV–]Œa>rY¥7=Ø!rŒ§×[k>¯"šWŸ÷‡"Ñ]ŸÏ7—èó~u©Dôût3rwË™fžÍˆÜﳘ”Ùú﹄¿¤±Œ›!Hô·ÿqãÊÀ:}­JD¤ô®Ü±h†ÏÆ»(¬‘ÓºQÓ'Š~Iñ¸Í£$¢ÿ¦G½gxºÇý5JÿN!¢»KèÃ@îži5wwŸA+šáÒìË;Ð’5!åþû‰'~+‹Ï›%î"úFý™fí²þ©BD‡³t…­Ü};Û†åûËK—^BÄ2ý›LbÕ|Ó!ìÎktl­¾©^Ó)%° P ,˜î¥PD†­Þ‡X4Ã+¤·&qoŸþÒ†³–@˜£1¬ÞœvˆýÉÿ/WF«DôÔ$º×NînÍ`íªò é{“@¢Ñ5î !¢/š÷¬ëZܼE*ÝtŸ°“»{Мf!O¿t‡–5rŠÚÊ×T;ó¢ó{nŸ ¢ïÔÍ^=ÒßRŠè†û„ÜÆÑœf$v{-ŠHúI ¦®kN~‹Vß-?ÑçDëË*j¡¶b™¾pŽRDßAéG¶r÷fÆÐÎI¯p é”¶ ÿ¹:ZDdìÔ–pPÓÛ“wg`±>-=ÑáéB]×ÍOA)¢C,=g+w‡>¼M–Ä ú¥¿„/4vx®%c2zGºnt²ô¨kñb·üD‡-ñQ†v-~ (FôtìÔÌÀÆÐœø…ô‡”žuhÐ…r;Å:„ó«ï¹e&:@ÜÕÇWãèû)m²•»#¶g2ú¥ó éçh¶3缾̬_„èŒuÜ‘™èJŠZ`¶8ÎVî>ÊÆºå%º¢¢gé-{¹»7ƒíR ¤;†´±ÊLùBzž¶´ÜÙ76w›¹{”DWTÔbÀ,޳á3p Ï<ŽgHw ®­ª\VåjK1òŒK¬ªÛ-ÑUµHM¢CViÙg&ð›ŒXéù=m0¶×±‘ûŽ×H•ÀêG)J¸Ä˜s³'"j1`Çr÷2ëw"ÖÁBµ¶”Ÿ¥i/¥ø1BŠŽBSžóÒ]YQ‹šïµ—»O#ÖÁr éF —A‡^XFHQ„çÏà¿äÀq[DÔb '›¶‚ w@­ƒåÒS÷•496òɲ%²Ñ-!7oΛGë¸) ÑÕµ¸E€ÞL€[›°†ç*2íÀ'.Õ>\Žòæâ¾Ó¥!ºº¢ïзћ)Íú­ˆbãj-fUó¼&}½DKõÆí0Ò«›ä‰èêŠZ Ü5¨…YÄFB9Åšü0Òð}âGƒ !•5ò0}]9êû½U­h"¢–mUá$YoãÖzîd0–áÑãMüN×ÿ¹qæ2^I¢›¢>=C IDATt˜°c?«V…@H}v<,Eù8¾JR)g³e,xGû ºþ ”$úŒ(Ýžý„¡V­Ç›‡µ<%ÚgéÓ/$"Çö{‚\*à]¶½hÞ„èzjý¡!J·g?avÁÆk–Ù¨i–­Ù4g=R81!³úµÛÙXº=Œu^£;D¢7ݡƖ„  Šõá}kµ\rovvæ\˜Do¶|QÓŽHÄô'}¶•’¢¿£Û¢a?a+œÜc¬mäËc´Ý;¸s*ìI'eÈ»r®‹ZÌ!™èñ‹9ÇüS^D÷ÝËÆ/@Q¢ß§›Á®„ ×€BPHÇEázB2±?Õîr ¿™Õ,£ÍÏŸèºþç—vä%ºi(eSÂÐh@!*¤ÿ½sŠâÊâøÙGßÛ [1i©ÙÌŒ "†E†—+ ‹€†·ÛµË,ÐëX(¶ED[ôB¥ƒRÉáÑ3µ‰„o…4jñš‡Du’­2϶3¼º«Làwr4{ÐßÂx¡ÃeŒ ¢­ º6v¿†Èb/?—>dץǥQܺ ^0I›­¾uŸéýÁ®iiBÐ/ã˜G;—c€1x®uAׯîˆl+ªþIJK2èU¹–d’6›‚£rËò—åA߀ï( ÃF¼Ü ûÆîÐBæ(ÅÖù\¹ÂU°¼¶Ô ÂÅÒÖ¬AÉ tȲ0è¾"lÄ[éŠóó7ìî~›à ê‰’´×­¶«–aL¬ëÛ¬ º=r ôõv ƒ®Ý‰·Òa—´‚a—^Nw¹Ï+rãé.&~SÁ1haÐl;5ÐÏÙò­ º6v'ÝJgÜ¥»Œò”oAu­Ò,sõ•§DÐÄ• ”ò‡Lz^í=¶GXtmݽ eº›0íÒih º“fi»íyl’]\ýV}؆7Üø×Eb[±•Aׯî¤YéOXÖg‚Ýt«9$=ë3OãÍ<åfc"y¬ :̉Ò2Zl¿Kƒ®ÝI³ÒYwéV«æ0 µÉVÐ@‡áÕ ^Ìcš‹ÁÚ kc÷¶lÔEإdzìÒ)Us0±ÑP£ñ¨WñXt¯§ž£}CìAׯîPƒH Ë–°ìÒ)UsÔÞ¬ë&jÂrW6B÷ ¿ì à8-[ô€\–Å«­ º6voD „Û7l»t:ÕÕ'Š7S#î©Í6¾„SÜ1š'KÐ[Sý¯^$bkƒî»+»ÅÕyè,—]:uëçô,±è ©š±/¸ÉXÉØ«åË,:ÖHO½â§[tïØ]ñ™{hˆð™véÔ|"HO~j¾¶Ü›]sÂÒ zÎ_ê=ü7ãæMÝç3í‘ÖbÛ¥Só‰W’ Ûr#B(\…U/èÑ ¼¤`ܺ‘ê ™tg½øL9¶Çc°¥Só‰4¹î¯!ME"×îòmÖb¯àD¶íˆ˃®yD*1–¤!–l»ô!7ŽþU4]sî1¼ÖÃCA‘-:È'1þÇ0í2è×ÔÚLIXo‘y—¾*ƒž©Ô˜JŠŠ>5gÇžWk\ºº«Ÿ¸…×ÚGÿ'‡èP¯Ôf8Cî'Î4<Žª©ÔØgžXtØŒm:¡ì[†]M>ÝgÐÇ«¨Úp¢•«©Žë™ø¾’»ÑP;i—Î4‰-.M¡~‘µóLã.5Q-Œ+»p zpðë©(ªÐòÕ¶]ú ‘CŸô¾&s¶j¹»Úè+®²è‹¦Èò Ã€xH9ͰÎK§í@ÁƒÚÝÆÍÕGeîA7T&ýmߨ=³¥wé ai;Pð Fçê#‚pDƒÎèM¢X¨u,ǽÇÔ–²EÀrFÅa“¶m¹qÈ0IÙKz%ï /Xp#pE.ã~ô-4éXŽS avéºc: &›•tïg5µÛÜ®3³[Œ{gÒŠ\€Þ'V¨až:–ãª>dY‰M.ÊŒ¸NÉ€Xá4uïªm‡P×ìãF'­È…è%E¢r—<:>gY\Õ€tUí7•uÈÜm¼Ë;W¿mÌ¥r<2Ç ‡â K< tDÇ)]:ÃzéôÓUyQo‹QÅË„#q–=zÇŽPýº˜¼V9Þ$_ŽSê¥?a÷ôÓUy‘ÜmüiA(‹µ èçBbŽk“}6*í¤eØ@­—¾„á#t¹FÕ [{±Ðô¸·¹kºh_c¿##. :W Ã>1K=®!§tn—â³{‚œ ÃÊüö™xíݯölDl8ûa”I7Ù ¿R‡Å¢&å˜Bì§véß3|„r[|*Íh:3Q÷kˆ=ƒ¸WôW*©B-·¨xÇ‘ÇW]’âb÷GiLŸ¨¦zÑüƒwèT¿²©/QzÆ…Açt¿í3Ü&.å༟—þÀð Émñ)}/p¢L·;…®AE¹PšКuôd#ò*½_IÒ—ìžÁ•Îm™,yKB-T{õÝB®—Ý©ÙO@Žiç_¤¯>Ã~Áa¤'qS¨÷ÜlpÓíÒ÷ä–rzôD¥† èðL¬Wƒ;{‰+«zõƒ$=`Ø}•Ûâ¾W$ò@:lQ£«éE›.R‰’ñÄË/ì‰'—Nyÿ 8}¯–Â&»õ”üÙ*meø #-Íœ"'¤+Zçn¸×*: ¿lŶÈ(5:yl‰yü^I·P¹eÉIúá3Ð/Å8t¯÷s:B+i†Ì]-]Æè§h¦Ÿø#~ãìlÆ­±ßßù½O¬HWGz:ü'¾–N0LïZæ0²DXÓÅküôrÕgÝnšy¬åB†‡'Ð_[ÅØ¦s‰ý×Mxÿ¯v_ ûSØôøO|)Iß1|ˆ~úu[¸•¬vں霽ÒKºleÐÿ…¯¨Ç?ãù~«Ë¾Éèp@‰ê xø^:ϰ„‘°œjµôR9ñÑŽÓ–îÑßÀ¿U›qTàÛÿÆ¿ÚÈ蟊E%ê‹5:¢¤lk.«éú@!W ŸAº¾Ç¹Ððõ˜Šq@=Æa[ÂbÞ@÷‡ÁB#ÊÖ±@»DZQÅî! „õi.Ô]ÛBqQîhŽUA·áÍê1ãñÊ.rþ'ð:\ÐÂ`×å!&%l}" „UÕT/&§sØëuÞ¥‚{¹cТ /Ä£“^xµÿ¦}ôwŠh5ÕßÞ«o‡±©”«\è7ô‚Mó~trz j¸Iaþ˜ \µ&èöi@_•¸izÐß53èca°úvتV05•28–W5æ!rß°ÿó=Û!¤Yô¨i†î ð þ†î𳯒ƒÎ6ØÎ4]U.Ž…9žYÕwÏP •ó,ã ôá9u»iæÏå{gãŠR1~©½õÈ·ÓÆèME¢oaIß[ÛtÕ r„ðÈÏ 9å½½6eXL¯z]«üZl‹ˆžé“ °Ïz3Žñ¿5? €v”'Ð!KÜç{±F—ÑW’tœáSJc ¾äaÞÖÞÇt!wð·Û<ƒ..@ ã…v —1.˜‰ô¸Y=ÎÅüo]±û„±Ýþ.W ûÝ`õå°)éª,s[*Â6ƒ/¹v@L>È#çò–3 äe;^©4¡l _Æ1v.Ç/bðÜ™NŠ£”!»<9–Ç¡;¤Wˆ}¾¿¿®6øÛÜ–«B®ÑöF%>]ÕFa£mÐ!”rú|@Ý ëò™><l‚è“8_.>zóÏ m¥ÃYE[€unË*££f”ïÈB'ð¬î¼š® ƪ{ÒÊ8=&4Ð!?j¦§&`ÛúõKå?‘x5× ú·Ò3W¢³:ÎóY¼t‰ácœ68jÆêEˆÜê{¹d@·G޾Þ>ã§㉘+¾½5ÞAÛJ‡{H—ÑiÅGìÃð¨·ÞÄ/é]5ôàÍz‚m§ú9[>Å2èã[émÙ¨QÇyž° „Ý/8ö0¸ì@ÑuŽùhS¿Ù;ƒ¸»ÞQºÇÔ G(ý²zl3Ž-ÐǶÒáìûS“WÇÏÔyÏy_ut}—‰%1ˆ *²¢Æ㥠rS …Þ…ªã]é¶Þ@q•V…T«-ÅŠÖR)e‹ÕÖ®—îÎX§ÎìŒϾo®/ë…„“ä9ä¼ßÒÐÁã{ŽùäÜžçûTÑë;ZŠM­£ °v\,®lç³a—Ó¹ÂË%‚½eÐû dí­Ý¤`Ý$b(à taU„îÓ¥3—b;(ÄÒkƯÊâqºã6ƹ‘ ¡)-q£ý}j‚/ÞÅ0qz +2hÆô•4û(à”ã5SyùÄ8É{\‘;”³B$³…׿j®‚yÒþÄèé«Å·½ïöPÍ ÓP“wÝk†R¶¡®ñúèá%µ¤Î¿íbtÔì_}Ê™t!S%é1`?bî5gÊÅΪ²È4µ´†QЧ½›bô>QôsSÃFÍœZ•£;@ß“1Ï©"¡ÕÂ$è„Lúc>¯  ÞÕÒªnš†>‡šÙ!aêw?}Äã|³Þ3¡ƒ´A!¶w !ƒ¾?”)Rùýª?³¹©œf íãÀÓ.Å>/rçv6Ѷñ­q…EБùÖ&!†w¯$sze†??cK• ‰éƒ­ÒÀŽlHL÷’~ìFaÜ€Þ‰±sm#¥1Hë0.õÅ”BÒ>}Æèèˆ?³Ý¡¨–®ê¤4û7ÀŽœŽ}bzü©ÚVOzl®•Ôæ9S¹©¦ªQ~`åÙE‹¶ÃzÍ$¦Ç£do9V[e; -¥l‚¾h:Ÿ ›jÅfßÛ**ó8× `etòŠ­ûf\á~;]t›õbÁþ1{ ožþ!$gW? £·}õêÀ¸ê;c›ôìÛ Ôß½O'ÐÛncì¢j!«D0æ±úóïÕ zÒÄÑ} VA/Ìý³‘‹ò÷3 ôŠí[¨+6å;îˆè«|/+øöÎvºNõ¶$3ú,Õîmæds´ˆUЕÏè=ßÛvŒéÖk?^±Y½Ÿ•QlŽÃ»£ÜÕ#³ýˆaÌ,™þ<Ä*èè„ßhÉõ”v9½bSI?ž‡ w91®§!Ý’Å èOûc3fÌ‚®9Ž£LmaáŠM¯˜Qµ»œÙ4y¬­B¯•Ðc%fAWã|³mj‹zÅv°'¥FØ,¶ô>SÜ¡~Ø“ÑÕ36ÜÏ B‘ôY³n©/q9£® ÇÙp¹Ð—’ô_À¾ -ÆÑ%ñRü‘îQ&Îv õ»:!óÔ¸œÑѱÀq\u6•Å»¢mÒÀÍ*\›omäÏŠ7 )›õž±­²¢œ¶ èsæEwhØ=è§zJ] kìƒõÒßû²Aj`GóæŒü¸ß­w¹=6%r8“BƒP’ºªUßÇf`ؽru0Íò.õ”þ4ûsÀÎè!ï±Sy]gGÈ¿œeì5P kÅïÒ5‹µ¦ˆMé¦3Ò6Àó8èwžT±3tÒK‹"þ/:è›ÿrökU›Öî&ü‚þHó#7¥ÿ"I?v8äÝ«ÆKû8½ÌVžzz„l©‘¡@ŸŸ¦9ŽãttÏ_Y¡ÃtÎϪ–žÇY— ­à:C¬åtŸ:ª†aBdC}I˜ð”|·kbY±—cÐÅ•û"7¥?Ü × Bh~Ƹ/«†îbœª‰ð©Ó×­±ýòO„æ®A(u…úŽ[ÐÓ+ÄËš)r—|' EàHù«9}Ëܽ ²¡¨4æ Ò”—™)Êd¾(eÇ £'bEzä¦tÓÐø¸,\Þ+ÓGr´{Öî=!kÜa\¨CÈ '*“9šF>T^×Ìåô}A;ØHLéŸI ùª×Y8ãPMß¶þ=Ü»!æ §©3úßÈ åu-χq#Þ#1¥Ã櫞báJE¿^ãy9º “—Ä;èÇ59lªÇûaÚa“[²˜ÉW=&rK:B‡=÷ê†^³eï„Ó–¨‚>ï%ñ:šÌaCe™¸“¶½‡°—éƒÐþq~-¼'Vð½Ww81.åñ®eÐ(,*èúý%5Š+ƒ‘\6ìl£mp'èeºu9´\€ôË7ùÙncüšMäLX ÷O]‡’7ë {rØšƒÛ«Û”õÒ‘ç2ý‹ípýù°dº®ÿS‡'ßåð…¶H6èë>Qw熉ftµhKeà‡=áØ½FGgKûsZ(Ñýã˜R'Æõ¯úT,nˆ.èÓII$è !+Ì:è•A—H$×cu‹'¥ÙGáú³Ô.üÊÌà>ªm6qú}e ÿª³ŸAèµDô+$éÁÞ%¡?“È_uе.‘ŸþvêÝlfúyÁXÊÊØ6Šâttßí¹Í鹄·ö c‰Yôµª¯Œ :ÚH–è £C+ÅÆàO.\Oò‹$}× p}ÕÍ¢xSÝ«6'®·ø? -K£zRòŽrtÐÕ+ß{ÁšœØFÝâ;ÒÖßàúSc˜Ü'3éˆ{åP¢é %Cw˜™}M¢º§›&ƒºg–Ѷøþ{Ò5Àk«n6æ:îz<ÊÚ´+.ydžè€>×°×úECŽ:4 S)„~-»˜·@OnaYU8Ӝ٠ÂuK4@ŸHVyAOÞO&ê +º© šQM¥è×WË@m¥Jnñ¨ûR¡ŽwPnŒ5vF–!¬ïåAï7µ·v“‚u“ˆ¡@]‘©V4£¦«R綨eÏÁuH.fë2½V¼¡“®Q—ÛÕ¤þwK™wí¾`  £© ¾ŒÃd¤ƒ®êßb†æƒx×uQ7ù£$} סR»0ÀÐø6fh’uùÕT—{§)ì?Fd\ÿª¹ æIû ºG Wkë{—eÒÂ"tNzpñ> ØKà‹u®_R[.ƹs¹¼¬ˆƒ®(uþÅhwcŽ.‹ ƒ?E"V]¼/ƒë¥„ËtÏW©6ó 9†]ž]¢¬ •­Öȃî›Ú§è {T˜¡54”Ëq95%&eñþ3\˜ºL×õfU9]¶êV!´*÷¡þ|΄ |îæ]‰DÝ«KÚ8XtT?ÏPt Ôƒ‚½Ëôô«}:Ó¯c<,ï°/°F ôuõ.çêû+9|—M¡G#â`Õ›Nê¨Õƒpñ~j¹ÐËÖß3òu¨_%¹½³¾IÙ¥ç9äÈ€þa I\3I!ÝŒRÏ*įЯ×ü:6â\¸‹¾n òt\¼3—™^X+fש~ƒ:ê²ï¶åEô¯Éî~÷4òbóBÒþÇÞÙ?Eq¤q¼ïe¦{Ê«\Ü£8ØQ‰©.'/ÅK© Pà*"à¢T •`ôD‚„€‚…h|ooν"¬×xÜyïVV&HuG1Ãå5 «j®r´kΠ'z¢ÿ“n[M¯Ÿ è/•Å|=@™¹s/m¼/OSFäºÇå¸ùþJ>[ö?å5õ~豋=ûpét1MÜjôÚb wú¥¶ðòqŸÏý¤°a3×äh»ˆzéºÍtêMK]HéÁeA÷—_j ¯5S&À}2æ—y—¯¬”×ésÒ€NŒí®hQÐ[Y¡oê´lÌ{†]ªHX¯&Ùð¦¾A²™j|š(A.6r4auB±gÈvŸ;˜o ÊXÐãô ]ôËVå‰é_ 8ë Èj32••šù…:ÈŠWN~%Þ OÅÆ«Íì‚3UIӣɇô1Œ›1ô5Qú…÷ ˜ñÕæhôy+&‹÷],yC®46”9 c“ÅW)Õņ|ß_Pû™ðR‘€uÞeKc›Q9îÈ!èPŠñ+@Ák?WÌý¬õ½Úþ$°1UÚgS<ÜpM9`ÑÃ@O‚î7ËûOébBÞIh“¦%e¹„ by)ã@7U<òmÄFާ¦6¨.)w‚¨¡€)ýœ˜ø8žÝr÷ Ÿ:]bJÜ# '­ñÞÆ ±‚.Ô^:®na÷>×}lÒïÎÌQŽð"èLéýª€FÊnýU[çcsï RÞîò– ‘CÐe˜ÒÉf] Iõ±áÎ;‚Ž ¿zJ¯ÍQ?Îãcƒ+B;ï:‚þš)ý¶š}Wĉ¿×´Ý`£ª”ÕxçÆNKGŒ ›=¥„ÇñMã"œéä–V—Ç6"oÂj3cY©ˆ0‚n²ÃãHŸ gzý€Ö[5ªYV OÄòRºé Lbó8ÓûDœùÔíœñnWNËzˇ‹/"ºÙz—N*Æ…&ä[ÈPØJZ‚‚ #è>Sz€%y7[=+âÌúI­î>Ô°­•±Î; A\3úUs뎚'"–”.Ómö×´ûÕÔ öUFÐMUª‹ úÉL ËËÍ,ׄÔMš:X1Ö‡EÐMÕ°w".t™n[§%H{Ó›]A† A7TIm[Ü:#¦¬”g™æMߦ—÷®7Ž"躹c… ÆÌ\u“SC.ÓIƒ¢TKüûÃfts¥úõKçº$Êxïô¦ÛŽ*)ùH ‚Ž OƒÞÉXAÆ;Ù ôž/}vKë0&®"èæi’MêÁÆ»FVhKz ÆU-qv‹çW¬ƒµ`Š ‚nš k5Êx¯ïÕJ Œ÷ÉÛ± ± P‚nœÚبn”ñ~¤N» e &I ÷(h{… §©B˜i‘™,(æ\,!wÈ®ÜúÎ7ãæ;‚n¢™+ð×/(æO5í¨Vì•H ‚Ž {Õ¢=Øw‚VIÒ.­ *½Å¶NY)»M›B¨ts4ÄŠ;~–&«MBN¾1.nfyŠrTò r­øŽ ›¥ò ÜB¾ÎSmÆ7³jCî€ä>6·9åbŽvÄA7Eì0È€üJP©HOC¶o¡Fv\ú"5 «Î èæ(©†µ«hR“3Åœ~©¦=™ŠP”`„‚nÚJ1(–ô ªó»!—!u A7¦VÊ IDATW“ÁQ3䶪îsö9Zo ÐÈå€ü÷ßÙ‰Ó:‚n‚Úƒ£fˆm³¨9¾!wè›ÌóØäïÒÔÆÚ0zA7A-ÁQ3¤6W-ãcãrPr]+•uÒ׊|ÂXÎéºñjtômáêæcãr€†V){(,×pa!öUFÐMÐ#æh:xS˜M¿¬ÕÚ„b¯–þþ`Ü ‚n†R]!²&úØJ´œ@Ëônl¦Œ #èÓ áb#çòÔÍ‚‚HïWiûbaóÝËôx+<ƒæf$A7Xz(Ù«ŠÊc#ába+ånéðBåG+"Ž ¬öB6|ôŒºãsAØ­iÇp™þ %²Â1dA7Xƒ}”¹JÇ…-Óy,,PS‹,ÓË'±ê ‚n¸œÅ¡Úw÷‰[¦ë—ÁªEæ[Á›NHê0®ÒtÃõ$¨ןÅ-ÓKzµª{`Ëôˆ‚Ž {׈“zÈeúׂ®p.êý´%‚Þ=ºŠá°º¡*`,ÄfPi“š\+è =uÚ.˜ræ|™¾ÁO¡•6"躑ja®àý8Û¹¡ãg¥ÇÒõûù)–þ)â@',L æ5{¯¨‹è·4m7Èð&å3«< =B«Îú½Ýý¿‡¾4ÔçÓëž×éžÈ;ÓCZŒ›Ô¼Ï…MV—н[iCŽ8°ºý—~ãyýˆ¾7sì:ýÈ»R§taäî,î¯êA$s\àÖ{ý. `Ø+Eȥƴ#èbôý½çu'š9öô7Þ­¹­”ÆGè¼øsè¥á¹<[ï%ûµº!†·!Å•¥"X†€žHëy]FéöÀÏæG¤éNHV¨Ìt®þl[ï{µ**r•v‹µSnNEÐç¬hºÓóO隀ң§MøH½1L$¬§†ÜMa—y0 Uß5E¹f¡ÇÑÎjšô¹j1}ðà ŸGç.Ñ·ÿÂWïîyKïô0c¡?¹©ª·…]æ~Ž–sb|Ç-Qêý…¦¬ø*‚>Gņýüu÷À¿ý÷ù¾Ú¶ê-½Óúd8ãݶY`Ô;9R“ʶh’’aÇÑî ÑîA3E…1Ý—}Hãž¾æß¾­¦»{Uèg¼—– t²‘SUÚéùEJQ¾…GŒAŸ£VÑÿxÁ¦ô™Ïá5‰ôƒ/HÄ‚Nž„5Þk“:Ùx*ÛD£UÜz4Ðÿ@ÿèyÝIã|ŽîŒ£ÓIƒÞx'}¹êx¦° ýX§õB¤§WÛ•+6k=’vAŸ½>¦Ÿx^Gÿâs¥8zý‰dÐ_a¼óü–2aîtòˆôE™°ÔyIJÊôÙŸ”Fq¤m¾!°ï'ÒÕûHdƒÎwÞÃeTìéN'HQìŸYéŒ16ZŽ ÏZïÑÕÛÉÂtU¼ûÍOïþËýç¯hÜšó^Ù"t=‹¹ÂmÝVÕïÄ]éáÒmÝJš¥êÂŽ9B—ÿAЖ–%ÒèãhÔ/ù›yt½{B¦3Ú± ó°™¶pŸÝ™³ EzÂZ«4jšVûEAŸ½xቸo¼¾5è[)‚>m+†K’´8Eúò•–r²EŒ°””Éj “°ÊIß$0;ŒôŒ4ë9Ùœ:‚.ø;å Sm†xgvô $ÆŸ^mWŽZËÉF&Ù Ž #èBÕÉXL¸Ï2›Ô¼»â.õ¼$F®AQF¬õL†Xø­AŸ:˜#l:Eí¸È`X9‘áòoke²¢?fŽTAªÔQ6î[e;œ¬æö‰»VO•–c~ÖªíŠb?`­‡Rð¶WAÐÍ×Õðr„œËU“‹%ÝüŒÿgï\~š|Ö8þnf2³íÊPÒ])¤H¤MJÚpI,—ß `bÀ B-¤\cƒˆˆášp×ÈBQ£X~' Àù‡N§zÎæüìå}ŸwpèóÝN'Óóܧh–Tü¥¡ô¼]t·ü~äð8,鋞«˜9#Òé·”;— ?‚Ž Cº„®ßçØ4mÉG»á;óðù#kHu•j>•ƒ]XtNérlšvKúé ·ÉŸ}Ç©^áL”±5AÔ$K7ßd¡‹’~7ÎmÒ·ø¨‚Ô+fi­²‚Ž CjüÒHoìå|_úïYÕJäüµ:‚){áïûØ’Ú‚%½o‡ó!éîçCõJ䮯ô+ÒH¹¬ÒH·ßæü³ì÷Ó-ý„Ì©GºuÓ #è`а~5ÝÒ­CœïôÉÞã{¢Ð;«ÿÕ \"è:˜biÝtA:dì]¼Ÿ>(½™mªKy‚±mA‡tÓÃi~¾$°rFÛ°Éoq±ÌÒ¯é£×0ˆ _ÂA–°§'²FNûÚÃ=²‹änN)6E.åçœ[tN“K÷ó-}¸ÞSïù*yE³Ê5¸\K!èW©‹tEï?I‡ìeÓÎV¸í¾lÒë•z”íªùtÈFt±àyº_÷Rïà‚wå'Ô‹ë•leÛfmAº6B¬3í\ñg^ê[\°ožóy¹i6ËLФ·f0·t={M8X4í û¸”vNŒL%Ô%O’«©SlÚ{JåÑÀ$‚Ž i3}ÝŒfé î2È7lÒgQÔ4§z¤k×iº‚~ÕŠ±@z ±²™º WüÞ!=ø^¥&é:‚&{"C@Nkj¥ô²füÉŠôn6eIŸpM"è:„2ä´ö—”¶5.y·—óÏ}HzZ»&•ïúÕëµ#m#›pÔ?QÚ\ ¸¤½DvH΢(éµ v-žaDÐÿ½aé+ä’Zvþkû6Ùõ°Š’^¾zFÐt]dî—zÐE½ãk~ï<`Ê‚9=ÏA·FÓ·¬ x©o rѳ8ç%R‡Q$IÇqïzƒ®•f ½kÚ«Rê^†\TTÉõÞEÒ³ÑehAGÐ+b™v7SzÜiHLsÉŽº¨‘S±ÃE[U}4‚þ‡èµƒ%2Ub5µQÚ |O9ê÷%“®d×j‹‹±sA7®H€fê+³s—ùàjq’ô· AÏÛ³ˆe3”pÉK»¾€.{߯{>JÜfÑ,!ï="{AGÐ [‡ÑLý-B(}’Óž®p^"Ñ|/Ú%dOÍ—¢Ê>È ÿA*/dŽÌå–"$× 9Zkœç|ðLÞ>Ålع›*žÐ*ËHAÐôLªíÌœNOrrä†0¥Y÷åšï–„L)x@ö$é-:‚nT#¡ô³ÞiÁí¨?õÈíg{AHýŒŠ'Qt¼‚þgéudñ¢ç«¤£þ²q5e¾Ç%ž+ uU AÏSù¬0‹FÂQͨ[ïÛ¸m_žz¯‚TßQõ¿ãˆAGÐ Ú†æÊ¢4òìnrÑãœïH«}·,3Ñ6V@ªo©yJAÖyŽ #èFIÿ‘ݯž”RÚ:ŽB{—x©ÿåTtêŒq°NA7v­fOze¥¥  «÷ qy—úRðBÉÜÄAAGÐ ’Íšt­ÌGÝÇ ±Úß+ò.õ™YBæŠðÈt$=ƒ7Sz8©OË ¿‹à{} 9‚ž·¤g;zÔrÔE»žƒ&ÚRžz\RNým©VõqWÈ #è$"r±låñCJžÁ^êÃ6ÎK¥ìU„äÆÔ<¦Næxƒ #è²Hoúä¦]G°—úâ çžu){½SGȇ›*žÒÈ "èº!Òsš]´©[÷{8Ÿ?•±×â)Uõò5¼Ñtƒ Å‹fk:vƒ{ê§óœ÷ìËÊYÞ+ì¨#èº1]0æÊ¾ù9u©/Á~‚uçñ¿eìõ^ÒQïWõ Îý:‚n@—Œfß+%/ᙇG „ì)i¾¿#躱¯Pˆ9r(þÀKéÀ ì‡x’´ßmæovfJYóAGÐ)|À—¹üAå±›º_vÃ~ŠõÎ=¦‡œ,o ˆSÑ29íÆh-‚Ž ëVK‚åÕo†·ßû¦{84ßUæûœš#¦‚,4 #èºU.¢º9M·”%í÷ÃØñí3ç|ÇôþUa¾7(9xf2È‚VA×-ëË)ÍöË~§­°#åR©6[É7³Í÷þ EÇQœ'FñFGÐh3³Yø¬•Ò.àúíkœóÓ£r¢xfŸgCÐóPþ`î‘[¥”z]uë†GИüÒCÑ^¢)õ¤ìµ:‚®ß,ìdl-G0U?s¸k÷Mwˆ¼Éµr÷ª ÙUòue-¸aEÐt½jq1æÊušx·pÕ›³êwEÍÊGs¿Í"&W­äKŒÑ\ú‹tÔÿYÍ1¦cšø«6Jil«ºvZ’D=¾nî×yÌI öL´•¯²@ ‚Ž ë× Frþ«“fJÝ/a ൳ۜóÁ¯¦¢^5KHƒŠ—zdMw݈&B¹;êšfÙ:xàZ¹'󦣞J´íámzÞ©V8ê¹GuÛËJ)õ}F}1…º©|U½¢—º¦ùcaA×í¨¯1¦gÆpÓ²7‰úóJP›–—:™S1üž`È,h]ME‚LWþ¦éÈ4ÔWÌL¶ O½ZÁœº¨|#èºnê2ß5­ò¹O í«‹°œÇĢ“)õ åF-:‚®_å1¦Ó,ü‰:´¯~öÙÆyǰy“åjv ©x{OAÏCó}M—¹\) ø®wÀɶoC=œ÷”˜7„FÊÕ)9ÚZ‹ #è†Ì÷ÂM7êî—À%4¢0–Ï›6ºøC)P1(wÁFËt]¯ìkæØÔ÷·M_J“¨·ÆöÝ_IeÛÌŠËݪ'ÄÙ¯\÷ê ÆZt]·ü!Æ¢:íÂö²CJéÀàζõÞT\®Ñœ [ú„Ô«f¿[/lAGÐõ«e”±PD/5[ÍIÔK—³mOoÛ„³¾hÎŽgö„ý®Ú#m¯7­:‚nDo‚Œê¶ —ÚÜ”úŽãr§ÃÂYï5É‚OÙï/Šðèô¼RØ•¼Ôõ†¯Ž}Ig½m¸a}#.,øiSFNYƪ ix¨œ«>2AÐtýමÔõgp*—K…³þ¥ öcý=Ÿ´àmóßͰY‹ÿU¡ «~ƒ±˜AGÐõ_.žzR턳î;N·}öˆÚØ}3ªhªv )ØU«TNŒ ¹DÐt—úfòR† ü ÏÞu‰tp ÞžŠÁ›s­?Jºê”ʪ[L èº!O=ÊXðÒO•Ë"Ýæý<úlHæV¦OÁ=uËÕÃVu=¯ 1Vhè°,ˆ¼I×:ßùÞóRôÖIÈØ;»Ÿ´¶4ŒŸp“I悜œ8âEÓÆL2Á‘žTŒ¨‰ ŒAEÀšŒž$Õ ÇQ<(ˆhDŽŽŽ€ª4A+jô?Šhh›INÒ? š^µ7½˜¦i¯fÖÚZœÓzª{ ë¹iBÒ½·ß~ž÷}×^»´=ÝðCt :pFDˆ†é­ÀRnÀÆ\9êjý Y­7玣ŽðdW®¦?­ðËçß´ƒŽuÊ*–BJsi°õV² öñ6Î\F"<ê‡^î.¦ê• ‚ˆ`Ð1®tp:ÓÍïÐÖÉj½µÑøëÝ0«:êÐþÑ%cY FUúŒÕ92#¡Ç cZi©SO„žvh÷VÞŽöêÈŸƒº\¯} QOWç,ó0è˜UšfD^„ö/©^-/¬¯ÙÐvá9{¹° ß&ÜGŽzM?^‹A¿Fùý‘”ê+ôû^Jg–ëN´Ká¹AdÝ@¹L¬øštêÀï*„t,:’ÍæRŃ‘ìÂK·æê¶`k®ÙÒ×IÔK§Óe GJˆ21èXôKuþ2‚#±ƒ;å aÝE²Þ&˜CÇz ìÀn¦ÉÂØ¾l"ƒAÇ¢§!>@ÝFq(¶ÕK±Ž8ÃÇXŸt![ w¿®¿“_w>iO³aЯ°LK!šéCr¬{ëÌ® bÖá3n¬•Õ|ýÖj)ƒÁmaãýšˆ³¢€¨w~…”õ5_)Dus؇gMh÷ÐÙ›=UõšÕ4Yo2 1èX4QPÏCäêd½{sÌr‡éöS܃\8_g5 ¶ê°i$‹Á¸½X›ß‘‘r0èXtë@)tõ0²ÚÈ™[«Ü‰tÀΙ2“ëærTæ)?û’ÍB˜à{n¤ü7wí6aб裼~ÝuÛòV2ÄïX‘îJóÔ5 ì¬2ÿ‚îÜ­v˜àK×S¾Ï=4Vbбü’`€'ø(KÁz7U°cGÚ» ›Í±XÝÚg´Çnì&¸^.k¤åƵÿ `ЯI­¾²PÏ^A¹=¸!‹d™ù^5Ò{¨ƒ2ö¶íwöàK÷S¿ZçELt,ú¨›vêÒL´/ )R;Hc/îò!MñÜ=-Y±³š';hÞZ`cŽQÝŸâMxAÌð0èXô5¤Á|ña-Ny™â%¶ ÊçZëær’°— hÂ^2]P¿=֔ʳuŽAÇB¡¾a1,Ö ¨§9÷‚6*Å·ÊmA”ÎrùËb°Ó‰ñ즱Ûd„Oá%sœ#é< d°OH#È\äÞé*Ž:»å”ý‰KPñžñ‹7ènõÂ_5]r¿w ú5,Ö Á‹Œ¦,ÒPÆ`/îÚQëÂuö•6páÑ[É4¸eU¯¦ò›Û†ò–6 úµLð³R`ëŠØz¼³3óÛƒ‹öÐV.5yc=ôwL]p~pg³”d½=eY—Ùa :qWà³m"þJbú¼õVÕ cVH|n„Ö^ЪÈÑ«M¥™ ]¬\_¤X_MÍ Ÿ)"Ä2 :Z[Ï´ÎúÞඃ\¬½q#ˆ®jçŽ{T;žU6i>h¸0댪õTìÍ   iµž#ül8a§Pº}ÊÚ‹×N„ ù†Ö~1Úc¬×l6]‹}æ0è×[•óÙub)Ò—¸s@kVí$íȼ3àÊíΉѮ œ3ɳ{÷áxQø¸? vÞ|ƒŽ…PáC8p#²3ûy–ú Ó±VKò6tu;wê#íÍ*kê\¸ÚÕj8s˪ZïM±Å4óD^„‹AÇB©¡a)Éz$œØóÅÑ^!ß)°×#¤=–äs&æ@èË?ö?.¤Œ½=•ºs}àö;‹AÇB\® )Ö³ÂDïPoßövµR´sW[à8Oæ´ Ô´ÅjëÎõ<ýÂÿy£i¿*‹¬Ø{RfYÞ°ø+¬“^:c%üdl‹Ú'öä™­kq¯{æñwGÍdy€û—¹ûÝþÇdw.«j³å ¾ˆƒŽ§åCø4+!â…“qº¢à¶7Ú”‡ºF_M§˜»Y0‘óÁÝæ¹/¨ÝÙwVGoÇ`Og7Edt,ôêœçç%ÍØIé¬Î¸3Ë%Þ 7{çÄãÎ*[ÈõžüBƒëfïzuöÅþT¨Ù„Ô€AÇJHuh˜! vQö¬0i/TZ·w>„yP¼Ë½N·E³Žó$àñ«šc¸ç<\Ðxgñ~³irvFéÈjï%ÙWÄÆ c%Há#ÊØóv#Â$¾ù³hPmk쪈ãݱ¡¶£Ø¿¦aÜ¥œˆïÀßU~óÖxÃç}u„lÆ3²ªûk/qöÖ©çó0èX 4vÓl¶ˆ‚ýДÜ×üꂾ8Þ™];N÷ ýžzæÒÄóÞ6ýܧg×öQÝxFáè~OI:¿ƒŽu–d†a²=büðJg²Ï® Ø’ræiàÕvmäžî¹´þî2Ö)àÍ[{¡ŸEú›Ö£Öhß¼4o—ñ‡+1èX‰T¥a˜rvBjÌò’E·s'Þà™­ù‡oÛmWÒÄîþ@ C3ÙÝüxVY÷¤XüiâKzöG£´ß®koJ~K~ˆ Ä :V¢ ÅtÈSÖ¾43?Ä»”‹P’ÀÇ9<$z|ð½¶]^+PÅ9‡¼«¼õ4óÌŠ|àô;zûƒ¢ äûû¡ñ@‡Y3©šˆkÞQëîÚNž¿„Ô¿ªÙlo¹“(àMàþš‰AÇJ¶ú€¹gçEq'ÄÙúÕTà”ÒToÛv?=ðú|‰Üáµ9  ÛŸ—{îÓ©ƒ-6÷4ô1Ø¿~ýæÍwï¾ýutç§è?ýý·¿ùÝ?¾ýÅÏ0èWBœNÓÑÌ®4†;ô÷á#Ãre ]bÑ»»À Òý'©'í^Òü~€´œ‡|NÃÀ^ÀeÖøõe9§ã}ÔîOÞ¿ë×x\sã¡:ºeÎ…š ‰ý§2¾ùÕ×_ÿû>à_)É– }ïxþLä‘),K± ­×Y‚1ìóÿ¿¬‘_¾Ö%otx}Ðôƒƒ:åùu¡©gs.ÆÿöýÉIë“j+{ؽ0éÏÕš;û{S¡†ó¿–°”É»|Ðÿ”ñë~õýß2~¸qögô+Y¼/ކKb"žø]ýìÑŠ0å§Üžä~ÛæàKÖÊ+˜ŸSE9ð}’~àü$þtEŸæ?š~ÿyóúõññóç''¬ÏªÀ¯Z@ú=®-ˆ?ðþ3ø&éÐeƒþ‡Œoþ þ¹ñ׌?žùýªüÑ,px¼4›™7 õÉRõÂÙEºÁ U ,¢L¿•y–ÿkðÐè…wÔV«}ТSÆn0¬ßªííißyõêÅ‹/_¾<¦Ð?ƒýÿ±sw¡Q¥gÇÏ&Âc$f<sÖÌ$Y'&]Û¡ŒøAÁD6´ …¨K’%wZ¼Hˆ±%K*ÁÏ‹Hi¡KÓ¤kRÛ®Qš(‚©[ E+ƒ)e]öªe¯öb·,•Rhoúžs&æÃãè„mòdýÿ\<“WÞy'ÿ÷œ3ùðNþoüÂÝ~üW_}ë­wß}ç_þá¯îpëÖÙmkï¬tèÓ2êJEÎ1BAîàO÷]¸;´óbÓÚ…¶5]¼yrh¸ìBŸÉ~ßfÍÏáusÖ?õ“_™ø¯]¿úöáC‡ŽÿîYùg¿uo» ?d¶·¯¾wýúµk7¾vãÆääHÉoó£o}ûÑ£—_~ôh6~¿~“ÿ÷^ùÒ3½òÙî.ðý_›mà÷f¸µü¡Ë&ï˜;ç¡¿pÉ»TvöÄÎò¦mkŸ`º7gû¡³wËÎ_:×0vûØÁÍÚŸÐŽïºý›“¿»¼çíæà«9®þ³ßÓ³à}7÷îݳgϧ¾?ýxÖV׿¿Ïnf Xtßÿ¯ÿ~–Ý~°ü¡Ç¥Ä;&DR¹ÆýE¾“?vúÜ¥ wÝê,¼ºŸßþ#Ëoîù›ëŸËzXÒÞ±R¤1סãqö·L÷eÃC'Nºåo[ûl41û€Ùvžì7·æâ`ïÞ]9® >úð/k?ôýgùCIfуà1BÇÓßÊ;Ö;Öp®ïÒù²;ÃgÝüo–_<Òtàyv€|l;0Ï‘åK·óstÓW~³¼ü÷Ïcïðç÷=+pFw¢vžzkñ|Í|Ž#çÉÿà¾ÞÞ±±³ ˜mà¼9ƒ›ùÐÐ9©Ÿt‹0…¹6¹å~ÞÛ‚ß4Öº^þÐí€Ëtû9/ÝÕ}O.V»¯xWëû¼k÷ÞÛc¾Ó õ-p>Ð…2íþ´oùC¯“{³o¼Íä#t¬”Íîÿ¿âùþ_ºª’-Þ1-Ñœc„¬âÐ;¤Û;n”–œc„¬âÐ Äv/ÏCó¿Ý5hŒÐUºU!õ)+2 u•惩 “OŒ:°úCOÄ%Ü»Àý Hö?1FèÀêÝû%ÑQÿëhÙÐŒ:ðý 4!€Ð  tBèŠÐB@è¡„΄B't€Ð  +BÐB@è t&:¡„Nè¡:@W„¼P¡×׿Ô?ºF³Õ³«hgñ–¬]÷âæîfZ[è]WrO¸¸^õrרž]3‹·t»Çu/^înj VÙ%ÈÖÕÓ«W=»_fñ–¬¶•Å#tB'tÐ Ð Ð Ð Ð Ð å&tB't–›Ð Ð Å#tB'tÐ Ð Å#tB'tÐ Ð Ð Ð_àÐ×ëþ)œÕ³+I³xK6ÒÆâfúãNÍ@ò™cЦ—YwìúV¥³s½‹k]¼Ð•q;\´±Rçì’q'Ú®æ—ïÛ–Ö0ò^í Ùbgž1¦hz­Ž8Q‘•³sEŠ$®ôµTH¬3.RÒ8»LÔŒE%¦äWÂnû¹^ïÕ ]Š­®né©Ì=¦gzIGöwYÖ”#µÏÕ!*Bš^©Ä ,kÄV¹x¡Ni™±"ýVqÒ<*‹BWF¾%œ2‡ÊNiÍ9¦hz¥2ž­©Sáì\gœ°†Ðƒ¦—tœFñÆÎî%qfüÞï¯üò¥¶Ë¢Ð…‘·iÍn^9ÇMo\Žú—y"}³s?OwÇ6h=hz÷³7<‰Ú…³{]¶né_ñÕk³%ztaèŠÂÈÿÝÙäÓóžRИ¢éeÖû×um"•úfçÅTئ!ô éµH‰âϼŒÄÜS¦Õ¬àŒ~EÚ _XEaä-ž}á"©\cЦ7w ß©rváxµŠÐƒ_Ûd²°³®bDåìLáUƒV¨CìÄŠÏ/¶¬E¡+ #oañ¿”Q)Ò˜kLÑôfï6ÃÙKxe³ ÕË=KEèÓ ‰Ü³Å5­ñ3ÏJÔ{ïºw*ùúڢЅ‘·˜d=S4=ß`‘E4În‹¬±t„0½j‘hÏH$Ù/²^ãâ¥Jw*Ψ ]Qysæîèy>OÊà¸D'4.^Ò®I) =`z)É~åª{Åï{‚/Õ#Uw²Û4†î¬âÐ퀫[ÏÊÓ¦’h–hFåâUÉeKIèÓ3gôBïA£HBßâõKs¥ÿöK³ÆÐíU|é^gn(³ï/ÌäS4=÷Ó4.5gT.Þ”ÿ•¡L/“+þGÒú^Ú¸·Kšý(& CWFÞªd‹wLK4瘢院ғԹx2'£pñzfCËkêfg¶¡‚Ùâ'†®(Œ¼uH·wÜ(-9ÇMÏ*ˆÊøŒÒÅu|"ŽóšÂÅë–uþ[ Ô7;[ü/ûEb’Vº¢0–òTÜfBó¿«/hLÑôªãRߥvñ|*.݃¦wOì”7\¬pvÙo={(vDaèŠÂÈ_…Ô§¬È€Ô¹ï‚Lm˜|bLÝô %Ú8è )\<=¡M/4.»'¼lS8»tLJ;ޖ­–ªÐõ…‘·D\ÂÍQ±½›£"ÙÿʶéU‡çî‚S OQè¯mĊ⢠¤ Ù]‰‰mƤ;¤+t}aäÏýYúèhãüç³`LÛôÚDOè‹§'ôÀéuut†£-#Jg—Ù^ãD‹/ë¹±µ´†€gÚ*ÛY€Ð:B@è–f“tœ©ˆÚ»§BscÓRå?è–Ró÷ƒö'ÜÓŸ˜ }¶öévÉuq'Z5ÂRšCo·âñ˜¬™+}Bœ÷±¥À²DjŠjÌ_©ÀÐGl Õ‰·%кÔMXV:*Wæwû\–"Ë*‘°{¶ž´eCPèI[öw™ŽJ+‹ (=㧤nþ`±{h—û–UóÏÕ…2ú~i±üÿ¿‡Åô†>î#a9óx0åÄÌuzu8æÞ—G"Ù÷Ñ ÐãrÙû +&¬& 6ôBÿA§<èjô˜+ñ ÙdYýóºi«-mK`èÕ"»=Ž”°š€ÚЧgï˧ÚÄ3iYëÝó|±L™ñÐý3+ =!s¸Iô†Þï?è‘{s¡G¢’LÅÂÕ^αî‡éjs\z© }P¤‘Eô‡î_Ÿw9’œ7¼N6mñzŽØ²%;2úÿÚµcœ‚(ÃhL^‚ %›l!P`詬 ÚÆ ,ØcÁì=ƒ½%§ÀÐywX4Ê 6æûÈK¶™äOvfç:–‡ÉEÚ£ÿœ¶o‹Õ„ƆžOêßò÷xN¤ÏjÕ»ùyÜSÞ‡Ð?ëúj²NwjÊCàûÈž¬&46ô(«Ò÷ÙÉYÚ4ÏÇ©àA7oZ­I'Òw´CèEÄjÐÚ̆)ô—,^«7üE/Úšú4–ӪݿóU7ﻈÑüa³xþÞž¯#º£Èê›qïydéùÙÅ„æ†Þÿ˜w{óӻꛈ³úßÕ¬—ûÛj_CÜ^f½eñVßu/Ú£<+w:‡F‡n@è€Ð¡Bàú4áÝ`o•4IEND®B`‚metafor/man/figures/selmodel-preston.pdf0000644000176200001440000006567514465413173020150 0ustar liggesusers%PDF-1.4 %âãÏÓ\r 1 0 obj << /CreationDate (D:20230811130739) /ModDate (D:20230811130739) /Title (R Graphics Output) /Producer (R 4.3.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 7 0 obj << /Type /Page /Parent 3 0 R /Contents 8 0 R /Resources 4 0 R >> endobj 8 0 obj << /Length 23531 /Filter /FlateDecode >> stream xœ¥K³mËUœûçWì¦ÔàPïGö#ÛF7 ‚!. ¼%a„¾kŒÌœ{Ö@Æ\Ü@R²Ïʵ櫪fU}9òÇŸ~ä¿ûøßþëÇÿøèóûH³|Oé£UüWöÿß?üøñß>~ûíÿgÿñòËoéûšý#}¯Åþ³•ôñË?ù/ßÊ÷#ÿéÛŸÿÅGúø«oùãOÏÿýÝ·œÌè?›ÕœÚlßsýøÍ·óß鑟&e\”Ùdÿ^($­Ò29d•:$­Rt«ú}û?ž°:²CJw^°ªßW‡l”üëÊ.g3¹¿ȱ ¥ýæu޲7ÈÙ$­ª}veYÕI«â²ÈÊÏÆ‘´J”nU¾o—V¿yUXüÈÕ`U¾÷ Ù [ƒ¤UµS·º¬ò‚¤•Ÿç5`•ù½Vùû gcÂ*óð'¬2wÉÊo†#Ý*}ßr—s›<§Îç´C6ûìNvÙM–Ù ¥Yý}™óÎnuä Íÿqq«# eƒLÒ­üž8²Âj}ïr@V;Ï»Áját«‰»îȉŸÑa5í,¸Ùÿ:`5pÚl£C.Èê?cÂjð{'¬:nï½`Õ¿÷Ù ý¢¹ªKŽö9 &Û÷Y!¤ß99%;-¦³t3}éÝ«ë ;?mÐîÇ»8§¿‚óiºA—Ií~çï7Óº,× ~Iÿ¾Á/É¿Á÷MNÝýú¹S6õ€îøüp¿£ó¢6¿ÎÛÁô‚nð›ð;§|R»ßü>“뿉GÏ´ûË\©Ï‰4Íï?—:wêaºŸ®­Ù…®ÒÍtC»gzAÃ/gø±=6í~§­óãÉ~ç4oj÷;—aR/hܹ¯ ‘2í~ OÎ ~Yß×àwžêM½  üºûµFÀô€®øûp¿vNÓ¢nÐ-S›_›:þ ¿ó-êüzä¿Áûõè:õy†Z;ÏÎpí­„i\ߣ‡é†g+oL'éfºòþ;zAóï~EŸÏð+ô/~ç|vêµûûÛï§Rݯîï{ShosñÞ³ÕÅûíèݵùÕ‰–3—?ݯG»ßø>ñ{ü†ÝöÐî×Ñ™^ПŸðk¼?ŽиÊ‚_åýUütÿ}~˜éŠß{®‡éŒæÊô€ÆóRÏõ0ø}çœÑŠÎÏÑ Ç>h~EÏ÷Ñí——L{ Ý ½·0í~Þ\›®ðëÖ^Cèÿ¿fãh÷«ú} ~L>'Òý Ÿ;ÑÐx¾Î…p¿s¿$j÷K|^Ž^ÐhÿÎ…5¿¼ÙžVïœÚ¹í7þýr¿£ñüÙ20^ÜÔç˜Æórn´bzè|cÓj¯Îš }ˆgº™VÿÒü*Ÿÿs£hßÑîWx?ãAi§[‰ºAóßø%ýûê~IíËÑÚÇ\Ù\Ó Ã Óæwšqþþæ~Gãù< û ðL»_g{o 4îï£Ý¯}¯ÒîWy?†ÉýNÿ(= qÿµ¿ÌçÝ>Ó‰÷FÓ<žmc=Ýx“¦ßix“éÉë}tƒFÿÛýÆ©g¼ö§gøuëö 4¾Ï:Ó Óîç§Úý ûgëh ñ<ô ¿Ìöº7ø%žÿ£´VL›ßÚìÿOGh~g,‰þ®{CTÏ@÷ÇéHtÔæw†±hߎv?Ž•òé¨Ý¯éx'üÔ¾[Goú<Ÿ•ÚýÔžÛ@aõùm«iÜ?GÓ‰ß&éèó’þæèfzñ÷½ ÑþÛÀÇôäñÛÀÈô¹^~>Ï@Êýôüí~×ûèó?*üÔþí~…×ï üÜ/cHkºA£}?ÚýÇ#gXi~g4ö÷hóÏñ ÷‹×óhó“ã£Ío >¿öÓ]¿g¯qüfFиv¿ªó»ì‡Woúõ8?¬šÎ:?ÛŒ:øN’Ïdè<©OÃZÏeÃón//¦ù>ñªSm¼'=¡1Þ°—,ÓƒçÛÞÐLw>Ÿözgº±=Æ«b=žo{)…Æù»ríjŽv¿ÌþÇ.´éÄöeú¨¿žf`IOhú ÷kêïìF2=õû†ûf‹¿o¯³¿œ~]Ç»àw~æ¦v¿Êöáèó"PŸñϹñ«éÌñÅÑÓô9Í~þ—7l¦ý-Éô¹Ñëéfp¿m~UÏÿyÐÌïtkm~§DûzÔ ûÅ\Ó|92í~~››®ðãd€i÷Óød5ø¶/G»_f{´ûñ56Ÿ†ÆüÊæõ9ÚüžñÇòfçsùƒ]Ïxï#Ëßëo`|p6÷Óxõh÷k¼¿OÃè~•ã?k(¡ñü}NL=ã ôO§a­¦³Žÿ\Ó‰ÇâóÁzÆ8þíQÓm~gü€çù4ìæwÆ 8þ£Í/ë~:ûu¶G»_ãxhø5ÿ®ð;ÿ5¨Ý¯°¿Ú ~s9¦Ý/ñøÞÐ8þÓ‘™_Ú<þ£Í/-ާNGh~IãëMޝ¶ßX¦Ñ¾ï ?¶A»_ãûâéˆÝÏ_› Ý¯°¿Ø>P7çótäÕtæóyô4ð|ëøëG±×öDÝM³½5½MOœÏrŒ*t–ž¦9ž)©Àý¡i÷kx>M»_ÅóYR…_E{iÚý îÏ’üø~hÚýNÿ.m~ç6£_w¿£³´ùÛ”¿Ï§<ʹͻ´ù­¡ß7à×u¼~]Ç;á×0^-iÁ³{¦Ý¯ày4}.¦ýz”ä/¦ee¼ÿ˜ž¦úÏb7ÖÑ“SO¦»é…çÅô†öñD97ªù¡Y…6?õçåÜØî×Ñž™v¿†ñ”é ñ}~œ€4í~…÷GnðËèLwh~M»_Âx°œÓülîlS›ßéV'>?ÜoðýÛt‡Î‹ÚüßÊiÜϧ] Ý¯éü,øqJØ´ûq¼eú|Qœè,Ù;‚2ø>`zBûx©œ†+›N/™> E±ùžBm~§?÷éÍr¾ íãwÓæ×'Úób/^¦ÏG)ðëhoL»Û¯b/rÐ¥Q»_ÕçüŠ>ßà—õù¿¬ïïðK¼?ŠôŠÍŸà÷ûÄQQÿnÚü¬_Ôæwú÷¿é~mð~/~lÏÊéˆÜ¯ã}дûq¼bú œÊéßü·5̦s§ž¦ Æ'¥zG^ZÆûˆénšý½é ã=©ùþÞÇo¦Í¯²¿,§ãÍÐiS›ŸÍ_Ljó;ý=žÇZá×y¿=¡ñ<׿ÆûÃþ‡iŽÇLoèŒïïð+¼¿v¿çøü2úsÓî—ø¼ÛÀäè¢öÛ~¸é…ùRÓº@/÷;—‰¿o¹_è?LŸé·_/(™îèLOÓ÷Kó®i´GÍ'Nì6ÅñàÂØmçý\¸ çË.¤éŒþØ.´ûq¼`ºCãy:Úü2ç÷ìF1¿óXûøÞô„Æù²¤é©ïIÖ¬ðß7ø ùwøq~Ô´û5ôßvcghŸ¿1í~j/v¿çx'ü8?gÚý8Þ¶ËýûŸ£;t®ÔçÅ˺ <ïÍ_$¬[YzBãúž;›žlßìA7ÍùbÓ÷ÏiÜïG¦'4®O/ðk/ô¿Êß{ô†FÿÑ+ü ÆÓ¦Ý/cül Y†æ÷7øéz÷¿ÄóeÕëÆ-¸ÿ¬¡4½°~` i†.ÒÝôdÿ`åи^6‘nšóm¦ÝómÖpgè"í~M~ËVÓôÛöbbÃHôßÝ'Šl؉ëc/‚Ð>ž+XX°a,Ž×^¡ÑþœŽÇýÔ>Û‹æÑ6¾ñï;W†Æý‰…†ãzØB ´/zÇgZçcTøq>Ã;JÓêŽv¿®ïkðë|>mÈtcyô„Æù·%%ÓUÇ7àÇù8ÓîÇ÷7ëè+4ú›1áÇù(¸_ÒïYðK|ÞlÙ-}Økî‡á³þZ˜¨—iõÏ60ÆõµåBÓŸû@÷³­Lš<3Ãop|qFî×ù¼a dã![5­þ`Vø5¶OXC¶×t¯M¬˜.ìÏfƒ_áý?;ü¸¾eºA·Jí~:_ç‡hÜïv GŸÓ‚çqúDƒi<ßG›ßPÿ1}"̧EðïýƲi”-}:rÓüþm ©MÃð÷¹±OÓtêeºc¾Ä¾Ç¿ü4þ±‰/h<vc@ãù³‰2Óï¯6Ð.ÐèŽv¿Âñƪð+ìߎv¿Ìöïèçg5ø%ޝVƒŸÆƒË'jmZíÇò‰Óx^–OtØ´Þ†ŸOäd­ÿ™иìÁ4­ñÕšð›¼ßlbÒ4×uíŦ@£ý?z”›ÆÄý¾| gºêfšó_¦4~Ïix 4žÇàÇõ({KÐx>v†_áûÅÎðãz‹½È¹_æøîèÝðù ?·­!5Íù'Ó ×ã4¼æ§õ>ÓíÁöei›ÖÆóstƒÆý†Þ4Æ—§#p?Î×›Ðh_­ã0=8Þ;ºAwéM¿?ÿ£OÑ1¬0íÛlY`/êÍó»m fÚ×^Ô‹iŽMhÞìÅ>A{{cÚý8ÿjzAWøø±?6= ;>_á—ñþeÚýÆË¦´÷w61Q Ó¢6¿º±>l ºvjó« Ï·é=p<¾0hº,j÷›hÏl"%A÷IÝ K¡v¿÷A›ˆ)нRæšÇ·íƳe±Õ¨tOÔ Úïw›ø)¦¯ÇÑÚûO›8JÐ~?˜v?]?[x‚æ¿/ð«ò/ð+ü=g`™ ½ý3Ý ó¦v¿ÌãÍ ~ºž6p…ö÷›(s¿„öÝtƒö÷ŸHƒ.ðîg럋z@ãþ²…<è:¨t’6¿óþ1ñ{üØþ™> Y.KçË'm™wI7è.½ }m!×§ø-¬GøÂ´¿™v?=½Âë¶X }üå ‹Ð¸^g ™ qý{—ÎÇÑîÇñ’/\BÏE= é?áÇõZÓ çûhúeÿ‚_gtô¹QM£=ïÍóã'¦ÑbãžiŒG†wt¾­/QÓ÷ßÈðk¿›nÐS_Ðè?m#"4Η½x@ãxìÅýý¨òÃõ¶‘¦+ïÏó¢S }|mz@ûxѶ4¿¯Ã¯òúÛžNh´§çEŒ~èOlƒ¨é‚÷[HOÐè_Æ„_áøìèçã¼hôÿÃ7Šä¤þç¼Xfh´¶°oZý‘½ˆBãþžþ ™Fÿd»{¡q¼¶q÷ËÌò«š~h/g‘_ÚÔîÇùbÛ¸¡Ñ¾Ø¾lhœoì7=à×à§öáhúUøuù¡ý™]~¸¦Îÿô}«{²»ô¹“ÛeÃW/ZáJØ”G6‰†uúŽ¥#ù;¶={ãµËäù›»ü|{‰Ë%9]¢Ï<ïÜÙåì.»$¬|BÁv¶ÀªJ —gUZeIX%I³â\ƒm¢©.—ätÉ_å[Š4ñç;r\vIXa˜`ûw\¢°å?—8WkÒ Ï¨-ºDr¤Y ¶@Ëm>@ËÏÒ¼‚¶é·óòu£=ô#}fsó®íRª.qoÛ"§KÜZ;Ó #ói…†kgZ¡_ß…V¸¾Ûç£7W-l{Uv‰FæÈî}€-ÎBúo¶½Y.ñ›m)×%:´Ýi…þgwZaøkßè£=h…ól§Å%Ú&;á‰VxRpì¦CXnÕ0¯àÔªKüæmýýÔFÙ]bк½·Þl³mó[ué·Jó¿®‚mƒ•o@ñt…V~D¶ïVySÂ*ãWZ¥AiVܺirCâgømW ¤LNHüæîVDNLÂÊÐ$¬¼Ñò݆.{§„UÃ÷NZµJ «:)aUaµhÅã]ö6ßé27ÊîÒçLnHÿ"SÉ™N“Ò¿ÈvdºÄáÙ!õ×íÒ{aÛÞ +_43 «¿VZybVþЙ„Ά”!%¬põm*d£„UÑ_aUð×A+Ü öΉ¿NZ¥M «Ô)a•pD¾ŸÖžñNy|g«moÏ;ë\m»Ð;ë\mûÔÎxC°­¼²PÂÊÇ¿¶V¾½Ä÷»Ä©+™V¸‘l×d¦„UÃUZµB «º(a…3yÞ‹aåä†ýG›£xÛþ «R(a•%¬pbí]2QÂ*áWMZá&ÄÄÂN|‹ïC؉çù¼ WÈByFE›{£mx†l”2Sn—8í¶b Ù(a…;ÖöŸ»ÄókÓ7•Vh¯j¡UŸ”°B󅩤0!`V¸(G ûyý…UK”°Â³Y¯xj§š‚Úiåo¶¥VhlÇ?¤Ÿº:i…gÁæï %¬2~Õ¢®à‘çn. ›!e‡Ì”§=Yܯo C…”ҿȦ9!ew‰ëÛ2­|hhŒ¬|øaVh[¥.w«´BÕ*­ðз\Xáê·F+\ýÖi…æ«uZB +Ü mЪ/JXá =¯³°Â½Ñ&­ðÀõâ²á³‹Vèøš¯)®Í–°9Ò´8Qc²»DÃØ|‚pmÞ9Ý×ç´JiV> pº2S ­¨í]„U¡î+[i€„U¥UÉ”°ÂmÖ+­2¬­r§„îºóê «œ)a…ö¹wZá&ìƒVèÊû îÉ>iå“F&i•(ÍŠÈ„±_rRžaØZl‚ºËâÈÜA3ÈB¹!Ýù¼½V—¸G¢•ó zƒîç‘iåƒ|Gæ ÝyY%JXùÑøòÇý‘Ý$=ÿ=€T9òÃo>~vþôóþîÛ¿ÿÁ½ÿå;tºüë?mû°Â§Û¿þÓÜUüþôø Ÿ^ÿìÓë_ÿéÏZþ:kX>ûÆ (À®Xø;6W¯?g\bý=¿®8þo-«Ï? |ý_kúúÊ÷?À[ýóø’ÿõ”bÀð>†ŵõáËGo?ù¶Â‡IÿüôÛÊ?m{OWð“o+|ÚVŸ_þn+~ï_?ù¶Â§ܯø¶bCð­aÄ4õFÙ4Žâ”üÛ´¦ÿß…o˜›ÙçËÏüóŸýýý¯ŸŸÿ÷ÇÏþòóþøó¿øøáO㡾>þG/×ì>N$XýÙŸù¿¦Ýÿé×ÿýüÏtþçç¯ÿöw¿û«ßýõÇ/üüñWÿøëßýöù¦ŸéQ—}ÿ:×Öþÿ‘Ü2ÎHÁÔŒô:Fz Nó0Ò³èO¤ÇHèéÑ9›ÈHνûŒôèDCéÑù.ËHÆOŒôhœd¤Gëý1Ò£þ*Dz4B”Œô¨Ñ0Ò£ÜJŒô¨ÜÁÄHZÐi3Ò£ò•‹‘…Ó¥Œô(caFzn¶c¤‡ÖzéQøÊÅH¼øWDzäd¤Gnx{c¤GþJø0«Ì]vŒôH†0Ò# \AFz¤vEz¤Â³Hä<(ÒæëüL"ÒÃæöü;ËÀ³ZЏð¹ŸBnŠôpìÒ­ ¬%‚H›÷á<"=œ™d†‡YM΀"Òà 3<ÌjÌù!ÒÖ1ÚáûFªðl3õE—ú¡H[³©_‘up-{VmE ¿jÀŠïîˆô¨éaËg>)‚H[óK†H[üÛ”ç·ÛÚaýŠô°¥IœXô°•L tX»°•RFdød‚­´¦W¤‡­äC¤GÕÃÃH_iF¤…GzØÊ5QDzØÊwUćùU!SˆôpänS›_­ŠiðãÆHZ…h"ÒÃv.ÑB¤‡#sƒÚüŠ3DzØNŒw¤‡íô˜ƒÚý8)ÈHÛ‰²¥Í/?!éa;_ÑáãwÛY3'õjÞŸ‰G¤GÕ–sFzøN!DJøLˆí,RŒHÛ¹‘¾ó éQA6}*ÒôW¤‡íäòHß &í~…$"=ꃔ#ÒÃv²©C¤‡ïŒ[Ô­9BÆïóHÛ™‡ó‰HÛÙ$‘¶ˆ9"=l'aRćûqâ‘E]9#=ÛÔæ·„D"ÒãA¾¸—¤h‹3#=ñÂñùT„í,e¤‰OÔ8ÒõŠô(KH="=l§,î?DzøÎZüÝÙß™;©ÍovÞ/ˆô°Àx^éQ ÅH¢8&FzøNfióÜÂÅHÛI ‘¶óz½"=l§öT„‡ù nQa¤‡ïEzØÎrFŠ ø)r‘¶“½½"=lç{}EzøNzEx$ TUÕ¦^Ã*܈ô02È$"=™zEz‰€¿#ÒÃfv?]?Dz)Qña~m «kdbDz8鱩ͯ ¶?ˆô0’ˆôpoðSä "=ìýd êEä ÿ¾Ã/ñz!ÒÃÈ\ODzäùT¤‡#NÒ ˆÚsDzI„ó‰H'“^‘åAšéáïî™zMG˜€Ì"Ò£hK"#=„‰‘Nr)£MG˜p}éaÈ#><ÒÑ%E| JŒØp¶Æ^QàDZ#= QÂñ!Ò£n™`¤‡!IC H#2ü2‘ZDz³éaH#@œ¥q$ ¿ßY8CV§nÐŒñ½ª† ñø'üº";&ü„d#ÒÃ#´Wˆô0HDzr„û ‘N†Vê±1ÂçéaÏ "= 9Bû‹HCŒ€ØãA1ÍH _;*O‚H¢->Œô0¤ý;"=LñG¤‡#FÒƒˆtƒ_åõD¤‡!FèéQ´e„‘%q‰‡‘†áyE¤‡!EŒñHÓI‘ HQU„G!R4©‘"|ß‚ßÿ‚Ÿ"]éaˆ;"= !BD"=œDGD…Gz˜F$ ^êlEz2„ç ‘¦‹">"œDz˜Æñ!Ò#kêž‘BÄH'ÿ'õ2Ô_‘ž$ Ý Ñ^ [Ó  ;üt½é‘—"+éa× ‘† áùD¤‡!BKí3"=<©Ç¿à—õûü’¾ÏgËM'ExT C<¿¾,ãIþwDzä©È+Dz"´ô÷ þ ‘†1’"Ãoðú ÒÓ4^‘¦Ñ#ÒÃ!´ÿèè³"1é‘(ÉHŒLŸŠôpÛM½¡1@¤‡ý,\ODz˜F{¶ÉSºC?ß@†øwgÏMÓß'(òx"N<ÒÃ4ÆCˆôðËV¨7"ôˆô°ËŽç ‘dÙ§"=ì6Âø‘~›½"=2–>éaý7"=ì¶Fd"=L·W¤‡=¸þˆô0û‘þXuêI„oðËŠiðKú½ ~\8e¤‡#DzB·W¤‡#DŠðèÐ_#ÒÃ4îDzä'B‘lÆ>éáÍÜ îÐM‘»¸Æø‘ÞŒê ÍH ÏÂðf8Sw"EÒ›Ht†Ÿî_lEðnàéáÝD¡îÐŒ)ðÓø‘Þ uê þÛo¼ÛÔý"=Lãü!ÒãN=_ˆ#=Lóx0÷ÚÔß#Ò#cçð§"=¬Çû)v¬e!ôŒô0û;é|XðŠôða¾ß—Q9zEzdÊŸŠô0 d‘Y„Œô°a -Dz˜®¯H9Ò„H&ÍLÝ¡ÑQàW‰p!ÒÆ]@رw5·;ÒÇmº92HÓü=~Y¿¿Ã_Œôðad¥îÐ@ìÁ>Û0”‘&>P1 䑹>‘!þ ù°vPwh _ˆôpD Ú_\QjÔz¼"=LWé¤7$"=|Ø.=‰,!¢£À¯+ò¢ÀO‘+ˆôð×DnTø1b‰‘öZ1ᑉ0UêþB˜éáÓ+Ò#cíîS‘¦ë+ÒÃ4oÀ¯ðþD¤‡#M¯HÓå鑱éåS‘ù‰D@¤‡éöŠô0_‘âÄHGœ)ᑦq!ÒÃ4eDzØk$#)<Ò#+r‰‘ŽS©'4#Lü¸›‘Yï—Œôði"è ?!±ˆôx+Fzd½2Òç¡^‘6Mň¿q}ÚJí "=8Íõ©HÓI‘î§û‘Ždmê 瑦«"<:4#. ü„ŽÅ­A=¡Ñ¾!ÒÑ-E|th?"=rVû öÖ§'õ„~Gz8ÂU¨;4#CüÛDzø4d¢ž@´–";24"céáHצ¶HŠ,$ Óùéñ ^ŒôðiÒBÝ¡áHG¾^‘òÅHG¾©Qä—^‘6m‹ç‘¦ÑÞ"Ò#çzEzä'ò‘YóŒôx0FzØ´1#@é‘Õ0Ò#ÞߌôÈ[b页)Ezä¢ã™òKïHÌ÷cEzhþC‘9ó~b¤HÝÏ'Ò#göŸŒôÈŒV¤GÎ<ŒôR¦HL„D‘™‘âŠôÈ\ÄT¤Gæ¾JEzd"”ŠôÈÜð¨HÄõEz$n=T¤GÒóÍHÄ÷[Ez$õ_ŒôÀ2Ãç顈[Ez$¾(Ò㉠a¤GR¤#=7Z)Ò#q‹“"=#‚é‘ÉÁH¤H&Fz¤I¤Ÿ‘‰ïߊôHŒlT¤Gšü~Fz¤©ˆ,¿ªˆú¡½c¤¶Å>‘‰ó=ŠôH$>é!ÄM‘I‘QŒôHŠ `¤G_‘ôÃýÍHD²C‘ið|0ÒCœ"=’ƃŒôHê¯é‘8¯HÄõEz¤®ßƒHDhC‘I‘8ŒôHŒðU¤‡"‹é!dN‘I‘1ŒôHŠTb¤GR#=4¨H¤÷Fz¤¦Ž*¿,M¿$í~¬ô¡HTHÍ7*Ò#Uý>Dz¹S¤Gª|žé¡õ1Ez$®Ï(Ò#UEtLùeiú¡ýb¤^«>ŸHÄHEz$E¾1Ò#E‚ Ò#E^ Ò#©=e¤G*ŠÌÈò+Šø #7²üð{éeÛÏ'Ò#)’†‘‰È®"=Ez$E 1Ò#qþD‘‰X"=’ÆûŒôò§HDX@‘‰x€"=Ez$µßŒôHŠÌa¤‡@Ez$EN2Ò#±$"=„*Ò#qC¾"=#Å鑸¹B‘Iˆ1#=RR¤E–_VÄýÀ£1Ò#q~—‘{+áÃy›Í]ì ôØì,˜ç±¹qXñÿTš‡Vræ±ùâÌ,E…3ÊcsI›Û¸ä±Å9#Çcsï5c<¶R#ⱟßò•€ ½tD¾Mcsúš {)€Ä§Õ6¿™ß±JÄwì¥tL«ö ïØÌevǃ2"ºcs€É{}sÀ <r;öR,†Çv(U•©[!'íØS™žÙ±¹^ÌÈŽ=ɶ!±cOììØâ·‘×±'i= Š÷dZÒ:*a{êx­j¡<çp+yI{ò‚âõas—9Úר¥°1¥c?¡Ò±™±ÌŒŽÍùIFtÇû0žc^nÄnl…Á œc´ÈæP4£9ö O‹dŽ=xõ̱‡rH­Àµ"–c3ˆ©û ™´Jú+¬ðü"’ãa5‘ȱ¹zÆ@ŽÝ•â´Æî:9DZ™ÞÎ4­D1Œc?Y™V@×ű;v$qlá ˆc3’9牎ÍKLáØç !› ôÌàPÄ#8  ›@À±9™Àü EüÆ~Ò0|̵nËð-vÙ›óŒÞxQ$ol[2xc7å„8ø±ó‚Ø ¥2ucsÃÐýÊà€UWĬ˜X‘iÕÈ«úÊÛØÜ¶Æ¸­4¤m즰‹J+œXdmlŽ‹µ±Y‰‰I›A¹ ڛʜÍ0Æll¡˜²±+Ï3B66‹¥1cCä*#6¶°± É€]yÇ"_cs®™ñâZ™®±+O;Â56'"™­±ëWÔ¬À¥#YCÔ+ƒ5¶r«¡Ê§b5vUJG¡pq„jˆ‰e¦ÆV$ "5veb56G ÔPÞ5ó4DÌ2NcsªŠi[á*ÓØœXe–Æ®l7¥!ž–I*œÁ ]x£±¹¦Ê­Ô)¤hˆ¶eˆÆæ ;346ÇŸŒÐØÜïÉÍÂr ЋËüŒÍw}ÆgÍezÆæÈ•á›µ˜¡upFglk™œ!p—Á»pp‚ÜŒÍ1/c3vQ H§z:„fëef†"<™±Ÿ„‹I+ˆLZ1ocÒ â267‡2-C 0Ã26k0+cEuø ÿfå,&eìÌGA"„™“±3GˆÉجÂÁ” í `HÆVÆ226÷¿0"cg¦ !C8126ß™!º˜ñ;+À¢Ój(,Vã•­¹ŸO4Æ“ü1h… ,FcdF'0ƒen‘•Ò±hõ$eX܃2¯ÁùYEcdvmŒÆÈLa`4FVrD¢AŒYÑÜY¦h e1ƒû6‘ïh q1ƒ‹ŠÆàœ”¢1XUEÑ|ãQ47*#ó6c4ÁÙhEcpó–¢1ŸÂh òÒŠÆPX£1”5ÇhŒ¤¤ Dc(‰‰Ñ ba4·+C1„ŒÆHJ¬È´šJÊ€úFc(Ò…ÑIñ…VCá°ïh ®)#}eaÀj()ƒV ¿€UGc¤¯à X1ûcÐ 70£1Hq+C©3ŒÆ Ô­h N(*ƒë¡ŠÆàtEc$%t C/£ŒÆHÈ)C8£19^Fcg4£!>œÑ ÆQ4ëø)C¸8£1±^Fcˆg4F"ÿÏh ÁäŒÆH ¡è´åËh .+C¨9£1’+&­Ø1i…ŒFcpEѬ4¥h ¾•3ãáÒ¡²ŒÆx0uDc¬¾›ÑµŽhŒµ¿’2h•(aÑ‹õVñ0íˆÆXÜzÂhŒÅ•"Fc¬­ ‰&«D «‰/ê´ŒhŒÅºŒÆ«ÁhŒµ‰#ãÁãñàñˆÆXLAb4ÆÚ$„±(ÈhŒžG4Æâ\8£1–Ñ‹Åìñ õˆÆxÐzDc,n{b4Æb°£1ðÑxhŒEæ‰Ñ‡hŒÅ zFc,F¾3cmÅj4ZµW4Æââ£1hÑ‹[S±8cÃhŒÅZ†ŒÆx~Dc¬­ÀŽI+þˆÆXL›b4ÆÚŠópXäþ±¸ƒšÑÿhŒÅÈnFcŽ-"•} ìVN*·Ìƒ •m°ÝÉ"›UfiÌ@·L¸¤²¿ ø?î°bn+Hå–™}RÙ«$ç‘ÊöÔ .›UšxÌA*óÍK¤²½—ùý R¹iõ¤²×7"•›âbA*ûk)Áe#mUÌP¤òfc$Ry³¸—HåM&^¤òî$H*©¼Ul™¤²’öD*+ÕM¤òÚ"¥A*«é©¼D’T^ƒ;õI*¯‡<©ü&©¼ I.’Ê+s§;Iå%R¤òÜú} •çé Ry²8˜Hå9Hâ‘Tž O©In+®MÅA*ûJP¥nÝ‹íâù©üUl¤rU±’ʶ¾’¤²­†á|ƒT¶¥4Üï •}ßï=MÕNw’ʾä¸Á;ÓI*ûêb¡v¿"Ýá—Iž€Töâ¹Ð¾âêk¦ÒæWÖ—6¿2/RÙsùýN*ûJð‹T®EÅYA*û¢ó >Ζ¨Ñþ€T¶mD •m5ÏH寤ʶðÒ ¤²-Ó“ö™d_ã/Ôæ§§$•«Š×‘T¶Í$‰ ü¸°CRÙ÷9dj÷ÓýR¹jç!IeÛû¤²é$2Ùü’ЧƒT¶­ W@*ÛÆ´ •}J£v?‘î •mƒK}‘ʾAÿ~ÁOdIef‹TÞK礲¶RˆTFõùÊZ{©¬åf‘Ê[í1Ie-î‰TÞEä1HåÍb‡"•7w‰TÖ“He½ÿˆT^“d!Iåň"•×i Ryq-]¤òj"…A*/®kŠT^9 Ry‰l#©¼’HbÊsóþ ©<×™œ ³Èdó›Sç¤ò|þH*OnA©<•DARyr§²HåYEî‚Tž\m©<3ÉL’Ê“óæ"•·;‰T~ŠÍ“TÜy*Rù!I*!Ê*f&Ryˆä$©<*I?’Ê£Þ¤ò(ì_@*{r‚Èd÷ãNb’ÊÜ ü)R™š?E*ûhh'•}ô´ùõ!?Ÿ ± Ù<~Ÿƒ3^¤²'+€,vRÙ‹Ñ6ê¶=YÇ R¹¨øIeÓèA*{ÒÈ__µ ð(FRÙ6ÌÏ©lš¤°“Ê¶Ixò üðoðë"ƒüôü‚T6MrºÃ{H* ÀÏø‘Ô~Yß?à§ö¤²‹z@“<ö-Îh`¼RÙ\ÊEŬH*;@Ò¨gò¤ôW • H!YìËG´àxA*›."“ݯˆäÍðc4IåRE²‚T.UíHe=Ÿ"•‹Š?‘T."H*P„bð •@z‘ʦÑÞƒT.zQ"©ìHá?î!©l@Éã?×A*‘<$• èBÿRÙ0‘ÉšÿÞ§ (£¿Ï`;€&ryB“´õU&Úо€TvNßÐH>©l@ݹ<¡“Hd÷k©ì@ߢÞи?@*; ˜©ÝOï •‹ŠåT.Øù)RÙ4Æë •½m¢6¿'¤²”“Úüw’T.*CRÙ‹Ñ6j÷Óó RÙ“"¤Ý¯q|„™^Léç  JÏâI¸?A*;к¨-÷PÅEH*í &©\Ry RY{iE*k«Hå͹N‘Ê[ýIeíÆ©¼'Û’Ê[ãM’ÊªÓ RYûêD*kÏšHåÍâ"•w RYÛ‹D*k¿Hem1©¬}"•µ¾/Ry“¤©¼4 ©¬e ‘ʚΩ¼HJ‹T^‰T^"»H*¯!²¤òb1?‘ÊKäIå%²Š¤òj$cH*/&+ˆTVÒ“HåUIv’T^åëïš©¼²þRyeý¤òâö‘Ê‹KÕ"•'/E*O.+‰Tžœ©d0Hå©bÀ$•gáõ ©Ie%YˆTÜx)Rypü"Rù)†KRyˆt%©‘Tn“÷Iå¦ëGR¹Mý{ÊMä.IåÆzI"•›Š“TnÏ;I寤N‘ÊÅ$• £ŒE*‡I*ο‹T."[I*—*R¤r)ìÿH*—"2¤ra’ŸHe­uŠT.êïH*—,?Ê%ó~$©\8ÿ/RùIÚ ©ü$mT.Üd,R¹ðýW¤r©OR¹h|CR¹Ä©œ5Þ$©œ¹Þ&R9s}D¤ræû‘HåÌ}c"•³ŠÙ“TÎë&•3×ïD*gîz©œ•TDR9/ý^ÊYI3$•UY¤rfR•HåÌõS‘ÊYý5IåLÌO¤rÖóBRùIÞ ©ü$oTÎLR©œõüTί‘TÎþ$•5"R9ëy"©¬o‘Ê*®,RYó-"•sãù!©œ5'©œÇï$•5?#R97‘É]~$‘A*gÎ_ˆTÎ/’TÎê/H*gïI*g7H*çªóR9ë}‹¤r&$R9³ŒžHåÌçS¤r._äò€øDRYI"••Ä!R9sþW¤r,RÙ—uñ}~*î VÙtÊL?m •sº\Ù–‘·ˆäMعÃÏ7‰eOæÀ÷ø©˜+˜eÓE”2ý² f'³¹‹›ØrNÜNMn9k[ÁeO⪜ ›HæÍãu£¯âЀ—½8ô¤v?Î?_öeùBÝ Á6`6 †sNï\äš7Ž's$jú$ÅüUL{G<™£QhÐ@™}›Á‹dödŽMM?œ°Ì¾MaPÓ/‹W¦)àÌ^|:S/hбš=™cSŸ'OæÀ÷ùÄüW1j0ÍžÌÑ©4ˆL çÄÄš}†@f÷ëü=›=©#Q/èùB›=™cSèö‚›=™C83ýÀØoödÍôK/ÀÙ“9„4'èõBœ½¸µô‚/ÈÙ“:¤é‡óÌÙ“:¤éW¤é‡Âº }Œôù"OêÀïõ…„¯bØ€=©CzA“ÊõŽÙ“9¤é‡óàÙ“9¤éWE@Ó˜gOê(ÔôÃõõü$u{~’:È={Rˆã?®‘|ö¤ŽúìÛŠ;Ó”u—¹ê!?’ÔC~¸Á?û¶%ÏîÇd=ОÔï[ðêú«7 hß%(ºAƒaýUœ´'u,jú¬ ýU¬(tVô)Ú“:ø‰> íÛ¸àWá'J <ôW1oÑžÔß×ä×EHÓ¯¿˜è¬ùBÑYIÒ¤¢=©¿gÈí%¸hOîúL?Èhu$£·0jÑ„qDFoÒ £IÁˆŒ&É"2šIDF«R8Éh¾v‰Œæ(Td4‘ ‘Ñä DF“VÍM‘ÑÜê/2š;ðEF/QÆ £ÜA2ZÁ$£¹a[d´‚;HF+¸ƒd´:2’Ñ î ÍeV‘Ñ î ­à’Ñ\³­à’ÑKÌ5Èè)ÈdôäóD2ZËIFóíSdôdgD2ZõËIF3t[dôäñ’Œž<^’ÑLÄÍÀQ‘ÑÌÿÍE‘Ñ*vN2z²";ÉèÉëK2š ¶"£ŸdôÐ჌:|ÑœŒ­Êè$£š%2š5”DF3BKdô 2šÛEFs–Wd4EFs¥ÈèÁ!Éh®(‰ŒVO2zpüC2zpøA2º‹ÈÝ…`ƒŒî<9$£(2š™é"£;.’Ñ;ÉhUd'ÍüW‘Ñ|é­í$£»ÎÕ¢U(m´o×¹ÍdO‘Ñ*ßN2º³µ#ÍMÝ"£™&2ZC’Ñ]”1ÈèÆSG2º‰#݃ŒnlFHF3^Ld´Æ0$£¹%Bd´*Á“ŒVŽÉhåxŒær³Èhæ,ŠŒÖà‡d´r’ÑÊñ Íàb‘ÑÊñ MBdt’ 2ºŠAN´"tœi•ßdtVœiÔŽd4gÍDFâr$£™ã!2ºj#Í,[‘ÑD'DF3I]dt! F2š£S‘Ñ\œÍÊ{"£9tÍš)"£9q 2šãZ‘Ñ…¤ÉhîJ!½9è%½¹G›dôæ Éè]Ȩ‚ŒÞ\ #½ ±SÑ›…"HFk7&Éè]‡‚ŒÞÜ{G2z⟠£w!à 2zs M2zsÞdô.Ä0AFoŽÂIFoN’ŒÞ™°$6mr$£w ; ýö™ëÍý<$£7—oIFï,šÛá>Á $£w¾íäòÎⵌÞÌL%½ÉàŒÞ\—'½¹ I2z3ÿ˜dô΢ª ­HUZ£®´"7]iõ€Ò°Â­2zg¡ÐV„;­;wZ‘nî´"¿ò©á,RN5œ9ÁñÔp.7]9²]žÉ £‹È+’Ñe¨f4k87îŒW g¾Ê;Ýœ´œÝœ´é@âfæøas²$P‰›E"$¸‚ã} 5˜y~@âfÕ%¶ÈpÑI5cIF§!Òdtê$kTù}‘Ò¬¹ÜEB»Ÿj‚Œ¶|ÖP.ª¹\_d´m0ØÒ¬¹ òdtQVìSù¨¦2k8‹´T gލTÃY 1ªáüí5ƒ×ø"¡½FrÉšÁë©1šÁ‹É˜¾Å5•AšdÔ žìL}K j,ƒt˨<Ÿó‹ÎS$k8ϦóƒÎS5FYÃyòÝù©á,òŽ5œÇS³5œŸ‡¬á‘ÑÚ .2:)Édtâ|‰Èè”Td´vv‹ŒNIß2ú©¹H2:©Æ;Éè$rd´vf“ŒÞz<›·ÛÊyq.[¯_Xôf ©èÍ•;BÑ*ƒH&z ™½•x"Z¯ý¢7£ÂÉCkG4qè½D;ûÅÜêrCkÆ—,ô ZåIBk3Aè-Ó‚{~h®.Ç‹‚Þ‚A«† hMTÖfcÐÚ]Lz«².øç=„Kû‘îÁ6ô³*ý~ÞûíS)›PDŸµ˜äóVÐ –c¶¸BpÏ[v=o¥t€zV ¡gUÜ#ó¬‰"Ï»‹®´àày«Uï¬Ý¶Äµ½–´³öÓvÖZ²ÎÚ1KÔY[dI:«¶Ag³#缃Ìy“ê1y^BwS¹fçØª¾ Æy7!Òþ¸™(HÂys”€ónüÍà›wÎëx36Ž~ŠnÞ Ç#ܼÉúmÞ*Ê ´y?dr¥KWZáÀ5oèÖ¼«êwZ¡iÔ¼ÅP‚iÞBò4ïJBD³öjhV>0yfíÆ$μ ïgÐÌÚoé0sz6X’eVe4¢ÌšŸ#ɬÚg™UìŒóÖàó.ª—œi…G³ –‘aÞŠ Â¬½‹$˜µY‘³ªŒ‘_Þĉˆ/«Žée#¼¼É‘]Þ|&º¼Evƒ\ÞY ò +0OZ5aÊí«€©eUì"´¬½|©þÚ¼GdY»õH,«ÌeÕÕ"¯¬BZÄ•µÅŽ´òNlÛ+ofË‘UÞ*˱E¢ƒTÖF8‚ÊÚùFNY[݈)k3)eí^#¤¬íjd”÷Sœ¸ÓŠDq§U +ò̃Vħ'­ðNÖ>1ÂÉ[Ù2`“µõËÑäò”pr2¹<›»&«*¹äýůÅHñZ:@/NÃ(^Küñ¢noTgX¢ÛË–U¦Þÿù/”Nf*‘J'I#U @ø%Ç[~ÉvËËjÞVó¶Z·Õº­Ömµo«}Y~ÉvË·á—¼¬ÊmUn«r[ÕÛªÞVí¶j·Õ}Ú ¿äxKÂ/Ùn¹ÞrÞVó¶Z·Õº­Ömµo«}Y±tòK¶[¾­X:ù%/«r[•ÛªÜVõ¶ª·U»­ÚmÕn+ß$ý–ã-~ËvËõ–ó¶š·Õº­Ömµn«}[íËŠ€ð¥[ÐëÒù²# üÒ%ø•àW‚_ ~5øµàׂ_ ~=ø9 üÒN¦\º½.í€ð¥o¿üVð[Áo¿}û¾t úò |éÛ¯¿üJð«Á¯¿üZðkÁ¯?„_ÚɃK· ×¥´¹ôí·‚ß ~+øíà·o?—nA_~„/}û•àW‚_ ~5øÕàׂ_ ~-øõàç@êK; |éôº´—¾ýVð[Áo¿üöí@øÒ-èË€ð¥o¿üJð+Á¯¿üZðkÁ¯¿üÂõ |éôº´——^Áo¿üvðÛ·áK· /?—¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁÏÔK· ×¥”¼ô¸ô ~+ø­à·ƒß¾ý_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~áz¾ôº´——ö—nAß~;øíÛ¤é¥[ЗáKß~%ø•àW‚_ ~5øµàׂ_ ~=øõà7‚Ÿ©—Þ—vîÒóÒ¾oåÒ=èÛo¿}û¾túò |éÛ¯¿üJð«Á¯¿üZðkÁ¯¿üFð ×€ðK;éséyißVtéôí·ƒß¾ý_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øàç$ÕK; |éyißõuéôí·ƒß¾ý_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà®€—KÏKû¦¼K÷ ÷¥wðÛ—áK÷ ÷¥óåG@ø¥Kð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFðs õÒóÒ_º½/½ƒß¾ý_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚_¸„_Ú÷°^º½/ídì¥/?—îA_~„/}û•àW‚_ ~5øÕàׂ_ ~-øõà׃ß~#øà7ƒŸïÈ|ißb|éô¾´—¾ü_º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚ß ~áz¾tz_ÚKÏ· |éôå@øÒ·_ ~%ø•àWƒ_ ~-øµàׂ_~=øà7‚ß~3øÍàçô/݃ޗvHøÒó­ _º}ù¾ôíW‚_ ~%øÕàWƒ_ ~-øµà׃_~#øà7‚ß ~3ø…ëvøÒûÒN_z¾5øáK÷ /? Ä—¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üFð›Áo¿üÖk¹øSTñ¥[Ðë­_úòZ|éôíW‚_ ~5øÕàWƒ_ ~-øõà׃_~#øà7ƒß ~3ø­à®pãK· ßKÉ$Ž/=.o?@Ç—¾ýJð+Á¯¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üVðÛ× 3AäK¿×˜‰"_z\:ß~ ‘/}û•àW‚_ ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à®åK¿×›É(_z\:_ë×Ä”/}û•àW‚_ ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·ƒß¾Ö›É.iÀË——Î×ú5ùåKß~%ø•àWƒ_ ~5øµàׂ_~=øõà7‚ß~3øÍà7ƒß ~+øíà® æ/ ªùÒãÒùZ¿&Ø|éÛ¯¿üjð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo¿üvðÛ×z3qçKKçkýšÄó¥o¿üJð«Á¯¿üZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁ/\pЗ—Î×ú5QèK¯K—àW‚_ ~5øÕàׂ_ ~=øõà׃ß~#øÍà7ƒß ~+ø­à·ƒß~ûö }éqé|­7“‘¾ôºt ~%øÕàWƒ_ ~-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·o¿®Ðé—Î×z3áéK¯K—kýšüôK×àWƒ_ ~-øµà׃_~=øà7‚ß ~3øÍà·‚ß ~;øíà·o? Õ—~¯7ª¾tz_º\ë׫_º¿üjðkÁ¯¿üzðëÁo¿üfð›Áo¿üVðÛÁo¿}ûµ¾ôåÚúÒ=è}ér­_“¸~éüjð«Á¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿üöíûÒ—0ìK÷ ÷¥Ëµ~Mû¥kð«Á¯¿üZðëÁ¯¿üFðÁo¿üfð[Áo¿üvðÛ—éìKÏKß׃€ö¥÷¥Ëµ~MFû¥Ò¾túökÁ¯¿üzðëÁo¿üfð›Áo¿üVðÛÁo¿}ûÛ¾ôåpûÒïõf¢Û/]®õfÂÛ/]¯õkâÛ—¾ýZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁoß~à¹/}ùè¾tú½ÞL¨ûÒóÒõZ¿&×}éÛ¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿üöíÐûÒ—PïK÷ ßëͤ½/=/]¯õkß—¾ýZðkÁ¯¿üzðÁo¿üfð›Áo¿üvðÛÁoß~ À/}ù¿tú½ÞL üÒóÒõZ¿& ~éÛ¯¿üzðëÁ¯¿üFð›Áo¿üVð[Áo¿üöí4üÒ—àðK÷ o¿r­7éz­7¿ô¾t ~-øõà׃_~#øà7ƒß ~3ø­à·‚ß~;øíÛÌø¥/?Pã—îAß~åZo&9þÒõZo&;~é}éüZðëÁ¯¿üFðÁo¿üfð[Áo¿üvðÛ·`òK_~ÀÉ/݃¾ýÂõRþÒõZon.nTùÿþÏþã/>~õûoÙ‘ò÷þþW¿ýæÝÛ?}ûó¿øHå¯ëv{,§è¼LÄúø#‡PÓÇ?üøíãß|þÿë ûO†c‚¿ñÊóÑŸ†µ¯óö`ÿy8޵ëƒÕyÁ¯BóƒçmÚJeg+˜]óýA€x_„æóãÚF’òa8A¹>˜œ8üú ´>øJtóƒöªö>Fjÿà/~øô¾Þ?þã#üð×Ù+‰§ç? m¸bç{ø®ì~óñ³¿úùÇ÷íßÿ`–ÿ¯W°M_þwׇ˿øá†…‘¯§ŸðÍüÙÍ7¿ÿöׇÿ ?ûëÃã'|˜?»ú¸óá?ÿÙßþåç_ÿöwÿðó?:÷ÀÏ~óó¿øøáOšYñ ÅnöÛÿæÇŸÔôñ³ÿý÷ÿ§äK%vLŸ¿û›_ÿþý«Ÿ|h6=±~Íßÿîçg¨ú³:ÿu~Òÿðü¤ÿúíÿ®ÒŠendstream endobj 3 0 obj << /Type /Pages /Kids [ 7 0 R ] /Count 1 /MediaBox [0 0 504 504] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> /ColorSpace << /sRGB 5 0 R >> >> endobj 5 0 obj [/ICCBased 6 0 R] endobj 6 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óûendstream endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F6 /BaseFont /Symbol >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000023896 00000 n 0000023979 00000 n 0000024102 00000 n 0000024135 00000 n 0000000212 00000 n 0000000292 00000 n 0000026830 00000 n 0000027087 00000 n 0000027184 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 27262 %%EOF metafor/man/figures/plots-dark.png0000644000176200001440000034317114661373530016735 0ustar liggesusers‰PNG  IHDR ¬ÜCaØ‹‹PLTEMMM///›››&&&³³³444òòò,,,---”””}}}ìì쯯¯vvv‚‚‚bbbîîî666ttt¥¥¥ðððñññÕÕÕÞÞÞëëëÛÛÛIIIØØØæææááኊŠêêê555ººº222ZZZ¼¼¼ÑÑÑppp@@@ïïïyyy^^^777888:::ÍÍÍÝÝÝäääiiiÃÃ訨FFFuuuhhhÄÄÄâââçççeeeÌÌ̇‡‡CCCPPPWWWåååÈÈȱ±±¦¦¦éééííí«««ÙÙÙ–––aaaƒƒƒ¶¶¶ÊÊÊggg£££DDDHHHÀÀÀ___†††ÓÓÓTTT‰‰‰‘‘‘|||ÅÅÅÜÜÜ———;;;"""XXXmmm²²²¿¿¿ÏÏϸ¸¸???àààYYY<<>>•••ÁÁÁ[[[ˆˆˆ333ªªª%%%‹‹‹(((\\\ÆÆÆŽŽŽ###000...+++ÂÂÂ)))111"°#X pHYs&r&r!+—î IDATxÚìÝïkUÇáE4ÎY²º »S1ÍÐÀæ³WþèE¹ "+V‘,E_H%¨šÅ ¤Õ•zc­Vf½!„Þd†B/D‰ìÿÉíœûãÜ{ÎÙ=wâ½­çy5Ï9Û9ì…_>îÞÙÐsú| Äb @¬ ÖÄb @¬ Ökb ± Ökb ±€Xkˆ5±€Xkˆ5Ä€X@¬ˆ5Ä€X@¬ ÖÄb @¬ ÖÄb ± Ökb ± Ökˆ5±€Xkˆ5±€X@¬ˆ5Ä€X@¬ˆ5Äb @¬ ÖÄb @¬ Ökb ± Ökb ±€Xkˆ5±€Xkˆ5Ä€X@¬ˆ5Ä€X@¬ˆ5ß±€Xkˆ5±€Xkˆ5Ä€X@¬ˆ5Ä€X@¬ ÖÄb @¬ Ö «Fà «»ó<Ç·5>[yh÷Ú·=óâ7[꜊NM݉›`Ïî¼y²m Öà?4n×/üÓN¬Õì˜]Ä eß {v·cͶ!Ö€ž·m[Ãc…b-ÞÛñ åÜ {ÖµX³mˆ5 ÷Æm×Ë·o[0ÖÂð‘Î-÷fسîÅšmC¬=6n÷þþxØI¬…;´n€=ëf¬Ù6ÄÐSãvOtÛâ±öÞ⃶ÀͰg]5Û†Xêã¶öp³s=ksöÆôäì̉¡ê¢Ý0hôÌž5Û†XrÇmeפ½X[Q?²úLÑk»+Ãð_öîþGг€¸ ×s7Aê íµNð„/6lkR)TRj¬¦TZRK*£õ¥RS´ /=ÁHj)Ø¥•ÆÑ–¦œ4€þ÷vfggöæfö–¡âÝçóC³Ï<3;ÏñC¿ùîÎÎÌ­lz;o™ÛV*Ýöóðâýª{¿|0ù|uÐÞ^Ê1p۬ݽ½G‚цފßdZט½Ÿ_·³¶–ò=)–µîü“0ZËÚ–%+•iU8úB©©éŒèkº¬É6”5`¸ávk¸áªÃþûÂñ¶dY›t¾’vóÞ½RùOPÁ:÷;læOWkª¯ß¯½÷ÀÅçö„{6wëþ_ëN ´œu»½1€²–VÖ~†Òsá7e+›™ÎоfÊšlCYZ ·µá…ÏÕvo›l˜™,k·Fï÷h°áµño«ÃW«¯gU_ÿ½ölš¶oªß.«Õ²6aiJæ­[ (kieí`8;/_lf:+úZ+k² e È·åᯗۢýw…_¥í—µ©}Ñ|pKá9ÑÏ{lª§WyÁ3_ï¼VËÚ'K)–·n ¬¥”µÑgˆáoÏæ73}­•5Ù†²ä‡Û¡ròÊÅzº-Ž—µ£Ù3sbÏ[p[ì³ÈGë¿Î~ûÀó+‹(kjr&-oÝ @YK)kŒ¦ÏN51}­”5Ù†²$Âí®Ù »ÃÙðÑ›Äx?Ø´3^ÖNG³7‡Ǿ§æl°áÉÇO‡™qbߥ«-koEHZÞºÀèʳ&ËÚŽhúöúM°ò¦3£¯…²&ÛPÖ€d¸ ñ\šðòø‰±MŸ 6}*^ÖG³ë†¸ ã«ÕÙ?;<ñû–ËÚä w¾±?¶C"ÐòÖ-ÐFWž .këÓÊZýŽ÷[ÓÊZútvô «¬É6”5 ùp ®ì(÷Å6…—Ì?/kg‡ÎrüÇÏ+{Müsï°ÊÚ²¥ߟ½iâ¥ö†–·n0ÚËÚ¬´²v š>‘VÖÒ§³£¯‰²&ÛPÖ€VÂ-|†K[lÓø`Ó+ñ²öåhö;C$Ö¹pþõ6μØ6œ²6eÈ?$hyëh£³¬Õ?]|5­¬õDÓ7¥•µôéìèÞC±eÊÐt¸-|Éž`ÓªxY«_²±|ˆÄº¯¶C÷®C·$§Æ^ƒ²–·n0:ËÚòhçÓÊÚöì²–>}Å•5Ù†²Â-áÎÆ«FJ¥ðJÆÅËÚÏ¢Ù‹³NÙõÞ±™SëaÖ¹¶ø²–·n0:Ëڳцq…•µìè+®¬É6”5n ‡_~U½lú\¼¬ŠfäX“wÚ§ŸÚ¼õþrü"ÊBËZÞºÀ(+k;êÖårae-;úŠ+k² e „[ZŒ,<m ??œp&^Öž¨1-˜Ž~þ|êcñ_B9uüü µAÿ“ñ9/6\/yU–·îœ“0ÒÊÚCÁô±†X(¢¬eG_qeM¶¡¬pKØ~ûõ·Ú†3Gƒ _) QÖŽ[:jãWÊåi¿Þyðß•—=7¸“ÕÆhßÁ¾Ç«ƒKÁ`}!e-oÝ9'`¤•µÁô‰X<VÖ2¢¯È²&ÛPÖ@¸%ý! ³=ÁËúυ㇇*k¿ ¶Œ{*n 3¯òº#x½ ¿¶ïÖø{ý)ÜÛ^DYË[wÎÉiy¶8˜žæÀOË–µŒè+²¬É6”5nIókwYöÈ·öŸí o\^Tª¬•Ö„· 9P‰’îñw£›f®„G¯_ZÝñéÁpzwuØ=)~wü;‹þ|Õ–³îœ“0Òòì‰06¯¤ÎìEå"ËZFôZÖdÊ·¤Õiw#žÕ6tYÛ?©v—Ç/½Þ¹ø‘¡} +ðr–¹îœ“0âò¬ý?ñH˜³|q‘e-#ú -k² e „[ƒ_Þ…û{ë÷ N-k¥ÒÁ{Ÿù½‹Ê%‰Œ™Ü{¡^ò^Š6Ï( Ð2×s2F^ž]~³ž Go.ZÖ2¢¯Ð²&ÛPÖ@¸5ê^÷Ò–ðÿþÓ{'ÆgÒËZ©¯cV-.¾¹¢-1uÇ#¯EQ²`ìãñ©ö“ ÃKþuhëÎ9#0Ϻö…¿[›¶âB©è²6dô\ÖdÊ0Ș/þeuÇö㛚>àÊgzÎwô|ãã)S—vž»bó?è4Ó¾m{ÇÆƒïùHÖ]üɸÎÍþÕÉó‡î¾Fïž}U&Ë6”5”5e e @Y@Y@YPÖPÖ”5”5e e e @Y@YPÖPÖ”5”5”5e e @Y@YPÖPÖPÖ”5”5e e @Y@Y@YPÖPÖ”5”5e e e @Y@YPÖPÖ”5”5”5e e @Y@YPÖPÖPÖ”5þŸ¼V.—'솻+ÃòªÞgf帇†±ÿüóy{,XÊÿ£–‰«{²³sú‰ž3Ã>4ÿ/kåß eQæØ@%: O ×]ó²¶öÖq3¯ã²Ö×;¡ZøÎðmæ/SÖPÖÈUý*íÁh¸¦2º¥ýZ—µ–•Ë×qY›¸¾s¤{‡6õ—)k(käûÁÀu—ÃAÿäÊ譼ͰÊÇØòõ\Ö./ ZZíÛµÃ8¶©¿LYø/{÷þEyÇqüDhú<\‚²Ø8Ͳ[ ‘‘n\@CÍE.)‡#7Ã%Šz¨"ÄTJ5@EH½a€P#÷ö¶¡Ö …ˆ”{¡Nç;·ÝÉL6"‹ñýúeŸç;3Ïì÷,ùøÌ>Â:·VòÈ+vç3éüþ~†9ÖÜÜÜÚ3ÂÚ99qþW)êÊËW¥YÞFXa Ý™LûÜîì6ÚMy?ø9é°¶^ÎûiŠÙN­—ÎÛ„5ÖððI@ ]1›}rŒöqiýrKI8ghÓŽ‚^Înß>– ©}²&¸à†©Fcºjy¾2-¿âYg_Ïps_ƒU˜yhï¦íåùÃ7ºãÖl^.›±¶W²ÂZ…qÚœQv§9ªõ~vçöïv††-‰üÊîû.5þÊÂÆË±}YÑñSŸ :–°Â:Ñ éâÙ|JšóŒF£»¼Æ¸6+Amu ëÖù‰—RËŒ—ë€mÉ k›EV¼Þ3ªCr­öçF{wð¥zÃZEÇÇÖ@XC§ÎJ>Ù¦fÚw4Šõ×ÿ;Ô^ãRgÜ 0›¯à kféiùÉVÐp±HÖñ2ZÕwrï uLKrÂÚ›rÚý¾òЏ5"Ëâ•Á—ê k—:>–°Â:Õ6ÓÄóö¤R¯Mµ×™—™MPj@Üs³M¾‚7¬-6K#Ó~¸X¤Éð„5}[ý,6µ&9am§œö¯n÷âëVÆMî,šRÕF»(øR½aíqÕ᱄5Öй¿È}·$^4H7%_úY ݘcýÈ쌳„¿ÃWð†µžã.idºíŸ\)yzÛkÄ$ͬՄboÁpJ—×K¾<7;‘%/µ]X³ž^x,a „5tÎ\ã‰T·¥û’<êz´[+c\—§©Ys.ølÑÍ€B¢°æ.id™ÄïãßI£e”ý„î‡ÖT­¼íQvÇ|êš­ãq¿;“ÇÑ ïJXûµб„5ÖйTçÑÔÖüÏ £õ„4ª$q[?ɲž=ÖZd´Öú ‰Âšo83’½*•­NC]¼vq‘þŠe`kéȬ$…µ—å¼%}Ìv³ù5yËÿqJ½&+:nkî•©°»ౄ5ÖÐ_Ûam‚Ù“ù®#ÒxR[ÓC7J×l#8åÊjËý…DaÍ7œµ˜d®Ê3×41cL<€l…RW¢NR꟤ç¬Ù)±éhucàIifWÅ7¶­ÒgÖ™¬ëÖÜ+‹kAÇÖ@XCW>VV‹^6{õF3ýÚØ}_Ë4ÞkTþ&²O|*¯‚ š8syü%µW©²vè˳ۖHE-áO[¶ K'-¬ÝÜn¯‡b½äì1«æœ_Æ©-+Ò´5—ÖÜ+‹kAÇÖ@XCäUš¹ä;«÷…g‰FY>5+Ö_="¨ ¬ù‡û³Õ,Qj^QlË7rб N÷ðê$…5u>3îý¦µ«/ÄO¨ÂZìÊâÃZÀ±„5ÖÐwÌ1ßî½dçŠü/õ2j&9Y#{• *$kþáªv™ý°Ñ\ÐyÈÚ…*ó¨›s¬þœ¶Ìd…5uëŒûLu±G®­³ki³TGa-vež°æ?–°Âºbž1Þpº#ë sJ§¾þQJºÖéæBŽªåÃ…eåùõGÝ}¼…DaÍ?ÜÝÆƒ¡Â«—d=Éš½õ•iÑì-rÆM-˜.šúxªJ^XSjÕ´‰ù¡º“[‹{Åï6Ô®K{ëj¤MuÖbWæ k¾c k ¬a @X€°„5a @X€°„5a k€°„5a kÂÖ?ݰvM>ît·g®™//;Gîõ©%Z¯ñ—±=Ø{Ÿ.ï}„Û.Ýën÷ˆtûñ9z ÙÚ*:X;ív9Ë(Ì <`ˆ±eÛ½ •à{°ã³x¿àÄ8iߊì G~ã~ V uÏ©GKaÑŽÒòÁúÚ›{×imÁ£ª®]fž+¸ìTcLRªÀnŸ zRXÛ`þÒ7ñN5‘´¬ûk›µ>Pž©õºšî kËËnù3ÎÆt£·ô2Ÿ3 G‡5SÝ¡îkž¡|ÞkXXgµsœ/ÏóÚÖ2Ìf“kýBà˜ÍËBÎaã¿"¬ÐóÃZ‹õ|ÿ„;í¬ÔúþÃZ[™ÖóêUMZOëΰ&âhýk»sZ:ù˜?°¦sÞï®°æ •à{ðÃÚü wì Ö¶boX»•¦õŽH©Ö[Í­·ët4%hÈA+ãßç‰<Â==¬}hýŸp§~úAÂÚ­óSƒ6\Ò:z«;ÃZ«üÙ¢÷›í§¥9›OÐcÃZ(ÓP¹´ÌúË{°0T‚ïÁ.‡µ#ÕÕÛÔ•°LùŸ® žžÞö†µ­ßê¥6jÖK¶¾§õñ ïVÚwkÚGΊk£ J kô¬°VSdÿ³¿ç k)åZß Ü2¨+ñÜKXSÏIa¥$ÃÔ“Fkè˜Õb¦n¯:îÿúg„ +ÞÉý‘žíQy#ÌU£ÂÚ«™;²Pþëí”ö±æææÖûkC%øìø,íÂÚHiÈï‚K'+5Y²Ô.s[½Ñš0ÂrL©eZïVjQ2ßü¥ˇiÏ­5 ÖȨ9nÎ; ÏQk\cÿtöæ•xfÖ¨ÈÁ·cÀ=ú!ÂZé·ßð{€B¡P(OÀç9>ˆ?VV ³}•mVi§-¦ÖæÏ«è;Þn¥¥âo“ã–¤ïáÔOCíPö¤×ˆïJ“yuÙæÊj|v~©d· X^vèÅrSý«?›ÀΑIÖ#SÈÑ× ºg͘*Ÿ)Û^’2=mÖîÃNa^ i5ìa¼ ß‘­{ƒY/m)k¥ u´ž‡5Zâ{*{óÊ@<3kT$a­ ~loI‹Vl47Öš œÚvS.K¡ÚAõ¤Ûúé°–m˜my?/ ~e·”ÒFBÞç;kƒâiÞaÓ”gÀ}:Éb‡ý”öûÂZÇhðå˃ñ»€B¡P(ÀZo¸øþÍxp!6‡kÛù•‰¹üœ#ÏRogÚøs”Å?{Ÿ”[ÿ>Çj×$Ù§ÍD|}€­¸ÐUÙóè& kó«Äý|±§·"Y<1Dƒ5rª®“«ÎY¦ý§EƒÕÿ6w¡Žö‰ª<™É/oÐ$'§qG²aaáµÑ ù·¹Þù@YCCCçõÓö̬Q‘„µ *7¯lŒÒÌ€µ†kP•FS.KÑ ¬iÖO‡50_µ¬ ÖvZ¯»¬×üs+.ŽçŸÙLiJl¼Áµ­œ (#Ui¿M;µŸÖ"¯7ââ†ÒÌz²RÏ#ÅÂ'ÿ|eÛlͰFé»Èn? D“fo¾À:vÁ©…ZXÊÎã7à¾Hbß-Å“Eè½ u´ž†5BÆÁ¢“`Më-š¦í™Y£Ú k¾Ø%W€{²›UXÓÍ ‡µ¯áÿzU8M¹-…jmX3X?Ö ¥I‘‘wÏ9„ÿ#|EÄ݇ÛÈJiܺ÷é-ŒÎ‡Ü˜—òM™° Ü›¥Ö¸#2îð8Mî|ì1Á{Ä©ÎÑTfy«ïÍÔ…2ZoÃZäkJßI°¦õMÓö̬QµÉód„Y‰Qº¹é'žfSš¥ÐaÍdýtX ¹ý±qÓkç.a/&%Ö¨”@iÁ&2ÕÏQÛÛNÍYPÖÖP( a-Jaíüyå¿ IDATñg~iM¼“Aȵ43¬1¼#?Ãu ±!yk1ܺøÃã©‘^Vñ+Õ’ÞJ÷2ì"àà;¡ƒÚðëÃþâ¹SÖx‡#ÁO¥v™?{Ôk¤ÚyB^H“!Qê ](£õ(¬A¤ÂÂÜ…ÝaÄ=Ym ˦ ^Ú (ÜïØÞ¢oÚž™5ª=°–7nZ>\[ßË®–¥›Ö…×”f)tX3Y?¬‘ž<žmV\Èï¥áÔyˆi+ÂL·~Å÷gSÚW}¬%=†°†°†B¡P¨gÖÆ†žþI|Ùk}̰Æèì´ÕñÈŸ Æ™ÀŸxÕ‡,wúºÊoäÀyEuHk&‰0ØA‘‚ Þ/é0ÎÙ[m†5Åy!‰¡sl1t¡ŒÖ£°æ((¶?ãB§•Ò±½Eß´=3kT{` ¶C§$S{÷\Á(ÝÜØ°FÓÂkJ³:¬™¬Ÿ ÖÈ'»³‚3»^p‡-J ÏTJ“|äKf×,8 ª·×>cykb, …B!¬E3¬½ë¾Vÿ¡ kÝlï£MX;¡¬-§Š@z)b%Z쬕=ÖV}'ûZj¯«¾KLì× ]°¨¹P¹³¶ ¤ÃÝÖëgÝYSa Ưõ°UcèB­çanœÛ‰°&{‹¾i{fÖ¨öÂy—åH|Õ kš¹a°„Ëj§)ÝRè°f²~FX‚x’3CjìÐ(ò3ß²c“|×M zTï˜>K4X9a a …B¡Ö¢Ö~uÃZ–ªOÛxô¿p`íkåÖ8=/ üï"Wl½Œ=à”"{Œãà8å«oYï×õ–£øØkUŽO”Ö6¬Aù¿ä±](£õ>¬QúÏN„5Ñ[Ì6¡»Ñ2mÏÌÕnX#,Âcâ" Ö\æ¦K†]“b[”6šÒ-…k&ëg†5¶EVççY'3ÞœP\Á‰0ôd9¥ÃŠ÷í#d°ö4’ÅXÖµJ„5„5 …BX‹ZX+‚…ãõÉB†Œþ õûìÖªì«e:¬ÁÝ5šÃ A<´íxy¼(øÖŒ¬8×¥ôÝvБT‘@*_^*’Mè°–cß´c.S°¶Ûú­_nõÎ4u¡ŒÖ£°&r@í_ÊÏ×:ÖôÞ¦Ê~†GË´=3kTûa°<×?©e07ý¸íš f/&Œ¦tKáØA k&ë§ÃÚ¬­ û3¬Ûx@HŒuR5v€‘L«Ï³D…µUjƒå,‹vWV>œkw°†°†B¡PkQ k«à}ùnµCâ,¸ Ár°2X+†gé$Ók› R~d¶Î€èõ]CñÇkÉ VáAÀÎå>O#+]ç‹TÌ:;<¥kwýÒcéFÛ†µYÒ¥)ƒ~äN¢ k,ftÉòL°Æwº?ZÆé­%.ü¹i•Y}HêF__õɱªx;„ ¬/QÆT ѶU{5 SÓê°Æb÷Ó¥ †Ò0`ͱûã¿¿´n‹ÐE¦.ž"Xc¡¦w¬Ù½=iX‹ü´=3kT`Ìeaú_T÷¼ts#`±W`MÛMé–±ƒöaKƒõÓa­,ŒPeXfŠ_!ÇèÂÒsëí¶ xˆÒ‘PàFޏŒr¯yÂ__„5„5 …BX‹VX« †¦c c–7­—Nê k_ð÷¹FX#3•ƒiçˆÖà¤ã6(t]§<—Ïò\w‰—³…¾ 9åvÛ k å§W¶ kdþ+Nƒ×]mÏÌ X#?ÀÏéšO5ÝÜHXó%ñ=ö¶šÒ-…c›qºõÓalqž™À*2V:5õö&Rú§6kˆ…Åymº&}#YMÞ]OÖÖP( a-jaù?:ïÁÒpœÁ9Ûû;›$¬í“W„L°Fê%ÞuŸM4XÛ`•°Òà›ÿgïßë~}8”CÚ”VÚ R=$> B¯ÆF ­ ¶RZ£ר ¨Xy0€EZ%Š–ú„Q+­ â%Ú¨`hÔ>¤íŸÓÝ{ØÛåfs aoö–×ë—ÛÙ/°7’eÞìÍLù0ã;ÿî ©8¿ê»ÖÉ»½çò§ÄZáŸ×õü¢ësðX+üæµ¾[|¼ õ%†Q¬ý£ô?ë7Õ'kG½Z3ívÃì5'$ÖNûVì=c¬œQÞnúb­çÓ°ŽÁÿ¨ïý1ðî—kÝ—&éþ­Ûz×.x½÷™ÕËË¿¾T‘Ëz¦Þ»ä_Ê7#¹wwA¬‰5±Ö¼±V:îÿrÅ;KOtH<4¯uÞ´-ÝW*ûFOÉ=òZÛ•Ÿššk…ÿ®¿íÞÖŸûpa`¬M-Õ;½W,z}õäY¯/ZÖs—µÂŸcùè¤Ï÷Ö\9ùê™÷=sʘÇŒNµBËôËÇÏšyfKáXb­°ô…5óZÏ›¸ù÷5^bøÄZû+¥¿£s†(ÖŽ~µfÚí†ÙkNH¬Þ+ý­7º*£Žz»)ÇZé2ñž©ƒþQÞ)úß+¯9yô»_Z¬¶Ì½¹mã=‹ûãkíò5_o»ôÉC¿ë…?é{|ÁÎ;ÚæÝrZÊ~ß>çòKÚV¿³õª¯ÄšXkMkCfNñøaeúÒc1ÞÜâÀ`ÐhX2®÷G§vÕ9Öj½Z3ívÃì5Í+å>kõ&ÖÄ€XkYrmŒw¥®ü½-Æû UίÖ(ßHÃì5bM¬‰5ÄZž>ª<.®tvŒ³žq\-$¶¶ çWk”o¤aöšæŽµ?vu½1D/wCWW×x±&ÖÄšXËêð¹1®K[˜Ýw:Çc'Ÿ{ésow ïWk”o¤aöšæŽµXëªN¼é.^*ÖÄšX;.Gb|6åé%1>õ¦Ã@¬‰5±€XËÉÒ×â˜)Ÿ~,ÆƒŽ ±&ÖÄb kbM¬€X@¬ÀÉ¡ýOOŽo½w͵ǵ,ÖÄšX€z¸ëÚÞSôfßyËb @¬‰5¨‡_;lÌìO®,~¹zeæe± ÖÄÔÃîb…ý´ø¯tËžY1Þß’qY¬ˆ5±õ0õ¹Ïïi°¤5Ƴ³-‹5±&Ö .qìªÞÇ›b—mY¬ˆ5±uñvŒí{|8ÆxC¦e± ÖÄÔżRÞ˜ãâLËb @¬‰5¨‡çcŒËÊ[Ób Y–Å€XkP/kìéòÖ‘'fYkbM¬@]ì-ÖØ›å­—bŸeY¬ˆ5±u±'ÆÉU[qA†å*£—¤{!„ݧÐÐÄ4š÷c\Ý¿uU±Æ–fX®ôôµ1ÝïBø™A Ö ‹ª~²qT±­¾ša¹ÒícÄb Né>:{9Ãr•ŒJ÷nN…áá«’äÖïš'!±fOŒmU[qj†åcrfg9uŸá¡}Dçúm]l¸ÀˆX€¼í­: í¥7fYk4™m!œqvÓM±&Ö oWklByëHŒÏeYk4—•Ÿ…¹›¾ÜFÞiˆ5±9{¾XcÛË[Ób|5˲X£¹la_÷…°×,kb ò6.Æ»Ë÷Ǹ8Ó²X£©L8ë‹ËB˜tƾ)fXk·1¾Ò÷øpŒ1É´,Öh.I2£kIbˆ5±¹[ãäöÞÇ›b|jA¦e±F“µZ²·3\•¨5ÄšX€ü]ø‹¾¶ûáZcìʶ,Öh¶XKnKÄbM¬@#(]ÿ׳láøÇõ^§ÿÁ™3g~­ö²X£ MY™T¸Õ½Ökb òv}1ÇÆÎ>ÿ’â—Y7ô>7¢¸±²ö²X£ù¬:0rT«}úêN—ïG¬‰5ÈÛ­±Ç¸+ c-mY¬Ñ|n áþX{8„9f‚Xk·ö#Onl»ã¶õý?äXk)Ëb¦óâaѺþXÛµ9tv˜ bM¬@Sk 3BøKw¦|¯û˨Ö› bM¬€Xƒœ­ºþ¦ž“Õ®éì9uíÿ8i ±&Ö@¬Aîzþ±ç¦Ø‰Ë÷#ÖĈ5h V«Œ5µ†Xk Ö AZ­tÈþ‹Bš bM¬€Xƒµ·—û¬ãÑùÛ˦˜ bM¬€Xƒ¼¼øÙ´%IŠŽEûw™bM¬€Xƒœ\ÂÞ´X{¼3Ü2Áxkb Ääâ‡!ÌOR}Âͱ&Ö@¬A. ×\”kË^ ‡Ì±&Ö@¬A.þöñô¤† ó;̱&Ö@¬A>*óì‰wì®ê5ãA¬‰5k{«UßgM¬!ÖĈ5hˆVKf„0)Qkˆµák#`„k4ƒ ƒÇš«÷#Ö†S¬Eˆ"L¬Ñ¶ïÿpWUš­Ùycu¬=:òSsB¬‰5ÄšXƒ¡4zG¸fKu›­8úþØsÃ9O›bÍ9k Ö`ÍáP2ˆ®Ö›bM¬t;pG‡! Ö`<ž]2X¬m™6›bM¬”´Œ§›b †À§›—'ƒZ8b”I!ÖÄ@ÉÚç›b †@rŒL ±&ÖÄb òµ ïïkˆ5±PÃìx™! Ö —V;ÂB­!ÖÄ@ K/6ÄäkoŠ-Ökb Ä ¡ƒû{¬=¸ÿ2C¬‰5kP«v†E)UöV{RžÞöÿÖÌkb ÄÔÝÝ!|?íÂ_ì[—òìúö™bM¬€XƒºÛ¬KŽÙ®Â ±&Ö€“Þö}Ïb êkÒŽ·’ nüè3C¬‰5à¤wáêxÈkP_Iff†XkÀIÏM±k Ö@¬ˆ5khµ ë:ÔbM¬Ô°à¼xÄkK¬íÞ9w…ZC¬‰5€.zäTC@¬Aý,ßú~­[†Zk{~ä"#ˆ5±b êæŠÂ鵂lF“j­m ëL±&Ö@¬Al aÛñ|²ö^g˜ïfkˆ5±ÀÿÙ;ÿŸ(Î<Žo¼››¼“uQY\D¬‹S…ð%ŠÖSFAÑ«´ÅïE ·X¿B­\ÃÓ‹U9EK” (šöÔÆ/íÕFK©âihÓÒä¢ÏíÎÎÎîÎ,³C…Ý™÷ëÆÙyžLŸ}žÏkg>ÏC(k„$†&ŸðØ1vÎÚå±sÖ^ Âr¶¡¬QÖ!„Ê! !wû½ûc/ÐßÚ9ög Ok Ù~„²FY#„Ø™?üm@(k„$ÇkÀÖ#”5Ê!ÄÖ¬ô»€PÂ(k$„j]{¤³›D³ |Ïv$”µä•5þWBŒ›MÀi²FH"Èí|Ût]l… ,Ô½àà°¹ˆ-I8«QÖ!„PÖ(k„˜ÈjAØåx=YsŒ Â[’pV£¬B¡¬QÖ1‘C{ôUì{AX¡Å…áSílIÂY²F!„²FY#ÄLâ/ö¸0£ BÎj”5B!œÖ(k„$™«Ùpùþ»i/·>|ÑÊîÁY²F!ñZØœÖ(k„PÖ&‚²÷ ³•©xœÕ(k„ÂtLa+pZ£¬’¼®f[+¼Ž0™§¹ƒg5Ê!„èS œb+pZ£¬b2¹Çœ f¹Ú¥Ý9–X¾ß}Ql ­qV£¬BeÓe‰f“ ð°#.:#ýVh“ÛPñ+û g5Ê!„èá.Á]¶§5Ê!æRÿ–ðð|| ;˜¶v[ü«.\Z`ýþ‚Lµ¬¥¯fOá¬FY#„=~(f#pZ£¬b.e‚Ðlà™YüM±%ý—¥~›¼„{ g5Ê!„Nk”5B&”9W†[Í“5‡órgÊ7I‹ÖÕ°~?» g5Ê!„Nk”5B&cK‡l„/í² ä±²† öÎj”5B!œÖ(k„$Ÿ«9. ÷ Øeùþë±d­‹]…³eB§5Ê!I(kvÚkíãX²6“]…³šÕe- ðNþÞÕHSŽ?«^V’ž5T}En#f…ŽÝ7z½éu9M쨄L>Ëï¤ÜF7›Þ=~¶wÚ÷9Úh(™l)H0P[dáý5•¥®lߟÇ3"*ÔW7zÓK÷=½nyçâŠõ{†6ާK7´–²FY#t5ËÚÚP,YãÞ1”5«ËZÓlGœìæ¾TMVÏ’¿~k›¢ƒ%|:¼R¾"{ {*!“Mn6Ž¥Ö»gÊCÈ7ÏÆP¥hY‹ ´²§¶ÈÂ?/‘/í=lxDTXZ©:ÔÜ¥ò™Û¹”5ʱݶ·&@ÖvÕ¤öj=±d;­QÖ¬.kÿ€g'¹µ¯ùƒPhRëV=nû±Xñįož>åú]Íël«yÓÿ§–]•É*Rî‡ÍŽÀrc÷`~¬§a£f€ŠµUƒƒƒÏâÖY¸ï# ;§­Ë¯l+‹ Žˆá»ªnýÚV}Ü›‘Îô{àI;Ò¶Î…ÀFwŽÁÁ#”5ʱ7á‘ù®¶@ªSºYÚbÉÚ&vÊšÅe­ûÖ!srŸŒo<‹ph2¨ üèì¾ œV.qÿ%|ú£ÿŠEþ¿E?WØU ¡¬ƒ™˜uÎÿwÿ‡1_+ˆm4T„¬e©M=º |îP#opDTø¸î–F@ª¶øÿ>yRrß—´ÙírÊeXƒsiÂÌÑzwúyÊeXˆŸ‡v~\öÉ8ÄαkmYJ7L‹Kíjíì.”5kËZn6* ÅÍ@èŒ §‹¦¬ª*ÌTEͼé%•»å/B)¾>½è:ÑxCÎÌh¯©››îý¥k‹ò›p¼Zfú¤`ŽšüÌ?¹¦¼åXXŽn·>mjƒGGárÛ¥GªÓhLC•c p"й+Óë×ä1+ÒÚ”÷äÃ|`»êÓèÑF=@ieM¯¶1 ûÏõnýÏ×òa'ð±¤l?¨®¡¬QÖˆUÇ»+a¡}„ÌW¹šçkvÊšÅeíàSiÒïµ·ÝŠ(ì¿ s¿ ©×Tù'ÞâÀ‰¯|AÕÍ`á¸%b…&'‹Åphò.Ð*Ò< †ë‚¨„O{!¿tµø§]:¤:Æ4Té1ò'½»2½~M.³"­ÍöТxPzFEôh£ ´²¦WÛX…Ý•7㈱è÷÷XéYûNQ<ÿ~NÛ9ÊeØ×ÕÆ+k©nk¯2£\_UÊšåeí2Ø¡ç(<-ЬÕë=([Oo8›wùÿíéªW·+Ÿ;_"øªâ³³ð¤Nûqàš¸ n‰X,h þÎ,‡&_¡7ª®YÁKò#†Ã§«À õ}].œè´K‡ŒN£1 UzŒ¡üÁÄ£{W¦×¯ÍJ¬Èâ7“¸·®9]›Ì_¦žðâa‡eª)z´QPZYÓ«-fᢖå€ÏmlDŒÅào¢øPZ.©fŸ‘Nr«þËïütÈÅã–“phℲeS›¿´—îÀ‡îÈð©áO¡½Š.Ø¥?F§Ñ˜†*=ÆPþ`âÑ¿+Óë×ä¥BVätä%ñkúûÌ^ Æ\"~ÊÞŒ¶`õh£ ´²¦W[¬ÂõRväIý4a]Y» ,)<ø®šÊÞx²Ÿ²FY#6u5‡cã#{íŒ}¸£$8òpr0Êšõeí}9oÉDV¡"kÁí—Ýnå‡èoƒê•Ý­«c3Α5d \€9`í¡áÕb¯¬2î­nRÓ2´µŠ5GÈÚÝY‰È:ƒ¬}-Áñ½¢ ˜[©×7hpSú)ÒšœŒÜæN)kâ‡,‹Dµ¹«0š>ТäøAWËZ"È Q‘y5 ²x÷Åb'Mƒ\*²WûxYbwBlÈšenæÄ­O7Ò6Öè³OWÖÂÍhÕf½sÆ_Uï/•éȲîÀ¬VïmSé:[/ÅvÅòýCÖÖÌ_·\EVùÜ kCD*µ}©ŠŽ+’Õ«òâEíûéè-ÞÞS¤14Ù1cJÜ gˆtyÏ ‰S*#‡ iŒ.:ùçøŸà“í®¿­ÂhúB‹’âÝ,kºX 'DE²t¿ j¶ÊkÚÇ㉀³0æÖ& Y³ÌÍœ¸-ñJ¿ý"£2•µ¶È-ñuGb‰Ö í¡0²†¬ ]m¾/yîÂêÛ²†­²æY»,¢ß:EÃõ²6A¢«ZDØ[!:Y½Zd¶ö^ÞƒÑEôzO‘ÆÐäí@<êcy@鉻JeØ´_³"qOÛµX†Ñô‰âÝ,kúX 'DE"kv$r;úa‰Ï¢~3ˆYë5·Dâf‘¹Ç¢ŸÊD 2”µóaW»¡ß°PdB÷)üYCÖÀ¥²vÖ<Óü¡~ÿ4¥Ö!k€¬¹RÖ%„Eø)6§¦[ÖÊ_©Ž^·dë¶êõPdAtÚØ¤ñâû{:)¼UT„zš\)Žüü¦E‚KS ŸüßÇÍŸø†»ýJ´œ™Õ§Zt±¬bœá¥õ IDAT‰¬Ù¡9 s#-Ç'ha_5ÍYËZo¹é¯9¹Óä?-òí¸ôZÄxnËt1jñj›Ú#êDÞ-GÖ5p>Ãÿ½ÓdUfY+ѰcÅâ,ÞËvåå”7 ky.k÷ƒòfî{«Èj¿NÖ¼³D–-.® /‚Ñ5ò’ÕkÏ‘£Ïì©Íë5Ed‚YY/C“æ" ÎØÎ¦¢uá{èà’üþ¯òÏÑš76zíËZ/¹é·Ç›È–vo†²Öb©E'‹—ßÓ=ö"kÈ8ŸiJ½l²ª;©dí¢mY¬T%%ÈZ~ËZ¸ë_dØð©È‡Yó»ûÕ¦Ù%SÞ×ná›#ЬøoYѬ¡7Ÿ¤›"Yózö õù†Öwz­dÍ»¦u}YÑÈéó& ¨k²ÏcÖ¬ãÝ%kɱ@,*2êS++vÎΖÕ>Úâ÷æ@ÖzÉÍxMëµEeWïóf(kcÅ,ka-®o)­ýi×h/²†¬ ¸¤Î…LVÕJÖöÙ–µŽê—rе<_º¿_XßÂÅåY³Žt•¬™bXT¤}j‡÷WË͜䜶ˆÈ²ŽfqÓ³U=M%kmËš§R5R‬!kfÊK¸¸#k–ñƒ®’5s,ÐÀŠŠDÖúSÖrÛ""kÈ8š®S)¤ê¯©d­Ñ¾¬yN±Â kÈZ vK+—cdÍ2~ÐU²–"h@EEÚÇ_$/!kùÐ""kÈ8š”Nõ]*YÛ¬; ³þP(;]£ÄYCÖL„‚ ¬>ä Y³Št“¬¥Œ˜Q‘ÙÇ ûQÖ¾(,,ܘ?-bWaá3d Y·¹šçB Wó-×°H©l 5d-G¬ósm€d-©üiGOYCÖÀe²Ö5Â,kŸë˜¬T%²È²¹–µ‚¬!kàd:Zç[UÉÕª¦yród­ºn-%Ȳ¤[CÖ²¢f¦šgaT]W“eíKÃþÐõ;O²”µçêøFÊèÕ5@Ö5KÂÝ*+¥Z¾=idWÒþöl„¼¥Ô3ÊèÕ5p9Ç(º5d ÀF#:HÍ<`éTí ïXÛáÉ—TÓhJèÕ5p5_Í>L!Э!kY3¶¾é|NÕõ둸ªmãÉ!ÓfLüˆÒz5d ÜÌ1‘K”ݲ=½¼*­cÕ¹…s[žÎü¬Ë“SB”=Ы!kàjjDöQ tkÈ@öxú ÊèÕ5p5Ç5º5d  ß\íÌ*l èÕ5+ž>£èÖ5€~‘µùJ]ÁÖ€^ Y°`ìǔݲ%«Bv\k²R•vÒ/³”:z5d 5d ™÷©ký)kªiµôjÈ kÈ@+”ºÐŸÓ ÷+ÕF-½²È²`dI“úÙÞzüc ì­Ù¦TõôjÈ kÈ€÷ÎÝ™ïéWŸ»³zz5d ÜJqý$ n YÈŠÐZO?Ó¾–Zz5d ÜŠß'÷(º5d +<ùÕôjȸ”^ŠM·†¬8ÙÕ5 WëGYû À‹ä·"/Q  CÖÀ•®¶¼½ßl­üñÅú¦›+«ýT$ kyÊß”·(@Ö2æöɶ5+t}Ð?mgÒuaæg?vó0‰1~ð8*5€üäÁ<´d c4©[¶=k‘R;mgrX©Ç™žýðé’`Ã6ª5@ÖÀ%”ÿ¨ÔRÛž5Y©JÛ™TÌPûÆfhšGDÏÔv*5@ÖÀö\òK)‡6_Ò· ‘HÁ«.Œ(¼†ý”xÕ\jRÄ—QÈ`j: £üµÆÔXÆ­Y>} ÖÖH!";÷p,ÛÖÛ÷cÖ&Ѱ’Öz5¬­ƒ«Vx)u ‘©k®jS'ŠúÎð6é^‘k+†òéšþ©½GŒ2_2°°[}žÑZT¼ÕöOLØšÌXGãWÜg˜tóü™€ˆÉ²;-Ðûq^_6…n3Ïä RoÒ @*üƒÏ<+~B^Š\¼L63uÚ±‰o•paÜš…àC°F°Fú3ÂZÏ0„5ä ’©†Œý!”Ü­ÁA¥x Hó¨)^RŠ7Íf¦¬›05Â…É-‚5‚5±Ús£µ>Õ^ßžÑ[hXIkÏ ÖÞœ½Û1¡jýùÈŠðÇ 9ë6 åßâòâsªÞ /Ä¥`¬ò–}Àkâë5˧;·—¯ ­SmkŽvNÉœ«4+\/ñ£“1£ë³èx œ¯®çS7pÄ .+Ê%XSrÖbÇ/VÓ¸/•çÓ/”O¿v¯E¿/¬Œ4wsŒkç€CJMÐ¥tj²KÕù’®…ݺœ„¤Y›Êú9€!v¶›*0`ö’²od»('Ð0é2~òg!&kÈî´@ß d¹ó63€n·]!ÁšÅõè$ì %··”âDàsÏè÷~§š3û60ÛÌTƒ5c¦ÆB¸0¹ …àC°F°F ¥–í fX:ñ5kýØ‘íÁj3ÒÀ’Öž¬ý6Vù·›°T…µ}âácž?2Z®¹{ÙÖŽlWÞÛ´J>Ÿ¸B91ýÖ–9ä3óŽû\8!QKùÛQÝÁ8ÌgNºam²œåÚ:µ–“ÿG¸n_ÿt`mB[ ï†5÷ª TÉ¥ ĬæÕù’®…ÍêÂJ±°Ð˜;66,ü¹î‹ö ˜(ž`ÒeüäÏDLÖÝiÌ4-,ÂAmñÎ39ˆdª`N(ùû¹ºyˆð ŽÜ">&¦¦*¬›05Â…¹oþ‚ÁÁ)4™›ùiÃZ7×f±# ƒ¿VæUç#h\IkÏÖþÛ ,ú¦}ã~’*eX[Ea$¿2x”|ª¦­ú°–¨Y‡s“DŠ#žÞ+ÐÝðü ç…¢.Ë`•„‹‹óEˆÊg¾œÇd$ê,…$'ކÀÚ]—ëD~MµàÝVTß²? ¬×Æ?í§ênXû˜ê¾u]-›8ñ7^›/éYØ­³@»\Ú©@•=ú y¥Ri/À‰¯LºŒŸü™@ˆÉ²;-MKÒ>ýp¼£y$õˆVï¡ —®Léå°&P¥z'ÄÆ|Ô,ÝŸ01UaÍØ„©±.L}ó|ÖÖH! ©ƒ¸Y¶ÒÕåK¶6wŽ›9ÒrgŽæwuwýÕû¼Ržª…îí|,*½ZdˆÐ‘å¤C'IVÔ*`÷qSSÖŒM˜ áÂÌ7ÿÁ‡``úÞ¾ç¢IúifÝP;ÛËâ¸8%ÁZÐÀš‡D®y! ™Ê]õ5òú”k÷dg•ÅaŽïÒ‡5¤Ã°ê*>²Kµ»ÅoÈ`µD>‘¤z;s|q¡˜ŸÚ¡ïê/Jkl÷Ä3 ¬}/?jåM02«×_ÿ,ÀšÐé¯kåÕ†* I,¼…xZÔù’Ž…Ýº)?Ô z|‚×I—1ÏŸ Œ˜¬!»Ó™ ¨z×…Úò­WrPOhþS¢ÿ³ÃÚgOþsÞˆ¯JCi&¾X­–‹pRÏdo«¼‘‘‰© kÆ&L…paæ›ÿàC°F°F UpýÙ W¶Â_Ÿ¹³4J$‚µ`…µó@–Ry¨—a-A]ŽRwN_Ö$ªñü©âUà²R|èÄ"¬jkG¼|IëFo®ið ¬ÚmÍ1²Ÿ­ƒÓ}`í¡t|ZC¬r¸RtúâëŸXã×»~Qr³¸w 8fQHæ=æK¬…íŠVò|â©%íôAH™”ñ:é2–r{'9k(€iòÔu a(§iG^ÉAk½K3í±9(Ö±x¡Xyž£‰© kÆ&lÿparA Á‡``J[fïþ"¶ÃÚ§§×Ò(‘Ö‚Ö†»7Â)i6<^Ñi}Ê)ê¼ ¨¿ò¾{ú°&f–ÏYú@m~\aî2~Á*C9¾¼ëu»ø¢c¤€†ðüOus?Ôq·¥ â_°ÍO÷‚µ¹z< ¬—í’ȓ鋯V`íÃx v~þõ¸öM<ÿ`8–§xÍ—|-ì×uàxb¦Øñ¤Ÿ±¿ùð„¬»Àí^']ÆRnOà$g 0-°ÙsÛ”\ùö„,ïä ‚µÞ¥ÀÛîÕ«á¬AšÀjÍá~LUX36akü‡ ãÖ¬‚5‚5RÈî AÚ9îtOmßO"¬Ö|rÖªà»ØæP“–2Ô'Àòü%ƒÝ ¿‹ßTôròÒÙj£ÝÖŠ`¥f@Åž½5j;qö¼ÙxÚ7/ªºk°¶Bƒµd¹4Oòœí‹V`/h•ßž9&[¼Ë}ñÒC <¦ñ>ö‹CÎeUU¶?í¬VzÞX›41eÒe¬äöNJÖPàÒ• (º¦n¦Â3ÉAk½K]À;fŸë‘ À•¦*¬›èÔø Æ­Y >kk¤?!¬ìœcÿ£h˜HkA kÞ€sG„5es ':U«WþÏÞ¹¿EqÝqÐᙯµX]*+P”• ȃ‚"V0¢¦â#FDãD%ñF0h¼€±¢¦RSƒõn­FEADÛj|Ÿ4·§IšôÏéÎuwç²;âw†ý¼¿¸°gΜ™çÝ3Ÿ3fÏY;×!IE^‚¤h¤jʼnJ±Zd,kë‰N‰¡—ÁDŸ7RU'y—¤¯›UY[d,kúcÑ´Ï’¬ñgNôí{sC¢h¶Š¯“š Ƈ”`À_höz´ôÒ  ©D_Ú]ûZiÑÝÃÂk]\ÆB¶‡JjˆY,PÙÄG¤®ã¢ Eƒ,Š;úùH|%Q{`ÆxöíùþnbIbĢЬ™1z'RwaZ›¥Î²Y±çjÑ}26µ—,k³ˆ4£ÊÚÈÀ÷Àº™µß˲ÆóŸÞZ#JÒeq..0³6‡èiY;¤ˆVõF¢¤Uü +É>4 ·“hYÓ‹¦}ÖdMá´ð¬·¡cÚ } øDNVŸJ´ÔæÚã­]šé“ÖÇÔÅe"g{Ø¡¦†XÅ;'0i™ú?SŠ9Q”µ‘Ïí½=‰¼‹È%:,¿¬Ñ¯Y³Í´\l˜¢Š¬™ ·³îÂtKd ²NáÁoÜ!kë"· kŽ”µ÷ˆjLdm"yšåßµH²æ•VÈ—6+l’œ™"Þ=÷§ ÌÚ?‰†‘µ%jvèçþqHÊÓ6, êúñ>ÑX ²¦?MûžOÖ ßk‡/=T¿ù¶]Ö2ä¡ð¯‰ºXì¢t6Ñçq™ˆÙvRCŒbA;EØK#”Åmôá (ÐAž„¾r…ö©†QÒÿ¬ç`B‘ú4WÐDtS~Y¬v| oòäZ)ªÈšy‘pû1ë.L·±Ôù@Ö kÀátsKÜ!k¸ŸðiÈše­–h¨ür]Çš²`Y;HôÔK²–¦*ŠDY[6TÙvø8,ÿ°qœü‹<âØÂTÖ> ´d“‡h{h«Ú‰æüø ÑÇdMw,ÚöYµ‚’»Jz®DxØÀu@룙 ™ú ¸+®º"©¬W=ƒöÒ"~1¯‹ËDÊö°#(5Ä&²é ¨³)á —›2kn{(vóHšøžè÷Þ%ò±TT‘5ó"ºw,t¦µYê| k5àl*ë¹.wÈÚJŽƒÏ @Ö(kÓ‰ŠNK/ouËZzsb¡G’µ¹”&•½@¢¬-§ª¯Uç›Ïó3H\¤Aà¦t#Ÿ©¬}A´ïGéåPaŒù,¤UÕDmêÈnyùöH²¦;mû,ÈÚ)”%;dÝ .£ ãÍKØÆ{Aë­¤Ò&ûøQ§A\&B¶‡Á©!žE,P³žŸL¤,Aj‚¬õ#Yã‡IwVŸ¦,P$ÓàwµJkEY SDûŽ•î¼6 d ²œÍ‡\};díÖ«Ü|^²æ@YÄ K¼w±2M¼1. k‚¢ ýbI²6GŽüLO—dmÑeqøœ’âý[Ì"êq'…FŽ'kÕŸÝö;0HX³ñVó&.[_Ðå½ÞЬéŽEÛ>þ?¥¥ï„—5á)Ä“—“·Éh¼d^Â6æÍÎU~`3šd— ŸíaGHj(ÛbºÄ{^ö~3Èš‰y´ÒUCñšñ[ÿ¿ÿ~S¾Â/•–Š7MLÕκëŠêeÍ´6ý;ºîBß ™×f¡ó¬AÖ€³y½f¿Wµ?>qÁþZ»¹6|^²æDYûÞ?VIýªâìð<¢C|°¬ñ5>¢ì²Åû§RžôðàþÁàöÚ¡—óh¡(k_]©²áæL¹Þ·Ëý޵¥§w#‘·‚'k|©¿òÍOV´Í&š]÷À_ñ‰ê±µ¸æþ©ìÿÎ^|Ç[’5í±èÚ÷ÿûd­ÆCÞ’Üây#‰V—LK؆ߘjå—ù>úÖ¾ŠË^/˜Ùa— ›íaGhj(»búì ’7gÈÚgT%Yû–þõ¼›´l\ë®±ø`¢©+n´\!Ú(Îþ¿M”$OìûÏžÌ4*ª—5ÓÚôïèº ƒNȼ¶Èd ²œMÍîJûµŠÅsÖââvåÞÂç kN”5>y‘<ÌóÊ•5þØL黇ˆþ yRjÇI ŒL_­lÛ%jZGÈ¿˜$…@Ìe?_$v”OìÐM ÜÊPÇŸ›å{#ÊšîX´í³ kü0Ÿ´‰gñHæ%l£€Ô™Ž£!ë¾(ݤ. ÑNÄÄeÂe{Ø¡I Ù Ôì@à"Ñ1åµ> â¦õí‚zqY+>UÑïÇâÕÈg([ZI¢å!§oQQY3«Í`cmwaÐ ™×¹ó¬AÖ€³arÇâŽËÅòý²;²ÆçWÜ?žäÛùä¨ôc¬ññ¯Mll\Õ[½_·7µ¥W¥—œçeYãÞÎ>â)Ïy|NÙbÀÙ…EU«ï¾/gÅÂÈÿé/_ŸZuœ›"hVõàÉÍšf­—0+=­±óÑUeÄYÖ´Ç¢mŸYãÇÏËIKËùÇVÞLÖÌJØÇ*U$†=·Ù†{ÁˆFH ·LÈ"ÚÀÄe"çgìG›²=¨‹%ñª5ÞÓú’Ñ̬¶ëXí™tï°óÎÌλïgvžIªåÞ$”5Ê!„ÊeØ…Ö&éùè_Ùvbôoß_͇­Êe’¢øÏpðg²FˆÀ ©é–ÃÌZ&âþ$”5Ê!$éôLäFàÏe#³÷ÝtØ„{㺸? e²FIAº€cÜ üY£¬"à°Ü›„²FY#„¤"”5þ¬QÖ±¹«ÑÖe²FIIº€;Ü üY£¬2&®Öóæ`mQt1z IDATðW²F!&vÍãFàÏe(ê–X£P$é”5Kj¿Ì½J(k”5BHêáæ&àÏe(z-Q¨%)ß’õ^m:ËýJ(k”5B!”5ÊImr^JMwí%kK—IxjŽPÖ(k„B(k”5’Úü!I·­¹8ñ_’ô±5Kz%Iǹg e²F!„²FY#)M@ȳè.ù{¬YІo¥7ܳ„²FY#„BY£¬‘”¦åà=‡í8þËnîYBY£¬BRŒ7R+7Ö(k„Dà°)ܳ„²f¥¬}¯+³¸º(‘Ûïæ òR‚mqfæ3ÖÛǨÁøÐû®šù…™ õEisÊ*V„ V¯Ü‘qº;=‡G!ÃavÞIµ6›å5;Œ’mϯ˜÷*YJß٧ψª©F$ÓFÜ6¡÷Šjì%ê2ÊePÖ(k„²f;YS8П°­Wÿ5¶&JÖB±Þ:ÆùକNÖÖvÙ^­db‰VrC¹'iÓ÷_ð0 dÇR«ÅæGy^–V“qФ‡eÍ<š¡fX²fMè½¢KY£¬ºmPÖl'kÍÞ™ô…på%jë-Fâd-ëmc\‘4º¬Õû€O¯Éñ+%—<ðŒßXînë[Å—Ö·±Èåk„ØRÖLòž2àú5‡eíÙ»‡ËÚ‚þþþCö†š¾Ü;€•#l›Ð{ëèïßCY£¬‘¤ n—•ú”7håÒ Š¸ eÍJY;šèÝtÛQÖVœFXÖrò`v¬ûðÏ`Áî#˜¶:øæ® ®vùu§“Ïȯ-_ý<‰»Ðà1ÉŽùQ¾ø^yŒÐGTÔÅê!"d-+^4󚻕X¿w„mz/¡±Î"Êe$4}xÂ:{Ú9~Ù:ë–Ö³FZÈ=L(kc"kÎóxëm'kþ£ËÚ`A:¼,GÅtuÔºçÀOòKpK=íÂwÉòml©-/qe5mMx`!?G(p÷uû2Ê6eïµ|¥#3 ÅÉÄ®¶%$¦6’!Øò[AJµ×ô(¯÷àºöÈ×;j÷(ô¢¬™÷¦5{³àZ:¶ ½—ØXÊe$þÇÒ€…²fÙC±U^Kîâ>&”µ1‘5ç}`#Y{t ˜Q’µl M«IöÉ£žLtjm·'œ•‡ñ.¬× ª€Ò$9G7WËLéNð=s…ü¡`w±VµÔ╎Ì4'»ÚB–˜ÚHl„ùQþ£½TÅè!DY3f^sØ8Ò¶ ½—ÐXÊe$7å/ö²ö“$õqÊÚØÈÚŸ@¾vRhß_FaùFý¢ŸöÚMïgøþì¨ Í›h®«lU‡6C :{O~ã:ÒÜ—£*¦«²Vº<Ëå[Û§ÿiQWÛœéšÒ°r¦ÛL´"ƒGÄŠ ~ y>yÖÔ¬½ÞÕj®•1ÎoQXÜÑÞÎ>MŠïbÏ 3;Ð!+[±?¡ù9BANq0&PûüRoéJGfŠ“‰]m!KHLm$vÂü(Ï_ûó=íí àPŒB”5óh¦5ë¼XïiÛ„ÞKh,e²F’ƒZ颅¬9VKÒM ×¶FÚÌ}L(kc"k{e%Ø©¼ë]¯Òû7•éAŸ6]ñ£:ë’ùZAÙ=]ÖÆ¹´ÿ~ Œ²ö¹Vó K™wÏ4ý^h«ÚcŠVtð˜²7FXÖÊŽ8ò¶hÓx¼¶œÎ³ŸgΨşêãw§s§v²zÌÉžbW303‘…”¡à# <¸éý¯•Ñ¡uDe “ ^m!KHH"¶bXGù%ùk£‡eÍ<šYMÎ"`ÞˆÛ&ô^Bc)k”5’´f?²òŽçž]èµryë²K¹ emLdíР aÛŽï¥íûlà¹$O¿8 Ïø7é¯d‰rMU´îg`G`Â^xV«²ÖéAñË´ÿA¹PçLÞs`q^ž;X3Å‹ÎÍi÷¡]Â3QRU88œŒ%Z†à±BÄ&/x[XÖ®[Âç¦3ÎÇ@AoyPûìþ‘³WzðÍ> P®q7 r–RsËƒŠ®¢%rÖâÇ0–µ´°žä6ÿB©xWûçO[¢D9ÀÉðUÌkÎìÐÞfàz )/bÌ"x´YÝ[¬ZcC¦¡a2á«-d ÉA–Q½m0Å:ÊÍJ‹‹n¥Ôc.†s”ÿÌ-ˆÑCˆ²fͬfÛéÁæÑ„ÞKh,e²F(k”5BY³›¬E¡PçîÐIÞ‡Êl­Êä‹ÌUAkhõ \›¡øEU²lµà:à0ÈÚ_N]åšu²ŠiKÿ·:«A´Äà‚¬Åa.k+€ýªñ=EÐCŠ1͇íw êÆù€&¹üàœþ¹J|“\_Ê© |º‚3FÊ‹˜³¨W öÃå¶j= ™††É„¯¶%$$YEÎ õb¶ÔAmqNVTökÒ3Œ£¼­ žfzQÖÌ£™ÔGè¦%#i›Ð{ ¥¬QÖ]¶F(kö•5ÏZí\ïà’6ÙدHÓ÷³#>ö ß¨]½œGV2-¡ã$0hµËjÍ `ÓY°a«~ˆË³öŠ¢%d-n sYs.îÓÜ ªäUž¡ÜS; »Nça t?÷ 4$ÕwÒýkè.â‰FOy1l.¨†|mÙŠ2 “ _m!Kh¨ä ÑU`Ò(„ ä£ð§ÞC±ãå­ Ú)!¡‡eÍ<šIMnèVN#k›±÷KY£¬‘$`·ûï k9K¸§ eÍ"Y묪ª¿É#„CwzœoKø=Ú=ruñS¡Çj^åk*™L%Ø¡Õ=S”,RÖôšàxxÑþÞ=ëÕt(ƒh‰ÁMoÝocY[:(ù6íq&¶•£BYÁ,í®l5À%}éDø¼ö{Éó…ô·öÉcµ¦QúwKOy1\.®niìépáÈ ËÖÕih˜Løj YBC%QÖl kqòRYøµ.0º‡eÍî¢~G eä|=i¾ÊcÁŽÎè¡”¡`Ë'ú#ÞÎY¼Æ; YÓÖRÈ"9ˆ²KÖüíØ!ÞQ>k°]= „B”5óh±kޛ߮m†ÞKh,e²FÆœé¿J­§Ò/Ï[½Ì¯¤ËÜÛ„²få FêO+µ“½ÚäÿìûWçÇ÷$yÝ<=e¥ÙÅ]$)ˆ/xâݘBЪ(Z!«¢"Q r4æâ ^Š5xŒ—¨X«G{Ш­šDM¢§Ž—ž¶é¿Ó¹ìÌîÎûÎ:;³;ûýü²;Þ™yçýÌÌó¾2sˆ ¤'çÕûà9eâz¬OíŽú𗵆XY[,¨†ZÐ ->8/k}ňÛìß´jkNÅŠŒb©©µ@y´ò¶$ò”}¢=ÜD´8iŽÇ}êÈÔ‰éì"’òÂÏè8¢ݶÈu²¦m%—%dž”xY[ú;ëÑO'ëC·«Ñü£aM*Õî}œå?HÕݱð}®†àeÍ<šxÉŒˆŽ ´l±µWXÈd 8Î3Ʋì§½ö޳¦°Ÿ±^üÚ²fk×ý¥!¢nõ놨'kÛ”'k›¿ìR4j¾Wy1¨.6Pÿe­DúãàŒïo–>óÍ¢ÅçsÖúŠÑG³?|÷Kjâx½mQý­”_ÙlŠÌh´yh±¸œž´ïꪜ¸·ä_˜¨”㌀ÔÐ/{ïÛgR“µÂææxÂeMßJ>KÈ,9ÈYK=Ƨ^íÿ,Š:ϸ‚—5óhÂ%§C”ýÂe‹©½¸ÂBÖ kÀqºØQÛ_I|‡±Ñ¶ÿÓUì~mY³wœµ+D~uHìz Ímˆî¯ý̪ âF#µÁ³_@Ö†ImÿûêŒz¡hñÁ9Yë3F¿dí[¥¯É¦È Ç*SºšÜžñÑ{ÉuPäY5:åÅ8ãÑ=¥Sö¬BšxÐU²ÙJ>KÈ$9²&âãÔ«ÝãžåRVØíN±5/kæÑ„KšâßréW ¤Ö^\a!k5à8ϯ¦‡¬5Vÿˆ_@Ö앵oJ ¤¼9$ÒUÙÁB¹92º»[»c¤ÜôýJç­;ßÕ: Y{éPm”ªeÑâƒs²Ög ófÿö™ÓµwšfR†™Ö:û+Pž³”lÑŸ‹û¶’#ì$²üVVLÊ‹aFQdðÞCÊ0¨­d “ƒl‘µ”ÌYK5âåÒžUáp5/kæÑ„KæMz¡²qµWXÈd 8Ž}<ª¯Ý÷ÈšûeÍ»VjËUÉ_&}ÐWè’GØš½[7©Ï¼Þ5Dƨ3j‰Î‹dm Ñ—BY» Ù&çÑ^´øàz,>c˜7ûßjI Ë‚ôPþ\ ·œ«ÕJêÝ¢E‘¡’“†E$¥`)±)/†Òp9<ûA¡Í»#±²fØJ.KHYs¬Å9Ë/Jús;zWCp²'šhÉu y¡²ñµWXÈd ¤£¬yæÝÆXk²–²æý#Q®ü¢ÛðñD5J3¶9H[$-ê!š¯¼.6uùäÞFJ-ZåíÈÛ>õµ<‹hiuVÕ:¢ÜYÞîDG¾:—±'7ü&Ü"©w/óîà Ñ%¯HÖ¤Žo;ÈËZ&Q°ýò¼iQº—\+5.¸KÃ4FÅöÖ&hç7ú)4³ilÛ¢uN—¾½9cQŽÚ—Ê¢‰=Óv!ZHŠC±õ醳á¯%ÕU§S^ 3¾ˆÊæZjgòV‚e-v+ãe éÉA©,k $,k—¶>J­rÏòäދøYªFèÌÖœ¬™FÕ&åD#£‚*-ÓhÆÚKPXÈd 8ÉOš±y8~tY³SÖ¼Õ’ú”*͉_‡oÄW¨ék††§C5jƒãLƒ6ãh@(kuò3/9×uÿí&ÿŠ 5;{…Ñ\¥c£²æÍÊQÿ´p¹Ö>¾§Ž@yáæf`N8úäõÉq("Ò:ÈÝK4Ââб)/†5DŸ‡¿Öùh«[dͰ•\– 9È&ʨ)Å*Êñ´KgíRŠI¦á,ׄ¨%¦ï”Å‚—5³h¢Úä"Q{|Y3f¨½……¬AÖ€ƒ4³ªôrµf¶¿:€¬Ù*kÅK‰®wÊß:ïß0{èô%»µ›EµÿÍóÏÊþþ‰ÞœÈœ?Á—s¡½@ädÍëÙ¶ÃWyY kÞÑ{·0¿¥þr`c¾Ò—Ÿof®ÇŠ`£?²æõ´eû|Ù5Q÷ÈËkZr*~ÚÉ#™t~¨¿âas IÅF¢ÊNU,eX™Ky1ÎM4#¼j#ŸR]Ö¸Í6f ñÉAvQ·/Õ*J¥Ä%Dm©Vðس<,Dãˆ÷A a”5“hÂÚd,Ñ¡ø²'ZLí%*,d ²œãL=ëI/YÛÉØYüî²–PYsëZ\¹UDßÈí¶@Ñ…bëâr)/ÜŒÀu-ñš|o¹CÖøL.KˆKmqIEY{yÞ´ædK+-Èd 8Ç!Æö:#M ÷;ó?šÉöàEHYƒ¬ „áC»q³<;ˆj3Ÿ/%šeåM,.å…ÏiÌ!jYžyw~ÈöîV&k‚Lc–ŸÚâR©ö$ YsºÒ‚¬AÖ€c׳åÎ8SQ=+uæ?×2¶ ¿<€¬AÖÀ®˜×:ÝC‡–DØÒaeX.åES4!<•3ÖæN˜¬ ¶’Ë,âRA\>LÇçÖÈšµ•d ²œcmw¹3ÊäÈ Ø Ëª§áw5ÈÚ(-.vç–ÕµN®ðçݸÛieP.åE˜°S׺.ÏŸ[6wªÝÛœ(Y§%3‹øÔFŒ²¶#33ó%»!²²Ò:•™ù ²YŽáXê˜s²†îûd ²6ÐÛZ¸›dMæe_L¶°Òú•R Èd ¤™«yJ[‹ÁÖd ²ÀjY³Èd ¤§¬m¯­ÞY5È\Ö’„qÝÊõµl[ø©xñ²£ã'úófô„¬{(ö¤-Åøõd ²Hj Zë°pY³“¦Ùá¬Ó²M‚¥Óõ¬Ô9'!kÀzëG§««]»óKtß k5@¨ t›‰ËšÔJ,{ø®ôQ±‘[º~‡4ß¿àøVÙÖNœ„¬„ó„±›é*kŒ-Ä k5@ò’žƒbã²æg% ›/mΠ‹¿%Ú:ȰôUIÒü­¯I߆#­8²͸6vçQºÊZÇ-6ïVÈd Y5…·OTÍã#Ê2,Î" Í E²µ35`<ŒU¥oÎZ3ckp Èd ´üô ö.k¶Ñ!ÙØæð÷Dنœ£ž¦ý+¨²]ëv°;FÏ×5íåþûí½Ï;q Èd ¼ì|;—5Û¸BtCûþO"ú0féê Q©>ÕNt²³¶2ö¥³%À k55…J¢*}bÑ’ØNý³óé}}j.ÑO5àjWó¼Ã˜Ó}Qâ5ÈÈšÄI"Z£OM!bÜ‘>Gê‰>†¬wËšóOÖ k²YY“9-ÉZ§>ÕK4Ê|ÝÿåUCÖ€«]ÍS~ëÎl àªY€Ëšã\•dí¯úÔ9¢\óu–Ö=Y dÜÜÇ?:mJË:œ.Á£ö=è¾@Ö k€d]á²f‰ c¦è÷¦ÙB¢™g $’ËŒMó¤=‹c@Ö k€ääøìýØ ¸¬ÙÅD["S¥’¬­6Y³xQn±y¤O¯|"fcg_ üç1{ü5dmû6Ø‹£Ø d úC'ÑìÈš]|óâã’¬½&^1PI*Šé2ác‹^ ƃ5…µŒ]ÅÑÜd ú”µa/@Öìb÷díÏÂõƬ”iõÕKôöÎü-Š#Ãiœ» êH@ÆuŸõ E”€j<Ñ@¼ñŠ]×(jo웺ýèÍÒCl=„²Öþ²¶IÒ›nJ¬¨Tå¯nzÇ 6F™UÖb«mðyV«Ýã4çoØpÜÿB%¬/©VD–¨« ‹ê¼-E;ž&<üh”10oú=Üù«fu"Fè`!#ñ>FN[}$Í“Òb$tº—bŒw%žÛñ©ÿ†ç‰Èwº“wïƒq°ÚõeM·4UÏby¸»‹raÖíÇ$ä—¸R‡A³xÊePÖL)k}ª—ÈC‹·Ÿ.eû!”µö–µQÀ/’ÖX‘¯Ê_牿—¸ä™TÖÆØzÇ<‹à}Çoð­_Æ&`zÀžªå;‡Ü»ív?¥Oþ4ª˜ëJYSGÉ(ë1B ˆ÷1tÚê#ižT Fó (kY·ã˜œ< ¤ûm)âääm FN®²¢:YWÖôKSõ,–õH”S+€˜ðê–]±d£œ´É­²xÊeÐÕÌhk''ú}íg "”µÖËZµýì)Eg³Ü¿ãZ1/öÅê±ëûʴ㥼¾ÿÌÞU¡ðÍùÝÊ9yš%ÚÓ›’yJ•d-=ºÒš¼=Ç;fž;õ€uäâ?Yª²ÍWŠ¢²±Ã?:gPá-#êéJëÈ!½ƒÈZ´(·ÿìó\NÈ[ú<­´) +cýwT­ˆ(×S‘:yGi´è%-ëÄÓ„…:¦¨ˆ—y¤™CY§ˆ:XÈH¼¡ÓVIó¤‚1RÖo%ái$¾ ¸+'³€¯ü¶ÌÝ~Áz»˜*ŸÞzä–èËš~iªžÅ²xîN͇Ý^Ý|ˆÖkOY£¬‘®(k[ìojYû23pR¶ÞlB„²ÖZY6Åó‰Zü»lH‡]ó9jÊÚ ;—YöîÁõl™Aî‰iÈÚy«{is7WŽ_‡È[G.³øWå…·eeEY{_.cÆWŽo»g^Ò—µ‘Õ[,¾1蘇ä-?‰åz³eˆcõ þû©VD”#0¥LJ̶Â.Ùªvªø2³‰ÍˆPÖZ'k½ëé„Ò·êl@“ÛV…‰¸œ½‘]¢øZƾ°"SãEji©@ý©Ø ²ö‹¯TR’;°àñ³ü@Êðè0ÿjí¶£IH-ó¯ÊŸ<¥¨*ë@n*®,(,Ïõ,ã^»˜µçù[v¤èÊÚÞ÷ÏÕò˜ç0Îwgm‰7[P°ŸjEDù¨u§ö¹TI'ž&œ; .10•˜èŸ_CY§ˆa XÈ@¼‘ÓVI㤌1š‹ÁqgŒÈÚÁæ.>%ލÜež_DtŸ§Þì’h à IDAT™ßc¯ ë,Ad-XiŠžÅU\Wž¶ÑŽK[T·ØA9?šÅSÖ(k¤ÍI»$<4™åÂ0“Ui¦09Ý{ÉšTßFŸ³ÊšqY»à›‚^°ºeÍY„ÂÛ®í㱡›Ë`Í*ÙÒ;C3fÍb-}ônhNò…+œ´qĬ]Y ˆYƒÝõ¤äÇÀé†N íR½ƒSü, *îRÔ•ËHqÝ…K2¥2å;Ò’`ïYóy |¶P+çÍñƒ'ô_wE$q.A®œ<ÔkÛp½xš0PD¸¨c`bdãõ Ê¡ªSÄ0,:ÞÇÐi«Ž¤qR†ƒMÅï6l3 kÝRÐܵGâ~¿Æd@#ÖVâ¯À—ún9†{Î`²²4›çy˜|ÆšÕ­ÜkY«Se˜«ç¶Q޳¹dÑuت³­`mŠøÉF€ S0!ST!oSRš¢µs(UbüÊß5eÅ\—mXkcŸ†FU¿~7 î<ƒF±0Ë "% ÜÕ]€3ãs¹ó–Þ¥÷5ÓvßµápáOÊsâ·ð¹úãw£Ö0k“k22 Yû}Bè¶êH”NÙ41"¬E§>X©Ì^%&±¬ÖÌ/5|’k2ÌaÍ2šjìU³Jþ*çƒÂÁaµU~À}„5„5TŸÓò‡š²‘v?º# …°æ Öž^¨ü²‰O°À?£ÆÊÿ°Æ¥C¬e>Î÷Ø»Ã8çDÝÂkR¢t3X[+~2—wÙ¯Ð~·½ê¦ÈQt%×HèÇ­˜“sQ\¶ kLI‹pÈܱÓä—Û­š×Ù´wåé¤L—Z‹–ì§ C:jÑx`T'’Q§,MŒk¢6TFÓ“x€”¡£†L³Þ¯L™Õž·‘4X3¦H³U— q½m’|ð a-*¦ÖfÑîBÉ8”Pk`m9À†‡BI·%¬UËÞ©?¸%jñÚÅP,rÝPý÷¦Ä Ä‚f Xc?¯1‡5²±zXKìW€µ[ò›õmúEÛžï*HŽ!Fг[¯tÉåŠŸÆ Xã%{`~û],yà'J £6¹&3³µß'”n+G2ꔕ‰1âÔgË £ Ö6üCü1GzÝ$‹½nø¤¶`Í4k²!m-} G+X ïeÉžð¿ ¬!¬¡z]—ºÒ"’Šn}ëò^µå[gŸŸPâ0Ì•®"î¬=£ÜŽFÇÑ„BXsk ”É…,™ÀZ‡b¼XçcÁI{€”ÿž¸) 1¦XÀÚ"%aBÝñÚ ¬‘ÕÃÚR%Gª]X›˜wMòÞå °ú;À~M}¢Àe]ã“¶$ì—{¥öÓ¸kZ §ðU‘5 ÚäšÌÌB6ü>!t[u$£NY™#Öú&ÁHö;\&˜èÑæQòæïÕŠELÐF€ r‘›#)³bbRh°fM7ºäí×™ºX˜ZÛn(v±GXCXCõ¢>êöÜDV{0{uœ‹á>¼*Þ3¦]â(P‡ç•bö´½N¹åáhB!¬9µ&±÷ý€O~¯"¤-—4!´ˆ“1øïß¿5ŸVØ-Ï}"&=¯€À ¾à4°&GÕÃZ1À¡*—ä8ÖÈÆêañ“°e@›ß.¬ýcDM‡ë2júOhê.«Y•®%ÚÅŸT~aMãá5à7²½M®ÉÔ,dÃïc¿ÛêÓhÔ)+#š¬á—ª¢êQ|€°@ûi@Nj$è=–Õ¨Ý{ÖL¢éR&À³ ùж,´¶Õ$ᄇǬBXCXCõ¶Z=ž-‘k®nŠ}zê®Ñ~ÁI¨mÏRö´í-#îF~´¬¡ÖÁÚ[RiqûúXCHZµ8và:—Td` —êc¹æãL–:ãø´%»üâŽgå¢U¨8I„59ªÖ¸Çè1|Ê’’€°NOkdcõ°Æ¼°‹£µþkÅM±Ÿäç`ñ8¿ Ž] þMâ‹ðxhÒT' ÜV%Àéç )MŠÚOã"¬i<0¼*ËGU5¨mrMæf!~ÛÝÖœF£NY˜Ö¢W5ñ0–ý÷?kD‡Ø™ü|~ÅõÀDÕ`° k†ÑˆÄ]/àß¼ ±Ô«‘q´z€óWÕ4yÖÖP½¬‰·=;>þ‡µ÷4·ØõN‚Ýõ¬^Çž¸]ÄÝh5Ž&š#X+HßÞÓïâw±Ü7ê†ö³ßÜòrµ](?Ðpoéî2€²%ß±¿pTóŠ}=cNgê3Ž¥à¾l&ûÓ†EþJ‡·X“£°ö”mS⣢“#ÒÅýõ°F6–€µ± + .¦´@»ð´ŸÌÆ´xœ¯ñ?/-§rÀR±¨  YS(p[i‹Ä3‚ðXê“â§q k„æpë²IRµf5hmrMf!~»°¦=F²01FžþðÁ'6`m@Pü&¾ÀP¸ôbë×õüL×ûì5H\ôÈJ±k†Ñ(Wöz¹xnÑÉ›~ )W#ÃhY£æ].ú¾`úxa a ÕÛúõøÎˆ´¬íôx.¸ªD¿ƒuÙTÑv×r›_Oz¬ šTƒƒ …°æÖ˜éë´f•ð¦^!¤:ž¹>S95E¬=c/ã=NL;\);r”Ge>Ûþ¢LÖ䨬1ÃçIsæ»2h°F6–€5æˆøžhëeÛ°ÆÄ…ßñÍU-Ú®_/µý¹þy&‚¼àn¯8©õÓ8…5ÂÓ¡$4ø¸• D J›\“•YȆßÇ&¬éN£Q§,LŒ¨?½|Ƭ1‡ù†yÁUµC<'©Âf#-Öœ°­6aÍ(eì%«…E¹G/½ò¾:žAXCXCõº"5ëbIGåa—BÕ7޵užro“6»ÈLK(„5‡°Æ,lnð•]íîÉxRÆçQ‰É*›Ð£‰òÍË çòLå–åT ÉÕ§¾¨ËŒ)M 4^½}VÙ‚mÓî¤9Iy§Öä¨$¬1E7Å›îíÊ X#KÂó¤µ4ØXº¥ªÀ>¬1Y•ãq?|$äh3[R \× 9ƒÉ€ÆÄOµ˜™ìeYœ½Éû¸H— Ñ&×di²ã÷±kÄ‘ :eabŒl™ÁŠ›Ï?þŽïµë{Ä%‘‚5ƒhÔ+K]A}»oÖã”þŒ¬™D«+Hmñ%î;9€AXCXC!¬¹¯ý£È;ÇFÒ÷ÿ¸OpÆ}J(„µ>•7Y5*Î%ËNÂ*Ääf›ùi¤½¦j-@ WÍ‚î/¥Ñ&×dm"ý>áu›<’A§ÌMŒk*ùÖ˼p©ÍäW#„5„5²š=¢Ü9¦¹²ÙZÎA1Ü×ë1k? a e©ì¤1ÑÑP–bï]YårS|Æ~š0aðÀ$Nˆ»\ P¸ŽZCß&×dÃ,Dø}Âë6åHôN™›ÖTߨ)òrY„µ>½!¬!¬¡Õè ÊcÎiWhmЦÿõFׯÓ8Pk(ºQB•Ÿ¦ ×ÊDnS?M˜°Fz`$Š㊠jèÚäšì˜…ô~ŸðºM9½Sæ&F”¢hÛ;’`ÍÝ«ÂÂê9)§ãÍÖÑÞó9K^Ò³, G a ¢Úü[£fÍV[×â`ËÿØ;Û§(Ž<SÖµÔ¯ŠZT–[Q,. …Pj4¢ "*rŠ9Q|Wâ)E‘Ë© bTL|‰sh©98Ñ2Ƥ¢ÄÜI)O“œWÖ!_’¿çva_g†efag÷y¾ìËt÷öôôt÷³»¿™§ûïç$žf¸²¦ùûésSæœ8þÁ )êd¡ iâ}†µÛÆŸd´SÁƒYË,))ù]ôŒF³JJÚ‘5d "Bõ µ-d-ÝHÖêGTdŸª=Kÿd ÂäåŸhU{fØ|‰ Ys‘=£Ññþ !kÈD€ß”*ŠZźüüj‡9%M7’µÓ#*r’R²è@€¬Œ!§ßÝ…¬9Ȳ‘â5¥~ŠÞßÃÌ»ÏÚdmÏÈʬRª•È k®Õ½²V¤TŽ9%ýÁè#[GVæ²ùç›éA€¬²‘!¡-!dm›¬ý:âRÛè?€¬²rµ¨¦.¹v“9%uÌÕËZŸ åÒƒYd âPÖê:Í*)Içj³5@ÖY\mŒi\¨qµâ’l 5kóä@)ÈÄ&Ç·}?¶¶ìX€«¥ç™RjkW—ïd `ŒŸ&I´ k“ìV*/~d-aë ?W«¹`N¡9J=¦'²06| ²šVd b‘YWՊ΄x"oŸ[ÕN>j5ë÷ºdµ²¾È²€¬‰ô*µ$ÚõêÃnsï,0iûüKׯ¥šXh½RÓ—YË›4 k‹M^¹5Ê]í©Rë¢¼Š¥õ´Ò—Yþ\H²±ÉÙÆhÿaͼ›bG޶Ëô$@ÖY3±@™dË÷²ÈĬ}£Ô—È k–µñã‘0d bÐÕúº°5@Ö¬+kJi YƒÂ~»Ád Úì( O²†¬ÀèóqK.À´†¬A¬ñP©"$Ë,6)µ€>Ȳ£Ž½\’h¦5d bŒÃ¯TE+’eÚåûÏ«/Ñ«YCÖ`´)ùˆV`ZCÖ ÆÈQ*Ç2g{~K¯d Yd 5d FL¾ºjµÆRk­=SEô*@Ö5mìéòŒV`ZCÖ ÖøÔ®Öq½¢Î¶¶Œ>Ȳ£OÎÕ 4Ó²1†Uþ^¸N©­RWz kÈ kÈĬ)•²v0{ON~3=5`ZCÖWã—µ(²µ 'lâıp‡Þ È0­!k¯6XçkׯÕY¦²Ý§Þ9:O¼l饇²LkÈÄ) J-³Œ5žµNUkÕæaüLñÃ6. È@¨\¤ ˜Ö5ˆVšó’wÞ]~§ë‡Ð³ü£G­çÆh‘àŒª-Æ1l,“f®£_²"Ÿ9Ri¦5d ¢’Ügéî¾ãû£¡fªTêb תªð¢ýžh(ã;B@ÖBã 7ÅfZCÖ Jéø›ß ¿üËsMPçðªÈpJõ…ëE³ k¡QÈ´É´†¬AtRW°ÂwÜ-[Vo#Z!:³Â?Œwõ²fÛOï†xµ%EÀƹrlØ7_ähÿ“¯_j¶\r~ÎÜY~oÜw¾ñ¾a!"óü†‰®ƒ|Ê TJ²÷ù•ÊysS¦ô” ¼ZÐxÓûßÛ_µ¼Ø–Q»‡óâ‰+"¬Vçuk¤|rc‚~Ñ`¿}#3¥lç´ÃC%Íè?ó;‚–Öè7F,ígWåÞÌ”â}/nQ?ÿ‘Ç‹6s`ñ Æqd Y‹s.ÎÑ.ñ;CÊg)ûië;b-µ û0¶Š\c5d­ú’ì15ñ ÝIY3¨@˜²ÖZî[2•Nö4ÔáAd­×3+Ü8ÄqÄ Û›Öª°ý÷îSõŸÚ‹HZèÞ’±lˆ¤>Y¼´v­¬eg¸_¥I uäñ¢ËÜŽ¬!kœëº%þç!Ý£ËZa`– ° ÷0öÉÚ-º7ĉ¬½>ÃÇ)³eÍY¾¡¬=ñ½.•HÊšA“µ›ÎÅ‘gÉT)²èYÓ;³8_ßöµÜ‘µÎwÚþ*òÙ´¦§²-,à‚8Âjw(=#’™t{{ÈŒÀ_òº¶4U½á|¨ž4Cuwwÿ,Ib’ÈÞKn\ßñ´•‰Üû¥©ò„sÜ«qäñ¢ÏX|Bww=²†¬?gÃûAÆZêS¤TNlËÚ9#Y[Kÿ†8‘µGƒnì\SY+—LßÊ®EQ,kk>ß’i†Èr×fö¯DÎ6Õ*Ùrx Ås×Zíà^‘éÐI™ÞÏN›Øš#þÙ¬ùðš´×ºr wÒ8|Y µ>uÔJ{±Ùwu:Í\ïˆ\P#‘KÁ“zd-H’#"ù³wM[pQW‡öA/e¦yŒpgÖ¬!k0“8Œd­7x¦ßÔfl*ÒœVáý±ë„þ0fØéà·²¶Sd•Cò}²¶8-íFÒ­)"Ë{dʃûwœc_—kKãI‘ד¶938Ú]odÛD~íÚñÄ&é.Y»˜ýBdIv¶]+k¥^Ãjyé‘5]q²vø;‘÷Zš&ÞIǺÀšzѤ1ª@ªˆ­¢²éHOŠûDƒËZ¶kùî[2}!òöÎþ'Š$ãæÒù&8r:0£³²£\Å(Vºz‚(jVNtÀ *«(«(tOA³P1¨ñ/{fïôÔ=å\õVÝÛ\ÌyûËíßsÝ]UýVÝ=3N ž ™~êé*¦ªRŸ®úV5±©`šæ–ì2&+l¿%ãÛN:Nç(Î*u±Šnø'uiü)ÿS¦¾ý½ƒÏg…5&ôªÔ\\›B:ȇƾõ4&k ¦˜^šHÒ› i]¸‹úù!û,=Àõ2àNSãÕ³>ïqwe°æâr-ê‚â@•uáòàh\=ÑÄ|xkÖ„™ì[;X›îž¦ðùUS)·êž„¾ÈR»Å>nÂÆ1¬Á7ÏÉÎÓa •ÝòïÞ°Ü4¾Qpû÷ÊsÀ¥åb]É¿3TSzÇvÉI³6$}‡5ä¯Ó8/1Xã™a­ ¨PÓð^SN5ã|¸ ø°šÐÝ÷TH1%qú)SßàÒ<šçS]Lé\àAä4pž‰â¬RNtÃ=É? çèù}_Ê›_a+¬1q G¥æâÚÒI>4æí…aò86¬E€S¦±NCð^:—Îðæ%øÄt¯i SköÇpe°æâ²Aÿ?å¶›sø4WÏcc,1^Àš€5a&[oÃj 1tפÒqûþ›Ü^bbMØx<{…µ_ÉMÖÈ¿–‘Í'öà ü³8ç×ÞSËÐW-Ãù»$¬eƒ›¨œŽÂÎ kí”ÓÛÉÌžžSf¼—Í2ÎÑËŸ ‰Àš\¼62Ùàm©ÚŸLHÙùýžVFN—¤(Î*uqÝÐ'Í^Œ`ë[°\® VX³&Uj.®M!äCcÞÎ ˜¬mΦsénýìz5Λoö'çNŸÚÕÁš³‹?„½x½å8Pd¬¼e1{r«t,±MxkÖ„™lâg)FîÉÿט§µÂZ󷘻OÔnaãÖÚ­°Fô'´ÁÃ{e&ª®Ñ8½h“¤&ºÃÚà­òÇÐÂ` g†µzà½}’¬;ÔsÊŒ÷á2©Û1AŸNJÖ”€+:¦H•üÏ*`³€9Æ×Kzl—ÇPÛ=¬‹œ.YQœUêâ,ºaOZÔÉÃØ/gë‰Öw¾~Ék6âÀäJÍŵ)dò!kr5)6ï:³ÉzašÙ7À v]‰SÛª–¯¸öß'ŠJ×Ý•Áš³KûLä.R¯n„M‡`·7识5-±MxkÖ„™¬‘_YpaÌÁZˤU›ÇüÔZãÆoñÀ"Q¹…XËÕwÄóX+–,°¶”ü=G{YþX»"w³@EÀIi‰ºÓµj5î°&&«î2(£°Æ…3ÃÚà—9ÔŠÕóôœ2ã}·î/j’ó”⇵RÁ– fOCs9*Y¯Ä~*>&ŒZº¤ŒÓÀy гJ]D7†' ‘¡r5IÍ×)o|ùÊ‚Z ¬YÅI—š‹kSÈ8äCÖdkzM°¶èa׫‘k¼õx©®‘Ê.@q¯«+ƒ5©—üzL\hŸ®”qëIáš11^Àš€5afkåú¬a7÷EY£q#ÈÑw(6aÌÅí‰|•yØwøñƈ¨ÚÂÆ¬ñšµ¨Ö¢¬­ W—UX›Æ(ŽŒV.Hmä YÅêM°æ?L탵ӊ¿2·Vƒ5.œÖ6˜;ÛBcN™ñ>v°¶éÄ©ËwÉ&°M Ášô¬Œ.Ÿ~N{}Þi?‡&üԣׂV œ¢8«ÔÅ^tc|Ò,TNözø IDATÑ$¯v§¸íE¢8àç`Í"L¾Ô\\§B X‹ kÖF–æ°v‰|­Vx£üs¾þJà¬Ú=:»j°æâ¢Û€ìËü¥ÀW1†Ž•Î>1 /`MÀš0ËÿGK—ue¯‹·ÿ§Œ¬”mÍNLÚ9úôpÙÌGë¿<)*¶°qk笰Ölk•t¤¢X/-Åë,¬-`}ä kuêŽ}ê‡ÂÎ k̽íIcN™ñ><¬í$; 64' kÒ¾í‡CeÛ&Ê£´ ô£r}œf¬¶yS9 œ¢8Nêb/º1>i f†ñÕƒÈ'†)n{])' ›aÍ*L¾Ô\\§BŽGX›…$-'K×t³F ÔšïЃH¤7Êû gW Ö\\ v˜-(—þác½mqªtN‰ixkÖ„Yßx>1uMÑ×nÎ%£rÛþ/22îÊíû3ŽŠ *LÀZ*ama*ìˆ26UÝwDµC1`MŠ*Ägªƒq k\83¬N9eÆûðš5Ù'P>ü÷Ïß(šµDaÙ\y¸D®®¹³ÀˆMA™7õÓÀy Šã¤.ö¢㓊4Qö„bàAJ›^u€Ô43¬YÅÉ—š‹ëTÈñkß% k³Ó¹t­{ÛÑb:á^i íìz*|n®¬¹¸ì @VßÎÆÓz*cb^Àš€5aÜ‹º—†•w¾qsÍ[˜184 ©§ÿŸGe¶f<T˜€µÂÚµN¯Y‘«ý F$ée Íš²þé2uXã™am¶²I Xã}¸ Ì–Ó×j;?֮ѓæÔaš>r:ô~σB& “7N—¬(Î"uqÝÐ'ÉóŒZÔ¤²åíÍÅ6?köâÀ¤JÍÅu*äx„µ;@…ñTfç%§~™Î¥Û tÑˇZ¿Æ`Mk QEšêìªÁš³Kwg×Jv½!µ¢­ ZcgѾҙÛ„°&`MoƒËÔÞÊ7»ÚÝ1¯"cžØRäìZÆ¿…öL˜€µTÂZŽ>#Ñ[ ŒZÞꇼ~ Öú€uêÞ{ Ö¸pfX; m»¹ÆÛ7ÙÂïÃeà½>aò A»¸a­cÕvô*à*¹ª2nPxxÇFQIZm5Nç•(ŽH]ÜD7äIKôÑ÷É «©±a„:$Ö:½Ü`Ó 2Æu*¤Ð¬éæ Y[ô½éà¢t׬Ej磚2×èû¬6ú”.ÐÙUƒ5g—Ÿ€_èe)] )÷¡qdѶÒYÛ„°&`M˜m§?ùỉ%obú =5’ö¼EÔMaÖR k%PwP¬K]=&S×2b+ XÛüÉÖ¤©x–<@?gÍÎ k²×·sÉízà¶-¬ñ>\îj‹œªåaæµ?˜¥.€ŸéíGÎÕ|[€5dF?¯˜èemä4pž‰âT©‹›è†<é ÀPU†¨p ÞÚ´¥ ÖÄÉ”š‹ëTHk±`-ï#íÄøQkÒ$à9É©e£"¹›c‡5Ö“ 3GW Öœ]ä^-J£­'•람[ÏâÉ¡]¥³&æÃ X°&,)ø”ÞÛ÷ &`-1XË+jT¡ûþ¶»¨ÐÚõ(=ûÐékkÈ%GPXãÙ`MYãX«nÐ÷ÌGVò°Æûp¸ÌNÒnRv€¬‡ß›Ÿ_cÈôÈV~ßhCp3}÷À]ƒó.à’2vòßîzZ9 œW¢8Uêâ*ºQŸtJ÷ôdR` Í(@‡ÃŽâÀ$JÍÅu*¤€µX°fs(vzÃZKk¦Ë¿¿ÞF¿óH~¾ú†×ÿˆõCóÁ7ÝΕ‡5çhrW˜£t yÛf¹Kض‰£çaѸÄ\xkÖ„ V´&LÀš€5kR%ݘ½NF”`–:¼X ¼:´x{ÂÖJß‘Œ^;XkR†yýXãÙam“3ü2ëŤðgÉÖ8.Y@àÌýêÅwÔÚwèáçÃ~ºÈ0dj™‚àªÖy§Ò#½%uíÑlc?\2Õgý*¡*‡’¯‚œÎ+Q'uáD7Ü“ZõÑ·?„å#k­É¯‚´Ó™ã:r<ÂZ ¦$k½Àoé]¾¿Åowžv©5¡Ên"J3m[³^¬22²ºò°æm¾íÊŠìú"ÙAYôýÒ¶\_ÏâÙ$¶„°&`M˜€5k¬ XÓ`M*ͥõ2*£è ÔÒsÖÕ ?·ƒ5© 40ƒ5.œÖ¤Íôvð¢ßÖ8>9lˆ¹m"Q¸ÅkRvˆ$-ØÊ>¹œ1z÷±"´õyP9 œW¢8Nê‰n¸'uÈN?È*RØðnå0 á㜊R&q G¥æâ:r<ÂÚƒæÌ`­0€‹&·Šåé]>Íþg»M@$wŸÒ;¡yö®6°æ­;LïLm¢ÝžÁjƒ5>±5¼€5kÂ>ÜnÌ©­À³rëÛ £5ï=÷WŠº'LÀZê`Mø?{÷þEuÇq"'ð­eØ1ëXI Ü/ xHhIÆ‹`H#ÔJ †E"†(Á€6O¹=Z)¢¢}¤¢¥hc^¸äÖVÊŸÓ½g33›CæÂûõKö:sÎäì™ùìì9sþÝÚ’Œ9±ËnÜ=Õ·xjEZdêþýv4xJO†µ¶èl ±°¦]œ&¬ LK]:Íãû¤y¬¶¤ñ‡`_cP€ñ_ÎÍSW}2mã˜ÐL=kûíyÌãylåÁØyþ)g̳Ûg{3Ïœ7e2ZÝ8³Å釺hÝè×´,–jRî÷âÔÝ?f­Ãà@³j­[n‚J>Œa-‘Œ\|¾Êi5™q"Ã[|iKÚ@M¼ |ˆ×gzGÍ_2;ÁK ÂZ'KËÙ}³Ø[[>$4åY¾ÜGX3x³fñ„5Âzoã,uÅ©§É™×Y 9¯Z¹Ä5kü+»g}ýФgÒ 8ýPÝ ÝšQ§6tº°LdQV_‡5Íà@“j­[n‚JÖº k¥Ç͹>‡©=a°†^ÊSêU§ž¥Æ;µìã•*£õ°†îÈÊ(·]™tcà̧ê¢t£_S µyš· ~BÄw°oª֊̸Ȳ¾ÖºåW’°FX{paÍÜž‡°FXCïl8§Vî$¬õ½£‡Uõ1Úkè†ÆŽsÛƒn œYƒâtC]tãrtkÊj~ órÕ>.¬išTkÝr+IXà kæö<„5ÂzgÓ9µÏ±“t\®®êØÂ¦ª_¢ý°†®¥—O²a±tcà̧ꢗ£_SÑÊ:_ñ…Ý9}Uù¸°¦hR­õË5ª$a Æa­!55uƒ}zž£©©·k„5ôÎD'_Ûï蟥õ°†îx.m 'a-è~/ÒabÏ3$T Âa ½Á$úLßÂa €K}úòå‡¯Òæ„5Ök «‘Ö@X#¬@G“F„¯Bvk„5Ö@Za°ÀF&‹ìa+°[#¬Á¡ö6í$/YjèqZ!k@Xc·Â´f§¨Tggûœ]þ“ªú(í„5xPJ…«š²[#¬Á¡®+5ÃÑYgbµ*ttüÕê‡,"kð€¬ZÍ6`·FXƒ3UªÍÙ'¦œ|Qì°SJ½@Ka ÀnÍŠèóDý£„5ØU‹úÕjšµÆ~¬ü´DÖìÖ,-Òða vUàwøô…J=çð*LÜÇÏ AX°[³B†ÈaάÁ¶?—âΧŸÜËôý`¯FX°[ëŸÈ-ÂÈj ¬°FX`±ÛŸe#°[Kè¦Èç„5Õ@Za° ï¥Ë¶»µ„¾ñåÖ`GÇ«IvQÉ„ ¬ÀƒÀE±Ù­u®ižLß|ˆ°Û©¬VŸ‘’ìá†Ri‘ ¬aÝZ«¯z›ˆ4\ÈÞCXƒ d%©êËÄ${hIQ+'Ñ&AXÓ¥y%‰­Àn-!1@Xƒ ø•킘spes‘ ª1D©}´IÖÀ|)߱حÖà4'Uëq¤œJ½æ‚jì¥^¥M‚°`·Ö·~n€°ȯŸè†(5Þ õ¸üÍ!Ú$ΰÖ€þƒ@XC<—ŒörÉ™5¦ïÇÃÖa î kE­çnÖ@X#¬@XYÍvW(káÊØ ¬Ö ¡GØèʵÊ}ûð/{ÿGXƒ=T½Ätùösì…,š&k`®%UltªrWnxÈ—†Ö`…*¥’ld7;[ÕxÚ&k`îy5‘Ø èĺ•ñÓö«„5Xmò,Õº—pd;K­„50Ó+"KØ H,yW8¥Íþ;ó#Â,öRk‰Fö3L©FZ'k`ò™5Â:q7ÐJ7%‚ý[·JwÖÖ`±25|¡k·.ʇÕmZ'k`ªò\? ]-i¾½wg¸ˆ÷a Öú>ï²kò_©Ó®©LUÞë´NÖÀTÉGØH¬B${yûÝå5"e„5XËM?,Pj¼›êCëa €>S.²*þþ÷"gk ¬Ök ¬`± )íøÀß%“°²?ƒ$­°€Å¼òSDzÅKXƒu²Z^w׊yƒÝUŸÊª|Z)k1ëNÿë·£|¥å9íÝ8füÚ¹2µë¦]¬+i8Ñ’àÙá"É–Wz˜ Ý~dXö\ïãÍ{£÷'Å] è¿¡Glž9ÊS÷ÎXޏ÷¨üxšwÚÒÂ)ÆÏN©‘q±;ý¯,j()mÖö×#C½DNçKÓuÚ§'eÓ÷N [zb– 7v±vß±Hk°NªÎùvö­:O+a-Ê ºëOß™"à^ŠŒí}X+Ú^\…á³×‚Ù±|Ú¸·µ‡µÉã"õŸõ×ðgµ‡CÇ¢›ès(Ɔ¶õwV'$E>Öà ö°öõ¨Èkßœ’ ¬%^š®ûÐõ8=)ÛYã°-¬}ÃÚ|ÉýYüý÷¼2Ÿ°ˬJQˆì좪~Ÿv ÂZXSºˆ÷ÂŽ”3Á£‘›áƒ‡<¹°–?F¼¿/¸í©2zú¤Œ¨•‹+8ÆŠ†µ{"µ×WämÉŸñ[ R“q-X£À¦™³vÅ?Ç\g’Ð[î“ÝÎ*ñ‘Œe¥"ÊèÜZþâö°v6WrýÚŠ¤@¯6DÖjý~ÿ€Î–¦ë>ô=NOʦí4…Í÷û_³gXûJäTüýÑ"m„5X¦B©“";kRj 턵#ü’ОÉM™"I]„µ§ú­êj‰m"ü)ÙaôôzY–$éù–Vºß4ikJdfðï oFO¦HI‡c¨À+n˜îÔˆÌà¨0ðŠÓ.н*]Æ=ø;à’á©þ å kG2eqe¨ÿóˆïÇŽamdWKÓuú§'eÓöNºÂêoϰö¾ÈˆÂ¸±¹" k°L’úŠî»_ÄÂÚç"G#Ϥ‰|øsTd˜ñ[ï:чÿ›ø‘uSÞù?{gþÅ‘ÆqEšôW è81h|äPDD/DÝ€͸èzêÆxDÑ•¨A² xdq5Dã‘x=7M¼VW¢ÎvWßÝÕL 8=©÷—é™î:»y©OU}ßpgöšIÂç%ùÅâ&à¬Ê<ªPGŸ$èf®C.§Z&pE¼¢˜ôÛöþË„ô£ ´ÚÜÖ(Œ¬‰³ }"ÝÔÞO€_äÃ,àóòû:Œó)üsSÚÙM3ÖZÏÍà>¬'ºÑ¼“¡²¡ küÚ"ý³µ~r¨?" Ö¬¹ÉfsÜG]­1c°–°–›~ÒÃÚó¡ò—Ñ&X«Œ–NÌj2%OòÂSÁïªG)%tâ^à_dð3KkÄ|þàùäraSòÔRŽÖËT½/%ö›‚k£k«y ÖZÝ/Ÿy”9ÀÀ¨üÞ|×üvP Ìî¼[cPÖ}ü.Þ¨³òøÎâ&ð,ÒªPÇ$èf¯œ[ˆFqaëP–F:ă ÝÛßjûnTJt 0b°æBûF£ý9Àצ³óá]Å+üÓxOp6'—lïak­çfpVHÝhÞÉPÙ†5þà™DåɪÚñ äkŒÕÜd¹7ŒÁ3ká k#R€c_V žeïR³³}<¿XpyûæC±HYh€µq)¸°(OD9ËÞ§ÞÀ„?¢‘™L)N¯ˆ-^O’ kËBòûqyߟ¾{Zh¥DfÂóö‘‰©Âwï²'É_ ší:-MrËÃõ«Àdmž»Tøøž-d›Ž§N‡›QI¹€{iucŒÊ:þ m,G¼øéGqp VeE¨cªTÐ÷IÙªï¯G´Øþ§L’oÁ/@NûûÕ¶•(Œ¬¹Ðö^¨00Ôä$bð¯òÏ  )yŒØ)—NÓa­ÕÜŒîÃêq©Å;+ʰ&üY½õøê±c;?tÃ*,ƒµ°µ ù]ØÊš+ìÆtö¼2c°ÆóGÈÂÔ•Ô9>í7U³VDk(À€'zXCb…<çœiÙ„7VÌòí¥K§ pB¼| Â¢³|Õ}3øqÀ·ÝÄŸ~ô ¾+¥”SÊŽ 3rr¿)lMƒµ¬'ºY½“©²! k½oîá®G„ÁZØZ·;ü°¦¡xç”ðkU ßÏŒÁ±‡¥Ò¿þø+Y§M°öZ ÆÈëk€ÞX["ý> 0…áoZT ä6€úúè“À’q,J£TXûìÆùÔ‰å¿QJMZ‹,-Ùà(…XëüPNŽ|Â8(E€”D¡ö9w»ÝÝ2˜¦ÐÙRIfñigÝ“²NŒ¤öT:Zoš3L`%èûæOêØ& º™Ôc±‚܉y[›+´;2½Ý­¶íFµD £p°TVà ¼®->¬RŽ qÂpn1EpWøçß(¨Çµ¹MÝ+÷¨°ÖZn&÷añ8ÔâL• YX Ô41XcÖÀq=Y`|wØÿ8î{b™1Xg}?Ý$O×ôÎ0ÀÚy W¾èÈ›¬5Xë¡.@5ä6²YâÕ W§Ñÿ_ïWΩ°&ØOZÔ‘g1X@)EÆ2ýÒ–ÿ`_|öB„Ì:qò[ÉÄI«‚ý„f S@{–ÎMHÔ;ÖŒÊ:Q[¸ƒ zñŽ42– ei E¨c—$èfRf÷hŠùšáihw«íºQ+ÑÂ(¬ˆkSñ…ã,îßrU‹ÿ ¨o˜€"ƒSö •×ñÏ4(ÏÚˆñÀ\¬µ’›Å}˜=N u³z'seCÖÐ=ÀVÖ˜…‚ýÄq- ƒÜaoõâê’Ø#ËŒÁš´“&þElÅzX›¤—m<‘J©°–)§| lÔç´%püà@Á¶ñüíe3?ÖŸì‹1ÒQ¥úÊìhŒçåQ¬ºÃH½°–"êëŠfT<Ñ®ò— ¬},Œ¡â‹ón¼ë¿£ŠßsùÔlàW}ªìàfçÜ“²ŽïZ\\>bƒƒ–òþ52—@L'­¡u¨I‚nVuàDi¦Àh›ÚXÅÔ»nÔJt 0b°F¬'ÝÔâ/€¥ÚêUœîÌ“8,O3ÁÚ›ò,Qà Öìs³º«Çq^7‹w²T6daÍ«ì¡`°ÆìÕZR/n£ ·ØLnÙZöÌ2c°¦-°Í» „CW`­Ä8r‹ÒÁZ£¶â£o‚¸"Q–Aö; Cé:SL¿ùÀÖÿ’yîʰ&gUŠ•ê…÷€µ”R~ôˆÕ(œúÒi °Æç×HÍ3dœiJ¼›1>ýµÖØ™iúZNŽ“ï¬U&† idÚRo”ÖØ u:Ö(êÀëJ½ìkjw«íºQ+шÁ™ðqÙK±¿UBöXþ‚n 1×óÏ2õDìE,Þ¥Áš}n÷aïqüÖÍâ,• YX{œe°Æ,¬bMƒ ·Ø'¯ŸbO,3kÛiWµfãÈíÖÞ¥CQÐHð¦'Pu³ …z9~†Q“'ÚÆ¢ ëÕ+¿²i¥=$áCJD¹ÃN å`¨Ěå•QÂÈË´Ím”ô‚oÕ^?¼"Xã“¥Þ‹™A´k~42m„5½´ÆN¨ÓѰfU6@ u¢­àÖÈ/po_«mºQW¢…Q8X=Ö ±,\am1°W[TݪX(Ésuü³I7é4õ4X³Íê>ì=ï<7⬕ YX;x“¬1 cÄÂ÷3c°æ*Xë;vè—:šú'Ð]kÓ€rãõþ`m$ïûm ‘oîó`-S·N6¸E/åô¹2‚ǧp)’¶¬›}¥Ä`ô«5_ð(µåˆ0n¬ׂühdÚkziP§£aͪä€y¦‹^+"‚Я6ݨ/Ñ¿Â(¬6ç4‡¨XôtS‹‡Ê„ÀCä˜Æ`l†. h‘ºÓÚk¶¹µê>Û¬Ô;ËMôNÖʆnèþí0zÍ~kÌ«uLûEÛò­1c°–°6¸¬ûzHÖÁš@sƒµbUHôBܶç1ÄÐïŠô•· °ö¹Nv„§·+¥_‚‡ì^sžÂ¬µYê†ÚÅj÷•HLãsþ®¾2®ºÅ¼N…5¡c·=aߌïáL#8¬“¥5vBN‰©WŽˆEœ)ZÍHÕ6E¡_éÝh(Ñ¿Â(lª¬-wœÅÙ7º¸©Å3òa–2Ådkôס§%â ÖlskÕ}´¨ëbëfñN.‚µÍ›U‰Q¬®ݪƒ5f Ö‚e9®’Á3ka k{¢nÚ×fi%Iµù@ùLù¡²°¶[ ¡/Ú{1À:}YåUðj»"CÚa¥ÂZ0\>÷,†Œ:Ì¥Ìë£Ô¦ŒLuûOá`¸ž>ö‚BcI¸ÿÝÚèh50˜ç/kïöÚkzWs§ÁÚM-ÄÆeÒÅŽT-mƒ5YZc'ÔéXÓ«k-18®®U£_éÝh,ѯÂ(,F\fÕñ˜¦Í„¬ÖNäF(–ˆ©“®…ÝeZÑU`Í67«û°xœêfñNÖʆ,¬¹ï¥ë ÖÂÑÒ¿üO˜M.Ç ×G²'—ÙŸÖ|o;Õ%ŠÍò d‹X2yX:u8äÖn5r´²>â?ã;ºsY†]‘·€”!zX›ònWÑÎHðÌ¥,@áéû|²€ç?…ƒáúsd„.SpQªÇ ŸºÐ˜E6"ÅI@›1¨|%°¶x(ÿ#FQq¦ji¬IÒ;¡NçÀšN80Äåßñ $¬~¥t£©D #k®´¿Òð§^¬ ^¡ÊÀJ€=j¢|¬ÙçfqHÝ,ÞÉZYk Ö˜ÙZR·†ÁšÛl w =»Ìþ̰Æû’Ðìé—„còÊáS@-9+ Ø“Ű|¯´-ͬùš‹bŠÈ@ŒÝ¸D;wÑ(=*‘ö©°–1 ¸D†àß{ŸD)epœ\Ðu¢»:IÁ?ÉÎ^íR>ÃÿÙ;óç(Ž3€b åùÊB`VBFeq‡ â0#N¸ŒÁD ‚ â>Ì9 0â.›#aŽÈ€¡p‘Ç•*'ÿNfW£=4³ÒJ{°ÛóÞ/«™ížîííž§™¯[ºz_3çK–w¶ÿÙ+EÚ{¯‡†˜iüèM¾Rä†wÃìOE6¥%ðË ‰­*lÜÚGr"ji›¬5„Ö„ ÔIŒ¬Â{ÞÈò_…6°>+ÚåîEp¬F[Žç;(²_æv—Þýc…Õ®Ž9×YÖLEjx–±^døGY Ÿš­ûhÚã8ôRaS³÷N)#\ޱ IDATké k`*µQS£©«P¥šm±RL î–5c½oÒ·¯‹~õ]®5,„sT$cÚ´· ã?Ù"Ùÿ,=ß­¿µ&sK²fŒ,Yýláþ)"SüÕLñTãÜ÷Ï’^Á®•ˆüf@¬kÆšÞ¸îa½yq“Uê”Ë¿†Š|ûûQËÿ<ÑzزÅO=ÍóoARæz$kDß÷§÷YèÛÐÓ,ÂWïu½cªà˜UÞ ƒòD>ºSúøk‘± Î,DÖü±U+½‘Sá£ZÚ˜ƒ-´&\ NeÍ1¼g[53¿YOßXÕ«c5n #ƒá"ŒµÔ$Ýü/¼µó[‘Jß ú5f·ç,kÞç®3ž}·\‰T޲>5[÷aïqì½TØÔl½SÊÈZê¬iøä‡ê› º>+X~@×’x©N³Ø¸[ÖŒºwü—f«­Çj–ù.Ýöyÿùû‘µ+ëËÉšqq¨õ‰i§ƒîEll²ÌÎÿ¦ŠTËš±«q)±a¾ˆ9{.ã—4žÍ½‘}"Y3º4¤á™im8–m¥ÚÇZƒ«_c6w;õtà,ï‰ìµ6.Ëð~á£ZÚ˜ƒ=´&L NeÍ1:ð²ÿ´ÆfTðnÌêÕ±CrŒ ÂH8ËZ¥ÿ ÑÙ{¬R5„Ò6#kCvôo84û‚FÖ§fë>šö8½TøÔl½SªÈZ—Þ[ÞBÖàõrA©NL…Ÿz”(uŒÖ î–5cÙÀö“rs6Ü}tÍ?ýÇ iy=|ARJÏ(ØôìPÃŽ–eÍøS§ÇL=®FyÑ™>Ü3í®È‚§‰< ‘5£ÃùYC§.ù¾ÆŠL³çÒñNÑAÏØ>O/Dú‰HdÍ4½ONNŸ'™ŸÛùñ0ÏЭ[ü羬¤h»'ûÈù‰ýfg9PäW+<ïŽÈ"#’ˆ›Öå`Ì ¨GYsŒ¼.Yç‡T™®V»zu¬Æ#‰0Ò€Ïeí‹êÈ“x»èyª•úèé%ža9`ý²š‘5ÃØuo~ÁöOvž3ÂÉZ3©Ùº&=Žc/65[ï”"²V$²ýjJ5dMCjÖmF}RñAÈÅ…4^p¹¬Å•´×}•wS·òRá|â«ËÏ2$ÇÍb‹j‰V[l¡5auâ³æ¸¬»l Ð1;(’.¥v¨ÆÐíFš"QN‘Ö_®#XÖ’¥—JRY3º§¸³¯´‡éûYCÖ’Ž!¹½u5cnÈü™¥çd5ÚJÓ¨–hs°Gæ9êÄSÖ¢w‰|t÷Æ<å'?úR;TchŽö#dÍ‘/D¦#kÉÐK%©¬å4†D#k€«¶Èø¹)%ZÈšÑó¸uý\`…P5j‰:[hs N\gƒ´GV‰ì쟢[cPj{5†æèÓˆ¬!k±•µØöRI*k?7 ZFÖY‹)?s‰Á¸cQl'^ªÃ´m@Ö€a Yƒ”fóOÛÚ!kÚñÝO—hÛ€¬Ã²)‹¦Ý¸¥Ô5¦ïF5d Ö5@Ö’ßߌ¬£² k­”µöù <5ÿ¶þ̆¬®Ø kÈ$†½‡ûQ k޲d âI&²¦³¬eÒÂYhÅuÑI§Ö5H^uNGiôeÇäRÚ8 kÃ¢Ø kÈ$'»©i(¾üV½|N+d YcX‹Ž«áAÖ ~lQj«ìes™«Š[£T'Z9 k‘’™#O¨†5@ÖR›ÝjÄ>7ÉË¥3Óª\å¦{Ô‡´r@Ö"¦ï©¹TòIÂŒ§å®ºÓT®Ô6WxƽQ´rp‡¬}.2=dÃ~‘Ç­©¢"4_†É&§½a6·•›/Z8@dx³ûgJgÿß'gæÉ~dE¨N‰¤(ðm[5gÒØŒÜŠåü´¤|ÖjÏÁ³] m;–Î\‘ç»òÙÅ–Íõu—šOͶ'óÊÙ<ÏÄOò«Ûpn›ƒ:ªñöCßö혌¬!k®Çm1\£”êËôý€¬é(kËEÞ ~?¸—ä¬JRY›wDZò¦díÄ”€¬•õ°®w&W‡‘µWC­wg×òSÐŽÌnÖ/üû¦aêïæZ{<[84 káS³íY;ÚÚ;¡õçv¾©¬…Ь!kàNYsÝ5d \#k™«E^½¯— {OI&kã$JY»˜(ݼ<‘1Ojþöù‘bóý•Þ~Ì*™en©Ý òU~ÍaSÙFó[ÐÝ"yéW-ézÿªv¢Èõ_jfn5µg]ó‡æÊ˜úúúçÍbÛS8Ú»¡fNóe^kÏíÍt‘G,ªí‡¶«¯_‡¬!kà¾%Ö.9]Õ[dMǘ5s ¿ô¶Rdo[d­nF•ÓÞ0›_¬Í8(Yë-2É{Ã,ó†È—¡çdÙ ^ö­·ZÒ]¦ÌmöÐ\Ém)5Ûž³óñ®^üRäLkÏíÍ#2µ¸ùCG"kȸp=ìÍûÜWfl Ü!k'D–_ë‘ܶÈZ"ˆNÖŠwx$ k DÆ4̆9I¦ô :®úÿìésÔFÆ©T©TO•×xÇØÄëƒrbLÙžåŠ8spn6€Ë1„Ë\Ê1 kBÖ^b0Ë&„¥¸6…à fáJ¥6ä Ùg%u·®–fFSø˜Q?°¦ßWRÏУ韺ŸÖ8(Úܤ§Y¸B>˜V`üPh‰ø\|ÉéËáÍ0vמ›¯¯Ÿe5ư%§ŠŒIÑ…ë,ñ<£ÝÖ(Gå©Uß&ા±RÁ×ÖÀÊ0ûîËß-±RMXóNá"j™þØP‰JŸuÓÎ8)Nª€5k×ŃȂ ó#>­](«A>²Ž¥Õ8‡™ÒÖú.%‹ XË2hd$°Ó’xø³ö·hcv-ƒ+C 1&àsñ'ΗÙa®½‡5«ÉÐÛÄ“¤2+éÿ]è~F‡­Q(ŽºÃ™©TÝõt³˜k‰´¿ÐÍR :VªkÞ)|d´`°Ù_ÝäÍÀÑ8©Ö¬]Û/Jd‚  iÞJÑÞ¬Öj¬¿ýUÈÒÑkŲÙJÎú&’ûË•¸#Ÿ;z\9¸ñ<ë×V<®W¢Ó2mžµ:`;Ò*„+¬žµâý“•hmW;y¥àóò7f.˜5ŠYeäÓŽó[†£¢Þ°¦öôÇ–¾iÀÚÏÀhùÆ6iuê5u¯¯¿-&âsñ%Þ—ã4Ã8]{¼¯¯Ÿe5Æ0ñ$§3a„G4·ÍW€^×3:mB±Õ“bÅ~øŽnNê¬×U7oÐÍ#ÀþX©¬y§ð‘Uý ï†òW7y4P'UÀš€µ ë®$ M•¤ßE{°XkWí¡Û­À*íos>©m§°6\¡c,Òcø#yyêg ¬­(1fìT„qK6amÎ4z¼è kïh/ßàC¦ìWXsV4¬EEdÖ>ZÙ<2‘Hí™Oµïº´ ~[LÀçâOœ/‡3Ãx»ö˜¯¯e3Æ0ñ$wçõ –êïEÒîvFo[£›")kuì&…Ú¸ôñ3W¤W¿%1S¬y§ð‘ ÀIB…ÀßýÖ­(-ë»›ÿn§gª€5kWá©ã´™@è™$m-^ÀZúÚfy`³ 3–dJuM[˃1tÔ­ÝaÌx–ñ tö`‘Šn¯î~t_AŽu5Hµ{{ÄèAœ7amÇM`wWÛ¨ Y/%°¶XF)2äˆt=fYoDsõ†µ¢dŒŒöÄ/l0È6ÒF­»•ï=¯â[ShðÛb>_â}9N3Œ·kùúúUv“a,ORê0\mW×]ÎèmkaªµÅƒÝâF÷nöWesˆ'%t`WœížŽÛÀ§1S¬y§ð‘³QàbcÃé.ø­ÛQ„ëôéÉáêí©Ö¬]#;V[N¿li Þ»~þ¸Y´wkA€µÀº™‹= jßt=–꯯†± G‡5ä|¡Ô[´±–]@¾öú„6aÂÚ»õyu£`› kÕÀü2mãpò¶é°eb(’Yȇ qγÆW4ÎsÖLXË |"ë•#cC¢ÝÒu¨l´Åø>â|9œÆÛµÇ|}ý)‡É0†‰')…²ÑM7[{Gs9£·­q ´á³Iïlµ&oº‹ýíq@™šJWwË ›BàmלËÀäHÌTkÞ).‘ÆEÌ ú¥ïºÕšÿ·¹{ÝS¬ X º9ÆÔ'I_ò‹ö.`-°¦v[ %­VñÈü£é'`µ|RpE/X ¯§Ú`-²‡ö¨¿.ÊFñÞ0ªè Î2à.µßô×|ˆ‰p°ÆW4aXSßÁîòöÁÀ ù0Œ.¼®#dEC -Æ÷¹øçËáÌ0¶ÏÍêÚsñõ½~9L†1LS KØfŸzäÚµw´aðÛb|ŸKÒ"¾Î cöí®=__ÀšÝd˜Áȇj€5jŸù£ü¶N3zÙ¬¥‰ì¡ò¬wÉØ»žÞŠ‘Ê`Í;…„æ³fŸyyˆ6ú¬ÛÞäV[yúwÂ%UÀš€5ÁjÖ­ XK+Xû’Ž“õD™fºÊÏ5×øªÄZöX-Ë3̉xËm°v•rÍ>l ™°¶xQL5E7\)˜BvçCL|Äsé~³¢‰ÃÚû*‚UžÊ¸ŸMUXÀ®ðYXĨ3èm1¾Ï%i_g†¡.çÚsúúúG“aB#ºDÎUéïvù×3zÙ¬¥‰š ‡­6$•Ë'ÌUYívyœTkÞ)|äðƒ¾¢if ¦tú­[çºÑìrMj°Vî-kB‚Õ^—¾—¤éí XKSX“»±° ÙÐÉŽòÊ¿~öÕ%}µ½ÃZiPÜb`‰6ÏÀªµ6X+\¯÷ޱQ R\k{>Ê5X£äCL|Ä ÖMÖä¾(9pÕ›ÝÆëCîchjñ½ÁoŒq}.ÉŠúr83Œ.מÃ×ןrE'Oƒ‘Ç‚ÑtS<ÚìvF/[ã€ÁÚ‹Ìdeýâ$}‘ékliRü£KgŸDâ¥2XóNá"¥æÝŽ.àN2uÓÕ£ $ä–:Ô` Þ°&ôÚÕöηE–âÌ€.¹tþKÑ?¬½$SÌ. „̯Ù|*¬ÿ†k71XÛdƒµ™ÆH›Ülƒ5ù}š¤úïV ¬Ý´ÿ>·k°F­a|ˆ‰ð°ÆUÔ¬ÉÛ7ìˉ®^®v·jiQ•Ùï±!°{´Æx>—$Å|9œFïÚsúúÖ0ùÒ äá“k‘Ãó€&·3zØHÀÐŒ´¾ºw‡Ùµ€>³Äªÿ¨,ª,n*ƒ5ï.¢|K ~,±ÏfH°nTû´éé.©Ö¬X­MÒ!± }°T#I¢å XK{XÛ¬h¿ñí ]5$2Ií›VÝ¿ûÞšÌ ÖÆbÛ·Åk'€Y>Îz ¤X=^ƒýŒ¬ñ!&>Â{Ö¸Šú5¦ jŸŒlÍÂX×ýÆ :èm1¾Ï%9¾Î C>εçôõ ¬Å7ù“Útt£ž,›B¬š\q·5 Xó¾é#íM¥«{³¹ÆçV~™ü,K£‘Ê`Í;…‹`Ž]Y»”*þëÆô5°Ý-uˆÃZÁäÜ)úF^v¶€5¡×¬Â RSŸÀ—`éÚ<édH´}kékòmð‡¬ž¯RÁShr‡µWZ'AfCiVXS{¸ãäkl­GZühãa1ñÖøŠ&kgŒU(›­LÒòë–s A;dƒ©ø>—¤dúr83Œ)«kÏÝ××ï°×`äÖÆÑ·]cïÏÖ8PJÁiec´‡Ü§ŽVë7–t]fۃꅮ¤9‘TkÞ)\䀥-×»·,ï£>Ôa<¸b&rBn©C Ö ©¦ÝgÊþ¤ýïù~à­ˆF„^·*$é7A/AÓlIš+Ú¾€µ´‡µéš=g#f’Þë¯æHÃÛ„˜œ°öŒ¬H¡išÖê€cOõÔ kŸ½4½á¿Z¬°Æ‡˜øk|E†µÖy3®ÓÂyÀi²Um]å°Ë|ÙaÇ3¡C ø\’:¬é˱ˆ˜a,²¸ö äÚ˜æXB&š¡²/ÝlÏ2šw|[ãÂZª-0>K¥«{dñøSÎùÏêw,çã„R¬y§p‘åæâª »p&Z·'*ų» ú¬G—Ô¡ºä|&?4^]ãÖ‡Ö„^³Ê~éx_ÀKÐtâNoD´}kik¡Éx5a žW—ŒY:KÔÎÞ]`­ØUHú YXë,Áï¹x%[aMMÿÛR°¸`…5>ÄÄGTü‹­Ú|E†µ9afYÆO4|YŒÜ­À¢«€áƒÝð¹$!«/Ǫ}Ƴˆ,®=__ÃZb&žÄu`´.ç!ÏÖÜlÖÒÖäÀ÷¤y+ŽoÔe•ÕúKe°#Å)ÆÿÙ;û¯(®3Ž{¯»ßjVt¡€Ô@ÄBDQ@ERå#«¢ø‚QÑ*D)R£)¶Æ$¶Æú_8š¨'1 šÓ*ÑcÓžÖÓ?§³»Ãì ;.»;ßÏ/³³sçaç2wî|fæ¹£¼B²Ö{[,Èß6X#¯¼Ä³k‹F¨¬^ñ¿ôRÖˆÙXXY2ú-¼ñÜó)k±/k¶ûȾãyS™ÄŸžb¬ßϋղfûèqÙÚÙ5PÉšt<èô“5×#5î÷î:<ÏÓ)²¦]¤ YÒ tøýjí•e­)#cAàsÛ- Á5=ׂ¤UòUîD\ñ)¼ø“ë¬(þp%¸wÅ ò\_^Ž/§½Ï¹zP²ö óú^²¬—Ä<½ñl¼ãå¼(­‘²à’O¡r/<:hLDåDiºs½¼3LËÈp?z½-ÍgïÐ/ª•5Ãhš%ñ_KUë¾Dò•މº,ÃhñÒ!÷ç®ãRúF`k¾îo‹PYûÙ£}ç7-ÄdÊ¡«™EãØŠU´5BY‹aYkÊQ&Ïĉ]×Þ-¹ìÚ|³ž¬Mœ ²¦^ä{¾¢Z2bO»£òšo õ„¬ÙFLv8’«½›åGüŠ×µÎ*w¦Ýê;»b0y.ƒC—£I†ÑÍÚóËë £¬H ¿V¬s¬ïK¾_ÖHb‹™—&8Ë5Ëû½,DyÐÊšº¨Ž¬DÓ]¹®uKš3µlq±ÍfxÀ2Œ6¥ãÇrçöšqÓ ŠFª¬µ£|”ßc¥Ø@Y#&’^Õcåç— qÍ›ŸñÑSßOY‹uY‹5¶´ÄØió\BD“—£M†ÑÉÚSåõ…QÖŒ³††xšlwß1­’48]ï/ê¤5@Ö"倡²öj@‘Nà2e˜È_…h¶°­û¾ç¼…7ÿž_± PÖ(kQumBM¬m’&Ï%D´y9šd¬=U^_eÍ8khˆHêèj~m²TÝúz¨Mk$ä¥È𹬕µ õ¬wö¦XEY#æ‘_-¾kä0öVeí)ñd'[e²Et¢5æ¶Iç":y9šdmÖž:¯/Œ²f˜54Ôóãû‰žxiýQ›ÖH:—锵H8`E¨¬mÚ¼Ó‘ç™9ГÌ) ¬óèâźäñ%[e²=,HªÉ½­R幄†n^Ž&F“µ§Éë Ÿ¬f }7©nI)Ð1Åð/jÒI ûýE ^" BÖÚãââB¼~`æëL\ܳ})v·Óu¬™‘YQqË}]h{ž²FÌãÀÛǨ,Ö¥mÌ…b¶Êe-ŠØÌ, ¬ÑÕm°W£¬B,Ï4à kÝš!Ð!„p½@¶ß–ªJ4MB©kk_(kuãõ¹-ÄþŸ‘h€‚B¼°=XÊ!„PÖ(k‘&k÷€]Þ¹yR°Mþ–®²ìAÈZ“úüAˆ•vÐOÜ,;Ì:pÃA(k„¢C%ªX ”5CÆèB¸ü|/¹ÕHÿUÀ;e-öùì­§Ô¹ bkÁÅ7F³]Ê!„¨Y±Šu@Y %š;ký–ÿʉÔ_%k| 2ºé¢Ÿ~2Œ„i IDAT‚/ÅVèâ ¶ >IY#„BYFz§ÎZïâWË€ÃöàdŒD3gDÏ e͇ÅBeË`¯FY#„Ânmø¸é—¥ö9Ðî·x¹÷Åk”µ˜¦J4ðá?7ó„ØÌZp?Z!–³e°W£¬Ba·Ÿ†°n±$kéÊÜSà´ïÒ¿e#5þ¢‡J GšPÖb“»?ÐNÜ´Õ.ÿ˜µàæYE/[{µ(”µ‘„BÈÈá´³l+^9ÑÅïÚÖæ&tM eX IÖº•¹"à²êÆšš/(k± Õ„ha» ¬E£¬BÈËå%›X $õs’̺ߞ 4+3»Õ”5º!´5ÊeBt™Zˆ*Ö1¦×Ô÷¬Ù{€KŸK±FPÖèj„ÐÖ(k”5BÑe/°˜µ@ ùt—Êž Í é>'îN,5*ÈF(k„²F(k”5Be²FŒyH:Rü¿qÀJÛû‡2Òi!Å›º¨ÙëþxÎôÙ)k–ãìófJ Ñ'áù9¶ÊeB¼,uâ9kr øIšLöI“‚*IµB 輋$|S—¥ÉrÂdçœ9sl”5‹0FŒå+Öº«»°ŠÄGél"”5Ê!„x¹ööcV1¤‰£]7Äv¡È=_¬ -¢+1-©,s†4)]!÷Š4ÓDY³¹B\§”(,b?kAá!f³PÖ(k„BHp”b·{º_»§uÀíC>sÈéoÉÅvÊšõØ(Æ6RJf ‘ÅZP8Jd¡¬QÖ!„àpÊ=V#ÑóÈâqÌ 5fÞÓãíÎí¿Ùç}ieÍB47¼G'á5ä5ñöÎý?†s㪙í|‚+g+ë¼B.â—"’ˆªD¤$â’¦÷K %x¹F«-¢rðB\ŽºªåhœºœjKõ(¯Cý9gî³;ÏÌdÖ®¼f“ïç—Ùyæ»;Ï3ÙùäûÞ™ï3etެ¬‘H$‰äL5 ›•+¤ÓPï\v‘hòÍÛÐQPÍI°F°F"‘H$’CD¦´ d+—ØâÖHáÀ)HåèÐôýkk$‰d©7鬵S¹¢ÖØ#5\‡Ÿ`D¬F"Z#¬‘H$R+èLÁ":$K•Ï ËÊT6 Ë / ÖHk$‚5Áš½ÊaÔ¿åmI¾ü>OÇXÆiŠÖ³< Ý„†i-ìú00 B£HÀßô_÷’³¼½öîÖŠÇŸ©÷ŽªZýHôÙLoæŒì”>‘H‘»®üýtÞÞ$LBûHn˜bo,Œ1.RßL·ŒXŠÁâr³Ô¡±.<е €ÂÏóü@àa?| p–`ôŠÊÛ¶P„Ô’vm;@ç ÁZ›‡5IYåŽ`-è‘9wZÖV­Ó—ვþ½(74\WÖÊEí|º:¼/b(Á&‘"–‹Ó£°Ûî¡ÉÜ$ÌBuX³6ƃ— ¥o[àvX‹Õ€“<ß,,¼YâJw‚5Ò«iX)w…P„Ô’~âÆ.§³…`-úam'ËÌ_I°6Sz½qàájÜ‹¸`X»«¯GkÂZ!_R——‰@Íï%ik€déR߈£@â¯%+s€ú—RÈGBCîø÷ Ž®­‘H¼²…°èºLMÂ4´jŠŠŠb쌅ñ Æ¥Bê›ù–Œ|Ö2ŠŠ¶ºÖø•^`˜°\¬°êÑt‚5Ò«iˆð·!1è4=ÉÀ¨«w•΂µè‡5U½€¿k+¬íS_÷¶$[ÄÂÚD$êÿx×Ã×z°Ö!zâÂcÄ_¹÷ebÃ%à¹ØcÏà‚Ø0ûm î$,cE”a“H‘ÒÜÔè;¡‚ÜC“©I˜‡öA›÷ð¦ĸT(}3ß’> ¬ zí°Æ§”Öˆ³Ð<ýFbµ-]þí Xs­<ä¾ù’P$XEwŽB°6ÝââÑùB°Ööaß/üSíÑ2¬MŽië9ø¾µ`Í³Ý =q©jbåäå9Ö‰=}¨>Ó§²/úŠK!MÈ“žùñ•‹ó„a·œþOn2”ĘD8RpMÿ ›[óM"Ìø7~RWP¸÷5}{Õú邱¼Çi½OøÃföT™°4ÑÛwæç=ˆÌÌÎņ¨ëq{è21 «P Ö¬ÅèA¬K…Ò7ó-]çX†,/N|xáE¹ë¿kîUçÅCˆD ÏqtPŒºöÞátº¬µXã«€ñ-ÃÚP ³ººØÜJ°–·ðö×—ù@®²%¸&,ÖÀ§#FÈ—ühTNÃÝ›'4QŒ)‰i~5X3ИP SbÃ4ðÿê«´ìy-·’&èW ˜ò§õ>á›ÙÓ;k•ï8B3]0S4tÜà:“³&aªÁš±=ˆu©úf¾¥:Û£Ö¢JkîÕ±râ‚5'*ßDg ÁZ»€µ{Àü–a-e& Õ¼ý gk°»ri/RáÙÑÅj&ñç’¸QÉÝUX‹C™çEÍÄ5›Mb¯¬z×[?w}¬e¿…®¾?HK\®è×÷zÈ·mžÉ ÀŸÎó»õ)ëF§Ý›'äKãI—z˜’&ÂÙE+CÍxNS&pÓ$¤î¯9©S·–tŒº½†±kõ7&å=Në}Â6³§Œ: çÉ®±âf+e²Ñk÷ÐdbV¡¬Ù‹ÑƒX— ¡o¦[6³§ÛÀÇÒ]\—|˜K©lôÃZ°{h21 «P ÖlŒÅèA¬K…Ð7Ó-eð/ç ÖÖˆÕÚ·ÒºÐ1 Z#Xk§°–~8èÖ†K¼%j•€m*¬uâN%”ŒÛëî‰ ûý@r×ówýHRa­ (ð¡7“ ßÔãÙiÉ€E¿÷‹i¶ž¸Ü&é¿Y/ó–:à֤ʌõ~ô[(¬ïÑŸ1Ð4uŠÛ´S‚ÖÙ’c„31E|ª­EÜ Ó¦á2°K~ÓçÀèˆ= þ†)ïqVï‰a3{zæCŽRqósàkÑ k÷ÐdbV¡¬Ù‹ÑƒX— ¡of[ö{±šw1¬ ³Á‰`D°F"X Öº£šÀŸƒžêϼçxÖÒ Qp_jÌóa8Øå¦Êÿˆó™É°†¸ÑŵÝG0±ßªw lÐß®ózâ’«'Ñ»€$q9©§’=ÎXnÀ¹@ŽkÓ„nU±%1Ƈ2Ðhº¼oalH_€ Ján›S"=ôÀú¦¼ÇQ½OD†Íì©è¢4Üv¤E=¬ÜC“•IØÁš±<ÈÄ¥œ÷ÍdKm#¤»Ö`-‚5RèZvc(ɹ–­ŸGg ÁZ[†5Olù^¨ÉlK°vCÍV1K…µOŽJÌ÷@†0Z`±¼~@‡µ'R{Y$fAÅzgé–ðñßUJ¯Š+€TéUÊ9yNˆéRÝÈ`¹ú¾*ݪc@Bà:[cŒp(cªO߯y„±A@•ã¯oäAõ7Ly£zŸˆ ›ÙÓ¼-ÿX¤4,lyþ‚µè…5+“°ƒ5[c ö 3— Ö>B’øë ÁÁZûPõîO’s•qñïÐyC°Ö&a-Pó8ØÀÚ*àC)1f«°V[ýK†~#…çgjÂÛ¨ÁšŒdLìJàcOˆéÖà ±Þ­i§˜‰é0˜ÿ¦5ßÔ‰,ù^Àƒ&¢ÐµiÂ8 ·'¯ëêKäu¶$ÆáPÆõj€pä&[D€jáï|~þ®N¯aäAõ7Ly£zŸˆ ÛnOÍÂW“ ­Íš•IØÁš±=ˆu©°`­ƒi|4ÁZRfŸQÒ‹~‰‰k¤õ„ã~$!9×yŽû΂µ6kIkyG°ÆÄù&Ÿïx~Rð¥OÊF©$èº~Ú*¬e®¬¨±©@áôEOCI·v$}KsïöÂçXÇKÓ£l“&OìîEV'©ôk¡þxOצ ÷àûìkñøûvJO¯bKbŒe, Q” ,µŠ06ÜšRƈ»Nýáb¤\Ô÷8ª÷‰È°íö´‘¨Þ–aÍÊ$ì`ÍÆXŒĺT8°ö´'ªÒÝ k-Lã«ãâ±øëáJvûƒùÖ\yam1w…øÃ|–út LõÇÍ¡3‡`­-ÂÚLiRó›§¶=¶Ž3ÀZ°JXY"˜é°öìÛég6HqsßôÙ®ª°Ö¨}Np,ÿ£O|U00í¥ót+¯NÎÇ š þ¼}_OÆo³xþ‚:„ËkÖ*ô´·ç[¼YIŒ1© 4Šî¨ó—˜E8LÜäWçíŒ‰ì¸ õ7LyózŸp‡m³§eÀ×MimÖ¬LÂÖ¬…ñ ƥ‚µ»H’§épÿlSÜbmí¼׋ ÖH¡jáÔÛÙ„fš|3þŸtÌ4ïì´t欵EXÛç$ÎkÕRu[ °C‡µ˜R ¸à«¸#ÑF 2Õ7mUaM¬ÂËó'ŽÈLÚ±ÒqºÕÐdR]Õ'!‹ªNö‡úñ^ …†/õ+T[Üš%¤'‰ã~{ó·ÏúS<&%1L„cÐÈ:íÏ`Üpùõ¸=§)ö“Dàadn¨¿aÊ{œ×û„;lë=Rílb´¶ kV&akÖÆÂxãRáÀZ9ЕX; W%«èzž`²vŸ$ú0U Çm¥£`ª“ÿÏÞ™¿7qœ8Öìׇ8,p9l(Ø€8ÜqÀ8\¡Áå4„#€C´s‡&\ÉJŸ<J Ѐ1- Ц@Ó@ž’£ÍŸS­´:¼³»^Y’¬÷ýEÖ0ÒjFšÙyÙý¾aÜ kÈš)kú:#§üƒà’!³6-°Ìw÷§»èû‚V½²6Ñ"kJ]ƒ?]YyÁXúÓã]Òœ™Œ$.)•"]/‹¶m~< *ž0]§KïNÁ¿ šDÊlBb”QhôÐÅ2YäXÃZø¢Ì­“D$u4Xão”ðÏñ> 7ÛéH]gYÈZ“5§IÂMÖœ'eRf©Ddídënï—Á²Ö"ÃZ¹®š.ƒ5ˆÔÃJM+£H߬!kmÈÚ#‰ã…`ÂsSÖ–‰üú_¡:_lˆH8Nák‹¬)uözîmIs+ø?Î51‘$ëŒðm"Ÿ™ÏÇJH 2“ï¾7ÿ¨¹gc©á%€&(]~é]îXÃZµ~楼ž"ÍIl´£„÷xŽ÷I¸ÙGpµíy:t\Ysš$ÜdÍybQæ e–ÊY;f½íü!Áàj\YÃÖY{’²6TdKC0S`XÖF/¼üÂH©/ffb‘5¥î¢îÝÍç+ÝwÔŠ.iFŽ¿Þ£y|0ýsdûf}U¾<¯ëo÷l%=/e’É<]$¾¹®±v¡Þ°   г“RC)¸Ð³à~y%‰mµ‰¿QÂ{¼Æû$Úl‡#õÝ ò··1´Ž,kN“„›¬9O,ʤÌR‰ÈZeç0%RݹsqËšÏzËç½8.#k€«µÁñyïN¥°5d YkCÖôRY¸ÕXDdí-³Ÿ ¬ßÎËïU„.™ø-²¦Ô­“fv“ÅîÉ÷¢Kšï Ã7Ö4 “ëz0 û浓«"¯z‰ü>øüÛ¢PöÊŒçy‘ïÜcí‚5¼a@£ëゆ5”‚í"áÅfÀªš’×R»ø5¼Çc¼O¢Í¶?ÒËE"ó¸®Ö±eÍi’p“5ç‰E™ƒ”Y*Y‹’ñ1k»¥ºÕÈYõbé\‘µÜ¦ÀÌqkÙ¬ÚÃÁ«GȲ”µb)ì-7bdí—"_kLžX¿íU=dØZ§ub‘5¥îR‘sÁ“{§c’o„g=ž0á6.¿éa<Ô‰[àqî‘ÛÁ7Y/E?<Î/”ÞÆã¿×:·2³8jÜ:êkw4zsi[ØÐtòGÝH­¡Ì޹Ð9+š1&qìn銠„÷´ï“h³m´Ås1:˜¬}2aÂüгŸ$\eMyMøÝÔ9È:Ky™Ù"Ÿ-{eíº%¡Hc±ÈÈ„D­¬et¡øŽõªíº­^{í€ö0QÓ–0˜5dÍT43i¡)kU"Ãö=zêÒ_ò¹o,26ˆ,Ÿx©x·4YdM©ûp´È§‹+×|VmÞ–ÖWìcb.ó}â_6vvs‡n}~‰HÝœª[üaÃè&2i饯OEÖ—gì*áxã«£Âo’r5$F©áÙZÔšßÆˆRC)ˆãbóyy‰|ó„dM ïi#Þ'ÑfÛ©XÄW¦C•µ×Eòu—IÂUÖ”×DÞM™ƒ”YÊÃÌýlY+kEúŸ‰>½â‹Iµ"³Êò^šFÚ~hÏÕk2œ5dÍ NäŽ#kÑýµ×® † 0w³ÚuÕšº_©;y…Yào.÷¸¤Ñ{”„^â›cô=ÞÝÛ¼uoî~³`H—Ì]%‰æ(xCŒ›¦”¥†7”ƒ?ˆ¼ï\C¹‘È]ï%51¢£„÷x÷I´Ù6GÚø FÎr@Öì' wY³¾&únÊd¥rCÖVæó{Ì1»÷d@]_¨@ÖÀÿ) /Œ}}îÁ: }kÚ#²†¬|mYtSìEÛ7ø¦þÕ£òÇÓÍ´§•¼9mç\kê~›º]®iò½Xz÷Œç%®˜]ZTTz{st‰0q}“¯ú›âN‘’÷?Zásýpy¯¦Š¬3s†´„"Ĭ!1j O¨A|.ˆÿ”s õ%Ë#–Ó+fSéd^x*á=Þã}m¶z¤Õör@Öì' wY³¾&æÝ”9È2K冬éÇ}Æ/côšškŒ¿6ŒÈðß²–~Y&–"Ð>Îάg·5d-Ûe-KXÿyŽ4tî:‘Ά‹U‹Ü1^¬!1j oo¬Ð–’…ò–K õ%Q´ó¿ŠŒKÉŽGžJxRªf+GêÒÇ=))²–•²– ý,wëfÂÌ–©²¦o¬Žý‰Ô}™é_.²–v.ú-‹ÄÙ±tÏzÁ™%ƒPȲö$¨øÙ \ijß‘£Ã{\&2©!Xb ‰QkxB âÓ÷Šlw«¡¾d¥Hþßÿ¼F)Ùœ’æGdM B´¤®Ù–#u´V‹@šd-y²–Ü™-ceMÿ¶yLø²añãŒÿr‘µts¢Ÿ2³¬;u8P¥ikèÒ÷#kÈZº¹(s¦­ô1ÏM¥æ~àJRãZhŒÛûö¹ÖP *ö ô9“šÖGoéR‚•‚”5Ûr¤ºVK†] Gd-i²–Ü™-seM×ó¦lmžY3ïÆ’§³àËEÖÒÍ&›©e Êá@¥¦qÝYCÖµt³×¿+‡v¸:Õ¸pŒoô®w¢0[ÃhÔžPhÆJh¿çjÜßÞæº’ÝËO¥¨ñ1û¬)AˆJAÊšÝêHy‚¬¬ ¨ªªJ0WQ2g¶UUg°¬eÈZºYk#kõ(²†­²–ÁÜŸK@&ÉšÁÐÌ™ÙÞ ~ d YëŒòÙÈZÆáÀ•z66hƒÓ‡×¾YCÖµ4‚¬!k†mvwXûI¢áDíaúÀ›šv€q…¬!kö¬š<åìÔ5pa°m<ìœÚ›²Eÿ YCÖ Gé>äK:\ÚR”Uyhµ4³ÃöÊÚqœÚË2M+c`!kÈä&yÃä½Î¬Îϲ¤¡ÈZšy­ÐFÖÆ`Ðn¦ÌÓ3°5d r“·EfÓ àÈÃI‚¬A\L³‘µA´Ÿã/3¬5d 5•/ŒM"WÿøI^ ȸ±ÇFÖ#NܺI¾YCÖ¨X![èpäžÈöò¬úÄÈZºi£¸Ú,’A:q¿¦¾½€¬!kÈ€WØœ Ò]ŸYK;s”ô"ȆlŠ­!kÈ@;™!ý³ì#kéç#‹¬íG5µDÙxq$# YCÖZ1Kú k'£ZZ¹ÚK§Q GhÚEzÁCŽ‘m'# YCÖZ±]ü"k/[«#ªÖtÓpKKd6{Ðy¡—öì{ ,d Yˆ¥Vd8²q³©´Ú0µÂWº¡" .2°‘5d r’7óèp$o¹ô…¬A¼ìÔ.O­ìY»É€$q›¬!kƒTŒ–gèpfÄod÷Ο kµ\Qƒ¤r°’ #Ȳ¹›bƒ+ÇûDäØÑ…Q5hÜHß¹!kRÉ@‘?Ò Y@ºÔGl@ÖYd µ |•RFÊ>zÓ²¸ZZøàîɳô¶ÆY Yp`ÏÚƒt§5G~e²®œ8|­ð û¬Åíó¯3¾8«!k€¬e/ÈZÚÙ¤µ ^©Ô´2zÁ+/i_œÕ5@Ö5h/ÿ¨Ñ.£ÈZ*X©iÇaœÕ5@Ö5h'ÅšV‰Vxeã³õ‹èÏ·AjZ7Fg5d 5g>DÖÀÿj‡°Š8lí }àb­™ÆY Yd-†‡ ô5ضcÉs=ß-AÖÀÍç"vœo`„qVCÖ §87é&ÀiÍ…Õ/øIÝq€Q@*a„qVCÖ —é—Ëô§5gγÏàj€­²†¬@:%²Ÿ^à´æ ö¦ÅÔÆÌ‹¬²È kÈ kfY[&â?2áÇî" ºþŸ½sýŠâHøÇÝ9=ÏYl/Œ4¢b¸¬‚wÄ((`D*FшDAWD× ‘x‰¨!ê*{¼ «ñrŒn4šÈ/Éf=nâê~pÿž­¾ÎLWõLÎxfô}¾ôtuݺ¦ëíúUõÛݲç ¸€ÞI²UkQ.ÁDdú¤ÿ$5BDš;½‹zÝÕÖH$Ò£Kø;5ÝÖluxÆ6ãÙæUÀr‚5’XY{–îö"m[å4ŠH^F_M­‘’\·²¨·Ñ]`D"½)ªŸCm@·5{-€÷lón¦¨ûS€Z‚5’H¹eæÃ²e )Š>б¹\ôZ,º«¬‘H$‰`©;ÔíÜP·õÀ-‚5’@U9®ò*b ‚µX=yÁ5Ÿ–Öè®–8°ÖRÕ‘ž&è}ÔIó\ùW4ùÌôŠÒÞ"Á‘^ÓZ§w Ê ŸS&J„á…ØáðÁæï£U“ “SïÎòš4±´¢îîBcßs®7#¹tÍèVê($RBªzѦä½CwkkooZRV,§7¬·ÆKW-T_èܸļu o‘BÔ:0`¨Z¡yqkÉúcKáýHýуÉk$^+,o¢é$¨p¤«.-CF¨A®ïó©Ç¬%¬ÜK3¬bùmÇSsë£ÐÆEåZÉûBÀš¢’ö˜ÃÚ‘rÿÐhνÜy‹ /ÖC.kƒ¤–ú~ú\ê)$RâÉó–Þ…oþl=dííO&éû½-v°fŸ—˜·.á-’}­ƒâÖ6élƆâ-êJ X#qÚãµÀZ­9ÓÓÛ»¨"Ô•\êqk k5˜9l[~¼ò…Ùö;mœÙˆ¬ HCÎÙsdà ¬•aê-Ë`»´9ưv†»Œ¡Q +qæ=ߣ`²6ïrÊ ïà-¾ù¬¦ß(ûYŒÕ2’|KƲM u)áô™Ò…Ï­®ÆXVì½ýdÐ3ÚwQ׌| ¬Íìïïÿ9Tn\bÞº„·H!j0 ¿K|ÂÚDLR·EÀ,}‰M&X#q³;¸Ïñm —’b&êrk‰kM7ؽþÃõçƒàÙ+…µ¥ÀS¶¼#‚µ«Æ\Þü.¯«ÕO^Ö€h4†q¢2 ¯ùµìFfµò㺠YyÙë4c<Ûæ?NPW!‘öŸPõmNÁˆnÅìý è:Âõvf(d´¹˜`µôp¹q‰9ëâÀ"Ùך/xj|ÂÚçúŠÚHvÖjÀM¤¬‘¬òñßNǧ„$¢5Ò› k€æÒÐv@n•°V‚”zeØ"c1¬I¯_´ '°–ß™ ÿШ˜¹L›å+CùxmöÚ§{õ å €öøc}1ŠczÖW5f$oxxÆpêðRïÝ 3ý²1Â>†½“OLdVF’vTæ½hž5×¾œ‡ƒ$š/GRBU¸Á°/52þj]¼ êí?¥à’Ǹ LjaÍ67.1o]Â[¤µæ ŽSX«žÿ›m?ÊÁ‚¿±m^2¬‘¬Z$€µóD$‚5Ò kÙ Ïæ’Ã/ÛFÖÊ€n Ö.…„µ¬RxÆÖ~øÈy߆9îleõKE ß =¬R¦WX4Åð"ÌN×ïWÉÛµ§//kU°‡µN>±‘YI:#XãÚ—ó0âbDJ´b×ËX©ÿ¬?;ÀõöìÆÔƒz@²ÅP°fŸ—˜³.,’}­Ç)¬ý¹XàûÍí<þ‹»€Ùþ k$ë¤OšÖ ‰(H1Óޅ˨߬Å=¬±üµ€Ýaõ™>³»õ»Œä²Õþ¼Û9I.]|°˜ÑR IDATKÇU㥞@›úŒ)04PÊÜ k#”zaf2öåœY^2Ôï³¶lIcªœV·h‚'ÖšÛò©¸„ŒÈiÃô#gÔ§sƒS,j´_Û {bw ž,.=óUu°ÖݢΟ;tx £scLmùËË4øHÃÞÉ'F'Ÿé‡µ$ ñ®Öè5×¾œ‡ã ?rz=`m–ßòMVá{»)f#z…°fŸ—˜³.,’}­Ç)¬)Îj@ŸÛýeâc¦²3Œ`dQ7D:BHá@»æP¼€†ºæPÇ#X‹sXó°‘hÐø»õmßJÝJ¾}E xo²Pú­=¬uò1E~µËð~!eg µ%$¬-77²fÆ`mв;Єµ-™FuwÀڑ݀ݭ÷­ÒÎÉ?4ZìÒt÷ÕžZI:üáhŸÑ>kc:‡bx nΪ,8Í‹reþǡËs]¯ÀJ“~<ÿŸ¬1ìÝrb4ÇX™C¨ˆæ+vsµo°‡ƒ`ÍnFü^"× ?{7•GøÞnžã÷æ’X³ÏKÌYɾւ‚ãÖÜ[’|¶m0Ö®ß%X#YÔ'„µ…„áÕw¢²™Z!rMp¹†PÇ#X‹sXc–±M´.´‹‘ͨ¤­«ÖÞSJ@ë `ÛAßÐó)ðV3¦Ë~ÌÎÎöHÍWu ê–ñ1º ””qà°ÖfÚ³D\f2X+¼È5`m8 WVù¶ßMÖßm©ÁZ{*`ûa‚ìVmâ[]Öùç¾S%éPÐW¦Ü4¼K5°9Í(÷ºú“eìÞ»K°Æk8¼H×€íN^"Pk:dÿÇ~…,[aÍŒaïäU&£˜µqN\ûrF\ ‚5›ˆãŽ%Ê kÔL8Â÷vUùíçJ€ÖìsãsÖÅE²¯µ à¸…5÷ø¥›~Ç6ÿ=¡^G¿¹ ÖHý$„µ¹„áUír}B­ðAîw n¢žG°ß°ö10CÞœP}μh›*©KÎW?L½'›%ÞgíHÒš%QL. HóS¼qªdkY­ë®y±A{ ’ËLfl6ÁS0¯‰á%8nù ãÑѽê_åÈá%}‚•æã…y%ìo·ÂšÉ[N\™a@Uôò6ωkß Ë¡7tŒ×J“pþå`ÙŒoé„Ïæ4K¾ 8"êíê¿Ï”¾U kö¹q‰9ë ¬qå ŽgX Öï ÖHVÍÀÚs ZY‹¡.N§~G°ç°¶8.^ œÒvç`›$­Îé]@#kyÏê/.&ŸÔ¯97€ÝlDÔè k®'âÜXk„µ‚ÚõüË'}¬µ.\? ?4*at¨ø»T²¢s$i"ÛœU (®+ã¬ù@ÉìSO¿J×½’«ñ”ZG/ΕÅδÈÜÛùKÉkþÜr¢©àʰ 57ï‡Û£§uG!ëà³j_S¼{’5Æë¥MØør°v¸’H'ܘßb(G]À¾·+:]´÷úÚ4`­Öìsã[­K$°Æ•#(8Na­²òJð]iÍÛ=k$« `m ñ„#Ÿµãä³ö‚¢~G°ç°6èODJSÀÐ¥KÚ <§«Pý°X0¬Ýz5àâbòIMýŸ½sŠêÈâ8û¸{ëTÉ0[ ÌÀÁ•±L"²¾Q ²ß®  -vø !âjRŠe|•ѵëÆGEÊVð±?l­úSòïì}õ}uß™;ÜÁóý…™žÓÝ·›Û]ý¹}Ïér€úý…oMð|ë‘mfX«ãöÝo>ðõ1K`­”×ÃQÑ•îù,´Rèy1d£niT!¬«þpnÖ£lh¯‚j©r”ý§:€Fá°”Ÿ""f„ td:îF ÿlÓážÜz|†`o†5Í"’[޳2]Ì0x7K1õ½ë÷óŽ¶ÚØ¿ÊÍÃrO2X ¬%;¬µ|®mIåaÍ4Úµ»2 k֥љͳK4°FÕè8AaM@UÃ÷_ÌFXC™õ¬”šqNa0H{Ñ ?Ç>@ZCX›™°¶T"Fr6”ë—£|ƒqò,2ÁZ@삲¤³ê78® ijÄUðz%úžÖH€‘Ž/|rBº0Í‘J…µ¦c'ÇoHGÊJ`£Ìýÿ‰Öø‡•r¦ª÷¾ŸV/5ÒÝq´KîKd¹šuì€óÖÂ%ÅÑ8¼ØR».ˆKq |ê¡`M³ˆà–ã¬Ì£ûÇçö;ÙjSÿJb»'é-Ö’ÖΓcí¥ÛYz5ÚuxÀ‚5ëÒ™M³K4°FÕè8I`m a Ei5ãlF–@!¬¡ÞiX›¨6¬I›¤Ý5P>/“òw“çq#¬ … zTùLYÒY‰î´HÕÝ®¢°j:¬`M|)Nº0—z€­kçdeoC»kO\ioXíßuÈ_¹#µHX5H{*ß“_N#+Óg!ã¨JÙ'оË Ú{b›ükx3¬é,"¸å8+Óň'¥ú&Ç&7XRä`«Mý+‰éžd°˜y*…œuLѰƶÏH" Cxˆ v€fÝ/Ôh×Ï ¾NÚui¬ÌÆÙ%X£êaTœh°6Z& à“2MKÝYÂCXCµzOJÊuÓ„³QwiÂч°–À°&¬`£þ{Keýeñ1»¶³vXÜY[¢I­HkÂ2Ö÷I§,é¬D_¬’—â{\o kÏ|#¬Â̰V,˜x«ý°â™è³¦ÀZ£¸#5 ¬HN}'uwB§ä)¢²_¸â~+öï$qSl;¼ØÑ\€äóF¯üß0šÎ"‚[Ž£2_LäÊC/¦|6µ¾ÕTÿŠb¹'-fžB0uU%Sƒ»µ1Ýe ÕCv½Ò¡’kÖ¥…ɬÌ.ÑÌHT=ŒŠ Ö[Þ0Ãk(ƒœç®¥œý«á.IãžQÓòÁjk kßi!þDUÔt€ç/€ïIjèàçtYÁZÇ]rš(Ê’ÎJô@=[ùx®¸6ÖDäef†µ9+'å„6k=ù|q/¬}#ÅœìÖ öøÅjŽèÒYØsËqD£èôB¬#­fö/‘Î=ÉÂaM§›Ú~TrHÉå´Ëäují]µcòSŠf€T¬Y—Fe¦g—(`®‡®8IŒ$¾Ö¦[W8îY=¿l]ØŠ‘è£ÑCŽû{!Vmä¸Bk k«³:·K›ýß‚rYþ€FiqzÐ ½"üÌ–çRü‡.ùí°cƒâ÷T€@¿¾@Ê’J òÜx!þÒ±N€D¡î9V°6ÖW£<Ÿ¦ 3ÃÚ89${ÏNV`íR¯z~_0Xait Cü{¹|ó2½vž?Ô ”–/_ºÜAw\àz/®·áµ$© }FÒ%Ÿ†B×ã9´…M·'ľ¢ Ò«#­Û¿š‡‘¥šÖ’*$ßå…Zq䨡ܨÅÁ ü޵y´ó{…û]|6ã¹ p£ˆ kÖ¥Q™©ÙÅÆŒ¤–FÕC% ¬!¬%­¾iEjˆYe·{!fÝÉÈLj°–À°Æ_ ë¯Þñói+E^Z'ï­hùcF°ÐðI!ðš«À„ûiš`ô² qæF‚EíZ¶½®OÒS–%• *è(~þ$ ï#‘?ðaM:gmîx•`ícÌÂ̰æ¸oøÖÆeߺÄue«kâ^`­¤LÞè¥QW:øÖv/<)ðÝs9EXh¹†¦ÎðK®u]Â¥÷ls?­÷é¢ÄEB̈^"«[‡ l>Ò[„qˉ?¬ žXC~-¿Ç¡VÓýËò0²ü ¬%3¬‰AhKŸ/üÀ^é†: $Ty´§柭î7-ÕWx&¬Y—Fe¦f3’vmæzè„…µ+6!¬¡Â ‘aíí ÇÂZBÃßt_]†õÖ‘ÄŠ\âß«„¹Ü®$ø¾––»Å+XÑmXÆå±,éU;•_þä‹®›vŠÆ E¿ØÄ¾*t&ɱ#Uvp#°æY"·±4â3ür¡mJBþ„| ^Ê …%J5þ…q½ O 5èN·ïðYëÕ·½xþZ&‘fgfî¢-¸å8-úb~ÒÎÉ«˜â+˜†6QýËpO2YÌPÑ Š Ö.ûý“«ÉžõJƒÞï05ÚÏé°ç okÖ¥Q™Í³KT°f®‡NHPXK>!¬!«%“s\öÒÂÚŒ…5žþzG Æ•}ÿÝAgcOÇ;k²—oVÏEó¸ëK\þÃA2¯>ꪽŀ5Ê’NPu࿯JkJæ^ß(ôÜ®*f𫼡Qó^3FÁ¿à~y(¯§í–g_žƒÀÿÒ Þ.{°Æ§œÌr¹²u*+{ü•ÿ, ßw÷í ¤Ï^¹áøރ7Rx¨ûnßá%²î‚¯€NÕ»‰-¬|â&r1KÉ‘|<_¯;kê­6÷/ížd¶˜¡å§kü‡—’®ÑK¯g§W¾8è1k´¿_™¸÷tŒ·‚µ0¥Q™M³KT°f®‡NH|X[ü;„5²šÓZq;i amÃZ¢hj¡Ñý¶ãmìíI–é˜ß²¤^bÖn/ÜàÚɂöŽ™6Xó´dŠ‹Ñü]íE޵šî_³‡mñŽÉ6¬½“Ê1{TÆ&Gg¤Ä„µ_Hœþ?¥6„ äêq„5”ñ¾EÒ@½eMNâ8DXCX‹³ùìî4åg7'K£~ðÏUµg¹ÓŪ €yáaÍlAyÇL¬ñ…~€ «2¶..a‹s­¦û×ìaD[ ¬±õšëGX‹MÎÎH k‹Ë^ùN)qüçËw‘wÎb„5”¦¦´¶H ¨·©µµ­Á‘ˆ°†°_uÇb…×1èK–FõVÉÒŠŽr§‹U7†ÃÚقòŽ™>Xã‡JÝY{l5£MF óaIºäаƒœ‘Ö~9"Œtéão³ÔÁ´ a ¥é ÇýqõVaã&0$$ÂÂZåɜȨ³··âk.J’f-*Ðît±i!0cJè`¶ Üe¦ Öø‚ÁW•éÍ¿/v°ÕÌþ5x1-P œ|aí¨Ûížâ³ 'g¤‹n÷ëDƒµß,—ÏÿÙ;Óï(ª4+pIÿ`lFš˜0†E¶„° “ AvƒÁ ²„h@E\‚¢ÀPÁPpFG– œƒâ€ÈŒ:èŸ3ÕÕÕ¥Òéh*¦ºûy¾ô­[]/Õ—Üåéê·ª[¸ÜÅ*¬}©¤Kø+§zd ¢6æl:—ùüm k^ÈZ˜ÃíŒâáˆt³}Bþ’µ2ëŒòvßUdPHzäg«°rœÔw²/›é#‘…ö1äÚ }Tõ2™ôEd Yë8JsBwW?ÍŸ,@'Ñg¼ý  d­sñ¡¬uÛ ýyp¤¼Ä:¹b»Ti•ö kà0zY®Ð>í5}1­Ð>&myŒ¾ˆ¬!kªTC#0­¹)—rG9åפۜâ÷¾ÏZCÖ~O…öÂC±=®È¬†¬@ZÉÚÇÒi§Ø3[Úä”—Jß#k€«!kÈ kÈt–¬M“Šœâ)IÑ‹lõÒÈàj^QaÌ'´¶Æ¬†¬ÓÚ¯a¯ôµS\!͉V×Fïæ¬¥=‹GÚÏ_Ïí?L+´Ÿü§é‘ÌjȤ¬¥5 ÙN7’µYÈXì©>ºGŸ8ïlSOŸdVCÖ )>ÎãD™ÖZàNi¡s_Èé`´º·4YƒŒŒ>ûÍô©HøƒíGÍ-ûè•ÌjȤƒúi#­À´æ¦oìýU’VF«çJ“‘5ÈȨ0æŽ~a1é•ÌjȤéùPl¦µÄÜ&­‹”¾l”²˜ ½‰¬AFÆY3»Eß\Z»Ý\¡W2«!k€¬AºÈÚ5iš]èºV:­ÍÏ’žDÖ #cëÜãø‡òÅôJf5d RÑYÚO+0­¹Ù*©$\ajʱ5î⬥5Ø7LyðÂë´‚7Ð+™Õ5HAÎ=RE#0­µÀÛRÖŠCw--rªºï·\íٲȚWÔñœ5dY Y¦µ_}i-(‡ÐÖðváÖçûZÁ5ÈàjžQjÌpZ[cVCÖ€ií×ñÏŽ«Ù›ƒì좲‡Æ Èšÿ½ˆ¾É¬†¬@šÈZà‰éY–ž]œÙZvµ¼Þd êÌé˜7|S]Ý›Vðˆmf8½“Y Y€4‘µ@àçÚ)ƒc´vÇd žxËü1ðì.†§h¯8mN>NÿdVCÖ ]d­ µ 5ÈøÌ˜ˆøMÆl¤2«!kZ|üÌ74ÓZ ¬u8+Ì‚ZÄüǯ Ï eVûÝe­;@G²*Kh…$ CÖ|ÃK#ñðeà¥Jú'²ö{Ë@‡òœt­È´œü ýYCÖY@Ö5ð„Š—id YCÖâÑW™4 k€«u #«Í$Z[CÖ5€8ôxš6d ÚÊ®A耗ðPlÏï2²pÝYCÖµ4äyó):€¬ù™Kæ,ýYCÖµôãг ð’IƬ¦¼ä¦º–žŠ¬!kÈZÚqÅî‡á)µKço§¼äxµ¹@OEÖ5d-íxÓ¬ÀÀß\7Õ£éªÈ²©Â®’U4 kÐ&F¾T… €¿9< ŽžŠ¬!k*Ž×\Z5h˜$ôTd Y€T‡b²È`k€¬ kÈ®€¬A:ÈÚƒŠ’Ûïí7zûê!û%O÷%x£4´±~{ŒLÝ+wÍzG¨ßÎí {o¼4íÅYsvÞ÷hy!]O¶s®<:.4îÞIc];VeÖä„òîÛÝÇÙ­~jüÆ[íªüÖ£5MâFkÓ¹ÙŒ­Ñ°h¹Ûº yÁõo ±76ÙQoçïYó1ƒÖàÞóú‚Siï9Ï“±‘5_ÉšM^¹g‘é¥!^ÉZ,ÖoŽñƆµÒ˜aΧ½ý˜Ss*Ï©Ù1¶åC u>™ñmrpa§×¿Ú­ÙžâõΞPI¤¢>±¬ÅæMêËZ‚h–úÅdíÐ^ç­¼¬!kIÁsà9Æl¦<§¤ú:¶†¬ùBÖjæÛ\ïr1[ {y„¼“µX¬ß£µ¨Š®•~É‘Ö^©ñ”uH÷Èâ©@36Wt J7·x¤ÖØ—SV:wŽdš^¿õ¢4ùZ]fµ¥=›íš2k˜ìåp¹©¬­-//ïÖZ4÷h7ZÎÍ9Ù1Y•'M\VqÂR¶/¬álTyùfd Yó5‡™xN©1ÃiÏ9aÌbú,²æY+‰mä? Ý›Š²vÃ85¬•Œ4!ütáiI¸âþšY., *÷»–€ca¶†õ´^»]”šþ àŒ´¢0\8ž¥;{„ ½4«{‹AnÕ­‰¢¹G“¸ÑÚpn‘ën÷+&kÖpöŸ°Ïý·F*²knDÖ5_ÿr›™¾ àÊZrðè³€‡­!kþ’µÀù,eÿr²Ö}KH k¥5ÒÚ‘%Ïÿ´á]ëõS©.²owt½ÓôÎ'–ð2 É¯VgzØ^å5ËÜsåö¹“ý:Žf'Ó¦<O>µ;[¨õô!HNÞ’¦Ø…rõZã?dira¤xÁ×kZ uY‹­…Ñ$n´Äçá&sYû6[“çÙ¥}’AÖ5ÿó¸1Kqï™zòÌUZÁ{®ó7z-²æ/Y L‹.RHÖ¦<#…ÄÖJˤ2gÏ$ésËÙ–k¢S±ïæMù-Òé4$¼x,kMòòšgî¹rûÜÉ~Gó“©÷PÖZýÔ®l¡DéC”¬ÊÕ;Nñˆ4¦Ñž é&§øµô—ð.é«Öe-~4÷h?Zâs‹|ßÔ–GÖŠk–otªCšŒ¬!kIÀ¿æ¿Žt•{hƒ`û€$­!k~“µû¥‘ηÁ/?›ºcÂÜèÏ¿[÷ðÝ¡Wîߨ#öÞų÷Ç?´ÑyCžæò·ý=·MéØˆÙ¼‘µ1]Ös^(^›è±®¦_îÀ9G‹æÅ­ÆÁÅjDâÖZ{Ø×ƒck¥Hœ=}¤íÙÁÖél%¼”š㤓Þvgî¹rûÜÉ~‡+° y>ž|jw¶P‚ô!ߣætÔ?Ô5©še»tÁ)Iï5{^ø¨Ê)®”f[/¤ÌÖe-~4÷h?Zâs³‡æ§4q^NÃÝ ¬ád YKXÿCrAŸEÖ|&kÇò¤…v)ÿgew÷U{ûÐ+Îö†G#oýi¨S1¾**k«ƒ‘š{ßo.k:{ž¬ç†ÏŒ®ú¹EÑj¼EYK£a­4~Ës†µÒIi_T@­ƒí«­±>ð‡ËêzÆ9¤“i9}nÑ,½sÌÃÀ®Ì=WnŸ«¢ãp§&ÎóñæS»²…¤!kQ>˜U•LÍò^ôæ!Ö±t$ÎwÒ ë¥DúS÷)|òxÏx²ÖZ´æ£Iühm;·%Ê},à’µÂR²†¬ájز–Ú²vAšcgkìë/õ-ûü³‡¥¬úðJuœ²fœ4Â’¨ÜÁá7\þHzàDݦ7³UP‘µ‰úbiYX³Ê‹wK#Š‹ç…÷ ÌÖÄe¯Z{.…ßÚ[ ɬ(Ùr~Ô\´šo+F ì:ùÚÙY+–îj¸²¶<8'½Ÿ?!¼Š-øòX‹‡t*qÒç.¯Wðÿìùw×Åñ2fn“°‰"Ùˤ`cê0«ÃÚl6;\‡-l `L!Ä@á ¤ø˜”P(¡pØCYÂ’žä@ œè Ng—4ß03‡ùÞ_$=I×oÆšw¾Ÿys߬vÓØœÜ#Ù>öóN4Fèœóqe«iZÈ!>äÕnx´µ´{^-2”Ú ÌÓ‰Ývðؤú}·( äw±†µxnæÑÄÞ-¡¾í `h‚µŒ¼áO€‡E k k k,ÃÃÚ› kõL…¾ÀÆàeìf9)¢xV¿G*nsåÇ@ª2Óq¨YOXCX9³þk T¾\,*³†ìrùI 0Rz§¨¿WÞÄú4 Ð"æ$³æìA¯Òj¥Ñ<ý“ÔgyÂhÔæl}–.Ýê+¯Svñ¹ûÀ7IrdûHƒw¢1Bçœ;[MÒBñ!_è ª\‚µ@{ïÝÑ„¸½ð¢NÚ”@K{™õpð¤ôXÙy™-aÍÑ-j4±wK¤oMÇðC‘ Öê•{Â5kSÏ k k>Ö@®üYɧ[cX{í°#eêKÜŒ¨6NòÎP-Oy™¾¨Nγw,ÄmÁ´5@ɪ Å&XÓî^6Byg£„bÚ_¿ª~ÔZÔœÀš£‡}­Ô¸\¯<«–ª¦BQü *öàvíÉ_5dýk6ñ¹!,ËpÓ˜$÷H¶4x'#tÎù¸³Õ$-?â7I  IDAT>ä…qÃ%X› üµý3kIkGUúó‰8mõ‘?oäÓLEa k؃´[z2¬`ÍÑ-ò›‹ã–Hß ,Ÿ2ˆµ%Êÿõ“†5†5Ÿ+ïíÛ-\ù{¤¯ò>ðHçNíàåûÖükÁ­ÚRw€[Úž0W¦ÅÑeÅE`¸öô°\E²·Œ9Ÿã&XK1Ào£(6­ø±82=T@A‹šXsôˆsbûc`Ÿs;¹S>­¬€©SD±x$Pë7X³ŒÏ•H1ÎUc’Ü#Ù>ÒàhŒÐ9çãÎV“´PBÑ&†5I³ “*Ò÷; »þ|*->ѱR;%Ô±™êÖ}okŽn‘ß\·úÖ!ˆþ¢ÖRö/©Í k=0¬1¬ùWÓá.ý½ÑdA¸Ä{Á „6>zÖ^3¬8qâÄï—¥bÂXéqBé‘çøY,.*«þðToœô i$r$+ÕÞû¯‚dѰ¦¿³8ùÓùÇ€Õ´¨¹íÒý¶q`m»TÕäÌ}ï]ÜýÖ+Ø+èݯù Ö¬ãså*ĺhL’{$ÛG¼:ç|ÜÙj’J(Úİ&‹GÄdÒ—À’ÈìU&ýÀo%VÛ¤ ÏôPàtà+Xst‹>„mÝœûö4K‹¬)Z|ϰưæg-)®óúòi¸ äó^ðF»¾®ðñ˰özaMMp4ÂI­uVŸx¬U²k’&öéÿBi¬‹-ÿ2d$Ó£=¹@‡XX[¦½3E/|:[õ·Fe¡¥þ7ÁÔÜ Öâ{Ä«•ÆnS‡¼7B>k}øL{ççPÔ=áü³t?íÊ]—î‡1&É=’í# Þ‰Æs>îl5I %mzÝÊÆ•nö"°糟¿¬%™¾QOòØþc{®n7™[Ó²¨¶€5'7ëÑÄìæÜ·{­aMlf2¬1¬ùYãaWþ kɧ›‚0™_†5?Àšø¢8¥Uëñ‰ñ‰êšǪEmaªø:[þ=оõ5…µi±°–>3¨^uYw×´¨9…5'¸µÒ‘Ü÷ÃÛ–6dH¥V²âÛ`ý,ìIX;c] ·ŒIrdûHƒw"I çãÎV“´PѦ׮\Ô%ñ—¡‘iþ#ÀV2Ç( w3-~hïÏ,`ÍÁÍn41¹9ömžšáµ†µÒʰưæëÕEfänæÂŸ/ƒLBÍY°–_†5_Àš¸+d¬R5³6 ø—òä+uJT.¬5JÖš¤/¹×eWº¸Ã´¨9ͬ9y$T+µ*§¢«¢ ÔJã’M_ÚÌvÙ˜&÷ÌÙ>Úà™HgÈù¸³Õ$-ämbXKJåúm jèz9ëBz̤/€#°ßÍv41¹9öípìÿªWì×İưækqÑï¡úsÐKñÑ˰æXß–J𭆈dÖî‘õì»ç6Ú¤ß<»°¶øøÚðд¨95G„j¥[ÊyêüÈ-ž‹Âx’°VBf‘û°fJ}´ÁKX3Çs>îl5I 9†‘| ¾ ²Úœ×ž†ºhGDÒˆœ8Ô¼À¸gÃJ„‹,`-®[ìo.Ž›cß(¬ ›UZ ŸÁ‚zAÃó‹Å´Æ°ö†ÂÚÓ^À¥vHhÏrI0»«6ç&.VνÏ1&áÄú£‹‡½¬ÍŠ,¹øŠe&ТæÖ=ìk¥eWô«Ë”UÿF–6ܹ#€Ÿa­Ùæ¬ÿ«[$÷LÙ>‹¯d#”e—óqg«IZÈ1Œäùc‘nwR’©oÊ1n³>3ò?VµG 8ŸG€i5ÐG´€µxn¦ß\7Ǿ OÕÆøÔTiøxG{ó 0¬1¬1¬±X k ko0¬‰¿v7«qPn¼*ë¼rØ\L|dÔdQ”¶ª £V°¶¸` k€¶k;@]åßZÔÜðÒåèa_+=êÒŠB\•ë€ýjKèu;ü kC€ín[%÷b³}V É.F¨È&çãÎV“´c‰aMUu¶Á½É!é`ÿJyòS¶±’ª$V‹^¿G—iç®Gý`¢a-Ž›ù7Ç-¾E~­ý”Ç 3M=—Ðh`XcXó¯ò¸Þg%³òøÎØ kþ€5±30^.„K&×”ËÃ.‘“'ŠóSÊ딃蔢V¹}”«#Çf« FX; 4[ÂÚTà;Ê*¥Êq³hsÃK—­ÇÓ¡CW;àÎ> ›üØ}.BµêI½”è&0¤Äÿ°–¢‹ ¼²±]rOV«¶Ìœ}ƒËŠ×»œ;[MÒBŽa$†5m6(ÉnŠ-Ö‘ùžôøï¥Ú¿øäСÊå×éY¦ä^õ2 Uæ«il»kySl{7ò›£ntÐrr‹Z`d¹ô«”ݪ k k~Õ’Ãe¹Þg%¯Æ•ÝàåûÖük*´’bÕ(àØšÞ”*P¹ôúQ)pzÎð†óãÊ_© ÉúOy[B`·hkûN“&½Ea­(Üñ¸Ã¹äÊñG X#憗.[žÒ7p§&€PYþàª`¾Ú"•9î_j€ðZÑÿ°ö©kWAFÛ%÷dÝ2Ö ³kpY¤3 ä|ÜÙj’r #ù@ãbÒËÀÚué×_¬ÉÝ‘óÏ5Ÿ–+?¨UÒ0 ?v•ÆÁ|¨õ _ôïvq‚ô¢%¬ÙºÑC˜¸Y ZnQ°Vܘv±ü»cÀ(5½Æ°Æ°æG}-g¹à÷Róøvžª\¦ðq̰æ X×HµÜ.ùÉöL­²¤f7Æ,Ò^‡®©•r÷izÃî"KX«—ç¼d3²tª^5.mPÓiäF³¹áeÈÎ#X»…Õ¯¦h %Ÿª-YÇÅ$€µÆe›.“äÍö™¼éL9w¶š¤…ÃH>Pí†ç.ÁZI[K{;Q4 £“«¯Þ©í¾ê J:ÍÙ[Ê•¯²´Wýƈ6°fçfq›Ý,-·è¥û ô¡ú²¶ÒÃÚµ·³Ðƒ—í÷tâçzç ¼¼ÔaáïøHfXó¬eÎ(ˆ´¶©¥]Ù¢EÕÄô‹}÷Fõ»gàLQùõƒÂ÷÷ª/ ¬‰Å“zwÊ|lkâìM+—>.zZ¡,Ù@óf&sÃ+"D`M,®ê—ÝïNÔ,ÚöksÃÛêš[Åd€µ3µºolNî‘l ûy'sgÉù¸²Õ4-äò¹^Ö^Ec»¦'Û®ÙtQ`ÐÕm¢V¢ PX[›g ”ný£ù.Ù½¢–Ï·t³<„Mn–ƒV\·˜û¬Õë»-µ¯-MdXcXó­þ. \î{©é‚ð)ïO§Ö>ºð‘̰ÆrGË/¿yÛSéÕÑè1Iî‘liðNæÎÄI ¹¼Õ$-DÖX–°æ—A‹aa͇ª¹ó-Wûžj¸ äó^ðTÍ×jùHfXc¹¢’wû¼ykÛM^›“{$ÛGÃ~ÞÉÜûÔË[ýöÎý)Š+ À[n]§N*è ±Èú(2j|¢"¾(DßÊR ®#n–à#øVÔ„XÁÄGÅU©ˆ»Éj(B\SÔbeSëú'mÏ“žéžaçAß÷ Ó==×ÛGîéóÑ}ÀÐ-dÜ]Y‹nÒBֵѥ>wÖ¬ëYƒèÐí÷Xg2ÊZ½È¹X lèÜ3ôövÄй'´k(ÚgØ-dÜ]Y‹nÒBÖ5\í¤}ëåÕD[CÖ5+Кqjlò•Ÿ¬-y“ {†Þ>c³_ ÿ'&¬k(êgÐ-d¶À+k9ÅÅÅoiñÑLZÅÅ]Ȳ†¬`kȲ6jü#1ˆ?ÿx'eÍɬѓ´>uMYCÖp5d YCÖ||-‘µ„ƒ¬!k£U[ߤʇd ùÙº“¬hd ÀŠXïb kq!W©¹”ù ܨU)¬hd Y@Ö’…v¥žQåCr°W©§¬id À‚ŒÍ¢Èò³ªÝH‘ûôöœ-! 1'?U岦‘5+Ò“E2d ŒwÖï£Æ=ÅJ$ ±güùzÖ4²ÈZ²@–(5“(Ä–4²È®È²È k¸š¥yZ«Š‰¶†¬!kÈ k£Ê+ÄYCÖ5d ¤yëJ{H6VN¾ÁÚF֬Ƅ÷ k #oŒZÛLmIF™ºWÈêF֬ŨÙÒFY”Ê¥´‡d£B©™¬nd ÀZüU¤œ(²:RÔ7(í!ٸ١n±º‘5d Y³öµÉ}Töñâ§^b/Nîfu#kQg,@,ù}µŒ#  CÖâU}ü\[;‘(ÄV7²uø¯€Ørçt:Aಆ¬²–ø£ØÈW5d ¸¬!k€«!kÀúFÖ5@Ö5d Âá‚RÝDY㪆¬—5d †¥¾§‘‚>Ž”´•·…82©g#«YCÖYCÖ¬HÑ:u‚’——ê«Ã¬sd YëÐ<© pYCÖÀ¾qô¼,VêgÖ9²†¬€eÈ;"¿.kȸùP­»HAÉKçcÕ_ÀBGÖ5° E"牗5d ÜìëX@=ÉLﺬsd Yd 5dÍ‚PË„ÕK®ü·“0XÖ9²†¬€e(pÈ9¢Àe Ydm„TvT‹Fö'-#ùôÍ—·îCd«²„³u —5d pµq·¶xYÚùçù;kØW5d ¸¬!k€¬EŸ‰SDGvä7×–(5“0bk\Õ5ಆ¬A(.Œ¹BõÕâ‡ý ²fŠŸu³Þ‘5d 5dÍ:¬JUm”ñ‘±T¸z#RÝK­ÝAãM®ª=ÉŠGÖ5@Ö5˰G©Ó”ñ1N løæÜSâÿ_ £T+Y‹“¬5TœÊšj¿zûUCTâÖ=Þqóå/ÑSdaÈ÷+$Õ÷úËŠ…óÓ2û‹Ý[å~ rúÐGòêd « Y©Üt$íêíñyþ{ƒ&}ñå:ænˆÑl¶fÝh«B ÎÜ4ÒïßÎI+ÝŸ{Ì4MpºYCÖÇ@­zIóŒ²6u7a±—”ªbÍ#kñµ¢S½Ùaýó·ZÕu9mY cÌad­}ýP¡Uâmä]{l˜Ú Y“Ëz­5áôÉž5ÿÃ@X²¦Ï!FY 6šÍÖ5Y >Zƒ÷q©¬Õfé YCÖ¿²R:x/2vdeM*ˆ‹¼<¦ˆ5¬ÅAÖªiYáÄö¯Êþít¶Ëoµ•}Y cÌвvG+ª¼…VUŽÈ²-¯Vh)Ô¶ïÏðqDd“ï3Ó‘5€0)ÌkÍøœHNÊý½Õ"3üî_Iú¢“µe}}}!F³ÙRDê®{8<ß„57[ÞRç;-[þ }©2Ig¿ëë;Ь!k‰… >R^™¸šüH\¬+Y‹ƒ¬þ^»êïsýdàðË ‘7É(k¯ÊP¡5CdóyÏôÇ"—ü{ºAvù.J-È@˜‰œ·Ô„ë3dÊ5gÚ;.Òg~ˆ>!øå¬e ;ÚuÙP8ìðáÎm±–½f9ÝøW‘ót¶YCÖ5kñÒLÖ¶l 54#©òn4‰ØO&¬žM“¡Bk·È²mn[#ëgéŽ;–%öÕ¾­ßÄnO´¬é›d ­*¶E)óJ7T÷oŒhÈ€'¦Ý1††=ýã\bvÚæ“1é†šŠºœ´å‡~¹ãÚ «-)ÌÖF°¦¬ÕŠ|çzQe—¯MÐ%ÿb"k!FË’yà þÜ´wÜŸ©Y.ËÍÓ²†¬ájc²™¬­ˆpÓ}DYCÖ’SÖò5=+Ú¼ýöר“µÞ¿‰Ì.÷Z¹")žwÆ‹4ê¼,²×·±Û.gs,kú&C«ŠmÒrÏžÇyŒÙ(kAºc {ºƹÄì´Í'cÖ=šü,ϔӚB™×HZßÌŠ ÑðHþn¥ó©±Ë.ÏË2‘³C†B@1ÊZˆÑ{¸Ü/ß„;·âð¼Ú/rØ4!kÈ®f1^˜¥×"ã'¥*‰$¶†¬%§¬iµ€¾Ód¢L;çùQrã?sÒæ¯ÙÛêÞ\.å¶úÔj{Ö‡6[^ãë쩇Þxº*[·ìÏNËyݶͣB.f™Œ¡‰A÷õiöìã¹ùÉZý Éø,`^3?ùÀ^º¹­Õ0¦m[ê2íS«7ÍIFÖ4™2÷=_¡õ«ÈDÏ;wÚ©íU£ÈkíËgÞÇt4{(w~õõ—Æ(ù?{çþÅ•Åq˪©®oUu˜‘Q1…"BÝÅGÔÈÃ(T$¨H"P¨( *Š–«FÐ TTL!–°ˆQ+®FÑH6ê*šü°³¿ìÿ³ýºýº·{zfwª¹çzn·‡{›éãùô½ßswKK'€'Ö ÒZËo/,‘¿ù݈´ ÍZ e9òÑA”^¢î³¦'ZèÙú ¬]ÑD¨E´¼ x kV‘ŒUªHÃEÖ÷g~ãÚ¯U@ÃVÇP‚=Sƒµ/ 6Ý[õ“‰è©‡9æ™ [Y’Kiã$°õþŒ×°v5 ’qXÊY,¢/0K ¡aÍÁ[¥~»Ò;Ü»ì[ãFÕÙà›pÆaÚgvÁçÛÂs÷8l]ŸÄêã§ÇùôÆŽø|¿ó§ŸÃZaí9pŒÑ¼¸Ð^ò>Q`M)ê?øX©Dьà £)ÈxZeŸÖ(½!¤+2·¥ò+` Ö:[,¿½#ˆbõ_nQfÝ(XÛ&âœzø˜ ¬mÚâ{ ;„nhô# *,q‹‡°fÉX¥*"s<ǯU@ÃTÇP‚=sƒµ/ 6Ý[õ“em}ô£zØcúÆÛË’ÜI'ƒ]W–ëÙÁÚ+ )ׄŽÈq.QçM!*¬Ù{ „ȑח_oÿ Èϵwï¶oß\R*åtUÛ„3kÖ<³Î’’BžºÇc'­Áµ½Ÿß”¤±þáòüéç°–@X; 0š«€ëêao6ÚXS$g´ŒåB§†Mó¿¬(gôé¶§Ë2¬¨dLSÔ·HèWÖ Q°–·c×}¢c(XÖ¥U˜yåb@Ì&|d‘ãMA¬<†5‹HÆ*UÙ ìó¶/çŸèɯU@ÃTÇP‚=sƒµ/ 6Ý[õ{ôÖ>8È’ÜI9¬é°ÖÝ·8™†%æF7Éq)ê¨óÆ€Öì½ud ½@þˆþ°1Ü»ë[ X»îú£’z˜Î8¬qXóΦðêññÙŽ£æØúñ~O’É®ñgŸÃZ"amp’ÑœÐ>ý¬­H‚Þ§=DJ»êºþÖJÁåC¤ª¦ß² ío9ÔÜÌ1à·,Ֆɪ(ÛÒý¹Cm5Š‚Ê=¬†Å@8ðÁXšŠQJþ‹ a#éHk:v<†5«HÆ*Uò†Še%LU,V KC ö, Ö¾$pØtglÕC.MLrÿª}p%¹’6rXÓa-Pª­M Û ôè³WéTÎi.`ÍÉ[¯ºŸ¡´Nñ½{w}û x!/;MÉÆ²^f8ã°ÆaÍ;Vãw‘JchMãò³d3þôsXK ¬-ŠÍi͔ġ_‚µ ÖÖ)Gƒ2¬IŠ4Ñʶ®«6Ãåc/P`5Ù~³þöJsB˜Ë†µê3]ƒ·å’rVíÖ„gEŠãâ¹µ·Ö§zr~ aeRÅë}ÖŒ¶HU>DéŸüjËËtcV CC ö¨K_9l¶z0~XûXš§}r%¹‘6rX3ÀZ²mŠ}…”É‘¿ùw¬§Á¬Eñ¦Øe?²¶î]õ-GWЧ,P§Ã‡5kÖ’ÐÖß “ÀôýÊï‡5nÖ4{ ”š1VËÉD©š‚HVdJ°ÖdkÂï# 5SŒ°Fù ªQH°ö‹–N=2'„,XÛ7 ”º V6Å kÂþú£á¢ÓrÅT«Rm*Öӣϴê” Ö,R•UȈ`ϧE€Ý®=R†:†ìÑ >s_9l¶z0nX;.&¶3´ON²$7ÒÆÉaÍ’ÖÎÝ$[­§ Á ¬Eñ¦ÚQ²˜œåÞUßÄ3ê>(Âx¶úÍÎ8¬qX㬖œE_¼“©ìÛc+ãúçÇ×ó[ÈiÃÚû kâÿïØdü\STqSª¢ÏŠSgÖlaMœ–«Âk”ÇŒ™µ*icÐÒ§| ÁÜBkÖÄk‚ÅcO׌K«+c…5b‹5ÅÞN1g¢s&¬Y¥*âøUíÕ”eÖå¥F hhu %Ø£(ÙLâ†m£ŒÖ:êôÂ4BYRtiã$±sQam\}ð"™†Õ¦×øl¡÷ 47°æìØU`¿­{W};Iê9‰6~f8ã°ÆaÍ[ðp;¯‰ñ?[ãƒxUCWÊ[øýóÎzf¶ñòýÖkwõj€’þRR'MMò„˜#¬ÉÉ}P¡&V”ŸRÜ´c[ kí „¼vmÃ0b –(°6_Ä…×Êáîøaíº6‡ÖfX•4!aÍ*UamŽZYn³Ä¼®Í" ¡Ô1”`VðQ²™„ ÛN='¬­YmT¯äè,KŠ*mœ,ö³xÓJJJ˜˜&¶ß!F²¾ý<™†µ 8«>Ôbš—êc5{oݧϒ1„ÕlÝ»êÛIÃóZ£}-ÍáŒÃ‡5Oì™Ïw§ìÞÙg>ß)~¼³•>ß.8¬% ÖúCD Er)IÕçz³åtÄÖ²îßW¯V^°¢|l×ÓŽ³2·)›b¯Vï·¾Ê'>F†°`í>›´HA;×°v|Ã*²‡ô@-áSn(ñw+•XóRSë'¬QR•UÐæ1:Cäo“)JC ö¨†l&QöSÆk9«½º`-š,)š´q²Ø{Zº?ï°¶=ü½&±œQóÓ Öì½½ÒU¹…Ú’Ærç’¢öÞªôW[ ~)~2‡5kž®Q£LÅ]®CQ.5irgÀÔ¥Fàkµ x-0bð©Ùmm5Ð&(v®aí“ É˜vñV=ý!FÝñ‰£Y£¤*£ÀC½›‘x¼Ë«:†ìÑ >–l&1öUÆk?ûÅ/šq™B4Y’³´‘ÃZrÚùþ!Tûéo1+ 8Áš½71Ö¨q°B{hÙñÆEßÄðKö ¬•§ßáŒÃ‡5/lÏׯ3v>³6yM Y<pXK¬}’4)Ï7t|u׳ù@•œ× âp‡¬½*ä•eKá—¶<œfûƤDã£*eZH…µ‡õòñŠ-±A~CñL̯s >5${t7ÖAÙ½X…µÖÌÌBgî‘´s)ÒÏ›ímS_Rq[˜È°FIUºtU‹P‡æx¼Ë«:†ZJ/ u’Íü‡m» 5X›²Ìй•%ÙH9¬%9¬µ±q®øóÀNõÈËÌ$˯™ÁÖl½j€T)ì-¨šrYîé eï퉪?úáŸË gÖ8¬ya=¿tñ^ÚЕ®YóÒ®MÝÉㇵDÁš0“®ÃƒW¦¯•ê+–(ux@B IDAT¯m/”5[R6ïBrõ<[Xëü¸tîÖ´³óÔ%qËÿ1_/ÃGA³˜­Ì_±åð¨U‡5iÞl£©¢HµØ¥È‹ϧ‹=ºkòIl<oÓŠïäB”»tXË{šÉhµÌBhCÛ’.‘ߨM…À‰k=¤U–ªˆuNýc­[”€ÆªŽqkæ¾$¬} d·™ZÜÊ’l¤“Æv)“¯v°öO„ò’s`–½Yqú°GŽz ½z`GX³÷–®®K©Í/ØÁtÏZ¶ÞZDoí_Ìx^R1ŽgÖ8¬ybëù~ØÞÚñ~¼¥µ8¬%Ö„êQ-÷:¼™4¦«MEŠX̾ÀHcšze¨JN+¤¹.¬aøŽ×¨ ùÒ+a Öb3ÕÔ¥›MÄç·ŸÄRI—wNSnîaMHQw3Éþ‚´|œŸÐ°FKU€—jC¦©Â¡³Q«:†ìÑ >ª/ ¶­z0vXëÂñ¯³,)ª´qÒØøž… °Vxõ•r]no’ ,P®ŽâÏŠÐÀkÌ€à köÞº#ê™Ùl÷Œ eï-g©z&¼Ä&œqXã°æ…ñ\78¬%ÖÄtêÎH™?mô©Ayùù`sYÚªíª Í¡äxí"³Jg‘RSŽ}åßxáC>:ó8’]ô¶MY D`Mø5ˆ ¹þc`FÅRøöùLÊ'±¬ÑÕÙí»ïZ3ä]cc€5aJ×l¿vU¿Ö°è›Ð°FIU¤Ý­Un˜Ã6Í´€ÆVC ž4Ð}Iذí:3¬‰Ùqø™¥ÍY–ƒ´qr˜¬iv1˜’lcZ>’6«èíAõÛl€5f@p†5o‹O¿+šÕ¼ufžM¼a-[o GöDfÍ[ûi]8ã°ÆaÃ7nÖ8¬½o°ö^Ùžö÷f(ÿeïÜŸ¢ºî®ÆCök§+ŠD# Ž¢B‚ÅW‚JÌ¢€%CPQñQ©ø¬ïÇXMŒÓèØ4>¦£6ÍLª5jlcËŸÓ³–½{w]ÝåÈ~>¿ì9÷{çîÙ÷œïgïž{Û²CûR­]µ‡ÝÊ´;eµûb‚mmuLDY³·ÅxYûdXЇ{5ò²¤ö/mDÖ<ß̼dÅŽC¢óh¨ZȲ†«`kȲf.YƒuCY³/Uq?)Á¹oÝoGˆ¤oÿ!í h‚WÇD”µm1]Öþ«;i„Ÿ÷<Û"-KjÿÒFdÍM>²fÈ …¬!kñf\Ý6Òt€=ú­f<@ÖµÈ4ÈÆî(kö¥*Ywz7 {БcÚÐ¯Ž‰,kö¶˜.kõÃð&Æ—%µ{i#²æ»²vY3aÐJ YË»r4ÃYÿiÅ–ÐáÜÛ¯}05}λ®rd-¶LRÊEžÞÕ··hÚ¸•^èbV(UÇx€¬!k™‘¶h\·”5ûR•Wg̯Oÿý½\Ee[@´:¦²¢-FËZž„µÈË’Ú»´<|îL¼›¯hYÛ‘œœÜÉ'¡FsÐú"9¹)ad­®ÔwJO_*¼`½ÿ6TµX²æ¢ÚÇmû»š[Jí§ºÚ˜ÕÌ×5d-"+ð Ð$â™7ÄãçÍ´úy”²ö¡þ¤§ßŸâ¾áðêsëT÷ïîOv_!ŸÓ‚¬Å¥F“§w5ÅüÌø+ldD@Ö5€î%kQ$dí¼þ sõÇIº¤­lsRp8+CdÊ´\‡ãQešîd-†ì®¾Ë3Ö5psEfD@Ö50zZ‹gDFy­‡S$58~GäÀo±YkÝOÈZ 9«u=·•*¦ºžŒÈ²ÈÚa‘´µ¾òN‘AAá1ZÐnûÊO3EêµØA‚n£Sqf#`D@Ö5HxY»*r½µüP›Ùkø È e[eC ²†¬`kÌjÈ$,MjÀ´7戔ù+Ù"‹­áÍ"—yή€¬1«!kš¼éE/0­Å‹³"²Â_+Q–ð¯:ÜY‹?Õ¥’œ²½i #²†¬€iä‹4Ò Lkñ✶±þÚc‘lKøˆH¡ÃÑgݳ™ƒ{ k±c±R{Èθ©®02 kÈ kȲvMËÚ·þÚŸE2,áÑ"ËýÇûŠ=« Y‹%ÕjɹŒ|@˜Á^¥V16 kÈÆ€ñ—‰Lkqã’ÈXKMÊÃe"5ÛÝž–é±µgUÈZl¨TÕ·HÎ`Uß™ïÓ Fpm¦ZÎØ€¬!k`+~ȧ˜ÖâÅ÷"ÚjÓ´UÝ ²>EêßìíxÚ?[O†?RUÑúÐÌSêü+ð|¶©áäæfÀC±Í¡Ÿ*clˆ#È k¦±ÍòÃÇþÚÇz†—»¯§-{â)?º¯Ëo‡=R‰„á€R ð| ~áÙ^Èó`+cC7Yd­#L²]Yû:XÖf·ø*-™Ï»´¶å*WÖ^Òrc¨Pê¯ô‚106pe Y€–µK")Ö5kázÃßýµF‘9¬Y‹ääæpäÇ“çés`tè^³²ÈZGïYx7È–p?vùk ^Ò†¬!kȳ²‰ÄÄËYtÓZ¼˜¨ý+Ë_{,rÆþR‡7ùkKtí!²m,ÝMJ×Ò×#5d "kˆl¤˜ÖâÅYí_Çýµ"‘‹–ðW:|Ø"k=‘µhŸòËÕ|Rr€ÐìRßä1J kȘÅfZ‹+ƒDÖù+›E[¢ÒD&þ Ò™„¬E—R•¤ä¡ùN©ýŒÈZ‡è K²D¾¡^º‹¬¹ÐZ~("ASé2‘šÀ}'sƒ‘hsUõ]EJš%ïª"– kæ4PöÒ 7VˆŒÍó•wŠ+·†'éð_ùÔ‘d-Ú,W däQòÑ?Ó 1I5"kÈ€A4Ï{›N€¸‘ûÈ¢-žâWN‘‚ÂOjEæýÏS,¿#2õ²mö¼O>n»yΚa\;Î(¬$*î›÷œ¯­­"CdïÎü “'OöÎÜ—u8û¼. ˜«K9/ðÈÚó!7‹b¥FÓ fÁ(¬$,•ZÂÒ¦*Ô/S[ñØKWV{‹eº(…º—¦_f k¸²Ø²†¬ĉ&§x4Ña—5GÅ_8exù‹YCÖ^&TW÷§5d Y0„¼ÇGw¤ÔÖ|Vå%kŽÞ©‡Ž•ΞweÜ‹Y ϦmHÄMÃu‹>0É%ŒÈÄd-,ãæ«ƒ$â‘®~^Ëx¬˜ÁÞ7ÎÑ €¬%ß+UG" =ˆ,e¼@ÖŒ€ç¬²– œ¸©ö!ˆÄÖùêÎF d À¶ˆ¼G/²–äÿÌ}ÚC±ºˆ¬!kȲGf¸ÈÂÍ£b?}`×F2^ kf0HRé@ÖRpù]µšF/ã²-N¥Îšé,œ›s**‡û¥7˜"o„ø±¾tDžöí‹E*[Ë-"r£µ’›!Î*ûqfËúhµ×Nª¼æ/¿’:jJÊ}{Ú¢=ÿõÎŽÒ9ûz„ß ÛÐgÓKÙìÀs¸•qÒÆ¯¡OfC=ûŒñ”—\,L)œ;ÍþøåÞu2œõ§GzkÃ%ÙáÚæ C´ÍrøÏ<"þ‘5\-á~pÇS±5d­ËÚ×3['ÿ©É?\K_ÙyY›±ÁÛ¢ÅÁ/D®·–WêJŸú*kDF8^@ÖÚß^k7´%zùÙ¾>,úÖ·åV†oËÞ‚0{@×xû¹m¢à“Ù.k¹½|{êt´sÇ|‘ §Ú/káÞÐÞ6ëá‘5d YCÖYCÖº›¬µÜÓ“{Æçóo¸mW§—#Qµ¼LIY^ÜìYIÊ”Ì$_¹HЬòU&‰4½ˆ¬µ¿½¶‹:SkMôZ‹Ô>®ÈY/2ÊÛ¼Ûceì¬í½ôgèzèZÏá6Þ©éëãQ¨“9@Öj].—[Ï>üVqÙeÕ«<­]“—V|§êºûÄ×)U+…"7C·+ìÚÚtø<—k;²†¬Å=£“~›È4¥VÒ &R²ò0ã²ÖYzÿE'—¶xŠÍi¡…'þ²vWäKý2MäÓàÐ!ßÏ †Éé¶»œöo“¬õЩ–?ÑS"Ü_lçîõ] <5Lf/q:%ýI¨= k±œÃmô•RË÷)¶“9@Ö†z Ò$û7îAô¾ˆËr0}â7»õíiÈ›–ÈÂR9ú*{ø7´µÍ~øžÈ²;þpS5‘~›ÈÖ+÷Ð &’£î,dä@Ö:É?D²[mW§œY&ÈÚzIs¯?+wJ}p¨N$Ç[š¨Ó¢é’íÛ^(ãsã(kI )Ò–è}"RÛÇSÊ}&Îê×+"»½±ƒž$ʾGDZŒ¦“T¥Ö Nɘwp€ekA¿Gí‹ì¬‹oâóeB”ßÒö©mo`ÛP^|á@Êø×="}í^XÏáêåK=ød!k§EJ<…§ËÑÀ=¦ÉôrO鄈 Œ<ªçšÐ- ÿ†Ám qxd Y‹!eüØ CT(ÕÌȬuŽ?Фç·UçvþþÛQ‘µ "ÿq{S¦‡þÏÞ¹Eqdq|Qûk’Ittg`4®ñÈC"T| 1³pPQWAÔã #Æ(ÑhP\ÙD…h”=ÆG5ë+«.lŒF æ¨9jÿœíª~NWõ¬ÃÌpëûKO×t×­n¦šûé[·ª¸«|ws üÒ€B©ç`-o#àJнÅÀ4õ›)À¹å˜¤ì´9‰sDj7¬e¯Wks嘋‡B‡5&ÉÎ’|Ó ·IæªLAó%µ`ýÇ ô(É©z±léæÀ ó>Ó™YX«òâZtgþÅ­¨Ø ~tù?Ín³ù- `ÐÚ6NõÖ¬EN­5އ…û-$„f9yâÙ!`-$ɞū¦ÝO»H}ë¼».Î59k¶:' Òœ?y×H“¤ô óò¯ÿ¾IùêÞêeù®ÆyªÔBõ-§I*¾ÿz¬3ÿöÚ‡~°6'ž6ÿf=ÎÉ›2ÓÔº#“aʧÑ2‡UcèÎn`³R\Vøµ3³|Ã=ÖòfŽð^¬Ô<(ûöZNub~ÌÓ•¹ë6sî[?™inŽÒ½€Ãê7C€Ó’tSÇiˆ9"H1i4!*­˜úûΡ5òÅo5ûtXc’ì¬É7= p›d®š1À¤â~-Y=h|&X[¥fÚ¡Go•¥: ÿU˜ÎÌÂÚ—À-µh<ð÷XÙÔqÓî',·ùM0hm§zkÖ"§á55g…ó-$ŒÆv8ö‰g‡€µPT\oÉôz¬n“–«“_ƒµ:fõÓ«ÊW©«ÑÚ¨Yû‘~¬uHÏÊÕ‚“kL°¶f„ÎYºFzá®–ö4¢‚ ¨tdû°ŸKUj@í4ð6Ùþ1Zµ‘Y­ÁÚ -(Pb)öíµž*ÃÚ²û”çèenÛ$ŽÞ`¿Æ‚@9 P}(ßïï|Åæˆ eMU Uò]¬¤ÃFϺ‘;P÷¸çA‡5&ÉÎ>ù&b ·IæªLÁYà ùuÄüÐÆ~yôâ-ŠméÆr€á1yo¬=ûŠmöïÌ,¬}g¼ò˜åÒl)Pb즯fØ´,€AkÛ8Õ X°A•• ß[H(8Ý¿*žÖBR_Ì)ß/Tì´ ç—îvÖx<ǧUVÈ®ë.TÜÔâÈDÿÑp¿wdJŠ :ÞQ2ìeÿHÉÎ.æÔÑ%Ÿ|rþÄÅ×a÷tX9L©ÈòÈ}êDFÛ6Ù/šB¶oÿ áµ|z ¯é·SÀ‚ïÜÜâAòBÖœð|³´­Jˆ}{™S›^àÆpÞ˜¯3Ê»lÕÑ»L7âf’ô3p,)‹ ^òg¸G)kMˆzäÆT5Åï „| N¯ kL’}òMÄn“ÌU3X‹weøcU<â…Û‡`ÍÒ‡ Ý€û3:Ö½ƒ¾+b:3 k ÀBµ¨ÍØŠ9ñp×”U;Xaײ­mãT/`MÀZ%o!¡à%žÖBÒû¦UËÌšœîO>üÇø( k¨ÝG"o$.UC’SvóäM›6èç@¶zSÇQÙ C'‹'(£)¬EÅç9-˜@’Ž(>`ÒG•HÜD×(L=Â@?ÚçCÜC k( ½ÁɨÔ^æT'à_¼ipºÝÝ3½iðìI€&÷S¯¨+本©*¡ªxÍsµCýø¡ÛâTXc’ìì“o"¦p›d®š1ÀZ\·Z £{tŸtJ¼Ò?ô ½‹‚AÿœÚRñ΃µr#=4v€ÄéÌ,¬™ÞŤƒý©VÑ4ÉmæØøumFn@ÙÖ µmœê¬ X¬öj_é®â.Z°Ö'aíZŽ&`’pkPÀJ†µÿÒý§@¼â>dÐ@ƒÌ<Êü‘ÑåÌðÃÔñ؃Øctÿ·ZšvF`­k*°šmÀ±¿É…8î¤éx@¶iŠF«2Fï}%Ü6 YêÛëÕJÀΧ/T´ˆâ’m{ÙSÿo!ÃÑûpQ™^¡Xö¦’%é |è˜{làÒ8eBæˆàdŸªÒ=•m9¥­`·Dÿ Ĭ“ÿd¬H²³$ßô„Âc’{Õ6´‚-À#¥d¼©}Ò)d‡^KÛ{ámÖi2v¹në‘þaYa-5Q~ôätöïülðn §3³°Ö¬ÒÊ pÒje‰2CÍn£dô9DXÙdÚÆ©^Àš€5Áj/¡JŽ­â.Z°Ö'a-(åÿ´«»°@5%­MwnæÁ“JÁ¦Ò/™Jƒ¦Ž6#¬±õ¦T kgʹ3¢;ŒhVpã pÉØÓ©DäRëq["£Úu>ŽNZ`Û^öT§ÆuÏáè­övÊÜAÞqKÒ»ò¦’~“6˜Ë9"è??U%tµk-•æÃ»JÒ`Í>ÉÎ’|Ó ¿Iãªùô‚ –Œ^ï›Né÷ÀÍ^جR%€”|9çYÂÚb•þF:Û™X› è‹Aä¢Èj%ªiÉÜ„D5–¯ÏPfÛ({ƒLÛ8Õ X°!5]Aö^M‹*ôjµßOkÝÖR †ë,x¢MŽCµ•’沪ãÄö2õ¤%E³ª2ðÃÔñ…ÅÏ‘aíâe`=›3·%p¢y¸ KŸKÒšÙÛ™p`ž$hB[!\‰…¯”¤ŒU5™Fþ|¸¬WD lÛËžêÄäçvô¶Ë®R|é´Ÿ‡áúÔÒ+~Se¡Àœ#‚?U%,ªÓVñÝãÂZI‡5›$;6ù&⊈É:ÓÚÅŒsAT=pmzUÚ/F,°ÖM©#÷ºk²ã>§y›Öì ZÛÆ©^Àš€µÈèp݈ȚP·ÿ<3Ä3DÀZw5ÈâWhh&Ñ ÖX[®Ãšº&õÖHF®ô—”gþðÃÔÑDY`*ÅjÌ“V™N}HÙ¡ÞÁÌø6žXˆ ÝJÑÉtªsFQ µÚy—€*ûö²§:õ¥“žÃÑË«WÎË5‰¼X¿DA“ªËƒ¿rŽNÜT•°è#àk::uÓ!ÜN5`ŸdÇI¾‰´"bR¿jžÿ‚é±êÿ`UuJ{=¬š¿§Ç`MW/\żÎl…µÓÚ44üœ5EÛŒq ÛÌQ6F ZÛÆ©^Àš€µˆhä-GÍ`át÷Z͸Òq_Ü…^«;3†ˆ§ˆ€µnªÈõó‚Ñ×½µX¯—¥ -ñšËÀÀšÔÚ¢äÂ'÷«2ÃS3?µ]Nø¬7ºZǫ̈ò*P{³ÖYŠPC–uº¦¼£&n Mdç”?qÝ#°¦ÏQwœÆíÚËžê UÂ:zÍ ï$Ö/[#ûoå4p£#f9G%~ªJ8´¿^\SZ„Äq’kü$;6ù&⊄Iãªy,I'•e´g=ê£NéVàD¿ÈJíUA³evô4¬Iïáß¼ÎlµEtjZ¥›[ø•=“»”ú1 Ø0ìkgÐÚ6NõÖ¬EDÕÇ9ás÷b-l÷ ëW‡CLà/`­Ûzðk¡Ì+CÈÜ!FT¬ø% ¬IÒ™URÔ9a†¦Ž½œÈÚO$€c9¢A3Q¼pr¦@9*Wݪû3±X&%  J?Tå¬_heZ,¶o/{jp°¦é[ú~{@QcË ÎA‰Ÿª (’=hå—èVîºkü$;6ù&⊀I㪹ü ŠeÐxÒ~¤Ž,1Ø7ÒJ¼(ºÚÓ°öШ3k°6ÐØ~Žýz|.dª¿0Ö˸ ôô°´S½€5kQ™ãÄ[Âåê&K·8.ˆ§ˆ€µîªA_ÕÇ€÷ qŒ|³ë4 Ö(D$¸•$' ~˜:Jõ·G~Eaíbºt좲þ™ÿð'5¨‹Œ@sÿbmôx`ÔjýúÁ—>Z]ÚHö¨çXa­Nû˜a^Þììù[GÇW¤Ø~s`p!ODY4N¢¢ñN0ú#Ä#0ÑͳQðãŠçj|Ø D×}V‰‰ã ›¬ÙÇ>f»Îö9Wõ´2Ó=0Å÷ó‹ÐôtU—ÓÕï§»Þ*®¾üG#“µëêT’YúBÒÚ[±&{ô‘°©*Q1E¶–mêÿâCÙys‚d-|’]`òMŒ°µHÿY[`l¿êâ Ã]Tö¬Aé–xqµ¹öÏ ir kZ5Åø¹–<9V³!kŸ6[ëGv—,÷-YOÆhƒ]ÖÏÂÈÕÍäð5Èš3à §å"â â-cЋ@Ö"å7y>óÿ:G ]ˆr Ip©áHXY{'%Åÿ|¾+@~¸cìð1UoÓÅ>MTü€ø ¶Z€Â.¢ß› 'ê`¾ÄED›<úüü+|õKkZkJTY«Õ×I›BÔjQ_þ£}µü¢oqKEDyj^1Ôñ€ú‡Û#R¸T•(UKt£^ý±‡<ùR¬Y$Ù5õýÝ`´ØXdÀY[ mø»íâïüßK±°%gmhðcŸ¢ÏY£¶·è,Mdí ¿£úh¬ÉÅÌËZ}†oÑú¥þô5ý[cL‚{Ä·²û_ôaÛa_ W7“ÃCÖ kŽ€h€è@/Y‹˜7ä(È—ùp“({³¤Î;òŸWÕXÉZ%Í»'¢¤¼“¬C2;F^*µi¯3†. ÝI†¬)©GÉwˆvëÐS”(í'®Ò•”9UŸP]’î¥ÒëÆK»D…'´Íª›)ë¬éÉI½êOaëË´²ö(U œT½ÌÖ¦Ÿ\í ÇF¨“Wò{DJhªJä,J—›^û/Yé{Ûç—µðIvÉ7±Â¾"ÎÚ²mÃ*¢ûú†Dדfœ̲VOþìPûe­m…C³»˜ÈšÜsmЇtkƒ­C/f^Ö”?œRø%ݘ‹IcÑHmÉñ‚±Dë´çÉ}ªVa äêfrxÈd ²d ²&’¬=ª–%åœúžá·ß“¾êYÁl¢+j<Û•Jc¬d­ŠèoêžCŽR²20ñQ“ù1Z‰z}KºBtWòÉÚ e>Ç*Î]V†P&&)s7¾Zé:K´ÖÙ, r=‚ÙF4V}93]‹@eY›ª>èÎrS¥U}ùúdíaqñ‡Oô Wþ}±’ÜŸèQ•6>éÑ«f{D —ª)[ÜþÁXǃßb¼´#ŸdçK¾‰vxÖÖ¨æ,¶7‘Ò!koÖÚ[-CÖR??óOÇÎ=àþkq±:ºbQ‚ÒŸdÝN2»˜yY[–J#ÇÉÿþü¾ž½fMÚHô¥r´Š¢­ÚC‚5©´5à |ÿ¾nüá!k5¸Ú`äÌ»hØdMTY“&í—㡌7¿ñ [™®M{¶i:QÛGW¯É‘€[}1VÖî]Qºîb¹>Hì0QòüùÏšcˆ¼ëí-_ôÑù‡~YSÞm šÛ£ØCTÛ[µO­¹+ƒ<2îïª2ù¾o©49l¡nýç_ÒˆÒîzÛGdëkÏ¥ZòÔ,¹ «Xz±dU_î£>Y%ÿá Þ2¹‹²¦-”ųJÛ"ÇNɽ]ë‘g³ù}€KU±¹Ù\¾©J,eMK²3M¾qŠ :k¾nÜ€´6ô}}¼¸ Å–|ÀåÙ‹5סöÿ8yî×ð&ùŠÕ®w¹ÿùÓä᳉Ê>0½˜yYS¦®-«úºé,ÑÆœ £å&z«Ó{³hºþÝj&&­yÿZ`øºñ‡‡¬AÖìgüiÚœEŒu¡8{s‘·Y‹”ÿmóÅè×ŒÍÆâRSÕ„.‹ FfT+×^Qƒ”5 ”_öšCÊß o˜­<ƒöÉZ…x<ªÒ©B}Ç×HI­|¶Ò3nÒgQß„É;¾düòâ[Fuþ˜£ÉZ‚>ÙÝèu‡ðõ ýh_dMîÑ>ëZ¬o(hÌÖ¶¤}f>À¥ªDÏä8p¼ï·Rß„é*OHÈ4I²3M¾qû‹ >k¾nÃÿü7k’õ/¬hÌp•?ýQ’ì^­ýJ¿ÑuÏás7“5éHšÞLœæbæe­bþ™ ‰!G›dôƒßÏêÈ?G­yÿZ ·2ö` IDATEݸÃCÖ k¶“ËÖwˆ/7”\šsyXﮓ‚y@)cY°¡Í¬9¬½ d-b<~ÿ¼äêm/,h6´ýÍÂyÕßîЃ%‹Ù ;'ìwMŸØc„1yóG'¼or 9ž»p(Í5õò.m0!kÒ©”<ãWÏ//›w”•*;V<÷*7Ämÿl r1s‰|ï¤o÷ÑdÏÖ^} ]YÖ¤EÊ=¿Ëü¯¾Cøú†|´O²&å-œ˜ž>ñVÀƒ÷æ+•žÝ«›N„ßã©áÓh¢EŽ=3Íþ`ä¬qIv¦É7Îb{‘¡gÍÀm¿ï¿ê/2;‰V‰•Ž{4 «µé«œº™¬I'š–OuîÜ^öbædM’·VË[Kw´5%v»Òµ5öœFôµ¬…hU·ÐÃCÖ kv“ÿ=»!È"^G~Ô'΢´ÆÈˆí‹µVöçMèO k¢’Ôï5ØøMÿ–ϧªDIbZÀRN¦²Æ'Ù™$ß8ÞîöÉŸ5W@è%ò–ZòÚdJ‡‹„“µÒ¿@Ö kvÓ"7…Ѳ÷ãÀy‹:D ƒŒ:+AYQðòØ~®ŸF)Dæ#ÓLÖ¸$;“ä§±¹Hþ¬¹¸ Ëä–¯\ìmïv‡Ó[YHý d ²f7;XÑ^!bå AÉÙµWEÉÏC†üÜ¥ìßèO kÀ!.PIWKU‰ŽÊ [ÖN3Yã“ìøäDZ·H“³æ à6Œ:ªoðLÕœ5{ûÈdÍöaÛï*çÖϤE†?€X²öÚ{èO kÀšÝ;û$&ŸFIô²Æ'ÙqÉ7Îcg‘¦gÍ`²aã~WùƒÌ!¸¬~k6Ð+4Úëõ&œþ%Ïëm‡¬AÖlF”Hùs ¥úb úÈpˆ;h¬¨H§ÆÁ(k Ѿõµ±Ù®V²Yƒ¬ñd¹9Ys]…<Èd ²ÔÛ¾(öà‘5¬AÖàjá¸A<— ¶Yƒ¬ k@Öâ’1÷G #Ÿ,3‘µ­â8ÀJ$àÅróЯ@Ö æäL§×Ñ ²&Y¬[Œ™ 3ÞÄÕhž0kcÏêÖŠö±ÉèW k{f¦$¢dM0&u³"Abä.3Y£ñ¢(ÀÆvA„â=ìF1zÈ kQÓÄØKBËZ( PÊXD(haì'ô,5@Ö¢æmv\”¹ÎÌÕ’…‰7kqC «AÏYd-jšÏÌ%D>¹ßDÖÎ cǖ VžY†ž²ÈZÔˆ#·šÈZ/ÔôèY ks~þm kµË9~QìäëðYƒ¬AÖƒ6:‡F5¸ÚÀe#'ko@l ²Y °(6€¬ F^`Ë,/ ]û¬ôOŠa]>$ ²5 ksSœ™ u¦•¹Z5A‚~âGv’Y€X’ä¦çÐ ²&§Ö³ÑBäëç\muH§ÖPÕ87dì4, ²±äÒËèÌdM .2ö©p1rCcµ®j#SÄ:3/cëà@qÃ;ëY, ²ÈZ„,e«„ “×-ü×¶¢ƒÂyh)cYp ø¡ŠufAÖ‚H!aµ§¹Óo@Ö€CéÜ Ë‚¬ƒÿJ±¹­AÖ„ñt\ѱžyÑ qnG5ÈÈd ®6(XÒ‚6€­á®Y€Ûd ²€¬AÖ k€8âñ¯Çи­AÖÄೕ ¥p–“ÇÞÃ- ²YĈ¼TêE+à¶YƒUì.Biœe1ëÁŒ5È FL!ÚƒVÀm ²&Œ5"”ÀiYcKpO‚¬AÖ5Yƒ¬õ…1{ذ;¥ãŒëWÑqÆánV”›d ²ˆMx—F™hÜÖ k"°y=[üöÎý'jtãæ$Mó$8^œA ñ²Qˆ¢‹Gñ .°ŠÄ Þ•%. Þ@Åco¬¸Á»Q6rD¢ë%ëeuu]âêªQc6qý“N§ít¦}Ûp ø<¿LçmùNߗηßOû>VÒ.Ó»ÅU#9 .S½$µð¤DX#¬Q];ìå ð´FXºµé i—‰?ŠíBxØÎsa°FQEÖk=«hÂñœDX#¬QEQ„5ÂYm«Y’îrHk<«Ö(Š¢(žÖk„5j€iaë’ ÂÏj„5Š¢(Ч5ÂÚ ÖŽk¬Ÿ)*~z]Çóa°FQTt ‰ æi°æzeß‘Y?ST¼tXUÉa°FQÔgWæ6üÍQài°ævÝ•¤M, )*^J’¤Nž˜kݵ¥‡RS<§ÚÞïì›dÿ®{Ûåâ?}˜q})†ËKgæ&&?Ÿ«½[‚pÓó¦W<_ÊoEuGnüQìå˶%žjž)¬0gEÞζôÄ‚ÍÖé*©jÒèˆí@XzY1Z¤¤’›ÂF¨³˜°FX‹Qu%ÒZŸ(*~fÃQÒ°,!kQa-çEJ°”(zÚûQ+?ïûÖº3 ¬]( Õ= GëÝ]\çkIùúÛ;™üPÔ`„5ï(ýKþøe%CÈòÎÙzCê"'XsŽÖn…5Çh’VHBn25Ök½ÓBIšÅú™¢â§»’”Å‚° ÖÊk”“ûÞÕ—KÞ˜íd¯Gm>úÖº32¬]SŠª`ÝSžÌyÑø~žò'—MçxCÛ€ejyåƒoØ®Æo<À=~(*º¦úðƒ»öø =¡sc0Þ|IÆš!äÌÙMWLP^Ê-°6§««ëM¤hrP}ZW]ÄhÎI+ ý¬¹ÉÜ0¤«ka°»2Ö³zv¥Îþu©ƒ£àJ5ó²„ ¬EµÚGJɰ)G]üË|Œ°¶ôBuÏx 00ßÓ{øÑ´Ùƒb¬ TS;`ÜrµÁO¿]G«O¸j·û1º%öv]¦5B†˜¥4LR^³?W,°–-š|ŦG¯8GsNZ†„Ü$&«<Âa­béìRñwÖ\,„µh°vm\Þm<û¬eMD¨îYÌY¥.y Q4)l»ºTxé—ܵ¦WÀÃ~> +K«Óók^]SßÙìz.“Æê5¢Åæó[úÌÝ–mlD½é¶Ý0 ½´î‚è=¢\¬*àíFš?…¯3„²©6a±2ùö°æ-°Í4ë;DsLZ¦ÛæÜ$&+Âa¬öêß’4‘£@Z#¬ NXËRðlaèm[ï'Öžý L^bÔ=@‚¾f8P¶áI`£Z¢%ã\°>¿7âLÿ„Y©:$6ô¬™Ì0VŒà¨-6ŸßÒg鶨WݶF¡—Â.´Ö‘*=X§/–a9Ð&C̃OoØ ÔÚÁšs4¹Ö:¹Ü9šcÒ2$ä&›dEX#¬Öka°6ˆ`M©,‰4Ýx’]ÿ[zbnáF}`>–ÈÛ‡UxR¿¾*Ë™õǦÔ|ÊÑV5­Ø<61ýcë*½ÐQ5É&†RYÜ=æ»;c‡ Ö¶ï…ÿ˜e¿&îŸî)(kmbZµ¢:Ù“R±ì+oXŒž2ƨ{>#õ5×LÓÖø±N®4øs ƒW €ÛŸK)ýß%Ûìz.“Æê5¢Åæó[ú¬ÝmD½ë¶8ŒB/…]¼G”öųÊû=7”ù¾Ö†­3Äj@;òå=ðxí`Í9š’SQjúdçhŽIË›l’a°«v,`ÕìZmVµ†£àZ5½a5AXsî¢W©HMÅoÑ_;Öé•ר»AXk˜¬6l©¯­š­VÍïÒƒ’¼e+k ¹¼Lo8! Ö.,çÄ3õ ~u‚µ]サaYSX+8š#‡êžeÀ}MðÒØ,Sá€êR)°^–ÏlÊhlé÷cp+p]­çfùP´*|MÐ`×s™Ì0‚åEpÔ q°ô Ýv6ÆÖma…^Š#oõQn†µµA—åí@IØ1C|\Ò®!§e;XsŽ˜[>eê³§³‚ÙÄ9šcÒ2$ä&›dEX#¬Å¨Ú¯«šY5»—Öp \«)Ï/¯b9AXsT°×îÚî Òê7l|í¬ÍóûÛ®'+5ís$ß¿wÃôÿæ|Ãþþ^Á+Ïö²^ó³²¼61š”?>ÿcgF ÜdÀÚ¾d-P˜ê{ZGÜð÷ÜÓP’òq%¥ ÏõIFΰ–¨ÅCuÏM`Kèºy²±Ùp Z[úÈé( ”¾•ý|¥Ü‡Ûz·ï ác4ØõT3Œ`y5BÃç·ô Ýv6ÆØma­½´y«÷è‹Ñጋ}k™¥L§.˃,ÌÉCÌÿ+nn©¼ÚêÁ‘¶°æM> ßÚéj6)Ñ~ÇÒ9šcÒ2$ä&›dEX#¬Å¨?%éËfŠŠ¿æJR¡‹°æ¨ƒÀl»ösÀµ@+õaož k(jÜy ÜG;T©,Õ•—cÁI?J ¿$ðjøË„%@U`ê¤w1ð$kyiÀ˧+~35°Ð<é;dÏš·ÅSÔ¥_|(º(GýµPÝ“‚žF ÅØ¢&ø„y<ŠFzôÂóem¿‚ÊþšïTb*5ƒ]Oe1È–ÁQcmˆƒ¥Oè¶³Ñ0¶n‹Ãhí¥8òµ}ñÃnT‹CûÖf‰x( É2 akl2Ä–oõ¾µ•maÍ9š\™´}rÄhŽIË›l’a°›ÆTI÷¯²l¦¨~ÐI:Kê"¬9^IöÛUç¼Æè'¬iõÿ¯Í­Ý†½£iÈ›ä²ÖpXb´ø‘¦ÙÜêŠÔëÕXkš¬°|ú> õ¿\¡Ýu`m‚súâ[`HO`m)°§R•—0*t¹‚ÌÆ¸tl}³j¨B¦UýzN\ýèW}ñ„é_eìz*‹F´¼ŽkC,}B·†1v[Fk/Å‘¼G_Š}k hÏ(½º§Æbœ[c—!Μמ5s¼ÜÖœ£yS€ô†×_¯=LËŽ-:¬ ¹É&YÖk±©Y’–³h¦¨þÐÒ*i"©‹°æ¤à²MóJ =xY}2öh°¦y"ŽÄGø½*N]Ÿþ·A°b Ý«Øõt†W…µº2›D€N}±I››(ÀZÎúîtôÖäyÀãÀ,Ìœ¥^šºdà7ešÒ~]]’ < Gc{p§Ô«÷†Á®ÇÔb6È–ÁQcmˆ¯¥Oë¶“Ñ0Ön‹ÃÁH¤¼à="¬¹ÖÆÏB¡"|•!¼ßóæ·ÿó[À²k kÎÑöCZžv™!]3¶9G‹kBn²IV„5ÂZlÊy:œ53EõÎçsËkŽ ²ižmXyЀµ9r°–mÕ– ¥]õÇÿ»C€5!ÆI+øäbÏ[ UðÌíÞOÔ•«ˆݟݱk6µªû°¶(È¿œðG2j Q¤7ñã[ohoS³ –Y9@ŽF¥´;^õVÇÆb†-/‚£ÆÚ_KŸÖm'£a¬Ý‡1‚‘HyÁ{DXs3¬U'B÷ÂÒÂW âwà…ú#I“‘Ûbk¢É-ÁßyhvGŒÖ-X3ç&›dEX#¬Å(Ì®Öá.Nbuµ]„5GÍ mš“ƒh¦•!°¶Î€µùÚR› kGš¢âÕóËͰ&ÄØ äY`MÕ{ë§—™k¿l{X+?v¼ígõ¡jß}X“Ÿh Çœ3®¾ M5‹àm?jÆÁx ˜žc¼ ìbRh4l,/‚£ÆÒWKŸÞm'£a¬Ý¶FG#QpäEïÑ—k¿'9J„5çmï X»òÏe·Më,bJˆé[µYá¬EŠfè¢çÿìësׇ)Ó3šwŠe2¸i Θ‚ÀÐaBƒ¹_ÌÍn æV·æ2¥ȸ\2@˜p)åÖÉt|iþž®´ZiwÏʶXaK«çù‚¼ˆÃîAœó>:û;+U‘öZëXÖ´±Éc°BÖ5\­¹Ë]¬Ø²TY{$2Õqãˆy#Ï/“G¦‹TÆdm]Y =¿`–îÑ~vYÓÚО“µ{aä®|¯;k¿½^²¶þdÔüKç®ËXÖB¯ÜQV»¼h¤QjÍMšlÛúà¦mÃr)ωÏb‹Q>–$²ì|Z‹W>OKÔ8te¤Ïºì4ACŸ²æìÆ4A"ë¼²G…Á*É"%¹rUûDö[ãÈ"ço:Gã­‰‡„W%~íµv[K²#v3y;­u,kÚØä1X!kÈ®V€ðPll Y ¬¬ņ̲ÿÜP;çllïÔªØÎÄÊZZY …6ï>¬9vYÓڸᱲV[39­ßêÓè<¢gÖŒ÷D'ß¹õþãØÝ•™ÊšÅÐdbïL©ôOnµí7¸B6äÂGqûŠÔŽ*!GÀΧµè‘-Qã>Ð…‘¾Ôe{ }Êš½Ó‰’§ gµ|–µM©ÿåMi÷¬1Gˆ]Ö&Jý%ì%kj-ô¥ÈÇíµÖñ ¥Mƒ²†¬½)•‘5è^ª‰­!kiøZäšíÇ‘ðæXQQš|šúºø‚X»²¯`WFMk²ÄJkã;‘çV¼xl\Öš+BÕÍɧvY iê@Ö•õ#óåšW—µ¿%Ÿð¶Évdìë¹Ë‘2™˜ŸÄI†1ÜL-æØvþeÍyÑ5î]é³]¶gÐЧ¬9º1MÈÞóîìQ¡ÌÛ ‹ìK¼ü&9¦y»l´ç§Ï’µô­íß³o’õz‚”EÚk­ãAK›<+d YËœG߬¡VÎk®ð”¼|çØ©â˜²æÉ±R)kIý¸Ë,ú¥–ŽTÅË‘´²6äêÕÄ;Ï›ßñZb¥µ±$UÄì‹{›ùPìñ"œ6±Úl¼p~›—¬ý˜ZÒùµ©v–µ–º÷¬û†êDÚÌWÓí›+¶¤ö¬t,huÃ'ˆü>Xsì|Z‹yÑ5Ú.‹ô9.Û+hèSÖìݘ&Häîy3{TH²À Fª·&Ÿq~Òùø7m„¨O}ŸÔŽZš¬¥oíß©TnMüÉvZëXÖ´±Éc°BÖµÌY¦ÔpŠåüæÅ­:!¯©Qêaê…¬yR,Ò\Hx)=Šï;ò‡Hҫη'kÍ2moÒ±b›æN¶;äÕF[TÌ¥¸ã+¤v¤%k±¥±“ŽSZ%òÙPóåR‘ ¶6“\JÞJ4KÌ»NËÚQ+RòaTž&~ûº”M½ynRÝŠým䑾=dONöûláToh‘-Q£èªHŸë²=‚†>eÍÞÞA"­çì°d¬å­¬Åþoß¿Xv&Ç´Âó¬?.M­ 9d-}kÆ8ØøÃsâÿsÚi­cYÓÇ&}°BÖµŒ©Tê µ2@÷ò_¥®„Yóâƒ">Š/l¿(‰§žUŒ©©[¢²u{{²öDdNü6±±£%|&œÚï6.ˆÜ‰U)#ê͵™„¬Ù*2ÏqNƒEÅ÷"¹mËÃmm&9m=£{Õ 1Ÿ—œµ••5Ô=7DúÆ~=Û,¥‹ßpGå’³¾Úð—Ø‹ÙF]Õíßs ,u-¤9v>­E‹¼h‰í@Eú´ËN0ÔûÑ€™Ëš£=ƒDéNÁÌ!kù-kMQ™ñ¦ñëæå‰tuee“ç¹n eÿ KøMOYKÛZ¤A¤_lØ«X)²n¤Wk´’ç¦Mú`…¬!k³EÕ=£Tèæ¥µ‹êê…¬ys®Ü¨¯¶ž>U<1¶¿âó;ߣSEæ÷½V¤4¾%@ZYÛû™È¿*Ú÷Vâî1£xïTG<Ú»Á¨VŽ›ÿ‘ëS²[7›áØQd¡qJåJîgôµ£M[Õ=tyÖ¸‹ñ(W§dm¸x¯õØêž¦>RZ·iX«áˆOR÷' ¶¿û¼ñ÷ÚRô¶HÙ±îþΩrng±Éï]¶ÞÐ"/Z¢F;Ð5‘>ý²¤‚†>eÍÑ^A"ç)hÙ£‚áHTв#kcü. g•k"ï>·ç ‘µñÍ£’°tm„h*i^VrN©í‹ §¬¥om¸ñ‡¿ü]ߥ£Œ7|èÙZ'­dkúؤ@ÖµŒYð’½)ºÃ/¡^ÈZÞL–Y[g[k~•8Tk†ÅÒo0²j@â¥õñ"¥1¶ÖÿÝÝF¨¥!q`TüÛiKÖ"FÓÓqJg×YmžpµiÑÏ:ååEf­ó²ê[fþѪeÖ‘¿‹²¿»âù`)ÖÝÂÏÌõØGÀΧµh‘-Q£è’HŸë²=ƒ†>eÍÑA"×)hÙ£Âa÷ÀãÙ‘µŠÙßäÐeE¦'Nø7ë]B¤ÃG'ÞZ6,”FÖÒ·¶¿<ñ;ýWy·–‘¬ic“vYCÖ2†* 7@½µ´Tö\^>-<àæ-ÛsÐŽß?½aÚ€÷–$iíìùxéÿÊûLíÇÚê±ÇÎOÂ3.{´ øôFyUíÓMæöz–¬…žE%êÜÿ1R2gt¸ìÒ¡J­M‹!7'T j^s9²qPü´ÈZ¨Gkÿp¸}jÑl˜ÈçÎ÷×Ô7—ÕþkÏÐîþ YvÛṵói-îÈ‹–¨Ñ#6]és_¶gÐЧ¬9ºQ¿J÷)hÙ#ÈXÖr1ô©}º%â"}„hܶ¶¼Ï[gŽ ¥“µvZºçÇÚ>õ®NÓZF²æ16¹ kȲVˆ´L¢5d-Ȳ(Ö6èbÖ—»ï»Òv>­ÅyÑ5zÄæõGúôËöú”5g7jW©‚–=‚¼—5ÿØe-W-d YÃÕ s§¦7Ñ Ø²†¬å‚t‡ÚO"eo'™i~î Øù´wäEKÔè×éÓ/Û#hèSÖ\Ýè¾Jý´ì8rbAá]tvd-»ƒ²†¬eFc„9ÌSj7½*6RN kÁçSÙ «iv,Y˜;`çÓZ´È‹–ÏѼöHŸÇeëACŸ²æîF×Uzœ‚–=‚‚';²–ÝA YCÖ2¢æ^krþ3^)v‰ ×,fjEÖ?ï”. Ðj#ÄCÖô€?kÑ20Z>Gì¼ÞHŸçek1"Ÿ—­u£ã*=OA˲öIIIÉúÜ´ÚJJ^ kÈZ&Ãí5u°+k#´TS¨1µÀ³:ºHÖbœËA«wü„5d­ÓVêr 2k'ɬ"¥J˜[‘5È!YË"Ȳ–!ËÔÇ(ƒ@Ëú ˜¢z2·"kÙgäú€i YË;ŽõC} ;\éUÉD…¬dŸ¿FûÒ LkÈZ¾Am k0Q!kYç¸H+½À´†¬!k€¬!kÈäÕÈÓ²†«¶†¬!k{¹F/0­!kyÅd-0´½ØÖB/FÖF0W!kYfWx À´†¬åï¯yIYn+u˜^ KÖ¬f²BÖ² O8dZCÖòŠÍ?¨;”ÅAa¼RCè… °O/`¶BÖ€i XÖŠ”ú3e1²¹Çn¥þÃl…¬Ó°¬õS­¤œÃ]¥ÆÓ á¡*®`ºBÖ€i WÖö?xƒ¢88 éÛF'†ç3/3[!kÀ´,kTĹ ³²U^¨ítÓ²†¬²†¬!kcŒè#=é¦5d Wl YCÖ Ç¨i¥˜Ö5\ °5d Yd 5díUù¾xµp°¨|F‹?ÄŒ…¬d‹È»r•^`ZCÖòƒ…uªÅp h*®[L/Š=jͦ¬B’µŸ¼Vz|õ :!@Â5ƒŸ”C1(x(vàxC©oyØZ!É k1•zB-Œ¬An3_©±¨²…¶²¶åÛJJá`1O©ËôB°87³7+kÈœ¬QŽ£Oœ£&†¬@¡É50¶†¬!kPPülÒ;t kÈ kÈ@ŽñN³Œ£YÃÕ[CÖrŒ?ŠÌ¤YË}^üv<0@~p{Ê@6AÖ5€B‘µUJýŸ½{Žª¼8ŒÈK}-))aD¤ƒ„KÅ FE #(¬ J-Âè(™"ZD;„E)·6B¨¥ Eêˆ¤í°‘jEFtl©32þ9 bH6æÂ.»{Îóü²WÏY¿£Ëûá$çÔ[CqXÂ!9&ÖÎßàQq³) Ö Ý´aîKàä©Zz´É’gNI˜7]‰5€ówâ§wb­ÐU…0Û 86ºÎZ2=Â=&Ö€TÄÚË Ž8“D•!”›BmòñÓzL¬©ˆ5§‚k9&Ö€tÄš•oB««n jM¬‰5kbBS}È ÄšXk Ö´QƒZkióõ» ±VÈ®XÿÖ1‹iÈ‘Mõ/ÎoøÅŽYÞð¶Nß/ÖÎë¬!Ö ÝÁFZQCnÔ?ÛŒ Ù½–á›!Ü¢ÉÄÀyYãS@¬°§‡W—XRC.T½;¸*«§æ¬ÚJeb @¬A‚cíÏÉñk IDAT¦XS'VÍV3ȧã9†.ÏæÆËCX'ÊÄÀyùqiˆµ6óõ! ÖÔIUQf™Bþ‰ü~B·¾«vÑs¢L¬œ—KŸ3ÄšSA’.ŠWÊ:ÇZœŸÝ=h2±$9Ö¬¨Å9r¼K«ÅjM¬bM¬1`VËM!_v­ìk±Q¬‰5@¬i54<\»Éòek†V‹‹¨5±ˆµž=µôävKjÈU™bíoYÎñÆ£/3±Ðo¸å1C@¬¨Õ!¼cI ¹Q›)Ö~›Ý} á!a–èX‹EX*cmwKXä´ý#õ™¾lïÍòïÅmuUÊL¬ ÖH\¬½‚K&C®¬ÍôeûL–wr¨.,TfI޵¹´#ÆëM¡ˆ°TÆÚ¶ã_ZPC®l¿:C¬½•í½,œ_¡ÌüÎ@?Ý?"ž4ÄšSA’M‹¶Ì1…¼ùI†XËÁÁla&Öúmÿ¼Ï ±¦ÕÈ‹šÖ™BÞ,/íÒjßäb?ÊL¬bbSB¹)äÏÞέvÏÁjM¬bM«áÈZž-ùu§X7@¬‰5@¬õàÎÆÙ–ÒÉ7§¹å+SÈ£Š‰Smòíæ¿Gÿ­ÎĘX« ¡ÉR:‡v¶™A^55Onoµ—¦äj/-áÑñòL¬ôÇÅF€X+À³ö‡°ÀBro㾫N•Ú¨»NVål'B¨–gb  öÞó¸! Ö Îú0·Â2.„]Ã?\}0§‡8Ÿ, Ê3±Ðãj15ÄZÁÙÚò‘54$Å-#å™Xè»51.0ÄšSA9%ÏÄ@¿Ž¬‰5ÄšV#_G\–™Xkb  ;‹'WbM«‘Õ!4µ&ÖÄ@7¿bˆ5±F~T†Pn bM¬‰5kÅRjK/·°k$Myc“Dk ÖŠÛø á5 [?IÒü.¾V£‰5kE­2„‡-lÓbÊef…ð¡Fk ÖŠÚ{¡y…-$Íö-á¸Fk}3üÈE†€X+$õu#­k!yöÏ=¡ÑÄ@ŸÜ_×›b­ Î/Ò`U IÔàŒb  oÖ¸(6bÍiû B£‰5±†XÓj‰%ÛÌ@­‰5±Щ·ÇÙ¦€XkäŜ撦 ÖÄšXèFÕ°A†€X+Ûjk,gÓ¤&„u¦&Õëè4±b­=us8b9›&•!”›Bš¼š_jb ÄZz?„÷-gY#¹Ö†°P¨‰5kÅçÚ’pØyûS¥iÑ–9¦&»> u“”šX±VtÆo˜{Ðj’ìPÉ¢éJM¬ôÖŸšb­P44YËB²mjjb  ×vÆ7 ±æ´ýÀ"ÔÄ@o¹(6bM«jM¬ˆ5kb Ôb  7—Æ!¦€X+³†M†‡×W™Bê̶Q¬‰5€^yoŒ/3ÄZ˜Ùf[Ħά–›Bê¬ u®‰5kÅã˶ZĦNeå¦:‡êÂÑñbM¬€X+†pÄV¬‘ï†Ð$ÖĈµ"1éø¾ŸY¦Ϻ0ËÒgÂüæÝbM¬€X+M®‡J5~ø5•¶/ñ;kb ÄšÓö…H¬‰5€^vͧ†€XÓj€XkfðäØh ˆ5­¨5±P`ÖĸÀkùU³z»•+¤KÕo–‹µ„ÇÚÒxViÙ˜?»¨›Øãøþî¾6žëGgžÞë #F7~wÛ³¯vÿë%­¿mp‡'†µ>1¿Ÿÿf1^c%ÅkKöÍ1ã¾Y×e~õºqâÙû¼æ¶c¶lêüž+OmMúþ­ ZuÓØ¡Ï¾6¡ûÍ÷ú³;çëòî®o]{ú…›ý÷˜ÒXÛÂå–®)õÏCfRûC¨ki‰µÓÆVB¬yvsûm¾-‰z޵¸¤Ãÿk=×=W×'ž:°í[çÅA_ÛkjúĶ·Þüvw±ÖýÖv¿ÔöÊÞWºÙ|ï?[†X;÷­b-Õ±6~C¨«°tM§cs놛B:=Ù_+Ö’k+jO;9ð³Ò‡Î¼Ð±¶3tpz¹÷Êäÿ³ãðãgo{Þ̔ثXûø»ÇÓ£Xƒ,ºâÀýÅõ[¿ûFÏ®\xoŒ!Ó±µiw·×Ô·£c\ùeÍ”gZÿÏÜ)ÖVVWWú¾­Mã­Ëj>hM¶¿θù>|¶Êï¾+gÄØÜõ­Óª«×‰µÔÆÚW!Œ³rM)ÅN±a!lkIµ[ÚLúyŒ÷]èX›Òåɿĸ·ãm–bíö8zjûãú8J¬Az=P'þ°õvÐg1fø‚©‹c{M…o:uTlêæêkWö´µÖøÄ©àúߊo̸ù>¶S¼'î|;ã[/k©µísçï±pk¤Í¦yuÇÄZzbí’OGÅÒ¯ók{b\Øñ6K±6/Æ]íïˆÿk^¯ÅXuúÎ×eñ]_¾,-k«©'b\yé™Äú&þêÏc­Û­}^ï8sÈñåC¦Í÷ý³µúâÙ8ô—™ß*ÖÒk?xÜõ°SkcûM!µµ6Áﬥ)Ö.¹ëìŸüùŒµ91.ëx›¥X«ˆqÈÙ‡OŸV¬Aj=Vw¶Ý}=Æé_~bh|~t[M-‹qvÛÓ³b<˜)ÖºßÚÌÔ·ÝïÈ´ù>¶S>iû›¬ oké5kÖ«j\ ÕÓL¬¥)Ö·6Í™{—®Z1¦ìê{÷Ýxæo…ÇÆÚK&møkÙUÿgïLߢ¸²0.H·õFÔnÄ t ›8ˆ( 18.˜( A”wE“MÔ¨£&n .42j$nQ£f&ŠýsæÞ[UTwßê¦{¿PuÞ/]uëÖ¹ç”RÏùÕÝ–åès(žÖFŽ5È@箇EMÿ~‡¢Ý§-ˆY(MQÒ/•äÇ·þ¶¹{Xsø¬9rH”.˜õeä¸ò z­ÂÇý£#óï®}¦æRBü“wÇêšü¨Ý%Þa-i. t߯¡ ¸ Ö|ü6‰Ì§y‚5’ÅÕ'{i_kG¸¸£f'}®:×ab¡NSß}òƒ³f°Øšª‘ưn/ó¡úƵÑZ§Ÿªkk$‰``Ͳ°ö],P,Žgè°TþRƒµ¥‘jÁœS¢Æ±|õ´è{ i’jµ;òë°–% ¶äUiöµóÿ‚µ£´“qÚj#¯Êµ‚æ5^°vb·v\¿B†µ€¾ÀÿX´äé°æë·™oók$+«îýiì?{ò•”zÌþèìIAž´Ãb Éçj)bV*:M]jåì…hk­ ¥óÌ̇êSú:à]U Öl k”¯’HDkkÖ‡µ;@X„cÙ4d^ö猶n«ä51WʦplC‚öÄ0dðŸ¶Ä«Hsð- zÊ¥‹5€ë–zË·ûÛ)K€ß?Ç’;¸€ÝÂÚ˜¬@¿¬¬Ú/ûgxxXxmûGGÜHËï¿d6›Ks·Ã;”ά13YY…JD\ÓONa^ÆŒ”`í¯ÀêÙ†m:¬I~K‘Iͬ‘¬Kj¥µÆ—’ÆÒ=ÁÞ—ž?õ¤8w[y–þ ÷Dñ}tšºä=kKÌ`- 5Þ•–óxjf>D߸&ËüV%X³'¬%,=wŒòUɶš÷QÁš `­êþè9ÐÖ+K-ÀÌ_DéTê{ òB¼èVdðÁ„wµ e¿f@Eš‰ÀY^S¹éBl˜zKýöÛÉ{»ª«ØÑ. ¤[X3™³ö.¾Ú˜a|àcË{øˆÊ À|Ř³vN3ÔÄI°¦ä"Zÿ°Ý¬è°&ù-E&5O°F²¤œ‹~îÓ±ËOÿœ̽=mSlK‡1™L¥wS ššb|ÑÚÎÞƒf°È¹ò'µÕij>4ß„Z»æ›T%X³'¬mw8ÎS¾J"ÙUŽD‚5+Ú—î‰Ò O´ ?i*yi‹}䊂^Œ¿Ôó}*Ò°Ÿ‰…]{ç«·üWœÿĪ[»f V‚5OÍ5…µ>ɯ勫Eß\§ÑêẊõîk-ú$³ˆ%ådX»¦'6ÌA Ö$¿¥È¤æ ÖHÔ©öðÝ0Õ[Eí½-kG€•úñL4û¼ãùR:M±WÂå*qTX$›ÁZ kL•â9®ßej>4ßÄW#öÒò_•`Í–°V9Áqýß”°’HvÕŽ¯דÖlk®O´Ïµ›ëÚÓ´ ·9åòêÛUpBP–¾Yu£@šŸ[ZAgª·t*Z×PõJ Ü©¡ÃÚE G«ß!†ÿ0ƒúˆ«†ûR Xc0Ua>qFÀÚ ŒŸ$ñ™y¬I~K‘Iͬ‘¬¦£ƒŠÞA{ù°›^¹dü½'Eü7`°~ü ¼^Ê.µ¿¿‹¦Ö{ùÔÝSŸñ23X `MðÓ¾Êââµî~É|(¾ 9€þ«¬ÙÖŽÅ”¯ÚYûÛ­ÛZCŽ‚5 ÃÚĦ¦¦é5.FToH XR"–U‚¼2´²§ÀFE¹DhWÒLƒ[/à¼ä·,WOGZ7×^Àé k¹ý í4…µY@ÊhM“xßܧÀ^ftXKK fÿã™XSÆ¢VÖtYÑaMò[ŠLjž`d)½È¬ž‰nS}<à‘[—Uö¤ ¿*.©h+Ï¢Q“êESÛgÅMiŽÖßQokþ­Êšübf>ß„Ò܈Nõ_•`Í–°–ã(šJéªEû¬Ù^·7 Ö, kêtŒ¤M€ã”qáù¹ÙßnRs̰¦ïæ0§/ ¤Y¢£Ó` ¿¥¶ Ö´‰is8¬ŽÕ”䜵rï¤Ñ©ü„™ÂŸwÆ4sDÊ+SX+Ž)µü ·k’ßRdRók$ë(ád‰ A*¹ää+«Ä}Vý Åå3/¬ ñcoššºE}ãGNôîèÒaÍ¿5OœŠLÍï›n'.@U‚5[ÂZŸ÷h“-{+ÇáH¤§`ïƒÖ,kÊ« à´6{K‰(R8Wy«ks½`myWO›Ò ¦뻌6Y·øÀšSOýR‚„µ3Þc‡Rct~ùÀšrâHŒšV†W™ÀZØI6 ØÖk’ßRdRók$«(;¡É=þ=kDÎÞ|ûµÃÃÀ'Æ…E]kÖzÐÔḱñ[j–:™.Ýïך§^—ÍÍ뛪ñâæ·*Áš-a2U‚5‚5ÁšõaMÙ᪇›§1Üß6`GrhkoýOÙi2°Æ58Îe¬hí k÷øR–gÄNq¬I~K‘Iͬ‘,¢Í_‡kÓ­úF E;Ìôz ¤©[>[Eê°æ×š’]’‘¤?m`}P°æßWƒç¾$&U Öìk”¥’V\ g@"X³¬={x"&®—+x䪨â ke€>j”@šp`´VÐ%R×k¥]=~JÕ‘ æîÇÆ]-‚ÛtX[0P¯X\2µ$`mPgÀšä·™Ô<ÁÉ:}k'KÜÁƒš«dõA«pj,¦VrÂuÅ#?<œqј W2µ‹ÔL$Xókï¢/]»p˜˜Á7¡&`_ ªk¶ƒµ1 픤’H¤^½rŽW¬YÖ”¿°tl?ØhÑ÷‚Ú‹å k uómn4Œ¬î¦vTÅë„5ÖVÆQõÒEàK0]hTíô.À§ · üt!fv¨K äò„5åm”lÀXÅ€5Éo)2©y‚5’•tÿxuT0¤³ìdX37–OíQa¾Ïcô¥|¤O*{ᵤ.?(f°æßZ1­îR—>Xjb>TßÎÀ}4PU‚5ÛÁÚÇŽêE”¥’H¤c?9~#X³<¬q¤ÉïT¡JÝÏ:¯€%iÿ45^u'gš°ZuëèôiÀUAP—\ˆMx°Æ"Žc§ÆˆÅ¯ùN°mœ°œWGŠØxm+¿^œ „}‰È03X‹ƒ+×<`MöÛ72¹y‚5’µô2óÁŒÀ¤_ЄÓ~=*æb¢G²ß‡5Ú´¯SYYŦ°Æ'É⿃½ÑÖü[[œå 7V›œfæŸee­ Þ·*6ªJ°f;XÛÓß1”²T‰Ä—ï¯þ†`Íò°v†ºõd ùÓǽÎ߈äyZ»¬\”gŸÛ‚Ý*Ò¬|h\ýãM–›¸'+ÁÃZ£ÃS÷Í`íù0`Ø£ÉLJ&3ŽéHкöüê\à ßTm9kV_¥ƒ•7—æ,mÉæ+f°–ÇZék²ßRdRók$Ë©ª½(Ö©M*jßÜÝý›Ù=+â~,°²ó[›e¢o}%{‹˜ÃZqÜ3g³T¦˜Ãškiÿcïî¿¢ªóŽ«øÅù˜bË乤bj4‚i*è(äóú‹¢:z$Lć6KEÂ0‘ÕŒ1E0J]vÝ35×§“IŠK×õ¬§?gï<ÂæÒ02Ã0÷ýúÅ{¹×;3ß32ß·3sï8‘Uçí7êEæLò{ødí÷Kà÷m¯ÈΞv%ÖLk÷¹À§*¥Ú‰µ¨5ËVmf¶ßâü&—ˆw\ߨêk–#I®=>r]L›D¸ Ó\'û0Öô&ù‹5ËS«<'¯vÍG¦¼ëþÁ‚çœMÇ€Ž;ž³Ö³ã¥t¿±fyCËéiWbÍ„±v“9*U\m`ð±f†X‹­ù»ã;7Y_¸×‘þ`±óJ«ÝcÍò rAÊöåy³ÜIc‰i\ùÒ’µ?”»¿6Ö‡±fI·ÿx8.eÇ­O½wôìgO[§]¬pζt\\R‡¶0ô|êA뜴ŸNúèÐߺþ{œ{7'п:W¦´G[óåZí—È÷ÿëôkÛ²´1cÒnn³ÆZG[?+uõéÏc,ÇZG›.®ÏqíJ¬™.ÖlUû™¢âšRùŒʪŽkQkÐUÎ<ו²þW9¥m}† ÇêÿçÞï­úð>™(Ölß}16îýùÒ]siî|ëÁã<ŒòXc~ŠA\^ıÀ“à‘ÇO_ý/ã¦XËüÓ³ÄZ¶.ñ¼¼Åßÿ|í=i9±b Ô±F¬±„³ºÏ¢kzÓñöïÜ_fkÌßÜmkÌEÇ— <ëüÆàøhŽ5¦¦pøV©fFıèkãìvûÐÇ;ÈÞÄbûêÙìöF“ÄZ“a+µW騿9>Epš§m¾5\[8éøTom´ÆÚæw–35…ÓýËe Z&–kÄÀkžÓ"=Ž;y}v‡v;ïb-³^$Õ•hƒâDFûl>µ]¤Îµxô°ÈÆhµ»jSS]Õ©Cı¾j/Ÿ Öúyb­F$ÑsvÎE’|ŸŽÚ0´¹—GŠXƒèákµJ­cj  «GJukÄè¥o—»ŒÂæœÈžå6­ÌÖè7/’àYîÐ6ÎX¡Ô5¦¦ººs]ýƒX#Ö@oà]ÚŸE:/Qž&òº~ó‹Z Ù<Õ%’’±vSgf @o…úšX#Ö€XCÿ9¡ÅX‘wm†ˆÒo?â8¿ˆkñÁ‘3AÜÄ@ˆµÛ8§ÜÊr¸}ÿ ±F¬€^^Š´3 —“ZŒñ®µ‹¤ùì°RÛaݯÚ¶—ERJ¢4Ö˜”£éØÒRFı>^¬Î \Z´û§w푱>;dlÒöˆ{yåÔD‘µ¹ÁÜĈ5f¤ðÊWª‚Q€kX Ò4‹LÖ­‰ïùÛ®'Š‹úwP7A¬a ÉRj"£bX ÿ]ÙÞ¹f×’l½Ï»/¸cM¦&÷t¨œxÿ.)U1<‚eT½Â„¼³ÿ íÛ†›±@¤)×}ð1^+²¡ú¶$‰lè8ºËöÂA‘¸Rã#•$ˆ•z5‚G s„jeB ¯¦c_ò5tZ­êòx¥ Ö賺½³vJ·Ý6[d™ë|ýƒW‰ÌùÍðHG– ÌX+Tê.Rt*ÛÏ Ó ¥ x¥ Ö SìCÆaÓ,bÕ­‰þJjJäxº{¹m±È:ãC=Uè_£RMOD¬‡Tgø$µ÷ÔÒçž0b ’p…A@¸´è¾¥öÈÝæa‰"MÞµj‘q½¿‰W•z>r¿R?e©É|€‘YjÔmN0B¬€G ÅFÍÔbm‚w­]¤^·9_drŒw­HÛ¹-ÊbmXK3³QÆ,çlÄxí"ÖF'´þªõ®Í9£Û3ëEvöþ"8Ö>Ïe ½,¥&2 Ð+»–L¬k„_ú"¯ír.~'rÃgó"Ér/WkË…Ñk‹Ô ¦¡ Öð{ÞS÷Jˆ5b €ðsœ¼C†VmùcE’ܧñ¯ÌÎÎv¾r·íI<4X[6CÛñ^7¹±ö¤R/0 …Þ5¥²èíVê±F¬ÐVk–87õ%í9kÜ?¢­lv.5l×­õëµ?_[M±V2Jýu?ÓPø˜8ºA€^Ã9U<“X#Öè÷ãÄ%i¦¥[¬Y6ÿŽU&ߌ æðk'‹U³P¿/¿Xí'Öˆ5ph\:A@XÙÚ¿ØcÝ´qwçûf]bÍb)ª{w¾uSöø)Á=r?™ÏYÿ$ëƒ$ÖÀ!Ö*D‘È5& E¬kà°Kd£bV@­k@¬ÄàöüƦ¬5b ‘>[þÀ(€X ±ä"NùJG-,`àOӇı–œÆS ˆµÐÊù‘+Ã/.Š Ã§ÆõŸ‰5b b-äæ)Å© A¬¡®(õ±F¬@¬…üëjÅjƒ„?ùJeàÏ¥jˆ5b b-ÄZ”ZÎÔþ|þS]£:®«,bX€X ± W³˜yèû“6bX`zƒs3kœ¶@Ä!Öˆ5f—ù¾Ìb@¬Ñjˆ5b " űF« Öˆ5 ÖÓÅÚ‡_1áœäbX`j± RÍ(€X ™ÜbUÀŒFrßj­e`¤t¡*%Öˆ5¦öŸU9 ˆµrR-L9a¤Šë¬¡5 Õ9±F¬@¬…DR«™qÂP–Rº¬¢öbkÄÄZ­F1᱆àÔÞS[‰5b b-$2Þ¶3ß„±;ÅÅñŒŒ-¯¼M¬kkœ¶ý1¿Â gı±F¬ Öˆ5ˆ(ÕSO2 Öh5Ô±†ë¬X Ýõ°÷2Íð¸Jˆ5b @`¶TƇ׷—§‡öªDN‡ø1œÿœ'Âkå‘ámufwEH´Þa­‹Ö™ä‘ù—Ièˆ}u¦yòÞì«#¥þ²ïÍö¨õZ0¿ #Öô½õ ‚Þû?{wþ#å]p¼-Ûe>  ]¶ËB8\B Ç Ý­Åh7Òp(X¢•’Q”–K HÀ‹ªm9 z&ýÁ+¶$Ú ‘ Æ”’ÊŸãìîìì²ÇŒLf¦<ϼ^¿ðÌ>“~ûa¿»û}/Ë0a²­C-c €›Üùb ¨¸k«,wØ:ÔÌŒóAbM¬Aú8bim r{ÌMúA^ˆè´u¨á÷TÒÿ7XžÉfÏ© fgÕÇ ŸËf7ÖǤ³ÙÏÔǤßζÖÇ ²Ù§ÊùÙê.°;â‰ê®°Z¬Ae5G&==aÒµú˜tœ¨“OHïĽb ¸YÜzºÖyøâå*¯0êÕžaó*ê¹éu2hcçGu2éèÉõ²yïž]'ƒ®z±¡N&=öZ‡X@¬ˆ5Ä€X@¬ ÖÄb @¬ ÖÄb @¬ù-kˆ5±€Xkˆ5±€X@¬ˆ5Ä€X@¬ˆ5Äb @¬ ÖÄb @¬ Ök@-Ì>÷ÊÔ±;v­Þ]ä9Ûbìu×½nÓ´E÷½iAôwk¢gNúx7>sòÇ+aàN¥!ömª‰˜'Ö€T{~Iþ„¾ð¹aŸ³¹íº£î‘‡ Çú¥§z߸?AÇýâ3'~¼2fÞŸòX°ƒSiÈ}›fÿ±¤Ü3¹OË‹ä~ùò–až3cJô?ênÞ—{rÓ“'^è:žì=¾‘œã~ñ™?^9ïç7Òkvp* ½oSìêD±¤Ü¯sç•#3™Æ·çG¼Ð8äsî{+úuGäNƒMßoÈ]M?ž»1.ÿælDó݉9ñã•õ~Nøx% ØÁ©4̾M±¥!Ö€Z[ûf¶)»rAGÉ;sú}ôjUVÜмibÓÔ'__é šãÎêþnvlŠYö”ø891³çh~ËØÜy}¨ç,Ÿ×u›#&,Ï_ß–»óZ÷Õ¨ÜÕ¥4ÌœôñÊz?'|¼îàTzߦءk@µß–¡Ÿ5”ºó~eÒiøÚ‘¿Ó4¯¢+öÙº³Ú±–ûÊ%Ö „ŸçNx[ó×û#Z?ãã£=ø}GÝû}Ûþ£iº¯ÖFìKÅÌI¯¬÷sÂÇ+jðN¥¡÷mz]ÙmóÅPSë"&>ú¥Ë"nï(qçшMãò.WaÅÙû"þçPóÆÜ×·—*¹bÁø)QåX›½X¬AI¿ø}ïõ¥ÜüšOx~gî­­êwÔÝб pÿÇ'º/ÆDìMÃ̉¯¬÷sÂÇ+fðN¥aömzíŠØ3E¬µ´fBÌûµábÄòwÆÅ’Æj®x>b}{×Å»-1TåVìûL–*ÇZûWC¬AIË"VÌŠxzàº^â©-ïwÔÝÚî?ñ×î‹;#Î¥aæÄWÖû9áã3x§Ò0û6µîŠ˜Ù!Ö€š:ÑÙ}qeR¼RâÎŽXTͯ´ÄÂöžË ùO…•Y1¯ñ@ST;ÖÆÄØIb J8•ûHüfáÑ#n|Ô]´6“pÔ=Õ÷½››º/î8”’™=^y3'{¼±6ÄNçGóû6­¦ÏÅã3b ¨¥ “âdþòLÄ}Eï4D|PÍWGŒÉ_~q°b+æuv½fÕç«k›ÇƉb J8;Ä)<úçýçå]?$=ìQ÷¿m_éºØÝ±uͿӶøëG;>s¢Ç+kæ„WT‰œJ…}›V3#Þˈ5 ¦~Ø÷׈8[ôί†yͶJ­øµ½ïô~öK+¶bÞm¹ƒÂ‡3ªkÛãáUb Jù]îÿ›Â£³S‡~Þ°GÝOrÿÃ]k"ZŽ÷¾ Ñ®«)˜9¡ã•5sÂÇû?ÔW¬ömZݱ·C¬µu¶÷¥<º¿lž)zg^ÄäÆÎÏn{wtuVìçýˆõ[±7ÖæØ©n¬=“¶dÄ”òvÄ=×=ŠU7tԽ垈ǻ¯¾•ÙÅݿ옑ü™:^Y3'|<±6ܾM©-m1dF¬µõ£ˆµùËc3‹Þù Zö¼Úõ%µåà±j¬ØÏ®ž×©ÌŠy‡»¾Á[ÕX;ÜÛ2b Jz/bgߣ¹ñ 7rÔó݈©sº//tõ_þûªÌ±Ÿ´æ.·HüÌ ¯¬™>žXnߦӪg#îʈ5 Æþ…rêˆXXôγ}ÿæYëÈ*¬Øç{¯¾^±û«f¬í>ÛÅ”¶çºˆ»#÷ÞpGÝñË"&|¡çúDÄ#ù׃o˜•üÁéOk愎WÖÌ O¬ ·oÓiEÄÊŒXjí—[z¯—Ä[Åî´·ELœwiÄ¥=Ó"5V~Å‚#ûzþá– ­X«X[m]¯—"Ö ”yƒþÄåõÿ±wÿ¿Q×wǵ¸òy¹¥:… ®¶N™Rf,Wæ@P´Î¥bEÙÝHøâ÷Ä/¨SƲd`Œ¢ÛBD7ul™&f3Q£›ÓÅ•Mÿœ}J﮽ö®|l;>õñøÅÏ—ãó¾·÷iïó„~®Ù/uϹ9}|wqåý'ÙSÚ±«7âþÜÏ9§Ó›Ôœs>=±Vë¼––¢ãL±4Üe³JËK£¢=3WEû±‡Vg=ZüY€úŽX2³?¢åÐB}FlP¬3{øJ¬Áá¼Q¨X‹žÌ—ºË{k^®N÷ÌÌùœó:½)½Î9žXËtÞN3.‰Ø‘ˆ5 á~ñÓÒòÑ>ñžÏJÖuMÄ»õ±è¼´Õ¶ÿ­.#6&Ö>i Ådñ·Š»—þ±5ó¥îŽB;ª?üÙ¹%6§sÎíô¦ô:çtzb-Óy;M¬ù5b h¤—"î(.޹ƒ¬öž$™17 uqØi·F¼ñÀØ­S±1±övt ßY-ÖàpúÒëò3ÊkFù—/îR·'}l,]_ã°›Ó¯åyÎ9žÞ”^çœNO¬e:o§‡-ˆŽYÏ ëèNÿ#Ö€†¸1â‰â⮈‡3íI-Šø¬î#¿µÍ¸¶ÊíiS±!±ö㈱™ìN¯íž*¯}/bo¶KÝÛÓ?øä/kv0Ý»>ÇsÎóô¦ô:çtzb-Óy;=¬Žqö‹5 Î.ÿöÐ;åK™ö¤vFìªûˆCîžÑYíMaĆÄÚo+¿‰Ë©h¡ßsQtÄ ™.uŸ{>ýâZyì¨-ï¼ùëSv—×®OwoÎïœó=½IÌ9÷ÓkÕÏ[±&Ö€ú¹/â¯ÅÅÅ•wÛóÔ¶Ï+í¼5ºÖ}ÄTgDaäƒDê4¢Xƒ£Múó|iùýô+æ˜,—º­[ÒGnùdô.M·¼W^{;bkOnçœóéMbιŸžX«~ÞŠ5±Ôϱ²¸xíÈÍdU÷<6’VwD|»þ#&ɽ]g¬ÖiĆÄÚE-%]±¢¥¥Ó©X±àÜâò/"žÈr©{Uz}tJåIïn‹x£´òiWÄ-ùsΧ7‰9ç~zb­úy;Ýù€ ¡N‰xførnlœpÏ¥‹ï´ÿˆX|F¼-mµå£Öë5b#bm„{Öà°®X3üABϤWìof¹Ô}/½(|cì?°_žn=±Vã¼kb ¨ŸÁÙÑ>ôk?ØP¼—ì¹¾¾Áª{6F´ µSOgÄ[­õñ¸S#^ýÈz(Öàh3ô¡îÎK¯æ¯éˆh/~¼û¶‹/¾xf­KÝÖ}.ñÎÐÖ÷ï‰(|<ôç|+Êó“Ã9çz“xs?=±Vý¼kb ¨£oD,ùÉ_¶¥ßp7ú˱ÛËï-c÷œÖ±³û¤—W¦Û7¿Ñõµ²Î:Ž(Öàh3t ÈœKæŸ?ô™ßƒÅm-éÊíµ.u½cdøÎÐǯH».˜?ohÓ‡ùó4˜Þ$^çÜOï+k5Î[±&Ö€úøUñ[ìüã’ÊX»'yâÔâ†ï,;#®­øŽÿpGkpÔù¸­øÕÝÞ—d‰µËj\^Wþαõ‘Ïy:Lo¯sî§÷UµËÄšX޼Çws¡÷ÕÅ:¿}Ô{Kåž$Ù½mMoáü‡zàHŒØãc­n#Š58Úœûáέ…[7=ô³$S¬-ªuU8ðÚööUmý›.Ü•ç9O‹éMâuÎýô¾â±¶H¬‰5Ä€X@¬ˆ5Ä€X@¬ ÖÄb @¬ ÖÄb ± Ökb ± Ökˆ5±€Xkˆ5±€X@¬ˆ5Ä€X@¬ˆ5Äb @¬ ÖÄb @¬ Ökb ± Ökb ±€Xkˆ5 ‹£dÎÜyè<¶¸yI,ªöè›k¦ŠöL|¤ÑÎì]r I"æéÿ 5†X¸sÁ}N@¬͵C:~8ÕX«8Ì8_œge޵žWã䤙±–,}8G±4'Ö6­>ä-ïΉhë›l¬U;Ì8Ýñ%bíéx±µ¹±–쫜#€Xšk–WÎYñ£CK×3øec­ÚajÇZF;¸5^OškïÌ^°ÌIˆ5 É±–¶IÌùt‚Gg‹µ S޵LOmcO³c-¹2žw’b hv¬%+#–O=ÖjæKÄÚ×»¢;iz¬=qš³k@³cmMÄwGWÙ;7¬(<ºæÞã+cm°#æü9Ãa’äø;7Í›ÛÕ¿wñ@ºrSñóGvʾÖ[N-,¹àêcŸÙÕQØUYRãz°ó’®¥ë~Þº|lŽyÚI2ðÑ ím+Þ½û“¤ÊÓk×_ùd[ïº{ËC,ìíÎ@¬M޵ýƒ£ªlϣżºç¶Ñ±v×ée9LröªÒD®û¼j¬³±¸mÅG•O¬§¿P¥’÷Ð=§¯ÿçõ1±6öi'_¬+nØwW•§52ÄÁùÅͽëKÇz;®8è4ÄÐÜXûwDÿ‘*;îü˜}ùÓßïNfî™#›Ï˜qb¦ÃœÑöÇ“¯¹p{!âŸIòYßcÝ}}åXûMÚ[í?xåå ³_¯8âuoVÄÚ¸‡n^ñßînY[+cmÜÓþüæ4Ón¸è¦·"æÿ´ÊC|ðbÄÚ¿ÿŸ½s‹â:ã¸Ë-óŵkÝûˆ·Få"W“¨!BÂà%ŠZŠ‘VR¥ c XSyjŒ6ZM jÆhPSµ*šT &ñVýszfgfçʲFtñy¾ŸtçsÞóœGüpfμ·õ€é+Ôd§€O9M!„BY#„DOÖªº§.0SÒ­¬ø$xx »’Ó¥É,ÿë`ôeêc%ûÖýs€Ïä¸tуTÓ«´Ë&“¬ÙšNÊåã¬0Ëš­ìV §Qü]ö°È©,uˆ@Œü²éƒ"¤¨wLºD_NB!„PÖ!Q5ßJ—²3!xWø³¾ŸÔE–f“µÁY Ë.k-Àå©1©9èQ:GD£¬Ùšâ•ã½fY³–}Ç‹ä¶`à¿õø•SYÊϤãùL%^§¯ŽE § !„B(k„¨Êšg›¶‡£âRBY*Œ­EøDx5Â4ënd© ®ivY»h7?Þqc¹1ã^ÔJFY³5=Zz“¶™eÍZvðsõã[Ã[2ÊR†8 ÌVã½@úqÇyB!„Ê!äÉËÚœÖÖÖWª=À¨D£•‰?³Ò’ù«oÂge‘¦QIH›rXo—µBxC"TÜ7tñà IÖlM7À«ÿ`–5kÙ;€×œ®]/K¢Șª’ƒTµUâs„B!”5BÈ–5åa³´Í@|›YÖäÇÃþ‰´pŒHÓHÒíŽùG7»ƒ½òí²VZ> JÑz¿ûÀ=“¬Ùšú0F;>oÙ ÒRö%Àe©×R–2DÀ|+§º8w øç !„B(k„hÉšôÀ+3ËštäÀè ¸¤ÇTi²¶+ EÏD˜&n±G¹12Ðå(kõØJÑ ¼¨'té÷!*&ekêF»vü¬õ=k沫­72ÚÊR†h7Ëšú®µf`ç !„B(k„¨ÉšÔäFXdM’Nœª JÌ1UÖ®H/G#KÓX(|éù«Ã›âä[dÍgX.+¾Ñ>2Éš­iª¾ñ‡ueÍRöËÊš½,íNKTÙ¿BWMœ'„B¡¬B¢'kÒÏ÷«¬ÉŒçQ¤&ÙR['ð^DiVº•`£¬ýÍð Z—iý«,¥&Y³5w£züŽ]ÖŒe/ލ¡ ›\Ne)C4h¯ò6ñŠI" !„B(k„'.k·Æßg\jÙm¥­ø2þ'P»?’4Kõ=ò²ÈZ 0UmpÇ­?ƒ&sÛM²fkú! í]ùºYÖ¬e¿©?ewRö6{YÊåúÊbÕJízªá­â“U<6)ù¦!Sìá>Å™7{­•]†w‚IÖìM]‹¦××.–½ ¬7õµ”- êØ“âžqö-õE×Ö²BCdæþkoÒøÍ×Þ×:ÆÎÀNÎBÈS!kÊïšv4 ¬™S:“Õ€Ù-kÿVöˆŒ²&~‚5dsjÊ!„„#n^°égÀýÇTÅ2x~Ïï!d0ËZz’ŠGq«c.k}¤tƇ‡—µÄíèéך¢$kòþU[9µeBÂòö&„9}~ÛµuʧF’W±‹ß BÈ –µrí ûnK¬V Í*-]üSe­”Îäh²fD+à9heMj@‹s‹PÖ!$q©¶woi?kƒ–e~høÅ³¾›ò”ÈšÌèì¯Wä²IʬEÎíe-ƒSÖò½¸À¹E(k„–)˜\Ö÷ÙØN`ò·‡Ç%y©„K¡]! !äi5阈¤ ¨¬õ—ò'ÈÚRxº±¬I ð¦qrÊ!„Há\N svÝqíá÷³wS£½ßBÈÓ$k E$w`e­Ÿ”/kó€øÈ¬)J²6µŸÇô¡¬BˆäÚ^ÛætÛÖ>ÿÜÉ/ü!ó1ŸY˜~„ßBÈS%k«EdÙÈÍj¨ð×oŒÏØo“µÞ.À33Ò”‚Æ…_LßíN-iX¥$ËÕ~kVlvÀMçòfø}Õ_u;U½˜j·&§.m[kjݾš5 Ò0a´]˜Ì‘ÊÒ¹î±ý04±Öl6mцZÊuÓ° >x²8»eB!„  ¬}""7LFöìXM¨æÎ²ÈZ\ÀæjáRJÒìŠÐ†þõŸö-kÝ5Z8éGûNQÏy1¾ÍjMŽ]6Ñ^’™å kö “¤ñZ,U».[ÍÆao}¡nx‰Ñå†ýúc,/%„²F!„BMÖä×\zFÖ”.Ú¯ì–d–IÖªªí®.¥´JÎá \_î•?¬‘%••£šÊʃ¬½‘#ÎzÖÞ+‘[m«²]üF²X“c—¦$Yº]n ä{›¬9\˜”µWN3}©OŽî£fðw ƒíÏ´Ë'‹õÛ4N|ס¬B!„“µÆÅ"pÉddkÀ4ùÃj!2q†SÛ„¨Ì~ˆ”ë„5ÝË—? ýÑZF˱¾gm¿0.ï_åÛ—L}mÛùwoZdͱKb-Pt±Qœm®}YdÍáÂDj\‘c^‘ ŒÞ×WÍڰ٠İóåöÝ;EÏ•úÁ¼ÆéE(k„B!äQdíw.…Ûûšê6ÊKQÓŒêôÐõ¥aë…¬üB?•𺓫…KÙ ”ĩ̈́?y{eí¤è±PiU¶K|^aà®m±Èšc—ÿþ•àp»¬9]ØVÑ*C‰í+vôU³6ìLѾC=Yãsj›œ^„²F!„ÿ³w·?VTwÀ»…ÂýE¥ê¶î"" XŒëj¡ÔÒ¥ RcuŠŠ)(¨Uâó‚`¢¶iEÔ–•"TQ©¨µµÁVhSk$h›ðÏé™Ë»sï•%lxÃçó‚½sfÎÃÜ;/øffÎc kM®X[)F§Å=ù*(WþôäGê»zçGt]4Mv¯è¿%VÙžÊï. kÆG¼•vðꈻ;ø^ª¹µ1¬•V1.âܼpuKX+;±}“òýŸDœÓ=À˜ó°ö“ê»v‡MÙ—/þ–I_Î./„5†,¬µŸ1²ÒÖîI…Ÿ4Í™›íêÞSžÕ¾®Éa›Ÿ©OÑûUÚóÃÒ°–…±ëÍý:5p ¡ƒû"6UÃZi•”Æ:Ú Ñ¬)¬•œØy©èÝ|cÂÊwïí`̵n7§íÙõÚ§DŒ®o¬,n€°À1…µŽ]Ó5$²ìïOÒŽ›oX»¦)¬¥¼Ò3kMöëþð´Èßêjkÿ+„±Jåò–ç SÏs›ÂZi•T8µ^6l^Ë;k­'vc*ið»*Œ¹Öíú´Ý?ýÉìbím)0öº¾Ö8†°V dØwÞ±ô/•–°¶jL5ueÇÅ…]Õ ëÇÜvtMf–~Ó‚™}Õ6Ç–†µ=×ö?"÷vC ó#v7…µÒ*ë Ï(V*S[ÂZë‰=1®ì[js­Û[ZøÜ˜Wy3m<ëúBXàXÃZ29›ö~oKX«ü|_Eæþ©;ßÑ™²ÎSŽªÉJåŸv¢MyX[±®P¥'⯠¼ñjSX+­²;bW٭묵œØÇW·žPɘkÝÞÚÖê÷ç¤ý®/„5† ¬U.èKlVKX«L™ý~¾¸ô¢yXë|ýÂþåÉÙäÁ;·Ò9zÆÞ±†µk“×øˆ ¬.Ü1«¥¦Ò*E¼Ô_¶¨5¬µœØe%a­t̵nÓŸžGlÏ«½˜=Ïõ…°ÀP„µÊõiëªÛZÂZfò¶ç§e™åŒÚ®Žõ•Þ#úFM“ϧ«Ÿ|âòì=¯‘†µu Ï4®IÇÝÞÐAjeuSX+­ò­Â¸êj³Ê¾â‰]Xòdé˜kÝÞñÐ_ìEéÐá®/„5†$¬UfdŽ( kɈWDtÔ¿kaWÄÓGÑd6óýü—kå÷Ög Ù˜Žû]CïV:ÁH­ÊɯÕËzÇÖŠ'vzªxR½xúòû× 0æZ·§¦j$²Û#Ú»]_k MXûüœ¨/æœ'²õ¿º&ß½<íýF!Ç=™¶×¾É[R€©OºñD*^UÖþ“öÜS¯ÿ^DGã|’F\ÒÖJ«¼[œºUËÔý%'¶?ý¹1/Þñâc®u»±8Õå…÷O9½>7äeŤÂÇÖªqdÌæbtz.bQ¾7{ p{!¬eËOOkt“»"~œ—N™”Š« QWVDL/ö8¼/â7ùqËÎŽø¢±ƒ9ÃZi•7z"þž^ÙÖÊNljá ËÇÒ° 0æZ·½gEE£ünÓ/"F(„µêbÔÏ ºÉ/ӇɵŸõϘߩųç;k7½º¤ÃÞlì`xWÿRÔµÔT^åß)n^w»rM´„µ²Ûyp¬|¾)â·9ïöTðTmïwÓçë­?Ü<‡%kKX›pU>¡G-:½œBKßëòO;Ú#n-¦ªêšgqÍ`›\œ½¾V]ÓlòŒê ‹U÷ÿ>âo Ûö÷7{è숮s·¦O÷gAï•æA/‰¸¯)¬•VÙzIĸÇÒЬl–ÐWvb#RÓ]7e±mìÔˆžý9ïvÍÜì•¶ïgÙîÏg×_`;Ôq¯Ë a €! kÕ›EÓ>+$²ÅYÐé›y×’,síÛÚÖÚÆEœyh°MNLÚ·,˜ŸâYôLËW`ÛS AK Í^¾!;pî?h™Âã´þU±óÔT^å‘ñicÜ’¹£"~Y|í°’«Œ|(}µdâάµêrÞ¥c®w;atÖßù»ÿ0/ýy|a½íY£§¸¼Öº°–MÈ_]´¬ž¹¤¾æÑúXìIDATó?>«4†µÊÞTº`°M~º¥ÞÒG·ÍÏ×F»; KÙœùýÍŽÜ×þÔË-ƒÞßó†7…µò*³ë˨µ¥æ4µÓzb•ÊI«ó¢³ÏAY:æþnŸ}®¾{Iÿ'•Íßk[X«NÈË‹ÑéÇ^Ý×¾aîSÿªRkS¾hNA_Ód¥ûÍoo5oÅÌW*Ó#Æžgñ‚KÛ{®Þ°XÀÚw¦NküΕ¥ K§@õzsX+¯rðÒ‰Kçm¸öú)ËÒ6¶œ}ó‰e^xgêíg>½7ŸØ±lÌÅn~ùß í}ç/X^˜©YO´ïwu!¬p‚Y±å(«LHaí³ã6À'"öø™Ö8á|1˜é;>ýæ{³êëžm‹XzüÆ73:îö+!¬pâýç3â¥#´¬#âíÚç¶M·á­ŠxË„°À h~´o>âA“²¹ù¦½svFŒ¿ø¸î®èùÊo„°À ¨íŠÚT’_g{6Ÿþ˜›Í—ÍùîqÜìˆKýDkœ~<âAì¬Ï«¿síqZïu1±Û/„°À‰iWìqă†ÍZ÷ZO×U7Ϙ5âølGœÙæ÷AX@XÖÖ„5„5a a a @X@XÖÖ„5„5„5a a @X@XÖÖÖ„5„5a a @X@X@XÖÖ„5„5a a a @X@XÖÖ„5„µÿ·_$‚þ¿nG /@Öd Y5d @Ö5d @Ö5€·ŒüÐxÙlÅ*IEND®B`‚metafor/man/figures/plots-light.png0000644000176200001440000034631414661373527017133 0ustar liggesusers‰PNG  IHDR ¬ÜCaØ‹PLTEÌÌÌêêêõõõÝÝÝfffóóóüüüÿÿÿååå“““ÚÚÚªªª›››ããã‚‚‚RRR™™™'''[[[CCCggg\\\ÏÏÏKKKþþþ###×××ýýýááá??? ËËË{{{‹‹‹äääßßßGGG€€€¯¯¯³³³OOOØØØWWWwww777999 nnnúúú ÓÓÓ+++———ÃÃÃÇÇÇ///¡¡¡}}}øøøûûû‰‰‰£££çççÞÞÞ333NNNÔÔÔ*** âââ»»»ÆÆÆsss½½½¸¸¸•••ììì‘‘‘mmmÜÜܧ§§000oooºººkkkÛÛÛŸŸŸÑÑÑÍÍÍïïï<<<bbbƒƒƒ(((ÎÎά¬¬¤¤¤÷÷÷222%%%666ðððššš«««;;;&&&qqqBBB---"""~~~ÙÙÙ¥¥¥!!!zzzÐÐÐÖÖÖ’’’ààà···ÈÈÈÀÀÀ111”””ÉÉÉhhh†††¶¶¶ÁÁÁ­­­===ùùù JJJÅÅÅSSS...)))¾¾¾–––ttt^^^ˆˆˆ………DDD@@@ÒÒÒ¢¢¢$$$VVV²²²```iii888„„„cccvvvTTTòòòÄÄÄeeeUUU±±±ŠŠŠñññEEEÊÊÊ¿¿¿žžžFFFµµµ,,,¼¼¼MMMöööXXX:::|||___   ÂÂÂ555IIIîîîèèèHHH¹¹¹AAA>>>ŒŒŒœœœôôô‡‡‡444¨¨¨uuu´´´éééyyyppprrrZZZPPPdddëëë]]]jjjÕÕÕ©©©xxxLLLæææ®®®ŽŽŽíííQQQ°°°aaa¦¦¦lll˜˜˜YYY6=g× pHYs&r&r!+—î IDATxÚìÝMˆ”uÇq÷ÃC`‹›˜0®Zf’nDk ¡XfRbA…dӡŃÐ!ÃS/R‚ {PKzA$c(„ˆ"/½…½¸y("“ ¨‹Jî>ϼ?ϳóŸ•fÚ>ŸÓø<Ïîó°|efQ çÌð#kˆ5±€Xkˆ5±€X@¬ˆ5Ä€X@¬ˆ5Äb @¬ ÖÄb @¬ Ökb ± Ökb ±€Xkˆ5±€Xkˆ5Ä€X@¬ˆ5Ä€X@¬ ÖÄb @¬ ÖÄb ± Ökb ± Ökˆ5±€Xkˆ5±€X@¬ˆ5Ä€X@¬ˆ5Äb @¬ ÖÄb @¬ Ökb ± Ökb ± ÖüÄb @¬ ÖÄb @¬ Ökb ± Ökb ±€Xkˆ5±€Xƒ®Ž2¬ëÎóôeßPÿlÅ›7ïcã—+?YT»`m|jèJÜ {v…äÍ“m±ÿ¡q;qì®vb­êÔØ-ûfس;Ölb èéqÛ°3ÚkÑÀ×ZÎͰg]‹5Û†XzoÜæ?ù¶±E·v6h¹7Àžu/Ölb è±q{ý¥Q'±½ÚÁ Mr3ìY7cͶ!Ö€ž·âÛ†ÇÚž™áƒ6ÉͰg]5Û†Xjã¶q³=k»Æí¡‘ѱKßÍ©,ÚIƒ@ÏìYx¬Ù6Ä;ns»þ íÅÚõµ#ë&ƒöA gö,<Ölb ˜n±VØ;;jИ±fÛk@ø¸}5úÙåKíͼà‡WÎny¤î­&¯-¿}øî”+׿÷äãgËo=}ºoбVø->¶$gÐ2žÛ ˆµ,çOþ]¾ö‹«ÂO§N_`¬Ù6Ä6n‹V<¸&y[Æ3¯®?³`âà‘Âúcýã/^~)þ@ôê}¥Êõg5~¯Ç>^RýøtéЉäè§Ÿ«ÞÞÞ -K.ß‘1hÏ=ù͘n{öT|zEõÀ=uR( U¿øÞ3ʼn×ýçFj_=Éé¼é 5Û†XBbí@©þïÿ9¿ßkÉ¿F§&޾öBÝõkvϬ]ÿËcrÛÏS‰µ¡üAËznƒ Ö2bíþƒµ}(ÞÑk§ó¦/4Ölb ˆµeŦß'||qs¬½_9õáøÁ ƒ×Ÿ«¾;òü¦æßM\|v ±v]|l0} 3ŸÛ ˆµôXûé݆…8ÔkY§ó¦/4Ölb h?Ö®iýß_nšßk÷UßÙ¸uü;4_ÿù —7èé8ÖnO–qSê e?·Ak©±vCÓNõo-´u:oúcͶ!Ö€–qkRÛÃi§g÷¥××·—ݲ¼òÞŒ];+ÇËñÕÆ(½óëª#Ï%çæuk³Ž&W”6h9ÏmÐþ{ÖV¬Åžx±úòÏB[§s¦/0Ölb hܶÍMŽ,Ü=6:üAå3Ío¶ÄÚæÒñ(ú‡½û¹ª,àÞØâvÊÀ¶@÷‚/£¢•a!ÃȆ4)”1µ‘AôR’€DT’ u‘J¤–‚iXŽY ŠŒH!ÿ¨t8ã—K³ÇÀî{Ϲçžsßóžsß—ƒÑû~>°û<Ϲ÷þqí»i–¾2geývYÝ-k KIü} 4e-­¬íWg‡ãÝÍ,gE_÷ÊšlCYòÃmIøéå¥Ññ;Ã_¥ÍŠ—µ‘ó£õà–££'ܱ²ž^寽þ½ÖŽénYûn)%Ðòö-Дµ”²¶,z1ü`Ú¼f–³¢¯{eM¶¡¬ùá¶ œ¼r±žnsâeíÜhuëèØ÷­µ»(ö^äuõOg¿±þm}‹(kƒkor&-oß @YK)kÿŒ–‡›XÎŒ¾î”5Ù†²$ÂíÂËú‡«áWo>{ÂeÁÔÁxY›­^~9ö}5Û‚‰ÇÚ¯N|;ÌùÓO:Ù²öRô%É@ËÛ·@è]yÖdY»-Z¾½~¬¼åÌèëFY“m(k@2ÜÎN_ /Ÿ›úF0õ®xYÛ­>ÓÉ?ª®¾ÒøÞáôßt»¬ ñÔcÛc$-oß  wåYDz¶!­¬Õïxÿô²–¾œ}]*k² e h>Ü‚+;ÊócS·Sˆ—µmçN9þáç¾m~7«Kemñ°Šï<±rÚ¡© $-oß  ·—µ!iem}´<=­¬¥/gG_eM¶¡¬Ý ·ðû^–ƦS/ÆËÚ÷£ÕOu’XÂõ—¿Ù¸ò¹§»RÖ†wúƒ$-oß  w–µú»‹w§•µUÑò%ie-}9;úºö¥Ø² e h:Ü–u¼äâD0õÓxYÛ­ÞÚIbÝ_; eç‚{’KsOAYËÛ·@èemI4qvZY›œ]ÖÒ—³£¯¸²&ÛPÖ@¸%<ÕxÕH©t<˜úu¼¬}1Z½>¼¸1ë”­×î5²f“ž+¾¬åí[ ôβvW41°°²–}Å•5Ù†²Â-aAâ—_U×Sˆ—µÃÑ꿃‰[òN{å#{^8'lk,¾¬åí[ ô²²v[CÝ:Z.¬¬eG_qeM¶¡¬pK‹‘1[£™ðýÃÁ[ãeí¼ú3ËÑÇŸ,þIèu‡×®¾ª6˜ùpümÎÝ ×KžT åí;çdô´²vi°¼«!Š(kÙÑW\Y“m(k Üf…¿ýzwmbë¦`âÏ¥NÊÚ±`fsmüb¹¼èOw¼£ò°ß¹›Úïdµ1:ö`pìÚêàP0ØPHYËÛwÎÉèiemc°<=O…•µŒè+²¬É6”5nI ÃlKŸêpæp|cgeíoÁÌÀG‚ášð‹cfWo/›Y;6ü–š/Wo7M,¢¬åí;çdô´<›, sàåËZFôYÖdÊ·¤yµ;,~ÿçØÖÞ6¸<¾ÔYY+=Þ6dýs¥RË€ ƒÑ%í+ã&…ïù «xåÂ`xVKuØ24þkÀ£ãqÒ–³ïœ“ÐÓòì¼0F¬­¤ÎåãËE–µŒè+´¬É6”5nIcÓîF<äéÎËÚö¡µ»<~ø¡ð¾ÈåóªKS¢ïV;ö_½pg8øLøÄ;꯿å¤-gß9' ÇåÙ·jÿíÏr~, )kÑWdY“m(k Ülé˜ #>T꼬•–w|B˜n_J ™/µ†Ï«¿ÍY¾øä-{ß9' ÇåÙ‘d$Œ¼¡À²–}…–5Ù†²Â-©õõÆ\x¶þ}œie­å†Æ'D÷Þš{‡ùêü†´»¦€@ËÜwÎÉèqy6ñ#ñH½dN‘e-#ú -k² e „[ƒŸ<…sŽ×ïœZÖJ¥7%Þó{¹¾2uù¤DÆ :¾¯^òÎŒ¦ï, Ð2÷s2z^ž}¨ž ›®(ZÖ2¢¯Ð²&ÛPÖ@¸5jyæÌáÿþgµM‹¯¤—µÒüLJÔââë —&–ÎøÊÍQ”,›{u|iâþ1á%ÿã[‹´Œ}çœ €˜g­'†Ç,Z¸¯TtYë4ú .k² e è`Ý{ÿ:vóäµ+›~¸®Zýx¿ÿÜ›²thçÞ# ÷¼óÉ™V¦®™¼yãŽk×½%û.þdœæžøÂþÕ{ol9E¯ž}oU&Ë6”5”5e e @Y@Y@YPÖPÖ”5”5e e e @Y@YPÖPÖ”5”5”5e e @Y@YPÖPÖPÖ”5”5e e @Y@Y@YPÖPÖ”5”5e e e @Y@YPÖPÖ”5”5”5e e @Y@YPÖPÖPÖ”5þŸÜ\.—ÏŠ†ý+ÃòkÝxQ•ç]Ú…ãç­Î;bXûVÎøýµLû³‡'L8kúª­]~jþOÖ¿/”5z™]í•ho4Üß>|ð”—µ>+Ž:ËÚü¶ Ê¡1ví©ÍüdÊʹª¿J»8>_Ý3õT—µë—˧qY›¶¡s¬¥ Omê'SÖPÖÈ÷Éöë †ƒ™ƒ*£tçeºT>æ–Oç²vôŽ ¥ý—½{®¢<ã8>¤’—7"ÆÄ„2„4#¡¥rm€H,ÅpÁŠŠŠ€Ô PÊMT®JÈbQ¦EZ©Ü,Ø‚´…Ò‘‹\ËPD)##P*ôò>{9çlvs.r0~?ÿìû>»ï»gÇ3'üÜsÞMqÒÚˆË[¥+#¬€°†Ê–snú(õR{gyù‘Ù”jñÜl‹¯à k»­R+7Á”Ÿ.i’=aMŸVß ßš›°Ö_Nû›Pwm÷IÖ¶^è.šRù¦|©Þ°ö²ªp,a „5Tîoò=ÈýÙŠ¤{nŠi¥¬3øhûGfõÝ%ü]¾‚7¬ñ$ßtáH#·Û~Ù:äµË¶Û3ÆèÎZ\vø%Ktú2É—§"îŽåÉ’—Z.¬ÙO¯ KXa •³VÀxG"Õié>(ºî)­‘öÊëåijöܼ֯V@!ZXóMŽ4²Lâ'‘¯dª“e”ó„îëÖÔ*yÙw;ë©k´VFüîLG7­*aí§öñAc k ¬¡rÅíû?ãMë×Òˆ—›míŸdÙÏ›cZ‡ý…haÍ7Éž–Ê.·¡Ö.ZÛÓ¤¿2±½td³…µå¼3jXíRë jò’ï6”zIVtìÖBWf…5ûøÀ±„5ÖPŸ;aím«'÷»†Kãamß::ÌlSMpj,«5&·ñ¢…5ßtöb’U¦µ¦‰¾d*qò²³Jí“)wHRÚ£ç¬9)1ãH u´öi¦Æ›â½LkØMë[r°¤FpX ]YdX KXa UpÕ 7Z½e¦™¶hÖÂÏå6¾ÝTþ,>·]¼_¶­ƒ Qš:kyügVý[ËÚý)ï.ºG*ýÌ®ÿHcþ1«uÌÂZ­NÎz(ö&÷#«zÉZ¯rÉæ³‰Ú¾—ÖBWÖ‚ÆÖ@XCdN·rÉûvïKϲþ|q³p¿Q B”°æŸîOvs‡ROå„÷¼*ƒjNv»#Å(¬©3I¯7íˆS}4¢xQUÖÂWÖÆÖ@XCU·rÄy§÷ “+&¼ë®—×ÖÍ©½UP!JXóOÿ„ÕÏ2Íås܇¬uˆ·FÕêb÷»4MŠUXSû뇞)°4üȵ#%N-q„ª(¬…¯ÌÖüc k ¬¡*F[ã^·Ûjo‹Üaío}¤GšÖiÖBŽjÓ{û¤OØ{$tŒ·-¬ù§»0uNv‹c]e=ÉÿÝ;*±0usè½ÙqÁºÙ9í_î¨bÖ”ê=sÝ„ì’5»–E/­Z𸨱¼¦ªÂ°¾2oXó%¬€°„5a kÂÖ„5a kÂÖ„5 ¬kÂÖ„5 ¬k@X|sÃÚ"mÜVéaO.²6Ï›ƒó.÷Å3´žç/›¹ú]Ýko ¯½N¨;MºëCÝáÒÄû ¨†ZjWJΜU3¿ë”›™B»ÀuÍž¡—3U”ÏÁŠÏâý€¥½îY_ } Æ7 Sß)…ÁÛ‡¥¿Ðᄳ{RsØ7xÖžù«–$õZ°Ñ­44s´U*Á™înÞT§°6Yþ¾gŸˆ~PÜÜÄfWÖºi}0 üœÖKã®eXk“nºéOº;ÓLoÜFÞg@µk–’m×"¬y¦Šò9x¹a­v‰ÝÎëì;£½a­(Ùjf8Aq·ÖÎY:$ÛÖüMÂÕ?¬m²ÿÀo‰zPÿQZ_yXkÚGëóõø ­g^˰&ÿÄÑú/Nç tjó6¾aMç>t­Âš;U”ÏÁË kç“Csw°÷]ò†µý‰ZoŸ;Lë]ÖÞÓ%º°GД=WD¾Î‹™„5ª{X{ÏþŸõ AújÂÚp­§íèªuÁþkÖÆÊ?[ô«}—4[ò.ªmXËN2Fëc†e^MX ˜*Êç`•ÃÚðüü¡j_–Üò?øAJøãé oX+Òú±25@ëÄ2Ùû©Ö+ƒf¼0Ýù¶¦3rDdX{+!!aa €êÖârœ?û}eaí\ºÖÇ÷ô¬Ê¿x.'¬©W¤°B’aÇ5¦Õäñ¯Õâ9]^~ÄÿõOÎΚøú‹¿¦g»Q^È sÕ¸a­‹Ýlܪ…ü×ë/íšÿgïÌã«*®8)É0,–O¾<0$Ö$Mù°¯… ,e§ZjcX…HÀXƒ¢ ‹T¡Áʪ(’ŠÈ"*"‚€`AQ)ŠÒ*+"3wæn3!ïÓ,\ç÷GÞÜysç̰œÌw–3iiiÿ¬iªºŽ,ÞŠ ÖÚA뤂 ,5–—ÇRo3LÈUJ¿$ä˼Ⱦ¬š@ï,ÔÕ8Ú–¹®ˆÛ’¾6XMBXC¡P(*°`­7ûåžÐýø¼Ü`­{eªþ«Yl s¨,a서5,±ÅšxX3´íìÍiÍ+ ñL¯Qek†£—¯ÿ‚_°vݪ,?è—LX{˜%ú@âÔ½HRÕ@«èç”æòË|=½Méa]…/ÃëCý‘I«áá[„µrR~>þ P(ʰ¶ýrßc®»eV]ŸŒÔd©Imq½"amêúpߤú±f-…¹_¶¬³øè‚VâvýçlHˆïü<év?¥¡FvP¯¼ð„:ñ3RårazÙÕ¢»?80/¦EøÇÕø~ Ò™iBv|3¥Vöö%²LP¿£QÃgœX©ÂZUX)L/$…0‡]ר¢[íÝ}ÙOŽ:TŒ {k=ktVÒMiÍ+ ñL¯Qe k#à¯íHYÝîFÂÚðí-¹*—§°ûAû6H·÷Sa-ž%¸où^ß" ¶Ü«”® ä%ce­U4MOÓuy;œ§{S<¤u¥´ÞïÖÊG–-€ ( …ò¬ „ƒï?Ä¢—ÿ°ÖÏ82Ñø²x#Eî¥ôõ‰0ñgöÙÏ~6之š™»ÍD|}€­¦Î3GÌ=ï°6u¶8Ÿ/Öô†„ŠíX#k k¹`íeª>YTþ[½ {ko¨þÊ• OЄ†fɉ‰‰k{Î4þ˜OZ/Wœµ€è¶gz*KXCå╉QŠ»°¼²Rü¨Êå)Š5Åû©°î+‡gÁÒVöùû\š?=w]¬ñN/J£2`á άm-fO@8©<ó1k_u#°Vö_¥ÊòJ( …ò´nX{Ö¡Vr>ûß°j‚öðb?·­IlŠø3›G’erì[j+·Æ}´`ƒdGôþ_ÚÊ|&a­™Åïe+Z,ç©°²fŸS'ñŒ?67ßîºGkÂÞZ/¨½¼›É=Lú"†:nA€¿ª´ ³HÝöL¯Qek§àÿï#vXSÝk‘åêV‰U¹<…ÖTï§Â@Ök< <Ö6Qõ|ÎkÎ]|!ÇGi—Ôá”^#¤C ]¬½q„OªRóÖÖP( a-Pa-4ïŠG“â`íxÜ,–x*..EF£þû–5Q|Ž˜ÜÛ˜ŸóÙÚÚg‹°é¿9À’Ö±D³¬{6Bôé¨nÈj‰­A»áÍWOÕœ c¬Qú‡]—çÀçv(›h³‰½qÃ.X#9 SÙégù3œ «?ªÄ xµ›Î„½µž†5B:Â_DÁšb-ºí™^£J kIu8—ÅØaMu7¬½ÿ×ÏùS•ÛSØý  kï§ÂZ¢t©E2òî‹ð¢ÿ߈¸ûpÏÚ¦ânRÙHMèCXCXC¡P(„µ[Ö>›!,#M-ÖÜF(ì*Jê“a) † Q°ÔÜ™p£ªÄŸÁVnÎ!‡75æ‹g[åùþ¨)—Ö»®x»«Y§ç „$=#a ‚IÁíÝo±ÄXúXU~§ƒ5¾”gíë„ýFü–·"«-×™°µÖë°Ö‡=¨0XsY ¤n{¦×¨ÒÀšC?;¬©î†ÃÚ>Í X1U©žB ݯó~*¬ Öõk¨üQ–˜a3–ÀéêxëôèÐÔ|B†Ñì mùïñkk( …ºu`­> `ïWz†Ÿ°Ö½¯9¤³ÏßÁâYþåÅ1¹ ø3܈X2„%³y &“çûž¥¬˜×ÓX^G“ÞßaÄ-ƒfý¬=ʼûÙç X*›Ë ×ÁZZw>êlìi¬Û(‰œ»Þ®3ak­×aí{X_a°æ²HÝöL¯QekŪ–Ä(ÕݬMîúE_ÿªR<… k:ï§ÂZ+X­›³qÿ^}Kcÿ7mŸ“1âkÈ8èhÌAJŸ#¤ÇÎæ¾U£Ï:¾i…ç"¬!¬¡P(ê–µÝfa6¤îƒaÀt?aùŠ¥j~+­'{ýòë‚8þ¥øÍgOðT–1:ýõf Œ¶8NÌK%5ùÓ%8Ï1HÀš1égø¤¥¶ü IDATÙgªµò1Nk¼ »:{RyË[ŒÞt&l­õ6¬Á}Ma±kе@ê¶gz*Xkùoy;ˆÄ(ÕÝÔ“…÷³*ÅS¨°¦ó~*¬‘Ëv¡„DæLocøØ†ðÏ-ÙöÒ ”NéK–$E ûQý-(kk( …° °V~ùóqi2LýnpÃZ–Ö8Þ‘YªŽXˆ¼uN]ü1â©‘,yš§2†ÊÑJ­ó2ì"ààÃÎF½ü^—¢Ü>kÆ “¶€`ĸJm°Qv‡ÖH¸U‚Ÿè·–¡1ak­Ga "&˜Y Züž›ÌoÓ…QÚEHT-_k×mÏôUXKïxp)VÃÌ–¥ºÖ††øW•â)TXÓy? ¬‘wŒx¶ÙMÿî˜zP«WJk“ȧ)Û)žÒúö²à-éq„5„5 …BÝ2°¶Í¹û'ìAÖ.¹Þ¦µ<ÕN°Sk¤@~1Îþ@¸ÌªR=… k:ï§…5!ˆ'9Ú‘«yµï|Á#ûO!äMóz6CAÑ–ëcZA}«{#¬!¬¡P(ÂZàÂÚ{nXËL‚ìÉ&ýÃX{Ývj=O üÞ‘®Øz?÷.ìRäÅ ìhûöö¼j lųZX›m‰²J†5Hÿ“\ׄ­µÞ‡5JÿZ°&¬Õ:(ÝöL¯Q¥†5Â#<†T`Íånêñ˰“actªR=… k:劉µCð##Á¸urÌwÕ:åDèܹŸÒº!„, t,!·¹aï p’Åø­kykk( …°°°’ '4B…à2ú!äe‰†bêVÀÚlóh™ kpv¦Û† Z??FyF3HZÔ6÷ÊHE^3ƒŽÄ‰‹¤fÈC!óD*¬¥˜'íø©XûÔlúæ7ŒÐ™°µÖ£°fܵ»ú >ð|¾œaMµ¶WÚé(ÝöL¯Q¥‡5Â﹞ò¾£4á»&‚ÛàGUª§°ü „5÷Saíñ3[p¬ß“OH.´9 9f€‘fó+b‡µ3ö ÷ó[´+ótÚÓ4 …B!¬$¬_ö÷ɧ…f igB5~+‡µNpÅY$‰ÐÁZ_ˆ”Ÿ¾f±azXe'þ$Á\r0Käǘw¹Á˜gO5û‹ì˜5fxJÖŽAÀÌ.Z2¬=E~„=DpÒ%‰›Ö8úÂé™ÌïÊ9t¿iíFÂZùtÛ3½F•¬ ¸ßº(R`”ÆÝ—b“‚lå¾}Uª§°ü „5÷Sam9Ü}CÈ`©Õ€PcÇ•,ÓÞ|ƒy«9p¼ÎØ9Þµ RÌN…Ÿ¬L jðžuCÖÖP( a-`aíAXA£— Ax=~›OÏ5µw†™°ÆcFÏzã¿:X#?òC+>¸Äé .üùŒ¥y}¸Ô~s¦ÒñsÑf˜î`kÓjˆ¶ýâÜœ 0ÔâG9TX#Wá»Å©Ó6P?`- b÷×y{ù¸£Pv¤ÎÄMkNÜ ¯(X3­ÝhX+ûn{¦×¨2€52‡é¿Û¾æ¥ºkœ½b•\•ê),?hn¶Ôx?ÖѝÍkß>†@lh¤3S¯ 3sø"àPJÛBÂ0ò“+À!U»‹'ÆGÌ‚°†°†B¡Pk kÉ>çu¬ÕdÌòÃä µµ„µOŒçZX#£mÓ®7¬ÁNÇš¨¼ÊVn)¿çze´¼1[èÇ.·>zXû{÷[W]p\Ùo=þØ•Á4e enl5€ˆKØâÈxì!°À‘ÇŒØ$d èŠc ñ ›Aƒ„‡2Dƒ‰Ç€ ƒ@Â(D*ñ9²d‚Aïm{Ý=MwÈnïíÝç’Ýs—Þž_OO~ß¶÷ܱ×°fʰ±–¬šQú€SŸb4ÅZþ¯´&O©X+<[ÍcmïvÝì5{"Ö’ÿä¿N?]Xk•§›B¬uÖÿ;öá>T噢t,½2®òìWkÉÒÒcîê»cÌ”Ò=ÛŠÿÃ7b<½¿ÚÖæ>¡Ù—æjs—þ÷þåoÞ½-kb @¬5l¬õ­¶—¶wæ4|XþopÞmî_ <9½kM+ /J‹µd[!ïš/K*b­;wûé¾[^).3~øþªXà|³p­“ͯåO‰µä3'÷?èäéûkI÷M…·&˜Û”ú£(ÖÞÎÿdýš‘úÍÚ.ÏÖH»]7{͉µ÷n¯+fTÅé¦ký¿ ûýðªâLQ:–]Ƥâì—k}—&Éëºx`ì„5÷,Y\|üÂ܉kSÿÍÔ7ÅÎ{ý â›‘Ü÷f"ÖÄ€XkÜX˯;º®.»ã‰üàœü­GŸ¼¾ùòãHN-ÄZ²óº›¦ýÎüÖôXKvÎ{便åï|yzRk­¹ z|àö_þ¹fÉÌk~¾©ÿ]Ö’_æ·uð§5ëµ£g^:g¿óOãäÓÒc-é¸ë©®sÖw$»kÉË¿vyóñ“~û©!žbôÄÚ˜7ò_£/ŒP¬íúl´Ûu³×ì‘XK¶ç¿j_?mPFírº)ÆZkþO¾OoöCUœ)JçÁòkNîzöK‹µäß\3mùéWî(.XüÚç§¹rþY¥Çã+…Û>1eÚåï¥ì÷7>õiKÿÃ÷&bM¬ˆµ޵scnýЖ>ô|Œ×tX Í“òÖüéÔŸªkC=[#ívÝì5+å}ÖªM¬‰5±&Ö²ÚqHŒ¥ŽüyZŒûY ƒ<9šŸ­^>‘ºÙkÄšXkˆµZú{ùº¸Üy1Î8ߺ [Hü¯c4?[½|"u³×4v¬ý±§gÛ=ݪžžž.±&ÖÄšXËê¬Ãc¼;mà…ÂËÑØ˜8óð#ÏüèÎÑýlõò‰ÔÍ^ÓØ±‡úIÕž·¯‹—Š5±&Ö>‘Þ?—r÷Ù1:Ö²kbM¬ Öjäå›âä‹*ï~>Æ{¬ ±&ÖÄb kbM¬€X@¬ÀÞaŃ+»šïûÉU >ѰXkb ªá¡C^¢÷ÂÍŸ`X¬ˆ5±Õðj®Ã&¿ðÊѹ.mË<,ÖÄšX€jx3Wa_½-In™ãµ‡Å€XkP ­gÆxDƒØãyنŀXkPçÆ8ñ–Ûĸ6Û°Xkb ªâ£\¸==Ƹ*Ó°Xkb ªâú/+nLŠñØLÃb @¬‰5¨†Õ1Æ­Å­ãbüb–a± ÖÄTņ\+nõÆ8)˰Xkb ªâÃ\-nÝcW–a± ÖÄTÅ–gÚŠM†9íìt…pû8êšX€zó³—”¶þ›«±}2 —wHL·—˜hÄd±4Æ/•¶ÆçÚêÙ ÃåΘ,Ök°‡ÜUñ«³«3 rðøtx Œë®H’›ÛÌ{!±õfKŒÚŠ­†wËgCØÏK÷žëm¹ã„–O2¸ÀˆX€ZË_îñåâÖý1.Ï2,Öh0‡pî3!Ì3ˆ5±µÖž«±cŠ[½1ž™eX¬ÑXº—…÷ÛÒ6ßm.kb jlu®Æ^,nãß² ‹5ˬƇð½Üæ±&Ö Ö‹ñ­âƵ1›iX¬ÑPÚ¿öá-!<·iüsXkPkOÇøFáöô㉙†Å¶\m ¡=·¤±&Ö Ö6Å8sÅÀíb<´)Ó°X£ÑV«;ZÂE‰ZC¬‰5¨½©ßñû ún>ÓcO¶a±FíVÛMÄbM¬@=È_ÿ[ërYvUWŒk®Ó¿hΜ9· =,Öh@ºËÛ“¼×bM¬@­ÍÎåØÄŽøAîŸW Ü×’ÛhzX¬Ñxºßï¼­tØ~zî\—ïG¬‰5¨µ5Ç~kÛ“ÊXKk4ž¥!”ý4b\‹Ì bM¬@­­è]¹üÀ)ÌÛ'I‹µ”a±FÃ9gc¸rjé°m]Z6™ÄšX€†&Ö N ጾvÂ1}ÿÓ0+ˆ5±b j¬{˹}Çë{[úkíÎm^´†Xk Ö ^VªýoŠÝ¿®±&Ö@¬A,TËbM­!ÖĈ5¨—uê¸ò‹BšÄšX±5´á¹âñºðãõ¥÷~oß`nkb ÄÔÊ9Ë~ývÚ±Û1¿óv³ƒXk Ö F~ÂŽ´c÷Ù–ðj»éA¬‰5kP†°>ýàÝ»æ±&Ö@¬AM, ›w¤¼«—…Eæ±&Ö@¬AMœ½ï‰C½í뷚ĚX±µ_¤.8ê᱃W— ÖĈ5¨ùu]«ÄbM¬€Xƒ:[¢¶…О¨5ÄÚèµA„‰5Aûð±æêýˆµÑk¢k4€Yoµ:^wvnœ0øž·ùó„Xkˆ5±#ú{µÙá_ƒØó_ßå¾.\w‡™B¬y͈5A§„pÁpGð¬0Sˆ5±Ðç )wšÄŒ€—Â_ßî¾wvè5Sˆ5±×11^hk0îYtðð‡pÛï.0Sˆ5±· Æef±u´<5Sønkb ±µ]ž¶w·Š5|7ˆ5€!ÜO1 ˆ5¨ÉêtBm‰Z÷ƒXH·Ï:s€XƒÚ¬N+ß[¬!ÖĈ5AÛ;·ï~¬mí|ÌŒ!ÖĈ5¨¾î¹a~Êñ:&„KRî^:ï6gˆ5±b ªnß^L9^[ñí¦”»ïá(s†Xk Ö ê. ó›vÿ0ní ›ÛMbM¬{½_ZmkP]‹^‘å8þJÏyæ ±&Ö€½ÞÔ%q¾Y@¬A½­L;%İ×ó¦Øˆ5k ÖĈ5,LË4-TkøžkC-Žÿ?{g\UyÆa[åþBI£ñ —(†b ¡ÄFYĪQ'¸`ŒÊâŠÊ¢-–‰£VE\@µ.”,"Ö´`g¤•‡:.èDQÑZ©2.ÓÖö.'w9÷æÜ=Iî¹÷yþÉÇY¾9óÍû}¼Ï9ç=W2 €¬tIbÚ½¹ñRl ˜È@T6~Ad  ã8wÆãmÅk?Šæîg0v€¬!kÈ@GQ¿Í˜òmdíl£è^F5d Yè š ãªo#kÝŠŒqüØ kȲÐ1<^dœØf¼vß íšµw £žñd Y@Ö:„Áå׿ÞvÀN8µí}×´4=Àø²†¬@.sêëŒ k™™”2zÀ¼@Ö §øŒAd 3“R†˜Èä0ð£Ø€¬dlNÊøY€f<²È@榤Œ 035È]‘Æ0 €¬tyÍÝlãµß3ó`{€ïó­|¾µ –µîÊÇW2 CÖÀƒüÅ0²×n6¿Áf¦a|Æ8²–¹²æèXj/€„!kà=h¬¶Ÿ¼v?Šæ«YÆÅ|¿5d 5d ÀMvÆM=¾›¬õ=œc$YCÖYCÖ\¤nHSšW˜ó £¿ýãËw¯e$YCÖYCÖ:7ݹ½_úŒYCÖYCÖ20ͪAùìàk“>:¦’ð`v kéÙxÌ} ²†¬ kÁ7§ËäÕ§ f²†R¿¶1 ȲÉÙh¶ŒÈ[£Ðàä˜È€=Ã¥ëd Yp™Áå7^ãVTwKV|¾ç>%p[CÖ5d YCÖ:›s £ÎAÀ^úƒƒ~f½²aL>–…YÄ ²†¬Ø‘?T§0 Ȳà.Õ3ŒN¯_ÍZ]‘þ¨ñÍÆ¬½Þ“+ ­²æÿ‚HAÖ5;fN¬a5d À]–Æ›â5ýb‡©3Œs½?&“”Ä‹D ²†¬²†¬t*=ùö÷d­ß”Æ]ž’“’]Mï'T5d 5d SÑ; ãê\ù ds YS ‘ AÖYCÖ20_ÞÔ=W>ß¿%•¬*Ld 5d ÀÛ™¨ç‡dQ*Y;œPaŠd»¬.•”vy±F‡GÛ÷¬5ÔÛOoI<¢bŸŽkm×.k…ÀÂÛï ýèzúίðÚ%ÿü±þ±›6´qÝñ«MÒerl8I¨wÐ[üÉUK”Ï}ùìö¬ˆQ¦­ÙWâ/»À¨Žü_ÏxÃ?*Cíá :YCÖ€D4kmí¥T²v2±ÂÉrY»ã´` 7tuætÿ…±ÔäÌãÌéw^ÏÄä%š>?ÒU<'•È[:GZq5™2@ã½Å. .!Ë›oŽNõ4,nµIZ âdmXCCCUÚÞâO® ÊÕÊqyO•md©Ã1vU³¥9Ÿ¯Zóû`nRÞÒk}]ž×§X¡º«kh(GÖ5ȦÆp÷CûŸ†±ÕÓÃr}*YÛ@¸ kY.k uAÖuiæT9V±ÔähiAè¦sþéâØðWMŸÎ&õþ-=Yz…LYk—긫Bï$¾›òµ‚øÕ&iŠ“µcôf]݆|îŠ}ÒeWÄ(/Iÿί€MÞzÅ`ªF¿Úð~± –…}‘5d ²ƒ¿n3ötÄ“µ&£èOËÀdW›\M¼ kÙ-kuÁ4k‰ty&N¥CüŠ¥&ë¥a›#Ó$]Ø¿õ =*.hMŸI‘×§•©,‡Þ5³–Ѹ†¥<&}ý`§`sU®÷ŸT DUd»¦p@;#mñùò{k¥¹aû)ë‘5d ²ˆùt¯=Û!v=þ³z‰§æ¤b««Ý¹žpAÖ²[Ö*ŽÕ€RßSR¯Ö-Åú¨tÛ°Éë6†î𞸨Ä?tAó²È®2ÍòÕµ¸`êÃËÍÊŒeKÞé_ñêþÍÑ{ÂéÎH¦OÐAž9,ššœ,}a¾åXºN+k£éÓµÒ¼Hë.äçJ>l-£q KyŒƒúÁÎÀæª\ï?©ˆªÈìæéy³y™´Ûú`+aµ±.Pɲf×[›'·½ålEŒòε8Çl +ÛDË1ȲÙB?çñÚß0·ãMHÌ,®XN° kY.k?”Ž ÿ§¿)NÖþ ÿm>_ý¯Zo[\Ùª^[Í[›jBv­0¸ðéÈÉiÏH•š 2ÜKM^“¶›{–IÓ#­T°ÖMŸÆÈ|éê\é'¹’_ZËh\ÃRã ~°3°»*×ûOª¢*2»ÙÝúŸïMéËÞÄÕÆº@%Ëš]omœÿ')ÏÙŠ˜Š^Ò³ágí냋î—ãV]…¬!kÃIhûdÍóŸï?X˜àj,Ì“l—µ`ÊP~B¸/*k ¥äÛ>U:¢ñ±ƒÿôЍ×ÊA9£q”"¯*VUàë‰Fÿ]pXø]œtg¤âÞž‘ûÌfjò„43öd­wä¿n÷ÅÒ§¾³¥'fN«Û_ ©{s%¿L,£q KyŒ£úÁŽÇöª\ï?¹ÈU‘5{ÎÎàh½èây™<™vHï™Íó¥Q–)qµ±.Pɲf×[Ê“Kï[~–t(ßÙŠ˜ŠEá/™|*ÕÔ/Eò §z"kÈälúÁê¢ö}8ÒãcÓRsµ©«ˆæI¶ËZÏÑZz?q¿4&*k*¾¬vø‘¾•Ò+÷„6µTÖ7¬^:>üÎilEè«ÿæ;?«ÍÓÓžÑ&±Ô¤1’.‡X%ú;üV½›Ÿ>Í<œ¥›Ö披%–Ѹ†¥<ÆQý`ÇcU®÷ŸT ä…ªÈòÿ+sÃõwn Æ]âîUÈR;–´ÚX¨dY³ë-ÕÉÝÂÕ‘Cìß+¶•µ§¥›kB¾'?T`.…Ó«5d r6­­é‘K²vX}Ÿ‘•oØ'{‰&JÖËÚ—ÒÐß Õ»4*kŸ‡K¤•µÑѳ"ê5.²aŽTv´Èó¸ªÞÓ÷;:ÃAjR)ývZ¸U;]jéøPÕ~\úT¿8ò9ˆë2úþ½›šËh\ÃRã¤~°°¿*×ûOªòBUä)­“ï»÷>‰[Ww³eòtzTŠÞæ¨Å û’W›t²f×[ª“÷F>]sâ·–µí³¥)Á¿Ïiô ½ô~Íæ­%Ò!d YƒlamËûàë›ê=>D;š?Ù±ôÊ ²–²6ªµ@,Øø[TÖ"Iàßc_¹Û¯»"êeÖF|,íòù–JÏÆßN†“ÔdtBè™AÍ–Ž…ô- ¾øô©6˜lŸ5¢×ÄEÒ왹!k–2÷´(±<ÆIý`gÈšíU¹Þ‘Z /TEf–¬íøñ./ÉÚ‹Ruk{²~¿+iµI/k6½¥<¹ïÿÙ;÷à*ª3€+u?•˜rs¥„yC /…)L‰E¬ Œòˆ¦>(X¤PpPËC%€#¥ÃËX C™"EDj}·¾P* ÚvV;c;ØæîÝ›ìÞ½›û$¹»ùýþÚ{ïîf9ûíáûížïìÒŽÕfˆWÖÖLiXxX‚áªi%}DŽ#kÈx„£J ;“ñÝa’šI+²æYê“ÙÁ¥Ê®ÚIŸà›â«V›œ ¨×`ãsÈ¾Ú ¡‡Èôi#&‡ÖоE,©Éá®"ù{:¹H6Ý(c5mr+™›aIŸöˆœÖÇTfù¥Ï¯šƒ«…—ѤnÇÖò˜êåŸÛàQ¥|ÿ&‚µ@n¨ŠL+Y³½g-Íeí-‘Ʂµ2ýbïm¢ËšóÞظê§"Û’µkï¯í¬ó‚®´7î–=-² YCÖÀ PjG¤°<Õÿ‚¬í©ðùJ=H;²æYûZdÊ B‘œ†¬ï j-WÔ­ø­Èê€z…^'Tœ—ähN Áë¾à'wźE,©IùÔ`â8û¬'·©OJÑFÍœ>mYg¬º58ÚÒëD.£Iayaƒõƒ‡ãQ™ýëµ@n¨Š¬•µ§³RƒIÖÜÃÍ"ŸZ¾èã8/}Zðvh[•™­·‰AÖœ÷ÖPìöÙ“ˆ¬ ¸Bä~úâ@‘ÓÆ·§|2YCÖÀT«Êb[L~±ëe½—öýíàyIø-“Ôõ´3 k®µ¾‹-ïªxÈ5ã=«cåÞº5ÿ RP¯1aêuèÙ`}{¶çĸE,©ÉèÂKЦÎÝ‘W› Ý¡Ý.rfIŸ²Eî4Ö,ð×Ù —‰\Fsæµ(Bý §e-T ¤¹ *ò{Io§÷%…:‘)õ?Ø{›dÍqo Æî]µW²6¿¶ÇÝ“W÷¸,ô}'Y¬!kà ²T¹-$,ªï^ß|Ñ6wÿ5qFx©*£Ys…¬•[Ó«9ÅYlzNv©Èë‘Õ냯êw{>Žy‹ØS“Î{Ïÿ³d{½D¤nXGÉô¾«9”Ñ4‚Ùê=-kuµ@n¨ŠDÖ’à5‘Ðô¥–™sì½M ²æ¸·†c×/Ýâ—µG}¦Z·i¦)Z§Gœ#kÈx€õ¶ˆìcîšò«¬¿~—­&Çâëϧ™Ys…¬½bº1[ÜZä}‹¬ýÌT¶IŸÀÜI½†æèÅM±o[jÒ2p›;¢¬Õ•ˆ<¨jó8Ne4 Eáõƒž–µúZ 7TE¦Õ0Ȭ#»³Ü4 rŸH¥±X&Á;!IÈšãÞìW8xBhl³˜"Ä*kµÝ¨ÿ5³s†^UŸQ$×!kÈx5ÿ¼Ýgí›ÆæZ¬ÅùRlOLßÐv¡ã°¤e [dÍ ²V|§”Áë"=Î2ËÚ,ÑgµP)òßêµLº?üüµ>‰^ô-bHM®É‘Á¥Í=äó:!W)r£ñgfŠd{ÝÕËhE‹,õƒ^–5s-ª"‘µdø‘Èô…™ò@Ä5â¨Y‹º·ú?iU¡/õ] ²#NY{©ÖÕÊÍ_Ü!²´îÊ‘5d <š~n³4ïmþ}²R¹ÈpµxRÖÞùÜúÿx³¬õ}Sd›ž½>—#ù«"¨×D‘õrçH»ÜX¶Ð&WU‹’š\&’¥®\&¾}‘Ò§â—EÞÓÿ̈v’y–×eÍqdV£jQç†ç®s½¬YjÜP‰¬%CiŽ´ ô¿™kÔ›ÝPUUš°¬EÛ›iãu"ojƒ‹_y$/¶1´·‚N¦µÐ µà°Ê£"³û"kȸŸqÏÛ3ó{Øemƒy….³®?ÊG]I{²–æ²vÀ'ùýLŸ«EîÏ0ÉšöÌM" —ÿpô3Ÿ>G^¸z=>Xdñø'vT.1ÆŠEÝB Ò)JjRêߨ×ʦå‹LŒœ>•‰,Û½eø_|áÉ ²v¦´¨eÝó=OÊšµÈ U‘Ï‹ÿTúí¦Ÿ¬”óO‘>‡ôZ,²NJÿŒH»„e-ÚÞL—Ü*2fæÍ'ŠÜ¤kV =bhoµ~ÞµMú­…Zåk÷÷çv´)Z­!kȸžžËÕ¿lá82Ò$N¹IGyµ¿†d-½eí˜È•æÏ§º‹¼d–5ípèeSÝ‚u6õúekcß¶ŒØ¶ˆ!5ѲŒÑÙþÝN“Ì1þLQ™ç]͹ŒæÌkQxý ge-¬È U‘7¼ûó4:š•Õ·Y>?#½¯ªâWŒ.dP–¼¬EÙ›yã ¡.rCp¦‘8dm™%SÓ_Ð÷´qǽÓ! YCÖÀý,Uj„-U$Yû!é(ï¯ÔHZµô–µ "_Z¾¸Tä ‹¬iÃ7¸{ë•iö ´‚™ƒVøoêxòP¬[Ä"kZÉ´Ž™™ß[í\Erήu+üK®+ÌÕš^³æ\?è-Y ¯jfU‘É“ÑMv»í˜—>ÛÚßíÞZ d-ÊÞ,Ÿ³kÐT§Ë†WhqÊZžØeMÓo[V4õŽ^5d YpLî·…ã[‘díú¤£ü¾­ê=ir@ÖÒ|êþ&á³ ä¶n‘5çúAOÉš­¨™UE&O?‘iÍï_Ý>5c’SÚ#"kȸšêìÍöplIÖÆ'沯§ÅYCÖìô]´€ÜÖ5²æX?è)Y³×5¯ªHd­)e-µ="²†¬«é²7B8þ8’¬IAœŸÛ…d Y³sDªÉm]#kŽõƒž’µµ@ͪ*2yŠý²YK‡YCÖÀ{©çÌH²¶Ï´ÂŸgž¸;Á4YCÖÂ9ì›’GnëYsªô’¬E¬jžU‘‰Ç÷š£¬ÝºeË–‚ôéK¶lެ!kà¹Ì³gW+ú´BR‰æ“´9 kÈš÷‹ÉlÀ ²`BúôˆÏ넬!kà±Ì³Ã¯í²ö¶y…ÎJõDÖ€KY€TËZ AÖ5p3Ç/¯pˆÇr›«u¿0E²öÝ‘þ´< kȤH²iËЯT™C´: ?Î|¨©¹8éW ÿKC§C[¢e´Ö„Ó…}k&Ÿ¡”5Êù®2;¼àêÚÔ!/ ²v!‡•PÖ구 ‡¯¡üäÅR¡npÔXÊä ýëØu#HLYd6P—H½0êzÐZx³´õ’M„Û ýýí¥éU?öw»Ý™+Ve{—¾|¹EH—‰œ?„¬!·ÓCwÐ9äÃ¦È N"õ y±1P8# ×Wœ‘†Ù~µØx(R¨)kö!á5N¦ ûÖL>”5Êá*ótÉÚ{áÿ»j#‡•PÖ구­v+«/f u?æe£s€²˜õâ;äΆ¬uªµš2`§VáÅm½dá6_fkSáAwéa=p–(¤ËDËŸ‰BÖÛia;°•µ ä ‘gŸÿ"‘º»= #µâ»Àœ š©ÀZ­x%°2R¨!kö!Bƒé"ÂL>”5Êá"ó´ÙÚšY!Ÿž™‹9¬„²všdí›'Úy»Îh¾K}æÅ”üý™†÷“ËŸßóVA§÷¯¼Pnŵ—¼¾/½kÅÍ·äô©lÞÀ¸O5vYJN÷UãµÆ²åýõýÇÝYóž+¤c?ðŒ²w«>6˜âòde@Ö´œµltöŒk=)kéëc<žŒ•·,_4ÈúXÄþ ÈjÒêÊf†¬ý¼§Õ nUKƒ‡£g’¾^²Œp›Å¹È=Ütªä^s³Ý1sžÝ¦n“•m‰š@#¤ËDÉŸ‰BÖÛiá;(4ó6åOžãf\e̓sq(‘úûÐ[+¾<<û=ñ­xðD¤PCÖìC„ÓE„:˜|(k”5’l(¼ žÏÿvv×?äjËp` eíôÈÚçµ?»®è²øÅŸýφyj;Å6²¶¡öÚQ«Ûû>©m¸e.k—yÕ-çN Ÿ²¶Åó«>(/:Ú8"l4eí!5˵´Íö¶jãÿÉ·<¡²ÖuÈ )k²%6ÑEx_-MAV¾^²Œp™’y(ºB)ÜïEÖ.–߮Պ‚í]¼¨lÒe¢äÏÄ!kÈí´@a÷§c¤qó.89ˆDd0:‘úû˜þã!Ïdà]›K$À CuY³jL‘ûmò¡¬QÖH"p–ttZüžþ×I×8<¼gõ/ªLÚ¶ãJ(k§GÖÞ˜ܱ­¦_ r¯Weíf = <#:½ºl:Y„RkY[7i‡O•}++RV3esÙîÚWï|En!m±*V=s±äêça~Çà> Ó~/¦[äÉ6Êöük°¬íóùöTßP.÷nÊ{¿Ö" ¸ÏêX„þY ‰²T7eí yéº\ IÆ=ÆzÉ*ÂmžjÔÒ!` {íþÚ‡ÙIR ­ò(¤ËDÉŸ‰BÖÛibZ’qö/…÷ÏÆ³ ä :¡C]}–'ð×sY» ¸B¿bNca,n‹ªËš}ˆPã`ºˆØ·¨“e²F€^•>qõ»*Íz¸zþ—R¯p|0_:¼ìð¡2Ž*¡¬6Y[ H)ÚZ„”½Yƒ÷ŤAgfxþ¨ÝÖ£\G±’µõ/íÈrÑYyì Üú¨Rx: s‡Ä æ/f 3ÕÅÊřˇZõôTàöÜñ.ã’,d £¶Ê»•ÛfÇ”ß( TZ‹Ð?Ûiϵjs1_\X—ŽÄÛ~s½dá6þrôÔŠM^ëçâo>å=WÞ\+æ2…t™(ù31AÈr;-PØÁgÀxãIprP]p –ü¤×…¤ü¤>3ÎÇéuØrÅ!‡ ËÉÞ²Œùh7-b¨.kö!Bƒé"RߢO>”5ÊIºHÒ7Ï× S]µµ{%é#Ž¡¬Å¬¡xÍü\¬Ò®ª¯PïOɲ¶(ð¼¿vóE^ãû¬eMv uºXW>C‘€«žIÆÕâKT±ê¦n˜ 4 íÌ´wŠäN¤”XwuM¹ÚÉìã ²öQàù~¹VýŒY˜ku,áýs kòA¿ÔP½Ûð>«®B"-úzÉ"Âmd£8+Æg‚|Ä{<é2‘ógbƒ5ävZ °Ç}xÒȉ Iª Ž  ŽdíZ̨íK†}Ÿ”H+ñ@½œŽ»­Bš”'"‡ê²f"Ô8˜."õ-úäCY£¬‘`­´ÖÕk.þSl•bžÿ„²¿²ö P¨UîÖ«²ÖC¿¥ÿrúÙÖ²&+Ñ Á_U< ,ÖŠ»“q‡*VŒ{¡×•æLæõ‘÷ió ¬íc—e©ý,½/#LÖvžh(V%|~‹c ïŸYó 6§¨äJyÏÉÊú( ]- «áWÏߎ¿ÉjöØxÞ¿Âv$#DÖ2Õêóí~Ùæ€y ÇÞ?'²vSý×ê…°¼Fy<{ÛãfÈz)<Â}Óú®R<÷ÕÆî7Ÿß£pð¦ßc‘.ã(·'v¨YC1L Tw Q˜Š0%QÖjS€‡£çµybÇ^­€Á¥ÉŠê²f_Äâ¤Ý…}mN:Êe¤a€ÙïÛGº¡BYó§¬M‹œ#²¬iƒ[´Å4½T»yÖÖ4T¥¢ [î7ʰ)Rñ@¡,V½­eíq`¨’ô2(»­ ¹ œä ¨?7Gd­·µ¬™÷ÅÐ>G²&î¨ìY<ê®A%áÐl¶£ 4ÆÇ•ð€w1¬;¯xàÒAM€—Ý®½«rD6——Mé2r{¼CÏò,-P߀ÊkˆŒãbJJÍ:6ÕòH|8p{ôŽq3ãÛ¿wÛú%-ªËš}«w’u¶µ9ê|(k”5Âø’²Fx1ÕjY{0„µÅmÑS\å  GGEuY³/bzÇAwa[›£Î‡²FY#þæoÙÒÙ€< IgøyÊšeí*`æ$uñ9 a¬¬‰LIµ4S•µEÈW˾EÖf!÷HÄùîb9”Ad¶ß$’µgQŸª‹Ûå3þ‡§ŒFÀë‘A÷o†K&“5Ó¾Ûç@Ö>ÍA…æ8[FãíK¸Æo>ÑÍv÷d7»,Òe’äöxGlÖð"-а!vú¤–ÉA”µZ$k¢) >Y}y¾>@‘Æñ°«­tVT—µEŒï8é.ìksÐùPÖ(kÄßt’Ü¿Ú;ŽVKñó"”5Êšüì`…2¸ÇÊ|åÁ¸¨¬É6*¿}ت¬½d+†7U•µCÀ å±²Ÿµ@ƒÓá5VÕJ<üfúQ"Y˘“·;Gä1ÛǵªsZO¶~\uxùq'²fÚcûÄ¿ N,kò,õä¿g!Te/Ù—p‘1÷E&?p™¶¸Þ"]&qnwÄe ÅàZZ i§CQ/Kø¼eÍ‚~¨P|b–Ôÿýã]Úþ@aáDùïœ&ƻfY³­ÍüŽ©»0wBöµ9è|(k”5âoºIû=xX ývæõ©'æçE(k~”µËñJ“Î7nZ|,beMLïì\}ÿ—P N¼< Þzßöè¨ÈÚ‘™À²Nm¬ÕÛº]ر~jË«@è¼H$k¢0\y«“‡¾ ûù•áŠ_̈‹­•1÷‡îüÉ=òÂ:áHÖŒûbj_¯ðûIdmb[„Šæ>3ò!àu¼d[½g€NÚb›b¼ï^Å«ç-¸)zkd“EºLÂÜïˆÏŠÁ­´@ó~#oþµÿ¡]Šdí}üãBWé¿£k°bñÑ@‡Cô_ìPîþ·È·=¢sO^kUÔ,k¶µ™ß1u}mÉ;Êeø›}+<i©$Mt¿Ö~{òó"”5?ÊšØ[ óB ÛÄËš1Y}gÃÇÀSò •êÿ9:«Œ\5C_·Zj&´Ô^¸^M±—5±gVtñ%¢¤¡éÊ×"ñg+í™À¤²fÚcûÈš¨W¬®’y·°Ž—lK¸Æ8à°~ÆÄ_x±@dXˆÛæé2‰r{¼Ã5ä~Z a2o#ôesrP*¸eqÍN¨‹—µg†–×úX<ãyí]£Î¢ Ѭ¸Ã×̪¨…¬ÙÕf±²±»°è„ìkKÞùPÖ(k$ cËÖ’TèM”JeͲ&ÚœÿªEƒóOj‹‘5qº[ϲ²Ù[2¾Ôãöªï¦æN-Ú#4Y¯<·³{ÛvYk×èkllÜqAîŒ ¿ÔrÅÈš¸ì/ó:ä¶h>@Ö¬ŒÑ»K Í:ØYZ55¿l×àýzÄ”\ÖŒûblŸYuGfåçg}þˆ°“5»î1;"Mcæm¾x¦KÔ[ò*€AÂ"]&yþŒû³†\O 4¥% yÔšÐ$sÉTæ¬oÑpFÛë×n–iBÔfY3µ5›Ú,W6t–}mÉ:Êe-­¹íì›g,ZU´eoz…–žÉmPÖÄ%ý›œóxßÓ¬M¯î Âñ^,'+[€Ýy.V¼˜"?nš1˜/rSºŒ}ÂŽg˜³†\N 4o@ˆƒ9˜/(käBhäβ®vB”5ÊZ³÷Pwý‡–MíÓ*´<7vm}Ê¡¬QÖÄ©f'‡¨K¥3±¤v|!çM­D;Ã.Õà䛃šŮ޿«ûÐû¹óÿ ´S³×Lù9¶ ;žaÎr9-Ð"-ILÞ¦¬‘Èš»e²–¾¬Ÿ{_üD/ÿµ°ª¼ŽG'ìG=ª¸ôÔ[<³e-8ŒnTÂõ6/F¼8ïau0¤òËõë§É^w+~ZO*Üõ´ú‚)ÅÆ6aÇ3,²†ÜM ´Ø€üdäŸ(k$²æn'DY£¬¥-oeÅ?Å<ÏwBö•¾ Ú•ð©Û^ž[„²6î²ú¾×¸2ßÿ½´V|O5+ JS«g:Ü’ÛõüÁ5£Ú6ùkãèœã¦ü›„¯°Ìr3-ÐrÏ(k5çÊV+ÓQÖ+//¿È1Üì„î,/ÿ–²FYKW*`àJ¿µðIº?hWÂ×’ô&Ï-BY C–é]à±£µä ùÙ %„\4%!ŒNGY“¹É?ÐÍJƒ(k”µ´ä¬ÑÕsÞg7Ö>‘¾9´+¡ÎBiäž]„²¸¹ãÌÜvYEÇÛ𫜡IYK9”5ÊZÓÒ$kx×_-ìU-u Þ¥°OÊ^ϳ‹PÖ!„²FeÔ”ófWCæSþjãÀ*Ï~é.¬Ê󍿼]yvÊ!„œÅèÃ@(k$e|n!kX—.ae}Ijía¨JeB‚M¥<„²FRÇ`+Yû<]¢Jï&Ŧ­ÊeB¡¬‘‹â.+Yûe²F(k”5B!„²FRÊ+YÛæŸö½uÆË‘ÙêJÒ«Ïë¼g¡¬B!„²FjÄëV²6Ü7Í[3\:î¥M={¯—­—~ZÅSŒPÖ!„BY#5a•¬õñMóæJÒ˜à^½$éQžb„²F!Á嵓xe¤Œõ¹fWë^è—Öí+u+ îåÐæ>i-„$”5B îWyúò(ÊI/›em´o÷Ž$­òõ0D’þÌSŒPÖ!äÿì{pTÕÇu¸Àýɤ¦;4aa€°‰‚aŒ@"XI’ B*”€È%!txM"ÈÃð ­´H%ʈ` #¢cꌀ´ZJg@KK©S§wïÞ}ݳ—$¸{÷Á÷óGöÞsn}_s IDAT~{îãœ9Ÿ½ûÛ®ð¡Ø„²F‚ìCãõ®¶¨(tZW–ÞbAN*/1BY#„Ê!”5rGì±z»ZßuwÑŒ²ÓSŸ¯BY#„p¥ÓHüGPÖH0ɵxºZVÍ]4¡ìx¢z2mPÖ(k„bÀê{ye•ªEnW[qßÝ4¡ ðC±)k„²F!„ÊùNý}©jjÖÕ§C§UÛ¶üz5CÖ:ŸßÇ+ŒPÖŽ„BoRÖ"žÆ=¹ £Î‡R‹výOš ²Vä¯/BY 2!„"SÂ(kÄl>—/k[® e²F G’7òPÖ(k„L“âK"£Süëˆ4‹ç“PÖ(k„p¤Öú-e²FˆžÓË"¥W<¶e+Ï'¡¬QÖ!aÈf`e²FHP&“fÁ³I(k”5BH82˜²FY£¬á®F[#”5Ê!$\ï¬çQ ¬QÖ Š«õj¬ìD[#ìa”5B1àõ˜u<”5Ê!^œ9cÎõÚÁ„Ç8ØU̳J(k”5BHøQÈC@Y£¬âÅ–#×Íy½ÅVùMvü)žWBY£¬B¡¬QÖHx“ºFŠÿqdÉÚowJCSyf e²F!„²FY#aÍrIêjÎõ-I}Ìy§i’”Ç3K(k”5B!”5Ê k¤ÒÉ&]°§›z™óF¾"Ýä™%”5Ê!„Êe„5£^*ˆ¼®Ñeù.žYBY£¬BÂŒý=¶ò PÖ(k„˜< <³„²f¦¬ÅÃIlÌÊ£Ù þœÌ:«¾Ø0®• ámŒuç1êð=×òæºái–•/w×&\Y=·ÿü qLûl„eÄÁ†tÎíi É ·6öò’º‹IÛ8)Çx„pÐS;‹[3¼j²áIV»Û&Œ^^ݯF}š²FY#”5Êa/‹8YS±Uùm"Töžð—¬¹bÝqŒmܲ6ª·¶·OwÑJ¾µi%'s£èîÚú€LΠiƒyáÕbã^^_¡ÕXŒ¢¬GÓÕ´IÖŒ£ £—wc)k”5BW£­v³ˆ“µ‹¥*Gº $Öûk*”ÿÉš+ÖÆÈQ&UNY+Ký4*c¯ò/ÉjIפÜÕ=ê<*IÕ5'æq¼·FHDÊša//š ”ÿs{ÝëŠö ô=B¸emPUUUæmÇ ]MMœ‹À§íl›0zé[TU5²FY#!Á™"3/ØÉ5óÝrødlBY3UÖŽ¹VŠ×#QÖ†(³"—¬Å‹ ì^Ÿ&Ù ¦"ëKûÂåDþ$½g+¯™_Uœ†Ò†ûTi: uŒ{ù{À7Ñö…Ç­È×á!k=[‹f\s¹?VtigÛ„ÑKh¬œ@Y£¬‘P 2þÄ£æ]¯ÿ)Ý™nÞ»õZ#­ã&”µ Èš|ÆŠØ'kÉXà–µ}À CŽéåL裼î¶;ê$`Šòò!P©®/ˆÁCen™¹a±-±âÃ'üXÈÏ k.l²ô[¶f­é;í™i(®úw·…,!1µ‘܆£ó꽆½|åÑŽÅãÀ_#„(kÆc†aÍÚ $NlgÛ„ÑKl,e²FB‚“¤Ò_˜w½šöPl‡¬M’žýÏ1¡¬EÖä÷“„’µÊçK¶KÖrj­¦Ø£Ìzº¡V+hº¿X–;Ä`…VÐ Œ ©åÙ%ZfÊ…ÿòs„‚‚aZAÅD“wÚ3ÓP\õïn YBbj#‰ Œ{yðm±8ìc„eÍ8šqÍUàD{Û&Œ^Bc)k”5Œ•¤ÿvŽTYë|N’žá9&”µàÈÚ'ÀXívÔƒ«’,i‹O8¿ôóâ†e/X6}Òrȵí¥KûMoÑ6°¡T.þÁs1Swפ;&*}²6ª{EbÒœçM‹Cv¯Œ¹è³)…F¢åÜ#–­ÇÐP&á½ïqÉÚ#À¿µšà#uŽ3Úë–ǵÅ)À!1µ,²µ¹Q¯*Ê6,Ù¯õù9BAúQ éJÔ†r`S™©;í™i(®úw·…,!1µ‘DƽüÒœ7ó´Å>FQÖŒ£ÖœŠÅÒäö¶M½„ÆRÖ(k$48 µÛQüsþ.Ëçæ˜ZÆ×í1ó¢î{Xß!åE(xc?ôɨ³CóðÊ4Vý¼ÛB–D"Š6õò®ÀÛ>FQÖŒ£Õ¤ï~Þî¶ £—ÐXÊe„3ò:˜y½>9ð@G3ß/:ï,Ï1¡¬EÖŽ‹Ô)lÓTàþê= —Ö®ö)ìXonÈP$*æ5ßâM`ý«Û÷¿‹”iY«MÁ°g«íšU-Ëë% £¾¾Ð^Ó7µÙÕ”š+öM¿$6×E{Ø\õ%Zºà±\´ÃÍû·ØÜ²ök`†û³én²| È/^l×¾”×Ô/¼)³ó/µ- Úð838‹rÇî7q~ ,¤¼ˆ907Ç×Kl°™·ËÞ™†úUï¶%$¦6’ˆ¢M½|•jîÂ!Êšq4£š`wûÛ&Œ^Bc)k”5r÷Ì ƒ Ï1¡¬™.k%©cÂyÛ¦øH½ ö+l ²ü¹óË8;lûëa »úž¯³4S•5ôUï±Õ#ì÷€DK.䬵C‡[Öªµ4|…íÀHû-”ñ/Å8ïÒezOˆÒòP˜YÖïîÖ¢-ZüÚ"!åEÌÙ «V ¨»iÏÓeêVý¾ÛB–dÙãΆ™÷8ZœPV¹hK/X’ïc„eÍ8šQÍ+·I6Ž&Œ^Bc)k”5BY£¬vµH“5/Ô[_ò: ¶Ðõ!o©êh[ÕÕÌnÓíÖ°#‹µ;€Ÿ9”,×QPédMûMïZµæ”¢bÚ»ÿÞ±©N´Äà‚¬µÃXÖ†¿,Q— §)²|Y›ðÞåüCo%7”ò—]ÎÿëçBkŽ©ìÈ?†R^Ę9€ö ¡ëmÖ~ê2 u«~ßm!KHH2‹t‹ãËláƒÒâo”¿^Ù¯!OzyÓ\àÙÇ!Êšq4ƒš¯áúÑ’ö´M½„ÆRÖ(k„®F[#ìk‘+kÖ9Úg½ºjl´`½*Mo{&Ã/jÜ©J¦%t\Îêd-Á%~§dyð¾?É®M‹Eу ²Öj cY“÷ìinù‡í¿(Ë«¡åzÈEiÀeYþãü¿ñXRSÌèw€¨À„v¦¼è ²“êúXà!ÓvT—i¨[õûn YB·K ¬ú¸?‡ð'®N€k¸~Ån½— a„eÍ8šAMpéNÚ¦½„ÆRÖ(k$Ø•z7ô‘Ôm<Ó„²f’¬Õ677ßZfU&®_z|±®oû(3•¯ä¢`þ¼¼™ÎÂ@ÆX45“ɆZÝuUÉ® §&¢uÀkjúÒÇîϵïùeòÖš7þÏÞ™GmÝqœµÖ·cX–ÃØ¦1.`0g .Ä®p4Á4…@]‚ÀµÍm’†£áGâÈÁŽB)4@SÈEC`¦@ ™B¦CË4“&mèLšLµ’VÞÕ“Ö`v¥=¾ŸVzZÿöÉÚ÷æ}Vú½¡»[KÍëïêéUÀË•e£¯¦`ÂyÇÎÕ”ihÚ ûi YB¡’ƒ(kq kõ¶òAOK³µîÐÔCˆ²fÍúÈhZ$7¤næÞK¨,e²FÜg²Ô#ÚÈi ¯5¡¬9™³6¦hë_Õ¶5zï¸<¯æ®)t^ÜG›¼½<øáÉlŸ’ùs~ €¾Á²6_?rÄ?"žyyÆŸ«Õ #Ô±I´ÄàV²:FY“gUiç6zÁ÷«õà†~ä_ßšp§ý3jDOΚJcuY°îšGÞHy *[èWbßfçŸùln¿ÎÓ²„B$QÖ¬d-;M¿#Ô×ÊûõÞËU7…B”5ûhÖGºë¹¿·_7Sï%T–²FY#®3h¢tÖéïëЛÏþÔéÏ,–áÕ&”5''™Z\ÐÕ~ˆ'Œw¼ lR^Nl×RìsÚ5VöûÔêÀ¥¯EY,kyGÓ´§.Ë_±-1¸(kõÅ9줠UQÕ‚ƒÙÊP«\½µbL†ßkÔÿÉÝuwY¦GÍðò¼¶2uˆ¯Ky Æ,Ó–ž13îdÍ–B–}rPäem~»ðc4§ð‡n£Í.ÿÙÈ‹±$kõ´ò…Jww4Û¸ùÜCˆ²fÍúÈ\àTëÜ{ •¥¬QÖˆëô¤N_›HÒL§?sŠ$mäÕ&”5'eM^ä1f) ¸³ÖøƒºÑ¤öªQ´g#Ë‚ݺ¬å*œ3÷ÓÇåÉm,EK .æ¬Õ£ža¿F–2Ä‘å“ý=î{dóà¢R‡— IúŠó+( ù“|ƒ Hy1”(ý!}š+CÖªÊ8“5ã,Å,!»ä d-ö8)Ç¡[ùÏ=íLè!DY³fy$݃Ì×-¨÷*KY£¬×yTÚ{Óß×,Ir>On‡4‘W›PÖ•5ùePZªn=³öJà|íƒ ÒT7Zê_<»²ö °ë¸ñˆ¥…h‰ÁY«7Æ-ÉZSu®Écu‹'aˆ:Õä½`Ð'ºÆ˜›ò×Â50åÅ\p¸¡NÊÞÒ‹žSâJÖêÎR̲I¢¬Yñ^ìÉZÈV®ôaÞcîÜCˆ²fÍòH¯Ð?¹ÜR¤õ^Be)k”5â:[j¿Ÿ”²öŹójÊš³²6éÀ5ë½0\/\åõ G®ô×ï¹É‡Ô_™ÿaÜ„“˶Ú{[²öAÝ„j?Ñ´Ì$ZbpAÖêa?ìß9b€ÿ™¦ê¬ÿ;ë&û[§ÞgÉ튧õ‚£uÉ#ÑBwãõð”òb*x­nñÞÝê2ñ#kgi‘%d™䈬ÅdÎZ¬ª•_:t8B!Êš}4Ë#o+T7¡÷*KY£¬‘„<šùû†Ô\7>—W›PÖœ•5ù{ÊXn£ocðW}®² ð-¢´W&µP–+Â,­`6°ÝJÖšµ–²V ¬×öûB›åß$Zbp#–ŸzcØûïOÃbmë—98ã{-7FN͵…j•—/Õý™)Æä(QÃT`[˜C§¼˜ ”oÈd½8ÏkÌ"²f:K!KÈ"9ˆ²7²¢•ïWô'hÁj¡‡d-D4«#àÉjPÝÄÞK¨,e²FQÖ’JN¢¬¶·5ù^`ù*߀ñ$°GÆîHC×çd¹¸ î§ÏCFºö¨âbõéÈY)Úcy‚¬]º[ÊÚ>àš&eO*cÇ-¢%7bù±1iÓ¦Õ3ìï´Té\ Ï;ºšú–j“?æúø+MC‹FÊë/ÔåŽD^t o@SÊ‹©à]ÿzè ™H‰Y :ËPYBY¸—IYs¡•?¼i“úx^‡€5Ù²‡eÍ6šUoÒ8 ÕAÄNË>š¹÷+KY£¬‘Dt5×àõ&”5‡eíx¾>Þ< XòÌÍ.ßdy« e>{pÃrýI¸™Ê¡Ãø±ÅÍsô%“Y[d´o?E”µ §Íä¾_ÎðÏYÈš܈åÇ6F?å/ëö—záqlÜŒ®@…ñhgÆÇ;¶ŠžW >zV ì¾ Øš˽hƒEY]ÏꉰÆ6§¼˜ Þ ÈæšïdòV„e-ø,Ce ÉA±,kD—µ·Zˆ­z›[ùf¥ð½ö:¶5(°ì!Y³fÕ›œ–>Ž+vZ¶Ñ̽—Ee)k”5â&o&ZKÙÙPÖœ”5ùE}©Ã ÿÚZ´tˆÊÖú¾g6à<Ò_ðV²¥¬•=-˜0u¿1ø‚ƒZvšð£9¸ËÀ.Æ-ȚܲHûSïÿøøFŽVÒAn–üF~_^tŒ+wgõÍ»¶á -¤¼˜ ö/ê›eh/²f:K!KÈ"9È!v¡WŒÝ£z—co5±•û…heÐÜ)Ó-{QÖì¢Yõ&û6¡eÍ>š©÷²¨,e²F\äëÒ–Äj(•R/^uBYsTÖ²—Öú¶Öï+ìÜz@3=UMΛ}ßï¨ÌOÁJòØçet¬þx,[Êš<ºý„Œ“-dM¾²´·7ÛõÉÉ“òÕ¹Ä|3Sp#V61nEÖäÑ32SR2ßøüÔž•EUåÝëòHVloíít¦Gr”Œ+/-Öjb¹8ÆÈBÊ‹¹`8ðýß0HYNÛœ%$&9EÙùX{ P­q.0#Ö*ÜÊu!ʆè?=„YÖl¢Yö&ã€Ý¡e-D´ Þ˪²”5Êq‹©Ò‹‰ÕPÎIÒ;¼î„²QY‹?.m‹Ç³Ú œö­X^r¨Î_\!åE((9¼¯~â° ¤4ŠY3}„,!!µ‘„$eíÎ ”µhé´(k”5â}$©‰;_جûÝù\yƒtBÊeívøÖÏÇãižŒœ=öÚ`Ô˜0ÆR^ĘÒ"`呚â=ÂT1+k™>æ,!1µ‘„¤…6“,eÍíN‹²FY#®±>UºéÎ÷õ?©Ò$w>y…$mæ•'”5ÊÚmp{ãò¼Æø“·…ÓÕÄ”‹˜~óô½¢qŸtÄdÍâ,…Ì"!µ‘„ä׉xÿ1<²ÞN‹²FY#î1yá4—n¬¹±(¶Ê]µ-yÝ e²vœòLÏŽÏ3küú}UÞ]Š×†3¨òb™°Óøõ­k¼Ë‡¤;}Α’5ë´$sf‘˜ÚHˆYÖ&ÔÔÔÜá4Dáì´F×ÔSÖ(k$®ÇQ&kIœ¾ŸPÖ(k·Ç¹Ž !Éš;½ÙÆNëUµB”5ÊI0WKš$IéI´5ÂVGY#„fY #”5ÊILYûæœÚ—(k„­Ž²F!$¦‰'*Û]¾¡¬QÖ!Qͺ½eü'PÖœäÕ =ëôä*‹£MY©G§QÖˆlL=ž¨®öÈáÙœ¾ŸPÖ(k„(&¹8m&eÍIÎ*–vòLoå¥*KAGË2óQ·Bðx`eĵ«%eIR·$ÚaÓ£¬B¡¬¹Î4'Œ½ïí…w 56¯¿¢¬Êe°éQÖ!„PÖ"ÏzEÖš{×€Vöïý"èOY#qíjIOULüSm°íQÖ!„PÖ\çKEÖ¾jìí–Û¿÷ªòÞF”5AÖ?8¾Äí6q×n×à+Ÿsú~BY£¬B¢•µüPÖ£È ÚÃ×ìÞ:(ø?{çEuÇq C–oÙ’!$„°› Aä ˆ€’ˆ¼ ‚,†* ¨„—ÄC ‰X9Ty”ƒÍ‘rN(å© TÒÊI‹ R ÐÎîÎ>fgf³K6›Ùäûù'wfîÞ¹3¹s÷~væw稲Fª‘'a¡Îó– d±-Êe¢Oþ™Á“@Y ›ÑÎ¥;¢¬…hä̉ s´KJ»©ÎNAx?„/¸ÐOØ2›²–þ…p¥[ 4”5Bñê¾°‹g²(žâKDYÛ¯žqø‹@ØÃJ: š Âï8þ&Þ0˜7Ö¬´„±< ¤6BY#„?]x(kâ=Å5õ戛:y*éX/í;k+ø›5ñ†ÓO•˜8œÉ»ù¶Â;k”5BˆNï¬QÖ(kŒY —ǬŪe[‘\™«1fÔ‚© -l«‡„0f²FÑ%_&¾Ê“@Y –Ù 9–6Ùj¹¦&ˆN7Õ@Y#µßÕÞ„‘Úáõ¼²J!ÕJÚžƒ` –ÈZ’(k]KQÊ<±âjtXm ¬‘: k:x)6ePÖ!„"òœèaeŽ¥^ÀeE–uÇÅ<­ï}ŽÊ "WÓ¬ÑÖeB©ó´Î8^º¹g˜].ºÚÜë÷¾Êñ†=׺Õá—Ç ×«8ÄVA(k„BHfPnO·µlÛöôõâÊõUESÖˆ7t„]\ú˜`ÄpZαUÊ!„R§Y $N’Ò×€ÖîÁxEWkž^•=PÖˆL‰špÚ~Wþ"ÝÙ.eBôF£+ÃxHÀ0ͦY“{ŒÀ9·ÍÛEWQµ14exÁ@AhËËÑ•V 7Ù.eBtF¨×xHà°LÞ?m‰hm¹…ÀÒ4þCSRRÞÿ¦¿ ¾ßÊÉUÊ©–O¿Á‹QÎø#ÛÙ.eBtF0‘gÞ¢­…å·_d™Ÿÿ%i]¤¸`¹Ïñ8ÜhJY#Á;P 6Ø*eB(k¤®³Ê(™ØŽ)Ëí²v”²Fêš«…”ÒÖ/BÊ!„h`ꀞP&]|:;r küoö†‰Ká§D冔A½E§âI¢¦®ÀÔOˆ(‡‹¦é¢æÀ`ËsÖ,'ÏäÂ,äì÷qÕljM&rkb -µRö[X›)5[^“I£\š¬•O} (omhŠI&5V,”/eÄ¢9g kŽÑ4}/Ü|ÕüÍ{Eüñ°NYr»1¨ÝªÂ Áƒ5¦‡£ôܤë°ö„\Jßmo.o±­&§£%ëXObb°æÖl¦îOí4+[2 E¡%gkqÀ7Cºðõ?ŽÛ÷ýøÑ&ëÉü°Í9Ø®7p‚µyä›jÀ@ŽÛüЖ¨¥hSRSÑÛ9ÔdÕïŠÀ·I}b®Ä5¬Nïøýú ØÚýHa? tDJx«õÀ”N¥ÂvK,1zŒ?M`Îèp7Æs ±CŹúc 1­a—“g²2 9û}h¶fM&ribd°V>õg z÷ª!]añ$ HœjçBCŒ‹·‡5Çhš¾w?PŠGÁÈh´¼\¦Üx%å¬1XczdG‡†ä-–cv>ºÄzƒµà`­Ò—ygçŠ,ˆcÔ(åÅ?¬ Ó!þÈ>ŽAö'¤vs“óÖvîþ®< !^–§ª}aôû!»Ä}2É%“”‘œ=¬9EÓt¤êŒDÇÍÞuâ&9ô\g°Æ`‰ÁZy€µ ³ÓF±žÄÄ`-X›¹#VÜ•bgl•a­½¬m²Å¹C†ýôC]›|5H׉í`­«Ö&ê÷íϵ©(T²j Öâ”;m\÷°Æ )윒?®w*?"›AŠJý}CªÀ[ý 9ÑgÕ”'zóÿ™#ºÛ™ŠŸ&xXÓz`âS€Z•›ln2t9°&Õ¤†uNžÉÎ,ää÷ Öä5Y5ÊÑÄjznuÖÛwOÄÕò4„ÈoÜK;:PÛøõlÝwH—/FH^Y[Xsˆ¦íH|Õ£¤ðýhå²R ¹Iú9ß!¬1Xcb¬Vh­Øô,Ôu%&kAÀZæïøáhéúeo½Ïv„µù \ø. 8¨û62y÷!Í]¸¹À:Xû¬ñ™|¼FX£“5ÂÚ“X"ÿxm°&k,?l“–nø £5ªÀcñM#Þ­ -UꪟÆXÓz`Vä ¡4©gÏŽÀ,“–9y&³³ß' ÿ®²&«F9š¬eyåi1 gèCOsÞ¯Þ2G¿Ýj˜Áš}4]GúTsz ç&ë<Ç`Áƒµrqkm‰ÙYh#ëJL Ö‚€µ@¯&RÉGX»Ì––n /=ŒÕ? Å#×qÍÇÛ€`‚õc)(r€µ3Àd{X£“5ÂÚn@¶_}]X{S¹²^ÅøÐc•Ÿö)Hn ?6$w·%J¹ê§ñÖD)˜/¾%%¿NšÔ°ÊÉ3Ù™…œý>4[]“U£œLŒ!§‡ödyƒµb`;Yì&_nRÄ7¢å ®`Í6kŠ!m›yG²Ž¶vμNêÿƒ5kL\³›%…d‡­ÚÊã+û_H¾öJÿÔ Ãômöª°Õz™œŽò?`½‰‰ÁZ°6G½¹ð±K6°vU5^ôæÁI¿‚À¤Íêlj7%(FŒi°Æ'ø6)«þÒZX£“5ÂÚ)u*ŽgÝÂÚÈäMòûž“_IKéêSk“8i‹DÂ~¥UZ?g°¦÷ÀÚœ€èpº†ENžÉÎ,äÂï@³5k²j”“‰1aíáL0Ò`ª0LùQæååï;T‹˜¤j@šzë#+ ¿‰‰)4ƒ5»h†ŽT¢¼~ ‹BçÀr;®¾ p ü{k Ö˜ Šó|-B±¿^^ã%­•§o|®Ú… Ýó•|Èo¶«&§£çYobb° ¬ÍÈÜ‚+tކwt!öùäfÌNaÿ{Q÷mx àoÊë[Ó!Ù¿"a¬XðOH°¦D5ÂZ`šTU˜¤º ¬ÑÉaqRzeÀh¿[Xû6 &✂šþ±ºúTÇ*º©ÿ›ŽdIã§ñÖtQ/èæ9y&[³ ¿ûfk7£U£œLŒ Öõ¼^®†âOÒÚ•”I$]âYmµÙO¬=k6ÑŒ©-Ð!^9¢å–Ûd @ºöÕ`ЛÁƒ5¦­¡>ßêP쯞¾û/}4gIAÅãóeñ›mD u6ò3˃µ `­µ\Zg¿G½¡#¤/,=ŽMÎ “ŠÌôÂTú«Nmy>ÊŽ§-Yâ'o<;Ĉñ'XS¢aMxr8eÉêé9=#¬ÑÉa{˜/ÐÚm䥨’’^sÎDŠcÐéðKE'b1WW*ðZyÀgòòByš­ŸÆCXÓy`DýZ}|TSÃ4'Ïdorá÷qÝlÝf´j”ƒ‰‘ÁZùÕ˜XTF%ãˆClJRÒqÛÔÒt·°fêHÂñò¿â5‚QH¨jz4²Ž¶ xY€âð—€¹© Ö¬1=`­+ñµ‰Åþê%¬ Y¤;m¤­ &X _L¿á|ÔÙhëML Ö‚‚µa@âᣟŽö¨}:BDm9xYó£¤4 îÚ©û9@Nÿ§ù¼£»Ä~^ˆQ7{w¥°A,[É/õzeç7‰h-Áš•‚µJ|Nµ¾¾[ó©Dà gkt²¬UNW¾X˜ŽÒh¿ Óa8?æø“gý)o pŠÎèªS^kІ,Ƨà+¹MªŸ&XX£<0Ÿdå.–«Å!-ž®a–“gr0 ¹ðû¸…5ýf´j”ƒ‰1ôt+é.`msÙc Zžº˜µ”3ˆc¯Fü1Hø»“›ÔSÔ̬YF39²¤ÓÇ«yÛO Ðähd­Âr ëþ»ÿΚvâ¬1XczÐ%"$ûk„Ï7Ù£P©çŒo¯~=˜ñÆöoÚ€®† Óú³ÎÄÄ`-(XãbäÝi\oÉ3¦RØB¡ü-mCóHíE?ãR«S·îÔPöÎ8ùY³Bésl›¶¬)Q)XãzÊ»¸~¼¬ÑÉR°ÆE4”jÔÞïÖ¸Hr×>z¼\r 8¬«Nx­‘©š"½’Òähdm9”aïŽÁƒ5¦Gr`Xu¿·ì„G¡öS'Ž ‚è Q Ÿ]dëKL Ö‚„5îfQ\tÎÞ#Gã/äˆs¨„ÄUز<ªà¨.JÅ÷æ´¬[¿^áážðá¥Æ©/N´õ­™ÐooŸcê+ØŠïO¨;!ùG`M‰JÃ÷ÿì{põÀø™ä{H„€„ áMÃûQÈ„GU„€<¢€ÅR$±¼*Ø%P¥¼‹…ÚÒPi«Õ28 k±ƒ–):´Øì%¹\în÷¹ì%»wŸÏ?¹ÛÇï~ûÛïn¾ŸÛûîÞo7tåmÇXidMÓY­¬E6¦phna^”-pY‹®Ÿß´]»¦wª¾R:î~gK †³Üy“ÇD.Dû¨§ ÎZ450?Ùï¸0z¿¼ŽK[%£é“aø- ¤Þ' YÓ|’—òSÄhn|ÉØ™ÚhiZæµ9ŽˆrÑh JÖ¼´¦{fùÐvtHÚüÏ;?íMÖ|´ö¡­ÃŒ´fï7y=YCÖY3žÝ´ÿ9^©¹¬=´»ƒKƒã/J€¬Õ)ƒ­ÐÉß½m‰±´»ÓªòoÐм›ì«ž&Hkñ¬‰Ú/’P6!y³È¾Á:KhúdÜ¿¿ÅBÚzŸà6[ûI^6Êw#²æBƒÒÁÑÇ£îwò7ÅÙYCÖW«sŒ.§cð¶üÁÑÜÚp×~@ÖÀ/É ÖX££vCŠ»}il+‘e—ø¼×Ó)kš˜ì¡"³º<òÎv‘nãt—ðì“aP,¤©÷ n³u>I£|1"k.GÔ*çÏe‘µ:=!kÈàj5à¾Îޏ÷ ±µ‡út>Ýè/gJ $@Ö nÈ‹XåÝŽçÊf%eo½×Ó)kÚ˜)Íš¶ô²„GŸ #b!ÏzŸà6[ç“ô7Êw#Taµ‡b›IÖŒ=!kÈ„ˆã½Ò# ò—é}ÏW³\õÊŸn=€¬A5™Û¸¹e~³5÷Ô²3.)ž›zš`eM[óü˜f¦­j>|”×%Üúd yÔûµÙúŸ¤·Q¾‹YÛZPP°Ârbÿùín®–ûGCZ}©ë4nßÈ@1¸±<Ã(²aIo¥DPðvÂÅÕÖÏ5¦Ñ¥ ˆ$@Öê†Q"ùŒ kŽ”ôS§®DTøÏîïPµf¿}É &Ïç«ÕÙÄ kȲ²X©R³l§½É†¶÷ÄÁÉ-ò‹Gø¸‚‹J-!–Y¨ÖIƒÈ„#³ó7×3y¼Æ*•jò.îu§±È@ÝPo#cÈ„'¯G™=^{(vèh;ŠHd 5°Z6²ÍíûYd "MÖê+5×Ý$–YóF@†¬AºZtòÉÅ–8º‰&@Ö¼ƒ„!kP-:M³ñ‡qN9<ïgÄ kÈÔ>¥‡Rd Yƒp#Çü·Y´±J5!¦YCÖ Ö‰ ·d Yƒ0co¾Z]ÃÁ(FßUwvU€¬!kPÛôyQ@Ö53Æ*u€£Á8J”šFT²†¬²È²5¦4áH[KlÔhk­uQß%ªYCÖ ¶™ØNòd Yƒpã¼5n/òð™ÕÓ-ÑѶ+ˆ)@Ö5¨}Æž;Æ kÈÖ y(vEâ €¬!k€¬!k€¬…›¬8þŸ¿þþ‘ È kÈ"k&²µ¼=Ib'±pC Ñ È kÈD*Ù¶ËÄëÃ7oM·Lg³óηGúŠ“õ9D( k€¬!k¡Ø”:o™€=Ø:]Ý©ºµCæÌ’Ž¢€¬Júd Y³rà[ŸÌZ»oÍÍ/_eÊNµ!™#!ŒQ »‚؇÷6‰yb k²=ñƒ€¬!k`J.ü²#ÁO|£O +½£Ô0„PðD‚ âªXÉÛâÁ¦Ù„6 kñÅFÖ50)¥K]2ü]\k¸:ÈqrT—êïÅEC_b5€€è¬!kȘ“%Ý2üÄwl§+m9BCò㪿×je-iÑ ‘ k½Üÿ)·™™Ò4è”à‘Ÿ–¿˜sÑcNOûçd¦»LègŸÐJ·‘.‚DÓ/Ÿâ•biTuý x@füªo¿RñnÛà ,Ÿ–µ¹0#iÑ9d…aWÖN[­ÏW‡Äyë`wÍŒ‰[®mo¿|ÃF‹¶.?ò§ølm¯Ë9bXù”™Å×Sâ3Æ«l?ýs=ó8ñ\Ù½ùÃ:çqd Y‹pfñLñ/™&4NN.޲T‡«½Š o@Öj.kózJŽŽ¬Éß]&쥬ét š²¶mBUÊ4¢Må@5ð"k_v¼»6Ž"ˆ£q?²V‡c[8ÕYsÆõwÌYô´ŸE«dÍ{k =em×"Ç»ø#1žyœhVnˆ¬!kà›§4)þʳ䀆Q_©¹Ñamk›õdíá "k6¯¢³Ñ²fo_WÖþUõ~„„RÖt:P=Y˶çc•)Ó¼‘nù¶^ûì«”]ÜR5rCD>±O™”!²}¤í]Ùú§“ÀC1ÑbýMIY½åÌ‘æîWú¿kŸs˶y¡ÈÖy¾m-ÝŠŠŠ²|-³ZäzOe—ê&ÍYxwGñQûy¯k€g'Ú•Ý›ŸTTÔYCÖÀ•Ÿ'wAÆZñj©‡b%kJOÖÞ"¾!BdíY¯3¿èýihd-WRbïoJ¢‰e­wÙï'*S¦æ"…eÌbωLvª4YÙ b‰;e¹Ús×EòÈßÌÊÔÆÒf®ýoÖç"Ens†‹<™jÿ›ÞWäϾm-­ýµf?᥹}oó¾ÈÿÊOÃ%÷X`g+{6ÓYCÖÀ_’ÿ=+°CÖBËs¶ ÕÚéÉÚeâ"^Öj‚OY»/rÏù~¡|dZYKï/U)Ó‘nÉUì“2!Õe¹‹$©ìS%eaņ³"Í HM œAEqÚJMÑö“ZÞZ7?mÁ?{×R>Ýýº´)¡WhÄVë¶«»‘ºåC`a>Y\þâÅ8ùŽÛœ‹Tüüqf†dø^Ô)kÞ‰Y$ë\ß¾˜( _U9ЙÇ×ÊÍ#kÈx°_'ÇOÚëg¥_©/­¯±J¥Z«ÇÔÈjÝe$_OÖ®߀¬…JÖÆŠÜ®|»[ä°Yemñz‘øAΔi¤ÈjÇœƒ"oº,ø•È™²¿»ö4»é˜/ GM œQEqšJMÑö“d8¦œë^+ùt±-k ýËšîFê–…©'+/-2ÂuÖ>It¼Z.’åsÑJYó±H–ÈW®ïm";^ž9ЙÇÇÊžÍ#kÈx«—äßó½Î×Jí°XÀ–œµØ¼ç(UZýø7½ýøñ *kIòeú©n¹ûWÖ¬eÈ ˜©–Æ-úfRLL÷7/oj·ÿnÊ/€»¬I‰Ï,<óª3S¸³,©ý€&²6Òq8¥zÈÚ”ñ²´2>$ >uÊšGsY»Ñêå¤ö³n¾êÙSW\—Ñí@̱Í{VÅ ]z5o¢Y³ëK›“9S¦¾U³?ªà7e™G…š}­k¤”š8Êâ<+i4E7ÚOjØQ:Þïjk‘$Ò¯6òéIÿgïÜc£8î8‰«´_ÇõŽÃœM 0v‚Í#°…%"BÁ±œpÀ¯ˆ F€cˆM < ؘ ÌËåQÊ3¡uyXqÐâD‚Aú‚¦IÕ”¦ûš}Íìž/·çؾùýã½Ûßþv†›~ŸùÎdX£ÅîÔš—YI¦|(^þï²9Öb¹¾zå$à²ñÔl`r´>¯£+5—¯í¦þiö±—ÔÃëvo©¬=ÃÅÖðÖ8¬q3ÛVŽeÎòTü‹?±µÏyîDòCV¿ã'¼s‹_XûNz>0ÀÚaå!™SЪ£ò€|¨¤ïy…dù×ÕÌä=åsÍOam@Ô’³XÃY`íù!êé/YJª›Ù‡Y€ZmË•©ÂÀZ´ AO™>ΨgÖ‹ë³õöo™¯ôÖ­]H)) œk¢8«Ô…ÝPw?™ò*žw“à[ûtÚ[kºq Kµ¦â2+É–qX3ÁÚ¡ÎeÍ©—õÕ=n猧²€³òÁ8 ¯³+5—ÓÀ€ä…óJ‡ÍdóžjPÏc3H|ŠžÃ‡5nF« ±`ígÎÍó´á@¬í‚'-¢_r'ý3¾]Ç8·¸…µ¥@Ïè°62¸Y|*û~7¨JìûæIgÎLüÅ»‰„ÚJ_lö‰ä3ï›û>dK°¶®Òô«¬Ì±ÂÚp°¶ˆØF` g†µÕÇ€µ¶ª õ5sI5³ø° ÐH:·½õéç‚ê"{XÛü¸2F¦¦L{}d-Asû5°Ó¤7)Û0øÊ}FIiàÜÅY¥.VÑ }§ `›âëi”ÕS®!Ég…5"t«ÖT\F%mäC-ß®·ŠÖ’ƒ¦—&"õç6éÊÕ÷oéç{ òsïø0庳+5— ÔNžP:n¸¼’ZŒÄ¦ça™z1žÃ‡5n&ÛÈ‚µJçkÊs~˜[΋ýÿ¥±›?¢ÜâÖ4)'£}ºk˜øPü»Nêò~“/=ÔKg¶W6I !%Qü{%}þXа׬å oÀ¯|º‡U5*œÖŽOÊÃ"3Ñu†©¤šQ>T¼óÑó„¢ aâ&!¬$NO™Šõõ¶ÙšÇ~Â9ªFÞ)Í•û) œk¢8«Ô…ÝPwò&`«úÅ™A‡òbžMW'!­«Öˆ8Ð¥ZSq•´“µxm<kÀ\Ó‹ù&½1¼áÍK:,RŸ¬ ½#Œ+5—©ú¿“¿Üt›£ÀÛcÔó0Œ\L‡ç°Æa›ÉŽ0X-áé>ýãéòýÇ©µ ùÀ·xÜ;Y…µ*'uXû»üù EY|b¨¼JÚ`kŽöžZ„¾þ"Ì)Ÿ×„µ$¹)¯Sa g†µòT,Q«~¥Œìé%%FûP8/âœzxÈÖÄêíÊ—rÄ)•8<„–à1‰´Ÿî3®æ–”.JQœUêâ ºQït݈Étò>±5Xa!ŒªÖT\F%íäC-Þž@ X›hʵ«vãžXe>™·JÙwzî‚0®Öì]¼Ù@×Óu›êÚM.ï™9À/ÖóÐF.f„ç°Æa›ÉE¾—rsl°¿ü[‹§µ²¥æ-d%ß IDAT_ñ©<Þº¹Å3¬•Yamüù––<Ô# 2ÑŸ€¶jœuA¬„é‘¿9ÃÚ`šœ7¬Qá̰&v¸ÔÓ뿘JJŒö¡ Qýç\}8%/Xö½$™ÛéýN8t¾0Í¢Zsýn–˜Ce¹˜ZR¸hEqV©‹½è†Üi;P-þ`ߌÚ6³1’é{ðí,°ÆFWk*.£’ qX›Ioóª3³¬[61ûAŽ'`±ñTŽÈç#ûµ½RRé:»X³w)Ï„?Q™:½¨5œ˜¯¿6ŠÖ´‹á9¬qXãf²3ô<ÈÔå-Öþ=½"½Å­íékü÷Ýà›[üÀš__Ï«ÀZoÁk}”Ïãuf\/ì."0zx –Wº–í 3¬ P¨Ì,Ü%X£Â™a­3Ðoœj½å‘=½¤ÄhÛ¥û“ój‹”ý”k—º)5Å÷ßÁþ±˜¨~™€Ÿ–§Uf'Üd²jà\ÅY¥.6¢Ãîcò–ÈÿÏ|<æ¹ôæ J+¬YÅQךŠË¨däCÖ¤¹ƒ£Ç4'Xû#p] óOÕä©Õíƒè=ÓÑ•Àšƒ‹°NÝÆPZwÿ¶öíðÅÀÊäï kÆ‹©ðÖ8¬q3Û5ªÏÚëäž7¬9.Ùü6ÅVƇDòS>}ùò¦LÎåM›[Á­Y+²ÂZ¡ký”£#2¬%Šäd·k•=dÕ1.¬åtPmµ{’¿ JãO*¬Qá̰6ÖQ@½¤ }ˆêµ·æÞ,QÖ·,ˆÖ„…s”ÀKÛª½>Oc¡‰_׸“VR87DqV© [tc¼SGLxßG–ÑãT:£·½¬YÄÑךŠkWIkaaÍbMÖ®¯)•Ù ý•À¹{´wÕ`ÍÁE·M>ÉRGúŸf„úÌntì‹IxkÖ¸Y2ü¾–.«h¸“÷ Ï-keÿóÜ+èÇÌ­­*y/{בÒjÞ°¹Å9¬mµÂÚÏÙ°6ojW*…>J>?k‚µdÒGö#°V-¯è\Ò` g†µcæÞv½±¤ÄhÖÖ(+ …¦îÖ„ñY²ç,=™,fidõ…%rXÉê.wÒJJç‚(Ž’º°E7Æ;}ˆÌøôî˜ßžì |ãTººK; ›aÍ*Œ¾ÖT\»JÆ#¬uD”v°)×®ÐFJžm>ó:é+‚Òû {W Ö\ ÖL(–ù€špo[ìÝÅjxkÖ¸YgÏ­0uM%wœz<›a{]íñÌj†Å¾àñ´å ”‡µXÂÚPÃPXgàc¡‹>²v8 ¬ …Òñ_Êɸ kT83¬½ äÛ•Ô0{2Ÿª E³&ú¤.¹?où@á‰ÈaX7mÜ,1@í¦X=ÜI+) œ ¢8JêÂÝï$þ»©»BåöîÆ4“îRZšÖ¬âÀèkMŵ«d<ÂÚþhaífS®]-@Þv¼jÚá^z4)løœ\5Xsp1Ø €2û¶4ЧצÑÙ^¬†ç°Æa›Õê¾5l¨üÑÇa¸iž/Ô Ûë‹Ïn–Åþ½gzo Ü8¬ÅÖ^0ˆÌöKrµ!$„Éa4k"§!W8†bÖ¨pfX[)­EÖhª£€}uÚ\Ëï kmÕæä!D=s:\?”¬iŸÃ@aôFià¢ÅY¤.¢õN§Ô×ùÛcçm“‡µXÂÚ[W¬øV¦®ÛJÆv) ÀZ;à6¬ ]PG¹ kT83¬‰^C»)§ULX£}¨”êÒýÅ4óB$°ö|HɆ¡:WÕÓÇè¦ùÞü›âYœt3¹¤4p®‰âd©‹“èF¹ÓJ€ ªQc˜G¿¦ [š`ÍFM­©¸v•ä°ÖÒßÄéækÒÀáäƒ>²‚’ÖÍõjH''W Öì]Ä^­P}+ð™Ò¸ŽŠ¸Õ urXÎz1žÃ‡5nM>óãfʃ¹qã°CXK¿”'í!¥L±³­%ª›bßÒl`- !¿²o® kt8¬I‰ô yžäBŸ2†5Ú‡*À²ÅwÁb±ŒïëágTV¾&eê´—Ok8¯|Õ*„ƒóNàŠ”;åœJ’]M.) œ[¢8Yêâ(º‘ï4ØM¾˜¯¯$ûβï¥ò­­80ŠZSqí*Éa-¬16ÅnÚ°öjþÇÄ¿«ÿÏÞÝGUÝa8Åý ˆ‘“†@!-¬ŒIm!@x§òæ‘ê-X (¯¶‚¼U*¤À@uh °áµ€£T,FDm¡í`[ÇÖVÚÍîf³»çnÞ¸Ù½wóýüv÷îÙsîœ{8Ïî=÷>ëéú#^{m\Åßü7EÞw»Ãâ%ê£Mõ°¼4çPØ¡bHÈÈÙé,¶’OsÔrä©,M{³VÓùΦLãb$ú»G'Ìíá¹¥wÅOˆ"K}6S$2rAáµçEFÜþ„R[gÖ¢8m©‹¶èFû¤£U³ïVÙ2$äa­×íŸi´~È¿Ü`lŒamwÕ}ßëÖ^ÿ›d[Ï_E“¾Ld««'lvîÃ<[dUYIÞ…èÊd¸©Ö‚—–™,òpŸ6 Î87¨8éû;"ÉU·¶ÌªÝÈSYšÁ›Š'¬Ö@X#¬c–°æ k޳­=Óµ®žeGùÇ7ÖÖÔGÀ6øxiï˜Ûÿ9³ÕŒ®+iÔ!¬9ÆÌíÕéýW¼OL÷©œ^Í ˜“Ô=oóIm œY‹âô¥.‹nôOšâM5÷ÜîÍ©kËwÍšßâ@³Z­•¤‘1¬ä#7G^²[KVþ<6¦ë¹ž­ñÊyo]³bHÖ½A65kÕ”Ö9ý]cœ½ÇuënraÍàÍÅÖk¨¿SÕd»ö×JÍ·kÝ3ÕôÍô>ÖP+m·\•´5p&-ŠÓ—ºh‹n´OrF÷™‘Ÿˆ<“ê°°8ФVkåi$a­Æ°Ö(ù†5«Œ<„5ÂêégJ´kí¬Tš]랦Ôezk¨Œ–X®NÚ8³ÅéK]ÝèŸäLmñ7^?Ð^$û•Ð4ß'¬,4«ÕZ¹Æ$¬Ö.¬™;òÖk¨ŸÁ¥êÑ\ÂZè%nRqô?ÖP —e¯õ*¥­3kQœ¶ÔE[—£}RÆ×©î'’N‡¨õ>a-pq I­ÖÊ5n$a ÖÌyk„5ÔÏæRµß¶ýõêÆ8ûÞ nR\Ü4úk¨ÙÙèÙÝ,X-m œY‹â—ºèërôO:»{Uöœ)éCÕxŸ°¦-4©Õz¹F$¬Á8¬•””ô·ÎÈ3¦¤$°FXCý8FØ¸ÃæÛºòùô>ÖPçóÙêÖ*Üî…_Myö¸*DX#¬Áª“>™ „5hHo·=ÝømNX3a°²i ¸„5ð§Ýg ÖÄœ°Âi ¸„5Ë·Dæ²k„5ØÔé…Íéôá”8¹œ^ÂÖk ¬!PA©úÀÞ¶óCö®ÿ|·ž~Â4”Ö²‰@X#¬Áž6)õ¹­ûëqj†­Ð-N-O£#‚° d9û€°FXƒ=­WêK›ÿ°fã›b{¸¾ôDÖ„µ0X³4ç*a VU®J3ká5~¢úŒžÂ€°ûDŠÖ`U«»Ùü—àJÝkó&8ös$kÂZ8ÄŠü†_ÖШç{ ªËÂSÛìò1„5a- ’E6Ö@Va „5€0X¿w;°Ô§"ÿ!¬¬Òk„5¡×ª«”±kA}%’¼Ÿ°+*ïKH²ŠL. Â4nŠMX«ÞÊrßž„5XNfœjFJ²†ãT1=„5 ¬ÖB,'ç÷£D¤èîí½k°€´kjãUb’5ž®Æ¾JŸa L—#¥ìÂZPb€° øL©asÞ]pmV4ã+¥fÒ'AXó]þ÷ va°»9¥®Ž€”Ó_©H¸NÊÐ2UHŸa @X ­©k°€rîì¬TZ$´£É˜ ôI4ΰÖ€&¬Š!¬!ä3=ÂZæÅ@£ k€°†È kÏMþ!a „5k`¢g5MGLSè• ¬€ù¶± P“ÃÓfxýÔ®Ö` }§qTZOÁ–4º&k`®‹ñ§Ù ¨ÖíSÝ—ìx®%a °RM¿Âi5¹×ÕãôMÖÀTÛD²Ø ¨Æ»»}/ÛŸpŒ°†p{dªÊâ”ËI,SÓÓ;AX3 ™È^@p¹íÝ)­G¶ûïÁE„5„Y¥ÆqhZÏ¥&Ð;AX3m#¬¡Zr´ey/ç:ƒý›–9Œ%¬!Ì.«ô܈9ÂvKŒ”¦$îUóè ¬€©–¤>ÍN@PÝâEÞó.ºÒN$%ƒ°†ð:²+rn<¸N©ïELcfl¦w‚°¦ÊÏ>@p}Dö5¯zØü¸È<Â"’*tSl÷ä ¬*KDæû>þ\d+a „5Âa „5Â,V~àÿÄ›²–°²šY"ê4HÒk„RŠ ðbŸÄÖ>iåDÖ!Aq¹Ò÷½„5¯¦çûÃÉË–ôÙ_õ\ù ãm{ËÃ58bãöø¢‹Á.ˆÛN$vPØ](í¼ÿÞVؽwÊSïíª|<Ãçf@s=óÜžƒ]£¶¿•ÉŒ ˆÓþòBÊâoO2ÃI<.m½†?úLQü²ÿ ئµk”x¨úÒ´á#pÄ©KÝôÑɯ²9®î·àΞøÇO¥ˆ°†ðÉQéŒV¶Gõ¤—‚°VééoVþ×ýkÏ%2úIfýÃÚúQîâ¾zx ó¥âp7zõ¨ª°ö“¶žößÿ ÷[§C¯V\C0Öòæp{U¸Kœç°þݱ _èT…µ¿wõl{=1HX ^š6|h#N]ê¶Å8¬UVÖºa팤ú]xoVŠœ!¬!lN–ª ÛVÖKÅ]¢Ÿ‚°æ¶2Z$æ ý¶VÌF>uOzÊm„µf%æëaeQ"§^þX:&Éñ07z„sŽUÖ2bE’®-üò1‘îî_ü–‹ïçqØùxÒ ‘z-|Ç9çÚ:ˆ0ÐlÞ2‘£ßÖ&® k[R%õÆ] •sT;Ö’Š‹‹UWš6|è#N]ê8:T¶Yqñ]Ö k¥"¿ô}ü’ÈMÂÂæ¨Ró·­¬…RïÐOAXsïüO~¢ë ÏA+׊ÄÕÖ6 ®qx»)rËùç¿"Œ^ž-C”D7 k£/–ª°– r°âï.×Eú¸žé'ñ~s(çe3¦+ÇE~Å j·›b?-m¯:ÿ>wÎð§þ.KÄÖÆ¯•ÑO¸Æ¿(Iþ£Xk]SiÚð¡8u©[àè¤UöÎáÖ kGD:N®zØ2Uä$a asM`ض¶6êGôSÖ\ò|¾Þ|2E⿨>¬ÕÂcÝ´â‹ö(ÙþöÎ=¾†3ã+=2±ÍfóÁrrÁ²Z4q¿$Ö5)**¥µÚº,–DÑÕ(M7¬;U‹¨Ë¢ÚHY‹ZkUW[Ö’m­UlµØ.M]Jwîç™wræÈIrÎñ>ÿœ13ïu&?ï÷yÞ¡MWóCºÀª±É)é±pÂÚ` ©ôvNt'd¼(lby~óPÌ—¾4®Òª’κÀ~¥©±IãÏ9gÓËwܸ_‚Ñ™G5êI<.mA*SÜõçðؘ^Wú{¨ÕÚn¤•hÅaÄäs°¶[…ZŒ1þ!…¶ÒÖ 7ÖLs3„JÄq§nºèd¬¬·ÂWŸÿ‹Ú»HÚnv øÌËïk~­¡kûY Øïo ±ŒÝ§L ÖDý8×iŒ®0¬•g…HæSŽö†¦%#/­ÚZ¼â ,Q…µV@¾|d4pJàà*™ aGn°¼KmS¥‰tÖ\'DáïäÉtŽ·K0:ó¨F2‰Ç¥« åÅ®òH«uÝH)Ñ‚ÃÈšÜH§þ!ù„N80DÞ< ¼®?<8éá2ÿD碣¼;èýîE4X3ÏÍ>ŒǺ飓¡²Þ kO& ·T“¶ÜVü3OmÎ`É¿ÇwUªÙ_Þ;ëwb÷)ƒ5Q·#ê?þ·eÎhq0!Jšó-ÛÔ$$iV°üîìY‹Áã\× Kvô3<×¹(YÊÀŸcPä£HJÜ k•=!˜–r±iÜ€îÂ3¯qÂc“K&É…K9³}ü„ØÔ9ÁªQÝe £øÁùO‡ÕUaí. ¬ßÛ˜ÈÿüÈ¢'åS•Váµ!u‘Ÿá}¦oÿã´÷¸pܸ]‚Ñ™G5êI<.}ú5V•ÜÎÈæ¿Yu“¿AìVë»ÑX¢‡ƒ5aä}Ÿš¨þð„¼¹ xKw4m:*ü3 ø‰I. ¬•Ÿ›&|#Ž;u£E'Me½Ö¸ESÈ{«°‘·ß" ÖØøÎ—äoÅf´ÆÄ`Í©Dàºn k×ZÈÿHZ£ƒµ!Ò¶9ºäm°ã~”Š\ÊÒ‰OÄÁO[Öö ù\丮[äÂ&⨥I•Oȸ$%v™‚kIé}9'¬ñ´$9œæj=ÓV,>÷Åeý³ƒëÀôª»4gÝ@'ႤܕÇw.7î—`°ÖP:š$—¹;py†¶÷¢Å±#®FÅ[mÞJ‰F Ö|Po9i*pRwtÍ8…²€ÁWt´UÁe3X+?7Mø0FwêF‹NšÊz1¬q#·vQ/Ïxý-Â` ï¬1XcbÍÞkÄ¥ÿÔ¼”x6á Ð2!!ãöOf~Tн^(âŸÓÀZÇx¬û4'`|÷i1w1/QŠÛôàfÂÞF…µñ@„=¹ %@Tþ©÷øÛ×ÒJ9üì_ÝýŽºÂ .SP{¼¦4É-לóܹüÏUØŸ_Ó±¸™Ò¦ßà`tU]­³Ž;H¯?Ä Føuá¸q»£3bÔÑUÊÓ2wî/DˆÐþZvÌ—/ÁÀªŠ÷«i7*%Zq1XóA͆* ´Ð‰0œãTþY ät-ú#~OM:¬•››6|#Ž;u£D'me½Öø?«öû––þ°ïÐl¸E¬ù­Ž´÷÷$:Øl~ˆ íß`÷+ƒ5Ž»/>˜ºÝò…@ç>Õ³V ØD;ž‰ðó$¬¡Ë1yÎ9ÏðÞcB–ƒh]ª™‰ÂéÁ@¢ kÙØ·N$ט¸^Øõ¶¿ý¥”)om•“»La*'¬å;Çü@gþg–s¬µTIpB´I¥W™ÕNç¬ãÀ.oñd:Û¥ãÆý ÖŠQG_)OËÜx˜$üN>w Š+ÜjónTJ´à0òÕîF…µôývY‚™"¡ûâWß!ø$ÚÉ?÷{‡Ü#§gSa­¼ÜtáÃqÜ©›1:é*ëµ°¶øÕî—}ëa°æ·J·u÷¿Ãg§³åû™¬‰:”+ý×s»wM¬-G‰üc;°Xk­¤ýóÝ2ü9Ÿfò¹…S?}è#fŠÜ4ÖÞ7FÕ‰åÇ)¥ðŒ&=;œ;+ØR °Öx'@šÁ9 ÄóÒ™¯}íæë›?½X©Ì¿ulãªêªèœuÂJjµ¤­™pD[óȸWÙ7¥Õ¨cšÄãÒ¹7†b‹x%ÊêO^ã¼"›*ÜjÓnTK´à0ò- ²–à+mq= ™²šcÃÑEw…>Gf*-Ï©108H…µòrÓ…CÄq§n”褫¬×ÂÚN ;‡Á“¨½Í–Å1ù„vÙl¿aw,ƒ5aÖwÜyÚ8{q¤ÖÞúÉ'ø%k'¬]V@Ñäöúd~ˆ—ÊŸM{a°…b×à7&Ø«Žœ ÃLJ)<0Ž%m¹NaÖ¸À_o YÌ÷@’™ˆ’ž öç›ñ²|Ö·#:,_È”V¬iuÂdçŠ퀟s–<2n– ek Ũc–ÄãÒ¹#ùk´LÎZþn¨p«ÍºÑY¢‡‘?h Ö&`·å,öãS-þ ~ý!SÈC=ìhÉü3ʽöH2°œkåäfúˆãNÝŒÑI_Y¯…5t÷²'kLÞ D[ƒ'ù†®µmM`·,ƒ5Q}ÿò³ÏD`»IÂÚ&à»v²’E«” kyrÊ}ÀF2§ ¦À×#{òvƒãÞ½9éyò`ÿP”H[ ¬%K+ª¾aÄŽnKy&˜7êØyå,×)¬ÀÚó]€˜mù«…Í!’ß5ùÐtà2UB&0¬j®ˆÎYÇ}› 4lðL°K:p®=2î— Š°ÖPŒ:Ô$—Ñ8Øa8mðë ·Ú¬%Zp1X5G}©Å»ΧWQÄ‘óQMòÏJàQù{°‡kæ¹Ç1âX¯›!:*ëµ°æPÞ¡`°ÆT½JØcëÍ(ÈWTfk°‘ݳL ÖT”­S–CW`m–vä–BÀšâôI”V !ŸHÜ‹ßwä‡Òź5ý¦õÿ-j!`o.ÚœU.šª'QJyÛ.T#âÕ–­­¦°kÜŠl©y%u;ê¦Ä×;HîH7®Y™"kÙè5ù*´m¦cšGæAJà´Ö3£NeßYY„Ð% IN…[mÖÎ-8Œ¬‰>>öQì‰Ê’=â¥'’«Ñù—É?ëÄ©'Q·BÑ‹kæ¹Q‡yÄqY7Ct2TÖkaíp—Á“7¨Ý¥ŽÉG”²l*»c™¬i iWµÉÚ‘ÛÖzÑ¡h 0DÄ›gŒaˆ íø‘ZcL¾ kò2(TÏ< $ÐJy£ž„ñ NXLaRF.ìÖ9{üÀ~ä5K{Z7éߪZïT¬qERïÅŽ½k.<2k¤µÆÌ¨SÙ°ft‡ºÔ‰ª ~¼û}Å[mÒD‰Fþ T:¬EিÂÚpà)%õž“ì¹ÿlPVC÷¥Ò`Í47jø08œõÜÄèd¬¬×ÂÚÀQÄ`é!Ú1yp˜ÌÄô°ÃZÇvþ‰ ©W€¬Í´ç»‚µ¹ \à ø#™x…v Ø$PkyÄs²MÀ7ôRjÞ+"ä×–SXI/Û´{ÆÚ…Rb‘T=°h.´\{Ÿ7f Ï‚\xdÖHk™Q§²aÍèl ”éNZ:°y _Mº‘,ѵÃÈ ½fyþ3ÏúR‹_” 4+ÇìÕvc£ˆe@ç©oZk`Í4·rÇ1âpnä&D'ce½wéþ‚8$mb°ÆÄX­Rýý©?m»g™vX›|Düó6PDÀÚ?€©îÁÚuõÓ·¢„oiÖ(&&¨sw5°6¡‡•£›ÅåéÍJé¿Ð.¾½f=…5X[+ÎRO®.áÞ]¢¹Usòº:ŸV¬ñ{CôÖ Còek÷aM”l­ù?{ç$Eq` š~€x¸£6üÚXrø¸H¥ñî'"+)BÖ—FK«OÖ æ‹Ó÷X¢Dô¹oˆ¿w,9õèãȳE1Y+zN¤Ö‚ÔEž`SJÈߌgßîî!…çÒÙCûS(´¦Iy_¤þï=‹% Ïö_°]$¨‡Š~!²M/o—Èú†‚‘e¹|(<)·j@tkG)M7«¥q²I­qJÔɬÅÓ{Îb£ÐŸšºÜ]¼ ¶Íh)ÑÄ)ÃYs%³»È*ývÑïï7;Á#¡Ðl{Y +ÒrcnŒ—EÙÊšóÑ,á#5âØD)Ç£Y£“kdmº Èä˜ÕJ-ôhD;T3ë¶ZOn·¨Wÿc3Í+벦i³jšúqåÍIÖ.q4KøH‰8¶QÊñh–èäYÛ-2Õ]K#kdýÍ¸Ž¢£GCt^ð¹¬e•˾îÇ;{ÝÛxq©ÐsÏÿÉ<_(¥z6‹%«¥©ÚbI­qHÔÉfΚMvà‘.²,þ%2é2Qk›fL.ÑšaäQ¤‰@Tô•¯ü7†H”µ|‰Ry*káK÷ w}¹È£:È軀¬yù†Ìƒ+½ kÚìA"‹çU·?ˆÚJjVKSK°fæÙ'êdSÖl²g‰|ÿÀN‘!Ýcôkz­mš1¹Dk†²fË‘*d-¢TžÊZi4%Y\ °5@Ö ÆqÙà YÓÊ{˜ãçA{"R³Zš\‚%µÆ>Q'«³AZ³OŠü!þþâ$•èœZ[›1¹D›œFd Yˬ¬e6J婬HIZFÖYËì€a²\×Èš™è<ØÅ±7Ñ‹Ž´Úug¯¹'úÝÛ’œÕ’‰R3óìu²;u¿åöˆ޽[!—5k3&•¨cÉiŠÉç~”µµÕÕÕMœ^.“QjZuõ·ù)kDJÝ5[²æ1Êßót0:µ)èm[Û|/}5²¯€6È÷\ðáµ™J·© zd0J•'”—S÷¯î#ý_m¬Áårµ‰ÁY^F^;r#jÓô¡ôb@Ö ÷²–AòWÖÊÊêÆ…Omê¶Þc k;Ê”Ь¹—5J]O/d +41'Yƒ¦±¹V}1ØËWXk¥òrýJ®RÁ ôc@Ö5dÍs<æñž´ŠoŸ=âé Þ¢ÔHú1 kÙ`º ÈäŒ 'sº›õÕåôc@ÖKë¯Óà!5t_ЋYh,EËåmZ5ÀÕ[d Ïðç¢Ø€¬ã9ÀÖY@Ö5h å÷ÒŸ½A9+c²Ð(*úÊDZ¬Ìœ9sŽÍæ®Ì ¹bóUŸyÿ~Ù ;[x¾’WÔ0}? k¢r×-4XIX5|IXÜ5È9•Jµöü…ö¤R³=_ÉsJ¦?² Y+N4d rÅAUYäù ­Øë ÉüH©èÑ€¬ kÈšGXª‚¼¡ùCÖNQSèÑ€¬ kÈšWRÖmöÁ…öMͦ¶>¨æ»Ç'Ñ£Y@Ö5Ærnâ¾Ï|RèЀ¬ kÈC9@Ö€+qµ¶Jû¤ªm”šIßd  aLJ kÈ䕪jŽO Æ‹b4›¨Ó·Yd Yw§¬mðÍd>’5mL+’ÖYd YFq.¡¹R³|T]ú6 k€¬!kÀ(Îí[X€¬—9²ÈZeMõ‹°)üÚ|Ùï4²¸`k€¬!k¾ÞQL# k¶²æ²Ù$„¬yYÖBôp@ÖÒ§íxù’V@Ö5ÈÖn@i¼Ë°àjú8 kiâØÈ²yÄ/W¨(w®ªÞ¤—²€¬!kMãg5È핺ÙWöRPá«ê®Wj ½5€tùa©TÑ Èš‡@ÖÜÍê¶-~ê¯-~»â>?Õ·ä&µ‚^ÈüŸ½sªÊ㸠³Ëý)³mÚÐÓEJKÁòh·`Aš…"Ôn×EK¨PZ7H ("Š,ˆò”×BYD^«„Ý•˜¬ 1 *Ñl6«{ß9÷ÎÌékîïûsïùýîÜ3Ùéï3ç|ï%‘Hak©Ãô&¬¬‘Zˆn¦e9j¼:馨¢jަQNr¬ur w1vþðÿ ¼Í?ôCG³¨Es¤zùbˆ`XÐx~£n×Ô ëçYöäi/Çà¤ÈÛ²ÖTø½ó/¦òŽDŠJ½øe®'÷ÐÞt&0­îzOÿYרP©ÝÅ/Œ¢àÏÆD Ö][ïI^üƪúö¾î‹j›º_ {b|9Œ&Àµ×ô°¦7Z›x"ÔO~ù O¥›Ÿ1ÀÖH ¡ÚÄŸZSwÛ¸±TÞ< ŒÔEb€È›õÀÑ`©*¬Y§°‘]H”YöúÆewC¤¬¬9][ï»öÓv‚žwuyŽÆ;Áš`­Nÿ·¿ñ"z^³}™{ø‚/§HsK~ÌäŠ[ឺ}R×&Ý_äM–`ð¬uÖ(ÏôR“ôžµ¯º-ô&O¿U-íyñµïxÿI»ö³!½ô‘|¹pîeÈè¨5¬ñ•~úGTX ü GF–"‰Ç¢‡Ôµæ/-Ãñ¹ØëË 4úöX__#Ko2 bâ‰LíS‘úŸ´˜®^`ˆém¤àªie7Å^|$oN>ÓïÌ92VÞ¼t –ªÂšu ™”I oÁk¯oÜ@]ˆT‚5‚5§+ÍåÚLØ úÖåšKã`ͰVíEr¶î5áñl¶2}2ý[ÖŽy¥†C㤊áMi·a°Ö{Ô;I‰èÃi°6b˜ü|ÉcXûYØ=Ά4#¦°ØÑ °–Ü7ƒÓ`í à¤òðkHÄWæ6ÛÄ4i†ÏÅž_c†±ví)¾¾Æ•ÁdÄÄÙDåTdß_‹îj³3ZÛIfÊhe°ö™ò#Ç]N[ =ð× © ¬Y§°‘Å(<`·o'€A¾ò¹oä[¦¬¬9\¿=îÚÿ8 `G(ÆåzŸF<ÁZôÚ`yø\Þ¬’°$𞮋9ñ¤Gžuó£6C_ªèI\=¸ÁÍcÑÜï¹1\5H¾¼½¢Vë4X[uxkߦý;â‘ú¢k‹”D bCª"k·¸€Ì-[ t)LG­amC;iŽL®Äw3´™µNjÚ^`»Á†óöº§±Í_Z†ás±%Ö—h†±ví)¾¾F•ÑdÌÄ‘Þ6I[.Eõ56É4Õ«_5÷ˆÛ6ÄÞzÓmЧUˆgð› ¹[~q,’ªÀšu I*vΘVxË©Wìöí.;ˆË“N´H%X#XsºòÆ8pœ?^_þkç½ê§M¡ñN°æX |#oÆÁ߆¯Mç!¥^Ü/OÄäÖÐ{¬¼f2W˜k¹ä ûç…™ Öò€}²}Ù³4X; tçl¾ËFÏY"¬Á;¥ #! ©b"Œgíhˆû¬i°V%ó ¯MÀp5c·‚²D´tõm ‹àBû\ì‰ñå0fkמâëkL˜ ƒ˜x"Rl'ÔÊ›'‡ì/29£µ­±)ô“">Xo-Œ|Ý­9öŽ8è^Ýš`M÷ƒM:,l©Ž šªÀšuŠIdFœü¿sh«í¾M×þoã6›§¬¬Qíæ@µq¹ŠùÂi¼ÓÞ °VÐI+Ž;Ãã‘ö èï@¡kùRC©Ø08(í¯6ÀÚ8?)³U;9µys**äIœ5À\ Ö¾÷Ù"6ÂÀÛѰaïN“^>_ü¤* ßA-áÇŠpE'Z@iÚçbOŒ/‡1ÃÞ7½kÏÄ×÷ð`2 bâ‰H< Ž ~FK[c“ˆì›Ö|À?mRЪ–mîTTJÁ ³”“%ÀóÁSX³N1‹­.íóJ™Ý¾Åzž8Ws®ÃTào>ÓT‚5‚5ªÝ('Þ›`äXãfJ ÇÝn Þ“=ŸjS(E¬« Å#”B©á¦Ø—O…Ç!Àj Ö^•ÖD ª®K°&]C’ )b# ¬± Ö¸]@Áæ6î¨P3qšMɰú,iõ•Û9|u”Óü¥ehŸKÄ’|9ŒF«®=__cÀšÑd–ÁȆê€=|Íücþ¦b‹3ZÙ Ö¢DŸ£”íIX`’±yžüsPTÖ¬SØHAWàéÌöc–%3löms6â¤9×Q볦©kkTº¬­‘èU°¶øDôœ”ÈóbJµVtv©d”ò#Wn»œá¸¡ÚB¼ °V.sMGäh°Ö Èœ «Ÿh¸ò¢Ÿt8RÄF,/ݯu4|Xû´7ào¨º· »Çc²ÜX8vÒjK6Pßì¥ehŸKÄ’|9ŒF~s×^ ¯¯q`2 Ë`dC÷€qE«Mý é­lkQ¢KªÃV˜’ŠcF.–ûB¤*°fÂF€ÿ‰W4Mð _±Ý¾­!oÄ7LS[¬Í²Á‰Xía)ÖåêÕ–hDù(…5®)ÕÒ”¼Ø‘+û×+×^¯¶ ¬~Õ/” âùu`:XKŸ'V EÊ,Ô<Ýp.øX[Ê0ä‰5CŽ˜ÁZ@GÇ5®¼DzâŠGjÕ_®ûšÏ¡ñÍ Í_[†ô¹D*ٗØaD™¸ö|})St²4ÙQgLÚæV®$ševF+[c“ÁZfB¤Òp"~’¼h‡µËÊ%{,†Ô þÀ…ŒP© ¬Y§0‘zí׎}ÀÌHú&ªÆ OYjKƒ5X‹`ôе÷¥2‡"˹“½f¯;Oи'X‹~X#-1Û´¾&«!QüCš8}·kÏ`­¿:ÓÆ¥`{A\&Éÿ{UkGŒŸ«X“­alHaaé¨ Xã&æt^²ø˜/·”5nò*ÎÍÞmÅe(ŸK„R|9ŒFëÚ ôõ5 ¬…a0²¥‘½n;|¬'ðÀ쌶Æ&ÒchZÕ°ÖxT›¬®äY¾Á2U5ë&Â7¼¬|ƒyÔßÁìôMVG`­Y*ÁÁšƒµ¡‹k4-áu–¶¹\iä¬E=¬e¹…Û«U{¥Õ\ÆJ¾6­¸7wI–P2šÁZmfí€Ö6]8n…RHÍüóM3žQ…56¤ˆ°ž5¦£v`MQ¯ÿ³wîÑQTç‘ÝiY$Bx$'b Rä¡SDMK¡@À„G8¼•€ ‹cy”ÃKÂKKx­iÄÊÊá€Ð¢þ ¢p*iiE[)ÚžÎîìÌÎÎIv7Ëfwçûý“ÌÞ»7³ÃÜËýíÌwG»nÖÁ….¦ïs#»Ñ§–õç\ÂCËåa嘩=c®/:²VÀ(4äSÇÔs:Çå+QMá15RÖ,9ÐñWñ$kÇõ;ˆrq™•.ÝI_GUUÖ¬«%韛]§g(M }ßT~jV5Æe­èùÔ|ï/ëÚ¶¥¬‘Óã)-‰úb/~|Xê߃ç>e-ÑeÍùÏ:á%ÀïÖ#Àk'”‚¯Íem g’àT/¥éeMžávr~\ÓËZ•z¡M”5±H¤ºX¬‰;ެ}O[…²§ÞIž\¦J!ðt£O-ëϹ„…?—#„aüèS{æ¹¾;.kõŒBä4ÐÉ÷±·ûÍNÓX#oƒ´¤›Ûóûøá°Å÷ëDùhÊûx0UUY³®"”¼¯;——˜ŸYÖ­ÝÌKÓ\Ñ YÉfUcMÖ }ôû0¥õdÏZ·ÞºäLpPÖH„)“¤´»qS’Nñܧ¬%¼¬}Ô:?A/eözÞ¥ágŠ1emª²"…‡Y;”IpÐËÚ@_õÉ»Þ>¨—5±HE,dMÜÑ emÏÈ}/ŽTVýwzàåPÔ>ÿsÈZž Ý‘s ].GÃèÐ¥öò¢¹6¦ÿ,¨O Ý×÷ë—.íô®?ÖEYÛö›g‘B`N<ÉZa®öøwýg—Â_¬aAUUeͺŠP²_{»srº:p»o’ßÝÆÂsG„IÕX] ò:°ÒÿÐÞ“íQÝŒ²F"̉Ë%OR^ìFÓoZå¹OYKxYK^Œ™nHÊÖ `³ÛñDÐY›\)P®>¸ ²6Ëþ©š2)/ËÕg*/,véeM,RKZ'v[ÜÑ emH{Ï<ÇÃÞî8ç+~®L­îE u½"Ë€C1°©/çú\Ž†Ñ¡KíYäú⠞*@µugÖ™_|5‰5RÖFÖœ­€ÛÞ_楮ƒëYs'k~pUUY«£Š±dð“dmhK mßž–ø¾H¹ œÃbÕ•µr@ÒoŸ‘tʉÇi[Œ2áª?<Ï|öúÄ—5ç$¸ç*O*“y]½‹qÚ"y²·ÝDÖœ½£[ë°Y“gÁ‹K²æ™/ó®¸7?E¹ŸN“5±H?,¹ä쵸£>Y›±mÛØznƒÌZ{~]×1奤öX¡«\ üÉ3+*}XÑ­±'–Aä\B' —#„aôh©=Ë\ß–µàB<Á3Ø­þþ”½œúb”µ:¾òÉ×®…Çåí‘ÚDþùÒRßÉ5|Û¶rï×!º³Ã¼ª(k–­ %¥oʇÖ;¢ü()ML,ËÖJå!÷^ϸT Å¿îfºo1*kÿA÷€¹dÓ1¨¢¬ºZ¤¸5}Km°Û'°¬½dãaßF Ðýž™ß/~5Ý3ÙûØLÖšô¦Ô?P‰uFY“ß”~²6OžüdL_Òª»oM¿¬ EBÉj ½cG]\KÜQŸ¬õ•ßY¬•»áy|âœ\`ªšQªt•ÇU£Œ¿ö0º¬Ñ'–Aä\B&0—#„aLS{=£ú„pÿ?X£0åïqU2Š´S¿ÞXcÔØí‰‘6ª¬ä†ú/=­dx\Éšóï@þÔâ¼jï•®WäÆó³?ÕN㳪¢¬Y¶&–”kŽÔ”\pù¤ÐdÀ²l­oðPŸÖ NËöšVUYë„å/ D[Ê¡¬E û>›²ÆnoYs^‘§u—Õ{µÕà)Á1AÖœïùú5{QÖ’Fë–BW_:Ê×¢ëhr ¬ E~Œ%“ŸòlüBWCØÑàeÍÙºHy«ûˆîÞ§{ôµËÔ›íl|W &ç*†\ކ1Míäú¢(kuŒÂa´;7ø–Ã4üEÓXcÔX¿àÓÆ>å¶÷ïçLlJëëá•Oª Ñš€Å g›U5‘5«ÖLÞÜw±º0¢rŠ™ XÖ­µÈð•t™fÑ|ŒÊZW, |áºRÖ]²F[#”µàd­'âÏk}ZÕË=hç×3“g ò®å ÊšsFÞò¬1Ë[–ÖeÍy¿?]å9yü…ÅéY+®oP6u²f,ÒßWe(×±"=u¦¾†qGC5ç¸9]RRº|ä¿Ùl"°/ zRíÀJwFNÉú˜W“s c.Gئör}Q”µ:"Aá1E³ÎVú‡|×k$‰Åê]mÝÙçîóõ,Ÿuƒ(kƪ&²fњ雓j«×¹W=ü€ïê©é€eÙZfÞùl÷àÙ -ªÆª¬U òAýös±ˆ²F"HKýí|àK’ô„?þk—¹|?e-Ñe-Ñødg‚} 1çÒ@„\ކ1Iír}Q”5ëÔPxÈnªÜåyøyÙ_4‰5R‡¬ÅÊ€£²öÂ"%Àß(k$‚Ü”¤‹6¶•G{¼ËÆ$ c ¬QÖ≂ç—%ÚGr. DÌåa“Ôž!×EY³N …‰l é×wjm4×C1ÖHÈ‘µÈX1*k›€U›ý›·»ÿ¦¬‘ȱùqiú-±)M_&ía/ ¬QÖâˆK8˜pŸÉ˜si &¹! #¦öŒ¹¾(Êšej(Üùñ»+íeœ²ø‹b¬‘Ôéó (k±0`Ũ¬5]¤•¤lÌzÇ èLY#‘c»$½Eg±/{%i5{e²?|àšÝ-ñ>•!çÒ0Ls9BFHí ¹¾èÉšej(üÓdÿš¢Ê)y™–Qˆ5’ºì÷iÔÚQÖ*jjjøýA$¬q5ïçª IDAT5%1úPìÜž±fqÎÙ³Õë¼_“$9(k$rü¹å¥G©,ö¥Ù¦eì”5ÊZñq)ç΄D•¸{(v„dÍCC׋à€uÀ»C1)kŽÏ+õß-ù²á-NÞ7eUÊÎ]ÏÔ9GÿhNYãŒ$>ììú”5B¡¬ÝY‹ ±,kçá|UÕ2ú|Öðö¤ûZ;ý²u¥c ¬qÂFhk„}Ÿ²F±7ÝÚkOb“FK=¶±åáWÏþãÌØhìCYÃÚŸ>×KþQ™iUéF[Ê'l¶à±ÿ­]HY#ìû”5B±àŸ£.ò PÖ,Y[U|5¢ ^”-¬÷zyŽz2xîA‹ZÆùš-¸[’æñÒa秬B¡¬…Áë@E$¿øï< ÈQí‡)ÀxóZ«AY³›žùÌîž’)I=ì~ vÔžáòý”5Ê!„ÊZè´Þ‰d{å€ë—¾ß¿V˜ÿ×WA¹”µÄGþ·zƒ²FY.IÍÙ(k”5B!”µÉ¶F²½ojõwÏ£Hž0«t˜˜JYKx^™.±ý²ýW·¤Úý4[)máúý”5Ê!„ÊZÈ\¾d{/sµ6@“:Ï9)k‰ÏIjû¸–£t8ÁIÏþ@Y£¬B¡¬…Êm +‚wª= à”¶u?ÐQ¬S˜‹1ÔµÄçÔ¾âÎ"3ì…Ûì”5Ê!„˜q´Í)Êš5«s‘àîHµ¶Y–5c×€6B•Î9@ƒ²ÆÉ±ì ìÿ”5B1ƒÏY£¬ÕIqñ‡£eÁªx-§FÃ.Ôá.mk7°J¨ò Ю3es5B[#(k„ÛSÌáQ ¬YÐÜI {Àšjd!w½#Yëל/$iD‰((ÄûÊ!„PÖ(k,k5ÀhÿÖwrcM+4[ <ëBÖ2Ý0'U’fqæKâ†Ì!<„PÖ!ÄŠTlåA ¬Y2Õ„47ÈöoµÝêæ½”µÄç÷kÃÅE<ü+MšÁ£àî›Àƒ@(k„bäc<”µ¨±I¸²¶0 ¼CWd'%k¼ 2¾i.I78“tð¡Ø %é8ûoƒ¤¬B¡¬5"'wÀ.¯ìXÌt'kVp‘x`CštWÖ(k—Ý%é{ù?{gEyÇq “ _ÙBC( »Ä@äá¡@lP’rƒ-h(”p(Ð)*}8,rYy8D¬‚@å±"`¹ EÅZ©œÕª­µXíÌì»sl&ì‚»ì÷óÏ̼óf÷yòþö÷Ùß eBeíÛC¾ä1}k=0"hwgãÁk”µÛšW…ƼøOa¼ 4áYP2Þ•ÂVÎ ÊeBe-<Â),É–dí}ë"P¸wHZôŸæ§h%-(k·' ?ùŠv¢à-=´†gAá•pfPÖbPÖ !„Äo3‡:[½¬—̆ßn_ôM×0^j‚$kGõ­NÀUÓkf)kÌÓH¼ÀyÁ ‹²F!79”-OàI !8Ü¥~änÝ/þ8¯oÌ1M#„¶Æ(@Y#„[¼9(áY ΊèsÖÄÝÀ9mýnéµzRÖ˜¥B[c ¬Bˆ-yÀpžâHñ@“=åüa{8¯÷,5R]ÿ ø~’SGÞ`„Y¡¬†Ê!„²FY#δê_În» X¶tñÂm@fEX¯ç}˜§¬îõˆ”µ¸ãÇ%ƒ9±ˆ={KÞá ¡¬QÖ!Ä )xˆ#ç€=Ò¢+-š•HªÞ Ê7ïŸX!ßï—À|õ6þ}»té²”²'LÆñk:Ǧ^œÀ³ ³Gø,›S„²FY#„ƒ÷¯ÜÍ“@)GÊGÒÂ;”íN@˜?‹È…iõçeÌ•™SÔ¶ÆÒFsÊZ|P&Orbétæ“_ B?ÎÊeBqG&æ(Ë3xÙŸZ;Ã|ÉUµüm~¶HY‹?úãŠ9±tš B6Ï‚Nâ%áçe²F!„¸#Y½ìñc¤ø/Y×Â}Í‘GHN{1×xhe-ލÙxçe͉½÷qŽPÖ(k„Bˆ;ÒT7› ,VVžG÷è1e-Ú3´nœVÌ3î/< tã!)k”5B!Ä%`¦²|¥¬| eDy†K$¼Îs`ʯ CeB Öðgv¨¿¨õžRžƒ²Fèj„¶F(k„r 8—z˜'8R Ü'óŸ…ÉÓ¤åÈdL¦¬Ê¡¬ÊZhÃÌþm…”AõÖ­ßïØO§ƒ´Ý&? a—Ôð|%o½¸'BGQ„ïéëkŠ2Ú¤O:¾QoHêw®{zÎÄóÆc¯ÎMŸÙnŸÏBHäXÜ‹ãŒbè aÓµž {„,–d‰RU›ížfÐ@^æ*ê…':o:Pþ“³¢ø4ðF±X1¸JY#7Èá­/1è’ʨµõœ+”µÛ^ÖÚ v%kAÌùÝ-•µ%Ä¥¢:¾N‰þ†âçÔ†µþ¢vÑ«Þ[ûɉX. ÁaFû a×Õ5çÀb‰A–(U•±9ì)B´Ëš¸]Ù;¢¸ZZ$·‘7jSÖȱb¨P K*£•0fg e-öemqS?> ­L‘µÞÊúº§çH¨žŸ:ô –µ•Ævn¥¬õ—ò%-qiÛH»XúÅ C¹QT³÷€†}J·º·Uº •ô+)šò·5B"Åš˜”µÀèa`$l»ÖCZYYÙþPŃ,QªJc³ß3r*kÕËÊêD©¬‰[’ñÒòsÕUßóRÖÈñ° ü—A×ÄÆaÌiL„"ÎÊZìËšÆ$`‚¾!ÉÚ#Úz/iÏ6‡~²–‰†Æo]¤Ü:Yë9FâÒxM~J¦÷p¯Üð!pŸ<ân×Ç䆟ÕGƒ¤å¬@C!‘bvÖ/bnÌAÑCÇ6HØw­‡z!þF´A–(U•±ÙïñΆ*kE«¬‰=6§Éw¡ùëïWkt6Êÿ;(kQKöpaÓ4ÆÜ`– BÏB0ù'…Ë8_(k·¿¬‰wHªý+—µ+Ài}ûÞ½U²Ö­o:ŒÄ¥H«æO^îÃ@y¤ohÏôIhòRJÞTjø0:ŠcÌø€KNÿáo2•ÄØôpEpMË ‹[Ùô°kê3cDjù7=oÎÁkõ72–ò·õ>á¶åŠ4LoÑûr~Ú},ÇÚˆƒ£‡MpêªËšs`1Ç k”ªÊØì÷ìƒÇ²&²±âäcÆFýÿe-z™ºò C® >Û†‚O:gsºPÖâ@Öĉ@¿Êe­=0F@î-’µßÌ’[ê‰Kk`ºgðgi1)ÆqÌÅc>ª §€Šè 1«Í*f)‰Y}c²f* ±±K‰¥Aü´…Úré¦\vQdüJ`)ïq[ïþa[Þ){­Ú¾œŸ°#nŠ:6A©«.k!‹9Y£TÆf¿§Àƒ¾ cBÖb ÊZôâMàÿ'eÍ Iœ-”µ¸µk@ëÊe­GoLÖòö·Q>E—µj[^œäë:ùêö$-“Øó‚''£¶&kLív!-s@®Mß³[&>šÞ}vÝjŽã–†Ú`ÈzârÝø}¯¿ÿ’£F@ ÃãðyEq£q˺íÀúè0 €T”Ÿz,%1–®0Ðôkª3øÒ¦‡MÝßê,d]©S*x€]7áØõú›ò·õ>á¶åFŽæ­ZX$WÜÔág`ìËš)zèØ §®º¬…,ædRU›ížüè’DY£¬19‹kx¤C’MâAÖ6Ë]ÈÚ.`…ºù65ÑdíÉAZööÄ”†Óú77_×em·¼}ÁÚ÷`wusàßÓ­œ¾y¢‘¸| ÔR÷œÎH‹_i`mtë<[ÊSÑ_: 5ÈE¬%1æî°Ðè,KEa¢]KCñ3¤Üüs™¾È×ÖßXÊ{\ÖûDà°-ïô#àÊU\¦ ³?c_Ö‚£‡ŽMpêªËZˆÀbŽAÖ(U…±Ùî™ _s‘²FYcnßð#´5„¸•5ï"ਠY«P|Kf pP“µÚ€çTQiÍãéÀ5åp}À¶_ZéCWMÖ&©)èeé»&R®|=ê‹ Àw§ÓÙ“Ól#q¹ hb|g=]ZükpW“„‘u}x¦£´ý”ñŒb #zÃËZÌÚ¶–Ę{¸ÃRħñúZxÛö°4lúÿè2ð`Ä= þÆRÞã®Þ'‡my§)˜§VÜÜøe-VeÍ=tl‚„SW]ÖBs ²F©*ŒÍnÏÉ8/F±¬w†²F(k„²F(káÊÚ> gš Yça¾ö5ï"Q•5o9R‡(o¦` |°êE•ÿ”ïgæ—5x¶'åÕnféû¾v5‘ä-C ÞH\IôB «¼l2_ÍÛ57é\3àHÔF—YªÜjXKbÌ=\b. Ñ¹”Ø÷07x§£‹ÚPkWnÄŸLXc)ïqUï‘ö¼S)°Omìà'`ÌËš)zè8‰P²*°˜bM”r?6›=y…8áfYƒ3”5RuÚ·®Á°KÜSüjmÎÊÚí,kùÕÆ‡–ÌV&kokÙJ!:k²¶Ô>ïÕE±'ð¹{˜!k«”KßMÚHöO¢®»tKzù—ýuÇIg€,eí¥Eþ{B Wâûw€æÚߥJV­œŠ·­%1æ.1Ðhl¨ºÙ÷07HªòÝ›wäAõ7–òWõ>9lË;ý»ÑÏŸU:V~ÿÊZìÊšS%k!Kp ²‹RáÈÚPüPþö†²FY‹zŽfØ%îùTع‘ó†²v[ÊZ ù®dm pRÞèLÑd-¯à•êÆ/=D±3 %¼…º¬ù•ÌÒw 0.¿ŠéÖà-¹ÞmÚiàÉr:$kµúëuÀÙ%ÿð ‚LLŽÚèRÿgï܃£¨²0¾š4YŒI$;<’  ,kÁb$á5 °1J)‚ „Ç"”0€À‚"yÉ#%BQ.Y¤äµ`*ŠuY—GÂÂbt}àR€PºµÝ=ÝÓ3÷vw:™ é™ù¾fúæÌôÜÎÜÓ÷7Ýß¹”›¿zù…KW<Û¼%†°)Ö@£] ŽÜ*“¶aQ‘4=òÀëW ç~þÎÞcËï”n[íé髉3`ØÂšY’°‚5‹ÄÂæ >KkƒÝÔ] %XËYئ‡òdE|<` ª³º »H»}• ÂEŒÀZ˜ÃZÖø<Ѭ‰©JÞXB»D±ÿ¥‡þæ=¡X‚6è÷ Uk°–éÿfÞØ±éD‹‹?©©Ët«4‡èþ­K*Ÿ£ÍÑ“RÃ÷D×Ïm‹Xʼ¢X¿úè?€'96»|KîÑåãïþ@Y½Š·Ä°6ÅhT•m3‹`*‰Êì•w^Ý4èãÁÏÃÙ{lù}‚Òm«=IÓîçq [X3KV°f‘XØÄg©@`­&‰¦¦8Öz©ê#%q÷ޕŻ?—Ò˜Óæ¬9òÂZ‚0u4 µÇÀP·á)ŒÀZ8ÂÚ#JQóÛŸ^ùŒyk/-“6ªdƒ™k;(þ×eWyî[®WwØ£ÁÚÞ÷ñ·¸ågíuïiºµzŒg®¸·e?ùçí§õÉø1¢ß‰âµ2еäÇ&—9ú´7i¥hd‰a#ìŠ1ШڬÕ/1Š`:P×õ©jËé¹Áí7ã¿áì=öý>vÛbO—‰:–á¶°f–$¬`Í<±p9ˆËRÁZ%eyÊt8¿äˆ–D{·Ž¸iC4` ª«r¿º6Y×Hs¿úù,Ž‚‘zÿ¼#°ް6ÉNkEŠ»mQ©ks·*ÀEî9›ÚH¦…Þ¡kZ± 6V×µö0Az ÛÓ­g+f™ZØ_šEÍQ';¤þáp¬Œ…RÃ3úª¶NÍ-)YDñÍ;oìwÛlO+3“NÀZ˜ÁšY’°‚5óÄÂå .Kkûü{ÃÚmJ¿â»5œÖ GÎËká&Œ$ÀškÉEg(ÏUX{€è÷=1ÛN¤ù®2°ÆÅjVáöÛ¶7¥yGùÅù¸“¤J¶‡¼Kôžºý(yÀÀ™:ûúäE¢“†–&¦8].z5Å4‚mX#Í ÕKy£ˆªƒùóç¿áì=¶ý>wÛdO¯Í$ÚÔç¾0†5³$ak扅ËA\–ŠXëÈÞvþÅÖ °Z°ÔGpt@kÈ €µÚ`mÑ…"¥R kóõ /ÿ”‹DЧôÊ ]Xãbo~ø¡º=ÁzE-}J3±ïmæ¾Dc•*&¯k¿ãÆÐ@QÌ[ê]Jz«î2q²6¦Rl´¥×ÎaOID¦\à kÔ†]ôHûjà¿áì=vý>vÛdO¹ÉDçáÌΰf–$¬`Í<±p9ˆËRÀÚM94-!¡ÂÁ°–ÆÞòy’ÒkX-XŠZr} Žh i°V ¬‰q4¿•<ñÂÚ"µöÅ`iþ¶Ni?é)äTêb`‹-§öju“¬‹ïéSšïÜÚ5Eét^Tʰ?¤^;ÙC4Bz¸è#e»Yª§z¥ã5謵×N‰°'#(îUŒ†&\Ã&"m²)QUvðzjä¿áí=6ý>vÛxO/§mÍÇy/¬aÍ,IXÁšybár—¥5]Ž÷¬¡i~W¤Ot­C9WÀZdëcu¬ÿ6¯Aƅ꣼QC0Žk€5Öº‘;‰ŽùÀÚoˆ.*ífJó·õžÐ?É´v£ŠXãbO}£œÜ‡v¤˜ÒcMFÆ›µL\þAÔB~VN.y)–èD×”¹õÛ1”ÚRzœì¦WåÇýSÍ{é,“oµôÚÓo.­M†š.ø®¡ØçBçb½bLà2º¥Ë+ÎÞS‹ß'Ðnîé‚Ëçbf°V–‘1Ù3ÄŒ“„%¬q¯ÑÞÏAl–²“Ù¼Ÿ-taí—Éiäê;ogñRu…nqrQùô’{o»4ÂO”yêRÁDÛR›WŽŒxM{žL9)¼%†‹°M-¼æW¾ÂEp 8öV·S²èË»kœ½§¿O Ý6ÚS7¢Øy8ë…+¬u"Š-’„%¬q¯ñ¾—ƒ¸,e#³éŸ-dam-ÑÒuúæ4Ÿò>€5ÈL£vy³Ê8AP¶ª—šU W30œk€5YåD›EXÓ×מZH¤XÐîIò4´ÝÖîçbÛÍR\Õ)6§4b‹,ÏKb§« ¹µÕ½wz¢?PºÌun^ùšè–úôM’ošâ,1\„=qYŸ4à=7okßÞ Fäý7œ½Ç¾ß'Ðnì©Q΃8éE¬' kXc_£¿—ƒØ,°%åóö×›x6J÷IèÚÏákÖ_Ü>i%}û $\¨žó Ax °X“uU%2}Qì››’c‡ï:x(¥f¸Z£¦`vΓ³GG7ga=¼g{vZ׸Êu¶§4¢Ø¤8.55îÚ2oÉæÛ²Ó¦}Ùm¨·edëYi=ÎOJqpZYET¥Ö ¹íqˆ±–>–xŸ¤äšbÁ¿dŽ—rîóYT:˜Ò&žœ½Ç¾ß'Ðnó{º,±Újœò"ÖŒ“„5¬±¯ñy7.1Y*2`M<+3^êrüø†ò³ä&ÿnÖ_“XF#áBõÓþ ¸°ê°"úÛ®éhtQ‚Ìb‰D›eçk‰á#ì½1g ‘¦’nZ`Á¿DÅ…;ä†-D{äÇqïÄ“³÷p ÕmnOsã­‹’ÖBÖTæn]'d6§ÂšxyšïW¤ü§ÿsk®[.&±´_‡Œk¦”Ÿ>â2Šz °X»J|nQ¤t57‡h\÷{Öe)-¬%†°%ÞÄ'–}nÁ¿dQÌ·Ÿv ÊZÖ Ý÷ÂoBd®ÛÌžÞ'ÊéàU7 GÀZÐ`-¸™Í±°&6«î¡}A’{;¿¬`­±å½ƒXלD¤\M„v8 Öóm°Xkx}Ak#¦¯ÏÄ«ç¦85ýr6.Â&²ùö¾–\CâõtOCüÇ Ó{ý–.΄È54X·™=•ûMÚb8Ö‚kÁÍlÎ…5QÌ_ݪúÏÇ¿?öÔÆøçÖ[Ý R ÊAš©“ dà(Ök€µFV©«m]äŸR0¿GÚ¶ƒô˜Y aKœf'yÖ[0à}¥ÕåYcN4Ôœ>ë¬q&D®¡Áºí·§|¬A°¶¢¤¤$ÀZEÁÌlcKJþç`X )Ö[ý `m¾˜€5ÐXs°vGã@ä$X“5À9™mòk€µ0ÐÓ±°6_LÝHÀµ(qÒ$”ï¬Ö ‚k(À`-l´Ûèk7Šh˜©Ók5„1®k€5‚ 2VT»¿Ÿ[å#Àd¡†~Ø¡GP}Ðxa|.` °AP„êýí?à @p;5¤êÐÖY¿5b5WFT_„B ,À` ‚ ÈT~:}£™ëí˜+ Xkd}ä6€µdŒ$¨þ§©%£X€5ÀA‘©<¢bÈTg2 °ÕI¯ÀÚ_1” úëÄJ +À` ‚ Àñº(/ùIϲ|Ö +=lk%JfjÙ ÇÀΤ¬Ö ŠH%΢ 8 ©NmJ ©O Xkl­¾Ÿcµ¸| %]©L­Ök€5‚ 3 »ƒu!s­ *ú?{çEuÇñ £Ùoœ­é–ÂHÈ£y /Ã#R(å¦IˆóÒT,… 4" ò•‡ÁB#Bc«”Sµ¥‡GZ[°…Ê–¶öhgwg_óØ»f×ý~þ™Ù;3wîÞ³¿»¿ÏÎÜÐj1e­Õ ø{‘~Œ$-øPlÚe²F!„´3’B¬Å”µÖça™¬a QÖ¾,[ÆnddQÖ(k„Bˆ•è@Y#>RüŠ›«]íÆ@Ò¤ T±¼Óf“°›‘EY£¬B!nœGôDÊñ•£/8T-î6ÃÈ£>¯û€½à.Bó» ,ÊeBqe>вF|æðÂøhÑÔÒ¶–REˆ?¨„ÃŒ+Êe~´»ý(;h2ê’j)kÄW&å>žðCˆø‰{”5Êe†tY‚·Ù D›²Ÿcré}”5âé ¼¢FüʶþÃe²F ?øPlâ‘îÝW&[æM}Î eEF Æ‰`”µû!$d7Ø !@keGP²F(k„²F(kV „HRÒБ½PÖ(kLþ–77ôÜw?{¶ÆQ‚²F!dl=ËN ¬i2@ÊñHýˆ¶Ô ½Ô Âlö‚^¢f3¾(k”5B!”µÐ…²Öê” ƒ»ðƒ¨“AHg/èe¥ÐÈø¢¬QÖ!„PÖ(k¤¥Œë(”ósHY Û¡#Œ²FY#„BY£¬‘òAXÍÏ¡^þ=}S{A/E…yŒ0ÊeBeM›‰”5â‰ra7­Â‡xú#û@?£… Fe²F!„²æÂ…üôú< ;^×wÂ9”5≫¶Q*H`5k8#Œ²FY#„„;3«Ù ”5œÍ¿î'A–‚‘ð…Æ‘‚²F 'R¢qƒ½@YÓæŸ³Fèj„¶F(k”5BHkÐ ø1{²¦=¡¦@fj=Ž ¬Ê¡¬ÊeBY#­,k=èëéYG€úµ«V4©µAžÉQÖZu¾ÚR&|#}Jç¿q–‘FY£¬B† ”²(kš\ŽŠ‹¡À0qÑ¥x޲FÔIß}l …¯~™B¡›(AH`/øÄ!#ÑFY£¬BÂ…²áìÊš6Ï#öoâ¢[ú[_÷ÆQÖˆ§–9n–½TE¥Ð Ší3ÿ„ 7ÊeBe-""‹­Ës8h]fÍ”5¢Â4—©‰è”µ@Ý9X¨á¥5ÊZèÈZ~ïã͹M}ò}ùÒŸyÚ©CÞÍÊä9—V¨li²ÖƸ×§x¯)»TË{àÛúšÒ€o:Ö×6 êaZòȳέ¯-›“<÷“¾ö×Eu—Ö˜’þ¬–é!!É”‹¹¦Ü¦ÝYÊ-òhÏ^¹ Õ\ùþù~qÖªÄsmŠƒ•£‹÷ÉC«] ­ z"eÍ$ÝØß IDATöx±XW¦âMÊQò¤ìŸhNQ*tÑVf±|c¼0}##޲"²öø¤!öQ± \wž3»7Fø!]š_h;óu²faW}Àeí¥Bgj4¼«tÞ'ÚI%Ÿ§J%'lIRþ@éuå8&½„„Q¤þn¶|“<ÚO?c¿)+_KÖ´kS¬]¼HÚ­v/^Y‹—Ül°Êº²¹”5¢`X¬LÖŒ)zèr¨úö‚}Ve`ÄQÖBDÖf¿*‡©O{ã÷‰âÊwôf:}àY+Ógu·ÌÀh5Y[#Ò4&^lXÅŒËZž˜wÙS£Ùâ3'EöÙ ²]ÓkŸ†´ÿôŒì$¶t€åuÖ›@üµÈ•ÀšÙÌ{ 9:Š!\Swt.#»&öbÑÝÖŒÜ#Z×À™¬e.Z´(ÛSmŠƒ•£‹÷ÉC«Ý Š-Ꜳöž±.GS¤KlFÊ‘óÎrÅãøòOIàrpBY YË>(~×ßëe]½ ÜùJeíÀÄÅ`©š¬UK«ŠéÍouU_9ý%d­o.œ©QŒè‰–_Á£NOZ¯£MFÎËÊÇfW‹ËaÀ˜q™Òøó^BnïI©öŽF×Y–aï¯À"·-Šhǃ[3šq²¿¼ŒCœ·Ú+F#’v«•'ö éŠZPc-ØŠDÊ‘sDùìtô£RÚ oYÛ tu\Ú˜ëõ¥:þ‘µ]ˆ.EfTz’5Ã`yKÏ¡GÖR2Lp¦F¯™ûm·A¡%Ýl°ml×]ÀvûcY*RšS–5\Ž7¥þPȳèðâ‘Ánß…9Î Y—ÑU{íI>Áуa‡Kc†úó]+úW1ÃH±Q»©°×BªÁïÛÇ—*#sÛ"öw¢QQd}}ˆQ—5ÍÚ+Gï#’‡V+O¤²6ôKqÙ& •?—e&TRÖˆœ&YÛK£ ”5Ö²¶0w$O¶õ¬-VY²3*<ÊZÖÄ® œ¬U/Lƒ©ÑH FÚ²Ø.¶¯ÖKÇ4–X-3V*Xd0¥Ü\)}_™öÙ ôNxi¡¬5@[Özó9NY«.÷–¨õß»Vô¯b†‘b0C™9}=díYà-iµxÏe‹2ÚˆcÄ%UYÓ®Mq°btÑ1"i·ZåÄA*k,ž#"¶X~øÈ´¼x²FdLƒm¨:x`û üW¨ÉcàQÖ‚\ÖŠÄLÔm¦×*iYòSi”|a¦­`è © i´¶¬e(÷T+pRoDìhú5èïQÖÖÚï“”W&ÊÚ–—ÍY{;ÇÞœ©ŸºÈÚK“Fnè””ÑËàLÎÇ¥-«ÅZ¬Wx^ûäÞÈ ³œ×hNXWƽ˜RþøÌê‚ÃbQ°_ÿ„ý|œŒÅŽktQçàô#ùÚÓrtckcz#9ÅuÛß“ZÿºÏ0RìAYSJ1)”Þ×{N÷þ8é~=WíŽOä1 RUÖ´kS¬]tŒHÚ­V9q°ÊZD£ ˜!.ïJ¤ËÝ(kDÆmUYëE¥ðÎýGk&²|ç·‚0ŒGY rY+R‹TÊ‹fóPÍöy Øö–‚ÚƒÀ‹{64¾´)¢Óm€>›7ÆWK4s÷+÷T)p¥(h6#·ÄàQÖú{ ª•™!¶19ýì²ö-À|²!òÈ#bfð§¬Õ/4L°®í‡o)5Ú LsþöÝÁ`¸ <^²Àò¥‘¶×&6EËÝ9­¬øª“Ï.£¬ŠE…tÝî-`ŸÞ />P[ ³óág`6Êeͱ‡ö$ŸÀàÖ˜J,ócÕö÷¤è_Å #Å”5Çž)•=\‘VóA.[”Ñn»× ¾î{ÀÝ(UYÓ®Mq°btÑ1"i·ZåÄA+kC÷Æo½aýÅ\ò$Ž²Ö œV•µQ)¼Ã‡b·ð6Èÿ³wî±QwÔkÙoÆø8öùLêÊ`l\×¶Y¡v1á‘´FŒm\ 0Å„gФ¸BÂ#±Ä`@ó "4`ÓR,ª @ ‚†HEAiQ›¤éîì{gö¼‡÷È;ß|»÷›™¹ñï³³¿™›žßå=ÃZdÃÚ+À@ÖùõÀY#vÍ´Dñ¯øï5ÌlÜËCò³³Ö’†”ËË’:aÒhi(>•(ØÃZökÓþèǘÉ3÷€ÈfËrºf+°3 ½å°?JkUXKŒæ÷Þt×èUÝ+(¦[J6ǪÓur¼Ö´8åxߦ0z”ê«`6¼„¢ÛÀaí`WÉVXS-ìÃrÂ#ÓÅä*äí’Ô:QíKEQíTýfÕ6X븯OTío`¦l˜"ѽ]ºýIØb†ezW…5ûܨÄÔèâ`D²¿jFÁ‘ k:(siužùé´ˆwâ8¬} Zëg°Z ' kaôÂ=ñcyÏã°Ù°V$1N¯Ö—ir§ B]:ª”GÊ«å* ¬‹ì2Aú@YÒI *š*½³˜\,°aMWçèÌÚn2¬iNÉàP®ÀÚÝÙÀjÁ)¬õ¶ÊlXV¤ ÂWƒS7Š~×” |¡LJ.“W˜97ŒåÕö«¯Ž^$?•£€—tÌ‹Ešÿ™ºCüÙ­°¦Y8 ËqQæ‹ù°Ñ½¼µ:QíKE±hWZˆmmƒµ•¬½#XÛí1Ko,3|Ãêíä×5ç‡lX³ÏJL.¡ÀU£àH†5³^æ°ÆeÕz¬%q à°F­yƒ÷;kk‡€fÆéó@'åãV Â|àM=Îâc ÖR üƒ|¢,餺†î&ÕˆgcZƒµ¤Ù¹K°¶Ök9».”ëÓ'ãdXëXaœ?jÝ5Ú!Ò¡ïV$½¯ã„ߊ’oÊ3’Ÿ• ïשp)P9í¡8—È%8 xq®l±¦/iG·»I°Àšná ,ÇM™/F¼Q¤Î{qÅ.dm®µ©}ƒ„'Y-Ú—áTÛ`íià¹hªð `˜ú¹ ßн ÐÊ‹7ò €|&¬ÙçF'¶Ž.¡ÀU£à…µíÛ¯šŽk¿^Áa˪[ X»Êy¾ûégÀ{ˆ™»k™‚Ö4|w¼ZÞ -[ÏsÊB€µ3)@Zó«w~ƒ#Q*µz*óO=âÑ•ÿš¬ˆØÕ‡Ìù\JVõpðâ\»-zœŒ++¬é­…å¸+ËÅ܆¿3YSß XpµÖæö žd²à°í°ö'à¢>%gý¬½]S}ÐÈ‚5ûÜèÄÖÑ%X£Êa¡°L7ÿx×U›’©gÙ¯8M8ÑÏ~ÂÛ€Ó‡µö k/‰@Ä8ý8²´Ï_ë„ óà™jµCÀ*e± Ê’NjœàøR$žû¼àÊê{FXSɽå•e:³€H¥ÁÚÜOf^YN¶”%`“)Ûö Ö„y•r¢ªGÖKO«œ$ºëž¤ºûï²¶p_ï ‹B xq¤†E\rªq=†‚5Ý¢•°we½ÃWçf­-í$<ÉhÁa-êaí¬º­=u;S½Ý  Ë«*¬ÙçÆHl]B5ªFÁQkbíÖ¸( ¡Fœ)œ%¸8¬qý_ÃZ_ Ää“Î%³ ÚBùYL¢^Øo<ß0ÃÚ=JZ”Ï”%TÕ šÌwý(m,Eï\;X„ŸËŽY@ÛÀVµÜf9BÙ_±S‡µÏÈkÍÇ7¹FÅùÝ *7¥ŠÞX™SÑ@25dÇ1Õ3Íõi¸F©”c¼8Ñ=h­'Õ)e¨`…5ƒE+a9îÊr11@ò¡“µ';ON§ºXkKûÚ‡'™,ÚŸ*Ñ3)ÖØvW¤í3¢Hb~LŸ(~Á<ƒjîí=/ö?¬ÙçÆJl]B5ªFÁ‘kgF'FèzÿÍåÀ,k\fµô¢ÃyË€“ÏQ‚+ì:v†÷>k k¢·€þÆãê^—†IÙõ™µ$ Ezr²9¡ÖzÁûá­I³%TÕQuº«l  Vo0ÁZ®˜ÁÊÌ k9¢IzÕ+t×`í¼4#u%XSõò0|¦aáÅYD"EÖª'¾Ø°{–u³ÔuS¼8Qàªú¹¿_þ5̰f°h%,ÇUY/¦.qò3Ãj€ãîÕšj_»ð$³EûS:Ú®‘ÑTáã€JããÍKõP½Ý(z±`Í>· ‰•Ñ%”‰*‡Qp¤ÁÚfÛæ,‡5.“ò=-~ÚÝt—Ä󭞹®¾žéëxÿã°Á°vT_âOÒX ¶£ lP>N4¿$Mõö½iû@æÀðÒÖìs ’X]B‘¨rGÜk—lî—ÒÁÖ¸Lšèñ”‹-?±R»Ijøâ"\Aƒ=žBÞÿ8¬E0¬µx‘rD?Ò×o›-“¼)öW@V±CXk=P}j4Yþ¿A_xñ-2Á²GG¿É’85 8•£8 xq  ÃäÑ4¬-…å¸#öÅȪ…¯Ì­Z3Ú—žÄ¶hOjsÌÚ(àD4U8'MÛf½Y¿³I÷·ööwõ½ö“·J§`Í>7*15º„kT9Œ‚#Ö¾³0K’¥+yNEBq„ûoÖúK<óÉV|¿è·Cþ/·÷eÎNõDã¼ïñVxÐÆ+ôÄç=ÃZäšðo zzpH_'uG®+“€/a0HYAd>ÈŽLÔ¹¹Ùõü(K:©ª @¥2_ò¤40ÖĤ«X¹S°¶P‚Óú‹Y~¨Áš41ÔìÖû±DÈtœ“þV+å3]ÈU‰žéÈí:âÃëV¾+^º>«ã0àŪuÎ)Ú3~,œ…å¸"›‹QÔ XãR­™íËO²±à°fÐÓú|TtHìÉÿ!æÆb‘éko¿ ÄÕÊO)–M,X³ÏJL.¡ÌõSåÐGÉ#‘/k[Fð{~l"_‰>¤‡"Ï Þ ªÚxÏ=Þ9¬E0¬ ~\äŸûdÒ n;”íȲO{ˆsúŽikå——7#çÅÊo‡}dHÇM@ÍZËkfKꄪ²ýÀ9é›Ü@Zä;X«ÝÛ[y>Mef…51ÕM™ˆ9nÖa-1 ˜BÞ±«¯ÛŠkÔèJ¤VÁ{LéU~™éP•-_úyÒ@#ˆ}$¬Nå /5ä$à¥u%zuúÆì÷¤-†å¸!öŨzŠÌ±ºRë í«GÙZpX3ÁZT­)Œ÷#N깯-Vnì¢úúñ«· [Äû]šÍ-;,Oeš}nTbjtq0"i¹QåP'8¬qX‹ZÕ%rjx`ñM±Û¤â†¾¼rX‹`XÆÕˆþWÚ¾³]†Kk $ÈóE›J€êÕÿ½ö1à%KàÍM’9¡°‹htT:±$%ÍxK¤¨ü!÷7"*dYR'ô°  ëöÔÏ󀼿J¤øM™ÖÈ>k=®T‰ØYËÌÌ k»ôîÏõ²= ù•tX“æã¤ÕIˆ9´â÷Á;úøÄ™"ßM•ψŽVàö;M=€‚uÄ¢Xuxwá%¯a5‚°(ð1WÔh%à¥uýÈ€ l>2Z Ë ?¬Ýˈª~›…”—jM·/+ÂÈöà°Ͱ&-B›9uHÆ2` ¹¡6‰}œÝÛË'cæO¸Y ”Œ˜°fŸ•˜]ŒHúµYË¡OD(¬Mù{çUuà`ް?…˜Bd ¼6á^A7ÈStІwy*¢Æ¤q g…Ð Pg‹j ŽR±˜JjD(ƒBëT”‘qÀvw7ÉÞM²dï&ww¿ïŸœ{öîɽ¿¹çÌïÛ{Ϲ3 kÐð9²ÕdãÀÀafY³,(ò¤a/º+Ë›kUÚ2"#Õ*â;S‚K…ݪ¤q|í©¯ððã`í“_•XÚïöºSôV•¦Oíó}º¥û=k?÷Žk‚›[Ör_p-.îGjdi1ÄÕFü»îYZ·µåòROh³˜–kÿfÈÔ f”—El•Þ>îÿ„—Úù‹çi/‹eƒg v›·n=P¿G ÓrŒF0ªÂ'Šû)²ÀÏZ_Ó“¼öSþ —“µ6[^hrîÛÚ õïã%DºÞ>Ù=îªêj•d­úÖt_ö]îHÖ¼ÿ¾Â¤²z k¸Z(£TQÀÖ9ÂVÖ,–’ÏmÌLJ(Z\éEg›rÞœ™Ðï>Ï{Ñbò?]žd[{­DÛÎk;=©ù<²¦ÛS_ááÞÓg»f.oµÁñtPî–õð)kIÝg©˜½æÕ˜NÖ,ŠºÇØõý¼˜¹œË`¸eÍr"Q:=Yò¥ÄƦœÙRñqùï_²pVç4÷vô¡W6ÆØ&¨ å~»)T~³ÿ^jç—¦¯­ÿ{»ö4sÖ¬³“½5Þ«*k©………GkjM?šTÛšǦácY›Q,Ò¯[ÁßìÊöŠ}8‹.,l†¬!k¦æˆRó¸¼ 'M©,¢`8…J]§Ï"kfµ{<CWˆ<޲6|¹TäJmE:~ƒNÿZ¤§£bÊFyl¢£°9VlŸùú „ â¤åûß•§Dª>Pð ‘ÛéŽÂ¿¥c#G¡·$ òÙHsi^[kúѤÚÖü86'éÏ‹GÖìÃÙ»Ÿûò˜È~gÍXd Y3õCß©R —²Üœ£&ñ²5dÍ\²ÖäÛD‰3j5¬ ÊÉ”Š\i¼Hj#WÊÓ_&8žñ~Cd½ë³«ÿgïÜ££¨î8.°äòJiš‚k `B¨ o-š†h(̓‡@ZÞ BDyÉ!D €„òŽB@^J±ˆõP)Ô'–j´ÈÁUéé‘W[OggîìÎÎÇŠ3'³ðûþ³wïùíÍÌÍïsw¾w€ž»Ô¼‚†—¶aw­;XÎòtÎ=ÁÛ'šýÜ“®3ù|9jÑ-dm"E§^Þ’ õRñ˜¶¡ž‹S”b7@¾r žfÖ°fÍ`41fß7EG—Êa­M<ÇÈ¥@s‚5‚5ïëEŸo]Îkîè’júœ×MŸïcºj Ö¼kl½š$ÜF°¶n>Ð6˜+uÊyË(à„Äl³É+¼öð>ƒ]j\!ËðæËÓ;÷oŸhösOúÎlrÖ,Zp ÙÙ‡HQ©ã©èÏ‹UÀMË à/² à’5¬6¼‘ IDAT™GGóhö}Sæ›âP˜Èa-cï¬X^†ÅkkQ ²µéìrAµÑwà‚*Ц‘i`Ík°6èÂgƒÇnMLëX9I½-ðÔžñҺϋ­ÜöêöqíKcù­ñ Ë}ã¹ÔU{‹’$’5Nµ%¾-q‰M‹Ôß&jíÙûTjÖ”‹¯Ä˜–6¸&–Fö1¸¤\ûs¥ÿñ–ÞÀD9!û¾õ.5-ᥨyP €Î{‚·O4û¹'ÁFÏÇ‘£ÝB6ö!Ï z¹ö?-ª¾–]@7^|xI;ö4ü/v¶K/C­aÍ<š8š˜G³ï[@}“Z ’Kú„Ókk”Y‘HNçé$R¼ku—SåRîNžÙMø³üþÍîüý€óʦ—Ä+Ú¿ ÂZß8¥æþ™zX{›·lUò¹²b5o,½nZáÁ aÍ6F(Wj_˜ÏB¹Ò    ÀIyaµ~Œí{»Ã² &»Ô°Œísk“п®ƒçžàí*Ü“h#´÷ù8sÔ‚[ÈÆ>D°¦êtÒ»Ñôµ¼¤.ÂØT ÊdÎ(‘^ê= Ö­<óÙ3X³Š¦MÌ£EÖ·éH½— °–ò0ƒ``+‰hÆ”ÛÖºSd·FƒU@ËòûÇþMÒû£³áÿò›Q×$ˆJmØàÐd`ÎûËnô1 ¬e¦có‡å¿ƒ|›auÆ@»ŒŒ˜@KN<2——¿#µü<°iC ®jèŒúKã÷éAK\+(Û𝏮2íÌs¥»{xKo`c™¹•,6ý`]Ã]jT&ö¹C[·ÂÉÀzçžàíÍ~îI´Úû|9jÑ-dcò‚ÖÆ^vÖ’¿¹åUÚ*B¿E…~üR%vÓÁc+0Mz¹ÿpy|ÿaưfM?š˜G‹¨ow%à ÓÁZvç¢sÀá‚5‚5J¬H$‚5Sn_X«ý‹.÷C]P,˜(ÿ ö?–öbìSõf)¹mx=ø …cÅH<+Ãrä™õ¡À‚ÀíbÏRG cŽRKÊ"$ ”[Þòc@…h ÁÏš} B¹R9_3@Ò2 +ðƒÑ}/¦ò<öä\£]jRfö¹KÀ$' Î=ÁÛ'T¸'ÑFhïóq樷}ÈjÁÚ`àVסe/<'ͤM2ðžá6ç3¥×ÒЗ×rµ!¬ÙFÓŒ&æÑ"é[~|¢ƒµãò3á ÁÁš×µN,RôiÙÖÖjÖÂ$ÿôņ™1ÁIÞeFë,¿=:«4àg_ŽJ¾`Ú`¥‚d”ŠÅ@¬ý–©(µl“PŒú'ʦ:Ѓ °fÃεಶyCY¸Û!X{øø;Qe°Ö¸W-'á9£MŒþ@ú, ±~›Š6ÃWë³`Í6Z蜳ˆIß!'0ek]å¿ë–±kkWÆô¹tf¹¤]ChÅb—TçÊ?iù~‚5ïÀš¿)_ ò °‰oP€924•hvÛñâ)à/ ’]P*.oê`ík¥ås`cùýþP‡7ÍAK .Àšm ‹‰í>À;›ÛÌÒ!'0ö4cŠtAvÖz Ö ísÉÒA¬q4°àܼ}B…{m„ö>gŽZp Edm"X“4/}Z4ý÷ý+Ð[-߇)[¬^ħ„V£e/e–¢;Pfk¶ÑBçœE´ú–çG;¦‡µ¯‡t]»\bÀåkkÞV‘Ï·†Î,w´ÚçëGß‚;Êóù¾GW/ÁZ ÃZfUUÕ—ãýR2\éq=âƒ÷J,s=š,ñîYµr;p­ WG´–‘lo{]F2-¬©-±ÀàÐGgç–õVˆ %7]ºß4†¬=‘´Þ]¾ñ)ìø)È+h’ÌÝz ÖŒís£€½Îœ{‚·O¨pO¢ÐÞçãÌQ n¡ˆ¬Mk’ †±hÒ«@Wµœ„–âK¦[ùÀP­šgÁšm4í%l;og[b|Šk²2Škk^VѾÏi}y—DÅvOù¯ûJòèú%X«YXSúZ„µŸ…ÃÚÜÝ~å®ËÒ† %aÍ.†e®4lùCY#Ç÷Í–R­RyÅ·žjK"ºG¬Cp] § Î=ÁÛ'T¸'¡3ø|œ9jÁ-µ©Æå‡ƒ:Áî ýÌ? hªo~Fîvˆ»=TÀšM4³ÑDͶoc¯1¬u’.P‚5‚5O¯.2vFX.‰nƒtQÉ Ë¶ÑõK°æ Xc»âÕ糚_Ö¶ÿ’ uo–Èu‘É÷FÖ9¬åK;§Wn\¹ë({ôÄà¢gÍ.FD¹Ò8)cl„&A]¼eÓÓ°Ö¸êp`ѹ§÷ö‰®IèL>gŽZp Ù[›Ö¢Re€ú˜‚'ÅõrÎÄ«0†Àšu4ÓÑDͶo ÿ[5 ß- í ÖÖîø¤êŽ-0ân²N"Xó¬±Ñ@Ú“<‡ˆ?ªÖîBëÙ÷^î—ÙèïêóoÖ:}Ú(‡ AK .ÀšmŒˆr¥Mòεà²5#y@ÞX`¤á•^Ñô7ið1ë»CcE±@ŽfÀ‘ö/®2X³Š¦;ç,¢Ùö­¨™ªLhÖLÞŽðÆÁ@s‚5‚5‚5‰`–ÛÖØÁŸfµòƒWzøcst*HRÓ»˜=N©Ø46‚µáÀMCX›ð%"ò¤ÏÛ ‚–<K•m ó\é²_Mú¥ã“Àk)0D©ù¡vÝïÂZ%ð„Óœ{áÞ>£ —df#”eâóq樷­‰`MQLj{£CÒÅþ'¹P/5¸’¢ó«­Ó¼—†Ã|~à†æ„ÑšE4ý9g-‚¾…ÎVų6x¶B™KXô%X#Xó®hù RT+ƒžŒM°æ Xc?&áäõÀAÙ|Â¥û¸(ß.Ö«þÏÞ¹GGQü¸ÍæãelH”˜@BB$[¤¼KbËã ­HŠ<Êi©Qˆè EZ¡EO ¤bô PA[KKUJ•*[8 Ŷ§”ÓÝìƒÍÞÙ™Ùìl~¿²3ÙùÎ˽_î™o&ÅõÖ´ã"Õܹ¶ƒûÑš¬}$2ÄPÖJDN¹¥l®såøKÑÒ‚ûby ãã‚‚'ÃèΛ"Í\?‡-–ÔžÕÓÒ®[D^ÉŠY»’ª?\ ÎƒUî¹p×ö…Úa2¡¬ÎÇœ³Öª…Â#!knÙì¥ØŽŠÛdY çϽ3=ÿÄÔÜþpë€Ê½¤çEÒ]~•µRä9×b¦9=šž´ÂEó{ÀÈ ÎQ銖4EdI_d Y‹WÊzN>àûr°ç8߬Ҭåö,)²óEFmû|Ë!‘Ô«Îí¿ü@ä‰îC‡o}@¤gÍÿø:4­Ï^myK'‘s#Y› ’²éµ3º¬•‹tÚ ô“[S\+Ç— dM î‹å%hŒ2ç‘at§"WRï¬|qâE޹÷8—9)çß~»HïŸ8â_Öš›v¤_à`•{.6øžAl‡Éh‰ ÎÇœ³Öª…Â#Å™!5)Yï~ôkƒ5WnѱO†¦œµ^-¾|(ΉFÖêÂÚWÚ­k&ܼ(·ËÓ<j=B4XtYsÌòh—Ü¥m¾%ûË~Ï7Œf8…¢&­Ñj½gíh“Ž÷å¶~³å³d Y‹[¦)Õ–1e%¼Ûj¦¦«Ìdd ÌáЮÄ;§Z+½£·É k•{ZmŸ¶Ã:¢jÈä³Öª…´ÈÊZ¼$-d Y‹Ç+kç3¤5{óÖ‡c™ÉȘBÖìÇ\Ö¦‹·"p`åžVÛ§ûYG`c‚W ™|ÖZµ¾À\Y37i!kÈZC]O5hz(E'[¾bd Lá#ùy‚ËÚi‘ýVÖ*÷´Ú>m‡…Îؘ UCfŸu`µ¾À\Y37i!kÈ®Öi´üò z[#» kv`zj›¾‰wVµdíE‘·- ¬Uîiµ}z±Ÿ…ÿ’ V5dúYT íðÊÚêòòò:Z¼™IkRyù5d YCÖ°5² ²·¼”DÄž½—¤¬¹?Ik`Mƒ5d W@ÖH/È€QrY«w5d-.2îÕAŒ'Hr>¬ºŸ¬Øû½Y‹ §”ºÂx‚D`oºZÀŒFÖ5d-QøªR»N´Têæ4²`Cú¦Êdz5¤³Z7†ád99WßéK/XÎ…)êsY°#ÿ]J'²Ú•µYMÖ3U©¶ô‚õ¼{Óæ4²ÈK)ˆœl¥ è…˜À”FÖYc%È²È k¸š­¹’®¦Ò Ø9Y@ÖY‹7²wÒÈ9Y@Ö BÖŒ;ÂH‚DãóªÌmd Ànlßq‰Nd ü(8«ª“J`|¦Æ=ÍìFÖìÅàNò½Èø±P©¡Œ$H4¾Pj8³Y°ƒD&Ò €¬ TŸƒŒ$H4Úªz2»‘5d Y³5C ËH±¢E7ú V¾…Ö·Dª<¿Ù"òk¿/þ]docs†¶¯gYó/’ÑJU’¯å{öì/Ž"fó@Y R£ìùíÐÛbÙi7ƨz(4¿˜ëirÚöPæõöÎ=8ªêŽã´lû…fÙf©d«Ð@È Ĩ)L"`Áa M’5 „L„‡ jHP†GTHx9D%ÈKä‘ fx (¯ U°£-„Rt¤ µ¥´cïûÞ=çÜÝ»ÛÙY–œß?9{îÍ/¿s¹÷Çï³ç|Ï GÚØJŒULÀ|B9ÆÄÒxÚºP©6Y§ È!4¬ð–|!vBláQ[ó€f:ã°Æa³ZŒY&+½~š§ÃÑ™_INk<çܰ&Öf¥ÉzÄwT¿JîYÝ)!£â½Zåc:ò„Q?šíšþ]¡ ô~ýÜ¢ÔÆ¯³”CµKç-JX~®e‡ŠB²uføßćãS]Z8ÁÖF¥Ã}ˆëâsRº”´ÔR>uÛ±ôµù®þ³?ã k"Œ<´»^hý øVS¡¨+‰;äÆ\}¹RÚF¬òEÖÌ"Jª"ÄyὕÙ.)è‚SB@c¥Ž¡{¦:–ˆ › S=Рˀò¯ëÖlo£LÁ–,É®´‘Ú6w90¦Æó"°OmŽN1Î0%"‡Ð°ÀÛ·À!°ûb› ÌPZKàr2Ó‡5kQ´¸ìð['d»ÌJ¯y¡ùà/ÅŽšý«ÃhþäsX‹(¬ùÄ"ÖoSüõgÑ\5_,š¨ÁÚ6y!ÊJÛÞ¯zW.5Ž/×6š}‡+Ò‡ðl‰Ú±`¥ ÖV޶ú‡5@ÛǶËP+X;œ«e´’A`­K,Á(´>ö«GjÅ_6–Ú‰Uùsú§kp­¢ k~"Jª2br/Ë—¸jí{%4lu %Ø3wP±DnØÌ`Øê¡€v ¸í”c÷`ä[²$›ÒFk1j§l—ì3à }‚9!9„†µÞö¦Íœºðç“,݇[p@n f§3kÖ¢gÇ;:þÍoí+/#½^á°#vÒáXÏŸ}k‘„µ" ÝÇèß/T|Õë³æž8Öžt»ÏW5%Š…úcHÜ×§ÁHýçôƒçÖ·²E¼rµao­È^»ÖÇðqCüå×– næ×ê°öê|Å‘Y̱X²¹nkƒÞñ~>u»H9¸¦ÝÞÇÔEFÖ°ö;©°6 ­7Rã«èDý´·€×ŒßIÀB!ª°FˆdH©Š°¨S‰'„õg¤€†­Ž¡{æ*–È ›Œ•z(Íð Ü©4÷ÛìÈ’ìJ[%ׄµýbrT"ƒ_Ö–õ2“‡9!9„†µÞ¾€§Ãébyv°pBlÉeÀ›¥Å…-.Œ;ËNgÖ8¬Eͺ÷ptLã·NèVMgײçCsÑÖá˜Ä/dtXûzþôsX‹ ¬½ôeõ¯N¯ñ =Y†5Ü”fÞ¤y´íÅb«'pNüqA[¦#ÒCžôS×—Q>ßHK'}Ãg4XKŽf}$OÿÜÌE§ C³æœ†®»5‰+„ ïY3 ­*£Z¯úëg4jÔ"ZV%.9£ k¤H†”ª8±Jë>[‹lû%4lu %Øóë c‰à°é`,ÕC¬ðGµ¹ØeG–dSÚØ l +÷hX«ÃÜÞ±8,åôÊéÌ È!4¬ðVb\®øúîmÆV¯:{{E:ã°Æa-jvÅáø˜ß9aØY:» ÑŃ»gÞÃ/dtl¦Ã1“?ýÖ"kC€Ý‹U>ýKÞgX»*þ=®èýäi‘Ñ”ý#sKZ̰Fù¨q#>_™›(À|Ön”K‰¿^ïE…:²T™u£`íˆsjó P ¬=l(VÖ€Še”W;á&tú‘t\©·DÖH‘ )U™cH8~I SC öü;ÈX"8l:KõP »8yçPµyÖ–%Ù“6¶‹S–ëYÁšˆÉ5¡ À:­Ý ¨ã~ !(¬Y{sö:í=ºâh‡qÀ‰4k÷vc+Z ì”3e†E:ã°Æa-jv¶êêoùŽ&“kã‡ü¢ÄŒ}8ëZú9¬EÖöÍŒî€8µY“€% ¬)r¶ zÅrn§ŒSM~µ«V” ÆôFæÔÅNÖÚ—0¦)fË Æç,XËÚôq¡1ÑQ ¬ n’Ì-—Tò†Dé¢.Šò [ˆ2¬"Rª²Ø$Ömÿ\7)$¿¤€†©Ž¡{þd,6Œ¥zÈ>z4Ù‘%Ù“6rX3`íææÎ±4¬#À ­=³©ãæ„Ö¬½Õç">YþåÀak÷öbó%OfÇ ©–ÔÃìtÆaÃZôìA¾{|xöçÿܚў_“X²ŸògŸÃZ$am°Ñ}n}yÛËÀ Öz ZÞ¢´º"¥ziS†N `òñcàŠß_ÉÀ†3ÀtJ3÷=Lµ yúÎrëþ´¢Ã•Š‚Ê>¬LÒ›«®ÏGã¯P vº¯MMˆÇÿX"9l¶z0lXÛ/¶£mÉ’ìH[‡õD0‹IXëüИSžL6%;°Ä›j÷i‹ÉYîmÅ&™¨¥Àuo 2qXã°ÆY-&í¯™“Åÿ¡»>qµ6¬PG¼Š IDAT_¿çürZã‰çî„5ñÿw5Ãå£cfí#iã<ÓË@±­YÏñV\ŸúbŽ´º2TXÓ¬³®ØKv4ð%ú“;ÖH©Š8~U{U˜A./ `”€†VÇP‚=ªƒ’ÍDnØêÁpa­~š±1M0YRpic+±§ƒÂš¬Uó¥bl, ë0ÐSmŽ¢ßhNv`-°7ÍžFXº·Ûm?'Ñ‚‹™Î8¬qX‹Šu}øûü®ùíO¿ Wõ÷ƒ÷ª~ï_gF÷ô<ʳ‡µHÁÚc7@Éž\í¥¢ÂЛ5ÊbaM.þó< 5i`Eùh6Þ¿ýê¡dÖ6ôò7è/ 3ÉŠ> kƒGõ%–áÂZœ>‡–iZ•tGÂ)U9!¦^ý5Àû>  ¥Ž¡{´‚’ÍDlØVêÁ0amàl :ͦ,)¨´±µØ âEKJJbbšØß¨m02ìÀŽXÖ!`µÚC¯ÅÎd,S kÖÞnö訽Cè…T§¥{[±1=¯sõÛÒ?qXã°ïpÔó»&zÆ_Š]«u8&ò,Àa-R°ö¾©ûýj©+³aZqŸ —#–°v±OõÌ&åuTXQ>:eÇj™Û”—bÿè5Â/¦k€æ³¸¡i ÖγIå ÚÙ†µ7†÷ÕÞ!=\Ùõ_Y§¹X;uY’f©X”””w'À%Ué+“ÚqíýÛ„dŠ€†RÇP‚=ªƒ!›‰Ô°­ÔƒáÁÚ£½€cY¶eIÁ¤­ÅîÒ­û³Òõ×Ã7fæ„`Ö¬½9Œ´÷ð’µ{[±m1¾Ú*N‘ò'#qXã° TåË·íç°Öjíù§cò<Àa-B°&Ü*k´WïJAÞwä’SçªÛ`m ºÖêŒ%í³'2ÙËG¡•Ê´ÆŠi(KÓ`MšÜñ}@)ÐOÝ|Ð`ò©Û+@½®-’'ìlÃÚV1mòâŒzx'ÜŒ}ÇïÍ%U©Æa.Ç», !Õ1”`Vð±d3ÿcïÜ££¨î,x%ùU¤‘%€i@0$à#ˆä!‰@©G J ‚€ XAm"PyÉC©ØD°6z´"ôE°¥jµ 9¨ÔGK[=Z=½ûšìîÌì#ÍîN²ß÷Ïλ¹;sÏäwî73¿{ãsÚ¶Ùƒõ’µúBË!-)|j#²Ö¸e-ýB‘¯=³3ü³'ÕaÂÉš}k:ÎóÍ*ò¶ñOko¢86~¯oeÄÆ,Ëp†¬!kÉ`¥Rµ\4ÈZêR­ÔûÄd-^²vm;­F_zž7l|R|«žÙî×nÍ–‚GÂÉÚ$‘w=ßì0WrÜ/7žéeÝÆ"Ÿ»ùÛÅ“Þ⓵"·…¾¹Ðó å=¾~! MƒgýktOþ©>æMu²6¥ªjt„7 {ˆ´ñ¼¸¹J\ðî:7[–¥;YÖL©*3½1=Ü%ÅõiÝ“@šczÔüRh¸´™†=mÛRë#kºBžŠE›–d“Úˆ¬5rY«È–ÖçèÏåó}ÿeUUéaBXY³m­|žÈܶVtÈSùVÍ›ƒ–}kÏ‹¼éiddŽdœcÎ5d-ÔÞþú .š$rÞ©ÉYK&ÝìþqY‹—¬¥Y§]ÏþùÂa…î$ïmÛêQ"‹Vwò¸ˆË3{ž­¬­)YzËÚ]­ð½·R$§cÇ;,Úè ¿úÔƒCVÿDäù)u²æ~nÖ:hF‘Ù¹"¹·Ž-½°Ð·ü²Ñ¦Ÿ‘ÂöS¯òdŽ{Èx¬NÖ®ÒAÖ*2ÅuÃÊ™Ú'ùó“D–8]Ö‚SU´dÝâ+·*‘aѶhJ  ÍŽ‰NÖlÓfœ+kz¤œy ^iI6©)Ã1‘†‘µ/ÄUÖ8OìS‘K' éµTd³'êUë(. „•5ûÖ®ÊܧÍ=‡ô~cÙ¼Eвm­¢DdÕÞšÒ·]¾Û5æp†¬!kIaP7®™¤2YN.' kñ“µôiKŒ±WÁIÿÎÃþ¥´º{“Åì'™ÜÎ÷M×vϰbÂ]îÂým¤o›çÛñ€û–°!kåˆì:¤Þèoó÷!mú1æ;˜¿Ë›á½¬¥·)ñþiæ^ÿžçDÚ;ZÖÌ©*b¼š÷pÐ ‡á1%ЄfǘöÌ|¦c‰ÛiÛfÆ.k§Dò~KZRÄÔÆ”¡ïæ%ÂÈÚáÁÊû½ü‡Ù‰•ÿÖw¼3!Èše@/kö­µÌõÕt™lݼEвoíª¹¾š’J›p†¬!kMu¼àlˆÈZüdM÷wÏ_wqN»%³ÖA[_úlñÅíúß—f6Ⱦ÷ X—9ªËçþ©oî8>§õT‹6ôxîDÜÌîG/ó¾ ä—µôÚl)¬:¢Vcßž›“·ìÌæ6ý¼¿äòÌ[þ5µÕ”žUccµô›gvÉÈèòæcG¥ÈÓŽ–5SªŠ{uë•F~KÔË4›hl³cL'ïßa>–¸¶ÝÁÄ,kztœ7'¦´¤RS;Y3øeöwíœV>ÑN‡£K|Ws€¬Y„𲦵®½ÞêžYÈšs)Z¼° Êš9UŽRBΙ­».)Ù}“æšÐ예²fq,N—µ~"yx_§Œ”–}j#²æ¦7²æ …¬!k‰fceMg.€´ª]ۈȲ™²³)Êš9U¥èÛBïŽÜÚXÚ4%ЄfÇD–5ó±8]ÖVÆ ÿ›‘íÃþtÔ©ÈšïÉÚdÍ A+…dmÂÓWdlyâÞáÖÕÝ6µŸW·ôÉ9-µøÒF©rÆéI¦ó õ¼Ð¡á˜®T%ñYCÖ"rØ5#¿IÊš9U%ýðöU%wNìc•)&$;& Y³8GËZ¾XÈZä´¤hSÁÃ3©7ùŠ–µñ555}´n®©)MYÛ‘ãû—>ôUõìëi¨ÊµxRý…:;‚z’9W©;è…dóë*k4YCÖ"r¬œa3@HÅÿ¼N㜠µÃs@©!koè3Í>tôrýqgWsõÐ]±îhÿ<ýqw²GÆ*uqz²aQl'°F©]Dd YhZ²Ö€¤¬½§OôŠõii#^ÓV¶È´ÄTïî"—ßÖ--m_?—ÈŸµ822ëRÖ5ð† ˆÈ²õ¦É¼ot£H¯¢ ÍZƒHñµÞͽZëþ¬Å‘}¬‡|Z)Õ•^H~`z™x€¬!k€¬Uˆ¸Öø¶ÏŠ, ©¾V Ú&ßöEv k{¨9¸Ÿç›Ž€ˆ€¬!kò²öÈfÿ¶{ ¡iÁÕŸˆüÍ(Tö+Ý€¬!kØY€”eGÇGèd-a,™eÚŠô ®^$òáÿù È®€¬‚5hägÊnzYKÓE¤Ö(]-Ò1¨ú3]Ý YKû/ÙÆà i_V5d œFo‘™ô²–(6j;ß(}$Ò6¨zŒÈâ´´f'—,{q(²?.SYƒ0‰È¬!k€¬AjËÚ×ZÖÎ3J[EVU/y+­å¥¾E±ÏAÖâDm–*epî Æ¦œAR›ˆ Ȳ£Õ¥Ò^@ÖÅk"…A%iX=Kä• ÜžVâ±µõ±5d- vª¬2çŽà«Û+¢Á_¿P×5d œÆäÒ2:YKؽk‘Qu¥ÿj!kXý‰È–‹eËs?Oû e[]¹Ç¾¥#W_oÍï”ÚÐÂsLdlî XÛ9\©Æ²ÈšÓ¨é^Wj©}ìåÀêÛÝÏÓæ¿ãÙÞwTow°méU±¡µRw0ìŒ@çӬ텬A(§Y&¾©¬² šž¬ÝXý­Þq“ÿ¥°¢’pÖ†cÿd­š{Ö¸¥ Q±\©iô‚c 6ðd Y€–µ×D2ƒJô„ç¬Þ±Û(½(²4öŸ g%ÖÃ/Ûy½à '1@β)+kîÙ ëf Ù*2>¨z§®žc”Ž}YCÖ5â²)F‡9Et²–(zjÿêm”>¹1¨º®®[¬y´.•#k Í«k—3$°f}åhb²†¬€ƒ(º[^¢µD1]û×a£tµÈ߃ª÷ëê £4Y—þ¬50=¯S×1$°¦Tí=H”@Ö5p,Ь%”."'ŒÂ"‘>Aµû\"¾™1Yk`>Tj*Crkæ(uŒ(¬ÅD3€xR$ò)½Ðh*C¡="ïú·óEdhpõ|‘W¿Û?ö_@ÖÂsJ}ûCrkš¢&õ$L kŽaP¶ü‚^€„Q%R8Á·}V¤S‹àêïéjÿDæãF‰”"k ͪŠËÐAŒøní}ô‚ƒø‹:…¬!kbï°Ùt$ŒnóD÷lîÏ9RýN®È°¯<›-n)‡¬54§s:‰ó•";Š!J k©Š{òþ˵µÝ»Bd™ofþÒþýû¯÷l}¨«Û¾§7Ê®Ð[_Öãµä zº*Õ“^pD d eé§%Ìõ@Åú£ÀÿH!Kºz7géM™{ü×.ýq¦3²†«!k€­Œ5€ñ« ñ²Ì¤ÈZڽžêÌÕ-êÓ<²†¬5&N?–Õ›^@ÖFÈ€C˜ðÑÄñ™¹Ï ižf%ki/ýc§œ›†==¥~­#kö¼Wó—ŸÓ(/£œÆô!µD d â²fËÆ[Ô.€HŒT·n#^ kÎàãÁé@ÖRJÕrD¢Z©Jâ²ö?öÎ>¼†+ã®;¾—ÛH¥·Ñ„{“„ÐEª‘°hBÐdQIv‹ñ²»‰i”­°H««^B¶¥VÓ.õ°Ác—’zkÕz©xJ,Z/Ëzv[/OWwçíÞ™;g&\÷&®ä÷ùgΜ9s~¿™;çÜó™ß‚ ¿ Þ†Ëtku€eãLÏ&ÒB÷žeZÑŸz kAþ@"ð*‚ÄZ`À«¦rº>âÞ, ¾AbÄA‰5‚ ±VƒLú9]þGÛ¾tüïÓ©¿ ±Fáüitk46"Ž*6§³à‡PAbÍW¤§}Ñ¢%·Û­tŸT·§üþÊuÁÏŒ7YQ’qz4“ÿ ð¬3àkçŠ=–#l=©Hö•¿,ix•^›Ö®KÄ´/7([¿83#äÍÿõ7.Aµ†€÷I·ÕmØÉx(\×oÌ2-Ä2Ò í×þ97"·ÛXöóËy¥eá–’-Ý¥µŽP“jä—Aßܪï'nˆ¥Ë‘Äiµ:}›ÔõHµZ¬Í¸çüóo¿Ôûêbz »÷bííÉ£,í†Àgz(_ 䜼²ø-÷bíþýeX’¢ ô´”Ïal9çßárÎåPƒA<\ÔmØE1#ˆ´™kö`¹Ä½šÚÞ}ZÞr:ýþÅš‘AÖ7÷êI¬‘X#±Fb ±F=Rmk1ëù?÷ÂVnûºŸø›×õu‚ÄZý8ÞMÚi´ÇÇ¡O¼œŽ… øF^i¬|±vÿþjÂÔœ½˜  Í¥ì[É@;ɽâ(D]m’mâa»~ ‚ .ê6¬Pìë!³K¯1«ÄZ›üü|Až‚ ’¦¾ ´v—Wc ^³?ç5Õ¡á'µv1¸£ï—¡AÆ7Mõõóó›X#±V¬œA׆?2ÞdzŠÎ‚??tõ$Ö¼%o:?ÈØ/NÛ·Óª/xj^¬Ý~äÿ¾Òn:¼+¥B‹°E™Õ€O–רXëŸ e ×(nlÛ/ÏéEH!$–Yà8¥W‚ ˆ‡‹[Vè·û)LcV‰µRb¢-¿:Ñ£@¾[e|Ãß)È·sû€Ín[–…à%ý§ìÆߨê“X#±V}¬gÚC׆?bÏÞ¿–΂?²Á´â0õ$Ö¼äI eŒse9`éêb-ÖzüÂlA‰vS)ÐIJuà‡E‡ÐRÎÏE´½ÅZü (½á@›©Ã|)“øåF`¡´í ð‚^ ïš±a4^R/m_PDøóW†¸å†îsQ6ÈÎ=ø¦fn&øØ$sÔŒ&Üt:!"zòÙ]ô§SËîwºµa%˜é¶®mÌ:bm ð™˜hèÀ/Ô%"­˜oSÖê-»J`Y¬ï™±A­o:Õ“X#±Vœ¥—íÂ#ÚšLS©ç ±æ¥}À±@YíæýüÛ>ke@… k,˜¯ÝTì–RÁ–>xK\¬ãjN¬½óØÑ5Ðë È[ÆÇyÏsÐKÎh¼½ß&Rìk±Ö¡D®-b¹:; .±ÆÙi‚oj_›dŽš1Àd¤¯‘3JÓ¿NU]Éòz–Ú6¬ºA\S¯3™kGxIÎ:,P_qç4““î½Ù5`ª¾gUÔú¦S=‰5kÕÇËÁ¦•¡tm„,5™RßAbÍ+ø‘Å/U««6J¾ë<áA]ʦÊïà„£#7ñ‰_9JvŒá¸Ðãs2û¬_™(m:U:93"aN³YµˆLÒ©ƒãÌ{z„Y2ž=ç&Ö&ÂZéîÖE`#¿¸©šúÑ5ÉÄ4)ÕŽ×a«€×Å• @?)û溧-ѳ›RÄÚg_9>¹ëAû«ÙÕ‚¬ø‹mÚ'÷Ó9oÁ¼¦ÙÔ5Ðû8!oLḑÀãn;0%<„ £ñ’1Àü• Ӿ㾉*;Õ%Ö˜ ;mðM àk“ÌQ3˜ŒÐ3@Ћ٥‡€„ú×1Äm$=üMV8÷¯0™k€ÞrÖfà=ݲ¼©ÓªÕ÷­øÀàš®Â Ö7êI¬‘X«>F¯¨O—AxÂ÷7LÝ©ï ±æ æ M¤W…¼ìû¬b2÷8ÅÚò@1#ã©#­¥MgÄ¡Fy‚\2åøÑÖÁÅÌ–3-Q‰µ%E.墫¶ƒÜOÃ>PD Ës!øW/D~ 6¿1r½l#z•S¬m·Š!Ò³cµ»òbm‡°zQo =(‘Szw€ÆN-œP ç¸Mû;/üÖ „‡hCU¼…?‹wÅ×F/ØÐ>À5âž—Xc‚쌃oª _›dŽš1Àd\ž®ŽøDc×½bkÚ°B#`ÀÀw–ž½ ·]¦1³bí=å–ǯcºjö_@¶²š ¼màYµ¾éTObÄZ5Ò´)]á]©ç ±æ}B³N~c^@…ß:°Kbí¼Õzº`\?tý9½·7·ÂDÿ{sa»úãØ[¼Ðqð½xE‡+@§Ì:uÜæw^”•Ôy=0í”K¬u&UäÎR ýE r7±¾ñ㢱²;ð2Çý™âÌ’FM»¦³>_د¹Q¯IbÍë–¡•ë …ûËìjïzˆ ô~·Ò½ly ÷$àœ‡iÃq+€}Ë©õ—º%,"ˆÚõ$Ö¼â7ª¯–©éL'ú“ …ƒE±†”àá¹ÔwBpÊ`¿¨t¾ô³è(,]1`LÇøá„ðê¤9Vz»QkƒÃ€­:Ä ’aƒu¶l’ß8º‹¸D!pMSÀ!s`($§"èœ(Ö">Ø{, yUùËìj,›Í‰¾¡¯ ô Á³ˆд_íÔÌÓ+áÚPoÉ>•“#mrr¸ƒ‚d±ÆÙßT¾6É5c€µ˜ ›œÁK÷¼Zù7pæŽ÷³ˆ™#tA{Á_ç7Ï®ö®'Öf+á¡aBD,Ó˜Y±¦º ÒÖxD “4P•µÞ9#‰UÔú¦S=‰5k¤Õê G².M¢³@jº¥Z)Öן–c4ÐK~à6OV¼Xû‡¸~—¾ú:…’æ‘æÜ›3»™Zü0uTX&} eWŠv&ˆµÛ‡€RÖçE‚t'•MÀyaù†¢Q.½£—/=n{+ eòÝëRé_ÏGRÆ( Qþ²»Zîõ!e ×øDš^Á|ˆâ¸3HMÀ°e3†I¢0%<Ã8TåÁ¸Ùjú*9ÙÓu Læ2§X«"ÈN|SøÆ¤îQpf´J9³à°×Ê‘$Àó»U^ô­[S„w—¿jr½º/,­X³Çñ]O£Èµ‘¯ˆ×i̬Xk´uæ…`‘ÖJOi†š JÎa¸æa16Èø¦S=‰5k¤Õê =M&ú}H­Q¿T;ÅZ#àCì@±œ¬Ä,I¬Iál•®ÁÍXí¢°§¾aì?L•Êc&KGÛE±Ö`¶îŒh ¦E À>ÝÁq,yÙ)=‘³gà('¼ÕfÞÙÛ $É¥Nñ»‹b-Už#R|ïÈÐ_vW‹S×ÝÇ@/8p[P™ÛøQS ÇÍäãÄ-õ»ËtJxüC釪xO±ÓS. ޶œS¬Ùi‚ojß›TŽZ߀+ã÷À<1ç§ÀÿÙ;ûð®<ŽoãÊø–ê+¢W„ˆ¤ÙJH£j[Ýf#µÅ¦Á"²+UM”Fƒè*Ú ‚+”.åéY/UµÕàÑv­z¤Ï–§ØÒ]Kªoºh½µxÐ9órçÎ93Ü›;éu{¾ÿ˜99s~gÆœsÏgÎùýΡù#²„ÕZ/O %½ÝÆÀ. X[”ƒvò”~¿î$~ݘ)XÛh›AtÀsF+‡<ø§ ‘³*´”6Àw¦•27HÕQ<‡5k6i×ãùk´jÏ7Uj[Î{k~«?p‘¼®©ºÃ% ÖâuȪ¬«Dê–”å}PKÁUÆ{†qŽk[Ž+iŸ¹ÆqÀ©¡=EX:/o]x¶ÐûÏÍÅ‚P‡¶ÕH¬•¬ —Oð}WE©ÄÅ(GÕëʤ©@ÓúÒ—:‘zӽ àîõ³—ýkÆ ©>h¦|÷~¨fäðMlW•€¨ ˜ ¿‹‘8&h°fâdG;ߨ.[LjwÍ2 O¸˜´j6ìÎ,|ÚŸRVîùk¢\ßkW:Ö2Háu6ïyHŸ‚èÆLÁÚßíåˆA;¦©äÏsnàB¹ù maÐX7FñÖ8¬Ù£WÜ|ê†Ã—šãp\á}‡5õ °‘\¬¢™@,,`m­kÊžÔ]¬IiÒr¥Y:{ÃUÆ ¯Öˆ¾7Z—â¤]‹%cHq@ý6p$Yž¸¥äì:ð´°;‰„ú×{tHJ—`m‡zÝ Ì¼¾ô¥Nm뤛è-Η¯ÛÖô—Ò‡õ4‰.¹Ð‹‘Ã71]U¢/€¶dujf6>Š÷ÀÛÉŽá|c·l1©Ý5Ë€wBëråÁwi¢¿"Ak’²'ÚÒW2aMSe"ÃYÙkcÕ04ÄgÍĽ2 øÆsXanÖ ±nŒâ9¬qX³EɳîEüµZMQð  A«3Ë%ó^„ÚŸúÐÁk܈|î„•ZÊAâÐr·:d `MX!ûÂ'¹÷ëá‡*ƒŠÏ ÁÚNäûÿ×Ä‘…Œ „c”2\¶uj%£–…ˆÐ9D:çM\G$XÓbÔý›ÌšÕ—¾ÔiáUBô†VôHËÓ?]¿½H&nz«‰BwFŸÄvU „‹y•å"cŽà5¶“í|c»ì0é¹k–CÂæyò6ÚyBôW¤xÀa¯”VåÓ53`PѾú†5¡‡´ü›Õ˜ °–KBÓÊ͸‹]Xg±I)‡Û€Bs«ucÏaÚ-êêp”ð·"ˆöA¬§ާx/ÂaÍ_5ÕŸg§\î'ÅñÌŠ­ÎZš 4¼R@Pç”~¨2j3kßJ8ÆÈ3Uá'°ÓXéƒbÑKµñL9ÆCÀb™<Ó+漢"-†›×—¾Ô7XS5š¸摊*[–2rø$¶«J´¨LAËp-?uÖØNv´óí²Á¤ç®™¼ÂEÐ8Ñiùõ*i‹ÁÐü¹†[EMêÖ†C­³ k"ïªl?Ê|?¾D¤(o˜KmeLYõ†º1Šç°ÆaÍsä åo—ªéèÍ{kþê¤_Ñ| ¡¡4 píV“Ö 1KX#Q-;9©ðC•ñ °T9¿oU_k[b…¶ÈûŸé$fœ&]j'yi5Vº7ÐtpQ>s#'v6‘ãÃÀx#¬U©‡“õÛ›Qõ¥/õÖ–“P’%ÊFÒ™;ÁÈá£L]Uê¤9ÏUd¢®¶ÆÄ{Áš¹“Þù¦žP“ž»¶0 &ˆoãy²yC“H¤~’?"[oVøçÏhÃÿÌÊ£Ç!#Þª1«°¶ ò:l¹wê¤ËñêôÒG”ÃL¨« î°þö`nª£xkÖìYyö")¸¸üÕ™B¾ ’Úß:ëBFcÏé>yè⺪I†#¦°öÝöíJÎùs° iðã© IDAT?TOz1on“7Åþçý½îky·I#ßR•î \i£mf4hŸ¦ÄçŸ¨Õ ‹(x•ÀZœ²OÚ ¢¾ô¥>ÀÚÈn+ÔuKÝ€aįîcõ¿˜ÌâP9üåªRõŒd’ÃeH)xÁš…“Îù¦¾@“º»¶2 ' öì]ü¡ç½ -Äg­Òû³Au÷YCöCÚpï XûÚãG;˜ÅhÌ4¬eÎÕ6­_ïq_SÞ5îãÚÎî•eÛ&27HÕQ<‡5k·ì€ˆ‹+”Å{k~ëâ(Hó|øHZ ¸#Åk\uÍ Ö¦ 戠‚Ò0ÙUưhdËSq•eÈOWaM ¤æ½*ð- _™Gú«4Jû Ué)蘢T„#ј­NÚµ&Ö¦ "¬‘ Ø) ¢tdZ_úR`íL´4p"x™$‡Ÿ|Q޵$»ßÒ9ü•ÑUÅMK½ü_ò´6Ûç5s';óM})p&uwmi@NÈv) »#oqæ§ k™ðx‡Ö²'ÚÝ…kbϵVùrY^lmlÌ4¬Ix—4JPc1É”Ë[ŽÇÎúˉãà²Ü¾ÖÔ U7FñÖ8¬qXãââ°Æû¦P‚µ3Å@é^2ϰ¨”]Ïb—Õd<{(sﳂµÀ)²¢¬o[8¥UÇ,vÀ2 ß«¾4X»8WŠç¨Sø8à¨Tdªb7Þk¬´ó€×<#›2)#˜ÃÀ,dq‚<a-…|è.qaJºE}éK5X«MNžƒ^âOÓo \«”QU)ÙZ`°-–•Ã_Q®*þê˜Ë³k‡÷,F3¯Œ´“æ|S ”Iý][ ût›íµ@‡53UZš?Ra-ú¿ù¹m÷®kÃ/$'"ýÏZÀ-õ'±ÀštVc¦amT4Ê›Šÿ¾3Fñ^SK6c¥Ò €òâÛýј¡+„î_(ƒæu£‹ç°Æa³ÚOQ¯‰åÓïœBÖ„Gº‹ã¡¹]ƶ<‘$…k“'ÃÚw²7œ[÷>à"QóLaíÈd`Þý}ú¿Q¤,8Wïü’QFßRq|qì³ /ãj=°&Ím•{ÅöHÎâNøA­œßK¹Ã°îïœ|_Û*­£xvY9nD}uµyKñfN ÖâQðüñ* Aڄļ¾Ô¥¬õÿpƒÞ¨D¸º•¼™'‚ç9E;9OêßH[ÀÎáƒ(W•H|l‘Z¨KX“ì˜Î7öÊ“^wM öé6ÐZëûþx·„ž ˆ?àô¤ 6ÀZbÍu[ÃQëÚp{±ÅÊí]ì†wj²u :Ù˜iX“Bצø,k°1Þ«´ ^[¯~š tPÞ­Bà°®Fÿb4h^7ºxk֝廸 äZäp äO!ÈõÁ4î·ÆaÍ_u®ÒÆèsש‰…픤âÐe`¤u±ºsm5¤„•I'¯3ÊF®U&Iß 5X Ÿ|îU¥wK•Œ/ýLH ƒ'Þæ‚QDÒb1ãêI¿^jufÆË°æV‚Ý-ü3É`^_㥾ÀšÐ$M¾6òY%!ö|’œµÇ$‡¢\Uê®;Œ_hg}ܪ2PävW0œì˜Î7ö*ð&½ïš6@%T{âß„9•6Ô4>±è¶º—òX #ŽŒ„‡ŽØ|ï,XRz‚­M3 káo+×Ü3ÕPÚfµܲYÉû<1jÙý‹Ñ Eݨâ9¬qX ¸¦9Ü}Cåÿ5ü_÷Ÿþ»{ûžP›†â›b¿vW;úðބÚÿ•ø|L÷gqÕ˺ Í*›w))^ñ¤2X²ˆ¹{ë¦î‰Z,SC=6X½ÐY¾‹Q†8ž;^™rôy1 kžh$òªQÃLOiÛ¦d |Ä6*Ä(Eˆ™@›wâ¯^në̘qZy²"¬ 6¥õèxIm.¦õ5\ê¬ òZ$$´øV÷á½°zJZþÇY£ÍsÜ´h7šºJ/f,fýAõY£œì˜Î76SD Mïš2@%ˆïûÃÊDæV 74Ašž ÎÁGÃz¸u¬ £³¦§$–ÞõëLÓÆLÁš ‰(NL9úL 2—5¢²Çå,ƒÈYPÃåª&k¥œç€­¦5h ðPl@ÖÆ[ö˜åk›‰Ý„óê…wöîB²5d Y«3½T‘Î鸵~®–Ä$H¨'¶ª?#YÈ@$#³@֜åxÕÇi5÷¢«½ý©“ºÖå¿ÆUk²”zËBÖ"ÉgÙ  kÎá‹JµtÜQm~6É£jë÷:«gó”jÏUkÒv«ÍX²ÈZ™¤îwämûÊ«“Zd8­[•J媵?PsSÑ,dÍfÍH’µÚNƒœÃí75£ÎŸÃ²5 ƒ$ Yk”·íw<ÿŽWó[e!kÈ kÈ®Ö8þµVÂ`kÄ*d 5d5d Y1hpƒ€¬!kÎ`ûÀÑœá¥ËÀL YCÖ B$÷Å( kÈš3¸ Žq„—j3w„DÖ5ˆýD¾Í( kÈš#X£ÔÜáå–R ZÈ²È kÈÚ½zXͽÆ`3¢ú16ãÔl5{®…¬!kÒÚJ!£€¬!kN`¼ºÅ `3þ¶;[³—”*õ5d "CÎÙ\YCÖÁ S†qØ ŠmCºœçkȲȲÆmû‘5hˆ ZȲȲ†«9œ–J-e°5²È²Fî ŒÑw·¾Ã( k,d 5dÍÁL¼Ä±ˆö£[ȲàôÝdYCÖìήRUÆÁˆ©j]¾…¬!kvÒ2å÷Œ²†¬Ù±Jñ¯5€ˆqZ©oá[ÈZmdm\ѯ;tMÌ<š>.$ÙÀüsµû\oùRèÚ\íú"ií}ýâÁ½c×>¸¦âÝPñeHÅÂöWÖ/ê^ðävµÁŽÅÎû 36óè¡4m…„p‘»õÃm±ÝVnø`wИ\mkû}Âˈj[«.hU¡Å&ßGÜ›y YCÖêÈþÏÕáïqð"Åèžêµ²V£¬}súðÊTâ‰ÅÁ'@ùýåáPËZ-Ú¬AÖvŒ¯Ê{²“<Ý}¬¥•¬ÝMñ¼=“FàDY‹jç¹È¿’°& BƸ¯z,™`%kÖ­µ ”5ËÖª ZUh±Éo²†¬Ç9¥²9ö‘c©R{.d­&YË?àúãžòä/~þ»®®_:J—ÐËZ-Ú¬^Ör\IUeÞ“ßI¤ïôé/¹~¥¼Êfkœ—L‘÷ÜéUéq§O‹v‰"ƒHÃj&¹‡ÄÛkãE:­ÛZZ çÿ•L`„0ÒN¸>z¥Åæ§D¶åÈZßÕ«WgTך±Nä£þ6TÛšuÐòQ¿ÀØä¿`âêÕ}5d­î¤N˜Ó‘coGFõ)nÆ(Ø’²s©²Vƒ¬e¼âÊn÷s¿¼#rÓ‰²6ÀeaÞ¼'Ndyù|Ϩ3"“ü>ö×îòLùWéãfÈ¿¸$Jôòp€šéùâ»¶Úß)1’´ <ì]Yí·F‹Y"v.Ò‡D~ kjjÍè/Ýýn½bÝšuÐò¢Å&=XµGÖ5nÛßøØ T>£`Sð-d­&Yû™H’÷ëÝb‘Ä펓µäž±R•÷é[R1 êQßÙçs–H¢{^Òn‘‹”È´zÎ)g}Ô)6åq•ã~gZ`wïøÃÖÀh5z‰MøKúü»m˜”Óm³aÔz¸ zíؘ߈,s¿X-_ó]¡Gˆ‰TLXœ™")æ²fÙša,‘õ~ï­[³ ZUh±IVȲ†«5B:+•Ê(`kÈš3eíG"ÑÙUo_xÒàdmÙó"±C½yÏH‘už5‡Döù|ðªH©;Ek+?ö,:=èÈäúM)÷,ñèAlqèdͯ&°F«¨ÑKlÂ_ÒÐm“2¢ ºm2ŒZ/µ]h…¬9ˆ¦ÑòŒçå">1Ð$B¼$ ž+E2Ìdͺ5#Cäªß–­[³ Z^´Ød¬5d YCÖY#j9HÖ\™Å?}Þî•6žÂ“ä^ÏvŠí½¼Ô3 0E†SZ?½ä #mßÅ]ÜìW±jËæ•c·]ü¤Ä“è¸élÒ†aäÎïß&qãåÂy~²6%Ebþ°_?ðýÄn³>Ù¢µé¥dó‹k£‡?ýÁ´Üd­HÒñû¼yÏC"·*‹Bü¦!½#+ÜÓ•Ž‹Œi()åÄE"OÝÜYô²«ÿ} Ó»{ǯ&°F«¨ÑKlÂ_ÒØm½Œ(¸nëèõRÛ­ö*.¼@ì±ßkD^÷¼œ&rÁg!žYZ±`“DG™ÉšukÆ-‘"¿-[·f´¼h±É$X!kÈZo¹ƒÃn[>»;ŠQ°-?9s!kÖ¸s]©ßMñ_ðüœ¼Â“ymœ_)kÅîy9²hNÓ¸ŠU'ÜYó¹mžOŽ? Vmù³< žÛá#k;fˆñß­ƒ=ìöˆ•¬ýrHen8ëF ²Ö­g?£*ïyOä´gÍ×/{?–æò€ïz&ËÉA×Þß¹sA½§”o‹|æÎç²ä‰ß5•v÷Ž_1ŒVò¢UÔh "PÒ§uۺаnÝÖ†Që¥>òµG`gY»Péà†qIä Ÿ5z„*rÆý~¬HÓiÖ­'E&/[\˜UM¬[³ Z>yb“I°BÖµ:’={wKŽ»m™ú>c`[ŒësË.dÍ’É")¹&ËO»ªÍº}ßY)’ЪBÖ¾óáºWÛºrÚ¥íëƒ~š R~£ÿŒLI¸3æPºK¯¢ïsÉÞ%’¾gO®I7\¿üÜß·Ž< ²v‹WÖ¶¯­hȇ ¯ˆl:¼óÈÿÙ;󨍮+Œ#1ªÞÀ¼Ð`Jl<¬F†Z! ›£H Á³DL - 1K ˜Ø,…B"C­„°Ø”`%@Ùi%€”ÅÈ)4mQPµMª¾}»÷ÍxfÜYðùþñ›;ãwïÃGç÷îýî«uÃ3ÇSW”fÞ¤y´÷‹Å£AÀ-ñG‹¶èG,áGK?uã4ð7iédá$`žk)qÀrÛo?$ÉsG!m¾Àñ¬Å”!ý¸bîHÆÔÁç{ÖŒºç z~äégÔk;O`Ê[±Ú´]NX+ÊÇ€ßëŽYJ@Å`ç¯lfÖòÂ8jì !°ô1Ýv6Ömví½dGžñuUyÐØ>°¶Y#â ɲ€¥¦o8¢4NíÛá}Öœ£ %ÆÈÄí¼FsLZº˜ÜÄIVkkiZ/W÷Ð}'‘ —ëQÁ𓯽ùEÕ®Býô<Ö¾’?Ÿ2•š WžMÙ?2'±ä®Ö˜UnÄ(ÓSñº k–[m¿}·ê¤ÆVeÖµ3"Ω‡×"`m8°¿XY*–Q턇Ðä×UK÷ >hLñ2¬åWŽNPoZn•n°óW63 kya5ö†Xú˜n; ì6;Œö^²#Ïx:ŠžžoX› ¬‰”^Õ:*¥c½y½,'CL_¯ì5³¸œkÎÑbò€´“çkÎwŸ \ÉðÍ7¬1¹‰“¬ÖÖÓ—+‡n;‰îqÝ!ê"XsÒI ™Ó|è¦=VOÀÖ;[‹^@Ü‚;FÆ©& 5h`ÅÄh1æ*†,Ù#ÃZ—ÎÑràMÃ3òÖ†ü¤È˜™î¬ ïý%›[Á1©^2YãŽz¸Alo’Š÷"¤¸ì¦]”üô^7ØùM-V3 kya5ö†ÐZú”n; í6;Œ^ŒDêÈ3Þ#‚µh†µs@¾v<+Ì_1¢PdýqÙÝÆWJ–].¬9GÛ= q)Êc†jà¬×h¾aÉMœdE°F°˜ò»î£»N"…G;æÔu¬9©xŸÓ|îSyð@‚µ¡‚VËÞUŽú"¥y€²Åæ3°ÆÄèiŸÁØx•ñÌõ²'ª,Oß9nÝŸ1ýì:eiUÛaíj? ³ùû¯£þLU‹Üˆ‹Ñ{ïgè,Ó!Åe¥ùe»†ÁÎ_ÙÌ0¬å…qÔØBkéSºíd4 ´Ûì0z1©#ÏxÖ¢Ö~Ü4æÂâÌ_1¢øN~IE|/äÁš—hBÕcuï—^£ù†5&7q’ÁÁmÛß5 îI„hAÁš£~ Tpš54ävJ°¶J‡µlåè° k’#MTúÚì—­°ÆÄ¸¤Ø`MV¶ý·—Xk¿ >¬•·,þ|£²Ae©_°&,[¤®è´K>PuÜI)Sêá7&GFmyXY 2 vÉ Žå…qÔØBjéS»íd4 ´Ûœat4i#Ïz:¬ˆw kÎç~A°vÍðÏÙ]fö qÜ`ú_)«ÂXóMWM, ½Eó kLnâ$+‚5‚5bµ¨—«/ÑÁÚ# k€)–EŒåòôÒT¼ª·œöJ°6Ùք˵JéîIêl†5&óX Öþ’ŠQöÊ÷¨µöÛÆƒµœf™‘\Rï7¬ /Ž~£Û|£a°fF'#‘~ ¬÷ˆ`-šaí,0H=œá¸g’!Îi›(‰êƒX¬µ)šð,ð¢·h¾““›8ÉŠ``-ÕåÓ'X#…Wùd[#XsÐÇÀ‡¦Ó€Ø.RQaøÍêå 1¯°&W°£“jÒÀЉÑl¼{Ç™Öög ûõ·v™žæÖžÞ=¯/± ÖºéoxbZ)^Ú{—cò0.¢­*Á6삤ÖòÂ8jì ¡³ô™ºÍ5 k–at0™GÞî=¢eѼ ò °G=œÅY‹mÎçL†´UÖÿ}¬9G{8°×sÚñPô‹ñÍwÒbr'Y¬¬°mÿ¼?ý”nyT«³ËµF!ªõ“S'.y¬quÁ~Ï)åA0Qm©JËGX»óôÓê™MÊ3^ ¬˜Ý"fÌmÊK±¿†Z7lø3 Å,®mzk·Œ)¥ ÚµÖê&ÔÖ MRvýWÖinÖÏ­3öÜn™Ð —F . 3>› vAR cya5LCÈ,}–nóŒ†AšyŒDö‘7{:¬=‚Œ ËÔßqÞl}ý“!ŒçIÅ©rÒb`Í9šËH{Ó€µ^£ù†5&7q’ÁÁšÿú­ËõwºåQ­'/ûBTë7½\[z¬qõ/`]•öá+À³S÷ù2Fçªÿxƒµ-Hߦ3–´ižÈd^Œ¢d¬Sæ(jʰ(Cƒ5i#5ëëJܾÊár ÖS×F@uº ‡2a×fX“,UL’zp]ýú(Ü}“KttëÜFí£×bÅ2›¤Ì» ©…±¼0ަ!T–>[·9Fà aÍ<Œ|#3òfïÁZTÚô·ýoù êžþ@¼¼ps Üg”¦ÎÉØh­¯r¥w· ­@EV¸‹ÊMnÛDšÅ`$µ0–ÆQÃ4„ÈÒÇtÛb#jX³ #×Hät Š÷ˆ`-ºamF2â:‰?¶Zõ›ìÝ;ƒ›! 7äT6!±¸°æ­p$ÑZÖh >ƒ­ IK¿6&7±ÉŠ``Ío=æúë鎓HažZíBèE°Æ×ôj±¾Ê<|­Ç8x¤<óÝ7X·õ¿­_nyBGXÛ– ¬ÿÑ›{~®®Û ¤öî½#E<µ~ÓØ­K£ó X“æÍâ,;Š”§i/Íß㾩X©éàé¹`øØ©Ruø‰k#Äé£î™‘÷¤³³‹Œ8Wmº TšÏnß×ï4>äí wM)–x Öí,†» Ò4Œå…qÔ0 ¡±ô±Ý¶ØˆÚÖ,ÃÈ3Y/ñuUyÐØ>°¶ÙºB0ÌúbsŽôU^vÕƒ†uÆÚ°1¦¯²òGH=¢æX+šå?9éÐíè¬1•A”¾CŒ¼ÿÇ?hýÎùçI~FG IDAT2úp±ö?^mÒ™¿;½õ#×ož~˜W«)֪ܛ*þA¬‰5±VF-½f ÖÄẔ•?­èbº&VþÝUê€]ÕRyä%u¢&}Ä&ÿ#}éË®rаÎX>ÆÔU¦~„ÔÙ#š>Öê÷ÎX+ÊMK¬‰5­VB£\z•)¨5±&ÖšÂÙߊé/Ôf&É”÷¼íÍ#V•ìꬖÊ#/©5é;¹éK_v•ƒ†uÆZÅ+¯2ý#¤Î1Ìì_ß[¾‹Î&Ö²½i‰5±V›YΫÅÀ—bG¢cŽúkñÛ›l‰èjnö+‹ëßúÁ“3ŒµÔ‘—ÔùœÔ?ä~¤¯Êe§Ök•c¬¸Ê*?Bê쥗M¬e{Ókb­&ÿ;Ù¶ÅÑÙö²ük±ÛuÂõý…ÚÔ¤J¬¥ØÕW-©30©ó9é;ùé«zÙ©cDu^vjŒÃ®²ê:{„Xûì¦M›ºŠsÓš³iÓEbM¬Õ`õ¾0ÔmÛbbh_gé/±»=—{‚ŽR¬½îÊâÜ´6¿ñ‰5±ö»6„%–QûY‹Á!|B‰5 kkb­F»ÃgFXv zý‚4 Ýß ûõ—XÈÞÔï™A3ð,$Ö†9ç®—ìŠcdßÝúK¬dï‡ã‚Xkžs€:˱µ•I²ØÄšXóœˆ5±&Ö€‚™.ÖÄšXó˜¨5±&Ö€BþfíSkb­¹>·_¬E£}ëM-¦M¬­–`b c?·ÜÄšXk&ËÛµçXŒ a¡)Äâø¶ÙL¬dÌ7Š5±ÖT6ô‡Çí9¾;&›ÃÀ&Ök”8Öæ…p§=‹5Šç˜.ab ±F‰cmi˜1Ùžc1&„I¦Î0СÂÄbòÆÚÅVZs<¶ok7„h<9Ï¡5±€X£Ì±fÇP\"L¬djói« A¬‰58€Xkb (˜©­É€)ˆ5±æ PkbM¬3=I›‚Xkpµ&ÖÄ ÖkbíH8°ËŠãrÕsf—Yó„˜XÈʘ&3MA¬‰µæpE[¸ËŠ£ò÷ùkÎ6…¨\Úv*±2ÅÚ(€\mXñ¢!4O@bíBxÉŠ£âK±£³²-œéËÖÊk€X{ݬ޳a±F±í a£k@Ébí˜ã¼hÃqùv‹L!.­¸ÏoÖÄPºX³ÞèôtnñGÎñQbb ([¬Ù.¨5÷3±”Ê%;Ú ±æákb  `Ú×'>±±æÙPkb  hz’¤ßkÅwàšïÛ.4‡éKÿìCFÄ€Xƒ²ÄÚ‡C¸Év¡9<Âçä˜X¨_÷ød©) ÖŠnûÌ0p‰íƧ÷àŠ/›B|®ëKgé1±P¿Ï¿ÑkE·3„—-7BïÁ-8F‡þ½[‰5 ±¶jÅY#,7B“Bè0…u÷íÝ ÇÄPŠXóÌ!Öh2rL¬åˆ5‹ÔskÚ¦›‚Zkb ÄšçŠæòKÍ@¬‰5±bÍc PU‹Zk…4øñ톀X+²Ž-3µXÈɺ%'ß>%™øµ±]¿ð#ûwûø~±PŸîñÉ ) ÖŠì‚¶Y,äãø ÉLûç«™¾òÂNÔdb  .=IÒo ˆµÛП±XÈCïüän^åkwï;D™Xkq¬-a£½FkÒÇÌ ‘Þ› sî¢,_|{³E™X¨ËmIŸ! Ö l㌾Éö«WÛÂShœÎ¤Âû^ÌðÕÛ½ð)Q&Öêrì3@¬ù(H×b7¶•?]kÉy×b ˆ8ÖìT¬‘“ÁT«%§ŽVkb kbw-áSh”ö/¤c-ë“¢L¬ñÆš•Fmò—]g ²°J«%ŸÊºk@”±¶a÷ =v ùØZ-Ö~ší{´\¶V˜‰5€#¿•Ý5Âku\#íòñtµX;)Û÷x.„Nau¬%x¬*e¬]¹&,k±SÈÇ’j7Ûofûí›CÛNe&ÖkDk}!øÊdÈËœj7Û[3~“émá>es¬€<=$¿1…&౪”±öð=¿´QÈKÏUbmwÖïò·ç—(3gÖŽPËû“}¦€XóQ4Äc_Ü)4̯ªÄÚÂ’±p¤ž~aª! Ö´ Ñ‚57΢R­vZ.Í€XÄMfR¦Ð8OT¶Ú¸|N‰J3±Dk¶)ÖÈ×3WWÄÚžœ¢±Dk;f©ÔĈµ¦Ó±è2+ü7{çÙÇq—‘ñu¾KlIƒ7²$ˆËº!.µ".+±­ŠcYE•ʲ¹Ô½±4”ºžb÷¸l‘®*uk]Ž-E]ö„^¨£)Šr´´v{v®ï›¼3o’×:•¼Ï÷óÏÌ<óÌožKÞÉ|fæ™!ÄŸéÿß!½hj”5B))ûo³ e­´àÌ`âßô  ¨QÖ!¤Ä$á(PÖøÚ~BÈ/E²F!%…Å&”5º!„¶FY#„Ê!”5Ê!´5BY#„’çÀ(¶¡¬•îÄÜd÷ ‡ó?çâØ ÂqhW:e²F!%âAjO6¡¬=~ž{_ºÃîŽ1’T­ Ç¥àe”5Ê!„BY+3|%I/°û„£¡$E³„£b°”MY£¬B!”µ2ÂIIºÇÞ£¬aŽSm)k”5B!„²VFè9|xKöžx|,a+ˆÇ°Ù£Ÿ£¬QÖ!„ÊZY!£;OD¾Ë6‘Œ ³FY#„B(kë}ÿªâÿ)kIaÐN÷†E—÷>ùwsZ|˜f(‘¬­r/ÏeGHÿŸÊV•c_PvâÄ9@˜Ý½µƒ]6Õ2hðMú½Ê/?ÎCÖÌœ9óPQÑFÌbcÒO)ʶ&Î6¼eKt+³€­Y+ΜY²&¬¬ýE’ÒÙq‚Âb ÌOÊ/Ÿ²æï²Vŵ?hýKËZ3Kâ¿€ §HÖš ÈéZ®‰Ê!â2Î:ùÊtúYÀæç,¸l* Ø­Þs^~ë!kOMÙxŸ*\—ÛlÃû\6•å¡Hªd›µeMXYû:xÈ~veˆFŸ…Á«)kâÈš|;Ÿ¢xä²ö0±àôÉÚuÀý4ÿ |NY#D\vi3•#ð'ëêaØÔ  Ay]±:!ùE[Yóí7ÌÕo9VÂìÂû^6…ýëøº}VÊš¸²V.ßÖª’4™­ ¬­Ýä˜5‘dM~ÃüÏÿ8emSpúˆd­ 0Êu èAY#DXNG ɘÍæy®ˆ¾A†MÅÙFòHàœ¬y½%³¦1‰¹vá}.›Ê ãJ–MVÊš¸²ÆN˜„ŸŸf+ eM$Y›¥8>W~ó–ԈΓ¾Ý¦_n„Žrü "–lI4ÇPôÛ—ؼq5·ÒÄýGPd‹Ýódc“¦ò¸º“"Öí!ËáçfMè¶ño}Š—µ0wŽìÕRØðT`ói5óÌ\ÛÕœpöËKú¹”†zÉ;oóø ‘]gÕ,o•µø§1É,û)Ì™ì’5rÛÔÌc÷”5âç,]10ß¿køÐŘݼéyÞ3±¦M=pß“ï¼d'kEGÓ©á~¬»Px_˦²Þœ8/Y)k”5Be²æ·²Vi> ßHŸ1Ø”¥i÷ Y¨'´Ö¿ãòÉ}ñí†ÒÄç[L8hÊÚŠÚZÂë6싸‡’µ›…æÆÛFZN3,*$kGºóÉ_[em°ÒXìŽMõLYó,·µfž»§¬fÐÄ—•?ö¨5÷|ºc^õN\Yªä›@ucv2ë±6  eÓ¦~ªéyÀ§v²Vt4 ç- Ý.¼¯eS,ó–•²&¬¬±Ï¡­QÖü_Öº“´—pTsSÒ«œ‰nèæ…5go…ñHP¹`ë⣫"ÐYWšªK€úÙçvBVë›\v8.dÎ:Af—=µB€ÅÅÊÚ˜èÅÀ¨èè“Æt©,ïÿ30õÔk=j9õ¼šç¾sAZbÌF 5O>}M  š‚ë?¼§ÈUD ‹¬Í®èK‹€#¦¬YÊm©™e÷”5⿦––ã¾R’”VâTx>,Kõœíþ”Ç0˺\mõ;¦M= Ô3Vô2íd­Èh q­/œvá},›ÊH`‹×¬”51e-zàÑpv!Â’XýeMY«ð‡6­a¼¯Ì9¡Ïj©… y­f^èv\MH²Ô ge·§@WšXà%5§üÏÌï§o’|R™žWïvÝUÇ=f+k6cÖÞ$íƒÖ'#H}ð1W9ïQŸ¨ èt”ÝcÖ.šÏ mšZdMž‹Wõ¥4,MY³”ÛR3Ëî)kÄ/Ixæ»TÛØ¾¯—³$Û–µb0°pàDáº$á¬ÓmSÙÀ cÍk@g;Y+*šÂiµ%#û&؆÷­l]c‹m²RÖÄ”µtIÁN#DTò%©:eÍŸe­¿ÓR×+zbdø¨¨›—ñ²¹ZBOÅ¿ô塺Ò(“Xã;K³uƒR6ùJ[¾4Ò?íš…ùY+ÈÓ¶²¶4 »óÅÍÚ½¹óÔןÅÜŸŒÔ²¶Édv(sZM«¬2Ol’”²f)·¥f–ÝSÖˆ’±Sê [–ÜÚ¹Öïd­ÐМÅ£b7õU¦M)‡„íúKö>¢ìd­¨h íµv\7Ö6¼oeÓ®)-ïY)kBÊZ¯QR—Kì4BD%îŠ4º'eMY ùµq¹¶Ï  7TËÑÌ+ß•pD³,ócÕIšÒ|¬6ÎׯT}“óÚòE ®¾fNßemhäÏkÍ'®ª/êtËš"S£lë©ÉÚ"àcu!^™gÈš¥Ü–šYvOY#þÆ‹Õn5A4?л˜ï7%DaHYªñ¿þæ|L*¸ªgˆ~¿ßeS€cêÐÝŒ÷”¦¨m'kEDSù~hûå ; mÃûR60àïY)kBÊÚ@IúŒ}&2}bÞ©ÄV™õ’”BYócY‹ÍÍͽ>>D1ªòSŸ¡Ëëšyeiû€õ²¼˜n$¼¯)Íp˜ òËÀ}u“úbÀ¸Íu Hð”µíÜ\µ•µ À½6-ÐH–?– cÊÚˆ(`Îð㗼ȚÜ9êB6¶Ë¦¬YÊm©™e÷”5âWÜì}7Åq÷WùEE黥}YªôÀUÞPÔ/°æR}Œw²©ºÞÎ^•Šl'kÞ£¹‰ ™y’4Ž­ 2ᛥ”5?–5}ÌÚ»¯aî•/¿ðJ¤v–VO“5ók>Mž²ð²éqVûÉJY IYûÑØÙâ%kiz×ïáem¦gñ¼˜îºùå%kbS“­[{ÊDÖ2Ô™d÷¹NY3”ÛP3Ãî)kÄ*l\†êa«X`šËW¾'É, …kÃ/œcÖºÙTÖê}²§§§Èvö¼™¬ùŒæN7à yø@˦Q¡^À|f¥¬…¤¬ñxQÖ(k„²f}Y»lÀëZrX¬;E/í:¦°×LÖ|Fó ]ü‡ÿ¾²©Ü²¹YžIVÊe„ ßä5f+PÖ(k–—51UîˆiÏ<ÿøi’¶òˆ¹¬½d9VTªJ3¶cz ê/_²æN@²ö>S·ÎM×ìÖÝ·ô’5…Q«í®­Ýem¨2”åLu¦8‡¬Êm¨™a÷”5b†]®¾¬ýÛUßìq$‡x\…üÚÔf¯©"uYóMl,\4@om`k@²æ;šênOAše¥¬…¢¬ñp‘¬ lBY Y»Úø‡úâz¡k“šªxËÚàYÇŠªÒĽ+.D«]Z“µYÎ;~"¬IÎF!&¸>µGõ6]Ö¾~]Ϙœ3‘µýÀ‡@†KÖ å6Ô̰{ʱ á%…¶ÀEÍ^XiO]‰Gr¯ë½/™±:ý1#6Vö¢i½· qlì L2“5ŸÑ”ùBô¡kŸZ›„¯FÙTÎãüe¥¬…œ¬mJßÌÃEbm£A”5«ËšxDîŽW õÚªThw±¼eMVÓqêr®MUÙ¬NÇ;êÛÚ”5y_sóµM‡€&BL²#S‹S¼Ù)ª½ÝQç¡Õy-ã,—r¹ËšˆAáý(\²f(·¡f†ÝSÖˆ•Ûì«Ä@L-a_ÉH?al·!¨ªýpXMÔOЇBòB©ì3;–hk2:á’0“5ßÑž–k³ÔÅ-ÒMÂW·l3aË÷—•²r²6^* ãñ"„ÄçH·)k–—5Eif\ФJ›Ïºå¯åNÚLdMɺXqš[;µ©£ã~”«uÎŽ•ÝkSÖ”—¨#ŠlHP¿Vf‚-R +­¨êÄkÕíg€)j¥ ¢n™ÉZgØÛâ}7Y3–Û»fÆÝSÖˆµøfÈ‘1þM­ÏWCŽù ‘bÃÔ ªsžË•W<Þœîxíkvrrž©¬)/É6TþŽšÛ6sYómð´2pSD°0Å,üÕää5—í” ýe¥¬…œ¬½[.uŽãñ"„ˆ—¥Ø‹”5ËËZÒmþêÉ@§·Ž¦^{0Jé§•™ÉZãvÀß\[~šÒ´ïd–~¹ûÀV%—µÌÖî$™ÉZýæ@óʪftÔ©ØF.v|x­t0S™TmµýÏÿçç«zŽHß3xT˜ÉZK¥BíÝdÍXnCÍ »§¬ËqªìæC¾L­ëͲaß÷ùaÀÄàªñT¹bg® _ìSï­·—¯"æ²–—[ïù&®ÎsYó-|0øPÕG™@ǦáÉ×—ÀË– |à/+e-ädí¶$=ÃÃE"R’^¦¬Y^ÖD©Ü3Û%Ô7¹4¦§koldMD¶Õr´Ðf#“;Žè¢ ö ¬y2ÀLÖĨÁúÀድþÈ´ŽêðGaK¡¼å=cy¼©¬‰y²æ wY3”ÛX3ïÝSÖˆ‰Hí;ÇhjMû>ÈøÁ'ktÔ°ƒ6ˆoY ûh9£)|Éšïhûõ ÌÁý"PYóS¶·üe¥¬…œ¬=,ÝæÑ""yï¯1_úˆ²f}YKÉf*oX|ýJ»è1¿:FiÕ(kâêð‚þ£ &D4p((nÖcQ«9[&8^«EYñUÿmÕá§ÎæJ»r¢yt—K…o_µü¨œ8vèµ~‰cŠ6yÕÓ)k•úp!NYó.·IͼvOY#%>õú*÷ïãÉ¡ÿd¿ C‚­¶ãšÌIìré)Çï:~dM„OŒIHˆù|­ð)k~¢jÐ!;±ù‰fÅ"`Yóí´ç¸}e¥¬…œ¬mZQÌ£EKR{¶I[ñ[ÊšeBÜiù¢6S¶ý'çUãca+B°­šš½_]Þ9X‹e !Y›´gÊʨ­¯<çã!ݼò“3û]¾¿†#š¬ñšE'Å&.¯ ¬QÖ!Öï¿}ùï»ë³êHÖâ~µ„²VJ[é7€×˜ýzpÖ9ŽéÊ¡¬Úe²F!”µp)kÕçŒrû÷äé®òŸÆç¿Š/Éë –¨o ®¶²¬ñkHÂ%)—­@(k”5B!î²¶nòäÉ/ü° ¹¶)µU I“'"²vQ–°ë…H;ÞÑkR•åÍŸÞ''þrRN½gUYÛ–žÄ¯!Qˆ+{6‚­@F¦§RÖ(k„BTYÓ‡Eú!”Õ^ëqµ@¡ kq™@MÑR£€ñ^›gÞÐ’Ym€}V•µR©’_CBˆ;¯J=)k”5Bñæ½÷ó)kwБµq€Mó?ÀrïÓQn†±ŽôÛ@t |8díI*ᵇâÎIZ@Y£¬Bˆ'ñ£1”­@êŒÿ[ôt’lfyž›Ïv=}TÞœeMY›%ÅŽå¹@qç³Ï¥G)k”5Bñ$ø&Å&AÍRÀ5Ey ÐÓss/YÐÂé—€>5˜.8d­³4‚§!Äëú'ýœ²FY#„ʹ{äË2öWçRo µçöHe|-yu!p£»Y;¼ŸcJil¢—‘OY£¬BˆWG¡?8Ò©36É2é\ªb¼2ô3䜗k+€þ•5žD§ÞŸg±ˆS.(k”5Bñ¤×âûؤ®¸#»X=çR °Ò+ÊvrލŠmÀœwk²‹ 5žÄ 'Å&¡jk”5B!ä^ã8ÐÉc ÞÏ&ýÌÖoÖh”5BY#”5ÊeB©.»Ñ®¥*Yɼr ûî CÖ0p¿P-šs]’ÒÃïaÖ,Èçy@(kÄœ« òÂCÊ!„r¯1xȵÔP6²cžÖ´¦Í6év? êcß‘2ì0§©$åÞÃ-÷ªÔ€çqRð5ââ)é ‡œ¡¬B!w‡†;k³=¶‡w&jãõ tìæ3Rd«à”µm’TÅó€¸HKae’t‘­@Y#„)ؤÎ8D{,Ás&µÖÀåxG:i ã;Ô¨'Ì9 I¿‰¼gYq]ê{Œç!ÄœÙ{¤‰_D†”5B ˆÇì_²H]¡ŒyʹTd{l^o\¿*¬«þ.r%ió½ûJý¦o¥q< !¾H•Ês€Ê!„èsRlR‡$˲ÖݹT dzl~èTì\úýÿÙ»£Øªê;€ãŽý'ûUæšT²ä¦˜uM›D²a3YÐ2,XMÄPE ‚Q²±=l.˜¸‡¹‘ìNÍ€¡:HlY² ÷0 •8.Š{Øb¦Ã™-!àæ±sÛËÌ.ZJoÓ+å®çôöžÏç…s{ozøÿÏŸËùÂ鹕¯n²X» g[‡eÔ´tµ»AŠ5€!Ýbm®ô×Ñ¡G‹#Þªzú¹ˆò«òâóÿñ³5k8Gaˆ5±pƾˆ«Í¹ùTÄC¾qeÕ³ë#ÚÏÞná–J¬íl²X³¨Öñø·/4 ±ÖÄÀ˜üs¶¡!?‡"þ|f{n%ƺªžýWå+{‡§Ûì}b¦öáÆ¾{)bM¬L0ÿcgã IDATªKŽöD\¾ap{ â“ÕËïÕé¿Z™«"öŸÿ8Ö^Øè.íŒàC±å¯å·{ÅšX€üÍúNÄ}ÝïmnøÛˆ§ÿ×no­lßÙL±¶lkZd Ö8—ÞÔ×%ÖÄäïôÍû¿~¥Ú¶<Q¼ÿÊÎÎÎ÷~:mîím§²µsqå…ÏÖ±ƒÆµkS:jPíâ”fšª=œÒ|±&Ö`\U‰°¶|úû•_>s÷à×J•¾rsesúª×WµU~½oJ3ÅZ×ÁtÒeŒtä°s`„YO¥5bM¬ÀøIk¼¯b͉Séz±&Ö@¬elÞ-Ûàülze·Xk@áõ¼àò,ÄšÛöG¬‰5 è:³€XÓj€Xk Ƈb#Ö´ ÖÄ€XƒÂÅÚ±c PŸÞ‡ÄšX mI{l5 ˆµÌ¼X*}ÔQ¡–ïî¸Ç,PË«§Ò"±&Ö€B{ê+w›ÄZf7‚üC*½æ¨PËE)y ¦¦çO¥ã»ÅšX±–‰i)ýÎA¡¦™)Í3 ÔTyY.ÖĈµL\’ú6;(ˆ5ê3åÖ´^¬‰5k™XvÛ&Ç„ÚNô—šj›»ç°Xk ÖܶŸ °úsÀ9ŠC¬‰5kb kb  ‘¼yÍ“€XÓj€Zk fI{¼ikÙ|ö^Çøu=$ÖÄ063VNËׯ——g»ƒ#þ”ñþ}ÔÂ!×X[;­1´¤¾eÙœåì8ÐR 믚_‘®ülAÚrå“èŽ'Æë[-þÂÁëØS[ß®ç 2 kP8SÚƒ:“ñ>ôÓ¬ÇpÓ& ÆÕ¶…è’]-ÈHO,+Êâ]º¡ ½pïóéºÃb ± Ökb ±€Xkˆ5±€Xkˆ5±f Äb @¬ ÖÄb @¬ Ökb ± Ökb ±€Xkˆ5±€Xkˆ5ć ¿¸ãÖG÷oéþ€×¼­Uï¼óóäÞ9Œ\ÁMi”uÛÔþÑ"Ö€¦öËKÏÐ_ÚVó57}©êT÷¢Î¡Óú§7ŸùâÀ$:Ýÿà1OúáÕ1æ&µ+¸)ý½{Žª¼Ã8^™šÃã&ÒpIHBH@GmU˜@#¢ ‰åV¹ƒÔJÁK+T ˆ—X¤Š¡•ª-3,u˜êLj«EÑvZ±::VªÎx©ÖVgúîîÙ³›donΞò¾Ÿòžóžä_Î{vß'Ù=›rÞ†ÙïDX!÷¢Yð”={èLóåšÊ4Çôè¥ä¥îäVspÍů®Š, §Ä—…‡íYîg®Ùúòò9χÃÖ:ÌàPJ=oCì½Â¹WÌzçì6Çi|¦NZ56å1ëoWòRw›Y Ÿ¶ß´ÎÚm:Îuwß$;ÀÓhmÍÖ——×y¶¼¼,:ÌàPJ3oCì·"¬ڕאַ¹éì+ʳö\•ôÐ÷ 2b·ÙJj†\|´Ùï=³Õ·°¿Íòêܲ\'S¤ÚØÒ}|O³^OuÌ-uj·Ô-õ^ì¶KMÏSÑÖ ¦54 5Û^^^çÙòò²è8ƒC)õ¼ ±"¬XU©†þ°?[σþD§ô#Èí©Ùâëˆ wN-tX3Ï\„5 ‹Yf…w§ÛþPZ×ùˆ—÷Æ.üÄR÷‰¤?Û¿~·4&ÚºRj EͶ——×y¶¼¼Œ:ÏàPJ=oë{«êëk5C*¹í’ëÖH˳ôÜ&8×õdFœÛ*­½ãìÌóÛ©~Žèiµ¹Ók@Vÿ•~o5ü‚ŽübªÙ»îOIKÝçˤ+¼þ¤W£}R¿0Ôl}yygËËˤó ¥4ó6¼þ*ÍéEX¤½Õçmóuù!é–,=çjÀØBŽ8Iú¼*Òx³Lu'ø7¢güM*pX«Z)ÂÕé:o£tNÇ"7¤xìo·$-uçVÔ«¿×¹ôp´ÑWz4 5[_^^çÙòò2é<ƒC)ͼ ­Rm9a @ vKOGÝ«5/KÏCº±#v/ÓÚªXsŒ´Å¿]c›jTè°¶O=« k@ Í•øGoë|i`ç¥î½—9N‡¥îÂÄ (>’vEã¤!©Ùêòò«Ùîò²„µ38œWsŠyVgÕiZ³CX¤ç«5Åm¾$­Ïس\z·#.‘ö¹ÍéÒßFtmŽÜ³êŒÂ†µÉ=ÕTBX²ø±YÄŸìmIñïèOG^$v©ûïziT¤1±XºsÑovÖO[¶÷iËk¶º¼¼j¶¼¼Œ²ÌàPòæmX•×J8„5úyâíÀ¿’vdìùKš{¶ù5âÇý¾¿Õmž'ýÌ·]¥f¡0½GAÃZã¥]DX²ùYÄŸèmí6¤>.íR÷æDW& ¤²Ýñ»m/5[Z^^5[^^ޝ°æÍÛ°úDêWNX¬ñ[y8Î"饌='I5n¾ëµ7ß.̈I”¾ãÛˆñ°6²i¢SذöUW:„5 ›g¤aí¶Tô…–ºã‡I£­oÆúÅÓ¢_êaÍ––—WÍ–—GXK7oCª²Auma @°n•.s›-RmÆžwU6gPä)µlOK!FL²]ZìÛˆñ‡±Èx Ö¾T¬×ÂÕ#ÒÔÄÖgæïöE–ºW –6\mމ|ÔÇÑ÷‹œ–ù¦yé6ëk¶´¼¼j¶¼<ÂZºyNE7K+€€}Eޜʥg3öÜœøÌ³Š¶Œ˜ð–4h©o#&+dX›8E‡ªk@vs¤!‰­S̾ÿ ,u›¯—z5Ö~U:Ó½üþZùùÂéÿWÍ––—WÍ–—GXK7oÃé:él‡° h§K•ñöÝž©§ª^*9iè¶¡sî–îëÿˆž“[¥ÏßF *¬ÍPCä~)„5 ›-þã²4÷¥î7˜ãG¸ßšyêïã-#¥UÖ×liyyÕlyy„µtó6”ú×hH€À”šãí:]Ÿ©§mš*¾ÝlþºûZGŒk[#}9ÚðgÄ€ÂÚø²Øa Èæ©¸Ý–Ês^ên™vQ8Êô´Y^³­åué<[Za-§yÛÖJó€Àí–΋·¨"sÏËñ›u-‘ù?¢kýõÒv÷ßh¾ŒLX{½BWWÖ€\Dîø¼·µCjÍy©;¿Æ€ù©E‰·ÄZZ³µåué<[Za-§y£HX¤k¥;Üf¹´6§ÇÙV­â"ßGŒ¹h°4ibǽ]1˜°vŸêcï¬&¬Ù 7ëò³¼­#ò>|1ÛR·Ü«º­i~ìdÓùÍ5[\^—γ¥åÖrš·á0}˜†4/Y#0_k1Cšé6[¤~9õ㤗}1öÔV-=ÖØùÛº0b aíJé.‡°äd¡YÛ=çm/½“ÛRwÛ æ}7Ý]dz·Z\³Íåué<[Za-§y£Ôɉ„5AXá½;òñ¤×æÔcÌ“Z|1âµÞÒ¦TßÖ… k{Û?ˆ÷bjT(ò9®UÒ99-u—6×ÿJÚóþ·ö]èm}lº'Û[³ÝååQ³õåÖRÏ[Âa €~*=ê6'´wp§žçšf¬wVC•ï#gHʼn‰ø4"a 8Ö˜ æp¼=Ô\1ãsYê6n7Gn=ù€{̞ǽ­û¤Örkk¶¼¼–x3YÊž£Ò'îŽ;¤ú?¢ãœ&5|-±éÓˆ„µKJãtMié&¦ÁViØ\·ý¡4¨(—¥îåf}Ô·ý‹¤ö”&Å7º×KŸÛ[³åååQ³õåÖRÏÛ°ã#ÕWz*öLY­{î‘vºÏ´ŸJ 0â[&«mNÚökÄ ÂZïY²ªZ&­ŒÝHè)³b#—¥îãfQ8©ã?Øÿivžkž¸Ò<‚4[[³íååS³íåÖÒÌ[Âa €”i]äcŸ¼Ú}/ÙÒáäì)Ú)•F²Sù&éá±þ¸¼Dúsò‘~HXŽ5‘›º_½Þ¬æ—lÖ¹·wo=zt[º¥nãíÒ†ú'¼Ù;tªTs7Ózàay·ù±°fûËËã<[_a-õ¼%¬ÖøèÛÒ™/¾ÙdpwEÿ8Vé=·t침Aš7â”_ßköO.Àˆ¿”zÎðqDÂp¬‰¼¤÷ÚÚÕ‘{~/r÷•šÊtKÝ ß1{g謦ÙðDí÷"»ŽØ[sÊËã<[_ÞqÖÒÌ[Âa €Šö¸±µËöa­c3³ÄÝѧ!F\Ö#Ö€cÎý=Ý«{Ýp'—°v0ͪðGÞ#Gë©×†òò8ÏÖ—w¼‡µƒ„5€›uú 5#ÿ>ß}ÑyeÒsKûÇYØ´rdÍê~N,ĈêÖ|‘°kæ™×Zz¬u½ÌÄÚñ1*5¡ÇÚkÒç¹J± ìX[, wWY{kuMÑ‹{uóÆÚÝMŠÉ`cºµþ¬¶ð³õÏfÅÛÏ™ãʾÑßøIísÛý;›«ÜiÞ’ L=õðþ1ÿxGÅ>ú¶mLÖ®²k¼qÔ¤Ù–;ÖÞkéŸ=¨±Wêõz…«kB޵MÒ ²ñlÚXû„=V³Ë»±üeÉ€J–T`êÞ•Öñ›ë|±æß¶)o´š—§Ù–sŠS×ÚÃ~”\k­òNq™b @¸±ö9©¾À©²Ý ŠžøàÎ3±„)¼ÌR+­Èh™OHÙmSï½ô•"é¤1%—JKJ²R±öñXo xðà¶j)ºÎ³â*é˜'ÖSo(ÝPúÒûUšáµÀ¶Ï.ˆeÚ=o’jÛƒÛJbG´ð÷ÝœQñ,{±sÒK\&€X^¬uÿÊð¡’ž5N•‘~š8Ü"]—® mËh™‚eÊ»=1º/ªÉëMðÑý£¤oÆÇÍ“Q5y¾J{˜´Ùk©K¥añã™äµÀ¶Û¤ãc¿g}F™n[ö)~!},þeæwUêm¿c²2öZ.@¬!Ö<¾`\-‹!‰ÃÝ {%‡Ïî—Z3[fc,~ì ‡¥K‚±6Ee}jÌ|'ÑQŽCR7w¬¦Ž“úYÇ%o¬ù·ÝÑ€ù‰“U›n[Ö))Öök¼Õ¹w¸Rõ\&€Xj¬E¯L>ÃÑj©X²Ì®pÏŽ ÷h”æf¸ÌøÛž»ÄžpRŒµ·¥ä›;rµÐ½b]eܱ˜º%uëÍ\é5ÿ¶H¿¶üäŠ)i¶eb›4Áo—öØ?>-íæ:Ä€‹k£ÚÚÚNTG¥+º¹«,öëÌbiÙôßu o=,mÈÊtÛè±÷O’~Œµ5Š,JNºO:뼤"ªIžX L¨¼õöñ½±æßö‹Òªtwg[Ö)Z¤3ÃmeºÚžµSz†ëk.~¬Y6{f‰Ôo¾7Öâ‹É[ZZžN8“é2Æô<2ýÐ’¢Ä«úcmAêöY"Š–;¯;+Ýà‰µÀÔ]ž<~×÷4Hß¶¿,UúöëÛ–uŠFï[9G[SOJà:Ä€°bÍ”7HYÞX3ç&Â¥¸ÏËÉXûO¶ªÉp™EOE­7F6nJk“µ!µD›Tâ,xÚy¢UR©EªK_ïÿž5ï¶«¥Ež?lË:E7ÖìïZû›ôU®@¬-ÖÌæˆô‚/ÖŒéqnv"b:íX{Û<(Êl™ñ÷ÅziûÚ›wÇߊ˜&ÖpÝ.k‘Þqœ#½î‰µÀÔ«øï¬ù¶ýߵඬSĆ»ÿ…ÖJ¹N± ¼X3_—ŠîöÇZÜŽZQS¦­ùfþV題–,M¼ÆÜ™6ÖîR$õðŽMžû_YźÅk©7)w¼}|k0ÖÜÛþ‡ô¸=4dceºmY§øSò«¼=Nx"€XpÑcíèåÒ›®–zï…ä¶ÙÒÁÔðkÒUÓ2Yf±ódýVùb­4ܞБë|-®Y3<±˜úKiµ=ð/o¬ù·}‡Tjl‰w[p[Ö)îqî,vÏ™ý˜ýcµ"/sb @ˆ±ÿì—¦ºZj¡òìnÅ:æ[©aósé©L–Y"ÙŸn'ëîV¬›Î¹Nð¨t  •Qï»Wì'MsÇZ`ê,©Å:þ~®7ÖüÛžÕ$ëQþë—iÆè4Û²NÑWj˜cýÁ6)Ç^­·š¹L± ÔX3#¤š§¥^•:ÏD¬ì¯ìÓN¬n’fe°ÌPéXb o}¬Š~l_yv«+Öò×HÏ':ê`TMCÜ+KÂ*©ÀÔü‰öc)ß"o¬¶#­‡^ÅóÒ_ÓmË:Eü}KoÅ\](Ýn-V.µq™b @¸±vM•t…ÓRí Ró° _ÚR#t†7Ⱦ×ý×¹S*~q׸·>•ÖÇs±‘)RvË¯Ž§Vúô@iRë»Oî‘"ÿöþ×$½ê޵àÔyc¤§»÷Ÿe*–u½4°íʤMo¼Õú]©îhºmÙ§èÙ[ú/{g]UqÇqÙrû•-ò‹<!¾šT²(‹ 4”%)K„§¥X¡)›$M–D ›EÚ"a AÍ §…HE ¨`KA Z@‘B B¥sß»÷¾»Ì{y1áÎù~þáÞßÌüfæeNàÃ}w¦î¹[µë‰„çµd·€‰\&„B¡¬B)„½äû­¬a†¶½k»Ç,ka“€/CHó ¾ þèßû`gÃW¤gúm­F‚}‹É8j‘5gÕAc|÷ËÏûz3°[±V Lª¡È†¥wÑ»›Þp–ö•Ke:Wá2!„”Sª˜‰Ín²ž±#ÒÃ@‡­‚Mˆ¢¿ŸÖNeLöþ:~ü.|lA»½ŽÌ \Y„²F)²Ö±0.×ïR{ßÙÔ)6®Î´ÝM"ßw#~dñi”¢•Ñý·îÞã9ÝsÔ’Jk†ÏÝcÊ”[»ÕÌÈŒåϳì \--²æ¬z­}bjê”uaß9–¶¶a+Jò©ýu#NT׺¶ËèÂsë¿Ã;ÏøÆøÅ˜›€m\%„{BÖ|ÿ×´+© eÍšRN¥•èYbY{÷GTy”µä~XÅ¥E(k„Œ½ x>ĪcwhEp·åÏ‚Rže->\Ãís« ¥—µ)åd¢ä²VáYì.Öšî’¬©ûWuáÒ"”5B Ê!4NR|¥þ7}}WI™˜{§ñnó'A)ײ6A¿‰º8h·ªViÞ»×»uûÏ•µ)å´Ðe-Hv ²w¹•5¥czqmÊ!„cjSÇÙÛf‰¿k½/–yþ ´¾CcÈ›'bBîYSI­Åµ ]ÖBIiÈZè,Ók)Ÿ²ÖÐ…\[„²F!Ayu—ænêô8UûÕ&ÀÁ¤;4„§1‹?BÈ=$kÊÙ\¦²V\Ê kÓánVŽeM)„k3¡¬Bˆü¯Ëƒ”ö}Eùýħwhïb\: „{IÖ&ŠÈв•µbR–\ÖB³¦»$kmŠyMÊ!„(מ>¤8½K«Ìȸ:íþí¹Cý{–Ä/åOrOÉÚŸD$Åjd£^/̈L]Ñè‘ÁY;–¸»‡šR4ñfb§ØìÙ…Í}Ɇêÿk¶Æê€«·ÏIˆÌ}¨™lÔû6Nk’5Iï²1:væÆ”dåq‰0:&¦²ôÝâbžüãY#b³µÛŸ¶ïY÷ð¡¦É™pWâê"”5B!„R†²¶JDþl1²ÇêBw¿MÖöu¸Z°”ŠÒ3ÃØÐ?õƒÀ²6`£ßáÜ)j„ O¦Û­IÚdu-ýÌ!YsNLQm¤Ç²õy9ÆlîöôMmÃKÄL0í×ÿ í0QB(k„B!¤t²–ÜpU0Y~¼¨óÊè)T#¹ß"kG WÛzJ¥¹šcæ”Ó]êÅ9|x ð·áÃO™dm~ Qê^ûÄxµVý샞|¨Ø¬IÚ$?\•®£yÀì9dM21eHc5MâôL5V;À˜MÝ^\â­¿|œZ¸Óÿ5ï€ žµF(k„B!¤Ìd-i½*J~"•5UÆ.é~DX:Ø4V¬²&m2 p_3©™MÖ$«!BWô›–5¯äxŒY붪¸ßg´~˜kÜÔ4ßBY#„B!¥’5÷Øî7,F¦þyPLnŸŸd“µÊ0=Ì 1¥Ïå· ¿Õe—µ&S”†¢Þ0K[aJ“l²&m"‚‰F,7ÒñΚsbE"Ò+àge³Ömš¸¯h”ï3·þ^cס¬B!„RÈšw7ÜÞgšß)Y[ãµ®'¯b*ònXÓ¶d)U*vÝÒz}‡ToήRYk´ò×Oõþaɰ8a“5i“ÛÞót²æœØç@¶ìSrŒYëöˆã ŸÆ¿Š¿7ƒ¹¾eB!„”VÖYê¶÷벦¼–§«È¤ñǦ;eÍ1±yY“ŽYë¶2WßÂR½Ùg¢j ®/BY#„B!e!kÊDq׿­CÖT²¾;Au–zZ‘;M ë¤.*IÊ·ÅÍøó/7TßóZPÖn[¾Ó˜$ê¥X:Y m²&mÒÈôÎû†ÚPÙ'`ž˜ÐϦör阵nÛ+|°mDÕ©\_„²F!„BÊDÖ”vâvIG™¬ ’‹¢ø³þ¢‘ñÀþ¤\*.w¦kñœ€²fÝ-ä>Qï—–¶›&Ý`Dkò0Έ…u kæ‰U Ïáîæ'³ÖíÑl¯ Jfò¸Yâ>-ô”G€cÓ—ExµTÖöˆ’‡Œög·u?ÉëÀL›¬I›\1oݿڱu¿dbÄEzlªø,À˜µnï3oõ¯üóÒ{Õ>Òoæ™M‘Ê!„B)¬yu$¦ªY¦ë¥ê×—šdM=~:¡WÈ)Ç-ôhÔ&öD­D[Ì=NMvéõ*Öž°v°pXeMÚ¤JpH~í5ÙÄMß°¬.†]`ÌZ·a¿úÏÏNÂLý]àò"”5B!„RV²¦nµˆMfuJj¤?mj„˜dÍ{õ!§üR\diÁçý{'Ž˜{T¿¿èÒzyÖ‹j_X;˜üÞ*kò&O Ýò»­LƒCÖd«-ju÷….6¶³Þíç"ð•Vú+qÝÃÈ>þ‡%!”5B!„RYkÙ_ßÐCS§t!-©§rÕ«UÀp³U)ÊNQ{Z¨)‡©›ä{Ï4ËjçÝa±·ü7ÀÖ®5ó§½Q ˆu”¸š¯ŠÞqû l²&m2j&]] ½ fÒ'›XÇ)"MkUÛº&qÍYï6i’ˆ¬¡ºÝ›n –ñÛ ÃåE(k„B!¤ÌdÍû°(áS“‘ Œ‘Ô§¨Î•7Ê*kךuo„šò%q{òÿíÝ]ˆyÀñ"ž~IF:”—É$ší¸P^ !ƒäBëÆÚMiKjïM1ÞŠššsE‘RDŒÄ抋iïVëFÛ®·­EjRJÍ…Ïsfæ™cÎÉP:¥óù\Ìœ—ÿó<ÿÓs.æ{1ÿÿ«ž4Ï¢¸`h¶¥:\vÚY-ÙÀ½Ç²7nU,ªxmxWì¡jª~ÈÙ5é“Îû§".—ÿ;Ú€*,9q>}Üp¿½+ýU(mç]uÎùeud×›ÚûScúk{k~îM¾^ˆ5¾]¬e ò—6-ËÓiÛÁ|Ïç7’Oc-¹’¾zõKOùðq~¦¿—õD|(½½9‹¥è,?í‰Þ¡qÍ}û+&ýË”h<2"Öªr;ßF­?ýqrÄy*?X’¼x0ôÒž5(«Îyø²¿NÎß><¼ÄIò*b‰ob €okIëüôµ;åé4nâËŽ-…–S}[‡”ÅZÓÊ‘ô™S&sŸ-ÝÐ8gřߒäFĪu×.ok.n8òÉfÝ7×-(lß9©êÆÒiPý72Öªòät{[cËâ}McÒTüÉZñÁ2÷n®ÛÕ<í¯+cŸW›sùe[Ÿ?m)l™zõNÙJýw‹QøÁ· ±@éŽxü•‡,JcíQÍ&xîŸq¦fÓ»ñÖMB¬P‡z¢0aÔA¿gkó?IŒ?Ù±flÍfw=Š Ý#Äu¨WiyÉÏû3[OÞ¡£:³…ø_×lr·#N»Eˆ5êÒ1åQíÊ×Õïê®ÙÔÆoˆö¹îb €ú´;.muйöçÿ|hù»Õµ›Ù…˜¶ÉýA¬ ÖÄb @¬ ÖÄb ± Ökb ± Ökˆ5±€Xkˆ5±€X@¬ˆ5Ä€X@¬ˆ5Äb @¬ ÖÄb @¬ Ökb ± Ökb ±€Xkˆ5±€Xkˆ5Ä€X@¬|ß>–x UEâIEND®B`‚metafor/man/bldiag.Rd0000644000176200001440000000261314746146216014210 0ustar liggesusers\name{bldiag} \alias{bldiag} \title{Construct Block Diagonal Matrix} \description{ Function to construct a block diagonal matrix from (a list of) matrices. } \usage{ bldiag(\dots, order) } \arguments{ \item{\dots}{individual matrices or a list of matrices.} \item{order}{optional argument to specify a variable based on which a square block diagonal matrix should be ordered.} } \author{ Posted to R-help by Berton Gunter (2 Sep 2005) with some further adjustments by Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \seealso{ \code{\link{rma.mv}} for the model fitting function that can take such a block diagonal matrix as input (for the \code{V} argument). \code{\link{blsplit}} for a function that can split a block diagonal matrix into a list of sub-matrices. } \examples{ ### copy data into 'dat' dat <- dat.berkey1998 dat ### construct list with the variance-covariance matrices of the observed outcomes for the studies V <- lapply(split(dat[c("v1i","v2i")], dat$trial), as.matrix) V ### construct block diagonal matrix V <- bldiag(V) V ### if we split based on 'author', the list elements in V are in a different order than tha data V <- lapply(split(dat[c("v1i","v2i")], dat$author), as.matrix) V ### can use 'order' argument to reorder the block-diagonal matrix into the correct order V <- bldiag(V, order=dat$author) V } \keyword{manip} metafor/man/labbe.Rd0000644000176200001440000002166314746146216014041 0ustar liggesusers\name{labbe} \alias{labbe} \alias{labbe.rma} \title{L'Abbe Plots for 'rma' Objects} \description{ Function to create \enc{L'Abbé}{L'Abbe} plots for objects of class \code{"rma"}. \loadmathjax } \usage{ labbe(x, \dots) \method{labbe}{rma}(x, xlim, ylim, lim, xlab, ylab, flip=FALSE, ci=FALSE, pi=FALSE, grid=FALSE, legend=FALSE, add=x$add, to=x$to, transf, targs, pch=21, psize, plim=c(0.5,3.5), col, bg, lty, \dots) } \arguments{ \item{x}{an object of class \code{"rma"}.} \item{xlim}{x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{ylim}{y-axis limits. If unspecified, the function sets the y-axis limits to some sensible values.} \item{lim}{axis limits. If specified, this is used for both \code{xlim} and \code{ylim}.} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title.} \item{ylab}{title for the y-axis. If unspecified, the function sets an appropriate axis title.} \item{flip}{logical to specify whether the groups to plot on the x- and y-axis should be flipped (the default is \code{FALSE}).} \item{ci}{logical to specify whether the confidence interval region should be shown in the plot (the default is \code{FALSE}). Can also be a color name.} \item{pi}{logical to specify whether the prediction interval region should be shown in the plot (the default is \code{FALSE}). Can also be a color name.} \item{grid}{logical to specify whether a grid should be added to the plot (the default is \code{FALSE}). Can also be a color name.} \item{legend}{logical to specify whether a legend should be added to the plot (the default is \code{FALSE}). Can also be a keyword to specify the position of the legend (see \code{\link{legend}}).} \item{add}{See the documentation of the \code{\link{escalc}} function for more details.} \item{to}{See the documentation of the \code{\link{escalc}} function for more details.} \item{transf}{optional argument to specify a function to transform the outcomes (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified under \code{transf}.} \item{pch}{plotting symbol to use for the outcomes. By default, an open circle is used. Can also be a vector of values. See \code{\link{points}} for other options.} \item{psize}{optional numeric vector to specify the point sizes for the outcomes. If unspecified, the point sizes are a function of the precision of the outcomes. Can also be a vector of values.} \item{plim}{numeric vector of length 2 to scale the point sizes (ignored when \code{psize} is specified). See \sQuote{Details}.} \item{col}{optional character string to specify the (border) color of the points. Can also be a vector.} \item{bg}{optional character string to specify the background color of open plot symbols. Can also be a vector. Set to \code{NA} to make the plotting symbols transparent.} \item{lty}{optional argument to specify the line type for the diagonal reference line of no effect and the line that indicates the estimated effect based on the fitted model. If unspecified, the function sets this to \code{c("solid","dashed")} by default (use \code{"blank"} to suppress a line).} \item{\dots}{other arguments.} } \details{ The model specified via \code{x} must be a model without moderators (i.e., either an equal- or a random-effects model) fitted with either the \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, or \code{\link{rma.glmm}} functions. Moreover, the model must have been fitted with \code{measure} set equal to \code{"RD"} (for risk differences), \code{"RR"} (for risk ratios), \code{"OR"} (for odds ratios), \code{"AS"} (for arcsine square root transformed risk differences), \code{"IRR"} (for incidence rate ratios), \code{"IRD"} (for incidence rate differences), or \code{"IRSD"} (for square root transformed incidence rate differences). The function calculates the arm-level outcomes for the two groups (e.g., treatment and control) and plots them against each other. In particular, the function plots the raw proportions of the two groups against each other when analyzing risk differences, the log of the proportions when analyzing (log) risk ratios, the log odds when analyzing (log) odds ratios, the arcsine square root transformed proportions when analyzing arcsine square root transformed risk differences, the raw incidence rates when analyzing incidence rate differences, the log of the incidence rates when analyzing (log) incidence rate ratios, and the square root transformed incidence rates when analyzing square root transformed incidence rate differences. The \code{transf} argument can be used to transform these values (e.g., \code{transf=exp} to transform the log of the proportions back to raw proportions; see also \link{transf}). As described under the documentation for the \code{\link{escalc}} function, zero cells can lead to problems when calculating particular outcomes. Adding a small constant to the cells of the \mjeqn{2 \times 2}{2x2} tables is a common solution to this problem. By default, the functions adopts the same method for handling zero cells as was used when fitting the model. By default (i.e., when \code{psize} is not specified), the point sizes are a function of the precision (i.e., inverse standard errors) of the outcomes. This way, more precise estimates are visually more prominent in the plot. By making the point sizes a function of the inverse standard errors of the estimates, their areas are proportional to the inverse sampling variances, which corresponds to the weights they would receive in an equal-effects model. However, the point sizes are rescaled so that the smallest point size is \code{plim[1]} and the largest point size is \code{plim[2]}. As a result, their relative sizes (i.e., areas) no longer exactly correspond to their relative weights in such a model. If exactly relative point sizes are desired, one can set \code{plim[2]} to \code{NA}, in which case the points are rescaled so that the smallest point size corresponds to \code{plim[1]} and all other points are scaled accordingly. As a result, the largest point may be very large. Alternatively, one can set \code{plim[1]} to \code{NA}, in which case the points are rescaled so that the largest point size corresponds to \code{plim[2]} and all other points are scaled accordingly. As a result, the smallest point may be very small. To avoid the latter, one can also set \code{plim[3]}, which enforces a minimal point size. The solid line corresponds to identical outcomes in the two groups (i.e., the absence of a difference between the two groups). The dashed line indicates the estimated effect based on the fitted model. If \code{ci=TRUE}, then the darker shaded region indicates the corresponding confidence interval. If \code{pi=TRUE}, then the lighter shaded region indicates the corresponding prediction interval. } \value{ A data frame with components: \item{x}{the x-axis coordinates of the points that were plotted.} \item{y}{the y-axis coordinates of the points that were plotted.} \item{cex}{the point sizes.} \item{pch}{the plotting symbols.} \item{col}{the point colors.} \item{bg}{the background colors.} \item{ids}{the study id numbers.} \item{slab}{the study labels.} Note that the data frame is returned invisibly. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Jiménez, F. J., Guallar, E., & Martín-Moreno, J. M. (1997). A graphical display useful for meta-analysis. \emph{European Journal of Public Health}, \bold{7}(1), 101--105. \verb{https://doi.org/10.1093/eurpub/8.1.92} \enc{L'Abbé}{L'Abbe}, K. A., Detsky, A. S., & O'Rourke, K. (1987). Meta-analysis in clinical research. \emph{Annals of Internal Medicine}, \bold{107}(2), 224--233. \verb{https://doi.org/10.7326/0003-4819-107-2-224} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, and \code{\link{rma.glmm}} for functions to fit models for which \enc{L'Abbé}{L'Abbe} plots can be drawn. } \examples{ ### meta-analysis of log odds ratios using a random-effects model dat <- dat.damico2009 res <- rma(measure="OR", ai=xt, n1i=nt, ci=xc, n2i=nc, data=dat) res ### default plot with log odds on the x- and y-axis labbe(res) ### plot with odds values on the x- and y-axis and some customization labbe(res, ci=TRUE, pi=TRUE, grid=TRUE, legend=TRUE, bty="l", transf=exp, xlab="Odds (Control Group)", ylab="Odds (Treatment Group)") ### plot with risk values on the x- and y-axis and some customization labbe(res, ci=TRUE, pi=TRUE, grid=TRUE, legend=TRUE, bty="l", transf=plogis, lim=c(0,1), xlab="Risk (Control Group)", ylab="Risk (Treatment Group)") } \keyword{hplot} metafor/man/plot.vif.rma.Rd0000644000176200001440000001005614746146216015305 0ustar liggesusers\name{plot.vif.rma} \alias{plot.vif.rma} \title{Plot Method for 'vif.rma' Objects} \description{ Plot method for objects of class \code{"vif.rma"}. } \usage{ \method{plot}{vif.rma}(x, breaks="Scott", freq=FALSE, col, border, col.out, col.density, trim=0, adjust=1, lwd=c(2,0), \dots) } \arguments{ \item{x}{an object of class \code{"vif.rma"} obtained with \code{\link[=vif.rma]{vif}}.} \item{breaks}{argument to be passed on to the corresponding argument of \code{\link{hist}} to set (the method for determining) the (number of) breakpoints.} \item{freq}{logical to specify whether frequencies (if \code{TRUE}) or probability densities should be plotted (the default is \code{FALSE}).} \item{col}{optional character string to specify the color of the histogram bars.} \item{border}{optional character string to specify the color of the borders around the bars.} \item{col.out}{optional character string to specify the color of the bars that are more extreme than the observed (G)VIF value (the default is a semi-transparent shade of red).} \item{col.density}{optional character string to specify the color of the kernel density estimate of the distribution that is superimposed on top of the histogram (the default is blue).} \item{trim}{the fraction (up to 0.5) of observations to be trimmed from the upper tail of each distribution before its histogram is plotted.} \item{adjust}{numeric value to be passed on to the corresponding argument of \code{\link{density}} (for adjusting the bandwidth of the kernel density estimate).} \item{lwd}{numeric vector to specify the width of the vertical lines corresponding to the value of the observed (G)VIFs and of the density estimate (note: by default, the density estimate has a line width of 0 and is therefore not plotted).} \item{\dots}{other arguments.} } \details{ The function plots the distribution of each (G)VIF as simulated under independence as a histogram. Arguments \code{breaks}, \code{freq}, \code{col}, and \code{border} are passed on to the \code{\link{hist}} function for the plotting. Argument \code{trim} can be used to trim away a certain fraction of observations from the upper tail of each distribution before its histogram is plotted. By setting this to a value above 0, one can quickly remove some of the extreme values that might lead to the bulk of the distribution getting squished together at the left (typically, a small value such as \code{trim=0.01} is sufficient for this purpose). The observed (G)VIF value is indicated as a vertical dashed line. If the observed exceeds the upper plot limit, then this is indicated by an arrow pointing to the line. Argument \code{col.out} is used to specify the color for the bars in the histogram that are more extreme than the observed (G)VIF value. A kernel density estimate of the distribution can be superimposed on top of the histogram (as a smoothed representation of the distribution). Note that the kernel density estimate of the distribution is only shown when setting the line width for this element greater than 0 via the \code{lwd} argument (e.g., \code{lwd=c(2,2)}). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=vif.rma]{vif}} for the function to create \code{vif.rma} objects. } \examples{ ### copy data from Bangert-Drowns et al. (2004) into 'dat' dat <- dat.bangertdrowns2004 ### fit mixed-effects meta-regression model res <- rma(yi, vi, mods = ~ length + wic + feedback + info + pers + imag + meta, data=dat) ### use the simulation approach to analyze the size of the VIFs \dontrun{ vifs <- vif(res, sim=TRUE, seed=1234) vifs ### plot the simulated distributions of the VIFs plot(vifs) ### add densities, trim away some extremes, and set break points plot(vifs, lwd=c(2,2), trim=0.01, breaks=seq(1,2.2,by=0.05), adjust=1.5) } } \keyword{hplot} metafor/man/vif.Rd0000644000176200001440000003753614746146216013566 0ustar liggesusers\name{vif} \alias{vif} \alias{vif.rma} \alias{print.vif.rma} \title{Variance Inflation Factors for 'rma' Objects} \description{ Function to compute (generalized) variance inflation factors (VIFs) for objects of class \code{"rma"}. \loadmathjax } \usage{ vif(x, \dots) \method{vif}{rma}(x, btt, att, table=FALSE, reestimate=FALSE, sim=FALSE, progbar=TRUE, seed=NULL, parallel="no", ncpus=1, cl, digits, \dots) \method{print}{vif.rma}(x, digits=x$digits, \dots) } \arguments{ \item{x}{an object of class \code{"rma"} (for \code{vif}) or \code{"vif.rma"} (for \code{print}).} \item{btt}{optional vector of indices (or list thereof) to specify a set of coefficients for which a generalized variance inflation factor (GVIF) should be computed. Can also be a string to \code{\link{grep}} for.} \item{att}{optional vector of indices (or list thereof) to specify a set of scale coefficients for which a generalized variance inflation factor (GVIF) should be computed. Can also be a string to \code{\link{grep}} for. Only relevant for location-scale models (see \code{\link{rma.uni}}).} \item{table}{logical to specify whether the VIFs should be added to the model coefficient table (the default is \code{FALSE}). Only relevant when \code{btt} (or \code{att}) is not specified.} \item{reestimate}{logical to specify whether the model should be reestimated when removing moderator variables from the model for computing a (G)VIF (the default is \code{FALSE}).} \item{sim}{logical to specify whether the distribution of each (G)VIF under independence should be simulated (the default is \code{FALSE}). Can also be an integer to specify how many values to simulate (when \code{sim=TRUE}, the default is \code{1000}).} \item{progbar}{logical to specify whether a progress bar should be shown when \code{sim=TRUE} (the default is \code{TRUE}).} \item{seed}{optional value to specify the seed of the random number generator when \code{sim=TRUE} (for reproducibility).} \item{parallel}{character string to specify whether parallel processing should be used (the default is \code{"no"}). For parallel processing, set to either \code{"snow"} or \code{"multicore"}. See \sQuote{Note}.} \item{ncpus}{integer to specify the number of processes to use in the parallel processing.} \item{cl}{optional cluster to use if \code{parallel="snow"}. If unspecified, a cluster on the local machine is created for the duration of the call.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{\dots}{other arguments.} } \details{ The function computes (generalized) variance inflation factors (VIFs) for meta-regression models. Hence, the model specified via argument \code{x} must include moderator variables (and more than one for this to be useful, as the VIF for a model with a single moderator variable will always be equal to 1). \subsection{VIFs for Individual Coefficients}{ By default (i.e., if \code{btt} is not specified), VIFs are computed for the individual model coefficients. Let \mjseqn{b_j} denote the estimate of the \mjeqn{j\text{th}}{jth} model coefficient of a particular meta-regression model and \mjeqn{\text{Var}[b_j]}{Var[b_j]} its variance (i.e., the corresponding diagonal element from the matrix obtained with the \code{\link[=vcov.rma]{vcov}} function). Moreover, let \mjseqn{b'_j} denote the estimate of the same model coefficient if the other moderator variables in the model had \emph{not} been included in the model and \mjeqn{\text{Var}[b'_j]}{Var[b'_j]} the corresponding variance. Then the VIF for the model coefficient is given by \mjdeqn{\text{VIF}[b_j] = \frac{\text{Var}[b_j]}{\text{Var}[b'_j]},}{VIF[b_j] = Var[b_j] / Var[b'_j],} which indicates the inflation in the variance of the estimated model coefficient due to potential collinearity of the \mjeqn{j\text{th}}{jth} moderator variable with the other moderator variables in the model. Taking the square root of a VIF gives the corresponding standard error inflation factor (SIF). } \subsection{GVIFs for Sets of Coefficients}{ If the model includes factors (coded in terms of multiple dummy variables) or other sets of moderator variables that belong together (e.g., for polynomials or cubic splines), one may want to examine how much the variance in all of the coefficients in the set is jointly impacted by collinearity with the other moderator variables in the model. For this, we can compute a generalized variance inflation factor (GVIF) (Fox & Monette, 1992) by setting the \code{btt} argument equal to the indices of those coefficients for which the GVIF should be computed. The square root of a GVIF indicates the inflation in the confidence ellipse/(hyper)ellipsoid for the set of coefficients corresponding to the set due to collinearity. However, to make this value more directly comparable to SIFs (based on single coefficients), the function computes the generalized standard error inflation factor (GSIF) by raising the GVIF to the power of \mjseqn{1/(2m)} (where \mjseqn{m} denotes the number of coefficients in the set). One can also specify a list of indices/strings, in which case GVIFs/GSIFs of all list elements will be computed. See \sQuote{Examples}. For location-scale models fitted with the \code{\link{rma.uni}} function, one can use the \code{att} argument in an analogous manner to specify the indices of the scale coefficients for which a GVIF should be computed. } \subsection{Re-Estimating the Model}{ The way the VIF is typically computed for a particular model coefficient (or a set thereof for a GVIF) makes use of some clever linear algebra to avoid having to re-estimate the model when removing the other moderator variables from the model. This speeds up the computations considerably. However, this assumes that the other moderator variables do not impact other aspects of the model, in particular the amount of residual heterogeneity (or, more generally, any variance/correlation components in a more complex model, such as those that can be fitted with the \code{\link{rma.mv}} function). For a more accurate (but slower) computation of each (G)VIF, one can set \code{reestimate=TRUE}, in which case the model is refitted to account for the impact that removal of the other moderator variables has on all aspects of the model. Note that refitting may fail, in which case the corresponding (G)VIF will be missing. } \subsection{Interpreting the Size of (G)VIFs}{ A large VIF value suggests that the precision with which we can estimate a particular model coefficient (or a set thereof for a GVIF) is negatively impacted by multicollinearity among the moderator variables. However, there is no specific cutoff for determining whether a particular (G)VIF is \sQuote{large}. Sometimes, values such as 5 or 10 have been suggested as rules of thumb, but such cutoffs are essentially arbitrary. } \subsection{Simulating the Distribution of (G)VIFs Under Independence}{ As a more principled approach, we can simulate the distribution of a particular (G)VIF under independence and then examine how extreme the actually observed (G)VIF value is under this distribution. The distribution is simulated by randomly reshuffling the columns of the model matrix (to break any dependence between the moderators) and recomputing the (G)VIF. When setting \code{sim=TRUE}, this is done 1000 times (but one can also set \code{sim} to an integer to specify how many (G)VIF values should be simulated). The way the model matrix is reshuffled depends on how the model was fitted. When the model was specified as a formula via the \code{mods} argument and the data was supplied via the \code{data} argument, then each column of the data frame specified via \code{data} is reshuffled and the formula is evaluated within the reshuffled data (creating the corresponding reshuffled model matrix). This way, factor/character variables are properly reshuffled and derived terms (e.g., interactions, polynomials, splines) are correct constructed. This is the recommended approach. On the other hand, if the model matrix was directly supplied to the \code{mods} argument, then each column of the matrix is directly reshuffled. This is not recommended, since this approach cannot account for any inherent relationships between variables in the model matrix (e.g., an interaction term is the product of two variables and should not be reshuffled by itself). Once the distribution of a (G)VIF under independence has been simulated, the proportion of simulated values that are smaller than the actually observed (G)VIF value is computed. If the proportion is close to 1, then this indicates that the actually observed (G)VIF value is extreme. The general principle underlying the simulation approach is the same as that underlying Horn's parallel analysis (1965) for determining the number of components / factors to keep in a principal component / factor analysis. } } \value{ An object of class \code{"vif.rma"}. The object is a list containing the following components: \item{vif}{a list of data frames with the (G)VIFs and (G)SIFs and some additional information.} \item{vifs}{a vector with the (G)VIFs.} \item{table}{the model coefficient table (only when \code{table=TRUE}).} \item{sim}{a matrix with the simulated (G)VIF values (only when \code{sim=TRUE}).} \item{prop}{a vector with the proportions of simulated values that are smaller than the actually observed (G)VIF values (only when \code{sim=TRUE}).} \item{\dots}{some additional elements/values.} When \code{x} was a location-scale model object and (G)VIFs can be computed for both the location and the scale coefficients, then the object is a list with elements \code{beta} and \code{alpha}, where each element is a \code{"vif.rma"} object as described above. The results are formatted and printed with the \code{print} function. To format the results as a data frame, one can use the \code{\link[=as.data.frame.vif.rma]{as.data.frame}} function. When \code{sim=TRUE}, the distribution of each (G)VIF can be plotted with the \code{\link[=plot.vif.rma]{plot}} function. } \note{ If the original model fitted involved redundant predictors that were dropped from the model, then \code{sim=TRUE} cannot be used. In this case, one should remove any redundancies in the original model fitted before using this method. When using \code{sim=TRUE}, the model needs to be refitted (by default) 1000 times. When \code{sim=TRUE} is combined with \code{reestimate=TRUE}, then this value needs to be multiplied by the total number of (G)VIF values that are computed by the function. Hence, the combination of \code{sim=TRUE} with \code{reestimate=TRUE} is computationally expensive, especially for more complex models where model fitting can be slow. When refitting the model fails, the simulated (G)VIF value(s) will be missing. It can also happen that one or multiple model coefficients become inestimable due to redundancies in the model matrix after the reshuffling. In this case, the corresponding simulated (G)VIF value(s) will be set to \code{Inf} (as that is the value of (G)VIFs in the limit as we approach perfect multicollinearity). On machines with multiple cores, one can try to speed things up by delegating the model fitting to separate worker processes, that is, by setting \code{parallel="snow"} or \code{parallel="multicore"} and \code{ncpus} to some value larger than 1. Parallel processing makes use of the \code{\link[parallel]{parallel}} package, using the \code{\link[parallel]{makePSOCKcluster}} and \code{\link[parallel]{parLapply}} functions when \code{parallel="snow"} or using \code{\link[parallel]{mclapply}} when \code{parallel="multicore"} (the latter only works on Unix/Linux-alikes). With \code{parallel::detectCores()}, one can check on the number of available cores on the local machine. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). \emph{Regression diagnostics}. New York: Wiley. Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. \emph{Journal of the American Statistical Association}, \bold{87}(417), 178--183. \verb{https://doi.org/10.2307/2290467} Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. \emph{Psychometrika}, \bold{30}(2), 179--185. \verb{https://doi.org/10.1007/BF02289447} Stewart, G. W. (1987). Collinearity and least squares regression. \emph{Statistical Science}, \bold{2}(1), 68--84. \verb{https://doi.org/10.1214/ss/1177013439} Wax, Y. (1992). Collinearity diagnosis for a relative risk regression-analysis: An application to assessment of diet cancer relationship in epidemiologic studies. \emph{Statistics in Medicine}, \bold{11}(10), 1273--1287. \verb{https://doi.org/10.1002/sim.4780111003} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W., & \enc{López-López}{Lopez-Lopez}, J. A. (2022). Location-scale models for meta-analysis. \emph{Research Synthesis Methods}. \bold{13}(6), 697--715. \verb{https://doi.org/10.1002/jrsm.1562} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which variance inflation factors can be computed. \code{\link[=plot.vif.rma]{plot}} for the plot method and \code{\link[=as.data.frame.vif.rma]{as.data.frame}} for the method to format the results as a data frame. } \examples{ ### copy data from Bangert-Drowns et al. (2004) into 'dat' dat <- dat.bangertdrowns2004 ### fit mixed-effects meta-regression model res <- rma(yi, vi, mods = ~ length + wic + feedback + info + pers + imag + meta, data=dat) ### get variance inflation factors vif(res) ### use the simulation approach to analyze the size of the VIFs \dontrun{ vif(res, sim=TRUE, seed=1234) } ### get variance inflation factors using the re-estimation approach vif(res, reestimate=TRUE) ### show that VIFs are not influenced by scaling of the predictors u <- scale # to standardize the predictors res <- rma(yi, vi, mods = ~ u(length) + u(wic) + u(feedback) + u(info) + u(pers) + u(imag) + u(meta), data=dat) vif(res, reestimate=TRUE) ### get full table vif(res, reestimate=TRUE, table=TRUE) ############################################################################ ### an example where the VIFs are close to 1, but actually reflect considerable ### multicollinearity as can be seen based on the simulation approach dat <- dat.mcdaniel1994 dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) res <- rma(yi, vi, mods = ~ factor(type) + factor(struct), data=dat) res vif(res) ### use the simulation approach to analyze the size of the VIFs \dontrun{ vifs <- vif(res, sim=TRUE, seed=1234) vifs plot(vifs, lwd=c(2,2), breaks=seq(1,2,by=0.0015), xlim=c(1,1.08)) } ### an example for a location-scale model res <- rma(yi, vi, mods = ~ factor(type) + factor(struct), scale = ~ factor(type) + factor(struct), data=dat) res vif(res) ############################################################################ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit meta-regression model where one predictor (alloc) is a three-level factor res <- rma(yi, vi, mods = ~ ablat + alloc + year, data=dat) ### get variance inflation factors for all individual coefficients vif(res, table=TRUE) ### generalized variance inflation factor for the 'alloc' factor vif(res, btt=3:4) ### can also specify a string to grep for vif(res, btt="alloc") ### can also specify a list for the 'btt' argument (and use the simulation approach) \dontrun{ vif(res, btt=list(2,3:4,5), sim=TRUE, seed=1234) } } \keyword{models} metafor/man/qqnorm.rma.Rd0000644000176200001440000001653414746146216015070 0ustar liggesusers\name{qqnorm.rma} \alias{qqnorm} \alias{qqnorm.rma} \alias{qqnorm.rma.uni} \alias{qqnorm.rma.mh} \alias{qqnorm.rma.peto} \alias{qqnorm.rma.glmm} \alias{qqnorm.rma.mv} \title{Normal QQ Plots for 'rma' Objects} \description{ Function to create normal QQ plots for objects of class \code{"rma.uni"}, \code{"rma.mh"}, and \code{"rma.peto"}. \loadmathjax } \usage{ \method{qqnorm}{rma.uni}(y, type="rstandard", pch=21, col, bg, grid=FALSE, envelope=TRUE, level=y$level, bonferroni=FALSE, reps=1000, smooth=TRUE, bass=0, label=FALSE, offset=0.3, pos=13, lty, \dots) \method{qqnorm}{rma.mh}(y, type="rstandard", pch=21, col, bg, grid=FALSE, label=FALSE, offset=0.3, pos=13, \dots) \method{qqnorm}{rma.peto}(y, type="rstandard", pch=21, col, bg, grid=FALSE, label=FALSE, offset=0.3, pos=13, \dots) \method{qqnorm}{rma.glmm}(y, \dots) # not currently implemented \method{qqnorm}{rma.mv}(y, \dots) # not currently implemented } \arguments{ \item{y}{an object of class \code{"rma.uni"}, \code{"rma.mh"}, or \code{"rma.peto"}. The method is not (yet) implemented for objects of class \code{"rma.glmm"} or \code{"rma.mv"}.} \item{type}{character string (either \code{"rstandard"} (default) or \code{"rstudent"}) to specify whether standardized residuals or studentized deleted residuals should be used in creating the plot. See \sQuote{Details}.} \item{pch}{plotting symbol to use for the observed outcomes. By default, an open circle is used. See \code{\link{points}} for other options.} \item{col}{optional character string to specify the (border) color of the points.} \item{bg}{optional character string to specify the background color of open plot symbols.} \item{grid}{logical to specify whether a grid should be added to the plot (the default is \code{FALSE}). Can also be a color name.} \item{envelope}{logical to specify whether a pseudo confidence envelope should be simulated and added to the plot (the default is \code{TRUE}). Can also be a color name. Only for objects of class \code{"rma.uni"}. See \sQuote{Details}.} \item{level}{numeric value between 0 and 100 to specify the level of the pseudo confidence envelope (see \link[=misc-options]{here} for details). The default is to take the value from the object.} \item{bonferroni}{logical to specify whether the bounds of the envelope should be Bonferroni corrected.} \item{reps}{numeric value to specify the number of iterations for simulating the pseudo confidence envelope (the default is 1000).} \item{smooth}{logical to specify whether the results from the simulation should be smoothed (the default is \code{TRUE}).} \item{bass}{numeric value that controls the degree of smoothing (the default is 0).} \item{label}{argument to control the labeling of the points (the default is \code{FALSE}). See \sQuote{Details}.} \item{offset}{argument to control the distance between the points and the corresponding labels.} \item{pos}{argument to control the position of the labels.} \item{lty}{optional argument to specify the line type for the diagonal line and the pseudo confidence envelope. If unspecified, the function sets this to \code{c("solid","dotted")} by default.} \item{\dots}{other arguments.} } \details{ The plot shows the theoretical quantiles of a normal distribution on the horizontal axis against the observed quantiles for either the standardized residuals (\code{type="rstandard"}, the default) or the externally standardized residuals (\code{type="rstudent"}) on the vertical axis (see \code{\link[=residuals.rma]{residuals}} for details on the definition of these residual types). For reference, a line is added to the plot with a slope of 1, going through the (0,0) point. For objects of class \code{"rma.uni"}, it is also possible to add a pseudo confidence envelope to the plot. The envelope is created based on the quantiles of sets of pseudo residuals simulated from the given model (for details, see Cook & Weisberg, 1982). The number of sets simulated can be controlled with the \code{reps} argument. When \code{smooth=TRUE}, the simulated bounds are smoothed with Friedman's SuperSmoother (see \code{\link{supsmu}}). The \code{bass} argument can be set to a number between 0 and 10, with higher numbers indicating increasing smoothness. If \code{bonferroni=TRUE}, the envelope bounds are Bonferroni corrected, so that the envelope can be regarded as a confidence region for all \mjseqn{k} residuals simultaneously. The default however is \code{bonferroni=FALSE}, which makes the plot more sensitive to deviations from normality. With the \code{label} argument, one can control whether points in the plot will be labeled (e.g., to identify outliers). If \code{label="all"} (or \code{label=TRUE}), all points in the plot will be labeled. If \code{label="out"}, points falling outside of the confidence envelope will be labeled (only available for objects of class \code{"rma.uni"}). Finally, one can also set this argument to a numeric value (between 1 and \mjseqn{k}), to specify how many of the most extreme points should be labeled (for example, with \code{label=1} only the most extreme point is labeled, while with \code{label=3}, the most extreme, and the second and third most extreme points are labeled). With the \code{offset} argument, one can adjust the distance between the labels and the corresponding points. The \code{pos} argument is the position specifier for the labels (\code{1}, \code{2}, \code{3}, and \code{4}, respectively indicate positions below, to the left of, above, and to the right of the points; \code{13} places the labels below the points for points that fall below the reference line and above otherwise; \code{24} places the labels to the left of the points for points that fall above the reference line and to the right otherwise). } \value{ A list with components: \item{x}{the x-axis coordinates of the points that were plotted.} \item{y}{the y-axis coordinates of the points that were plotted.} Note that the list is returned invisibly. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Cook, R. D., & Weisberg, S. (1982). \emph{Residuals and influence in regression}. London: Chapman and Hall. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219--254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} Wang, M. C., & Bushman, B. J. (1998). Using the normal quantile plot to explore meta-analytic data sets. \emph{Psychological Methods}, \bold{3}(1), 46--54. \verb{https://doi.org/10.1037/1082-989X.3.1.46} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, and \code{\link{rma.peto}} for functions to fit models for which normal QQ plots can be drawn. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects model res <- rma(yi, vi, data=dat) ### draw QQ plot qqnorm(res, grid=TRUE) ### fit mixed-effects model with absolute latitude as moderator res <- rma(yi, vi, mods = ~ ablat, data=dat) ### draw QQ plot qqnorm(res, grid=TRUE) } \keyword{hplot} metafor/man/blup.Rd0000644000176200001440000001262214746146216013731 0ustar liggesusers\name{blup} \alias{blup} \alias{blup.rma.uni} \title{Best Linear Unbiased Predictions for 'rma.uni' Objects} \description{ Function to compute best linear unbiased predictions (BLUPs) of the study-specific true effect sizes or outcomes (by combining the fitted values based on the fixed effects and the estimated contributions of the random effects) for objects of class \code{"rma.uni"}. Corresponding standard errors and prediction interval bounds are also provided. \loadmathjax } \usage{ blup(x, \dots) \method{blup}{rma.uni}(x, level, digits, transf, targs, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"}.} \item{level}{numeric value between 0 and 100 to specify the prediction interval level (see \link[=misc-options]{here} for details). If unspecified, the default is to take the value from the object.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{transf}{optional argument to specify a function to transform the predicted values and interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified under \code{transf}.} \item{\dots}{other arguments.} } \value{ An object of class \code{"list.rma"}. The object is a list containing the following components: \item{pred}{predicted values.} \item{se}{corresponding standard errors.} \item{pi.lb}{lower bound of the prediction intervals.} \item{pi.ub}{upper bound of the prediction intervals.} \item{\dots}{some additional elements/values.} The object is formatted and printed with the \code{\link[=print.list.rma]{print}} function. To format the results as a data frame, one can use the \code{\link[=as.data.frame.list.rma]{as.data.frame}} function. } \note{ For best linear unbiased predictions of only the random effects, see \code{\link{ranef}}. For predicted/fitted values that are based only on the fixed effects of the model, see \code{\link[=fitted.rma]{fitted}} and \code{\link[=predict.rma]{predict}}. For conditional residuals (the deviations of the observed effect sizes or outcomes from the BLUPs), see \code{rstandard.rma.uni} with \code{type="conditional"}. Equal-effects models do not contain random study effects. The BLUPs for these models will therefore be equal to the fitted values, that is, those obtained with \code{\link[=fitted.rma]{fitted}} and \code{\link[=predict.rma]{predict}}. When using the \code{transf} argument, the transformation is applied to the predicted values and the corresponding interval bounds. The standard errors are then set equal to \code{NA} and are omitted from the printed output. By default, a standard normal distribution is used to construct the prediction intervals. When the model was fitted with \code{test="t"}, \code{test="knha"}, \code{test="hksj"}, or \code{test="adhoc"}, then a t-distribution with \mjseqn{k-p} degrees of freedom is used. To be precise, it should be noted that the function actually computes empirical BLUPs (eBLUPs), since the predicted values are a function of the estimated value of \mjseqn{\tau^2}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Kackar, R. N., & Harville, D. A. (1981). Unbiasedness of two-stage estimation and prediction procedures for mixed linear models. Communications in Statistics, Theory and Methods, \bold{10}(13), 1249--1261. \verb{https://doi.org/10.1080/03610928108828108} Raudenbush, S. W., & Bryk, A. S. (1985). Empirical Bayes meta-analysis. \emph{Journal of Educational Statistics}, \bold{10}(2), 75--98. \verb{https://doi.org/10.3102/10769986010002075} Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects. \emph{Statistical Science}, \bold{6}(1), 15--32. \verb{https://doi.org/10.1214/ss/1177011926} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}} for the function to fit models for which BLUPs can be extracted. \code{\link[=predict.rma]{predict}} and \code{\link[=fitted.rma]{fitted}} for functions to compute the predicted/fitted values based only on the fixed effects and \code{\link{ranef}} for a function to compute the BLUPs based only on the random effects. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### meta-analysis of the log risk ratios using a random-effects model res <- rma(yi, vi, data=dat) ### BLUPs of the true risk ratios for each study blup(res, transf=exp) ### illustrate shrinkage of BLUPs towards the (estimated) population average res <- rma(yi, vi, data=dat) blups <- blup(res)$pred plot(NA, NA, xlim=c(.8,2.4), ylim=c(-2,0.5), pch=19, xaxt="n", bty="n", xlab="", ylab="Log Risk Ratio") segments(rep(1,13), dat$yi, rep(2,13), blups, col="darkgray") points(rep(1,13), dat$yi, pch=19) points(rep(2,13), blups, pch=19) axis(side=1, at=c(1,2), labels=c("Observed\nValues", "BLUPs"), lwd=0) segments(0, res$beta, 2.15, res$beta, lty="dotted") text(2.3, res$beta, substitute(hat(mu)==muhat, list(muhat=round(res$beta[[1]], 2))), cex=1) } \keyword{models} metafor/man/plot.rma.uni.selmodel.Rd0000644000176200001440000001200314746146216017111 0ustar liggesusers\name{plot.rma.uni.selmodel} \alias{plot.rma.uni.selmodel} \title{Plot Method for 'plot.rma.uni.selmodel' Objects} \description{ Function to plot objects of class \code{"plot.rma.uni.selmodel"}. \loadmathjax } \usage{ \method{plot}{rma.uni.selmodel}(x, xlim, ylim, n=1000, prec="max", scale=FALSE, ci=FALSE, reps=1000, shade=TRUE, rug=TRUE, add=FALSE, lty=c("solid","dotted"), lwd=c(2,1), \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni.selmodel"} obtained with \code{\link{selmodel}}.} \item{xlim}{x-axis limits. Essentially the range of p-values for which the selection function should be drawn. If unspecified, the function sets the limits automatically.} \item{ylim}{y-axis limits. If unspecified, the function sets the limits automatically.} \item{n}{numeric value to specify for how many p-values within the x-axis limits the function value should be computed (the default is 1000).} \item{prec}{either a character string (with options \code{"max"}, \code{"min"}, \code{"mean"}, or \code{"median"}) or a numeric value. See \sQuote{Details}.} \item{scale}{logical to specify whether the function values should be rescaled to a 0 to 1 range (the default is \code{FALSE}).} \item{ci}{logical to specify whether a confidence interval should be drawn around the selection function (the default is \code{FALSE}). Can also be a string (with options \code{"boot"} or \code{"wald"}). See \sQuote{Details}.} \item{reps}{numeric value to specify the number of bootstrap samples to draw for generating the confidence interval bounds (the default is 1000).} \item{shade}{logical to specify whether the confidence interval region should be shaded (the default is \code{TRUE}). Can also be a character vector to specify the color for the shading.} \item{rug}{logical to specify whether the observed p-values should be added as tick marks on the x-axis (the default is \code{TRUE}).} \item{add}{logical to specify whether the function should be added to an existing plot (the default is \code{FALSE}).} \item{lty}{the line types for the selection function and the confidence interval bounds.} \item{lwd}{the line widths for the selection function and the confidence interval bounds.} \item{\dots}{other arguments.} } \details{ The function can be used to draw the estimated selection function based on objects of class \code{"plot.rma.uni.selmodel"}. When the selection function incorporates a measure of precision (which, strictly speaking, is really a measure of imprecision), one can specify for which level of precision the selection function should be drawn. When \code{prec="max"}, then the function is drawn for the \emph{least} precise study (maximum imprecision), when \code{prec="min"}, then the function is drawn for the \emph{most} precise study (minimum imprecision), while \code{prec="mean"} and \code{prec="median"} will show the function for the mean and median level of imprecision, respectively. Alternatively, one can specify a numeric value for argument \code{prec} to specify the precision value (where \code{prec="max"} corresponds to \code{prec=1} and higher levels of precision to \code{prec} values below 1). When \code{ci=TRUE} (or equivalently, \code{ci="boot"}), a confidence interval is drawn around the selection function. The bounds of this interval are generated using parametric bootstrapping, with argument \code{reps} controlling the number of bootstrap samples to draw for generating the confidence interval bounds. When both \code{n} and \code{reps} are large, constructing the confidence interval can take some time. For models where the selection function involves a single \mjseqn{\delta} parameter, one can also set \code{ci="wald"}, in which case the confidence interval will be constructed based on the Wald-type CI of the \mjseqn{\delta} parameter (doing so is much quicker than using parametric bootstrapping). This option is also available for step function models (even if they involve multiple \mjseqn{\delta} parameters). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{selmodel}} for the function to fit models for which the estimated selection function can be drawn. } \examples{ ### copy data into 'dat' and examine data dat <- dat.hackshaw1998 ### fit random-effects model using the log odds ratios res <- rma(yi, vi, data=dat, method="ML") res ### fit step selection model sel1 <- selmodel(res, type="stepfun", steps=c(0.05, 0.10, 0.50, 1.00)) ### plot selection function plot(sel1, scale=TRUE) ### fit negative exponential selection model sel2 <- selmodel(res, type="negexp") ### add selection function to the existing plot plot(sel2, add=TRUE, col="blue") ### plot selection function with CI plot(sel1, ci="wald") ### plot selection function with CI plot(sel2, ci="wald") } \keyword{hplot} metafor/man/plot.rma.Rd0000644000176200001440000000516114746146216014523 0ustar liggesusers\name{plot.rma} \alias{plot.rma} \alias{plot.rma.uni} \alias{plot.rma.mh} \alias{plot.rma.mv} \alias{plot.rma.peto} \alias{plot.rma.glmm} \title{Plot Method for 'rma' Objects} \description{ Functions to plot objects of class \code{"rma.uni"}, \code{"rma.mh"}, \code{"rma.peto"}, and \code{"rma.glmm"}. } \usage{ \method{plot}{rma.uni}(x, qqplot=FALSE, \dots) \method{plot}{rma.mh}(x, qqplot=FALSE, \dots) \method{plot}{rma.peto}(x, qqplot=FALSE, \dots) \method{plot}{rma.glmm}(x, qqplot=FALSE, \dots) # not currently implemented \method{plot}{rma.mv}(x, qqplot=FALSE, \dots) # not currently implemented } \arguments{ \item{x}{an object of class \code{"rma.uni"}, \code{"rma.mh"}, or \code{"rma.peto"}. The method is not (yet) implemented for objects of class \code{"rma.glmm"} or \code{"rma.mv"}.} \item{qqplot}{logical to specify whether a normal QQ plot should be drawn (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ Four plots are produced. If the model does not contain any moderators, then a forest plot, funnel plot, radial plot, and a plot of the standardized residuals is provided. If \code{qqplot=TRUE}, the last plot is replaced by a normal QQ plot of the standardized residuals. If the model contains moderators, then a forest plot, funnel plot, plot of the standardized residuals against the fitted values, and a plot of the standardized residuals is provided. If \code{qqplot=TRUE}, the last plot is replaced by a normal QQ plot of the standardized residuals. } \note{ If the number of studies is large, the forest plot may become difficult to read due to the small font size. Stretching the plotting device vertically should provide more space. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{forest}} for forest plots, \code{\link{funnel}} for funnel plots, \code{\link{radial}} for radial plots, and \code{\link[=qqnorm.rma]{qqnorm}} for normal QQ plots. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects model res <- rma(yi, vi, data=dat) ### plot results plot(res, qqplot=TRUE) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### plot results plot(res, qqplot=TRUE) } \keyword{hplot} metafor/man/reporter.Rd0000644000176200001440000001253314746146216014632 0ustar liggesusers\name{reporter} \alias{reporter} \alias{reporter.rma.uni} \title{Dynamically Generated Analysis Reports for 'rma.uni' Objects} \description{ Function to dynamically generate an analysis report for objects of class \code{"rma.uni"}. } \usage{ reporter(x, \dots) \method{reporter}{rma.uni}(x, dir, filename, format="html_document", open=TRUE, digits, forest, funnel, footnotes=FALSE, verbose=TRUE, \dots) } \arguments{ \item{x}{an object of class \code{"rma.uni"}.} \item{dir}{optional character string to specify the directory for creating the report. If unspecified, \code{\link{tempdir}} will be used.} \item{filename}{optional character string to specify the filename (without file extension) for the report. If unspecified, the function sets a filename automatically.} \item{format}{output format for the report (either \code{html_document}, \code{pdf_document}, or \code{word_document}). Can be abbreviated. See \sQuote{Note}.} \item{open}{logical to specify whether the report should be opened after it has been generated (the default is \code{TRUE}). See \sQuote{Note}.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{forest}{either a logical which will suppress the drawing of the forest plot when set to \code{FALSE} or a character string with arguments to be added to the call to \code{\link[=forest.rma]{forest}} for generating the forest plot.} \item{funnel}{either a logical which will suppress the drawing of the funnel plot when set to \code{FALSE} or a character string with arguments to be added to the call to \code{\link[=funnel.rma]{funnel}} for generating the funnel plot.} \item{footnotes}{logical to specify whether additional explanatory footnotes should be added to the report (the default is \code{FALSE}).} \item{verbose}{logical to specify whether information on the progress of the report generation should be provided (the default is \code{TRUE}).} \item{\dots}{other arguments.} } \details{ The function dynamically generates an analysis report based on the model object. The report includes information about the model that was fitted, the distribution of the observed effect sizes or outcomes, the estimate of the average outcome based on the fitted model, tests and statistics that are informative about potential (residual) heterogeneity in the outcomes, checks for outliers and/or influential studies, and tests for funnel plot asymmetry. By default, a forest plot and a funnel plot are also provided (these can be suppressed by setting \code{forest=FALSE} and/or \code{funnel=FALSE}). } \value{ The function generates either a html, pdf, or docx file and returns (invisibly) the path to the generated document. } \note{ Since the report is created based on an R Markdown document that is generated by the function, the \href{https://cran.r-project.org/package=rmarkdown}{rmarkdown} package and \href{https://pandoc.org}{pandoc} must be installed. To render the report into a pdf document (i.e., using \code{format="pdf_document"}) requires a LaTeX installation. If LaTeX is not already installed, you could try using the \href{https://cran.r-project.org/package=tinytex}{tinytex} package to install a lightweight LaTeX distribution based on TeX Live. Once the report is generated, the function opens the output file (either a .html, .pdf, or .docx file) with an appropriate application (if \code{open=TRUE}). This will only work when an appropriate application for the file type is installed and associated with the extension. If \code{filename} is unspecified, the default is to use \code{report}, followed by an underscore (i.e., \code{_}) and the name of the object passed to the function. Both the R Markdown file (with extension .rmd) and the actual report (with extension .html, .pdf, or .docx) are named accordingly. To generate the report, the model object is also saved to a file (with the same filename as above, but with extension .rdata). Also, files \code{references.bib} and \code{apa.csl} are copied to the same directory (these files are needed to generate the references in APA format). Since the report is put together based on predefined text blocks, the writing is not very elegant. Also, using personal pronouns (\sQuote{I} or \sQuote{we}) does not make sense for such a report, so a lot of passive voice is used. The generated report provides an illustration of how the results of the model can be reported, but is not a substitute for a careful examination of the results. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}} for the function to fit models for which an analysis report can be generated. } \examples{ ### copy BCG vaccine data into 'dat' dat <- dat.bcg ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, slab=paste(author, ", ", year, sep="")) ### fit random-effects model res <- rma(yi, vi, data=dat) \dontrun{ ### generate report reporter(res) } } \keyword{methods} metafor/man/rma.peto.Rd0000644000176200001440000002721414746146216014517 0ustar liggesusers\name{rma.peto} \alias{rma.peto} \title{Meta-Analysis via Peto's Method} \description{ Function to fit equal-effects models to \mjeqn{2 \times 2}{2x2} table data via Peto's method. See below and the introduction to the \pkg{\link{metafor-package}} for more details on these models. \loadmathjax } \usage{ rma.peto(ai, bi, ci, di, n1i, n2i, data, slab, subset, add=1/2, to="only0", drop00=TRUE, level=95, verbose=FALSE, digits, \dots) } \arguments{ \emph{These arguments pertain to data input:} \item{ai}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper left cell). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{bi}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper right cell). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{ci}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower left cell). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{di}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower right cell). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{n1i}{vector with the group sizes or row totals (first group). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{n2i}{vector with the group sizes or row totals (second group). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{data}{optional data frame containing the data supplied to the function.} \item{slab}{optional vector with labels for the \mjseqn{k} studies.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be used for the analysis.} \emph{These arguments pertain to handling of zero cells/counts/frequencies:} \item{add}{non-negative number to specify the amount to add to zero cells when calculating the observed effect sizes of the individual studies. Can also be a vector of two numbers, where the first number is used in the calculation of the observed effect sizes and the second number is used when applying Peto's method. See below and the documentation of the \code{\link{escalc}} function for more details.} \item{to}{character string to specify when the values under \code{add} should be added (either \code{"only0"}, \code{"all"}, \code{"if0all"}, or \code{"none"}). Can also be a character vector, where the first string again applies when calculating the observed effect sizes or outcomes and the second string when applying Peto's method. See below and the documentation of the \code{\link{escalc}} function for more details.} \item{drop00}{logical to specify whether studies with no cases (or only cases) in both groups should be dropped when calculating the observed effect sizes or outcomes (the outcomes for such studies are set to \code{NA}). Can also be a vector of two logicals, where the first applies to the calculation of the observed effect sizes or outcomes and the second when applying Peto's method. See below and the documentation of the \code{\link{escalc}} function for more details.} \emph{These arguments pertain to the model / computations and output:} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (the default is 95; see \link[=misc-options]{here} for details).} \item{verbose}{logical to specify whether output should be generated on the progress of the model fitting (the default is \code{FALSE}).} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is 4. See also \link[=misc-options]{here} for further details on how to control the number of digits in the output.} \item{\dots}{additional arguments.} } \details{ \subsection{Specifying the Data}{ The studies are assumed to provide data in terms of \mjeqn{2 \times 2}{2x2} tables of the form: \tabular{lcccccc}{ \tab \ics \tab outcome 1 \tab \ics \tab outcome 2 \tab \ics \tab total \cr group 1 \tab \ics \tab \code{ai} \tab \ics \tab \code{bi} \tab \ics \tab \code{n1i} \cr group 2 \tab \ics \tab \code{ci} \tab \ics \tab \code{di} \tab \ics \tab \code{n2i}} where \code{ai}, \code{bi}, \code{ci}, and \code{di} denote the cell frequencies and \code{n1i} and \code{n2i} the row totals. For example, in a set of randomized clinical trials (RCTs) or cohort studies, group 1 and group 2 may refer to the treatment/exposed and placebo/control/non-exposed group, respectively, with outcome 1 denoting some event of interest (e.g., death) and outcome 2 its complement. In a set of case-control studies, group 1 and group 2 may refer to the group of cases and the group of controls, with outcome 1 denoting, for example, exposure to some risk factor and outcome 2 non-exposure. } \subsection{Peto's Method}{ An approach for aggregating data of this type was suggested by Peto (see Yusuf et al., 1985). The method provides a weighted estimate of the (log) odds ratio under an equal-effects model. The method is particularly advantageous when the event of interest is rare, but it should only be used when the group sizes within the individual studies are not too dissimilar and the effect sizes are generally small (Greenland & Salvan, 1990; Sweeting et al., 2004; Bradburn et al., 2007). Note that the printed results are given both in terms of the log and the raw units (for easier interpretation). } \subsection{Observed Effect Sizes or Outcomes of the Individual Studies}{ Peto's method itself does not require the calculation of the observed log odds ratios of the individual studies and directly makes use of the cell frequencies in the \mjeqn{2 \times 2}{2x2} tables. Zero cells are not a problem (except in extreme cases, such as when one of the two outcomes never occurs in any of the tables). Therefore, it is unnecessary to add some constant to the cell counts when there are zero cells. However, for plotting and various other functions, it is necessary to calculate the observed log odds ratios for the \mjseqn{k} studies. Here, zero cells can be problematic, so adding a constant value to the cell counts ensures that all \mjseqn{k} values can be calculated. The \code{add} and \code{to} arguments are used to specify what value should be added to the cell frequencies and under what circumstances when calculating the observed log odds ratios and when applying Peto's method. Similarly, the \code{drop00} argument is used to specify how studies with no cases (or only cases) in both groups should be handled. The documentation of the \code{\link{escalc}} function explains how the \code{add}, \code{to}, and \code{drop00} arguments work. If only a single value for these arguments is specified (as per default), then these values are used when calculating the observed log odds ratios and no adjustment to the cell counts is made when applying Peto's method. Alternatively, when specifying two values for these arguments, the first value applies when calculating the observed log odds ratios and the second value when applying Peto's method. Note that \code{drop00} is set to \code{TRUE} by default. Therefore, the observed log odds ratios for studies where \code{ai=ci=0} or \code{bi=di=0} are set to \code{NA}. When applying Peto's method, such studies are not explicitly dropped (unless the second value of \code{drop00} argument is also set to \code{TRUE}), but this is practically not necessary, as they do not actually influence the results (assuming no adjustment to the cell counts are made when applying Peto's method). } } \value{ An object of class \code{c("rma.peto","rma")}. The object is a list containing the following components: \item{beta}{aggregated log odds ratio.} \item{se}{standard error of the aggregated value.} \item{zval}{test statistics of the aggregated value.} \item{pval}{corresponding p-value.} \item{ci.lb}{lower bound of the confidence interval.} \item{ci.ub}{upper bound of the confidence interval.} \item{QE}{test statistic of the test for heterogeneity.} \item{QEp}{corresponding p-value.} \item{k}{number of studies included in the analysis.} \item{yi, vi}{the vector of individual log odds ratios and corresponding sampling variances.} \item{fit.stats}{a list with the log-likelihood, deviance, AIC, BIC, and AICc values under the unrestricted and restricted likelihood.} \item{\dots}{some additional elements/values.} } \section{Methods}{ The results of the fitted model are formatted and printed with the \code{\link[=print.rma.peto]{print}} function. If fit statistics should also be given, use \code{\link[=summary.rma]{summary}} (or use the \code{\link[=fitstats.rma]{fitstats}} function to extract them). The \code{\link[=residuals.rma]{residuals}}, \code{\link[=rstandard.rma.peto]{rstandard}}, and \code{\link[=rstudent.rma.peto]{rstudent}} functions extract raw and standardized residuals. Leave-one-out diagnostics can be obtained with \code{\link[=leave1out.rma.peto]{leave1out}}. Forest, funnel, radial, \enc{L'Abbé}{L'Abbe}, and Baujat plots can be obtained with \code{\link[=forest.rma]{forest}}, \code{\link[=funnel.rma]{funnel}}, \code{\link[=radial.rma]{radial}}, \code{\link[=labbe.rma]{labbe}}, and \code{\link[=baujat.rma]{baujat}}. The \code{\link[=qqnorm.rma.peto]{qqnorm}} function provides normal QQ plots of the standardized residuals. One can also call \code{\link[=plot.rma.peto]{plot}} on the fitted model object to obtain various plots at once. A cumulative meta-analysis (i.e., adding one observation at a time) can be obtained with \code{\link[=cumul.rma.peto]{cumul}}. Other extractor functions include \code{\link[=coef.rma]{coef}}, \code{\link[=vcov.rma]{vcov}}, \code{\link[=logLik.rma]{logLik}}, \code{\link[=deviance.rma]{deviance}}, \code{\link[=AIC.rma]{AIC}}, and \code{\link[=BIC.rma]{BIC}}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Bradburn, M. J., Deeks, J. J., Berlin, J. A., & Localio, A. R. (2007). Much ado about nothing: A comparison of the performance of meta-analytical methods with rare events. \emph{Statistics in Medicine}, \bold{26}(1), 53--77. \verb{https://doi.org/10.1002/sim.2528} Greenland, S., & Salvan, A. (1990). Bias in the one-step method for pooling study results. \emph{Statistics in Medicine}, \bold{9}(3), 247--252. \verb{https://doi.org/10.1002/sim.4780090307} Sweeting, M. J., Sutton, A. J., & Lambert, P. C. (2004). What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. \emph{Statistics in Medicine}, \bold{23}(9), 1351--1375. \verb{https://doi.org/10.1002/sim.1761} Yusuf, S., Peto, R., Lewis, J., Collins, R., & Sleight, P. (1985). Beta blockade during and after myocardial infarction: An overview of the randomized trials. \emph{Progress in Cardiovascular Disease}, \bold{27}(5), 335--371. \verb{https://doi.org/10.1016/s0033-0620(85)80003-7} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.glmm}}, \code{\link{rma.mh}}, and \code{\link{rma.mv}} for other model fitting functions. \code{\link[metadat]{dat.collins1985a}}, \code{\link[metadat]{dat.collins1985b}}, and \code{\link[metadat]{dat.yusuf1985}} for further examples of the use of the \code{rma.peto} function. } \examples{ ### meta-analysis of the (log) odds ratios using Peto's method rma.peto(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) } \keyword{models} metafor/man/print.anova.rma.Rd0000644000176200001440000000616314746146216016007 0ustar liggesusers\name{print.anova.rma} \alias{print.anova.rma} \alias{print.list.anova.rma} \title{Print Methods for 'anova.rma' and 'list.anova.rma' Objects} \description{ Functions to print objects of class \code{"anova.rma"} and \code{"list.anova.rma"}. \loadmathjax } \usage{ \method{print}{anova.rma}(x, digits=x$digits, \dots) \method{print}{list.anova.rma}(x, digits=x[[1]]$digits, \dots) } \arguments{ \item{x}{an object of class \code{"anova.rma"} or \code{"list.anova.rma"} obtained with \code{\link[=anova.rma]{anova}}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{\dots}{other arguments.} } \details{ For a Wald-type test of one or multiple model coefficients, the output includes the test statistic (either a chi-square or F-value) and the corresponding p-value. When testing one or multiple contrasts, the output includes the estimated value of the contrast, its standard error, test statistic (either a z- or a t-value), and the corresponding p-value. When comparing two model objects, the output includes: \itemize{ \item the number of parameters in the full and the reduced model. \item the AIC, BIC, AICc, and log-likelihood of the full and the reduced model. \item the value of the likelihood ratio test statistic. \item the corresponding p-value. \item the test statistic of the test for (residual) heterogeneity for the full and the reduced model. \item the estimate of \mjseqn{\tau^2} from the full and the reduced model. Suppressed for equal-effects models. \item amount (in percent) of heterogeneity in the reduced model that is accounted for in the full model (\code{NA} for \code{"rma.mv"} objects). This can be regarded as a pseudo \mjseqn{R^2} statistic (Raudenbush, 2009). Note that the value may not be very accurate unless \mjseqn{k} is large (Lopez-Lopez et al., 2014). } The last two items are not provided when comparing \code{"rma.mv"} models. } \value{ The function does not return an object. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ \enc{López-López}{Lopez-Lopez}, J. A., \enc{Marín-Martínez}{Marin-Martinez}, F., \enc{Sánchez-Meca}{Sanchez-Meca}, J., Van den Noortgate, W., & Viechtbauer, W. (2014). Estimation of the predictive power of the model in mixed-effects meta-regression: A simulation study. \emph{British Journal of Mathematical and Statistical Psychology}, \bold{67}(1), 30--48. \verb{https://doi.org/10.1111/bmsp.12002} Raudenbush, S. W. (2009). Analyzing effect sizes: Random effects models. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (2nd ed., pp. 295--315). New York: Russell Sage Foundation. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=anova.rma]{anova}} for the function to create \code{anova.rma} objects. } \keyword{print} metafor/man/vec2mat.Rd0000644000176200001440000000261414746146216014330 0ustar liggesusers\name{vec2mat} \alias{vec2mat} \title{Convert a Vector into a Square Matrix} \description{ Function to convert a vector into a square matrix by filling up the lower triangular part of the matrix. } \usage{ vec2mat(x, diag=FALSE, corr=!diag, dimnames) } \arguments{ \item{x}{a vector of the correct length.} \item{diag}{logical to specify whether the vector also contains the diagonal values of the lower triangular part of the matrix (the default is \code{FALSE}).} \item{corr}{logical to specify whether the diagonal of the matrix should be replaced with 1's (the default is to do this when \code{diag=FALSE}).} \item{dimnames}{optional vector of the correct length with the dimension names of the matrix.} } \details{ The values in \code{x} are filled into the lower triangular part of a square matrix with the appropriate dimensions (which are determined based on the length of \code{x}). If \code{diag=TRUE}, then \code{x} is assumed to also contain the diagonal values of the lower triangular part of the matrix. If \code{corr=TRUE}, then the diagonal of the matrix is replaced with 1's. } \value{ A matrix. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \examples{ vec2mat(1:6, corr=FALSE) vec2mat(seq(0.2, 0.7, by=0.1), corr=TRUE) vec2mat(1:10, diag=TRUE) vec2mat(1:6, corr=FALSE, dimnames=c("A","B","C","D")) } \keyword{manip} metafor/man/addpoly.predict.rma.Rd0000644000176200001440000001261714746146216016636 0ustar liggesusers\name{addpoly.predict.rma} \alias{addpoly.predict.rma} \title{Add Polygons to Forest Plots (Method for 'predict.rma' Objects)} \description{ Function to add one or more polygons to a forest plot based on an object of class \code{"predict.rma"}. } \usage{ \method{addpoly}{predict.rma}(x, rows=-2, annotate, addpred=FALSE, predstyle, predlim, digits, width, mlab, transf, atransf, targs, efac, col, border, lty, fonts, cex, constarea=FALSE, \dots) } \arguments{ \item{x}{an object of class \code{"predict.rma"}.} \item{rows}{vector to specify the rows (or more generally, the positions) for plotting the polygons (defaults is \code{-2}). Can also be a single value to specify the row of the first polygon (the remaining polygons are then plotted below this starting row).} \item{annotate}{optional logical to specify whether annotations should be added to the plot for the polygons that are drawn.} \item{addpred}{logical to specify whether the prediction interval should be added to the plot (the default is \code{FALSE}).} \item{predstyle}{character string to specify the style of the prediction interval (either \code{"line"}, \code{"bar"}, \code{"shade"}, or \code{"dist"}). Can be abbreviated. Setting this argument automatically sets \code{addpred=TRUE}.} \item{predlim}{optional argument to specify the limits of the prediction distribution when \code{predstyle="dist"}.} \item{digits}{optional integer to specify the number of decimal places to which the annotations should be rounded.} \item{width}{optional integer to manually adjust the width of the columns for the annotations.} \item{mlab}{optional character vector of the same length as \code{x} giving labels for the polygons that are drawn.} \item{transf}{optional argument to specify a function to transform the \code{x} values and confidence interval bounds (e.g., \code{transf=exp}; see also \link{transf}).} \item{atransf}{optional argument to specify a function to transform the annotations (e.g., \code{atransf=exp}; see also \link{transf}).} \item{targs}{optional arguments needed by the function specified via \code{transf} or \code{atransf}.} \item{efac}{optional vertical expansion factor for the polygons.} \item{col}{optional character string to specify the color of the polygons.} \item{border}{optional character string to specify the border color of the polygons.} \item{lty}{optional argument to specify the line type for the prediction interval.} \item{fonts}{optional character string to specify the font for the labels and annotations.} \item{cex}{optional symbol expansion factor.} \item{constarea}{logical to specify whether the height of the polygons (when adding multiple) should be adjusted so that the area of the polygons is constant (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ The function can be used to add one or more polygons to an existing forest plot created with the \code{\link{forest}} function. For example, pooled estimates based on a model involving moderators can be added to the plot this way (see \sQuote{Examples}). To use the function, one should specify the values at which the polygons should be drawn (via the \code{x} argument) together with the corresponding variances (via the \code{vi} argument) or with the corresponding standard errors (via the \code{sei} argument). Alternatively, one can specify the values at which the polygons should be drawn together with the corresponding confidence interval bounds (via the \code{ci.lb} and \code{ci.ub} arguments). Optionally, one can also specify the bounds of the corresponding prediction interval bounds via the \code{pi.lb} and \code{pi.ub} arguments. If unspecified, arguments \code{annotate}, \code{digits}, \code{width}, \code{transf}, \code{atransf}, \code{targs}, \code{efac} (only if the forest plot was created with \code{\link{forest.rma}}), \code{fonts}, \code{cex}, \code{annosym}, and \code{textpos} are automatically set equal to the same values that were used when creating the forest plot. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{forest}} for functions to draw forest plots to which polygons can be added. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### forest plot of the observed risk ratios with(dat, forest(yi, vi, atransf=exp, xlim=c(-9,5), ylim=c(-5,16), at=log(c(0.05, 0.25, 1, 4)), cex=0.9, order=alloc, ilab=alloc, ilab.lab="Allocation", ilab.xpos=-4.5, header="Author(s) and Year")) ### fit mixed-effects model with allocation method as a moderator res <- rma(yi, vi, mods = ~ 0 + alloc, data=dat) ### predicted log risk ratios for the different allocation methods x <- predict(res, newmods=diag(3)) ### add predicted average risk ratios to the forest plot addpoly(x, efac=1.2, col="gray", addpred=TRUE, mlab=c("Alternate Allocation", "Random Allocation", "Systematic Allocation")) abline(h=0) text(-9, -1, "Model-Based Estimates:", pos=4, cex=0.9, font=2) } \keyword{aplot} metafor/man/weights.rma.Rd0000644000176200001440000000674514746146216015230 0ustar liggesusers\name{weights.rma} \alias{weights} \alias{weights.rma} \alias{weights.rma.uni} \alias{weights.rma.mh} \alias{weights.rma.peto} \alias{weights.rma.glmm} \alias{weights.rma.mv} \title{Compute Weights for 'rma' Objects} \description{ Functions to compute the weights given to the observed effect sizes or outcomes during the model fitting for objects of class \code{"rma.uni"}, \code{"rma.mh"}, \code{"rma.peto"}, and \code{"rma.mv"}. } \usage{ \method{weights}{rma.uni}(object, type="diagonal", \dots) \method{weights}{rma.mh}(object, type="diagonal", \dots) \method{weights}{rma.peto}(object, type="diagonal", \dots) \method{weights}{rma.glmm}(object, \dots) \method{weights}{rma.mv}(object, type="diagonal", \dots) } \arguments{ \item{object}{an object of class \code{"rma.uni"}, \code{"rma.mh"}, \code{"rma.peto"}, or \code{"rma.mv"}. The method is not (yet) implemented for objects of class \code{"rma.glmm"}.} \item{type}{character string to specify whether to return only the diagonal of the weight matrix (\code{"diagonal"}) or the entire weight matrix (\code{"matrix"}). For \code{"rma.mv"}, this can also be \code{"rowsum"} for \sQuote{row-sum weights} (for intercept-only models).} \item{\dots}{other arguments.} } \value{ Either a vector with the diagonal elements of the weight matrix or the entire weight matrix. When only the diagonal elements are returned, they are given in \% (and they add up to 100\%). When the entire weight matrix is requested, this is always a diagonal matrix for objects of class \code{"rma.uni"}, \code{"rma.mh"}, \code{"rma.peto"}. For \code{"rma.mv"}, the structure of the weight matrix depends on the model fitted (i.e., the random effects included and the variance-covariance matrix of the sampling errors) but is often more complex and not just diagonal. For intercept-only \code{"rma.mv"} models, one can also take the sum over the rows in the weight matrix, which are actually the weights assigned to the observed effect sizes or outcomes when estimating the model intercept. These weights can be obtained with \code{type="rowsum"} (as with \code{type="diagonal"}, they are also given in \%). See \href{https://www.metafor-project.org/doku.php/tips:weights_in_rma.mv_models}{here} for a discussion of this. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219--254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, and \code{\link{rma.mv}} for functions to fit models for which model fitting weights can be extracted. \code{\link{influence.rma.uni}} and \code{\link{influence.rma.mv}} for other model diagnostics. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### extract the model fitting weights (in \%) weights(res) ### extract the weight matrix round(weights(res, type="matrix"), 4) } \keyword{models} metafor/man/predict.rma.Rd0000644000176200001440000003711014746146216015176 0ustar liggesusers\name{predict.rma} \alias{predict} \alias{predict.rma} \alias{predict.rma.ls} \title{Predicted Values for 'rma' Objects} \description{ The function computes predicted values, corresponding standard errors, confidence intervals, and prediction intervals for objects of class \code{"rma"}. \loadmathjax } \usage{ \method{predict}{rma}(object, newmods, intercept, tau2.levels, gamma2.levels, addx=FALSE, level, adjust=FALSE, digits, transf, targs, vcov=FALSE, \dots) \method{predict}{rma.ls}(object, newmods, intercept, addx=FALSE, newscale, addz=FALSE, level, adjust=FALSE, digits, transf, targs, vcov=FALSE, \dots) } \arguments{ \item{object}{an object of class \code{"rma"} or \code{"rma.ls"}.} \item{newmods}{optional vector or matrix to specify the values of the moderator values for which the predicted values should be calculated. See \sQuote{Details}.} \item{intercept}{logical to specify whether the intercept should be included when calculating the predicted values for \code{newmods}. If unspecified, the intercept is automatically added when the original model also included an intercept.} \item{tau2.levels}{vector to specify the levels of the inner factor when computing prediction intervals. Only relevant for models of class \code{"rma.mv"} (see \code{\link{rma.mv}}) and when the model includes more than a single \mjseqn{\tau^2} value. See \sQuote{Details}.} \item{gamma2.levels}{vector to specify the levels of the inner factor when computing prediction intervals. Only relevant for models of class \code{"rma.mv"} (see \code{\link{rma.mv}}) and when the model includes more than a single \mjseqn{\gamma^2} value. See \sQuote{Details}.} \item{addx}{logical to specify whether the values of the moderator variables should be added to the returned object. See \sQuote{Examples}.} \item{newscale}{optional vector or matrix to specify the values of the scale variables for which the predicted values should be calculated. Only relevant for location-scale models (see \code{\link{rma.uni}}). See \sQuote{Details}.} \item{addz}{logical to specify whether the values of the scale variables should be added to the returned object.} \item{level}{numeric value between 0 and 100 to specify the confidence and prediction interval level (see \link[=misc-options]{here} for details). If unspecified, the default is to take the value from the object.} \item{adjust}{logical to specify whether the width of confidence/prediction intervals should be adjusted using a Bonferroni correction (the default is \code{FALSE}).} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded.} \item{transf}{optional argument to specify a function to transform the predicted values and interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified under \code{transf}.} \item{vcov}{logical to specify whether the variance-covariance matrix of the predicted values should also be returned (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ For an equal-effects model, \code{predict(object)} returns the estimated (average) outcome in the set of studies included in the meta-analysis. This is the same as the estimated intercept in the equal-effects model (i.e., \mjseqn{\hat{\theta}}). For a random-effects model, \code{predict(object)} returns the estimated (average) outcome in the hypothetical population of studies from which the set of studies included in the meta-analysis are assumed to be a random selection. This is the same as the estimated intercept in the random-effects model (i.e., \mjseqn{\hat{\mu}}). For models including one or more moderators, \code{predict(object)} returns \mjseqn{\hat{y} = Xb}, where \mjseqn{X} denotes the model matrix (see \code{\link[=model.matrix.rma]{model.matrix}}) and \mjseqn{b} the estimated model coefficient (see \code{\link[=coef.rma]{coef}}), or in words, the estimated (average) outcomes for values of the moderator(s) equal to those of the \mjseqn{k} studies included in the meta-analysis (i.e., the \sQuote{fitted values} for the \mjseqn{k} studies). For models including \mjseqn{p'} moderator variables, new moderator values (for \mjeqn{k_{new}}{k_new} hypothetical new studies) can be specified by setting \code{newmods} equal to a \mjeqn{k_{new} \times p'}{k_new x p'} matrix with the corresponding new moderator values (if \code{newmods} is a vector, then only a single predicted value is computed unless the model only includes a single moderator variable, in which case predicted values corresponding to all the vector values are computed). If the model object includes an intercept (so that the model matrix has \mjseqn{p' + 1} columns), then it will be automatically added to \code{newmods} unless one sets \code{intercept=FALSE}; alternatively, if \code{newmods} is a \mjeqn{k_{new} \times (p'+1)}{k_new x (p'+1)} matrix, then the \code{intercept} argument is ignored and the first column of the matrix determines whether the intercept is included when computing the predicted values or not. Note that any factors in the original model get turned into the appropriate contrast variables within the \code{\link{rma.uni}} function, so that \code{newmods} should actually include the values for the contrast variables. If the matrix specified via \code{newmods} has row names, then these are used to label the predicted values in the output. Examples are shown below. For random/mixed-effects models, a prediction interval is also computed (Riley et al., 2011, but see \sQuote{Note}). The interval estimates where \code{level}\% of the true effect sizes or outcomes fall in the hypothetical population of studies (and hence where the true effect or outcome of a new study from the population of studies should fall in \code{level}\% of the cases). For random-effects models that were fitted with the \code{\link{rma.mv}} function, the model may actually include multiple \mjseqn{\tau^2} values (i.e., when the \code{random} argument includes an \sQuote{\code{~ inner | outer}} term and \code{struct="HCS"}, \code{struct="DIAG"}, \code{struct="HAR"}, or \code{struct="UN"}). In that case, the function will provide prediction intervals for each level of the inner factor (since the prediction intervals differ depending on the \mjseqn{\tau^2} value). Alternatively, one can use the \code{tau2.levels} argument to specify for which level(s) the prediction interval should be provided. If the model includes a second \sQuote{\code{~ inner | outer}} term with multiple \mjseqn{\gamma^2} values, prediction intervals for each combination of levels of the inner factors will be provided. Alternatively, one can use the \code{tau2.levels} and \code{gamma2.levels} arguments to specify for which level combination(s) the prediction interval should be provided. When using the \code{newmods} argument for mixed-effects models that were fitted with the \code{\link{rma.mv}} function, if the model includes multiple \mjseqn{\tau^2} (and multiple \mjseqn{\gamma^2}) values, then one must use the \code{tau2.levels} (and \code{gamma2.levels}) argument to specify the levels of the inner factor(s) (i.e., a vector of length \mjeqn{k_{new}}{k_new}) to obtain the appropriate prediction interval(s). For location-scale models fitted with the \code{\link{rma.uni}} function, one can use \code{newmods} to specify the values of the \mjseqn{p'} moderator variables included in the model and \code{newscale} to specify the values of the \mjseqn{q'} scale variables included in the model. Whenever \code{newmods} is specified, the function computes predicted effects/outcomes for the specified moderators values. To obtain the corresponding prediction intervals, one must also specify the corresponding \code{newscale} values. If only \code{newscale} is specified (and not \code{newmods}), the function computes the predicted log-transformed \mjseqn{\tau^2} values (when using a log link) for the specified scale values. By setting \code{transf=exp}, one can then obtain the predicted \mjseqn{\tau^2} values. When computing multiple predicted values, one can set \code{adjust=TRUE} to obtain confidence/prediction intervals whose width is adjusted based on a Bonferroni correction (e.g., instead of 95\% CIs, the function provides (100-5/\mjeqn{k_{new}}{k_new})\% CIs, where \mjeqn{k_{new}}{k_new} denotes the number of predicted values computed). } \value{ An object of class \code{c("predict.rma","list.rma")}. The object is a list containing the following components: \item{pred}{predicted value(s).} \item{se}{corresponding standard error(s).} \item{ci.lb}{lower bound of the confidence interval(s).} \item{ci.ub}{upper bound of the confidence interval(s).} \item{pi.lb}{lower bound of the prediction interval(s) (only for random/mixed-effects models).} \item{pi.ub}{upper bound of the prediction interval(s) (only for random/mixed-effects models).} \item{tau2.level}{the level(s) of the inner factor (only for models of class \code{"rma.mv"} with multiple \mjseqn{\tau^2} values).} \item{gamma2.level}{the level(s) of the inner factor (only for models of class \code{"rma.mv"} with multiple \mjseqn{\gamma^2} values).} \item{X}{the moderator value(s) used to calculate the predicted values (only when \code{addx=TRUE}).} \item{Z}{the scale value(s) used to calculate the predicted values (only when \code{addz=TRUE} and only for location-scale models).} \item{\dots}{some additional elements/values.} If \code{vcov=TRUE}, then the returned object is a list with the first element equal to the one as described above and the second element equal to the variance-covariance matrix of the predicted values. The object is formatted and printed with the \code{\link[=print.list.rma]{print}} function. To format the results as a data frame, one can use the \code{\link[=as.data.frame.list.rma]{as.data.frame}} function. } \note{ Confidence and prediction intervals are constructed based on the critical values from a standard normal distribution (i.e., \mjeqn{\pm 1.96}{±1.96} for \code{level=95}). When the model was fitted with \code{test="t"}, \code{test="knha"}, \code{test="hksj"}, or \code{test="adhoc"}, then a t-distribution with \mjseqn{k-p} degrees of freedom is used, where \mjseqn{p} denotes the total number of columns of the model matrix (i.e., counting the intercept term if the model includes one). For a random-effects model (where \mjseqn{p=1}) fitted with the \code{\link{rma.uni}} function, note that this differs slightly from Riley et al. (2011), who suggest to use a t-distribution with \mjseqn{k-2} degrees of freedom for constructing the prediction interval. Neither a normal, nor a t-distribution with \mjseqn{k-1} or \mjseqn{k-2} degrees of freedom is correct; all of these are approximations. The computations are done in the way described above, so that the prediction interval is identical to the confidence interval when \mjeqn{\hat{\tau}^2 = 0}{hat(\tau)^2 = 0}, which could be argued is the logical thing that should happen. If the prediction interval for a random-effects model should be computed as described by Riley et al. (2011), then one can use argument \code{pi.type="Riley"} (and for mixed-effects meta-regression models, the function then uses \mjseqn{k-p-1} degrees of freedom). The predicted values are based only on the fixed effects of the model. Best linear unbiased predictions (BLUPs) that combine the fitted values based on the fixed effects and the estimated contributions of the random effects can be obtained with \code{\link[=blup.rma.uni]{blup}} (currently only for objects of class \code{"rma.uni"}). When using the \code{transf} option, the transformation is applied to the predicted values and the corresponding interval bounds. The standard errors are omitted from the printed output. Also, \code{vcov=TRUE} is ignored when using the \code{transf} option. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Hedges, L. V., & Olkin, I. (1985). \emph{Statistical methods for meta-analysis}. San Diego, CA: Academic Press. Riley, R. D., Higgins, J. P. T., & Deeks, J. J. (2011). Interpretation of random effects meta-analyses. \emph{British Medical Journal}, \bold{342}, d549. \verb{https://doi.org/10.1136/bmj.d549} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W., & \enc{López-López}{Lopez-Lopez}, J. A. (2022). Location-scale models for meta-analysis. \emph{Research Synthesis Methods}. \bold{13}(6), 697--715. \verb{https://doi.org/10.1002/jrsm.1562} } \seealso{ \code{\link[=fitted.rma]{fitted}} for a function to (only) extract the fitted values, \code{\link[=blup.rma.uni]{blup}} for a function to compute BLUPs that combine the fitted values and predicted random effects, and \code{\link[=addpoly.predict.rma]{addpoly}} to add polygons based on predicted values to a forest plot. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects model res <- rma(yi, vi, data=dat) ### estimated average log risk ratio with 95\% CI/PI predict(res, digits=2) ### estimated average risk ratio with 95\% CI/PI predict(res, transf=exp, digits=2) ### note: strictly speaking, the value obtained is the estimated median risk ratio ### because exponentiation is a non-linear transformation; but we can estimate the ### average risk ratio by using the integral transformation predict(res, transf=transf.exp.int, targs=res$tau2, digits=2) ### fit mixed-effects model with absolute latitude as a moderator res <- rma(yi, vi, mods = ~ ablat, data=dat) ### predicted average risk ratios for given absolute latitude values predict(res, transf=exp, addx=TRUE) ### predicted average risk ratios for 10-60 degrees absolute latitude predict(res, newmods=c(10, 20, 30, 40, 50, 60), transf=exp, addx=TRUE) ### can also include the intercept term in the 'newmods' matrix predict(res, newmods=cbind(1, c(10, 20, 30, 40, 50, 60)), transf=exp, addx=TRUE) ### apply a Bonferroni correction for obtaining the interval bounds predict(res, newmods=cbind(1, c(10, 20, 30, 40, 50, 60)), transf=exp, addx=TRUE, adjust=TRUE) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### predicted average risk ratios for 10 and 60 degrees latitude in 1950 and 1980 predict(res, newmods=cbind(c(10,60,10,60),c(1950,1950,1980,1980)), transf=exp, addx=TRUE) ### predicted average risk ratios for 10 and 60 degrees latitude in 1970 (row names as labels) predict(res, newmods=rbind(at10=c(10,1970), at60=c(60,1970)), transf=exp) ### fit mixed-effects model with two moderators (one of which is a factor) res <- rma(yi, vi, mods = ~ ablat + factor(alloc), data=dat) ### examine how the factor was actually coded for the studies in the dataset predict(res, addx=TRUE) ### predicted average risk ratios at 30 degrees for the three factor levels ### note: the contrast (dummy) variables need to specified explicitly here predict(res, newmods=c(30, 0, 0), addx=TRUE) # for alternate allocation predict(res, newmods=c(30, 1, 0), addx=TRUE) # for random allocation predict(res, newmods=c(30, 0, 1), addx=TRUE) # for systematic allocation ### can also use a named vector with arbitrary order and abbreviated variable names predict(res, newmods=c(sys=0, ran=0, abl=30)) predict(res, newmods=c(sys=0, ran=1, abl=30)) predict(res, newmods=c(sys=1, ran=0, abl=30)) } \keyword{models} metafor/man/misc-recs.Rd0000644000176200001440000003054614746146216014661 0ustar liggesusers\name{misc-recs} \alias{misc-recs} \alias{misc_recs} \title{Some Recommended Practices} \description{ This page documents some recommended practices when working with the \pkg{metafor} package (and more generally when conducting meta-analyses). \loadmathjax } \details{ \subsection{Restricted Maximum Likelihood Estimation}{ When fitting models with the \code{\link{rma.uni}} and \code{\link{rma.mv}} functions, use of restricted maximum likelihood (REML) estimation is generally recommended. This is also the default setting (i.e., \code{method="REML"}). Various simulation studies have indicated that REML estimation tends to provide approximately unbiased estimates of the amount of heterogeneity (e.g., Langan et al., 2019; Veroniki et al., 2016; Viechtbauer, 2005), or more generally, of the variance components in more complex mixed-effects models (Harville, 1977). For models fitted with the \code{\link{rma.uni}} function, the empirical Bayes / Paule-Mandel estimators (i.e., \code{method="EB"} / \code{method="PM"}), which can actually be shown to be identical to each other despite their different derivations (Viechtbauer et al., 2015), also have some favorable properties. However, these estimators do not generalize in a straightforward manner to more complex models, such as those that can be fitted with the \code{\link{rma.mv}} function. } \subsection{Improved Inference Methods}{ When fitting models with the \code{\link{rma.uni}} function, tests of individual model coefficients and the corresponding confidence intervals are by default (i.e., when \code{test="z"}) based on a standard normal distribution, while the omnibus test is based on a chi-square distribution. These inference methods may not perform nominally (i.e., the Type I error rate of tests and the coverage rate of confidence intervals may deviate from the chosen level), especially when the number of studies, \mjseqn{k}, is low. Therefore, it is highly recommended to use the method by Hartung (1999), Sidik and Jonkman (2002), and Knapp and Hartung (2003) (the Knapp-Hartung method; also referred to as the Hartung-Knapp-Sidik-Jonkman method) by setting \code{test="knha"} (or equivalently, \code{test="hksj"}). Then tests of individual coefficients and confidence intervals are based on a t-distribution with \mjseqn{k-p} degrees of freedom, while the omnibus test then uses an F-distribution with \mjseqn{m} and \mjseqn{k-p} degrees of freedom (with \mjseqn{m} denoting the number of coefficients tested and \mjseqn{p} the total number of model coefficients). Various simulation studies have shown that this method works very well in providing tests and confidence intervals with close to nominal performance (e.g., \enc{Sánchez-Meca}{Sanchez-Meca} & \enc{Marín-Martínez}{Marin-Martinez}, 2008; Viechtbauer et al., 2015). Alternatively, one can also conduct permutation tests using the \code{\link{permutest}} function. These also perform very well (and are, in a certain sense, \sQuote{exact} tests), but are computationally expensive. For models fitted with the \code{\link{rma.mv}} and \code{\link{rma.glmm}} functions, the Knapp-Hartung method and permutation tests are not available. Instead, one can set \code{test="t"} to also use t- and F-distributions for making inferences (although this does not involve the adjustment to the standard errors of the estimated model coefficients that is made as part of the Knapp-Hartung method). For \code{\link{rma.mv}}, one should also set \code{dfs="contain"}, which uses an improved method for approximating the degrees of freedom of the t- and F-distributions. Note that \code{test="z"} is the default for the \code{\link{rma.uni}}, \code{\link{rma.mv}}, and the \code{\link{rma.glmm}} functions. While the improved inference methods described above should ideally be the default, changing this now would break backwards compatibility. } \subsection{General Workflow for Meta-Analyses Involving Complex Dependency Structures}{ Many meta-analyses involve observed outcomes / effect size estimates that cannot be assumed to be independent, because some estimates were computed based on the same sample of subjects (or at least a partially overlapping set). In this case, one should compute the covariances for any pair of estimates that involve (fully or partially) overlapping subjects. Doing so is difficult, but we can often construct an approximate variance-covariance matrix (say \mjseqn{V}) of such dependent estimates. This can be done with the \code{\link{vcalc}} function (and/or see the \code{\link{rcalc}} function when dealing specifically with dependent correlation coefficients). We can then fit a multivariate/multilevel model to the estimates with the \code{\link{rma.mv}} function, using \mjseqn{V} as the approximate var-cov matrix of the estimates and adding fixed and random effects to the model as deemed necessary. However, since \mjseqn{V} is often only a rough approximation (and since the random effects structure may not fully capture all dependencies in the underlying true outcomes/effects), we can then apply cluster-robust inference methods (also known as robust variance estimation) to the model. This can be done with the \code{\link{robust}} function, which also interfaces with the improved inference methods implemented in the \href{https://cran.r-project.org/package=clubSandwich}{clubSandwich} package to obtain the cluster-robust tests and confidence intervals.\mjseqn{^1} Finally, we can compute predicted outcomes (with corresponding confidence intervals) and test sets of coefficients or linear combinations thereof using the \code{\link[=predict.rma]{predict}} and \code{\link[=anova.rma]{anova}} functions. See Pustejovsky and Tipton (2022) for a paper describing such a workflow for various cases. To summarize, the general workflow therefore will often consist of these steps: \preformatted{# construct/approximate the var-cov matrix of dependent estimates V <- vcalc(...) # fit multivariate/multilevel model with appropriate fixed/random effects res <- rma.mv(yi, V, mods = ~ ..., random = ~ ...) # apply cluster-robust inference methods (robust variance estimation) # note: use the improved methods from the clubSandwich package sav <- robust(res, cluster = ..., clubSandwich = TRUE) sav # compute predicted outcomes (with corresponding CIs) as needed predict(sav, ...) # test sets of coefficients / linear combinations as needed anova(sav, ...)} How \code{\link{vcalc}} and \code{\link{rma.mv}} should be used (and the clustering variable specified for \code{\link{robust}}) will depend on the specifics of the application. See \code{\link[metadat]{dat.assink2016}}, \code{\link[metadat]{dat.knapp2017}}, and \code{\link[metadat]{dat.tannersmith2016}} for some examples illustrating this workflow. } \subsection{Profile Likelihood Plots to Check Parameter Identifiability}{ When fitting complex models, it is not guaranteed that all parameters of the model are identifiable (i.e., that there is a unique set of values for the parameters that maximizes the (restricted) likelihood function). For models fitted with the \code{\link{rma.mv}} function, this pertains especially to the variance/correlation components of the model (i.e., what is specified via the \code{random} argument). Therefore, it is strongly advised in general to do post model fitting checks to make sure that the likelihood surface around the ML/REML estimates is not flat for some combination of the parameter estimates (which would imply that the estimates are essentially arbitrary). For example, one can plot the (restricted) log-likelihood as a function of each variance/correlation component in the model to make sure that each profile plot shows a clear peak at the corresponding ML/REML estimate. The \code{\link[=profile.rma]{profile}} function can be used for this purpose. See also Raue et al. (2009) for some further discussion of parameter identifiability and the use of profile likelihoods to check for this. The \code{\link[=profile.rma]{profile}} function should also be used after fitting location-scale models (Viechtbauer & \enc{López-López}{Lopez-Lopez}, 2022) with the \code{\link{rma.uni}} function and after fitting selection models with the \code{\link{selmodel}} function. } --------- \mjseqn{^1} In small meta-analyses, the (denominator) degrees of freedom for the approximate t- and F-tests provided by the cluster-robust inference methods might be very low, in which case the tests may not be trustworthy and overly conservative (Joshi et al., 2022). Under these circumstances, one can consider the use of cluster wild bootstrapping (as implemented in the \href{https://cran.r-project.org/package=wildmeta}{wildmeta} package) as an alternative method for making inferences. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Hartung, J. (1999). An alternative method for meta-analysis. \emph{Biometrical Journal}, \bold{41}(8), 901--916. \verb{https://doi.org/10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W} Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. \emph{Journal of the American Statistical Association}, \bold{72}(358), 320--338. \verb{https://doi.org/10.2307/2286796} Joshi, M., Pustejovsky, J. E., & Beretvas, S. N. (2022). Cluster wild bootstrapping to handle dependent effect sizes in meta-analysis with a small number of studies. \emph{Research Synthesis Methods}, \bold{13}(4), 457--477. \verb{https://doi.org/10.1002/jrsm.1554} Knapp, G., & Hartung, J. (2003). Improved tests for a random effects meta-regression with a single covariate. \emph{Statistics in Medicine}, \bold{22}(17), 2693--2710. \verb{https://doi.org/10.1002/sim.1482} Langan, D., Higgins, J. P. T., Jackson, D., Bowden, J., Veroniki, A. A., Kontopantelis, E., Viechtbauer, W. & Simmonds, M. (2019). A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. \emph{Research Synthesis Methods}, \bold{10}(1), 83--98. https://doi.org/10.1002/jrsm.1316 Pustejovsky, J. E. & Tipton, E. (2022). Meta-analysis with robust variance estimation: Expanding the range of working models. \emph{Prevention Science}, \bold{23}, 425--438. \verb{https://doi.org/10.1007/s11121-021-01246-3} Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmuller, U., & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. \emph{Bioinformatics}, \bold{25}(15), 1923--1929. \verb{https://doi.org/10.1093/bioinformatics/btp358} \enc{Sánchez-Meca}{Sanchez-Meca}, J. & \enc{Marín-Martínez}{Marin-Martinez}, F. (2008). Confidence intervals for the overall effect size in random-effects meta-analysis. \emph{Psychological Methods}, \bold{13}(1), 31--48. \verb{https://doi.org/10.1037/1082-989x.13.1.31} Sidik, K. & Jonkman, J. N. (2002). A simple confidence interval for meta-analysis. \emph{Statistics in Medicine}, \bold{21}(21), 3153--3159. \verb{https://doi.org/10.1002/sim.1262} Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., Kuss, O., Higgins, J. P., Langan, D., & Salanti, G. (2016). Methods to estimate the between-study variance and its uncertainty in meta-analysis. \emph{Research Synthesis Methods}, \bold{7}(1), 55--79. \verb{https://doi.org/10.1002/jrsm.1164} Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators in the random-effects model. \emph{Journal of Educational and Behavioral Statistics}, \bold{30}(3), 261--293. \verb{https://doi.org/10.3102/10769986030003261} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W., \enc{López-López}{Lopez-Lopez}, J. A., \enc{Sánchez-Meca}{Sanchez-Meca}, J., & \enc{Marín-Martínez}{Marin-Martinez}, F. (2015). A comparison of procedures to test for moderators in mixed-effects meta-regression models. \emph{Psychological Methods}, \bold{20}(3), 360--374. \verb{https://doi.org/10.1037/met0000023} Viechtbauer, W., & \enc{López-López}{Lopez-Lopez}, J. A. (2022). Location-scale models for meta-analysis. \emph{Research Synthesis Methods}. \bold{13}(6), 697--715. \verb{https://doi.org/10.1002/jrsm.1562} } \keyword{documentation} \keyword{misc} metafor/man/model.matrix.rma.Rd0000644000176200001440000000264414746146216016153 0ustar liggesusers\name{model.matrix.rma} \alias{model.matrix} \alias{model.matrix.rma} \title{Extract the Model Matrix from 'rma' Objects} \description{ Function to extract the model matrix from objects of class \code{"rma"}. } \usage{ \method{model.matrix}{rma}(object, asdf, \dots) } \arguments{ \item{object}{an object of class \code{"rma"}.} \item{asdf}{logical to specify whether the model matrix should be turned into a data frame (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \value{ The model matrix. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which a model matrix can be extracted. \code{\link[=fitted.rma]{fitted}} for a function to extract the fitted values. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### extract the model matrix model.matrix(res) } \keyword{models} metafor/man/print.hc.rma.uni.Rd0000644000176200001440000000325014746146216016061 0ustar liggesusers\name{print.hc.rma.uni} \alias{print.hc.rma.uni} \title{Print Method for 'hc.rma.uni' Objects} \description{ Function to print objects of class \code{"hc.rma.uni"}. \loadmathjax } \usage{ \method{print}{hc.rma.uni}(x, digits=x$digits, \dots) } \arguments{ \item{x}{an object of class \code{"hc.rma.uni"} obtained with \code{\link[=hc.rma.uni]{hc}}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{\dots}{other arguments.} } \details{ The output is a data frame with two rows, the first (labeled \code{rma}) corresponding to the results based on the usual estimation method, the second (labeled \code{hc}) corresponding to the results based on the method by Henmi and Copas (2010). The data frame includes the following variables: \itemize{ \item the method used to estimate \mjseqn{\tau^2} (always \code{DL} for \code{hc}) \item the estimated amount of heterogeneity \item the estimated average true outcome \item the corresponding standard error (\code{NA} when \code{transf} argument has been used) \item the lower and upper confidence interval bounds } } \value{ The function returns the data frame invisibly. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link[=hc.rma.uni]{hc}} for the function to create \code{hc.rma.uni} objects. } \keyword{print} metafor/man/methods.confint.rma.Rd0000644000176200001440000000336414746146216016652 0ustar liggesusers\name{methods.confint.rma} \alias{methods.confint.rma} \alias{as.data.frame.confint.rma} \alias{as.data.frame.list.confint.rma} \title{Methods for 'confint.rma' Objects} \description{ Methods for objects of class \code{"confint.rma"} and \code{"list.confint.rma"}. } \usage{ \method{as.data.frame}{confint.rma}(x, \dots) \method{as.data.frame}{list.confint.rma}(x, \dots) } \arguments{ \item{x}{an object of class \code{"confint.rma"} or \code{"list.confint.rma"}.} \item{\dots}{other arguments.} } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ ### copy data into 'dat' dat <- dat.bcg ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) ### fit random-effects model res <- rma(yi, vi, data=dat) ### get 95\% CI for tau^2, tau, I^2, and H^2 sav <- confint(res) sav ### turn object into a regular data frame as.data.frame(sav) ############################################################################ ### copy data into 'dat' dat <- dat.berkey1998 ### construct block diagonal var-cov matrix of the observed outcomes based on variables v1i and v2i V <- vcalc(vi=1, cluster=author, rvars=c(v1i, v2i), data=dat) ### fit multivariate model res <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat) ### get 95\% CI for variance components and correlation sav <- confint(res) sav ### turn object into a regular data frame as.data.frame(sav) } \keyword{internal} metafor/man/print.fsn.Rd0000644000176200001440000000200614746146216014703 0ustar liggesusers\name{print.fsn} \alias{print.fsn} \title{Print Method for 'fsn' Objects} \description{ Function to print objects of class \code{"fsn"}. } \usage{ \method{print}{fsn}(x, digits=x$digits, \dots) } \arguments{ \item{x}{an object of class \code{"fsn"} obtained with \code{\link{fsn}}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{\dots}{other arguments.} } \details{ The output shows the results from the fail-safe N calculation. } \value{ The function does not return an object. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{fsn}} for the function to create \code{fsn} objects. } \keyword{print} metafor/man/vcalc.Rd0000644000176200001440000005243614746146216014066 0ustar liggesusers\name{vcalc} \alias{vcalc} \title{Construct or Approximate the Variance-Covariance Matrix of Dependent Effect Sizes or Outcomes} \description{ Function to construct or approximate the variance-covariance matrix of dependent effect sizes or outcomes, or more precisely, of their sampling errors (i.e., the \code{V} matrix in \code{\link{rma.mv}}). \loadmathjax } \usage{ vcalc(vi, cluster, subgroup, obs, type, time1, time2, grp1, grp2, w1, w2, data, rho, phi, rvars, checkpd=TRUE, nearpd=FALSE, sparse=FALSE, \dots) } \arguments{ \item{vi}{numeric vector to specify the sampling variances of the observed effect sizes or outcomes.} \item{cluster}{vector to specify the clustering variable (e.g., study).} \item{subgroup}{optional vector to specify different (independent) subgroups within clusters.} \item{obs}{optional vector to distinguish different observed effect sizes or outcomes corresponding to the same construct or response/dependent variable.} \item{type}{optional vector to distinguish different types of constructs or response/dependent variables underlying the observed effect sizes or outcomes.} \item{time1}{optional numeric vector to specify the time points when the observed effect sizes or outcomes were obtained (in the first condition if the observed effect sizes or outcomes represent contrasts between two conditions).} \item{time2}{optional numeric vector to specify the time points when the observed effect sizes or outcomes were obtained in the second condition (only relevant when the observed effect sizes or outcomes represent contrasts between two conditions).} \item{grp1}{optional vector to specify the group of the first condition when the observed effect sizes or outcomes represent contrasts between two conditions.} \item{grp2}{optional vector to specify the group of the second condition when the observed effect sizes or outcomes represent contrasts between two conditions.} \item{w1}{optional numeric vector to specify the size of the group (or more generally, the inverse-sampling variance weight) of the first condition when the observed effect sizes or outcomes represent contrasts between two conditions.} \item{w2}{optional numeric vector to specify the size of the group (or more generally, the inverse-sampling variance weight) of the second condition when the observed effect sizes or outcomes represent contrasts between two conditions.} \item{data}{optional data frame containing the variables given to the arguments above.} \item{rho}{argument to specify the correlation(s) of observed effect sizes or outcomes measured concurrently. See \sQuote{Details}.} \item{phi}{argument to specify the autocorrelation of observed effect sizes or outcomes measured at different time points. See \sQuote{Details}.} \item{rvars}{optional argument for specifying the variables that correspond to the correlation matrices of the studies (if this is specified, all arguments above except for \code{cluster} and \code{subgroup} are ignored). See \sQuote{Details}.} \item{checkpd}{logical to specify whether to check that the variance-covariance matrices within clusters are positive definite (the default is \code{TRUE}). See \sQuote{Note}.} \item{nearpd}{logical to specify whether the \code{\link[Matrix]{nearPD}} function from the \href{https://cran.r-project.org/package=Matrix}{Matrix} package should be used on variance-covariance matrices that are not positive definite. See \sQuote{Note}.} \item{sparse}{logical to specify whether the variance-covariance matrix should be returned as a sparse matrix (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ Standard meta-analytic models (such as those that can be fitted with the \code{\link{rma.uni}} function) assume that the observed effect sizes or outcomes (or more precisely, their sampling errors) are independent. This assumption is typically violated whenever multiple observed effect sizes or outcomes are computed based on the same sample of subjects (or whatever the study units are) or if there is at least partial overlap of subjects that contribute information to the computation of multiple effect sizes or outcomes. The present function can be used to construct or approximate the variance-covariance matrix of the sampling errors of dependent effect sizes or outcomes for a wide variety of circumstances (this variance-covariance matrix is the so-called \code{V} matrix that may be needed as input for multilevel/multivariate meta-analytic models as can be fitted with the \code{\link{rma.mv}} function; see also \link[=misc-recs]{here} for some recommendations on a general workflow for meta-analyses involving complex dependency structures). Argument \code{cluster} is used to specify the clustering variable. Rows with the same value of this variable are allowed to be dependent, while rows with different values are assumed to be independent. Typically, \code{cluster} will be a study identifier. Within the same cluster, there may be different subgroups with no overlap of subjects across subgroups. Argument \code{subgroup} can be used to distinguish such subgroups. Rows with the same value of this variable within a cluster are allowed to be dependent, while rows with different values are assumed to be independent even if they come from the same cluster. Therefore, from hereon, \sQuote{cluster} really refers to the combination of \code{cluster} and \code{subgroup}. Multiple effect sizes or outcomes belonging to the same cluster may be dependent due to a variety of reasons: \enumerate{ \item The same construct of interest (e.g., severity of depression) may have been measured using different scales or instruments within a study (e.g., using the Beck Depression Inventory (BDI) and the Hamilton Depression Rating Scale (HDRS)) based on which multiple effect sizes can be computed for the same group of subjects (e.g., contrasting a treatment versus a control group with respect to each scale). In this case, we have multiple effect sizes that are different \sQuote{observations} of the effect with respect to the same type of construct. Argument \code{obs} is then used to distinguish different effect sizes corresponding to the same construct. If \code{obs} is specified, then argument \code{rho} must also be used to specify the degree of correlation among the sampling errors of the different effect sizes. Since this correlation is typically not known, the correlation among the various scales (or a rough \sQuote{guestimate} thereof) can be used as a proxy (i.e., the (typical) correlation between BDI and HDRS measurements). One can also pass an entire correlation matrix via \code{rho} to specify, for each possible pair of \code{obs} values, the corresponding correlation. The row/column names of the matrix must then correspond to the unique values of the \code{obs} variable. \item Multiple types of constructs (or more generally, types of response/dependent variables) may have been measured in the same group of subjects (e.g., severity of depression as measured with the Beck Depression Inventory (BDI) and severity of anxiety as measured with the State-Trait Anxiety Inventory (STAI)). If this is of interest for a meta-analysis, effect sizes can then be computed with respect to each \sQuote{type} of construct. Argument \code{type} is then used to distinguish effect sizes corresponding to these different types of constructs. If \code{type} is specified, then argument \code{rho} must also be used to specify the degree of correlation among the sampling errors of effect sizes belonging to these different types. As above, the correlation among the various scales is typically used here as a proxy (i.e., the (typical) correlation between BDI and STAI measurements). One can also pass an entire correlation matrix via \code{rho} to specify, for each possible pair of \code{type} values, the corresponding correlation. The row/column names of the matrix must then correspond to the unique values of the \code{type} variable. \item If there are multiple types of constructs, multiple scales or instruments may also have been used (in at least some of the studies) to measure the same construct and hence there may again be multiple effect sizes that are \sQuote{observations} of the same type of construct. Arguments \code{type} and \code{obs} should then be used together to specify the various construct types and observations thereof. In this case, argument \code{rho} must be a vector of two values, the first to specify the within-construct correlation and the second to specify the between-construct correlation. One can also specify a list with two elements for \code{rho}, the first element being either a scalar or an entire correlation matrix for the within-construct correlation(s) and the second element being a scalar or an entire correlation matrix for the between-construct correlation(s). As above, any matrices specified must have row/column names corresponding to the unique values of the \code{obs} and/or \code{type} variables. \item The same construct and scale may have been assessed/used multiple times, allowing the computation of multiple effect sizes for the same group of subjects at different time points (e.g., right after the end of a treatment, at a short-term follow-up, and at a long-term follow-up). Argument \code{time1} is then used to specify the time points when the observed effect sizes were obtained. Argument \code{phi} must then also be used to specify the autocorrelation among the sampling errors of two effect sizes that differ by one unit on the \code{time1} variable. As above, the autocorrelation of the measurements themselves can be used here as a proxy. If multiple constructs and/or multiple scales have also been assessed at the various time points, then arguments \code{type} and/or \code{obs} (together with argument \code{rho}) should be used as needed to differentiate effect sizes corresponding to the different constructs and/or scales. \item Many effect sizes or outcome measures (e.g., raw or standardized mean differences, log-transformed ratios of means, log risk/odds ratios and risk differences) reflect the difference between two conditions (i.e., a contrast). Within a study, there may be more than two conditions, allowing the computation of multiple such contrasts (e.g., treatment A versus a control condition and treatment B versus the same control condition) and hence corresponding effect sizes. The reuse of information from the \sQuote{shared} condition (in this example, the control condition) then induces correlation among the effect sizes. To account for this, arguments \code{grp1} and \code{grp2} should be used to specify (within each cluster) which two groups were compared in the computation of each effect size (e.g., in the example above, the coding could be \code{grp1=c(2,3)} and \code{grp2=c(1,1)}; whether numbers or strings are used as identifiers is irrelevant). The degree of correlation between two contrast-type effect sizes that is induced by the use of a shared condition is a function of the size of the groups involved in the computation of the two effect sizes (or, more generally, the inverse-sampling variance weights of the condition-specific outcomes). By default, the group sizes (weights) are assumed to be identical across conditions, which implies a correlation of 0.5. If the group sizes (weights) are known, they can be specified via arguments \code{w1} and \code{w2} (in which case this information is used by the function to calculate a more accurate estimate of the correlation induced by the shared condition). Moreover, a contrast-type effect size can be based on a between- or a within-subjects design. When at least one or more of the contrast-type effect sizes are based on a within-subjects design, then \code{time1} and \code{time2} should be used in combination with \code{grp1} and \code{grp2} to specify for each effect size the group(s) and time point(s) involved. For example, \code{grp1=c(2,3)} and \code{grp2=c(1,1)} as above in combination with \code{time1=c(1,1)} and \code{time2=c(1,1)} would imply a between-subjects design involving three groups where two effect sizes were computed contrasting groups 2 and 3 versus group 1 at a single time point. On the other hand, \code{grp1=c(1,1)} and \code{grp2=c(1,1)} in combination with \code{time1=c(2,3)} and \code{time2=c(1,1)} would imply a within-subjects design where two effect sizes were computed contrasting time points 2 and 3 versus time point 1 in a single group. Argument \code{phi} is then used as above to specify the autocorrelation of the measurements within groups (i.e., for the within-subjects design above, it would be the autocorrelation between time points 2 and 1 or equivalently, between time points 3 and 2). } All of the arguments above can be specified together to account for a fairly wide variety of dependency types. \subsection{Using the \code{rvars} Argument}{ The function also provides an alternative approach for constructing the variance-covariance matrix using the \code{rvars} argument. Here, one must specify the names of the variables in the dataset that correspond to the correlation matrices of the studies. The variables should be specified as a vector (e.g., \code{c(var1, var2, var3)}) and do not need to be quoted. In particular, let \mjseqn{k_i} denote the number of rows corresponding to the \mjeqn{i\text{th}}{ith} cluster. Then the values of the first \mjseqn{k_i} variables from \code{rvars} are used to construct the correlation matrix and, together with the sampling variances (specified via \code{vi}), the variance-covariance matrix. Say there are three studies, the first with two correlated estimates, the second with a single estimate, and the third with four correlated estimates. Then the data structure should look like this: \preformatted{study yi vi r1 r2 r3 r4 ============================= 1 . . 1 NA NA NA 1 . . .6 1 NA NA ----------------------------- 2 . . 1 NA NA NA ----------------------------- 3 . . 1 NA NA NA 3 . . .8 1 NA NA 3 . . .5 .5 1 NA 3 . . .5 .5 .8 1 =============================} with \code{rvars = c(r1, r2, r3, r4)}. If the \code{rvars} variables are a consecutive set in the data frame (as above), then one can use the shorthand notation \code{rvars = c(r1:r4)}, so \code{r1} denotes the first and \code{r4} the last variable in the set. Note that only the lower triangular part of the submatrices defined by the \code{rvars} variables is used. Also, it is important that the rows in the dataset corresponding to a particular study are in consecutive order as shown above. There must be as many variables specified via \code{rvars} as the number of rows in the \emph{largest} cluster (in smaller clusters, the non-relevant variables can be set to \code{NA}; see above). } } \value{ A \mjeqn{k \times k}{kxk} variance-covariance matrix (given as a sparse matrix when \code{sparse=TRUE}), where \mjseqn{k} denotes the length of the \code{vi} variable (i.e., the number of rows in the dataset). } \note{ Depending on the data structure, the specified variables, and the specified values for \code{rho} and/or \code{phi}, it is possible that the constructed variance-covariance matrix is not positive definite within one or more clusters (this is checked when \code{checkpd=TRUE}, which is the default). If such non-positive definite submatrices are found, the reasons for this should be carefully checked since this might indicate misapplication of the function and/or the specification of implausible values for \code{rho} and/or \code{phi}. When setting \code{nearpd=TRUE}, the \code{\link[Matrix]{nearPD}} function from the \href{https://cran.r-project.org/package=Matrix}{Matrix} package is used on variance-covariance submatrices that are not positive definite. This should only be used cautiously and after understanding why these matrices are not positive definite. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}) with some tweaks to speed up the computations by James Pustejovsky (\email{pustejovsky@wisc.edu}, \verb{https://jepusto.com}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{escalc}} for a function to compute the observed effect sizes or outcomes (and corresponding sampling variances) for which a variance-covariance matrix could be constructed. \code{\link{rcalc}} for a function to construct the variance-covariance matrix of dependent correlation coefficients. \code{\link{rma.mv}} for a model fitting function that can be used to meta-analyze dependent effect sizes or outcomes. } \examples{ ############################################################################ ### see help(dat.assink2016) for further details on this dataset dat <- dat.assink2016 head(dat, 9) ### assume that the effect sizes within studies are correlated with rho=0.6 V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) ### show part of V matrix for studies 1 and 2 round(V[dat$study \%in\% c(1,2), dat$study \%in\% c(1,2)], 4) ### or show as list of matrices blsplit(V, dat$study, round, 4)[1:2] ### use a correlation of 0.7 for effect sizes corresponding to the same type of ### delinquent behavior and a correlation of 0.5 for effect sizes corresponding ### to different types of delinquent behavior V <- vcalc(vi, cluster=study, type=deltype, obs=esid, data=dat, rho=c(0.7, 0.5)) blsplit(V, dat$study, round, 3)[16] ### examine the correlation matrix for study 16 blsplit(V, dat$study, cov2cor)[16] ############################################################################ ### see help(dat.ishak2007) for further details on this dataset dat <- dat.ishak2007 head(dat, 5) ### create long format dataset dat <- reshape(dat, direction="long", idvar="study", v.names=c("yi","vi"), varying=list(c(2,4,6,8), c(3,5,7,9))) dat <- dat[order(study, time),] ### remove missing measurement occasions from dat dat <- dat[!is.na(yi),] rownames(dat) <- NULL ### show the data for the first 5 studies head(dat, 8) ### construct the full (block diagonal) V matrix with an AR(1) structure ### assuming an autocorrelation of 0.97 as estimated by Ishak et al. (2007) V <- vcalc(vi, cluster=study, time1=time, phi=0.97, data=dat) V[1:8, 1:8] cov2cor(V[1:8, 1:8]) ### or show as a list of matrices blsplit(V, dat$study)[1:5] blsplit(V, dat$study, cov2cor)[1:5] ############################################################################ ### see help(dat.kalaian1996) for further details on this dataset dat <- dat.kalaian1996 head(dat, 12) ### construct the variance-covariance matrix assuming rho = 0.66 for effect sizes ### corresponding to the 'verbal' and 'math' outcome types V <- vcalc(vi, cluster=study, type=outcome, data=dat, rho=0.66) round(V[1:12,1:12], 4) ############################################################################ ### see help(dat.berkey1998) for further details on this dataset dat <- dat.berkey1998 ### variables v1i and v2i correspond to the 2x2 var-cov matrices of the studies; ### so use these variables to construct the V matrix (note: since v1i and v2i are ### var-cov matrices and not correlation matrices, set vi=1 for all rows) V <- vcalc(vi=1, cluster=author, rvars=c(v1i, v2i), data=dat) V round(cov2cor(V), 2) ### or show as a list of matrices blsplit(V, dat$author, function(x) round(cov2cor(x), 2)) ### construct the variance-covariance matrix assuming rho = 0.4 for effect sizes ### corresponding to the 'PD' and 'AL' outcome types V <- vcalc(vi=vi, cluster=trial, type=outcome, data=dat, rho=0.4) round(V,4) cov2cor(V) ############################################################################ ### see help(dat.knapp2017) for further details on this dataset dat <- dat.knapp2017 dat[-c(1:2)] ### create variable that indicates the task and difficulty combination as increasing integers dat$task.diff <- unlist(lapply(split(dat, dat$study), function(x) { task.int <- as.integer(factor(x$task)) diff.int <- as.integer(factor(x$difficulty)) diff.int[is.na(diff.int)] <- 1 paste0(task.int, ".", diff.int)})) ### construct correlation matrix for two tasks with four different difficulties where the ### correlation is 0.4 for different difficulties of the same task, 0.7 for the same ### difficulty of different tasks, and 0.28 for different difficulties of different tasks R <- matrix(0.4, nrow=8, ncol=8) R[5:8,1:4] <- R[1:4,5:8] <- 0.28 diag(R[1:4,5:8]) <- 0.7 diag(R[5:8,1:4]) <- 0.7 diag(R) <- 1 rownames(R) <- colnames(R) <- paste0(rep(1:2, each=4), ".", 1:4) R ### construct an approximate V matrix accounting for the use of shared groups and ### for correlations among tasks/difficulties as specified in the R matrix above V <- vcalc(vi, cluster=study, grp1=group1, grp2=group2, w1=n_sz, w2=n_hc, obs=task.diff, rho=R, data=dat) Vs <- blsplit(V, dat$study) cov2cor(Vs[[3]]) # study with multiple SZ groups and a single HC group cov2cor(Vs[[6]]) # study with two task types and multiple difficulties cov2cor(Vs[[12]]) # study with multiple difficulties for the same task cov2cor(Vs[[24]]) # study with separate rows for males and females cov2cor(Vs[[29]]) # study with separate rows for three genotypes ############################################################################ } \keyword{datagen} metafor/man/to.long.Rd0000644000176200001440000001772214746146216014355 0ustar liggesusers\name{to.long} \alias{to.long} \title{Convert Data from Vector to Long Format} \description{ Function to convert summary data in vector format to the corresponding long format. \loadmathjax } \usage{ to.long(measure, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, sdi, ni, data, slab, subset, add=1/2, to="none", drop00=FALSE, vlong=FALSE, append=TRUE, var.names) } \arguments{ \item{measure}{a character string to specify the effect size or outcome measure corresponding to the summary data supplied. See \sQuote{Details} and the documentation of the \code{\link{escalc}} function for possible options.} \item{ai}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper left cell).} \item{bi}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (upper right cell).} \item{ci}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower left cell).} \item{di}{vector with the \mjeqn{2 \times 2}{2x2} table frequencies (lower right cell).} \item{n1i}{vector with the group sizes or row totals (first group/row).} \item{n2i}{vector with the group sizes or row totals (second group/row).} \item{x1i}{vector with the number of events (first group).} \item{x2i}{vector with the number of events (second group).} \item{t1i}{vector with the total person-times (first group).} \item{t2i}{vector with the total person-times (second group).} \item{m1i}{vector with the means (first group or time point).} \item{m2i}{vector with the means (second group or time point).} \item{sd1i}{vector with the standard deviations (first group or time point).} \item{sd2i}{vector with the standard deviations (second group or time point).} \item{xi}{vector with the frequencies of the event of interest.} \item{mi}{vector with the frequencies of the complement of the event of interest or the group means.} \item{ri}{vector with the raw correlation coefficients.} \item{ti}{vector with the total person-times.} \item{sdi}{vector with the standard deviations.} \item{ni}{vector with the sample/group sizes.} \item{data}{optional data frame containing the variables given to the arguments above.} \item{slab}{optional vector with labels for the studies.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should included in the data frame returned by the function.} \item{add}{see the documentation of the \code{\link{escalc}} function.} \item{to}{see the documentation of the \code{\link{escalc}} function.} \item{drop00}{see the documentation of the \code{\link{escalc}} function.} \item{vlong}{optional logical whether a very long format should be used (only relevant for \mjeqn{2 \times 2}{2x2} or \mjeqn{1 \times 2}{1x2} table data).} \item{append}{logical to specify whether the data frame specified via the \code{data} argument (if one has been specified) should be returned together with the long format data (the default is \code{TRUE}). Can also be a character or numeric vector to specify which variables from \code{data} to append.} \item{var.names}{optional character vector with variable names (the length depends on the data type). If unspecified, the function sets appropriate variable names by default.} } \details{ The \code{\link{escalc}} function describes a wide variety of effect sizes or outcome measures that can be computed for a meta-analysis. The summary data used to compute those measures are typically contained in vectors, each element corresponding to a study. The \code{to.long} function takes this information and constructs a long format dataset from these data. For example, in various fields (such as the health and medical sciences), the response variable measured is often dichotomous (binary), so that the data from a study comparing two different groups can be expressed in terms of a \mjeqn{2 \times 2}{2x2} table, such as: \tabular{lcccccc}{ \tab \ics \tab outcome 1 \tab \ics \tab outcome 2 \tab \ics \tab total \cr group 1 \tab \ics \tab \code{ai} \tab \ics \tab \code{bi} \tab \ics \tab \code{n1i} \cr group 2 \tab \ics \tab \code{ci} \tab \ics \tab \code{di} \tab \ics \tab \code{n2i}} where \code{ai}, \code{bi}, \code{ci}, and \code{di} denote the cell frequencies (i.e., the number of individuals falling into a particular category) and \code{n1i} and \code{n2i} the row totals (i.e., the group sizes). The cell frequencies in \mjseqn{k} such \mjeqn{2 \times 2}{2x2} tables can be specified via the \code{ai}, \code{bi}, \code{ci}, and \code{di} arguments (or alternatively, via the \code{ai}, \code{ci}, \code{n1i}, and \code{n2i} arguments). The function then creates the corresponding long format dataset. The \code{measure} argument should then be set equal to one of the outcome measures that can be computed based on this type of data, such as \code{"RR"}, \code{"OR"}, \code{"RD"} (it is not relevant which specific measure is chosen, as long as it corresponds to the specified summary data). See the documentation of the \code{\link{escalc}} function for more details on the types of data formats available. The long format for data of this type consists of two rows per study, a factor indicating the study (default name \code{study}), a dummy variable indicating the group (default name \code{group}, coded as 1 and 2), and two variables indicating the number of individuals experiencing outcome 1 or outcome 2 (default names \code{out1} and \code{out2}). Alternatively, if \code{vlong=TRUE}, then the long format consists of four rows per study, a factor indicating the study (default name \code{study}), a dummy variable indicating the group (default name \code{group}, coded as 1 and 2), a dummy variable indicating the outcome (default name \code{outcome}, coded as 1 and 2), and a variable indicating the frequency of the respective outcome (default name \code{freq}). The default variable names can be changed via the \code{var.names} argument (must be of the appropriate length, depending on the data type). The examples below illustrate the use of this function. } \value{ A data frame with either \mjseqn{k}, \mjeqn{2 \times k}{2*k}, or \mjeqn{4 \times k}{4*k} rows and an appropriate number of columns (depending on the data type) with the data in long format. If \code{append=TRUE} and a data frame was specified via the \code{data} argument, then the data in long format are appended to the original data frame (with rows repeated an appropriate number of times). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{escalc}} for a function to compute observed effect sizes or outcomes (and corresponding sampling variances) based on similar inputs. \code{\link{to.table}} for a function to turn similar inputs into tabular form. } \examples{ ### convert data to long format dat.bcg dat.long <- to.long(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) dat.long ### extra long format dat <- to.long(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, vlong=TRUE) dat ### select variables to append dat.long <- to.long(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, append=c("author","year")) dat.long dat.long <- to.long(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, append=2:3) dat.long ### convert data to long format dat.long <- to.long(measure="IRR", x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat.hart1999, var.names=c("id", "group", "events", "ptime")) dat.long ### convert data to long format dat.long <- to.long(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat.normand1999, var.names=c("id", "group", "mean", "sd", "n")) dat.long } \keyword{manip} metafor/man/residuals.rma.Rd0000644000176200001440000002603114746146216015537 0ustar liggesusers\name{residuals.rma} \alias{residuals} \alias{rstandard} \alias{rstudent} \alias{residuals.rma} \alias{rstandard.rma.uni} \alias{rstandard.rma.mh} \alias{rstandard.rma.mv} \alias{rstandard.rma.peto} \alias{rstudent.rma.uni} \alias{rstudent.rma.mh} \alias{rstudent.rma.mv} \alias{rstudent.rma.peto} \title{Residual Values based on 'rma' Objects} \description{ Functions to compute residuals and standardized versions thereof for models fitted with the \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, and \code{\link{rma.mv}} functions. \loadmathjax } \usage{ \method{residuals}{rma}(object, type="response", \dots) \method{rstandard}{rma.uni}(model, digits, type="marginal", \dots) \method{rstandard}{rma.mh}(model, digits, \dots) \method{rstandard}{rma.peto}(model, digits, \dots) \method{rstandard}{rma.mv}(model, digits, cluster, \dots) \method{rstudent}{rma.uni}(model, digits, progbar=FALSE, \dots) \method{rstudent}{rma.mh}(model, digits, progbar=FALSE, \dots) \method{rstudent}{rma.peto}(model, digits, progbar=FALSE, \dots) \method{rstudent}{rma.mv}(model, digits, progbar=FALSE, cluster, reestimate=TRUE, parallel="no", ncpus=1, cl, \dots) } \arguments{ \item{object}{an object of class \code{"rma"} (for \code{residuals}).} \item{type}{the type of residuals which should be returned. For \code{residuals}, the alternatives are: \code{"response"} (default), \code{"rstandard"}, \code{"rstudent"}, and \code{"pearson"}. For \code{rstandard.rma.uni}, the alternatives are: \code{"marginal"} (default) and \code{"conditional"}. See \sQuote{Details}.} \item{model}{an object of class \code{"rma"} (for \code{residuals}) or an object of class \code{"rma.uni"}, \code{"rma.mh"}, \code{"rma.peto"}, or \code{"rma.mv"} (for \code{rstandard} and \code{rstudent}).} \item{cluster}{optional vector to specify a clustering variable to use for computing cluster-level multivariate standardized residuals (only for \code{"rma.mv"} objects).} \item{reestimate}{logical to specify whether variance/correlation components should be re-estimated after deletion of the \mjeqn{i\text{th}}{ith} case when computing externally standardized residuals for \code{"rma.mv"} objects (the default is \code{TRUE}).} \item{parallel}{character string to specify whether parallel processing should be used (the default is \code{"no"}). For parallel processing, set to either \code{"snow"} or \code{"multicore"}. See \sQuote{Note}.} \item{ncpus}{integer to specify the number of processes to use in the parallel processing.} \item{cl}{optional cluster to use if \code{parallel="snow"}. If unspecified, a cluster on the local machine is created for the duration of the call.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{progbar}{logical to specify whether a progress bar should be shown (only for \code{rstudent}) (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ The observed residuals (obtained with \code{residuals}) are simply equal to the \sQuote{observed - fitted} values. These can be obtained with \code{residuals(object)} (using the default \code{type="response"}). Dividing the observed residuals by the model-implied standard errors of the observed effect sizes or outcomes yields Pearson (or semi-standardized) residuals. These can be obtained with \code{residuals(object, type="pearson")}. Dividing the observed residuals by their corresponding standard errors yields (internally) standardized residuals. These can be obtained with \code{rstandard(model)} or \code{residuals(object, type="rstandard")}. With \code{rstudent(model)} (or \code{residuals(object, type="rstudent")}), one can obtain the externally standardized residuals (also called standardized deleted residuals or (externally) studentized residuals). The externally standardized residual for the \mjeqn{i\text{th}}{ith} case is obtained by deleting the \mjeqn{i\text{th}}{ith} case from the dataset, fitting the model based on the remaining cases, calculating the predicted value for the \mjeqn{i\text{th}}{ith} case based on the fitted model, taking the difference between the observed and the predicted value for the \mjeqn{i\text{th}}{ith} case (which yields the deleted residual), and then standardizing the deleted residual based on its standard error. If a particular case fits the model, its standardized residual follows (asymptotically) a standard normal distribution. A large standardized residual for a case therefore may suggest that the case does not fit the assumed model (i.e., it may be an outlier). For \code{"rma.uni"} objects, \code{rstandard(model, type="conditional")} computes conditional residuals, which are the deviations of the observed effect sizes or outcomes from the best linear unbiased predictions (BLUPs) of the study-specific true effect sizes or outcomes (see \code{\link[=blup.rma.uni]{blup}}). For \code{"rma.mv"} objects, one can specify a clustering variable (via the \code{cluster} argument). If specified, \code{rstandard(model)} and \code{rstudent(model)} also compute cluster-level multivariate (internally or externally) standardized residuals. If all outcomes within a cluster fit the model, then the multivariate standardized residual for the cluster follows (asymptotically) a chi-square distribution with \mjseqn{k_i} degrees of freedom (where \mjseqn{k_i} denotes the number of outcomes within the cluster). See also \code{\link{influence.rma.uni}} and \code{\link{influence.rma.mv}} for other leave-one-out diagnostics that are useful for detecting influential cases in models fitted with the \code{\link{rma.uni}} and \code{\link{rma.mv}} functions. } \value{ Either a vector with the residuals of the requested type (for \code{residuals}) or an object of class \code{"list.rma"}, which is a list containing the following components: \item{resid}{observed residuals (for \code{rstandard}) or deleted residuals (for \code{rstudent}).} \item{se}{corresponding standard errors.} \item{z}{standardized residuals (internally standardized for \code{rstandard} or externally standardized for \code{rstudent}).} When a clustering variable is specified for \code{"rma.mv"} objects, the returned object is a list with the first element (named \code{obs}) as described above and a second element (named \code{cluster}) of class \code{"list.rma"} with: \item{X2}{cluster-level multivariate standardized residuals.} \item{k}{number of observed effect sizes or outcomes within the clusters.} The object is formatted and printed with \code{\link[=print.list.rma]{print}}. To format the results as a data frame, one can use the \code{\link[=as.data.frame.list.rma]{as.data.frame}} function. } \note{ The externally standardized residuals (obtained with \code{rstudent}) are calculated by refitting the model \mjseqn{k} times (where \mjseqn{k} denotes the number of cases). Depending on how large \mjseqn{k} is, it may take a few moments to finish the calculations. For complex models fitted with \code{\link{rma.mv}}, this can become computationally expensive. On machines with multiple cores, one can try to speed things up by delegating the model fitting to separate worker processes, that is, by setting \code{parallel="snow"} or \code{parallel="multicore"} and \code{ncpus} to some value larger than 1 (only for objects of class \code{"rma.mv"}). Parallel processing makes use of the \code{\link[parallel]{parallel}} package, using the \code{\link[parallel]{makePSOCKcluster}} and \code{\link[parallel]{parLapply}} functions when \code{parallel="snow"} or using \code{\link[parallel]{mclapply}} when \code{parallel="multicore"} (the latter only works on Unix/Linux-alikes). With \code{parallel::detectCores()}, one can check on the number of available cores on the local machine. Alternatively (or in addition to using parallel processing), one can also set \code{reestimate=FALSE}, in which case any variance/correlation components in the model are not re-estimated after deleting the \mjeqn{i\text{th}}{ith} case from the dataset. Doing so only yields an approximation to the externally standardized residuals (and the cluster-level multivariate standardized residuals) that ignores the influence of the \mjeqn{i\text{th}}{ith} case on the variance/correlation components, but is considerably faster (and often yields similar results). It may not be possible to fit the model after deletion of the \mjeqn{i\text{th}}{ith} case from the dataset. This will result in \code{NA} values for that case when calling \code{rstudent}. Also, for \code{"rma.mv"} objects with a clustering variable specified, it may not be possible to compute the cluster-level multivariate standardized residual for a particular cluster (if the var-cov matrix of the residuals within a cluster is not of full rank). This will result in \code{NA} for that cluster. The variable specified via \code{cluster} is assumed to be of the same length as the data originally passed to the \code{rma.mv} function (and if the \code{data} argument was used in the original model fit, then the variable will be searched for within this data frame first). Any subsetting and removal of studies with missing values that was applied during the model fitting is also automatically applied to the variable specified via the \code{cluster} argument. For objects of class \code{"rma.mh"} and \code{"rma.peto"}, \code{rstandard} actually computes Pearson (or semi-standardized) residuals. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Hedges, L. V., & Olkin, I. (1985). \emph{Statistical methods for meta-analysis}. San Diego, CA: Academic Press. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219--254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. \emph{Research Synthesis Methods}, \bold{1}(2), 112--125. \verb{https://doi.org/10.1002/jrsm.11} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which the various types of residuals can be computed. \code{\link{influence.rma.uni}} and \code{\link{influence.rma.mv}} for other model diagnostics. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects model res <- rma(yi, vi, data=dat) ### compute the studentized residuals rstudent(res) ### fit mixed-effects model with absolute latitude as moderator res <- rma(yi, vi, mods = ~ ablat, data=dat) ### compute the studentized residuals rstudent(res) } \keyword{models} metafor/man/dfround.Rd0000644000176200001440000000312614746146216014427 0ustar liggesusers\name{dfround} \alias{dfround} \title{Round Variables in a Data Frame} \description{ Function to round the numeric variables in a data frame. } \usage{ dfround(x, digits, drop0=TRUE) } \arguments{ \item{x}{a data frame.} \item{digits}{either a single integer or a numeric vector of the same length as there are columns in \code{x}.} \item{drop0}{logical (or a vector thereof) to specify whether trailing zeros after the decimal mark should be removed (the default is \code{TRUE}).} } \details{ A simple convenience function to round the numeric variables in a data frame, possibly to different numbers of digits. Hence, \code{digits} can either be a single integer (which will then be used to round all numeric variables to the specified number of digits) or a numeric vector (of the same length as there are columns in \code{x}) to specify the number of digits to which each variable should be rounded. Non-numeric variables are skipped. If \code{digits} is a vector, some arbitrary value (or \code{NA}) can be specified for those variables. Note: When \code{drop0=FALSE}, then \code{\link{formatC}} is used to format the numbers, which turns them into character variables. } \value{ Returns the data frame with variables rounded as specified. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \examples{ dat <- dat.bcg dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) res <- rma(yi, vi, mods = ~ ablat + year, data=dat) coef(summary(res)) dfround(coef(summary(res)), digits=c(2,3,2,3,2,2)) } \keyword{manip} metafor/man/fsn.Rd0000644000176200001440000002726314746146216013564 0ustar liggesusers\name{fsn} \alias{fsn} \title{Fail-Safe N Analysis (File Drawer Analysis)} \description{ Function to compute the fail-safe N (also called a file drawer analysis). \loadmathjax } \usage{ fsn(x, vi, sei, subset, data, type, alpha=.05, target, method, exact=FALSE, verbose=FALSE, digits, \dots) } \arguments{ \item{x}{a vector with the observed effect sizes or outcomes or an object of class \code{"rma"}.} \item{vi}{vector with the corresponding sampling variances (ignored if \code{x} is an object of class \code{"rma"}).} \item{sei}{vector with the corresponding standard errors (note: only one of the two, \code{vi} or \code{sei}, needs to be specified).} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be used for the calculation (ignored if \code{x} is an object of class \code{"rma"}).} \item{data}{optional data frame containing the variables given to the arguments above.} \item{type}{optional character string to specify the type of method to use for the calculation of the fail-safe N. Possible options are \code{"Rosenthal"} (the default when \code{x} is a vector with the observed effect sizes or outcomes), \code{"Orwin"}, \code{"Rosenberg"}, or \code{"General"} (the default when \code{x} is an object of class \code{"rma"}). Can be abbreviated. See \sQuote{Details}.} \item{alpha}{target alpha level for the Rosenthal, Rosenberg, and General methods (the default is .05).} \item{target}{target average effect size or outcome for the Orwin and General methods.} \item{method}{optional character string to specify the model fitting method for \code{type="General"} (if unspecified, either \code{"REML"} by default or the method that was used in fitting the \code{"rma"} model). See \code{\link{rma.uni}} for options.} \item{exact}{logical to specify whether the general method should be based on exact (but slower) or approximate (but faster) calculations.} \item{verbose}{logical to specify whether output should be generated on the progress of the calculations for \code{type="General"} (the default is \code{FALSE}).} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded.} \item{\dots}{other arguments.} } \details{ The function can be used to calculate the \sQuote{fail-safe N}, that is, the minimum number of studies averaging null results that would have to be added to a given set of \mjseqn{k} studies to change the conclusion of a meta-analysis. If this number is small (in relation to the actual number of studies), then this indicates that the results based on the observed studies are not robust to publication bias (of the form assumed by the method, that is, where a set of studies averaging null results is missing). The method is also called a \sQuote{file drawer analysis} as it assumes that there is a set of studies averaging null results hiding in file drawers, which can overturn the findings from a meta-analysis. There are various types of methods that are all based on the same principle, which are described in more detail further below. Note that \emph{the fail-safe N is not an estimate of the number of missing studies}, only how many studies must be hiding in file drawers for the findings to be overturned. One can either pass a vector with the observed effect sizes or outcomes (via \code{x}) and the corresponding sampling variances via \code{vi} (or the standard errors via \code{sei}) to the function or an object of class \code{"rma"}. When passing a model object, the model must be a model without moderators (i.e., either an equal- or a random-effects model). \subsection{Rosenthal Method}{ The Rosenthal method (\code{type="Rosenthal"}) calculates the minimum number of studies averaging null results that would have to be added to a given set of studies to reduce the (one-tailed) combined significance level (i.e., p-value) to a particular alpha level, which can be specified via the \code{alpha} argument (.05 by default). The calculation is based on Stouffer's method for combining p-values and is described in Rosenthal (1979). Note that the method is primarily of interest for historical reasons, but the other methods described below are more closely aligned with the way meta-analyses are typically conducted in practice. } \subsection{Orwin Method}{ The Orwin method (\code{type="Orwin"}) calculates the minimum number of studies averaging null results that would have to be added to a given set of studies to reduce the (unweighted or weighted) average effect size / outcome to a target value (as specified via the \code{target} argument). The method is described in Orwin (1983). When \code{vi} (or \code{sei}) is not specified, the method is based on the unweighted average of the effect sizes / outcomes; otherwise, the method uses the inverse-variance weighted average. If the \code{target} argument is not specified, then the target value will be equal to the observed average effect size / outcome divided by 2 (which is entirely arbitrary and will always lead to a fail-safe N number that is equal to \mjseqn{k}). One should really set \code{target} to a value that reflects an effect size / outcome that would be considered to be practically irrelevant. Note that if \code{target} has the opposite sign as the actually observed average, then its sign is automatically flipped. } \subsection{Rosenberg Method}{ The Rosenberg method (\code{type="Rosenberg"}) calculates the minimum number of studies averaging null results that would have to be added to a given set of studies to reduce the significance level (i.e., p-value) of the average effect size / outcome (as estimated based on an equal-effects model) to a particular alpha level, which can be specified via the \code{alpha} argument (.05 by default). The method is described in Rosenberg (2005). Note that the p-value is calculated based on a standard normal distribution (instead of a t-distribution, as suggested by Rosenberg, 2005), but the difference is typically negligible. } \subsection{General Method}{ This method is a generalization of the methods by Orwin and Rosenberg (see Viechtbauer, 2024). By default (i.e., when \code{target} is not specified), it calculates the minimum number of studies averaging null results that would have to be added to a given set of studies to reduce the significance level (i.e., p-value) of the average effect size / outcome (as estimated based on a chosen model) to a particular alpha level, which can be specified via the \code{alpha} argument (.05 by default). The type of model that is used in the calculation is chosen via the \code{method} argument. If this is unspecified, then a random-effects model is automatically used (using \code{method="REML"}) or the method that was used in fitting the \code{"rma"} model (see \code{\link{rma.uni}} for options). Therefore, when setting \code{method="EE"}, then an equal-effects model is used, which yields (essentially) identical results as Rosenberg's method. If \code{target} is specified, then the method calculates the minimum number of studies averaging null results that would have to be added to a given set of studies to reduce the average effect size / outcome (as estimated based on a chosen model) to a target value (as specified via the \code{target} argument). As described above, the type of model that is used in the calculation is chosen via the \code{method} argument. When setting \code{method="EE"}, then an equal-effects model is used, which yields (essentially) identical results as Orwin's method with inverse-variance weights. The method uses an iterative algorithm for calculating the fail-safe N, which can be computationally expensive especially when N is large. By default, the method uses approximate (but faster) calculations, but when setting \code{exact=TRUE}, the method uses exact (but slower) calculations. The difference between the two is typically negligible. If N is larger than \mjseqn{10^7}, then the calculated number is given as \code{>1e+07}. } } \value{ An object of class \code{"fsn"}. The object is a list containing the following components (some of which may be \code{NA} if they are not applicable to the chosen method): \item{type}{the type of method used.} \item{fsnum}{the calculated fail-safe N.} \item{est}{the average effect size / outcome based on the observed studies.} \item{tau2}{the estimated amount of heterogeneity based on the observed studies.} \item{pval}{the p-value of the observed results.} \item{alpha}{the specified target alpha level.} \item{target}{the target average effect size / outcome.} \item{est.fsn}{the average effect size / outcome when combining the observed studies with those in the file drawer.} \item{tau2}{the estimated amount of heterogeneity when combining the observed studies with those in the file drawer.} \item{pval}{the p-value when combining the observed studies with those in the file drawer.} \item{\dots}{some additional elements/values.} The results are formatted and printed with the \code{\link[=print.fsn]{print}} function. } \note{ If the significance level of the observed studies is already above the specified alpha level or if the average effect size / outcome of the observed studies is already below the target average effect size / outcome, then the fail-safe N value is zero. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Rosenthal, R. (1979). The "file drawer problem" and tolerance for null results. \emph{Psychological Bulletin}, \bold{86}(3), 638--641. \verb{https://doi.org/10.1037/0033-2909.86.3.638} Orwin, R. G. (1983). A fail-safe N for effect size in meta-analysis. \emph{Journal of Educational Statistics}, \bold{8}(2), 157--159. \verb{https://doi.org/10.3102/10769986008002157} Rosenberg, M. S. (2005). The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. \emph{Evolution}, \bold{59}(2), 464--468. \verb{https://doi.org/10.1111/j.0014-3820.2005.tb01004.x} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W. (2024). A fail-safe N computation based on the random-effects model. \emph{Annual Meeting of the Society for Research Synthesis Methodology}, Amsterdam, The Netherlands. \verb{https://www.wvbauer.com/lib/exe/fetch.php/talks:2024_viechtbauer_srsm_fail_safe_n.pdf} } \seealso{ \code{\link{regtest}} for the regression test, \code{\link{ranktest}} for the rank correlation test, \code{\link{trimfill}} for the trim and fill method, \code{\link{tes}} for the test of excess significance, and \code{\link{selmodel}} for selection models. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit equal-effects model rma(yi, vi, data=dat, method="EE") ### fail-safe N computations fsn(yi, vi, data=dat) fsn(yi, data=dat, type="Orwin", target=log(0.95)) # target corresponds to a 5\% risk reduction fsn(yi, vi, data=dat, type="Orwin", target=log(0.95)) # Orwin's method with 1/vi weights fsn(yi, vi, data=dat, type="General", target=log(0.95), method="EE") # like Orwin's method fsn(yi, vi, data=dat, type="Rosenberg") fsn(yi, vi, data=dat, type="General", method="EE") # like Rosenberg's method fsn(yi, vi, data=dat, type="General") # based on a random-effects model fsn(yi, vi, data=dat, type="General", target=log(0.95)) # based on a random-effects model ### fit a random-effects model and use fsn() on the model object res <- rma(yi, vi, data=dat) fsn(res) fsn(res, target=log(0.95)) } \keyword{htest} metafor/man/anova.rma.Rd0000644000176200001440000004155714746146216014662 0ustar liggesusers\name{anova.rma} \alias{anova} \alias{anova.rma} \title{Likelihood Ratio and Wald-Type Tests for 'rma' Objects} \description{ For two (nested) models of class \code{"rma.uni"} or \code{"rma.mv"}, the function provides a full versus reduced model comparison in terms of model fit statistics and a likelihood ratio test. When a single model is specified, a Wald-type test of one or more model coefficients or linear combinations thereof is carried out. \loadmathjax } \usage{ \method{anova}{rma}(object, object2, btt, X, att, Z, rhs, adjust, digits, refit=FALSE, \dots) } \arguments{ \item{object}{an object of class \code{"rma.uni"} or \code{"rma.mv"}.} \item{object2}{an (optional) object of class \code{"rma.uni"} or \code{"rma.mv"}. Only relevant when conducting a model comparison and likelihood ratio test. See \sQuote{Details}.} \item{btt}{optional vector of indices (or list thereof) to specify which coefficients should be included in the Wald-type test. Can also be a string to \code{\link{grep}} for. See \sQuote{Details}.} \item{X}{optional numeric vector or matrix to specify one or more linear combinations of the coefficients in the model that should be tested. See \sQuote{Details}.} \item{att}{optional vector of indices (or list thereof) to specify which scale coefficients should be included in the Wald-type test. Can also be a string to \code{\link{grep}} for. See \sQuote{Details}. Only relevant for location-scale models (see \code{\link{rma.uni}}).} \item{Z}{optional numeric vector or matrix to specify one or more linear combinations of the scale coefficients in the model that should be tested. See \sQuote{Details}. Only relevant for location-scale models (see \code{\link{rma.uni}}).} \item{rhs}{optional scalar or vector of values for the right-hand side of the null hypothesis when testing a set of coefficients (via \code{btt} or \code{att}) or linear combinations thereof (via \code{X} or \code{Z}). If unspecified, this defaults to a vector of zeros of the appropriate length. See \sQuote{Details}.} \item{adjust}{optional argument to specify (as a character string) a method for adjusting the p-values of Wald-type tests for multiple testing. See \code{\link{p.adjust}} for possible options. Can be abbreviated. Can also be a logical and if \code{TRUE}, then a Bonferroni correction is used.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is to take the value from the object.} \item{refit}{logical to specify whether models fitted with REML estimation and differing in their fixed effects should be refitted with ML estimation when conducting a likelihood ratio test (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ The function can be used in three different ways: \enumerate{ \item When a single model is specified (via argument \code{object}), the function provides a Wald-type test of one or more model coefficients, that is, \mjdeqn{\text{H}_0{:}\; \beta_{j \in \texttt{btt}} = 0,}{H_0: \beta_{j ∈ btt} = 0,} where \mjeqn{\beta_{j \in \texttt{btt}}}{\beta_{j ∈ btt}} is the set of coefficients to be tested (by default whether the set of coefficients is significantly different from zero, but one can specify a different value under the null hypothesis via argument \code{rhs}). In particular, for equal- or random-effects models (i.e., models without moderators), this is just the test of the single coefficient of the model (i.e., \mjeqn{\text{H}_0{:}\; \theta = 0}{H_0: \theta = 0} or \mjeqn{\text{H}_0{:}\; \mu = 0}{H_0: \mu = 0}). For models including moderators, an omnibus test of all model coefficients is conducted that excludes the intercept (the first coefficient) if it is included in the model. If no intercept is included in the model, then the omnibus test includes all coefficients in the model including the first. Alternatively, one can manually specify the indices of the coefficients to test via the \code{btt} (\sQuote{betas to test}) argument. For example, with \code{btt=c(3,4)}, only the third and fourth coefficients from the model are included in the test (if an intercept is included in the model, then it corresponds to the first coefficient in the model). Instead of specifying the coefficient numbers, one can specify a string for \code{btt}. In that case, \code{\link{grep}} will be used to search for all coefficient names that match the string (and hence, one can use regular expressions to fine-tune the search for matching strings). Using the \code{btt} argument, one can for example select all coefficients corresponding to a particular factor to test if the factor as a whole is significant. One can also specify a list of indices/strings, in which case tests of all list elements will be conducted. See \sQuote{Examples}. For location-scale models fitted with the \code{\link{rma.uni}} function, one can use the \code{att} argument in an analogous manner to specify the indices of the scale coefficients to test (i.e., \mjeqn{\text{H}_0{:}\; \alpha_{j \in \texttt{att}} = 0}{H_0: \alpha_{j ∈ att} = 0}, where \mjeqn{\alpha_{j \in \texttt{att}}}{\alpha_{j ∈ att}} is the set of coefficients to be tested). \item When a single model is specified (via argument \code{object}), one can use the \code{X} argument\mjseqn{^1} to specify a linear combination of the coefficients in the model that should be tested using a Wald-type test, that is, \mjdeqn{\text{H}_0{:}\; \tilde{x} \beta = 0,}{H_0: x \beta = 0,} where \mjeqn{\tilde{x}}{x} is a (row) vector of the same length as there are coefficients in the model (by default whether the linear combination is significantly different from zero, but one can specify a different value under the null hypothesis via argument \code{rhs}). One can also specify a matrix of linear combinations via the \code{X} argument to test \mjdeqn{\text{H}_0{:}\; \tilde{X} \beta = 0,}{H_0: X \beta = 0,} where each row of \mjeqn{\tilde{X}}{X} defines a particular linear combination to be tested (if \code{rhs} is used, then it should either be a scalar or of the same length as the number of combinations to be tested). If the matrix is of full rank, an omnibus Wald-type test of all linear combinations is also provided. Linear combinations can also be obtained with the \code{\link[=predict.rma]{predict}} function, which provides corresponding confidence intervals. See also the \code{\link{pairmat}} function for constructing a matrix of pairwise contrasts for testing the levels of a categorical moderator against each other. For location-scale models fitted with the \code{\link{rma.uni}} function, one can use the \code{Z} argument in an analogous manner to specify one or multiple linear combinations of the scale coefficients in the model that should be tested (i.e., \mjeqn{\text{H}_0{:}\; \tilde{Z} \alpha = 0}{H_0: Z \alpha = 0}). \item When specifying two models for comparison (via arguments \code{object} and \code{object2}), the function provides a likelihood ratio test (LRT) comparing the two models. The two models must be based on the same set of data, must be of the same class, and should be nested for the LRT to make sense. Also, LRTs are not meaningful when using REML estimation and the two models differ in terms of their fixed effects (setting \code{refit=TRUE} automatically refits the two models using ML estimation). Also, the theory underlying LRTs is only really applicable when comparing models that were fitted with ML/REML estimation, so if some other estimation method was used to fit the two models, the results should be treated with caution. } --------- \mjseqn{^1} This argument used to be called \code{L}, but was renamed to \code{X} (but using \code{L} in place of \code{X} still works). } \value{ An object of class \code{"anova.rma"}. When a single model is specified (without any further arguments or together with the \code{btt} or \code{att} argument), the object is a list containing the following components: \item{QM}{test statistic of the Wald-type test of the model coefficients.} \item{QMdf}{corresponding degrees of freedom.} \item{QMp}{corresponding p-value.} \item{btt}{indices of the coefficients tested by the Wald-type test.} \item{k}{number of outcomes included in the analysis.} \item{p}{number of coefficients in the model (including the intercept).} \item{m}{number of coefficients included in the Wald-type test.} \item{\dots}{some additional elements/values.} When \code{btt} or \code{att} was a list, then the object is a list of class \code{"list.anova.rma"}, where each element is an \code{"anova.rma"} object as described above. When argument \code{X} is used, the object is a list containing the following components: \item{QM}{test statistic of the omnibus Wald-type test of all linear combinations.} \item{QMdf}{corresponding degrees of freedom.} \item{QMp}{corresponding p-value.} \item{hyp}{description of the linear combinations tested.} \item{Xb}{values of the linear combinations.} \item{se}{standard errors of the linear combinations.} \item{zval}{test statistics of the linear combinations.} \item{pval}{corresponding p-values.} When two models are specified, the object is a list containing the following components: \item{fit.stats.f}{log-likelihood, deviance, AIC, BIC, and AICc for the full model.} \item{fit.stats.r}{log-likelihood, deviance, AIC, BIC, and AICc for the reduced model.} \item{parms.f}{number of parameters in the full model.} \item{parms.r}{number of parameters in the reduced model.} \item{LRT}{likelihood ratio test statistic.} \item{pval}{corresponding p-value.} \item{QE.f}{test statistic of the test for (residual) heterogeneity from the full model.} \item{QE.r}{test statistic of the test for (residual) heterogeneity from the reduced model.} \item{tau2.f}{estimated \mjseqn{\tau^2} value from the full model. \code{NA} for \code{"rma.mv"} objects.} \item{tau2.r}{estimated \mjseqn{\tau^2} value from the reduced model. \code{NA} for \code{"rma.mv"} objects.} \item{R2}{amount (in percent) of the heterogeneity in the reduced model that is accounted for in the full model (\code{NA} for \code{"rma.mv"} objects). This can be regarded as a pseudo \mjseqn{R^2} statistic (Raudenbush, 2009). Note that the value may not be very accurate unless \mjseqn{k} is large (Lopez-Lopez et al., 2014).} \item{\dots}{some additional elements/values.} The results are formatted and printed with the \code{\link[=print.anova.rma]{print}} function. To format the results as a data frame, one can use the \code{\link[=as.data.frame.anova.rma]{as.data.frame}} function. } \note{ The function can also be used to conduct a likelihood ratio test (LRT) for the amount of (residual) heterogeneity in random- and mixed-effects models. The full model should then be fitted with either \code{method="ML"} or \code{method="REML"} and the reduced model with \code{method="EE"} (or with \code{tau2=0}). The p-value for the test is based on a chi-square distribution with 1 degree of freedom, but actually needs to be adjusted for the fact that the parameter (i.e., \mjseqn{\tau^2}) falls on the boundary of the parameter space under the null hypothesis (see Viechtbauer, 2007, for more details). LRTs for variance components in more complex models (as fitted with the \code{\link{rma.mv}} function) can also be conducted in this manner (see \sQuote{Examples}). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Hardy, R. J., & Thompson, S. G. (1996). A likelihood approach to meta-analysis with random effects. \emph{Statistics in Medicine}, \bold{15}(6), 619--629. \verb{https://doi.org/10.1002/(sici)1097-0258(19960330)15:6\%3C619::aid-sim188\%3E3.0.co;2-a} Huizenga, H. M., Visser, I., & Dolan, C. V. (2011). Testing overall and moderator effects in random effects meta-regression. \emph{British Journal of Mathematical and Statistical Psychology}, \bold{64}(1), 1--19. \verb{https://doi.org/10.1348/000711010X522687} \enc{López-López}{Lopez-Lopez}, J. A., \enc{Marín-Martínez}{Marin-Martinez}, F., \enc{Sánchez-Meca}{Sanchez-Meca}, J., Van den Noortgate, W., & Viechtbauer, W. (2014). Estimation of the predictive power of the model in mixed-effects meta-regression: A simulation study. \emph{British Journal of Mathematical and Statistical Psychology}, \bold{67}(1), 30--48. \verb{https://doi.org/10.1111/bmsp.12002} Raudenbush, S. W. (2009). Analyzing effect sizes: Random effects models. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (2nd ed., pp. 295--315). New York: Russell Sage Foundation. Viechtbauer, W. (2007). Hypothesis tests for population heterogeneity in meta-analysis. \emph{British Journal of Mathematical and Statistical Psychology}, \bold{60}(1), 29--60. \verb{https://doi.org/10.1348/000711005X64042} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W., & \enc{López-López}{Lopez-Lopez}, J. A. (2022). Location-scale models for meta-analysis. \emph{Research Synthesis Methods}. \bold{13}(6), 697--715. \verb{https://doi.org/10.1002/jrsm.1562} } \seealso{ \code{\link{rma.uni}} and \code{\link{rma.mv}} for functions to fit models for which likelihood ratio and Wald-type tests can be conducted. \code{\link[=print.anova.rma]{print}} for the print method and \code{\link[=as.data.frame.anova.rma]{as.data.frame}} for the method to format the results as a data frame. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects model res1 <- rma(yi, vi, data=dat, method="ML") res1 ### fit mixed-effects model with two moderators (absolute latitude and publication year) res2 <- rma(yi, vi, mods = ~ ablat + year, data=dat, method="ML") res2 ### Wald-type test of the two moderators anova(res2) ### alternative way of specifying the same test anova(res2, X=rbind(c(0,1,0), c(0,0,1))) ### corresponding likelihood ratio test anova(res1, res2) ### Wald-type test of a linear combination anova(res2, X=c(1,35,1970)) ### use predict() to obtain the same linear combination (with its CI) predict(res2, newmods=c(35,1970)) ### Wald-type tests of several linear combinations anova(res2, X=cbind(1,seq(0,60,by=10),1970)) ### adjust for multiple testing with the Bonferroni method anova(res2, X=cbind(1,seq(0,60,by=10),1970), adjust="bonf") ### mixed-effects model with three moderators res3 <- rma(yi, vi, mods = ~ ablat + year + alloc, data=dat, method="ML") res3 ### Wald-type test of the 'alloc' factor anova(res3, btt=4:5) ### instead of specifying the coefficient numbers, grep for "alloc" anova(res3, btt="alloc") ### specify a list for the 'btt' argument anova(res3, btt=list(2,3,4:5)) ### adjust for multiple testing with the Bonferroni method anova(res3, btt=list(2,3,4:5), adjust="bonf") ############################################################################ ### an example of doing LRTs of variance components in more complex models dat <- dat.konstantopoulos2011 res <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat) ### likelihood ratio test of the district-level variance component res0 <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat, sigma2=c(0,NA)) anova(res, res0) ### likelihood ratio test of the school-level variance component res0 <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat, sigma2=c(NA,0)) anova(res, res0) ### likelihood ratio test of both variance components simultaneously res0 <- rma.mv(yi, vi, data=dat) anova(res, res0) ############################################################################ ### an example illustrating a workflow involving cluster-robust inference dat <- dat.assink2016 ### assume that the effect sizes within studies are correlated with rho=0.6 V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) ### fit multilevel model using this approximate V matrix res <- rma.mv(yi, V, random = ~ 1 | study/esid, data=dat) res ### likelihood ratio tests of the two variance components res0 <- rma.mv(yi, V, random = ~ 1 | study/esid, data=dat, sigma2=c(0,NA)) anova(res, res0) res0 <- rma.mv(yi, V, random = ~ 1 | study/esid, data=dat, sigma2=c(NA,0)) anova(res, res0) ### use cluster-robust methods for inferences about the fixed effects sav <- robust(res, cluster=study, clubSandwich=TRUE) sav ### examine if 'deltype' is a potential moderator res <- rma.mv(yi, V, mods = ~ deltype, random = ~ 1 | study/esid, data=dat) sav <- robust(res, cluster=study, clubSandwich=TRUE) sav ### note: the (denominator) dfs for the omnibus F-test are very low, so the results ### of this test may not be trustworthy; consider using cluster wild bootstrapping \dontrun{ library(wildmeta) Wald_test_cwb(res, constraints=constrain_zero(2:3), R=1000, seed=1234) } } \keyword{models} metafor/man/profile.rma.Rd0000644000176200001440000003250314746146216015205 0ustar liggesusers\name{profile.rma} \alias{profile} \alias{profile.rma} \alias{profile.rma.uni} \alias{profile.rma.mv} \alias{profile.rma.uni.selmodel} \alias{profile.rma.ls} \alias{print.profile.rma} \alias{plot.profile.rma} \title{Profile Likelihood Plots for 'rma' Objects} \description{ Functions to profile the (restricted) log-likelihood for objects of class \code{"rma.uni"}, \code{"rma.mv"}, \code{"rma.uni.selmodel"}, and \code{"rma.ls"}. \loadmathjax } \usage{ \method{profile}{rma.uni}(fitted, xlim, ylim, steps=20, lltol=1e-03, progbar=TRUE, parallel="no", ncpus=1, cl, plot=TRUE, \dots) \method{profile}{rma.mv}(fitted, sigma2, tau2, rho, gamma2, phi, xlim, ylim, steps=20, lltol=1e-03, progbar=TRUE, parallel="no", ncpus=1, cl, plot=TRUE, \dots) \method{profile}{rma.uni.selmodel}(fitted, tau2, delta, xlim, ylim, steps=20, lltol=1e-03, progbar=TRUE, parallel="no", ncpus=1, cl, plot=TRUE, \dots) \method{profile}{rma.ls}(fitted, alpha, xlim, ylim, steps=20, lltol=1e-03, progbar=TRUE, parallel="no", ncpus=1, cl, plot=TRUE, \dots) \method{print}{profile.rma}(x, \dots) \method{plot}{profile.rma}(x, xlim, ylim, pch=19, xlab, ylab, main, refline=TRUE, cline=FALSE, \dots) } \arguments{ \item{fitted}{an object of class \code{"rma.uni"}, \code{"rma.mv"}, \code{"rma.uni.selmodel"}, or \code{"rma.ls"}.} \item{x}{an object of class \code{"profile.rma"} (for \code{plot} and \code{print}).} \item{sigma2}{optional integer to specify for which \mjseqn{\sigma^2} parameter the likelihood should be profiled.} \item{tau2}{optional integer to specify for which \mjseqn{\tau^2} parameter the likelihood should be profiled.} \item{rho}{optional integer to specify for which \mjseqn{\rho} parameter the likelihood should be profiled.} \item{gamma2}{optional integer to specify for which \mjseqn{\gamma^2} parameter the likelihood should be profiled.} \item{phi}{optional integer to specify for which \mjseqn{\phi} parameter the likelihood should be profiled.} \item{delta}{optional integer to specify for which \mjseqn{\delta} parameter the likelihood should be profiled.} \item{alpha}{optional integer to specify for which \mjseqn{\alpha} parameter the likelihood should be profiled.} \item{xlim}{optional vector to specify the lower and upper limit of the parameter over which the profiling should be done. If unspecified, the function sets these limits automatically.} \item{ylim}{optional vector to specify the y-axis limits when plotting the profiled likelihood. If unspecified, the function sets these limits automatically.} \item{steps}{number of points between \code{xlim[1]} and \code{xlim[2]} (inclusive) for which the likelihood should be evaluated (the default is 20). Can also be a numeric vector of length 2 or longer to specify for which parameter values the likelihood should be evaluated (in this case, \code{xlim} is automatically set to \code{range(steps)} if unspecified).} \item{lltol}{numerical tolerance used when comparing values of the profiled log-likelihood with the log-likelihood of the fitted model (the default is 1e-03).} \item{progbar}{logical to specify whether a progress bar should be shown (the default is \code{TRUE}).} \item{parallel}{character string to specify whether parallel processing should be used (the default is \code{"no"}). For parallel processing, set to either \code{"snow"} or \code{"multicore"}. See \sQuote{Details}.} \item{ncpus}{integer to specify the number of processes to use in the parallel processing.} \item{cl}{optional cluster to use if \code{parallel="snow"}. If unspecified, a cluster on the local machine is created for the duration of the call.} \item{plot}{logical to specify whether the profile plot should be drawn after profiling is finished (the default is \code{TRUE}).} \item{pch}{plotting symbol to use. By default, a filled circle is used. See \code{\link{points}} for other options.} \item{refline}{logical to specify whether the value of the parameter estimate should be indicated by a dotted vertical line and its log-likelihood value by a dotted horizontal line (the default is \code{TRUE}).} \item{cline}{logical to specify whether a horizontal reference line should be added to the plot that indicates the log-likelihood value corresponding to the 95\% profile confidence interval (the default is \code{FALSE}). Can also be a numeric value between 0 and 100 to specify the confidence interval level.} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title.} \item{ylab}{title for the y-axis. If unspecified, the function sets an appropriate axis title.} \item{main}{title for the plot. If unspecified, the function sets an appropriate title.} \item{\dots}{other arguments.} } \details{ The function fixes a particular parameter of the model and then computes the maximized (restricted) log-likelihood over the remaining parameters of the model. By fixing the parameter of interest to a range of values, a profile of the (restricted) log-likelihood is constructed. \subsection{Selecting the Parameter(s) to Profile}{ The parameters that can be profiled depend on the model object: \itemize{ \item For objects of class \code{"rma.uni"} obtained with the \code{\link{rma.uni}} function, the function profiles over \mjseqn{\tau^2} (not for equal-effects models). \item For objects of class \code{"rma.mv"} obtained with the \code{\link{rma.mv}} function, profiling is done by default over all variance and correlation components of the model. Alternatively, one can use the \code{sigma2}, \code{tau2}, \code{rho}, \code{gamma2}, or \code{phi} arguments to specify over which parameter the profiling should be done. Only one of these arguments can be used at a time. A single integer is used to specify the number of the parameter. \item For selection model objects of class \code{"rma.uni.selmodel"} obtained with the \code{\link{selmodel}} function, profiling is done by default over \mjseqn{\tau^2} (for models where this is an estimated parameter) and all selection model parameters. Alternatively, one can choose to profile only \mjseqn{\tau^2} by setting \code{tau2=TRUE} or one can select one of the selection model parameters to profile by specifying its number via the \code{delta} argument. \item For location-scale model objects of class \code{"rma.ls"} obtained with the \code{\link{rma.uni}} function, profiling is done by default over all \mjseqn{\alpha} parameters that are part of the scale model. Alternatively, one can select one of the parameters to profile by specifying its number via the \code{alpha} argument. } } \subsection{Interpreting Profile Likelihood Plots}{ A profile likelihood plot should show a single peak at the corresponding ML/REML estimate. If \code{refline=TRUE} (the default), the value of the parameter estimate is indicated by a dotted vertical line and its log-likelihood value by a dotted horizontal line. Hence, the intersection of these two lines should correspond to the peak (assuming that the model was fitted with ML/REML estimation). When profiling a variance component (or some other parameter that cannot be negative), the peak may be at zero (if this corresponds to the ML/REML estimate of the parameter). In this case, the profiled log-likelihood should be a monotonically decreasing function of the parameter. Similarly, when profiling a correlation component, the peak may be at -1 or +1. If the profiled log-likelihood has multiple peaks, this indicates that the likelihood surface is not unimodal. In such cases, the ML/REML estimate may correspond to a local optimum (when the intersection of the two dotted lines is not at the highest peak). If the profile is flat (over the entire parameter space or large portions of it), then this suggests that at least some of the parameters of the model are not identifiable (and the parameter estimates obtained are to some extent arbitrary). See Raue et al. (2009) for some further discussion of parameter identifiability and the use of profile likelihoods to check for this. The function checks whether any profiled log-likelihood value is actually larger than the log-likelihood of the fitted model (using a numerical tolerance of \code{lltol}). If so, a warning is issued as this might indicate that the optimizer did not identify the actual ML/REML estimate of the parameter profiled. } \subsection{Parallel Processing}{ Profiling requires repeatedly refitting the model, which can be slow when \mjseqn{k} is large and/or the model is complex (the latter especially applies to \code{"rma.mv"} objects and also to certain \code{"rma.uni.selmodel"} or \code{"rma.ls"} objects). On machines with multiple cores, one can try to speed things up by delegating the model fitting to separate worker processes, that is, by setting \code{parallel="snow"} or \code{parallel="multicore"} and \code{ncpus} to some value larger than 1. Parallel processing makes use of the \code{\link[parallel]{parallel}} package, using the \code{\link[parallel]{makePSOCKcluster}} and \code{\link[parallel]{parLapply}} functions when \code{parallel="snow"} or using \code{\link[parallel]{mclapply}} when \code{parallel="multicore"} (the latter only works on Unix/Linux-alikes). With \code{parallel::detectCores()}, one can check on the number of available cores on the local machine. } } \value{ An object of class \code{"profile.rma"}. The object is a list (or list of such lists) containing the following components: One of the following (depending on the parameter that was actually profiled): \item{sigma2}{values of \mjseqn{\sigma^2} over which the likelihood was profiled.} \item{tau2}{values of \mjseqn{\tau^2} over which the likelihood was profiled.} \item{rho}{values of \mjseqn{\rho} over which the likelihood was profiled.} \item{gamma2}{values of \mjseqn{\gamma^2} over which the likelihood was profiled.} \item{phi}{values of \mjseqn{\phi} over which the likelihood was profiled.} \item{delta}{values of \mjseqn{\delta} over which the likelihood was profiled.} \item{alpha}{values of \mjseqn{\alpha} over which the likelihood was profiled.} In addition, the following components are included: \item{ll}{(restricted) log-likelihood values at the corresponding parameter values.} \item{beta}{a matrix with the estimated model coefficients at the corresponding parameter values.} \item{ci.lb}{a matrix with the lower confidence interval bounds of the model coefficients at the corresponding parameter values.} \item{ci.ub}{a matrix with the upper confidence interval bounds of the model coefficients at the corresponding parameter values.} \item{\dots}{some additional elements/values.} Note that the list is returned invisibly. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmuller, U., & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. \emph{Bioinformatics}, \bold{25}(15), 1923--1929. \verb{https://doi.org/10.1093/bioinformatics/btp358} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} Viechtbauer, W., & \enc{López-López}{Lopez-Lopez}, J. A. (2022). Location-scale models for meta-analysis. \emph{Research Synthesis Methods}. \bold{13}(6), 697--715. \verb{https://doi.org/10.1002/jrsm.1562} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mv}}, and \code{\link[=selmodel.rma.uni]{selmodel}} for functions to fit models for which profile likelihood plots can be drawn. \code{\link[=confint.rma]{confint}} for functions to compute corresponding profile likelihood confidence intervals. } \examples{ ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit random-effects model using rma.uni() res <- rma(yi, vi, data=dat) ### profile over tau^2 profile(res, progbar=FALSE) ### adjust xlim profile(res, progbar=FALSE, xlim=c(0,1)) ### specify tau^2 values at which to profile the likelihood profile(res, progbar=FALSE, steps=c(seq(0,0.2,length=20),seq(0.3,1,by=0.1))) ### change data into long format dat.long <- to.long(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, append=FALSE) ### set levels/labels for group ("con" = control/non-vaccinated, "exp" = experimental/vaccinated) dat.long$group <- factor(dat.long$group, levels=c(2,1), labels=c("con","exp")) ### calculate log odds and corresponding sampling variances dat.long <- escalc(measure="PLO", xi=out1, mi=out2, data=dat.long) dat.long ### fit bivariate random-effects model using rma.mv() res <- rma.mv(yi, vi, mods = ~ group, random = ~ group | study, struct="UN", data=dat.long) res ### profile over tau^2_1, tau^2_2, and rho ### note: for rho, adjust region over which profiling is done ('zoom in' on area around estimate) \dontrun{ par(mfrow=c(2,2)) profile(res, tau2=1) profile(res, tau2=2) profile(res, rho=1, xlim=c(0.90, 0.98)) par(mfrow=c(1,1)) } ### an example where the peak of the likelihood profile is at 0 dat <- escalc(measure="RD", n1i=n1i, n2i=n2i, ai=ai, ci=ci, data=dat.hine1989) res <- rma(yi, vi, data=dat) profile(res, progbar=FALSE) } \keyword{hplot} metafor/man/rma.glmm.Rd0000644000176200001440000010525514746146216014506 0ustar liggesusers\name{rma.glmm} \alias{rma.glmm} \title{Meta-Analysis via Generalized Linear (Mixed-Effects) Models} \description{ Function to fit meta-analytic equal-, fixed-, and random-effects models and (mixed-effects) meta-regression models using a generalized linear (mixed-effects) model framework. See below and the introduction to the \pkg{\link{metafor-package}} for more details on these models. \loadmathjax } \usage{ rma.glmm(ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, xi, mi, ti, ni, mods, measure, data, slab, subset, add=1/2, to="only0", drop00=TRUE, intercept=TRUE, model="UM.FS", method="ML", coding=1/2, cor=FALSE, test="z", level=95, btt, nAGQ=7, verbose=FALSE, digits, control, \dots) } \arguments{ \emph{These arguments pertain to data input:} \item{ai}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{bi}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{ci}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{di}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{n1i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{n2i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{x1i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{x2i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{t1i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{t2i}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{xi}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{mi}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{ti}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{ni}{see below and the documentation of the \code{\link{escalc}} function for more details.} \item{mods}{optional argument to include one or more moderators in the model. A single moderator can be given as a vector of length \mjseqn{k} specifying the values of the moderator. Multiple moderators are specified by giving a matrix with \mjseqn{k} rows and as many columns as there are moderator variables. Alternatively, a model \code{\link{formula}} can be used to specify the model. See \sQuote{Details}.} \item{measure}{character string to specify the outcome measure to use for the meta-analysis. Possible options are \code{"OR"} for the (log transformed) odds ratio, \code{"IRR"} for the (log transformed) incidence rate ratio, \code{"PLO"} for the (logit transformed) proportion, or \code{"IRLN"} for the (log transformed) incidence rate.} \item{data}{optional data frame containing the data supplied to the function.} \item{slab}{optional vector with labels for the \mjseqn{k} studies.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be used for the analysis.} \emph{These arguments pertain to handling of zero cells/counts/frequencies:} \item{add}{non-negative number to specify the amount to add to zero cells, counts, or frequencies when calculating the observed effect sizes or outcomes of the individual studies. See below and the documentation of the \code{\link{escalc}} function for more details.} \item{to}{character string to specify when the values under \code{add} should be added (either \code{"only0"}, \code{"all"}, \code{"if0all"}, or \code{"none"}). See below and the documentation of the \code{\link{escalc}} function for more details.} \item{drop00}{logical to specify whether studies with no cases/events (or only cases) in both groups should be dropped. See the documentation of the \code{\link{escalc}} function for more details.} \emph{These arguments pertain to the model / computations and output:} \item{intercept}{logical to specify whether an intercept should be added to the model (the default is \code{TRUE}).} \item{model}{character string to specify the general model type for the analysis. Either \code{"UM.FS"} (the default), \code{"UM.RS"}, \code{"CM.EL"}, or \code{"CM.AL"}. See \sQuote{Details}.} \item{method}{character string to specify whether an equal- or a random-effects model should be fitted. An equal-effects model is fitted when using \code{method="EE"}. A random-effects model is fitted by setting \code{method="ML"} (the default). See \sQuote{Details}.} \item{coding}{numeric scalar to specify how the group variable should be coded in the random effects structure for random/mixed-effects models (the default is \code{1/2}). See \sQuote{Note}.} \item{cor}{logical to specify whether the random study effects should be allowed to be correlated with the random group effects for random/mixed-effects models when \code{model="UM.RS"} (the default is \code{FALSE}). See \sQuote{Note}.} \item{test}{character string to specify how test statistics and confidence intervals for the fixed effects should be computed. By default (\code{test="z"}), Wald-type tests and CIs are obtained, which are based on a standard normal distribution. When \code{test="t"}, a t-distribution is used instead. See \sQuote{Details} and also \link[=misc-recs]{here} for some recommended practices.} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (the default is 95; see \link[=misc-options]{here} for details).} \item{btt}{optional vector of indices to specify which coefficients to include in the omnibus test of moderators. Can also be a string to \code{\link{grep}} for. See \sQuote{Details}.} \item{nAGQ}{positive integer to specify the number of points per axis for evaluating the adaptive Gauss-Hermite approximation to the log-likelihood. The default is 7. Setting this to 1 corresponds to the Laplacian approximation. See \sQuote{Note}.} \item{verbose}{logical to specify whether output should be generated on the progress of the model fitting (the default is \code{FALSE}). Can also be an integer. Values > 1 generate more verbose output. See \sQuote{Note}.} \item{digits}{optional integer to specify the number of decimal places to which the printed results should be rounded. If unspecified, the default is 4. See also \link[=misc-options]{here} for further details on how to control the number of digits in the output.} \item{control}{optional list of control values for the estimation algorithms. If unspecified, default values are defined inside the function. See \sQuote{Note}.} \item{\dots}{additional arguments.} } \details{ \subsection{Specifying the Data}{ The function can be used in combination with the following effect sizes or outcome measures: \itemize{ \item \code{measure="OR"} for (log transformed) odds ratios, \item \code{measure="IRR"} for (log transformed) incidence rate ratios, \item \code{measure="PLO"} for (logit transformed) proportions (i.e., log odds), \item \code{measure="IRLN"} for (log transformed) incidence rates. } The \code{\link{escalc}} function describes the data/arguments that should be specified/used for these measures. } \subsection{Specifying the Model}{ A variety of model types are available when analyzing \mjeqn{2 \times 2}{2x2} table data (i.e., when \code{measure="OR"}) or two-group event count data (i.e., when \code{measure="IRR"}): \itemize{ \item \code{model="UM.FS"} for an unconditional generalized linear mixed-effects model with fixed study effects, \item \code{model="UM.RS"} for an unconditional generalized linear mixed-effects model with random study effects, \item \code{model="CM.AL"} for a conditional generalized linear mixed-effects model (approximate likelihood), \item \code{model="CM.EL"} for a conditional generalized linear mixed-effects model (exact likelihood). } For \code{measure="OR"}, models \code{"UM.FS"} and \code{"UM.RS"} are essentially (mixed-effects) logistic regression models, while for \code{measure="IRR"}, these models are (mixed-effects) Poisson regression models. The difference between \code{"UM.FS"} and \code{"UM.RS"} is how study level variability (i.e., differences in outcomes across studies irrespective of group membership) is modeled. One can choose between using fixed study effects (which means that \mjseqn{k} dummy variables are added to the model) or random study effects (which means that random effects corresponding to the levels of the study factor are added to the model). The conditional model (\code{model="CM.EL"}) avoids having to model study level variability by conditioning on the total numbers of cases/events in each study. For \code{measure="OR"}, this leads to a non-central hypergeometric distribution for the data within each study and the corresponding model is then a (mixed-effects) conditional logistic model. Fitting this model can be difficult and computationally expensive. When the number of cases in each study is small relative to the group sizes, one can approximate the exact likelihood by a binomial distribution, which leads to a regular (mixed-effects) logistic regression model (\code{model="CM.AL"}). For \code{measure="IRR"}, the conditional model leads directly to a binomial distribution for the data within each study and the resulting model is again a (mixed-effects) logistic regression model (no approximate likelihood model is needed here). When analyzing proportions (i.e., \code{measure="PLO"}) or incidence rates (i.e., \code{measure="IRLN"}) of individual groups, the model type is always a (mixed-effects) logistic or Poisson regression model, respectively (i.e., the \code{model} argument is not relevant here). Aside from choosing the general model type, one has to decide whether to fit an equal- or a random-effects model to the data. An \emph{equal-effects model} is fitted by setting \code{method="EE"}. A \emph{random-effects model} is fitted by setting \code{method="ML"} (the default). Note that random-effects models with dichotomous data are often referred to as \sQuote{binomial-normal} models in the meta-analytic literature. Analogously, for event count data, such models could be referred to as \sQuote{Poisson-normal} models. One or more moderators can be included in a model via the \code{mods} argument. A single moderator can be given as a (row or column) vector of length \mjseqn{k} specifying the values of the moderator. Multiple moderators are specified by giving an appropriate model matrix (i.e., \mjseqn{X}) with \mjseqn{k} rows and as many columns as there are moderator variables (e.g., \code{mods = cbind(mod1, mod2, mod3)}, where \code{mod1}, \code{mod2}, and \code{mod3} correspond to the names of the variables for three moderator variables). The intercept is added to the model matrix by default unless \code{intercept=FALSE}. Alternatively, one can use standard \code{\link{formula}} syntax to specify the model. In this case, the \code{mods} argument should be set equal to a one-sided formula of the form \code{mods = ~ model} (e.g., \code{mods = ~ mod1 + mod2 + mod3}). Interactions, polynomial/spline terms, and factors can be easily added to the model in this manner. When specifying a model formula via the \code{mods} argument, the \code{intercept} argument is ignored. Instead, the inclusion/exclusion of the intercept is controlled by the specified formula (e.g., \code{mods = ~ 0 + mod1 + mod2 + mod3} or \code{mods = ~ mod1 + mod2 + mod3 - 1} would lead to the removal of the intercept). } \subsection{Equal-, Saturated-, and Random/Mixed-Effects Models}{ When fitting a particular model, actually up to three different models are fitted within the function: \itemize{ \item the equal-effects model (i.e., where \mjseqn{\tau^2} is set to 0), \item the saturated model (i.e., the model with a deviance of 0), and \item the random/mixed-effects model (i.e., where \mjseqn{\tau^2} is estimated) (only if \code{method="ML"}). } The saturated model is obtained by adding as many dummy variables to the model as needed so that the model deviance is equal to zero. Even when \code{method="ML"}, the equal- and saturated models are also fitted, as they are used to compute the test statistics for the Wald-type and likelihood ratio tests for (residual) heterogeneity (see below). } \subsection{Omnibus Test of Moderators}{ For models including moderators, an omnibus test of all model coefficients is conducted that excludes the intercept (the first coefficient) if it is included in the model. If no intercept is included in the model, then the omnibus test includes all coefficients in the model including the first. Alternatively, one can manually specify the indices of the coefficients to test via the \code{btt} (\sQuote{betas to test}) argument (i.e., to test \mjseqn{\text{H}_0{:}\; \beta_{j \in \texttt{btt}} = 0}, where \mjseqn{\beta_{j \in \texttt{btt}}} is the set of coefficients to be tested). For example, with \code{btt=c(3,4)}, only the third and fourth coefficients from the model are included in the test (if an intercept is included in the model, then it corresponds to the first coefficient in the model). Instead of specifying the coefficient numbers, one can specify a string for \code{btt}. In that case, \code{\link{grep}} will be used to search for all coefficient names that match the string. The omnibus test is called the \mjseqn{Q_M}-test and follows asymptotically a chi-square distribution with \mjseqn{m} degrees of freedom (with \mjseqn{m} denoting the number of coefficients tested) under the null hypothesis (that the true value of all coefficients tested is equal to 0). } \subsection{Categorical Moderators}{ Categorical moderator variables can be included in the model via the \code{mods} argument in the same way that appropriately (dummy) coded categorical variables can be included in linear models. One can either do the dummy coding manually or use a model formula together with the \code{\link{factor}} function to automate the coding (note that string/character variables in a model formula are automatically converted to factors). } \subsection{Tests and Confidence Intervals}{ By default, tests of individual coefficients in the model (and the corresponding confidence intervals) are based on a standard normal distribution, while the omnibus test is based on a chi-square distribution (see above). As an alternative, one can set \code{test="t"}, in which case tests of individual coefficients and confidence intervals are based on a t-distribution with \mjseqn{k-p} degrees of freedom, while the omnibus test then uses an F-distribution with \mjseqn{m} and \mjseqn{k-p} degrees of freedom (with \mjseqn{k} denoting the total number of estimates included in the analysis and \mjseqn{p} the total number of model coefficients including the intercept if it is present). Note that \code{test="t"} is not the same as \code{test="knha"} in \code{\link{rma.uni}}, as no adjustment to the standard errors of the estimated coefficients is made. } \subsection{Tests for (Residual) Heterogeneity}{ Two different tests for (residual) heterogeneity are automatically carried out by the function. The first is a Wald-type test, which tests the coefficients corresponding to the dummy variables added in the saturated model for significance. The second is a likelihood ratio test, which tests the same set of coefficients, but does so by computing \mjseqn{-2} times the difference in the log-likelihoods of the equal-effects and the saturated models. These two tests are not identical for the types of models fitted by the \code{rma.glmm} function and may even lead to conflicting conclusions. } \subsection{Observed Effect Sizes or Outcomes of the Individual Studies}{ The various models do not require the calculation of the observed effect sizes or outcomes of the individual studies (e.g., the observed log odds ratios of the \mjseqn{k} studies) and directly make use of the cell/event counts. Zero cells/events are not a problem (except in extreme cases, such as when one of the two outcomes never occurs or when there are no events in any of the studies). Therefore, it is unnecessary to add some constant to the cell/event counts when there are zero cells/events. However, for plotting and various other functions, it is necessary to calculate the observed effect sizes or outcomes for the \mjseqn{k} studies. Here, zero cells/events can be problematic, so adding a constant value to the cell/event counts ensures that all \mjseqn{k} values can be calculated. The \code{add} and \code{to} arguments are used to specify what value should be added to the cell/event counts and under what circumstances when calculating the observed effect sizes or outcomes. The documentation of the \code{\link{escalc}} function explains how the \code{add} and \code{to} arguments work. Note that \code{drop00} is set to \code{TRUE} by default, since studies where \code{ai=ci=0} or \code{bi=di=0} or studies where \code{x1i=x2i=0} are uninformative about the size of the effect. } } \value{ An object of class \code{c("rma.glmm","rma")}. The object is a list containing the following components: \item{beta}{estimated coefficients of the model.} \item{se}{standard errors of the coefficients.} \item{zval}{test statistics of the coefficients.} \item{pval}{corresponding p-values.} \item{ci.lb}{lower bound of the confidence intervals for the coefficients.} \item{ci.ub}{upper bound of the confidence intervals for the coefficients.} \item{vb}{variance-covariance matrix of the estimated coefficients.} \item{tau2}{estimated amount of (residual) heterogeneity. Always \code{0} when \code{method="EE"}.} \item{sigma2}{estimated amount of study level variability (only for \code{model="UM.RS"}).} \item{k}{number of studies included in the analysis.} \item{p}{number of coefficients in the model (including the intercept).} \item{m}{number of coefficients included in the omnibus test of moderators.} \item{QE.Wld}{Wald-type test statistic of the test for (residual) heterogeneity.} \item{QEp.Wld}{corresponding p-value.} \item{QE.LRT}{likelihood ratio test statistic of the test for (residual) heterogeneity.} \item{QEp.LRT}{corresponding p-value.} \item{QM}{test statistic of the omnibus test of moderators.} \item{QMp}{corresponding p-value.} \item{I2}{value of \mjseqn{I^2}.} \item{H2}{value of \mjseqn{H^2}.} \item{int.only}{logical that indicates whether the model is an intercept-only model.} \item{yi, vi, X}{the vector of outcomes, the corresponding sampling variances, and the model matrix.} \item{fit.stats}{a list with the log-likelihood, deviance, AIC, BIC, and AICc values.} \item{\dots}{some additional elements/values.} } \section{Methods}{ The results of the fitted model are formatted and printed with the \code{\link[=print.rma.glmm]{print}} function. If fit statistics should also be given, use \code{\link[=summary.rma]{summary}} (or use the \code{\link[=fitstats.rma]{fitstats}} function to extract them). } \note{ When \code{measure="OR"} or \code{measure="IRR"}, \code{model="UM.FS"} or \code{model="UM.RS"}, and \code{method="ML"}, one has to choose a coding scheme for the group variable in the random effects structure. When \code{coding=1/2} (the default), the two groups are coded with \code{+1/2} and \code{-1/2} (i.e., contrast coding), which is invariant under group label switching. When \code{coding=1}, the first group is coded with \code{1} and the second group with \code{0}. Finally, when \code{coding=0}, the first group is coded with \code{0} and the second group with \code{1}. Note that these coding schemes are not invariant under group label switching. When \code{model="UM.RS"} and \code{method="ML"}, one has to decide whether the random study effects are allowed to be correlated with the random group effects. By default (i.e., when \code{cor=FALSE}), no such correlation is allowed (which is typically an appropriate assumption when \code{coding=1/2}). When using a different coding scheme for the group variable (i.e., \code{coding=1} or \code{coding=0}), allowing the random study and group effects to be correlated (i.e., using \code{cor=TRUE}) is usually recommended. Fitting the various types of models requires several different iterative algorithms: \itemize{ \item For \code{model="UM.FS"} and \code{model="CM.AL"}, iteratively reweighted least squares (IWLS) as implemented in the \code{\link{glm}} function is used for fitting the equal-effects and the saturated models. For \code{method="ML"}, adaptive Gauss-Hermite quadrature as implemented in the \code{\link[lme4]{glmer}} function is used. The same applies when \code{model="CM.EL"} is used in combination with \code{measure="IRR"} or when \code{measure="PLO"} or \code{measure="IRLN"} (regardless of the model type). \item For \code{model="UM.RS"}, adaptive Gauss-Hermite quadrature as implemented in the \code{\link[lme4]{glmer}} function is used to fit all of the models. \item For \code{model="CM.EL"} and \code{measure="OR"}, the quasi-Newton method optimizer as implemented in the \code{\link{nlminb}} function is used by default for fitting the equal-effects and the saturated models. For \code{method="ML"}, the same algorithm is used, together with adaptive quadrature as implemented in the \code{\link{integrate}} function (for the integration over the density of the non-central hypergeometric distribution). Standard errors of the parameter estimates are obtained by inverting the Hessian, which is numerically approximated using the \code{\link[numDeriv]{hessian}} function from the \code{numDeriv} package. One can also set \code{control=list(hesspack="pracma")} or \code{control=list(hesspack="calculus")} in which case the \code{pracma::\link[pracma]{hessian}} or \code{calculus::\link[calculus]{hessian}} functions from the respective packages are used instead for approximating the Hessian. When \mjseqn{\tau^2} is estimated to be smaller than \mjeqn{10^{-4}}{10^(-4)}, then \mjseqn{\tau^2} is effectively treated as zero for computing the standard errors (which helps to avoid numerical problems in approximating the Hessian). This cutoff can be adjusted via the \code{tau2tol} control argument (e.g., \code{control=list(tau2tol=0)} to switch off this behavior). One can also chose a different optimizer from \code{\link{optim}} via the \code{control} argument (e.g., \code{control=list(optimizer="BFGS")} or \code{control=list(optimizer="Nelder-Mead")}). Besides \code{\link{nlminb}} and one of the methods from \code{\link{optim}}, one can also choose one of the optimizers from the \code{minqa} package (i.e., \code{\link[minqa]{uobyqa}}, \code{\link[minqa]{newuoa}}, or \code{\link[minqa]{bobyqa}}), one of the (derivative-free) algorithms from the \code{\link[nloptr]{nloptr}} package, the Newton-type algorithm implemented in \code{\link{nlm}}, the various algorithms implemented in the \code{dfoptim} package (\code{\link[dfoptim]{hjk}} for the Hooke-Jeeves, \code{\link[dfoptim]{nmk}} for the Nelder-Mead, and \code{\link[dfoptim]{mads}} for the Mesh Adaptive Direct Searches algorithm), the quasi-Newton type optimizers \code{\link[ucminf]{ucminf}} and \code{\link[lbfgsb3c]{lbfgsb3c}} and the subspace-searching simplex algorithm \code{\link[subplex]{subplex}} from the packages of the same name, the Barzilai-Borwein gradient decent method implemented in \code{\link[BB]{BBoptim}}, the \code{\link[optimx]{Rcgmin}} and \code{\link[optimx]{Rvmmin}} optimizers, or the parallelized version of the L-BFGS-B algorithm implemented in \code{\link[optimParallel]{optimParallel}} from the package of the same name. The optimizer name must be given as a character string (i.e., in quotes). Additional control parameters can be specified via the \code{optCtrl} elements of the \code{control} argument (e.g., \code{control=list(optCtrl=list(iter.max=1000, rel.tol=1e-8))}). For \code{\link[nloptr]{nloptr}}, the default is to use the BOBYQA implementation from that package with a relative convergence criterion of \code{1e-8} on the function value (i.e., log-likelihood), but this can be changed via the \code{algorithm} and \code{ftop_rel} arguments (e.g., \code{control=list(optimizer="nloptr", optCtrl=list(algorithm="NLOPT_LN_SBPLX", ftol_rel=1e-6))}). For \code{\link[optimParallel]{optimParallel}}, the control argument \code{ncpus} can be used to specify the number of cores to use for the parallelization (e.g., \code{control=list(optimizer="optimParallel", ncpus=2)}). With \code{parallel::detectCores()}, one can check on the number of available cores on the local machine. } When \code{model="CM.EL"} and \code{measure="OR"}, actually \code{model="CM.AL"} is used first to obtain starting values for \code{\link{optim}}, so either 4 (if \code{method="EE"}) or 6 (if \code{method="ML"}) models need to be fitted in total. Various additional control parameters can be adjusted via the \code{control} argument: \itemize{ \item \code{glmCtrl} is a list of named arguments to be passed on to the \code{control} argument of the \code{\link{glm}} function, \item \code{glmerCtrl} is a list of named arguments to be passed on to the \code{control} argument of the \code{\link[lme4]{glmer}} function, \item \code{intCtrl} is a list of named arguments (i.e., \code{rel.tol} and \code{subdivisions}) to be passed on to the \code{\link{integrate}} function, and \item \code{hessianCtrl} is a list of named arguments to be passed on to the \code{method.args} argument of the \code{\link[numDeriv]{hessian}} function. Most important is the \code{r} argument, which is set to 16 by default (i.e., \code{control=list(hessianCtrl=list(r=16))}). If the Hessian cannot be inverted, it may be necessary to adjust the \code{r} argument to a different number (e.g., try \code{r=4}, \code{r=6}, or \code{r=8}). } Also, for \code{\link[lme4]{glmer}}, the \code{nAGQ} argument is used to specify the number of quadrature points. The default value is 7, which should provide sufficient accuracy in the evaluation of the log-likelihood in most cases, but at the expense of speed. Setting this to 1 corresponds to the Laplacian approximation (which is faster, but less accurate). Note that \code{\link[lme4]{glmer}} does not allow values of \code{nAGQ > 1} when \code{model="UM.RS"} and \code{method="ML"}, so this value is automatically set to 1 for this model. Instead of \code{\link[lme4]{glmer}}, one can also choose to use \code{\link[GLMMadaptive]{mixed_model}} from the \code{GLMMadaptive} package or \code{\link[glmmTMB]{glmmTMB}} from the \code{glmmTMB} package for the model fitting. This is done by setting \code{control=list(package="GLMMadaptive")} or \code{control=list(package="glmmTMB")}, respectively. Information on the progress of the various algorithms can be obtained by setting \code{verbose=TRUE}. Since fitting the various models can be computationally expensive, this option is useful to determine how the model fitting is progressing. One can also set \code{verbose} to an integer (\code{verbose=2} yields even more information and \code{verbose=3} also sets \code{option(warn=1)} temporarily). For \code{model="CM.EL"} and \code{measure="OR"}, optimization involves repeated calculation of the density of the non-central hypergeometric distribution. When \code{method="ML"}, this also requires integration over the same density. This is currently implemented in a rather brute-force manner and may not be numerically stable, especially when models with moderators are fitted. Stability can be improved by scaling the moderators in a similar manner (i.e., don't use a moderator that is coded 0 and 1, while another uses values in the 1000s). For models with an intercept and moderators, the function actually rescales (non-dummy) variables to z-scores during the model fitting (results are given after back-scaling, so this should be transparent to the user). For models without an intercept, this is not done, so sensitivity analyses are highly recommended here (to ensure that the results do not depend on the scaling of the moderators). Also, if a warning is issued that the standard errors of the fixed effects are unusually small, one should try sensitivity analyses with different optimizers and/or adjusted settings for the \code{hessianCtrl} and \code{tau2tol} control arguments. Finally, there is also (experimental!) support for the following measures: \itemize{ \item \code{measure="RR"} for log transformed risk ratios, \item \code{measure="RD"} for raw risk differences, \item \code{measure="PLN"} for log transformed proportions, \item \code{measure="PR"} for raw proportions, } (the first two only for models \code{"UM.FS"} and \code{"UM.RS"}) by using log and identity links for the binomial models. However, model fitting with these measures will often lead to numerical problems. Via the (undocumented) \code{link} argument, one can also directly adjust the link function that is used (by default, measures \code{"OR"} and \code{"PLO"} use a \code{"logit"} link, measures \code{"RR"} and \code{"PLN"} use a \code{"log"} link, measures \code{"RD"} and \code{"PR"} use an \code{"identity"} link, and measures \code{"IRR"} and \code{"IRLN"} use a \code{"log"} link). See \code{\link{family}} for alternative options. Changing these defaults is only recommended for users familiar with the consequences and the interpretation of the resulting estimates (when misused, the results could be meaningless). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). Code for computing the density of the non-central hypergeometric distribution comes from the \href{https://cran.r-project.org/package=MCMCpack}{MCMCpack} package, which in turn is based on Liao and Rosen (2001). } \references{ Agresti, A. (2002). \emph{Categorical data analysis} (2nd. ed). Hoboken, NJ: Wiley. Bagos, P. G., & Nikolopoulos, G. K. (2009). Mixed-effects Poisson regression models for meta-analysis of follow-up studies with constant or varying durations. \emph{The International Journal of Biostatistics}, \bold{5}(1). \verb{https://doi.org/10.2202/1557-4679.1168} van Houwelingen, H. C., Zwinderman, K. H., & Stijnen, T. (1993). A bivariate approach to meta-analysis. \emph{Statistics in Medicine}, \bold{12}(24), 2273--2284. \verb{https://doi.org/10.1002/sim.4780122405} Jackson, D., Law, M., Stijnen, T., Viechtbauer, W., & White, I. R. (2018). A comparison of seven random-effects models for meta-analyses that estimate the summary odds ratio. \emph{Statistics in Medicine}, \bold{37}(7), 1059--1085. \verb{https://doi.org/10.1002/sim.7588} Liao, J. G., & Rosen, O. (2001). Fast and stable algorithms for computing and sampling from the noncentral hypergeometric distribution. \emph{American Statistician}, \bold{55}(4), 366--369. \verb{https://doi.org/10.1198/000313001753272547} Simmonds, M. C., & Higgins, J. P. T. (2016). A general framework for the use of logistic regression models in meta-analysis. \emph{Statistical Methods in Medical Research}, \bold{25}(6), 2858--2877. \verb{https://doi.org/10.1177/0962280214534409} Stijnen, T., Hamza, T. H., & Ozdemir, P. (2010). Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. \emph{Statistics in Medicine}, \bold{29}(29), 3046--3067. \verb{https://doi.org/10.1002/sim.4040} Turner, R. M., Omar, R. Z., Yang, M., Goldstein, H., & Thompson, S. G. (2000). A multilevel model framework for meta-analysis of clinical trials with binary outcomes. \emph{Statistics in Medicine}, \bold{19}(24), 3417--3432. \verb{https://doi.org/10.1002/1097-0258(20001230)19:24<3417::aid-sim614>3.0.co;2-l} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, and \code{\link{rma.mv}} for other model fitting functions. \code{\link[metadat]{dat.nielweise2007}}, \code{\link[metadat]{dat.nielweise2008}}, \code{\link[metadat]{dat.collins1985a}}, and \code{\link[metadat]{dat.pritz1997}} for further examples of the use of the \code{rma.glmm} function. For rare event data, see also the \href{https://cran.r-project.org/package=rema}{rema} package for a version of the conditional logistic model that uses a permutation approach for making inferences. } \examples{ ############################################################################ ### random-effects model using rma.uni() (standard RE model analysis) rma(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, method="ML") ### random-effects models using rma.glmm() (requires 'lme4' package) \dontrun{ ### unconditional model with fixed study effects (the default) rma.glmm(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, model="UM.FS") ### unconditional model with random study effects rma.glmm(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, model="UM.RS") ### conditional model with approximate likelihood rma.glmm(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, model="CM.AL") ### conditional model with exact likelihood ### note: fitting this model may take a bit of time, so be patient rma.glmm(measure="OR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, model="CM.EL") } ############################################################################ ### try some alternative measures \dontrun{ rma.glmm(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) rma.glmm(measure="RD", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) } ############################################################################ ### meta-analysis of proportions \dontrun{ dat <- dat.debruin2009 ### binomial-normal model (with logit link) = mixed-effects logistic model res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat) predict(res, transf=transf.ilogit) ### binomial-normal model with measure="PLN" (uses a log link) res <- rma.glmm(measure="PLN", xi=xi, ni=ni, data=dat) predict(res, transf=exp) ### binomial-normal model with measure="PR" (uses an identity link) res <- rma.glmm(measure="PR", xi=xi, ni=ni, data=dat) predict(res) ### binomial-normal model (with probit link) = mixed-effects probit model res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat, link="probit") predict(res, transf=pnorm) ### further link functions that one could consider here res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat, link="cauchit") predict(res, transf=pcauchy) res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat, link="cloglog") predict(res, transf=\(x) 1-exp(-exp(x))) } ############################################################################ } \keyword{models} metafor/man/rcalc.Rd0000644000176200001440000002226114746146216014053 0ustar liggesusers\name{rcalc} \alias{rcalc} \title{Calculate the Variance-Covariance of Dependent Correlation Coefficients} \description{ Function to calculate the variance-covariance matrix of correlation coefficients computed based on the same sample of subjects. \loadmathjax } \usage{ rcalc(x, ni, data, rtoz=FALSE, nfun="min", sparse=FALSE, \dots) } \arguments{ \item{x}{a formula of the form \code{ri ~ var1 + var2 | study}. Can also be a correlation matrix or list thereof. See \sQuote{Details}.} \item{ni}{vector to specify the sample sizes based on which the correlations were computed.} \item{data}{data frame containing the variables specified via the formula (and the sample sizes).} \item{rtoz}{logical to specify whether to transform the correlations via Fisher's r-to-z transformation (the default is \code{FALSE}).} \item{nfun}{a character string to specify how the \sQuote{common} sample size within each study should be computed. Possible options are \code{"min"} (for the minimum), \code{"harmonic"} (for the harmonic mean), or \code{"mean"} (for the arithmetic mean). Can also be a function. See \sQuote{Details}.} \item{sparse}{logical to specify whether the variance-covariance matrix should be returned as a sparse matrix (the default is \code{FALSE}).} \item{\dots}{other arguments.} } \details{ A meta-analysis of correlation coefficients may involve multiple correlation coefficients extracted from the same study. When these correlations are computed based on the same sample of subjects, then they are typically not independent. The \code{rcalc} function can be used to create a dataset with the correlation coefficients (possibly transformed with Fisher's r-to-z transformation) and the corresponding variance-covariance matrix. The dataset and variance-covariance matrix can then be further meta-analyzed using the \code{\link{rma.mv}} function. When computing the covariance between two correlation coefficients, we can distinguish two cases: \enumerate{ \item In the first case, one of the variables involved in the two correlation coefficients is the same. For example, in \mjseqn{r_{12}} and \mjseqn{r_{13}}, variable 1 is common to both correlation coefficients. This is sometimes called the (partially) \sQuote{overlapping} case. The covariance between the two correlation coefficients, \mjeqn{\text{Cov}[r_{12}, r_{13}]}{Cov[r_{12}, r_{13}]}, then depends on the degree of correlation between variables 2 and 3 (i.e., \mjseqn{r_{23}}). \item In the second case, none of the variables are common to both correlation coefficients. For example, this would be the case if we have correlations \mjseqn{r_{12}} and \mjseqn{r_{34}} based on 4 variables. This is sometimes called the \sQuote{non-overlapping} case. The covariance between the two correlation coefficients, \mjeqn{\text{Cov}[r_{12}, r_{34}]}{Cov[r_{12}, r_{34}]}, then depends on \mjseqn{r_{13}}, \mjseqn{r_{14}}, \mjseqn{r_{23}}, and \mjseqn{r_{24}}. } Equations to compute these covariances can be found, for example, in Steiger (1980) and Olkin and Finn (1990). To use the \code{rcalc} function, one needs to construct a data frame that contains a study identifier (say \code{study}), two variable identifiers (say \code{var1} and \code{var2}), the corresponding correlation coefficients (say \code{ri}), and the sample sizes based on which the correlation coefficients were computed (say \code{ni}). Then the first argument should be a formula of the form \code{ri ~ var1 + var2 | study}, argument \code{ni} is set equal to the variable name containing the sample sizes, and the data frame containing these variables is specified via the \code{data} argument. When using the function for a single study, one can leave out the study identifier from the formula. When argument \code{rtoz} is set to \code{TRUE}, then the correlations are transformed with Fisher's r-to-z transformation (Fisher, 1921) and the variance-covariance matrix is computed for the transformed values. In some cases, the sample size may not be identical within a study (e.g., \mjseqn{r_{12}} may have been computed based on 120 subjects while \mjseqn{r_{13}} was computed based on 118 subjects due to 2 missing values in variable 3). For constructing the variance-covariance matrix, we need to assume a \sQuote{common} sample size for all correlation coefficients within the study. Argument \code{nfun} provides some options for how the common sample size should be computed. Possible options are \code{"min"} (for using the minimum sample size within a study as the common sample size), \code{"harmonic"} (for using the harmonic mean), or \code{"mean"} (for using the arithmetic mean). The default is \code{"min"}, which is a conservative choice (i.e., it will overestimate the sampling variances of coefficients that were computed based on a sample size that was actually larger than the minimum sample size). One can also specify a function via the \code{nfun} argument (which should take a numeric vector as input and return a single value). Instead of specifying a formula, one can also pass a correlation matrix to the function via argument \code{x}. Argument \code{ni} then specifies the (common) sample size based on which the elements in the correlation matrix were computed. One can also pass a list of correlation matrices via argument \code{x}, in which case argument \code{ni} should be a vector of sample sizes of the same length as \code{x}. } \value{ A list containing the following components: \item{dat}{a data frame with the study identifier, the two variable identifiers, a variable pair identifier, the correlation coefficients (possibly transformed with Fisher's r-to-z transformation), and the (common) sample sizes.} \item{V}{corresponding variance-covariance matrix (given as a sparse matrix when \code{sparse=TRUE}).} Note that a particular covariance can only be computed when all of the correlation coefficients involved in the covariance equation are included in the dataset. If one or more coefficients needed for the computation are missing, then the resulting covariance will also be missing (i.e., \code{NA}). } \note{ For raw correlation coefficients, the variance-covariance matrix is computed with \mjseqn{n-1} in the denominator (instead of \mjseqn{n} as suggested in Steiger, 1980, and Olkin & Finn, 1990). This is more consistent with the usual equation for computing the sampling variance of a correlation coefficient (which also typically uses \mjseqn{n-1} in the denominator). For raw and r-to-z transformed coefficients, the variance-covariance matrix will only be computed when the (common) sample size for a study is at least 5. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Fisher, R. A. (1921). On the \dQuote{probable error} of a coefficient of correlation deduced from a small sample. \emph{Metron}, \bold{1}, 1--32. \verb{http://hdl.handle.net/2440/15169} Olkin, I., & Finn, J. D. (1990). Testing correlated correlations. \emph{Psychological Bulletin}, \bold{108}(2), 330--333. \verb{https://doi.org/10.1037/0033-2909.108.2.330} Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. \emph{Psychological Bulletin}, \bold{87}(2), 245--251. \verb{https://doi.org/10.1037/0033-2909.87.2.245} } \seealso{ \code{\link{rma.mv}} for a model fitting function that can be used to meta-analyze dependent correlation coefficients. \code{\link[metadat]{dat.craft2003}} for an illustrative example. } \examples{ ############################################################################ ### copy data into 'dat' and examine the first 12 rows dat <- dat.craft2003 head(dat, 12) ### construct dataset and var-cov matrix of the correlations tmp <- rcalc(ri ~ var1 + var2 | study, ni=ni, data=dat) V <- tmp$V dat <- tmp$dat ### examine data and var-cov matrix for study 1 dat[dat$study == 1,] blsplit(V, dat$study, round, 4)$`1` ### examine data and var-cov matrix for study 6 dat[dat$study == 6,] blsplit(V, dat$study, round, 4)$`6` ### examine data and var-cov matrix for study 17 dat[dat$study == 17,] blsplit(V, dat$study, round, 4)$`17` ############################################################################ ### copy data into 'dat' and examine the first 12 rows dat <- dat.craft2003 head(dat, 12) ### restructure data from study 1 into a correlation matrix R1 <- diag(4) R1[lower.tri(R1)] <- dat$ri[dat$study == 1] R1[upper.tri(R1)] <- t(R1)[upper.tri(R1)] rownames(R1) <- colnames(R1) <- c("perf", "acog", "asom", "conf") R1 ### restructure data from study 3 into a correlation matrix R3 <- diag(4) R3[lower.tri(R3)] <- dat$ri[dat$study == 3] R3[upper.tri(R3)] <- t(R3)[upper.tri(R3)] rownames(R3) <- colnames(R3) <- c("perf", "acog", "asom", "conf") R3 ### an example where a correlation matrix is passed to rcalc() rcalc(R1, ni=142) ### an example where a list of correlation matrices is passed to rcalc() tmp <- rcalc(list("1"=R1,"3"=R3), ni=c(142,37)) V <- tmp$V dat <- tmp$dat ### examine data and var-cov matrix for study 1 dat[dat$id == 1,] blsplit(V, dat$id, round, 4)$`1` ### examine data and var-cov matrix for study 3 dat[dat$id == 3,] blsplit(V, dat$id, round, 4)$`3` ############################################################################ } \keyword{datagen} metafor/man/forest.cumul.rma.Rd0000644000176200001440000002234714746146216016200 0ustar liggesusers\name{forest.cumul.rma} \alias{forest.cumul.rma} \title{Forest Plots (Method for 'cumul.rma' Objects)} \description{ Function to create forest plots for objects of class \code{"cumul.rma"}. } \usage{ \method{forest}{cumul.rma}(x, annotate=TRUE, header=TRUE, xlim, alim, olim, ylim, at, steps=5, refline=0, digits=2L, width, xlab, ilab, ilab.lab, ilab.xpos, ilab.pos, transf, atransf, targs, rows, efac=1, pch, psize, col, shade, colshade, lty, fonts, cex, cex.lab, cex.axis, \dots) } \arguments{ \item{x}{an object of class \code{"cumul.rma"} obtained with \code{\link{cumul}}.} \item{annotate}{logical to specify whether annotations should be added to the plot (the default is \code{TRUE}).} \item{header}{logical to specify whether column headings should be added to the plot (the default is \code{TRUE}). Can also be a character vector to specify the left and right headings (or only the left one).} \item{xlim}{horizontal limits of the plot region. If unspecified, the function sets the horizontal plot limits to some sensible values.} \item{alim}{the x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{olim}{argument to specify observation/outcome limits. If unspecified, no limits are used.} \item{ylim}{the y-axis limits of the plot. If unspecified, the function sets the y-axis limits to some sensible values. Can also be a single value to set the lower bound (while the upper bound is still set automatically).} \item{at}{position of the x-axis tick marks and corresponding labels. If unspecified, the function sets the tick mark positions/labels to some sensible values.} \item{steps}{the number of tick marks for the x-axis (the default is 5). Ignored when the positions are specified via the \code{at} argument.} \item{refline}{numeric value to specify the location of the vertical \sQuote{reference} line (the default is 0). The line can be suppressed by setting this argument to \code{NA}. Can also be a vector to add multiple lines.} \item{digits}{integer to specify the number of decimal places to which the annotations and tick mark labels of the x-axis should be rounded (the default is \code{2L}). Can also be a vector of two integers, the first to specify the number of decimal places for the annotations, the second for the x-axis labels. When specifying an integer (e.g., \code{2L}), trailing zeros after the decimal mark are dropped for the x-axis labels. When specifying a numeric value (e.g., \code{2}), trailing zeros are retained.} \item{width}{optional integer to manually adjust the width of the columns for the annotations (either a single integer or a vector of the same length as the number of annotation columns).} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title. Can also be a vector of three/two values (to also/only add labels at the end points of the x-axis limits).} \item{ilab}{optional vector, matrix, or data frame providing additional information about the studies that should be added to the plot.} \item{ilab.lab}{optional character vector with (column) labels for the variable(s) given via \code{ilab}.} \item{ilab.xpos}{optional numeric vector to specify the horizontal position(s) of the variable(s) given via \code{ilab}.} \item{ilab.pos}{integer(s) (either 1, 2, 3, or 4) to specify the alignment of the variable(s) given via \code{ilab} (2 means right, 4 means left aligned). If unspecified, the default is to center the values.} \item{transf}{optional argument to specify a function to transform the estimates and confidence interval bounds (e.g., \code{transf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{atransf}{optional argument to specify a function to transform the x-axis labels and annotations (e.g., \code{atransf=exp}; see also \link{transf}). If unspecified, no transformation is used.} \item{targs}{optional arguments needed by the function specified via \code{transf} or \code{atransf}.} \item{rows}{optional vector to specify the rows (or more generally, the positions) for plotting the outcomes. Can also be a single value to specify the row of the first outcome (the remaining outcomes are then plotted below this starting row).} \item{efac}{vertical expansion factor for confidence interval limits and arrows. The default value of 1 should usually work fine. Can also be a vector of two numbers, the first for CI limits, the second for arrows.} \item{pch}{plotting symbol to use for the estimates. By default, a filled square is used. See \code{\link{points}} for other options. Can also be a vector of values.} \item{psize}{numeric value to specify the point sizes for the estimates (the default is 1). Can also be a vector of values.} \item{col}{optional character string to specify the color of the estimates. Can also be a vector.} \item{shade}{optional character string or a (logical or numeric) vector for shading rows of the plot.} \item{colshade}{optional argument to specify the color for the shading.} \item{lty}{optional argument to specify the line type for the confidence intervals. If unspecified, the function sets this to \code{"solid"} by default.} \item{fonts}{optional character string to specify the font for the study labels, annotations, and the extra information (if specified via \code{ilab}). If unspecified, the default font is used.} \item{cex}{optional character and symbol expansion factor. If unspecified, the function sets this to a sensible value.} \item{cex.lab}{optional expansion factor for the x-axis title. If unspecified, the function sets this to a sensible value.} \item{cex.axis}{optional expansion factor for the x-axis labels. If unspecified, the function sets this to a sensible value.} \item{\dots}{other arguments.} } \details{ The plot shows the estimated pooled outcome with corresponding confidence interval bounds as one study at a time is added to the analysis. See \code{\link{forest.default}} and \code{\link{forest.rma}} for further details on the purpose of the various arguments. } \section{Note}{ The function sets some sensible values for the optional arguments, but it may be necessary to adjust these in certain circumstances. The function actually returns some information about the chosen values invisibly. Printing this information is useful as a starting point to customize the plot. If the number of studies is quite large, the labels, annotations, and symbols may become quite small and impossible to read. Stretching the plot window vertically may then provide a more readable figure (one should call the function again after adjusting the window size, so that the label/symbol sizes can be properly adjusted). Also, the \code{cex}, \code{cex.lab}, and \code{cex.axis} arguments are then useful to adjust the symbol and text sizes. If the outcome measure used for creating the plot is bounded (e.g., correlations are bounded between -1 and +1, proportions are bounded between 0 and 1), one can use the \code{olim} argument to enforce those limits (the observed outcomes and confidence intervals cannot exceed those bounds then). The \code{lty} argument can also be a vector of two elements, the first for specifying the line type of the individual CIs (\code{"solid"} by default), the second for the line type of the horizontal line that is automatically added to the plot (\code{"solid"} by default; set to \code{"blank"} to remove it). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Chalmers, T. C., & Lau, J. (1993). Meta-analytic stimulus for changes in clinical trials. \emph{Statistical Methods in Medical Research}, \bold{2}(2), 161--172. \verb{https://doi.org/10.1177/096228029300200204} Lau, J., Schmid, C. H., & Chalmers, T. C. (1995). Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care. \emph{Journal of Clinical Epidemiology}, \bold{48}(1), 45--57. \verb{https://doi.org/10.1016/0895-4356(94)00106-z} Lewis, S., & Clarke, M. (2001). Forest plots: Trying to see the wood and the trees. \emph{British Medical Journal}, \bold{322}(7300), 1479--1480. \verb{https://doi.org/10.1136/bmj.322.7300.1479} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{forest}} for an overview of the various \code{forest} functions. \code{\link{cumul}} for the function to create \code{cumul.rma} objects. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### fit random-effects model res <- rma(yi, vi, data=dat) ### draw cumulative forest plots x <- cumul(res, order=year) forest(x) forest(x, xlim=c(-4,2.5), alim=c(-2,1), steps=7) ### meta-analysis of the (log) risk ratios using the Mantel-Haenszel method res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### draw cumulative forest plot x <- cumul(res, order=year) forest(x, xlim=c(-4,2.5), alim=c(-2,1), steps=7) } \keyword{hplot} metafor/man/emmprep.Rd0000644000176200001440000002003614746146216014432 0ustar liggesusers\name{emmprep} \alias{emmprep} \title{Create a Reference Grid for the 'emmeans' Function} \description{ Function to create a reference grid for use with the \code{\link[emmeans]{emmeans}} function from the package of the same name. \loadmathjax } \usage{ emmprep(x, verbose=FALSE, \dots) } \arguments{ \item{x}{an object of class \code{"rma"}.} \item{verbose}{logical to specify whether information on some (extracted) settings should be printed when creating the reference grid (the default is \code{FALSE}).} \item{\dots}{other arguments that will be passed on to the \code{\link[emmeans]{qdrg}} function.} } \details{ The \href{https://cran.r-project.org/package=emmeans}{emmeans} package is a popular package that facilitates the computation of 'estimated marginal means'. The function is a wrapper around the \code{\link[emmeans]{qdrg}} function from the \code{emmeans} package to make \code{"rma"} objects compatible with the latter. Unless one needs to pass additional arguments to the \code{\link[emmeans]{qdrg}} function, one simply applies this function to the \code{"rma"} object and then the \code{\link[emmeans]{emmeans}} function (or one of the other functions that can be applied to \code{"emmGrid"} objects) to the resulting object to obtain the desired estimated marginal means. } \value{ An \code{"emmGrid"} object as created by the \code{\link[emmeans]{qdrg}} function from the \code{emmeans} package. The resulting object will typically be used in combination with the \code{\link[emmeans]{emmeans}} function. } \note{ When creating the reference grid, the function extracts the degrees of freedom for tests/confidence intervals from the model object (if the model was fitted with \code{test="t"}, \code{test="knha"}, \code{test="hksj"}, or \code{test="adhoc"}; otherwise the degrees of freedom are infinity). In some cases, there is not just a single value for the degrees of freedom, but an entire vector (e.g., for models fitted with \code{\link{rma.mv}}). In this case, the smallest value will be used (as a conservative option). One can set a different/custom value for the degrees of freedom with \code{emmprep(..., df=value)}. When the model object contains information about the outcome measure used in the analysis (which should be the case if the observed outcomes were computed with \code{\link{escalc}} or if the \code{measure} argument was set when fitting the model), then information about the appropriate back-transformation (if available) is stored as part of the returned object. If so, the back-transformation is automatically applied when calling \code{\link[emmeans]{emmeans}} with \code{type="response"}. The function also tries to extract the estimated value of \mjseqn{\tau^2} (or more precisely, its square root) from the model object (when the model is a random/mixed-effects model). This value is only needed when computing prediction intervals (i.e., when \code{interval="predict"} in \code{\link[emmeans]{predict.emmGrid}}) or when applying the bias adjustment in the back-transformation (i.e., when \code{bias.adjust=TRUE} in \code{\link[emmeans]{summary.emmGrid}}). For some models (e.g., those fitted with \code{\link{rma.mv}}), it is not possible to automatically extract the estimate. In this case, one can manually set the value with \code{emmprep(..., sigma=value)} (note: the argument is called \code{sigma}, following the conventions of \code{\link[emmeans]{summary.emmGrid}} and one must supply the square root of the \mjseqn{\tau^2} estimate). By default, the reference grid is created based on the data used for fitting the original model (which is typically the sensible thing to do). One can specify a different dataset with \code{emmprep(..., data=obj)}, where \code{obj} must be a data frame that contains the same variables as used in the original model fitted. If the original model fitted involved redundant predictors that were dropped from the model (due to \sQuote{rank deficiencies}), then the function cannot be used. In this case, one should remove any redundancies in the original model fitted before using this function. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit meta-regression model with absolute latitude as predictor res <- rma(yi, vi, mods = ~ ablat, data=dat) res ### create reference grid sav <- emmprep(res, verbose=TRUE) ### estimated marginal mean (back-transformed to the risk ratio scale) if (require(emmeans)) emmeans(sav, specs="1", type="response") ### same as the predicted effect at the mean absolute latitude predict(res, newmods = mean(model.matrix(res, asdf=TRUE)$ablat), transf=exp, digits=3) ### fit meta-regression model with allocation factor res <- rma(yi, vi, mods = ~ alloc, data=dat) res ### create reference grid sav <- emmprep(res) ### estimated marginal mean using proportional cell weighting if (require(emmeans)) emmeans(sav, specs="1", type="response", weights="proportional") ### estimated marginal mean using equal cell weighting (this is actually the default) if (require(emmeans)) emmeans(sav, specs="1", type="response", weights="equal") ### same as the predicted effect using cell proportions as observed in the data ### or using equal proportions for the three groups predict(res, newmods = colMeans(model.matrix(res))[-1], transf=exp, digits=3) predict(res, newmods = c(1/3,1/3), transf=exp, digits=3) ### fit meta-regression model with absolute latitude and allocation as predictors res <- rma(yi, vi, mods = ~ ablat + alloc, data=dat) res ### create reference grid sav <- emmprep(res) ### estimated marginal mean using equal cell weighting if (require(emmeans)) emmeans(sav, specs="1", type="response") ### same as the predicted effect at the mean absolute latitude and using equal proportions ### for the allocation factor predict(res, newmods = c(mean(model.matrix(res, asdf=TRUE)$ablat),1/3,1/3), transf=exp, digits=3) ### create reference grid with ablat set equal to 10, 30, and 50 degrees sav <- emmprep(res, at=list(ablat=c(10,30,50))) ### estimated marginal means at the three ablat values if (require(emmeans)) emmeans(sav, specs="1", by="ablat", type="response") ### same as the predicted effect at the chosen absolute latitude values and using equal ### proportions for the allocation factor predict(res, newmods = cbind(c(10,30,50),1/3,1/3), transf=exp, digits=3) ############################################################################ ### copy data into 'dat' and examine data dat <- dat.mcdaniel1994 head(dat) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) ### mixed-effects model with interview type as factor res <- rma(yi, vi, mods = ~ factor(type), data=dat, test="knha") res ### create reference grid sav <- emmprep(res, verbose=TRUE) ### estimated marginal mean (back-transformed to the correlation scale) if (require(emmeans)) emmeans(sav, specs="1", type="response") ### same as the predicted correlation using equal cell proportions predict(res, newmods = c(1/3,1/3), transf=transf.ztor, digits=3) ### estimated marginal means for the three interview types if (require(emmeans)) emmeans(sav, specs="type", type="response") ### same as the predicted correlations predict(res, newmods = rbind(c(0,0), c(1,0), c(0,1)), transf=transf.ztor, digits=3) ### illustrate use of the 'df' and 'sigma' arguments res <- rma.mv(yi, vi, mods = ~ factor(type), random = ~ 1 | study, data=dat, test="t", dfs="contain") res ### create reference grid sav <- emmprep(res, verbose=TRUE, df=154, sigma=0.1681) ### estimated marginal mean (back-transformed to the correlation scale) if (require(emmeans)) emmeans(sav, specs="1", type="response") } \keyword{manip} metafor/man/vcov.rma.Rd0000644000176200001440000000551014746146216014520 0ustar liggesusers\name{vcov.rma} \alias{vcov} \alias{vcov.rma} \title{Extract Various Types of Variance-Covariance Matrices from 'rma' Objects} \description{ Function to extract various types of variance-covariance matrices from objects of class \code{"rma"}. By default, the variance-covariance matrix of the fixed effects is returned. \loadmathjax } \usage{ \method{vcov}{rma}(object, type="fixed", \dots) } \arguments{ \item{object}{an object of class \code{"rma"}.} \item{type}{character string to specify the type of variance-covariance matrix to return: \code{type="fixed"} returns the variance-covariance matrix of the fixed effects (the default), \code{type="obs"} returns the marginal variance-covariance matrix of the observed effect sizes or outcomes, \code{type="fitted"} returns the variance-covariance matrix of the fitted values, \code{type="resid"} returns the variance-covariance matrix of the residuals.} \item{\dots}{other arguments.} } \details{ Note that \code{type="obs"} currently only works for object of class \code{"rma.uni"} and \code{"rma.mv"}. For objects of class \code{"rma.uni"}, the marginal variance-covariance matrix of the observed effect sizes or outcomes is a diagonal matrix with \mjeqn{\hat{\tau}^2 + v_i}{\tau^2 + v_i} along the diagonal, where \mjeqn{\hat{\tau}^2}{\tau^2} is the estimated amount of (residual) heterogeneity (set to 0 in equal-effects models) and \mjseqn{v_i} is the sampling variance of the \mjeqn{i\text{th}}{ith} study. For objects of class \code{"rma.mv"}, the structure can be more complex and depends on the random effects included in the model. } \value{ A matrix corresponding to the requested variance-covariance matrix. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}}, \code{\link{rma.mh}}, \code{\link{rma.peto}}, \code{\link{rma.glmm}}, and \code{\link{rma.mv}} for functions to fit models for which the various types of variance-covariance matrices can be extracted. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### fit mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) ### var-cov matrix of the fixed effects (i.e., the model coefficients) vcov(res) ### marginal var-cov matrix of the observed log risk ratios round(vcov(res, type="obs"), 3) ### var-cov matrix of the fitted values round(vcov(res, type="fitted"), 3) ### var-cov matrix of the residuals round(vcov(res, type="resid"), 3) } \keyword{models} metafor/man/forest.Rd0000644000176200001440000000323514746146216014271 0ustar liggesusers\name{forest} \alias{forest} \title{Forest Plots} \description{ Function to create forest plots. } \usage{ forest(x, \dots) } \arguments{ \item{x}{either an object of class \code{"rma"}, a vector with the observed effect sizes or outcomes, or an object of class \code{"cumul.rma"}. See \sQuote{Details}.} \item{\dots}{other arguments.} } \details{ Currently, methods exist for three types of situations. In the first case, object \code{x} is a fitted model object coming from the \code{\link{rma.uni}}, \code{\link{rma.mh}}, or \code{\link{rma.peto}} functions. The corresponding method is then \code{\link{forest.rma}}. Alternatively, object \code{x} can be a vector with the observed effect sizes or outcomes. The corresponding method is then \code{\link{forest.default}}. Finally, object \code{x} can be an object coming from the \code{\link{cumul.rma.uni}}, \code{\link{cumul.rma.mh}}, or \code{\link{cumul.rma.peto}} functions. The corresponding method is then \code{\link{forest.cumul.rma}}. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Lewis, S., & Clarke, M. (2001). Forest plots: Trying to see the wood and the trees. \emph{British Medical Journal}, \bold{322}(7300), 1479--1480. \verb{https://doi.org/10.1136/bmj.322.7300.1479} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{forest.rma}}, \code{\link{forest.default}}, and \code{\link{forest.cumul.rma}} for the specific method functions. } \keyword{hplot} metafor/man/methods.anova.rma.Rd0000644000176200001440000000307314746146216016313 0ustar liggesusers\name{methods.anova.rma} \alias{methods.anova.rma} \alias{as.data.frame.anova.rma} \alias{as.data.frame.list.anova.rma} \title{Methods for 'anova.rma' Objects} \description{ Methods for objects of class \code{"anova.rma"} and \code{"list.anova.rma"}. } \usage{ \method{as.data.frame}{anova.rma}(x, \dots) \method{as.data.frame}{list.anova.rma}(x, \dots) } \arguments{ \item{x}{an object of class \code{"anova.rma"} or \code{"list.anova.rma"}.} \item{\dots}{other arguments.} } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ ### copy data into 'dat' dat <- dat.bcg ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) ### fit mixed-effects meta-regression model res <- rma(yi, vi, mods = ~ alloc + ablat, data=dat) ### test the allocation factor sav <- anova(res, btt="alloc") sav ### turn object into a regular data frame as.data.frame(sav) ### test the contrast between levels random and systematic sav <- anova(res, X=c(0,1,-1,0)) sav ### turn object into a regular data frame as.data.frame(sav) ### fit random-effects model res0 <- rma(yi, vi, data=dat) ### LRT comparing the two models sav <- anova(res, res0, refit=TRUE) sav ### turn object into a regular data frame as.data.frame(sav) } \keyword{internal} metafor/man/methods.vif.rma.Rd0000644000176200001440000000242014746146216015766 0ustar liggesusers\name{methods.vif.rma} \alias{methods.vif.rma} \alias{as.data.frame.vif.rma} \title{Methods for 'vif.rma' Objects} \description{ Methods for objects of class \code{"vif.rma"}. } \usage{ \method{as.data.frame}{vif.rma}(x, \dots) } \arguments{ \item{x}{an object of class \code{"vif.rma"}.} \item{\dots}{other arguments.} } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \examples{ ### copy data into 'dat' dat <- dat.bcg ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat) ### fit mixed-effects meta-regression model res <- rma(yi, vi, mods = ~ ablat + year + alloc, data=dat) ### get variance inflation factors for all individual coefficients sav <- vif(res) sav ### turn object into a regular data frame as.data.frame(sav) ### get VIFs for ablat and year and the generalized VIF for alloc sav <- vif(res, btt=list("ablat","alloc","year")) sav ### turn object into a regular data frame as.data.frame(sav) } \keyword{internal} metafor/man/conv.fivenum.Rd0000644000176200001440000004605514746146216015413 0ustar liggesusers\name{conv.fivenum} \alias{conv.fivenum} \title{Estimate Means and Standard Deviations from Five-Number Summary Values} \description{ Function to estimate means and standard deviations from five-number summary values. } \usage{ conv.fivenum(min, q1, median, q3, max, n, data, include, method="default", dist="norm", transf=TRUE, test=TRUE, var.names=c("mean","sd"), append=TRUE, replace="ifna", \dots) } \arguments{ \item{min}{vector with the minimum values.} \item{q1}{vector with the lower/first quartile values.} \item{median}{vector with the median values.} \item{q3}{vector with the upper/third quartile values.} \item{max}{vector with the maximum values.} \item{n}{vector with the sample sizes.} \item{data}{optional data frame containing the variables given to the arguments above.} \item{include}{optional (logical or numeric) vector to specify the subset of studies for which means and standard deviations should be estimated.} \item{method}{character string to specify the method to use. Either \code{"default"} (same as \code{"luo/wan/shi"} which is the current default), \code{"qe"}, \code{"bc"}, \code{"mln"}, or \code{"blue"}. Can be abbreviated. See \sQuote{Details}.} \item{dist}{character string to specify the assumed distribution for the underlying data (either \code{"norm"} for a normal distribution or \code{"lnorm"} for a log-normal distribution). Can also be a string vector if different distributions are assumed for different studies. Only relevant when \code{method="default"}.} \item{transf}{logical to specify whether the estimated means and standard deviations of the log-transformed data should be back-transformed as described by Shi et al. (2020b) (the default is \code{TRUE}). Only relevant when \code{dist="lnorm"} and when \code{method="default"}.} \item{test}{logical to specify whether a study should be excluded from the estimation if the test for skewness is significant (the default is \code{TRUE}, but whether this is applicable depends on the method; see \sQuote{Details}).} \item{var.names}{character vector with two elements to specify the name of the variable for the estimated means and the name of the variable for the estimated standard deviations (the defaults are \code{"mean"} and \code{"sd"}).} \item{append}{logical to specify whether the data frame provided via the \code{data} argument should be returned together with the estimated values (the default is \code{TRUE}).} \item{replace}{character string or logical to specify how values in \code{var.names} should be replaced (only relevant when using the \code{data} argument and if variables in \code{var.names} already exist in the data frame). See the \sQuote{Value} section for more details.} \item{\dots}{other arguments.} } \details{ Various effect size measures require means and standard deviations (SDs) as input (e.g., raw or standardized mean differences, ratios of means / response ratios; see \code{\link{escalc}} for further details). For some studies, authors may not report means and SDs, but other statistics, such as the so-called \sQuote{five-number summary}, consisting of the minimum, lower/first quartile, median, upper/third quartile, and the maximum of the sample values (plus the sample sizes). Occasionally, only a subset of these values are reported. The present function can be used to estimate means and standard deviations from five-number summary values based on various methods described in the literature (Bland, 2015; Cai et al. 2021; Hozo et al., 2005; Luo et al., 2016; McGrath et al., 2020; Shi et al., 2020a; Walter & Yao, 2007; Wan et al., 2014; Yang et al., 2022). When \code{method="default"} (which is the same as \code{"luo/wan/shi"}), the following methods are used: \subsection{Case 1: Min, Median, Max}{ In case only the minimum, median, and maximum is available for a study (plus the sample size), then the function uses the method by Luo et al. (2016), equation (7), to estimate the mean and the method by Wan et al. (2014), equation (9), to estimate the SD. } \subsection{Case 2: Q1, Median, Q3}{ In case only the lower/first quartile, median, and upper/third quartile is available for a study (plus the sample size), then the function uses the method by Luo et al. (2016), equation (11), to estimate the mean and the method by Wan et al. (2014), equation (16), to estimate the SD. } \subsection{Case 3: Min, Q1, Median, Q3, Max}{ In case the full five-number summary is available for a study (plus the sample size), then the function uses the method by Luo et al. (2016), equation (15), to estimate the mean and the method by Shi et al. (2020a), equation (10), to estimate the SD. } --------- The median is not actually needed in the methods by Wan et al. (2014) and Shi et al. (2020a) and hence it is possible to estimate the SD even if the median is unavailable (this can be useful if a study reports the mean directly, but instead of the SD, it reports the minimum/maximum and/or first/third quartile values). Note that the sample size must be at least 5 to apply these methods. Studies where the sample size is smaller are not included in the estimation. The function also checks that \code{min <= q1 <= median <= q3 <= max} and throws an error if any studies are found where this is not the case. \subsection{Test for Skewness}{ The methods described above were derived under the assumption that the data are normally distributed. Testing this assumption would require access to the raw data, but based on the three cases above, Shi et al. (2023) derived tests for skewness that only require the reported quantile values and the sample sizes. These tests are automatically carried out. When \code{test=TRUE} (which is the default), a study is automatically excluded from the estimation if the test is significant. If all studies should be included, set \code{test=FALSE}, but note that the accuracy of the methods will tend to be poorer when the data come from an apparently skewed (and hence non-normal) distribution. } \subsection{Log-Normal Distribution}{ When setting \code{dist="lnorm"}, the raw data are assumed to follow a log-normal distribution. In this case, the methods as described by Shi et al. (2020b) are used to estimate the mean and SD of the log transformed data for the three cases above. When \code{transf=TRUE} (the default), the estimated mean and SD of the log transformed data are back-transformed to the estimated mean and SD of the raw data (using the bias-corrected back-transformation as described by Shi et al., 2020b). Note that the test for skewness is also carried out when \code{dist="lnorm"}, but now testing if the log transformed data exhibit skewness. } \subsection{Alternative Methods}{ As an alternative to the methods above, one can make use of the methods implemented in the \href{https://cran.r-project.org/package=estmeansd}{estmeansd} package to estimate means and SDs based on the three cases above. Available are the quantile estimation method (\code{method="qe"}; using the \code{\link[estmeansd]{qe.mean.sd}} function; McGrath et al., 2020), the Box-Cox method (\code{method="bc"}; using the \code{\link[estmeansd]{bc.mean.sd}} function; McGrath et al., 2020), and the method for unknown non-normal distributions (\code{method="mln"}; using the \code{\link[estmeansd]{mln.mean.sd}} function; Cai et al. 2021). The advantage of these methods is that they do not assume that the data underlying the reported values are normally distributed (and hence the \code{test} argument is ignored), but they can only be used when the values are positive (except for the quantile estimation method, which can also be used when one or more of the values are negative, but in this case the method does assume that the data are normally distributed and hence the test for skewness is applied when \code{test=TRUE}). Note that all of these methods may struggle to provide sensible estimates when some of the values are equal to each other (which can happen when the data include a lot of ties and/or the reported values are rounded). Also, the Box-Cox method and the method for unknown non-normal distributions involve simulated data and hence results will slightly change on repeated runs. Setting the seed of the random number generator (with \code{\link{set.seed}}) ensures reproducibility. Finally, by setting \code{method="blue"}, one can make use of the \code{\link[metaBLUE]{BLUE_s}} function from the \href{https://cran.r-project.org/package=metaBLUE}{metaBLUE} package to estimate means and SDs based on the three cases above (Yang et al., 2022). The method assumes that the underlying data are normally distributed (and hence the test for skewness is applied when \code{test=TRUE}). } } \value{ If the \code{data} argument was not specified or \code{append=FALSE}, a data frame with two variables called \code{var.names[1]} (by default \code{"mean"}) and \code{var.names[2]} (by default \code{"sd"}) with the estimated means and SDs. If \code{data} was specified and \code{append=TRUE}, then the original data frame is returned. If \code{var.names[1]} is a variable in \code{data} and \code{replace="ifna"} (or \code{replace=FALSE}), then only missing values in this variable are replaced with the estimated means (where possible) and otherwise a new variable called \code{var.names[1]} is added to the data frame. Similarly, if \code{var.names[2]} is a variable in \code{data} and \code{replace="ifna"} (or \code{replace=FALSE}), then only missing values in this variable are replaced with the estimated SDs (where possible) and otherwise a new variable called \code{var.names[2]} is added to the data frame. If \code{replace="all"} (or \code{replace=TRUE}), then all values in \code{var.names[1]} and \code{var.names[2]} where an estimated mean and SD can be computed are replaced, even for cases where the value in \code{var.names[1]} and \code{var.names[2]} is not missing. When missing values in \code{var.names[1]} are replaced, an attribute called \code{"est"} is added to the variable, which is a logical vector that is \code{TRUE} for values that were estimated. The same is done when missing values in \code{var.names[2]} are replaced. Attributes called \code{"tval"}, \code{"crit"}, \code{"sig"}, and \code{"dist"} are also added to \code{var.names[1]} corresponding to the test statistic and critical value for the test for skewness, whether the test was significant, and the assumed distribution (for the quantile estimation method, this is the distribution that provides the best fit to the given values). } \note{ \bold{A word of caution:} Under the given distributional assumptions, the estimated means and SDs are approximately unbiased and hence so are any effect size measures computed based on them (assuming a measure is unbiased to begin with when computed with directly reported means and SDs). However, the estimated means and SDs are less precise (i.e., are more variable) than directly reported means and SDs (especially under case 1) and hence computing the sampling variance of a measure with equations that assume that directly reported means and SDs are available will tend to underestimate the actual sampling variance of the measure, giving too much weight to estimates computed based on estimated means and SDs (see also McGrath et al., 2023). It would therefore be prudent to treat effect size estimates computed from estimated means and SDs with caution (e.g., by examining in a moderator analysis whether there are systematic differences between studies directly reporting means and SDs and those where the means and SDs needed to be estimated and/or as part of a sensitivity analysis). McGrath et al. (2023) also suggest to use bootstrapping to estimate the sampling variance of effect size measures computed based on estimated means and SDs. See also the \href{https://cran.r-project.org/package=metamedian}{metamedian} package for this purpose. Also note that the development of methods for estimating means and SDs based on five-number summary values is an active area of research. Currently, when \code{method="default"}, then this is identical to \code{method="luo/wan/shi"}, but this might change in the future. For reproducibility, it is therefore recommended to explicitly set \code{method="luo/wan/shi"} (or one of the other methods) when running this function. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Bland, M. (2015). Estimating mean and standard deviation from the sample size, three quartiles, minimum, and maximum. \emph{International Journal of Statistics in Medical Research}, \bold{4}(1), 57--64. \verb{https://doi.org/10.6000/1929-6029.2015.04.01.6} Cai, S., Zhou, J., & Pan, J. (2021). Estimating the sample mean and standard deviation from order statistics and sample size in meta-analysis. \emph{Statistical Methods in Medical Research}, \bold{30}(12), 2701--2719. \verb{https://doi.org/10.1177/09622802211047348} Hozo, S. P., Djulbegovic, B. & Hozo, I. (2005). Estimating the mean and variance from the median, range, and the size of a sample. \emph{BMC Medical Research Methodology}, \bold{5}, 13. \verb{https://doi.org/10.1186/1471-2288-5-13} Luo, D., Wan, X., Liu, J. & Tong, T. (2016). Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. \emph{Statistical Methods in Medical Research}, \bold{27}(6), 1785--1805. \verb{https://doi.org/10.1177/0962280216669183} McGrath, S., Zhao, X., Steele, R., Thombs, B. D., Benedetti, A., & the DEPRESsion Screening Data (DEPRESSD) Collaboration (2020). Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. \emph{Statistical Methods in Medical Research}, \bold{29}(9), 2520--2537. \verb{https://doi.org/10.1177/0962280219889080} McGrath, S., Katzenschlager, S., Zimmer, A. J., Seitel, A., Steele, R., & Benedetti, A. (2023). Standard error estimation in meta-analysis of studies reporting medians. \emph{Statistical Methods in Medical Research}, \bold{32}(2), 373--388. \verb{https://doi.org/10.1177/09622802221139233} Shi, J., Luo, D., Weng, H., Zeng, X.-T., Lin, L., Chu, H. & Tong, T. (2020a). Optimally estimating the sample standard deviation from the five-number summary. \emph{Research Synthesis Methods}, \bold{11}(5), 641--654. \verb{https://doi.org/https://doi.org/10.1002/jrsm.1429} Shi, J., Tong, T., Wang, Y. & Genton, M. G. (2020b). Estimating the mean and variance from the five-number summary of a log-normal distribution. \emph{Statistics and Its Interface}, \bold{13}(4), 519--531. https://doi.org/10.4310/sii.2020.v13.n4.a9 Shi, J., Luo, D., Wan, X., Liu, Y., Liu, J., Bian, Z. & Tong, T. (2023). Detecting the skewness of data from the five-number summary and its application in meta-analysis. \emph{Statistical Methods in Medical Research}, \bold{32}(7), 1338--1360. \verb{https://doi.org/10.1177/09622802231172043} Walter, S. D. & Yao, X. (2007). Effect sizes can be calculated for studies reporting ranges for outcome variables in systematic reviews. \emph{Journal of Clinical Epidemiology}, \bold{60}(8), 849--852. \verb{https://doi.org/10.1016/j.jclinepi.2006.11.003} Wan, X., Wang, W., Liu, J. & Tong, T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. \emph{BMC Medical Research Methodology}, \bold{14}, 135. \verb{https://doi.org/10.1186/1471-2288-14-135} Yang, X., Hutson, A. D., & Wang, D. (2022). A generalized BLUE approach for combining location and scale information in a meta-analysis. \emph{Journal of Applied Statistics}, \bold{49}(15), 3846--3867. \verb{https://doi.org/10.1080/02664763.2021.1967890} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{escalc}} for a function to compute various effect size measures based on means and standard deviations. } \examples{ # example data frame dat <- data.frame(case=c(1:3,NA), min=c(2,NA,2,NA), q1=c(NA,4,4,NA), median=c(6,6,6,NA), q3=c(NA,10,10,NA), max=c(14,NA,14,NA), mean=c(NA,NA,NA,7.0), sd=c(NA,NA,NA,4.2), n=c(20,20,20,20)) dat # note that study 4 provides the mean and SD directly, while studies 1-3 provide five-number # summary values or a subset thereof (corresponding to cases 1-3 above) # estimate means/SDs (note: existing values in 'mean' and 'sd' are not touched) dat <- conv.fivenum(min=min, q1=q1, median=median, q3=q3, max=max, n=n, data=dat) dat # check attributes (none of the tests are significant, so means/SDs are estimated for studies 1-3) dfround(data.frame(attributes(dat$mean)), digits=3) # calculate the log transformed coefficient of variation and corresponding sampling variance dat <- escalc(measure="CVLN", mi=mean, sdi=sd, ni=n, data=dat) dat # fit equal-effects model to the estimates res <- rma(yi, vi, data=dat, method="EE") res # estimated coefficient of variation (with 95\% CI) predict(res, transf=exp, digits=2) ############################################################################ # example data frame dat <- data.frame(case=c(1:3,NA), min=c(2,NA,2,NA), q1=c(NA,4,4,NA), median=c(6,6,6,NA), q3=c(NA,10,10,NA), max=c(14,NA,14,NA), mean=c(NA,NA,NA,7.0), sd=c(NA,NA,NA,4.2), n=c(20,20,20,20)) dat # try out different methods conv.fivenum(min=min, q1=q1, median=median, q3=q3, max=max, n=n, data=dat) set.seed(1234) conv.fivenum(min=min, q1=q1, median=median, q3=q3, max=max, n=n, data=dat, method="qe") conv.fivenum(min=min, q1=q1, median=median, q3=q3, max=max, n=n, data=dat, method="bc") conv.fivenum(min=min, q1=q1, median=median, q3=q3, max=max, n=n, data=dat, method="mln") conv.fivenum(min=min, q1=q1, median=median, q3=q3, max=max, n=n, data=dat, method="blue") ############################################################################ # example data frame dat <- data.frame(case=c(1:3,NA), min=c(2,NA,2,NA), q1=c(NA,4,4,NA), median=c(6,6,6,NA), q3=c(NA,10,14,NA), max=c(14,NA,20,NA), mean=c(NA,NA,NA,7.0), sd=c(NA,NA,NA,4.2), n=c(20,20,20,20)) dat # for study 3, the third quartile and maximum value suggest that the data have # a right skewed distribution (they are much further away from the median than # the minimum and first quartile) # estimate means/SDs dat <- conv.fivenum(min=min, q1=q1, median=median, q3=q3, max=max, n=n, data=dat) dat # note that the mean and SD are not estimated for study 3; this is because the # test for skewness is significant for this study dfround(data.frame(attributes(dat$mean)), digits=3) # estimate means/SDs, but assume that the data for study 3 come from a log-normal distribution # and back-transform the estimated mean/SD of the log-transformed data back to the raw data dat <- conv.fivenum(min=min, q1=q1, median=median, q3=q3, max=max, n=n, data=dat, dist=c("norm","norm","lnorm","norm"), replace="all") dat # this works now because the test for skewness of the log-transformed data is not significant dfround(data.frame(attributes(dat$mean)), digits=3) } \keyword{manip} metafor/man/llplot.Rd0000644000176200001440000001401314746146216014271 0ustar liggesusers\name{llplot} \alias{llplot} \title{Plot of Likelihoods for Individual Studies} \description{ Function to plot the likelihood of a certain parameter corresponding to an effect size or outcome measure given the study data. \loadmathjax } \usage{ llplot(measure, yi, vi, sei, ai, bi, ci, di, n1i, n2i, data, subset, drop00=TRUE, xvals=1000, xlim, ylim, xlab, ylab, scale=TRUE, lty, lwd, col, level=99.99, refline=0, \dots) } \arguments{ \item{measure}{a character string to specify for which effect size or outcome measure the likelihoods should be calculated. See \sQuote{Details} for possible options and how the data should then be specified.} \item{yi}{vector with the observed effect sizes or outcomes.} \item{vi}{vector with the corresponding sampling variances.} \item{sei}{vector with the corresponding standard errors.} \item{ai}{vector to specify the \mjeqn{2 \times 2}{2x2} table frequencies (upper left cell).} \item{bi}{vector to specify the \mjeqn{2 \times 2}{2x2} table frequencies (upper right cell).} \item{ci}{vector to specify the \mjeqn{2 \times 2}{2x2} table frequencies (lower left cell).} \item{di}{vector to specify the \mjeqn{2 \times 2}{2x2} table frequencies (lower right cell).} \item{n1i}{vector to specify the group sizes or row totals (first group/row).} \item{n2i}{vector to specify the group sizes or row totals (second group/row).} \item{data}{optional data frame containing the variables given to the arguments above.} \item{subset}{optional (logical or numeric) vector to specify the subset of studies that should be included in the plot.} \item{drop00}{logical to specify whether studies with no cases (or only cases) in both groups should be dropped. See \sQuote{Details}.} \item{xvals}{integer to specify for how many distinct values the likelihood should be evaluated.} \item{xlim}{x-axis limits. If unspecified, the function sets the x-axis limits to some sensible values.} \item{ylim}{y-axis limits. If unspecified, the function sets the y-axis limits to some sensible values.} \item{xlab}{title for the x-axis. If unspecified, the function sets an appropriate axis title.} \item{ylab}{title for the y-axis. If unspecified, the function sets an appropriate axis title.} \item{scale}{logical to specify whether the likelihood values should be scaled, so that the total area under each curve is (approximately) equal to 1.} \item{lty}{the line types (either a single value or a vector of length \mjseqn{k}). If unspecified, the function sets the line types according to some characteristics of the likelihood function. See \sQuote{Details}.} \item{lwd}{the line widths (either a single value or a vector of length \mjseqn{k}). If unspecified, the function sets the widths according to the sampling variances (so that the line is thicker for more precise studies and vice-versa).} \item{col}{the line colors (either a single value or a vector of length \mjseqn{k}). If unspecified, the function uses various shades of gray according to the sampling variances (so that darker shades are used for more precise studies and vice-versa).} \item{level}{numeric value between 0 and 100 to specify the plotting limits for each likelihood line in terms of the confidence interval (the default is 99.99).} \item{refline}{numeric value to specify the location of the vertical \sQuote{reference} line (the default is 0). The line can be suppressed by setting this argument to \code{NA}.} \item{\dots}{other arguments.} } \details{ At the moment, the function only accepts \code{measure="GEN"} or \code{measure="OR"}. For \code{measure="GEN"}, one must specify arguments \code{yi} for the observed effect sizes or outcomes and \code{vi} for the corresponding sampling variances (instead of specifying \code{vi}, one can specify the standard errors via the \code{sei} argument). The function then plots the likelihood of the true effect size or outcome based on a normal sampling distribution with observed outcome as given by \code{yi} and variance as given by \code{vi} for each study. For \code{measure="OR"}, one must specify arguments \code{ai}, \code{bi}, \code{ci}, and \code{di}, which denote the cell frequencies of the \mjeqn{2 \times 2}{2x2} tables. Alternatively, one can specify \code{ai}, \code{ci}, \code{n1i}, and \code{n2i}. See \code{\link{escalc}} function for more details. The function then plots the likelihood of the true log odds ratio based on the non-central hypergeometric distribution for each \mjeqn{2 \times 2}{2x2} table. Since studies with no cases (or only cases) in both groups have a flat likelihood and are not informative about the odds ratio, they are dropped by default (i.e., \code{drop00=TRUE}) and are hence not drawn (if \code{drop00=FALSE}, these likelihoods are indicated by dotted lines). For studies that have a single zero count, the MLE of the odds ratio is infinite and these likelihoods are indicated by dashed lines. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ van Houwelingen, H. C., Zwinderman, K. H., & Stijnen, T. (1993). A bivariate approach to meta-analysis. \emph{Statistics in Medicine}, \bold{12}(24), 2273--2284. \verb{https://doi.org/10.1002/sim.4780122405} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{rma.uni}} and \code{\link{rma.glmm}} for model fitting functions that are based on corresponding likelihood functions. } \examples{ ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### draw likelihoods llplot(measure="GEN", yi=yi, vi=vi, data=dat, lwd=1, refline=NA, xlim=c(-3,2)) ### create plot (Figure 2 in van Houwelingen, Zwinderman, & Stijnen, 1993) llplot(measure="OR", ai=b.xci, n1i=nci, ci=b.xti, n2i=nti, data=dat.collins1985a, lwd=1, refline=NA, xlim=c(-4,4), drop00=FALSE) } \keyword{hplot} metafor/man/misc-models.Rd0000644000176200001440000003706014746146216015206 0ustar liggesusers\name{misc-models} \alias{misc-models} \alias{misc_models} \title{Fixed-Effects and Random-Effects Models in Meta-Analysis \loadmathjax} \description{ Books and articles about meta-analysis often describe and discuss the difference between the so-called \sQuote{fixed-effects model} and the \sQuote{random-effects model} (e.g., Cooper et al., 2009). The former term is (mostly) avoided throughout the documentation of the \pkg{metafor} package. The term \sQuote{equal-effects model} is used instead, since it more concretely describes the main assumption underlying this model (i.e., that the underlying true effects/outcomes are homogeneous, or in other words, that they are all equal to each other). The terms \sQuote{common-effect(s) model} or \sQuote{homogenous-effect(s) model} have also sometimes been used in the literature to describe this model and are equally descriptive. Moreover, the term \sQuote{fixed-effects model} creates a bit of a conundrum. When authors use this term, they are really typically referring to the equal-effects model. There is however another type of model, the \sQuote{real} fixed-effects model, that is different from the equal-effects model, but now we would need to invent (unnecessarily) a different term to refer to this model. Some have done so or tried to make a distinction between the \sQuote{fixed-effect model} (without the s!) and the \sQuote{fixed-effects model}, but this subtle difference in terminology is easily overlooked/missed. Using the term \sQuote{equal-effects model} avoids this confusion and is more informative. However, the question then remains what the real fixed-effects model is all about. The purpose of this page is to describe this model and to contrast it with the well-known random-effects model. } \details{ \subsection{Fixed-Effects Model}{ Assume we have a set of \mjseqn{i = 1, \ldots, k} independent studies and let \mjseqn{y_i} denote the observed value of the effect size or outcome measure in the \mjeqn{i\text{th}}{ith} study. Let \mjseqn{\theta_i} denote the corresponding (unknown) true effect/outcome, such that \mjdeqn{y_i \mid \theta_i \sim N(\theta_i, v_i).}{y_i | \theta_i ~ N(\theta_i, v_i).} In other words, the observed effect sizes or outcomes are assumed to be unbiased and normally distributed estimates of the corresponding true effects/outcomes with sampling variances equal to \mjseqn{v_i}. The \mjseqn{v_i} values are assumed to be known. The fixed-effects model is simply given by \mjdeqn{y_i = \theta_i + \varepsilon_i,}{y_i = \theta_i + \epsilon_i,} where the \mjseqn{\theta_i} values are the (fixed) true effects/outcomes of the \mjseqn{k} studies. Therefore, the model \sQuote{conditions} on the true effects/outcomes and provides a \emph{conditional inference} about the \mjseqn{k} studies included in the meta-analysis. When using weighted estimation (the default in \code{\link{rma.uni}} when \code{method="FE"}), this implies that the fitted model provides an estimate of \mjdeqn{\bar{\theta}_w = \frac{\sum_{i=1}^k w_i \theta_i}{\sum_{i=1}^k w_i},}{\theta_w = \sum w_i \theta_i / \sum w_i,} that is, the \emph{weighted average} of the true effects/outcomes in the \mjseqn{k} studies, with weights equal to \mjseqn{w_i = 1/v_i}. As an example, consider the meta-analysis by Bangert-Drowns et al. (2004) on the effectiveness of writing-to-learn interventions on academic achievement. The dataset (\code{\link[metadat]{dat.bangertdrowns2004}}) includes the observed standardized mean differences (variable \code{yi}) and the corresponding sampling variances (variable \code{vi}) of 48 studies that have examined such an intervention. We can fit a fixed-effects model to these data with: \preformatted{# copy data into 'dat' dat <- dat.bangertdrowns2004 # fit a fixed-effects model res <- rma(yi, vi, data=dat, method="FE") res # Fixed-Effects Model (k = 48) # # I^2 (total heterogeneity / total variability): 56.12\% # H^2 (total variability / sampling variability): 2.28 # # Test for Heterogeneity: # Q(df = 47) = 107.1061, p-val < .0001 # # Model Results: # # estimate se zval pval ci.lb ci.ub # 0.1656 0.0269 6.1499 <.0001 0.1128 0.2184} The Q-test suggests that the underlying true standardized mean differences are heterogeneous \mjeqn{(Q(\text{df}=47) = 107.11, p < .0001).}{(Q(df=47) = 107.11, p < .0001).} Therefore, if we believe this to be true, then the value shown under \code{estimate} is an estimate of the inverse-variance weighted average of the true standardized mean differences of these 48 studies (i.e., \mjeqn{\hat{\bar{\theta}}_w = 0.17}{\theta-bar-hat_w = 0.17}). One can also employ an unweighted estimation method (by setting \code{weighted=FALSE} in \code{\link{rma.uni}}), which provides an estimate of the \emph{unweighted average} of the true effects/outcomes in the \mjseqn{k} studies, that is, an estimate of \mjdeqn{\bar{\theta}_u = \frac{\sum_{i=1}^k \theta_i}{k}.}{\theta_u = \sum \theta_i / k.} Returning to the example, we then find: \preformatted{# fit a fixed-effects model using unweighted estimation res <- rma(yi, vi, data=dat, method="FE", weighted=FALSE) res # Fixed-Effects Model (k = 48) # # I^2 (total heterogeneity / total variability): 56.12\% # H^2 (total variability / sampling variability): 2.28 # # Test for Heterogeneity: # Q(df = 47) = 107.1061, p-val < .0001 # # Model Results: # # estimate se zval pval ci.lb ci.ub # 0.2598 0.0380 6.8366 <.0001 0.1853 0.3343} Therefore, the value shown under \code{estimate} is now an estimate of the unweighted average of the true standardized mean differences of these 48 studies (i.e., \mjeqn{\hat{\bar{\theta}}_u = 0.26}{\theta-bar-hat_u = 0.26}). For weighted estimation, one could also choose to estimate \mjeqn{\bar{\theta}_w}{\theta_w}, where the \mjseqn{w_i} values are user-defined weights (via argument \code{weights} in \code{\link{rma.uni}}). Hence, using inverse-variance weights or unit weights (as in unweighted estimation) are just special cases. It is up to the user to decide to what extent \mjeqn{\bar{\theta}_w}{\theta_w} is a meaningful parameter to estimate (regardless of the weights used). For example, we could use the sample sizes of the studies as weights: \preformatted{# fit a fixed-effects model using the sample sizes as weights res <- rma(yi, vi, data=dat, method="FE", weights=ni) res # Fixed-Effects Model (k = 48) # # I^2 (total heterogeneity / total variability): 56.12\% # H^2 (total variability / sampling variability): 2.28 # # Test for Heterogeneity: # Q(df = 47) = 107.1061, p-val < .0001 # # Model Results: # # estimate se zval pval ci.lb ci.ub # 0.1719 0.0269 6.3802 <.0001 0.1191 0.2248} We therefore obtain an estimate of the sample-size weighted average of the true standardized mean differences of these 48 studies (i.e., \mjeqn{\hat{\bar{\theta}}_w = 0.17}{\theta-bar-hat_w = 0.17}). Since the sample sizes and the inverse sampling variances are highly correlated (\code{cor(dat$ni, 1/dat$vi)} yields \code{0.999}), the results are almost identical to the ones we obtained earlier using inverse-variance weighting. } \subsection{Random-Effects Model}{ The random-effects model does not condition on the true effects/outcomes. Instead, the \mjseqn{k} studies included in the meta-analysis are assumed to be a random sample from a larger population of studies. In rare cases, the studies included in a meta-analysis are actually sampled from a larger collection of studies. More typically, all efforts have been made to find and include all relevant studies providing evidence about the phenomenon of interest and hence the population of studies is a hypothetical population of an essentially infinite set of studies comprising all of the studies that have been conducted, that could have been conducted, or that may be conducted in the future. We assume that \mjeqn{\theta_i \sim N(\mu, \tau^2)}{\theta_i ~ N(\mu, \tau^2)}, that is, the true effects/outcomes in the population of studies are normally distributed with \mjseqn{\mu} denoting the average true effect/outcome and \mjseqn{\tau^2} the variance of the true effects/outcomes in the population (\mjseqn{\tau^2} is therefore often referred to as the amount of \sQuote{heterogeneity} in the true effects/outcomes). The random-effects model can also be written as \mjdeqn{y_i = \mu + u_i + \varepsilon_i,}{y_i = \mu + u_i + \epsilon_i,} where \mjeqn{u_i \sim N(0, \tau^2)}{u_i ~ N(0, \tau^2)} and \mjeqn{\varepsilon_i \sim N(0, v_i)}{\epsilon_i ~ N(0, v_i)}. The fitted model provides estimates of \mjseqn{\mu} and \mjseqn{\tau^2}. Consequently, the random-effects model provides an \emph{unconditional inference} about the average true effect/outcome in the population of studies (from which the \mjseqn{k} studies included in the meta-analysis are assumed to be a random sample). Fitting a random-effects model to the example data yields: \preformatted{# fit a random-effects model (note: method="REML" is the default) res <- rma(yi, vi, data=dat) res # Random-Effects Model (k = 48; tau^2 estimator: REML) # # tau^2 (estimated amount of total heterogeneity): 0.0499 (SE = 0.0197) # tau (square root of estimated tau^2 value): 0.2235 # I^2 (total heterogeneity / total variability): 58.37\% # H^2 (total variability / sampling variability): 2.40 # # Test for Heterogeneity: # Q(df = 47) = 107.1061, p-val < .0001 # # Model Results: # # estimate se zval pval ci.lb ci.ub # 0.2219 0.0460 4.8209 <.0001 0.1317 0.3122} The value shown under \code{estimate} is now an estimate of the average true standardized mean difference of studies in the population of studies from which the 48 studies included in this dataset have come (i.e., \mjeqn{\hat{\mu} = 0.22}{\mu-hat = 0.22}). When using weighted estimation in the context of a random-effects model, the model is fitted with weights equal to \mjseqn{w_i = 1/(\tau^2 + v_i)}, with \mjseqn{\tau^2} replaced by its estimate (the default in \code{\link{rma.uni}} when \code{method} is set to one of the possible choices for estimating \mjseqn{\tau^2}). One can also choose unweighted estimation in the context of the random-effects model (\code{weighted=FALSE}) or specify user-defined weights (via \code{weights}), although the parameter that is estimated (i.e., \mjseqn{\mu}) remains the same regardless of the estimation method and weights used (as opposed to the fixed-effect model, where the parameter estimated is different for weighted versus unweighted estimation or when using different weights than the standard inverse-variance weights). Since weighted estimation with inverse-variance weights is most efficient, it is usually to be preferred for random-effects models (while in the fixed-effect model case, we must carefully consider whether \mjeqn{\bar{\theta}_w}{\theta_w} or \mjeqn{\bar{\theta}_u}{\theta_u} is the more meaningful parameter to estimate). } \subsection{Conditional versus Unconditional Inferences}{ Contrary to what is often stated in the literature, it is important to realize that the fixed-effects model does \emph{not} assume that the true effects/outcomes are homogeneous (i.e., that \mjseqn{\theta_i} is equal to some common value \mjseqn{\theta} in all \mjseqn{k} studies). In other words, the fixed-effects model provides perfectly valid inferences under heterogeneity, as long as one is restricting these inferences to the set of studies included in the meta-analysis and one realizes that the model does not provide an estimate of \mjseqn{\theta} or \mjseqn{\mu}, but of \mjeqn{\bar{\theta}_w}{\theta_w} or \mjeqn{\bar{\theta}_u}{\theta_u} (depending on the estimation method used). However, such inferences are conditional on the included studies. It is therefore not permissible to generalize those inferences beyond the set of studies included in a meta-analysis (or doing so requires \sQuote{extra-statistical} arguments). In contrast, a random-effects model provides unconditional inferences and therefore allows a generalization beyond the set of included studies, although the population of studies to which we can generalize is typically only vaguely defined (since the included studies are not a proper random sample from a specified sampling frame). Instead, we simply must assume that the included studies are a representative sample of \emph{some} population and it is to that population to which we are generalizing. Leaving aside this issue, the above implies that there is nothing wrong with fitting both the fixed- and random-effects models to the same data, since these models address inherently different questions (i.e., what was the average effect in the studies that have been conducted and are included in this meta-analysis versus what is the average effect in the larger population of studies?). } \subsection{Equal-Effects Model}{ In the special case that the true effects/outcomes are actually homogeneous (the equal-effects case), the distinction between the fixed- and random-effects models disappears, since homogeneity implies that \mjeqn{\mu = \bar{\theta}_w = \bar{\theta}_u \equiv \theta}{\mu = \theta_w = \theta_u = \theta}. Therefore, if one belives that the true effects/outcomes are homogeneous, then one can fit an equal-effects model (using weighted estimation), since this will provide the most efficient estimate of \mjseqn{\theta} (note that if the true effects/outcomes are really homogeneous but we fit a random-effects model, it can happen that the estimate of \mjseqn{\tau^2} is actually larger than 0, which then leads to a loss of efficiency). However, since there is no infallible method to test whether the true effects/outcomes are really homogeneous or not, a researcher should decide on the type of inference desired before examining the data and choose the model accordingly. Note that fitting an equal-effects model (with \code{method="EE"}) yields the exact same output as fitting a fixed-effects model, since the equations used to fit these two models are identical. However, the interpretation of the results is different. If we fit an equal-effects model, we make the assumption that the true effects are homogeneous and, if we believe this assumption to be justified, can interpret the estimate as an estimate of \emph{the} true effect. On the other hand, if we reject the homogeneity assumption, then we should reject the model altogether. In contrast, if we fit a fixed-effects model, we do not assume homogeneity and instead interpret the estimate as an estimate of the (weighted) average true effect of the included studies. } For further discussions of the distinction between the equal-, fixed-, and random-effects models, see Laird and Mosteller (1990) and Hedges and Vevea (1998). } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.) (2009). \emph{The handbook of research synthesis and meta-analysis} (2nd ed.). New York: Russell Sage Foundation. Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. \emph{Psychological Methods}, \bold{3}(4), 486--504. \verb{https://doi.org/10.1037/1082-989X.3.4.486} Laird, N. M., & Mosteller, F. (1990). Some statistical methods for combining experimental results. \emph{International Journal of Technology Assessment in Health Care}, \bold{6}(1), 5--30. \verb{https://doi.org/10.1017/S0266462300008916} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \keyword{documentation} \keyword{models} metafor/man/print.list.rma.Rd0000644000176200001440000000216214746146216015651 0ustar liggesusers\name{print.list.rma} \alias{print.list.rma} \title{Print Method for 'list.rma' Objects} \description{ Function to print objects of class \code{"list.rma"}. } \usage{ \method{print}{list.rma}(x, digits=x$digits, \dots) } \arguments{ \item{x}{an object of class \code{"list.rma"}.} \item{digits}{integer to specify the number of decimal places to which the printed results should be rounded (the default is to take the value from the object).} \item{\dots}{other arguments.} } \value{ See the documentation of the function that creates the \code{"list.rma"} object for details on what is printed. Regardless of what is printed, a data frame with the results is also returned invisibly. See \code{\link{methods.list.rma}} for some additional method functions for \code{"list.rma"} objects. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \keyword{print} metafor/man/addpoly.rma.Rd0000644000176200001440000001324614746146216015204 0ustar liggesusers\name{addpoly.rma} \alias{addpoly.rma} \title{Add Polygons to Forest Plots (Method for 'rma' Objects)} \description{ Function to add a polygon to a forest plot showing the pooled estimate with corresponding confidence interval based on an object of class \code{"rma"}. } \usage{ \method{addpoly}{rma}(x, row=-2, level=x$level, annotate, addpred=FALSE, predstyle, predlim, digits, width, mlab, transf, atransf, targs, efac, col, border, lty, fonts, cex, \dots) } \arguments{ \item{x}{an object of class \code{"rma"}.} \item{row}{numeric value to specify the row (or more generally, the position) for plotting the polygon (the default is \code{-2}).} \item{level}{numeric value between 0 and 100 to specify the confidence interval level (see \link[=misc-options]{here} for details). The default is to take the value from the object.} \item{annotate}{optional logical to specify whether annotations for the pooled estimate should be added to the plot.} \item{addpred}{logical to specify whether the prediction interval should be added to the plot (the default is \code{FALSE}).} \item{predstyle}{character string to specify the style of the prediction interval (either \code{"line"}, \code{"bar"}, \code{"shade"}, or \code{"dist"}). Can be abbreviated. Setting this argument automatically sets \code{addpred=TRUE}.} \item{predlim}{optional argument to specify the limits of the prediction distribution when \code{predstyle="dist"}.} \item{digits}{optional integer to specify the number of decimal places to which the annotations should be rounded.} \item{width}{optional integer to manually adjust the width of the columns for the annotations.} \item{mlab}{optional character string giving a label for the pooled estimate. If unspecified, the function sets a default label.} \item{transf}{optional argument to specify a function to transform the pooled estimate and confidence interval bounds (e.g., \code{transf=exp}; see also \link{transf}).} \item{atransf}{optional argument to specify a function to transform the annotations (e.g., \code{atransf=exp}; see also \link{transf}).} \item{targs}{optional arguments needed by the function specified via \code{transf} or \code{atransf}.} \item{efac}{optional vertical expansion factor for the polygon.} \item{col}{optional character string to specify the color of the polygon.} \item{border}{optional character string to specify the border color of the polygon.} \item{lty}{optional argument to specify the line type for the prediction interval.} \item{fonts}{optional character string to specify the font for the label and annotations.} \item{cex}{optional symbol expansion factor.} \item{\dots}{other arguments.} } \details{ The function can be used to add a four-sided polygon, sometimes called a summary \sQuote{diamond}, to an existing forest plot created with the \code{\link{forest}} function. The polygon shows the pooled estimate (with its confidence interval bounds) based on an equal- or a random-effects model. Using this function, pooled estimates based on different types of models can be shown in the same plot. Also, pooled estimates based on a subgrouping of the studies can be added to the plot this way. See \sQuote{Examples}. If unspecified, arguments \code{annotate}, \code{digits}, \code{width}, \code{transf}, \code{atransf}, \code{targs}, \code{efac} (only if the forest plot was created with \code{\link{forest.rma}}), \code{fonts}, \code{cex}, \code{annosym}, and \code{textpos} are automatically set equal to the same values that were used when creating the forest plot. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{forest}} for functions to draw forest plots to which polygons can be added. } \examples{ ### meta-analysis of the log risk ratios using the Mantel-Haenszel method res <- rma.mh(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) ### forest plot of the observed risk ratios with the pooled estimate forest(res, atransf=exp, xlim=c(-8,6), ylim=c(-3,16)) ### meta-analysis of the log risk ratios using a random-effects model res <- rma(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg) ### add the pooled estimate from the random-effects model to the forest plot addpoly(res) ### forest plot with subgrouping of studies and summaries per subgroup dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, slab=paste(author, year, sep=", ")) res <- rma(yi, vi, data=dat) tmp <- forest(res, xlim=c(-16, 4.6), at=log(c(0.05, 0.25, 1, 4)), atransf=exp, ilab=cbind(tpos, tneg, cpos, cneg), ilab.lab=c("TB+","TB-","TB+","TB-"), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=0.75, ylim=c(-2, 27), order=alloc, rows=c(3:4,9:15,20:23), mlab="RE Model for All Studies", header="Author(s) and Year") op <- par(cex=tmp$cex) text(c(-8.75,-5.25), tmp$ylim[2]-0.2, c("Vaccinated", "Control"), font=2) text(-16, c(24,16,5), c("Systematic Allocation", "Random Allocation", "Alternate Allocation"), font=4, pos=4) par(op) res <- rma(yi, vi, data=dat, subset=(alloc=="systematic")) addpoly(res, row=18.5, mlab="RE Model for Subgroup") res <- rma(yi, vi, data=dat, subset=(alloc=="random")) addpoly(res, row=7.5, mlab="RE Model for Subgroup") res <- rma(yi, vi, data=dat, subset=(alloc=="alternate")) addpoly(res, row=1.5, mlab="RE Model for Subgroup") } \keyword{aplot} metafor/man/contrmat.Rd0000644000176200001440000000714314746146216014620 0ustar liggesusers\name{contrmat} \alias{contrmat} \title{Construct Contrast Matrix for Two-Group Comparisons} \description{ Function to construct a matrix that indicates which two groups have been contrasted against each other in each row of a dataset. } \usage{ contrmat(data, grp1, grp2, last, shorten=FALSE, minlen=2, check=TRUE, append=TRUE) } \arguments{ \item{data}{a data frame in wide format.} \item{grp1}{either the name (given as a character string) or the position (given as a single number) of the first group variable in the data frame.} \item{grp2}{either the name (given as a character string) or the position (given as a single number) of the second group variable in the data frame.} \item{last}{optional character string to specify which group will be placed in the last column of the matrix (must be one of the groups in the group variables). If not given, the most frequently occurring second group is placed last.} \item{shorten}{logical to specify whether the variable names corresponding to the group names should be shortened (the default is \code{FALSE}).} \item{minlen}{integer to specify the minimum length of the shortened variable names (the default is 2).} \item{check}{logical to specify whether the variables names should be checked to ensure that they are syntactically valid variable names and if not, they are adjusted (by \code{\link{make.names}}) so that they are (the default is \code{TRUE}).} \item{append}{logical to specify whether the contrast matrix should be appended to the data frame specified via the \code{data} argument (the default is \code{TRUE}). If \code{append=FALSE}, only the contrast matrix is returned.} } \details{ The function can be used to construct a matrix that indicates which two groups have been contrasted against each other in each row of a data frame (with \code{1} for the first group, \code{-1} for the second group, and \code{0} otherwise). The \code{grp1} and \code{grp2} arguments are used to specify the group variables in the dataset (either as character strings or as numbers indicating the column positions of these variables in the dataset). Optional argument \code{last} is used to specify which group will be placed in the last column of the matrix. If \code{shorten=TRUE}, the variable names corresponding to the group names are shortened (to at least \code{minlen}; the actual length might be longer to ensure uniqueness of the variable names). The examples below illustrate the use of this function. } \value{ A matrix with as many variables as there are groups. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{to.wide}} for a function to create \sQuote{wide} format datasets. \code{\link[metadat]{dat.senn2013}}, \code{\link[metadat]{dat.hasselblad1998}}, \code{\link[metadat]{dat.lopez2019}} for illustrative examples. } \examples{ ### restructure to wide format dat <- dat.senn2013 dat <- dat[c(1,4,3,2,5,6)] dat <- to.wide(dat, study="study", grp="treatment", ref="placebo", grpvars=4:6) dat ### add contrast matrix dat <- contrmat(dat, grp1="treatment.1", grp2="treatment.2") dat ### data in long format dat <- dat.hasselblad1998 dat ### restructure to wide format dat <- to.wide(dat, study="study", grp="trt", ref="no_contact", grpvars=6:7) dat ### add contrast matrix dat <- contrmat(dat, grp1="trt.1", grp2="trt.2", shorten=TRUE, minlen=3) dat } \keyword{manip} metafor/man/methods.deltamethod.Rd0000644000176200001440000000217714746146216016727 0ustar liggesusers\name{coef.deltamethod} \alias{coef.deltamethod} \alias{vcov.deltamethod} \title{Extract the Estimates and Variance-Covariance Matrix from 'deltamethod' Objects} \description{ Methods for objects of class \code{"deltamethod"}. } \usage{ \method{coef}{deltamethod}(object, \dots) \method{vcov}{deltamethod}(object, \dots) } \arguments{ \item{object}{an object of class \code{"deltamethod"}.} \item{\dots}{other arguments.} } \details{ The \code{coef} function extracts the transformed estimates from objects of class \code{"deltamethod"}. The \code{vcov} function extracts the corresponding variance-covariance matrix. } \value{ Either a vector with the transformed estimates or a variance-covariance matrix. } \author{ Wolfgang Viechtbauer (\email{wvb@metafor-project.org}, \url{https://www.metafor-project.org}). } \references{ Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \seealso{ \code{\link{deltamethod}} for the function to create \code{deltamethod} objects. } \keyword{models} metafor/DESCRIPTION0000644000176200001440000000511314746154602013426 0ustar liggesusersPackage: metafor Version: 4.8-0 Date: 2025-01-28 Title: Meta-Analysis Package for R Authors@R: person(given = "Wolfgang", family = "Viechtbauer", role = c("aut","cre"), email = "wvb@metafor-project.org", comment = c(ORCID = "0000-0003-3463-4063")) Depends: R (>= 4.0.0), methods, Matrix, metadat, numDeriv Imports: stats, utils, graphics, grDevices, nlme, mathjaxr, pbapply, digest Suggests: lme4, pracma, minqa, nloptr, dfoptim, ucminf, lbfgsb3c, subplex, BB, Rsolnp, alabama, optimParallel, optimx, CompQuadForm, mvtnorm, BiasedUrn, Epi, survival, GLMMadaptive, glmmTMB, car, multcomp, gsl, sp, ape, boot, clubSandwich, crayon, R.rsp, testthat, rmarkdown, wildmeta, emmeans, estmeansd, metaBLUE, rstudioapi, glmulti, MuMIn, mice, Amelia, calculus Description: A comprehensive collection of functions for conducting meta-analyses in R. The package includes functions to calculate various effect sizes or outcome measures, fit equal-, fixed-, random-, and mixed-effects models to such data, carry out moderator and meta-regression analyses, and create various types of meta-analytical plots (e.g., forest, funnel, radial, L'Abbe, Baujat, bubble, and GOSH plots). For meta-analyses of binomial and person-time data, the package also provides functions that implement specialized methods, including the Mantel-Haenszel method, Peto's method, and a variety of suitable generalized linear (mixed-effects) models (i.e., mixed-effects logistic and Poisson regression models). Finally, the package provides functionality for fitting meta-analytic multivariate/multilevel models that account for non-independent sampling errors and/or true effects (e.g., due to the inclusion of multiple treatment studies, multiple endpoints, or other forms of clustering). Network meta-analyses and meta-analyses accounting for known correlation structures (e.g., due to phylogenetic relatedness) can also be conducted. An introduction to the package can be found in Viechtbauer (2010) . License: GPL (>= 2) ByteCompile: TRUE Encoding: UTF-8 RdMacros: mathjaxr VignetteBuilder: R.rsp BuildManual: TRUE URL: https://www.metafor-project.org https://github.com/wviechtb/metafor https://wviechtb.github.io/metafor/ https://www.wvbauer.com BugReports: https://github.com/wviechtb/metafor/issues NeedsCompilation: no Packaged: 2025-01-28 12:26:13 UTC; wviechtb Author: Wolfgang Viechtbauer [aut, cre] () Maintainer: Wolfgang Viechtbauer Repository: CRAN Date/Publication: 2025-01-28 13:20:02 UTC