r-cran-mi-1.0/000077500000000000000000000000001275731226000131445ustar00rootroot00000000000000r-cran-mi-1.0/DESCRIPTION000066400000000000000000000034741275731226000146620ustar00rootroot00000000000000Package: mi Type: Package Title: Missing Data Imputation and Model Checking Version: 1.0 Date: 2015-04-16 Authors@R: c(person("Andrew", "Gelman", email = "gelman@stat.columbia.edu", role = "ctb"), person("Jennifer", "Hill", email = "jennifer.hill@nyu.edu", role = "ctb"), person("Yu-Sung", "Su", email = "suyusung@tsinghua.edu.cn", role = c("aut")), person("Masanao", "Yajima", email = "my2167@columbia.edu", role = "ctb"), person("Maria", "Pittau", email = "grazia@stat.columbia.edu", role = "ctb"), person("Ben", "Goodrich", email = "benjamin.goodrich@columbia.edu", role = c("cre", "aut")), person("Yajuan", "Si", email = "sophie2012@gmail.com", role = "ctb"), person("Jon", "Kropko", email = "jkropko@gmail.com", role = "aut")) Description: The mi package provides functions for data manipulation, imputing missing values in an approximate Bayesian framework, diagnostics of the models used to generate the imputations, confidence-building mechanisms to validate some of the assumptions of the imputation algorithm, and functions to analyze multiply imputed data sets with the appropriate degree of sampling uncertainty. VignetteBuilder: knitr Depends: R (>= 3.0.0), methods, Matrix, stats4 Imports: arm (>= 1.4-11) Suggests: betareg, lattice, knitr, MASS, nnet, parallel, sn, survival, truncnorm, foreign URL: http://www.stat.columbia.edu/~gelman/ License: GPL (>= 2) LazyLoad: yes Packaged: 2015-04-16 14:03:10 UTC; goodrich Author: Andrew Gelman [ctb], Jennifer Hill [ctb], Yu-Sung Su [aut], Masanao Yajima [ctb], Maria Pittau [ctb], Ben Goodrich [cre, aut], Yajuan Si [ctb], Jon Kropko [aut] Maintainer: Ben Goodrich NeedsCompilation: no Repository: CRAN Date/Publication: 2015-04-16 19:53:48 r-cran-mi-1.0/MD5000066400000000000000000000067321275731226000134640ustar00rootroot000000000000004d53159f5ebb86c1335e64b13a05c5fa *DESCRIPTION 9dec5a7e584844ef9fa69fa03834be18 *NAMESPACE d40a3d06f38c44bdd479a06006eeca4d *R/AllClass.R 3ce3aa32589799fc9cc255946ced225b *R/AllGeneric.R 54582ada9780d1d0a788d3f82c90ebfb *R/change.R d98b7a3e0881312955042e7bd512a408 *R/change_family.R 18dc62aa8a9efe1667e0e4ed1f341d71 *R/change_imputation_method.R c432254da0cc432e7c813d5ab815eb5c *R/change_link.R 5e56fe5aa1f5a955a3422e80a4cfdda1 *R/change_model.R 586ede7677395ec0f91abbc2dc33a0ac *R/change_size.R a7553ff494bd3c261a84ca4b4ad39b6b *R/change_transformation.R 91374c98b46448341e2a46956d9d71c9 *R/change_type.R dfd85e6c34acecb9b4a7a4af970e2b6b *R/complete.R 339925dbf362cf49d2f22e48edb9c845 *R/convenience.R 2f6f8dab8d88b66a080c39aa1bb80579 *R/debug.R 3cfdaf91a92a6cad61cc97e96e20193a *R/fit_model.R f7dfe0685bf2085ec8dcf96943dbabdb *R/get_parameters.R 50d72e195ba8724cb42a226f74de4649 *R/hist_methods.R 06c30cc073991d9065a63c7c6d6251f1 *R/mi.R 9c9b6aeabc5b47d11f268a5caf91ee0c *R/misc.R 1442c0b84378b7fed9497b8d7dfa4804 *R/missing_data.frame.R ccec62837773157bbdea42e4cbed0487 *R/missing_variable.R e460dbaa09804ae44f75c202d33302ff *R/plot_methods.R 176c56f95ae64b9803d6bbe923321a21 *R/pool.R 1f0960308ae1258cacd265ee621d4a5d *R/random_df.R a0a5aef6f895a573d55af58cf42f5d3a *R/sysdata.rda ff146a33b7e5b018a84868092721901d *R/tobin5.R ae4d04291a56901290e61570fe88d109 *R/zzz.R d42b9d9fa6505f6767a1ec7297b6972d *build/partial.rdb c002ce38235a60015355602b2b55f0a6 *build/vignette.rds 379ddfae591ad8ea6fabfd77c1d617ec *data/CHAIN.RData f0d0be59b38944ccb05c7db05f83919e *data/nlsyV.RData 49c2291ac7f09d1637fcab7878765298 *inst/CITATION 2351c4e207486d89a57db3bb9faf2810 *inst/doc/mi_vignette.R 3bb603698bbb07d97015c41d35f18d4d *inst/doc/mi_vignette.Rmd 010fd612cb5df6ffd87e22761ad79aa9 *inst/doc/mi_vignette.pdf 9681419f7f3ea8cbf1e49216d6afd458 *man/00mi-package.Rd 466b9739a71d35f52fb377d69ce5bfe8 *man/01missing_variable.Rd 7b35a9ee5056c35abab4b4e2745785ee *man/02missing_data.frame.Rd 62cfd3ae53c7fe548bcc066e97da961f *man/03change.Rd 588665cf7644c8632efab60fc9713990 *man/04mi.Rd 4f3212bf4cb51aeaf2c2d1e8bd35c56e *man/05Rhats.Rd a7081eae2613236aac735bf21148e442 *man/06pool.Rd a7ad72bef3c84337ab27f298f1a76604 *man/07complete.Rd ad8d0f17211c20431d4c6c59b47eec55 *man/CHAIN.Rd 4a45140aee0a1fbd45df9fd13fa588da *man/allcategorical_missing_data.frame.Rd 6fb0d4bdc81aed727ced3b3a5118e2a0 *man/bounded.Rd 85cf2151c8d5d8bf7e267905ca56d267 *man/categorical.Rd 12fcc6e58a9b9257f5b393a1f51e3f77 *man/censored-continuous.Rd 7ec42b8bb866483c2dcabe15f377f796 *man/continuous.Rd 9f73b3e29f8b96367c861066ad218399 *man/count.Rd 4cc12091ac5adda3eb0ebde9faba8c98 *man/experiment_missing_data.frame.Rd f18f64b52237f415bec92493213821d9 *man/fit_model.Rd b1d2d8ee4b8b83f249e7e989a4c9aa52 *man/get_parameters.Rd 406b1e3fab5930b77e4cab8cc46a3586 *man/hist.Rd 5b1544026cdd649d2a90a8af69faaad4 *man/irrelevant.Rd 1595a8710c4ec7b4b7525e12e350292c *man/mi-internal.Rd 5967fea9dc60e2408b10ece27886f77f *man/mi2stata.Rd 0522e2704f2ac6e3c01595a37b993f90 *man/mipply.Rd 520f42e38cf48115186e179da03a3585 *man/multilevel_missing_data.frame.Rd 6f389295b9770e77ee6804aba47f2ad0 *man/multinomial.Rd 7c2097193da68930f023cc51480fd887 *man/nlsyV.Rd 55fb1ae5649deec7a3b7268968966d8d *man/positive.Rd e3ea5ea6be1b9a772bd03e679e5d4715 *man/rdata.frame.Rd d29dd537c8ef0895f39db27059264737 *man/semi-continuous.Rd 2b34d0c66bd45e044b5fe119737f7540 *tests/missing_data.frame.R 276644cf2dc960b51d26396d74b87c15 *tests/missing_variable.R 3bb603698bbb07d97015c41d35f18d4d *vignettes/mi_vignette.Rmd r-cran-mi-1.0/NAMESPACE000066400000000000000000000027741275731226000143750ustar00rootroot00000000000000#exportPattern("^[[:alpha:]]+") importFrom(arm, display, fround, pfround, traceplot, bayesglm.fit, bayespolr) importFrom(graphics, hist) importFrom(Matrix, image) importFrom(stats4, coef, plot, summary, vcov) import(methods) exportClassPattern("^[[:alpha:]]+") exportMethods(change, change_family, change_link, change_model, change_imputation_method, change_size, change_transformation, change_type, complete, fit_model, get_parameters, hist, image, mi, missing_data.frame, missing_variable, plot) export(display, mi2BUGS, mi2stata, mipply, multinomial, pool, .prune, .possible_missing_variable, Rhats, rdata.frame) S3method(as.double, missing_variable) S3method(as.double, categorical) S3method(as.double, continuous) S3method(as.double, count) S3method(as.double, irrelevant) S3method(as.double, missing_data.frame) S3method(as.data.frame, missing_data.frame) S3method(dim, missing_data.frame) S3method(dimnames, missing_data.frame) S3method(names, missing_data.frame) S3method(dim, mi) S3method(dimnames, mi) S3method(names, mi) S3method(is.na, missing_variable) S3method(is.na, missing_data.frame) S3method(is.na, mi) S3method(length, missing_variable) S3method(length, missing_data.frame) S3method(length, mi) S3method(print, mdf_list) S3method(print, mi_list) S3method("[", missing_data.frame) S3method("[<-", missing_data.frame) S3method("[[", missing_data.frame) S3method("[[<-", missing_data.frame) S3method("$", missing_data.frame) S3method("$<-", missing_data.frame) r-cran-mi-1.0/R/000077500000000000000000000000001275731226000133455ustar00rootroot00000000000000r-cran-mi-1.0/R/AllClass.R000066400000000000000000001576451275731226000152100ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # Copyright (C) 1995-2012 The R Core Team # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## NOTE: If you change something here, also update the UML graph thingie setClassUnion("MatrixTypeThing", c("matrix")) setOldClass("family") suppressWarnings(setClassUnion("WeAreFamily", c("family", "character"))) # arm + lme4 = warnings setOldClass("mi_list") setOldClass("mdf_list") .known_imputation_methods <- c("ppd", "pmm", "mean", "median", "expectation", "mode", "mcar", NA_character_) .known_families <- c("binomial", "gaussian", "Gamma", "inverse.gaussian", "poisson", "quasibinomial", "quasipoisson") # "quasi" is not supported at the moment (FIXME) .known_links <- c("logit", "probit", "cauchit", "log", "cloglog", # for binomial() "identity", "inverse", # for gaussian() plus "log", # "inverse", "identity", "log", # for Gamma() "sqrt", # for poisson() plus "log", and "identity", "1/mu^2") # for inverse.gaussian() plus "inverse", "identity" and "log" # An important class in library(mi) is the missing_variable class, which is a virtual class # for a variable that may (or may not) have missingness. The usual types of variables that # we are interested in imputing all inherit (perhaps indirectly) from the missing_variable # superclass, e.g. continuous, binary, etc. In principle, these class definitions should # provide ALL the necessary information for that variable, like the extent of its missingness # and how the missing values will be (or have been) imputed. Thus, in principle, it should # be possible to tweak the behavior of library(mi) simply by 1) creating a new class that # inherits from the relevant existing class, 2) writing methods for the mi() and fit_model() # generics and 3) perhaps a few other things that you will have to discover on your own. ## missing_variable is a virtual class for a variable that may (or may not) have missingness setClass("missing_variable", representation( variable_name = "character", # name of the variable but do not rely on for anything important raw_data = "ANY", ## DO NOT EVER CHANGE THE VALUES OF THIS SLOT data = "ANY", ## Copy the raw_data into data and modify data as necessary n_total = "integer", # total number of potential datapoints, i.e. length of raw_data all_obs = "logical", # are ALL datapoints actually observed, i.e. not missing? n_obs = "integer", # number of observed datapoints which_obs = "integer", # which datapoints are observed all_miss = "logical", # are ALL datapoints missing, only true for latent variables n_miss = "integer", # number of missing datapoints in the data slot (originally) which_miss = "integer", # which datapoints are missing in the data slot n_extra = "integer", # number of extra datapoints added (as missing) which_extra = "integer", # which datapoints are extras n_unpossible = "integer", # number of datapoints for which the variable could not be observed which_unpossible = "integer",# which datapoints could not be observed n_drawn = "integer", # number of datapoints to impute which_drawn = "integer", # which datapoints are imputed imputation_method = "character", # how to impute them family = "WeAreFamily", # see help(family) known_families = "character",# families listed on help(family) plus multinomial() known_links = "character", # see help(family) imputations = "MatrixTypeThing", # iterations x n_drawn matrix of imputation history done = "logical", # are we finished imputing? parameters = "MatrixTypeThing", # history of estimated parameters in modeling this variable model = "ANY", # last model fit fitted = "ANY", # last fitted values "VIRTUAL"), prototype( variable_name = NA_character_, imputations = matrix(NA_real_, 0, 0), parameters = matrix(NA_real_, 0, 0), imputation_method = .known_imputation_methods, family = NA_character_, known_families = .known_families, known_links = .known_links ), validity = function(object) { out <- TRUE l <- length(object@raw_data) if(l == 0) return(out) if(sum(-object@n_total, object@n_obs, object@n_miss, object@n_extra, object@n_unpossible, na.rm = TRUE)) { out <- paste(object@variable_name, ": slots 'n_obs', 'n_miss', 'n_extra', and 'n_unpossible' must sum to 'n_total'") } else if(!(length(object@which_obs) %in% c(0:1, object@n_obs))) { out <- paste(object@variable_name, ": 'n_obs' must equal the length of 'which_obs'") } else if(!(length(object@which_miss) %in% c(0:1, object@n_miss))) { out <- paste(object@variable_name, ": 'n_miss' must equal the length of 'which_miss'") } else if(!(length(object@which_extra) %in% c(0:1, object@n_extra))) { out <- paste(object@variable_name, ": 'n_extra' must equal the length of 'which_extra'") } else if(!(length(object@which_extra) %in% c(0:1, object@n_unpossible))) { out <- paste(object@variable_name, ": 'n_unpossible' must equal the length of 'which_unpossible'") } else if(sum(object@n_obs)) { temp <- sort(c(object@which_obs, object@which_miss, object@which_extra, object@which_unpossible)) names(temp) <- NULL if(!identical(1:object@n_total, temp)) { out <- paste(object@variable_name, ": ''which_*' slots must be mutually exclusive and exhaustive") } } for(i in slotNames(object)) { if(i %in% c("raw_data", "data", "which_obs", "which_miss", "which_extra", "which_unpossible", "which_drawn", "imputation_method", "known_transformations", "family", "known_families", "known_links", "levels", "cutpoints")) next if((l <- length(slot(object, i))) > 1) { out <- paste(object@variable_name, ": length of", i, "must be 0 or 1 but is", l) break } } return(out) } ) ## this initialize() method gets called for everything that inherits from missing_variable ## but can be modified by a subsequently-called initialize() method setMethod("initialize", "missing_variable", def = function(.Object, NA.strings = c("", ".", "Na", "N/a", "N / a", "NaN", "Not Applicable", "Not applicable", "Not Available", "Not available", "Not Ascertained", "Not ascertained", "Unavailable", "Unknown", "Missing", "Dk", "Don't Know", "Don't know", "Do Not Know", "Do not know"), ...) { .Object <- callNextMethod() if(length(.Object@raw_data) == 0) return(.Object) if(length(.Object@data) == 0) { # copy raw_data into data .Object@data <- .Object@raw_data names(.Object@data) <- .Object@variable_name } # bookkeeping infinites <- is.infinite(.Object@raw_data) if(any(infinites)) { warning(paste(.Object@variable_name, ": some observations are infinite, changing to NA")) .Object@data[infinites] <- NA } nans <- is.nan(.Object@raw_data) if(any(nans)) { warning(paste(.Object@variable_name, ": some observations are NaN, changing to NA")) .Object@data[nans] <- NA } NA.strings <- unique(c(NA.strings, toupper(NA.strings), tolower(NA.strings))) if(!is.numeric(.Object@raw_data)) for(i in seq_along(NA.strings)) { mark <- .Object@raw_data == NA.strings[i] if(any(mark, na.rm = TRUE)) { warning(paste(.Object@variable_name, ": some observations", NA.strings[i], "changing to NA")) .Object@data[mark] <- NA } } NAs <- which(is.na(.Object@data)) if(length(NAs)) .Object@imputation_method <- "ppd" else .Object@imputation_method <- NA_character_ .Object@n_miss <- length(NAs) .Object@which_miss <- NAs notNAs <- which(!is.na(.Object@data)) .Object@n_obs <- length(notNAs) .Object@which_obs <- notNAs .Object@n_total <- length(NAs) + length(notNAs) .Object@all_miss <- length(notNAs) == 0 .Object@all_obs <- length(NAs) == 0 if(!length(.Object@n_extra)) .Object@n_extra <- 0L if(!length(.Object@n_unpossible)) .Object@n_unpossible <- 0L .Object@n_drawn <- .Object@n_miss + .Object@n_extra .Object@which_drawn <- c(.Object@which_miss, .Object@which_extra) .Object@done <- FALSE return(.Object) }) setClass("irrelevant", representation("missing_variable"), # prototype( # imputation_method = NA_character_, # family = NA_character_) ) ## a constant variable that has no missingness (and very few methods) setClass("fixed", representation("irrelevant"), validity = function(object) { out <- TRUE vals <- unique(object@raw_data) vals <- vals[!is.na(vals)] if(sum(object@n_miss)) { out <- paste(object@variable_name, ": fixed variables cannot have missingness") } else if(length(vals) > 1) { out <- paste(object@variable_name, ": purportedly 'fixed' variables cannot have multiple unique values") } return(out) } ) setClass("group", representation("irrelevant")) ## virtual class for categorical variables, which may be unordered, ordered, binary, or interval setClass("categorical", representation( "missing_variable", levels = "character", "VIRTUAL"), prototype( known_families = c("multinomial", "binomial", "gaussian") ) ) setMethod("initialize", "categorical", def = function(.Object, ...) { .Object <- callNextMethod() l <- length(.Object@raw_data) if(l == 0) return(.Object) ## FIXME: check on the unused levels thing # .Object@raw_data <- factor(.Object@raw_data) lev <- levels(factor(.Object@raw_data)) # dummies <- t(sapply(.Object@raw_data, FUN = function(x) as.integer(x == lev)))[,-1, drop = FALSE] # if(ncol(dummies) == 1) colnames(dummies) <- .Object@variable_name # else colnames(dummies) <- lev[-1] # mark <- !apply(dummies, 2, FUN = function(x) all(x == 0, na.rm = TRUE)) # dummies <- dummies[,mark, drop = FALSE] # lev <- c(lev[1], lev[-1][mark]) .Object@levels <- lev .Object@data <- as.integer(factor(.Object@raw_data)) return(.Object) }) ## this is a hacked version of binomial() multinomial <- function (link = "logit") { linktemp <- substitute(link) if (!is.character(linktemp)) { linktemp <- deparse(linktemp) if (linktemp == "link") { warning("use of multinomial(link=link) is deprecated\n", domain = NA) linktemp <- eval(link) if (!is.character(linktemp) || length(linktemp) != 1L) stop("'link' is invalid", domain = NA) } } okLinks <- c("logit", "probit", "cloglog", "cauchit", "log") if (linktemp %in% okLinks) stats <- make.link(linktemp) else if (is.character(link)) { stats <- make.link(link) linktemp <- link } else { if (inherits(link, "link-glm")) { stats <- link if (!is.null(stats$name)) linktemp <- stats$name } else { stop(gettextf("link \"%s\" not available for multinomial family; available links are %s", linktemp, paste(sQuote(okLinks), collapse = ", ")), domain = NA) } } variance <- function(mu) mu * (1 - mu) validmu <- function(mu) all(mu > 0) && all(mu < 1) dev.resids <- binomial()$dev.resids aic <- function(y, n, mu, wt, dev) { m <- if (any(n > 1)) n else wt -2 * sum(ifelse(m > 0, (wt/m), 0) * dbinom(round(m * y), round(m), mu, log = TRUE)) } initialize <- expression({ if (NCOL(y) == 1) { if (is.factor(y)) y <- y != levels(y)[1L] n <- rep.int(1, nobs) y[weights == 0] <- 0 if (any(y < 0 | y > 1)) stop("y values must be 0 <= y <= 1") mustart <- (weights * y + 0.5)/(weights + 1) m <- weights * y if (any(abs(m - round(m)) > 0.001)) warning("non-integer #successes in a multinomial glm!") } else if (NCOL(y) == 2) { if (any(abs(y - round(y)) > 0.001)) warning("non-integer counts in a multinomial glm!") n <- y[, 1] + y[, 2] y <- ifelse(n == 0, 0, y[, 1]/n) weights <- weights * n mustart <- (n * y + 0.5)/(n + 1) } else stop("for the multinomial family, y must be a vector of 0 and 1's\n", "or a 2 column matrix where col 1 is no. successes and col 2 is no. failures") }) simfun <- function(object, nsim) { ftd <- fitted(object) n <- length(ftd) ntot <- n * nsim wts <- object$prior.weights if (any(wts%%1 != 0)) stop("cannot simulate from non-integer prior.weights") if (!is.null(m <- object$model)) { y <- model.response(m) if (is.factor(y)) { yy <- factor(1 + rbinom(ntot, size = 1, prob = ftd), labels = levels(y)) split(yy, rep(seq_len(nsim), each = n)) } else if (is.matrix(y) && ncol(y) == 2) { yy <- vector("list", nsim) for (i in seq_len(nsim)) { Y <- rbinom(n, size = wts, prob = ftd) YY <- cbind(Y, wts - Y) colnames(YY) <- colnames(y) yy[[i]] <- YY } yy } else rbinom(ntot, size = wts, prob = ftd)/wts } else rbinom(ntot, size = wts, prob = ftd)/wts } structure(list(family = "multinomial", link = linktemp, linkfun = stats$linkfun, linkinv = stats$linkinv, variance = variance, dev.resids = dev.resids, aic = aic, mu.eta = stats$mu.eta, initialize = initialize, validmu = validmu, valideta = stats$valideta, simulate = simfun), class = "family") } ## unordered categorical, which corresponds to an unordered factor with more than 2 levels setClass("unordered-categorical", representation("categorical", estimator = "character", use_NA = "logical", rank = "integer"), prototype( estimator = "MNL", imputation_method = c("ppd", "pmm", "mode", "mcar", NA_character_), family = multinomial(link = "logit"), known_families = c("multinomial", "binomial"), known_links = c("logit", "probit", "cauchit", "log", "cloglog"), use_NA = FALSE, rank = NA_integer_ ), validity = function(object) { out <- TRUE values <- unique(object@raw_data) values <- values[!is.na(values)] im <- getClass(class(object))@prototype@imputation_method if(length(values) > 0 && length(values) <= 2) { out <- paste(object@variable_name, "unordered-categoricals must have more than 2 levels; otherwise use binary") } else if(!all(object@imputation_method %in% im)) { out <- paste(object@variable_name, ": 'imputation_method' must be one of:\n", paste(im, collapse = ", ")) } # else if(object@family$family != "multinomial") { # out <- "the 'family' slot of 'unordered-categorial' class must be 'multinomial(link = 'logit')'" # } # else if(object@family$link != "logit") { # out <- "the 'family' slot of 'unordered-categorial' class must be 'multinomial(link = 'logit')'" # } else if(!(object@estimator %in% c("MNL", "RNL"))) { out <- paste(object@variable_name, ": estimator not recognized") } else if(!(object@use_NA %in% c(TRUE, FALSE))) { out <- paste(object@variable_name, ": use_NA must be TRUE or FALSE") } return(out) } ) ## ordered categorical, which corresponds to an ordered factor setClass("ordered-categorical", representation("categorical", cutpoints = "numeric"), prototype( imputation_method = c("ppd", "pmm", "mode", "mcar", NA_character_), family = multinomial(link = "logit"), known_families = c("multinomial", "gaussian", "binomial", "quasibinomial"), known_links = "logit" ), validity = function(object) { out <- TRUE im <- getClass(class(object))@prototype@imputation_method if(!(object@family$family %in% getClass(class(object))@prototype@known_families)) { # interval and binary are validated separately out <- "the 'family' slot of 'ordered-categorial' class must be 'multinomial()'" } else if(object@family$family == "multinomial" && object@family$link != "logit") { out <- "the 'family' slot of 'ordered-categorial' class must be 'multinomial(link = 'logit')'" } else if(!all(object@imputation_method %in% im)) { out <- paste(object@variable_name, ": 'imputation_method' must be one of:\n", paste(im, collapse = ", ")) } return(out) } ) ## ordered categorical with known cutpoints that discretize a continuous variable (like income) setClass("interval", representation("ordered-categorical"), prototype( imputation_method = c("ppd", NA_character_), family = gaussian(), known_families = "gaussian", known_links = c("identity", "inverse", "log") ), validity = function(object) { out <- TRUE if(!(object@imputation_method[1] == "ppd")) { out <- paste(object@variable_name, ": 'imputation_method' must be 'ppd'") } else if(object@family$family != "gaussian") { out <- "the 'family' slot of 'interval' class must be 'gaussian()'" } return(out) } ) ## binary variable # binary inherits from ordered-categorical because it often makes sense to think of # those who are coded as 1 as having "more" of something than those who are coded as # zero. Also, binary logit, probit, etc. are special cases of ordinal logit, probit, # etc. with one cutpoint fixed at zero. setClass("binary", representation("ordered-categorical"), prototype( family = binomial(link = "logit"), known_families = c("binomial", "quasibinomial"), known_links = c("logit", "probit", "cauchit", "log", "cloglog"), cutpoints = 0.0), validity = function(object) { out <- TRUE if(length(object@raw_data) == 0) return(out) vals <- unique(object@raw_data) vals <- vals[!is.na(vals)] kf <- getClass(class(object))@prototype@known_families kl <- getClass(class(object))@prototype@known_links if(length(vals) != 2) { out <- paste(object@variable_name, ": binary variables must have exactly two response categories") } else if(!identical(object@cutpoints, 0.0)) { out <- paste(object@variable_name, ": 'cutpoints' must be 0.0 for a binary variable") } else if(!(object@family$family %in% kf)) { out <- paste(object@variable_name, ": the 'family' slot of a object of class 'binary' must be one of", paste(kf, collapse = ", ")) } else if(!(object@family$link %in% kl)) { out <- paste(object@variable_name, ": the 'link' slot of the 'family' slot of a object of class 'binary' must be one of", paste(kl, collapse = ", ")) } return(out) } ) setMethod("initialize", "binary", def = function(.Object, ...) { .Object <- callNextMethod() l <- length(.Object@raw_data) if(l == 0) return(.Object) .Object@data <- as.integer(.Object@data == max(.Object@data, na.rm = TRUE)) + 1L return(.Object) }) setClass("grouped-binary", representation("binary", strata = "character"), prototype( imputation_method = "pmm" ), validity = function(object) { out <- TRUE if(length(object@raw_data) == 0) return(out) if(!requireNamespace("survival")) { out <- "the 'survival' package must be installed to use 'grouped-binary' variables" } else if(length(object@strata) == 0) { warning(paste("you must specify the 'strata' slot for", object@variable_name, "see help('grouped-binary-class')")) } return(out) } ) setMethod("initialize", "grouped-binary", def = function(.Object, ...) { .Object <- callNextMethod() l <- length(.Object@raw_data) if(l == 0) return(.Object) .Object@imputation_method <- "pmm" return(.Object) }) ## count variables, which must be nonnegative integers setClass("count", representation("missing_variable"), prototype( imputation_method = c("ppd", "pmm", "mean", "median", "expectation", "mcar", NA_character_), family = quasipoisson(), known_families = c("quasipoisson", "poisson"), known_links = c("log", "identity", "sqrt") ), validity = function(object) { out <- TRUE l <- length(object@raw_data) if(l == 0) return(out) im <- getClass(class(object))@prototype@imputation_method if(any(object@raw_data < 0, na.rm = TRUE)) { out <- paste(object@variable_name, ": counts must be nonnegative") } else if(any(object@raw_data != as.integer(object@raw_data), na.rm = TRUE)) { out <- paste(object@variable_name, ": must contain all nonnegative integers to use the 'count' class") } else if(!all(object@imputation_method %in% im)) { out <- paste(object@variable_name, ": 'imputation_method' must be one of:\n", paste(im, collapse = ", ")) } else if(sum(object@n_unpossible)) { out <- paste(object@variable_name, ": unpossible observations not supported for count variables yet") } return(out) } ) .identity_transform <- function(y, ...) return(y) .standardize_transform <- function(y, mean = stop("must supply mean"), sd = stop("must supply sd"), inverse = FALSE) { if(inverse) return(y * 2 * sd + mean) else return( (y - mean) / (2 * sd) ) } ## continuous variables, which may have inequality restrictions or transformation functions setClass("continuous", representation( "missing_variable", transformation = "function", inverse_transformation = "function", transformed = "logical", # TRUE -> in transformed state known_transformations = "character" ), prototype( imputation_method = c("ppd", "pmm", "mean", "median", "expectation", "mcar", NA_character_), transformed = TRUE, transformation = .standardize_transform, inverse_transformation = .standardize_transform, family = gaussian(), known_families = c("gaussian", "Gamma", "inverse.gaussian", "binomial"), # binomial() is only for (SC_)proportions known_links = .known_links[.known_links != "sqrt"], known_transformations = c("standardize", "identity", "log", "logshift", "squeeze", "sqrt", "cuberoot", "qnorm") ), validity = function(object) { out <- TRUE im <- getClass(class(object))@prototype@imputation_method kf <- getClass(class(object))@prototype@known_families kl <- getClass(class(object))@prototype@known_links if(!all(object@imputation_method %in% im)) { out <- paste(object@variable_name, ": 'imputation_method' must be one of:\n", paste(im, collapse = ", ")) } else if(sum(object@n_unpossible)) { out <- paste(object@variable_name, ": unpossible observations not supported for continuous variables yet") } else if(!(object@family$family %in% kf)) { out <- paste(object@variable_name, ": the 'family' slot of a object of class 'binary' must be one of", paste(kf, collapse = ", ")) } else if(!(object@family$link %in% kl)) { out <- paste(object@variable_name, ": the 'link' slot of the 'family' slot of a object of class 'binary' must be one of", paste(kl, collapse = ", ")) } return(out) } ) setMethod("initialize", "continuous", def = function(.Object, ...) { .Object <- callNextMethod() l <- length(.Object@raw_data) if(l == 0) return(.Object) if(identical(.Object@transformation, .standardize_transform)) { mean <- mean(.Object@raw_data, na.rm = TRUE) sd <- sd(.Object@raw_data, na.rm = TRUE) formals(.Object@transformation)$mean <- formals(.Object@inverse_transformation)$mean <- mean formals(.Object@transformation)$sd <- formals(.Object@inverse_transformation)$sd <- sd formals(.Object@inverse_transformation)$inverse <- TRUE } else if(identical(.Object@transformation, .logshift)) { y <- .Object@raw_data if(any(y < 0, na.rm = TRUE)) a <- - min(y, na.rm = TRUE) else a <- 0 a <- (a + min(y[y > 0], na.rm = TRUE)) / 2 formals(.Object@transformation)$a <- formals(.Object@inverse_transformation)$a <- a formals(.Object@inverse_transformation)$inverse <- TRUE } .Object@data <- .Object@transformation(.Object@raw_data) .Object@data[.Object@which_miss] <- NA_real_ return(.Object) }) setClass("bounded-continuous", representation("continuous", lower = "numeric", upper = "numeric"), prototype( imputation_method = "ppd", transformation = .identity_transform, inverse_transformation = .identity_transform ), validity = function(object) { out <- TRUE # if(any(object@raw_data <= object@lower, na.rm = TRUE)) { # out <- paste(object@variable_name, ": all observed data must be strictly greater than 'lower'") # } # else if(any(object@raw_data >= object@upper, na.rm = TRUE)) { # out <- paste(object@variable_name, ": all observed data must be strictly less than 'upper'") # } if(any(object@lower > object@upper)) { out <- paste(object@variable_name, ": lower bounds must be less than or equal to upper bounds") } else if(object@imputation_method != "ppd") { out <- paste(object@variable_name, ": 'imputation_method' must be 'ppd' for 'bounded-continuous' variables ") } else if(!requireNamespace("truncnorm")) { out <- paste(object@variable_name, ": the 'truncnorm' package must be installed to use the 'bounded-continuous' class") } return(out) } ) setMethod("initialize", "bounded-continuous", def = function(.Object, lower = -Inf, upper = Inf, ...) { .Object <- callNextMethod() l <- length(.Object@raw_data) if(l == 0) return(.Object) .Object@lower <- lower .Object@upper <- upper return(.Object) }) setClass("positive-continuous", representation("continuous"), prototype( transformation = log, inverse_transformation = exp, known_transformations = c("log", "sqrt", "squeeze", "qnorm") ), validity = function(object) { out <- TRUE if(any(object@raw_data <= 0, na.rm = TRUE)) { out <- paste(object@variable_name, ": positive variables must be positive") } return(out) } ) ## must be on the (0,1) interval setClass("proportion", representation("positive-continuous", link.phi = "WeAreFamily"), prototype( transformed = FALSE, transformation = .identity_transform, inverse_transformation = .identity_transform, known_transformations = c("squeeze", "qnorm"), family = binomial(), known_families = c("binomial", "gaussian"), known_links = .known_links[.known_links != "sqrt"], link.phi = "log"), validity = function(object) { out <- TRUE kf <- getClass(class(object))@prototype@known_families kl <- getClass(class(object))@prototype@known_links if(any(object@raw_data > 1, na.rm = TRUE)) { out <- paste(object@variable_name, ": proportions must be on the unit interval") } else if(any(object@raw_data == 1, na.rm = TRUE)) { out <- paste(object@variable_name, ": some proportions are equal to 1.0 so use the SC_proportion class") } else if(!(object@family$family %in% kf)) { out <- paste(object@variable_name, ": the 'family' slot of a object of class 'proportion' must be one of", paste(kf, collapse = ", ")) } else if(!(object@family$link %in% kl)) { out <- paste(object@variable_name, ": the 'link' slot of the 'family' slot of a object of class 'proportion' must be one of", paste(kl, collapse = ", ")) } else if(object@family$family == "binomial" && !requireNamespace("betareg")) { out <- paste(object@variable_name, ": you must install the 'betareg' package to model proportions as proportions") } return(out) } ) # setClass("truncated-continuous", # representation("continuous", # lower = "ANY", # upper = "ANY", # n_lower = "integer", # which_lower = "integer", # n_upper = "integer", # which_upper = "integer", # n_both = "integer", # which_both = "integer", # n_truncated = "integer", # which_truncated = "integer", # "VIRTUAL") # ) # # setClass("NN_truncated-continuous", representation("truncated-continuous", lower = "numeric", upper = "numeric")) # # setMethod("initialize", "NN_truncated-continuous", def = # function(.Object, ...) { # .Object <- callNextMethod() # l <- length(.Object@raw_data) # if(l == 0) return(.Object) # if(identical(.Object@transformation, .standardize_transform)) { # mean <- mean(.Object@raw_data, na.rm = TRUE) # sd <- sd(.Object@raw_data, na.rm = TRUE) # formals(.Object@transformation)$mean <- formals(.Object@inverse_transformation)$mean <- mean # formals(.Object@transformation)$sd <- formals(.Object@inverse_transformation)$sd <- sd # formals(.Object@inverse_transformation)$inverse <- TRUE # } # .Object@data <- .Object@transformation(.Object@raw_data) # # if(length(.Object@lower) == 0 & length(.Object@upper) == 0) { # stop("at least one of 'lower' and 'upper' must be specified") # } # ## FIXME: Deal with interval censoring or force it to the interval class # .Object@n_both <- 0L # lowers <- .Object@raw_data <= .Object@lower # .Object@n_lower <- sum(lowers) # .Object@which_lower <- which(lowers) # uppers <- .Object@raw_data >= .Object@upper # .Object@n_uppers <- sum(uppers) # .Object@which_uppers <- which(uppers) # .Object@n_truncated <- .Object@n_lower + .Object@n_upper # .Object@which_truncated <- c(.Object@which_lower, .Object@which_upper) # return(.Object) # }) # # setClass("FN_truncated-continuous", representation("truncated-continuous", lower = "function", upper = "numeric")) # setClass("NF_truncated-continuous", representation("truncated-continuous", lower = "numeric", upper = "function")) # setClass("FF_truncated-continuous", representation("truncated-continuous", lower = "function", upper = "function")) # # setClass("censored-continuous", # representation("continuous", # lower = "ANY", # upper = "ANY", # n_lower = "integer", # which_lower = "integer", # n_upper = "integer", # which_upper = "integer", # n_both = "integer", # which_both = "integer", # n_censored = "integer", # which_censored = "integer", # lower_indicator = "binary", # upper_indicator = "binary", # "VIRTUAL") # ) # setClass("NN_censored-continuous", representation("censored-continuous", lower = "numeric", upper = "numeric")) # setMethod("initialize", "NN_censored-continuous", def = # function(.Object, ...) { # .Object <- callNextMethod() # l <- length(.Object@raw_data) # if(l == 0) return(.Object) # if(identical(.Object@transformation, .standardize_transform)) { # mean <- mean(.Object@raw_data, na.rm = TRUE) # sd <- sd(.Object@raw_data, na.rm = TRUE) # formals(.Object@transformation)$mean <- formals(.Object@inverse_transformation)$mean <- mean # formals(.Object@transformation)$sd <- formals(.Object@inverse_transformation)$sd <- sd # formals(.Object@inverse_transformation)$inverse <- TRUE # } # .Object@data <- .Object@transformation(.Object@raw_data) # # if(length(.Object@lower) == 0 & length(.Object@upper) == 0) { # stop("at least one of 'lower' and 'upper' must be specified") # } # ## FIXME: Deal with interval censoring or force it to the interval class # .Object@n_both <- 0L # lowers <- .Object@raw_data <= .Object@lower # .Object@n_lower <- sum(lowers, na.rm = TRUE) # .Object@which_lower <- which(lowers) # if(.Object@n_lower > 0) { # .Object@lower_indicator <- missing_variable(as.ordered(lowers), type = "binary", # variable_name = paste(.Object@variable_name, "lower", sep = "")) # } # uppers <- .Object@raw_data >= .Object@upper # .Object@n_upper <- sum(uppers, na.rm = TRUE) # .Object@which_upper <- which(uppers) # if(.Object@n_upper > 0) { # .Object@lower_indicator <- missing_variable(as.ordered(uppers), type = "binary", # variable_name = paste(.Object@variable_name, "upper", sep = "")) # } # .Object@n_censored <- .Object@n_lower + .Object@n_upper # .Object@which_censored <- c(.Object@which_lower, .Object@which_upper) # return(.Object) # }) # # setClass("FN_censored-continuous", representation("censored-continuous", lower = "function", upper = "numeric")) # setClass("NF_censored-continuous", representation("censored-continuous", lower = "numeric", upper = "function")) # setClass("FF_censored-continuous", representation("censored-continuous", lower = "function", upper = "function")) setClass("semi-continuous", representation("continuous", indicator = "ordered-categorical"), prototype( transformation = .identity_transform, inverse_transformation = .identity_transform) ) .logshift <- function(y, a, inverse = FALSE) { if(inverse) exp(y) - a else log(y + a) } setClass("nonnegative-continuous", representation("semi-continuous"), prototype(transformation = .logshift, inverse_transformation = .logshift, known_transformations = c("logshift", "squeeze", "identity")), validity = function(object) { out <- TRUE if(any(object@raw_data < 0, na.rm = TRUE)) { out <- paste(object@variable_name, ": nonnegative variables must be nonnegative") } return(out) } ) setMethod("initialize", "nonnegative-continuous", def = function(.Object, ...) { .Object <- callNextMethod() l <- length(.Object@raw_data) if(l == 0) return(.Object) is_zero <- as.integer(.Object@raw_data == 0) if(any(is_zero, na.rm = TRUE)) { .Object@indicator <- missing_variable(is_zero, type = "binary", variable_name = paste(.Object@variable_name, ":is_zero", sep = "")) } .Object@data <- .Object@transformation(.Object@raw_data) if(!all(is.finite(.Object@data[!is.na(.Object)]))) { stop(paste(.Object@variable_name, ": some transformed values are infinite or undefined")) } return(.Object) }) .squeeze_transform <- function(y, inverse = FALSE) { n <- length(y) if(inverse) (y * n - .5) / (n - 1) else (y * (n - 1) + .5) / n } ## some values are zero and / or one setClass("SC_proportion", representation("nonnegative-continuous", link.phi = "WeAreFamily"), prototype( transformation = .squeeze_transform, inverse_transformation = .squeeze_transform, known_transformations = c("squeeze", "qnorm"), family = binomial(), known_families = "binomial", known_links = getClass("binary")@prototype@known_links, link.phi = "log" ), validity = function(object) { out <- TRUE if(any(object@data > 1, na.rm = TRUE)) { out <- paste(object@variable_name, ": proportions must be less than or equal to 1") } else if(object@family$family != "binomial") { out <- paste(object@variable_name, ": 'family' must be 'binomial'") } else if(!identical(body(object@transformation), body(.squeeze_transform))) { out <- paste(object@variable_name, ": 'transformation' must be 'squeeze'") } else if(!requireNamespace("betareg")) { out <- paste(object@variable_name, ": you must install the 'betareg' package to model proportions") } return(out) } ) setMethod("initialize", "SC_proportion", def = function(.Object, ...) { .Object <- callNextMethod() l <- length(.Object@raw_data) if(l == 0) return(.Object) if(any(.Object@raw_data == 0, na.rm = TRUE)) { if(any(.Object@raw_data == 1, na.rm = TRUE)) { is_bound <- ifelse(.Object@raw_data == 0, -1, ifelse(.Object@raw_data == 1, 1, 0)) .Object@indicator <- missing_variable(is_bound, type = "ordered-categorical", variable_name = paste(.Object@variable_name, ":is_bound", sep = "")) } else { is_zero <- as.integer(.Object@raw_data == 0) .Object@indicator <- missing_variable(is_zero, type = "binary", variable_name = paste(.Object@variable_name, ":is_zero", sep = "")) } } else { is_one <- as.integer(.Object@raw_data == 1) .Object@indicator <- missing_variable(is_one, type = "binary", variable_name = paste(.Object@variable_name, ":is_one", sep = "")) } return(.Object) }) # A missing_data.frame is a another important S4 class that is not unlike a data.frame, except # that its "columns" (actually list elements) are objects that inherit from the missing_variable # class. The missing_data.frame class should, in principle, contain ALL the necessary information # regarding how the missing_variables relate to each other. Together, the missing_variable class(es) # and the missing_data.frame class supplant the mi.info S4 class in previous versions of library(mi). .get_slot <- function(object, name, simplify = TRUE) { if(isS4(object)) return(slot(object, name)) else if(is.list(object)) sapply(object, FUN = slot, name = name, simplify = simplify) else stop("'object' not supported") } setOldClass("data.frame") setClass("missing_data.frame", representation( variables = "list", # of missing_variables no_missing = "logical", # basically a collection of the all_obs slots of the missing_variables patterns = "factor", # indicates which missingness_pattern an observation belongs to DIM = "integer", # observations x variables DIMNAMES = "list", # list of rownames and colnames postprocess = "function",# makes additional variables from existing variables (interactions, etc.) index = "list", # this indicate which variables to exclude when modeling a given variable X = "MatrixTypeThing", # ALL variables (categorical variables are in dummy-variable form) weights = "list", # this gets passed to bayesglm() and similar modeling functions priors = "list", # the elements of this get passed to bayesglm() and other modeling functions in arm correlations = "matrix", # has SMCs and Spearman correlations done = "logical", # are we done? workpath = "character"), contains = "data.frame", prototype(postprocess = function() stop("postprocess does not work yet"), X = matrix(NA_real_, 0, 0), done = FALSE), validity = function(object) { out <- TRUE l <- length(object@variables) if(l == 0) return(out) if(!all(sapply(object@variables, FUN = is, class2 = "missing_variable"))) { out <- "all of the list elements in 'variables' must inherit from the 'missing_variable' class" } else if(length(unique(.get_slot(object@variables, "n_total"))) > 1) { out <- "all missing_variables must have the same 'n_total'" } else if(!is.numeric(object@X)) { out <- "'X' must be a numeric matrix" } missingness <- .get_slot(object@variables, "which_miss", simplify = FALSE) varnames <- .get_slot(object@variables, "variable_name") names(missingness) <- varnames missingness <- missingness[sapply(missingness, length) > 0] if(length(missingness) > 1) { ## FIXME: Very slow combos <- combn(length(missingness), 2) dupes <- apply(combos, 2, FUN = function(x) { mx1 <- missingness[[x[1]]] mx2 <- missingness[[x[2]]] if(length(mx1) == length(mx2)) { if(identical(mx1, mx2)) return(1L) } else if(length(mx1) > length(mx2)) { if(all(mx2 %in% mx1)) return(2L) } else if(all(mx1 %in% mx2)) return(3L) return(0L) }) if(any(dupes == 1L)) { temp <- matrix(names(missingness)[combos[,which(dupes == 1L)]], ncol = 2, byrow = TRUE) cat("NOTE: The following pairs of variables appear to have the same missingness pattern.\n", "Please verify whether they are in fact logically distinct variables.\n") print(temp) # warning("Potentially duplicated variables detected by duplicated variable detector") } else if(any(dupes == 2L)) { temp <- matrix(names(missingness)[combos[,which(dupes == 2L)]], ncol = 2, byrow = TRUE) cat("NOTE: In the following pairs of variables, the missingness pattern of the second is a subset of the first.\n", "Please verify whether they are in fact logically distinct variables.\n") print(temp) } else if(any(dupes == 3L)) { temp <- matrix(names(missingness)[combos[,which(dupes == 3L)]], ncol = 2, byrow = TRUE) cat("NOTE: In the following pairs of variables, the missingness pattern of the first is a subset of the second.\n", "Please verify whether they are in fact logically distinct variables.\n") print(temp) } } return(out) } ) .set_priors <- function(variables, mu = 0) { ## FIXME: maybe add an option to draw from such a t distribution? foo <- function(y) { out <- list(prior.mean = mu, prior.scale = 2.5, prior.df = 1, prior.mean.for.intercept = mu, prior.scale.for.intercept = 10, prior.df.for.intercept = 1) if(is(y, "irrelevant") | y@all_obs) return(NULL) else if(is(y, "binary")) { if(y@family$link == "probit") { out[[2]] <- out[[2]] * dnorm(0) / dlogis(0) out[[4]] <- out[[4]] * dnorm(0) / dlogis(0) } } else if(is(y, "categorical")) { out <- list(prior.mean = mu, prior.scale = 2.5, prior.df = 1, prior.counts.for.bins = 1/(1 + length(y@levels))) } return(out) } out <- lapply(variables, FUN = function(y) foo(y)) for(i in seq_along(variables)) if(is(y <- variables[[i]], "semi-continuous")) out[[y@indicator@variable_name]] <- foo(y@indicator) return(out) } setMethod("initialize", "missing_data.frame", def = function(.Object, include_missingness = TRUE, skip_correlation_check = FALSE, ...) { .Object <- callNextMethod() l <- length(.Object@variables) if(l == 0) return(.Object) varnames <- names(.Object@variables) if(is.null(varnames)) { if(is.null(.Object@DIMNAMES[[2]])) names(.Object@variables) <- sapply(.Object@variables, FUN = .get_slot, name = "variable_name") else names(.Object@variables) <- .Object@DIMNAMES[[2]] } else for(i in 1:l) .Object@variables[[i]]@variable_name <- varnames[i] .Object@DIM <- c(.Object@variables[[1]]@n_total, l) .Object@no_missing <- sapply(.Object@variables, FUN = .get_slot, name = "all_obs") if(length(.Object@DIMNAMES) == 0) .Object@DIMNAMES <- list(NULL, names(.Object@variables)) Z <- lapply(.Object@variables, FUN = function(y) { if(is(y, "irrelevant")) return(NULL) else return(is.na(y)) }) Z <- as.matrix(as.data.frame(Z[!sapply(Z, is.null)])) if(any(apply(Z, 1, all))) { warning("Some observations are missing on all included variables.\n", "Often, this indicates a more complicated model is needed for this missingness mechanism") } uZ <- unique(Z) if(nrow(uZ) == 1) { if(all(uZ[1,] == 0)) patterns <- factor(rep("nothing", nrow(Z))) else patterns <- factor(colnames(uZ)[which(uZ[1,] == 1)], nrow(Z)) } else { uZ <- uZ[order(rowSums(uZ)),,drop = FALSE] patterns <- apply(Z, 1, FUN = function(x) which(apply(uZ, 1, FUN = function(u) all(u == x)))) pattern_labels <- apply(uZ, 1, FUN = function(x) paste(names(x)[x], collapse = ", ")) if(length(pattern_labels)) { if(pattern_labels[1] == "") pattern_labels[1] <- "nothing" pattern_lables <- paste("missing:", pattern_labels) patterns <- factor(patterns, labels = pattern_labels, ordered = FALSE) } else patterns <- factor(patterns) } .Object@patterns <- patterns if(!length(.Object@workpath)) { .Object@workpath <- file.path(tempdir(), paste("mi", as.integer(Sys.time()), sep = "")) } dir.create(.Object@workpath, showWarnings = FALSE) if(is(.Object, "allcategorical_missing_data.frame")) return(.Object) Z <- Z[,!duplicated(t(Z)), drop = FALSE] Z <- Z[,apply(Z, 2, FUN = function(x) length(unique(x))) > 1, drop = FALSE] ## FIXME: What to do if two columns of Z are collinear? if(ncol(Z) > 0) colnames(Z) <- paste("missing", colnames(Z), sep = "_") else include_missingness <- FALSE X <- lapply(.Object@variables, FUN = function(x) { if(is(x, "irrelevant")) return(NULL) else if(is(x, "categorical")) return(.cat2dummies(x)) else if(is(x, "semi-continuous")) { out <- cbind(x@data, .cat2dummies(x@indicator)) colnames(out) <- c(x@variable_name, paste(x@variable_name, 2:ncol(out) - 1, sep = "_")) return(out) } else if(is(x, "censored-continuous")) { temp <- x@data if(x@n_lower) temp <- cbind(temp, lower = x@lower_indicator@data) if(x@n_upper) temp <- cbind(temp, upper = x@upper_indicator@data) if(x@n_both) stop("FIXME: censoring on both sides not supported yet") return(temp) } else if(is(x, "truncated-continuous")) { temp <- x@data n <- length(temp) if(x@n_lower) temp <- cbind(lower = x@lower_indicator@data, temp) if(x@n_upper) temp <- cbind(upper = x@upper_indicator@data, temp) if(x@n_both) stop("FIXME: censoring on both sides not supported yet") return(temp) } else return(x@data) }) ## NOTE: Might need to make this more complicated in the future X <- X[!sapply(X, is.null)] index <- vector("list", length = length(X)) names(index) <- names(X) start <- 2L end <- 0L for(i in seq_along(index)) { end <- start + NCOL(X[[i]]) - 1L index[[i]] <- start:end start <- end + 1L } if(include_missingness) for(i in seq_along(index)) { nas <- is.na(.Object@variables[[i]]) check <- apply(Z, 2, FUN = function(x) all(x == nas)) index[[i]] <- c(index[[i]], which(check) + start - 1) } else for(i in seq_along(index)) index[[i]] <- c(index[[i]], start:(start + ncol(Z) - 1)) grouped <- names(which(sapply(.Object@variables, is, class2 = "grouped-binary"))) for(i in grouped) index[[i]] <- c(index[[i]], index[[.Object@variables[[i]]@strata]], 1) .Object@index <- index .Object@X <- cbind("(Intercept)" = 1, as.matrix(as.data.frame(X)), Z) correlations <- matrix(NA_real_, l,l) if(!skip_correlation_check) for(i in 1:(l - 1)) { ## FIXME: Put SMCs in the lower triangle if(is(.Object@variables[[i]], "irrelevant")) next x <- try(rank(xtfrm(.Object@variables[[i]]@raw_data)), silent = TRUE) if(!is.numeric(x)) next for(j in (i + 1):l) { if(is(.Object@variables[[j]], "irrelevant")) next y <- try(rank(xtfrm(.Object@variables[[j]]@raw_data))) if(!is.numeric(y)) next rho <- cor(x, y, use = "pair", method = "pearson") # on ranks if(is.finite(rho) && abs(rho) == 1) { warning(paste(names(.Object@variables)[i], "and", names(.Object@variables)[j], "have the same rank ordering.\n", "Please verify whether they are in fact distinct variables.\n")) } if(is.finite(rho)) correlations[i,j] <- rho } } .Object@correlations <- correlations .Object@priors <- .set_priors(.Object@variables) .Object }) setClass("allcategorical_missing_data.frame", representation("missing_data.frame", "Hstar" = "integer", "parameters" = "list","latents" = "unordered-categorical"), prototype = prototype(Hstar = 20L), validity = function(object) { out <- TRUE types <- sapply(object@variables, FUN = function(y) is(y, "irrelevant") | is(y, "categorical")) if(!all(types)) { out <- "all variable classes must be 'irrelevant' or 'categorical'" } else if(length(object@Hstar) && object@Hstar < 1) { out <- "'Hstar' must be >= 1" } return(out) }) setMethod("initialize", "allcategorical_missing_data.frame", def = function(.Object, include_missingness = TRUE, ...) { .Object <- callNextMethod() l <- length(.Object@variables) n <- nrow(.Object) uc <- factor(rep(NA_integer_, n)) .Object@latents <- new("unordered-categorical", raw_data = rep(NA_integer_, n)) .Object@priors <- list(a = rep(1, ncol(.Object)), a_alpha = 1, b_alpha = 1) names(.Object@priors$a) <- colnames(.Object) return(.Object) }) setClass("experiment_missing_data.frame", representation("missing_data.frame", concept = "factor", case = "character"), validity = function(object) { out <- TRUE l <- length(object@concept) if(l != length(object@variables)) { out <- "length of 'concept' must equal the number of variables" } else if(!all(levels(object@concept) %in% c("outcome", "covariate", "treatment"))) { out <- "all elements of 'concept' must be exactly one of 'outcome', 'covariate', or 'treatment'" } else if(sum(object@concept == "treatment") != 1) { out <- "there must be exactly one variable designated 'treatment'" } else if(!is(object@variables[[which(object@concept == "treatment")]], "binary")) { out <- "the 'treatment' variable must be of class 'binary'" } else if(object@variables[[which(object@concept == "treatment")]]@n_miss) { out <- "'treatment' variable cannot have any missingness" } else if(length(object@case) > 1) { out <- "'case' must be exactly one of 'outcomes', 'covariates', or 'both'" } else if(length(object@case) && !(object@case %in% c("outcomes", "covariates", "both"))) { out <- "'case' must be exactly one of 'outcomes', 'covariates', or 'both'" } return(out) }) setMethod("initialize", "experiment_missing_data.frame", def = function(.Object, include_missingness = TRUE, ...) { .Object <- callNextMethod() l <- 1 ## FIXME if(l == 0) return(.Object) names(.Object@concept) <- .Object@DIMNAMES[[2]] outcomes <- any(!.Object@no_missing[.Object@concept == "outcomes"]) covariates <- any(!.Object@no_missing[.Object@concept == "covariates"]) .Object@case <- if(outcomes & covariates) "both" else if(outcomes) "covariates" else "outcomes" return(.Object) }) .empty_mdf_list <- list() class(.empty_mdf_list) <- "mdf_list" setClass("multilevel_missing_data.frame", representation("missing_data.frame", groups = "character", mdf_list = "mdf_list"), prototype( mdf_list = .empty_mdf_list ), validity = function(object) { out <- TRUE return(out) } ) setMethod("initialize", "multilevel_missing_data.frame", def = function(.Object, include_missingness = TRUE, ...) { .Object <- callNextMethod() classes <- sapply(.Object@variables, class) for(i in .Object@groups) classes[names(classes) == i] <- "fixed" df <- complete(.Object, m = 0L) mdf_list <- missing_data.frame(df, by = .Object@groups, types = classes) .Object@mdf_list <- mdf_list return(.Object) }) ## an object of class mi merely holds the results of a call to mi(), primary the list of missing_data.frames setClass("mi", representation( call = "call", data = "list", # of missing_data.frames total_iters = "integer"), # how many iterations were conducted (can be a vector) ) ## an object of class pooled has regression results using the Rubin rules setClass("pooled", representation( formula = "formula", fit = "character", models = "list", coefficients = "numeric", ses = "numeric", pooled_summary = "ANY", call = "language"), ) r-cran-mi-1.0/R/AllGeneric.R000066400000000000000000000043711275731226000155020ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. setGeneric("change", def = function(data, y, to, what, ...) standardGeneric("change")) setGeneric("change_family", def = function(data, y, to, ...) standardGeneric("change_family")) setGeneric("change_imputation_method", def = function(data, y, to, ...) standardGeneric("change_imputation_method")) setGeneric("change_link", def = function(data, y, to, ...) standardGeneric("change_link")) setGeneric("change_model", def = function(data, y, to, ...) standardGeneric("change_model")) setGeneric("change_size", def = function(data, y, to, ...) standardGeneric("change_size")) setGeneric("change_transformation", def = function(data, y, to, ...) standardGeneric("change_transformation")) setGeneric("change_type", def = function(data, y, to, ...) standardGeneric("change_type")) setGeneric("complete", def = function(y, m, ...) standardGeneric("complete")) setGeneric("fit_model", def = function(y, data, ...) standardGeneric("fit_model")) setGeneric("get_parameters", def = function(object, ...) standardGeneric("get_parameters")) setGeneric("hist", def = function(x, ...) standardGeneric("hist")) setGeneric("mi", def = function(y, model, ...) standardGeneric("mi")) setGeneric("missing_variable", def = function(y, type, ...) standardGeneric("missing_variable")) setGeneric("missing_data.frame", def = function(y, ...) standardGeneric("missing_data.frame")) ## FIXME: acount for the other stuff in the original AllGeneric.R r-cran-mi-1.0/R/change.R000066400000000000000000000144711275731226000147240ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. setMethod("change", signature(data = "missing_data.frame", y = "ANY", to = "ANY", what = "character"), def = function(data, y, to, what, ...) { if(length(what) > 1) stop("'what' must have length one") # what <- match.arg(what, c("family", "imputation_method", "model", "size", "transformation", # "type", "class", "link", "method")) if(what == "class") what <- "type" if(what == "method") what <- "imputation_method" if(is.character(y) && !(what %in% c("family", "imputation_method", "link", "model", "size", "transformation", "type"))) { if(length(y) > 1) stop("'y' must have length one") if(length(to) > 1) stop("'to' must have length one") if(is.logical(y) | is.numeric(y)) y <- colnames(data)[y] if(to == "unpossible") { mv <- data@variables[[y]] unpossible <- which(mv@raw_data == what) mv@n_unpossible <- length(unpossible) mv@which_unpossible <- unpossible mv@which_obs <- mv@which_obs[!(mv@which_obs %in% mv@which_unpossible)] mv@n_obs <- length(mv@which_obs) mv@which_miss <- mv@which_miss[!(mv@which_miss %in% mv@which_unpossible)] mv@n_miss <- length(mv@which_miss) data@variables[[y]] <- mv if(!length(data@weights)) { data@weights <- lapply(data@variables, FUN = function(y) { if(y@n_unpossible) { w <- rep(1, y@n_total) w[y@which_unpossible] <- 0 return(w) } else return(NULL) }) } else data@weights[[y]][mv@which_unpossible] <- 0 return(data) } mv <- data@variables[[y]] mv@raw_data[mv@raw_data == what] <- to if(is.na(what) | is.na(to)) mv <- new(class(mv), raw_data = mv@raw_data, variable_name = mv@variable_name) data@variables[[y]] <- mv return(data) } if(what == "family") return(change_family(data = data, y = y, to = to)) else if(what == "link") return(change_link(data = data, y = y, to = to)) else if(what == "imputation_method") return(change_imputation_method(data = data, y = y, to = to)) else if(what == "model") return(change_model(data = data, y = y, to = to)) else if(what == "size") return(change_size(data = data, n = y)) else if(what == "transformation") { if(missing(to)) return(change_transformation(data = data, y = y)) else return(change_transformation(data = data, y = y, to = to, ...)) } else if(what == "type") { if(missing(to)) return(change_type(data = data, y = y)) else return(change_type(data = data, y = y, to = to, ...)) } else stop("this should never happen") }) setMethod("change", signature(data = "missing_data.frame", y = "ANY", to = "numeric", what = "numeric"), def = function(data, y, to, what) { if(length(to) > 1) stop("'to' must be a scalar") if(length(what) > 1) stop("'what' must be a scalar") if(is.logical(y) | is.numeric(y)) y <- colnames(data)[y] mv <- data@variables[[y]] mv@raw_data[mv@raw_data == what] <- to # NOTE: exception to "never change the raw_data slot rule" if(is(mv, "categorical")) { values <- unique(mv@raw_data) values <- values[!is.na(values)] if(length(values) == 2) mv <- new("binary", raw_data = mv@raw_data, variable_name = mv@variable_name) } else if(is.na(what) | is.na(to)) mv <- new(class(mv), raw_data = mv@raw_data, variable_name = mv@variable_name) else if(is(mv, "continuous")) mv@data <- mv@transformation(mv@raw_data) data@variables[[y]] <- mv return(data) ## FIXME: maybe reinitialize data? }) setMethod("change", signature(data = "missing_data.frame", y = "ANY", to = "logical", what = "numeric"), def = function(data, y, to, what) { change(data = data, y = y, what = what, to = as.numeric(to)) }) setMethod("change", signature(data = "missing_data.frame", y = "ANY", to = "character", what = "numeric"), def = function(data, y, to, what) { if(length(to) > 1) stop("'to' must be a scalar") if(to != "unpossible") stop("'to' must be 'unpossible'") if(length(what) > 1) stop("'what' must be have length one") if(is.logical(y) | is.numeric(y)) y <- colnames(data)[y] mv <- data@variables[[y]] unpossible <- which(mv@raw_data == what) mv@n_unpossible <- length(unpossible) mv@which_unpossible <- unpossible mv@which_obs <- mv@which_obs[!(mv@which_obs %in% mv@which_unpossible)] mv@n_obs <- length(mv@which_obs) mv@which_miss <- mv@which_miss[!(mv@which_miss %in% mv@which_unpossible)] mv@n_miss <- length(mv@which_miss) data@variables[[y]] <- mv if(!length(data@weights)) { data@weights <- lapply(data@variables, FUN = function(y) { if(y@n_unpossible) { w <- rep(1, y@n_total) w[y@which_unpossible] <- 0 return(w) } else return(NULL) }) } else data@weights[[y]][mv@which_unpossible] <- 0 return(data) }) setMethod("change", signature(data = "missing_data.frame", y = "ANY", to = "logical", what = "character"), def = function(data, y, to, what) { change(data = data, y = y, what = what, to = as.numeric(to)) }) setMethod("change", signature(data = "mdf_list", y = "ANY", to = "ANY", what = "ANY"), def = function(data, y, to, what, ...) { out <- lapply(data, FUN = change, y = y, to = to, what = what, ...) class(out) <- "mdf_list" return(out) }) r-cran-mi-1.0/R/change_family.R000066400000000000000000000137161275731226000162660ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## these change the parametric family used in the imputation process setMethod("change_family", signature(data = "missing", y = "missing_variable", to = "family"), def = function(y, to) { y@family <- to validObject(y, complete = TRUE) return(y) }) setMethod("change_family", signature(data = "missing", y = "missing_variable", to = "missing"), def = function(y, to) { cat("Likely families include:", y@known_families, sep = "\n") return(invisible(NULL)) }) setMethod("change_family", signature(data = "missing", y = "proportion", to = "family"), def = function(y, to) { y@family <- to if(y@family$family == "gaussian") { y@transformation <- qnorm y@inverse_transformation <- pnorm } else if(y@family$family == "binomial") { y@transformation <- .identity_transformation y@transformation <- .identity_transformation } y@data <- y@transformation(y@data) validObject(y, complete = TRUE) return(y) }) setMethod("change_family", signature(data = "missing", y = "unordered-categorical", to = "family"), def = function(y, to) { y@family <- to y@estimator <- if(y@family$family == "binomial") "RNL" else "MNL" return(y) } ) setMethod("change_family", signature(data = "missing_data.frame", y = "character", to = "character"), def = function(data, y, to) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") if(all(y %in% names(getClass("missing_variable")@subclasses))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) if(is.list(y)) stop(paste("no variables of class", names(y)[1])) # else y <- y[1] } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) for(i in 1:length(y)) { # link <- data@variables[[y[i]]]@family$link if(i <= length(to)) fam <- do.call(to[i], args = list()) data@variables[[y[i]]] <- change_family(y = data@variables[[y[i]]], to = fam) } return(invisible(data)) }) setMethod("change_family", signature(data = "missing_data.frame", y = "character", to = "list"), def = function(data, y, to) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") if(all(y %in% names(getClass("missing_variable")@subclasses))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) if(is.list(y)) stop(paste("no variables of class", names(y)[1])) # else y <- y[1] } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) for(i in 1:length(y)) { data@variables[[y[i]]] <- change_family(y = data@variables[[y[i]]], to = to[[i]]) } return(invisible(data)) }) setMethod("change_family", signature(data = "missing_data.frame", y = "character", to = "family"), def = function(data, y, to) { if(all(y %in% names(getClass("missing_variable")@subclasses))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) for(i in 1:length(y)) { data@variables[[y[i]]] <- change_family(y = data@variables[[y[i]]], to = to) } return(invisible(data)) }) setMethod("change_family", signature(data = "missing_data.frame", y = "numeric", to = "character"), def = function(data, y, to, ...) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") for(i in 1:length(y)) { data@variables[[y]] <- change_family(y = data@variables[[y]], to = do.call(to[i], args = list(...))) } return(invisible(data)) }) setMethod("change_family", signature(data = "missing_data.frame", y = "numeric", to = "list"), def = function(data, y, to) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") for(i in 1:length(y)) { data@variables[[y]] <- change_family(y = data@variables[[y]], to = to[[i]]) } return(invisible(data)) }) setMethod("change_family", signature(data = "missing_data.frame", y = "numeric", to = "family"), def = function(data, y, to) { for(i in 1:length(y)) { data@variables[[y]] <- change_family(y = data@variables[[y]], to = to) } return(invisible(data)) }) setMethod("change_family", signature(data = "missing_data.frame", y = "logical", to = "character"), def = function(data, y, to) { if(length(y) != data@DIM[2]) { stop("the length of 'y' must equal the number of variables in 'data'") } return(change_family(data, which(y), to)) }) setMethod("change_family", signature(data = "missing_data.frame", y = "logical", to = "family"), def = function(data, y, to) { if(length(y) != data@DIM[2]) { stop("the length of 'y' must equal the number of variables in 'data'") } return(change_family(data, which(y), to)) }) r-cran-mi-1.0/R/change_imputation_method.R000066400000000000000000000060141275731226000205270ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## these change the imputation method setMethod("change_imputation_method", signature(data = "missing", y = "missing_variable", to = "character"), def = function(y, to) { to <- match.arg(tolower(to) , getClass(class(y))@prototype@imputation_method) y@imputation_method <- to validObject(y, complete = TRUE) return(y) }) setMethod("change_imputation_method", signature(data = "missing", y = "missing_variable", to = "missing"), def = function(y, to) { cat("Possible methods include:", getClass(class(y))@prototype@imputation_method, sep = "\n") return(invisible(NULL)) }) setMethod("change_imputation_method", signature(data = "missing_data.frame", y = "character", to = "character"), def = function(data, y, to) { if(all(y %in% c("missing_variable", names(getClass("missing_variable")@subclasses)))) { mark <- sapply(colnames(data), FUN = function(x) { if(data@variables[[x]]@all_obs) return(FALSE) is(data@variables[[x]], y) }) if(!any(mark)) stop(paste("no variables with missingness have class", y)) else y <- names(mark)[mark] } y <- match.arg(y, colnames(data), several.ok = TRUE) if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") for(i in 1:length(y)) { data@variables[[y[i]]] <- change_imputation_method(y = data@variables[[y[i]]], to = to[i]) } return(data) }) setMethod("change_imputation_method", signature(data = "missing_data.frame", y = "numeric", to = "character"), def = function(data, y, to) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") for(i in 1:length(y)) { data@variables[[y]] <- change_imputation_method(y = data@variables[[y]], to = to[i]) } return(data) }) setMethod("change_imputation_method", signature(data = "missing_data.frame", y = "logical", to = "character"), def = function(data, y, to) { if(length(y) != data@DIM[2]) { stop("the length of 'y' must equal the number of variables in 'data'") } return(change_imputation_method(data, which(y), to)) }) r-cran-mi-1.0/R/change_link.R000066400000000000000000000055371275731226000157440ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## these change the link function used in the imputation process setMethod("change_link", signature(data = "missing", y = "missing_variable", to = "character"), def = function(y, to) { fam <- do.call(y@family$family, args = list(link = to)) y@family <- fam validObject(y, complete = TRUE) return(y) }) setMethod("change_link", signature(data = "missing", y = "missing_variable", to = "missing"), def = function(y, to) { cat("Likely choices include:", y@known_links, sep = "\n") return(invisible(NULL)) }) setMethod("change_link", signature(data = "missing_data.frame", y = "character", to = "character"), def = function(data, y, to) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") if(all(y %in% names(getClass("missing_variable")@subclasses))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) if(is.list(y)) stop(paste("no variables of class", names(y)[1])) else y <- y[1] } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) for(i in 1:length(y)) { data@variables[[y[i]]] <- change_link(y = data@variables[[y[i]]], to = to[i]) } return(invisible(data)) }) setMethod("change_link", signature(data = "missing_data.frame", y = "numeric", to = "character"), def = function(data, y, to) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") for(i in 1:length(y)) { data@variables[[y]] <- change_link(y = data@variables[[y]], to = to[i]) } return(invisible(data)) }) setMethod("change_family", signature(data = "missing_data.frame", y = "logical", to = "character"), def = function(data, y, to) { if(length(y) != data@DIM[2]) { stop("the length of 'y' must equal the number of variables in 'data'") } return(change_link(data, which(y), to)) }) r-cran-mi-1.0/R/change_model.R000066400000000000000000000153231275731226000161010ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## these are convience functions that implicitly change something else by changing the model buzzword setMethod("change_model", signature(data = "missing", y = "missing_variable", to = "character"), def = function(y, to) { switch(to, "logit" = new("binary", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = binomial(link = "logit")), "probit" = new("binary", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = binomial(link = "probit")), "cauchit" = new("binary", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = binomial(link = "cauchit")), "cloglog" = new("binary", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = binomial(link = "cloglog")), "qlogit" = new("binary", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = quasibinomial(link = "logit")), "qprobit" = new("binary", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = quasibinomial(link = "probit")), "qcauchit" = new("binary", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = quasibinomial(link = "cauchit")), "qcloglog" = new("binary", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = quasibinomial(link = "cloglog")), "ologit" = new("ordered-categorical", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = multinomial(link = "logit")), "oprobit" = new("ordered-categorical", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = multinomial(link = "probit")), "ocauchit" = new("ordered-categorical", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = multinomial(link = "cauchit")), "ocloglog" = new("ordered-categorical", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = multinomial(link = "cloglog")), "mlogit" = new("unordered-categorical", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = multinomial(link = "logit")), "RNL" = new("unordered-categorical", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = binomial(link = "logit")), "qpoisson" = new("count", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = quasipoisson(link = "log")), "poisson" = new("count", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = poisson(link = "log")), "linear" = new("continuous", variable_name = y@variable_name, raw_data = y@raw_data, imputation_method = y@imputation_method, family = gaussian(link = "identity")), stop("model not recognized") ) }) setMethod("change_model", signature(data = "missing_data.frame", y = "character", to = "character"), def = function(data, y, to) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") if(all(y %in% names(getClass("missing_variable")@subclasses))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) if(is.list(y)) stop(paste("no variables of class", names(y)[1])) to <- rep(to[1], length(y)) } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) check <- FALSE for(i in 1:length(y)) { categorical <- is(data@variables[[y[i]]], "categorical") data@variables[[y[i]]] <- change_model(y = data@variables[[y[i]]], to = to[i]) if(categorical & !is(data@variables[[y[i]]], "categorical")) check <- TRUE if(!categorical & is(data@variables[[y[i]]], "categorical")) check <- TRUE } if(check) return(new(class(data), variables = data@variables)) else return(data) }) setMethod("change_model", signature(data = "missing_data.frame", y = "numeric", to = "character"), def = function(data, y, to) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") for(i in 1:length(y)) { categorical <- is(data@variables[[y[i]]], "categorical") data@variables[[y[i]]] <- change_model(y = data@variables[[y[i]]], to = to[[i]]) if(categorical & !is(data@variables[[y[i]]], "categorical")) check <- TRUE if(!categorical & is(data@variables[[y[i]]], "categorical")) check <- TRUE } if(check) return(new(class(data), variables = data@variables)) else return(data) }) setMethod("change_model", signature(data = "missing_data.frame", y = "logical", to = "character"), def = function(data, y, to) { if(length(y) != data@DIM[2]) { stop("the length of 'y' must equal the number of variables in 'data'") } return(change_model(data, which(y), to)) }) r-cran-mi-1.0/R/change_size.R000066400000000000000000000052531275731226000157540ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. setMethod("change_size", signature(data = "missing", y = "missing_variable", to = "integer"), def = function(y, to) { n <- to if(n <= 0) { y@data <- y@data[-y@which_extra] y@which_extra <- integer(0) y@n_total <- y@n_total - y@n_extra y@n_extra <- NA_integer_ return(y) } end <- y@n_total SEQ <- (end+1):(end+n) y@data <- c(y@data, rep(NA, n)) y@which_extra <- c(y@which_extra, SEQ) y@n_extra <- y@n_extra + n y@n_total <- y@n_total + n return(y) }) setMethod("change_size", signature(data = "missing", y = "categorical", to = "integer"), def = function(y, to) { n <- to if(n <= 0) { y@data <- y@data[-y@which_extra] y@which_extra <- integer(0) y@n_total <- y@n_total - y@n_extra y@n_extra <- NA_integer_ return(y) } end <- y@n_total SEQ <- (end+1):(end+n) y@data <- c(y@data, rep(NA, n)) y@which_extra <- c(y@which_extra, SEQ) y@n_extra <- y@n_extra + n y@n_total <- y@n_total + n return(y) }) setMethod("change_size", signature(data = "missing", y = "fixed", to = "integer"), def = function(y, to) { n <- to if(n <= 0) { y@data <- y@data[-y@which_extra] y@which_extra <- integer(0) y@n_total <- y@n_total - y@n_extra y@n_extra <- NA_integer_ return(y) } end <- y@n_total SEQ <- (end+1):(end+n) y@data <- c(y@data, rep(y@data[1], n)) y@which_extra <- c(y@which_extra, SEQ) y@n_extra <- y@n_extra + n y@n_total <- y@n_total + n return(y) }) setMethod("change_size", signature(data = "missing_data.frame", y = "missing", to = "integer"), def = function(data, to) { n <- to data@variables <- lapply(data@variables, FUN = function(x) change_size(x, n)) data@DIM[1] <- data@variables[[1]]@n_total return(data) }) r-cran-mi-1.0/R/change_transformation.R000066400000000000000000000163011275731226000200440ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## these change the transformation and inverse_transformation slots of a continuous variable setMethod("change_transformation", signature(data = "missing", y = "missing_variable", to = "function"), def = function(y, to, inverse = FALSE) { if(!is(y, "continuous")) stop(paste(y@variable_name, "is not a continuous variable and hence has no transformation")) else if(is(y, "SC_proportion")) stop(paste(y@variable_name, "is a SC_proportion and cannot change its transformation (yet)")) if(inverse) { if(identical(to, .standardize_transform)) { formals(to)$mean <- mean(y@raw_data, na.rm = TRUE) formals(to)$sd <- sd(y@raw_data, na.rm = TRUE) } else if(identical(to, .logshift)) { yy <- y@raw_data if(any(yy < 0, na.rm = TRUE)) a <- - min(yy, na.rm = TRUE) else a <- 0 a <- (a + min(yy[yy > 0], na.rm = TRUE)) / 2 formals(to)$a <- a } if("inverse" %in% names(formals(to))) formals(to)$inverse <- TRUE y@inverse_transformation <- to } else { if(identical(to, .standardize_transform)) { formals(to)$mean <- mean(y@raw_data, na.rm = TRUE) formals(to)$sd <- sd(y@raw_data, na.rm = TRUE) } else if(identical(to, .logshift)) { yy <- y@raw_data if(any(yy < 0, na.rm = TRUE)) a <- - min(yy, na.rm = TRUE) else a <- 0 a <- (a + min(yy[yy > 0], na.rm = TRUE)) / 2 formals(to)$a <- a } y@transformation <- to y@data <- y@transformation(y@raw_data) } return(y) }) setMethod("change_transformation", signature(data = "missing", y = "missing_variable", to = "missing"), def = function(y) { if(is(y, "continuous")) cat("Likely choices include:", y@known_transformations, sep = "\n") else cat("No transformation possible for non-continuous variables\n") return(invisible(NULL)) }) setMethod("change_transformation", signature(data = "missing_data.frame", y = "character", to = "missing"), def = function(data, y) { if(all(y %in% c("continuous", names(getClass("continuous")@subclasses)))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) if(is.list(y)) stop(paste("no variables of class", names(y)[1])) else y <- y[1] } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) for(i in 1:length(y)) change_transformation(y = data@variables[[y[i]]]) return(data) }) setMethod("change_transformation", signature(data = "missing_data.frame", y = "character", to = "character"), def = function(data, y, to) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") if(all(y %in% c("continuous", names(getClass("continuous")@subclasses)))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) to <- rep(to[1], length(y)) } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) trans <- lapply(to, FUN = function(x) { switch(x, "identity" = .identity_transform, "standardize" = .standardize_transform, "squeeze" = .squeeze_transform, "logshift" = .logshift, "log" = log, "sqrt" = sqrt, "cuberoot" = .cuberoot, function(...) stop(paste("must replace the transformation slot for", x))) }) inverse <- lapply(to, FUN = function(x) { switch(x, "identity" = .identity_transform, "standardize" = .standardize_transform, "squeeze" = .squeeze_transform, "logshift" = .logshift, "log" = exp, "sqrt" = function(y, ...) y^2, "cuberoot" = .cuberoot, function(...) stop(paste("must replace the inverse_transformation slot for", x))) }) for(i in 1:length(y)) { data@variables[[y[i]]] <- change_transformation(y = data@variables[[y[i]]], to = trans[[i]]) data@variables[[y[i]]] <- change_transformation(y = data@variables[[y[i]]], to = inverse[[i]], inverse = TRUE) mark <- data@index[[y[i]]][1] data@X[,mark] <- data@variables[[y[i]]]@data } # initialize(data) return(data) }) setMethod("change_transformation", signature(data = "missing_data.frame", y = "numeric", to = "character"), def = function(data, y, to) { return(change_transformation(data = data, y = colnames(data)[y], to = to)) }) setMethod("change_transformation", signature(data = "missing_data.frame", y = "logical", to = "character"), def = function(data, y, to) { if(length(y) != data@DIM[2]) { stop("the length of 'y' must equal the number of variables in 'data'") } return(change_transformation(data = data, y = names(data@variables)[y], to = to)) }) setMethod("change_transformation", signature(data = "missing_data.frame", y = "character", to = "function"), def = function(data, y, to, inverse = stop("you must specify 'inverse = FALSE' or 'inverse = TRUE'")) { if(all(y %in% c("continuous", names(getClass("continuous")@subclasses)))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) for(i in 1:length(y)) { if(inverse) data@variables[[y[i]]] <- change_transformation(y = data@variables[[y[i]]], to = to, inverse = TRUE) else data@variables[[y[i]]] <- change_transformation(y = data@variables[[y[i]]], to = to, inverse = FALSE) mark <- data@index[[y[i]]][1] data@X[,mark] <- data@variables[[y[i]]]@data } return(data) }) setMethod("change_transformation", signature(data = "missing_data.frame", y = "numeric", to = "function"), def = function(data, y, to, inverse) { y <- names(data@variables)[y] return(change_transformation(data = data, y = y, to = to, inverse)) }) setMethod("change_transformation", signature(data = "missing_data.frame", y = "logical", to = "function"), def = function(data, y, to, inverse) { if(length(y) != data@DIM[2]) { stop("the length of 'y' must equal the number of variables in 'data'") } return(change_transformation(data = data, y = names(data@variables)[y], to = to, inverse = inverse)) }) r-cran-mi-1.0/R/change_type.R000066400000000000000000000102121275731226000157520ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## these coerce a missing_variable to a different type of missing_variable setMethod("change_type", signature(data = "missing", y = "missing_variable", to = "character"), def = function(y, to, ...) { to <- match.arg(to, names(getClass("missing_variable")@subclasses)) if(to %in% c("ordered-categorical", "binary")) raw <- as.ordered(y@raw_data) else if(to == "unordered-categorical") raw <- factor(y@raw_data, ordered = FALSE) else raw <- as.numeric(y@raw_data) vals <- unique(raw) vals <- vals[!is.na(vals)] if(length(vals) <= 1) { warning(paste(y@variable_name, ": cannot change type because only one unique value")) return(y) } else return(new(to, variable_name = y@variable_name, raw_data = raw, imputation_method = y@imputation_method, ...)) }) setMethod("change_type", signature(data = "missing", y = "missing_variable", to = "missing"), def = function(y, to) { classes <- .possible_missing_variable(y@raw_data) classes <- names(classes[classes]) cat("Likely choices include:", classes, sep = "\n") return(invisible(NULL)) }) setMethod("change_type", signature(data = "missing_data.frame", y = "character", to = "missing"), def = function(data, y, to) { if(all(y %in% names(getClass("missing_variable")@subclasses))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) if(is.list(y)) stop(paste("no variables of class", names(y)[1])) else y <- y[1] } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) for(i in 1:length(y)) change_type(y = data@variables[[y[i]]]) return(data) }) setMethod("change_type", signature(data = "missing_data.frame", y = "character", to = "character"), def = function(data, y, to, ...) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") if(all(y %in% names(getClass("missing_variable")@subclasses))) { classes <- sapply(data@variables, class) y <- c(sapply(y, FUN = function(x) { names(classes[which(classes == x)]) })) if(is.list(y)) stop(paste("no variables of class", names(y)[1])) to <- rep(to[1], length(y)) } y <- match.arg(y, data@DIMNAMES[[2]], several.ok = TRUE) for(i in 1:length(y)) { data@variables[[y[i]]] <- change_type(y = data@variables[[y[i]]], to = to[i], ...) data@variables[[y[i]]]@variable_name = y[i] } return(new(class(data), variables = data@variables)) }) setMethod("change_type", signature(data = "missing_data.frame", y = "numeric", to = "character"), def = function(data, y, to, ...) { if(length(to) == 1) to <- rep(to, length(y)) else if(length(to) != length(y)) stop("'y' and 'to' must have the same length") for(i in 1:length(y)) { data@variables[[y]] <- change_type(y = data@variables[[y]], to = to[[i]], ...) } return(new(class(data), variables = data@variables)) }) setMethod("change_type", signature(data = "missing_data.frame", y = "logical", to = "character"), def = function(data, y, to, ...) { if(length(y) != data@DIM[2]) { stop("the length of 'y' must equal the number of variables in 'data'") } return(change_type(data, which(y), to, ...)) }) r-cran-mi-1.0/R/complete.R000066400000000000000000000141371275731226000153060ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## These functions extract completed data setMethod("complete", signature(y = "missing_variable", m = "integer"), def = function(y, m, ...) { out <- y@data if(m > 0 & y@n_drawn) out[y@which_drawn] <- as.numeric(y@imputations[m,]) return(out) }) setMethod("complete", signature(y = "irrelevant", m = "integer"), def = function(y, m, ...) { return(y@raw_data) }) setMethod("complete", signature(y = "categorical", m = "integer"), def = function(y, m, to_factor = TRUE, ...) { out <- y@data if(m > 0 & y@n_drawn) out[y@which_drawn] <- as.numeric(y@imputations[m,]) if(to_factor) { out <- factor(out, ordered = is(y, "ordered-categorical")) levels(out) <- y@levels } return(out) }) setMethod("complete", signature(y = "binary", m = "integer"), def = function(y, m, to_factor = TRUE, ...) { out <- y@data if(m > 0 & y@n_drawn) out[y@which_drawn] <- as.numeric(y@imputations[m,]) if(to_factor) { out <- factor(out, ordered = FALSE) levels(out) <- y@levels } return(out) }) setMethod("complete", signature(y = "continuous", m = "integer"), def = function(y, m, transform = TRUE, ...) { out <- y@data if(m > 0 & y@n_drawn) out[y@which_drawn] <- as.numeric(y@imputations[m,]) if(transform) out <- y@inverse_transformation(out) return(out) }) setMethod("complete", signature(y = "nonnegative-continuous", m = "integer"), def = function(y, m, transform = TRUE, ...) { out <- y@data if(m > 0 & y@n_drawn) out[y@which_drawn] <- as.numeric(y@imputations[m,]) if(transform) { out <- y@inverse_transformation(out) out[y@raw_data == 0] <- 0 } return(out) }) setMethod("complete", signature(y = "SC_proportion", m = "integer"), def = function(y, m, transform = TRUE, ...) { out <- y@data if(m > 0 & y@n_drawn) out[y@which_drawn] <- as.numeric(y@imputations[m,]) if(transform) out <- y@inverse_transformation(out) out[y@raw_data == 0] <- 0 out[y@raw_data == 1] <- 1 return(out) }) setMethod("complete", signature(y = "missing_data.frame", m = "integer"), def = function(y, m, to_matrix = FALSE, include_missing = TRUE) { if(to_matrix) out <- sapply(y@variables, complete, m = m, to_factor = FALSE, transform = FALSE) else out <- as.data.frame(lapply(y@variables, complete, m = m, to_factor = TRUE, transform = TRUE)) if(is(y, "allcategorical_missing_data.frame")) { out <- cbind(out, latents = complete(y@latents, m = m, to_factor = !to_matrix)) } if(include_missing) { M <- is.na(y)[,!sapply(y@variables, FUN = function(y) y@all_obs), drop = FALSE] colnames(M) <- paste("missing", colnames(M), sep = "_") out <- cbind(out, M) } return(out) }) setMethod("complete", signature(y = "mi", m = "numeric"), def = function(y, m = length(y), to_matrix = FALSE, include_missing = TRUE) { stopifnot(m == as.integer(m)) m <- as.integer(m) l <- length(y@data) draws <- sum(y@total_iters) if(length(m) > 1) out <- lapply(y@data[m], complete, m = 0L, to_matrix = to_matrix, include_missing = include_missing) else if(m == 1) out <- complete(y@data[[1]], m = 0L, to_matrix = to_matrix, include_missing = include_missing) # not a list else if(m <= l) out <- lapply(y@data[1:m], complete, m = 0L, to_matrix = to_matrix, include_missing = include_missing) else { # wants more completed datasets than chains quotient <- m %/% l remainder <- m %% l num <- quotient + (1:l <= remainder) out <- vector("list", m) count <- 1 for(i in seq_along(y@data)) { if(num[i] == 1) { out[[count]] <- complete(y@data[[i]], m = 0L, to_matrix = to_matrix, include_missing = include_missing) count <- count + 1 } else { # double-dip from a chain SEQ <- seq(from = ceiling(draws / 2), to = draws, length.out = num[i]) temp <- sapply(SEQ, FUN = function(j) complete(y@data[[i]], m = as.integer(j), to_matrix = to_matrix, include_missing = include_missing), simplify = FALSE) for(j in seq_along(temp)) { out[[count]] <- temp[[j]] count <- count + 1 } } } } return(out) }) setMethod("complete", signature(y = "mi", m = "missing"), def = function(y, to_matrix = FALSE, include_missing = TRUE) { return(complete(y, m = length(y), to_matrix = to_matrix, include_missing = include_missing)) }) setMethod("complete", signature(y = "mi_list", m = "numeric"), def = function(y, m = length(y[[1]]), to_matrix = FALSE, include_missing = TRUE) { temp <- lapply(y, FUN = complete, m = m, to_matrix = to_matrix, include_missing = include_missing) dfs <- temp[[1]] if(length(m) == 1 && m == 1 && length(temp) > 1) for(i in 2:length(temp)) { dfs <- rbind(dfs, temp[[i]]) } else if(length(temp) > 1) for(i in 2:length(temp)) for(j in 1:length(dfs)) { dfs[[j]] <- rbind(dfs[[j]], temp[[i]][[j]]) } return(dfs) }) setMethod("complete", signature(y = "mi_list", m = "missing"), def = function(y, to_matrix = FALSE, include_missing = TRUE) { return(complete(y, m = length(y[[1]]), to_matrix = to_matrix, include_missing = include_missing)) }) r-cran-mi-1.0/R/convenience.R000066400000000000000000000104501275731226000157640ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## Some S3 methods for convenience as.double.missing_variable <- function(x, ...) { stop("you must write an 'as.double' method for the", class(x), "class") } as.double.categorical <- function(x, ...) { x@data } as.double.continuous <- function(x, transformed = TRUE, ...) { if(transformed) x@data else x@inverse_transformation(x@data) } as.double.count <- function(x, ...) { x@data } as.double.irrelevant <- function(x, ...) { as.double(x@raw_data) } as.double.missing_data.frame <- function(x, transformed = TRUE, ...) { sapply(x@variables, as.double, transformed = transformed) } as.data.frame.missing_data.frame <- function(x, row.names = NULL, optional = FALSE, ...) { as.data.frame(lapply(x@variables, FUN = function(y) y@raw_data), row.names = if(is.null(row.names)) rownames(x) else row.names) } dim.missing_data.frame <- function(x) { x@DIM } dimnames.missing_data.frame <- function(x) { x@DIMNAMES } names.missing_data.frame <- function(x) { x@DIMNAMES[[2]] } dim.mi <- function(x) { if(isS4(x)) x@data[[1]]@DIM else { class(x) <- "list" return(dim(x)) } } dimnames.mi <- function(x) { if(isS4(x)) x@data[[1]]@DIMNAMES else { class(x) <- "list" return(dimnames(x)) } } names.mi <- function(x) { if(isS4(x)) x@data[[1]]@DIMNAMES[[2]] else { class(x) <- "list" return(names(x)) } } is.na.missing_variable <- function(x) { out <- rep(FALSE, x@n_total) out[x@which_miss] <- TRUE return(out) } is.na.missing_data.frame <- function(x) { sapply(x@variables, is.na) } is.na.mi <- function(x) { if(isS4(x)) is.na(x@data[[1]]) else { class(x) <- "list" return(is.na(x)) } } length.missing_variable <- function(x) { x@n_total } length.missing_data.frame <- function(x) { ncol(x) } length.mi <- function(x) { if(isS4(x)) length(x@data) else { class(x) <- "list" return(length(x)) } } print.mdf_list <- function(x ,...) { show(x) } print.mi_list <- function(x, ...) { show(x) } "[.missing_data.frame" <- function(x, i, j, drop = if (missing(i)) TRUE else length(j) == 1) { if(!missing(i)) { cdf <- complete(x, m = 0L) if(!missing(j)) return(cdf[i,j,drop = drop]) else return(cdf[i,,drop = drop]) } else if(length(j) > 1) return(new(class(x), variables = x@variables[j])) else if(is.numeric(j) && j < 0) return(new(class(x), variables = x@variables[j])) else return(x@variables[[j]]) } "[<-.missing_data.frame" <- function (x, i, j, value) { if(!missing(i)) { if(!missing(j)) x@variables[[j]]@raw_data[i,] <- value else stop("a variable (column) must be specified when replacing") } else if(is.null(value)) x@variables[j] <- value else if(is(value, "missing_variable")) x@variables[[j]] <- value else stop("replacement must be 'NULL' or a 'missing_variable'") return(new(class(x), variables = x@variables)) } "[[.missing_data.frame" <- function(x, ..., exact = TRUE) { return(x[,...]) } "[[<-.missing_data.frame" <- function (x, i, j, value) { if(missing(j)) x[,i] <- value else x[i,j] <- value return(x) } "$.missing_data.frame" <- function(x, name) { return(x[,name]) } "$<-.missing_data.frame" <- function(x, name, value) { # this never gets dispatched for some reason x[,name] <- value return(x) } r-cran-mi-1.0/R/debug.R000066400000000000000000000022451275731226000145610ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## FIXME: Make damn sure .MI_DEBUG is FALSE before pushing to CRAN .MI_DEBUG <- FALSE ## FIXME: Also, make all if(.MI_DEBUG) statements one-liners in other files ## and do sed s/if(.MI_DEBUG)/#if(.MI_DEBUG)/g *.R if(TRUE && .MI_DEBUG) { # define multi-line debugging functions in here options(error = recover) } r-cran-mi-1.0/R/fit_model.R000066400000000000000000000731131275731226000154370ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## these fit a regression and return the model # note, helper functions are good because they are checked more rigorously by R CMD check setMethod("fit_model", signature(y = "missing_variable", data = "missing_data.frame"), def = function(y, data, s, warn, ...) { stop("This method should not have been called. You need to define the relevant fit_model() S4 method") }) setMethod("fit_model", signature(y = "irrelevant", data = "missing_data.frame"), def = function(y, data, ...) { stop("'fit_model' should not have been called on an 'irrelevant' variable") }) setMethod("fit_model", signature(y = "binary", data = "missing_data.frame"), def = function(y, data, s, warn, X = NULL, ...) { if(is.null(X)) { to_drop <- data@index[[y@variable_name]] if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] if(is(data, "experiment_missing_data.frame")) { treatment <- names(which(data@concept == "treatment")) if(data@concept[y@variable_name] == "outcome") { X <- cbind(X, interaction = X * data@variables[[treatment]]@data) } } } if(s > 1) start <- y@parameters[s-1,] else if(s < -1) start <- y@parameters[1,] else start <- NULL start <- NULL weights <- if(length(data@weights) == 1) data@weights[[1]] else data@weights[[y@variable_name]] CONTROL <- list(epsilon = max(1e-8, exp(-abs(s))), maxit = 25, trace = FALSE) priors <- data@priors[[y@variable_name]] out <- bayesglm.fit(X, y@data - 1L, weights = weights, prior.mean = priors[[1]], prior.scale = priors[[2]], prior.df = priors[[3]], prior.mean.for.intercept = priors[[4]], prior.scale.for.intercept = priors[[5]], prior.df.for.intercept = priors[[6]], start = start, family = y@family, Warning = FALSE, control = CONTROL) if(warn && !out$converged) { warning(paste("bayesglm() did not converge for variable", y@variable_name, "on iteration", abs(s))) } if(any(abs(coef(out)) > 100)) { warning(paste(y@variable_name, ": separation on iteration", abs(s))) } out$x <- X class(out) <- c("bayesglm", "glm", "lm") return(out) }) .fit_MNL <- function(y, X, weights) { model<-nnet::multinom(y@data ~ X -1, weights = weights, Hess = y@imputation_method == "ppd", model = TRUE, trace = FALSE, MaxNWts = 10000) return(model) } .fit_RNL <- function(y, X, weights, CONTROL) { if (y@use_NA==TRUE) values <- c(-.Machine$integer.max, 1:length(y@levels)) else values <- 1:length(y@levels) out <- sapply(values, simplify = FALSE, FUN = function(l) { model <- bayesglm.fit(X, y@data == l, weights = weights, family = y@family, control=CONTROL) model$x <- X # bayesglm.fit() by default does not retain the model matrix it uses class(model) <- c("bayesglm", "glm", "lm") return(model) }) class(out) <- "RNL" return(out) } setMethod("fit_model", signature(y = "unordered-categorical", data = "missing_data.frame"), def = function(y, data, warn, s, ...) { to_drop <- data@index[[y@variable_name]] if (y@use_NA) { y@data[y@which_drawn] <- -.Machine$integer.max # make NAs the smallest possible signed integer } if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] if(is(data, "experiment_missing_data.frame")) { treatment <- names(which(data@concept == "treatment")) if(data@concept[y@variable_name] == "outcome") { X <- cbind(X, interaction = X * data@variables[[treatment]]@data) } } weights <- if(length(data@weights) == 1) data@weights[[1]] else data@weights[[y@variable_name]] if(y@estimator == "MNL") { out <- .fit_MNL(y, X, weights) data@X } else if(y@estimator == "RNL"){ CONTROL <- list(epsilon = max(1e-8, exp(-abs(s))), maxit = 25, trace = FALSE) out <- .fit_RNL(y, X, weights, CONTROL) data@X } else stop("estimator not recognized") return(out) }) .clogit <- # similar to the survival::clogit function function(formula, data, n, method, weights, subset, x = TRUE, na.action = "na.exclude") { coxcall <- match.call() coxcall[[1]] <- as.name("coxph") newformula <- formula newformula[[2]] <- substitute(survival::Surv(rep(1, nn), case), list(case = formula[[2]], nn = n)) environment(newformula) <- environment(formula) coxcall$formula <- newformula coxcall$n <- NULL coxcall <- eval(coxcall, sys.frame(sys.parent())) coxcall$userCall <- sys.call() class(coxcall) <- c("clogit", "coxph") coxcall } setMethod("fit_model", signature(y = "grouped-binary", data = "missing_data.frame"), def = function(y, data, s, warn) { # see http://www.stata.com/support/faqs/stat/clogitcl.html for a good explanation of this model to_drop <- data@index[[y@variable_name]] X <- data@X[,-to_drop] weights <- if(length(data@weights) == 1) data@weights[[1]] else data@weights[[y@variable_name]] groups <- sapply(y@strata, FUN = function(x) complete(data@variables[[x]], m = 0L), simplify = FALSE) out <- .clogit(y@data ~ X + strata(groups), method = "breslow", weights = weights, n = nrow(X)) out$x <- X return(out) }) setMethod("fit_model", signature(y = "ordered-categorical", data = "missing_data.frame"), def = function(y, data, s, warn, X = NULL, ...) { if(is.null(X)) { to_drop <- data@index[[y@variable_name]] if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] if(is(data, "experiment_missing_data.frame")) { treatment <- names(which(data@concept == "treatment")) if(data@concept[y@variable_name] == "outcome") { X <- cbind(X, interaction = X * data@variables[[treatment]]@data) } } X <- X[,-1] } method <- if(y@family$link == "logit") "logistic" else y@family$link start <- NULL start <- c(rep(0, ncol(X)), qlogis(cumsum(table(y@data)) / nrow(X))) start <- start[-length(start)] weights <- if(length(data@weights) == 1) data@weights[[1]] else data@weights[[y@variable_name]] CONTROL <- list(reltol = max(1e-8, exp(-abs(s)))) priors <- data@priors[[y@variable_name]] out <- bayespolr(as.ordered(y@data) ~ X, weights = weights, method = method, prior.mean = priors[[1]], prior.scale = priors[[2]], prior.df = priors[[3]], prior.counts.for.bins = priors[[4]], control = list(reltol = max(1e-8, exp(-abs(s)))), ...) if(warn && out$convergence != 0) { warning(paste("bayespolr() did not converge for variable", y@variable_name, "on iteration", abs(s))) } out$x <- X return(out) }) setMethod("fit_model", signature(y = "interval", data = "missing_data.frame"), def = function(y, data, s, warn, ...) { stop("FIXME: write this method") }) ## helper function .fit_continuous <- function(y, data, s, warn, X, subset = 1:nrow(X)) { weights <- if(length(data@weights) == 1) data@weights[[1]] else data@weights[[y@variable_name]] if(!is.null(weights)) weights <- weights[subset] if(s > 1) start <- y@parameters[s-1,] else if(s < -1) start <- y@parameters[1,] else start <- NULL start <- NULL mark <- c(TRUE, apply(X[subset,-1, drop = FALSE], 2, FUN = function(x) length(unique(x)) > 1)) if(!all(mark)) { if(abs(s) == 1) { stop(paste(y@variable_name, ": imputed values on iteration 0 randomly inadmissible; try mi() again with different seed")) } X <- X[,mark] if(!is.null(start)) start <- start[mark] } CONTROL <- list(epsilon = max(1e-8, exp(-abs(s))), maxit = 25, trace = FALSE) priors <- data@priors[[y@variable_name]] out <- bayesglm.fit(X[subset,], y@data[subset], weights = weights, start = start, family = y@family, prior.mean = priors[[1]], prior.scale = priors[[2]], prior.df = priors[[3]], prior.mean.for.intercept = priors[[4]], prior.scale.for.intercept = priors[[5]], prior.df.for.intercept = priors[[6]], Warning = FALSE, control = CONTROL) if(warn && !out$converged) { warning(paste("bayesglm() did not converge for variable", y@variable_name, "on iteration", abs(s))) } out$x <- X class(out) <- c("bayesglm", "glm", "lm") return(out) } setMethod("fit_model", signature(y = "continuous", data = "missing_data.frame"), def = function(y, data, s, warn, ...) { to_drop <- data@index[[y@variable_name]] if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] if(is(data, "experiment_missing_data.frame")) { treatment <- names(which(data@concept == "treatment")) if(data@concept[y@variable_name] == "outcome") { X <- cbind(X, interaction = X * data@variables[[treatment]]@data) } } return(.fit_continuous(y, data, s, warn, X)) }) # setMethod("fit_model", signature(y = "truncated-continuous", data = "missing_data.frame"), def = # function(y, data, s, warn, ...) { # stop("FIXME: write this method using library(survival)") # }) # # setMethod("fit_model", signature(y = "censored-continuous", data = "missing_data.frame"), def = # function(y, data, s, warn, ...) { # stop("FIXME: mi does not do censored-continuous variables yet") # to_drop <- data@index[[y@variable_name]] # X <- cbind(y@raw_data, data@X[,-to_drop]) # if(is(data, "experiment_missing_data.frame")) { # treatment <- names(which(data@concept == "treatment")) # if(data@concept[y@variable_name] == "outcome") { # X <- cbind(X, interaction = X * data@variables[[treatment]]@data) # } # } # }) setMethod("fit_model", signature(y = "semi-continuous", data = "missing_data.frame"), def = function(y, data, s, warn, ...) { stop("the semi-continuous fit_model() method should not have been called") }) setMethod("fit_model", signature(y = "nonnegative-continuous", data = "missing_data.frame"), def = function(y, data, s, warn, ...) { to_drop <- data@index[[y@variable_name]] if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] model <- fit_model(y@indicator, data, s, warn, X) if(abs(s) > 1) subset <- complete(y@indicator, m = 0L, to_factor = TRUE) == 0 else subset <- 1:nrow(X) return(.fit_continuous(y = y, data = data, s = s, warn = warn, X = X, subset = subset)) }) setMethod("fit_model", signature(y = "SC_proportion", data = "missing_data.frame"), def = function(y, data, s, warn, ...) { to_drop <- data@index[[y@variable_name]] if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] model <- fit_model(y@indicator, data, s, warn, X) if(abs(s) > 1) subset <- complete(y@indicator, m = 0L, to_factor = TRUE) == 0 else subset <- 1:nrow(X) return(.fit_proportion(y = y, data = data, s = s, warn = warn, X = X, subset = subset)) }) ## helper function .fit_proportion <- function(y, data, s, warn, X, subset = 1:nrow(X)) { weights <- if(length(data@weights) == 1) data@weights[[1]] else data@weights[[y@variable_name]] if(!is.null(weights)) weights <- weights[subset] if(s > 1) start <- y@parameters[s-1,] else if(s < -1) start <- y@parameters[1,] else start <- NULL start <- NULL mark <- c(TRUE, apply(X[subset,-1, drop = FALSE], 2, FUN = function(x) length(unique(x)) > 1)) if(!all(mark)) { if(abs(s) == 1) { stop(paste(y@variable_name, ": imputed values on iteration 0 randomly inadmissible; try mi() again with a different seed")) } X <- X[,mark] if(!is.null(start)) start <- start[c(mark, TRUE)] } out <- betareg::betareg.fit(X[subset,], y@data[subset], weights = if(!is.null(weights)) weights[subset], link = y@family$link, link.phi = y@link.phi, control = betareg::betareg.control(reltol = 1e-8, start = start, fsmaxit = 0)) if(warn && !out$converged) { warning(paste("betareg() did not converge for variable", y@variable_name, "on iteration", abs(s))) } out$x <- X class(out) <- c("betareg") return(out) } setMethod("fit_model", signature(y = "proportion", data = "missing_data.frame"), def = function(y, data, s, warn, ...) { to_drop <- data@index[[y@variable_name]] if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] if(y@family$family == "gaussian") out <- .fit_continuous(y, data, s, warn, X) else out <- .fit_proportion(y, data, s, warn, X) return(out) }) setMethod("fit_model", signature(y = "count", data = "missing_data.frame"), def = function(y, data, s, warn, ...) { to_drop <- data@index[[y@variable_name]] if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] return(.fit_continuous(y, data, s, warn, X)) # even though counts are not continuous }) ## experiments setMethod("fit_model", signature(y = "missing_variable", data = "experiment_missing_data.frame"), def = function(y, data, ...) { stop("you need to write a specific fit_model() method for the", class(y), "class") }) setMethod("fit_model", signature(y = "continuous", data = "experiment_missing_data.frame"), def = function(y, data, s, warn, ...) { to_drop <- data@index[[y@variable_name]] ## For each case, make an X matrix based on the giant matrix in data@X if(data@case == "outcomes") { # missingness on outcome(s) only if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] treatment_name <- names(data@concept[data@concept == "treatment"]) X <- cbind(X, interaction = X[,!(colnames(X) %in% c("(Intercept)", treatment_name))] * X[,treatment_name]) } else if(data@case == "covariates") { # missingness on covariate(s) only to_drop <- c(to_drop, which(data@concept == "treatment")) if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] } else { # missing on both outcome(s) and covariate(s) if(data@concept[y@variable_name] == "covariate") { to_drop <- c(to_drop, which(data@concept == "treatment")) } if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] } return(mi::.fit_continuous(y, data, s, warn, X)) }) ## here y indicates which variable to model setMethod("fit_model", signature(y = "character", data = "mi"), def = function(y, data, m = length(data@data), ...) { s <- sum(data@total_iters) + 1 if(length(m) == 1) { models <- vector("list", m) for(i in 1:m) { model <- data@data[[i]]@variables[[y]]@model if(is.null(model)) { model <- fit_model(y = data@data[[i]]@variables[[y]], data = data@data[[i]], s = s, warn = TRUE, ...) if(!isS4(model)) model$x <- model$X <- model$y <- NULL } models[[i]] <- model } } else { models <- vector("list", length(m)) models <- for(i in 1:length(m)) { if(is.null(data@data[[i]]@variables[[y]]@model)) { models[[m[i]]] <- fit_model(y = data@data[[m[i]]]@variables[[y]], data = data@data[[m[i]]], s = s, warn = TRUE, ...) } else models[[i]] <- data@data[[i]]@variables[[y]]@model } } return(models) }) ## fit all variables with missingness setMethod("fit_model", signature(y = "missing", data = "mi"), def = function(data, m = length(data@data)) { varnames <- names(data@data[[1]]@variables) exclude <- data@data[[1]]@no_missing | sapply(data@data[[1]], FUN = function(y) is(y, "irrelevant")) models <- sapply(varnames, simplify = FALSE, FUN = function(v) { if(v %in% exclude) paste(v, "not modeled") ## maybe just skip these? else fit_model(y = v, data = data, m = m) }) return(models) }) ## fit all elements of a mdf_list setMethod("fit_model", signature(y = "missing", data = "mdf_list"), def = function(data, s = -1, verbose = FALSE, warn = FALSE, ...) { out <- lapply(data, fit_model, s = s, verbose = verbose, warn = warn, ...) class(out) <- "mdf_list" return(out) }) .fit_model_y <- function(y, data, s, verbose, warn, ...) { if(s != 0 && y@imputation_method != "mcar") { if(is(y, "semi-continuous")) { to_drop <- data@index[[y@variable_name]] if(length(to_drop)) X <- data@X[,-to_drop] else X <- data@X[,] model <- fit_model(y = y@indicator, data = data, s = s, warn = warn, X = X) indicator <- mi(y = y@indicator, model = model, s = ifelse(s < 0, 1L, s)) if(s > 1) indicator@parameters[s,] <- get_parameters(model) else if(abs(s) == 1) { parameters <- get_parameters(model) rows <- if(s == 1) nrow(indicator@parameters) else 1 if(ncol(indicator@parameters) == 0) { temp <- matrix(NA_real_, nrow = rows, ncol = length(parameters)) } temp[1,] <- parameters indicator@parameters <- temp } else indicator@parameters[1,] <- get_parameters(model) y@indicator <- indicator } model <- fit_model(y = y, data = data, s = s, warn = warn) y <- mi(y = y, model = model, s = ifelse(s < 0, 1L, s)) } else y <- mi(y = y) if(y@imputation_method == "mcar") { # do nothing } else if(s > 1) { parameters <- get_parameters(model) if(length(parameters) != ncol(y@parameters)) parameters <- y@parameters[s-1,] # scary y@parameters[s,] <- parameters } else if(abs(s) == 1) { parameters <- get_parameters(model) rows <- if(s == 1) nrow(y@parameters) else 1 if(ncol(y@parameters) == 0) { temp <- matrix(NA_real_, nrow = rows, ncol = length(parameters)) } temp[1,] <- parameters y@parameters <- temp } else if(s != 0) { parameters <- get_parameters(model) if(length(parameters) == ncol(y@parameters)) y@parameters[s,] <- parameters } return(y) } .update_X <- function(y, data) { which_drawn <- y@which_drawn varname <- y@variable_name if(is(y, "categorical")) { dummies <- .cat2dummies(y)[which_drawn,,drop = FALSE] data@X[ which_drawn, data@index[[varname]][1:NCOL(dummies)]] <- dummies } else if(is(y, "semi-continuous")) { mark <- data@index[[varname]] data@X[ which_drawn, mark[1] ] <- y@data[which_drawn] dummies <- .cat2dummies(y@indicator) data@X[ which_drawn, mark[1 + 1:NCOL(dummies)] ] <- dummies[which_drawn,,drop = FALSE] } else if(is(y, "censored_continuous")) { temp <- y@data[which_drawn] if(y@n_lower) temp <- cbind(temp, lower = y@lower_indicator@data[y@which_drawn]) if(y@n_upper) temp <- cbind(temp, upper = y@upper_indicator@data[y@which_drawn]) data@X[ which_drawn, data@index[[varname]][1:NCOL(temp)]] <- temp data@X[ y@which_censored, data@index[[varname]][1] ] <- y@data[y@which_censored] } else if(is(y, "truncated_continuous")) { temp <- y@data[which_drawn] if(y@n_lower) temp <- cbind(temp, lower = y@lower_indicator@data[y@which_drawn]) if(y@n_upper) temp <- cbind(temp, upper = y@upper_indicator@data[y@which_drawn]) data@X[ which_drawn, data@index[[varname]][1:NCOL(temp)]] <- temp data@X[ y@which_truncated, data@index[[varname]][1] ] <- y@data[y@which_truncated] } else data@X[ which_drawn, data@index[[varname]][1] ] <- y@data[which_drawn] return(data) } .fit_model_mdf <- function(data, s, verbose, warn, ...) { if(verbose) { txt <- paste("Iteration:", abs(s)) if(isatty(stdout()) && !(any(search() == "package:gWidgets"))) cat("\n", txt) else cat("
", txt, file = file.path(data@workpath, "mi.html"), append = TRUE) } on.exit(print("the problematic variable is")) on.exit(show(y), add = TRUE) for(jj in sample(1:ncol(data), ncol(data), replace = FALSE)) { y <- data@variables[[jj]] if(y@all_obs) next if(is(y, "irrelevant")) next y <- .fit_model_y(y, data, s, verbose, warn, ...) data <- .update_X(y, data) data@variables[[jj]] <- y if(verbose) { txt <- "." if(isatty(stdout()) && !(any(search() == "package:gWidgets"))) cat(txt) else cat(txt, file = file.path(data@workpath, "mi.html"), append = TRUE) } } if(verbose) { if(isatty(stdout()) && !(any(search() == "package:gWidgets"))) cat(" ") else cat("
", file = file.path(data@workpath, "mi.html"), append = TRUE) } if(.MI_DEBUG) sapply(data@variables, validObject, complete = TRUE) on.exit() return(data) } ## unlike the above methods, these return a (modified) missing_data.frame setMethod("fit_model", signature(y = "missing", data = "missing_data.frame"), def = function(data, s = -1, verbose = FALSE, warn = FALSE, ...) { return(.fit_model_mdf(data = data, s = s, verbose = verbose, warn = warn, ...)) }) setMethod("fit_model", signature(y = "missing", data = "allcategorical_missing_data.frame"), def = function(data, s = -1, verbose = FALSE, warn = FALSE, ...) { if(verbose) { txt <- paste("Iteration:", abs(s)) if(isatty(stdout()) && !(any(search() == "package:gWidgets"))) cat("\n", txt) else cat("
", txt, file = file.path(data@workpath, "mi.html"), append = TRUE) } Hstar <- data@Hstar if(abs(s) == 0) { # starting iteration V_h <- c(runif(Hstar - 1), 1) c_prod <- cumprod(1 - V_h) data@parameters$pi <- V_h * c(1, c_prod[-Hstar]) data@variables <- lapply(data@variables, FUN = function(y) { if(is(y, "irrelevant")) return(y) if(y@all_obs) return(y) return(mi(y)) # bootstrapping }) data@X <- do.call(cbind, args = lapply(data@variables, FUN = function(y) { if(is(y, "irrelevant")) return(NULL) else return(y@data) })) phi <- lapply(1:Hstar, FUN = function(h) { lapply(data@variables, FUN = function(y) { if(is(y, "irrelevant")) return(NULL) return(c(tabulate(y@data, nbins = length(y@levels)) / y@n_total)) })}) data@parameters$phi <- phi data@parameters$alpha <- 1 cols <- Hstar rows <- nrow(data@latents@imputations) if(ncol(data@latents@parameters) == 0) { temp <- matrix(NA_real_, nrow = rows, ncol = cols) } data@latents@parameters <- temp return(data) } # S1: Update latent class membership pi <- data@parameters$pi phi <- data@parameters$phi probs <- sapply(1:Hstar, FUN = function(h) { phi_h <- phi[[h]] numerators <- rep(1, nrow(data)) for(j in 1:ncol(data)) { y <- data@variables[[j]] if(is(y, "irrelevant")) next phi_hj <- phi_h[[y@variable_name]] numerators <- numerators * data@X[,y@variable_name] * phi_hj[data@X[,y@variable_name]] } numerators <- numerators * pi[h] return(numerators) }) z <- apply(probs, 1, FUN = function(prob) { which(rmultinom(1,1,prob) == 1) # rmultinom normalizes internally }) data@latents@data[] <- z data@latents@imputations[s,] <- z data@latents@parameters[s,] <- pi # S2: Update V_h n_h <- c(tabulate(z, nbins = Hstar)) V_h <- sapply( 1:(Hstar - 1), FUN = function(h) { a <- 1 + n_h[h] b <- data@parameters$alpha + sum(n_h[-c(1:h)]) if(b == 0) return(1) rbeta(1, a, b) }) V_h <- c(V_h, 1) c_prod <- cumprod(1 - V_h) data@parameters$pi <- V_h * c(1, c_prod[-Hstar]) # S3: Update choice probabilities phi <- lapply(1:Hstar, FUN = function(h) lapply(data@variables, FUN = function(y) { if(is(y, "irrelevant")) return(NULL) mark <- z == h tab <- tabulate(y@data[mark], nbins = length(y@levels)) return(.rdirichlet(1, data@priors$a[y@variable_name] + c(tab))) })) data@parameters$phi <- phi # S4: Update alpha alpha <- rgamma(1, data@priors$a_alpha + Hstar - 1, data@priors$b_alpha - log(pi[Hstar])) data@parameters$alpha <- alpha # S5: Impute data@variables <- lapply(data@variables, FUN = function(y) { if(is(y, "irrelevant")) return(y) if(y@all_obs) return(y) if(verbose) { txt <- "." if(isatty(stdout()) && !(any(search() == "package:gWidgets"))) cat(txt) else cat(txt, file = file.path(data@workpath, "mi.html"), append = TRUE) } classes <- z[y@which_drawn] uc <- unique(classes) Pr <- t(sapply(uc, FUN = function(c) phi[[c]][[y@variable_name]])) rownames(Pr) <- uc y <- mi(y, Pr[as.character(classes),,drop=FALSE]) }) data@X <- do.call(cbind, args = lapply(data@variables, FUN = function(y) { if(is(y, "irrelevant")) return(NULL) else return(y@data) })) return(data) }) .fit_model_Sophie <- function(y, data, s = -1, verbose = FALSE, warn = FALSE, ...) { classes <- data@latents@data uc <- unique(classes) Pr <- t(sapply(uc, FUN = function(c) data@parameters$phi[[c]][[y@variable_name]])) rownames(Pr) <- uc # Pr <- Pr[as.character(classes),,drop=FALSE] Pr <- Pr / rowSums(Pr) return(list(fitted = Pr)) } setMethod("fit_model", signature(y = "unordered-categorical", data = "allcategorical_missing_data.frame"), def = function(y, data, s = -1, verbose = FALSE, warn = FALSE, ...) { return(.fit_model_Sophie(y, data, s, verbose, warn, ...)) }) setMethod("fit_model", signature(y = "ordered-categorical", data = "allcategorical_missing_data.frame"), def = function(y, data, s = -1, verbose = FALSE, warn = FALSE, ...) { return(.fit_model_Sophie(y, data, s, verbose, warn, ...)) }) setMethod("fit_model", signature(y = "binary", data = "allcategorical_missing_data.frame"), def = function(y, data, s = -1, verbose = FALSE, warn = FALSE, ...) { return(.fit_model_Sophie(y, data, s, verbose, warn, ...)) }) setMethod("fit_model", signature(y = "missing_data.frame", data = "missing_data.frame"), def = function(y, data, s = -1, verbose = FALSE, warn = FALSE, ...) { if(verbose) { txt <- paste("Iteration:", abs(s)) if(isatty(stdout()) && !(any(search() == "package:gWidgets"))) cat("\n", txt) else cat("
", txt, file = file.path(data@workpath, "mi.html"), append = TRUE) } for(jj in sample(1:ncol(y), ncol(y), replace = FALSE)) { z <- y@variables[[jj]] if(z@all_obs) next if(is(z, "irrelevant")) next y@variables[[jj]] <- .fit_model_y(z, data, s, verbose, warn, ...) if(verbose) { txt <- "." if(isatty(stdout()) && !(any(search() == "package:gWidgets"))) cat(txt) else cat(txt, file = file.path(data@workpath, "mi.html"), append = TRUE) } } if(verbose) { if(isatty(stdout()) && !(any(search() == "package:gWidgets"))) cat(" ") else cat("
", file = file.path(data@workpath, "mi.html"), append = TRUE) } if(.MI_DEBUG) sapply(data@variables, validObject, complete = TRUE) return(y) }) setMethod("fit_model", signature(y = "missing", data = "multilevel_missing_data.frame"), def = function(data, s = -1, verbose = FALSE, warn = FALSE, ...) { data@mdf_list <- fit_model(data = data@mdf_list, s = s, verbose = verbose, warn = warn, ...) if(s == 0) return(data) ## FIXME: Implement 3+ levels recursively # update group means means <- sapply(data@mdf_list, FUN = function(x) colMeans(x@X[,-1])) if(is.list(means)) { } else means <- t(means) mark <- 0L ## FIXME data@X[,mark] <- means # impute the group level variables if necessary data <- .fit_model_mdf(data = data, s = s, verbose = verbose, warn = warn, ...) # model the individual level estimates for(i in seq_along(ncol(data))) { if(is(data@variables[[i]], "irrelevant")) next # if(data@no_missing[i]) next mark <- if(s < 0) 1 else s fish <- sapply(data@mdf_list, FUN = function(d) d@variables[[i]]@parameters[mark,]) if(is.list(fish)) { ## FIXME: may be a list } else fish <- t(fish) for(j in seq_along(ncol(fish))) { model <- bayesglm.fit(data@X, y = fish[,j]) # group-level regression class(model) <- c("bayesglm", "glm", "lm") params <- arm::sim(model, 1) beta <- params@coef sigma <- params@sigma yhats <- rnorm(nrow(X), data@X %*% beta, sd = sigma) # change the priors for each element of the mdf_list accordingly for(k in seq_along(data@mdf_list)) { data@mdf_list[[k]]$mean[colnames(data)[j]] <- yhats[k] data@mdf_list[[k]]$sd[colnames(data)[j]] <- sigma } } } return(data) }) r-cran-mi-1.0/R/get_parameters.R000066400000000000000000000052061275731226000164750ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## these extract parameters from an estimated object setMethod("get_parameters", signature(object = "ANY"), def = function(object, ...) { return(c(coef(object))) }) setOldClass("polr") setMethod("get_parameters", signature(object = "polr"), def = function(object, ...) { return(c(coef(object), object$zeta)) }) setOldClass("multinom") setMethod("get_parameters", signature(object = "multinom"), def = function(object, ...) { return(c(t(coef(object)))) }) setMethod("get_parameters", signature(object = "missing_variable"), def = function(object, latest = FALSE, ...) { if(latest) { if(is.logical(latest)) { mark <- !apply(object@parameters, 1, FUN = function(x) any(is.na(x))) mark <- mark[length(mark)] } else mark <- latest return(object@parameters[mark,]) } else return(object@parameters) }) setMethod("get_parameters", signature(object = "missing_data.frame"), def = function(object, latest = FALSE, ...) { mini_list <- lapply(object@variables, get_parameters, latest = latest, ...) out <- matrix(NA_real_, nrow(mini_list[[1]]), ncol = 0) for(i in seq_along(mini_list)) out <- cbind(out, mini_list[[i]]) return(out) }) setMethod("get_parameters", signature(object = "mi"), def = function(object, latest = FALSE, ...) { mini_list <- lapply(object@data, get_parameters, latest = latest, ...) dims <- dim(mini_list) out <- array(NA_real_, c(dims[1], length(mini_list), dims[2]), dimnames = list(NULL, NULL, colnames(mini_list[[1]]))) for(i in 1:NCOL(out)) out[,i,] <- mini_list[[i]] return(out) }) setMethod("get_parameters", signature(object = "mi_list"), def = function(object, latest = FALSE, ...) { lapply(object, get_parameters, latest = latest, ...) }) r-cran-mi-1.0/R/hist_methods.R000066400000000000000000000251121275731226000161630ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. setMethod("hist", signature(x = "missing_variable"), def = function(x, ...) { y <- x@data NAs <- is.na(x) h_all <- hist(y, plot = FALSE) plot(h_all, border = "lightgray", main = "", xlab = if(x@done) "Completed" else "Observed", axes = FALSE, mgp = c(2, 1, 0), tcl = .05, col = if(x@done) "lightgray" else "blue", freq = TRUE, ...) axis(1, lwd = 0) axis(2) if(x@done) { h_obs <- hist(y[!NAs], breaks = h_all$breaks, plot = FALSE) h_miss <- hist(y[NAs], breaks = h_all$breaks, plot = FALSE) segments(h_obs$breaks[1], 0, y1 = h_obs$counts[1], col = "blue") segments(h_miss$breaks[1], 0, y1 = h_miss$counts[1], col = "red") segments(h_obs$breaks[1], y0 = h_obs$counts[1], x1 = h_obs$breaks[2], col = "blue") segments(h_miss$breaks[1], y0 = h_miss$counts[1], x1 = h_miss$breaks[2], col = "red") for(i in 2:(length(h_obs$breaks)-1)) { segments(x0 = h_obs$breaks[i], y0 = h_obs$counts[i-1], y1 = h_obs$counts[i], col = "blue") segments(x0 = h_miss$breaks[i], y0 = h_miss$counts[i-1], y1 = h_miss$counts[i], col = "red") segments(x0 = h_obs$breaks[i], y0 = h_obs$counts[i], x1 = h_obs$breaks[i+1], col = "blue") segments(x0 = h_miss$breaks[i], y0 = h_miss$counts[i], x1 = h_miss$breaks[i+1], col = "red") } segments(x0 = h_obs$breaks[i+1], y0 = h_obs$counts[i], y1 = 0, col = "blue") segments(x0 = h_miss$breaks[i+1], y0 = h_miss$counts[i], y1 = 0, col = "blue") if(.MI_DEBUG) stopifnot(all(h_all$counts == (h_obs$counts + h_miss$counts))) } return(invisible(NULL)) }) setMethod("hist", signature(x = "semi-continuous"), def = function(x, ...) { con <- complete(x@indicator, 0L) == 0 y <- x@data[con] NAs <- is.na(x)[con] h_all <- hist(y, plot = FALSE) plot(h_all, freq = TRUE, border = "lightgray", main = "", xlab = if(x@done) "Completed" else "Observed", axes = FALSE, mgp = c(2, 1, 0), tcl = .05, col = if(x@done) "lightgray" else "blue", xlim = range(x@data, na.rm = TRUE), ...) axis(1, lwd = 0) axis(2) if(x@done) { h_obs <- hist(y[!NAs], breaks = h_all$breaks, plot = FALSE) h_miss <- hist(y[NAs], breaks = h_all$breaks, plot = FALSE) segments(h_obs$breaks[1], 0, y1 = h_obs$counts[1], col = "blue") segments(h_miss$breaks[1], 0, y1 = h_miss$counts[1], col = "red") segments(h_obs$breaks[1], y0 = h_obs$counts[1], x1 = h_obs$breaks[2], col = "blue") segments(h_miss$breaks[1], y0 = h_miss$counts[1], x1 = h_miss$breaks[2], col = "red") for(i in 2:(length(h_obs$breaks)-1)) { segments(x0 = h_obs$breaks[i], y0 = h_obs$counts[i-1], y1 = h_obs$counts[i], col = "blue") segments(x0 = h_miss$breaks[i], y0 = h_miss$counts[i-1], y1 = h_miss$counts[i], col = "red") segments(x0 = h_obs$breaks[i], y0 = h_obs$counts[i], x1 = h_obs$breaks[i+1], col = "blue") segments(x0 = h_miss$breaks[i], y0 = h_miss$counts[i], x1 = h_miss$breaks[i+1], col = "red") } segments(x0 = h_obs$breaks[i+1], y0 = h_obs$counts[i], y1 = 0, col = "blue") segments(x0 = h_miss$breaks[i+1], y0 = h_miss$counts[i], y1 = 0, col = "blue") NAs <- is.na(x)[!con] tab <- table(x@data[!con], NAs) for(i in 1:NROW(tab)) { segments(x0 = as.numeric(rownames(tab)[i]), y0 = 0, y1 = sum(tab[i,]), col = "lightgray", lty = "dashed") segments(x0 = as.numeric(rownames(tab)[i]), y0 = 0, y1 = tab[i,1], col = "blue", lty = "dashed") if(ncol(tab) == 2) segments(x0 = as.numeric(rownames(tab)[i]), y0 = 0, y1 = tab[i,2], col = "red", lty = "dashed") } if(.MI_DEBUG) stopifnot(all(h_all$counts == (h_obs$counts + h_miss$counts))) } else { tab <- table(x@data[!con]) for(i in 1:NCOL(tab)) segments(x0 = as.numeric(names(tab)[i]), y0 = 0, y1 = tab[i], col = "blue", lty = "dashed") } return(invisible(NULL)) }) setMethod("hist", signature(x = "categorical"), def = function(x, ...) { y <- x@data values <- sort(unique(y)) breaks <- c(min(values) - 0.5, values + 0.5) values <- unique(y) values <- sort(values[!is.na(values)]) breaks <- c(sapply(values, FUN = function(x) c(x - .25, x + .25))) NAs <- is.na(x) h_all <- hist(y, breaks, plot = FALSE) # h_all$counts[h_all$counts == 0] <- NA_integer_ plot(h_all, border = "lightgray", axes = FALSE, main = "", xlab = if(x@done) "Completed" else "Observed", mgp = c(2, 1, 0), tcl = .05, col = if(x@done) "lightgray" else "blue", freq = TRUE, ylim = range(h_all$counts, na.rm = TRUE), ...) axis(1, at = values, labels = levels(x@raw_data), lwd = 0) axis(2) if(x@done) { h_obs <- hist(y[!NAs], breaks, plot = FALSE) h_miss <- hist(y[NAs], breaks, plot = FALSE) counts_obs <- h_obs$counts counts_obs <- counts_obs counts_miss <- h_miss$counts counts_miss <- counts_miss segments(breaks[1], 0, y1 = counts_obs[1], col = "blue") segments(breaks[1], 0, y1 = counts_miss[1], col = "red") if(counts_obs[1]) segments(breaks[1], y0 = counts_obs[1], x1 = breaks[2], col = "blue") if(counts_miss[1]) segments(breaks[1], y0 = counts_miss[1], x1 = breaks[2], col = "red") for(i in 2:(length(breaks)-1)) { segments(x0 = breaks[i], y0 = counts_obs[i-1], y1 = counts_obs[i], col = "blue") segments(x0 = breaks[i], y0 = counts_miss[i-1], y1 = counts_miss[i], col = "red") if(counts_obs[i]) segments(x0 = breaks[i], y0 = counts_obs[i], x1 = breaks[i+1], col = "blue") if(counts_miss[i]) segments(x0 = breaks[i], y0 = counts_miss[i], x1 = breaks[i+1], col = "red") } segments(x0 = breaks[i+1], y0 = counts_obs[i], y1 = 0, col = "blue") segments(x0 = breaks[i+1], y0 = counts_miss[i], y1 = 0, col = "red") if(.MI_DEBUG) stopifnot(all(h_all$counts == (h_obs$counts + h_miss$counts))) } return(invisible(NULL)) }) setMethod("hist", signature(x = "binary"), def = function(x, ...) { y <- x@data if(max(y, na.rm = TRUE) > 1) y <- y - 1L values <- 0:1 breaks <- c(-.5, .5, 1.5) breaks <- c(-.25, .25, .75, 1.25) NAs <- is.na(x) h_all <- hist(y, breaks, plot = FALSE) # h_all$counts[h_all$counts == 0] <- NA_integer_ plot(h_all, border = "lightgray", axes = FALSE, main = "", xlab = if(x@done) "Completed" else "Observed", mgp = c(2, 1, 0), tcl = .05, col = if(x@done) "lightgray" else "blue", freq = TRUE, ylim = range(h_all$counts, na.rm = TRUE), ...) axis(1, at = values, lwd = 0) axis(2) if(x@done) { h_obs <- hist(y[!NAs], breaks, plot = FALSE) h_miss <- hist(y[NAs], breaks, plot = FALSE) counts_obs <- h_obs$counts counts_obs <- counts_obs counts_miss <- h_miss$counts counts_miss <- counts_miss segments(breaks[1], 0, y1 = counts_obs[1], col = "blue") segments(breaks[1], 0, y1 = counts_miss[1], col = "red") if(counts_obs[1]) segments(breaks[1], y0 = counts_obs[1], x1 = breaks[2], col = "blue") if(counts_miss[1]) segments(breaks[1], y0 = counts_miss[1], x1 = breaks[2], col = "red") for(i in 2:(length(breaks)-1)) { segments(x0 = breaks[i], y0 = counts_obs[i-1], y1 = counts_obs[i], col = "blue") segments(x0 = breaks[i], y0 = counts_miss[i-1], y1 = counts_miss[i], col = "red") if(counts_obs[i]) segments(x0 = breaks[i], y0 = counts_obs[i], x1 = breaks[i+1], col = "blue") if(counts_miss[i]) segments(x0 = breaks[i], y0 = counts_miss[i], x1 = breaks[i+1], col = "red") } segments(x0 = breaks[i+1], y0 = counts_obs[i], y1 = 0, col = "blue") segments(x0 = breaks[i+1], y0 = counts_miss[i], y1 = 0, col = "red") if(.MI_DEBUG) stopifnot(all(h_all$counts == (h_obs$counts + h_miss$counts))) } return(invisible(NULL)) }) setMethod("hist", signature(x = "missing_data.frame"), def = function(x, ask = TRUE, ...) { k <- sum(!x@no_missing) if (.Device != "null device" && x@done) { oldask <- grDevices::devAskNewPage(ask = ask) if (!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE) op <- options(device.ask.default = TRUE) on.exit(options(op), add = TRUE) } par(mfrow = n2mfrow(k)) for(i in 1:x@DIM[2]) { if(x@no_missing[i]) next hist(x@variables[[i]]) header <- x@variables[[i]]@variable_name if(is(x@variables[[i]], "continuous")) { trans <- .show_helper(x@variables[[i]])$transformation[1] header <- paste("\n", header, " (", trans, ")", sep = "") } title(main = header) } return(invisible(NULL)) }) setMethod("hist", signature(x = "mdf_list"), def = function(x, ask = TRUE, ...) { if (.Device != "null device") { oldask <- grDevices::devAskNewPage(ask = ask) if (!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE) op <- options(device.ask.default = ask) on.exit(options(op), add = TRUE) } sapply(x, FUN = hist, ...) return(invisible(NULL)) }) setMethod("hist", signature(x = "mi"), def = function(x, m = 1:length(x), ask = TRUE, ...) { for(i in m) hist(x@data[[i]], ask = ask, ...) return(invisible(NULL)) }) setMethod("hist", signature(x = "mi_list"), def = function(x, m = 1:length(x), ask = TRUE, ...) { if (.Device != "null device") { oldask <- grDevices::devAskNewPage(ask = ask) if (!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE) op <- options(device.ask.default = ask) on.exit(options(op), add = TRUE) } sapply(x, FUN = hist, m = m, ask = ask, ...) return(invisible(NULL)) }) r-cran-mi-1.0/R/mi.R000066400000000000000000001205271275731226000141040ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. .prune_missing_variable <- function(y, s) { if(!is(y, "missing_variable")) stop("'y' must inherit from the 'missing_variable' class") if(!y@all_obs) { y@parameters <- y@parameters[1:s,,drop = FALSE] y@imputations <- y@imputations[1:s,,drop = FALSE] } return(y) } .MPinverse <- function(eta, tol = sqrt(.Machine$double.eps)) { cov_eta <- cov(eta) ev <- eigen(cov_eta, TRUE) ev$values <- ifelse(ev$values > tol, 1/ev$values, 0) Sigma_inv <- crossprod(sqrt(ev$values)*(t(ev$vectors))) return(Sigma_inv) } .mi <- function(i, y, verbose, s_start, s_end, ProcStart, max.minutes, parallel, save_models) { mdf <- y if(verbose) message("Chain ", i, "\n") for(s in s_start:s_end) { if(verbose) message("Chain ", i, " Iteration ", s, "\n") mdf <- fit_model(data = mdf, s = s, verbose = FALSE, warn = s == s_end) if(s > 0) { pars <- unlist(sapply(mdf@variables, FUN = function(y) { if(is(y, "irrelevant")) return(NA_real_) else if(y@all_obs) return(NA_real_) else return(y@parameters[s,,drop=TRUE]) })) pars <- t(pars[!is.na(pars)]) fp <- file.path(mdf@workpath, paste0("pars_", i, ".csv")) write.table(pars, file = fp, append = TRUE, sep = ",", row.names = FALSE, col.names = FALSE) imps <- unlist(sapply(mdf@variables, FUN = function(y) { if(is(y, "irrelevant")) return(NA_real_) else if(y@all_obs) return(NA_real_) else return(y@imputations[s,,drop=TRUE]) })) imps <- t(imps[!is.na(imps)]) fp <- file.path(mdf@workpath, paste0("imps_", i, ".csv")) write.table(imps, file = fp, append = TRUE, sep = ",", row.names = FALSE, col.names = FALSE) } Time.Elapsed <- proc.time() - ProcStart if(((Time.Elapsed)/60)[3] > max.minutes) { warning("'max.minutes' threshold exceeded") break } } if(((Time.Elapsed)/60)[3] > max.minutes) mdf@variables <- lapply(mdf@variables, .prune_missing_variable, s = s) if(verbose) message("Estimating models on completed data for chain ", i, "\n") mdf@variables <- lapply(mdf@variables, FUN = function(y) { if(!y@all_obs & !is(y, "irrelevant")) { model <- fit_model(y, mdf, s = s + 1, warn = TRUE) y@fitted <- fitted(model) if(!isS4(model)) model$x <- model$X <- model$y <- model$model <- NULL if(save_models) y@model <- model } else y@model <- NULL return(y) }) mdf@done <- TRUE if(verbose) message("Done with chain ", i, "\n") return(mdf) } .mi_split <- function(i, y, data, verbose, s_start, s_end, ProcStart, max.minutes, parallel, save_models) { mdf <- y if(verbose) message("Chain ", i, "\n") data@priors <- mdf@priors for(s in s_start:s_end) { if(verbose) message("Chain ", i, " Iteration ", s, "\n") mdf <- fit_model(mdf, data, s = s, verbose = FALSE, warn = s == s_end) Time.Elapsed <- proc.time() - ProcStart if(((Time.Elapsed)/60)[3] > max.minutes) { warning("'max.minutes' threshold exceeded") break } } if(((Time.Elapsed)/60)[3] > max.minutes) mdf@variables <- lapply(mdf@variables, .prune_missing_variable, s = s) if(verbose) message("Estimating models on completed data for chain ", i, "\n") mdf@variables <- lapply(mdf@variables, FUN = function(y) { if(!y@all_obs & !is(y, "irrelevant")) { model <- fit_model(y, data, s = s + 1, warn = TRUE) y@fitted <- fitted(model) if(!isS4(model)) model$x <- model$X <- model$y <- model$model <- NULL if(save_models) y@model <- model } else y@model <- NULL return(y) }) mdf@done <- TRUE if(verbose) message("Done with chain ", i, "\n") return(mdf) } setMethod("mi", signature(y = "missing_data.frame", model = "missing"), def = function(y, n.iter = 30, n.chains = 4, max.minutes = Inf, seed = NA, verbose = TRUE, save_models = FALSE, parallel = .Platform$OS.type != "Windows") { call <- match.call() if(!is.na(seed)) set.seed(seed) if(n.iter < 0) stop(message="number of iterations must be non-negative") ProcStart <- proc.time() s_start <- 0 s_end <- n.iter Time.Elapsed <- proc.time() - ProcStart y@variables <- lapply(y@variables, FUN = function(x) { if(!x@all_obs & !is(x, "irrelevant")) { x@parameters <- matrix(NA_real_, nrow = n.iter, ncol = 0) x@imputations <- matrix(NA_real_, nrow = n.iter, ncol = x@n_drawn) if(is(x, "semi-continuous")) { x@indicator@parameters <- matrix(NA_real_, nrow = n.iter, ncol = 0) x@indicator@imputations <- matrix(NA_real_, nrow = n.iter, ncol = x@n_drawn) } } x@done <- TRUE return(x) }) if(is(y, "allcategorical_missing_data.frame")) { y@latents@imputations <- matrix(NA_integer_, nrow = n.iter, ncol = nrow(y)) y@latents@levels <- as.character(1:y@Hstar) } if(n.chains <= 0) return(y) if(is.logical(parallel) && parallel) { cores <- getOption("mc.cores", 2L) cl <- parallel::makeCluster(cores, outfile = "") on.exit(parallel::stopCluster(cl)) } if(!parallel) { mdfs <- vector("list", n.chains) for(i in seq_along(mdfs)) { ProcStart <- proc.time() mdfs[[i]] <- .mi(i, y, verbose, s_start, s_end, ProcStart, max.minutes, parallel, save_models) } } else { mdfs <- parallel::parLapply(cl, X = as.list(1:n.chains), fun = function(i) .mi(i, y, verbose, s_start, s_end, ProcStart, max.minutes, parallel, save_models)) } # # else mdfs <- mclapply(as.list(1:n.chains), # FUN = function(i) .mi(i, y, verbose, s_start, s_end, # ProcStart, max.minutes, parallel, save_models)) names(mdfs) <- paste("chain", 1:length(mdfs), sep = ":") object <- new("mi", call = call, data = mdfs, total_iters = as.integer(s_end)) return(object) }) setMethod("mi", signature(y = "data.frame", model = "missing"), def = function(y, n.iter = 30, n.chains = 4, max.minutes = Inf, seed = NA, verbose = TRUE, save_models = FALSE, parallel = .Platform$OS.type != "Windows") { y <- as(y, "missing_data.frame") return(mi(y, n.iter = n.iter, n.chains = n.chains, max.minutes = max.minutes, seed = seed, verbose = verbose, save_models = save_models, parallel = parallel)) }) setMethod("mi", signature(y = "matrix", model = "missing"), def = function(y, n.iter = 30, n.chains = 4, max.minutes = Inf, seed = NA, verbose = TRUE, save_models = FALSE, parallel = .Platform$OS.type != "Windows") { y <- as(y, "missing_data.frame") return(mi(y, n.iter, n.chains, max.minutes, seed, verbose, save_models, parallel)) }) setMethod("mi", signature(y = "mi", model = "missing"), function(y, n.iter = 30, max.minutes = Inf, seed = NA, verbose = TRUE, save_models = FALSE, parallel = .Platform$OS.type != "Windows") { call <- match.call() if(!is.na(seed)) set.seed(seed) if(n.iter < 1) stop(message="number of iterations must be at least 1") ProcStart <- proc.time() total_iters <- y@total_iters s_start <- sum(total_iters) + 1 s_end <- s_start + n.iter - 1 mdfs <- y@data n.chains <- length(mdfs) for(i in 1:n.chains) { y <- mdfs[[i]] if(TRUE) y@variables <- lapply(y@variables, FUN = function(x) { if(x@all_obs & is(x, "irrelevant")) return(x) x@imputations <- rbind(x@imputations, matrix(NA_integer_, n.iter, x@n_drawn)) x@parameters <- rbind(x@parameters, matrix(NA_real_, n.iter, ncol(x@parameters))) if(is(x, "semi-continuous")) { x@indicator@imputations <- rbind(x@indicator@imputations, matrix(NA_integer_, n.iter, x@indicator@n_drawn)) x@indicator@parameters <- rbind(x@indicator@parameters, matrix(NA_real_, n.iter, ncol(x@indicator@parameters))) } return(x) }) } if(is.logical(parallel) && parallel) { cores <- getOption("mc.cores", 2L) cl <- parallel::makeCluster(cores, outfile = "") on.exit(parallel::stopCluster(cl)) } if(!parallel) { mdfs <- vector("list", n.chains) for(i in seq_along(mdfs)) { ProcStart <- proc.time() mdfs[[i]] <- .mi(i, y, verbose, s_start, s_end, ProcStart, max.minutes, parallel, save_models) } } else { mdfs <- parallel::parLapply(cl, as.list(1:n.chains), fun = function(i) .mi(i, y, verbose, s_start, s_end, ProcStart, max.minutes, parallel, save_models)) } # else mdfs <- mclapply(as.list(1:n.chains), # FUN = function(i) .mi(i, y, verbose, s_start, s_end, # ProcStart, max.minutes, parallel, save_models)) object <- new("mi", call = call, data = mdfs, total_iters = as.integer(c(total_iters, n.iter))) return(object) }) setMethod("mi", signature(y = "missing_data.frame", model = "mi"), def = function(y, model, n.iter = sum(model@total_iters), max.minutes = 20, seed = NA, verbose = TRUE, save_models = FALSE, parallel = .Platform$OS.type != "Windows") { n.chains <- length(model) call <- match.call() if(!is.na(seed)) set.seed(seed) y <- mi(y, n.chains = 0L, n.iter = n.iter) ProcStart <- proc.time() s_start <- 0 s_end <- n.iter if(is.logical(parallel) && parallel) { cores <- getOption("mc.cores", 2L) cl <- parallel::makeCluster(cores, outfile = "") on.exit(parallel::stopCluster(cl)) } mdfs <- model@data if(!parallel) { for(i in seq_along(mdfs)) { ProcStart <- proc.time() mdfs[[i]] <- .mi_split(i, y, mdfs[[i]], verbose, s_start, s_end, ProcStart, max.minutes, parallel, save_models) } } else { mdfs <- parallel::parLapply(cl, as.list(1:n.chains), fun = function(i) .mi_split(i, y, mdfs[[i]], verbose, s_start, s_end, ProcStart, max.minutes, parallel, save_models)) } # else mdfs <- mclapply(as.list(1:n.chains), # FUN = function(i) .mi_split(i, y, mdfs[[i]], verbose, s_start, s_end, # ProcStart, max.minutes, parallel, save_models)) names(mdfs) <- paste("chain", 1:length(mdfs), sep = ":") to_drop <- 1:ncol(model@data[[1]]@X) for(i in 1:n.chains) { model@data[[i]]@variables <- c(model@data[[i]]@variables, mdfs[[i]]@variables) model@data[[i]]@no_missing <- c(model@data[[i]]@no_missing, mdfs[[i]]@no_missing) # leave patterns as is I guess model@data[[i]]@DIM[2] <- model@data[[i]]@DIM[2] + mdfs[[i]]@DIM[2] model@data[[i]]@DIMNAMES[[2]] <- c(model@data[[i]]@DIMNAMES[[2]], mdfs[[i]]@DIMNAMES[[2]]) mdfs[[i]]@index <- lapply(mdfs[[i]]@index, FUN = function(x) if(is.null(x)) x else to_drop) model@data[[i]]@index <- c(model@data[[i]]@index, mdfs[[i]]@index) model@data[[i]]@weights <- c(model@data[[i]]@weights, mdfs[[i]]@weights) model@data[[i]]@priors <- c(model@data[[i]]@priors, mdfs[[i]]@priors) } object <- new("mi", call = call, data = model@data, total_iters = as.integer(s_end)) return(object) }) setMethod("mi", signature(y = "mdf_list", model = "missing"), def = function (y, ...) { out <- lapply(y, FUN = mi, ...) class(out) <- "mi_list" return(out) }) setMethod("mi", signature(y = "list", model = "missing"), def = function (y, ...) { if(!all(sapply(y, is, class2 = "mi"))) { stop("all elements of 'y' must be mi objects or missing_data.frame objects") } ## FIXME: should probably check that all the mi objects are based on the same missing_data.frame mdfs <- lapply(mi, FUN = function(x) return(x@data)) object <- new("mi", call = y[[1]]@call, data = mdfs, total_iters = y[[1]]@total_iters) return(object) }) setMethod("mi", signature(y = "mdf_list", model = "missing"), function (y, n.iter = 30, n.chains = 4, max.minutes = Inf, seed = NA, verbose = TRUE, save_models = FALSE, parallel = .Platform$OS.type != "Windows") { out <- lapply(y, mi, n.iter = n.iter, n.chains = n.chains, max.minutes = max.minutes, seed = seed, verbose = verbose, save_models = save_models, parallel = parallel) class(out) <- "mi_list" return(out) }) setMethod("mi", signature(y = "mi_list", model = "missing"), def = function (y, ...) { out <- lapply(y, FUN = mi, ...) class(out) <- "mi_list" return(out) }) setMethod("show", signature(object = "mi"), def = function(object) { cat("Object of class", class(object), "with", length(object@data), "chains, each with", sum(object@total_iters), "iterations.\n") cat("Each chain is the evolution of an object of", class(object@data[[1]]), "class with", nrow(object@data[[1]]), "observations on", ncol(object@data[[1]]), "variables.\n") return(invisible(NULL)) }) setMethod("show", signature(object = "mi_list"), def = function(object) { sapply(object, show) return(invisible(NULL)) }) setMethod("summary", signature(object = "mi"), def = function(object) { mdf <- object@data[[1]] matrices <- complete(object, to_matrix = TRUE, include_missing = FALSE) chains <- length(matrices) matrices <- array(unlist(matrices), dim = c(dim(mdf), chains), dimnames = c(dimnames(mdf), NULL)) out <- vector("list", ncol(mdf)) names(out) <- colnames(mdf) for(i in seq_along(out)) { if(mdf@no_missing[i]) { if(is(mdf@variables[[i]], "categorical")) { mat <- table(matrices[,i,1]) lev <- mdf@variables[[i]]@levels if(length(lev) && length(dim(mat)) > 1) colnames(mat) <- lev } else mat <- summary(matrices[,i,1]) out[[i]] <- list(is_missing = "all values observed", observed = mat) } else if(is(mdf@variables[[i]], "categorical")) { mark <- is.na(mdf@variables[[i]]) mat <- table(c(matrices[,i,]), rep(mark, times = chains)) lev <- mdf@variables[[i]]@levels if(length(lev)) rownames(mat) <- lev colnames(mat) <- c("observed", "imputed") out[[i]] <- list(crosstab = mat) } else { missing <- is.na(mdf@variables[[i]]@raw_data) out[[i]] <- list(is_missing = table(missing), imputed = summary(c(matrices[missing,i,])), observed = summary(c(matrices[!missing,i,]))) } } return(out) }) setMethod("traceplot", signature(x = "mi"), def = function(x, ...) { traceplot(mi2BUGS, ...) }) setMethod("traceplot", signature(x = "mi_list"), def = function(x, ...) { traceplot(lapply(x, mi2BUGS, ...)) }) ## all the mi() methods below should return the missing_variable after imputing ## need to explicitly write out methods instead of doing poor man's S4 setMethod("mi", signature(y = "missing_variable", model = "ANY"), def = function(y, model, ...) { stop("This method should not have been called. You need to define the relevant mi() S4 method") }) setMethod("mi", signature(y = "missing_variable", model = "missing"), def = function(y) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") draws <- sample(y@data[y@which_obs], size = y@n_drawn, replace = TRUE) y@data[y@which_drawn] <- draws return(y) }) setMethod("mi", signature(y = "semi-continuous", model = "missing"), def = function(y) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") y@indicator <- mi(y@indicator) draws <- sample(y@data[y@which_obs], size = y@n_drawn, replace = TRUE) if(is(y, "SC_proportion")) { n <- y@n_total if(is(y@indicator, "binary")) { mark <- which(complete(y@indicator, m = 0L)[y@which_miss] == 1) if(any(y@raw_data == 0, na.rm = TRUE)) draws[mark] <- .5 / n else draws[mark] <- (n - .5) / n } else { mark <- which(complete(y@indicator, m = 0L)[y@which_miss] != 0) draws[mark] <- (draws[mark] * (n - 1) + .5) / n } } else if(is(y, "nonnegative-continuous")) { mark <- which(y@indicator@data[y@which_miss] == 1) if(length(mark)) draws[mark] <- y@transformation(rep(0, length(mark))) } else stop("FIXME: semi-continuous is not supported yet") y@data[y@which_drawn] <- draws return(y) }) # setMethod("mi", signature(y = "semi-continuous", model = "missing"), def = # function(y) { # if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") # # categories <- 1:(ncol(y@indicator@dummies) + 1) # draws <- sample(categories, size = y@n_drawn, replace = TRUE) # dummies <- t(sapply(draws, FUN = function(x) x == categories))[,-1,drop = FALSE] # y@indicator@dummies[y@which_drawn,] <- dummies # y@indicator@data[y@which_drawn] <- draws # # draws <- sample(y@data[y@which_obs], size = y@n_drawn, replace = TRUE) # if(is(y, "SC_proportion")) { # n <- y@n_total # if(is(y@indicator, "binary")) { # mark <- which(complete(y@indicator, m = 0L)[y@which_miss] == 1) # if(any(y@raw_data == 0, na.rm = TRUE)) draws[mark] <- .5 / n # else draws[mark] <- (n - .5) / n # } # else { # mark <- which(complete(y@indicator, m = 0L)[y@which_miss] != 0) # draws[mark] <- (draws[mark] * (n - 1) + .5) / n # } # } # else if(is(y, "nonnegative-continuous")) { # mark <- which(y@indicator@data[y@which_miss] == 1) # if(length(mark)) draws[mark] <- y@transformation(rep(0, length(mark))) # } # # the_range <- range(y@data, na.rm = TRUE) # free <- y@data[y@which_obs] # free <- free[free != the_range[1] & free != the_range[2]] # draws <- sample(free, size = y@n_drawn, replace = TRUE) # y@data[y@which_drawn] <- draws # return(y) # }) setMethod("mi", signature(y = "bounded-continuous", model = "missing"), def = function(y) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") a <- if(length(y@lower) == 1) y@lower else y@lower[y@which_drawn] a <- ifelse(a == -Inf, min(y@data, na.rm = TRUE), a) a <- ifelse(a == Inf, max(y@data, na.rm = TRUE), a) b <- if(length(y@upper) == 1) y@upper else y@upper[y@which_drawn] b <- ifelse(b == -Inf, min(y@data, na.rm = TRUE), b) b <- ifelse(b == Inf, max(y@data, na.rm = TRUE), b) draws <- runif(y@n_drawn, min = a, max = b) y@data[y@which_drawn] <- draws return(y) }) setMethod("mi", signature(y = "categorical", model = "missing"), def = function(y) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") draws <- sample(y@data[y@which_obs], size = y@n_drawn, replace = TRUE) y@data[y@which_drawn] <- draws return(y) }) .draw_parameters <- function(means, ev) { if(any(ev$values <= 0)) return(means) else return(means + (ev$vectors %*% (sqrt(ev$values) * rnorm(length(means))))[,1]) } .pmm <- function(y, eta, Sigma_inv = NULL, strata = NULL) { if(is(y, "unordered-categorical")) { if(is.null(Sigma_inv)) Sigma_inv <- .MPinverse(eta) MD <- mahalanobis(eta, colMeans(eta), Sigma_inv, inverted=TRUE) MD_observed <- MD[y@which_obs] y_observed <- y@data[y@which_obs] draws <- sapply(MD[y@which_drawn], FUN = function(x) { mark <- which.min(abs(MD_observed - x)) drawmark <- c(y_observed[mark], mark) return(drawmark) }) } else if(is(y, "grouped-binary")) { draws <- sapply(y@which_drawn, FUN = function(i) { which_same <- which(strata == strata[i]) candidates <- intersect(which_same, y@which_obs) if(length(candidates) == 0) { msg <- paste(y@variable_name, ": must have some observed values in each group") stop(msg) } eta_can <- eta[candidates] y_can <- y@data[candidates] mark <- which.min(abs(eta_can - eta[i])) drawmark <- c(y_can[mark], mark) return(drawmark) }) } else { eta_obs <- eta[y@which_obs] y_obs <- y@data[y@which_obs] draws <- sapply(eta[y@which_drawn], FUN = function(x) { if(is.na(x)) return(NA_real_) # happens with semi-continuous mark <- which.min(abs(eta_obs - x)) drawmark <- c(y_obs[mark], mark) return(drawmark) }) } return(t(draws)) } setOldClass("polr") setMethod("mi", signature(y = "ordered-categorical", model = "polr"), def = function(y, model, s, ...) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") if(!is.element(y@imputation_method, c("ppd", "pmm"))) badHessian <- FALSE else if(is.null(model$Hessian)) badHessian <- FALSE else if(!all(is.finite(model$Hessian))) badHessian <- TRUE else { means <- c(coef(model), model$zeta) ev <- eigen(vcov(model), symmetric = TRUE) badHessian <- any(ev$values <= 0) parameters <- .draw_parameters(means, ev) while(!badHessian && any(diff(parameters[-(1:ncol(model$x))]) <= 0)) { # rejection sampling on cutpoints parameters <- .draw_parameters(means, ev) } } if(badHessian && y@imputation_method == "ppd") { warning(paste("predictive mean matching used for", y@variable_name, "on iteration", s, "as a fallback due to Hessian error")) old_method <- y@imputation_method y@imputation_method <- "pmm" y <- mi(y, model, s, ...) y@imputation_method <- old_method return(y) } else if(y@imputation_method == "ppd") { eta <- as.vector(model$x[y@which_drawn,,drop=FALSE] %*% head(parameters, ncol(model$x))) pfun <- switch(y@family$link, logit = plogis, probit = pnorm, cloglog = function(q) exp(-exp(-q)), cauchit = pcauchy) zeta <- parameters[-(1:ncol(model$x))] draws <- sapply(eta, FUN = function(x) { which(rmultinom(1, 1, diff(c(0,pfun(zeta - x),1))) == 1) }) } else if(y@imputation_method == "pmm") { parameters <- c(coef(model), model$zeta) eta <- model$x %*% parameters[1:ncol(model$x)] pmm <- .pmm(y, eta) draws <- pmm[,1] y@fitted[y@which_drawn,] <- y@fitted[y@which_obs,][pmm[,2],] } else if(y@imputation_method == "median") { predictions <- predict(model, type = "class") draws <- rep(floor(median(predictions[y@which_obs])), y@n_drawn) } else if(y@imputation_method == "mode") draws <- predict(model, type = "class")[y@which_drawn] else stop("'imputation_method' not recognized") y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) setOldClass("multinom") setMethod("mi", signature(y = "unordered-categorical", model = "multinom"), def = function(y, model, s, ...) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") ev <- eigen(vcov(model), symmetric = TRUE) parameters <- .draw_parameters(t(coef(model)), ev) if (ncol(model.matrix(model)) != nrow(parameters)) parameters <- t(parameters) eta <- model.matrix(model) %*% parameters if(y@imputation_method == "ppd") { exp_eta <- matrix(pmin(.Machine$double.xmax / ncol(eta), cbind(1, exp(eta[y@which_drawn,,drop = FALSE]))), ncol = ncol(eta) + 1) denom <- rowSums(exp_eta) Pr <- exp_eta / denom if (y@use_NA) { Pr <- Pr[,-1]/rowSums(Pr[,-1]) badrows <- apply(is.na(Pr), 1, all) if(any(badrows)) { warning("Some rows of Pr are all 0 after dropping the missingness category") Pr[badrows,] <- 1/(ncol(Pr) - 1) } } draws <- apply(Pr, 1, FUN = function(p) which(rmultinom(1, 1, p) == 1)) } else if(y@imputation_method == "pmm"){ pmm <- .pmm(y, eta) draws <- pmm[,1] y@fitted[y@which_drawn,,drop=FALSE] <- y@fitted[y@which_obs,,drop=FALSE][pmm[,2]] } else if(y@imputation_method == "mode") draws <- predict(model, type = "class")[y@which_drawn] else stop("'imputation_method' not recognized") y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) setOldClass("RNL") setMethod("mi", signature(y = "unordered-categorical", model = "RNL"), def = function(y, model, s, ...) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") if(y@imputation_method == "ppd") { # imputating from the posterior predictive distribution Pr <- sapply(model, FUN = function(m) { ev <- eigen(vcov(m), symmetric = TRUE) parameters <- .draw_parameters(coef(m), ev) eta <- m$x[y@which_drawn,,drop=FALSE] %*% parameters pred <- m$family$linkinv(eta) return(pred) }) if(y@use_NA) { Pr <- Pr[,-1]/rowSums(Pr[,-1]) badrows <- apply(is.na(Pr), 1, all) if(any(badrows)) { warning("Some rows of Pr are all 0 after dropping the missingness category") Pr[badrows,] <- 1/(ncol(Pr) - 1) } } draws <- apply(Pr, 1, FUN = function(p) which(rmultinom(1, 1, p) == 1)) } else if(y@imputation_method == "pmm") { eta <- sapply(model, FUN = function(m) { ev <- eigen(vcov(m), symmetric = TRUE) parameters <- .draw_parameters(coef(m), ev) eta <- m$x %*% parameters return(eta) }) pmm <- .pmm(y, eta) draws <- pmm[,1] y@fitted[y@which_drawn,,drop=FALSE] <- y@fitted[y@which_obs,,drop=FALSE][pmm[,2]] } else stop("only ppd and pmm are supported imputation methods in the RNL case") y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) setOldClass("glm") setMethod("mi", signature(y = "binary", model = "glm"), def = function(y, model, s, ...) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") if(y@imputation_method == "ppd") { ev <- eigen(vcov(model), symmetric = TRUE) parameters <- .draw_parameters(coef(model), ev) eta <- model$x[y@which_drawn,,drop=FALSE] %*% parameters pred <- model$family$linkinv(eta) draws <- rbinom(y@n_drawn, 1, pred) + 1L } else if(y@imputation_method == "pmm") { ev <- eigen(vcov(model), symmetric = TRUE) parameters <- .draw_parameters(coef(model), ev) eta <- model$x %*% parameters pmm <- .pmm(y, eta) draws <- pmm[,1] y@fitted[y@which_drawn] <- y@fitted[y@which_obs][pmm[,2]] } else if(y@imputation_method == "median") { predictions <- predict(model, type = "class") draws <- rep(floor(median(predictions[y@which_obs])), y@n_drawn) } else if(y@imputation_method == "mode") draws <- predict(model, type = "class")[y@which_drawn] else if(y@imputation_method == "mean") stop("'mean' is not a supported 'imputation_method' for binary variables") else if(y@imputation_method == "expectation") stop("'expectation' is not a supported 'imputation_method' for binary variables") else stop("'imputation_method' not recognized") draws <- as.integer(draws) y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) setOldClass("clogit") setMethod("mi", signature(y = "grouped-binary", model = "clogit"), def = function(y, model, s, ...) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") # reconstruc the strata Terms <- model$terms temp <- untangle.specials(Terms, "strata") mf <- model.frame(model) strata <- strata(mf[, temp$vars], shortlabel = TRUE) if(y@imputation_method == "pmm") { ev <- eigen(vcov(model), symmetric = TRUE) parameters <- .draw_parameters(coef(model), ev) eta <- model$x %*% parameters draws <- .pmm(y, eta, strata = strata)[,1] #FIXME: haven't adjusted fitted values } else stop("only 'pmm' is supported for 'grouped-binary' variables") draws <- as.integer(draws) y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) setMethod("mi", signature(y = "interval", model = "glm"), def = function(y, model, s, ...) { stop("FIXME: write this method") if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") if(y@imputation_method == "ppd") { stop("FIXME") } else stop("only ppd is supported as an imputation method for interval variables") return(y) }) setMethod("mi", signature(y = "categorical", model = "matrix"), def = function(y, model, s, ...) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") if(y@imputation_method != "ppd") stop("only ppd is supported in this case") if(nrow(model) != y@n_drawn) stop("matrix of probabilities has the wrong number of rows") draws <- apply(model, 1, FUN = function(p) which(rmultinom(1, 1, p) == 1)) y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) ## helper function .mi_continuous <- function(y, model) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") if(y@imputation_method == "ppd") { ev <- eigen(vcov(model), symmetric = TRUE) parameters <- .draw_parameters(coef(model), ev) if(model$family$family == "gaussian") { eta <- model$x[y@which_drawn,,drop=FALSE] %*% parameters pred <- model$family$linkinv(eta) if(is(y, "bounded-continuous")) { a <- if(length(y@lower) > 1) y@lower[y@which_drawn] else y@lower b <- if(length(y@upper) > 1) y@upper[y@which_drawn] else y@upper draws <- truncnorm::rtruncnorm(y@n_drawn, mean = pred, sd = sqrt(model$dispersion), a = a, b = b) } else draws <- rnorm(y@n_drawn, pred, sqrt(model$dispersion)) } else { eta <- model$x %*% parameters model$fitted <- model$family$linkinv(eta) # model$dispersion <- parameters@sigma^2 draws <- y@family$sim(model, nsim = 1)[y@which_drawn] } } else if(y@imputation_method == "pmm") { ev <- eigen(vcov(model), symmetric = TRUE) parameters <- .draw_parameters(coef(model), ev) if(is(y, "semi-continuous")) { eta <- rep(NA_real_, y@n_total) mark <- complete(y@indicator, 0L) == 0 eta[mark] <- model$x[mark,] %*% parameters } else eta <- model$x %*% parameters draws <- .pmm(y, eta)[,1] #FIXME: haven't adjusted fitted values using pmm for continuous } else if(y@imputation_method == "mean") { eta <- predict(model, type = "response") eta_observed <- eta[y@which_obs] eta_mean <- mean(eta_observed) draws <- rep(eta_mean, y@n_drawn) } else if(y@imputation_method == "median") { eta <- predict(model, type = "response") eta_observed <- eta[y@which_obs] eta_median <- median(eta_observed) draws <- rep(eta_median, y@n_drawn) } else if(y@imputation_method == "expectation") draws <- predict(model, type = "response")[y@which_drawn] else stop("'imputation_method' not recognized") return(draws) } setMethod("mi", signature(y = "continuous", model = "glm"), def = function(y, model, s, ...) { draws <- .mi_continuous(y, model) y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) # setMethod("mi", signature(y = "censored-continuous", model = "glm"), def = # function(y, model, s, ...) { # not_obs <- c(y@which_drawn, y@which_censored) # if(y@imputation_method == "ppd") { # parameters <- arm::sim(model, 1) # eta <- model$x[not_obs,,drop=FALSE] %*% parameters@coef[1,] # pred <- model$family$linkinv(eta) # draws <- rnorm(y@n_drawn, pred, parameters@sigma) # } # else if(y@imputation_method == "pmm") { # eta <- predict(model, type = "link") # eta_observed <- eta[y@which_obs] # y_observed <- y@data[y@which_obs] # draws <- sapply(eta[nob_obs], FUN = function(x) { # mark <- which.min(abs(eta_observed - x)) # return(y_observed[mark]) # }) # } # else if(y@imputation_method == "mean") { # eta <- predict(model, type = "response") # eta_observed <- eta[y@which_obs] # eta_mean <- mean(eta_observed) # draws <- rep(eta_mean, length(not_obs)) # } # else if(y@imputation_method == "median") { # eta <- predict(model, type = "response") # eta_observed <- eta[y@which_obs] # eta_median <- median(eta_observed) # draws <- rep(floor(eta_median), length(not_obs)) # } # else if(y@imputation_method == "expectation") draws <- predict(model, type = "response")[not_obs] # else stop("'imputation_method' not recognized") # # y@data[not_obs] <- draws # y@imputations[s,] <- draws # return(y) # }) setMethod("mi", signature(y = "semi-continuous", model = "glm"), def = function(y, model, s, ...) { stop("the semi-continuous mi() method should not have been called") }) setMethod("mi", signature(y = "nonnegative-continuous", model = "glm"), def = function(y, model, s, ...) { draws <- .mi_continuous(y, model) # now account for the fact that some draws were determined to be 0 in step 1 mark <- which(complete(y@indicator, 0L)[y@which_miss] == 1) if(length(mark)) draws[mark] <- y@transformation(rep(0, length(mark))) y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) ## helper function .mi_proportion <- function(y, model) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") if(!is.element(y@imputation_method, c("ppd", "pmm"))) badHessian <- FALSE else if(is.null(model$vcov)) badHessian <- FALSE else if(!all(is.finite(model$vcov))) badHessian <- TRUE else { ev <- eigen(vcov(model), TRUE) badHessian <- any(ev$values <= 0) means <- coef(model) parameters <- .draw_parameters(means, ev) # while(!badHessian && parameters[length(parameters)] <= 0) { # parameters <- .draw_parameters(means, ev) # } } if(badHessian && y@imputation_method == "ppd") { warning(paste("predictive mean matching used for", y@variable_name, "as a fallback due to Hessian error")) old_method <- y@imputation_method y@imputation_method <- "pmm" y <- mi(y, model) return(y@data[y@which_miss]) } else if(y@imputation_method == "ppd") { eta <- model$x[y@which_drawn,,drop=FALSE] %*% parameters[1:NCOL(model$x)] mu <- model$link$mean$linkinv(eta) phi <- model$link$precision$linkinv(parameters[length(parameters)]) ## FIXME: in the parameterized case shape1 <- mu * phi shape2 <- phi - shape1 draws <- rbeta(y@n_drawn, shape1, shape2) } else if(y@imputation_method == "pmm") { eta <- model$x %*% parameters[-length(parameters)] draws <- .pmm(y, eta)[,1] #FIXME: haven't adjusted fitted values for pmm } else if(y@imputation_method == "mean") { mu <- predict(model) mu_observed <- mu[y@which_obs] mu_mean <- mean(mu_observed) draws <- rep(mu_mean, y@n_drawn) } else if(y@imputation_method == "median") { mu <- predict(model) mu_observed <- mu[y@which_obs] mu_median <- median(mu_observed) draws <- rep(mu_median, y@n_drawn) } else if(y@imputation_method == "expectation") draws <- predict(model)[y@which_drawn] else stop("'imputation_method' not recognized") return(draws) } setOldClass("betareg") setMethod("mi", signature(y = "proportion", model = "betareg"), def = function(y, model, s, ...) { draws <- .mi_proportion(y, model) y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) setMethod("mi", signature(y = "proportion", model = "glm"), def = function(y, model, s, ...) { draws <- .mi_continuous(y, model) y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) setMethod("mi", signature(y = "SC_proportion", model = "betareg"), def = function(y, model, s, ...) { draws <- .mi_proportion(y, model) n <- y@n_total if(is(y@indicator, "binary")) { mark <- which(complete(y@indicator, 0L)[y@which_miss] == 1) if(any(y@raw_data == 0, na.rm = TRUE)) draws[mark] <- .5 / n else draws[mark] <- (n - .5) / n } else { signs <- complete(y@indicator, 0L)[y@which_drawn] draws[signs < 0] <- .5 / n draws[signs > 0] <- (n - .5) / n } y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) ## draw from overdispersed Poisson distribution .rpois.od <- function(n, lambda, dispersion = 1) { if (dispersion <= 1) ans <- rpois(n, lambda) else { B <- 1/(dispersion-1) A <- lambda * B ans <- rnbinom(n, size= A , mu = lambda) } return(ans) } setMethod("mi", signature(y = "count", model = "glm"), def = function(y, model, s, ...) { if(y@n_drawn == 0) stop("'impute' should not have been called because there are no missing data") if(y@imputation_method == "ppd") { ev <- eigen(vcov(model), symmetric = TRUE) parameters <- .draw_parameters(coef(model), ev) eta <- model$x[y@which_drawn,,drop=FALSE] %*% parameters pred <- model$family$linkinv(eta) draws <- .rpois.od(y@n_drawn, pred, model$dispersion) } else if(y@imputation_method == "pmm") { ev <- eigen(vcov(model), symmetric = TRUE) parameters <- .draw_parameters(coef(model), ev) eta <- model$x %*% parameters draws <- .pmm(y, eta)[,1] #FIXME: haven't adjusted fitted values for pmm } else if(y@imputation_method == "mean") { eta <- predict(model, type = "response") eta_observed <- eta[y@which_obs] eta_mean <- mean(eta_observed) draws <- rep(round(eta_mean), y@n_drawn) } else if(y@imputation_method == "median") { eta <- predict(model, type = "response") eta_observed <- eta[y@which_obs] eta_median <- median(eta_observed) draws <- rep(floor(eta_median), y@n_drawn) } else if(y@imputation_method == "expectation") draws <- round(predict(model, type = "response")[y@which_drawn]) else stop("'imputation_method' not recognized") draws <- as.integer(draws) y@data[y@which_drawn] <- draws y@imputations[s,] <- draws return(y) }) setMethod("mi", signature(y = "irrelevant", model = "ANY"), def = function(y, model, ...) { stop("The mi() method should not have been called on an 'irrelevant' variable") }) ## FIXME: account for the other stuff at the bottom of the original mi.R file r-cran-mi-1.0/R/misc.R000066400000000000000000000273441275731226000144350ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## like sapply but for objects of mi class mipply <- ## FIXME: should probably be a generic function instead of poor man's S4 function(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE, columnwise = TRUE, to.matrix = FALSE) { if(is(X, "mi_list")) { out <- lapply(X, mipply, ..., simplify = simplify, USE.NAMES = USE.NAMES, columnwise = columnwise, to.matrix = to.matrix) } else if(is(X, "mi")) { X <- complete(X, to_matrix = to.matrix) if(columnwise) out <- sapply(X, FUN = function(x) apply(x, 2, FUN, ...), simplify = simplify, USE.NAMES = USE.NAMES) else out <- sapply(X, FUN, ..., simplify = simplify, USE.NAMES = USE.NAMES) } else if(is(X, "mdf_list")) { out <- lapply(X, mipply, ..., simplify = simplify, USE.NAMES = USE.NAMES, columnwise = columnwise, to.matrix = to.matrix) } else if(is(X, "missing_data.frame")) { if(columnwise) out <- sapply(X, FUN = function(x) apply(x, 2, FUN, ...), simplify = simplify, USE.NAMES = USE.NAMES) else out <- sapply(X, FUN, ..., simplify = simplify, USE.NAMES = USE.NAMES) } else if(is(X, "missing_variable")) { out <- FUN(X@data, ...) } else if(is(X, "mi_list")) { out <- lapply(X, FUN = mipply, ..., simplify = simplify, USE.NAMES = USE.NAMES, columnwise = columnwise, to.matrix = to.matrix) } else stop("'X' must be of class 'mi', 'missing_data.frame', 'missing_variable', or 'mi_list'") return(out) } ## create a bugs array from an mi object mi2BUGS <- function(imputations, statistic = c("moments", "imputations", "parameters")) { if(is(imputations, "mi_list")) return(lapply(imputations, FUN = mi2BUGS, statistic = statistic)) else if(!is(imputations, "mi")) stop("imputations must be an object of class 'mi' or 'mi_list'") statistic <- match.arg(statistic) if(statistic == "moments") { iterations <- sum(imputations@total_iters) mark <- !imputations@data[[1]]@no_missing & !sapply(imputations@data[[1]]@variables, is, class2 = "irrelevant") means <- lapply(1:iterations, FUN = function(m) { matrices <- lapply(imputations@data, FUN = complete, m = m, to_matrix = TRUE, include_missing = FALSE) out <- sapply(matrices, colMeans)[mark,,drop = FALSE] return(out) }) sds <- lapply(1:iterations, FUN = function(m) { matrices <- lapply(imputations@data, FUN = complete, m = m, to_matrix = TRUE, include_missing = FALSE) out <- sapply(matrices, FUN = function(x) apply(x, 2, sd))[mark,,drop = FALSE] return(out) }) dims <- dim(means[[1]]) arr <- array(NA_real_, c(iterations, dims[2], 2 * dims[1]), list(NULL, NULL, c(paste("mean", rownames(means[[1]]), sep = "_"), paste("sd", rownames(means[[1]]), sep = "_")))) for(i in seq_along(means)) for(j in 1:ncol(arr)) { arr[i,j, 1:dims[1]] <- means[[i]][,j] arr[i,j,-c(1:dims[1])] <- sds[[i]][,j] } } else if(statistic == "imputations") { imp_list <- lapply(imputations@data, function(x) lapply(x@variables, function(y) y@imputations)) n.parameters <- rapply(imp_list, ncol) arr <- array(NA_real_, c(sum(imputations@total_iters), length(imp_list), n.parameters)) ## FIXME: names? for(i in seq_along(imp_list)) arr[,i,] <- unlist(imp_list[[i]]) } else arr <- get_parameters(imputations) return(arr) # compatible with R2WinBUGS } ##Outputs completed data in either Stata (.dta) format or comma-separated (.csv) format mi2stata <- function(imputations, m, file, missing.ind=FALSE, ...) { if(grepl("\\.csv$", file)) type <- "csv" if(grepl("\\.dta$", file)) type <- "dta" else if(!is(imputations, "mi")) stop("imputations must be an object of class 'mi'") else if(!is(file, "character")) stop("filename must be specified as a character object") else if(type!="dta" & type!="csv") stop("file type must be 'dta' for stata format or 'csv' for comma-separated format") message("Note: after loading the data into Stata, version 11 or later, type 'mi import ice' to register the data as being multiply imputed. For Stata 10 and earlier, install MIM by typing 'findit mim' and include 'mim:' as a prefix for any command using the MI data.") unpos <- sum(sapply(imputations@data[[1]]@variables, FUN=function(x){x@n_unpossible})) if (unpos>0 & !missing.ind) { missing.ind <- TRUE warning("There are legitimately skipped values in the data that were not imputed. Including variables to indicate which missing values were imputed. Values which are still missing but are not indicated are legitimate skips.") } if (unpos>0 & missing.ind) { warning("There are legitimately skipped values in the data that were not imputed. Values which are still missing but are not indicated are legitimate skips.") } data.list <- complete(imputations, m) if (missing.ind) miss.indic <- data.list[[1]][,which(!is.element(colnames(data.list[[1]]), names(imputations@data[[1]]@variables)))] vars <- which(is.element(colnames(data.list[[1]]), names(imputations@data[[1]]@variables))) stata.data <- data.list[[1]][,vars] stata.miss <- sapply(imputations@data[[1]]@variables, FUN=function(x){ v <- is.element(1:x@n_total, x@which_drawn) return(v) }, simplify=TRUE) is.na(stata.data) <- stata.miss if (missing.ind) stata.data <- cbind(stata.data, miss.indic) stata.data$mi <- 1:nrow(stata.data); stata.data$mj <- 0 for(i in seq_along(data.list)){ dl <- data.list[[i]] if(!missing.ind) dl <- dl[,vars] dl$mi <- 1:nrow(dl) dl$mj <- i stata.data <- rbind(stata.data, dl) } colnames(stata.data)[which(colnames(stata.data)=="mi")] <- "_mi" colnames(stata.data)[which(colnames(stata.data)=="mj")] <- "_mj" if(type=="dta") foreign::write.dta(stata.data, file=file, version = 7L, ...) else if(type=="csv") write.table(stata.data, file=file, sep=",", col.names=TRUE, row.names=FALSE) } ## Returns the Gelman statistic Rhats <- function(imputations, statistic = c("moments", "imputations", "parameters")) { BUGS <- mi2BUGS(imputations, statistic) make_Rhat <- function(x) { m <- ncol(x) if(m < 2) stop("need at least 2 chains to calculate an R-hat") iter <- nrow(x) xbars <- colMeans(x) variances <- apply(x, MARGIN = 2:3, FUN = sd)^2 W <- colMeans(variances) B <- iter * apply(xbars, MARGIN = 2, FUN = var) R <- sqrt( (iter - 1) / iter + 1 / iter * B / W ) return(R) } if(is(imputations, "mi")) return(make_Rhat(BUGS)) else return(sapply(BUGS, FUN = make_Rhat)) } ## tests whether a method is the one defined in my (as opposed to a user-defined method in .GlobalEnv) is.method_in_mi <- function(generic, ...) { method <- selectMethod(generic, signature(...)) return(environmentName(environment(method@.Data)) == "mi") } ## cube root transformation .cuberoot <- function(y, inverse = FALSE) { if(inverse) y^3 else y^(1/3) } .parse_trans <- function(trans) { if(identical(names(formals(trans)), c("y", "mean", "sd", "inverse"))) return("standardize") if(identical(names(formals(trans)), c("y", "a", "inverse"))) return("logshift") if(identical(body(trans), body(.squeeze_transform))) return("squeeze") if(identical(body(trans), body(.identity_transform))) return("identity") if(identical(body(trans), body(log))) return("log") if(identical(body(trans), body(sqrt))) return("sqrt") if(identical(body(trans), body(.cuberoot))) return("cuberoot") if(identical(body(trans), body(qnorm))) return("qnorm") return("user-defined") } .prune <- function(class) { classes <- names(getClass(class, where = "mi")@subclasses) classes <- classes[!sapply(classes, isVirtualClass, where = "mi")] if(!isVirtualClass(class, where = "mi")) classes <- c(class, classes) return(classes) } .possible_missing_variable <- function(y) { ## FIXME: update this function whenever you tweak the missing_variable tree mvs <- .prune("missing_variable") maybe <- rep(TRUE, length(mvs)) names(maybe) <- mvs if(is.factor(y)) y <- factor(y) # to drop unused levels vals <- unique(y) vals <- sort(vals[!is.na(vals)]) if(length(vals) == 1) { maybe[] <- FALSE maybe["irrelevant"] <- TRUE maybe[.prune("fixed")] <- TRUE return(maybe) } else maybe[.prune("fixed")] <- FALSE if(!all(table(y) > 1)) maybe[.prune("categorical")] <- FALSE if(length(vals) == 2) { # permit binary plus children but not other kinds of categorical maybe[.prune("categorical")] <- FALSE maybe[.prune("binary")] <- TRUE maybe[.prune("semi-continuous")] <- FALSE } else { maybe[.prune("binary")] <- FALSE } if(!is.numeric(vals)) { maybe[.prune("continuous")] <- FALSE maybe[.prune("count")] <- FALSE return(maybe) } if(any(vals < 0)) { maybe[.prune("nonnegative-continuous")] <- FALSE maybe[.prune("positive-continuous")] <- FALSE maybe[.prune("count")] <- FALSE return(maybe) } if(any(vals == 0)) maybe[.prune("positive-continuous")] <- FALSE else maybe[.prune("nonnegative-continuous")] <- FALSE # unless SC_proportion if(!any(vals < 1 && vals > 0)) { maybe[.prune("SC_proportion")] <- FALSE maybe[.prune("proportion")] <- FALSE } else if(any(vals >= 1)) { maybe[.prune("proportion")] <- FALSE if(any(vals > 1)) maybe[.prune("SC_proportion")] <- FALSE else maybe[.prune("SC_proportion")] <- TRUE } if(any(vals != as.integer(vals))) { maybe[.prune("count")] <- FALSE maybe[.prune("categorical")] <- FALSE } return(maybe) } .cat2dummies <- function(y) { if(!is(y, "categorical")) stop("must be a categorical variable") if(is(y, "binary")) out <- as.matrix(as.integer(y@data == 1)) else { levels <- sort(unique(y@data)) out <- t(sapply(y@data, FUN = function(x) as.integer(x == levels)[-1])) } return(out) } setMethod("fitted", signature(object = "RNL"), def = function(object, ...) { Pr <- sapply(object, FUN = function(m) { eta <- m$x %*% coef(m) pred <- m$family$linkinv(eta) return(pred) }) Pr <- Pr / rowSums(Pr) return(Pr) }) setMethod("fitted", signature(object = "clogit"), def = function(object, ...) { target <- mean(as.numeric(object$y)) lp <- object$linear.predictors foo <- function(par) { intercept <- qlogis(par) mean(plogis(intercept + lp)) - target } opt <- uniroot(foo, lower = 0, upper = 1) return(plogis(qlogis(opt$root) + lp)) }) # Borrowed from library(MCMCpack) .rdirichlet <- function(n, alpha) { l <- length(alpha) x <- matrix(rgamma(l * n, alpha), ncol = l, byrow = TRUE) sm <- rowSums(x) return(x / sm) } r-cran-mi-1.0/R/missing_data.frame.R000066400000000000000000000163601275731226000172310ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. setMethod("missing_data.frame", signature(y = "data.frame"), def = function(y, subclass = NA_character_, by = NULL, types = NULL, favor_ordered = TRUE, favor_positive = FALSE, threshold = 5, ...) { if(!is.na(subclass) && subclass == "allcategorical") threshold <- Inf if(!is.null(by)) { mdfs <- by(y, lapply(by, FUN = function(b) y[,b]), FUN = function(d) { missing_data.frame(d, favor_ordered = favor_ordered, threshold = threshold, favor_positive = favor_positive, subclass = subclass, types = types, ...) }) class(mdfs) <- "mdf_list" return(mdfs) } variables <- vector("list", length = ncol(y)) if(is.null(types)) for(i in seq_along(variables)) { variables[[i]] <- missing_variable(y[,i], favor_ordered = favor_ordered, favor_positive = favor_positive, variable_name = colnames(y)[i], threshold = threshold) } else for(i in seq_along(variables)) { variables[[i]] <- new(types[i], variable_name = colnames(y)[i], raw_data = y[,i]) } if(is.na(subclass)) new("missing_data.frame", variables = variables, DIMNAMES = dimnames(y), ...) else new(paste(subclass, "missing_data.frame", sep = "_"), variables = variables, DIMNAMES = dimnames(y), ...) } ) setMethod("missing_data.frame", signature(y = "matrix"), def = function(y, ...) { return(missing_data.frame(y = as.data.frame(y), ...)) } ) setMethod("missing_data.frame", signature(y = "list"), def = function(y, ...) { if(!all(sapply(y, is, class2 = "missing_variable"))) { stop("all list elements must inherit from the 'missing_variable' class") } return(new("missing_data.frame", variables = y)) } ) setAs(from = "data.frame", to = "missing_data.frame", def = function(from) { missing_data.frame(from) } ) setAs(from = "matrix", to = "missing_data.frame", def = function(from) { missing_data.frame(as.data.frame(from)) } ) setAs(from = "missing_data.frame", to = "data.frame", def = function(from) { return(complete(from, m = 0L)) } ) setAs(from = "missing_data.frame", to = "matrix", def = function(from) { return(complete(from, m = 0L, to_matrix = TRUE)) } ) ## FIXME: Probably need to add a boatload of methods to mimic the behavior of data.frames .default_model <- function(y, data) { if(is(data, "allcategorical_missing_data.frame")) return("Gibbs") if(y@all_obs) { if(is(y, "semi-continuous")) return(rep(NA_character_, 2)) else return(NA_character_) } if(is(y, "irrelevant")) return(NA_character_) if(y@imputation_method == "mcar") return(NA_character_) if(!is.method_in_mi("fit_model", y = class(y), data = class(data))) { if(is(y, "semi-continuous")) return(rep("user-defined", 2)) else return("user-defined") } fam <- y@family$family link <- y@family$link if(is(y, "count")) { if(fam == "quasipoisson" && link == "log") return("qpoisson") else if(fam == "poisson" && link == "log") return("poisson") else return("****") } else if(is(y, "binary")) { if(is(y, "grouped-binary")) return("clogit") if(fam == "quasibinomial") return(paste("q", link, sep = "")) else if(fam == "binomial") return(link) else return("****") } else if(is(y, "interval")) return("survreg") else if(is(y, "ordered-categorical")) return(paste("o", link, sep = "")) else if(is(y, "unordered-categorical")) { if(fam == "binomial") out <- "RN" else out <- "m" return(paste(out, link, sep = "")) } else if(is(y, "proportion")) return(if(fam == "gaussian") "linear" else "betareg") else if(is(y, "SC_proportion")) { out <- .default_model(y@indicator, data) return(c("betareg", out)) } else if(is(y, "semi-continuous")) { out <- .default_model(y@indicator, data) if(fam == "gaussian") { if(link == "identity") return(c("linear", out)) else if(link == "log") return(c("loglinear", out)) else if(link == "inverse") return(c("inverselinear", out)) else return(c("****", out)) } else if(fam == "Gamma") return(c("****", out)) else if(fam == "inverse.gaussian") return(c("****", out)) else if(fam == "quasi") return(c("quasi", out)) else return(c("****", out)) } else if(is(y, "continuous")) { if(fam == "gaussian") { if(link == "identity") return("linear") else if(link == "log") return("loglinear") else if(link == "inverse") return("inverselinear") else return("****") } else if(fam == "Gamma") return("****") else if(fam == "inverse.gaussian") return("****") else if(fam == "quasi") return("quasi") else return("****") } else return("user-defined") } setMethod("show", "missing_data.frame", def = function(object) { k <- object@DIM[2] df <- .show_helper(object@variables[[1]]) for(i in 2:k) { df <- rbind(df, .show_helper(object@variables[[i]])) } df1 <- cbind(df[,1:3], model = unlist(sapply(object@variables, FUN = function(y) .default_model(y, object)))) if(is(object, "experiment_missing_data.frame")) df1$concept[names(object@concept)] <- object@concept df2 <- df[,-c(1:3)] cat("Object of class", class(object), "with", nrow(object), "observations on", ncol(object), "variables\n") if(length(object@patterns)) { npatterns <- nlevels(object@patterns) cat("\nThere are", npatterns, "missing data patterns\n") # print(table(as.integer(object@patterns))) # mat <- as.matrix(levels(object@patterns)) # colnames(mat) <- "missing" # print(mat) cat("\nAppend '@patterns' to this", class(object), "to access the corresponding pattern for every observation or perhaps use table()\n\n") } print(df1) cat("\n") print(df2) if(any(df1$model == "****", na.rm = TRUE)) { cat("\n**** The model lacks a widely-recognized name but is determined by the chosen type, family, and link.\n") } return(invisible(NULL)) }) setMethod("show", "mdf_list", def = function(object) { for(i in seq_along(object)) { cat("\n", names(object)[i], "\n") show(object[[i]]) } return(invisible(NULL)) }) setMethod("summary", "missing_data.frame", def = function(object) { summary(as.data.frame(object)) }) r-cran-mi-1.0/R/missing_variable.R000066400000000000000000000151411275731226000170100ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. .guess_type <- function(y, favor_ordered = TRUE, favor_positive = FALSE, threshold = 5, variable_name = deparse(substitute(y))) { if(!is.null(dim(y))) stop(paste(variable_name, ": must be a vector")) if(is.factor(y)) y <- factor(y) # to drop unused levels values <- unique(y) values <- sort(values[!is.na(values)]) len <- length(values) if(len == 0) { warning(paste(variable_name, ": cannot infer variable type when all values are NA, guessing 'irrelevant'")) type <- "irrelevant" } else if(len == 1) type <- "fixed" else if(grepl("^[[:punct:]]", variable_name)) type <- "irrelevant" else if(identical("id", tolower(variable_name))) type <- "irrelevant" else if(len == 2) { if(!is.numeric(values)) type <- "binary" else if(all(values == as.integer(values))) type <- "binary" else if(favor_positive) { if(all(values > 0)) type <- "positive-continuous" else if(all(values >= 0)) type <- "nonnegative-continuous" else type <- "continuous" } else type <- "continuous" } else if(is.ts(y)) { if(favor_positive) { if(all(values > 0)) type <- "positive-continuous" else if(all(values >= 0)) type <- "nonnegative-continuous" else type <- "continuous" } else type <- "continuous" } else if(is.ordered(y)) type <- "ordered-categorical" else if(is.factor(y)) type <- "unordered-categorical" else if(is.character(y)) type <- "unordered-categorical" else if(is.numeric(y)) { if(all(values >= 0) && all(values <= 1)) { if(any(values %in% 0:1)) type <- "SC_proportion" else type <- "proportion" } else if(len <= threshold && all(values == as.integer(values))) type <- if(favor_ordered) "ordered-categorical" else "unordered-categorical" else if(favor_positive) { if(all(values > 0)) type <- "positive-continuous" else if(all(values >= 0)) type <- "nonnegative-continuous" else type <- "continuous" } else type <- "continuous" } else stop(paste("cannot infer variable type for", variable_name)) return(type) } ## this constructor largely supplants typecast in previous versions of library(mi) setMethod("missing_variable", signature(y = "ANY", type = "missing"), def = function(y, favor_ordered = TRUE, favor_positive = FALSE, threshold = 5, variable_name = deparse(substitute(y))) { type <- .guess_type(y, favor_ordered, favor_positive, threshold, variable_name) return(missing_variable(y = y, type = type, variable_name = variable_name)) }) setMethod("missing_variable", signature(y = "ANY", type = "character"), def = function(y, type, variable_name = deparse(substitute(y)), ...) { return(new(type, raw_data = y, variable_name = variable_name, ...)) }) .show_helper <- function(object) { type <- class(object) missingness <- object@n_miss meth <- object@imputation_method if(object@n_miss) { if(is.character(object@family)) { fam <- object@family link <- NA_character_ } else { fam <- object@family$family link <- object@family$link } } else fam <- link <- NA_character_ if(is(object, "continuous")) trans <- .parse_trans(object@transformation) else trans <- NA_character_ df <- data.frame(type = type, missing = missingness, method = meth, family = fam, link = link, transformation = trans) rownames(df) <- object@variable_name if(is(object, "semi-continuous")) df <- rbind(df, .show_helper(object@indicator)) return(df) } setMethod("show", signature(object = "missing_variable"), def = function(object) { df <- .show_helper(object) print(df) }) ## setAs methods cause subtle problems with auto-coercion # setAs(from = "unordered-categorical", to = "ordered-categorical", def = # function(from) { # class(from) <- "ordered-categorical" # return(from) # }) # # setAs(from = "ordered-categorical", to = "unordered-categorical", def = # function(from) { # class(from) <- "unordered-categorical" # return(from) # }) # # setAs(from = "binary", to = "unordered-categorical", def = # function(from) { # stop("not possible or necessary to coerce from 'binary' to 'unordered-categorical'") # }) # setAs(from = "binary", to = "ordered-categorical", def = # function(from) { # stop("not possible or necessary to coerce from 'binary' to 'unordered-categorical'") # }) # setAs(from = "nonnegative-continuous", to = "continuous", def = # function(from) { # mean <- mean(from@raw_data, na.rm = TRUE) # sd <- sd(from@raw_data, na.rm = TRUE) # from@transformation <- .standardize_transform # formals(from@transformation)$mean <- mean # formals(from@transformation)$sd <- sd # from@inverse_transformation <- .standardize_transform # formals(from@inverse_transformation)$mean <- mean # formals(from@inverse_transformation)$sd <- sd # formals(from@inverse_transformation)$inverse <- TRUE # from@data <- from@transformation(from@raw_data) # class(from) <- "continuous" # return(from) # }) # # setAs(from = "continuous", to = "positive-continuous", def = # function(from) { # from@transformation <- log # from@inverse_transformation <- exp # from@data <- from@transformation(from@raw_data) # class(from) <- "positive-continuous" # validObject(from) # return(from) # }) # ## maybe add more methods ## NOTE: If you change something here, look also at the change_type.R file r-cran-mi-1.0/R/plot_methods.R000066400000000000000000000506221275731226000161760ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # Copyright (C) 2011 Douglas Bates and Martin Maechler # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. setMethod("image", "dgTMatrix", # slight hack of a method in the library(Matrix) function(x, xlim = .5 + c(0, di[2]), ylim = .5 + c(di[1], 0), aspect = "iso", ## was default "fill" sub = sprintf("Dimensions: %d x %d", di[1], di[2]), xlab = "Column", ylab = "Row", cuts = 15, useAbs = NULL, colorkey = !useAbs, col.regions = NULL, lwd = NULL, ...) { di <- x@Dim xx <- x@x if(missing(useAbs)) ## use abs() when all values are non-neg useAbs <- min(xx, na.rm=TRUE) >= 0 else if(useAbs) xx <- abs(xx) rx <- range(xx, finite=TRUE) if(is.null(col.regions)) col.regions <- if(useAbs) { grey(seq(from = 0.7, to = 0, length = 100)) } else { ## no abs(.), rx[1] < 0 nn <- 100 n0 <- min(nn, max(0, round((0 - rx[1])/(rx[2]-rx[1]) * nn))) col.regions <- c(colorRampPalette(c("blue3", "gray80"))(n0), colorRampPalette(c("gray75","red3"))(nn - n0)) } if(!is.null(lwd) && !(is.numeric(lwd) && all(lwd >= 0))) # allow lwd=0 stop("'lwd' must be NULL or non-negative numeric") lattice::levelplot(x@x ~ (x@j + 1L) * (x@i + 1L), sub = sub, xlab = xlab, ylab = ylab, xlim = xlim, ylim = ylim, aspect = aspect, colorkey = colorkey, col.regions = col.regions, cuts = cuts, # par.settings = list(background = list(col = "transparent")), panel = function(x, y, z, subscripts, at, ..., col.regions) { x <- as.numeric(x[subscripts]) y <- as.numeric(y[subscripts]) numcol <- length(at) - 1 num.r <- length(col.regions) col.regions <- if (num.r <= numcol) rep(col.regions, length = numcol) else col.regions[1+ ((1:numcol-1)*(num.r-1)) %/% (numcol-1)] zcol <- rep.int(NA_integer_, length(z)) for (i in seq_along(col.regions)) zcol[!is.na(x) & !is.na(y) & !is.na(z) & at[i] <= z & z < at[i+1]] <- i zcol <- zcol[subscripts] if (any(subscripts)) { if(is.null(lwd)) { wh <- grid::current.viewport()[c("width", "height")] ## wh : current viewport dimension in pixel wh <- c(grid::convertWidth(wh$width, "inches", valueOnly=TRUE), grid::convertHeight(wh$height, "inches", valueOnly=TRUE)) * par("cra") / par("cin") pSize <- wh/di ## size of one matrix-entry in pixels pA <- prod(pSize) # the "area" p1 <- min(pSize) lwd <- ## crude for now if(p1 < 2 || pA < 6) 0.01 # effectively 0 else if(p1 >= 4) 1 else if(p1 > 3) 0.5 else 0.2 } else stopifnot(is.numeric(lwd), all(lwd >= 0)) # allow 0 grid::grid.rect(x = x, y = y, width = 1, height = 1, default.units = "native", gp = grid::gpar(fill = ifelse(is.na(zcol), "black", col.regions[zcol]), lwd = lwd, col = if(lwd < .01) NA else NA)) } }, ...) }) setMethod("image", signature(x = "missing_data.frame"), def = function (x, y.order = FALSE, x.order = FALSE, clustered = TRUE, grayscale = FALSE, ...) { data <- lapply(x@variables, FUN = function(z) if(is(z, "irrelevant")) NULL else is.na(z) * 1) data <- as.matrix(as.data.frame(data[!sapply(data, is.null)])) index <- seq(nrow(data)) x.at <- 1:nrow( data ) x.lab <- index if( x.order ) { orderIndex <- order(colSums(data), decreasing = TRUE) sub <- "Ordered by number of missing items per variable" } if( y.order ) { orderIndex <- order(rowSums(data), decreasing = FALSE) index <- row.names( data ) sub <- "Ordered by number of missing items per observation" x.at <- NULL x.lab <- FALSE } if(clustered){ orderIndex <- order.dendrogram(as.dendrogram(hclust(dist(data, method = "binary"), method="mcquitty"))) sub <- "Clustered by missingness" } if(!grayscale) { data <- lapply(x@variables, FUN = function(z) { y <- z@data if(is(z, "irrelevant")) return(NULL) else if(is(z, "continuous")) return( (y - mean(y, na.rm = TRUE)) / (2 * sd(y, na.rm = TRUE)) ) else if(is(z, "count")) return( (y - mean(y, na.rm = TRUE)) / (2 * sd(y, na.rm = TRUE)) ) else if(is(z, "categorical")) { y <- z@data if(is(z, "binary")) { y <- y == max(y, na.rm = TRUE) return( (y - 0.5) * 2 ) } else { the_range <- seq(from = -.99, to = 1, length.out = length(unique(na.omit(y)))) return(the_range[as.integer(as.factor(y))]) } } else return( (y - mean(y, na.rm = TRUE)) / (2 * sd(y, na.rm = TRUE)) ) }) data <- as.matrix(as.data.frame(data[!sapply(data, is.null)])) } if(y.order) X <- Matrix(data[,orderIndex]) else X <- Matrix(data[orderIndex,]) if(grayscale) { plot(image(X, aspect = "fill", xlab = "Standardized Variable", ylab = "Observation Number", sub = sub, scales = list(x = list(at = 1:ncol(data), labels = colnames(data), rot = 90, abbreviate = TRUE, minlength = 8)), main = "Dark represents missing data", colorkey = FALSE, alpha.regions = 1, ...)) return(invisible(NULL)) } nn <- 100 rx <- range(X, finite = TRUE) n0 <- min(nn, max(0, round((0 - rx[1])/(rx[2]-rx[1]) * nn))) col.regions <- heat.colors(17) breaks <- seq(from = rx[1] - 1e-8, to = rx[2] + 1e-8, length.out = 16) plot(image(X, aspect = "fill", xlab = "Standardized Variable", ylab = "Observation Number", sub = sub, at = breaks, scales = list(x = list(at = 1:ncol(data), labels = colnames(data), rot = 90, abbreviate = TRUE, minlength = 8)), main = "Dark represents missing data", colorkey = TRUE, col.regions = col.regions, alpha.regions = 1, ...)) return(invisible(NULL)) }) setMethod("image", signature(x = "mdf_list"), def = function (x, y.order = FALSE, x.order = FALSE, clustered = TRUE, grayscale = FALSE, ask = TRUE, ...) { if (.Device != "null device") { oldask <- grDevices::devAskNewPage(ask = ask) if (!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE) op <- options(device.ask.default = ask) on.exit(options(op), add = TRUE) } sapply(x, FUN = image, y.order = y.order, x.order = x.order, clustered = clustered, grayscale = grayscale, ...) return(invisible(NULL)) }) setMethod("image", signature(x = "mi"), def = function (x, y.order = FALSE, x.order = FALSE, clustered = TRUE, ...) { data <- lapply(x@data[[1]]@variables, FUN = function(z) if(is(z, "irrelevant")) NULL else is.na(z) * 1) data <- as.matrix(as.data.frame(data[!sapply(data, is.null)])) if( x.order ) { orderIndex <- order(colSums(data), decreasing = TRUE) sub <- "Ordered by number of missing items per variable" } if( y.order ) { orderIndex <- order(rowSums(data), decreasing = FALSE) index <- row.names( data ) sub <- "Ordered by number of missing items per observation" } if(clustered){ orderIndex <- order.dendrogram(as.dendrogram(hclust(dist(data, method = "binary"), method="mcquitty"))) sub <- "Clustered by missingness" } foo <- function(z, raw = FALSE) { y <- if(raw) z@raw_data else z@data # y <- z@data if(is(z, "irrelevant")) return(NULL) else if(is(z, "continuous")) return( (y - mean(y, na.rm = TRUE)) / (2 * sd(y, na.rm = TRUE)) ) else if(is(z, "count")) return( (y - mean(y, na.rm = TRUE)) / (2 * sd(y, na.rm = TRUE)) ) else if(is(z, "categorical")) { y <- if(raw) as.numeric(z@raw_data) else z@data if(is(z, "binary")) { y <- y == max(y, na.rm = TRUE) return( (y - 0.5) * 2 ) } else { the_range <- seq(from = -.99, to = 1, length.out = length(unique(na.omit(y)))) return(the_range[as.integer(as.factor(y))]) } } else return( (y - mean(y, na.rm = TRUE)) / (2 * sd(y, na.rm = TRUE)) ) } temp <- lapply(x@data[[1]]@variables, FUN = foo) temp <- as.matrix(as.data.frame(temp[!sapply(temp, is.null)])) temp[data == 1] <- NA_real_ data <- temp if(y.order) data <- data[,orderIndex] else data <- data[orderIndex,] X0 <- Matrix(data) data <- 0 chains <- min(3, length(x@data)) for(i in seq_along(x@data)) { temp <- lapply(x@data[[i]]@variables, FUN = foo, raw = FALSE) temp <- as.matrix(as.data.frame(temp[!sapply(temp, is.null)])) data <- data + temp / chains } if(y.order) data <- data[,orderIndex] else data <- data[orderIndex,] X1 <- Matrix(data) X <- rbind2(X0, X1) breaks <- seq(from = min(X, na.rm = TRUE), to = max(X, na.rm = TRUE), length.out = 15) plot(image(X0, aspect = "fill", xlab = "", ylab = "Observation Number", sub = "", at = breaks, scales = list(x = list(at = 1:ncol(data), labels = colnames(data), rot = 90, abbreviate = TRUE, minlength = 5)), main = "Original data", colorkey = TRUE, col.regions = heat.colors(17), ...), split = c(1,1,1,2)) plot(image(X1, aspect = "fill", xlab = "", ylab = "Observation Number", sub = "", at = breaks, scales = list(x = list(at = 1:ncol(data), labels = colnames(data), rot = 90, abbreviate = TRUE, minlength = 5)), main = "Average completed data", colorkey = TRUE, col.regions = heat.colors(17), ...), newpage = FALSE, split = c(1,2,1,2)) return(invisible(NULL)) }) setMethod("image", signature(x = "mi_list"), def = function (x, y.order = FALSE, x.order = FALSE, clustered = TRUE, grayscale = FALSE, ask = TRUE, ...) { if (.Device != "null device") { oldask <- grDevices::devAskNewPage(ask = ask) if (!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE) op <- options(device.ask.default = ask) on.exit(options(op), add = TRUE) } sapply(x, FUN = image, y.order = y.order, x.order = x.order, clustered = clustered, grayscale = grayscale, ...) return(invisible(NULL)) }) .binnedplot <- function (x, y, nclass = NULL, xlab = "Expected Values", ylab = "Average residual", main = "", cex.pts = 0.8, col.pts = "blue", col.int = "gray") { n <- length(x) if (is.null(nclass)) { if (n >= 100) { nclass = floor(sqrt(length(x))) } if (n > 10 & n < 100) { nclass = 10 } if (n <= 10) { nclass = floor(n/2) } } aa <- data.frame(arm::binned.resids(x, y, nclass)$binned) # aa <- aa[!is.na(aa$X2se),] ## FIXME: remove once Yu-Sung fixes arm::binned.resids plot(range(aa$xbar), range(aa$ybar, aa$X2se, -aa$X2se), xlab = xlab, ylab = ylab, type = "n", main = main, mgp = c(2, 1, 0), tcl = .05) abline(0, 0, lty = 2) lines(aa$xbar, aa$X2se, col = col.int) lines(aa$xbar, -aa$X2se, col = col.int) points(aa$xbar, aa$ybar, pch = 19, cex = cex.pts, col = col.pts) } .binnedpoints <- function (x, y, nclass = NULL, cex.pts = 0.8, col.pts = "red") { n <- length(x) if (is.null(nclass)) { if (n >= 100) { nclass = floor(sqrt(length(x))) } if (n > 10 & n < 100) { nclass = 10 } if (n <= 10) { nclass = floor(n/2) } } if(n > 5) { aa <- data.frame(arm::binned.resids(x, y, nclass)$binned) points(aa$xbar, aa$ybar, pch = 19, cex = cex.pts, col = col.pts) } return(invisible(NULL)) } setMethod("plot", signature(x = "missing_data.frame", y = "missing_variable"), def = function(x, y, ...) { NAs <- is.na(y@raw_data) z <- y@data hist(y) yhat <- y@fitted the_range <- range(c(yhat, z)) plot(the_range, the_range, type = "n", xlab = "Expected Values", ylab = "Completed", mgp = c(2, 1, 0), tcl = .05) abline(0, 1, lty = 2, col = "lightgray") points(yhat, z, col = ifelse(NAs, "red", "blue"), pch = ".", cex = 2) lines(lowess(x = yhat[!NAs], y = z[!NAs]), col = "blue") .binnedplot(yhat[!NAs], (y@data - yhat)[!NAs]) .binnedpoints(yhat[NAs], (y@data - yhat)[NAs]) return(invisible(NULL)) }) setMethod("plot", signature(x = "missing_data.frame", y = "categorical"), def = function(x, y, ...) { NAs <- is.na(y@raw_data) z <- y@data hist(y) s <- nrow(y@parameters) + 1 yhat <- y@fitted if(length(yhat) == 0) { # embedded varname <- y@variable_name varname <- strsplit(varname, ":")[[1]][1] to_drop <- x@index[[varname]] X <- x@X[,-to_drop] s <- nrow(y@parameters) + 1 model <- fit_model(y, data = x, s = s, warn = TRUE, X = X) yhat <- fitted(model) } if(is.matrix(yhat)) yhat <- yhat %*% (1:ncol(yhat)) the_range <- range(c(yhat, z)) #+ c(-.1, .1) plot(the_range, the_range, type = "n", xlab = "Expected Values", ylab = "Completed (jittered)", mgp = c(2, 1, 0), tcl = .05) abline(0, 1, lty = 2, col = "lightgray") points(yhat, jitter(z), col = ifelse(NAs, "red", "blue"), pch = ".", cex = 2) .binnedplot(yhat[!NAs], (y@data - yhat)[!NAs]) .binnedpoints(yhat[NAs], (y@data - yhat)[NAs]) return(invisible(NULL)) }) setMethod("plot", signature(x = "missing_data.frame", y = "binary"), def = function(x, y, ...) { NAs <- is.na(y@raw_data) z <- y@data - 1L hist(y) s <- nrow(y@parameters) + 1 yhat <- y@fitted if(length(yhat) == 0) { # embedded varname <- y@variable_name varname <- strsplit(varname, ":")[[1]][1] to_drop <- x@index[[varname]] X <- x@X[,-to_drop] model <- fit_model(y = y, data = x, s = s, warn = TRUE, X = X) yhat <- fitted(model) } the_range <- range(c(yhat, z)) #+ c(-.1, .1) plot(the_range, the_range, type = "n", xlab = "Expected Values", ylab = "Completed (jittered)", mgp = c(2, 1, 0), tcl = .05) abline(0, 1, lty = 2, col = "lightgray") points(yhat, jitter(z), col = ifelse(NAs, "red", "blue"), pch = ".", cex = 2) .binnedplot(yhat[!NAs], (y@data - 1 - yhat)[!NAs]) .binnedpoints(yhat[NAs], (y@data - 1 - yhat)[NAs]) return(invisible(NULL)) }) setMethod("plot", signature(x = "allcategorical_missing_data.frame", y = "categorical"), def = function(x, y, ...) { NAs <- is.na(y@raw_data) z <- y@raw_data hist(y) latents <- x@latents@data yhat <- t(sapply(latents[!NAs], FUN = function(l) y@fitted[l,])) tab_obs <- table(z[!NAs]) tab_model <- table(apply(yhat, 1, FUN = function(p) which(rmultinom(1, 1, p) == 1))) the_range <- c(0, max(c(tab_obs, tab_model))) barplot(tab_obs, beside = TRUE, xlab = "Observed Values", ylim = the_range) names(tab_model) <- levels(z) barplot(tab_model, beside = TRUE, xlab = "Expected Values", ylim = the_range) return(invisible(NULL)) }) setMethod("plot", signature(x = "allcategorical_missing_data.frame", y = "binary"), def = function(x, y, ...) { NAs <- is.na(y@raw_data) z <- y@raw_data hist(y) latents <- x@latents@data yhat <- t(sapply(latents[!NAs], FUN = function(l) y@fitted[l,])) tab_obs <- table(z[!NAs]) tab_model <- table(apply(yhat, 1, FUN = function(p) which(rmultinom(1, 1, p) == 1))) the_range <- c(0, max(c(tab_obs, tab_model))) barplot(tab_obs, beside = TRUE, xlab = "Observed Values", ylim = the_range) names(tab_model) <- levels(z) barplot(tab_model, beside = TRUE, xlab = "Expected Values", ylim = the_range) return(invisible(NULL)) }) setMethod("plot", signature(x = "missing_data.frame", y = "semi-continuous"), def = function(x, y, ...) { NAs <- is.na(y@raw_data) z <- y@data hist(y) s <- nrow(y@parameters) + 1 yhat <- z yhat[complete(y@indicator, m = 0L, to_factor = TRUE) == 0] <- y@fitted #fitted(model) the_range <- range(c(yhat, z)) plot(the_range, the_range, type = "n", xlab = "Expected Values", ylab = "Completed", mgp = c(2, 1, 0), tcl = .05) abline(0, 1, lty = 2, col = "lightgray") points(yhat, z, col = ifelse(NAs, "red", "blue"), pch = ".", cex = 2) lines(lowess(x = yhat[!NAs], y = z[!NAs]), col = "blue") .binnedplot(yhat[!NAs], (y@data - yhat)[!NAs]) .binnedpoints(yhat[NAs], (y@data - yhat)[NAs]) return(invisible(NULL)) }) setMethod("plot", signature(x = "mi", y = "ANY"), def = function(x, y, ask = TRUE, header = character(0), ...) { if(missing(y)) select <- 1:ncol(x@data[[1]]) else if(is.logical(y)) select <- which(y) else if(is.character(y)) select <- which(colnames(x@data[[1]]) %in% y) else if(is.numeric(y)) select <- which(1:nrow(x@data[[1]]) %in% y) for(i in seq_along(x@data[[1]]@variables)) { if(x@data[[1]]@no_missing[i]) next else if(is(x@data[[1]]@variables[[i]], "irrelevant")) next else if(x@data[[1]]@variables[[i]]@imputation_method == "mcar") { warning(x@data[[1]]@variables[[i]]@variable_name, " not plotted because it assumes MCAR") next } if(!(i %in% select)) next l <- min(3, length(x@data)) if (.Device != "null device") { oldask <- grDevices::devAskNewPage(ask = ask) if (!oldask) on.exit(grDevices::devAskNewPage(oldask), add = TRUE) op <- options(device.ask.default = ask) on.exit(options(op), add = TRUE) } par(mfrow = c(l,3), mar = c(5,4,1,1) + .1) if(is(x@data[[1]]@variables[[i]], "semi-continuous")) { for(j in 1:l) plot(x@data[[j]], x@data[[j]]@variables[[i]]@indicator, ...) title(main = paste("\n", header, x@data[[1]]@variables[[i]]@indicator@variable_name, sep = ""), outer = TRUE) } for(j in 1:l) plot(x@data[[j]], x@data[[j]]@variables[[i]], ...) new_header <- paste(header, x@data[[1]]@variables[[i]]@variable_name) if(is(x@data[[1]]@variables[[i]], "continuous")) { trans <- .show_helper(x@data[[1]]@variables[[i]])$transformation[1] new_header <- paste("\n", new_header, " (", trans, ")", sep = "") } else new_header <- paste("\n", new_header, sep = "") title(main = new_header, outer = TRUE) } return(invisible(NULL)) }) setMethod("plot", signature(x = "mi_list", y = "ANY"), def = function(x, y, ask = TRUE, ...) { if(missing(y)) for(i in seq_along(x)) plot(x[[i]], ask = ask, header = paste(names(x)[i], ": ", sep = ""), ...) else for(i in seq_along(x)) plot(x[[i]], y = y, ask = ask, header = paste(names(x)[i], ": ", sep = ""), ...) return(invisible(NULL)) }) r-cran-mi-1.0/R/pool.R000066400000000000000000000206501275731226000144440ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Trustees of Columbia University # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. pool <- function(formula, data, m = NULL, FUN = NULL, ...) { if(is.list(data)) { if(all(sapply(data, is, class2 = "mi"))) { if(is.null(m)) m <- length(data[[1]]@data) else m <- as.integer(m) dfs <- complete(data[[1]], m = m, to_matrix = FALSE) l <- length(data) if(l > 1) for(i in 2:l) { temp <- complete(data[[l]], m = m, to_matrix = FALSE) for(j in seq_along(temp)) dfs[[j]] <- rbind(dfs[[j]], temp[[j]]) } data <- data[[1]] } else if(all(sapply(data, is.data.frame))) { dfs <- data m <- length(dfs) } else { stop("if 'data' is a list it must be a list of mi objects or data.frames") } } else if(is(data, "mi")) { if(is.null(m)) m <- length(data@data) else m <- as.integer(m) dfs <- complete(data, m = m, to_matrix = FALSE) } if(!is(formula, "formula")) stop("'formula' must be a formula") dots <- list(...) if(is.null(FUN)) { if(!is(data, "mi")) stop("if 'data' is not of class 'mi', 'FUN' must be specified") yname <- as.character(formula)[2] if(!(yname %in% colnames(data@data[[1]]))) { stop(paste("no variable called", yname, "possibly due to typo or transformation,", "in which case you need to specify 'FUN' explicitly")) } else y <- data@data[[1]]@variables[[yname]] if(!is.method_in_mi("fit_model", y = class(y), data = class(data@data[[1]]))) { stop(paste(yname, "seems to have a user-defined 'fit_model' method,", "in which case 'FUN' must be specified explicitly")) } if(is(y, "unordered-categorical")) { FUN <- nnet::multinom fit <- "multinom" } else if(is(y, "binary") | is(y, "count") | is(y, "continuous")) { FUN <- arm::bayesglm fit <- "bayesglm" if(!("family" %in% names(dots))) dots$family <- y@family } else if(is(y, "interval")) { FUN <- survival::survreg fit <- "survreg" } else if(is(y, "ordered-categorical")) { FUN <- arm::bayespolr fit <- "bayespolr" if(!("method" %in% names(dots))) dots$method <- if(y@family$link == "logit") "logistic" else y@family$link } } else if(!is(FUN, "function")) stop("'FUN' must be a function or NULL") else fit <- deparse(substitute(FUN)) models <- lapply(dfs, FUN = function(d) { dots$data <- d dots$formula <- formula do.call(FUN, args = dots) }) summaries <- lapply(models, summary) pooled_summary <- summaries[[1]] if(is.list(pooled_summary)) for(i in seq_along(pooled_summary)) { if(is.numeric(pooled_summary[[i]])) { num <- lapply(summaries, FUN = function(x) x[[i]]) if(is.matrix(pooled_summary[[i]])) { mat <- pooled_summary[[i]] arr <- array(unlist(num), dim = c(dim(mat), m)) arr <- apply(arr, 1:2, mean) colnames(arr) <- colnames(mat) rownames(arr) <- rownames(mat) pooled_summary[[i]] <- arr } else if(length(pooled_summary[[i]]) > 1) { arr <- rowMeans(matrix(unlist(num), ncol = m)) names(arr) <- names(pooled_summary[[i]]) pooled_summary[[i]] <- arr } else pooled_summary[[i]] <- mean(unlist(num)) } } else { pooled_summary <- list() warning("could not construct pooled_summary") } coefs <- sapply(models, get_parameters) variances <- sapply(models, FUN = function(x) diag(vcov(x))) W <- rowMeans(variances) B <- apply(coefs, 1, var) ses <- sqrt(W + B * (1 + 1/m)) if(is(pooled_summary, "summary.glm") | is(pooled_summary, "summary.polr")) { pooled_summary$call <- match.call() pooled_summary$coefficients[,1:2] <- cbind(rowMeans(coefs), ses) } else if(is(pooled_summary, "summary.multinom")) { pooled_summary$call <- match.call() pooled_summary$coefficients <- cbind(coef = rowMeans(coefs), ses, z = NA_real_, p = NA_real_) } else warning("pooled_summary is probably bogus") if(ncol(pooled_summary$coefficients) >= 3) { if(colnames(pooled_summary$coefficients)[3] == "t value") { pooled_summary$coefficients[,3] <- tvalue <- pooled_summary$coefficients[,1] / ses if(TRUE) { gamma <- (1 + 1/m) * B / ses^2 df.r <- pooled_summary$df.residual v <- (m - 1) * (1 + m/(m + 1) * W / B)^2 v_obs <- (1 - gamma) * (df.r + 1) / (df.r + 3) * df.r df.star <- 1/(1/v + 1/v_obs) if(ncol(pooled_summary$coefficients) == 4) { pooled_summary$coefficients[,4] <- 2 * pt(-abs(tvalue), df.star) } else pooled_summary$coefficients <- cbind(pooled_summary$coefficients, "p-value" = 2 * pt(-abs(tvalue), df.star)) } } else { pooled_summary$coefficients[,3] <- zvalue <- pooled_summary$coefficients[,1] / ses if(ncol(pooled_summary$coefficients) == 4) { pooled_summary$coefficients[,4] <- 2 * pnorm(-abs(zvalue)) } else pooled_summary$coefficients <- cbind(pooled_summary$coefficients, "p-value" = 2 * pnorm(-abs(zvalue)) ) } } kall <- match.call() kall[1] <- call(fit) out <- new("pooled", formula = formula, fit = fit, models = models, coefficients = rowMeans(coefs), ses = ses, pooled_summary = pooled_summary, call = kall) return(out) } setMethod("display", signature(object = "pooled"), def = function(object, digits = 2, ...) { call <- object@call summ <- summary(object) coef <- object@pooled_summary$coefficients[,1:2] colnames(coef) <- c("coef.est", "coef.se") n <- summ$df.residual k <- summ$df[1] k.intercepts <- length(summ$zeta) print(call) pfround(coef, digits) if(k.intercepts > 0) { cat(paste("n = ", n, ", k = ", k, " (including ", k.intercepts, " intercepts)\nresidual deviance = ", fround(summ$deviance, 1), ", null deviance is not computed by polr", "\n", sep = "")) return(invisible(NULL)) } cat(paste("n = ", n, ", k = ", k, "\nresidual deviance = ", fround(summ$deviance, 1), ", null deviance = ", fround(summ$null.deviance, 1), " (difference = ", fround(summ$null.deviance - summ$deviance, 1), ")", "\n", sep = "")) dispersion <- summ$dispersion if (dispersion != 1) { cat(paste("overdispersion parameter = ", fround(dispersion, 1), "\n", sep = "")) if (summ$family$family == "gaussian") { cat(paste("residual sd is sqrt(overdispersion) = ", fround(sqrt(dispersion), digits), "\n", sep = "")) } } return(invisible(NULL)) }) setMethod("show", signature(object = "pooled"), def = function(object) { display(object) return(invisible(NULL)) }) setMethod("summary", signature(object = "pooled"), def = function(object, ...) { return(object@pooled_summary) }) setMethod("coef", signature(object = "pooled"), def = function(object, ...) { return(object@coefficients) }) setMethod("vcov", signature(object = "pooled"), def = function(object, ...) { return(object@vcov) }) setMethod("residuals", signature(object = "pooled"), def = function(object, ...) { return(rowMeans(sapply(object@models, residuals))) }) setMethod("fitted", signature(object = "pooled"), def = function(object, ...) { return(rowMeans(sapply(object@models, fitted, ...))) }) r-cran-mi-1.0/R/random_df.R000066400000000000000000000576121275731226000154340ustar00rootroot00000000000000# Part of the mi package for multiple imputation of missing data # Copyright (C) 2008, 2009, 2010, 2011 Andrew Gelman # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ## Function to draw from the relevant symmetric generalized beta distribution .rgbeta <- function(num, shape) { if(shape > 0) -1 + 2 * rbeta(num, shape, shape) else if(shape == 0) -1 + 2 * rbinom(num, 1, 0.5) else stop("shape must be non-negative") } ## Function to draw a Cholesky factor of a random correlation matrix ## as a function of canonical partial correlations (CPCs) .rcorvine <- function(n_full, n_partial, n_cat, eta, restrictions, strong, experiment, treatment_cor, last_CPC) { nom <- !is.null(n_cat) n <- n_full + 2 * n_partial if(nom) { n <- n + sum(n_cat) - length(n_cat) nc <- 2 * n_partial + sum(n_cat) - length(n_cat) holder <- matrix(NA_real_, nrow = nc, ncol = nc) } else holder <- matrix(NA_real_, nrow = 2 * n_partial, ncol = 2 * n_partial) count <- 1 if(eta <= 0) stop("'eta' must be positive") alpha <- eta + (n - 2) / 2 # if eta == 1, then tcrossprod(L) is uniform over correlation matrices L <- matrix(NA_real_, n, n) L[upper.tri(L)] <- 0 L[1,1] <- 1 L <- .rcorvine_helper(L, holder, n_full, n_partial, n_cat, alpha, restrictions, strong, experiment, treatment_cor, nom, last_CPC) if(restrictions == "MARish") L <- .MAR_opt(L, n_full, n_partial) return(L) } .rcorvine_helper <- function(L, holder, n_full, n_partial, n_cat, alpha, restrictions, strong, experiment, treatment_cor, nom, last_CPC) { n <- nrow(L) mark <- is.na(L[,1]) sum_mark <- sum(mark) CPCs <- .rgbeta(sum(mark), alpha) count <- 1 if(experiment) { len <- length(treatment_cor) if(len == 1 && treatment_cor == 0) treatment_cor <- rep(0, sum_mark) else if(len != sum_mark) { stop(paste("length of 'treatment_cor' must be", sum_mark)) } treatment_mark <- is.na(treatment_cor) treatment_cor[treatment_mark] <- CPCs[treatment_mark] CPCs <- treatment_cor # treatment variable is first } if(n_full == 0 && restrictions != "none") { CPCs[sum_mark:(sum_mark - n_partial)] <- 0 holder[1,mark] <- CPCs count <- count + 1 } else if(n_full == 0) { holder[1,mark] <- CPCs count <- count + 1 } L[mark,1] <- CPCs W <- log(1 - CPCs^2) ## NOTE: order of variables is: ## all fully observed (with the treatment first if applicable) ## all partially observed but not nominal variables (if any) ## the components of the nominal variable(s) (if any) ## all missingness indicators # fully observed variables have arbitrary CPCs start <- 2 end <- n_full if(n_full >= 2) for(i in start:end) { L[i,i] <- exp(0.5 * W[i-1]) gap <- which(is.na(L[,i])) gap1 <- gap - 1 alpha <- alpha - 0.5 CPCs <- .rgbeta(length(gap), alpha) if(restrictions == "MCAR") CPCs[length(gap):(length(gap) - n_partial + 1)] <- 0 L[gap,i] <- CPCs * exp(0.5 * W[gap1]) W[gap1] <- W[gap1] + log(1 - CPCs^2) } # partially observed variables have arbitrary CPCs among themselves # but are conditionally uncorrelated with all missingness indicators under MAR # note: we condition on all fully observed variables and all previous partially observed variables # this triangle scheme implies that the errors when predicting the partially observed variables are uncorrelated if(n_full >= 2) start <- end + 1 end <- start + n_partial - 1 if(nom) end <- end - length(n_cat) if(start <= end) for(i in start:end) { L[i,i] <- exp(0.5 * W[i-1]) gap <- which(is.na(L[,i])) gap1 <- gap - 1 alpha <- alpha - 0.5 CPCs <- .rgbeta(length(gap), alpha) if(restrictions %in% c("triangular", "stratified")) { CPCs[length(gap):(length(gap) - n_partial + 1)] <- 0 if(i == end && !is.na(last_CPC)) CPCs[length(CPCs)] <- last_CPC } else if(restrictions == "MCAR") CPCs[] <- 0 L[gap,i] <- CPCs * exp(0.5 * W[gap1]) W[gap1] <- W[gap1] + log(1 - CPCs^2) holder[count,(count+1):ncol(holder)] <- CPCs count <- count + 1 } # if there are nominal partially observed variables, make the category residuals uncorrelated (MNL assumption) if(nom) { #if(n_full >= 2) start <- end + 1 end <- start + sum(n_cat) - 1 for(i in start:end) { L[i,i] <- exp(0.5 * W[i-1]) gap <- which(is.na(L[,i])) gap1 <- gap - 1 alpha <- alpha - 0.5 if(restrictions != "none") CPCs <- rep(0, length(gap)) else { CPCs <- .rgbeta(length(gap), alpha) CPCs[-(length(gap):(length(gap) - n_partial + 1))] <- 0 } L[gap,i] <- CPCs * exp(0.5 * W[gap1]) W[gap1] <- W[gap1] + log(1 - CPCs^2) holder[count,(count+1):ncol(holder)] <- CPCs count <- count + 1 } } # missingness indicators can be constructed to be instruments if MAR holds whose strength can be manipulated if(n_partial > 1) { start <- end + 1 end <- n - 1 count <- if(n_full > 0) 1 else 2 if(start <= end) for(i in start:end) { L[i,i] <- exp(0.5 * W[i-1]) gap <- which(is.na(L[,i])) gap1 <- gap - 1 alpha <- alpha - 0.5 if(restrictions %in% c("none", "MARish")) CPCs <- .rgbeta(length(gap), alpha) else if(restrictions %in% c("stratified", "MCAR")) CPCs <- rep(0, length(gap)) else if(strong == 2) CPCs <- holder[count,(count+1):(count + length(gap))] else if(strong == 1) CPCs <- .rgbeta(length(gap), alpha) else if(strong == 0) CPCs <- rep(0, length(gap)) L[gap,i] <- CPCs * exp(0.5 * W[gap1]) W[gap1] <- W[gap1] + log(1 - CPCs^2) } } L[n,n] <- exp(0.5 * W[n-1]) return(L) } ## Function to draw a Cholesky factor of a random correlation matrix ## as a function of canonical partial correlations (CPCs) .rcorvine_partial <- function(Sigma, n_partial, n_cat, eta, restrictions, strong, experiment, treatment_cor) { n <- nrow(Sigma) n_full <- n - n_partial ldlt <- LDLt(Sigma) U <- t(ldlt$L) holder <- matrix(NA_real_, n, n) holder[1,-1] <- U[1,-1] W <- c(NA_real_, 1 - holder[1,-1]^2) for(i in 2:(n-1)) { denominator <- W[i] gap <- (i+1):n temp <- U[i,gap] / sqrt(W[gap] / denominator) invalid <- is.na(temp) temp[invalid] <- sign(U[i,gap][invalid]) invalid <- abs(temp) > 1 temp[invalid] <- sign(temp[invalid]) holder[i,gap] <- temp W[gap] <- W[gap] * (1 - holder[i,gap]^2) } nom <- !is.null(n_cat) n <- n + n_partial if(nom) { n <- n + sum(n_cat) - length(n_cat) } L <- t(U) * sqrt(diag(ldlt$D)) if(eta <= 0) stop("'eta' must be positive") diff <- n - nrow(L) alpha <- eta + diff / 2 L <- cbind(L, matrix(0, nrow(L), diff)) L <- rbind(L, matrix(NA_real_, diff, n)) L[upper.tri(L)] <- 0 holder <- matrix(NA_real_, nrow = diff, ncol = ncol(L)) L <- .rcorvine_helper(L, holder, n_full, n_partial, n_cat, alpha, restrictions, strong, experiment, treatment_cor, nom) if(restrictions == "MARish") L <- .MAR_opt(L, n_full, n_partial) return(L) } .MAR_opt <- function(L, n_full, n_partial) { n_p2 <- n_partial^2 lowers <- lower.tri(L) cell_mark <- tail(which(lowers), n_p2) lowers[] <- FALSE lowers[cell_mark] <- TRUE row_mark <- which(apply(lowers, 1, any)) diag(L)[row_mark] <- NA_real_ partials <- (n_full + 1):(n_full + n_partial) missingness <- nrow(L):(nrow(L) - n_partial + 1) block_mark <- which( row(L) %in% partials & col(L) %in% missingness ) foo <- function(theta) { L[cell_mark] <- theta diags <- 1 - rowSums(L[row_mark,,drop=FALSE]^2, na.rm = TRUE) if(any(diags < 0)) return(NA_real_) diag(L)[row_mark] <- sqrt(diags) Sigma_inv <- chol2inv(t(L)) return(c(crossprod(Sigma_inv[block_mark]))) } opt <- optim(L[cell_mark], foo, method = "BFGS") L[cell_mark] <- opt$par diag(L)[row_mark] <- sqrt(1 - rowSums(L[row_mark,,drop=FALSE]^2, na.rm = TRUE)) return(L) } .NMARness <- function(L) { xs <- grep("^x_", rownames(L), value = TRUE) ys <- grep("^y_", rownames(L), value = TRUE) us <- grep("^u_", rownames(L), value = TRUE) sapply(ys, FUN = function(y) { i <- y sapply(us, FUN = function(u) { j <- u cons <- c(xs, setdiff(us, u)) mark <- c(i,j,cons) D_ijcons <- det(tcrossprod(L[mark,,drop = FALSE])) mark <- cons D_cons <- det(tcrossprod(L[mark,,drop = FALSE])) mark <- c(i,cons) D_icons <- det(tcrossprod(L[mark,,drop = FALSE])) mark <- c(j,cons) D_jcons <- det(tcrossprod(L[mark,,drop = FALSE])) return(1 - D_ijcons * D_cons / (D_icons * D_jcons)) }) }) } ## Function to construct a random data.frame with tunable missingness rdata.frame <- function(N = 1000, restrictions = c("none", "MARish", "triangular", "stratified", "MCAR"), last_CPC = NA_real_, strong = FALSE, pr_miss = .25, Sigma = NULL, alpha = NULL, experiment = FALSE, treatment_cor = c(rep(0, n_full - 1), rep(NA, 2 * n_partial)), n_full = 1, n_partial = 1, n_cat = NULL, eta = 1, df = Inf, types = "continuous", estimate_CPCs = TRUE) { if(length(N) != 1) stop("length of 'N' must be 1") if(N <= 0) stop("'N' must be positive") restrictions <- match.arg(restrictions) if(strong && restrictions == "none") warning("instruments are not valid unless the MAR assumption is enforced") if(n_full < 0) stop("'n_full' must be >= 0") if(n_partial < 0) stop("'n_partial must be >= 0") n <- n_partial + n_full if(n == 0) stop("at least one of 'n_full' or 'n_partial' must be positive") if(length(pr_miss) == 1) pr_miss <- rep(pr_miss, n_partial) if(any(pr_miss <= 0)) stop("all elements of 'pr_miss' must be > 0") if(any(pr_miss >= 1)) stop("all elements of 'pr_miss' must be < 1") if(length(df) != 1) stop("'df' must be of length 1") if(df <= 0) stop("'df' must be a positive") if(length(types) == 1) types <- rep(types, n) types <- match.arg(types, c("continuous", "count", "binary", "treatment", "ordinal", "nominal", "proportion", "positive"), several.ok = TRUE) if(any(types[1:n_full] == "nominal")) { warning("fully observed nominal variables not supported, changing them to ordinal without loss of generality") types <- ifelse(types == "nominal" & 1:length(types) <= n_full, "ordinal", types) } # else if(!is.null(n_cat)) types[n:(n - length(n_cat) + 1)] <- "nominal" if(all( c("ordinal", "nominal") %in% types[-(1:n_full)] )) { stop("including both ordinal and nominal partially observed variables is not supported yet") } if(any(types == "nominal")) { has_nominal <- TRUE if(is.null(n_cat)) { if(types[n] != "nominal") { warning("assuming the last partially observed variable is nominal with 3 categories") types[n] <- "nominal" } n_cat <- 3 } } else has_nominal <- FALSE if(has_nominal) { if(any(n_cat < 3)) stop("nominal variables must have more than 2 categories") types <- c(types[types != "nominal"], types[types == "nominal"]) } if(experiment) { if(types[1] != "treatment") stop("the first variable must be the treatment variable") if(any(types[-1] == "treatment")) stop("only one treatment variable is permitted") } if(is.null(Sigma)) L <- .rcorvine(n_full, n_partial, if(has_nominal) n_cat else NULL, eta, restrictions, strong, experiment, treatment_cor, last_CPC) else { if(!isSymmetric(Sigma)) stop("'Sigma' must be symmetric") if(ncol(Sigma) != (n_full + 2 * n_partial)) stop("'Sigma' must be of order 'n_full + 2 * n_partial'") if(any(types == "nominal")) stop("nominal variables not supported when 'Sigma' is given") if(experiment) stop("treatment variables not supported when 'Sigma' is given") L <- chol(Sigma) } if(is.null(alpha)) { Z <- matrix(rnorm(N * nrow(L)), nrow = nrow(L)) X <- as.data.frame(t(Z) %*% t(L)) } else { if(length(alpha) == 1 && is.na(alpha)) alpha <- rt(ncol(L), df) else if(length(alpha) != ncol(L)) stop(paste("length of alpha must be", ncol(L))) Sigma <- tcrossprod(L) result <- find_Omega(Sigma, alpha, control = list(maxit = 1000)) X <- as.data.frame(sn::rmsn(N, Omega = result$Omega, alpha = alpha)) } if(df < Inf) X <- X / sqrt(rchisq(N, df) / df) if(!has_nominal) colnames(X) <- c(if(n_full) paste("x", 1:n_full, sep = "_"), if(n_partial) paste("y", 1:n_partial, sep = "_"), if(n_partial) paste("u", 1:n_partial, sep = "_") ) else { if(length(n_cat) > 23) stop("number of nominal variables must be <= 23") cn <- as.character(NULL) for(i in seq_along(n_cat)) cn <- c(cn, paste(letters[i], 1:n_cat[i], sep = "_")) colnames(X) <- c(if(n_full) paste("x", 1:n_full, sep = "_"), if(n_partial > length(n_cat)) paste("y", 1:(n_partial - length(n_cat)), sep = "_") else NULL, cn, paste("u", 1:n_partial, sep = "_") ) } if(experiment) { row_mark <- X[,1] == 1 col_mark <- c(FALSE, is.na(treatment_cor)) col_mark[grepl("^u_", colnames(X))] <- FALSE if(any(col_mark)) X[row_mark,col_mark] <- X[row_mark,col_mark] + 1 # ATT } X_obs <- X correlations <- rep(NA_real_, if(!has_nominal) n_partial else n_partial - length(n_cat) + sum(n_cat)) end <- n_partial - length(n_cat) * has_nominal if(end > 0) for(i in 1:end) { y_var <- paste("y", i, sep = "_") u_var <- paste("u", i, sep = "_") X_obs[X[,u_var] < quantile(X[,u_var], probs = pr_miss[i]), y_var] <- NA_real_ X_obs[[u_var]] <- NULL if(!estimate_CPCs) next f_miss <- colnames(X) if(n_full > 0) f_miss <- f_miss[1:(n_full + i - 1)] else f_miss <- "1" f_miss <- paste(f_miss, collapse = " + ") f_miss <- as.formula(paste(u_var, "~", f_miss)) ols_u <- lm(f_miss, data = X) f_true <- colnames(X) if(n_full > 0) f_true <- f_true[1:(n_full + i - 1)] else f_true <- "1" f_true <- paste(f_true, collapse = " + ") f_true <- as.formula(paste(y_var, "~", f_true)) ols_y <- lm(f_true, data = X) correlations[i] <- cor(residuals(ols_u), residuals(ols_y)) # this differs only randomly from 0 under MAR due to finite N } letter_mark <- 1 if(has_nominal) for(i in (end + 1):n_partial) { y_var <- paste("y", i, sep = "_") u_var <- paste("u", i, sep = "_") mark <- grepl(paste("^", letters[letter_mark], "_", sep = ""), colnames(X)) lev <- as.character(NULL) for(j in 1:ceiling(n_cat[letter_mark] / 26)) lev <- c(lev, rep(letters, each = j)) lev <- lev[1:n_cat[letter_mark]] X_obs[[y_var]] <- X[[y_var]] <- factor(max.col(X[,mark]), labels = lev) X_obs[X[,u_var] < quantile(X[,u_var], probs = pr_miss[i]), y_var] <- NA if(!estimate_CPCs) { letter_mark <- letter_mark + 1 next } f_miss <- colnames(X) if(letter_mark == 1) f_miss <- f_miss[1:(n_full + n_partial - length(n_cat))] else f_miss <- f_miss[1:(n_full + n_partial - length(n_cat) + sum(n_cat[1:(letter_mark - 1)]))] f_miss <- paste(f_miss, collapse = " + ") f_miss <- as.formula(paste(u_var, "~", f_miss)) ols_u <- lm(f_miss, data = X) for(j in 1:n_cat[letter_mark]) { f_true <- colnames(X) if(letter_mark == 1) f_true <- f_true[1:(n_full + n_partial - length(n_cat))] else f_true <- f_true[1:(n_full + n_partial - length(n_cat) + sum(n_cat[1:(letter_mark - 1)]))] f_true <- paste(f_true, collapse = " + ") n_var <- paste(letters[letter_mark], j, sep = "_") f_true <- as.formula(paste(n_var, "~", f_true)) ols_n <- lm(f_true, data = X) correlations[which(is.na(correlations))[1]] <- cor(residuals(ols_u), residuals(ols_n)) # this differs only randomly from 0 under MAR } letter_mark <- letter_mark + 1 } if(!has_nominal) names(correlations) <- if(n_partial) paste("e", 1:n_partial, sep = "_") else NULL else { cn <- if(n_partial > length(n_cat)) paste("e", 1:(n_partial - length(n_cat)), sep = "_") else as.character(NULL) for(i in seq_along(n_cat)) cn <- c(cn, paste("e:", letters[i], "_", 1:n_cat[i], sep = "")) names(correlations) <- cn } X_obs <- X_obs[,grepl("^[xy]_", colnames(X_obs))] mark_ord <- 1 for(i in seq_along(types)) { mark <- is.na(X_obs[,i]) if(types[i] %in% c("binary", "treatment")) { if(i == 1 && experiment) { X_obs[,i] <- X[,i] <- as.factor(X[,i] > 0) colnames(X_obs)[1] <- colnames(X)[1] <- "treatment" } else { X[[toupper(colnames(X)[i])]] <- X[,i] X_obs[,i] <- X[,i] <- cut(X[,i], breaks = 2, labels = c("FALSE", "TRUE")) } } else if(types[i] == "ordinal") { X[[toupper(colnames(X)[i])]] <- X[,i] breaks <- 3 if(length(n_cat) == 1) breaks <- n_cat else if(length(n_cat) > 1) { breaks <- n_cat[mark_ord] mark_ord <- mark_ord + 1 } qs <- quantile(X[,i], prob = seq(from = 0, to = 1, length.out = breaks + 1)) qs[1] <- -Inf qs[length(qs)] <- Inf X_obs[,i] <- X[,i] <- cut(X[,i], breaks = qs, ordered_result = TRUE, labels = LETTERS[1:breaks]) } else if(types[i] == "count") { # this is not quite consistent with the DGP X[[toupper(colnames(X)[i])]] <- X[,i] X_obs[,i] <- X[,i] <- as.integer(qpois(pt(X[,i], df = df), lambda = 5)) } else if(types[i] == "proportion") { # this is not quite consistent with the DGP X[[toupper(colnames(X)[i])]] <- X[,i] X_obs[,i] <- X[,i] <- pt(X[,i], df = df) } else if(types[i] == "positive") { X[[toupper(colnames(X)[i])]] <- X[,i] X_obs[,i] <- X[,i] <- exp(X[,i]) } X_obs[mark,i] <- NA } ord <- c(colnames(X_obs), grep("^u_", colnames(X), value = TRUE)) extras <- colnames(X) extras <- extras[!(extras %in% ord)] ord <- c(ord, extras) X <- X[,ord] cn <- colnames(X) cn <- cn[sapply(1:ncol(X), FUN = function(i) { !is.factor(X[,i]) && !(toupper(cn[i]) %in% cn[-i]) })] resort <- function(s) { ord <- order(as.integer(gsub("^[a-z,A-Z]_", "", s))) return(s[ord]) } cn <- c(if(experiment) "treatment_propensity", resort(grep("^x", cn, ignore.case = TRUE, value = TRUE)), resort(grep("^y", cn, ignore.case = TRUE, value = TRUE)), grep("^[a-t]_", cn, ignore.case = FALSE, value = TRUE), grep("^u", cn, ignore.case = FALSE, value = TRUE)) rownames(L) <- colnames(L) <- cn out <- list(true = X, obs = X_obs, empirical_CPCs = correlations, L = L) if(!is.null(alpha)) out <- c(out, list(alpha = alpha, skewness = result$sn_skewness, kurtosis = result$sn_kurtosis)) return(out) } ## this function makes a positive definite correlation matrix given choose(n,2) unbounded parameters make_O.cor <- function(theta) { n <- (1 + sqrt(1 + 8 * length(theta))) / 2 CPCs <- exp(2 * theta) CPCs <- (CPCs - 1) / (CPCs + 1) L <- matrix(0, n, n) L[1,1] <- 1 start <- 1 end <- n - 1 L[-1,1] <- partials <- CPCs[start:end] W <- log(1 - partials^2) for(i in 2:(n-1)) { start <- end + 1 end <- start + n - i - 1 gap <- (i+1):n gap1 <- i:(n-1) partials <- CPCs[start:end] L[i,i] <- exp(0.5 * W[i-1]) L[gap,i] <- partials * exp(0.5 * W[gap1]) W[gap1] <- W[gap1] + log(1 - partials^2) } L[n,n] <- exp(0.5 * W[n-1]) return(tcrossprod(L)) } ## this objective function is the Frobenius norm of the difference between Sigma and Sigma_proposed fmin <- function(theta, Sigma, alpha, final = FALSE, ...) { n <- nrow(Sigma) omega <- exp(theta[1:n]) # standard deviations of the implicit Omega matrix O.cor <- make_O.cor(theta[-(1:n)]) alphaTO.cor <- alpha %*% O.cor Sigma_proposed <- ( O.cor - 2 / (pi * c(1 + alphaTO.cor %*% alpha)) * crossprod(alphaTO.cor) ) * tcrossprod(omega) if(final) return(Sigma_proposed) return(crossprod( c(Sigma - Sigma_proposed) )[1]) } ## this function makes a 3-factor Cholesky factorization of a PSD A matrix LDLt <- function(A) { n <- nrow(A) L <- diag(n) D <- matrix(0, n, n) for(j in 1:n) { s <- 0 if(j > 1) for(k in 1:(j-1)) s <- s + L[j,k]^2 * D[k,k] D[j,j] <- A[j,j] - s if(D[j,j] < 1e-15) { D[j,j] <- 0 break } if(j < n) for(i in (j+1):n) { s <- 0 if(j > 1) for(k in 1:(j-1)) s <- s + L[i,k] * L[j,k] * D[k,k] L[i,j] <- (A[i,j] - s) / D[j,j] } } return(list(L = L, D = D)) } ## this function makes plausible starting values (basically treating alpha is if it were a zero vector) make_start <- function(Sigma) { log_omega <- log(sqrt(diag(Sigma))) Sigma <- cov2cor(Sigma) n <- nrow(Sigma) U <- t(LDLt(Sigma)$L) holder <- matrix(NA_real_, n, n) holder[1,-1] <- U[1,-1] W <- c(NA_real_, 1 - holder[1,-1]^2) for(i in 2:(n-1)) { denominator <- W[i] gap <- (i+1):n temp <- U[i,gap] / sqrt(W[gap] / denominator) invalid <- is.na(temp) temp[invalid] <- sign(U[i,gap][invalid]) invalid <- abs(temp) > 1 temp[invalid] <- sign(temp[invalid]) holder[i,gap] <- temp W[gap] <- W[gap] * (1 - holder[i,gap]^2) } holder <- t(holder) CPCs <- holder[lower.tri(holder)] return(c(log_omega, atanh(CPCs))) } ## this function finds Omega via optim() and returns it as part of a list with find_Omega <- function(Sigma, alpha, method = "BFGS", start = make_start(Sigma), ...) { stopifnot(isSymmetric(Sigma)) # Sigma is the intended covariance matrix of the multivariate skew-normal variable stopifnot(all(eigen(Sigma, TRUE, TRUE)$values > 0)) n <- nrow(Sigma) alpha <- c(alpha) stopifnot(length(alpha) == n) # alpha is a shape parameter for the multivariate skew-normal variable opt <- optim(start, fmin, method = method, Sigma = Sigma, alpha = alpha, ...) if(opt$convergence != 0) { gradients <- opt$counts["gradient"] warning(paste("Convergence problem. Pass something like 'control = list(maxit = ", 5 * gradients, ")' if alpha is far from a zero vector", sep = "")) } theta <- opt$par omega <- exp(theta[1:n]) O.cor <- make_O.cor(theta[-(1:n)]) opt$Omega <- O.cor * tcrossprod(omega) alphaTO.cor <- c(alpha %*% O.cor) delta <- c( (O.cor %*% alpha) / sqrt(1 + alphaTO.cor %*% alpha)[1] ) mu_z <- sqrt(2/pi) * delta num <- c( mu_z %*% chol2inv(chol(O.cor)) %*% mu_z ) opt$delta <- delta opt$sn_skewness <- ( (4 - pi) / 4 )^2 * ( num / (1 - num) )^3 opt$sn_kurtosis <- 2 * (pi - 3) * ( num / (1 - num) )^2 return(opt) } r-cran-mi-1.0/R/sysdata.rda000066400000000000000000010532601275731226000155140ustar00rootroot00000000000000ý7zXZi"Þ6!ÏXÌæ?çïþ])TW"änRÊŸ’Øá´7iÈ|MújÞä{¼è/Þgíˆ<óË+£ÖŽ|Æ&cG))=F‡Å0ú&Ÿ…¿Ù²ýñHŸð•€ÓÝÙ-î1þÚÒ)7õ%Ȫǔ¢ÿ 9\ÞµÌX»/oî ­hè][N;TÄÏg›šh–캆Pš.£Ðè¨R`Þã5v²:~xÈ<æIþùð/ñ^´¹¿x’‡¹_¼ Só'¤c°±¥ˆÞÚÒéÉ”aiá½":ñÝýÁâ€Üе­C^O«|¿¿Œzû.©t› Õ,$,Dâ¿ëmGN³¨E£î‡Ê‰„¡¢’“Y?ã‚èçFŒ;ÇM 8,wŸ(*·?(™F|¢µl,¥càëŒ8n$_¤ßñêU–Á"¯~šLâô{Þ¹?ðºÐ²ÕV§%áœiÓÊÊ«èªJ÷ "Õ)/ˆý²Þv;,z5óŸ Iøä3´Y¸c“õ3Èâ}ÄÖžÞ:>Ö+…î ¸„a­osž,|R¶Œ‘`Tþs`ÌkPr &›–o_ŒQw*õŽVJB?vܾ£Q>(ƪž†ÅPg¥[Øi?6¾¾:å„ü{µN!9Á:ÓƒTnZƼîySOÅ_±Bªlk+ ¢ Fêd;öêd¯¶”£µ•WbÀ{ ¬¾ÉÓ»Ä Þßlœ\¼•È_Õ!%iâf¶Ô+íÀC$ü£YÚ§è.¸ÀiOç1ìxš²å"òì/kP2– ÈŸQØ›rxÂ_ý¤„ ¥}Ø’%å$’檀l8 ËÓ$øl€Ñmb‚ìch›%M}ø>üâ‹>½8p·)qÂe£k7ËxÛ¤Íýj5±rqÑÖ“~ÄP(Cg§TT¾á¬ÿÉžƒ¡}ñ.$ L=~ßiXýæSeá6uÌt\QS͈.½Í"àI8~jg£5¯a3½à5ûØ©¹ÞËŠÎn{JDMù ´§½¬Li$Ã=’Lן5oîHmîHs¹ïÜ//Öø,ê}çÌ®ׇ™Ø!ž¬…'W ÙS–¾!ç9¾´=~>kÎÇ’'¥~e‘äüy%ëo¼ðO'9¬Ãl°ó±–ñ‡#O8 ˆIî"£2×™ª1‹L;V©F èáÌu¼%ãÌöÕUäÓJè伨>e\ÐíV¥âÀ=¯]ø±Ö4£0›Ë¹Øé *”z¼ŽºâRÍöÀRµªâ7”s«…j%ñø¶×½µzX^³À™'„ˆͯ“[Öç´IÛIÒX뺹M».ö5¬5ÍZ6¡õÛnú9kíÿ;bý‡ëȪ7Àò%ÿñcòP”R(>ò¥ ]¶~²R‡Y,hôF ‘©~ÅÃ?ûX½%ôw™{=t2¯;&Ò ²†cQô‡9·ò.uL”ÇÎQ¾_»Â}?œ“ L^k€O,%Ut>AÍ®jæ(ÁÛ<Ò`åNEv„D/ Œ™9ÿ2©‚2c~bès÷¤êÐnoÿÞÙGùH£™kg¬ïÇIcê`"8Û™^$ ®‘s¶­ƒï=±ªå¶Œp9Œ&Ï>[ë†eü«å+ŸÎâʵeϯ¦dÒY¯Ù¯ä–UFâã9 Í3•1dÑÂÐ_4˜=nä¾ú–w!VZDÞã ¢oÙƒ·wû{E™Þ3¾¡S·†õ¿'\¼TÑÞr|óŽ93&’&žÀ¨y{áP16( ÄÀT½¾÷lÐiùþß_ÚϺÚÇ Ñ˜±Å ;¾ óõÃX©ma×gÁ¤ Ûåß:²–N”Nö¨C§¸^âø#ÑÁúž<4F޽+DïʈssCŠu³l‹UqkàM˜^× ;ÀéÊJZñY 戈‚‰Í%ÕwhÒ‡×)-©‘#׳”dy\ØLçÝœçK¿þ…1ùXhg’/þ‹ZÛíU5cuiS u¬I¢“ü­0yêl Q”²ÿcß:¶ÕQܶÓЬµO(Yž'½.3Fä~ØÈ Ç/7nx«‹ÔØ„çñ\fG.!+ïæý€íÀþíbê¤`1Í u¬‚§þkõÈx$:ÅÀ¬ˆ¨.'ž³§‘Ý.æû$|»W˜?wI–æ­eüærÕö={'jÌäÛ¡3 ¦Õä(‡nÈnËC=w™zæZÜAî©;Ÿ×°ËÄ—¶¬Ôh:÷êÍ ¿õKJ•‡. t´£ñ‰º0IÐ%MÎ9kkä ÷òp_êïQľñ“´×]íz6¬1C´ò|A<‡ýk>ªÙ®a›=l±+É” ð>%·z2ås¢¾Ã3˜d°˜çSø„2±?ùþ‹>ó§O_¯þ,¶-÷kSe޶2$†×øŽV-ñ¦ü΄1ðÏ2.Bí¼ìšN¥ŸÉAj¤:Öc&GÚD/cô†qèâÖbWå'!A°DNlîOu/)@ÑýþèµÓÆß2€5[é0Ï­›]bY*?˜+k¬×ÜK, >>ú^¤v.J²²É1®Vó‡W t§z’9ä1'z©‡cPÔøqÚ×2 Æâ›Ã.$G—RaŸ…H©,Q›ÇxÿúZéò:Âð±·:Õz¢„^EWÚcrÂzŒ?È£’Sxçi>5“n>ëRÉ¿î#ÈŠ‡W%×!IÕ(ã^1”‘- Ï=|ï„jCw&³ÍìcCv~xúx½ãO1ã¡Å\[C¹.ejv£ŒÏï„ɦ Ð6þñŠF ÆæcRcqVƒ&ÌôÚ+|Šö \ ã}é<7—×›ÍO‰ï*æuV&ði'õI˜/àxfvçš9h“Ä»sƒµuƒ ;È£GøÍ’Žìc/Ê,ïäµáKF0¹~kã¶ÝÔ4µ»I Ú]Ki‡f†f¨]*Ä»-<$çƒR"û“’¦Öm-/" ©kÞrrekøÚd£­å+þŠœ|3˜½Á¬œËJ”ÈãâYiÉðAg•lV¥A±Œ†ø6ÇøS3>åæ q$ö°®¡¿ˆC)è'Ö² É\ÕÊËtäêËäEC0òÌ v-¢Ä"Ô¥$pþ2Av¿ {ËA•òçòa¬ÿÕÛ5M¥JÖÆ)ûÏüOË~àá}™wªŸô²q'~g 0(usAƒ‘á—rñ ‰ÀÍÁ]aÄúPƒ*ä—L†L3¦ö³êŸ‚ê1õúèœA¹/ÿ†+Õ.5žÊOË€HÀ|숪aå &jO ^fŸ·Ž~š– ;uÀ"4XÃ*“L·ëB­ú)ž‹Z‡…%'õˆïè`ù,Id«$c ô¹ŠT\†Ê<œ[--;i5—+P>eCÑS=ñsšmŽk¸“Su·lsðâõMʃF öÖ»/–àº4M„2„ã×' é9)tÆ)Ðòõ£Œ{¥Igçöøb@°ºÎcÌb ¸©ôйô«Ì?-BSs=Êúý¯€9…R•B7™ÊušaàRt&Þþ> ›õ`È5oê·Ë'µÑì1褥³%ß,À(H»ñðšH º§Xˆ‚þ4N®Œ@|“FÅ£§@¿÷„c Ÿ•bã'(y!hŸïÉûû,0¾.@Ö…Eôdòâ„ÄGãÎo–$5ºÂ’L$('Frâty´¹7²"Ýßì4`G8€~9ƒËñžšŠõ¢Àtš£ý½’Üìôàó|çÈ8ã×Ñp¦tnØñâÌùäVWgžªÄê $îUYŽXºLhj‡QÃÓÀ<Ý롬®5ѱg/'wT’¯Ý°qb« å§R´šIvRjTð¨âH',¼< ‹©T3TgÁݱt‹moÖŠ¦Tï7Àmƒ âç-õ·àc}¶×pÅà3 &>‘li V¨ùpô¤§™µ*k2漢o°oc<çݱÈå˜þŒ+f€@€¼¡ŸmFÔŽæ°¥ðú%m“:¢” †½ËHº—Å.A¥YÂ5?ê1'ÙJbTXëć¢ˆúö¥Ù;ùÿs¥Õ®´îÀ>.V÷øûÆžd w'Õë¶%9Hÿ!Æè1¯<€«=ßB}Ë„XzZ 70F|År'øCÃýE¹ócã_ùŽVVnÛ–)qâ#Ñéí^çƒàKùÏ$Œýþ‚‘¦¥Þ"¹N9AâqµK<êÇ9Q𠽩 d´þö§-óž•Ñüüñi94I¥l16®±ýîc‹ŠÜØ©ðÖÊðÈ㲦Ùþh¹=êÿŸõ¶ŽZä$ü Z#'â/7¹n'±;þŠ`ÈÈ{ï|¥sl€¤'¾t}ð>‹Gè¿¡CáþÒ‡¦TB KC¯ïÊÏv½’HžÆµñw4<¥Ÿß‹çÀ˜‡ù9…9¦rµÊÏî!FNr@6=+&v"Úq¨VTUü££~²ÛšN'¹rÒçCO¸P€u˜%½lÉäG‰Î³øf®>!AjZC–ø±Èj¬ºëè9êÏèÌø- ¦DÔ}9>a$TJkíõ†—äÞ6­*Ó’Àº ô%¾$W>uhÊNU½¥2¢>¯tÆ&ù°"qå%¶¤ÅÀ…øIuÖê” :ë©Å†í=Äÿ›÷±-_ìY9w×ÃþVÀ­ä¿6]¤!p”›‚Óˆ0Ú NÇU£Ê’y´ÚÕ`ݹÅô¼Ho”$H³}Ã!¨Ö"jânæJî4”ú”5Ëks—„3ïd6Òï1}É*áB/qIÚÉ1rp\=iPȵ üÛWÌÂ^ñìþd³ß‘ä1,úåZ,®ùÄ_ÎÙ%ÉÕ„œ‡ÁëvwÓÆIŪnZŸ#þiyŽwÉåÕ1Šá„û‚}b˜ÒËe2ÉÀ³N±01ÖŸÁQ%©ÑކȖ>Ô¡õ> пIg¦+ÑÇ9N ›á!Ïp ²ß©WÞèæY•Šž‰…oÏà#Õ¾.§ñt¸þÐt|I§‡&ö^R÷…Í…;·ì¼õ,Ñ!¸±ãUî#>Z|~ºÔ»yµ1ÚkV5 o¶À¢Ó«&a•Ê$. ^åJ¯Âk.=¥dM Iî¯/탷yTEããß‘ôšPR‘È?÷<ÌA•HfEx ™s{œZa {ÄiµlƒÌ{P°‚3V¢:ë­1”§ÛiE!xTûˆ¹‚ÿš"{£¸š*n°8¿c⥄¢ž!ì àÛRy¶02ßÐò´Û-ó(þ𸿲¹óPÌ; ) ¢tƒNÕdè—PuÉ[À`tX%Ô|» à3¤¨µi÷Íz{óü'9™U âWÙ+ ãTkäÿô/˳ry7 æì ËŠ'ÎcØ|/0¨±†_úη¬@ lO¿Uv»ãù0±ù[ þ þ€ðbŸ_ÒÎòcæª.¤üÇŠeNítÈq—²X ,îíø÷ŠàÀGŠÏQfcÿôN;e¸NÓý@¤ ýƒ8%jY÷«‰=tct/&‰5€¹}Nµwñð™,<Œ„ªOvìÜ’¾îMi×ÓôØØ“?;FoÇšUAï}é ×ûW”âyƪç·JäX$açŽY„!¼áæÇ¬•¹€ÍÁnFøhüó€Ÿâ¿šŸõ¤P^#®:£díØÅÊÍr¯TÐúÉûûZWÌ¡B“¦$ÿ>#LÙ”PíÃ!ŠöN G.`$7t )íÖ8ÄŽ1‚$÷éU|0@©—ŽD¨'Jò’:Y¨ìçCtãgõ†j鎸ZpôY-²–:ï¸Æ§ÏÇ,i¡ZWëXh&¶é”w¨´ØÁÖJS¯§ìº€»ÄOê…lWÕÕµ !åwè‚^?èBcÀsËÆ0oÞõóJæÍ€Íò¨ñ `‘P"áOKëC[ÏÂDp[Öf²çÔ ª!­¸º¼uÅ:6Œ˜ÂÊýg¦íUOÉñÛ¡Ÿ *ÂGp¿ÝŒy€^ò‹ÎèÎB„vÜÀ_7Ê ³%.[ý*†§«•"¯ 1jª‚ÐôßÏïxŽÞ”ç䜡Bz¡«|^ÈE‰DmÇX?±¿jäÄ’ÜÌÚZ³üö¢xïý©ŒùP£÷c¿j:§%t”g:ÈFž…Ñ#º~.6l½F‰Â> +ômµC·R=›ÈÄÂj=Úcø$ÄGó<…Û: ›Ú ÅîSÕjºš W¶ž†i@k‚íÆ¦4äÎfJ b/¬±€yÕO+ÖÍz‹F?záͺÚS#·o•_â‹m!ãÔJ¹^ûuMn2Ë­¨IâÀÂB'ÑŒ…  W«rVÓb¼¼]ËßßhU·89q ¤)šç®húÝMㄉvR÷.©Ö~sà wb›6œ{óµñ-5/Ä¿sÌ[ñk|;—\Ö¾ë ±Œ,#mÃüoÆÒ|nÎ*vö4æÿ ×­ÓÄn¾ÎQ”¢K£U3úÉ¢'HiÎ)}¥ƒnécá'6äI•$˜»«MÚÂÅßpHèS¯02ÂRÿ.2ª¡k¾O†jåÈ$Ho8}N/¦ “¾:ÊSáîäÜÂ…Ø»¨[7réÚ˨§†û+ú9¼<©ÁyyUgTìZ“†Âêƒ1jb?ŒWÕ‡Z¹£0z–BDªX3Ùg›øßýž8‚ÉœqÚözDLÆdYê`“7þ/‚Ť÷L‘‰»–\´4nïj´‚’˜^Ñ‚°õaO«-ÿ ^ÛZ+ˆe¬tø¯@"ÐW‰> ÆÕ ´â•ÞP¼ýä¥ås÷#Ñ+$£ØJœ²¦Ð›'ߥ¼D§–ï\ÞN]®àôƒ5àÚ“’ªà5ÆŽ’HãÊÿ¾¢ ÷]ñX÷Óxo +ô|.ªÕ°¤/5š|Å È@¹.®AÁÈw×òo%_Lb½xn‹£+‹±Ë˘V[âñc‘Ís¦–¥^H‡%ƒî'ÆÖ›4õàz‚Ó­ërÞ·ÊšĪŸ›Úšá“8ù0‡Þµ!§C‰¦Æû»L+ªRê ŒG÷G„ÊÑÃ2H"¤ßZêåÖªÓÐ.qЉ䕄 ¢¡ö9Éx,UÍaEâÐ-1,Ò›ƒ ê£kK\Ó ¤ÐL¬ys«–Ü8ÉÀ­^â27s7€Ý  Bê¶Hv=\+@ÞoÁÈ12ŒR™ŸñšïåF Ãó&‚p>Í`&¾´4«™Ä<‡kõð!]ôÖXúÓfÿ-éâY ªŒ4ÖOÙ"똠C žÝ»Qð¦_기k_j Ÿ¯?hŽƒ(B7³¥ãk ô]ªY0¿ûT£ªí5ëÑvÛ»ÓD㨄À†¨Ðn4‚µ*÷m3ç%ÞùwgëhÉÑÉ)÷A:ºùÝ7—«ÇÒåýZˆ00`ë“©4dwäë×Dï]ŒðÐÓÜ,£ê4¡hô!Žf’Š6­µöÓFÐö£·®ÍLH´*‡Ö Þ°hÊy æbu¤ìB´‚Ùºgr¦†TЛX„¥…f§Sš+úÖ„,>7rÚ±ÆH¶½Ï$ÇÀ.Ò?‰¯€Ç`¡b½yx Û‹£bíÄ5éÿþ,³,Ç%©aÈfÕ€ÆW±™[ÃjñuVÙªËJíB‘¤=ý1VšÊ²‘«ñ¥ü]Rö‚jI¼eö– \t4]AjÙÛQ¢üSÝ{¹£iš«‚á“yIç·$iñD±s-Y7çFA·2ÿå‹€e3e®>øØ×Lü)ls³(€—aâ£ï¿9Ë:è„×·ZŽ–ÛÙ‘1Ü@nJajÓÀ~—@$ª£¡7%$3àSq¥ªÕ¬Qú¾åÎ /n¤Å½:®6Xza_¶¸Ý:ÌÈg‡e6°Õ”B,5Îy %þ¡BkEtfœ¨ÇÉî÷m&BÙ-»y8±µÏ'¸÷Þœ˜qš³ÿ:<ÞcUôÎ’fÄ™ßóoÓ£Bù³6&äw³1ElÒšmß@z*"á;¹øÈ¿~P5àè#yÒÑ,¨üï&Y7iË~ü…Å5—Dv"GE¼É‚ãcDõl¨ ö˜EË5Òǘ³ „zGIÒ•o„%'9ÙÄc#¥Ÿž@|óþm¤n† šª'º Û§)Ý7€©´tA´¡¢"»»“çpÆRl~Ÿûâ` ò¶ÜâL@wé´ãäõ1£º õoÐݧ‡–晋x°Hmøfl×öWm w*c§Ò4‰¥Ø €D¿•Êv:#ÍÿRóp‚6÷]¥”’¼zÎŒ(í ¦«(]ö|eˆ“Ày^–å~7•6Ýzµ6¸Az})µ…Ý_<+òôsù‚YoΆz\eð„kħI©¶r™úÚ¹w¾¬800r¡[Êcé¯5%g¬¶Ëíà†à‚šœHj¼ƒô+ÔtMÈÚðÅI¡¸Jøƒá·Bú*‰ Ójkc=°Ì!ÌV©õöJˆèN‰™.¶Ë $î®dà*vÀÝ‘×.›4ª*ü½ÙF0¨‰0çZÉgè‹>Ö8 Ìf>Qä9r#¢Þàö#ifûŠÆnÿQ#bæ%ºfñø ð1NîÛ¥:‚*Ëlœ™úrf¨´82Jé(¥DK²Zûßy7{z‡fíMø¼~\ÁDöDÅ凪­µ<ÃRUš"¸ƒhLì¯DUÀT¾›Tç-M:8ÇÛöì#j¹8…¹í´£‚ ÿLœ…ýKõ¾"=Ñ¿‡/ÐU—é\ )ÕçDÔæesß_ƒ¶Õ å¶¼² *&×dRàø\ç&l´Ò)á;7–›‚8eˆ†½ âYÿŠ\§,*®~¤÷0Ï‹§êƒÃ"9LÐ’`G ;ÀFÈ?ÜÐbÆ)¡dàU¬;Gggk‡cb¡ZÕ Û¯Û¢"*Ì÷MQVr%`R6Äöár%*þbØšIÏ;`›íoµØÜ[õ}!‰y$mÅfnEÉÛ4Á¾ðŒ1d‘âÙ÷´ t¾žß\§¡&7´i£¥Œ8õûáP9ãI—…cp(@”Ôn¹ô*ú‚öÉ]¸Ê@ùu—ÆÚ\€æÚ¾/¬`t°e@’xúÙ*ymWkX‰ ùÖ’Ô>@¡L2†äüäy·i…U7‡ñêüH˜“£ù<ÔwËèà|Ùžeã` ñèAö€£3a@^Âò3b°w39Þmæ1%ÚÌÝx,=ÿ÷˜V¡‰hä—éÙá9‰N¸ã¥©,Äâû%b_/묺Ì5lÜkt_#E!0f¹Oc›ßz„ù<¯LÃÀ‹n€•ƒàËNK.6kzA{  ŒŸÁ3Áe~}½Ž&aÀß lj‡¢h~á£øü!Å¢cˆ Š€®=­%õo&𢉃|±§’©Ïjw™˜^ %Ø \[PÛý(9“¡¶êB{ù—ŒÔŸ#ï2ÇÒWµöå33ý¹wrD«ÈdË釸ÆDy JiέƒmŠKÚqïïJa…˜>NHó’ï­HQ=Z6*ñŽ®&]kœ#§ z°õÊs]ÕÓ*®ˆ þU¸Îǰ`FÇ «‰p±nlµ¶6ìèÈç ÍM£xfm 5ÙfFÞ´ Xñgnó\à;ôn –²Ñ0rŽ © VooÊÌÔIg}§‰MoL]ižÿŒãÓOƒ Fr6°§k©Çé¥hˆ;稈H)dM¡1ñŽSbógíÛÓ†c³¬ày'~ýŽ•v·ò·#”‰.œ@3j›b•°|Ç?Û»W*Áõ…ˆ‚·Ï€»_¾BU,qî•9=—tÏ#ûèoºf¥—?#'BáäÓÚAï”õå{·1m.*ÆÃ¦LkÕ?ÕÖsbK÷*cާ£&ÑVt¡Åz©œadW:Ý:óaßù—0ÆÏ–HBÖá‚[5=a¶‡fCv‡“³Ýr-L¥®wùB#­lð³pIëerº*N‹‹O-ù–• o#ŒhŠZØ­Bƒ&³XS”u øHZe”ÎCoà‰ \?5¿kåª%ÔÏР&1$û“Ï¥¼yþ%YÿxežDf¸šg»ø$ñ÷ÒwnÈz¿«ê]YM`Ë;…ú>ÛÌÔ-ubiKÌ=õ™ç¼T?Ñ·~/ú*ïñ®kKÂÛ<ÕP\›v/ÊHO½cã“Ǭ…ƒ‡Èî½xî+âAeh7@Ñ£ÈØ$œ¾i¤õ q† N+5PÛ‡$~%¨—]–2 ‹ºŸ÷4¹Ú­¨ÄßÓ¤ f1¨ó9ÀW˜LÏM*eñþöÌWM'%¬÷(PrÐ~”¢ýבû"ZOm G‹åÛÅùÏ_µ#^ñóžàÝÿ@zº~ÁZüºÎz|ê.‹Ó¤³¡‡á@ƒR>FX{G:.1‘úmHë¸pTxLKó‚÷lw(€tÛŽôýwÌ´Uc÷5ýžS‰„€'€¡Ã³z £¤Œi ˆñácG»îÿ?esJ*Ép?â}>ÔT<Ç£ÙÆäVèã.»o>ªˆ”t&”0üêÝÀã4é# ô©lð![7C)\€”T÷VÉ’ç*z;Ã}*攇Õà´…€½¹û­z=}¬5rn¼ ’»+Jý« °Ùõ¼Ø´/å“·¹Ïû&ûÏ`Ny0½{§UXÈC,6º_Îhsï‡VRß=ð»bQ‰‚í›Ã3ȵW÷ºû—Ý…üßÞÛÜ BàÅùµØˆ 11²px-ZfÕñÈž°<²™V™–á‘í4ȬÌN ã×g‹°´Õ&Škcì›”h¼ñPfC·ÕRká\ŒÎ‚ˆPLÙã<)ä®÷X7ijmç²Àºî@—ª·ä\W™]­¸ú‹é Ínåiim~ᱬ“þ·È’Cs;Õ)\Íâ“ý¬›µØ¨=j+&/ÀJ…]qÔ{ðÔ¥„Vú[hCÐã¦^¦Óž¥‡Ú9¡å“YÈøéú‹Ï -ht*Ò||“Û«‚4b¼ËÌʃ7Ðz¶Æµ½œR’›Æýl=›"ÃãX½æ"ØY‚$šÚ|êèPÿšõš3¸Z,,ŠSßþÇç69ð{6Ø!À:Þ‹[Ù { Îo½)+H[v÷š9PÂæzK£|¼9-># ˜r{uÌüÇŸ¶ù¾릚Պ¡lcð7À-œŒÌ‹~±þгÕëñ‡:\”Kž\§ÀÆ()ºîÄhYåDÎûˆÂ × J{§±ÆzññŽ»ÁIÞ°òÙ›v·ü¯f^5Ne/=j Pápº\>¨)“Fé’®Œµéè£õx$“z¸ìÚ÷ßÙiå^ìGG˜£íŃxIî<˜•·F€P2ÃÊF¡XáÜ—\ Í5oq÷©l·8·[3Dè¤;*¬œm½8%V¿~ÿÓðú¸î]ôK••3VIëKCn+•=7øÚ=(`ªUcCÅÜøËÉÂKÁV“†§xáÓÉ–]¿z)¦ÈÔ]f‰Ž"ôC6/xf)Ó nÐÑ‚i7/žª@¤mëó`ÌVu€µž’‘ iÍ·þ#Ðpùț̭¡B¢šÓa™ê|BßÐÁ\B¯I5­Ô¯DeTìãÊ’˜…aÕ÷ ^ÁçÑ÷ï.BêU= \ kÇ#PÂV[Œ±Ì!غDŒëï¢ Í`™×Œjò^ñ”ed\Kà,å`ÜËó&<¸!£ã~%Ôæí½¦QãW†p~:èø×:ɾe‰è©Ê]†…g€Î'~C̨DKÄÿ|˹p^€Õ[vý'ÃD£ÄÿÊÍïļª…Y+¿^‘â×¹—M$Û6ß¼ÎCždœ…îÛøž¼\3ŸüÐPq‘âb:N”Cˬ!ñ"²ôxÔÎY —b³ß2f|·¿ÿ†FÁE±óq ¡ù­éóˆÄý3a¸-H̨ôG$tl|ˆ¸ó5|´m-lÜsñ/I++ìR,çm$1-/ù uÚýìÄÞI9K ¸Zúf`MiØJ…戹‡àªCT«;4c™»öÞÅ1äq„#Ì:/’ QLS{ôy—N¿ö@ žì jŸêʧ´Í X‚w­6¥–ä*òn;TÊáFø»ŠÄ޳á4ʽ_á©p XëíÌ\®x½Ôèê­ý³óÄðMæ³{Ø—¢{Ò†0Ó©ž|Ìþ ¯YEbuþ Åí0'<_›†`ìÓf¿÷º;dÁOµòJÑBóIƒÍ”§@Í¢¹ݸÿ!®§|g‘x™-·w‰"óf5”Ðfñ³¤ÒŸ…¤]ÂÞ¯P¼ÝGÝâß=U¡H³Ö%i(oÛi» Ò®jµÂlKÖujÐ÷R¦V:ƒð˜Ó@õ}»¹‚D:ˆ§‹vÈkiBöJݨ´ý µ²4Gñºýƒ»ÕÝ”ÈMG£¹¡¿å f¶ ã÷l=ÿÕ:™ý2`2ÛÀÐüçVø7óÁDöÈ̽£·ônãls|éL¶Ò l홦ÈT“/Îmº&ì¿°•<]þXòÌ”å>‘@YU(¢7yøN ¥Æ±mS@zç‡ ³Á>zÜÞü'þ“c ÄÉcéêCµêtâ{’Úþ䬻€ ƒw\ì^Ñ ÁPâ›Ù?‹ï>S_\SLÓ•á(txcn¨qðZðÍEZžÍŒýÒùáÂ'{¥3¿ù…ã@½5=Ä`)©TNnTiL³§’Ÿ+‡`ÆWO‡«¡ÐÅ]º2¶íä#y¶9zXZ…–¿üÚÈày¦-Ô Ìö0HÛ{÷…)´G7¯\65G‹CÀÜMBžÙ‹Ì\ÉEŽ ²{ýþž¯1Ò÷¼ñ1jR^jÀž¸×!ÈÝE#¦îŒ¨‹‹&bäv0 RÐjË?W‹öû£ó4.qÖò޶"N(`Oh}¨²ÅjiüB¾Ç$(¢(´Õè£^©ŠH=ÄqIVÛ|õÜù–tèµhFs}.:­ÂÒ{“)Š_?êЈ—u×;¬QèïÞ¹²eîÖ’‚e æfÔ‡ræQÎVÂmÓ“"ØLgÌ/à0ô™0}¢ËaaÃÓÂdÖc2ka»_Ã8ë„`Y»¦il€Üþ\²êÁÁÔ·àéz®"ý Õ$ÝzA¦FzUặè¤mmëâL×Ï_Ùmë- QSh´ÕìéWÿ–T£Msè­>˜¹Î¤íDG*PíÐW¼I9 >ÎûÃßË“×p?~}Úpð$g½„ërŠÇ%v~ÎÃrRjQï–Æ¯ ÜHøHŽûÖ¾_ÐÚIYnÎBä«múÎ7ì‡I†ô³»WN×´2Öò²²X÷1º+894A²Pº%cûœeJþ+‰\ã%·fðF5˹ƒÇkc’>6 à©\LWÒ†(–.Ö7­)k|R=§ÀÅèC†ßYXýDÞ=rÉLcí8l2¹ Õ¬„–%LDpÕ»û®Æ¿ðrCðÃæ#*¾‘~;³bÁF[uC˼œo'кÂWÊŽzŸøX†¶—ÒH*¹'çfâL·4Ú¹a7úbUT˜YP2L"8e1.‡NytÓ·tHÔfzÆô¶ÔÐíRÊŲñ@à1yºüB™; õÇ`í8ìñRWgÍ øÓ¬·Õ}mF4Ü)¥ú$ìë&Ãä‹5l»2Ùþþuf³É,¤+e æ÷v­‡3ÙXL³aS[=Êaæ$wGèº|Ì>ÑQvS&oó)i\1þd¼å¿C-zšM!‹/béà‡›ÇÑß—®feåªJ™|“úáîÙ^"=ÿÂkÁ(6¢Ÿ£jb¡çº»ke6Ñyž<²¸B£Xp~²Ь€fÞC¸ '¸lTôÙ;¥èöm¼¼ê[ñÜ0é[Ñ'àŸ3±<êÏÄËËÝ";ñBvü¼”2™,ÿÈx\U·û•Ç™¿’¿YQÅÇrïR-A¶üoÌÝÓ²>›BÂ_Ÿ‹É3Ðð/,¬„“Óõè5È~UJêhU1ûk""DõeÔjù°…ÔúÍì§î–y¿iæb‚A%Œ'Þ7OeöÂúª=üv`¼lq¾o!7n­ûé580äÀíÚ¥bÅô &tô±ÜlßrÛ0P¿4 ¯š„Qò2#¦d-ƒ OÝ©2"€E®m¯L<}“­öqQv-jSý­¦mÌê£ÄÝ0`òðj¡©yÅ´/ÿ­ôôŠžYßÅzÆ]±"˜_º«Ã$¡·Ø“©¶¾e//)¨c˜Å5f‚¿Æ…í˜ÖjWò+’÷¹ðÄ*ãä͵Ÿ:ƒ'aõ–.³¨“ïz`òúTy%ÙÑ'W_ÝÃØè]}3Ëñ÷#›>Ž3íˆÃýV©æ0dH§q€o)8õ¹o™p 3[¿ñì"®³ž¼Èö‚þ·ÿƒu!µ! ÛÌÇ7‰Ê©ÏþÚ•®ä§(-€0¬J%„1“Žê]H@»ä&7>s˾õÒ5Ëó,F­Åò¯b{ÃB…nŽ4z>&Æ&Ú›Ð?‹ L†,utÝ&â ÔÒ8Ô)¾Z½éŠS°ô<ÉæÏ0Ù[ÎXð>2 ~¶NÞ™L†Böªô…ˆÝ:6O0ïÈsn^æût /xcÏ¡Ÿk϶¶ì:Ðm„‹~åEbéÄg‡ñNë\«Jã¥ÒŒ|ï!ôõM9}%k ÚÞ7Œ½MEN·#žÏñ¥®‚ÿÂ4¬Ÿ{·ø§g§­D zÈÊý¸â4œ@(*0Bµ¶jÿâÄÂÆËS|¢ÉÏcú˜Ó½þ¸Ë|:?2„8A˜Žý†¬ÿ¹__€=—ä[',Í÷)î]²¹ˆ¯Ð˜A›$tÚ,_Ž$Â>*¦Ü `ø&h„ÙÊ&É×Bý"Ôßc¸‚_K”­õêð Ç¿3"˜¤ÝÏ~©F[ðîæYu¤ âwçœ19ß™* ¤ëçb±å%ž·ÆaêzŒ±*Ì©õš½ MƒQˆxâ@À¿|γæ,Ä™¶ÊR ]KAZ®X)†l®h Ï‚·™yoý¢Oñ¸ÌæR—~çþ4¾±H÷wù2ß-mi½Å­ôà~Ó•HŠŒq­¦=uý«¤ï4SDdˆó|1uvÎXmÚÏøîÁ»[©.-Rš0ðz{?Cå_¤£$‹`<¡^ró‘†wópoÕ¬k_ àéôôQ>Z¼p(ñUL·G?û‡ŒRÑTŠã±£€¯8PÄKŒݤT<\¯åà  {Üâ÷–õòâöQ‘sª/)¸Plè_=‹,æÕs¬ÓïFyr©ã\g"Pù§9iòå+ <œ_aΟx;ø·Ž!Ÿ´ ±£Rôa»eT¿?Âì蘛 U´zè9 Äï q@í%±Ëó¨–:´žßk×ß}ýçß&¨6D>üS×üäoynš‚Ïp™!õå—¼mîâüãô†ë§gZ® pÔï9Ÿ,•DðÚµ4¡níâÔ­rÖcf{“¬®Ô[ê9ÓóL§¸fȤœQié©\ …ÏÿM3¤d"\ÌÃ@ ÄlhëŸå5h"²OKº¨˜r*±È=Pq"¤‘›Fn„`­ ¹Á=øö8°iß&]ðņlÅ„lH\OD%«gî épèV‹MüTj s»c·9&XAqó¿œêTŽËå­=öËs;¼ç×RÍh¶ŽÇ<«6­x¿ˆï×ûqjˆH>›Û PQY,W-›`äºY#$ak‘éáøÕ˜g-¿Ä*âŠSKÃËÇ:©>¾ÂäÛO):Ñ1çc—î+Çf×8à‘øÌ]Õ£iÈé^«´ q¤/I%”œšy?…ËÕn¸PוPlàÆŠÑÞ¬³z$Õ zm¶®”Ñgþ]– ªjû"t1G· fÛJ¶,¢¸KޏMÕ‹ð7ä²þ(ˆJiž*duR±6-0§™LJù,±²¢¾iéõÀB5ù©ˆ¥f|ƒ9+§÷³H"í×&Å8{.'ç´Ázǰ؆bV§…Æ<ÏšHo² »‹¡ˆÉ/ ØÃ‚™ôߦ—þðc«›ï½¥H¾L‡÷©„ö÷Ä|NÌ[\lЉ°íœ]×Mé« dY'ñ.‡•Æ•¸þíÒh°7í4–úMÚ[Goéøï¡ €ßW~€÷)ã7ú÷£ôÑ¥~FÓœÀÜYìf;ÑFW»#r ûN6‹,/r§í&ºW3ì¹ÖÆæìÏôêk‚Ï~o5|Qàýa»ó.hCPБ—e¶ùihOéFÈO«€¹y¯=óÙ¡oXýUìD,óI ï¢—­É^Bß,ºõù×£rì""…]N|ÂnSßvL…79Ç ÿöfZU&¾0BŸ¼ð&,•¯¯aQ­Oö8ú·­ ”ñ‹:À:¤g58TM×ô!dįڪ_’ñdk“èJœ¸k ý4´1Np"¨æXf5óU—Øl^êPŸÖ# ÐlÚ`úŸ7‹|jŠ€*m§&ýIrU`:êm-:Œƒ"tI?¨¸½óÑ@5²(©žm¸{ºéŽkÓ>„¾ †µ¡î¤ÏS)¿Å#FŸ_ô>!UmÀ_È)\²Ì‡Â4Ÿ7{uJÜ>K),1B–ÂRBM£çq.ÃßÎjQö“8nz: ¿!2xAD˜©q²—bïõTÅ'F&åŽ÷ª³cö©¬ò•#xëP9,zj8Ânx¶¤áÌ7h¿ T]?u×&ç!rf-A(0/d?à8! “ŸɽY¾ž„4z¦Š á…ŠP $7žÊÿÍàpg‹¾ÊJ&{|@Ñ ÂÜ´½¤ðyWæôazÂÁéÌ®¯¶V úxBÔê¿ [a«À… ††Ð¼`Jgü;¿‡l AáŽø’G°Eµ£—ú!§~AÂ\e˜ \Wt§Ë÷‰ar€ù/¸Å6U[îÉ;TO÷AWšñ?ÖéÍlÀ™­­+î(!À·ì¿rܦ„ØRÕ;—Ðy* zúå=ž­›•æÙpê¹õ ÊLâî¿Ã›uN|@>Gñ‘_¯- >3ž‚^¨]÷€¹¼Îà §Ù§B?;ô‘?¦ÄðRj£5dðóc¿7µRôë” e ïÛUñù5`š¿øR¶ËrÐbmý"Èyâë¶žQ¯ðÀ`]\¬(ß•»äp£h0|Xðn­‹û   bˆû¿ü\æC$­òŠ @£tú*ë"ðå¥8ä\‰•ƒß¢´b™@.–rgåRL<'»â؆\0æ`?¼ÿÒeM­üòZÒõC/H ø˜¥§Kë=MÚ_[¤`S\hRš5²Ò}Ûçų´újª8ç>3âFgäû®÷‹!uÅßÐ3b±d2”N½9­¤+Nù›ïïÌ(ÌùCýê²pA~û6lkrIø˜+‘îžqÀ$“¼@ävdWÆ& …ÐS‘yüË;Á²wLßè—…”…´x§œ434ÞŸó¢ +?%G]@áŸ~%f^þmF1ßCL ˜ÐÁ’+bÞm¡Q››Oh˜—L`ü môFš|™(O,Ëè‹I4¨ÔjÐØ3ÕeË y÷<“Ju T`úÔò~üKÂw‚øüL¿=›?[ÖxìV¡zWÐí‡×‘§Ò$<ž\ ô•ÒÍÏÿ¯Œ¢…(³ÖÞ•Þ¶Ût‘Dùª· : ’y'0H8nQ¾7Ìg?H w ° ‚)eSæ¸ew¹Ñ†ù^ª¿çEΑ$™q|å¦Ö“½ÜøåŠ‚$b»Ø'ä²È±Ë™"#·FQµzoq”«`)Òcc¡ÃCÜ- Å®ü!‹€ ›Lµ~€.Š9ì2Ú4(.äÈë!;Æ0Ys’lt›Ò@AˆÀ«|:&YÏ îŒ©ÝY¶C/"+¿“äU@×Y0AïE·oI…’ t€¬kã|´0eàl^`H2ç"x'@µŒÌ«Xý =)eü³R÷Ûì®ÖÈ›žÒoK#»±a°“{ƒÉꯗ!âÏnÉà‰cº×žÔs8 %=‘Ô0Õø>d?þ´˜òvMðÏxàc§ÜÁ:Kš¼éùNúh^¢BT˜C'æ`©Ÿ ¡To©ëûü6Nžf׬þ5—3ðU±¥âÔê®7î1 òIÌ(~‚ˆU€›*‡e!Nw¯ØKŠì ç™é%Ž>òKÎOš¬kNàöŒ™¥~„ÿ¬&"vì*®%«[x‰Þîü7L´¼?0 ÇÃóÏ «êæ‚–Mv…N‘c(ó“løaQf_¥üg† aö‡ [èÿ 8‹¸žƒ]2ìƒGñ]Œ%Ēл$íÆ¦ï$³V9,i;ý&±S ./“¨¥M§ E10°Y'ÅÌ«0bW?ìÔ+&¢ë”n!!&Žm[Ç¿Ñ5NW¡÷’A€€„PHšß²4èÏë,/èë˜X‰2”…@ÒFHsƒ›(q'Îù °4;§,Å2Bïb°ÀlÛB]çøw|Õ%™»Ð±¯J@ywÉ‚¡…ª†È9ãº<=q+ ²Ó¡Í¶aWb.É0§eT+lj {5”¨’Û4h¤=ÃÛÜ9“?n> š‡(ôÁqpp׆ ñ·– H²€ª:¢Êš¨ðYXR”Y’ʵRâãs/ÇB_çýÛµa£ã©.hvd¼×ä&–¦²úͤ:Ñ쯔êÕR¦Žð¼oYà鸪šÏä¹­¨}?–Öw üÀrgJ\ÊV¯Ã¨y4#©Ï´17@¢¯|'\†“w>ë]«W>wUJD{éfðÃ÷»š‘R^ó~ÆQ­š°Îè"Æ$÷†˜î´N"ÁÇêl+|·‰—ÏÛ‡Òh”®+,RýÉ‚¾·3‰ýf˜kâ;9=¦{µT•Ùÿ„+Ã|·]¨…áÕÌ“M:xéš oÛ¶§¸S4šÌíËÑ…ørÛ‡³Ðù’v6‡<—ê¡¡Ë»Û¨ÃŸŽ¹ »æÇBËV_,AðHDg%f ô!ٛdžz”KHyeŠ ìÑeÞÚ.]£sñ·¨óŽIHìñ‚’ΫµË™Árg†Ü¼‚Á÷A|x“$xí_lj*°ÿIÍ>U‹!•›­«önãuUfì#~Ó‚8Ä?/@e:æ-e8µk‹æzQJëþ­r†lë_ýÆÁœÀ=&n¢“pR¿:ð1·ß~õ{ JVµÇVâ1ƒÆV[Ú7<Ç´ú_©Ö'¤ÙzHÖ?f°ÌÑÁ¦+ÉëdH òOŒkGÐÒÃë ~;—ÙáƒÛWQT~’Îäþ|.ø(·Á<¥!84-cÐ;ó»Q§˜ÑNdán+ƒ¼bɦò½âââ±ÒSc%CI"jgZoò"÷vFåØœZ÷o¢LG¨žÂP/j_ÍÏ;öT&Â<ñm«H‘ùÏ.çÊR÷‡kPB‹=DŸMê›á&Y 8[žSþ AM5Äù7Á<„¥aäÏ—þGLµŸjÕG@Õ߃eò苜üü•—=´ß…]8‹cgXÄÿ 4 ˆj¶åÁe$ì¶:ß¡{zsøæÿ!Lö 6Ùk`wÿŠ8ðÙ'ŸÙ‚9¶ñwë€F%íQQlgsÒ@±¦ã¬«¦=!|yÔVÀfȇmð…ðÉÄìX5ªÌЧKb›àñÄÜUÖ–÷üY‘¬œá+™P²®¡¨g„%]`Îv„îlѳd´ºœF¥Ê{Iw_Ê *­üÜÓ(zþÝñ·Û"¬¸«f‘#w8Èb¨Ïö§R´‰Í f±õÅŒf+¾“Ò«ÒˆÞ©2Dƒô‘ì¥*ß {O¨ñÒƒ–/Ø…r)ËAÔV¬:$¯u Z+«†éÇ¥â×!+™3_™_TãlkläQ‘’À=±ìÞM¤Â+¢™†A’Ú§_yOγ6Z"QðfgI¾§Æœ-ȶœ©0Æ Fq6U±±{K]ÑkGC)«°‹¿Û¥x•rÐÄ‹AíÉ+ŽrnHÀ— ö–) ´:Ry8¥U̯Ú;ŠvÆб£~(.ùoC†LÊ‹hä"Ãë"É…Bƒ8<†ÕºVÇ’Zkî º„ÊU½q„߬¸”6Å3)8us!“´z“t{e·Š¾lpå2³DdnÉ‚ý^? ßâJº¨þtÎÿɃmƒ[Ò¾ŽŒ„€Ýe);«‹¢Àß»¹÷Ae%’)W£üðñèÇ.›‰Ö·o˜D®l÷8%oþ|3>çñX!?ÚŒ~÷øpw€Ìf§ºèü±•±ÆT÷†A–}óóÌðl|Zç›"5acÃ{Ó»hP–B©wŸé*7ÎfÆK‰9æf°Äžç׌^F…ŸÂ[rçÐ¥ð)Z]©@LK…ô‡tfë^E~4˜}Ųi¢µ°ú‡‚ÌT%Ík_aúíFlÜŸò€§´²Õ»­¸‚Z²˜£€`‚¢Æ2'=ÜU޼ Éüž& FôE Ì])p3 Z·ÓöE]”‹x *é6öŠgaUtÒú§Lkð—ö(ËqÀ(++N,Ы2ÐgùÍòÓ/„2³·È+IÊ‹œ˜\ô¶š¼‡³Ž¹ÀÏžzÍúâ¬ù*MÓ[—Öà.ÔÁJpLŠ/¸Çü\ʆ4¦8I×S¢‚øÜ[ ×g¼dpX¼Jk_Ë•G{¯7&Í‚t} vµtˆ‡¸ì×þ‘©´¿éwüCAÏ«p—?Úæõu¶Rñk°£‚OpùÚý"ƒ·=Yx„þ¢Ñ4ZYØùü«M:'U`³„üܪj¾ê¢%aÈJÅhÞ½tw†¶LßßW˜û…6™¿ñ§hK¤˜?PZÈÖd8“Þ×-(ô©‡÷Àï iê‘{ËVéÏ`/E9qxaùð·uR±²1L㇙ôo™$*)ÙgT/Œ“ý«KJ}Í¡ ¾ÿ2«!Ô/„屓N Vÿwxc¢/lQ 3»¼_k‰Ë€ÏNvžÁ{½“KÂZ:Ûf}ó‰' è;‚·`zbx.û˜[é_K c5µßg·¦ñ*‘åßylVò>»Z#Ã¥^P²íÑÈ^nÖZ¦Ã柒Á…Iå]‘‹qÈ«ð’a.VÌÏq}l¨<ºÇÔÆOL=[¢£ò¦hˆ aóáŽ2¥/ŒùÎî>çO¡Ó›äб ¡å;X1ï |Ÿ»Ãÿ{~’&%ä9r^7•¢QÖ"_L»$yR Mk¢+ Kïö±#'Cçµ9Â(Û ï+f ÃaWÆuH“%r½Hƒ=zŽwÁ®*3 Ê›—¡|\› ¦$Óùå’¤.´Ñ¥½&Ú¨|× ˜ú¦`ÕlEœNØþ›«~H15¸Ñ›«¡`.KÃÙª€¤œÒßüCWÁ›ó»æ÷Ö:¨X·žzVðTÏcnnÜܬcÓ78etáüá·U&žÎl¾Ë3-Eÿ¦§g*SóFeÜ„f–þZðŠ‰  Ù݃ú.5=‰MSµ&ûXèóÖ¤£øƒò<qôçÆ~ž’º9º,„&Ÿ›5.~ä ÅP—2Ú=aòRaÏØÎü¥ÿ•Øò¥Ëocoë à·w*!S½š˜Ò!&éÞÛ\M*ÐÀ_¥ºÃ„‘kçOëÿ”—ÒÂöÆK#Ö/Þ뽆;’~~·{Çm}@WK`mø'=½^ûèÄX2(ŒÐÑ¿ŒZà• Ãéb3ʦ7®GÑ‹’¾ÌŠª¯eɬRa+±cë±ê 0ÉN°yGÔÄ ?P_Ø sãøl€#Y%Â)Ü[éb63‹'Â79;lðÊžê!$þXjõÊ<}î"@Ö…®†î#§W¶›ŸæŸò@\5T6ÇJt<{ù,9N™ŽIc9HËX&v¢{ˆ¾µMÐfÙ OÖ mÐB®ÁjÓrP7ŽÝ’?òd..) ûEˆÄé•ùyDãbÂiH¨"•ÿ³±“¸ CØ©-”5¹Ü TΨd$°ì‹]®™#Qú¦]m]AŽ.ŒÜ’sã!ƒËø Ðñ¿U å¨*üiQ®”~8÷ÕÊÀZ >¨ï_ûr¦±òü ºã2h7É’¿¨ûQó<—KAËQ¡ô(Qz²óƒdAéØôAãÄKëŸ9°V|WŽßDÝZ`ñkú*Ök`”GF4®5‚ÒkP†Z‚bþM’ۨˤÔP™vD:Ö•Ž0@}ë¢@׎7~D5Ò„ÚvûОÑêÊE cuÓ׿µAE'á`7¸½kE‹ÁM¢ÃÈíJ_(ó•zjå6|XBS‚þ8„r3æõg'ÿåËQ!×>TëoÝ?ºåo0^=¸Îà¦Âûln#ß\÷¶µ«kPQųtž€ãáEKn7ˆ6Åo’ì.5ßÂëÔé´X¼0h¨¬0•Ø"(¤; )#0ƒ‘$¿ªé@·©>-ÕÉÔ4À_ ™óQ’òý;SÎZ¦ZX.™!gŽœˆÈVµ E>MBˆ=5A‡g}þ¶9üàg Æ/‹¯ö5%˜ ‡õU² ¶óæpì§‘$@ï©!`§Ä†´¬w¢0}Ébkƒi¾<*lÁÇWD콎o©J¾·í K±úM9ZqX²6óÎJ—dT¾M^¹Ì¶–ÞXµ/&´±47€ƒó[’ø¦†š“p’ì; Å/.–Ò…ö, —^Ë9G8¼Ì´fC¨Õ×vû·§à³v²|d5ŠH£ŽŽóâSV[?Ðýîóeqê¾ÙãqY²ü³ÔXØ?HŽ#„æ2u…¡Z[•ý3\=öUÕbãVæ [F€âƒ_e›<Ë↠ɳadh9°Â7y`òY>ˆÝ`÷øô½Û¯êew+„‹lÆÖŒožÆcsž+|EýJ'"äñÿôºr ÂÚÏ#î·g 8¡Â USú«W$¨FÖÕÉo¡£ý§t-VäHŽ©qþ6Å—¢&õ4ǺƒåÄí k³mÊêÑ0e|ÁzŸŠµ|Z®ö^’F†:h(Tªà}æUö"Zoà®Õ¶Ž8IXüÍó0Ɉ›v9‰¾ŸíúX•O"Ùi²íƒcÛ£Ën‰C ª{ªì¾F&§Òö-\.Õ+ŽY ä¬cx:˜îþûh¡>€r)×ü”,FÈmé·ðm“`¢û¾ÆàÈ¾Ï ¤){ÃÝÇá@w :zuÆiŽI =Æ®—ù††;[XeN¦_\/v=Ÿï¬íªiæ%_…íB^…Ø_ Hi4_6ËûÂëÛQaG;ò…ØÌ§óÊQ^¢±þß À6ÂåK¨•]c²ÃÙU©ö)VP¹ñÑëûŒS²UÅ[L*Õ¯®óe7KA‘"E êÄW¸¿2œ‰';QÞ~?wæ{ò™hµ.Z—$¨èö™?U-&ÐåÒﮯ½&»-Ô33amZ:áC}ï­Ô¥Té­ÄÇx}8ÁÈÀ5Ò‹UJƒÐjnjöÐÃy_{óz‘ZJ6Õ´~7Dí$"T‹‡Ûu•Òº«÷ŸŠÈz"8ïÊbý8ZOÓÅ »nÈQ܇‡ßü-WÈ-#ứŸ£Ï¾€.²‡¦7ä·—B@ã³*Üj²®@C\ f·‹«–lã˜8"þ,[]åj?lõ8¹.š 9ºs#f]¡5Ýz„A€›ÿØoÀÙ-?Px9‘rdZQã}e‘´’äÏa8l?¼î]ݦ3!U 5H¨éÂú.|Þ-MsN rØJ ¬î|s^ jÃÿzžÒaTsÀÝeòUuêÙÖ ÿëå*Ø.ù(òÒ¢+c™–ùhSÆyþÙδMØJTºW‡k†´iÂö;ª&iæ®gy°nbù®Ò­ ;ø/É ž+ £·ul«WSIɺ†ÿ(Aõg2è/q3?hèõüÌÚoé!üÍR‹–œ™é}¡îBQy¬xÏ9Cv'MBÎȯ"ý¶'Ê—ê}¤²éxO=å’ñcµ»ëS¶·!ÿIXc¹‚‘¡b0g/1 B°ªÐU*{ü™÷¢+³™_¶lç~²¡ÎçVªaìú*Ï‚v¿Ä+ív öÎÊèˆtJÒ\K÷³Ë#¥FrµhÑÀߤ»T—ăT¯û+#a»Ü  M3ެO)âM6Æé_ 2¸,ÒäoÔµ_fJ_ߣpžÅ ‚«·x²0-B%¹¨îx w­(.ak}9¼ %¨ä ¼l%޲öè!˜é°¸F˜ÐVߢz^Óî0¤Ê (Âú›-"eÛ³Ö”gV…ÀR%¬DF˜·Pd‚ÅGL¸E• N%Ýæ¡"2Õ9¤Ö2$hÛ® »í§ ¨±nææéV|méÝY2¼c®wÁ7·¶ÐLƒÃF] 8‡2úk3¿†×Õ5п€pÇl6«é&ꄃ:²ïGEVNr°š?_´p ³û‚{<ø±QÂ*cðÎ[KÂBk)¡|ø,t$ ¤í¯ÉDÍÄsmk ìä—ü81-yÐj.i¯d!(S—]˜Åà঳ËÄb—6¾zí%QWËÎ*7Ûƒt1£‰óà ùþãË3×ïŒvä´×Æ&å“_&Jcc• Ù§ÈôXb¡fœ¹å÷\ø$ ÖÝΗr›T0I»ºmšÁ7æš=ª*?aFAg>¨¸ô^úaþÍÀA½jÜ¡±üÍKh*‚¦Âìo f­ sT’ÓT €äXÇžšÍÄO±Â 5—1,˜ó_)è/$Jãë¨:Òo@¹ä1B­0R¤E¯À#œó0e&ÑP7t´i« mÆ3®îÏÈ^QG¬>UF$gÔ’Mž0*Âq·«Œ8z!Æšì'>ÜÒþÅÞlÚ‘»K‰Q!¯‰×ªo´½ãîîkøb\!r:_ÓYÿrMíÊ ŒáœÏy8CË«›Bbưñö ´aŸÌþÍ*ˆ*lWÀf¾ÔÓ`iÿÜ9Q7xçŒV «káEp±ÞZ„¢8Qt± PÜ€o Þ¦œÑ“ÁµnàL“—î¬oÃÙ ¤ãýg[y_p6†J9ËŸ k¿y~oÐÿÈ%ëÂüÊlOuÑÉçÛÈ÷É£¿½‘ˆÆIlÅTò¼X$“ùi°aZ “ô•C6%}L3Õ›ò—£ÄàYgfPmôÜ¿ïÓ›á£24à¿™ƒgku2ïr¾‘¸¢pé¡Ö½Ž]j¶ŠÓgÊ|¯Ç‰ÆØ7h$ tw·{û{ÖÄöyªÏŒ>£.àì_„¦ë’¦Úf£Q(EôÔTÄz,'0A·&\& –Èo0¨qF ^]âXd@þ{/ù«Ñ €ú_ƒ¯g¡÷,—_LäÏckQ4ýL¿µjëA~!³Ðtë®W¹21“‘zV‡–tØíA"u˜¤·¿C'ΉFŸµV ±Þý"TMZÍ=âdBÞâ£JߨÝܤH‚²-öÉ Åg™7†.´˜hHQ¦¹„4VS ¶¤à»–''Íæý.ʼn{ ~f ãÄ”d¢{*3Øm­Ÿ#vK„›þ;÷)ú÷›9ÌØœzº²6{¿EûyWß)༤aßãðVS%!îI­ŸÀµiAœÞÞŽ¡ìåØ4ŸZ…Ã\ç™2ÄÙ¥£Öo$’g¨ê¡ D_®~‚ÈLèªô' Æ\°P„׸ΓlÅðŠ„ªÑq¿GÌïˆ —¶8JëÛ€p¡Ÿ@> …÷…CïX™üYÓ‰|ªÜ•‹s×2Y^¨ƒs1uû°M—.*ÿíä%6UN~Jm̼dî¡Püœ!q‘9J6ÿ¬ñ:·vÑ«ý®KƒuÓNÞ÷°^ïu­ù¨sñœü Øïï@CíȲ[#$rÉÀš©ÛX$Í}ÉÌ>öiÖ6Z·Û¡eßéµÑuVä'KŠìgë£Lµ«ôuîWøò~™»®·èF(ÿOâX€ÞÅ™J务~ŽÌ ùQZT~.*ó†Ìèç˜÷Ÿ<ûs~80*ï¢lPÐQ]jEþÔéBaö7j,/Õ]GÜÕ²ã.}·‡FA˜4<º´#ºbVã)Áà³[CdŸ¡GM6/d!LÎ;´sÑsˆrbòá60_8)[ÉruñP?ÿíÅ}GVa{—A…U¨1ò\‰Q~¥ñKõ-Ë÷ï‡y¦â6  ¼û·¬ïÛxSCR ¢N¢Q³¿D3½œ,Žáø¯Nî¢'êûåtŸmÞkKÊUï9(Í€ÔðQAÈJQÉÄÑ©ãÚé:y\ã$d÷‰p<¼¨:v›"pdDX¾'¢£ì®‘ÄÄ®Š=ÞÛÓõ$·É8Ò*fw\A-;=.ƒ¬¹ú×é’ á²!ç{-hœ‚‡>eÃKü|ÅÛ™~eúê±Ïs²†þ n]‘[¹Ôžå¸.Fs}>ô%â•`-|ANý3WÛ`t >3±ëáØ QÜ¢oº³$ º®V_îÓÅ¡­§ä,ñ†xv.M…2lñ“fßõ=“{DµpþüX 9;]oÏ­ÇR@ŽaA oâIdR\i¯Ît—L­û†ÜF*mî|1§Ð~¸Pâ¥/qs‚½2*;Ø÷á¹ÁŽ 5²áˆ;ß-jˆîF¨ˆ¦uí㮾?5’ñ§?T gÄ€ÄW¥q‡6ªÜ–­¦Þ>uy BÞ,«k´êð]“0> M½…~Ÿb Êš°-ÚihS6\XÞqªc㨕ã9‹Ýÿ5 dF%6žäνò4€›1ÂÎËY g©Í ZÓš˜JHóû¥8rü…]=‡19\D¶¾kUž¿ì^™ðˆF¼hÔ.™oK¾O`ª9›ÀH\¹×bÏ|:É”ñm|§n - ð>åº Q¼ÏšüŽ*#ïî`¡êÌ#’‘#—p "‹î  $d‰ñ>3’”¡oÃó5Ò³†eÀ?j Y,v þ%5eÑ ‡¥£‰BÜèÙ<{àYÖß9 Íï4ÑÚ1»JL’Yo5quB÷ŒåDÕdG¼aq¬ÅèÑÖ¡¾xãÑÍG_P\Ã(*[‡Óá¡?£TÜO“CÉ”Åyp:Ô¦w‰Óêàž^›[%ñi¿¸(aÇc*ä_aR‡OKÊkbR¸?'êkÇȺí{ætÎCî…÷[Ò³Š#o³E붬ðMÇJa9ê!ua°)BÑ,¢mùø‚·Šµsæ)%é)6?é‹ÑŠ!„çD¨—œü‡,·aôßs…N8šhèŽÏÓáõýÀˆ€],*B>Ú„ý•s²h6é ,»Ì©L— ĺÖ\ûZvºùmaŒ°AMDX —žÕT$»ÝQ£.Ý{–±~Ö|º>þˆýJS¡6Öe‹%5M*ÄÖìï B“p~^·ÖM-ÚŠz¤4Ý|·«‚IÙlz4rt›ê •À? 5ÕÑàIÆòL„A±”± FµÌ?òë¥UŸŒYóš(÷ŒêßýÎé^׿“èáhNWš%¸‡U¦ÏFBÊk,ªô1KØËÐt"Ñ˜ÅøþBYnnL§E÷ Qº 'PéV?3d A~¶èÍ”€k¶gÍÛ`ð–MÔÁ§å=I¬:mÛÀê¶Ò¶Ä3ìêDiž1䇬YÈíრ0?®E-W,ΠGÏêsš¢&³êâNÁGãœuÛìÍ1èQ¶ƒ×vI´¿çªvŠëÏ®ùŠàÜŽ@ÎóËÿ‘™´ MNÀ‡Ü…äÏssð}"KEä4A‹óW[°ègu•~ß,½‹ 4|¢Õ”Ï=ú^6Rç,(o$íŒ^±êÜ·ðñö­™Ï6ø˜«B$Ÿ®¡ €¹‹Uâ!3†{X­Â%úµhh¥Ú™`¢%<Úïö8ÈÆ!°}Âö(ªSí*eO”txîÁ\|&.'nU@"’ 2ÐÚ‘\x'¨«|ƒ|üäêÎÙ+ÞVÊÔþ l1Ö™Š|´DiQ—¾l_N-©Þn‘ñáT_¿¯Ü™½ù}6Jˆ¸«Åš×Š>»å†Ý籃¦[Ùåu’И{âYrýÈšç:¸½|f¿þ[CE¹µy½²hfbx•ñF6Q½‡i¬†Ùtyc©›B…Ì?×üŠÍè?<…óBñ cEôÎ|^:`!ÒØ6·–¸ÚTéÚ|Iùµ&u´î«©¢?¹8¨–¢aìÕ³µ„¤OÉ'‰üµÜ€i OLºÛ¢'ÝÚ×û,V¡<Ý&ÏC•,FD¦Ä«)óXî/ëWàHÇþáLf¡™¥6»_"6‡À?,c’Œµ£\€£!¡u<_-ßlúñÔJQ¼À6@‘´â;¡¹+:N"ê¼eÄàZˆiÏÑë¦|Èãw´ÙŸŸtüÔl¦R}BÆŽk²MV32WOqIC$™§ûŠÊò³Ëÿƒ*L8¹ž>º$x’Ò]ºµ:£×ñœ„r?‹Vi¬r(Èíà¼AEÎ6Ö&â5ã~Ä&¹BŸAÝ¢­Úú”cýØ/Fî[Æ,¨“Ü·ºEœ•VŸƒïf85ºÌÞÔ%uýÌ„‡²HÚ£¿ûM8ÀŒ‚^¼=ЬæùyïëK ‡»‚ZÉÀû¿í»ß.lw\GûÌ*i7>,±)‹²úÊ1Ó8)óȲëSø»¼¸wϼˆ·-™ñf*¤¯ÕhÓ”Š]FÐ;ÚðÌð`â·ž3·ñM1üÙ1Ĉbºxü¤~bau] }¢# Ûy\¤©¸m±ÇéÞ¦“ª¯¤ÊlÒ>–nkÆvM"¯µ¦ôÁâ«…ã©Á-|Íÿ*¾™è¾’@¼ jsKepÌ„þˆ¸æ®‹d+zV‡Ç”WC‹T$çFÓå¸Õ}Ž+M'¡¤n<1†X(õíO'„[pÁ7MD÷a JK÷NˆÓ­AâúŠ?ÐzOÄßMì²ïL©C<ÎÑTÄë–8°’¶ð(ëçV=K ÝïßwöòÙŠö­)™¼¶–Ð^çFcQ4†j1}é s²‰û²èóÕ# ŽD?VXa:6 SÜ¡ÖÊ•½ÐµP¿8²ÀÚ5`0Ý­Ð:18v~äc¡bú¼ÀY‚DaOpi䡃c‡}RösX“òȱv„4þ!?óâ$½Üåñº’gˆ€ôõôퟆß[‹ä:Y%oìª Äu~K=þžeåÓ^Û Ôc8/éb‰ÍÐ’(õ$“,S‡÷ÃdÖ~“Ýqo£ˆ÷Ûpn Éøj nÄ¡d&úªôýnµø-8'®tâs¯Kã`X†Íq …{ÆxÉd¡0#€Kže#—=LjÜaœÙ¥ÙßQo´ÉJ¸Hù³ÔŠvD*# 6Å ÕP>•®¯qs™üè7’ÆiJÌh@8â 6ÌvÎ͇Ps¢8INÒOìR¿›]/?>.xá>oÁ¥uì3eñ¡grAþú]@ÕìÐ~Þä4˜(²Ñ¥ó!ˆìPk¬|*uGÞº\uEÁh–õ¡ø°½5fWiÞÎW¢‚ƒ¶¹ú^’:à ¿ã=óý™l@ÐmõîN|y¿‰¾n|´qXc N¨\Å99ÉÕ=¾ Jý«}‡mSÐÙÇ>¸Ž·‘Z¦ØP2°.}º´Á¥ð­N÷ç8¢A-c¤@ÔcH»ƒäê¼Û#‡ÿh?£y“g2ÆÄÖz'±¿KôÒ#¤.±WÆbB湨®/>cÌÄæ°É×d# d“7 %4]ì0”Q9tRŠ`Ï]`Â|¤¦›l pÖÛE=­ŸpO ožf~ƒê¶çßÓÔ9–àºAèÀX›‹U/-ƒ2\œfn¤:r¶àvpÌN0kÍpXžqç óDu³ñ·Ñå4ÕB…"ÈIÄëСjÂóÛ£ƒŠ°±éE Å´QÉ;;ÖøV„lyÒÌ…Èq9ƒDð ]–²NÅE+R¯ÇE‹-b“ÃR¹>týâ>YÚLŠà4_I¹_,ýe‘–[*Nç­]ENGgßý*N•—¶qW®kÿa-—†Š´¹uŽô?z:ˆë÷[ÐOAµ°Ñ¼WˆñL¸vÅG¼ ÑÑØß\‹«.Cp¶t¡ÈÑ2å¹KÖíÕ7¨7¤Œ‡ç^ ö‘¿’,íWFä0Ïçã gàŸPSNó"O\Úà£Nñ;Â×ÀÖý¬³µÎ¥fQV#¥ú‹ÿkÕ@OVð×υ䢭ÇÀIV•]Ჟfxr§1‚!¨Lm~÷9¼"Ò¬Œ«ùÈêÚékHã›^Ξ'ª¦-ÚR¶A}TÇs”´¦M½ÑÊïxíÑ/ˆ?ÖÕ 3œÎqüU‡UÙÌmò˒¸ä/pô>>ý^Œ1æMÑÞrª†îéÒMú/Ç.ÔëÇïÚMfê›<÷ö h |8Û¥AçcmDé+aÔãyIýŠvÚ?µšP‡³³ß8;uÊwR†Ì{²M¢˜gF/¸ÌŠ-êWÉX…éô5s>­ÄW(YúÖy<ÄŠë¹´Æ©¦ª\]%ã¸ÐtvOl«êªDTÁ?áÊŸyxT\X3¯èÿnņÚíßâݵW¿Fµ#ÿêû¾DÀtû…Þ)„ùV˜Ñ$îÏ}z‚Å&‹”NŸÞ"ÏQ?£{ûuæG@Å`ê½ñŒÂ¾˜ìš›µ!mF{=ªR‹ˆž|Ä~ er¦š’щj£<:’«-?9åTâq0Ÿ±c[©ú4Q)3 9ã?šùŠÑ¦b Û‘< ™õc£·jýx~ìA< ¦V5÷°6¼Cø!hÔ¦ç>œ»=–qG˜“îÏb—A«úå6L­iÜ‹ã{Èf¨àƒ±Ì$ûÓhæ)þÚ‹¨“#SV *æþyƒ÷:˜„i²`þ€Zìµ duW Ú/)fÝß ]{{l?7Y@ˆº°l#¦áË¿—X™#éW¨Ñ%Úy؃;Îæc&ëa+üXlpd.Y,tÔLl ±c̺>°nùeB@~ø$²õ!O ª“”'È'Ð{SbIH»ó]|SÕ™:‡ùÞ 9|õõƒdAþÎ ²de‰Æù·g¡¨`@åâq­&Ž…ÞJGØ^É]}Ç·0±X=ªÈÅ¡Ô1¢kÉ©ßóLRëõ¬àg‹‘V|>|GÊkî„÷a2 ñ…Æ6.ÂÖ׊)Xr"éÿÀU¶xEÎ}˜„§_Š "„•íÐôÓL¯©%öã†ßXá†êzpZë[æÊ ÍúÞ‹®²ZÓ uä³)bÚ¼Àb@Çð‰Jè¤uX±™ØéA°@Ý4 \ËòZ{šÖh •5“d7…E n¹Ë¸¢Ï^.óF6ë¼—±ö{ÌûLqS^.oè¬Øßš¯ie\ 4Àíkª—Ô×O¬4-äú‚6ÒP('ñ“¾[ŽÖ${µPùs~?ÎJð,ïS«/Y]ê`xˆV¾ÊíÄ%jA9‹N²ªQFíòH^ð(„ãíJ¡A9!ÐðëKÊé³€Ó=ÿUíªøw"Œö{fû/ª­¾jÝ·¬ª’"‡mÚ‚Ù#4É:eÞ—Èàä|´Ï¦ÍÀ¶û¨üÚæxÎþ‹öwÉofé;}ñár}VcÔ*ú¦²]¹ê?( šÖZãçëSfIš yÛþð¾jÒ Afr¦ŠWˆm׽üð¯²sA@þúÙO©ŸõHÈxu¸JóZ@dPïqlØÏg1} ÎQ½?/ œ¥iN[zV‰Å€#TÛrì¹±_Ûs4PXc™tZšÍ†ÏþTP&* MÃ~V„ƒ,„¼t:U‹«ngŠº»Fô÷ÿÄl<²+²_O¿Ù¦Øu_HPû„ØL#–o‰¸'¯›‰"“¯½ò:´IŸ"ÑŒžÔ©;Myì‡cÉDÁ¤Õ,ij|¹Æi¦hî•畈‡únž?ª~WÝ„ÒEQÞà£Éo)ý|7õv~þR'a†G¥3¯JÏôZ>k¦Ì pjÃ`‰XàíÊ Ö;1]Á©uŒõþ¼·^7MZn z~Øì"zz›h»À¶Aâ‘=iã¡ôÙ¸ëø<¤-]'H…R?„GsÄw6æ›Ã´3½M·N‘Iqb wü­ÏÙòåß ¶ÀçÈÇ)­®3yÓPßÕp‚åx)̸`µZ©Òm²½xLÕÌC‹ ß;D¯ŽÌ x„ÙR¶HvÖŠu‹? ˜&ŠÒ€¥´µ/s™¼GYÚæØ÷ås¤B¨Ü·²5Œ:‹ø=û\ëÎØD¤Â·œêzÛo¶åÖçg£Ý—zìŸ WyoæØ)Seä—aýDBÿúÿÀv’}ÅìåZ¿d© §¬´ÄÏîY7 ×hÁ.ÖÏ'ª—fw{3 jöîfÌñ î䱊`ÎZÇÕð-Uj%–9Ò²œF¨1íï[ÎîÍõî |/{å-+:pç-ìNÍ{ ª¸óÆC½–25>øk‘ëO/v¤^r'ï¾>H1ûÜÅÜÒ$ü:Mýò‘¨«ëN )wï'5yB$JÈ6ó–PMíê⤫’‡ç;¾r÷U6)kÅÏIx±§/‚“;be/¯}±WËÿ~ŸÿgA˜mØßA˜Â=íU«kÕ4Qüûhæ´çÌr§»¹Ïô ¤4.;ŠÖ8¯ ÑÎ7sÚ®âKßóoVK —\Þ¢³Òpìä‘{ûoÔ÷Ü–—3­dÙï—ŠÛØÃ‹’Ò|Õ :¼ÒÆ{Ð,ä3<ÇŒdBÃY'š€ªÂ…ÁL%ý¹dš‚¯n þ¶n¼ ….¿Dåˆ;q€þ–=yá4“ÀUËv}–åšÍ÷EO•Ù«Éßd³¡1Jï 5¯e­Úª{)ÍÅÜ#Ù½Z.ƒxô>ŒÖ…3hþ”ççßåšýº%ˆÅZe.‰Ðõ:O´ß^¶Y†@&á­.yL¥s›š:©¹ÛÊp´š)‰;šþk>먎Ðgæ§j̸|N8lH'qßX.åОk#w`;rã0r³¬cþIY©akPþ(IïTSBýÔHɧÞ;Ù‹*,}›Ô¡ çA3Ê•–œãžï8O½f*ì°o<}c)^ _Ux’ïfôpÑ.žêÍ?ÜÐΨkúÞ×$EŠ'ÀkTÐËöòºž¤“…¿Œßü9I’ ‹5Ô®iêÀ8K¹-éøn$_ÈÝ0›ß¾IÁDzY<Ò†‹ü©ÖgG¹Ç¹3üéŸî' rT$áÏ"Lµ=9ãš'éRééÚ>,ÙÏ"Ì]ô¯2²G­„fc.ÜG|X‘B¶Ü[øØw˜Â½œôE5eõŸ1M]>°ð”ƒ¸ñJÊW©:ð£[ŸøÁ$C7…;ù¦ˆÚ²ò\Š4qÙ°ª¶‹fœêÊ+-x×òí!û»–Hƒ G,ÒŸ¼mk‹lôlÍu/Ô ï ¦{áMçÿÇÍŽDËa—*e_4µ¹Ä…°ß«è8M>ÏYÚAP}g»ÜË8¥æy8“œ%„}¤oRö'CçwõÌ5X'édh<°°UÛÚ=€ƒWuÂMÅw“rÏ'+`%ïUÏvIbnÀ½üY›¿Ö Oø#蟶ó8ûfoRˆÛ¯¿Ïa¶æ¥†/™žñ0e…&÷r±ü¸ Ä8^ô*x 7g½,qLÝèÐbŠˆ¼Gsú— *Ž8Ž¾Ð©¶Ç_µél~JêtûÈ ÈàœÇ=,ZÅ$ µf8µR[Â~(±‰yÒv`ÌOÊ›âM†=šy?‰ÙÙd܉£bw걿!~ÅŒ9åËïÑ}¸3qùø¹ˆü}%JXÞ¡´Ä‹»uüÓ9u…ˆ¼ùߎXo¾Y–Xsyн á¦÷©k_ª#XrÏï­˜/¤Wš&f€Èw[”?ÜÏ€•ºd'+ÒcÏ5O|ë'U 3ŸEjðÇ%cÚ z¹&D+I–A˜A6ïCw¸Ú-ræŒÂmoÙ6èØEú—K£Cª£,×^ ºÞØì8Sëòï·H³z&‘BV‹›ã“X áülqnhޏëÏÀ“£2Ǻ ¯›>bôú8‡6KkÚöŒ Ê~»ÇIeö"q0’w•¢*”©?‡GÂc±µOPwáyU×]ù¿Ð,Ⱦ5m7r%Þ|Ë/ V‰#‹Ô樥¤%o¡|ƒÎU9ÍZÉ|(Óþ:Jr’ÁLm’úœèx`Ê0Ûø¨ë…«9QógmñógiÜ%ék›íú‹méÜó»qþô¨=Þ˜¡úÉ4–¼ó~¿Ñ?|îB 6ö½]üó¬—ï†ß]@æÍoìÆ3> ìõa’•¦>…WÖí+ª "°ÚËx—">–À›V1çG¯¬ŒAk‡t³¢AºÂÍÓï„r”€sùa†ý|ªéËyæ{; >@UôPt*ÜÈLÊJ;Ëë5Ä `צ¨* *rõ²$Ïnˆ|¼üB}Y¦z¸Ià^ŽÎ%É:éÛ²µp‚ĹÈ”n¾k¿Æ§û4ø±æ³”ˆñ¥l¯L‹wW“3Å_mDÔvß65¬åÖjF_àí¹'ôøÒj[¸X ÆJ“ìé‹ôè‘Æ¢OvþvâÅ<𩞙x£•(±}ÑO~°|”0ÔYý;;¸†AæÊnÎǬåëWï_:êR]Ý/s™šìnç„2ˆ§üXï; Çë_J‹&û—jö€Ÿj Ú¿g”¶JÃÕš4…|yþ¡š ’lþ-ò8±*q¡óWffaØõŠÛ'NŠs R!É2’·dɤ.S’VÒ;æ~0¬¸þÁRgŠT¯¡£Ñ’Ṋ04mÎÁCá 3ÜâŸÁkŒ8ØYÖèûMQs —*#+è|zîbg (Ø!Ë®kÙ[Ë ‚·ubýµT3VB]JRÀ3‰iKG²æãÞè»\˜‚{Œ@WÎ4 uXª¤*üyþÏG LIÃf”ùºA Ì¿³Šd>›A´MLÚe²'u‡!=`=èÏò‘`~ ýè«­n$ýe¢™’¢LQç³ç!ͤù4?;ÂУ±‰'Ù¤¿‚−‡üâQÇ W<¦ÈkŠë2XM `¦YzÓ(ìé¯nt¡•—ÇJ|ÌìV{¹KBBÎK‹QÕ¬MQ¡“‹×:'»í…úK,„ÇψW«ä€:DAÅl8ýÓM09Ïà¼"ç¼»N-I¬ùŠðÙÞ°xeéü·í/ô»Úfþ†Vc%¸X0ctK%«¼•/EúÞõz§‡d¸ô"êµ£Þá=Mµsy{й4³C½–i|µüÊÒ¸$ D9œà¤xyo¼LãXn4Êf¯Õߤ*©Ns¹žc¿)j*¯^©ƒ’G uG‚N”„m#îD#>.ï!iíN:B\Íãv,™ãü?EYÿœòëáBœ"`˜.öýuìIGÆÃ³ÊÔ 7ºÇüAJÓ7ÏÀæ—hï)­ø¦‘Œ,}ホ•ˆ¸äº–2IÏÌܯ"?ô qpO&sM½îæs‹Ïâ1Cŵa=V›cD¿ò-ùJ@37[êÍ •жú î»:ËN>ž¬ƒÉfš5ÍBýåyÒ³®7 ¼³ILçT2YÞt§"¿­rÞ.dÀ)h”Xª˜H3.î>Ç¢æ3¯ê<” L¸ëj°J%|¦çÅ;§]b˜²ü .SÃxlû0% 3ä7K—­ë¿^DôŠ(õÚîñ^¶ÿpHÜ“„Æ&œùúSoScÏÃô”šHtߊΫ×Cc…G©Ø4µ›@§j¿Àë¥]—¾|^ˆÞ …2;´žªoºœíU%á4Ö–·ÝšnΫ£B¸ °†»°Ç*Oǵ"TCŸFj®ÍLÇô¤'QD:“´77P™ÔÏõZ§™¿Uè÷;¥ëlðÁ‘gÓš7˜ßëŸÊn…¸ØVÑ@œý”Wá³·pÑ)e‘÷ý%ÈÕͺƒ>͵þ@U¹ðƒÇ¯amXî~{ó™¡ž÷ó̸rF°6¼¾¬pŠm`6RrÕ  TF®Ñ<²KU+ì4Äà ^u)ݳ“(ò(ÅŸ¼sè*Ç#…õÌKØ)±A×QˆH4tõàð°W7hÆŸHšÆ†^Œ]ìâq÷K 6vÕòYZ¬HíxCÃT ÿšXÏ l@½´ËEQj½À}rHÙÜÊD1»†RèKs K5P‰ÿ>‰û2[åÏäË‹Ž]GÍlÝŒ!É,¶÷.é4,+[IöèŸbe„žÏ?ûgLù µ¨Ì͸E¦оäb9—VÁ"TÎÝ ¢ê„ü› o+í²Ó/’r€ÞV^‹äŸñçLìÉGºÀØBÇö£1¼I—b_ˆ#ÇRékª/²ðyocsubqQù]·.”$Ò$,â?ÍíLV˜>’¼`u…að'½Nï)×+œÙõʾÿ‡d5k¯Òm'Ìë$çh@@º§µÂ{ y uú6I@îw»ä®b,YzÍ{pDÃŽ=‡ëƒÝ‘¨Ýý¦Y:c$®Í—PLyà $qɽ}g"7m"ˆ_¯©JÁR’Å'¾42£[–PÕD‡RÒî9\§{Ön¦²x\콞Of¡ ù¬2Up’•ZÛš,§…õÐW›¡%W¨¢éûâGét]‰OÌ‹]¬&é×ßÁrwü`–KÒ•»YÛU³'î S|×Ôx¹$ÆóðïèoMHÀ€{ðSQç/kw’ôˆJð¿F¯ÂÂÝ×ì.”bjLE¥OmXÜÒ3™uá¢F’ûËwóvŒìñ¼–S…‹f¢—'Eyr˜ eG‚Û&¶õ±‡Ôì é8ê'¦ ÄñjVP}Þ†T†Ä¦D=ILô•Úþ¡©n³@*Ñy‰ê+KZ†;yZVÕ˜âªñ)|ªÓ^¢Ççxwª&ÙÚèët ÷æ´ýZCSGxz®ÐšäÑìF8¹[³ÆL±P&ñJÝ6KT»ÉÀ"òù×÷æŒ ¡Ò8!Їe;NZ²[Í$GD¿îÍbLÏ&˜y§E!FÕ_¢ANE ù-çc*§ä©$9#^(OfÄŽùíÍAƒû .ÉdT_[–bŠ`g•L˜|Ñ ›å2gIä)9µýôè ¾ç¢èú‰hôÇhâ¸uÙÐBü«#=¶Ÿu±Ú®1|p:®&JŽ¡ ªJĶyˆ?èÒWë¹íÅ<ÔWÅ¡`¡0-3ÈøgÇ«¡Ryãr?dÖ*”öÕGMRR½ù°$l7BùÃyO*K!¨R5Q”`é£Ðwˆ°üÞójL~èoÛš(ø®ˆQޱŽdJŒˆj0aíàäö«æ#3L2¬&øÇ‘ÅbgO­¢jPìÂè•^ÏÂÚz—•OezFžYÏÛBè„äU/”À%ƒ }5~¤Î–ƒfÞW_O”±•9wÅ­—EòGøeÚŸi±nGÒˆ%Ù~˜úv×EF$&õ¢€-åY‚Á„ö>ˆL|GD°÷X)‘ž9‹Òý© ¢jtì•wk?8P¢Ês ôçš-4!W{¹ÈIψD«xÑ;¢óåMø>/ƒ¸dïú¡¬×¥‘äFÈkÚeÀ1ïÈ·S›$U@¢÷d+º˜XP>˜“zXæE»4øÕ€òºÅu(E*x·gb!f3ƒ (5µXÊJ°Tø³)ö\ø†æ81×ù4¶”¨3ÅVNô¨&UÎ6[E[j6Š„2…=Jé‘ê™ òn¡D†‡Ì“˜‹WáÇ‹ <íad¨K™¾ÒÛÖ>æèœ YgTØò¢áV¹mžž!bŸf’Æ ½w f¹ó¸Þ©uH›º¤3FI=‹Zt´~øcì%K¤%˜—c-˜ž(”(‰XØñJò=MAÄIWD’…ÊèÍð³¸?»(F&’jýÄÖªÄn>%ÎÕ”ñ4%Û8Ó³¶+p߉À-$÷£ Ý¡§8+à‘¬oïŒÉÔ͉“¦]gì¶ü.áÒbˆtqó¥¼eƒùSê¾pD½øÏwÇ}š·ëJ>“8‹ÐÆêž†£óëUîþJ ÆŒJS©«]ey ÎΩ­S|$R~ù²Q‡aEC‘¤,¥=ó§Kee™p%ŠOüLÅÖ¸#(¾NÇAgPù~$Õ}ÁyGvîQøAÒ$©f  £¬D4û,Ö#~ÙÖhE¥|Æ«Z=‘GF¾+Í{ò—”[I6–y^ò¾¯ù:*âíèíT³cÅÀ«ªÁirÃg²ƒžñ1YtˆØýñºï@ÕT“›™¹³>\ïö¦©Ù+Z`±óæ!Äx?'Y‚cµ‚N ÝÓá÷^…t²ŒqÐωf5”HFÃîÓ4åuŒ VU±ÿwH³Bı”®¯³rþiô o«æÓmäÿÅ`õÖýG£õä½ÎéÆ$ÁöW „7»§ÖÐ…×=´ c¨i]-¢hýÌU1ŠTʨ€Ÿ{ •9ŒbÎ7¿Å¸¹ä¢¼<ÆÃè–ppÕ(¼—2`´P ÈäX¥¥g†š}Ý(ö÷"ʧÕ%tåÅó·4µÇ6d+>æ[‰+5Ãw µdEGÓ•¿ˆù)¯—×4³NFKµ×ˆrŽΠk ép|Ÿô+â­Ta²Ì¢uO¾¿~ܲI;»#-B†_N /®:Þ¶ú™g'†qÑ¡”ù¯Êó ‘^ºøA·±.GŸàí™<%DxÒÞ{Ÿ£q¯t4á¾Jž/ï <à ÓÑ­ª¨ÉëÈû(!µåÁ1ËT•‰4ÒŒ¨üÛ-¶›”nÓâ‡ôèþ9) ™ #ðߟNšqd°—‰B¦~öø¨¼|<·¡t]îÂåôxÒbÌŠ†¦a-j䫸€V 9Cç—:DµBû=n%s{=o!iU¿/v>¥;—îœR4³-_í‚#góÑIy! j“ˆÔPåRX 9Ë “nÃ\ï¼ä÷‹ã¼[z&!P Ö’X`I§x 5æ2»Ýñœ©kÇÞ°ÏéoLþ“‰ï¥æ ³S¼ØÚ¿[ÙêZOÍ— ž( 3´Ñ®qÌäL?¹Ÿ¹ÔR“ížNmå1QÃ{8‘yw0šo É ¾¶„š0çšÿØ“åS×`þGN߃ƒ0=ò}RnÕ½6ŸS)’“ÂÅðX?ø oÿ^ëíÉꤙOævX3Èíê'…Gô;‚¢J¤0bÖMÜ5€}Çgàé$ ÜË ¬ßJKî&ˆ¹>m¨÷S*–6@Ý‹rýíðì¹2%Œ[k=ݘR—éíª—Ò˾Û19ÞI% Š }NW =±ñv›Ïú¼¸Ø¿fê/Ý“â2Àpʺ(MDÚæsMcf°ÍGkôlºMÖmU ÌŒDKÖÒfS ÆóZÌÁûº€ôEÂaLJ<ë" *~dpþH‚ËY úе_²Œ\d•‹™ôGÓõp(PQÁ÷ÝR1¢¼H°yúWÓÓGì¡ùý4³“y”l\F_>$SeŽÆ%~|Žâ T¾k!Hff´È‘’¸³8‚Iòo½¡ìøÛ.›÷%÷”²ê¨ðj–èû¡G­ûÅqÙ Òëvm¯“*ç?‹Ij­‡O¥ÙþÈÍdë¿Úú7¬¤ë˜Áab0Ü’À½KÚýa¾°m"*Yi­ä‡[hÂÁ—íá^„ ã’–¹º/,¬B9+¸KÌ¥Êd õëJœ™sÆ‹}KÉY EÙÖa ÃNÃr'π̾¦#»€ §“)Þ¹8AZ/ŠÒ{»æb‘žKœvs­þcýÎgù‰]cxåVöîËcÁ¬Ø1ø<ÝR*¡*e›O   wB=ë],e…;ð_þ0‚4r‡ø0Wyìvdºoè?5ÓüU±ïÜ…ç#ÖR×CQægO.ßv%âµÀ‡@ìàξ29%©CÉüZ\6ïr±Î™7ÅÝbÆ‚õ¸®ž¯(Zu ­kßaâc£¡P?.¸IötŒ>ʾ‘ä".˜¤DB±u—ŸÅ¡¾d%¡æQ{t’K=² ÂùŸ³zaŠÑSšŒ•š¨ XóOîŸjÒšN'—Ccœ /¡šº9í¢Ð͒ΓpOƒ£ý d=Çc Jû6ÿ©ô]HK¹¸¢ü_ŒVЙ¶:ð»5 Z&Mô[z@Ä»V¯{}Uc@u®Âl\?ÐhëtûœßO)Üý@jŸ‹üØhpOiä) 0Hxžæ«°†náF@žšýfOW»«"yôêej`ýkYr —èþþã7­Ï)‘ÕívyPðQs6ëIÅúWžÃì;Lí)ÏW}0|Å¿ÙD° YFŸ«Þ7¦þ0Hß# œv6í Ï{ä@™;«~0-yÝh6¼NåOÈÈìÑN8@ž¬óúPdjŸÿ·*å¶­’ùʤò\ÊI¬I*órë±7ºBaÂKVprËðuÌœ,:·>XøæM;9WH”vDb9¤eGšׂÓÚ[¥kC½5ˆYG!L3£è=úEëfñ±}Ï­JÓæs¥~Õiº²æÊ’¹„ o‚j§¼óH ßOw.-2½\‘eè+Ùç#—k´s—ÅbÊÕ'¿Iè3íDú>’õ™¹d9dzÿ½Ü“Å/òÂU¥b‰0v ÕÆÍÉâûâå´ü'WL°à7äȘi§zÒ«ì šR NK…êë¾U©G)i8þè .“y;Týc—GÚs\˜ôfÂZ›èØzTt>а¾•'OJn|Ã‡Óø>–ÁމâAª ;ydu:|` †øe…¨ÃrÌ0jl]꫌fÊZyÑV›ás÷rÙȳîæ˜ù‚Å ×#°Tç+ÔÌ×a4Î/ÁÏ /›ÒÝ@%²+wf:ÿ!zgLÛ‡¶àxÜù£· y¸¸ñ{¶¾nÉĵù=p}çhS°Ù’ˆËÚ.Î’v_þwÇ HZZv É¿{^A¤™§sºñ´Š‘פls%pÍàù¸ˆ*iîˆ>÷Âw_@2NE'úµû§ÂË1'Z¯UÄ‚“ç­JÐ"«_h8/¥ÝòÜm’QN€KÓÅ[F« ×M'§ÊWÌ«Ê , ü¤bïxa'ú­÷Ê¥§N7î OÐ%6Æ;J×ï¬ÐV÷å*¡×‹Ý÷Y‘”«îºø€ß( hLÜÊ/FgÞÛ!c œO%¨.ÇiUÒ‚8i™$ åHd³çì_ªöŸùë€;Åyñv½8žé.xº.}àmq›Ž¼5±;—žfÍcÏ13ß3‹Lß\ù°¦c&]§È¨ S}_b[ŸTp®pÌÎ@Cºs@eŽ”_1ž)ȳ¡Ä“£ oO8Y epGòh(>fî ]Œà ÈeÂSÿZ8šÃv~}Œæ´Àjù.]ù±àAeì/lLù°{˜¨—„¿r{Í;È¡—ƒ’©L>åÍ®èšx»^V•yú[bˆ}*§é³BùÙ ³²öDF=Á¶ö#@”(¹G«>,Ôà«ÖÇZëëÊ ë"@Ù x½ÅÇ s†2"yÝãÚ–°ðŠjQ-)¡Èz Ýq³¯68³“I0ÉJßëÆ_à\xF¯hYÜgÊé ^á t+ ú[Sl÷ ëÖ^ dt­úµ=_a=ᓟòg¼Ül%tò³´F+¥CTm œÊ1¡˜½ Õ;ÚÃGǺÁœâñ+ÇÆ®¢­"äâ«i[ÑÁg\—6Ö¦«[5ä]ƒÁ5,šÒN0ñqUTÁÊ£‹8ί%_µaÅŽ\^_¡~òN ŽByR—=áŠz ±s^ÿø¥‹"Û÷;?H«â÷·¡UâüKÀZrªÕÌ?…µ‚¢uÔÊ1¯^iA¨»6Øß—ý Xu@×.¶E®VZ´¯…[—Ô£¤C̨$ÈÖä„G@[žu˜}Áf±O&Ì.˜ùM¼[šJ sLIÚ•²à^q{X$»;ödi«jöiK¤¯þ<39~®íÀì÷|¡ÐB; rv •oÏɉ¿Â˜ä'´›z6–=ÙÐY9hPöÞzÍ›9ª‹ÒNß¹ {¢¿jÔd}ƒyPP§ꋳŠErÛOê‘BÀä1D¯|–³zŪFy«(Zª 0TR'‘f1",7{#C=4j8×î’è…”~JŠ"Jçhª¥îj²?‡™¿Ùí˲‡˜¦i§Ïœ wØ|¥û$³g]ç… RU-ù)š/à¢p'p,z÷Um:×½¼pÔ›qC™Z '7²UtÑaìªi„þ_¸Üïo½43 Rü¡ü]Ó$˃D&Ï«öT|ÞMÊÓ}½ÔãëðG~yäÌ›®²ù†ÐßþÈ6þÁäŽJ½4oU××øûšõaEÄÕƒ„Ä“þÅr”‡³ê»N qÆŒAX-בöl:wñOpJ±È°E_’]¡Ïìììà[B;I€pä ðñÇí‘"ïã=ÈH&ÀÕòÚQIèV’¾õš¨‹%Üa OŸ!ÌR…0 ƒ¯€ŸCñ%©åãÁáÏ,wœçz̧AÚ°pH×|U½øj€q„½ ÿQ×§Ý`#.yâ¦Â±;ªš©„ƒ§z¿aŽWÍ1OM:-nßfÑ"Ù êJ4|â>[: ´P-’E…SiÞK@ÛÉçnïñcÅH¹Ï‡y!׺V½°^MÇ¿ ð Õ‰*½ßpÉ'Êvbü]ÞºÒ*Uç=U¾ÿT[¢AÙN§™£c 9À17–=<¼¹û;uõ«úz ¸M+ðw„0½Yåjžˆ¢FcK©ö Ìlo¸ÖÖ¸zÎý;‹*@ÿ¼Ç¥‰ØßŒÚI)¬ú7îu{^+^” L'ÒôS·Þ£èôÑ4Ý$Q\çs®¿ÓPõË V.SWp¹5\ºŒaÀžÍ{Œ>`9SÃèu'I99Fô€¹Sw`µçù18÷”Úe4Í ö:©Ü]º÷g,0cy_Ee;FÆš.:ä…Ór­C·ÝÛîÆÉý (›„L&à™ÃVˆ^pž‰HbÓ{þHÊÏ}†¨ììãç‘Íø+EIcteÕ-I`wž1ܵýg+hÜi;𩹥×þ­c…«¯Må}¶3ƒEZu¡e<àíÞødæ¯Ëú¦ÍGSEÍråF>Æ0Ø“5ÿÞ^‘{¤ý`{äºnH›æ[ÍJ Ÿ®‰þò©@w@-÷T\d=º ˆÇN¾¦e¶ƒÍTx–ŒE¹àGO…Ÿo¦e¸…Á`±-ŒÿòÑ«Lú¼§i°R ã°x‹mÖVøa–fG ·è‹bК'¦.•!Bœ«í4tƒ|Q¾é«ó÷~£‰©"ßKt^f&I ½Àð ìs¥ 5o^Ü-ºÏícx:†‡°Ö^ô©JMX³%Õy’©›hÒ(ÞQ ÿ,OÖò["]X°m¶Ïa†aÔø|WpºV:õ ¶sï1†PA—]h€Y88á÷?@{ÅೞÞ?æ°¶Vë À$ÇF}G‚ŠÕ]´F¦SÂɼÇþ¤Á Äï|æèÒ‚ªáÚ„Ó ±¹(ÏÝ z¯5:>|2ÈPž²ü"S±í5G•fпpšC"[˜F »,(?ÆT§«1õàÆØ<µuGIiŽÏœž ¹ê©-ñʱ;‡˜¸°UQîšÓ¥’H‘Š»0¹è:áÝi¾U¿9y€Ìª]i³‘óE¾®HàjŽgέæåË­Ó¸Ÿ¹A_û—L(4è$ðçJ£”@GDÆ`| ãuóÛ1‰þNøÏÚÎän¬0JX0¬ Oä†a6Ž­ê€­ÏÐ÷Žïþ09Ê÷e&I—V÷íYÖGªß6®øJÊCÌÉʼn½~×Múæ¶o>_¹–Vm¨æÝNÿúv–i+ÓöF#6æiñ^ú+M€<ºn€øíZi³@èuœ­¾ÅïÛUd5”üz«ZIOF×¹ùŒ~劣.œë‘ÿ̓Kç÷dfŠÇ‡‘ZàocCúš†Í•(èPÉ䧬á–!³Q”ô8ÊþíU‹3««­uènòÜøXJõLàq^§iz<˜ànœ0¦Á‚%zÀ[WUÅV]B~¿Z0,w&×*¿XÄT ÐŽŸ®ëÜÎÜÀPþö·¹¼FŠö>Âøj»˜Eüð½øÇ\o¡Õ<ÿqvŸ§òàaÚ£6 ðsð pã×M¿cÓãæÓï· ‘èYx‘PxT­z5ذžzÕ…Sú0F_XY¯C÷ßBÑ)‰¬î+h«|5 lûpd£OɇPÞùçvˆat»%f]Ò7•oG–Slr<Ÿ;RÉÁ½Í "fY±©ÅÑWéwîo´6¬(_¢äâ˜ËYW}}e¢ ’f,ƒ«û`¾Eog§‹ë~‹váQx‡ÓA ©)uî7^C›O%©µÀâ0AîÈä=ú8æH‰|RA”S©«„ß%…EKíÑ"ïaHµŒ÷Øð†º) H:µyÕÊwÁÓ"Ìõó5¸ISÃn xåÙ§¹°&YV=P®3 -UlúmÂÃÚ†”HB׌,ÆC!ìëK?5™¯ÛMä)ê‘Õ°„‡Óu&mÉ@üI„?næ¹CRáÐJiŸzárRÖÑw@¥æyçµr[”c °8IPȧ Z¦òÚ¶\è¸ÉÇöþ‹¢•§/ ›îsr¥ß®SÛ{ñZ!ÑOwÚ±çáóÆ/3ýø¨À ÚØ—5nã´rR]þõØPóÍj“£€t`c‚Ák¼VZ¼Mð¶1Z¤´7æÁ ÑWôG ½gq±õßRïèz­‹ŽKØÿOMþä(G©-R6Ì+e=jÓŸF•ì&Þq£Y°ÎZ§åÇ0‚18©ŸN R[Úú JCË{–°KÙÚo=J®Üµ%«4ŸC‹ürbƒzЇ³ˆ{2kâ®~L™E*b7pIØÁfÊ”›6Ð4•Ô‚Ó}õ +´5áÖœ.¥áŸØ/ÙÓúu™ivc+Jò"‡bbåýHz‰nˆÇ{Žó¯+›°;FÍvXbÓ1€ Õf.çGGó“ëæÿ{ôD:Ô^nuôÆ ×àrpBíˆãßZ¢™QX²CȽah¸iw0yDÍ$¯º6ìÜ"­Ú¨×àaîNí„ïï?V˜u½Ìœ&ýødP-l·L»Õ(‰È¥Le¢ç´¹¸=š‘÷7W·Àí­i¾tl}Äv§zü ¯½Þ÷GHýþþÆSÆ ˆäˆð·Âhdn´%˜e"Ø{ WBô'Õ—@­Ø¾‚8Û-f¤ójÓ`ÔQ0ý.>ÓýO‘uêÿd¢t?š™¹NÞØ,¤Ù@!ã°›%•Ê¡˜P3h´`D=(@(ØlL#¤ÓêdrlU/5ňÀ¾Á'‘çÅ„J€íLw ûX:nM~¢ýyL›°±I1ÑYÓŸh~êÒX¥Dˆ¬hÃYçP¬ô‹ Ìxý òrÿuÚ2.‹—æ±™¡ó§¨WÀ^O`°®dî´KôÓ¨¢{i§¡ëüýšéPšv,A0òÕïev¡îA nñÅø¤†u/¨ ;3U}àº*Hnùb èû´hVÍRÉ{ÆÆ¥KA)ör5u‘{ÍŸüý!>,2#‡ñ†Øº!w’[ÌblO-Ùºz»VÄtªÇ†+2ý†¤è±Á.­>ÏüÙcç¹X°ù+þ”öiæÿ÷¥þë gPã^ÙèaÊ’çKë„X;9E„kÁDðžHhÈÓ:GÁT (ŸÃÍB9|L‹­xŸTdàN?Pûœ©ËN­#5쟕 ÜÙh31UŠù[× °8H™ý|ƒ@ˆäf ê÷¬Ii6H—MIõfK_Û&LgjóïA¸³ y«Á:ezfâïÉïü ¹üv¥®™ðvo̸ ºFKzMòõû£ ‘ûè+ñé›)ˆú•©ðò  ~ªíit¶}ü]໬rJ-Cö9á—íy¦l™êßl`ŒDÔÑô¾*ØT 2òá;SªÎª5¼÷¼CÞB¥(lGZ;B¸î#R^ˆ“_ãЪã¢ÈS…G'á’â̬³XµÒ]âÑ=ecë~û9g8‚ºŠvÉà <ùÁ,4¾Í:ùïò"+·rƒˆG¥ÀÝÜ6ßõÉNµ ÊAÀ/o%•Æ®uMĨ¿¾—x)Qb: ²¸ÚÚkh"nº„䊡\Q_sšBúÉØ«}{–äW’u.îK·}™!ˆ7Ä’²¨íÝöÒ]EN¾è¾‘­_GþsÑ­ª¶Ê=?cœˆWà ŸØGC·i˜cQ`e@® ûw#QÔX´b‰*Ûp7rQ;yzòZÈÍ+‘}uëïoÞë®ÉO2˜nÖ‘ÜñtœA–À€ëWܹ.´‹><>A4DU…Bšà v‘5ú‰®ºIÜPí@‰|šËÆÑ®= ŠøÎEöll{tË’ V«dÂh›îÕÑÑ_|0?¿ÿÄT-ƒ¹·jŒK.ôæ-Qˆ¢)=ô䚃„–&óÁ£D¥›-9hÉ¢ßÀ)nÔØ&½¦y•‹oÕK¾udʹ§LL=~ûÿ1 k>µ*œ%…Ÿ9ÿYyáx¢ê#—Y˜ËÍyó^óùʹZ“œ‘.»Õ •°?ßòÄuâÏÕµ»ðQ-êŒóÓŽITiu/Ò o:øY‡A—(I¨R¥Hhž€&ÃæL×éâñ¾‰Ðîoi(#ljòµ4+ÍG<àñÇhÚŠùÉÈ#‘ëå‹NšˆD°àÍ®HÝ%!LH‹LžÁQ„¾dò@¯@ÁØtwÝnÍh>¹ï1³™ñ `“Ç «÷þùÄÝX`½“y§Èœ* ƬS|KA?‘Mö±!wtCS3ˆÕ~ù êù˜LEQéò"Zgö¡yH †Ü5è“9ÒzçÑI‡_(ã{pm× 8†Ùý¸Õ¨,CÕòÊ_ÝœvÓlŸDÔ£[õzœ±É©@.KTå˜åá„„®Þ±žÕeÉ>ÈÝÌrê¶üðã.NÆËu Nzéê›!Fä- E¦G8UÂxÝŒ|£OöÎÂbìÉÐfÆI}"C`¶²ƒÙ™ w¯°©‹î‚úÛWx³@|.FÏ"ÊâWÚš9%iâH´V´dìòþ¸:æÆê=¹½ÚÒû}—æÍ¸Òþ}q¥3Ë\öÍW}ë¦w:šQ°Ò¸€ˆFÖ­Qÿ?bŽ×˜Sgše,/p™]¦äÞ~™`ÿÒ²îëþ*m›t23€œ£9m«ª´N»*Égr~hj _“ŽX¯ªN`fãcÛ7}By«Å[ÂÔ¥ÑZ¾âœDn¢esKƒNM[co.<ßÏn¿ˆú;ªÌ5m—TøL,ß×󅢿j\i¡õ»í hrz uñNã ê|WLžH3å×®¤A QÉè‚Ûwº[¬h2ºqvvû.G¬ ÉC.ÿƒžË^­^pŒUƒê™OEפhÆ(•`ù±óÇ™V·Ü•ýÞÅ`õª ##yS½®šóÅì– €B·œYÙ“ûp7îáýø#C¼Ú^./hC^UÁ¥È°ÝÌÁ)ÀÏ]°Sµn½GŸÇ‘òƒÚ£v$ÒJ:»¡N¾,Xlã*¶G+ g:ñ/ OÇ$g*¹àø•Ÿþ-txÑh]ï_¨8ß‘ªKû7VŘoìyô9*ÜgÇ4ù‡raiCã…{TêG•à–Î!9¿²Z†ânáçÞìæ [0¯~h#s²¹·„u`FûÊ-vÍÇn°Ùšc6ÔÝ|ö¿§“›ÏòÊó†ê—òQ…1¡î1ݧ¤-¾ÍPÖþ+YÇ.¸½ÜŠ&Aר@+ï˜Þ5®ðÖÓVHº£qsô°?á^d ô;˜%FÖNc–Ô… Ôé˜og4cÅ^ª´~£˜þ'bòêäš)òd€hÛ¾ñ#BZÊ 6ñR¾¯)ßxXZëýíÎ, ®Bõƒû9SYa&áìvÕ¯ÎûGe7´E½ÒKœá}¶hô/3Þèiö+à³ú$ [J”Ng“BÝgNËÎ’hü@Pí6ç8ê'Ÿ^VohgñàùÁõZÌ,aÊ“:ÄùD¶pði±]îêB¨.V«¾à?¼Êë'CR Í.jÑ®}¡p¡ôµâh–äÏ$8ºKÝqËÆ"¤ ðà¥DóAA˜kq?Ì™Qð©7ŠäXŒêVjGdÖ#Ü¢´œó9‡ßÉKGëtÌÕ‘k>__ÁõC<;N\8z¶T.èßuLpè$Êó„•"á—DãÊvå4Ö¡VÛÚõ+Œ¿(”Â~®X€b1;é×¶<‘KX¸ŒÐ@üÕ]i§ˆ–ì­ÛÝè÷¿Fiöß)ÌZí¦Þ#ÙöÁRÛ¼~‰©É'ܦÊ+Àš û‰ªÎÎ~}3¤§I0cjÛl›ªí£†b”Þ&†3~¼‘ò\;ƒÐQøÖ4S Ûòd¸ó~ÅhEiõt÷G»E…4[ÆÐ’-.mU•pì×þ)Xõ‚çj–)C$ÇäÖøiÇžÍ ÷äì et£{/´5¼<Ï:ð1‡-Y¦Ø-¢à:‚ú½Þ’gúÔoL3ÝEwSÑ÷‚ŽW)m9íð†ú€áÖÚä ô5›î… ';@.è³I›«¾/±©Ó …e »î7QV`¸~#VÓc”,•ÉöI¤¶UŒîØAª Kð)ò’ bk+±0p-zöÌMµÍO®YŸ¦y ä¶‹/ à¼Ýl”~œUK+ÝOlÑ'…Ð6G¹ ±8PºÐô3χÃèÒåÈ6a:v yÞ¦U“^÷ⱨˆœ°CûŽn·'ߌ 6S¾,ơǙw( °æ€úÓTÕ‰£~aš“L<¤wne?q86^瑵¬ºSÍäºÔ™_ß™þ¿­Š¯Åã¦`~îCg½­Ô¾rþ—톡Ñ3L¢ú†ܪ…O«:ØÀNµ(sg ø_V•(¶o&½÷*MAÓž!Eáµ&e;Q¦˜®ð­#èò ÞÕö\’Œx*˜9#ø½ßì@ ˆKO·­Ûô¦ù—FÏ¢«‘­QIGð ðB.øúM~$¨útËZ;öe0Z?t‡ƒì;ÀC©å¢ßî>§d‹ýˆ­bÙ:„ ö:ö*ÎåŒHºаùÿ\« )-3te aÜôJ("£ÐŽö¤CãuslNk7˜ã3Ùâð]Œ0²«øKutÒÑðÂÝÿƒMµÿ…þûoÓ°:×/ÖE‹ywªq³ðDXn×bÅþÓŽÇ•SuGG)ñžRôŽÁç%Ú¶)n,( ö2_Š; Ù²Z,•ÈGjFÉP,̶ì¥Á] ÜêÜLIy+V2Þ=¨6ˆJqçp¶nÚŒ³;oq顼œœ×Qñȳo±GfÍaVÛ)V0àd‹ì$goXG¤†v–R[ÜÐ#K«ÒW)€"¹"Ág†ëXù3êÖoì#K¨©=@³C¾9Ü8¡íÙ(.tŸ%/B(µBêWºîÓØÍX†(bv².}‘÷Pç| zzè„ÉK˜‚÷L'¦ûLD¹k¿Åº–C›2õ[Íæ¦¼½¶°£¸Ž³Kž[¸®*>Ϋv *G½â»©Bçªóc¿.‚©¢+i5¾o’‡ß‘Ø}¥H¾ŽÜÊã›ýVwbB„L°¯&BzÏŠºÓYŒ70àÀ€á¿GP†m`Y¸'­ ŽƒH–Ó†V:_,_>úþ€P÷±ë”(Rq\šÂ\ƼkÅ%o ®{Œ,‘ À–fðžä£Z û5Ö1Þ2änñ}!FhÅ(“’†D'Jè"¨€÷i³Qfçß,Y¨¨ol_§ ƒ˜xƒ«2–Qõ”GÔzcn­¶QŒ°~†Р½Ày±XI)D¹¬Ü"¤méü7]ŸoôÒï ð]Y§G¯¬«Á.…'åVìIJTä2Ô ×UY† ÷³;iõdŒäÙX¢Rì§ôWÐr\–l«‹t‚‘2jœ¤»r:z(œìycpª£xÐM 2 — vm=[kB° KU†ôõØ&^’º ÇDCÞd[u®ÝÓa2†úعo«˜‰Ë@!˜®&ZŸ­•è½›bÃܨÏj{ð8ÈÇ+'ÃŽn6šàØdåK&Ž=4ÏT]¯êí4¦G?×ÍaAÄäMÁCw‘á‚pæ6}¼Q¨€Ï@LÞík)Oͪ}\.¼`,uÄMá©p›§[=dw†[Ég œ)ñ¥@J ÃÍÈaÓ_6¸ôg¸Z†þ<ùSqMµ‹_Ê|Ù?FŒ*(ÀݬHm\`º¦Áâk•V|ï·gë1Ù²’­ç²Xë6ABYèKÚ¤y\FLRÿuƒìit+p¼¾ Z \° Âwó”âÿ8fŠXš°óÑZÔªá±F=Ûg^ ¡EÜ! î9Î ²¿ ‡™éÞu %5¯ ݱz3!ûø9`È2_ïÊ&2­›æ-/Åì%?8]x¸«:ø´Ó=ýR¡’êZ¸N4ˆÓ>L+}Vò‰9ðù°û³Ó$Wÿˆ¼qlb”"áTÑ­¸7×ÃÙyó{턼¬ªö5R‚dœÛ|5Xl]±XØ 3¤Yìã|†òˆ•“@¤—¢k¹ØYAê©%5*ë}ðVëW’.ƒRKçÑ]/§…ˆ?øÄÅÊMêÏíê׸ªË.½,$rU½¸6às8xyÑîî§àÛ÷ÎØø X%ŠN›¿Ò>Ö!q Ö±¤t]ç™›Ö³$~cd½².*ãIå çY›®/î;þ÷\Càw@M¨lüix¹äIî—8¹“Gsκ[47În² t0íwîlñ« Â2Wsż?U^Þ-Ùj5-w•[âUÇðì'k¡tÕ?ʼ’M¤åƸ°ƒ˜¨4ímcÆÃ‰F]Þ.d´ÉšR›FYG¯ø=ùÂbõߨô€,ý4Ò5ß œÞ¥ÉŸü™×y.zsþXÙì+~ õçQ×@6š¹ê>¯ÿl!–ëç-Wj»½@ö¬Yb]ÈŒév—hæ3;wÙú²!ºßfjf9xzåå°J`»ì4|”u»½÷=¯”«$p—6 {ù8 —fà÷L4¢wIB²ÀÖºÀ·¸ñ^ᡦÛ`þ°2æäÕ CѱŠ—9Ê«ÏC.Eó AjÎIDá>ö¼Ô44Šz?µ7*r¼8.^›½ù]*înr`S:~Ž£þº3þäðŽ+ÈqÔücí Oçî /rUu§l0¢‡?ükŠ^ß9ÏÁ&§ôÍ-D?§(4U´ø Nˆ°h¡ ìMFä%“m¯mµ•žL±4À¤:à–®à]˜[§}ñ»¥FºnXjŒZãü› üLµ‚¾jÒø>0z§¢ÌÂaAwÅ,OˆAé@˃ե| [Þ»¶wÏH4!&Úµ¯T&~ã1ôÒn\¶F7µ÷äçËÄO01’S ¼ev/A»²:Œ~ÛÑXÙ"-=^:ÒQ”8Ñ£˜¦ÿù:üt½à¿Nì¬\ÍÓ^~¸©ØŽrû•[÷¯=ÐDnå¶t•}©†Ì 7½w@­Ÿ$‚Ñ€¶Ñ{¸B‹¼@}›!x49€¤÷Ñf)¥€b7ç¬BŸµÔH E’[N6FU“­’^á+rcx~÷Ã7&{„HN±¸ïm:p~K¢•èÑLo¹;ŸÁ»1£‚*Õ}ºë¤Ñ¬§œ2³Ü~2䯺jº$ÀÄ’ÕÅfR:]´Äè…#ˆ ð)ßnè2Õuò_C¦£fðm¨aÌÉù•iŸ«wÉW<'¬}~™Ô÷=[høÄTk|)VA2§¤8/pÿšMYsÎP¸JôtÃoLt êèäêê“c¢!ûþ®w…+¥€É§nîÉÊÌ!¡6’•} À—Ä2I±.¡µÅÜ%wÎÓ^ä¨&Áv¯FJÆ ŽÍ`-hBoí¹n²'´««»o`Á†ü¼þ?½‡¹Ì,­ÿ³/ȲÞ%{ƒ½hÒß_pöÛ¬ä 5h^ÒŸãÌi«®±ðVþ!lÿ·_cS‰ ë²»[GgöcŒ /„ÌA¹†ÀÜÎåÖi±Ò%fC9÷(3nˆ$¾ ¸Gº5W²ªÓïïYÞ°@XkNA—q'Y¢H¨F2üëóAàÿ,øw¶½U âtqÞïÓE;J|øN„ñ|Âþå’Ê5œîzgwG3›Á¬9Mûù~®]W×÷Ü7·ªM˜§¬#âÈ)MN”/±‘ñ³.˜òog-ÔÂÀùÒÞX(Ö]mmÉνy{¼9­°x^hÓ7²zó¶™ F-všQ­6’Ï ›=>“ç» A|òÍÙ0ÇSž ' WµëòŽ1Rˆò=î—'õ5Äà·‚h›)²t­X¢³˜–v”îwÆÜ‚ÉC#2VÕ"ÍH&'ûº2­tÊZÌk3A"aó­ÔvËïƒi|äü/[✔½aÚ«Íu~è4õ°$8ý#Ø›ÏÉšÑIŒ/–ÍOxxK;§6o%.eò}ÝÇ R@¨O+®¿(úÏx$¬"e‰ßB½N0ÖOÝ…lÕ\EcÖØŠÊ3˧dÅܘU_êý¹‘¸~>”Y H`óZm7¨ô½%óY¯×ó[éèÀÀn$ÚÙùò|KtæäK×Ý8ÿq\šu½xç0qͨ;—ĸ\û¨jϵb¬þã‘?S|¾»TÝVh ½É£Jéϯ¤¦nNw§) èä”"*úçù+U­| ÷F‹9—EgÆ ´Ïˆ2‰ýÛ¼\«gª%Rû Èç³& ÈZ–I~ÑKP×ÊÈ»ë9µ²ƒ„ªîÙ¦/!Ûê­¬t ™ãPÇÁ¸ã4Ó^ÆÅ¤÷…X€u4£”1SÒ…i>¬-¾ä2}Ñ–9d’ˆ/ H…Íâö ¤è\;cúÉrË’£1A]B¡`lçi©pSï?«#›yål?o+µ\ÍuØ^’š-Òrœsç(ž¤lt?gHœZñøUï¡TEÅ+;¸Áloƒ¶ÿ”™½Œb™Ó¦1N>€T“URÝ+z‰D¡þpåôHê­·÷Òw½ÆF0E¬Á6¤kšn5!q7È0?ðžÀÊ7Éß'G\Ú³ Ú(þudΛ¼Õ‰ß6›»wéÖæPÀµÊ×Éî:BfkG­ý?Q3ˆ]Iëí¿yG{z|8‘8›h hœÆ×®í÷צÁÛVxžº‘¸},Ë´I¢Ï‡¨ EP3,ø“…–² Æf¹„Àæ&C+:”…ç‚ådù@RêÄé¿ðŽ;nW˜ïøDÈÀÚ, ]hÇ“Gê Ø­€`qŸÀ3Î!‡ffcþlTLœ¼kâÈ¹ÃØWðº/+X¡ê«±ôå±\ày,K^_ðmÔ4­;ûÀ¸åDáèÂT1 [0æ#ô¤„q·ääE¸£…R® YC­©XD‡6ù~†ð¨XÑ4†ò4P?ˆoòº.ÊÞ3»PÒHL ·VmJ)·2÷´6ùq™§‹»V±y5åXµü‹í>–äf(ÍÙKœå–[pÏÄÂ¬4ËS$ ¨ê÷€0êÔ `å*Û®HRbÖA‹r¿y3AÕäÛAWJ2†â.õÁòø_‡6ÙšdVÏBàvNú˜3ÝNÞò(€Hú9ZM=>`Ig‰‚—Õo•ÿçCz¢ãÜ&8GmALØS »_ÖápÙ®üž¼ —N…Ž¢sÎÚ·Ûõ22ôúüaŠ~ÕÖ x£ƒÌ ±ë;¶&UÝi¢,¨É—¡ÇJpƒ,m39—ü]<Á—ø›É|ku$Üç&à[•™„{HP ÈUæˆÆÛEþÒå5géš{©9êŽ+t¸Ó‰,¯ñ}œ~*¢GVzêhÅn’Íâ°j–oÁ6öÞÒ)Z±C!¬9Ã_ú`"WA9ó€óº ½nT¬æ3mé²Y®Krò§ŸqM“”Ñ~6ju˜‰£%ÙÚŠ«.˜ñʽ—nY6ùQkkd`‘üf‡ “¥1α»rÌØšb'Eñ„^ñ—ìÿ1*é{§¡‰òm³QÆÛ÷‡·ÖÁ(J´½q¨ºÁ¦ã²-–žã:ífûcçžæ®¤â~Øü÷8Çô«)¯#0)ê2Ž(è5PάímA­×ƒ0yLVk—O3L„F›Õ„V>J†qÃê蚦ž=þ’Â„Ž®i„ï^Œ:²ªD4’«œzЋ Â|…²V"h¹AìV}v¯d6ºu÷KÜ¿ñùõí%¤ùK•ÈÓÖ1 ƒ¢Û+ü˜ƒáŸbæçú–eD“¯šóî»ÊMæÇ1ÌHLë>Ù³˜¤$–ѵÅfrle±÷#V\#ÞA ¦ÌÚõb‹R«•EŠÍá2/Òü±â×yë·¸¶÷É:ÕgÕT}Ã;ÍT£gн™”­ÞŠ«Ñ×ò"F£ô¹ÄT'‡ÑÃx çYac+ÚFn6%ÜfËþ=jå`­èMµÕx/».åsZ L=k¨0àûóÈœË15„µ„×2Â@ÛR‡*òëkynø$ÔÝuöYr9âòwuгûíµ -¶‘?ë¯-†÷I 4ÊÖ˜›ÉÛîMÑ´ Æ yÓÌYw¹a ÏÚÃwù`­žf£G£áNºyDxEú.)ìç!ÍAüËÕÝG'O·SàÌÃY-àÉlíð;`/<É^úCc^¯¨Œ²˜‰âÀ… GâÅJf0—³GQ%û[­_*Ûž°¹—)û;°¹Äpùií%u‚ÿEòâD6ªr®y¶†¬€arWIÌh±ÐïTÅdxò´›µ[ò¡„3^Ù=Ží|ÝØÂ¸T”¥Lïþ<¼×"Í5PqF¼h™¸‚ßÓI-öÊÄt ÷™~›åmËMöØçCEzT ¾ïV}ÖBðÊê[†­[fåuC»½{!È3idIöÕDþ*èelv ={¶}0ÒÙáðNW ê&>“êRž1¤ eÜa5íær D#ÿ¤ýîö2Å1JÙ¼,= )6Ú%ÝÑaóöÂri:…3Œ>”7-\¦û¦¡¢ÿw1Õr½¥F‹WÎC~Ø(Óbçþäüù§‰ñ"š@=Ïøä#0`cA6­Åéo.â'ÄFºvô…v2ü?÷ÐÉÙK®.pÉ${h£ÎúªurÿG®âк•#EÕÔY‘ºS!F‰ ï£p±™}ýkz‹K³Ùò<.Mã¤Í“§¿ ƒÇüHÁfýVé÷C][b  Òê„i3 V{³~kš5)mÛ°êÁg‚3i”¸Æ˜»6½Ç„„¦?zGi„Ï…Ñø7 ~Ö¾…|PþoêÜÄŒ?i‘j’"'¿–7Å ÏÓ7ì´ô9ô+,ϼþã`pFfetKg'¿YEÍDîÑ÷õ£¾ì0¾”5%¾p¤…z*&A«ŠŸ1 ýù›-z§M1RdפЖ4S§Q9vx)¢r¨ hüæÃ&Ïê3YPs/èˆËz÷›Ç‹º{Ÿb»µdÛB1 ©ïª29MΕ"÷ÅhQC{_é£ñ Uäº+TðRÝšŸ1ÖK¥·\*÷I¤ÝßO7R!HU¯Ô``~D?J¶=zÚ¹àgªnœmzPùãçT#5rܲ§NKNï|ìvl‡Љ<*dâ›.}švÄÉãHh¥oÄ·hó-ý<,mµ,fÉcðøxM’ƒ:Ù:Ñ ÈWXœ}h'Áùˆ¯FúÖh Ð}/â”ÐÚð†ý=š’ÅÜþäEWï¸ÖöÍãuoÀ¿_ž»Û·Ý¼’ôИÉßõ­œ´Ø`Îÿ¹ª*ݵÃçwà[½Ï\ÊæW}’ä‘=Ðr†’Q]‰Çå ÛAG¬t3¤!£gÖzV´»øXSrÉÐwQ¯ÂB(-ü†Á,~E7)°øÄùsÿ xµ¬d-þ/ßI•ÖÑ.:Â#úÕŠ“»4¯;bö,ÔÚ¥J‰åB(ñËßÐ ²<«Áâ–“Ü Ÿ§r$ED•ÚÜî«d]ã øå}.³dŸßÕiþyýYj¤^a,ÖüÊ/såÖǪLsÉ ‘ôó­zz°áeý}Âsá˜Â nÞû@g=ÍÞÉx¯Í¸¨y‘ÜU¿ÇIƒðb-ĸ5/™SÉ\Í #9”kÖÑŽw¥¯œ\v-]Nm—RpæÍ·Ñƒëq#õâ¼¶ÕñŒÍu ßï§ÿôS‡¬"¡ˆÆ~ÿÚÆ&´7ôÖëI50b fï§¡Q4¡²u”•fYËM“ sö\ŸèÛrbt^\ZİýÿXòRT‡^úÔƒá@]QÔA[%“!Â/ Þ¨œÕåç…ИɆԀ³s‡%‰àí0$“–r†Æ/lª¬—ÓS¶/ú GíP¦Ý@á7ú—ã^™‰´:ªE;ǼŸåã¦Þ!G‚÷ý[ÊÞ·”Ü‘(rÜ@xF‰R)C„ A“_Þ1yêª)•//ýø`zãfµÊ Ùîa}KlO q8Ðu}8ÏéJWXeùÌd¾éº3„ᡣ˿Ëkî–Nïc¤B™G¨fÇÍ.D•¯E~,Ð*ÎÎùû_àÀã1`ñ­šõïÞÌÿo^æÂ®LȆ‚O1ZžIDÚ;`<éÖ5¬à÷3bùU³Y´7:¹ÔR^•þDÙ¸±w<Ö{@_œƒ³ ‰½&µý:6ì¥,gdˆÁ‚“¢8¼­ .æ]ÌÎ'mÞ­Aüù,cŽYë¸lª ûæä®*^%ùÀsµa(O@òGÆÀ,¸%Ì¥¢‹U2Ñ}ü®yÁË2`ƒùлõwH^.ç,–{\cMWŽï¥zÞN-“!wt1­u}*ù#Læ³(KÃnÿ$SF-"Ƨ® úµ ÊCðz?¡’(ã4)wÄ|³ðï;Ô˜1á ŸL£›å ªÀt!dF?؆vÝUpˆJªöï©øÿ²öUù;ÕF¾~á+x~áŠìaMëj®~~þ¦ÛH±ad¼‹ã¼ ¥Ë.õßeH*äõQÁ<àÂ4r—¸ç­â"Y~ç=`xÕAwQÖ©‘ÿB&Ð ×H¥”·±6§ iüswFí6¤|.»vYgùð\J7ØL-2¹¼ôE&NwÕ"ka­N?•î ¤îD˜eZD¸`Èâ5íáÛ ƒN!n.Pf}ubà î|µqÜøHÞ©Ýë:k$¯Êmï Ä‚!öWÜü6ޱúT)T:н—R@7ßuqARJDÜ‹j1¸_%4¢ÍYtî¢0¥šUtÅËÍ•±$Z5gÒrö»&¿Åé†E±éòÞï.I?õP1Fb:B§º&îp«ªC7@Z¸Íg…8³»žß7–û¾:Ær\‘1Mêàëî._,Ú¶ÔËÐxà~Pe±î¡^{M ‘Eéoî±â¡(~qžœ2êÜ7-ôºv˜#GäuÈÖ!îVÊ„°â‡œ·]Ñ9Zö¥×ê&1Tö°¶ <…f;)¾c[Îö%¼ C']TÏýаƒî¢;´ìöÙ ¶þ&•‰{ê_ ˆ5q¾f!Ƭ7°_anH Õ‡G Šeå¤VéYð™@ut̰tMbýJLêõ¡Ô^o#ÒÍ‘¦Á½ÇÛ¨–´ G{´‹WvÕmWlÿëtJ[Q=–’‚ÿüq ˜sËcëV»<˜ã /³k-•n±[èPoÔ…ýí¨|­û}4@GSÆÈkC$±Ì =6¢ÏªÑ&aPß…Õó Œ‚vJÐ êB«®¸bs„\;÷æÊú—óÇŠýÝK†ä0+œE^%oðô*±à*Ùõ¥DÅž…ˆ¤ÃÛ#âÙj….¿Y¨©íláj­x˜7Æé0H ÷Žh¥îÙyÀÁÉ1È9èX`X¥™úQížS”eÿÒz桯c<8§}E¨ÀØí¬˜ Œñ–Ù]õƒÊ«üÆÞ ¡Æîn>AiÑ~/qœcÜYnìÔ gç]UÈeÁ†®˜ééG“…ø$¦j6$BX :å䢄«ÄøgÍT‹ _sïL„–õ1•ÎÝ?‹+éZåXsqôå‰~”Ì:âÈL->ˆÂÍå^àëDÕ~‡zŸŸFmŠmî„gÍÓé0«ü8Âs~wõš{lJ(ƒ’ [ÑKˆQܤHÊ‚ï'+Ê ERæž›#«JËâvf_ÃÕK+„®aÀð†z÷§ÝÒYâG€Æ^ºšOÓ (Â\½z™J¨Ð(ߤ<6 ½úÍníÈh t9(¬êЕp{pý¤( ¼  S‹TVHG™ï•o„P«M‚"^pÙ+¨bãñ¯Ãµûn@U»ÓÖ³ÔÂðJ{Ï4˜ @“Ó± ›p&F๙ýÉÍϸ¤ïÑp^ˆøo0VL`ÿ¾£|#k¼‰ Xýܲ“LdúŸUöÒ º­/+ªã>9+QŽ¢?±Öwƈ’/»3Ÿ^ëíB¾ÍÜžËË'¢7áW`^¸¥ÔÓþlš¿k{…w+Xç©;ùP´)%ΟJù»kéóôÎZo;#iqW>+»lЉòãá«U³·¦xëô¸€û,‚óê|-uÔUs‰à¿o™¾KB!&Å™,<¹*apú[^$25 $2|@ÓÝ´(jY±;w.}O·!í„Ù+ãjaðó¬JªŠúþD¡î†œyn(Ênµ1PrhÙ¯˜yDÀñOÅÖÑ #¥lÁ„*¿3ìá¸w° 0D/\É-6±øæpÅ|Ñ^׉œ²çRùC¸D* ³å”¯Qˆw¢Ï¤/9ÓÚ²/ü:„×{]®ó°É¿ ‘–ddPøùÍŽFä íÝcê-JÔ̟✃)õ æC܉ØÃÿŠaµ¹‰q'¿å‡<Ò×ç³±4P÷>ù#xªé—C°,÷S•ѽ̺mµ³¹ªž^QÆ«n ‡zv¼Ú'±”¨óñ@àÖr>8ØûÄ€Xº(uí}£ÚûY”ñ#×J0^W•¢’™q+ºæQâÌ]ß`’`Ö*ûÀ¬¤$!ÿó$ƒ¢Akšj„•¸4°q1¯$Æ2»–,ËàY¡x^´c¼~6'–Ä+PùßM¶]ÄÔ¢ÈTÔ­&ÓþìáØ×ÿjqê•„ÚD“b¹w Òg¦ÿ4Mîª$šÜTUz>¯:¶oÞ‚RàwávÔ·¬”˜˜Slj‘3}ÖÚËÙ#:HÍÁµ±”xßCû4bcûDàÙ€²QÎyqÎG×ïÞ¡¬ùy_û*M+ þiÇ«‰^!%¸ß¯†²´d)¦Ænj‰ZíẴüZˆ:› ŽSS’õQóöQûæ+Vv;Šè™p'°OªÉ“x‚p×ÔÇ:øþ–¦™*KQ–r¤ðÃW ¯“ä‹· eöéÒ×Cê”þ/2{÷Ì(0¨B2p#«Âµdn}›ƒ$Ó}¯âR!˜jJxr¿u¢ñËG¿iúŤÁ F€Îxzáýy·é‡¸ÊA<Öm¡Õy<£CzÎϸnkFCiNÔ¬˜O6µßzüÙ}HæöÒ^PUøø-¬Þ¹à¹ç&ý7> "M]Þúî*b}ìFþô˃, eªz~âª-—ØI?üÛ†Kôø&*¶¶!çžñ-³®2Îg4—ì¦À”m‡Î„„V(¿K¼¬q‘ Ú7pŸÀwy-—¬}íðï?u–]ÜÜb‰ ®õöYï˜úÞ;*¡£³ÓˆHáŠLþÇ$@'[Õ8V¤èµ „ŽeÍM^ÐQF´¾œ]ag4îk_¯µí¹‹ê‡Ù…˜dÑíCæÞ_«Z[«Ö“ôÑJ·,Ãn<_÷Á‹€sUðØ:w¾Ñ¤iý/FMÃâBzp ˆò™ú·¬ =ô]}å¹ }Kxç€ã݃?½—«»†Lm.K)x}BÑR}´DÝ4=aì;÷¤øJ’Tòþ¸^Ý{ëàŒxqJám2kH2€þéÊ`ìLÌñ4‚r´Ša™0k2»Ä6ØÔµ¹Lžç—† š=æ w+’¸t²ê«¢-¹àrË2ÓQý wQÅ›ŒA¯^qÊxß\WÆ5«@zlŠ”cWðX9õƒKJ5}d Èiå(±n¡4+g:üÿ2ìߺHʈd?ÙâÓ 1Ïec("’v9Å>¥tÇ—< Céñîê.ÕØd¹E›B¨ødÙq_J¶FÂnar+ÍŽ×ø&Dˆ|´7S<¦â²âŽÕ–Oç5´2R}ÆTwô {œ[!PñM"÷¡¦pgÃnp°m–Áô»à.ênÏ'èò¡yt¬ò!g£eÛEñlC2[ù¿së¡«c‡á¤ør¨®]¨Ï\äȲl‚=ÌwY77¬>•>n½ð5½áêšr(ÔUM3‚o³àOp˜#ÙÁXdoGr ù<èÏ…œµ³cüàZèn\ÿI4¦£yÑ(  ß]ˆÅï*£Ê1GL¯ŠxJ³{D̳z±-…¡É vŰhIf½ Ñ_ûŠö?¢²±ƒsƒC6Yüú²Ê¢²Àür°tR@쯲á‘Ôô]ï§–¥íŽ»¶ÃÅsQøã•1Ôç°¡1‰ øãB—å3ÞWVžäg ±¹d¥]ÄvÄN7£¼ð’H"Θ—ƒË‘ó8R¦VøÙ±¿Ð'tð«.òÕž›]-Ÿqrá¯Ì(Éx3Ã͆‰÷5¦[üâÊ‘‰Ì+“•äšíœòœ¥ŸÝ¸ùìfàZ'¬Ýú:£Död‹O†p)_QÖ?ˆ~¯ÀzJnF‡òÆÄP&ŽáÌ@ÖíDÓ >ÏÝ AyMŒ‘×QO޾WõÍgÌ‚µcµÌÁ ~{âS¼M–kÛ¼`äc/õk SfíR]ãM1úÍ,9 <‹ º£•÷%/¡ûK¸ênêdÜÁŽq#v>­Å'û( #ŒK.®XF¿“!fÁö¦Ž¼)«›lͤ ¬Å•1FŒkÃPjø”c•½‚±½Õ¨H2°ªk˜o½nðØn+Ù;T¯,ß öŽÅ`ŠÈ ûKh¥RVœ‚Ë:*êšïËäÝ·µ96ÅrËë 9mœES¤ ¥Ú¦yšÎg8YR Ü‚hÓÒaÖÈ£TÔ‡¸ ¹¬ÌcËÐDа¥Ð{ÄýÈøÏÇsý²ÚdVj8\€Ä½¯JÍ-·”{§î¤»‹ß®=ó{1¾0ûí|LJäqÜ¢(6[#U>,õoù#ipsß}sÁ2*ò„‚Ê¿ïÿ3=Ž}GIÖc8*âOáWì±}×@ÌøPšªbذ2&ËõCµìŸ¨*snÐZÔT¯(`Æ£Oz Ö|Öâ³ÎØ¡lÂø&Ù÷Ï^ŽæÀ5PÌè1¹ÁüVó,Ñ8 ¾dGËÄ8n‘Zš’"aÙ;C±Zý_)òr'ðj0ú˜{÷Nlö3D+Å»…¥X@²wp _~ÞbÂQÑ&X Ü•€‡Ÿ|¥-WgöÇÄÕÓ°#v(ÿ¹È©+ãAk‚3¼žÆÚyˆI©7ÖÔ¸òFR9¥Ükê6ÿ ðâã¢êIB{ÓݾñgAi;÷w¯ì)ð½ãÛ#ÝD—çþ5'dÏ“Œ¤¦åd©ödXNKNüÀb ±yùñ.Õ'¡„í¾ñúqï™ÿ°#{ÂPZ§Z%nXÝÈ¢qÉ2MÐ"ÛwöØ™ÿ­0#0˜<ÚýزëDhÞ2o[â}ž´üX¹MÈ! ·ùÒ¬Ó?»ÎðôA>Í+¿î®Ee½®‚M ~Íæ ØËª[-V#F¥œkôÖ1ÀÒ‰N®H;¶yëSãÀà›ˆ„‰ñWðbZòôŠŒyáyzjc,áÏø©^Π{õAEUGÁ–æ&á•°e[ZÆÄ`F× –¼Iê}yò`/“‡Ü`LÕÆ•…J#‚4¥m];ü"z^þ޲C\ªXT¥~î•¿M²=¾dd^€“í&¿:ÅūّþÖs•‡ Y ‚›Ênå±ü¡ÃlžÔíì¶ŸyUJñv£]ÀK$ÎéÄŠ½0þºÇÖ#^‰Â²¬Håäf!ùV žS0[ÆÒïûyNodÚú¹oµuÀ£‚Xìñì “ÃöE1†Org„kÌÑ£8ÕeFIÆ'/á}/B¶·eC^¯Õiî%µøú €Yø»õf ·ZAZɇ¼˜ì:‚Ú5‰XSñ—7ófòûØxnT¡³v¿LdqŠw.žÎlkåiËyÚ:¥?Ísþ€›Q0Q×`Í'ËÛ»ý4¡n}껀È@‡Gª ž¸ëŸ^Ð,Òã6fqj'ðž<̵ú¯G¥½g>ñ ªÿc®¾öQŠ+(ÄËŽrÛ;gôIÖLæHOž@ÅJi<ç¸õ‰*`%FÌ# DÀfs2NÏM뵃–ªYóÁ_n„MŒDÙä_ÓÜyþ§‡#Êp„CŸúGÉ䯶w•àšý`fdÜŸã@œÍÑqj.­áK6æ~û€ §…‚2U÷´Nïú–GÌ[Ü”/ ¯9¬7”\çû¯.wLùÈ”’lŸ™î*î&=ÞËß"&j-ïİ8ƒC‰ö[mžJ Á_^¾SsÁ ØÛ†uÒ”B¶%Aý>Æö`»èmŽq\”áþ³’»…q\BëCLÜCÊ?!†9г,²© ¥Îæ5db÷—^wÛxªÊ ã‡êG¸c¡/"¾nŽë±¶HÚL—"‹c˜—þ’/!MéÓA¾<°S¨Ö·i7Ølˆ¬fûÓ*éjøÚt¬ô®8RÞŽUU=‚•N‘‘;ª/ëûçk*Ÿ¾Áe\“|²ýÙ‚“ËguÒ¤6Ï–0u›uì£å¬“Ú¡WZé2ìL %†üÛ‹Œyiß*-c+hr}Fwf•waIÖL?IáçV{˜ü'è×öQMxq!cjÚ-ÁyD"ÏAuF§ 4FwÚÍiáñ¿l©+K“Ù¡6Wl)³xŠ[ZL¬œm_‡BeükûEÒ ²‹4×[Z¦Yy—x°OÍ)tjåé7Ntû³ J´Z%‹Ã8¤Î`d9åòb×ê ƒ´­ë®|6]ï«y+˜/ ·1¥}Å ÁH@ ðχ‹J.Æ9l½VKôFOZ†cÔØ”ïÒö·Hg\ä}7Í`Ž]1ñ!׸*H,´þômXdqü#ñû]\°Ÿ†,?SŠTùZ"¬tý:i³ÍÚÝ÷ï¤(úT;Æ;Ï8FT{\ÿš½ò‚,*|âÒ£L–H#6ƒmV—©ÔIh)瘲ƒìš€‘ª…÷œ8ÏÉ'ÉÈgØ9`piHÉ‚‹e¡lP¥­¼ˆ¦·GF®Ž´=™ZþÞ - i› ¸ U$Ÿ(v‚žÚ×dîÊ=íþ…T7û qX¡?ƒŽÓ”†»±eïîÊOMCÚƒ©¯–eº˜Ñ+ÇÐ-Qô†¡ÌR h5ßÔ1©)[N$[ûÜeª94®8ºåG…Û3œì~ÑdpiDù Mdâ&Ü@þËC@+Îv~€†ø¢?Ø|iZ'ÈÛ5ì'š TÊUÍoO©î-jãw1Ù»ßÛÕé½2ÛÚŸW|é_$ÆjE¯sÁßÊc‘Ú‹jŒsaÍ·]v|˜ Y2X›°~*¼p²“srÏXŠøIu(BâãÏœ©Û ñëIx –zhNáCøê)·»ÂÖdòŬÎá„;¿ÒÆõÆmàØÜGïIc}ÿVä¨o<yrª 8Å+Ùèµ=Kqåâw‡PC’~æúÍÐ w[͇~îG^輱Ǻ÷US~ø›ŸÌiîòAÿp!˜_¡§»±§ÆâiÑ;/‹ÁW§&m‚Õm«i&KoO$.¥ø?ÆOÕ™HR~ܯî$u«Yz‹»’Èr }Ö;xV‰Ã·_+(_jƒMTŸh×¢gć°wÍG²g6Ä=ãnJÐÃo¦­QoÎÖCr­XYênƒ<3,7oWŽ!äm9÷žÇÝ]‹”cÆ‹³û@o>“y꣣Á˜ÚØùgs”,´*ÀºVEgùay<ó¼ ©)ôT»ó®Âëï¶ieï7¤nª™Ù aå‚ÎŽ¯º¸0w_jcÔ~矀»M›ä®´¸)jÜ|d)š2¹ì£p²½Ü\e®.€uåOÿ;¾ÐG$â˜ÚÅC7pNº¢EwXg||X†CŒðX§€l¯Düùõ i“0ø²‘jý+ü‰1éqJ ëì¹°›[tQÝ©—ÿÈáŒkÏå&#•¥5S£§CÅ+¨¤µÈM:¶þF¦2A^££qÚ–¼X{ZOª˜z < ƒÛ“â0û'z>0*úéã¹÷§¬¶ó$ K70_S1rVT|+kõ9N¤ØJûX‹–<Z·Ç˜Ï‚š‰º³yB…èÜ™?ívcgñ(YD«R"ÌO•²^¶“1²s…€ªNêÛPмyµ¾Ù›¦Ã·fÛN|oÍFFŨӫŒ‹i=Bb²¡˜ÁÕe"áfïcì©ñ)©•Ï#òX°ÞkYVÖ—»@9¡ ©Á.&…ä#¦1:ÜÀfD\h]U-Ë(|ãò´ã¨Žµ¦~ºˆªR• ²ù—ûÆhÕ`Fð®,¹áb“„jåÜ•RR¼˜4=pgºÙ6˾i^º£4YQ)Lêò‘’û®oWªŸÊ­AàÎÛa N2ð׈‹?¢»>Kïá¾ÇPÞ>—ñÏs$šlê)™v'ES$ÏEÐ(”~ÄÏ,×Tfe–íßN6“=ñ ÐìèMÍãh áVॉOèE4Í÷æf·€2уOä-N¤£""C’‡+K`Å!)ŸªO9j‡ÿRÛó+w{ÖÇZžåùî2åݧuÙ´P¤Õ6²f{»š‘¶CÿÅ„ ØæH›†â‘ê»Å´vÃ=¦Ñ‘æ"%{hÐ[àspWw?˃ÏÒ;QŒëQ‚é¶xbÅݘݦx×xÝZß§&˜ ªäË?,,qÃaÛŠ x GÞ9½¥ñçb«;jÈ#Ø¡ñи €P¿†ÞïÃ|-)òz·SîïÂý‹é*\ëË~œÝ™0kî¨$IWÈ´`:äwÖÏØ=в5ë°Ì ëp,²èFÓ£n2XNûôÑÈ8¤ô>øó÷Á+Z6|Àú”̈u/%ßõ\ ¿}Î0 }¸z˜ÎÇà{ eÈŒ8’¬w%/ç‰ÂŠ-=gò ËÜp}àéí `‰ÖŸƒ#P5ž¢9­òÁ^´©_êÖ .îʂү¸î3´ÛM`ú®Õúë¸Ew6/…s^àñØ :žyJ™áÉXR€CI÷¾³sòýni–‚Ú½‡[‰À7Ê*ó ︤ñ¥¬4†Bšã5!õ<òønjË«”«TBÅ] j¢±í¡} ™…6–`ýÇP÷3jrúp‹¨lîY®7éMÁ2­â‘`PŠŸ’tDyŠ#\,9°ÓÃù¨ÿÇ_ïâý˜ø3Ä]èÅÓBj¤;þÙpmeM„v7Ù%Ñ’xa™ÏÂ0ƒÓ®¢wüoˆný´:Ð-}„YÉŽ2_cb™®Ý—>øe 1Òk‡bi] ÷ð„™³;â¹€2s‚"ù©å%å}š/FäH?’ÇDïrS j¨ kYß|_PÏæ­VÑ…YÀ9?¾†UP6¨:¦­ƒÐâgtZŠ'{@1ºwŒÒ$GijÒx„GšËÀkkÈ„b‹:E°ísxyW©@î½ÿJÄï2j¬BeFœ:l‘fJEgU1æõôˆ«S¦¬ê4›+j‡§Žvµ³[|PÍG5…Då Š•X´Ö_*‘¤lFo‰brµ‹¿ÕëvgÀWuyO{Eÿ§|T§S{-á¢å2Yù¿ú­–tÁ×¹?<¾ræ(]Éß—to€x4=a½³µv²OÅJ’Ê«<œŽñÆÎIUnõÅœ©ßññ€^þa²¿UX.ŠƒëáÞõ ½](m-QuA©¦1Ø¿àŽœìŠ¡xÞ¬8Mù[‡™‘/©® ö jÞgH± :"ŒFĤq$E×p“ôÄýmç‹/k…!˜ä¼S”ë«§´üØCE„(íJQÍŸT‰ËY9¼gååìŠvcî÷Sʬìæe»|kô|  ÆŽ£Ñ’r\è‘cbËk H½&…>V˜¼6ßÝ'XÇç£Ì@müê5³¬¡0¿.¡›@|ÉyÜ%O…¡)ð¸t½@’ îlVmëþ8jFä æqr˜3¬Ã©ô'ùjús¶.˜}›ÐÓ¬Ó\Í…çºwfô6I~–ñ𚦖o—-ÌDsÁc¯¡–‰‰ÉŠ­‰ÝÎLôâ§tskfì! ›ª)eC jŸìŽAuµý“4$“Ýëusìèríç[þñœçÌÉ+ ÿr„–úùóB%Ü!Ñ’ÛWGºåÓ³Õ«‘7wªâÅ*eÅHX^ Ÿçf! ©‘,’§X—P¾/|‹2¢ˆv¥W ;êY—Â+a@š0Dw€Ý'%õî˜v¦NÒG/Ť¯â_sc¾~î¼»îžs¬íDë¾ßôa¨ß¢J 9'pNºðÛóg S]¥MIµ~Ñû"Û~’ü;]òAOXäMÍd¨P,ê¦}*žÂšØ nó ÐgìÆÃü*PX "³ëÖÓâ/}/ö:£>áÝKiÅn‚J¹"ÕšÉä-ûŽ—'á­G„€ "­Ïci†—'”i¯‡#^ب‹7_7&Ö€TcY¡÷ݼù8Û»Ñ#šå±ÇŸû¨{IÅÀz3#±=<±{þQ ™±ž{÷#‡œ­ý"Í2yÄ‚d:ì"HÜ*ƒ‚Hk¯yÕL{ô³*ª»BÓx½‹sÈç@&Á÷-e¼Žfämáò5üdg@na¡ÇYÿži2œèo¦ä¤ÞÓ0þ^¹ø³ —‰²÷èªsqÇÐßZ}Pô)³BÕ¸Ûñ"ÄfP;<{ÊGgµdý427¹”€¬Û+¥Þ¶;ˆÔÅ”¹že>ÝcÓ¶+ö!zO²·Ç””즃åjÚB»ç¼»å¿³BëDÙ»Í> AÀî¬qÇŽ'¼¢Fä‚Þ1—¢Ð·t¨áIª`f¾kàÙøìÝÍÚÌ b„¶4\Ä9!öÒ~- L„ ¼}•xè¶åinÁ*RH¥Ìé˜kw÷Úý:„?ÆvìÜ3sjVõz»HîM¼Õ±¬vðÕ¦«Ð‘Ì\jæí Ž.hêû¾vJT`[ì8õîÉ·¥­èÝͯ§Îœ¶Ò/³t¥_‘„3jätÈ: hÈ”ßKê'ÖÞ î·è\ÛÃE"Òp1Òû¢Iƺ[H¨mk-f”kí,ÛêÛe>FŠ…›?ú-!ßu !ü«^Êa·ºš°õåŸ:ñ4’r Ä „“º–½ç¾ã¼Ót[—§‹ð<]’ê%Z>M¡}˜“ßGÉ>³.ÛõÿðÖKˆk_hHé ¹ Œ[>Iˆÿ åû…ü¿šô_7°ÚñÖÀ†Èǘ6ð"Ó@´:¾ŠR4¼÷žˆ%µ$~nóð¤%»îøxŸƒR=qj³Z©Ý H¿˜ÄÉ—T,Þqy!ðÕoôu Õn”Oì³ßVª±Êñh«ÿ¿=Æ9‹-ÛÉaÿ…jé=&âp*-£…’áQÍ•³‹r´È‡=%¦JÞ8§Ïjšt­˜–ï"‘i+ù<vz!Âî„–&û93«ÁŒá“}ÀL´ÆvBÞ1òK‹s:°õà ¸’)z‚˜l>šõÿ”ÒjÄ [Ó¡ïf¦’+i>Wái8(¹!‰š¦ZÃïÄ4u|)EŠ «ÿøþq¶VúÍ ¶-±m޲• ´gE½7½cTo Ô`j`À†«Wf\½=áŸá ˆümêG;~µŠÙMâõ1j©kéÚd9àNŽ´æÑ³ ÎÖ†ž ä9“fT}×3§“ûŸÁçûšÈë¤<_jTÂ;0ž°ZÝJ´ìÁRš}>‘õ\º‚ÿ„†ªm¶àüy½È5Ìñùä¯Ä|è‘ÄuSMF Ǥ_–«B¼°Í’m3øeœ™1í!¤Síϼk&{Q¸sY·¨«îin]þˆ§k jÍ6|6XaŽymË¿êÉýw*ZŒS;@|¶—G¬ÁpœѹIßôÎ2ƒJ¢>†²c픋}4+|Ç *Œìy2ÔÅ”Heu ßšJ%˜µAvÕ òõ˜3ûòAmM úþÖû>J&™çEü)Løô ,˜Ìê]„З¾>±¥;5ýŠ÷õûáBÌ‚O Ùý$üfÂ:¦!ûÞøB£ÀvN'€¥ Æ-[)+Þ’»™¥>§B®íû,×rñ×–?€Nh,wIˆ3L€îˆ6癆U1øgão”ì—Ì­ÛÿHœg6Ê‹Ž.\iU7\õRjzŸa¸˜Ú«V繞ç…&¦) ñjCË2Ç‹@X—Èš5É!ÇÖâaLe²|Úlcc)€·…Þfè¤]SáÓ%%À œáŒ¿`øN*wíW6†>hèÑV™ôàèváªgel5e9s)aäá¬4vï‰O¢Â|ã;“m}ê™ùÉ\x4¦FG¢x6 ¢í¬)ýý6.ý8çÚïE°Ð«szÇ/• <ƒü„Ø6†/•–åSµ£eý§‡…èš‹‡Ò„£wŠ™-·sªþ¥qó“Ò’@ÉCZXð·PHä-(Ÿ£ð›"w}¸·àª@öe=7`-GÉ£ªdØ7 ÛAÐT³¹üG¦8îµPÇâëXf³‹)ÎGÅ›V8È×0E3† ¬…-¤?îRtœ6S¶xyÊO=¸™¥žº2ÜGî?ëaPðŽÚµދ>²Æí²L5-ü”=à›ï±ÚGÀŽ%ïNÝ„l•êØj=E¡>ƒX´Ú,åMhcoh¦ò}¿Éƒ¸18ñp§D¶þNÊ`Z'¥ø[1»RNÝElFBÂ×5#’¾ äq¤b¢EÏg) |Eõ,ëó–qÌ‚K£Ó#¶8â,¶,Š\¹JKo=$8Pž¾- ÊÉ€B™µ›Y–!ßM­~gFóɼŸ|yúß&kšŒ‡¢ ë"EÖ€óU×÷¡V„¤k.è¼ÞZ‡¼Î?šˆÁg622 ˆ2Tk{ÝËyˆ²òÑcëD¨‡]’]²—›jƒnl$…“?zœ¤Ö9ÈÀ©ßæ«J‘Ým¤Rå"íldÿ½* ¬ûTËæV}ßA¯Åš§­/´çlÁÏÔHÇëÒgû˜OÓl?ó†¿è€ÚnšlÜ} Ìºïú*ó¾v¡5˜¼(#²‡.”Ø¿ÙYáŠA”pËxþ?V¥ï!>°Ž“ÁΑmÀù סäÛù'~ÐÂo0ö's%Yk+ªb©òÆ8z½üÍÇÁMeà óz™“ BñÉf©/ªVÓ³¡÷füxîÉFûõ›KÑp¼º4Su·Â–¦7kV j͉xxÚÎ/f€Ù¹4V/^•!n/ ñÊÒsÑãþOB5ýc枤ýæ’{; Õç_tÏ@7äÅÏ×¢u¶ÛÌ¢Ä=ûÓ-€–õ#z*k®áH9Ziä­Ðq\ÍB«\ÌÊ ¾„·›à]˜Öµm3ZEŸC*T bÙ$T÷1¢>ˆ 2?ûïä¨kÌûqþ‘ ]$Ø'nˆH'.ðüûEÛš†Ä᧺Žù÷pz¼Æí¶Òo£¢Tÿd]©EkxËDɯhòPÚ;,.µÈŸc¿Õo=ˆ"ã/”…AÀyLx¸ðúMªâhùÅ™äŽÕÇU²@ Ï=]b ‹ÕËŒxÈš‰s²ðö¿Ûé¿£éÕ ÃÔ¸¡u0´‹”9nþ “Ÿ¬à’ν‘JæèsY’ªP³óàx’£Ž>téëìèj”·¡Ìdès@Í!‹d<©xÃdu“¯`ó[EÕ3 ÃMžèŽk¨§%¤“]t·¡“á,TÌ«ZÆbÅ`õÓâcm¬du7|»æN²œ½ŠuÒöíÅ\ó—-ÐcO\þV%AfóÆŸû³“Ÿg,&jiÁ»ÁÃ75ßpI× –¾ü LÏð+D{l¯ÒƒÈÙDþ`T;ò?>®x×é]Œ[šÄ/Ê)ñ§Yºv~;G|ð|½‰ª…oe In…qüSaŸÌó¾Øq‘Ðe¶€ë³(á +,‡aßèúqS[´tŒlJi÷Ù÷¾;☆/YK^f°uÛ—ïÇL†“¥0¡<©É^/f‹ s_@ "Va˜‘¬Úxð{Îè†×#DDÜÑð//ßÞPÃé›an p [ëáÏI}ÏTæ‹ÏïqÓrVíàÓ¬AŽÀøæW»á]<ç6«[aÝ'VþÖ 7âÂÎ3Αe[ÅêònYŸ }J¦±–ZÜÿkáÚ1:Þý;Ä÷Dlx¡+ÁhèÓß´ þqÙ;L®à'ã9Èéêì%›r¼ÆM—qwnÍ•.gp£û%RãØŽ¤e‹«·s®“Ô<¤ 3Óƒ5h¥ÙQ–É.;ë(èñ¬s À mŸ¤í€~¢âÃ/â%Ì¡¨Yšî©µÊ.ÓÆ‹ Ðøõj=dð³rœPj½zC+IxÌÊÀ}ø»¬—ë ’âPN¸Ù[£Ä‚è{ˆF{³²Íÿ&M,–ZpÄ­þœ›sµÄ¡Æž ÿùé…w± “àLdF#ÎtN#¶âät*ÓÇíîXå°~Îi°έˆo­…2}{lýpý©ÙFÀ‚`™Éߣ* ãöÁ¨¹qm±¤(A÷ã¾Ü8|­#=Üüo†S;ôÝMb¥Dr¨ÕÛö¨­ÊÌÀÎ I$!†É—s-{0ã°DHú¡šˆ¬ ÕGU ÷œvþH»¾qlÚ ¾ì)ôP<÷=21À Pé›ì¸™R¥ã-&µnJÙãyšO7º "žÄ|B¶´•(a“È”Ý:l÷>1ñ*Æ-BHb.œAžªÔ ¢üÌkè×~‘cq¤±‘U'Z¤Ž°ŠÛJ2 8޽Œ+Ê—ð²}s7þêKW¶A‹»Ÿ:}<îâ¨0ÞC¡› ‡wŽHæ³ …Ïê]¾ôöÝZÀŠ\Í„ßömq½Yt øœëì2˜öA¼ÒUœžä‹dT™vý޼Ðß:wäÌ· ïim5k4“?iqcÛë°-¯„ÙÞ˜‘'';*<àTŸ´ZrúŠ—bðÆ‘ùJmêºîÙcVŽ(¥Æ6è,~µLµP"Ô×àƒ¼J2!Ãj‘ÈmŽÍ9 Ôòœ–-¶f  _k3LÉÍÒ"eªÔÈ|óDÜñ‚ÖÑ%¨]~‘”pDˇú~¼¿^Χ!8Ùõy{­G3*ö8‹dÌö‡ó2Éí~æX‘gX§Òèþ¸‹Ìb@óã±Lqx"„>Ã!ñiKNg>2ë!2 C¡TJx¨Û­á¢~ÞõVM/ÉVCc§xZr˜|ßp6¾î• €þ œ3™9陿L°KGo!3alå*‡‚fСʣÀ¿"É·D«§œDy5¢_Åk­×B=á,^øzQak{^ø45¶t!¹ÇœLô'¯sYcìýf¯9)›pfD]žaZªåÒß©ÑeëÁDXÒ2têÚ6I¨¼ à*¦§‡}tº©Øéâ=—z” ÐÑ%ëhÕ¯®óF“fâ‡@Y‚yøÆ€ªÛ¾ ýwäGœuɨp=KûìfÙ8ÑY[¨u=0RÅ[C@ñ÷ÓÀtâ úQ¤‰Òk! *ìQÓÑ?#퉬BòÃãÎÀe}’¶â—‹cx‡4*SÆóxÌ#$5`:hŽˆ°zLÿ*þx`? a´ŸèˆÂÚB8CQî±k»¼tŸ#ãÂÊ}øiÅAþ@C^Q÷ èW"-knè¼{}‡K@µÛ°ÌÃãá¡«Î ß JÀákL–f3EÖ€ö4›ÝFôe aL¼­›Z_üNíÃsj¯*Ï ^ü©‘Ïx:|wÿò^, /A²†uŽ?…øÐ9æêdª^ZMˆÕ ߈±vs©aðÁ𣒜Sb5úœP¥¹dlVÎ\!;ÔÍ-±$iOÑ5Cƽ5¥Uåd8Èpîß¡‹tˆ(ëÝ Á0CDŠF]Û è ÌØ?ÀJmÁÑ֚ιk¯äÐÒüë☴éW/ˆÇ}øDy9ý˜Ðéæ3iAµÙ.H2=¸•¯†AaÄúÄ÷“vÓÍSçÌXçïY¡ ê'Æ¢ö0µ`Pf©Vµ(¹“a†–‚жI.#˜.+e+TɈè4½_èfýõ@ò÷w!EK½09(|Ü4Äedüª‹€‚r;™ œ:³‹¡ý쇲™ê)Œ°eÙ¶ÃáR¨éÌn1¼¦.¢êsÝ'+9óûòV9ƒ,@Eªcbä@Mú„ºrm4 hGGüg åKi¹&×p¯¯=¦Žep¶†j`§´FÕ¥Sx§X¸‹Bö;sü¹øƒ;q+Ô¥âa]a5e/”L„_ˆô(9goJ’ñ‹¦;šjþ}ˆ…yv•œ¬†\dù"½ýÓÚ™ÇR¾>»ÃK€z1ŠC†Øå7}”¼ÂZk.·d:vl„Ä!œª›í® ˜¡)~JTþÒC]bok TQs7ƒAÀ ÎYû”‰˜]“GêIó°8Ö󨽲m‹_WšS—ÒÁõÀT¸8Vìß^×൱j\ …~·;<¾bˆB ©Yv-WRxq6õøˆS)«UÆ!¼%VmïOÀî 0Úžø½í m¿>¼c˜ »8NZ\ƃ÷«Uê8áŸ*gO´.Tþ˜tMæmwÝ]&?ŽõUâNCiýñ¶Tu4V;¹tàOÓᢂÝé>FwþL…²ù ¦‘| Ÿœ.qƒ‘J®ÀyÙ©éO•層»‚ŸDÁÉÀ,þ?‰¯8ª­25W}”’t r9]å·Ç;U|É‘ºÉŽ5=‹n1=0Œ_›?ÒÙÇj‚¡D#c¾Ù; ”©‹qåv5ÓPu¬n’Ä•hæ×&u P8Å´CšÝÆßõß8ZÅ ÛÉÁ#_À­ŽÄ¦Ìg1² “ß­õ˜žËÒF*&GºË0 Ÿêa[a¿nj&V7ˆd·:å÷þâÏòäˆwÙ«©úoE%_E~Ät4‚½i}1_ûÉfYGùž«óºŠ×r_¥p‡ßÉf‘ÆîÒéKù7jM²‰‰u0·HÄ‚ê2M…hy÷ýz2¥óÀüiL_Øñ8IBÇLÃNû\ºd  7›M¶Å¸›ž·Wôz1æçÄg—þ±åQý`ð[ŽÁh @%k‘[HŸ¼(ŒŸµ^‡«òÈàgå¿Hª¡ÍÈÇ"ðÁÜÍaB×íHæµÙi¾Cù„•drf…Ô ½UÀ¨RúaSétx÷¡Ûßnü?Bâ0’¢Ââ9Ó™ HªÙãZïý¤Õ– Աʠ²Fá‹RLdö/ :m‘íwý屃Aú6TÙ™}ë²›‘Û¬4L\¨_`Ôß¾T™QÑý “+ÇÙ™s·¤D›H>ˆ×¢}ÞáÜŒ%Râ?œœIyî[Ó¹{-öæ¥YìÁÐ/yñw§+ÃPRG±x2±üµIØär@ =«’ï¯ñåaA!L}^Qqˆà‚¾ÚgŠ·—F¼OÌ0ˆÈIéaÍ6ˆCMÓV$ÅËôª¦Êu"—C¬äx‹Â:|mçÒvuaÒÂ;“Ƽè;{Ãß%¸±³Ù– ô+œGÓpÕ|m‡š,lí·LÍ,Õ˯Q¥Ô‰’É5.=lôo/Ž4¹å@Ⱥ¡ï q`ÐÆ¨ŸAëûbä©íÔèû%¶b`~QèW•´6Ç{ïØ!(#ütÑ*}?Ám—¢Ãxh=âžZÇ>ñqZÕW ‚R£ j~41.¨b=ç4k²H¤±Ý%VÚ€ 5–´RQÎVf5OðÊñezçé-qå‹^™xshŽG€rbæW> 'jêïÉ|cÏŸ{¤¯š³}ÐÍ^iÞ§ß>K­ïêS‘È¿)}$v%8Ì5¶ÉÉ£Ìg¾u1/~|I„˜Ð0õv– TÜÁp¢Èý%iäc VããE¶ŠA“ Ô×e4›Îw f žÍWVí6 jäûC8J'6`ûÓ[`×öÃDðà´ªë=&ÍÒh–¥Œa<Çósh;€û™Eû¸0€Gvt\v!F,Ú{Ì ?¾Ðù}<˜Úæíi¯°`ºª$WHV9i>¥L„’÷⬮pzÇ-w8¨˜D›Oú ëút)M„ÀÅJÍÂf9—Òm‘ÞïžÉ×§NmÚovA1ªú}K"N§ÑçbúŽùáÈŸ/×L&/A}€…Ÿ ô’[®šhk{QZ™§Œ«Å0wBâ2l T;OÝy!m³í·{‚U}õ7µÉ¢±ÅËôºï;ؘ8vU’>"o15§®“PýBß]¼·ù8Q'6ƒy),-Íg‡h°ÄÄIÛ PBMÊE[„wâÔö¦}?‡slƨ®Û ,…ëa2Kî®›Š ø#§ªPgÞ©5P UËu– ôÈ™Su/éÅî‚{@Äþs†r`‚陼?­' ›FäÓæ%'€4›H€¿‡°ß2NçÉÄïK5`ÿþBÙ,hÔÂg4_j@„Ç£¡™ŠÈñÞòÀ¢“ãe%È“òy벟iðì;—¶b ÒÌ‚bŽGÌaqO«ì„UÖž7µ~•·«t2•Ä¡”õñxÕú#ñº-CEÙoülbÖNQÔ²†úK0[ö³‹I´4ÜàäcŸe;,±–ùéñæJLk­óa­…§à³,`Ü*T ðwŒ€Ä˜ .NÀUôc§)ûPÍÊ |Ø"—“ÖŸÈ!·©k]i̱uO)²–SEŸ±×äRTt#º(rÓ &x¿Œ:Tò=¹¦½¯® µ•å}bí휻Ö@ ©ZþyR½ÃÔÁ_ìTº2ø.‘ †JIªŠ“dÏú›z—Úz¦É×ûÀ«Ù Èd <úûL+ÀöK’VãÐëvòf§\ç6AÇÆBŠ9`DÚšÙÇ?8p•œ¶ •ìŒ.cq$÷7ºÙ¨ªO Â€Äæ—œJçzÅ‸j¨r%·ÿ)_ëÁÓ.3!·®}£ˆ}Àæwñù7¬¶5\ÔÔ]© Ñå3Èòþž”©CC?©~|73±¢Ø¶Ó¶¦ÛÚsº9¸¥²âÌ¿ÈH+e®¬Ò Ÿþù8 2K9¾øƒ¯NüíÍ<êîeD8ôoñT‘*uì α5ÈUZÊY‘`¬8U‰ã× eŠþÇ;ï˼Rat1öH"q/$Ua®I•Òßôt˜`©Øâž5ÞѲ¬ëÀÞ¹-äÀm¢ƒ"Ä ÂB;äWMlCò1Ê‹N(´rÅuÎbâØ¥Â²ø÷÷AC£dV¼Ú TpÔsmƒ8tïÁuÚ¸ÎÈ ƒb,²®Š®›7 ‡|¾ ,7©‘³Bž¨%ËÎex˜Æ üÂÿÜÎþ(2©$“í°Òߨùeaê‹Â馂òÿPºž]zæíˆ9&ÿaú†?xtWG+ à¡x¥¡ÿ7\CS·Áî³j7IØDõ`©aãOé „b»ÀÍŒ+⇦íÖÊ1 pšÚp£xÍ$ ©;\ÉKÝ@Jê1íäÖ3‡d @¶ôäB¶ &|Fa_³Šˆ£D*ëÞqøesëwŒJç½ ìœ=‰¨÷]A‘£ÀLF^lN)ÓdGîðl Ïösâ¯Ý—ôÒsü‘f+7LÝïYí(1S‹¢ÉÝñ,réÑA¹ÌÜ__dʵ„ÍàýÝwÜ¿dfì„"Ö3ÏÝ0Ù|a+‡{S zBBÖDBõ'5é<ÄŸµþ>C´_ê7£ÃÈ,>OC~ƒ°5I÷±{ìfAW”iQ@H²¶ùÊ+ʉ¬J=ç¥Í_UfmÌK-qïµų̂úÁìN­l ¨òVHµ`ñÕÑšYK´ô3Џæêj±H²Öþg`¤ÀMæé@èoV.aè€SM€ÙŸèqeÁé9ˆ|Iþ`y c,³Ö‹ƒB# YJjäZo†k¹aõ­úSèÙNö‹g;·ÅÎ5ÍïÒе»6C~\-„/ü;ɳø³Šé¸IÚÛò޽7fï$,ðÛEV°ýCâp+¿ïˆ$$…~Ç1âàÎT«6TÏ+ ‘0vá·! Þ€(’¦ûW΢,ôn EÔ>ˆ@ã¸mJ ñm°f··|:¢?©-¼·6ÔÐ6úiÎa¿¹ÝOHEdܼãE#C¥†ìÆy m;øUk9èƒäÌd \Pkû‚ ÑZ »bS*Ù,­Å†âÂ9¤rÜv5­;‡¶/Û¨˜ A.[áÙIo Žú¨è¦ óÁWx§œ>Üb5£};˱Úfþ NO£XwZ?|Œq‹tbârÕ‡é"ìàêÂËV8I×1Â,‚¿s”Ó¾ô%ÉÇìÿȬMÜÜeÐ:.¡LV¹}!–í0vB¡( Ò4P ÅÜ ÛqÒ(±VHÔ´¡çÎKížåá5D+j#µÃ‘ÿ"Ôp™Þ}þšÝ4fp†ÖÕ {&Í߯2¼2£À!,ˆx4…Q¦qøw†^LÏjÂÇx¥Í,ÏÜ ÌXŒ·}A¹cˆYÙIJ‘™D¯ÊÒ(r¥{«BçÁóñºkç“ÞÁ¦²¥9‚ø¯Ú&Fä´4 ;’‹ÄJ˜XSPÀµ”KO¾e/§º 'ÏÅö‡hч'ïe« <Ó¸y¸ß€.xN™ØëÀ?Ûàõ Ö¹³tu3ÙÛ‹nó- 0ªY7›•n‚"û£Éú ©½N33'dÞyms|`ú•hîó#þÛ·úŸÿº–{ í͵‘~3¶ ÚüM1“zBwæ5ái‰˜aæ$Hc¯i%¯•3ô<äìZœE0o<¹›ÎÖa¬®A¥ïjBÎ ìçhÀ/Î ¼0G¿yöˆÊ9¼|eèì~•µŸìÉwq]ô:å)DØsf'•|œÌÙô­ –XÏc¾‰ú|êà Ég¸(f(PNRA-8З;ñxÔÇì³)ÿóx ÖS¯iDžš»E-k+¥¶®fÙ˾t ÔB8Bq}2fÆŠ:„Š‹îµ½¸ ¹ÅëãËÝ~sDåüªZ]@ÿůé|Ék©¾5>—¦"J˜ºqF8²lXG2˜yð6ŸSÚQFV×ÅÇhƒHÐIS½þæ4Ú?ݧ\à~EwRýs„Èÿ¼x:§nkþmVƒ7÷Bœò÷YR½Â÷qóò  MNã¦AU¡|u’¤ñv·¨LäAÉZ¢:"˜=.$“³vñ¢Äa?ÝaM®qi Ô/Ú»'®2h%í-ó8©ŠÕd,ªr»»¼@{¿ÄD¼Ýk×T8¶®¸à&ñðòbÇ¿gú#µ þÂó‰y½…bs¬î«Ü£† ¹;zËpþÒnåâ}ù^HˆÞ0vü/\—1ïþÌ]tpíV“Ïø¬ð¦V0îüU-‰Å±_½U$`”òäȤhâô®Î­ÄRÝ­[ª .n‹¿n:ór›;Ú©lµ#Ñ—dýK«Æ[^}t+ÍþFÞ i8—œì9¤hšú`mnÒÒ´‹ºøJ%•öp×}öOØf Íù·5D,Ìf…õ Ú&Ì$#xôŠ$X›²fÌrºƒÁ(i™¢\Ô¿.ñìw Æ'_êüÏFm™(âf™‘å½M6îÁs~¡²Ó…J.SÚs`Øœî¥Ós¿µ4 ¨ñÏ/·ÀÌ¢L¼BÊMœNDs{ß‘ošÖNâò·Lx1—À&³¤Sì³yÞ’ÓÑÃm*ÿ÷z”ÿV´ósGZ£éOtWƒðßWµØô Æöüÿ/ôŠ-¢N½Oo™Zx¾šÄkÝåcÑ`cAWT?$g®ýß Aé/ìlOK{P‚¯¬qªÛ>Ï=‡ÿ#gµ¯Ì» $Sô×3ß&ž­qŒ,¼rOb]"ƒû„‚â[ʧXþi²u 0·šûË÷W0ûÅü§')ÙØÊÐXÂî<]h-úYK07¤ˆöR§>z½F°å‡ú¹F‚?£ýlÝÑê¾ yÈ=haY~ i©‡á•m"¦~4ö1.òædÛ¹òl½¨zÁá›éA'W¶Xü‹k{­ÅýQ|ÀßõédÑŒTí÷×ýî(qø,BgÃzÝ„â÷Cþ€º‡Íã1×Ddâ[Ù¯°æØ}•ºÛei, ìrúD¸äë­n·J×S_¥[òÛR™Äê"€€»¯¸.ªó뫱¢ãe¾iþ|5_û»ÝóxÇëk<7®l L߇ €Ú šÖÂs„&Ü ÎÌÖYŸÄsì¡3“±ÈâZ¯PâM’£^X‹äE-íD@0M¶-œ-Á(¡ÐäÍ[×ì`øÌ¿áÌô\y©PúR¦l™©{—ÚÈ…ÒFhž½,G`^ÉïƒqÑY)ï9åbƒ¦Çî¹³Ü16§ˆfø¤ôu “¬‡¨c8usfö’m…ŠþcÒÅî$ÐmŠØp¦mÊþÉ“j°ÁcbÌÀ¾5YÕîq©!óñ·" º’ƆüÐ4g_gYíÂö= (fYöï~Je–„4"¦•`t@LÈ“Éõ‚&ÆqÖ´U;žªeÊNŸZu:¾o 2™ôÙ…® ÔxÄÄ‘;Ð÷p9”¾öµAi‡À·‡=Æ@ž1¸{Ù¤öͽ²JÚ\xcÎÑVœoƒ×’JõEµ·†}²)'î‹‚íK-έ¨| ÕSÿle#€»'KHоN7 ‹;kYÊÕÕÿ¼$½åöDßðô¦Ø‡Ü;fOw‹´ˆPG¼(z컑%ÿ•úhöHÁ û“U‘Ç?ùƒçw_Á}P §•øB_Ú›í÷yÎW}››q@n•æRs¬•Ö·bœžˆ§¤E¦U.`¬ò9 „w|+è{òJŒsª§†û ¿îq§cúmÅÉ;.’ðc˜‚oËV(º8Y¦M5o¼`û;PxwÃãàÂ^ÒÆW)`óÿýT»ÇgZ¿xªä’;I]@ø:k=><¯˜w.ìófΡóÔËN³5ö hUŒO`'$­ÉWóN„Q‘ðMZIvqjäT †ýq…Èt°9ncEŠî¬Õ± ‹®]OŠH9‹aE¤GT¯%ÍD´€‡ÿÄ4 cv¸(ï xMÐIõ[ à.¤©vhuoíÑÔWŽ]Wà$ün›·~u=ð’£ÁKß{•Œõí&Åtë™[‚J̲q§Vþ±G„-¥"¾Š $­ò‹m0¢ƒ Êz8‘­c㥒¬p„µ%}DAjÝãj3Ú$[¾']a ûòj¶;ðÓMÛ‰OrŠç^ů5¬Å õ¬à¾º½g&Æcg¢ É]©‚žQ1BÐ1…8QRorÃм‡(¶_iðFÒõ Ìr¿¦ Zù"O¸WK±yá-±HLîý±rº®ƒBæ4þ xéÍ 6EcÛ¨VÂc]YV#œØn*=•næè›TËIß"E»5QbÖêÎd«99jý(\Îé1ƒ<6•}¾jxD —×ým ú¥óñm~;§„w Í<‡$$Á Cûcx´ ñ*M´C3y¬Qk)^ö·osd³«s!}ýKVB.A ö‹2êMMçà~ÿ#½ûžì~’¨‚ðˆ@WxeoÄØû$Ó®Ô œy}±—Ÿ©lÕ8–Dbc·‡?Ï1oùÎ'ŸÂWV¶cT Ñä{žáD¸WdÆ1V¨ù_…ø¤Ã۳Ոﲀ'šêL¦p8N£Ïä®LŠ•û’Û—hÊ*2ËVƒŒHÆLˆE „ÍiúÊaÌ9‚:¼®Š¡Å˯šÌŒ"5Väw¸ù¨ öà‚͈Í'ZO"ˆ Ì6ÈÃë›i`q òˆ‡š®¹mhÌ«aL€…,Zƒ]~wÅÙ3©ïBXþSË'žü³ºÕ…#û‡3O8åo´œlO•îRK-Xi¹Áø˜>(­â8\좠ígêS³ÁÅ¢CTò…æ³%x d´?¿È£†&žÖ3RhÃþJ¹$„²J´§„ò}U Ì„ ø%0&ì˜Õ^J×Ùê#¦ã#ªó·Wc)Š ˜x?ù+Œ½ëœÛ43–“EwAâ….ù-…çssGbßÉÿT­]Ãì%\ ÌÉ-o°Ž×$¿µ]œÍu˜P²p Ú6§–‚b»PÛ¢õÝÆý»¹!Avê£ÆÇš1ö/–îðüm˜…‹mñY1Ë|™ûcY£@Ùÿ‹älnÃs×·Ò*GêFDs–1€ ˆpfžƒC¶$øyÀ5zÄp¾lî  ‡²¯Á’Š*þD˜;6@ºî­!žúì>ka¯uRe®ËŒ¥r0Çœ.hNëã¿ÈÃ<’) ãkÔþbRéH§:S3’%0.ÓÏ”#¥©\GV¸Ä¢+1~ŠÞtê å,Ü"ÔY1Î.JçÝ$n Ÿ#¶µ¥ë¨£G®Ça-Æ´Ä,¼[´ó8ÉAøR.IÜ]Ƙ*ŸÌÔ7ìéÝæJÏ}ùÚ…E‘DˆÎ~Îà•ÛØ<¶¦çƒóÔ²òbÎB­[ š‡öÚzz*×´ÝOxn2ô=›\òŠ*”KÅ{•ÖíÎDÜ8Ën3C©XÈnð‰2ÁÐëñ”ýbôñ‡O^|ê5_K¯ìöto<"En郺\³{Á÷Ö¦¼9\€Í.À‚ ˆ4=\:âú؃6´òIû©o—»lowËDðÁÄДÿë؃h'ù\ôCåul®(°¨>© Š2˜Õ"¿‰Œä”7;¹Wã"¡í ÈÀ@¥…hŸßvO•ÁÈ)8*ÜipûFÛ’S˜ã&éå&#•E« O°á6±u£LPêTÖ¡éÇJÏÿú’ 6K´-/³7Bü*ŽdY§ïÝ‹¸»&¡>£¨ƒ¯¶÷Æ-©^@ifbRÿÖ_@–ÞeQ6ΞÀ3]°Òq™žþléò.ñ˜!6>XÚ›?  #y¦Ñj5\óÈm?Ëwˆ¤ ³öéŠ Ðj†|m²©ÇqÆõmW}'ºÿZêÛæ–±0;…nÄ=å„9–Gz‘K"âÿ´ww ]À¨}–ŽZòi²Gu}õiÇÛ@€Ö­¿§éצÄ+×™µ!+,ÚM9ñìѾt§yl^èùX³Ü2}G¢ËÅ2‹ËFTÄ7›Gc>YÁçš.I+ Éæè`#‰’C!Sªu•îÑí¾*×wGÉaªnîu«MŸ@Qq¸Ï—Q ¤%Id4‰Z6Akð;yPÍwkî* çÜ C?¹7Š¿}Ôèy…¥¬Èª±‡jøÚx¼J‘_- Í— ,Wb >ÁöIÎúP—­þã1쟵:“„Ÿ§ñĶ®™uH*TaPfSÃåÄ~‚µ+W¾2 òº2ï ?8&CÞè/úg7‰¿R-­ÀÜj៪‘ùïtßfÕ<û勹8ë( [5WBîþM¼ãÿyÕoTAHòUy¬FeÝ ý+kX€fÅÙ8 RÕq»DÚµf°Tá†)T!i½” îãÇkVD#æ[À2}túª…Ú ÚÍÀŽÉ)ù®eq@Êîk€e"‚üÊ×£mö~4½Ÿ`3²³Q‰åšh†µÁ8ÍV%Jõ4‚Å YÍ”“íOÈ¿·åâÓÀ4>ŠçÚåC=}XÏ3-"±oY©ºég{%@ÐPã©sC,°1WíÌê Lc5°p4J0±ÀŒÃ"öÍu}®êžY!rC©9Õò©u!órØ1_ÄžIzÎ{bFâ+1œâzèË0®±™*+ÉI„å©’†Ú[4ÉžÓÅ“ ùµ|õ˶Äcúô#MYe]«2_Zu½¬K_ìNèŽ_ÐK2Aå”3ç´³4ãf)Õ­ìKX¯˜Dx"ˆhHu²94Nr‚»Æ|Mì׈ŒÇ‘6Èâa1þá}3âå8`üŸÊj`§šálMriú-‰‘@òPƒÄI•5'~ÍÕ«KôodÓÒ'›@µ©ÿ1˜ŽNè&ûûÄ¥a`l0{–Q=Ù+C#T3õ=n°5½Œ0 þSí@:­^ÈXuÿjûƒ@:[´Ü˜Â5ÙBAæ›WkÔÐìPÙ’Tß>}I?&À˜Å‰åÐæ7ø(a™ºÎ¸_5ðTÄI‡FÄŸEÏlœ…nŠHÜ [ec½RŒÛ:ü›Xò#çYã]µ}oªÔ„Ëßá£ç°Ô ²+% ³ƒðx¡Ú}¤ïDEr%‡²ùò‘Ìp/K‰Ö™Ç<ý³$2áVÇÿðbCY'Ó–y;lí>ÄÂkØ—‚É:X»¼Ñ%:‰ÊMäfiÀÔI*]›¥Šþ—Tfȃ$¯8ÓœójŸ¬·’ûócß÷ùóOé;kD›KžÖÌ‹Oðoy?î²~/Jš[ùo¨Éíü ­³a¤œƒØ”¤ù®ÞD×B$Œ­’XMЫ%âv„Œõ×KO?ôœ¶Eh” àXEÛ:¦Ýº0GÐSÄZ¥Xgu% !kq“еbž–9J—<3“kD¬4¸¢ÿ]È;—õì^X$5XiÒ(ϵB_Xú¯du’²ÖñÀyèZcçÂ/ÔwÖý≠üñ é>é–^µ§H¬FJwNø¨Ô.l^+õ¿õ9¦ÀþiʈVÞ87òëðé¨@—úê­ÃÎKD|³EáÚ>¸jÆ<ç€@*ÐP;åÿ,CYàóêίO#tÖ@þ7@cÌ© ܲP4Öø¡<˜ˆ‹#•ˆÀzÑ‚e†#¦.¯cBŸ‚>>ÆüŸÖ™R#ð†¦t3Žˆ…ƒYn퇪ÜvªKÄÀɺú]o œ))ÑQàxÑØŠ9Öð©uÍ´°çÀ£ÙI¼«—“MŠónD5Ç«ÙÉ4Ì&ôçe|pì{öƱ[j'š1#iAŒ{!,Q¡Ü8{4:5¥;Gáün#ö¦Ö¥ämê g.¿¦¬¥‡ù°~~‚©Tþêí‰$’nú5‹‚ÊŸÁF„î$¿Ž[”±ªËÛ /ÇÄÍ•Í8Yjj|ÁöÂßÉáºäi«˜ªdól«,lgF†¯Êû87Z\k@so®Øz/¥`ƒë¯èê¹´ èͨ9쀥¯tœ4Çói9›@Z<“ƆWYy’jIR¯å‰³öº=œ¸y:kûÜ©!xeÉô±¼L Þ…€dc¹[> õƒ­]‰‘}$k ‘Q#žjÆ™*Ý¢WOÔDßïÖ7ªW÷\²ŸÂÄk9j{b]*s˜¢èjIö××j(œ¦Áƒƒ±§Þ}ÒAèºÅCåÞ”ïs¥fbF#ˆoXßÏÁ¾EÀ¤½HIÕÑÒî£Úê<ÁÅöƒ ø¡ øèý%Âî/_ |¢¤ïåfbàñ8º4!b$Ù’yÜÛõ}‘ üö°Ò¶J³þ “Ïî¦/…L+zY½Šˆ¨yß_d·“=¯9oÀ‡)¿¤ ·ëK©\|Ÿ·ö%¬—œ‘I'ƒÉ\˜Á«sqB&X$GR*<çÆ ;²Uˆ(rˆD\úðÏŠ™<¬Yêš–])â7¾5?BçÚÍL¢kñ2ªC­Ç\fùŽ ïŽû9у›v­=sÚ¼1É¥ñƒnÂÌÌIšb¨ß¿´Jñ=vÞ¨ùT˜ª%;êdÀiÍÈ«…'ƒ,ý70ðaámÓ¨•PØËj\ý±(;¼øƒ¸§¢ìÊQe鉸ƒNº°ìËÓŽâ?>b©@;¶Ü£n„ò%Ú .˜¶×RÔä2³&ý”vÊOoêe6á{ÊUߺ¿+üO” ÆÌõ2=ߤ¾ßT‚ajl]ìOrf ± cû$7]ÍæŠyÐÞhOmäÄ3äcÖcËfs ÈÕÇ÷´c˜ekk?Ú \T±Öï ”}[ƒcôÿæqÌs=©;¨ßð4Œ»‚&ÇÓ7&© %L‡+¤Î=} >ˆü:Ä¡6¤cU%¶mTùÝÄtîË®ûþ¼„#”Ë “¼í•À]ïáãA~Áò¦!ë8*®Ï Gäîf̯“×=­£E.Lä—%žÞö¤ÞÏ<™C·âÍ%6AƲÆI ]]7”Ž&5 !¦èŒFÒ©‚Ó¾¤Ú±Ž)éÙšBÈ8˜Ï•½àÔº™ê`!ŒÈþDÍ.iVÉ&žàÍ;7ûTà5\Åñj-™T“­ï€%i" Ý"5ÚxOû…®’jNÁ?¥ªÜA­Š’Ä=Ó–¦_4OÙ®ƒœòðÌÓ´_…íïéƒÏUSƒÑ’^Ì 4-G} K.Ÿ¬Àk‰ý<Ê `’”°Ù|K¸õÇ 6E\â£R–vÏÿÚnÜ‹‹ž`Ä/YÜÇ@ò»6F±·„_ëd»ˆøàW”“AØŸØX†G…Ú07K¤«;FuÆ•kõö¸Tlø‡žÂ%Xe¬ï\`?Þ©¡wZ³šÜÖL¿P·LÒ66ÏœƒÚÝEðåÂeü(Ešö·²ä?xB—Ö,Ú˜ÖV% êG@"Ђ Jm5¯Oïq÷x„¿ƒÛTþD þ·¤Tµ‚ÀSDY¾^Ûx÷ÞêDº¿W×ÓüÁJÇKÒíFv1×Ç|@2À%î¢9œCWt*i°ñÌÀB`dÄqï/7S.‘场9°rÚt jýƒäè±£CƳuÀ<­þÞ‹7¶7À£¿ï”o®]¥ÃZ¦ ¶ßS@‘Ò9ž€²K1ì~£M.¬˜"[arUiNXwx«È¶TúŠX"ÅådÎ øÿ· IŠ@0€”“¢d Á>ÙéÊB‡©+ÝHšM¿ŠûŒ£D ï"²;¡pXò1U¯hçAÎÿ-\Œ‚S ;ÕÐIIGè^ñ|+Þåa,oú³œÝ\Íÿ)JýÞºø-ÃGû "ž|Ø#8 B‘nßU˜P6ö¢ûßÄÚû‡7Jf•©?¶ôÍ\Wo:笀ZÖ^ÁÁLÄ© \à:ä0&šRoõÚEZ.r‚V~¢c³X³(¨×i9¦?OpÒ1Ö¥?…õóÄEówšLyüêò$¼ôé­“,Ö^{•í O±z—cÎ$ Y‹©>Üþ^zñàÓXÔÅßÕ¼x=¦4ÞVäZ ­=þ IäžJ Ù}I®º‰³ïw&Gc­$ÛsæÞé/‘ï÷{l/N÷èsD&b´ŒŒúZQU3î–º;c»żÂEQS:ðp`×ý°XÛÎ9Ï®Z7웢üv^"Û†ŸfNQ‘yEgÄ‹é|5ü˶^U]Q‡KEJ\Ò/êø„Òîå²Ik•Ò(¹sÂì´êý4ÕdÃSDìf Ø1਺ëÚ"Q)Zd}³ïe6+ž vßLßoU/Ûë>Ù5dämIàøŒŸž*@¢Ó¤zÓ¬>Ìm}jÃ.Må¯'÷6 A U"b å’_Fík²èI¿äÇ*` Ä1M”˜¬ƒ÷¡&®x¸îZg=+KóÜ™×Fš¶&tSÎP½ž¦ˆÌÔjJõR‡%ÏØ)>šû0ªÞðÁ $¡T¨l¤šàdì©0û>… È‹`«!æ20“[2¦¨¬¦¶T™ËšMþ”$­çÖê´öÜNJÏòLÑß2B2í€ëYÂy+³&Âñp)w‹oj]}ÖƒŠì¸(#NÔ-!·áŠÓÔ Üd'+ ÛÖ¶œUÀ5ã^0­Ç˜°‰9{Öæ•š§ï‰š F‰D2£>ÒæF}å¯c—øF¼0S…º`¶@mžRÀÛ¶h¹²v~Vp\@ÒacǹPû½ HÎRúçðÞX>€¾3¢}†ySh ¨Mr/ŠÇ¯‚órΞ“ÔÕJ'}Û3'é¤1 ýgb?ã½$ƒoys“ 9 ¼~U´1tŸ÷Ï(ÈG ¶”VÍ‘Éj=\žÆÁïJ¥^©#Òiv¬"gyÅ jj’\;D•cÖp€¤r½¯}òäÃܺxe¬‘Ĺq" ¯Þû'8¤@mžsÜ ‚°ädààŒ†áR4p[åyƒàvE±þßQgýPõœ-4í1øqYEý£Õ€(ré6a<ƒâµ}ïø˜Ü7s|@ÖGG«ÑÝì^öÃÿxp’YÀíγpÕå¡òT·[€_¶Þ³ ë›raÚRQ褰#²:mp9‚=ïð08ÏòM‰ ,]8âEüÑ<ûZöø( ߯y›šDƒ /üÎõ9iCÿ¬FÒÖ"zHç§”g œ­|O»Ë ô¯À)8„ "á$?’,%f™éþj5nLf-ôÝšfe‹‹—2koj{¶¡g»B{Èæ¼Ñ4qnÈÀíÄÍ-b©zOÄýæÿóŸoFîœùß¶‡ÜÖmêýŽSÿI„ªe•hyEÇs¬ ÒW ÆzU¿²ŒSì©2QD'•¨FT sö) ‡c²Êš%œœJÏ-Åž¿’ATÛ^Ù˜|÷ ”a}ˆ<{f;{ã·ê_³ÔnÐ/‹Htýµ5Ùaxs‚.y’ôÇܯp0ûŒ=ÆÙúØ-ÄpÚ¢ÒÞÚ`’ЈùBâ(ÞÓ=ìB’"I\Póúx-ŠL7 T1LâJØÎ ʹ$ ¬þ”º°/'ŠâÔî:yÄ^-£•Á…­òÄ¢nœ9g@~eKýÔXîö³rLi@ÍHñ|eË`©¡u]#*Û –³Û½k6ÃCú¼G%ÝaùŽ–mXØöDëê—…Œ\íjÇ&¬j¬j°ù|ÕõN¼\HOŒ·­Ý !"’ë[ÓÚŠZÆÏG“ï]Uñ&-Pú‹ˆ[**«õ§\3è„<k.¸íգYEVÀ|$¯M?¢è䤨!H‹›jÙU4,7 $M¨„ó”o{Š÷Dn8(iөжÛñ߆í6»W45Ìä ¥K«1?ƒ¯·ô? äš„Õô6ˆ[CÞ ûL©èžxÈ7 ù~w•næ(åÏ :åáRt<Áþ[qo´T=ÿ3B[­G¹b‹½eÂ-0ûºuÂ~Ë–ž6Ü÷-Fµà¥‘erú…„ á­]ÂE.>ÿ(~“ä…TB**œz·½Ô¾çíôýo߆!°` ¯óæ,ù³ŽŽ#„ºŸQœ±I»Hpºr⌰‚Ë{fŒÌ¾Õ…“vPÿŒ–´^×°Ï´² ù×¢ÂÍT¾ÏWTò_¦ïÊ»âÊ÷ÛßÄнJDZ°‘µ˜˜Å“ë޶5Nu=^¯ “ˆåÊ‚÷ ý}Ðx YeSÿ€¸ÛW]^MÊ2¾û(QPÐÿû-«t©ŒHþñŒJ›ÇJ™ââ!(Ž'㪳FZql/yŠïÀ:Û3‚.bÅl—§ÝýîgÃCØcßþéŠè`²©öÂX͵+ ³RîG•Žc„I8žiRøÓiÓsÃ;+Â#Ÿš^‘ñ›ƒ¥á°F£Ì¥rVæV“ü´«—Ymµÿq1[Ø/›OUßA¾M€ò2/½bë¸óÖõ’NûÿÏå…IP¹cc)ù&{ªÜA”®__ÄÃÊpk,{ãÌn V9Ëê9.VAZmÝ p®Gyá9À”à8JË×é…U2ÝÅ€tWåÕ6!ä‚¿ùL€á;"ºH7V ]0J¬•¡™ºêÔÚq5›ˆ-ØÌS§œ‰¼òo_•á‡jC‚F1ûùrZ¸¦Ï4ÊE&®WïoÉH3ùGÝ»‘d!AÓ¯’ål¬kºDÖOKE`2RÛbŒˆMEY4üB¸©ò„׊–ØL60xS0ÿ7œ#2N1/An,È5(fêÕÊ¿MÒUãò`H££>­ðáÉ,z¡»w+PdOa%)³b eM†Êà´üx©ñ¬9²¥ ð"#ñ£uB¹½O8]k:-ûïÇ®ó+dSÔ‡#QcJ´'S…hØÐ¡<Ü,;ïŒ*QPu©÷z§²£,¹ñz|ÓÞw­K8J-L ^¥ÕKKŒ¬5Zq¸³êSkb4ý|ùÓ¼Cö0—C OŒÑƒÛt|4ï÷ôš_é.‹ƒËdC*Ú§òaGŸ 6uȪÙc&Ì‘Ëj#a¬]H=Þÿ¯²s‡}HíÄt‰430µ‚ ŒîñdZB!ÅàJ¦™Ü•Gîìã¼^C…¢t9y”ÅQÆEF$ô&ç ¯v&䳎ŸÝèh& ¥Ý£Öí‡qÎ\¡“źƒc°’®-ukßÛh\Ns “·žŠæµ7?D°X‹äùz8×ËÂÞV »_æ•„ÇF|;S.ž5𥰭"8Üíä®`þZ'ÇÙ\›Rþ[>dÏ)6q;äôš2NæŠ>€…fº±HqÀÖ‘Œ£n}²fÛR°@SÍ/ú¶F `ïiŒ„oXDÒsÏ˲2ÆdàºÈÏ;ÀîµóHý¿É?{ã¶mxk·lÎdÙ=Ë ¥•Fê]4òTMá>e‡ÑôÓsö-á¢×·žš!Z‘#øa›ýv3 ¥[cÅ£©Q —¤ÁIúbXôRðî»Y×oT@X“Ü‹˜#*‘“©º–‚. Ÿý>2œú*…U_dÅ´5Ãbÿ5:VI³ 1²¶suoཅ'£™ššì˜s]M EøUé»MŒ›7ì&-óYÍ~{ñ’|¹kdÖm×Vó%ÏÅë£× ø7zÐLÊð&㉔z”ã÷8ËÖïaaØaˆ¾xEtIh êLIû‡ôí$*Í6žd©¥,' ‹E2«2RvEéüF€U#ÊêÏe‡ˆ¸ï­JRM»…]œˆŠ™M JÁïJ‚vž‡ã)Öós´«7wi¯Ÿ0.(ÞÔåO Ï©NN4÷aVT251à?¸§ÝÀ—&.J]ž‰PÎÇß!Ã>¦ïú=ƒ£ ôHAþ¯&šƒX‰2´ëG^\yêoÒÌW7°Tá`Î=ìzØ¡áÇM7Çì7mÑœ–»Ä7Ào(QDJ,¦ØÞ® º[‰ïÅŽ•ÖIÜP¸j^Òî Gç†|áòµ»É—ctNx½Ì‚®®á1¡dœ …¬üçÄÞ[SaçH‘Bê¡ñr7ß°öÞÇÞwgéM} §·s¦«$Š•ƒ„;«É&”¨›.¢‚N”`ßú_O€Ü®ÃéH,;½TN-SŒÚMa]°ÀýUyÿ³Eö¦×eŒ¯I)c9û2³t{¢q{yQð/æ€*L­A=.†ñ¾î¶)߯õ‹BhœÄñqÇ›héöµ9T6ú>â0P„%YZ¥a3ŸŽý}ƪqÒAoäêkß0·•Ö JP÷Vìl–ùS4SUY>öbÁfp²èSMö˜îÁHxYªç-ý½QFÈbÒ?íÉ>œzû-Þ §Îy3Èl¬8÷w“¤NÞ‘ò¼Þ'N‹&1݉+) ¾ô7×z”T£ÿ1íŠ@NŠÁ"ÓG/GÖu2ï~Ä1ª~ b¶$Q·çp`ö/¼à3`Çí{p³®ï†&â3“"\é+£´]„m™Ÿ,U/å÷n÷•ö—ˆaJ>¡¢Mðµ6Èôjü›À^ÿËÙs5§ËžÛé!îàYr&%±m9ÓÉÍÿ16Ô­ pà£Üÿׇ_• ª/rZ ßùXbߜө}\ð<Œr»/½¡Ð_ó—-"–—#¡owRÖï®P¦¦,÷h«8ƒ#ßùQ76žtg,]òR Tì °m#ë}¶Ú>Ëcrªh x3¬a7ÈlÆÅ«"ô`*FW`ˆ6ÑÛ+‹¡™è¼+¢Ž6í³¿cQº¢«>UrCŸâߨkQ1U4>)ð|Ì)ýŸÜ¥Ò3ë¡)Øò7–7Æó2™›wrë½d†p<½BóEѹùªûöÎEÒzÇr˜Hl¦èA¿¢½ñŹ+׳æŠ]Ž’[RÁŒò#ïb)¯µr`9]Gh=óaôdÿî]2¬[z½ˆ«÷FfK¦“ÔçæP*3"xÑxò× Åw·+„(Ï%Q®'cºW²KH þK–ÚþÚ“tµ®ÌðÄboiª|}]%å‹n fº¡(]KöàŒ=U4¢ƒÿ¨°uà-¹°UA§†62a)¥Vã’ï_êÑË„¤4“>ô+Z$Ì2q¸œ Öò ¶êOl`Ç>€+I¦mÎØµ—¯(ð•¯Íûú‘£›Jò¸ÛÚòúx8›%¡8°ZÀ+kx¾Å2Á)‚ rt„W}Ùè5¤»uR»½‡µ0úIeÙŠ Ž{ƒâ¼®bà59X¢O@Ž4EB: ]9.Ž#¡ SâZvc8SýßM»G)Ίsƒú%\”¨êU˜ÌV¬²þˆyú»ºp.ɺÏr5m'Óyò“|£šá†8ÑoŠêï$žXTEá{$¢n’ˆlq°§kQ@ê1süݰhí¬¾ªñ¡™ÚbYõKPöâÄBŽ´nªQ—ê¥ù#PlÖà÷Œ„Ú¶m‡Ô•ÚÙ‰çx.ÖïÈÁÊ“@‰‰µfy¾Gx\ÜÊ{°_EZNæÂ«X½UõcXкfGc¢ƒúeŸï>þ>þ™öŽ”KS…wSÐ|æS,4Ñ©aq)ÒJ^ _ül o‡øÂP‰ ~y/TÎt!›>³ù*ÑÏh™ÐJ‹n+5UZÐSaS¾]9,XµÆº&ÚÛyëAžÕä-J­›Ç†kÊ•µS¢‹êè‡2Sfeޤ ÇDeÞçžÒRüö.ànƒuªW@6ÁÀéØÃVV°™Àx—†©yÃzÞ¨®=®¿œ κ¬ëÙÝpý$¹ Ý-œ ;pò³mÌ]­ÀÜ·È=óÌb<Y°¨ ×Ÿ±æ n$©#õ,Æœž?q­ÔÔ/¼Ž–7ùÙd¶`º¨‹ÇJèu£â¥ÝJOû©‰QF éÇ žn†¥@hñ²‚}è]%‚´¦…f·-H{‹ïðC3™ào\l{¼Ã\aƒuŽÇ]kUüáµ}>ö ¶•£ÇÙÉzue N/¤è«áþà@;êƒHã•´)Fr+¤fU\CöH„”“²ÒZ«$¥` ?ËÆ¿Ãm˜?· ŽRÝZ’8%á`b|°`\U¸“JîR°F- |ÉߘD¼·#¯&('N¢àEÀ[yW.ŽÑfÌìýw‡†Ûš|W3× -o†Àd<{ÄõT% !ªán¿˜FŸ !ˆ’xH'Τt<µŽ=߇»a¥y¾LÂÇð·¥ï¯~Ú%uWVcˆ1ú^}pâ>Ìì}GæÍF%â’š5¥µˆÄ¿¯aÇ X ÀjóRÜõZü\ýÒt[·ÚÚEÒiè:£¯2öù ´`Áp7‚a9µnzƒù²žÁ C20þêµÐǼó/ÑÎ$˜mpðý‘Ò9ôÂövšuÐO°=¥”‡øÜÀý©*ÒˆÛºBm—f½ý¾7„s‡ö£ÿ k—ã~¿^ljÎ%›úÏêÇ7Ücàæ?ˆ‰áã¸UÞgZÂL„±‘h¼Ø™³è%:2gl _ôý‹ö^ÍB\Pï,GþÅqä³m ÀkˆÜ®õêöíλÁM„¿éŽšæØü`•ãèoy1?&𧇾­*T&J‡÷àPÄøßvfAs þ÷°2 pka=2Iy\­-ƒçxÜÿ¾ó™Ð÷°" sBÐ’V•²î1ä:"ÛŽy`Ê…{Æâé-Tün~»¢lÑÑYÌ/f­í·`1¹ `Ü3^¡Yööɨu´[÷h:øéÉ÷œ=ëÖù®6sêÕ±NhËÍ"e掺œ± 'ÙX-£{Ž Ù_¹PÄ*½‡V ón¢ÅyOö×{úd#e@‘ ÿÎ_TÉ5Êæd¤yß|:ôl¢ÎŸÁÑdÔXð‡éL†î,àýÃùù=sÀýRäÇ΢rWðºãÛØ/>fª¬._^êüÞáx)h{MÑ›*Á²1pæà-+Ù[΂óú4—¾ Ó/R¬¬²Ñ*ш¨)‡^ƒáÐ5€ÂÝ»®ÇþrºSêœ×­ÎkÈ”Fra¹v?ÒŸVÿû$š˜=.¢‹qTÕ'%q×ß:#È%Ìœk6î ~];­=ãð.‡Å LJ×°ÖÍåoÄÍ@@»U-Åvi æf‡fÞ’ï!f³‘ìõ R.%­¡³›M—z‘J«ïWØ~6›&Òpy¨:–|  =Éæ ° €Å.üH{ußëc‡­*R´¼Ãâiå4¡ÖP®HyéÎå€Ó¢àµ ´Rÿ½ˆýRÝ­€ÉŽB{VÑzÛgê•P–(Â%„Ý?…ï!ßÀݪÑÝÉö4IâÉHŽs‡ÂM7ͼ)êÿSaLÁ`´…1Gq —Od81†ï–söDŽ‘bêgF"$ö2¯ÏýƒEŽc®SØqÊóeÙ;‘k'ÐÀ¸DR—Ãå\ò9+l2Ì¡ïÖ£¤í² WH¬"—zÈGÓrÆ¿i( P!ÝTS¬‘ç´ÊÀ¢~ZÑO~Í¢(ó ‡JÊ1‡â'ˆ#Kõ׿*^åàcS‹ÄŠbþf€í¾•åÐeͽ”¤ŒÃe`½-å† |¸ïõnÑÌ! ²]‘Ãæ´3·‡&’0®'ÜoXè8q*ÖÆª–“gŠ!›C5+Óômð²3r¨»GéãŒÕÒY«Þ¾v‰üdß LÝæŸ%òϬA&•'äÍ·ø’>rÜ7Ú¬gµ¤ÀúÔÏÌýAÄŸ|Ñþ"í€7\=kŸú`ñαꪈlÍÓ ‹ºï{7T£ïgÃì=Ù•bºBÈ£‰$œ!GòÑ(ÿ˜:¿Ð©¶fF6ÎöÌÂC$„0Ø=ÖæøxQPø7éïz5‡•Q$Ù¥ÆßàÓôgû4&œ›ú)Åãv–ÿds> *?kë]ޝ˜2&ØËëš/Õl»I&RØc'K¼„¹ ñ)›30Δ++‘qÉH†5¬CºŠÓ“Øç©¡z±;µb8Æië ÏÙuÅŠOL- ÚT1¡exŠá I—˜WsŠL!—ë´¿‡¿q{॓{ÓEÏ8¸AÔ½nÀˆà’Ó57Ø­‰¤M°]ÑUÖGËoÃ[ü¡È¥Wë!Èœ=*ЯžÿÕ?£º}p YwR‡«ÓJC8ÈT}SP2RõX5~yÇâÆ’Û–ÙDO’¤~I©BÛc~_é"9Pÿþ2ùÏe_—KMegOpŸVž™=ö&™¥wŸMù;‡dò_@fØ;beŽ:îùàµÐõUàö•­úQiy :IЏÎÚ0ÚO#½K‹6Dîìd»õ’4bãXKÊây[6ÑAÿÈWBºŸÔ­sJ#æ…û­ÉyZXÙñê”7q äÞ†¹}¶é)Žhëå-2+Ÿ;”øCPú‰[†ÎóÆ‘žî½”]ódÐbYH®|£ío%PÈyøÄ9Íe\º>8¯¥Ðãñ³Ï¼îÈïc¼þË9DÕfLKøðApAÁì)¬ 'm¾Nx®rÌgdÄ¢/SÜyÀ¯Ÿ®vŠ‹|eÿj\ùÊØ—J½üëOÜäð/>%wgH†¾ khÞ{rµ%ÅãïwOŽU½ù}­;`¸¬…)«­·­=•nÝQ©ØKTVûo[XœT4Ôý•á_9¶a~<|§”Ƨ’Àf¦ô¥ÓÛ‹rÓmœÍõÄê¸Jnr…:»>ŽöÄ!¸Ö1‡–y>7Jæ$M·5÷~#ˆ2ž˜GƒÿÆ}Âc~ž¬f‹?aÐ(ÒÐáäæFØÍë(&u™x`~eÖ)>_½)ÌÀÍK.Wu8`í«Sj*—&™}6Á¿î®Ö¢móL\•-ú”5aânÂTÄ•ÿ `Û•öô2öÕí'Ñ[šïî¥Xìh‹ Ð| q!äž²ü=#¹>°ä§iýFY·\Æávÿª.i>‡jF²=â猲·glë’{1¹È/ÖG>ePpîm‘—N…Â1ý† „@˜ª²D¤ž†öA¢YðÕ™ÚÝ‹°ãŽ Ú¹%áçGá&O‹ât@'D2 VF²-™µIUx±>´_”`DünâY …"‹_ÁR,ʨ2Ô…Õ–©ªêÊÚdðÏÂý#2šÕ]ܽØ&úï“{J\M’~ÉÒÚá·‡†"GnÓ‚™Ÿ®Xôp_t—…ª-Õ!( ý±%6ÅŠÉY›‚ËJF¨hó¬‚c+ÌÆLî˜1;¢‚Gp Ͼ0Ð{á¶ãû„”$%4lƒ ”~FgÜÀ«¡ö—¯ðžžâw_£c𘞸‹ˆÏ¥ºvqo«ªÁô#¨g—œÊA?lýb[¡Â‚™Æ©û;–s×åãh"pc¤¡OtæÆûWi½uužžâñ‘¥†p#͘ÃðŒeF¤IÖ 6^rùÈñÔÀB‰ÒÚUš—±w}ž¥™Pk˜l4¦zÓÇx>©§i-„¤œ(¨ïÑ*øÐ¬¯TöÞ^Å}à#ÀOö^— ´jùӨó3 ë~c®2¦ÆÁ¥úz%•ÈfÄ?|<â=§Mçm¦ž¦f˜î WäÒVd\y÷Sº ®²2CäòL~X õóaŽ©àwÀ;¯ïÈ ä±ãý0‘³‚×ea*okå›dŽº»@x +Fõfã„õFc«tÕ]AY›<4¥³>Óváªæ/’0å:ïüٳৗŸŽ2œ&ÅĽºU±:ÇNW+â^å¾?,©î÷f¹ˆ0}TÈ{ap“ݼªË=ñŠ€»n§ Ì†—[ã Ÿ”$¨W½ÿóÀb@/µàªˆ÷Š{Bþ¤‹7{Ô‰ ­ê,me¿þ0Z-}›¾kÀ',½8^z0,Õ®$sÉØ³üL¯X›ŒÎv«ö1Î^]­vÖl¦‰Ø&|Y /12ŠzQ8ð(\ôc£à¬¯³S¸ë{ÇéC™g6m½f¥ZºÑ ò¡-ÆÕâæqàÛBT©ÆÇ;¡ËîÞAweÌCÔ»8Ó¬xûRuüÒëåžXδžÃÏ3 …¹EfnIÐï¿ØöB&_3ň·«dw ^€b_…ªí˜ŠÔ^8 ¼J¯Þ¨sèàë™°£¾Ï’—æÙ!öâš„–ZÈ…Ðù˜µL÷:г–—4ÒH­*mOη ŸÒÐLöñWš,ù3â€Â\ovÐq©ÔG½æ˜6òVôˆë›XiRœþ¿çztYN?~qeÍéú<ÇP[Tw7»DÀÚ1xÓòзìÊd{Œöj i z'ç‡â0 o“²#"á³/k ¶Ç¨irmù¡P”®Ž‘X‚õt»g0n4ËíDáa=®Ä'ÁVÒzØjâ‘»õjÂpÜ€‘ªÖ6ŠÁ޲%(-‰@û©· ùñêV1ÁêÈùyW)¯ÏeI¼Ú¨Ì)­¾~’žQ63fpÀÁv.ÞGp<˜B-=^@~t¿n'6w1X2Á+î‡R¸wÞq¢CºÀR+‘÷Ì\'§ ÑèÜ#°›¶VÅþB©Él²+&¤;ʤË2JuÙ^(W¨û7/0×¾¶ ŸñÎ #¿z`‘Ä‘•W?ó¬mÖXy "I *^nE\`&êÙE¾ÑÓõˆû\kpåBr] }޾=dÓ)Pè¶ã“,j³üzŸ]9Ž˜N„ü“× \}\1Î {ͶÒOifcŠׂ†…D`[K$ùÚÖ tñîM?UjæÊ3ZrHoSÐzê%ºÝQ§J ÞŽ\ÕñÉÑ/~f7^—b¹iv³Þ¶O?’Û©²x¹õtsÍkyl:3ª a¾þëV=†—~u®p‚ª¡†äJ"ð$tÔáoB÷èqÊ_»A7ñ¼A$bwzÉ js>õ©bdе„-bƒ€mÖ~w)S54Wûé±e„Á –ËEÿt{*¶…Œ}Y(SVøG ÚåC³b@̾›ÀæuYð\ë”.Ÿ*7d­ÇffÆ—,CG24õsÊÀ#Æ.\…^.I¦¢Ng=l+Çj]0®Ù½[Œ3`Jj2`g±(õÑâ3ƒ§&¨Ë#XébÀÁ 3ùõ¼.^þ [)®s‰-C/¡6zߊ­%ýôLÑfßík_„UÛxšÃ!ö'gîÏÞaøó¢ºËª•¸YäÍ9Û\heš ÉK,œ¿Þ»=†‘ã~Å>ù®9Qr&¡O_)á@9Ü@è8ÓMó0+ÎbŒ? ´ ìp¿B­LP†C«Û>E#e¸|ɃŸŒÚ;w2BŠ+··/¥x¡]ôÉgã’89£µz2‘¨SºR†egZ¤»ËʱüýÁ<þÙzxËFä(_ÂU¸`U +镺¦q޽š ÏÍÒ½˜Gát¸CJ>Íè2#It|^aie‹n m#¡~Ç”Ëøu·;ÃQ³'b˜9Ÿ’)÷ã`H[$4ˆ†ÏwŸáù„ÅþÊO$’ëtl…ìéŠÊá0Ã4 kEN}“¡úWµ¡`º;6gm¬ Kí”èqóˆqÑUÂÆ_u»N‚ç¦í™HqÒcg¢Ý?Vv¦| ´Þx ajïÒÚ 8é î ¦{Pï$® ÇfG‚ 3?ZÕL¯Ð%*æ¢é² 樭\ÄÃb°K÷Âo?;õ ˜ ü‹b)×»lyôš-Ò h®E‘Å%()zGŸ[á1Ô§ÃäöI~£,Ls÷ïc!fÂ=-‚6]õ+,kka’(`‹•: ÑcìÀ"¤ÇjˆXºs3퇗 ¤iÿ«‹ØßöaГò1ì¯P¥¨#Ñ«ÃõÖ”.)ë03 vE këh}2y=GK7dÅlÌ©ö×6§&¸²RÖ°€`îàÓ×­këÆ®öƒä ¤v«•ßæÂ|)¡¾x¡ò†îmñ…‰A ‘×—nCUó+{Anx̤€+¥¸?ºm]pd)z•/`ƈÝó@ó·@‰ŒTÐÂxÃÛÔ¦¥y'¡ ŸÑÒ,Dé;Õgµc9¾.ã]pýÍ%ÏFð"H¬m ï—ªcÁ«Š©î¯‰ÏMU ¼À+Â]ûJ²ñ†œ{f1Þ_,Ï1žbS¥¬úK¬/’¨t|D¯]oÕ‚Î+m1C t˜šñ gÿq¯éB(U%” mµcì! LBÁ$%>ð§ÿ s?q bµšàd8¤ÅÎ&õÇUÍÊj9¥ùí¹†D}ÖÕÉ-)]çÀ'†¶çm7Æ„œÆLÚZ}¬»cþsàÔ¡²úë—â“<[¿á+UÏ&µHUîÞ°\¦OËì Y’wçi8^´"ž·R¯ËBÛñŸ‚Í…ZåÒ;ä|8/?_î`°©%—’"d¼¸@¹j£êÓ‚S ÖA–~;g„¼àˆís“5®¥Ýü'$.R’mWqÒå--®RÜÑŸœvçø¯Ï1B–P£ÀIÚœìÑè™fø%iY¢|㧤¢°ån’døŠí¯UñUF}ûí$îc4@à^•S!wÿ‚å`kŒôVÙ¦ýÿŸ¦Q’b¾Î+Í OÕjT«TtöÖIÒNýèWö꥔Ÿ‰K*19PÉ0?4÷0 Ò ´ ÅŽÐbßù÷1ãm2·.Ú˜Ÿ—\þæJ)|ÊzŸ*åþŽÄ~‹W§øšiJéîÕ‚ôëS=NµV—r1ŒÖç«•{R‰ò„ÏÆ:·Qß0[¿’Œ‘PÝHŸ¡.XÝ#S½Ó¥ùëÙ]PW“γà z¡ô•¿Ãn«pöhzˆï.šm¡1Â5»#´N§.°á…C§&¿.ÓæƒG׈ÿ,jùÝ;RÿúaUÕ¿°½ÿJÅwô¨Rs×;Ú}ºƒüáøu“5 l+Ôß<ßYgíw¿8Å=F7„¼T¤›5r¿ ›}œ­­½äf•¹Õ_¨Ef²{bÚ&—U° 0¶ñ2Eö®ðb·åêÕëB¿c,Í_"˜…—=­У ÛP¦¤[¿}RyÙ_åâö#%Ëmc-´*ÖdzGÁüÝ h[˜Ô~THo§šNÙª—x½;tܵ­ˆ´³s×wòss6jZ3RÎÜû«Ã*eËXßÂL™ÃÇUõ¨dȦ -$w–ö‡ÒÓRp¶¸Ãkô¤Ì·³c³¨Q"±sËÌÓj·–šñ›–Îí­rRìРéÃÈ–¹óÏÑHåB¶ Œ;åày¹•LJª7àæ½%nâ?_¾C’® ¶± ]$XV¦÷’'×§ô÷Ø¡¶°gŠÆZ3z‰`-y™¦ß´iË媯¦¿q`w€DÛo«ž-´: ­žZ5mÿ&¥ñXʈB! yñm1š\yÙé §nj•Ì¡®ÀŒF¯ˆvÖn,ªïG¬Læ™ËÍ­K òKýp«ûÙu¬! GΆK3Qi®=rå'¢YZ~–3`%P‚¤ìÆQr¯ÖYs¾ÛB-çE´ÔŠ=È´Ã'‘üÆ÷÷éc¹=Pi·‰×ôoÿšˆWÎeTS7eÕ%]…,áö &YëQŸØÐĽfh“,¦nëjêìš_0GÇZR½ëgÉ–øäC‹hï5DÏ{Ä E¦íM¼^¦,^"ÌŸx4®ӧƒ´ å­à"4oVψšq^NmlÞ”U%ˆIØÆœbd?§¦ÚÕÊá2Ââ­”t&9m ·ØW“;ï×kÃáWw±;”íÚÆµŠ”ry¥#¶öÍZ\Ñ郃³¸âlÉå±€s°9Öôðe {M ê»¶_E#k7(’8:qûŸÉÁv UEÿú›_’Q¯JõçmæFëÄ KŠð±6ù~ ØàD#CTHÝx˜Køl•‡èÑRœïõ·i'³ŒÏÕpà.ŒÝ-kœƒÛŸˆzì Öß³|·®È(E¦åÚ„<à¡Q,÷u‘⾨MU‚(Ö²@‰ßñKjsÁE¯ò~±ÐˆvÏ)S2ÅIt‹ÿL8:Væ–ÎǪÀð6´«óxФ‘²[½¯ZÑçëS‡7 HEdàOÊ,¦¦•¶¨‘\†ˆÏ«WŒth_ L†ÞêåJÅQÀG<8ßMï×ÈšJLøF8ˆ,9”Å"÷ W€zû‰O?¼ê8=QBªbÙöÖ:òuu7® pYxÑÍ`¥±Ž€%Ýú™Ž(k]…õúì²=/5EŠg¹Ì™.4ÀQ8juü%µ>ºŽ3úgM·˜ëÒR>næi±=ú!×|ù½ÀÄÞê™è²;Çdp½E)VJ÷{s*;Ì÷“…6¬#J­~*ý:oÙœôêWª&½ =¤žñ»Rä|òÊÍó÷$øPm‚.ê—¶7¶+^rµ'jמr1«Žáê b9öb¦žK7î™ãéá ™=§QIq4hJàjóÛ{R³ëW¨MÑ ó”) ÁëÞ’Ý›Ú2Í´UŠž‚ŸP•®‡lU'ÊüA®ÔªR­Fw45zª›%q+þ´a ZÚAñ#V˜/Ô[lu1D‚#œ!ádÖ ]RBSú¿óÃÜù2Þ&()2×OONçó°eÍÊ|_üÙ»¦é#Ž+·$Ì]à>\¤ô‚ÅYô ÝXÿ*?~Û*ŸÎOÀ¡š¡è9|ÍGìCĉ¿Ì~¤K‰^˜¨Ââó¬øÁ<]ÿ ¢ógíVgŒâÁÿŦý‚7€©åäõÏ9ú â¨S•fû8î"æwµ“Å}ÂÁD?ôîw¬osdBNpè?hèÊàO¨›^Â[¼?G¬“ ^`¹ßº²Ëpã…^Cœ\½}s¥Ùl×g5ìð%{³­wOäEªì ï ˶*m±³—x«äXÅÈtžT/~DŽ/vÁÿ½³2=•°ö®w¼FX)ë±X…o´ù[¸?\ä¢ s¡¬?Œ~ j>ÁTƒÉÅ8Ç ¨®^Ê?Q÷ ´²9ŠúŒÙXÖ ë©ñ¾|&CÖ„ÍjîQMXºé#Oµåí›&”ÿ`¸¬Lƒ›ç£‹á—•Ío¢ìFºI6ÎRvíõÃf€o¬Wû©‡Ü¯’ãþwÓpÎ §9µÛfÖyWSîÿ@ØåùÐ4*eNÕ(ù½A><ÙÞŠM&™+ø¾d5"fž<)yírùßíP ÝôˆuŽRf)`ä4ë4âË"Ôv-õÈOfiè¾`qëfA²SŽÆ‹Á‹7£ô¼ß™¬V¦Ã# [1›²J5gæwÒca?T…ö·ÈŽs)²Á yè}ɱ#þ[ñÑ^µ˜Ì˜P7’Q>Lš¾Ño[ Îa¨2#XÈbÁå%>{U[;¾„¿W‘ÜÛo¯\š-ƒ¼ÝÑ)´¯ŠOV¬¥z”K]’]ZDsÀšµ§â0;a„ê+œ£pÅžcõ-Šwl!î‹eKÏÉ€ã´~þþ±_ù–Qæ,Ž$Ò«h‰4é±ßžÀ(¯b™=Ì 5tÈ>ñ˜QýœüèJ<6&$io‚UKÛ«]& F{hݯáÂýˆU*,ÇÝõ¦÷·Ý>Ÿ !4;A¨ùt³ÔwÍ |®X|ÂëAØü5S꿉ØÇ™B³©ºƒÁw1ö\ååÕŽ‘T*˜U¥]oÊ",öÀ”µðÒc¥7供ޒ ,Wÿ_Íj­«YöŠF¥D¶CæJ˜N‚Z¢hªY骇˜C˜¤Âù–jBÙNüÛæRÎ’ çÆâÔlŽ‘¿’¨ŠÐ on3-%Q¢ÿ¦!n™ÑNáp‘Pf6¦X¨ÊJJiON†½äïFjO©túÓÈÊÐ|Ì0·å¯µ¨—AÜ­ ­xBBMàHèn7•e|ä ƒ"µ@ä˜JutÊ£=(B?…؇h¼EfÞ•Ãp¹›¼¤`­ž_N¹/ì2÷H WgcŸ2Ê«û¤ôÊŒ=zR­éz(æ¸×Ñëèz¬šæYŒ:ÀÄÏÞ‹Á³,ã®Ó54( V®¥ôx©õ×íÇÄJžæ1ûç‘ 0‰ä5ü|xö02X“ñÑ]†Ë°’…tixá-.nê¶Hµ×Õ±tŽ;Ög¦RŸó¤+’µÁ!€ËƒeJ¯p‹lÄýŽwÿ.\JÎ7x˜ýâ!I2ad€Í?ç£Ô2¥yõ/JïQEå°,F˜·»‰mç*ÁÓÚÛ²ü}%ëŸçœU]¦itQ4¡L±åGÆúzÀw_'/Ó“úA•œ0†DÄL*Ñ>DW|ì‚Í ±_ŠNå=ðJ@bb¯ôø%“˜³æøÐ•¶«sŠQÁ‰Y(³ìSÁYë"0À­AYìá+¨tω00…B–(Xžn$naä¦+Ì×O=á}g·ªGJ Ê‘_&ÙG¼Ý¢:K#ââ¨> abòç²H^úºûùù+mÚl§°mOîß téÓ—R'¡w «q 4ù5HNÌÈŽüì•;Gw|V8%c‚0 )¯åmT½é Ž]|´ϳgþŸ3¬èR]f)€¾Ü˜Ø­«qØÿFx¼)°Û½Rr#¸Ã^O­m) 5Ê1Ø9‡:áòFQ‡½íro :ëu$ Ù£ :GLóì)iÁ}õËfíÑ"O÷êtÑE$¥Ñ³æÄÂlŒõôýßE‡ÌV:ã ä5 ºƒäñ¾ƒñbù<ýn*,bò0¬åÜíë¹_#W0S#@öœ ‡¡Ÿ°øuÍ Pˆ;ös=d L·xìÐ\_w'V±#'9ѨÙôn”%>fÉâøœçJÞÊrŠ«ñëaàÚ¹‘Z;j¦† —Lƒ2jT~GÅô\n&ÛüëJ¥$uwÀÆ«,ZQTyå\·ìl«ù4â—f(bãÕª-Uo¡ßÐÐ6brÃ%.ÂLDT\ëDâvÓ¢=D0c˜#¢{†ÏuòY½B7Â]ò)lF•² T&ö‚5×z fn%9ÈÐc JÚ9h±f£ßç‘ÚILϪ–K[Ü6(:vœ­‹2–)¾ÕðÁÙÿ–:ª…)ªž“gïèXÒ£g³SÌ€;g«z›!Ú„1áÑ&zÜeîÜÉÜÎNЖZøCK]d«ª¸íÔ]Ã-&]¬FýŒdÇØáR¥ª§оý¨-y­0ý…%î§Þ•­¤:eA©¸\(H8ìBÔµ”ö¹Š*°ÎÄ&n*Ù°3Ü™¬ôÍCŸ³´2lö*}‰47¦G×R´‚uêѸÊðwÕ1¯¬ìðœ±áIá~41ϧîú°žL|AÊáZåÉ$îg‘ú)~ê@+³±,ø9Õé<ÚzÃÊœ^çSUƒJb€nè~ ´%¶e° —T'ÀA–3Å=Ê îal|/†þ&ÄœmÁ?2FS¼5¨î‚V‰šbxU|-"ºêä­&†ã~#Ðãü™ÒH]§EkHû’öh¸ÇU1à ReÄaÊçDi²8.Xr ±é’µUTôƒšÖ t誳Ÿ¤iô4ýÀö;Š l xŠø‡R(’ !66?‚@Ü[Q˜ëwܸ>Ùt䦔]ÝÜ!Ç,ÉË`ížjU5Â÷nîw®[›G+}·rëƒÊy™Ên¡âë ŤÓ^Sž.OŽ£‰Û@ƒ†ad7HžˆU.æbÑUè” ¤ úÖz>Ù/YÂÅé”elÿ^Eä¤j<“1ÚKUÇQ¬=þ,~Iy6®‘>8ì.Þ£m•Àê$ cH= $K"ʉFȶ͡¶9[1žß%7¥m” äßÌÐÕõ‹s˜pâ˜héHý0êÞöíŽ1•Ó7‚\Ü[SBsÔô©Î ç^rÍs‚­ a_ãÎè@¢þ¡U>²Çpo­â2‡Xþ2çjD7§‚‘ ÉqËÈÍ:xXZ sE¼ý‚HVFh\N¢ÖSÏJ3¤é¦&Š*ª%ø‚/Žå€"&«üÀWSƒØš4å¸S×ø(+½mi¢Éh—Åj'—õižóA< Ö’9º0eDÛ?ýÑÓhô*Ñ*¬VÂ>lZ>?fˆ;hÅI6s1äYÐèÌu9Jÿ®ài‘Ë~]ÄÙ•nÊÁvß`[À—t>•o¬SÜQ[j)ø1U;_Í\<°Îz`ÑeÜ„Áb˜Í×òd¦Ñ6“D‚ÅÜ=X!*(»E>¢¿{¿”ÿÕ΋KᬵýâôšeMt5÷i‘2"ä$W¸Ÿ°X‹JÚá1eºxˆŒXæþRW9³0"”xPaFB¨†÷¨­Áb«¦aùyZ —Zâæ¶)&)J{;ŸÿúŒJr²0—öèª6}»)Äi·r( ËNŽ£q5õÍsí:r‡êªÉ@|‰¤6HÈ=róVNÂÚ0ƒü0ö§ƒx‚_ez0ªWáQ¯œQ{Êo‰Ÿÿi—VNÁ0¢ ìóC›„‘&ðJÄb ”žµFÏì((Kã7PäýšyÕy°7ÕfÿlòÇJâ› ¼#ü˜A\É1²Øèï™Ù¹Œ–·›BJšÝ˜lW÷ˆQé÷’‰Ðs¥6h%’#§âžCæ€;é›ÜröžÂ…>¢"/6ÂK{_¤‚}u ZMV økת›}á„ Ì!€ƒ T I·œäBW¸£yíâígí^<2RÎñXÞ—^ð[¶ê¸-ùðú5œB A°}D"Ä\oÄÊ]ß´Ó“=b‘^⡼Ç:$¾VhˆZ80Ï ˜Êê(1¦AÝG)åudåáPÖ[Gnp> T”Äí ’ 8ð1XP‰SN[þ(ŒÛ ª%ÍýdŇˆÛ)“¢q‹yõº”"í”n\w(ì½rŸ)¨Ù;HpO1§rŠ%í…Ìðõ®®k¶¡ÿ@âxðé}*$¹Å›ÓÿwB¸iA# XêÄAÄtð)âüù¤G&])WÔ ½Ô[Gðu÷ÇŒÕRlžµ4rë¯9¡4«Rø×Ñ€½­|9•lš”¡0"×Ç#ÛoH?¯oîn=¾O?E°p÷VõzA&,mô3³´Ã¹Œ²îï´ÿ5tÕŽï¡‘aÕDŽR¡¹™ {@Ô(« Ì‘„ýç!KœjúØF;Ý &ð)ôŒMÔÙWQÉ•Or .†{+VYŽÇ’»% ²Ì’¨F’çüé(›QÐÓ•Z³ªßƒ¨j—é}e ¹÷ÌO8i|£äèË_™A»õ¼ÅIáU¿¼†g±ï®°¶ ìĉ&@.VKs¸J™ìÑþ’žÔ°HñÎÏÛˆ~â5FóãÁÇyÔdÙ=8D˜­<­xoµSêÆü1eõ_S©±ñ?òÆ=é׸Óã“bGºß™ÒÁëÒ­2ÙU6j&ÑÄÎP[²º™ùK£ÙwÍoÁZph/ÝQ;ÀOµý‘°«Åþ²)ZbàìÖ…€Õ'Qe…n%õu¦³é©µr“%Ýåƒ""å9±þëvõ;éWH¤J´•CñÒ¤‘Ø™²Àô‹á¼U|iy95Uc>ÚÇ”Õ%Å; K×t(%†9Hô´@w;æšE×ÏhÅÙÅóºjvR,Ìf͵’Á>³ = gTrÏ V:[ïg¿‘°M*ú|«þ?ÊíÀ•µ&OŸº½JàmÏ}KüEHC”‹W2 AáËô7Â,·VÙZ+×ködNžçõ0ñžìª®ý9±gJƒÿg·Î‚tצe×TíxÛÁHfìÑ“…v5 5­ú•o5tÊ2–wj½`‚iNµŒË}9úYðÛ©Ó@H2}ÕsÄÛÔä¼!œ-‹qtoÊRÀ°¤{ßt$3»¢ženå¦ cws nÈÊ$½¢mšl§#,·tˆÙ"õ¶´mÈ1~t«îŸÎâ`f¥;¦ð¦,ô½V/~”쀜‚£}ÝÉå]K<+_Oª :.?éæ] bŽ w;qÛŽè kñÇoÓeeüxèæ¤r•D‚KXù–{$…Ðü®ø/"ëÖìuëòa˜”BŽs ·§¹#ó)?f19ëpÇßDå²`\Lš‘EßO#áB™µ¸åâñ‚Ø |ÞèÐåÏ“­.°Îg†¤¶Áªy|ólúHŽ9bÿŒx¾€QÊ–8à)¸=ý¦¤sаä¦Sà»_zhL¯ýâXaFЦÌÛïÝr-ø3¸iõÌÏÜšò»É”Z¹²›ÜRM–ÍÞœ…/Ú«—B‘+¿ítYŽ££`UW.ƒuÊ¥ÿm¯5²êYW`|'7Âìæ¥Þ]nõEóýôMò˜`  Ý¶}êòT¦åcZÛ)ÜI¾ÿ*³Ÿ~Üœ‹ó8ß@_¦ &´èXô1h"—ZSjªþgÒ¨¶xncù„åãŸõñ>.*k&³RUdð”oŠÿqŽÖ’j&le஢×Z„ÁåäÿãM7ûêêñ{3%Äócªœ2ü“.äô3lä “Lµ_}7¡÷ƒhxÄø‘mŠOíþiþ;/Äf [}'BdÌÒÛn  P®âdùár°”¨—÷°¦–õ‹¡u Ã)rÓd–FˆJJ)Ãý®û/ ÐÕQQÏŒþ@V£Îÿ!ÀVÛX(ö¸GwˆˆO·Î´ØË×KÐ(‚ЇÉ\N%fZ;€x´0ïD@‹b&¨²²ë{]êZ’ž…¿è 8ÆVÃò¤ðÙV¥ t¿Ðx¡×Ù¸šî„­ÜæZ^”¾ÜrVzÆOß5÷H$äÐáÜj|Ì^ÿ¤…ˆîbbwFæèÎ/woÜ{ÿ ÈqmÐ»ß ©VÅÆi©èÀO<ÐãÈöYyX´M"ì‘X5ŒÓM¦:6.g"(š–wÑ2PÉãB½dÝc¡€ƒd ú¿÷ <+Uöêg¦:LÞÔ[ Gµá%zJëö¶Þ–ÞèáH6ê­)v¿ýBÄÿŽ£ w¢ªÉÒ˜t"Wܨ*‹ô‡=¸ ¡ƒü'M{í³Ù·æ¦¥)Ž’¨G×7\b ïÆ(fð“„й&;‚»Om³äƒ¸˜DÁ7"³¥¾@Êê~ï¾¶yz°äJJÆÕšy†¹ÆOw~ÂǦ×VèÊM@&dÀÓ¬×éLY?öK/à"9Ž:®jÛ}-bÕ!ßž¡l”¸‹I@j4W»oüâºíÆÓùn0ƒªhÊ]j>&â_[þh™×Š…ùshJâk#‡†$¤öÇÔբ̋qá ¤­*¼“=Ëwðêá EÀº²•˜lm•3ºiÔ7 O™eêf!¹g‰¼ÚÄû[Ð6‹Ôdµoa÷\BÊÇ ã1³žÅ—CÔÝ/®Ñ¥¨lJ¡Òs»•Ñ>™^‰ã\‰£=4ζw8Ñ=SÃR‹?"?Eü©x/œØèãq^ĘâX5Pù6QlEAsreÜvÜÒz(³aÎ 9‚sÓ—û#ceÖêØ=(]çÆ„)Rÿ•›W®Vc›ygš‡'R‹©­"ɘUÔëž*¦ˆ";Kò£báÓçõ›d,oX˜ÇÝ0%™9Éë,t‘öo—iòÛHAe¶jL¨[ öV)N-6ñayÀ¿9Ÿæ?Ì#T’®R[TS^Þ‡Rdơޒù&§Öð¶-ÃÊ ¥;ýˆÏøP€åqöÙ¿âg ýz!ÜJq œÙ¸Ûb¸(ûc¾õé¹ï6"•Kù sKÿ`é)UïM!¹è¬{p«à "(ÂÑ~P9s)ÌÛ)v¸k vºor‚~æZ8ì@ïVS2uºÜ\¢¬¶kw§Ó9«Ò"‡q­t”¼^µølÄšŽ‘3lZ²Y&¡×¤X”*Qo4xuÇÍV¬XŸ% K~έ‰|k€ÅÂÙº!;mÇðZÁ¼Nàk|!M7¤’î¸îxæöHõÝ«³ éKÔæÏD÷˜ö@Ñפe ìàE(C=Ôȡ§´×¬ºžJÜ'Xž?8+‘¦êú›ÒõK^á$ž˜úØé•7 qJ‡±å`æžÛµXI¡ ¹ª»Æž†&‰Ž3úcMPCûp8–I7jÄj"M>w´>n÷sÈŠþÏóÃäÙƒ{“†±ù =ê6¹=$T–—¢LuEvÝÔ[¿÷YÏÅùÓ]ïe–"våû¦k*äÞJ¸îÿÔš…m¢Ôøñbå=ŽÀNû­y/“Òܰ€¼½ïa'>ìOˆá}yÖh“o¸$¨k;_,7ÖoHlève`”Ä[dh,3Áú”Cσ–b¬.Ä §[ ‡j]x£ ¬ÃÙQ9ÍyªP¦nj’Ý–éûHL¡é3¢šâú¢hàÓÕYÏO¸Š`V/L„1÷Ùúïñ™Øª°kÎ }YU 3à¬l½=²=K<à‰i\<(i 2h;“!îqK²9m’Á>´GÑùˆµöb³©œ©1¸ØX0XÎ_rœ?IévU±v'‹kغ5 ¿ZëArÂí–Ò'Ò|yMeUæÜM§£›eú&Róp˜ Å5©“raL>/@“ŠúÚÙQˆñÆò ÉþÌ•XðæëòW³ü-êSÁ'"ÇíFº¢)Œ x½š"vËŠ©Þ¹­Âµ˜ë²rú¼\+Ñf½mÄ=øÍ„îYd]»BæZïc _×dW’1 ~¥Ôˆrn/GÖIhÑ ¢u®ÃÒ*V’«94Vé­µf+h²iO‘sDo¿à6H!â…DóX@ ¥Z»Go+ºRÉÌÀÈ®ŒyíÓîºmò»3ãï,g45&¸±Ç ¡œ1ñ׋?§ |ßR­9RŸº²@T.UT,(ŽŒÂ‚”ª¦½¿zoñœþÇ Ë™ñ5GÅžõçb»ò’ìÝg^̨œŒº®„ó‚–RC’êÞXÏ PiÄš®^,]$µõzí¯!‹øÃy†kÖ'ÍÍ'Ü<Œ’îcj1¡!ø×CßÔ¼VqwÐQõ?€R–˜Cª@²-öŒãK¼ÚÄ„¼ÏOÓë!Zq¬'H€Ì2M6þ‹ßÄÁщNÎÔ”ã)„jêôù՚˕ÁêG6á4$’h%¢Œ$ؼiŸxÌ è‰4MIPŽvþ,FŽ&1àæÉt±q¼ïqú½Zbä¿Áàl4]~FoedÂý6»ÔßXÊyOAzç2³RÈ€,_›')ë3̹ÙuQ?ôG}³ñ‚¯Í%+“3±eIpNñ`¸q·Gãýo—¦v4±ãÁ`k$-XùW”×aü§eÒ–ËÌÆK Qÿ…é>HÐØq'"6áÍÏÃ6adX•¸föˆ’ƒGs¡„ˆ\äkôE)ž@ٶ‰ŽÏð,0ý¬_×rdǽŒA-u¾ž‚… S/)KËŽK…=0ʘü-{*Ôdã;ºujßDǸª€€!WÿW;HdM‡¶µé§äÚŽ=™ñQ3ôê u€)T ‡Üp;VsÄùHð&X…HŽíŽa¾.èš%²Š4qoòTRãÂv% (çâÍ}Ú-ÊÕXðÓ*’¤Ûz‹ÂOˆîÕóºàÇDŸú­×dæ¬ö{Õ‘‡¸ŽÜ€jœ¯„½õ®"+”Wçp[J3t¢rvòMÉΟ§þgW»X=!¦¶m*hNë*åOŒÒˆÔFžñ£ñ7ùÛUkŒ!\Ð;Êvôí2⊅#éÅúù€W’‰s_ž›ÂnÌí´Su¦5c_9øpë‰G}=|#46 & ·ÞD¦z¶ì b³¢9øÓƒŠ}<西; ¿5¸ÂtëÖéq2·F‹¸I…%×3+¶¯üˆ2¯Œ}u&~|cU|Áè[•â½gé>Û/<› 8ŽpÿqÛ“–Ö;…{ ÌÐÀ©ÇA\³7% ÃIö°KËþ©Ö=×9?Lÿä¯e0؃¬R¾ˆ®õÖa»@jëÜÅÊØ] Òù[Y™1¯®—A¾•7 2½Z&™í `† ù±ñ¦¼nÑéöùâ¡Æóß`%)šô‰D–¦ å¦ÀoÕþÒØ^wéÙ)ÖT±¬Ï¢{ÙWÉÑÄ7­…î¥)ˆíË€¸z=|©zVä/F˜b1µÐŒ”¦°xœL'®Ø»|?KÃyÅ6i™ ß¨\Eï¼6ÒF5ïtòFÀ¸x Ïæ%X1­üˆuÎ1»ùìi7¼¢e~«¯çå<)€Ê„IU?¡ÓY‰ãøÿº¢0ÈëX·zo?1µãr‹‰·wFqGý¡¶”êpa÷`ÝbÙ dÅ—%v¢öAÎg¤ÎöÝÇsk}íÃÙ{b(é(Ãnqöù¿üÉ*ˆöýÐPw6½K?*½Ö¬1[Äã‘&Q1S—Õݱþ”àÄ\Ë:Î<Á4Y0KV-¶ÛÑЄ)—^(ñrØQ@è¹ üoC¢âW ÊPš²Iq«~ÎÞév<æ*¿Íò,õC¯ãv ¥9çøÊûu~çU´ñªö(—°:¯®•×ò@‰Äl/“L†€›M`0':Sß½øG ÝŠ¿ö(ï΄öHJ«ºld%8©å¾Õ¥nÕÉI£g_Æ»1‚=Î=>À޾™ þëabqä¯öEH$ñGXÞ #Í-Ès‡˜ÿ–"ÞoaønwPceoð%|Îg—ì…²æÑåçP}uE®D³ç ¹TâÄ"QqÖ${ùÌv@¥% ®tû¾Ó`¼Q¨>Cñà©Ô¬Ô&¾³ÊºñuCÐÖùØ’ù ô¯£è`aµ£üÈb4Ä5: ݇QŒü œlµìéösžMâ!}6ÀÏÈÖ@ö}>‚vt1ÃÓÀ‰ aú¥<o'ë¹½QˆX°‘Z™”KììÖ¼úPÎx _¬–y@4ô©AT8Y¯HWëAæHSøÿe_ÿˆì²Ùo"Å+8Ô=òMþüG¿‘¬$ ôSAç‰3ž²‹Ñ’Uõ¢J—ê÷µ 1Ç§ÂøùdkA  Á~`Ã_– %4G¾Àqn –£Î¹.Èè038½gÞ ÓíeJèÏŽõí¤R4ÉaK ò·ÜjhË¢x½5yÂhÍ. Ú«tôx§4›ˆ€8W¼ŸŒ6ï‘W1ï1B&¨#ªOÔ^›™s×§·šX<ó>¬öIµ\*‘s3Û‹õÑ]vì2Û:…/oK6)ž,&›—8ìÞ¢Þ°z²=%tT@nÿNôù¤dñ|¡+2 H·+ÐÛxCâ*MuõXà!Æ+í¶¦cº'ÚŠ•ãIع0—pEÄb=ó~h ¯!2ÿÓ5@»ZL'½ßñY »K»ûÎë}¶¥ð³†ZLÂxq[!,‚øDÀ¦I òrÂ|¹¬×!~qó!Xï ¬‡Ø¤i.‰óEèøQ²Žz4£ä =N‰‰¦Ñès€y¸É%å*te ‚½8½â\;ü±Ãâè-úPÂsÈ”iu¹û±–ŽðCnË„AÃþ1ÃË2”0q¢á3€:ËjèM¬’?OYÕZô-©)Áþ™G-ü$eËSܹDLMË ¬ Že%cÞŽ¥XóG=÷~Õ¢hÒu˜‹%<à7Rvï_;a;G|Èèï»1˜:º¨†<µvQ8GdåÆR0›kÖÜ/k_—È´êA6w8b4‰­y=i`ñÜÒ{ö.Qäf˜ûçÂwà¶$)&œ‚~ïMÖMÙú¾#=^æ}òðòø3ö(Kñ|”°c(\A4,7¬Ž,oʸh"÷Á‰ÕûŠ«W”"&·á[5Z ¶3S:¤qLª0žÅrƒnŽí"Óy:}è£Ç˜>v.þ¹ÇV“G• Ó‚+ ö5#=**ªâ#±RrN²lb$‚¢Ã'„VS”î1ºUlDdã… aù9&Õ±(/˜¾=§†ß}!PžLïÊ-m$AÂz »ƒCEj™{ŽxŸ ú¦vÌð¼tCß2qö=ERæ{|©§Ü”ÞA;3݉)ðæŸÁ =õ Ì©v“÷VÐÌ¥›¿"³R{›ä™XêHÛ6Ь§¼h"À@‚)”’ó“Uf:›È6Ì;·+Ù»# 'ûÊúº~±ý­n 5“â7—¨†¾/ì>bêGbãi¤Žò£ ·Ô _dM5.?X€Â5ò¢9¸Ï_Œ!3û^ÇŒ?ò§cT,5°~Á&ñ@|Š-ûQÈ´^È'’½¼$®/ãl*PÊ‹±~ñ&úÉýÛ6E'—•ÜR]GÈMÜ«Åå`Þˆðüa_Mûaî»CŠ5\`Ø.NöCHèÃÔ¶éûllXcȲ"’kÜQÏnœÊAíÊ‘ÐT„¼1-SòôŽö$¶?§4`4#hEÏx§< ^bL7„[øþ©6#{_4ìPÑÀ+ÎI}, 0õ!d­d_HG¢Â› Ák 6tŽkÌ—ÊÊÇ-ïö·¾³Áù—i+.ãê5€aâ{j™Æûªà·#ÇL®éØçs>‹Ë=FŠU${ÉoœÔS?¥ì¶€(EQ2‹i0‡ƒœò°43+Á5ëBm1Ȫcy1žxŠÊŽeœtí`ñÍ:ÄŸéÃ9‰´¦»&xñ/D>§‰ÿ°Šã†q½]ÙòÁèFs±Ç—d8Eb½´ü2?¤á“0ƒyîô&å{qB`û¯ÇOÙ7©¬MšmþwÅ£œ|Ù»,Ny-ΆyC0K½äéþRâ½ÑÉTkથÖâñ†ˆ¤û–ï`“ÀˆšøÛALh;WXÜHå?8ÿSk´ °a•âTnb•ͲƒmèÄ!:¬é¸¾åf€ ñî1³Þýéfö¨ÒIÇŽØ/ÒÃÈÜýß~T;hË«#J”žìÆbîþÑÎê= È ³\C]ñ0'¥Oó?ÀRó“ú™è°'C?ÍE»:B©|üD²/gyÎBÓU•$Q¨cÿq,Òöˆ%€{]Y&à:0wds9‰ê·NË`%ÁbÉ‚x.åã$ÉJ„hùê€ÊƉ3QëhïB¢í¨QÂéÐ’œK"ï–Lç_VH÷¯ûþ\røK“í6ˆ$íT“Å¿ØÔ‘Cd=*˜¼øˆ8X%˜ØÂ‡¯i§¬ÿGÅÖÀŒžojR(¥ˆqîÄC°&üÅåîÊ$êW,fóŠN×óøŸÆf°Ÿ;õJ·‘A1…½O#1.æf-ÊàžÇïõžž6·a-""ëÒð§6­ÀèKŠ=] p‹p&c6º› 9ß ¢¥ÃÂߨHöÎ0¬Þ¿ý \}ˆ˜ŠÙ‘ÆHLn©.¿óEÝ>ã‚–³ƒDfd2hmÇÝølS{n¨FÂáBj‚ÂcŒµü'ºÐg4@ÚVûé•ÎT [·¥á‡3•È×i½)LaÔ(f‹Áî-¶‡^Yø‰º¼Dâ_Öã°d¶´¢bÞ}@¼ÔUEêÁÆæBfóDÅr–¹W¾¥5Yí´ÓNNÑb›_–ˆøG.†[;v¾!R¿é‰yzÝuÛ {:—|¿ÛÈ%âÞÅý‚@­ß9ØhÉ„¦®ìOþŒÀïJ9ÕG—ô®f ;B!Ôáj;Á²m/Eç™RVöJO–î¤g  fÞfUÔu¢ƒ ﶪ­`„jÏŠkƒåŽ¥­¤ “£Œ hnßÎÖ\Šjr«¨ÏÄõJìj2ƒÁs»|»›æá'Ð7ð‚ Ñ«£u1i^b<ÇF¹È„Þƒ2m ¨{‚ÍS‘IS¾)@#X¥?‰:@Ó!‘:‡W»S¬û^× k”–¯w†¢Ã„ÃTÙ¡åaÝJĽæ~Ð^¥$yëŒôªÓkwž1€™b‘šQR ÖÕ6×ͼ­ùœûÖqrü‘£é¯ Áœp'õú‚Rp2.ceÙw‡»¿öûÀn¶ù±Lݬêö]`Èwµöž}©5Zà*_þ£»¼ˆh¼•,×,×¶°Œ"SÀ×M Ñ™ÑÐ"HHjõ“dÀ§h=D)€VV§·i?Ï‹ô>âìê½âáþØ>}þ:P§K¬¦} S3wƒ¯ô&¾i$é—•á·êÁÅ/ çup.Ráôºù­k}bÙl¡ñ‹£6Áº|×5lÔ&~m '”eØS¼)5&NP‰Žàë"Ε<Ú.Û`¤Ím¨´§|€”ƒ¢tœ"†®žv¿"¹pXÍ‹))r|“Hv_Ì ˜Žïв.ú4ò'¡q*©ý>}†ÇëvñGÖÛ²ƒ¹äû»˜pyÇÎ[›ødãÂD›óosÆ 7Ÿ™-ã8ɺw%"¼~r)¼4´œÇ|Û^§Ešzê8Šq…a¿ ¯­;:·Rž¬’n$¡%p`âœ)• Ñ¥p•WQ‹UD“,P¶"D½õóèô á'†Ì‘ø‰"ƒ@&Èn„“õÊÉý”òiwÿ|Û)¨T[^‰Wk@__ÇÍⲟ†!-ËÓÒ¯  3rnˆÁ6˜M+¼ö,…ÖúþÚ:·‰¸Ê™ÆÁ0„¸¨VÈ„ÇRsY§‰ÙÛYbÑšîƒm‘oÙk×™8Ùo¸‹89?V¢sPz4YõÁ}=@ñ©¸5àªÑœÛÝ·/š ÛE,op$S§?žÊ‚Ä‹ªÊnŽ«äÊv';¨= ìO&$M…Ô÷¥O0–ÔTúƒI3°". <]S  üMàÕ:’·÷EBð?U"Ìu¡¥£²21.5Cÿ’žºSe´)Ä`7Ë”@þ’¾*Óæ4Òcç*º¢™¹nÝnBÃR®Â I…§ÌòYãË&Þö·ôbšË0ÿŽíœ­µÃ2Û³œŽ6hÛž:¢—÷  wcŒ U[‹ë wxz‹Ó}+rïø¬E™’›’îqÌgbÄȵžÅ\°t rXñ#CƒÎ»ÅªByhyç Æ›ñEÁ+Þî¥thó‘œÍ…,¶·ŠÀ%—aû?»ÜQŸßמ/G¬ 9%w€“³`o°™"ö˜û+m± L'—™3IxëcB¯¥7¹À™z'÷@y“ϧ5ì)„º`‡ýy«n“g3S…ˆÜª(qVÏQG>”wj…“§‹˜žŠu¨oE\Jà¾Ón`ã«8Dþöè8æ±Sù„~q ”‚ŸàXvåöU‡c\·XVY-ìòˆ‹ìNÀáÖ¥ì¤\STõ£¬PˆºªÌdÝn‡äc­bÉ.ÎK¯ª%ãÄ."âFòë8Áö\ಠ‹\ÁÊ”âß‹úe³”<AÏjuÅ_p&üôÞvÈVÔõ#Ó[𣙆èÄ· #8„¾¦ýsk[·»œàêŠqÑš8ë`Ûí€ÆãV2ÍŸŽJyüŽœž}<¢ºpÀTñ¦‚àïí‰2Ñ„Ýw}ˆh¡òUN?lbN8Š о—¢¾O•…qZè+ŽÎ¥êjöfÿóÓ;WŸ³^} 3ˆvlÄÜ¿ú(» yþ‹‚úÿ kã8>Äà Û©{#q¬ërØF|Úµ€Ùõë9ïPrC‚e!âÔ8ÆBœ*îN²w`²\¨ÙÝs¥¦ùgÔg7çùtÏÆ~•¶t™~Oœéèi–Ë:K6ÒoFp=D'ôñæã½;9•ý: µó9}Ï´—ü˜¿· ßéI>ób ”Oñ%}¶)å¾:­5R¶£9 ˆWP¸àœøz¥ÅZlÃ`Ï\x‰ÖT‘“>L¯}»TŠoVoѦMqê4x­AÞg²â.r ŠÛ@í¯];6¬DP\®ð>7ÎA©Fh ›Ä;€»,7³ÈTà@ùÞ‰³åc÷P{:Ð uˆ>­Ï‡DôxîAÐB»ï3ÇÚZ,œ,³þ¼¯ùö{³¥UBüƒU0‚™Ûg¨zÀpB2|I7zVùóaa¦Š#ˆ‹ìhf®í€žü9áÒuEÙº*ëÌ^®~Ÿ¤=ª"!ç¯î:_J-®„¬»•˜½;þä¬4rp¨nf Mí>æC‰ÏÙâˆT=n½ªvœ>O.y]‡4ä.¶ùjia‘¿ß¬Þø«ƒ¦: Zö5ÔÎaƒø]•IXŒǾ‘—A†¾•íHÿ9£;ÉÚ›fi¸’­Ó ¥S#40ÓPv`ôƒ¦|‹ÈÛ–ÓV­ù”®+€?ÏÅ@ÌÆ ³æ–˜ðuÁ@¥t"צ›q—:,m^š­-›~ÿK¶ü…¤Ä¿º³HOæ[ˆo´ZCìÜ2õÕk]ÁfðE.‚# ’ Â`ä•í¯‹h”-›/ÂùG<*"sX%y°“/ê~³·IvAXË-Á¨»lÐeº- {·Ã €°’¥þsà;O;ÎPîÕ»³Ý $1˧lM([ÓÙŽäGKð±:ÆŸ ʽÞ×½Z75ïÉ#È|0˜ÍA«xuÞ·óÌ|¨&(8WJ•?0œž|ç ß*£qk”$õìõÌ ³¿àd•4kUHº–/…d |÷‹c*ëÄ>¨•?#}Ø5=‡(Ä…¹Æ2r®Íî” `Ž0ž¾*dyø‹5Ðk9Û4 *ëŸ]ƼË©0•†‡ emåiñf’"ö:}öÊÎÁLšÊh#JQ(Ùt®òñßAÞ¾Û2¦TŒñh$oq1µáçdRL%n Rt0W¸¤Ê‹KíÇpƾ;ƒ„áï³µ xýæPï‹—ågý„yh§úmF(ÁÍÔ|¾ÀzÂÈ4ö+⹑„,Z÷ö/ ‚E99°t³Js~wú—ÅšžÃ ìX¤BEä.†À=Œ¹âã1¢„šA4>.‚0Ù` w-÷úµ§7cbBáÊ(Ahž«l´‹]€ÍóÀ~dØ%êÀ„ÍÆ ”£»“l¾}ʯÃucß ›OúБ '•Hõ?:‹× *°_.Â[Òk.p°•©fÚ¢Bhô&1Œ¢žYÑÍýy뾉©|=ä*Ü^ü/”MT0,'²‰¯=àãþG >¾:“?3á[Vuc]xå†|(Áß~“·Ój]­¸i¾–¿löøMPw#ID?S”ÎmËvyiÀa¡®Ljô¹¨øœ?´ÿEÆ÷=Þ°Íxñ4£}ܹU?M±ÈL¤æ3¯Ó…G8 ¦&ü¶ ñUcæC/@Ø ýå§œc6íô8—½Ü;ï¢˜îÆ€oæ÷"åìÉ"ýOãÅ>ÌAöᆭzü‡Ä÷²kC ˆ‚˜i4ìtÙ ‘ß•£gï/••Åu\=}6ܨ¯m(ÊR-®ö0<š^]ª÷YѽðWȼ!í¾že×1± çyg Öìç%Éh…f‹î?:M$„9ÖκDDäñŒ_Fÿì5†\ÜÿõZÍMÝ‚DOoQþþ:bЏ)GNEó :ky¥×¡Ö%¾ª'1ÅÍØ,bDA|åfÖ¢!õ/$ö ÖK \9è<ÞJ§>eqDê¥õÍÅ“tfÓKZ _¬óMÙ™=k³o"7gAª|÷ˆ„S‹È°PÉ»¸[ç¡›Åtø/̈Hì? Ž– Ð ÙFµ‹Ž!±Áx/{|‹ë8^bÖŒ* ™Žý™_ÈtO%mË¿÷Pºë±ƒœ¦äù¶~‡±))z÷Åöœü$ØA*4¬ûS@œ†“$‘hCeNí`Í3Ï!þÜt}B6|ÈøÛ ̲¯q{vò{¡#KT""$˜E<É#\˜«Â>p¥ŽÖÌßî,c³r‘ãW÷ä"ÎL‰´èØj·Æž¿Š Ýšè×ý4Mz]•I*Q¤7ÒOÄ6q´aó]xP'0ãi…¦%°Ùôì2H Ë™*ŠÉ 2€;hŠã¥ˆÊ*Oã4üHðF?h:züæ.tÝš)™"¶ŠÐO´d”$y¼•Ùzƒpfÿ! Ðbé ·ÊòL’<´&œñ]¾î’‚è-[‰eÖµIõŽBé«{ã¯,Gñ%^ï4n ÑY«qž6 2®v!<»[ª%*(Q¸’õ˜;²ˆîgK?á8¿‚p @êe…ëŒèâ…ÎÿŠè¹l(\n‰#¢àó!qæÙÒO°5xd.û¼Eƒ•¹h‰ÖŇê§Êgq—8ÀŸóRBr2΀ñ#XçÖ‘arR]Ý:Lù¦¯ÒB‡+¼Õ¼‡ùuÛÿò§¬ãÛ½æ‘|Ì­µÑ"–¨¿gm˜l¯ÆIjÝŸµ»Šü${êJV½¶j3¹ì5ö—k•°½ÐLœ^`ƒu4<µ¸í¨vEÿ)b ^”—µQòâQ´kBNH6é©PƒfIfàðÍíÈ^¦ YˆŒM×Ò!Ž’þÖ´(hÜyªµ=Øî'9ݹ§x7¥µ/j k! )éOz7|LöòÔ’Â‡Ô Dr—µ¶Wº½L-\^Ój“±8Fªô?(½‚«þM¬üõÞÊ£ùoZ ^yóVæ½OÎ>ÎXäß CùTÒôa?"B¯s &(ʦe¶dWð0_ù\ýp³IM~’$°oÎÿÆîv±pâ„a/\ùYN]¢m¶ûêD½&°l$žÚ…qêí1–ŽJÖºòÞ¾\3H&ƒ*Á¹Ø¯ ]‰Xç´=ýÀ¤(üq.‡›…“꽬 ^ªöÅ鞃„±ié°©· > àE²ç0]ÿª =ÇŒuŒr–ê>XºK÷Ç&ÑÎè=ÀEà^0‰1)©¥¢J¯!@7Õí 4\ÙÀOÀ#ƒHa—hkŒ©¨Êñ)QD²™cÉ/Ò¯Î"$íBTv଻‰ël€ݬ;’FK d>aÁw.œ©D€EÖáŠ' „ºn¿-¿e‰ö‰­:û‚|ÌžGts~Íú+9\8WÆg×Ô܆ÑþõÌ¢õ%½sKz_À[ÓhÑNݪY å(«ÖUÐjø[>Bi…‹ò?ÐŒÈâMlÍ:KJ3º"£ôÆs3Õ2r¬0¨îœ­ßÚ¹ÕßœÜòûä¬Õ„¦VöUE®å¦.œ¥,‡š ‡¨ç)_k’²¯¥cºŠ ¢øûÖ*€¤Zh|¼¡.Ìp@YÙ\°BËÌTTƒ:=7É'i‹þ°ü×ô«EîØ•Î!D¹øšø6H~Ù ’_ ¥nVïLkH"yÒKWˆâ¹tFèwãºç„N(ØjTâJ8üv9ô‚L#ÝÃ1RífnMM}ÊÊú½ÈÁˆé»Øt`«2ÜÛ¯!q4!г¾Àw[Ž€Í8Þ¦\þË%w7~êšÓ/˜È{âÇw¦Ô$˜óKÁ" Vg“žŽj̆á9}ûЇ¡½ 3è‹¥D 3ÒúÒ5ýšÌ¤©dZœ=ZÝ7%Qì-ýZf¢Ú‡[¸·2X¯§œŽˆUD‚Äâ>m€&Q[bVB ûC3…újòÒÇä‹lÜ"‹‰?¨ÆDè< `I‰¸ŒižÈêŽæNJì ÷Q`òHÏï*O}‘6x˜BB˽NÄ£x’²¡²ÈA:qïWßâî*{ýëß™j”œ¥ * úµMò ¼›æÛƒÙó¢}ÓýJ ZÙ1ùÜÁ“( +évV$®gëV‰¥Ú¥ˆ°»ÞjPÖt"X¤ý(êJ @xb'»¼õÎñ¢Vºš gؼ3 %nÏNÓäÃüEÂÓ›•«áÞòÜßù=!;{ÒX˜Ï@‚Ud€ûìTEB*“yÉñî¨F"!müÝÕ…—?³w(< aÚ¥j:Ÿ‹ŸµLð‰x ¸]ˆ–´N&Áe}_òO1ÔiËÏ×B‰Ë÷3úë©9ЊKM]ÊóÐ$4qNwìû›c´')à\4µ=œI¹mîÁgêuŠ/æ8ÿ÷'y<;&A˜äµ7O<»Å\wGdÌ­Þ^ŵ;F~däQà , Í:s+Á .vb«“YŸÄ¯„h]šù&ä6_p‹dר€Ž·ñ„>LcbñÔ#öïTè°~ê·ù-Ñ*"ªsΊ•íõ4Í<°‹á!±ltÈÊàü쵤D¤GLÇYµÿ‚¤–hÖùÈíz´ŸÍêLƒ¦„ž´ø©ëô»ó-ì¡úñݦ„òÒêêí´G:I |‹uJ¥˜øÀÓ€xºÎ¼Ç9Ô¹ ¡$…Æ_h/YLËT¢Ög&·j«/µ&½ÁÄóç -—«LþAaûøû‚âx\€¼;õXèËIÛh¿ãOƒô’Žò¶j¼ó¶Ÿ ßSˆP(¢üH¿•§#GÔÚ³ú øJ A>Åk²bÄÀDüº¹‘ê¦Ú"MÊ0±yv/:$LVíï?Þ0C$ȉ;9®pæVR†’w†ÍþDüóUÙ|ŒøU‡7(®Ý&1¼[¾á7Í%+b"=2q›®;·YåY!æ_µ‡†FS]$¾ —§ ŽîC©ioå4j¨o¸‰¨Ÿ${7IP§ÐËø(5¾¸ž“¾°&á´Æ@ ÷ '›TžÌcr»­+íó¶5tÁ½íçn5Öˆ¾ŸÂòu°!;ÊgÜÅ›¶wN¯­(ÓG÷áËn\ýȬ³Ë±Ò8¤ò³õ¢ ,t$L~¿K`Ó=ö,ªyÊpøqEt„·!¡Þ&ë°Í«ž0\%FÜA,‚ a- =°}m¬éÜFó|Ê_xãŠEþ’Ž¥ƒWÅ,1šýb_æÌöÇo? ŸÄ[Ô`ñ(nÒºâc€¤Áeˆy³(Äõ¼6nDYNxˆþöiCð—:Ô]—?( Ë[F¡³¦#¡S’÷¹ ëâÒe&(óÌLT¶ìÌ\8¾ŽâYµ´ÉAäK¥«Çt6uÜ “*׿h‰y¹ƒÞ'ñŸŸh;¢„F¥n·\Ü)4kÕ€”팳x—$ÐÞ‡ã0#ä€Éì'Á\%†‡¼9Ògó‡*°—(ÚúÜ|_\øÿG÷ý)>Áé?§‘›M#OòTɯp‹º<<úÛµœ{q] Iâ¢BðP.¯¦HêjûÇøKô@e@-c‚Òqp‘h+ƒ:› o_ÂQÃŽ)Ø òú bç^‰÷EÀ’“ÏÀ³é,2§…/©bYùçî [ðLJ ø†‡Ýïœz·^m…²¾ˆîFJu”ï’±`—Væíåhú;ÿúŸSÈb6–¸f6­òÜ1Kß–ëq¹+¼ÁèNë>ÑpBFÎ|8b[´8‰u˜¹ƒðà ‰´KÀÏb÷¦*ÎçÃ3’ˆWRáí¹²‡ ׄeqP+]Ït‚Âí¿ÛV ½Ã[ÎQ/]²î— `üêÖ£w=˜:X0¶´[à––Ë 2qƒ,Œ¿×³£36ÀÝ1mÜ?ÑzÒe2Îêk9]§Îú²0ª\+dsôøûèzã2/m»Û h”…;FÕ'´ñ»Ç…Aø'uuTœ5pÑí/Zë²þ?gYYÁ}¬.GJµk^ÆÔä?=;»0$‰ç§ã)‹Œ£ÐiÆ-Ø„€-å&fXf(ˆ-6"f„Ç!'ÃG¹‰‡ÑXûäŸóÛœH+é’š¼÷h¥Ùló³JëBÁveø€vL>*iI0@Єz²“f"Ý0wÔÙZq²Š¢;HZ0=á3œ¡©yœõËT\:^p7Ò×™u­°ò{EÖ‚‰òWòâJŒ¯Á`ön{þã¨I¿V™Ÿ±ÿÑb–K7ŽÌÍŒA¨[SaøÓÙä¹FÜ!OÛ_<îiÙ%žÏÇxháãNYM=ÔX\µ~îµãþ†Zî»/)9Êy…›ÍAŒ,=é¿g1"×'neÂ5ˆr.F`Èßm§EŸ¤Ã'¬\ñWHj%³HGÖ m—‚âù¾´z3Ñžo£Û“ÜŸB"SåÝÔÖ2”æÅc~(¤¢!d»+'©¹*jsãìj¦l‹G1¼ô¾¥xPØ•+Ï›‘âÜ¡C¥ ±êÑuK§bT>Í|Òò½÷ÍaOĪk®º0#ÿýl»Ô@™RŠž0W„ÂÏ'æ}Z'á‚"Rœbõ<5–ሻçÆÀÒ¶®ì=£H5.NnNªŠ€+¯%¦‰ vËÐ/²Õŵ"V6§FغÞõu)¼MÄi^à2’…ºø9ÏŠ£=äD;;P%Îò Öºs•ì…]·”Šüó¦jgµŸ˜ü±Üÿ¡ Θ¿bUvù˜LÊJèÀI—OÈ_ØçÏ'Wz‹|¥V‡Vo}¹’O„øƒ'¡ö‰W+hñõ£j$±Ã½Vާ[åå|˜·O¯s ÕóT–_š”ÜÁ,YœÚ9ÒÙÁ³²b´%á¤êì±FW«¹do\ÃRLöŒ qól,p2]ÎÀœE¤ÏX2N@ìLx”¾ÃG:É¿ï6ã¶÷*F=gôN¨ÌA‹Œ¨“ñ9 y’Wc¶ú¡ð ZdZ zôÙã8¢Ê0’TÑm•ëæ#Cpq‡¡‘îˆÕa w_ðÀbQ ×aR;ajÆ&8 kÁÔÊçàR‰yþz¢†Ø!#Cº3ÊP ±ó»qÔ–o} š\ïÏÆp¹cHêÒ—>Ë"#*qBƒñ@yô±ùfzùªviïØëu(…>‘Y e‹ê*"cŽ¡ÎErsQ$÷¾Ø[ÃÈGÛ#˜¸@ÙFï´yÉfêKÏusIç*ÿÖô†Tä-d];Q˵¨®˜“ Æl[büx{_¯³f÷ì8Ÿ½ÛØÜÓü )å¦H³•€»»¼Ä ›aæu`èsë‰mmbK­–H1±ŸÆ¨ç-wíbiÓW„Ÿµ,ÆZøMŠÁ’eÊôPbެ²¹vÖ©»cx1%Ý ?ÈÌàC…g Éw£®f1½!("ª¯º‰`B›`g`€â6‚Xêm{Ñȸž¡J(&¹¾¦8.…i)í5™ªÐctö1ÕÆäX d©‘Žþ³¾ èÕÄl –·C*ëÙµ~q+º4‰vî4-úiñímѺÜIèÂýðVMå#_d8>—©gÄÐvm1ÌÔÃô”ð9Ô"SI*mrݤö`™ª·èɽR+ä|Ià2œƒS»ØJ¯\Á½1d4.§Uè]ꟿvm®ÜK36K,Òz_Ao¹KhPZ}—iÕÓÅÒzZŸu‚Ú$ö=¬‘;œ½'[€·p«¦¶“gk~>T}t‚39,kÔìEñiË*«ó²/ÃL“ŠÞÖ_ÅA†rD\™"œßef‹Ï°µ&O åbœ¸½sßh£ÚYFI! ‹å«f®â >:R9Õðn@s3 “xp„®G*ÿ\a\‰ÍA«ž1ãf1þŽÙ¢¡ÌQHc›¸MæŸ?Ë¥¬ê“O= €È0,d¤æ—[æŸmÕL:Á~<«à>”šbþG%üot%°ÇÄæº÷-p0ûØ:Xç[1î.ôšÐ† ÖÝ(ç³[?“§ˆŠEvõktv2èº! •*iïÒ^[öé3]EŠª¥¯Ïoš%9¼ÈwË‚"¯MÅJóE|êiýV²ý‡Zÿó)æ]ž)$A~çï"=*bEsj÷§‘Ê´g½ÝÛ+¡„p¢ ô‹Üú—•­í¦îñ·¤»z÷¡»—š× ËÎ5R„^3„éÔ‡Ò ƒ†EŸ9M°?A¼ñ£õ„ WŠ¢À¦¨×Ê4+þPð«$Q™ù¾ëlðÇÞ|ê¶‹£“ÎXo?z7š9ÜãÚÿøg7¯;=¤µÂj*©«» Ú#n’§Žü…Ûóh¬/CFš ”=N"ƒ™kD€¢|ÖÛ„FÉ,\ƒ8ž# ë<:«ÆÏïñ5Ëžy“ñÁ—÷öMˆ½Q-Y&ÑÍ6÷Óº$e—Ì¡˜:ûýQçÖ¸ñðg‹‚¬å@*®®I¸ ³ä®SsÛ*L¦í5Q Ý·¡Ò02:ìíºÖy£¦pV3n½ÉmsåµÙáP3øgCÄÂúK=m)ºæüËCÑôò–Å˄ӸݞTúå ]›ŽYÛ˜ä诂EÀ‘\~ˆ¼7‰ŸjG¡VÎzy ©N­ÎÐ)xµèI4àZWΚ¸¥¼u±½Z7“A‚% Ø!EV„Ž¿&‘²&û<‰<%Ä? ÷¶ˆŽæâlK”FvÔþ¥Gè3O¿C#A¡Öæ|çN§U¸:zŠ ·Æ^§^r]¸ôä¤Y[é­ƒÅźC¦îd5‰4üÁ!ßï6 u!õ. vGžtHÄa\/¡XeÕšÓ÷°˜gÛ@é«ÂÇ[JÚaî/s•Ãær7ëEþ/¹h%D7$ ηnëî@L£4Ùš‰Iðhÿh8ƒhâ©"÷¢kÝÛµfµÃ£ÜÄ' •-,5Å÷žÀWOSR„I™•¸ :7†áæºF‚ äÇ=€C[˜Ã$éX¦¹b£;†ku½¹‚ÆÃx¾£v¿ÒQAg‘w£³YM½õDÁeð4ªjÇÑx×-isÑj2˜?@óðAöõ÷ŠÅ¹õ:¯]öòË‘-1Þ0œv†aÈgÙ§@%”t•»K»ŽÜ2'ó»7“1|L w›YVÚ‚o…lÖˆ/VœNvMBŒ:´½ZXÀìø7HD9 ýmH™eü$ßäl z] \,-‡Ø{«¤cÒ´u¹Ì8³îZ}üÝ.xíF²ç‡¼ÍZ¹Ü s'›±å¯pF†®ç73jªª²Í†ˆÉq0e”µž\çë‹ÿ‹Ü—?Xr+ù:Ï·2ë€0 ÀÇ¡õ¡õ~Çr%%D)ªŸJY”¤-eê·<±=BËÏ Z¶™wejœºÇÎ\¿WËÇ UÂVw?Öa¦¼ý®åcÎNÆxú¦x ’Œpáe¸`Æ ÖÑN ÍšúÞÈ©ËB{v½UE¦IhëC•7‘ý`]?ÛuùÎßcõEî³0Wà¤lëlEn[È4'Ëè'š°"Ïðà}„ö H¸(Èãž .t{›õƒ±žýS2uƒ²’kmEP«ó¯@Nì׉)§hWÕ{š_L¯S_-È-£êÜöëü²rZǵÄG]8À°¾»1œPäRæbÊ?ÀD”’‡%IM}¸pè¬IÕl¯:ªŒ±W—U0¥I°Tš˜­ê(a¯U$fŽÞ`Ux@ÒDÍ^€ÖŠª~ X G äP\;D˜±N½›’©éÎçá´0 ÔiíB`»”RÔ_Ä!?лi¬?XM htŠæü¨“SS(•½B·G‘:²-Ps9dÂÒKºÿÆ©{¬VÊt:é*¾nn4ö¯¼4ÊC¹›b`´î…ø8»f©À43Ì}¡aYô½Š<6AüétýSÕ4Oø`oæà¨àñRÕ"+N9ÿ^t`‚­ÍúªK‡ÿ}}mY#<¢gϾÙ-§ø©CªÊ4àà:œ±8aÉõ‚¡Ñê§éñkƒª0 tßQRÿ»¬‰ÉÿƒÀ‡Pò] x÷YþÅ>ûÃßùˆ«ÂuI O µÑýl°wo‡f7÷[è!ع„u àŽ@!“¼3cBFÄÜj¼Ak¼îss ìꆻ '&P˚Ͳa ¯~(øl:Ëü"üa¤ŽÊüŠŽhž,$Uû[­µm(ô¡¥ÀjÍ2ÚȵpdýŒå—åòI{qexÛü¯5ë‡rj³rL ZoªŸë.E4ŽÂÓ CÍ5”ü.››H¥•8 ï1ÇîñåpOégæÆÐþÁÔ¢¨špu`ì¾:͉ždà8z™è´5¾8`g©æÕûQÍ'³NH÷¾ŽY Í;)1/¾*¼h$°I VÏ„ÜjéÑ„8G£ÛK‹SÂⰄä$ˆdRhÓ2J‹‹õ¹å îZ~ã$3¡UÉðjˆk{U<ì d¬öÚÝZoÇ :Pfxÿ‰ãL¯d€(à†˜P§’­¡&úûÜã욆YÅdo Ðí6áÓ@÷ˆh˜|A15ÀâF/Ý_4Kã4‚»Aé…ICÄ#¾;TÓ]™QÒƒ‹¸Ë˜éY9…ÚËV´ªªÍè®ÝåÏ4//Âl¦Z®øÄT¾à’ýÖÊ9&pTðýǧš)(=^Í—„¼ànº ‹MÁlë#ò3ð¨oœ¸¾ ×(ðÃÇzr‹CqK³ÁÌ<½ðÙð¡K?Ô•-°ŽgN@# õbÔÉÞvlŠÎµã_WøbÞ2zuíw ¶8ضxo¹Ö.3iª€˜âO3‡HyqR•õHèéžtà‘Aop^s%Ûswcë99Ëi‚ & ‰è§QN®f´’ <âË"qåÄØkÎù1÷DÝq«¦‰Vÿx%¤}§î¨EÆ`g&Rˆß×B;÷åöTÝ–Í8L;·zQÛÏqjfaE lD—ÇmÑú#·ê”uʺ¿,°{ÉÂáaÎXÆôòªdxâ)Z ­~S;Ù[[3éË!¨Þ¶µ‰-þÝè¬í»š¿/`¨‡¨5…´A§ÈÒʼn¹’~ç+ov}µ6\ëŒUv>άë¹fê¿×å•ó9ºÙt/7J4Ãc¿!iK±ö Øãg³_ì Øx—[§U”:c5åøƒ‚ð§@‘X+¥á82 ü7˺£MÚ %¼AïŒðڽqÒÌl/ñùîÜtÌ®%áénõ[W+5ü‹q¤H=®ï¦eºã±rfW´›ÔöPA@Æ£‡Êºj¯Åìø 9—–35¯&XçY|¼×®öD[5–~6ºÕRÅb›–_jH4Ä·m§"ÅØi *‡‘)Åa¤‘—?»E)æËq Ï¹ÿ4evZÍÍŸzv‹¹€BSc‹Î”y޶ä&#è3±Tù2òD½ñƒ¬ä÷‘Ö„oèhùy(þˆïðŽBCqîƒ׉K¿0ÁZ-ZF#;Œ:8HÕ¡ »øH#~½r– † 4ãÆ!(²N¢HòÜ"sC¥¹q˜ù!„TwïMö'ã C9ƒ;õuÑrkÿð—B¢Fª¤u?C£ € üeÚ”M›{G.¤ïìôijüïX*‚n“£êÊzØ„—˜"«JoE°Ñ½_~C éàIyš ?vöJ“nd’ˆBÎìϸ¶9“±ˆ"9ºr„{©'‡¬bí%ÑjHb{-tv§^·¹KÖîÄݬ÷<²Ž¦1Ä­Y9%€±Ú´ýð*gÕdÇùÆî\ËëôŽi@ÂAQÅ.¦PEæÀ|é!>`L§ŸÒ$Ê åüË^ñš e”zVŒéÁ/|l³˜ß*P[s¡®¶}|²WÖun·øeY}FK4|Žs` œ’€áp¨³/¥^­šÚ5,R"›òëOc’¥)¤€‹säRâêÍ^ þ¥”aºØíL¯ß)ÎwÁ©|ŸÊ"Ö%wG¾^©j‘<jHqãà/c=U³®1g: Š´åÙÅ¿ë/7µ.WtìªÃ…¦ŠWdSozèìDº«í:HÐðe2„#=þ±¡Ö²‹ÇÉ[,2Œ?÷MÚFe[Œ¢3ý­\ó·Oº,Û“Ò~ÓºsÇH2ßÑ%˜J˜_ZÓ˜á€P. L—k÷›;Õ­e¥çì¿&$c⮇øž=ÑG(âþ™§ÎX#™#×—U¬SÊh£¿KáyÔbžšSºñúb@:"@ôÃEß;³ Ǭ_×w@1{]MT§ÀF„ ¥~°~)à" M¢b} ´:ÏÇ/ìÐ]‘–÷¢ï‘äVß ¨¦í‘Õs}Õ UÔa²¹›ËÊa÷àÿ8´y×LÝÀ,ázÀ$'£Œò¶šÇdNž·ßNfY†½¶üø¥X¤«¡¢q°kEf%iÌQ¯¤·~;Ø€â—ý£ly¤Ø¾EØ–'âj-Ý‘=V–+äsnE³R«Ë®ÿް¨‡¢È½Îs6pŽ‘bð>>ä#M?XÄ“ÂЙ³h¤4¡¥ì‘Ùìkþœ§Ò8é–ÎÖ›í$Ö$Ý dÃCyüK=±„RG ­)xü‘›ò¸ï¿Ê G~=Œûô9QŸö ˜.Þ„=}Ø3"+§çî׉ì Ž1 ÖªÌøn@öyò‡ÇeÐû6c£D¸ÄÆŸË#î~vÇ㾋eçƒˆŽ·ú¾Œ¶mk•Þ3Æ¡GGB´•°§þŠñu§X#z¶É/ÆNQð’­:ΩŒ˜{¢ôŒ<þ@Û5e¿B¯z™KTLLЂžZyõPIЂõ †TasåK4… ÖI¶[ý¼öLF2ó&ºAö{îÙž†¼#{Æ3¡Ú8*N´È)|£ÿëîò»"€å§Í¥D ‡—èKîpÙ±TÇ1˜,>ñë•‹½OŠ 2€2À7Ph¿™ñløUà¨b %뻌¥†»@Ý-Â+x0ý,8±Ü¯‡ˆz&5úxÏEìøïÈ”»‘2¥„§ Ùï]3h¿V3‘¾•uÿ»qqpϤŒÊŒF@ŒUÇ øE@­¥'ê°~ 7h©àÅpZDó‚e0HXJô∯B$f÷nNvb‡Ølø'ð yèRž3Vf+lSNÆp¬eM¼~÷ZåàÖn@·üô +û_»N#[•Ncïû (±+¢yó'²¨¥'Ž „e´_{ówôA‡›Òêäl EÈ×7´ß]°ü Û¸?½v¦MTŽÁ±jÒÜ<[™ä‚‡Ø½S8bŒÄ†Åmµ—16Â&q¬Üù`'b¡øå0ÃÃ!®[D¼Ñç´[©p fkÂîaÔŒd1Ý@¿;e&VÁ óåï5“íš²1sørOÊßKŽ?ijÛŸmwcÇ€=1yM=ºýYåCÔR´Ðj-Êܽ øMÆVv4æE}¥ ùú». ê|YNÂå®êtêŠv%¾\oÜG€ü4ï:˜l­Vý¾î¯«šÂ”øÀÌ5mzãk½Z;²š ÷<·UÛ}üý¿Ñ%X˜“ö=žð’8F CôñÐÜš,ÅJL¼'~Hã‰åžmÿÿ{2ýu¹BîÜë/`ý6—fPªÂѳ#]×:iÊØŒ ÙÏ3Kf?õüù„’·˜##eÐv©#ÄTj?gžXš^ÍB¯›€wÚ – zLJ6kØðhé]·# IÈ3ÂÜž_p9+úÀo‹ÏÃÊzô1®ÝÚùAZ°KÁYóÐÚé2a©ýÎfè¥=821wC–Ñ>„t(‰†!ŽòñHñqm„šn?—}|CÄJê>©¬:Ãp1Q|pq×ùpfL¼«6¡3{JoŽv·áŸwŽ0Rÿõ#ÿ”Ý’$ð—9— i³MÓÒåV VM™ºÄר§À˜F×x ‡Æe•S¡Û2v&oöØ­€ŽI!¡påBtûä}áØ%÷#ñ mÑ_Ÿ¥—SÝ€0I£½–lC#BGøSB5ÒôÌ·õ& iM6…›WLcAÂ’ Ô—Ióã›·ø †@z§ÑWNµšúíà8ABOfc®°f—Ìðøj¿Hß-p…2Ã@?lö¿–«÷årà¥J ˆ–àD,¸Ñ«Fí ®«ìêÚºXt×ï= ù);¦ ‰«"hò£VÎ…pf.YUAðvj"E™F¡šjã•KQDFÉk¾ËS %žXA¢r7pMXKÉ0!Ízd¹e|ø Ãp,ÂêJœ›Wo±q¥uŒ¡¦s³&)÷÷ö¦Š‚¾^œq~Ÿ'ç¦É€«7`ËcË»Ÿî~ÈâHn¨‰­Hë™Á®±&þg¢ „˸_5{HT¹ÉâÞ‚r!g7`™-Õ§<»·¿, #„Q6v{¿UÞʨ¯æûžÅ±¤dÿÂ*§xŸÝ +MX[[ .ÓlWݘïDâ®´¹ÊÝ8Leñ=5lÏJþÁ8°Mkn,î¤Pü_ðÇ~Ë·µé¸ÁíÖŸvÔÒ¦Üà–Ûq">BŸÚ¥ð%H®§•0ž*',õ[Ï{ìY D<0„l¡›IöÞêwYV…}ÉÍu*YB‡r&MÈw£6åà4áˆìsã {·a& £~ÖS^,áãÔ<`æfñ…ªyU’v~»;ÿü½Ëídf¶~Cfq·ÍE»½NPÏ„ü7Nu¦rtHÀ¡C÷¬qUAÕ$ïíèïm¤ŠF?r•Ñmߨi]w™g'Ê´ä¾Tš”eÅ8åŒøÄN™ \ÆXÄÃq+uuˆ4`ê¹ÕªqØ'GÁõ£=ÊÜÂñïMPå0ˆôŠ®>¤ÎÊjêp”¢öª×fDðáØŽ"Z j(¹¬ñ0ñõøÑÑ0‡÷ _nÌl“•ÊfÚ™x‚1¥t¶žX£,BK'¤¢4û»8ÅÔ"ÎPá×/ÝñÁ;ý²3‘¹v„Ȉæ#»Ç†’DÃÚxô¦ˆyò%m]hV,‚ÙÁ©Ý¬Û ƒ (&q3ˆiK<(|8þ #φUrŸ°M¿i(éT`Ü =Ö¿Pçì NüŒ½hþÁ´1l9°—¥N<õñkÅZål±¯ZUG°‡t¹€ÚaIií ±# 9€:r.Ê+,ó×=¯R„˜g¾pØ!ÿ͈OÍ,ƹ÷MXW)Nú*c «÷N å¾ €ò†šŸýÚy´ë®f=®’ëLµh ‰·!° ÌLëunwhjAɶ… ˆ w!ËÅîã›æ@Õë‹©Ùw­=+‡ÿHµÕ°µ£†Qäµá¾yîüUázáQW\‹lp¥ò¥– é¨hPKf¨¡•ZÓ#¯z'U7?n›ÑOzÍO‚ñCÏ»›£c7³¹dɳ øã[¼‰¡ñ…ª§´^dFֆБNð±8Ps~(¦ÈS(PNY¥UÉ`/¤r´›Ëò‘æ/ 7³°¥úŸK‘º¹ GñLqAí–ó¯5tü³Aµ@㦱IWoTU·ðel«kÄ¥ ì<Àv1äó9G?R?ûMoB~:YÔ½“Yd± ¹l=ÔF¼5P„_|H[î´æÇ©íë*ïÕ bϯµÚ%'eƒŽ, ÐÍ3Ç‘¥Tܘ2fWµ ×üºt.uú|èRdaöu5 ´Š¶t³ãƒ=ø£=nèE Äj|Ú¯¿h÷ÜkÚ´„ákà(_ü8Û›ˆn»ÉPN;,l¨$pÓãä𾟠œ\‹nÀà8f437õìÚ€Ù qvº…o¨vü·9£Í¾ñìó$'P®^iuRYÝ’±ˆ`kŸ8Ùg'G¯+£”ˆ£Ü “Âä!4þì”– OÏm }×ò=kyN•NÇWòðqÐìRÔ/­Ò»ô¬pY§÷¥o™@È€…dÁù´RùP–ß)å\V~«»,ÈÏV£˜%~<ºs­sÝwÐÓ(0”F0¸—]€”Œ°º‰ ·É°Bnq¡ëÕwŠÎ?™BÚü¶ËO”¯±ÝnNû7¾Å”ÝTeŠ4„çoK_ªÑ@ôõwÆJé{ŠGæ1¹+€D¸°‘–߃-µ˜ƒÎ ªæ ´sû[D¬‹ý¼erm×ic,$YžÕÓÀ÷¶0€mqd[ ôb×,©Ø‚užÇjGae9Ê¿G~öbæñ3ä¨îÍÙø/Sv›S¥~/µŽ’è¥ð-§*djLB—C­”Qv¼Q}c: Ó/1ƒDÝzò7xá­/ù­ŸÌrý~úßCiú­•ÐTX`:,u¦€ÒÖ†9§»"ÜRYɆb}ÊTÓùjRSüÑwÛZ«Q åñA…/. Í¢lu3,so¢Ú¿6©o" ÷rû‰_ RKbßlá­däŠH(ØŽ;<Õ1È5P¿úõ‚ƒcå™Á}8û…H—5WØ—ÈPº…ÝF‘ÐgqÝ4è^’Eaõ3ƒ¾aD¶úûAÓèNäIoMË)]%\ê3,–yo3Í Xâ£ípž^óA‚ËÌ-#i‰ó'ÈÍ,mœ Xws>L®%x(ž´À´Hu-¦¢1ü}{‹¢B™/¤1C0mç´­ý¼-š²(€ïO´OéßWpÀ1ÓYB!´X÷– à7RÂí˜pg‹whDúHïòã<õ7¿Jñ/uÕªX”EÀ)¬#Âñ°s ¾Ä«ùϾ°³§„µõû!•˜¤ÞÈ¿p­Äiâ}DjADñtPút¦!SõÆÍ }ì“Rv më­ß's€Ôö¾Ë7÷Ñ BËL:Žz±áb˜EºÄªž¨YœcÀÇ_òãíWH€€ÇÚ”ù ²\ü+}ê WVO,üž6à‹bT‰X§R9ŽÕ7AKÚ o¯ÃÿIRøþê 8¨¹–kvJ½T¦üN‹:œm‡ÿ ©*´ì§ßX˜7ÉŒ†ŠÑ¸ ·ØÉ)Îf^€Ýlm²Ò¸yà &WÒL»X!2e‹¤ŒËWà|n´$&ºb{š}MøáÔùj‡¼Ðæ‹$ð~oB ¶ýej=•j2i:âtÿ)ç߉–Y£}CÓVõéŸQ©jãhÝb_Ϭæ™Aß|»äc:²QRfÔûá4½8éžR}¦ð ñµk;³®3Þ4c5‚"ÐÕ>8Y/‚–]•³TËH^48´QûÝŒ’TÆzbJ+Lj›Ú— ¯´¸{JûLÀ%©„œIÒ-Õ–„=ìhJ¾„¹ ²7Îj‚Õ¨rù}¬õç=+;ÄT@f-î­ÝPìyü¼LÕ Nd-¹QàðFæ .ÌyI¸i:9è£ç^ðCX“ÜuݨðÚw0íû¸Øð®—jfáÁ Ž‘ÚéWÝÝ“Š¢ÃÿYtËçZY…`8_ ~Èa$k#[XHn}²ór0Y,zÛ3Å?†å ÏÒšþxrÄDøÒn³ƒ•b8oü¿AÚûòì3¾'À³µuÚ#²È=6ÏK©¿Ï^nB9füóÜ'eúbY áö—dB‚–_%¥°_'¡?Çû]ä¬ cÚ|Î#¤8ºÔʺûóÄ£²È…y}ø²n’r\¾ru§ä:âJ5hpcVªaÞ%7¤ÿ¢~0]:(m®ëÂÐuÄÚ ^ÝÛ‚êðÊ7äc,i‘l¥t¯Ì)ÅÈQ…ÒoP(Ùû[ð€/6lÙåóJ(EÒœ@eµÐ7{²E ÆF5îò¾d°éUd`FÁ’|®ÎCø×yÊ®í:7ŸÇU´!xSFÉîæIw¼U7²g³‹Ò7#géó)º­™ØÃºm¡Î‹ËÆöSåÔBé"ªèý3“›¸¡¨˜)ýâñ9Üôljr‰T¶c*7"~4»´*p£½«û¿«Ý}J5‰Ô³ÞñIµä Aé?½oâ5´)m?d†'Þ[òÞc ið¶lš³Vóº¨6sEÅ-ÔíòEÆ 12K†/7Y¼@›ù÷¨ö »¥*÷J?L^u—(ò$šñž— !lÃxíÊ\åÁФ;ÌJê(3_ö शt3qg*/–¡Àùé­pW–…éÿHzjkÿãÎI¨ÿ@ <ó‹Äâ#¶í.c¾–ïZê.J-ÐèS6›H<<2ÂKZ¨?é -K—&ìjQæüí‡ ën­ok³êWºd0Xíšÿ'þ‚)ºQlÿ2FZ4Áë³Ùk¼ fÒ‘â•»½÷,„É™;ôD¯AÓ…è–pYªRƒƒ|4뎟¤mC½Õ©¼SãlDÙÆ,»7vÃ+˜‘Ùè ¹æ¶Ö‡D¾zYD»e¯ Jà~?|s]øWLÂ’ñt5ì‚ôfÖ-¯ÂîU…xþõ/0¬Ê’ ¦u2òêŒ* ñ4ym7VM-ÑË}{«¼ÃWyÂ^æ ÓØ°Šï“SRÔ+_úÕ)Ý~!!%4­¡÷zåÓpæêRŠ?iÜw–žŸn»ù™1dacƒ”`öL²og=G´Cìÿ|b—SãЊ‘áYC:ðα/çE ¶ Ž[çµìwÈæ©GàÄêƒw¥d•¼ÒGÉ~üM â½ô)JÅõPìœ=´®íó"óApÆÈ­ºm&Ÿ"n#,0Ó%±iªð´¥µÍIRõÂ÷#éиü!àj¯6b”s!ò£ÜŽŒžB¿Ù þêrŸ]å¹á÷§Þ E }÷Ìoœ[Á¨Q kÈ&±I?áï»Þ‡pD’» À Jµ‡/Ê@„èéƒ^üXuyÈ:\Åšžõk×¾(HÂYÅTá÷ª0ÇUè·¨CóJÏ«ÕE¿£l6lµqÙí: Þ–dŸñvχY&n85&tÔ=ò­»Ç ÷ç;ÈKîO±4îQP§†Õ¢]ÎÇé  jT}Œ×¯Êe^ÞÞï¾ÉÐÛBLIs2+Â.u’ÅÐ"wõK‚£!úd“#µ~&ËRe£ø LLŸH©éáe°´N’X|¡ dðzõ»æoÌÌÜý:uqŒ³´s¯•‚ïœkßK(Tºq½y{!—÷²(G4P9,3E`:Z ”å$æTÞ“ÉÙºe/£ `5Y’L¾kx“ß!¯35’'^æ™\rÎ"gxÝ<0!ò×+Éþ›Mä6æy?äŸ6̵8ié¡P#(kHF'óÁrѺˆ{i^ïôn³mú•¡ðo(xQD3½ }î›[ ?66 &åŒB£ŒlCvæšp“'‡ÃhH+±Ÿ)bv«ã¦–®-Šž­N9+_GqÇ#k§Yª³]2¤‘›Ù×»Z•´¼ÿ^Ãûøw §ûžTiPgàëpfò6ñhÁÕ€eâçwãEþæºVžgƒ’ßÇ9·Qbf@r½7ƒæg<¾¸úý¨ ñÏË?Er +s>úýÒΘsuxlÙOJŸ—bô ¨ß›[ÔÂÒY/ðOÊÜœâƒj] ¨ ?oœ:W% q ʧå~Ûym¯ m+;¬#ÈpžPËÉã%t€~müÂ’o¥ÎϨ:¸TPäpüûã—/b$ßg÷¹éu;»E@Úó(ZžÊ48^i>íäš)ëVÌÌBGÇ Z¡ËUÏTãkñ"ªÂ^ ØÝÇòBÓ]WE0´’V¡—šXǽ¨‹}k¤jô¹Ò,¥L,8pN¾¿|1èôÖ«/Øt™ <.®C»pÚý- ¿£ËIÙåâ;(t¨†×„S —ÕñXZÄw g)›Û¶Â1*œ•OÊ8¿Ø™P#ö½•V!©: gB½Œ÷6¬û !P’Ä*zÍù‰Gÿüÿ6ÕNq4â'¬ˆÄŽó–¯Aî`¼þÁæË/æ"@Ò37ãØ¢=|ú® Œ¢Ze¢—vq„SiÖá$JbEC11Æ; =Ìw󿹸­‘£im“Ì\Öl@¶eìP¼—§gû~¥ò¾^û.ÛŒ¾qp${®ÍJ‹%¦©yô¡PÆöwÞ¾w3ÛZ©JGj» >ÔžXÓã®Uµ#ÙÒcñš¦7\ÙÀõẦÂ$/Ú}`CºUâ^,ÚxM…áÜ6\MÐ×g* BN y±h‘¥³ªœ6Ôàmé?!ÝSh¼ÆS=X¤·þO^AJè† Õ$ã±7±xȳü†>S´ÃζPXü/z¤~ª.z0 c¥²w[h}ÂA+.Ú™“†.ÿPj)c~)SDè1‘(ö“ýQ§óÚæM›¹À»íhùJþnB ÁUÛ®_MßUöYûyI厠íìÓEù5Q€?Òz?LÜâ¤jß%g§$Õ ðPǹÉéƒqAV̬+|YÍk³ÙE¦æÝœ H~ïØ/a㢅wãë‰.õðÛgZ@,¡ò™Ð:kÔw6<½Zé]&¡\vOà2Tyó¨òùÇÍt~i§'çjú ݪé¦Q×c|?±*]WË5Œ×sìUEí*£ 'ÇÓz{Klg ãè½x"I›úJº"w&þP yHá”hÆûñ°R&}£Q„5‚Ò…ˆêDI4ç,µH}b¤r?>Û솵ùnRÑjlà…9 DyaIÈÒ.qãdQ®‚ðF:‘–H¿«Ä¿X°pÚi®,” û¸Å2 ½ê8RÅqÛü{.ûiÛBŠAµ$)Ú ð+äûüñ\g†ïP½R!˜òt3|W”à `îßÛÛØ ²B[l-|eueÌ&*ÙG°ïPh FߦŽ€+¹œ‹*i½lKMŽ‚ÖO­¡™wßã}˜Œu~j@Šåö¿øéôRwjj¼l2¼A ‘o ùÅüa!³¬²¾ê²e\©ma÷…±¿Q8Xré`t–ñc ft[©‚„ÅEЇ% ®S÷=+&—SélñuËœ!l@ +ß š­þA¢C:ÆÓ%.´|QL°ý"67h…/ÇÚºÔ$z‰îÜT–Í(&eGØUk³TýHk%_<þºÖœ?XLÔ^p[¼g7ý‚óG†Ò}EtïèÄX«Áò(zˆÃ‘Ž:u8reÓX4ç\¯X,ß»ñ±(=¢HÔ=PóXßbSùŸƒ †Îçï°›VÉ•M‰µËó… ØwsưReÁ¢¸${SûÖ¾`•“y€aß%0ôTɘvl~Ýî) m‹èsrK’h„›?'·D2Ø9x·@¢ExâÞÒ•K¨æL̲Oô‹‰ Éƒc*õ%5º1 ¹¬nãÞ¾ µHpŒò«ç)uÀ}ðnÇ¥§UÝXÊý±Y ¯®üÖœü®k²Ü§^9$&H.0£ˆC:çæï™“±ë¥qà(©üùÝ{ÁÊ'}Üf´ÙC_¶ë¯(Ö×"bõÀ‰Xfè—¥­øqe«óåc ÀÚ”…nȸæBS¢(bFÚ£»WYÐ>¨ÝrKDÝîß¡ô;q/§¥úY¨[‡«‰/Q^¯!Õòèdô/p©XUF1"fÛôÐPY—φün¿Ös>å>&Ä·P`ÂkœÑ°b@LÜëÑžðgÐ*7#fQEá[PáäÓ&e 9"2G“ÛFj˵̙ßý"É…ðT€EX‹ãÄAÕÔ¤Ï Ö‘U¤¹e2»éOºþcã·˜% K¯ ˜nÖ ôÆwP.¤nÊ*bõ¥Z}®€©RÓØè®\“é’P(ÆAóÛ–r J,2Oe˜ò wJ+?H ƒ[›¨—ΉŽÝ|þųxgƒV蛜£`6ÛÔ׊˜?OLš“™Tùô!¿ÉH»égsˆfóM"œØªŽ¸å+<á¬Ô-8™¿[©"QÂy˼·†ÏR§ÑEœ~‰#rM1àð­ò3H©Ë dóíó§þתÚÏ9ü¥{(ý”¼ò`›È¹wMÜ$Ô¥ºÎÅ[V“Ž!‹û‡îz÷]N×ñ~šg„gý¬~pfPv[¬­hÙGÝÊÅBý$½6ÜD$¢¦éXü„Ì–{ù°¢SÆD6}¶Û€OÁÒ¢w>‹ŸJDúhA)~þ¸nß2¥òÒ××M·tšm~¨/ù=šâ¾<1¾š\¼úíg䄸 ~ñî„mÕÚâŽHS<-y^^òKBV‘'o'¶ÿ S¡(ú•±Þé¥ åfA16ýXÔÞbÖµaKÛôÛd»O>ø©¬YlÜå'794¬½9˜ò¤ì ÒS °\và»ÔR‡’ù<µêÿbèe«‡ùQ¿hdTœ9ÈZ¡©¥òðc]Šñim,Fj$é0¨fûÔÏË/j£µ€Åº†žV.¸õmà)F¸Z:ê"Æì8ŒwK±%¬Md¿Z!Vëè]Ï΢Ma["ƒ7 Ñ =ñƒnòE÷)îA*ø­O•í.ƃ$J^ël°r]hŒ§ÕxÙÃÎÔßâ`w~E:ÐÑš)ÁΦßžl–ÕÕ:wW5{¡|É“Žeœkå¯ò¤ÔÛ+T [Ò¨¥¡|} äñͽ;û¿8DÌ šûɳ¯ ÿ(^9¹l2qùÈÈ 9&@*G– ÁúUió<;6PWµEÛa¹0Rï·Am´CÊš·0“y¯ûŽp&CŸ¥;”¬6ΤÌÄ3X£d³å ýsáÙÁ¸Œ8Ž,úü*Zj|ÍÝUÝ£Ÿ”–ÄÝýEKl‹àD§"ÜÍÙ+ϧ0Ö£­DVÖ—μŽEÛƒ–Q]hòkYh*<›NMœœW^ü·>u’µó@æ:­/×ö ;úi{ù§‡P¿‹ñ¢¶+bpÅÖf4h9º¼š® 3_ó@*‰%ÌÁ`®)oÒ ®æÄ]¬”C+L@Óº_!38R~TÒÃǠ˫͒­út\©±o¢rMØží HƒåŠyõŠ–ª6òêÁü†æ»xéx÷+ÌúL³!€À¦'Í!Î`®wAR$–òL“t~«4ã×q Þï×}º;·›'¤¸F=Çb=¨÷âKlltÃÒµ‘^Ø/ ½T¨ãö†¶oÍu©ëOþþŒZGÒZœº$ðËÜhBÄduºuK÷¿!·o ®”×ß<²)î§jPÛÄYþAѱéI/œÒTÿ×àiäÄ(1« —¡1púœ3 Q ø“ëv hÎ !XâÕÏÑŠ<-Äx™M%WPæ¿#‘7ŽÄÊ•oi½xÌZqpûf ëíB_"qÌ;Ž1çÄK%Á™)"«8ýkÄ›6”êÉÌiCÝ8íln›kð ì04`Ÿa"žÁëÎè¶ñ,õÉ¿Ï)ÄïïbMnØFÔ±«\³/zì¿y¥çî˜û2 2$Øô#=¼W/õ k!‡Úé e*–⹈CM—SŠ[våÒq\µŽÄàðoŸ2‹d¢lž¡œ òõñ‹‚§u‚…°#ÿH]ßE5œLÎDæï U/@q}"®óÔðY;äVp5Ž[ÀºuÁ°1âe+:è9y-¿í`ƒf §ŸŒ¸€C<žô[®üË4;<œ#áû€ W¡~bú……Ÿ¤?i¨]m)y/¥ Ò‚.Ù‘{¹qÑ =H\ʨÁ§/MÍ2["鱆 ÚŸ.ñ÷K›F˜ºàGaznE™J%KÒ<„ùÅ ¶ö@×'ÏôAŽs ÄOëqQ¤Ÿ׋¨à`ÿµ?£Ë)ÀW°ÊÏ:˜öÍ4v­°qz¹ÃÊÊúŒJÊL¾ÎU×å(‚Û(ˆdÖŸ“ƒØ¬iö½‹¤ršgIˆ5ǵz"€)B<Ø\ÖÀƒ½¨¼jW;Jsl–ÄËt‹±!ÙŽ†Â䘞×Ýì­ùó¾fêëQ¹4ÞÑÕ+ËwÂù³…nÆ+Þ^2l6œ|NæÕãÕAªA&Søìð“ÂZ©©´—œù9bCÚ^¨ÀМ¹)J #C}«2› e›™›@[°m+QˆZ˘?c.û~e´j]å€<ÊÏC7Ö\[Ù^¯äÂOå2‰VÃíß>Y Êw”á Ê43Š ÝÛšc¢%q.t«Æ˜ÿS¿ÇZŠ@×™j¨×a©-6ÑR;Œc¸ÔÕïÁ˜‰Á^¯8ŠöìÓÆÈŸ³£7X™¯•eó. a5qÙ䣟B&æÅ÷’i|Þ’š5-DVŸÁf§–ÐHxK5ç¼¼4ÀWý܇~&tð» ‘’ ¿>Ê Ÿ32TuñÙ= ]LCåµtÀbé]„ó:¥ÛX"¿Î•+§ É‚j¥w¼âןÁ@(È$·›îAr«Ò<*­èlLo7`Ô¤ðÖŸ‘û½ îõ—Fû9‹øœÅY»¤ÙåŽký7ÑF9vMþ`嬑×n+®YÕö8r±\!¡Šì¬)ôvŸ`Î ý&òÁV#ÙÕ·¸?ÇŒ‚ÉðÔ&‰93ø¤ù€Ø1ZFV­›©Dº¨ùN⢥é†Ëê 7’&á«´HìA¢ãÎíïbÄõi˜â­¯xp |:Ñ\~y‚Ë‚ZB™VÛå’ºd}%dðJ<çì{7”›ÉþÛ²ÊþŠ øáž pù=o¾ÄM45œô ö¼œ8v%VÇ#ª©Ñ bÔØ\b +ç½I—2õºöYn[†ï¤ä³Z]^…Ï×Ñò„†í .‰ú]”÷ÝÛ$d‘£"¹=8×ÅäFðãC«"XL´´²þaôìb´ãÍÇ*WÄÌŒ4Ή„Ý»‡$/W¢Oýe{áZ8†AOES­˜¾9¸0RG†nRdG<ŠÍ+4‰0%Üß@+‹á‘hv.O¬c±s$µ%ΦtPÖ3+Ä”§=w“Ä+Ó`– ‘)p59¶˜çË%ËJïMäÿŸ…1ÌÚŠ‰gGEâC*å@‚n€ì wOyó¯•vV7ÝY¹À7 çg#‚Ñî|!î€q¦7 )Á€» ÷½He½q»yýÕÌj½ç»eØ™Úæ£§ÿý˜Ú¢£z¸ÝQ‘ŽÇe‰Ž‚ÅžKÎÓD“ápÁýg cŠáÂù}gNö¾ÿáÆx‰2òè¸Ù…½:‚žÓÌßõ‘…EÄ—À'T›Iå¿ë¸žåuâ‚uÃíröM÷¬óK—{gŠÊbautÕµUFKþÕð_ËkðIã~¹›„™4ðŒ­N[ˆóW?îÍ*¬Áª0âOû÷ßÙÔ3ƒó! ÑzLDÇ¿¾ì@ %ÔçGÒà{еyACí’ÖeØ@j®`›XWo¬•<ÐÀ[29W8oΩÅÍã9‰&t6>³€“ªvf¶¬¶ìK¬™ë(÷§¯ëN‘O:¬±âòHòà¨qõ*ýI3‘ïxò¶U™UQꥊU/ªAÅ\oØuvDtø©±é¸ø•Z,-»^Õ•1?W,jå‰>è{‘=ÙÖ¨©rÉ8ó ,-•PkMÞKËÕ9º=—Ò²*>­|_ɱìèð ŽØX}âç~­”•‚Ät+…&Ó˼‘Vaˆ»€Ð]f8 ýün6àó«šµûS&¦¨ü“‡žÚeWw-¿u»¢„`Z€ ßR)ÓH‰õlŒúí!ÑÞ\9ÓYJnÇÔÌÔYü¥»ENC íïÆG(ÚÔX4Í• ×G‚OÉÀPÐ'Å©%{/”²˜Zt˜a÷{ú‹ÑÌ·š)ilõâÚ¼ÚL+„ékè¹ié7ÏàK ~‡‘ý7ŒÆ=ª?ÁÙ¹–J¿AÐWè˜9’Ögî0Z¢sŠ) (rÙ˜” Û}ßS®é¢ GÏo÷;v­\à”Wë(Ô"1rOp?^œŽ$UÕc-;µõч”W<>!V|*XåöÜ)07ï,ÀzK½OqO(·²¼»l5`À[}¶µNùµíy†OKyJ^ $ŽÐ¸¯:ß+ýûìÏ?cVïs ,(Éoõ?αǂ:Ê6+#E·¬}ÒÖ=õ…XQ9U÷õwôk~ñ¼² S«4k}¡TõÉrÚvʃ;»ÇoAÆ´úšž–¡å­ã¶Zµ§£ÇñÞ’ÒîÜÞámò€~KáhÎä\ÔÎNØ¿)ééVúDâÑô2Öz²»`„QP[ÂfÏm”5ÛÅÒÁfÒ›3Ƈ¢ ß•–y9QF$HçpÀ¿U`½†9šxü£Í¢ýúPS¦(bÔí^T3Çþð¸¿oþ.ÐYPïcŒÇÖH »©ÝA²s²Õ:ŽùB@ wunÝ>ZëÒq>úÛ¡c——(IianqññJì8¦¢Mì+*÷¬ ®ïC™”Àð(oÑ{ÛŠWt¨W%—Ý k™„žo/1 BÀˆÞð¾Wgp|Xì¶û’˜WQMë!fÉmW.À£¤½¾~<䓲¢”ªÏ5—0 –Åex6Ž*ÝOMDnWÿs|‚½NMZ?ØâñDã§Oq§3Ïa¥eß×–°To†"'y›’0ê ™“¼YBÈñ+úPÌü`Îa[ ‰'C5ø‚òrdÍÙ4€ýÉw>E6I•ó!«m³R|DÑ”Öðzµò£¶n9ˆl“”¿QÔ5wMÏ.En¼iq¾×¼D‚Zos9†µDŠ+v'Ž$’» õX “júÙûˆ]cÝ9¶Jä«ÿʵ ÊFø+””ÇD–¾e7Ë€Æ7Äœð9Ùéxßä~¿ÞÙðµs äXdƒfDÚu[Wÿ^…²ìð/šhÍÃÈ–nÚ‚6òžÓo$~µ™ã‹Â…¦b–¼ÀGûÕw“¶·+÷’ë³61”²ww þE8‹+×ð¶ð|t¨ø[Ÿ Fåñ\ù>êgxF“‘ä®=ù’èÂ…ü#€CXs¾¸|ó¯ˆt^Ã?µAe†ç¢ÿvl@\ê¨öQPlåÏÒŸ¨zÊX+^Q¬ppõà£áÀúG8؆?¡¼«–±éöª™ÀkŠæSØê„cZÒ‚áß-FÀ5•„¬ ÜEG®ýô„';)ö„Ê1 ’^b w/×ã²ø@fÇ:ä¡âuÉÀ þ€£ÔÌPð˜áXß¿üGù-Í4¿¤¨óJ´1 ð-Ðô(j2ÚÑmì½ÏÒÆ0iS#Á2q269rºt¸7O/%ÈÞ¨ nlQNä€Áð–KšLáæk ‘×2Œ=±··´¨BQkÞ‹0.ñyd#›J騏œy9Dï›’Ò‘&K€Õ‘S8âm L×O|ªa|äì¿VSÞ© E:GÓU¢ëà¯SxIKvÅȇÕhRhÍ™âÂ"ê´`À—ÿþÁ6 ÖrteDbÂæÉ(×ÇUì\h[š…< È&‚ùÅ,ŽeÑIâXˆ"Í‘D»3õf+‰à¼©½fØé^£C³˺56¡47“vÚ LxJ#É_råV·²x6ÂL‚sz!t$y¡*§œB9”aÔQŸÄ,Mß z­ÙSàÃÚBÊEé%”°)ïÅØkШaP‹éÕ®ªA‹È© F"ÁÉ\±µ²OçSßå_HÁÌE'šÕÈŽË&?¤K¾ “üiŒ´MÍCºÿb®@ž§½AçD‰‡i-PoMø½¹qÏÒTî†[*þw“o4Á_Ã䞎^»íÐó4áƒð·n28=«Œ«›·Œ94½5¤-˜ „‘­)Aìø Œÿ‹¦:Õ'UKïÃß"xönÿ1føîý .XM©Œ+H†î–äÌùAùÑ÷‚á\äs=^Í(>ËbwÒuc½¿ºòÒ ª°¢¡¢FýU,; oQÄ踂ޖ`™0Ky©”ŽÑÙ#˜3º™CÓtÌ‚ÒÓÎZ/e«Îj>9XÁ»J’ñ%›­-ÿ‡ŽªÐWÔL•´Z3[(‰¨§xçü†lîànjd1Ž«àÞpÖù$Ä:¦Žå€QForÊä!Ùšøêºû~Ô˜îð•³b·=«µ8¦mÙX’’Ô4¯ÓÇ–a• @ ÑÙæÝjuXd{FI©ÐMäDÔ0\|·eJl ~ʱ3²¥ºz¸ÖÍ¡¨|ë'"n:zNŽ öÿ?âT¸ìôÅ; ‰$5qGÛmɯ„S6œIkI?Å: §TWx*pS·’~×ꃀa85ò#êÊ$JT;àq¹á‘Óû—2ŽN8ï„ã ¹w5‡ìn§§Hô•FС#¨×öov‰œmk×ÎvBe³ÎE$ÓZ˜7–w$Ù®F¨ÂÜñ &íd¦¬2K>(‹¡Ô@`zrx°.)n4žJô÷ºŽ2 >N(¾Ö˜¢š–<ã WÖzVïô2ü]>k&ì“qÑéîÏZu–Èðâ…ä¡‘äš9´ZæÅÅ´¸»ª¯œú„I€øW•yý]4$Më4®â‘”g^£uë ß/wŒÞ"ñ3¼Þ2¾´å=CÇ‚“Š¾Ð²m©ÑIî,–MNÊ8EÄÔ¡ÑÝÒw]âa¢ªàmqÿÃÝ[ÆiI ]"x}s”p1é@•$„hÚ«O|§nbÔØ–S7Ðv®õ:N4ÈLbëOSÖF’å%It¿ä¤ "ñ{²uGÐÒ´óüÛ} Z~—œƒo·¼bXìøei@«¾Û‚æ4™ÎžÖ| m³Ô{Òú³êSr’ºÚ1È°zÛ¦€¨›®`ûö„̶ÐxÎ?p”úe%¾Ÿ5^(Òñ õSÞ•5±âI¸ÑsÙMs´"ííì9.Xßш]¾›`âiEZLJ;ùëé2Q¢¡÷ö€`/ Í@=¢[ŒšƒhVŸyŽ;†¨“ÃAÙRiG Ö£phî ÿWõù^e—eJ-LTò8ð™¶ô1m‹ájù€eM8{íXÎP[Ig7<ÙŽsGçœ4þÆ’sϦ¾a ¯êEcóÈTk¶Î¾@¯Ä«ÈšÌ¹>p¯x£ 9[®¥Tîm‰ƒ\óHg‰<—”ùÄ”+:âÆŒ…Ù‚\ïË®3¡1$êiFÈäh¥ÍtX ]ÿ¿{ÐgϺ¢vcUµ/šî}ŸÍžkðêÔ[)2|pµ¹û4?,è¶`!]œÚ·y›† ¾œ§¥? Üg5T½/_Á¤VÚ¡GØ•;ôÄ¡rOÏé&Þ¦DÕî©LÎÜ Ê‘Õä:'PÈ„këßÚÂì&÷jÂÇ”r•Bç„G(˜F…žJkä;[_'%^‘‘î+ʬ.è ‘½9U²Z*©4âíÏŠ|¶Ç9îâa‘ž=d­V”„;_H`›‘2 Ö¥séíBjírÈ[ò²Q˜ý–±ä†ý܈}ÆÓÍô‹¹?­‚r+ ÓTƒ³ý)ŸjhVO®“qrüŒ¸uÙ6CÀD\KÜTð7r¬¾jµìÆ]‰ Ù#í¢Á«ÿN©òI/¤Žx†kî}Ú ,JÏ‹j½y£dò?«Í)fZ©Àõ&k»õÚ£I¿‡#4eŸ@„‘ˆËKy¤ÁêxÈúsVÁØÏ¹ßé±Ãy<„rQ†nPpÜ„t|_¢ú²Â}Ry÷lÈ»ñmÕ«ðL^sX¢þ”<ó1½ ¢ÍEnsª|û ×ù{“¶˜I0¡=Zóóã0ü¬è‘R²ŸVV=qZ ÅÛ:pÏF œ‰V·}GúÇÀÑh7ê¤ð; Ó‘dñtÚý§¯áç´xM4þ´˜·Ж¯×)ÖÍtìªT•AÛc)›ô¬¼^| 3ù­»K–"½)‚%—2’xÿòWŽ˜÷‹Éôñ÷t¬  õõx3«ƒ‡OFn1])6b&uËÿ0æú“nƒ´ò…5EãÜW6ðàâ0oI眫1{{L¨dä•L.u•1—!«ÿ».£5€J²O?.Õ%‚ ÆêJW ïF}µàÝDzö£›[ŒÞxŽùte>„Šh†Ä†‰g’­£ç*Ìp°­–±yž±;[†¶¦o¼ÞÒ…­D–ð¥|…-ûü%q$ê—Ohª°ýÏ´¶)êãõø%ÊÆÞÙbÄ¢¶;Ð Kœ•1V»~WHRö[ò¨ÃÇë-Ù}ò¸…v9JÂÞ™^Ópsš4—°}ªù>·$Cýÿ¼¹ÉU›`^ ’îßexwIè`×hpÑD³ÃeêNñ±Ö<_0âZŽðû…‚ÚÛ †MT6täÁST|ÆŒÔo´¨ÈõÕ(ü!@!ºó?j1>û_ zT¸³ë?€–ìåó×Xè+®…¡Jš Ê5µ;wÙïh5ùñy¡€YôÛ¥»±Âxy0û^ç#–"fÉVèTªÖV²‡·#@̇˄ÊùHŽ;A0‚ìV¾O.°ìâòï¤ÚDÐÉOÆ–BáÂ:äS3o@;—Úîð-º}±¤ˆloÍá‹ÅŠÀFuAØW¯ÕœÜ¨LmG|ìzkͦúýíüQÌÕ:@P¶Q‘(ï¦=ÝøˆÚùǵëœÛ.P‘y—'oöâ[ ø/I’;:3Õ,Ì0è{\w™³´$ <àu•W¶‚&a@ÑT–FKÅÙ‹Kå$šZ¤¦BÍÞ#+ËÆ˜ÀÛ:ðÛàʮȀ ÜÓ$ß“$|ð¼É¨Gõ—ÁF¬I9í&NEˆ¾¡ØÎØ4û.5¾óx`‹ö®UŸu71Ó.Ä̃V‘ýW²!IñŒkû74Ú'¥ÅÀƒTY‘Ê$ˆqéµÏŸÍñá¬D½¹ît%\7à=E¿ÝÓö¥ÌEŸÕÖ7\Ÿ_â~\¹ëB]Ã@RØ©ULÂ×›¦®_Î \JµÏ<æ“#¢ÑFÚ3ôO©Îð6 ÷ˆì·*Îvz039sXˆÍ¾Ÿ!{b äìëŸõ›mƒÇT‡d5|h8N°ìáü–u9àõO^-ïèÔ9Â6ƒ+w]mÿ¥r—ÿ)êôñŠr[ ®dUõ:ck?¯ø7WÕÇM·4±,Q/dA·nèfÄ¡k®I}ië4ŽO&h[VŽfÇ].DÙŠKÃkð¿ÐÙÐÍ© ixú—Ù¶ÙqóÚü¦e"ñ5²ïÿ¨\·Ó ´m#c´¹oZ­¿ì…r$>[u9ÊÉÜ?fMhðAi4(…L Hisœl$A³B8£Ö/¿d×a0û¹Ð1#<ò™å H´Ÿ4+Æ­_ÊNM¨W,™…w§ô»½30 ‹Ðô»“¦Â"•=Š] dȆÚ×21¨ËB#PdÙßí{ÙîSËFv7ÜX’3õU‡ß:ŸÙ‘U‚|qµÝèD`¹8 €Òü !¸¾½F‰,’¿2N͜φâO.ïÂ5ñÎðü' G©àÓä+Êš¾È)Ir2|ÕV†<¯Òÿåd#2Ù4š¹°¤5$ÝÂMÂÖ•?F'²¦EÒ-¤%õ\¥êUtzâÅô‰ui‰ÃO¹™w {aÁ:6z6¯TxZØ7ùˆ-ù·âiE…ÌG’@‹?Ôi¥V†ÅŠÃË6Ìs-}ÅB:JDüÜÅ`èoY!ìÂÇ1‹Z4þIµ¤ÿtXÄÙŒ:z˲í5áÄrÌ6wVNNKT·©pÞŽ2ÞLö@+x¦,…Y"ÊI÷ («ù‡¥.ÅáWœ=/ÑGšü!˜¥.ʽÒû¼8¢~>VÀç'–7´§£!³c]ÍX­4¡ˆ°ö€ ‰_‚‰ß [!èZÖn×ßW«ƒ!Ö-ÐU`D`9=¦”·Tu:Có§{)Ûì\WRËj¢-“&ÐÀ}Þ22õZŠ•ã©¦É¯¯WæÐºBêF¬’‹½*¡­Ñs5xËÜ»Ì MáIîB½ji°À {’­Š‰-nC«(!´©×Ô8å¦ÒDy:›ÿÖ’Zû4·ò±yuÚ¹~ Õ¼VÿXÞ˜øzíDn$£D’¤ø Þ¸#³U3ÑÜý1³ƒš#ü®ÈŒÃ‰Å÷¨‡+ž$U®çÛ B$nBeId÷‡}fg´å4 › Ó¼»¯×¥9*ŒX]ï#[0ìÿ0Û·–»¬)!nœ®7©ÃŸQD\ªTK–½f­ÓE)2%~KÙÿ»kU½óZÀÏM›a|‰Â‚PÚ‡æ•ùN7׊S¡q…±ãOš‹¨ŸÒ3˜a˜ý>2\.4œ¿Ô¥ð›p$Ù÷*lœ+yM–¬™¯¸‘„\±—¬…q`Yu…æ¡Ó)ÇEÊ\Ë‚š¤÷@ãtþ‡0µE=[ª\çQ`†7¯2ås!HÔƒˆëî/‡,²$$œt[•a8iŸÉ#®:˜4 ||e8Çïù¨0ºGLpæÙl¦Ñ„íðMo¶cé`éûȰÐÃÞHºYÎ Ó-|ƒÖ …ÿçêb!E5ÛÓJ‰ôs´Qk3øúµ¢'$p«EÍÞVæÇe‹È÷~­ÓQ5ÁX¨<ƒ@”:¾ ?¢ª¦1çŒL 3ºÂ~¤WÔ[C¬j8ÑI;ÝÎÉ/råØçR2ç„wŠª¥ýÌÏ_³¼}L!™WÂB1ãë9ç¶ñÉo~‰‡¿5æQý»0õi¯Çd»@ ¸¬ÒlíOB#75$H½ŸcAB,µÏ€øeÔâ¯GñuÁ¬Œúj%yëµæTÙ L„º Þ~\¤È{©Œ ×Øfæ375C LéE‹Ü»g£ŒsÌ-˜æy-Y,0pùáVûž?ž^ æIQ–þ´;o=šùd•]Á¦(>ƒâ;ÍÌè¢ÝÜٌų“)ð0±f³RM—Ï勚ü»÷VCzÆf<Øîyàˆ7˜z7Ú7!½W7®€j~ªÇOh·RpgåÔ+Ü–Ü­ðµ`Ó­~ âŸôwÂÖòbEaDJŸô‡ã¿?·K­¥yÀNØÌ‚ï¨à^øc6ŽM@‘‰…Òq×=¨˜  Aìó {Òõ<´›œôížÊ­ñ[%¶œPÆqB6òÍÀž åÛ › ЧËZüŀРcÄÎówÝã’éýæž®9â0“÷W»¿¢qºÌðópÃéQ@¾ÎÔµýtê ŇÃÉîñ¾²É÷Ø8¨óÕgAÝw€Rì°üû××&?ã ÈZW©N‹ bh¤DbÙExíXba Ýh¼›åðæMcÉ»Ûðó0‡ã—°˜f„鬌mò Ÿ 6ôD¤ “ݱõU³A5÷KàÍû³Þ›À´˜Wn`¶Ç ØUamÒmwÒ ×¶‡ãd*™šÈŽ–Øñ¸cDcÌáZ>u'ТV_'ðÆ=÷ƒ©Æ D;p¿ƒx—àŽ,±gÀgPr—¶p…õÑ­Hý{æó1íþ@…úQô %Éf &ð…²y£‹Àbm}Þ(Ž(h^ó‹b„PìòtêVîbÒá3®n*•£Ý öƱ,èÀ¨(H kI’¬Kwi¢ÜYKD—¡Éä Ÿê~8'šœ Q0JƃþÑîñ!¹©sï ¨qÒVœ†BuÿbÊp#dÀ°+Ã)(•‰‰#÷ò»wòrS_žï -“G3a¤Ö<¡ÐzYwÌOݪš¯ð¬òœ ÛýC ÿ0ã± @èܾ ϶¹JFÎGqÂ.¨³¢ó@BäÀð  Ö¦J%€²õÎtéyöA”ÌÀÚ­–åÚŒœ<…Wä_ÀÆ%}„"þíµ£ƒöx[2c¼¾ø¾¦š7Î,êqO;ò Ë|µ/Šãê3œ-åO;õMܶõn|‹Õ•ÏŽ4 ¶ [}‰n­Êe:Ñô0FqìÇY!ê{œ3ßÈžg¸^#m޶Ò"ª '<ç°m‡@)RˆÌ²æµ“J7Ü6ȹ]§ØÇç߇XüÊSì_wVß’Í x¹Aƒ{åúÃüCW¿Ÿ»4ýmx ÁH7•Sî'¨™×ô´( ØŠ€×¹öý$óßA`HéivDQ^°xÁÐüûä>ß3 Gìu†dëLýÚ"QzŠ:Ì‚¶yBÐë‚߈ -q‚ƒˆíF*¶G+_SŠkÊFl‚-¸¥…Í×(’²J ¦ß`6nÚyÿŸVš…:ÛLÛ)|°Яòg]zêñÙ¿×YkC717à¼Û|:Ë O›ÔÃlár¼¬ë:£V$IX]ÕàœIR–É“e/€Œ¬w×åð|þŽH¥éŒþÇ—%Š>ÓN§fJÒ’¢àñ°ºç\wÑKú Ô²)™@kðÀݵ€ûwÊÇ  §i-èñ2Ù8í"up»¢ä=™­Þ}°¡›Â“/ˆ>¥÷£¸éÆ}–Ħݧ Ëò'qÚÞ€ÖyìyÅB®fzh#$48ÕPG¾ûé¶n…«A}¢RerÞ¤¶RŠe¹Ÿé*?uóöJ»¾âö)ð¡`Xž(×*ý6n=ÍÒ\‰£S»pÍÍ·ÑXjSy Y]\ÙµB—¶jôeT_ŽoW3/îe3;ÌâÂ~Gmz¥q–[’,º¢‹Ô„18€Öë¹pK%âB<î+›©…s-н·C®¯3{´ÇÍw¬Mûú~âO‰‡béÒ/{¡ÐNoR³4ÃÀæG£Sq£j5gÏØ»’áCèï̦áþ—º°ß¡|H U‰Ù2TŠ àï­'À8bkᎠs-!þ»*×=“¿‡a“[NN#ô+q<«VÓbü’’JW£ty]A¡[Â… "›_…‰!U^Ki—z’'†ØthåSS‹Kg_?mO3…dSø=xh #Ýcp8ÜÏ:ø¼ÉYe3íÔ"9?ð£Bqï9—ûì9 ¶Ù´ø„- dGˆq92ƒ Ò>­:̨¾Ð ñ‘I0<¶“°ç»è^ª_›‹<›}éÄ7^¶œyO ©F:F€£PÀˆA­0 ×ý‡3 ² ö¹qÚuý/Úl ¼õ,šV`W…/ª€Ã÷€r;§šn9—þÝå>þú÷èè±Ä~RL¡42ÕúòÒ8죚<¹($«åŠM}Þ¥Ð"cã_7YàÀdýœ‰îj:mˆ£û¸—ýœkC+ †ÚËÔILDÇú^t79»`ï>º¸ÔM/)Òá ’c’+<©ÿÎ9;®Ò(Ø{•5,÷ Mãð(‹ÿ¾IˆØìŒÞ£}ó•È7“¼ã•U†²5Ä{‰¿ÍÙãÓý[÷ÊÛ¤º<4¿_^éܲèÂp–¨ð@ñí=»™xŸðÕ(™½Ðµ_ œ9ðñzŸ )ñ‰‹¡Ö-±Zß8¹K›mâ2Ç‘ªß¼\biËáÌ/ÂÚ¸jsU7*˜Ÿ¼*€Ä"{š§1ÁÊãÊ'h~bLCÙëO`w‚ôéçx*VÙÁžž;»=–¼i©?qç{A´7pêîÀËâDÐöÎ\wôε9WcÃs<½ ¥Þ~ú(t¸¹ :ãh³¤hqÉzªjÁ4jÏÁ«¼%¥üHf¤2Ñdžܺ*¾×‡“‰OküŽºXÈ[ DJã1Öù…ùpò&• ǵž²æd¯Ó´g©kÝØGÒˆ–åü¦§zÒÓÁn—‘äçà?_ƒÅœ‹@Ò×ï ðFàqåÎØZ_5íÔç€Û ÝÏåÜs¶Û]÷ÕÑ:DT…yDøÿw¾ªÐEå ›:Îfè ìÖãbæÔÚÿ™¢¯ ð8_·€Êâº[!õljG!4:ö}¥€EŸ[QHª.ò=bÌçWYã/Aä~/ñ˜ÏüÊMqGÿá)IôµÖêÿ FŽúe¼f*]г1äüžcóeÁ³ñkƒ’2 ]û­I%G׾ͼBvJýÙKöI8^ XÔ^±4kzŽ?ÝŠ]¨<Í?–2h­z¾D}µ¯«ÆìMƒˆ3€ØmáÀÚ„ï)Š(ž©Y—k¹œ±¯úwQÅJVº,oð®ýç}fËàŒŸÀÃiâKR%vm8rˆlÍ×I4ø³º÷â>‚˜Üâl1lRìµ™áÛ°ó-¾)Õ@¼3¶=À$ŸÀ¨•à•äÄ««•Vu€¾W¦ñØP÷)â‡úÒùÔGE Ç–ŒÐZ^WI>2›eÑí€Fk°Ñ\¬©¾¥ò³äÊ#¼]¶Ö÷ÿUݶqŽäS諬Ùà Dø×È9ã$M@–4 )‹ã2¨­cíÛd˽ v†Eüd³•$ÅÌór ¦ã̶ŽáªO‘>bÊÞWü ÎÏŠ‡ "AB8àkÒË]Çäþ$”Ÿ(tŒ5#ßNÖDüE¼rNùúçx?á¿×c®T†+·ŠzZR‡N› <ó”9• ×LÛe’ç`´‡ƒ<–zñg¤Ô¦ƒóÁÞ£)‹„cÃé  Ï:ìÛľlߎ+³ööqå1«I1Áøýƽ38Èç„UÊœßìX‹LOBX*Ã-UŒc½Í¡t¹£»òž¬%|ª¯r'b®a'%ö§Ê—áúX~¶Ï³ÖÒ’o„6f|Ó@à™x㯶Ylê,Ø¿  )- W6©ô ö‚)¿¿œá4Ê×q6â€6µ÷•¦FÛååýΠËÄU6Ó¢ẩ[mvž”Ìc[¬%Èp'X §±Ï™žîKPp#ÆcAlš¼ îX¨ó8b3)…ò‰Å çÇ59lø+ØB|0p¢ÎÊ5fRîÇ>2/DQ3_Û½š‚C¿ÆÌ1~F,JìYWžáùˆWÊŸh +ØlâL¥Hïñ³‰>TŽóæG3áOfßú>Ñý¶ýÞ’h±Ò½ÜÊ ˆó\JLÒ»h•P¨J~ݨRrg”ã1аɅ “¢ðϺ_Zp&Õ:?io —Î@Ç7€Ã+âñÈ9—$õ#{p¯Ì‡Rœä9—«Ó”w‚Ö£„œvÚky+~¦Ø/¯ÑŒöÖdüàŽjÆ™}Mоúû´)a‘gp9óæà"Û’Œ¶–¥PžÐ"Ì'Ý^B¬n ב‡…€g»Xç1Óa‹­@DOÊQøDzÚ]Òj׎’z;’šê bÍl‚Jtuvh΃ŠI¼\šÄó`5~E~"ž„ƒÑpªÝ­Eg>=ÿjË÷Ö·Ó Ž`Çs+;xÇkÊ,„HºS&¦ÃóÏR7œÖd÷L›»ºcòwYXKr|ǘ¨Û™™Xs ‘n…ð,íësI¯˜Ž1Ùz5WÅ%%룛ƙ´€Žì½J8o«eÎsÇüMEbÀ­Ú¤Æ8QMø ‘ ­²“3GR¥µ#™Ì ð¸¨ç«Yãä1>0³Ág‹îY¥ägôiæ~ÛÏ–?Þ™¸|d§š«ZRAÈrÕɱ·ŒhŽ|àèØ’Çç¢oÊ@™­?ü­š€ï{Ö[«°¸€R2–kKúsýÁž€øA†k-P€J.Ί=ž5ç€iÕÃYç¶h(‘ˆ3iJ s¦nb"ºÜ×í»3*n’¾+„XÅÌk¡ ªU½ŸhhÌ{ÝaP®~òúõ³]Dé™ûP‹f6Îö²¹l};Ò‰P9[Ï”¥ß×;©L¿0{ìFøÈõÞìm²Óõ:‘b¡B¦kUˆ‡¬²æxϺ2’ÏÄ(hÏj¹["Ñ%$à ºˆºzx¦¢Ö´€Æ³Îâ€rm-ä¿U‹1v8'µåÒÞ•ìTq ƒYrß–NßdÙ\¾ ã¦ZÕÎ+Žé¾Rk»äŠ^3‰Îó¦B\W#ÔadÉÝšmEéCÞ¯¶c:µ•†~&Ë8€pGÂÓS“Gm#P¯žë¥c _0?:lF"`hwßõ²„tšé^€ùÕU„"Ì·Ž¦’zŽrÄÓ©\v ±. òÈ« õ1zèÚyçƒþnR3é ½ó_ 7°_†›JC×9¯Ü; ËÛ…>¯LY™®‹³c!—•«GM¶:YPÆQªð[¾æ@»iŽV}äcÀ)]d,/ÈŒz›×/ŒçµÛ@ÁO#ŒUÙõåô–'É+¬[YRœ$ÂWõ<2&´÷Ú©¼|bXÙüÜ1,‡y]0Q Á—Ռ߬ú¢XÚ¶Äh$Öï¹µ.ž–¤­¢GQg±‘eß~¥ÑÈú¥+fmæì‰tN1€ÿÈCGÚâÓ•#ø£ïøübC ºE…{PÙ;;ne³#ì¡ÜzßÙÜ?–“xâ)Ç»0Ý,oª¤$e_:8Wˆíz¬AÛPãà¢4×Z–ø‘Dpˆ¤=5w#B-Û¯…»ˆL³Ü«3”Dø‚Vsw§ 3ðû % "Sì«L¸ “#(ÝØ… ‡àì¼Xwú{5Dð p÷ÕÎ’ëjDÏ¢ÜOº9 »Õ³ö6-A~¿Ùÿõر×EÆYd~s!úÒ¬òköµsnÙvPî!¶]d<Ò°I'o e§ÂàænM¨!wˆ‰'Z±ÂÀÑ«)íè¬Z_»ðÒJ:‚£9Ùõ‘Œè6üÊ-÷ÒºïãØ°‘.â:þÛ:ã]h2z¾üZUÎÿÀÁxGºÚ»'P¹>˜âjx 6+úÿjükמVå`‚ý}RuÆÒE‰#ö„°#¨8³(£N¿ÂºÙœ2yÅÞýNkEIÛˆøŽ"GƒÀ¯'¥ô¥mÑeÙ~»¿‰$êËj±Ïa#\£_z|ÁYlÏüm‡89ÖgÆ|÷cÿÅû%_~'·x´"¸Ügµ¢òÞÀ“±ÿA âDß³CF¸çÁCN꾜Ã3D½F®iv®lð`Ç‚ÛËâSð‰kCŽŒi‚ºÑ»ŒÔã,{ÈUƨ´6¢9fµR;mú¯œGëÝ+Ø"¿¬Šàm*®?3yXÁW„C/©|î—Ër-¸ëõ»+—ÒŒô Ÿ@\|2“XÂ{Ï9_Ívç𕂸Ç®¦†3X®îö|cFyéß#äõnöu'ÕeäzÒû¤ˆÞ-^¿¤»i©.Ô®e€HH†ýÕ†[-é#Îܽ²Ê ÍkB|²«Q2ÛVŠzd ºøáéBòïæàè%¤PL.SWJ‘ϯï×%Eç¶:pÃé¬í§B–@¯üÏb/ŠRÏ]tXqX°w>q‘¦¢YÕ¦èE3|Ÿ¢—Õv‚.mëØj¬ÑW`é§á÷ó¨väý OäD:6 ±Ÿæf[»—£ÚKߡԞ-×uæJÛ„.Õܬ_@#œÇä^UÚë^S]‡ó©¸'‡òÂB¿þð‰P&gOFÝýïúζҢçsòÅú³h$ìV’_\5ÁÚ;œ/VË«ØýqÑÖC Ü€™ôLy;ðQÛÊÛL‘jŠ@Á\"´šCg<×àþø¶CÑ©Ø,ÌŽp—œÒÓYÄÊoŒû/ºÏ_Ì"ô¹`ôÔb®¿mŠQ¨­‰íÕ Waé!†utB¯ ´»}£`_N– 9qÐËŸr>^9¤• ½3÷üq¾;)öâÇߎGÓŸ¤éZ):q m.ž„V“ @=|©„4`²V£ì…ÓM~OI0T9RùDóMTÄ®&…¼Ìù3tÀuÝirÑògX87½9ubzöì–äÑÿÜ åì }‡ÎH•´U™[6)†²·¹^ÄÔï>:rÔÂéÜç¹Ã6Z DûÓžôÀ¸k7;âêøÓXÒ5Šq0 LÓ hŠÇ•ÁÌAö686ÕÐ*çòƼ}ïe\fèšG˜ºö¿AÂsuåR½Õñ¸ÿSÐÆ]ŒÖô—Î0Ó1ò ÌÞdc×Ú瀢àq&‡ß¹‚ùì ^~óoÛB $m«ÜÎb½•.ËO‰ÎJ‰˜³òO· Iî°ÿçZ©™„.@ßTAÍ…ó%¼ÃHÐk—>öþuÙ¡§žŠÂF™30"K"Gµ”w!ÈÄ\7S(Z[ûökj´èaQÆ×Rw±¢½Kd"ä0 ¬ ÂLX/ÑþÀ{-—“dMX›n9¾Ù+·‰ùÅ…ô Vú1“èiPÅW"fzÞE nª Ô#s‹§S¢O×0nv0j¯áYû7N(²€äœá çôû•âö*gM6‰q!4ÒkvÕM¸JÎw€±†¦´Û¶WS±—6xVb„GOnÚýK§ÊgÕMLsc,=Ra°ç-úáGÒ¦šT¨¥‹XÚAž—3ˆþx¸eóÇHBeg°/"oi{œ ÂÝ® ŒŸ‘ÎÖ€tEˆì‹)xì…*w n¢v×úVh Xaw™»„©$‰Og-ýñ€e©Òu—€ÀmÑ08‡ß常ŽË¤÷‘ÉФˆ“úîþ&¡°9ƒô"JƒŒì ±RãiúÎMhið¤¡K%e‘3e}aˆPgו»*ë>­íQ)¸iêÁ«L­[¤‹ÜA¦{§“F~Ûûó6ˆµ3äM·ê@æ6•_ÿÃĪD¼‰æ>ÑèbP^þ=1¡Øºîßõ›PŠ>}³å×¶‚‚8½%ò&ÛÙð«†!032o™ ¹&à ìð¥7ϳÆáÒ SAÄ…Î=ª2ý^î½à›á³£Z™þQÖø–Ù–©:IöTÓGáûWס ¢Á¼Îñt€éBºÔn‚|9%Æ™-a©š2íÎ#2iØ¥L?YÉÍåºG¦Þî”òQïÖ8L–©Ïœ’-nŸEÀ}°FÈú\ÄNfJ2;dTc«^d u„0)_ý—x9Ö½êÆ)®Ú9RšŒŠØ{NfÎ Š‹^YW˜»}8kíaMAÃßIÍ[ó£[5m×K‹=€t-oƒ-b¢J\,,Mññ©:ô¡ÔP“ÜfŒžPDõÅ=;lÒÏd…ä†ÒÆv_Õt6¤;EóäMX'R?Ù¸¹˜UNè`rwW‡’ÀeŸ ¡F~kp¸ñ¨ÜºÃ#Ó‹ÜvÛµÃ4’2©ó Ó¿ðëx2÷rLí§Ó_.—ò‰ éwÓ„Jv+¨X‚y•ô6LU¯5‚anxŒNbˆ‰¤°A¹KšÒíø “‘5HÞpí/€µ‡c£µ¶´UV HXÀ˜ç™<±¥ŒM¯4ŒS‰Qj ¬&“rÒ ‚õÎø„sc•ŽÙÌšïCîÏÆå/S•Ø‘ž-à¤é/l Rë€ú¡»«¡åe .膟 §m] é²Ißÿšñ޼òtªÐ1°/ÚíR_µC×5ͦWù¿k±¬÷ņñ¿¥ ̸þü®»e­L±Ä{æãWþ€Ü&…œ¶_÷QÁ6M¼=༠-(Y”,á¥Ûªéne-‹DÔF›5˜1[™ºÓDÑTQ’O@míãë+‘_O©’CÆT‹ÚìÀ{uøòã¶Ïy ›¦_Ü>ì3µ´‡X U¦ïâµòn¢tj‰øhÒÒX§~—ÿÂ"4ži¦ /Iæ¾<;mpXA3#6>Ž;‹ü΢”¼õú£‹ËÒÃR(÷5àîÊ.…hCÛqúÛ¯ˆÓäÌØ¿j)”eqÎÆ½{ëâm¦t|Éž“·¥ýWÝñ»’âSqS¼£f‹Äe/Ý⻞Òö™…ŒL¡q,ãpÕ¯“Aµ‚Îo¦é?¶lAýˆz³–lDZtv†!ÐÚ|_,U©±®µE²»ÚÊ•3îBj„ý¾òvH2ugqÌ]!—ðèp¯.(® /Êæ6Ly#ìí1ÒÀ·n 7÷m¥©xÔùvUõÆ5X'º.ò@›‡üé•`VQ¼™÷€3C®G9eÀQ´J"£…Í꼂*&W³i º• ¡57çÓc÷é=Hþø¬ãdñµFÅQªòPa>&þná~â#¨+´°÷Š7ðÑ$u˜Šq¯:º[ô>7@¬¨-Ñ)Þ–RcYq2ÿ† XS¼\¿mî„ä3ŽM,]Û¹{ŠYÎ'%i Ï<öÙoõ”¯œß2PEf6‡ãùÍiz¤O¡3{^Ï1½—!£‹<¸â~ÄM¦?I£vRºZ.…sc˜ 8cè;Eéæ1ðCàdŸ6±¦\¤W>@À ŠCIøö¦ÇR[_®¯Ÿ‡š?0T¬ï\šCÁ½ð¬ËÊë¶Vaeü™~è¦å¾¤Ó[É.zyNL®Å­t±XÐòš¡/××¹eÕ9`-»e¹º@L‚²Óµœ¯¦Â_dÕáÛ ãžOa­ù»¾âu\«X”ð¼ö‰q£‰õÌÅ`¼ŸB®¢‡xǤ2M{ägGã^ŽÒI ˆ#Bp€÷;YkÓ)`ÒÛDñýl7Á:OÝFTìqot+áI6!ãQ1žO>KÊ\*AxꕬŒj`±³ÑíÉ .PqÜâ·WYÌo:øÿçô½¸ž ì‹Ë §Ä‚‘D}u‚Ý]s[mÿ³¿V®…Jl²Ü»NU$&<â Lñ À^,ãÂÞ'[V©Bq¼ö”«[}ܹVßhmðúéØçÝ)s,ŽšÛßÀ¶ßi’GþT¿c4Œ+LÚhFe¥»+º-²‡éþ©M[VŸ4äú¢q™Ñd+i?3XŒënOgÖyTK ;îÜ•‘©ÈôÍÍ>/IÅn~÷:»Çád˰‰ÛÊQLµÙõÉdÒ ˆzþ7k¾œŠC/††ØLŸ³ð”y ÒÚQÌu>0&ežÜEçˆï‰ö®¥#üé6¨#‘Ô«'3a;rC²›š#¬‰àÐç%°1 #a Öõ¢%|×Þ‡KóíÀy¬‚«ÿR0oÂÎÊs5ñ¼Y«ÍÕÍ¿X0I~vD’w&„¦zäŸÃQ\{—¡ ˜í¶;É·/Æ’V¡ƒaBÛM9îH@©I´I*a‰ ˜Ê°[(?ß’Ï&ÆÃ¢ü;ã>fÇ{ü|à3"3õî´Sëÿ "ŒÙ>„åßÖ60DTiáÙ²6vP+íŒ]Óº5™Ê×{l•6óTHAq©m’bÐÊ 8Çò[o£&ƒ Ñp,yXÁkéêèb)Ÿ¢Å+^Ç»²IB+Ï&ÁZÝ8[ãÅL 9j™P>rÕ!É…é["G¿N¹ ³8ÿ1=/í±/hÃ߃’z½ztíxàÔ#v˜tÎü$ YëQí)d«Zû\ŒG̹ñh¼:yV`ŸShC¯ø¤*PU¬éuLê›;ˆtØ‹}Á¿Ë^iò«Ø¹Ö!2¿Ñ2T#ʾšð}\Òš#FO–µ„«‡šƒ?f¼YNY0DRmQ“ɘLâþö†5YÎõ9{¨ú½BÛGú(L¿ýÒÉM' å½F§ÙÓ>G€ùã5Ta›xýÏ\›í":²=½Ìn˜ øôº=±f³—CN'øyêÈ*í)j©ï±°}\DuA»¹.2‘éÈDÀD!æÜc9mjiâ§ê¨'k€‹6Ú| +Ügƒg-júñx9¥dwÑ×Aõÿxßdë)ª¶"çßqZœ'âäÖïêº+o$´_¾h¯O¨>]›«a$ÜÕ bqgô"¿ 8ŠK™†qH€ƒ¬‚ò°;‚Y¢IàŽtp»¯ëörkExQ‚’僦RÃg;Í4$ÙfÛq| \ÔDcë²Á‘ÍŒÞÆ æý»‰XÇ/©¤wÑ‹Hã â^cý°Ú¬º°>‚XaÌtu2Î Ú=ÍÏø?V”äœúF³ªãöÍËŒH:ä•®>èšñcÔ4 ¬^Mº›'> k.42ÊÕ@§à(>`UÉ+Ë w•$ âGûƒ·lù¨;" ñ`Ûn<Ô±¥9Œ4{ÕÉ)@7ÊBÉc¯¾„A¦N2>x¿OwÊuÆ^’Œƒ§›-¹ OKÅùîoÓ‹Wk ôqº!/^ânåBl mŽ N zDKD“cU’ìŒP<¯íÙŠ»³Aü8<q¹Ó(è”[g'oò®À¢  —#Ô.‚z8tÌí+”’@ºü¯£ÔGø9ÏÕ×|”Õ.wÉÁÇïß6œ&5ˆIMƒyåm¢@Ì&Ö()´Êú¹ è剆ͿÙU»¡ÙÜUYqÈAƒ8=Ey‚–¡òT}TEÝ5 ØñG©^Óå|rfE6o·v›£û°+ G Q~ôÒÚËW›†ƒõo(Ž(1ÑL)ë%þ«µªìú¹½îÄÓ‹¾4i?Æt–´l蹉ÿ€0Bµ3 ž¢†Ç÷u£ ¤ú”#§€LåÀÒ}Fä5ßÚ_ » ¸æ J³òìl`å"öMÊ„[¯¯ÌÑ!˜œsñ¾ßÏSlA«£"ÿ©·<šc;ü5±µ•mQÊ…S\¿›(R{>þjÇ<ÛŠïÒ*oÅd†ãã'ünT«ßú€_õ“€v“£¿Î(n#U(ªbÐg7¹7aM’£#Ф C´n™gL«5rüŽQËq¦/N.ðÀóSèëÄÚÅÏDíá kWw%c-‹+˦U¬xDµgûSe_•úub‘A™E¼W(Áƒ¤ýS…J±Îö  Üùß/™âóÊB쓇æiµãŸ×eMëË 0’e·ÁåõÄ~!\u[ïBMÝ-'©_µä3&ˆÜ³cÜÃÊ}·, 1GÌG¢8;œk1˜ ÊfëÆM:%•• -Á)°÷6ƒ†ŒV9°”ŒÒáw%Éí¬¢.š¶ëž/š`áOq Í혖M—í²ƒÁÿî”»ËŸÂ«Ž”ÉkürÊ@ÏÃßZq‡Ë3ëv§Yý€1(lôå®ñ +U‡`#¶ûÊ[Š®–c­ù²eÍŽOr·ÒÀéP†!Àµ¾Ëx€T`9pì¯"râ1,§b®ƒ14­£&Šg9uSã[¾Òeo–7®I ßiöPjô±¢«ö¨¨é¼K'NEÔ+DX5L$mX5Ið¿9æÙ3fér=^{e°9|c,'/äFÚ=´˜[íPZ(¼†w>öØY­.Ó”SOEÀ|œ—–\Õîx¶è2"½Æä R'Xã]²H9 Ê2Ž<¬BÏ%­UÿM²J'ˆ`¼—7Ä»""³|ºûcƒw¾`‰Æt¦žd†Ý¬:Õc~ñžs„.ê˜BR³  I®Á³"¢ø¸Ù+|¢þ_4ö³ ¨ …@*%ê v ¹¤IÊ–_"Õš¸½%¿Y¢ú¦0^ e.F§‹ÕU'KC‚Ì Î cxheÏ( ¥ybé:*e'=ucâ¹Õt°¼ƒ¢ÀÇã iŸžÌçqÿý;›g¦°õžS¤ÀEâª%ç!š.œOÝvL”q3dp[ȵ‹¨S€ÎÎLK*fÑàûXLÀ‘ïªyÖ‰¦x9R‘6bsLZÂJ#>iÐ æŸIÿVÎú¼¦EÌù¨àæUæ/î '¿nçì_¢ùÕ`vß{ð‹ð¤§Ç.(q‚¶MXs’ /}ä”í.êÈUjÂЮð¨äp?€ :ÐA¦SÍïgmG%öz§At%¯ž¡CtòÁní¶ìw­ Ž|®=—¥¢Çs½=#2TYÄ©§{¯B.¬µëûEÀ\·ý5¸©ËÉ",pQ\·z Z&®– =æ[ êÇ+ÔPpi9`ro¬JH!)*C§?hÚ²È6YœøÜ‘9®:T߆±?H·R;ñÔ›÷äŽâ+,‚ÖÏ‚Õð‰ËAµ°ÜìPÇÔàVM‚–¤Á%dù3bº/‰`å5—ïüg×8ôZYô¸Âå‘DzUÇCéÙ«iTD^h핌]Exü·†ç…Xì2KÃ&LLð«+RB2ÑœÒä*P´HyÓ5§7HÙ´dçhKJóC ¼:å]2Šg£ùC”•å¥o-6gIˆT©íLPü¼û–ƒÅbŒ˜ ÙÝHÏ ®­^ÎÁ™÷•—¸,` ºÄÚ¬,ˆVóO7¤fã µ4ê†íÆi<؃ J'¥ëÏ 0‰Ø]žÅUÀ–çœÌ©}ëEw¨öýg¾Þã¿óøyˆà4cÔÕÔZÀ&µÈ>ò`¾R0NzÐÓचzS9•ò¥ØT„›ª&o{zsÖí,´K§ 3ïý‹]cࣛ‘ó„í§`Ýû3dÝ×%Ÿa£|_ØPá­¦[mXÆ9#%%=áæÓÒ¶Ÿœ‘Ì9(«è k]'X\Ïż¸?iÊÀ^&÷¸Ûôµ¡ÂŠU(×ÅÔ‚7|î÷ý)¹›4WxuÕäüh½¨.ê=ò@8µÍˤP‰¹Lÿëñ¥¼LN÷`Y5+âD?¸—ØzÖHæÖ‰c©¨¡†–L‰GXíwæ4ýáÀ5\cJ·t³\ß:¸Ð·íUSé¿©%™VÇ~Ììû¶ ¨½/eÅÛð½Ô+¹»Ç§=ýZ=HÆÆ¡ÓåvªÊf½dæ‘Ò4Ð,#PÊÎãÉ‹ÍÇ Œ ›ON§.½ci‡í ^Ðnþæñø=j¢™[& ìÊ“MK\9|pÍ1g-ߤ$ýS†›"†ßx‰Ÿ33G-‘ö´mbzí⬤š¶Oà ¥­—x ¾9ú©-ŸFû‘l§ž‰IØntøÈ}Z.+Ž:óï…Ïvè§óÇD Î7LXÚ0,Ê3·¨X qIÐ {>!ý;slU¾ïNî=Ûö‹y­m“™ZÎ k•|ŠZ*}8%$ß©òwdTªE|mòõy¸°€!Kê9 šºš"âØ´'øOÜí–[órÈYF.Šòk¶5•î#ÛõX½îÏ?|.¹³ILYï©c‘4|%°àêÀbŸMt°nÖ¯pžÖ=ö|RÍ‚yÆŸ4×HÑÿLƒKQL2~/½3/«To1䜂àx58œý„(Šiýwä)<¶Ç?`˜>%%ª^¶e0úHƒ™ZýpœÒ¬Ïæ¯[TïžÕÔ´6I– [ Xïú)!ƒm<gý—h½ŒZ+#ðÿ"“&¯õa|u€ë]ƒ9 c}ðmQ‚o¯4Fc¯ åÚB¨Ý—•GÚJ·{>OÀ 6lë¾þ¦T³ˆnmŸÙ™¿\Û+›F™Œ°¸ü@… (òh"8Â>"…i75ÝRI†$®/r˜* -ËZ¯ÏÞ5<_8© •èÉž®mŸÕÂ1½†T« K·Â¡tË8¥Yý"Ä9»Ê}¾}}LرeÓ+ù89mq¤ }¼;6÷ 33¹Þ®÷›2Ò§{WT?ö…Jù£/]6›ìÉ(ë†üÓ쯆v¹´…»D=æT@€Mâ–-µD¤‹[ýöÆP÷ O¨F?~¡=uC<¹:Fc7?ÒÃëˆu%naqŒ4e ,¹]I~dcSîd [P `k…Fð–_‰HZÉ?´ÅÇÉ•‰o¸SGÆiïó³ZÿSüˆ% ‡õÊ!2W/:vF'Àm¡1¨†Eú[Æ-=ŸŸõÝ?A´9ž=ÿr¹|Ø&³ †©ý&GWh$j<ÑPÖÈÙ8¯OÙŽÝ Q¢qß2Üç"÷r€ÛÅ™ ÃzcÏì£FrsÄ2Æ2ôÖûõ©[¢zí¢"ÝŽ¦/ä¥ ,t8nㆢBÔ:~xèv`ÃMw‡n µm’Z½‚8,ØzwÕéŒ2»¦­‡øŒòÏü\U$&ج¢œpä¡ÓŠqÅøêÍ…ÙàCç1nËn'éFÉÃEŽ­„h­8,Èl´’÷Fv¾-Ž(Ñú[²Ü 8cKálOµÀä_úg·Rúl, ÷cÿjÉ=͈o¿w×ÕBÖמ…†¤6çµ=Ì겦e4ŒHJ):C± ¤€¸ì–íô¤,/ßMx¾ÀCuÍ߉@VP l´;ü^äë "G»|üÜuz_ti ”p½ƒ~þªˆ4Ô Ð'Î=3T1X˜¬ˆ®¢¾ƒ©l L÷ܵ q¦µõ5Èa”REªr‚î³98kÙM.ð]$‹I+º) .¨p§¹€8Þ„H”’}9)Ýi¸ÈýF Ò¬€ÿE¿Ê[Îßq 4nµml¹E¢¨•„“‘'‰Õ²gSLÂzùA¤K[d™š‡¥Ì‘ªÄ€çðNŸ\×µ~9áSa77¯ßéúS·F•úzþjÝU匪€‘ÁõÏ‹9iÍcg“#yÏ›fô¤PWCmØ‘ù£ù{,.½ˆwýVÐD±"°'Ûró.sî0Ò†3¡•¶¨8²‡b»‘n‹›ÓÔù_f'L KÛ›YW0W¬î¥’=Y¥É¡…Œ pË‹¤_ xAlÝàüW¸Å3Ãwøo”A¼ßö-ö›ÇF2ë(3{óïP”çÕÌ~ª)GbvqžPîûü”Ay ƒ0˜Oô<õØC&BD·ì¥¬;EB5Î<Îñr`rÌV7Ù9H˜«¤åôg±ÄØA}_ iï>\i‘ä#hsn†Ñmÿ1jS ô•öK7ÌÏ\še·Ü‡|ì©nÃ×¶ºÝÂ==¶k ó³ßfò·è7ð¾áS|›XÙ¨ð½Ïª"îkRiazÝG^:Ë„W?øÉ-F‹GF—…Ä•‘ qý;ï5 ’§ —£ÂrÀ3½.ưÇ„¯ñ1 »˜!5<Ì/ìÅb—QRð@¡dOb^6øãhFÅE3(D oÝ:@Žÿ*(¤?ÔtzUͼ´]Õkæ ½·Ÿ >þU–"•/×êµh~êæùÁ<:»:ðnCN Ä“´•<¶«²ôÑÜ+9RÊ]ˆÎDÜg”Yl@ñí‰ÇÅÛƒ±ƒ°_ Ðø¼YfíHþ¨µÂÂÕÙL$@ÞUÓé¶øêö-$á;ë~\™‰A4ƾˆikËr÷ï¢^‚÷ÄÒú@UõNŒSq?YËg‰€¾Ãïã—ôÈd¹CØú·}¿Ð‡O¯Šä¨=¶¿KÍ\9lP¶¬Ë/´ߢµÚ:µ4‘xú×n ¤ý¸U‘è°þ Š–ÕI:Ä4EšŒY®.£(m,q[nLƒº<á/†Ó36ÿUtýÂ[Ž˜nzí†ŽÜ ª«âP¼¢ËÏ<ïwäì:²ßËóJ¸T0njÀYÓ|òø©ovÅœnf[´CVÎn¿Ÿ¢ÚO¹ËíÂÉ1«¬½Ê¡‰M…€Þwðé:vïÄηg¢G³§(š\žö ¦ˆnŒ#U±¢>¬¸/õ3ú9%‚ÉFÖÖSw¨5%2$½î1ÆëT‘ElþÆ:@íE©ñ¦.ꯕ Á»ÊÎÙŸ0Ãì\ýƒº‰1–¯@3öS',ÏD¹€t²T?†3¬ØVòhv&_’£ŠS)¯s!ǘ·ÊÞ]8G¸ð²Ñe½¶3R”»Î|Ûº[ö­±:¸9ei60]f¸ßÙÜ Ö«Öw8»Óé>4¼ÅÀx•Oôw­ØuˆÌwýÖÖÃÃ[ƒ,\¾d9Ï•ZrñXË/‘[IÇÐØ]=¢­¬Ì±· ŠÙ—b.9')­âk3¤f Ù‘¢Q:Xï·{y]_pBÜcðMѰ¦’¸†fP¡”by (ü õQüŸ'oÄ£\_UWE»,.2²jEE$ka/‰´¹å“UE œ hi‚Õ® EͰƒª*tw鯃ÝàL×ï=W¢ÐvÜ‘õß7oD>Åá­ícpìXß²å:’â{Ëç`–)ähg¼ðÛÙ5^Ô]¨Z†*OïÍÅÜŠp¯ÂÛ›TIT”x"qB’†ÆYš< ½[/4™h|Q›ƒE.žSq\;O”˜J¤Ïå‡L&z¤° RQ?òJñcýó›Ñ°O{mB;!·[ïSH­÷Ž7?«›yˆ?óÀ¦'†r¢´e°v÷›ÑtœUíõ“åh#*§›ØL¼MV¿Âû¾Š¢jh€ÄKø /Î"ÔGY§½:®ühÁM•«K—ðþ2 è³Xí«Û ™Uz‹åË~ÁZ±Di MS3òîÛ}Ð%Ôz˜Å•[ªà%f*´C—×Z²T¤Ž‚‘:7HWâ¼ý«¢îìt]Nìë™KåØ×+‘ÿóà¡¿ÉP†H½. ­Eë˜{Å6cA‘ˆßlSE}V}× Â Øìc¾¶xði„ÉäÕ>Áëuz(ʾ~:3ÂF¼çB5ÂyF!ÅÉw¡ž·ðHm7õèÏpƒT¯ŸÉ?í*Šñ„&$æW‘ƒ'ÆVL(—"˜“¤Lo†Á{¼ÃÿàÈ‘³8)žxÚ7)Äq&—Ý̤>¸á…‚HT%{U+þ9E—“ÕÿM©y¡ÖL_‡a~ûÜß<¯H o»éµ´àëKÛŠ0$jËôAƒ&ê¯ÉTvk2©ÀQ¢'Þ;š9EP4fˆÄÍ[Âi¹\€i]Tîàåg´º=M‚hØU;´Zà (‚ïò‚ƒÄ‚O¦·æ=)À¹à¶´“òp@}K&°ç…y²ÊÂ×,ìÚZ­^æYx€KÞ·<Ú–`c¯žÂ?çýQÿ¨àq®3¸HŸ,aàϹwÉÎÙƒeâF¸nHn󤀠ߦƒGä Œ·L´L¤íÀÍS™‡HBîJ!¦3­¹V:çD-œí{¦c_¥´¿¨a9¹œXù’»ö#;¥ŒéÍõ§+¹à7}ùAhÙ&´ä¦Š¬oГ9•´~šÚ/_Èè)pÿç cóiõ§³† yÎ@bow'.Éà % º±ð–àE_’-À´mÌç¥&ºWUë?éó.¨œôÌ9‹©dìKŠÕQXák¨²j“œ/¸²ŠP1ðÚ±¬î..@í»LÑç%°9Beâ½Í½å@¨‰úYü÷¬Ìnf«%HtzðUxC„é<‚Špn3\Q 4ÓŠÇ2êÌ]¢hA”;¶^/‹;±°t'+U5ö#0„{MBô©kª×ĽZ·i½7ž‚ÏR.^'¡-£”åÄ5Y±c“þVó±ñE˜SD""°tú]V• dzñŽÒ[ Í|É>G¼Ùmò´ƒ§+è£C”Ÿ²‰ô}¿›‘î›P¶ìn ©~µ„Œ;4¯ŽÃ•ƒ­Éo¤–7më˜Ì;bU¶êïÈWÿàœÿrVR¸;kÕ½ª׃—õñº8L`Ô‰` ;ŸW9s9rÑöÓv‚F¿@`Ò÷8Â÷Iz ÒÜ+ØŽßä]A8o‹ÒbEãÿ ׯ²¸så-â²W^ŒUR‚;»fAן5 Îoéo+WR¤s ½RÏÚ^–øÐ^×C„1¶¶šo Ã£¡O§Æª×xŽÔ+€ŸßHðZZI5 ü'§ñþ:ÅyÚ›4Œ^ïD’}æê¤’k/S³Í1yƒ“­HÑf§…èæŸ%\„º•Áî£ÌI¢îÖÝ †ÍÑÑj㉓Û!Vïñ|Êå¼8²p]™·§È3 ï–q–eãØ}WlJjâꜵ¯5fm|oÌõf„ËÖ\~_9Øá¼ÆÐGJ­&©H¶FŠGÚ……½§²¥5Cûû5OA½¾™ÏðÆ\m<ƒóz( Å?֯ǭ/ÎЧW8C•O´Ë¿’a3EnQNèœ9ð¬ægUó꜋HsÌ’õ"%¼Ã€/aIŽQÙ!BÕw  ÿ¹OYa²{ijëå¿pÆoRØöÂµß‡Ñ k ¡¸w µ¨ ½çºàÅßÃ?vµQOô%t ,Ö: L’ÇCI;mÕ‰‰Æý#øœ,ÉÜÞu¨î£ãÓZ0Úî\êêÌÒû2d5²¼Y½F]g¸wŸKîÜW ¥Ölª¦Ä_ü];q*ócr¶øˆMœ IœÅºƒÒWv×øhXr_)ɰ²z._zSujöjjÁ‹ð·C;6#¨†~ï8 #ÓOħ…„g*Š„ƒXÁ‰¨Xâê)üKÂõw¸íZG}z[¨£zï :h¿æhmírû½¨—A&rëA ê(üqÌ„ïÖÍf´3¯ç“Ýqÿ#3Ôc]ô},ÂO™Òâ´_Áwªlô°ÚœšÀC(ä{x­U*¡ËyŠÊBcíÛ®Aƒù@*ôu©uÌ8Ûç_ò£É>ÈM}ymÛëž8…)¦ú²úÆ,¦M%ƒõ4$lä·¥åãæ4àã© A"Àðð§ÃgªXGËõ(É6½øùÂìˆ_žÁß¼ÆÃ˜™s†N®^'ù= øóYðý'Y?Ÿx—éSÒ“±'Zý{ÀzÁ.Ž+ ÈU‹ Ö£$BA €eFi_mŠƒ‰’f‹xþ¼ÄÊ@ÞiN+x.ÖNØ‘rŠòÅ©’Þí‘>àŠ)m*•ÎÈžü÷7sç8uÒ Ãíýïš%\UÝs¡ú;g0ñ&þ!Õul¼Pæ¾—ÔO½Ml|Ï€€…¦Öp²» l×bËpa­ ]ƒ3`/ûf¼Ì ÊÏóÉÀl2€Õ:§Ñ÷’*jòÉ]”@ulûÈ3±¨IÀ%ÓwLÞo4bvš€ã‘Ãͤ+îå|$e3RáiâS*‰¬ÿ&+UM™£fš¡R¦¡tà¾Ûo(áíMÊ M׃ƒàÕt€€ãbæ_"q;ŒBÝ{P® J.ÔV~ù SÿMDs@r¿2±>¶‰CŸ9¹p?Z…M¿ó9› Š¨nOm.r2§«tÁI¥g{Ãg @}ÇdK„HÑ×VÍ:ðôó×¢Cþcc¼™òî‹æµ˜c{åM˜,ohË' á£mâj½ì…Â%OÀ#$üE’=RÍÍ~OÇiÄ·:ÿ"(rë$ölõ€lÏdf­Ë»—ë»÷ܼ±‘-QLZ¸ù@3&k܈—“Æ×D¤_´‚þ­¢!v¹ìÌÔŸ+¨³Iÿ¹íñ¯W/”¬’’«sMâ‘“&m£bn»üVAèǺ» =ì“fQfntóÛL¼R\Íy?`¯wcâMífèDž²õ¶óÛ§ÆV)’´±Þ¬? ×f¸a†œÈåo,6L>«NS7¶—³}ãì´Ñ3á©mƒ_ñwVŽY¬7@ÎñØ óÏp´…«µ ”c¶òV.ljËPšP6ØfšÎ ‹J« e÷¦Õ@LÂ;æVÙqœ’A¯Õ«S®ñùiga óˆ îD( N(‡wÃêþÄÅ¿¨õ|#@´»Ñqã5s ߦçv‰¹5ÓèÅ[`| ”Bj«¿çëÃàßf–ö‰Î¼7"Úlà^2;á´ÝT¾yÎt´c '«„T¡Ñq1±*5æz¬µ>á‚0Æá]À6ƒêù¦÷ÿ­ío&iRÅDYõ"=WÀjã/´#ýçéõ-tÒåE_Y§n6QF­˜^J ±EA ÒVÏ "f‚E$Çgh ¢.xÛ«s¬Ï~ºU.€´#^(@¨Ú¾¸›Yç+·öpû »^X v3„v™ûG€^ÙØl­‹Âg%5h9i}ÑÈY]ÖÕ «»½L¾ãÄ­Ð~y€‚ÁmB›tæí»ëî¢NlÔ~‰/¦gí¾ZÞ”“Ú%*Ú`ÿ5ÑÄ.<ÒÔåQ@ó”ÈV%1ÊQô“ºtæž* ìA[ÛûÍz_#[;xëY87ÓB¢»náºIý‘*kèóóÙíduëðê¤Öœ)¢Ú¶_÷ñ#YØ_t( sÚ7<ÎgŽYº|!}ùŠR¾Ü¸îP|Ü,cà^’·àZîºÃ.d±]ê1q„MÆ%M|©êï7h=‹xŽñæðÚ…DÜß)núj*¹ì%F›JsBßòû£:lPH5œºÉ±³øWÍ:dáb io€@o;ÉÏ›Cf.bÅÏ@´6ˆy§î©|lŽÀô·V澑»£ñeÏÒÓ¢~†&õHj=”½Qa¢È ²A?ü4fÕRþˆtÌÿÏR¥ÜÛ0ôù¢x,K¨ªhÅq…¹V´šìD V‰½ÁÓp^º 5êA÷²1Þ‘ü•z‹vô9‡d§Þøe„\ËùÇŒ䪩ÆíÛ?*÷TùÆŸN[Ô‡²`¥ãùgì÷'aGK~RNJ‡JIQ!¤;˜ä÷´'¿òOÍXš”1ê›*æD£ÌêÏ8’›ý>ÍÜ^¯³![È©@##£}¿D‰î6­Ê„t®‹åÿõò}ÀW>uN…O‘÷ÜIÿÔ1kñ»ïƒltv{1áÖ¥Ùu‘ó*¨t…0áZb¤^Û¤·GóÿòÚ%oM]f׿w$Ķí©É‘Ý‘£Õ–x}³|÷Eƒa‹ª®Ðájÿ 3e¬wÖƒ"\V„ÒI+¢êd(ü'£TN†HN#]ö&¥†n™Zº½üäæ&ËÏ1@ø•Ýù›A' ÝžŸÁ†ny˜ÎW{F¨9QÃÿi'{§ñOˆÓÙXyÓËTÝŽâÐ9’MQç˜QplcèÎÁú.Là™õÅß'›k¤_òÁ‹…–ÖzG«Ù¾’‚™¢¡DÑThGÚ¢"‘bº~U8f…oÁ½ÕyêÍD¢Æö2¿¬ûŠãŽsO+|†…aˆõY·3’õ‚òÕÒ ÉwáÀ‚£˜xïIÁÕÇŽxi:\v7"ù>ÔlØæºèõͯe GÓ¶Ãûv3–u™Ú¬µá‡äX^8 øÒó‚YdvkìbÕèìíö«íø—Xâ’²qµ} wó0ሠ;Òõ­ùQç"-–Бlª€-‡Ez]lkp?Ý5ÛI¬W;5êÌAãWô}¡“âC mF¤ØÔywþHª§Æ«°&ä€Èú$—Sç_H5À‚ÌÓ²üÇ‹ì@;l ¨Þ@‰Ê´ð‡~Râ¨òï Æê$M>‹Atk™óm”ùrtLôð‹woÚ=üó/„ßü],ªaÙà HÉÀ·€O¾JÖ¼jOÕKV/•%WÈÀ“6ì0¢mC5¢ÃLãú ù½–Jk*Hc¤ŠDr xFadÝãqí )½Þ’ mÂYÓj»Öœ oìJâ¼Ü% ÅÈH€ª£ÍùüµS£% s~H„!f½èôg¹#=“ƒ±;P˜§³jL&«0gäÐ]Œ›Ó‡)ŽsÈ=Qr&3ÉjSŒ%h÷Ü=˜+²ƒ,Aã#;Iד–A¾§C ¶¬:Xê±êƒ‰<û|>¡zŽŽ&'ÊsÒš¶æI(ftÀ¥XÍBä±³Ž1φïsÅ9¡¡ÝVk­qb4.gâÁ LË¿å9À†9‰Ë¹Ô9˜¯G¯¥;4§"ƒðÛÜüüQ÷,ü좩ÿTcùø)¿èHÓ†¿¯âÑ„n¾UðÊdÓq k×3íœ$T0þ=ÆÝ´%´qSG½oÔë5õ‚M0òÕkvá¯ILí[}m穯´ÂƪÍ|HªgÆêðøœH™sX™O0\é£ù:9•)Œ%+dVèo‰8ØãÞŠæç{Åþß62³ÞiŸÔURÏ»G˜ Ý«qT®k*%€õ-šŒ¡œ7†V 5ðy“´ ex)w6›r·¿TgŒ«‘vf1®m†*MzöõÑŸ`ù"ž?Eþ¶®û«ªÍ¾¹Ã ¨‰T"s·ËÞÑ“Ÿþòˆ/g©s¯î¹JFòĽǣ’_å ¤â_–@<}om¿AÎu8ýz:qíOKUooî·öðçð643`Ÿá³mÈ×+¥Â'gƒrÌC@I™{œ…µ¢Ç­¹¡E×'tÐ×Ò ‰ÕùêfjïA#@d0œ®<Ä[âàR=ýÀú›ÅßÌì§Åðš,Yc¾Ã‘ˆ Š`âøvµ18Éê]M˜§:Œ uû=âi–M¶äà2.ë»ÂVÈ‹NYekÈÂòƒ;[ø¸+e Ü›ä÷Á¶ÆÎä>øTÚ À˜©@¹3ó?š4¸²SÚÓ)_,~ÖI–JªèvHôXÆÞ0C-JÇQ³–4T_×zÓ*Nc¦’ÌtµŠÙbq¶Xïš2+©!ªõW£” ,e:T>kFC:vÜýNоlÙÀ wá3;ñ¯”»Q-°û°Í+3ªÜvUCÔ:`V§œ©|wF®¼#n̾š5ÈÄ4`.áé„þ·83’+TÞoþ¤IÝG× &ŒlN7D£¤‡À•lOÚGömK'¯zÛ9.Ú ¬N¬CàÚ. ]^.îMKóÍ»ÏÆ«ý«êÙK:³£ÒTT&T¹ý|ú1O‚F–ZEc,Õ÷{lqöPgb^zAó”¢hÅ%§7Uê9üȉÚL„XYç‰EÊ6FŠ6 #‘6ë7Þ1Ò…ðdj†-9¶¿zð!ZÐöÀßÍs"ÃΗÜ<åæS“½§HÈuSøˆ1%ñY½€ µË=9Ux“-Û¨ZŒöוñ¿))ûÀŽEûUífA>Üô/ËüF\­Óêë’¦îݾ_}­ÈÚ3ÓjO‹Ñj!­¼©|K±!fjÁV å̽g7_vPyEtƒ 6k¶¿P£¾P³4'Ë5>â"å˜çâN,¬½;1À¡ˆÕ°ßÙ ÿP±Þ½Qvè_׳âÒØ”ÞBÙýKš2Ë×±[\;¯• _¬œd½P¯RˆZ#,ê;ør.•é<.pòj‚OÛö·“^íåÞ{ÏæyËìKX["U,p)âi ò¬Z&ú(RÎë<³vINê[QÌP0ã{ê–(PñúÀ¤E:Ç:ñšê¡œrK´Çv€ Èm+ˆ?ü$`»»ñ {éÅöG?„­:0CgFI ¿˜½ ôîÉõI Æãc‡©ˆD¿ %ñ^ׂ VU²ÿÔ7-#)¬íÔ'îãmñ)±=]¶dÆ P]‡2vÇ£r:Û ¸µ®›öø—£#Oö ")âˆYKÖAÇx-Pšš~øš#|:ÂMÝè`éU¤~§¾À„ÈÙaæ?$¼C– Òu0ßüè´ñ¨@Ãb·ÔDa--‡ÛÅØë*·2û­ d rÝ+ÔIIgF›t(R¼ð\î¿óîÞÌoµ÷ºçüsâ qׯƒ—|–*däù§±²WròKsgóß;OKD°×Ü:زâ¼,å’rÚ8€‘ËZ½1ñ!ëæÐ¡8ý1$]ýõdªA·¯ê#¤™Ö?±zl¯üƒÓ´g(Oô4ö¾`#l-”FZÏ©ƒº–Ug•Kz@%n–h2}èh¶½_ô²°:ö^\êÿ "aßš”+8ÈåTÐ@¤Ò–ÓQÏ«¸Eu;f(+6è‚£í×m¤2Ϙ¥<^ cGd‚ÑX€¨‘i”lŒ5ü“¯e—¨Séÿ ´µ‘VKgSj {j˨8¡‡w¢å:óY•5¿×‚Bão27Ú¹€{¨˜žÉ½F4z›pñaë^‚Z¬ly×£b½­³ `ƒeœ1–àq+]Ü›”Ôv—"µ#( !‚ºE&w¯ÒC1iüžøŸ¡+h6ï9ưÛTŠ«8<¤¥7Ç«üo·»§¨)±ä8…è+¦õUûƒ÷ $‘õR© Ðsùû$á#à‘þíüç£(e²ho¤P®òXâOÕà¸Æ›V¨G*ʺ7tÇðï´W(nǦãR^}5p²È¡Öž t£áÏYÆü™Z%NbhjýKs[Mt5–êF¨IŠéÿ‚¨ó¨Mͺ„ãHb‰b©[ì ‹ok¸)âN‘WÂj5§§Rî2Ö-©ÚçÙH5)}'Ä+vÎMm2à³ß™ÿŒüãp-á=¾ü A¹øS…éJ6UIƒ R½MÁ~ e<\öG”iÚËË q}ñ\ÅN7h®I“>Í}Úz~¸¦ jï©¢`áŸv/æÍmðžºý+„Îß®¯µ»ìJ†Ê4² M£Y¡«u‚Zó _0=?¶‹~!2|¢xl©•Ó…Å 8‹Bœ ß~8’3yŽ_ÿõ¬ÆYƒ¡’µN/4¯a<_)w€| KõmËDo¶ÀÊ(jóÑdÞ®l›5B%ñ•÷;Iº–4eöúE¨ÚI vN»@Ÿˆæ=>-—zoƒqæW»†Ý»feâ«WæóòawC¯§$HÈ®ÐK;Ýcퟂè1}xVmHx§WÒÞk-Ce5R&¶+÷ñ`¿Ÿ‚œgÔ¥à{"¿e0DÚaÒs UXA¾–œ°Y˜Ïo²&W‡Ž,R V¡fšlm59Ëïê$jiAÝý,2Õsl~‚ò}̯eÄÂÊÀ\i§úIgë Hª§{<&?ô›“:Aè×_¡GwŸ…Nža¸Q¤ˆ/¢ÇFaI¿åp9œÆ7ÞÙ]P°O¯ÛûÕ5¦IR¤„ ™HÂë¤p|¯Sbi Ÿ©}0z¡Èú¡SæÅ[º”µDmHœ©Ìyj@Æc[ÃVQ¥OË&)ԾǬ(®hðÖÒ`ñ ¡¾àÀ‘lb]ݸY(¡IDræžz¨ÿÀ“4mCjC³´äp0ôpÙtwš~ë°9%qñ¬‚o(¥ªýˆ*iSý: Ðå%q•ÊRrùžš* &<å8Bo{œ×åE¾fZ3°5çæ$¼šÃq(ÕòrusqÈx^Ôz_5æ¾?/vãQÍòîæ¡yí] 1ô†D„F¢·gk%Dò€ô‹À>‹Ï¹h6á f8_T öÓÏçPDž˜xúõ¨º7Ðl Ã1óÐO¿ëü­di¢@Ë{ê rzyzà$¢±¸ôE0ä·™'ŸhÚ¥Å^ð˜HÚ!ÄU0£1##qgþ³ÏŠL«âØžÑDñíIÄœ’lßý„ºX{SçÅä_ÖYCJ´ÇC‹Àr5{0ðÉ*e踢Bë‘:䓈Rzrµßí»¢MŽáwOñp ÌwæçÔ ¤82Z ¹ ªM޵#ÑÖípÕ!æ¸\l£÷<®:JÜ«o9°” zzmC+ÞM°õÝg"Xe­©8Ê£JÒz¤Ê*ýX`Åuãb(´{ú¥Pqª ßP¹‰˜´Œt”¿,?T=ü˜’ð…Ò2Q5˜$óÊÈVdYe¡Š Ž/?ÖÇ>´‘¥Ÿ˜÷ž1eЗ |Œ·pñãÔ$;…µŠNhwôÿ¢SíRÙEÃÈÊ{ë`Z]N‰ÍÇ'‘‰Œ1{--s|á¨cÍÿ¬sc`*ñy0îYƒê çÁ4 HPÂÌ_Àoðœ–^‡ ˜}ųäÆRLj%tWKWGF´ýÁ , |ÔbQÍ%U”!¨9΃°ðnL=/¹ì-öà1BãÞÅåMˆßÌj!%Btè̪Ä:ON«â‚4!@Eªâí`æ½þ³ByÕ~|°[vþµõ×a††ñ °ÄW9±•Î(½ƒ‚‹„5àÀî †\'¦ùÚ¦§z5å«ãáMŸ‚mD©i›4˜ÈôÜ4‡z¸´òN’¦áùkùÃmvÑ8§ÌAÌ~þ#Ò½J6ƒa„9>m4ͽ¿Ò†èñT nzû+ƒ+¯Æ"–¿|똩±â…UæÌå0þ™e—æªÑ“››>k͇¦Dô7B†| }=8šuÐùtR¥™­re“O» ÖÁ¾?Ô£bŽæ¬BX-ïWp¸’Œõ;ÂK°Â ÐMx2ê|:LÑê*Þ`ÚCš¸¡Âv¿â?E„b Ú%¼:šBûöäóËGîþí»1e%AÙ¯ÅSÇm’®ý¶tÎy‹ÖRð»ôâFÓä{¨ÃfßôadÄ aw”‘ªù,\R§tAÝÈpÚ~9Çg„sqké¼#¢œ”—l'¼+4µ )ͽ› ë| €(Ë3ÑspªÉ¦ûôá81SäkÓý<”LôJ\ɇù÷Ó¾ ŸÔ/àeSP£Ì-Ûí,I¨,ƒvÝsÃý*_Øü@¡†šÔFP릴š¼Å[ÐðØ›ôð ¾R„ŠÄ²*™ÙÀl0JHÊØS¾ñCg—IKÇù0¬€í7 67Â-Œ›Eh(ûú""zºÍÿsY+êÿVYŸ 6ø=SáXúúÜWS¦Æé³Y…hnêùºVíéøæw…èüÖj“\ ßl~&î Õ£ü‰T_\G¶|âìÆx¥ÔC쫸ÛàEg ™U3 ˜cFñ%ò#ËN c%ùì¨-€7ãðgo„ËÇëg’÷NïŸf9DêÌ·ú‹ŠcXVÓ—un˜.p~vu{ZÆKDMpæ‰é'zÏ–ˆµ™i é*Tp©}\òjÅV±ÅÆÜ¦fZ… ».C¡\¸S¨*aÀ³’DœìœÛGà'©©ßû«kP`ãpYdfmÔÂGKCE”GËE}þ:€³Œ·Ú*†.žÖå¡Õbü‚ù›ýu²NÞb(û²×‡‡žŸqÐÇTGÈvtÃ„ŽµÊóŸCä{©{ö¬®ß­³‡8Ž€­¡ò´%”ÁZ:ÛF“äµs)ayW?¦âËSŽËÜ+¡è¢†•ŒFÝ«ÃÝàeì0±!˜ÆœÅØ5Kè£eͨ ã$|ÚuZä>v}ݪ+ƒ:þ3´Fs8/ Ó¡øm˜ßå¾Å–Å@cGPœŒ!RµéƒP¤·!³©œ´=`òz>eéŠ D›VbçƒXv Œ›íÍ,|ÔÞA¢Ø6ƒò^ò§G`€µÒxp€±·Z!þQUadlñ‹À먀þDzªÓ±ô 7éÂv¸ò¹]—š{ÙSì0«C š{1•»ÿè¼àÜ8'€`,[…t^X,,jÍh"×»Ô,ŠÍáè$Ý~_:tÝ!¤#nðËe/E8yQpaO²C/HÙ1ï³IQÿÉ)nõ?} LËÂÖ”Õï4³~ô‚ü¿å|&îÆû÷îA®¨x/¢¦¶Äº ß«ÇBÞ ¼Cæ£']9$›I– cZgÖèL® ÐîS¬Eº`6Zö •ëÄlðθkD+Íö[î4|_i\œîÇÕ "#â‘r‚Ž•}æ»á¾adÈÜÀ[-=Á9£Ÿ³ ±,é:Iî&{:úxµèwþÍÈh½jX©Ýë1F#– _ÛÔÃdÇÞ\Hoìrd…zG®yˆ}‘A¹Æí~ĹßÄ:ÑÀlúÎUU2æ&g™€™å‰ðÓìpg+höUxo±Ã÷Qèš FÆ/ ¨}#éÌ€l™ Ú/†dHŽÛ©I“‰KRÀQÅK€@o²fjŒ½aoX¢|Ÿâ™l±/=©Æ1ó¸]Swš¨ÙôÌG˧w‹ØÊ+ùK„âÓ†Ê)Šrêòé¿ö)ÿ;8Ñ‹r…·?Ôò@X’ tXr›Ÿ-6c¾p“”H vºì(~Ígé B-{Eì1óQ.Ó6¡èö*‰Œ(l"ŽÿXw(ꓵ}=¡Ü™Ù¶QùÜw3ĬJu!4¸ö`lÍÑÄ| óçDªõ>º!ý#ƒ­»LS)̲(ÊA±ÿL”¾Xˆuºn–§ÓÊLI¡I?׿ };I~Ë6;¬@¶\× ·K@ªIó9Jˆßpo×Xþ÷§énú›2W ’AŽ'0E¨äZ–ƒŸŒ¤gm 6Ëä©Ú4 ¾çUçúþˆ ¹¡3ìeêm<ªÐ}a“âÕÏ¢ì1õwù¼ÁØ÷®¨6Ҹ׌çüûžŒ÷(~cˆHƧ‚߀†w§öÓ*,ÞÚLÍß Ò)긕‹tSœÁ^ʺ;öÙÚ»…{c ¬¨û¥Ýš$ c¡ÎCãcÔËÃPÎTdIpRäqæödûoÑLå“o#(¯¯êÐ9t(sÍÄÔÍØÆÕʃÀÌs/扴ü• dÊ}ÐiÖp ˜Öí.d» Øy#Ô&놽¿Õ""ލ‚q¨ ¡D…°ju\&£5Vg MÆ®¿¢ßÊ„:-&_ã„/Ÿy!sYÏÊ8QMJ*èvW€º¬4‚ž+nsn¥FxyÜúáª#ìÞ(xzyK;«•Z¸oK#¡„`I£˜”íw̺BÒkìo„ªé“¨xk Îë¯pਊPñR܃ÆuÞvL^ÚâD³;Y,+LIÊ3†Š@ˆémøJ*d‘ÒµTža –7ö¼?øý›x~„l²QÃ6WÜ9q•fåfì6 ®»Â«¿¡çs‰j±*u?Я€M´Íÿs嵐/‘nOGMíFDmËÙ1ð½¨{~çXI8 \Äê•„°>E­“ïå§ñìCûÏøÚ): ͵ôEÎ0±fPRÙ([(“IÌ\6m‘êÈiÅÐõeükɬRÅñ•Ë!Ì’ï¤žÚÆ{t8@_ýoÛ>Ë"NÕ–´5þ0•ÿ\ª.eá„®Tz¹>µ‡HdìeM}æh¢0d¦ŒàõzkÃ+ÞúiÊ%ZÖV£ ãñ.ߺ¯èI†Tð©røÔ5Š·óœÕn:i}CË‘1ÁHfK†>#€Y†6z¨^«\¶ì©ù•žD Úéö± ›Ä˜h ]§ÆGºµ š7L>OÏÌXZh£¤Xžšä瘠K84›w\@‰Eš¢ XRˆŒjþ8é@Ùé#Náƒ/¡Â7V“Ò^Îv,›,ó2°ê¢ÛZ“( lÍœ3·—¢éBZj˜·?¶ÛJ_M¦G¢ï3’7œË.F#ƒ7ÿþºh6ûeŠÈc·2ù‘é§dÕPDÝl®¯0$ji!pqÖ²ý¿Éw¼ieí!IS’‰a£x}Ävkù³;oÙï‰'FÇGÌä]qkçÌ==bèþ9;ñ=B…^f <1¦2°Tì‹;ˆ«þëÓ‰Þ>¸ü/•À½ãå'LÈ{M"¹EP”Ãö]_ãuu¼iãðÎOP·Cô9ÂOÔtuæ¯ S0ÜždŸÙnËt›¿µ&1ÁìÑ¥ÕIk÷õDÛ+Ķ2³¡zàzÆHñç6Ím‘侨‡+fÐ0GpžJ•v½Ä¬)ÞòŒ´€&P…-šò­íÖ¶ˆ¼•X„»‰¦7nã:’&†­Å@Rø¸B¥ÐMÎhJsC®ösu‰’ *À=ü×q YPw˜‘¿S·‘ñˆ%(»¥S3Q6Êbê «ÒH9ôS.º,lSNÎ*6ùßžõ30Û˜vPî{ª 5ï’…Ñ7j+Æ=–’G~?‡ÜèJl.’"Sv9 ©hSRÝ¿ÐâÙÁï3ËžàØí”oU² >O—ù÷5­šÒ”±(E3¸÷s«"Þe¯^$% ìÑ17ÿVÈ@/€qYã!å›ypÎý`¼$øò.wðÕ7åXiNÞˆ}CÀc 3…sl`L¾‰nXµÒÆæ;ådš‚z/Q6ó3Ü-Ÿ¯i“±ÓæœÿÒŽT„©%µtþ¦F•<{<b0i°it:@Ù b,ÜHþñÁø&Ö›Gõ,úààÄ3žºSk·mÌ<(–Äö çmrβL·sŠ÷ÈYpátfÚ9öàëõ4ñGyà£@Ï€y,?( M´ÀA¿[3ò¥èÏ0a!qRN+[Ž \ö¹Ô™­˜N|ê–X¸×ä[úÉ¡@O¬Dõb¹°ÊËRÛV€%Z_‹Ÿ½Ð…†H S€`¥¢CdN–wg¡çqÙ5÷÷ÆlÀ÷ØrpÌDRŒÖ­:ÓR¦½ §¼íÑ] ûH&Ûh{*æÔ|Ž¡ ¯®:fJUç=™’å¿GLÉÀĸ޼–¡£8hßs½b@Ô.Ó€A¨`þJu°c)µø½ÄE< ³ù˜J/ãnÊÞ~{*è<w.×G ‹.BRCŠqWØ&\ýcŽqp¡b¦@ œÀN”ŽðL䇪ijwh¨J–ªŸ0ÖâŠVà²ß*©¸m¿=–÷îùðZ‚ÔÕö/  œ=eë,aø.hÃÓ{ÏMÄÎÿ×hO¾ù,—B𛼘ID¥T*g™.û/þª+ùy-šåªÿÐùçÛ³”"èèÓ¦†T@t¿‰»¢*§XÔ¸bÆà6>HXî–G”Êy{03Q,;Óí÷ÄÆœÓr#ûö 9ZïË\‰$´ì¥ «Äü—7Ó¶çŽb ¹9Þ[t„5õT ÃP@úüÈA‰¹çƒX W÷›í» ¦;ö€ç¦ÀÌjeè¯iû­Õã’pÝ;V¶!×E³\.éóÊÝ×+,<ì¬'·Úž"|0zø¬D^ðõÏ3fÜæÜE ·vŠ´Þ2|hŒ¦¸°Œ%“ó·¼CJÞRwP&øôèg¬JÌp®GÜßOËÛr#¬ QDŠ©òô?x{º9Ø#m•øl{Øæ‘£µ*y,“S)LNäh2\;ÏNÖ>È%—íÀÏÊ¥ -î|Á¤ßìb‹ vÿ^±Ã—¿÷ 9ýÑJ»‡bu¡¦×]Âq¢¡_¦”Á‡›bÓ[$bÄíö‰ž¨â؇ئéïV†>B‰:u鼎oK9™@|6˵ۀ;éÀ‚Aœ“Ñ„ø³üp? ~&Ê[¯Ÿå™½s=dŸÜÔôã£|s–>ð#ð.‡¬ )ÂÓÛk©ÛøÛ…¡U…Ë\ÄÈÄÕð„á@•&¸;X! ??¡©’ ¾Y¶‹ø0þn¸ß_ÞØ@J nåÓ$‰\E^’€4³{05nt´ì–p‚Å]×ì}ß½ûI©uÓhü£WÁO] ˆŒtnªqˆ_°kÓ]|,“"‰E6—í§ÉA=ÈIFÔ0x|xÑÙÈï) ê›OÙCtW± ¢?óÐÖÆã“S2„KV1Ý*ÔtÇ®ï™Tö d{mu ª«c*VüÙWàk¥¼âuyøbÆ> ®O×6œ.-¼þôÔS¶|ø¢Ð‘Sï¯nb°Ù„ÍýÔ~®¸ƒç@t¨Ý[dîù£¸_<ËâÅòéþ”Ð5…I†½ÔÎa¦38W ltQ+‚q4ŽòÀ… b£Cc;š=mÐF (õ6Õ‚ÚsçÂ^óŸ,<Ëò€.b3ŠSõË?<ŒW³[¤:ç‘)½„¯rö6Vx¼~ŸÖý’ ùT3tØÛ0Õl+A^Ãy…¶oœ– É$l=kð£ÎîAøcCJ-=…Û •4RÁ“ú1üÈe{”-ëÛÿÅ¢!CŒÚ!˵þë:Ä…+Ý£éý&`vgC³hÐÀ%`d¯Ö÷ÝÛês[”½W‡JjBÓ#ÜîÙGçJ:ÿ¢ {‡"Rl¿…ÿÅK)¤ôÈŒ¥ÌḠƲŬÀœýLfÃù¶"Bü}–^s¨RŸ¼R2KS]cÌhÀ@øC¦õÊÊ3ØèѾ0Ã%a‰šUö¦mùg±GX:yRW;[…¢ÝX:ZÓ}ê›yàäªÕ*¨¤ýXîÙÒ· ˜Í'Nßáçœÿ‘ºµ0<#`rqS[§yešâ°ˆ¤JKùÖý+ô ݇⅋{‰ ÁÙô„Ý`/ÙÈ-zµ5d ¯çHùhfmޡܸh@tí„A­–߯+fa†ƒU­˜•lù ññ] Ã¡Ìf¯…݉$`ïh¦ËfI‰«‹I$ËY` +ó‹²#s_)¤ý¦ê±Â–‰*ûü@þ§ Y0÷è•<&û³X_K.pþàÿC}¾Ó»ðj&æ ­Y1HU»—ðB‹XD£ªhᯕx9LìGþ:Âìs'ç(j«š«º¢ ™®V oc¡ùŸþ¤´@\£p ì‘å ûò7¤´/ð<Éé~qòiñg$.L´¥éýoëÄ~ä!‹ðÉê1V˜®«PkÊ#þàØäï¸>ÕÜFžÊ#B°ÖÛØ¬Å'\%£´1µ¨Ùß½¯ƒ[wN=,4},‹Ü”4C£a•³Ûdé`òBmE ®ªö\‘¸ÇÎUi ¾iƒCÈšÖ˜suÁtÓ+=¢ V{í Jh¡ ]Sݸ°·%ZLþY…¹HÓÚ-+3»Öì€ ZvÍ ïXĆ‚ò µ»þeš«âzE±áÎûL犸ÝÁñ»£¡~{óîÞ½DLeÇ{à ÕyµÃž¡]M•è¢ßsí©#¨Ñè>C<È„ö¸aÆ|îLYÅŒYh.´=°êoÄâª<OñÌ¡m~i¨Lü"z‡Õõ.åÌ }Ÿô‚`Eͦb13Öª#‘ÏŒRWq#CÓ·­’ÕŸ¶WfÃÚq)sÛ„Pnh ? Q<½’Má ÓѱXàëÞíÁÂØ ëh»ZynL²5=(ë';·½Ž¬1Ñ:tÛœS–Ëø’±ù\|ý‰(5T¹š pÂõc|ȼ¢°Ý!»w]ÄQ¡CP›p=0Án32Ô"¨üG0Ôˆ·…J'–,Ž#NŠC~”‚<Æó´.˜ qª«ÆY6jØ<Çbuèñ£×7ðœVÀ¯(‡šl&È××OØWÀBŸ\±Üªm :æ¥ǽª@PÒÞ"ÿÃ\\E)±Š¹»<ñ]1?CNè7ðŸî˜¨ÜÇ‹³zü nœýÉ(ôÚ–œÒ®AaÆ%[fý˜7ý®,)šwïÏf•Ÿi$¹H6…ãr-ÿ­Òaí¯·b 2,‡ŒX±÷,š::šª¿¦óf‡î"{]Ð(zès tséÕ¾\¢ã> d‹¥~п0Ü·ÎAç±UÆ€Üw0ˆ#0ʵݎ©ÜëßHöH#y`´©ä°ê›2¬êì!)“ ØCs±†‡ìM6LÒ3†iÔ -¨cZy‹NÚ«¦zõ®ÛÔ‡üPÅI´¿×2âÉEšÚÌQ ª×µæÅf™ØUŽÏ,fP‡ë‘ª¯×G¸™C»0V±>ÝÑ᯽®#FâõækD’ŸWA®OñºjìÇ{\eYE}>aLbð·±LèG–â’´=ôôUÉ8:DåDœþQËkÛ«Øšƒ·Ó_%„Èjˆûyp‘)ò›–¤pY ©„Hӯجڄ7AŠÈ‡ü™ Â}‹soŽ*j‡‰”/gª´·âOqò^ùÔò)¼Ë=l»ñÕG®ø¤¼à±ñïê::Éôn©¦°ÐèDσ¸§½é²-7]i,ùé+s;ÒÐÿÕ†e#»†ò Ñ£‚ŸEúxŒþ¢äùrjêo‘qÇBó„^à¿ð .]Ú Ùìq«­µ!ÂGë_ìÍ»…È\]öñù…²óÈm2j·×#àü¦€ cPÐàrc÷ÿŠ¢Ä4b¯AÛÌiêÐ'“ÄÛ^2§=É;™8³ó{ñ 2¸i,W¯:ÝqEM ‰r«‰g=‚œøc,k_æ–VYvÎIýÄazïL“—aøÚŸ~XÌ7Ö<SZI„,tkz7愾ÛꌽŸt F¶.+äëeûaêqì+ÓqåTzE*C|v–¤ NkRš¹Á@”‚8Û,ìR6ç´r°Ke,Tª2âay 0›Ù9e6Màòs§ÿ³"S´Z€qcû¬Oü´7XnØ^Tk¾£³s ,óMÍy ·Šú¿©ôÓKŒÜZp”üJ#Ã4¤®ÀúQØ¿UÄűҾ"«|‚àl£ÓÎró@`8ðy§=¼¤þ,<¨š(á߇=Åž>˜ …7‹{÷:nJxKˆ­ãÐSéð­ 8˜ §ým¼¬Êwú| |Å~­ŽJùCüPìäx‡[sI/™>;(C4;ÔÅžÂPçõ°álñ”ô÷"x‡.Ï–àŒ‰Ú[:¸ûZFKfc?–=éµó`·í(”é làÖ¾Æ¸éØ¥Š‹÷ô4¦aÏjÝ„ÔÞý‡;\qŽ1RBú–€øTêL¹–Xóz›¶–EúWWòͯBbÅç½TÇEÈY;&“¼þÄÚºžëNxîÏb,Î`Ý årl"“V•7¹Ö&Í7)ì.ç$kwæ‹°Spÿ½} S Ö7P\V8‘Â8ú?ꚓ׷fò$ä Oš~XJŠdªM°VEžŸ*¡+lõ<·`‰,Š1üÚ£ƒþ†Ó?ÿézïxëïTH$¾+‚r|ÐW/EüôjXYPNú> !÷²€[Ô{úšäJ–ßDéF (Õ8 ¹ºOb\S?R¹œáÊû Wjè¾D¨`ôM-zæ7þG|·×å9ž¹mþ&2‡ÍbËGÔDlÖÓK$u¯3’%1oæs­ê­ú]«4É[/Ä< lM«†õ'wœ¬Z¸U÷¤‘Ç–\_è‹]{Ð@â:°xlq@êË ‡ GÔâ$’m†ÅˆqJ‰B°õQ¶ 9ý`JPdg[<Ó©‚ÉuÆ1<µª`»ºZl;öÐðÚž».p+ý!Îߘ¢)~ŒMW@I@ ÑI”Y¿v»Ø°9xíýcvض՟§Œ¸T½`¦õÚ·87© qâšÙ$ÿÀ¼H°òÉ„éŸØ–Z¬¿Ô"Ê7¤»›ˆ¨ÏgP‚ë³J.ìiëçfã3ŒŠrUÿG‘T€WÛ¾µj“(Z‰CòZoã™m¶(s”<íŒ;dqMÐ:0ôTŠ2‚™Í¿µ Öœ¨w nÃÆ”aUY§òiÊ.²pþþˆ÷Ë#âGÅ]‡»¹ö—o“žåpºß—¿?Ë6{[9j˜èçGá“Ð0 ñ¤'jV«r‚;µ²ÈÍ=Jµ4±Vô¬ã ‡"{Q¼’þ ôÃãƒ2щKÎÎä€5%AîjV­¤¾aZsÌóMN·^˜ïxgÞÝ×ÇÝŸÈ7ÖÞӜ鲷9›Î4EÑLèr;ú+Wÿ¾á8nðÄ,a’úYò_§ˆB;Øç$#ÚF ɾoÌè ·'ʱ>2å¯=b÷(>î—ÈâKÀ˵Zª>Žù„ãWÈÚê8 ¾ «>©ñOÛ±ÖÈ#]%½%Mày1Þ—Bû%Ý¿X˜¡þ7§r¿ÿd€ø1™2Qà¿™NÔ>놿Y‘¶cN²4ÒîJ¢5P †Š$?œ¤â|>fùå~+œ•‹>¹<•¸W°ú‰ªºÑŽ\f#·©º‚³·\²ýÑ5X%SÒo|"ªÃúO• ñá1ÛÆj€ìR"=Gé¥ñütr ?â216)½8ª±\9fجyá],he˜<ø?–-U¹1ô±òož¾b³ \rEhÕÜ®›KÛR1½é }SùË€‰TfÊQ„|îl׸+ƒ âÔU6šÞ¥É²aKCõ&ˆòà¨ÿ(î¥wºv1I.­PaK–nÉ2n‰È—_£#@ÏäL‹õbzf/`a ᦾVUÙÒ¼êM;ñÑöÞί¥©¿wŸ:¼Ô2T5/}΄Á ?BöÒø¸òÚc.,[‘æZ{ Ûª¦CÍÒ„Ã`¦,ð/øuUÀýtø ·`е¿â“G©ÿ9„h¿V£—€rn¾‚2ëÁ[ßr0VèÜoH{¸Iç8PaÆ};öÄÚ(¢(M{Û'öò]ñ/¶ô#{Ú^î«8Æêì ½ÓòÝæ,T&¡ÚxWÿé¾/+êa;s "pÔðù(¤¤œ ˜xøkCtiÓ%²ÆaŒR0V—éxÄê'ms·-¶÷Ö±yXŽi܆ȊÉ>É.ÔmqUªÃ÷=@öáúÀÚ w1¤L¯òJ…Ï[Ë‘°…ÄH4lôxÅeqÞÕÿgDä~—3³ÞgàÛf_bc‰6ÝÉIð6‘g'ÅúM="›XÆéØ]Oö- ¤JÒnHû´½6o–ql }Ê¥<´ï"&JvÊ àK³›```(O9nǹƉ†Þ×ÁR3€ðnÇПokV|° âŽÝÛ<ìX9÷ú®?[›b­ôÉ®4^˜ áóЂ¥~•øòŒè<`û[¬b8â3ÓSŸà÷y‰W½„ &d¥6=jw³šB¸ä¬&Ì«Bø+RËë!VÁݲPep3 ÙCÊÿ”s9¦ßp«_¥#ïª!×¥eˆƒ3=±+Åfk1½óùµ3c°ÅKG“i\€F5Ý>ML¤}5æé08IÎô0‡ï¤bæ…Ú’'êªcþ%Šž Ž€ãŸ•ïC&yö @xôާôg$./ àoGƒ']ɽ³k Î+¹Ìlnh~r¹ ¦)Âø{Ÿ&èÅÆBÑ GîEr:œO0Úï/ò=Äz~ð¤=ο’4¥F9¦•õ¿B.æ q‚¯ë¼ï5j%xµöÕ‰­p$¤yTËz'ßu“avö ‚?2ÿ#Áfé¤Shšl?ÅÓØ}±q&°ö^ Õ:‡QžÈ>‰T+νsTëhâ[m§Qˆ7>À–\2†ˆF¤i~Ë_¶ "Ξ—²ï°$Iá¢ÑÇ8,ç·šË')Ï\¢þÖætd]Zk8Pùms3Ù¤Öý(4Ýš€1]шlÿ¢N3®÷„U±ƒåºù(   >àÁëßêxÞ³ñLfIÁØ£Â?2ÃérQÞO¸îÓ”kB•éä¿¶À*ñTHÓZ[xVî¥@XÏ Wr寭êݸÙ:Š:åIDA}p—HÓ6Åeó‡>d¤{õfþWyIÑ/„àV~Š}&³þüý´ €M°¬‰zi[ 2qé³l~È;ÅNÜ£êôg(¢Ñ9@8ôÇÙÚéuò– a"߯JAó‘¸ÿÎD`¶ýƒNnÛvd˜í-p…Àù6¤qèÓ_$u ÁD€Nê0h&7tÈ›7©Î™Ùã …G»î©ÄÎÏI-·+m,Ä‚-®¥´TsÔ\^9§¨kì‘ÜÖ˜@®±öüÎ2Ÿ·±ËídŒG·QµŸíñ7D”R<ñì—7•¹¡2¾¥c*`d*¹c»cydP8p, ¬D¢‡¦Ï_üéˆìæ®±oI4Ý{¸÷ÄÏ´Éß°ºÚpü,jRÁ+Èz/¬œ\ÓK 䟣þì{p†ƒ ))¼o:MzyÔ-?V$4øNKs¯™Ï¡|Áé#*ƒÚ0­ð¤£•ü–:sÿ"wíëÑ%ÇÓk\t–}a&{j 4’+ h^º$/|¤Ô€èaŸ‚¿Ù¯U{eßX1«IÙ·!A³sðµs­Æ{ø`¤àFþ«4À±¬eXAê&‡Q•ôhèCj]•–Miî¼Í±^£fÃã”ñZï€:pÇ`,³Ÿè(Õ£~öv_”ÆÐYž×­èuû2xõŽÜ©xÃYîÕ±)P ° ¦@bB¿ÈÆÇõô‹¬2Z=‘ŠsPÑi˜R(³O˜8xßÚ¢?nY8@ Ùn¡]®"BäF†‰?¢ãî+ ‘tFà^z›0Ÿ¥X!˜ø•PFIò1?™c<º{pxŒ NP¬Xž´E—ƒg)5=d ¯å\;&>å0Ê": Hû‚Püÿ)Ë‘É2¯Úý'燙}>Ý-»¦³Î±AAÌ»q…‰Õ@”“ï%½þïëcQb›¯Ó1{ÿ€^z±â;HZ¸Z¼Àƒ €^7˜‘Ñ¿íÙòåGH­oH[ѸžÇMÓ39{ªIÚ¦‚ò!‚4¥Rh½s$z¼sÒÿÐɺ•ìƒÞŒcïOÚ+§GAL$ׯP×Ùs4¿jª[!)ÖXë(tòÜ%Šû8ú•|Ö—ØÔUW²‹Vد(hÏrûÐÒ°¥sb0$ÔvmÙø·AM÷XšÒVéI<âœê"`e äæ]5«­;\ $ÌèܬJuÎàq'ì3Ž2.2ÜÿYÏ-nžÌÂÉâæ°¨¹ð4c²@FÁ Vë©ñ*K“ÚOƒâ'ªÅXE€Zdê–å¿â=Udí“«Á¨>nX±.S,Ð˸¼0 ª/ÊWó…s¤mò‹–îh<âÆI‹‘£Ð]uàö_é;…ö•ekù¶œ}÷Èü„]`;Ýôû^ûª,¤—–§Ù—ee£ë­Ó·’O½Z‚þwc¡.2Ô:ïu'.ì”öJLFiÉikµ"&wô›_ö´t@·9´4‡½ž`™ûükÂyˆ.Ýæ2œj”Â0Šd5ÅÅõzÃÕ­0Åx_':'Õ° –Wc°¿#*â\¯oóöe+½­(ŒŽ#ŠÊŽEV ‡Ç¼~矯. ¦TEć÷ÆY¾IÀú…ECŸ‰{-RìâêÎU»À#g RÎÀÞùóC9HúäÜÎñ7`Ñ–.Ü_?G®Ôjê&ñ–þ‰íAOïxˆÉ™‚j#tÆi¹®— ±?¶ºä]ãm öÊäôXëy®‹Úä‰É»px¢ÝX‚7vwWMcô‹‰ BΆú“½ê˜m›)Ö¡<\3€üæ{¥´¯šÎ4 õ®q ©/U÷å[w0u4g”ò7®Kü$þRÞ’ ÒÕ“ÏÓÒ¹&Ñteæ—ÝL!º¸SŽ öãJ¨‰!–ËM7Ä$úsJ‰¤¼[2 &å? ^Ö;üc´v#ÕqwO¦D9ä‹aµÅ…8`‰EÉÚI·´.¼™äâŒZvl¹¤»Ç±Ö:+±g}§…Žë>z daĹsÌV™L}kV]Ê]ڨǹÊ%«Ä.°*gp …2ñ*¨ðݘF÷ÉÅÙã²(5"Qá»Ð?2¸ÍbÛ12\ nšCY³ÖÝÝ‚¾ ò6_‡¬4UX_«~4¿/ŠÔœú¨Øê=ªõ²i…g K#ºïGd§Ø½©)I®ƒIv÷¾®hG°˜oˆM'—+(ÐÿÜ×@úKI<òNñÂÒÿ+®Œ„"YÌר¹l©-¿@ÝTvŸ%„ÙÀA(Á¤TÇc`-ðß95!Î$XdÛ8·ˆb9M‰æ(Ò¡âD”LS©{ÀNw4ˆ3îfyë]ö8ÔÍ{¡H"Gìu_®WW®õ¼ŽtóY~ô§|®ž×÷à!!+âH÷ ùŸ&qéÝPsùxZŽˆõ­‹Ë÷‘ÚwVKÐå,˜ë>P7gp •yù:H{š*2%]àM9݃%¦“ìkå}k³¾ ÍÃTT¡Ù Aß.€XÍyò4ÎùÄPÇ!Rê@©V ß?–b;Ôw}Ó"˜3Ñ ôºKRêG³ÊÑo5LËq曽9—P“)p¬Óò2;<›õL5¾¯Ö/Ô Æ»™*²*ÛÖrìËZ¦º¥e †ÅíQüš iŒÑ öè÷è=;˜w)²¦=Û:¸Àq,E|Æjk Óß·Ð?{œ+1ßsÝÕ  ”Ëèà|™õ-¯ðÄ:p0¶}Øa}OV>–‰yð©ÍLi±–KÊâ©/{ŸÂfÎ#ªˆ¹<*o¡e…À[?‡7¼:¦NpåÑÜúPÈED¬î]B>ù|f†8OÍÚÈ>Þc%¾Ãb¶S+Õú'¡[ÏÎF‡Ã›g)áèKäG»šc@@€OYŽ< „0Ï–¼ˆ[ºÃ‹“É%añÿk»§Õq]¹œïˆ*¦øBãU4b Éò ÓÅÁL7&l*Þù§'W9zï÷gÀyìÝÉdèˆæTwÛ,Ïp§ûb1’B*@à ÿ¤s]°f脼Êë³ÈðGBØGL¶Ò…Qó·Ñã2þ„&Þ(æt23õÅk¤~Çqqk®^JÀƒ§“xÏþ ‰/ùNa7áÊÎ^H’Vƒ%´þv'HˆSù»çžÂш¹Ü|AèîuÑ•*‘â‡1& ú,a£KÌzÏS %¢ç5eaoETnéEÁæ0½~ü!»¾9­ ÈöeÅNž½‚ô?ͱL!z&ó¥ÿQÛ|lrƒx5E88Íà&–œò~ñ¸¶ QUk4˜£ž{óà~zÜåé6nÀ¬‰þý5-/XžH¹ò#wµ‚G%É)rH‘ï+Þ¨j •ÅÇ0œë8¡×ª@R@kÎq ,Ô†zœà¿'U6XѨ%ݪ¤«a‰ÇXŽúZXRÐ[ ùÔ¼Ù° ]äËPWͲ«©A‡À807Áa+m2Íuîo¢”À]úúóIÁϦ¦Hx5ˆÌÊÀÝ^C ÷AÃa’ §ç¼y‰aß¿ï@ÞUujƒcÍY낽}ú#Yy³OÛ‚ŒÄ)3„Þ†$Ð3§t»üi'§¤­Ttv¾õlŸõâDAÈz¡©Á%ØZ¢k¦w™eg¢ëÎuìg‰Ã,ªû§º®¢ìªÐÍ¿í]CUAµáƒÎúñÊRZ‘Ô¢ª&r¸¦¨:.sQœMYÓ·”ã6¬èÍQÝ»–š/Û?rv+.ïyÓýª¿Èš§EK]_{¿18èÿ\ƒNÑ^ÁAÜ>ö­=úMw®P&6S¨Ò^Œ¤LÕŵݓÿžÓº|&‘kÆÐº” kšŠqŽLåí«£’ØE'Y~ËÐÔk´8—ø—4˜´¥/VX¼8æsi ŸÂªM*ÂP#EõsÊmL¾NŒ+4µcãŒËnldK±ÔŸpñEÄæÖDJ°?2Fª É=/ZxM:þìÄ@pV^…Vö1/}´=çpu†TˆdMNÈž”ŒIÛbé0¾þÉMq¹} 6’¤˜"-I\†Ðä¬èiT+éTqÔù‡ÒÞ±ÊôU ø\¥<œd®þQKñ­÷R×…ÿÌûÌ–l”øËןðÏ·.gMIˆ1ëÐWd² l-M k Iê3waž ¦u’åDybž‡xÌV.jËè.%‰SžC€Æa»&²·ðIƒñåb)wø¥ºžÑÇôóðsȲjŠë!fO±î»:‡ K§8õ%©ÁGö<õG›R¶UA›Ö‹§ à $âÌÜÉeÆŽùÆy)î->Wšd¼O± Õ4©Ïµ:p‹D40úãÅ@]`-†Ÿ‡Èöu©¿Î½`úÄ3Цõ4M‘*Çê–ÑP{bs¥!{†þüáAñ~[@éjm­šGY†Ð“œˆ­LãŒî¾6òQ"C)ËlÀŽuS|E®åodŸPÛV¼B—û+<\m9Í“-™ßè]H²E. ^–dŸ)ïp^‘-‘1ÃŒ)û©^¦\ºãttnÁërmŸ¡‡SjŽêb ©îÔŸ þf¢¦ÝƒÆéu¶Ap’âÄR…€T>¾5Mº?~Ó.aô¼I©L¿¡lH넌ÍrÍÏ5OzRêŸ~,5‰g¶š_·NO«Ÿ9®ž¬AIöðl«‚…¸\›Ü[¨~´ÚC3`¡ÀSyP‚úWXfÒàïûŸâJù"ˆ«Ã@XíB; ìjÃãûn⼂ª»BÖ¼>é·Çñ®›y'AgèWšT­€ÈãÿƒàžnkÂñ-ð@hü˜½ËØ`³yo|hp¡#kÙñ¼EŸzBòu²9ãëaƒ®a _cµeãì zÈq}XXCG[åÛ¤eݲ$Â"4Ôù¨ª|RtLœ½k±Éã˜`˜®5f[ïÑ??1Ȥœ:e)P ™Ú,O²ÃKGÆ2,LÙeW-f ¼yÚOMšw‡žç±ˆÉÕ)ªo ”ÁqØYòÊÐSÈ(7$ªøîÔ câݦ&lµoE O§ž‰þ3ì·!Mi¬~}7.â)|/ƒÍáû«°<¥}]Ý®ÕÆ–hu$9R83€ ]¢dO§TïŒ+I`&9kï‘:ªÖžû¤·‘4ò ’ a6jš¡¶€#³Z}ÝòLL¼×åë’ÏF-N @&å×_#˜©ŽŒ%ˆeîW_zÛ!®B½5ï£â–™—¥–ù)22ý £î±Ž,è–Û¿×^«H>LT¾r«wÔm°ƒhÂNu±GtÛŒÛFlX:!âs8N`“þ Á,æßÎúÁdœ¬ àÒþ?åÆÉüSCi‚º*xáŒÈ¢ÇnK0þ à_e|bÀ©¥_ÁÖ² ° ûDÜ)Àšô¬¬6Ï|àòJšp «‚A‘›¤ÅV,^¾Ê‡·äËF´¡Í¡úI3àGfk§ßÀ³9éº>ðó]àúÌ·pû«8Âj&J‰)Ô| ÷>Ó¬,ÐèçÙU…å5ëeÏùÊ‚è0¦ÌÇOLZ,Øá?ãÙûͪ‹Y91ok€Œ”ìn:†ç–)b¿Ð•,¥D#×ìZJAŠ)YQCâkÝöÝE)¯.w ížÚЗ äo*Õ½¹X#ÿ†ýXÃiÅYÕ÷ý}I’ùü|@—Ñ ‹ÒV Á2|š íèjãV6VÐöD frÿVXôCõê’V}?ïàÌ€ÀWa»›–õ½³“CDÜíîq&ëM[M$«L¹ÔØäâN?(®óÒên/¡…Í=4×ÂûgÚ„t–­UÎLº„„¶ÆúÙÃk¼Y1A’±†:cúS°a»Z^Ö›<_‘¬ïR3„a?mÜé¾5Öª¶z»¬““™Zn~™“À¨Õ¬ÏŠr?Ì>”³7ßGþÁÊ.ÙÌM åv,™›'»¨s³^üùP³«~C ó‚ áøN4ÙxX ³Fàüc¼mÍ…'¶8¿Ìíœg2óĽ­¼q:SO]-9j¿å3¶>ŒM›üüµó!¼ans¸†´™u¤®nð"ÂGVÂÖø¦OÇ .]¼h6îŽåŒêÄ¿:ô©X‹"JÙˆçeŸ‚“F ¤l±BAWØú˜ ;­&+dÖW)ÓŽÄ DÝ,˜ ¯ñóÇD,Þ6»pÞoi¨æªë_ש5¿ Ÿgò(s”†õæB\Ü+¡ºˆYÂHUíU”îÀ1Ú#ì"Q?ö€@¡—’EÈ}ûÙÝ–âÌs‚aùD“®_®™ñ9-œ»íä…¬ZWÕ(Á‰œvknô1·”»F  ºÄ¢°ÔHÉÄoümÒ7 7üwº-âq¶õD¢—¹œyb+19AÅ¡²,†1§¶£Â?j}ràз©êDŽۈ¹ÌpUlDz¤˜ô`»:ó“r‰Ûö„h¦ŸÉÚÚ½dRm›NñéA‘Iظ¬·È:}Þî_å…²Bäs¨CuQÎ6Q󉳂´»p£~ ¹0,‹ÐuÎDE7úµBXFH¯*ò¡$3EàzJÁ~¶g!ïMD‡HfMža› { ÄŠL­510íW¥ÆÏ9Ë+¶_ˆ½r,?™½ìÅŸ¤©²à#–\T ë¸ Œ…a¸­–­A¬¢´N‘ò¯¤lÇãÏç‡8ºÒóäÿ»`Ї§ó>*6Ú ôq¥±Àî…¹ëwÏ”7{ý|<«ÏÛõy €36¦€ù׸¶q¾tÕ¥ÖC»üç3q~8%Âî‚2:FRw~äìÕ¶[£MTQ?)³D2TBE}ÛMZƒ'uõ•£½‘!¯¢š6YXº3VZ-CžxÄ d‚'e»ð,H_ñ†lðtR’Ù"†ã@M£eˆ¯rÚà ð[Ì^=¼‘ïÜŠŸ3!Aìñø!¾HQÊs¥´ƒ?ºÿ_œ| ¶6àñ¹ @YkŒ¯ çâáLý¡•pNDÞI3!_`œ‰Á³ê9WK ¿yJLQN76\ çcT«,U×Û1Ó¬­C×Åe‘®†¸Â³ðKÖJI¾¤4¬O>ã  z‰Þ ôTÿ—œ”fÃþ,{k´….öók5P,ú¯§+»î[ÛI}ÊO[{U âó¬:æ£ùv&»ÿe†Ö$Ù—Cq Ýê[¥“g4JÓÒÏq¢è+á›}ŒcVU¤£{‹YaµÕòÊD?Cûww9òËZÜ…2Ý5yð‹+×Ç&ÆjÙ½ìRz¥›G0:á˜$Õ¤ 㛫³$2F8øè:¹¤JÅ®‰ŒîT ¿~Ë=vâ“Ât8U>qÜì/‡ ò=Üh¡ÝŒ™^@}d1Ö$žVK—É\Dä *ø±V‘ü ´lÑiî^¿ 9ñó3Ö®4JËPü¸X‘¼¹;1úˆ€³mt9eë[Æ•…›§¢›Ú' ÜÕ®µFÀO‡jùúþÿ¥?W_€ªs ÓXÈ x±‚¦ho~éªʽTÃi±3¼ÈÅöú7S‚–g°$öµ3˜<+h œ–ÓÙ£]þõNÂ+,m¶<×åÞ²ÚD‚ô,Ý“*-šåøùO§CÉ„_¤B*mÃ#ùP§cÛñ«‹Ã#c¤§ï«f»³‘O`×>é£#¯«éÙWm†¶â–aDŸyöÞÔ#Æ”#LY äóÐNE”¯æhïz/XÅVœR ùIŠÑ='Åi`ù{3 jª¢’ïÈ­t-@Š¨ÆŠ:Ò‚qÌÂa‡wOɨ}äŒDímŒþ(BKÛA‹­ @!¡K1Êãt§jÇN:}ŒNúÆ%ETË])€=»NyqY(g°öG¥øa»k,|äÔŽYW€ÃN›ˆ}wg;†9j¾Ì¾J&mÑ«&„¦¸VþÀÇä-©k‹?[Vè_Û¯´b*1™2Á ŠÒ6k¶t5z$¿ieùÛ³¿³Fœ ‡‚?—ðéU|+HÉP3δÁGÎçOÂɯ•Jv;ˆÇHZVj…X%• çä[•Õ}¸×0Z¥9j´ç.0Áw©ós€‰2Ë”õ˜tÆÁ“diÅ£O{JêÖ±#^dí`Ùç(C¥2™5å-ÕÆÁ2Dç$ÚÕxTSÞJÁÆ“¢ã¶ÖÍIDf@#(ÖÞ›¸ß)—SÄ’¤»É‘à3C¦1õ)bxå»íot“8Ÿ±Z¥Ó‘rÓž ‡JF|·ú"{„ýmѤ¼ƒˆƒU`hŒGRž V²U¨š "d‚Ñx$ã0Z©æÏjvl!s ·Aè8yïzQ)Šhr«özê7²Dˆñ§Ì´¸`6]ÑT;+6z…¤¥ýçÏpqä ÿ:™ºlL¹HaI£6q‰5Í« ~p<¡‚â³_òÏ)lÆ™2¿gQy]x÷/mÇ¢?׆þ‚­–?ì;!ò¶ÊPM›¤’JÌ´¢²Åàõ^O£ÄÑ×/@¨°•¸#zç”·BXÜaW­#pÇ׺DÍ+Í!†J–_ûÔh>)íC5"ØÊÚ¿ÅÒÏ…UIþ¯ÐQÜ)–_ãǨ 2•pßuT–µ¶xÕŸ‚=aKÃÒ©¥}éo݉GèÑn•EÜ“Ž˜’='Ê=OýG4U²Të‡Áø • n¿†¦8lÍçªt÷üŠ=0îÛiGB¬K Š;'}#ú*ñÜ*ëôÃê1ó,n®Wû “éD`lÙó¥¢Í]„ùÌ¥ûàÀË-n“÷j²ÿb ™¼|JjØUÊÕ\Û€{]Ž¡àAQjn„Sz5â&žb^°äeEJ+“æ-ó18 θ×%|ùO¥ó:£ÎL€N U{r‰jt%AX.üPoj?…í'¾®Èµò|ïˆW[ÆBã?” ËÉ–uûOÔ,k1Gã,«g5£Â5í2Ë/Pp,$MŸs]2¶Ÿù¸„ÆèWÐÄvògÅQÔ»¤@oV÷‘ĆlI{¸-ÍwÂöáì½úñªÔŸM¬*½^1š4)ïÄ»Ù/ÐDX¼Û íUH•«Š45Ÿ§Öq œ­4ŠÎa!½~&ÖÙ#î#{IÇ·D„3ÈB3:‡$¼|nUR¤+D`ˆÛAPò7‘Ì)¬šþzBÙ"øî„ë$04YØhuŽ ên˜ˆ%"zÚ÷Bû²æc0>”Ü€ŒÄÀEn ÿ{üý:€ÔçDÕ5|AH0.‚ЀîÊ"†#.Ío=o0Jóô‚’*O«âŒÝ÷2ör¡ê–?HMê 6N@Ø´Û¡¤6_³†LüwÜ å1; Þ7§(”…Fh4T~)ÀÓ~¯…l” @øÝ{xó˜% §÷|cKþ“2׿}cë•uQAã’µü¿`0È»oóZ‚Çœ bó‰Ñ™ÜÆFäkÝý(.Å’œ €»­åð@ãäÆÞMY¨aSž¢y)Hس&¯õÔèo$"=àïë0¥ýö]nÊZ]çŸóî7H™‚;bÒˆ ýaÁõ·ý4xšÖ#9¶ pßc;AÊ€5{«d§².!Üi­à™Í»pˆ¾3´ÖY¾™LˆiÌ‚®Ö[Íjè Õi7FtM¯Í$ý#!Æ#ñ%¶†žx–"¼è–Œ'¥ ßâœ]ôÍØ>•Ú—å ÿ}¹ÆÄì3«+ s›â2ˆË©´ËËÓ±ï×€ŒÂÍô`FŸ.o'ÒOÝH€ýVç#UlŒ ÖVï'µä®VõìT>q!G tyè}¶—MÀ`¦ˆkTÁ¦`êiwLæ•j­iæ~ÛRD·k‡£-«ÍÃvçvÞ}|k”ÇÙ*¿r|ر1ðõ`¥¡¨+¸£”°"¢ue¶o¨>–ëŽâžyQÎ’.FîMI$Û¹ÆP‡™Ÿö»ñ¾ê ó–¶³ƒ•w–¹Ãæ¼yø¾{ˆD€ºLNéâ‹ÑG*;³=&ËÅì VÀà%SÑ¢VP{7´þ™( ’µ pa#o16ЈƒY¿;ã=… P!ls1×WFo¥¬Y|N·w‚kŠúnϽxþûšøk+'ÙïÈåic ¯Äø¨c;ºx¼°B°Gw¾Îô°EV?i–Mž$ßHû²(]zÆ'BOÌ¿;§Yé2ƒ~hD¦ýúœ¨g‡\ú™õcƒäõIOÀàxýâ›cEš‘ÌÅT)ú\*<½D+Rf gì¥ ]‚ùÜ-Àý@Ë`³Ü ߸ÐmªàâtŸgøáHTm$:+ÌÕOq¨ýzÖ»]´‹ÁK¿°çR‘;¿–ÄD\sxÔN Ž·ƒkü•á¡Å0èL·¤=*8-„^ÁµèaLµ) JùÑ[HÝ a·³ jWVySn=8 ˶zÚ^‚ÅÂ×­WèhjïÉ¢Ü[¾=îWñó@~þÛs6ƒ]Î,Û¡NÏjùðg„mˆáãë:Í‹bDÉ¢¸(W¼ŸI©EùìååÀ1Ò>- ÒcíY­LjçnųºIJfЇî»$†ƒ9¿ä"¶>¼ªÊ„P¾K½ÿuU Éð"¸vòWëÒ²HètAŒÛÛ¿å=¼˜W§“ÁÐ+–³±¤¤ ȪÂD=”o(ãҌ̔|¸fnª–ΊÓ-Ís8Áùþ…Ñ[ƒÌ8aï´¶÷ÉÜËÑ p«rÁ#È9û…¬Sԣ˼ĸ7ìȳ¬å® Ecm©È§yû ñòoT¯˜…ÓÉŒ³ú!&Û4 —å“¥¿æ»èúfFÞÕÿñ§ÃÒ8±ÏQ¡Kãf£LéÔ³dJ/KBÿéÆ §~ø9ôYi ‰ð/¤TX <-ö*Oˆ¯Âeh¥4•µXEÕq‡ 7o 7×ìÜ áœ4èmÁ ®™VÎÊ£˜À6¾=y°Rë¿ß,öퟯà8.nÙ‹~CãÍ`]¾uEaÜ˪+oHCØ4ú‘ÏèÛâx-ÖOóŒ¤#WiPÛÙÀ5šÁµÅx½‡Hü¨†{j•£Ânù”¿†m‘ŒƒgÀGòézu7y Cþ·„Í'˜kdÉ«+I}ÜÜ&XÖ>8ùŒ?0§I-/ŽG^Ýä<Œ @|'2çS©¢'²ÕÉ Uß(ÿÚ}Rw99.¹ ý¹jǧIÖþ -ßú^X®ã?=æ«¥ö$Íëzðð(“‡¨![îìPk¬ÆS­Ýñâ=[¬×%Õuj åEð囕¬Tw:gÎ79;íP‰Àe„®AÜ! –·nX¨4Mó2AmáŽ"œEºæg„ôô%óí ÊÍóóÓ_æa B²¦(òÕ{Ð:ýol_$¼=ÚT8•¤Â!m]ußëÍ*My”Üø¤À2¬£é‘÷·¡àÛžS–@L£-ewõ¶Ù¥°Ì1Bê•ÿ6Ô“‘ Ð"Ø×ÒvO樇Ä3zâòƒ”æÍÇ› ì»5klêRÇi Ð8´ -ÄQð%—¥Óá¸ÿ‘S¿žÙ2žvÞcàÛÓLEp³)JšxÁ§{qKt»”8ŒH:Ž K@‡Ã¥rªŠMÛª)X–…JÛ;rw„2fj{šj ƒýlK':öǤ| —_ÒkµñßÕ}Å”»wn–­P´V³RGëÃÈm-[ÕÌuëC†€Ï¸w!>¿ Ž#%¡-¯yÂŒäÆ/*'ŒÆ^"ô|﯆¤¢åjCZ{vh DôSÉoïÌuz¼gÊàô#O4;àòóü¢t_¿ÿJR×7¥þ_¿ˆttg¡ò—Í ¥à”âñŒµ%©Fµ%¬êŒŸ®ÖjW–lF}̨Ú 1¡®¢Ë˜’#H5q§~Îf•:wï¾·•ôëQËà IÏ@æÍ#»PwÇG(Ž´¾sÞê@…ŠTtnM›þ;8lÖ…WAb‡ÿ×KiÁßê¿sÃút̸¬éþ4¨åHúIá¤È¾öVÚ’"æj´2ô¼¹êv`EÁl0²/bº-% è°ÌŽÛ?c‚h‚aÎKÿæ\ýéð x‚S(ÝÓ%-•xO”yÉ:$X1¤"= мDÅþ‘Ez£/Øÿ€M¢fÓü]’e •µ[9è41¹s‡6{06Fà£7°<ë<:ÿgý‰OºîùX={& GÄà 6?ÿMéÁ6ò[ÓFóŸ÷~>Aåkvaþ›ñ{I³Ž pÿI]‰Í¢âï}¨´‹9ø3s” jÿY§#ø=3™U^¶Ã ®bÂ-Þ“Ùð‹6B;K™3l£ž|eÙ™+¬+pçSÅËç¦|ΤƒªPÛz[å.³PÈï®si Ãß±`²öcnyiÐ8Stz' m³¯H/Ø_#t%¨Õ˜ÂÝèÑ—¼¥·&ÄGÁܽáÝŠhHä¿Ó«ÒP¹aê¿,éŠ!,•Ï"dk«âq–’èmõ9[uåɘ= pÔÌsj&,g<Žø™Î‚whØfdÈpÊþÊPAÆÀmmÔ ß«/HÑá§š+Ž:²"r ¸&î)ŽE“vÒ}89€¼h€À6ÓjÀ!Ï 8F‘ÚJ„Ýâ»Å*58ž3=S.Þ}úW Î‹Žm«é!Í‚«/ÜŽ/(ôqfn7³Ñò”i¶kc&£<8lÊ‹/­•ר÷83t÷‘Ï1…”ÃZT•Š¢ù¥‘™q£“ƒ%„¯¶Ês†Q³¾M6‹–»¿Å·ýÝ¥e ©L”jVn“Ó£ûé™R"{f¢ÃôONúü1–* ó¼oo ÑߤؓCÖ:?Ï6©•nÒ^ª¼ÉDPH Ý΀võ‹¹¦²ÉÕ©&„n{þêæsÈ1Ns®E=»’l× -Až?B»N$F©)èS}û(¨Ø±ï9±2×YÓÞ‡a“ôS ö¡!ÉC8ZOE+lqŒ+X_±dlóNY[Ú`&¤o– ¨³¼ùàÎúò¿~/ÍJ…²ð% 'õˆú7±ð£›ãµEsN©Ö6¶qgkEuZ÷ü¦Ö¶ –JN½¦DÈî’Dz#ì-\d&?|6(óöŸá¸ÐR¥Ž{%dõâÖÂäþÙ°ÛS׌ÂfüÈTwäðôS°Çòèú¡ijÚn§¾çûQ@&²Ÿƒϱ½ÞP`“qZ–z°¸¶ÖiÞæ;œÃZä¡8ª UÀ𼓾þÁúZ!ª+JfñƒnLñ(EÝÓ¥ å#^2à±Ûáè@Ÿ0‡¡N'[jcþ¥†_dGêðß´(S°fÙÈýÈP3X–+á£Êƒ;Êôr&Ú“wˆªO€&Œ~z¹gÂFÂÎpÿ|!©"›8ûÃæHéçYéðœ$Úu“ Î •æ˜è˜ãQÍŠ¹27è¤mÿÅEBµèY,f \%ÈHpãª`æ87'‡íç&öaŠåÜ­ˆ0P|¥bÚÈ¡Î]KÑLËÆÖ¯3~‘+,Ky:ÿmAîO‚ «—²fq~8ŸšÖ²tta¼þ°c7Wl0L·æÕFV#¿Áë¨,GaËà#í>ká{R F" ܃?%ùšäÆ«=˜¿èu´ EööÍ|‘ðp¹Œ\6~u7§2Ç4†mËUF$’‡¾ä”=°khú˜ˆ¾ƒÐPTqûSã($nF“c ßþ¹ïÿNw,ú@S¡¸ÑÔ¥âè<þ{€ <¯ÀýÀz8úÍËŒ¦‡J$“\¹fXÏYy²ãcV®Ñ,« »¬Â-…ö>Ùœ¬:oôÙô¥°‘ P<Ûœ~{*ÖƒølÏŸ‚U?w ú”ªï¨ëpgÚk»ò]_;D‚zð‚-»µ!n$it(êWæÞË2L ÚîðçÝyð¬z;ó´ê•ò†>æÕÀ„ycBë-ˆ"œ 즋ÜŠž°ên¹ÿ!A•Q¹)öŽäï$çµ/N‡Չ뮲'БêMy1ÃEé%”ÍPwV™üíÙ}d|ËÍga–j…Ê0–hüƒäú–@4§µ§â½BˆEiésÈ2 t%ÓãéÍ|÷ÆM3ÎÞÎ$Ÿž[–=jZl¢Û8†Wn˜D*ÞÂñœÖåÌ·þ¥;qT)ŒšØ¥<×Ä]e>¿¾Ÿ]ßäü¤õ íòY}¬#opË umà¹>”Ð(åg™ìº1è}•*{`>šT6Äÿ­DÁWÕ_j…èa7"3Ь 2'•fÁÕˆ Í¥Iã-­±ý’ôËÀsŠ.”Š€~ËXøîFžÞ´z‹ÁehD`T‚Þ½8‘¥î¯Æž4Œ›«7tFÎDVw9JÙ½ Ç7à%·`Y8ÔmN°‘¨=§ðv¾bÛf¦.ësQHýØ,ÊðirˆßÚIkg0,´ÁøÑñÀjbKÞ¢ü¯(m ’Qú\µ}±õ< v/M@m¸Ãä4š‘í©r2³FÿòÑbW ækÜ‚™qíá™Ì}|m¡‡6lØâ²‹èØa7ó±S<þæð('‚¡zÀËKªX®÷p\€ícØÁãÀº0D ²ÚLu©Yv²G}ºº@ÿåW|f ³y!ÚÙdáÖ{´„ܵõöÅôÍJRÞ©‹ÿ$Œ„É Ü}©#nÝøaÖÍÛaÙÅè,0½ÓB¢àþ#Ãf—£(N qiŒ¹âOuåe„;Ã?fùµ - /\b½³z¨œ>j Öc\ù}§.”\íÕûkO²lJ°@0A¼»]É6 9Qét7¦å{B—®õ œÏ\Ím ”.¦bJ±LH©v…Þ¹ÌÕ„üì?õ@åO¬ «xÕ†‘ÁÏí롵nTÜ/_.]ôOëmç´hŸø˜Ã%Ñ|è3zº YîÄÃ~A©ûŽjTOÃFôÅÙ’Ñä~öÍÜ:¯Ró½Åö ×^g0#äáÌh¨ï/NkiôOÙe‡LÛ(þŽŽc—ÚÛ 'GG_‘dÄäh8ëûì[=ú½ðöà°#yg|Þ©>é{¾#v@c¾D­|VŠ„=ÝØrs•q6›=¿wÂÌ tòa“¹uïÍ2˜LÂþDÂðÛÊVͯK„]O©¼ù¡}Ô‘‹$¼\Îéz¼ØÉ:?°Î\ŠÞñL‘ã”b¢kÈCS¹ž 7R1Ÿ¥¬0›µßN‡:¢S1A t½OÆ¢h¤»ù ÎâYâ׎&H×È“dlå)62·or¼R£‘ù•Çé·¦FeÓ5ð¤z øØJy<»>[¾vOªÏÉnCN¾Ñ% Sò™¨‘˜OmÀg¢5æý  ¡V,¤´¸Ø£ªhx€{¿醻ôßðÊPo;«¢ÃF?2^Æ®a­“:‰©JÇæ‚ÂêqÑL œºF•ÙµX»hX¦ŒKUtJÖó9ß/–Ídµ œj”̨‚ ×1튓‚‰Ûϲ.ƒõP÷÷IöÙºûZ`yu‰ý™Ë8¸í|Y©æcZ$ !£îÙ¾_WJÁç:ËëãrÞ0_O“l¸èTà463(ë‹kwÁ!PRÅw«û*÷ž9Œ¼OMÿè6+&8Žkö X?÷ä7ɯnE¬©¡²Ï‹´à)ðäí¶rqu¯-Ñï–8ʳóJ€‰¡µìš·1M›¾G‘ŸH·ÊcžghÝ‚˜› .¯ó«›;­ÿÐf^´­Qößþ»Ò€g@±çLfxñs§=F/JRxNNs"\]||'p¡í…/mó¢^âç¤DµS@Iå““¼$N¥pµ:ª}KŠÛFö?Ûª BÛVL3À#@:îãÍG5ê±s³ATy£…Oå|V>8Ke5à¬jû~xxøè8[(¾*¾‰¶²Åû¿Ä d$s—nÒ9‹æÛ¦‘²1ëN7´ô“ž"ý“Ùk¯î*#~ §&ª~ÇŒ6ý ]’ÿÊ +Åÿj¾”uˆµµÛFÔ¤©¿ìN°%—í¤‡Kˆ·¬®Ø&Ìn@æhÍEqÂb;óÃäs »;3X‘’œfge‹ù²HÒŸ .ZË;n°x£M¾:·;¬v l«dKKyeѲ+Œ ^×£P‘†j“Ú‘Vû<„Rç IoÑ+òÏ` QÎßÑmö>aÒ÷;4@=8—ÏîuPÇÓ¢u\[—åkrt²…2á•76‰›¼éÅð² ‘߉¢Í| âCÝeÛ’/8»|& ó1jd–ÿÙº;¶º…tÓñýÞsg?Ôi€NYAlˆ©·S¨@„ƒcͰ·ƒ6š²k rä¡ TÎLãžàßÀáÃU†7š½xyµ8ËÔ® Þmq`ó0VÂ롞#S!Íòz~=N<´uâº,ئB»ËSæõ䡉ÀÿE½Ü_”¢¾ø£ÕoŸ€íÌÈz108(T_Ȇ/&ï§ AFǸĂUj8G¶ÓYÒ Â7ê³ý/Ùê™é½ˆž*_S-M©@QÚqˆà¡üP>ˆ%:&èUªU‚’7¬F¢ëZÀÞ„3H‚»_{‰o¢Ò¬¤¬¶lŽ›Ï3òJ#w xŸŒuxÓ/œj(úI§EÛ\*ÀÝÚ‰7ŵ Åó¡áÆÜñ\v”~S4„É"XªïI²„/}±Í-CMü…ǰŒób~¿Àƒ}ÊfM°wVŸÂ+>ÝÀă˜Ò¾–²N;ÿ2ç<®Er_ªÃBÇ£¹/tÂRëc>hƒÏl6ÖÍýôvÙ¸I]üJ³“À'è_fYG‡5·1¼ 9dõñÓ½÷s—h;¡²[GãÏÌ"Rº.ñæn)>ÀC±Q¤øÏȾíˆ÷`/I“*L¬qûºp<œŠ»ÿ’E¬M)S*W\0+¸Œçü‚×S†˜´f0p9"çÒeZ é +’– g¸&_A½õR1ú> ’q$î)ú@iógMåhA 3ñïÏ ¬«Í$/ï~¥×2;NdÔÛˆt<Ç®¸lzRÅû;Tau ŒÉ¾C»‹ùW-ÈÝÓ+´M7o‹,cöý™{ŵ~ª=µqî $ú똖`‡Šÿ,o)°¤DSfÇu¿ž–È£;¨u«Jç¿íÔ¼=tvj!âtÓ½¦Š¨‡óÀÊ×døIÜ* /£jˆup‰«Z´¨ëò”f†T#êźmU§¢éÔ ?óì3ÃêMæ·êfxÄ$Yü¤¾~Í)„¶2ˆ?Ð$ 0ŸS”ëh’ 8Oú*ÅÁ(;}§È’’þf/&ú¡æøëºlf=TLø ¬{IÒX+™ˆ‰Nßæ·®ÒŠ)ÍÈåãÅUõ‹-Í %ùˆ '‹åyzAEET™Qµ–bf(øë£ÅYЯ¥ÔÌ9¹“Ã~Ró +šñ0Uí9òÄ7Qv(Sfý]ö(únpÅiGô8éU¯Ì}Wä§(’]Wp½w>ä´©ÖÀÝ1+@“ ²ýOQ§5¡ÍWP®Gæ¥< ¤»§˜Pª]‰ÌÂî‚ ÄÅÜ\OJ~`HSí„LggÆD2²›ïku²vw¡î’àûQ¨ý¨ÕüØèÊB/ë'صæoשµ.„µ'#^š’öƒ¾|ÔUbÊÄ2|'s{Ô..2|ȸ#ƒ|ÉT?†ÚåQ¡¡î7ÃP–¿Dì­mIžó›–Šg4¬:,Š™·M+ðâÜ«@W7]ó‘ìOxÚla,õˆóžB D‰ð—Þ8ôü^áe“9A¿0¿Ãh¢³I9„]«î’xX§®ÿ¡1»k­’|Vké«tñÉ?ÚàPÙZ5òHó£HãÇ)J†)eÇm‚0Òèñ´sÚ®üèõ8EæÄ¾¶lŒ»$ø5E"ÿ—â1nMý¬œ'ϵ~có§wi‚‰ËÝŽŸ0^{©Q J‰`5»Ò¯kt(qßm’£OÕºñšˆ ÄѪÍXÎ…š¿›Ý:ÎÒ7ú,¥"Þ »R_šrž½V•ÑG'Ìþ?w1ŽK4 lN)ÎFƒ’àÉbÝ"6;k`z7"I·ÿIéïc˜lÒo¥·Ž ðaaîîˆTWõ(¤\m™w!mkçꪉ*ñÈ!P–£5Ý–Pšá†®H–+Ñ¡ª?¿ !ûQl‚ìÃXœª`æ€ïs[ˆ!ã Ë‘<ím@.7(öȱ]3‹.ËHgÆäofvõmJ®e‰2@¾@¯ˆ<ú@µ”NA¾=¿îãŒ&±¡+µ=¯“ i`g9(¦FrÃÊi˹}_0>á˜<òó†Ãú¯ô's¿‚š}¡æ²rŠ‚¬üέ¾éÅVh¸÷™y§G&|⮼ì—Ç{z]n(Q3’`b'C‚«´dÿ›û6³žé|¾„8ù—¯å!ê\dïo†‹_>.T½ I"!‚¢ø õ9®^:>Þ/Jh|r¤úWÙß„:éÇzQ"M”ª¾ìíÈÿDíúPªaùZ°ÐÃ[†üð¨…1G!±wi˜©qìÚJ/ÕÍ•q Qµ^L|ý-L¶®%»>ÀZªÔ„ùAŽ’i„¢›xñ™Œ’ÕW\ IÙ‰7¹7H¾ÂŠÍ‡g»ýËü²Êfmç «‘_;þjŸüxÆÿŠÞƒOE¤$ð:¯•zäEiPM×u00˜"±† r øÅL¹–eÇóט9chª†¨á0M ãæ-†fÈÉ)Mªyñý™äD£ žIÛì.Ë®8lÜÃé:c´ …Û›3³S€È°,—øb™P SÛïSJø&çpùŽâ`^¹½Š ë£e‚u€lc…e«I¬µéÓ{AFG[±’ÿȶm9V£æÊçèê)`'ÌéÖqWû}7O*x+Η¼^¤VJn6_Î…zö? ýS‚~†]‡ß!Kø£a_ëYôô͉Ž M ©Y.N•S¤Sr7MŠˆå¿¾¬ÓÚ¬ªì,³¨i¹¯4u•Ưæ0Ô"¾O‹xç‡ü%ñ’Á³níÿ<ž}[äð‡–\~±Y¢Ðè@´\zOòYm†¹8m®%A?£½k2)»‚8‰äÇïxd4ËQ @gPqê#`?D•1‹îó§Å°ÍF¦B†eD̨šB8.!«SIØ_c‰;&Ké}å–‚Ðàÿe“È-8‰PjX˜)5>ü¨±4™VؘlzM†Ê‡å˲»à.ä°€­(nW ‡&Y±S§«+ ÆK¼DyvÊyÀ±®¸mEå’Q*, iÅ1aìâøå;S•ï" „zYM±FHäš3§Î ê0êå±%z‰õjULç7¯gò ¼Bl;²õÌáªx¦)£:þBOP> ¶ê Ì\Id”›ï"Ö~ G…„M8.ì2­IßNˆë»¥7`í¨áÁþåÒ¤=²K?êép?û!nm‰5û@ Yp~I|©bS|o¢ÔsÿÝ3Ø‹ÂJÐ/KÑ!Xý ºÙ…ÛŸ)rP£½Ù„?om‚ð'äÏìo@ëò=z­:«}«‰,eyN·˜´MwŠ©Çë„×»ø7UóMwSz $ÛkÝȇoNjZÊ—(ù]Cú`¿7•zwÚ<€¥Ú•ŸJÙæ“Ô­¨þ uÔÓOÀ5þôÛ‰QÌ:à:˜o;¹}Ôù{m óÄCš@qmöM—ÉûöPÍ'®¼ZW¡ûÊo?77„ŽŽqdOÞ(Ú¤—ûäüËÄ%ƒûàü´PÊ5 dö¾Þ_Ø uN ¼ßš›î€ßRÁ:jP¥ †°\2™oÏ2½“«’ ~hÈš«c‰páSë¶Ö‘³~Wa‚ ŒíÉ)\Àdpõ ëX’u3 Î®­‹¤ˆbéŠ5_y¯\;ý<øý¹ß‹²ÜŒ>=~Käª;uùü:L¨ß¼ËNÉêcKÉ\i½#ñœ-Ž9²ܯ;ÍNB2¶kœ lQûX;‘XÀ%/ôiÑU¾îT $–ö«GÞýçQ"…äÏŽ[½‚cVHý)’ö[ &fçÑA¸Ê5­–Î¾Å“ÚØ=ñ^Ρڀ)hDb:  áC,ÈÌñ@° <¸ª=xërïH uãgœß%¨dö>yÜU=gx({_ì”ïjCo]±eâ§?SLþ"È Gh:7ýI„OìRb£ÚxŠÉå]ñI+“Lì2”êahsš`y¼I.lÍ]=ëÕÉ‚x|G§;øjm˜ªû2¢(Y݈Álñ½ŽBÃÞæ¸`Ç k]ʽ}gy)š!ij6ÙMúî–U¥ ÛÒ¸yŽmF¯Tõ;­cæ†Ä•Šc(íL5ÊšUì8 å”jÒê½.šçC%½½Ígê#Ï9óY¡;Ù»B°±A¹©-dø3ºÑŸ§ßTC˜pz>ù²ªÔ/òå¯ÖCTÑeDíJ\Ü}‚>Y¬ ÚNYªåXÚÀÔïÿGÃv‚#rVQÜ}Ov^›‰¶ÉWV·¨¼ÆÙvÔÿ&·qr«¢!5e²\ë‘oj;®‹c•Æ;h½­–ì˜AVezóëY\4'†=æj“º|$ÄI¥€·ïzÔˆ0¢ø68`C†«]xúTz’àFNêÒEJ{†pÄL˜8YºyEÚ8tñÖJΞ ÙJT[ºo…åòæ¾I)¿|þ¶6­KCLÁ’Œo­¨ü%°WÔ5; ‡VwÁ·ÂôAÈ1]ä‘G…àA¿ï—¨:î¬tëk_ÂJ ¶C¤KBw‹b×”÷qÍ+xû ú½ÀÑF%Ž€JåÑ…Àñ¶G‰h sß#áW†e~É ØÆÙpРW¿Û÷B¢â)Dœ­AzµÐÅoæôG m,V¹•?›p•ÿ†À²ã6”9–åß¼(™Ê郂Á1œ‚â‚á*++vžÃ òÙaçR„µËÔ¶—þµ‘+cÉá¼I¨%T¢‘¼¯Å™6c²S#ìÛ²Jï@(%nÜ•^„VˆJSÏòµ Ý¤f~È–èx;ú¯q±ò ‚{]»Î§FIúx™%èNqoùqçÿUÕxÜ^­–/ L §%¾›Šæ“#¢}›¾Oê¬üuÅ^ö¹²7 wl¸]BœxP­ÉëFpI}W·Ã”PãQw@«ýÞû¬Á63”‡ }í!ºõÖ.ÇìjÁþOEË@"‡j¦™ˆ›–qSKóûÄMdîŸR-ŽkmÑaÆ]B©ì%ø«Ôê•S…8¬?( Ü…¼—4òT´›“O³—ç®K @¼u ÝåB ³©KÕ´¸?Ö¯SMþmz§í2Þ`ìåô[ýz³N±FŠÚÊ»¸ñ‹h•žUZ[½‡Mç~ͱ½œ:ëqnû>úQ'&ÿÈÜj>»¥ÎQ™KÈrƒfø°~Ÿ• .ËùÐvzEö°pôÁu™xö‡-S7°f’K¶†7d±È1Gz9dŽà„Œì>iŠ)š@iý¥‹{ :C”<´‰ž0 ’œ‹S¸¯µt}“)S¾f‰À1Ošs¬©““Vô=‡øÅŽsއœ³|_ÕÌsb²@Gk£ìÕÁÿ± ª3'!ÃwÊrx‰Ú@’+"?Ï”W7zÜ¡¡_—q¢Se W‚Q sšË’éÏÖG¤§øá®ù7¯³n,ú¨qÒýãVïåO‹9•Ê[è…η;7lƒ ’޵š L#ŽÀMñxǃ$3{”ÈF—Cdy³š{F¼¦ÚPSÇçܹPsˆ ãJ&éå$–³äEìs' úlsµÅO¬M»üËO?Á€ðý®zæÛ]¦PaQ¼€ ¦’0¤~»µ îXÈDœÃá˜íV̽$#U›Vå|^ƒ³w–Êp”•ó×P‘q¸–˜ìÃsàqÁx©ã!¢“»ðZ*XRîÒÅ:Ú³'딾µ:ŒÔÅ»µÁD ÛêXÏUc4wdåc4ˆKm–J¤»ÖrADf®œyBVPœ¨(¸ ²àõB$Õ.2ÂΤûx©®vfóª.¤d2í>N}°1Qn–Ö"¿ø:‚ãÆ#´³ÕT‚Õ×QoߥÐãë(§%²]ÀûFI,«ô˜:mµÎV¼4]l˜iÎEH@™Av"ÇÐO>[0¢&L†*UÕ5«‡äÅ*¬ÎÎ<È´+W»À˜U…œdëq”š2PêÊB‡m€³¸W½dù‹3Üv9ð²´´ÝVƒr[‚Z–3‘™43l˜ÚA¿Cuúª’âÞñèZY˜þÔówå¯rÍhµþÚR&eЊ֙ÂÌ–]+i ®Oê î’Ý¥¯úk˜ÀgùO˜óú‡¿½ hϰÇ'jã®ÉM3¥Ê¬\^^ÚÈ–;üj|•“7ŸEõõtu(®¼ÜfT唼K ­ ÖuÔׂrä^-G.”*5KÅÜUkôlmüTº!”_-岂æÖv×Aƒ"ÿú£Ï0Ë)sÐ ¯æÂ@ÕAXµ²ùáÛ³‹ü–ö L2‚Ä3ÎÀ‚KhšZl”#ã¨aý‚)×J9¡› ff¼aTÞ,Ü2§kç‚_\I2·Qu܉(Ž 9 U^l"FÈû7Öøåϳ‹ä¾Ìè¿Lù§Ü­j¼½ä˜€KàkHž¢æš ‰ÿwµÐœ¸VEYÜÞÄÛýàd*ÕÕÙxœµt0KßFQ‹ùŸpT„üv‘4!ñòP¡‡A‹”ØA(,fnåÓH5œé2œåŒœEù3åW¤×|ʬ{r£ˆö4öV‚ýŠ_Þ²Sž´Å¶D‚TD¦ù¬ü€£I°Ð¸â†˜íZÜkúTp }4‘`/ÅÀp"ápLNíìÆ3ö#vh¯“‚gÔm§¥ØÂ ·®árh:¹µ­ˆREïÍö«s@]é8êÚÍJk¯9,ð¼`¥öªI¦|ùƽù2é«Ú¡%×YÀÜË=IÒ#yK¾ÍXôDŸ8¥ÞíïL·‰!h°¸4ç4¾ø¬RÀêêC…/È‹1ÙKœ€?`%¤uš:Ck~ìE`„5<¯ú÷p2ÛàVTäf?÷Š]A» X9¢Ì14Ê. úST·u5õ¾ZÊjƒ½tœ¤Öz 0ÓÔ/gámdk;Óþ™ÿn—{uÑ{N"ð÷"·Û‹ç·èE¤¸m2Š”Þ`uv¬‹—dÜ;—°ì>¡käY«ÇÆ0ötíÖ¿šÓ~±1÷eÅpÚŸz½“9ßÕÆû骧n¾5Ì{ ¼G¼‹*Ù¶Üd(ëCHfküýÀS¢ÿ€­ºËÏv"5®UeM-õŽifO]îk¬|m˜·žù·waû¹\ô¸‰‚UŪ:ßÌ´;‘wŸ&B%ßšYÙ\DvŠÖ*—½ìÆ¿ÝA¢aež›ÍÝ·„%åïHuIû÷v¡%?®|mæW[Z3X•¹ë“ò ¯1<šÏ¢$W¤S†'T7K¬¥—ÛE¨gëóµÃ«Çñ0Ri ã÷²‰OÛ¥QOƒSn±ÿ±¢¦12²ú¦Å^qfÔûzœGªáO£æ,Ë;iÉJ#e]üÚÖ²ßùÿGßùlœVW.´”ÖÃò Ý5¿VDß@7Vû zÉ-dz%@CI¸|Q‘º«¥gfTO‘§åÍ=A‰zåÉd‹èQÿå{ c™n è£¥R w@‹QuãÀZ êÇ#Ô[¡9 yX$ì(ÑíwYí'˜BΘSµPÙŽÚK×ä¶1•ž¶4øâ¯öü´í¤y».ž+¥2±‡6d <˜4v•=гž¸9˜éyP¬z\¿ƒ@Ò[u‡”t(܉p~4ªI%݈˜Jm>+ \$o¨DÆ™Â2y|?Óú ( fC§~jy€¸ ß.꽦KìÆýÚ·Fœ_k°òt2÷AD€Öœo`mbX‚ šœPÚùˬÍòœ{ê—7=/ªÕ°gíE)ÀåaÇò_À 4EÄçù“z…ÖYÝaeøÊ¯ ®ËhÑ®G/¨‚¢°rT_‡¥Yt£QÇ¡ÒJ”‘5Pc层o¼¿|øÝ¢ç^5J k„Ã6Ób¡ã£)o8Ðé³´ÓÛ¯ãg&¶Ì0>)ÉZ®&»aR÷g¤IEèÆGYãƒgºo^NîïàaPn+¬ä yëz@°3 Ÿ­“Ëøë¼è‡¸cü+ÊÜ`´(›:s€àýŠâÈDTªÈ{>"ž¾ÜC ƒhwÁqßiÔŠ”á9ïÁR’±O+‡â W]>¾*¯‰ŸX_»T M†2ßÚ%žÆL÷ËŽêû¡oá¤ûuBÅS¢H%ÃuGÈì•¡ä×µëΜgM=ïðRÃÅs³ã*ZàWüÒC•+RQïÝä1Ž]QJE^…ƒMÑ‹ˆbÞ¥sÑSv"Q_/$&Õc´%æqýk¤~Š}P—Ti¶0 Oƒ27C ¾]¾ ³@Õå÷ìÉŽà(6ÿ ¡·­˜°£™ûTÊE:i&~E2ß[l'˜XÕ˜ö|öp»¨N2e2¹,Ö™I v ©3JàÑ¥*é*ÊŽ´¿ŠòB6 «ÄK‘:ñë>>ŸÀ'3BGÈmÝðm@ÉܾQa!…²ýšqÙ†Ü Ð”1Ühç}o q#1a90Íõbµ·I±F¬ÉæST«Y·¸X-v–ù°Z4â¹ê^¤È“J¯™xÆR—Í¢ Í„ Ä€óP‰„”ƒõIoƘÿÓS8?9,Ó‡“ÊÖb[ !e-Æ\¤ÿÆÁe™*KHWΙ¨OØ©[Ï`¹à*ä‹Hh Ï*±†{ïÜ`÷°:Ý)Ÿ·Knex{ ÛGg®¦ôUôLM U :ÄûòíIdfG¹¸÷Ô¶dݲÆ2+*k†˜2a¿Ç'ÝŽƒÎä:Ãð(t¯¬H€ zEVµ]¬0#·:ú¹2âhL\'6ç„Ù<Ñÿ—?…}ò5œ‹> #¬é¨¼HìèL6’ÞEæ øI\÷óÕSPK©GŒÓ=m9߇KQo+,ÁØõâ^„\ÿÒØNNž÷–w¹#Ÿ“—¾’ bB|ˆ.Õ£B7•LÜ=³¡Ãú ç^(qÍL¾µ´¤õu_ðUå1¥›UkU§Ïå*;sfv‹2óQÖ&]A«(¡Þ.·à¯F âÌpÉNêJxC©¥µÒwVqKgÐL-ÖM/ŠÓ“jÿ9Œf»ÊüCAa³$K •à/§Y§ánvÉÐa5ÓÒæÄÛør¬ÉêC–‹ö9ÅQc¢%bôÅdZ[ÊY¶{•×x/«‘)ôE&QRý‹Ê :0ÿ£“LÞˆ¾å'ö£‡þk“Æ#1D‹h=ó) =ú(à Mt"· õÝmvœ["ùñ€rfòiŸkòD'L‡§>O‡¯„{2ÀÐ àQöËñ6Å’s˜‚×´ñÖ>˜ZD‡m¶É k,%‚Þ5ÛnÕ§áà8@—G-òî{¤)Cá)SkϬ¨v÷ÏXϤZøa5¯(cvÅ´¯ôùÎ)Q‰ VÑù¬ÑjÖa þà†ªõjÏââãWQ%%ú±Ä~iX‰ºÝ›–ìUDšY Ñ­ã1ÐòºŽ†=©PÜG71ª«c0þ'cï±Ù7Äwf*‹h¤Ä̬Šè `zÀÜ1”)\®‚¾^%FmVõ¼NnŽÙý Tž­ìŒ+¢9¦ú‚vkÆLE’Btuý øHóMõ1HZG0Pzßõ`¯ ¯Xÿ7y,4[-ÙHçÑ=+šÊä®ãfâJ3P‚Ú‘çr’Þ›¸\aWw¹æ1›•ówAìu"ã9vMCùáèëx¼ÛTJ±)áüžíq`( N ¡ݽQÆeíçcs‚“W Tó¥®J0ÿ^ÃNé:Œ•V:„.?O+ ;ÊB6w¿¹Ö›/”Eqg9ƒ¾Ýb.´“å÷?VžX*º‹ðA¬®}« ZÛUïy÷ÑëvÇW1\É÷c0]+…ó@«9í,x³my¶V@aÕO„«átZmíåWf¨[·š ]ÍwÀêM—d¶ÄŽØo¯²È[¬ý&&·œ÷"¥v5×ÓÅŒû]VRv°@¦…o«"§¾rÇúZS¬–W`L7€Â8ÜÜD`vÞ*WöÔ²G›Z ]@Åý(ü&—MØyÔ•6,ØJàÆGZxÕC]9¦I½¬¶µ9ßõ mm>Û{Ìyt>ëx…mJhÀLamçÉ*tÜõe-Ìzõ+¥Ã$ÙäEž8 RÄ‚*°Ì‚nC¢ãûù'ª\ìÈË0»œ,òß‘°-ÛªUiô¾€aX vyUò²eÏ-ùG`Ñø^$Ó^ŒExÛœ7OÀ?¹õ {þ4È÷ü‹“ ÿo3 °K‡BdYø57!]X(«Ÿˆ—BZžLŽ"«t³›»çYv5]ÏÚÏõiÆYS(G1O³í…é~ë‰x N€ ñ ,qlhc.1d;k&£µ­L]sw‘+Hk³–rVèd¥pÝ®Dñ4=bðÂËɯ˜e‡‡±–sÁRöZ‡câ+¬^r‡{ZwŽ«ù:SwJ³ÐÒLßüt²é…PS±\ê'¿SËQFSy:4nÏf¨¶‰€ÈÂû÷]I./[½ÃÂËž†*ttSÛȱ;+:Ç)IoR´êã•m¡'5âT¾ð~ô©S_É…€X"3·Ø¹e¹9¿q°ÿ¬ºcßóŽøNØAI;¢ Ùva‚art2SÉÇÔù1À½ƒ˜f‰ÓuÕú¼–®ßOh±ü`Uý¼;[¼õfÞdó%ZvžÛ¶Ýþ À·ÁBÏIçF:ðf§’–Gu™ŽU/¹S"XæG·sR/8ªŒ6RD ?ã¾+vS©àÅéqÜRnÌ“7f<î?!éÜ1iE™¯‰µm¤}è ÆOïõÓ\(ôTIÐí5ü“öÁ{ª¼L:¡_X·7ëÅÕ‘®yO´,׋EýR<.:…žXžD;}üªŸ¦Rt´_+vÌmä ËæžÏ…%\0 u6Ò9–ûkÂÌI-â¨'è÷5Ígž+ŸŸ¢|¬‡eµdC ÉëHóHïÇmn`«1W¼=™*e†£Ž’vyÆBŒ±¨r¡˜-5 +!ÿ»ãÏ'Â…š5 ¢Qê–'Ù· ×­Õ¥Dæ9Tü& Ý•Gø•ß2J¹ìÛò={®^Qª?Úù@v£'¤@=C’¦eüH@ùT€KBCˆ5ù ©ºlöXqqå$™À=†JC³‘Ÿ`OEg5 Î…u$ØÜêDzyý3vBÏ•YŸî- “I$µ_Éu·m¹]q«¾:<ÑbKe\¢#özªöÛ÷&ŠgËÏPö;…D}§©¹Xlf³²¶ä\\ÕèæŽ!=Ð4/ø†3œ ¦Ãä~Oy…<êËf0b°fôíö# d2B¢–Y0’À QØßç't'¥áÜÑXº ýº¸œ#Àw™´LšôäÚæ7ø?Á§kU1±@¥§ö;€…úô‰Gù‰PCž[¹þl¦ tLȰµIà›p0CÀ2ßü´;€ Í„:éF,¯PhÃ[Ë–ÇÝÊ‘q®“2" gÖE.¦Œ+z=ßyA¯‘öÀ4åBNB=EgMy)—iÁÇZ”~¦ÃáË@ ± Ryi!f*à©ÆTu` 0Xn«Ws_ÚÇ€P­Æ.:îàn>N_ª›nd²Œ)ÆXY”ªö#ØOqNˆ°Ëd‘oιRµë³P\v=Çoð7Âïm1Zã+˜¶ cÀHøGcœžlö’2Ì4¯´u0äT±ç8õk®8eM=¢Ëöy¬ôÌyWN6Z‡3Œ]à6á×*+¢>»äC«–ú²PÄ+=aýó£;~BdZ[$¬Üø©“ôº’hìËë‰Rç(¾€ÏWé éŸ|Ю•|Îd¹mö@! y{ZSGÚ(ÊNCîîÛü€$´ÔŠŽ«¾¹Fš­PApõòª@äZ“úL ÌOÅn=íå¶õ°SH{8sFÎa$èð3ìÍÖÜqˆ<«Q7ÓçÕå- +CÕìr9!W<1çw¾‰L|oV178KQÑ2èoZ=x)½x㊙àÂ$ÿCV/ƮЬóêç‰ j‡'ºmؤLÁr©hÐGÓÀ‘»X$,ø³ßĹé%ûµû¸ïi;ÛO˜Ž—°W¿¿ ^WO‹ícŒ•<ŽÝ°ô0-r\î諞5OjÀBÃkFéÛ)ŸÏ@ÆÀµÚ-Ó€Ÿ,î;$˜×/„u‡›ëÆ“\ØJÛ$‘E0#{6ù»«ò7±1+ÓÒ±gírˆ2¶ÂkU,vKÛôÕ–kñË%ó“áIÕa 9êUÚ㾉Ê\ ­«i Os¬­?WM·ÉÂǃiau›×G)`šXhïD./œ±ûà úÇÞz† jôŽ_Aô#_-ÝJ±F¨è)¦Gf M Zå‰pRW°öoEÝ´©¡úbä.è¿?,Ò¤/¶®.HvŽÚÙ®F°ÏÝjm?%"^Ò¡k;¸}Tõ’ˆà.ûwJ²Í°ºÐ : «r2ï'㨣Nf"x¼cãïHä\‹»fȸâéý 픕2Ëéä›°! ÈÁ;$Á››qRªIÁæ›¶\À}Õ•Ð «Ãû᫼ÿï:ïNv訓Y>‰z5¶ºBU‰˜`r…B®ŽþV@®}© ¾ÙÈöõ½Ét(jÖ€¤Å³>Mï:nE¿Öš)^ IÐSº?ÒE#æÛo †ÚŸáÈÃ'‘iOlöÎl@ÚÂÄ~šßa%]¢¤_UÞ¼‡Tæ?žïŸ<¶ÚÝ`ŒÔë®wí1ᇫäg†žAÉ~® ï @ÁRÜö¦¯• z:e’ÔõŸ›F-äáy(ĶOI©ª½ó¬Ábs—šŸžxà#”~„hÛ¯_¸ï5°€ë¡yÆ@ ÷êB¤¨¨‡2wê?>ɰ}ŠúƒÝKÒH½ga6±ASD]6ç”x-_ m°ÇœdéUù8:ÁÏ35~‘“øawÞ°Æ\A‰õz=y*LÁLý>@‹šU>%o´sdn,œ|…¸x9ÕU)o · ¬!¥tD?Nú>iPßÎ"Ad|ãýjõg ¡³Gct:ñd½Õ`( Fç|“ïêJðÀí4.o5‡<5Ú|ºÏVøe…ÊÆy€<êpËNT™‘ÎèD–?NRìEZæá2¬öÔËÂË4»j2±~qFq#mW4Oöµì²½¡„DcvÐÖ+¼ÿ¬aV]2‡Û‚tuœ\¶`˜¹ÈJËÍL+#§OQ] vç`½LfOü <ô°K;¥·.Ðk€Ä¤]köS“™{uyìé^C©-â¢:ö£ú0JÏo¡½fè«%ÆbƒdÖ¿j'÷§Uä­ÆYH˜ÉÀ9ŽÄk CÛ¨âlEú–èa|Ýø …wâ[Ғ̯ÓWMÜ…z4RéI p–3Æ£Z”±„ à þsu´|ä^>Œ¥ã%h‘œ¤·F”ÍèÇ— 'ñerCƒÜ & ›`ŽŸº‹ ôâžNÑ â8~ Úˆæ=ð—ïðq1Z;VïkÈË‘÷⻡Y/?°Ì LÒõÆ1…ï‹?•(Åí•Ó;ç=à²À &îƒ*óU?JDûº¢’+«i©Îœ°÷£z˜­h®VØL‡Êáëwðù~`йtùÏIQñ0Tì¦ÁJd _i¥(NŽÆ=Ä“v›´û5æÓ";P´ø¤«RS©ŸÁ'‡æÝ£ØvTÙº}¥+Õanu;rº#uÖè"È-‚ÓÙïHÝízãÀêC #´ï>¸¯+§zɈº) .U‡È5"¯­'ö¢†a{B8 Ð"ðrYsíê)™Ÿ7N¶x J4„5¶{Ð1äñáhI2ÐïÞ$pVõâø¥ÆçpÒàW*h ÝV>$£ÿb Ä…ˆ²Dú¡ÄP2†ièEˆ1ÑDD蓱kéŠÍ¾4Yp©KÛ£¬IÊ<.]?пf6½‹UךµmÒ­ÿY=ðÉÛ)5FñËΉäÔ†A´=S]Çú¼äè|[ÃïðñÒj±¤«Ž A—qR†éw¤V'6jÊéI[ˆ¾ëÓ,쉴j9ÚöQLƒ¡b~у52Ó|o#2N(ÜàˆS¾™Úã„ ÓBFëµWÁìIœT¨Ø›¡ýG½¨(PlOEœ¬z…yY,É ö³Ö~ôÊ9mÌT&¡•Nغ'F›Ø[@Ƹ?˜eUë¹¾¹¸Ð‘Îs³Œ©ø-Sù ³‘ Q5rŸ+·úJÖ»Á%¡áà…w Õ‡Bâ,ζ٠Ýáðee޵=euïhŒ¡³V¼„:̓N4íêsÕ!¨£hå1C):­É—*r  B±¯,Xƒg(ïÖ¥…d’¬°¨×E³EQKæßýˆþÒØÓ2yåkKãÈ#ªoÞ½‚¦rV˜ætËú>[ŸaP¡äñ0{Ͱ±»ºcN$Ò7ûÉVŬ"å¿’ð-_w–È`y€AmÅÙÊš±f@ lI ›ë—8ÚþwjòÕkçÓ"0àõm~5],eÍqHˆoÄùyxº…%yB0Xhb—ŸHª’œÏÝ­:—–;ÖUîÖõ™wþÁ,U½ÄŠ²Î‹‡ÛØT›>¢ÚA ?Og³?‰t²¨Òè%L ¹6¸ºŸ”P.Å"†—ësœ·~ÊfS…õímÏŽxƒ_FÎ -ÆdÀzõõ a›%žPksÁ^+¼k`Læ‚^çèîaNÜ[âj“­ÿíbš¾¥˜w­uùþ‰-Ê©çMᢕeéïOr[#ã#~.×Ê2æγeá@K”BU@oä¾1E5èN*©²´0ÆÂÕ¦ãîæGiÊ8™'U¨Î†Ú¯6öâ¾·Ò"íëªýåKª:­.ž¥þºÐ…gÉMÑ”§tóZ­ú=ß·‘:¤W}Œ‹¬v¼8¨©ÿEs²Z¨ÙLǦ³É@îQ'¬µS133ï .¬ ~¦áÖŸåê…`m­®-ð*¦­Pä`¬¹'Yf èÕæ†Ìœ*iÅ¿$z¥ã÷yœâÅ3ι×uVcBØL÷¼âx"þ£záUîɧ¿'7DÍì·òv:}W!,â32‘7J¾25[mŒíqφ%Ðk°NÔ ×X#GAº•92c“Eÿ¥ÐõÌ­ñsõD¾ŸNø*'U5i<Ò¿]ÿ_¢#Ô`3EšèÉ,|€çë=pèL!¼•пëYÐÿÚP²Ó¿O¦ˆ¶ ‹TÖxD¼±›˜ÑYâXË‹…Tã|áJ¹áMD”¬ÏFS^H·H¾±do&M£¸¿|©+j¼:Œ¤ÛÃçt²Ø„¨cÓª`Ôª ]ê‚®ø-+w¯ý•~N4#Ÿìªé/' Ó*|f©‰Òƒœ4PýЇ0…[â¨B›Árgµ;t×X˜öåM\ᜀwQ0Ä;¤‹i£Ñ%‹­Ðñè³vý*¢{_„ÎIO^J©lm&™±OÆ4Úyc‡&Ïöyá7×® ă'‹»YÁ± ½þã㢴:O{ˆÜ·ŠŒø{¯[é"ÛÚ`õò‹‚Ðy£:€=<Ìz£-ÚÃT×)m$ -õ¸RGùÞ÷èÜ—rëòa•…õaë“ßSïvó…ñpºŽ7åv«Ð9Õ}óÛ6B†’öÏÂø<^À‘ÅYó¾ü ñ,EõE/V­‚B‡ÚAí¯Ô~ƧÍe™ÎìbfÉ ¾¾ÊABrâòúè$YÛ§z…ƒµ’%¡i¹JQù|:lêàã"¯LIqñ3vœ¯±ä•3¯g?æàcY®_TÙòGÇ‹XzŒÃ2ÍôTE5H}ºÛÛõæGvÃ^ä‹<—³¾ãÆró »×7-]A<ß·?ÔMnTfreGÎÖ}iN•Ÿ+·¶16ÇjÐïjãŽ-PùØbReKî¿b âÑyLjÞ=7´^bü^¿ ü»8Êç®5¯„¿ûÅô¼ Ò™§Üšjűp»]çVŸ€_ƒcY*°uuмõLcJüéÑí'b¨8mÇ`:ç\:ÿ" :}©b‡cïû|¬â»ì=”%YZ­µ!¾õŒp4G@íûßT’^é#ëÐZuðæj 4Jy©“÷(Lv ëJŸqFQ}¶˜{ÀF•¹›ãë, 9dÑáŠOEsÓ °e´)O¬,ê>Ì12>=Œ¡64+׫++§éfŪœ"Þ*pn¯B'‚ùTA(†-ƒŸþ¾úcÈ~Ì_cÁ®.(gÛ…e“ uZS€‰îaÑá«D£lNb›B¯ò=+¡õq”[l¼‘7›}ÅU)`ìÚí@ì[.Agí@ý#ñÀ¢ŸpÓ˜óó¨"ÞÌM<èç!ìO5²Ä’Rµjr{â‹%fßœ±—AÇ0ÌvÈd5„ˆ›÷éµsÒc>{A¾ó,‘ð[`”=ÊF“Bû %ã@íUk©1ò§pân—t&_éEš*8R=ÄrD×6F6Œ&[ì ª‘UóVMS~G`U ,¯Ð!JúÂ5mý‰ç—ñΦKÆŒ`¢ ÕG =ŽeОUƒj:áæèˆ[hýA·ÁOñL‰(¼Ì#I¸Îy5Zr–(Þ{Äúbƒ_ÚÒêAéq¿¦"ºo”ßåù}-\¥íÉà¶MDFÁÔâ¥l#sÒ€©”£ ±¿Ì—Iï ¬"Uk˜Í; ‡ >y %j,ÒK³¡–=ÂÇpí´üvêO¶dP˜ýûœG9¶'}‡O^m(ÝãCy⤾•ˆ6ïV­[BÀw8‚Ÿõ¼wÙ¯Ð:râm ;]LækÖëù|õ 8Oa½Ãg û¡>-$\j¾Ç¯ˆ¨ª§·*9E-BÔ žñIìX6æNÜY«Áy¾[N±Á{q«¨UÉ ¿í®gØ2yn|vV%bð*–fñ,„ Mƒý–ôXyOŸ”«‰üÞΦ«½‹B‚ø v£å, ¢‰Ïtžh·Ksئ ‘Æ[(¤lº®¾×¾ˆ~shLRmKc†vïåý¡ 1ôfIËVß-—#Òj¢£.Z’Ãr¨öi³œÇUsÑì0b"€Ø€˜<Ô g‰Š³â ÍR»ƒe.%ä ÃØÛÍÓ-ÚFÅËö`To²Žæ*3DX Ðál 0ñÆM’ÁF¹´Äè¹û P‰ðJbÛ®´fà ·;g{ò–õkVkE¨¼Ùu±ø-™Î¼Yç:ÚaF”A¹:Öm–«bW½§zë¦)þݥ߻'ü½k„ÐOößJr±Eó Ð}F£êIwºä¹—¼å0~÷ B”Ô÷¶…¦È€»1),L€jˆgòÀôÆlÖž9F¼ƒÃÞ÷¯ð²T[=|ëã¡W¬óþ:³®î[›=Y«ÒSk¾šÜ'ŸÞ\ó'%2†ab.¾Ÿ+°u|y¿ýÌCö$SI*M ÆLò gÖ?›ëø‹?JOg¶9c¥ÿ•4ø£ô }Ëó­›UCOŸM—#b’ ã¦Ü§Ñ¥5×6^“U’ ÿAÏy}‚iÍQýVYPUSÏ?¶è$l·žÊ¡ÅóÛ%(¼H\+Ï+ýE6ž«1µðÕ½0ŒÚ4Ù>²&ETÝö-­-‘¨‹Ž¬ôà›a|±xb°w™-˜îœÍr• ̬]j©8Ä!D¢X}CJ“m±s/Ç«ÉdYÔîÎQ¤c rogJ¢)—5Ïÿ³bÚl«^ŠþʵªÂ¶)â%½é¾¢ÑÆÞsCËÏ­ë½îà–“›+Ä¥Ý÷ºQÓÎ,bvå¹SéÖº©ÔÞ$ÜUÈø|(³luÒöCÊü£>W]: oŸ8ÿ­½IÍt%ï°ñ-›%jìaáYÄ”Q/œº•c?ôìµ+4 C¯Â³M/2ÊMÎ3õÇQú«”¢ ˜zÚÜÍ­×½Z™‘ò_©bÍÍ?©½â9•á‹ðÝá×ãÍ_e¬Åšâ †Ò -Ü“]2îG%”¾mãAŒèóÒ…Çb¿ÀäíKƒ4FJ}ùÄS‚ôïkĦkÎ X­³ÛõGн:”½¼ŸÞèôϼù©“SÍÐHžê^ØÌJj-K|#¶ BZxŠòŽ6ëJ/°'ù÷´pȸoSßþ ˳7¨™QŽ®åöd[·Î™3&0WÖKnÖgƒèŠhušJ‚JŠ¢z‚Sö So¶çú;¾Ö º”³ãñåÏQD iÑfÉóÌptÐS0²ä³Eâx@°BŽÝ”>1‘=ÿŽ .ÀcSõ?ŸUœ·7*Kº*ŠèUô+x öÙŸ.÷™´ÄÂÙ.®`NGz÷¡7:c¨}•ÓhQÃÐgÂh}Ωê:›K¯ö£ÀuvÇ¥MøÛÔŸüA³9Ì‹¶ÂÚéãö^V·A†öÁ8–×q³í^ï^£HÔ)…­xÔ_Á°^‚ñiˆX'ï¤ CiæLYžbÃû³Åƒ͒ø`ùîÙõt÷ CªºûWÐMì–ÔÎ3.‘C_s›ÚkÔn@²‰Í…){`¡V¡~_ ,pH¡Jƒ†¾Æ×¥ÂJŒ5Ã’6' TyØ!D’·®‹,Ʊõ¡FóŒb 1] öî…ït‰|¤ÀBu7¦n’íM”sœƒL~ÜHV<ù·Îjdö¶|Èæ°ù|g”ÖJ»o¬v1-…-ë/@Aµ_BH”û’Ú¾")Ïž!ŸÌ®³·5C·e±c@#-ï—<(0y~ Æâï²€À\S]Yµyu4Ë2qaÈZ²¤"GO ÆÕŠ7)ò¡=} ¾ÄésÍÇÜ•J¯ëwö|ã~8êsü`×_¿n’yâÎ oWkR\`‡AB`Çâ û(:Vv\’ÎUg´DÊP'ˆ¤WÊÑã¸0­ßTÇ^ ¨£Ü6¾FIW?«â’­©ñåä@ ¡WÆâ›QØ[šˆçjxßùx5ÐÛç#h[‚ŠÞAèÉžWm±_ö%ȳuãý+BJU £X:ÌgðnåÛäA| üm6Ë“9"&Ï }!nÉ&ѾJÿ>D¹Ì}b¹†-·µøwn8=JñÏ“Æ_@]Áº;žœ˜-õZº#óëôh«¥{ÏDÙCÚHóE^aÿšöúO ƒ‰ bañ[*m­L)42iaúèõ ãq¦š{×iÆÌSÍiòž~_›@¿Lq%r­;(*Ï6qÒBJl3!Õ]¨à?¬ß‚4xXSERíæ#’r Wɯ}€C®ý«Tè–?n2h”¤}f‘Ÿ\SŽÖMçÝõ"#f6ÅÛ[|èeA Ñw…cÒ2@ãÖ—'~êJ‘ÈA>}ì@áËRjݸD{N+teÁ¬f_éGzI\áMŒ1VyÛ=`;‰ë%t'¥–s|¥wZm æB]$<â ‘KýbßQǸ´åø²Ò¾3+´Œ”ÿ:qÞyÐójŒUˆ³.?þühÏÌF"9ÁbtÆBߣDi9ÕOm:ÓD‡¡€õéòßåkr¿¯„‚›‚q~]ýÉN·‰)ñ„»!Áõ#Z„Tûžˆ@ke…VASØéOv*nbÖ1ï“r÷mÓ gÆVgUõ¡ÊŠ6†(Ž òrG¨â©I°à„P‹È—Vµ®Ý„çt"@ †}t,7!¿þy‰Õ6¿öç¦Íw"ÚË÷×6åyìWDYÿI ÐØ:†MLA“]Áœü|U[JŠ:ȹÅÛ‰,;ÑKâ 8²‚<ù¦V¨ï—ò¸O_׊j8µ¼´Ã8%ý{”ì§•‡QuØ)ª©Iº‡¨>FIY][ÏRÑ[Å~zŸPi¼uÆ8 HöØH&ôc¥gè•9í³µ úKÆ‹ÒX1§kûœe.Ñ ^õ÷TE‰ÐˆÇ·”3ÞG¢Qâ“ÊFÈp–q\4½Þ“ç> QWAò¸ZCJó(`ÿ¤Ä1ÖÜz^yÞqü%²™AV Ī\5Ý1ûr´glÛíf3Ñ”±x©Lq‰à7þÝ¢pɽ«—ÚU­³ž ­+þG±×è“wÎßus7à\¦ì}Œ@K¸mH[x­Ó™»ˆLgìÌ#Gƒ„}¿ÊÝ1y-+4œ<¥´÷mU2Öpýþa ¬]YM–ùÌ”šª&J½Ð ¦ÍøíÚ÷¹¢¿ƒ~ê–º³Ûp]ïdÙ½«‰{j,!Z‘c$Úi]ÿÒž¨m¶_—ÉûÙA¢$.Q4xÙÜ}°÷uš—.މ]¶³D3F ²š òÈ‘•ö´ÜRn7å4Âj/*çÐÂg邸 Õ]ðŠ‹(Ø¡CÚ“-äF-Õ߸©K-+äêCV-îYù^ë4h7+ÚœXÕ¹¦°0ÐSºÌyñ“µ3Ž =)© ðÍÐ5:EÐmÜ„‹Cq~ظàá"ÉïGŸs}Öïcuj–}zT&(££b(Ÿü³E${RSyç4–¢7 `ÊzN«€žxŽä FíTðÑÓ²¸$?ºúŒÕ R€TP‡!XjëÊ’ÿÍT­^ŒQÊb¦NÐd™çÀn™ÂôåB8<+„tÐP¥æs*2 ˨HÓŽô÷ëˆê~¼cÖÖüÀ‹ûÞR†×á€4îzhV%Cøü$+Y*q+EÕwým3dyíæÙ %`1#G[gK¸j¯kB•vá’½½ÑêU±ÂÑ'¤{ʇÁïã.S£éñðïA‡¯!½„é’ê,^#¤¬Ar.”Ôq‘—SªSËÛΙ¡ì(!ט‚T«}›«”É‚•²Km•JÙ‹'F°3‡U¡Üâ ÊŒ˜9©¢ñ!=Õ_Ó©¤OátÆíZ¯e¨§‰²EÿÉ+6|ÁØWšÒŒôfx؆\é¹FØŠ“× &d ó0˜m”Þð=JØ„A$(³3¯ù)Ðn99'=B2„ÂþÝÿ©ÀòÒ}²•Å1aÿí«ºcƒŠrÞÛU룸m`º:ËwDò¦ï…B ’‡Àp¤æJ€% ²©³Ä»Ä m‹›§‚«A´C­¾ Á[–¼ð³lõ²š+3ç3Î=x0{–!&;ÆÃN~%96ïûO2#_»þ3ãb‘&ý„öxD·">è›í“VÙ––>€íz‘‹jÀ²ú;šú'ܪ«‡ku¶îë’„?•Ÿ>!®zÙ7K¥nð}$±áæÅ îëP[Jéi ¹ÚšhnVO=Oqä#+âëÙÁ¢ð[É—±qˆÍÅÎð–¡ÇP¾˜Ô™7°`zrå7JìX)ãên;éB…eWÆ‚‘†¥y¤-‘c/×ÚѸØÈçŽÂ]ÇŠ¢ùæç¬Bã3`ÀmƘº3+~ôòk ³¿å¿BèõÄßr»ËþðƒËxôõÍjÉt«@s6g2S\JÓ^°‘Ñêf82Bl”ÚQw o>Ñ?èg°7ÑWu'1qÝ•qóç^·!pÂ/üó/CÕïG¦‹ög6äLZaÜwX“µâ›JÇÔCJàdÙ¢8Óî@Z:¥€‚»ÐÀ¯F5xÿ4­G&ò?N[ìæ¹Ýd¡Jyà¬8ò/€‚D\¼»åÎZ‹ärfÝBQþ‘%&N®ûÏÖk”±ËÕb(=hT5‘äV & š³SÔ) jøþ!Ò¡på)¢øõo“H”ÖOpWZHñéƒÖféŽõð]ÝþÝù«K¹àN’HÆhöp2%QÇ¿¦™÷6Õ`C8'°r –¬•ëz|„¨Ë;_jÓÒâWlÁä_… ‹ëELìm+ññºP©üÖU ‹«ý±ý¥uÇ(ÁAɳÞI7únÄíç*£ä#ºLÜ6K[ì›Íз«DS-÷ÈÐ'#£ë¥‹R*ëæQ1hfKÚ…iö>gUm‚âèe^Ûº¤ªß+æÍ†ú¤×ò)ß;Q›iàtOn®ãøN !‡lnÛ`jè^º ˜ë˜[ÙôXظ*Ôá>´atç]Œþz´.hû‚èßõ[ÙzæÓ(fpÓX0Ø6€ A !{ÞQ³sºW³ž»¨’Ád¹ý”Já‹$.P]°¢m¶žÄz† £O-®÷¤ÅGœIÏóeËôŠ$™šþZ?pÃ’^†õ90¿ã2P­C¯J{#Ÿñ/-%¾£ ƤÓ9ržx6¤íF’ÏÃ?9gÆñöÏ‹â²è³e£+dJš2TömxxˆUJ•`ˆiËŠÆgä¤&µ‡-J¼ðfOè´á1g,¨$ûþB{ÑAƒ§K ¡†E—áãzÿoäg’ßu.¸÷Õ’™o¥IžÅØ6Ε—2ëôåe—á–éãºÆQXª™ Ÿñá —Ã-Ò»°…Dÿ°úq•îK×®ÝñëUÔl௳ÙyZÛ”§ç,uZÒ‡H;Güí/Þ‚DïY«δ…ˆ Áº±ËΙ8Ë‹ƒJçáŹݽî Qc› <°˜—˜¡9ÕDóÉQ±“/Pm P÷õ-YK«%S&»È>,ư¡2ô\8¨mì€Ì•{„×ÚãIüo˜®íÞrñÁN±Z‚UƒÐ+÷}M±®3 )´Á9øÒ{åÊ`d!ÿ\ü¾ÂT„øˆ1pžf蜠7ºgc]ÍÐV5¬²a­ÉÐîÅ"3Ð)-(>âB‚–Õ'î`†aÊ_ U0b07,»iÅ¢ëßÿñã Ž~V®cÉÇâº,çŽl‘ùO»ã-um¶}³ƒÈ\×Ñ ²˜™ÎŸ€;Î÷ýÿ |ð¼1ÕV‡Õ>Ñ5å:1tZÚy2¿3$9ºR>Qü¨.mµ‚¡É¥¡zØš!XýSx¹äÍ6ÞôÒ™PTHÚôÊ~/àÙÖçÑÔç¿'7X_Îg ;éè  Á+÷'iP€T,U!½jF3E·ÔÆaÆÛ PË„±Ý”¨È+ú Ýå8ï°þˆ{òEu@¹xŒaÊ;Ã/Ô €Y·ì¸`ƒW)È$P¶Ø2ÈÀ¦4‡l6-5¥·¶`ÄÂ'“›Ð .R褯3!1žÝM–Ç¿Bmæ—W©¹¶'1wGæPì ‡HIþý>”dvýóöþ{ý×ò¸çTò‚áÝÿïçTâùÄä=ÏÃÞuý éº?$ÜË™‘óo]ÀèÕàH5¹KùæÊ6,p´ù¤†ÜéWE>«Û9 ú(V¤ÜhA±2 j\ü2Gc¿©+)á$%ü‹nkâîè>Ó[¹˜h]áþJÄp­(áãèMèV'-Žèˆ´)áþ¿!2ŸW>”3Ù’<ÄÜžÆÁºh·Ÿ~y­jÌ 5q \R;ñŠï­Ê´³2Õê®\f€’XiâtÒžÄ-6QO9煦ŜÓqÆÂÀz<Ï›B‹\¯™@{g¯¬CÕ€\lñÐÉ%mÆ"üm?‘lajnóýâËÞ«Å8iLŸt‚0=¦"trÐ÷‘UÌDµuǬ=Øþ ó2ü·Yk¶x@ÜØÍý¬”Cþż»˜‘ ú}‡š¤…ñPÄ)Y,Pn§zêãkêM©;1 æÏ‘Æ`»> üÏÍÁÙyNA=ìôòÄ¿…J¿uîfyrª¶Æ[,ãìË+<õÜ:ìér’]j¿ÜÛLf:^Æn±5ßUºr8¹æA“⣀ÈQ6²Ä8ŠE+Ànˆ2À#Y$³]W_‘5lÞìœÕI™Â¿)㠨ʈªJÆŒ•nstØHÍ,A±#,Ÿ†ƒÚ¡8Oô:1TS_ 4kZ Ah…‘w‚lWz~Ú¾D{çŒñCãš:îQ’æHxx :QšN'7ÊqúÜF¹„Ú¤îX…ìý¶V¶ÚqgŽŸÍ¼VV9KÐ˶ùº¬*s˜$dëÜ+f/¿ƒ¾´¢Žut.Ç÷Ëb'6'Á¡ÿ W9y)[tÆèÏ ©¢˜šç_ø`ͭК]C%!épÈv ]| âPÖ¡˜·Ávî¼^óz–|Z)Á*XÖü±Ήâ~íÙX¦qãÎõCNjäVá™VÛâœì•~KçNpø-J Þ–±¾:‘JÞ.9£Oàd)vZ³8 Y2ùÚ@N¸Z}VåÞ-A†o~ËÀâìèKôëÎÑ}j.Ùxí+ß#…HÚiÛ9ÚG»Qh¦k¶ý£yiä^JÖ±S^¬ô¾9Xþ_ôü*hh³ÒðêÉŠ‚Ä\-”Ïõä‘`ýNè]6Ââû°Età»Ûèâ†".Ÿîn õz]I\é/bÆT;W↠hA‰ÑÝÒ—Z+]eee»ZÃà»Ê‘ðã4Äå ªº¥WÏ´lô¦Oâ= #Êú¶Šú쟉bg³‚¢ªÇ2}¶çÃí!þaRO&qV>0rc™œÖ@çC»Sö;BŒæF»±$œeEÖe41— ×HDÕ.íh+ r±´7ûµí1X=Ý›ËÒ¼‹ƒjé’{EÅÌø²“Ášéìæ@¯4Ì$†SâÑ»l¨…¤k»¼wrá³,¿2Ué‚KŠòø>j¤¯§ªRÖò}›m!þÞÉÊÍ·|e6E4$RMÓ…# >©Óùòæ.ñn»y€kGPw܃6Ĩ•퉆ÀDIø¡ïëy±OnW’ºm3r-ý ‰ PÆã¸5óúw‹¿Ê}i·§Í2GÊíÿegÇ0õ9ýµG]Ît ¯w”]•Uw–ƒÓñÊh'͕Ř“[`Ù|Ìæû]÷’XÝÇ_©°~X¹­§TQ^=Ê)2D¨âŸµRåŸK·äŒc4ìäU)>hç‡XÔ¨ ¯² …~-5£W]m5eƒSžzl^G—Ø´‹AhÊŸO€ßn«•g#˜°és7M2‡SPOÔtd"Uº… Éî½ÉŒÐÂQ¦í@zÚm Páô f'Æ5|™é¿>PÅkRœL`í¹3x¶›¨S’GNÝc¿'>ÈÌxÁ1M`3äcqÕ2Wj/²ÂOmUqå@$…éxÛè\Z±°ÔÖ6Q`›E™.ã"0tÁ?}†áÐÓÿØ,xžÓÐŽ~à§Àÿ½¹9Œˆ«Øs'¼ÉíÉàî’Ýè‚¡®«>Z)ô°;qE×:^.ˆž\" ôÄnûÒ•þ&H&<.©Ƥÿ»Dùª«¡ƒ¯þò$—Ê£õP€€³xº˜ÝÙ›Ò¥ µ¥( XfÜújNìÎAþËèÂ@šQ¤gL >èy>ª4pÎmóDBªRЂ¢Ôå„Ù¼ïxŠn2µ¼Lâ“ã‹-¥µü­˜–Bñ[õvágFíø¤—W/>òøôùuaR¾9«c^ßT¢°ÿZô‹jû[rÎÒ½G¬c²¯Î£¥_½˜»š1T/Û2ÑjÝׯ½^øÁ aÄEJ_Z×8œ»*Þ¾ÈÀÒj)Ñ4 3tú¸‚nž—ؘ£l°hƒUÑcºŸÈ-s‰Ãp M½ªRæGå‘!ÿ€Ó˳©9ÅÚšA”éª1E´¢Ö[²€=þR©Ù 6º±ªÍ;j~üjÀ$»üÆ•,žyGÆViÁæ{ V»þˆ «ƒ®1CÞ¤î^ïµÿÚÛšµïTÄ!!Å# øZøÇFí‚ÐËë3[¾{¼)u^å]€b¨AÛUL¡»a¼€.ð*€7Òõ†hºVeͤñ(ÙˆîM¬íè7e»"dÉVj”zøòä–å‡0“°§ÜâîÉ`| nq“ò¸éíÒm¨%×ì|§00JÁ6öá”à `0’ÏÌ;––ݲ}/ë –G ç)]—ù®M;uú­q£µ8æS¢&¬Y)V8`cZnMz9 ¸÷ K½\Ñ=Ѭä—ßðÑ'Ør!˜B[hÒæ²Ïõ}ÿB›×irFy¿1]Ñ =ù*ŠüßWD:ìÛÔ¨aÙ>ˆ÷!a¹¸á |´UngÅÃ1Q¸{TÍ©Åez µ !ײ¯Í *ͽÔzªTѤm¬³6}Ô“à™¬ÔO½åÖ/Ê-A5¥+‹#å¿HGÚ.n@ûìAËÒ¥(ªû&aÆ ÙÆºlH9VÞGvµøŠŒ½«½/íÖGÔ5ÌÖzñ‹ß´ïÒOÕ©Ñh‡(÷síØÐØ5™|ÇUèÁw*ˆÏ}DÆ¿ù²_©C¡|=ŸNŸÞœ ÏÄõ`œHh]ü•ÌÙÌ3YðÕÇ Áã[æ•zë#|/Ý˜Ðø{) lz×jêøðM¯ó&î¹Pòd½·M”)S3T!§©í»¢k’ÂZ÷nJ¿x4ï¥r§Ât ÇÄ©\ùË «bWÐS‘úË·ƒ–µOÊ·Êd¼WÈŒ¹²©jÔD¬éNk|H|¹½œ$Éí•üÀ[GÛàò—8×n¾xõ)Ô¥"T, 8’þKêÕ"ºŸú-ømËZ_ˆ¶”ýȲxÒÈ %åïhŠù ŸÏ?i¢ØXcy=Ô·-߉F“ƒ©ô:Sl)›jkÀn@Ï Ž$ÇZRÂT樘î]lItà–&76+F.`ÕÃw"<¦ä¸ÝЦí ÍSˆ) ‚}o¼ ¯i¡1“ÛŠWµ¤µû–È  #œçÐ:‚Ú±÷¸C9ë_#"+"š,0™*cDUÐ#»F=áóIúBYܽeÁüÍôèKAOõÙĬ‘”aÄ.³>؆o)Õ©(¨ÞHšFaŠÁ·r%«Fyû ̵8®‹á61î›àY]o¹P&'çÊ"'%¬5KmMÆYkh/«õÎD _¸ Þ!,q>Ë]{ ¤)3t9a¶<$´%RH ‘$Æj&}mk ¹‚SÕEPh|`þù/k:ÌEò“«ªrpâ*’ÞêR½¤ô‹Õ»¢ÍiD1?ɧޗðP%'í˜ú±LCcõ\ðWûËAZSæ‡h±ŒvX÷ÈÉ«\)܉•¸¬¸@ò¶¶Q/4é„JyªsSsgµUÏç #ÖB¸¡«M‹û¶|·â{Œ÷>æ^  ì›;Ó¶¬Å/þ'Xñ½^bíƒ-o"ðæhµª L½H®mŸ¨1KLJºy })T¥ZÛŸlAð•nõû ð,=¹…úÿì— Y ©J¯5°®“——q¾d€‹fãÛ™ðäva”i»æ[n•Üç÷b ‚Ô–8ïP]m\V]ëþ“M£âÚÌ ìé“[2¸ë©·éK‚N·WKȈñ¥ô=}H„ÙûàÁow˜>Dàt~Ìœ3%ð|0\K<ÿJOÞ³kv†d„ …9TºAëì‹YøØÍ¹ V}Aèècˆ4ñØ­˜ ø'æ³)bØð›H""ÚX¥í¡–ø¾öÕÛ}86³,wï>+!uo÷DSŒ‹’ü³éÎY±R¿R@œE¼C› ¢‹ó‡ÉFèî6Aø›†;óë,J4ü»“èäÙ,¿è<\Ó§'F}ôWÏw(ЉÕFRl9 Œ¾¶dÍS¥ƒžoS¶ËôF»øùÄþ¾Äë?õXŠc \Îà%nÍÀµOoøûåM:±JlìÉ׃z¢Ã×Àa‡÷a ¦z¿6ZÌÙICˆ‰¢RÍž9ÍE?^4Źi‰ÅúѵP³=*@GPM7U€ü%~2¬Y’iÊ:ûSåé ÇFî±²©ôŠ|Ù†  çç”ã|Q°­ÝÄecZVŒ˜ÿ̱6}b"¼ ddÏT–>Þ$Ðþõf4) #ÕÆ¸·\¢_ÏXW gNõQm׊œÌÅsú Œ‘Î^| ɽ^ô–ÀéÉ,YßI6V&ƒØÏÞ•êÒçþK·?p |p£ïÆŠߨ?ì]9Ún?]8/‡ʉI…Ç¿œ&;ëºm±à3II7­ "#Íå3o·Õ´gÌ®B³k¯ï=–t„à]=/¸‡h?Î;°tÓ¢ØÁa$X§ÂNú30~±÷WÍßž©înHÑì샤¾ŽaŠÖrJ]’Qýw³ùcä §d_—÷’mÒïj74™-8ñDnaqh¡ëhxî Eò˜f6ß[ʯñ‡ÎéŸ&·Í?4%LãŸø:×Üß6¯ï÷ ›Šë#^OH‹ÊŠ„Y`øodE4í=’bÙRa:ve”ÏTPFœ 9­C%i"‚³rÕ°gêbyWÈȳò‘:Ú?ÝQÕôÈÐbä±f£8»jþ=î›Î6¸B¡¶w<°Èðrú©U"D,-±ióy¹Ž!O¬“” 4ò=?†"‘$”×­%POWOw¬¯G{Ðm]ÏC‹Zæ•&¼”D€´¼4]˜4JT34¢3h«'™ßËûËQ(kOæÆÑÙ †RŽúÚf` $ Œ9½ˆó½ 9¦Y¸qj‡e‰@©³ýÃZªnM޾é >Ê_›„ÁûºçŸ ‡- ×Iô€ã¼N)Ý1µ:æâ M²FëÕ )wݘõ‡Ál4¡sèA6½þÑuR&qK† 3vžÍ‘¸ÛóÕœ-9óÚÄð=“Þ±ÑYçé:±| 5ì ­íӀϴ¨ÿðÃþ’½0؈BúE»©¢q _‘¿Ñt¿¹v«~tÔdc¸OPï­Õâň?`3AìÄùQ¶rmš5Ô\¼"Ì\mª‰W6¥ÔƒMbN±è}U«–²à%”ŠÞ/ÞehËÿYÒÖsïþ…ÝÃ@PÂZCRf¥ð7ÈþO¾SïDÔ :áߤwÝݘû;¥5õÑáü‚«êè¬ßF{Ò}—ö¢iÕl¹ÊºØ+ËÝ2A$0k«˜;#iuù¯(Ý|“óGñ&—„iÏjÙE&&zcñAâ±ßú¡Æc=g#%xÄh:R[úá‚øøc+g¾ýâR^7®Š[½ãõT±“ºvlö!µÈŒ£qøl¾¸q~Œ)¾æî{«•ÖßWŸ¨À8¼ûëP­ÙÐaÂX7FyhìÇJŠ£Pž{ŽR¶Æç¾2ûqýiÇý(‹½þ£ôôL³…a‰ÎüÙ@°&é–)K•f_®‚LmXíæP¼Dóò)’¥¶‚,{à´úÓ|6i¢âÎäX °¶œ—:Z+%˜#ïÛ}h˜Ú¯uÎÇ(’Zœ¶0U§ÑÈ­ÐÎ(‘Uh¹\ûsB¨¢@‚)`”ìÞÒž“i‰.ó;޼ìÆV®Å »Ò³ïÿˆ–Sñvñ·ÅâSÄ•?s¡®”¥€HU]RðhE P—ýfAWé\åàéÆÇ¨ëÎ+iÎáý".U†0ט5¤¥F¨4L»OU%Ÿ gLÿ.(ø®xÇ®í­K²Væ ¥ 2·EØHד t°@CëGHpŽ÷PÕy±ïQp-Bã„RRÙßd‹D…Yì‹ùæñyÕ_fƒ…°Y:–^Úoñóˆvýü•‡¢ÉhÃu(³½/{ÍÌÛÊàY¤+DZJ硦ƢEôJ÷9½ùlw¨®1”ï*4õ}ww Ötmf«MA÷ Žå¯—‡.Ÿ/«&ÏKDSø"R¨.#ŸñÐ…köµ<8&¾¡tô³5Áwš¢Å °Èo¾íIx«È®¶Úù§?ÓÄ9âÃU*å¼õD¢DW®GcÕíB,w¬5#hêà'ÿ)Ú îÎÂ\~ûoŽD]ü^0›Öºì™ŠèÙ)¥å£[‹) üI4ý ©§1V6äïÓ†V­Î{ÚjO_Á©vüÞ“¾8l[¨ˆ–-*:6“ש±NŽVœôžðbS¬¬CÏZ‡s½Lô5ðCQ@¶ÁãV@OšÏº` “b-`ó9¥#·ÈsÐ7Xy¹ÝúüoÄ¥U&MÑo&±"@–i¨™¼è+QõØ3Ó{øÑ _hý¹HC­Ëßï5 —$¬çæ”»mÕu:HØîeåX€TÁÄ7$êÃTžeèk¸âš‘KôçLIäsÜSGNgC“ëû°kO,Ä]ȧ—4TFÜÜT9E3ðû4ØyqnH½¹±¶Is«Å»ÃÊ`,péçøuP%,·šâß3°öôè³û0ßÞ™!î»Ç{È™¡y@Ü¡¤\ŠBu«-H+YºÿíëŠÃlÈPçZL=>ö6cŒ%žip/€&MYü!¬§íÕ.Ñþ¿PVa}gÖçwgÙPÌêSjMœ›ù[*™õg˜=åmáÎã¤CàGjŽ L•id—µ°Ã#.Ü1ZCOÄH¿˜W;ŠKCF‡ ï–&¹qƒÃõÇ–LsÑÉèwö8«-Ú¥íç`˜Ž„{w?ÀïñH“}2æºÃv5güÔÉ Jà׎—Ùó8Û#ÑõËMãN—5Z§qŸ˜Ä Yyú…<;¸î3úXpÝ­™Kú´ ¹Y‹ä¥ËæÑ™F³ØNte¬&a©{'XpûF*©tµ†9wb}Ç´*Á:—7?Žêé©4°s^³hùG~0Sz´‚rÁ%L 7˜դ²=n®íáJï˼t‡ª²#iw]²L¦£³Aºk(…i9B"Gý§À",½nLnO.Ãîá—ƒù4ï>bŽzŠƒ¸Ì!Ž(õœß'9Ę×1 «+1ªû@Û¿ >ÁåÒ©¥YRêôâ‚Q Ya³ÿ-×¼'øíœHZäfìÿ¬Ã_PLˆ¿ëˆø¾=3΋"KJJÏÞ/8yÔàMÄÐÒÍòUâàù¨TÑúp.2¤v´‚S"GÇû˜^z.JÆùºív¥ÁÄJCîÌ™FkŽñ/€&·þ>OsrÕ½fòèôºÌ” í™Ç»ž“¿ȧžcƲ«b-Óv¶M»åTÒ•oZ ¤Ü’G4z=iHª×W@ûÓE¿KGh:øšøH»#\¥2̉jÒ"È“G ¥û,¹On‹“Á"Ò `c"nDR¶ÉšªMãqZî³áfWô}Oôv>ñ;ÛmEC ˜Jí•qÑbeNO%ÁË@s0ˆÊuÍw]1J¼é³¶ë½üûIR0YRŸ§ÕfP ¼ LÀ®2 œòáÏ¥Õ¥V[žÎªí©³ ©„±„{ÔZSK'1#‚íŒPâáÞ ¹jÉÜ*ZØ–eRèÑËæ•Y¸‘Ó@ ¦Æ8ªr#Žÿûè£Ün>‡Ì«T—)™p³E‹±`¼¾9¡5“Æ@¸/C™kV‡³u=Ìöu€Àï„{ï@–ˆ – d³ñu—4—žU]Ñeؽ ?š9¥þ¢õÞ -ªìQÓÛ–hL’•Ž*‚Òõ ¶œæÂÁrTì–ïÛ2@¯W¿È çç­ŠìCÀ¹d•¥QãƒæQ›…’ÒÑÐKf¹™Šd™îϹël=‡È{¶Äo] P©}kÞz¼Ýܺ—ÓºäÃàõèû‹ˆRj…Dß sHz˃ïŽpY©2XÊfìƒTn†ÆÛ†VU;&L„å"}I¿Í =M°öâµä9íóœv_é¦6ãà2ÁµAjC;­†=ìö=L*Òù÷sUm²ù† •Lña.%VB7Ùu¸T¥.¦¥1êØî~oïðq¬¹aÔ‰]C…^õèYß ¿åXð»aê&\Eþâ5RÚhé×|mQ•r¬žÒs‡P“ÎÖœ°„ËŒ5+Y@içmÁÇÜcIv÷“?Ü–NÖ3UM®V‘ê:–#:ë"CæÅ>Nò!"TkÄÍF<2 é~\ú0£îžb*j7¬«CõîLby)N$S ð¡îîþvó½ºÛ¾qjGøE»Â'Šmvx6'nS@‡lSõÆÔ°ÍR/×d÷Þ¥&:ˆú{#à g³º%\™5”sG4×:ztÔ¤GŸdèV]ãî d?ª²žîìjŸC-sÛñqb(}Jl~R¦‡¹`jŽq¼Ü×”>P E¬«—‘ÿyˆh±ô 6|çÓ¨®žI¸Ž}?u )=Aî}ü¼Ôè½,ÒÚ»Ø'g!Z©û@ýfùÆN Þ[ÁÎZ6"¬—oµÄ·° ±²å«?*£ˆ¾ØjèhyÌ“ ò„vÂ*ÉsT¬ã.§ýááÞ;>„’ ƒã Þ7;oMð$¢Â‡¢C¬ÀEqÀ¥ÁÀæe¨4”Åžuˆé8õ!åù„õ¬îoU‹©0m Ÿdüâ©ûÚý $X_¥í?iµÎ„U(ÏáÅ|ÞØ–Å-—¬/ ¼ôöÄ9"?$Œïråöt¢HNæÿyR›ÁžP¿ jr®¼/Ç–Ž©> ^2C%"uÚô÷ÿâÞˆÃôa´Æah~õhx#Ok°¶ÂÑ„o¼Ã‹MÀ\;ªH¢ì6˜^ Œàã³ êÌö͸\±Zî¶Nø‡Ò¬@Åõ|~‰‡ïö1–&(û$MIÍÖÌήo¬æoövh-¿UÃHi—Ú>o_ºK«Ö~ê½w4mÚüâê¥=?G!š¸é]¾æÍ&Cõó¿YŒz_è,€äÚ´Nv?^[›“#FÃ+íçÛšO†) ­xî-ü)B§ÀfþÁ†IƒBmr!’Õ‹¬µãdÊXN ‘\†¯þ Aö°—@jÕáFœ× ˆ&R(d¤¸&t¹Î*:æ„kµÛÀS›ìQ²eu„3=# X2„ãßÓT¼„gß¹¹§Õ÷¢Ã”ÏŒŠ9WÕ).À®ŠÐ×_PªZÖÒÚ"¹½ÈÕ¡`÷$™0SÌÕš÷)¾U³g~\„YÎ~ŒÁ»µíõêîÒ*ËHn^> c¶s€Â^˜"gÈ»Oè× Ña> }Õ×3ƒ›ù3Zˆ$¿²©¶£´ˆ¨fb›Â…¯3ˆÀƒ ›u ‰E™ü¼ 9Ò5b˜CãßÉ™`ækE©ŸPØ›…t;’Dìû›eÿ6:S“O˜9Å—$g>¸Z/üô¼‰®¶ÉIŒcÏé^òY]äv¢SKô8úz©!-„þÒ™^*ðG~.±§fyI…dŠjùÐ.*rø• å(,䊓|ý£n†+ÙöÚ×Ãß(zAtÿ—x%ê"×3ɹ…ž¹UIð1»&8~f ºŠ·§¸KÑU-<‰Çé0Zí³d©Í¹ëð,ê%Gäó9(;Š Q°BÈïïëŒ9OîYóÂFƒx[YÅ!¿¼ ˜ÕúÏéR]0}FJRÕdvWEÙgtTvΫoÍÆ‡>§%òÔÄ ñÛ„–«æ‘÷îs‹:v”cST§‹ vÂ0¹A‡dãÉ4(5í™YÍGÑê×.ÞÙøúó5]ùFÀ²zà{(FrL˜%oFRœr Õ"BbÅßı"e”¿ü8Ü"³„á?$mPD\Èi°¬9"œ<ÖEoòŒfw/b¨2Ø„o’-gO…Uyª¾ö¦e‡¨ò€?˜‹œÖRs j$t/ð9X¨¼e?+àðN‘àXæe—@ÒE¬rîhEýîðRQAœaþXá3D¤-@΄}§‘ Ú,õŒ¿¿clÈR" “½ÏñÍ¢#YE]®˜iËb{ðÆì‚Ú'•} ~fpñq¼ µWÉ|à{§xºê×´úÙ23)•”Ìs=Q‘ñÐTf2f¬ßJ݃A“osK›ŽúvýIA¶N¤À¹¨fèÚE„&懕7¬¼_qäÙ¨T†’²‚ @Y5XÖ¤‹~/\µÇ lßo „¢q '|œS·ˆ‡4$·n f.qï"œˆýž_Ãú.„d¿£ÃåìÖ‡cp[$hˆXÏ—  wîG†oIÇæV?ZvH?!Œ+؇òêPºK˜`á â÷åûc'§´Í m( ÖÄá&›Y\µØ~T$Ì»"£YƇ,W À P¯G¾°iCÍÞÇçeß?’ê’½»¥e&ÁL¾¸Ø¨’q•ò4ÊJÝoõrxý+–;_YmŒ@¥„ôÿáÃu¶úð§™Xã¶¡Mø€+ÍrëÛoó†ÿ}‰,¨Ú¤x¸m§”€–vÆ"¨B¶-ba,k†J…óKE"àœJ)û7º´ÓÓ ³…»Ð?g+:-Ds\D"jJÎÉÉ‚´®Bg p¿è²WWÞŽë—iè(½ç".æÀ&¬e¾& `a \ï¸éþ^ë·bϳø9½²Šú1üçþôÔ»4µ:JL6^ë–0JLBÏMõµóxóâB™À¨ s½*6i³[uV$rÁH¡¨u ^PCH,²ܹ$ùRTx2Ÿû`ï{urÏ#Z¤šãŸ?öׯßÏç¾Umk1‘ÒMÑm( …–æóIħð1OýhthôIvTÒL´ŒnÊ7.ç¶ñL°:âN8 ðHÎãrõ6ž!îåݸ±ÀñúÉ„ïúCЩwmþçÄÔ˜åÈ>Z_Ä|Õ¡°ð‹7µ!ÿs Å3ô7þ 1B¾¼M«B_\XõÓ ŽbΛl;î¯iH¬ÒçkÑiC x¿4 2ÄÞæD]»¢…=K›q$ð;Üfu¬£ÿñÇÆ_GZ€Y²6Æ‚FêC®2b¢8šn¿PöÑ»U‘Ó´ä :e³ÁB›è¯æI·®íǸ„©ÈÙD|ý£#ed¸ÆRPUyh˜‹ó”"¢[Ûp?]¶†Z$ Ž´z. hS áS0ÅѯPsÐ΢º ²ÛX“©ì‚ [¢ÖùèŠ^¤é›¹ëû×i ìÓ>¾Œ*i©úÛÔÑ›&åÛê™öÚ* Ou¼ eÚ:·ÚSiµšôóLjÛ3ð»Æù´°ùÐ÷ãÁP—$H~èYlÝ?c¢T–ÜØ¡ù¦²ÒQÏg+i cŸ¨¹JÏAÅ´™$ùØVp$ì>z/&ðQ4u±+š³qÖBž¦+Œ×1ÖÞ`oô~Ùxul;. Ó‰û 2gE²?ùùO‡%}Ž—WÉÛ‘•ºzÐléÓé/ý5HOú¡×uŽU¬ÏÓ&öyж^x›ªìó&$Ù„Ôäè‡w`¢Áâ-2–<ž%PÊÀê¯ÂƒÒÛ^9JNmT·@ü(3ðVE¥¯C"r-­‚†‘þ@f7ýË.S™º#‹ùbÿz4“º©¹÷ó³dÌj¹Ê›^ºç§/Õ¿z*:´80€ís~Ÿõ™5°Çz*`%læÙƒ8t‘5Ö¢šÐE‡¼K™nêù–ó¨3/†¼Qê!æË§ó :,Éí$ïEÿt]næv–Ý/Šb›ê‚׋qÞ8 ‘wÈÃð)ÍåtЍB^ÚF½¢[ +ÆÐA`þÉo)7ƒ˜n-=šŸ›vÐa<â¼ë•ßÚpe›‚Œ„¯Ó4Mª¼ŠšiÍÞŒjoèÕ¨¨ŸNj¶0É×÷Øáj¿¿Jk6(;ÕšŽãá+ªä¼µ‹àÇjˆ%[Glâ~;û}@]Ê"ÝF‘:àqïo¤?Jš8úO›ÃÓ±Èoû/ùZªpLnh!®þ™œ¾²Í#:7ß4´NHVþj¿ºh™P5í‘›ƒOŸÞ> cJU¶@­÷ä‘£)Ÿ&ý¿J§HÖ‹%é†÷Ù%ãþvL5]NŠÛ!À-;ĨLYƒoÌÙgÕ»ûn#Èn C_úg ‹1zmCïõ7ày® Eñ^ý$‘ËömÙ›¹ÄUí· Y,mÊfH&á?0SÐj|3“qùÿàÕo B‚<~¾S~ñݾ©®ÓA‡hä¨mÉ<¾$yÉ´jí’½Sg[otÍ'ƒà°×…¾8êèœÞh`•zÀ;‚ HTÿ}FFNÊæªkÌÒÁÏvôföÏÝÌÑEÖ+h.ÑxŸ‰å\JE:•LU°«¾5¶ÇÁ ÉÕKEXH#y«‰ø:§„Nv;›zƒ{lźñEcº8mhÁùmåÆ~ã£R­pÛx%7‰U—¤8Ë6XY‚“Hê$„ùÿdÝ­åm~Ûâæðq§p•9«XÍqEçÝﺒ„½Qó¢×€æ\ì Õ©ð¹E$iøý­ºÔfç&Áâ¥w–V@xžØfƒ|ÛÚªoj–¸q!>ŒsösHƛӮՌJå"(\|iAŽ^ÚqµÚB×0>öG>jP%Ï^MíÌŠäOݬO÷óZœMŸa…†ƒÏý ’²ûh}§ÜfFÁ–bé„¥k/>åøàgY}®@¡G&Wy®a#î)b-Œ–5˜LoòHUƒÃºQe Šç$§wÓ<îF>QäõÌSìkÑbYgÁwmqͰ؎ê£N4œ@Q£×¢EñPhJC‚µ4ž7} Æi"’(TeÉí¬„Ë÷!|$Äs¤#þFæï{UâÃ=œ2t Qq¿T“s¯'Eï —8?zþy{=¯íP½`v}I-‡‚ Ôh›Õo ¢A«–ÜÍÍÁ‚g3ŸQ‰ÏÉú3ŒgwÂÑ`ÒÑ !ñòý„/ø¡ÌYØJ¶f²ý2à);™nQº6SE®Q\êºWªÿA/¿bh»Pp¨I$îœ<ü.iØ.Tk'°cZ€}i•[£Ún)’}”õYÒð—àŠûîÊcK‹+®¾GÕŠÉò}ê‚ÅNV—#›rj•ËØÜ>0e "ÃdÕ1Y‡ ÇD2“%t虘f‚!‰XDŠ6I1 m«…|̰Mxÿ‹ºÎfSàFö¼lâøaF˜©?à‡è¬ýn]î“•Í“®qÒ¾^½/ÁSÕÀ¨OÌÚqk:Fè©ÂrÓ¿ ˆ¼ŒDÓ¤¬”ï‡óX£¤¥`räOÊ-!¦}7ÛiH¬(‹ºþÙmTwçmcá“3-Ø5¾ ê‡ÊÆ¢I±NÙk«!Í|€¯ÙÅ 4’¸6+N@ÁèErßä躇-g7³}žíú%Á• ×àã(-iÙÇÝÌ–Þ´rjÚû_²_ØQcbñ¸u~’ÚÑ[H9£cgdK( •û`•üg§"i3êµ A‰Éƒ½¸°Üð 7OI[´¼Nû}W}èÇp6LrK`˜q9“1Í‚À[mY°P¸kywý³gOV‹/¼Äô©Ï¹%çî2Pf ”“^–ðj¶ÉR$)ÎW0î“G.uóeñ L¶?©ÓþÍd° »ú /$ȱ{JLGk„³¤.U2¿öuÅÂё˟CËêK´2Wí'yÊ„ÅO11”‡f#—È;¢kº¥óqùá¹Äû¢¤0ó†òž¼¶Þ?AXU¸k~$ºÞ¤V²Ö¥_ìêò,£>ܶ*¿p»Ñ§ŸìE­›P.»4 ?¥dyíÜ]É9̱¹Ô×οXud°Ëã䯵>ŽÌ@TŒÎãcŸÝ —½Lôž”Y ¤ Ò\ÍD²9Œ³uœGëÂ-äQ;܆̅é8’§7¢_BÈpH ÅÓÛ©ªÆÜÝqÍ(Ϧ ÍÁv—7©ÎA]£Û<€¡’Õ4 ]%²#ÈŽ/÷t"f=ÝFƒõ;וC§IÍQ´éWr‡ÃipÈ.O0ë„ó¿gަñºÈ}ðU9ž8|´)š¿k—«²°@\æ…—Ìgzƒ…Âå2BI# ÂJÑc±åÂò³Å¿û!|ÙÚ‘ÞPóObñþtKQ±Y(Q1î:~ô‡çH„_ÂAd ³Ì§Çlé6Q£V¡L8pÉì^Í!ÄPnml—/‚Ä€‰¾ŠºÍ*8j_3u=sú»xZÀ#gZ·Ê1V3yè¿¿$o+qÜoNÌ.½ýÆy1¯¥mÅ©D â$KŸø6èÑekt” (ê¼øÌ•Šx/i&¼µzv]«=à,…CýÜ>w, ˆœñ-1â¡ÌZÉìéŠ|”¹Îajo` ‘à:[_Ççzဩ"ýÂÕ»G8ôOÁ3yH[MÜå2;ªñÝ\´V/f!=ŸþÚÑ?«w–DR´J»–aœÚœn=ëæSûµ2à‡)" ^Ct©;.ou€}ç&‚knyŸÝùjîñlWú˼…ËÃm¢ T¤¥²0 …zúʽJ½)yCp=dUרh0#½’Uü>¤êjäüò9ÛeÉÞi9µN’X½(NŽç^ÀTçÒ†æ¾,†Æš7‰“å=¨à'·&àfø“¿çe»MÔ?†^['‹ƒ\lKÈ—àå,BÇUMÅZ7 I~7ÉòÙ¹VsP/¿/Å]/uAžl¹èZªúäÆV4Ø #¬¥çÕ¸y *|ɳaœ!Cû Ç„à?Œ€>ßÙrÔq¯|i!šŸ¾Ñ§O„_Æ/UZI!V^;hèŨ*j½›º‹NlŠ•òáZ¾Ó å´GÇÔ/NjáFT\ÂUèØšW0Þþʯ€M]%ûif˜g%äËnqR¬òöÇQYgI`檫â¶eƒâŽõ‚ÑuþcbFJ!U«\ï•F½8ˆô+KÁú øeª–¥‡@Ò$ ÄyTGPûmC)atìZ8óƒø5:á'ÁfÇÿúѦIAçûÕxDK쫳`^WïÿDö˜*Î:åë³®‚–` Ç_uì@W‚qê*ûÉ[Ë{ÁÛ÷VS³¼3„ÅbKtÊhrø´®%H+…!®ùj5ã»Âë4Û“]—0öÌŽÊ\è¿@{&ñ‡Ô²“'aB]{×lJТ¤xaËœQŠ&' .~\ŽÃåµ67/Ý!7î"QPÕM“l'mÍÊép „ô5ï݆e-€4¡óñLh¯Ñn}q¼j«X3‡ÓòÆð´I¯Ä`[7 sÞ«í“i9þ3¹2‚VKäÌmN%q¾dÏW4žFhy¥ŸûÂ& +ec±N ’ß~N“À® Ï,±˜e Štß®^j®d#M–º2œ¯ö É§EIm¶2Åáȼ¬g‹û1õmB¯ QÃ=.ò¦Moòc»1ÖÄò›˜m0dÆÒNw+¯… "mÍ6ຜ8çs9åaÙ#F?Í}’¥ê¤;Þþ´M»,ÿ0÷&ßbÐǬ._\CAó—ÂGäE·7¸Ø6#ûè[§Œ³G®S>S$Ì5§CÕÂ=(wXHp9‰øUµ‡ÂX¾³aoÃßySGrûe*’ûìËm)ìÞã°ø.zUËJÛèâäS%¬¨Uç&Î#¨ÆÜYAîÈZܸW¹]•=zFÙ€4ÞÔØ'h=¬~ ƃ(míêaæ— 8¼t޽Øâïw‰S'²x`¡Zq¤•Ù´ó›õÑúW'¦Yr;&àO•ÅÝ*Lßm“øÇØÑîN„öJšït•çÛV&Àû‹$Ðd øË«‰>OåôÓcz6s~,7 ½sª0øùWÔòhïDÕœ`«=}Zc/¹Âv¤­Ê…¼w5•WäÌ ¯¦ÊS3´´„™i} ðîwlôh•T¯û ³,³¢SúL6 K¨¢mqA¾rAe…«oõò'¦ófgZ;[„JÒBFj—“øÑÚLŸwD—tšÃç‘ ð#ŸËvoIiˆ³ •R¢çPu¦++àÈyþó› R ø:lž_ÈÍHŽé{YŽkMD겺WT†u!(G4|üdÞ"×€ÔV€oóü—ˆÈ¼Ë{$QÅÄëg…ÇŸ·nåJ{^\g«waŽPÆžÒ!žPbÅUv2 åÁÓ>,:³¾á™!OÓ úùìºMEp؈›‘O™ÐæØ5|O¶*¯¬;f3ÐûÊŒdX¡iî°.óq—bE± ú*ÿ E€4’ô)\5S§4Ö°¢£”ؤ¸¼’®©‘µ%ðIc³«?¤Kÿh…^Ö  M€gIï…¿ êÖOÓùèt»ÿ¹UW;H.+Šð÷²fŠ‚B19ÊͲî–Ok¹ÚâÞl«J‰‹ôq_8ô¥_Ð.¡¦mÐßèOÛn3ZÄj[G‘›ú r8lKý†ódµª[¡Å-r÷|]z­Ò½3/’=]XvQA4]¸ì~˜„ò9=܈oGhnÍY¯P¿»’Ÿ] †(]Áma„O´)ä±m„t¼ï²o*!i(=±EŽž…ê¿NôsÐúLg¹c¿Ín#|~NÍ É×Ò†W,/­O¢Õ€¨L_G AU9à^æ8€?ÌÓ —£fä…¦ó«4§eDÜQ‚v²»ÒÆMb^`¡àxŠ/“ÏÔ/?p°n:)Çez¨È“zoû²D¹CC¡¾©a‚vKݲ¦¼`D*®·bNµ<÷Ÿ™"ðÌ«sUØ@D.µ^ª2áÚq,®¤TÑM¿*‹®0^ÚZ0Óë1ò*A‚^×l³œ8ϨŽgO3@ß$zÉ®ñp§ŒŸYȨƒ…@¦*ë"Õ/5šÌJ#éë÷DÒdL2Ñr&8Bg„‘k1äå³ó(‚q¹ß9â'r=æò›ús·Œôææ]<͘|gí¹TçÿS™n³:àé<û´Hõz‹dTÀZ3zjѹäS©¤øHsÝÛ–­4¤x%ÿNgX „ïÆ£¥|me¬ßA/nÿ›9$yÍ~Ey`ĆMÇÒaŸÉßJDd°dm·îûl„öN¼¯¦Dü=0iÄùB ù¯n¶îmå7%^ Qæ$ëh‰×ЬKüâ&¡ªÔÀî͆ÍËr#;ÓUî׉*H)èì(m}$­#ÜRòÔæÛß-5†~_lÙô®c»Ÿõy À¢uu;ØÏR>†7]´cì!¹D‚Ö ;–ü®L*&.*Ä êÇ † 1Æs[ù…ØÍá6õ*©ÍpÍ_TMP8Î\–/RÄ ¹LÃ%!,iž¢ðèÅ/µ8{è}>¨e$ œ‰gjŽÐМô§ÿYh>ü^d™÷´=Ñâ™ë†nÏäˆ}Fº$ÄN×R4 yÂ¥m.Ì-ùEIÜM„é[Èyãcqo!ñQdÓ$%…åD­`2ºÏMOÔAª]‘Q–CºÊV¾—^²ZDÔé“2‘YŒÍ¨¥ µl†˜Œóéá 8YD°V\ž‹±#VŸxÔ|³ò9Â@àcñW¸ð8áæjvÞGB6`oF&…î¹Fûß*?¸dÎQa®%&Å9C w¼˜2k×B´3˜¡Kd.Ù‚C ~žAzÖÈWáã;¼M;—Ó»;WÚ˜KÔîdrã“E5¥¢ð’í°;_¸ô /3W¼­ÎžtÌÇèž.xaþ®Ó` ¶¼![ƒ‹yñØ”SäRÈlQóLJ¹è¸ë¸›¿yýZh<„³h ¦õ—¼Ÿ44—˜\åãrk ‹°ëNn>bO-ç ÜŒŽ¬ÿæP*P~]=fæzå˜-ű|D¹Êž}ÁøŒ,'Yê’¼`…¬np÷&éß:¦+2Ȧ•‘¿ŠD4ýêñ{›« ¸†q›ØâN0[´²Š_<'~%1[Û#±Oº^S»^?¡¿ó°EßRUšyYûк¶0›ž9-9µRÀ.4­ô`4žD`[É[Å»é,äÿ£°µœÐŽ}ÍÂosEv€ÚI°}©ö¡Ø] È÷Í[‚±h_Ïøm ×ÿ;Ÿ áÇ‘é˜SåÀºÀb§–fïEü®¤/ðŸ³"ØV„9µ'¿7ß-Y­¬Ö#ì²ÿõ—øD\¾W³d¥’½hé=|‘­-%óu\l_Kû\7‚9B–*µ¿Q9ù*‹S›n³,H¬Vò{ŠŒNc-SOå8Á­¸ à-¡ëVë™ßlmˆb&YÊnš ®l5^ˆ öŽ»âI²ûEGV€ nåÐ42ϹwæÑÚÁæå1…ëæ?ÉõŽú2Ùªêöœí QàE?ˆw3ÁYʤ`¸³Ï/p”¾¢7,Žc·+úûO=§øæýˆ\Êë^²DQáËV30gÆÑpÁM6Ã’Çÿö·JàˆäOrŸßyõ¦Còr¨v’*˜EïD·ðê¸U)Ñ-N¤—. œbªs¦l]•C[z,GôÉI§ Ä!î1l<ßZ3a±N¨µ·“_ÆÐßzЉHcãÀVWs\ù˜=ÚIƒÂ|Ëòs“¦ŠD«ÃÚ’s©xÚXç+uÕLÿÙxÒë8îóÔo4®¯Û–O©8¡‚n“¾ü›H„öá.ïóÇL„ÊúibCœÞÔQ˜±ÄB‰®C¯fØ‘äœ[9Ôuæ"ï{Ïa¦‹Ò”*¨â´RóI1‹‡ ãs¡å‚"*þ£W­ˆKH]¿(ÁÂ7¥`’JCLa¶‡g@¦9Üš,šûø3Œ šI‡ ±p-$ª¤Ž5ý F&L2FClk;2¨o‘É)Î'ƒØ#f¤|/Aã0èÜŒ³»‹ê9Do Ø {'‘°s¨åDÑzé䂯Ï2VÂ!K'Ù½ftgŠÔNØLÁ/-ÝIßà Ö%wmY–]`}^ A‡Ü¦i:¹UD õR1ŽÛkTûóö,öœKwˆ’“”13ÍïÈa¦JúÊ­® L/~œ;E×¶,–hÏ&µ È”l°J‰¤ç÷±û«þuG¹i4C‰fŒ¦§ñD‡¿Õ¶·¦D·+ò$2f.Ú–=œPODØþÊc‡d˜õÒ¥õ¥‡éŮĽ lUÊaÖ>nlêaÊúÝòãùÂ% ÂÇ·Ó ú‹´ÝÔkÁl@ÄM‘q¡r­N§•.ËÞ~!Ö.E –ä² ±ø_©=ç<Á‘oõDbäB '»˜‚iÕØ-Áqb¶ë‡¬³¬=–ïò¿Ê³ÔDS8£ƒf€ŸœÛ#ddâüÇ{b“g$ êvžyUYA^;ötð[- ·À޾hf΄~[‚Í¡mþËåS IÆO\5ìø‹dsÜGyüðªâz:({ñÌeͳ‡ ¹ÿâ=#Æé7±B›µ[ì\æ¢I½¯K<³‡J¢¬ÀJ¦rü›T:ãAB–Oüã ï2ˆÎAO(ÓJ39GÎ6G(`í]rˆÇ•³[hJ{; §q訶yhãѧ¾8ÉRu¡ZC!FÇžZ[³¡Ü“F¤U;0í‹ nQC×RÛ”aþîßHÝ»ûJÊ xøL"ZЀIMr=Ìà:C/†>Bø¯³¦ Šï5 ŠЛ5·ÇÕ@Ô§e×®ÞYˆÁvþ¾lœnLÆk”GgBÊd÷[ì÷4R ßÉÓÒûS ¦Eµw¾2ÁäSÃvëÅô®«J m´êÚ‰f^™©ÃEÀŠSÉ%]xUñ( ž¿è¬»‚ÌçsО‰žóXU{½\#¬.#`ºâO*Ô©=›ù;÷Â]ø6FÊ—0s/[§ÁÑtfX‹xÝ%p‘þL•£xÃQ·”¼2à!Íp'Eü˜=?k}„/(ÇömU…†|—£ßqÚÚþrC›Rѹ¦„¯ÄjØD±Dz»EkË&“lS\ÚbïÁ¯yqÆRSç6þW#nN¯ÞÒ=×À!Dã~‰ì…¢°\§rªÂ)­fx¿ÍÑ{e#}¼[’²¥ŸèA—¬hï›04ùýØUý£,Au¢øÁçyb<°"‰¸@Å<|ùj]ƒlj›íc Ým½72`rÅƒÔØKÍŠ›ðˆ—­ÂËU‰£ »|“«‚–…¬R޽±MË´‚YjÝP!-KÿpCFZ•"Àíô­í¦ž÷¤©9Dþ©‚#»K¾^ì±.îÄ'™¿'¢A  %ëÏ%äüI ˆB<‚„&UZ—ÝïAÝ!`ƒ×L SÑ>NÝùáŒMâ+bJŒÌsåê"^uÊ:¨Òó6> ö7ø¸nçzË|3´uMD¿¿*¡Ã ¡Îb|Üða &ø5ÃÒÈ!k‹Õ«$ÀÅ_11ϰhÇîÖÌ2 Jy"D­¦ZŠM£Ì®Í^Ç­(è”AÐìPUê ¼¡&ÎõïØÐ¹DàÉ=™ô}!dk÷š¦›g;Sv¤ÚMZ§…¹6aIƒù˜°ÍöÂ¥w4X*ŠÎ  J ¸ß$T¡åã{dëD'æ­òÔ „,UEä)ÚH_³~QÅEÙ§[¾øNR°víL;ÅBÄKÕç£_VÔ›¬É­¥à;=ûàyÔ½÷mÍðÞ¢ kº«À;(´ƒó+=§ò­C¾V›OïKŸ *¤är¨~»1tµ5>Â90Œ„аyn™ç ņ8QÆöŸRO -{Záô xJ}¢ÎqHhd)çàIá¹J­ýJ‰ÞÊqZziË;Ý–08°­Ö+ö·”&*„3öΠBüýO1¯Y‡6-ðŸì>Š¢X¥>ßœ}o/Mݦ¼¼b¼Ú·á…¼íc^;hÒ)kbGÿí¨_pÿm%¹®éïÏFŒP°„‚p£`×e@ ÊßH:Ôeø¼ÓfHÁïo¸¥BÍLbFⓎ£ÖKµ½â§¿|4ÿµ„OEÒ†Â^gF°ûHÜ›mì ,S½±5C«,Æ2›å¿õŒPjBZ€W/î­–BÞXždkσu›ûÉƒÅÆfà ¦ô_ކ_…4ïY‰Bôœ‹«0n–¤ÝœG¥c’ÙÐ\&-gãÁâºp’¦°Ã.p>aäó S™–dEú{z{0ÇNÞΖ;œƒÏx·“:á"뵞ˆ¯ìÏ$Ì£‡ ¢b{äv#ÝÞªjK‚…pÇ _I'Ç âãmÂÜ¢-fùßåt…juEôŽŒNO4ÑÇ„­]kv`d~|&ŽíSö3§ëæõ—÷¢Îåô²:qKÅ|@hUW¼QF±Í8cq–J˜EÔx€ƒ¶›¦g‰y¤ôi¿;m\LZAŠÃF­Z°¶ÇkµM6Z€CIùØÜ7iÑï´Ê;y*à qÎ5Tû$¿;eò`R7cž¹êë|ÎÎEöýæ^ò s4°FøÓ‰Ä$õ-ìñ˸¬Ù'®§®Í€„Ѹ±S{YE#»ò{½Tè°X„çå1ti”´y7ÂK˜3ÊlñR=L¹aãq)ê&mÆmŸ!Èê 3ÐPÏ@žÍ Öl=òvmK_¶Pú&øÐf’ˆ*0„”ä}<×zèT3Âk“åÚ¶MªçMž.›ø\Ê«>Îî±ýɼF{Hj®"?Mnl†ôÀLËÃì’ÍUI‚¦oc-ôlgÀ$yBïG <]d‰/D œãdvåtòŠÌ€8HO¦V­×êìÏŠ²ÕQÁ*å „?éVR9Œ˜Õ¥În¢£¨KŸ¢®m¥ßðçïÊ¿*"¸üST[†Ó×<šôÄ„·í…è”Jl<…®¡áGê 2¥HU|À² ÕÛ÷zûøuz÷UËÐO`ލZ)¿âËr{®ØÏ®1Þ!³Äü¾“šÝA®\T×Þø--^Šk;@ŽØ»Ò!ƒ1ùs%2¨.4únçîKéªî@—ƒEBTú€ÃÐÀ“Uö÷å|¥\]’!½vñ¡M‘»P%áp¨½óÒÎüëQ~Ó›½²Z¨¹ß$"Á¨å4¼&ß늤0ÖÏNþæzdfÊíO»0T(×Ákc’>⨦ßšýc…gm¹<÷WÆ5œõÙûeǃÜ:æ\¯»ˆ0[»ô°î2,¦I v{OEŠúmšnOhD€Hú2µŽÝ9.µFžÚã;©„ÀŸ(èÖ ¹f@žiƒ™»Û-Ý®VÁð»¢Ù"_D‹Ê*×TødP Û‚À+oœJ7šrÔ2pkÏW1öœjŒåošqÖô e€Ïõr3€ hb“d›mn?`ü -· É›4}6•wXSøÒ>ÕI ¬²…*cž í‰x&Iê(ã§ß(ºÎb`6À •#£™Ï¦ÀãŽlÂQjç¥C¢ŽQ ìÉø§wSt@«•M ¶¹IË„mL B¬TÏÕçãr]Ê<Ð 4ŠX˜”1È‚F‡¿™»¶¾ÿèáö^ÓÛ;ŸGqϘ_8´Új×ì€$Å4Ð,èžÇDdÃAp2œ‹f:Ám½ˆ0ëxt·]Ð’óŸŸ`]¡¡º~÷ËŽr—DŸïgüjÁtrγÞ%1¢ ø¾+Ïh°@ZD°nªÓà•ösWÿZ³<qŒŠ»ªóõm)>žzˆ¶óÕøN%^Ä–-vC¾j—¹H•€;—îl ôô”O÷¶ø2qv<¶Jåá[z+?$÷5c0$˜Y¶˜×>]ˆà¨ð0†]ß’™ºK_ B]ö¸Ybs–=ãh;›§¬}Æ&y%,ûgRw42‡ºT {Wû¦7•ÞZ‡È H™ÊôkuNŒwÍ2!•„'½ZÇ‘ÃN;E±†¤\?»HVS7:-GtˆIÛY–€ÃCŠA>ýòÍëÒ`Awoé ½Ë0¯WÛõ’ [{'Ä…`Åû‡„€µšÞ´öðêü µ˜–•HŸõaù"Ù9æj?ÚʵØp'—©mÉÆ*ÜNK]ìþñd¥Ã)!ácm¯È³¼§^¼^£Q¯ÅA+€±y«s¿í¸JÖ=Ï~)†`Öõn´cªÊøfUQéØmUJð;Ñ“õ„¨ÇñöÌÕãX­0Ûóœ9åàs@þ×ü A}+ímͲ½,i3¼RÚäÍ•‰;ð( 1. þ«‚Ì ½y³ô$—fIVY+VVíFŠêm¯‰Ò2gÞ¢¹‘ŠªäëŒß]–6dj‚hašMÊÛº<¥!)ËpŒTÂ:sIQ ò¤ü¦ªónñ Ц¿|¬'HiIøñæ|VmF ɼˆXÀŒ,I÷Q "(Þ¼NKÚ½ê™+Ûqž;•×_J£M¸ü:9Ê¡V‚˜ºT½œ´Š—)’- É~¬ŸîUÇÔî´ŸŒ¦½UˆX* }Q–γú4©Y;jŠ(N™6m-\ 9¨7¹¢9cËWÃø[ŒÆ„,ÝAU-ŠZ¬<Å?¹ćPf횬“±˜yÍÍ¢pGnøXN:w*çWxÀ™O´w™°ëLH(T1~_ v\¥,"xm\I­£Ôe¾]ÁBA’‹sʺkËvCË´ÃvO‰á‹òò>tàD˜a CÝ‹’!kͦ#‚ ì€ý]¥à³ß8ãÀÂAÖs×¶}bÖ¸e÷Z®¥+ÍÖ}iý?íßïaCEÐÇǰœ·8ýÈÍÅQÇò\*õ-2Rò³g4‰xºûDƒnpúëÓ"§3F8VÖú2ø¶Å´ÖØë%3JX}°?ÛÙtØÐB„t_VTo¼o ¯„ãŒóùxœ5ÑÂëYj<¶QÖ¼ *Ÿ‘dµØª‚ö¸ÚÌ™RÒíQ^’ÊÌIaŠ*ÜŒ™gùCÕäÀf_#„)ÆÿÙb½ÁJò;7JñÚ@ÑR7ÕþD*ö¥_jÇk{óL·Å½Fz¨•¶³WnI¹SØòüëÝ TG«ú¬÷ŽÉÄ_aÍ«ÏϤ7¨raee>躒óU°+ÁÊ¿Rqc ÿª‹zûDeŽ ÄxHwàpö2 5¹žl3\4íõ†mQ} U&?¨åœÑªtk¼‹MÀûýÅì«ÇóÅF?[éúð½@JµdØ3¢ú/ûëÀEÀ,B14Sêï&D‹¾|£«,·â±nT²Z›¹ä±9[ Ø1ÇýrK„¨'ÏÁtÐдÓYyOñbÄ* €cån,¸NölŸ{©Ž˜³(:o‚5;‡›²ÞyìHmᣠ§Ü}Ý…Wœy ò]1‡ÊÂzÙBp%#XX´ø4k&¨ z{r2±Ò‘X'gí#ïÑÑÆ»nf#Lœ {„Ÿ0—˜6†kf‡êbª&)OävsCïˆÝÈôY2ÑOU1£BÔ =´KìA®÷²vrxȉÍäìÃÕ*žU¿ßHç½t¥8Þ¸ÅÜ£æSËéè`nÃé,"KéP£kžgó:³1ƒ>¢¸Ÿ E’r‚ÛÏ;ýCK§s÷mžqHT­I¬JÒËOqòü¸%Í\ú…‹¯¤igýÆ sa78Õ ™™ßÝ f|ˆâëIË®XlÊ»pÎ,’ð Ü©µ —AùÒ•´s¯_k–ÃkTž*xK¸×ùdD‚}#ÉÄ ˜PŽ„¨ÅÚæK`™ÿ­ „hüÃ:Ì+ S²Rx-‡k¤p^ãU“›a’"žGÏ›,þÿ÷”g¥h3,¥òœÝÑHݸ8û­Tj´¨oÇJ-!&«Ÿª8˜ @ÃywšæjD€,-“qxïÖÛ9Mÿ}ë×ô{+hÄ[³©»ö£È©©y¼2bTÄ0¬òE¦ÖÅÚV?Ø$à¤Z)üÐVe(DR±O9Å1*‹ ·Yuˉc“Ý¡óTÒ,o¯ÂH7èì!µÉ5—(†5’ÅPD̬Ò÷å‹ ('·vy£óÅ9f ؇†Ný Qµämç‚”›‘#ú.³` ]!nÓEÌÂVpKbUÑq_Ý˹P¬¸‘ÉGU—‹.l¬ôð û]q>mÜ”­¡‚è©ó8öH¤ðq£€¨ž6Î͉÷¾©Égw—qþ‰}¼.óæV%ÏÐ>¢Àó%1¯À‡º;!ß–úô©’¦rr·(¢ˆ{¸$qhAÿEgë+ò›Œ|ÆYGkx‡nŒTÝe6ÌÖßÏ!õ öÍm¸áÑŸKÌ'lâ¶.óv²ä2«“¹ñ êÛ}:ÛY"C{_}©?”«ZK¥HàAùl—)Š+ÑÀpñX.™ŒÚâ•¡û±,çâŽ8¦=¾EM«f÷]<¸"¨ß† vWÀ3ð‰ZV®æI—|×ïþá1ŠPÖ»ZÃ^h^“ƒéå†YRûM›È–n¬tÈ|Z¡½–eKUeÊT¦Þ;¤0a/µ"îP3)V}‘Y]œË‡ðм Òv¿Ulý ãp¬H#éAÄÈv] ORϱU„GÖΞÀw¼º~¤3'óÙJëBšr%‰ºÄ“]Ø‹¿Kÿ±¶§Ók m4‘¥¨é?á*p<_ ÏK‘÷³-&êÉ0k¹ ¹û}ùÅãÍD4øÆ6¸¾8õÞRèìA¨ú•²‰¾ÇítwM¤—ËóÖ¨s˜åNŠ­´Y-_ŠpÒ¼ð 飌<Ä«fº Áôø„.=™É@ aðÉP1&“ ’•K\x¼ïÝsË/îл{”Ø2hr@Ðé&Ò3-Í?WuÔ[žï·óGú“͈xHÏÔ¹Emb'rý>.® ö"YÄjcafƒ»-½Ìs´6kýØyIlQÉõ;¾Žì¦´äÕÆgfÊÛ¯0d.þ% ¥7ºI݇CA2¼•S0ÒÒ ‰é €¬LefÝ0êYØ7›æ!í¥°›Î…½»æ¡ÐS)|’òó³€V…ÒH¦ã7í/ôÚ'Ù¸«ÐƘï°únnE}Ç~Ëú™C½LdÿÂW%Q*Të^ãï–Î+}`Rª"‚U5¥uH¨¦Ä’ÿ¡jX-åV[l|vz”>ÓÛ™"Ë«jjy%ÂùTÔ¡qõÙwgЂ ÿ7ý‡¢íc]óáŸgë*¨m \°é6Îé꧇ÿ-ºÎ~yð"¢÷„Úâ¯P?M×ÞƒèöŸ¬ 6“¼Ý‘~ tåŸÌr 79rnÊ)ì9çµùˆ aÇ bÄ Q”¡w%_¬d·GÝ< üpâFÍ#úU“èÈÙVdõÛLLBƒÁÆè ¶Ÿåš£×V1çpº[«g¹‚?¸´U³¯­h‘-"rò5»Ž_SPÿp¼s,” ˆ"0¸;ëÒ¤ù§ïè¦ø1…ª\Û(æÛºAö½]úŠX§™- 1̰sô3h dþˆÇ̳F«©†ËÆ(;°y¯Er";pFó[¯®šls2{JFµ{BÝÑwò¿.J*xVBŸ x7\ÀÞåö´ˆ9ì <)FZu ¡Çñz\Ù&:†2Ô›ÎÄAãœÝ4Zÿ£(©ù¼÷|tf0T|ó*^¥ƒ¡-Í” UOý—óœÖ,±o°ãþå¾ÒÃ"æ}—öíRDnfs•¶ê‚Ý“çerƒßùâ>#ú^ïûžøÔ±áqÂ4û9ÓÇ–+ ÷\ýuœÖ0Ñg"~ÖM³ ©ƒÓ£ôä5ð“ˆKHÝ>î/â­2—:9é}I¥÷Ko<¡asÏõàç»ÈGÏj÷Emüø”ž9|ëœMˆìBD8ØuU ô“›&Ýöáïo „”¸À4 4}Ò=¿ò'kÃвªm‚óÇËD×îK,’JƒkÊ|·ÓaMúÑ;Æ{?íÓ$v¢Ò­]@7HÑÀ«]—AxM=ýZôR*OXz1Os[^r÷¸b×§!®¬è^»f/&8íæ¹!á·ŸòΜÂ'‚yu¡³8L5qĨxçíïíS“_ìú šñ3¶ÊÛ|ÆŸR m.ÖRÞ9/ú½K•+ìÒJuKŸf,cŸÖëµÅ©ì$à¼bíÑ껑jG?±¢WP˜ÿEÿüNÒp}ÙÈ÷BÌg÷$ÃtâÑúl‘v–÷W@S’»%ËRÞÐQ¼È{`õøvšØêÎr{YÒ>&6Œ„·íÜxìèÀ ÀÈKÄ‹lÈ.Æ º¾)3üt‘J–WÛ ÑÛÎ"]Y7Œ]Ð}M nÞ݈O ÿìÌóR>jÆ”ë1„G+,wUMøÄ·#h!ù˜“R¹9r¦euÚ& ®4’Lœäህ•µ2bs½íàÛý?’£ 4ž÷Mh><)y¯Ù7ÌécoWÀG%X¢H2<-­.98¶)Ž’kú‘­ØIŽ^ú@<Í ø”ïh%8;©_ßNÛ×Å© º{%[æ¥ÆÎª[î!WÛ…ˆ²òKzM/7ñäI^'"ÕB¹”íÄPÓSÇ›sIîÐËÖôpŒÈJV ?ÚÍxšVP²ÄÔ¯Ë-QÎd"„Ö¶/‡3¥s þ‡–®AnhúÙ8ø.b½]p?zABXÕ¸n{™R„¥=a ip†âÊ;ÿ7"j©m©øaV,h%\$ûüÄgç·8Ý¢,SŸÐJKŽÄ: •¥ x6\”³&äÒªl ®NI×âœÓwÝqñXHFTà„ŽºZcŠUæ’ƒ].BͼX«dWwòÜbK—ÓiÅ, jæËj £UŒž€Æymån¡ºB}0ºÆˆ‹K†ö®m¬¨%Š5é*³ ’u›ùÜJe¬ø8ƒ¹XËÅ«•mœJ<_Ãk$C,¤‹-[’Úc/oîò‘:X!JŽèù>À3@™šm7î%/ýÜ9´dîÓ7¹K׿ÖeÄè{)¢ög@fs¨WNëKŒËR½½Dñ=©k0+V¾™]øÄ§6Z¼LO]Ï÷–‡þIAFzVßi?#-bNsäìcÍuP^@~|ZGŒ9 "“«´íeÒMtˆÓ´Y#4Uý{^ft’©JXµ/6ì‹©}ÿ q:k!YG½5ÂÑðˆAšó…†ð$èOÐö#ÒÙp””VŠÞ H¬Á¥ù?^ÿÃjNK|?eƒˆù û¼®Ì1nìY¦±fäëôpöÓõfUÁ&ÄØÃLûÃx 31}@³Ç[p"‘¤ù§þ ëÆ¾&ñ¨ƒf‰ÚI}š±ö²C ¦øóëgb’Eò÷{„u‘Ÿõô$0KMî€B:C?v$§uËa¡ø£šRˆX|›fnÖŠùß •Š4u˜=™ÌÚâ¿&H¥ž†2=øDá©ÙÐzûJØœŠ]:s/oÉÌõ[§ï´ZÈâ‹ÌàfJs?+h¹ª¹*×XàøÝ1’抸Œ'xî©7×H'fÿm gÞÜY;^h²NHØ!ó*èsuóâE°øR“"«ò7_G•¡©e­Â߉sÎ>Iq óИ2@5Æ»;ð ÍÂWD0"â«k¤…â,‹+ŰÑuàÙ8ô]hE—›Ì×ÿrs GŠ(¦—vH£ßVÜÒè§ Ø0¼wcS/¼ÿ[S'WpÓ"«]¿õjÛ{àv愆;#‚Ó}{¤{@f߯êσÑK¥¸ ׿_à ÇwŠ\ØT=¿“–“=,iË—U×4 Î_€sÁAN‹LØÿâ"©ãAäùñ·[òuëT÷òLQŒ…ʡؗæf^]QÂâz÷õÎöçA„ü@<ÇA+Ö ³Ì{<šº©Óªm­™#š—ï‹;ÏíYBbvA5m®9~„ÿ,BåR¸ÀöÅ5ÃR¯´“økh)ùµ9eõÛåCtç_­$ûŠŸ^ýQ ëQ)Û䯎ÂëÛ’Ù:(n^¤« „úŒöBŸm³–‹ñ EÉØ5OÛ'm;“gâÒ*½ÈÝ+â„ì~*¥j¹n€vˆÃQ±¹´ìAúSÕ4N$EÆC ­Ui„î(ÁÈJTŽÓJéÁ–uùñmôfº01eôÀ²ÉRêe—aXúJF~̬·q^ýܽÂçš‘ú¿¬Ò”âЧëËþ*ÖÉâ%äKÕ9‰ß -Q ºd:3Õà¯5’)óú|ù ïÍ„YFò©2y&f±È%×Vlç&jëw±Ö•_ɾÀ¢tdhûG«W†¡¢N%÷Ñ×sÞÄA³EmÔ{x¯Œ`ç$c—¨ŸP¹(9w|‘kabÍϯªiIû›¤E±¹áSàþ€ÆX‚ýgû àõ%¦Ê3ÌùŸ9Vâ(ã­Îçì¹J€åúÄë#ø¨®ÄÛRçŠ,­0£N*0"\O„ÎEefÿª˜?9újÔä\p`–x'ùZ¥ÀœQ¡?‹‹¢Œ_õð¯/œ@ŒÌH(Ï$Ñ¥ïûFÝÖzò¿ à¯øVªT'Ú2„ºÿ¹âJÂ\bkŽ—qæŠ+éÿv/Q‚óu ypWìóq8l…t_ãxžp ýb”ŠÅ-‘éSgºKïOæÃ©®íŽ5ì©Õ§½†ͺ÷œ "—ŒM¼aBœ™~Ï–Dù[ªÒ¼ú¹¸dqwF[Íä]4|%Žón«±ŠMKâH®[šîÊWôy€&º ‚ÒãŽr„ÕÅØ”ø×KA^Δǰ´ÊÐã…*¶”¬1ªÛYÒ%ÏyŒ‰öyà™8©°²¢í`Ë’Ðë=õô™V ¦žp¸ÐbŒ'B[¿ï†‘«me²îšµ²> œøâqäŸåOmy¯Qÿ8? ›('qóhÍÅTlLHRly‹NnLþXTÜ’¢‘XRX`iä]WÈe,­¬?Iã©Ó„ÛˆHñ¸öõˆ\;ƒš¶IÏx4 µÊ£WŸ5ûéðÕÛfBíÝÄØÄÕïdcrÁ|BÏÞ×;ß^Ëöd¢¤Ç9`)»aQûû¡TêDQRáQ“Ì;¢ó}‡8$|œó#òÀó-‚{/àCöÔöf …ýÄ\\ èùFC‘£²81¼µœjû§‡*°bá¼y3dȵ:FF‰‘|ÄÌò¨ZÛTJFmù_b‡ r©0j4ùµŠ;ËÉeÈHÍÍñõ'ŽØsU¸¸ç­_.•Zøò< ª¿5­x›JÑ'è"ýàBß:;¶Â‹|gG»sÃö9–[BáãkC^~$»d¼ì§þ:ãe'—,Q픓Û+ªæwg#šÜñ©Tó¨›þQM#&×o›5Õ–HBÓF¾Îš¯°ì3ødîóÑÿ<ÎZ£ô,9!#Ц:&N¡­üB"Po›cf½ႌ}k  â͵A%$di8D’@s|ß÷‘}Óö¬*#Ÿ¬sÇÏRÜæSƒsHAÀg´œ{­YŽHæË;7«Äõ`O¼ˆïzµ—Ï7›Mr Ì~v‡Yâð|©žrñiñþ’HñèÁ€Ǿò"³fÖL³’ðp:ãÒ°T„à)@æmO¹ôï¹ wó n?ç—"&ë ¹* ›¸·÷ôö¨¼<æSe7 ‡Å—Àwqñe\³µ•Ÿ»÷1åbòÛù_ ¶È~CÓÒÞ‘»ƒ¯,O‡–-®*|Us- íLäÀÁAL©r«ÑFˇÎÉcðyrÇñJÐ!Ô“…ôbpÙŸ6EéúMÉ”Újjú8ƺÞˆUs¡ F Ú³< ¼þìÖ›ÑÂ@A°Ÿüꌦ$·6š2+ÞºiÞ@%wÂÊ!ÆF¶aŸ¨ÓÒ×ӱɤµIF€ƒsSùàíF2h½И*„$ÎàÄH½òv¤àBx9KCã·˜gò—’£Ãkχ¯×K~Ò– 60_„dàÀ>B.Ì?È»íR¿ð" šÈêø%_ã‘“²ÖÅ˺bv¿f±ººo#ƒˆ”s¦(¿y*à7vº+Š-ÿ}.×Uæ g;ÁE 5@äæšƒë¬qbŽuFF\ÚwáNQ“!Rþ6@2ýñ;BËÐT¼øMzµw–?ºú¢ 2Dã"¶¾“’^ój|yfjƒµ[ Áá´,ãÕ{\#Î]y`tç|5XÈ‘3RD è¶_¡qSù`ÿ÷êpž–²·í¯,pu8#é> !ålÿ>`ÕJ[Lõ&(ßò­Õ©‚a…'ÓÈßߨž”-—oG»+eiBbª–ˆiq™­šˆà=𷇻:âE™C †ü¦Ð _½äù£ŒÖ e]=PŽîá('ȇøËšÚc­(TíÈZ‰®/H=Ñ8Wëƒ(ô&OÝgÏ(³.03{n8®¾†>]Yf‘˜F£¢ú/cw ý>¸öÃú¢ûŽZƒUíBsÞø‚Ê >µŸUÐAÞÙV6õͪx«ƒk¸oÍSOÓýàè>1ÎÞœ;,–å•Càx Óó}§ÃŸ*Ö°2N¤„°¯,dèjþúêä%L¹ÊÃ|}ƒ4˜åSòNÇ¿¬ýÉ @]¯RX,$Ö‹»ƒit ƒ4ÞÁCÎѾ0Œá2{ \PÔ¹¾?ʵ`Œ7ù÷e0±o¡8²¼"ÎþÑÚÂûáiõ”ðss§“:Ì}Š’¼ï3¸¹ÑÆHé*ó_ç´! üÂú%iñT¤øà ”¸ÄÒóª0€´n±3¹Ùo˜ =;ÎŒcW¼nÁ ÓÛS{<¿‚ß`‚Åu9²7Lc8ê9(Í,ë Oý³ƒtuž=½E)ùy5xµIŒž)!f¬—6Õ¨¾¥°ÍeEÜìßl1Äv÷IoA¢²¢ÿK'S_Ž· ôVQÝP½æ.ô‹ö)ëK9îs÷)€ýŠÊÍ(¿NÈuݶ.äûÚÝØÚ©SR‚ËÆGëœð´W†² ?ƒÖ¼:þëUT=ù²9)iœìF!$Ñ2îôØô´‘=>c˜©²~M&“áÅ.éY<ܦ^œ@¼Èïk²V_}ài -JWœB>?ᥣތUݸ‚pÒ÷·H«'ÿvV×û^]ø»ÜöôHû†»ë…u¡Ù7›'oÚhžEc]˜6.Äáßt @‚ç¼æœÝbÛozæ=ŠÀ>†ÏȲãt *¹·gy!úñÉüèlk´y@tP3ðžévLjE¥b[/²~ZËi¡\Pé*5¶Ï‚2‡¯•=â;«hïK¯!±ÈVØ"}…•²n=º‰¨°;쌬I5ËçÂ$¥¡²’>²òå9Äý›Þ ׯ·Z¯õroóŸn8Øùù*©úxrv¯ž˜tÞînµ¡W98áƒt £Wt³uÓ¯L.ͼ%:ÿecÎÑÜO÷ØQÀpZ ¡j—!Ǻ—úáéålµúuÈ#³Â§™2 zmð€sxÅ;|íµîÒ>F.î‡R;ö;ö̧£€œÿ¤'qé®·øý°Û’ÌÒX`Ptmª­lºzôOnˆƒ§t§a~7Ù8ЉSP©¹î–…¢¢/UãfðlÃ>aݦûpõBÌ.³jñjÕ]…ù/XÚuë?áÜË/4Ig¦JN—s}+qŽ ‰QÌÂbk~^Ü-mR8?o¯§P-²T’ä 9’W‚ÖqÍnõIú‡ä¡È†æ)ò½Ë cYÚŒµUcdrÄYÎ߆ãê&p‰9Ny ÓÆfÙ Üu6¦ +Cί÷Yj‹hZ3ˆ õϯk€zÞ5LÏ uB¨O09·ÎÍàí÷Ø$&ZÅå%T:B¼YÔ씾¬3Ø(…~É$È\¯ {s~ƒ½Ë¶G9¢i›êúZTèŸw’=c]»HÞ±×®jÀµÑü#Rî5Æùç7EÄâ¶;Èñ.›Ýc¾ÞDº{=⩈«-¯^—¢<“›¦Ææ…Z-R¦ãEø¾½Âó?kfØö¬jê—sÞdÆêÐB3!á–Ç" Ý®T±B0Ï!§Øâ!í»DW(Û­>¬à;U¤·r?“ùþRyN‚—ÖÖtÀ‰éï~ñ^Ç?€ÍÀ8„J5zž‚fž¨Ez¡»pѶÛZŽÆððüœÛ«™¥#œ8w*P8/‘é4®­ÌÀ<6M`0°ç‰¿YAÎyËí9û M«çæÅ×.ÚŒF5ï={[z±À^ý›Õ³½•W8Î1¦Í’q˜š5’±"Q✠v5fñ…”·TˆGáIŸ/u Iý,‹:ïëÓY•Ð~ö €ËÍ¥O¡%üåFG§ÏšyÖxxòZG“Œ’ؾÒfðjãWžà £fŒ,1q H ¡pp!›¤îl æ,cmôz•&3ÊöÝ×VÐÖT à­yQ6s\ðËȲìq'uòºž4/=ö0{¦¡ž0ýðzµàþmX–äVєʎ|=¥¸ƒšèFÒføÝ„.d,‘º4G~& RL˜¹ÞÜV€Þÿ I/¼¨¨ÍŒÉ¼JRé~Ôº»&HÅÊÇCšÈì!OÕ B¥9#ôÀi({q¡'ÂÈMðˆ€x›½UÞ#c~„ãbÊçpf`Šü¦oæ½z|RíýI—lÞ|žïEÑ ­œ>Ñ߸s±ïÆn;÷zQ¤dKŒã˄ю¥’Ô5„Jfå{èòhNãá¹²{Íëç£×F¬ôãVôµ£+ 4}~—~„ÊÙš3/?‹“¿¤ÀœÂ+‚ôv*YÔSšÍ™ÏÇÛÂxY²ÃnÚMr^o¸xÓ)Y}mù…ñ–]öô·}A‹k!¹°Œf×v‡‚kü……s®áÿgÞh¢ulhÝ1BH§´‘€°æ¹¬ç¤q»âQiWBd;0rÕû`ñ½ú2©ŽÇæpú8Ÿ¼4³eÓ7ô bÎöˆ÷¥¡Ü\áDÂX€Vp‘2õýHŒ©*ï6Ë»K¨tC*žX…j»(û³—ÅH‰ÞÄboCxAoîrBÄ 'q ‚Öd,òÁB/~qû–aÒa•K€›]Éí!ß›{!Y…A^W9·ä¡‚94FÂK‚ÅM…óK‚ÔÓªiVœþXT­â9w$7 ‹Õ3™è 722Yݬëgnãx;1XXûúD{Ÿ.µØ8ûÍlÞ¯)bÖY³•îÒ›(W‚‘ÌÂ:¿˜ÇQ )Ô¤odàÛ¤É÷9RjY¬«‹zÇj,e›­Š'¸˜z>±7 ó.ÈϬOø¯‚o°‚ŸÍ%Dµ‚WfPÖÌ8YBý׆#ŽgÍ +N£KÅT4¶†"ñS¸±ŠÆeÇÐVrµD…M üÁ5CpxÒD Rï•M͘šL hß#æg¯¥»ÌÊáÅÖ÷Í\ l‚Ëqý9ÌöeMÒæÛcMÐð‚Éo¢M7£jÞÜ“‘W¬WL;Dò¾>PfÆ Þ X‹¯³Z7 YÙBÔXtzP|kÖ'̉ºÈŽ/OÇU¬g9S›F‹Ñ Çׄ )<ÅЉuƒcÒD Ño†´½g'ô1o¢¤«ÿÍÅ(øÞñľà‘%G¨»¸é5¥§á QðÚ™æ?– N`” "×Ì™lëÌbѺhã Ô1CéòkGî‘À£[/9úúoqìØ÷àb¤û^£d!rQV¥íwßÂ:"U‚ÿš¾ŽH·zÍô!¼š"Öê`j R"HØó9Ï&«­QâeRm'«¾©Ë6¥„fHC¥âLûýPÜÏV`JY:|m›‹ )ÄuÊŒ„žHáµÐÄæ‘÷fˆ†Z˜:§Ðjh½^7êêÿN Óᘟu‹´L…±W¦sâ n[rTÚ½÷''€ôåQ¤™yŒÙCCS1.yøÌK¼±I›ð!µÈ~ZY`ÀÐ.]j´ÍSÖ¸„“. êèÓÓ–{û}&D٫Чj[ž%¢¯|ùWÄwms޹U€Ÿ)i±XË‘Äð‘.FÍ®‘þá|O`ΑË5 ÏÊã•ovúëŠå 0èPÒ)\‡5>ÛÈ™µbÞ2a¨c¯WLà–òIk–\JçN±O௹22¹åYUŽ»ùÞûSìÃBz;Qauš…püÛèÂ7‘‚±ZQ„щµQ ÒŠœ#©áÁxT±él¸"PIà©ñd¾U"mê­±bÏÖóì9OÄ}ÃYˆ¶+½>øÚ&DŽN#ê|-R>O:±É5þ¼g¡*y°cµ*ȃ±”ñÞÃ(-‰×äU­Tn ŒÿfIDx DT9’}Í‘¤ba¾OgÐÌgM^µÿ´)—•-œ[çSg* `a¿˜Kè/‰f¼TM(#CŠL; :mî}®(ªµï˜¢ÔŸ§O¥äQÅJqQßD1­÷®Q¬cÓ “(ÉJ §ÕNå#©YØ;ù.%\ö¸ô ä~PðæÑ‘Ö½{ª`øÐ$jpžà<ú +U'§Ëø<8õo$(Èê+©Æ¼ääRI à·mOÏÊ ˆ’ÜŒâŒF7Dîrµ&ô}‘öŠa麵,‰&[Àœ Œ¤8-™3»ΚbPc &sžù¦ò²ß¶× HΑMv°³‡•ÝÀ \Чˀ$?ñ‚•âʗܸPos¨{½†;Ö΀ÙÐãUã%è­f¯ä{hžÿÉné$9ä:˜iÁ#|ž–’W^>¨ jÌKC_ãªâbÚ ¦š’ë›^½ojNˆf©9ÅÀÝ¢Àótçvp$ðñƒ‹ Î1eì=!º$Y'y»ÞX‹!]†Ò^ˆ5\Pz²®N ÎNÈ ÍU£Ó#ˆ°Òr|fpz_l–iÁÞTkÓÈð#ĦhƳ€»XRËAÀéû!=;³«s/áßSÛ sÍ‚gûÚ–@¼}f€:ŽÆi ¦'ï¹A<ÉÀ{–J¹œ·¼TuU¹…Xöc‘uøƒ )6¤ílv o£š>?õ«Ú©¿@ä‹YgüGGPHæÚ+ú°L6é äï W¸ôNŒ©,s)`—ãjF‰º/Bnk.æEÂQÀ€êÍ#2Óx„gO汪Lz .ù&_Ê”@ndì&=0‘¯ªCÚè¥&—uˆ½f¢³'×¢¾t9Üú+Q©Ï†ä§ó4>½î(Ï¥pÚÁÅÕL‘sÀTepØgfÇyþb¼ÃÉÐÑ©â™6sœ¯ç8¤ƒöYMffY¼Î!–âVËïo¤ÂT¦ PITió“@Œ´°—Jj?Çr¨‡s‹‡øþÑub÷\?—U%‚Lí+ D×÷':À&•:º'Ô?¿³¸Ï;ÝðßÜo–Ñ¥(Õ’¬cøè«-èEò? ›ƒ+‘º1#_ÒôI¨Øb=«ò!™™µòC]PD\žâ ‡¬«ªÍ›¨ÿ¾lÉNQæÜ¯1q Ó­£à¢h¸–öà.Þ¬‰t-1ÕvX’ý¢ êxâ¾±Á‡X0ï?äšûÓï`2uÌ@am¿•ÿA¤s«T»¨R4›ÙZÎKŒ*P­ë àF\cÛܼˆý8Mg K–G`„ZçD¿c4A%w)¼–Z)XÄ1#ÂÈ‚˜»oPj`ˆ›è;€²Õ%Bi46ìIEæzÌg\n´¶LéjÍ ÎWûk^©é\×öOŸÂ+YÂ36*Û:»ÔùF¥œ4&W‹`>q\§ ñm|&¿æÁ蚇¿³‡8¶úèaü}{KœÓPGQÄ&Yýpƒ/ÿ¤ªP«œ\KêfÆÂi;¬ïC„úZ™‹É"z<ú:Ëlñ2f“Zò ¬4ˆˆ2–Ú+éáßÁ Wqçφ/»0ZÎlD`FtÅÙS6üé8oo¢Pkrj$~p9%’‹ìÂŒ+ºhIù@;×=?¶NjKV+Ñ,¬«ŠÆçÓÇL)6Ê?u@}ï|˜²ÝñœÐ2ß×ðX‹8nÚu8E+/oi“VÚÎ øXÆgª}ðZ-ìv‰:hûæôdj憹EZ.ärœâý“GzEf·ª|5¿¯Ï–ë›ÓÏrû¯hþý •J¢°fY$ï!Éÿ´xXPÉÈÆÏ‘>ã[•ÀnŠÉÄ*D§Öw"pµ\Ì`±82½½Æ‡8ü€þw [êÛ ~ùEG¬DD{m[s[ňNŸ Çε»ôµØ“Ýê;ÅáºSÇLz õ’»)Ì–…‡:µ8öç 4 ¾›d¡¨Ç»1$É´’œI¦"Tym[y튚RžAqÄ;8ˆéƒŽÐí…úrï Zζjx&5Ôú¾$N%½Æü3œÐ„ÞbQ¾4«Ð¬Vf¢KTû<—®µGz?\š¿Uö1hëaÁQW¹Î%f}ˆÈêÒ‡ý¾ˆ~×]â (ëå÷1쎭šp@sµ6ÏïÇ… æ¥}Íj“D¡W2R^L²@ -uÁ”W(*?=ËBA™Y(¯¤:* ’îTb®þÈɯ™þLÄ.¸W:DÒ†0ô]Ž 3,j9Ĥý•ç‹ ÊÞ-Œe Â]=8ü*TqÓKì!†¯"{fß…êA‡ÐT· O¹–RÆcÇŠW5úYÇ|*;AïanäDd ŒIÇȯ$SÏÒô'ÞNŸ ä.|ô•ïÞ=•mãÀàDTµ\¯75½âwXDRËò.°ï~²˜ÿÚ§3”1ô•‹9—“À²þO@˜öW‚")‘¿ÿ¨(5a G3ø ­íY"}ˆ@ÐÄ•$ö¾À´ÀР™t,w§ Pó“<Åù‹,¡—í±‹ÈY7{eÔšˆ*¸ªëT÷§C+i¯PÊ>§7z `qíFÏCö¤ohý¯óíLÇœÜr‡ 3Tî³r•É¢’æyBQ,õ¬þÙ‹VÃó³wVÌÐæ¡3ŸÆØG¤TrêR\âTm<,·ÐÜë¢ÍM~{_”ù·RRuÀ,™7܇ÉîðíÞ„·™ë{6$¸SMP !ß$ˆ¾epú"Úc\ï&XôýfÊ¿Þ΃4ÒksmÊ‹ª‚ðHoÕ jbxwœ­šõˆ IÑ%¿†‘ïµ²Zw ¹gÃt¯G¶ãm˜Ðø4ÄÇu¥¸˜é¯ý¦Ñö8A€¬ôrJòC±¦÷hê7×ÃõòH¢M9ß0ÿ7ÔTQZ³fºfñúÒêŽî+,"& :1Àá9µbÍbªN|öÄ£¾™y÷½pÔ0€¾1Ó¶:ˆcöâG«ß½Ï49/Ò·˜pWñø½E„ˆî)ªûd }ÙÁ´#—¤:5Èj¦lôºÛ°Í B·£YH¸^Ýñã½aZmüS6öqýz‰ê”o_wæZ®Xß›×nÖh1ýÔ±¦bƒ[³Ä:$¸¦á V› Àoõñ ,ÿ1!\7?<—Eì¢3hécvltSÀÇË”\ÑnæÒS¹OÇÛÑtŽ8i¼R¾è…¶RÁŸ%\p¼aM¾?æ íÊðÌåÜ…åñFqð92*…6¹ƒ¶çhò³|™C£%œ;¥Ú¤"U¹»>øý’vÎåÙd»ÉŒÀPé¬÷ùˆŠ7~P³q8"%ÎG±`ªÝ‘^4(ˆ«J ‰šö@òZWD4¼Qö—ÝÈ’ßn!°ðŒíÊ_Aõ”±ûÃ/ÁÊš•x¤Ú‚̉rDªÏ™‹yÇvþ <åi$»Z—yÁåçÑåÜ‚ä('}P#3î;‡7ý4tžó”@^æëˆ á0éšk ³cf l`&ÔüR¥ÜÛ$à7—iÀ`9Γñà"Û ¥7o^§Ö§¤v´/QIÇ?Ð5áΚij–pÐZ˜+ã[é«ÏZ‚ÛEAZÜ.ÃÞ¦‡ú&œ:‹_#®¤šâ]OöÏÓüP*ÔÒeA …L¬‚8Þø‰cÖê%4J ’:YËîI -°Â¹ýúùa‹²šžf§c~Ä ”îJPLÒl¸¹7O(5ÉDš/Ìt/C¡.ZŸ_ ¿1™ÕEÚ¡*²[;Q³GÈU—ÀŸÍÅâÈP œoŠsø–h Q:L)É[ùâaæê²–¼77<Õ Þ¹¼¢Øy O.PÁ£¸:¿nÂgFÒF&˜L©|‡Ö5cv?Ó,ÿ!ÿŠ%Û~ä¯XH$õ1›î¨ø$÷z˜×p”}Xä)ìøÍ&yó&`w?¤Ñl™Y Îá¹ Cvä¶)• ÇÉÕ©k¾ŒÒÓ›¬‹Æf¿°â9ÊŽz:€MÉ¥Û­5ÖO[ m qUP¾ne¶ö€W¬†{w†ÉêD÷;Ý^ >ÃLÓ˜”M%Å´Ì­ñv³)ó±mvßò ¸ûçgi™HáUÛVt›øÕù]ÔX5ÅãzÒñÊëߨ¦®Ûйê^kC¾®•Š@ÒîpùM89¤‰”×cØ3ˆ4|©§j›#¡S|¿ W}X(ãSÁ«€ Õ©ÃBL1¶@ÛcèÜÝ/®5„¦2°”‡Ø uæ;é=ÔCþ3`~ÝÂWrÔÔv*pº`àMú?§gˆYÒOéxSø ¶nä¤{=›ì~Q³­zÚͪYä·BuTøpŽæ6å•ò4úGòøA'½_wá!×ÊT™‡“¤¸Ý}r_WØ4ôÞÚUWmèäÅÌV±]•ƒ´¥Üê…»k›PhKäÖ:2?øÊxE¥î¹×Ó=>Ùª ÄÍúDÕ?hкÎí°Ÿ…Ž|m™Ú‹³Ä±ÕÈ· [åP]Jr…Ì^ÕœËPŠÝ2’ïà¨ÃñÕnQ÷\úçŒÌýwâeëáΡ9á…×¾ ‚óÉ”‘îY,êJ+3DzË,:+ܯ<‰&½Jf¥iç~›¾ÙN×Í–Òm ðA4Ó X!ùow÷©Ä¡&ÐÄÕ?¯+™&Vš×f‘µ<ýùP2ª½5%¸âÐÜ]zHÊGàeþ½ñ«1DÆÛGoÿ$¼-ºµö ßü ‰KX¿^O»©–Ÿl¡Öüiá‘îX¤Œ’4¿|£ÝôØä¨º’’Öœb~q™/:L\¶ëÜ‚‚N­§™eí¯u7ó'c(å…è DD¬ç5­«L ÔzâljœÊë:N‘<žÇˆ¯ªa‚ܳã&ná…™eef×ç¢6µ/Br-$•o—ƒòÈ)¤±îF™ È3vÞÒ]’ÒWkVÄ z|#BÎÀg† 6Ö5P^quÒÕ|înfaꟂ©nYx1å§OûïTV¶Ö?ÚLäÞ›ó`'0ª˜íƒ}ýÍNÙÓñUh¡ÜL.›Ï¬œË!„MPð0KE¢Å3‹hyªÞXÆ÷{I¯‘Ááàk][ì’føÞ)Fïw¢%düx=›£ÿü,¤ Aé…Þ\ýÞŠ$×Ô„Áâ$2·ƒ\Ã5ÂŒEÚŘ®1ª•»´R5QçF *Y€z9FI*V|Ì…—¢º9¢*˜ J¦Oá×ÃÜ.Zû_A–à X„—Î^ó1åÊßH™™U³=ÚPì–HJUýÍ«_ Sz5&Žâ Rº»cZ.x½TÕäZ¥¾ ¨=ÎX­UÜÔÜ™ áO}úŒ„™yß8&ˆÃ•­ZaÛrp ¶Æ~Y`æñÕ_ƒÔ‡Õpv³˜.$Hm‡7,oªÉ86žþ±3LÐNdúnF¾Ž'Óîvq[%;b:¦æóPÿ¾dJɺu~äѳÕÿÌw»õû5H¦âBðßúð¯\Ìñ´¾ ÐaÈ`¼ª»%¼ û G—1âò:î¸WQàÈP.q×O?/Ro; 3ß"°ª˜M†Ù#HÀÈâСÑ>ÞÆG€ÛéärX›1cQ¨L€]Šï‘]¼ôÆ0˜jöÁ­OÚ1ñLNŠ +ƒ<¼Y¿S­`ûR¨O?ÔægCÂ*' zøI¸þÚAW8|;ù\ÍäüLzP»l–ñfY¤TŽ6x¬Œ.QdæùåU»Ä o»A[ŸËFÀ&ñy X¯VšÓrÂôäzóuýÙñˆyõ²¾ÝÑ íæ (lœÆ‹|µrjÌkÇÿB§s̾âó9 z´_˜2¨ÀV~È‹]<Èy¦átbÒRvÄyœl»­Wn$Kî¬Cß·žxÔ{ú—\Ô¨L®ê¬Ú< Mt/F¡A„&”|å7JçìA¸žpfq9…ök1g4‰‰×\ÂQm¯»¯9êNs¦ÍI¯¢~2§u,¯)²PÛ5_e¸Ïͯ2/×Z{&؉)Äœ^BÀœ;Êè_z»r}vùhLȧÊè¹FC¨l0 Ÿ«ìšQ<Ÿ ²—YÊŒ;c0 ¨N›[õ9óOQÔÝýç-&r‘ÚzšARZš>ÂkýQ¸œ%]à¸ßqTðBÝÿbêÜY>ÉRqOÛLÑç4ˆD¢†÷wûCv#5²àš‰âqÍÉ’…`ûz'øñÛßúë£îf0f&Ý¡üèíÂ1œ¢°ˆÙI|†ªžEÖ9ÏO³‰Ç< ­P1Ý„ãø*þÁ„é7Òj+ÐZ¹ÏàäQÀ¸j¯BX£›»Wz ÚV lh•Ž<'D² ï÷ã™íG—âˆ!U IUh;\&݆tc½9ÿ,ÓIH‡î­½õ)Ãÿ¿ôúÀOòÁµŸ˜ f ¥½Cƒðc¥»£*•èE-s)ÐY&/ ë‚4|e41u¿œ`¥P­“Ç"Ù =ƒVÄŽJ=údo*6¢-'†ø±õ¢ãÕ\íá~“u‘Ø¢¢1§è@ŸÒó{ÈL¯zïÀ3ÄHœÅQƒö’þ4À²•Ìý7[ ªUæ¼ ‘RDµµÕˆÍή2Ј±2>(§Fi¬2¾@Ì;O$T¯ŸòûrÞ0Ï#~@¾Ä+>,öÔ “.3ÝZ•÷ÈäAÉtw.IO0±¿gZ—$L _¢•¶~@¸HÜK“Í)lžÜ.NŠnÂ-’Æ×üßMàúH1þW&´ýŸ ûióÕ°™Áo±ñâ ÈÍ#Ú­ÿ¥s=Ÿ¦@ݲ7O¡wKŒûÞ?Sò0:x|2'd }}²ù>þõ%„dÆe^BQ ÿeªV ¢çaŸ9 v:îRì“E#„†\_ˆ=¤“­5L“ÎΩYžÂû9EìW£bÔ&ØÎ)ë M¸DŽù“Y|’äA_ 7=ÆBPÿê¼`3wÔ1Dz·3¡Ü˜у×$앳Wp·A«ƒ„˜äkÜAtÏÞ¸Ž ù—†žée%ŸÄ8™?íÇ‹¼Éâ}T÷V$>–?Ϩ$ÍØgÿÊô…PhžKµBmUŠOkA¬†ß™«ð¤ª+ŸæXr‚ž_Ó\|“zôX»p |y ·¤³Ró“Ç;¿¡Öf°¤t4`ÿÈclXLL.í0ü}uèãC{?×I·`6†|MŽ=Bžk\5;4B‹½nÝ>±Ê+Éïëöµáâ®&Q¹%5Æ_ûÖ +Æ‚L–/P—Œ†~¢·‡^žu™ýQÈ}6à ›”‚H/+™ûWùrò@µÄ‘UÊ™ÔU·›¸*(CB[f×4KPUï.“;å<Ï…­H]•A1ÀéÜŽS„ø7ëÄÏþ˜# ¬"€1ióÍKõ =QKs$ûíXÀGlæòÊjÄ<®š*ÖÿS¢~lÞg÷ªs­A Þny8ÁGpŽQµZߎì°Ù)óU ÁDŒï‡èƒpØmrvÏšƒr…fúKFây76òYFU”~…JsŠ‘hŽÊ}Õuâ¼åÕÆ(Hæc¡ÉÇ̲Œòñà[_Þx2Øóƒ Œ³ õ Ygyzäû¸kÀº×ÈÓõ–¾zPœ=ËžŒ­"a¦¾ Üc¤ÚqÔdP=1Qo:¤ï?Y¦§Ë Ï* ì¯ ôÑDÒsA_ØP¦¤µŸ]h°‹¬jâ?›°ki®¹Ol$“ûΨšM$œ³ù£‚]OP¿»¾1+bk-ö)¢HßW}qû%\›ë_8Ëè2¨ð¦"9ý6tKzíNgšL}Ù |Öò“4@±&êhˆ*(¹<žhrÝu®TaÚ4rÄÂ>°ŸLÔœÚrÙ ;ŸÓ Œkˆ—#\Ã-¥ Ø:e{Á\W‚+ ­Š“3‰]TôoCð•£W!rWv“´…Làbÿ&h¿QéÐ eΘ<˜A.M½ñ~w¤´Æè^E©€f#ém•ru÷3¬‰±E= y^&´¾ONƒ•Q9’H¦Q­ aý¥¶ÚIxc= ¬¥Ïa p -ýRÚOâÃõô<àîÖüÕNQÐÚôÅa¨íq0.,|g(•"Ä&uróÁ \²Ieý©U+9—œD;£,Tu-昨…)[n™/DÊìÇj4\ævL]ù’gš5æîÉ©¾®üûækŒ×x˜ÖÄp¤·Á”$ÈÎr‚¯ªø. ÅIÌòHŸZx×lÒjžLJDÕ†’7 ši˜y¯ˆ7KùÍJ¼)›rÛ3§?ÈGÚÈ#ünH¸Ï1Í»8Ìw¿0^\ݽ~¸ç”Bš‘Õ¸øçLa­0 »x¢×±²ÞX¨"½–£Ö¿¦-VùLb[ß{[§'4–5Û$01®½ik»Î¸*KNEå%« AˆŒÄ\Øút¸Ä±E?H‰žN~]ò3½‚‚ĹêÞh×› ê:cPÑã±å  ÔÃò¤ÆCTWI%«±ÝÖÝúaÊ:F»›æû®×øh GP:;›L£\и\&ôõ b#A°‹oV'Ò-€G8 õºï±¸±ÌçmæCµ=GÐ"3¾>;Du9DkB¤>äîËšñùºŒÈrOÀ&L§´ÖTÓÃËDV”QYŒ¹‹ðV´þ}:ø<3ì©è… “¡þøÒ‚±¾§f™ÇUÙé,Ëæ6 ­~xIñ4‰-²Ýà k«–ÍM„ 1OªÏëÊë²Nä5E± §›Ì­Ê?„O%$q!L Ú¢ˆ)6f·×7X;×ùÀÕ“”­ËÓ i‡Áÿ"dI±IåÙMÍ% xH<k÷¶5¸ËÝÌ27;Q·ÖR¼OoPS6[ŒØiGfcÇ1©R¦$ ’›K!ÇÎvtE°üþ¾<ºÌŠ™öŠÐàÏðᲨ¶™CÎ3d²ʨÒŒçiqTØh»¶Yit_õ¯DŽ£„MuÅ…ÅQÙUñîDeù ø<Šý$ˆ"Û¿ðJ%£áuÇ´ dìpõ3üŸ,PzÈ9•4»¡fU‹6ébðà MufïD´ „ü‚ð'» …Ý9o©Š9~Ýãl¼—jºn¤HY[¿ &þˆÈfÄû®uF‘„VØP2Â};לžžÀÔ¨Õ):­øR¶QÎrë‡ ×8ð˶Qñ¹– n(ÇT%`¥ÙÑßF@sp:«î‘†Þº†X¡wÎBþ£÷æÊ.ëò-QBMŽ ¶=œù3¯q'G! A{TÇ‹4Â`¹–rwõ«ü›ó‡Ž—æŠG2hß~• –˜íŠE¢ ÇáÅqŽæHpÕî§á[µ‚Dn2/Û?w~:߂Ĕ¨zþßñ+úynÐ2Ç¡Xg €“?¢¨î>ƒ.¬S6„´`•áP€AÈFÌ F$~žÈ¥ÇÛÀÀ‹ñX“L$úì±_î²>¼*A˜M5îé(±ožšTf29³jä4øKHpŠ8 ÌéH¡É^{Õ1ÖŸX<Ñ“½ÉõI‡ÝW׻Ȼ›ò¶³/Æ¡ˆ·­|K Ž ±¿…õÓXíìö¼?Lr­€fý²|10ær—‘¾ÉÍ#cJ¿ž´ ·I$”KDXÿ ŒðGè;¦Y.UnËB^yË…lÙ·>ÃaDÊ8øhÙªSC£yݼ•É‹·' Ì¿¬frcåjƒqQ;p†Æ‹á(²,&ðó“iH‰åR¡ø[ýÑ€â;ÇsOÔn椬Œ¨u<Ìw¶)aÏ+‚<9ûân¸Ï•V¼Ì&¹<_}ÅzcXC& õáÏ‹)f»LsõbyŠžµÒ)÷³ó*\.¯`9Ïb:æTw üØV€31ÂU ÀÄ`¼AKä}rÐ_[ß­Ù½æ¶â5 …ï±?¢å{\‰ŠÔég~’”ÈI$"vö2ìênÀ 1HvR3l˜‚ánxпdáYôþ¯Lgä´bÞ8ÇR¿ç‡¹M¿p9†Ê, Óïå#K”¿¢ÆY~‡BÓÁÞbd&6û§Ì·ŸŸ×Y†~éÊü&4ÈÅ%¬¬•ïÍõŽùÁ;”Üí/GðJtiÞ VKïÓ¤¹t>Ô´oäe­`±V}èˆåjÓ‡_ò8A›VZNž\ŠWVc‹I¹>&bW}®·ø!q¹Eâ%•<‰Tè&Œ@ÙS.ø¥ª1õd¶­9±óµD˜'öÙfþ¡å)Ì_D×ÖÙô‘ òR£ÄØÁ­,~›Œ O{V™†ºªª§ÂÈÔºôFTl«£§ êˆI%»ú€½$Ù9𭚤(Täüâ-Ž›)R¼µf]ÎÀ²‘NJå½»Iðl.²¸ˆ™hP”2ìÜù¸îiv)ÚOüÄa´4Ð]ÙäRŸÐÀ+׿Ö}“‹îÝÇ•ó‹TÕJ•›×4Æšªªàï"£>R»»ý×ÔƒrDÈ7diÙEL”gòñ€aÅv§«Šªi8Wß=ŒŸ« ±CôeÝÝoØÓ‹ Ÿ2­3ÉáÓU)©Œ÷NR»µÙØB 7W{˸ò§Ä%=»ÄéLÞ¹: ™Á”úf GЦ>Y÷¥9&ӇߨõˆŽ “Õ÷eó€¢Ýz_^°ÜߌŽzYµËôZÛb(ÎÈtÞ0å´z±c(Ñøü#œ|Ù[_¼€&Ö¢Ñ/ØX„ÜÕ‡‹\Hyþ­ü ,Ù2»‹U£ñ¨ý‚ØŒ¹¨ û£¡±$>~Xû­úÂ9ZÛ#S#å›óE '†5©È‰1®¤˜«mÒá÷ùDC·‘À( ä–ÖbmÿVŒ·¾<•Òá1a¢È°éüôäÿaÆMàõÊe‰wî(3Ú嫲ñ=œ}í^€z‰£ûÕ• [”$Y}:´#é—Œ!5 2´ÞÌ44]3¾õËÎFëY×BÚ\_/ YN„ nÀ]T¯cBò-2ÍÇXÌ倄—¯«¶T±èÀÁ ¸ˆÝ›yèaÇ=ƒ-¹ìj+%sæ®î¾¹œ÷·[/!Îí¢–y#ï‹DÍ© µ#%‰V•’qùR†œR™ÎÙ°SË</̨ÒÖpõŒõ"œð2W£Ùüq§FnÁd¸‘OÃ%J–ì³1Ѷ؋ó sÑxëõ^á”`NuŸ2’Ø<{ÖBŸ´“ŸYJé&ß@J’SÀ+ƒ¢ /Ë– 0ÁFº´rO^µ)õá#ž^­yÉ(™ŸÃ ’üø™²U:0ƒK.ä‚&’W/¥æ¼¯Åd–%"Ê9¿Kf7 E¿÷M r§a®±óÒi; ™[‘/s_ÆZÑu¦tµ=Àv°g#ûp½“ù€Ð2Bã ËÐ`*÷e@‚ëÜjj}W¢G îÂ-\DAQáÃBG+÷3š5Ù™ÆË§…Mtå-g¤Ï'ãcš× É|Å$;b˜1ìS@3JqÔ]¤heݤWê×™0”]†¼e¾8P[9¯¼¬,oˆ„WU&õŸ³™_qi ª•¸ZdPIÿ²ÄâÈ ?`Pw[9AÕŽäVÜT•”¢€øf*±î]ÂŽÃcÂ@º©Bø5—$/ïÆ¶nÎiT+í%„¦Ïðù¥yS6coâÓŸbÀJm¹Çx—¿¨ÑTfVG¥ 9RÕ/CÀœLkøXÀºì­ŸCUWbÏÛÿ7B1ž ‹þd–Ò´³et÷4Q j tW3îtÊF'ÈèZ<ä!òµcë³k£%lò4×4 eY²¬³Ûtà~<š&ÀËß8iôÝ]”Ä è!•êA¾(ûÙSVc«±h‹MA” ŒÂðw'ÆÉ%ŽzÓ7ª”Ìn(Œ^MÌ¢þ£¼Ç ~Z/Ò«à[Øp`ÒϺ.ùq‹T‡;Ül°Ü<}Õ”#vÄ×5Äòaw‡M_Ÿ›3 Ê7ЖˆTO 0¡5ªÁ¾ä7¸Ö‘ÓkÒâ‘~T)°$Àĉži"·ºæîb›Ð-¬‘cø¢Ô@Qk¨¾¸"¿#ðcyNá¾ æñ¾ÀŠ«\,Ó‹›ñv¯¿Ó¥ÚÐOº{im”tÂ5±u€ý fÏ9Õ:mêGÂÅe±‘ÿ“rÈ$æÝä#êýï™c‘Q_!‹M¹×`ˆÎçÓ“?²D`ØÈÞá·eCžÛO‘ݲQºpØd5¦†þ·Ó`ï¼ÉP«›“ÃWÇìS_;Ë6¸«§-Ó’Uψ®`ÿbÚ­ÙÍó*AeꪭBÝÞYùLÚ—‡—ªËÏdþ’¶Ø¨7«Rí<D‘çæ«q±Õâ…`V¾åØô5ÃÄÜ))+ˆ×\ÅÅ@ w@²€¹VM óÔ¬vNz˜>ìÇ}Ð*?ßlv.?¢¼¤èn9ÉÐ|ë}-.“E`"­ù$HÎW?g™­(‡*‡¥·¼…ÖpYÑfÚ9žï =dÄ6{!úkw4×ßî°›ŸºüÏwÆúfëåÇõ2±QþÛ‹9‚û–Ùƒ‡9~}ŒíÖ²À|¸Ú’£µ½4<k·Ë²åÊ¡½NûŠëÍšùU';d*¤H‹¸(àèV‚B\%X×Ð˨«½EÝt=x±ºS_vç`zN]S,,è,7Àâ}ræbÈ\"_LDª>xI”°x£Mã%3Z'vXy–{ñlìÔíwH`EΔL†qåUwV“›ß“¤Ní²Ì·ØáÁ©-ýïgЧ ç>DÑ¥B#n?±ªã ÄùˆÎm[ô"¹ŒÄD_¬s!·;ƒæ”a]EšÙuÔ[F´šñéÚ~Ûÿ¤ÑIÀ)Œ‚í¬ñèÈÝ̾s>x?NÃBüß7¶LÆðX2:Óæ«£,7RͤY"o€:rå»Ç7¹o`¥Ìý÷’L>̦:÷³úmnö{öý§;K?°Û…TÇÒ/Íáå㇌E‘‡õ>øSc?ÄÞ-2§]kÜBIöQ¡>Q^…#’8œ|g8¾6Ÿ6MäœÖ0©Eœ¢«CúŸÆWH®!aÞ´¬湓œ…#»G¤Ÿ GIˆÒtá|}s*Șø§Ášº,N­0Ñû2Ž,£;È÷À¦ü£+A8ÊõÍ(piq–@:¸ÿ¯ ˆ,!OrùêWRL›”¬¦s†‹89¾’-üŽÑÑ€EpÝH Þ+‹s¿²ÝÓ³11¥ØËðf}cC‚eàŒTýèàÑíã£S…г&™™ ¨œ Qì±ä¦çó°ÐS7^z;KlVzügKBp¢÷€1ˆKÁhºë@òç_{¸kXý¾Lªk¬ðW©] ªƒëKèö¾È”C2y¢1JOP¡5ôݡӖØé|iâÄBøØÐãÔ‹ïß Ûd£—yàÊ „1”[4éXßóE ”Ò‡ß8ݯ3Ó~ë_viS|uaN×™üO¾ó’¶Æ®ë~}S™ ÌOátK©?º§.–À§^ïÅM¬—ƒÎùúcôç¦ïø5Ç‘Œy—»W@k"Žbüï½¶ô…ާC´”amåc¹Q’ƒ’Aþ»ÙÃûÚ Ù2W|5]øÈˆ–&Á–:¼ó¡'ÐQýõ)¨p~·L.AVÐ;ûý¢èý/.êè ¬õ˜çÙa¦“OVr©ÔɼÊûbÝÈôéL%³2´¬IÑk_ÃH8@ ü8ÎÕ9‡DSF H¥ðh´ŽÈ/ 4eMÀÈ.…Ej›Ìï_Î~ˆ`ëðuØW!Sá3*7‰LÞŒà ~Bå4€1qo õ“=NN„M¯ð6 õ¾˜2™†jw¾•VLÙ¡¥Àõ£7jîÒ¦@w=ˆº'þY@x™ìémöŒ=ƒD_1[RÓVtIL¬r¸MÃgïÅ"ûKu ?yõÄóñÂt¹?ýÕÙr‘”  ßóò%›Ê-+3££º i4§Rj}mz¶–{t°}ꙂHqvPúZ{¾Ú}XÂPÃêd Dé + )µLÆù†^jˆˆ^­ïAÔŸX®ìøPLz8ím™C\i°›­8®LÐÔ€Š.—*Ô¼TÎ8|çÎ1ÿVª2;_“¸Ád²º?òÈE±Üw«Ã$èr.ïN0›¢a¸ø7 Õ-6_HÍͳý³çøuŒÑ¡$‹»$)e‡ô(Ñ à+†VÜpì}¬¡ cÕÔ@ˆH#“­´þ{µˆ´ó8I:ê-›çã͉Y(kC³Úº¨¾ç ùÄÂìzÒV,¼Ÿã*`Îw²H¾Qx7/íÃâu¹´8{Î}¾»D»Ë´øÄ­‘ 6èNÚôWæÁI8¨?Óå8{×›Õ(ýTåA€Cqµ¨G£Ž·;·68v$z"CäŸeóN}+ÃÊ„9”­ý*ß*û\ÊÚiB;¿‚“D:ˆ-$ö-\Wåüñ žά`ÏæÇRODísmBòÙ¦½E¹ã#IK.›¢iñÕ·!sSªÏTã ”HzÁr÷G£ôÁdw&Ý¢êyH™~¥îxvÐ`Çfíâß÷•ºéLðÕJÁ¼Ù%š»4î(áa u&.ôœ;lb²À‹ömKéëY¤ÔEÌÀ¬ï©ÒsªS1i_¸U|Ðmq›y +Û2ÙvÕu#qÒbúð  Ô+[®^9ÄPçAR¸)_'lm©m2–+gUšwººQÎŽ~wj«„‹ÑɘtÈ—ÐèÛlja 0úb³Ó¥¢*i¸Yú'–gâ)~.ã]F <ö-C¡yö—…ë “u…Ú{å'0× ßí,g%¿—‚}éΠ@i£vϲ¤Jtþ5—º´1‹ûˆ²Ø»äQmö=W-2x»o†>V‘é óyô—¤LÜ·ª½Ôvó ­ô_ñèæô胠˜Ë êI}ý5Lí.ó*4/¾_Ož¼'“NLOªÞA­3™kCÜ»)1åm?å eî¢UôMAŒtu.>í¸^Ã6I9è±Úÿe’ëÁÂ:ÖUó†-àkî.Œ…ä?føðï’Ť¡©6NõZ“ÑH‡°/s=g/1ý^TÛ®‚©RË˳°y€âB¾+Á&ÒìðJ½g.eÙHÜ_ƃjþG.¯Ø•íÎg/ܰò<ùO*£æñÄ2/ÇÞìwÇ!?]OϨ=ƒ@¢J¤ç6ÙŠ36ù_¤nS»éƒx;½äífC"·#¹´7ÔR…Ùp—¦Pø.yÈ"Óµ½!÷.€ ¿m®=müàÄ(“Â+Döõ’MZÜ,~õÜxúkÝêýÒ#)@NëÄÃ)ÁÝÚEƒø¨æËû“UúU»bw¿g*ømƒÎ0Õ²„ËÜíF¥™CÿÓk“ìb dA°OO½ÏúeLØCzHÓpÖÿǹ:ELÒ}\íJrl¨¢VÚøQ€v¡ Î ÔÂÑ‘¥8i`>ýùË4Ëå~¡+Q,¨ÔžÝ»¥Düh Md2UÌ"ƒÏ_ùÕÖÍå⯌Ck_z°¬þ0V{–Q}ßk°kèàòÚ=*¨y†7|…AÓo¹ c×\b OýÙ5—·&–î“k×ÐÄ!¥“dÀ¥0û€ˆ„œYsCHÞ8Þ×´ø·R/›Ýáïh;2Õà@JÅŒk²½ÁUVè“‘½md ½õ-e<î™ÿ»x.™Øó,ÖB¸Û?8ŠBÍSð2–nX}kK´y‘$~0Ÿ.MÎ5Á¶02 €¼î-ò@Vq÷®vY>1W{Ê'ˆ‚¦9Ê"*|Ò¯Ô„Gxð¶ŽèIæìà›6å™#%Töí‹eêwƒšéEÄ8>g"¶Í7‡ÝûP9]^Œ\š5h?3†ö¤ôÌU‰ãª­S½ù¦:ªßxWm¦8ÀMEcP#çÏÉ(h˜Ùa©Aê»ì{/äkåb¤ÿ¨ }Fmš ‘ï?°ÿú'¦WÁe…@~£+Ý{Ábù;&_õZ@°öû™»ÚQKìøñz~Àå©~Gðhˆ=Ë¢ˆ|hÿœ.*Ãëïl¡`}/…EÎsæøFÐ×8Ÿ½ÃÿÇ&ìù FTj|ãÔš×3’?Ll¡÷hD¿‚÷¸÷Ç*¸ :ü–é #ê/ûð;Ò)Á+켘‚X à¥!KÖŽ‘a££yÈ8±Ü1¡ZsŸ”‚rˆÈ&^”C.Oy/žŠðøí$Y;€RîÛ|YdCæòÒVöÅH»L¤Ã¶9û°à¨è‰„4Ì*Ù=¬Ç*“ÙáŒUdupí«¿ dòoOgò¡qñK˜TSî`õć«?]˜ò§„ûÒËEy d„Z¿Ñ%TÜg[8ÕžS£a&–J•-Î%ÀRÙ†ožÃìËè*µ¤»q[7ÉS¬º«%+Ü@5ÜâYofæe‡ÓŠMÐcy€´.&מÂÐ)Íò`]Í,yZ4…ã†ÕýñRKµ²ìó"¼e}×›Õ®”ÜfŒœR›¤½á„Ì+¶öƒ¾”; ?5{u© zzŒ·Šƒdý¿X±»=NMB¹}|µ•ê×ȶv£‘W;¢­ªà‰¿îLtw¹eÿïEÑðÑ×àÐU@x 9T!Õ£Oõ}L„Íšÿ¾IÀçqözzöA3ÜP‡Úå{Œ°9>æx«©Y]›[ü¢ÍK‰*ÐëAhýK÷ñµâ7¼drVrX¢:\ñ°&@7îÉøÓ Í4~ã­éÓW=׋NKŸ«˜ÇÇ5Tn°nw˜«Xœ]{0J2eÐ=Åt‹¼vV#+%³ ‰iîñQÃA±ïôµ¹ë9Ù)…!±ÄЏô/`)GvaåO`¬«°Qñ’u8AV±öC\°`›²fË6]½–x#YžmÝ›:›(Z7³¸ÆÓ˜Å&&Ø3™Óä#ÂÇö_sMÇh'):ÞˆèÂxó6æÍkŸ*kèµþáiïÆn/‰/‘”ç×|´ì>#}°?Ô‡‡QûÁquïª+dOôŠ‘…½%ŽeÆm:‡V„ÍËVƒKÚÉË÷ðXå'í 1¹ª±Äe³ó¹Ü‚g¤I"é›_7H]‡.?mÊ%rÓJTïéÃñ‰j$ºÌ| •8qÄsÉJ{0íWȈã$ÂzDaßgèU`“Bwweb^ýAäæùtóïX}½^Yþä l¢ ä‘χI?>žÚÀ€ÄÓÉ2ÜSP¸†‡G8h~r N«ëÜ©œrªÊFWH`“Y Ia§ŽÍû  Cûö}íJ=Rëµä™^ö¥¡\ˆ† sZM‡=í<ﵩ1¥÷)“ïm‹wOR°KÔWišrùï\¹§ÀD»[ØÚݧ{+P†[ªŒ–†Ù§¿ áû sAÔÇG½eqúOéüLæò3¹‡ùìºé~E!Á½Àh³ÿôüë­”jl ÐZÆxDØ Ãt©Ùd©*;ì!›Šƒ^` Ñ›çqöm?}a)Š'¬–ÄIÞ¡É&ŒIßþaᑤ´pý€”9!Ø!’ÌËý~Ã…i*'ZöÕ*Érú¿Í?"›6ä¥Ï˜rù/å[œKßX‰Ê|ÿŽv+F9 >ª—áÇ Ê­"{@¹ÁÂ+£’Åâäb Æ»ËuÜ=Ò ùâ !ÝÎKz#.D,,‡½.+¯¨ì/ Mض¾°Ä¥¦T"ró„vÐÓšÞ`‰…Ãÿ«K2:h’n;‡t#+ÖaðJx¦³5 :bñÃìÐŒöŒ[ê ž †ÌªÙÞÉò"’¿ýÜv{R”Í ò™Éë—1,»«æ·¬¬i¡Ø3ú׆¯pŸß™ÕÀ2‹›¬¢˜QrÞfà_Þpèñdjc#4Ö©Ë¡Žî…,$œI!oα!u€›ô…,*|ù2& S†ì¤ð´%îÇ(uQ§BÞÒuëÃ,HÐOú±çãi]+Ÿ¿@ ¸Ö19‚ÒǤÙäV^)Ê?ØŽ 8‘ÁÁÜïŒEAtŸq±ÃoDlG~=Æ]t9Åfvb)ŸÍälC×(pÕî­Èì£6ÙJ‚%£»l~*x©Áo†”á…k±{«2TaÂÙqмüÏ` ÓV#µ®G<û_ö5I_NYøäŠý­µ°³Ýç´eSÎyËÞÑöôãEV¬Ü­ÃÑoŸX÷–¾µó^X…åA“øØn|j±WVØ{Aßc#»VgÞž¸ú+tyfÌn_MÌïzA°|5ÉWr1’sÆ[”tË9·¬ÁÖtBzJ$µ’(QÕª=ív¹0O­ÅÐ]˜ñ°ì[U…–å˜.~±|p„6uÐì6ƒR­-^jÙ®˜Öøøg9èŸü€&wÚß„†Óý*ôÌgìÅòꕞœ²æI} ÔJUWD!™hæq¢h•¦%ÎI8Œ»zÖ…awº±l<2Ë uJó6Í*•2†H­Å*NæyGË=]=ÊP™¿øy äõ Ë $-‡ô°]«¤èO<#轂ÇÛþ+³>ŵô!ÂCåG”hGö¥i‚`’’«ï/â˪½¡ôE2!<àèØj:½Æ‹‰ù*/k‰­µéyð@ûF\o‘¿H2³Êz‹‰ò·‰ªñޘʾ¬GªÙþSH»íj¿MŠ<…w„'ê±ÅuPÔ 8kÎ(ã£t ÿ°$öÜò¸aí¬\1‰8DuvÅù¤>¥Ç2h1Ÿu$råöh °;ïž°\gÛÖ Ž¤)¬—$Á\ý˜ß›\«Á¥Y:5ƒöƒÉlMX¹¦G¼%«ž÷g7¥åàQczDë~ýª$’mÛôußâªÏTJINª_@„/¹I±h­’FBž\(¬‘B‡ñ>¯´ùµŽ¸ÖVû¥!¼-¡ed’À”’/g<‚•k'§s È>ö²ö5µ6$:’o‡i¯»ïßz´ØÈ0q‚!€E›ÈbOõ62¯ß1½ÅZÙ`ÐÎz„jcÊ(Æ ]Ãíû•S"—ã/ôúûŠ';újw3'äˆ&?òäMFJâî0’¼UùsÒ H›i³ìݤg1X•N¯$¸ ëcÈât?‰9e,ŠÄX´ 5`C”ƒ/$”ª¤ÿ¹q {rºŽ­_‚GWúv¢ó"ŠQø|ç-é+/Š/že“3QD‹ß E&Ìñ+¤%) OÒA,EiެK«=“¹hLÃâöG…‡ICÈj¤f«j/Àɲ+kÔóP˜Õv£;@F£%íQŽä@Ç›88¥ßWeI{Gõœ;ïTÁä€ð\/rîI›5Ô?ã0\Bá&á­‹Í¿Ó~›ˆ5¥Bès+ÄŒw2hót×v@³„¥´Ílg0*åf› 4_û± ,t£3ÞOÆE:$Zw—´ÉŽE‘¬lmºÃil"hô‹ÛQÙY¤¼<«íâ sùÀiªDâ³K‘xÔÍŠU!@;&O½f­ Æ—oo8²×uŠaÈÎU±pL¸×*|S½è¼YEÂÖóÁ` >àôô ”VÉàígg¾)0µ¤U^|ƒ}Ü…^í'HýŽÇïñÞgM˜šTÊ·_÷@ånôYç¶¥ø)Vïºtê«Óqÿ'è(I§èY0`±¾_:]—ÞQ&3,ñû| Xœó˜ÝîÆÆË~ÿ Ÿµ¾-óhr€wpŽE°š<8µ=8J‡— [|›JD­£ÿý.u{[¶? ï-¿ùU²$¹‡ß÷\ÄKó-I  g«±Ç©µìÒV–Š qµ~+/AÒ+k‘s»‹æHÕ¯®ÔÚ†³ààrcª”*Є([ÌÈg"xÅÔ;ü[‘ÏOiUß¶l1Ï\Um…$Ã]_7íÍæßüÿbë2rL°t_JÐL§ª¤J6ø;ÉRñ¥#š¢[²’vúÖ=W< 'ªBåLÓÓ>PèwùÇWR-— #Úe²ž×³ßÓ—•õ¢ -¦RrLF§…õW=eÑjª„ñ¶þð%¯äÏf£ËAé^Ù˶ü†ßÝk½Ä™ ÃãÉÏÙ‹°ù"ë1æp4 ÿFmv¯Š^>èÖT'_ëSç`iºœÍñ_ŠpR˜™ð¤CS&ëH¯ºd¹ø„ Ä%_Rº êF¯¤Hy¨"ýgGwC§q åwÝÑ1ߘ[¼¦=ÉÙ0h^¨Bñœ\*êÕæŠ6â ¢sžL4‚‘©ƒ¢®ÈByL m¡Œ¨’üÄl?° „&Pf@ï†Íì>½¨@ˆC²Nt.®ê¤`{c«ä6*S•ûÛ§DV¾%²ßÅujHÛ78+®õ‚¦xe]RÐ(• öáËÎ.k“·ÇLñ…Þfv«œèLÐ‘ŠÆ4û+¯ôÁ2@Wލ¬JÖƒUL<œ¦IÆÜ0Š¥Gʇ± Î#.¦ð÷önŸÝ^Ýx=ªž%,usGàBŠmI·±¤œ‚£êï$‘»ŠÒ`냤o¥˜¨«T’ ¿ØqwG^ø&&ú'èölÑ<-Ë‘DU~i÷ÿ‹r¬»öÆWÎÜÓPCNCpp~­Ås—p@ÜKD$«¬RÔ“Ñå H€k(¯ªü`³|L.ºÞÓU¦È×ä^Ý›\Â2‚¶f¿·2!œ^a9¿LäÉ)ûÇš2ºMÕŠMvºé•K|j<Ý”íÅ´suÂjRüoú˜Ë {”Õ %‰oOÈ[0Ó)°ÿ:` ‰3dÊ}ê”4*÷Š[B²¥<œnËkI“”?Kä˜"Öñõ$H»!l?lƒçŠ Þãßö™Î8®œñ)Ó½øÆ±®É0˜J¡ÞÀÄJ ¤/Ï=ÂË«¤˜i©2MZ‘Â|œ`~§ÞÆOýÂf‡‚þÀ~Òü7ž«Ðì„Öºò÷Fˆ;«¤è5¤6«ªŠH¬liDvÞ7 —~ý`ª&’\~±<ô;Â6z•!*[aÍrV´ÂpPÅ>(F>¥H õæ™&2YÕµPfÒa,Mt•–²êŽ|t%kö¬]oÃNÒÂ5¶Ž?Çï‹îpJÐÌ}ÍŒÔVƘˆäó_¤±ë­#’d4L‚£LöîßRÔ'9ùB]ÜwŸFÔp†ü}=EìYïÊH„ÀŸœ#ØpñZ)á!Ôäð’>«G|óñAΊJ¢l€‡ñOJw 1zí—û*ŃCB¶Dú-IUšÊ¥Î»¾›,\–í-£{ŽdÍÒVI¯Ou\Ô(”böú06C‚Æ¡iãýB5ƒ"‚ÍÜ)Ùý.OÓ`uo(ÍÞ›÷…¹¯11!ݪ©}†-ö‰Ó~#HrmÜq Œ¤¥I¼¨àô²dªÑ‘ eTï0áõ6Bhïø|ÍÀ;þ‚ÂHÝJaþ£îÁÏ£Èc ë½lBÛIn¯Ù=Qea¶]¿NÆbÎÎwGiÃcõüË$ʦä¾J“ÊÄãQ4s@ú”Ìi]ó&ªÙëeäT¥£'œÓô¤Ò~uʨäÓ±®oŽ¢c}^ÿ|êÛÑè1êD0;® —Y¯R‘LøÒý*äŽýM×Ó*ðL%¶-±‹p›8µ–Dzô°‚pºý¤ã­$=µ£wÁ=Ù7¸÷ •Ô©ùª'â–6öZÉÕ‹å9šþ@¦<³Õak ‚áš_¼óÙ %üÇ Y•ëì?UJ:ȯPíàÀ‰ÁK}ˆ ðÆé ä¡­uæJT^@U›£Æ<ºL¨ˆoæNVN‡Dâ¿ BuÊ¿ 'Ïîßý"í0·áŒ¬{žõgÙ"È[ãÝ8p”M·+¡×®î˜¼PWX ¶…µßÀ{¡i”¦ÿs»‘–î¯)j;SÊtÄä|¾é(À}6 ò3¨K˜ åVgqû\cBÎí’dlöõÅÛVŰ޾ÙñGÂ„ÝØWôk’bæ¨s:T„ꪑ&È*NÎeÃQã H%ÙüzÆØóÊ­+Ì%,|lŸú‡žªÍ€Àt²Û=ž…-l˜BÁ^Kè jQ[ðbAÓy}­‡ hÆ,$`RØõqêÓ8MiÎXn©{Kÿ±ÿI}-ŽO÷´Õÿ *3Ž5HÄ—Dbú5uìÙÀúlÃmŸ¦ù„Ç^½(E«ŸU†pgŒ'@…Ùe­ž…af‹kП‘4tµŽuEÈÒ0:NcpÅfâNÊEÅk„32Iýã°ñ<Ç;':PŸÓ=­0\O=g í[­_&Ëb¿`q¬ÎÐc·fžÔY+=™<¥C557À-Eå9½%åXY§‰Øì%«¶g5W6뢤Â^—Mg7”=¯b­ã"òP£Ä=ùØËðNÓxáù`Œ!û]ýHjaÞ#>AÚK*¬°4åòV#=Š`§Å#s©²áŠÔÀS™Íâ\žÐ•éÚÑÆPDËðÙ'Çîf¡¶“ €÷¥2¸€Q¤ TŸtĺEåôÖ˜’¢ý”wÞ`dƒ7+R•Æ^ ©¨6tjHÇZLšæG6û*nõ½ )¾—Ìn y÷¤ìRóE—¾ ý³±òG’”®6$8KÔÍŽÑÚ@È6J‡–ƒo0„°®ô¯å`'<¨£…ͬ,-yõd(iÁÓRªË_™Òmœk«…)&º;ã¤J÷ú1凋"YOB¤†7+ÈôC»gälÆÊUWi²©ú•݆ŸÊÖ,fw……dÄ÷ˆù“‡ •wg½0Èæd9þŸ~’%I¿eM!ÖWÑöÀ£¶êÛ¾ÞßlIPŠõñ´®Ó4Ê~ 81ð2ª€”ñà$f3AcqýìtŠ fÛu*9šh"¶htLˆ)àmúŽêbf0¶þø#™yÏW†ß $±‚®¹dzk:&~k€ãs`Õ ?jžö“ÂÎ'¥ÜÉsm©²Ç*eÌuÛ‚è &f/÷6Uí•££úÁ•(]4Ñ?ˆOS´ÝÉÒ|ð~WÊ_¨~…"u-sÛˆ7ËìÛÐ89w¯¬·œ+º.»‚ùÑÂl[;¦wiX•†¯Ú†ÌNÓY2?¶I¨yDÖ|OÏm›ÝɺŸg9#^B%ë×ÂGωɞÐ5W]dD¯2Ð)–oôÙmÒÚåo?r>0¥ÊAŒÕþès’¥bªTÀ ½p†Ô/Ý-Â…[é 4ýÝR²»ðì&Þr2Æ™eËK£/Ðò<(W|vÍ‘M%¶Ú4çûóW\CJªv7ù>V8ñp“Aœ'æÔä\àŽÓò߯5Mî½Ò)hZ+ˆ;Ù%AhHî1EvËn—–'ý™¾ð¸GNPÑ€Ò_Ü1›@M7å|z§†'¤Þïóµ-Þ€yAÀ Z,Ûy¨ª” Ž^‘¿2®Q98Æ(U“…”Ky^<*ñ¾,Að8‰˜öv£HÍŠR™ië-nëÊYk O[ôgûïåAš)(¿CšpH$ÕŽ‡°oj9E9 ß¿÷ö¹ú&úñܱ.wW7r%ôlZçßj}³¡„2‰%Ü—®*ÒÌÿYÔÐe¬¤±åIo^ê=ÏÖnèØlOijʹ/sÓ—ÔíJv-ÊsÞo%§UGϨÞV<£õ À] ½º©.5£û¶KŽ«IßSe—ìãàò¹)’vq T©_³›CAB#E—ɦ¹Üìså=ÔÎt¢ÆK,éq§âî1‡180fãñÃT¥.@"-΂y¹¥%¼Ql‰V$fñðtSÙLm¡™ ¿GÚv.Ÿ Ç»‚ û3šÏ¦õ+]neú°hC“ü)w­•£ýºÞ@ü–ØÅ3iŽÐk&%mFöKŒq%`¸r=Ñæ[M½ŽlnPÝÝþû6–ûÀ‹vKÓQâN›Ìû`ƒ¬¬ ¥|ß_ɽ¾×AÐùÉpÌéáu¶¸dô¶ÏÚò@–Tj‰CØbfÆÖÆÓœØó`õJô«þ=ˆÐCN$Ūy=%,2 ÊX[PYÂå<Ò•šµ:dbÉ„°×q«špiÌ)¦í»Pj\u ÿÚ¦DÎôÞÆTžôCVª(w(· ¦<Ux¥ãá~´æ‘¥Î­U! ª<ßq,ð°ª–À¸Š²…ªY5f>1ËþŽ*š%˜}-äó+w±TQ}HžÆ=Æj¬Í_Åg‰k±¸ kEÆP=z“ûo42ç_9[¤Öœ†'ñ£p€(5»•º}Q7ý-T ugS?CJP¸‹(nÃìÄm±û+’Hk·ß',T†ƒcjUî”Åo ­ø¾ž!ZŸ¶b`Z úä“LŒÂÓ"‹£€rsí€øÁêÍ,üï#Ü‘žÓÁ"ó-Ywücw²?w9’¥u§õÉdÖTTœÀ `Çõü((¹xK"¥.#÷<5±cäÖ8HRÉOûõÐ ´ «ðt5Vp¹;ýQÝuøƒÍðØJwg¯ØŠ¿*¡k9„C6ÁaíË\hxæ!0È8¨GYoÃGßÞ²‘Qñ!iƒš¢!nèE‚ZpbZÒŒ¡±SÆ®®oàê—[Ö‚ÞIåÝ—”,—ý<QàJSl¼‡H˦Y_å’ÿ¢ÌoÍ(…DGÅ[8£þ{&èMµf>¯ì= ˆ"ûÁõ†Ä¢|8Ëk«ˆçÐímL!˜=“ÁŸ÷°õí.b¼ü>åŽI>iA…Þïs޶Úé>dËFqpmDSaÀœ™mòBÜ—wˆçOpÙ%ÊÿŠ»àBwXOÎ¥Y_ÔÕ>‰¸$DEžqÔv‘a›žIm¤Ý™ ‰1¨À?ù§Ê6û9Ô¦ƒ7µK]—SbDÅ×ÑÀμD]ˆSê+fýŠ3suÔ]¢CþD¾Ë¼šµÚ‹ÜRí| šÎ•áLÂÊÂÝËœxÿ¦èç­Ž¼4u FÉfÝ;ƒºsB}GàJŒs ažóŒCO'k%• YE<÷âµ½ƒ@hçU6”-lÞ‹NC *@Ù/™ƒüo]Ãø„+d;S™¿6öïlRszt3Œ*"‹ÖfhÃǺ6ã½?\[ó•–?¢ÀákPq‘?_ŠåùÞ{"#²JÉL×4þmµã±Å0YþOMüCI Ò$ÄH¾ëÁ{ƒI&²ÝÝà ¤¦)…‘…6+s1Øbz/Uêœ¶Ï Sí¯ò#JUq"ä.J·þÜmmŒÆ8^›Údú÷EÕƒùžùS¿pLá‹V¾— b¡q’íl@ÓêÚÀŠqî(ü¢cí<ÑûKe01Ôèâ2+g»ÕJAX6Fñ7ÂýÒóÕ`7Q±DûƒlBHØ¡ BljLÕ@@F2|µH üŸ.Ú (€:ç8‡;ÅvÍóÖ†‘#äU2ƒó5È1·nøRmfÏ?Å0|ŸL€ù1»t h>tgžÿùÌä’ŠŸ´8– ¶+3ꊭŸÐÚH‘^Â2,XÌNÖü´ÚÑ­uir[4…ð»C©ûŽþPj zXÔV¶íiç}ÛÞb¬EY5¢ßœ%nŸø4^EZÐHâÏ寵 çý«8!ÙËíå.áT¨>ÅêµÃP-^"¾Vru¸Z •xUGŠ+9£ZUî·ô0x\'ØÚG’KÞÄËvûöU€CYdwõ€ì“"óâÁ(†Ø_û›nË(Òö ñ1gkÿG:¼Bغ–êÍzâØšþaS@)í\ïÏÂNGû<Åo %u l&©2„Ù‹³âòó ïZ¡ä˜ÌNë·ìS»>WÀjƤ¥Â'µÅÑ={â/§ьu<£ôÉ]‘9L€Ö"š:*,ÇVdxÌØÙò¯"û˜Çfq'¥8ñ€Ã$™> Øö üþÄÔµ8^‡\î˜\FЍ¨\µþ“+[Å ‚¦™Öí¿ÁDTo':6ÃyÚE7xÎ2¾_VúõѶÙi€_º–%§H'Š+f\²& !’X2"´uz W‹¡ý™úaD.[1ží°¾:„ÌͲ"ºÜ9 Ì‚E0»ñ¬j íÓq9’ ÄH¬ ‰â‚Ód%'†ŠY©\«ÃoRMž|Mª†Pó(®pBéxO“̆”ž7a~À@ìR*(Ò×»ü¾Šž&Úyšk*y¬aîÔ¶wéV2Þ[LbBÉ,@/ì‰Jvºj¨xx\€F/\¿»©yp* CPãÃT+GÒ÷…XJx @-}ù4ˆ¸t&©z <:+Ôíèçú“ØL7¶:4ÔËRŠ8ŽóK§-Ï×QL³U;QÔûlz*àó×­¦Ž‡^Ï9BŒx£Õ¸¡ÎðgYPq¯ÄÃâvz%1(ßÌÜÏþ#ïŠN`’˜T^AV™±Nu‹Ùag^f –ÁÞRAÌáwO¥™.°¹˜Éß“+P€1`¶«Ãréàæp¥L‚Á6³,qÕt·¥Ôº[Û,ÞiÉ/óŒ»VSLÝ‹G‹Ã3?1Ïk}3ßQª ÷%*hõëru8â Í™i×RãÌþŸ:Dz#È%`ÁN½‘ŠysžPïˆö6Ïl~"E®Èí¶ÕA„!±ÁqZ*|`£;Âë0>>²éêåçM‰M³eÝYöŽtAv ü¤Gƒ˜F7'øZ±NÃhšu’”¾6zœÍ>1J6ÆüáÚçFîæGšÍïí጖C(éÙ*V:¹þð"æî¥ h¬N‹“hÂ5¤åŽVJù᢭qs×°â;¡¸—\Åù¢m6žlš½Án£¹˜Übð¦»SœFmê „Âqvëé [ÍßlÕN€¦G´ú™<ׯC—«¶V#0)¯¤ùÉÞf†Äß½Yl¶`Š›AaÙçÃpµ5‘ær"äà/¦uô•× µÚiTÖõÀ𾹑¸£¢Þ™(ª®Ç1´ŒÄ.¿ýAåŒ>GÀÞ3¾hañ‡™uÝ:©ïg—¼mŽKÇ•sÞªs,Ç»ëÌ ‘ünt7¿‡p‡Xíf?G¦%ÎýŽ5°*‹ïG~ô:€ŽyìÎ #°°'s> ÌPí©b†ï쟰Êük\œtAúšøˆ_‰Üùƒ0'$âu·®Ú/‰%ƒtOdŠ^˜ºƒšºhyDG ©kl|wQð¶øó¥ ]xo×^¯ƒ!›iÂ$7ÄNn4þà…Ó>üÅFáA_Ÿõøþ ¨]Ÿèr‡ü_~ª,ôç(Æt—¼$£ x¡/_ C 7Yðâ ©£º:+fLT)Y œúi†4bEïÃ0£E¦7Àzý{ÅyjxˆJõN­•r­Åñ %;²n`¦<Å£Ûïb€>™(· ðÎ!2A÷èÛ2¾Ë<®Þ¡°Ôß0ËUÃCí·ÙJ°ŠŽãh‰ò¿‰kÈD)\pÓ „öñ’ßkž8¢ó©6µÒ rbn"-=-#§#ÚèKp–Ñ oZ…ßÂ]Ÿ‰q!õ[9Ÿqš\´j;5´…lŠhbÅYá`§)3¹îd%Ô†4´"Ç4J.¦h’ÇZÔ|͸ÁŽ«÷¯¿%O]a=”a퇔H×n®ÐÄ_.Ô~suÒè: ã „Ë)59ûEæÙùCpêªýÑIÏ7)rȤ:슓™2¬q9ÀO2ª–Ôÿù”ÅF¡KëâŠÂÛC“îñ4€Ä©Æ«´e³*;ä‹+M!Ň„!Ô¥f³²q?ˆ Ûb»Î‡ãè¸ï6 osÈíÁmt GôE Ý•ï–a]Å{ϯ„Õ¦ŒWA‘K¶«ø›ÑGpá;ÆÇ_" Xœ;‚õöI„Ä4§úþ,ÊAQï Ï3ÔÕ†÷`Ü®¼‹ö‰Æ­qq•?tQ’m¶Ðwí»ìü8¢'Ä3Úù‹_ÙðùÓ»ä ˜î›]½×7îû^çoH Q&ÀÇflž*±Y—' œüóö7õ䕺eùùÜÐÄ–u¤Ä·Ô“Œ?îŒð_eø–¢€¨Ä†‚‚ü"YƒDÄBŒh8¼{^˜Òð&:fMèçÎ/ÖÈ>ðË‹1ÀÍ~»Ïø¶œIhÜ|Ýoòô.°@–^m£uÑG ÞÙ¸ÙAOu×p^,] HJä„ ú D›ùàâD Ùë_2AÓªx›øËDÚD÷ÞÃÈqo•¥ƒl@R­þšGA‹Ìe(i|ëhÍMcT\I3•zË]Ûó>ƒYš5Ø­aš‡ëƒªªn8MJ’¼Êì);±jêS[`r¶øÒÖÑŸ j £$/ÃÉcÒ,¢„cjÉ„Ö÷‘2ñ`ô¸;p~}¸7%õý«)Šø¼½”¿gÀéùg=~ãÀ b}*ÉíÍNÒsS"œhÉëbÅ,b=>§ß橲0›ˆIüÈp~cÌh%SÊ𠕈·Á¦µ ÐÝ^§>¢DÄþ—í¤Ëë*"µÆo‚²Oÿãâ}Ôc¸Õ.>Kþ7øý¼Úõ¢-B⾨ÝÑéøqèI%g³0Í—€ŒÉ@¸ýHÄí=ÙPyCßP‘¬fCšM#L35F•ñ)ð6Øn¥ºÉX”ªó-’ä»îqš×TI»£±¨‰Þx ÑÆ©¸™º/‰ONœÌxÆmLA|ÎJmìhWª¹`Ú||¹ÁõϬb¶:çï&>Û½ž-òJÚ_íèôê"uz(ÝЦ•0ð×ýj«SÿØ/Jªjàuô´Y :j¯¶èÌó[Ús:±ç!h¿h¯{"E*]ŒûèÛ~žÑVð{=~é0©Ÿ¾¶#*2“=êsGÎÖ¶–ŽbPÝ å,ªìØÈ uxâ|¹BÜ›l¨ÿ¸8i³uæü²*ÄjùŽ79ïˆÎpŽ_¯]ý§âËW i‚\ž¼¹(Öß‘3­F(6¥{*7âüB-À{¹ýõª¶*ãÙm÷þR®›1vÛš/V®¹¨l>ÌÜ*—ðîI¡¤} 6jUàb*ž^¿Ï"ï«Ú»'ìõ&ʳ½Ö“¸ð#ɳEb}MPh¶L³Æ ü(ï,Јuûj0ÓêÃaÅËuuIBÇñsâÏXZ6R×±ÖµRe¥ºY é;xùm-éŠo»žj…|"¯éì [=h!!dUýV]˜í’K ü}áD­ÕKG4(i£ Û™kÚ©µH6x'ö ";ެ*ý’ݪ÷ß@ßz›}&Œ1 ¦×œfÒüÅmšpJˤö“àåµõÑ("Qp»“XöOøü‘f‚EÎ[tÀ1~äçæºª.*ÑžÞì/aÀ÷>¨‘[Ô’&/&|lÆ…»‡ÊÄr»¥ç\Û­9mäi õÿcä>ËŸlE¶ËŒz L_ÐíDD‹Ð ×Ù}ümfh3› Â" #6ë3Ô_Fã…ö/ÿpÞ ×;|sŽù¹=ÎsvhÆê%£JŽ÷*ÕMù`’ëÙwjæcFcö‚y¾û»*–Ÿ%à0Ü×h¡6Ûÿ¤öéd¥äðΤسö\j…?^Û]÷pššÆ´ÿªK[IÐ_cU¼À0Ò…žÆã x|DÜ!ÕrË%¢ 5Š hX½¯‹VÄ' šF' ­Á¸¡°Î3Mcö "R[p‚öw"Bl£ûú²ƒT’1à€ÛŒ@ö|'ÅçÏ%×@À±ºðE2­GZ`Î9ß6ÙŠ4æHu<žyhô²Ö™²ì+{ÉÐõníF“„­ý+¤Wø´×î3¹‡“p§Mcÿ•œà=—I™Ç ½ü‡àýž ¼±áWº˜Ǫ̀Œ ƒƒû0­4i$¦_…wcZC›ŽõÙ¤¥ fÙÊoó¸múñQÕ•¸OvÙ3 e ûÅ‚ º*¨”[F‘ôç ˜ô% –:Ô„òË:+Ç-Hþg]’'»RÓˆ2Eü5½¦44ð ¥Ü×Û0t Ç u^oêÜ/@ŒhÆc›×¨ÄçÈtÎ[–l¾ãµ2—[ø#ÁÊâô*ªccfbÕ˜šcµ6@µ×—AÑ'«ÉòÁFz¤ p§ì(tßŘEø¤½õ7¤±|¯äü¸éÏS…£ î£#¹9Åå %²}0o÷Ð TLû“î´8D~ümÙù4 ¬KÒg3¹!²" ‹…7j\U[t[ñhC÷ò[2ÜÜÙ;ì‚3½¯o ñ{z*þZ=|'`þÙ­SÔÁ ijKv…y+rTø ´3~ìªú¯=ü_ :¤ ]q‚â Ÿ-q[®Z‘"EæxcÛ[õDX þ»·[Är•Äã vÈuÂ!Œˆ O+%ThBóÌîºÿú#íŽKà2£?Ñ₎1v@Qëå(ï+Ã`È §ÇUŸ›¬Jâ'OS`oŸz¨ÙE} J“'i2¬µý¤3©.QÅI}®%¸§H:Çþ8q~¾ uíVzë—4ó˜7M÷µs«<\:Z•Ã)e5}ÎíÝi^‚<2DB%jV`?5‰Üc”ÛÃ+ú~ õë¥î|ðÑþm¡|$ò†“Ð\¨ÔNÚeZŠ0<çºôð?†‹{1I§¨²¼J['Úó §ÿ¬sè][õ1e$50«/éO<‚&Üž©aö¶´Ó "²ržÐnät©ô]J6ƒûË:ñË5…^'!,‡>ÐB$Èo6‚Å7¹Kׂ~NŽÉ ÓAºs‹M‘©PiCm2-¡ç«aÄ>8²«ë×]…ÇRfV ¡òÂÐXÆ¡¶uÉwh(ïÕž0 l ø$3õ‘€ÃYñ»‘XƒÃi‡óðݪ|ôQn[%é;~m@ÿѯƒ’G‚ÃÅ™±¼¡ð1˜^(GE8-( —ÝÒ6Î&ì8ŸÓd¶ÝE³û¦_Œ]F¹d!ÅciÒQ+u™ªÍ37«îMJª%šzAá*ø±Šõ²š2cJ=‚|Xw˜waÀ¡ àPâ•!Yf.}T«.fa&¾}0²½î»½Ö¢è9T»±”ÂÆEYÄu7¾÷6E8ž'¿y}ˆqÀÖ%‘˜í9kn\@;©^v}ˆ¶ Ë\?üø*ˆÜÏv ήµ3EÓÖäT}©cÖR€Ì:öâZÆåH¾È±Ñƒ±ô?APT+V/9C6ó›õƘ:KˆV Xæ}„T:"Ù7˜:’pÜuuªK/ïÿ'ŠØf§«7ð|K%ÞG‰W,Þ)FÔç¤åHI(€_œ$— ö L ãíg•3GÊ4ãJ¾ Æ^® ±ŽÇ§j"µ(ÍF¨œ ¯àÃqöÀÎÈÛŽtËqFzÑ}Óäi/•ÀrT™ô3ÌYólj õ(p<€\=F =V¿a ‰b‡î)¸Ö)eU!¾CD›O$ «}75šPK%«•E÷ô†ÎkNå ®Ä)Jªó?Þ\º;]n0pDF0]N6T,óàÑ|]‰Ü%ۗí9©ÖMÔérÖøœ>¶àåÒs•C}+Y=[åÛo.Žò ææ5I³ÈœI×ãspä(a=Š€î™³íVoÚ02#M¾éŽz¯ë„¸³¤‰®Ç¶vÆ€ôüði½¦=û_V`Êx-ˆ\®ƒù þ$eRCJ®s<Ø9„£i%µd«,•eéNörb¯{r‹­z"³²*z5 ÇXq ÷4Àå¶ÿµ¾õ˜ XÜQ/òž¶\‡m2Ñq–«€ÛžÞ>£’Zô•v@äo¾–žA_17ÑÁ»ùÑIoñtb*ŠYx"ÂÙx¦ƒu |KoÌÉ=á°0ˆÑjîs("#G,:†à¾öÙÿ}ÉaªÜÒ°‘×Ϭù„EdÇ_-6[íðÙñ©zÊ bñ@•ØÀÑ_¾Tô¦‰½Æ ôºÃ¨%ƒZ×jGYÝ„b&,XPÎDÞK…ÍwìnRë¸=ÀYˆº¨œŸø’—uN¨.TçC-;Š8c¡8„"8Àm~tLç-KÒÈ&Pÿú>Æï@››_…à·ê­ ü¢"Aa£ºŒ„S~ÜY¨Ó}¦—™gCð§>õy$ߊ©)BÿÿÜó}éYfz@ËèØãڣݼ)—¼‘tpÍC²÷„Ô¾¹È?ìÏÎx¢<’rð6Ž;¯¬™œ³4\ÜÃ\('ްNŒ€hfn^Ûž€iùtË£(Û|ÍP?Ú>âB3Á9ˆD¡eAqe@ÏèN™&ê¬6m 1¸™{ø'”‹B¦„°XÔŠ:›µ3¯ºæô&¸{-ÖxòŠá E›[R$u˜ ™?ÔP¥Û =ƒ ÝSb®XkÅzõ^rÆTòFÙ­ü£¶r^î¡Ѷò‰¥ä2BÍÐbªìÄ÷/^c03™~‡…½8*ñ%MÑ Ÿµ!Èï ãuò™t1Ù¨m¼uò!øyeþ „Aå¡ùó;†úƒpÊ aeßsñƒ¸Çó,7âj>Ý üé]lñ¶`xáxÑ߯ô4?ÝyCVñ¦ƒ€÷Î_úðcXO¼ÓÕWõtìbŸØzub@NÐ[‹ŽÛWMÍ9pL„\ç‘nËaç´ƒ:wùz´kBþÎ&ÝüªÚ°É×çæ`Š@€ÏþehäœåwŒvοîåR-&{, ?Ú~ŽS ½ädÐWÓ½j®Â€šaóOÎÝ…ºž§ïv¯[jy g¶Dãßúçk*ùž‰ç%¿êa_¥Z}7UæT»*IÖDnï_ðSó„KUž`sÃÀù’‡­cËŠw*: ™²^Õ¤”`¥#c_©¬ïpö²¿Á¼I_§ÓÒÕþ©üìQò g2δ²vawóZÏÓüŽDpðò¹*êPƒˆ%9¸vl§eµÄxf$<µý"t&N£ý‚ |è Ú:í  ±GoþŠ—"åy†=¦¡ícú7¯£;ûÊgPîá|±îÁl¸…=µ7¦àýw@ljÿ•õqÆÝ?ßl(Ÿœ‚‹Œ%¤pϨ“yŒ±M;ñfã¡Üò´'yto ‚Ç K[)÷ÜL¼fÍ£¨4v¶žP—¬Ð?w²sÕņ”P¸s«xu5}øø3‘Hq±ZÏNmÙÙiIÏÝÎéÞú@¤y!~âê|Á䯀Ö[#0O4 ë†ï+x;Pô³ýlå7'!tªìè'Ja ®e¶®þŒcl3^K•ÇcQkz<{>ìý“=>wýŽbþÏŒk¢ó²BðŠùÉóÒåïy^KU nïÿÍ7^ü ïQÿ3_0@„l3²:öj&×ö‘ª‰ö Í´¿Ï푲n¢Kps'SòAˆÂt;^Kü¾«h6?L² ñàSÙ†xXlÿB@ µAôˆÒÝRÓ»tZ[†ÎK<=ç±héïÓ€ “´lB©î3.#ýì4á'”j)…øíJGzž\#h²;Ù­vŠJ{Ïl³¨KÞg·ÂyxõÇdV’²Â»Š¸¼Ì~ý°í3±ßYpÑ,®8ÎÆvµR2ÃÃh>pL>ˆIU)bìªT:h‚_ÕL¢ÔPº,e‹œ®¢„ý-ÿ¬Ÿ A?ÙÃ~ÇÑ †Í¶ŸÏ­3V:'eùp3ž†ÈUÓöYÊãPAÿcá2ÌÖ'3˜£5›TŸô”HwÊ«:¿EèY~—î@1¾X‡grªcW©ÃçF³ §Þôw1²äÒ˜{bœkÚܰÿ’jËâd†¤&á`B«Ç¢Â3Ùœ³%Ô7Eȱ­ £ió Öç¼aôëLÚxß=-ü©Næ“ò®'dè¢ò. ©´ `ˆËCECCµnÑë²Kž¯ y_çÁ^ÎæhÂbIÊ 9DÐÉÄêêK|Ý\Ñ&ù¾±«¬øËÐÖÓ­4HR·ûù¬—ðë'9“¨ÓéǼ’ÝÇ£k§¼Ûr´OçÈ‘JÎÊ »Œ$ûø@Dô}Žƒß@f˜0Õ³Ï<«x:×:d¤=Nø£LÈúúŽÙE &ô=/ M|õ¶—µ,yt%¦_×-‹œÂ4çߨå)Þè†amD8¾!™ýžâ/g=Xç²ÓZ`‡ŽÂ'"¦»qªcÊ}Yo$k½FÐjP!É#áTÀ9›»š£Ñ·Ô壂çWLTËC©ÛÆÕ*Ç1ª¯å{( y%tðK€Û“ý?s¢ ´6T0çR€Ó“È‚Œ­áü:JN(:K£ÈMï>†o}ïRÈÚçõxCiT}‘HÄ»T‡ ;"7ljLEV9ãÝù®[Ì:ß·€“dj$GX¡lóSGwZìcokøì¾ÐÝÙu)ß»P9ŸFM~Wï„\{ÃŽÇÔÈaz)Á¦¨ÙE£Ž'Õ^úªeèèi÷«Ï¾ñ@¹áhBAŽ­V]CàS$ÿ¦Õ/\%tî;f-4+ê›*ê˜ad<;ˆÕ”¸,ö‚É·ð™S·?'\Y®åkVµòæV•{šV/hòyÙ« !‹Ép^ýùÒM*æõ8–B ?h° ˆæ7!Ì yR–C­¼ª7ÿËöÀ”ƒ·øïþüÐ`o¦´óg„qÁõ÷'Ö5¶.´Á™°dYxF×h`"JæF²XehóYiOÿ¸0s²w¸^´ó(¦çXáŸÍ˜˜Šê[mÆs(; P¥ Ð7L¼–$í.Ù}´~¸uþÝp°/Ì·ônW”SúßÝ ÈïK‹øJí¥u= óßw¶d7D ÊüEÔg ÎÙøÚÂáôÀ0j°:J eã½äŸth›"¾þ*r¾=‰t$­äÚÊÞj ÉŒ’†&•â3»Gã—w¿¨š‘GÁîùm®=ÒtUÁ“­<ø,vCKŸ×m†±RЕw2ÉÆŠ0Dÿè\CbR³G$*àáüŽHXªà7bP‡êKÍ› Àó¹\„t%ªp"5k‹¸ý-ØTædÿ"ùAA µÒ dib(ïø=ƒû<^蓾ÍjaŸ;®©æi!6‘áà†ŽÉ“õ(Åq%¥°Opé‘ œL¤ïë-¯¯M“u².•¼(|•@©_–>! …b;Œ‹f %ÝÆ#òZ¥!@ŠZç™+Óû¢‰LÄÁm ë–àY“S\Š €¡ŠÅ'ËéÆz6frðÈ–ï”Ü¥N檫§Û¦¦Þ¡ð¥Qø<³+$dã[lçdüVdp/Ë5ø÷áy~zµÙ1]ä3¥ÈêŠâaæaŠ1åÝ¡y5-qá„f‰O8´“ê} —t4#ri-Š ·Mhˆç É"}äô‹ŽãùÖdøÚåµ.~ií÷J  ÷joUËîYï´×.wlä×ÊEK[Ë«Ùõ‡INÎñ.ȺäŒÓÃ$1X¥¢á`T¢%ÁF:>VÂ[`ú@ïZ¾dÌ©ƒ“dBk§læ³Ê=37p 0l‰1º6ð¾ÀNãc¶9Œ]Ͻò¾ Úoý¾K/B| èv½¼Û`|rÙŽ¥¬ Sw/4º—ŸÛ×uŠ,J ;€Šu¼¶©U)J)ÄmFØ¢{Å–Íl¼òYñcòcëížâæqßÝû-̆•Ö¤…êb Þózk`Èudñ*Õ÷]üDþÌ壑8‘®¦OA\Lú2¯´:ZRø Ç¿JûºÆ àsª6Ѥtmš¦( ñW·• ‘õÜ-$‹gî"–â3£[ÔU´¾$Œ–°£k[*4ðÒÓWü1Iµ‹ëp×FÔ}¡嚤bhŽ?ËËQMʈ늗ØÞŸ\2ǵ¸~ÖùÝéFéæ×3põ\¡Ð˜b}.í0!Œ9¼Í²Oᛊ·Ñ4R&¡ ÌJÆHQë ß—bè'kÌ®xþ㵩èŸ8&q÷Mh"CV þj¹ qIÄ«‰C8¦Ž¥ì17·ÀgIƒá IîCGÞ1h ž—`='Î~yòìc >k¾7úœXF~w†_Ü©üù‹4Љw¨ÛF=Ñ˜Ö MùØ~üñD?b4uÜÄŸB› b7-í j€ÿ’ ƒÍÓQf}ÖEÔ–ñjn8€v>˜”ðiD/ÒJ(’zÁ8—켩£I¤ëª4 „ìõžäÿbíË\±Ór˜§·$ÛÝ¥ÍG#'ÃRòÙ:WTßMl\MÖl#\Ùmª=dgWFòm>:ëF.²(ŸÁmŠy'¾B.#Û Ê5kØZd ®{ƒ{ëå­µ`Ò$ó¹UEJQÊ%&S§V±O]é„döTk5ê'ç¯wò‚pC›½b®T—²“wÜÉø:£gö,âM¾È§Pª%T®\“¹ñRÊóŠ|«@÷ƒ”Ñ=ø%RêfJ¶c0õ©‰ª¢&Ù›ySvÑ¥¿#ÌBä»'”ö¯J;òw•æÞÊsL¿G…ŽUg]ú›çGælnW {ÎOâáNÚ(Ä—`›@½ çF{jM“ëû bGw)Œ®k¦‹˜å}~|†7;ä<Ï®ˆ?£œRß—˜z¥lq·ë¶=¢£¨ƒçp™ ¯EbŬ9é0 å9â-%C®“k>ÍßÿøêÎdÞ^º.ž®›xLdqô W¾}jô¼7]V’ÒŠ Rã¼*Ì$ .œm™H × Ð ³«-.¨’-ÎèºaîRq¹~_;úJ £Ts¡Ä1'éÔ‰é¨Fæ.Ú†0€Ü£³oz²"ÐànTWæ ÅŒÍ8[hjïùs„h(^ŸÈî¸^($<^•8ÊPÙZ¯^¸âè¹&-3å*f>”dDxeøûdú Š\!Œ‘íÍ!UîºZ58¶'Þ-ËÁ±‘ŠZ2Ï›øÇ ¾ºß`ZXét½Vèr(À“1¥ƒ–ÉÉ׸M,åô{f6žƒÚmÜ{¿ŒS“5… ||ÿ%‚„‚†U2¯xÌ2;²ŸÐA®uQòoVM5­<’ဇ!)¨„Á•¤  vΓ‰†¦ô²Êy»€`n€mV‰bÈ ÷€î5Á—|)K8Xͪúø°3!|Þ§‹ÂàgË3)G˜ý2Õ\ƒ¸…üCDõÝuoÇ>/à\£ÆÖ¶~çîcöîSDª4㦞ë`Œ úsÉ<’!ä9èNrÉáÇôi`ÈìÃe%ÔVœ6¨ÙøX£,´¹ÀS¥¤þ}X%úÃu³ü²¯†PñHÝ+:Šlƒ™Äo €k¨sDx¿é‚v—ÅÆƒàÊMshc7a¼Kãjåvv¥õïçÌ ýýí¬àÀDSÿp›LF4äiâm'éw´aħg­„yùù`îQZ!fz§š ‰ŒM¬ÃDeÕbL‡_~(`JκՓù˜Ñ~àÛg•ê¢ü¹àªdÁà¶(&è`˜¤Í¥Ù9ï&2[߃¼¡ðW¬1ãÝ%Qô~á“ár“CšXFVbš|~]úÿ~c—nàìíøºîÍÏc¥ûÓšþ¤*ÉíTÐÇåʹ󦞸8:GrÔ2qª+®G²e w”0ô/rëx„¯d’»Ç4õ/rÏ»$ëŸÚ`àWÄèc’A<¤ÂLó×r«iAÙ•&=¬äµqN1˰;w²íC{hS±-©ã8ÀobÙ+¸´±lëŘ#§'ñ° S.!iX4 Å75{Œ^3¿xpᮚNH˜ ö“yskEhCÒÓÁ"8ñÄýú <¨™ÌìœR”‘îí7Í -PÓ¸s!_ði‡ÓERë"(ÙVk2W„þ„󳼋éh i·;BOîèƒæÕæ–#Õ…þ¡,-´aXËÅ€ ¾vlv2޳ü¨.Ÿ§'ÒBÝÀ®ÄžÛ éêü®u°ÂšcP\{®®0%‘®(­3tdOñÏù:ҲإãMåΡɞqDï7'MBòÅf:Ž‹%êj~Î’ÈáÛjÑ6 TÁ­+Ô~'mzû6¾ê‹y€Ð{g¼Ú …ybE'¼Ÿ(=÷Y¸äk×_Ù‹òË­Máâ° Í>ú|[б5 õ°ëHNA+PÐ-á:Ùu¹Ñ *ð«l¿p-Ñ}5##é×'-¸~gñ/9$ï^pGk_jÿ¬\ebƒÂèW„=†x€ø÷ÄMýŽô²<ª'5"3ivåòV¨ 3¨ØMÇXDíÍaÑÝÎRPdÖÝGý"ÊoüYps@À\) íŸó{"M že²©‡_Íļmëe3bñVå4ÐñŽ*ÉZ#ípìp±ú1ÁЍÌöêÕT½úÇߪö ‡+ãCì¨ï?{·?ÄŒ¹bÉ`Æ ”O&Ôy»ú)tÆ.ñâ4ÊÓYì¨u´MMNŽÄí4iËKYálfv KãWb2Ä(˜IÇ[(· ‹ÉXÛpôýž;(Yj‰²¡’• ù¢RCRD8“™ƒ¢òhG2J~ÌÈkß”Ü5Ù±\_ªï›zŽE¾qlƒÃGj’§\HøðQ¤Js ð)ÊO Ì/É¥9(’uŒÞˆvf ,;’#˜[bÉÉj^s LÅK>¯Ô~¿ßeÄ⳸Ì;tëyÍ –š1Ä’}6×ÝŸ«¦™Ò®˜-ÚD3Úu;¯›ÆñÎa!wíÒn8‘< )Í™@þN`ä*!fôŽ6L{[Òƒ!Ú£¸L¢<™Û5[ËÔn˜Bl¡Ü*Ü µ¶î Q>8‹òìBAý\ ³ïBÏ\…ÝDjZ6‘ŠM­?ÝŽ–FKÐÚ@G9ÛT¿:Fv3íøšÀ”³oxRr³‰œœGy¾|n‚ú+1Ä’wÖü–yBÝãSÓs) Xþ¬›) œ5ëdui%ƒ¦§QÎöH 5'1çPÎ?_¥¦æ$fF„ó…dÈèSµlNÍË)äb´-wÚ­ ­¿¼)fÚ¬dqBü~Ž%§×ö»>Ùt=²ºAVW¬¬>X¿GÖVV×3X×D|ˆòËqÒŸbˆ¥œÌ¥£ü¸üÌõ‰!–¼7•W\g¶HŸ¼—µ0aË¿©€ÖqÄân*M²½ûŠÜùó#²v7‹?¦¯£|½,Š‚ÒOo |£|Š‚ú›1Ä’ÓŒñWôCï•CÔm!/[ÈŠ–g“Ÿ–£P'¾CÃY>÷§ÇD?\FœA¹´59T™E¼À59Ô¹ÃÌkr¨uzuÂèÙÔâú–œôG+íÑ~Õ‡VŠ.¾Iù*"it`•éYÔ˜øxÞš|þ“ª1Ä’3ŒkoYøÀ÷˜wl&% DS›°ŸáÉkð VöÜà ®/à4?­Ý3èÀ5”ײÆ}Ð $“”›ƒÎ…£»btTÿÌø3Ë|Á„jyÍ™CoEˆ%'·Þ¢¶øÊŸ¨VwŒA¯/\G~”In®VH¯ßFüåÏ gǨ®æ×ÔÁ¦eįPþªFÜE\Gy½F|¸òÆ1ââ}”ïΈjêã-°çâÊ[å°á1â6ÊÛå°ákÄç(?¿ 6ì ¾@ùEálÙëR™vÿ &ýñ{”¿/‡El£Ü.‡/ߣœiUuö˜y!õ  øâ(ÿX8#ê®ã¤}KžoM"¶Pnýï êˆÓ(÷†ñPB|z-ÀØv¶ôôÏ"ΡœïÅïA|ÓØùË´k°ê6â”ï”ÉOï¢|·NÌ#~‰ò—¹9‘zËêÿC,~¬-£¦ph¾†‰ð©v¡[@P_a¾-`AoÝÃÀ8bK+þ­û#Ö;qÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà|ÅSàÂ>†Øûxz”OtO°efœ×>«vä@[Èи%èÔº€†¢S ¡š`&ö¦&54ÐcPÄiTpæäà\2k'²¡Ú?±Á—CŸ‘xÀ§ñ °x”ŸÛL®[§h¤|¶,'¸¥†<’"HJ1$H.«!úzN‚K'ü=ˆÝ¢©×=AL’TÕAfôúýŸYg?klê(5Ú7@XC©ÝQeÄ›ƒ °RÙ ªB­ !""’€@8´*¨…qÙKª¨i¢ŠT!­ b As΀ JmbPHBH,Ú =l’Á$,˦`&„T|ϧ–2Æ1–XúüOä3ò=ëã;Ö9ø…â2ñü7xð‘ÁÔ+»X ‹ £¶a1ò²»FD¹Ÿ¨“ãAI»¾Ð ·©dª¥‚K\ÀFy‹³hF͈(š>{Y$/.Òá8ØÃÇpßÊK!`JNZ^yæ2²ÅDqš.±ôfv‚—G*T¬Ÿ>@w¬@•D( xôR!qfI'ÊŠ†¿M 2š@’|ÓŸ !,‘ˆ¢@iørI- ’ R”%‹)ÑÊ£žIH€+(j3²}Ôâm$`<æž}4²Ë,‡a³£ÚQ€¥eøvCAì0ö»¨¤žb.%0 ù)ŒmÜ$‡ @y5JáîÝj3'þH\„vÜGÁÀ¾"(.C'v{Ù1äö9±Oe!!¹qÂsƒ|ÙßÐáHŠ Ý[)ìºæ3 ìsÝe€„ ,¹JÛz'Æ0Št^&œ~ ]l«XR¯¢ÞϘ’ú ÃÁŸ€’ý¡>9!úÂŽyc÷¦%>ÿBtòH½™$R ˜ÒW³²³‰tU¿m0ÑÍy:¸RTùèØÃÝQÌÃ[8ÒàÕ÷·˜>JËùÏÑ—í¶UöÞïõ:ÞãSi°àOí1T¬cÁÖ`züÆ'¾ØdºÔü÷mÖšóƒIs'ZzDx€B\4û!XD-|v*°ÊÓ:­YKe}Œ{?LL¼¾îýc‰/]gWSaƒŽ@ 6ª÷·âç#!ƒ´ÞicB&ÓI´Î·uñ£\êhiu„yŸNò¾Çàæ­ŠûÝÔšú" ÒèÉÖ}—Q¹Åýw›Y}9 [›KæãWÌ­¸ä^Ç¡®?÷¿¿²F!Cüb»ñÑFŽåÐßhpñ—Ó‘ÉóÕm…¼–sR»i,dh‚í]çSÚ †ã¨1«æÍ`+Ïp<†NZû|ïáj5>_A-×>|ùnÚ¼Ÿ"Ïŧ·ªìænÒQ{SÅZÚ¨‰¯ý¶w¤Þ!i ûþ–¿âåø':ó»¤þ);<T$ ¬Kús§ÃCØp¾ÞDS'hêØ¸”YëõTŠÑ«•ÜA.;Q¤½8 硌ÉFµˆwF‰ «aÁï¦D+~òV®>ý‘m>L43<3tlEêöÄèù~DH•žqö` 3 5™Çp+cÆ(é¨Cïo™8ioœMrž,Ów¬Ë.¶’ԕZàÌ ×i´Bù]0}X.ú¸,2ÓT{àPmRžkïý{ÈÕ†î¤^²Éå|gÌõЧ âõ˜âqý|÷–ßÕÇûÒÆÿ½ïœ ¹?Œoµ8ž;²rܯ¹ã¹÷´ôôõud’I$’I$’I'’ªª©$’I$’rœn–ï._ÊéoózÿÃÂñüó }}}}}­­­­ ›pÏ35k¿ˆwww°ŒcÆ"ÝÝÝÄ»»»ã,]ÝÝÞ2ÅÝÝÝã,]ÝÝÞ2ÅÝÝÝã,]ÝÝÞ2Åc†â±Õþ'ÂêÜ»6Ë>ž|û;;;; Ææ?#f«>|û8ËwwwŒ±wwwxËwwwŒ±wwwxËwwwŒ±wwwxËww|V¦2Ʀ¦¦¦¦¥ã,]ÝÝÞ2Ç8ý{îe¥ø4·Ü>ëk>|ùóímmmm^÷OO6lÛÜe‹»»»ÆXÒ»»»ÆXªªªÆXªªªÆXªªªÆXªªªÆA™™˜@333ffaû¼kÃÎõÇ´à7œVÛm·qbÅ‹ÀŸÂI­­Âc,UUUc,UUUc,UUUc,UUUc,UUUc,US3ffwîî™™š9wëL~©ãYe–hÑ£F¾¶&ûEÞ|ü2ÅUUV2ÅUUV2ÅUUVUUU$’I$’I$’I;FÇ‹Íå´¿gƒå1ÿ¹·ÛÅ㥹¼Þo7››››››€Öëu««$’I$’I$’I$’I$’I$“­gø<>ëÒðÝuÐ4´kkkkhÑ£F8-zz²I$’I$’I$’I$’I$’I&~wŸ{ï·žsKÄcK›6lÛÎ=<Ù¤’I$’I$’IUUUUUUUUUWzx]ú¡ñO÷–¼ºBó…¾{¬d›÷ïßÌíííêí€÷oŒå¸=;½ÞîI$’I$’I$’I$’I$“GrÖ²Ù¸Yõ0·`žÈvÞ½‚ÐùÖë¸ð ÖmÞ¸ÆTp#ìPÏy€ ì`ÞRýõä(¼˜^tXB* ^4µø»x·¨tüÀ†ü=ô ”.Ó Ýì?ÃÎôäEtaà80^3]N¼Ïù³†JÖíÝ;Üãe`×$²»’cÍ`Ã@¨CP FþÅy ¸–,á†í³Z"œÜ§Ûº†±Ç,kòX64 ‰Õ¥ $½®1ŒùI0àÖìÉ4Î4ê‚ÐA( ¡¨Ð±\Øè&ÕÖKpªkûŒ²u²4À^Ì]YÆšìÅr{ 7T‰Á\ÔДwJÄþdŸšÞ.¥-ºS¶©[d"I9FõÈ‹1HæÒj1œi…ÄÙÒÆ@ª´«)⬫6Sw±‰uk 2C@Vþ†¨‘ô>³OC¢¥Òî¯,ŪçÉN„i8­–R;øÍê-pVE8«‚x<9YÙ! SÀÈÖ¬^£L¸\MKÎÈ™È6#ŒbjË"”VLA«–ås$Š.PrAj–£$šQ©)bD”´¨¨¨Ñ$I")p–Ô’¯uÑ´×ÓK×á3½eÖËXÆ‘59™m2¬8Ï_#vš¬ÀèÄ„qq¹¤%ÞÛW8s?<å»/ñÜýíÏ!Æúßjw_ËsÝá¥)TQÝâĪˆ(FˆÄPÔ$#HÔE$‘¢+DHÕ{Þiçw¿ÑÌ}ÞóûŽÛ´66Š$a%A¥¦¤¨Õ UDa)Ah’ÄD¥ Æ„N¶Ä¶¢¤jQ)!• QH­ _Ú@¢Ò ,j!#K5J$E#ARFTB5D‘V–¢µK@a-(±¥ˆÄ"ë.TEDD¡wûìO#¿z7,MS„Ú`½9~SªíM¨µ±6u¡ÅµMŒµ|Ý3¬fjªç%¯3v¯7|¾¶4ž"âeñå›èœ<—Š)DXš]¬q> õÛ+DÁ/¸}ŠWçß« òS1¥.wÄX!_!†[÷|{Žº²dàøÏèP7ˆ¢žo@eÒ}ÝWÒõ¶Ñug(&y¾O¾×-ùò ϰÔž`W8ßðóæš0™ö¬Ët jçhpöPþlJêe…¢ªmµÄ»í.YœáÕ^: R”JÂç9ryãªù³ IEÂÂeU´•´XY(ÌóšÜšx·y]FëÔuÿŸÆ»t¬0wÒÿ®SGºhùÞïg¤­Âˆç¾nCÛ´{q€±¬Ã¸>€¥* oÜ0úŽ*ÀÛ~÷Y«ƒçÁ@çmºg\ÙÛ퉶ˆÓ!šý»N©üt˜Îí¼Ŭ-DD DP""à÷ o}ÈÇêu|§Æ×aùê]°µ‰QG»n}÷'Ãuí )ªUß{NŸSc}äwžG_\ÎA)iZWkÿ±ÈrŸ›è_×åó;ŽWd6DF‘ÚBSoy„Ï{Y­·}×ZùWYŒ¦TíA1¦Æ1¶ØÉº‡Òç5}·sŠÖ_ô¸Z4¨Û#7¡õ­õúLmVÛ¯ËõW´e ÆÛiR˜8Y]çK‹a«ÙÏO¬ã« ÀˆÀ˾³³^ Ÿ—ÉyÀLœ¬€ØÁñ¼ííkI{e>|ñ¦Æ1³yï}MvËSÝvžéàR‚ «%âð`lj)¯¥¶¸kRï×Kd\,–ƒEé‹à[£¹¹ÅdÐV¸4r—r€¬!…)H%û®õ^’ߥíõ_Òî7W-ËÁx m†GxûÏed¢ŠËZ¿Š1½uã[wAJõ\•²¯R&0ÆTMÄÿ¹ïB|ßµ…ò7ÛhѤáœ__ í“!\b_¬ß,¿`1 @R’’­£¦ƒ'F™iDmŸb.QÒÛµ•ÊÊ.Ž¥9ži…Hk6¦–3t*¶†§7m…¥=ìdýñº¼ Ló?ZÙ‘…³-Aên~sXŽÔuk­ë3q5Œµ«Y凶 0 ºˆ±¡0À¢'±â6Œ§) $ÔÁH rIØÍ®î`€ÛÝab™¨‡•†€…ªa‡ÖÀ?+H=&iG²l3ñœF\¿E ·ìÔÀôÍ Z0?å&Î-ûWLžÀ ¬ÔÃ¥âoI ÞR­ˆ=Ï“H ›8 Ð0=û¤+_5^¤ÿpIëáÛ°Ñ4…ÅjpÀïÚIv¬êÃ䛟òªÖE¡óHYÑòÙÙc°ÄK‹0ûš¢>MÔ‘ÀÅv¸Ø{S`SÌ€…•WH,“K#…µŠV%†Ÿr™œ`/·´‚6­ë0ß<‹¤|çá‹ÂŠŽÞ­AK60 AªLMù•P^”„ç^ó8¸$ii‚ Ð޹1[6nÒt¸ ÷¹Yn†´¿Q}ì{¡p(;t¥íõA!—ؘOúÓbPéóž ¹mð‡I¤2Æ‚øcDglÊmѹTΦ™®=sFÕ"u€$@'P|Ûæ{ºÊ—s§²öbmÇGÙvgWŒždز–°"ªBÓP¼ý–šSu¤ŸaõgÚý±Y×ÇËq¦ÅM¼V€Ó% ?Øv†°¹ÈÓ~®5±KÛù?b88áÁ ÌŒD¤yŸ×1þ RPÚ°Ox]FA"}§¹œ¾sUüJ6#ÎîÚ¾”]º§äú<ìEaÃMÅV²‘ÖÕü£¶kÑ6ûRgZ¦ò'toZn{Pó¯ÛHŸ›ÏãÛØSC‡9õ#Ï+¯÷g‹Û}œ¯­Á{ÞÞij¸­±ÁYºKJdÖqwQ%$‚^Yäô‡&Ø'V5ßšÔ91FHŠxéÁñÁ;wS®E(Å&Þê…Ϙ~–*Õ†+­’…¼s¥R8¹ç%(N­ø ‡úª„XYiɇº?é³pâÿöÞúyÁåG ÆàMH…˜È–TI)`'rgˆçPú÷/HFGÃB AÎ×Ågœµî½ãêhìÈ4H§àÓêŒyà•Ø!ºoé&ÝV[üoÍòKÀû¦”¸n_ZÄtèœËKý& ’½glðóÝsA,ÕqÇžÒ\í¦`@ÀÝ Y¸žx©u錩‡¥ªg3ç›ë»d¾6<ÕÓ›÷¥ ÑÎ"=«K,ÊŒf\g­Áz/üéžå›òe#@‘¯î±çê9Mo@‘Oq5Ç.h™y„Ç2V±…¦‰!ヴօmô(œ³k¥p ®ÚžtY¬Bõ!lk.ôÝÏËò„¢¾J²p¼*¯ ‰âkcO˜Žû]­"ZÆ÷2[¤­pg\åNB–ß#ù¤¨Õi þC)}ãw¯ð¬BñCL€Èb–gHql¸ôÞ’u¾B¤‹—èVU·Ëm³ão-Ï>%Ümæ²f©‡TÆ×_L®´’Ð¥ª¶+J %H‚,”D7ŒùŽ|Ò#Û`ÿ¡^¬à,áÌ ßó8NîúH¨ùslÇ …“ôÛñ¿ÑÕrŦÂ{‘܆åS÷e±peÝ”7rþªößÉÍxwyפ3)ä@tjßóʸÎÙö¦'   ŸDh†pû v Õ–F„{­íû•ªAxªÍæ ÃÂqõBSoîK¿:¢¹.k–ôK»>?2cÊ9Èï%L»mŒàDveQгôͦö,ïÒÕªrN"¨*‡R¡[m^e9̧8ز¢¤DÊÓŒÛÕ1²4IÄ´‰JoY-fdGWC”+WDy5äaBv4©Ñ£ÑbGyPÒSy,¤D†ÎÔ(¹VRZ.ØÖÔhÇr†€®Iãh™'kÍdõ>·ªcgQ¯—¼ÎPÉÐä׈ÏYÖK áKš,ÈhØ/ˆÒHÍU3ª&(æïUî)ƒÇEîWµv“è¢X§ëáºÓä㥅¶¶ãA6® Œiá!ò}Y^ ¢ç—Ç© -è€Y}}#9«B' À‡ØÆŸßGãrø¬Ç#ãHD÷o–·òuÞî¡¥õÚ7EJÐkÅZ¾ü@Žª7PN<êk¦™ÌVoÆ ÉÍfªeŒP*¼v!m¨¾ë4m›b9ñ¥û}¥Èúšsk•:~1{.†ÎUƒ}q*ü»BÀ—÷ƒ» hªñ27!÷Ó Œ"—®}~þ¬Ä¾¶Ò"Z’A¤äÉ‘[Sõ/&ÅPBrˆ¸1ûF¹`¹©¬Óòl~Esö-RëêèÉJ1¬X„OnvÜ‚T ŠÚê6à-Q Ø[M4jœ¯7áËS´n©cý ƒ¼ãìÇfû d/Цÿ{ќƹ5·åÌïl±läéëø¬¸¡¿j…»vÔà¼ÎÂ' '¨ÇÇš‹¾5¿n”@øK¿é”Ý"ÄbéÃŽl¦úÒ{Ã~2yŸ`(çj9­—û°õõØ^µ6øÆ‹Õ*HC¨õh„ ”ʆ0gøwÜWÁç¯ÊM\s­*î»~LÍGeºWÉFÒÏñð¹ÞÖn/ñP„7î ½šCp‚Q°ëÀ…†(åD ±wäè(v~¯Øø^®³>ÞËÐ`¢àõ¶80­É µ›»ëb_ÇÙ©Sýç©fù²¢ˆDõÝRWÆdÊcïÜô_‘ëÁ›ƒ¶óÕ_àRôa6JWâÖ~5Õ–ÔGçÖÓ>ΆK¼J,·/ ¦Ï) éi‡¥.ÛsœÌ­ôšÌZ‡ÁiýhýöBgò×ÈÞ*(eÜûVU߆Ƿ-ŸW`î!=ŒÀ$U?[óÕµsdcâå[)£lC¼(ÏÁÛqߊÖÕî|èÚ‡*«|”µ9\+­Ï’ß”@ÅðÃiw֭φ7õ'Á¨wdìôþ#ï–MóMŒ…!…è÷V.~R1´+þÙvâ†Zœs„"»7°Y-s1¼¥`E;:ª6¿%M£×VoiŠÉG}¡ ÉÁ0æ–}-?E/‡°y‹;ä]Ì–m(¨ÔKX9AV×hÒðv™F>æFQ&ºéž7"€:eBhšù‡³cƒ?I[Æ´K¯ ¡¶ÙéÝõ•êé¨ÁQ· î•dXniwZ!®Yªê”X,Vã«5Ö˜ê2³1¡¹”Ķ•8‹fõ7Ãzòzسinñ™…ŠÄ^E®õºYR¡mˆÂåL² MnXŒDÝuuÛ®b)· V«2îæ¹ ªmwM¶TMs1 ¢ TDŠãBµŠR€å²Ø¡ Dd¶‚T²¨H¤QdŠ Å lÒÁI!'ûMŽkH«ŠJ•` ò T‚¬Œ€ ,"‘EŠDB,7-„V bȈ"*¬‘H  #‘V ФU‚Å‘bŠ"±EX,EQ,Š¢Œ(¢‚ïÉ K"±E ",€*Éõô²CŸãà|Œ G[$„1 Œ’|¯‘N1“àó­çÄÒFY oÉÁ¼# IÈN†ü8î¥Cc èXJïC˜¤d g*ÿG‘$ ¼×]šûÿòàHmd€²u²CË!'3ßø'@›w–M›ý'Ûýßß Ìz䬓(ë7|j«žæsJwŠ•Ê|Œ>¦¸P¢R¯£¯ì6 À?yIÝ\o.¿ÖC‚@Øê–0R\¤ÌßÙ'$Úˆ(‚t])QŢЪªã'C[O;‰Ïäx;ª.4íï™Ã‡ßt>ú®ZúëI¶`@ÍÀÊQ<ÂJÌlEX6ËlP±¬(Æ•*ÐPZ¨µ²ÑJÆ2Ú°ehÀXV-bÏdʨ¦RÔUTIQJ¢¢Ûµ)jZ¶)mm;+ŒÆ´j lYiWZpTà³}N»Ïl?¯ó¼£¾Pö.õ Í»˜ç¹¦Á‹idÒ•x¾ÿ§jë¨mÝá9vºÍã&œÖÍ7ÊtCåP6î˜cÙÓH2àòĶŠíð …‰×*o"!`«’:tÚÉq.Ìõ"s†“aÕ§qب'ÚÁB€rµž‚s‰™4„%4$ž˜˜ë{ Š$­$U×ôh„ú¯ïq ”ájlZ×pøË_„ÐgÚXüd_—îb ,.´¦Ps]-»Õà@R.2-x÷ \7n‘'¢ž­]FÌA’ù"9‘­WÐê完@Uß8 Ç cÚxd+€J¸âÃ̈[V­öJ=yJa&PÆÝJ …ìKŠ?2ÅÊØÄÉí³êYÛ-æèêDG{HµÞaòν&E·¿`ò˜vƒI˜×ó´ýa€…¥µÆÝ;:ÙN3`ÅS9Snç`Ýáw»›w8u´ m¬©eE¶¨@0‘™0 Ì‹Rèãîä¬?XaØG ÛÂQzø¹kïwÌäÝØ«ÿ×ÓÃj¾Û·9Uö0DÌÌD  2„ PP‚"(Bšf9”¨«–9—(°W-RèÌÅ#Q@Õ"BD$DTHˆAIüKe“ŽÅˆMJÚ There are several steps in an analysis of missing data. Initially, users must get their data into R. There are several ways to do so, including the `read.table`, `read.csv`, `read.fwf` functions plus several functions in the __foreign__ package. All of these functions will generate a `data.frame`, which is a bit like a spreadsheet of data. http://cran.r-project.org/doc/manuals/R-data.html for more information. ```{r step0} options(width = 65) suppressMessages(library(mi)) data(nlsyV, package = "mi") ``` From there, the first step is to convert the `data.frame` to a `missing_data.frame`, which is an enhanced version of a `data.frame` that includes metadata about the variables that is essential in a missing data context. ```{r step1} mdf <- missing_data.frame(nlsyV) ``` The `missing_data.frame` constructor function creates a `missing_data.frame` called `mdf`, which in turn contains seven `missing_variable`s, one for each column of the `nlsyV` dataset. The most important aspect of a `missing_variable` is its class, such as `continuous`, `binary`, and `count` among many others (see the table in the Slots section of the help page for `missing_variable-class`. The `missing_data.frame` constructor function will try to guess the appropriate class for each `missing_variable`, but rarely will it correspond perfectly to the user's intent. Thus, it is very important to call the `show` method on a `missing_data.frame` to see the initial guesses ```{r step1.5} show(mdf) # momrace is guessed to be ordered ``` and to modify them, if necessary, using the `change` function, which can be used to change many things about a`missing_variable`, so see its help page for more details. In the example below, we change the class of the _momrace_ (race of the mother) variable from the initial guess of `ordered-categorical` to a more appropriate `unordered-categorical` and change the income `nonnegative-continuous`. ```{r, step2} mdf <- change(mdf, y = c("income", "momrace"), what = "type", to = c("non", "un")) show(mdf) ``` Once all of the `missing_variable`s are set appropriately, it is useful to get a sense of the raw data, which can be accomplished by looking at the `summary`, `image`, and / or `hist` of a `missing_data.frame` ```{r, step3} summary(mdf) image(mdf) hist(mdf) ``` Next we use the `mi` function to do the actual imputation, which has several extra arguments that, for example, govern how many independent chains to utilize, how many iterations to conduct, and the maximum amount of time the user is willing to wait for all the iterations of all the chains to finish. The imputation step can be quite time consuming, particularly if there are many `missing_variable`s and if many of them are categorical. One important way in which the computation time can be reduced is by imputing in parallel, which is highly recommended and is implemented in the mi function by default on non-Windows machines. If users encounter problems running `mi` with parallel processing, the problems are likely due to the machine exceeding available RAM. Sequential processing can be used instead for `mi` by using the `parallel=FALSE` option. ```{r, step4} rm(nlsyV) # good to remove large unnecessary objects to save RAM options(mc.cores = 2) imputations <- mi(mdf, n.iter = 30, n.chains = 4, max.minutes = 20) show(imputations) ``` The next step is very important and essentially verifies whether enough iterations were conducted. We want the mean of each completed variable to be roughly the same for each of the 4 chains. ```{r, step5A} round(mipply(imputations, mean, to.matrix = TRUE), 3) Rhats(imputations) ``` If so --- and when it does in the example depends on the pseudo-random number seed --- we can procede to diagnosing other problems. For the sake of example, we continue our 4 chains for another 5 iterations by calling ```{r, step5B} imputations <- mi(imputations, n.iter = 5) ``` to illustrate that this process can be continued until convergence is reached. Next, the `plot` of an object produced by `mi` displays, for all `missing_variable`s (or some subset thereof), a histogram of the observed, imputed, and completed data, a comparison of the completed data to the fitted values implied by the model for the completed data, and a plot of the associated binned residuals. There will be one set of plots on a page for the first three chains, so that the user can get some sense of the sampling variability of the imputations. The `hist` function yields the same histograms as `plot`, but groups the histograms for all variables (within a chain) on the same plot. The `image`function gives a sense of the missingness patterns in the data. ```{r, step6} plot(imputations) plot(imputations, y = c("ppvtr.36", "momrace")) hist(imputations) image(imputations) summary(imputations) ``` Finally, we pool over `m = 5` imputed datasets -- pulled from across the 4 chains -- in order to estimate a descriptive linear regression of test scores (_ppvtr.36_) at 36 months on a variety of demographic variables pertaining to the mother of the child. ```{r, step7} analysis <- pool(ppvtr.36 ~ first + b.marr + income + momage + momed + momrace, data = imputations, m = 5) display(analysis) ``` The rest is optional and only necessary if you want to perform some operation that is not supported by the __mi__ package, perhaps outside of R. Here we create a list of `data.frame`s, which can be saved to the hard disk and / or exported in a variety of formats with the __foreign__ package. Imputed data can be exported to Stata by using the `mi2stata` function instead of `complete`. ```{r, step8} dfs <- complete(imputations, m = 2) ``` r-cran-mi-1.0/inst/doc/mi_vignette.pdf000066400000000000000000015461761275731226000177170ustar00rootroot00000000000000%PDF-1.5 %ÐÔÅØ 6 0 obj << /Length 2767 /Filter /FlateDecode >> stream xÚÍYëoã¸ÿž¿ÂØûp2`3")QÒáZtؽÞ÷ènZ Ø[ŠMǺի’œ\ú×w”#im%û(Ú‰(Šóàp83¿±¿¸Yø‹ï/|÷üîêâò¥LÊƨpqµƒ¡Ré…Iá›dqµ]¼õž—˵ö•÷â÷´¨sË/ÕŽŸE†Oéý­MoìòÝÕ«Ë—@/¥HÂP!˵T¡0<‘(Ã,¿³È3ô½ï«%ü§Û&Ûìy6-·ß\Js©|ðÑI³€¯?ïRø¾OñrIa¹0R ‹«ˆ¯ö¶AoÐlHåµöv©bÏ6iî&:»”^Ýò[Vºõ%¿ƒuòû–Î fɧ4úTÛfdL˜Ü¦]*–ë ÐÞeÖeižß/cí­xí¡…#ã•ÅREÞ¤µ»±nÐíaÖf ¿!G¦u€¤«øíµàï“}¡ñ|‘Ľ%ÔÂø¾tÂV8îDð¦µw‡3éR%Þ}Ë3,d»gKî«Pa“¶n·¨i‰F'ád+e@3V ±éVtéunOœá@q%BÅɘx5'-…2ê„´M{;/K«HH?|º,°‘ð£ø„¬ÝÝîYQ,$˜éîPn:w“Á¬u~hÏ8èd%{¨DtB]p‚0ŽEk'®jlvSÎ+*ýDDI4¦¬Ó êó¢'zy¨¼ç9ifÜu0¨Jky8RÖxwY¿öÆ–°¥Î-Kç,-}é‰þtÉvMZ<âCÚÀ1i3&&O޼»}F[Ù³YÛëBë¬ãAž½§}mk<ëvom7Ü{[âéaÕ.XæÆ)ôúû‹Ñ¡DF„*f½ö(§ëêo./7MZŠf½\CL¬¸ƒðå7»éD…×öærËS›KŒ–08¤y{ùš×“m˜W‘;8.Þ‚Ž‰Ë@à3EÅqCƒÁd‘âQ9µE©P/¦OÜÈ™O°µO£zquñ¯‹Þ(¹”‹PišÅ¦ ¤/¸m>ªEc»‹¿~ªŠ}Q!$ΫþõD£™×®à†÷ ,TPhÎGUÍÞ=´òĵ3Á¯~è;?.Öße[HëP…ÞFR|Hv ÷/fÏ=šp⨅|²¬Ý†Ö\3ñ¶ÚC 7¢m„?ˆ ³‰µ0>Å U Ü ›g×MÚÜÜIZⳬÕb¨’±9(cÏhl¢äP“2oïÿ¾úÏ “…`Œø´h ¹„b.£™.ÏŠìÙŒ‡|Î-û°BSÁ/H"aˆƒßËe¬¼¦* *+‹q:ò)³Ñ䯾ª• ÖL¶æi Ü0C% ¼o*ª’\ÚìŽ ç*cЕF ͦ˜ÁF´RBùɘ¸×e6±Z@LѹJòŸOè<)3qvãüQ~˜‰JYx·%à” »ÛJF)"(ž¨§"EL9Û ލ$¡¤‡Ï¹]: ȈÙSÓ·„R)0ñ˜ðUÇr¡m …€C…íR®–Uí5>½êÐñ;9.»]†‘‡`jжÿvdêf ’YÊ­XÂóTVöû¥×cÙsbÉÿ€ÌþÞýäÒ „ÀÓd*C¿H2¥D9:~¼ÞFŠ¸ÇœÅvÇQêÛµ³ÉãáécRõ$,Cýé[u.8'ù 8¡ˆ8}"4‡7„ ‚\ŸÄ~õ›ë§Ÿ¯^|ÃÃJ~’ã`WåyuGÈÉ Cd‰ÃÊû¶wòÕ„ÔY¤'Î6å˜üARFq‡™#HùÑ®[Û!k-Ü…­àð2θ?\¾÷Kn±×ÁêÚ&ÛÝóøno1 9ºiÓu—nœø¼ºÉ6„¶éu›µˆnb‰³Úh Ú¼]Éwp‹ P¼]©w£µf|2oåêž]‹"mšgî „V…}6¸]B›¢]|ìOÌÒ¼CcŠM2­ÇLàŒÚ®9l:‚±<‚6~Û â°ÕZ~ŸMi "N¨?Oɰ¸Mlƒk·3¢1Èé žˆÞî‘alL„é3AÄTwÌ ±d¨ ÏîиÕC-£CM–í-J ÍJ×NéQ|ybr[4 U½¿žP\?·+–P•–4;LÐ mú€p5¨• ×.`¼œ«‹àõCJñï„&° دÂó…XÀì„«kÈ7Ž–ô€R9£¬€jL]5#Z7Ÿ¶5!]¬S6nŽtÇosL¤>Á´Ã²Î„†ŠjÀ€*(ÔµsƒMž¶Ø¾# <•Ÿ»+Ôß ‡Ào dªCûˆ×±!S HW³W#ð,¿ÎJ–f¤ÄFDS)°QM-ÜóâB©!ïÇãÊîLÇvЧÔP+Ê d𴍏Én’REÏo慖ǘ[kù…èxiÈí±Á·7yÕ¹þ+ž—í#ݱ;X»·yÍ£šPްy2cjìé)9ÞÉÔñÖè7í#æ¡< âd̉úÊò‘D†„„%“¿ÃšÛÄ"ÑrÄc”"TR¾q[G8*~ިĠ)*¿aÖuSÕ`‹ÎM°=˜q/BW7iί1jG'w;sÉ{ uL½œ!‡Õ‰:ø€Ý!\#žÔç5XŒþ¸çW×Ü„Qæl(7–búåCI_‘¶Ùö 4*åüÖáo_·Žg‰æè$!GˆÀ¨ùGk"'—Ð;ÌæØsˆÇ!VÉ£XL± ̘Ô«#£´ûêî[C@àjŒÈ°í¹•¹fTGBEîP*—¶N…|ÄßA4_ëOÔ´˜# ÿÖIÚöI#Cÿ{GÆW7÷Ý­ÿ1ªSa,”RÿET÷É-Re4DÁÀ(Î3žÞ ƒªm¶ îh"*tmÎÑ c¿dˆý¤Ðñû¹j½¨Š&ÝØ1†áãÜ:ŒQñóÚ-ªš­m¸äXäKB¿‰!@ªÐPŒžÄ?_cûŒ³\Ø๡×3ŠÊúî1d&G €­¹Mݯ24ã T4JgÒü„¤î—ÈPSþHEΨ[2žŸ ìy]Û¾ ýa[˜íèàë!cØ8þÓPƒ §‘ˆžã$!ß9Œ$ŒW³G¦_™n6G ~ÄÍN/à~€Ï)IâÀÞRtŸkᅫÒ6û´v"=Ô¦ /[ÓÐÆ¡ðMüÚ=‡ÞµD>÷µ=q¾×·âÕÖæs'Y×·]#´¡7X3*BHÒ‡2¬v—5ÏJ›6s<]Ë"NðJsµ»Ö& =pGÂóÛŸžÿq8œáÅø˜Á%z`†šI5ÔŒv‹mˆnŽ÷–k£ý{Õö:iE@p£úôCŽŸ¸a`ˆa‘ôpqp½rí¦j°ÅâT ü©ªÕ£›?Æa²ÕIÞÔ}‘2:ÏüÜÏ Bèc'MÑ×$YŽ( “þ-2Ó‰ endstream endobj 20 0 obj << /Length 1880 /Filter /FlateDecode >> stream xÚÅXYoÜ6~÷¯œ‡j/ÍCgM¤H’¶ð›k´ÄÝe£«¢Ö®óë;<$Kòîzí8(`x)Ão†scoíaï×ì~¹89O#/Ei?+/¦^L0Â,ö.rïÒõjquñl^‚Ò0f—q‡þŠ—²¸[,iDC¿Õ—Å2„Q×òJ­ê¶ä¬«}ôΦ¹éZÄ" A0ö×|«”ä•]”¹¨:ÙݹEÕñ*çm.¿ŠC$W²U cÀ÷æãÛŸ:;¼Ÿ=@ᕼmKFBì_˪.%/ˆ¢^ËnhJGVY] Gç%X+ë’¯…ㇼ=‘’ÈÝ‘r[tO`ò!¥–gŠàðXZçïÉXé0J =¢õ/LDÃÀ»(á`ä§Uª¶¿%üÒÄÏåêÎ-lDy¦‡‰/Wvª âgB)ÞÞ-’ÐwË[%«õpÈâ˜(?q h˜$Ù†Wkq=MJp:=¸ÚV™6‡âv#³MýE’iЃk×°[%f|Û3‚•œƒýƒ$°\­•ýäšXê×ÛξJS:p!š¦NÀäÇét)•ãçÞJ~]ìÈp‰0ŠY8¥¡%Áb_iÖXä+!ì@vÊ®lDÑØ©Æè»žwb§ÊºuS¹~çŽËB¡Å2íûPÙ-úyÍñ//›Â‘w.j-¸[âvá¤2=îe<&“\);W¯ìÔ A!٣ɱ ñÂ(€_§ ÚV!õy¦ÿ?¢L„P”$tJá/02knŒR †2&ʆ-l"öûfF¾y)”‘ì^µui—‡s²’1Y½¾Þ í½`¿z°´=ާë6­È—ïĺneT² ðŒM«õ (‹È=¹žhš¶n€¡îk%)b‰S¸mu,B"a 4Œ‹³Î‡±™b½b°ÞÃï@‚¢”õ”ªºªÄ¢áXf5xþj[oÕN!ÂÑ€é-' ­˜†Ì›ÿ¶koßÒŸ¿>óÔ»‹“Nz9F)„x!ˆ…Å—•'z>ˆìO< &Í"¯Þêäç‚<”‰„4E1fVe¾²çÍÒ …L"êc®™ÌŒ¨cDô­äŠzH“Ø{þ>ˆG׳Edx¿{ç?МÁe`î í÷k3Àgéã·{—†·;Ëâ“›ž^+?ô‡€‡è^M5죅 ûO­þŸNè<Ãð©Ë"PÒ®ìÉR¼Ýðn· ÔÝ5ûù:É 9JÉ4gÒníEÞL„ôû¿/ø­xÜmµó]M˜úÿ6+fêKp¾Þ’ôÈ,]ýøéâÝk;üàrqãÍMåPE}k’DS›p¨$ì°v¾§ÏzÔÙì¨K‹*9íá®m5=~“«Qt%àpû£¶×Jt{Ž)Á#GûÒq“ÿ^®ÜþÑš<Ù…йÁ@ÑMóVôÅŠƒÆ3w½ÎÜ!Nng.Ä­~qÚW™ªçòŒ\¹"åòŒ^*$.ÉÙ•ÚìÔ}MœÌÿ  BDç¡dL_(ãL¸œx—x…4!VªjSßr n¦d¯¾›EºÛ (Ógÿtý·Èf ïòí‘a}ÎyÇѪå¥S×[Ùmì(ÀØËioLË¡7[§ÓñLg÷¨áRþLGÌ,†â Dg%€sâ޹lf o›F@êiË ¼7¬ÿ°#ï{ûŸÇf”(íbvˆÁ(ˆé#š,<-ÖÏ%PƒÕVÿFÀ»ËZm ‰çäËCä÷Ù‚Ê ¶yMëòÛ¼FŽlóF»u?bøimÞ=JoèìcÍèPU¹êž¢äÎõ7õgz''_¤gl^ð…zÆÅÏìHÇF=Í„Ù[t·çSeúc û¼ê¶Qêºvø‘¾/ æAT;¢ß9†Bi`:Hcʱ=¬Ô7ù½™¹ofu%Ì6F±/ݺt'!¶­¶ŽÓƒ¹õ@Äþ(Q)ñY3h¹éxÚ¯Ý=¶øóV£æüÙž·iN36jNÃDöºl ©6"ï—]+šðv°7öë/¶Ù3¼³»ö?Æ(¹OjÔ¶,µ?(æiGæl©á$é7H£öÉLKç3Ç’íôþ¹ý®Û䃆q¡nùÑ`@iŸ‚íî²§(q;w¤SÓì}rË2Maè„:ž :9ÕË¥þÜU endstream endobj 27 0 obj << /Length 703 /Filter /FlateDecode >> stream xÚÍVKoÓ@¾çW¬ÔÎÁ›™Ùwo ©HE¹‡Ð8!·Åmü{Ʊã¬;iÒVpÉnfvÞóÄB€x?€õ)ƒ#£ÄöY,Dëó©R?È6A °A¢pÀ\‹â*”tí?ö£E‘‰ùàòT›ø°¤SàŸµP‹ÂoßL£±v"°3dÅd.±oV"x1™‰/ÉÝCžO‹?Ão“æÑ˜ßnD”•¶T\ |ùlÎVBO bëim-UJ‚¦ÊæÙÙ0%K&¹½ýu_He‡©!É|YÜÝóÝ9“|—GQºÄŠRDŒÙH#{\,¯%_ ¿>_iH4J€šsɽtØkW±îËY[qzc¥ÅŽÍì2Úvìv0Ùl9½®Dj;ÞEÑÄìV81Çs‘•¯ã¤y#ƒn´m¸ µ2tî8ÚkD³í¤…° ¦ÅÆ(˜]Æ`¦¿›Z¢¢(]1#ÎÖ6}¿þO¯Köhl ÆJåiŸWÕ‹ÂŒ$…ëwk{®L&_;Õ¢uR9<^/VµH ‚$4»¡(äP–×W7y6L­Hò›|ºÈjÔñŸŒÓ®,+ã{1½Êöwj v+å]ØBÛŸØîDcŽâJқЉ8¢ŒÆæi ‡ÓBhå’ `»Hº»·{“ím1è$%]j©¿õŸÎþ£@2ÀÁþkÚïÑÕ<©ðq³ ¢!‘ïÂ<Ùž)¡äQ³ŒÓÚw€¾oHhyh@?ë,ðe)ÈBZt$-УkÑDOù†Ÿ$õn²»-iKÒió_nKšÇ¬X%n¹ƒ{v%îG4ô2»R+sì*ž‹ÎY}ÈQ¼½9=Kϳõ"(‰ävêÈ#†Óóo눼õ]ƒôÇ’Gü¾2²e—]yGcl™Dvß{‘Z-½Ò•eÕr’à/âKÂd endstream endobj 23 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step3-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 29 0 R /BBox [0 0 459 317] /Resources << /XObject << /Im1 30 0 R >>/ProcSet [ /PDF ] >> /Length 35 /Filter /FlateDecode >> stream xÚ+ä2T0BC]c]#…ä\.}Ï\C—|®@.TŽå endstream endobj 30 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step3-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 31 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 32 0 R /F3 33 0 R >> /ExtGState << >> /ColorSpace << /sRGB 34 0 R >> >> /Length 13487 /Filter /FlateDecode >> stream xœ­Í²$Çq¥÷ýµ,æ_ým‰‘dF3qLB›fA㢠4eÀ A I6óôy«"ü¾üóã›ù%Ú~s¹OËa)ÿ¹m‡‡Ç×2ŠùðÓáÛ7órÞ×Sû@ý¹ûÄ¥LÀ­ûÄãçøÄ²”AtNêÏÝ'.Ëqé¼ÔŸãë>Á×øDý¹ûÄùvœ;/õçøÄß%a÷iYÖåx½/Ûõx^뻓»>_ϻת?~ìôm:®Kè÷C¿•kzkòý§]Í\.Ó'—ËË¿Ëô-er–Ûîe¿KÌÓToû/Æz¾®Çéåbûjùëõ|¼¬/ÖkXÿóý’©kùz=Î[¿”«üø±Óï ·é÷C,Ûª?~ìôû¢múýÇÐK¶ê;ý¾`›~ÿ1ôôÍiºßœb®ËqžÛùxÝî÷¦¿ýí¿~-÷¦S¹5×s»õS ¿j¿Ã¶Ãù\ì^æò/?üòñWµèì×éõpZ÷¿SnÉÛȇw¿ü’ eY.Çm.ƒ8./Ãúꇟ¿ûë‡÷‰X–2Õ%%Ûz<]^~Ç¿~x÷ï™ß°.Ûq¹¶Û~~ü†÷ßg~AY-—27å¹ñxˆ–ßP¦fÞ[ßÅSj-Ëc]ãþ³Þn/#ˆÐãíôøDw ªŸ¨÷ ú‰¸ =>QïBÄmèégT[°óc©^×S·`7Óû-»Üë¶õð›é¸wó¿4›Ëv“6Ûõs›P§™£Žâr<²Q\ŽÓmÖ’ÄÏmÎû=lªåç6ó™ýœÊíøs›Ó±lz0C§ýrÁßx>_ÄoÜŽ—K6Cå?b&ªZ–ŽÉùVýùo\÷ûr2Ëñ¶d×ò#Ùó¡:O8ǔݢšìêqMûEœ‘é8›œßæëç6åYtæ«­¨‹É®¼ Î×ý;C.òb³ŠœÛ¬ž/ev³~.ÇUÌDU˾Áä|9Íâ7ž[öW¾ØÜLÎOûî&™‹ÓqJç|;ž²W[±™EΫºÏfëü­ÇÅ̼¼~Ï削9‡ûl±YDÎýhç}˜\ýóqM_ƒÓþˆOŽgÚ?‹­|›¿eŸ5Åæ”Ÿb3eŸ@§²§7ó#ŸÅf6׫ÎÁåxÎîŠÍl®ƒò]H¬P—ôL”­löYlÖìÝ©üçj®bígÛ7êÉÙ[÷oiɬro8ò3e¯âÓr<¥ç§|3ó£ýÌfÇH+k>Îéù™^¾ƒÐjœìŽQfµ|!º˜™+«Ø¬f&dV˧¯f&äh˧Ý>Rfu»of&tÊ×S3rÆ‹ûþ¢ýœ÷oä¹çC±™Ìüèœög2×'»çÔ9ØŽg3?òYl–ì•R¾ö«o5¡º=§^ËK9!·ê—ãjfBv¶;QÛ|ÜÌLè ½T³“«q²ß€ÈÛŸÊ•µ–o&f~än²ØÌÙ+e½Ú]«Ìu±Yø~º^öbfr´—½„š[%ëÙîOåL¬/u½¤ŸÓ^»Jfèd÷§òJY·ýEWr<å[LöJ)6Sv¸®ùýi±™³Ï»u)ëƒWÖbw¢zeÍ{U>ÅüRôÌÍÄ´ “+k²ûSég¹¯Ù™(6›™ 9ãËÕîOe®‹Ífæ‡üLÙûérÙ ÚI?»?Õã9Ïéù9çìÎp9ÉoKv›%û¼[¶ã%[Õ-6k¶ª»¿A⫸¨›™ ¡ÅVÒõì-öÛ’Îêb÷§ÚÏlëëòI]l\}]û™ìþTÏø”¯¯Ï7Y_·±õªªW·-ª©¤Ï[I—£.6nÏ)WØ|¶•t©³¬¤ûL½'IŽçdöœp Wu×9ØlÕ]ç`3{Nò³Êª»ÏÛ*kñU]lÕ]G¾Ø=§ž‰9_u/6ªêîc›ìžSgh2µøj9—‡Fg3Ýd-ÞŽ§Ø¸ ½Ì[±Iï9§k¾B_lT…ÞÇv‘{N›ëbãêö:¶³©Û“Ÿs¾n?ìNTçúdëörg0m¦n;Þbã¾éñ¬¶n¯Ç³Úº½|&W·×±-v'ªçt±u{=žYÖíCM/š&»çÔWÊdëö*òùv“uû©{j)µç¬êUVèCUµøª^ä·šPùìÅ®ªJzUϲfªÚïUõ$ëࡪŠwU7SÛÞUÞ—Í·UV±CUõêª.r_ªªAWu–ÕæPU]9Tµªê$kÅ¡ªªðC½Þäî'TUé­êÕÖtÕ¸Û¨šnU/rGª«Þª{ï~P*[½ÝmÜNZÝ÷ƒR®z«ýœlõVço“ÕÛPÝ.EG¾Ù:­º'îgF]Vv•{æª.éŠìn£*²>ŠÙÖiõhg»Ñ~&[§U«ÝÆÕiåz¸ÜìžYíav·‘±í§ú’ÕÁÝÆÕiõx®r?RÕ‹¬È†š­½Îûù=“s¿sz籟?VÙP]íU®°Ë&÷¡º*«¼Wîç÷’ïwUe­ê’~߿۸zª^‹­§j?³Û»ÕUNu.&[9ÕQL¶r*×Òùæv?ûù½ä)Ìy?¿—¬‘î6î;ŽübßìˬW9Õ~βrª{‡¯£8ËiUO¶ªówr»ãó–®{î6®î)ï"çÕÖ=åšÝÏï%ëAó~~÷·Eåj輟ÉËî“ö3yÉ7ðóy²ÕPíg²ÕPyµígò’oŒv›ìäÝ&[ OW[ Õã¹>ñþu nÞÏä%ßèí6îd²\«û™¼ìÚ9e´ª'Y ÕÕ=uηü®üÇAÖãZmÝSço•{¸P]…SG¾Ø §¼³íçì²Ï÷ýœ^™úýÁnã*œ:«“­pê•<å÷{Û-ý®}·qN9žòiWáÔ±]í»v™ƒýô]öÛN±qN¹ÞöÓwÙ;ç~ú.»C(6ªÂYÕ“=ƒ¬£8Ù½¡íf+œÚÏf+œªnR¯¡Ù¾k×s;Ûzµ¾Ž&[¯Ö~¦ô»öy¹Ùzµô³Ÿ¨Ëîö–«é{ÛUW¯–Ožýì\v_·\l½ZÎø~v.û´ÚÏΙ™Ð~βŠmßîgçøiµŸ’39ßde:TUƒ®ê*÷†¡ªºrUYAÕ|ÏØO¨™ñÎöœ®ž©ÙÖŠõLMv§×ÿdkÅòÚÜÏ¢ew¬ûY´ì=`¾Ú=œÌÛ~n-yÚ~ÞO³ekœó%¿‡›Ï¶Ú¬Çs¶Õf9§ûi¶ìa?Í–}~WƒÖ9Øò5èý4›Y;r¯3¯²ídzÊÊ´½ÓígÜøŽSTó¶~?·Æ÷²¢ªºrU'÷¶~?uÆ÷²Â÷²ý$ïgö3c|ïž®²*ªªÿVõ"wJ¡š÷òû).oQMõv:ÉM¨ªN[ÕMVdCUû‘ª®îMù~VÊŒw••Óª.r7ªyϽŸi2ãÍyÏyšd-3T®Zî’p¸ûÉ#\7·«,N6QU!âÅlýŠÈÏûýÐt?sÄã<ËÇúC<™>›"ªÒßCÜÌ~ë¶™Gï§Ä}y”_5¢ä¼~îtFòpÈò•ãÌ0qšQŠÓ¹·WàIcq:YVª œÕ}­Éwƒ£ÞM•m²úæßÉò«•c²|]TeO§ùqxÊði:ùy@M3BMÈò«z•;²ü^e`Ì„<>ÂþÙx4OfÀÌ„üü7ëfH™å·è*>&d÷>F™AÅtFîŒxXLÈüö0LÈê;¶ÓB`(¢À„,ŽWØ.!?qiFÀq Y~Õ®²¦³ ’à¡-§£¶ 'À¶T-!˯ËUö܆¯à0€¼ReY@€²ReTÁ8¨Re OÄ L•‡lñ)瀟¢Ù 2¿§À@<,ZJÈÜxŠ%d÷Zâ JÈù] OBv‡¨ NM7â¡'àÉQOÐ`Oªì ' Nª 4“Ý–—%ÙâH( –GB£$ IÈò¤{•|ãúH•4²<«^eÀ‡„œßÅXTŽX!!ËLUöˆ UÖ´Næ8JÏû€8ð=yâxrÈò4`~hOý¨2ð=B–/B–uÿ*;@ŽUGÈÏŸjFÞ™Ïã0²²<ùSeÎ Ã50N@j„ìèà3ª ¤Œ¹À†ÃðT ˆ°Ù0(@`4Y30|œ€Æh2°1Bæƒß8 ÏÁ€8ÃxšÒ›± £3rå¼öîE•q²,ÜUy1Glp”žgàEÈ®œg1çdÏkë8 T²+çYüÅ9àO@œ@ž<<‚¢Ê@›™‹|§'K@œ€–¨²£H` #8Žzò ôÄ$ ôäQàɱ$Г†It²;§8œ<‰»LèˆNvg¨eœèd>kà ¨Ä ÍšzzæÜŒ4™bàI+ž4ÇbàIã-ž4õ¢“ù85¢iƒ@4$£Éš’1DÃ3h¦F'›ò#Q5š¬±ƒaLºüø·áG Ž&; Å Ž&kÇ NÇçÀ@< <¡£ÊãÙ” ±1†'oÀ0½QeGÙÀ@4f£ÉÀÙÙ!5`Ž©qT£ÊÀÏÙ¡2tœÄÊ™÷W4Œ0FÈé¡18bzÊ 3:#ór–ðƒ@<5ÑØŒ§ÍÒ4À“Ãi 'ÍÓxÌFÈ|ÆñH D35:Ù;‘Ÿ2;iÀÊèdËУ$ZFÈüÊãôd ÐUÖŒNv»# ^ † Œå»ÊzIêE•p²Û¶bM³h²ÇYÀ(Ïñ@ ð4鲿C¶ð d@¯Ð¾¢Ê@ªùù? ÑŒ<•â,E•@²y K´‰N6¥J$K„,‹’Uv¼L¡F R‰*;d̈*"äôÉCDA„,÷+Ùh”ƒŽssˆôtý‚‰…< § å¡32/g=ÑÑH‡&{¦Ä P‡*;~Æéˆ#8 'pOŽá€ž<ÄyˆL„Ý~e@:€a8ÔÆ ¬ƒÖ@B\ƒa@qÃ`  Bv¥?„ìö6„!™‹|˜$A“ž4  “ó¥? Ñ<ƒ'9èdWúÐA“é‡áQ0 Ç:@O;xÈ®„ÀUv Š“ Uö¼ˆ€U6AÈæä!ª p™#€9ò Hªì ˆ¦4yI k;£|‰pOš2ÐdèdW¢Ð@•4Ðɼ_¡$À'ÀMÖd‚A X0Ds :Yî| šoÐÉD qjîÁ CxÒ”„' Ozrå¼IC:Ù½Ö¬B'»-/€:Ù”è­`3Ä›@1„šn"@C¨éB€|šçàýhÌCU5ç!Ts„H~€¸÷&Qa”(U„‘|TÙ 0€À@²|T >N@=TP~€¨2 BNœhªF€ðq"äIå³Ê€…YÞ·« Xˆeã!ê!äê¡êÁ¦UDȲTQe@øa¤°Õ°!Ë¢DȲ(Qe@=øa¢Ê€ð£,D•}Y%ª P?Êê¡ê!dY~xÈê@qÔÁÆI¨ï !'ÎpW#@„,ËUDÈò%J•Ô“P‡*Ô!äĹìj¨‡naÄ'°1@=„,‹U¨CȉóÓÕÈApuxÈê@Ô¡Ê€o°qnu¨2àB–…†ÝÆ’ !'^ŒT#@2ø$¨¡Ê€dY–ª ð…Ý‚€ !Ë2A•²üê_e€$ø t‚Ÿ€Éî ,P±@ „€ !ËW Uv@Œ€ >NÀ,„, UÌBÈnA@…e dù]¿Ê)tB%Î#W#*xO)ÌB5ÌBÈ®@è„Ý^p!'NçT#À!Ø$$aä‰O£'*„ìv„Nðq: Æ @…å Œ*:ÁÇ @'`B–¯*ª è§*`œT¨2B–«*:!dWš"HBȉ7ÕÈA(GI¨2@Bv»!ŒdÊpUðAÈîÜAœ|€qø Ê>Y–±ª¼dNÜ„Q~·Aàƒ]Ë‚0Îé ÊX>Ù•±|Pe@„ì V„-9qn¸¶ÀçÈÁ ÐÀ BΗ±f²Ü„ú8SØ‚0’Å­óe¬ !çËX„"ðÌ_°a%@AȦä…(‚å¤Êp£$ÁÔO9¤Q!Ë’W•/²Ùƒ 2 ätq á> € ¨r F¦¸•„„QúU¼'@Œ<™] ‚B–屇LÈ€'„«‘CÐ( Pe‡ À@På Œ­rÕ!'ÎÖT# „lv1ðÃd@È 6i5d@ȉÓÄÕ!›WtðÃpÈŠ“!›ÂB66 QZ Ž0UN5ü‡‘y—lø#S`ó­ý§kíÇ@ µ?ät1›ø} ÐÚ²,»UÚõ}œsæ4q5‚Ö~ï)Õðÿ0¢†ÿM1[ûCNÐØ«‘kíÇa@k•¡µ?dó:[û« Mü~”ÐÚïG ÿ!'þ$P5‚†ÿÝ.&×ðF¦‡ ÿ!›b\²‰?ŒÒÅ8lí9qê7ŒÌé1lâ÷qºÖ~ ĵö£'hí÷ž áß{ @•à8@•²,ÜU9#·ã! @•²)Üíÿ1…»ý?æL¶öû €†ÿ‡œkø£DÃ5‚†ÿy¿‚¸Ö~ ZûCVû_þ¡Öþe‰®ÊÐIJ܃TÚõCv6jÁÙØrmõa$Ï”UèCvE3j•¯2´Ê‡œ o>Œ¨>dYJ«24ÐÛR[}•¡>dW£Vùó…0j ÷£„¶ú]É‹ZåCv%/jŠ™K^˜hŠÙ¼¢Ã¦øíïÕÚßCvOojt9_°²î4 jtÙœÃF÷Ý3ÝC6§¼°¥=dU„ò#j^9_„¢æõ]ŠÒCN´y…Q‚PY y=dW„² é'4¤?dÛNà†tH®M=ŒÌ‰0lSÙ=é©!=dWX¢†ô*û¿v9‚6õ*CCzÈòIï3 é!»bµž‡œ/Ù&s4™WšÌCvÅ"j2·Ã Öó­çÕZÏC6'·°É<äD;y5‚vr? h2¯2´“‡ìŠE¶q‡ãUNµˆ‡‘9¹…ÍàU†fðÍi,lÙmõ¨DïÇ1OÐ8îÃvrï šÌ½§Y?%ª ­ç>hHÈÔ²{! /õ§Ò¯å¡ó‰‘û«½à ÚÔí¥æu›ÆAK;„-íU†æu»F¨¥Ý^,Ôèþ0ºÍWeäÛß!OÐþ®kÕÈ5Åc" )¾ÊÐï—´Êû@|=̈k Çð >dY± Úêõm[=-A[½¾„¨­>d>ŒC†¶z›{j¶÷C†|ï ó«ìó!Иßí …´ë{O®‰×4ñû<ùÖ~ϵöã4Bk¿þ« ÿö–|ß´gqœÀ<ä@çž0Uvº–7ÀØù$8@Ȳ@²+éI d€„H²ì@è @ö›á|":àgP~L(¨2 BvC}}¶ÀÇ 0ŸF8€¥áx±Lzïø q²;»¤3B0»Fq`7èÜø Ê€8ðø Ê>ð‚]ÂIðÑ:ÁÏ2¼'YÐëÞbГÇ,@ʳPe*ø<fÁGð…—ÒwpB2XOj°—Ðß añ èéjñ z-¾Váü˜êàÇäQ0&‡zÀÉÔƒ÷ïÉc!¦«ôä°˜=ÀB„,_.úè=,æÞÁ"Œ'·ûO€Ù•Ä!–ðnâ!nÂfd¡Ð«…PÐÂ&…Í¡)BvûL²VèíºVЄ°Â‡ Ÿ'·O·9¿û$¸…Ý6òÂ{ò X¹„ž„áÇx ï  !3ƒf™ð!Ë’xÈrŸYeÀcØ;A3ì '”†÷€*;”æÓ£4ôº#”†] °ž°á“ë±ñïWF»Ùì†ÏÃ8ÀÀ8|ÊÑQe€q„ì¾À`ðnûT™{ró¹ÿGî« ˆŽeéºÊ€ÝÙíæä-±Uì†K7Â8|ºÑ²+<Ë[—Gt` €èðCN;ÂÈW„ðÎÃó8ÈžÃy`x€óÙíæäíq>É–®õÕ@èž‚Pxñw‚T€ !›r4¢?B–_ª 8e‰¹ÊîÙì¯ÜQe@t„,·èUGȲè[eÀn„,÷AUìFȦd‹(å~¥Ê€ÒÙ\õmˆU”FȲˆZeÍÐ÷8‚fTÙA3p”ͨ²‡fèÛ……f` ÍÙ•@!aš4ÃÞ‹ ¥á=yÀ$wv/Ê“(0rÅN¡4ÜÆUÀ†$…ݨF»ž»ag™`Þ :|rÜáÃó8}aYœŽ pÞ“‡|èMA>|x€þ¨²C` €þð$dW…¥á1!ýdK z=&$dWìÔ&Äâà!”{‚‡TÙaB0zÀ„TÙA0N‚TÙA N‚ø,&Ä^ÔyÉ‚¼GŠÐs™">¹ñ‰üHÈ® ”Ĩ’*§P%aä^ªëõd&ý`¢×Óïéú;ÊÖX“X“jX“MY±&!Ëý`•k²9‘‹X“]Q’°&!»¢$LB–EÉ]ù‘&!Ë=ÓC&TIȲ¤Xe@•„lΧ"”$ds¡$!Ër^•?²Üƒ„,KtUÐHȲìVe„lz…)²ÛR$dW#xHÈòIÿ ²+&$dW# H•²|ÊV€ !»òABvå1B„ìÊcùÙ•Çò²Ü$…ì aî°ßGça¾ùÙõœè-A>BÎo|,΃2B8—6Ó×Gòᇠè*úÃG@Ÿ'À„ØmÛžRe€‡Ø=±EŠ`ô€ñÉÐH•4b¯¥~¤9üð#><€’xOÓͽž`bÇd±&4&š„lN"Ö$d×]¢okBY&¬‰OÀN|Ââ=y0 $À(~å8\ Ž p)!»òD Ul †€+~FÃâÃ8‹O [Üz¾y‹üÊ~s Ž@.6¶«-®É;;A_¬@Á¸"@ŒõØë`2ÖGÌèùÄŒ[ÚªáTÇ]¬#Ôxò¨H9 vÜ2x åÀž2žfä<0¹O3òðä<0OÀž4€§“ÝNñdÊöGxš¬Q;vÓ‡¨»4ÀcóDX»Ü Öc/,Bøø1ØÇ‡§q?MÖ¸ŸNvûLˆ @>#€zÉ>ƒ|F#ä—À…ü%È!ï @Dþ<‘Ÿ'€ÙðeÔÉf÷‰(#'Ž:Ùí>a8òhìQ“=öHß1 {d—ð†ž†äóäIz5IàI#’:Y•Ú›¬aH¬ŠêìÊçO 8êdw¤C߀#Èœé%4iO8²c`ô­3…=jF{crØ#¨“°GàÉc`ž<ö“>Á‚À‘÷ä±GzÓ‘Â5#Àù¹×0¤&{쑾k¥°GÕ°Gü<ö¨3z{ÔŒ4ö¨“Ÿg¼7#=êdW×ë~€=‚ÁöÈGïaHúbÀôÝ5Cꌞï×jFRgô|ÇVg¤JâMÖØ£NVeî&kÀQ'»sæ0J8‚KÍŽtjpÔÉÏ£Œš‘Fu²Ûã ðDz-žÈ]C‹š x";s-²W7¡Œ|–p䇬±GìJ×0d€!Ù!’|ôNòKpJÞ@–ü4zÉ'b¶¥k`šü‚™ì~PßTéd=èÉŽ‰ðO6å…²“ ¨¨Nv_Jôv‘Rvî +å=lÊç T><Sùi\•_e±òÓ¨ÑVìNŸC xÕÉn— –Ÿ0€cù d–¿X¤eÃ#¼–M@·š Ð- ¸ìÊ!@—}̶«“Ý.‘°]>N ój2À¼|Â4â«ÉñÕÉ®˜ óà/ŸnÀùÁ$ÌgÐa#O® cÒ˜±NNŸüF ˜½æ˜1=„³yÀÇtxøxz>öÉ‘å|¬3Êï(-’Œ $dÏ#Éô£c€$ƒD’̇çAeà)*kFTžTf/ì¾L_¹€/krTÖ=*kFTÖÉù‚öI¦s?@’iO$™¾—’̇ 2»4_f¯ÆÔ á¡fž†š5ÙãË ¹_Éõø2} ðeàÉãËô5Bø2?¨Y3Ê@Í:£|I<5ëŒÒgÇ jÖÉé’8àËBuûTe T6é³àP™œà¨LÇæAe:T¦ÇãAeÚOT6®’®óæ@e°ëPÙr{y±;B’}rK £çÿðwg”x)\4¨¬“]¢OÊÂ(ÑiUR ²0rE@ð¤Ae,Ÿ‹Uöð1Ȉ‡Aœ>ž4|¬“§|–3²{ÖÁà|ì³Ë3Œ\aOg$ # «r >F®°§óð±Á=’ †ì‘d ɪ H²] âÔH²&{ø$LÃÇšì1cƒÁiÌX''ÎŽV#ÀŒ…œxÑ[<| ²<Ùžö4€iOóy É <$OIÖä|,ŒçL«‘†u²ÄŒUÙcÆ a3 Ó˜±N–@±*{ ¤& £P¬y ¤QÅšœB‡…Qâåm5Òè°NV;´*p`z옎sÓ8°NV;´&â+dÙ r~;ŸC|…‘*‰5Ùü  ój²Çvé5Ø®A æÕÉjÕd èêd.]Ñ3@qÁØ5Šk0v èêdW¤‚Å2Ù—¡:úŠK{Ê¡¸ª‘Fqu²ëØ@4t«“]9 2¢ñZœè©F¤Õɼ“¢Å:@fÁà<2 ¢×Ȭ&{8Ìœ‡cA Ž5ð¤‘YMöp,Dñšì0X8Ÿƒ¥çs€ÁÒ V“5ðÊgd€Á‚@®úÜf•=ð 2¢WMÖh«Nvg1aìmc×h«' ¼êäÄYÌj¤ÑVœxY<Ä Ñ«¡'ùתì!VȬÿÚC•=® ¦[㪪 `ªNN ¨ª‘GPé8*ðäT:Ë€ j²†M ¢?Ûré6q¦`Sa”€MU# ›êdµëjr FÏÿe£fäR05 Õd‡ŠÂè=* ñ¨(˜šÉ¾ÔyÊ¡¢Â(q2Œø !eo€ŠÒÙTT“= †¬¡Pƒ@<* ²9µJžN6çS ªÓÉjgÒd ÊédwæT_¿$Ž^â„Ä©r ‰Fî$*¢‘8þZPN'›3§#øŽs¿Ñqà7àÉÁoh—?€ßè Ào <¿Dü¦Ê~ÓÉ®( qzÌ Äé17à)…¹ #ÓäO@›&ktM''þŽO5ò»‡Ô€'€Ô„lN¢ŽÆ†9€ÔȲ¸ í'©i6鯩±û“›†Ô„j6/ž Uþчªa2¡2éðÓ™Y·—ºð&óšƒÓ=_péŒÔÓ§ÉÓÉÏÿ-‘fä°1§ÇÆ€'y}õuF®´ž46f0& “xÒˆ™NV—&;l Æ©±1¬Š(MÖ€˜Á(góB ãÔØ˜NvˆÄP ˆñë.…éŒ\qƤ±1Ìe Db:ùy Z3Ò€˜A ¹×ؘAx&ž4L¦É&8˜ æIÃd:ùy˜L3Ò0™Aô1ƒÑkÄL'«2Œd“ÑC¶0Š`2MÖØ˜N~þo‰4£ 6¦3zžÝŒ46fàIÃdšìa20d“Á@4Lf0d˜„çÀ3žÏt²{}8Ä ¢3ƒ˜t²*ò5YCI:Ùî?ÒɪD×äMã:Y=é;YØš¬1!¬¶…MÖ@N6å1Bt²z"7Yã<:Ù”¼ÜÑÉêÉÙd ãèdU°êd󢑬ŠPMÖÐŒNVϲ&kF¯Ûõ;Y})ößz¡‰¿“Ý—âAc>äS7æò©Ûõ;9ýŠ#׮ߌ\»>zš4ÖjdÛõÉÓ ]<évý'ßįçšø;™O!a ºµ¿“]Úõ;Ù=顿ɺ0º1Ý®?˜ ÝÄßdß®Ñëvý&ëvýNNŸ!¢výNvû hÁ÷é4æëÔ óõà 1¿“ù\Fï[ð!Ý‚?ð¤[ðžtcþÀ“n×xrMüèI7ñw²k€ƒ@t»~'«2Ë NÝ®?X£º‰¿“Ÿ'¡6#Ý®?Ȉn×o²n× N7ñWšø}œÐÚFÀ4Yc:Ù½  @';*¤FãÔÈ€A>5H É$ÐɼgÂ85^`@O:ÐÉé“Û#èDï ½†t²+n^ÀÇ ÐNv/_,H€F &kd@'»BØIЀ&k À`”l‰?^Õ¥Ocàž† =¹ :Ù•èp††4Yc£Ôp€‡œ‚„ ï €„šnÍ @¨f­ý~ºµ?T³ÑÖ~?>ÝðïgFcBU›œ9üÇË?¿ýø¯ÿô»Ã7ߊZÓ·ßüáÍËÚûï7üÓa:|ÿf>ü¾üóã›ýÖ>þùÍiÛ¿òÝÖ½¹®·}˰¿é-ß5Šo›ðóÝÇ7óg~ö¡leÃQvH÷_Uö;ek¿?·×ß®Ëç6ûí²|F£¹l6?7*;²²+B£¥¬£ÏîßVѨ|Lmë^/D£×Šjtzi&f£ÆçF÷WYhôzÁU£ë´¯84z Ö¨F·eL£Ñu)œïB£[ÉÒçFóËóŒÚ—YoT¾âŸ.#£õr~eto=—í•Ñé¥p;0º^^‡w>ïϘόþ.—¤º>¹$ÿÿ~ÿ^­Zö{iY‚ÛzÙ‹»÷*úþ}­<›Û?÷Ÿ(×Å2wŸ¸ÿÜâüÒ³Ÿ¸ÿÜâúÒ°Ÿ¸ÿÜ}b?âZníŸûO¬/‡ã÷ŸûOœ^ºâ÷Ÿêîp¿{78]´ÿí?–poÿr¸'2þuÿyÛ–}!í7ëÓáí‡ÃW¿)ßÖ¿>¼ýñÍ?¼}ùíO™¿|Üîöå‹{Þ~¯[/Õþ üß_ì¾ØO_âÿ~h·Ÿ¾ÀýËùÛëÃ<ï}¹Wwó/ürÓx7oÞûgà«Þü?¾ˆÌ endstream endobj 36 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 39 0 obj << /Length 1939 /Filter /FlateDecode >> stream xÚÍXY#·~Ÿ_Ñ@^ZÀŠË£O#~°‘]ÃFÃë±ýAO‹’:îCÛÇÌN~½«XE©[;’½3â]`È&Y÷Çb•d° dðÕäQÁ_¨ ÕAd”Ès”ÍÍû%$ü3´;›Ó&ñÂë¯ü­»ùþû­50\Ï8~y{óú­J‚\ä‰N‚Ûm EžñáXÆBEæ¨Ámü3ü‡ý0®ÖF«ða¥óЮþuûÍœ5ÖRH“Òùi°pܨpÜ»³¯ßê¹8¯˜YI¤–´ME—T*ÆÄK¢íÔ–cÕµ,µ£qÓ´p“¢§¢¦yÕ¦±@¢W¸`‡}U®tîi_ 4ì½3º÷”àŒ¾`†ýnjl‹dãà…#sÜv½§(šCmyy×!¿{$²}{ôe m6…öH_U»±‡ÕÁŒÔ ²¤¨Ú¾É%y8U]ý×iÉ«¬G0½sÆ ìÚÍTŽÌ h7¼M.F.ªùL -M7Í5ë¶D:V á!mN¶›< £Ž¶#ˆr¾ÔaÅ~~¨êºjwóˆk„gÕH«ìu}†„¥yŠ´zâ¤>óä \¿HµÕ°«u™ðöÈùˆ+¢F»Rá™ Ñ;Š}¼Ÿ@'î”É"¡RÅ®@­2‚až ˜qPyx(zX³A>LÊ©.úú‘ŽW[Á¢Þq+{fåbžCÌ/_R‘BBX(ÓTÃÒÿ}_ôUqWÛëWÖÄ©ˆt¾d1„ ÐÉ«9ƒ!¬v'å&ðF”Åhw]_•Eíb…ßµGDé™S-´b@AtÀóiØõ#ÊI*c\x¤…ªå½s(îìi…“²fÍc´q“¢ûPÇóPÃGoáöØ Ëü‰™\„áv¼_@¦­1ÜqÆ©Š5RÌG‡ûj·¯ŸR"…NØñ½ÅL¨†L80q|pÄdÕ léâúƒNÉ0\íÆYú…¯;‚ÌÓpL춘ê‘öü™¶k×?Cú¢Är›‚0nU~½¥]L|ж¥O*¼½ó˜G™€ƒdð¡ï¢Í@y§ŸÚý{åYŠ%—ç ÌD'˼r’s¯6›í«Oð¬3«Xp¾Ð·Fž;÷z”\ʾH“èÅŠ@›  ~Æ—#N^‚Üó._&r•,Q:컇kN4׋¬5ÃõL›eß³1X³TxÝ„„bÒç·ï\–⌵¥±¬‹uŽTŸPDéŒCÇ+ú°E¹??tã©T-=æõxsdá83­Ïž{Nšö¾«'ªç í<å.÷|²)ÆBlû¢±93NJÏ jÈûy¾ñ2S|?CV}\îå¾DRî‡ -1Us™Ä Ô¶ôk‰I±÷;Ðu­©ïúyµ¡î»î‘SßVC¡; §z«f*æQajZ{Ø[ìïˆÜ¶Ý´Û³ˆE£›P£C œänÞb™îÊí<üy•E!oSWÄš•ˆ*W"=ëÓ¡{³Tùî¨#DÑñWãz¦ÚRGŸPƒBœ¹‡t+Ô^›yƒlÂí!ó—Á«ÛØÅ-f!,bÌI»ˆ•p½â*Ä?Gý¦-’$;¯ßT,`óÿ[¾©$ví®|ƒ¾ks5&BÅúYUÈ™èXhsz¢êl/V? Z}!sBCp~òK5v¢)ƾúðô;õûõ(ó¹}÷ã›§^*¯Ð/®¼wÿÛ0™BwôÑ “G±¤„þ™še÷ÏôüÃÌ?¢kÄáp?öÂ$îK†k4:_­•ô°£â4q.çñ5¶Ûª Ÿ¦NCsdbær}~…ᡇD“dO'Ù‰r9ÏNó\.8&KŽU ùÐ2Ç\ÄR1%γÓ<ŠOs£¯éØtM±ó½¿æ¾{z¾¼XjÙ„+P&h‘e,nYBBû ÃXæ* endstream endobj 24 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step3-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 41 0 R /BBox [0 0 430 288] /Resources << /XObject << /Im1 42 0 R >>/ProcSet [ /PDF ] >> /Length 37 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C#]#C…ä\.}Ï\C—|®@._¶F endstream endobj 42 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step3-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 43 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 44 0 R /F3 45 0 R >> /ExtGState << >> /ColorSpace << /sRGB 46 0 R >> >> /Length 1434 /Filter /FlateDecode >> stream xœ½YMo7½ï¯àQ>˜áð›WMmÑF@IŽ­´6b'–Üí¯ï ÉÝJ¶´vV=Ø2õføÍ÷içĸï~÷BI¥„Ÿ?Œ¥P‘>Ö+ñ»¸ëΖݫÍo?ž‰ËMGÁJðߛ˻îÕ.?‰œ¦†_±T–$X¬:ÈèÅòV¼[üòq³ZŸˆS£ÄâÛ‰ÐN,VW'Äò¼ûa™Ûë+«9ëüÓc–«.Þ¬W÷­î.ÿ9˪‚Æe¢LAho¥ ‚“* ­¤óý¸ŒƒÊðë·GÿýöõÏømpâïîÝ¡ÄUân:Èü©³NZ‡;©.bªÔôYç‚T¦a}”ZÐKã •„Ô‚N[À2„ĺbAª¥mTKã+ V&½c»µS ½tj NRÕ–çšf·ÍX¹MÒûç À¤¶O ‚Æ9oQÌ…ŠF\ÞíŽ s ÉÉŸZÜ$ß»·M™rh¬´O±~ò}üX²Ç-[Éjjr,SÊ’Õô–ÏA²<[Mo™V3¦6yzË!ÊØ´üŒ1kdHmòÐ2;®ÛËxø¸ö\‘÷ÉmOd2â³x»ƒ[©‡3Êñ(]`x.2<`…0â¥Èq¬Ð1<9Ž&†ç"ÃK‡|ìÿAJÕˆQû|²òš>¶(ûRƒ•àrªUœ†g‘SÚÕîŠR®äd”—ÞPú^ïÍÂþ&ì2„ÖE•¾~ýö€ªäQ”h½_l.î®.ð+_]]ÿ‹Šø×êýÉ U4B µ_irTû…ÖX3³Ðj§§(íá 8¦Ôê˜Ö:KªHÌ2Éc¤M-ªêœ#qóêeº6‡B(›Å±åTº³¤Ïº¡»YÈnX®Êf}9j‰{Ÿèb'™¬%¼!"’†±ˆ\æø‘E”ráHÊXD.7è y?J™G”¾ãXor´/澚‹]N™zÚ5ì7Ó©ßËdÆZRs£T߉òöb½Þ5Ãàü>ŠR¬sG¼ €NóÞÀ† 7=ƒ?&=9Ü Ù‚bO<¦BuÆ!Â7 H[Áäi+7`’a0ìŽÎQ›HÒª#·yª˜v‡R¡ZXKkGË­ÂvŸ{μg ußB‘cç¢L\'ZT“zÚóS3™ÏŒÓ1úé&¦b¤×M®žnit¶Éµ3:ÚºH½£…àiŽqÄ-Ûk ÷ye¼9nd° ÏEŽêΈç"Ã⎷9n¤†ç"Çó€F|ßDÛ hm^èxÁ{MÝ+ê|³µ²°³²x$q6pJݾG†a ÇbÐyfãô)öR|ŽýŽž|7 ÿ*ö{q}wùåv…®ûó—?6^z@—½ë1(X;Â#šì5¬šìC"vxþ“]÷š6¤`èi|U £4½Z50sÙÚÑ3I›<Š‘±‘ìúSÉ$Fq+E²÷÷t³O%[”'«ZÔÌù¤c”þžJýÆ ‚7²1Y5 Þìm£fò¥É š¥Î£7Ãö Í¥‚95vŒ(ViN*£‹(å&BËxD.7ŽôœEär‹´ ±×–¡ï@o«cD)7–v‹Èå&"ŸE ó1õrñ2‰ª¹(¸6VOòØÅä¨Ê`¬&)‚¤û‹É-RüÕ®T"º–¨czÿï ˜÷NbÒ„+ÉÓã>þÿ&l¢cg41i öû $Ž1ãàU†ƒå›úȯéêÿD*'¹Iõ™Å%"DÏfaÐè#ËœLÂñ÷˜if4îe¦zßNÔÄmù€f×[J#êê{JAÝðšRëÒtóëÑRbhni@‡v'zbô0/tÓ¾? p»ïÇßwú÷ÛWz  "ZÆQë‹ËÕЇî?§¦ü; endstream endobj 48 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 57 0 obj << /Length 1683 /Filter /FlateDecode >> stream xÚÍXKÛ6¾ï¯‹ ¬>%h/š =h°·¤(¸íUkK®(çñï;äP/×v¶i–äóÔÌ7Ól—ÑìõMëw/_ñ"3İóº(IY¦”ØØý>¸ü- »š”œ}Et¿8:I z¸Äš›Á0ââwëÖ’ )Õ-(ÿ²‡œ7 Í£úÁ¡¾Õ;`Ò“Å•ÖqŸŒý¼ÙÛè^CBÒ «ß/´‚WѵðG3² LBÔ‚­ú?:Ø´­µ&(¥0ì¤^ÐG,y½ßŸ|éïðÜC ; »Ú# ê8Á‚ˆðx½AÜâàa^Iˆ>2?_¬×¾Þ/¾•Ýí\³Iê$¿sv.Ÿ\E bz*Ga$ѺÀrüÅ}ìVpD×ïËŸ¡—B£ÐKîã¾í/´„¹B&L lÉÁ TÆH€©mE™ÿá6=^ «N›í>›à劑\)"t¹T†É}ÃD袄fÉUÕþ¸·!ŽŸü=ªG( fï÷7ŒÂm̹8 ¿·]mÛ?c’ä‚(­–2Ô»t¬loƒ@4|èÓu]^´ÓË n•¡²ºõf¦>ŠEE£$|½S,à ¦ïëá2eWÜc“-JøhÌÌÊíñs`þb°2¥)P’«¢Æxnñ*L$Ę˱ޣ®MmGƒë¦öóuu²{Uæ.5x 3—„ÌS&D":þ½: U¸›!Ž‚ù(m0o%kÁJ?<ÂÕâr´»Ä„€M¯T uçûÚ¹Dlj"ÌKuKiÕš31'ï’ä”*ß ¦t67Þ-­îŸâ@x6|YZ¤lða6 ² õX‡YæÏ”p‡BÅ`–œõé€äa0ƒñêá2d˜w„:f(© åÎ%ár|´=5›(> stream xÚ}Ž»AE{¾â–ZÌ,ÌK§Ýøˆv&Ó+[mŒÿßÈfGX .` `ì‰k ÁÊ!H´9 ®#=I,«ùYmêY¬KµÑF̓Nê_ÉxNº˜[^lxñ/¼y¿}Ôg›×nší u;IÐFr åÏÞF=œq(7œiy)Çk[èH3o endstream endobj 49 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 63 0 R /BBox [0 0 446 304] /Resources << /XObject << /Im1 64 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C# ¶THÎåÒ÷Ì5TpÉç ä`M endstream endobj 64 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 65 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 66 0 R /F3 67 0 R >> /ExtGState << >> /ColorSpace << /sRGB 68 0 R >> >> /Length 22063 /Filter /FlateDecode >> stream xœµ½M¯-;Ž8¿bó ê8ô- ; ® èìJtl 7Ÿ.Ü“]õ²Êmû×wp-Rq6uNì÷1¸Ü J …D‘ÅÿzüËÿáñ/ímÛ1Tù'þ³uùççŸÿ÷ã/?üñO?ü»¿þÇÿýoýAÞç¿ÿúí/?ü»¿‹{…ú¯°mó/-¾øˆ©½õúøÓûãûÿ¾ÿó÷Ÿþõ§?ÿøøÓ?ýðïÿ„¬†ƒïoŽÊÂþßúˆm{ UüÝÏ?ýË¿ýô—oÿÓªIým´G¬ù-·ýê[é<Þ¶n/rz‹Ûãü7ÞÅûNñ?üíÿ¹ÿÚÊãÿûá?ý—Çöøóáñ÷ûŸú! ƒÿÇy˰7^ßâx´·­<Â[Âþñ‡½£^ÊÒ[,,+;ý/¾¥ÄÂýU¶+c(òV(lAFã\÷ñ‰ZØß‡&Ã[,ìå-^9eè´C#¾Å+g.o9ká—º´9ä³¢P†<•+ é-_y÷9õMÃÞ÷|åmomXa{+Û‡ìV˜ò[)FÞ^fŸ¿vúî¯Ç#æö–8}ÿ&¼oæzÌ{§Z¾0o÷™Ã–ßRM¶Sù.Z?ÊIžËÇÛ¾ðŽr§ò}·z”“<•Ë<.G9Ésy—·<ÊAåiÛIžåJžÊù³üxÿ/¥™Ìæ 9µég½-•µï²…‚0½Ê›¶MÖ•ðÖíHÏ“&Üœ4ñøþ0rï'Ep'â‚kN%¿'—Êß&}_lë,³?ië\ùÁµ¯½ôY[çÊ_n •¿?lçx­­Ë~³nëRùäÚw•?iëRù«m±ò÷‡nz/¶uÙ*×m]*?Úªoµ}ÒÖ¥òƒkßú¶PùûC÷ë›m±òƒë‹¶.•O®žÞÂgm]*Ÿ\ÇŒú´-V¾sQÕ¸Ù–Í(SP¾jë\ùä›È¿OÚ:W>¹Ziöe[¬üý¡ZÒͶXùäúª­KåG[{]Û'm]*?ÚÚ«ÏÆðRùûC¼»m¡òÉõU[—Ê+mÉV¥ßÖ¥ò£­l[êgmiå;tÓÛmenߪÑ~ÙÖ¹òÉu(‹¶Î•míjúgsãRùûÃÔ껡öƒí«Ö®ÕŸš oõ³ùq­ÿÔ^| ŸäµþOí‚Ûí¡þƒïËö.õŸø¾Ø_®õŸø¾ÏKý;ŸZ6·Û³ñ4¾¯Ú»Ôâ›ã²hïRÿÁW»)º_´gã¢ÆÙÝöXÿÁ÷u{çúO|_è=×úO|õmÜiÏ6i_ÞmõŸø¾jïRÿ‰ï }õZÿ/hOUÖ±0^oÏø¾jïRÿ…Ïäô¥&ï ±OÂÈ_(bìÿ*Ë6nMþ£M¼ïjG‡ŠÒÒ‘§'zP6Ç}léôÄAÛ»I¾ÕÓmOìcµÓmO\zvé©>ñ+½aßMD]»¸=\[ÓãŽû”µpö\Üg®AVÂ/s{ˆiüÑí1[¶)´‹¼M´.¥Ó>—†ªxOOÀ÷¥ô剡bÅž&Æì‰Þßr==AúüÄhoµŸž }zB{6Ÿ8õô†Ï4ÑÍef|ö?e“ýô®kñý‡´Ê.£Ó¾¥íÿ|Ÿ¯óžÏë §óùwtEÇÐßÊÙýŸþðïÿÇ?ÿôí_úóãÿúñѶÇþñû¿ýô×ÿËãOo˜šš†C /×»}OxÝt>? ¥¥òE؇/óøð%ö‰ãŽ_˜ãK),sq_@áM ¥›ÿ…»¥(fK~.L]ܹ±¼ã3gkSe{*ÌUtQaö¹ö¡ðy7B7ÓöV–ûsOVoVÅ(‘ÎòÔ…šðw-qû§Âñ6:V_{*\ô/g¼ïOx³y 'ö}r„ç!*onÐú4~«!Ê\ÁYlç›]¨4·ñ™Ÿ¾/4°X‹8ïu¡d™Eb¾÷ç!ßW!>¡÷J«O80ÅÆ®*?jLõáK>Í¿!…i‹b$9…2¸bá©Ú½Æi}“²ß¾˜S‹1Ù—fÏèÉö<ÓJ’SéIxjl1&i³]öö(_ûiÚl"cüi#s´Hçë[^°ûkÜ oñy¨÷nÊ™Þbªv1wÓ†°úH›¬Å§Â]°m¨vs>o†ìq…„hYc@QŠN›< ‘#†Ûk§p‡ÞUлßa/òüI$ó$ã#mŽlä¾·¯ºñÔØJ¼„·”qêñ,¥ý«ûM˜Ûó<ÎÚ‹þí#¿ÑRÜŸ#k‚”ÉÎÂÚRºƒ’³þ»­ÿñô«µ3¤>Y;å©'ëý,Éù ö GªŠOÁ•w«.T‘Q¼-®” cì,·ØEpÆÖd*™µèÛj?ÛÕå¦oïT« ËÝã÷É$÷•Ž}PKxmK(°EäŸgÏ'‚³¬vB醵]ê]I.›fYú43}ýî¿f +õ]dX]V„ÆøkPœã5é·ïû×–Ë+Ï';k«%¯ÌGé‚l°þÙÁ¾°j^j£…þ)f§ñÔãõ-T¶¬R±ª‡Ëû¬ë”¯½\r..f£|íõ1ƒÊMWC—…UâC«1IT·1q½U_ðö€%ŽÉêJ\¹K…s,µ´}G€Úø‚kh—gäªóƒ~7ïȶQ_zì2=“îŸab®8¼æ¯Ä¹ì,·Çg5y}˜-Í]JâG «Ù(^̶tÈVsRy{qÁî¶ô¹Â çZß»N”—Au^Îóä]¡Bâΰ}¯[V®W×3¹øº{û U¯Ë-#3âò˜Kb&Ög`…òÝMœ¹îqãÞ!Yg‹EXyûØ™Ü ‰ÕYh{‘''¾›÷"FŸ U:ûûÎ?ïB©'‹ÀàˆsEa§hôœg‹o«ùQnÇØgu»£)Ó¹­”ÜÈxűªªeþ¹ ÷b_¡³v·Z‰*ûj^Ü|Öø6_ŒF†Y»…»ÞÖGœœÀ~¬¾z8Ozùâ…ƒñÄ‹º @OoϘUq©ßÃÕCj×h¶»?~Ðue…oàlÐc]Uæ¹'Ï÷„¥öM/­¤Ç;cM2Cžúã;èÂSp¹"Îs9FÉË•jÒåÍújPº³\Rð6 íïÝ^þNõm#=Œn [T:³¾”îìÏ =èe²…}?â}àfRšåûϤK4]’´Xô ï+Wô®­=ßY^‚Òƒº(®{‚.hÌÂû¥ÀH¼ ã#.s½F”NJ7¥+û׌_ÛïÑhÖ¿O ÒC­Ãb4ûÓÉ)ÁF:ðùNèüf{#/èÄñMiŒÄ­bÒéJW¥»ÑåMïfýÕÛEÁÚë,|¿D†Ô'J³þØ”N ãLAi8.šJz°¿úý©vŠÉ–•Ž,/V®õë÷dÄ{Çk‘FÌv´ï©aßx­Í÷o›Ñl¿¥;ûÛìù®Ï[ûƒÏë|(\O&Ò‘üú=oÐìÿHJ§`æ•Og†–l›ÒE#ºŒ¿Ô+]gÄé¦{ö0ZïnX}]32¥‡ÒÖþ`}:*mÅdó¡2œ;1éÌrýþÕúŸ²Ò…õ§b4û“šÒUË­>}•/ÍÜ :×ÿ‰¼É©ó©™bY¿nFöW×w·út=«üL*¯÷l㫇{Ùäcçxg[Oƒ;.š•æó:~Ãô]Oƒò"#i: S\ÐzYKÇ[ïædo¦öé¸MK'<Ùäéà~r¢;i¯gzбÃýÆtBè+J³}®Ï¼1î/ëz´›ÊY÷#¡Y¿‡DȰ¼Ùó:Þ”·yã÷Ë¢°)Í÷éV_e9¿WÖËÞY×[ÞìÕ°þvž]nÖþPšåïSt½äÀùŸšÒ4üÂPzRÑïá¸Æm˦´ªgÙêkÔå¸_fÝ?ŠÎ߬ûǤå'œ ß]°Z{‰ë¥ê|Ê´=åF“ÑAc7¥#ëã~ºÓIƒ×»Ò™üú}3×gUù™³ÌSŸÈôsmí©ïK¿_¡Ÿ¶ªüÌA[íû{?ý~…ã]¥¥å{6û^z©éz;‚Fâ¤iÛr½ebJqyú=¨*÷ní·në…N3¡«ÒM£ëƒGŒbIiÆÌFã< ¦|“Ã)z}ù=Ä©×ÕŠÒIƒ­<é}‡MéÌöK4šíSŸ.ªŸ•oÝÈOyUT> /¹ÌÁç›=?‡×Ù~ày^›tPo•[¤~7šáÚÛ,§/—ë¹ÆÈl*J —}Óý¦»-Äýz§5êûo‰¼[¸ézßéÂû¦œ¯%šï¸Ýhq=ïtWÚøiêÇEs»ÕJâùpPy(Y(’6£é.§~(—Ï4d3š1Ay–ëuÔdôt“Žl¯f}Ü„Öqö|f}\%Ûêws¦û<‰öéÁö¹^Šž2˜>_°‘€NFóý}Ÿ7FÐõ$´ú«Òž…h´ïOù7LŸßiõ¬{>iî tay4!LŸ/ó>·®G=Vö}Ê­¾œ>ÐôVPž2¡SXу´µ/û‡ÐÃèhÞ¥“O[}ýͳ¾q¥»>oýëZní öOåõ€=?²ÎŸÊÌaúdÕ㬬þ ¡9¾œ?B·4ûG}²nvG’ó«r?Y÷c‡Æ÷-ºßÖÀõTTŸªß£èøV•‡¦_Õd7e‹•WÆ(q½ÔÄ÷­Ö¿ÌùcúSÕ»áUçgÍ\?UçceÙhº_T ­n*$>‰×hïÕÌï×t>V=‡‚Ú¡4/S«_s8qÿ®ŒÎMåCe ¸³“Ñz³(µÜžï쯾_5~ÊÏZŸûåN'ÆQÖÊD3]åY­|¿®ûMí”ïCõ¡JÖj¿î4ÖÃ8ž¯<Ù¢<¬zÑdèþYuý{?¦å¦oTïCåOÛ)³éúopì “Ò­0ó£^ÞT¿f|Ðôo48ÎjõuY’úÓ%ÑB~ß„†©Âƒ8³å„Žœ~|âDK‡ÏÈ·ùÄAÛƒâm>qÐúDгmO\zvééo“Ð0lFW(†|7­`’­¦ý„†9îãÂo3«/ðÌ<»=§Pב'-Ñ:šííù ª¦¤ÏOìs´åÓ¤ÏOìê/’"Ú¤ÏOpOè‚<žÐžÍ'N=ý2Õ^Ò4NÉô ºãø)»8¡ÊgŸð3n9ãã7¼®ä÷ò®¯œÓ!*=ÓÚ`| ?¤CLç<¿_:ÄÔòoœ1%zŽ V¨ñûñ±+!øï?î¿>þðÓÏ?îï°×ûÿü´¿Ä_ÿÛŸÿí¿ÏêïIÅ›ñ«L‰gµ}´cV‹ô.óßÏ7ø¨ä¶µ¤Ýå)tz¹QÕ"U¸*¤®™Ô`ÓI°L±Ä€N<Ÿ@CÕ[’éÊç¡Ê%±!;owƒ 㿬#˜Öyƒ«ÞàHvZ“±Unm9À5Žû‡4®KýPÕr„ÏYÊáŠÎ®ðK{"ްµUš¢9G&FÏ4=3MIIæS¹ÕéIä…à½Ø©0GHÊói„4pkŽæÝš#„lÁñ!y¾Æc„¤>8£t„ Cäc„,»°ìÙ0îu„DGè§’ú±ùë!'ä8FHÊaìéAHÇIx@:D,AÙú2#§BùØWJ²û>’göü üˆ2ðz)Bf˜~Rßðt¡¡å•:´ò*…ºùt5»öƒŠï¬ŸÖ¶µ\û¥¼ç~ûáò|ÝxTÅêýú‹¤d©Ó ©-2Rh¯Â”œåI½É;©½n>­¿l²§*¯lV»iÓ“ŸÔfµ\û¥¼ç~Û»dËC™í]²ù¯EM”Ôbɼá6ýI±=ZÃVÞìl¼Í‚V³½‹þ‚#ÂÉ‹“ÄY7(>]ì$åÚ/å=÷ÛÞEO:pÒò~þ¶ PšmFh]º¤Ð^;<ë ”¾™ð…ºíií½\ 5Þ(JĬÔ7í‰ö^Ê­_ä½ô[ße_¡¹š×ðýôË€y)‚Ʋºµ‡‰RìŽCfy±Û§à-æ!ÜëæÓÅ|®Ç®¼—6¬nR|:™åÚSå=÷ÛÞɤaÈØ»ð—}˜öé B20åP虤О„´YÞ5ay•bÝ|Z!ò•òÖÎ7Wq Šï¶­\{JÞK¿õ]z´›g›®—ã—}“JclvV÷¤Ø; SÖòlWËÀ;©-ϧuŠz`¼Ià³nPß´'º&Pç¹_ùÐo{MxE±z?ÿñŸºb{ þض*RhoÐSmåwèÈkêæÓú .×OÞ Ã?ëÅwѶYný"ï¥ßú.ƒ^‰îÑïb¿4ä0x^³Ý­|ÛfI±w3RËyÆa¼J¡n>­¿àh{òhOV7¨oÚ´­åÚ/å=÷›ï’÷!síêÚŸ¿À•/JAPo˜Š@êžfR'+/v‘¼Jm¶öí—Ž BÆÛq(lu“âÓlÛÊ£m€÷Üo{—f’¥&}—fÒg×<„Lçµë)¦Þb{z­œå¢IÖÉkêÆÓö κŒWN⬛Ô7íÉ(G¹öKyÏýÖw €üÁ=‹Áw9~‘‘­¿À_6yqûlÖ½™›mk¹öKyÏý¶wiý0º¾‹þRðe#ÃÒ;9L'…öÒÆ½™åI}‘ר<%ÅñKÜ^8˜gÝ ø.Ý"YP>{*¼—~ë»häܘºåüúaÖkô‘fŠbïOÞ´\Ïõ”W©©[Î_`ÌMÞ(¦à¬ŸÖ¶µ\û¥¼ç~ë»dݯ ’¾Ÿ©¢eáí]ª›E íi…•35’ñ*UL+™¿ Ffò""hÖ ŠOkÛZ¾Yd1xÏýÖw‘“Ü·#÷ýù Θ„êÁNDÌ$…ö,÷€–3¾Âx‹¥¼‰:Òö Îó&/.(æã,·ëz±¶µ\û¥¼ç~Ë»ø‘¾Ï¿š ¡>DW¿Ÿérv ¶^wÅ0;qßK”2;qä£q “W)Ôm+~©Ð팇³î:u\k[˵_Ê{î·Ù:‘ϧ©SÛ/8׫Q®â–%ŽRßÔÊCï´· &¯RiêÔöK„^l¼ˆ¸œuÇ©S[ÛZ®ýRÞs¿Í>ëõM{2ÆQ>{ Þs¿MßA¸£¸ê“Ú:ú‹˜X ”è®QZYò,E£¨“ KìŠò-ÙxI±n{Zýò®Ê»Á·º·i«[ÛV®=UÞs¿å]¸p9•Z^óLH¬~¬Æ{`qèùÕ3øÖ œ3܃«µ’*þîçŸþåß~úË·ÿù ŽþÉÛžÞâ#|Þâº×gØé¡tä»DLÒ&þ…½é?* ö¥·PHÌåKaÀ9&J‰ð{)M8A)ád/¥ t(U´ÒkÕÈžÎb‚a.º%q ¿ú8÷³Ó˜§ùñþ|Åu˜3s¸Ï,ŠJ>3¿ "o̧†]¤‡NÐN|b’‘Þ#Fq\ËóéÓŸÊk&H®–“<•·x„ZNò\Žˆ££œHGyO9Õr’çr$¿=ÊAžÊf9É£\_ØÊOïÿ¥ˆцÒÏz[„(kC€‰°Ö—y ·_ xþv…¾ú‚dy\È5ì’KçŠß“\¹u§-Ì˃ëÓ¶.•O® }|ÝÖ¥òs[#~Ý+¨È½ßÖˆ×Wm]*Ÿ\ †ß'õçÊF÷}Õ+7¬ù»m±òÉõU[—Ê'WgxßõOmáîÌ—m±rÃd¿Ý*Ÿ\_µu©|r Ü^ü Èý©-^fùª-V>áÊo7†Ú¶¯Z»Vð}5?®õŸÚãUÞ/Û³)b ÆíöPÿÁ÷e{—úO|_¬ëkýßW+ûZÿÄÀ¾Ýž-nãû²½Ký¾+*·Wó3*÷çvÀ¯SmŠZóØÄ;âÃh¢%_Ÿ8ц—˜ÓmÖqÐöï8O´=Q x÷ýò.¿n÷G s×mï£gGÚh'îW°·+î›\TãÑ2}Ú {;HŒx?Áôã Ò—'š. {b¾Ë]xíP`Ìö>eoŠû`…\×äDç¶3Ѻ·rEãþ@Ïç/èÜ¿£5¯è܇9ÿ[¡s‹4¾Î}OËþ йçòÿð%n s3M4 eqæ­*/ïîdI¡“ØLž„3¸8­ÈÓ#[ásRïUb˜.± øoæ~!ÎKÏN6 `¯IÿЇN×pØ+«ï9CÚ¢¼à+õÝGkB¯Àô§Ü48Œ—évK 0¡'íájˆp¿OD•“h*UÓ†û턽ˆ] .bîÐ7(j·±%x +t9нâ(Nz<ܬ ¼°çd-’=rlR©¤öüdu…¥#¹‚Ü9µ“ŠäÙW뜞4Ö÷œŸhõÍp‡[^ÛG»’_ÝiƒKñK=9 Çeòu¼ÔëÌFµ˜ªÈe"®/{TåŒ@â„§B&&•û? ²úB"2Ž@ÜIÞ ǧvg®&.—:Ïão~&ZN"ÉäÚªƒ†Ëëîy†­ú‡‹å¡¿Ò? gÉÈ?/_à §UÿräWäÊ•Ž©Ð¼Öûª“!÷3êîcœé±» )Üp¿7ðäM‘Áß}ô’ðóÏ—w«åË!’LNv»ÈWjž”4¾†ÙíÁ4àæa`‰Ûû…,%K-8—  뤣êÅM8GôpIÝð¼ð܈þò] XiÐ$’}ïÍbÌeÁ>ï «Í®P¼¢‘©oÞǪ8®Zì„4¦šS/‰çÚ‡}€µÐÝŒ©üXµ¹¹qµxÑ¡¬&F¾ì”qÕ^¶gY»špÀ‘i㤘tîm¡#!½KŘ8ª!ñ°!ÞNѨHÙ“T©Dq¹ncMª‚çÉîÕ´®ò ò!mߥ$¬v÷ÿ„L*+¡Ê,Ícó¦|åzxI§L\™ñ¾òÉ7#èʰ#¨„ëéXÍ)d« ̶éÔÔmq£rˆ¼íì“i=ÀrÛŸ’èÚmÿUFa¥¯æ‘Á%U‡«Á®ó÷¯·¡„ŠÜÍ öDpG£Ól¡Ò˜ã¬ª¼¸$©Bn+ψs†:uX9¯5&ñ—ɇÉ[<9~òf9S,ør”Ýd=烖¥ï@r+´•Ú]pµç%ó[ß NžÝ*«Ùè‰ñwB5Eü׿Þâûµ2ë[ì„› 1'ìœD÷³qgS»=¤¤¼‘1¾=‰ •¬2ró-ün̳ðR§Ê–<åT÷øWTÌèNÙxnT¦ ÷•ɬWN¹Î7s7¦ù]ÙQ‰çóB‘T+[ è=M…ÀÞºú]UáïzÆUù[l°®!×H(È@£ÿÔ&WúÂö ž=²§‘ìÒNoWCODìòí„t4²ÌnÃoIüîÀÛ߯(TõGw@~0åWöj_¤vå‚-¬÷‘Ÿ®‰ŽW¾HèíEGe€Xn¿âýYêeLD»XX¦÷¼ .‹ùÈ…ûH›°pðdäðgÑ4Æ]3>áRûk^êBs9¿pÈ´±nçK¢yëïQ… ÖUz3¥¾ï?NS‚8îÆFÄ(f~|â <sU¤¤N‘•)·å¥ìáIàB §ßJy¦Cûsy×=W33XúÊËâóÊŽ/1¦é>vrE‚ëÕPy‚âî9ZØ”c¤ŠYy³´’ p÷¤OŒ¬º°nÇHž½Í%¾Ð Óâ}ݾÒïѹ…ÞS…›Éʧ [ÁÝâ%yüR}WÖ¢7 W†'Õ¼W¤_E¾h©ïÙõºÚÀ" 1W`ZÌÅÙAá1ÜBCGŽ‹…'!ñˆØUWo†ÌÚ¢^<»gWoƵ³ØZy|ålŸèO IüÙ(š—z/½wî®†Ž ºeѡ՘lØ‹Å1îbÍ~×xw£.ºhü(J-_áLÔÛ}-­ÞõxÁ5$H@tRÝÆ®U-Ò=2A:÷ñ‰ÇNN²ü->#×ÕŠ3p*¼çR]ÚÛ}”ùJѱ €íáÎFA%+_ßnóêìñöâÎðwm×`j·g}gzNÝí¶ÒòZ:ÚD[^š4¸‹äJlpYx&ßAü1>ÝíóÅT>™D H)‹Ý£vg±ðÅ’¯M¢Fá:ÄûæÚ.¹ÞTX ãƒZuãÖÖPL‹ø€õ‡ÐÔg‰¹Òyqér5ÿ6Æœø0 ‹O(Á +G/–RZúªt)yJÑJ ½­ê—Î%àzájââ©X lj®VZn¢Séÿ±\‡kØYŸa9WBŒ{•ßù¤Ô·6 ð\ s¹RdÏÔ|ÍŸªÜ+ "r{+Íq¯^¸+ý=|rn™"=1Ko÷XÅ´Æ¡öO½ˆÐ>†gGraG1EÿKgêö]“÷]kb7£^¨Óàú¾„ëK·êÆ=Ôw¿,E°Yþd³ËœZ‹ÅÁîov…õùöì>1r[ò@{áæh.]tØ£^9–®P/ˆ[rS:7*²+Í¿æ•ë S'÷Ož3òê­MVD¿ Ãä<šGÿ·p 6ŽS¢ÁÖ'ŒVu ãUÿT.x=2¢ÉHÝÖõxÀ÷ÍçLÊWž7ó {b*ÓàñÜÛ«7£‡¨{0Ÿb룱ìb1"¸ˆåkçhZ*²êXð=NyØq£#¼ÚÆÐUžÕ¶\—qßY…mv \XK˽HV‹ÂBdknV`έb`Ô?æ½äÌxcOجw ›y^¨«/¨rݵÔ+¤Dö´=õA¸o&ùìWjvæ¥$’0-væÕkgF¶ŸÛ1“™ kŒ¯EFgL¼ÔL°iIHt» <Òqw·Eˆ3†}öî÷_äJ‚àhm[š}™ÅåØÒQY+OYüãÆÌðwª4~Ìd&§¿S4ýÄÛÝÞ¡1KÁÇ6hìï;eðÚUAšî;~`p¡ÇÄ-,\ø®ól5É+câÃý6µêýÑ,‰…®’yaÓŸ5™¶Âò<`©áø}[NF$-“³¾ç@T„v-Åh¢*è–F÷±Ï9/,:±ú…*¾?Ç 2›¿v0Þì ÝÁk¯Ëé3®UòWF3//6ßýóŽe¬YÛhºyªÌsO¢›§Ê%_ í»2VÞе: ÚЊ;ÇcÚq×çÙ? #Ö>(ö +55CæyB3t®Ôèó2t.µŠš¡™ê•Ö½*qé5C7ÕË’­)\êQ4éDšhŒ‰‚°5CëæµÙÖ -¸s¾7C îvó.:qÔˆ¥ tÒ=ÇІ =è-¸n_Ь¿Z}zÈ^ Ýx°= dÚБU1™hÂßg¢ oŸfhÀú½&XѶ4®JhCÖñêV_f}Ýø3ë놆\ÙþD+®Ÿ‰V\9>ÝÐ54e¢wÖ§hÅÁ¶(Î/AÞHG£µ<}  }8ñÀD3Î<ŸhÆŠÕ ]-ö¢Ëê¹FW45‡îäV_§ß(ZÿÃóý5ÚûpþeºX…6ôãÌþ=.Gëo º°>Eëš)hãïl¿XùàøëX Bóû$ ]çgæ)cë†î›¬¿Šî˸¼²ç5T®[}=\éÁç]÷#9'Ú.³£µnèÇÓE4Êœ9†ÍÌ@€aócšt:2¿ßP´Éœæ=Ñz3ÇkZræøZ¯Æ¥ìt2tåÀöˆþçѬOѯ5[ϰï[xÅuØ÷Óœ ÃЪ ýÕ†þ›y9¢ C_.œCåGæUÍ6M/ë~24fí¿®ªÿmZuåa¡ûêqac21Ðí CƒîzòmèÍZc˜4]tŠÞèËÙl<Ïå6•Ïr;•±®y¢=S¯Ó÷o<™Øl~Ó}¦‡^ßÍF«Ieýz¹ÄР7¶§ã§Ñ†ö›»ÅÞvC“.l¯g{:»%Ø zÐvUùÓF ÍšW±m -q£†þ›¹mèÑõC§î´eËD—ÖrCsä§>#èÏzœœ•.< ë†F]Ø?®G¢AƒžhÐŒ(Þ ]Zãûý50CTTôÇByÜ'Ú.ø 9ØÍ¢ô ­ï3£ &šsÐû;F«¯PÑ©#mßhèÔ‘ªöDÏ=è‰Í ãahÐɾMthú6­š6ƒ¿ó M î%ñô8ºmb_2ôÚÄñH†>Lƒ£'%™¿*¿f¢P4Úd×ç²=ß”¶çãK²¡Sëû”‰N­É­¾ÎöJ\Ñì14é@ºŽ­ÞÁfhÔ•ý™èÐpJfCïæÉ²\/44é¬tSºÑO™ ­Ùn‹[}×E‹¡KwÆã¬¯zóÆúª¡+'ÒÔo ­~¡ Ý9+mèÍ©7 ­Y“cl›ÒgÅÖ‡Ú©ÅБ+×kQ4ÚE4ŸGþX½‹©t¸Òê6ˆ†þ¬îÿhü ¨ó­q=[ÍÜ"ÔwK³¨Ô´ú ³ñçòæûgëÆýfëOՀɠtKæy!ÝY^­|ðýª¡Qo¬¿Zµ^ÜÕùÕíý›¡['ÒíZû7Ñ®‹ÒMiõ©¼ëœoÕ¾_gÿª}¿ÎïY m|ðûÔÍú#xØ• ý¹°þ‰6]yj• »2rK×ï3ýÁèŠXè:Ѥٿjå‰íµ² -°ÝР‹ÎY}% ÙŸnèÔ•ý¡<­›õ—òT¼˜äV®ã7 ½z0Y÷—J§†ÐÙèJºÍã_¢ÁWæPìýù™ŽšãÀꋬOÑ’åsSýÅr5ý~•öÄ™Î|>Z}…õO´ìÊ‹=Š–Íë5ÝìË(¿ }G„ÓFoOžtºÒÚ>õó­}ú_jä³çˆ† ¢hèØϾ’¡k–§±  iÊÏšùý»î¿uƹ։¦Íú«=ß¹9ѾëkÖþàó´7åòZ”¿U÷ƒnóEÓ˜þ_õ<ÇôýJý¶O4k=*ï*õY"6‘nä×÷cJ‡±ÙükŒáÞ -œþ…±èÙzCùѰЊöMÀ0ý±ÒÞç¥ÒšZ…òF®àÑo®hÙ\#hÛ þ*“æaW1ôlãx7êSD*#=XNýµq~ ûqƒ¢#¡œ‚­×Akû@šòZ 7V0Þtîß3±¡À3ʇ²l`Y¯0‰ ?>q¢':7ÅùÄA²öÆÓ›ÙÊAOtîÁlÐöÄAOtn ÝO´=qéûå]~+ünfº¤&|¿›>Ã_”µ[€dÁœ™?BpKQí·\ðÌã }}z"0¯!ýa§'jeNB{‚ôù‰îx‚ôù jÙǪuŸžà:9žÐus‚ñfßïã]îâd±ùº}¦ô*̶úæ>|§ë’œ0Û3O¡!8[Ãù:WúC^C…Ùþó*Ìöo˜×Pa¶C ¿fûÕÄâÏ¢í&Ìöœ—öÑŽyùÌv4|` øÌLìÁÉö0õq ÑàE¾FéÆt)ê\ŸÀ™³M¼˜-¬6Öår`´²3 {¼`:bkÔ™FÓOàŒA°5€“ ÓA÷ÜF«àÔ æ½"ŒvÄš0Þ Ã‡÷#Ýya¢qV”¯Óž¥#j!—ŽÐØ•m„\}ŒPU¯³PÕS!¡±‹êà4B’Ò ^¡ª^5!Qâi„êÐ7ÒjêU³e##$ýù!¡¡êáýÊi„ªzEm„žûÀl ¢yºÀlop`Ôõ†T£s¢fƒÛ4¨l+'Œ¶ñ* nsþ€Þb¼ðHÂmζµ\û¥¼ç~g®°¸Mˆ³0cB5½,6…HÄYJGy6G x'e€Rö Î_Œ—nZ«›”Ax«[¸µ£_Ê{î·½ Ìry¿hpmú üÿ2á¸tÃmBþJ|´j9c+Œ×¨h@BóÄrN^xgÝ› Ͷµ\û¥¼ç~ÐÔØö²ˆ§÷ó/Hk#‹UCª#á£õ@5lzDŒòÂå-ŒÒ f{þ" àÆ <ëN5ÛÖòÙSðžûmï‚so˜ö.úKàH3}Ü@ª)˜A±½Ž-ÉÊ™Ëx•BÝlZ£8Ãäí8z°ºI}ÓžÀtÓòÙSðžû}@ϵ0$ο ñ‘&ç*8Š0‘IÊ çÄT±rÍù¬¼J¡nƒžÃ/¸Ï0yá–˜u× omk¹öKyÏý¶w)v7»5}—bŽ‚R@©+ðo*îI±½F7¦–«“Jy•ªs5÷éÄÚw‰É‹k+³î ˆ6ÛÖòbÙ_À{î·ÁèmŒ†¤{?ÿi'›“âËÄö°­Š”Aݵ~”'ËW^¥P7Ÿž¿ˆ7^D̺A(w Gùì)xÏý¶w© '€âýü ü²±n ˆLÝfIpv G9㎌W©<ÍíøÄ'/,äYwš–Ö¶–WÃ`ï¹ßÌvÕ£ƒmÂlë/ÀÚê*/éa*)ƒÙ6WwŒ¶ºö3e@Àö $ÅäE®ïY7(ƒÙNá(×~)ï¹ß̶ûõ6a¶º*á¬;]vÜÔR³­¯¥\ôá0yÚ&0ïñË6&/T­nR³Ý·£|ö¼ç~0Ûê¢ÂÎ_ {Ç#–ej*¯e‚üqXy¡CIy•šp óT:y‘JdÖ=á@gÛZžìZxÏý¶w©~”ÞÐ~Á¹à¬5¤=L­$eà‹#åš{Hy‡…B%{sý©Ê&/<~³nP™êQ®ýRÞs¿ ªQ]Óüïç_FM”`¸¾¡H™J|›ŽÑ²·¢<ÙAOÊu›ž—{­¼onuÇ Komk¹öKyÏý¶w)LEG°›ë/»ˆ Á¿÷3užÛ›iÛPNsÜx'e@óö òñoÇɺÕMÊ -ÕErí—òžûmïÒ­†hšú ‚rÈ;ª‹¸?Ì!5AÀÇQ®ÁËä5ª •ú lñÉ‹¨ˆYw™ •Ö6Ë­_ä½ôÛ 4ç-N“cöK 4w£{–rÊ ÍCŽiR\-—à«>y:äØñ‹¬få}«ÌºI}Óžôv”Ïž‚÷Üï Ì6öºí ³­Á… u-«Y¾¬™€Íöf…ÊžåÌÒg¼“Ú 8»XNî^ÃκA`¶g¹öKyÏýþ%0Ûz­œ|«Ž`¿àlCìD@|ÁX Ð5 ÌªMØÊÌŒW©4µVû¹.&/ÀfÝqj­Ö¶–k¿”÷ÜïÃnÃe@\x?ýÒ ´ …K*PoÅ’‚L"‹í;Rˇ‚—ë¶§õyså•J·Y7©oÚiÛÊgOÁ{î÷aëd=ªHÓÖÁ/Qv,±@ÄO7p\¨ž2[§¦£| ÐÀx•BÝfëDÞØEõäÝd{uƒâÓÚ¶–k¿”÷Üo³˜½„ö÷ûé 4* 4l'P£¯›Q¦ñkz”»D ^R'kß~A,‘ñ¶NýŸu“ú¦=éñ(מ*ï¹ß¦SÓÆ‘|?ÿ%0 f¼‰M6e£Lï ñ(g—ñ*'ü¹ý‚ªÉ‹S®Yw0­u¶­åÚ/å=÷ÛôÐÎÝÙ¾Ëü~m¡:w€@ͱ6£L³Ìe–=l&¯QùÐŽô¸&/²ÖκÓ²¶¶µ\ûEÞK¿˜íÄÝaÿçýü bdEGÚôhoÕƒQ¦_•q”wÛÇB=(Ômš^äÁi“·wê°¬›”Ál뱲긩¼ç~›Ž™¦*:‚þœuÑ+VŠ[D¢“„Í(Îîã(ç!¤ñ*•¦Ž`¿À9yÊ>ë*ÚÚÖrí—òžûm:Bb}82~¿þÒ*›Gæ-pŸžµÏ}|öå<¥4ÞImi>ÝèêyòVD­Xݤø4Û¶röËxÏý>t•¹}L¿p¤%N-ê¹e:¤¬–ëŠTÞ)Eú˜Oë/!¼i«”ém;ÊgOCøÐï+Ìvî_¢lo¿×é1¶wcàWBl—|a{ý¢¿?ÀvA@¹Oeñ&,ƒßøT–`¤ý|ÀuŸËp‚²ØÔs7¨n"|žùªŽë®†n°FÏâÕùù„ñ}~ 8îX±5œ ›Ôôó ýÛµÖèöo Ž;¹)üôCWœx_À> ¢=æWxyè}ðžúü€‚s¨ |0êlBfÏÒ|Ì®S)bÜf)#Þf©!Ô²ôÃeiÃ5;+%u*ÅíªYÊ»V³´#O§•’:JU}ÐRR§R¼á,ï{‹;÷_ŠÎËÄÂ_eåmQa-ü÷WRñW¡ÛP w‡¾ÂãþÀ3'ß‹sÍ¯µs’Ÿ´sªyò ¶ü“vN5ŸÚŸaŸk6˜ðÛíŒzð|Ñιfã©È#ô®ø‡væXÖk~pëºÙŽŽµnw_´s®y¶³}ÞιæÙÎãv®ÙàÎo¶£ã6·èOÛ9×<ÛAløWøèÚÁ}Ñ/ÛAÍ;T„›í fãù²SÍÆ#IÆ>ÃE?×<ÛáÅÀ/ÚaÍÛ~³Ôl<_µs®Ùx:ÒT}…óþ¡Ü'ûªÖüþ *v³Ôl<_µs®y¶ÓmóóÛ9×<Ûùbœk6øù›íèšbÕÃý\ùÑÖÜQ>o‹Ç`UÖï¶¥›Š©ø_µu®|r}µG\*?ÚÊŸÏòKå;팻meNt³N¾jë\ùÁ5×᢭så׻ߥrá¢t³-Ýë˶N•\_è(—Ê®/vÁKå;—Úw7ÛÒð° ?oë\ùÁõ….y©üÜÖ§Úä¥ò+ãÂý¶ P×Wm+w¸.?8å'óO]E¿ÎœŒ.ê±…÷GìHòJRzñ±|’z@µ¤v”OÒÊ3Äú,Ÿ¤•3ËÚ,Ÿ¤•Ÿ;tîßosÁÅÛÕ·pûPzûÅ?pŸW.LÕ_æ[ˆÔtò-ÌvuÆ”L{YÉ,Ó˜uËáS"y*¯Àþšå$Oå éf9ÉSy—úIžÊÙ¡Y~ôï†ãñ w?>ûbŸq3-χa¿,¶÷Ò†»ëºŒ÷ì=®¤=¬«—ž[6ü;xqc@’˜éÆýÕWpRA+¸ù~á[Bé¦ßö«[×ïñ¸~€Ç—±ß¸ò»ÏD^l|Û.ù© î K”¬› ´Ž‡dÄuѦcÏ)‹CMîgŒÙU2¯.“±öû¹2y¿7I¢ò[uS)ù°#8°&‹¾eä/¯€ëE9­n›;¦ÈÑ_ÓýLÎ ¡0rmø.˜D‚«¾y(œÈd–>§…^¿ÿ.’Zu1r6SãýÜÚy™Zóæ"SQU^€ÿøM»ÌÅ^½$ˆ²ƒ@´:ß;âúyaR’unrPåΡÅXTÍîÎ,™‘]F=ÝÌaê¤Z]XÞ"‡î<‰¼¥Òƒ›5Ë©\ñPÁÚ!,æeA€mgò¬}\­ÙYÏÈZ¥Nç›%¤på€Ô)Ûmp?4¥N©Î7[­d·’GwÇžcáϦԨÕë7ïÈñò @Yíó—\Í‹*§áµxí3½Žß·„Ü›ÅǤ*ùк» RÞÚ’tVCö‡ÛïKÜ`ækºù-ÞrW€že²H˜P|Y¶h¿!AŽ@™9Y1ƒÈ=7ízÁ—õÑ¢÷yÚq›ìþÚ‹ý1ã_íÞš‘n¶ž|Djƾ¹e°Ý5º§BÇQwpuWï4ÔÝö<¿Vër½LR@ÜNý< -¸c“UÂzò‹{®«D ˆI¢çu‘p…Û¾“TP»4”[jŽ, ˜ån_$å\³Ïßi%#M«'ýéz͈Üm®ŽƒýÉÕq"£SäêŒóN]â8™)ãþ÷­²K9yß¹+·ãç;ï´ëê®L^ÍaeÝk¿ P‹yNõ,oÃ{}ƒŽãëÂ’¬¯ô½$²Ü/‹Ðã}9СìïO)±˜±ÐÛWËb¯–Ôjy¡7”Mí€Ûr¾ °£•ôàñùûZAþ:ëP´Ìáê w÷céa ²F=¾ ëçÀKî«-Ý·Q$ÕnXéi1÷u£u'òú¼•ŽìȲ"úÏb|“¬, ¿ú¾ïBÎ!Õœ¯ûäóYÚg#Jdƒ#Ÿ*®ûeLuëÛª i|½7áþÄB÷A¥d;¼+s2U¶p­1Ãkê÷;Bæùß%wÕõmEìö²x'¦ víýÕÜæî OÜíwÚ¿ïBÎà2­¿‡§ò‰ ‚;n=y6HEÖWôÀ‚\1ÕƒÄX¼SEË…/„àÊæ’½Á³ }«ˆÑÖƒïÉ38Ûjo‚ ÐÝ›Ös˜1MϨ+Y†4eµ¸š3׺§³®¾M…ËT€Ï’1„—| :»»w!6Â<{ 9ëæÚØIv7Áù¾ë'ŠH 'ý¾kç‰^¼²AòUöê­±Éòâ˜nuéÏÉ僧@Ö,ìxHq_G.VÅfÂ@ÑÜîŽSD^ªðË-öܱòýIÄ YøÈ«Û‹ ‰W_@bÛWÎÀZë¾2ÕþPl…ÊÛ¯Ä>Üí£…¯ øÐ¾Xz˜š¡â#ò®¿¢f$´où>p´¼SYø%=h[øÁ ¬Ë…nüʾSqr,¹Äœµ•ed™ ÕY»níëe0¾Ï9•¥m®~M_——T áÁ̙μ§ÏÆ·öõ ƒŽ ˆK]Ù|{$ÁÆÓd÷æ=fŽ"6Ý›Àq¬Ø‹oï®ça‡—åyµÇ!‡¶ëÇJ­‹oOÝà%Ÿ äNó¬Uß8¿\* òÖÓ_ÒoO%šå]_DVç¿‚¼“î¼Ajɶ°© 3ñ’kEC¹;ßâ÷›iç—¶ê¾úzjFr‡¥vSß·WcÁ¬ÀŽ,Û–ú æv0U²º¾¿Ö 凫ëîd!Ë ©dV»íív³«{,¾gÁM®žP§•>…K_ ¹Î3w?HH¿³°“Æyþ2èhK™ g¾ D;Ã'¤ƒõí_ñ%­æøVªè%·ý¿ ›šgƒ¬Ö ôÎ…ïx&þ>­Ö†«gK’¿¾*ÃZZ؃ÐÀ^‘k#ôÊ9Œ$ˆ¬‹==#wŒï‹ÏÀ YèÒ¸6¸8óà hW—]Ã}5övßÆÍ¸ò¹8ôïƒ#üÂ'…ìîÜ“öÂRÏF’«K#-pñû²ú¾ÈH,8îlÉ ¾èÛç áÕîùMùLG„gÙׯ*üW¯øeĺÁ½}FSá×tÏD~Ämu6ÌÝÓݧEî´_FÞëWb=ÄbÄÊ}>Ÿ[ûev]`yN.±&îÜKÀü\ø<˜½ØSä¯ß ’…- Óß7+d§/Ë rûûó)#/¹_V¥áúcO|ÒÚlÕµßg[}{úüý #§Ábm#_È+s¦ÒÃÖ޵ìæÊ¹­“ÇŽÈl$€»-#ZðÏÍm½»¥ûö¾À!m«óÉ¢óÛ“­€ñ¿}T Ÿ>r°.ÀûÒY­uhØ‚ò2ºh}®ßKú=>jáäê¥X:/ùgöáZ&ë³ËÝÆ÷û ñ/lüß—_ûãB÷ÜïÂÕ·uî­L^|O&ÿÎ×µr–ø¶cu~däƒõÏ4¼†¾^Ìäé#y~õ&ûvNÂ~üÂyó¾~CÂy³ÙWZAì:¾ùöùJ»nỄüXø´¹îݸª„X…,ކߵ°ÅÞU±R\3ìxqN¯¼8;Ü`Wùu"ìþ¥s[ ­Tà ÞœÛq}î&±$Û†πB]žÍ–¼^Ëùµó£Â(¡æÏ¯ÏHîË‹ž?‰¾­ºZ#\­ÅÙãmÓüÙo\VôýÝ9j °•ÃBE¬_×o¼x§ ùALLg–kÜØ3úo…·õ•ï”w·8{@ž?ßדæï1²ÓÇ…®+²sûôœÉ’Ü4Eξ€ÕÞaA.}41®Ï_×1 ˆA]œ_à^”+KVó);Ê çÆØIK»Y|ÝÝ's³°ƒF]ûçIû‹ÐD‰¨x-Š9œ·…¤MH:BÝí;7d4DÀ;+†W¹“½"ãNòÜ®ÙanãàUìv: &I¹W É=ªK ¶5z•C—âaȒ̨ªÛù^È‚ªˆÉ¸“}&ä¥äµªØIv ÍVïLÈFY«ÂÝ¥¤ç:’ ªˆW&Ü]² ÃFG3ª²¥&ºª lœpr_ çò™d¯ˆb+$\ÙjθÙTâ•´šÙg"À¦¢½jFòû$ÁKx¾tjè•zèkà•‰^:/ÁR¨luÉA’_‡¼µÙ°?‘ÌZCÊÃ3YjU1I¿šÍv|Žjø” @¡µ)<¢Är¢ªdW”êÅ(Õ¦Ø4¯j³ ÌÚlœÑ„ÝÈr%Ñ Š‘y(¯ ¢Yóò€l(mÖPÙíaêgD(M]] #‰†FU’nWÂo§®1ñ:½îZ» À\kW¬ÜDÑ×mppN^»"¿‹³¼:V¸Û&wLƒ‘åB2öEEòí IðͼCÉ„ªÆ¦¤ìõC'’¨]ØR@09u¨`Tåu(œ©øyÀËɠ¢/#ݰäuJFð*´=0ÉëD®§km×q²Nœz£×a°äÏ$x‹uƒ ?·(„(å6‘õ]‡!ªG é%w†øj_þKr<ÚŸÞVÛˆ#†@b<Ì/øLf„,*;.k·MeNFZ½¶ÙÁ—Û&Ê“aõºÊšÞˆÖe…$Ö-Ú²BFøfª™WÐ"¡äp‰v³ñ„Ê^5#ïr‹Š.›!?[T¡Ê$-ªPÍ-Ú¼²TŠÍ …uã§4Üø2ŽÙZ´E×5æLeN‡ÙD9D[Ι¢’ ¥ú¹»Æì&+íáJâìƒB5CNî¤~ß¡·`jòÉ R?\"ºDŸ¹ˆ›á, ̽aNfÃáæ5Òl°ÛXP-ëÀª['«|–Ó>xŽˆi¬Ù ìδ²]´n3մ؉9e7â2ÐçÖ•L ¹4 &I3å“ ›i›ß®™>Yk¸áb÷wx†Hí$…[±Áÿ²MÔsËÖÁ]²àD^Ȫdƒ¬*ú¨ã$éJbUn•X’f/á­i2ƒ¾’H¥@[€rw!Ñ ®”’5V¶†RxU{¸£”{JAèó™ä œ¢¤‚A†VUvHtƒúFÁ!w3­O"ÍñúŠo¤BÖ+‰ô­”é‡l”¢¼$/dT2Ðo0”””Í€ã+Çpà ´ßÖl¬€y&Å,mª? Kkº;\è9Hd`k†(^˜ ¸©P-È {&(4=JÓøŸadà {XT©fº™ˆWÕ‰4ɦ${5I^zÖiO ó(Y®¤Ý™'ÉWhÖ\/dG)ÕÚ <òfJ`NEZ¿Y4d0r€ÌJÄfC¼à-PÏšA—T{*aèïW‘‡Š 9 GCœ Á覹iM¶!’W ¸§ðÖißôëW€ŠõMÕ!H{¸mW5Gãe¨V´†zVßÊ÷yº©²ƒlJ<¬pñØ…ŒF¢T+¶¼¾ÙH&$Â1±"—Cßt+—àE´[íáN*N|–ù,¸cEIŽM€Š©ÝŽ?ЃNþZ4EÝ=èä§— `SϪ ´2(y©JqÆʪ W"p|’:G9päe“hÜ2wt§¡» @wV«Â<Àë•*‘@Q6¬Ø™‚ã#Ûž*¦ ¸ ç>h* ŽNDreì(Ë·—Žö€¢×u=]˜èñ¥ÇLÇ£$vSÇCž)Çxõ·ëxˆ]Žñ 96Ç£¨~¥ã¡©Km#B˜rôSš|‰èê¬5Œ©µ©¥6úà;õÕº_4?Âné ÇœBtøDê‰A° ™Ó ¥]}ËàÁZ 2‘?„`|V±ÖJÂpî{œ¥Ö=ðújð‡@j@È|¿ü°¯D܆«å*áHp{Ûfi67U<†Ä©?à0Ðø’¡Çkþ¤<>¤Y4ËøN}µî7õ±•<󇱠 ºä‡Jd†ÅÈl$R:6uô ß$‚AâÂh*_Åýl­•„áÅ÷m–6=ß©¯Ø¶vÅkäÁ × ®°ˆ4äBâ›B;Ê騖"ç’ñ‘@­öèþƒø%†ñ14Úö¥~€¾£M+EoŒïÔWë~ÑøùM'ÏüÁÒáËí¡; Ão§s ¥]“Û:ûÐZ'ÔûPÏ«ñ!K£ÕzÂy¯š©¥†Ùå;õÕ &™Ð© ?À7#f[dð‘Ò·M B@2XK‘ûÉøHtCеà¤3>œZ[­ øhГv”²7Êwê«u¿âÐfÍéø"…¨°ïÐ(H‚en³ÒÁø†Æ:D»ä8©7>ÄÀY­iâ/j›ZÊÞ(ß©¯8;wj˜˜ü §e8R ˆÄ jÝJ«Þ~ÍuS˜ÛQdžñAÕ¶Zã›Ô6µ”½Q¾S_­ûyÓü~ú!@L‡– » âTâCKw[&nƧD™ðÊúC–ãËâ„¶ZAL„÷1KÙòûj0žQÓ*±ý¨@¦W8 w6Õ0IÌfh³ °ñ‘h†C|üòäCfq«µšÊfmj©u|§¾Z÷%0÷ö~ú!Šº˜*ˆR˜„¡”ïÝÐR^»U>%P«=Ê`"’/>µÆ‰±­mFfg÷„ïÜ×x´A°Ö2qG„k΀þÌ–S5xì/Úk)QŒk5ÄQæ:éÍø˜ÖÌì7º·i¥ìžòújÝgl)2©¼?t~eÞ—gy¨ÅA‚HéÈml¥Aý½ÂG‚µÚ£œZ’|ƒ| g Z+ Ck¯›•j÷ÈwîëNgí'4õ†­TÍ\Þj!‘8A©[)ÒÄfæÊñîÎ(_ÅVjvˆˆº•Z÷Àwêë/APG(Skö¥ìD·À ÂÊxÌ‚¨$†‡>ê,í:Àà#ÑìKÙUFÜø`‚Z­uLÚ¦–= ìùÚדiÃ*í0m ëèÉÃû U‹AF$Ì´©Û,ÅŠñ‘H&쇿¨òáj ÕL"X›ZÊÞ(ß©¯‡m°oö#Û2·¢¨hä¡¢ÒïBÂlƒ]š[).‰lËÜ~ÀáºñÁ¼´Z“-skSKÙå;õՔ넸Lã÷Ë}ƒJŸy,ÊuÑ(îlÊuѳåLäòš&Ÿ[œ(ç5i^(ãCB «„™9ÎRöFùN}=´Ó U¶Ú©ü0`n ™ ±O†m^ã,E°¶ñuuÝ”C;%X+“Ñ€Vk›6¨¶©¥ìòúj ƦAÇÃô#þ€m_ˆMr† ‡j9¨*õ ¥°Ã/éé0ýÈ~ÉI¾FDPÖJ ÕGœ¥Ö=ðújÝç¡h”oþ~úé¢D“ Xœ1‚è] Szj¥ˆÆ1¾¨™[ }þ°…ɰ£µ‚0­‹¡NR:»'|羚‚Øšæï§õ![zÀ¶Ð2ˆÞ•˜ª@¥Üô}?ýÄü½ Wupd ÷<4æÔõžJ»úB¶< ÔjV¦§n“QV+ÓEr¥E“äví«v?ÃÝ"‡Ãj™éˆn‚ç52=2ƒuÉ“@a¥Ø~Œjå£öƒLåãôÐZÉ£mj©u|§¾*~ù­SŽÄS‰pœpðÔ„óÄ8í&I <—xüó?ÿ÷ýùÇ}[á?ÿá¯ÿúùó?î?íKðþoÿëÇÇßÈQÅOÿùÇã„â‡ÿ£² endstream endobj 70 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 50 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 71 0 R /BBox [0 0 448 305] /Resources << /XObject << /Im1 72 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C# ¶THÎåÒ÷Ì5TpÉç ä`M endstream endobj 72 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 73 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 74 0 R /F3 75 0 R >> /ExtGState << >> /ColorSpace << /sRGB 76 0 R >> >> /Length 15940 /Filter /FlateDecode >> stream xœí}Ë®%;rݼ¾bûtÄGò5t ’6`wÃH´«¯ 5úÈÒmÉ¿wÆZAfî“+«N½Cðàžº‘ÜÁ 2É`D0¸ýˆ?<þùÃzüó#÷—Ñ©n/[{ÄP_Jlã%ôÇ/??þëãñ£ðÂ#ÅjÿÄÂB·üG¿þí‡?ÿÓþ÷¿~|üÓûqxœÿþéã?~øó¿Jû[û÷°…õdK/#=Rn/½>~ûúøÕ_ü×úãÏÿòóïzüöþò·xÁ¬áàû³£²¸ÿo}¤^bDõËÏÿü¯?ÿãÇÿ3«xWkO­è©=ÎÑ ÿÅoDñoþâ?îO[yü¯ówðøý‡øøëý¿?|ˆð?|ØöVÆýåõ%GN/}^¶s9ȣܞå'ù?;¤S{)ƒ5|â“|еíøI—2çm^s*á+&Ñ›ÏßùÙŸfÉëÃÉ^^"?k”CIsÕþ’ø±µ$O•¿>| ¾÷]¨|q}î]O•\k¸êw=U.¸ô»žÕÅëÃéãKËŸxÛ ß{ßçõï|[|©Ïï{z²~ñÙö?ÿNñÙˆŒcûü*ömÚ(ŽÎ¯ŽW¼î½QÐhÀ›_œèÁŸöEª–S=±Ï­1@>ɽO_OùY ½~°´¬éþÇIçÈþ:úâ™^¿wÝF{ûZߦ†ÊÙüþ›_ýåÿþ§Ÿ?îæ÷ã¿üôØû¯~÷ÇýùO?ýÝã·ý¾nj°YRÉf¨>ô¿ýÕþá_þåç_~þýßþt¶*>¯Ãßi|?ÒKÚ{y§î4ùÓgz¼ù,û”Wgš Xw+ܺ­â9ÿìbþ=´ïîË丙=ý¶p«/ÙæÇ°Æ½-.Ç>Y®…;˰]^B¾V;l› ×wîCvPýwQ¸›³ M©áZ˜ P(6<.Òî†tÞ ÷O|åܽ‰F;¥Œ«´ÃmwÕÚµûv})P(×¾f<™ =®°s6ÚÛéZmû8šéWΈÙlïìWiM3g0óýM¡-ñµb ¢‡ÊK²¦T—ÂfÒ4£è¡}JöÎf‹ÿ…3›-h#¡\¿§©ÓÝv˜7b€Õ‚¦Äk'´Lº–‹@ûÜødâcw¼ žM“Ãd )b:ìÒ†/Þ9»o¨¡¹»œ°(Îô²qÜnB °½ýò=Ó¨64­)¢‡vÎhí¬6e.%[¹1ð¯…6úF‚è„:Ìã´¡®{YÛ?vÙ;á"¾ÍfYS Ãú¶Ü¡}ƒ£Otßf.®éÃt·½cÚïc¨‰¡Yéãî®®`‡z»tÂÕø7Ek lêñÒÀ;Ý\íÓ™ðb.ïš~¸æÑ3’©‹QS_6jží*üàú¹HUm°Î°ï z3%3ЬBÚ]ÛõBm'¦Nµñk…Uêf(´aÚé"íxI\IÔ·/6¯r,â#¥°›Ã6ÞöGBk }e%PžKì&ÞÉ Ö>ÔûUåïÝ7úÊß{hŒ©f¡›­Ú<ðÎ+çýx3lŸmå" f­üÞÁ¸,»÷^¤"*sPß›é.ÌÁ«ò3f»ÓŒ»ý±TSçj1ÛVoJËÅ”ŸÙABìŠhÙ¤®Rˆòó[;L)dñ‘vUÑ”(–bcÉc¾~û]ë5:I.,}à  ¥¨^ÇÛ¾.ìú¦”èøð’÷j“\@mÒe~rŒ›U¸siœ`¥Û¤‘mÒa$ˆÙQm°1”/œsÀÚHú#W˜oWaš¬°)M,½Á´± jՔݨîì[¹¢›nÞ ƒ˜>’аf¹ÀKL¶ˆ…Å–û]ÚM›©ñv"E˜ŒûÊ¢±/ë>1n³Ib:K Íý™F˜˜‚©r€EsBg¯hŠš¼°¾ÌrQ#¾b®˜år?â³ ßK;=VÐlçD¡‚Nós(4T«l»Íœ›¼MjõZѱXìÖtí°í„ÖÌK¸…ª„˰yì«Èõ r!ßs7 ² $?¶mp춘ŸûËRÅâ/,nûØ6ÅÕ|³!#*B½aÖÚ,S‹ÿFЕ•à™)–Ó]¥öÄÌÞ³- û„©R¢ˆûǹšG÷ËéÆåt»têÍŠ™wíY`œè1¾ùS½Y”C•‡Ù»Øü¹öÊñÖU‡Y"¡ÙÂŒŽ‰^HVÒîú#øÀ“­ ‡ÛÔ:ËÍèbáØËìo{§Š `ûÔêÊå ¶RÖR³ŸIöPâìÁ‡Ý7´¾5/DT[LïÚ`vïÛ²A¹¨½AÛYË€Çàâ¯L•»Ùba0©v«Ëôä>#EÇÛŠÉ Ñ·ûÇÎãV¸œ{ë[ƒÝ¥;ß*:>‹éа¨)Q¸AOZ)C>™é·C(—÷Ïl'éæ"†[åbFbJC«7¬ïÛµÚ+Î8ÅtðˆšÙ1b}¯\ƒ²)rµõŦƒZ1«y*6ú†\ü-ÈbG­Á$5L2çg•kmµ<¨«@æ"vM1³“ ; "Fef u³˜‚npÜzÄ]¬Ò9#„Pšä,è> }éYVQ¸iƒƒíÔ«&oUËiŠXÚl´¸!¬lÛ×Yfn·„ëºWÛ¸œ ç~× 6n­W"b·_¶pÃûªºnÖ½ˆˆ°-²Â0Á/xuKSq—®ˆïI2$¹êIóØÝÀ½šÆŸnYUJY· qŽ´\ç`nÜ_.2ö5¸;Z•¥LWÕÊyÍf¹hïNyç¼³×Lä U­b™ÕÔ|¦+ç>üb„㨔|eü£)Ö;OC-½ƒK¯5WXÊ‘&m‘QPdÀ ¹)³ Ýy1Þ‚-7™[0÷šQ˜´£Pwe Ï@§´\]Nóدcœ†®-ÚW7×ôø`léºvœ¬òõ“é3ßD;w%¿±û„RØàƒÝè Ý\Iï¾4åɺl²X#3G_’Žc‘Ðï=èˆwvìÁïÒb`"]‰·*¢s\׿åד“©ÂCÙÛ¤ÛûˆH4£Õ–3úÛ•s×ùË—š¶àó^¿}Næ´šæVNrÍÓTx¼©ÍÜ1éc.¼ÜíÀÁ/xõÑ-˜_iAŠ1n‘×tÇé.qPŸ×B9F¿RÁæ2¼Á«´­3LcFLÃêÍlZŒ›aœÙÎ.¦NæÔÉJÛíKœ‡=oŒDnB {×Ì.îæ–k÷íF…ù†Ušzû\îÜ CsƦ£š >zPû/¶œZÇï†Ì¶3c»;b±°liÈ`bDa»F¾o':Tkûnsf³@ÊÝ6@£µYä£[9YëÝ™ª†±mÙfЉQ¦%¯ÌBl¼ jvýö–¤`m -°OW Ëšg&Ƹ©²yãâ#y,B¸3öÅçݕ贤±nÁ‘ ;Þ¶%ã§…)Ñ,š¸O-ãÄ{áæÁÕ/Ræ\†èÍjîìKûȦYº[;,`”¸‹"75£^‰;ãõÂ[M™›])…]3úV—R …Q–*œC›÷wàÅ0.\@mïŒÜ$‹ª)+³’/ÕæˆÉ]ÿš˜† [ÑiµŠ%i}a‘ÛÁ õÉRcH-+÷Ù÷omŒ‹Â2£Ib/ÄcÚ}.í.šdcˆÆ“0öNH4iŤ+ IÆ„<Щ{VDQÛ»>JT…×…ÅÆu_‘acÓµåœìË Ph‘«NèʤíŒeF½Ý‘e©RÛUn¹ë=ŸÀx[Sß3%è„ ³¬RLVãC‚VC͘Ùb¹n‰v1L´ž´(œ X u\†À™"&×+3†™ ÜÓ­aÿvŸIÙÂPbøþÐ&ݶJ•”þaÆ-Äçe&”˵«+öƒážJ{×r¹,[ýúöéÝ\¤u™5T” ec©!J+šÛÀ·Ý£î:É“&6•Ð`bè’‘\OЦdªß!ß¹19ÔÔ±ÁS°uy}§©¦rJƒÿ}]|îFj¡~»ÛùŠ´ÉºÈláÝ¿ƒÈ±,µH#QjŒŸ7˜~C’ŽŒ³ú:íº{zÓ'”SžÁMŸXw”ÕÏÕâ&Å.ÍMF±­^=¤Ð¥ë“hþJ?w+ÜôQyiž‡ŠÐ°6Vñ£lƘ¥I]c»Pý.WÄN+1^¹xîŵۖ6&ÌHCÆR1ó y¹)3ã¦qªãûàÞC—ºÆ“:²Ê2é¾éÏ~lå6ÏÍ.±ÇâyU†`ó£t¾8u,³EŒ„Æ´¹®¬¹¸êd5LZ…9Òd~Jsg¿ÉíÜÌ|£&S`Ýñ–Ë>¨ƒ{"ÙrØË• 6‚3½‚²w[‰Úw…«¨Rõ,VÒ¨poì¦Ú\³ñ–a*sU²V`ôëØyåŽÆàQ¢(Ó{¢õÂŒpn°„}J+—K±çöoÅÓ(Ö)­·¿8Ñ~ö)7˜úÇ/zþ‚¹-Ç/Ú±Y,ó,ÇAÏ_äütZìDÏ_<ÉþÔ–ïsJ+oÈvùºSZ¹bNÝ)­¼Ûöf6~Õ)­-0íù«Nim»ÿödÚ»Oim²õ)­5º‡9§¯s´CßúàË/"3¯@ŸÑ0)Ž_>ÿ‚ÖÌñ Òç_ ØOÇ/HŸ~á’­_œ$ý쟼/}…Š ±'þìæó’[ü ñÒ‘~Œj+íé•ÓëØÔlÎúÍ1*S¿á‡£2=ñ}QåxŒ Ù3¨ñßý´ÿǯþçOûÓǯ~þå§½ {½ÿýç½ú‡ßÿëïþ¸ªŸÊ}§ºýÜ¡ª·ãr~´c\î5íÎÃùïU›2ÆìaéëN3§wöO[±â{†ÉNï&DñÃ9ÆF`Ф¥Š£#³ ütá‡-y¸«š&Ý鹆"¿ÆèÊ´ÎæôƽÅ#ßh„˜a¾á}»&èskC}{ךi¿Û ï/01÷Pß>Ó,ßç›ÓtàÐæÞ’Ñ¨¿ð(¬ÑÅi;¨;Ësô:êÔcgØg!¸;ŽCöt:zÌè-=6OŽÎC®b?z áÍvô˜¹†µ=f…ñÔcÝßç=ÖïpôXCšÝÑcF×sÁ¤=õØêQï±nÛf§CHéÔc^þÙÃ}×§6LûLBØ Q)ÓJ§'ø8°#2(³•¼Sñë‚T‡YŽìªÅëêæ¯ýIƒY>y1lWÝ øk·—»\Î{–ûã‡_ã÷HµM•½-þ¤ Ç­ Î(óçÅ÷ |$/¯ðE&ï¤P7~=ŸdlpN^|§U7¨. Þíå.—óžåö¶T¤ØºŠx==8­bT'n‡Í|Ÿ¤(]·ÈÎ*gºçä%źùëõÄ<\çípãfݤ>º$=åKRðžåö¶4Ìkó·ì€õù º$x·—»\Î{–ÛÛ’¢ 8[¢*ç‹?É9[Jض³xÊ.Ý\0Aá}‰Ç\fù†ÔÉ Ê랿ƓnšÉyJaÖíær‰r—ÔyÏr϶Àk¶ï˜£·ÅŸÀeÛvûÉÆtGÈ\ºHá}û“^òdjeñ:…ºùk‚½Å‹õhÕ×7Ÿïfù”‹¼Or{[2€m¼GÎýÓ“aï# À®ÕK{Ìe—ßGÈŸYÞ‰f伋ŠþçäL.ÞÍéU7(þÚßíå.—óžåö¶lØó¯ç'ɤ æs[ŠDzL“Þ·%dkÎrx ‹×©8µìz=yw½º³nRü5ß=Ë].ç=Ë=Û²QKVÀbœŸ4ÛiØ6ã3ª›t4wHñ} »ë³1—Åëêž¿Æd¤.^lG­ºAñ×þn/w¹œ÷,÷lK¥yl⽞ŸDÖÐDq¾Æ-(¾¯[xv•3³sò:æÊ:Ÿt bMÞÞùMY7©ÙòÐŽrÊ5yÏr϶»¢Ãô~=?Alïã—ïõ1ÍLRx_ œ,/³™¼“BÝó׳k¯tñ"ceÕ jõS9Êûœ¹Æû$÷l Ì@Xls¾ø“Î1£qö›È§¾+‘v‘—GZPäT[óe>©ó“Yÿ«îrÌ7˧\ä}’ûh‹õÁ,^ÏO4lo(¼”.IQºÄ1èå @“ש8m˜õ$˜²xqÎpÕ j~E¼›åS.ò>Éím™î[0%òz~‡ÒÞ]ºö˜® ©)]íG91 &¯S¨›¿^Ob]¼ûˆ,éqrËñÍc<Ê—¤±¾‘{¶…Ç‘˜²óz~1Jí >·ËcºU¤¦t[8ʑ۷xBÝü5Ÿtì~LÞŽT“ËÖÙ·£œrMÞ³ÜG[*gk««-•ßÒ¬Åý Ù±úúcº„¤f[z;Ê·™¼¤X÷lKIÓ¥œ¼;•óãänæ¼¾yŽG¹Kê¼g¹g[Ò\¦Nö';*FuŽðʶÔ0©)Ý\ý¬¼Lÿ¼ez+S'Ï'ÝÈäÝç/ô†»ÊíÐ+|÷,wI÷,·µåf·S†•ÌÏKØÛð€ÑóK °ÙÀïn[=¥'5}ÞQò2#à]”käõ¤cßÍyÍVê«nRݳÏã(w¹œ÷,÷ô§ÿm¶%üÀ¶„Ø–ðoµ-õÒ×&ç¡fØøöØ'µÚÒŽò?rò.êÜj1Ëu^ú³îÃ÷˜ïžå.—óžå>µ¥O­øz~͈ú¨Å,nRY5¬¸JAÂï*/¶ï¸xêÓ‚9=‰cñvn"xݤV[ÒQ¾$ïYî£-ƒ+@;Ú2|­.¨¯Òvõ·oqRSºŽò•ÐyË\Ûіθàè‹w§ò¶ê&5ÛRóQžfËG#÷lK¦MSýõüdpdŒK?÷oëâ6©)[0(/œcΞQgÝó×>Cz]¼½ÍÙS¶IͶ´r”»\Î{–ûÔö]G[Ø·5@p€¬ì»Ò&µÚRŽò2¿©8ï»zèdïÛžooó›—6©Õ–~”»\Î{–{¶e£MTö×óžC*½\¤v Zœ'5£ÉnÁ ¼1òè¼N¡îÅd`,^æÌºëôA×»½ÜårÞ³ÜÖ–>Øvà>‡8îÛs?q<¦ñ­ˆã±¦w Ž¢µ?q<–~ †Gdgür Ž?•ïá…8þTú#Ç£%Q}âø‰õ{"Ž{“'âxôͼ…è}”cípòT^­Xå$Oå ú`•“<•wœeXå$Oåñ¼ßý®Á5'îgÞõTùÁÕ?¸ýT¹àÒïzVrx€äŸEËg¯áç¬ÿÀ÷ûPÿâûüûžê?ñ}¦7ŸëW|'ìÛO¯‰ß¿Ü_±0¿>á—¯_œègüò£Žƒ~Æ/?~qÐÏøåÇ/ú¿üøÅA?ã—«¶|WüòóÚôÅøåOÌ_Š_þÄü¥øåOÌ_Š_þÄü¥øåçù‚_~Ìq`ù ~ùé°4γËa'ür§Ï¿hõ ¿Üéó/zyÂ/wúü Ã×:á—;}Æ@§ìúÑ–÷bˆGs&¿¿<¶ð øå‘½¿|N«‰W>UÄÂ3å¯ü ½~ÿ„_þmyÇ/?Œùï…_·òÅøåï3R¾~ùÒ~o>Ë;ðË;fiŠêø‹‰†:@eÛ“;gçdìdG§8AÊKVÀ*ÙdæJ‰SöÌË0] pûˆFxÞ 'უ<¿jI26q%xòÆ#5ª|þTดM&ÌéÐvD¸évãÒ£?‘bÀ–'_íÔb@¡:ÚÄC/£*XÒ¨cE"Í ænÄ(Ï=áøžµSÂKØS A¶èÜp‹4ºL§B"'p‹Äa冼ÕIB4þ*ÛÙûTúâ_ÑŠ<ƒ¦vöSp7œyMuŸŸü)ú´~ijn:~x¡<¬lÉ~·00 ÿ/‚š»[‚ÓòƒÄp²áĈœ$µˆó¡‘¹<6ËÔÁ5î¬é³Á 0€h•g_`ªuj†©»˜öò0޲Y&@ó*;Aqê½/À£ ˆy{7º™G…ÑlÙav(gïMÕl~Á¡Ï’‰:4‰×‚„óQÄ``Ïô‡€ L¼¢4uœªñD³Í1y5ÄÐTÓ°I¤ýøà*áã ¿uÁ=ï¡°pnÆ›-½‘šLB7¶\ i‹Æêáæ±Y¾bšõÔ¬c ÆÐ¨¥›ãÓ”¨à¥ÙÕöy‚4Ñí ü´LËE¥ƒåâð#¢–b£9ˆ$úV'L[2U-ÖHµLAB˜\ãFYÇÓrçÂCE›D}Ìì3Si-Ù†;_óÊÞ)°p:àˆ“F32ÓlC;õzUùU„-`ßjjçCåéGK. A}²]¡ay—#lÅMZK;IQ~Ô·ÑxOx§¾Ú'aS'êëJ¸ogðŽ¢Ú ZZ š¤›cë\K‘–JtH¸=×v!¨‰D€ÎÈÛ·ÄÇ6|•}Ü*3ÀÜߘo„f°)¨°"¸¤ñ32ñ‹‚$@…ÒøÃ¶=Ð jf'Zúš âòy§/®1³FY.H£·ÕKkŽ´aï4˜…Ò†<×ì(Ó¦ùŸÅ5 &Xf:‡z­Šsÿ؃k‚2ô¨½ÄЍÈÛ·Y¦>vBðÖÌÔkaF¦lÒgã Õ KT^›´qÚ‹aR¹6nö»»lM¹Hr³bìÚ`Tf4Wá±m½g‰Él–KGo ØåŽdâ¨/ÛÊî¬Êû,"oŸ²õ]¿3Àïk-/Ï0]ªüâ% ·Ð6H[$–ÃÓŒ¢À!:óŸõ¨!ú“Íwq¾!1Ö”¨ø* ̨Ö7éD.ÄB7gå×"±Ñ€{óNKÁíThR¹ J+àìa¹K¾CÈœ®rÅ´‘ {h#àm ª0àÆ Œ>yKQàÇV Ó¿ÊëZå'«Êר ltí¾JœÃÐî°ª wj®…aãü”ˆ¹¦Ðh>‹ù9XEM¤—,-=;¡£ï ÛÇQ%ÚºB¢¶©óðY éhce¨ùÙ4+Z#AÒFÖeã-4:ÒTaV§š˜ö°%ü;|ý*ÍÝ<ÃP;ón ²É1”¹’È–˜*‰’,æJ§Y¯P·i ‹¨Oæ¡SãBS3.chHr–Ù²U¥E›7nweux ÓT„ø|nãöªÞîÖ=Üj/»Þ7ëÞn( `ªÃG¸ZðFqWë±$¬|‹Eò½ nå6¡"tËà…$ˆy5ênZh«›•Ú§-+»Ñ/Ï}žK³ù=оO«Òý“Ü™0ÎcSfAÎ}ÑZäØÒú:Ez>ÃUmTœì‰QÚ ê$h B§ò:5jRx°PýÐ5Â-¾ 9µís˜£!ôxFd"yó N†Â|wˆ"¬{.Ož„åv*"ðŽ‹TovFì’CFï~9óòôµ’[æÂ"×e¢rÜ(¿îq gÇ[PBž¬;T §_e» ËöFýn.¡²³‹z¥ëW… v£"Ê ™¤|°»ý4Ú»a»Á­¾Zˆû@*U}{_`Ѝ­4À·›KW=d%Oïn©R¹´1w¨ÄªØy¹éh* ÚÌ÷]·…ynÎ(»ˆ­c(ÈP«Ú©áÂ[’fWC´Ñ7éÏ 1jp" 1x9—mñ.2ì9˜øÆÍ%7'€ŽövŸ°ë+O²ÝLà‡&}ù¢%®ó{ ¯2qµ.r‡jð,ÝÍtÍkÜ Ç„a˜Š¨–{D¥ô}Z«—«ø%Ë9‘[Vš´×Õëf¢û ÝÛøüræ}­d¢âßÞ ñ;7gd<Üà;‚ô—/-òŠÂö!ì#†1zà¸HXR³µ«Q¥!>ômÆô2`D ›b¤FtËPÝ×}HIh¹NQÛ¾[´Ä@ÕwÆÞ°Vº¼^ ·p`ºŠ/ßOS¬›!åÞEAÈÞ )¶ŠÕÐR˜I²°ù&™RLK7%µ4g¯ÚÒ#f7‘þg§®ÑQZW› #7 &Q$˜~ÏÜE7àÄæÕt3Æ7®ÖbŒd1%/¯péÜïSØÓ›žC!$¦ÀH¾Ù-ÊܶVÁuÔ'ñí»üÕûš•y.ê‚´>sktž‹ÙGQü×Ýð¤å­åeÜ}ìÂÛ"aî™’Žý4™Ý0£…œ¨‚aÈî‹è·*µ]æ Ñ:‚5÷*£ÜŽäý:aîSˈGd0_Úùš‚‘ ¼òÎk<‚T¢Þ5zó4b›Îoñ¾ êÁÄ›¤”hâÞÊ&í,s³œUË‹ð 6Û亇ðVÕÞèÉÆQ3TÃÝVte2²Tò {o6ôŽ âÒ)Ü7©2W¤ñ‚´å$ñ›B–—»·Dåú›B‹w‘þZ§‰¡£Ñ3³E´“GÐl¢KÎDµ¤ì@ÚÏ<÷uouº ÊUtµI…Æu†º™V0U¡pÛ/[(zvDfÊøîÀµç7žOe*‹ûñ社žybлFjç1ú Óæˆ -/×Äv?³ ÅÖHÇÏÖ5*æÍ1dp: A ,y{ S"®Ô}ÒÌØ¿®ó7}R3MñATs³å]tƒ^œ Fî±µßÑi,yçofœE\¾Ø5˜uª;µÎ$ú¹r>tî±ð¦n±ðÙb7+ÊăÈo¯®žMÔÜÒsô ~"ã_æ½ïB…lø­Ül«›Ù˜ø¨oÝ õn opSo’„Ge;e˜‘‰$Ø¿’ñ#©jqt!ÈÊwªdhÄæ ªÅW¡›Zdh¢â,JÜä%€mÐÙ—Iݳ/ôÅa¼äm×»b.÷̵CÆgüî§*¯×Jž°Éû ÒwUGlImnÍ妻_.=üR+¥Çé/«86oÈåõ´ª‡¨aE·!Gþ.w0së& Θî<¥•Ýþš¹ýÀÑYg²Þüü‹½ðËÓÓ9®½ðË3â6ë}Â/ßNg°Nô ¿¼m§_ôÂ/?ËþÔ–ï…_Ο¯:¥ehox}~9o?ýªSZ[ÀÙ¯;¥eøå¶„~Õ)-ÃÛÊÍ)­9º™ØµðË•zÂ?ý‚†1éó/.I8~Aúü‹Ž«dŽ_>ÿÂ.¡=!œ;}F8§dÂù!é{ÈÍÝéù«ñËcÇý ¿|£r(ìu,jBcÏcS«9Ïô›cTŽ_þQ9~ùwá—Çä—Å 8ìU7¨~ù*w¹œ÷,÷ÄüfÀÂîÊŽùíOco”ÙŒ‹®!Š¸Ü ¡ÛYž¡¥&¯S¨›¿ö'¼2}òòæØY7¨‰vŽw{¹Ëå¼g¹'æw`*1ŸŸå<9Á±<–)ÉÖÝv”g¦[8¯S¨›¿ö'¼Ûkòb£hÕ Š¿öw{¹Ëå¼g¹½-¶¤ø›O:1ȹ1Rq¦kMå©ËàŠÛQÎ;ü&¯Sm"„¯'H¢\¼•øå^w]øåóÝ^îr9ïYnÇe ¼íÊp0—ÑŸT¨&CG}¸&îoÈÓXBù6³æÁKŠuó×þ‚&¯íxæU7©‰vŽÓƒ^î’:ïYî‰_Ϋ§˜ùzzBÅ ë>`ÙÚ¸©BIcÜÎ{9Ï|N^R¬›¿ö'p}'oCðyÖMj¢Û»g¹Kê¼g¹ürSÈ64ÇÂ/ÇâC'niÄŽvõßléäçç½|CÆìäu uOür´óVbG{ÝõÀ–öwÏr—ËyÏr϶0¯­—‰yzÒˆnÑîŽÈÇ\ºHMŒqsægyœpmœ©‰J<Ÿl¶¸/^(„Uwžø„ëÝ,Ÿr‘÷Iî‰_Λ×;Ž8¿žŸ ¨°enUwdOÍe—ÔÂߎr©¼N¡îùkÓÁ›ì«nPüµ¿ÛË—¤à=Ë=ÛÂS#<ôôz~R‰ Ï#Ì0™&)b&3ëå®êœ¼“* W~>Ù0Ÿ&o&®¼×\y·—»\ä}’{â1#›ÜÞ&Nöz¤mb†ØêWÓÜ!Eé|möòm¶ ¼‹š·Ì';.ÞhÑ^÷6QóÖ»½Üår޳ܻYD }=?Á¾0Ï(»%bšjcš ³¼¡''¯S}ÝÃ0Ÿ skñ"¿iÕÝÖ½óÝ^îr9ïYî{…NÝúÅÎq›û=€ñ1ÍLR c¼åûê“ש¸fÀ|Ì[¼pÏVÝaÚGëÝ^^§ ޳ܳ- µ÷0ïú8=|_¡<†°ì&2©‰Ëm1]//Œõ;ïAÍ»>üɾ*8ž¸ñrKq™ß}Ýõáïžå”ËyŸä>a±SïÙ²Í7ÔCMóþÐcÓÀ/ÿ¹Å;©¼¾âñ$¦ƒ—zjÖÎ_±zìÔxŸä>a±S«ÇmµÅŸŒ“ô@>XoßÖæœä£0ÿ†H‹·÷•1©)]îGùúF9,ª­› ÖdéOÞ†DÕY7©Ù–r—ÔyÏr¸¿Ù=Œ#Α爌sÆ9¼§}„´#ÎQÆQ^aO^§ú°ìOÚÄk.´G<ê®SÛ¯w{¹ËÕæW<ä>ÚÒØöV[üIç¨ÁwÆM öö¸Mj¡§£¼r 9ï¢BZmqK0åƒùO«nPë›—£Üår޳܆q§=ÂÂ0î|_%j±¯ÓÙ{úÉOÌ~Ìg–7ÚÎëT–Þé‰]ˆ=y ®¶šu—ié­w{ù’4Æ7rÏø2T$¯¼žŸ ìh£Ä‹]ínçÊ[¯H1FÄÓy³y^‹×©¶nu;ž¤pðò6ïY7¨­Â»½|I ޳ܳ-¸ÌÖœÍçË|‚,»ã.0Êb7ÐWf0’âûˆ¦âå-Ì#±Æ;©uãÖz’¡)&/’BWÝëÆ­õn/w¹œ÷,÷Œsd cfSö8‡?´Ã-ÌýaùN‘ ;Ê’»7b f•#»}ñ:Õg\p=ÁUF“w§R\u“šqà6y¹Ëå¼g¹¶TbÛå¾Ú‚'cFi[Ö#Þn›é¤f[lœÌòŠ14yBݳ-¥ß_±x+£0^7¨»½ÜårÞ³ÜӟƱnÈšþôzâ± ?k°7«‘¢Ï›pÂl–¯}zð.jÅ9ò:‚™ÞÀ8‡×Vœc¾;Ì8È–Þ³ÜÏøå[ÿ,|yøQ;u/Oñ[±Ëyjö3Ðå÷ ýñÈå%àã îà/pù¹0xç.Üòsá€-ßGÍW¢–œß´œí˜å§¬HðU DpR§RœMY¥ ŽÒ (‹YJê(Ý?E<°ÈI¥=‹•¥¤ŽRJ9K™ß ¾õ¯E)·(üׂ”[̳ßc”n¶|DùüŒ¤*ìùφ?óxYŸƒ'gÍûûïAÍ“çsï9×¼x§¡´Ï5_yô{ž´ÁBçàÏ‚„¿ázç»XùBú>½ëü`•®ÕO?\'èÙO.Iß=œoX€Û$OØá³ü Ÿ‘Ãÿ"ŸqÃWù"ŸQÃWù"Ÿ1ÃWù"ŸïòW¼ðÓ¢ðÅpágÞ/E ?ó~)Xø™÷K±Âϼ_ ~Z/Hák°“·í¢|54xM߀ n™KwÀà>{&¸ÏþIŽö„þ†œ?~Âÿa²#‚/ ù{‚çöÅxàï2¾øTmÏ_ã`àƒ'Oѧן•‹ÞûcÈC “蔉cæÙ‡¤¿ížâ6EžE ˆÇnC}³{¤lÿHVlXݼ*ïMŽ…ì*ÑTnšYX¯¶Ñ1‚B)87b¦$”Ó¨ÖŸ¢_0lfòXMOö>q®¡ÒXãm¸a­t ¸×-DcXø #Fž>(û`ÒG_x²7Duø€ç‰6€…ŘÇqÕ—è6£5®s‰ûˆ²€Ñ$FÚ®m³……äÉÆdR˜‰$ŽDâd“Cɽ­³új|=׋ƒÑzdïýb#F@:âö¹‚Ä÷îŠ m Ǻû.Aá‘ÕQRƒa„ª¸Û ¢TôM½éNåÞÐTÀøfuò àÀÆé* €a)÷&˜ã•«àF›†”`½Aá eC#½æâYå™óýéh:§šwAåµóÔ\o’ÀGC†²ït¾—™‰ñ=ûPP‡ã‘¾sséâ]b”F,—vOhU6ÍB¾TSg¯.Š€²Íúë*þÍØ³µ{N½—‡Ë ÛI o2OžŽò#ô#HÈEî¸7‰ „‘!Ñ]±ïCkHÐÉHE¿kãm‰™²‰»øv PžÿÚM!Ï£5؆V/á4vmhƉK1)vëJ†}}1Üam¶]°i$Oôv¼_Íö†Byʺ@²ì¨©˜{Étå é—·™ßñÒ ¤Áo •Lg#.}Š»*ì…×iBTŽ} ‹në3s=®íW¹jP=3¢·G—‡@GpM§‘.2§ŒBfto>¾” ²Ë›`Rc¶~SgÄ ç–ù¾‘ä1~œdÝ’œ…I:äm ÛïCž¦v¸Dcü7ŽQ1Ôpíɦ´µ«´M^qÑà‘Ù´‘&bÐ÷¢0qW…@€ÚßkîícjõEšÍÔÝPnÍviå[áµù­,ð ÌOƒ·Ú•½°½:R x­—èí]ùìý*T~Á¤÷ü¦«œ‰sPXÅÜ­1¤"ÁÙÝ®oÙ€`ÃBÌ ƒÑŒ¶Ò]!©îׯ‚8ã»×?¦ÏÞ΃{RtbÁ-#*¾ŒU¬h…׳‰m‡­–’”Ò‰…'$¨ý@YÁhUB]Êâí“èòfÅŠŽ;Ìh@@ Q]TŠÓrC¸„i´Ôˆá$œdÞ`2ÆÍ8 ë©X‡ÎT–$¡‚¢"‡¿¤Ø­ïG¡.ã/‡¿L]œyÝ$ÖBAR½Ùâ Ò&È7ð£Iµð-A_Ð…U¶ËDZ¶.1³N*ñLÓ\¯‹fÖé ûjòŠ à;,åÛ^Ãj³Ý][„@\’¶9ô™ž„Ž‹b“B£¨BR1¸™ÔÒ«ìÜ.“8•ž#oÿ°•ð ø¨R‡ð!Ä2‘ªÇ﯋÷K؆ÌkÀóf ‹@¼õÈȵŸÌ¥ˆê‹6®òæÁ l5„“÷U@sãp_äŠ÷ó‰Fa€\»A7Êo6Ü5”è¸1˜Y¤ ˜€ü&ïB ÍÍL5ôéÜ Ô| |æÞÖî¼RÎÔ5 ÝŒ"ï_3[™SFi`Nùo`¼—‘›Ÿ +¬ÔQ>«èÒŽänÐU ÍèjE÷¨ái Üé¨ «·Ëa— ¨ ‰U`$)eЍ½yå—ffrÎí-"z#´ PfG¾A·q•.2ö†Š÷ÁNèˆàJ·…Q}ÉÊn9u 8"wó%p~7:lÔÛBD®G»A¡ê˜×Ä'Õ@Q÷ŸÝ‡FmÔÙ6Ž +²ûE ¯,…¼`Ú•rrÒšêàgœ80Åà>£•—Žƒ £ÈŽ`†ˆ-Wt™k ¨”€I]Æ/ ®cíÚMOðÇš °¶°)@¤>·Uì†{Ñ÷Þ!»b(5=¶|IJ°nÜûŒÆK]ž°è‰60_|HÜ£lC·csE'Lû„Xº¼9„KؤO€È…ùC çnzÀˆèöÕú™ñ’./—Ái8]æÁ›þîÛLý¶Ê¢°³îfóŠÉ(OjÔÔ‰€Èøjêâ-(>„3„éS,Qm4\a ˜ð·™ä0‰81åW%Ë!dÊTc10P@ äÎ?pt¨óžÇ t‹èïˆË $øúB sa;Pí×±¯K@cî² uï'–Ý×8ÃÍ *8Ô<ôl£ Zå"XÜqWÎ rNx¯„ )c‹@Fs2Âs⎔˜Mí½Y@cö:ÖŸlÌ ©Á]4|aá†à`ŠÙØBs'N¼¤¶ö…KQæ­áÜ$ó±UÔ~4¡ÿÅàêÈxPa5↠ƒÌ´rsŽkkÈ73/")$@Ø-J·¥àâþ™ë ‡è^¢e'QÅp.8î®Â3¢-oÐÀPUgË*4"'Ë-y˜–‘#ÚÇk¾í;ŠQA„u%Àý¨´˜MÝ|3*;ÓΚ²66l:É )¼i˜!):ªÓè±Ù¨—{ìˆ;K ÛKGÆwöÕå+Ÿî µ˜ßt†E×Qʳ#ø¡¯ pìÕÔrÜìÒ«TJÀ®Q-ÇL’)raw#37lD¨A…‘dÞÛ†¤F)KÏÜíM\¸xF“rùp”Í„É{˜Û¶&ýVÏú7YŽKg’ÍUÔ ¾Ô¦o…‚‘kFžÖBnR] íä;ƒtê°6cúÆ€šøú…)7r–×> °mHî2写¹Ï"šaðNr‘o0–u.,¯…1Aõ%]u*É— t9R®‘K©UÈ]fZBîñ&ׄõ¢ÝúA\ÂåÝ#HÚ .1ˆ{™!$…LîÐ¥2Yvà–ì./Db´«eR, [’J’[%*0x‚Tý‡…Îqf¤.Ǿ’‡…Þ”ä°Æ—_å‹<ÁWã°ÐAžÀ«ÇqXè OÐÕý8Œt ¸ú$ðYþï[½¾ê°ˆ/áë eÓn_yXh H…þªÃB†—Æ×2ô¦}!“‡…| ýdáUù=ÁDåHv&y*¯¸ft•“<•7dˆ®r’§ræ1¬r’§r ´ÊùÞ‹2m–Ô×cTïj;ˆêy ÇÁŽç'ç žÙŽgòù@£Sÿ°=ŽMýýô84µAÒ}2õž÷½ªÐwSÏQèßæ…_KÝpOÞëN*¬Žÿ v‚E¥—Ò¾ZØÉ°ZžÀ0|eÀú‘6À+‰ïœlÝi$_K9YÿX~"IäÛ4œ2’áTHàdË C ‹¸É?&ìrÁxkðOI¡:¹¯Sú<³t; •çõnÄÔ~êžôÔ=9û«{¸f­î)ØÏXÝã'g÷ì¯îá&ûêžR îÝÃíÑ=Éû’ÝSy†~vO]mb÷`§çè×G÷LÌlïžä ãÞ=H 8ºÇü­€Ó ±¡Þ4‡®/ú;QË㟵,@žV)Î4L>¨õ„4Ýâ„@2¾0Ñ‘¬V'˜éYJiœï$ëÄ+j#«}Bºá!Øeø5w„C‚/öI½´Â*v¾EÄ.Ú4¢‘¯Ôˆµ‚`­|gG&M›hHKÖ ëƒ@q²^OA} ¯z ¦8‰ »Ë**Ïä#Ñž?h„ä_k ­§9ÁŸâ³”Ò8ßIÖ‰ŠÝ¬ÞÚ&¨Ü|€sã¹Á’©ˆÿù„$A¤g¨N/íØmu>'Ú„“;ìoòáÓ¬uaíÎwzéÏøÎ²ºøÛBL÷Êùpã¬5O`»ùN/¥4Îw’ub¦S5.¨ªõ ½y×*5ñ 2lϸ×UŠÃœ“o¤Ê0àB¾‚ü§iŒ‰´ç”ÆùN²Éû3lö´’í®`1Øb p!ÉÇ öwè³Ðz“D˜ŽþÀ@·Ég¡•1k%ÁŸâ³ÒL¾“¬’ð®Ä̩קÈ䃾3¸èôpƒˆÄBÇͳ´à’^ç[D |Ö$ìE;¦è¬ÄĶwz)¥q¾“¬Sün³‚wܽžàø”½¨à­¥ Ób› ®Ð³We;ŸqarûÜ92ù¨¤¼Ö°® ðw²Ô¥!ßYÖ/xd›q[^pÁö‘z«ÛªBâÒ48ëÌŠSp³4A@ç#Qΰ¬ö`ŒóÁ™µnkšø;YêÒï,ë\Poë !¸àÍÞ8A¦ø˜ò±ÄÒf)|’ÉGµ.l`<°EÍùòÂ<N,`à´J§x!<Ëz ´5   ÅoІâ—àÄ”)õUŠ€×ä#±Móh>€þ™|i~5º ý4Îâ*¥4Îw’õ¿@±ö°Ä/˜­¡œÂTæî€”iÄ#ÄÖVéfÓkò‘ÈÓˆ?˜2w>`+nM>à«SX¥S¼že=ÄïhÞvô~gYwA/ö¯9LÛ⽙ʞ¥o™|$PëüiÃ,7,uçKE,7,3ª¤UJiœï$ë sÃfÒëÓƒÑ&òTtðÅIÞY ´ÇÉ7‰8Åç*@çÙ¨Ykœ@ºó^Jiœï$ë× /'w§q½4"ÑR…X¬Ó=¾mªžéziñQÐÆ‰˜Æµ?H@:ög­q×þN/¥4Îw’õ[nñ­øñÿ)ñãYüø}ÅO_)~úÿâ?‰Þ#þö¥â‡÷ˆ¿}©øá,>´ßÄMö™`Û!(øÌKcI,ñ·UZ°|:‰´“׃_$Ê6kT:ßé¥S¼že=‰¿y¤ìõôàjÔÝ]ü#ø4Ê*EBÑIüᵞ È["^;ù>!~?‹¿-¾“¬'ñ‡G_O²é¨Ì® W•Ø‹Rrb¶‡U  ˆÉGµÎŸòAÌ‹>è¬5ÎÕp¾ÓK§xà;Ézˆß1¸Æ1uÝäØßп™c?e'N˜ó³P “D:@Úç ¾“—ÌZ×­*ó^:Å‹éYÖ“øhQ?z¿£÷+Áà ­~朜˜2ŰJ‹º±î·:„mñ­;rrbŠ_ò*â…íYVÇ=~×Næ–K<¶o¸%„¿–U %q3½`[Rÿöòú»_~Y°iþ/ò¯8 endstream endobj 78 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 81 0 obj << /Length 138 /Filter /FlateDecode >> stream xÚN» A ìóSj±{É>ÝöðvÂvb¥xÕ!þcŽ[Xš@f2Ã00vÄm‹N† ; ¶Áe¤‰e-?³_÷L6Qºý±¾ÓQûCÏQ…á/¿ôòûÍi4¨.¶¬òôÛWê¶’ @r õÏÞF.Ί8Ô+N‹¼<×ÃÛkSé '3n endstream endobj 51 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 84 0 R /BBox [0 0 446 305] /Resources << /XObject << /Im1 85 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C# ¶THÎåÒ÷Ì5TpÉç ä`M endstream endobj 85 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 86 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 87 0 R /F3 88 0 R >> /ExtGState << >> /ColorSpace << /sRGB 89 0 R >> >> /Length 14473 /Filter /FlateDecode >> stream xœÕ}K³%9nÞ¾~ÅYv/æŠo2½óLHŽP„í°gÂ^H ‡ÜSrÌÄÜ‘Ô-ùõëÀÌ›`VfwÕ‹¾ÕH&x@&ˆIÀ¿þúå_|ýó§ÿôúçWlo[}…’ÞR}yWÞr{¥í͵ן_ÿõõg~ɽ9÷ ¾Ð?>ã×èyé׿ûô?ýç÷ë×?}¢—ÝkþûÓþôö_ýÝ?¼Íõ? Öô¶í?ë[+¯ß½¿þæ»ÿøßúüã÷¯_E÷úî~ÿ ùõÝçßÿw¯ßýõ§¿üÿœö7zùÕèÚïÿ[^¡º7ï©ÃïþêÇÏÿü¯ŸÿüÃÿùþõ»?R·ÆnŽÉ1qóo~»7·P_óßßþæ?ìOk~ý¯Oów/÷úý'ÿúëý¿?~òLà¿ÿ”ÂÛæ÷/oa{ÅðÖ¶WÊo)ÑoÿúSÍoíC«“ùþõ'šûꎭþÍW´î#û¥ß#×7Ÿ^!Õ·Èßã;§Ó6ϼ…éÃ>¬8£zEfë#A_ž-ýT<âwùrÑóÐÿôúí©=½…>}S{­o[í§ö¶½å àhο…/àÔ‚zû ï‹ê[.Ì‹îbʯPÛ>óQƒ{Šwæ@N™ÖˆßÒ—Ä/û¶~kX üﯰշâ¦ÙûøÆo™ßûŠ/yêcÀúÆþ‰â6½1`}#·7¦7¬oT–PãëÚc‘7~áÒô[|‹ù°6ßn¯Îàã›ÛŽÈá62 šxDN·‘s`&‘ËmäÞvEp@n·‘·ðæÂÌ ëÜ-rCàèý[Âzß`!=‰}cÙ±Možßh;S”é ÀóûÇÍyzðôFtá­¤ñ†Àó }¼1ÆrCmFH!G(Ìu‰]ió ¹ÄÞÌ.[>|ä£zÿD’7÷åþ'…£Ç|¹8ÂýýßB¶Á”ù†† ‰¡–Í_þïúüÿ|þýë¿|ÿÚ•øwÿ§ýüÓ˦²†9’j¡iúÍ?¾ÿÓŸ>SûÝÿð/ÿòùÇÏ¿ÿÛïŸÉð›–Ì+¼í–XÜ¡•$?|¦×‡Ï²³à,*ì¥í„·”ù9þìdþKƒâ­ÆL˜û2¯V#/Ú@ÿœ7aîßèCã®Jß’çF"(ì‹/Óp3}d‹ ÌÔfgý&aîj6‡R6^…!š‘HLoõ4Îàv® òo©™í¿™·7êÖ›¼ÍóJÜ©¿õL™QÊù .%;¦:žfjý+ ógüÊà“d|–¸'î«<˜ßŒÙo_cO¦(°>¨'J.¦¨ðx½Í4²ø¶¸‘‰oüñã™>">ò÷Ýì€i4î(ô™£5lý:‰z¿?'‰û˧1\ÌIãitÙfGÉÛ½_ »<Ú`¯K@?‹³fþz üˆEû÷8OÜÅ,DþøÅXÜž Ömìï[Ë©`H›Fò8ìn-ŠhgœD™¸‘ÜgK8˜BgÌiQ‡³„»œMP7?(ËÑÆKÝÛÃ.<²3ƒ¨¾Ø¿v=cšô‘'ÑáwEñ@N[WV€†(w•¹ç‰@Þy&áÁÊÊ:ùÌ6ö@]"þ£ˆý¼AOJ´ûp£¹LˆQö!u ³u††½Â<ËyúMÖ°áö÷í^åþ}Oý­Š+«5¹˜Ü ~g5$ݵN%^5g¡zV¸Íär^ÜÎ úf™ó‘BÛ èvs­—ß Xâ¬óCPsŽÌÍ›Bé{,fa_h†m¸ä…âY…Õ›¼ÀÊ«æl ¬f¡ N• cäb®ϵÁ×DuÀ,Ø/ñZ2¾’¨ˆ}¼Þ6H#/´…µJòe3 ü&Y«&µ¬³š1Ç×òo7äÏc¸ž°ÅZ<“@*âæúe}Y˜sïšjyOA ûº(g©}ñ+WÅóÇ_ÿ ‹m “H'ûÅé™" ?Ô'žAcF‰¶ûæ {Ïò€ôe1å ‹Ý¸±]ƒ9ÙÌ '–»³ {1›°7Îjîâ›%\Lå—`Ð;sÂ&¬Ú«sâÌe—à){ÃÈLð¼!ý/Ödy¬ÐHN}¶´³Èl,ˆn7™œX•|žóê[i“L&±ê]›©;íɽ³y® áCß7ClÆ \Z¦“asº¥Í´Ï_°Ã$>Ë Âz<ß6‹ m²”¹׈ÏÄ>¼%[¡‰Yn‰6þ+«ù ËæÊŸ"Ú¥@ ظƒŠ<#îµàùÕš °ú,‘ä/;Û—mS4X…û›n»¿ÇRÈï8 ”f!æ´³Q( G<ŸeZð™E#†Ç¬åù³{ØdÛ¶ŸÝ·àYkµÖ …ÛÅË9âØµRZ4’`"¯Æ`Dhssú>ÇYÁv‚’%UÉdžõgÇ$–e¨É)(a¬Á‚Xw0í²‚pÐÅ2‹‹(gBˆÇˆu,K$ÍņÉm½ÍÑs¶ÜhKçPÙ~ß®,â³{ߥó¶˜êCö3žäúÙÿᘖŽU/`©³}BáogY1#BÇÉ\:+Òˆö‘€Án–²†bíÙŠ~][^Õ mwqì7sØJ?T¬{"cdÍüMžgéÒÎ+kO¶!¬Ý iŒÖ~gÙEC9Ç»iIãîòW²zVJr»hÌ,U¬qzÆ<7Ò:­Ø]:ÛÃÁU î;“Äùì¹î“ðÄÇBTÓ 9eZ¶Ä5îüm|†4ØŒïºÒÓËa;Âf胄MŽ %Kô,¦¨`Ù²ÕhÊ“[¸µ$ô÷}z þ$Q6<9úXa†³¡É1+l`TSâV„rl3›ÍİP‹"7‹iƒ{,K !DÖûm“-€»:Ykµö (W°ÿx74Ù=/gôë±Ô6yu£Ë6‚ {.={£‹3.$ˆ˜OÑT˜2fcÆæËÙfs,^ì@‚¸wã‹.´3^Œy[-|es8Àœ0òȤ|à·o0nÏfñöª¡L˜ïg­47k«|I_e¾pH¢¿/ÄŸ,ó˜e#ŒÜEˆ ÄØæ³¿oæmÿ¸‹È ÷3‘‘{ŸxÄ lsJ´’%¥=Y´ÎÎZî r ?Úˆ+Øö?¯fRÜ,âÂîÉØ­·¼³¦®ïÂΆ¾µöùes¨,X5!jaï–f|…Y›.0Åå=»øY ð¯Ôz(Sõ©Þ6=%‘” —¡­,ôå·ÏùñÂ’³Í^¨Ø‡³WB‘ÆÞ³cqjÛZ<ÕfkK„µmç;Ëéš³!á=EÂÙK6J´JêÎ.“ ºÎæ· û䮩™L °Ÿº‹ïPÝUµvÆ®u@n ‹©"~¶üIÉn—}¸Kýv»1cÛÛ”.zÌ&H4–í‹!q6ˆ‰Ú ;Іu»ÿf€:[ìkØ”Ë)jƒ‰pîœv´o›|Œ§æDɵ.!³ÖöQ7pww‘È8uw»v²µ ¹¾LØk¶ß(±Ÿð1S{Ò,° ÎJ}í­ECÖ”S¼‡“2£Àµ6cæö(›¶8Æk¥!GÁ EöÈ äÀùcÑÊŠA%[eaÊnÌrœá¡-C:ùÁ¦\Elc±Ž „­ì*Ö¯}ܧ@Ö. M¯ÜY•ÈŽí×ÂN9§W¬Ê†6»Ukû=\ìòÛ±5(¬¨o:`óì¤òiVhšó¢î*õÙi½"sòäðT¾Žfœ](x/v8O ìÍ^;~e-¯™&ë£ÍÇûØ>ᱫw&Þ$‚_Nj=òi_ÛaäEË¡XÄ¡­†P쪵ü²çV§¯˜ÁH,%œËïKÑѵéšL‘»©ÕamÓøE<¥JhÍöidsÏŒž99>cÿ&¬«û›-N#žg·Ö¡,{¬Ýß¾eRŒ¿¾ azænqÒÚŠ5;Zš|×À\¾¥]Ì@¥¥·yì_Üuö…E‚äáéxõš×fÍfæŠFR>yr`ƒl·ã–¼ýîáBØ|\…¹xÊ¡ÎkñB6– £MŽ´ÙÆŒ“ÖvŒIL‡ÅyÆL~“?Q|†7h½ ²ÇØ*Z|BYC›»˜¿ÆÒÆ6Õ†£%Pe;îÁÐ=bóˆl^¾ær |&+„µéÆÏý`®§ãº|pØ6¶p$ß>–'§Â.vÞÌ“ÖË%šf¹¿ûÝã݉ádª-X ŽÛÂ6#Vw^5שņ膃ZÙ8¿ä^!íÇÙ6µ¸OÏ«¶VÇðqì¿­6O‹G<w‹q×r^ßp³F$¡"0EVˆ ;\öæäZøÈÉ÷‡ˆd1.nÂH0|©K4/“l¸:”Mµ´õ}¥S·œi"»o}‹>æ„«r÷2á´Çt‹þã,wÓ#é…éžýë-á(®¾1`}CvRú–7’‡›ø¬o„†9úÆ€õà¡èÖ7ã?ÌÇ×¹‰Sáoz¸‰û*~¬|üˆ}û:}¢ënÄ»ÛWâSLlÜÎØ¾ç輚i¾Þ•w)™E‘O|zÃk°!Öû¸yzðüFódLŽ7Þ`+{zƒáù­HÖ yðôFD´¿!ðüF7Þ£ýâ•ìùDVÈ|2‘¦óWû|æÛ7ߘ×{ó.Ÿ>‡\}O°ZúUvûU÷> #üáê;Ï}Ó«ï‘îT|Õ«ï1:=Âzü·ßïKadúñû} {¿ÿãó>ˆŸþðûýû?õîï‰á›"øKá?ò®~´Á»t•+¿æ¿gOzó½—Î<Ò Ã¾áðŽùg„Éšáíð~aƒà °Ž0GHŽ 7Å÷…àÂ;xѱ©E0Îhííßße ù ˜nìY¼+ibíHRN3X|úíaF܇qfÄ=œ÷aF܇qfÄÍ3Ò("3ÍH‡eFø0ŸÞ óŒ4²7§á¸þ4#Sè3¢ÙG>}1¡Âù)±Ùk_ ‘ ÉÆ±Õ÷ùÉFQ šhúá³ è´úßμ'­í…œ‡Ž+÷·û“}ö·Apé'eoã·µ½Sʸ3Ý?|úµP^ä÷RKz÷·Û±D+q£°  ]µÐöÒç! ˆûÖ±(=¥ã­¡÷ HÇB¿­íRÆéc©ò,ô±T ¾D”±¤—²; Ë–G{ÑWÝ€¸o‹<Ù'¼3{¥ö¥ÄŽ%¶ÑÞ)eÜ™î1–&Ï\KÃXv.§þ’ŒsªBJË£½èÒd\¸o}[žì+Pq‰ÖÚû¤cIm´wJw¦{ŒeÃBÜýÿ÷ù ô§þ²Pï^*f)uÖöBë½ã Ä}ëÛòÄm—hͽo@:–\G{§ÔmèÖ±ð6?Óõ"O8UûXûs—½B}5»Ñ^8ꮸqßú¶p9I‚»\ñe´ ]‚;Ó=ÆR1¾êúXjQåNý%ð×øM¡Î5u´sæ…Ž+÷­c)˜é-tÜþô›B:–äF»Ð%¸3Ý:–¬J¸¨LÎÝPÁj¯ Õå—š€úL§ÑÎ{W î[ßÞ ™Zê¸;ä·Þ7 ®‡ëhϪ9[ú@÷‹HÉìúXD®ÈÕˆ‘m²¼B:7Ú W\¸o¼-O*t©àV ô¾êr%Žö¾žjø@·Ž¥*ßy]ûýIÛø×ÅÌ UL¹¬cÙÀóh/Ú ¸ò²öõI…6Üm$}3¤#çß–öªë%†tËX náPÎ6Yûú¤°d*ãÙäÚîý‰ Ô%:UÐÛíÖu\r×ú„÷X:nbɤ}3„·å·¥]èÜ™nKѱKQ[ÂE†¾<÷ &0Cø½¦3Ííìmt\¸o¼-O2…%;n¢SV½o†~Jø·¥]èÜ™nKÅŽý}Jÿ7?Éä6Ä<™KÕ|gˆ¯VèioàyÁˆûÆÛò$’Zì¸"­½o†~Jø·¥]èÜ™n -%zßw9¦OË¢Ö køâpw=âߣEï{û.ÎXW!ßå˜>q´ ÔqË)íÛu9¦¿-íB—àÎtc,)|+¾=ø>?a¡GPÃLïâQÝ&@?ðÛbËJ{Vb\’ZÕý '´ê¸œpµ÷Ôªî¿-íB—àÎtÓXo3ü ^äÒì·AŸ¨ß®ý6±€Ôo‹¯Ùo‹Ú÷A"w¿M$òÚo £½Sª~[}w¿Mlø8ü6ñW<÷aÏDxZÞ+Ô}7Ú‹ê¢êÔ†æêO|î¸O.h߀º¯G{§Ôçtÿlÿ |Cÿ (ôsýƒ vö°Ý¾K†%»ÅÙ¦®ÝÂî3í6u¸qßݦÿ tÜaS×nAw›:ŽöN©ÚÔÛè[Ç"ÞÇ>“ïó“Mg+Õ™”ïâ¶A]í•õ¦â Ä}ëÛ+¤µŽKvfê}RþÍm´ ]‚;Ó=ì­{ïÇ'ÍÃÚ*ƒºMc2]ë;õn¨6kÇP×úN-K¢Nq Gä´o†º¥WF»Ð%#›éV½šT3'ñAõI¦}OÖ_‘¡VX÷‰|n2Óû“æF{ÅÖ€àÖž^7 - ÍF—®7R°÷ÍêÕG»Ð%¸3Ý¢‹gŸ §”|ŸŸp˜‘ ŠàŠL¢ãêA!Ö.ñ¡mOðëW î[ßæ'<¤ŽËCê}]]ý·¥]èÜ™n‹Ïð‡s׫ú¤°nôú…¯Õĸt½ê+[)ÚÞø¤¯â ”»^Õ'œd§ãFÖ›ÚwìzU[Ú….Á馱Œÿ~úeqÙúøvÅ |ؾnq¿[å_.np1öo_ÜÀÓ¥„eqƒC«“ùîÅ >´îïÿøU‹ø¸ýÜâê×,n #Öâtº+ÏÅF;Ÿdpj§y´œÚ¬ëí§öo ÷v€SqÔ‹# únàÅõóŠPÖë]Œý¼â~w»ƒ´.np- ¾Jqù‰^@੸Ac‚Å F>7o øXÜ`¼1àcqƒñƀЬ±|ÕâóÚ|\Üà€ü´¸ÁùiqƒòÓâä§Å f‰t*nÐå†fg§4‡âÓ817D‹¾Q꡸Àó»57x~c·ÎæâÏoléPÜ@à¹@hÆXîð9ü‚⾺_PÜÀ·m]Ü@—•3PÑ‹¸|,fðîïŠ|CÃFŠÌ–Í×)nàw[áiqƒ/:_«¸A—~>ËâœñŠоg±tÊŠgç¢ŸŽ«¿XÄ˼®~Ÿûú]þÉÖý>¾A+Ý/$‘Q›—¹< wkÝ€@nóÇçI 'ë¬97’Ý›Œƒ¬D-ˆ-îv^ÈiÞÎ÷pÖgs+Ôê“«Yt.[gáÇo®¦çfæ7A:¦ìÍ[+ž½Ag¥â”$ŠôÍŒœjKâéÜm¶½®™ÜźüÌ«ô}Ï'¨ùÒT“›÷q(¿AÉÖ…WÜ%Î8¿åÄw'lq¼1棜ÿWñù ÏÛxfNãæçâWpCƒJ®«1g$3Y!.¤ew¾£}ýñé8´}]%òǺ{ª\..øE&N˜Dœa$p¤ÅaçÌË0—íË&”)Ûw¼8èIrÝ ñÔò7IÐå¿' –ÒƒÊßluõŽî­—¸¸ƒÆB6Ü¿&PøÀ+i³»wXXŸ9ÖöM2Šu­dÍó$:J~ä ‰ÓèWž¤Ú°~܃'FÉV.^–iŽ?¬­' 3m áÓ DÏk¼«_;†ˆr“9׫Ìt6!.,Äêý,È›*Œ³^ÿ 9³%/R}’…B7ƒì«Ÿ•é3¬¢õ*¿<¹OâÄm¸}e“³ïÕg£câJÖž þK/„…Äãü &ž¹ £˜Ï«\éÌû¦}@×Y³Å”Ϲ _ä¡KK« ¼<û,làºGe“hÂr6GÆÉŒÈ7•.I 4MTâq³Áf¿Ÿ4n©œR¢Š7ò¤„šåià}Éëz!ôíž7µ^ØDêØÉ`–[ ¼]raÜp¢w^ö5ÇÊ´Ò¡nÚn)׳˜ÙŸdùg~¶Ò+É5GÞŰS$PvRnšÆlùŒéÁ²ïéæî»w¬Õc1uô…Ù–V cÃåùìLkaƒ@1“8¯E9œâ³xíÄÚlÖ¿ž¨Í(~¯™Ù…CÜa•Msã)²4øE‹;ô`1170°‘Œt=lè'ÒòŸd+˵̥“O2§HœÄ^Y~¾iV=ìœ&DÑÂã«¶7y¦ŒÄeâ'Ð!|3±*QBçTÐ"?:G#òÊ|A9E:­¸J*Áa°®J]ú$•f« ‰ä†âØÖ*¹ͼaN:X &jPqÙ"ã^@üËÔκ҉,±dÏ5Èn+ìÇE·'ÜÊ+gI"‹ì²>Éò‚Eõ90®uá ^ŠÅhª}s3Ä<¹Ñä͹b¯Á†ß4W¯D,lé· ']†Õü$$Û2a• (@º¬cmÎ.ù…{¿Hœ"áû#‰#ºÄ\Šf´Ëž:İìÜÕ¶Â"Ÿ'TÔ²'+·Už7çýl¼(ÀE ž¤Wtˆyš#ˆ~°Ã^bSšk°"b¯î6/$† ûœ(й¡+ɯ|Aof½ÞTÕY㺅…‰L»f°™ñýo¥qz˜ÁR’ÛUŒS"OVž%||;}Wk+N]r(É»¹*™¾ˆ°ÀZæ»û5=Š;fol](IìÙ[d rÉN-Ø“t÷­êñ‹á¼X‘c¤Ø%Ì'Á´`rc€€³×Nm»Þú°ÃÀ²v²)EnÆUÕ·Çì6cIÞ ºª>LVÎþ]óƒpl„lfHZ~mÖº–DZ Ôó²Wi79`±–,%s/fCªÉ}d–i¿±•——Õ*°âíFu¶–ÎnµIœyœO¶ ÉõÈÕÈù½Ž/V Öv©$í¿˜$&m3Ÿ¨¾ðÛ±Kg”¤uppùÛÒuaÚ¯éc ’†8ˆQ)¿°ÙÂ"8ÚÃ=«pJ†²»»3ÈIM¾±ëzð±1kd_ØhX¥ljW,kE±;û€9y¼V&²szÞˆ3ãå’áÙ›Ééæ¤Ù˜qªãÜ­êoJ>jÛa·Ô„¦É«:9°+ 4ŒÓH‰­‘ +Ñ&;}h\dm†£¹È %l9ð2ʲ€L@„ó3$’÷Qí^·ŠÉ½D»M…Ûn+ˆ ̳ÎÉ!?+ìOë#IÑZÌ©Ü7‹L$°3ª:Œ!‡•Ær0†îæäŒØüJVš¸ žG匠óî½éß,Y)NÅ^\dz=³sþcõÛÍBRÝã/æY*„ñs]åÀ–¦½uήz)ã´}qáM£B1Qd®¶NaxÔeQÓÑa LjlØ|‚4÷ìÛ?°ÙH§¶aÔQÚ¬pÀ‚„ªñ˜»ÁÆ-7KÏ.Zãj{kƒÕl†ÛÖ«¥Â\yR`ƒ~R½Z)Ù5a«^`0éSóÑtxÄ#e¶ôìzŠxÐ áNF‚aqª‚µê|³­€C ‹,ú‘É´+º5 ‰å°vλ]×~(M®mk!ÔtNÞ·Òªlö=,ñ”laY,ÏÒ‹Lþ5ƒ´ÛGðX½­v°”‹uRA#Ä”ÛÓ–iåÚ™f8l! q`Õ^äšÐkV˜“sànís5œf],_ø¡¶úPY¶E·œMþM >>ÙÇè7×6PËcaÓFÖ“£,¤Räe0ùÝ *˜Šu÷"ÆäVÇgtg2˜[t"rý¢MÁNÑ¢š0V€íxªanîE|{ÛÍÓ&ðBÌ#íUÎ}’Ü[Ñk5dÉc:–'Ûy‹ªà°»õƒ»fxhboÈLgÜ`Ábþðäc>p¤¼¿0½ dë¼6¢²uŸ‹¨ãÌÔ¹n o9…Ç“ËÏÊQ\us_u½`áUžOŒ¬çO>¡ƒED&?9é?Žk<ø„$Øñ<ÞByrfC|Õ.Z.v²Å+õ‹£,¹-ê}np ís†6f½¸'Å ˆ+sºô×›D¶S½ü„Ç,ìó–ç"†…õ{¿Ú¦Bb{þ1äÖÏÛb‹lsËÛUØJ-ΊB\³M¼]ʇý4X„3dóôYQ@ŽX>¸Ã•„%–­%Gp»»kW„Ä’/áöþ(ÏŽhÞ¿‰ *ÇÜiP‘éWB䦄UË<â€y0Ý]¹¶˜ #iʪý-oÑs £én:¥Ñ">nÑ|c‚µ0TGëo ¸—.€YÓßðTºÀO7ñ'X߈¶•¾1à^˜`¦ý0–¯W˜€ŽinÑß/LÐòé&¼»}>\Æ8`§¹ì9ÆäFi)¶5¥ãŸÞðz u‡oTÜïoT½ ®o †ÚxðüFó‡ÒÞ¨¸‘Þߨz#]ߨ8ö2Þ<—'ÀèFy‚1Ú»¥ä ÑÏ.-à«^ѶJ ô‹ç’¥¾_$׬õzѼè¸x.¥¾áÅs)-ð/žKi6J~Qi{×ЯàÍÒwõ£ Þ}PZ@{A"üÒ{A¢û:Õíp‚ƒ$¶~†±¡ÐaZ°y†a.ŒÄ÷Ø„í(¶:Úq¤‹àĉñ#Ûº3ëQr’˜K PB®˜ïï¢ÛËû\JÀáî^ãèöH¤/ù#FiÆpfÄ}˜÷aF܇qóŒ8) 3Òa™‘ËŒtXf¤Ã2#üù§é°ÌDf„OòM3"pŸG!•>#šûã—àjsiššŠ„ËdY7>°Ù§¡©´@oÇ^’â Ä}O¥èIp·²ØÓ¾M¥z{§4¸tô:i#Uº0–” U»Ó*¥˜eÂ(-€jËÚŽóbŠ+›K È_:nåŠÚ7 ž*½öN©/èžRr˳)%7ÆRl1ÊX@³{˜Óñoy´sjÝŽ+éøûIÇ¿a,©ö¾é7m´wJ½ÿ@÷”Æ‹¡§°Ï*0 ¨à¡P^}©2¤Ôµ2Ú U\ÜHaߟHï†/Áü‰¾Méñ{{§ÔåtëXM¢¹‘ö]žxMÝNÚn§Õ#Õtô ik²cµ7pW 7Ò¾ãÉN§nnÝÖ}ê_1ŒvÐ¥¸3Ý:–ƾBãGïó”U¢í | '´…4é$íŒI{A€Rprš8QŸTÞüSܺ!í(ú¤_qk£t în˦2kêÐM•HDJ̱m¯Iám[§n‹£=°§ª¸¹.™äIåʃŠ[ù¶˜ö ¨'#/½]èÜÝ#½xÄïMéÅ#è‘ôâ+€g²+kM5-šµ|ÅÈÍéÅè¡ôµ‚[7¤G߀täÎvÐ¥¸3Ý:– Š.êX‚<[‘M0ÑÃШ:–Ì;yÚŽ‚ÕŠ+÷­o‘²µãV¾K¦}×QPE~[ÛA—âÎtëXpæµqðàýødKœ’\V%ÏFRÖõÂ)õ{;(n‡¼Ž¥é ‰µãVÞvÖ¾iªt^!Òºw¦[ÇÒô««Þ—'Ía¦±¹Œ¼ƒ“§r³âÖˆ´WÏñÁ}ãíþ„t·àVÞоéÈYfK{§”ptkzZÏ¥ÊÇ(Þ§'´ª(Å,N¤4>˜6§^ÓÓ&ޤh;j+. ô­oášÜq+ cíÞÆok»P*¸3Ý:–‡Á*I~Ÿž4>!H†£Ÿ´üšÌÈ–{RúâGû¦f*ãBßx{Ó5±;ÊŠ[ÅoC߀41¯¬'祂;Ó­)ì[HµuÓ'HaÞpǨ!½ù05ý9ev£=sØKqjÇÆNJÜŠôæÒwéÏå·µ½Sʸ3Ý2– G¨*§j|ŸŸp\0nAe<%hóìsÜÞžT0®@Ü7Þ–'œ²±ãò¦rï›!¼-¿-íB—àÎtk dT'¯ÊÌOxË  ÔïëA]@HSÌU z;(®@U%SÂFeÇåós½ï¢ë¥ÿ¶´ ]‚;Ó}(-@CœK ø3EKz‚JÑôÿM¥z;—è¸eµJú¾ÛÖq¹8{ï;ê7ï¿-íB—àÎtÿ¼Ò²Î'¿­@ßHiû_ŠÞ¸¨P/£F{Q )¥Rùè·É)- r+çÞ7 ^F-öN©”tO¥”D‹Ž²Pê¯à÷¨»Ö…”ºæF{Õð`ÙÄ}«•,O|è¸UŠ¡o@:O!ŽöN©è¾ŽØð-v_Gl|õuºwÃIç»gÓKö¤ƒ¯³|Mûî¾Î6û:²nÅ×ñÝóé¾NíRñuÝS {±³ÛHa/Zvx†×ɞߦÞóT„ǧÞNÛ¶­ã*äzyRù$¬âÖ ó°©wÝç©©•y |sèžljw²©a…¤¥qØfnlý‰ïÐKöDõ:¥døŒ›4X4ÙÔâpQœ./]ì}ê¾Gí^=R)Ù3èvhuíPy¢vh:Ø¡Ý*ív¨Ívh>Ø¡ùd‡æƒÚ-Oíûƒšf;T"ÚnÙl·Éî›éöNÂ3绽#Ošc›C‚„ä!7d"›$©?Ãí™(n‡´ð>iì× nå@Žö HíïG{PχqgºE¯ÆÌ×j&Ãé}~RȰJ±ÀäƒGµ 뾈lÓÚÞ` ®@Y ö'‰Œ²ŽÉ ë}GõÕûoK»Ð%¸3ÝÇÒ©}±²€ûV» ¨+ü×-+@Ã/VXûÛÈÀÜèdª{Icãn|üøU+ Dÿs ̯YOÃÕrWAÙü{+'ó4Z [mÚ h´Â%ÕV@£µq^&m4ZA‡¶ªnæòOíç–(|oíçUhb_¸_¥~~¡§Ü8UÐöktü+ôöëôö«ôökœéÿª¦µ÷¸`ÀŒû´^ÀŒû´\ÀŒû´ZÀŒû´XÀ$mNµT*¸å•F;KÞ!6´};” 8µ—v(pjG줷œÚ©¼ÔT àÔ‚{û ÿn†þ”~Aq€Ý ÿùµ°Sm—Õ£•dõ+¸ÕC€ ¾|¨ ðÍŒ© 0Y%_§$Àn¿=­ð%#åkPÑvüwÊðT¡Ø¸}ˆ7-øR5-ó>ß•¡äÆÍM>$žë"ÁLžyƒb7oèþ“}9j7ü"kÀªu‡žS1ŽmÊ-ôìÌ[¶\e|»}õdwhiwöÁéïÝwKÖŒ\|3GÜt7°ÌP².÷®cÿÉN²Ä÷²3n±ÑÙßÝÞVىףcé;—e+Y×ÅÜdžû>e{IDÈh+/Ùc_ñº]bŸ‹ÔŒÛ&|ŸÒ|•â*5«m=¹õÉ-Ë#Zëiý‰¸÷œ9mõΡ#köF ?ÊuI¿ŸFv®7/~^Œ?ÒÊZfVÛ¿©ïv—2”Ew9¦Í<ÀÌ9¦ö/t¾u<Ëþm•Šg·@È »õÝ;z2‡Dá“Û_žtÀâ~×þEŠ™î«ÓLèbÒÆ7…Øð>_û½ø†Û YõE²Ö¼öº–ƒŽ8âIžZZ§ÕJæºü XùÁ.幜;ó"¹*«4Ã47¨²f·ºHXGóæŒ¯@gw­–žÍéNEòÆz¼T;s³îÞ,ùfÇ3MOÖ~Y¬}jKæÚWcdn^ÐÆ!°§ù寷'w{XZƒ¯ölôû÷õßIvR¶ù²”0ž¬D+éÎ…¼É4þ»s,—JR}ªû– ë……,ÎÄÿ‹ÄlÛ-t]$ž^\ÙÉ/9Iió›ugZr•ì}"ß ú|·ôZ¾#Ãqv„}ü$8óâ9¿Û¥½F²è/ìv˜)‘/ÆÈëÝ|+Ê=eqG—¾ô*Ûm ¤Gż[ÿöU´Ì’ÅÎ]R4djQÁ}.’Q æU"^V ·ve’7¬Š‹ïT˜³ä="¿¢˜w2AÛª¾ ôà"5e¤yZÔ¬c=dñ>ŸmL›ÅkÞ‡#þdíZ_ ÿšßÎmA6wzù’³Ð¦jÌК¶Vy¾ïæãCö Ss^ÚvCXùßÉ,Ü´±·•¬,’œù†mB«òø$­ü8æýû•Éø–ðþõžTÐ!+¦>“§°ÆžÈøœ¶ÿ»±ejfÔJð÷—zÏä7Y³a‘©9#žcó0ÇÎú™9)“Ü3Ò;,¿|žs4Êž'¾`ÝÈq§Õ:¤ÿ£$oñefÃ[ý¾«Í®1Dþ ”O›“}bæ}¦ãdvÒv®v³‹…]Ãö°íïæÄëÐ̶Ðâ:ÖÒ8Öbdƒ•’¶EB[²&ý…~*‹¸[áß[d”dÌ®vRÃÂÞ¾w«â>¶_ÆÛOg߃ïz±Ì³ïáÃ×^Ä XW ³–kb· r4<÷ [Œã¨ç4ÃNµ’ŠŽï²ÓJ2™SWz;°-²ª¿’LAÖ§¾„ì';q±z*gyÄòÀóXɃý›„GVú&s ùIYÀÆQÈ'éFÒâ+Ká Û~r[Ù,íµ”ƒAQ;Û¯RúWš_;gtfygç®ÍlEZY ¹¬ݘ3ñ*¯Ïßa-Çž/|c+¥­$ìHΈáH6>ÓRàµS_Ó;öñÎÜø¥Xˆ¥‡ÕÇ|RÑ,³$¸_“S ¥¼( ù;Yº€”Ù2})ó0‹#¸Tn‹:¡Ã)F$ízÄΕϩ2åî¡1Þ¸Öo4³VBA•¿¦ÿ%ß7.Ú ËtÛ$YéoïÇ„yWl¹:’÷Úß»Ÿ©kÚÑxkÜWyö‹Tº‰í%{¯*±ÇdÛ®˜o;kzã³mÛ,s«ïËún‘ü‘x=iŽ>²Ý³L³M6îÙRÙ‡={]k;z_Û´`ÊDŠäGUÈ(>o•»¸Œ›‘Aµ]ë"&—ùìˆaó®y5ƒ½’°7÷$ž–{ƒ\r™üb›gëˬb¶–‰´çV»Y¼žÅÕá{ÛsŠøÑ*¡_ªÏª€&9¤uŸ2K ;5ïÅÚc>Yø|b![yÞöhÍ.íFëb+Æ.¯m‡âÜÝÚHþŧÙÉbXí‰'+}#ÇÙ«^Øe™åãÒWä:YßÖnÕuÜÔ*9;Úì$ô]¬|Ðä›%Þ´øçAlÞRïß.µI¶m±j‘yŽ~Ðþ¸ÁJqV22=d–ÙÉQ|¸ÛÕœoç1VC¥XùÝÖ‹™]¨'µl'¶E Ö­pbcwuà‡ ³å¡–`Îw"¼ÌS/ ÖfŒFâÕ. F<þ%Gh*‹y´)³d[³·þ¥ˆ´Œ³ùGÌÈ|äðB(°sx?mb£C[t ãY*øl•–¸àËÊ¡„ÕözjÏ6³X9ßcæV^jìpÀÁ>9ˆ»H-ë™í6l’< ~çÛ›Þj ÖmìX/‹€¥Í0”HHF^C‹`oº.Êxnü{·³$j¸äQ’Ý‹ƒQPw‹ñ²Â°«ßfv¿AGVòO6Õ sÄ"¬ÏáŒ'i±)³8ìi—%gN²s…Ò›´hSà¤.ê•`zá„!ˆ|æ™+‘ÚíÔ³jm«à%odÚ)±3;S‹Ã>|Pw¹y•Íìë1ñ‡;Qq±~ùà®mmvyrè‡fήÂu«­‚ÅìLÝ­ÌÆµ£-¿Hû„aÈý]ãRr|ó»µfª\_"Ørj;l« ªÖ!jÞ²¦@¶]–³ÙÎEÝlŽYFšpU™b×9‹ÃÐÑÞ¨½Ð‡ÌÉOw`Ê>à8ø³8Øxq  ·µd̼a´¨ŠµXUz¨Ô‚rYÇUCI&YGÀ¯aqUz‘ÝZ)…+…oòªCæðÁ÷ º9·†Ž\o”zæçå]JÖ†ÕrÞ*»úOÊ UÖÕvu+:ð»,Hæ‰Î$;ÈöF[aþ2lšåœBŠœµ_ÈRvÞïÛ{zâÉÁ]Z v]w•'O°8–\çŠÆ2™¿Í"µñf̓À¤ó·sÓóê½{ð%øÀkqY žmÓ…\ª_:Œ}¿83¼áðèàfåÃl§ÌG³ÌÕãY²,Ž{%;DvÁol+žmz=¨`Ûd>Éë‹•íÖ'(@?c\ði`·ÜPÝ,Úìuâ3qÁænMyeñÊ^Ôå㌋òW˃8zP­Ã[ëyÑð'¾6óûbó†¿Û¢0q€XÙ˜™ãJg™1¥^þ†—°)-O—¬S‚*ksòù©}€=õ|“Ë’y^AM ¿kZl™£ÿj{Èt¦·wPÛg‚fú¾VByÞÿ:\²¾ŸO¾òñŽòíkÖœ§ìxEÛݾg|å¼@3òí‹Ö)ñB> ·‰Ó³æ2Ø6uSæ÷ÑîåÔƒ¦`@{á ÛÞpj¯ñžàÔÞ¸¶Xo8·3A£½Ów7oü¾ä\íiçï߇ôÊ×,YçõN³ä/×kÊê%fyùx¼Ó, çù—¿aºù¯w§Y²Ícïï$›¿uÃùJÚÝÌ5¯|(ßfðáƒLóÒÀ¦}p–uW`ð0æ˜ë¬3È™Öf0¦Xð»A²·GüP”äí»!I`Ö\íhå{ö¨^¹Ö2¯c§¦o|®eãýìžG]RŒÄò¿tÜqÜqÜqÜqÜqÜ4A²ËËI&/(¸4& U¼N@ _ï@´mc$7Ä/Î# §4òûצ™Ü+gáÔ)NšýIòÀk«NDm=Ms|Çã^Ú+SöxmUòo¢USÝqZz4²)B(Jü%~ “_{k¡@8äQäšþ¾2¥÷êçä÷ÁõV%ORßwZù% C¼ObÏ Š%d g‚̽µèW+à^;ùü@³@f&0÷^ý!dë­Jžf€L½W%¿â‡r'¿‚ŒÄ]%fžˆ¼÷Á  49×[‹;u€{ÕW…ŒÚñÀT²\Be¤‘“w´µÒï)€0ª"è—;žW‰E½úYžÑoz•v Ïå#­ƒ|ðSÝ:ùàýÜklÔ± ÙÍ@ŸÒØ[«ð>ãUaõºõWñÀùŽçuÍÄ$€’Þe"Ïù#­#]+te•)`=ˆXhÌû"0J Oié­|W_ñ„ž3\xNÐ,x^+w”&@Ç[o5‚7Ñ:ÈoüAz<ˆ$½˜Ky~ÖcôÌ4I+;¡Š ôÒ òÀkõŒ%„Þ+}EÅÞªciõHëH0›=’“ú ‚#øDÁP&ónóµQ£lÚJ¢â º}!8/‰âqTB{e OJè­ Fð&ZG͉¼¦-Ömïåˆn£æ‘ó*#%lŽOžF7È”ÆÐñø,°özÈ¡K¿‰V¡F8i¢UÓÈ&Úk«\´á}zEQ2s)€˜LJ×SȺØ[+…{€ïUuäãÄ£À+›æ©Ý{ åößÔVP#x­š9–5Bå¿OxN¨¼Èj~© ì{](,mE63Áàúză&ªÐ¼Â\#½Ð|±ûoj+S£x­š,–O5Ô2rãWÉ¢F–c㑵± †ÉÉ\¹d‚´nl» ž¥[œýYŽ‚ÇR{ÍÝâ”ß”V%ñ&Zy×÷GRnEp,S2ŸWÎ&%.€)纶rJuÅP”&}9Ä&x™¤¿öšµÊŠþ¦´‚Á›hýy©Öÿ?wmJùèÀµóÄ;AûèÔÉ7Ⱦã8øx ¾\›Ô{e@É®·*yê”Þ«bG†n`ÀʬŽÂ6E„!&ŽÂ0øÅY£'w<¡×‚é|êxžæR{e@É/©·*y>iä'–-wòÛ9Sã™À×fst¥õÖ*êD”Q Ò«Ú"xà†¥â¡Ì³¨8­ù!¿)­Jž«GZ‡eT]702kZI—ïaÁÚØŠÝfK½•³J(îUÕndŠ·Ðñ<†^ý<)¾õÖ,ªq GZGµ®ù)+ùxuJ sÒ&;Gpqmåó%Š€{ÕWOiõÏcJu`nÅõV\õGZG®ÊóÔ:ÅŽ‹Ñ¥¨þJqŠ*ZD‡wmµÕ‹_,E›àU»^:w<ÇuJ¤WעÈo¢U¨?g¢uäÜÇ´4×SîËÄÁοP*D4ƒ>ÂcR´ bALR¤W}\èx|K{u=X ¿)­JžLJ§u¤¦ÏŒ|ÏLn#Q…p@å jàCja„ ´5 07*)ñƒÂ™Ò¯ðùd鵌7øMmejo¢U44ª’Õ¢EƃÎõñnÊÙJ7.#{ãUL*\‘P[ù¬¢â) åôAæ4 ‚Ç·ý´Wðjè·‚Á›h•¤í·6"÷~l`c)}1í qR0ÝÿáÏ?üãûçó‡ŸþÛÿýþõ+ ÛSø~7q¾ûdzÿôÿÎ03 endstream endobj 91 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 52 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-4.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 92 0 R /BBox [0 0 446 304] /Resources << /XObject << /Im1 93 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C# ¶THÎåÒ÷Ì5TpÉç ä`M endstream endobj 93 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-4.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 94 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 95 0 R /F3 96 0 R >> /ExtGState << >> /ColorSpace << /sRGB 97 0 R >> >> /Length 22045 /Filter /FlateDecode >> stream xœµ½M“-9n%¸¿â.3Šv~“KUYkÌd6c6SeÓ‹î^È^¥4%{QêªRiFÿ~çt¿á`„ÇËÌEÆK\:H:Ä |„Ç¿>þüåÿ|üù‘úËhXóKn°Õ—Òy¼lýñ—Ÿÿíñ'<´½lÛ#†*ÿ„¶.ÿèC¿ùý—ÿò×ÿëûÍãë_¿ÈÃÛãü÷¯_ÿôå¿üCÜ[ýý??À¶Í? [|ñS{éõñû×Ç¿ý·×ÿõí§ÿé?>~ÿ¯_þëïÑ€ÕpðýÝQYØÿ·>bÛ^B@ÿð—Ÿþü·Ÿþôõ?­Š[o{z‹ÛãüoâßþÎ)þÝoÿý×Vÿï—ÿþ?Ûã_Âã÷ÿþõK@ÿ÷/9¼´}k}‰ã1^Âx„—T¤åß|){%ã©l{I™eu“>—Õ¦eã%¶7une­¿äúT–_RgYo/µ<•ÅòµÁQ_z~fÌ/M[”QÛâsiyÉÊÂ^Mx*­òaX÷q;ÖÛÒK‹ÂýÛýÜ9–» ZÌí%qŽeonyœµ½låÌYïrö}`♳ßå [¹yb ÛmÞ0^ÆS‡C¼Í»¯”žxç8&ÿÛÑÿxòÛÊÃ×}Õ…˜BzÉáñíñ»Ky>M£SyK2ùf9Ésù^å Oå½¾ä~”“<•ôOõ“<—chrGyÚG=êWòTΞåÇû(àb{)¢kã‡qçÃ{¬­¼¤SÿÓ¼2]çáöõͬ 7gÍ“È|}<‘2jÁ‰ ®]ä%pù=yÃõ$‘?n •\´õTùí¶ž*?sÕx¿­§Ýäã¶Pù™ëݶž*¿ÝÖSåg®Q?ÑÖy'¼ÓÖ^ù™ëý¶Î•Ÿ¹t4m+ÿ޶0Ç.þ™¶®wÛzªüà/é½¶ž*?¸>˜óO•¿>L¹Ù–Îyãú ­§Ê'×!íý¶ž*Ÿ\-ˆ&öa[¶³¨òt³-V>¹>jë©rãJ[zIá¶ž*?ÚÚw’÷Æð©òׇê}·Cí“íÃÖž«?5WDm[7÷\ÿ©½(ºõöPÿÎGÅõ~{¨ò}ÜÞSý'¾ùÅí=Õðí“tßÌ?lo~tÓ½ï¶Çú¾Û{ªÿÄ÷<~®ÿóí™H~6>Ñžñ}ÔÞSýߢ½§ç¼~~ОñåøÒú'Ú³~ßGí=Õïñ=ÿâ×üžQüˆ/±<ÒNQ׫ fÕÜS•"ßÙ}®FeÁµ›„\ ¢É†‘?v…ü<#(î•B«B¯»ZÝ9„ ¥#—'Z (†z;=qÐöDNÜÇ쉃¶'j¤ oO´=Ñ7.{â í‰§¾?½‹>ñ3 ö¸åïµØcLßk²Ç]¡ÿN›=–öÝ6»gßk³Ç}â®lö9©u5¥Sˆ2i°`.OÀ›£ôù QÅâé Òç':&ëñéó{·1}‚ôé Qz8žPúüû~-ß™ïòŽqý¼ÏrçõK×Ï\¾ßŒ_ÁþÏ·cžéù¼J3ºiE§m ý¥œ½¶ÿý‡ÿúÿý¯Ÿ¾þûOxüß?>v«ø‡úö·Ÿþúãÿ|üþïRƒs{@óýÀ÷õM7íÛé­¸~óeo¾Ä>áÜñ süânmÊf<à> /Z(Ýüç½0¼4ñ!íšÝ¸–ñÒ7îƒ{á,/¡rñ¤Ká.dúìÆ> —j7i,ö}^;T²>âëÙWÜ¥Í,йt¨^«Ýµ>q!ïºÜ®œ:÷ëK»¾J‰|Ï$'«B¸Q/ÕnìÐþ.½½jø»€îûÐŒ *î–ÅÜYdßíe\^{ÑÊ>R¯n·2DÅ^^úup÷Í9ñk—ë(È",Ø>6gžì]`çÓ¥pÕùö 6ó~™”ë!*âKíî÷Mòyä+mù:m6™iÒ¿î,,[ƒp†ëòØ?~.ãí:áö6·Œ w6Æ„jû¥p5m*^pŸúã²ÜV Ÿ2\Vèí‘§–¶/Íín+ûjÕ¯cö\F¡óK¦7»9ª;‹#‘#±ï/·¢˜ì,{µÎW*ì|¹Ê̘›33tÚ$ç{ȘˆÖ¸üx-|µ™6"ä½9ÕD’ÞŽËP¯¦Í€ê>6gÝ.l_•o8c’ÅÈ‘ÑLލä!ÞÎy°EÿÞŒÕM²cJ+á:~ûƳÉÞ²Ïã»y·Àv9&I—÷]u!röO|ˆ ¹Á´¼Ù $1v;g¬7èê<ñ6îøÎ>Y¦Øu‚`µÅYÍ3cŸÖå²4×ûPh´Ëî~߼ˌˆ){íߢ•]ñÚW¡|õ« Z.l,®¢ËAãM9»ZQãg‰wÅêþJ…»q¾Û¿]r6Ú&ãîZÚëA/äuŠÅ° ï¯Ýnï©A&ÞJó‰/-¡ð:äkY¤ºf¿»(äC„O,4l9ŠùÝå<”ÅQŠø¹e?rÄM…~…#Xwˆ2•‡æÒ(ýƒBêè¹'»Y¶Vgç ª•;ë—ÑûnX¥ÔÎŽÞ·Ö,°Dw=í*_r©{töÔ•”Ô‡p8|{ÀÈ×O½èEù®N,ޤ–Û­ˆÔÖµînŸ‘ÛçU|×^9Ù›l.Þ.1sWÛ±[hÎ.`óÏ>²E$Ê?Ç|Û;ÔÕÅâÚvmóöÌÈPyö¬·gF5ƒãú™aÇ,-ÈBm¿ãtÅYv©,Äß徆ó¨`3Åžz÷µ÷eÜ ²ÝžªÉ´}OZ©F˜S˜ÄFñÇxÕ¿#¶{rom'*@W·jeÿ„ ×møÍŒ ¬¸ »‰gvÉ­2¨:j倶/š#sUí 9)çoëLfî{†øÚü•­_ö¡Û­Dè$»øÌ>è›ñ¶ÂÚjò·Tný›xa.œC”C²ñ:~»5¢sÀÛ'?hr½W»º¼ ûAí¢p±Ð6(PŸïŠ"™6 ËÄÛ ýrÍ)\IÃ(s4mÛý"«¼{^}€Øò$“LØÒZ8ö4? W‹ëRÿWÀ˜DWŽ&nÑÅñAØv‹5övs ?X­Tqœj÷º¤´+ÈŽ±.R=É6;ÏõQM;³:g˜åâu¼ >m[g%uº]ƒÈ§·‘ºÎj™ ò±»'#d%¥¼RG d"ª½-] ôP™·-ž$nxÌ\d‹ ׂ,3Y™û˜øo¸Ò¯.(1ôUto»hкkŠ•E€ß¡ÊEw5árßV¯²/:±—÷qsæÛ>SË{fü\Ñ[2¶‰û×eÑ­dÍ5~À¿¹?Tœx×ë/_~8Çf(P°!ˆœ¤>8,ólp³ÜÜõÀè€ÅĨÜvöH%Fõv :Sóç:ÔYµî*RÅYIªXg§P¾¥¹ñ\Ä5¹Š.€äé~z¢Ò»+¥‚Ô·ã¹ÑÆòTÊÕº°–{sŽŒÞ™5°«›zZóžÖ½èÂÖ`cÕ~““†&õÕÌ“Áôjvgp;?hüe\žQC^{räæ÷ˆ²‰ÓeçȰ<è Ø+Cz²••ôÛç±øÍýmÑÎÚ¼ã*±D77GYÞgöîÙX»q!C}xƒ“¿h8µ®’c­': ¯‹p%F#5áÍoíG>‹§Iî;ÉÛ±v©ÙãtÙqUp}UU¤óBÆŠõHÙsuÜA®·¥E]yÅ!9'yòub¦îª2ceÇÂZ/Áº¹›Ræv{Ý×›f¡ãýº§¬º0èWp÷‹ª.«êtû…ž"Þ]â‚åìqŒ\³c»Ó“Õ‚P¥£,LßÂÎ7çÍèríºïœ5Ò#Ñíqí1ÉÇ=’éèÎ^÷Ëm­›ñÚ·#+>ÄIsÿk'JòêÌ)DݧÕTØ5W|³(Ýôv_êw§zݲ#ÃdkîüfŽ"!:ï†åáíÛÜÉ×£­¥E½ÏM1Eº/#6ˆyb:–S˜x~÷‰ã¨Ll÷ììõ.®nÏy±Q†5gÀ]؆Ŕ_WÔz/Ö¡ë஦êfº‡ã‹³³¯tÿĸêEÍþ ƒqúø¯sôGÑÒ³Vq·eU˜è†vgæå^œz=~Ç׉·òÇvZN›kM6FÙe×77Økl–T›¹²¼p³FÝ]Uìñ¾„þ àZц_ ËqÞEÂ5¹±òÀ&Ʋ4×b”œ…ûê #Ó¯â~-»áôÊnÈMŸŽ”»*ffü›¸óÜ-µÄ•Ô—u‘!d=7Re@côlE•ª' 1Ñpr“ ñÕ+½°Á»Æ ­7; ÷t€ñÜ}¸qœÃlBGs¾¿£½äíÓo¦þÏû“¼Ï#µëìQg‹xb>ÊBwÈõkí¡ˆz¥Á=¨œp÷½:ÌŒæžÍÙ!PüÄ>©Á+ÇÓoÄŸÊGì4]Ã"Œ½è4tOî5èÂ3[6ÜÅÞ¿™á[D´â-šÁ•ä{›ëÌqhËNÍyìøKçåÙnëy""²{žìÕwŒ uxþÖWòXôFzïž*àšÔ!Ü¡³Š›ºòWYè™lv*}Û/6x:š÷««¦à9ofΪâ#©#5»7¥Œ÷Ú‹ÎË=±/²³JÖ_;Qup¤Â®±÷²Ð]Øx0 Výí1ÕN“{Àعǻ~KÑ6úâg¥eùY§ªg9­–ÝHâÀ»íFŠŒÔ¬÷ Qñ,êº{1Ýž‚—ìÙßë-‡éÆè¯«OôípÆo²“Òå Íö¸þ%žôÈJ[”]UZUå@þÂ} N©M“3V¥£ÒCi½”­¼ñ,]×_áûDYFß°iZàAP:襷d4FjQZCÿ›=_YÞ­Ü®'5£Õ·hí5¾/åa¡|—ÓÐj4û3ÈÏ”¼LZÓ9nV®A[:¿›Å£„ú†¶ç5ò#f£5+¢ñëÕŸdíé ÕŒ¦¬ëg²¿Ãž3ÔMiµ{“Ò9Åý· *µÉæÛàøf›oƒ7Ì2Ò“RUw¸õ§èóV_ÑA«¯êa„ñWQ‡¼ ÕNŠö|gy´òÁö£µ§·òš><ʃJ¿ õÔoǽ7ˆ%Òz‰>g£yDHýÈŽ³³Ê¡Y6þÄúr7ZïðlF³>îßvXv¢u¼‹Õ¯ã]¬¾Ì÷¯V_e{Õž¯ìµçk~¦ŸoÑh¾O3þÆöš½Oçx6¿>“ ܤÕε÷ë¯nã?f¸‘Òú|sé@y‘u¾Ÿè`4ûÏýÅÂû³Îo9¾™NÒêÚÞ’ÑzÛ¼*hÇQ¿¨ÁRVk/õg:3¤»uÍ÷ÉÜO«êß5[ø›Ês&fòèªtàøè|Î6¾´·ªFuU›¿™ò š¼Îóêà0šíW럎_5þNºY{xC“¿Y»†CÖ­§s*Ï‹]ÉéFgŽ/õÏ.lOçs¡<:Óù™®/Ï…öZµùY¸7Õäm#]•Æx5›<:)]ô†B6:¿¡µ¦óµr<›É[Õ·›Íßj‰y¢õG£h"Ûov÷9v¥5ŒPç£æŠiªÏ Íûv´ÿ$X…ýOÆßÈO{@¥5Nå£ú/š~¦úF×õÝT_èªoµÍΠ©oµmÞ-Gûæd뺴`Ni®¿¦gœ]ß§é~r¦¾K}]ÂGÉOýHî:éõ÷®tbûÔgÚLjÂ÷k‘ß«ëziÑ¢¸>ä”ü”ï-q¿í:ß›Þ7YÓõ2TÞ Í(KÊ·Vh¿ ­Xº:Ê£Öx¤:XSÌ¥²ýÚ 3“–-KxØSÂÌ·OœhËÌßè˜OôÌÝ#ö㉃Ö'ò¦C­mOšt󉃶'$󉃶'žÞîém™”šIïù’[¾ÜNQ™zÄ$?˜Ç}æxÖÎù î4Þ4ÂÁmó°ÁñjóRR-¸Äå‰À –ô_œžè³OÚ¤ŸžÀÈé Ðç'(%'TjOhÏæ§ž~˜#1¥a8@7·Ë¶Û‰(}àT0/ñí@Z&ʬ'¼–YRé™yÒ^ç ý&¥äçÜ~ÕL”©å_8eJ<Ï;cÿã¾ê?üÇû¯~úËû;ìõþËOûKüõøÛ?}›Õߎ7ãGI*ßÎKûhǼ'syœÿ^o*0 åÒ¾±½îB'UˆtFÈ<¶$:m‘MЈ…[ÞùDhhdyŸâ­’¿ƒî²#!£¦ì(y_Ðéß¡Aæ TÕàr(FÃc•C·3yhl9ª…ØèÁÈ1›Æ@Ž]\ãrà 7ïsE3™ÁbɺÄÝ ¿¿³‰­"ë­ˆl­°¡tD„†Ž¢#‚÷~ŒˆðÃÇ©#"tìLjDîFsDÐÞiD"çö1"=pO¶éAùuDz¤ k#²K0~‘n#À‘­½žG„¯5GÄÒ{ù0Ù©0øÀ¦å×É^Ÿ‘9P²9Dê°“úЧ‹9cP^©š+ï¤öºùtµ@6I×`¼ð̺Añim[˵_Ê{î÷×/¿‘çe™¦X&§_`Ѥ†ƒFè.`‹ÚÛå(G¸èäU uóiýÖõäÅ5õY7(>­mk¹öKyÏýÖw‘™ÁÃü] ~}þe7£SLÉÃNôyïÊz×i¤[¹fGVÞIíuóiý…4^,ïY7(>,ʵ_Ê{î·½Ke|0Î!^ŸÒ;¦¨ØÿÙí"[ª¤Øž.-g<«ñN*èW´_wò"ˆkÖ ŠOkÛZ®ýRÞs¿õ]†Æútѹ_Ï¿ ž‰§0ˆÝÙç ^PhO¼Âå(ϦºƒW)ÔmOë/û,W^½jd"ŒŸŽ4„´|ö¼ç~Û»ÐÑÜ`ß¾žAˆtÞxp+S7=¦ˆ%íå“V)2•W)ÔmOë/;Óä…“yÖ ŠOkÛøåÔÓßô›ï’¹jˆñëù\ÊjhPB~˜x'Åöh”[9líÉ«êæÓú &Èä-"³gÝ ¾jOF?ʵ_Ê{î·½ > VTÓwÑ_ãD6# ôéÛö&Rlo0…˦šñ5gÍüîÉ çݬëÖ¶µ\û¥¼ç~ë»&ìf£;ýÒ¨Áõ¹Û¶­’bï"ókyâµåÔ¦³Æ~‰ÒÄä âß™uƒ²7GÛZ®ýRÞs¿í]hø3æõü ÒÕ u®ìŸ{ª Ø^æÌÐòÂËTÊ[ìlÑ‘¶_š(Q“N¥Y7¨ùæã(–f¼ç~Û»d ÊP96·^Z·Céð˜ (¶§IB´\3s)o³Ô#*ÇN¿laòvœÓMU ”½¹Ž#ÊgOÁ{î·½‹:´"àÏ¿ Ò +üè@ÊÕ©œfÛ›svà$åQs‘רh»ßüÇý“Á³nP¬[ÛÖrí—òžû­ï²×®‡CßÅ~’ TKæœ;)ÖIçXŒ†r^ã7Þhqª¶š_ðæÑþðæÁŽAKšo®î:2ÚSµ£ßö.Ñ•iÓwÑ_Y8ÇyϼI}j€b{LÌdåê¦U^¥P·=­nܽۓ&ĬŸÖ¶µ<š‹¼ç~Û»Ð)ºË=ÕÇN¿È·ŒÝ0+w}ËÔwRlÉqµ<ñˆTyJõ±ù ’íL^œ̺Ó1#»%“@¹öKyÏýÖwItpw¼žAžÇœ`å%û•™yîg©ó¾‚–»Õx•BÝö4~A”Ñä…RùlÖðim[˵_Ê{î·¾‹æ…’`¬Ìw±_.$T×aû,U³‰Ú+Ùò˜¡\gòKu`ZÂñ˾¨—ˆV7©¯ÚÍè†òÙSðžû-ïâ¥^¥ÝvÊS9ç/¸Sz G|ç%òÈ ÔW<,hå<"2ÞlœµëÓú \úÆÛùñ´nR_µ'£åÚ/å=÷›ßPH¾ë®¡¼>ÿ¢‘ªµkÜd/F¡=~®YÎÄ’Æ;©Põiý%òÃ+oà‹Ö ŠOkÛaƘÆÉûÔo³Aœ¡ nµ×ç_öK,CÑ÷ı`CB eV¥¶jyGŒ£ñÔfVžþ`M/â)gݠ̾EÛZ®ýRÞs¿»M†$üëó/°#‰-Ñ*mÌŽÝ£ÕÃe •óXÈx'e²ý’iG*o¢©u§ÃÕ¶µ\û¥¼ç~›NkTbÍ |äùÜÚ{$3Ù½¬Î GÊJ™—š–Edò*…ºíéFoA//εgÝiêRÖ¶–k¿”÷ÜïÃ>ˆsx=ÿ‚Û¦Bd2_4öö¼»l xÒòÀð`å5êØ]ìœâOÞH›O뎇M¨mk¹öKyÏý6ÝIÿ:b_Ï¿ êEt×D½©†2½w„£œÚ¡ñ*…ºM‡U‰/ãmHju“2Û#å£<PxÏý¶wÑ@<¬¯×ó/šì°œ¢ÉŠÆ”2ýª§£\ÃlÈkÔ\Íö ÃÔ·#öÜê&e:n¬³<ÌwXˆç~›¾Ã ß޳É×ó/¸‘'T¥W(FèW9eÚ˜êC‘ÚX/o1 ÞÝMÁ›ÓgR;êNÓbµ¶µ|ö¼ç~›¾S©s@<¾ž~‘ïʤtMfs:u»…‚ò>ÃÇǤX·=­¿ˆŸCy;—­nR¦ï(" ÊgOÁ{î·¼Ëéxwq®Ës=Æù5u<„aWLy¦sÅ»º†ì\Å£²øËOþÛOúúŸWówÞöôoÑÄð÷ÀÆçLýPx¡*ðá>åö¦ó¥~Q(!1o áºBacÂÄsa„ ¥ ö¦4QÒPÊ ˆ·¥9³4ìÒYògž‹‘Š¥•O¥ådiB|û›Ú´Ï,ð3ç 3j†4> ûØé|â¼ú(1ÉíÌyô1„ú¦¿÷ACêoz|€>þ¼ ]P©JJ$ÈÐ`‰çò|šÀ§òŠÉ8ËIžÊ%£d9ÊIžËéýžå Oå½²\ËIžÊ@f9Ésùxêÿñ~J•ˆD;yx÷{¿ÇZ¡X}òÓ¼É9϶ïc¿]ë~BN½>žÈ5ìî‚ëˆß7\ORðã¶PùÁõA[O•ŸÛRxy¿­§ÊÏm¥p«-ÀËüf[ÀE7®Úzª|r1,û˜äså×ö>(ýSå¯Ý{n¶ÅÊ®Úzª|rÒÁoë©ò£­)“ÞmË$‘îšwÛRù§\µõTùä×á{`ôO•ŸÛêïA™?UþúÐýþ~[¢­×Gm=U~´…äìë¶ž*?Ú‚Q÷q[¨üõašÊÝÆhêN¶Z{®þ‰Oc¹üæžë?ñ}0óŸëßùTպݞNþÉ÷Q{Oõ|ÉáçúŸøTνߞ‰âgeñãöLÔøÞoï©þß”¬‹öžê÷úùA{*\CFþ´Ï´Ç~ßGí=Õïñ=ÿâ×üøä|6:$Í„®ÄK­w{—ë£QYrén‰~ߎýyʲäŠÄî\±‹ˆêl´täòÄA«ÂS`ç퉃¶'J¦IfO´=Ñ*=qÐöÄSÏžzúËÄ#1Ñ÷_1Žïµ¾Éà;Í/Då§ù…Ê…ùeó®&nË#¾Áu|B²?=[éóŒ<žÐhÁÓwb'HŸŸà­Òã ½ez<¡=›OœzzÙ^–ùØÖŸý]ކžþxï2¤¯ñ¿€Nö/ ÜnËÒè¸.Ïqx¦çó*Ož¼\¿†Ï Y’ÏN¯ŸÈ3pV @»n´{¢ò¦—ë£hå7_æñæK<>Œ2Eª‰Š¯ïåÇ…ñÐ7®&`(ú¶@‡‘dM=y8 © >9 rZàÍÍ$‰cöúº‹‚#Y2:äd<­„qìÙÍHKqv;¡^×£›É6›”ðòRÓ†îé~ªNæ —nÞGfCXeèTÑ*oRFâ]‰u¾ ¾Æt¼rÓÊÅå)쵓tlÃù±(Îø ¾šôÄá^už€ØÝ ]u]B+ÞTÍtkw/õ'n²פ^HÖÀéá±#ôSÆØIË¿3inÎþÂ_û'RàeÜT ̓qZ-|…õä é­FžÙ뇗LsÑŠÜ è˜“é¹ šûÕm0¶Š¤m.¢6VWêmÈ‚WYùNÚðLÇzórß!GN§“:o-t…)1Xó0è>X-Ìn>6£$#iŠ õu¯—’ÎÑð $÷À¥î¥E¥¼Éæ,ˆ8Ýn{o0V´ƒ¥'¤H6ùu8Ø«!ž3¤ë]iÃì=¡wÈ`µ~™ø°'¹öª•a{³oŸ™Z¸ûxÉ>ÏbŸÄu'Yãppæ¨2üö2¸DÐmÅùõ>$ ù{s¤ëJ °úæåÒ[´’Wêæôz5ËË.ë×™EµSf¸èŽ¢Oñ³ÜHH™‹ký„ðFØ.Ô„»k) „8À A¡x¹ÊW{*¡š.ÜKÿn§PÍ*«“K}Ñ…F4nÕ 2ç@Ó»½ETjÞÁT¾­»pN tæ¦ Õ¸'WÐg;•+NaÂþæ¢ÒCí VîéÖªbøD~P¸šCó°8ך}õ@URåf¿¿KU\”ÃS£×ß ûov¾õüƒÝT2·÷Ýî︈×Ä”uÌ­ ]‚—¤‘.Q ÷×GaØî¢–~È̽&n–ÅÆüÅ8_øç æ%\/¦xzˆ™çíü¯Ä¨q—ÉzÛ¬jp¸X²šý1!rN&ˆ—]5)×H,Á´Á+º¼¶˜=8èl«×¦‹¾#+Üí©»Òý u£NW]ìF9_ïo5yÏ0Œ·ÑE8«‡g¿–L™6Ôži-™šŠr7ù>V³üµñ•²N•Éيّ OŒœköo@`r;ºê}«×&Š»4×¶»”>îkÞ©"?§&˜z=¸ã§áÁ…Z@˜žˆ"ÇH¬Üa{sqÞxŠ*z†kGvÈùL8ª¶ú ƒJæ5©øbÀÄÇÇó÷«–°žó¢X´êÂfÎŒêÀ+¯ÄCÚp¶•6͈©V¼Ï’4ãK&)Äàú†øf_Û1?Åeä=ç͵óµ3Q {óöGæT]u™É0Ã\ §nƒá*ûrKjKî~mÃöÛT‘á B&žzwÁ)òHÁêøÚ6z¤‚;q‘HJ¦€È©È&¤)ÌX¦¼g12¸ÄWG`®Þë4^I—é¹´? î¾+Yé ׂŒ¦x%ÛðÐvx=H&†T^ˆãÝ]H®LèÅæc®#Szðña²µÊ¢ó¦r¶®^eÐÅãÁøjRÙ•Y¨2¸¦zÜÛŠãJX}Ad0‡öø Øù¡»²¦à†"v vTp<¾È¥¶Ñaá|^þÐÜ´ü⫉Á­˜ò®ãwpÛvÜ{•Q³>kêfLz2• @=y*yÁýÙ•¥Éènßä*ÜË{p¿½júeasÔ²”ãÙÄÉmHšL×}KÎ!ÌzÖh@ªófy£=ëiÝ‹.ìû´l0ÅCè]íÓBº…1•2{6~&^óðáýK<»ïÑżE‚v÷ׯâÆ}58G)+¡Ú©1¸`O9Ð;ß\3N _úåA¹é£á@Ð=®BâíA5ÑŸª”¸žšH­+VCMs»E÷è3R{8]këBð}X¼bzÉõƒ®gc$‹s— ãÒƒcy`j¬º˜²_¦ª¬Épþ…ŒâŽÈœM)R®»µvv¸ãw@BÊ™~ž§™Äq¸ö‰cÃBmöúuVCM„¥V¼ClÁÃä×¾ɬº@§\ûÆjá麿_HZrZ?žìîÜÀÒ'œSÝ)ÉU¾i€¹NŒuçűÝ=x·ÓÉ›§®h¡g×­ûGgŒ8¸bE¨516Ü“Á-¬ÔÆÌ€³ö lʳ w—[Q ™ëBcÊ@‚€uëŒkßÛ]©JWo–@,yJ‘\á `ºztሠq ²g£ÓÛ‘=uÐ2+“aÃW¹ía/<øèÞtYÍMnY½,—#_Û7+´ZÜøD5:$œÝc3NOCç)x¯î”JŒË ðjBŽè…þùîšæ­M™ã˜_{s4ôÅwØõ§@q]3ëcBq"õz¿I¥Ïè•ÛGž¥š 츬k§:åN…ÃëìÛ™èàÍÇ3ŒA‰Þ¡WbÄQË®Žª*ˆ,½­œ'ÎTÈÔ|25ªÞ!œ)À}Àþø‰h ˆòáNr¤ïA4¡,M›Ð±&™Õy­½@iûÌ›!oOòε½Ù“Íïrßw§¾rõ1¯—ÞL9w¾oàÆÂÕ>ôž~–©ïµx?`!\vj>ºW¼68ùé¾ðçÕštÏß™ ÔµÍÄÐŽæv«<ö$²”¯â Ò ¾!­z¯Ñö¤ãžõ•í¶š' ÔúÌQnæÉ½ïÀ«@‰]Éã`·h²ëü†¯yxðº6]|lt «Á¬rŒ1ÿÈ$ ö+FæD=Å}3I£Á…åH­D§Ü¾É-"ÁÛâµ·ø\ÜúmˆÃÞIV¡/×ÓVã× ,Ô|?*'FMzÁMˆÌZú-3÷ÐÅí \÷³Ôª¿g9­–R¶&W·ãZïÞx°uÅ×^µR)˼¥µë9ÒèyPˆïž¯_TQí3UÇá•cÚmô—5G'\ï°+¾÷fãvyk™& ß倻<èª<÷s%è‚ëãê5X-Ñfaƒ·j2]änäÃjüx8I lG*v Ðp^©ò&`ù„ÏSºæúÄR§éän…{OB]¬Y %òJ ýè’µa%ݽÆÃHáNÖ­.¤bÁüWEo-%êòø;M‡D®÷ÀT We’õ+ð^·¤¹ˆÎßö‚ñüAÐä{ƒ® ñø8‡vo"4ïã§F;ÒU7Œêè_»y½y.›¼^q/’Áô™þv¥SæTÌ ¹,÷ô#¥¯˜%+ט Bš%ºw›AV& ¯­õé°¢c©ò£…¸O'U!×L3­ i—x<ÓªBÜ&Þãx”ÍèöLk¸}´çU™Vk]ù tÎÒ0ñ¤ÖàU„¬©[ ).B`»‘[ùÐðÖ7ì(!ÿÒàI©Aþí4â÷ âOh5 íùD¥†lišŽÁÊõ !øŽŠÏ™S³„^FNMÐUim¯Øó‘ír.oÖ!æ²¶ùZinGÕž/|B>›¿éL³}B>«ŠÎ$°Jëöfõ5¾_3þ¦åø>9ØûbTh·â6sBTôè Bh3þ¬1›ÆùÓu~ežµ®BÓ"žì@™´ñëE BnæÈH¶®ó-Sûk]×OæEÔf™§î4IW MB\æHŸuWHVIÎÁþs¾e*¸­+DeNv2¯ãs¥#Û'dj¦цοœØŸ¡ë3ó²s ¡›3åÁ°ù–9¿N´s{>Ó…Ìõ”3çÇPÈÏœÍëV¿ipSTZïZv+,ï,/ ÙDØ“ÒtPÚî5Ùó&"!……¦Ó‰Y/€o¶¾ u›BbgFqˆ?:)¢ù§•&?!U:²}]Ÿ•>›BDf`½‚.J'ÖOù”+ÍþÍÖ¯†n6~•WÓ6[_z1{³õD#Gí@ëíBLçf÷pt~9´ú&›Ò‰ï3Œ?±þaíi‡ñg¶7Œ¿Ðîãþ›…néúäuéìû6s${^5Býž‘ÕÁÖ¯Þ’¶~g¤N´çc0;{AO [éú†f!M³žk[Ý‚‘'­ÑæÙž×ãlýQ‹Rå…FGûÞݼ…“nä/ö~ïW¬¾NšºyXû*†·~¯a‘8ú}Æ)séNŸ!À3oO ]¦]Ëý«hÓ•í%ãÇxžèFšë³læƒËÖ¿>ïÎ+Íö²ñw^rËö~¤My(võŒv%ØׯÐ|î·…Öoºº;¼HëøQ?Ñ; é$­Ç\ÿ%Ø%¼fõŽg³ú ù›Õ§ã׬>?ÊÑãIë'?!½%x›×-©ïM»d›å<öâ|*ŸŸ²·ÐAғʇÖ\”%r½&•ÿ%r<’Í¿8í^ëOnÏ´ºš£õGãš)ÿÅ'Ëöt¾q?îÉæC²ð%ýþ‰ò3é~ïÐP_Ê'éªtÒ(v«/ë=òht5;tåø4+×#ènüƒïÓíyTéÖ¾:J¹”lI¸z yUŽtP÷JV:r|¨”Ìï“m~d^zÎöýgŠŽ`åU=ªÑhÚá„À–«Rô(«¿éóÖßN×$÷÷BÓõLºo¢µ?ôë+0ÚzÖýDhöWåQá|Îjˆ;#¼¡çÍ¥Ù>õ q ³ýdíeö—úAáe­žUŸ/ªÿd›oÅnXOº’&»%¸É6\´õ_ÇGå‘Þ"Î&o¦kWåMµþë|âe¼žÕ,Õ¾o³ç“†¥³ÆÖpd4ëÓùÈûJ=Û|¤«EhkOß¿[«>?ŒŽohò{_¯aýÓÓ¥aýÓù5¬:~ÃÚïá Í÷öþCSM°~½ Vl¾;4y¸¿–Æý±Øü¾ÒêÖýõ ‡Òz%&Zý•åÑøÛÆß²¥óSoÍLZõ©¢úœÊóýtÿdZÍ^lþv~ÏbóñJ½AnÏÖ¯ò¯[u¾vî×EíÕÒíªä¤;ÛWy8¸þªtz¦“–¥±?µ?Êà|+6U_*:ëfõñû[¨UQ}Jòajp_PºÐÏ´Y¹:ˆ¸Ÿ™“¯ªüÛé¶=ÓH@ý·Êߪ߻†yG6)­÷óQ_y—©WµÇ*ýÖÝü•ö[oÖ^¡¾ÑTŸª…ò·©~$4ù³•w½ÙÖç‡ÑíLW;­ç÷¨Íθ©¯ÖÆïaö}ÕxȦûËN:E¹^äs-èxê|êê?ªŒÆ#ìË7Þ€Òø ¦tÔ‹ïVž4wCTò£«>ÞTßí:ßÚFùØuÿm뱫®½ÀÜŠ—ù`÷™G<.çÔ—Ÿà°ôí‰;Ü6+”¸×9/BÃNPö§'ho>?!ùÆé Òç'˜rìx‚ôÓÈa|zôù öìxâèé °÷aý#s$þÝn[ÞNDiìÔ„ðߤe¢Ttö™YÒÐÚ-󤡹¿¡ßd¢LZ¿b&ÊDØñ_0eÚצ8dÄNÝXãßÿ¸OâÇÿñãcWA~øé/?îï°×û/?í/ñ×?þáoÿômVO8ÞŒ%©|;/í£óRœjåqþ{¼Š6®/@ž¼QèaJ_>-l‘8ƌԀ}Y4Š¡L"XdPžw0†Zx‚ ,ǨôHŠ|¡< >¨ÇaP¤*ÙÁ†z +T#d±c ú“>Ïú#È`óÍÖ"<ÖYïæüßÛÿÝ‘ Wä1"ûÖ=ßF¤fê,6"²5÷ÓˆT˜LjÔBÈF„!æÇˆÔb#Ä<º~‘iCÚˆÔÁ=ÞFDÀaòiDZÔúuDö­>)?HKÔItD,Áö—“úƒƒ¦Çi¢B„Û/P·Ö^>…€Yë°“"ì}¡2©å¼a¼Õb ÀÜ~AlóäEN’Yw1¸ËÙ¶–'‹ ï¹ßgȨ|q)D¸ý‚d®©©#i lÊ2Ø{=G¹º‰•·M'U˜Oë/!¼P=fÝ øt99eO=ï¹ßö. ^çí]†¹Åâ0EuÂõü°éNŠƒšñ@Ë#Uvå–w'‡ù´† ×4yü°V7)rÌm–[¿ÈûÔoƒf,fÐÙw±_*ìաРȾT£ >QgÊU=W^¥&tû陑ÆKhv«{B·Ï¶µ|ö¼ç~ =oâwdœ|=ÿ/¼ÀÚ'Š2i3¤{Ïp9+ÏÜ”W)Ôͧ³™v2ÒÆ[Å~˜uƒâÓÑÖʃ™yà=÷ÛÞ¥X¦›¬ðŸö ¤M"Â0¦Èž"’Û›á(§m¼J¡n{º1¨¡†ƒ¾ÀY7(>­mky± Oà=÷ÛÞeÐé_Íëù—˜ÍR#m¨G½tê«lªQ…òh&¬À…º S]=¼ ay\h´¯8Ìá‘Ñ~ŽÚ¹ß™™hãàõü Áß·lz×­‰{W,7ÊÕ½¥¼ÕîÑw(<~Jå•ÃØ2ë&e`¡)å³§à=÷ÛÞEaQlè×ç_:A7“^¼mÛVI±½n)V²zƃwR›õnØÕÆX^ÜÀžuƒ2øO=xD¹öKyÏý¶wѼ£Ìqþe‚“¦ùe§’Tl½È/ºÃ¡œÙJŒW)Ôm€ž…{W /ÁIÃ<ò ¯mOàÓ¶MÞ§~ü§âã&Üëù—*Í ÕNZ³Q{ŸÓQ®·F•W)Ôͧõ¸0'/öÙY÷܇gÛZ®ýRÞs¿í]*œÛÿzþ.hQ¾ôÎhÌ©œ‚2Ø{Ë–>ªzx‡ŽÌ¯8ÙòÁ!)¬îx|Em[ËgOÁ{î·½ Ì`³Ã ‘¾Y¸æFØ{͈dr,2˜ÄÊ£…6€7H‚É1ûNã•«Ý}ÖMÊ _õžfì°Ø<Ìæs¿ –•·ÞúòúüK ÄKD½iÄ)k"C{­þùÉ;©ùæúË&êŠñöAˆ{ÍX=ˆ{¶måÚ/å=÷ÛÞ¥ZPVÔõb¿4€,ïTeÐTÛS}5aïãQÞmuW©:Þí„ÌM^X̺A}ÕžÔr”k¿”÷Üoƒ˜åV+SŽÙ/Ø»º>Í}}šsßÏ–=DË3½(¯Re®û{÷äž~2kLŽYÛZ®ýRÞs¿õ]ì>8b _ŸÙ5…µ×Ãx3›Hö^ïÀhy±ÐðNjÓ¯h¿ ´Çx%©ÍºI}Õžôp”k¿”÷Üoy?(õú+í¶ÈÓ; º|=ÿ·~Ô| r£8ƒR½Î â;÷7+çNh¼Jƒ¢ž¿ Òjòâ€vÖ ŠOkÛZ®ýRÞs¿Uwˉ8Íæãü¥Ë ¥œ-«ø>œB© ÚUãÏÅ¢˜Q®Ç…Ê«T³ù8!лñè=OtT}:Ûaʵ_Ê{î·Ù:›ë©Ì;ý"½ë›]—ɶU›Ú–Yb¹å€ñ™¼“ÚÌ2Ò_šì\“W!ìµîÄýf¦u;ú¥¼ç~Û»t+FƒÕž¿$q˜ ì½lTˆÚ46»ûÍ>؈ۥå„ÜP^£¢ÁjŸ~ÙÂÁ ˜âYw0XíÙ6Ëž ïS¿[Gd$Ï._Ï¿àXFì Ša±GD_!ÅÞ1HÌÊ™9Àx•j¶¯Î_ªè©“‡³îjºÔl[˵_Ê{î·é¡šV¯ç_§W¬“È€Icß7£ÔWµ&4@2ÑšÐpVðfÓëFž¿izåàÅú¬”YF¦E†sOÁ{î÷¡SwJÅš§NÝ)E"‡mêøzoÚŒ2-yëGyäQ®òF ̬y>Ýh½ÈN©¼ 78¬nR¦Skî‚f¿”÷©ß¦»ü¡Âhz}þel DÖT\¢ýån”銘ÓZÎŒåÆ;©æÓøÙä… 6ëNæy›mk¹öKyÏý6}‡Y8^í6û§"B jkuÅššåv”#vjò*…ºùtš7vÚäí¶ºI™:ÒQ®ù‰•÷ÜoÓw˜ó` `ñõü n„‹^!:‡dYß ÈÎLÊtñÏY93Û¯R¨Û´#ýElbãE0î¬{›:®µ­å³§à=÷[Þå@gÎýcÝÓ̯q¢Ó˜ƒžç\qÀn ®Éj÷.ÁÚþá/?ýùo?ýéë^a¨×/zz…·8bx…{0c‹st­`. Y¹ø‹€ËgDß= Ŭ/}§"HU »\ qàn[ ¦æ©;)Š:nœŠö%”´ÆHˆ3BgPèî9fax©O…ˆ aYDØÜS?7}» 35ø¯'a?sÂ1 8;_vOT=Æ —ÏÁxG²#Äþ`¼"¶øÜä}IŸO¬·1$ƒ¤¯:÷÷0üyX‚ü¬¯º n;02ã©á¤N¥~r+u”Vdè³RR§ÒAl'#\y>hç\óÝvÎ5ŸÚ)ï!D?·sÞën´SN<´s®ùn;çšOí¼;nÏíœ7èí`Ü”çƒvÎ5ŸÚ©ïáUŸk¾öíƒv0G§Vq§ëÛIy§SÍ“'!,~ÝΩæÉóÁ<8×üúPUè^;:”çƒvÎ5ϱùíœkžíd„|ÐŽíwTßn¶ƒšç£vÎ5x¶Þ›×çšgß6\µù ÖüúP•ó^C¬z2}ÔÒSÝGSÝÖßÔSå“ëÐNÞo«s驲|³-S„LÅþ¨­så²Å¾ÓÖ¹òƒëƒYþTùÎ¥ŠþͶt¢×Gm+?¸>­O•;\ï·¥¢åÉHù¸­×¢­ócWø`nø\7ÛÒ- däøúl[ÊõQ[çÊ®§ÜZ?ƒñ]q³kîï¤>Ò |žwÇÂå™ûá Æü]7Ëϳ­â†S=¶ðúˆ·pIJ/Þ–OR£ÍcÄ9Æ,Ÿ¤•gømgù$­¼âšâ,Ÿ¤•w¸Ðfù$­üÜásÿ™hx‰[þ>£?ÆüV?2-|—Ù;KßgöGæ%ù³?޼2ûuþÜÉ{µé<ê\oËá!"y*¯ ¥´r’§òh„k9ÉsùP‰­åÃÖ²–óÎ,×+9G9;<Ëþßp1âz«ÜÝ-ëùóë®&mq= ÞcåÕÝçù$Q^¿$9 ±åõÍÈѬo¯ÿLÚÃ*¢èÚe»¿‚›7†.ÇÓÏû³ãöåXܾ€yrÇ·$ïMÇîG¡ùÏßãñüTË-¸´ÉŒvÀ¢+rZµê!WÈm½ñ1')û/à$“²à€âáÆó¾Ø’`RѶu/ÅqÅ•ÚV½¼u þ&¹ð%9Ÿ`§/-?#t)ˆvx'n%)»ï‘j®$ÂûD:ùý‰¬+.KDã'Rª…&v¹“æ½"s@dC@^¸|jtÜì7æSbÜ„µäbáFzë^.IဿÕɸ\±?5?~éæ·ÃêÒ/qÀqÚ¸Ÿ•» JëNÒõÚÞuÁæ}‹Õxãru÷RK¯Æéw(/ïËFd‰{í#¹Ck:}΄¤ƒº›Œ¸"ˆh|.l`òmœt¥ ™Çy§]ÊørAxªœ+:rïÝu̼¸~ió9;ëp5†Ðp[»Ÿ{”7q™Ê‘åcè€èU¤’Ôv³oßWn–ß_éñ¤ '‡(æBí÷!¤$I/NVäUûXû toø­ÕûÐΙZuÓžãV´$¡sRI=3òö=\…éÅnB&ÃÖœ<÷Ⱥƒ9|ER]ï-™ëò6noè…Ê{cŠ$f²—ß^ûUõZFRçGù¦Ž”©”gõS@š[‚ÍpÍwöÖŽõvW.o¸ýR𡏠ÙU‹·«­d6쟅þ‚ìÝr'ên¾V&·{y<¹ q]ÑÝeÖßßÏ[¼G^ð(²ßÑ€MÜŠ—-¶"ÝŽ$ÝqP®xFÛ=x¬Š+Ž¢K:z&´ŠÖ½ìæé~Ú K1åGóp³WãïIkŸ@êñá§&.ð¾’nÏ…†½VnoÜ‹é$²ÿvZé&kZ´±ÛïXa•Gjc5§aóø@ ‘–êbsDHÏÛøÝéãxlØ'åÊ¥ \M;êªKcE.äKäõÔVdÈò-R0å…)¯ÝU¾þN ’ä¶î^‘a©i²"mœ¿×Ä˶ÍE×ÚÄ]¼°ãºêr×,ÙŠëÙ>“®{`&G独ç~,+9Ü ¿‚—ž™edvÞ– Ý¢‹îæ Låú< .5/MôzîïߦonzhdÏuí#Ít؆‹ƒì#Íü.È`ܪWg…Ö&òí1EþO™ßwõ¼‚˜²Ï`A0ÇSLßÓ»²¹þ•!Á÷¡ìN-»öRò¸¨¸±´ Ç{#τǎ<К<)R›ȼ'I„šñéîü–6’‹ŽKŠ=8ý^íÜá=|µ,ò,¹ËQ} >èUé¾ÖŒ• [vTtÛƒîΤþÔ£'#Eó/«¾ ¬»e]™³0 £†¬Œ£¸>dìZ´ŒPWoE&4¬ÔìØìöîÞj']5 ìnX™ž¯²Ã‹1Ü„þÀ½hÙ±™e½ìú½¯CŠòðº®×ò‰Zg¸íËÁ}Î…¿*ê:wúÍ̸¼›ç¼S‡ÿÂù.6eÿuÆ!».ܯè Z¦›‘¸¡EO‡©¸¸á¿£c/9ߥ,ô÷}Žˆ/´º{2‚¶è ®¾®Ÿ¶äX&kßxì‚‹ƒÑ뛇?Wp3KdÌõ[7džõqë î, à5X̃*eLŽí˃¾y µâÝNè`¥Ó+ w]y—¡}ú¨Û²>}û/ˆßß·‡*t~ÙÏ\›2Ñïì´G¹åÊeÉ¢}p5G¸Jó}x(µf6fé‡]ýxÑþ<íâY+¹‚«•­ºg0H÷î¢S"Ã&äÊufÑ·Œ{Ûms¼uØ!± ›ˆó!ɘzW?.H#kÛi ÝDÆ»s¶„…\+ÈãïoÜkÝ3Y?rÔ Ãm‘éŽîƳ1o¯Ç7põ»Ò5AÞ÷í"ãfëμX´_/Ö>½<Ô×ãxÎ  Dä.»ëjeqVTqzÙª‹­‡Kh¾ì¬UõhE®Âê]Ø·@>¨Ì¯ÿV~.¤e­¯õ]ùVãáýõ0,W㋈ʖÜñú}¯zЪý šZw´œõ÷Ýe¹¿TxÔûæA‚¬±/ocÇvõT9+© 囋A½êw×À’+,2΃`‹z6U4=÷¶m@†hTx x‚ð ŸÅþ…˜!¯]]Ùç]ðïõ\¨‹“ô•_©Èú²ñ·àÊk$qZž±èvmœHi´ô;yžXó”x0­¢{QòüÈYÏϽöì¬×C¾†GOtç›™ãøÜ2j¿šƒéŒ´áL~ïô“¾›Û°Œ"má½ï;ÂEÿ<¸:ñcÂ?æíR¶¶¼ó[¤*nÉEÑÜtõ{r=ʎ݃«_!¹¥Ø.òej ñ½óâL¿ð*Vaï¡1±’ð„T/’ç#›ãþ¾ ?¡³ÞþnÀ¦õ¿½Žwõ¤Ø”ùAÀ7gdìð»ç{X´¯çuõ>â|¡íú²$Dz,‹¬ñe¢œùwXM·c‘€ЊãI^û[#4KÏ2®hëîú¢Ï&»:yµìêáH ¼\'\ ×qZ½oW½ôþwúEså! >N$ëìqþü¼†7œ_=z2“e|ûýõ%»$¤¸ÝÕër=ÿ\ÛÃ7˜äºö£]¿¦Ü]Îîû!a!Ë‘´Yd¤øZq_ ÷5å”îöÞ\£6>§:CàꓺŸ/Û#t1Ç&(°–ú}ôŸz'hA÷Á¡©»§ÞDrkÑ)[í-ÈrâB¦¯e;­âÚÎvÞ]?Q„m!·œÙ\°:îc;œùŠgÉÃ#¯Î,’î—ž?Ipý³éŠÓÍîEA7d\€ëOkqáß/ôœ¹ò¹"Þ¹ožÍWƒÎYGv×Mý+·c©öá Öý±Ç(øãÛmuy–T¸ª]O¡Ìµâúô©Ò‚;±ó·áé¬ÜgÁ­Ý_¿¤AöP¡×>ØšïTY'ñÜÎø¬W§b˜û¾‹~S›ìʼnØ|ÇÏ yéœ ˆü¨þ¿7ø’Kv¢mÖr¾ïüŠ>;×GX†F)ùq'¹¬¾EWôjÛ¬×̾·cû‘ÍJÙÏø3yv!ðX·íœ’¸±«qãÜìι nG`ey'Yùî)²ßlÝûÞÛÊö@¬‰»i?{?6ÿ¦ÈÚ—2è?pcJ7Æ-\FoÑþ;^£Uûš¾ï3Âs+žïª"© /…]¼â¼âvì\×s¥«—uåëE¶óîÆ¬h oð|¡¹a(â:Ox¦çÈì–õ\øNdçõÚtdV¬ ûõ™üv!3PZ4¤pälñª. ‰›–á’˜g4Ažy%É0•SW¯ü7†²ÃhUmÄ}16FI^Ï3<äÀȃO¦C«ºrI°H!Ñа†hO¨e1Ö“!cÓ:Hð²•dÃeG5! –8Ø$’¤‚¤â[›˜¨ð?‘¨j"2'œ¥«*Wu/¸¤(Ìù@_æÙG2°ã^ŸH¾Â„Ræ+L$e% ˜xÛžÉðDæ¨ ‘’h¨&Ÿ¬Üi ¸V Þø6ã&`)·žLt"|Øà…·¤‚J‚·pÀ N¬ã€Ò1¡ŒÇÉqÆ›ò™qr— ®¦o'[k‚wˆ(Åô°xx'9Ô0# w)`'ÜÈmâq"¹:£BHÊ,ŠÆX iÎdïÄîØaª5ÔÁ[ I—½jF4Ô ——¾´a°¾|ßaWÞíJ2i\0ÌÜ ‘Á lCÓ0_’1kD®’ÝRÌ}±põ€ße`ašè¹ˆEHCÉS5o'9|’1æÅ€a7ºq g6Ð"6Y† 4C™MèÆÑÍtéNŒ[øK'„n!¯ÕÌ>O@]^_žø¹5?“tˆš._a‚ßv<<±o¬Ìa;¬WíR^„n襃 ÐsØÚ N<’•ç„B«Ç††9ÛxŸÃ k€”Œwàád펬¦¸Câš\C!ɲXm4”dBt˜Nï ™©£°læ¢UUЫ:ak“+94†ŠdÏzMÉòD’†@ËW *“X 9ŒÄÃcÂÙšáF2v‘!™yÓæ¶I–f#©V%kRÓîÉ;ÇÁ'y;!$//ë‚å.Ùm‹¹’ñ‰¤ê™¬fÞmHö £>“dP½›jÜ"YóXŒà0PÞ`!>Jbœ³µËìb¥<(³”ƃáó“U«™vÕЃ+ªª,8ê¥D%Ñn›ƒ·Y»ÍâP•lêzûvŠIiöúü Íjhh‚|AbpWnå]§h :’ ^ÎX!ñ¾Šß›1 ~øJÂÊ]òHã`í&Dn…Ì´%ÁjÎM#+H–Z¯ ìÙh½¢ã5ZU~3{¸£ÝDi²†z~"y>¥S%ªc]ñ‘§µÓ” A³|2z¤ÕÒ3‰šuš>NÈddVÏò·y2lÖEÆ™x¥ÞÚåaµªèT¬VZÀ«ÎQÃu^IŒs³N2?@³WèRñÍ<À©S÷ì“£èuŸ¬Ï$ú¬S4i˜”NQ; á¶Èc!£’Ëm±&ý Šÿ ‡j2z4T뫈P”8Pk(‘´ªN6«*#°Y§747¢w)YžÈ‚Ó`UÕí™´x’ dŒ>Ùé8³v_¦dV·šâ‰g`HVÊKy:Ûqà‰Ì@F’/˜ Š<ÃØÖùœõ}¹w׬!´“,àÕÙž‘íoS[òJVÔ\¬“¼‘U ò¼“Ì ²é1›KŽM/à*‰‘l›G™fBF%£]ÆR²k,ÉD²(ɱ:H¼ í”ZÔ9Œ·Zº’Y#íHvmÑ'Â|¨×ÍÛŠ: áHëÁÐá!dP2Wg]Å 6똑1¨VP¡Ö •døV´vyÿô ™¬"+ÙXZ•YÃ.„ŒW6'žÆ`w’ ¯ía†QéÞÝ´ÏyÂÍ3¨.ÈþD²Ï*Û»#èDêZ3UÄÚu4ªáÔÞ·eUC¿ôs#jö¹‡6ÄïÛ‚FÜÒäuÙõq1Õ…$®—‹k¨)ÙÀKBÜ/ÎO¢×ÃÁÒÍ'#—§xñyS²¢!íÆ…ì¨™ªi&/M+ÙijEIØp]°'•„b#CK´ÒNߨÁâãÍz’zÑž¼Ucö¸ã4˜=Qòÿî )ý+& L7 ,aU&rÑ‘0ðMùAjB¾ÄÎY>I+'ªÑ,Ÿ¤– |K:f¤•ا³|’Vž ñÍòIZùù…Îï÷Ë$œû9¡`¿qŸ&}ðŽû¼‚;¹sS~‚9ÁR=1‡ƒY§\ |µØ©Ú€öG9”Y’§rÙºÚQNòTޱ˵œä©œt–«@=•£CGùìß  ÷¡ õwq'oÿwûF~;Ÿr‹3‰¹øvuãÍÐY2>…e·üzJZö=}ø ùœŒ/…8þ5’ñ%&}ùå’ñ¥0ã– *üû÷¹úøá?~|ì*Ä?ýåÇý öjÿå§ýþúÇ?ü퟾ÍÚo ¼›Âî£<}of¡~›cîõdÁ9þ^E©b‹÷F`&çÞ÷Í¡ZSâ”í…ÒÑ©—‘™q¡§ë™‚öîZMW+/“¾î¹)+ª¬zÑ%*2­¥l87½sAøÁu`º‡¦™P:!ᑆB-ÇCâqníEP ‹]å|xœµÁÝ\±ºâËïl ,æ9Eý»:U5P€ÒhÖëÔDZ€n¿9u£©ªP-€Ò©ÍéÔÌ \ ªÇZ€ÌsjâKèˆy7Ž 1 VZê:š‡øË‡Ùý“¨‡ÁÌ‹BdYûfFšé½ÿ:Ä$__ôô¥U}õà³;ŠDl?¬]ùàú·Zã‹Ó6µ”½Q¾S_ Eæ¸PÀoþÐ1é‹^Ò)AÂðí™*Þ¾×ÉgĶÍGo(8ʯ¸Õ â«v –YÊÞ(ß©¯Ö}:î !¿ž~€70ôŒTíÂ$ HQ}Døöuò‘@­öh¥7¼M>dú²ZA„"oî‡4{C¾s_Ü{†ZŽ>aï;#N*±èqÀ(3‚KŽÄWEZ Û,Ȱñ‘Ç›Ú2#”o!iµ‚à£lSK­{à;õÕ Í£ÑÉ’?t\Äøùjw LF‚øªàŠ¡ÏRœrÕFß~@°¥ñâÆ³ÖrÀʳM-eo”ïÔWë~ÑÓM!¹ç‚Þ,ád–HL· †ËÞÛ,婈ò±„{×[Á‚Ü­|&´ZãD|Ö6µ”½Q¾S_­ûÈ!"^JCzçVwó¼ÂüÔ-Ž„ÁFÊwgéNÔj|J V{T~Àù±ñ!6Ïj èRÛÔRö†|ç¾妗 ¬Z€1,H—T%Iä„ {ÚJÁª|$â„©Ö‚hƇT¹V+>Ô‡RöFùN}=Àé "‰'ž;~Е €ñÌ8‰?†t)§ZÊdÊ‚µ*=Ø’ñÕNœv*&ý€q'™–Z÷ÀwêëJßQ­”®dB¨Ê'ì¦ó0,zõZ ‚ËÉGµNØú¡ú¢ñmqOMr ÛÔÒ¢7òÀwê«u¿[Š"jë8P wÞ Oñ¡*‰ ÍÙfiÐHÚ'Z ©ž?„0ùÏÕjÁî³M–Îî ß¹¯†\tF 穘ó¼N«óQ‰‰8¿ÍÒ¬±Z˜jpóÜuóäƒ'Ùj1±æÓ,µîïÔ×hž±†‡«?`® ÑìL\U`Ÿê,8BS>e"áê O>Ìq«5O\mSK«œ)Ôüì«a­"EfE ×§:ñM ¶- UÙû§Z+-òeψ퀉oØÇâ˜|Ð,­Ö2±eµM-eo”ïÔ×'8yù ùŒ&߀¬€î g*jb8AÉ[)BµD˜˜Êó‡}ï5>œ;X­ N òVjÝß©¯ß Ÿ£0Ö:äõ‡&¢'fþT„QvÈþN$€ðž‘rÙJ‹7‰:¡ãõ‡÷…ò!üÝj͆œkmj){£|§¾ªz°ÕD÷}=ý€3qqÇðDMôÏ`¸½i§¡xVš³t#P+åˆX1¾JÔ¨ÉYôM­M- šÞ|§¾šiƒX…'ä½þ€L½B욌DCXµ*1l¥âMèÆ§Dœ`÷úC0Ä÷ èW²×Z·‰t¯mj){C¾s_høœõôþõôtœ}³ã¾D`f Ï“C)v/|J VÄ–xOù$'Z­$ žy'QjÝÛês_Í6èz2´ûú–«þýDÛ mJL…¿ëâç9‰,s%P+µB›|XÈVë\æÖ¦–Z÷䛞ûz(×ùNÊ5èÔñ™±ê3½H˜r-{i0åZ"6S®Iœ”ë 6’*×& ÔgÔJÂ̈žf)zc|§¾Úi…àÊyj§BVŽBÐKú瘵„i§½ÏÒ¤á¾à#ZM;-TþêäCDŽÕ ´Óf){£|§¾žÔ;lS¦`èH€ªUû¡PKJLõ.ÎR(/ÆG¢Ocþ Šù*¢Î´VS½+³Ôºòs_ýˆ`ƒ©Mý(£“b-F&dÄ ²½(a8í5ÏRÌ_ÖëN¶êˆZS¾ŠÀ:­•„éG[›¥ìžòúj FÑH™¨¸ôÉí‹6ž*ðÑäð„§áÕ´†®1û(EÈ“ñ`­öhµdÉÊ׿Kk%a€ï¹ÍRvOùN}Uüö[‰Žûpð`¢€egjD ~üñO_ÿíõ§ÇÿøáÛ¿ýË_ÿŸ?þó¿ÿ'¤Î—ÿ1¹x endstream endobj 99 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 102 0 obj << /Length 145 /Filter /FlateDecode >> stream xÚ}Ž=1†w~Å;êд½^»?¢›I7ã¤ñ¦‹ñÿ/b®jã $@xáÆÆŽ¸fÑÈ A‚ÍYp™èAbYÍÏjSÏb]ªn? Xßé¨þ•Œç¨‹¹åõ ¯ÿÇKoÞïŸF5ÂÉæä^³«BÝV"²ÍÑE”<{ÛëÙଈC¹â´HËs9|X›BO €3w endstream endobj 53 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-5.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 104 0 R /BBox [0 0 446 305] /Resources << /XObject << /Im1 105 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C# ¶THÎåÒ÷Ì5TpÉç ä`M endstream endobj 105 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-5.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 106 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 107 0 R /F3 108 0 R >> /ExtGState << >> /ColorSpace << /sRGB 109 0 R >> >> /Length 16999 /Filter /FlateDecode >> stream xœµ}K¯m9nÞüþŠ=ìødé- Ó†À@8n$Û£º¸ÑÇn;ñ#©¥}×·êìsëÖ Î-J›’–"õß?þíË_?þí‘úÛhXó[npÔ·Òy¼ýñÇÿóñÏøÑñvªüŠþstùÇ~ô›ß~ùOúïÿå7þôE~|<ö¿ú៿ü§¿Œ³×ßþãhÇú°Å·1µ·^¿}üêÏÿåý_ÿðã¿ÿø»_?~ûû/ñ[tà-œxv6æÿÖGlÇ[hâ/ÿøã¿ýÇÿüÃÿó&^úÚí+zlý/¾Õþ7¤úoþü¿ÍÒVÿçËßþýãxüîKxüÕüï÷_ø_¿äù•av^ßâx„üŽGNo“ø›/¥½_Õ6ÿùÒ‚|Ö3jyËYk{y‹·¨c¼¥ã¹2Ž·Vµ6„ô–;ÜÛ[ùªv¼U«ús>··–qþ“tá[pºeÊÛH;f|3ó;žPÓ˨)¾¥'Ôì¨ÛÎøz>Þ¾-1Íï¶KSoÇxüáñ7—ú¼­÷V?QÝêÜë‡4xÖ¯ÚŸû(oõ nõ#¼õ­^Á½¾?OÁ³>Í‰ßÆgàV¯¼êÏïÿðôË>­8ׇ®Ëñ2á0Ô>;Ë@­ŸÆzDݾñøróÕ® /îš'zòþPPfõ(˜µ@w"ÅŠ“À´,>’§ÆßJ¬^íKw¬ûzj|a»÷õÔ8Áâ}=Ö÷‡‚é¾óy_+ÖþV~껞(Õ~¹/4îXöõÔø‰õÁ>5N°x_O7ÌûÃÀù¾/Ž%÷÷O}×Sã￾^ìL[?Ñ>êí¹ùï£y|nŸáÝô÷tßN<ƒÛ¤”?õywxuþÓ^èOÛŸx9ÈíþzhÿÄû°¿§ö7¼æó©}†'Ô6Œü1/ûó.ê0I=¨'ºxŸ;£é@ã¾úÅ%•1áÎ6NØ‘æÍº÷rÂþ‹<ïÖ½ö_ÌÿmÇö‹ö_Ì+/”í'ì¿xúº§¯µ_üLö/Œô–Êÿ÷Fo_†ã\ý'äø ä2ÞÂç™><éÁñ„œOäµ ý,*,ÜŒÝz×_€•ßOý¢%ˆÎ_(¼ÿb®YNÛ/~úÅ‹pûàýåü…ÂÛ/ä*åü…Áû/‚]»þ‹ók_Ü’2o‡ üÄ&øIìùO.¶ Êg±Ó¤¡Ý®¤nÿ/éoe˜?8œ&qŸÿüᜋgxýÞ¨”ÊÏ¿ 4§,\vqúoõÿ÷_üaŠÓÿñëǤ¿ú‡?üÇúõß?~ûW¯MScKŽÿI@üݯ~ÿOÿþï?þñÇßýݯwÞ÷cjü¢0ýˆrÌÓ„îhòÓ2=¾Z–¹éd†5™B^§ "òP(×?s˜ÿ8+–æU~©ìò=R9 ÁוSBïr¼²ï¯+ç 1è¹m¯•óFÈrüû[‹×>VwVökŸ©€ Î#<ò¥²Æ·ÖçÄÌ ½~ʼAJfº(a˜qîN&!¿•ŒË!’U™Tm¹~ÊüNÁœ+W¯£¾s2£•Hñ9ÚvÅ ç´oµ_¿s.v€òq]•*“*|ƸV–,Ë!‹}¾+ß‚5Ow. ~…r³'åœÍËÆ s"Ÿ­Âj¸ÎÉ<\¹‚ôRYeé„LV²Çç'eÌI½~¶PÙÆI~s™“¹#"*ÉѾcæfçJuãº1¦à˜»õë€b‘ïÄy'kí;¶úsrI»†lŒ¹ßÀBEù"ÖçÀB^©ÀÍÚÏI­J–®;ÿfíK—Eµ¼ä˜EÑÊÞ —ϾÂÿ†ÎT¼¬Î-Œo)+]"¤ý—×ñÉ–q^Ûµ2@/+4‚,¨ìÍI—fdŸäQc€šúÛ¿üÙÞ ŠIvX )­2t+4!ý¯MõdͰA2¡V7S“ÒÍ,,™M‘X{ ´ºÉ„ æÑØ`dª_çdnrHõ9yâ¹¼B@ÆóÀír|0#Çsk§ ½$»|.»êt¿‘µXWY‡JVЦ¯° «¹AåSÈLåYŸ|‡ôI¶Ô$ òÂ)ÐÑV>ñ²?æQLäNª82óz•;ià\š­ …ó¸Ò_)혀$Pe°¯R´9LÙYSNé—‘Üìñ¹‡Ýð„7ØR²¯›1H£ó³¹°&6¦Ÿ`fX“„{"˜ë0×¾_ް+˜è*ü^G{wØvédî&ìÐ9žœöõ°LŽ2ŠpuÈÔs/ÛožRV[8Àëg·׎ˆnä˜u\cW'PˆwÜÝ$ ò)¬µozOÏO¹6`™ÀUBøBeVæÚÊ-ÂÀôéÈ‹»#k?„cÀ§Š¡Ô}îüë ݬý¼ËÓÐ æÒÙÝõ;ò7ÙÕIMwso¾:„ çU˜–—ï$Èí¦ ºÌBt3#Çt€’íW•#/×™W5 ÌQ×™ŸL÷aÂåxÇÀ„‘M41‡¾r­Ú"ìº"yÈ–·ºR—IŽ“ja*¿<Ķ_—-l?•“’^äôNN&)S–Ũ®e'£"1}äòˆQ7cbÌ@=‡‹²)‰IÙ¢õØÎã²Ìwg§;=>¨tÑT÷y ¿)Ë[¥¼;ÛUö dŽËA½_ƒ’LÈ ¡=÷ÿ¼4 KžqÅÈíÆf* ­Û-Rñ?˜éƒ^`“Ÿ@³×Õ…}„•ô9¯Cáˆ>8B#/M®}6t¨V¨|• WLaS 69ÓAx`%$ƒ°Ù*8éÉñUAIô¤„èCÇ(KFf(‚ÙI âÄÜrX*¾‘ý6”L‘+jQÞU úÒ'ž,ÄFYû:än’ Ÿ³¦0­ Ö¬Üʲ1-LÔ=Äù\–ò)Dl Cu¼•ÝfAuí=°O™3Ôí~¸Vö"TÞ}¼HTUG6·ÀugÝ‹½¹ø2¾âÖ8òey,%*eô³žrÐKS³î¸ËT+רé+Œ`IÞ.’ËM™³JÕ‡¢oUÎ)cxÈyMò<CwÍANGpjÜÈ ß€Ù#ãåKYRMšP•u¦%ºYûIÉ’2ñWöÿNB…òj\"˜«asV¡àPÁ²u&vC%ª”Q¾U6a‡»¡Ædcd\¸ø§Õ•%ÊT˜-ÊôÊœÄO.¢¢)ÑÀØ PU–"äúVÁ‰nñU6bò7`Θ2ëîôfQ~®`EÅEõ­­Üi¤'Š\_­1^Y.ÝÕL§Uñ¦d4¶1¡ֈHíŽU „‰YI'aÃK#*í­ `¿Ós@apg)«*l3Zs·HQ%{fݸ㈪pÐQÃYWñðªô¸œƨú´ëwwÒ£ð…¢j¼’ã›^æJÊ#ÑÆ\ëÞò­u¸ƒ±u3QOd°DÜR;éz1qçZÙªHDzø×áæËDW®´âªn¾ D‡4µÔê9ö‰°l ÌAÌÞšÌÌÔn‡¬g›hŸRRÍhcˆ9›Iµ(ìN?T‡DUSSÔåî:›dYäCá>É¡ä•ï$WhÛYÁ®2Ð`d´ p‚ƒ±¦w·ƒ£i0`¾x<†./s—!4iï,È-Ùp¶ç—zF} FLebºPΰ±SNÇœžT‡ßãëºãª„n°Îîm=MM–DKyT?BÌTôR¢_T5% ¦ëV˜s+³b ÏQT|%¢Zhjºh¬rn¿¦Ö „¦œC¤§7ès¡NU"EµëôYCWÌV×f[Ô‡ÈÔD>™Û¢ìÓõò½Ûòª9§—Ü=ïΦÐÁw×<’Ê€×H8¶T+^ÓWÞxÙ‹;¢ÀƒAˆé/?ˆ¨ªæ¬D¾ºYOtÓËd£ª †¯êh¦,Y´¢ÂœÔÙžÝ^Õº7CªÓj%‘Bõ½Åõ,ÞŒO”)áN:ËÝmyÄð-ܲZZÈû9aþ†—y™èÚ…+9¸#LIî($ÈàU§ß¨5 AB=&§ÙäT¢ùêTÖ%ϸʡF­Ïì©ìO—^ÖKæ F‘s-©=Ò3™\§Oxr3ŸÔÂ.0‘pTkDÍIŸ§¶Á¤ªR]#ÇO@V ?ÁœW_71¾/éÇ­ôØäDݼA İ«‘+& aÉÚGèÁ¾bˆS|ÃÞ&”6vÌ&í¦#b”Þu7ÛøðÇNW²wÌšñ’/Ûh¢ëÄä7ar¹Xß<.Éu•;YÞ›ÁÏö À-Ÿ005µ…6¢-¾ë¥‚õ•g¦¯JU² 8C¢?IJÙÄHþ*çíQV!V¨ûû¬é»¢ï̧ù‰¾Ä õ–in…&”RÖ÷ÐÊ—oje•ä Þ«d>f5-S-¹°{ªw&ªb¦*Uµ"Ÿ$ ötÑÞÓÕ[-¬<‘²µÁßz†k³SH8LCÀÈu[¹ïMÀ„}gÕIhì½DÅãnL}|ÚLñG¿3$÷'f7BÅ 1RTªÕ·œõÏýFhìœø¡Š˜û'BƒZ¼&-ª™g)ô-ʤÎäe¥1Í\¾–;Söü*ù…ÿòÑÖG@y•ºÈ3î~wáØîÙÚiKtN2اÁÄcðVª Ü@óD<]$bTW#H¡ºŸ ¦)z–…1–reYI"Qø‡ vj·ªú€ydvt&Ë6Ž›àx5e[2ñ¸|EßÄvÝ5•™D¢y­Ò·2Æ}ŠëÉ«ï.Dß©Óu­î…¾tÀ|ÂÈæ²Ù:3F}_:è“‘ÃÂÝs“ÿ!¸WÆ ^õ2£¿¬ŸgjúHÃ}Šò$7vºÍÏóë_l°ùF&Ýeç/NØ~‘ƒ9©{/'ì¿xê÷ißÇ3‰2={`R÷9ŠÜ;Ô†ßä™åBýÊ}óåž³øÕ÷͵?ªPÛwß/x«ui.¿î9áýófjeû…Âû/Ü¿ÒqúWz¿KÖ/ Þ¡#;qŽôC×¼$î`⚇wù2v¼å— ýtŸ<>á|iØi2kÃânœ}?Ó÷/¹´'÷Iƒ—»äšŒgø+÷I˜ú~Q÷ÉÔòwvŸLSþ‚û$è9ZüÏ¿~ÌkóWÿû׳ôñ«ÿøëù ³Ýÿõãüˆ?ýÓïþãþ°šä½Hî>r¦üzWû¢»Z””Çþ÷JN“¼½ °~̯|ÿ’jÐð!ð!›K+ürñdX&Ü‚ð[â¹9³ÀpµKjÐxhè ø—LxògãXb&Ü„]7ÞyMMxàÆßkû£8ós ý9°–Ü=dnÅ>BéÀ«/» Dð;`¹¼Õ†öóä]²zVDÀa!#B%¹ôÜêIN§´—2¶²ÏPƒêlÍDFhýœ!á Z>gHŒWu›!¹+K?gHࣟ3åhNµz}Ðí¸¡mýµ•ÀÕtáB½·Ú¤¿¶¾­ÞÆe¸û¸øòù}=Ô é÷½Dzi„Jel )„þ*"@­zuÒr\ƒÐ¶þÚJ,¿†;¡É|zÛ é¯µo¯·qî>nÿ–¢¯®“p~ï{I†|-¢šä¤ÚöWHûkzóä4\ƒÐ¶þz•éÄbû\mÒ_[ßV¿F Ü}Üþ-í©Jêý¹dÊÐÂ Š½½ƒZûÑUýÍhf­^…`Ç]ï/‰B¬nÀ[/oþÚúÖz—â>Û¾eR˜t¸nð}/©Ú_RÝa7²£öWÜoõf3\ƒÐ¶þÚJT}금ô´Úôƒdä³ÞÆe¸û¸ý[ô%vö½Š”ÔÔJ%ágæ:;ɤýÁÒëE]•®Ch¿ö’¨«h¸AWÑÚ¤m[ßVoã2Ü}Üö-ÉCwð°oñ’,$Y|Xh'÷ éè’ž}«Ïê/o¸¡mýõ* ýÄ¢¯[mÒ_[ßV¿F Ü}Üþ-EOžn¾ï%+Ûõ­é„ªŒU¯*…´? îèõjgv\ƒÐ¶ÿÚÝ ú‰‹ÇG«m@úëê·êm\†»Û¿e¨;<¾ý}/ùLCߊÈ÷Ï•µkV!ô7KZ?ë£Sàtδ—@Á°pAzWÛ€ô×Ö·Öû¸÷iÜö-BÔô¾ŠF“Ï’É&¤‘5 T•Î"(¤ý©3Š×W}ˆl¸ Šaýº*+™Ó•Åê«m…ô×Ú·×ë¸w·‹zWu‘÷½DF hëA€œ½QHúˇ†›Ð’|5wAh[Üu¨… ’´Úôƒd”³ÞÆÜçqë·ä#úÓ˜‘ð-«$‰.T ô€'ßΚ)¤£Ëê\ŒRý¥ì±!P¯/!× ´­¿¶’(|Á¼¬¶鯭o«·qî>nû–¢Bµm]¬d ø‹@]%–É;º¨ú+ˆ–°êÕ-×qÒ¶õ×V‚ëßqõú÷¶úÁFÒÃYo#5Ü}Üò-\¡~-u/„s Æïœ%CäHõo7Ë¢„Ýhý`Rž¸×Zý”´Ò±pO(´%‰¡$©ôb¸ìWÛ€Tµ¾­ÞÆ¥¸OãvY'{Ì—IpÞ÷˜ç’Úžñ":B’JÁ!—ÛÂqÖkÀgÇ5èX\«•4˜8W=¦½m…~0 ²¤³^Çå¸û¸7YGïÍ0NYGK¤…–<r5Y§8´d|Ö«5ÕqÆ)ë¬ F 7‚ó¶-Y§õ6.ÃÝÇí|hRÇ=hÑß÷5Ÿt}23¡®œ¬…„î}ñ½¦B}…d踡mÿ5JðÖaáB¶ÚäÒú¶z—áîã>yj9ß÷’€&rä3 ÑÚ ß›ržZβ׫+ŒãtœÜ˜–dÄQs\}ìm+´xê¼êm\†û4nçwUmâqÈû^ÃzÖG©¢ŠL Sì)O’„ ­z0m × ´í¿¶’PO\õÕ6 çZËqÖ¯‘w·óÉõ"‡ÑﳤW@Í",)“‡Cz× ¾À»Ïqtôõë¡ÒK'î¡üE^º2ç?¬o«·qî>îGP9ÐdÐU/¹§ƒ~K3a8´x„vÖ7½ ·ù½h2è* 2ì… ¡Õö±øBïÛêm\†»Ûy„¬föx.nuyx2ÙßIrÃ!½Ç«ØùW=üoî‚Ö­o%MˆÐÂÅËÍÕvuY}õmõ6.ÃÝÇí<ÂâÑ&o%£2Ž~ÒÜ\娇Óä\Õ¤ïõ`÷„Œ&¯Ä![¸œž·]&¯¾µÞÇ¥¸Oã–o9¾‹Uê£lf²úå²i„8~n6Pã Ù4~âkùl¡ô§l}{6§ÚÃfسi<£~MãU‰?UÊs¬¢µçû×¢f?Õί™Ú¿k:Æ7¦ÓØ0?›NcCýl: õ{¦Ó°yötx©¶tg}Þ|«—p;é¬Wp«o`bW½‚{=\Îz€[}Gø¾U¯àV?¯ƒÎz÷ú Õ𪸥ãÐ^é8Îï1¯hÓ·¥Ó Gñ›ÒiȇÆqŸNãCzó³Òi¬]a ¾Gÿ(ÅÅ×X>ó£tÖ¸'«xµ/m|a}Ô×Sã ëÜí¼¯§Æ ï뉲®Ä£~”ââ+¬P¡Ìþ0u‡6¾’U¼Ø—6îXöõÔøÂúhŸ'X¼¯§+ÆcuH?ÕǪ°6}Ø—6¾òT¼Ú™¶~¢}ÔÛsó'ÞGóøÜ>ûéïéÂ]i1B;þaz‹+ޯܟ¶¿ÒT¼ÜŸ¶¿á}ÔßSû'Þ‡óùÔ>ÃÛ¸ÿ43û]ÒiX+Á„Á[:õ‹ ~N§q¶qÂÏé4Î_œðs:ó'üœNãüÅ ?§Ó8qÂÏé4Ø×~×t;ÿ÷ét; øét;øét;xIÂpžE‹ö/ЧDÛ/Ôíg;ö‹ZžÒi¼ÿ¢¥§tï¿p0[: ƒŸ~ÑŸÒi¼ÿbÔ§tï)9ôëΔç×¾šÒ"”ø3Òi‰ÄøÍé4äÞ¦Óðíïé3ü°¯ô¢ÚÓg|¯ß?¥ÓøÅiK§qÊÓß+FÈåÓé4^c~¿C:E¥¾Z–WÒiÀÌZd¡/$Bj×ýuõÀ0Â<1qµ‚¡< šû@-¹2hæÕfÍæ+”5\A+,a@‚.ôÊ<›5j¤Dl&æ4@DèF®ÑÐ~ã Ñ,aPLÈqJÌEç–D ê\Y k6j¸‚Éȳœ"19U[¬ÜÐèh³:`µt“äĘm2·ECA5ÄþÆEb{ Pö—Óĩ"}‹Œ¬CÁ46æ—(Q<²òü×hçˆý–I|Ól½7 h”Ò^Xˆ¯Š>re°è³A®fŸ7‘é#ÖÄÕk¸>DCÁüáà5&G‡xª‹"ÐNqÙÖˆütL6LÚ“²d´Ì)“ðòÚç¬Gqì&7k_•Ú–NSÚh†ÒIt¡›!L)ñŒ¿4„ Ÿ?÷‹¿Œç˜²OX*}ê_* Îcû uÉêê:-‹‰†·²ÃXN–ª«M#ýH”‡¢EsÆ+YB¸NÈÀõ$ÝLuÕÆbv|õ¤k ÙS,zñ·ƒUÒ^ĬËÉq™"—çò i”MD³>=u!/ ½Å”A´H0P1‘wfríçPhä|ñVqäLº—ä­8éS¤b*¼Ž6èÔ´ƒ9ñj45YûkÜ „X .Œ€¨úœ!òÑæC¡!eŠ&h™ù‡N)Cn*}ÛA.ɪœqçýÍxH¸ ¶MÔ»ÄÿŽ¢iÌÝv¼{óÀ›Wh”¨ó¾\âr@©/)nxúeóèÊU*)FŠî7òÙI7#uÿ ¦“‚ñï²1¿Ë¯î¯X…D)»›°Ã'ŒÜðr-V0p$ü‡œ‡‚Έ{òˆKÒ,aÚîõN£ŠT˜­…þÞ ©ï}ãiM‚²~r2ˆ ôÏe¼GNsMWŠÑh€Ô¤y‚ }TÕ²ø8j!1&!ŠÊ”]yÑ»µÇ›f¹ñ®wùÍÚW/®k”±6ÈœÜ áP–¾²èw׿ò9“ž° ìpÑÀÙ¡ª‹*Èš©o5(.½Š«R"ÂCŠ;Ÿ~6‹²‹4Dà (k*G¼,?ŠÉ@7w’F±¨”oÍÒW¤z@È#]Á¡Ì Ín5ÔM¡\vPFD„EXBC?PªŒ- ìq‡¯jíqOò¹cÿþ< ' l4wÇ$”,P¦åéåükšOJøšW÷7ÍðKIâÍUY¿Æ2!HGj7$½ØU|3¾¹®rójäî hâWXdD€ªªq¸Ën™ŠÄo)¸ÕÊ`á¡",§Ò'‹<¨ñÖÅ͘¦(<¬ÏW×,êc„ƻ5 *yÐ,"99SKöTC*.Àë>>4åV¡O³†Á‘vW20pêõ‡ffL&íИÅBz¡—ø+`Ò_¢P:Š[yX õ®J¬Ì.7‹ìYh`I‰¡Ñ'K’˜ÀU”¸R\Haá¡á¥%#ª( Šß™Èw·k‚jÉY ú»]ƒl‹¸<>yXˆW=^O‚™£rÒ,×ìM/ÂÓë¡!Á§|ÊÁõÅûÁLÞÝéQé1 ˜4¬k ”7ª0~÷eªWSO§ǧÒ{ Œ‰ {¿Å›TÇ&§“ʪ©;;OŠ5@H:M3•8F5âà,tNÐ;O(%e5‰Yl,tË4kê4vtU£\ŒØÌa¨B“]g]5J‰XAsº¶H™=xñË–gÁñ:ÈTã™$4iJ=H†W ½%Ï¥ö¤'¢ê5%kVÖ¹1á'ã=¤Œ–ɇæÑh™IcÙ¸•JŒj^Õ’Ùª¼\S@“¹ =6Wå‘èZnt Ym ƒED`3ß‘yÖ,:Y^a€EÙIt š„¸E¦wIÊ£µ@³¡wˆ9z‚LBs[hJçC9Knœ(J [¤‘˸;*Ðܬ}×ÈÏ‹¨z'¡ªÑ²7Ɔi,ïuc(eä66Õ8ª´jÆi4‘–‡./Ñ/©PPšç]9èBÓg&e븼šŠkÁe7q±Æ4F8A‚àʨÉÚAÎÕÍ FÍC™³{Fº¨ñ„ÈE#87W«1ZXTÀ§q8ƒ²lœ(ÕÄõFÏCõ—,Æns…Ñ8húø»E9¹18ˆëм½ô‚Gà(˜—^–vLxg’ÂG¤Q5¹Lp%=7C8”Û)ýõ8z¢K°\e›^²m`–SûŽuN*ÍÒÛbîD?ª™I„dš ̤Y²5 #8è—E5@ñjÔÚ¼¸2Æ·"Wúú:gÝb4 aB$t¨jIhKÍÐ(‚ÑojªŒBãüGäi]§¡-q ªªmÎC’ƒ,ãKQ”ž°<œˆ¼]”?¿®}KþŽÑ\Át½hn–WƒšÈô]?ðþ"¬j”!VIaQ;.Vv{h`o™jbxÔï-…;Mü,Œî¡œ—Y2²ß[y•9PSéåXÑšNæ~¢pUÝv)L×(¹gô033‚&%m‰ž$Íu:W›X%´‘4;¤”LÃËF¿Îƒª[‰ØTkÖ–©°­ÊÏE3EIKT3ZôýÁ`Æõ£.>çÒìÍòM¡<êë¼Ýmy¥.r°è©«éÎ4`êëVØ:HPr•@˜&þ€4 l'ÙÙÕˆ¯k“¾‚alÊÝ®NêYÆ,˜w“«&‚^Éù¿{‚\ÍÆ’tG­ì¯çðJˆ6—.×6ðp…^ÕqÕ®6J¬5# ,r4”¿½ec·¦si‰¨ î–ñÛðjâe#´*ÀZf<¹d#×3I¤G ×z¨ú„æzÞCÌkDCÒÔBB‰DQ™²³D†w{JsŸŒãu¤$Õà$šŸg¸BpÖA#J óL³&ÕÃÃ(/t6‰þº F68k²ÉUèèTöh,*°¼\ºt¥PDµ€ÜЗT—$ÚvšãÁlÛÄL¤/eg‘Êp¨z‡æ²IêTÓ3Øeaðl%(«E”øš¢ñFOªÉˆÇñ:3?ç­†‚twÌô1fe[t™Î*M§uøÕr³ßT'r½îhBªó¥»7|‹¢N^9¾,}«¾ƒrñ7½ xÏByLÓCâšLŸÈ†«šÍÊ^‰Ý¿È¹7=hä|¡”„dd¢A/IOõ})y8‘Áj­W¿ì(*ß1eÒÝ1ø^é[TeÆ MÜ`Gj4‹­É‹ÔÈ )=¡±&Û:!/ú‘Ùs¢Pü¹$Ñ’ŸR mÒgeÐdGšº±Ä È-¤5{ia–ùFµeêúУwEŸ,·|—dWÍÎÌr‹¼’`HŸª íõ&.·ƒ ˆ¢ÛSzÇsmØô±g¡‡ªQ#ã›RöO!—[4ó:µ G{ÙÃ.·›àBi$Šë»0ôÆÊlðOø¥½ãZ)ZKõ@"sRµrTbU¿ëº2^¢­ XYìѳé]ÇŸàø+LúÀOh³ä…«é×;µ!Ù+âA™½¨’þM%‚+ÂØCæ¶ªŠšÚ.$¸>œeôäÐȸC ÿúEšª´¦°tæw<$^¯ ‹EØÄüɹðgeÑÇEäÜKþl%DdK©-Z¯ëòn±åI?O„)Þü+%ˆÌX°¦ÓxþÅoé4ޏýâ„W:¬²¯÷rÂþ‹§~ŸÆñýÒiȶÜ=0?‘NC³+}“¦ÄºÌÏ<>“NC“[Q÷͵?šúFzŠ€:™-Åö {[ÒÜ{ÒQ‡ºÂû/Þáþ•þ‹Ó¿Ò1p™œ¿PxOÉ¡#;Srœ#}5£Eȸ™¿5Ææ>y|>†÷Žt“Nc¹OZf†åé™Ü]rMÆ3ü•û¤¥ÓøÝ'-ÆwtŸ´t¡„Ÿ™N㳑D®äîÅtkWû¢»úé4d§‹‡óÄxLp÷îš,Bï~‰_Šd"6$øwM¡’€ÖI`Õ–KèádÉ"šâ'x⊞Kå´Ã’EH°ymÃ’ET 0“,Y„pÉÇ4Z²ˆ íM¡ïÚ5î­$‡P­îÀûoò?pždö Q¸ÿ²-bÍ z%‹Ðw[: ¡'â7½f¨âEÂ9C’ÔàØfH“˜ž3T“Ï ÎP…Bíœ!ÁÏç IDŠÎ‚›K8gȼΪPHœ3Tñ|çœ!ÍÌwÎP…'ìš!éOg$6Ø 3¦3ä>ï>CàÊówH§!!;,´î*ÍÖRZˆT!1âlÚÒi¬z¤ËX¸e­»•H 9ÇEB Õvòк«o«_#î>n 3)Jq]°™gɰ`©E•ŒH59äVs<ë#¨ážÐJa%EÕÂE©Õv^!,½o­÷q)îÓ¸=,kÂTo·÷½¤êèôÍ\Ç«gßþ ­”ý¬¯Pÿ:®AhÛm%G8q³~™µ=„åêÛê×H»Û¿Å´ášk/Ÿˆ¤­}Lyñ£«§¼€NÜêƒBסêA)W ^Ç,\x¢®¶é·XßZïãRܧq{ˆÙ¨¢é±öØY2B¹ÂÇïFœì(¤£3ÿL«×|àŽ» ßcVÒ@¸W’/ÇÕ¶Bb†Õë¸w·K…Rµk0нWºÉC½xC}8ÉTÈS^”qÖëL:®Ai/x¶p#æzÛ€ô×Ö·ÕÛ¸ w÷™NCìIJYÏt(©šFBÕŽµjŠ #÷õLA¡9,½>Cÿí¸•35ˆ•dM#a¸ISLXÛéLA=ÖVÏç¸ w÷™NCvp…è}/ ²]­‘ª<ô«J!íOÓ.z½¾žp\ƒÐ¶§Ó@ üáWóò®kÐ +<Îz—áîãö´ à”„uèFǼîÆ‰ŽGX Ö+TT!æ‹àwV¯¦=Ç5¨­äNg‰¤s\p«íºÒôxßV¿F Ü}Üþ-jüîˆÂó¾—ࢨëé±”µ9ä 2Dþóz¿^¸¡mýµ• Iû  ÞvX4Òû¶z—áîãöoQ÷G!ü¶Ç¼¤y: ¹_+”‹½é~ö%œ0ì¼Ýƒ ·ÃqTýì¯jnñt±9äé4зÕÛ¸€ûÓíÙ#Äv¦Û3+lÑt{A_XH²¦‘vrŽ¿öU/™:âÂu¨¬^bé6 ÆàÕ6 —=B8ëm\†»û”äžÎc¥§´’r ukúL'`»¾óQÈ9~ôgõYßZ®BÚ¶ÿÚJŽ´ps×T}Ú¶B.Hß^¿F Ü}Üþ-õ+ê±n©Ð¼DÓÐöêjò¨)ñ$‰BÎñKZ¯NÈp Š+ÁËY‚ñnбZÛáüëÛê×HôÕ¸ÏtÒ^@æà÷½)鑈­ª$ZSh¥+Ëg=âc,\ƒ’ù*ÁCë…‹«í૸ú¶z—áîãvªÜí0ÁJÀŒ4LZˆšà"9äL‰g=ØÂ…kP\ +¼ŒÌÂã°Ú+a…÷mõ6.ÃÝÇínû‰y&'.9ïÏ%’\¤BÒ‹±ìÕ'¤ 2)vÕÃßgá.È“hy Â..\<®^m×$¬¾­ÞÆe¸û¸ŸÓiˆ»î­az37ýr¹4&»ý3Si”üB&ûýåi”ãLJ!ïê›tíy4öÊÃ&×Óhìu—,QÇïuÙƒÿ¸åÐà˜){¯ÄÌýñ»&ÐPŸ’oÈŸq"~6}ƉùÙì'æ÷Lž¡3ì¹3Fm¥–Xµù\ä³¶ÂûÉk:kû±gÍPè¬Õž¼öì÷ÅܹkÆ z ˜å³¨â-cÛ¥|ꟕ®ÂWB¡ŽX(%xÆ)xôQª mÙó@¼ØZvœúÙ[^8kgñ~ö–¯8¼Ÿjy® M"öQÒˆgœÛÜGýhËžûáÅ~вã|ÔÏÞòÂù`Þö–¯8¼Ÿh{~‰†(@å‰xÆ)$?êG[^©^ìM/¤zzjûÄú`îž'X7}í×Ê(Q@®>L ñ5–>ø°/4¾²;¼Ú?±>êkoüÄúh÷Æ Öðü'™¿ï’}B{XéÜrOxý >gžXø |Î;±êøœubÕ/ð9çĪ_àsƉU¿Àç|×ïû®Ù&6féÓÉ&6~éÓ¹&6ŽéÓ©&6žé’Ÿ`6Gù*ÏÄYfwÛêVßž’L(¸Õ×ò”bBÁ­¾¥§ nõýxJ/¡à^ߟ’K(¸Õë­úóû^ÍîóÏH,¡1ó¿1¯Ä¼änÓJØ.÷,vŠí)‡ÄW ÿø)£Ä/&RZ>‰%S~¯t©}:›ÄK¬éwH&á$èy5^K%!G&1oq<Á†"Ѷìß5²`4~MF29e67êƒlíë6“ü¥Î õè¨xë?‰R"ßÿÿ~0ûö§Ìwë$´><Çæ7T0ó’õ*‡kn4ì4\/%ã*ñ%E`ôJÃßN¼¨c¹ú!Ä//ÇMd«‘e®¯ßpã¨Qàՙɛ}§AkJ¤§ð*Ã0qnCHIµGCµÊ¸–Œªs.ˆÓt@<ÙFëʗÍ;b°pMâפM5N¥5²õ¬x¤‰ÿÈ>Óa£¡Kà™V ÒùQiÈ“¹$nÁƒk>Sym­üxj!Q•nÖZ,| gžÒ˜¹GKøTÀËeç\gïn¯%ùÆB]‚*f¥Òе e󌰘 BÔ`mjAc@d¼Mk4TfB½ÀI›¬ -qÆBÈ’'³ØP7ó+6Ê$\ËÕõúîiÆ'±oÂKÖª‘‘®ß;pîxF¡yC˜'ß×s×¶X¤ÂŠPƒG1< rï,SMÏ•ó¹×âºBî³,ß'Î,ÄÿѦ…ÆÑ5 ¸{ˆ__E|@õE 4 *]!Š0Ÿ™†Û‰0–È|RWèI7Kd4µøEBÈ‹„$m’ ßêÑÚ˜7´%ߨÌQ4ª±mÐðßLN­äÛoörFÐZÈ—ÝÑ Ä|Ƀÿó9ùš@#(w={dÁ æ}ÖAcmŽPkWu#á5g¥!b4ÙˆG‰”=Y Ÿq7Oð{3{åæø<ÉsP¹§*;Ÿ®ðƒæÕIx)Õ#‹U!é•HC…"*~k¬Móݽ¿á{^Ù\ïU™N}¹ånÔc/A3Må‘ä¥ò´AàÍ%w 7…Ô™F™4´÷%yÅüm&Þ5¤ëÍZ‹'bêùrNÂÝh’‘‹c¯‡4 äPËúñ‡ýKÈ)‡dJ±ö5³@ÃfÐ~°»'C¥]iî,áÐqg±ÄIJ‹l$u{”ÐæÕU¥÷’ºÌWšY/@g(ádi°Ÿ‚qÚi‚›Y‘œÏÿèr°X8“ÞÐT¡Îš=0y0àihLŽŒ-›½—O£uêÇ]dU; ”}³—‚€Žü‰p¦¸[ q7Ž›qË•×^ ˆWá„Ò9™÷w_¯ÈÓ8ÌYw \{®ÅÜÛ,h"8ŽÜÉiG СYhN w_²»–évT–LLþ?àE*7'M‘˜ ›³€çð•Ê4§ZhF§Yš#|Y¡ü úàz& ‘S)Ï.¸—®x7{$ªFë!˜"dGªçº»ûY_‘@^Ž„TÂc¿zî¼9*͉'1da !¡”&FÀ uÝ7c ˆ2 ‚™ÀqUAQ#õ›jôµoÂŽZ_ÏIJŠÓ$IŽUp7~¦Ê¼‰®‚ì)<5ì…Ï]Â]Es¤èþfyÿ Çô‚%)<@3½Ã;x†ÈècS~‚E‡EfÈ,¾½uÆó*ךã³|Š Íð¾FÆgé]Ì×(ÂE«R^ê€~‰L¶ àD×㙃ÿ&|–èò@Ÿ¯(™ýY‡aòIÂáý&ú*ÿ+OMb“¦äºYvÎY9è:B ¹\Ô8Dé¨ð´Ð™\õËw´a5Ëñz ¹„P>™ÊÀn×2nÊ‹'ݯ$*%ÒrJWØUø,Â"¶¢ì;š±pžÕÁÒæZ‚ Ünt :¢Yô† TKÑ ½­òâD¯×M ËÀEÜ™‰Ù t±õòZ&E]Ã?ÞɋЈ·Æx ˆöœÏ9“óع>L‡Mè]Ä]_+ÃËH.=ÊMŠéÉ“…Xhv…ˆè"²žùF#&ÃI²Ò+úŒªÑëše#W¶f£TÖóe^¦Ún¼FðºãeªÉL„w“˜àx¶ã:Í‚ÈÁ"Çí8)š‰ÐÍŒ,]\¶; ysÝoR>’íT¤uW[ ‰¦·©AÃö?/\!ÑC§[{å=ÝœOa·áSEV—ûŒÎïÀs–«,{Óÿ[®`¼“ÙçGûD ù:×HNÕýÝP¡`ù‚õ‘?×BS˜;Ç[{¦6ÓûÁâ‚ß­ò LxÕÂÜ|S†Rf\ö7⦠]¥a˜³êÔ© SluòD n4Þ°ñɧS¢%‘ý c9(¸ŒÂr>ˆn8àI9‡Siùæ¾Ë°´5šCÉÊ WXQKßy³žžÕµ-ÞÝ9€G|,@gAŒ£Á$'‘\ ,ã,§k3ÛÑEiÈÈLC¦ˆ,œiÖ]¹G:×%ÞÌE…crc¡Œïh”VšìX]ËJ¤Yà›Ð=./jÙÚØYΰÛõÈä|ušËTï§6j£ fcY!UÍo`zÕ!#¬48|‚ ‘ÚOÉýGd÷–Pn,»(ÞŒ`\¿ýf=ôbrÓ}&õK­"©è`Õ­,{£Œ­«m…†=°Ö„G àæ3•}"ÜTÿ"m†ôB¥‡ûý’½ÆzñNCb9ý/ëmàÞUâM¨Iùó'èUÒ—†ôuÇ@ú½ÁÂ2ߌ­‚×Äœäþ‰*;P²ìïÌø²Òü­åˉ7‘?î¬ûwåÖ^×åDÖtóv,B/ÉÎ| MÅWî ±d¬øÞÆå÷»=›àä¤^Î!œ«äãúMš j+Ðw{| «Ù·‰Ì“¡÷•!÷0¸þÊÓAu4µ ÊXÄV*ù†ðÜ—½Ér½/³ àÆª,Ód%Å#z¼†•ò%Ãä ö}+ÍËzÀúV"Mq€ûGîpšì½@Bãw¿HÜñõ¤â¶ïÌ$­{ûFÁSu®cRúH¾)!Ò„p äÞDÖ1*ïݶk%š‚;ºŠàéîè Þ~Öòú{±ŽóCOªô¯/J^>÷šœ·"õßßO¶[–QÑ)•º‚{œ¥wý°VƳXÇäEßËÉ6пÜn¯~“&‰ëô|D&‘ÍîdÒ`ÂG4äy<|•¯)4a]BôÄAíæ¯™ Õ“FвܩîYê }—›éHˆê@¢ÎË‹Ðbo¸ÄnNtËÈYÊõ.ùx3͸—³ß¯”ïí°[3{J´÷ºä-PB„® ¸¡ •©2æSøsòΩ;näÙŒw4TîŽ:ŸL?t³Ï+â½w–fãnŸf'g|>4›#3´rÃÜ>ù€¹žF­?àüËïs w/ox^ÐÙ“ì‘`ïuIbc{ÇBõhn ‘û ßé­1˧¼íª‘™þg½O&zäïÌL7t›9KѰâ­.â!³S÷Ûwéwtirýݾ,Y˜hÖŽv§ÃÄ+‹ðyÝ#º!Â77}kšÉ½°Åñþ}-¶/ éUô¼[ý nY Êé£w‚+gA1iËR8¸2lîý¿|2|cº‚¹Ôßä×e~ëî'’D1žQÿ?ÛE£Òøþx­³e8ë‘ @Á­¾âèªWp«w=«?}ô¬¾ã¹ÌªWp«×­ús|¯¦ÈÅ3|Kz‚Ú©ùâWSç~t©Þ]ã tÇ9ÿŽgðÙÎR  ã_0±À÷ó£³¼9ýÌ´Ÿ øp%E/fð]hksîÂOäè0„HÀ|¼§êQãËKˆï„ÇYG/q±§”Øñ–I@˜š;Òà 8`°XóI#}k._qÃd4•HøPÛk#«ô;˰Y©¯ÌÐl5£xŽ ’À+ôÀÂ|DmÒ$lhþ­“"ôê€SÀ ï-¯ â‚ÏùÐ÷Vk>ÔácÍGÁ}¶æ£À¨²æCS‘­ù(>y:ò:`œóQª&°ùÐ$˜k>Doç|ËÛ`óQ0æ5:†5ÅRØ|˜¿²Ï‡¨û9šþçç h°!méšÆÌ׈ýÊgÙŒ+°å ðZ<Ûq<Ðê–( áIãY°|mµ¬hôÖ§Õúð€·ÕÃ3²kžå¿ox%Àdœå å‡í<àÿ;½6É‚:žhÕ#-J,CŽU¶· ÀÃQJŸV«£1¼m¬>ü ùrÉûV…ì'•¡E‚:¾£ËŠÜ]Áwz-ò;žhÕÚ`.ûßð`5öVãŠRm}Z­ŽÆð¶±úðaNmxžð¾@B áê¡YJ6ÀÃú§¸jƒÜ؆gZõŸJAîÛñ`$óVxøéSkm4Š·Õãaª†©9ß·‚èÑùƒSi£ x$ymµ˜EÇS­êOµàÐá+Þ¡!öµÕãŒÀ¯}Z­ŽÆð¶±úðñøNoyæ/ÝÖ`Ðk¸ ŒÂ)àÁ9kðÚlcö´‡í+€$cxOV¬U<@¨¨ì¬VG£xûX=ê¥zn >ýûVÐå.ADþ$MýaY^àxmÓgx 4(é|ïxðùòV¬,iÕêh o«J–†€­ï[AÅÇw|(*r.¼o»Mhõ‡&\·Zğ˪í°Êžy+@˜KÇÃ3xo5­$ Ö§Õêh o«˜«N+Ј±Y‘*Æ:GÀ£˜Š½Âjˆ2ðhN8½!¸1·½ÕºbûZŸ(ðÑïi¬ä5Š¡»Aéó¾À'AY³*`އq@ x¸ýÑV-¬ ާZÕŸz¼Ë1<ë÷Vx X •·áoë“_´2Ã÷¾4ÜÏˆŠ¯d×òx<þ¹Œ^ NÇ ­®`üQÖF4ŠWaÓ°VX‘øÃªÕáÞ6VK‹ðñ ‘qÞŸ ú }ߨÊ8L6<<ŽôVèOµO«õáo«Ç××—éðÿ*Ç ú» ÿO“8Ðø÷úBÑj³ˆZŽç@ð0üZ ¡" OO¹µZW4^ëÓju4†·õ)¤~‹òhAƒ°lAíbU›„ÔV(k ‰ïµ˜!Ç ­n±ô+"ežä’ÈÞª[ }¯õáoë·DÑGجŠ(êï[ÔðIó7O iP|yê|NE*{¾ÕÂèex+!˜• oJ•ãðVð¸ü³O«ÕÑÞ>V— RþÚ m`†EîÐ ‡Š6ê!{œ¢M««VßbžåÌñ¦ˆwãxà9¼Õ|&xÓ>­¶Øëð6žÇzÆÊïÃ^§¼?t_`7µÔX)à̵D›ÐÚ~ØÅÞ7 ë§-[À$Ç‹ÂYx«qå9°>­VG“V¶­±Zý±² zËáÜ©ÀZ„ÄNˆÖ*B^¯¦wq°c⼯‹O´º2S¡ ä…‡çóÞj\iܬO«õá…üų`o¹KE†ÂCd¹ec6@ïR<óZ¼ãw<BY?­ª1ª I/½ÕºÖÔú´Zámcµö/Y9’Z%ÂiáP« þŠc—(Rh¦Xmïÿò~F ÿë/ÿ²È - endstream endobj 111 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 54 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-6.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 112 0 R /BBox [0 0 450 305] /Resources << /XObject << /Im1 113 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C# ¶THÎåÒ÷Ì5TpÉç ä`M endstream endobj 113 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-6.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 114 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 115 0 R /F3 116 0 R >> /ExtGState << >> /ColorSpace << /sRGB 117 0 R >> >> /Length 16686 /Filter /FlateDecode >> stream xœµ}ËŽ-»qåü|E u.3“ïa˰0Ð tKèØG× *Ûº’úñ÷ÍX+‚™»2ò÷y î©Ëä’É$ƒñb¬íåï_¶—ß¿üñÓ{ùãKl¯½¾ì%½¦ú²…òšÛKꯡ½üòóËÿ|ù7ü(¼†ð²oEþl™B“?ú£_ÿöÓ_ÿé¿ÿç_¿|þÓ'ùqx9ÿû§Ïÿöé¯ÿn½þö_^@æ?(Öýµï/{¬¯­¼üöíåWóïoÿñ‡Ÿÿüóï~zùíï?ýíoѵpÐýÕÑØ6þ·¼ì5¼nšø»_~þã_~þ·ÏÿÏšXzÛÓ[´½¾œÿÅ[ úo~ãTÿæoþëxZóËÿùôÿô^~÷i{ùûñßï?màù”Æ[n£óòº÷—­¿Ö$ÿ¦$}ÿúSÙ_K~¬ :ÿþÔöר+÷üš3k·°¿nûí¶o2­µ)Ï~Ç´|ëçËá5R}ü|›÷Ù<Ê>þ7ž)÷UÊmï¯y;“F#=}¤÷¯òñG²‚ÉzÓ·í5‡—?¼üæRŸ^÷ùMOõµ¾æS=‹§úÖ^Û©žÅ£>†ðº‡Y¯ÅS=4ëñ}¸QöŠ5¶@༅å=¦¤c1î;¿sx–8†ôÚ"?õAüÄÖ|÷Y·ÅÏú°÷Þ^´XÛkÝ1m›»Tn¨âkädû#yhüíE7öb_lü ú ¯‡Æ'Õ±ý¾w¨ü¾˜ÐÛ‹[zõ }ùT£ëñ¹>ì‹¿½‡[쌭dõöØüA÷Ñ<>¶ïÑÝô÷À’–{·qÞôwC7>ÿ^úcûƒ.m¯%¬÷Çöºû{hÿ ûp>Ú÷è„Sl=},³|Û)°õÆ.ÞÆ›Te¼À»_œÊSºïQv´q”íi¼g9ýâ(Û/D2Ч_eûÅÃÈFª¿øÆÃ}ëƒKä‡ÓýÕåúñ.bÙþHœ—‰K¬áA:x¢çRe/?¯÷ÜGOéA¸8zžËÏ6!Ërרkãý/ n—¿þbÈ%Ÿ~Áòùm¬ëíô –O¿Ù€L‹¿ÐòùÙñ‹c¤ bu¤¸„ä _ÿ‹ÔãOÊ_ú‚_¢Žcƒoõö+pÝŠayØv¨•ãåÏ޹x,Ïß+k¡róUÙù¬ëüïþöÿþÇÏŸ‡®óò?~zëýWÿü‡¿üü§Ÿþéå·¿6M¢Üž£ÈÚÓË?þê÷ÿúç?ÿüËÏ¿ûÇŸÎÂÖÇ,tQÓy²à˜åQºc¤ŸéåÝgKÐÌmNæ>T„1)²fKÁsþ3†ù/Ÿä ÀGM²O/•c»50‚²½¯¼ž?èlìÐ-ŽAÖ×­_Ú‡¼ëX =\*c¦‘…û¾«¼y³ÜDh—©Êïeðãknè¬ÖÅÁÝ]Ù^L‹Có—äžíúJCTßUêËöAY²œXï+[•Á˧gÐÚàÇ"Þ2¾äõcÝÍ_GìÛúåM–¸|ßýò}oz)cï‰Êè,Ãqd¦ ”Ñísè^`ÿ×>ÇÁ2†ÇÆM—W¹Û-Q¾ïÞÊk¹tv3›c`\¸|€›^Æ–ª”ÍÓõ•b€´3*¯“q·æ1«²Òöë,ÈÁ¿ãÈé×Ê4v‚0”.:÷ûÊ2Tø„uâ|ÐX°•ÆL%§ÙúZ;(ëênܦ5p›¾º[†äy>î—^ðÚË&_vó=« \/«LãDذºóêøÆ,™Ü(Ð2ÏØ)Î\7ØÝnÞdý [½2€}Ÿ+Íãi¼„2\?þø‰fçû&+ÂdÁYuÙÍÙšu(‡è ¯9öfNR‘õ‡a®r¸¶aÍË!z}³œdƒÅЅݯ að=‘pÆ—¼2Å»C>Éâ½ÎÂ>vVƶ ×Ï2f56z×sW¾ä]h0—É ÂPðçº2x¤,—eÙalîºcÍ_è¾ï"¾ˆ,²¯.Õ¤V™Ý!‘swãgvÞl,à*»yËYY×ÔêVßñu„Iäe&‹‰“Ém×SSMžõñúÍÆÝ*õrÌÉFõ·^¿ÙøX©ƒ)æÕlè[-O]fên©ÌüæòÑ¡{õŽoæÈ£Âà+8¦sBˆ )q5ú‹¼ Ï|å -ˆmYš­×u2v@¬ØXÅ¡Œ¢ÔÉÛ_ÅŒ»EBþ,3v±Mnà íÊ^¸N¤²^׉Hã *ïv}³Ä »î:’»Áu~§p´úµkÇVöwýÚc7o…ßìºãE$)äZ«çY†4޳à²îÆWDí­^WÙóX£"¨ˆÑw•U.d‰9gߘH²Åö÷عawOx“»sr¯RŒ¨1Ñ$ë°¿íµUPf_’åʈ«2æ8²Ô×=t/FîÔK½`,NQ=…_/*ðy ;s’½8ì/c˜à××k îtì8© Ï±T¯¼Qø@£ôâ0‰ÁµzÆ s˜õPòNiã2 w‡I.¨ºÃÚT’­B×¼žñw[½QÞe6{/z¢Á§RÆü•Õ³e|¥mËzg4°ÓÕñ‰äNÛY6¢ Rc¼VÞŒ¯Su*.kï ±*Ë ñ¾½ÞÉÚŠì€ËÍrVÉêvÎÇ!±ËzÙ²tš#8\p¥gaåF@†æN{ûæŒ$Èz–5eòY DW9¹œO×8Õ×¼™ê Œ´-«Cì2¾]¶±T:Šhj0¾ŒV÷dL[ǼšîÕÉZôUQ¾éE$ÏBãÚ*“™.“èl»ª˜œËk>cCXý…^›§äŒÆC98 ý]/™‚ì©ò]6œ°ÎiÒ3L–bE\Öw‘#¡9"lŸjÇ*gjP6eV¯GáÝpl ÚVuÄÁn$HhLFsl½pwÝ™bk£ŽíÈ‘1È!ƒ¿²é»ïKÛ{RÜ >@&éÛ:Ózê•õµ*o˜qP^yå݇HК§ßßÛ]w Ý.SºlÉcCàÛxÄ:95n4ߢŒµ/ìf»ö ]?›+Ül´¡Ôu+±K‘=ÁE‘$W¦+r}¤–y}í;ŽdoBÀ]e!†ª—=Aö:¬Oìuq«>ÃßoëåêÁùB/j¸q$ŒBxqìAw;6RÏ÷̺wâ`!G˜øunô‘ñ9®‘íh¼j~ò•ö©ëºaÐ$c¾Úfä 7ß`!žÇ Ó[ìq1áò*ÂÙWåçJ…hlƶÊâªrÅà©zâP¥e3;¹¶ì_OÄSm©¯[âD›Ë®ÌâÞØÖ©§.¯©ÁÅÚŒ8]\SÌœbpYý¢•Ð\·ª(ˆx.[Ô×¹EÉ‹ø×S厥¹d¯,}/œ¸â-t€ì`Ù"ˆ 9BH7—äò Y~+¼qÙ.×¢è3X÷Âíƒqu«O˜t¬rÃÔÁPDÀ]žNnõàÅRŠ&ì7ûìþ‹&JzmU3Å—. Oÿ…ÏT¨gÒD ¥Ïý!ºÓSä4KQB„Öe·Ï˜)lãèmc bÓèWG®Gˆ«ð«ïNȤÿMœ~¼ÁžáUª'Æ5oÈ®¡ÿãjj½yí­Ëüá ½Î1Íž`Ër]0¹jܳšèY¼î·»-ºAÕfqýXce@<}"(N^”'ŽÃ‰wõÁîëžÏŠð«e/ˆ€æ»ûs¼Ò^ øšÔ©¾ÌŪª™ËÖ¶B²yÎ×^,N`yvŽZDÙeþ¢Á虵ŘÂ{!Ë‘xCGI”–½@;^ô©HÐ!¦ª@åð¶‚HF,ŸU+žœ 2ØÕð'gM¥}Ý”ÂeMhŽ—ªvYŽÐ¬\®¨ëÅáŠc$äP £bˆ¿#NJp6M!W=ðf6 ÞÇܲ©šB&ß~qqjd@}‚¨[¥yjáÞ©`uO§ ž¶â­áma»1HŠõ®3ÈæÜ©†ñjÏȼ‰êºÁ9BÁaåDKìv8Âf¡˜%b¥+éE•—C„;ãB]#À¾ñŒq×q)¼¢å¯Fá·ä¹ ³ ÊeWvÓÀWO¿{3h,p^¬h,Fâ²m50j¯z®]¬~ækÐíÝ™ºC  ß*‹hÞ@Þåd$Ïpv‹_\¹ÎÞ3 Atuð1Ò¢×]ÅÂÜMh宅-`_·*Jðh§Œ¸¬¹Œc“ט¯«ü®—,Ç&Ö–ë€ÚÈ ®çš0‹¬ñˆ«Âa‹2>8TWy®˜cy¡ü p¿]vêã×0„ÍúBACiµ„¶ùk}pCWik—°wk›%þš}[½ŽKiÏãþüé×òû!á S—oõv<‘…#w0ÇìI€@_m”Ð_eXÕwÆ4+­ZÑ6=ŸH& Òîuù±Ä_£ïY?G Úó¸õ]:ƒ$š ñ]ì û:íÂz^—7KèO!壾°w¥ÕÚæ¯õ ={F»áR†µÒgIkG}4á´çqó]’ÞÇì0û¼Ÿ $µF“Ï`³º5YúŒ_Ãß5ë#‚VKhÛ~'YŒ¶an­í6¿¢õmõ:.¥=ÛÞw­dMƨïÂ' Q²RB(88´±–Ø_öcõˆb™´,±mþZŸ4™M£«u˜m³ôYG"}[½ŽTiÏãÖwÙxÍa||]cóI•_IIB¤;¬äÆYB¸å¬`yF«¥bkl>ɲN&-’ ͶQú¬#AßZ¯ãRÚó¸í]ŸB«œõ]ôIâx ×AâX‹]òžïRi×Òz¦©3Z-¡mþZŸìÒî«¶½ï¢}k½ŽKiÏã¶wétõÃ,÷v~Ò„ëËá³ñø[ÍŽ"–ÐßÎÙ´zÄ”LZ-¡mþz>ªÎ¤ÅÕâÙ6JüµöÍúc¤Bû0n}—=óæoç'È2 ¥M{·c”%öWÁe­¾ÚÅgÐj mÛ¯;ïæˆÀf´Q q³m”>ëHзÖ블öΤ&@Ùc6T\g ýeh"³~‡„e´³ttöÛfÒR µ¶Q⯃åÞ’ziÆ­ï’wZ‘ái{;?A’,)5åc2Vª,±?d¬˜õã1Z-¡mþZŸ ŒÃhu¯ŠœíEíÛêw³wƒö"#dWf7…ô7Š–Lîíý¨çC¥=J[>$pžecÇNZòKkûà§Ö7ëm\¤}÷!Swf ®qÊÔ½X6B‘t‹fÈ”‚»•8º†ë%VWþ¤ÕR™£³'Ø]“W¢fÛ(ñ×Ú·Ö블ö©>êë¡ñIu,G¿¯‡Æ*¿¯&d`>[-†Nå÷åSúG?ê‹OlÕÎØúAöQoÍtÍãcûÝM,yBùÈ6O_‚‰º£;ÖÖ—ûcûZg¹?[^F÷aítÎçCûÝ ¿âË2ËwÒ.&°Ž–O@ó§ò#ÐÑÆQ~„:~q”!€Ž_åG o¤ßè|º? ô@ü,ÐY:xèøY ³pqŸ96¡¢œ„øèô Þ3?-ý³-¿`ùü ¹{{‚Òòùc¬g -Ÿa„8²Fèé* Ï–÷o€Újþ ÙY·@¶î òÇvè„ ùòç]yþþèª: tè:ß h2ý³@kÒÖw€šìéÝgYƒ‹ª›P/•Î¥+‰0’®³séê.Jy7I±zmo|9IH2Ús.kd¥gï¾ðÍ›1g•L…_/™ÏúËN£ãbÜ4®à¹gõºQc"ûê¥p–la8¯ºwIs81kùeðLŠ.^¢å<“/y ü¿|‚ @8âõÖàM/’f2‚±,gMÌ*J<©ËúÃW—)÷®ó ´xåÜ[Q@\ð K!´:7¢Í÷ŠRQâÞ§Î.úÝM©ßM²“uçn·0¸#Ôõ·1½}}â¢æQo^ê%dÿ¤<´|³«2(lô‡`‘$|P‡¡D^>’L5NVzUŽ‹÷ASÂíõêåÚD~1®ãk.Á»uŒ¸Œ­y¹ÒîÖñ¶%ŒØym¤·’9¹¾Ù=«ùj¬nçOë•ݼœÌ,gã®×5Ç3˜N3DgÉÞõ‚4 ˜sÖùí&ñ½â $»l¤ÉÙ‡úç GÉ’%qóp‡‡L/j;ŸE2ÏÏVˆÛAÄ ºžD¦2ÕÅx3/ýt&_ν»›!l¼-ø¯«‹Sòô&îI‡2ÍPvs$€§¹ €¢“u÷zeCFŽßÕÙ“"4”mýbÃd 8 ƒïmª¸¯^Þ’@ñÅM`Õ¸ئ ¼Nùf0"oÊ/ úÝšÊXL¹¬'î—㜂”÷ÍpÙJŽ¿iÕ¢y9ÞÈ]swa.˜Èª=ÓP‰›#Œd•ƒ0Ÿ®,U‡ ¾"g½$üv³&Hœi¨^š¢Œû¼S:^¾Y'ep3’5ÊÀ»—I²19I…é ’E´œã¦!5µ´·œÌ§ᎎÎËko&é8éL3ÔF¨¼×©Þ‘#H˜õò©Y‰?(ìtù‚63^7Ÿˆ†§ºŸNH®Îùxw¤âT‚̻̿™àÍE¸cÏæ:{Ù]/Åtçë9±¬Œ×±‚dlXÉ¢ò¼4ëà+EN®w ñg”»½,¸ô%“›9'§¨¾œ®§MÎ/×€|p¶\·ÝÆÜÂÙe’_ŒÝÑ@3NVÈ ÎýàÄ#ÆO¾Ÿàh“lìÈpFdÈJ'¡*Ó•A‹Yå ‰™,]Åñî$ä—”LúËŒ]Y›wß1ö ¾Á»_`çö|eìw§&œ ²›¤6*TÏâÎ\ ÂKæŠöﻌÈáR‚³€UtéÔ(A®py³’ìæ¤ªÄ§jѹm}'±wž8ñå¹ÑäáuÆ|™ÙÍãYªip£ôBõø].&ë/# 6XÃ|y96ó]Œ7ëŽ}/ \EEtáœ×óˆí…n«'Õ0;*LÉO¤ÃÁ¬zŠüM/)úäuøé1}ÂÊ”€”%‹s…¨àÂÞÆû.‹ç8®6â\[^åú”Ñz[2ÕÓ–Œ< Ÿ€nNÌd^Ý|™ûŽS ãLX¼bÿÈÌålç›mܰºˆš&Ò —v™YÕ‚›"WP;•…8ùÓhJ©<×ÝvfòŽî¡¨Þ >à¸kO¤ß=/Ù1ØÜô²GÛãz^˜Ä[Õ¡®ÇCеÝY!"¿¤~£QiÞ(ëŽ4]°ÉkuS²kš›×—Àè hçJËë·©›ˆrMërJI$ÞŸ“>IÚiYÆ”Ô;ò:´yÞÌ–UÍnzéz.Õu“ÆÄ0ÕÃоé¥Òæ+ÀO×5!Ú/ãjˆˆË©• B‚ø TjèùþB.d7Ñã „ú…1ÕMX(ƒ÷án$ ·€ŸX˜äY¢’ùÈ››Ë»Gjàž=èÃ7ŽÝ}3âww7 Äyg('ޱ1§žïX«È%%&•«Gãnð$‚üÄæÙ"»éa¿Ô‹ÆÆŒ- ñ "<~Oœ5Ø¢i]b–æ#–˜Á²áV´ÿ'œ M#¸œoG˃œR®i Ööê˜uï_aËmþúリo»ÛÜÈî·3+Ç…¿0-]ö1ïØ5"Ƭ^¹âÔÍŽ¹ñÝZ"ªT%˜Þn5s8S¥''¹ÈHÖçû2ÜaÁø­yY–ÝM>ð,¼â!Z¶£wEVÆõƒRü'ü’Ë~÷Ã&ºŒ2%ô¹^Åó›^íÍóªÜ­¢HŸzZ÷NKdÍ~Ãtoz šÄájXOÀq7ú=¬PÜu•±|„܇½< D$ Á5rq‰ æØZq‰KÆ·®‘3÷dÛ=§RÖ=TÖQØ|a zÂ}¹«§c9Gn¢ê 8оàï!4ñF¸Üå…‚€Ýc>¡°îèì%¹y\Œmõì ­ÎƒdÊŒHó,$ò%q8Gö˜b¾±"Åh¸óiÈ-0Úw,ù™òdõP2‘”ʱcYJ*íž|§ÉU8ˆÃŠ˜ö0ì[æi,¾/×% ?ypœw#Ý3¹­»¬˜¹:…k"i†9¦Ö† h´eV”ˆ'Õ³„ßô’ieöj/;ñ$ÆaU¹ËÄþɺÙÝ>ÛéÙ¼xƒ¯<Ë /ØÖ\BúfFo'œ®ÒwU‹£àK@ÊÎ`H~O´yÈÉØÍ;„¸+¹?p!×ïž#¿qçwOšF2pî·+Ó¹eÙ‚c0è‰Òt¹Š4ý8;?3w¾ s9è'›6ì ƒ4D@–{ÂüÒ(×/Ÿ`‚ƒ™ÀuÖÑÌ‘RãFÜ©]Ë:¦6!:dÔÎ2”0ò ã[V"†F ž¶k{wCŒÈë‰ÒÊìúzŽãݰ–Ñ)2Á ½¬ gc!Î)E 8 –OŒ€®ûì~/©|ï˜p -×Ì·6„¸èŸÈ×½i¨«ºwÓKÝ?X<ÞV¨Yµ¸àÁä@ˆt¢9è',.nØÄ1˜Mÿô† –ÁEcl°vÜD01µ!BÔA£S4®žÍÑLgÏÁeìæ2Ö`g>ðfud .±kÖz©œÕ˜J±Dî àt"?4Â\¢'ÏB Ä°yÒjmv’9̱Ñgàû³CîfN#¬JpôJØnÏh¦LƒG‰êÈ6òŒmP@µx&8Üp£×?{MñPvR:æƒÚ-îÒ ì)Œ<ޜȴ{>0/ñî´C觤˧‰r¯ìwî˜X0 ®³¦äqðåe'?DïOXó#?\ÐúP¨$O}ëïC@‰³[x¥°mOÙΫH-›ôˆðîÞªV”ú¾–õ›­çe?ráÅËì…lÞõ’í²‹‡WL,r°9úÆÇZž¢L XW!÷y±cG9ÒN×c+ÅÓ«avËá±…ÁÕ3‚v˜ÉEWvbÈjå1÷ê@`ØÀ[–…×B —ìA)*â—q¼Ï» >'¢·õëFûưvï²ßL‡E£ÖªØ¯W<œ¯û^MÕŽ5Z.P:Þ101¬ðzOF,7‰•Ž@%Lœ'Æ•ýß¼Y%DÑ`¤×Àµ»-ÀÔÝ>ò¯d⧇ÃG‘µÀßëÇ—q”'=m³—£|‚:ú}Ç÷‚ˆó×e‹ˆ Þ_•-B²¶ý+³E íl¸É1×Çç 3S8Cïœ~±1[Ä{øI‹òð –Ï¿°lö‹#[„ý¢ï¿`ù Ä‘ AÇHWQx¶ŒPú¯…:¥‹ÏCm&Mh¦‹P4™™þÁÐe,=ÄœŒÇò»tÀúãÒE(ÐwL¡@ò¾ èÙT]Wv·4Wµ}´cU?´Q{œÀkVIŸ–IX-+Ê'd‡ü= v1;‚™¤Üx~£Pp"]웨fRfœgG)p$ç*5u¼ v¥–CÌ¥)™2"–b$Úu‡+€7ÑÆKÀT9ž R€,]=3 {à@^Ig IRò1"ã†z̀姙3P“Bìè tç };Í€^{éÈãÜè6"t-ïÚFžˆ1Éê©­–€"{‚[(“¶ ‡´µ] `ö­õ:.¥=û”›–T…8=iL„ˆk܃š[³R[ïG=/Ëí,)À|RMm´EöËl»Àì[ëu\J{·¥Åf¾¶äâ·óÄdˆ—vEnR¶Â’µí¨§Îhµ´ÏÄÓöm“1C³ím¦v¶¾µ~3& Úó¸í]*W)bDßÎOX!Ç|å—ešm¬w”Ø_gÌ ëÙà`´T&0=É+?i“H¥³í4i¬o­×q)íyÜ–â›ï^ ?¾žT\ð“’Du1½±s–8:δÕ3ÐhYbÛüµ>iâ©7Zq­äÙ6K•$}[½ŽTiÏã>Ò•K|ƒ«æíñIï(õÉ™ì(bÉÒ•ç}ÖÁ_‚É”ö(íÛLW¾UãL“Aϳíbo³o­×q‘öaÜ–®<Ѫ†`•·ó$Œ‘´àb´(¸è7Ѩî?Îzz%ŒVK'PŸùÉÍ•v·Äèh%ƒÚËQ?G Úó¸ ˜-Üåíô¤!äWýÀC@8Á²ú´HÄw«ß-1.hYbÛ´“û”4i+bº¬m– HúÖz)iÆm©×éËìÅx;?‰(bh”ˆlýå,ÀYH˜>ë3lF«¥}lO¶vÐn§$ïZú¬Iàc9êçHA{·½K£™øOoç'Àø•’žœ’T_E/– ¦g/³>1°Mi­„¶í×úd+-R­Ì¶Qú¬#AßZ?G*´ã>ÒÈ‹,P҄˳'È!€tíÜ!¥¿L±ñRH‰©x´>QŒUZ-¥ —gO"`Œv'|¶½ðBÚ·Ö블öŒû®ö~†Ò˜d1C™Dªj t‚šõÙdÐj)N·ãÉX “éUfÛû܋ַÖÏ‘‚ö<î¯ &elŽ=Á=f1e¾i}c7y¥š>B©ÕÃñ9iµ”&lŽ=‰€Ç5Z(Œ³m”øëÍ®·¡^Ç¥´çq›®“mžªêöŠQ,…»*T,tµ²D}¤Y êá™´ZBÛök<ÙÆj´›¼Äl%þºØNE}6©´çqœQã¥}ê:ö×E"‘¤$X$M/ŽF“#Q˜fýf …ÖJû¡ël–A°JŒ–xØÖv˜PªÖ7ëm\¤}·ém¼ÐTšÁ³Ì'HÀ¦ŽØaßÔõÞž´úÍ’æ ­•šÁ³Ì'àGJ[øÊÚf‰oξµÞÆEÚ‡qЭrm= [ñ¤ 7‘RѱRÃHÕJS)GýŽsÓhµÔ&<‹=r‘ј¨¬m–>ëHJ?êu\J{·ÉÔôÖñÊàÛãÛèq*ˆ~D_­dÿžz†èí,Mm"[–¬¸OÚÜ©'±í|Ò&Ø·Õ블öáe)áªÉ†ïLXL-MY1õaôFËÛ¶_ë“-NZ±UôÙ6K&¯#ÝšÖÏ‘‚ö"ìLúY|Ä×™õ³øˆ®3ëgñ[ç:¾ïЬs:?ŸÖ9Ó>‹«s:~Ÿ†Õ9Ó>‹ªs:¼/p.s£±Øó;H£‚Ìi™³^" Nx:,žêk|@ÓañTßÒ–‹§zhÖã[³IéptJýÉ>}‡¢£+Ü@stZ±×ÈœwEûñ€ÎÓ>gª ß =g(yÏ‚ç,‰Gß;ÇØÏã×XCλƒy†.a­–ì^:z`·1²/T¸G'óœ !³F7qœx©9¹£nÞ‰ à»—!Iã²¼ÓòªŽ»ß½9núO˜(n:kÉ/Ù_’—5aÉãM]pÞ°­OÜQ(ð½Ôí‰ü„ðÕ×'’„Jv€$ºÊò­¡ ºÄ9Ùо[ðr;rïUïÎ¥^Sï ’¦ên¦Œ¸iÓùØ…yôê]F’(ò$u^>a8$ÇX–×Wltõ²kÜÌá§{ Î5Ï›>‚ôº‹X%îÕ±“ã: OÄî¡X¿ ËÞsx†Ɇèä%»ßi5¯n®µ„ÚZÜ[¤0Ê•þ,NGz}"©„äÙìÂëœÐÿ¢ä?_¾j§pwÁ—$œÜxù68ÓËɲzƒK®MŒÙÌO$@ÀUý^¼$ö†ùº{7Ëy-‚ñ —}Òqîd/su…1?/ÏQE.Ÿî&ÜäíŽîálÝÌMº’Þvù¾ÓÜlAH°Öã:R†\~Æ›._œm¸˜Ú³—`Gºìæ•ø…"ßðzi§¸»ùAèÝ,Íû¾™Òj}"Ç9‚yE:¹r‡ G=:9ÿnæbGŠ™=ç²Ö޵Ð]Ì?dgëÍÇû"CvXƸJð3–öÄÍTÜò®^Ö¹÷%c«^ZX:58óÊÅÇ—Í’ë]cE”¶~QwìÀ±/z\ßÔrÆr2|JÞ ‰DðÆÖžÝ“›¹Š6¢)cßלÁ>´VµîðkBöè† e…»ïÖ3°£Mwiž*Ò u÷œÈx]úwîQJHsÎeuábí¥züùnÜÈ—Û½üÂ÷ã–ys63î[úß©"Ø1?q5#WFŽë ©@{[¿qÏpR÷2ÆOÔ÷÷Pý²œåÝͼ/Yɺôä­S¤>ëÞvI›!ù™.D“*^z‰†!çñr¢/Ī—›÷n.pµ{ˆz€ ("9IÝÆi×p^8gPçèÑÍ4…xèžÄ#ù’ óëdugMi^–š†›ÃÝ•é.åôæ^¶‡–ѽì7ó»wÑD¦yÿïršéŠ ‚òDFŽô¥mêd¾Cv£òDvå€%yw95lÔâdd»—±d_ìž~Õ‚,–µå¹©zÚzyÝåWr;6€ ‘[ŠŽœŽ@‡º{—½+ò¹/-Ú½çcÏ^¶c‚ Š¼ëȸZ•]ì Š ZµpòÝ•63’ô'[˜LºoëïqRôîY‚*ldÝM'$–Ü ÷ô*o‹0 ÆÏrFW$äïZÛMbçÁóš]ên5Ù9{oCõTÖ“"µ8vk}® ’ðèåì¼9íO$—å½OázÎúC†S7õíN™¤{Üòfl 0¼Š%ù~s¦ŸÐïxCP«Vy_ÄMб{ã²ÎžE¿— .[éè·LéÐÝ$0C÷k—÷FC¢îi÷¶»ÁojvxÊý¹ 1Èå 7Øë’‡L{÷ý!añöÙ"ÿ¾[\;Tʼnâe¿’,-;v—}é^>0‰pƒýÄáï©é³›2•QÚ½=‘Æ YHú¶.Ë5ˆFî¤*ƒT!{qÎÁèý ÀºŒL”¥9YîîÖ-n}õ¶žÞ¤•Ûï}ÏïÆ Å«ÃËóÀ·tÄ‚oÌ´Ëgªž‚Ëy”’jì„+8Ø4[ö¦š c'Éà&©x²|ÁýN×W€u“^\ØBÉO]ÕI|ËèÉ^×3ÏU &óóÚ< HO2‡‡BÇKB™Bpd/»¨ÌE€^sårwûüœž,IDV÷bhqX×£[1ߨ*ï;B‘¯¹œ:4àdõm»ã´¨°,CõU¤Dì.(¹È~Izr£Ëн¯NÈeI ãØFv‹¯r¾²JõæÙPbª '–-nxÝNŠœ;ŒK¿´龺îÒTRs"”åôçÍ…åx„¨¾Lç>ÁŽ|þ¾/Wì °yQˆÙê.TÏèOΖ'b¦ÿVa9¸çÕãßw<:¨zJfƒõLN#ß ½i9n›ˆÌ®4r×?|â²[]è z†[Œ$ ½;1Àm­Û:øV cü O‡üäÄ‹~ÔälYî_òžàRÿrÿ‰¶6ÏNu×34ÏêÕUék{Ô‚%æv9¯ÀÏåI 7cˈ’q=Œ÷{#Àz¶C×|R˺$£Â6zuw*TîØ<[„e†Mšµ4nñv#RÖùnWÊܨÒ{;I÷1"nQ-ëuLªYÃ+¶(/ íno6Yãí±RÉ…‚gnÌØ=d/^ٕ߯—!wIĘk·+½´uÛW…}¤oë÷[Ä®‚ïæÄ•4Ü­ªF´èlë~¬VÃûz6è•î#|CÄ_9±i’‚g–£›õx>gD‡ÏF*ï@ß¼'W‚>.i#nf9÷¬àÁ«›çmژ˸=¡Õñ®ö¼û½°Ã¥ÿ»s C>ÎÞzÎÈ ';gÙî‹[MÕó ÞëX=ù÷yeÙü[™ð¥ "ÈA™íøB}wøî ¶àæ3ˆ÷`íÂ.2Ëî§|ïꢬH½#ÁQœ-§Ïí/ø¦,ÿšœ±ç÷yž_Ah‹›S@?š¸ÚëžÂ¨€hÉQ”,žê‹fòÖ³xª·¼ZäÐúyï_ëY<Õs@³þß*jIBüß×"¦‰Âó€)tÕnðR,1€"oØ]-Z&›„Çâcb…JAÇ?(åû%Pœ:^¾&åÉ,JW^³ˆ’bKX¿Í±„ŸÀH©\ƃQé£ÃÌ#x ž› ÿ±AÙßä•"$Ÿ!Í€sr.ʤá7 F$gúPxMíÐùZ×–eÎgÚO’{hò=(Œ¯3·¢(’¬)KG€q‘ÜvãÝZTLFGI'P”Šàï&J%ã°7ÎÀ•›oœ¯3ß8#y¾qÆm½ùÆâ2ëÇKûéx㌰ïùÆ7ÖD&öÆ^»ùƹoLñùÆe×Z}ch¸ó ²~;JÙ'lˆ>€WFQH Ìò:§,œðO¬¶C£caŸ€!óA˜Ø'›´V·‰¢}j­ /”DZZúÜq„Õ2¹Û˜u¤ þwä¹Ö5p¤Áž"FZ‹FÇB=2áÚQ:ÈŸÖj±ôÕÖ§ÖÚð@w«eÌí0ºuK¬­xŸYl³äÜæšeÁòßÕÕj‘2ÖèP`«ü)`{(]Å%%m•ËÁ+&pÖêðHw«›tÜ@Û ßÀàzž8;}˜åE÷ Ÿ:Dd½dÈ!"~+ ûD6˜Ú£âÖ€Ü ÖV· k }âÁ1¼-?ŽÕrü&\Î3•¬>(@tpÿKˆ¨€€'°ÀŽ . imÅ}5¥c!Ï$²úQF‡d€ÖjšxÚ§Ör4Jw« ¿Á°†·Ó„4H¡"v]4[ò0 $«Ý J+’!ÙH]Dü€¶Š‚—Ð'‰Ú¦Á BwëZ"Å]×Ûñ !R¹ÇêFx³ò\ ±dì:«ÅÍ'£C­ÎäÅQÖpïF'&Üd­²`¹ˆÃ>k9<¥;Õ†_ÅrK8ñ·Ó¯ Ⱦ$Ú#½èÁ‚”lÑjG¡V£ÓB8p:ð€. ¥/U·VY0xÞàD-F£tç±Ze¸K¦Hp<@)Œm2 I”%+N±|í’9‡Y ;¾Ñ±€V ÂD ¢Õè’̲µŠ‚eOîqÖr4Jw« ¿Á*ƒÙ·Ód’ÕiG~±Ÿò fÁàBän™Ö‚Bé´,ë½>(ÀñUº‚¶µU8|ü¯Ör4Jw«eKŽš6É>Ðìȼ Ce O¤ÕY[,N$ÌBœ‹GìD!¦=f«û\<Ñ®£–£QºÓXdÏ’;¤Ë©üöð@ö:3þЦgR]8K#&QkÒ")Ý,Cèàƒ†@PÒUf¢a«,|ÖH–!­åh”î4VË)A§ •ÔÛÀæ±áË&}ô¬Ž ŽS«Åí:£³‚-h}ˆ£+¬U ]DúÔZŽFéNc= E3 ìY$à|”#1чO$Ê,ÌôÑqÖVuI€Ž…m®}}°Î”.0;7[ 3y·ö©µÒÆjÃG2Œ†ðÞ·Óƒ Y‚1µáR Ê¼,!:«…EHé´ ˆATøð”ŽÐÑ&IO4;íSk9¥;õ@„YˆNø!‰0£fb›P+Éó€!ˆÕf ]ֻ断}>ì épÓÞZEábµ6<ÐÆú5˜!›ró Âõ|0&J µAèéõÈE †ó¬¸c§tVuþ´ƒ×ïmÒáú©µM”²>µvÓ³eoc5˜ä`¨°,¿º ƒO®ˆzÑ‚~ˆZk;B)•Ž´jè†| P(J‡µg­¢ÀŸ²O­µáî4VÓ àÆlÉêÛÄëIaèç ×hbC4 D»H¢ÔX-âyŒŽ…dÉê¡O:àX«qbjŸZkÃÝi¬¦ Â¥âNÂÛé$)LP$Í)“B±` ‡!ÏZ H]Ó;ÓÊ9íA "éçg­¢ÀŸ²O­åh”î4V®XpÉîíôùD¤ç*(+‘m“L ÙKkiÃS:ЪÁfdîyÒÁ©c­C0±>µ–£QºÓXétC½®}{ǺjV;)ÄÆ¨Ê‘0<[m—5lt,[ûǃЌ.ãv¸¶ÊÂgÀèÓjmx ;ÕÄ»¢â³géÆíp³2Yz×Âg•kµTZ•Ž…mÂfÍ‚|¥t¸Öj­†‰™¥}j­ t§±À£?Þ(z;Ô@Ñ&¿Jó?¯4³`0mŸµI;îÝ lÕd¶„V¢5“®àα¶ÊÂÔ˳–ÃSºÓXí„–l¦²Ï7]ûóÁXž"‘ˆ—˜ðí²`òÑèÙjjtVØQJàÆÑ!M’µŠÂgФO­åh”î4V>Ì-¹(rxPàŦbÄá‚ Œ#X­ ÉèX`«&‹ÈƒF8ÐåJA­²0E©8k9<¥;U;–lå‘¶í-<ËYF¬ž¸zj,¶ÿ—·ûåŸ?ÿ<Ý~úÿT-t endstream endobj 119 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 124 0 obj << /Length 344 /Filter /FlateDecode >> stream xÚ¥SMOƒ@½ó+&œhR†Ù]؃£5z«áV=4Ø6MDÑÄï,_BM­$°äÍ›7o˜`7õ'šXj‡gµƒßB÷çf½:‚kˆ ’GIC–;cÅä„FVØ:Ës í ‹KÃ>i‚0÷2u‚EƒAÉÒ-Ä’­E((ô V^ù\Ô³Çôn LüæK®,mo û4íóò½^×ûâåmÞfž`V¾–Úûœ5ÇŤâ)ù]˜«ìX¥šøï<[#ž ’lkNƳç–åG]¡ŠÜI ŽÌÿ ÓôìæE^­³Í%ö$ìÝ þg%®Óa yÎ*h´´+Èë‰Ä—j££÷6Ø%u@p›¸*xC—£¯xoˆÌXOôô1=A½`ïµçøìÔ5šPYn³±b<@E 5— %ÿ:²£™|Dnû ázÒ× endstream endobj 120 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-7.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 126 0 R /BBox [0 0 446 304] /Resources << /XObject << /Im1 127 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C# ¶THÎåÒ÷Ì5TpÉç ä`M endstream endobj 127 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-7.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 128 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 129 0 R /F3 130 0 R >> /ExtGState << >> /ColorSpace << /sRGB 131 0 R >> >> /Length 22063 /Filter /FlateDecode >> stream xœµ½M¯-;Ž8¿bó ê8ô- ; ® èìJtl 7Ÿ.Ü“]õ²Êmû×wp-Rq6uNì÷1¸Ü J …D‘ÅÿzüËÿáñ/ÔßF{Äšßr{„­¾•þÈãmëŸzüß¿à¡ímÛ1Tù'þ³uùGúãŸ~øwýÿûßþúƒ<¼=ÎÿõÛ_~øw÷Vÿô_`Ûæ_ [|ñS{ëõñ§÷Çþöÿ}ÿçï?ýëOþññ§úáßÿ X ßß•…ý¿õÛöªø»Ÿú—ûé/ßþ§UqëmOoÑc{œÿÆ[ øoÿÁ)þ‡¿ý?÷_[yü?ü§ÿòØþ!<þ~ÿóO?tðÿø!ïoöÆë[ö¶•GxKÂ?þ°wbÔKYz‹…ee§?ðÅ·”X¸¿Êve EÞ …-Èhœ ã>>Q û[øÐdxë…½¼Å+§ vhÄ·xåÌå-g-òR—6‡|Vʧò±Ñ`¥!½å+ï>碾iØûž¯¼í­ +loeû0€Ý S~+åÃÈÛËìÓâ×NßýòxÄÜÞ§ïß„·âÍ\yïTËæí>sØò[ŠgîW˜Óx+õÌ|êöi¦¯gº-3Œ÷»®ºÂ[Kïx*ϧÉv*ßÅBëG9ÉsùxÛÞQòT¾OâVr’§r™Çå('y.ïò–G9È£kë\ùËm¡ò÷‡í¯µuÙoÖm]*Ÿ\û®Rã'm]*µ-VþþÐMïŶ.[庭KåG[õ­¶OÚºT~pí;C¿Ñ*è~}³-V~p}ÑÖ¥òÉÕÓ[ø¬­Kå“ë˜QŸ¶ÅÊw.ª7Û²e ÊWm+Ÿ\cù÷I[çÊ'WË";l‹•¿?TKºÙ+Ÿ\_µu©ühk¯kû¤­KåG[»bõÙ^*¨‚w·-T>¹¾jëR¹q¥-ÙªôÛºT~´•mKý¬-­|ç‚nz»­Ìí[5Ú/Û:W>¹¥bÑÖ¹ò£­]Mÿln\*˜Z}·1Ô~°}ÕÚµúSsá­~6?®õŸÚ‹o᳑¼Ö¿ó©]p»=Ôð}ÙÞ¥þßû˵þßWãy©çSËæv{6žÆ÷U{—úO|s\í]ê?øj7E÷‹öl\Ô8»Ûë?ø¾nï\ÿ‰ï ½çZÿ‰¯¾;íÙæ1íË»í¡þßWí]ê?ñ}¡¯^ëÿí©Ê2ÆëíßWí]ê¿ð™œ¾Ôä=!öIùkgÖ¯³lãÖä?ÚÄû®v4q¨(-yzâ esܧÁ–NO´=±›ä[==qÐöÄ>VÛ8=qÐöÄ¥g—žê¿ÒëöÝDÔµ‹Ûõ5=î¸AY gÏÅ}æd%ü2·‡˜ÆÝ³e›B»ÈÛDëR:ísi¨Š÷ô|_J_ž*Vì‰abÌžèý-×Ó¤ÏOŒöVûé Ò§'´gó‰SOoøLÝ QfÆg_ðSö1ÙO_áºßH[ làB1:í[ÚþÏ÷ù:èù¼®p:ŸGWt ý­œ}ÑÿéÿþüóOßþõ§??þ¯m{üá¿ÿÛOýñ¿<þô÷÷†©©i8Äðr½Û÷„×MçóZZÚ)_„}ø2_bŸ8îø…9~±t‘Â2÷Þ´Pºù_Q¸[Šb¶äçÂÔÅûÀ;>s¶9U¶§Â\EfŸk Ÿw#t3mou`¹?÷dõfUŒéü(O]¨ ßq×÷·*o£cõµ§ÂEÿrÆûù„7û—7Ñpbß'Gx¢òÖè­O㷢̜Åv¾Ù…JsŸùéûB‹µˆñ^J–Y$æ{ò}âz¯´ú„SlìªòÓ¨ÆX¾äÓüR˜¶(F’S(ƒ; žªÝ{aœÖç1)û÷í‹9µ“}iöŒžlÏ3­$9¥‘ž„§Æc’ö7ÛeoòµŸ¦Í&2ÆŸ62G‹t¾¾õ绿6ÌÉðŸ‡z列é-¦js7mX«´ÉZ|*ÜÛ†j7çófÈWHˆ–5¥è´É£9b¸½v wè]½ûvñ"ßÁŸD2O2>ÒæÈFî{ûªO­ÄKxK§ÏRzÑ¿ºÏщ¹=Ïã ¡½èß>ò-Å}ñ9²±&H™ì,¬Ý(¥;(9ë¿ÛúOï°Z;CꓵSžz²ÞÏ’œÏ`¿p¤ªø\y·êB9ÅÛâJ™1ÆÎr‹]glM¦Âg“Í´k;ãiE­÷ 9\ô·Ô}ÂEY¡Ù“2»Ç;Dñ·9 _¦ê>õ“³TYÛþò]í•:Cù¦H ˜ªû‚w[‰{+ï›ï¶"3#bü¶çñÛ‡(µÕN¸‹¿µ&÷ùL§_u—Rãg)ÏŸ%sÇ·g©Zð±ÚÅAlãç·_I¸?¨xÖo+PYD›L›ñ,wéPóBG’­¾4ŒÉó¶K‘O'‹ú¶^±ÏQ|í.£é,ÂÌ]äYIXOQ@]Ù½šÖ™Cždãq&„bðöÇ}$*1ý¶+XC¾j½+mu½gX<~a,â“Y ‰¾­ö³]]núöNµº°Ü=~ïLr_騵„×¶„[D^ðyö|"8Ëj'”.lØYËóÔ’ÃTlŽàÜ·„±ØÆE ÆaãL—}:Ëòp¥Âzúm»ð$‚VR+t1òû›µ¥vµ«¬±®Þl߯ágèb™>U¡b.†:qnºc"…m©®Î0ßN)®)ÄX‰n±}b=šc!fÙÛ…û¾XêÒ0nðg.TéHiàëO>óQÄʸ-סUgM¯&F•I´èü®YçåÄ•õÐV¶‡Hȼz31&ûÂͰx³ñÑE™|ªoõfšëB%Qvû¿(ìa%7÷Ï©{fí>OD¹zE§Üçºì%}ÜWkw,š¦ÿÍv ¬§åJgLšëéXô/SÛG*¹õZtù®æZ2who;[Më*^ hwÅü>s#]DÅ‘ \“® ¼úJE†S¾ºc#™2žÄ¼¹ Á2ñ7;1…qXù.‹'uF{8ûve@ÚæŒÔjp7~"Êýíù'a‘ í Ñ{Sg¿Ýȳ<ý)ž¦æp¬«FSnå;ØÂJí.•/™ß¥Ó!èùµ>™k¥CŠÿÚ™oæúµö+k]‡ ·î„»9Zï®ÚT»ŸÍ ©~²,˜7'Ew{Ãk/ýnU·q×K©'âÎPo/zDÂQOyV ×o&æ·ï¨/zY:å8üGdieGÕÌS¤áØ¢vgu[8Ÿ.H7ú8 ÊÊ3ž:íYwƒ-,ô„…SdDz.¬`YI—,~(Åq:¤ê»§¡j讽³-TUœ”Ü\§®û}îæjëK2«ÅÏãè‚{}), ìÕÜl"Ò°•ÞVŠ:ªëÇÇVPVSaטZMR&nš»Ø{v ¬•6tÁÕË2½ñ‹…µñìêuYýdrÜý‚ù(¾×Ï<Þ,¬8P|3^\Îù5/õ¾§4ºÖžõjp3m·óY†þ•i>ºJï>3BùÄÜÃÊÝØ6™ì–þ|P†M3-U¤«eiÊ-e˜-i%Ô¦YœŠ$DS/äÝà˜"Ræ©P=åeñy%$H ž»‡"ûrH ]pwÄ8ßHM¼Ãå:d!ÒÖ"£Èw],f9 ŠË+ôõûöö¾w.uç ÕW4›pשt§ìÓ¥Þ•ä²i–¥O3Ó×ïnñûh¶°RßE†ÕeaEhŒ¿ÅY0^“~û°m¹¼ò|²³¶ZòÊ|”.ÈëŸì «æ¥6XèŸbv O=^ÐB%a{Á*«jq¸Ü¹ÏºnAùÚË wàâb6Ê×^3¨Üt5tYX5,:´“Du×ÛXõoX☬ Ä•»T8ÇRKÛw¨/¸†vYèðxöA®:?èwóŽL`õ¥Ç.Ó3énñ&æŠ3ÀkþJœËβq{|V“ׇÐÒÜ¥$~”°šâÅlK‡l5'•·ìnKŸ+¼p®õ½ëDy„PçåG¡»ÊsIŸ—eUÝ °”Þ›ï%¾àr/É éð E-[F3ìÊ>¯ïa§ûsqôÒé½ð„ÍjG(´¬Ë aôt½ø–zÅö-ngíÇ[eõfâ!j+¿Ç¾¾ÄËíK¢}4Ûjg^½6o1µá8Vw˜×üÙ_/¬N5ÊÑ”ŽS–ÛF9pfx»ÛJjÑ'´ï³·RõºÜ22#.¹$fb}V(ßýhÐÄ™ë7î’u¶X„•·Ý˜É]‘X…¶yrâ»xO !bô©P¥³¿ïlðó.T y² Ž8÷XvŠFÏy¶øö±šåvŒ}V‡±;š2ÛJÉŒ÷X«ªZæŸ r/ö:‹aw«•H ²/¡æÅÍgoóÅhd˜µ[¸ àm}ĹÁ ìÇ꫇sñ¤—/^8O¼¨ÛôôöŒY—úí0\=¤vf»ûã]WPøÎ=ÖUež{ò|OXjßôÒJz¼3Ö$3ä©?¾ƒ.<—+â<—c”¼\©&]>Ь¯¥;Ë%Eo³ÐþÞíåïTß6ÒÃèºE¥3ëëAéÎþ Òƒ^æ [Ø÷#Þn&¥Y¾ÿLºDÓ%IËEú¾rE@ïÚÚóå%(=¨‹âº'èòÖÈ,¼_ ŒÄ :>â2×kAé¤tSº²Íøµýfýû¤ =Ô:,F³?ü‘2l¤ŸÑèôÎh¶7ò‚N¯Ñ”ÆøGÜ*&®tUº]>ÐôðnÖ_½]¬½ÎòÀ÷KaH}¢4ëMéÄ0Δ†ã¡©¤û«ßŸj§˜lYéÈòbåZ¿~OF¼w¼iÄlGûžö×ZÐ|ÿ¶Íö[Pº³¿Ížïú¼µ?ø¼Î‡Âõ„a"ɯßóÍþ¤t f^ùtfhɶ)]4¢ËøK½ÒuF|‘nºg£õî†Õ×5#SPz(míÖ§ó¡ÒVL6*鱓Î,×ï_­ÿ)+]X*F³?©)]µÜêÓ÷QùÒÌ ¢ó§qýŸèÀ›œ:Ÿš)–Õø éfô`u}w«O׳ÊϤò0ñxÏ6¾z¸—M>vŽw¶õ4¸ã" Yi>¯ã7LÐõ4(/2X¦:Å­—µt¼õnN¶ñfjŸŽÛ´¤q“Mžî''º“Öñz¦;ÜoL'„¾¢4ÛçúÌãþ²®G»©œu?šõñ{H„ Ë›=¯ãMy›7~¿, ›Ò|ŸnõU–ó{e½ìu½åÍnQ ëoçÙåfí¥Yø>E×Kœÿð©)MÃ/ ¥¡'ýÞŽkܶlJ«z–­¾F]ŽûeÖý£èüͺL:Q~ÂÉðýЫµ—¸^ªÎ§LÛSn44FpS:²>î§;4x½+ɯß7s}V•Ÿ9ÛÉ<õ‰L?‡ÐÖžú¾ôûúi«ÊϬ´Õ¾_±÷ÓïW8ÞUªQZ¾g³ï¥÷š®·#h$Nš¶-×[æ!¦Ä£w¥#霌æùJÎJëM¿lÏC^5ÝŸä ˆtµç+õd¯jí7Ö߬}Ê›Ìì+½Ùø4¾o³÷o¤Kù²Ó~õ}U>u]ÿ¹Û5|®wèÝÖs4tæ,…嗧߃ªrïÖþà|è¶^è4º*­Ñ4º>xÄØ!–”fÌl4þÁ£`Ê79œ¢×—ßC|‘z]­(4HÑÊ“ÞwØ”Îl¿D£Ù>õé¢úéPùæÐü”WEåÃÐñ’Ë|¾Ùóƒqxíž'áµIõÖY¹Eêw£®½Írúr¹žK`ŒÌ¦ò§zÙ7ÝoJ°ÛBܯwZ£Þ¹ÿ–È»…›®÷.¼oÊùZ¢ùŽ«Ñ¦×óNw¥¦~\4·KP} $ž•‡’…€"i3šîrê‡rùLI6£”g¹^GMFOw1éÈöŠñgÖÇýHhMgÏgÖÇõX²]a¡~§ñ7gºÏ“hŸlŸë¥è)ƒéó èdt0ßß÷yc`]OB«o°*è)ÑùQh€Fûþ”ÃôùVÏJ°ç“æÞ J–G£qÂôù2ïsëzÔcõhß§ÌSö¿Zÿt}1íÇ0}^B=èf)MéÌúê¤ù¼Î¿ÊùuÿTJÛó)™)/…fô{T~Ó¯ c…Jã‚Z²õ¤g'¦ïKƯ~ÿd߯ó¸'Y}ã‘ÕÞ’^,Ù²ÒA3§lJc<2RÜ‘¦§I×z‘i…tæóÑêËéMoåi :…=H[û²=ŒŽæýP:ù´Õרß<ëWºëóÖ¿®åÖÞ`ÿT^Øó#ëü© À¦OV=ÎÊêÏšãËù#tû@³Ô'ëfw$9¿*÷“‘u?vh|ߢûm \OEõ©ø=ŠŽoUyhúUMvS¶XyeŒ×KM|ßjýËœ?¦?U½^u~ÖÌõSu>VF¦ûEÕÐê¦òAâ“xýö^Íü~MçcÕs(¨Jó2e°ú5‡÷ïÊè¬ÑT>Tˆ;;­—1‹ÒQËíùÎþêûUã§ü¬Õø¹_îtb¼åa­L4ÓUžÕÊ÷ëºßÔNù>Tªôg¡öëNc=ŒãùÊ“-ÊêM†îŸU×ÿ°÷cZŽaúFÕù>Tþ´‘2›®ÿÇžÐ1)Ý ƒð0?ZàUàMõkÆ MÿFƒã ©ÖY_—õ q Ï1ÝY-ä÷Mh˜*<ˆ3XNèÈ)¡áÇ'Nô°tøŒ|›O´=1(Þæ­Oä@=ûqÐöÄ¥g—žþ6 SÁft…bÈwÓ &ÙjÚ/Lh˜à>.Ìñ6³úÏ̳Ûs uyÒ­£ÙÞžŸ jJúüÄ>G[>=AúüÄ®þ")¢=Aúüàñ„.Èã íÙ|âÔÓ/Sí%MãT‘,A¿ ;ŽŸ²‹ª|ö ?ã–ãÐ1>~ÃëJ~ÿ!ïúÊ9¢Ò3ý¡ ÆúC:ÄxÎóû¥CL-ÿÆéS¢ç¨Àa…ÿ·»ò‡ÿþãþëã?ýüãþ{½ÿÏOûKüõ¿ýùßþñû¬þžT¼)¿Ê”øqVÛG;fµHïò8ÿý,qSJn[K:Ð]žB§—P-R…«BÊášI 6ÛÁK èÄó 4T-¡±õ'™®|ª\²óv7ø2þË:‚i7¸ê Žd§5[åÖ–\ã¸@㊰ÔU-Gøœ¥®èá:¿´'â[[¥)šsdbôLÓ3Ó””d>•[ŽD^Þ‹ês„¤<ŸFH·æiÞ­9BÈ’çkFȲ ÛÉž ã^GHt„~!©›¿ŽrBŽc„¤ÆžŽt€tŒ„¤ÓIÄ”­/3rú'”}¥$»ï#yfÏ¿À(¯—"d†ég õ OZZ^©C+¯R¨›OWÓ±k?x¡øÎºAñim[˵_Ê{î÷·þ(Ï×GåP¬Þ¯¿HJ–8Í`‘Ú"#…ö*LÉYžDÑ›¼“ÚëæÓúË&{ªòÊfµ+‘6=Iñé@mV˵_Ê{î·½K¶<”ÙÞ%›ÿZÔDI-–ÌnÓŸÛ£5låÍÎ&ÀÛ,h5Û»è/8"œ¼8IœuƒâÓÅNâP®ýRÞs¿í]ô¤'-ïç_` ¥ÙfDÖ¥K íµÃ³ž@é› ¯Q¨ÛžÖÞË•Pã¢D̺A}Óžhï¥ÜúEÞK¿õ]öš«y ßO¿ ˜—"h,«[{˜Ø!ÅÞá8d–»} Þb½n>]Ìç*qìÊÛqiÃê&ŧ“y€Q®=UÞs¿í]L†Œ½ Ù‡iŸ"$S…þ0‘I íI(A›å]&W)Öͧõ"_)oí|sÇ ø.lÛʵ§ä½ô[ߥG»y¶éz9~Ù7I¡4Æfg5qOнÓ0e-Ïvµ ¼“Úò|Z砨ƛÄ>ëõM{¢kåqžû•ý¶wÑ„—Q«÷ó/ÿ©+¶âm«"…ö=ÕVx‡Ž¼F¡n>­¿àrýä 2ü³nP|m›åÖ/ò^ú­ï2èèý.öKC‰§á5ÛÝÊ·m–{×8#µœgÆ«êæÓú ޶'oöduƒú¦=AÛZ®ýRÞs¿ù.yß2×®®ýù \ù¢õðö‡©¤¾ái&u²òb)Á«Ôfkß~é¸ d¼‡ÂV7)>Ͷ­<ÚÙxÏý¶wi&YjÒwi&}vÍC¨Át^»žbê )¶§×ÊY.šd¼F¡n{ Þs¿õ]b`6OÜ¥z?ÿ‚¡¹énˆp™FC49&¿ÀÌÐrnøÆ«êæÓú üe“·Ïfݛɱٶ–k¿”÷Üo{—fÑ£ë»è/_62,½ãÃÔyRh/mÜ›Yž4ÑyÊSR¿Äíà…ƒyÖ ŠïÒ-’å³§Â{é·¾‹FΩ[Î_ f½F?Ya¦)ö.ñäMËõ\Oy•šºåüÆÜäb κAñim[˵_Ê{î·¾KÖý *éûù—*ZPÞÞØ¥º™Q¤ÐžFQX9S#¯RÅ´’ù bd&/"‚fÝ ø´¶­å›Eƒ÷Üo}¹1É};rߟ¿àŒI¨ìDÄL@RhÏrh9ã+Œ·XÊ›¨#m¿àÎr»®k[˵_Ê{î·¼‹éûü«Ù êC@tõûù—.gbë%qW ³÷½D)³G>Ê2y•BÝf±â— ÝÎxqø0ë®Sǵ¶µ\û¥¼ç~›­ù|š:µý‚s-±å*~Àa‰Pâ8!õM­<ôNËq jò*•¦Nm¿DèÅÆ‹ˆËYwœ:µµ­åÚ/å=÷ÛìƒÀ¦<õPû¥ÀnÑ.˜É¶ÈÕ Êì‘Ör=ŸWÞlRÅôPûKlò"ZqÖ ê›Z]1åÚ/å=÷ÛtêÍ€¼ªú9죊u£‡¶ RÕ€2¾…£œÙjŒ7ÙÂjÖ„þÒd‘oE¢ÕMÊ,#iÛʵ_Ê{î·éÔ‘Mk;ÿ2{L‹T@®HQïÕ“F-W«Ry§Yã|º2Ÿƒ N(oÇu«›ŸV;S˃Å`÷ÜoÓC+£Ò²Ùm§_zÕ˜¡$7hš˜-ë^$>È~”3a“ñNJí¶ù bV'o»lÖÍn›mkyµxPðžûmº#j1ÞÏ¿p? ÕÒqÊ^/ã{Qhö"k[˵_Ê{î·é;£—ìP[Ç~A±h[h6©óŒu’ÂÓN-¯ÆÆ«T>4½ùK¨/2;Ϻ“IŠÙ¶–Ïž‚÷ÜoÓwô±J@Âûù—†/»S"].ÞåÔ,¿JÔÞirj+çHãU uóéùË>3&/\ï³nPß´'cå³§à=÷Ûô„;Š«>©­£¿ˆ‰Õ@‰î¥•%ÏR4Š:ɰĮ(Ð’—ë¶§ÕÑ/謁lq«{›¶ºµmåÚSå=÷[Þå€ —S©õá5Ï„ôÈê÷8Àj¼‡ž_=ƒoÝÀ9Ã=¸ŠP+©âï~þé_þí§¿|ûŸÏà蟼íé->Âwá-î¡{}†JG¾KÄ$mâ_Ø›þ£Â`_ qË…Ä\¾œc¢”¿—Ò„C”NöRšB‡RE+½Vìé,&æ¢[×ð«óq?;yšïÈW\‡93‡ûÌ¢¨ä3ó ‘!òöðÁ|jø×EzèíÄ'&é=bǵ<Ÿ>ý©¼f‚äj9ÉSyÛˆG¨å$Ïåˆ8:Ê€t”÷DS-'y.GòÛ£ä©| ðh–“<Êõ…­üôþ_ʈm)ý¬·Eˆ²6˜k}™—‘јqû‚çoWè«/H–÷Ç…\#Á.¹t®ø=ùÀu‘[wÚ¼<¸>mëRùäªÐÇ×m]*?·5â×m±ò÷‡ŠÜûmxp}ÕÖ¥òÉÕ`ø}‚P®üèaDpßWm±rÚ¿Û+Ÿ\_µu©|ru†÷}PÿÔîÎ|Ù+7LöÛm¡òÉõU[—Ê'×Àíů€ÜŸÚâe–¯Úbå®üvc¨ý`ûªµkõßWóãZÿ©=^åý²=›"¦`Ünõ|_¶w©ÿÄ÷ź¾Öð}µ²¯õO ìÛíÙâ6¾/Û»ÔỢr{5?£rnü:ÕF ¨0M¼Ó!>Œ&Zòõ‰mxÙ9ÝfmOðŽóñÄAÛŠÇ}ÂíõôÄAOÜîsß/ïò[ávÔ0wÝö>zv¤vâ~{»â¾ÉE5þ-Ó§°·ƒÄˆÇ3æõé ˜JŸŸpòrz‚ôù‰†›Ç¤ÏOHÔÈ ¿[éó<@?ž }y¢éÒ°'æ»Ü…ׯügßéSö† ¸VÈuMNtn[0­{+W4îô|þ‚Îý;ZóŠÎ}˜ó¿:·HãèÜ÷´ìß{.ÿ_â:7cÑD£pPwa¾ÑªòòþàN–:‰ÍàI8ƒ‹ÓŠ<=²>'õ^%†éËxÿfîâ¼ôìdöšô¯xèt ‡½²úž3¤-úÇ ¾Rß}´&dñ Æ™»Û ÷{¯AÞŒñÝ÷A/ /0ÿ|y·Z¾"É$ád·‹|¥æIAãk˜ÝLn&¸½_ÈRò·Ô‚sÉ Ñ°NÚ8Š ^Ü„sD—Ô Ï ?Áè/ßÅ€•M‚!Ù÷Þ,!Æ\ìóΰÚì À+ú™úæ}¬ŠãªÅNHcj¡I0õ’x®}ØX Ý͘ÊU››{W‹ÊjbäûÈNWíeÛx–µ« œ™6NŠYAçÞ:Ò»TŒ‰£ŸâíýˆŠ”=ÙI•JW‘+á6Ö¤*xžì^MëÊ!/ Ϥr‚8Ù< €cdÝ>'÷^MUâ4øª5s{¬6c\ZF&÷ô…DC Å~V ;T± }œäüþ_6~WéØuÉèüÊ–ÀÌ#².nƒB抢¿r—k^J}@)zHÔ‰ö·#!EÅGoNæÿ©åJ…Õk#:Ôÿ®k©*Õ/F¾‡…vU™¶Ô³ŒˆuQ½<ÜñAoÉj¨eùúc²OùžVœ±ä+a‘ÊÙ×"Ëàq˜o"]fX ÅP[^@#JkeSÔ.TéB{{¥?¡·/ =çDé…õP(VüÎGÚ‹„|ˆ ÛC$d\½*ùn†Õ”G†s±eîcÒö]J"ÌjwÿOȤ²ªÌÒ<6oÊW®‡—tÊÄ•_€á+Ÿ|3B€® ;‚J¸žŽÕœB¶šÀl›N}AÝ·1*‡ÈÛÎ>™Ö,·ý)‰þ¨Ý¦qð_eV*ðjþ\Ru¸ìÚ8ÿzJ¨ÈÝì`Ogp4:Í*9ΪʋK’*ä¶òŒ8g¨S·•óZc™|Ø‘¼Å“ã'o–3Å‚/GÙM&Ñs>hYú$·B[©ÝW{^2¿åð­àèÙ­²šž'TSÄmî-¾_+³¾ÅN¸™ówÂÎIt?w6µÛCŠ@ÊãÛ“¨PÉZ c!7ßÂïÆü7 /uªœaÉSNuEÅL€î”ç6PAešpßQY‘Ìzå”ë|3wãašß••x>ï!Iµ²2ÞÓTì­«ßUþ®g\•¿ÅÛér„‚ ä1úOmr¥/lêÙ#{É.]àôv5ôDÄ.ßÞIHG#Ëì6ü–Äï¼ým|BUtäS~e`¯öEjW.ØÂzßùéúñ‘èxå‹„Ð^tTxåæð+ÞŸ¥^ÆD´‹…ezÏ ê²˜McÜ5ã.µ¿æ¥.4—ó ‡Lûçv¾$š·þU¸`]¥7Sêûþã4%ˆãnlDŒbæÇ'ÎÀ#1WEJêY™r[^Êž.ärú­”g:´?—wÝs53ƒ¥¯¼,>¯ìøcšîc'W$¸^í•'(îî‘£…M9Fª˜ñaá•7K+©wOúÄȪëëvŒäÙÛ\â Ý™1-Þ×í+ý[è=1U¸™¬|š°Ü-^’Ç/Õwõg- qÓpexRÍ{EúUä‹–úž]¯« ,ÒsÕ¦Å\œÃ-4tä¸Xxˆ]õxõfȬ-êų{võf\;‹­™ÇWnÁö‰þ”ÀŸ¢y©÷Ò;pçŽàjèÈ [ZɆ½Xã.Öìàww7ꢋÆ?€¢ÔòÎD½Ý×ÒZà]\C‚D'ÕmìZÕ"Ý#¤sŸxìä$Ëßâ3r]­8§Â q.…Ñ¥½ÝG™¯Ë€ØîlT‚±òõí6¯Îo/î Ÿq×v ¦v{Öw¦çÔÝn+-¯¥£M´å¥Iƒ»Hn¡Ä—…grñijáÓÝ>_Lå“I”€”²Ø= `w _,¹ñÚ$j®I¼o®íB‘ëM…Õ1>¨U1nm Å´ˆX=A}–˜+—.Wóoc̉/“°ø„ܰrôb)¥¥¯J—’§­ä@±ÑÛª~é\®®&.žŠ•ðqLèj¥å&:•^ðËu¸†õ–s%ĸWùOúA}k£ðÏ•p1—+E6ñLÍ×ü©Ê½² "··Ò‡ñêµë±ÒßÃ'ç–)Ò³ôvÕQLkjÿÔ‹ícxva vSô¿t¦nß5yßµ&v3zàÕ‰: ®ïK¸¾t«nÜC}÷ûÀòX›åO6»Ì©µQìþfWXŸoÏî#·e!´N`ŽæÒE‡=ê•cé õ‚¸%7¥s£"»Òük^¹2urÿä9#¯ÞÚdEôð 2LΣyô[×`ƒáx1%l}ÒÁhU×0^õO•ñè‚×##šŒÔmýX|ß|ÎT |åy3Ÿ°'¦2 Ͻ½z3zˆºó)¶>Ë.3P ‚‹X¾vަ¥"«Žß㔇7:«mÜ]åYmËÅq÷EPØf2Áuµ´ÜK€dµ(,D¶öçfæÜ*FýcîÑKÎŒ7ö„ÍzGа™ç…ºú‚*×]K½@J4aOÛS„ûf’Ï~¥ö`g^J"ÙÓbg^½6pfdû¹3™©Ð¹ÆøZdtÆÄ{@Í›–„D·»À#ww[t8cØgï~_ñE®$ŽÖ¶¥Ù—éQ\ž-•µò”Å?nÌ ïqa¡JãÇLfrú‹0EÓO¼Ý­á³|l“Æþ¾SÏ¡]¤é¾ãzLÜÂÂ…ï:ÏV“¼2&>ÜaS«ÞÍ’Xè*¹‘6ýY“i+,Ï–ZŽß·ådDÒ29ë{DEh×RŒ&ª‚~aitûœó¢«_¨âûs¼ ³ùkãÍÚ¼öª±œÞ1ãZ%ïqe4ó"ñbóÝ?ïXÆšµ¦›§Ê<÷ÄCç¦3YÎy7 sÆkE§ŠƒÁöEÑ›¯)5…<ú5btiÖG4£}©#ž§èÌ4Ñ–ˆ¶ šh­‰aõ@[®<}‹ ¹€Î†ž\IC7†ûµjÿÒº0.¸º2ƒœ[5´ì‚Þª¢m%Š„V Mù ¿´+]YÞ¬>íÿ¤ß¿Yà|¯†Æ]¸kzh*fû6CÞø¾ŠÎŒœ+BQÂÇ·4ë#ºyª\òÕо+cå ]+¡£  ­¸s<†¡w}žýú0bíƒÒhßйRcðX3t`ž'4CçJ>/CçR«¨š©^ÙhMÑ«—^3tS½,Ùš¢Á¥nE“N¤‰Æ˜([3´n^›mÍЂ;ç{3´àn7ï’¡GX J'Ýs m¸Ðƒ>Ñ‚ëöÍú«Õ§‡ìÕÐÛÓùÇ@6¡ Y“‰&¼ñ}&šðÆñi†¬ßkÒõmK㪄6´a¯nõeÖ×?³¾nhÈ•íO´âÊñ™hÅ•ãÓ ÝXCS&zqg}ŠVl‹âü´át4ZËÓÚЇïL4ãÌóñ‰f,¡XÍÐÕr`ÿ'º¬žktESsèNþhõuú¢õo03ª`¢9½¿c´ú :Òö†N©jOô܃žhÑ :†­‘ìÛD‡¦oSѪi0Hñ;/œÐÔàþPO“¡Û&ù%C¯MdèÃ48zÒùP’ù«’ñk& E£Mv}.ÛóMi{¾1¾$:µ¾O™èÔšLÐêël¯ÄÍþC“¤ëXÐêl†F]ÙŸ‰ §d6ônž,ËõBC“ÎJ7¥ý”ÙÐší¶¸Õ×y]´ºtga1þÁúª¡7o¬¯ºr"Mý¦ÐêÚг҆ެ‘zÃК59ƶ) yVl}¨Z ¹r½E£-P´AóyäÕ»˜J‡+­nƒhèÏêþƯŠ:ß×c±õ×Ì-B}·4‹JmA«¯0.h¾¶þhÜo¶þT ˜ J·džÒåÕÊ߯õÆú›¡UëÅ]_ÝÞ¿ºu"=Ñ®µíº(Ý”VOÊ»ÎùVíûuö¯Ú÷ëüžÕÐÆ¿O=Ь?Ò‰‡]ÉП ëŸhÓ•§VÙб+#·tý>ÓØŒ®Øˆ…®Mšý«VžØ^+ ÚÛ ºèáœÕWòšýé†N]ÙÊÓºY)OÅ‹Iþaå:~ÃЫ“p©tj®¤«Ñ<þ%|eÅ>ÑŸŸé¨9¬¾Èú-9P>7Õ_,gPÓïWiOœéÌç£ÕWXÿDË®¼Ø£hÙ¼^Ó;¬ò jÑwD8môöäI§+­íS?¯ÑÚ§ÿ¥FÞø1{Žhâ Š†Ž½ñì+ºv`y º¦ü¬™ß¿ëþ[gœkhÚ¬¿Úó‘›í{°¾fí>O{S.ÿÑ¡Eù[u?è6_4€éÿUÏsL߯ÔoûD³ÖãСò®RŸ%béF~}?¦t›Í¿ÆîÍÐÂé_Ûž­×9” ­hßô Ó+í}^ ­©U(oä ý抖Íõ1‚ö·Íà¯2ivCÏÖÈ1Žw£>E¤2ÒƒåÔ_ç׺7(:ŠÀù!Øz´¶`¡)¯Åñ‘pcã}Açþ= <£|(Ë–õ ã‘Øðã'z¢sÓXœO´!ko<½™­ôDçÌmOôDçÒýñÄAÛ—¾_Þå·Âïfö¡KjÂð»é3üEY»ØHÌ™ù#·„Õ~@pËÏ<ÎÐ×§'óÒvz¢Væ$´'HŸŸhÐéŽ'HŸŸ –}<¡Z÷é ®“ã ]7'oöý€ñ>Þå.Nv›¯ÛgJ¯Âl«oîÃwº.É ³=ó‚³å1œ¯s¥?ä5T˜íß1¯¡Âlÿ†y f;”ð+a¶_M,þ,ÚnÂlÏyi혗/ÀlGÂoÁÌÄœlS—` ^äk‘nL—¢>!Áõ œÙ‰0Ûċ٢Ájã`].÷F[ð(;£ð°Ç ¦#ö°FYðh4ýÎ;P8 :tÏmô± NÝ`Þ+ÂhG|¡ ã0|x?Ò&÷hEù:íY:B¡"qé ]ÙFˆÁÕÇUõ:ÛU=5Ñ»¨Ž N#$)àU°ªêU³e!žF¨}#¡¦^5!Q6ò1BÒÿZ ŽÞ¯œF¨ªWÔFˆà¹¿̶ š§ Ìö†A]oH5:'j6¸MƒÊ¶rÂh¯RÑà6ç/è-Æ Ôi(Üæl[˵_Ê{î÷qè ‹Û„8 Ó9&TÓËbñaSˆ”Aœ¥t”gs‚wR(e¿àüÅx馵ºI„·º…[;ú¥¼ç~Û»À,—÷‹צ¿Àÿ/^€K7Ü&Ô鯔ÁG  –3¶ÂxŠ$4A,çä…çpÖ½Ðl[˵_Ê{î÷Mm/‹xz?ÿ‚´6²X5¤:>ZTãÀ¦GÄ(/<€QÞbÁ(Ý`¶ç/n¼ȳîdpP³m-Ÿ=ï¹ßö.8÷†9`Ž4ÓÇ ¤¡š‚ÛëØ’¬œI°ŒW)Ô=Á¦5Š3LÞŽ£«›Ô7í L7-Ÿ=ï¹ßô\ HâüËiÒx®‚£™¤ zNL+לÏÊ«ê6è9ü‚û “n‰Yw0ñÖ¶–k¿”÷Üo{—bw³[Ów)æ((”š±ÿ¦âžÛktcj¹:©”W©:WsŸN¬}—˜¼¸¶2란h³m-/–ý¼ç~ŒÞÆhHº÷ó/v²9)¾LlÛªHÔ]ëGy²|UàU uóéù‹HpãEÔȬ”rÇp”Ïž‚÷Üo{—Êpx!ÞÏ¿Ào ëÆðÈÔm–”g×p”3îÈx•ÊÐÜ~O|òÂBžu§ iimky5 ðžû}ÀlW=:Ø&̶þÒ ¬­®ò’¦"2˜msu'Àh[ k?Sl¿@RL^äúžuƒ2˜íŽrí—òžû}Àlë±_of;ð «κóØe×ÁM½!e0ÛzñZÊE“רmó¿lcòòHÕê&e0Û};ÊgOÁ{î÷³¨.*èü¥°wì6\ÄE÷Ó/ J«P¸¤õV,)؉Á$²Ø^°#µ|0!xI±n{Z‘7W^©t›u“ú¦=‘¶­|ö¼ç~¶NÖ£Š4müeÇ Düt×É…êÙ(³uj:Ê ŒW)Ôm¶NäÍ]TOÞM¶×Y7(>­mk¹öKyÏý6û€ÙKh¿Ÿ~‘@£JÃv5úºe¿¦'@ù°KÔà%u²öíÄoëÔÿY7©oÚ“rí©òžûm:5aÉ÷ó/PÓ`æQÁ›(ÐdS6ÊôÞrp¯RqŸÛ/8 š¼8åšuÓZgÛZ®ýRÞs¿Mí¼Ñí»Ì_àתsÔk3Ê4Ë\fyÐÃfò•íH`ò"kí¬;M kk[˵_ä½ôû€ÙNÜöÞÏ¿ FVt¤Mö6P=eúUGy·},ÔƒBݦéEœ–1y{§˺I̶+«Ž›úÁ{î·é™iªÒ¡#è/ÀY½a¥¸E$:IØŒ2àì>ŽrB¯Riêö Ü™“¨ì³î0¡¢­m-×~)ï¹ß¦#$Ö‡#ã÷ë/] ²ydÞ÷éYûÜÇgPÎSJãÔ–æÓ®Þ˜'oEÔŠÕMŠO³m+g¿Œ÷ÜïCGP™ÛÇÔð GZÂáÔò¡Ž»Q¦#@Êj¹®HåR¤ù´þÂÁË‘¶ºA™ŽÐ¶£|ö4„ý¾Âlçþ%Êöö{^c{7~%ÄvÉ7¶×/úûlÄó6&ÕH UqWáT¿çÏòö™ keÎþsYåç”ûToÂ2øOe FÚÏ\÷¹ '(ˆM=wó€ê&Â癯ê¸îjèkôÜ™!^ŸOß緀㎅[é°IM?ŸÐ¿ÝQ aî`ÿ¸à¸“›Â/A?dpʼn÷ìð!Úó`~…—‡Þï©Ï¿(8‡Ú0Á£Î&dö,ÍÇì:•"Æm–2âm–B-K0\–6\³³RR§RÜ®š¥¼k5K;òtZ)©£TÕ-%u*ÅÎÒù¾7±¸sÿ¥à¼L,œñUVÞÖâÀ%ú·M¥pwè+<î%’§ò ì¯YNòTÞÎa–“<•÷x©Ÿä©œšåGÿn8Ÿq÷ã³/ö7Óò|öËb{ÿ!m¸»®KÁÈÑxïÀÞãJÚúzé¹eÿƒ7$‰™nÜ_}'´‚›ï¾%”núm¿ºepýëx|û+¿ûLäÅÆ·í’ŸªàÞ°Dɺ™@ëxHF\m:f1ñœ²8Ôä~Ƙ]%óê2k¿Ÿ+“×ø[q“”!*¿U7•â;‚k²è[Føò ¸^”Óê¶¹cŠý5ÝÏäœ #׆ï‚I$¸ê›‡Â‰¨AfésZèõûï"©U#a35ÞÏ­]—©5o.2Uåøß´Ë\ìÕK‚(;D«ó½#®Ÿ&%ùXç&UîZŒE…ÐìîÌ’ÙeÔÓ]À¦NªÕ…å-ráΓÈ[*=¸IP³œÊ ©Âb^Øv&ÏúØÈÕšõŒl¡Uêt¾YBjWH²ÝñCSê”ê|³ÕAv+Éqtwì9þœaJZ½~óÞ‰/¿”•±Ñ>ÉÕ¼¨r^‹×>Óëø}KȽY|Lª"‘­»{r!õè­-Ig5d¸ý¾Ä f¾¦›ßé-wèY&‹„ Å—e‹öä”™“3ˆÜ“QpÓ®|Y-zŸ§·Éî¯í°Ø3îñÕî­¹áiëÉG¤fì›[«Ñ]£‹q*tuWwõNCÝmÏókµ.7ÑË$ÄíÔßȳЂ;6Y%¬'¿¸çºú@‚˜$ y^ W¸]à;IµKC¹¥æÈÒ€YîöER¾Á5ûüV2Ù´jpÒŸ®×ŒÈÝæê8ØŸ\'2:E®Î8ïÔ%Ž“™2îß*»”“÷»r;~¾óN»®îÊäÕ¦QÖ½ö µ˜çÔYÏ"ñ6Üñ¸×7è8¾.,)ÁúJßK"Ëý²=Þ— ÊþþT‘‹ ½}µ,öjI­–zCÙÔ¸-ç ;ZyAߟ¿¯äß©c±EË®ŽÐpw?–¦ kÔã ²~^¼ä¾ÚÒ}ER톕ž†s_7ªQw"¯ßÈ[)áÈŽ,+¢ÿ,Æ7É:ðÇ¢ ük¡oàû.äRÍùº_A>Ÿ¥}6¢D68ò©âê°_ÆT·¾­šÈ×{îO,tDQJ¶Ã»2'!Se ÷Ñ3¼¦~¿#džÿ]rW]ÏÑVÄn/‹wbÊ`×Þ_ÍmîžðÄÝ~§ýû.ä .Óú{x*ŸØ ¸ãÖ“gƒT¤a}E,ÈS=HŒÅ;Uä°\øB¨®l.Ù<«pÑ·Šˆð`=Xpðž<ƒ³­ö&¸Ý½i=‡ÓôŒ ±’eHSV‹«9s­{:ëêÛTX°Lø,Cxɧ¡³»{Òi#ŒÁ³—3°n®dwœï»~¢ˆÄpÒï»vžèÅ+´!_e¯ÞZ›,/Þ‰éV—þ<‘\>x dÍÂŽ‡÷uä‚`õWìa& Ííî8Eäñ÷§ ¿ÜbOÀ+ߟD¼… ¹ºý±Èxõ$¶}å ¬µîà; ÃQí/ÅVx ¼ýJìÃÝ>Zøº€íû€¥‡ù¡*>ò!ïú+zaFBû–ïGË;•…OPÒƒ¶…¬Àº\èÖȯìÛ9'Ç’KÌY[YF–ÙPu°ëÖ¾^VàûœSYÚæê×ôuyIÌœéÌ{úl|û`_/Ì0èÈ€¸Ô¥q‘Í·Gl<½AvoÞcæ(bÓ½yL ÈнøöîzvxYžq‘W{rh»¾q¬ÔºøöÔ ^ò Bî4ÏÚYõóËÕ©rÑ oýà0ý%ýøT¢YÞõE$`u.ü+È;éΤ–l ›š0/ù€‘±V4”»óP!~¿™v~i«îû¨¯§f$wXúg÷1õ}{0Ì ìȲm©ß `nagSe![ ëûk½P~¸º.áN² ’JfµÛÞn7»ºÇâ{ÜäêÙuZéS¸ôµë8bÁ/|RÈ®áÎ=i/,õl`$¹º4Ò¿/«ï‹ŒÄ‚cáΖœà‹¾}‘^ížß”ÏtDx–}ýªÂõŠ_F¬¬ÑÛg4~M÷ìAäGÜVgÃÜ=Ý}ZäN[ðeä½~%ÖC,F¬Üçó¹µ_f×–çäkâνÌÏ…ÏÙ‹=Aþú­À!YØÂÐ8ý}³Bvú²¬ ·¿?Ÿ2ò’ûeP®p1öÄ'­ÍÁV]û}¶Õ·§_Àß2r,Ö6ò…¼2g*=lÝáXËn®œÛ:yìˆÌF¸Û2¢ÿÜ|ÑÑ»[ºoï Ò¶:Ÿ,:¿=Ù ÿ»ÑGµðé#ëü±/mÕZ‡†-X / £‹Öçú½¤ßãá¡îA®^Z¥ó’h®e²>»Üm|¿ß ÿÂ&Àÿ}ù±?.tOÀý.üÑQ}[÷ç>,ØÊäÅ÷d2ðï|];!g‰o;1VwáGF>XÿL£ÁkèëÅLž>’ç7Po²oç$ìÇ/œ7ïë7$œ7»‘}¥Ä®ã›oŸ¯±ë¾KÈ…O›ëÞ«JˆõXÈàmøíQ [ì]+ŵ13ÀŽçÔøÊ‹³Ã v•_'Âî_:·ÒJžà͹×çnK²-lø (ÔåÙlÉ뵜_;?*ŒjðüúŒ„Ñè¾¼èù“ààÛª«5ÀÕZœ=Ñ6íAlÈ›ýÆeEßߣÆûñP9,dPÄúuýÆ‹wÊÄÄtf¹Æ=£ÿVx[_ùN pw‹³äùó}=ø`þ#;}\èº";·OÏ™üø'ÉMSä¬aá Xí äÒGãúüu‚ÔÅùîE¹²d5‘²£¼pnœ´´›Å‡ÑÝ}17 [1hԵζ…œ)ˆt÷×õzåN~û¼•Ñú®m¼Z?'ÔÕó¬W Ïðæx«ÇÝ«í× .ù®~“’ƶxßCþN_Òsá œõcµ<ŸÛµžÅZÃ0?0£÷þZ‹ÀcZØû:SZœ/—e\Ú&²d¡CÀ®Zĵ†_ì©ÀñsýU«ù À¤JXÇ{ó‰‘]þROquÒˆ´º‹¸?À°ùzgDžÆ…™ë×)gȸ"æé¹ð–û²$#Å´_Æ{¾ ¹ ¨i?ž|Ÿç=¬Î£*|g/œó6Ñ; ž0"áö9bAÌ¥kÃVÀ_/â„a-ûߺâŒÍÕCž{ñ|Û4Æ(ûzÅ}™w4Õp ˆ qá0„$fÚNòÀ˜†‘¾u a|‡ú"GjY#n4Õ¬xs÷8«Áeî¤èYÑÜ"Ð kV0·opÍŠ]/>h—Ѐór™†±M2\HUû’’”¸Dé“´¿MTx€Š×¢˜Ã YpkQHÚ„¤#ÔݾsCFC¼Ó¹bx•;YÐ+Â1î$Ï튑æf1Þ^Ån§Ó`’”{ÅÜ£š±jKQ£W9t)†,ÉŒªº=œë…,¨Š˜Œ;YÑgB^ I^«ŠÔaÒl5üÊ„l”µ*Ü]JzÞ¨#™ ŠxeÂÝ5!«‘0lt$1£ª![j¢«ªÀÆ '÷Õp.ŸIöŠ(¶BÂÅ‘­æŒ›M%^I«™}&l*Ú«f$_°O¼„çK@÷¨†^©‡¾^éè¡ó,… ÀV—$ùõqÈ[› ûɬ5©L1<“‘¥Vãôñˆ ÙlÇ稆O™Z›Â#J,'ªJöpE©~PŒRmŠýGóª6û(ÀÀ¬ÍÆMÙ,WÝ ™wñˆòš š5/ȆÒf uݦ~F„ÒÔÕµ0²‘hhT%év%üvê¯Ó讵ÛÐ̵vÅÊM}Ýçäµ+ò»8kÀ«c…»mrÇ4Y.$c_T ß® ßÌë0”L¨jlJÊ^?t"‰Ú…-UÄ“S‡ FU^‡Â™ŠŸ¼œ ê®*ú2Ò K^ç d¯BÛ“¼NäzºÖ&p='ëÄ©G0zKþL‚·X7hÑðs‹BˆRnXßu¢zÔ^pgˆ¯6ñå¿$Ç£Mðyàmµ8b$ÆÃü‚ÏdFÈ¢±ã²vÛTæd¤Õk›½|¹m¢Ì#Ô¨mú¹sÖv‰‰yvSÉ/$nóaô¹%%ƒyH&ôŠJoÏN4z¤ ßÉaU”+e3(tnFra!­ªÖ/äI!“ËڂžfÄäœÉ} ™ä-+ã “•&øùu"AäJöÛMɆÈI:%‚ ŠŒÛÊ-ØÀ˜ßÁö‰\-¨ä½Uõ¨d"Ù”l¸ÍA¥(ØlQEî3ÙV¯«¬éh]VHbÝ¢-+d„o† šy-J'œh7oA¨<áU3ò.·¨è²ò³EªLòÑ¢ Õ Ù¢Í+‹A¥ØÌ@PhQ7>!qJÃ/㘭E[t]cÎTæt˜ IA”3@´åœ)*ÙPªŸ»kÌn²Ò®$Î>(T3ääNê÷z ¦&Ÿ¬ õ“Á%" [ÑHô™¸y΢ÀÜæd6n^#ͻղ¬ºu²Êg9íƒçˆ˜Æ¸‘ Â>àL+ëÐ@ë6SM‹˜Sæ0QqS >!}n]É’K£`’4S>™¹™¶Yðíšé“¹†.v‡g(ÔNR¸ø/ÛD=·lÜ% Nä…¬J6ÐÁª¢:N’®$VEáV‰%‰`ðÞšö 3è+‰T ”±(wÝàJ)Yóhek¨!…Wµ‡;J¹§„>ŸIÞ¡ÐÁ)ÚI*DahUÕi‡D7¨or7Óú$Ò¯¯xñHJA!d½’HßJ¹!‘~ÈV@)ÊKòBF%ýCII‰Ñ 8¾bp 7¼@ûmÍÆ Ø™gRÌÒ¦úsÁ°´¦»sÁ…žƒD¶fˆâ… Š› Õ‚œ°g2ÁBÓ£4ÿF6¼à°‡ÅCeÊXûuÝqÄïï½.ØŽÁé6ëèáé68øOë6 ;VŠ©jðãhgä¾™ Y•d»Ü»ËІtíC•j¦› ‰xUH“lJ²W“ä¥gfðÄ0o€’åJÚy’|…fÝÈõBv”R­­À#o¦VàT´a õ›EC#Ȭä@|`6ÄûÞbõ¬ù tIµ§â^Z†þpy¨’“p4ÄÉÀŒnš›æÑØd"™qÕ€{ oöM¿~¨XßTýr€´‡Ûv%Qs4^†jEk¨gõ­|Ÿ©›J`!;ȦäÀà PÈh$ºA±bËë›dB"S+r9ôM·r ^D»Õè¤âÄg™Ï‚;V”äXѨؘzÐí˜ñ=èä¯EðPÐуN~z ºÆÓ–ï¦#ÑZïA%áNîÝë†O«¹8|­ZÕ`'aÄõ¨[*­ªŽïH’×­ <_19{´ª¶›˜qßq™é9¹ñ5̺žtiˆj3ê9iR²AÚÃÄë•jÏþwLè–*ÆÛ²&å 5óHèö¡ü 'ø<dgù$OÐǫ́=‘çIZy$Š”•OÒÊÏ:÷ï·‚”‡ytIøþ¢ü¶ý²„n5®¼ñ>=&ÿ™÷#})#¿i¶ôvÁ™?ʃž^^QæÅr’§ò–˜QWËIžÊ;Dè,'y*g‡fùÑ¿»ðð÷fô‹¹#÷·(rI‡.|:Kè¦(å–£MIËàfïq%¯ ÝV ÿŽ ò¿]B7Å”¯‚”1Yý³¬º‰(o³P¿Í1 _À“L¨ùƒàKïϨèñÆz Ý>è3ð¬Ê@+ƒ’—ªg\ ¬ Òp%Ç'©s”G^6‰Æ-SpG÷wº tgE°:!Ì °^© eÃê)8>²í©b*°€»p²àèD$WÆŽ"°|{éØh(z]×Ó…‰_ qÌtÙ`Tí‡Dœzò%e«5†ªµ©¥ìòúj`‚öFA1çûþ)„Œld]$&H{ž¥6àà3"„ù(G?¥É—ˆ®ÎZ“Á˜Z›Zj£¾S_­ûEóÓ(ì–þÐpÌ)D‡O î$ «9­PÚÕ· >¬Õ ùCÆWak­$ ç¾ÇYjÝß©¯ä „Ì÷ËûúHDÁm¸Z®Ž„··m–fsSÅaHœú/z¼æO:ÀãCš¥A³ÌïÔWë~S{PÉ3º K~¨D&aXŒÌF"¥cSG¿ðM"Ô!~ Œ¦òUÜÏÖZI^|ßfiÓóðúj€ðaK0`W¼Fþ r½à ‹HCî $¾)´£œŽj)r. Ôjî?ˆ_bC£m_êè;Ú´RôÆøN}µîŸßtòÌ )^°Üºã‘0üv:§PÚ5¹¡³­uB½õ¼²4Z­'œ÷ª™Zj˜½Q¾S_ b’‘ ÚÐñ|3b¶Eï)}Û” $Cµ¹ŸŒD7¤XûN:ãéµÕ ‚=iG){£|§¾Z÷+ýhÖœ~€/Rˆºû‚„!Xæ6K!Œoh¬C4°Kþ€“zãC œÕš&þ¢¶©¥ìòúz€³sר†‰ÉÈxZ†Ó)Õ€Hœ Ö­´êí×\'1…¹ýEæTm«5N°ImSKÙå;õպߑg1Íï§RÄth©°{¡±‘ N%Ž0´t·eâf|J” ¯¬?d9 1¾,Nh«ÄDx³”½!ß¹¯ã5M ¢Ûp€ dz…³pgS “„Ál†6K¡‰f8ÄÇ!O>d·Z«©lÖ¦–Z÷Àwê«uQqoï§²¡¨‹©‚8!ÕˆIJùÞ -åµ[åSµÚ£ü&"ù"áÓYkœÛÚf4`vvOøÎ}=€Gk-w´A¸æ èÏlÉ1Uƒ'Á>ñ¢½–âÅø@°VCe®“ÞŒiÍÌ.ap£{›VÊî)ß©¯Ö}Æ–"“ÊûñCGàWæmaqy–‡Z$ˆ”ŽÜÆVÔß+|$X«=Ê©%É7È×p– µ’0´öºY©v|ç¾^àÔyÖ~BSoØJмÁå­‰”º•)ÝøHlf®?ìêŒòUl¥fw8¨[©u|§¾þu„2µf_Ê~@t *¬lÇ,ˆJ"axè£ÎÒ® >;”ýPeÄ&¨ÕZ§Á¤mjiÑ“Àž¯}=™6L ÒÓ²€ž<¼ÏPµdDÂL›ºÍR¡‰dÁ~ˆð‹*®Z­Á$‚µ©¥ìòúzØûf?²-sû!ŠŠF>ê *ý> $Ì6Ø¥¹•â¡ñ‘ȶÌí®ÌK«5Ù2·6µ”½Q¾S_M¹Nˆ+Á4~¿üÐ7¨ô™'À¢\âΦ\=[ÎD.¯iò±Å‰r^“æ…2>$´°ZA˜‘ã,eo”ïÔ×C;ÍPeË¡ÊæÖÀ‘y@¡û÷$aØæ5ÎRk_W×M9´Sb€µ2ù hµ¶iƒj›ZÊÞ(ß©¯¦`ltj?È$P>N­õ˜<Ú¦–Z÷Àwê«â—ß:åH<•Ç OMø7OŒÓn’´Às‰Ç?ÿóÿן܇ðñ±þóþú¯ÿø—?ÿãþÓ¾ÿðçÿö¿~|üUüôŸ> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 121 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-8.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 134 0 R /BBox [0 0 450 305] /Resources << /XObject << /Im1 135 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C# ¶THÎåÒ÷Ì5TpÉç ä`M endstream endobj 135 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-8.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 136 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 137 0 R /F3 138 0 R >> /ExtGState << >> /ColorSpace << /sRGB 139 0 R >> >> /Length 16704 /Filter /FlateDecode >> stream xœµ}K¯.»qÝüüŠ=Ôx›Ý|#Ã`  ÉÀöÀ8º,hÛÖ•”Ç¿k­*v»«Ïæwƒó`ó+’Íæ£ªX\k{ùû—íå÷/üôß^þøÛk¯/{I¯©¾l¡¼æö’úkh/¿üüò?_þ ? ¯!¼ì[‘¶ÌB“ôG¿þí§¿þÓÿÏ¿~ùü§OòãðrþûOŸÿíÓ_ÿÝ>jýí¿¼@,Ì¿¬ûkß_öX_[yùíÛ˯þæßßþã?ÿùçßýôòÛßúÛߢ+áû«£°mü·¼ì5¼nŠø»_~þã_~þ·ÏÿÏŠXzÛÓ[´½¾œÿÆ[ ûo~ãdÿæoþëxZóËÿùôÿô^~÷i{ùûñç÷Ÿ64ð¿|Jã-·QyyÝûËÖ_k’¿S’ºý©ì¯%?æíá_jûkì™{~Í™¹[Ø_·ýNvÛ7éևܔg½£[¾õóåðšG©¾F~¾ÍûlždÿgÉ}UrÛûkÞ΢ÑDOéý«|ü‘l„ ³ÞtÀÄm{Íáå/¿¹ä§×}~ÓS~­¯ù”Ïä)¿µ×vÊgòÈ!¼îaækò”ÏÍü£}N”½âc)ØoayŽ©èŒûÎ!½¶ÈO}?15ß}Ömñ³>̽·MÖöZwtÛæ•©øÙÙ~K {щ½X ?¤>¨ë¡ð)u G¿®‡Â)¿®‡EèíE“-½Æú…º|©Qõø\ÖÅÂß^l…[¬Œ¥bÕöXü!÷Q?>–ïÉÝÔ÷°$9M÷ní¼©ïFn|þ½.ÔÇò‡\Ú^KX¯årÖ÷Pþ!÷a>”ïÉÉJ±õô±Îòm»ÀÖg>ªxoRÙ¤ñï~qJwvé¾GiØQÆ‘¶_¤ñžåô‹#m¿Í(ž~q¤í-{h©þâ7÷­U"?ìî¯îªï íÂyYx,‰5ÿ¢q½~Áôé¢pÑâ/4}þ[vüâhé‚Z©.ùÂ×ÿ¢ôø'å/}Á/IÇ1Á·zû8î?ۉ>l3ÔÒq‹òÏ޾xLÏßëÒBãæš:2#òÙÖù‡_ýíÿýŸ?[çåüô2Æû¯þùùùO?ýÓËoÿ~­›*T¹=GÑ!¬§—üÕïÿõÏþù—Ÿ÷?•­—ÐEKçeè‚£—Gên!}øL/ï>Ë‚ngn³3÷a"ŒN‰aôWÅsþ5šù/Ÿd£À¨b \2Çt“õv41½Ï¼î?¨lÌÐ-b‚ŒÞ—7,y×mìñù’35ˆ"ëݻ̛7ËM”ö¸¥×â¼Ùøš¢Ø™9k³[zj´/^Þ÷¦ £ÿÒ“­zï;Tõ=a!ݯ"$G‡ …ë}æ(¯©Usy³›ÆA¼q\l‘»þ \‡äê÷Í› ñ†ÙÝk)Üq[–Ùå¼h*(o»vÑVE‹‘½¤\3Ǽ3(h ï33¶9\31÷¤Ø~ymÙ2“ ›Œy}­³EdŽeõò*ýµ7dî—|7[¢è²º÷K×Üôæ(~ èÍ|p7µŒßÖ"õúb€¶Ó0ÕÇ|~ •½pí\Ùøw Ãrí¢^7YPš³ ÈÓ6Fc³³:L¥Qº3•†–Q;^ðúÍnúd¬6­qµ¹4óîµw¨qžïµ;úä:›ï—J™J£§ª3 ÇS®^uu6^Ú¹—Wº_3öĽäÒ«w³y“ñ'käµ–}Ÿ#­¹ó#l˜“Îê/ßnÃ:à|ü±ÈŠ2YFç^Æèž3‹Å¤¾|–H%ˆÊ°Ö'©¼–„±®îCmØ0.íKò;âêàëžh8e,²—9~·É'œ7½°7éUùtýº¦ñŸÜo¸9!ŠÅØ0a¯{ߨ(ÄÇ*jËê„“±îxg ì»,(ò×EìnB¨WfA×a3ÓFMþªÈŽX;¿™;3õàmužíø:²Ù•ÕZ7ÙôääkãEÑä^®=?>èÖ8æxEEÞ>;+ð&K>h¿Ôy·‚ E%`€\U°»¡ZÐó²q_·£a{õŽE,^?ÙZ)é|¬£òé®×òÐaÎ×â[–%íº¥ÊˆÜìÂuîŒ{u2w–;¬A…Í.=¡cê^à4žãD_¯khã2Cƒh`ÞC{øÚÕwæ~G±¢l]‹ŠJLøøõª2ò‡µ×ó]4cÙ“¯­½ß²ZG3ãê®9ÔÈš„?8Åôlðc^‰ûcr”#)Vvg¶d4£ñ*)v·]Ç¢S)Ó„³5Œ÷µjtÆÕ—°õÎ¥-z‹âPhcÁò—LâxÙ=ïÎÊXádûp]<[ÁÚs]1a¹7( WµË ˆ³¼Œµ»p÷?]£ÕqUånººXÍ3¯î´¿Î:VgWÇ^/ŽQGYH Î÷Ü´/&¨-bN.o Ø>d4.[Œ¢yÒ{õ ÝÔ2ì\™xÃp·ì†ea¹ sšØe¯º›v<µiOÔ2&ãÆUñjíßÕ’á ÏûÜEV™×M^¼~â²”ÎX5Іƒàì1²¾ð0øjßM¼¾ëã® ›¸™ä}¯3쮋 ‚„dº K§oÖÑP:&¹ŒUGCŽèU¸—Vß軓mxu +t’*kÇZ-Aw½ììG7µŒA°ñ 亨Ý}ˆ­ãàzqEâÇç¾*|™ÚåØ\Úui Ÿ,×›çý“u ­ºÞÉ"V°Œrg ÄbG?ÎÎÝ6úP²ÌüÅåº`yÝžðkŽå°©/ß铯½&ЇkqE†ß*Ùª_s(‡)¢ç·K¾ Ð_v‡¹y,yuÆÜ¯û-`¹¹Ú½_¨%q:_ÇB.t€‡õÓÑpw«Õ&ˆï»U¿~Q±$oý}=rk¬Þ¹ÎøJ;ð=ƒ(áÄ@Žc>â˜ÏíyѺpZœŸ›¬ò*noÞ}3DcÚ]µþ») «bÝé}6¨¢”´ëú,ÝH%]»ºªµ„ºµÆo•Ãâè§÷Î6ÄUxÛ]-ûŒÅY]9Ç’)nÎñ¾Ë'’.t|»Å]@Ôs™¢ÅUЇê]"[½¼%Ùê­Ú{aÇyJF½EËfõ˜o1p,¬Ééõq–½:¹#54çðbX4×s»û.‚ß/:kï]ô ±Î.ªÇdÎâ3&Zalœ³ÿÊFIÒu?ßs§s!Š&µ¸rB¯”ò–}fnE8ÀÜÓïV‰-ØßõîÚ—l [>ôî§ű½ojIå²·.¯(‡£â^­%2¤yèbW'ýg®ªA½ÚcAþåaYãk85“áídgh7þñÑЋäl³¸cu GXc›ë¹Þy°{ê~Î ÍΦ Šd)7߇­4çœSŸ‚®Á`¿*¯b4ÒÕºlhq¼øjÂý!.¾P½ÓîÑ›‰™ËyƒQæ™ÜÙ*ݦ”sj–¡DàèUË,ÍÆ–·c‰T`XûUc†É¬ëÊyׄJ_œwr7³‚Ö8‡ýC£GØ~u}…gr¨´—¢a ÙSüFyQ£i–ƒV*O•ãú._£…(,‡”çxÉQêîfÄN g¤`ãÝnNdï7òL»ß™.¶0ô²Ÿ)Ûi¦ã­,P¡üHŒUžl;ñM§£°WW7?qj1ºðjJ3Sº9ººS¨vs=:­Á£ŽÈ­ÕömˆÒ†R³º–·È ÍäxFîfl³È·ë »WR¸ÏZ†Ì%ç(»LåÆ —C ºuƒw˜™™–éõhí~!Øé\xÊ‹Bç‚ãÈ¡Z‰œéÀ ÙÕ¦±0«z‘„ŽˆpWa©<5sTÅ Ç0Ž˜œe¿YƒvgçN²Ø¢t7˜·ÝŸ­ë1^X¿Ð–#1c¼=aÃ'›ëh Œhôöµ{'ÔVž _“©Î°ìõË[SÝ‹"B¼=ËW…ênÏý¸l¸ˆf¡7÷®¿ÅÙ[ÚdçI ,sùfqírÀÖŒ·ûÁ`±2FËîP'¹–>Óz÷‹SZA RØhYGÚ~±7ÛÎ_iûÅC½íø>P±ànÒסEÄ1[ýJ´ˆ´#fçëÐ"RF<¾1Çb Þl¼h7>ÞåÑ">ÿ¢b<~Áôù†a¿8Ð"ì!PÇ/˜>ýB[6qjé‡PQN°‰‘ˆñWãË€&~ÀE„'à"TZ¦¶¨Òéò."åú¡é añ.ý.§Ó?."2bþ;ÂEÄGJüO?õàåWÿû§ñôåW?ÿòÓx‡Qîÿúy¼ÄŸþõwùç?Ìâ×–¼Ååî#ðˆ÷£Ú>Ú1ªEÉÈ/翯ËijA§R>ö¨·±XJB<ô‚©ö)vœ*ÊX*w`óo¤„.é1¼FZ”ŠtcºàZ½D ÈPI;œ˜1ÀÀ”tk#àøHGÞApÎI:ó¼!w#tÞ!ÆAÒ‰í ˜©#;H£<5Ø‘N(/G&ãfœ Uë‰+¬GÈÃØ‘g>õ€xŸK?zá§À€Sè‘ùìÜö¨GH}µ=`°\ÖoŒG þxôÐqêÑGš=”½|îœÞH|2r}*ÃèeŒt\qe[Íó\D•Ž•}¶áŽîìf¤>ã×p„ÍüBECe5…²ùk}pCWekuÝÊfŠ¿fÝ–¯íRÙs»?úµü¾^aBäËÛñDŽÜÁ½'g56IB}UÃj4¿3êGeé5fÙüõ|"H”Ý;/8êðcŠ¿®¼A ù³¥=·[ߥÏ`…œø.ö„}~a½?¯Ã›)Ô'@HùÈ/¬]e5…²ùëb÷Äe².eXÙH}Ö–´väk»TöÜn¾KÒû˜nŸ·óÄ|BS£8L›šL}Ưq+xæGš¬¦P¶ýO ²˜,£¡¬ì6¿¢Õmù3¶²çvÛ»AÆdŒú.|Ò€Ë*)„‚c…¶e…)ÖW`ýX>¢X¦,S,›¿Ö'MzÓdÅkfÙL}Ö–HÝ–¯-UÙs»õ]6½æPlŒÍ'¸Ÿ+) ‘îð’Û’ÈêÛ°ZÎ|„†NYMcó ®)LY€ Ͳ‘ú¬-AÝš¯íRÙs»í]€O!ŠUÎú.ú$±=…ã ±­\Ιb}•×ù5Ÿ0u&«)”Í_ë“íQÙmÕ²÷ã]´nÍ×v©ì¹Ýö.GýUŽoç'MV}Ù|6ncªÙVÄêÛÙ›–¿[pd5…²ùëùd˜:S¨G³l¤øk­›ùGKEö¡Ýú.{ÆÊÒpgòíü(’ª<|­R·Q¦X_åiæW^2RÙj× c™¿î¼d& ›ÉFqÄͲ‘ú¬-AÝš¯íRÙs»í]º­„6÷íÉŽù]׈U0€)Ô7ž´vä#PlÊjj›sßžÌ_••80ËfŠ¿fÝšoí¢ìC»õ]bâ-˼=>iҺ̕©Ë6kê S¬¯Ø¥AäW^vSÙ™ ú]ì ÂN§,€\fÙHñ×Z·æk»TöÜn}—ø{DȼŸp¤`1.£ Mõb õ%:0-§3Le5…²í×í)íå °²‘ú¬-)Ç ±v©ì¹Ýö.ÑJËÂÛùI“H[QïÝ·ôbj#S¬ ™¯Çí*;ßÓ¦¿Ö'EÔÐ)›Å7ËFŠ¿Öº5_Û¥²çvۻ¼ûÛã“¡–§T)cØT^¦X_gÿh>¯mšìLÍžÖ'ÐÞ¦,ÂNgÙHñ×Z·æk»TöÜn{—n ÷ÐߟÈʤ.ÀH S×™B}y#`œæãÄ~ÊÎTÐÖÙL›)K3ÔÊFŠ¿Öº™oí¢ìC»õ]2n6c=Ð1fO’%©¦ë˜´•¦S¬/áj¿å…bÊj eó×úa&«sí0äl.jÝ–¯íRÙs»å]|ßêõ©Ù:ô44‰žŸl¸µ9Z O2®}JªgK™õ‚ýBó ¿j²šBÙü5Ÿ KbiU¶âŠ •Í”ÙQ[9òÙ.“=·Ûli` ëùI‚»¾Þ©òbpe°S´G"ö Ë'ÎÉj eÛ¯ñdž£É:y–Ôgm êÖ|m—ʞۭCEÍj·Ù“Œ³ô–Ì]!}Óp]XS¨OâÍâ‘_DyŸ²šBÙüµ>AXÁ”…r:ËFŠ¿Öº5_Û¥²çv›Ý†›ºbCŽþíü oê1.LDÚN•ñÛñ°­c4¿/Ge5µ™e4Ÿ €oÊB=že‡ißZÝš¯íRÙs»ÍÖiÔ[3Ü¥ç'EŒ&Iî'¢×*©g~/3CE&k)”m¿îzx·²8 e#õY[¢WÄߦv¿½k·éÔ·b`½=>*#tW†.Bû ÖS«›ùÖ.Ê>´ûЩõânS§Æ ÄЦ+. Þ•‡Ü-ÅÖ5^ßÕü&êú”ÕT™­³'˜]SW¢fÙHñ×Z·æk»TöÜnÓC±CïÁÛùÉN½ا¸qÜ‘„¦LW”€=Ë/Àq3YM¡lÓZ£†"´CA ³ìphàZ·æk»TöÜnÓÄ¥ÇÙoç'Xû’b&I[©»…j)Ó¯Z>ò3ÁÞT6ô[ݧ¦—ºa‡MÙ ëê,;Ø >ëÖ|m—ÊžÛmïÒ v4T}—ùd¬ê¢WìÔ÷2χ䜌)ÓIÚvä\HeT¨S;Jœ±{?dqñq–”iz %RòÑ.Ê>´[Þå`ÞÓ‹(€ôhãÇQ «Ë7Rme_ úÂÛþx  ‘6Êã³É¦úËAô´‡èQˆ¿œ(€nd•Çá!÷GPm±%ÐIòY  “è÷¤ÒÎ2 ‰£}Pðù Îbò”Ï8Ò™Ïä)_Œ«zä3yÊïøf3ŸÉ…4)„Žö-Rñ` çÃWRmC™FÎ-ЇSó›(€ægÓd…‰û-Ï{)¹_¹H¤…ÁÎj],|J}T×CáSêŽ~]…;R~]‹‘ùlµ;•_—/ÅÜëbá“[gµ2–~ˆ}TÛcñ‡ÜGýøX¾'wSßÃ’<©|dš§/ÑDÝÉcëËõ±üI­³\Ÿ /“û°¾‡ò¹ûó¡|OîÄ_ñeå»Pi“XGÓ'  ù‹Sú‘è(ãH?R¿8Ò@Ç/Žô#×ÒïJtÞÝŸ¦z~–è¬èužÝcÄeH7._ëUzGãìIÂ[ad¬Þ©+ì…Z<6Žˆ¥WÝkíË™«k]¿Z§‰µŒ“Š;Ô˜vN«á™ßjóî÷VžŠ‡ì^ÈBÇÉêåLØJȲ;W ÅÁEÛGä9 6^Ýv®þ£¯ðÎ÷Bn¶Ê¾áß¹jËð ÎÒ¤3–/* N/Ó+ößN-|ËÝÃ. Hð—ÊÑ󺃇óDLXF´“òÍ–Áð1~^fØÕ”"BÛ×»÷mûpîæUàOI¦#Ç›2Á˺S«!ïÚ/Ž© ¦[‹.pt9ù,ÏZ/5hœ½Evy¸ ¬d,­^5“žjЮåÝ飤vCÕá “1ßy árNIœiˆÒJÆ}Þ­VWŸê”,Þô(ÖÌéë  uNßèmY< ’¹½Œ„ÕM½»xwC wÁEwɼËÙ»7i2ÌFÙbœÅz'¸—DŽ>q·qãοŒEX‰x6g€jØ1È‹£ŠÐš›ÃØq·¥\Ë e'¬à-„uPbJ0‹®KÇ]-…¶sðz¡0¨7¸ #A³{£µvûøXDáº\]Ꙩÿ»Íd‚Ð1Ÿ T”;ûb,3I’-xÔ{‘¯Ò ¦¨L>Z–à r't˜…²î¬› ¸'ÓNCY|ªÊýâfç"Á•d:憠lXA–ÁíÇÉx•ë*}·€DlëeÕP—¶'L¹³A[ÎÑÄ$Ø™ý·¾ki¥»¨tê.¨vÑ»`·çŒ aß¹ QUï~£³&UD‘P²ô:¨coN†ã[‚á­n‡¥×ËÛí­êÚã^ݯ¸ž$z£ƒÓ_*õÆä²ê1J/$÷É,‚cøÜïš! «¯ž£{C¥è’ë´/{péW+ø—E[[f”Ý ­²ÃÅv7ÁԈѳ ®­W¯ÜD7µD@ôùj8Œ`žÎ^ ,îb/Ê]»åÅ…=ÙÖ±6pµQ>ÏÕ”½ûÜúĆáGRÙw€BˆÐ õj™&6aèŠcÊÙF÷‘ŸÏc<µ4þÚ¾»±°qâçÃÞ}RèŠÏÃY€ªï•ýYLñvVÎ]])ÛºßKâ4é*[žÎ2jYÖI¶Æ“˜ï¦–=Ú¹Ó2#_â­êPÖa—wòâ6—¨’®ºü'Š[6£EÈ‹wn±îZÞ¨ç:ß—×—¶ìòvË¥Ž´ecêTQ<þÚû]*°³¦Q+Ä'ñíÏô¹kÂF_þ†}×}i_·æáëÐC•ð¼áa^oÉ¥g¦1!÷–ÍÖBŹ:zÂí|X¦×±JR6ù¢Žó“T¿PÔ³& ñ9zZza¯Öì’]ÓS=„[˜ }â9µ£YàËp`•=ÕžàÊ«d± ÑÛÂ$ΛnIÇq#W\;Ôv´K ™Ëvþ-3{ðgwk‘¡rqØäoj9bq–•&^AÄú·ŒèË#èþyU &\qQè7¨•gèúh‰—Í#õÜÀÍ&ç©¢êmO뻼r×çò×*j²Š=Ãï%פC¸¡*ŒÂYFõŠÑYUs“¼ÎyLD”$N"œ-–Š4*.+SåIÎîZkò¾îÇŸ.,×÷n#ÚM?pªÎ+Á=%bŸï*¼ÛÂõ—à8Uïg¡5_л)ÀS)"â­Õ’p±Ã÷€ß"dO‰½_t1Úê™5÷kšŒg ýZ]m }ŠGƒrWK†·C€ œ³@µÈ ‹¯y¥u9Š¿*u}ñ2Ža~WK4?ñrd…Ḛõ8ÂbÁWh3ÔUí¬Š÷ŸºajA®®ãõîFÂD/F¬P¸ïõ„ͨ–•·ódnÞÎ}Ó¾}£_Í#–»Óé@àýmUm‹O3Î=Vk1+Ì¿@±ßH¯v†:¼49˜“ÑßwŒåÁY‰$õ'œ …‡à»ó ; -±W¯ïLüž¤à4ò.³CäS#oRfï«éÅ"O¯ß> èÍ«sã;ääÕYx/Ãåú* .tYÚ¼ð«i§.Ÿ Œ&4ªkÎR¹'Bsï_ Ç&{\ËèóÞÅ“»q’MÛZ>µH{tðìèT òæªÝ5Aï lëÞ6&ßo±ÈÒ[é,•™µ-zæoC|fÀ¥ÿN|?Œ"Í;ÔÉÜ«Œâý/NiD™¥óGzRñþ׬åHŸ(€ŽzÚñ½(€xXúUh±ªíëÐ"•°í_‰ØÙpƒ1ÇÇ$ç À)œ©wN¿àåÄüž¾G`Q~Áôù†a¿8Ð"ìä¯<~Áô™$ˆ-;H‚Ž–®²ðlg_Kt‚‹ÏSm5}   ¡l2þÁØe bvÆcú\„Rý@¸¥úŽpJ$ßèÛ(€ž…êº.w‹@sTÛG;Fõ@­7!À ¼f…ý||Z‚°*Ê' ÃFþ;Ö¢g'R5îßA|EB€yľ‰i&i^ïˆ"%Ž`®ÄË áM ]”bˆXš‚”1Ç8–~íÐT„ð&Z{I¸“*ÛD/”¡Ë{ŒÂž8PfÒ™H€BJ>zžòzô€áǪ́I)v´DKêG ˆìÔ¢´ôýÔpð³$Ÿ=Æ€}ÙO= xùÔw¿f ¾sT ö=À›ý§22¿ í=0e‹Ì—Yv1*€Y·æk»TöÜnƒÅ&^[sñÛù b ’Úî ’¶¬0eEm;ò,“ÕÔ>§í Ú¦ìèf+{›ÐÎV·æo¶HBöÜn{—ÊQ æ¶·óVÈ6_ùe ³ñŽë㑌æo<…5:M•ILcO²Ä¾LÙ$Zé,;Mb«[óµ]*{n·A|óÝ ìÇ·Ó“ŠXIÉ!èm9gŠ­cO[~¦Re™bÙüµ>ÇÑdåh%ϲ™2ª$©Ûòµ¥*{n÷W.Ç€ G5oOzGªÏ•ɶ"¦ ®<ï3§CKeÔ¾M¸ò­ÚÊ4e᫜e£|›uk¾¶‹²í6¸òD¯‚UÞÎO#°àâ´( Ú™Ûè‰Ô‡×v,¿rÛTYMH}怛«ìnÀè()£ÚË‘?[ Ùs»  ¨ëÔ>)€äICȯlú›2ˆp&òB;(€pĪù»ãB–)–m@;WŸ’¦lEL—•Í”Q…0ó­¥”}h·A¯ó,SNt¾Ø“H‚"†F‰ÊÖ_Î œÕÇÈ"ËgŒ·ÉjjŸ[Ç“­²Û ä]SŸ>–#¶²çvÛ»4ºéÀÿôv~Ž_IéÎ) úªz1e4={™ù)p÷£¬¥P¶ýZŸlåE4ÿ,©ÏÚÔ­ù³¥"ûÐîF^t’&]ž=ÁucÀµs†”þ2ÕÆƒH!1–ÃòÕX•ÕTštyö$‚–ÁdwÒiÙûA/¤uk¾¶KeÏí¶wɦ¤6£Ê¶'•D¸ñU^¦Œ¦ûæ7Û !«©0ÉüŽ'B ¨²D˜êt7Çê¶üÙÒÞµû Úˆ„asöA°’jŒº‚3XÒ¤OÊt¼Z>Ñ7UÖRÅœ=Á=«)‹{º³l¤ ¿Å™oí¢ìC»(€€êÑÏ@›ÒŸiÌ€êï/ÓÔ@êD4ó³é8ÕTœ$nÇ“1@¦, >§¬¦Ò¤Í±'ô¸& ƒq–­uk¾¶KeÏí6['[?Uµì £Xˆ Ù`BÅB1¦h4Ã)@>OALVS(Û~]xî d¬&»ÉK̲‘⯋ÍTägÓZ!{n·Ñ5^ÚÙ§­cOp–É„„{wbaèÅÑhºb$ ÓÌßx‘–²–Ú[GŸ`™²äö²Ã¤Rµº™oí¢ìC»Ínc,liFÏ2ŸtÙ¢¡Gh–BÕÏ.¢=ÂÛ“–¿h®ÈZª=Ë|RA~¤²‚ ¼Í²™â›³nÍ·vQö¡Ýuk ^[êV<鲚Hªh[ia¤j©i”#'ÒÊjªMz{æ"“-pQYÙL}Ö–”~äk»TöÜnÓ©£…NnJáv<²±qˆÑ/Ðè«¥Lãßó‘Ÿí dgjZÙ¢ëã>eleç“5Áº-_Û¥²çv› âhì„ªïØ“s{D|mÃ’#šlÈ–ú¬xKG~æ%•ÍvcÉí ¡)‹¨ÕYv˜{ƒÕ­ùÚ.•=·Ût7øE÷êjëè^”DÅ °g2ZLMM]1ù‡”&Ë˶_ë“-NYñUôY6S¦¯ãаæÏ–BöÜn{B0¤áíü÷-Eß‹ª3芺Èëïåˉcœ²–ÚâÊùD¨÷L\:³ìmÒ)ZÝš?[ú»vôªÁ$ÓwôI&5&¯b°Rƒî}%­qÔÌç…?“í‘z"{LÜd˜l$mf3íh’=VÃôE¾¶KeÏí~¤ñöót,ñãøx¡ú[èrZ`ÿ¹ÑOþ“ÉÀÞò_îŸsfÐÎ5êŸAýÿrbþñ%•½áœù#xÆ\ÿ:ÚŸCðYÖŸCò{’þ°£Œó§í Ü™¹`ÜaêÈ-`ж\¦ŽÜŠk=–ËÔ‘Ëš,÷¨w‘R'µ¯eò)7}Gä³>Q¾‰ŠÇº“©Uþ#rœG™ uæ#–l7‹õ d“ù¨žsÉS&|™èä\òUƯç¼UßøpÞÉœÊ}PKž”6k±èC胚ÊžRõÝCáŽÔM]çÅp2ç´l-¼©Ë•*Rù°.>YlëbáSêú΅O©ûð\¸#uâˆø¢^ð]XvXä®aòıcùGò‘agÊÏä#¿ÎÌŸÉGv™?“Ü:×ö}WfÓþù4±ÎYöY^Óöû4­ÎYöYVÓæ}¡s™ÉžßQêùPdNÜùQpâÓaò”_㛓§ü–¸t˜<å³A3ÿhß*™MJßÀ£#ñ_M£#èÓw,::Â4Gg %{} Ìy—´?èü0KAés¦©ð½Øs†‘÷,yÎ’zô¸slùyükÌ9cvð êÖŠ`I—ìØâ«^, &hÇ% JfM^øûŽC¼QÓr”/à}¬™ Tøg`A:î~»½pSBÀDuáÀå*VבpÉ˲Òdš^oØ’Us±¿qö"Hþ«íÎ8«g@×b”z–R£ƒ|WÎÐëîÉ©wĹFµsîiØÿ»sqµ@1í.šÌÈ ït…温_.'b]fYh¸˜Ú7±f–Bvñ°$~¡ÈºäðkÐ <òÊ:žn–î!ñej«å PdóÊlqZ’#Ñ™W×Á5y÷[†¶Á±àa#v‘è^‹Ük’V<‰•pÎXžÁyÆ-ïê]Q”{_Ò¶ì}0ŽQ¦%z{g×Yûæéé ZB-ž%7v»Æ±à\UÞ¡§»¸]¹êþäèpdÅiçâŠ=µîPvL©À¾¸|Xf‡Ó–ìqR­ê÷{'œ†,õ¯ð_n°—Á¬DP‰â·¶^XŃ?­èÑ©ŸsÚáw W†ö8¬ÃÒkå^Çâ¼ðtJ„ ÷ÍÙmïú¦b·uYw ürŹŒÖ ádÙå®Ít¨.V\ž«ì3Ëì±Ø{ôÆðh½è›®ÍT±kfzrÈÑ#tAWŸÏ@êfýÝ^0éî­þwöbºËJTŒ¾{ØhâÉ…­³ ™yZâñ|aì¡o–±ü à»·{7¿Á”–]<¥ 8êâW[†nEñÀ†îÞ1¨N…&½__"4Ïu_î} Ⱦs]§¢é»ëkGo>CT3l“êÑŸR‡ÎÑU=‡÷0ÜýënŒAïèý À ôc ®]œD—ô)j2ìbiÎJVE£©»cIÞÍ[7v:ûÞw7Ö¹/¸úm|Tù æÌ þº×Qü4¬êÜ­?°w«‡÷"zÈ]ÚéãF=/8tl²6uøX"Üàs¾ièXr)/¥-_hN($½¯ƒ[¶Mç¢Ç• ­¢{ÜB7õïFï¶Ùݘ¥ì¤Ë¶ n}uÂãÞg"ß;£ ¬‘îÉÞ­Ë1Ìe]ï/8ë›ç_–ÝGË´kâ‘­°°–¡äqó³WOŸ‰àMv#@îêG—œ¸,Ï!ÄÆv—(\XØ9Þ®cQf6ÎQ—×ÐŒûøbÑ;žeD!ôö¬eÅÙ°Çüu76:ìeÏûô»³ÀWùÄZ,Äìik]DË[}ï°ª{òl¤ Þ¢îr‹/ g[ÎÞà ÇÙã_ÞyÓ¥»XÕ @5»q8í$‘ãe?+Åä” ëOæžKK»Þ½qÖ,Á]èÞ™HÎúÍÞð—±Åãïž6è ÞžŒùœ=†Tè°U—ç(íÿž×׈ ŒJñ»˜Õ슫ânL²Ö§'ðÝBpǪ²jdÃUoå¾ó4@YG* °U=ËóÞV3‚ ‚—±T”þÄYuÂ/j^·•n‰v—_¥Áæ–³ùëxˆ:I.}L¤ßΕË8­m9NC¢Q9#¾ÍåAmˆ¸IN„À]_àÂsž­.ñ4ÐI<[\ä½{' ÊžÀSð6£V/ïõk-¯úRÑ/kÝÝ\´Xò¸±îæ"¢RÝ^Î7"ãÆWß¿Aí.kù°ã7\hXæa¢–,QËûe¨×J»Ó×+*'gÎxÏÒV7à®ÿÝãúZسùT|þ¬!èËLS`ùMçMÕøÏ®€ÿµ´u÷Š(¾¾¯ë‹ÛsZ5­ªˆvª Â(¾ïe"qÜ/ͳW"¼dâ+q¨€±‡‹ÍEÜŽïÓÙÒ«—×7=¯vâ× ,ø¼{vcãYŸç§¼ëì±²aõ;>3äŸfLzú}Ywuà^WuõÌËP<»*êKôg—Ùõ‡Uªû܈](ͳ3ã†=Ëã¦/vœ§dÓ q«Œù¡œSPýŒ]üª%ß­u@œ.în¼Wàu¹~ ñ/@3ñ˜^³Eø×‹Vn7bä~ý¦Å°Ì,]íéZÈwk40=sZ÷™Ž5j¼yöðÙqüqy÷Ž]5ÃeÿÚ”Œìâõìɵ3ú®g°ÞÙ5(¦ªwŸàn>1^>ƒÎ¸UÓÝXx±ööå5 ó;{ž;ý¾6ÿ®"4dϧÐUY<‚Kµ‚KwblîÖ:œõ<Ÿ’%S½Sóû¹!ñfÖýØ,¸Ã±|&YæÇ îî»é^Ä)¸E =kí––¿G;‚+e²·<áCKعž’;»?AwLPÍúÄz# Bˆ._žqƒÕ»sÿÝ*æf¸öF`ö©Np}_¼|ŽÏ˜g›ç­"êaë{¦Ä~"ÂxÙ^¿Ê{Ü]§#÷0‡¸àö‚G-úaËX'ݼ1N²§»â".ÓñµQï’ÓF—°«Á6÷÷Ó û©o6ZŸ¡«;FÇ:ÈQ½¼Ö$ìŽ6¡/‰¿öúf±Œ³s‹é^ÿ.ðâ.3#UĬö¸‡)‘5ˆ!ôÏ#%NÆ[9îêÇ$£|Ù7TOÞ,¸¬‘úSsãA S½¸±RôcìO´?Ï VÄ6Ú…] Ëî'<ƒwùGÒVGïÀ#8’“¢åTà¹üïE¿BÈò¯Áˆ ùü*LAE«ÅÇЖÁï>ÙS"-9òùÇä),Ñïa>“§|ÃÐü@ó[ä½Ígò”ÏÍü£}«¬% Q+_˘r„ç S$èªÝð¥0€2oØ]M€uÂcò@©RPñ$Jù~Àʓƒ—o IyEéºÖ,²¤ØÖos á'8R*‡ñX¨ÀôA÷‰ðàfŸôŒ}’KΡÍs8Ñ.Ê“¤!nT#‚™>T!!^@Q;"l[×’¥Ï'ìÇ'ÆŒâ 1 ®3·¢,Ö”¥"и¶Ýx·•“DÎ.p[&HQ„$¶ž9Q*{cqzÆã3Pçg„Î7ΠR˜o,GfýxãŒs–ùÆÔÉó%þ.o¬@&öƧvóGEäMágĤÍ7.»æêÃÂo\àøþvq#>P [äd@)Pø´O™8ñŸX.|‡&ÇÄ> Cæƒ0¹Oä‚ÿ¤>aâÄ|b¹Ö¼PÛjð¹À#àùÞÛéàO%!çï8;Õ1pÀ`Ëš"Ú»æÂÁ䘨®= •ƒþi¥ƒ¯¶:5ך¹S[ 1×òj7`m}ÀûŒ@±Í’}›c– ÿ¦«å2Öä`©ü)`z¨IçµT& ƒW.$1W›G¹s[Ü´—Vz;=ÀeGQpö]ãtŽ1ñY©CjŸ¹ûqIÒûd6˜”ÚCäp_ÕJÝ&­Ö‰Gó¶üØVÃøM¸œ'”¬>À½hI4Ì0ŠåšÀ+*8ÔÜ*Í09&ò‘Õ€›79@"X©iòQhšË֨ܩ­Ö|œµv5¼à"¶$*ñò‹®aL!I,–»A•V9M$c"²à5¹ˆø- #.©}æ6 J¹s[Ö (î2¸ÞŽBëD&‘0F÷ød®¹Lcɘu–‹›O&‡KàÅQÆpï&'.Üd¥2aXÄaŸ¹lžÊÚjͯ⹥¯÷íôà1B’_ÛÓ‹îLIɘ^š»ƒ$Wå4ž<àÊÜ/ÔR™0z’\f.Z£rç¶Ž2œ-%S%8 ŽMcšðÑëžÆ„¡"ç0sqÊlrL T£0‘ŒhU9=Z©Hzr3—­Q¹S[­ùð˜WÄè¾I^L§½ë©˜îÁL]ȘQ– •ÓD0Ô{}PÀã«rek©L°ùø¯æ²5*wn«¡%ÃE\ã<ú@Ñ‘y*†ê LŸH«3—^&•3—“ }°“ $ëQaè³Ô}­SsÙ•;µõ{ìľ=<¹NÄúôL« °4b5W ‚ÉÍD0†>h¬¢\–ÊÄgm€  i.[£r§¶¾3‚J êÞH|YÓ‚„N’è£gM°Mɱ\Ü®39KØ€Ö 0¹"땊„±‹HšË֨ܩ­µHÀêac_Ê'ñ ŸL>Ô!™˜ðÑqæÚÕ3È1±Í±¯@}lrèÜ,5Lðn­Ss³^Úéé±­Ö|(4ñ½l0Ȇ µcÝsê¼L!A/– Êi"ƒ>¨@ÀQ¹ ’9Ó¤'›Ö©¹lÊÛú@ "¾ÚíÌ"jºQxÔLnZ%yn0$±\˜q¢µÏ =¡nÚ[©HœhC,ך¹S[¿†3dÓÕ<¨r=ŒŽ’DmPz:H=rÑ„1€Äåp‘ÈJ“‹PëÔ\käNm5ÛqáwÞN IEÆÿT(\ÂC¸MéaÈ3,R&ÇÄf+§=$Dl†¦Pg©Hð§¬SsÙ•;µÕ”kÀ\²{;=~€¨ô¥Be%ºmÒ„©Á¢{i.}x*ÇJ5Á Tàž§u¬Ô` &V§æ²5*wjë¡nÈ×±op°.‰šÕO µ1j‚z$Ï–Ûe ›ÁÆþñ 4“̱h¥2ñY xgšk̓ܩ­¦ÞUŸ«‚&uj.[£r§¶ZóánÉý`‘ÃHW¹È‡ "LL2Ž`¹¢($“c‚¥š.")à —+Y”ÊÄT¥âÌeóTîÔVeìXò•Gú¶·ðè,g±zrÔ“¤¿Ä÷ÿòöïo¿üóçŸ'Ðí§ÿÅvþ endstream endobj 141 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 147 0 obj << /Length 254 /Filter /FlateDecode >> stream xÚ¥Q±RÃ0 Ýýaˆ#Évl¯½R¶rÞ€Z2„Bþ¹©CÊKð;zïÉOÏ[@¸VXv=;¿÷ýþ‚îæª>ÉMÔHEÏÊuëÓî_a£Ös ŽãQ®s”OU„»Hª^YQdžHð,ÖM ½ÀýÅ[{è/ÓíØ¶^ ñ‡Ïr3çÙŽìtØv_ýSßîÞòKƒø_“\¥1=±gëè8''©j”etrÀ“èT¨o:Év¹“d׬2hEiç5äÒ°˜-œJ¬V>èhC擦ir¥?E°,OÎC~„gYËàßÑÌŒ endstream endobj 142 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-9.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 149 0 R /BBox [0 0 440 303] /Resources << /XObject << /Im1 150 0 R >>/ProcSet [ /PDF ] >> /Length 37 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C#]#…ä\.}Ï\C—|®@._§E endstream endobj 150 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-9.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 151 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 152 0 R /F3 153 0 R >> /ExtGState << >> /ColorSpace << /sRGB 154 0 R >> >> /Length 2693 /Filter /FlateDecode >> stream xœ½[Ko¹¾Ï¯àQ:˜Ë7ÙWÙ ±€Ö{ðÊÚĆÇÙIüú_ͪQ7É‘F9xdNñû¾&›],VõHöšIö‘};ü…}c:ðÅ3å 7žÉ`¸ Ì,\vÇþÆ>§N‚ Á”té6ñ!þ)^Þ~úþ×?¾d·ß±³`øóûíçÃO?+P½ù%˜X?RSJÉÔžÇnŽìêÕ—ã×Ow?îÞ_³›‡?Ü$…JÑ€/›„ÿ:¦¼àR&ŠŸïï¾ýóîóí*ÅÔpÑ0‚ò ¦a$ó«7æ7¯þ ßzËþ}øåW&Øûƒd¯áßǃLø§ƒ±<À:ÇÕ¤âJ2ÉušÄ— ×/©Qse³F¥Ô Rq­³5(nô‰ÕÆ‘%ëb¸;±*˜$•­R8̉®äA³„ɱ'f˜Ãr]º*GÍ0JcŠÙhnNÌj‰÷8›­åÎ?ЖÕì`9„“qÁÿ˨e€i]¨Ùs¿ë¢â×'óŠU ¸ónE,”§®è8…Ào<×yA¿Ün­å-°ƒ[«NÀb ãŽ÷ż²T–{rÝb^YZ—V)Ï+ǽÆà3Ƭ¤ ¯Êè‘=½ãG¶ú‹´NŽÅ}hpWp­ŸØ›v“–xn"»W܇fÏMl_8xfOMdp[\³ç&²ÇÅn›=7±=ÄQ6{j6»–+³ÚKÙó€W{ÿÐ-+Ï­KW”51íÑ 4€Ì]Ÿ‹ÕBD‡±Nm¬—ùW½Y½ÌßpC=Âô—¢§Gø‘žŽëgB/ñ®Ä«Óz‰¿á†z„Åi¡ë“º£Gø‘ž©mW¯ð.Üóz&ïë5Pêþ†kÇŽáGzpé®Â¸rb˜ÖKü 7Ô#üHOr×]/„é).»óIøWŽ<Óz‰¿á†z„áûåG¸Ñ|~À•3Û´^ÏŠé~„[çeGð7œ 5èÕy)§ÎY½ÌßpC=Âpƒ¸ˆò#œãËŒ^ÝWÖsó¬^âG¸åG¸Aµ´Ü®;‹1i'¨zêê¢ààê,lKŒ±ôËÕׯÿúqÍÀÛ\ųùÛ«ï?Þ}~ÿ¾RðÕûÿ½f/`«¼º{{}ý+»y]Ohq‰“eìϘšÔpTzjjRY5“›ù9““1éÐ΄֥K|)éI­azješÁºhî µ¢<à%jqÆ9DÉ¥ÙìQù. ìÐErCëý*'¥ÒÖÂ×ìʃÑÿÒǽôðéf·¹{ÀQ)xÔ#·q%¥N[Ü&=–¡©z”k_{ ±ŒW¹“Oõ,éÀ-¤[$ÎFk!ã³ÑʊǶʆ=(l­¸ÙÙ‘·QKL×wªlEüóX+‘7Ô@‹OkrŒ*y¶)-²µŒµJ’­¡ºZ„|Z‹cÔâæµÈ®8£µ8‚êjrŒêf8 ù#´rz³mèçˆ!XWÒ7·t7{Kø‘Þ`åS~À•ˆdZ¯,þ5’éþ†kžGð£ëÔ1HëÕ¦†T³z™¿á†z„¿á;¨î~¤ûK¿…ùs$Æ„Óz‰¿á†z„éù~Õ™ò#=#ð =Ÿ Ï5¨ÖKü 7Ô#ü·Þ÷=Âßp°^µ˜Ð[ï{ Ëgõ2à õ? ü4å?_¯ºjz°˜×[q=Ê¿…Û«.à~[×9Ы8™Þóš×«×Yq#=¿…£ßl3÷ÎÎ,Õa!Œ²9 餻ҕ&øo×{޶Q£YÙÑ‚?†Öažš ™©Ã(©Î©Ã,‚/Ö,u˜«Ÿo¿ïØÛ«O_þþý~ÿñöz#A:HýÐ>cµåIÉŸRmeÆCþ?T[ÊêR†Ï"ªÖS„I‰lešÁªB <(¸åZ´Õ)µ°ö>&ý‰¦Û—TŒ5ÂبüÂ4¶.ñU‚K¥bTXâ›8Ç0›žÐ:…©:ÙÐÁ§¹AõtqI»xúÝJ]¢¸Ô ÿî‚Qî ëcd®„¯ÕØ#„çï&ÏMÖbÅ“.sâW™ò©…Xk&ê°û#}þŸdÚˆÀÂÍËHÃv§(ll‘°”&¾¢Êr[ £ÑvTôØxÙw¥\:ªÂÁñÜ:ž»„FÈé:æ¨ô‚ú‚•A+pap±ñÕËV7[­É»Ú5¦ÌÖz5kn5«W9fÍÖÜjÖè¯ÅjÍ­fÍ×Q­íª&Ëf&<¶XçÒÏ,Ï~I*aCàAç[»U«=„OúA\½Q¹›šï%õ·0Ö÷n˜ùÈòã;©ãs «<ò̼bDóÁÌ1Û:ÄÉÄ_½¤&œ|t7ݼ‰²ë›|]­L¡‘<جVym°ú½‘&o¨Á ò ÔŽö¶GVšA×+ÜKùn¡àŽ«^`BÈ×w·'µ2ùŠiò5šCB¾ºPTÑOiŠ´Ë, Š}îßÝÞ­îèð?›|K¥ endstream endobj 156 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 143 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-10.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 157 0 R /BBox [0 0 440 303] /Resources << /XObject << /Im1 158 0 R >>/ProcSet [ /PDF ] >> /Length 37 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C#]#…ä\.}Ï\C—|®@._§E endstream endobj 158 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-10.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 159 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 160 0 R /F3 161 0 R >> /ExtGState << >> /ColorSpace << /sRGB 162 0 R >> >> /Length 2384 /Filter /FlateDecode >> stream xœ½[Ën·ÝÏWp)-ÌðÑÍÇÖFÀ@äZ@qޤ$6<²-9¹¸÷ëS|5«fºIŽ4ÊBÒpŠçœ&›,²Š”d¯™dØ—ÝOì ÓŽ{Ë”™ød™tŸ›<ŽÝß²ŸÙ]¬$¸LIÿè)ü‘Â…?¹ÒË«Ý7ÿùþ%»~Ø…Ê‚áß×w»o¾S zõ;‹0±üŠE)%÷ ¨-w†]íÙÅ«OûÏo¿ÞÞ\²«»o¯¢B¡¨À•MÂGÔ\ÊHñÝýí—¿nï®ÿW(†š‹šá”eøwlF4¿z³b~óêGøÖÎì¿»_~e‚Ýì${ ?v2>à»iæ:Ю¬óž¥†…w®QTÆ5¸|‹j¤2®ááqª‘ʤ† ƒÕˆeT#?ûRµ¥?Ê|üÞ>ca}‚x3¾"q2Z ØèˆV³xÌÌzäþžN0Rt\k•ÜÂÁâ™_þÆ*Bø! ËssXϦÁ¶ÌéŽåG¸NTAù×pzÄ›.•Cœé[»Æ \З­8†ò‡PK¿7®ù\Wò#\7JÃük¸3®‰Íu^Ãä±ðGÎ\¦€ú7¾wSKX z9ÛüpϘ³•Ê?5gÒYýœm£¹Ïš³rrva Àª=…á¦mZ}æ~Óè4×Fx§9Û+!ΰVeƒ“Mf]â©V})JFÜò±¹ftaø˜a`çç’NÄÅVpïë£';h“PgÛn˜€HíË–Á g.a‚ÅAÝ)éV9a¨϶†¥“<±TãùÒé µr:cº4¿¥’. C«=¦sÙM‘‹=‘¢v_Ó•¹ˆíŽ[ÄŸŠÈîfn*";{âOEl÷äùkûó’Ái<2í9y¥éd,4ÔºÃÝÖ ¾ì±éPì¬`ÃÅÆâ·Žòí„Њ¸Â¾–OÙ ‚êhr¬etC‹c--‡´LØYU/>¨¥%Bu´ù‚©MC‹WTôá]­D¾geKìÖQ£ôW=ÄFú‡ð#½Å3µõŠC* è°^v„×Õ#üçgîlKð=×ÚØRþFM;€ôœ@¸®áGz.ä®ZéWÌôtIkvô"ÿž•-̰žÎiÍŒëê~‚›šésÂp½ù@ø—7aÃze>\OðW\Ï?S~‚3­@–òïÝFöõŠ D¸¶áG¸Åãn¥—1ÿÚsvô²ÓU°3V§é¥DDÁuô(ÿŽ~³ÎÜ w˜âjfa§½D¼nªt¹ãÀ¸Æs®£z½²‰Ê»€³Å¯#‰x%Õ)‰x/ÂJ¯„,Þïï®?íoÙÛ‹Ÿþxøóýï_ß^®dÈ:Ñ:má3¦ÛŸ¯çt{/`ï7ù_H·çÑ•¯;éMI u1…“kb¹›Áª¢c àYëY‡ÓÓ-°µáì‘XUÔÑ<Á˜qn <©˜k"Vh’Ñg‹¼•óa³‚ƒÑÑ8VCÜ‘‚‡ÀÚÙÔ!¨>^—؆ž'x^Ægq9‰-–Åø¨FJÚc÷›k˜)ܦª5R×€ Y:T#•I ›¢ä¥†-ar©SH #Š\Æ5À-ÍÕHeRÃpopXƇ"oÊ!Fíу‚ÇÅÛkuIyžrÿ(ƒ¡½Ê¯]@uFO;¡@c)•¡wµêŸᆭµ±£ü{VÜÙ¨^⯸žå¯¸ÞÆŽò¯á6ôˆ\*‡õ¶ÈmàÂFµ9ʸäá‡õÿ‚ëëþŠëö'á_Ãmè‘5 p¹ ó@7õ6p0Ý\óD‹ðïYYôFõÅõô(ÅuQ„ ·¡G–iÀår¸t× Ä7qà§[óò/'SÃz‰ázz„¿âºýIø×pgÜævNÐâ]T%lYNö°?¿9ÎÂN®{~&žô˜ÿñ Ÿzx6OggÛ-}þw˜ã ]/š+òN–#£°±n…¥œÂiAêÐØ|øå¸ž· áò†&ÆóÞ– q¸§}ò:^B#äðZz|[Eê3!¥ž*'H~Ý\`k<I¥j51.ÖTªÖp÷¾^eO¥ju:]˜IÖTªÖôÅZŸjðüer=õ1ñhÿäk2ë\H•ÇW»vèÓ›„Oº_^T*™åßZ—Ò)föá”·µ0Tæ=KÓwP'2LO3/Ñ^|0ó1f]‡8™pï:CäÓ¼žºŠš{—‹1yHŠG6ªUng¿×½8È+ªÓƒ„|µ¡…½mHÇ"Læ©Ь£êXjj%òåöî VNÕÓ"ä ª×‡„|u¦]E;§)â*ã=ÚûÜ¿»¾]ÜÑîSºž- endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 834 /Length 1665 /Filter /FlateDecode >> stream xÚíZ[OG~÷¯8o RñÜoUT) ¥EJÛˆÐ6-åaY°Ùu×k”þû~ÇÁñri(‹¦XyvæÌ™ïܾ3àU$ÉQdI™DÃH‘ŒóäÈ$I*‘Ó´"!½‹¤=/:Qtšw+¥ð©Ii(1º°Á@§•¬ Ÿ¬#’òÎÆ³OÇs”‰,ö'©KÊŠ%­c$ëH› ÉzÒÖ²Paƒ'+I‰ýxØ ¬:KN’þÓÀÃ4éy6Ð% $á= A)–Œ(ˆA9ò€:zÂæ`ÈjOKÖØ0Ð`3Cp .$ã¼4àÆ6JIc2±/EG¾„94Á4gD¸ÖbÈ8.qÂÉ’—À— ZDT £›b5%@68/jF À&i?PA % Q! (eàÄ4°)Ä#èÈ30f#tliâ†i*`ÄÀ€–Ò¬2òL ¨àÅi¢€PI6ÑVl¹,äÒÂ!øH“è-¢ 'Ç$y`-烹Ð1PHž¤ƒæ…VÊÀAñ Àf$–BÆ$ÍSç9ŒGP§8­¤F2(–:Á#ð"œôÊòÇ;c G,áV忉}Jâ5‰o›½†ÄíTÔ.‰íª; ¯¿Æò@ìý5É$^Çy ^4u—ënJžåb7O›Y[æ)êm>ñ}UÅóæíKLxJÒlo±€¹Ø³ºn e…Ëç .œ5_ˆçM;Êí\‘<߉ñ°ÿ€.;Újˆ#ïÌ~B½È¡B}¸h‡)yˆ½žvP)^Võ[ñìéÓùâYÙUM-^‹Ÿvwø÷ÉI×M¾¢l‹zØnNÚæ¨6í±5¥8-êY1žŠÝÍQÑÓît¼¼ç—N{óëo\}Á…aDUÕ³ñøà¤4çóE‰m¸–8Û¨tÍ‘=s¨Å<çÉbŒø.Â’Qv1F´Ýù¼¢æ!ã ŠWmS¾ÎðºµMb/¿ë.ÇàR¼µ¼p”Ð-"¾tƒJ7{k鋾¡}  ´¾Æèû.ªÝ ÅÉ£Y™[z2íå7›jh‘œnGµ¹è¬`zñˆtÜ*ºLO¶¾ÒR9.zð‚–fSÚ/¤ürß7£›DöÚb2É#¸é £^í}óf¸ ÇuÍXöNª)áç=¦/éçÜNq4™¡²`íݦúVú!ÒËê,)FùLlåê¨ß ·“¢;™æ‚ÎΕø¡*ˆl,|ðqË>fÛRuc¬ìÒ·0ê¤*§ô㬛̺¾owùÐôº»q1¼œJx€æ“j ~(NyMƒdŠiž§›ø.ÏrW•Å@|S—ͨª¹ù÷‚ú/4šk5n>oÆ£kÕî‹/xÇÝœ'z'-äßëü°[üRÕÏêiµ\ÞªŽŽ2²ÓœêÄiUϦh½âÏYÓåq>B~Z 6ƒS§ÓJ·ÅYE9ë²(«¶œó;ÑUãQß•-èñ°ÍÁ–¢,‘àbTáˆi5C°ó(‰g‹U1&OfõqÑÎNÇŬÍqSç·¢,XßtR”¹OˆÚ߆ úUÞg…eÅ÷‚«ÿ͇Ìãóí;§ sb0é21˜ðpÄ`o&»&†Õƒ +!†¥Ú1ØøÈˆÁÄÛÃ?Ý‹®¿ ]%¿ËîC îÊÁ¹»]œ¿ëÕ¨oëE¼ƒA^]1(=Ó™›™Î|žLg>Âtæ?Ät>­„é–j{Läcbºuü/ $¬æ*®» „ÇvðònW«mÞ=ÿÏÃΩ%'ïÓ!ã•þ]‡ŒfÝ!ÿwäJ`©¶GI­;ä­ ÄÝ\ n] +,¸š‰×Hzd2~²éÈ©E‡ä/ýîÓ!•ÔW¾0òázäš–”ZM“ìéí‘€Rë6yûñ7׈_×È*k$®¨Fâµ5òØ:%¿aò‰Z%¿ ³h•ü>̽Zåû?_h•Z?\«\ÓÀӀѫ¡¥Þ> ³n•ëùÜjÄ®è:i¯½NZõØZ¥6ŸâÝŒµÐ1¹è¡üf£¾×—–Ê^ùVY÷p]4ÜÌaÍ+d·šW·zzû áüº‹®käs«ÿùþ›Wÿ( endstream endobj 165 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 168 0 obj << /Length 551 /Filter /FlateDecode >> stream xÚ¥UÁŽÚ0½ç+¬Ý=ÀÁÆ3Ž|lUXµê–ÒÓvU¥% Hh¨ýûN°³I¨)žñ¼™yó’8’­˜dô+ÐU2`²Œ°ÙÏ,ø€ôS.Ú°]Ð'ùÑÇ û° žé/…PølÍW¬+4{¼1«fÂQرe<$®Ä…H•ûa¤™ 9ƒùì뤅55t¤ õ#H9ˆtGÑ~ìK±“EX‘yJ7·…bï*<„ïÿ”,ÒxSA“Òt óEê¢ñoq‰¡1¢³Â»’Ýp¥DÔ.J°ÒKF`‘¬\ª¬${ˆcºÄÙþ(’üØ­‚{uN=[êœT¨ÔqP§N m«ã¢×ÕAš¸!X¬§—8ǵwšýM™Ð†µ0¨°—.ý¥ešÓØ—ôDªüh¢Kh¥LæÁ_¬Ñ«ž endstream endobj 144 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-11.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 170 0 R /BBox [0 0 440 303] /Resources << /XObject << /Im1 171 0 R >>/ProcSet [ /PDF ] >> /Length 37 /Filter /FlateDecode >> stream xÚ+ä2T0BC]C#]#…ä\.}Ï\C—|®@._§E endstream endobj 171 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-11.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 172 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 173 0 R /F3 174 0 R >> /ExtGState << >> /ColorSpace << /sRGB 175 0 R >> >> /Length 2674 /Filter /FlateDecode >> stream xœ½[MoÞ¸¾¿¿‚Gû.¿I]t h6zØì!k{Û‘“Øi‹ö×wø%Î(’HÛ¯{ˆzø>†8_In·æòØ)®Õ ,FÁpßñy"°W–ÊrO®[Œ+KëÒ,ÅàqåOVcð#îYIÏ•¥àE-Ùõcì/Ùº_¤y2—íCK÷šÏìÝv“æpn"»Wñ×bÏMlŸ¸³ÈžšÈƒ“s±ç&²OpAªÙsÛ§øX›=5›]Ã& Ãb/MdÏ7¼ØÛýw·eå¹uiÃeN ïèê-W"AÕ£±“ó"b­x‚XM98iÈ>?³ÚôÜå‡"7'âj™JÛWBÈgV½Èã´ˆïÙ×"ä 5Eÿ²¯EȱÖä´ù̪ÖšBu´ù‚ò0GÂ!oZËÈjeò™×=ªUF¾:üŽ!oZîX‹7­Îò™• cT«Œa Uµù‚ š;w EÈÛÊôµ2ùÌj¸4(–Ù¬§Fén’q^ïËQ~¤g¸–z™p%ÜÖKü ×Õ#üHoŠÁìáGz)‰½Ä¸¯ë%þ†ëêþ§!ÜÔGë€ò#½Þ|!ü€Ë÷¸^/%Pïêþ†kÇŽáGzvHo‰oê‰aXϽ‚ëê~¤§âÁâ@ð7\óW½Ä¸räÕ«.k9*õôÃõüåG8ÑY„påÌ6ª—ù®§GønY·;z„¿áz–ò®œ:Gõª“]N«==Âp¸ˆò#\ÇÓRþ™-çæQ½âlÑyûPò#\'ž¥üDï0¢¥üsÊqùø™ò#\Oðoáè_¶zœ-!§óù)ŸZÚÜ®žE ¦x‚ª§®CT>¸j1q"è—‹¯_ÿõýþ’9Á.âÙüýÅÃ÷w7àOp¨»¸ùøßKöJÂÿnß_^þÊ®ÞÖZ9#w“åÞ_05©á¨ôÜÔ¤²j$7Ù¿å—LNƤC;Z—.Eð©$ã´†yè©Y”a+8Lo¨åÏ‘Pƒˆ3Ž!J.f‡ŒÊOe‡Î’ZžW]ª¹­…°´˜×=\Xå‡jŸvë‘Û¸•‚G=r÷€ Z:Ô#·I)FE¨Gj£åÚ—è^ú³Üɧ§z Žt%×#Å£ÑZȸVR¦ˆ¦{FWÖó=té̬¶ƒår:ò";¸8öáÈ‹þ™Õµ9¬—ø®§Gùn™ÆÛz” ·£GvÀå¶–2¦ˆô¶q£z…?¦ÞDô¹HþeéÑÚo wF/v虵I9_-áæ5òŸ?Üßÿ˜iü^-°\Ü Ö¥šž[ ”N Ôn÷%Ý­ÜZ©§¹P]Šr¦‡^áZ“6»IR£Œ§\(ôÜN{H˜æ°w4ãC„Ø™XMÌ:f«2ñdK¬Jsík¡/Q0ªÚ4³©9íÅÙìeº lv\VkH~{uÙ5òPŽêfïŽÏxXiXO5x0Õ8sHéÆËpЉ¡a¼'ÓÄjP9^Àƒ˜b"²R—àLš\kÎX+Ï·VàâS/[óÚž*T¥‰ìàú}«p•&²ÃT­BWšØîcÑ»ÙSÙaûP­‚WšÈ>‰X{nb»çÊ {j¢ ^¾á¥‚×î°––àÓ*pÒë˜uM3øÑX¸Q[çÒF ®»û>1$#Û+Œn{(w”Ô^¡Èæ=¢å$Ajòa-BÞPS<ák¿Ó×Jä ÕÑ"äÃZ„kÙ£po¥E\或ŨŽ!Ö"äXëp WZÄÛh¥1¬¨Ž!ÇZî¨lDÈ7®°§•f/ T†ÄÊ%Òøæ¨$†éž¿:.‰a~¤×™!”p%ÒÖ+“d‰Ðzz„¿ášGÛÑ#üè:U¬W¯Šëê~„Ó5›µ£Gø®»,ýäãÆ¨Þ²ê1¥§Gø®³OSþ-ܱ^Ý—èi@o·­Gû!Üt<_vq£zÅ©(8ü{õ½Šëéþ-ýË6óQ€©xv€ßæØNe=ˆÚì̳]Ôá¨ì W{¶ ÐHñIIõ˜â5¦óF–âÓÅÇ»ë/ó-{ñùËßþññ÷ïï/7²Â|½Ã,1=+ãUJL½”Wÿ–ÿ%¦2»À¿ª$kâ[%JQ³(à VbM˜XQŠI[²-;`ˆŒ£Våb@Ÿóm0gBØ•ßÇÖpΓ ÷$Ç$GÓ.ÆÏ) ÎØhØà Ééኚv«dÏyr=Ëô¬;g©ÛÀV-5®Sµ¹N…wßÒÃëœP©=r÷!GzµGnãzYÖmõ²v£5©§¥] Tý´z{y ñ“)“i³öR™ºÈ—¢VŒWí¡?ÞÁÅsÊ@1¬ðϬî"£z™¿ázz”¿áúùÌ¿…ÛÑ#ûàJ{ õ½œKYû¾^æ\ÙXGõ2ÃuõÃuÇ“ðoávôˆ+\iC¨c^ÙÚÃ9Q_e;ÖËü3«¾fT/ó7\Oò7\7oGø·p;zÄ;®´«ßˆìèíàlzw¨¯—ù—’ê¸^âo¸®áG¸Þxþ-Ü£ËNé×ÇKPÂ×Òï añÍÉxº…_ñ¬ËøT>·êkÍ@ÑwÿN_þûO˜0`eH/X• +¸#XwØØ"P)M,‡$x¯ú!$ܶ{иhb<ï‹Y°_¸ø…Ø£C×xÞ!‡#×XÓBê3VóHÕBcüÒ×ék*ÃåV³Æ7åbÍ­f/´^n5kVªÖ¦;Xh3á©å½ø.ª[¿s5¾Tžõ\ÎÜWnRÞ[ë;î1Ï,/²AŸaY˜̼`ı‹ÀÌ?b¶uÈV?„IM7q{ø=Ä6JÔWµ2ÿ§}fP+“7TO “/¨Þò ÔŽÞgVšÁÖ+ÜKˆn¡@ZÚ¾V&_^çÔÊä ª§EÈTo ùêL¾ÿ8á'’/˜&¡Ü¸¾]¶£Óÿ¬Oõ endstream endobj 177 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 181 0 obj << /Length 533 /Filter /FlateDecode >> stream xÚÅVÁŽ›0½ç+ÐnìïxŒm|l¥¤RÕ=´eO«UE!…¤‚dÕϯC¢@É*U¹ðÆ~3öÌ3c X|š€{L's"JèWú3H ˜ ÒUðÞß?¼¦Ÿ59¢”(ÎýhÄ‘‡Ó)³ªA™.«]]ï³E·' b·¨óê-_Ù€Eùë°×F×C=(—<„‡ˆQaÌE‹hßuKQPÆCè!yÕN‡*Pl—»2A™õ²¨ëb»îKϰ/QÎÎ?|ù>Ó¹N=ýö<LžÑD§OÂßÞô’.]%Mü§bK¬­÷|=·Ï§|UdÛ–™h¬Zu˜v2ûMõG¢$s8!˜p‡‰%øñDÅni}âi3ÑH$Âû áëÿ¨Ä¹¶œ0d>{Êãb…RÇJ0á+ÁH"ÇTBŒªO¹+³u>‚Ò÷œ±_è«wÙfcÑ[¶9äµÅ­wW%p²¿Jiz†•ÒìTKS\¯eCm´l¨gb6³bfD ÒÀY@PÆþÔšž0~´Ìã-Ƶc»I‚ÊÌݪ½éZõ·ã#ãßÞºíû0èÐÒxÜ^L wÍ–†q»6¥–FÁ#uKªl™á\#„¸™¨[ª»c™¥ëxÀ()¸BçÐhátç´û—ƒ¨{!UA” ¡ˆ6=u™¥“?q†¦ endstream endobj 185 0 obj << /Length 1361 /Filter /FlateDecode >> stream xÚ­WK“Û6 ¾ûWh&ysER/δ—>6M§—dö–ôÀ•i[½BÉ›ñ¥¿½AÉ–×ëÝd{"€ Q° ¢àÝ"òãׇ1 x‰  ‹"õâæ}Íãà÷vñañëÝâæ–§b*ip· 8‹Ä —,ŠáG| oËFWÕa™‹ðír%ó4ü¶yh`žÅa·\‰,lé[Ñ^»„Å~Ì’‡vùÏÝ_7·b&ÎËâ©bi,çëå*Iø ‘?…–+Åu¹¬»ý`ÖˆF†k=èÞ =aû‰Ä#߸ª¢cq¸±mM3]ض‡žbØyUcâW b;]6geX6^»6–¶†–¶L?”µ íjÔéÜæ¬á_›¾°e7”£¥“<¬ÊÆhKsk¶Öô}Ù6´n74 ‡f}ÑZã•€åç(‰È ¿lH‘Æ,ñ G×= –ÉôúÈHE>£yœ$k¸¸±Ì`Àaç‘‘ ØÄ-– Ü€-Í€§sõÖ¨QÝn­îve1'Ð÷•éÉ®G£Ê\1.¯ 8)XÓpwe³ré/GwË0©[˜¢™eLrOx»²Z3”´ˆ˜ÊD"ƒóÑnƒ§~}|÷ƒTÜD6„MÄÁò2e<Í0ºq?Î$œÏ©ðr¬ 6ë?ˆÑ'—)f¡‹VM&òàn FÕ}ÙS°þ¼òv‘€”¥Ê!AQ³ \l ŸÖlÎÞÜÆÙ „T°,Ú!èZÈ;NªçxX€ZBŒ§1œ[{ ‘C„Ÿœ“ðÙ"“„à“ÓößïVÖnJ‹qŠÓŸ~”Ç=«µµ¯dR6E[›W2©ÛZoÿ&˜‰_ËÃê¼õôÏûU~,ƒçL% ù¾ãûsáÊÝË¢H¼ýwˆñð.ñ}™_Â@”d_ â,†VyÎdô¹òeßUúp-š ã¤ÈúMc8AóšŒs>+/°{fœà7oȘ÷ú`úmU#Mkë}¥gÕÃô‚ù€}~‚éBh\vt8³¢é¹7Ï}Ó­N½ì±_ͽ…î~´î$2=ŠLs8Q´fĄ̃—[õæ)xMö¾Œ-L7Ð{Û™bqâÕÈYª®±p†Äw>Í’0f"öt‚ñü™ y…„™'”à¶×ÇKq1F<›^¡oÎÉ[Áéd"¤Ô~ɬSZbûÓŽçT?#(?x™àèÉdœX6?2Zÿ ®H30™ ý¼°†:D˜k"¨JwQÄâé6ZŠ˜É(›Ä'†mÐG¯ë'3|^g¤½×ê6YØð˜B7„åž´¥E¯QjT×´ån`çÏì´õ¿Ö%ö¤_æ•̤6\1¼\z¦³ÐýLÂñ endstream endobj 178 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-12.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 188 0 R /BBox [0 0 459 295] /Resources << /XObject << /Im1 189 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]c]#…ä\.}Ï\C—|®@.Z7 endstream endobj 189 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./mi_vignette_files/figure-latex/step6-12.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 190 0 R /BBox [ 0 0 468 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 191 0 R /F3 192 0 R >> /ExtGState << >> /ColorSpace << /sRGB 193 0 R >> >> /Length 25713 /Filter /FlateDecode >> stream xœ­½M,Éq¥½ï_QËî¯2+³¾–¯„‘#Ab³´ HJ Á¦4MÎèï¿‘Un~ï=Ïãaw¸èndŸ´rs Oðcf'Îÿp~øýÃÿþîŸÿüõßýÕŸþùïþúá×úîôét:=ÌÿþÓ¯ÿøÝ_ýíeû[?þûÃùúé|üëãóùíüéñüp9½|z{zøñ§‡ïÿñçßýÇïþø«?<üæWþÕ?þþ»ÿñãá±?Æúàñöï_|ügòyûÆÛÛ§ÇçÛXÿòý?þÛŸ~û󿸜¾ÿ¿?<<>=|ÿ«?ÿî?ÿøðÿç§Û}øñï÷ñ§ž®Ÿ6“ÇËéÓåéáryûtº<\_?=½=üüÛ‡ÿõðÇñåÿæ—Áã_þÍ?lÿ÷åéá¿¿û—}8=üæ»óÃßoÿüþ»ó»·ÿó»—í/>>üôpÿøºÍâüð‡‡_~w~|¾Em|aÿ<}ãåéÓåmúÆýs}ãññòéudÿ<}ãåñÓã4Êþ¹¾qy<}z~­o쟧o<¿}:O£ìŸë‘€Ý/Ëóó§×§m”íŠ<_ö·AîøöŸ—Sá'üúøéé¹ð¾]öë¹ð7¼±Dϧ/~ïÿÞ.àãvyž/÷úýùtÚ·?~Èúéüé|~·~üëËv‰^Þ­/eý—\Î?š±œ¯·µ2/çý ûçé÷å;¾qÿ\ߨ—ïþýóôûò߸®oìËwÿÆþyúÆ}ùŽoÜ?×7Ú›Õéc³ª‹òúx»Šç·mÉ]?6«ÿú¯¶á¾ÿtyÓ|Yá7/Ÿ®§ÇOo§÷ ûï¿ûùON ƒþÂígûºùòüéôúáË¿ýðpÝöÌO?ýüsÇ—ÇÇ—ÛoåüöxŸÕ÷¿ûã¯ÿó§†/Û%½>œ_Ÿ>=,ÓŸþó§_ýGã/\¶«ôøòÅ_øío:a[2/Û,^_?]Ÿ÷¿ðó¯÷¿py»|º\jºl7œÓiÞ‡öoìÑþÚ‰öoì[ÑþÚ‹öoì›ÑþÚ߬ÆJ=ß×èËõmZ©wû½{3¼^~qº­÷Íüß'tû ºMLЧׯÑÝ›çí2%o®OlsÙB“l.²Ù-¿¶ÙžOÚ¾ÞØæi[¿_Û¼Ü¶Ýæ8/·…6ù*¾|z 1(ô9\§•ç×põ ½<ó_|;¿Æ¿ø(+íåö=É r·¦Ä>Ïúùv¯kÆþùö¼ÐŒÅó§§°þ ½ØJ;=Æ¿øØ^iÏŸÎa¶…žÂñX<ÝîFøŸ>½ÈŽÝÛ~.+¼x’•öôé*óÊ‘zºý§íʽþž>dýeß®ŸÞdýå¨^?½Êþ—×ìö„«’öÙë§§v ®zÈ«û\SšÏ#^SžÏ©½‚/ŸÞdçkz¹=5çsùôÒ^×—ÛC3Ö—OW¹¦ƒK{_ÝŽKí}õr{¼Æ_þö¬,³ÍzŒw‘B_d§y¼1‚>Ù]9Æ~{–õ—O·c§xq–•–¯æ£Þ²çO¯û<ÎùÓ‹¬´¼ΟžÛ;èùÓ“<=oÞÍët¾º›ëýü ÷‹ •«—g»E®½Wž>½¶×êûù£zºy½â¼ho>é= Ç|û^{GØþOwÿ{~»q½˜o6¯²ÿÅùl6/¼ÿm¨îöi…m6×îó×fséÞ½6›ÇîžrãgdUæqÞIÞJÞl^Û1xw]Y›Í³ì4yemßî>•m6—îN³Ù<òYaCϲVi¶'œ-yþ¢w‘|Å·³1ï4ú,×)ÇâåÆq6×Ãvžn¯ÕíÄܽÛo6çîÓæfcw‘<Îóæ3Gu;G‡ëTès÷¬ºÙ<Éú{¾ýÿæÙNÙÝ3Ðfsæ{Ú†ž$öyoyŠü›{þY9ßSäêVプ#ô¤÷ ò-1x…WG^W—g{U®.ÿ ®}®n³I\ïòW¹3Ð^y5oCÁ#σç×öy½UTO]¶ïy;1wOæ›Mº3¬Æi³}›MbûVã$°ÐÄö*¼Þ†žä×ö<Ÿß£òzy-=*¯—×Åcäõ<ŽÊöÑ|˜í£_Ûc¼3¬bÐfûžÏÊöåqÎÊöÑ8‰í+´Íëm6Æë‘çvg8 ƒÇ^ƒ—cqo·GV®ÐÄ¿*LÛ†&¦­Ð”A)4±g…&ž¬ÐĈíèSä¾ M,W¡’éØPÉtlh⨠MlT¡‰wò_ÆSd£ M¼ÓŽ^…a‚g¿í?ý}çÚç¶ÿï”cq¼S¡‰a*Ô¸$òѸ¤¼û]4#‘ãw‰ “Ç⢼SžÏ%òN«qŒ¢E1°ìE~¶¸(G•çó¨U¾ç?*G•cý¨UŽÛc¿Êl³IU¡¶ÿ>*EóÒʱxÎýʱÍ&±Q…ï”WØY3äg$è*žûlÔf#õd·réö^yC»×餼S^'ËHl¨ÝrüNÊ0‘Ve–#t2ÞiCï´ò"±Qóë[Ì=¨ç›qT1ª›qT4ŽÔžm¨±Qqo6‰*Ôx'Š_ºìè«2L9R¯Ê0åy½J=¬–íÛÆ;Ñ8‰w*T¦ë7Ô oß6†)Çï¥_#¶ÙÔ¯üK¿Fìš«‡ •,ÃÕë„ÉGf€mÛl”5Šã<+k”ן×çøåšâBS>¡ÐĪœÌÚ8šq>©Äùìh®vϽz8ÿ®ž´,{þ$œœ7ã|rTŸ”ó!߬F,ï^Sœãæ5Åy>W­˾]#käë๤•o\OÆãX=c Šuº_ìèE+Dz­˳½D>k5ŽÕ“ÅsáÕ«‡iœvõðfcõd4ŽÕ“åqSÛPáÔ®¹zØWK®)^ù¨•Æq§yÔ±¿Gåêòº{ÔÊ1šWŽÑ|¼þ8ûæõÇ4ŽÝqò5=÷y½ÍÆêÉrÜÎÆömh›íÛlÚõÇW¯?Îãxýqží©_e¶ÙÛG¾Û—WÖIÙ>ò­Íöm6V«ǹ¼)Ûc°Ù´+Ò6cûâ|6cûâç’+˜ åZexÚ»|C­ò­A·ËŠ}4í7#ô9@Í n6Ò=zÉUÉ…Jnç’+ oCƒWè‰OF——ÈÊ*üÛÅ+‚ó•òŠà¼"^ú]ž›uyÒ8ÆÊåßæ‹³rqœ\ìqËuÂþë{î³r›UŽÅûÇfÓ®ÛlWç×4ׯ|kgq.¹Ò¸PcðòR/GèI<ò<1x¾§iMñ%ךöê½F®®ÐÄÊšø·B…i»h=ï†&¦­PÛi¯Ö5y¹Dž¬PéÜPá¾.¹–¶Pé‘ßÐÄ}*=šø¬B…¹ºäúØBGUhÚ¹ •.Ä M S¡‰K*4±F…JMÐ%×›švB¥&hC¥&hC¥&hC¥&è’ëB ¾å’k= •š  •š ›`\£“ð"_Þ Ï§wæ€Ä[òãðdŸÕ Žåó¸øy\Öe2:®ë2YÂGŠÏæ; ".Ç‚cÚ½`®ßÅYæ¤ËǬKÁ±£àôÜ=ÁéÁ{À!)ØJháú˜Â Æ(K¬L°=}£#ññ»àø¤]p,ƒÝaȉÓóS1Æ( ¥,‚ú)ó#°8óÇÆC¶¢`{´…YvÔN&#{¸Å‘âæX0§!Ä‘˜‡(ø¸ŒÉ02t„L Žùè‚c‚¡àãJ$“QL&³Ïs¢ƒàº#àgYŽ3 ÇäAÁ1OP°¥›qœo–iÄ„sÁÖOŽ@ `æúÑO û ¶îô3¦’ 欱øiict$rû;l4>:â<>8’…D&˜óÁâHLl¹_ô3ô3O~’pHÁ–éÍ~‚HÈÒ‘ã¹ÞɈ›Áe¤ÈÈlä;:3»; ¢ Gý‚mÓUU «ÑÂ,A×£à˜ž-˜3±âgLÅî0èu° ŽL|ÁFºCŒL‡g BÇÌiÁ–$?M/8çsîg™%6–~^û«Æ¥7p$æÉe$#Êa$Ðä(ØRÚ(8(Ö™Éî Ž¤HÁ–š„ZFÁ,ŒÓeŒ‚ãFZ°u5ã4¸@Uü4e!yŽ­Bò³’NÃ¥,ÀOв(˜iqÄh³Xú3˜; 2s­)NÃ%-ÀOÓ´‘,5‰#õ‰’µ(ØjKÁ°(8Ò5Gb¦`¦`p–.MÓÐMÄ) f ý4! ô”( 6 Fõ%ÄÏoØŠMaBF2‰ )’8w˜ä$ î3 éˆì'iGÌeâHŸÄQ¡é¸RÄdÄÔŽäZ0’‰EÈHFø,ä"ÐîG" T°ñé ±ð3«CL0S;8¬±t¤Oø€ÆÄr¤>÷ŠË‘úäèW,FʲÜ'‡@îbéHdï >^˜9õÉ!ÍpV͘`#‡@7c1,§1Á}rd6&˜k÷ÅÏHluúàgG€c2²J}Éè¥'PÛ(8I³v«LÃJðqÆÓ«¸:êGz©à>‘¤¢âg$’ 6F~¡…~‚FÁ\ ÓxÔRxtĈ$¹X:bÊÝè×ÜÈH}Ò‰D1 î“N Y t¤Ïé/„1p¤>AÒË‘"mUð©ÿ|çêàH–ǘ`ݶA £à>A²Ü'¨Høâ«Æù¹¹ÈŽÊEÁ‘ *ت@¼b9 #@¾bÀ®_A‹‚tº‚,EÁL/a ü±à~¡ãÕ¤)Ðצ€‘@œ¢`Ö¡GLê±RI¨(x­E†41 ðÔ( ¶²JИ˜àÈôlu?$3Qp$‡ fCèz¥êG # Qp$| 6Yœ†Q;$Q0S;8ËÎ+ä&£>á³|À‘ú„ÏBòGŠ„OÁÇ_7ÅMw‡]àü…‡‚û$NKÍa2ê·-,ôp$¦vd$St€‘²¤ÃóۀБÇLl„ 8lÔÉ2l$ÎBlBhj #(Á,X·bQ(ØèFXΒ陥Ñ5 upÊ* îW‘BÁ‘®)¸_ᣠâgdÎïðBÍ ;Br3]C~¶¤ &£Hâl¥’¤SP°µ=‘ú@Á}²”Aø–JÐ%˜`“·AG˜VG"­²é$?h7˜`#PTà§ñ-Å–*q #Ù²3@GŒlQéôÓK02à'èld ©l´ i ì°½¨ cäª(¸_á̽¦âgŸ÷mÅHYr`‚lÑ Ž´JÁF €îÀ"þ"1 ‚Uí€LÁ‘¬^°p$‹Lp¿[Ä&¸_µ"KGúU; ™°Éß4#=j,(,L°Ñ5 ±0ÁFÌ€ÊÂ[+è,,Bè/ö‚fU† î“- Ö0Áýv*PqX:Òïl͇ 6²T&˜iœ¨A<½7ò5uʨ‘™.£xÔ)¸q¨)£F:¤Œâºàx/.¸q×Ý@÷¡àƨŒâ¨àx/.¸QW[F;tÅ;tÁñPSp<¾ì0$3 Ž÷ׂãýµàx'-¸¡ûPF,»†!5ˆ‚ã=s‡!™Qp#Ó[F ˆ2ŠG’‚㑤àx$)¸Ñ˜\FñNºÃ–ÌÀY‚FDÁñHRp<’Üh/(£FíiÅ{fÁñî¸Ã¦ð€~‚ƒû º«‘â´àF*¢Œb*¢à˜ÿ-8Ivt n>Ê(& މ„‚-eÛp¬pé– I‡‚cz¡`n†i˜ÂN ¶÷ #q#-˜[ÑOHE“ÇcFÁñ˜Qpµà†ŽÂnÔ¢öËÈ^.‰#5²¬e³¬_mÿ…‚#á_p$üwØ h#x@1a5RCˆ²ŒtË„4@ÁšË2bêýu…‚#õPp#ËZF,kEB¢àH=ÜH”Q¤V~!Aê ë– „ÁFHbBÁ¦ø12ÅŒ(&ì0ÐõGB¢àF6´ŒÚed„© lbìèg£ær7¿`#$H¡à†eõyYRA(Ø UA@?Mý„‚#!Q°ñ²¤wP°‘ ¤aPp£œünD#U6‘Œ­% ƒ•#‘¦(¸‘ -£F6´Œ"MQp£L}7µ‚‚ºeÔ'/T­@F2ò‚t 6š‚t v|–Y—à4Í/q™:†t 6Jƒ´ ¶”ôv¸¥PF,.‰Aý€‚EæedÙОR@5”ʈËÉq$Ðð‘@U `#EH? àH̵‘2K{÷Î2’"÷éÒ(¸¡PFŠÉ22ª„ôVŽBú÷Y`Ò(¸O•~@Á¬ ~UBJÛËõp¬€~‚~@Á‘@)Øê1H `ÖÀYš&€ÌÒê1zÝÿ»tÿܯÇx‚îÿ‚ûìò“õù‹#F•<µ:ú˨O•<•*¡Žþ‚Yˆý„Ž~÷úüW#5 ÒË(R0[õùßaíó§ihŸ?Mƒúü ¶:êó/Øhêè_Ͳ¿½^¡û¿àFÅdÙr…îÿ‚û´ÊÕËÝ®^îv…>ÿnuô—Q¿Îƒúü ntô—‘‘-ÔÑ¿ò³!#YFwìFÐçï#AÁÜj$#fH`åˆ3¤Pp¤` îׄRÀ{ii•‚#R°Q%Ôçï æ î3ѽîÿ2²êíóG¸ô\1Z:úþ¡>ÿ‚u{…Žþ‚­&„z÷ ¶šêÇ/ؘè^}Y¥uÓlDõÍlDõÍû‚‚nú‚­Îƒºé=„Ðc¿Ã^ØF}óë&}ó#è¦÷YB}ÁF^Pßü{±uÈ̵è/Ø ê/¸_¬F½ðw˜zá 6êA»Þ)FÚõNÓ ®÷‚­°ºÞ ŽÔÃC×{ÁVyAýí':ÁoFÔÉ^pŸ­¥Nö‚#qP°QÔî ÊÒ|^¬F=ë÷[A¨;½à~åu§»#ßRØF=ëE@ÝéE@Ýé[±Úâ÷#(a+Øj,ôõöaèN/8’Û±_;Î%ý4ê8/ت)¨ã¼àþ±ŸúÐ îû©½`kï Žó‚ûÕÔ[îÓð4ê-/ØíÚE.Ó°º‰^¿ønähÔ^°nmÐ^°å©3¼`;´Sgø[g8^ë ÇCgxÁVß@=à[}u{lGnêà.¸ñšÌ2²ƒx¯¯»ŒìÅ/ÛƒÞdôövÛ'WÝÞOÛN¸{‹Öv¯FöˆîYøÓöKFÖù¼Æ¢‘©´àœìž‰Ñ³ü$úÅ}NÐE^°•rÔVGGâýµ`¾¿JD,k‰ŽÄÃÇj¤x$ñ‘€V/ØÞÙŽ­^p¼lGX¬GºÓ/Ûéê #“Ñ‘¬Þ"|ÁÖÉŽ@'{Á\8Ž«:ÙWް¾9þ>½ëÃhïl÷œÚ‡@@/|Á|,Bï¡C~åH¼IlM èˆ½ .þî=tÓÌùTôÞûæa@Ê `{&ÁÉ™„/z³¬ÇãÖC7}ÁvÜ‚Ð@zánô¸íÕшKÚe$KE@”¡óÞ£ìýøèžÉ~áHñv°Ã¶(Ø*1á—è]úà§uécì¡K¿`ËÞB”Ïyã/Ø\ÁO †ˆ@:¤àx,8 6åuœ†mæÏ“VmâHüª=:¯PŸ¿F™ºÿÕ=Ò(Ø6sÒ(ØÞï”s¤°š†)¯CÀ\U /U‘âÆ_p¬û,ØÞäDMÁV@ÓˆÙæ‚c^y‡A) à˜’)˜«61.# T<4 5°rÏ^À‡#Ù¶ «ÖÒ78’ëàH–Û†@€.AÁWÙÙÐ{Ö„§s*i¬F²d¬2×;€8™ÞºçzpAï `+íGïPCïPÑú„© øH °©¡˜PFÖ€#ÍFŠ ÷ 5UL?Oíó é(lÍàˆÉ)‹#F³‘æÂÊSb€_­)1ˆ÷VîAz¬àH³lú ðPlú 89ÐgXM®O³-´p¤H³í°'ã`Ê.Ó ÞƒÂƒ{ﺰFM÷AæÔÏÅÄj¤H¾í°©A`œ@ ¢àH³ül?5Pƒð‹«iXÛÄó¤zÙ=Õ“ ÷z8’e]òœTeBF2Jçd”\f U{BFŠ”\ÁF¾‘Ê„‡´' Žä[Á‘f+Ø^†A=‰Õ4ÍvºÕ¿¿0²Ÿ´' 6Bô$ ¶Æ‡¼™’žDÁýì©Lx¸A{b‡A{¢àH’̯2Äi¸Êl 2ás7í qÏ5tÏ5p´' 6ê 퉕#¶Aà Š•{öf/t/‘o‹Ô+ 6òt* Ö­) Ž4[Á‘P+8RgG’¬àH‡í0èI)®‚#™U°ÑV¤Qp$¨ ŽÙ†‚#é´Ã ûPp$’ Ž”QÁVƒÛ¨A·¶‚# T°>ð3…‡‚ûÔÎ(<l$úi:bÔΓ+< #}jçé¬ÔìÅ ûà#¹Ì Ô 6݇ÌT¨îƒ8b„NÙ ®>Ù½…rD„*GÈHFå@žÄj$#‡rôH{båž‘CùÙB)pN HQ°‘Cà(R¬‰äPÁF¡#F¡#v븂z…_O×´ïMÓBF2rh¡iŽe„ŽXI.Ä”. î“C¤iQ°Ñ@à'ßlYô³Oø¦ÅÊ{­ÁÊ{³é_àæç%¹à”äz  P·`«ÌBG¬2 ±Ê¬…®, (É-ØŠoÁO/¾G@Wc5«m`ì]mÝ3Ò©§¶QF‘t*ØøRÛ(Øè%RÛ(ت­Hm£àÈéi ‚#á³Ã «Qp¤v ¶ú'ÒÕ(8n¤[¥)hl´ ieì°’VFÁÆp“VFÁF«þEÁF«þÅChÁÆO“þEÁF«ÒEÁF«ÒEÁÆ.“¦EÁF«¦EÁVsC:B:Ge‡A§¢`k+#Š‚­ü‘) ¶Ÿ?iO)‚#y±Ã =Q°•4’ž„Þ|IeBo¾¤=Qp¤ Ž$CÁF'ä;»êIàÜ­ ‘JúHeÂÚ+÷"P°§~UÉB½F‚‚Ä‚•8ˆg Õ´@ïAÓ¢`kÓ"M ¿Ü^dˆ“ë’Ò…»ú«‘Œ8X¨bÀñrBUÅ?uƒUŒUŒ‚ûd€ªbà4¾¥p´2V#õ)ÒÕ(ØÈX ¦«Þ{á éjl¸¤«¡œ©mxÞ 0oP˜ŒìÙÂØQü˜Œ,‹#×™ŒŽ?QLFÇS“‘=g|¾}LFÇ3Þ“Q<®æ”Î Š >þô1ú˜Œ4·'—5C&x­þæñ¶…É(=} ¸“t˜ŒŽç«'£ôL2Áé(9Áª’ײé€`”]'w\â{uR“Ññ§Éèøs2JÌ Ö›DN:LðqÅÉèxzâ‡G9ë€L°*~äÕi‹»Ñçíl“Ññú×ɈÛp5‚Èj$ËLÃÉš!¬ 9¸®Wy¡B#¥4Ë?vNFÇ3Ó“ÑquÉè¸Èã0‚ôdJ"2’å«!®$‚î?ÎNFšÅ&÷ì†[$–|=wTG&£”„šàtp`;¢B]‹ÂèZ$ÆSC‹d2:®E²-´HòH E2ÁvÈÍS&-’•÷ÇÕ'£ãm“‘µYàœRÖ}À…’ÉÈÚ,`Ê P¢›é–è¡f‚s:Þf1™Æ ŽÄoÔÀUÊ'~íAÅçÔ®ŸŒŽk§LFǵS&#ÓN»v „ܵSp¤ã’WÃÈS•à^NUNpª€˜`~%©øyí¯Ü#*)ÁÈ’’èÞq•”aä*)°g•” 6=ðôP<¸®’kÔ˜»éyÛØ¾02ã”HÈwôP&£D7N°‹FW>0BªÒ—['9±ˆî%bq‚Oý5 z(>åŽJÊd¤õÐù2ædçoš™ŒŽ«¤LF}º±¥’2Œ ÙéWR >§œ`«g æÚ)'ÓNÁŠk§à”WI#OŒÂH×LF‰šœàãÅ“‘6ÍäËhÚ)âýñÖüÉÈhLpÏU`$PTñË:+¾`@}eåÞqM–Éè¸&ËdÔ'7A“e‡[ê+“‘eµ:+y'\謠#Ç¥'£DnNp¢1'¸OX’¢ŠþXZ:+“Q",'ø¸ÈñddÔd^á Mœòñ›Éè¸æýdt¼ÒfR‹_Ðoq÷@ÕÅáZ/èžÑ˜£1q¤~¶Œ`|.Œ‡ÔbV#×™ŒŽkÈLFýÚBCGê“› )kÈL°‘›àˆkÈ #Ç5d&£DnNp¢1'X ˼Ü@ƨÅxD@CÆ6(Ëøœ@oÆç*4+÷a9Á‰šœ`#!ÑÒ刀ŽÍÝ(Sí¤nãÍ_ „£g ÒÇYÄ„¥D¯Ÿ-#…w/ëîL°Q“¤»ã~f5ž Ƴr$‘l5°¡‚F/aWîÁ‘”šÌqr=X®çƒ#%jr‚ 9ÁF7‚FÏ€]â™Õx&ضxˆÜB'GÎÕx` ¹ޤo9£91±H[gKg2ꋪÆ#î)ÝH#—jžŒŽ7ÕMF‰nœàãº;ÃtwÜWãÁ‘¬æ1ÿ¯ Æ³ÉèÆüÐqíhôLFýüÕí?v]£âÔÑ虌±8ÁZŸ¬ßR=Ü' A£gÀ ÆãëÞ5z`r^Þ{a<,Wî æÊ=ˆ~}dK¹g2:Þ¬7Œrý§Ê'bq‚…8ÁFÂ,j<9ždNF‰,ð·”ÀƒÏ[ÅâJa'Ïv|î^O ;~å:/½F ÆãQŸrVî™`£ï`ʹ~‚ûù RùñEÚ?>(ù Ó¢>Ï©óÚÌÉè6~ÐZÔ§úH«hr£úàâæÂø 6R ½®=h ­F²*Dˆè%­ÜÓ*Ä|ϑ𷻃âÒ+©—ýÌ:Lœè» 6¢.ÂI‰:¸'ÏÅ )9©{¤ï¤aÕ§ î72“”®RˆÒà‚nÔ[ !éF¹ŸYMj‚¨ƒ€åRõ ¶¼ iLùuå)7èQ­&wjß¿I»ÊGú–òó…ÎÂËÏ!ä så;¨_­Fê×¶”²†‘—ŸÃHG”²¾,"n)eMFÇ•²&#¦úpuô³&#«,„µç¥ê/U÷\U Gê7=“ªÖj$#!z®À¿§\À>Áǵ¶†‘kmÁÉZ[ܯ!\hmAì½€Gê+c×Ê=nÆŸ0¨uùzr /„kxáHLÊœŽ¿!b2ê7S“†×j$# q$­MÌ¿œo)v'½/wÏ_ +µÁp$­X¤@ ‰H$ä[m"xŸ‹Ý'¸_Ö¾Ðû‚ɹÞzß§&Iïkå–ˆ>aIŠaî^GGl2êW!ªŽ"ëˆ=¾½W'®þ`pÊèø‹Î'£ã/:ŸŒbõLÁh5tÄÊÈR 8RCGl7r1)ëˆMp:”O°=AD<Š~6ZøÊ(VÏl‡rŒò)Ñ>;ì)P˜œ¥@¿ú}–‘¥@!"-m°2ŠÚ`7´ÁÊÈÚ§F²s7rÅ0˜²+†{ VpT +XÃÈÏtxžàF ´Œb t‡= ¡q0˜\V›`;ú¢#Q¬`{Î@?-1 QöÄ(ŒäÚ`0RÖ[Äi¡Fî5ÃÊHŸ3ZÚ`ed1§X³Ã Vðñ×”OF–…€åèG½¯‚íˆ ¡q½/ô³Ñ>WF#êniÍ‚Ê^ediM˜rVöšàtìœàFK\Ù~ÆTåçTåǤdÁ±ž¥àãoŒšŒìÐ³Ì \lIIt$%%wx¡ª•×<¨j¹# µ5Ái+žà”hœ`N)Ò/f¡”…so4“íFY?k‚­%/UÊBï[JYeÔè(£ØbV°Õ #©îd‚&»QV¿š`“%¹çDãsJ«+ZáäTÑŠ¼Oµ$lmcpåÚUÙKÊHQѪ`S´BG®¶îZÚUetü…:“‘%!"9!8ÁZK’#âÚUèˆQ\ •*ˆHNòMpLçܧ­zT0÷¬GµÉȬ…,§ó&Xwä§%îБ>™zTvå)p$+OM°ÑVp¹Acª`#¨zjReÔ'¨jR0’'Ø Ê9Á6Á–JﳚÔ7¹Ê¨¡UF ݨ22Ú ¢&¸‘4+£FÅFõi+Pˆšà†Tm…Žôi«…Ä©¥UF:Ž2â,Fϵ  zY j‚¶Â)›¤}vd¡•G-(îB! G²*œ“VùÓHF‡áHZ±A#†#õ3 &5ÁQ7ª`•´Ï“˺QlÄhAMp¬¡(¸!¸¹¾Ì2ë;¦-"JNÌÄíM Í&œ\ÿv°ÒlÊ#¹fŒ”5›&¸QQFý|ÅB Gj¨3•‘jè^”žßá¬Ã´pÄÕ™À‘–:S5¤˨O¨‘fSÁ}Bm¡Ù„ŽÍ#™fn ®ÙÁÍšM¬õüyÊYi齑o轑o Í&ˆ}Ölš`£Ù "Yi‚fƒ¹›Fy¡ÃDÞ[&ØȷgÅ¥…#Y‡iqƒÎêL¬ñä“o{Wg‚«œÕ™–îQ,k6M°Qrà}Vgšà†D|Ŧ¯‚£˜FÁV3FŠKŸúQ®Ã³¦‚­9 éW‡Ó'òm‚Í6ÁF¨åi€ŠÒuÖSF*£†2Rõ µž2R¡†a´ì¸çzI0’ë%Áœ\/ Ý‹ïˆ,¸_|õ²`ô¾_¼}½ñ>ÉÝÈõ’À½–^RõkÆ*Jˆ–ŠRÙÆ¯*Jø»Ï*J‹)»¶L^/\pãõÂeÔÏŬT”hÊ}š T”&Ø5tÄ5p¤õÒá2ÒÛLVQZxŸµ•kÔ—Ð{«EÃ8%¢Î¿Iqi‡s¹ñ[-i+lä¨(MpŸfS%¼„¹XxÀ-½¤2²ª3¸Â —T°U2Òbî®—„~ökÑ@/iÀYi‚™$ÃÉ}KpO©ŒlÛ†ˆ¸º×x?cY-ÚBíñ²`P;šàoØ [ºFeÔ¯E[è¡{F‡‘‚Ñ{Y0ilZEš¬U´˜%(œ(® î“Y=­¢»ÑB«(ZEÜo–\hå¸Ð*BïûyÐ*Zº—(.]£ ¶fIP0šà~}(-æºFpi\×G2: ŒìZEàç·”ƒVÑb5äÂâ 6â ô‡&؈/Ðp.žàøšÚ‚­Q´&8ÑVl-‰ Ü3Á–5ž NDÒ[C!héL°‘CðûuÕXâ^fÛSÍÙ\5ɪ9‹ßZÖÒ™àDøLp¿®j¥C~Ú†‡#5ôqv#×Ç æú8àžëã@ rIî[ñíBóýìWP-4op¤~C!hÞL°Q; c3Á¦X«Ák`î®Xƒ#Yµ(Ö Ø_Ä ~Zñ-^#S¬Á_¢+ÖàH Åš2ê“C X³xL9+9Ú4luU 73ÁFø€†L¾F—ÕwZ*Ë|®‹3qÛŒ”KœŽElÏèçñJíÉÈ’E8Òñÿ0r )kÈ,攕e–#¥g‡ NÏÌO âgzJ˜àtšàtZÌÒ4dÐÏœš`Kõ #\ Ž˜X+¬»Ž†Ìdt\¬u2J϶T:’S=|\€u2âŠqÄ* öYCféÞqÙÉ(=; Ø•eÀS–Á8ee™ >Þ¢3}ÃíÀRHâ}zJ˜àã vÃÈ•e`ʦ,ƒÞge™ NOÌO2¹ã2“‘5ã`DއQV–™`;”-±$Žo»™ŒŽ¿˜}2âC£¸—|\u2âã!:’K‹8uTh&£”„šàt”œ`;4BDL…Füü†ÛAN7-FÊI¨ NI¨ 6™SˆHV¬™àã-:“‘!`'IMÉH–šÊSV tl&8%'ØšqÐÏãuÖ“QJBMðñ¶›ÉˆulБ¬c³ÉÔmd¤ãu“QJXM0§¦ÄKMÁUÎê6lm789®(@ﳺͧÔÔýùdt\Ýf2:þ¦¤Éˆ+ d¤TQ0ÁÇl†QçÕ“QJyM0Wàä\ݹÚ.ØQ·™ŒRÒl‚¿ØbÙ‹-Б¬n3ÁF¨bͧÍ|‚u6Á‰$›àD‡ 8«ÐLp¢¸&ØÈ,Xæ¦7ƒ §Ç&8Q\|<å5%ŠkéçÉV‚+ËÀŠÍÊ2 G\oGJÄ×3Å%Ž˜ ÄÞThd¤T;0`×›Gì…舫Ð@ì³ Ír¤D|Mp¢¸&øx{ÌdtüÕ ÃÈÒc8¹œ›`#³Zz3“QŸÌj©ÐLFFf-ôfÀ{Ó›AG\oGâ–ɲ ,3Á‰Ìšàã/ŸŒŽkÈìFª!Cs_hÈd÷TCFF22 Gb2KF:þ֟Ɉ+ d¤>ŵЋ›5d&¸Of²Ì[]úÉ—8’(® >ÞÆ2Ynôf&Øh+Й`#¨@Cf‚5Á¶AƒÌ€³ÖËeª.l¹Pj™`£@}e‚á3ଳ2Á‰Ä™àD×LpÚÚ&83œ(˜ 6²4N&8Ñ*κ%œ¶• NÊ'ªd‚)2Á‰þ˜`#:@IdÀY3d‚¼u N4Å!Šœ8ç NÔÀ³ŠÇÊlthpL°þü³®ÆZlt¨bL°ñ² 1ÁF€þÅ'2`‚íØJlü)hZL°ÚA§b‚Óñ|‚ÓA|‚íÈ Šlõ# H1ÁéÀ<Áv4=‰ 6æ4"œÕ &ض׬ð0Áé`;Áé;ÁÆ&^sÉݧc逳æÂ§£æ[…(&L°Aa‚Óñq‚ÓAqÀYÙ`‚Óáo‚­„ Ô &8Ý&8Ò&Øj @k`‚­¨ ô&XþY)`‚­ºÿ'ØŽBÐÑ?Ávè¹ýÇ\˽ûl‡žkîÝŸ`;ô\¿¥ðêê/úÊÇï«—cåc-tôO0÷î£÷¹w‚ÓaÊO½ÐÑ?ÁÆU-ºô!ž¹KÏÜ»?Áýœz«w2bVJF²+‰3í2ÒqÙËɈóï2’uôõυWÜg¥ Ï‚íP ½ûl‡JèÇŸà~öºôAÈeS‹«‘;ú'زçè½V¡w‚­w§a téOp¿ñdÑ¥ŸC³èÒÏ“ƒ.ý >þ¢¯É¨¿mC?þb¤Ü¿)wé/Gê·£hG¿ŒdÇóEï>:b‡vèÒ_ú™Žò‹5š;ú'¸ŸÁ‡ÞýEDrÙÔ÷›T £‚ûí(Ðç¿pÄ ¤0Œ^ šl$hLp¿Å”–³<þJ¯a”K¡&Øh PXø™µ1ɈÐXÌz Áûë7dåA`‚*­¥ŸF €ÖÀs‰•ÌÒhИ`£Uš„\65ÁýÎÀ…R:rüÕÓçÉÅ=Ë“ƒ{VL…#åbª Ö­8ëLp¿é”&˜Û;d–Fµ”&£~·(L°i@À²&À[Núü—Ó0Îúü'Øäa–¹ûq²&À'ÊèŸþ÷û?õ§þ»¿~ø›_âé—óÛÿÝö²ÿþî_þõáôð›ïοýóûïη/<üÏïž®·çŒÛ—§‡ËíÈñ>åÍmŒ_Ž1jœ_ÿé»óWãÜ&s=¿WÜÿÔù½4þëú,§íèl.·#!ÙœŸŸ’ÍËíH6Ÿz·¹¾§ËÈfûV²¹Þø}²y:¥ùÜò'¶ùLÉb·yzo#›Ï%3†Í{zŸl^/)n·Z3Ú¼m_ÛÜ*")Ö_þø†ÍÓí¹Òm.ÛÕøÌæ½ Émž·‡…ÙæÖH±‘Ø~ŸÙ<ݾø¥Í_ä•~_ü þßþþí9ãñc¾>üôpÝ~o×ýó¶!Æ7žorÓ7Þ?Ï߸yÏÓ7>>ö÷r¢éïŸço<½3ˆõÏŸ}ã½biúÆûçù·rÝ×éŸ?ûÆó ˜¾ñþyþÆËùöÄWßøøüÙ7^nw×éïŸÿ0írýcmr™Åÿ«¿Ý¶©‡ÿýáãrÔ¿>>_¯ï ·/·dÄ?=|ÿ‹íÑ㇇ÿÝÿøñýϳ¿1 /öço±ßÜö;~·?}‹ýG¹ßÍþ›Ìo}n§wóÉûùVÒýçÈ…¹Ü=»~áÙûçó­fgûÅßòŠïæ_¾ÿÿ~xØœüþÿþöç_ý°ùÿðýüðð‹Ûûðëÿüé¿þðÛ?ÿö7¿ùÕŸõÿ>üø÷û Käcø÷ÝéÿÙÚVãíîõüáÈ?þÛŸ~ûó6öåæÍ[ð¾ÿÕŸ÷Ÿ|ø‡ÿóÓ¿mÈ<üôÏÃÇ­ûÖøõû=üñ/³Ý}¶ùœï¿¿ûÇÇÇwûéœßËÇöÏÓ7njoÓ7îŸë·ÿýûçé/ïY–úÆýs}ãòøÞ§<¾±ž¾qk8FÙ?×7þ‚TçÓ{ûÓO·+² ïoƒ|àoïuZ;üñ©Ð×÷öéýøTèí×uèǧúÿ¼{m—îöDu:ß—æ÷çÓéøÿÃúõíötq3~ì¿<ßÈë›ñ¥Œÿ‚Ëøã·²¯â[¯Í뼈wxÿXøÇ’øýãÀï vÇ÷…,×ß?ü¾Xw|ÿXøÇRøýãÀÛ›ÒécSª«ðúx»l—÷¿÷Mé¿þ뇇m°ï?]žÇ4_Fø;çÛQf;ån—Û…ü÷ßýü§?§u@àå½Ãûò^ðîÉ¿}ìÓŸ~úùçŽ'·{ðöø=†½OéûßýqÛÖžÜ_oM·”ÝíüôŸ?ýê?àòx½±ßŸýßþ¦ón’$çÛoãú¼ÿŸ½ÿËÛåFSŽæòööñgÆVsÿƾ×Ü¿P›Íßw›;^ÛÍß÷›;^ÎÑÑWÇÏ÷óc_þê”[(' ¿<•å É‹ãÂÞec­_Û#q´Yw~Ÿ¾°9þ⺲I¼óŽ>5²…eco­ËQ}Ò\aŽê“2ÑŸ¼ËƤps„žT —æsœ².›”R,ôt˜wßm®Ú–g{m¼õ¨l¸!˜f{tw¡Ç“‰ecÝÀäùñcÙøns‰œv¡Ü LûÃEÉ‹”q,Ô”îr,.š…$/LØ(¯ÊK$¾wôQyï¿GÈÍ¿êÇiɲ*ËJæÙ>6Þ™W6Ç«/ËfÍ™yylÔ^î6çÆûòÊÆz‡óõ9ëÛòò >«FR¾‹œU1b`ï\¢ù^ÙXßqç¤bêùúœ]Çecåy·85zŽËFß§¯éI3©•\‡qŽ+®—ÍqÁõ_xkꕽÍ<®ÍÆÞé¯Ïf“Ò­…Z¶5Fu³9.Ë^6íûÐfcå£y¶¯R=JQ}ÕâуWâËWüÕÅÛaœµ8ßwÍÆ´ù(Ç+OËÆ”ùr ^Â|ec©ß<Ÿ—˜ù-´}Úlì}QyÕ¿4ÊSËÆªSó/åE{ r„žâ}eÃ}<ŽÝ‡òÊzÖWM}ž‚.›µœß—¿”g-Vͱ~Ž-…š–Íö¸”ßnó¤wœ|%žÕ«ecÅ«ù—ò¤/Ì¿”'Qücßô‚à[êXXùf÷¡<ÎU5ó漮 ×Bíýƒye]¯,›k{·½6DËÆD«h«ŽÍW⢯ãÈWü¢üfŽõEùMÇøÍƒË7܇.ú/šñ›ä›ð›§Gå7ój|ìó››Íq5òY·B|y÷xŒüf¡Ædæëô¨ú†ù:=F&sÕS—ß›½ëÆ1ÁÃ|ÅÏRÎK18+ëI¾%Ö³ÐÄoš:%vô$u¸4ë“2™y…”ÉÌ‘:‰¢!Eê¤ü&͇ùMú žô.B10å÷7%=Ó0›‰qž)j›I¢<¨Üf¸÷m&Fm¦‹°™Ø&j]åÎã¯ø¸›¼è¾øœÞLŒÕŒsyUR3Fì5fÆØM½½¶¹ËÍä¸fâ01æ2®¦%.ã(/žË£tSb›Éñ×~ “ã:‰Ã¤ËY¾½(e s1Æ2|7%,SŸõn/å³Ò•q.Ï‘­ ©%‚ ÆUÆ_Æs›ªÜLS9À㢹w“§ÈHШÇèßSdÈ#¬ë'};$Léø»!‡IºI ЈÄ…«ðˆàÂ5Òˆ´N‘¸¶®~ Ëe×öÆyˆÍñþöabbå¢üaå¢ôaœþ¥Í¾]âí`€ÇßG?LŒ$„ؘ xˆÃ&†ð> ¿ùÇþfþèD` Üc›ÜLŽ¿øc˜$p€F÷Å{㣲}q'8ÛެžFá¬T_ŒõY™>¥Kôm&Ìóá(–XŠgçÆë@î&'%ùâ('åøâÒ8 Å¿´SCôd˜$‚o€év0ÀnIâfrü-»&¯oí2ÅÍ$±xì–#n&‰­àñ÷: “nÕáf’¨ºv9¹×÷rÞÖr|}UF.Žò ¹Ú£ðÚ&Þ6“.ï¶™0í¶VU;.Zr7yi¼Ói˜åÈ09þ‘aÂe†Øeá6“D ðø‹F†IÚÌïà³ÒjÑ¿g¥Õânñ,•„°HŸ•lƒQÙ6ÀD« ðøëч h°¶ž´.0Žò¤Züi=)ç¥åà˜Ñj0Šmñ0—uEàç”ãfÒ¥Õ^¯ízÀW/5Ë•æL)—Z}_ŒõU©²¸M\•*ƒ)UKTÙÌeãêµ×’Çýë¢%|Ñë‹Pe9/²™Q&F•Å¥ëÅå0}&Ð`ãò‚ó8—Ç6­öú¨}qú á•abd[\cVkŽ£XF&^—\i~ÏJ¶EÎZ³'zV F1 .å¤_½œFéfd6“.·™t)¸×S¤à˜È¶½ú0±, ø§¥ái¯;µÉ¶×SCów˜X•Œbz¿i./^ž¶”—\>@¾uä‹¶™—Öáfb\ŠÍfÂÜv)¸/üŽ.xÝw¼<^ö £$bn€Ýb»—W¥àÒÒÝLŒ‚‹WÔk»a”ã/]¿›¼(¯óK»Ìî奡<ˆ= T’phä:*¬†*3Ðì]šf/õ-*Ã@^d÷äÚîá$)†¶ë[Tv½h×·¨ðãoÜËã@â@…?&ñ…JH**l É'| ª”‘©)( ´Í€ZÂ@ÛEª—À^´[;I1a Â€Â@™ë ¼f®ãé|[UM̓2jdxË(O nœDʨ‘z(£xç-8Þd nÜOw#Ð<(¸qv)£xx)8Þi n˜–Qã\Fñ\p<• ; Y„‚ãM´àx-8Þ0 nh”KßaA ¡àx{ÜaÈ&ÜH¥–QC¡Œâ£àxÂ(81 n4å–Q¼yî°ep– PpPî|§ùYç;ÏO %z=î6Ôã>Ðv•õ¸´Íøj7;{!äE¯o}Ø´© êf¿£Ð·>P{û`öúÖÕGèf_ŒÓ¨ð6‘ ¨Ô[P7ûµnvšu³Ó  ›} RjAÝì^ƒúÖókïžÔã>ÐFâ°®ƒzÜÚf5¨Ç} ²{R7ûmõ­›vqu³´Ñ·>l„ë ¾õ… ÃaÓxíÄݺÙu¨N[Œ#¼u¾/¼^„úá¶K/¨þŽj­u¾4²üÅ@…© nv:Ô£ ´Íóöz܇°ÚÍÎ^Ø‹ïÈ á:¨oýþ?•^Ù´Y_êW¨¾´.zaýêì…TbPgú@… îu›©Í ¾ò CA䆂:È5®ÐW>P)© ¾rt› ÔW>P©£ò6z ‡Mã- ÃFXê+hdQ¯ø@¹2‚f½â&zÅÚ.£®ð; ]áÎ@û¿)6ÖÿM3Ðb1êÿ¨”ŠQÿ÷…þïJ!uzÔx€¸÷SO·Fº¶Ïô•Ó;ub뵇ò-ÖtQö@ÛýÔ‰=Ðvqub«ßPùEýÙ•Ó;ubTNïÔ‰=P©ã¢Nl Ôv Tª¨çZã Øçôʉ\»«yöí’,ꮨÔPwõ@Û'rê¹hûDN=וFê®h»Î@_sO3Ð2,꣨œ§/ª§HEA¯7ún£XÔ=PÛ¹  z rʦ.èÊyšº ?ÐÅûâcÔµ âJ]Еzêw¨ÔPgó@…K¤nå6Þˆ8l$óßëa6öfÚÏßt¾Õ´–Í_<Ô•ËHñÁ»`ël¾l·¤ø7­Ñïy;E#ÓAïí¶÷´Ý¢‘e÷^¶Gã`]Ð>’õFc  7Úá|6Žd}Ô8'¾«Jô,MˆîÅ3Åj¤xÔð‘€ë.Ø^âŽÛ]p¼lç ØröénTÿþÂÈ¡`¸0,¬QàÇ=ŒÞá îY‡7F:¼}å@ß÷ʽµäv0ŠÏ«èÙë ÎÕC  sÜ݃~r_FÐe¾rÏnIpœÜG÷âóLÁFþƒ÷Б^0§G1öÞ{qÁZXOÖ‘.#™d-ÄúÔW°Bs zÚ ¶ÃÄ ²û†ð F\lŽÁõ,Bè_ÅÉÎŒèžÉlÁe„®xuzå Ž¹Ž‚c²£`{?\Ž2uÅlÙܼ°¨+^/õÊï°KéækD½òÇ#hÁ–½…+üªbäè§fusÀ,¡‚—2*z¾¢n{ôà»{Йïу~ýÕHVø‰#­+?ƒ‘Σ{¦l!wuXF¦€u€‚cލ`{ÉDt ¶²zœ†©`”c2{‡AÀôRÁ\ŠÖ€q±‚’ÀÊ{[‡ë ª«‘L‹a)ɵp$˸C @‹ àkû üdNº«‘, ?!×8€8™ÆŒdy~¸Œ¦q€= q°šSŸ„\è!àœú$$é!øœ@%a5RC;¡Œ¬¢9¼‚ûtãBQãÔ§IQÁG…‚­_Âh¢Ê∑¤Éàq¥ø±ž•„Dï­âéÂn„)»ª<Ä›ªNTVî1Ý(qú†›d2?à7ÏdÆ¿¹žsôýöïî²}sµˆ¸‡¿™Zχo0ðøfÚÏF’oÆæq@ÇBר[ TÈCR¬¨½Õf`Ì!ÍÀˆÃ]P·Pß\ó"¯JмÐfJPÂÐô14n š±ˆ›äšHKCg â@ÛdáBK#>-’–Æb^övtò͈¼*Maƒ|…˜#  /ÖªE_Ûq˜#d웑‰ñ›4:q³·0fß@¹Cë®ç‘ãfz´‚AÏc1cÉ·6áHÚ‹qŒnÌã€"È@#­8Pãó2EZ 2P{ç#ÍÚ’Qä¹Q‡yÐ Ñ«ê!º’ASd ‘ hdï ÜÞ@Ä‹³'¶É:Ò ¨‘rñªªN{‰º#G‘jr¤bw1RÑq\S$GÕ4ExÓ‰¿cÕaߌµ‹») ÔØ¹<[×ɳ5ýš-è,|kóu¤U¢Q“…oFÖå_—éšÐ|@×Dǵ“WG^D®n íJ?R;Yx!wÒ@Ñ+ïÊ(ÙsSF¡ÕÊ(\Ý cðÈ Kì䘃^Ê@Û\)£ ÔX¹ì#‹ÔÒ4ä£ño9º Œ²Çø·xÊ:¤¢òµño9ªßP;NŠ+5YòÂ*úÈ )è[¨³ä;žW‚çkë…àÙs¯Ïã€fËbcåhœÈÊ 4òo5¦-¯Y¨êÞ¿ØÆžÎËÝt^Ô7Wɾ¹ú ¹º+wÞ~lé/Z‡¼h—ï‘RŒîR £wpP•h›•#­™Æ;Ã@iË{ hÍ Ô8µüë>õ95R ±tiãØ= Îg¡a£ª6<Žqjƒv éÝhÜ ø{ Rå½PÁÉñÅkæÔìi†sã´Ë¾IGÇöR×Ñq@sGçãJ<4Žðo¤¹£«Ò*»9Bvg qŒÁË〖Ž ?v"ݽ®ŸT îÂ/Pý½ðÍ8@Š[äz’Æu…òê7]!òÑ«Áó²bpŠh 42x®n¡+”÷d¯âγÎEÜ']i 6¤W4ˆÚfåH™H×Ò7Ôo/TŒò8^½¯h ´]AGÚFUP<h›•[è å»þ7”b“’^'PGZŒc]º9ª®¤”×Ta/æÓ.Í&}¥F¾Ò@Û\ê+Qt½Ð:G ê¬5R Å´Ç<ŠUÐÑ8í :Òm¨pu¤Û4ÐõÛ¾öÆ*èr¤@ãi1kãêhãêâª\¨DÅç>U‰‚ùJÔÂ7ëÛû)J-|‹¼Þ@Á#ÏÁË^xmuÇ•ªâ*!¥*ûݪ~χy½ÁîÝ5¯¯ïYߥ~ÕgÎMFë—æ£t\`kû<²“Qz,™`{.ù<Š“‘=˜ #Z_òÙ/g¹RŒäJUpÁ:JU“‘>ÐHÇŒ“‘=Ÿ|þ,8o›Œâ)u5§ÓáÇ´aäI©£_5o(›Œ´\…ÜKçÚ æÒ”q1·SûóxCÙd”kÜÉANFÇËS&£ô¼3Áéx;ÁªI•ÖMª¯¶yÏDâäÖ¯øêz.r‘yN®Iî¹&\å¬I5ÁzCÉ É æ'¼/zò¦:Så¬>5Áv‚…]Øu¦>ONFÇû&#NAâºw)ÉÊSàŠd© ¶Û×óp•]g GJùÉ ¶#.„ѥБãŠR“ÑZøK#R”Ò‘HgJ!©Oi šTèÞñÃòdd§etïxÃÙd¤"$q=·ô«&£”Ùœàt8ž`;C_õ a4ý*\¹Dædt\¿j¹~Œ”õ«&؎ðr\© Vާ3Ñûãýg“Ñú¥HÁ(Õº ¸£I5YL4©Ü{Ï_~^E4iZ¾Œ æddh8Rªš™`+•ëªVà}ç¥)“‘e7q¤ãZW“ÑñγÉHËdòq­+éx¡Ì0ò,)¸—Ó¤l4°ç‚ªÕÊûëášÉˆ‹hðÚ{®Ý[¿šõ+#Ï–ÂNœµ®&øxÍÌdt\Z2²›¬'K¤Ò‰{¡j…qJ„å€;úU“Q¢&'ØHH£+UÁà9Rب;IÒÉH»åòUÎúU|ê¯QPªò_˜ëWÁ”iÕcÙƒ—Ý ·¥WT¸b^æãUçy{Áò˜ÕçÕg m.Çx½¼²L±‹}kóz Å®|gpÅ®ƒ…bWô »ã´{™:^4ózô+vu¯¼®sMz¡Çu¼v›ŽŽWÙHÃóB±‹¼hWü-»hœ¶")v-|ãVgZ î¥¿=×üÊ10Í/ö-q€…¶«Ðê^9ª®î•1®îEãhÍ`üM|C:i~©oþªå|ÅMŒÇiWª>­¬Sd µšÁè9(º®1ÿú/×ü*›vu`Kó«l¬:|ks‹ %°<«1§q:J`eÓ®T%°ÁŒ|ž‘%°Ç[ÕíËRóë :§ŒŽ¿ n2²’•/6¨2Š5+7R“eÔP+#KNâHÇß47Œ\ FÊJ`œÉlO2OQ¢ŸÆº2Šå+ÛI£|JôË{ž&g‰Ê¯~žed-t‘–bWEÅ®‚׊]Á{;cœ‰ÉÝÈu¼`Ê®ãîŽWÁQÇ«`Õñ"?Ó±w‚YË2ŠiËö¼%„Ƶ¹`rY›k‚í芎Dm®‚íý´þˆ²§/a$Wì‚‘²b×"N®ã…î5t¼ÊHŸ3ZŠ]ed5+§X´²Ã ÍUpCª±Œ,; ËéÉ Ž*\ÛQBã*\èg£­Œ§Ñ»¨pMpCo«Œ,õ˜§ z[œŽ™ÜèM+#ÛâÑÏ”SpNNpÌu± V}è<ËW=,Â,³.ÖëK³É‘”°k]å5ZW G²Ö§­x‚SÊo‚×Ù½¯~1òLFÚç•çžU­&ØêD`±˜~zïúU8R£L¿Œb_WÁV‚ŽD¥ª‚% »QVªš` ¹C°àµúÔW‹ÕÕ§prÇ_Ò6¥š ¶ò¸r ©ìˆ¥üd¤T÷1ÁÇ_Õ6]mÝQ”úêzvÞ¾3Y2"’³y|ü%l“‘Q\èˆQ\ í(ˆHNÓMpÌÈܧ­*Q0÷¬µÉȬ…J,çå&Øh+ôóø›Ó&£>™*Q6=(t$ëAM°ÑVp¹sÎm‚ Z©9åиšú©Õy$O¦A”s6m‚-qÞg5§ n´[•QCh¾Œ´áŠÂ(´(4ºÎ“}á¥j1A8ZLñ²€S¡kÕ¥¯=7¾Š¼hÓU Õ¥¡…êŒÓ¨Á6œ¹ ¸½ö ºT¨ñT4[–Ï^¸êR'«.yTM‹‰Ç±j{šVÛÃ8F|Ñ8ZƒãíEã´oY·©Ð¨Ð4P#·ò¼²BS¡Bm½eÕ¥BcUÄ@z|wWRÊós%¥/rñÃF¨®…fÒÕ Ãf­™ôå¾äšI4Ûþ=`¡™Çqͤ[WʾµÔ††M»¦k¡A”cÐÒ 6¶¯›ýƳ‘ÏÖ•‰òlsÅo¡—ñ›vŠd¡AD³m3b AT¨q_ä…q_Ù‹Ö»y‡ÝE²‘{ž•‰|Uš^{nua!+ £ù´™¶žŠÑ°i3m m£ƒ¬mThbÚ msj‡TŒ¾\¹ xGzEÑ ×+Ê‘½¢J-™*Ѭ]™ˆ|l——2ÑŽf ¢B™£y}C=oOmhØØnŸcájC䛾|“ª²…®Pô‚t…*™Ž…‚PœÁBAˆ|lד-„È7á¾@+hGµ¬—ôjú?9&YÿÇç÷Y®BŸUh›¹ê)ýÜm\é'“•~ m·8.”~òŠs¥ò¼Ó¥Ÿ•oÆgŧ‚…*нøÃ¦Ír-´‚rܼ6˜Æig:ºB䛾qÆö „vÔµ‚²ßP* ZAŸß³¿¶éïö ¡ôÔ»PÊëÛ„hœ6ÿ¶PŠ™êC B_<-„ò|\A(Ç툂Ð×6ÆÕQÜï±6÷@ÜmZ BÃF¹:Ǹ:§¡ 4lŒÁË{£+åë£õÊ=¡»+e/²‚G5ë šX¹BÛuj ­ òÑî"4ÎZ+èË]õ‚òur­ ì›iQ @+h R·¼P"Ûi U §Ý‡ ª@… ÿJ?…š¦O^®é“gmš><ŽT¯¦ÏõõQ5}àʨ¦üêš>4NCÓgØ´™6ÕôáqÚÌ éSh›i[¨÷V½ŸÎ@½'_ñËõzûå®4}>¿•OFÜð$#¥ï§³íÛãúy¼R~2² Žt¼2c¹zŒ”Õ{sÊš>Ë‘ÒǧGŽ æ§ ñ3=^Lp:Np:.fiê=ègNñM°eóÐ.éGìT 뮣Þ3W¶ŒÒ#Å€-§‡Žä¤ÞW¬ŒøÀ)ŽXuÄ>«÷,Ý;.ø0¥Ç{1MŒSÖô™àã R“Ñ7Ü,Á'Þ§çŽ >.8Œ\Ó¦lš>è}Öô™àô˜1ÁüD!“;®Þ3YWFäøÁreMŸ ¶C$LÙr€âÈñ&¨Éèøé'#>tŠ{éÔ9ÁÇeg'#>a’# ôãqjéÿLF)q8ÁéD:ÁvøÌQýñ³;ýŸÅH9}8Á)8ÁVÀÉZA|¼Yj2²ó&ÌR‹2’åaʦ „#e¡ N‡Î ¶ó%úy¼4~2J¹Ä >Þ 5±‚:’„#™®Œt¼$d2J¹Ã æ4¡8byB¸ÊYWh‚­' 'Ç% è}Öšà”,œàãï|ŸŒŽë MFÇß$5q!ˆŒ”*A&øxÔ0ê¼Id2J‰À æÊœœë ¡#WÛ;ºB“QÊðMðñ× #Ëæ¡#YWh‚P­  N›ù'êl‚I6Á‰pÖÿ™àDqMðñʌɈK3ðä¬Ú'Šk‚çÊ&£Dq-ý<ÙJpMX±YÓgáˆ+ýàH‰øš`¦¸Ä«¼€Ø›þŒ”j/ìJ?àˆ½7qýˆ}ÖÿYŽ”ˆ¯ N×ovšŒŽ¿'ãnú?:7P*T˜¬–ÒOÙ´y¬–þOÙ‹µPúÉžy÷Å—^¸ÒÃL<Žd.@Ó§ÐD_züÍèes\½g·1õšµ«÷dßL½‡Ç1âŠÆaÞŠÇ9þ¥²áZ §Me-Ô{ò5Íê=…¶«·¬éS¨UPëw«íEâ° MdU¡ý}}¡ôóY•[ÙXÿÑçÕe“è«B¹Vbÿ»_ÿÅD^züMGecU?æ¨Èók£+©l¬V"ÏÇ”~hý¹ÒO¾¶®ô“®ôCó1z+_Ÿ¬ôãã¸þOžëÿÐ8ëLÇ×6ýûEGÿ§l˜íbß´Û)î%U ²IØŽÑÿùò/ºþO¾âYÿÇgëª@ù×eª@ì["Ä =þõ²1:,{žU 5U ìEVòX¸VPþev´‚ÊÆ´‚h}…B\Cg¥Ìò8 ¡8NVò_fGW¨l¸‹bmºB<»ãäÓt…h/95ªâï6 +¤±n© •Mbû µŽ«¸²@mH¯h­A¨2\yP&rM¯ˆâçzEq½"¿¶YÅhå›v\Å•ìŠG9nYñÈÇÉ:H>SGbߎ¿³½lŽw\•Íqmð²Qið´s.Ô‘r¬])¯7WGÊëÚÕ‘òõÉêH«qÚÜ¢j&Ñõñ‚iŠ3Ž4Žk&åq²fR¡mnQÕ‘hÕw^Z6ý;Ži&q„Žk&í6WíÎÊ+Ëß’š}s%¥üË÷ÚkšO»ªn¡¤D¾Y'cì$Åm]g÷¥ë+eßü•©Ù7W]Ê뺣ºT6k&óëq¬Œb üæB_)GÈ+³ã)s¡¯”W£ë+åÙf}%¿YuÉw¿o(ÕV-&žO;ó M…2ëIžg-¦B÷‚•M»r[šØó6¿ Mó¬ÛTh»J¯¥ÛT6Ìdò8vo¡qÖLæ×ã×7/f2ySsŠWÔœ mg¾@ã©ÐÄYšØÉB…‡-¦BÛx Ðä³Ïu×~ ²šS¡Æ8’ç‰q,4q‹…‹H3Hy«Í M…¶;V M9&®Ð”ç•˪ =þ^Ö²iïʪÅDã¸SÇ´˜xœvûªj1ñ8‰,´]M ªK…&¶oå㩽*³S¡íJ?U]¢XäâêBÛ¬ ¯Th»cµ¥¤´Û\…×£øi5h&š¸ºB¥8o¡x”cbŠG<¿ã¯YÝmrt¡R™§*FäcGŨl˜Sãq¤”ôŠV‘:®›·Û˜ŠyžUŒ •ÞRÐ+Zù(•y WT(g[x~‰ûÚѬAThâ³ 5æ*Ï>OÚ–X¨ ‘ÆQåõhjCì›UÐe߬˜šÆÉµÔ…ÚN›5ˆ m7|‚ÚP¡ÜØÉó“6ÿ–ÚPÙ´›üAm¨PÓŠ‘]¡B?TèqUî²ILÐŽæjçB­Ò-ÏÏUò•ɪ@…&ÎçŸþ÷û?õ§þ»¿~ø›_~wºQÿþåßüÃö· ë¿¿û—}8=üæ»óÃßoÿüþ»[Çöéá~÷ôþÜðü^}¹¼Ý’6g¶!~9†¨a~ý§1“ú÷m&×›&Ïõþ—Î/·³öåæög“?½>~mrÛpÑäüüLžn¿62ùœHÝMÞâd²}ék“ïxA“Ï©×Ýäév´D“Ïr»É{Ó7™|N›ßM>ʽÈäõ"v«Ö=£ÉçTãnòv[ÙäKžýnòÞFQ—g»ŸÙ¼—3»Íóö0Û|,_·y}yúÜæý‹_ÚüE~Eaññ+úûó—÷JËÛn{}øéázy§D>>þaàŽßN§Â?>ÎøÛížXøûÇ }¯ÑøÇÇçó ÿ8áuÁÿø8ão·Ójáï'ü½eušàýógßx»=ºMßxÿ<ã¦õ4}ããó¦Í쯬½ìë«q[1õ·Ûzøñß>.@ýëãóõúx{”z~º¥ ~üéáû_<~zúááÇß÷?~|ÿë‡Ìoçý—óó7˜¿>ßoïæ§o0ÿ¨í¿™‹õ{×úéÝ|ò}¾[ľûÿŠ·‚ endstream endobj 195 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 198 0 obj << /Length 489 /Filter /FlateDecode >> stream xÚ¥TM›0¼ó+|©8þKí¥R³jom¹íöÀ‚aQ ¤àôãß÷Ct£JÛ ›7~3ãGªAw™ñmŽT!µb e"X§ ¼#ˆ¢„¡„Lx‚²݇yWF1çixðÐͯS3·¶f®h:¹‡‘Ta>4ÆFP÷{¦W«~hs;úÅÏÆ>ù_öÉD_²‡#KVúè¬iŠ…ÚꃃLSwžuÓg3­·ÔS^8e_óÚà(’†ïÛÓùb§Ìíì¤Ègg“es3Û{ül$]¤C¬J§˜¤Ì÷~¼d"ÂsDñéj¿ºF°6#L”€£²ØmÃÆ¥Åε˜^ «sWئŸäs¸ Ñš¼ô ¸‰¿Û¤K–,ì¢oOߌ5ϵ¡8|)Ä®"€À&9ÚãP£[¯>ݽõ. ¾K¸JcB2Š6pû"áPŸ" ‰P4T_ªqýéls÷šÌ ´)‰²‚™–L†¯ã9*±A Í·Ùì¬N'˜º®LÃc‘´ÙÚÃQ¬¿ ®°¢ü¹ûºœº¼½¸"Iã†>wS2¾š5ÿ[ºŸ\¶Þì›MGð5™s”zþfçÊg¢Dÿg˜vÿu»©¥ô+ŽbÅ …ô!P±Q£õqd-9 endstream endobj 211 0 obj << /Length1 1730 /Length2 20499 /Length3 0 /Length 21578 /Filter /FlateDecode >> stream xÚ´ºct¤Ý¶6'ÛTl[ݱmu\±m³ã¤cÛIǶmÛVÇþÒÏ>ç=ûìqþ~£FÕ]Óךëšë®QUdDòJtF6@QkG:&zFn€´Œ¢•¾5# ¥€™ž‘‘–ŒLȨïhfc-¬ïäp8šä ?íÌŒŒ\°d1 5ÐþÓh0pÈõ•ÝlLJýyG:}‡O3ÐÚÄÌHõ"dcëfofbêø7 ÝßL£é’ú†6.f}k#€$½ =@ÖÆåSi ´±Mõ-6Æe :@EIDQ ¦(§"¯DEÿ™XÉÉÖÖÆþ¿°))«ˆÑ„d•E@UZ€˜Š’òßWe õ'~Z€¬ò§ýoOÇ¿á2"ÊÊò"L ×`8íÌþ–ýläŸÈÿí3ÔØÞÆêŸJSGG[nz'Gz{z[Ëð)›š9\lì-ŸW{ %ðŸÆ8Y}¶ÓÑø¯· mf´vþ µù—Ñ곕ŸAŸzÇÿ쳎sZþËàþ¯2¦úÿÄJËËK¬ôͬÖúÖ†ŸŽŽúŽN½tŸO Å¿BNöökÈü·Éþÿ•ùoè‚6Ÿ+Ó¶ôðÒwùÏÓ·vrpÿ·ÞüïeÚX;˜98:ü+#`lf ü‹Þáïž™Yÿ£“•QR¦“þ$ž5ŒÍgw¬é]ÿñþ›O@XšÀÉÈ`âb0~’TÄÚHÈÆÊêµìßö ›}öÉÑÆÞá?XmamãbíñŸZc3k#ã¿]7r²eP±6³sJÿ—ï§ öt&@G#hºš2ü-õSþª™þª?[àåakc 0Ö·tz™?/°úÎ@€£½ÐËãß ÿ[‚eâ™:~’üsP`ÿÉ.amlàú—úÉ›þkû)ÿRªÏ 5²±¶tadm?É@ùÿÏŒýG-Q'KKY}+ åÿnèzé[™Yºýo¿ÿpQþ…Jù›9ˆš¹äÍ MÿÕÕé%õ?I/`mb üÜ‘T*çÈò“°Ÿ‡ŽÙß3 @ÇÄÊþ¶O.ZXìÿ ~öà?ð~6þ/Zƒ˜¢Š†ˆÍÐå'kC#3k3;@ßÞ^ß –ñ“Ìll¦O*]ÿ! €ÞÚÆñ3`ëäè0¶±‡ý»‘LŒLà_݉ÌãY &ÿ&²ÌþMä0XýÈÄ`°þ7ñ3³Í¿‰¬ûÄÿ½Jù¿ãý{ÿgÙÿuîý#+9ÚÛXÕÌŒ>Ïüs‘Ñw´7sÕbü¤Ó§þóñßï~ü¯dÿ35ÿ-(hãêAÇÊÉ cæb0±3r|Bdañú_±†ÿ:‚þ¡ýçþü·üwþ@ +ÐvyÁÆ'Ð<©!¸Ä[$oª’Œ‹þ¬ó›ºd,ÄrêT¶pö1ð{¾_“oy¾´8÷ï?ëBu²@ Ë÷æ_“·F ü»úÞ2Þxˆ"£Yªô*þi2K¾¥ÄTÇ’Y¹E¬3i-±-•Ñ!®¶Î§H扔?‰ÄÚ¥-k9.sLèö–¨®KȸíxKSí ŽOèÑú=ËÔ³z¹Á˜£’P¶ÝÈš4I¹Êºu• GFPUÝøxVJ”Öð*®~U÷iKà¬qö}‚ôÄŽýaSüãÌAÅiÒÔ?,WkóL½¡„frU<óMNç¾ôA…ëªá­+EyxPRðžrvúcN©è‚Ë–q­Þ½eåÙÿŽN€.Ê¢QcÞH…Û³Î_<©}ÉÊׂ/µ~Ø.t3SõG†#Ž¡ÃÜ»ôÑ0à „ú;óñøœCù‘=Ën;XLJ¥Ë9Ìw|íáYVìõ¿GÐùsWªAÞ‰¯ò=Îû&j͂ʓÝqor°Á2#ç}⤢Þ–ü‚ÓSÅXLaѶ7Yk*ý&ÔO•Û `ÇÃYê¾O.ë«û•”›Eïé­Ê±<¼x¥Öë>ÛâúBÆ“2··«6ã“ .œ%¯&Œ]*u)òÌœÆíQ U$%×¹xïƒý…檧{8–Ÿ¹êê› `;Úß=&}²Hª‹÷¿$¢™ÑDÄ_¼f®[Hu› š«­{(óKYTîïqÈÁyy+yBÛAYŸœH@¨ÀŸö‡Z,€œ¾¿joí0£M;Ì–) iKÄ´yGZï®xÜdŽÝ®F¦ØÒP;è»êº—8ȆâqöR²…€Ð'~j¶òLîÁ7¾E/ÇÏrf æfÉéÏùç€k°M-¬ÒTªk*‡‚RÚ¾&í¾Uà)€@hwØ7ÒûîX1ô«îmÈ“ðvµ He™8’ÛÆºW¼°è}¯-v´‚ÕTúógÞõm;µ9:>&H[4‹–˜¿á O‡Þ‡3jo@äWÌÞýHK=Ó“âWC-t Îë¸YÒã™Ð[/BîæC7žàĪ­)‰®IûìsÞyÆ/m´±BüüÐ.EmÊ*X”„y«'tŽ·g„ÛJà¸XŒ`ýMŒ-¨å¥i1¸×R$½)¯|g*´›kl¬î•⋘¬ÉÞ HÜMÍd—4¤d*>àóuÚœy{¯ÓÑ¿]ÕêR^ò'@)*Î^õ.åä2¸a¢IY~ ÛBXãy!'s¥ƒ_éÂeÊÆ13,§ÌÐ,µ“µ a8CïèY†Æ5WÂUßÛ²Apùv‡œu*Ë/X1‚‹óÔ“’“Œ/Ð×wØ;?ÅØV|Oˆ è—âúu‚N]R_^"`09ºËöû¾$x!”xÓÿ$¾V¿fQÊYÇ ðØõÔ£Th¬Â# ßT›z§&ÃÐÑI}Vá4‡Ñí—&FFžÅS*™{Û¸øøR3‰DJÒ#ÃÄu_¾@jSí÷j‚m™xì/½fo3ìÞ8–>*äËy:•ÚV ÞsÁ^3p“†Pthq{ŒxIJ¹-Õ¢¤È«#n²HrZN¿°”×H¢”˜¼?p™@†1Õµ[(¯ª‘u®ƒß~IGõ¦5“²Y] jPÒöhZír­žÍz¯™oêØáŸÀôBÍœßÅîûRÑœgK¾nGcIæÃéð(u9ûÔ01|Ú ÑÍAã¸8>ŠøN¼‹×ÛûÃí‰2tÞ‘÷ý~û L™}jLòeÛ³m‹5NHÅŸ¯qzšž”ÍPú>9fZ’ðÁr‰ÂRs* årj²Æ”ÑGzºß‚ÍO-·ÓQö€‚¾û&­qK›}á×Ef> ¤0;@ QZm±4Ôn¸$Ö åf¤P”Å/Ðòg¶CèÕ;b[:ë¡/ËÊâ¢äƒ³_wüõ©3D:ÛÊÎ^h,qº,˜7ÛêA„KFA2]l…•Héüµ—†ˆnY5R¥$ UtsYû=±>[º—5Ì>ehÜu «©×÷JÛ‰žvþ×”ŸfPQÁ %q¹ÌÏ·kG ôòU›!>‘æv¦‰\ž]™ ËkÔX§m¯¸Ÿ8é-F¯§b}˃aX[9$/¢Å9:;Qjö&VîÁo„é·éqRä7äP¡< È‚ÒÞäÖ¢ÕÊ jÚ7AØm÷f•!”$Këc“êF,åÂl³„m´?×3F?Øàö8¡,–Çí™êËßAž€M™X(¬»ʬ–É) â¹±è n²ØPHÒ0£jKýž“A¡Þæ>Örú˜_Œ«ïb¤Qè¶86@$ßzÙ–½èE÷·Sƒ¥g‡ú)1·Ì~gMÔ¦–"ܯP3Ï™S¿‰Lk,»Þu©_Vd«²J‹ýªº#/›}A£Ù³D!á'ÁïÐØ´æ^™¿4³ƒ\“ɵìïPÍcšwCß”Â`êÆnALÃ’vëû0L‹.êÙ;²*¢MV«åH¡±ß½ׄРÁ@²ðq˜6.Ü:(8ËóáëŽ;xn©@ýíˆz?k×¶føãÅS´YháD›+wqÏyh+^¸Wæu>#3‘FÏí_ã$@ ‡êœ3ªržpwÆÊ§ÎŒ×v# Udk7 D IºZŸæ2gÔ® ÿ5E’3s$¤>íjñ¸Õ6±ÆžÊøWt×¾Å1;F9æ CyJt&ÌfbÇÁÖS¤S¡: \ìt¼+>×"ðäÆ_t8p¼r%ØÖªLÖzrôkl¨»þ„Ø+þ3@e5>³ó9tº•Éû¥…ØBßq×Ì …Šþ;[VÍ&캟‰À‰ržöiÙiïa¿ÌÉ~:°IâÁX½0, š:¡QñÖ3tbªV^˜µ}­uVûøx¥W,ƒåˆšk´D õzˆ„R)NÖ!œ>3¢*~ûà—N›žGrÐ7jÈñHJü„llšŽYˆšÝÖÒ{|‡2Ùg†&"öøà=0è³2þ±€•Gös)G/we$‰>ŸÕ *6åèù†ƒGÙúýeÞ¦‚2è W¨÷šŒü?xOß*jeGPñ%ÿh©þ‘ŒÌD“¹ä¯R‹«t0¨qâ3«´p”ëÚ›êKÒ$™É(ÍÆg9l‡ðO¢§{MÄ Ã81ú‡€Òf‰{Iøœ>Cä[ Ea%¯GÂÃÍ1…3ìè¨Mº¶í¾ÊfÎÒ%ñv ý᪎ô`5ÒÀÚÚ-†joçþž¬ØdØäQ9íUM³¢X»¿þM&÷ë\ú–]¯ƒ·pó‚ßÚó-SÂëFYð–uùÃÝ O/€qo‡WÑ;¬|Ï:–ŸN'Bþ.ks©¿¿ä†n“"›êЀn¦ñÜm*ÐÎBTì »¯©9…ð’Ó—BA…Ô&¼°B|*‰Fô¨Äßã{fæÕuJëN?›øµ-ËÁÛ°É¡ ø¼òsÌ{ȇ¹úŒ@ÏaPWšjþ;Wg7bËÂRV©æÊ»†Of‹É£Œuúló1ç’ )~Â;–ÙÊÄKô¨#óÞ¡€Àw‘#ÌHè³[ý¾›{C­;âdÒÑ‹«Û²ðÈaçdä4ø üÎcsòÈõž~’þ™á–{Ü2Kœ;›ÜÎÜ gzäØ ¾öEÒʼçGÁAŠŠ.çiˆ“ùJ‰“=g©QÇû%Û™+ƒc¼ÿ¦—Qá¹þægº;œ|´ XÍ è(ñ÷Ëü©XZµE[Èë_塸¶TÆ%Ð&ˆ º2‹Ó9/ØƪZ×`_Š/> |å/ <8Ôla¼.šé“}],Ç—q͹—XÔëf~s“scL‚›é£N^,XN!Ê:µÖŸþ˜4p{Ð\‹»†v‚I¿B|åmðmEú²¥ðã9ãÞ$#±t ‡Ìš—8i;é%¥¤;)û)ð–¿¹ñm*QuƒT««Ú¹¾î«8Ñ:8‘¦ðWˆ‡[z¸Uʫӄöo%œä R¼cüM=~ Gß;ãþãÆ¡£h>E¬Rdšê/¥*e–!®BÛ:±jÞô2ñüAnq­ö‹LGuJA…¸Ob³gÊðˆ¥Âä” ŒëCÅt[âêÐɽ+WªµŸ×fÎßÒŠ|ÅUFô´ÈqˆQˆš©¶"˯ÐÜÇw‰wˆ4„ ûæk¸›¸‹ÆÓŸç4J…¶kF¤oïdŽ¢yHDß¾Íó[˜Ö±Î¨ÇízÖ|U ]ÛƒQdÑ;~kݹ=οÅqþ¥z³Ú+QÆ£ŒKsR2GlP9ge­Îk™ÝFqY­üXZ²+b¾€X*Ì93’Ú NdK‡ÿrg¹ÔÊO‹Êsª w¡Ø½Úsá™ê[Ðûi¸ù:ú‹û oŽÄf¼«¥ÊmÈJ`>SGÉÌÔÔt#c×ÙË’'•eèDùiäIÁÙýæ{¨¨i,ztjuaµ`½Ö¯tÎLdWÌPT:ÑF>k/ˆÄoè:(±ˆ´×ã+ÎÃêF–ÆíÅve‰Xª¶Øy¿ƒ<ÖïæF\ò ² ¡73H™·SqÙè×¹­¾ùåhj<3†¶cî.¿±WžÃ¸î\èX­4?œô,ì6¨¿L‚Þ 5®Q溱л}dU’нè_ß^ê4çå#çۨݱÞöƒîÀ½6.ˆ?·á{ÀI} ‹òÈZÞ—Ÿ^€ˆg“T¹ XØ£@ q5ÍBâŠu³r¹?E“WZ›"‘ŸˆÂḻ¢¸œÜ ·ÓiuÿB¹Ôü† êÕ0‡f‹}q?Üi ‰‘X”×Yøþº/q‹Æîò5ìðÖJ7ô8sÕÚ;ü Ýø^dVaÕ$ÖÿÑP‚¦Ý˜>Ýù=ÚEHMD´§¤Ñ&'ß o®.@ÔC ´ä¡) £¢?ü¾ÏÔ·Sl¾™6ò­Øê>¤{@ˆ9¸¹7ѽANgPP]`ö*6jý‰Íl^¬ˆ#cßëpMî£Î¤oÔw9M¤è¯ †ûè¦Q8²úŒæyÜJ6vŒ7ÏŽHQ94$r^_:ä0Ìß 4åȽ=yù_ìˆ0´ÐÎUÌ5X›´ï¿nIg¦5ýä•ñ0Õnn}Äžæ\à7¡ÍWÀ½–¨_èìê¹Q|üÚŽVBF¦¶lz4˜¥Úã¾¼Ýw]ÿ“ó†²Ô‡ÿÃã—6Šðàã19ÈTK EYw@'Á^[kÕ¾éWzìnªá™¹`ŒÑ522–¬ÒÀ^¸šZZ;$ä&¤†Û½ûðÆ‘&îcäI½¢cuI‰/£pÊBjý1¿3GœgvOU¬Ó4!¡G”‹e8âˆäaðó±]$ëâ£öZE†ºiÔÁ*ÉýáÑ 1 |/5|”ƒßÜîõúÖq 3Ë f,3‚ózR”“Zëì8‹’‰:™HËÀ®½§'Ô×3ˆ¾<†I'/“àO< Q#V!S¼Áœ¥Ë#ÙÙ3O´Xy°)š$ËfÛó0ðÇúé 2lš8Ç­€Àô|Ø&n{¹îÜ£55®æ¬ø"¶7¨g…[óÀñ1YÛ‘|:p¸¥ Í€J»5Ü 6B=¾/®ùÈ¿EÍ‚±ƒŸ7Du~h˜f}¡c-Bœ¾Nš—Õ3…^$SÖ…02ï2ÖÎC\¸v¸”[ñ=’¦KáÁнñ„òBQ~·>%ƒ]1·KJâ‘õ~z&™ý•²ˆ(É-¿ 3â-æÑlÙ¶,j@¸dý&~‚Q8W¡*«O–®ç>Éu`QÏ«S¯­X5㬜oòÁ›zÄ-³]F= ûÀ4 ¾õªîDó}«3AÓ ò#g6¶È>R¡ú'â×UŠC”¡°Æµ*ßÁqŒŒÁA2¬‘íIX7D1m Û3 °öâ³}Eg¹ØQÐ‡ÞÆ ï=³Ù§šĉ˜¶™ëü‰ÝsKX»‰}cñwÜLîLõ“¼šƒ›G-{î ƒÐòº9H]õ7Ö tf É&Õêd76/¦IoÏH‚b£~-µ&­né°ŽhXZ·$æ†~s‰qÊ¿ºµýˆ„D.bpøÝ~ alh’ ¬j0In½°êß+i¿ô¬Oþ(q¬ ­+¹ò¨wT‰ÙƒîI$Ÿv¦n·¶ó<ÎYfÔ#97>ó™CÌ;ÌîŋԂºi­ÒVȆUPJaÕ×ãñ=Fçtèy¿{ iw·3í·ÒʆØwœÂ~ËgÔû¢ý›ø'×Éñ*w ¦Žˆ|“®Ð†ˆc†ME8D æÿcu´¥µð½E%œÝ¬G–ªÇà㜣Ԩ¬SÁ÷÷£Ï xÊ´±&#êÂWeò=Ý;Hd—1^ömn3ÑvŸÎA°bŒ}½g~ŒÎÍ¢p/þ™" û§­_«º4aN˜ÕœíÜšDçï x0ÿk°Éã}Ø;G<H]áÎÈóÍ«ÒT@46Å@\©z'Ûåé“YHÅi W,jÍujNsÆ\Æ– ¹œkæ =b8R35þ?ÑVy±‘΃´ÝªAo`à8žóåºá 5ˆð`ÚÏiÙÅ‘µKþÞís¼Ý&•æåTE’ÓñS_ˆ¶{*†×ÖG‚QUlÄrµÏ·ÊC¾öÄÛ­} : ª~ÿê©©aé’ôÌÄ•Ymû§ ØØ>ü±ý#Ú[fë £U—( ³Ó½ˆÂ÷eäý®¬L‰xÑš]G²¡­Ê»ô\ý’ã€nã¤ôxµço½¢NŽî“o阨Y¿C×G‘a`/CcxÑÕÑÒ,üjõâ 7¥o ‹ ܳϯªyÏ!(ž …´ zÀ¹`ù¡¡Ó ûØâ%¡>ãÄZÀr+¾ð͉إs—G&þbŒ"‚· ÛÑÑFDzk=¤-ƒ-<âœÏî9 ¾°Œ¿’õja)Ð2¤™x¼ §„µm\+Àƒ¿šPÚ¦S‹˜42¢V3*Y¬tµ ¸á*‰n6‹¹Rœj½XiG÷NÚJ³r÷†ÉÒpt)±ˆCÕbÈݸ®@ªïÞ&™é£&Ô^šTVŽ…÷$dÖÏ”.ó$ú½é336djÿ ÈOÎá×<BcäÇ`‡©Z ‚/ siì²×#žz¢ë ¨šÐ¦»-Œ€ƒ–‹âñ“€Ex´^úÎÇÕ1 6‰]ò«žpÅå\Pá%€_-þ­(ºÈ]º Ç]k2>„ŠHÚôãrd8éŒÒ†±Lä®îµ/9mþ,W®T_¿úc†š©û=îø+Â8™z½`EÄ[ÎØÜÇ=DûX[OƒnSMšmWîª~ -]}Ü$LíÃìÄqLi8¹0i.egX·Á©é‰Uµ’cÓ% Hí™kp{t5„=è<®Å+MmæÊ,èSç"U —ÍF”’{+ûÛk©Äïµ×Þ˜My0æø3väк*ÇÇó¨ðCCO~Û"ϱðY 0„ÝR* ÊœÛ7VmhÛØÊ¹ÜOÚ<ÏâGðS°|KǼé1¾xdm"{¨7忈òÍ¿çÝwà%FÙ`Éçrdü–#k”¾HS M+ÇÚæWB>“x¬–¶Ðý6#ð¿‰F.ŸåÄZl9õHÐ. 5oâfòjKh[³Ö£å†¸ç@óX¡¯rhFæè;¶}˜;‘ `é¯ñ¬¬îvQ¯“ñ“Ž –qñÚ[io ˆu`k€^?e .*9ZD¯ÎYè ›÷õ§ÇÁŠÍøHÆÃŽâºbB‹ ¯ÚŽtW‡_þ)¦3%3v,]6¹ ÔÑjd,$Ñ|$ rȳj"“° øànÀ=Æ=¤1²"V±w˜˜ª§V<Uɵm´?¡IÓ]5X”ŽÒϱa?Áw׌ƒ„k8Èð‹ŠD’úµ½4|«di8\ã1ÜIÔWrœ šˆ5ó%ÕùX¹'­'꣑š‹@!ÉžÆ ±2$¡´< IãYó˜Ý-j‘P®ˆ1ssÁƒ‹K++Ž6ÙÛP‡l°µ(€EôŸü#åÚW·QQ„Gi‚ „+ð¼4 ;Nmb=«;\„ZáV[›ÙÒí'ŽÿFU'Vßľàž@ʹZQ\å¡¢&Ýc#õµ¬6—Y;qRí+S³ûfN"ÜÏb\«"ÓãÔ§9fß;lF†;U.Ø?»èmQˆïBCÑ-¾A…$³u“·ãßGÅA b8| ~¾u.cµÚE¥ ? $Œ‰‘Y¶¼Õ¹€Â˜ê:¥f}Ç“¢ t+›Ïjlæ·’#…IªHK4lj—ën­oĸ[ýCŒÔŒ?ˆiÑ[éðCieSH%Â-µ†kƒº¡”ÔðÌ{«ˆ49 Ù*h#×:(Þ)ïÃ"Vn`?\š’]zü¥WZ="A(šD>Ž»[ðRõšµŒl­‚fêçÉ÷ƒg/‘VÌâ–憜üø¶ “šyÚ;×nS&¥±K—4€‘gƒ ¥"TÀ} æ^–Ý”*à+»,•>’Pè8ˆl¨Fã·3šŸß׎‘Çhô…º•fêCâ^r(ñÛ3ŸNzõ+ÅlXtá]7?=Pz4¦ã•ßbü™báÏ?ÆØÝ3.tkK¸³¿>šè=k;5´yŒŸ_Øf­WˆôШ¬_'Sh£vô^š8ŸHx¹¾‰W8¢‹ê¥Œgbß35ªô}á`âéܬd ƒÚ¨´…·b7w·Omä-d9^«Yfÿuê´·"¥<žL@avËC6Ê{Ô«1ìs=¤w}æÀ…‰Ð{;+¢@f•!…‹97»‹W’‘ú²‹¶SŠñž¤GQ­Czd:\ÄDw:R3B> ?$ä_ª]ˆŒóÛ®5F óYµšØÛ ÅqÌ‹O­^ÂѶÍ"k44ƒ¾×ÿǹùkèa§]ü¬ÕyÊ›ÖýKä¡«êR©}Kƒæuó¯ƒÊ’^¬Äÿw#…CœfÊeÈXÇÎQ úž†ä^Áõ»áX¦só§kbÖMWÁ?jË%Ëš-ç6çMþDXÓ>½y¿‡¹¤ù’)ú‚ˆC&ÄÛ¤ß#9!$O ºÍpëAÁçßvSÅkV øboŒqÄò)ÃÉ*¹Ã¦³hḆá­jyLJÔKh8[¿J“>ìç–ÕàžZ~1äx-fÎ pOЦݺ6nœL®,ó5&;”>XwÇtÒrÇi—»pÎêMù˜MÝ7œ÷±zOÌ‘-<9"¨’¼M# WDBc$ٟۨ禸·3.è€7x2ÁÝ¡×;§ƒ8„÷½PÒ[/¦òµ%‚MùM]Î$k¼‘ö¥­‡‚Âg"P1éx Uµ'±\ØOeH3'³Ç¨¤þ®Š=7—!wPMãö‘3|®ƒï B·.–y<ßåœ2›ÅpœFÎê9DE,¡gµ¢CµÇ³î~¹’â<¾ÛJHFªË'Œ‚äLD`ë§½ÇÓR!ÑjýÄ…£è¡F›#ßQU_ÚØWŸ·ÆÀ"ÁØýÚq7(Uq`·Ûä^cFÉÒ ¹Ã­_ÿ7fJ±§ n{õgá­¼œ' ûŒF1äë!¢)ÿ=ÚQÿ8\¾VÉhÑÞ+6)ýiaA¥ˆ žb)ÓLD7ÇÊ­Ñ£¹þwA_Ê ×Þ•6ã†ÑÍã9Ž;]¬^î:‚E¦š;“™ö3‡3ž˜f™J|À™“ öaV!0äM~Hv}UnW t|=wÂ,ââP f¦Xµ r[†bý8ÓÅä º¿%sœ\ðmú{«÷–&êÕ Sp÷¼7n®3î­)|yô/k_$|ß9ËÑƈ¢«XÙëT’ë²óÝq´k’d„þUxZ¿„IÙyœQô5(O—?äëÂù*Ãn3Ú–F@·\p'|u$DèŸÇÙ€I¸ç[¸åþb m©¹b"Y[í¨•ä 4¯+ŠA5›D¿÷ŸÛíö/W㞥2Wd„v“† ®'  ÉaAÁ gmzÃuY¸kÀŠm¤2*óøä@ádÁw7˜ý2ƒ]»E¾}œùb ‚T*”§Þh°”]Eøè)wHôI‚CBÔ¥Õ™Òø×¢OgÔ¼ÙS»šÎy-zTÀh'l+ Êݧ4Ü“2ÍÁuâq Š7˜†‚,'½^;‘Ê#QXJ)Ã,[¸”òƒ“;ÿuöî™XãñþBõ ºõM(üèg#Œ®_ñsŽX§3cÐÉég߆m iÌ÷{Cw¡¡†ŒþÄ_$Î\P­­ª‚Œ¾´ºÑüšà#’þ†ÑŠâ¡ðþÌ1\ gëÓ3ÚÕc×\ q­ ù­ ngv¾ Ùñw îvøn|²pŠÀÏ-»URÌÈPV÷éƒ6#G×ÁQ0wÜM.¤ÓÁLùÙͬoZÖÕ‡w îÁ âJg‚XÐÔœŒ(Ò-¿0¢ËQ­½0YERmnbTDÄÈ¿ëqœK±×Nýé+xC YÍ6ì§÷G^¸«íïáÖ Rw2Û'÷ÇJÞñFR·ì¤Kô §rfŘËôC€<@‰TfS³A ¼æ]3‚´2ì>€¢'+ð{^=ûÍ¥¦ËË4%à ì‰Ñ`7+ø"¢°ç4!Ièg0ð¦Lf:&5·XñNä±UÇ®ÎCèCc|ÌÞÚ@YßÄ•Öߣ€êaÑ0ëRK2ÙxÏ´?ìV!€äÇ„Ó ËVŸƒ_çèú³D3«‚êy“°l"…AØ«ù£_OÊ¿ÖÊêõƒŸ¼ãÇɱÉ¢–༩[þܳåÌ«¯;à‚0ààŠ¬KO…ìßÜ%^‰[ge`N}æx0ÐýÅm‹•%X—„¾”¶å:ÃPð§Ó+Û.?bü ×ýRÎùP{“4žãiͶÅEr^¼óRÞ4Û1Ý9²éOÕÆ«ÝÿËk|aá ñ'ü‚ï ¯ ºÃ]ýDW,¹ó9ë”æ÷/¿ïçåáñ݆N–Ò÷TCBy"ý4JÁ'¡€]£Ô(5Ñ|’›¾P˜ÎÄî²*ªRýÕ•Ýî±npy7ú§ÜP-ÆÿñÕ¶[EDýØØü¡ìÛžô 1ú:¾ûñŒ¡/¹âð –1?¡2[Ó$PDžhUÇ(:ƒÛîÄrÚâÞv¡|Fõ[_´{HÛcŒÝð©Ö)q„&Þª€®oþèW;H¬X+ø'_"Lù‡·¯@O&#Kvã÷2.ºY{xu—ÄÁxÚ¹…rTÃѤHâSaEÞÎ~úB^CœêèätH>Î9u«qà¨âܘ ¤O„Ú@|þZëèÈÖt‡’àé—ŸžÄíßÂ4 0šé«ºi:ûí W«’.@°~âØ£j†ž˜$Ár]ˇñŠ"®´‡¨u©òŸUôf™™ì0BݹÃ,-,Þþ8䢣ø©ÎÍ’&¡Šek(¦{éƒîÌOúi-„ ‘GCä¯ðSÜ„ª¯uoÙ?2±’›ýeÁ7PÑã“tFq -('t½.Ù#ò}qƒ¬b\„V+Dq§–~¨ø¯U¥ÄÐÑ?ÑåF‡†ö]HˆŒ®u;±vPe¸íÛ¯íìÒb1§á1ö 8Š(üxÑá]Ê´¬JáeL#2ú‚¸jpÉ×àwxÖ2Ü6óa0صþÅ=ƒ¿´¹8Ï?ϺÌ"»Û1Ù8PÓN¿Þô +ÃlŽC´î,J¢dºc4B£äÖù;™qQZa7¡š¾yV©¸yÐjÏ­Š1±Ufv¸8;,ƒ–T÷ëBíå=€±Šf)i•×ky>Úûç=oAͱyèíSî]ÁܾpcVúÑ6Iï{§`;Ô½Y×Q‹wÈÀ¹óCC}­SäÞ7ØØVeUnÅ(s,htÍxŸ™»¨]­¾M¯Ë˜Ä/>ÓeÄ|âàˆ×!°4m°àFýÄ]y‰PÕÂï? o„ô&²ÃŽõZ–ÏlÑÍÇðN‰ÅJ4=|uvÉüæ”Wrvê_¤X“'p®lQ£‰Ò®.Z#&ªÈd†g6–hò«b”ºâuÄ-š^­KÕ:¯§Ø:>·w1è’­›cû®¤‹qô$4MLý*Òžû‡Ä”Ä-€Ü\Êþ‚ÇÖýIœ€>ÕÜHYDV`£å°ÓóÚËÞ¹K5SýA—É™4xîãÜtbLOÕpäB›É¨lÐ3¾j^ ì—X~~b ý4D¼ ÍXÖ¾†D{ÇÝ6Ân:e4ûrFÙßõBÎþ–wɳwÍ Àw÷ªG*vpÖ-W¦žä5ãUö(Y€'‹=JŒW–_Þ‚ŸÐU×NŒÌ!c$Æïh)/¬HÉÅý#žCªËuA—éálD·àA‚Ì|A±zX¢>Þì§~tÍ\N¥U=w¶üîç]ê$¥È‹|+ÞÔΉ̄·Ýåû¸ù{¢ÏxEªmcC5|B*©[¦N«µ,—nž `HucKªýS‹8u¦ˆ0ÄÇâåI¯_¿Œ9éë¾ÄÇit«†¶õÁG]ix”j}5ùOcMSb¾§#¤Ò0–*”©JÐ>òøú¬ÊÚi ±>KÒ6´Ó±dr†ø_P‡IM—ÛÁqù²u=ÚöÕ?Ó Þè7'wRIáG<nÃaÍW.ìh½ò~<Ëk3Ê(È*;䣧ì•LPÀ¯š/ø®¹pOñçà[öªvÖ¾ˆÅ˜BDèVóßæÅ/w®¦íGÎHƒ™8·k§œÁ¬fœ©Ú Ó²ñ|pªÇ¥…ñJDQH|¿fR›žmui+¶ËÀ…ñ£s0„uH–„«,o‘Um«¨H狃/(Qû»yç =}¡ð;°2gXMmëî%›r“™c¸ˆdØ›À«y1Ó˜x=ÃßÐþaäg4Bîß Ø^i“9¤ô$›S>œß±'uZFîNžÔ©fŸzÁQ$ƒÏfyy¥6~ÄÑ*-ÞY'mQ™Eôf‡iš/\ð*ëçÚŠ;…g¸íW¿Î/ o=œ@w/Î.¯ênE\`°t]IXI¥œ½„WP~GU£ê@Ýw‘Zk_Õö§Ä^pZ|®c<7!W+¡qbŸs'±ó¯…»ŠJî û‰‚OÆ^bô|Ê )ýg“å½jgO¸\x¾ª™e 欙V_pÒr(\Ðû?01™ÌqM:VÚ<Å”h¤|<î/„&§"bâö ˜”¶‰ÏJ;K€´‡UXá‚x}åffToËk)Ò(å(Oàá4xºÐv,4WX”š$Çvi ¼+‰Ê3¯¯EòV ЪÞèv¨)r¦oÙ :o@[ƒflâ,w–é Çöuv½Ác´å£[ݰkÖp†xxq¬ièêRiÎXUwóñ€9û‘JgqÁ›º”?ú :‚É?qáP¶Fè³O›oS"ùß<@ð FÞ?޶;½Ó3Ћ&Y(ÈJXÔ×¹K1ÖFs…À¼-8¦Ožßï…§Öu‡ A>ÈŠÉ5caKò3BU”$OÆBC ŠdVfû&rËÓvKŒ$gÉJ0'cê»Þ¦4ü¥Pv¸FñØô "13 YÀyÜj¾üH{§?¹+CæE_v³Å¯M¤˜ã¥„6ýãE‚Lü†Ë;lÛô9ðúhV åÐ!AKÚÇ›IR}€!Ø&˜Þ„ÇGäcràfs?7Á@´©žlÉÀªÈíÜEg_ž‡‰fcX%`w¡r|ÛºâL¯/eª¥H#.ÊÑ)ϹuXÉḗ^ÅÌ^š²MkO,ÝFWâ²;RÙ°wÏk$ƒR•f\t-¯ç”u¥¶8%3v B™Î nñ«®û÷½‹@¦I¹, 1ý¡,H¬AæœÓF#G¤¹¯"g«ƒÏ涪 bi{.œÔ¹î—QB+ªIEG À"·×gõ]>ª›í w™ÊCQw¿OrÌà׬0ÖÊ;ïGAÓÉÜK¢O ]ûö;>×O…ÃZþîЉâuÃãIlòFU×¶óÅ7È9-2î=ßæ @^¥×)–µÓbAIø‡ɳeÓÔednz+TÔj‰ì÷!)ÍÙ< 1ˆld&ÄA<‹²±5NƒKFZ)yâúÅòv)]¦Yrtï©»ØE™®óÆfÜkI•Â$œ_ì€}ÖVÇ… þ‰„á”­¸Ür`X¶ÌÒžEæ8u~Z^±C Ú¦Ü'ûGIš*ò鈂ãeá½ eê=µømWEÜäßW!Ÿh€¦0løûž0ún͵Në@ìb醘x%bvO:ùÅŽö[ˆ¾VÙ¼éþ!®~°˜;ó6Æ f—ôŽ:ކŠÊ¢˜^ D!£RGvbðÔØsók Æ zÉþ¹ ¿ õfPø•¿ÚtÁAՇÚAPs·=:+Ž$V‚P%£ÉÉúôÛŸ·+ÊÈo_L#zËößu‹AGàåÈ”Ûm¥Íö,Ó‰á~ ”V'ýPäñ|+Wëú®­˜8A!¢¢ ýêò½„#W|¡׿÷1°B÷¹°?‹. _Œ¿cWWªá'A¸Í¿”qoþÿ Èíh+𖯃.}ô]< ­`ž:¦$ß…ŠåªC°;1RÁ|«>¹!®’ŠFîGàÑ4̉eÈGÑÚ¶UY>å[ÿ&„\“JN s…¶ÇÕ°-ÈxgX^ÀB¾KY|+Ú‡\,8¿ùìOò›%hCĈó}º–å5”ákBgDþ (xií™ÄöížÚiì–çÐAbTÙ°a\ö÷ >˽‘ý)jjaÊ”°ÿ¥uDèÊôtiñòÎP] eìµýb—­z¼Ö~ ²6“Q=Iqüšz® ðžÁ„tu`xüW’º AFY•]ÞS™‰lž2õí¬-šë{vë*ÛB9 Š 9Õ¼P®pž¨‡åkä‰íPÔƒ¢©ª¾Ð[Aø÷Ž¡ÕÝT6jSH'¦Œ©b„{)}¥ê2ÑZúhú7p^ÉòoØ¿éqtBȼNE" ¬è—cƒB“à~ ÚMÞßíöÙ<ØöÛŠ¯Ï••p„§A@a©ƒ|CXäéxˆ^?oELÌJ…ºö|½‡ŽÏ>Û¿†w>ãíãº×ðm½ò£zÍt‹Cf0ì–q¾…’H¥AmVšªÄ \ŒúÕLM:úØò;fWˆŸµ©3ÅÊ-¶Ù‹™öŒŽof5ýD º>ho-À†bûúÑDüUÝÈs[>R;R¯Ö=b–#‡á-WXÕØ’RÌ&?G>qýÇd”©äç§|8¹³0‚ýJ;p0#m!„Ô¾/m_rß ú¢Æƒ¬WË(ðKŽ2³X6,¾ S?Y×Ä VðeÞtÉ­­dkü,þË¿©¼M€!P;V1D,O{ùcÖLj¯9›®GØdÅ“3· š’¡“59Jlj$5öÃn ‹buVÚ½§ º;åI–†÷FhˆƒY*ãýmH—¢ccdr˜OÙ˜Ä'_ 9Т±>×Ö°úOüû¾`ª™b^ B.׳:¨ Cd1?ÿ)M˜,Ú Ð!Feý¨RƒY}‹îOÝoGWÐÒ®Œ[þq7IQ/Œ¥Ä\1ߤ¾û%öVn/xéb Ÿ >ä²y^´1@€¹Ù>nô8$ž»ãÄ ä&¹1º–9ËîŒÐ­’^Ïåš,V®ïš«íÞE6–u6[ÅðW Ô9 s)Ùb±¿7!9Qž½N.£Î±:{yü”N‹3¿NGx€Òy?É’ŸLuRH tÕrO3>‘¡­ÊÅ"Î:±’ æóC I€\Mão€=(Õ©Ñ`D7^㨄}…_ õ>Ô2U4òÝê4V'" .ƒùÍû&¸.%r¾¿ØûÑ.Àþ㩊ڣëE¾¿äÎhàš¥lí'_×tR{hÓ¤¾¡ÙŠ˜âÝsݼÐ,¾ýTŸaPåS îh £žjIkɵVx9‚“ä°]Vçˆ'‡¹8g&î»_=Âhzå: ÝwŽlÊ5*¾b,Oã>‰ÑµR¯Ý uùAÄ~¢ZÖ/º†ƒ!ÑÆöý_MèÌûYS9Ü ˆÚñæÆ‡LM~¯1¢o<¦ ¦Í[GHEô÷?fª‡«5Â+&ÀÈc½Ldg!׿ÜÃ{K×=ŸB@52DßC¶Cͤ*‚£A'xÑIH6‘‚²«å"XŒ] •ˆ9îL©%—d `“+1…'æ…,dƒkS½¾ÞOAof,© ¥g fÂéà§Z¤fÑkx WÑ/R/Jð ô®î.(†‘jzª¿ˆÀ±h<ÛTŽ™ŸÐ¬ïÐ$X¯ü÷Ã{Y§=¿§‡$ø–Ò$úàjLÈ+LɘD5<š Š}üÄòíC¾±.aUb’æˆ9VáY ïÄ=°Ü`Õªù¨ u¦ÇV*EgDÈH-m\¬RdZ/ªÖ×!Zdl4]Ü»q§Š‘©s¹Æe¥îB»;Àä6ÃIq|IaA‡HÀv¾Xè;Q›:wPì|úÙ­?©-0èx;Jcy‡‹'©"ÇiðÛkxùw!¼"¦«bwøP¹_îsíO?-»oÙ°TË—ïR÷žÙ ã+êOÃa´±ã–p"”Ä£ûÒ\Ê ~¦ë‡®,vÄ/íèA<²gä =I8yé£ÞaV‡P‰ñ—C¶£Á˜äX­z$ï$ÑÉKv%Á$RÖáæy,2K9kZÕ²D#@™¤/êcObõzÂá?•zÈdÊíÈŠ#ETH‚…!ð_ÿ¬f>3;Î/ÊŽ`ÐÜÂ’ˆ à%¶XÚÚpµ|¥Ñ÷|—±Öâw©ã4¢|L%‚œöÝT|â1#CF€–E˜ … ÕO¢0O¨ëˆ BF¯QàˆVü“Þ”‘FÄùµc: %<Î-U¨B/U.fªUa+ÉÒ-\}j¶²Ÿz™{ ñÿøý”v=‘²’uÈiÂNEf[uO0<Ä8¸ßø¦¯‚JFñ:åið‹ÔÕÉ̓¸å¼›¡çUYƫƢŠRÛÂ8ˬt ]eѦ·mFâ8Ÿ˜v-¡S\M­¹o>²f¤ÜEϨˆì%Þjrº¶%ƒpg½Œr(\¹¤0S¨¼¯ç&KŸPFyˆãü·ç­³H@Ÿk÷ïvŽù«ïñè.¥$º½¼Šßã×ë¶¥&›K=²e-E-ºîXùÜ®tâ/í7§q‡ñNaÝØ~}+LJ Ìf#Ós£Þ]#—NS?†ôôd:› pèZÖ0%^øò,j<Ø «wúp¡ûDÙ$)ÚÙ³{\xsükÑl—áyðˆ& µóÏŽТ¯‹í0:#¶°»íòK#ŽÜòÍÞÉí´È.ÜrVÖBæµ&û»È¾Çü¼»š÷•JWö“ý V\âèT6gCKrtDÖ†jeÓöçˆøoS´nñœƒÖ)©>¢lœâyàkxܲCÝRâÌÓˆ­MSåw©¹žXË$Â-PMlyCmèËÒ£Œè`úÀ4JûXŸMMdet(þò¬’(Šî@T÷¬´e³+ÆÚ)š~Ll´VÏÍ>ÒÏå"b€lÁ ÌCZÃljak†m¤sJ¥I„:Úrlp¤Æëfg…ŸÙâÐ’Íü1F/…oH¢ sK†â‚;ä#ŒD9ŽÍgëõñÛÓ½wm8ZV7S¨†¨¬WÏÑímïÇÿצ]6ÂÁÖ“ÉaÓÝ}8Ý9Ó§ŽÓs7Íto:wš±é®é˜˜î鎙÷¼âùôÄÒ_Xuã:ÅC§ÇVÚ«_t"‘±Ùü¯o¡ŽñÄ9[Þ®¿E ymà¶à£.SâùÐß4cÿó¤äê‚}ce÷CSáî—tc6?×z³Ù<#m$ ô ‹ùV¶ús Üߊ|È7(pÞ“N'¤Ãª ­îG‚Mg®Rw>SÓ ü‘†_Š ÐÚÏU|Ý€øž+ÃÓ{°Né<ËSuøä´ìUî©BòÔÅëËmŽÞ×ÜËãEegæ?-öŠMJv£”¦ãì² :Q õM›w?ß4–îþ­*2¼Ž«”×- Û áVß´NqJa+44zu ¼ö‹š¥ü;²BÜŸ¬„Ü·7lMyVmò¡å¿Éß|ýNqó¶t…O`/ñåuLödÖ$s5œCÆÀËRCDÛÖÒÄåæ —J/Þ¯ÓÉE4ÂI5_ßÅö\%ÎTüÚ?†¯ñÑm1hU/#@8J¬ìØÔ£ª¼LõìMõ.¹ÁáaIòU ¼•—qæ¹à*¼Ü ½Ë\Í7\ÀžF¶Æl…c³¹çì|wûhÕF"àáÞjG™¦ý),ЧóŸŒ7.}I !IÍœ¢,Ë'—ÅœíÏ%õ æ&vÌo;$q,gµEw€ýOSÆÜ-$ZòîÊOÛ°9§6u`±ºÀ.]KØ€rÖW‰^“Ñ<·?ûüÖ9hÝD¢§ôß_ôÔ Wy€TÎíá(Ð*?g;™uđѬ¡YÉëÖ .?¬I+EŽˆ‘.=£¸“héŸ C|~¸€ó‡,¯Œ„¢mæOº{:J¯¦ö!ÁŒ5^§9 Ú$Xlo»Z$ž?›Tm.áݦý–š4b´ãŽ…tnfÒbºÕ~É.$N>×eø2÷åÂY?4Ä_…þ`õ¡°qY³ ïÉØÙ63¯r“m™°¬éó«Â¤‰@.7(ÝŸ4mF¾¶[Ÿo‚9µ¤¨w@I¥ác¢µ¹84Fþtô©…Î@ ñf>™"׎ÍЗ7Lž@”“¢øÏõy{;øÐuIŒÊ¼ÐJ·…ÕŒê–b©5ùÝ} «Ïd< ñ5åú° Éí*誾é¹oèÃ;Í^Êß]ª¸AŠ,¹O2†²•v¦ô7ÄfâÉ·ƒ]`:+Õ¦µî»…Èûìõ–¡ÝC€½¤×R~óǶYùMÖ‰â ïb2g~Ï71Þx³Ï.½©þ²þ ÙB3ç*8˜Ù[EÇ?÷š“=ÊÝUm”15ºÉx+n£HE¿K}­ hûe@®™¼lú3‰5ýMí¹ë©8‡0^Ÿs2¾¥u‡w¯#)ÌâlÕïCà¾C¦uèð0hŒŒˆá}"Ü[|Š;·+G_{öÃÕ£›^8ÁKò 8¹Ð÷Ì`Ø[þ ¶^xz鑃ÿªRÅ•*ÅÿNa¥ŽYò¯¿|CÛøì)ߥaøá-.íØ ¸*’WFÄÜïŸGJÇ_',,hø÷]gQÙSjmîç¶á¯ÈQC¿»÷B„~ ”cƒZ í[ê¨óéÑëß_üil³¼vô8¾?áI‚Åé äu" åŠ‚âÉ*úN4¶WÏ0NtøÈôX"ñßÿ¼žÃ\h|£Ÿ‹bÙáö\zb„R—ðÓ.ƒ'Õ­„4Sx¹ ÏÙUöò5YG×íÓfeÍÓPå²?&AñÙ†°èRõ(»SJ@#BlÖ+úã¿qñµô^“m<`œcܹç—OsÞ¬½÷9Qã´IªˆE&á÷Øtö£}” Îù;Õ÷,µ¤SÓ¾ÿ 3ªmŽ£ú›ýOS]xB¡ Kú‚ÿ½$þ-ħnùØý’OD½|¯ð˜ §‹·žÓÇ·P¶î<‡†\BKàb¹B‰"#²Ö`‹„%{c êúq-Äè )g Û\Ðçô ™RÇ^ìøîF’b›¸E' F&ãΉXU˜’û ›ãN\õ½ óºæ˜J³üŒs  »^P$à{T.ÿqüÍ,ë„®˜ä·Ù ÝìÝë¾:´ŽpáªíX›b2Ç~j‡Øè<"#€-tÐ7kŽÄ÷¨k/Ap&š2A;â¿K_tfA,¸›Ã±V®8P°pQ´`ˆôAQ0úì› n6™mþ‰Í±K}ÙÀÚ;#Ž´»ŽŽÿá&7QÝ©*r>™"èjœ=¯ìü£n2cÒu7=?(àb ´Ÿš/âHß%XmQ ¥–LX4F[5±N›ÛÈ®ž "»M8Q0ˆú¦ö³Íd”|“MMŒ=¼Ð–ü…6„üzÁµ4’ò2hœWK›¬ŒšÀö}O­Ý¥ÂEM†)À~#ìãÇ‚-°òˆ²3Õù"òþâtŠûb-GáÕ«1þcìt“?ôꜗËfAÛ19Ù dWóÄ“MQa@t<Š9Ôôº!KLaZ¨”5.qBô8ù½A)xÖ£VÿOsPž˜»`"pP‡n)8ñ"0»’n•Hk”g³½+­há7QÙ¦¸Pœ²¾íHBRàIªXFæ€ß87$!ºÔ]A¬Fúöß} )‰»žµ·/‰)£/ýÚ™X¯$ßÝoäuAu]}Ê©:xº¯þÉñ×ñêÂmÿÓz,£îX—À6*îÆ …¬ÒŒš·“O` ,ìùŠ)·ˆñY¿¡nÔ•6 º.2ó%ãŸf‡Š£š™wÉxC晴a/ .Úó›É[q'iPÈ›«Ú‘m½ ®Wûãoz Œµæi}ÿ¥\†aé~u«°µNYTÕ¯.(öÊÖ;´Fo$¾¾bŠßZß/`•{¢¸Ís“,ô1‡î}ŠÀb2¾9IØ8î£Ö!!ûõ#-ÖYÖ‰æP·g@L—« „ÆñòÔæÜ“‘“XÜx+ÑíC›È~ò¡õÂnН CeøÑyvô =š†d¾3¾\ªg:Ö¼ÁPò8"oèŽ …V!`ë $Np´XæiLJ$Mâ¬^ReffŒå”5ÜŸ%ã1ƒÄÿ9IR~½2ä©ÔÚÛÛ?NÌ8Û´ÚSðþc3® *DZI]Ô‚N–µ( ú·Ûˆ{©”'Î!2ÌÿaÇWNw>ÂE3H¬5¾v©8 º.‘ç-ïTÊ­Œ0¾AÉQ­`&HWß Æðׇ2€ÚÛúäËûÈS[í¤J/²G¶kKÈr ƒX¤t5ñdv{¶/Ò ù3Ãc,ëÑXzM4ºOhu-þ‡¤”:Gè²("²Æ"T ÷^ÄðªÁsvªò½<ÿÓ@`ñÛ>w ³Š¾mÃúkó/Îòðë‚$Svœx¾hháiÜȆ¡øàë‘­Q.åw:Œ_GâI„Ø;•µ_áê­ã jútþÏŠD³¼aÛÞb+•|ÁÈTVu÷BþÔ ÚÁ}‚»/¶è?9Ê‘™ÞoiÈÚùÏ"Z™>£6q…“ |äy%m“™ÒNç±UÿÆâ¥×%/ŽŸ”¡sbYÝr=#{[v§Vš½øO//pŽÊfLšçI_þÂêoá×kSÆõ@ß\¤-„×d+¡Ï8JTÒ]I‰l7½å™“3‹¤Ž¼Ý4”l¦¤Õ\75}@×gL*X>¢&`5IÞÇ[d måÓHu ª7¯Ô¿gCz­}]D¤ê(C©Ÿ‹cÎÐ'þüžÇ25‚ºtŽç4_§’áK­’ä€É (I÷´´´±ïví´(=nÉíèO·dvχ¼µOæËÎÜ}ìºá5ÉcÜC4)6Öx²Bͯó½ä6—ݨ+ tª'êZ‹Zö ÊÁ6?ÿ-¯ ŒÔ¤$¶,ÌßíÖ«Ò>½r•Œ¤Vš €Å3+í“ÓBš:Ç^ª•Fl?î¯5Å‹± Ê—£Z6ÕˆÇùF§’{„' ÈN§ƒ3ŠßŒDŽl!= %aûÖÖù„·[‘ÿ¬Ó,\uâEÄ’-_4µ§K}KÚŒkÒs0N c“˜àG#,_Göÿ°~bá:À˜IÄá¯NU¯}¶Á ŠËD­QÙÌÙu\£lþÄ3Ê.P”õ®v¬~Â¥,ÞA%ôÏùe?(™ÛЏˆÒòë‹IgzËœøÓHWøãæŠ4 ¯^C% )׊¬QŽÉRÊšáó[Ìh=Òü D5Ïó“ñéŽÂ¥Ó(ôº—Iw9ó ËÐ@75ì‡õW5ù¬À4åbPPLÖŠ‹Å'Ô<öîBNšcAÀ +9éɹ¡Q@Ć1LS&M£Ýž†½õòõUm°ù4=Nˆ:þNñL=š”y?ÚJÙf„ù¡-îlØ®ˆª²ïÕGX8(yÔ‹½Š;ÑidýÉOÐöíåyž†é•ЬÇüD+ò@Š\'Ç‘èYAóçJúËÁµæÊgêE;ù]íi45˜ƒQÇûèTÄ”X(ªäjJð¨#CTÂÜ:GÀLhܘ¯E»L*ÍÛu3ÿ\‡ Á㜇Ç4£ñ¸¢è%¯<4]ß‚¹HS›o=y²~ coaÒ7­Å'¬ajÔ4@ƽhÊÈ^…N½[O³8¥jN€ô¥¬‚zn׿æn D|nm>’½)&œÕvcÞb8*Sýˆw­ ’ÔJ›£Jh'¥Y:çÇj5k.¸§²äfâ •ÓÉ‚4Cñ–€Ó”_°·>*m\Å D`]ÙOp”¯Vƒï…“ °ŠŽµŽ5pß Â+¿ÓZk²º;G¬’¾Z;Lt|î)5µO²‡Ú °d™æ:²YËi¢ËÊ*l¿ Ͻ†¾+¯ÍƒBKi#&_´}©6a¾{ýy6Ï$PûÀIïŒCIUEp–"¥—Š< l 2€&…Ðà~(Œ©™M•ÅÞ“9½æö0ˆÛ°÷É‹Ÿ| …éP<a_öÚÝ,É<­ RŠ7}Ió’pšõÎuâÌâ\þŒð¬j¹cÚxã»¶ìøÔr:®þ–ÀìÓŠ9dÈ|³N¦“½µSph¿FÈó'nzèõ_séÇ =]l/Ù NW“˜TX ŒñÆI½½¼­¿Â"D8ÿbœÔ›mø¥b¤:˜I4Ì5™4,CP °ôÉÀ §pœµ9© gbŠŽ{mrõ¢dMÖäXXÂ) Os ß%£N‰Ù*U÷·kI´¹ ó—SÕ{í‘my‘Ÿ#fŽyc_ÈQëqäÓ]é†àÌè:[™+!¼ÐdŠùÛ×P0gG…rÚúQrA… dïx¿»…¡¤,aùQ‘_Üþ™Ò·Öwó²°»¢fÈÒÀá2«#¬èÝênri`W0ϲ_š àF2ÚåLrÝ"nsù^Lû¼£ê8Oóþ×\]¾"­LL2–sBOɤr¾QUÅ“p­)mà)¶g²¦<ë®åº\$¥ è?¬<[ Z+›€QÆA±Š´ì!,•Tà¬.­÷Hòõ2úá‚Ki‡óŒØ¿ÐYÀ`ۤ驅÷+ÃJ£³UlYi»ñHãR4ëpDZŸ½¬ÊwÃ8ù2òÂѲþ-g\áà‰å®„cÀ¹wûÏ‘ á·Ûð÷Ô‚b>3{îÏÑ5˲i½íšcé©Ê[—A˜o‘I,]¤iwÌã`›§—kÁqŠ[^4Ì™¤ÁBÔ†kFº¦Wˆ|èhO\h®;]O;ÞÍ÷Y?Ú*€hEè„÷Þyú&§>ßY‚)¢êˆ@¥ããÆÍ 0»Ÿh%ÀÊ4d “f~ü§(¯mÞ!ÕØ07ê®ì¦•Iÿe])$úùâÊjÊy5bb7öÏá ˜ó`ŸAhŠa…cI!Ã3ñÕ¾pNêr‹/ßè4r‰°ÿ*<ãìgš`OÔ?Ô»ïYÎñv¹¢X/ѧOèÃ7~ÓP:ë:¾f[u„…½ÃíœP•BÕÞßyñ²•`?§@ùÜ®ÌÓ˜f{;u‚st†KRŠÏ§)Ɖd«²Óõ}·§_å\?Cõ¯qÙ¿½”ë‹5‡/S)·if‹t¦Hçåú}t RèË)nJãÑGôWµ$s¿hžP9ålVèE ~“ãöXT<Îå×ôÄ<,m…ÛrÚ¿Üc*%,¤^5ïu¶î¾KµR_èP)¿ ‹=,IŸ)uºŒ°2ë›Û~³irŒ]e¸x\Eá¡“²EPÛ&q-½J.âÛ>úLN=lxïhüx¨ÓÙÌ«u, S‹Ú ˜+bµ;‰_ÖÆmþ®©„áNÖõ%O»Âw"±¥ê?‰ ­ endstream endobj 213 0 obj << /Length1 2555 /Length2 30006 /Length3 0 /Length 31499 /Filter /FlateDecode >> stream xÚ´¹eTœ]¶5 Á!¸K pww îî+ÜÝÝ-hp÷à.Á-8w'¸[ð¯òöé“tŸû÷sùškíýÔ¨"'VT¡6±3ŠÛÙ:Ó330ñdå”íl m™™è•f.Ö†Ž&&6xrrQG ¡³…íGCg €ÓÙ `ì òY01qÓ$€¶@GÒ`ä:ªzØ™T†ÿE;'gz#C'hkfa ¤¹ˆÚÙ{8Z˜™;ÿŽÁJOÿ;Òoo€´¡±•›“•ÀÐÖ Í Ç·s -Tv¶# ¹¡µ)ÀΠ Ô¨©ˆ)«$”ÔU¨@U\ìííÿ§QU5 :ÀGayU1P ¡¦¢úû¯*ÐT¿@^¤ÿdøÛ]NLUXUKQŒ™ñwf€+ÐÑÉâwÚÿªTàOi WSG;›¨ÌíyÝÜÜÌ\œœìÍì­ÿ©OÕÜ àfçh½:­ÿãbk¢ÓÙø¯¿§µ0Ú:;‰ÛýKi¢ä’;ÿoa "œÇ´þ—9À ü4æ†NÿøÊ**Êl -l¶†¶Æ CgCg'€Á?2Ð/Єò_¢.ŽŽ¿sÈý[åø¿iþ]ºˆ¨3]k/C·ÿž˜¡­‹“ç_ÜügÛÆv¶NNÎNÿŠ˜ZXWïô{f¶ÿÈä„å¥ÄÅTTéeA‹gK/gbÇ–ÁÙÝùëßñ„?Êò¸˜8ÌÜl&Ð’ŠÙšˆÚÙØ€ªv‚ÿMßG OÎvŽŒÿw±­líÜl½þ?¦¶&¦¿¹7q±gT³µppJ}üsþÌ è `@wcsÆß ÿÙ—ßbæßb>^övöSCk' …)ôïådè 8;º}¼þVü'‚gæ˜X;ƒVt\àÿ‰.ekjàþ—TÉ¿Uÿ³TÿUjÐ95±³µö˜MáåíœA+AõÿÏIû¯\â.ÖÖò†6@ªÿÃéÚXX{ü§é™hWK%oçhchý_: 'q w ‰¢…³±ù¿¨ý—\ÊÙ´ÿ¶fÖ@ÐXþ©ý>RÖ ÝÝ?¿¯/=3Çé@kile tr°ýË "â¿*±ÿ»^£¦ˆª°’:íÿ]›ìÄlíL,lÍ,ìCGGCx&Ð.°°³¼˜A‹mtÿgYŒ ¶vÎ €½‹³ÀÔÎþ÷@9،¿Eÿ N&£øÄ`”üƒXŒR'€Qîâ0ÊÿAÜF…ÿE\ (Ê(ŠÊÄ`Týƒ@15þqƒáÊ`ô2ÿ/béŒí¬ATÿ[ÂÆö[bcóÇŸ™ ÔšÉ_Àü„þYÖÿ5`ÿm`cbèdþ— 4©ÿ1Ú3ýY@•™Zü Ìúºþ•é·¹‹ã_@&fAP鳯cîao´ýË$³ø ‚j·ü ‚h³ú ‚¸±þ ‚ʳù™A ý‰Ìrµmç_z vŠ9Ûý‡ÔŒý5(˜½!è·šþ!’ù¤ŽÿÁ/èH0Ú-ìþš 3ˆ ‡?𷉃‹3ð?=™™A ýÅ3ˆ§?=üF@׿øb™;Y¸ÿÉ êÒÉú?fÈ Êô'ÁïÉ;›;ÿ¨3g7»¿@1\þ‚ ’]ÿ‚ žÜþZ ·û_Þã/âÐóOq Hž@Ç¥úÏ Añ÷CñŸÛžéÏ ñ?ïþÁ*ÎŽvV@ Ð;¥¿Lä -Üu˜@W53Húù÷zÿ‘€üÏSæ/o;w/z6V&= 7èbaµš;§ÏøÿëÁýÏct@þ?5@ ;Ð~iÞΘ7Ø2¥)´ÌW¬`ê+97ÃI–€¦t<äRúT;>ÎÇÜm `a@‹E¡¬$žor€m±&y0¦õëzkRå䉒Ў¡¯œ/>’˜ðhŽ:ƒZ`†Ü¢ÿ×NêCéœ|­¶éŒ¶ø6B€Úè‘(w{×C ËÄêÕݯm«yPnE³ÌÍŽÖhî‹(xø‹SàÎoŸ£ {…—hf òC±F¥¡í{ºÐwÁ£‹Ÿ£¨v3x~¡‹Q=8¬/«ÂèD8u €}ð##øj& LÔ…ÇrKï“ÃN†ŸD/têt È—š¥Ì:ÂmDý±øÈÍzí­%¤º˜"v²Ò{bEÆ“f#ᩜjöM°ÙÁ7™F —‘w,]÷(Ç5žAwëòkó¥î@ÛFkþuöWã’ld¡mÆqûтЗ3Fix1ž/ˆþÃà"õ ›ø÷Œf(ú¨r8,¹ã ´9.+ÎÅ‚Kq˜"2"ÐYsá:)53 ]Žbë÷°{`ûDÅ·Z\=Ûà—(­­¶­„HšsI54nDÁþâv«Î\¢â&ŠØÛ%ÃVÈßÊp²ÒôÊ¡ˆ+/ÈÛYÍiWB¡0õõpзy¥Sã•Wh¾Ó»ˆžÆ° m§‡»Ä^4rÈbZòóŽÇDÐqªní,Žkk"åªãÆUè¹Qo”ÔNŽ Ç´P÷Ô‘#Ë7ÊnÔF©/E>Ï$Ü,K½æd>'¡{³?†8‰ÄÅNÊá¡M(PßäÍjȰ(v7µzË„sñ]^+©B…$?¬«;<õ)áyì b P|Z’1maцÓÍ«î¬%{cVÊ®lÁc×ÄòHPÑýÄ@€3=Õ\Õ³î´%HÃB¨½)uÛŸ9ñeêRþuŸæŒu—ñM¿FQñèõK—e÷•[i†+ÇnÚqñÚa ý6‡`¢SêËŸ‘Z÷ŽÕéÍE [Ôä#zïi¬dá#+½&}ÔÛõÔÍÝøw'Ûód¹Eg÷`PZ²úÈ0r·új_Y»¯ænÙ«ÍBtð׬ÕŒƒÛÓãÓ.Ã_è;S¹×¸mö„€ÛÌ_¨óP„àÍíl"ÌÚæbÅÑó4ž¤ø<¥ëì<ÏÔæ*`ÚáS„œn&Dqu³Tùé>ÙRmý²É4=oQc£Ù]Aö§C¥¶Dèècã(ÐJn|/r4G 5»þÁ¶zSµx›Ë蘎L(5¸Š=ÆNW•e¥liG÷} ÊRÆG^‚Vj…EY DiXÊÝ8 oí–ãa§ñnñ=D=ïÅ{öˆMðóígïâÉ8D2j?Ã÷×uFÙÛŽÉLŸ1”Yú<æT’‰™ø ÆÊíË^E+G¦-e¡àÜáƒÃŸ2xß…|\¡*p €¦äõxšÊÄùys Ô{ÁójSˆžÆÍònýq3°ñcCµå‘ÎçÛ\'¥T_ò£êj¯Œ#:o%8Ó€fºJ¢€¨—çÈ_p™íkão[ú[9ßXÍ„¬72ž“•Y –QÉajœ¼ÌK0:rœÍÁzp¤ÉáŠ"Ó’““|`â;* ØžM&7²çäÌ| ]ŒЧà7 &â"¾]¨#”5Rö˜! ¾Ç\ˆ·^©°þçÔ\ÒÚå’<:Ùaµ>Ü5üôH9/é€tÃаW¼|ÍÚC¼ÁZ‘jËw¯ô~Àç ´¡M"VÈÅí5¶÷ܧI«#‹t¶ü{è—B´Ö.³–:¨ ÎÝ9 ›påѬ酨[EgšDƒC!JDæKÔ¡ç‡ýšÁë¯À/Üåø¤Ñ$˜ßå’xÿüx³¼j#~OÄV¥mRÇ5Ÿ%¹`âÚ¥ˆ²·­THvú¡-gI±(« í´šå›:ó–‡KÊÃ*`hþg-eÎÕœƒ§öëûèY‡Ì€vU–Y91^ôr§H ‘‰u#õ6&dÊÀYórõ721G~Í”–☠IGþji×ð_h®5L„d’Ít‹®·sù/¥ÅÍlcºQ ñiyÛ£X²?ÐÇä§æ…éZÇ:× Y# t X¡ˆÑ±`¥Žà;Vï“T¥ÞQ~Q{Ïæ¼l>î‚çULóíYBÂųëÔC›%òEOz`Í`cÏûB¸BþHE„x$ gi I}Åã¶ýNê3ѤR„•1µ;·®Ym…êQgñ@ÆÒ¾0®DÇ£Žë´]2Ä/Ød—Jô`B× ýipômdOÈÚãNUX¹&l¾<î¯Õ·[«Ü}^O®0†#9S¢†8(áJ6qáá9Æd1¿´OüXÔ°·Ú-¸Ð«†´þäí–ÿYÀ ~s–Æ(6ó$AË=¶µõƒÇÃ*º5¹Fà +G‡WÞÍ5æ{ÇÜ¢Æh{º”PˆÿBQ×PÄxáééN/–å [¤Mýòù‹.“§wËá×'Í&Ù¬ªRíK,ŸO»­ ªZšÙ{1 zK‘¾súùvoÎÒ[×_´î#²U‡Ba!’'2¿|âòà•bªÛX‘·ö³o¶n!óÒÒ÷Hó~9®`Þ¶)wTæüz–h¥—D†;è™ÝrÌO¤EVÐDjhb_x.áµ%˜»8TÃç›lØíÞBEæ¦÷ó½PÖ—çGqÎ30µãÀð±..€€ô ÞH-oÅÌ.p*©INZvÿ–øcÝìWt.¥&X*æüp,äe•Jý˜³„, 9Â}RÑJC>8t¢_·žGL²#q×h-¬ÅÒ*7E# Û à×0 »UÑõþû@·Š²q`¹í6b•ì_~ÍçwC–ƒ² `•¤ŠvûŒ,õ£õºcK|ë’ߟ@]³!ÛB]WlâX͸v\š/í¾ÅhD}Üðò~9£$ÈyF¤D1–ÖxQÄèÝ…‚¹0Îj1µ™¼ý0•<ûk²Æô˯6ïàԅέ+ë¯ a_`±xZ×^ÊWÃrlŽœ¥Œ«ª‰Fzw¨ß};øˆ$+Ȭ<|ãÄ*ÿ½™äîHК6—èÀ"©çô%sõÅ¹Ò _›túø!&`q–>¨$êµÒÖjIJ-CXïþ´ÏÚ}çýØ„üñy>VN‰ö–cûq¨œ$›þ¤Â¼|ž1ò:ÄÇ¥Üáço#Ÿâo¦ùšö[yd õê;ǃO%*Í gÂø.D/3í»É·¿Jõ¯«æj?á{Zº'V\'eäAéË¢Ùs6³ÌÕb„bp8ØQY—ü@m³0+c¨mÝÃWŠmÌ™c,Û/Ó·¬´Ã+†{3®‰«™ÊM‹P¿§"½OJ‰í¹I¶Ÿihü«D6Œë™ÿGù¥Zm\µ„ËÒ…q=ûÙd2†‰ñ‘•4‘RÏIwVÇMTˆg+zy掵Î,£¢ 31+ ‡®èâ‹õèƒÃë:ùÎÃu'ÒgF۔݄/m×|›‘î4\iAc_Œåê¸Zx©3ŸtâùÒº×2>Ñ‹îêQ•ÒÚ©œAx:krßyr‰ˆ`+µkÙõ6yöÛœ'¿Â `B÷v„ÇžUà »;’ÿˆ S‘úþÍTþÜ=>ۦѯñÄ“¬ŠÌìÞP¥Â>ÓŽËлsߨØp—]ÈF–\=´Ùë.Ñ:~PwkˆÐjz(L(»Ö2ä–ïŒYã×NR}û•µNî)ý“-%´ÇõêÒ ¯¦Ï’ÕfF暟Í(‚Xl®QU½UMéÕÝ8\cË6>k0&t–‘­¾‹Áa '–ÃsFËKg62Ûªécĵ‰ØN›öæ.5¯›‘ÑÌ•ÄÍ1m<44#RPS‡WÐxmÃrh±ró˜X72-ü¼¢”]Ö 3â/Ä{ò·È QU1¯¶>ŸÇj÷1½ ØþÄÛUî¶Î‹E¨15TÿX ã O½tþ*séV·5ÂK=E©ò f†YòÊ*ü*ήm$Åðqš›°Ã”¼ê´ŽLdì8œZ¨1žO(¬*ärBµPØ 6eJm-÷¾Üeâ˦?ÍØ9^[:Á’‡/LõEëDÁ©ÒjÞÏ88êÝÔi?ýömÙGÞè€Aœ?ƒGéNE–æò-tkécYáz]ùYyí**‹/p ÊÉyì»éŃôÙXñœ(Q^c´ehRµìàô:3L‚é2Å_—£:sè-ö?º³1G»kÆNfɈl£êÄÄ{ƒ=H‡—ãÂ?_©­yû“éeÇ ç̲™lj¼×º:JÛâ™æ3„äÕ è¬|_~Tußsz³Ê¨B©ˆz–†Wf³!›‘m`ä Ýšé4+¤…&5$¹|/ab)qInqçõ+Úú+“åM½è7”¹úrI%xrEÊEYìÖÃÏ•†!Ž<2®pV{£]šÄ’¹º–äÛàþ›žŠ—®uUx£¾Ÿ©ƒLפðíjÝç[~•VâJOLùNá?nˆ/K”x¤1Oä¹¾[¡áú9Ä sì´-¥féáÂ[ÄãU‰v)ÕGÇLç·_R©–F´cº55ZUµ‹ÆS0„…Døc,óæ~U©Ýü¼ÒÛåêë.ô2þs;ØIß6çzé°?ù{xjö…¼},E¼óѪ³ô¾ÈJÅ£Ö{ü4@Upwˆ8‘.ì 9ªÞûÞÖE#…¢®¨¦Y@S›4ï)„Žuî~ý½ŒµÃóþî+¯.q^j˜ÚŸh»KŸh™Ĺ~èÍ!íYhegú¾3"Ý%.µñöo« 8¤1E{ÕP«òýÐOšÖ™Ss :Ô‹\(@â€jA{A«@óê$WU–KŽ#»&`½ž\ÐàÎÏZžÃµ_¡[<)¹ÒÁÔ _€§ÐT°‚UFBÃs>ÏdÑ×Ì ŸZÓ•ŸzçCu¹mÙàC„óͤÓ\œd(™Ù?)Œ¿žûW§~#á5•d³)§—tó*¶ù¦üuÝžÍ*Š#và2ªåVy›x6Ž¿¦iÖØû&“¾B…³Ù¥ÏüÅÒà?Ñ™u½Ê 9€Ž·«{.X ™ãÂÂô.=ߨvú±0ó¸j¯zô–L˜È"„«Ï4!ÂÚ %pž¹´®?Èþr;Š$~û8iÿ ü”póB©”[ƒ§åq7(–¯ÿa~f£ßQÃþâº`Œ®°ñ4ß0Tãú¯‡ W_!þVËë×@ÑLØqC¢´ŒÜhù’"Uθ­w’ù}vÚrƒÉŒÕ—É!¥S‹Yû ÓIþK¾‡(þã MisT—_¯L]¶9í×wì—/1¹ŸZÒû­î •ñ‰Õ„RWï—É¥HØaå*IoâÂvîëÀ½û—›ÕùÖ¼Z”Ùö1F¹±d€¹ÖvŒ×ùÅ Éf\6¥ï5ß³0!*B®àOsaÙ:! 7’´^7w¾ñ¡€ úmØ•z¯–HÙ¹æf·`ðZÇj»>Zñ.¨’´èrã—ó;®b?ÚKªúëÞž ~S?BÀ¦¼C/—ü¢9 ðRêSÌ–TÉp?i±'¶+uM§FJÛnÓ,Ê‹†gôBåýÄ0lµË㡉8C>]‡Ö?<®°GnÖÜ­n±7ö”­¯0"17,‰uhœ)ZÔÊ´ÌìKˆØ³f&²°š J «ö®o›¾o'š9šÉ,†ó<ÂùóLðÕ¶V|ˆÙñùa€¯B¢3äV‰’ž™áÌÜ,­ ðªÖìnžë‰––(]¸éÉ”sˆ­.6­dÅhšbr9öBÈ*¦B‰Ð>B?å§Á¤d"GyíÜ#’púWæÞ,¤‘§t~‰Ò!ýЮÅ…œ°5æÍ°7ƒB\$O¹_Êr³CîuzæLTþ“  ¦–…n>.ÚñÒõVB¬€Ñ¢&ºnôÕØ°J›»G__á þþMw‚¹U@Hr²k¼òÖÊeR÷8/#c+¯z!¾Æ·Q$ ÁA]’Ôl ¬*,÷ª<Í<­NÛW ÁÔN0u%è ]ßPR(œÇÞ™qúBIÛh…²ë±vˆöŒt_$÷f(ò:®jÇнË{†ä¢a¼3 l2NGî_½ä²üqú æø>A2(Ñ2H_D“bí+Ka·ê›u…Ã×>yÀµ v:wþLÖRÞÎúh±ê«/\I§Þ—ü£V•ví¯ªË>åÜ©ëE_ø Üêê—Gèlr|ÄޅǧJ¸çCØ¢¶nð8Y¢†©c<ξeD\óLdö2#gÒ‹æ‹è †°"ĆÎí§D\' |Æ&‘ã“­Xþé­ K»&³{bšÏ?ýYšéØN¹XÍÞ w6ó¯7ÁebÚ%b(zǶnó1¢4hY²¨3G0 á &‡jz.*×Jô\z“L]²·PH|ã%á¨n3{~3\º „1ûàÁþ’ýu¹ì¢žƒÝuüƒ\9²ÂÜEœí R¿T‘v;&bƒ©Ê^¥¶†Ç®€E¬å‰úS½½¹)/bâÀ`ž¾>óç”’y«&Bu-k9Œäºî¯o ŠSðÄpFõ&¡~Šõy3»èlǺջ­O»ÿþزÇã°V“V™?¶íª™5•*}p’!ï’^tìr÷ËÜœÉ0¶&;ÓМ™úÇÔ^âó£ŸçHó8ú*z ïy2=– ÇvÖl(Dâ‰Ñ]R,¼Ø~™ó°C¿Ãq¶÷Ü$P1 |¿3›6…S†]‹Àr »7ê‚‘Ä) ÁÛútËëÒ vQd÷ ÙvF¬…wæœã!upPɵdLg—( õ)= ¬>[†1_µ†÷©F/©åÛR›ÛOjúí5‚FK .»Au“ ÊW»Ès- “CqÕ¥£×^áLoÁ …¼Pñõ™Ãa ½™Øf£Žü±eF}íe#{9\lO˜ÍÀÑ06¡~“Á7è<©t]ßE¡ ÛŒîž= ½¬o½ð*X7Èy,ê,ꊉâh±mÕ>¨å«Ô,‡S›Æw,D«æã _D¨*=µË`Ÿ î!}¸æŽÒ±´dØöy$4dJÒÆÚy¼Nêâý…š ý—<í¶§S¹8p FU=w”„×èäñpÆØò Ù¯ÙöÌöÓËXåW©­Q¸m !ÛkŸtÜÌco5Qkò©¿ti>¹£Å‘ä Nƒ« ‘I™?b÷—°#øÅôøsu´«Ucå‘ùç³D†€_úE˜óÀ»Î e­þ¸Œ&9Þ½­|j÷/»”ŽUìÓ[ªÚNÖoQJÊIƒ|DÁäšo”•й–dR,틾Ô_ TË;óÑDaåÇßÅßÉÛ<ʈ5í20Î7ÓÄ”YĴݳÄú™ýòÌâ¸ùcÿýÅ ýå󧃠û¼Q/¯åž•Ù &\¸ª­¬îZ®vÝŠô–œJ‚¤¸¹×•Ë,ù”K¶{žh…'¬‡úûí×’†¯7›[FÉv >\°Ä4ÐÉãÞã"N÷c\X„IZlâ{“ltr×'3ˆ¡46Ýå÷îè‹Vºstx¸ßÛ·ÉÛ"ºW¯XÐ4:±J ™èªI¬KÑt¤†$•œ„Ó±¨ Î%*£ouÅ b`Wò³èÀZ¹kË¢q‚{Iɼièéë©‚s‘ÄöDR~ºðN›à‹@ïstz¶‚zsÏ]ú¸¹C0ÒâLàM¾ ‹;/×÷v2ëã´9u6ÃAZ ®GùÔ=W³§ϛ䒫ڣqþ ¸øçoèB¥ÈþúЗ…í/éKo×3y=õZçQȨ¦JX‚%ðs»b£þ”ö–S…¼`Å?G7ìŒ'!¸Ti;™ä–=šµ_ób ê·$€uƒåÚæ/ä7‰Ô£c§hôDoêmЏ·ÓºY#l‚}ãÞþÀnXÌl+2¿‘èôa5¿w…N0Å+LEd*¢5‡öò9öب˜U–#lú݃| ¿£Ï‰Å‡_®Ì.ÇRÿ»ð”É­Ùi\ÌKbAáÒöi›}ì¥BÁF ްÏn7?À¤R%¶Pèº]ÑPÂ?$ÏŸ5`çi-½}‘Òim”_(3q%ï‘ÜÕ’€òÍÀçØsܨÆF¾ áeDOcz/¦}Vÿ~ÍÖÖÙoÁ=’ÎVà¬g–í2ÕC4^†ï›¿ùž$«ÉÆ<ìŽW}.ÅÜ{ÏðO’à‹>¯¯â‚nß¿š¼ÖËÝ › ²i1»÷±Ú?‹Œ¹lñRXÝ»º7‰l(Ú°~yå|‹tßÿx{‹¼,ã¶«<•\Pô˜¡0õRÃîÕHÚïÛ>yt §p[C„A$î|Õ|†8þ¸ë…Eè¼[{+OkåEB;! پğĨK7SÒIûTg2ï<î”c™èÝÐH&Ôn§‰J )S ¢‡“·øù]Çé¦ì ƒxãÌ’(cÛ{`ƒ³Lìe ÑÅJ×çÿBð•Ö»‡ƒ¢22slç¡»¡ôˆÕÐ0r¬±ò­ ï‹;,„ïƒÔ+Ò«X–Ò˜êÙV®Ìó{S"¸s­ºåOï!ñ§z…ÀÌÕwk¤\Œ«zÌD èWùym²Ø]&ˆ4ŠS“~¨0ÙP½»d’£ËŽë÷›î?–“šñu걑ˆ†C­Q,êäá×GeWÍökê cQN.}w<Ì*G¡ÅgÐÖÓbÙ–ß=ÀÙ¿CöÖ}ÇÀ“ê£Qæx:ÙÒ3ÊØ´ÜU5 É^€Ë+`•'*Ù\hs_Ùô™x7»ofB©ãV ÁÍÚshÜ'ÒX•f"Ï÷y—^Ž:`šcûñ“jh[‡ ÷h¦ôP¢˜¼”ÄŸ´^éÀö%à0%½Í¸'g‹ZMÌÌ‹¬rùÃ@pר d¶'|~‡s.Úv‘e½Üh[[—ê)¬s£6#· Üœ¶Ë×I|¤ôÈFKrŒ/ˆÈñu)шha›I ‘[XFo3‹t«ÑV±|%¡»Sp.ùkäȘB7ãb ƒÞ6B8š!†ÐX…Ø}•áïîèˆXñZWBÚÂÌJ7þk‹i[:|«½ñ1idÜû5–¯BºwU #U"˜úÑÎÐ!HQŒµ6ó„K4œH$ú›±!L60µ¿iÇ©}·½9¥áöeJD–bÆ 3:23råñþÀh«]Ç6Ÿ&¿ù\R¾5¯¾ÇÀ­¥!ƒ 3™Ûú½N ¾r{ äBû Ç`h²¾ØGF„°V&;Ý#1Á¯^5:Ã2fkOŸ?ô“Ìh)H¤ 8ekà‰LÿøDiæÁú:p‹öŒ±Tá$<iýå0»Ïï6‹–Ð'${#çúÂKë´ˆƒn}¬¢8„k 8p]œ‡ÎèÇi«CË•ÈM iÞeNXêîëa09rû®¹Ú¥ÓU¿Ó¬µ¢8án£¦U½ò»¸F3ÛÿNZ7¬@sH…;(© {Hg’?Üînÿµ¦[§XÇ£ª¢<ÇÉ áçO–x(qHó»<{8{hãRejnˆÑ·m±†¹ð̦ùŠ'§æ“[ˆ#† ½-¥„Â&¿(¯µ ßS«}‘Côõu«XÂ$5úad5x¯¢1  syÉž-e)y Œ ,ÀÙ6"%BPÒoµ‰qïøú|ÚwÃ( ^þN2¸çûÔ†™ùéí^†…OË 6Ø~†=r¡Îþ2ÐþS‰ƒÖ&e«ÐÚ0dúþpYP­Ì'\ƒ½'Ô—ily¢‹Èà¼ýzë@<¾qc{>)¸f=‹w*d-8éeúÓa¨¬Ú Éä °÷Œ³ e¤8²(Ü ÷xøü¬Už#0TÚ{¤<fºoeiŒç4vIÄi) ÷u€{Å•£¦Ôˆ¨h1+W¤¡ Uoœ4…,¬Âm¡ªù"átŽñÛNyã•Á,ª“W]0)\ÉeÆ¢婞ˇ›k!™h©Ig6S]Ͱi"âtjý|Ö¾¶M…‚å@ØÏÄñ(<³½³¾Étê+½E!›$£…9åÓM]pÏ #ôe"ýä=æ“Ob?w% ž=çcÚr3nvb&Âç…iMûÞ”æ©:?|[L÷,O²¼G§xê2âCžðØ ®>‰ºƒ!q`ÉÆ(0³cT„«û¼8)ýÀ!Èö /?–b?°bžçÛ‚ ž‚AYâÍ…[‹ÙÿС”jm6 ™x¦¹€*ðæÿþ[r«ÆÓ,ù„høfÏ­yH½eûáP_ò)ön%‰§þÑ Œ± ¦'/·Ä¤à(=ßaUƒÊ!3æÞm ]QЫ|¥Iæ`ÝéZI48TÕ§è‚ðí%:OÜXÞ·][†C†ô¦%AXò%l»|²ì{óØe|Ëp@ï^æÁË¥@÷+†U•ˆ¾óF.õ{[N?G¾ä±²àŰŒ¨åGÚ€ÊÅCñGé;2¡uG§w‰)\ßÙå‚]š¦íu®B± ‹f3æñQ1°»_dnË7—™QžÖ f¤©º¹î`«QvêñSûlµ¿b¾}Y›;µ/4‰Ä"UHH„>zNˆ¢½˜L}ÜÞæ„òKœþýò©‰Ò _¢¾u aÄ<{?ŽÞ5R§{ 7‹›¡ãæ*‡Ðkì.ðÌQr|ØqM^ߥ Ë`R”kRµuòË b™˜(Ö¹)¦`+®Í}7wO…Gi!PÝ¿ézî¼=ÕAÎehµ9ž1sf;˜ŸŸ’D&äô"ýðºdë­@S£=W0æè#U:à.oyÕQ;ÈÚ ž[AÒeÚ+¤¯£_Üâ¡~€©ˆ'8LJÇ&oOªùØ«öó]úµDë*éÎcÝ“–ÄnâQÒÛ’DBS^4éwž×ÊÄ㇠$ÚŸô?ø`u嘉×%ÆÓ2<¼¬u ¶:¾zDÁ˜G'9x1¢A~;, }7`ñ*Ѭ¢ 3q®ÜP®íîœ|“Ûh{ðB•Öõ‰Á‚±ÕqÁó—B’üîe  ®ÿyÅ/ÖãÐSIW¯Â_Ð-RÎi9Ü:˜°ä8§äŠRŽî®À˜ï{¥¿îXveÎmdÒõabTˆrÂMrÔqI©ô®X¦±”‡í¸øzo¯fHê|šµq^62{~„õ™c@óV<Ç,–’h'¦¾…¬$Ḛ̂Žnw9UâP²¥(7rÛà8+®ÂäaˆNLçæ’JöáàjneáÛ¶È+ ÑXR‘Ž‚'A¿­µä¼¿A 7ø‡V ‘ÉÊ_õº4ÙwɰïéxTµnéoI}·Ÿ‚ƒº_’lt‰8œUnÕ´nà>qS‘ÆÊÿÐAãõë ÛØñe2Ç™²D¿z(­–ëÕ4CÐZ7êž)^ G,ÞõaM[®=yîû^2m@|¢›í1†•Ð@Ñ5Ù¥)£_]ú¹jÎ\<€Äí¶ú« ZÒw´é“©V÷¤¡×fÊ,ŸÜ`˜ôG¦Wp—¾ÖVrP,/ßêcÕ¨«–uðyWøo“Ôd¦¼™ÕäÈ,}ÔW/ó"©ÐoJ­\©ùuŠ9ìPu‰þ]&ràùo¿_Íéîtœõe£ZJЇÔ&ц¥«AîͬM4]þºÄ”£DʃÏÏ»ÎHáÉX_`æ¼#’­”-Me¨ò+ð•¡RÕÜ`(¼›ö>Ûdß¶Ä^Ÿa ¨¬¦öÃYˆ‡lt,×­y%I¯@–ðØöŸ¾Å[3fDyÄÀ×J:Þ3ß{Y—ΘhX÷¹~ yÊÓþ€bÿZê·âš¸ÔVû-er N…Àüì0N«v>.çrq-…鮨íÙV,Þ—V^f\‘B=þƒçHzIë‹ÅÍÑÈ—Q%a¯Ðó H7¸µí}¬¡÷ÃÝûIÈ)WmUÞ~0Ö¨Nn#$K³ioCר±L¹·H(2êTBx±;ø›é{ù×t¼“‹ƒNcJ¹ G¯Z †e´ÑÁ?^ù`)›„¦Ëé8¿Ý ¹¾Xm£ ùS™ôÇ^ÝògØ` {&îTcK”“áÁåôÆQ¯s_'îÏ!R ²B¶qjvÇH›SPÎ#«ò£ãèu s5øÑ\ê}‰ŠnìG˜ôY*Žä rtÊ3è9áÔiQWõ \3“xÕû¢HoPQñŸSß7ý3¤$õÑí2=Ú<+-´{]²;ƒÅÎäü¸J¢µs†ÒsöÁêgŒI%Áꆑc:–!*nãÂ8+xâšcKî%‚Ïæzí]R‡LµÃgR±íü•k­Ç±þ\x^]w©×n^¶?¶†m@›µœBwP9…¤VãÊ  ¨Uœ‡1OèŒ*ÄŸý¾žòz#˜á•â[â‰É®¸‚ì\Êôp®Ìé?¾ZUyztðlÐø8ž‘*àQ‰cÖT™gŠÈÓuM•¬Y¼Ø*·j’¡“êKrOöR‚y4×\y }³3[Ç÷tê[oåS%ág“7ªËü#ð€¸@u;1¶™ÃAí—ÏLd×MF¤„ |ñßöJuSŠ °nGÛ÷ä¹WäÁŒÆNÁ#MÌù8Ç× U0åoˆŽvPS©rÊ]bkéóâ3Î`LØ1T.ÞIE³‰-NFùm@¨GÞÈ3ì.¹bÙyOÐ;àîK(©·3»‚MH·€‡Úo["ç:B‹®èÒ§¥3ûU­è³q®’¶bNEWá–;¡ÌŒÃ÷>V !ùëâéÑÖØû×¢[1œ3[èn!ÁÀÕÕ®pá×€™D­å¯ý=×Nâ¼7o(”ÊwïDç¿—é—ï Kdu3¥G|çLÁQ“ŒmTB¹y»2ñÃÙé3Ô-©Ö;&±ùeÔ¶üò½ñ’½¥d¡¬Ã]pŒmŽeÅ3d<™΃—€(WSl+²Ç€Dë'72{æågˆ& v5^\ÁºL¤ûô¯¡–‘ÞT”úZà¯;›PdŠ©™¾ÂêQy¯è/õ/QÊjÃ9OiäX¡–žüý+›èA‰"6øñp‚WaÄ”T=™p¤Œž{LɆjõ‚û›kftë’„±ªhUw©¥cÂnûVQfß×pÈð.¤€‹T¡4½‡³Bžµü¤ ö†iYÂÄÛnö3ÿfÑÞeòÞÂÎ 2½H2b–7E£Å6‡GÍé Øš¨3zRß1³ç#Èñ‘ü “±Ú÷C3ø¯±}…×Ý+Rµ/YXâK*¼ÝcClj«+)‹AÏaâ7g;9Û9oÝ ´ãŸÍˆ²6(ß½¼ËEesl)¾Ä Å–æüÕCòëza[_YÍ1©fh³|åþ`­ú­o L`Fœ†!þ~ÔÄ•¹{âÕhÙt¸g¸¦ÛæçȤ¬àMòÅL-³ëÖfJåÔûõç®ÒaffuÂß#DnLQi¨™J*:u=ã¥ç¯>QcÏn yÁRµÊSLáÑPÄ1ãd¿È.´ëƒ +Ä"zá98®›+8o0_cKØ“"–û§_Æd¯©ð˜Î.܆¬ùõ Š UðfÙ"]¼ ׺öÞ¢nÉ=UÓeÊBm\Iòë³röá3åÀ\ÔXë$+‚pϸØIS [©ZàOwî´Á´ ×ÛÓÐq6Î?™…U¦‘IÜ[_Ú…Lå 5:tŒKin™ž¤½|Ua5n‘&\(%­ÎÅCI&sÌ3#¥Ñ°8!øÌýA¹jÂõö[shÏ—±‘KþYCï´àƒWu‘´l9¢x=BÅŠÞ,Øq5pQ½¼l t—â°îº÷žV±¥ßR YÓîú\d¨k¶ºãŒ– ÞC_Pj¤1pck–SF†[ë—|Ióêpq’ø&#'ÖÓïxÇ{Ÿ> ¿:åtÍ}ãÞâÛ 9R…¦¯~xåÓuþF'§x5íH }U†õÞ)Jq=E“â ‰‚yb¹œúá_Rêœô"-ý”½C¾k¹¹vûg˜„‡é†ÅŸ{Ÿ<Õ8 zïÊZƒÉömÀý2_ùnvܾ(.ô®òœ}!ÃFÂW“Ód âÂ÷SGˆHe6;*ú‰š¹.âT˜ë”¼Œ·61¥ÉL:%ýØzÿŠº =Ôj†@8%y ‚©? ·c2ï©Ë¥w MhYhŠcÚ¼ÑÞ ½?‚ƒ~Á*Óž(õÜ~ š ΂Qþ°ƒì_<ùTñ>oër•ù#£PNp4…ø‰æI@€~J?~*¶²\wªòmƒ—BW€zsd{¶]wôBÖì†’Š¿:px‘êg–(lkMéÖrk¹°½FÇgƒ/ýp~Ë<Ðô¡ÚuF“JÁBD*D–$Þð{Ü:.j>w%Éø’n¤äà6çq]®=ã0ë c—+¨@ºNs4½GQÞ¸ž\ñ&lò9n˜ Ï®f Ûžž§ð™ÃR?þ–bŸDõ0Ê*ÍrK[ô„¦•%š³2½vÙæîi=¹°Eˆr-³—5|¸Çfúrn+'Š O1¢µV<…zŸs®†xK'ª0åƒØQ‹;åÓÕ[«ðy­Äùxe¿LU±,›Þ´ÖaO§|k`Ø}´þÈIb±”Ü5,Ý ñ]ŠHz.ŠØª4ÀlAáÐ3"Ó¼h¢@­­ C7d†„â/U¸e”HÅà°KAïÅ/Rvk…©›å'_Îá4|‡K¥Gß’kMb[8[´L‰SÙÁšÑTq`a?‰‡ÕØW~«·Bpõ_:Äpí;çq&4¤SýrN…I¹Œh„ïÕÜf~ÞµlɳyÎ4748 |«®”'CÀÔá 4:Þè]<êö{79BÏNèS¤í¤ÿDôùü`}P4ôØV£ÙG„Qá@&YRCÞîSÕ™%€'“eC7餟T9ÖÚ”Š“eþt–gûùÀ±°rK\j+VŠGû ¯j4Â*vÈ\üË+¢Øv¤Œ©„Un/¼Ÿ8*öùúQ*t8ñ˜åÐaKðçðWV qªÇ£Þôê¼õl â‰~ëW& ›èÛ:1!ïüc:e¹UIJ•B§ÛÔÆ°ÌªÑ’¦¼eAåyS’ý ÔÐ:—[[íHÕ2¿ítð4³ÇïžTCOlJ›+½'VqÙa""A¹á‡=hÄí$/P™’šÞSÁ ;_ø²¯NBÐÉ»k6j±?¡gŽ[СU_j I%é©^ëfÿÜÈQ]þ™ÍµL³AïýQ²ˆ]§upß j1!]þT‹‹c5I–„t»B³zÁH%aùnâaç K×:9ó®Ÿ4`D愪ªáz¯ ÌÚý>öuµ24­¸ø0ˤ{¼Ê.aF9BÞÛî—¥þ蟹|çúö–…¬ñ­àܶ»H­JÀ“G˜Ÿ"yPÕ1܈5ev¿£’"¶• Rª¹ã–óú*¸XüãfMBwšÓ?T´Y\)/4[´ïIR»iR͵L¨'[^ah‚é93‰eÐ0–YÙ!?‹êÑw”{!ßV¡}­çéÚÔ(&#€•ŒÓ \ âkªï»)$I%¦1­ —È§êÆæ¼­êãÀD œ#¨d•1« ‡\ jLþœ§/u5?’7;k¡PNppÐPIQ>êGD›†ò3,=¾úÙ:™<šo~ºK½Q ³/w$Μÿ<û¹F&Ö¹Duùl1úK'$¹yw^kD]ç£}BCÐpáE¤T½ú ÝGzÔ°d垪 Ã`®t^NÀ8Uo¶_Ž¢¦E?„À{ûØz 4Ÿéi@fðX¡//r.R‹oÕúÓÜöáæÙî¼…:O+SΰZ9ÛŸFR‡JBIzk,M0ýiéÄ¢AùO3ç’8Ïý1±ØC;êØx$Ù?ÙݧáëôÀ¢è„ñᢠ6iýz62»²øPŸ¨Í¼½Íp@?åö•¿…î‰ëd6ÖŠr!8a”Þ£{£ýPª‰ifèý·ûáöéØy߸4eËù.†Á_i/ø'Q处ëKâ Æ›[Úô}˜K7‘Z0bC¢gV2§ÔкŽSœ´‡ÑnJþ_E9ºÆ¢¿,Øo`§R"<Áž&l²ÃÏ£å?À¦h ™ÔÕþ–ã·»hY‡,ú®ñÄpXˆí+Ä ùoH$ޝ„Ýøåó/õJ%Õƒ.¨UÝ)­|•z,ÁÃæNŠæ1ŸWªÊ:ìPšäæå 'ì¬\ñt4•>T¯®÷Ùn9èp¥&asn#üî²f}ËB…ÏŠŸÏâÂÕGñ·¤ý®LŒtïhgf~Lv¯ ꊓoœó)²ô5 —(¯+ë¤s«E ºèìÕ²£Y24âLÈÝ£y^LááwôAÀCéKoVÂJEwð Å–,;7yO{ÑÉ~Òêu_Ì‚«9͇ê‘*(Jÿæ z+þ±eÕ5Z¥á\…½±}ú2ŒÐRe ÄDŠÛxÔ8©¥êÛ†X6¹Œ"ÛÀJ‘Î#{ŽÙÙôGä0¨ÛÉáZŒ‰±dn¢q˧‚fóÜbMÙÎàDœ=#"ñPÓÑ 2Ç+ uu¦^0°ûÒIwf ÄUð|º–G·´áÕéü`>žhjƒ®,7½óc©iõÇ vX£ýL—ÑÕõè; ˜Q;¤¥¡ùÏLXX; Œ²Áý^Gª¦o+‹gŒ¶k ÆTÓs°®(w›þ ç¬u+Œ¯Ýš3LùŠOt·brAlyu~‰ôCT/þJ;YòÒêzÌÀç†Üy± ú·7æš[öS¼ÆГԹ¯ð#”š(‚¸æé'Ë]ËÝÚ.LJä5lè · ½FÜØ–¹Éß{B€ùR‰[·^ÊÈ*YF×)t¨%h¾˜¨7`^.³XDßËôà 3D M¤‡÷ö§ ­s‡mDTBº Ýù‘’ñwéºœÍ DM8Ò'¥Ì»y !:4‰­ž®c³ZÎ`õ±8Æ´Ý× d0o•9çTù$K…4ÛDŽÌ¸IÌà^ýù'_°E;´_Óï®ä&!#ݯ­O„Åm‚t²È\.jå#Ü:OOHOÍM‘ÍØ¿¢^N”ü9r–Ó‰Š6kƒ‹MU€€µíü—…ÛœÒ̈”µ›åK\Z÷Sè[Ê 9Y¶ãÂ~ÅNÀÊ=†¬‰åA®—îD´ùÕüç'«}³§ï0$%èÎÅàŸ1KeT\Aì|è癓ýrO9³Þ¦íø8Þ,j®ß±Z…=ÍYƒv{Ðk!!'Pî¤Éü, S ‡Ûï±ýA94¤X*exç$Ñslø -æNdîw²Ø‘~–Á«"MË ¬øŠl;Ï&ëjñ7MvÔ·£·¨º9=Zêªkÿ<~N1.y•Ø<#`nRiz—å¹0 +ñjséË>uÁc¨6@+— $°á·— MÚ}=á·èV8ŒOüÖnÏV| rsiá Ð¼bV 'hGç…‘–w>LÌ$O<2§EEˆÆG[þ$ñnƽ›l>þx«TƒÑºucüã*Ú Ç\ _‰‰ÆÆü'S™@á´wÂ]Â9'Ó­`#{Ñ=:ݳ›ÆàPaBp©—!­r€®Øwnâ÷âØlVa;»5OßÔ_¤u{ ûñ ‡9¦kóà˜ý—5o™!7ö]\ åpLb@òß ø·%‹kݨË'WioyM¯+¾cöØûgä^ mÍܲâMS¢ÕmÙŸÄD¶‘'O{…i__ y Ʀ¦º†ð¬öêžÏC° sÅ.J¿ ³æú³  °ª¿&ÑTÍHÌìÎÞˆBž®!Y¼öË%YüÑÖ‹:g­ÐlHß}Sèï0aÌÔÃÇ­˜ë¦Ã`¨þ0/Kè–t#‘œ{7ˆë ­÷Úö|%™Ü- JÞ‰+tiNO’ xY˜½ly–Â`.ˆ#­Ækø1ÛjQ›&eoë† ,Õ«úU~´¤•¢WEGM’rIäVÛÏ…Dè­zŸ¡þY”EJ ”ø#ءԙþ%ÝˉŸ êæù u ˜€¹˜%pŸ”÷„o¿Jø‚T©¼K˜ãÔCLizXL¡‡äÜI=V.LhûÆÚ–V_ÂXÆwc5Šš|ãÄšŒfzÂÁöÚVÉé{QÛO:óyÅI=ñ| ˆ¸jp§eSLl¶f¡ë˜×‡ºÑ$ –?¹â (ŒÙ\%æó‚Åýƒ„ŒŠLdð7‹ÄpAœE늻Ù#.—ÇFੈŋ©ëwƒ™ëDŠeüOñ8ú×C—`”.ð6r/öíï&u¦)IM2þ\öÌÀnd^Áw¶ò,ȯÁÙp?蟕QÜäέR\6Ýo>U~•¹“@é2ÌãÎ4é\FÐ÷¤mËCs °_Æ^‹Ù’âψ€©Ñ±ÄLáOÕ¢g¥çåØ;“?\ã>¹nv*N™¼ÈLdžòøé´u€ÈDzóaN©%Œ°å8ŸûC®©¶äáðaæ‘æ}6Ý0}ç·Ž¦Ê%€iM ª‰©/À]ê¾Úw{8é ÇdéBS Å`½Ü%ÄöÀÄ_D¯ µo ’F"ÝJè/›Ô¦—:ãûÅñÀaô%lðfò‘<Ü`è*Úéäí£kyÞx@uŒ\¶MÚs9qµ”Oæʪz ZMÉùu¹ú‚¥ˆã9äŒem–#h}L: yÉð!èÛ)ÙCs¶›ÎS·ëÜEìúø+j p[£â¢Wwt¾©JtoJO¥W{Ô²U=ÿn׆ÔxeOjt  V£åcYü]¯*M†Û‰ˆa¾j0_ìÍo<¨îºëìQbíÚÄMŒE·SKS Ãút¯X± ßÓI]Gøö…ÄZZwbþ"xkm£Jf3›ƒ™Gáâ{Op GÃÇpJlÄ-=–£Î6ð·ëgä‹Óà åì°JÌø%þmrÊTàí:ùÎÏÓö´Ëk£â" ÷ËEƵòÊàèC½<¥q›´VÑ«€¶È U ÞÀ›ß[Œ‡šñPé©P4Ôx¸#Y ©/O+È/{ßãÔ%3cÚÈ•|&©6ÂxGs×ÓÇ÷v±§uF¹ªó—iÖ®ft;«CU_¶ ÒÜ5Y8S#r:NÑË\Œò_×xƒÀ·5üŸÑEü0mà…=7±.œgƒp ÿå²ç¥ YcBi3~&ޝðÜ­·xƒs`3ºã©úe§^'4ÚêažReD§¹‹Q«³±,êu?¼â:ï¡/Ö^3UºxX5 ‹‡ýD ‚‹mÛýCîV*g8Ö» ³±µ¥ÃÐܵsÉYºu=2¤íe „¬•lk¨í Ï£7`V´Wð~ò7–^"&np%A¦tzË­™ÃS*Ð3=oŒ<¶³`ç꺗÷X)(é?i•õ®v<; ˆóâ-ñQç{š%ΟŽ?OƒŒk2·øÀ$§Q{®ê ” guõ“XƸ±:¡½Ê;Þ“bõF¥šx1‹çíËâPÙ´(P¾˜ÙÛzöiLÝþœmÑ]™íùfüÚþ,¨ûZàS©+•´€¼ó%hd=hP"c+P(®]¥ž¿¾¿öDÆaI%âËKffÇ^Õ@þ°ßÐfŸÒøë‚Í ÅËÙq éääbåŠ)<ѼN$?]Mv‚Ñ ®]ö ÿÇEK‚ù‘ͬ­0aÏ e`öÇ^t^áWzn °1ö»÷𢌌3ßÖöÁ ^ŠÅEµKÃïP×å1‘… ÃzŠT|Ëä)‹Á[ù]èp¬ «²>ލ½‰boª¿%“CY°.Î5*]NÅ0B絊íîŒémFJAQ›bÌû¥æ‚ÀK"¿Aÿ<\ðL…-ˆíc‰ö+1"Q °ººf!uÅ.V»8S'¥‚–…HÑÅdŒ¾k©<ê ä þ’ù‡²Ê hóæ€j*Ø9etÓÞJ'slžaÛÌ-N2¹Ò³|™Exùk¹EœoA³´î[cWçeWNq€ÜnÁnDP× œûÿy-¹Ú-³Àaæ(¾À|ö' i>( Fwú¹Œ:µl 9vÉ/ ûƒµ¿Kä¥q1±ô¢ÃZÂÉÝ®d R‹MŸoûrF—©iþÉu«¬“txOu^èŸn=¹Jµ“–ìEAÞJjh¢ûhÃLj w–WUëPY߉~¸ëŠÈ|¹¸ÁJDv{g¥ä«{…2eó|ñéL«—é‡ó¡¾Äö/ Ô§È‚ä5×>ŽèšÁƒ¡‡Š|×­­‘¦-€Ìû<·|B&^­›\DÄ’ ·aùG'ßG}·p&‘T\™[]•*©³„rIÔÖÚ:2;OÖ©‘L;Á5ŽÃú"á_Æóì` VË–:Õ„¬ÑH±«è93gÈj‘}þ¼®æÁÚŠ%£Ò¨‘±ºt$jó„:Í\È0xbñÄ€Õ‚z,¨üo)=2¹Á•üI¥:8×ÛôÂî{Þªc¾(\áåïÈ>ä ö«²+­F‡[¦<Ýìé¥4¢;´%U‰ÿ*}ùü°ˆå@¬¯nÒ&06©T•õ¢¾È`Ý\1DB´V½6ë„„±—ô{!«ÃÒð»1"Þ‡ÊtÔ?å+ôðÁ˜£B½þ¸ÜRßϬpÒaM÷ ¥t¹%€œ ÄJÒ†ýŸi@ê“a´º¬Hý }CßçzKÑ„HVyå’Á« ²uóšE©su{ÁlÅ1%Ò¦ŠáÊ‚.ûÒx:xÌžïÿ;Š.'¹ÚQw{ù u3»è  é4Ö?=ù‰&¯J'ÈpžìíåhÇ‚¬o|Æ †¬þ½¨‡ ðªüò@ÉBnõy%æ¹b¦›[{:™ÖK²gAñÃ,¸ôÚ­,÷Ý3×Ä1Yû’¬j—ùcu£õGj~ï–6ØØ‘…Õav®!¢J Å#7£ÕÛ‡”lÀ?<\ÉŽð¤Rè†ïW¢A “·i» ¿7ÄÔ1»Z.œ@u°È-Žt3;Òn4‚þ˜¾Àµ+j²ZIÝ‹¢ø*Šbí »@`±¢} ½¾Z¾ÔJo ‘ÿÈj?œb’~6¢ä¦óNuLØê%qÈ€¼½€ZÍ!M˜*çx^?ròJšý±Æ t”ô™JÄÆo²Oþ¨+öýkbúPH­1nBŽ“tLºÇwëTH`ÖˆéÍò+Á´\6™«<®a£"ä´¥Ùý‘DkOº<àè§6AûôJ·*ãañÄ|Nt `l­Dô1wñʈFï#C²³ûhDI–ù¿êÌíÚúQOg%r¥ÁètäÌJH'¸ŠHX wѵ w¶Ü8‚5^³¨¹4b¨Ãe‡Þœ&˜Å ÿÞ)Я+&ùD´ß¢ÿ˜ÑâUs—.3ùlÔ#†Â4©D{‚½Q›c‡¡/¬0êÎä þ hüa‰E†!Ä¿œSkÿ,ï R2 ,tà FFØrm×?üÀ>.UÁö BÐ÷ «Mk~!‡£¿!Š`¹jUþ7RXXTÁŒ‡¿…¾È;¡t‰úubþC"ËI‚»Ø~®Ä‚ùÎ|BÔTÅçIgŠº‡Z7Ð[&ÒÑý¥¾æPE-ž:3Ü¥?µ¤[ý×›u•• Ør®æëd EFS²bϦY?fÚ4¡Ò1Èu½=0½v4“›0‘ôˆÓ“õó–ö{ŠÏCœ«þêÊHE>W¡^„r9ß¡WÂ4=‘¬õÝ6> ­Ž«ÅBˆ@jŠû;(ý÷І™xb,Ý#S%°pØw–÷á´fQT]ç£ü’ªš¦ê*<Í…QͶêÉk¼S·¡À£ªU=Fg„-Óf”ý™ÂÒþ#¸ÙvµƒäôæÞ¦ISm¯±+ÍN]G]/€JÔÕ3Ž‘O)¯V9PYØ‹ô裡Åÿ‰g íío$ÏÁ¬qrQLñôÌ”/K™ž§¥W‹§¾mœ^¨ŸÜƒ¬ST³Û WÛߊ`ˆ¯ï_Ñ×ø6>] „ÿe)Q*Ãȹ´Ôr8´ÁŠšy—âálV¿Š ô‘›­ aÍ·,E}Dy_…‰ÿy*i·bÁpú¯c:ÃêáÇXÁ06/1ŽäEàí£šJVÏÜ ïdŽ—}>É-ÇRH¹W¤¥¸QG¨S¯ÆkÏop#ýC›¥ð²í™>tI ¯R+éH8}Æ_n]–H4Ó™ISóEôd-ê(¯²—ÞfƒÌ l3›‚X¾Sg…t%5UªÆœO_Ú!ÑãorÝíWcÒtE†$„ÕŒxíöÂe ¼¿‰žLùÿgî´ü¶¤F<_>Àà½HY‘?%ç›|æé¤wüšöÅ«¢J§o{Ò¦†]=¨?"‘ëÙ¨“.UñJÈòÛÈtްÒmRzveÛÕÏÐ9“8Ë—Js®‚ª›HMo‹fÑPYü¢mevšIÅ'^f±”©F‹0«öq©J–ÆŠïÊü,ßÝ…Q¯Ön¡o“I¡ ö`#Á¨YÞésÞ˜­ú¿s  ôñžIô(sÞ!Ý (‰V.qðƒ™±E=ûêrþZ5úùï©|_¨ÀH8¸)1*#ÿéù‰cüVjè® Ê®tY =Ò§‹ “e^Æãp¹O¥‘“J œ¹‚ÉßÈœ¡§ôýìÌ`Ò“ÏB½¿Œ…¯ãòºùRLë›s¼dþeN%k?ï7#R½c˜¿zR3…<9ºÐ2§¢Ð®ÝøõmظöFõÅ÷óÛ‚eÏûnÌ aWý°Q¥ 9_p6Ìš0OÐÅU؈u0[¯Ú˜"JŠ85ïÀ諱¿PÈ@9À€?ÜW” Ô"«šüIŸ}‡XW—ûØS@…I¯è}ž¶;‹1#Â×PY&ªxNVYóeIÇ.À'Õc-“yó16¿‘÷IÇkoŠqK´°#âÚKºËi@o¿Ë{á%Uƒx.ˆú©C© 4Ò·E7ÊTV„)ƒ…É#”ÙEtµ\™¥é‹\EÉã–Ø—ahag–ï¨YDiDù‰h4)-NÓùÛxm~y'¡ëm‰ÎÅ€©f¯]JyÕ“[LcãÏGÏ6y1óÂ0 Ï\CKoñ¿£[·Z<¨¡®•h*³½v.±Ò÷"G~ÓÉè"8»‡Ç¡®à¥kèÝäÌ”Àõéþ+*p‘Ëkñ™Lû$þ[óàxCK{éÆq´ ê¸íÁ^Æì»pL‰Œ‡hïóYê`åä¾çi¥L”P,ñ;“ÓåR: œnuwŠ6œé n hÀ&Eò—ôù §ÝAÄôô”-Ì¢ýè&SeCBƒW ¼Wô$7’ª¶¾&·€{/.æ1½ °m4¿B~QÙîGOÈ.¯ÜÁ¸ ^ΨH=IÛ¶€?×S©ä&™.Ö¼‹ïî­F™ØËðè쳕B+å*ŸNY«³øAÈ{W¸;ÔVµÞihj— §+ްÚÍ—,ÒŒ{û“°°m¡*ƒ€çOMO¯âFþölekªlÝ‚ÿ¼)ce´7›MÉÙgÛýpÇpAfÍ=Ñ(w cPYŸÂþQŠ y¦ïO5j9æ[(®}•-JO»ý.ö–4¯gZ™_`¿£0ÕôX?Ñ=ê+Ù?ˆoÈó’Ö¢D/9˲µ;ßp*vF±ò¹w“~p·!@i `Ù‰MQM¦ë)œ'a™PÒ²uûéé”' #[Ó»¨>ýB6V ¡Éh’Íj¸(0>¦o¬‚ÒSØ%“ãa½we¯@Ô†÷1>ªVÈ/é¶ù'#ò.SiI—mK( ÕUtƒqŽj‹¦û1Á¹õ1‘ÐÇW]Ve¼,\±CA3ÔQÔèKˆ È]žÓ‹ybÍ,N·ˆnOö©øöﯕR­|êRsÔ³¦Î¥XFÃý@ltÎ*èýÇÔWYn:-b”a•?%m…ÿ¢_ºä¿} $+VEÇoÊÞEÝ[Üœû¿},]îeq2emsl3œ[ûC¯GWtSÿ”®hÓ]OýÒ;UÐ[ºçöI8\LÝ©£‚cK™Ie°@qê¤tÆ¿¥“+÷‡0PhyX®YD§q–²Ÿx"I¹ PGÆRÙþþöÿHAÛ^4ß^"”z\Ðñ¼åuªcV•½ˆ;/k"È—Ñ=¤ÉîHðO¹Q0SéŽé›Õ§;þ/þ°Îc±·'̶e]Ç«Kp‹Š}%BA¯#M£<7T‘·Žk¹`6T7ÞhÊ—¨Qµ) ŽBZ$®Î䆘^2w¿{ÛPwµòI"Ì!½›_·çÄò…ù½aJÞh%W!‰¡“­54Åý«Ð\>3¯üò±|"½2l¸pYÄ)ò+H.‰¼Ý‹_<Æy$YÀ]Þ9œ¡›ÜOï *,ÈÿÿÇ86›ŒRd¯×ÉØøZ˜Êhð ÿî”2äMÐOcgàL<»4º<C¸tϾ¢!=2!Š6<ÄÚF ¸÷J¤dá ³ÆUÙÿ{‰<ÃyI­¯§ý"ÈùS}í±ðê4NŽ¿á;ªpËCÎJ—‚%íxMÙHÅgP‰”¤²µƒÎÙüL×f)vþÀÄ!4%<ü3P–IÏ…ý§04¶:í±uZAâM‰M-Ø Ÿk§æ"P+´S$±Ü2žsåú-òƒV;Ú‹øîRo†‰w{Ø VÏXF¨£ M´©bkØßÕÆfŒ`ä=q0~ìnœ] \kúD¶Ðö0ê5†|]ô½GŽ÷Œd­ P¾Š¢™/Œ:K5¨;Ýár”Ò{7à:ßôMï9G>øà±k“%%韉O}_(&ýB5L‰‘Zëö>)o‘ gPúH¸}T~ ªètDP^D.<¦.­Ç¿»õsPjÉñ(£¥ïS&Ž„:®€Î‰^¬ÈÑPCÉn‰éÀ6ãC~i¾’ÔûëP@PýP¯pª¸1õÊf«¼”¯x*=Ù~œ8´U”­hîEã ä¦7l–´èH•b{x†õwsÂãhî߯HoXþòR„µµaŠgb–x"Ëú!(£:ŸáØÏ¥YÉ9:ô!ºØÌ\ãÝ £b6n‚J4‘4çÛ+_]úòÁì/°j_ŠÛºRMìãFs½v:"øÿv;í7»Àw† ˜ò‚œì…*´éƒï½oóÏ"%Êþ.³é)/1DYF½÷Ä€§ŸÏ˜ôùPÏiüÒEŠõH„{Á^›œÇe¥ jn¨—ô4ãRN÷-L^àß1€Œìµ—ÏõB   I8•'“À?a•¢•}ZÙÆîG F»ù€tÎa¬ïcä ÜMè¾qe#Æ{Ñ æM¼ÊTÇæÕÄr¯èƒµ;óçEÇÉo›p7›Ñšq$DÝLñ±û õ×Ô³]N$¬Jö×h çü væ(u7¥âZ~hó‰LÏìnI)7½¨õ4uäÐgŒ]Îá Eð;ú µ{ÌñGxÏ|eªR¦çu²{km‡W T ¾¬*n/ Ù[g‹oo(ßçuÄI4ûS 5­‘UïÐt«^s‡‘vÍ…Gº°¿NƒTa@;œ©ˆ¡M@|l]z%ÇqþªØÑN¥?úOççF`6wKE™Âñpÿôšº¼k¨¿ š¿…_þ´ML’†MyÛ”¸™Ÿ¯»˜y~‚  Ã}Vϱ4ТŠ[iÆ‚ºpXÿ+Qnæ¡ö*׈ץm‚è j r_èœàÑç&¤”¯ˆnêÁQuIUo:ÄÀŽî&eÈ$‘Œ~¯že ²–j•ÏžUµ8@1ÒÒßÃxüNðëê«`ÿÙž¤NLÁ(ï‚¡ö xÂV„š\b„§åéKó͵Ãxì'é¥]ñb¢õÚMreX5Ÿ,ï™3˜BæRG“BüèPÅvKÇ¢¸Ï¼ %"‹àcXà»ÕSyf S9}&î4/z~&ùø0_´“Å~/ƒ•D%x&Àùêæ œnŸ:L‚Å¡Æ+¢ÍH ­Z´ÅÖë.LµŒ¯‘&ãpýnÈÔ­>]#^¶÷²jß^mƒÅv)Ö8ä[mË¥ÈèÞ}îðÆÏµ2ióé+Ÿ5¼Üö]ú¥ò)ÿ¨šÍ¹·ðQ2’£ìkß4ï'‘…çÁ3ž"íE=°'fZŹXÁþéë7[8oá±lpÛ[+SCÌáV~¡·Á*oâq9×?TsÝ¿^g„œ…ýhA‡ l½‡ŸÑƒâ¯ð‡úÿ/`2YØ»2eHR‡Ù.Œµ¡kš‚âæÅ¨LpS5ãgý:ì×(£ecJAGÝ“­UëŸÃ²÷â=óc%)qýãìj¶+*›0¿öïÉìW *_*…Ñ5öh=š.N‚¯¦y»°Äi«ú[®S‚öþwe¯~žUðƒÛwÝ^£È—ÝsÄbëJ)ê±V€çvÆ«~ƒk˜Ncɽc<Âô9ÈÈP|ùg«æLSÏN~¤£ y ¿ŠÑ'¶oQF¥8±c©†í„%áXõ2!¬Çþ HOƒYWÛºÞA‰EUÏØ–9ä%ep—[›+›B:éÈÛÈÝñ±“õì­‰(y-Þ’m_[…0p;ˆNÃ.¢ëFý»X*…Ó sÀU.µnaËþ½î{ß}%'ݰaè%0דîCG)¤KÄüí´©õÓÇÜ%AÓ5#P„s/yRQ(ÅÛ×dgBv·vÊ Ã‘ósr,à3г_jRسá.zÿ{O¾ÚÊVŸé&ÒÏ~½ÖcX1Å{[T)@âL÷±Ë÷©9Àá;/W ;”‘¤-ßçèÁDÕÿ÷µCç}îŽÊû·Ú×ïjè30hÚHö«Y+Õ¬xy\†aåq*~iýú¯ä™aôaöxr™6IJútL¥cãv>1ŠV˜ê‘å9Â8)”Fê#‹…9ÊØÄðmc”,½\C54/Ÿ;°˜d ]’bõZoõò[hßW±} v&8ðsxÌDSH؃%ËBT"7HÝá8Xþ»õ5×DˆÿÈ¢NeWf†ïDDê舓)¾SH¨dQæèžÆ+3¢&_m9nX7ç_jJ©iy72¨Ñ¼IÄbA;™±÷ƒ¨Èoà„õO`¥ý´y.¥S_®ë#ŽIÒg}É<”µÿO0¯Â{ói˜”Ù°;e(§¬^…SÄ}ÌÔUƒ}ìÝO$í þlÒ½tGÕ'zâÒÂ'áõ ¡oìkÅCÉ/¤¡†—d¼RÎwËT«“% DŠ9s:’–lƒ<¹ô‘ú!î‹ÒáeÑ'¦@iY«C}÷mŽxW³ ¨…ôÔ¹D8ÜŠ£2q°y©ÿÈV0â{t+o&ätJä(b#ÅÖ=ËÒ.ýû…Ø:Kõô,§#YÕSÓûïîLLµ6uïô5ÐÑ#ï€`lÌ-.PíoFüá›æÙ ä3Wòˆ( ñÑ ÷>ÃË%Ú<è&èãÊ5’•ÇÒ–Ñ€wž‚u)iʸõ¯g½ÿµìî‚Ù¦%®¬¤Ñ¹®'-¡‘]üúÃ8-ÇTH!Ãf”EÄq XN‹`D›)}®u v­ñç …ÃDî#\úe c]uªêrï˜w‰Æ×A~ kJ˜òN£ž7¹Þ Ek2ÆäAbÆ­½µ¹ƒNÁ\{Ès=Ì?ÒfÛ`égـͨŸåج×jCÊSN^Î ‘†ÐO©GRµv°ëŸà܃¡ÉM¡È^ÿô²¿ðÂÔ-w‘¶g§ €ˆà–þ°n¾@‰µöŒwHÌ‹-vÂÔî5–jÓ2aûÈ7ká÷GxJÒ8úæÂÖÛ’òÀXO.q’y $ &(’:†›Qü|ú˜¾Àµ+j²úðÔ¯öA©r…†½Õ`õ¹q:ë ØšàKWä ‹é*+Û½»ŽKUWŸeˆ–² ¸Ì3Gda–c*fúkk´´”3U—©Ä¬Ï²Y¬v)T=â­Cku¿e²7ÇH Ÿlrò :£L m ûSÈEg"GZÑž—8Q€¦)yð's#¼ Ôd§#©çPM¥;¬k¦¼™)Áx´5çébþDßÇXÓ‰ÔÂàkR­„ìET¾·Æ?)ÖX€uUÞ®^Se¦Á’j(y`5&önñ²öêÿ. ¦Ì„¢_y®©M5u&ïh6ið~½! äw¼ˆ_A´j”úÛ”m'°¾‘¥$Œ$͸|õ5µ¡ê¥ŒŽú"õqm’޹Ë_ÔÃ~ v“ëOI‡ª«Õ¥ßo­Ì^™Í˜žtïÈãð†ŸÀkôVò’LO9ü¬ ´×ÿ°˜W£•~=eú«*g‡õh­uË­[(óõéïû <‘¡?}aC ¬ï|LíÇk0ISß/‹‘¤Cæ ïÌk£œV+Í¡ãÏ¡u¥_Ý¥GðO ³ÓÚºkñ{ŸOÈEA¿Ë³ÄñæÎÿ¿²¹¤.dæsê½çOïDzzo Üú‚h¥™¢²#W-åŸ:zf=RG–¶ÞJ4:`Ž((k¸Å9û ð.m—[¡läËZJ¹õvÐá ˜ëÎBB†ci‰# OžÐQeÄyŒJ—ŠQËô ¡¤Ó71±)|½=‘§X ÎÔБÅYâYÒ(+1®,7"ŠÃåkEù|“Ÿ•@ I#Ïs.ñ¦Šˆ?ý™;¡O¾x3ëAÈdÊ›•þ¨O†AfâÌ]%Xø3s»ñlyÈøšÆV„yù2ô2íÂz‹*'ß+/qÔ;•Ž3¹GWL²ƒDƒ ;}Âï?©½cÞ류E.ÒÇ+1‚YÎ^Ï«ñ8b¡ðϦ½îó¯(ð&³âý²Ü £[ y@Ä~þ𤔂ã‹~¥‘ìÕhº…lÅ]+r¬gÂëÿÕÈV±ÑVò¡ô “Ñ>ÑROpK3Ûü×ݵw¶ó¼F“gÈ$³gåh î¾9á&”‚ëÁ²—:z(¡j42a\€A vÔ0V ™ÉkÀ6‘çÆHqZÜ3¿bgg¯ÈÌ‹&ô7½Ð1q§Ì®5ñ0§IØÖÔÆi O~â^ÏЇ¶ÝWBׄçŽg¨Ì¡¥¶ý â­3i­,†ö‘`L:aÐçÓ³׋„¢ß˜óޤ»X-µ×DX+jÔoZßt aìÔ3ÜBå¼@‹)Z.»ýý·š´u9¬NÁC}±bAzÅú“Êã¼W‚½±ZN)™N~V©ŠÖNÕó#õj’ï7(|Io–êz2õn–¸~Õ%3B"ŽñìSáÏGVòÕe*Ìx† xG—®Ï¸®ìçî(F\…Ǫ áŒÌµÚtôäÝÃüj]3$ðoo­Í¨4‹cèé^à‰˜Tñ =âÓe;:ï¯Ç—ªcÅÎaÕmuG»v#á9+÷©ÍÊp.À CXÁ³:!б öÐxž`Ç„þ^•TÏ}¶¶NìÇ(-¼€rñÈíÔûÛ¾Ÿ£’ž…ƒ‚ùŒ6\#4(~2a#~'YÀ–ÔÀ|Ò¡dQ.µ~š`óh­l/¬çc XÉ‹&I%ÏÓQy ($¥Ýº—yxŽÚSÎý±Š $ÂÿbX¡)ÊškAÐ÷îÖ'\·ø†ªú”“s¥f\ibŠl±~Wˆi/ƒ>âkôÚî ø³qãúNÏ5ê9®ˆfj˜Lu{¿ô§AÀ¢ØN2ÞY?Å“;Â`Ê×ß`É_¥a:QN º)qiQ{ßcC¬òJôyÕ(Ÿ¦Ü¥¨`¹[<¶ÂMmõÝ„EÏø[KÂé†}\ìé×5·‡,¶’ Wݺn°ËÓgLÈmtCjé—®Œ[2¡Ä [öþ¸[2 ðEW©.?†O½_Ä{&†ÜøX̳–mó€³mŒµFáÓÀ"°Á¥¡ç âz¿ߪÿ+ÎøöÀ„RyG×xî£Aëz?ÚyŸ@õASSîÒ˜œ†¿ž¹þÉù0­B_=Iðs4C¹]µG@3ĺÚ×gþ×PhXLX˜C—,Ö}3fM­˜á3¦æ;È.Çâ<}«ÔÑ ³#Äš2"ÂÙ•“íèKì~Ξ_©«SËOPj'¾²y?ïØ™§¢r  JT".¨4îK'Æx,&2S»«|‘¢Ž`T,™ÒFÀß.¦%‰Û’‚¨b¼Àôë±ð‡NÈØÕ¤þÌ:þ Ø$Ùè rx_:J6cdÜC’ù¿f2ÁkQLðsm(üóáVZÇ–ú‡~¶[Œh endstream endobj 215 0 obj << /Length1 1848 /Length2 22082 /Length3 0 /Length 23271 /Filter /FlateDecode >> stream xÚ´¸eT\Ýš-Ü‚»Npwww .…S¸K°@€àÜÝÝÝÝ îîw>òžÛݧϽ¿Q£j×||Ï5×Ú5Š‚DI•^ØÔÎ(ar¦gf`âÈÉ«ØÙ˜9éU€æ.6FŽ&&6x QG ‘³¥HÌÈÈàt¶(š8ä~D01qÃS$  ã‡Ó`ì:©yØ™ÔFÿ%;'gzc#§7dn ~ùHµ³÷p´4·pþ[ƒ•žþo¥¿Ù" #k;7'kK€È à ÏP°sû0Z¨í@c …‘ÀÎ  Ô¨«Š«¨$UÕ•T¿0|Vu±··sü?³ˆªª©KÒÄ„ÔÄ@ :€¤ºªÚßO5 èc~s:€‚Ú‡ÿoŸÀ¿éòâjÂjÚJâÌŒïÀ p::Yþmû³Q~LøŸÑ>RÍílÿi ¶pv¶çadtssc0wqrf°s4g°·ùg>5 K'€›£5àãê´þCŒ ÈôƒNg à¿ ü]€œ¥ äü›$a÷/§í•Ivçÿìƒç¿5mþpÿW #§rå””ä¶F– g Èdòèläìâ0üÇöñšRýk@ @ÔÅÑñoùÿr9þw›ÿ]ÄîãÎtm¼|ŒÜþsÅŒ@.NžÿÆÍÿ¾m;“¥“³Ó¿*f–6À¿Ó;ý]3KÐ?6yai qU5z¹áèåí>Ø18»;ÿý·ž°˜€‹‰ÀÌÍ`ú©8ÈTÔÎÖöcj'ø¿ô‰Y~ðälçèÁø Ûdçòú8Ì,A¦f¹7u±gTY:¸¥ÅþOø‡ þlæ@g躛X0þmø^þš™ÿš?ˆðñ²·³˜Ù8},Í€x/'#W ÀÙÑèãõïŽÿà™9¦–&ÎRÿØ.ðÿT—™Ù¸ÿeþ˜ä¿\ÿGÔÿlÕ/ûÔÔdã0šÁ3*Ø9H‚úÿŸö½$\llŒlÔÿ§ÿhdkiãñ¿Cÿ#DøwZj;G[#›ÿðY:IXºM•,M,þEí¿ìÒÎFú™Û?–å“úß-eó¡ÝóÇòïñ gagù߇,M¬A@''ǿҀDüÇÄìÿÀ(/£ ¡%CûËæŸ8q‰©%ÈÀÂÎ0rt4ò€gúÐ ;;À‹ùCئ@÷Ä`dÙ9¤ì]œ}fvŽð”ƒÀ(ü×ô/Ä `ÿoÄõáSÿoÄÍ `4úoÄÌÄ `þd0šýd0šÿü¨dùo Àhóoð£«íÿ@f&#èßàG#»ƒìÿ ~TvúÈò‘ëþüßl*ý=QþÙ*LÿCïÿ9jÿÁªÎŽvÖ@MKÓÇÌ¿…È9;Zºë0}èœùÃþñú¯ozÿ«ÅÿlÑ˱s÷¢gcbúЀ™••ëï °ûü¯\“zÿì±üþ{ä€@w  üÒo;Þ «_ Ážâ¹S%PÜ §eXZ21K)Smø8bYÛ¤@Á<ÿ&¿TÊ<;9)=ßPE¦ÍÛzs|ù䩲Ў‘¯¼/>’¸ðh¦ƒz@ªü¢_Ié—#™ÌíB¶™Ô–˜"€úè±(w[çcËÄ;êU"©nIËj6”[þs#†£ šû" ^;þâT;˜óû#FÔO£á%šYÜ`¬QhûîN= ô$õ Ê9E‘]þqY¸¶š®jÁ±=3GyÅÔé >½²\Òù?Дò8Õ ù l‚“W[h¬,wsq˜­ÂSêÛãÒ¶¤ 7øâÌ“ñ¿[-(zˆK¥íH_y%«(›«t[öEZ'º¥_>Ûß=X!û^†UºWµ(Óª ¥8±Éí|j \„9CÓçÅÒÈðÁËf³S4^ìtW#^Zÿi—ˆg®ê®MvsE´ÛVÓš‡O‚5â!ˆgHýU…D¦úÃÙv£JF…­¼$“V;§îçg8Å"`ÅéÅ>öŠg\«.£æ eî—:–‚Vžíø%J¢ë£5È÷näu1½¾ò7Ì™6„W¶h[ImCÁ: ¿Y-Ë™¢êG/Ý!üñžÒ:5ζj7Ã0ÂNŠNˆ>ªIópžN]Õ•ço2÷P×ÊQ^YýŠà¶<‹8§'(§ÇÑÓ2zˆpµa,\ÉŸ—ÂÁ5¦ ¢Ý5?}ã®J Ï8Wû ø—>»Ÿ˜K6Õ úA¢-sskŽ)à 4oO!7掂éW!ÎäòvÄ3¿µµ”DžI»§»]¬</÷¡›³È$£Ô”ðÆÈÿæƒ_q®ÀČےUã6yiÑxÓpjš¿d™Ì,qÈ>†"Ÿ²øƒþ{_ç…å¦7šƒ?s—J€\+e%dN’¢ÎÎÑ©Ó,‹;©cË ß=QRá½P“>©6œQ Pø5y"`ðŠaª©ÄÏïògÖœ‘=t’¿ECO¹óÕÓNvžy›v-»0Ør,ÛcKFmÈû‡ù8 ’ VÙÒ^0ôÛп{ï§ÌýQìd¯@¢ØÉnЖ\@~kÒU…ÑуÿºÉ¦poß U _ý%.ûàîKûºŸVŒ"³¹º·Fø)Zxr_8ÞnX z™Ö¶Ÿdt ­š˜y\Œ¢€ti™€ÜøÏ|ޟNJȘo½á>he;œH_¶ž%BâÄ䎟9a»àe×Y››/R™)B]¿-/¹³òöþ”àÊVæØT] ¼yMý'¿!°tK:Øäté‰C—>ÊYb8w¤ÑŒBK½uÁŠ´ì´,5º,KL¤çˆ.JαΆÇP®U¦ª¬ ¸šjhšKXÅž ³=§§à=íWœaà&9”ñ0H8²©|) ]’U›¸Ð‡Û yaé¶aɺ¦èÇ]ÄÔ§^íÄžvÉaû›ŽuÈØäëÌÉznd©é~rP`©<!+ñÒ=”¿ |kAF©þš?‘r{ ÉÁ7šku#•)êzþF]WQàÏĨ }Aìg¨/9bþ6 §޵)³Ð¢V»ñÂS#ÁzÞ¼¿ƒöd•¸JDKÙH"­)…òãû¹JüT¾KÆö–a§ïö4‰<~•ÞçI¶ßj2ï×™t|!-i$-˜;¸SjlzÄœgXi‘¿éõY]QXoë"A• ¨ñGdJZxû¾ÿe—àMЗ¥¾¿ÀHº=Ô÷örƒ÷<ßreïÓ½L³m¼>„´PÓšš¿áV›Ÿ³Îhw]—“o«± Gí ÉÄe🠦z‡éu­;ÒÜþ¹ä•ÌC‘v[åDrí½õ'„)œ MÀ«ç^Aed.%P@ Ù¡:‘N‰xá©í­&küÅÔ¯IÔ::­š> üüö ÿZMèH.ÀˆÙœŸèPÁí)@º:‹Ôˆ`£ Í~¼Þ†~‰2ùZ8CpÀ|ÌIáX%\ц«Ç& WïìÓø9û«¼Öú?ãF¼Cw!ÝAìíP`ÑTá/çI˜@óo?ÌDÉ*»";m…Žq¶®V3øâ1p<ô¹X`›¬‘.¡3¤ ýë~ùßA¸•5 *ýßp @@rô[ª-¼, ¼É5\Öyå¨BjÏâºÂΈ]èüÕºÚY4£pÑ)Q ͨk$T+‚È:Ì%“¸=œ×„à`L•U.jšîêø-«Vp=oÇ e«Z0Yš>_–øp²ï¸ŠÖÑ{9£!UŽ[Wªo “BWIçÃ¥.¦¿(oˌ»KBÊ`V7áKËA+_Ym_Ë;ôL¬ñìÎFb}!2ÂïÅ —IÕzt?ÈÚNª®ÆR¨…ßqòìŠç$$±ðçc{S›ØkáXK¼œÙ¨|WÈØ»·Í*êNîx«ö°Ûô+ØÁ)*¦ç^„ìÄK—ÎÃ?m1“Œ«rgÉï¢ùÎ ^ÀÌí–÷ÉP‘눿WÒò_W.Ö~— «)›õWMO"–ÞuTÉç—ð÷(³ÎQì7½ô[|¬n×ø­9áPÙºÍ þ”Œ§ ¡]B•$ަpãóÍÿˆ¾¥Z (°SÈ:ë‰r’K>Á1«ªwá4À¦ë7ÖÝRÖñ2ÌœøÃ]Z^3"[ÒO¼º=ÿC«,º†ö!U#VÉüm×HD7®]ì,õ/™zÞ•k°i.Ý·39ØÒû˜f=‹w#pðÕ»ð3éEðÞp6ÂúÙ†êQŸöu…À ªc,-Ìéq|`4™/錵ho²}c7ª¡UuM`„Û@-Řnsè«Î'AvúgKÝ%4šyµÍê7Û!'Ž×T›ðñø§^\QG@…´“° Áójb¸˜(³Ù½êDê{ÿúÊtœ¹¸U ÖëíŽí^K¤SŽu»I€¡EMÜ•:’Œ¨vSËÙ.~3zý˜s¤´c#&S9c°±cM~ L•¼ïšË¾C›H¾d§Ùú§ç¯¶yj ž(U)tÓ}ü\¡Á+É #ÐÚO3¶<·‘Ï'vã ÷OaÊp‹¸ðΡ_„‘‹\‰Ée¼ZB·®óºš)ëkVW7 £MF?¥)¥4ÊXùŠ\Y:ë‹ô¡þ`â7„¬|×ÝH¹ùªØ/ýÇg¯IP>K —c"°O8cÍüœASj%zý‘»Ï~TnM·9<|‡Y˜èðQ_%½]=—¡h«—ÆíI( éüÑ¥#ÔÛúÎÙ?¦d<« Î(Ž*Í…˜ˆ¹OcY69¾QN°ÇÉMyU<[3‚N"T”²±(ïY¯Ø=uá@‰O™·:Ž­Œ<[ S`Ü×Q5 Øn ôBìK§CêÝèôóf.Í÷¶Êi|âØ²øñϰËIS^w|—òÊàú cR%yUµž «ð îÆIëJXëfµ+S£gVÁ%s-†‰w֒ϼœ&ŠÞüQ*;uöù~Šg}ÅId#ï!{æÍ@×»…© ÓZÏ¢xqÂq„¸†òCÈ33 hÖTc¾úßùUþ!ô>汎óhj DÓcã‰xOÏÅ\‰Óï0ßÛ7ùêX Þ[z6ÊJn]Fë#·¶[" óVåv¡BX ©Ý= ¨#zê’ÓBƒ°t®™nf³Š`–:žörB'áP-ˆ¦6ÀA(Try µGÌ£í~ „»‘a¾_ ‡¡Eé“1Ühâóž‹Ò«Á–q`„'b-{½yPZJ1ÕIŒ¡þù] Mç Yh³Â•¹~Óa _ÓÕ¨´Šl}å1hz=úûáM*š)? #¢ApfXžqísž_&Ô[—³ÇƒÈ¸{%S=^Á°Ì_«ÔsÓ¤àˆÑÀ¬ò ìÁ{n|¬¦Ñþ“ú&Q½pLú#3«ý¸K%Õå”Ë‹÷úèŒe5³²ZY’€èy¦ÇºÆDÊ/_™Ã$DiPŒêYø†å«¢ñ¶^Tˆ2Þo—’J¾ƒá3;C5Ðg® nñQv¡HbòQ¬ÖÖnB³1¸»ì½@0ËJÞè£Å©ºÖVÌ myŸ9`M,[?°`,kŹyx4Ä}¦&­ÿöüi:êFžúkàŸÙ™x'UÓŸÆm¯ ¸8;½QÝA°fKJQå)š¥hÅÅX 'øHm¢eùJnjHék ü¯`#'ùF—ÔFØjÒ-ífDà %NŸ?#&ͬv¯ÁuE‹‰¼û%\ðIš,9l{à¢ò"·3eæ¦R¢¦Ï¶öĵ¡^á½ñ×ç)Ï% HËü]™”ÁˆJDQM˜@å¨>¡+¦êÞýòÁ9±à›%YHùe^yÌ͘hº@‹É”¬?D;;畬bœoèÀÚ$½že_ £8Nõ.x‹ï…³ÂÂGû‹ËªHÆ’Á+x¹-˜Õä6ºòœ5ÑžM‹Ço2 _„.»]¦¢g7þ&€çUûÔ¾æâ *}=qø·Hü„z1d¦AÒŒ[‡\ä—†[o»ÞµÆ Îð@'sªUúIÈhC¡<Êõq’/[(ðÒP BÓöj–ŽÍÖJùôŒÚåþQÆYÎüMuú|Bíy°¾(¤W2²âÐñs7õj)1w{KÏy<»Ù#vãÎ@Ý}—KQÐR÷[·$í©óâ^!||˜^“1§›w%ƒJ ÷‚oZÕ¢—Á'YôSJ2ÉpöÁÆîé€áÉ»N‘½U™šªh#}{†A°†ˆ:0©á7î%õ7á¢8Q:>Þˆuô"Û€ÏÁ—ïhª» ŸFˆi‘`5 Õ<%"}xùRÑ6/óá^\L¡Í2ز‚-ü"?3ç‡N9R1©rhjÝB±í?uøå…Ñâß9ÖNªªÓðf§o›,ôpœÅåSV}‰ÂHNt)Xª‹‚Tx Ùî|‚™8l—ië’ü,(¡ìk~Hr]I“ DŒŠs ¡ ExÍ\£Ë%aßÌ\œ4Sˆ_¿Â2€+ž\R¬¿›®M™g];çÒÉÏãâ£Jž@ë1¾bÄ Ê¢Ž¡Ò°~b®õü¥sÙ¯ÁÿÂg>„e§OÿÚoGK›u31ý YŠyé»K„Nà„hý°!#‡Ã¨0~æH´£ÏÚÕêg1?»ÍAµk•a‚Þrƒ+ÍêòÈ /ÚóÀiÁqî‰N`ÀÊåßM+ÉN.ý.ê2  §Ä€ïë«éÊ<(çdS;©…U•¥8iên‰?›W†§“Õ±ÍÊx¶Oý¾ [/_—ðÜÞ´UíéàœPP¶qÇÒ|ÇÔÜ@`£Æ”êË„uC‚öCtCzHÅl4Ž8pDEâ›]J2}ÉOžŸe3ÞÌëÐy›d8,jÓ5§dåìÏ•Jzµƒ–'²˜Ê¥@<ÿŸ_+#…TÈ}ººpeÙ†wá<´Ÿð˜ÅF²ûþ¤ èú£«&åö2æ–ÐÝû-¯Ì¼ySl”;>7ö4!„NkÔsMÏÈ_k•¼Ç5kÈÔßP ÐÕò>¿ÍüòHåñc@¤îSœ1$• ‘´"ÖFðÓa{—øZS°¦$“j5M~¦bŸ³Ï2kÜì+˜ŸU"›†±ËØùF¥ëENõµ‚Ê>†/a>ðzj4µÌ qNàfÖ†Ïú…A˜¦}س¿ ãkóøÐ¼žª ¾Jòš±K˜€~¡W=ŽˆVMqBIÐO§ßä~µ4ƒ¿Ä7 Šä6Ú±NK–·£]È¿[B)Jp¼L¾žÈ,}^r¨àAñÞDçp8*Y™”âPãîÀ^±"Z5âÔnˆÀR€¦¹ÉùZŠþG™Úø^]ÁZL4}щí1,ÜKD(£¾>A¡% ²†Úçž_JÃéLä¬.Ý5&mXà`çéÛ«³òtfvP‘ùâØ¦¤èµTî;2¶Þ{ùFÅ5×@=fjDö’FÛÔŒ‘Ö²î=]‘–]¦Ü<’‹è§ºud•ÿgpQ3sÎÒòÓüâ+Ñ^¶ã”5ê¤Q­ƒ[Ç»ô rªvïøÐb¥øcrXÖ;!ÈÏW”®whUWŒª1ï[u—JËr x"rË„B¥¦[• ¹÷ÔŸeð…ŽjzuÂl u2z[¤óû>! R÷¾Þë–>XÛŠ­ÜâôNxKv!^âŸ\rḄä{è­8- Œ94œqÀwZâOëQÜ?v³“‰ŸZZÙ‹ý»Ê"ûSÐ÷ÞIÁmì(EÑÂcÔÝBÌ… ÜìáìH,¾Ó††Tâ`À´xMµÎ7b "=«´Ã¯o´Š§ê]åJ±§tQÅŽ(?MµS•væsQŒŸÆ‰ Ô±cù±î^c‚nüEu2=Hy €ëd*]Ÿ±â¯Uì:"õéL{tè6ƒ¸M9g=Ñ5Whò^Êÿüðà{y)^ÞÝöN±RÈñe'éKš2ˆ¼k@tç׈þªç-÷¹YŸ¦ˆuòX” ÞÀ/7Ö£ÿiظ¼[¼â7!jÕŸeç2¿œž6ôoó¤§:ÞÅÈWmLAå÷û“"ˆy_~T;v#ÛÆOOŒp¾VH[ë!yªn6ZBñžyf„ÖúWõÒNd±] m‘nè&4„ïy@ Wë>µb¸œ ï_!2ø9¨ã$^u.õì—Ÿg«Kûmñr¾õò_×vžånÃ{ *ü07Æ€À¸¾B1´œÿî^ƒYlrnÞ¸°œ—ß‹K³ ûI^ÈÌp°›Œ¬VøüUÅRÀâ½™4c`]a¾hÙ'•f1~Êÿç|™Ó=x|`t27»Ls}&QŽT†]”õÍbýzCôÂ¥[4ã_ƒÒpúO.×ýš<u…Ÿ×{¡ ½V4 DÅsIÇV8¹«¶X…4¬sRY§”!mµ$ŒÏMìŸ96˜eÂÿl¸üòãÅ—°v;®`\› @vœÁäüN¬‘ßÿp¸¶€ƒÌdûä‘3³’Ã8fÌÇ2X=ûw3C×î³³-}B«ÉAr¾š¾ª¢³8±ðï"’ºŸC cª$£_.ùòß˹9½³×éy†€¸¹clã´ŠduDRH½á²Õ£5–Ù‰ºDߎTzÄÂG=£ÃʲÏGöó£!`âêNƒÁªP@=äÔåyi•¿ Ø_ÑJvæôQÚ¬MøÂ:¹°±~P7k™·pÔõýÆKìƒÞ».ÅLç-Ñ´¦†°”, ;† ûœO4¾òæ\–+iÀ0²h B{›¬ýëÄH >„‘9›9×®÷!*!7ycv€²¤.Êzq¨ÝdQrL? QÓçŠÜi(c%SL¡x™Ê¾mÉ“5î,²‰Ô¹í!]È?âJ"çT™P'yGµs½rëAW§âo$Œ$=z P,tq6¿P³©PûA‘ÕVÐWUÍÉs«f9 kßÖ²\ ¿'ƒ8'G½*i2%oœÊ‡‰ÃõË®C‡FÉ_tÚ5œ—pV‹°¾Jgø‰ý°Øj®6á~¡8‰/Xöç)Û[‡û&ç.¥¬w_'½PüF¨›§<·Ù„^û-e½ƒõHúÀô×¾ ù]5õ©Óm›x!öOÝ)8Í5"¯ç*zyà¿@I‰ ýpå¾¥Ïàt“< rLj9’èrÚGw3wðèxDN›«@pâÝ3'†uÊ»bQ’¡‰Œüè/Ê*ðKò¢^Á<ƒûc³3Žý~$ø¬Åéý[‡­8‰À*–i,$ 뉌¾³@DÌ„ ‡ˆ^Ë¥®?¹«*R ËJ}íÕ%Ÿ¾¹Üç—Jà{ÉùwàïpxH¸XÇÍÈ0æk¯ùB¿Ä.&f¶¨»d º¢Òm^ÌB–°r‚†P×]ê{4§!è[- ç§6Yç®tÜãOPv OC—¿:…ø×ÁO•š3ž§çêŽ/×)´v â쉯éëÍw‘×H:ÿÒ¡‹¡ËlÀº÷ÚðZGäR†ìrB¸ˆßàO­Á½(ƒØ!—ڦњ-ùNŸô•9ÍH#{Wÿ…g Q9dÙ„^vLùMë…ò©~iœæÈ¹L»uÄÑŒRæ»@³¼:¿FT‹$+¨/¯Cù•^¢äQÚI¿{€j=g¼6>!›Í¥>^ˆ8ü8eŒîêíÆIiØhžÞ†èìˆhª8ôØ[ô•ÂN9 ÖFLýíÛèù¨dOX1¾õ…ÍUz í“9“ ¾Ûó(m\ØkØrm{é÷ÐŒÃãhkô’ŒºŠ‰rÞÎ1‰JY¸•#ËÿÔþðr¶S†ŒuتÁÛ«Æ0Ϋrˆý7ÊBÄĬ@ýfžjËáxê°k¶4J\-¢ØÕ×/Asc_nrëå>­—âÌB“{KxªþôÇQŸ>dµ "@*i…Š®««³mUgxÞíQÔ¢£j?zi·ÏJk«Ç„ʺP|AÁ}FqBÓÄÐkì$Þ¹×ܳ«ªì#ú9¯úÞ­nÅy‹·ýGõ¼ïu˜ù||¸²ÛߢÂçsáò%-C8ç7ƒºøíð9]Î7®ÂJ¿3A^í'œY—ÒuO¾Pi36ñ8g–‘žy)Ÿ•UªÕ'ô8ØA6…0¸L=AèT÷@%c4‘Åêmc«ŠÖjê6éÛ×—¢.µ”=AǦ¯võa[~'ðì¬àþ_n²¾—§OéòÈsú}\¬š­ZWâ+ˆœ‚cÞÇÏþÃùtlçÆÖu~|3ðÛN{ÏY~©,òÒõI¥(ZÌ3˜N•7eåõy’H #Âòx‡ýz¾Á@bRÎ7ž´lg–op8,úKC÷úÖbÂyxÜF ¯ú¢I¢3 –¾’2¶C˜0Õ:ñ2&^â;¿ŒÖ“'_ënh¢Bh,¬þ°y„dfxÄÊÏ0¾Ä…V%§‘Ó}4r¶Z—);-Ø.øúPéBÛþŸ­êä_ kÚ5éÁ*ô¥¾Ýë߸¬tÔ@Z…FÙù þÚÙo@ÖI_ù vJìJ²èÃgwežp93ƒ='¤|Â~|$®KVÓÂh£åe˜‡ÍWó– Ç¡ëøòsûa=iY_žv0rî$ °{~Ùÿ³ÏET ·u¤5Í©€ºëLÓA¨ïZQôxcŸ¥=zÊ„&¾ñVv*åÕ6èq³’s€ôuì@ej,fÞ÷à jLóÐ#´•á…x¶(´‘Wp‚¿ãá›”3‡Á|nŽZ=l.ÔÖ¾ùïÜ_¸¥,õÐH£m—yktU\MAß;·Ô1zE`Â#=9I’¢ÉEP´§î`%ñô ãçV1çé+Lÿ1Žé÷ÎçÝöLYîçcÌT·"ím ¸2cŸÏ*†à˜Åþ4ÓDz¢Ö©O³P-Xå±±*7€N\)qœÒ¯8ä?Fkê9ÉÅúÿ »Ö ˆ/-;‹£w¨BVè[Ç?g ¶©”s–Aâ\ç'iâvÑÊØÂd"%˜°ä/d`WJ&•keÍ“½Î¾ö?^]Ì¿Âû„÷ ZÂs=‚>¾Í†öjôœÉ»WûB Âå»(ÂZŒú,o£×‹ÛS'ZzPzlÐë#Z¯††9Û&?®ûÉóˆ<•qØ™•TÉ¿ÃkhÔ½oF5\ùÒhuøô\¡»9 8=.ûjbPdÜÚA*¨~aÙÿM ý“QáT³¯T©g5 Û¤Ë\‰ÜD–ˆ¿uI¯à…„×G³ÈY{,csû›©iê¦ß÷£+,{•˜ shJmñ"ù„&Ì$£##¤ º./pIk_|%…Aó6Sç’'èrUÄ[³rææMÔ{m®*iºÔ.,—°yk…HT™é‹Íi¾oVÀ‘õª^@ӈɪžb/~8Æ­ëÖËŒ{÷hÍ¢×+Þ»+Úš¡¿œqn ÅªïÁ°ƒëÔÒ0w]ž5ßúÎa /̹OF«¬0É„‡ €‡ðØÉôb |Y¶rœ_ ¶/{&„Ÿr_›:!ô>+8ˆß±ø ó\ùÑAí«s_(÷E7;¤^>’”8x4ñ[Ö›Åg÷“¾ÜÁ ­2=»áëÇ÷_’ß~’à† íÅ›~©UrC(°µ[¢œ›'®yœ÷\ \w൤‘ÕnñtE\("XËáe<…>+Ÿ”5%„7‹i“Ù‹¾†ð‹‚@«gƒgw«BøN_lK7ÚÎCúô5„¡uËÚ®EæØíK  7ñBï$‘Þ`—Á·rs¥=ïpþQí ØpžˆÜÉŸzïÂ,˜DèŸbô æp©èlÙ6ZÒ–ëuÿ #¯,\rY~^ˆÓ'ÃkЄ¬{*ßk]:ô>Ò;)Ügd]D¯ž¥u)°²®bró¯òjÜ Ò-ê?à²tX‡qó/ÞB¾Æû«J2·æºktJЗ¥¡î)„†´µYX‘qMbQ*Ô¹'»s¿Þ꫘ð{Hh.Ô Gðf'áÄÓruËêÞcE—W¨¢Ñœùœ’ÞB‚j5*0ãô, ýNäàKÉUŒU7ÕŠÐc   HíV,ަ:FÂÃGO$eþ¦÷Êð¼®û8ªzPj} Q‚9ëvÃÊØ¢‹ÈnZ®Ü倽ð{VrŒn]Ë”®ŠÅ˜öQ !à>‡%hy­¸º²Õï6«À“Ñå_«ô*q°'% ÝЂ;"i9H‘g'¨ƒ?¥ÅÔA¤¦É߀æŒAq7¤¥bIrÜÀg1ÀTáj];YLHÖ Jh¾ )º»•_«;³6ÕõƒÑ{T®zú'ŸCàöIÄŠœFÒˆ“Þ¢~èG«„If[EJ¥ôŒ`¿ÊÈoOC)8cÛa‘ ‘÷ú8K/wÐä1Ëç¹$®úå…·¸í}®‘’S®Œ4Îè³øQº<.:ÓÁÍgÃLî&™¢¯»’˜±çxÏ“úUIÌ€}Ö)ß§U|g&­í2æ«'>9Ma8 ä4,û°ŠÍ¥ ¶?Ÿ°ú‚WÔ=I">çä*­q7Ñ Þ ¨kP¬9—•ˆ½½£^[¯#Ñâ/ëÄ(mä"³ùbc—èÉUñRöåŠ~ê<^UäÀ †Xfÿs$àà1.Ï¿¥Ò¼Ó™tÇݛ޶@᪊ŠîøîÀ$0JÝ!¨DI9å³`4!zx6î$h%‰Ìv­2Ìj`£e”{‡ó<¼”ì ¯ûBá0”†Q¨Ì[åöyÿ$™d8þ¸Ë­ëýCrõçŰ»úчÝ^³šïžúgÆôðïªc‚AHÃ<ènÄó¦÷Sê­ý±.#ÿŒt: y$~'­‚,Ø"4ÂôD•ö)Õ÷-@_ÜÆã«´ãò¦·ñY`]‹d.¿QB··4–¹´Ò¼,©°3ë<ÍÏ쓾C§²í›YD¢÷°MŠõ=ÿ§WbÖ"#Ë9YB§xص>¹ÉJ*´ [¾ZØÖ±ÃÝæ¨t|ÐB×$mdfï;/ð¨Îo/x¦{7Dï,Ì-îÕzÂ%3\ì[åï~mòùpH[(„Ÿ™FÜŒ5tŠÁ~8‘!}ï4ÃîÎwâ/Ý®Hi6îûŸ»0É„Ö;ÙÑðNb*"w#`^kCDÈóàsiÚ–ìuÏxñê ȱW+û™ˆtñÀOÇËRu`¨¿"ˆÙ†Ë |™Xc¤’aGoÒhέç"­-Â0O­WV«Ê;uZ]÷pž*Qì –©±Êˆ’?âq6œ–¢#Z„PÂ+Ù%› “IgñÑî­A?³'ˆŸµWqÒuÍ ï¬é`ºö§ƒœ$çèÄóSpofL±z[îÉ_¬‘+xÁ4üž–Ÿ–§'PG¨üKAq9½ ß/Ø»9·n‹»˜F¤JŠî,g•é¿×¢Ùî}¶‡Ö£á×Ãiî%ÿ¾»…L²‡büýæÙ–§t"xà¬ëù6$ Ðî …ê=Ãÿ™2;Ãm¿ .ãÎlŸ…œê80ÿ—Œf? åç²ÔIEžǫ̈ÆÉÄœ7±*³þ¤¢&3Œ°h•ÆCp±¯…׎·Tl2u¿>oB`GËÆã§(^Ÿ¼AŠÚ3‡ÒŨ ²™Ö¤O¶ „· ƿǞ¥ÓPF§0g‚§ÌÖ°â¬y¡fE2çÝ£j\\ŒäÛ8«¥»¹¢Á,·1»÷W§ž3n,_v£a…Díªi0…ËpÆ)%f^†äQô$9/Ï”uÒYÓyT“/seµÓŒâ®yÚß{õ_"òÒ]PC\IÓßÇšb=ÆŠËýŸâKSžÓ’ ´6%¶c./§ïç¡tD¬ Ž}U½Q#7ÓßøyyŽQ:¤lkÞO« ëºó’jù²&¢ŸØŽ†48R¥xsCö ¸ ÛÚ%{Cv۳׊#¹õe®É÷‡pîÐê€JZ•q=z©Ñe<ÍT׳´8"½ÆºO÷ôGZ¯j¸Í]mgUÛë÷e‡ Ü>O×fÍÕ©¡ÌÆJuÒ0!2øÔÖ>ˆò:ÊÁ²l7cÄ–Î!½w *W~3xv ²ÈŽŠŸdfšö«³™B‚=UŠ —ŧÁ¿ßU±úW‚×U+—’&Ú·z|Ù¼$(ÄôiÌ„¤ètܪ7ÌàIŒ7@)Óµ°8«Òq¤{„š@â(§£ç»_©e­¨¿ueµË±öKç³Þ°=ì¥òÖN´ M`B§w™Ü²}ßfF+i­ðù,}üäåEþ.»Ñ'}&.ëΨԌz³­òû Y”ßμý*ÃÜTŸÌ1d÷m‡“ûI/¬k+f¿ F¨ºtsÝ)–´ÂJ#…ZŒƒ»ÒmÒ5R55ÜØ82Oסö]à¡qó 'uhºU®G—>؆¡Â ¬é`ñ)óS4S*pE4õ'¥p/ÑÅ~ëzœCíÓNO·ëÆ.Á†ºa[×YGJÀu<×+U•I¨=uÙs)€Ký:aÔ°YkN @:žÓˆ$l^¹n2MS]ÙŸÈ8‰›±J”£C;0™Ì>}ü*_ð †fÌ~?ÄJæ¾·È ‘»ü²¾ÚÚøm˜JÑ!˜¥Ý63õìíÀoSH„UŸWÊõ%,¦!©;a)|,é>ñe6©\;Ôݽ=ÆÂÒÈ䯪E»«6îÔã"»»YùI’¶šŸ»Ò1­lÚ&Å1†îÇέ½Ú‡µñîØcMÀ_A±WÅOžßu£mI¬ô‰NaGÒÇ_‰ÔʱC ü‚ÕÂ2G—ØS8dªÌ“òe–ÉÁ7Gt/4ÌY£,üwlS‡p•‚¤2R£5¤jy;ð‚‹G´ióó*:vϼxÒ – m¢iøyîº5³«¥ 4Æ#Z–Æ3ËyËȉÐ1/e‚ü`AÒ+s:ÓNYÖA=G,Ùz1çÏgïýËÙ’Ïʤž_«ú š>¸‡]PPJ‘–ÊÇ¿*‹e¢=5Ì zÌ •\ ÷LJ zêÛ´Õ8cŸ’·Pg%¾_½ééM÷Ò¿ø E¸@@=ÃTÿ?þˆñ— ø€ö™¢Ïû-ŸoöFT*ýÞNcV}3ÃÙîeŒ@A˜“T}Úd—ÂWt Â;ë8A ÝÛiVQ9 Ÿа¿ƒ§íšŠôêÿàq|ê'CÔÖÄõÔc[Í|†¯=Â_+^ ãÜ^Æ%èu÷„ͦ_ËQ"0SÆ“¿ÚF‰Ìª_w}ÝuüAiŠ S¡tô¥â^Ü V¶™ÝŽBYýÈÝž’Þ<èŽÑ±rö“Èèä…­6UâBK·£“’½¢¿LÀʾ¡ßFÀëÐxe…ºÃ”0ÜKÞ¬¸G”î@\ 4<M/ k!0¸q¬‘LÜ¥&EªD¡z…=MSBv‘ýÙwÚgÒ‰¥#÷NU? ýè¹Ã 3Ø*™‘&qâ*Œƒ{N¤/ód 4~­n¢”QÁÆ 2ã@ZØØŸq‰¾˜çü)r÷`¾Ã³¯ÍàkdÄ!€±õ$³s›Sÿ‘ËÀÞ–yZÞ(2ˡⷰõ)?›’SŠˆD†ŸêÔ‘(¹ÇÍ¿XB^¯šë8é‘Äî;Hù%Ýôæ&.w.O°®GeTQ>ku@J§4H6Ù&cÀuF•Fó'ae˜Ì©CÝp5ùàMéçŠÇWÞ×1s÷„ÉÀ'ä,§‚ȆŽÚÅI§s•§lxµµ‡±+ÕŠæ"lÞvê¢Á¤HIr³ÅP"½SZï\†×¢ØÃ2¢4°äí¸3CLX ]õ—kƒœï–yöÜ”â`p¹3K?ëMæ&께 g.2ò*$Á™kyr°1{tr=¦3uI¿!µ)Iú./]ÇÒÛ`dC@„JÅ–)‘N _@QÄw¥õÅÉ+Nuµ"]¤ô­÷éëôÛî€w¿“ÿ2I@žs`»Í±vçyJHdˆçzáE!ËêpGäv|iÛÊ%6„'AæJ×Öm²ÅÔhC·”¢Ä9­ÂÛçx’X(t·~ô v²YÝîÓN{C)(r mIRDÑ5›<3‡­¬ò¦>DÞê Ì²l\¸þjòkö®è̋ܤ+tŒP^nÙÍ„¯€ŽÖ$SðMñ`‘4Ð`…mÐü½Ï”Ãî8Š;<Ý4 Ó†ß9³$_®#´¡»“ýLüCZ —‹x‡vx^×îÒÀ¼×Gc²šm*'„Ë”.°Ãö Ìeîê'i9V+¨+ŸP_óTzLrSÒ¡E#qª',‡Âˆê_Š&ý?Z,+@[GÖæðg±¦ãœ¨†Wàª?‰e¿œÁ—å*/«éj½ÔÌê‹Cbĸ¸ö2Oóˆ;u¨ …èP¨0M!Êÿùñ• Ø ÛQãF˜©JÏ¢i›îà6Y`û- P09 - 3*Výû¨'ØóÕɵN¹8Ê,òˆ6çp`U7v†–ܹ"/ƒÃü<åÜþ E”älÜš| E‚¨oÄ£ÂÙz¸‹´¸Bªh3ñOAójW{•„•,ÓÄþÂ9J8×y c]Ô¥œk’–üþ\>ŽëIéÖ°tr¾l¡ñÜêž¶Æ¥.£2eð%ݘàHýŸï®ÏB•†ùK…×lÞ]3Ñ{ʽ_8èÜRV‚d¬¹?ò“ˆ¿%­Äáâ;~-w|ÒgÆ1ögdܱ¸ÅR»@ýzcóÜë÷™§ÕçAH’ËJ|ïdx‹" ¼`˾µ®Qg\¬MÞÎéuGJ‚Ü :U‰c/!¯ÓØZMÃÑì˜Q õøÒ³TڈУf³°²ÿWå¶å˜ì&V•£Ç¹Ë5úÏ 7ŽþV®Po0ŸÿÇKîéÑ÷ЦJbXød>>ç"Y¯Jð)—âéeyx_ÂÜq!º?Ï "m%”´xÅIÛ$´£¨ªâs¬gd÷Uͅ²Y¶·p1Ü?xÛ·ø¯+ :ºÝˆÖš« Ôõ÷¾³SóÎÔå¥-ýºyòV’ê =ðOÈC"+ýmÛSC€ñ“mÛ´|²¹lkÙ-,žlÛu²—[¶V­Óâ²íZ\~¯þwï§xn~Ï~P³Y¤‰èÅÑd °ííPL§êõ§ ˜$íyXh._z†ËÓßèìÁž££”ʰTœ]רc¬æÄcbN[mïô"„žgú'pþR´DºÖ‹þXSŽßT–Ù`¿=TîH÷!ÚEO9#?¾šYCÖsw¡f¢àÏs£þ…Q»Ä§Ñb{vù]WˆÍÅgF2ûű2ÔÃJ–ÊQwõä½ÖH)øV‘bAiLkr.$óÕÕÉâ^b/G¸°Còâ呜gäþ‡)çü)æþKJ?ÖÌ|4ããæuí5=áñ7â11F˜ ©¢ â€(²Cô)z—™_sÐý^…»AM€G|@‚ú ]´8d;”[ùjXÏS"m”²ÇvG!ßæÄ~`æ”k@ssâ«*Þnuï öéßÈåÚ´uŽ´Gׇh†A„:—ƒ OÆb¨] žðá·©¨ù@‹©Œ}ñ´ÒØø­²üIš7ùù¬£KfÏ>/ýK Ìý›5ÇÊÚ¾~ˆc±BY÷JR^R]¡9ë8ªµ^o_m¿G0{¯·~Ðð³Ï(¨&¸ãÃÄ<…Kÿ’sɆ/kV ËVj^éä÷P¤ï™L|‡SÒ-g}Xצ¤¡Š’ïIã Sæíš¶?TéÑà©æ3å¡`Í9&=öi”ÈIbc¹Œ-K©åšx?6/WÚ÷nk¦5:„Ù¦HíÊqìqéŸØEaº/~žÓ³Èp<Ù» w_q @åp#¿º®Óò>#zg.FBëgß"9þèÖóóixÜä42ŸiBë½™|Ÿ;¦Z`Ï5W²’7K«~k£ì´¡¾¶ÛÛRµñ”k‰e0}GªË ¨‚éͲ)ý[CòæßþÔ†›gj¾ÔÆÂ}¥õüêe‹Qu9ø€­¿˜DqÃO#ÆbO¢­=åPd€Ë+ž«iùÁ¿anÂxw q!<QÕ¦<Ÿß˃7ä‘*Oåi+NÜL©·mÒŒµûß_`,JyñÉ”(ÙöÅ©|-ÏSÀ?ß”‡CâýZ,›‡ßM+zÏgðù;sKU’o¨)>NûqHEž¬qe x¿ :ªšŽ„,Ÿ\EµÕk°Ó8\s@Ùa^éÉ”]§ç’˜¬üõ³Îé—:üoô*ÿëì·2R/ tåk,¹ag)„®#ñèê70V`oK¥ùŒ¤è͉Êû).E >¨¡|?p˜is;G°'᪹®—½b¤Ý;Tàfû+6ÝêàfÈ1ˆÒjx¢D ”Z÷`²ÿrý,nxÍÅz˜~Hg`%y3u¦/J©4ғݺ¼$d´þ½2É¥›^…b?¹X£”ë‘©47ÿu0ºåw>ÅÔÚÔEvðÜ(Ò±­£ÓXˆèØ~e–Ùtq´Ìç?ÞÏ[¨¸NCç[¼žÍ‚:%öŸ" |F™¶æ üÂDý2¯è’\³<Ë œ²º÷V+l#â|ï×|žfväY%=T'ãrV\–Š@/1 DôBÅÝv.t^ãq«T‰|mþF÷¬Dsq%Pì@7”èøÝ¯3ù9‹Äý\*Ð)2Jÿ祄°<]Ÿ/J;ò9ãÙ/šÃÒV¡ˆ†Üz'g{Ɖ9$OŠíî×; v?æ_8Ý ì—rÖzÑÙ ×:±êw‹ì×Ü%S?± mÃAf¬*dóâ4«ÑÔÛ6q(°•" ›MƒfN‰éèÒIöd¡ðîμíÁZY`÷; ß]ÔP0¹zõÿ…‹! ñ)*GÁ¤[a@iQA|.-Jâý5þ` `ÊKCÖzþp½Ë¨ŸÒM)u&TúëóΧBº¹„gæm]ÇU)šÕéÿŽ>Žù)tdSŸ¤f’{á!à³Ò¹¼;º|vY~`}DŸÒ´=B²&–S²`«pC¾‡×kÁ£„z…iXZ ”Œîº»‹i$Ñæ¤î«°cd¤[¬ÀÒÅ#6éh- ªŒƒk@t¢±ßÊEÔ~‰ºêU{Š»D¢HÄÌüÌ •ïaj1{c Ûlh§Eób›úeôTB¼÷ŸZ)R{;cÚraÙ“  B^ :Q9±Ô¤abÔÓˆÚiMôÉ `ü3Ëάз‡´¹¶ñ7<—M§švªþcä™ÇåÖdŸ±ëDÄÕº1Ç»DªXÀ·é.q›¼ˆ Tr@RÁú›•A£ ­Ók>ºÞ2ä·Z¤ú\“ƒ, Dº+43óä&la¶º ¢#ý&«>]Ÿ¾ç.ÇÒ'›´¯g ¬4¾¹·žKÏŸsémX§)~Ñk‘Ý{@Z…¤’Ê,ó®”àI—Ü xCßÕ”KɾÆÛçX’a·R5h}íT7 ¬ þ†kF¹“ª UׂÕ%¼¼bºQËøÈhÓâê<:O&bØI6ˆåÚîRÆØÇ†´„ÞS Â"oËR9¢—ò¡®dçŒÖ¸cJª(+Zm]Ž™GÞ¥Í ç1êh‚bZ”Þ£ó‰•V1"êÁâÐ4¼è+1®ÃœÝ$gfÈ-óùŸ…Ä+¶9ðRÏ Y‡`êˆö…Á(¢TOµ8ø‘³¢õrSÜVÁä X?ü}¬ÉmêÐüt¾“ ­ÐÕ!RjÊ¥§éÂâ /ü“kãË,A_`Ï1áw‰¹ó5¢3¶î8,T:q¾±™ÖµÇHŒŸöœÅ&Æú¬—cýêÒ2Ir?G±¿±8¯’ĤÍL›¤útÛÝóE/ý ÂtHøÎT´"7[Áç__ eÞ¥(ð™õ’£™¬ ç&t,sáX ÊÁk/…ÿŠ'Òä&ËãêyÆ@W‚4,4¥#6‹þÈ—m¿‘Ô8®P»Á˶9몾¬Éö1åWwR¿4(Xî´¡0 ŒüQ±iÝ8lS`: ñŽ<8þÛzIÓ”‡"ãúéT$¦ð|áÅÈF•~¸L³z!¶/‘!„àp'­YW½Û/Ì>”}–ì„`ÐÁUÛÆ–/1¬QÕ`õxâZÞŒ-¥{Ë&$µI¶ÛSd»ü`:ÿxk/JW]Å/Û°áäE7ºèGj3šawÊÆ9ú¿J’§TþÙHÒ—Öª:³*ocG„ɉ/Iq•©à¨ïp)zî/ þ´[2:Î)øU“ÝûäP2P1é6äUÁlŠØ§»š0§¨‰´ƒFdZ¢5ƒ#2µg$œOÕk/¿\>©è„b‘¤í ‹­Ð²{³ÍóêªÛÒU=2ö‘ÝöÿÕ9›îÙUî6[Zò“£\ú™:ÜKÉ( /þ1´¤¿Š5‘ ®ÆM¾Sø£*Õ¹°%D PÜpNzÁã=’8<:ÊÚ‰½÷•Üxܤv¯«î$*FåÁn ²> ¯!¬±ÂJ#¿ë9ÎÜ+üM~°À(¯]Ôáþ‹üXpK¢¢´ï ðÖ’1âf zHšN+—‡<À‡„ŒFZ9£Kf˜·‰Ì[Yz!Ë¡®ˆ#§2F¾cÀñŽæ—ÑÓ¦JŠþQȹBF²aBT‰¬’åE®ZêÔ=X<Ò¶óµLG×&™^Ö¯ðÞ4~¨¤IûOœèGž†ç›IV•é*îw2ß&AÁßz:ß÷‘üF Ïì,KôsášãàJé§¿Á{µI,YÕO%z¥6ÓL±À[Öî.c Rt1¿§)u¸©º—º‘SÁi8˰4(äw_çÜV’½Å= æšK ¡œÊ†ä ‹ÇVq³_Þç-D™2Vf®hÇ&¶_4’uª¬^ø1¤ñ~­n!æbBˆÞ;ƒïož7?õúÏVÝ—.Ž]ù×7nªÓ Ûq6­Àž¤«ƒ×…$ÿ6F Á˜²»»b„Á tŸSz4ÁÑvR’‰ÅQ¬ƒöO,1ˆ4 ÊŽ£‡ ¥µÍ.9¸&Ô¿ž)ì…ÂdŸiå€í^´„p-¹\›mq&áðÀn=ƒ¼LïGú|Oq9W4ySÀ9n…ãÙ;ÃK¾ÃoâáìøÌõ=N&Û9X0Iö÷|î†CviÕ* ãCâ—ܵ=²F”ÐŽê‚e¦²ohÑà ¾zg+G¯ ØÜT*Ù‰ÿk•I ?Ÿtº'Õ_%–ágYZ6 ŸC‘G‰ðÛ+uêBåÕÐðIšmúX**ÃG¿%§ˆz·I]ÆÃåã.Cï kŒ¾9tñƒds˜àÊ çÜÅ’w¼ÊA‘¤˜Ôlâšó òÛ™*˜‰1ð",|‰Evô_ù£ÃL ’_Hryé˜ü* Mø(jgCôzŠÌΠ­”99hø —9æIuØóú0lÛÞÛñ­±yî‰À” з?Õ£ýîs;Äë sêaEØæj-¹´ŒÇØž¯4”‚^«è¼]ùw¤‘ÑÔ#¨ŸfÃ4nùb†„ljÚÚÑ£©øœy·V8Ξ³þ©òÚÿ§ÈÙWÐA¹ »B=ÅäwâAWþ‘­Á»1·`¥Ù¤>}ÂÞT×±›ÒÉÊçªÉiNêMÑøsQ=¿W…k_ö_ÌTVq¢"®n^c®ÞŒÉ>“k¼Œ“ÆEO£=I ÿƒ‰1)ꫲ…ÄÍ JUº÷ÆG õC+ÜR½›"ê×µÆfQ¿$VÃÒ«øÞ›ÌùjËWêßÍÙ9B l-Ýäçûo ¡Ò©‡¿_Œn²B´ùœt±ž@ÙߢΕŸÉ‡K(e»ÐÄ< :{´¬UU‹{¿Q;«>±­ãÑ­Ó;D×Q§ðï´6º/ïºøBBX³Á©°2ÊÕ?¥‡Mêa²ÅOgŠíkQ²¡sv›Ûw¡ì§³d1s_ÜrîË1%¤³ʾæF™%Ú┫žP®ðÑ1 &Câ<57~ö¦ SX[ÁùÀ ±?¸üi{¸–±DEà‹Œ‡ï|üKfá’£N¬_¤³­ ¸¢æcyDŒ;ðp0¬Øå Ó Éwí8r#»W$+Q„ÃsGýÍËà®U‰˜Jë›”<¡‚ÏýÔ¨CΔNk@ZÜ\‡z8†“·^T¼_Dâ\†…ê^Ñ)RtT=–„ÖÙÌÖ¨mŒî¦mˆ¯ðíÖ Ók)K5e-¹´Å'ÜêšÞÙ%ïlúÒÈ7Žú ؤ¨‹ÒÔ*ëÊ,ãŒO:\… &–ÅÚ\y~]EƒŒBÄQX‘)/:‹h UÇGÅYi•ŒbGÆ'ozâW&.\jÎ.Õlÿ•_ž{¥èM* ‘m*ž:ðh!Ó:M–ÉÕb×3ìá´t©˜>[qoôo“ù±c*B:¯»ÅH#&A¦˜Îýp LtbvõW‹§f7S& †¤HžÄø’‹ÛÝGmƒ"3Ô™5 *3C«Õ)Ú\ö ì¨'iqzùPŠŽ¶F­Ð =4Š0WQ¿œ¿\@þ °Â©ìe|4S%¨÷ÝOäáøôU:±~Û(Æ"ÍP]KÆlÇ”¡ 3WŒWâù‰¸«Ý41DÛ”4Mj†0@reÞ¢cÄ:ÛË€¹µ%%¸ð2jÊD/#†½‰D–»Y1Øq9§Cá-XZ „]Ü#“[½™ˆ$Ê#ßSÕ²Mì*šXå0ÓÇJÇi(÷ùù;ï‡óhœ¼ÏX•WkŒiµÃ3 áíßt~Êê0xü¡Ær눜†0¬´+¼‹EJL>pÔéÝÜáçSâ3À7Bò+¸( :d¤œe¿©ûÜÌ΄-aÆ2X¿ýfÍñl¦—(¼¡ãSÚ½ÉêaWâJ [È!.ÈT´ÐÞ·«º¨3êÛ(@$RD7RðqÛ÷µ¶ŒÚä‰ÙœÓ­öû!*鮿Dó_?®‹%>Ñs ã>7ŠA,ºÂÉ^4Í/µbýJíž]um„*šü½íè"4ܘÅLöº>ûLàù <ÆqØÌâõr’ænqwTRp˜®ÌE-²„Íù¥kªÁ?­¥QY‘'Ä·¼ EUÁ½ÊD|ŽüÏ=E nLú‰S/X¤¡ E:Ÿ´%z¤tž„ ÔKÃuw DÔ¡ž=$³ÙäDᑲm¾éqÓZŸ%°Aw6ý¢±­Õ¬ V7iivBæõHÎ/ŠŽw¢W<ÎuZ7¶ƒ„VÙr°o´™oiTÌëÏÌq·9çÜ+«^vwà±ïƲ™PÏWÇ÷¾“J > stream xÚµxuT[ݳ6”âZ´xŠ»»»CqiK!@pÁ]Š»{qŠ»»+îV §hqøèûÞŸÞûï·²’“™gl?{fŸuíu-VI3ˆ H†±r²qTT5!v@0'«" hke àbãààA£¥•†‚€0+X øa–€·¦°gW(€‹ƒC ƒ Ï ÀÄ   ‚µÝìAœà_‚:ÄÆjt|†A` +0ˆñÙEbïµ²°„ý‰ÁÍÊú'Òo)6€ÐÔââhc‚ÍJlªl5ˆË³Ò ÀL@–@[sÄ  ÒèhÉjjä5ßê¨k1²=Ör²·‡@ÿ§i-my€Œ¤š¶,¤Ë×ÑÒþó« ?×oÁPÓ~Æÿäy6üã®*«-©m .ËÉþg N€3êhõ'íÕF÷\à_¥=»šC!v%0XÂ`öBìì...lNŽ06Ô‚ÍÞö¯ú´-­.¨ àù Ù‚þ"Æ löL'Ìôw€?›P±2Aœä ƒvÏT>;=ëaÿ,ì™ØŸ˜¶›A ÿHc tüËWE]]`´Ã@` ØôÙ„99ŒÿÒ=AfôH;A¡r¨þ‚þ3Í?J—‚<¯ìƒ­‡Ðå¿w vrtÿ7nþsÙ¦°£•#Ìñïˆ €¹•-èOõŽöÌ ü—NURMQNVK›Uå¹ñÀ¬ªgvÀl0WØ_ÖâIʨ8øœ‚<Žç&•›ICììž«vDûCŸŒÕ3O0Ôýõµ âöøßzs+°™ùæÍœìÙuÀVN E™ÿ±~V¡ýKg‚8 ÈÕÔ’ýOº¿ºåšóú™/{ˆ=Àhëò²2=_Ð<Î êòòøwà?%4N~€™•)ì¹ÑŸ‡í¯èŠ`s@ðoõs%ÿ€þ§þTÆç)5ƒ€mÝf s4v5ì¹!þÿÌÙå’s²µUÚþ›Òÿ¶ÚYÙºý§å™èþË Úmÿ ³r”³r™©[ÁL-ÿföoýß¹$Á¶ +'7×߈Ο±²}îßç3ÈêÏöçû/ì¹5MmÀ GGÇ_虎ÿ*üyþ” `×RWÖ•”dþ_½ó—™,Øbf¶pñò€P(Ð ã¹!¸xyœÏ½mrý«cìl`ìÙ`ïó˜C hvUÀü£ú[°›þSâäà°ƒþM|Fíþ%r>£¹ìöÿŸWÌn‚ZAÌþÍ‚Àý§Èû,9Z¹þüìûüf ý[~N»ó_â2¥þçÄøk8þEÝÿ¥ÉZ0(Ĥgeö|ù7U jåúžã¹“9ŸõÏŸü3ü´ÿÂó–’‚¸z°òð X¹Ÿ)çàûC¯×øšþ}ªý5EÏ{üùÏ‘\A¦h‹sSá@ë䆠boÙ¼‰DZA¶Ã2B1}¥Ø—‹im¤¯e²PÄóýš|Óéò!* B†Þ‰~àB}Ú@Ûǵæ„òñ 3 ‰M ·ª7)–¬äÈg]6ÿtÕß’*Æ=¥Ï¹E”´¬ä ºÌp6âCmq]pHÚI&ÚáaO7øÑÀÉE¦iãÜ Â%$ûîN¼-øˆñûp†­tŽ]8&|ôŽõÂÞ/‘-gŠ·Àú÷ʺý)3t`Ü«ª$|q s¿ìÈÆk!a¥©53Ï3në•×·Ö€k8µŽPÖXÁ“ xÓ½as½:ÞmºW»’ŒÂ$–z‡ÊŠtw¹;òþ7¼ywØËˆ#¯ÂÇ£I*K¡]ÜûºëÐeƒ3R¡•~`6÷.·$Õ£®‰$6AÔÁùý@äþE€Æ~’s¶_(XTâÓ¸¼äÇn?­Ò›§>»£{²¶±¼ W‡äßuùMñ†J4ãòYFñù“_1:e•eÉ#rê¤N2R¢!”@Q) »£¼\Îü,ÕÌt\Rq©8kq^AÕµú?ë€Ù@ $ü5wìz¾Y¸è)Â’RÜ)[ÉéšzÖ”·C.=:Ë`ùÍOeCʬ-Øé†ž1ÇUv^uµ´ÍÒ®—±·Qþ¿û>\|MQÚEs~yb þRÞÁ¢ór?Ç!3"a"ýݵý]æ¶fÃÇ&EÇØ(}]£ÔEØ´­¯š¿Üþjñ°’IÉ ~ì³™í%ÊçÅLJ?‹n_~#+Ü=kZgq„rþ””‡‡52~u¾¹Ùö͵#ùÆ2—g¨c”±”­XTUùó·¦Rü!¨êž×ÁfÒ+ŽGGÝ„¯ÜÂwµt¦­Ik¹R11-"L¸$ÝIõ ¿bØ<èa“áe%ÕÛÎì`0›6 ¬j]L½‰#ö¿·wˆWÎêò†$ãqéMêÇ6V¯‹w$†FOÆ?|þÌ̤Á°¿’"%&ãI€ IÓ8ÒcDîd¾'É£2lUÖ™ÆÝ„ˆÏCC±Ì-J>ÄÚ/ýM óÆ$>= ©¦ IôÍ0ЛÁÇÄ’kìJ¸ZÝÕiT»Bm'x–VÒ"—R{æ–ÛŽm9ÝN¡rªò+[¢ Â}fc?o¨úv;Hº£¹WRÊ MyÕ蛇±÷LHæ½ÿíý®W傾¦ Ö˳/Åÿ㉹nÉ+á†CýdiŠX¼ó]Ò¼§¥zvìW4‹Y7jk3Çi%Òv*7úý¡^HCž«¯]Ç A›O®O eôm'œ‘(Š O?³ ¿›ƒÆål¬؉߯ ÕÓ“Ü_‹egu?ÎåQ‡žg¿'eÞq3Ã÷xÑ7ü©EóúKì—pv¥/ýÍÉù±×E±ol!Å…¬Ü>c¸áãé%énZTF2º˜­uácKÛ5£ "mdß[ ÂQ04߈"“ƒMÚ8ñ~ Œþþ;ÜPʉtžõ#Í¥ïgýNJuåUÃ[FÓTk޹•¦Hx»àéjNä;ùMŠXM¬è˜·“‘³føh¥*q‘ZÅíÇT3ŒÃ¢'óîÌ5>K˜‹0Ðé;¦ ß)ž…»ya*“q]c<î{¥¡4úZË1ÍÙþ×^•>‘ÕN|Êñ½âÜyQ’éé;çÔ‡­¨ ¾Iš¤ÐfÃÑ.=c½c¶jÄHówOíÓ—…²êÁøzçÁ5»:¤ Öƒ ¤ƒdMÖæStlª8çOê&hMK¿—&É­Hêeù]c¦Ù±ÇÙ\§¹²I[Ë/NO)K°›´Y95ú¿¾~¥à—ùk!@¿™ ]‹P%ú8âÿ¸¼X ÌKg·é¶cý,Ó@û]ÉIØ?9ÚüScuJ@óßÃl=ÂÖ–û¡áHˆ9ïÃUM^µ§™îÈÍ ³AéeHgVáX@ qÃX–8Ž#¤¬èw½ú6}–jóê^Äæôâü9øÁ°Dú ?ïR,M%Ì Œ£ö5µ w3Þö‹ì±ò2adKýAf>¯äüDÖ&êƒJîû†zâµ=¢Œˆã·{û' Ñc/R׺yα\®z‰”ös³›Ñ:ÄÎ<Û ¸ûÂt¾1xñÁeÔ 3p8?™o(Œˆ »LDМ+aïíOœATžf©+jvîÒÓ¢µ‰¾)û2jyÂð¹ìÁ¢ÄºÀa!Ò–}Eýoá)ÖJ¾Ø«ú³ç^þmJÞ33Q-á ûÁ–¾}¯üµsbå'RMûÈî TÓ.b»;(íPB›bÓà•° ìxº¤Um€{„5î£ “;݈GQÈ=æWVkn:]%Ã^FŸºÏî·¾wVïçqY›1æå_Z¹…u'Ô’äüŒ_3˜ÐJ\‚ êFOÆý$6 ”ƒ5*_ g}˜Ún®Jú Y[%ɾ¼Í˜FÌÉoõg9Š ÂˆoP¸©ÌkŽÙO¾q&ii÷0w &-=™ónb„SHE7Ðb‘C%Üw1ø%ÆÞÚu ØkQâÉ¥k°0¾0vÑ\rét¿™h¹el£Æ©ô6?ùü²õk%\&jËÌ÷Rýa×Ü‚Lo>Ö;º¾ÿtJÞàSÍì”–©Ï6J@\‘F=ËnÖÖÒœt­—ËHáÔÖÞ”5ÅqÍ5®×ÇÒ*yq]¹¤x_†Š¾TÍ Ü °£ßz(©4ÙûÙäï;¥ÕœIbQ+ôZ_Ùä2ŽÈ-LýE?Ð$r´q+Gü.ajJ?àʽ!+ƒAaˆ˜ý¬ZuC°Áý^Ùèz[¢**$ߣ2?çÍýarf„ŽXéJë^xñs¬¶¦¶›ò›ù1æ”+Ï›uø­ô†hµ€Òå'“±È7˜—_S8”½]FJi7ÃdfytÕ-¨¿\ÑužwžêŒ·ýPi9âBêçiˆ B§#ÄaœDo8¯¡²¤3Àvƒ¦×Þ]þã¼îÃyß.Û…23¯§ñ{IlÃP½€žjpÀ÷ºÃå;½ÐÚ%œv‰[ªr‰öЫ JY—mÉGÒ¾g-È™öÞX~GRò‘7Ú2Ô&¥ª Æk* Cc(a¦™wõ©~æâ—ë7=Çœ¨|¿©éÕ[¯yÇÁͤóÀ¹— òƒ“Èö§#½\ÁÁ›·$ʦ" Ñâ.ç'Pa‘£pLo£ؘ”J`âkR¬ÔÝoÜè*VÍØƒË#h\L—Åõ$²¬o~ °£F'n˜`÷¡µ8Ù+¸¦PCê6¸ €ñn¹Å&M¢ ßW¡Aü*øßV+ì)²{4²†á²ß\ÕvG¿ µÕYêÄBîna‰Íþž—z–CºiÐRÊPáø'Ç¡QÓ´­+\ׇ [°LèΟ¨ð9Þs†Žé*Þk¢¦Ì§zÿjWä ªæRBrNF”_r&¿låŸ^‹m®ò†ƒ~ÔLt_/ôþ¢]F®}í¡Èü)~4³êõWeP&·/Ô•5lkâŠÿ5öóõ˜[Àݨ¹kw.¡é$“†)@lNÒ÷À­*5…ë±TEµ6EK›w:棜×wy…ê—S‘z&2–DfçR/}J'k1“WùÑwİ݃\?(À0 ”[ <Ò¤b=äÀß \[´t&ÄX€ófÎ ©ÐŸiðyàÛGÍòáì€s;£yJ^ynßCúèL„cx¶Ý&®æo¾ÒÑ4ðM ò¤Ž [[{ÂBbGDwEãÌ[3¥‹Ë|‹kÆr lªøtDC¢k|Žn1iúj=5~ªüm¢Íp‹­½>JPᄳ¼hvæÇn5¿f-[­îÍ÷¢ûšèþg 8Ÿ&pÁï¢ øßSÚ®†àýÂÒœúH!¹p‡s}/lnÒ›9xÖõ©:´Ÿ!¬o©¾Š¶ô¸š^qøc‰úVMˆÁ0kómÍkLO„FSíÝÄ\AêÖ)º™ÏðO©ò¥L¿ÞKë`@ôW%®#Õàyñ’²áâ˜ÇŸAhDÝšÕwÆ" i5p™MµŠOÃï,Wß6ºe¯mêTŽ©–Æ8]ìè·“Z>ušŒt K‚\¨=‰Mt{Ú·i¶š[µ|.M.ã"Õúª!eŠxF;èo– C,*b+‚¶°Î?ηÔ]Œ­øJóñIM‚ÂÔXŒ²îÛÖºwJ€ÅW#?1ÄL®ú×ÀUÜŠš3Ä+Måå—E¯±“(¿0aº¯ô¿v䜒uìÐDk …òz9=óÙˆ³*[iaÿXXOʉÎá¸tœÒøqËZa¯o&ËìÙØœOi‡ˆP‚¹×…û§9‹ŽyG8} †mDŽG–ÚAe¯‹ iQä‹kó“¾Òùƒ÷èˆãXÙ*.„Š´¸52Õ©ê% c¦ŠAX ÓmIç„ÅN›€Â%á—œ5ìÏ)E/ØÕ®´Ô©“BýYcB"Î͈íÑ0Ú[õ;*‡c—,åª1£2Ç©nâ”Ý ƒ7î+xP ?×^¥l Å>ÀQÊ—`µP2[Ì·‡£ô®]%ËAoúâöÛ×ß91æõdl‚Nr[jì\â¡<“s•æ ªâÛ¸VreÔ…Ò%@¯ÞÚÈp¾äo£aù§°ËjˆZŒo´ñËðnß·–Êô„¼Ù®Þµññ6ÃÙµM¬@¨DJ“?ä¶Ø…‰õ÷Ä®˜S§Yõ®ïŠ7Ýh&ᦿaΆý²¦Lÿá9O¶Î_,û°ŠL‚édóÁS#ÿa(F‘B¥‹2™þÔä «ŒãCòš·Oíkœâ⊂j“F?„}©”Å ®.li $Uá‰df¤ìâ}¯–záælðm’ÑénÜÉ(ÚkæòGª±Ü'ååÂïNq°‚ñîF™øc5ÂÒ¸,í! àNþ Q0|ɘˆÂ ºaøÇÉ6›í¯B˜q½`ZNB^ÓŸšmg52ÈcBé99†¾Ô=£r(pxS?¿÷¬+ô›Â-1-5¾þÊD¢˜)¶èjÅÒ´8b/À)­_¬jif"K´kfŒÈû¶Gå!Ñ ÞÉv²ÜÉeˆ‰ÃoÉì·]HóôÎ@Z!'çïo‚d¶ïо~Ì Ž¼ýH—ÿù퇡µ5qÔH«ã¸–Ïê/AiElfµÎnYï\ï"¼4bë„[ÆíczùÍpR^„ëaJ0}ã„/ØWÞ¹–¯\m7[ˆKYBœØƒ#õ·ð^ß…ì–+@ŽlÍ®SJ·¿]ŠºÞЪ,ºõºº„o_ß òê¨Vìr4O*zšÖt²ÙU—ÄZÇ€× l9B¦+óçä`ù÷ tT‘ƒ¾ÜÐîÉ÷¾©¸Ÿ¼ðêø-’\®û.v&Rc©ÉŸÈɜҋÂ鎱«:ó—Eå,ÞFcñ<‘Árua!ˆN]cw—#ê|›CÊÅhÞϾ:\‹‹ÖŸÃù©¸¥¹Ëöj]‰95ÒygÍiO—7™öm4ps‡åëíéÔpÞ–M´RùóÅá&ËïleÙÊÃékÞ¯/‰J­L¢¶±›rø‚‚âŸ0–Sªh\ç Zé.¼îëå-uÃ<ÔjD´?æSȶfTm54ÚéÇÕ³5б}éãåD¼ ¶ÕqÁ M&"ññ覧Hç\¿m¿:Á€:ýˆn4¼×î¡p¼Gº'§Úk5ö~4‰Ð¹ôì„;Ó|‚ŽVHÈEl±ôºä‹+ﺨxZv¨H ¯ \Ыš',%r©‘·º ²u^sñÖðùÎÖh"öäl§Ú*ìýQsŠÊFõºÊ½ñ¡|ÊýÔtÐî_¨eÈz’±ûzÊ0ûK4ºÜˆQÙâ¬Ïõœ8UÐG•WJi¸4÷úœù,õD9ª2ŸHÜ÷õ´^”EmëRZ‡ñª†ÁÖ¬kAõ#ƒ“?àÛÆ’é³öò^ÄÖ|®‘i1PvÊÇC÷ÛódJï!Èý‘§|ð®gãðUªc©³˜ð'w;®!Ištp4?ö‚ÈJéºn!ÁRDáYè“GTÖðYc]vDÁt¹>Á_Ï>Ü´\q‰;½iÿ<Þç¶l}ÆìœÔgŽÝä!;âêÇ¿Quupbÿ.rÌÌÆ23¢ó„—é%G³»Ì¶YãÂÿ@–µÃ8<'ÈK° ”½xs#¡FÞ$"ïõ~ë­pOÒ¼b†¤mÌž÷i»lä‰?ÞÀª=A]_G·òc‚i/«æâñàêc­!–RæcL;S?ú‰˜¯~}ö÷Œ_@C«ÚâÚ¤Ä2•Ä©&dad¸óqM÷¾¶ŠÕ»´Yfªv%B¿Ó-¯q¥àOŸp–åŽ=·Vdø$ø\¾Fµ7›Áûße¼—ÖªÍò"K¥â\]myY…NкdŠ ¸“ñ_ùÅ÷ÿˆÝŒ˜ Cøuþ ÇRx?å€Ù“R-þ;¾WÛéãð ¥ZÌ1pA1¥4åtUí%³…X\8†y­›ÊK¡†ƒ×)MCêbýe?¸RóÐ(;{7‚(O‘üv+GôAýÓæšúÀ“uE¦£r–*´L¹;cHá©dz ¨ÇA”AW‘&Þñ|ˆ{•O—‹fEöpNúÁou<õXb3JÎjwáƒGê^×׸‚]²†ý‚”ß2„°8!½œøt»Qål)"n¦w×3³Á‡Y][6ái‡w}8$ü1wÚZ¦aÒ¸ȸ+vg×Ü®{àâ¼58Úiø©—  Äë:Wó.Cqõ1H¤È̸?Ü`ÚFvn¶v ¢ö @ ö›e“¨]øìç»`ñ…]^K³ òЪ2Ñ«EÃhÅ4æëuÉÛú’ζRr¯›è[Ãà\•µM8:.]É¡¹{"];¢Ä·l@û­³¦«Aô£ÈŽðŽ–‰áœÎg!ºF] KW7:z‚²-‰ØjœÌÂZu‰ð;¡3àÏRMœK½í€µ'"cûŸÆˆ ø%¾4mìëo.“c1ˆSîX$ëJZ9rç_8r&\|ãÃñê©îëm¡ù¼Aì¶ÀÞ 4 Qc†?®r3ŸÀë`­®$ð,2jþާà†E96‹6–ª:\ý»$ªŸm Øà‰Ò¦te™³ÿì‘à [' bá«þ²$ü³D-Eo‡+—gû…´ƒªäWÆÂe*T÷ËvôëS¸'=!"Í'ÄSÌÃoKíÓ³•÷gqfŒ2}‹·?ÚøòTuRIåUÎa¾5ÈÒbØ¡Ê6'Ô{3ôbûÒÉB ¡ ¢ãt­ ±ÒÅK-ý‰žçZ3d#qn®··°)ÈÄHtJ¯áÊ…èÉËsë‘[r.QDÌåbcʇl¸:“¯~#?jм~/h_[¶ÅÃO‹¾À.€ïo…£<÷`¤†?¥Qí|ÇâÖ\Ã+ê®â{M¶Äª8oÁFüêÌØÿ"9Qqðþ˜’ ó—çÜ¥©öúÏx¸Ñf¬›Ez` ÅîÐ'Ê» 6wL#T1b¥ Õì÷Ÿ>% ‡Ã/ ¢Ùá,â~CQt E«ÉÚÿ^¬]äN«Òûš»íðrâ=®Ùê䣻ãŠêk2Â[†_Â'–æ^ÀE\ânÎc›Ñ iؾ ËÐŒ•DÙ.O,õ¯M Q|2ÎUÔ¶¢½UZë¾+1~ïÈI°Òޤ>ËÞ­¤i÷Í(½%Ä8ÞõôR¿S]Uã’Z,bØçÅÿPIˆ¢“2(8}ôZÜ'1,RÜoø=o·hë’/Òx¾Ó]ðtBÐ$“À_ÝO¸ª £Úùù¢¤àçþ¥ÿ*_÷T¬ùX¡þ1ëê:y‡GR«rÜ‘WË\ÏŠó Þ‘L> +%ú ß$iø{Â^/–¥.Îß1}7+(-_‹£’mÉ ‹üeô”Ù[\BGšÊ‰Ðc0®rï7×…;ÛùKQÝàiÏG9—'ä yé/H-?îneŠ …$äuiÐ+Ò³¨VS0î“MËÈëË=ÈI{ÅÒçòBˆ ìíól…ié›d)[rLË< ô¤ŒïNǃ¥Š™š( r)Z§U{Še«Q¿3M G³k”Äç)ØPi´è ÞÔ0îueÜHE¹›’##«|@J˜85p?Hýyè#,¦ùäc“BP*~À¿ã‡4ŒÆ#éø®,«.cd·þMºAmk*’ÍØò\1fùC÷kî!.„wl•išÕyþ%lä¹2'˜«„ß:zèQªRü ôûbÈ0[ÍÞ­‰¦ûdP˜ªà#l°¿BMð–a¹¤à|çYÇ/ûç4àÊ0Plñ>ºõÝxã;ß»^ôi>g©ã m~Zýl7EÑ!ÖxwÖÙÆIÅòš‡(NV‡ u¯%Ò“±”p‹I¤ Ì“=3òV{=÷]†U‘Š”Û,§³ÊÒw¼J¨Œ„bQ¿Ýd_/Ic¡ÅôíKðÎA1Ë€…šgËh‡Yô¾ NÙG?Åm7 s)ÑCŽ.Y1I²ø¤OQ¸´=ƒEÆB6f•"­³>U Íæã@eÒ§Üy­¸iìT5Ì\aÉèS«c•zä@ZÍAó}2Ò ‘)Z[jöPÇ.äh BrUŒÇ؜ߊ…°Ì‹ ™Íjû~&=žà«]cbÔw*=ðÖ*ʃD&· ,2¦e/Â…o‘"“S²*i³öqÊX\QmËG»ì Tְ̙~ÙVïAGð®òd㤿†Z¶ÈЦ‹ÖxŒ–‡¦q"_š¿š!Öš~j'‰ztç·S(í½ü!¶pÏÛÂ}iÿ˜Èhb[u@7‹¤Æ«XÃØ Q$ËçŸ<‰{;Æø,N›> à6¨C‰`Æ í­y`Ô-UPö]ÇåžÄåm½Áz¥OX:Rù> úÓÞÙ‚Qª®yδè>Óé‘eÞ :Û–= 2%¢°p#ª{"°×S+ó&„j¿”Ø}ReEõ08l>R%üu7ú„ñ[!…´ê:ì GÖ`‹Ò[ï Ž}~º>q˜qóUá—¼íYaí"Ùb<~§Z&!ä#Bqõ_–•y1Íæyï˜GC[=ã?È8¬ü¸õÂ1âÿxàôÉRåte0|Ò“ZÜÉ£éÖo4Ñà“ÙKÜ·ŸÈ–z^œrOeÃÕ’àá UÉå"Ša|G N.Ö+éqÓ2‚…Ûê¨ aÇßps6°\W.Æ2ýY4«×ƒò˜PåòÚ)¢f¥öcÔ•ß>YY#lÙ Æúeâ-j’í+î+úPúv)¢\&ú™g‚¬¦¶˜sx) CwÔ•r´Y=¨§mmJÊXSÖ´…ã\"8‘Ï$SÝí{-³M¤‰à ëk*”ÔÕÖ åp¿[tá¿5L¸µÑÅMù²qucŽŒæéåÁ»@º¢6ˆ©‡ûHJ”ßy†¬ÇM•ÃÏéj쟬!#QH)ý Dô)SN„&'@=]R#sÎȹZŽíQ"²è’’œ.Ï›û~…¾?…çl µ*Úf¾Oîí58’(¶ß(©4JTÖ”\˜—¤Wm7Ù4(].G‰oâóÿ8™Wß”-{âÙ7,t2d¸Îc|£[åì ¬Xô ©0з´t»o[u¥èݾ¥&B7£ç¹É^aî˜Ù\s[#ê9}ËSH)ÒÎíÃ|sGóvÉôþçõ¶Þò,!?‰Ñ™O7ó/^áª6/x™J^w®±oÈ8ò§ÛWÑ«¼ò%H eíå@³»ºTuá‡öا„‡z±]U¬4Ôò\îŠ%MÀ­k8bÈM­Hô ýœ÷=ÕÐj§bv‰Ï޾[‡Ú‰pÚAGm=IQ²¥ƒì¸©™û:.vA–¼?Â1bDBã˜v¿²í»\ Žú=+ý0ÆÁµæš%Ç¡@Ü{hR„^€º%qû¥µûf#ÄñgëË® ìºi|•ÔówoÞk­2EËé˜AW?g‡Lïßù¨pÊ­åürD#¼v¶åºŠÏõb3•mÍ]wŽ_cSg·î!~¨u2 è›>÷öðvZY sg±M5’òà< ³`å\¹Í3¬aZÃÅ¡«£_SGÝÎâ!zœÔZfˆ´Ðò¼w¼ÓØß/ˆ»HÅñif£š°w˜·áYn¶·âÇõ»|ÉäŒävöŠèøJ—EÅÐ+a¤Tá锵ÔÇŸÁI ´æ<ÈrÐl?‹§!IŽ’Ý}¶Ã¿OKò‰å[ÏÇIùD&­Ð‹“‰äH€˜*zÿ«„q%ýµÊ°özmÃyU‘ŠTåw—â‹a"’SÊÊYu;GÖŠÅ:rùÄF•³·þŠ`ïq ó?¢Á•a›™ÌIjÉ6ËèÅÚd¢¾6·o=?¶¯Ì“v5æ^—œy{¿z¿kèÐ 'ˆo&D{?õÅÈÁ™#†íz&ŸÁ“êÉQ½ª ­Àì-c˜:6¢TŠP°KVr 8Øñ¸÷âòYBA 5Ÿqu™_óļ¹Tåüù#Ûïçë“6FÝV2q" ÔðÙÖmð.%rÒ½‡¦9 Q>Ú§a¿ƒj{Á§x—ŠÀhš`Ò°QªéeÝŠ¦ œ(„\®pu–TÄäu„ùü$ËækG¨sYË%‚wwlì›t†zªRµë‘ð”ÌGÐŽoŒÏ«Çø¦ÙǤhÇ¡áYÕïˆf "£Â¡¿·”Hš¿oOÀàH”/ 26†? ƒzÈÈ\¿ø¢ýŒÕT#ƒÔIæ†w|µg—RâùgIQ­§¼ 9Éâ÷ì™7~Y6>%Eå?Î%n ¡*ø(f)-0ë1Ó·«Ý¶6nxÏ2?‘µHMývª€8Õûdð|~«=9ØûuŽªB½kySÂYÔ¦CxÚç’+ú³ Ë1}˄ĀDéíO(Îë£uj.Æù9´ûp-Å8“ g{+b£Š<·f*Ö%®­þ›’ÂdrûVù– *Ç…ÔBù¡ìo©Õ°³erœüG@¾ 5¶—7ï½rÙm%ÁEé„íU)žžÍŠŒ%tȳ¡O5-Ôœ{—ŸŽçKC'/ÍxzS8)ºKpáýØJzKhM À …àÒÓkŠÔ­@Qú¬ÓöLÂ+FÆ$Y˜Ú¬ºùá~îSv&“ o]«Jzšl‡¾ üà«AB?gQ ”§›gïË®WÔë8ÞG¸¬ÚÄÛp¶4îqh‰uË2UuÆ¢£ÖhÆ‚, 1(ÿ<¦ïF”I¾©˜,ëÕüÔo¬ì_{$ƒÉ‚¶Rò¦K÷ÅH>wÖ>ö]Ð<û W….Ѽ³!WÉ`FN—òd[ž_ט¨‘ˆ/CÓä·îá Ò¡ {té*‰ÜB@²ëãËЕ˜ù‡Ø„䉒éÛfþ‚°ôºÙâê=7NQž<‚ U‰ÉÇÖ·¤Ö6W˜8GD b´HÉ|ÛŸ˜ ºU_¼<Û~½Ô§-ý²Û°»¿A_­Nj}òFÊÏ¢††«*9¢ “©ŸÞ΂ë,FÃÚÁU‚T…iø]à½Mò¾5\~ùö+×â0=e^—iyÍ zRZ Ÿ6îý¾ó0³ßÍ’ùàöç'¢¹Ã·›–|9û¦d Æ‹/4”Þ=¹Z}>Ù–8j\ÌÃ,ð2_§xÑ VçâþácâO®§¨å{ã{ñÕÀì!Âv*F¤h4ÅY3›Î‰#mñ¸7Wèåÿµ3ˆþ8ÝIõ™k;µþå^m%å•PØ''?ù(ƒZN9ïmq¾åŒv™ÈDeÿ8Ûvñ÷díêЧÑWotW&Jb]Áù“yItsG~.‚åÛ´Ÿ]A)Êšê+ñB²8oàVã2­˜ÅÂ?¸rDoŒ(’ÌËûwâƒå¾¹ŽÂÖî_ÞLE¼*%rx‚ ‰«¾–ôÈ*ßÀïß¡Ww¬2‘Þj-¾+$®àFb;'‘ › ʤ“¸¿˜ä)Q`ÊQïlSKZn“ƘÒn'fïܶÝS¾µ¶¤ïÀ?Ó¡ôÇȹbÔZæd DH˜H˱:i"©Åéħú€þ+E7ȨHÒ°ŒjÜæ4l5gXœx'·w©Ã;ÒV|š­]+0|%rWRŸÎÂ;Øyê]/ÅÆÙî(¨™_yU> stream xÚ´¸eX][Ò5Ü‚»oÜÝ]‚»»Ù¸³q÷àîîÜ5¸…àÜ-hp¿äôÛ}N÷÷û><°¥£jÖ¬µ€‚DI•AÄÔÞ(aob`adæÈÉ«ØÛÙ±°2HƒŒl,M¬ŒÌÌì🜀F K{;1#À²(š€Þ]¬ÌÌ<ðI Ðé]i 0öÈAFj@µÑ_@ÉÞÄ`läü®Ú™[ÚiÞ]>Ù;x8Yš[€þÄ`c`øé·(#@ÆÈÄÚÞÍÙÚ`dg a”g(Ø»½ -Ôövc …‘ÀÞ  Ô¨«Š«¨$UÕ•Tiß«º88Ø;ý—Oªjê’ô15qPƒ ©®ªöç§Ðî¿9=@Aí]ÿ'Ï»áwyq55m%q¦?5X®@'gË?iÿ‡å;3ÀßÔÞ]ÍœìmÿJ ¶x™˜ÜÜÜÍ]œAŒöNæŒ6ñS³°t¸Ù;YÞ?€6À¿ãbgúÞNð_þ @ÎÒhç üã$aÿ/¥í{+ßÞå ÿ{oèOL›™œÀÿJcaäü—¯œ’’ÀÖÈÒ´3²3y7\œŸÿ’½M©þEøäâäô'‡ü¿UNÿIóoê¢öï•éÙxù¹ýï‰Ù¹8{þ£7ÿ]¶‰½³¥3Èù_3KàöÎÎÌÒî/™¼ˆ‚´„¸ªƒÜûàÙ1ÈÛ¿wÇŽäúËúO<19^73'€…‡Àü>¤âv¦ŸìmmßY;ÃÿiŸ˜å{Ÿ@öNLÿÏ\[ÛÙ»Ùyý¿r3K;S³?7uq`R·³ttJ‹ýŸõ»þo™9`@w ¦?éþš–?b–?â÷6øx9Ø;ÌŒlœ>–fÀ÷x/g#W ääôñú§â¿< ÀÔÒô>èï—þ¯èÒvföž‰ß™ü[õ#@ý×E¥y¿¥¦öv6S <“‚=è} ¨ÿÿ¹gÿ“KÂÅÆFÁÈHý¿-ý_;#[Kÿ¶üMà²Ô öN¶F6ÿ£³t–°tš*Y‚L,þÕÙÉÿ•KÄÎÜ``agdfãdý—Fýϵ²yŸß÷dùg…½ë¹8þG÷>š&Öv@gg;û_*à{;þ‡øûü¡ `R•TÕ£ûfç/3q;{SK;s+'ÀÈÉÉÈžù} X98^,ï³m tÿkbLŒvö w€ƒ È`fïÿçT99L"DÿBœ&Ñÿ .“ä߈À$õ7b0ÉüÞ£Èþ¸LòÿAÜÌ&¥¿€IõoÄ`Òþây÷3úq˜ŒÿFï–&ÿAïMc2y¿y[³0¿§1ý|çü|'oöÈñÙ»8ýCÿNËüð=¾ÅßÙÞ«³ðp°ÚýÃâ]fùøÞ8«À÷J¬ÿßK±ù|¯ÅöoÈòÎü‘YÞ™ÛÿûÝÖÞî•°¼swø|gú:XÞi9ÿ]ç»ÒÙÒýï`ï´œmŒœ-þáðNô·Ã;›ý?Ôï.ÿ€ï…¸þ¾“sû²¾3÷ø|gêùwîwWO Ó¿bÿ÷¤+ýÙø-3æ¿Gÿÿ…aU“½5PÓÒôý5à&òF 'Kw]æ÷MÄò.ÿú÷oúÿ•€âï%úoQQ{w/ö÷3°¾Ï! ÷Ÿîrøü—¯É¿žJmÁ÷;úoüç‘Ý&ð?ìMø‚­R›CË}Å §* (xOª°µdâ!fLuâãˆåm“…ŠZý3)‹ìå¤xõ}“ìJ´(‚1m^×Û’ª\›* ïùÊûâ#‰‹Œçj0ªfÊ/ùWt“ÒÉäh—²Ïd¶Ç·ÔÇ?ñtöPïÛo}¸zÞÇ7¥í­AMéR’#`ˆrÖC 26ôM¬PÞ‘;‚OXµM:†Å«ü19 /i’×›¬oZ†Á> ¿±fË9O†0U†ª¯âk>Oè8f½ÙÜâKßzÓ݆Uض!†ÅGd&+#Ͼ• n7=ÎSjòègw|œë+EFféË|ÚbYp¬â¨¿Pk¦ÚŠc03ËËîwhKrâA›–õD² ‰›…æÝäæÅ£‘³U#-§òÏ„ô0¤ø«‘ÊèYsEfÑ%Ž;îXp”U m&˜©ãB,2‹½ÿö²`£«b×CjF!î  Ì™'¨Ý–&i¦’yai´#xù© qÂ&=¾àd*åOÛÅ„ƒÜ£È2ã~½•´ˆ (±ñÑ÷F„Ò_ÓA(§uF|[O`Óò7VÒF¾R7}‹;Úy’…¥s‡Þ9©y4áœ{èªAI¼=äù »×y™ÙxÆü"㿲»‘sV=`ÍüÊó+0wÝ>‹¾ý«`ÚO”×"™Öš…6}|§ÖzŒ¸7•0·j¾JÜêA5ÒÀO¿?°ÑTaŽÑÀmÀ<% “]ùT0X0¾nƒ_ OùSPÒ$ÿØCâhö¸ B’]ýAØ=<ÇšcñS(P…¸¶rížîg‹œŸé­ž—Ä<ñeYE™2?ÅÙHÿ'­ó¯˜ð3D£‡^‘º¸>èÊ#‘6×KãHŠç”ÝÐ×®É qf-We›ì.ôsƒX‹•ßÎsPSÏùµÆK2c›ß9‚5QÃÓ„?Ñ'ÂJ)Ëò@fˆ¾A.Lt*J׳™«K„² q€Ä!Áv^«¹ºâZF‰eiì*t¢šÍ,ûìrî‘~=J:H2éîÊÞ}~‰õ—¢tñ•ßò1Ý$üóÙ %jÄ' e×Û1ÖúÁçTÇ“Oœh4¨h̶k¡£R28ã¿ÝØpkl̰ýá½y†ô?ú~Cÿô»õ ( þèÅÕLÃ?³’u, Ó²»špØG@dOµÇ)ƒa¤ZèŠÓ\‚xÕãNM¥\OÍãçUrÃ6û5å#fÌÔ*Š$(¸¿øž™M…Ú7¢áHít)RI»§C´âåÒþ’CxS¬&1Ô%Ò¦xsaNrYph3®(òY‹ÖF)õDé[׳*¢[ZfÀT훽\Äk®èµ®1)~ò+‡×­“ã™Ýib½r^ÜgžNZµyÈ%íÇ4…ÈÕhrô•·^¨«ÛE6\ǽ&”ö±výɯ™ Ù5Íj;^-¸¤I )¾Q¡ÓÏ£àh?»À&ã=½–‘ÍhVýh”컳]fòm·_‚V)xz\$e²ÒùÚ/V³eŸ·¤Ñëé,¤^`<†o >QPœù;%Ã6&§Öó2 ÜÃ"×é(HXâÕôr»Ç¯NÓs®Õñ˜1ÃK›Cô˜A«ø=:˜)äi`ÓYÂ>!íH!j¦Ì¤Wá=O÷á`°äTƒ¯IëKdͦ֔J+ú„ò¹×¸ ·6©0~DÕ¦e˜ xZ+_ú-óÀ舫9é·%ÜL¡ì›W$^<ÖÌ"dL‰gãÖÔ÷9†|ìùdûWGÔ+Iñ3–3çã«nrP–[‹ÐÓí8t73Š™Ë¬+¯ÑŒkðoá ¤'¥OÂÐ'΂© {*>ƒ´ñÆ(~pß:ô“€ªx¶YTn_ lßl42Èp¢H°º^ ‹ÈÏdüëdƒÖ^œ8ÈqÂ’¶³Q ÐNÎ>ÇZ;Óè ×!Hq¨'6G+øº…$ iµBxðö .”ö†3ƒyEhÚoç7Ú#U]+{fæé¶3Y#l(é6+6P}-Î}!‡úyc®*]9PöøÇ´zZ Eî§58…•.²gKÿbäùlëxñ;»ÖŒ0C“Ÿ?zÝÙpØ2A¬QN ÄüQ‹„Øïfn„B|._H)AßÚÕýLrzS¼SÃ`Èé ‰y;Ê;S>EÅaZ÷0Ù~U’dïnìX›üõ³,;‘QýRJéÜßó µøT¿HLʉ¹Ðœz<Ä{½^p¼b¨ˆ WŸºS!˜s‘š9!Ñ˰0;÷EåTÖ}ÒKá~«8Ëë;ŒñVÔÙÜ(ïÆ+j¡ð¢•@[ã$¶rq å‹—4'•;=ù)†&‰Ç«1Îfœ(èE-H¤\sm^stdRˬ N¢¼°Õ91Ö4ˆÈŒãh+1ü1Yö¸7 øŒªôcøFÈq#j³W(ÂnÚ﬩¤½‘š3éK%:?Û¼Üéü…qTr X5Ò@ª»ò›§Gó“û¢ØhåóTr>½°¡þϧŸ$*IÜó-ÓN]*UPɰzöA¾vâVW¤Q¶°B®|¸f~K7jËc„ËpÛÉ[ë΂L mFŸ6+Ý?"‘=Ò;$~~J ‰†>?‹ù5ûhà Ls}¤ÞÀ++v¹ìC†Jœµ©Td‹½ŒQIod&Jª£³4ðô æ•’Á¥Ž×ùl‡º–TA³·®¥ Ó#mäxÙ&H nüˆ‚1ß\A¬O£Oø:¾“{‡6¢ BÿbºãHU%B+Í ¹Õ=™Nª;†wG;@e¸vÌ)‹=Y²÷S÷#_?K FèRcÿ± ´ú®W^ZÕ:ÏZ­?Pðçôó›µòyÉÈBOY0l×áb§™çË/ŽY M\Þæc´Ú¹Ä²y<õF¿K)ÒÃéwÔ¯hP^ô2˜» ¥T3‘C˜ýþHÐj»ëàÂêj¬ÿ•ÿ¦ñb×’aähÞ§]&˜÷“á.íUC)µ4ùdí댖W×ÝýKpén•!j(ÿE|ӹϴhËF÷*p¢$®GTëýñ º ¢¸|û› *+úнÑb?ÔâëmYÇE>mÿb´¼bͶÄë­ Ðº誧¢ïZ+¨ÑÀ÷“ó°Aþ¸TñÊÚaîå_Ï«hPб’B§-¤ÁA%i÷ÈÎ !í RTí:ø¦%3 †³òØ¿I¦LgÃ&6Q=y9ÄX£˜Ã(0Œðxðs° HŸLneŠ”BÑÙ0nOë7ƒ òÕšú rÖ§ïÝwqÔXé;¼Yƒù¼6§¢Ïo‹kOÆQ{b®£0-Ô|”StøçàÔŒò†[Ž-ÆT¤Ñ>SC°ëé¯ûa)Rfì0_õàmr¿´ä†Üþô¥ñ»|æ_}(œ°¶&¨+_òb5„ül‰°ïVaÛ²I œÒR¯SužèÊz¸dzõÜûEõû8x$®[Eì½¶UfìtêK‡<³³ñZ%6ÌïdŰ൉<­x)¾é"x7áüÔЙj]øa&ÍûA‚D‘‹ûP`e% ;C¸ÃÙƒ yOÆx8sõ¦'oíÂÉm–»õðÙ¹¿Cdͼ>AFÐRb™¦Inæ„í§uŒóy™õ¥7µ.þA)/âs|l¶Õà§fÊ`/MÅÏûÄi£è,PŠZ(-N¯\*ÂTO80Û¿ÚôÚ’†oJEåS“ë 姪4>óÔ¬XíçÕ{û¸VäÊ[óÛ’„²ñq•K´…þÁu¾ÁÿC£:çèf\2•œ3ëÂÊŽ}V¡£aù®i†ØæE³#äaåUØú°H¢^üZ!InI"Ò’Ô_R9ËÔó›‚+ÅÒ›©-ºîMð\ŠÀé™êšðÀFtªU²Ñ]AQEË!T—jëyÌøœFúpÁÜ 9»Üä£-‡ÏÌ„ìßѦûÍíï«g‰ä¶ƒ ½{¯Ë|„®š9G&ã9 )èXe99V>=‘Ûô8’‰7J¤ +ö×vÆIÅq‹¥¹ÏEøFœ™Ë·4L™O¦GËÝ•Òú‰c“Ï{åÚ=á¨SGã³,'%ø>¢—4-¾>e!Ð곇pÛA²ŸŸj ò>¡2…ÖÂ×úžRžÀ¿©ÜjÁúè™/‚íAˆ’,5iLâWžCqí}Mÿùem½Ç§·ŸK ]kÀü ¢œæÊÙÒ{ç q¾~³hâ-à°)–‰f+×ÇQgÞüF£GÚt}è'Ô¢ÆJ\d}¥*ãa>ûZM·íÎ4íÆŽCݺåÝy-µ RÔó%œãñyÿ¢råCä)d “ÑžàœTEN/…uÑhÞǨë5õð âÏÆe:¬¦¸UÒ:™CCC9_{Í9•j¹6\Ò”ØN‘غÊü×» Yz7™™î —@c°U ³A†¤$—{5vK$»V—›u ûÖDýîÙ`_ÞU†Â€> 1$¥¤Pš10xJ+Íð4ù£¢ærÐßHú«\וl£_Ãc!f7N±½K‡õj4FþNÏŠ'¡£Ãë›õ¦œÿ71ôÕCc3Ó2¿">©cý^N8/–ý†uñtLÔ¶ú µëëú9§ai¸ ÉoæúCOYN $;k,Ç•t„U§Åãmhº³í"·š9ëCáãÕ7Húl.§¤ÂsW‘¡D ôÆÆ’^#U3_§u8Ezƒ±ôMnغÅ(Z³?ßEÙ¢}mX°:R´U¤ QÜÌ–& ó“¶›Ë|  w§ew—(:.Y´k®jAU(´í¾ûбèè.<$ñM¤éìVU}^BœNfKRZ¼Ë@8¤g1]¿Ø¯ã¾)ȇ£#]"A:ÓÕ«å(UëFÔC®æ†1&z4 ˆúí¬â+qDlUøÑÚ £pÑTú2Õ~)»÷‹û`îƒY8ËeX+®Jo2÷8*{Àokma¬H,g˜ä‹ž ÃXÙ0?ÏDþÊ‹Ÿ½ÂXž¹ˆùñîTÈ”¤îË%×úuŠƒ†žï¥å?hJŠÖ¿ ½-¬²â›V± Їä‚5s‚Ùm›qDÍô7I27×]5ps~ŸL•Ò˜EpÚY¼—H{PÂÿ™Òº†öH¸c0V–mæä-’D ñÄÜ.>€}弚žõ|Ü?»¤” KÅnárÿQ®ˉ5zùÙ‡™!µÛ?Ä¡âPïÊ%ß±“†ð»ŒS¨°¾ Ùºíï/\•7ß#sÏL ­,Ejª‰îz½!F‹Ë#Ð6íÄö$m 禆a¬¬28GÛ£íŠæ ¥ö­X—ŽÄÛÛÖ€-Y¶Šåë­rËH`¹j°º¬¶Îj¨)Q‡(â“[ÔÛ’‚Êém£ì×Lm=£î›1Šv~Æšndx+û˜_L¬+¤KœñÖ,ü#{›âW¶=o‚ê¤kbXæ “C×Bý÷gfNá ô÷Š&ʯ×{¼ù²Íî¬N*º¾sî'Åq ô߆*•º»%B>cŸ¡™xöÔ1º¤ƒòªøÂKˆ4,™(§=HX£Í0¥'Ûw¢BhŽÕ=…hXà$ÐÜÆTP sIàzMH&áËwLJ`1T”"BÖä·=­q¤>D«:{º‹ÕkEmxvý©JÓoºçJ(Ë_³X’F‘ç hD¾‰œÝ‹Én`“¼|GœìcÃÖ|žJ댩ï¯6"c¦NîkÆŠUøßðM)ÃêC5Õ=r"5n*{X+ßßV|üv ï‚sµF2i.Læ…e²áïpRâÄÍ¥¢a¦'¦_A†–9îHºˆìüÜ´’›¢¢c–NÿhUýˆ‹]tïwweRëM¡«aÑ9€N ßK¾k>̈n9ÏÍ L2þ¬wp±Ö²q 5S“IZ¦3ž½™~®x`ÂÝ `ê}§‹Bùƒ,‚£'ÎÃ#‰ʲÖ]«CÍ‘Eöc`ž+®)ˆ„8bÇ)’òùöÍ×ïÓ3üæ’Úz¦ÛA/WÁ|HCwVÃä¾ ÷ª Ãòw4¯5»ÐM¨\Õ*ÍHÏ®Œ91)oÓ{c½} P’vQÐ .Ns¶³0ähC:edDµbår:ìekÛÀœçpù4¬Ò¨‹öŠtÌÅÎ,Ã1’øž=ò¯ßÈ@hÊŽƒA-†š01(ÓES„׳fZP­ƒ èÓàîê³G÷Ü$·1[0º<¸ç2×/>Ú¿$W8©QŒÐV,¼Pv«â³Ð]q¨kSWmY^îx¸‘[î Ø4÷cë¥#¶m¨Éï‘Eõ•½M óÇEF׫ìÐ{h}49‘„å4Q½ÈWŒ–Ë v%¼Ø¦LãÅèh°~MÊ †|´ú!0#ÖO›#ó&<Wïè_ 4àmû’À%ñ»¾„­~i—JÃÜéZ+rw Ç5S´qªLë¾°…ƒíWì½ÚÙsfò˜'áL =MÚeQ5·N*Ü5xlØMþØ©Òtì‹’Ýä7?d—ZŠâ`:~2|S:÷rZ-òߤ³°–)jćž›áyŒl¹!AÝWôZæV /&ã<½;rb2›z])ÚdÊ-îIûf±`"—½UúÕ=ùd"3òB÷aóÚC5ÔÊ÷îš@fÙ’FÀ`¾f7b‹` Y¬€ã›·o³Ø¯ˆr²âÇåËþö%\IùûºŸ3 ÑŽ|âš©A’*/úgºÜM§5Z›CC°Ø a¡ i-§ Á®>5Wl¾°‹òÓí½··ª{@R­TŸéìè‡0,=öÓEjS]McÐOÊ^N7E=ôòç|4àžšºÙQDŽ ”Ñæ/€ A?T^§fŠuïÓ±Ñ@…ŒCxÖ¡l=G@Ö’·¼ãgÄÑýJ&²eãæU ”£ÔPIá­´[tZãokÈñóPƒëbçY~ ±¹š)…×ÍN±¥Ùå@?ï‘x­\^ùÂI»ˆ:™s¡Ÿ®,Øm£^žÀ>Èû O\MRÌ\çò²:¼î{Í:ã'‘•MÓ`/–þü¶ôs `ÄP}ö+¿Ø)ÇO–À¬Prâ­/,…ÎW³/S„ðfÌÍÈt™^¯ÑfŒMA ¼%g”ã}œè¥D,Ü*Tu*FÑÉa_‰ýÑæV\¯§iÃrŽqÁ7±¹Çk_ý.ö,Ùûrº,…Ø „Ô|eª¸0ýù2—ºÑÓ;zt™1a@¨Xué>β:°ß] óÒ„ñæÇhÚ 2ÙŠP™Ë™”¾J‘ÓùØÅ!••ÈìA… 6†lòÄc vWâ>þ¶*v¨ºÆÀ¾«=¸Po¾ZÅâ ZlÉ#Ê!„ך…m®'HŽâRA]å.²ËvÆ›•¾Z£˜.ˆã6ôfáS4µ`°÷þ-žlf© ¹ ÉSÁ5Â~b“S»_V­‚ÃemžŒ"2nÃ'”ÈC=¡@=Ñ9‡¿…)Hn ïêGžš<û2 >!žSøúmp« :Á:íæ8ÒçÉ‘DQ>mèù½û @£Àjò±ÏKB*Ðü’Ù|"¡y…”q£±†I öHµccô÷)ÉYK 7ÂðOý¬Ï4PÈìØkO",¼2‘qe1$âsãGDJŠ^Õ åóLá¼>+ß$ÕͼWʇ¥Ë0zjùµ0û‚Êgº]W1Ç3ˆe5ó¤ªq5{–·qs¦±–¤Pfz:WŠO™‰,‰µfºŽ”~áí>që6)œ¬¿´3 D¿ÙŽ>*;8ޯ·/ûÚ¶"¡ žD÷¡3ŒûxëyÈJ7ت±j˜—!vºØÄ0ÍÊŸYlp„Ä(CcoúP¢”þ(ß.»óaðR~Z—Ëý¸› ‰ÏŒk§\`uYÞpCÄ]ýòW«÷xO ŽeÕ{PŒ*{ÈF[R(×3ö‹¬WÚê¬ J.sÞ8þQGÚ¤Âj·FŠÜÊ –ðÏÐŒúŸ~|©•öÈŽáA4¦¬Êæƒ2øt,êÊáéö<4}xïjù«­ÕnÖ‘E-¨¾ÏŸ‹°=XttWux¥›Ì·=\¯’Â)ˆ_Êy¿® *-S›Æß=£ŠúR説äÎ ³gZϤÜ?²ˆv¯-­‡*…Ÿ®ðA¾›D³HÝÆ.W³®¸êÝ#5¢=”ÕW¶.nF»ýÖ7‹­øÅZGHâT᣶)Z¡d„¤M{'j°J"ÂHpl+뀶V¬<ê½ÿW‰¼âñÈ`½ÀxÅ^|s°è¢Ùꪤñ1}ª\"f„…„j÷_ ׊v9Я¾]¿ …Q´ïrâ½A+xæÃßËÿýoû€Ù ™K× yÿÝ'zÓá,/·;¤áÅÃÌ Œ49 9å[tæÏá ªÁ²ÛÚâ2¼y‹u‚¡TmŒØmËdU›Ùúk—݈žB«¨5¬ÒöSc:íã{œÉÀšpxˆò*¹ÚØ»WºEšËÝüùnsÏ\?ªfºÍ%ý… 9mÝÒ(3'ìå‘É¢ìnÈMu HÞ'ÞÛx±/>¬çm$Åý|Ý6©÷osE*fX4ÃM§Bß»¯’ ó;B¬E.|'u¼x/jàa1‰Œ„ìÛó|æÁ™?˜éșࡤQª¼~Q d;Âou©9/ç =v"X;t ~“†Û“xSóÀ~ؼ²¶¨ˆ2œÙR-Íö;ƒ7[’àW¢ý¾é –¶ ‘1uvܘæ[˜`žÞ7¦Ïü8·ìÏlövÒvùÂ4e%àó£¾´nòR¹î‚„©Wd=Í¢9z.§Ñ…ÁlsUjGâ3ÌaÖ׳±Ÿ7ß nçíÐE§Ú/)5ʘM9®Ž@²çK*+ÙÍ;(+o6€ü@2žìÃÝ¢©BS£ž ذ;‰7T¤ä$Ÿößé4‡aw×Ý=]3¬Ä—(Ö4’ʼnv‰ðhâ7l×KýºâªxƒÝùÚ¯Wóç. ßGÉbj½Ëé$–˱§ºfO¼ú ûæÃX¤ ŽÛimÌ‚ám‘ÒóL‘4*?›Ž`´4•%bÏ÷¦Ž¥döÚRaÏà)éHx©/ß3¤³:{±ŽÍë¼lpÜ#½­£óÿÔ],»©jÓ9IÐ?aÆ£ N—5ÒÎÕ2˜>„sb;ø½Y„}€‡h`u†@fD-À¾e–ð¢æ,]Yðf#zÖZ6ôÌÿ™J¡Ë*È'…:lyUmLYá˜3uY– ãž@ŸýTvëÉ™¼ÿ[ûeÅI\3®°:·{•;:z¨ïf·!Üò%éÜ. ÑJ™µ?1Î+|ËÜ5¤OOèÚüÚð[#¾Æ™º5€7üä‹‘"™,ÚgƒÚ¸a1Ö‰¡˜@àp**<&}Å#4<* ?–¦äÀKº-­ïm®äLhô"êjÔ­U3]šŒ4Ap¤m¯NÝnÍ\Œ¸ ?ÆÍ´U½ôõjÆv[þQ'â9³8}5ŒPÜY½5ßxTÖ¢³i êqé/F’n¡â !êÜ賋0‰3Êø>æõ–/ gNy•?7ÙUÈ“.œz®O×½AQ¸Ø•ë‹Q–ûKô„ÖvK9ËúTV÷•Ä ýï¸gPCSêÝù#LÏBwµ7ÜÍÓmM$}öWm‡ß9û²Â…ë',h¹š¶£ô TÍ5C±§Ùô§d ׎2 ÅE¬5ë±5Gðœ|&ëXö’@çOêÒ=%¡9ßN*ššR‹ªPÀ·†? jkì8áÄþld6»Õb¡À¶@ŽãB¹îýKâ"â‚ >ló7SΉÀ¹¨ºý:Ô‰Ìã7.„:Â`¼ ϵ OGC¯X1aœì¸¬‚•À–)hˆ ïT”µ "Úо\ۇŨBVvQè„ÈôUiÿ«ïFŠ-—2«·^ƒßJ`޼=í­ý˜¿q"Rº9@ìö*´BÅE¿¼†o…îU€ÉŽâÒHè)àë2Oò$k⫌º[pÿodÉ#l‚¨\%ÿ¨@H}R]Q.àî :š5WÔ‘h’Ésw(»:²›³¬ÇÝùðlÊñ?†˜yâ¸li´Šå,&í[„kJ•iãwñÉ\ìo˜•ôT$˜HêÛæöR%Ï"§¨³¢ ŸÄ£É¥}Ù¶w6;Ö_szÜùvá{—é~#£·s™9Å\ ta¢ ñA“Å:=ˆÈÈ…YbÒ¯Og'>üU†H´”»†÷jŒïì¾³–§ÛdžU’¶¯ë8ãVZòˆ˜Ÿ¯Æ4%ä¦[wÖλm%™ÑþAGA•`¶Ü¦óHäËÈg²IS|ÿà"ö²ÚŽßžnëî©ÀtðLYÝΤ…É•4ÿÔ³îèA –Þ‹Ø[¥Gß,¡š™Eψ´ÈC ãžÜÿ¬»=¶‘ƒ£]À~úQ{ÒyñYŒszä ìcß×tÞ"Ní”·µ<µ c ãl†l|<)jhXj¦ïÕù'dŸ–hè¢@e½±G@Ókåòøh>ùuTÇáæ’/›¯elDØJ##Öß價É$UHS§Ïã"®0&ß¶tž_H-{(o ½Àν]|Àµ;èöŠX‘¢M¨F,¾~d|нÆVpz«y2u®øB®/ü¡Þ8a(„ÐÛè”`ÇÃH.(êpÏHO¡äœ«•΂º^ד~w|pÖIA=½ˆhI…šì¸QP„Nu0 ¾k¥Ü>Œ–»½>ßADù“Ô„jË ø}ˆIš½e¾n€ÇÃ'a ,´5zÔæÔÃB…BàîøRan]÷‹biŒÞQk¬E½"â2¢üiåäyGÒ¬áBþôÑ¢«ä:aǧ°Á*ì|÷ï 6Ê™´’I>r>nxŽUXâgý‚r¡Ž© _K7¿9d§|Ôk v‰Bˆ‹fx5°Õ^àßݵ å‘ÿ|k‘í©NT‰ð 0óí-|'h ¾•[³Íí_F´8§æC‹‘b‚âTfѾ›Áü¨‡{`*C½Ý‹C¶—ÈNV©ñÝ·¬l±) B.Ob4”žúX®œíøš€€Ä½Ôó‚¨nûúòM%»ó»Èv«ËR{d{豈ړm/| ³xÜ]ß#ÄÌÚI–þï…déÛÒ´üï—køƒ°˜C¹ð]ô1ûã`M,gõu`ùæ„Õ´n•"}Ñ`Ñ“wáV¬ EÔ–Ýôv”bÇÜßáèc—%?Vøtµ‡.“ãÎ':eFÝ*æ~k -8•EZ®{Ã-Ä–Cyì¤_ÿö‘;¾ž°ü’¿¡ªÊ(ͺ¿FˆüI—nÆ›MÏÔÐu*Lfµ"áØ¤/¯c¹ˆC@lÚŽïûùNÿ@|óýàâl¾ätjz1MºÝ­^JyId8eŽGá ŠíÛÃÝ ƒrÆ‹Ó~sçZ¼@Àõ—ÒX«žÏdEÅw™}†å%xì|›‡R¬á›­5ׯ»Dî|c‡IÍ_Bšžôµ4‘ª‚Q0uìÌ'×ÅØ9̳VÒ‡í9è~žËe çct³‹ð8fRK[8'ÄœÏ( ÏÒ_Æ‹ïùËçnlÉ›†sZ‚ø¬ûîFSÁ¤ì¬åÂ+}J/Ás‹^½*¬°}Š&èôÇÄG *+ÛPqÌ>T¿¾]ß¹(ž|щSC2œO`R¦‡JÏ‚™l)ôsÍ¿¨­ý\uy-úFHèÀÞ£´„ç\/0DÇ(ÞL„φ|½DqÑë²w(¥î1D·çƒÊ “U¦<7z]9k–l)Pv±¼È™8éœ{×öyZÉ–«~QàY'hcnÜÈ“FïAjÚÁo&ŽøÕS’nyÄ㮆³¹´Éü“™”º—ëùÞZ;~¼$6ß]´ãš8pE©èÁ°Õ„ð¼-Ò%q‰§Õ)§ûÞßyÌb{²ßp¦}-7ФCº)oóZÀ6JU)ÂãÛºÛqö¯XLð‚qŸzä>Õ- šC¿ò}4<«_»ÛÁ9uo„¼ÌC"¿¶g¥yŠôCÜfÈÄ‚z\ÎåÖ /ëE†’ûÜu^sxˆøÇ™ØZ,Ó¥W—j)`ÃY?Taë”(V|ÁÛxeέ^Ñ+¹N6Þ™oçªÑ¥Gç¼Mú¥® ¶£æE1V1e\6P'‰œY_w€ç&lx¡†^Y±‘à´0Êë&a-Uþ€9ž{ú.‚k­àÀ{q&‚mþŽÈÊ||pÌSƒzÔRxý×f¯Óºðêx  ¦éêˆ*Ë™-¸}v2–Bæ]0FMÓÈ.{Þ¨ÕÛé<-ÏW8”ÖÛ¥}U¢—Xã‡OÒ'¬!/&’kùqGGüÑ÷x>K¦6OÄE7®{Å$…ÝË@Sb(ÜPÿ€`°Ñ[W[X°d’]§‰å½¯Ü +’Ï;¿ýSÊu3&É[¼:ñ^q± #‡åR*èvEõöeÛ”® §5ääpOY¯ãÇ…U…kp%Hšî(ùaòŸòà“=Ãø:Ú¦©ùÙRQÚ‘ u"[~hñäÕ“12¹yø¦Çáì*¨iê²|í˜á6üN>ŸK†í9 M¡÷ãäå7P(¦†WÑ4‹xda¯]¨úgý¨•U{ˆz996ËnP0óÓdÉSP»¿nù~óæ2—'Ù®H£æ>m¯ ýN'¦)æŸç8¨ !:RâµÖ¥íUX´…!YUÓ‘¨ý¥"¶¸0‚ÖëÔû¯!Á`ŽƒI{i¥«üu2xpSÖÚ m[éNµ»?1‘¡ÂÇYJíëÉCÈÙãg¢þkŸ)ãäg\ÞÕ€þxø£€êè¹—sùfœÞ|C-GNM8•Bé8 awµ?ɶ!_Iá…3#žÌô;Ëáù‡~_œ¤ &8óü,J¼c(ÛtºÖr)Òhè2ÞbçÎmè9 i}”Ä9÷ÇT–EþI«o/L¨\a'_Tå×`%Uî`>Ÿet{oTÄ¡aw?±3Œ%½XõÛ~²¿0FèÓRøÚÕÓ'½=-Þ(ýñ@YÛ³®¢Þib²ôñ bQ:†©·¡Ömx“HX­£D’,¶J”r\ó,ÿûKÈo¢vç¯ %-µC9iTˆ~hWt)°TíÂ|°TbÿCÄøDÆ\Ô’÷?'˜ˆµâñ[ ®ßzf©FñH©dI€b©4ebCõ°úؾ†uè/tÐ+ÁE[ê?å— Â}IˆØDˆdµF¡“Ù‹äÓ&¸pÞ~)ãC‰}ÖoNc¢‡i+ÚÕª)¶%øl¦õF˜MïÝÈÐt™Üåf%§åàÀljtSdmmîe«à£6í•_@–AKµpºÉ4é)'ÿüzõ­aYä,¿Äâ ßKY”ØXðתñ_#Aú@Ò]ƒx¬i—*Žšî³£m< K ™N5Ën¡Ž1a¯b;Äø«êª[VDjã™ûÒp×Ñ{¨2?9G\¥™$̇ô ú£8^$I‹­oáÑkççHTšgÜ•ؤ+ÔSâ•s„kþÍ5OLž†ÎáhEFº3±ìï×,e„ `‰7ŸiÀ?xç»_¯œ%ûZ]¶™NR6óóDë ©£“aßÚ¨$)ýJ#IZ¤“ó¦’ž³;§^Ž¿v¨„kDs%ñ¿ZûlfÏ’ÝŒ0}äQ"e*|sùZøœTÛy¦C-à?–K²q§/ѧJA{ç¯3•™D‹óDíÓÛŒä!£½@3vG‘w–›pgöY’^·ø ¢‘ã£Æ£(HÊŸIéxH ûy³‰‹û£p‹¸7gO¬DÞàßh§ªß³Œ‹\–¶…RC¼|™ÐXbÙCiù7½´öOôO}•ØÍ‘3…ñÒuÉôǃsÓ!£U}9&Ç’ŠÜ̬S,õã‰Û2{„ú™ƒ 5QBóÏ¿ ÂUë °rNï—T,éƒÕ ßvM#hö™¾ÖײA©dÃ2Àµ‰Ü#K¥˜t cOˆ/v,;vzoŽGq!&»ªd8¨’¦vvåÆ~r¾vÁgZ¥3Öõ(ó@÷ú ­j&!Ì‘Vf<ð«z£®:[„Qš¥årîã¨[f¾Kæîn˜¡Ó(„Æ$ªƒrvF Î>«cœF6[‘ªi¯•5}ýeåõ³ä³½˜š˜]ñ§ž5qÞWd³z ]Žãl 8¹A†Tkÿ l~¦L Ñ]­Ù”t °ž™ï³½9›«^ ŠîV…—¼7èö×)lÞC_ý\óàÎïç% Ú‰5‡ñz²SâHšÔb9#`›Õ°ºô¼-dÁï¡u‡¡ P>üü !~ C½ÎÂ|ž[„8’ qL¼¤áó£çÌKcú$*žõÖ¾ýlYÌ;Ò±^ÅΕ uQx0ýrH‘S²ôÙœkÎñB䘺’½Oî •;oa'ÕàÍhB3{©ÑPG§^1öFe(©ðº5¥áæÝEö°‹1(†uà*«1ðVqtJ¥¹í@È–ê²7Í­­¶Ÿí2Âöäú6 ?s zA³“õ…(­ f–9ðçc†ë£äŸZ å=\,\ :z}n> .a_2¼Öha'~›v?)_=¸h„KÛñ€¯¦ŸsÎGj¸ß_†ˆt†Þ]-JƒZ‹8ÖÛ„V¶·ßrj°;Xá7°¦#"fÚïóÒ}àÇœ€‘9:þ´·Œt$²”mÀO–‘‘ÖôŠ)¹¬¼6ãË|°‹Gx¥òð(ÁZ¡¥„cø6ƒäÛ\F4ƒ-Lóüï¸`º¯ù·²ˆÓlzšÙ©† ^^yßjãÑ»N•)hycëbÅÄlˆѦújëMÅ|KKÞõìnae©¤Lh ž6P ƒã6L)*©»aLMr^°´•ZlSÂØf†Glfã‰EÔäâ”àœ›êRõSŽeaëön/ Qp÷þ}/œYKB!Ø>¤N3O3¸RqÞú†BcOàT¼¢7Ûô,”ŠNä] ²ùÂ<ÛIÉìÇï±iâã¶[ÈTnŸå8Ÿˆì›|j&§g`ÖV8>æU¼¿mQ0w MûãŸþÂÿ =Ä ±ÍõAšµžU AâwÝðböÇ6iy“”†‚.ôŽ–^ºê,Q{Ür•æ @qNo©P²ãjÆú :¦¨N«–÷ ÇĤr’J€äîl‹ÂÇBšçÑ-¹†¸¡ŒŽ‘L3»£¯T§qivå`¦Ø9Ç¥Øç¼Ä-iecC.j§èŽ}:v=ÙÌ ~zÚŸ™{ç|”h?î®S×Ïe…vFql3¼¹5÷ó#HŽ#kVÿM ·¨ÒÖáE†g©| HR4Ï`R¹ß Ö'cÑIBñÍšÝÓ‚ÏD„¼²©¿u" 3AAÊû4¯á"+øû ŽŽùcÁ‘²­q‰ö qÒ’e½öZ¢M4ó¬¡W¶Â‰µXJ([R`Wòö-Œ‰âÕi?<3Œ¾:ò qB6œóWb þOgJw©ôšyíùxg.F{Hx›õôÜÁÒç…wâç[¿2Ò΢á¨n‰’Qý5¬3¾ß.?¦±ä¿]È–HÄ]‡5´øù_•m¡ŸzîzLååÒ3ÕSШ2‹¾™áOŒ‚0÷ª†mÑž›­åŽ ¡aµÝïÏÊù‹‰»@z[.m$–~Ù¹þÚ¯¨pá³ój¢k‚¸mê˜òEöf—µ‰f©ãqµU7ÆñèˆRÚ]ldy-p×PÆÓBƒ³³lx†£Q𘠕¹ä„Dì^‚{Âs3ƒWÃÅA)á ](?Ñ0»Ñ÷jsj„PŠÚGî»AJ¦À|(ÑC„`!Üx"Î¥¬%H¾ûUe8ëÐn¼ ìcç3øjŒŒH éλö}Þ Œ¯¾$x`˜:_eLîsXñú]½ÄšÕ/Ubß° %Q`ùí’F©Œø¥:ÔoìÀdLŠl‰nÈ8u.µ¼E¦„"q ¥äDj-Œž_øéò ­(-êúî"bB"û„ÍóX"Z¹áÚ+m—ÇÔF_•d–ˆEkÊúÒ}_7år¸¦bÃe 'ýhjabš;C1¬ìåÕ¹,ù¶bšb«i‚0Zk!ky»õŒk7ÔFÝ8 ð=µ¦'B"‡§ëv¡žÝW:½èÊ‹2Ž]×]×r} ¿Wúx8˜.ìVH¥01Å»­W¨el¯á‹ì]?[¾Å õ’áb”lÝSTpe›áãó*‚ä ò§¾âR÷,=³m<6wæEWñ!*gˆ››ÚÅؼfwÌ ["¹Þñ%Q‹H @ËùN¨á]÷ðÙq¥¤’£OˆSÍrÌK°W¿ kF’a*Jñd¹Ù'Þ_Çz~1Wã¢Á»Šè•ÅÕyõ{Ïx•°îRZR„¦,²û÷MÔ°)»’ Tl5wèzÞ“jj¿š•'Õ L°ÜÈs’©ý´ð¤æy&¤Ã5¹ëÝ`—’sõ½æ@ôCèÏÔ#hf8ˆY;í\‹/)»Ã³]’är„›Ñ¨ž$çnÖµˆ‹´íàë‘ß?âÖ$:×ó|!ô°h«ß37±9necéW}ΰÚ$B0OóS C&J\ÙìuCS@Yp"32öñfBF?Ö舺fÃóãói0ÍŒ30‘‹ëÙbÿί ˆžÜÝ2N-[ë(vl €{öê2ìÇAS:\Æâ5¶<ïL‹¢’”lÃõ§BM—.•²‚MЬ V`9­syŠoX­Û‡Ý ˆ:öUu8P¦7V\ÖŸŸv–²ÛÑÀâšMÛÙÿC÷U"ò´¦Ë¿‰Á•W ·Xºã£BÖžƒZE›Éá¼![R7 ™3•ƒ®ÒêÉÈB>û?:-,®y:‚ %»/pãðxlNøÂ¥¢BèLýMÅ ßê +øH$@ÒW ¶?þ?5nýê»béB9ŸF¢Ž— RsGkóSŽ€„¢SÒ™_ Éø•œJ½ôþ|$\ ÌrÝ#=ö«.ÁGò+´§ ÍóJx‰s'¼âö´"ýñ]ã&õŒ"Û»›u­ƒ·c“šïÃ;ˆ³:¶|T™Ò¦ S!¢©(×3ðí/¢ÝnÙ)ò3o”øœ›&Ðý5ô%ðøð™/ù™ÇN ±hæ“öÈï£Ë³cãÞ-Y y¶lûÿçü÷Élïœá6+jâ ›j£ÂÞ°‚ÃebˆÓÒÌv~OjQ-Ömž(—ï¸ê«ž[¿²ÑbˆÐÑFõƒÐIÖH̼:îQ/ä@×íÆëÍUZJ2‚Ö"°?q)RÁR†#â¢ñ‰ýÿ=0Îó}ŒZ¶öO¸theUýj,ÑövCU÷ÿlU{6†ØåNÅìîÞÜ|Íë)q¦çáÕ‚K•Xm#fÝâÅïÒþ £[3=(@Q[ùÅ•ïìuádžHŠÅTBŸrøvøoÀÂvÏã^F†“&ŽMùàÌ®Yü*xŽÛz.p˜}ùÇ¡rPç'¾æN2 Ëeä? Ç7ð3#µcÃü×ox$­c/µTpuÆýV|,¦ªðÁ.µij9nsì%¯We‘”`v„Þü ƒT3RÀä¸÷Ãíóø@’©06-Ð’)È1Ê3¸€ºqsʼnÚaV¹†ÌéÒúeÜl^dMœè)G!¯…#™AJ}Ål€UàwwýÖ¤"³°D­È ¿´øLÔ‹cRZ¯Ký;4š²;2â_°"èF!ç|¤~á\]J,GR%^¹½w­íâÑY+p2EôÝáÕ{l\“Kj [—¯fE(·)¼³‘ôiL$VgÄmRù5kÁ†¸*(X7æ)†øYýÝê€êóºÈ€$ˆ¼Ïª}«'Þ-jµ°pdÀ|ÎAG)q„„Q¢EÝçF|øÚñ}EÙ‚Oï«<0aÝ5ýSKL¬›ÞÇ­0w-{˜3=S˜¨$e#US^•‹iš¼4Ÿöµ5ÑòòŠŸÛöBu?Mpµ6cb–íÄz@ê/%HÔ$FµJ#¢äÓ¹ém«Éì1ËEõZ¶”o&Ž‹d®Ü`[2;‡tLºYû¼Ú,vMS„¢ï‚φ7ð ¹&Ç A'näøÃ˜¢xT?œ qüšìÙÕ5ÐÒžGYË™]° ÖºƒÙÐÊÛº, ›×Zõk½*Ü¿üþœþþ—h~ܪøfÒrœñÀ%iž1õ^xTD%•Aü@ZúéÔÛ r]ìåÑЬþöï+8&µõþD ªÀ©Z‡ Ð4¥bìÀÖjt†ç½gE#½7uO6öì¦'^{Ü Û% ^ó̈oF@q˜¥¡pèw”{OÅQ6–ã­‰KR±uEüV³´j䥉u…@ H[¾+\« cBñ´yb¸Uh„ß` 45ú¿  ¸Ä{È¢ÿwÓ¹Œu1ò ~HpÈød瘘ºæ.–<º­‚^@XŒ=ìEE]Ôóq»Ô†µQ?J-"-%â (ä¸ZšJ‚½ÝJν-#‡Ž€zàÕßÐ÷îG‘ð%òW%¿tJ|W¿°‘‡TqG¡@›9àoÈÕ§”¶%ÅnÏ€¼Z5ìA‰¸J3—ÍÓNó9ÙŒѳ z|§¤v«¥ÉË\<ÃòŒsëS€ûˆü–iýÓ #ol\ 1Âþ1‰žãÜ€èµÄr 2ºµ¢¥8mŽÃ,8ÆŒxF^-tc!ª’›0‘ع¢pPåv7•J’påLoùÇyl¡-+ë´Jq÷¤5úÉ:Ù- :ÁÊØæ—kE‹L{¬Ág åΈœ>eøÂ=VQp¾pþÕžæE;ø ÒâŒç÷Û” žŒxÍM >K1 f_±|dŒbÏ:v*@1óB}+^Ñ¥K†?ƒÌ5~o<{¢ÛÎè Šr–$Á‚oÃæŒKo’cÑ®Š½éÞuÏ“gË’ïý}눠«ºf^§`öÊ׺¶œ¼U¥ª?ž}o+çUħmñÿõQ?±aýÎÞnWhÚÕ>ļe¬Ô˜H–ž3#2›„[@ì'·í>¢8óý¹ð¦2‚³ƒså¬.XÀ~W>ð*«Ò1ŒsÝ…Á8[O.­§x‹©Åç±Yú~ÑZå'ÑHõ®8Ã[[3÷ólYLþ>ÑçÒ’%ÞbÀ©˜ímM €9óØw} @bz9š±?Ë as…bCržâ¼ôv%÷ù Н Œœ¤6PuR¶f8"÷A^í’åLî@d@“Êþã[Þfãî´N§B,å‰Î‚îEïHŒ=Ü¿’7”1ÏòÃuùBY¨™RöóÁƒdûiwW겆œäz2«·£î³9½½Òùð‰U3:Âh8ÝQ¬&òÉ`\I)í'5èèbÌò„HA~A‰ÿdz’˜H/KJµ]âû,kGÃãÉ”·,FzêäáÏá¾X öjرÅLÔ¨½][Ú—`ìžgT` ;õÖ8v€ Þ•´…å.ƒå®ÜùŒ?¤±l „!ÿ²vBO…I­ù‘øû@¤gû/¾ƒ8…[Qub‹g^éÃSôdêû˜›îˆyâ|̼¯•ÃvÈrú21tE¸±rºš»÷Ú£T5,1ÓbÅ—? 1BSvBû¹£Pù=SÅ(kÓõÑõã6s”Î,¾áÙݨm%…Fj dƒB^ä†KvÚQ‚æÌžÀ‡ÿJQ®šõ]Ô×ÚìÍå÷­y¸ÔL¹” 3S\¬ƒQ¤ì=pÊ·¸‘X:iµ¬L4QCó|%“`0kŽûéãwn9’p]j¤—O~/ PQ˜8„ô¡ ¹ì¤Ñ’FÐ °)]½ÉÄ¥Œ+ìe û_:%Úº49‰9Âï;_O{ 5«Jæ1\{«qì·Ô:KÏöaé×0õ;ÖMè(ËÐìþãCÈ8f[ð‹yhË`v2[ÁknL¹›¦°±»aM}ÿP,@‹²”’ 2(ë“u#°7Y<Õ+ Â‘q´þæ@~z"e„œ„½ß2KÉw¶“cÜ¶Ó Eü†|&)N— ?º“Ï?P§i5šÃl;U<õްÿEŸ®ôœHÑpÎŽkê}„vÆ›@ˆŠ0h˜¸¿€àZ8M¹º¸ªq‹×VSâ¿›C.¸ ;ÖôžNAéÖq Ï(®†±CqŽ4 ”ìQ:´Ì² endstream endobj 221 0 obj << /Length1 1975 /Length2 24316 /Length3 0 /Length 25511 /Filter /FlateDecode >> stream xÚ´¹sxd]Ö>[tœTl›vl³£Šm»cÛ¶m«cvlÛè$üÒϼ3óÌ|óïwÕUuê^¼÷Úk¯«N2"y%:A#àWkG:&zFn€´ŒŒµ´##¥€™ž‘‘ŽŒLبïhfc-¢ïä0rÒ31Ò332rÁ‘Ä€Ö@û±ÀÀ tÔWv³2(õÿò6Žtúj µ‰™5êÃEØÆÖÍÞÌÄÔðƒ…ŽîO¤?ÞBôI}C  3€¾µ@’^† kãò!4PÚX €¦ú–Æc€2P ¢$ª¨S”S‘W¢¢ÿ¬ädkkcÿ\„•”UÄh"‚²Ê¢ *-@LEIùϧ2ÐÚhoB UþÐÿÉóaøÇ]FTYPYC^”‰áÏLg ½ƒÙŸ´ÿÅüƒàßÔ>\ím¬þJ 4ut´åf`pqq¡7qrp¤·±7¡·µü‹Ÿ²©™ÀÅÆÞðqµZÿ*Œ“µÐàh üG€?»63Z;ÿ8}µù‡Ò꣔NrÇû(„㟘–ÿ08ÿ‘ÆTßá/_iyyi€•¾™µ#ÐZßÚðÃÐQßÑÉ ÷—ìã 4¢øA @ØÉÞþO™ªìÿ•æŸÔ…l>V¦méá¥ïòß;¦oíäàþ·Úüç² m¬Ìþ06³þaïðgÏ̬ÿ’ÉÊJ|UR¦“þh9k:›êXÓ;º:þeý'ž ˆ47€ƒ“ÀÌÄ`ühOQk#a+«ÖpÊ'böQ'G{7†ÿnh kkÿØØÌÚÈøOÝœlT¬Í윀"ÿgü!‚û·Ìè`í@WCS†?Éþê•?b¦?â"xyØÚØŒõ-€^fÆÀ œ‡ƒ¾3àhïôòø»â?ÀÈÌÐñ£Í?Ž Ü_Ñ%¬m\ÿ0ù§êÿ€ò¯Jõq:l¬-ÝF@c8YÇv üÿç”ýW®¯N––²úV@Êÿªè›é[™Yºý—áÙ¨ÿ¥üÞf_Í\Fòfކ¦ñb Gý¾´6±~lÉ_"•?GÉò£g?æŽÙŸ cbgù/ÝG;ZXœÌ©€Eø/¾•ÿÃÀ §¤.¬)Eóß ó—•¨µ¡‘™µ €™ oo¯ïÇøÑÌll¦v6ºþÕ&zkÇ€­“£ÀØÆîÏVrpdþˆþB\ÿ…¸>túÿFœƒ#.ƒá¿##€Áèo Àüükü7È`0ùd0˜þ ²Ìþ?ÒZþ ~äµú7dúÈký7ø‘׿oð#¯í¿ +ûÚ›Ùü(ÓGnû¿ÁÜƒŽƒõpúw>lÿšš†6ö[,ÓC—CæJnÁÿÜ]ù?“í¯cËøïíþ¿‘ÿVr´·±ª™9šþÝDFßÑÞÌU‹ñãÌ1}È?^ÿü¦ó Èþ=.þæ-$dãêAÇÊÆ  cù¨, ëŸíàòúWà ߿ŽûG[þÿ™| Ðh·¼`cÈhžÜTê-š?]IÆEVñ™_]2b9mºK$g‡ø¥À¯Å7¼ÀFZœ[Ç;ÑϺH,Ãòm£5¡rêÎHA`Wß[ÆITp,[•^Å?]fÉ·¬‹˜êX2;O£˜u6½-¶ 2v"ÌÕÑýÉ<ùþé&‰X»¬m-Ò¥ð'S3º½%ªë N'îÒt'¨ãûzt„~Ÿà2õœ^^Ðç1I(ÛÞnMšä#·°C*›†·žh|OA¯ÖŠ˜ò’G,7ªíרU£#éõâvvûMç¡•ƒÖY„è@:¨Öòò~¡MIz¢ú•&Í–£“®Ýå_BT÷ÈØÎìzwAo]Ùj$0+†xü ®ÒÕO¢À¹ÚOR¶èÈ×gçÞ ö<9îÅ •a# 2 ÿäs<×5³y}Û¶‚z3fé{^A˜²B ÷åÚΙd”å9™Wi° ¸‰ûBtÕg=NåÙé‰Ý>q¯}Ä!Ådü¥“‚E µ®Ï$3³f)‚áÜ(„xIe±²;ìÍ®hªtÉM†}öRŽ[‘›´ÇÏMºT!Éý„Fð‰:x8¶Îº¿zžÓX¸3®y1%ÁWòxžˆÀÕç GJþ¶§(‘.Üîm±^nq61fLÆ_ˆ«)¡¿Ò6:Y«ÖõÞOñˆm ”ïËšñŒo" Œ¢HZ±¡²ñ÷ö+õïy€© Ð.¡JÉ$ TÂ'©\DZëÆáŠj൙ì"ZåÂlé Œš"/©Øa§¿Þ“µmßÏüŽêûzL£-èÓxJGÆŒŠ©‚™V®'Ó`Œ …ߟÌ2á°Ìy?y¬…€Ïßôu)™‰½©c»,}Bü¤ÎÕïO/v‡[«™¦ØÜ#×ëÅnç}ËQ“î'n(EäY‘ÎTy+¼4#p|à†žÀ?1,ÄgRt¢b@ÝÀòêy¿ñÔÊËØl6i÷}ºÄeR;~â€ØÅ,á’MíÏhµH•?”§ÆIç ~I<3® E`ÿ!yWàañ»i´¿èÇ^—ù®Ü‘Ø­Jhš]÷ï+ \BÏÑu`;´W²›âì;éã­é|?¹WZxT\[<Á/·;FmîJ¶Î®Ö_}±FÆdhC…ü ¯¹ôAì´c¾eй#®©òfˆ3áŽ9 ö3OïCÑÖ!‚"`4HÆ–q×5úé)º‡2à-‘Zéð”ÀùQm¼—6EÑúpÏà¬R’O§D–r$zÅ¿ÃTv¶¾•çÙ—Ê¢1d€%“dÖ÷ÎT×X-T?–– «'æ‘…s;!%LÍ÷Í–/°­ø¼a6¾Ûr’h”10#²":håDUÎŽ`0$Éškýôšñ:Œ …«Ÿ­Z/¬JBàÌÇÔ 'Z«¿º¼œžý¢ y6üãÞé·_\)pqøŒ¨ööŒ4äK/q^ªîLz²R{Bw|·²Ó)шºAð›ïª¯D§Y(½O(Ïcõàaí)¿r!–ÍT]CÚð¼FÌßÕKä¹uC]‹Ê[¥V‘:f¨½ëÙ6®!`¤à*L¢^u•VDŠÎ czR53w\‰&{ÈNJ#&Êb–ËŽkÅ(—u6Mc\üé[©Zÿ$±6ò²ØÀÆ×oƒüòשż¸²CVL’i’‡Z/¼ïÏòÚŒ2 ²Êè©{ß«wÞXEç°]w²~Þz©5á%P´NPhQL6W/ÂÔɰvB•tp:H·£PõÚ‘¢r6W“ç›`)…Ú«“â;Íî¦dðü4GÂ~j°h}aúBþÝ++yv£ì¬þY‚“ú™_ë2Ò#T$Y;”Šmï]Ý×–£ÎØ-/‰ab¶ÇèØn4[7‘©¾¥ãæ¡<^݆/àg¢fõ±xˆ _§@$ï-YÌWí›ìà°ëžV t+á–ˆ× RèFçP'e»ü´—"«tùð`°Ì„ÒáÈÉ›˜qâ\QºÞ-b•§Ò­&‰çì{†øÑ–-,¦vNWHØ7¹!ðvÕ|cnâíÇ|>CSdVQ#"ðÖuÆ,øDªñ #ä;+¤òøÀÌjo7#G3:6MbðW:{T_Ö¬ a3?‡¬ÝÅ Öø¼}t4xx-­÷oä¥8Mr82Qçk‰}¶ßR`:Ÿ¤È´ÀðÌ›vó­›VGº•¾È;¦`ê ÍÉ+ç“:MsÒTc–A´@ÿn%Zý Ak.þÈ=ù^Ju7Õ8=–É1sŠÅmo—nÃÙÜ,¶*NxŠœPU»û‰g Rêɯ7d¦+Ãdm¹åûiâwÆUq¶!µªÕÝ’ñ_bR®–ºßçVå»ü”9óLe'+ÏlÓM†NV–Mèrä?E‘˜ÿ¢ˆÓ?OØ4Ü×È5é[ÂýZÏIÏßʧ†ñÅÔ}½«kbRGADŸ#eì!øŠKóá­ýå†S¨ ³–yâÀÐv±ýÓusÍVG„(eyžQO`Nmøyf,ª’´îqƒA<”ý7]’ÆO´½±ç´z©Îå~ü_R¡ûßÑß"•^…*«5û¿¸— ò_‰S"E üÅt˜æ—ÃÝb½ò™¤`Ž_kı#‘˜>I0ìü4ã]/Œ³‘1Žñt¥©–´çë@²Z˜¤È®©‹ÜÏqÇSWQúY¥¦ª|²i¬Áša&œ+EêÐBö¦]|Òü:fÌ -!h-"Àc:ĶÂó ´“ëžÍ1õúkÌ÷jä†ü <“Z}ˆäŸBGÛ8šQ)q'¯þ¥ Vbãˆú aO9(hq÷wµWE›lÔbãÎ\_ļwN¯æš”ñï½hùæÀ.q¾khÌ•« qt+6DÀ­ L÷ sñáC/1w7)·œ)‚^»{²$u#JA{Š7w/ë£Þø¤K¯yõÒ)V™³ Ëíùÿ̵ 9{Zò†gu;S•m=àÙ Õœ·€ù–ç¢FؙñÉöpžö©Ì0nÜh—êWuP˜üùIÛœˆfbÛ𛬢±toº•”±>@æÜgk·H"Žƒš ”›9ü_W:q‹ËÉ´·£VÏ{ÓŽPã#h𤰢é#S4ÅfíÛÞ~÷ŠMHú ÷CôÙíGRwFPÚ#¶F¬µ4dðX4Aõ¤Ïú‚DU×êø.Aµ;4©ÉGá݉õ¬‘ß5[)E÷"2{¸ÚßýµÞèÈœB¤%7än«L²N}v ª¾!ÀØh'âÌg+±^\#‰¡0k% ƒß8¯˜ÃÍ}Å’/º4Qi¦‘j‚Ú Ù[ÙÃeÈ;ãß…M|B”ÙjÈ{çh¥=Q*ÅRªB-Ûx¼= ­yë„'_á‰É8.ø qa«~Q} 𣔇Ã=Éd¢”—¾A#¼2)°þÑTÒ=j(œlÏ»E:–†ã‡1…¸)à‰&©:3m9ƒðYÞF TØ]"’_ôY[Ú®*dŒezÝIúÛLÃöu:”‹&]ë0Rs· .¡<òéóäYêNŸ×~fÛ׃‰¯r½Âc ¨˜ƒ7ajÁg÷‡æhìúM+±Â?%^üœ"§`ºy6#äxœ±4w܈—ìd§¤S™”Õ^J ÷øH£O¤†¨šŠMúµ(wÿ"Ðܲžã¦yr¦†ÈnŒï”‚T0å`ôj©ÀC«¬’B˜ë~ròfj ­ñ»Ú\LÛ„V†çƒ Õûb3¦_ »ôÃSoñÍÆDÐg‰ÕLöøòûØzÀÁó1ý§pOgÈ®‘~>ZÕU54¶º§Q TŽkp[á–:©NÉš±pÛ)œŠßÂm-u‚Žn¤¤ ±²O‹iÂ'!Ôôt“à¹Kº£‚Î…'ám…(uƒq©ßÅ;ir5æ½ú‘ÉŽ˜¥Œ¤-U®¦¯¥2UY \ VªÍS8z ‚k=©íG«5”Á±Ò-o‡#_¸©?E‘¶†×Üæý§O첃Ix£±í¹“Qo?Nâ£ðZ¡Âß’Ð-ßÈ[ɨ‡?{z­DŒí>ÔCÍ´´†çá9˜ˆÐ›µÓ©Ë­€Þõ~’xS-ƒÛJNšŽL€ò=•!\Š=ãYùÊic¹ÓW-ËkÖ˜·ÀœK—^Ç~Q•¨f½ÑO6s@ȯ9©`4¬9PÍ,)ˆŽ·²b!ÖZ5zn*'Ï…WÊÙIwF@õÎuÇaŒ`}©,=E>ÑôîËÑ?JF1WÝ ™„4'›ÿò>Q¼æ©¦?>í·¾$8ïV»ªw×W×”D)©µš޾ʎ[(Ñ%H÷3¬cõ1D3õvŸF00À,Дò“•°r ñ«è4¬n{pháî² U‚¹ëZбåü‚„—öÞJ|:蜨îCß?.ÚÌFemJìãØ™Ù9FgާªäÑvp!|Ë“ažÖ‰þÙdÖѕA´A¬(Gä¤!CgÆéO6|2"Ý”Bô´£E3±A Éê#‹OŠ`”ú¾j¦ÂÂ=ê™«Š¢Pôts[b'höž? ¢Þq>Šö[ùG˕ŲÝëj‚T±õý¨ÖR£‚Ö¨¦ÄöŠÑÞéÀÏK¨ÇZ¡€ý¥¬E©ƒ¼–†Ð&÷xG A¿ö°Å×&A‰§#½¬(¥DÃ]~ˆ»:œç¦ó 9pÉH-³^'d±¦úþ>+™ rCyÒrç<ôЇíMzdS«— ¸ãßß# {$ô+ d"î´µï,žZ$Â¥¡M~ G+Ÿ8d&!©ÏË¡†¿ 9J—¹Žn”œásĦüŽ8VÙ¦ ­Û¦³‡UíÔicˆiÈÏ¢Áe_»E«¥Ž mI¢öH 9šað„yÙ>= qøÞsJATïýÞJeæÓm~ÌÕÑS÷ù1ËÏέpfÈeÂFë„¢‰JìD°ÙÎnŸ ÿ5íÔÉ~»Bý¸–âÔGüûi„N°~Òùèêy©{F‹¼èE*Hô“zØ·.b:ÓÇ+eél.ªÒ0õÌŒ §}È@®õqèoÆÁ!¬¹{å-ˆôh¡qr•D¯1pÚÞÆ 4G¦D Qu}þ»žnYC<ÑËr÷ËÅt‘ƒÀŸg¤Vk‰È€ð½âù9{áùþÇøIˆoeÖwðhŒÅQG&÷Úþa±ÊëùƒÖÖtI³LíÐ&Yu塺¨ähÅÎ;jqr(ƒ-ûâ^}*‹Fú¥à¡à ¦ôõ3¶êq+nIœ†Ýî<&Y%ß.]H]ú÷³?NF¯*J&Õê²dd€øÔXþ˘8Ø&2/ÙL“ZžRJì/ùµÃaÎô.ºÒ ¨j$ð¾Ã¥ÔšÕ]\ ípÞ…‰¹øšrN벺"1ôcdüÇåìB¾ åg­§ÁÄË3§½<I.Bg GªÜ>òë ®] ñ‡l2ÝÊ 9Õü®pž¨_Ë×(“Ûªäa¥a|w3ʘÆ9àßñ÷ÈJª-rxœNð=÷B}:Šz`\:€gþ÷XîDî ²CÙl.£E øE ¿[Iüë%Ó¾g×ðH2¼ÊŒ ³§M‡b[&ß”#ïäéœ Ñ#R+ZyŽX·€Ì˜ˆ¹lü3Uþ±£±ŠCp8jœÑ( ÀÞI´ìEãc—d¥‹ [Ñ}ÊJó¤nÇq“ ¡öÀmüü›mÎz…H‘Zgý:…BµÓþpÚÑÀ‹3¢©ÚüìÙ$†TþÂá»RõŸòg… 0/-’.¹a=ÈCÞ_ª¹/€Û6­· ˜›ã“h<§Ö¬z¢q'–Ë–8l\Ãv”àB‡é.¨½Öà”E£Ê?<Û:¿â6vòIÑ}’7 ‰ ¾¨Ð“)päøz­@TH®)Åd懋´+ßÁyskŠNƒè€[L[­ݯ^Fk5Ÿ-ݨ@ض;Ž 6œ"‘eZ=3(ñ¨ª¶ÒøSà]ùjœh*¿AGØÅ ©©¿$%wãq;a+Vý©Í&×CÂóp4$¼ÄÎUÉÀ&ú‡C,©{úè"AxÐ>˜›Õ³ä¼¯óngöFœ…¦ñ,'"?ÎS¡þ ³ì™giC¨ø=-)ñü^|2§…ÄZl.oÉCQð¹®çÔ¯À0²ïÈùâŠÆÆ‚úáv 9½ûÞz©­{Ød숩XàkÓ”†Ù!â9 ÛIÒæ™’Ð…³¿ô=¦y-îß5›šF²–7öŒ s7Û@§·WFEŸd_bçM‡¾ Þ+°Š*ÒÄiâ휇ýØäw2(¬%—i±OI=¥f^ÙÎX@S>D"˜³\_Ðõ§¼pjBrÆhk”/ÙºµÝóU_4ìžlÈmpžOoõ°ºÁˆ)mxJ~Ù©œ°tbêDÄNÁœj¡ç@ð€î§Vk·ã›÷¥l=ôú×½ùhׯ¡iÉ™’CòK£H3“ߺk6€º^C‰PŠ9Û6äû&0mœáøCf"-‚}_iãò·=)”Sˆ~`³‚žéõȶчoò„ŽÏj4Ê<×s:{Wÿ]Ñ·ýн–ZW‰ŸŸ¯ N…0jƒ§¿) îžÍr(‘·S Cv†,WIõ''!Á0/©‹Ïg0Ûzç©. PáˆÈ…pËÝK±ï›|0:{Ň`Áƒ®J”AÊÈpô0BÍ¿£Î§«gR¤I™‰¡$N`QíMÃRm­»z½PÔ)K¶ŽAºîünUõ e„¨!Ô â7–ÇRÐiD‡™N»lçY<¹[ïyïÕ¿*ˆÖîÄq“y‘q vSr8ûût¯õð6ƒ~¿Ýlšc> ¥·ê„ˆMžÖ³ÅTéAd|ÜWç"ï’9[έÖå%þT FÓ'OCi[J7ü‘æfF|…+ñVœ8õ.ßÚÏ¥™A*öd¥{|«– ùg\å±b¾êØýY²‘ë@Þ¸!³%c”‡²~)G †÷'£ á8_‚è„wÆš9ÄybL4€ú’ ³HÞ‰mWÉà8¶@ýØmA@ë1^ÏX„=:‡Öîì×ÑËwÔ z[;LzWÙÞ{ÔÍö­íä:žˆ@|¦…áp±ß–GMvq2º­ì²ªžíuFÌÕ>“´<Ыä þ®ÜR#ã·e°‡H{ýŠí7ž,U¨[ÃS5&+Bó"ÁlÆ3 ’¦•g0Ф×q¨=(R$viVcÚpÉTÑÛšîÝâä^E¶— «Ïߌ³õ#2ûy¡‹€}SýûƒZª8&’!ܼ‘Öã„æÙ;ŒVÖqî¥üWzõˆÂ/ È•Žœ$Ç¿\üÔ›|æßaœ‡'·É´ÇØ×+Ò“eø°óéEé¿ØhwÞÏIÁLPäšX4MYãÕ¨‘žˆ˜Ê‰:1¶hëîö›ÀîÑÐxvùå %Äx,ßÐ]@y`‘ èT£À0ߎN˜"IT j]£ì2É>«+Õ¡R*ßõ2}X’¨sðÐÀFˆ„lk\#ç ^ÎÊdV9Yg{æ}$Æ—¼äòäwµ¸j[0­¨â‹Cä¥Íˆgé’°!{e{IÂ$Íé•Û˜ù“\Ò³À&œæÙò†cŦ›<…ÊÑÜ ×•O~ëît÷õ\ð Ø'R´â³¨hš$1-ÉbMÝÅ'^êæ÷%‚pÊ/ÔCL cžŠÍM?m…ê,´=¼P7 ·¨$;£@Zr|^êìÙš™êD\ñ-ûÞ¶ýq=ètØ,/% ã_peã ">]×ßÖ^’&wa¾¶1…ïÌ®òˆ‹?ÌfC®Ïa~ã'ЧöfjH‰˜ S¼• 9š€9'à}wè!C’´ÚQMsÀ ãHʇàš?uÃ'=+ì»¶c†I(Á«ŽŒ¼k@%¾)o/·|š‘%ʲ„ ½çtG‚¯§ _•dÈ\á +`µ²àɵâ&©"pmôe|§òÏ <þ!bDSÀœàãŸz²PL²æÂ-!'ôÃyYœ6È$ËûÙk×b-G§ápë¶pgèÍ;ª¸|€‹ ö™’@ÿµÏK©vãt‹§ºNNÅ‘ÜÁ_4·2[><¯ø(ôÀ‰H¼’O9™ôî%,üyéœõ›·u£$\=¥-QxLTìæÍcÞe‹0™—C e} `cÓ[Ú™Éÿ¸ +zTÎ ‘´#þ\hÄ)ËË 0-‚·_ MÒˆgy­j+gÜ’åu]iÅzR´7^ñö\\é³%g“oãQþÙÁôKD öæ&$\ºÃΤÈå{ßê~U˜vªhÝ® ý6U¡ò Ï— c¯§9ü‚®—z¤¥¸·H7 d/Ȫþ¨-^þ!„bÕš0pØS6ÃhÒ¥ãÖ“AßÁ;e±þÖµ|;÷ýmŒ¦Ø•×äüGæï¼ ÀöpãAXq_õXŸ©êJP&x99!‰éÔ´CÕ}o+ CÉ¿\ç«’þùOSÑC+ªn¨OU]Òòµ*!›'ã°ÄÜØ˜€€¸¥¦ûÐw‡§žhE…fª¹²n"ð\¬ÒTö¤"v:ò*(f1gÕÒx+a Ì-£-Í«üY„ O¾IWÊ®x‘6*Âz„’ÏçâgÜ%ØäÑJV$KøŸV?1ÞÏìüF涣巜ã·÷ bLE“¤džðÖÊ‚-ÞË?8È+‡rB¸—ÞÀÁ]½,—ï3MLä—àßUÈÄ®i%U2åL=;<ãÛ¼¯iïæËxêêN=-ùä¤hE·leGoÐ=Ùë+îUêú)¬§ŒE2Öo @ÍëE'£ƒKTåU<ŽKºÝ¸ ö—NÆšŒ*¤þãIR7œÿ/g€%q¬2MVEˆ˜ˆx^l·u9)œæ÷d”øíOð1KÅb™qÖž÷œ©›_ÉïªÎ[­"u×$Ñîû5’:ì(H6oå)ðI×ýk…áÔ}磑œªÓh^Tv%Ã%÷¬ñh6ŠÜÞCÓé –2Ñ(M{À[vë¸åà_ÎKÅáð\€âVšöîÞ÷Ïb–›íhÿÍgr3í¥¹¶^q-à.¨|²3ì_nSwϼŸ²Œwof~CÕLö éRðsŒµy4Ä™²Ÿê§Æ^4°ÀÊ^¹¦ÔR”«Ù+•Þ¼ y×»eõ§b±‹qQa©L”z¿°º<€´.ÈÙMãj~Á±Ê1Šè(ñ‘Õh&‰ÑòR¬½ê(°'Nâ…8_bždOrâ9ÆNœð®o¹zLÏ¡F(2œ× ÇæDò³B&4ÕègP±†ØqÒšf=‡k[Íe”xÅd’¿RDÌߘ„ï/‰Yí wDøå•²DEK„’ÆäNA2êô×¥°XZ^hT«wÛ€<—AæAUkç…Éjk6Ý‘¼Ú mü„šÅ8ø¨²446Ñ4§/i¼åêvÀUQ°®&}ÃÚaP†îÛ…dE"&4(â 3Åógcá³ëyÊ0ôšvá#Ûµ]wŽ{Ó/ð«^À„°P³¡ýŠBO!)WŽ 9B;Vq¬.ãÐAhå#›,žCþ†IáÛL³]¸…¥iWUòfX$!QÜi"·ø™Ü¿+B–AÁÇa³‡2/õEßw]©r%T1-èÝ6£¸M:g@:` E ¾àå`µ|©B¨õîWâ•ÿ^ås"¬©¿ÙÙ¥AÆâ;¬jvøÝVuü†^…ú»ˆ×ºâ—‰q–“ª‰L*Œ¹ü”|n©öÚ˜ø•nmà—‚·GÔºS-Î+’WW£Å¹tßeb9¸ÍXŸc×ã4ž`ØãmWÔ¤¦o_ÙuW“ÌklfÄò@xF¢ï sñPFF … ëÝ7‚{¸éf&e&熄xµoåg.µäèÖZQßU¡·³¶½L”Ÿš#¶¥² ŸG’©ÀûúµuÐXÃÊ*ŸnäYVOÔÂÐüZ[Ìk·›·zÄyßo ­­°Ÿšå Þ—¼Zh2ä9)9I{ž;YT¾ã¡äqwª}Ò j“è*ï Ö^Ü®ºG-4kó(Ì?'Ž9ÝŒ1ª#‰_oE¼^RVU8q15B\×¶dé —Q¯&—a Iãíâðð¡ ý¸Sou)½µC]{c]?Cªh+öRAMàe÷jí¢NY‹&é ѯÔCM`Njðã¡Eeôns-¨—ñи7nˆAãš2›Žgýèg}ýíÞü×}=S~F?òñ§mãdË„ŽÌìE…Aà<4é°f‰ßhB>ÕùNìvv?;°"ëùѳ§yäÛM‚òuõiÇçâ™ú]>,ø18÷£ÑG:Å'"ƒÈÃãpùM²™v9¾o;Òý >¿ÜSR³ºL¥Óðªm†"YU 'ÚÛm™æoX¼Ëål‰°ŸbS„ëwY‡¶|™oŒ/_>Í©`'/›û}Áäa¨ M™«Ô „L(!‰vUȃ«µ}$ÐwÉrö–ž )XFA9¸3ôVì™Tbü¼~Q¢°á­b2(ïê  ­Lv‰Ÿÿ}C¿A ɶ°»tÞ9±³S¯­èÃÞ|1³@Õà©4&7ÈDèÑø’$ÁÅœêï ¼Qµ ·ëK&º©Uì"TÜó²XGœð6M>÷h"…ÊÈ Yüaïªb´…}Í[Ø%­‰rã–KÂ×ÓýÓßxΆì`ü¦Ú`þÙÈF ì5ø¨l…Ò´q› 5Mh’ggÐÅ÷ÉOY÷»â·cƒÙí1È|‹Ÿ1¡ÅòÕ~ ßÌà^ýƒtwašÉËðcÇæzî•Ëh4î”wR$ѱZ’Ö|ûJcx½…n²¡Ì-’%¹A•]w8èhؼm-fv;5r¥ÙQ?Ijr3%Øã4°‰sUöõ¾£¯ u`ÎÃlCr…2ØÃ"ÈmþË ²$ÌžõVCwçãŽiÚ8‘D²ÎàlÊv;RQH2ùY‡>Ñþ´æÍ>…â€öÀ·‘ËÚÀÇR ¿âŒÊ´Ú'Е+¶C L³ÔÕ¯¯(ã±ä[‘¥é±9· ’vŸÁL‘6룑Áy=âV{h&kú-ʳRa/§–× ­…øw\(Dóz V«Ç1âKs$a͵ÆòiYLWYcÐÕè”îÌÛOæ!ŠÍÕŸoK‰*u¢è¬6ãÙTX¬Ü«ËŠïë‚>¶Cމ1f{Û¸i,“¼=é»c‡à  }6eÍ¿¶Ü×-œ0yu8 ¼ðG|O—À·ðØäeûŽ=¼‡ÎÑyÕc~×ÊSõˆËQ| }D¬É²ËK¾4’™¾< l=ßú%ØØ(-±à¢@6å9Ômj 塟#9°€ôõžÍ`„¾nijwˆÊiÀ_¾ÅQª£™Á‚PqRW T÷’’òÉÁ;žÄ ßÈ.6XDíA+¿˜`ø/¡5þ¬îtc—]ÏR®«íïË%KV´}K³Ø+lî‘5ù6Íâé½ï˜«AÖ½ÚæP$)ô9`VsAØÜ¶¦w€[0¡m\^ûá|妔“Î#ýcLTx]¹*⊠­dv#ï?{laSt~/öꦛàmk7e8H1œM1ìzV_^œ9PÆjwÆá‰[½|yÎá´-¿ƒ^IÞM  2C÷)cç€:C–QQùT^²ë$¬ç¤|}Ý@á*û›Ý²ûzÂóç"±³øs€´ÿñÏ;vÂȧíÞŠ@_Ç[²R´Q&‚¼ÀÓcL¨ß¡”í8÷vßÖúƒÕ ¨D²& ]Ò‡`î ý~ ¨@R_‚'^J¤EÜUËXÁû¡ ðĸ!½‡À\vÁ£18ÔQÀâ8\¨€™uòãÍ0!€6jä| ŒGg_ÂFùÒD¾×·ÇŒ½Õ-¿·E™ÉÃèh^ýZ'<òéѹ*‘TÕ÷yåyešaÒÿÓ(E°8J§3eê]ã+iÍÑ4ÿ¾•þí Zò V{)1¥eÊdIzŠÆÒ~L-ãð†iN, MžRæ×±-!Ä=µ Áow fëyY.O‚Y²)Æ&Šg¿÷ ¶Å‚¨{­‘¨©¼ç³×Sc ÂQqñÌ®Ç8ù½ƒ^öÐŒy˜½/ˆÒ&!Ñûþ¿éáX¶·`MÚu×Â?³åi¶$8Áá4ÐfqÄø™ñØG`5Q*×Ï:oïJ‹5 Í™¹óS*xã0»Vf0žGÞ׫4­½ˆò]–f>4[Á¯‘¹æ¸.«ÖOMMŒ F5CÌyc/¨:Ðô¦ýqþžB@¿¡'5SêÅ·cЫ‹ZÚBÛEø|ñØáP ±£ c¬H[»ìíiþ§³EîibÉÄrâT¼À ´ëùª.Q„›rJõz"¸µ¦*;”“ªS‚>¶Œ*˜3ÁOw„•Ò’i敦.Ê’/ô({Z@NÏøô‰1eVÓ&@ÂÒ‡uTl'þGmÊ×ä'9–J²LºMa.Æ:Û!þ‹¶ÖÇ-´Z‹x2²ãìÐ9¯o”ä`¯²ÙXùÆ<¨ŸæÐG™Ÿáކ׺ÎÞ¤/~©?B2Tx«)µ¯·Û”—›‡T”’{ È.£vîIÓ"­ ï› ¹:}3Èo0Êa„D[gÓâò]u÷•ú¬æRC«Á™Ä´€ÆæoqY©äjÞñuNɯÒx²ÃkrÏrÈ×u¥ 6XœÂÂ[.”Ô !@ÿµö™9êL&……òBnÍ[ÝlfëÈNDbƒžÙ‹®ïĈ m)EK¶ñé;5Z^ÿ÷ ¤Lº‘v[dJ6T8ûæ“i¬ ë¶·Q/±÷JÖ\ÊÄ&uÏ“µ³wj!jz`ÃÀÃ*ÝCWýÅÒ"'„:s´XÜn´æ‹U`ešEœÄJc4E§ã¿û,ØÚøn!)U¿¥tà7ƒO±î ó°à Ÿ¼C$ÖPåã1宦‡ByD{ûØC“íp#ä”ÑŠLoSè2v}™6ðÅ=?Å-%¤ÝkvÊHûE?”¦G¸”Â(m]u/½k²‘_—‹¥¬Y‰&’PÝõš©°ãcqä]Ñrù› |Ÿ,± „Ì_º= ±}i /·¼|­Ð¤=“rŒ_óœQjüRÙÓc¿“šw¢iAK"Û3.º¯ƒÆœwOM(ñôoB}ŠÒ"ì·ÓARYļNœDïø3ÝEÈ[B£S|¢–S­r/ÔúÆëê >àè@qîã^e‹-´ÜwhJ㥒«ÈBEb`a„]¬¾™¶A‚ëŒf{•££ô²CP¸q4à¶’¶¯vêõ‹6ÇeFR¿N »„8öÛl NÏ~­ :ueSòÎ#}áh¨Ãò$ o†¼©Í T[Å{FB[ñ5dk_žêk.fÝJ´/ùügßB:+#HX!\ øýL—LóN oMWÆä7 .ß0Â2e†élô×lì¾*¼)ƒ ÁV±^ÊzÞ¸e9…ŠdÝjŠÀÀÖ¥¡W•Ô!ÍN}YÓî׿Íp ÕéØ"ÀÓ!^¬ZË€…31@ÿÂXµ<Ǫê}3P·XäbÉŽ¤¨•ÈÎúÔ]n&嬄±Æ«b:²×‚Ü{ç0¼^úa„‰u†îØOÒùSÁ/%N›ãö68eh䩊n@Æ›6VŸš¨Þú~W¢•/Ú] |:ë5I¢÷B/Ö}†å¨?5>âQÓœ”WªÅ=èSîRx˜/ "ç›>lJ]¸ÝCÐ÷v@36ç,¹} ß»™½oX˜/…Çú‰)rªù»hc ¬4ç [ÑÀ°¿+[Ч¯›~nÌËšE-»¤,ªüÆñŽïñÙ6û—š_@ñ|‘V•d 'Œ·™'ᮾ¹çíäËV²‡iûeCÇ€ƒ;ÒÉ´Ò{j ºìÖcyÊò "ãO:Ðò&e¦©]/gƒûŒ¯Ã Dðù÷|û=l‚X½r2d… ¾ç©Zòö¤œéÆV(*'ÆÌóº}«3Rªí¶ ìt{Þ0šeg×Ëœ—µþ†®IÉtÉ•Ùæ Ú* ÞË».í½eî«©!š¿ÂµÉ%úâ;Ãv)^f܃²œ¸Ò«òc3qÀƒÄÂô{Á ȸë‰Ùud Q­¥×úø˜^,ñÛ¥r¶®7—?й04l.3+!!H]¹Z‹q…ÄH­J7'š©º:2 þR6¸X„^G~ p„ÄHÆ•ÞãÐÄÉ&è_@ÃûŽP,†)ž[“‚ó¦×Oýù ǘÂzŽ;©m…A•Ûצá,DŠ|­Œl'[—Sìœaª¿× {ÏÆ?5€´} —YœN€ìP<¼Þ”HJz.™b’²éÅ0JELZ~ˆl }Ï-ÒvÃc¨ím‚ÃCÜÜ-*ɬµ¯5õ§¶Ôï·ÙaÁ;Â¥ŠWPnØ\TævHgi9W¼ õé xÐ’œgM,fÕ|ù“¹©öÝ‚VŒÔдÊ®ãv[Ž] Ø VȆDWuü’iõPÀ­}p€œËS]w~_EõWÛ»Û¢r¢­Ö îk¹Ÿ1ߊq¨Šê!À¼wñçCu²²!rÆiëô0v Æ-¿Zðn¡‘žyþ;ÆG9&dö%¥Q¸ (”gŒÍÃu…Þ¯³9>FBQÆ$«P+iJ—)¾éƒ,Ž â´¢*¿l+¹ÕGϤÌRÍFBö Ek8VþM¥¥;/!iÚÌ"P¸|¤eY[iVZjï´™]êØÒóxü–Àó cú{ôEæú}‚ýï2‰ø-æ}÷Ó×ÉHWÖ|Ad]ë^éá=ŽM2K*O ŠW$áœ`m"ÍgBÜdØ6.*ýÏØøÎf_: ±¤¥® ξI› ÞòŸˆWL¨/5%˜¸×» u~žÁæ;Ì¿›°š–ÿQ=黿¨&ûµÏž¢{tó+~¤v“ bçæRσàá/êŠoë'ìRH‘“EûËZÏFÛ˽¸ãú6×l*€ ª±…‡Ï2±ÿékPë+?ø)SkÇTÂL‹N‘ξ†·?ƒ-Í 4 ô ÙÜÛ†ÙÜß'føU½—ª§ÿ€œc™ ¥ ¿µEp>¸.¸Xùë]3Ü¥é;O°C`t+ºqú÷!'‚Ú§[Üu‰Œ ÷tj3AOD½U)m¾êð«åàˆOÿ§Zrvô÷h¯å˜ _lg—¹½ »ßõB-rh ø„ÀQ ÿ ­?œmL|ÅøÓÖy& àFp܉\¸Â§`½ºÕkO*:G’œQ¾)¯]N'²ò™+„Å<߬Ï61íŽ8‡|?ÊÛ4Sh˜¼ÂK‘¿ˆ<ŒŽNBùç !Æ ƒŸ×Þ×ä»b– N`(ÙhÜ_B Ÿø“±ÏÆ&­ïÓìq­jEýßd/f&7 è¨Ú…ƒ$›ms¥S ˜·¥m`sÝÌ»ißÁ âêM2//LÎcÐkD=),µ|¼ôøæœwE¯.*h¬ŒŠâ‘®®ŸÓç(WhaÇ hœEC‚¯^3“ñiÊò8.§ºà7`úÉÎð^/¹ >scZðLê0™’/á¬/„š]6 SºèV­8Ì*&™6È.BGæ,ôìEãC©‹(h÷„«Œè­L–Â$—X_hªÿ¨o,0BΫÿ¦Ð‚9§KÖ…–ÖJo G¢÷…Ø“nCdC®'¨¨Ü^!FXåu0Ï'^J“Ðë¹¿ß Xé6¡9K&àWõ]?ü× (ñ&+¥Æ` ¡~&ôñʦw×î£ñ¹‡<;7€c\»Sœˆ!QéY‰hÒ˜)Šqkìè¸WþÆP3Ü`©Ó.Ó¶qñÙ bÃìSêR]+ñ©JÑ>(2?TûÊ”.àb0ÈüNtíÆÕöjàÄ­Yõ¥»S!ó\²5×#U­î½¢ciÙ•fß3& 8ÈdÓÿ]QP>4‰åœi.̈?þìžßžz¾ñ¾•¶8̼ 6]9:™´F¿¥„έÆ_ó˜Þ™ûˆr22\ \Jú‘Iã=,=&¾J~Ѥf~¤IÕüDD´½±ù=3 T–®e°{.ë)Zí•ñM-!I-E¿^ƒY5öföŽÁß§l‹¿·Fg°Ïe–“‰ÆAË9ß \’·vís¢áx”_Q¦Ìf]÷dÅHÿËkÑ„œ±•Ä`d¢¨ö eŠtvgË¿+;¦{ïWFt¤ÈÓÜöŠ(ÝØ(Ñ”6"w´«cíÃKƒ±Í{Òìúi.z¼R ÄAX‚£Í{’'ɦ _ëÀþž¡-Ä'kÏHÚ½ýtÈÔ¤½³·7/Ö> Dƒ‹{²p<­ [5污LâMQY†ïNÏîPî¸ÈõRt¿Ó1{—ÃTëxÜ\z¬vÜ~”MÙžõËhø4ð9݇PnÊäyÖ´Â6Í[|Kd¯”®‡÷Ö´i§È[Oßï>¬Zwí²2oÆkB#–5‡þ|æysèLü†ß\™|ªq¢{Ñq% ¦Ô41â×#C.pììVq× $Kq IVxé÷üj–Z½¡ ^Õþê:tc}ìVÁÓ«²°¯Xx¬c[|Ç ¯x/_®õåOÛ˜G)ÄUãÇD¸m#¶xü«¯kŸÆ!SYÁè¨0׆šSͰËn®&–•&oøç’%¬TøC÷´óvM\-‹R%þ$‡;nh:w Z0'ÿ,F§údžm6Æ„í¶÷Ë-2EV>ª$ªtjú–QdÙ.QˆÊõ6"¬ .>”§=tMGùuñœ¸Ç÷âøß —œ´à3à1KúAoHX°s4žÃÛŽj¥¡ͺÚ6¸àLJb¹Ÿ¡Ï¾{"s 8tÝch¸Xí÷š—%îº÷¤ ÁæJÛÏ%½lŠÑhlÍEãò>¢/óYgŽ< 3ZÖZ*àû²½]ˆsMi*.Ÿ v¦ê7 R"Íäâ2üݵd}ܵ[šÙµŠ·æ&œÌyÖBjÇwâe)^ñŽyì\¿ÁÓ«UöpÝ!%ÁU/«$ÈŒŒ;„±GòÚ¦ÀÉŽhñ•Î;…(N°gÅd¿«G T½Vª~ѳºòòzÈ= Üü·ÏôuX¹tíyƒ+×ÿx6p#ÌËfœA.P„ÀÑm#¿glÿÙç"¡„b°È}ïým-#Â)ñj¯è>œxÃú{P,ÀÓWçkJejT[¢½‡·{ÏÞn5¥¯½Â Þb·°^Ù[}8SÈ£èª6•7—O«H»æaœ:$>Tøe{µ»W1—I+´Zz[1CŠÇUóM'GQ\(¿GäÑÎ4kÑ8‚¤þG¹hF-¾ Ò¥J &=óê¨Ck<\[TOÈEQ‘º÷Én’`!ÿ/?"ÀÝ^†×õ¨2±\ßl­ Ðjzlò@Ž e°-9ÌÞè¤õ¸¸És`í3ÜJçƒ">ß®Ë Ô¶;¸v-IsÉ,Év¯×˵f{ÅszhôÅú™ýjÃmCk‰ðÿõzÜM}Fˬ¨ øaeß>XÇÔÏ€ˆ–ÎL}"7,ñrÔkk”A.|ø²ÅD‰æÖ¨—soýZU®ëÝÙïo{G-{R°˜(po®NÆM‚4¾´»ÝÎëÙ¨“.UñKþßXÖ¦­v©=Ĩ\@v©YDítùzƒS ·ŸS9wMÌÙ½Žÿª"ë(u ü™~ ÚàšSã5œï°$‰f£”%÷.±GiÚß‹CíR$y N²£åeðú¤ c[5r¥NñêEñÿ·ºs‰%šÉÐëPÉ¢M2rÜ}áÈ^pŠ[‹ž=  ¯Q¸&áQûQMï»ñõ6¸HÍ_¦…ÅMé)32uöEQ?¶TåÀŸžI“F²ä/0EÍ|öê'F´$ À*5dRtCõ7X]³<^]´i4¼{Ë©¹³ÊÃÝà,ºŽÒm2ˆâð­à{!ˆ¢“õø8+˜PrÑ·+„àáp?ïŽRS*RvöX¢puîcqj0áëZÿÓ†^Eñ+œÀÕv¶³MVÀ£OB‘6„ÌšÖž#_سM4?p‹U#&¡¢˜æÐ7¬:)NA H‹ö»?®æ¦rÁ%ð+y¿ÍT}³ko03ý¡0½k¦á2a¨ÿaòål\'=õÞ]Œ\¥‡ÃÜÒFæŸb,ìôàŸ%Øu¶ü°KŽt§TÚîÆ/Œ–¾%hÀÁº¹àÆ×N…¯õk–0ÿHÖVÅÁf­Áóü#ewr[ü«6þÀD¢(tÑ–0ãúûÐ-fƒÑ§‡¤WvâIç\´ÀòRtŠ °gåúä±Û¯Qô>á|!íŽÖÞÒ¢¾m­¶§áèT¨æÿäðKb÷ 0o{*+É-ü%Y¹’þ=î°=ïwÐ 5ÍÓOa“E¶`úQ©M¶z/‡qá6w”þràŠ,ÜEä]½ )3ºxß$÷4hrèG• ðç݆K˜p—ôG¨¡Üù»OµWžMQkcÄõÆ.ŸÈ¹èKôd\Épd4±%ø³ú„l‹‹Š|¥íBï<´.°ì°§ƒS}Â~ˆ¦`h`IÎä­îлդ ù‚N¹ØA?F\É™þôã]fo{Ĉa[×{ù¦Ø“±í9E¶à6#ÆNEþÓÀìèÄþ ;V¥#l'†­Ã]a†ÎØ~Uåïò É’åpu9D‘ä@¼¬gt-üH…õv»F9’§uáÔh»nÞp-`Þ£èvv‡ËŸlêb@)jþdn7@wF¹×ŠI^k›ÂFýš–ŸÖM£úàŸ%fN3k‘CûIÂ&—yLéšHxí'åþÐÒoîæ–²½XÑGôÖ#žŽÕºüó7wêqÚe_+)tf±²æã±Á¡‡ä­àkŠËÝE7Ɇ^çØR €Ï´Ï=§Ò²‰v}ËÖ0wÕU©ú¨é3Û²Ò¡uøAÕˆJ?sÍU[<=jYDèõ6R–ê™}Jl#ÈçÙ>àkZ2~y8Äì×p ×À”Cû¿ØÅEóøTuÅâ%—eÁ¤ý/.KzbµÙHÚ[Û½ ómS’»:¨Ì)DßáƒîóšífNq É*é` ôðïeÁa72¾I»Õz¥Ü(^£_ ØãÏw)”•¯2i™Ô"Ÿy~y8ÆjJp7¾û¶ñ~énz„oçM1UÂ+=ë0£õø¶Hy§Ê'ZTrË;õ'f˜ CyÒÉ Ò–³“Ú¹_ðEîUèé“2ˆõÇ’ ¡¼†›ÏÛÜú@%¿ù÷!§Üeĸé÷:‚J&ÐÂõÎþrø/.ÄÏ¥×$à/á„Îæ&’§¾MñÓѽ…N;²ý]b¹j|Ò$z&›¼:A±~z-~M{ŸŒGáy#¬ ÂíkEÒ¬H8áƒÃqh³¶.çû»Ïðãwƒ•šðô{à%’cœ>è+Ͱ‰õ] :òãVrx¼¡·_C›!5ž] Àµ.¥UI­ÞT[7Rýa £¸çu˜ ߊFYä¹ðWu²ÁýŸß$§©ml†æ~~ª,þÙ{o¹.ÆÇ9ÛàW<ýH³½E¤Ù×–g7£ï^üíý¡ˆÌ:€?ì¼ËÅZMáù”à¬Ê²%×3á#0, ›N—8h†ê[uibšõ¼÷.7Q¿`ñgSUü…Q6%:Þ'Š·|óhr”Û}pI×ÕñÕt€f“±%¨4·²æa?r-’¯ÙtT3¯³ l—¯ãtº%,¯!è= ODÔ̸[‘°;»µF¨+àü÷ÿ^6À ÿÅ/kE‚¾ý×›ØÄÆæ9Jç+ŒÕãkÐð§[ãê’a÷ºÖF³sp éC­ÍÒk¿ÆV‹Žp}º‹Á÷†ÜËcù¹$–&=¯ã™¶ÍT­L“pîKŠ9Ù°CÙ"݇…"WªD„Ûi¨"ÿéù‰cüVjè® Ê®tY =Ò¥-ßK |q,goƒÉ¢BÂ%“–ŠSDƒTN­·5x|¨B<žÎâôŸè¿µj5ª”¢6QÞ “‰Õa´i¾\ªÐi‰^F\º½L܈1H"[ßÜ'D%oj^¢ð2 6¯%K:ï:»lè´…vÖ ­÷ö\Ö/$TOk¤ygg”™ [LÍﺡÓF†ß̳B,z7‹\ˆÄOºVCZa–„õÏdËé*ž‰ý‡¤Ü<9@KlÓQ†ìKs¤½'”@.ºQ|M9òˆpŸ9¿Du2î"ÉÜÍêíi5ø†%b¨}æ»@/†öòTh;;ãt—/õ°;Àè{”tv ¶ñ @‹úp'>&ù\ÌéWáÖ¢©U˜´xm/§öæPRšVf§síiUˆ×‘J À.ØK_ u,ú~P§ùg‘GÝ"¤1â¸(+ís’Ǿ+ai¥/1 Ë$ Àf~.×–¨Ö¼œé+qÙ†'̆0Ò¸ý¸(˜cgâÄð$;/ì$Úùýž?!ígˆn 77§Ìب'ˆ¤Êª†Ð°Ù_÷atœI¤˜ü¾357d1}r Ici7‘EgŤîo ]õ|핆˜¦j ñÛ³T‚e‹¹Ó+¾ƒá‘å•8µ%}ˆ©É, ±K2¸J¸iâøTF:¢g<ÒõszWÐ0Rt-n“5Ìatfé›i@sí/7£>xÁTp?$·ëk Lˆ½A_÷ õ‡èÕ©˜\m¶ó8B÷UÕJ%?²®=7á>þOçÏ…ÿ¨³ä/|¾Ãfæ Ah ƒ ¹Ü ¶Y²YŒŠ0b»MXÖàï#’YWãóÝÈ~’âþŽâ –õ(gÆÈÓï°Èoä5¢±„u-%› šª0·‰‘W½ÓkgòñøŒÇ2Kq3˜1ÀœŒÑ MìÖôóÅÿ 2êàñ•päk9<À†øBé6_Äl.—KƤý~}J‹\Åxµ¹¤á¨ö µÿÝJf‘¤°³–Ÿpbõó«9ê‹ÊÏìKŠôÆfgåi Ø?J«û£B†<*/ _†ŸŠ¤b³ˆ:g:—c(áðÕB‚ªc÷© Ák­ÔÏËŸ˜çd,ôYGýšÙDÐF¾þô)°¡SÖvõÕ©e‘ûž ݽ­(Óoi}7ÿÂmìfJÏú‰{zà wˆ1¯+e“¡§®ã àSU±=.v§¿’ݸG†£êÄ^rYóL.­àÁ+2O²“×éÜZx•œ<¬ó<ÁþÚN `nxǪ{»<}ˆÚ­dêL}†ór·5þ¢íÓ+¹±IJV~µn£lEð¿{ïaiaõH}ìw™¯4ì¡_Yir×ÎÏF ^Ý]ê©{Èl”…p93)x«SG!Õášv—5û†X`BN§õÍšÂ-ê¢D¬,>(¶ôÚþ—q.Ž ¿"3 µ)BšGëÈ›á:á§û>×BѼë"Mw Ýâç.È ÉÀç”ú—òº®ÝÂñO4¦<½.rÄ !ì$4Þñ欩$Ÿ™¸@ó7¾‹Åîþ¶S‹¿ (¬ÃáÂp2æšeXŒÖü–oÏåÿ²o½í°·Ø®™%É/0ä·뎖"ç&óÜ»)òMˆé«¥iiùš2"lˆ™GúTt®†ô‘…‚<-bëD‹¼Ôs4¸|±©ç§¥k,ÁÙ*bö‰SÛ׸zœ+n>÷·7‡Ѱò„×#C—1XI‡••¥‘Í_D$Oêž í6$yL Z”XÆÁf`„"Ks:÷êñNÔÞ[ˆ¼ot´_BÃuʼS[Uoj[ÇozVd¥2ªIèå30ue߆/,¦à%…ƒv€vM”þŠtoÐlñ_—:RŠóKP r@žG²# †¥ÓrcÖ+£Ñ”î •­“Ö¢¬XÐÕEGK¨§_Ù5Ðê\›Ú¢ð V‰€fAõ¹ Ø•¯ Á¥òð¢?ÏÀ.ؽðšÄè ½eÏÆiíÆøª³È-‡}6T‘‘©B ÛPžÜb=Ð,“³²Ôâi¦ZúÚzø6*6Hu•¢òU×!cž*‚ü†`O—!]«Õ HÙÝÌèùæ—¢¦œkÔéTó#@ü‚ã¢í:ØãÝÑ¥sòÜ'šIZ˃±`ÄfŸV+ÔÂj-žŸæn~“ñå™yõã‰&¡ÖÕ?ù)ï¬f´tö¤¹6†ÃI©y‚i¹sí%KuBÙ„C¥CôöÌZþ½*ffôJ¶õ—}$qµd.E} äo}Ÿ‘óàφHÒDs§¶¿é1;øûNZ¶ŠKa¬2nq†i'ã¶=uÛ]¼Gb}¶Ý [(¥õ†ç€ÍÎ!’(&üG=דE•½™ÓI7*ͤCóCÈÈó©æ´„b”N€b4å)¹Úvô¬¬žuÈnåW~ªÂ™Ç4ûN86ì`S•#fóÃQïÄ3%i@mn>x£Ö€øçÝm¡õÈ@ðâ…aà6:3nd"$ŒÌÇÄQýÇ.ÝøX-•÷ª•€|Ù`~Mù)Nµ;Äýï–«w ûxÛÃQ–fh'åæ´õAœ‡Ä od%Dk<–ÿœ™'®9âìÙÔKchÕ~®Ô>ÕcŒð(ZŽ!¯VÝ¡ûÅm¾ˆÛå‹xƒMùoىϚ1BÁBf$˜×1²xkì‚ÙÛAÅMh—“|’pÑÙM:dW6šWð¹ìã|yÞ÷4/Š•™Å]òQ"/w-f‰Í3|hËŸM¿º;F<¼ÈýU+#g{@.jy’ZÈ.\4³kÖ߯YÝfzß¡ñ€w‘pŸM;£¸TÂEVš’†i©ñ:ÿ®F‡ï•¬„. £7ˆ±æŠõ8“£+Çk\ãzæúO¡fýKä/ÎÌf/ÍöÆ+¸çð…Þä͉8éUù‘SÍÈ™@ã8 Ì/å¤ÿ†ƒW.ê”)ŸkÅ>ìÎÉ owŠÎ!4Bä9>?Aå+q¨N†bNûù½±fLj*^ÃúDN9Õ}ö„^™±nJ¥¹ nXjúÚªA¢RŸ·Íã¡ Ûb²á³‘½q–ög>ýhSÎ%vŠ=´@9ìö# Pà•ö9·€ÍGΈû¸ á…«+ࣺüÙ§Ív|rn{òRùXÔË”ÿÆÔÆ3aX~ºŽœFôT{:®dF.…ý®gL'ƒf ^ AUßÀÛý‚ö !$S±±Lë«ÇÉ–ÍÎ(jüv ¹›2Ò’8—˜»^_¥ŒTÐ3Ý & î3tP«Ò¬Îþ?3²ÉPAiçOúÒ £á¥IhË)걑=×ı¼^¸¸Ó…~ ³J‘k V‰—÷fÆ× ÈHñkŠå/ÊåwÇï Æë‡CH€³ÖŸk”• Љ¤[UCYÖsP6ŠÉ¹¢æÓ ”FúÀ¯ã‘¨ÿ¶\YTµœ(–ØO_ÞGÂK`¦é¬½ûåÔÈÒõv.ÚÁáCIB¾Þ©ý}ÿQ1'ò¤3—j²#šŽÙÔT:aÿ¨:&ߺá;P øWLàÈ}í“pÙ¥…“ö’¶qþË®ùf¨°£r¼C5j JH±ÕÔ±Øñ¿xCæv )«h·=u˜qÜ´©ž<©6‡Nª6ÊÎÔ½š'$ûÏX²f>ê%—è +¶d€Zj»ÐÍ®„ý¯­9ušõÒÏÇVË—uõ#sÂÎh Ž|-ú€iáo‚àÃJ·ˆ=2sˆo´¿Ô²Éw°ÇÇÐMóÑ>ÇüZaÚ £¥RIØvcÆolåG`Å‚…ãzÇz£í$aÔ€?ÚÕ†øŠõÞ¬ endstream endobj 223 0 obj << /Length1 2765 /Length2 28845 /Length3 0 /Length 30451 /Filter /FlateDecode >> stream xÚ´ºeT•ßú5LHwJê¦Kº»Sº»7°6ÝÝ Ò]ÒÝ’ÒÒ%ÝH7ˆ4ïöwþçè9Ïçw0ˆyå\s]ë^7 ¨È”ÕEÍíLRv`gFV&>€¼‚‚ØŽ•…Qhébcâ`cbaá@¦¢wš8ƒìÀ&Î@>·³@ÉÌ’ ‰`aáE¦HÁ@GˆÓ`êP:›¨{ØY´&ÿe;'gFS'ˆ¶tq;{G¥•óï쌌¿+ýÎcÈ™˜YÛ¹9Yƒ&`s€“@ÑÎ bhíÀS •‰ÀΠÔh¨Iªª¤U•4”Õè˜ …Õ\ìííÿ‹¸šº†ô;€„¨¢º$¨ù ­¡¦þû«: áoù ¨ñÿî ü® ©.ª®£,ÉÊü{ V€+ÐÑ ô»íÿp£†0ü¡Iµp´³ý§€ÖÊÙÙž™ÙÍÍÉÒÅÉ™ÉÎÑ’ÉÞæ~êV '€›£5òÝhüG°9DNg+à¿ üÞ€<È vþN’²û—Ó"%$ bwþ1ˆοkÚü+àþW+§rå••å¶& °3l6ƒ:›8»8Œÿ±A>æ4ÿ"ˆ»8:þî¡ðo—ãÚü›º˜deú6^>&nÿ»c&`'Ï¿´ùïe›Ù@NÎNÿªX€l€¿Ù;ýÞ3ø›‚¨¢¬”¤š:£ ä²—“‰+àìèôñúÛñß™•`2s† :ä° ÿS]laàý—Âäß®ÿÚ*䔚Ûm<æ@ dfE;gÈ@ÐþÿsÎþ§—”‹¢‰-ö%ýß8[ÇEþO„ð7WZE;G[›ÿñœ¤@î@se³™Õ?*þË,ël}Q°¥ ²'ÿ˜4~Ÿ&ÈØB= ßO.#+÷ÿø if :9¸xÿq!*ü_ˆô¿Ù˜u´eåUþŸ‘ù'Llfg[Ø8¹&ŽŽ&È,9`ãäx±BFÚèþÏ ˜™Àv΀½‹³ÀÂÎù÷frq˜E›þ…¸Ìâ/€Yò?ˆ›À,õ±˜eÿ .³ü©¢ðñ˜ÿ HM¥ÿ HMå?ˆÀ¬ò±˜Uÿ H?µ?ˆÀ¬þAÖ ñA¸hþñB¸˜ü±²Aœ&Nf ÈÆØ˜ÿ¬RÏÄùO„²é¡eêM ³ Ðâ¯(öÿØÿ5äÿq@ÖhöÄ )ffg™ƒ[88~[lmÿâÅÂü?ÂÒÜÎæ÷ÿ‰€°øC²×ÌÀÿjÊõÛïàbbóW DA‹?)º ׿jüvÛ¹üÝbù§"Äoùûöþánõg%å­<ì­€à¿" 6Ð_ÂôÃ_²ÖAˆ8sAT°ù}(þø!RÚþ¬€?­8!µÀÃôG7Hk°‹­éï'“å_”X!ÚØý! ©i÷W++d¡öÜö&è¿6›ƒõÿ¬ÿ½ÕÕÙAv6"¢½Ë_‹`…Xþ„(èàb¹pLÿÚ+Vˆõ/™Y!+ùSó7ºþ¥2'$Ü äþW„ÈZœ¶ÎVŽÀ¿6²*g7»¿ â¹üYH‡^œÌìÿ–²?®Aˆtn&HÑ¿8°Aºzü!²zþ‘RÉèø/ÿý¤Sþ}Ñÿs‡±üyôýßÐ?XÍÙÑΨ2‡¼ýý¢`9xîz, ˆb‡|üû'ƒÿj@õçîü+[LÌÎÝ‹‘"#;D=nvÖ߇ŒËç¿RÍþõ.òÏÝyDÿÿ~î@3äÅïvfüÁRCK}%ó'Ëà¨x™Ž+ð…´åâ^-¦O¶Häl‘… šý3¨ ìäeø |“ÀEÚTÁx6Ïk_+'®ÍUD¶M||‰Ñ%EG²5™43üË:Èéä²ótŠ9¦3ZâZÞ4FÅyÛ:ï¢ØÆ_°.“ÉõËZVráÜ gY›pm°Ý0‰Ú‰&Û¡_îpc>™ôˆ.ÒÏç…âÈÁÛwwbê2¤ä©kvy¥6_”¿™X×å@Îd(¬ù¬zJ\hšNZ¢ù9Ú)ï#ÈÆ:uÒX~¡Ê–yØ«ì­Zbõ’Jƒ*©ñ­Út]q?C¨ƒÆ aÄýd¶ïJ»ý?Z³ëO „pbÐV«v&ùq¤÷¨dwf…~ðî*çâ)"Ê®% pæžfÕËÿÄH6>ï_3”BÛ©ü8«ø9è¾NZª¹ô­ ‘w ‰ÓN–½Ic@] ¢-µéa+ö:‡"ºI¶ÉÁüg_Lc±d°sÈeBúIo;À¯¯VIjüX˜+×Ôé-ˆ7]çµñ/E7ý¿žä¬2ºÝ/b:N(eÖ"C‰½Fÿ¶kI+'Þ¿/{»ÜTN:ç]Þ»'ÝõÌj%ˆûNðrøbù¬TA>ýÍÓÎ2àl³mˆµ$wP°Os_›ÀÐö¡ ¦R[ñ9¤Èú³‚+týäŽ2û§X·"ÿM|áÝŸæhæâbë­·¬8N1sJ4?÷ŠbDâ½j(t\ÖÖ.·Y OÈ*\ÚÜÚç/ ;Y“zâ,Øø9ŽS6<«@¢ó©Ô ¶åZ+ZÕ˜— ‘¯¬OlC,v‡obP8g:¢Ì‰J‚ûn<ý<~®Ôu›V j“juù›Oú O6l©À$_ôw ZkäÄ3à“Üë1jCÍÆ+fKW Ke?Ë=¤9ü/ïÆD±š*èwpÂßpÛ?"¨A“¤1xêºkÌÓé 쨤Š,réfÐK‹„o^Á õGè6Ñ‘`æØÏHÞ~To$AZºN´‡Yù:ÖÏ[/si cvŽèïÚ ´ Pž·ÅÈÈ·-JýÙˆú¶ÃÁ[X]\OiÕs"—ß½ha*‚ŒfV{ºN-òµ·Yy^ ÌÔÕò`Tò•7&Ù¾E-N½üSŠjytÒ‡Îø ê>¢4¿«­tãöþ§0qó…°>¬‚îfwÁ-+]µ;8–™ þ°WÎþ ÊI„òKÇaŸ¢<ð0ÁÝ+¾ºSciôD5vîƒEÃ7œñËw€¬3±ó`3猗ÐÛRdžû3B @”>ɬ®‘‚£^XmÕsÜJk0u.Á ½L„ëשqáhk :7ó7dß\ß6Hn,9Œßñ¾ò›l¹›æÉ&aâ§fè1Ä;¡Ç‚ñY39œŠÚ;b§]ß`-ç 7ˆ/awFˆ†µ›8OmœÖ§&;®!Úåz“‘Z*v·¾ó¼!£·Ä ÏÈXê½Ðfá6ФGŽKt2ôô&ŠøD² KkÿŽó™hêý¶KŒ7¥LdÿéÊÙ-ý’‹Ýòq1(Æ2–XÕACK–Xá™0wWJ!­©ðRu½/:k6‰RQw?õÀO¿óbU‘ "Á gþR{p­ÞóóÕ¡bŒéhjò“¤ÀU5BmܯL};4_ÿì’­{÷/q_U?øïéR D sé âE²P à[ÇöyYƒ§ßÄ߶\ÔAµyfiU]l®Œ•í{ÿ\kÛnöLÜr´¯'j‚ Gö=¢, ’ïÞµ’rj;"¶ö–ÊJh½PfrLÚá÷¬y6º¸Î¨•$Çî8éô¾ÕGGF·ê?<êÔ(äi†‹§Ôãì ªàî)¼–ËZ(ñÃàÂ9<¯äwÛÌݯ¤`<‰“·ó#~VmcíÕÕX‰{›@WëIÊW!œ.)`Šu Õ°UÂíD¾c}§š¦Ó˜AÑ9mUº½öBL/­Êª!?Äb€³ˆúY^ãøÉÇÚÊHº¿2šXp͇OPžÉXâú 2wɹûyz2þ4¶CSšïAÞGJýrSyk¶s-}ÁOœâŒ ï£åŽ¥.âüéSjÔéõŸ¬¶5󮸻ôož¹E9TwÔE•X-Ñ¥5‘{KPyt`ëå©>| võ©¾bGñMú²šðîcÛ¹Y=NàÁeŸ³ªäȇ"‚…[㺑d½#¢#G×ÍNU×|ßf»H¶Ë_]0‰Ft´yK^@ª@j6ÕdaŠ˜qÌ_•‚%0“õúæ×Úˆ¡ÖÆ`ãI€W3ºåè«dtc›ê£ÛquÕ|OÑãÝ«,Qk6-tuîu:èF¬E:¹üq÷<%ϼNbû½Î/ PÇÛ/~00…µ¾lHëÙšnÒê S!^vÊÆ3ox:ëoI ųÚüä²üù¿své0€ž*¿¸;ìa5cX|„©H÷yÆy‰0óʦ«’óñiùW}cO®2s…f’Ôg)œíq5à}=Á)´Ia ­®™tpCoäù8)’ÙØ±u‘Á åàsS’¦¯ùDΫpWi(Ot²Õç82Ù|±%XÀäHô›«[|êmla §²¬(6Z“@Œ1~Õz¬¼xR'ž´¤Eò }ZÚÔeŽG¾7X™<° "Pþ+Ü\¸fiÆá–qÉtÑå¼ðÝGý&Ãì›E_:¿‹G•»üQР5q ˆÏõÙÝR–”긅‰(s(+¬ ß/¾Æf%JIš'¢ÔÀÙáÈ»\ DD}7v±‘wç¿Ckg9)„‹ÐPG©<ˆ—Ö‹Xõú$•ÞNuà}k7ƒNLf ê ŠJ„¦Fvf;š£˜ž†.ïiË _´Oo‡9>á¹þaqØ`” ß)Ĭ-ß-Ãc—å¿Ñ-!‹¡2¡èh*ÒØak?‘†’Ýä‰)LÁÈVBUå Óû‘~íÉBD™É5^A$†›s}b.ÏgýŽéÅù÷O3mnÛ¶ip²í ψâùBy™ô_?ºOÚ®ð©djWˆ¨~&ßàöw†=–\ÕÅp ù,íSøÊq,öáÐÁñôo¥`“ª£×-óAqŠ«5 f0{¦Î>?3~ø¡ » xjŠ•JÈ:Ì%¡(Jî_ÿ*r…<]áJîÏÆ*Qçå\¯ÑsôÅÔØŸÖÁÀßGÊ©ªm5Ã+’Öfßùg°LÔK“ ^µâ8êÑ®ñÍû‘2/Èœâ63¦ª‡d»ÄSÿà—ZÖÆÜ$ƒ&f5Fó‘0à÷Ò#w¿sxxvë¥ó£V»YÄá¶µéZ%;çÊÞçÙdÓ3ÞÀÜN¤llÚXO¡T®µ–û ÅqïK¾@Uze)=†5JX$Ó2}¯Ã…r×ùþieå9I :^^šß'\s%¶÷j¸CÒºØAÎE‡Ã˜å“콓—çÁ$5ØÆf£ÔôQ¬'Œ­™JÒ7m²á9•À!¾Î”Ê«|¬GH×E™ðns–:˜Í@"Û¹ûü«¾ ñXð->bº‚å!”rùZgtL5Õ2¿­eòã8 VB”±nšëJ†ŽÔ"5aä&_éðŠ­;£‰ø<çKÆôòîì7£)¡›É±«YQ(ã@œ_ɪµ„§/Áît•‡²£¯¼klpñ•#ó<ζBÙ$‚ÎPH™BonÅ Í-‹¾ "ËrºAá—ÏÜð9ŒˆÉ;V»tÄ| åœqhtƒÊEWHP§MkÌ…#5»ù– mÑ·„¯Øs£0³Åéþl„¿\MXWüÕ`šG!žâôy–é[ëÛVgOüªŠ0è)G™ñW¼6^Èlµõ¡„TeI/oYQs0SY¤(Z:mÏPsÅ5‰æ!Ôa%›Ì:¦ž9Àh¸\Xée?‘î/Q¯óðzµÚùã%òg¡Uìí„ŵYá¦í‘bÓÙÒ¨º¾7ü÷˘‹tÇ¥¹¸)RΫ$æ¶àÆé#×ÚêNÔýõ¨‰dl!~nAôÉ*ç_^jÜ8+£]f¿ÊRË>ʬ÷¼z?ÁP»×1Ò‚6Æ7† S%ǯ¸t&ºöHÂm­S'l’kçþÑÔíŠø9½®î‚€ü‘ »Ëy¢PC¶Á,gùKô#þ2‡ÛÈ£ö™ÿÀ'{Þu¿ýÜâóÙsdµƒôNX¶ìÔÇ¥_Òæ`“zm.õÛ¸É=ª}(ÌÕÑ}¨$ÿ#Ì=z«çEý~ѸQ¹†û Œû%\S5%‘‰Á_—œ¨¦¹ñìBx¢š§ÇH–mí}¯µë±™ÂÈL3áå!z™cdÒµÝxjü‰fÏ&UN~Kj•ÊŒ$†.êQH YW…²"~ŽgØMLsëksvÒUøPNïØÐ”e¹õA­}á4„j;¬™¾¨–K# j¤h9.²:?ÈÏ£NßAá¾;Oàƒ›»Ãþ)?6˜†ï;'‘,˜ßf‹ÞŠ›Úfµ–ßöqEÕÉÑ^jî4/¾5‘Ú ÑøÖf³bXK|Û÷xâA¿0øuLZmØ«£‰—ÑK@|³ì –Lß®bÀ#:Â,ìƒW‹Gt†{»OßnWNhrHÚº‰2§æÒ– wH¥K·’ò;¦)ó,Òœ³«±KË+ªô `ˆÊR"Š”Æ/ÐC~ü[aš"ü„6‚ØŒùªIõÓ³¾¯w_tï¢Ï• ¨á1b¡²5œð0Daw(H§6å6·•8Ú^Œ5ÚÄÑ&ü[æ,¤(ã|¹ÃL É|Ua‰|üØÞ­zä³²Ö=F¹ëÝBW®žÌ•]ð‰*ÛT TÉÖ,låüùÜAM'æY«ö(W¿éL£Œtw'Ÿû}éìzPŠüÞ«bï9m\ƒìÌ”83mº:N.·8ÂV7¹¯x,µ×ÑXoÔ'CKË›vÿk+Ü%ðyYɾ|èî—â°Épi)El&þ‚Š|AéwQ‘ÏmLû¨ºHoØŸù(v#OX‹öª´?”‚>¾ááíYŽ>zŸ§3º©kõº]¼HùjUÁåð[íóš'›Ù §P¯ž„Ј'öøÎR5 Ò¨~k„:™ñ0ñ@mŠëñúþ.•ÖN X`ýáÛIþŒjCEµ—$Ï‚YÕ•B)w' vÇÞX>¾•íÎ-þëCÝÛö.þÄÝôÉŠ\´|Üϳ껬2´ÛP^‹Tt[ÖÓ´¦°N‘4®SÝ$$9‘=Ê×·«ðÇ*Lo¿%a Ü•3 ÿljMòte–9‘£³íNµJN‚ýxà97–|ñ´ÂŒZòxsŠKžßÖbè:4âƒíŠ=xfÄV’?P°×ÛóêÌF;ÿÔ;.ŠzÈáÞ‹ý¼T½oX‡&(®Ý—vªk"<Ýãi÷kæò,G¸^¸,ìhÜ¢)_íSÍG¶pö~bÔÿØáWb{¹¤¢ÏjecÝÛeÜ´O„ÞÐÔfŠŒbÎK™QWIãéAà—6˜z’Ž(íÌŸ(yÞÚ˜Éͯñ4òÃóºí†µŒ;r¾àâÆÁk&†‡=Šã`ÝžÏÕnß‚?8Sc•àè•Ï‚§úlž‘Õ'A[}ÖÕïá?%$&½W›,Qº}ÿ3!=½2вìžw}S-§IÊøIi£òŠÙÀð&×W•Kš?T1 sŸðrÖñÀ¬ïAúkƒ´»ÈÅ#qÞ ¿ <¸kj8¶.ÖFsÑü¯0 ¹ãk<Õ{ .‚¸ ÄõÕ#¿»YÕË|Nû 2æCù{”‚ZÎÑ0¤:Qî£é¢¢ÏQÈÞž“¨¦¦¯ tßÈCËÚºO„TH¿7b&ÓdÃþ’Ö“,Bòx6’?ýÅ,Ôz¥",hOëtrœÕdÕF­«ù£,±*åAfʽyëÇš ï5Êêrïƒ=6]į†`ï8@ho;¹gpSéNÎý26—Ô;âÜß;bÉåã ýtز.+ä­¹Ÿ/ù¤ `ÃT÷(h£m4’ óؔ̚(HSSg¾æZ9r÷)'fÝ·ßyô5¢ÝÏÆnD!tåNí#ÇÕ&uˆþü_He[Û§þ¸®1yg„U¥{z„féÚ®Ÿ9pŒ¸œu¬i/ñŽ“ÿ…G;åSÒèG|}Kr}@ê;`¯¬¹·ÐÕìµYz|Ñ>öWÊã‚Ò‘NºÈ­Þé·ÌÖˆa(âüp¼Fë8"T³p¯Z.UA×þViov²dBÑäšI§¤ï”Pw­8ߎ€±Î»[£ª½tÚ$£·)V¹”ÐûóC æ!°«Û‰¼O½|©Þ—M–BŒKÆc¤ýÝֳό„¾·3Œ™ÆÓTo£¦ö½vŸâ=ƒ#vvtÀ«ÏÊÕnn&ÚöìñþåzLópÇá=_Ù¯ÓùRns§kQtrÊõôƒS°Z:¼s¨~Jc˜_èÛmÜmJøÜ8]ÑtÁ¾Õ4m¾«‰þ¼tÐͳ:/ô-¾ M»ª¤e>¥nfïpÙ²QÓõp9öñæ¾¾‰ä¬ž=`–ÕÓi§jPXü÷ÃhÅ(“’T¡*²S´ÇP 25T}Ù*†!ÿÁ0sçK‰†=šL¨ +™5ôŠž-¾§{°~ÿÛ{Œü´Ffý^uÉÚB¾âÜ'86,þû†dd&¡8Á3d„`!î‰Vñ’M  Dê&â¬mE§gÌï|TR|u8ÁWzPÿù¥?‡¿«xÞ„¯¸Ÿ°m“€Á†åNpr~­üt`PŹԚ.ih °pJÐx(ª"Þû©ÖÏ.˃½ú†ç†Gîžôt>¸ÚM.šêZ¤5þ›Ü3aI€GÖ¡‰Ï=qÁì,›©.#\Œ–¾ãu.j¥iƧe!\·©,E•msšÂì2š$Ó.9‚ˆ óÔƒ£O’xxVô,Ðýë$z ªf)êS‰žÐ# Á“Ä ÃpBsdöRzxÝ]iæ _8¢™úDu*Š6ùv(“@¨1bŽ +HÞ$Îèœ)ÜÌZ÷Í<$­™ø(·/R¿ù󙓦‘ Óqª h´:1÷+ öG¦BX¤ÝaB{Œ–¬å^#/ÇÉÅôˆtû¤¡ÉÝiØGOÍèY¯“WD<8: ‚‘ü,"ϵJBfú¤¸.b6œÀPîƒÝG{ ±@¢–»·ú?vw„öÔe­UÒH«,WÇ„ŽV²kÆù4Uev–•6Ä¿¦#^Eýü†;³ì½KxéL\¹§^_t’Û3¾r¾o¢dí@ <#é§š}!¡¤ó£&“>1ÝÕóà`¥‹¦ÜŠ BkàNUIô»,nÓa¬jÄÌy-õnšEž­ÂÅ|©á²¾Õ¶lß-¨m–1ä§ÙõdûŒNb•¢Õ°° )·òŒ6Øh8–/•¼3P¬fweÞ„ bâaæpËýÌþ9†Ç ËüB0Lð+É.À1à†ðŠ<ßÌ wÙ’ûû…I÷xi{y_>™·iéåR;‚ËÀØ¡S2d1¦Xœ£hyJ7Êsm,ëHM^Ùq­¸~‡ÑVÙtúeǺ"X³ôFÑ­ˆ§Ãô¶ì³û0ÜÔOñWÚ•Œ]ù0£V—M›—#IÔæ¶¸—› 9“C‡­Qüf?—|¡çk¶Ü­’ÒÍ]ÌÚˆ¾«È¹V5Xã‰5Þ›koÄsô¸Ë•£”gУÒå¬Ê&䮿½ûjYë÷rÊ&$U–äg@ž¿p#_jHË×íÁ>Ò8gvR%·whþ&ÿ“»Žñˆ&ÂÝNuÜÎ|1¥~À8ÖS¶+Æ÷›ÙëGîª$OÆ÷²E9ôåĸÄ,Šìø'$qéC¡_¦}¢çX™ûðrZL¤wpkñQ.Á*Ýì¯Ñ¬&«ùXK^ÜwŠ’H(nQÌÀo|¼ôwp{½ g¨ÄƒYdÏ½š“• -Êì„ÉëlƒM™—EøÖCT¼ðL*ýlü¸Œ€õ‡5ZtÑh“ukí>”@TÇ–µ:)Ñ. Àuß–šÚs´ÔœÁF&E›yµŠ†¦j×î’âí¡ g­¤$E/]^Þ—Vêý{UNH“ÞÑùMß70r×ò`œ¼Y^Þ£gÎrpSî pW7zJ¸³+·”U»:Ç”âºüI˜l;Vkt­€Ë·´+L²ªØï šõ‰…LÆP0°äu¨ÝNÀº™q‹i©èÍuÑðë„s*îÃ!ǹ´˜oŠóŠ›ýôt3ãíΞ/¯‹ªï3} ®ÑrJY?! }hĈù)SÍuý†,Íjó-cò皦MÐdþ1å°¤lØbÉËÖ¸Ì#o¦T·˜Ò/zç÷Ñ' .-¢¨.n ®§·\É(•ì0¨Îý°!o¡ H³.0WéÒÇ‹gË ÝÐR-0¢’MZ*ðɆŠ#ŸýžŠªTÚÕׯ]ïO¦/úß„r§M°ØW°™'tî}|/H€Ðõ Zð9 %™­Ò?Þ{%4sqwþõÝþ’ê…¯^ ˜Ÿøª~RKÜéÜ;ƒ¤ÇØ€yœ)5’ô|½–|³áî4}ÐÒZCöY«/˜&v¯ãëv¿|Rxoí©àC°Wµ2²g²þ®9s´»AŒÉç]g¿\Ÿ¨ußj“(¶‡Ó2.éÐ#™û­ü¥DdE¼/Yy§Û¤î÷g•_aý® &ºœë¬°—FgùÃðWÈ0G&Tj\LûXô*¹#=* Êaš¦\ú‚½>‹y'ô¾Ñ8S¡ÐVÐåD|µ[Ì]žƒ¯yÇ ·¾ü‰Ryž tcÖ}}ÅÉ@‚,uqŽEû-‰ÈŒÖØ^œ`sÁ'éÄ—1ƒ{óöŸ§‹)o+ÌpöüåJò¨A‡2zL®Æ€ut?æ)©ycGgNhUœ‰Z­\Ñ÷8,‹é£zëøbc‰k{?a1^7ÅþéBî8€j2E»4ŸÜÓ ܉…Ïõ€Ô—ÖaóÎLF±Ïì}‹«úQ±·bƒŸcݰ•'dÕ úZ Ž˜fF#üØ~?Ý‹–V½NÉè…˜<È”ÔG7Ö’IzÉ»¾|±³ãFZ¸Û$þYµ5ùMUs¿ŠµÜ–h†aþÈÙã¹ÝÆ/d3«¶z8Ã…|¾¬*ù7rVšïfØ}MžöQ³0V1¯ˆ£,îC[Öâ˜^x¿¡áqŸ‹#ž³Ö´Ò‹Y¦P?.š7±i} ¨Ê<¥Y«‡ÏG¾Š$2[$J!0‹»R¹™ ò- òo1‰°¤_×{nQ&us›“^’–@½Sä¿¶n!‹ó¸›hƒuþè³¼{³r—ß;þ=ø§•¶Ž¼ÙI Ý&Ð׫8N%êéEÐâþà­á‹åKáMç·êëø Ô‹ÈêÏvV…N”ŸÊ­ o±}T‹ÐB•ªæ„zê!)£“Çð?:ÖéœøZL«CÞ(ÞÙÉŠ& ‡œ ¤¡æNW€«¡á¸@ì|IÜEÑÊ"–’¥†o´¯ÑÏ™–92Ïö½ëN\wQ@”Á "ɵcbþhשߊër,:¼{‰Æäï A|Ù¹€™¬ZëD4úºßDw’tÚ±€8rÿž¬ïˆnž^Ð =ÿBèùÈœ²mÇ/ïÎÔd†M©²JáÏ£þˆ‹C]xl$}î—Û(N¡Z2ÓØ#˜g>,²6ãá]R Î<âS’—'¤¸ÜÊ8f‰˜9vÜãçÁHIß¹*V¢¬¸õèm8˜¤ 2ªÇµBs4ö1¶ôõÄ“"ü\lÜ^°DÚ€VÞÕuq,&3qùÞ½¯~­â§¸nƒlíþ5«ÎA§è¸²@©[Áq)þçf1ðÚKƒ†Âaë«èæ«¶Vê/²ˆ¿^¨¡&[JiÊ»ƒ y¨Þìb¥º48úˆÀJ˜+ âjôcXQ» 3ùU/½7X<sÒò(`´Âžµ´6·Ÿ‡¹Çúbz¼=»¬z埚ÃuX³óà”Ñ×i#I³†ɺñSí™T¢á«P¹Ï›Ý«ÑÂ^«/PºÛÏ·çãWù¤/T6&©%„sú\Óý¶r‡¾L8žÁÜÃÎЦ¶?®Ýr.<úà3a9ó”íã4h×5ƒLàBK: Rö-µé±¿^Ò€¢)ðCÈÉ»‡^êëF`ò Š`ypd-÷&µ¾HµRÒä¾g¦5wz#80”‡Í…€ð]® Ÿô97]¬z7s6Éháëºs™é|h^L9?ZW‘³Ä’U-­ùÍVÍòX.ˆrPûˆ·Áò)á’wÛMx”%XÓLEòt5åíNcT%ª»¤Ô‰e#v:Ù7O;¿ÀYÉËùݱ$A pç(õîèhöZv“Ó>¶&ó–¼K¶É­7ç{’C‘üå:f~ëñ­ò; *#T«Gý(˜`>ö>"¿”ï´âiYý:Ù=©”’¡ë@íBÃÕZ¨êuŸä[§%k~XbxÄ"áZŸ7ØQxÛDì¨õžªBé²™˜ÒÞ+¹DÉ?zà äû¶<¨ Žy‡v§n5C¾V¼:©Ò é°Ú—$œâéažý>Š2uÇæÔ¨5>d¸®UÑÇ8m½°GAó¿$ôT†qŠI{ýáŒã8ÿZPe³$@mb¤ ® ¯NØk«±}%높*ÏL´L·gekW$~e¡@ˆÃ±ÆåeAg8ÜÐïjew´D;I¼Cµ¨¢/ÜÚX–ôŽEê7±[±hšå÷÷’ËSe¸ ù#šøªË#)îxÅ‘ÞlìMB9©=½ôkyÕsm,§ ¥‰_­Kc{>"bòjµ>Qg¼;èö2#jJÚ À*|¸-¥ 8$ÿÄŒW™^»äߟ¼õCŒÀúRãK„’ðޤx60Ù[å¬á@ëŽ5M?è°ÖJ¾ˆ[L¡?Uíä—hó­øhƒ¦úÈi4ò9½¬Ó}¼5^úŸ#*bhC9Ü¿3~{L6ä»Ñ¬.££Ì¨š»'›+|nuƺS&Øï˜égÈþɺ†ÔÀ`Ÿ0r̓®É`ËÅQ(Úvýú¬@öŒ¹æ¥5%eÿ>6M—À ÔU±™Íoü 1€^˜Aá³Äg¨°ñ™¥$®ýíkáAi0]=Ñ”[ã’Xáù´‹OX(i"ËÞÆ”û!pÄ ¦¤®.’–\T(¶ý=®öý"ëÉÚÆèõ¹€ƒ«›¨ke ž¤¯C:ôŸ©‘òG]žÈ¿ŠÙå`i;õnâH[‚&–ÁÖQÑv²!-¡ýÂ9“Vyèáv̉ÑYlóÀ­g§û®´û¤Cˆ#Ÿde¶Wü}¼År¡D¨zB­‰@wN¯í2‚RãÕPz¥¯³³ÑÝòe‹«ªSh: ª¤îiê*ØÑÙoÞ=çÕ;0ïžOJ¦Ÿå FÿtÖÓXå!:TMoÖotbÛTÓwÖëî½ÙwÏ8œx¢ ŠrâßÚú ir^±´/ÛøùæþDH—¹E½Y£Ò¢:ZÉëïzü’jy)¨'6Ûïào5]˜ýrdªŽ±'Áz™jº4«8ŢOŒ¯«£ØXõÕ#OS¯è3úûþiîÔöl\³ÎÛôHd›cÊ@œ>ãÒvx•ês>¼À˜6—NQÐÞ¸äÿ0@Pïg|/סÌÖT¾‰c#wzgÁlŽÂ83¨Ùp{x­V´@½u“µÏ…‰uK±§;›Q\eVÏCÿSš ‹£;A=}^+ÒwrÓjÖKš,~ò¬&öPg®iéÿvJ&!ì X^÷}ÝÚ÷ïŸ"(}Ò¼?%¢‘Új¿óL\ß3x”q1‰¨* …Ôš²/^½Â8ŸE¨êš±!? ºž8EÎñŒ)7’ÝULÃå é›Ò–‘Š_ œ²G’ óKËöÝrÑîÄÂÞòF–Šv~9Û>Aä ÿ†Ûh¥ÈFñ>¹“»Åe/­üL§/‘m³.ž).% ¤e¼´Óh¯‹-XÞßãƒöL9¾Â02§ùØ4ºÌòc<¿‘ƒÉNˆÛ®Nclq°š‘ªGë©Á“«±Ä)‰££¯÷@ŽØr4©q¾û*ÜŒÉó'³¢$ŸÝ2¹_÷ ³=Ïá¢`¾žZƒ/+ìÐÌcëC—ðgL,_qèXNŒ/ °içÏ>æçxÓðµGÅ-B5;‡ iÝÆ~Õàü¨•7Û–£K#PF& 5(ÚÍðf¸ÓúÁº^[gå»0q€XXü¨ÉebÉ´kÖ–²SºF–¥Ë³åóÄ¡ì+&%r—gò‡ y´Z¾Øæº’P1AÌb[KqŽ>¿¯áaô 1×\5D Š›ãl-ñ`Ž’Û^Òà]zŸ\䢙f>s†#&4S¾V¤N‡ûRôèB¸XŒ#Cü)å¢r™™eÀÅU×Á—Óo9o »×-ŠDÅb®-6=T𪠽ܵME>aùŒ¢%ÌáìúZ•7Ñþ8Ô G2q¹¼›­Dæý»¦ó>€Æž›þPþ$hSẛ³PŠ©X˜«²/Ôó2üPÒt·°\3£ TXÆÕÀÿvMí›ÅýieŠê¡K¹žÖTxj—LC¯-Ï&õÃ7ƒâVh‰¤H?ž c=¡š±¾Geø^)îÃiÏ;±~ãÍË ‘uî2—e“#YºrÓ0Æê¼¹h+Ëå)‰uÉøøzÙŽŽj¥}o5,8=ÇdPdò [,¨#´?Ûã0ytL/P’5Ìyc±ýä“*e—ÒyxCk y,¢eò#T­£Æ‡+øÂxè¾LFM^¥/ ñ*øþâÞ ±N‹¾Nãö2êBZ¶Ñ»‹ZJ˜4H?ÏYžÃ5Â(‰t¢²Dˆ„KÑ“¢šëTû¬ŸÅ1—,Dc¶üV2hCHÒpËßU’¤ÔÒ󉣅S;£b­ìy`ãŠÀ”Îîõân ðy}çm»Ö%óüLMÒ7ºmüb¯eN¤„õ¾ÞÌÛÆUK#I!ÖÐ'NBÞaà oŒ‘:Ô£1UdŒUïqg~¾HvÜû$è*ÍÛzfžûo+Ù•ë|N¶†ïåî@¥× ¶¯ÏWÊ,çóÔdêìÇnøÖ`å’2Tb™îˆ‘U@ëÂÚ…spê¹…©Ñ…¤[^ú“Ф$³(õ`°·Üê­ódå¾—k㇠¸_–†\ö¡¿¢ŽYm§¹á`×J4B#lK"y€ä&N™Ðàã´Hq˜y°¼ùתÙ<| +¢Ê1˜Úlý"†ØDY;—ÖY4ýÔ•'°þŸY²Ë" @¤í›²?&5é¨vb{°ÈÌdÏf±WAï~œûœ& ¸ÈÏÂ8·^)™“ô¿ƳæPx&d=ІEܸ\\0µEE3îç8è×÷èÝ[ÝÂøX])ÍŽg–OámNVFÞþùgТ¶*™ð/Ô˜ÔÎC½Õ~̾×c“hZ>”ò™ØÙ‹÷kÜPyÙÞ&¨É/PB…¾6îXM%BúNµL-¥; |D„ÖJ1H~‘S9òu‘oùä*£Áj¥âã™$Db'ßt¢Ïf‰Œr=ßTš~ÁKT´Gc­f@ |¶0÷)³°f_΋AiI£»å‹ýœŒO—/¡K®…2d£±\qCü4^qÅ[ñö8]NáÆ; y9v÷¥#a|Œ'3ëÑé8…rÔ9æ+ú ›TÏB’GFèh£°=U•¨†úÍÒ›Pêä è7¯ï}ݸ¢éäÍ#eǾýáâiu®*L‘¢Æ)‰0‰¹†éŠéz þ᱂Ÿýt0å*'<”žƒQ¬*³Ï–=±@?Km„g˜¾Àt—G"1ÃßÜi7)ÉÈùš›k¤ªcϦ¿¡*5L‰hYYÞ5`×3b7>ëï®ÄÍÞ6ù#í° Î—ôF¹ÉT½Í`ü¶sÊ›}‡ûÑçÕªàvLµG«l‹™tr^pžûðT"=_‹Š!áSªŸ·Î¢ÀÀj/¶y{™DaUeömb¸yšÀKæV®Âãg«æÞþnÌA7õ^…>Ú@÷öA*×á²Û·-…iüóÛ³é­×êtÁt¢H=Ã*uÇø<¢­n›Üü.“²ÁÖMðS•ÊÞòcðè(mÆAsá¼¶?{Uiϯ›Ú%Šœ’¼mÉ[þC¸6\ ¾oƒ%,€†N£ Õt)nÑ´y”’àðµJ•ÆW(ÈñD#fqæ—ÓÃdO+À¤­lÕ_–È,DÉD",:0ÿNv¡­¤MŠMd_û®Ö• #¬(Á‡²ÿEo­Ç‘e:Ù<± Gä 9\à°#ÐpßÊ ´»dŽýaʲ½ô˅ᬛ%ß“i8á…,6 SúM/œ0»öþu(¡)‘‰O["«ÂØ„øg©îTóeG†~ž‡’‹_IýW‚!ÜiÁž¶K79"”ÔG` ëR”´/öV²±ð.ƒ/˜•Äãh­Oï\¥&NRÞû/ÀÜ÷‰iá¤1ß8zö¶`íÇŸÿÜã#VÁë7Òþ0ä~À7O#ýÊË2*„›5|]OÚhÅsÔ—}¯r©ÙxyMàØ×™ÝÓ0ÃÈ^m ˜Õ•ôm´¾ÁO~¹âð?6¥(€yÝ>Û³ê¶LK¿ 3x̯j¡‡|@hyÜ%€sm9_eÏx€N£pÕ³h94¡òè6×JÁ(A«¯À™mf+ôî0oÌþãs#ì#YÌšû«Ÿ{+zß¾…â;§ñõ#³ h`ü|_ñɩꭦ€ø>L¢Á2+ë";ñ¶ÝŒ*¢£y¨¥-ËrPòr‡}"Õ£ÖÍ´€v0LB›i_gÖ±:%„2\›ê©e³Gƒº+>2\ ]f›"¡—v©«Þj¢Xý㪅gjhæž*vFÉœ¤…”PÝw£ ügÛÞ™Øèµ|Ù§Óm[ô¶÷¨”5QK‚ð”ªõ´a®CåÑqèÎÇô?DŒiœ°³úŸU¼š¾Æ¼J šwÓªµ {åt*:óïÿ@ÉÂ-‰ÁuWy\PF8p8™„ßG9"VEÒÏౡDxg´Ÿq°2N½-)fD<„f>÷AµÕ®¾¡«äu-´ÚSEþŽ}ò=§~cªSnŸ{FTÏè5:–¿:&h5³eç ~m¬æ®ã²æ’òG$”7ÞS³€íøÌ€È˜‰Ï‰3r†:Sû¦; Ý­„@”ljõ™= QP¿G’DVjlçÆÂ+v\ó…é:Òê<6œ55‡!ñæ¥èk/Ž;˜Û‘~EÆ¿ûQø¬}D\éµ0€ÂðcбK¥â݉áA¿®µEóP±XlHŸMZØÌ„ù÷Ô©?¼ÙØb ŽÍÁð&sï¦sÓ!øñ’êÃNœŸ1GÄRts!3¤,3Z<8æŸ|÷Іbè?Y—•‘E³«:~|Kšø–ÄÁø‰ïçcXÒÁ$Aê§êègk&Là÷œy³š©þmQÐäÖB+pL¨d©Û³!#‘9]˜Zõúó¶³ö³+²¾! 00»vr'”|ì<¤cáèJ§ðJOqìÚÚi¤È‡v£Þ‡&ø¥L¥§ýï+=ëÜW²:pÖÔRç m^o]T×\%D‰ \§ñ>cÕ÷ëÍä:ï‘pD«S«R9:¿„ÁŒå&¾¬¦j{Ò{}‹Ë3d+pðûà®lbP¤<ëœÚOxDœ:~âè¸ÙþèþP–´UèÙ•îU\œ¾ý£tçî•Ê[¦ {gµÛÓ23gKÒƒ2;Âéÿ5ùÊ&‡t"_ÒéÓµÇH®*yWmÍ0†Tæ)X0@\-;AN7ìüPY+猖MDh_Y-¸s^³”ü„}¯ñ${ËÕwÖyåë­/Üß=©Å…‘Ÿp•ú›FžÑ@\Ùc@e¾­¡Ï½ 1-l^ꑊ;„ýµ¶* =J5Æñ‹LPÝ çª,QNXE¬ÅÓZš/œi ¹úð:ð—ßY1N~5~ß4Òm¼ãÉ~4¼aA€ðú+‹.ÕÆ b`Øúmñ[VöG#ÐRó#ÅŠÖàô9—Xœd£d8qãÑtäsÏèÊø —’ðP¬Kë4Wµ…¯WSi"†â¢©é3U÷í½V*1× ·%ïO dÃ#yï!÷:¼ ¥p79ÁHã!üA}­`á3ø?ã=dòA¹=I¸æz®Î5ŸÚôÑåPx¬ç V˜ç€‡Ì{Lç! ·q†Q6 Üzèù‡«Nb¾íËÎÄê'™vcðž0ˆà`«üü+ìˆÉÅ'›ŠÔÃÝåû‚µ0lb¹Ù5k͵@‚tš hö^˜Z¶Y^r®:ŠÕ@Yåt)2;k(ã#û÷y O–'d JºF©Çä”Ríåa*¸•Îà÷«’ëåŠAŽ2 ¢0²W‘—Ç»‹bå2—! ã{~iì ò¥F¾mÑÕÏ¿„°êwvL+îIDNî4©#VÚPWùR7–è·¦`Ñv*[ù™®m4èöñ gI¨êgm!¨9X?ŸÍƒ$y^ [C~'åä5†ôó†KFUߊƷKO_d`›ˆÒý ê—Ó¨ü–˜Í.C¸M#Ó™Àòo9I3ÐUçí@ÅaQµë´+òˆ°.Õ¾$q¹4„Øñ XdED{þ¥[œs½•ß«³¿V’RYem“£7½'€8œ Ÿ8·sò£ìDdÏoA!†í¥ò{(¡›}È›p$ãÎtÁÍû@Ú#`”¶i.”>aeíµâõ–Õ³hƒ„ÐÖBgÙ&!„|é©ÅfQ‡Uâ}çÁ˜ÿít eä4»¹ †.ÞiÙ²gÔÞæÕTnîL͆ 9òÀ&,nŒL?-ûËŸž±¶ì‡j‹ÿžQxšâìái ª¼ÿÝÎoT¥¦ÊÁÜá;çäÿžÙ8{!T:@¡c¹üò–ÞlŸÙŸ•Tó"},X:ì;{Ucì(¥©?ŠÔÕ>²œt0z÷k'^Å߯ñ\lFÎ…V/-Døȸ=Å,Ê¢=çSǰ½gš£w=ªÁv)šaïÛ×}{òV&Ck(žîôÛu/euv]ÎäËo_|s`=z#•JDÏ¡¨X¯uÕ,ž”÷#ÿÛY%ÅÜ©ÂÍÆœYÂñó-å+ÍprL„3è—Îü2ã×Ï!/ª«^(7ãµT{Ñû`a3ùzeÓXpÈ… ³sJµñŒT•Ø+¯jÛEˆ³FYbL€zÓMeœv½ÆzHtI½¦l k·P_j¬³¨3d⃨¤0ù&¬‘Ÿ‘x´mü¾Ç¬æ¯ÿP {ŸrY¥^ùìÊþ#"¸KiîP›eðú‚ZáÕ^‘§ŸžýÎÅõ´¶ÎâÆU%ã—.Bç…È!I‰gs¾&Š|ò¢ŒíRêÁQ{½ITÅ é¥aEÜ¿çSÞ;uÀk®l<ÐszìT óQÿ¯Ú6XØæZ¿ª§Ô’&«2n¾æ#ê# %F¿{$R¹ÉP´zße Ƶ7ÖÞbÊsÐ/¾ƒ/ñÔ_kθF“Ê„dlx9ž< ¯Dw^mpð‹0†6¤7ÞU²wÈw!ØdïœG¯ø(·kSkðB¿ï5¨ß|²,×]p-góFwÃ20'â—Fj(ø\€ÁÕ8ó5ÊžXÑÇô؃‘È\"R¥×ˆûåe6l"K¯›ËŽ®Ïßá|¦ŠvãßÉ.â™ÞW›`DN«EËq¾¢ ‘w ºö“Öh÷¬óÞ¸+ù,bäy´[`»mbÚj)·¢Qù_yoáµÛ`N2õ7‚ —ÌFv +öïe¿3Î 1æZŸç¾KSn@#ìÚjº^÷ª1å¡ç3é²ì\T(«‘œ¡„a¸2PðUÛ瀾ºTÄ‚«Z®<Ë¥èg½Sðˆ™—½,GU6ú?;€†ÿõÌ…ÿ3*!ã‰ì„SÞùöÆLxÞJìCòÖFÙ ¦õy;+ ×öIFi¼¼ÞD¾ŒNSÐ%Ƚ(`9çPBÕ€ØÊÈöx½Þ;¶ƒŸ½ÖæŽe[ʆ©Éüb Óï+¯F°¿Q®c•AÇUŸñ$~ß[]‹r-V³®Õ—“0‹½ízÿ mÕø¸…(°žæ2rKe—JB\Éð·ë+ðfÒ†W‚OŸÒÇ?‘\œ·K·4¡ ¤1_]¥pÑZ¦Y ¤éÿýâ;šûÜ‚ÃÌ51‹ Á])÷„Ï\Ï,Á»™ €TFWÐß.ûXJß‚âpÒ:7=I²Èɘ¶¸c6 b Kå-& ìɪ¡™WÌÉyÔÍm^‘¤H³ 5öÞ¥CDĵ°"*ýò&t@•fËAn­f-kÑ&O›šŠÞ½Ç4ÔXïaNñ¥Põ‡’ §~ ¾=%ÁcT%_½¡5qe%“Î3üOIùœÓJnªØÑ+'ÍiÂõwOŸ¶0úõ@KŽ€*GÂ'+Õ â¨°×ú÷‘F«üW0äx6ž/ÈŸ/(Áh湈÷hö#.“püá€e_(6ß›ƒìjb[ü–\à-©ƒéñ­oºú˜ ÷Ò¬bnC¨]Òx×YÔ (OJñ½¯¼”¯x*=Ù~œ8´U”­hîEî%…ßDé3uU>¨eÈ?l¦U½¸GF¸½2þ×ôz§Ûè·¸³Õº~¼(×8{Ýü‹ŸÅdJænÐM›Èÿis£2R™f!$g(ZÄ 3ÕY4ö„•šÎKŒtÀZÚ[¼°ç$¯ õŽ/€Ç6pÐ\¬b»t,ù•œy͉½Íu ‹¢ð(ü¿&ü]÷ùŸÝ…®ú®9»´üû1@Zi‰ —È$<¼“Œõ”AàÆ~d~&4´DB`ïå%‚hE¨›*”ÑÖji'm✦„Nåé¼ÃK çOW×\â¿HƒÅD{À—ÕϘçóÔ^/¾ÊF4ð`_åì?fX[O§xÐBÊ]†¢^Y1¤Bö;m†Y˜Å•w²@ÍÕüÓ\:/Ú,L~<ß±öWB‡MŸ™óÍt#@‚B¡]‹žMÄH}T hkolmË5Lídׂœadþ­%Z,—swN[ ôwL¹ädtÓÌíÄδ‰dÔüU®'£`Jò)ÄÍ…[4h[ÝíÍ/b",X¬˜Açö\7·}“ÐÓp’ö,I?Í!·Z.Ký'7T°ÈÔ®a~Ï/®~Þ™XûNʃþŽ·qX¤û¬G¦ÕºÓ*猚n¦v»˜J±ÑÎ ±y›÷Azý@udȱç GÚø=Ô%kæPA…êøÔ-} á©å“)°'Zô"ëTÐÆš…B4>ÃјMw˨Ù9T¹@½¯¡7ýGö³{ôZEóV*Æñ;WY)¾¾ãƒ¼²€ÛÛSžY}ñ»/ÿâvÛßñÚÃãôý#”ß–êKË ð:¹ †=øSoàÒnÁÉçp=þ0ü?ÓP(VËÈø%)ÇÎ!ÍhˆG±Ç“(ëøå—ÐP)>x5Dr~ŠÂ«_#ñœa°(82kÁøBÈ7É‘ƒhäE¼ƒ’¸” EŠgV#©ë”ÞODœ´ä   íN{^Ö–IaºnQt\6,%&x-F]ô3:tù3¿ÃË!Qû*DeË!™èޱÀBâŠmùŠã+z×EïÏ{¥à|fr'ï-kX`g‡ uà𜳚ÛQùÚiÉåb{š™$ˆ>%ý1 º›ý‡3;(¯È?ƒ²êÈÛ”Žã—-I´£´€µ{gŒû¶ÊÃ#}–Ûâ«T*ê$&?†CŸÒeÉ ÉÚÂd‹eù¦Ì]ø‰×$¡üIéT¯Ä4´†XGÊ1L(Ò:ާƒÍN†zu ¼¾ƒA"FË'@V¯j!Ϫ;Ù?åó­K*6úFª\½=ØÁÍ^>[.1•¯]ÄÔ~äàÿ&o5çLCöÈÉ…ì* ,1¸î2ë’ªs:8"ÓË&íÙÉñ`‡æ¬íCKBðû=À-&²v`)ê5A¨ÀÑ —µðgv£W"Ãnµ¹çˆ’y½ƒ>LêðÈ ï¦®”X£ Çoö†ý’©“wÁjA­)Õ«}Â<ûm#ÓªZò¼D#òüM(?(Ï@ÁAN¬“ämÉa!%©+¾ü±Ê6Ÿ‚öýKöû D²GíM=O|“— â=ƒž“!&9Ù7GàS®·vcg†¥ù5zà’-H™ÇÎ ×F#y¦ïO5j9æ[(®}•-JO»ó<0úO£/œùL¹>6«½i9ÌØ.ù¤²ªÀ`8ÈêX«^-wÿ@ ~ôSë°r~®^daxVȹš[ÙV^kÈ *˜·á-[*æÎB+FÀ $úTò`hyháaφdö ǵõžqs&ĉÏ,f:_O»,nVšˆ±Šˆ‡ñá?ˆµ i0%0,§³ ص©§×ÄÿwË´o)}DsÔï^ì²>“£Ëp;bûñÞ Õa²; ã¾ÅºÿW³€D°ñ§>’4çJå¸ÎÑöæ´õgT»=8 rªïjl‚2R^ÇëÔï©ë¡õMÓ 0ÓÄà ›ï˜Æv¾óQ† °¯ÓÔÈl52á©"À.Žf`NMG2kcÔ7íµÄ  –ög¦V®1¡„ •¸ïæ’ÅAu§\´èemû,¹P—D2½;Á§‚,~°@H¸”²Ö4|'x:2û·~3,Yh!º±³Æc„¯p†ž·¼uào_”½Í^Âm¡”høvÃõÖ%6›_~¤ }ï–Ò}=j´­ÂRz¾ÖE*ö.ésÝ®¬ÚÚ°VtÈéðúŠ4ÕÜ»“|pIÖ£6I‹†¿* f«®ª¤Oh}ÖžTnÉ[Ø”ñp T7ý‘×­åHølè"¡‰ x]0,8ïŒøa å‡÷óàå‹'»oþkâ9çñÐHò8‚CÉqd¦ Ã#&ÂÓgBÀ×!Æ:¤ÞÌcmjey+r ®¬D W‹.Ps—æ]¥‹/A ¸»iXüªå,— œ¾yšv m¢»6£[&ã‘ÛøûÒéLFƒó¤“®f¥õDG­8e±O›—€WjV!Û³V"¹,RgbïAÙcD ^îLCâ®$eqs,Ü,JFßn›Ñn=QæŽsÍÚW8J_«’úõ‚ïÿÚÀwZŸ¾½Šy«C35µŒÌ¾™Ó“î¯ÆÕã‘é.ÆQ½Ib—ð •jaÉ>ÁZÌŽåô}‡ ær9N-Õ+XH² °¶-ɇÔûÿïøœ¨ºÂ.þæ Õ÷y¡€÷Ô‡ýó2®ù4E¥†mª8ùûCm97%µJÍ,ã´l—SzMÿ;QŠòÑÈ6ÁW öðõÃ<mT<™ *öÍõÕ5@vâÏ€ oÑÉàN­YQÒf—óÂ`¼Ñ(Ém«„;ŠZæ!¬åG„»ˆ]tÕÔúkô+.Tsï©q+õñjÜeTñâðGb–œÛu³®@fš3kRêÆhysŸ~„š«Ô!R¬Ã¯éŸà‚òÄ_ñ0rõŸ÷œÏw,µt!ª÷ö³r4½2VxOV•ùú-­ÇfWÀîú½Â>'®À—ÿqnƒÿ;üMItfÇ𑢇ûŒ0„þXž%F“QŽF)£­W)­éŒ¡?†ÍÐÌ!3°1oÁ:PöÑ2;Ž! MHÑŸ*pØíÀ.§…&¨ >-‡q²áúð[¸_9×–å)Q®Ò½CvVî3îy#æXSß‘kúþ3AϤÛËØ~ð´¢'Îïk¶È9ÐPUMƒù‰1åƒuçjΫdúao.%ò í3èE “F…Z²!Áøä¥’Vøp¡qkMÃØh½å9•våÍÿ¬0¡q6%üoè’äÂGgƧs—û! †ËÌ—0ˆÅ|:e«Ïg7¤3Þª4‚3‘;«Çu6GÔ »H]¼NUiÕ †.0ƒ(TŠ«=´¶ÑsŽAòXÎà­öî8ܹUjb·ý6¯é3e’;>!Ò8`;zõìÙÿyÀÏ…ÉqzÝ=VPÎsTuÿo#$VYùí"#ÝQ§þÞÞ{Ù’µSVZ&¡‡ $¢­Ñƒ¢‹S˜úÈ›“†íiB¦ˆ‹8Î:Ñ>îq½x‹¦9†é©“ªöksNvŠmRW¤úä^¯YSmõ§èU«ú:Ò(zîŒ#§ëÊù€—†²iÂ)ZÀNç“úŽ‹µ™Æ•þ*ÅŒ¢u5]tòå(‘iß÷æN~ËæìHÊD]˜ä÷uÈd]È3Þ©î!Ñ Ú)"UÓÒÅS8(&"Š šv™Óçå$Û7yg+>ÃÇEËõíÅ'^Á5gÜu÷{) üùº«žuH Y4Iã¥b´tkˆƒM‡båJñá^¼ÛmLØÑø‹º¡§–ñ£ 2 $Ò´Q4gÝ.Ÿ!Nb_ ÍBH±^ã ºzµ/8IñOÖkzÃÝW­‘OC¾1À‹È¤¿l· Li.õ–²V˜%ÁÏ›œ}3Ç>vo¢®¡2ÕM?…Áÿ„»-NLγoUº7—5”ÿB;¦-†àÚ”ßöÇlÎ:0ÅÑ{À â5"Ïõ¹b+É“¸‹ŸÚšŒó#uR“H)‚@Fá9ŠḬ̀ÐÐʵÐyÿ£Kæ8^<¦!¡>X¨r]¯~Áw~ux¥&¸çgøÜIÚº‚-e‘Àg`‰ ãO‚Cèvi™Ñ~¬‹(-+ÈÄ+Ûñgˇbb"cü¹éBA£4˜ [ßê6’MZÜNsRcÊbåÇÀÚÀýÍì«ã⢩•lÌòKùOH´ö³ŠJ£@ ÑiN*¢2ÓŠ£íÍ[ãQ/kSЯF_såhãêÁc 5΋sg(¾Ýïd/þ/@’æº\>KÆ_¬J*O‹ ±lšjÍàEŠÑ9¦‡0>âÒe›ŠÝ†ýwI½ªU(=õ=VʵäˆJ>¼Õ–«F]¼q/Áf¯tºÛ(sýÌ{oôÜHÞ„z¤È¥béH\ ©Úúâa+!¹dq+¶ ø"ËXÈây?¸&j¯eì˜ÄEWHÈ‘?À ‘'P¸íWìtâk¤>îEi‹ß=áXˆÆ¥oûÔöä½Ý‚AöŠ{Êܾќšû­6%s–[IðöÕ»e~¶Š²&“KBƒÂ3ÈtOÕì„K)f÷/Ú&³ÁÀõuô©yÿñ³Áxdûȹ+wÙ>=¼E5T`¾N ]‡µ³¹ŒÔXLJ¿ùicùT# x½#½øW!]›-à[¡+6Þo›@¿Âåôéµçói†A*…ç—Tã“–Yxí HYº¹ßc€-È(˜Ã²mHë™WØÿV6ÛBfÿž~.ÏGÔI1l‰´hŸGàŒÎ,"Æ'³ ‘ç,»:M*:†-Ù}T`}†*ê‰:M"ù4gÉ`g]'©ðÜK~õ¿Þž¤¦MD[ìÇ:@¼¿p¡²*ãk•u\/¬!5èš÷’ëUÖ[‹Ä(5F×KÒròà†½Ú´©S¤fÓœ?“·ÀÝ mÍœ¤¼gí—~‹ZÙ(õuÐeˆ©É, ±K²Øz£•ïnŠiçÍ/­þ†oX6  ;æ çw$‚’Ž?xqü©4EWsS±KΛšç½.JR1˜²›ÒK¼b~&p ‚ögæìeÆÂ‚óå$À÷¯#­“+„1±T‰üv¡9&›ae•"¿"Qƒ8½Ó ‹nèIdIPß-ŸÑücÔXÀ†ïû‚C".бÍj`ÍVõ‹[ O—^…Ia)0À¼ßYOxpôú…BDõж³Þr…ñÁÁ dyhíLô­.«{w•*@¢D’þJ²ÈgNñ÷rœÛtšÊœÓ™¤«Ï(ú ÷­é㹚¤Éz½| hfjÜnö¨QZ„c{V‹‡U£~$‰¸”_Ë#ö†L·«&:Ð=†d¯ßcÑ*±¯ÅŸƒ/Ȟܠùi˜ô@å£ÏÝ¥§²ÜO†@ÆìÆ' ²z1÷æ–IÊžÆZÅݽÿÜtWïØä騲¡ûX-ûZ¨+aný:©Gî÷UDëv$»ûØ…=XÇ`ØÂ΢òüRDŸïÝö”Wä…~ÏpF Ëá}ÑŸ²Yÿ#à/3 «d®)£ËJº™ð’æÉ©B9ŸF¢Ž— RsGkóSބģî’p#`FKŒ4±!vØ4èøb Þù@a '$Ipu<%ÏÃèSâþ®¿3GDm:}áXgèú$….úáâÔ"!*˲õ6†¾Í®îÇõÏÖÂ1ŸUŒ#²Âž× )ÇñÖûW·Üj®§}Fsq©°£fB³jâç¡KSR.Ñcªô –êKË ð:¹ †=ù9œxå²à[ ÕB·æEŸ¢ÎŒŠ‘Šƒ7pû›nŸs\²ðÜawðò;Îb‹n||òâC*eº!Ûë ƒüf ïs´±ë«SDè'–8 ˜ü%šÌ¹ƒ,šõÌ.qyQû/y`à¹Hׯ&¬Úsþ³¼/I*¯áÉW8áLúî;&7¨‚àwù*Þ£€vñ¼Ÿ+gÊ`ðþ(oˆ"jkúú/[ ã½]|èèeû³ËÖSóZ¼YØxÕùÞi¶;Z×,~³Ä*£R©¸Ø¬õÖt¹¾éö÷¾€Š¢–ÌO— ÕÍWÄ`ÏB%"'ƒcqÿƒ '³ów#ÀÄ¿¤ß»³i¯EçàsŠÄÆ{µO†­;“¦Jxßf‘ãNÁ0­(›´ä«ˆ¸üeýïÆ JD8;ú,`]ë3'?Ü2ö ‡ÿ \¤2ä¤FÓYl”¼7ž" Ýó+ÅÛë~ã-é Œçv2ìÎ÷j–ÅvÎ)Ób›1h~„Ï/†¢ f­éAµÖø<ãÌcýù>‰&ì"Ž~ÞŒ²™ K«‘KÓ–¦Sôè(iñ’¢ˆÏQœ–šÿé8ö¯ã³˜ÃnZªÿ•RÚëóË¢Q‚ãùYÔrƒ±“´BQw BÇ$rå(>ÀAã–3fâ´ü{Ç+)‰–Áª.r¸º)½ƒuKBv6Ò¢æ+ØÙìÒ¦®@«Æ…ô»3]~—ÚÎû¾Ó°¦.ãã(IÄ9zFt\qyQ?Îrrù±¸¨?&ô«Š¼wãݼ*Òµ&Æqü‡+ú'ï¥d“…õÂ×ôŽÀ„k¬û[ÀŒ„(¡Ýå…I‹²e×È#syѯö"j{âÅá—L¶Ff]Ø'ªèçxVš>M¹ÅCƯoÃÿìYG47χ®êŒ”†‡žš´g4fµµ:­ì‘‚Æ }vÒÏËô*xOl¿ü! ªÃìÎÑüWÆdçàt1”íµ /e§I…òÓ}°‚Š•b=©ŒD3@|V­ÿÜêÆí¦ýØã¬÷L‘ƒÁ„%}ÜbŸ)Bl© ¦x4ïÅû ÊgE7@ödôLù;MYDîúÆl «*Þ»Àå#~â™+ ŠdÍ~ßY­| I¶î˜)õœj§G4Ê‚ÁžcÈÄb8/Œz|äTÅB3©;žÒPâŒtÀè9fî!<ºo’ÎGÑcFÚP•æá<ø‡ó¥°Ç}ÊZ…QÒt&Æ6Ž?^äœ*b\¨ÀçÚ|ÚŸ;é2µ=ü~Ìü/çM“ÆDE’\[C¦› vÌo• §ßµÍ”©ÆT†ø™«À£ËN8Ã#™…ÒùêZ^ùÏ£@ôîP°/Ýq—ðw®¢.u!Ê0$û5*ˆéX ~SÎY ÙäÖå\‹ñ‰(l$èÖ0‹+&i1.ºz5E¢$‘NT½ñàÖpÛ~Ê_.r_1®”rUÍÊrR’Ê'ï\eD›¹‚ëϘ2âìåͽ-Îׇƒ®z”ºÏ¿ó›[;°NjÁœ./ô>¢òÇÙš™5¬ïÁä°Ã…4<Î9º»h/æ˜cÒˆœ?ȱ&æSí AÝrÊ]“~dµîÓ£¾È³öN *k×òÏ*{ð»yžõj8—”›\;²$]Öð”SC¤1r¹´ÄGa›Ö¹²¹ÈS¹ÉwÚówžlL:é^d3$è饩T£-ãÍÁ2ÖW#GßÛJØ4¯|m€ÜObÊ骹t¡™Êõaà¹A³_l9ƒ¤Epj¡\4ˆžIêËÖ>žÁ/‡)Ó]uŽ*'i!Ã81!—”læ •Ë׬ŒW×äTíX$2Uj—i(´¿¼Ë¶4½4Üéò7{±eìUjä2@FfhiôQšU&÷‡µžW=â-B‹ë*mÛÉ_¾ó:?c*2í*1Z/¾Ä8Rkf»ðDÙ2ƒVS¹xÿyÑö¤®(b¬ügvîOeMb»ïž7‰¦bª@@Kýk×9BF~C܄ƓüѺQ Ò@‡îÄ(§Søû—h5)ù3¶üЧ#;¢k\Q=èxXÞ¼ML@FFx…š½dm (Wû§ðÕW67¢•|jnâ;ÉÜvëZÖááØ@ßþA‘‹cŠ÷wœªú1 G’ CÂV:¿O6Úºe’ˆG«{¼­pp÷-àªÑû¾¼¥x.ØûlYN·ÇD!Åíg¢RÄ N/ñõNov9Ë»´ã²ç‡žôä³u¤2V­Yz¢h¶ž3›ÖÁêûê’W@Éo:'õvž`„šÒäá³2Óõ©Fî’_Ö-²©·µæ×[X‘†­@Û ”2¬šîUò3ð,ND¿ Àd&+ÎzüY9àOл¬ô þ‰$ÜL¬3üIè^yö€5£ke±By2ÿà-‘ñrÐbÞÑüERt‹Ì ì ¼Ë.×M÷h'š~˦ƒ0÷0Umhe9 ?¸ú¢A¤f~¬r»í_5žÅ¼@‡ÿp’3Þ诪P4A\=2dö:·Â…u:D¾l™Ñ6·%k€‰º_ì®N…&‹“y}*!/—Πh‹6q‹Zû¬¾ü…Nÿ}³ 'eÄÇ!g²‚ÍI8Š>]›‰’Q%» >4nv\Vä•û˜,lk¨7,™wÆæQzMÞàæïò *éè5üR¤Ä´`šfÑŸã#—"š¾'¶°žÒi&Dø"ËUÑüÖöº9žf3:s'•¯mzëxd4›¤iuæl@ôéwj6‹ÿÇ È 1¯ð—1qehîL|ÖᨬØ1辋[é¸ÿ­í¡q%$j[ÿ¨†‘†,?=þýÒs=ê­â]ß2²¥ìDŹðC{íFÃ*údÁ½½‹…@ö6ã„Z œjoÏ¢“‚Q@#‚fTs?ÑÍ‚;DzDõ¥óLÔ_õU€ FC¼ÝàÓ›´ÛŽOÀä/cÍi†ZòZ}­APâuW¬²ÒùÁ•i÷&Uy’€tÌQ Þè”H)ç-ù]ôª6AYð~IrïDwî°‹õ`}ñ|oQh§QZ Iï_X£\/6ÕŠJê.÷´ü ´Ýíûű"9@lÃ×wæ©NÇׯe2rk@ጩ1·b½[!½Óº)±hr[Ûf·CYëçE‘óú'r°‘Abß§0žJb¬×ü×@Ô88ñvñyÇtNTEtÍ3’%bU™h¶»ªÛÞBíþ²¨‰›É‰k i¬§×–xH!¢×)Ï„OœÖ à€²{¿Ää$øWäì ºXƃKw^´'XÇÅ}¾?s¾Üo—!ðª+ä‡M¾˜ýê=ÌéÌB)rÐ}ý>Êʸi°ý7ç–Š*x?J2ZÒ¥ßY=Çå£ÝóKê +Üe,> ^À„î²á9<ÜH\v¢ëÜÈwrYt® ™•Ä÷c<¡D‚uˆÎ?ÿku´SØ!³e¡ÌžôÐv_;ÝZö=V›·…E–p oI>ޏO¢ÝµZ*+[g?›8´žS$dªƒ#Î’3ÝÖ:ŽÀ< î.af N>õ{•¶q&žâÎìWdí{…jm•™BNPøB âK 2¿O.ꄘì\â¼H¢·Uâ [We •†å%u§÷ñéöâå$x!Á!ÛÔ,Ι2pxª÷)Y‚„ssWÌM¤ñV ’ÓBñMÉS-Àû½û¤v6’š6ï骛ûJ<Œ›ëõQ£‰žB‚¸'0×É„5¼ƒqiÈ ¬8‚´W z5æ1eê(+­55RÆÖÒ{ü¬Ä§¥R=Š(ÌoP‘á¤ûCs&šjÂ9W³1ïê­–¤ÚÕ‰9 @÷‹ >ãì¾³)eþÎ6Ðl~D1(Î'LÉUjdQÌvAó™œÊhð“/”b—ž8ÛqÓñΙß/ßï{òý‰¿°ô€GªÂǺþÀ³O ê;CV—Z—Š›;àc•¶ë° ¦Í¦!^ƒì²¿‡•÷C`X¨$Ô‚Ÿ½‡ Á§“`K{ŒiÑn¿L— <€`>LEœ+þ8E+Z!ukí:ôpzFìÉœäž`w‰ :#êN‰Ë1ž\úŠæHQûDgÉ}DhÆÿ'•’»s«Ñ$Í,›ü vÐ1Ù¸Þ¢Ð#ûU|¼Q퉳qOgX¯ ô”MüUKØÞÔ÷½\‰÷éX)6Ì%HçŠáf„òåç‰IÕ®›gýdWB2¼G_åàŒ‰«`)‰ågßG¶F¾JSn21%6Ôš‡Ò")¦ÆƒÞkOÏc¼Ú¥XäÁ9rÕ"æ_ÜdKWýH‘Nrü»5¶›·I–Ö‡CþB[&œt"à3©Ãe¤¥2Ð,—MŽºKØ[çéSQm·Ý‡FÿÕ N¿ ¿Z”š}É£¤É¸7K'/›ó[02Ï}¹ÓÏ:#s Ã× d8BUìuW} Í¢¦`œ3&U8)òí\~ž?ÿúQX'O[ûJ[‰ôÌüLZ›b“99¿`BT{5q:„G hý¶{éÚ 8aü3²½xÊÀÝ,Q+M ¿[¥¤0ïÉi Ö¨ûšýhðòRNO{AJ9°î¤‚‚R°)Æ™£ Žsv|þ’: 6² î—\¥ìðºcö-|Xµo@X¡%7ÍûvñS¾CUHtD<Á ûB®GSîÔ(áŒZ·Œ,ÝËhÀ<<$rïWçn™ûg/"§Ü^ ¢^i’”iLZð5ã«©…Xý¯¿-ÎåP" æ¦lùÿ-–é%X:ƒxu n­HhñŒ5â–™.Þ¹ÄË-’”®’h 0nåПg¦±IÕ¦b®Tµmƒ.{Ñ‚Ÿ°6_ð¤Fr³i1¿'9ñûC½§ÕÄX’Æé7ü™Óuš¼ÕòñQ8bG3S> ÁÇ«h«:$s9U”Ü•SÂÑ<ÈÚÔ?h‰;-Ü}àÿçÛ‘§e¾;ö“â¤&…+M÷«úB©p)^p˜qëR“Þn¶‘¯¹½¤Ý³U+ W/«6Í£ê Î~~lö†˜)t©–‹7t ø+5 ,&…aöü•Iw“ÑÓ)]uínªúVa Œy¶@ 5¼TmX!ÔF#A¸¸Ýè FRÖ’>Ðõ̧ (Ì%Øq‹([g(GñÓYéc”~cMªNWµd¸ý]\oÉë~“‚Æþk ßmÉ“pÚàJu3å\Êj‰ƒ±<:ÚæÜ(zÅŸ–¿Ý‹Ò÷l0{z´Ë ®Ä+짤8'ŽÎµÅ[{Ã;Òª.ª{œ`­6_‚â§ü׉úÄÇ ¢ˆþøXª¤{šÌü4-ÎÑÊò¹k˜Öû‘ˆ/ávœþ‹vs”{¿ôŒ¼ÙQà ÑÍy4äƒßt8äÑâ`TMnò×…Í׫RA2‹[@và7鉡d ÿØê ê8Mted‰Ú»w½¢š(¶),•æÁ®•u7‹BA_ÀkÁi(«R¾¡ÛÑ3r*rš9æÌ(ß((”Äyæ–ÌÅyˆÓ î¥{rRÒ‚éûM¾ÊœÌXà Wð®Ì'FY¡ªŒoíQ§“½"VMJë/TÓ­0ú& 0Ÿ ºv'H×ùgsÒøm¯vAOyANO Eô↗3Ѫ/¨¤ËeÑ“4¨ÏZ"+¸Nb±JùßÃì7L%dj¥ÜK}¡>±3—¡l zÓ{àp3v% dÖ\Î)Ú#´Ri=žý.® ‘ðD7ûöƒv·ö5_®ÚÅõ‹>êöVãa(C°º@ÿÙ˜Ø!nk³IÜÏüѽ('œŒÔ¶D'zŽ/D³¯ôTÒûXa‚µûܾ/–FÞ}T,$Ø+sÊds¨u6^܈\=qÿ1ê¼i]w`0ã ÿI]º¤“ûXôa®=5iþ}Ð=Á©²ˆ—¢µ*©ÆëöŽ’ÖfÊÒø '²2ß-¯ÓÎÕo.¢hȲê¦ÿ Ç2Ù™mU ­Bõp)Þ™‘j.NS¨aËž½ÜBdŸ 7Ú½< “Ÿ-ÊmŽ”ÿ»•9†¿–6Ëz 1îN÷#Íl%C’øìÈÞÀÉl”ê1…õúnlÕª‹€ý]3E—FNn^h›ÀwzÃ7ü<ì5¥H1»¸ß28ëˆÇ.S"èkƒê+ââ(¨Á^>åËÇOÏÛ;®¶¶Î¸›Ê’/ý ¤ V¾ù¢Jé÷mÕ‹°Tº›ƒž±· ½¡÷¹¾U|id¶ÚÝÍXh:0á8<¼ª/Ó…TΤ÷d¬vÑ<ýkÏx>DZ[C˜HçÊÆ+à’ñ?Éþ ±AÑ9Z䆀È}VŽ“«oY”Lñ¨bÑ_KeR¨‚u¿vÆF±#Ší¤IÎü޾  ú/âä:çÖÖÔ–˜/H‡yH4}×oC”Dô€3iâŠð ó¶ï_Ö]or]«TÛA›¤µ+ŽYW²±@®t¸Ù$äŽÊ állŠô y mD’`éGÝæ¼_CèÌ*ÜùÓ­ k(çö íÅd6Ÿ$ÿF®ˌϺê–SÏ¿B;–ÌE¹œÈ±R?§Ñc­¶O? 4hÃ.)Aeþ½öjMU×MÝÎ`ݬI fš>0>÷ÕWG¡6ýH÷‰R\£7*“DfcçèðR>žwò„ÝâÑ)ɨQq³wã?Ë'㿽!-LξŒV)¾3à>ä<ñÈßõ yÐíç&0“ךo¸< Ò×Oq’|,\ýôðJ)p¬ôÂŒ¯Õr3Ó(Ña¿¢*ºë=rær]ªéŠmw’a!ÒˆÕ â©þøTjüŸ­(ëšš®‰å&‡ Ž“;à¼=þyEÏR^¥aÊx…‡éî{™{:aR7½K«,ù8œ[EP«ÎER>° ×ñ.fÐÿ6‡ø¦-_‰r7<àÖ´åøQÕ(Dy¢ÕÖ„&ªù:Ò/.”‰éÏUó§ð Ý+(½DMѰïÚ$A”ÛlX½V°šT˜‡¡ž»ögƦ’)• £Máq×CˆÀUr7]âC†Šž½>j²CGwh¤ "ò) ¿Kb*f`á6øœmІ®ÒJmÅz—äÉùŽ øÒœ¯ݼå€Çú\Á$£¼´Žÿ~ pL5ñû<¥_  Å‘©\¥¸–‰ïnÿ3¿ÀA$«VH"lK3Í _SLû¨ÿ!|æÿmV endstream endobj 225 0 obj << /Length1 1953 /Length2 13753 /Length3 0 /Length 14962 /Filter /FlateDecode >> stream xÚµ·eTœËº5Š;ÁÝ· Á!ww‚KtãnÁ îNp÷ànA‚»w‡4ÈGÖ>gïµ×=ïèÑ2õÔ¬êñÒRª¨³ˆšCLR°3 +»@AQ†p°³È:›Ø‚Ìœ¬ìì\(´´âŽ@g,aâ ð:[”Íœ_3œììü(´i èøê4˜zÎ&ö@ƒÉ_@âäÌbjâôê‚-A` ãkŠ8ÄÞÃdiåü§Æ;–?•þd‹±äLÌl nN6 € Ø ÇªÈ P‚¸½A` ´2±µ@,@€¦º¤š:@ZMYSE‘õµ°º‹½=Äñ¸ˆ«khJ¿Hˆ*iH€ZoÒšê>5€àWþ–oJ¯þ?}^ÿ¤+JjˆjèªHr°ýY€à ttýiûnt¯Ìÿ¡öšjá±û«€ÁÊÙÙ^€ÍÍÍÕÒÅÉ™âhÉjoû? +À âhxývÚÿŒ ØüuœÎVÀø³'ìü“$ù—Óîu”¯I¯vç{„óŸš¶ÿ 8ÿÕÆÊÄé¯\€ ì ›€Í^Mœ]œÆÙ^ß@súÄ]ÿôPü_—ã¿Ûü/u1ÈëÊôm½|LÜþ¹c&`'Ï¿Íæ¿—m;œœþU°Ùÿ°wú³g ð_6EQ%Y)Iu …WáY!¯Ó³:»;ÿý§ž¨„«yùœœœöW‘J‚ÍÅ!vv¯¬PþŒOô:'gˆ£Û?em†¸½þ?f ØÜâÏÜÍ]ìÙ4Á  ¬Äÿ¿šPþc³:Ø@ÐÝÌŠíO³¿´òÇÌñÇü:/{ˆ=ÀÂÄÖ è²¾~¡x9™¸ÎŽ.@¯¿;þ¡pðÌAfί2=*(U—[@üÿ2¿2ù_×ÿ€á¯cÊøzFÍ!`[€9Ð…M âü*†ÿNÙ?zI¹ØÚ*™Øþ1ц™Øl=þ+ðÚÀ?T” Žv&¶ÿðœ¤@î@s³™Õ_Cü—ù_DÁ–¶@ +û;Îy4ÿœ(ÛWé¾^? ?·×«Ÿ‡÷¾WUšÙ€NNþ¿\À×Yüƒöëü! `Ó‘P“WýÈüOÝü% 6ƒ˜ƒÀ–Nn€‰££‰ û«8¹¹^¯ª6ºÿ¥+âüš°wqöX@Qþì(7€Môé/ÄË `Sü7âã°©ýñ¿úLþƒøl¦ÿAü6³#vv›ùß € ø7øÀfù7øÊô7È`³þ|ícû7øÚÈî?ãµøßðÝk%°‹éuZ‚ÿõÚò7È`sü|Írú|íïü7øºj—¿ÁW:®ÿœ¯•=þ‚ÿ½u*n¯¿Ž&ûöò®õ¿°º³#Ĩ 2ýKû[ˆ¢‰³#È]ýõ\q¼Ú__ÿûËà¿ÐþçJø[¶˜ÄÝ‹…‹ŸÀòîu|ï¸þÌžÇç¿RÍþuÁþu¤_5÷¿øÏíÝf(Kó3Á ë”ÆR_ÉüÉ2xZ~Ö“ |a¹8¸¥ôÉvB‰œ-*à‡‚OÍþtߤOà"Ú <Ûçµ–Äʉ_æª"Û&¾Š¾$o$EG¾h±jd(.ú—uR1Ê}ÉÓ-æšÎhk%hމó·wÝGqŽ¿`ýL¦Ò/ký‘ ïV8ËÑ„ëh‹í¾ˆIÜA²8ÙíüriÒ+ºÄ4cœ‚?"‡`ßÓ…ù‘9%OCçÄ YWÀÛ '´Â.ž¬u hr…·Di[ÐÔáÊÜÛ%0‘_'ѹ Ë«—=6×+|Aô 'לO \ŸÕÑŸ&[Tæ9J×- vH—Ûz’< ‰Y½ðô?,¢k{*ËÚwψ²êJ`&GsŒ?”ƒKÚ$2¡,ú0Ÿ$E·›¸ÑwûüJì÷þ‘ót”Y»A³J„IÛžB’žŽº•Gü1Eë·¥ ±¼¸ÃïϲF2›{s¼>4½-Ä´ÑúmÊ&+ôÊg-Ý ©¡¸=Þ í„óÈ«þWy¬Ê°êª~Ãn¤ø€"/­úqß§£ê±u_¼¹;zÈáîáä«ÿ³ºò4ôè;7T4Õ[É/é.D+»mIïÓgV’» % ýá)ó&ÊÏUÓBñÙìõã0%§6Õ„>ò›OçT£¹R å¯äžÍ])+müB}ËX«üªöÜp}Gë¥çÏðyÀïÍ æi(àM¿}³lßï!Ó¬C-$"Þ“¦…kΧ,Õ趦MZg±a­X «ý±´þË×LÄg¶AÝYˆsÜÂbA­{à‘Z ‹…KÖˆøP’r“1“ÇQ&Úˆ3’8~zxN°²7z L)œØôü#ý‹·éF|òvôÑÍÆú#F¢j$–Ð÷|Ùán^˜Žt¥Þ®4i6kþÙÔóÚèêè¤/1O2ExfØÏíÃíüøËÝ€Œµ…"Ï}ðZËP^ü^< bÒï oñ¹îí'­žû»ý’ìÏäE)õ«²ÑŸäp𪔓3*ÕOiârr'ëíºæ²™(tˆUZ=œ,(0ư©µÊ›JX¢ãèI^²SRÛiòÏù©mA=¸(ù¥¹›Zàl r%nPh‚T†@|—Õex-ý ‹†.[’—Œ* ­ ý"©BüâV﹜¢ñt哲¢«œ3©—m&—J€Y’ü@übüJ^uXªîÛǰ7œO3Ë.û©ƒÆÊÇtt2k¨º®M‘>uI)¢ŒŽž_j3c3Fl˜él´Í©~"¦«´fÈÀ¶2ðÁ{l FJLØnÌïLÿJñ„OÔi¢+Êà( ‡ÿp„B­“²ëó¥èŽ K ¿ðŽ0{BÄ^HalÐîÛR{ÌÖ³D=ØiÀZµ~q0éØÝWN¢w®¦Å^ä]QŸê÷έ`hµ¸‰¨â‰Mô•±µšü”Væð~ûó’ðñúP©M ó•@«Ã^a6” Dã{±"S(KWÍq툯ˆÒ5guc}Rx¿íÇgkV'_ZiÏCË0]v3“?šw¯RÓ}U½ˆ@Ÿ¶—rZ¿(‰<Çošyð2b¯µYuÀ¯È‰‰±È]ã†Y}Ž+.ùx¥Råà½ÇîJg™¦¨“ɼS&GK›f…•õ´r!?Bë`Zo öõº&cÐæ÷£]ÌÉs8õAµAÙLzwÅûpúØ\`L&…Íy$<#*âO`¿ltãWýuéjååã WŽ@Ái ó={-î)€Ð¬a…Ù€•Z5X²XÓjví#V[Cƒòm‘´f*…Yèð%ª“[²·<:¨¾M¶ÔñWÝ›ÛÂ"WÍýG®ÔÑOêJ;¼£ö6}Sw=ðZ@C‡óa ÿªôåþ$á³ÛOšSeÕÖÄ,ª7L}éøo††w7«}e÷ãS "ä“&cÇ^¢¡ˆC}웵·{1½}Çìð\ ¦¹§jš³U™YØ1I¡¨~ÑáЦ*·Îc4öž£âvWìÒ‹¬2:yð‹l"æÛXaÖ˜l/+a°Á%Öm«»¡…•Qñ¾l:p ÷(ÿÆØ#|ú[ŒƒÒtbÁ0!`lvÎÒ Õ^È|W¿Ð¥€‹¶iÈ—Œ¦O)[¼R«ÕF/N?íþ;ìMýwɰ9qô¥ÄEgŒéÊ« }+ÞéŽÃÍH9Y2·.ȰRwGL#êbÒÂ8íšÐRß^ÊN¿j+¯`DõᚈõáI›¦PlýíïĬÉÄóA®GR”4É(’‹Ñª+ߤ^¿·"_Ñ4ÙîC/»†3Ø Š"{’!oö)Gæ HWáýúF¿w‘E™³‰)Åö•/=v8$(ç ¨Ruh}p%)pbMž4Y¾*²ÇfŒyrsE)í6¡8ͰDäýìöÒ…×®ÖÕÍñi1™ë…ý›’òȯÂЕn¨+ú†75úˆ®û³UÓoήb"V¬O¼,(¡ç.…—2?êÐ=Ñè1:=)™ eQGWOnj–+Î2…¬$ß°†7HŽF4…Ì„uÕ !ò¾ÑžöN•E~ãÂ2æÂ²L’ãCüÖ—æ=dÖ‰¦ÞûÓ8:!¥Uź÷¹CÅ>j$϶*í&éïr~¤öO¦P5ÿ{RÞ X„´½ï^–,€ŠyA(&ÊôvcuñuG–‘Ë^ÏækG£êi'5„tQE½œl<[‰LΣ·Û)Ï&"KGŸ"¸x‘%[ä¸èå}\}ׂõÔPÖs|*:ûõºÐh¯Ýä®1Ýœ£(P’Hnå]e?–vç“CŠ™„††,šü¨ kÄcƒ#^ìÙQѸ\¯ÕKb–,ü‰iR°[bb,‚xˆÌHæ6ûïo-¶vg´?è¤|Ö2ê|oÿÕÛ[*ô‰bäð宀p=a¶ƒ:Ť á™>åŽw¸ ÕÞ)¶w¤»×¡å+Ü¥¼p®ooÒÑwaß‚ëÓøýðØœ€Ê¯ùl°ì>h°•‡ºùËá_wq™ñA×™^âÈɰhbí_=”UçoWF[ò‘Ŷ;bì*í/qù VÒèìß,%¶2ž¨“Ñ„Âó?—|;[”–¡ÅTK;Hºšúôë›ÐÖð½h¯3]õ¤¾|ô¸ªÞ³Þfel-/`š‘›6\IšHÕ C7CÖñðÄohžÙt+<Ú’BŠ·Ê„ÆîzƒFÄšs:Y( }¾Å'—²yPà7o_ýI ĺÖn° ]°Íªm&¿Ò¢›ÓÀ×’ò¡ò ÓÀ#SNeø—É$¹)ƒ,@Ôº“¾p³ë–ÄÜØ³óG¤/tM€T*тӪ_H®=â̧Kwø4QD¨rl Ä Ï¿ “ Åûó¡(·I~ŠÅµô¦A7bÌÈâžiÝn½&Ò-báL2â:Ôùïù ]Ú¿nv< ¼È)£/«­í^øö}¾ Œ]®G¡iÑЕ£H!’'zˆªœÆW\O6ZÈ ”¢ˆ0ã“^3†6WÑT™ç°½Iò÷Ê3¹ì÷VrF16%a§‰ÐÀˆêW,’F¡4ú‚PXé/êÅkjñ-¸ñªÖ‹œº×FÌ£Ï5Ä× —´Wµ3aùÇ·Ž²Òç¨ÕóR ðÁçþê·E&¬ÔÓÊÜìÌñŸïqXb#òfá}ût™`·tç6,²Ó–D¨ Æ Ÿ¯è¶-›N®×·zuX}fм~”Wºîî튻Eå~©E\w$*o™—ŒTÙBÔ¿ÈRg»X UhsŒÀš0PÌh–‘ZÐR¥ )†þ +’ýðé¦á—ÏÀFmkˆ:Ê{õ÷¹GZRꮳù ¡Â­ÍÞ¨ö%ÑKŽZªA™¤;X”âóÀ´Æ¾b'ëqµ&ã8ïêU¤€Ì}—žëé<Ù=<ËØàoþæ ]›5tz9ÒÉuGjÕC%=A<ö¾7ØaÇYX KmüOÅÐê"í¨ß…E^¨v’ iH6y+þ×¶HeêÓ¾“gÂ;Ûp¤ŽTÇÖ¹ oè?¢Y9M¦dÆ÷fÍM%ÑíõEé3£ÎC;—Øç üØ1`•Im[²bÏ%Øn@'Ú{×ké°ÅNÀîÞ€£À¤,Lipö+#)}oÄRK&bÅínwý–"ÂõWËÎrqÙÊ/¶®†¬Y{À…ýø“9Ó<é¤Ðr'jq Yy%×äCNú¸Åm[Dú*å:žc²|!ïtGXÚë“ËÑ$ÖcUÓ=W‹C~ðs±Ê!Iu56Ø3‚®æ™»3FMµÂh‘Ê‘«ˆEÝù%ïÑG^‘i!ï!RÚƒïÏ(¬éŒfÊIdüö¾å•Q²E×[<-Œ4³ÍQ"F‹».š ô‘e¯·Â¥½3qkß\;é#Z>Nl‰:‹Ý<Tãbâ˜;`ï›ìPkSí÷éCY˜* æ7kôJj¥oñÃݪ³±fTÈ“ b&ˆÊÄÄš«TÚ‡3¹T…ʤæú_ˆÖ}³H¢,ò/}ïĆì‘òS’ o«o½+ΔIZ¿ š’^ŠÐñý~¥J]\ñƒMοqWXisbx€½/5Èr;!) k/Œ4q/Åe™FÜj:ûÍW#ëý’d|2#t«‹Ð¤ó<ËE"ŠP˜ ¦x¿þñˆÚ‰!7n—^w™`‚“Ï÷Ì—ð}ùíÚt Ìæ:¶ã­>yÇåq¦ÃSÍö¦,Þœ¨XôæWñ0A­ïÑã\ZÌwÿ*H„Mü~IË@ èóFâ±ð6 \^×[[Z]:¼&Áà:…¶õr¬æëç÷k fN}ëãÀQ7Žed[æQGD²i¦šÁÛbU‰}Ô#žÏ܉¾XS$’kzÛ2õ(KÅ_yïmó6ÕŒ)ÏળŒpmªá…SœClN„…ú”à…ÒyJDÇã.š#:r¾ ’cÝæûr)~ùÚ¤¸»ò%k,èÎVË XÅéáòÃݲ²Óº”>}•€fOÉB—†ÝtCÉã£9J¥Ö–Þ´Žê{ÚòʺSµ÷C:ÖÏawˆDCÌ¢–ÖrWû¦/«hÓ†R"ídH­Š,Î=ÒŽû/[Q&r!­­Ù¿Öœ5E}$Ò¦Y±úv˜=%å1iÃð³M¢m˜¨÷ë$Üo4}cμ›Bϯ³Cê‹™ˆ2c:‰Oé`Œš¾:‹Ê#ÍxVA›ùÅd%öS,¬·Ê VìG;¯mg%ow¸ ’rV;¬,[’~ï™<ßÈŒ™ŽQ úyγJäp“~²Ô •,pc–Ϲ Ç’ô«ÖÝ€Ä'Ü#%/ŸÞÆ\Ÿ“äð£L'J Šî¢™Ÿð~S‚7ÁÞøò®ËF{&‘AÇ2Š‚^™ºm„î76— Êá+÷wn>Ú_«„&DTëäb/¢DÄ%¤¦.àù¢7ŒopéÝ¥g]:b±OE0šMí„xoFA«É‚Æ7y2dQ!ÂµË‡Ò°à€›ü[“ÚX«`ux+¨_ãË(z–¶&×Íu$Å ¿°ÄŠßp6.xÙP¬§ÎÒiòÓ[F¤gÎ¥ÓãÓ÷ ù~Žê1~Cúøð} Ë›KqŠ|â!ܤ¯ø5¦ì¬’b9‡Ô©fpîǽâ£n­B”>?ݘôÝØ‡ìÉÑ.î׊»¨¢ŸX˜ž:Yp„]„}Žì4[|Cî;Es¥Š„9ºtiQd°[êlfºK•Çï”Öö(HL÷ÏÁC 'âß„~‹ÆsßMÂ÷?ùÊ>°5€H«›áTŠ‚u£‚¦ˆàh¶å,¤86ÐQOÑÕL3Äó@å4Äæ^B”ÊöbÃe°¹ h­’,,¶Ô¿#oT‹="u&8==åN@šz¤XÝ ,Ãñâsw”¤q"©žš§:‹.C?.ßQ!FíLÇ0™ås Zq„°]Ž„øÁø&]ôžÏ ÑV M8Û¥ôš°ÿÚësöÖÙÝ(ÜäB°ç$z.8|®{‹DØy:+"ÄÇÂè‚#ró·ßíóx@f'd+JDWÅ÷çÞÁR÷í ^¥óƒý›ö~| ­+›öûÈðeYk6:­;l|õ¬ÂÏêšdëAòþO ¬#÷S¿¶)¦bw"±áèéÄ&¨A+m[+ßî¯Ý¿¨ôÃËìµýòØhñ..¼Eì-*Iß2 ?B‚-ŸoU›x’g4Š¢2Öí&oÀGIo=i€6»Â{Tö•áñÙ ½§/;GÙ] >§ŠTO¯òç–p¦¹ÁÖÙÌÓV)‚à“3úî‚mø2}fñg‹Iœ#4ùz¡P%ÜGú±‡ó";–ÊL +yºì7zC‹ZœÄR©öòO7nŠó%€éâî°‹GËɼ(Çáì­JK"k°0FÚ±?‹jyðÓIæþ]O·uÍ$¿2{áG1üÏ.õ­ð]p ¡N* Ë^ œ†á¯2V g|½Ö(ëÆ‡DcÔÒ•HOÑÑÀ”~|eDí6G£éß_³:ÌÔ ‘êЧ‘ô¶é²1•RÃÈØä`«˜ƒjLaǡÃo¼!ÓË¿ÙiO[5šœ‰Ž§º‰ ‹Îñ²²™x ºÇíSøéuãÅ4îrʘƒtC°™{†?Ù»j8©Ã„¸Qì‰ü6½Sý›ÄZ$ñlÞâïl‰A²¿ú…W¡[¶r»3_âôÈÏÍS„“·L0‡}B(¦A¼O´جvã»æs¥i‹AyJ î>¥ng0åfÿtÇŒ§ˆâoŒGø/ÎìW"Wexë©“9SLIÒø|ºL!©äV6025ø\OŸ °ð’æ>ø64Û´Û,V}\.”sŠ¡ÇŸ‰ü130§„£ÏnÆÞr,hm¶úVâ?ÊHBÑ…«q£¼Ò³¹€½Idÿ,ëX²Ý¤JLƒ`ÓØxªŠ¨â)qPç/3~f©5zXD–¯²d3/Yœ¹¿\çéï̵!UMÊ­‚©³¤IU ©æ^~¯Ë5•b¨IÅA!>njÙµ!÷°M®ÌÐtŸ\+ Ÿ¤¤²1+m_Wõ°RpC)wyacÝ­(Ù]ðCì'¼ð“îº~ñ„Ùp¶’”†.<ž õ1&5—*‰×æ;4RTì}“\ó†"¶í¨m٪귟ä kÇGQG«o\¦oß'®—œl5ñÊÐWá‡p=@ù…ªÌQRÂA®â:Wòþé‘í.‘}õQ mÙ¬‹¸*:WAô¸Ø g¡kc|.ƒ,ˆûÙלt¶ d†¸Åë[J£,¯¼u·/‡Qȼt&’‹ëò3õoN€œ>e,hM³Á|‚Tï·DóÉÒf«ê/FûP&‡Õ{Wè!sŒÔœ@¬ G:ã|£¸¤µÝ"LxN Z ©oŠó&¥eÅÔhõ»w­K %kÊZò¡©¶ìp?¾–׿Uó³\!>ù ²Š&›Ž¦“¶[ ~°•}Û_ò[=^¢ì³i·9pçVg ¨FN‘Yè…%Ÿ]qö´Ý`‚q¯ ñs1ßoªïµ»Þu’å!eS_”ø‹ß÷nÀb®WGÅúŸFèÙÖV‚JKÖ¿”z6 a¼ËXÅTžÕ‰éç-«å’IqŸ¡µ™¢ÑÇ”B%{EÄÌ ù}M+À ”±ØŸ„8´LW³yý§‰/k0êÓSù~S«ñïN`•ä†"ð})ÆUÙúù+ñôx./†­ÂÚÆ²WËŠ-㘄VYþžƒVÀ6aêÅf³V~>ª%uß ,µö¤9·ÄjÜ}kú-žî¾Î?„GºÛ÷„ž¾+ýܶwIÓA¡5!›ƒXrÉÕ›ßb^˜D•ÔûÒ,ü¨}åîêEV€@íþöý‡³nF(5QJ‚‡kO©,VÑDsé¼UzmX)Cà¯ØÓ5Ò²5îR®§C¿¹ÌÅ4ÍÞEÛgË•ÓJ¹ƒ 9DªÒˆ¶¦ÇPïæ·1Ó€¦’Ü?z0N>#zX£æ>i#ÈÀUulŸ¨’Ÿ‹ó/òclîÝ}[é ÿüéðlÏÅ®ázFɰÿÓâáyh ïsàMnU. hýFŸz\ÎwžS©K.â8wv¿ØÏjföРk™ß£nÊÿäÌ/Ú@Ï œvB,8¥ Ä ºñ¾ÐžJÕQSäxÏ~,wUE¬å’—!ãcxÎï«VÑÒ)©[7KþÐú‰t%¦X.w¿«FýKÔÚy 7TŠ? lŠY.îöm&÷!ÿkÁ;ýQÒiV{§œ3ù?'‹¿ ;lMçÁ%;i<莔KÒÎVÙèýØ´`”¼•u"o- KG'®…öÞlH욬ûvm#4õ± "1~gÿo Ôh¶€fqýÔ¢Bðþgž2®î6k4T–l Qׯf§á¢§š÷v¨0Ìï'"ìß*ßß—æk… }@LTH¥v§½åbèÜv)›7j«0{:Î¥¯4;çj§v.@Žè‘î}\WD2›pŃ`f:×ÌU~Ð` •4“xPÊJ ÂŒ“:Àçªð°‚ºMÑ(CƒÑÐ_ÙÌœ6\ÔXVÒìÅa1‘Ú°õÇŒÅ×)¤¸åM°ÛO„ïb¥ö«žúxv‘ª÷R¡DcìÅï×]7Pscçþ£‰¯WRþ½~õR¶+%¯ ºðnÁL3„úgùéFCWÒý¤Ý•É<«ÑùBQôO›ë]¡Gë5ÀqþCl>2eâBÛíú—Óg¡`%™¶ƒ¦,²;^1KNž1j7}Åw”J‡nx²ô÷® sÄj¿V€Vж³U4à’ e· Õ Òœ£_¹ÊRK^é@–½¨yŸMv–d7Œ©(ÄY-s!²²Ÿ ŸŽö‡ëõQŸ7êc¨ÙîióËOË…zægÐÂʪÿ‚3vÌJÓP¶S–™k»¹½#Îx|ÌiO ü›d¢ó¨.½ÙD:–ŠªGÝdS«RF]¢ÒÕ¾àÈR€žûg-ñZ’×Y\ËFøx¹Ðn¦[£ÝÚÄËú{˜óîŽjÄÚsïjÅ—å) ™Š«KÌíßi^ ªF &‚›²k·T†¹ma”Ç]™wL«Òñ;ÕT(Ÿd¡Ž>!wÒ‡ó1 ËvmòP©RHû$Šz)ª‚pp¾ t¡kì®|,5KéfYÏó9™ÐÁ_Vóʩ’y#:g•©™fÌ»{q;®«ü]¤œÿMÜiŒüÞZs‹¦Œ%R²'þp|™cýý)A7/Þ{~¶ßž$M0M3—D‹”ÝÄå­H üi%¿}×*¹#Ô3Ä}æ5Òí´‘¥8È¿qÖsê3F±a K‹±Ùý[CÜ ¶z³!Kžúo'£å²=K)åsÂéÛF"¬Ž0õÍdŽû¾ƒ;ŽQ¨,Ùͨ™mtKXÛqL¦´Æz¦Òâx«`Ï!Ã+³Ä ‹ C«jËãÛóÏ¢Yß¾«U«?>O“™Ž;Ë/ð·,ºg0ÜÈÔ*0!jP¿|#ñ³Ò^FnÞËŒà“”þúxô: k›Kz .‚bõ²B½Í,Fuâå»oW¡™¾‹îÿñ)? 4زø3%ÿdü6µÅäðÝÑ•}?QÇà4]àì³÷@…ü;gL‹Å’ܶöÃç`ñߪŠçm—×<7¡Ñx]ru¨¡.SæÏ^SaÍXIá%œuOú3ëeõžÐ&Í$+1dž©É?}‡#JdÆýîЭYNèÅÌxqVš®³OQû+Ð÷Å‘:â:ö"g'pæ˜Êì é[T‡Î²8èÚÝÁ’ÜÕPÀ5{Ï“J'ù»—Θ–ÑÅ~ÈMdƒL…EîO²)Øë/l³–¹ªßýË•âá>9€³Õ¡Kû H%3p¸ðÖDúã/aÍTã0öZÞ‰™‚ïˆB8Vè’ï;ñÝè½ÔçðhýDë9[då~jÌ–ºíŒqÃ_[LùÏSÜñ³eõ.Oð¾PÍâçr‰_ï$¤ðþ¤µ}AT€Œô³ A}%—fíÒér#åzÿ°ÊSy€%D‰ôê÷‘\QQæv̤ôã/‰¸¶î˜ì;T|Çg¾Ÿ[†!ð \ç]%ö”2Zµ¦ßÜ]½:•u x9¬•>?;FL=2GXTd­ÎéÙ«ÚÔÝãÝñÞó*¸ * j„~Ä™ˆYVMÓ qùúXµÄßÀòsSÅèÑÁ[è”8¹Â·ĤX*KíD¶•ÝRÉh %™& 6¾0óCC~ÙÁÞœ¾Ñ„înzoa°Œý¢ß³ÒGÛ—¹-¯™çc˜ïŠ)3Kr·ÿij€àZÀykf Fk×Ãë®cwaôC/¿‘1ï!ì»Æ%çÌUô·ßwQÔˆŸ˜§u6}= |:Ò˜müölÚ9ûu±0úcÓ6…¯rÚUù,.‡†=‰pÄ>ÿ¬¾0ºܦ3Lá„Jù%ŸúOX®r ’Î\r­ŠrRN›uKïó´ó-&>Ó_1·Õ#yÃÕGÙñûÞ”•]^hŒ®êàV }¿ñœá%³øtv¶¿§³,ž‹N¾™ž¿–çS¡òa³S9ë˜OéK¼¹jno”9šÆ˜aËMËlŽ.’4ï„åŸCåZl.n5ÿF¿iøm§/ª‘d¦·~›ú•  56²ðzýz†6ňmMæäÓ6r‘;6gšÿÄDmäíÈÞàƒ=gOJZ\¬A§pï<7ÊQjqDoV¸ KÀ~æl‚4¦…kEš7§âéÝ꬗©n¤ƒ1¹Ìg(Y“–GNj¡õÖ©cŸ}›QÞeŸhk,˜Ooå°y3ÓªG˜…"Yù@ mDÏ„©6ïyb±†¶wŒJ4鞘°¹yƒóÔÕØ¯X(hwžÍ+HÝ1çB1µq~mò{¸†W‰«HñÙ"ñvǸ€ãÝ SOffoož†ÀGTªX” €ZÄ&àb½¯é/q¸Ú§ Á‰a"©17º1 ,•T¸íñ²ö·1ElNÔÀÜÆÑ“YAìÛÅ3¨l2Yl’-5ZΣØz°15B˜ŸÊa]×øÞo,¬e×¼Y¤EÞvÌ!4q«õ`Ræ|q÷¿+$qûå//Lº[ºÂ^°1àéhí=K䶸'hÚ¨ƒÜv»”-õ¿Yc;cñDÒQ(èP¼®Ù&ä§£è ‘q?ÝÖå×z›k•@î™u˟ǥ;|ïúu"8š¦°ù$³‡ •>ц|]œOí~U5zì[ÛãjjÆE’ ¦~Bü. òk¤Ã¢/uä}†_õÃ^.j¦ÂÎêȬQž©nû l È}Ci^?çÝÇ3V>u¾6ëL£ÆVÄñàCáy°^=qÞÂú}Õóëµq¦¡ó®òÉ›w°2¾3ÿêF0ËBÁz ¿ìØæb·ãŒT›xñ-§Ä”ƒ’×Dd6 áŽYþcÑGÏ pÚóœÚÞûZÙ6$?!VÛÀp¶0ãV‘0Iޢ幩i>¥h”[o+ËfÎÞî Šµ¦hª˜ôKYW)ðí~5A„ zŒ_S²’‰œáTQöó'¦1h.ؽ¯Ô˜Æ– ¤ @?ÛM÷h»+R$/ÚÑû·´w$ösë :ÒbrІID™Ô™ ·8X'ZÊiÔÁÑ\ïAöíšYt”¨'M·LÆ®Z‘›mI¤¿Ý2Çã´õ~Û.7ÜÏšÏþ¡ ‹á Ò&5˘’é|œ.¿lÞ$&c7'8—âJ~ŠœyßÌ[´w¬§¦‘Q‡ð(VI"˜wÏ¿üQ ›fÛŽŽ(–+ëC¾ß"?|½*)HÆÇ§K2›C±º§¦$v¶à¥ìÓ3:l½†+µ^WÜñx¢nO›Qa†¬qøn·sQË>G†a¶7´Ã=½¥”®µTõ†ŸÁ}SÄ߯ËÅï?GºÊMsQ+Õ–ÖZ;ß’óè|_˜ ß?oÙ’­Šõ™±PÂÈ¥+…ø^¬¤l§è®¦îT M*c"»‘©0£ê™çhÄXd%6þÕ³ @;–ÑoÓ¡.Ô‘ålKU04 ÿM¨ü="Í$aƒ!n‹¯,·‚6c«/O~A ÇâOŒè8Ö |2±IҼ犀’´H¸Ù{ µ,ê¤y" ÎOÝ®›ö:Åi1ùr•‘îËN†¹Ëù¥0vÉiþFE¯x-"§YÏpwí–^Þ0:}™çF ÂÀ§1W¸ƒíû½ySÛ$mab å;×röM;Vž;d¾­bó3Bà0N™F*~Ùdã¬@E{có` \U/ú¾›2íɘž©;?¦}>k£zCÓ‡oé¤lFS¨4ýšÜÀ³¨#Ü…4²/Û ,ø‹U­,†4üñ–CÇÈq×bHû/©Ô›sY¨>ú-™[U¢(q‡8›!)÷±ÁŽ÷4üùU—s°7¾ú\úð”vµ¸ÁB¹]¤u1Üq=5'ÞK%1ž†ùXÈphù,AÑÆØÉ¾¡±\¿-×{J­¸C×¥Ïñ)É/Kõ Ïf8µÓ]\ŸVPX\ªÏ¡ìž?iˆˆÏRmi}è¥Q˽wm*øMê791-HŽÇ{‚ÄVÑYwZ¥IÚiu I4Å×ûîyvjÀ¦¢_&D˜¾§àȘMŽaÂü˜¬™Ø­'3cE‚îçÞ.›9f‡ëŽ„:r-•þçi¤Ò`‘¶²R§iZ¥&9Ção4NJèyÄI¾ý¨'† ðWfÔNzölT~³­~BÑ=K ©'¬\œ–ó·)#ãyÍ {×vµIGÒ˘ª›§ßä×FÍìI…d‘› "«ÂƗ߯É?™Â}Ò{‚áû0‡… Ó¾JïIOƒŽ]Å÷Ë*Ñù‡anÇS௽ßÞ®©Döt“‘˜¿~dÏæ -N²ÈSÓ4M—ǵs¾$¿="í@Ud‹ïÆe¨ˆU¾.ã’ÿn{‚Ùø&´i/ ׉I]ÝUß=cï0è¬ÖçÉ^…7Aô þÚ~˜gîú0_ª»(†òçšó‰‹wë¾?üP´Žâd%¼ŽÏš5[S××ß]øçȱéfò2Bm&2ì_Η EÖ©ÃLw AéTH†Ì®’a¡OY)do]ÊòxÏ':Ñ놂«š´ðKnqž:”ªR ª/¬³3û åËKÍX­##³öí;µ|®ëf2í Æ=ùèpI4{R†º9k؉A ›`„Óó ÷’¬ñ aÄ0K'³…<…*‡oÂiEADZªã€ö{ðÒL¢ïhiÿûïõï]sº­5·s•æ(´]ÎLÎ/‘‚oáp¢lÎ#Åí&ÊÖͺøg›^v¶ásHM— ¥çŠmdížH¸ï¿„"‚4mÈ·2™¥¯øÈju_ȾٺZ›ºöñ`¤;П‡¢!`åy#ŸUÊCß`g_Z]Wúµ_{#*}Ýç'«#IÌÖZluÏ 6½šö¬>AÛ°BW°ÔfѤç4nÚ¤@sXwXÖ‡¡~`²G›øy¸#Mˆ'¥æÍC¼àPÎqAßÇ–/ÝšުŢ&5AÓ%=‰ßî0¢Èܯ̹žï)l —ÌýŽ!êž#ð‹± ”4y™ù&]l=Üöw ûçÜ5wU‚k°Éªí¡¦©càï½è|éíTä+xÓ©7ila¦J;ïLö¢ß5äSrªìÔgáß^aá,t)ªð¥_u!©ùß'%U](‚gÇCÀ aÜ&—•{>·×‰o´(Ö…{àÊÁ÷é¼ÁmòÌ{w§›zz95SV™Þ:…/êM'}ƒÅÓÆ”'ÚDÙ£˜ðñõoál œFhÎõÜ6¾ìÙ»ˆ(á½f å³â±'n[¢k­màØ‰C0Ð~fcýÐB£nÅ—v²ò~ýº¦y´ë}æsì¶ÉúÛæÌÑž1VŸ·Á8ÜßäúE@~ ×GêL%!'ð~€Àlŵy Œ ™½\ŽËt¯aì#ŸŠhneÒ£L×) Íb–ÖR¿fÌ]ß4êÀf“°-ÙñÓ™ìÑhSZWÉ/eŽìo­„4©,) Š£ýäìô ÐñÜDåfµð·t#Ÿ¶8öÛlûIJ˜j,Tϱ);‚‰¿-ã·i-fHj½£,¤¥ãÛQØ,¿ ¨m-XÕ®€9|}_èq¹ä}ûñ·Ì›T¬7¼ûb['êƒî7nŸÐ+ÑbRöCi¶eZ¾~æöYVJOÆá5õV3ÉxL,›~Wkç¥#èoò^µ·JÝ-»eÚŠ4Å"rûk7<ÄØ›'ª÷w»°QORžˆFé‡!‡=–ŸY"‰>³ï8Á]a¹õJ½ãšU¾‰ÌÉ,]ÃÖ6>MßÝdܰ\Öš¤3È9À_+&Œ]X+Ä:Q€èŸ–nS柺V—V¥Æã½Çïñž¾LÁ„ÿ®ÜÚ½%=оlÓÄË«Û)gzÉ‹qº¡5¾ I~€ ϘuH;…ü¨ðXÄ*‰ædùékoq™K—êWû ¬˜ ^)ð…ˆÐ¦ÂUÔ˜Â'\ 3ød Ð_.°Ãf"\3x¾—M¿Tú­­PÁÿô±’î‡Ã("ÔÏ;±9¡ÉÆ×*},Æx÷ù÷Õêä¶–Q¸-XÑ’F­@hýÚ'“Gi YT¦íÝÊ—ôIüZu·Lµe°Ô_ƒÑ“{SÜ‘Åu‚¯gÙ±ÈÌ¡*„Vù Ì* U…8ÙQ]]7ÐYH&²€[:mYe§ÌH'Ôy¶mžï¡ïAF±EoúŽ‹/Š¥Íð8ÙàÕhÆa3í’á;wÑÕ•Lä™&ßZíË^•}Öª¥+èFþ?ž"v× aµí~μ岳V=9ep¹½—sVâ|º Laóß×ú¹³6ÐŒù¢î gn€ Ù Šiö•ëÞŸ|xw›x±7só”hŠÌm"㦢”ähÔA7ßë--{#°1èCŒ®={únjÝfmðj"ß8‡«ž°³¥ý:ÈW Ï%gfö€£%RWB“ç?i†O>GóßfHØ1JÒ“nvsÒÑñ~N.<3ãêa-ÝØ2wX¯%U2ªiLÓ±œêë*×ÒÇ Ç|¸õœÆu60fh¡“{{N\ö…R­¥²Ð§°áwR†ã‹ ekkH³“ܘEvha7òè£hq‹VËp¨É§o(¼›#âfEÌ}±®ªI„¾üÁ Í È06²‡cSÓ¡ß;„mm©GƒìT,1 ~ü)Ã;çä„J–HØ“îqMb½,¯ì¤[‰‡â/¦Ë§™ð<.Ñæƒe1M¢…²^‘À /Äm0ÁÈËЄÊ×ùF™¼6àqNg×´¹ñ $ì¥u˜»ÈÉ™QU)i³y\0õnP˜²,ËâMc"}U¡‘>.CŠíÅÌ6вˆÚ…)Ã0’g}o– L5ÓùžH*Ì\‹*BÍ«ýZU8h“%䔉DîHh± õpK››1{V?/øÉÞa+4Swé!F $e–®»hSONìR™²ß-ÊZ±7:óäÙq*‚ 41ÁÔnCS;.å?sÍØ’ ëß6 Y‡·ÅÝ¿?R/JØé"ˆÌ&§#¬åL›%È ]hœèÄBÞÌ)õüq@½òŒ›Š„caÑŠÁÖ¡? Í9§dj+¸t2]ÒëÊJ\Hëô¥üKçOq^l½m¤—M b»SD‡Æ7êÔ òâž@Ù“þ÷øX>|Ózâbsy=Q§¤ÎaÞçd‘LGÀÃü‡0+£¯D›1Ž„ŸEËkt2‚Ë>@æ’o rß¡p/)„ò0å[³Ù‰%̋ۼ/*bUa¶&•ËÔ,v ÞA½ˆÒ~¯!êQh÷Yú&=«Ë¶k÷‘OÛ…ÙêÈíŒq› γN÷í.r§ Z‚ÎwÁ: ìŠ 1èdaèqJñýRÓ½i/æm’J¨„tîïŠ|O°MYÃÙ&¸ðy–œüã*§nÕ#uyàSÆñýXÉIº¾©‰‘‹ï™úÝî²ßz¤XWñWù±yã_óܨíQºð5ñU³ÝáTÜíž´ÔH<@F'›[LºC;v59o½‹†¦à% qAÎz±¿ÿ¬bõÿEñ endstream endobj 234 0 obj << /Author(\376\377\000B\000e\000n\000\040\000G\000o\000o\000d\000r\000i\000c\000h\000\040\000a\000n\000d\000\040\000J\000o\000n\000a\000t\000h\000a\000n\000\040\000K\000r\000o\000p\000k\000o\000,\000\040\000f\000o\000r\000\040\000t\000h\000i\000s\000\040\000v\000e\000r\000s\000i\000o\000n\000,\000\040\000b\000a\000s\000e\000d\000\040\000o\000n\000\040\000e\000a\000r\000l\000i\000e\000r\000\040\000v\000e\000r\000s\000i\000o\000n\000s\000\040\000w\000r\000i\000t\000t\000e\000n\000\040\000b\000y\000\040\000Y\000u\000-\000S\000u\000n\000g\000\040\000S\000u\000,\000\040\000M\000a\000s\000a\000n\000a\000o\000\040\000Y\000a\000j\000i\000m\000a\000,\000\040\000M\000a\000r\000i\000a\000\040\000G\000r\000a\000z\000i\000a\000\040\000P\000i\000t\000t\000a\000u\000,\000\040\000J\000e\000n\000n\000i\000f\000e\000r\000\040\000H\000i\000l\000l\000,\000\040\000a\000n\000d\000\040\000A\000n\000d\000r\000e\000w\000\040\000G\000e\000l\000m\000a\000n)/Title(\376\377\000A\000n\000\040\000E\000x\000a\000m\000p\000l\000e\000\040\000o\000f\000\040\000m\000i\000\040\000U\000s\000a\000g\000e)/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.15)/Keywords() /CreationDate (D:20150416100309-04'00') /ModDate (D:20150416100309-04'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2015/dev/Debian) kpathsea version 6.2.1dev) >> endobj 164 0 obj << /Type /ObjStm /N 67 /First 590 /Length 3079 /Filter /FlateDecode >> stream xÚíZ[sÛ¶~ׯÀ[£9ÇÂÎd:ãKœ¦±×v§©h‰–ÙH¤JRnÚ_vH"eK‰SgúÐx, \,»ß^ˆä†F¸ÄZø’„3øV–H©à[™À·Iˆršð„m|»ÂoI\bàx˜v=žW P€ŠÃ¸6é@®Š’а0ŸVp±g„¡‰Ã) añÆwV‚0Lj`N÷¸ãDÀP’a—„JvŠÅQ²!ÂH‡C¡R]B„å Ð9"œ<ìŒɤî &‰T) €‡>i96 Qœƒ p‡<–( 6RDsó€t­P;.OQÄ0Í{‚b`&¸%&²Œg°!H"ÀJ!I4N* ± »#VJ´PöhHøv(±N³ž#Žƒf  p(à( òÏ€.i\g-h…!˜ÀÃ8øÏ¢›Âo‘¶ö„À–§ aÑ™ u™1 ÇÀ`=ÇB!qjo z•9«{OŸöèùŸ³ŒÐòhzôl~Õø[$òý)bŸìѽ´Î‡Ð²ÉmÖäÃtg¯œŒzôY1,Gy1öÑÈÈiïûï{ïé‹ý}2ªFêek®Åˆ u9ž¾Í‹Ý¢ÎWÝùõuVeÅ0«É{ð#æÅ¼&ÎÐßçe“M²ëPTtT6“¬®s:®ÒÛŒ¦Ãy“Ña^ çÓëIö‘6ùd”Ñi:¬Ê‚^UðÀt8ÌŠ†Žr˜¢Îk:(Êf”]Ó æ¦Ãl”O&é’x3/Æi5ŸNÒyCËqYdè0Eyõ,f—h5Zx@ÞseÐbB/ÞýBá’ ,ø½˜O&K>åÓ§®ò‘àbˆØæ>€° CèÅ««ß²aòb \EF¸˜©KÖ“ªže FOÁ—Ùdž,'.8IÇYîƒA N²Þuô4«Ëy…xcþ{Ò1 ‘î•É{“%N\Â4)x¦ÁØŒNGé0÷h>Ì*òd6º>Ï.vø@±×}˜¬ÊÒ¦„ /nó²8H›Œ<9øä·fŠ }–ì0õcßßq9úËy•Îfjô0Ô`ÖÉù³‹Á! }•êr~“×þƒNÿ%o²ª†©‰pÅ5$¥Þ³Ð•üŠ*’£ü6ê£é(»¥ÙUž¿öɇYÚÜÔYJn£3,ý[-“[L¾óB™<9%ÏÁ¨›|X“Wóf6oúmlOQólƒzÚï:xk>‹{ó¹Ê‰i{õñJÄJn»D$É¿­D˜ä«—‰vÿ­¢`ù¢kôËlÙC ÞläÙ¡ïØü”¸Þ>~u³Ÿ®nö[uûŠÕÍ©¯SÝVrÛÕÍýë6@V=$ÙW ÞM|›ìØîTÀwتHìߪîîVÈ™/©ˆ„K¾‰¥•]TVHl7ð½dfÀ™‡øßº9áš$ ?I̪x"EÉœŽ˜80V Ø«á ej´À‘‰Dªç“V4ÑBÃh #ŒHp€r-I^jgÇœq†Àé¯Î¡œ6Åp9Qw ç´ØÒ«‘m”œœð³º ½+Z ¤ 6Xî‘ðZµ‘óòG^†šIé9d}Ù{Ö‡+ùöù*Ÿoè~b ƺ†Ñ d°ôÑË1÷Õ°$Þ;m!ÃÇŠûæú7üÿ)2üˆá:%– á˵dXú´Å²Ê`¸Z‰”pÅ¡‘\h[ÔÐ …?rXþŠ>ÏÚØ÷¹Ñ’‘ܹªÄÿ@Ñ0#ÃL„§\zŒe`Q\p¬Âeø¤ …Ù/N~´°7±?ÒüØ( 5_,A>òiV,§×¸@Ñ+Cc+ Ô¬ §)¥pkµ£[–g‰ÑºË8‚›¥óò‚CZ½Á€ÐW?ó%îè. kiø$l°3´|à0P¿z#Mú}€ñë²o':¬éƇšA¹_»¡ÆX¿v+bãµ7ï0ÞË÷ýÚ‡Àb¶puí1A ¶²O.q‹3GºÒá³hK¶º_ØŠ÷>ÖËXaáÇrÈ+䌙ˆT¥ªÄ÷ÞÆ¡Vx5 êû XaÁC† ÜOfÐë9¥@•pž@ÍÅš ‹²}?ÒlÛÄÀÅ&ƒŸ!Îé¯Nc„´)0…øU.î’bËc8EA­7Q®U§-QÕâ £"Ý'b $‰ð©èǶez úáꃖ†v»7ØãÛ—k§·ƒ¬Vù ŒaOÎnÏO_¿{öü?Gǧå4-8‹‡¶ÃI:®‰ œ{~O¿£¬!;Ÿ›àúŹ”°·ß­ñ888$¤³²||oqBìÛƒ_¾hÒI>Ü-ÆpÂep’l²é|¸G”82dܤîØŸÐŒ^Ó1Íé”´¤U?èr˜ÃxŽwO¨÷Ûx±w¾ûó›–§Ùx>I« fJ†fBóO!¸HZfÚ®™öóÌ4®e¥äm+wé!ý¾ Çô'úŠžÒ3zNßÒ”^Ñ!–8?Ëé4¥#Àà  Ùt”Ö74+ü×5½ÎáN¬×pÀnèÍŸ³›¬ä~£èÄãWäE ©”Îè cx6­ÊKeU^Žèïáäh­i ‡a8Ãæi=ÁùÚÜTYF›?J:§·ôú‘þIÿ¢eUÙu‘|ˆ‹ŽüéðâÇ¥‹’O¸ˆ¡‹ !-ºH·]$».’éM‘hÛ.b]=£¯Á%‹€œÄœ<»6ë‡Ø|vòòÍîn+,ƒbLÖ6F¥D»×L~HTî`ΣµÙ—)Ä_†¢™16*‹¸íZž<ÄòÓ½çgo––‹í–+‡ÎÆç®Ú>šåbKFîÑç“?Ò—•'‘ï–ù¸ÈÄë­Ù¶H4Ÿ?íÌYæÌýã‚᫳‹ý_^†ÇeQ5Û+·VdG2ܳá“méZ2ÖAo—‚[7¤ fÕüޡмF1en:I³Š&€dNçÅ(«êaYeˆKñ *ÿîâÅÑéqä“E^s@„ÃæÂ?æf…HìKŠû>ÔŽC(ïG±ÀŸÐŸc‘MßLi=ÌóðócÚhWU:ü5¾:Çv¨Åë«Á¨œ€q«Eá÷y:ñ‹Áj%ãÏÃYu7Fñ·ÐÕ²P̧Wøkö¸ø¬b6™×‹ebt5 :GLMÍ×îrÑòõ–•C’¡Ô„@ ¡ƒ•…‰€5x õÙóÜo°ߟEo‰uôœUÛÙCœì$ìë[ág {jT»‚Ï ÆWn‰±J¸0­”½ü,Ï,@^åÈåçjnjÿ&g^>\þ·Ó‡i¶ec½®œZWNttÃ[êfC·-;ÊuÝ̺nFwtc+Ý8{ Ý6ïüÖU³ëª)Óq©mÁÆCµÍ[³5Õ»£šÚèQ÷ªmÜñ¬k&¶ƒ†‘·ÔL?†f›·ëªÝIÙÍ´TK%E7-ëšÝI©7‚¦þiÐ\K5¼Yj&ïh&îj†4k|¦9Ç ðòù$¾3èG¿ÌGX·ýSİ)'"óSî O®¿@x|߃‡¤%\ÄÙâ»q‹`â{!Û¦›¦XÍ›µ)—|wô ªïß]‰„9ÂQ"Þà ¢­ P¬u¯ûD·ûMŸ±®Ðr®ÏýÚ$QÛ<ÛÇX‹à€ ô½Ò“þ’g)<¸IDýñ•Vÿ-Ù'k ì|÷õNnì§P Êq/È*¦‚Qø’¬¿ÅÞãN-¯ëìÕ¼™À¶¢éÕ,+v‡øú YŠþ?d2ä endstream endobj 235 0 obj << /Type /XRef /Index [0 236] /Size 236 /W [1 3 1] /Root 233 0 R /Info 234 0 R /ID [<0F00F059B1D562321DD4D7F19C3C63AE> <0F00F059B1D562321DD4D7F19C3C63AE>] /Length 648 /Filter /FlateDecode >> stream xÚ%ÓËoMQðõí}ï¡­ª¾_Ü‹öööMµª¥Õ*mU[´õ(·%^IET<Š`jd@b&¬ÿ@Ĥ‘`Ò U$ˆC‘è”ó­;ùe­½ÎÙçÞ³¿#"òω8¬V ŽD!’ckžDBti!M¤•l$›ÉÒFÚyÇr@²l—e4C $õÌÖrI$oÑÚU$RÜdmYA²ÉJ’°iɃŒ½³¶”äC&#ÖBRDŠI ä|>üæhÈ×—ÔÆC.ý yŸ¸ŠvïR™~`íjROb™i[«#qÈ­Yk×’ud=© •…6›& ßÒo²Š$I5©!µ@lΦÛHPÓkíV¾0⺋¶¶ð;€ãy¸fàLʦ-ÀåV«xŽÇãx(އâÚùôƒö`!ý Ò ,^·v;é"Ýdé+²éN¸D•U»H/é#ýd7ܹW᛼ò7äcú7%ƒpÓé Ž!¸«}Ö“½dÙOFàÞ|·é(ܧV É!r˜ŒÁ—O…ÙMö†t凤Šx±2¬î|bÉZ ðqøêǶÕ89AN’™€o¹oÓIøî³V"§¹íÂOC‚¹»áƒF lÁÔ(üøkV à'.Xk‘çg $“dÁO „Üùl—0òºþÚ‚µ9„QÖ\ø™v[+!̆æÁß³Ió 3®Ì¸2ãZ ÿ3Û¦L¬–Áÿ¶ÿ«å¤‘0ÙÊ iŒÄ ³«Ì®2»Êìj%IÀÿykT!ÒÿȪ$"¯K¬ªF4vêDG¾XU‹èìC«êDžZUàvܪÒA: c¦Œ™2fʘi‚療`~IþîU†’ endstream endobj startxref 444662 %%EOF r-cran-mi-1.0/man/000077500000000000000000000000001275731226000137175ustar00rootroot00000000000000r-cran-mi-1.0/man/00mi-package.Rd000066400000000000000000000030531275731226000163450ustar00rootroot00000000000000\name{00mi-package} \alias{mi-package} \docType{package} \title{Iterative Multiple Imputation from Conditional Distributions } \description{ The mi package performs multiple imputation for data with missing values. The algorithm iteratively draws imputed values from the conditional distribution for each variable given the observed and imputed values of the other variables in the data. The process approximates a Bayesian framework; multiple chains are run and convergence is assessed after a pre-specified number of iterations within each chain. The package allows customization of the conditional model and the treatment of missing values for each variable. In addition, the package provides graphics to visualize missing data patterns, to diagnose the models used to generate the imputations, and to assess convergence. Functions are included to run statistical models post-imputation with the appropriate degree of sampling uncertainty. } \details{ \tabular{ll}{ Package: \tab mi\cr Type: \tab Package\cr Version: \tab 1.0\cr Date: \tab \Sexpr[eval=TRUE,results=rd,stage=build]{date()} \cr License: \tab GPL (>= 2) \cr LazyLoad: \tab yes\cr } See the vignette for an example of typical usage. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima,Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_data.frame}}, \code{\link{change}}, \code{\link{mi}}, \code{\link{Rhats}}, \code{\link{pool}}, \code{\link{complete}} } \keyword{package} \keyword{AimedAtusers} r-cran-mi-1.0/man/01missing_variable.Rd000066400000000000000000000366121275731226000176750ustar00rootroot00000000000000\name{01missing_variable} \Rdversion{1.1} \docType{class} \alias{01missing_variable} \alias{missing_variable} \alias{missing_variable-class} \alias{MatrixTypeThing-class} \alias{WeAreFamily-class} \title{Class "missing_variable" and Inherited Classes} \description{ The missing_variable class is essentially the data comprising a variable plus all the metadata needed to understand how its missing values will be imputed. However, no variable is merely of missing_variable class; rather every variable is of a class that inherits from the missing_variable class. Even if a variable has no missing values, it needs to be coerced to a class that inherits from the missing_variable class before it can be used to impute values of other missing_variables. Understanding the properties of different subclasses of the missing_variable class is essential for modeling and imputing them. The \code{\link{missing_data.frame-class}} is essentially a list of objects that inherit from the missing_variable class, plus metadata need to understand how these missing_variables relate to each other. Most users will never need to call \code{missing_variable} directly since it is called by \code{\link{missing_data.frame}}. } \section{Objects from the Classes}{The missing_variable class is virtual, so no objects may be created from it. However, the missing_variable generic function can be used to instantiate an object that inherits from the missing_variable class by specifying its \code{type} argument. A user would call the \code{\link{missing_data.frame}} function on a \code{\link{data.frame}}, which in turn calls the missing_variable function on each column of the \code{\link{data.frame}} using various heuristics to guess the \code{type} argument. } \usage{ missing_variable(y, type, ...) ## Hidden arugments not included in the signature: ## favor_ordered = TRUE, favor_positive = FALSE, ## variable_name = deparse(substitute(y)) } \arguments{ \item{y}{Can be any vector, some of whose values may be \code{\link{NA}}, which will comprise the \bold{raw_data} slot of a missing_variable (see the Slots section). It is recommended that this vector \emph{not} have any transformations, such as a log-transformation. Any continuous variable can be transformed using the function in its \bold{transformation} slot. The transformations and other discretionary aspects of a missing_variable are typically changed by calling the \code{\link{change}} function on a \code{\link{missing_data.frame}} See the Slots section for more details. } \item{type}{Missing or a character string among the classes that inherit from the missing_variable class. If missing, the constructor will guess (sometimes incorrectly) based on the characteristics of the variable. The best way to improve the guessing of categorical variables is to use the \code{\link{factor}} function --- possibly with \code{ordered = TRUE} --- to create (possibly ordered) factors that will correctly be coerced to objects of \code{\link{unordered-categorical-class}} and \code{\link{ordered-categorical-class}} respectively. If you fail to do so, the hidden arguments that are not included in the signature affect the guesses. If \code{favor_ordered = TRUE}, which is the default, it will tend to guess that variables with few unique values are should be coerced to \code{\link{ordered-categorical-class}} and \code{\link{unordered-categorical-class}} otherwise. If \code{favor_positive = FALSE}, which is the default, it will tend to guess that variables with many unique values are merely continuous, whether or not all the observed values are positive. If \code{favor_positive = TRUE} nonnegative or positive variables will get coerced to \code{\link{nonnegative-continuous-class}} or \code{\link{positive-continuous-class}}. See the Slots section and the specific help pages for more details on the subclasses. } \item{\dots}{Further hidden arguments that are not in the signature. The \code{favor_ordered} and \code{favor_positive} arguments are documented immediately above. The \code{variable} name argument can be used to control what gets put in the \bold{variable_name} slot, see the Slots section below. } } \section{Slots}{ In the following table, indentation indicates inheritance from the class with less indentation, and italics indicates that the class is virtual so no variables can be created with that class. Inherited classes inherit the transformations, families, link functions, and \code{\link{fit_model-methods}} from their parent class, although these are often superceeded by analogues that are tailored for the inherited class. Also note, the default transformation for the continuous class is a standardization using \emph{twice} the standard deviation of the observed values. The distinction between the transformation entailed by the \code{\link{family}} and the transformation entailed by the function in the \bold{tranformation} slot may be confusing at this point. The former pertains to how the linear predictor of a variable is mapped to the space of a variable when it is on the left-hand side of a generalized linear model. The latter pertains --- for continuous variables only --- to how the values in the \bold{raw_data} slot are mapped into those in the \bold{data} and thus affects how a continuous variable enters into the model whether it is on the left or right-hand side. The classes are discussed in much more detail below. \tabular{lll}{ \bold{Class name [transformation]} \tab \bold{Default family and link} \tab \bold{Default \code{\link{fit_model}}} \cr \emph{missing_variable} \tab none \tab throws error \cr \code{ } \emph{categorical} \tab none \tab throws error \cr \code{ } \code{ } unordered-categorical \tab \code{binomial(link = 'logit')} \tab \code{\link[nnet]{multinom}} \cr \code{ } \code{ } ordered-categorical \tab \code{binomial(link = 'logit')} \tab \code{\link[arm]{bayespolr}} \cr \code{ } \code{ } \code{ } binary \tab \code{binomial(link = 'logit')} \tab \code{\link[arm]{bayesglm}} \cr \code{ } \code{ } \code{ } interval \tab \code{gaussian{link = 'identity'}} \tab \code{\link[survival]{survreg}} \cr \code{ } continuous[standardize] \tab \code{gaussian{link = 'identity'}} \tab \code{\link[arm]{bayesglm}} \cr \code{ } \code{ } semi-continuous[identity] \tab \tab \cr \code{ } \code{ } \code{ } nonnegative-continuous[logshift] \tab \tab \cr \code{ } \code{ } \code{ } \code{ } SC_proportion[squeeze] \tab \code{binomial(link = 'logit')} \tab \code{\link[betareg]{betareg}} \cr \code{ } \code{ } positive-continuous[\code{\link{log}}] \tab \tab \cr \code{ } \code{ } \code{ } proportion[identity] \tab \code{binomial(link = 'logit')} \tab \code{\link[betareg]{betareg}} \cr \code{ } \code{ } bounded-continuous[identity] \tab \tab \cr \code{ } count \tab \code{quasipoisson{link = 'log'}} \tab \code{\link[arm]{bayesglm}} \cr \code{ } irrelevant \tab \tab throws error \cr \code{ } \code{ } fixed \tab \tab throws error \cr } The missing_variable class is virtual and has the following slots (this information is primarily directed at developeRs): \describe{ \item{\code{variable_name}:}{Object of class \code{\link{character}} of length one naming the variable} \item{\code{raw_data}:}{Object of class \code{"ANY"} representing the observations on a variable, some of which may be \code{\link{NA}}. No method should ever change this slot at all. Instead, methods should change the \bold{data} slot.} \item{\code{data}:}{Object of class \code{"ANY"}, which is initially a copy of the \bold{raw_data} slot --- transformed by the function in the \bold{transformation} slot for continuous variables only --- and whose \code{\link{NA}} values are replaced during the multiple imputation process. See \code{\link{mi}}} \item{\code{n_total}:}{Object of class \code{"integer"} which is the \code{\link{length}} of the \bold{data} slot} \item{\code{all_obs}:}{Object of class \code{"logical"} of length one indicating whether all values of the \bold{data} slot are observed and thus not \code{\link{NA}} } \item{\code{n_obs}:}{Object of class \code{"integer"} of length one indicating the number of values of the \bold{data} slot that are observed and thus not \code{\link{NA}} } \item{\code{which_obs}:}{Object of class \code{"integer"}, which is a vector indicating the positions of the observed values in the \bold{data} slot} \item{\code{all_miss}:}{Object of class \code{"logical"} of length one indicating whether all values of the \bold{data} slot are \code{\link{NA}} } \item{\code{n_miss}:}{Object of class \code{"integer"} of length one indicating the number of values of the \bold{data} slot that are \code{\link{NA}} } \item{\code{which_miss}:}{Object of class \code{"integer"}, which is a vector indicating the positions of the missing values in the \bold{data} slot } \item{\code{n_extra}:}{Object of class \code{"integer"} of length one indicating how many (missing) observations have been added to the end of the \bold{data} slot that are not included in the \bold{raw_data} slot. Although the extra values will be imputed, they are not considered to be \dQuote{missing} for the purposes of defining the previous three slots} \item{\code{which_extra}:}{Object of class \code{"integer"}, which is a vector indicating the positions of the extra values at the end of the \bold{data} slot } \item{\code{n_unpossible}:}{Object of class \code{"integer"} of length one indicating the number of values that are logically or structurally unobservable} \item{\code{which_unpossible}:}{Object of class \code{"integer"} indicating the positions of the unpossible values in the \bold{data} slot } \item{\code{n_drawn}:}{Object of class \code{"integer"} of length one which is the sum of the \bold{n_miss} and \bold{n_extra} slots} \item{\code{which_drawn}:}{Object of class \code{"integer"} which is a vector concatinating the \bold{which_miss} and \bold{which_extra} slots } \item{\code{imputation_method}:}{Object of class \code{"character"} of length one indicating how the \code{\link{NA}} values are to be imputed. Possibilities include \dQuote{ppd} for imputation from the posterior predictive distribution, \dQuote{pmm} for imputation via predictive mean matching, \dQuote{mean} for mean-imputation, \dQuote{median} for median-imputation, \dQuote{expectation} for conditional mean-imputation. With enough programming effort, other kinds of imputation can be defined and specified here.} \item{\code{family}:}{Object of class \code{"WeAreFamily"} that will typically be passed to \code{\link{glm}} and similar functions during the multiple imputation process} \item{\code{known_families}:}{Object of class \code{\link{character}} indicating the families that are known to be supported for a class; see \code{\link{family}}} \item{\code{known_links}:}{Object of class \code{\link{character}} indicating what link functions are known to be supported by the elements of the \bold{known_families} slot; see \code{\link{family}}} \item{\code{imputations}:}{Object of class \code{"MatrixTypeThing"} with rows equal to the number of iterations (initially zero) of the multiple imputation algorithm and columns equal to the \bold{n_drawn} slot. The rows are appropriately extended and then filled by the \code{\link{mi}} function} \item{\code{done}:}{Object of class \code{"logical"} of length one indicating whether the \code{\link{NA}} values in the \bold{data} slot have been replaced by imputed values} \item{\code{parameters}:}{Object of class \code{"MatrixTypeThing"} with rows equal to the number of iterations (initially zero) of the multiple imputation algorithm and columns equal to the number of estimated parameters when modeling the \bold{data} slot. The rows are appropriately extended and then filled by the \code{\link{mi}} function} \item{\code{model}:}{Object of class \code{"ANY"} which can be filled by an object that is output by one of the \code{\link{fit_model-methods}}, which is done by default by \code{\link{mi}} when all the iterations have completed} \item{\code{fitted}:}{Object of class \code{"ANY"} although typically a vector or matrix that contains the fitted values of the model in the slot immediately above. Note that the \bold{fitted} slot is filled by default by \code{\link{mi}}, although the \bold{model} slot is left empty by default to save RAM.} \item{\code{estimator}:}{Object of class \code{"character"} of length one indicating which pre-existing \code{\link{fit_model}} to use for an unordered-categorical variable. Options are \code{"mnl"}, in which \code{\link[nnet]{multinom}} from the \pkg{nnet} package is used to fit the values of the unordered categorical variable; and \code{"rnl"}, in which each category is separately modeled as the positive binary outcome against all other categories using a \code{\link[arm]{bayesglm}} \code{fit_model} and the probabilities of each category are normalized to sum to 1 after each model is run. In general, \code{"rnl"} is slightly less accurate than \code{"mnl"}, but runs much more quickly especially when the unordered categorical variable has many unique categories.} } The WeAreFamily class is a class union of \code{\link{character}} and \code{\link{family}}, while the MatrixTypeThing class is a class union of \code{\link{matrix}} only at the moment. } \value{ The missing_variable function returns an object that inherits from the missing_variable class. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_data.frame}}, \code{\link{categorical-class}}, \code{\link{unordered-categorical-class}}, \code{\link{ordered-categorical-class}}, \code{\link{binary-class}}, \code{\link{interval-class}}, \code{\link{continuous-class}}, \code{\link{semi-continuous-class}}, \code{\link{nonnegative-continuous-class}}, \code{\link{SC_proportion-class}}, \code{\link{censored-continuous-class}}, \code{\link{truncated-continuous-class}}, \code{\link{bounded-continuous-class}}, \code{\link{positive-continuous-class}}, \code{\link{proportion-class}}, \code{\link{count-class}} } \examples{ # STEP 0: GET DATA data(nlsyV, package = "mi") # STEP 0.5 CREATE A missing_variable (you never need to actually do this) income <- missing_variable(nlsyV$income, type = "continuous") show(income) # STEP 1: CONVERT IT TO A missing_data.frame mdf <- missing_data.frame(nlsyV) # this calls missing_variable() internally show(mdf) } \keyword{classes} \keyword{AimedAtUseRs} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/man/02missing_data.frame.Rd000066400000000000000000000250101275731226000201010ustar00rootroot00000000000000\name{02missing_data.frame} \Rdversion{1.1} \docType{class} \alias{02missing_data.frame} \alias{missing_data.frame-class} \alias{missing_data.frame} \title{Class "missing_data.frame"} \description{ This class is similar to a \code{\link{data.frame}} but is customized for the situation in which variables with missing data are being modeled for multiple imputation. This class primarily consists of a list of \code{\link{missing_variable}}s plus slots containing metadata indicating how the \code{\link{missing_variable}}s relate to each other. Most operations that work for a \code{\link{data.frame}} also work for a missing_data.frame. } \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("missing_data.frame", ...)}. However, useRs almost always will pass a \code{\link{data.frame}} to the missing_data.frame constructor function to produce an object of missing_data.frame class. } \usage{ missing_data.frame(y, ...) ## Hidden arguments not included in the signature ## favor_ordered = TRUE, favor_positive = FALSE, ## subclass = NA_character_, ## include_missingness = TRUE, skip_correlation_check = FALSE } \arguments{ \item{y}{Usually a \code{\link{data.frame}}, possibly a numeric matrix, possibly a list of \code{\link{missing_variable}}s.} \item{\dots}{Hidden arguments. The \code{favor_ordered} and \code{favor_positive} arguments are passed to the \code{\link{missing_variable}} function and are documented under the \code{type} argument. Briefly, they affect the heuristics that are used to guess what class a variable should be coerced to. The \code{subclass} argument defaults to \code{\link{NA}} and can be used to specify that the resulting object should inherit from the missing_data.frame class rather than be an object of \code{missing_data.frame} class. Any further arguments are passed to the \code{\link{initialize-methods}} for a missing_data.frame. They currently are \code{include_missingness}, which defaults to \code{TRUE} and indicates that the missingness pattern of the other variables should be included when modeling a particular \code{\link{missing_variable}}, and \code{skip_correlation_check}, which defaults to FALSE and indicates whether to skip the default check for whether the observed values of each pair of \code{\link{missing_variable}}s has a perfect absolute Spearman \code{\link{cor}}relation. } } \section{Slots}{ This section is primarily aimed at developeRs. A missing_data.frame inherits from \code{\link{data.frame}} but has the following additional slots: \describe{ \item{\code{variables}:}{Object of class \code{"list"} and each list element is an object that inherits from the \code{\link{missing_variable-class}} } \item{\code{no_missing}:}{Object of class \code{"logical"}, which is a vector whose length is the same as the length of the \bold{variables} slot indicating whether the corresponding \code{\link{missing_variable}} is fully observed } \item{\code{patterns}:}{Object of class \code{\link{factor}} whose length is equal to the number of observation and whose elements indicate the missingness pattern for that observation} \item{\code{DIM}:}{Object of class \code{"integer"} of length two indicating first the number of observations and second the length of the \bold{variables} slot } \item{\code{DIMNAMES}:}{Object of class \code{"list"} of length two providing the appropriate number rownames and column names } \item{\code{postprocess}:}{Object of class \code{"function"} used to create additional variables from existing variables, such as interactions between two \code{\link{missing_variable}}s once their missing values have been imputed. Does not work at the moment} \item{\code{index}:}{Object of class \code{"list"} whose length is equal to the number of \code{\link{missing_variable}}s with some missing values. Each list element is an integer vector indicating which columns of the \bold{X} slot must be dropped when modeling the corresponding \code{\link{missing_variable}} } \item{\code{X}:}{Object of \code{\link{MatrixTypeThing-class}} with rows equal to the number of observations and is loosely related to a \code{\link{model.matrix}}. Rather than repeatedly parsing a \code{\link{formula}} during the multiple imputation process, this \bold{X} matrix is created once and some of its columns are dropped when modeling a \code{\link{missing_variable}} utilizing the \bold{index} slot. The columns of the \bold{X} matrix consists of numeric representations of the \code{\link{missing_variable}}s plus (by default) the unique missingness patterns } \item{\code{weights}:}{Object of class \code{"list"} whose length is equal to one or the number of \code{\link{missing_variable}}s with some missing values. Each list element is passed to the corresponding argument of \code{\link{bayesglm}} and similar functions. In particular, some observations can be given a weight of zero, which should drop them when modeling some \code{\link{missing_variable}}s} \item{\code{priors}:}{Object of class \code{"list"} whose length is equal to the number of \code{\link{missing_variable}}s and whose elements give appropriate values for the priors used by the model fitting function wraped by the \code{\link{fit_model-methods}}; see, e.g., \code{\link[arm]{bayesglm}}} \item{\code{correlations}:}{Object of class \code{"matrix"} with rows and columns equal to the length of the \bold{variables} slot. Its strict upper triangle contains Spearman \code{\link{cor}}relations between pairs of variables (ignoring missing values), and its strict lower triangle contains Squared Multiple Correlations (SMCs) between a variable and all other variables (ignoring missing values). If either a Spearman correlation or a SMC is very close to unity, there may be difficulty or error messages during the multiple imputation process.} \item{\code{done}:}{Object of class \code{"logical"} of length one indicating whether the missing values have been imputed} \item{\code{workpath}:}{Object of class \code{\link{character}} of length one indicating the path to a working directory that is used to store some objects} } } \details{ In most cases, the first step of an analysis is for a useR to call the \code{missing_data.frame} function on a \code{\link{data.frame}} whose variables have some \code{\link{NA}} values, which will call the \code{\link{missing_variable}} function on each column of the \code{\link{data.frame}} and return the \code{\link{list}} that fills the \bold{variable} slot. The classes of the list elements will depend on the nature of the column of the \code{\link{data.frame}} and various fallible heuristics. The success rate can be enhanced by making sure that columns of the original \code{\link{data.frame}} that are intended to be categorical variables are (ordered if appropriate) \code{\link{factor}}s with labels. Even in the best case scenario, it will often be necessary to utlize the \code{\link{change}} function to modify various discretionary aspects of the \code{\link{missing_variable}}s in the \bold{variables} slot of the missing_data.frame. The \code{\link{show}} method for a missing_data.frame should be utilized to get a quick overview of the \code{\link{missing_variable}}s in a missing_data.frame and recognized what needs to be \code{\link{change}}d. } \section{Methods}{ There are many methods that are defined for a missing_data.frame, although some are primarily intended for developers. The most relevant ones for users are: \describe{ \item{change}{\code{signature(data = "missing_data.frame", y = "ANY", what = "character", to = "ANY")} which is used to change discretionary aspects of the \code{\link{missing_variable}}s in the \bold{variables} slot of a missing_data.frame} \item{hist}{\code{signature(x = "missing_data.frame")} which shows histograms of the observed variables that have missingness} \item{image}{\code{signature(x = "missing_data.frame")} which plots an image of the \bold{missingness} slot to visualize the pattern of missingness when \code{grayscale = FALSE} or the pattern of missingness in light of the observed values (\code{grayscale = TRUE}, the default)} \item{mi}{\code{signature(y = "missing_data.frame", model = "missing")} which multiply imputes the missing values} \item{show}{\code{signature(object = "missing_data.frame")} which gives an overview of the salient characteristics of the \code{\link{missing_variable}}s in the \bold{variables} slot of a missing_data.frame } \item{summary}{\code{signature(object = "missing_data.frame")} which produces the same result as the \code{\link{summary}} method for a \code{\link{data.frame}}} } There are also S3 methods for the \code{\link{dim}}, \code{\link{dimnames}}, and \code{\link{names}} generics, which allow functions like \code{\link{nrow}}, \code{\link{ncol}}, \code{\link{rownames}}, \code{\link{colnames}}, etc. to work as expected on \code{missing_data.frame}s. Also, accessing and changing elements for a \code{missing_data.frame} mostly works the same way as for a \code{\link{data.frame}} } \value{ The \code{missing_data.frame} constructor function returns an object of class \code{missing_data.frame} or that inherits from the \code{missing_data.frame} class. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{change}}, \code{\link{missing_variable}}, \code{\link{mi}}, \code{\link{experiment_missing_data.frame}}, \code{\link{multilevel_missing_data.frame}} } \examples{ # STEP 0: Get data data(CHAIN, package = "mi") # STEP 1: Convert to a missing_data.frame mdf <- missing_data.frame(CHAIN) # warnings about missingness patterns show(mdf) # STEP 2: change things mdf <- change(mdf, y = "log_virus", what = "transformation", to = "identity") # STEP 3: look deeper summary(mdf) hist(mdf) image(mdf) # STEP 4: impute \dontrun{ imputations <- mi(mdf) } ## An example with subsetting on a fully observed variable data(nlsyV, package = "mi") mdfs <- missing_data.frame(nlsyV, favor_positive = TRUE, favor_ordered = FALSE, by = "first") mdfs <- change(mdfs, y = "momed", what = "type", to = "ord") show(mdfs) } \keyword{classes} \keyword{manip} \keyword{AimedAtUseRs}r-cran-mi-1.0/man/03change.Rd000066400000000000000000000235551275731226000156100ustar00rootroot00000000000000\name{03change} \docType{methods} \alias{03change} \alias{change} \alias{change-methods} \alias{change_family} \alias{change_imputation_method} \alias{change_link} \alias{change_model} \alias{change_size} \alias{change_transformation} \alias{change_type} \title{Make Changes to Discretionary Characteristics of Missing Variables} \description{ These methods change the family, imputation method, size, type, and so forth of a \code{\link{missing_variable}}. They are typically called immediately before calling \code{\link{mi}} because they affect how the conditional expectation of each \code{\link{missing_variable}} is modeled. } \usage{ change(data, y, to, what, ...) change_family(data, y, to, ...) change_imputation_method(data, y, to, ...) change_link(data, y, to, ...) change_model(data, y, to, ...) change_size(data, y, to, ...) change_transformation(data, y, to, ...) change_type(data, y, to, ...) } \arguments{ \item{data}{A \code{\link{missing_data.frame}} (typically) but can be missing for all but the \code{change} function } \item{y}{A character vector (typically) naming one or more \code{\link{missing_variable}}s within the \code{\link{missing_data.frame}} specified by the \bold{data} argument. Alternatively, \bold{y} can be the name of a class that inherits from \code{\link{missing_variable}}, in which case all \code{\link{missing_variable}}s of that class within \code{data} will be changed. Can also be an vector of integers or a logical vector indicating which \code{\link{missing_variable}}s to change. } \item{what}{Typically a character string naming what is to be changed, such as \code{"family"}, \code{"imputation_method"}, \code{"size"}, \code{"transformation"}, \code{"type"}, \code{"link"}, or \code{"model"}. Alternatively, it can be a scalar value, in which case all occurances of that value for the variable indicated by \code{y} will be changed to the value indicated by \code{to} } \item{to}{Typically a character string naming what \code{y} should be changed to, such as one of the admissible families, imputation methods, transformations, or types. If missing, then possible choices for the \code{to} argument will be helpfully printed on the screen. If \code{what} is a number, then \code{to} should be the number (or \code{NA}) that the value designated by \code{what} will be recoded to. See the Details section for more information. } \item{\dots}{Other arguments, not currently utilized} } \details{ In order to run \code{\link{mi}} correctly, data must first be specified to be ready for multiple imputation using the \code{\link{missing_data.frame}} function. For each variable, \code{missing_data.frame} will record information required by \code{mi}: the variable's type, distribution family, and link function; whether a variable should be standardized or tranformed by a log function or square root; what specific model to use for the conditional distribution of the variable in the \code{mi} algorithm and how to draw imputed values from this model; and whether additional rows (for the purposes of prediction) are required. \code{missing_data.frame} will attempt to guess the correct type, family, and link for each variable based on its class in a regular \code{data.frame}. These guesses can be checked with \code{show} and adjusted if necessary with \code{change}. Any further additions to the model in regards to variable transformations, custom conditional models, or extra non-observed predictive cases must be specified with \code{change} before \code{mi} is run. In general, most users will only use the \code{change} command. \code{change} will then call \code{change_family}, \code{change_imputation_method}, \code{change_link}, \code{change_model}, \code{change_size}, \code{change_transformation}, or \code{change_type} depending on what characteristic is specified with the \code{what} option. The other change_* functions can be called directly but are primarily intended to be called indirectly by the change function. \describe{ \item{\code{what = "type"}}{Change the subclass of variable(s) \code{y}. \code{to} should be a character vector whose elements are subclasses of the \code{\link{missing_variable-class}} and are documented further there. Among the most commonly used subclasses are \code{"unordered-categorical"}, \code{"ordered-categorical"}, \code{"binary"}, \code{"interval"}, \code{"continuous"}, \code{"count"}, and \code{"irrelevant"}.} \item{\code{what = "family"}}{Change the distribution family for variable(s) \code{y}. \code{to} must be of class \code{\link{family}} or a list where each element is of class \code{\link{family}}. If a variable is of \code{\link{binary-class}}, then the family must be \code{\link{binomial}} (the default) or possibly \code{\link{quasibinomial}}. If a variable is of \code{\link{ordered-categorical-class}} or \code{\link{unordered-categorical-class}}, use the \code{\link{multinomial}} family. If a variable is of \code{\link{count-class}}, then the family must be \code{\link{quasipoisson}} (the default) or \code{\link{poisson}}. If a variable is continuous, there are more choices for its family, but \code{\link{gaussian}} is the default and the others are not supported yet.} \item{\code{what = "link"}}{Change the link function for variable(s) \code{y}. \code{to} can be any of the supported link functions for the existing \bold{family}. See \code{\link{family}} for details; however, not all of these link functions have appropriate \code{\link{fit_model}} and \code{\link{mi-methods}} yet.} \item{\code{what = "model"}}{Change the conditional model for variable \code{y}. It usually is not necessary to change the model, since it is actually determined by the class, family, and link function of the variable. This option can be used, however, to employ models that are not among those listed above.\code{to} should be a character vector of length one indicating what model should be used during the imputation process. Valid choices for binary variables include \code{"logit"}, \code{"probit"} \code{"cauchit"}, \code{"cloglog"}, or quasilikelihoods \code{"qlogit"}, \code{"qprobit"}, \code{"qcauchit"}, \code{"qcloglog"}. For ordinal variables, valid choices include \code{"ologit"}, \code{"oprobit"}, \code{"ocauchit"}, and \code{"ocloglog"}. For count variables, valid choices include \code{"qpoisson"} and \code{"poisson"}. Currently the only valid option for gaussian variables is \code{"linear"}. To change the model for unordered-categorical variables, see the estimator slot in \code{\link{missing_variable}}.} \item{\code{what = "imputation_method"}}{Change the method for drawing imputed values from the conditional model specified for variable(s) \code{y}. \code{to} should be a character vector of length one or of the same length as \code{y} naming one of the following imputation methods: \code{"ppd"} (posterior predictive distribution), \code{"pmm"} (predictive mean matching), \code{"mean"} (mean imputation), \code{"median"} (median imputation), \code{"expectation"} (conditional expectation imputation).} \item{\code{what = "size"}}{Optionally add additional rows for the purposes of prediction. \code{to} should be a single integer. If \code{to} is non-negative but less than the number of rows in the \code{\link{missing_data.frame}} given by the \code{data} argument, then \code{\link{missing_data.frame}} is augmented with \code{to} more rows, where all the additional observations are missing. If \code{to} is greater than the number of rows in the \code{\link{missing_data.frame}}given by the \code{data} argument, then the \code{\link{missing_data.frame}} is extended to have \code{to} rows, where the observations in the surplus rows are missing. If \code{to} is negative, then any additional rows in the \code{\link{missing_data.frame}} given by the \code{data} argument are removed to restore it to its original size.} \item{\code{what = "transformation"}}{Specify a particular transformation to be applied to variable(s) \code{y}. \code{to} should be a character vector of length one or of the same length as \code{y} indicating what transformation function to use. Valid choices are \code{"identity"} for no transformation, \code{"standardize"} for standardization (using twice the standard deviation of the observed values), \code{"log"} for natural logarithm transformation, \code{"logshift"} for a \code{log(y + a)} transformation where \code{a} is a small constant, or \code{"sqrt"} for square-root transformation. Changing the transformation will also change the inverse transformation in the appropriate way. Any other value of \code{to} will produce an informative error message indicating that the transformation and inverse transformation need to be changed manually.} \item{what = a value}{Finally, if both \code{what} and \code{to} are values then the former is recoded to the latter for all occurances within the missing variable indicated by \code{y}.} } } \value{ If the \bold{data} argument is not missing, then the method returns this argument with the specified changes. If \bold{data} is missing, then the method returns an object that inherits from the \code{\link{missing_variable-class}} with the specified changes. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable}}, \code{\link{missing_data.frame}} } \examples{ # STEP 0: GET DATA data(nlsyV, package = "mi") # STEP 1: CONVERT IT TO A missing_data.frame mdf <- missing_data.frame(nlsyV) show(mdf) # STEP 2: CHANGE WHATEVER IS WRONG WITH IT mdf <- change(mdf, y = "momrace", what = "type", to = "un") mdf <- change(mdf, y = "income", what = "imputation_method", to = "pmm") mdf <- change(mdf, y = "binary", what = "family", to = binomial(link = "probit")) mdf <- change(mdf, y = 5, what = "transformation", to = "identity") show(mdf) } \keyword{manip} \keyword{AimedAtUseRs} r-cran-mi-1.0/man/04mi.Rd000066400000000000000000000163461275731226000147710ustar00rootroot00000000000000\name{04mi} \Rdversion{1.1} \docType{class} \alias{04mi} \alias{mi} \alias{mi-class} \alias{mi-methods} \title{Multiple Imputation } \description{ The \code{mi} function cannot be run in isolation. It is the most important step of a multi-step process to perform multiple imputation. The data must be specified as a \code{\link{missing_data.frame}} before \code{mi} is used to impute missing values for one or more \code{\link{missing_variable}}s. An iterative algorithm is used where each \code{\link{missing_variable}} is modeled (using \code{\link{fit_model}}) as a function of all the other \code{\link{missing_variable}}s and their missingness patterns. This documentation outlines the technical uses of the \code{mi} function. For a more general discussion of how to use \code{mi} for multiple imputation, see \code{\link{mi-package}}. } \usage{ mi(y, model, ...) ## Hidden arguments: ## n.iter = 30, n.chains = 4, max.minutes = Inf, seed = NA, verbose = TRUE, ## save_models = FALSE, parallel = .Platform$OS.type != "windows" } \arguments{ \item{y}{Typically an object that inherits from the \code{\link{missing_data.frame-class}}, although many methods are defined for subclasses of the \code{\link{missing_variable-class}}. Alternatively, \code{y = "parallel"} the appropriate parallel backend will be registered but no imputation performed. See the Details section. } \item{model}{Missing when \code{y = "parallel"} or when \code{y} inherits from the \code{\link{missing_data.frame-class}} but otherwise should be the result of a call to \code{\link{fit_model}}. } \item{\dots}{Further arguments, the most important of which are \describe{ \item{\code{n.iter}}{number of iterations to perform, defaulting to 30} \item{\code{n.chains}}{number of chains to use, ideally equal to the number of virtual cores available for use, and defaulting to 4} \item{\code{max.minutes}}{hard time limit that defaults to 20} \item{\code{seed}}{either \code{NA}, which is the default, or a psuedo-random number seed} \item{\code{verbose}}{logical scalar that is \code{TRUE} by default, indicating that progress of the iterative algorithm should be printed to the screen, which does not work under Windows when the chains are executed in parallel} \item{\code{save_models}}{logical scalar that defaults to \code{FALSE} but if \code{TRUE} indicates that the models estimated on a frozen completed dataset should be saved. This option should be used if the user is interested in evaluating the quality of the models run after the last iteration of the \code{mi} algorithm, but saving these models consumes much more RAM} \item{\code{debug}}{logical scalar indicating whether to run in debug mode, which forces the processing to be sequential, and allows developers to capture errors within chains} \item{\code{parallel}}{if TRUE, then parallel processing is used, if available. If FALSE, sequential processing is used. In addition, ths argument may be an object produced by \code{\link[parallel]{makeCluster}}} } } } \details{ It is important to distinguish the two \code{mi} methods that are most relevant to users from the many \code{mi} methods that are less relevant. The primary \code{mi} method is that where \code{y} inherits from the \code{\link{missing_data.frame-class}} and \code{model} is omitted. This method \dQuote{does} the imputation according to the additional arguments described under \dots above and returns an object of class \code{"mi"}. Executing two or more independent chains is important for monitoring the convergence of each chain, see \code{\link{Rhats}}. If the chains have not converged in the amount of iterations or time specified, the second important \code{mi} method is that where \code{y} is an object of class \code{"mi"} and \code{model} is omitted, which continues a previous run of the iterative imputation algorithm. All the arguments described under \dots above remain applicable, except for \code{n.chains} and \code{save_RAM} because these are established by the previous run that is being continued. The numerous remaining methods are of less importance to users. One \code{mi} method is called when \code{y = "parallel"} and \code{model} is omitted. This method merely sets up the parallel backend so that the chains can be executed in parallel on the local machine. We use the \code{\link{mclapply}} function in the \pkg{parallel} package to implement parallel processing on non-Windows machines, and we use the \pkg{snow} package to implement parallel processing on Windows machines; we refer users to the documentation for these packages for more detail about parallel processing. Parallel processing is used by default on machines with multiple processors, but sequential processing can be used instead by using the \code{parallel=FALSE} option. If the user is not using a mulitcore computer, sequential processing is used instead of parallel processing. The first two \code{mi} methods described above in turn call a \code{mi} method where \code{y} inherits from the \code{\link{missing_data.frame-class}} and \code{model} is that which is returned by one of the \code{\link{fit_model-methods}}. The methods impute values for the originally missing values of a \code{\link{missing_variable}} given a fitted model, according to the \bold{imputation_method} slot of the \code{\link{missing_variable}} in question. Advanced users could define new subclasses of the \code{\link{missing_variable-class}} in which case it may be necessary to write such a \code{mi} method for the new class. It will almost certainly be necessary to add to the \code{\link{fit_model-methods}}. The existing \code{mi} and \code{fit-model-methods} should provide a template for doing so. } \value{ If \code{model} is missing and \code{n.chains} is positive, then the \code{mi} method will return an object of class \code{"mi"}, which has the following slots: \describe{ \item{call}{the call to \code{mi}} \item{data}{a list of \code{\link{missing_data.frame}}s, one for each chain} \item{total_iters}{an integer vector that records how many iterations have been performed} } There are a few methods for such an object, such as \code{\link{show}}, \code{\link{summary}}, \code{\link{dimnames}}, \code{\link{nrow}}, \code{\link{ncol}}, etc. If \code{mi} is called on a \code{\link{missing_data.frame}} with \code{model} missing and a nonpositive \code{n.chains}, then the \code{\link{missing_data.frame}} will be returned after allocating storeage. If \code{model} is not missing, then the \code{mi} method will impute missing values for the \code{y} argument and return it. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_data.frame}}, \code{\link{fit_model}} } \examples{ # STEP 0: Get data data(CHAIN, package = "mi") # STEP 1: Convert to a missing_data.frame mdf <- missing_data.frame(CHAIN) # warnings about missingness patterns show(mdf) # STEP 2: change things mdf <- change(mdf, y = "log_virus", what = "transformation", to = "identity") # STEP 3: look deeper summary(mdf) # STEP 4: impute \dontrun{ imputations <- mi(mdf) } } \keyword{classes} \keyword{regression} \keyword{AimedAtusers} r-cran-mi-1.0/man/05Rhats.Rd000066400000000000000000000041531275731226000154370ustar00rootroot00000000000000\name{05Rhats} \alias{Rhats} \alias{05Rhats} \alias{mi2BUGS} \title{Convergence Diagnostics} \description{ These functions are used to gauge whether \code{\link{mi}} has converged. } \usage{ Rhats(imputations, statistic = c("moments", "imputations", "parameters")) mi2BUGS(imputations, statistic = c("moments", "imputations", "parameters")) } \arguments{ \item{imputations}{an object of \code{\link{mi-class}} } \item{statistic}{single character string among \code{"moments"}, \code{"imputations"}, and \code{"parameters"} indicating what statistic to monitor for convergence } } \details{ If \code{statistic = "moments"} (the default), then the mean and standard deviation of each variable will be monitored over the iterations. If \code{statistic = "imputations"}, then the imputed values will be monitored, which may be quite large and quite slow and is not possible if the \code{save_RAM = TRUE} flag was set in the call to the \code{\link{mi}} function. If \code{statistic = "parameters"}, then the estimated coefficients and ancillary parameters extracted by the \code{\link{get_parameters-methods}} will be monitored. \code{Rhats} produces a vector of R-hat convergence statistics that compare the variance between chains to the variance across chains. Values closer to 1.0 indicate little is to be gained by running the chains longer, and in general, values greater than 1.1 indicate that the chains should be run longer. See Gelman, Carlin, Stern, and Rubin, "Bayesian Data Analysis", Second Edition, 2009, p.304 for more information about the R-hat statistic. \code{mi2BUGS} outputs the history of the indicated statistic } \value{ \code{mi2BUGS} returns an array while \code{Rhats} a vector of R-hat convergence statistics. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \examples{ if(!exists("imputations", env = .GlobalEnv)) { imputations <- mi:::imputations # cached from example("mi-package") } dim(mi2BUGS(imputations)) Rhats(imputations) } \keyword{manip} \keyword{AimedAtUseRs} r-cran-mi-1.0/man/06pool.Rd000066400000000000000000000034221275731226000153260ustar00rootroot00000000000000\name{06pool} \alias{06pool} \Rdversion{1.1} \docType{class} \alias{pool} \alias{pooled-class} \alias{pooled-methods} \alias{display,pooled-method} \title{Estimate a Model Pooling Over the Imputed Datasets} \description{ This function estimates a chosen model, taking into account the additional uncertainty that arises due to a finite number of imputations of the missing data. } \usage{ pool(formula, data, m = NULL, FUN = NULL, ...) } \arguments{ \item{formula}{a \code{\link{formula}} in the same syntax as used by \code{\link{glm}} } \item{data}{an object of \code{\link{mi-class}} } \item{m}{number of completed datasets to average over, which if \code{NULL} defaults to the number of chains used in \code{\link{mi}} } \item{FUN}{Function to estimate models or \code{NULL} which uses the same function as used in the \code{\link{fit_model-methods}} for the dependent variable } \item{\dots}{further arguments passed to \code{FUN} } } \details{ \code{FUN} is estimated on each of the \code{m} completed datasets according to the given \code{formula} and the results are combined using the Rubin Rules. } \value{ An object of class \code{"pooled"} whose definition is subject to change but it has a \code{\link{summary}} and \code{\link[arm]{display}} method. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{mi}} } \examples{ if(!exists("imputations", env = .GlobalEnv)) { imputations <- mi:::imputations # cached from example("mi-package") } analysis <- pool(ppvtr.36 ~ first + b.marr + income + momage + momed + momrace, data = imputations) display(analysis) } \keyword{regression} \keyword{AimedAtUseRs} r-cran-mi-1.0/man/07complete.Rd000066400000000000000000000041371275731226000161720ustar00rootroot00000000000000\name{07complete} \docType{methods} \alias{07complete} \alias{complete} \alias{complete-methods} \title{Extract the Completed Data} \description{ This function extracts several multiply imputed \code{\link{data.frame}}s from an object of \code{\link{mi-class}}. } \usage{ complete(y, m, ...) } \arguments{ \item{y}{An object of \code{\link{mi-class}} (typically) or \code{\link{missing_data.frame-class}} or \code{\link{missing_variable-class}} } \item{m}{If \bold{y} is an object of \code{\link{mi-class}}, then \code{m} must be a specified integer indicating how many multiply imputed \code{\link{data.frame}}s to return or, if missing, the number of \code{\link{data.frame}}s will be equal to the length of the \bold{data} slot in \code{y}. If \code{y} is not an object of \code{\link{mi-class}}, then \bold{m} must be a specified integer indicating which iteration to use in the resulting \code{\link{data.frame}}, where any non-positive integer is a short hand for the last iteration. } \item{\dots}{Other arguments, not currently utilized} } \details{ Several functions within \pkg{mi} use \code{complete}, although the only reason in principle why a user should need to call \code{complete} is to create \code{\link{data.frame}}s to export to another program. For analysis, it is better to use the \code{\link{pool}} function, although currently \code{\link{pool}} might not offer all the necessary functionality. } \value{ If \bold{y} is an object of \code{\link{mi-class}} and \code{m > 1}, a \code{\link{list}} of \code{m} \code{\link{data.frame}}s is returned. Otherwise, a single \code{\link{data.frame}} is returned. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{mi-class}} } \examples{ if(!exists("imputations", env = .GlobalEnv)) { imputations <- mi:::imputations # cached from example("mi-package") } data.frames <- complete(imputations, 3) lapply(data.frames, summary) } \keyword{manip} \keyword{AimedAtUseRs} r-cran-mi-1.0/man/CHAIN.Rd000066400000000000000000000040051275731226000150270ustar00rootroot00000000000000\name{CHAIN} \docType{data} \alias{CHAIN} \title{ Subset of variables from the CHAIN project } \description{ The CHAIN project was a longitudinal cohort study of people living with HIV in New York City, which was recruited in 1994 from a large number of medical care and social service agencies serving HIV in New York City. This subset of data pertain to the sixth round of interviews. } \usage{data(CHAIN)} \format{ A \code{\link{data.frame}} with 532 observations on the following 8 variables. \describe{ \item{\code{log_virus}}{ log of self reported viral load level, where zero represents an undetectable level. } \item{\code{age}}{ age at time of the interview } \item{\code{income}}{ annual family income in 10 intervals } \item{\code{healthy}}{ a continuous scale of physical health with a theoretical range between 0 and 100 where better health is associated with higher scale values } \item{\code{mental}}{ a binary measure of poor mental health ( 1=Yes, 0=No ) } \item{\code{damage}}{ ordered interval for the CD4 count, which is an indicator of how much damage HIV has caused to the immune system } \item{\code{treatment}}{ a three-level ordered variable: 0=Not currently taking HAART (Highly Active AntiretRoviral Therapy) 1=taking HAART but nonadherent, 2=taking HAART and adherent } } } \details{ A missing value in the log virus load level was assigned to individuals who either could not recall their viral load level, did not have a viral load test in the six month preceding the interview, or reported their viral loads as "good" or "bad". } \source{ http://cchps.columbia.edu/research.cfm } \references{ Messeri P, Lee G, Abramson DA, Aidala A, Chiasson MA, Jones JD. (2003). \dQuote{Antiretroviral therapy and declining AIDS mortality in New York City}. \emph{Medical Care} 41:512--521. } \keyword{datasets} r-cran-mi-1.0/man/allcategorical_missing_data.frame.Rd000066400000000000000000000035161275731226000227740ustar00rootroot00000000000000\name{allcategorical_missing_data.frame} \Rdversion{1.1} \docType{class} \alias{allcategorical_missing_data.frame} \alias{allcategorical_missing_data.frame-class} \title{Class "allcategorical_missing_data.frame"} \description{ This class inherits from the \code{\link{missing_data.frame-class}} but is customized for the situation where all the variables are categorical. } \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("allcategorical_missing_data.frame", ...)}. However, its users almost always will pass a \code{\link{data.frame}} to the \code{\link{missing_data.frame}} function and specify the \code{subclass} argument. } \section{Slots}{ The allcategorical_missing_data.frame class inherits from the \code{\link{missing_data.frame-class}} and has three additional slots \describe{ \item{Hstar}{Positive integer indicating the maximum number of latent classes} \item{parameters}{A list that holds the current realization of the unknown parameters} \item{latents}{An object of \code{\link{unordered-categorical-class}} that contains the current realization of the latent classes} } } \details{ The \code{\link{fit_model-methods}} for the allcategorical_missing_data.frame class implement a Gibbs sampler. However, it does not utilize any ordinal information that may be available. Continuous variables should be made into factors using the \code{\link{cut}} command before calling \code{\link{missing_data.frame}}. } \author{ Sophie Si for the algorithm and Ben Goodrich for the R implementation } \seealso{ \code{\link{missing_data.frame}} } \examples{ rdf <- rdata.frame(n_full = 2, n_partial = 2, restrictions = "stratified", types = "ord") mdf <- missing_data.frame(rdf$obs, subclass = "allcategorical") } \keyword{classes} \keyword{manip} \keyword{AimedAtUseRs} r-cran-mi-1.0/man/bounded.Rd000066400000000000000000000053131275731226000156300ustar00rootroot00000000000000\name{bounded-continuous-class} \Rdversion{1.1} \docType{class} \alias{bounded-continuous-class} \alias{bounded-continuous} \title{Class "bounded-continuous"} \description{ The bounded-continuous class inherits from the \code{\link{continuous-class}} and is intended for variables whose observations fall within open intervals that have \emph{known} boundaries. Although proportions satisfy this definition, the \code{\link{proportion-class}} should be used in that case. At the moment, a bounded continuous variable is modeled as if it were simply a continuous variable, but its \code{\link{mi-methods}} impute the missing values from a truncated normal distribution using the \code{\link[truncnorm]{rtruncnorm}} function in the \pkg{truncnorm} package. Note that the default transformation is the identity so if another transformation is used, the bounds must be specified on the transformed data. Aside from these facts, the rest of the documentation here is primarily directed toward developers. } \section{Objects from the Classes}{Objects can be created that are of bounded-continuous class via the the \code{\link{missing_variable}} generic function by specifying \code{type = "bounded-continuous"} as well as \code{lower} and / or \code{upper} } \section{Slots}{ The bounded-continuous class inherits from the continuous class and is intended for variables that are supported on a known interval. Its default transformation function is the identity transformation and its \code{imputation_method} must be \code{"ppd"}. It has two additional slots: \describe{ \item{upper}{a numeric vector whose length is either one or the value of the \code{n_total} slot giving the upper bound for \emph{every} observation; \code{NA}s are not allowed} \item{lower}{a numeric vector whose length is either one or the value of the \code{n_total} slot giving the lower bound for \emph{every} observation; \code{NA}s are not allowed} } } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable}}, \code{\link{continuous-class}}, \code{\link{positive-continuous-class}}, \code{\link{proportion-class}} } \examples{ # STEP 0: GET DATA data(CHAIN, package = "mi") # STEP 0.5 CREATE A missing_variable (you never need to actually do this) lo_bound <- 0 hi_bound <- rep(Inf, nrow(CHAIN)) hi_bound[CHAIN$log_virus == 0] <- 6 log_virus <- missing_variable(ifelse(CHAIN$log_virus == 0, NA, CHAIN$log_virus), type = "bounded-continuous", lower = lo_bound, upper = hi_bound) show(log_virus) } \keyword{classes} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/man/categorical.Rd000066400000000000000000000071071275731226000164700ustar00rootroot00000000000000\name{categorical} \Rdversion{1.1} \docType{class} \alias{categorical} \alias{categorical-class} \alias{unordered-categorical-class} \alias{ordered-categorical-class} \alias{interval-class} \alias{binary-class} \alias{grouped-binary-class} \title{Class "categorical" and Inherited Classes} \description{ The categorical class is a virtual class that inherits from the \code{\link{missing_variable-class}} and is the parent of the unordered-categorical and ordered-categorical classes. The ordered-categorical class is the parent of both the binary and interval classes. Aside from these facts, the rest of the documentation here is primarily directed toward developers. } \section{Objects from the Classes}{The categorical class is virtual, so no objects may be created from it. However, the \code{\link{missing_variable}} generic function can be used to instantiate an object that inherits from the categorical class by specifying \code{type = "unordered-categorical"}, \code{type = "ordered-categorical"}, \code{type = "binary"}, \code{type = "grouped-binary"}, or \code{type = "interval"}. } \section{Slots}{ The unordered-categorical class inherits from the categorical class and has no additional slots but must have more than two uniquely observed values in its \code{raw_data} slot. The default \code{\link{fit_model}} method is a wrapper for the \code{\link[nnet]{multinom}} function in the \pkg{nnet} package. The ordered-categorical class inherits from the categorical class and has one additional slot: \describe{ \item{cutpoints}{Object of class \code{"numeric"} which is a vector of thresholds (sometimes estimated) that govern how an assumed latent variable is divided into observed ordered categories} } The \code{\link{fit_model}} method for an ordered-categorical variable is, by default, a wrapper for \code{\link[arm]{bayespolr}}. The binary class inherits from the ordered-categorical class and has no additional slots. It must have exactly two uniquely observed values in its \code{raw_data} slot and its \code{\link{fit_model}} method is, by default, a wrapper for \code{\link[arm]{bayespolr}}. The grouped-binary class inherits from the binary class and has one additional slot: \describe{ \item{strata}{Object of class \code{"character"} which is a vector (possibly of length one) of variable names that group the observations into strata. The named external variables should also be categorical.} } The default \code{\link{fit_model}} method for a grouped-binary variable is a wrapper for the \code{\link[survival]{clogit}} function in the \pkg{survival} package and the variables named in the \bold{strata} slot are passed to the \code{\link[survival]{strata}} function. The interval class inherits from the ordered-categorical class, has no additional slots, and is intended for variables whose observed values are only known up to orderable intervals. Its \code{\link{fit_model}} method is, by default, a wrapper for \code{\link[survival]{survreg}} even though it may or may not be a \dQuote{survival} model in any meaningful sense. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable}} } \examples{ # STEP 0: GET DATA data(nlsyV, package = "mi") # STEP 0.5 CREATE A missing_variable (you never need to actually do this) momrace <- missing_variable(as.factor(nlsyV$momrace), type = "unordered-categorical") show(momrace) } \keyword{classes} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/man/censored-continuous.Rd000066400000000000000000000101271275731226000202150ustar00rootroot00000000000000\name{censored-continuous-class} \Rdversion{1.1} \docType{class} \alias{truncated-continuous-class} \alias{truncated-continuous} \alias{FF_truncated-continuous-class} \alias{FN_truncated-continuous-class} \alias{NF_truncated-continuous-class} \alias{NN_truncated-continuous-class} \alias{censored-continuous-class} \alias{censored-continuous} \alias{FF_censored-continuous-class} \alias{FN_censored-continuous-class} \alias{NF_censored-continuous-class} \alias{NN_censored-continuous-class} \title{The "censored-continuous" Class, the "truncated-continuous" Class and Inherited Classes} \description{ The censored-continuous class and the truncated-continuous class are both virtual and both inherit from the \code{\link{continuous-class}} and each is the parent of four classes that differ depending on whether the lower and upper bounds are numeric vectors or functions. A censored observation is one whose exact value is not observed. A truncated observation is one whose exact value is not observed and which implies that values on some \emph{other} variables are not observed for that unit of observation. An example of truncation might be that some taxation forms are not required when a person's income falls below a certain threshold. The methods for these classes are not working yet. Aside from these facts, the rest of the documentation here is primarily directed toward developeRs. } \section{Objects from the Classes}{Both the censored-continuous class and the truncated-continuous class are virtual, so no objects can be created with these classes. However, the \code{\link{missing_variable}} generic function can be used to create an object that inherits from one of their subclasses by specifying \code{type = "NNcensored-continuous"}, \code{type = "NFcensored-continuous"}, \code{type = "FNcensored-continuous"}, \code{type = "FFcensored-continuous"}, \code{type = "NNtruncated-continuous"}, \code{type = "NFtruncated-continuous"}, \code{type = "FNtruncated-continuous"}, \code{type = "FFtruncated-continuous"}. When doing so, the lower and upper slots need to be specified appropriately. } \section{Slots}{ The censored-continuous class and the truncated-continuous class are both virtual, both inherit from the continuous class, both use the identity transformation by default, and both have two additional slots: \describe{ \item{upper}{The upper bound for each observation} \item{lower}{The lower bound for each observation} } Both the censored-continuous class and the truncated-continuous class have four subclasses that differ depending on whether the upper and / or lower bounds are numeric vectors or functions that output numeric vectors (scalars are recycled and can be \code{Inf}). These subclasses are \describe{ \item{NN_censored-continuous}{where both the lower and upper bounds are numeric vectors} \item{FN_censored-continuous}{where the lower bound is a function and the upper bound is a numeric vector} \item{NF_censored-continuous}{where the lower bound is a numeric vector and the upper bound is a function} \item{FF_censored-continuous}{where both the lower and upper bounds are functions} \item{NN_truncated-continuous}{where both the lower and upper bounds are numeric vectors} \item{FN_truncated-continuous}{where the lower bound is a function and the upper bound is a numeric vector} \item{NF_truncated-continuous}{where the lower bound is a numeric vector and the upper bound is a function} \item{FF_truncated-continuous}{where both the lower and upper bounds are functions} } } \author{ Ben Goodrich, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable}}, \code{\link{continuous-class}} } \examples{ # STEP 0: GET DATA data(CHAIN, package = "mi") # STEP 0.5 CREATE A missing_variable (you never need to actually do this) #log_virus <- missing_variable(CHAIN$log_virus, type = "NN_censored-continuous", # lower = 0, upper = Inf) #show(log_virus) } \keyword{classes} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/man/continuous.Rd000066400000000000000000000050131275731226000164130ustar00rootroot00000000000000\name{continuous} \Rdversion{1.1} \docType{class} \alias{continuous} \alias{continuous-class} \title{Class "continuous"} \description{ The continuous class inherits from the \code{\link{missing_variable-class}} and is the parent of the following classes: \code{\link{semi-continuous}}, \code{\link{censored-continuous}}, \code{\link{truncated-continuous}}, and \code{\link{bounded-continuous}}. The distinctions among these subclasses are given on their respective help pages. Aside from these facts, the rest of the documentation here is primarily directed toward developers. } \section{Objects from the Classes}{Objects can be created that are of class continuous via the \code{\link{missing_variable}} generic function by specifying \code{type = "continuous"} } \section{Slots}{ The continuous class inherits from the \code{\link{missing_variable}} class and has the following additional slots: \describe{ \item{transformation}{Object of class \code{"function"} which is passed the \code{raw_data} slot and whose returned value is assigned to the \code{data} slot. By default, this function is the \dQuote{standardize} transformation, using the mean and \emph{twice} the standard deviation of the observed values} \item{inverse_transformation}{Object of class \code{"function"} which is the inverse of the function in the \code{transformation} slot.} \item{transformed}{Object of class \code{"logical"} of length one indicating whether the \code{data} slot is in the \dQuote{transformed} state or the \dQuote{untransformed} state} \item{known_transformations}{Object of class \code{"character"} indicating which transformations are possible for this variable} } The \code{\link{fit_model}} method for a continuous variable is, by default, a wrapper for \code{\link[arm]{bayesglm}} and its \code{family} slot is, by default, \code{\link{gaussian}} } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable}}, \code{\link{semi-continuous-class}}, \code{\link{censored-continuous-class}}, \code{\link{truncated-continuous-class}}, \code{\link{bounded-continuous-class}} } \examples{ # STEP 0: GET DATA data(nlsyV, package = "mi") # STEP 0.5 CREATE A missing_variable (you never need to actually do this) income <- missing_variable(nlsyV$income, type = "continuous") show(income) } \keyword{classes} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/man/count.Rd000066400000000000000000000027371275731226000153470ustar00rootroot00000000000000\name{count-class} \Rdversion{1.1} \docType{class} \alias{count-class} \title{Class "count"} \description{ The count class inherits from the \code{\link{missing_variable-class}} and is intended for count data. Aside from these facts, the rest of the documentation here is primarily directed toward developers. } \section{Objects from the Classes}{Objects can be created that are of count class via the \code{\link{missing_variable}} generic function by specifying \code{type = "count"} } \section{Slots}{ The count class inherits from the missing_variable class and its \code{raw_data} slot must consist of nonnegative integers. Its default family is \code{\link{quasipoisson}} and its default \code{\link{fit_model}} method is a wrapper for \code{\link[arm]{bayesglm}}. The other possibility for the family is \code{\link{poisson}} but is not recommended due to its overly-restrictive nature. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable}}, \code{\link{continuous-class}}, \code{\link{positive-continuous-class}}, \code{\link{proportion-class}} } \examples{ # STEP 0: GET DATA data(CHAIN, package = "mi") # STEP 0.5 CREATE A missing_variable (you never need to actually do this) age <- missing_variable(as.integer(CHAIN$age), type = "count") show(age) } \keyword{classes} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/man/experiment_missing_data.frame.Rd000066400000000000000000000045651275731226000222130ustar00rootroot00000000000000\name{experiment_missing_data.frame} \Rdversion{1.1} \docType{class} \alias{experiment_missing_data.frame} \alias{experiment_missing_data.frame-class} \title{Class "experiment_missing_data.frame"} \description{ This class inherits from the \code{\link{missing_data.frame-class}} but is customized for the situation where the sample is a randomized experiment. } \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("experiment_missing_data.frame", ...)}. However, its users almost always will pass a \code{\link{data.frame}} to the \code{\link{missing_data.frame}} function and specify the \code{subclass} and \code{concept} arguments. } \section{Slots}{ The experiment_missing_data.frame class inherits from the \code{\link{missing_data.frame-class}} and has two additional slots \describe{ \item{concept}{Object of class \code{\link{factor}} whose length is equal to the number of variables and whose levels are \code{"treatment"}, \code{"covariate"} and \code{"outcome"}} \item{case}{Object of class \code{\link{character}} of length one, indicating whether the missingness is in the outcomes only, in the covariates only, or in both the outcomes and covariates. This slot is filled automatically by the \code{\link{initialize}} method} } } \details{ The \code{\link{fit_model-methods}} for the experiment_missing_data.frame class take into account the special nature of a randomized experiment. At the moment, the treatment variable must be binary and fully observed. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_data.frame}} } \examples{ rdf <- rdata.frame(n_full = 2, n_partial = 2, restrictions = "stratified", experiment = TRUE, types = c("t", "ord", "con", "pos"), treatment_cor = c(0, 0, NA, 0, NA)) Sigma <- tcrossprod(rdf$L) rownames(Sigma) <- colnames(Sigma) <- c("treatment", "X_2", "y_1", "Y_2", "missing_y_1", "missing_Y_2") print(round(Sigma, 3)) concept <- as.factor(c("treatment", "covariate", "covariate", "outcome")) mdf <- missing_data.frame(rdf$obs, subclass = "experiment", concept = concept) } \keyword{classes} \keyword{manip} \keyword{AimedAtUseRs} r-cran-mi-1.0/man/fit_model.Rd000066400000000000000000000067021275731226000161550ustar00rootroot00000000000000\name{fit_model} \docType{methods} \alias{fit_model} \alias{fit_model-methods} \title{Wrappers To Fit a Model} \description{ The methods are called by the \code{\link{mi}} function to model a given \code{\link{missing_variable}} as a function of all the other \code{\link{missing_variable}}s and also their missingness pattern. By overwriting these methods, users can change the way a \code{\link{missing_variable}} is modeled for the purposes of imputing its missing values. See also the table in \code{\link{missing_variable}}. } \usage{ fit_model(y, data, ...) } \arguments{ \item{y}{An object that inherits from \code{\link{missing_variable-class}} or missing } \item{data}{A \code{\link{missing_data.frame}} } \item{\dots}{Additional arguments, not currently utilized } } \details{ In \code{\link{mi}}, each \code{\link{missing_variable}} is modeled as a function of all the other \code{\link{missing_variable}}s plus their missingness pattern. The \code{fit_model} methods are typically short wrappers around a statistical model fitting function and return the estimated model. The model is then passed to one of the \code{\link{mi-methods}} to impute the missing values of that \code{\link{missing_variable}}. Users can easily overwrite these methods to estimate a different model, such as wrapping \code{\link{glm}} instead of \code{\link[arm]{bayesglm}}. See the source code for examples, but the basic outline is to first extract the \code{X} slot of the \code{\link{missing_data.frame}}, then drop some of its columns using the \code{index} slot of the \code{\link{missing_data.frame}}, next pass the result along with the \code{data} slot of \code{y} to a statistical fitting function, and finally returned the appropriately classed result (along with the subset of \code{X} used in the model). Many of the optional arguments to a statistical fitting function can be specified using the slots of \code{y} (e.g. its \code{family} slot) or the slots of \bold{data} (e.g. its \code{weights} slot). The exception is the method where \code{y} is missing, which is used internally by \code{\link{mi}}, and should \emph{not} be overwritten unless great care is taken to understand its role. } \value{ If \code{y} is missing, then the modified \code{\link{missing_data.frame}} passed to \code{data} is returned. Otherwise, the estimated model is returned as a classed list object. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable}}, \code{\link{mi}}, \code{\link{get_parameters}} } \examples{ getMethod("fit_model", signature(y = "binary", data = "missing_data.frame")) setMethod("fit_model", signature(y = "binary", data = "missing_data.frame"), def = function(y, data, ...) { to_drop <- data@index[[y@variable_name]] X <- data@X[, -to_drop] start <- NULL # using glm.fit() instead of bayesglm.fit() out <- glm.fit(X, y@data, weights = data@weights[[y@variable_name]], start = start, family = y@family, Warning = FALSE, ...) out$x <- X class(out) <- c("glm", "lm") # not "bayesglm" class anymore return(out) }) \dontrun{ if(!exists("imputations", env = .GlobalEnv)) { imputations <- mi:::imputations # cached from example("mi-package") } imputations <- mi(imputations) # will use new fit_model() method for binary variables } } \keyword{regression} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/man/get_parameters.Rd000066400000000000000000000027161275731226000172160ustar00rootroot00000000000000\name{get_parameters} \docType{methods} \alias{get_parameters} \alias{get_parameters-methods} \title{An Extractor Function for Model Parameters} \description{ This function is not intended to be called directly by users. During the multiple imputation process, the \code{\link{mi}} function estimates models and stores the estimated parameters in the \code{parameters} slot of an object that inherits from the \code{\link{missing_variable-class}}. The \code{get_parameter} function simply extracts these parameters for storeage, which are usually the estimated coefficients but may also include ancillary parameters. } \usage{ get_parameters(object, ...) } \arguments{ \item{object}{Usually an estimated model, such as that produced by \code{\link{glm}} } \item{\dots}{Additional arguments, currently not used } } \details{ There is method for the object produced by \code{\link{polr}}, which also returns the estimated cutpoints in a proportional odds model. However, the default method simply calls \code{\link{coef}} and returns the result. If users implement their own models, it may be necessary to write a short \code{get_parameters} method. } \value{ A numeric vector of estimated parameters } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{fit_model}} } \examples{ showMethods("get_parameters") } \keyword{methods}r-cran-mi-1.0/man/hist.Rd000066400000000000000000000025671275731226000151670ustar00rootroot00000000000000\name{hist} \Rdversion{1.1} \docType{methods} \alias{hist} \alias{hist-methods} \title{Histograms of Multiply Imputed Data } \description{ This function creates a histogram from an object of \code{\link{missing_data.frame-class}} or \code{\link{mi-class}} } \usage{ hist(x, ...) } \arguments{ \item{x}{an object of \code{\link{missing_data.frame-class}} or \code{\link{mi-class}} } \item{\dots}{further arguments passed to \code{\link{plot.histogram}} } } \details{ When called on an object of \code{\link{missing_data.frame-class}}, the histograms of the observed data are generated, one for each \code{\link{missing_variable}} but grouped on a single page. When called on an object of \code{\link{mi-class}}, the histograms of the observed, imputed, and completed data are generated, one for each \code{\link{missing_variable}}, grouped on a single page for each chain. } \value{ An invisible \code{NULL} is returned with a side-effect of creating a plot } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link[graphics]{hist}} } \examples{ if(!exists("imputations", env = .GlobalEnv)) { imputations <- mi:::imputations # cached from example("mi-package") } hist(imputations) } \keyword{hplot} \keyword{AimedAtUseRs} \keyword{methods}r-cran-mi-1.0/man/irrelevant.Rd000066400000000000000000000036731275731226000163720ustar00rootroot00000000000000\name{irrelevant} \Rdversion{1.1} \docType{class} \alias{irrelevant} \alias{irrelevant-class} \alias{fixed-class} \alias{group-class} \title{Class "irrelevant" and Inherited Classes} \description{ The irrelevant class inherits from the \code{\link{missing_variable-class}} and is used to designate variables that are excluded from the models used to impute the missing values of \dQuote{relevant} variables. For example, if a survey has an \dQuote{id} variable that simply distinguishes observations, the user should designate it as irrelevant, although it will automatically be classified so if its name is either \dQuote{id} or starts with punctuation (including underscores). The fixed class inherits from the irrelevant class and is used for variables that are constant (within a sample). A variable that is instantiated from the fixed class cannot have any missing values. The group class inherits from the fixed class and is used like a \code{\link{factor}} to spit samples in multilevel modeling; see \code{\link{multilevel_missing_data.frame-class}}. None of these classes have an additional slots. Aside from these facts, the rest of the documentation here is primarily directed toward developeRs. } \section{Objects from the Classes}{The \code{\link{missing_variable}} generic function can be used to instantiate an object that inherits from the irrelevant class by specifying \code{type = "irrelevant"}, \code{type = "fixed"}, or \code{type = "group"}. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable-class}} } \examples{ # STEP 0: GET DATA data(nlsyV, package = "mi") # STEP 0.5 CREATE A missing_variable (you never need to actually do this) first <- missing_variable(as.factor(nlsyV$first), type = "group") show(first) } \keyword{classes} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/man/mi-internal.Rd000066400000000000000000000223441275731226000164320ustar00rootroot00000000000000\name{mi-internal} \alias{mi-internal} \alias{change,missing_data.frame,ANY,ANY,character-method} \alias{mi,missing_data.frame,missing-method} \alias{plot,missing_data.frame,missing-method} \alias{plot,mi,ANY-method} \alias{show,missing_data.frame-method} \alias{show,missing_variable-method} \alias{summary,missing_data.frame-method} \alias{summary,mi-method} \alias{show,mi-method} \alias{change_family,missing,missing_variable,family-method} \alias{change_family,missing,proportion,family-method} \alias{change_family,missing,unordered-categorical,family-method} \alias{change_imputation_method,missing,missing_variable,character-method} \alias{change_imputation_method,missing,missing_variable,missing-method} \alias{change_link,missing,missing_variable,character-method} \alias{change_link,missing,missing_variable,missing-method} \alias{change_link,missing_data.frame,character,character-method} \alias{change_link,missing_data.frame,numeric,character-method} \alias{change_link,missing_data.frame,logical,character-method} \alias{change_model,missing,missing_variable,character-method} \alias{change_model,missing_data.frame,character,character-method} \alias{change_model,missing_data.frame,numeric,character-method} \alias{change_model,missing_data.frame,logical,character-method} \alias{change_size,missing,missing_variable,integer-method} \alias{change_size,missing,categorical,integer-method} \alias{change_size,missing,fixed,integer-method} \alias{change_size,missing_data.frame,missing,integer-method} \alias{change_type,missing,missing_variable,character-method} \alias{change_imputation_method,missing_data.frame,logical,character-method} \alias{change_imputation_method,missing_data.frame,numeric,character-method} \alias{change_transformation,missing,missing_variable,missing-method} \alias{change_transformation,missing_data.frame,character,missing-method} \alias{change_transformation,missing_data.frame,character,function-method} \alias{change_transformation,missing_data.frame,numeric,function-method} \alias{change_transformation,missing_data.frame,logical,function-method} \alias{change_type,missing,missing_variable,missing-method} \alias{change_type,missing_data.frame,character,missing-method} \alias{complete,irrelevant,integer-method} \alias{complete,categorical,integer-method} \alias{complete,binary,integer-method} \alias{complete,continuous,integer-method} \alias{complete,nonnegative-continuous,integer-method} \alias{complete,SC_proportion,integer-method} \alias{complete,mi,integer-method} \alias{complete,missing_data.frame,numeric-method} \alias{complete,missing_variable,integer-method} \alias{complete,mi,missing-method} \alias{complete,mi_list,numeric-method} \alias{complete,mi_list,missing-method} \alias{fit_model,missing_variable,missing_data.frame-method} \alias{fit_model,missing,missing_data.frame-method} \alias{fit_model,continuous,missing_data.frame-method} \alias{fit_model,semi-continuous,missing_data.frame-method} \alias{fit_model,nonnegative-continuous,missing_data.frame-method} \alias{fit_model,SC_proportion,missing_data.frame-method} \alias{fit_model,proportion,missing_data.frame-method} \alias{fit_model,truncated-continuous,missing_data.frame-method} \alias{fit_model,censored-continuous,missing_data.frame-method} \alias{fit_model,missing_variable,experiment_missing_data.frame-method} \alias{fit_model,continuous,experiment_missing_data.frame-method} \alias{fit_model,missing,multilevel_missing_data.frame-method} \alias{fit_model,missing,mdf_list-method} \alias{fit_model,binary,allcategorical_missing_data.frame-method} \alias{fit_model,missing,allcategorical_missing_data.frame-method} \alias{fit_model,ordered-categorical,allcategorical_missing_data.frame-method} \alias{fit_model,unordered-categorical,allcategorical_missing_data.frame-method} \alias{get_parameters,ANY-method} \alias{get_parameters,polr-method} \alias{get_parameters,multinom-method} \alias{get_parameters,mi-method} \alias{get_parameters,mi_list-method} \alias{get_parameters,missing_data.frame-method} \alias{get_parameters,missing_variable-method} \alias{hist,mi-method} \alias{hist,missing_variable-method} \alias{hist,semi-continuous-method} \alias{hist,binary-method} \alias{hist,categorical-method} \alias{initialize,missing_variable-method} \alias{image,mi-method} \alias{image,mi_list-method} \alias{image,mdf_list-method} \alias{image,missing_data.frame-method} \alias{image,dgTMatrix-method} \alias{mi,character,missing-method} \alias{mi,missing_variable,ANY-method} \alias{mi,missing_variable,missing-method} \alias{mi,semi-continuous,missing-method} \alias{mi,bounded-continuous,missing-method} \alias{mi,binary,glm-method} \alias{mi,grouped-binary,clogit-method} \alias{mi,continuous,glm-method} \alias{mi,bounded-continuous,glm-method} \alias{mi,SC_proportion,betareg-method} \alias{mi,proportion,betareg-method} \alias{mi,nonnegative-continuous,glm-method} \alias{mi,censored-continuous,glm-method} \alias{mi,semi-continuous,glm-method} \alias{mi,categorical,missing-method} \alias{mi,count,glm-method} \alias{mi,data.frame,missing-method} \alias{mi,irrelevant,ANY-method} \alias{mi,interval,glm-method} \alias{mi,mdf_list,missing-method} \alias{mi,mi_list,missing-method} \alias{mi,list,missing-method} \alias{mi,missing_data.frame,mi-method} \alias{mi,matrix,missing-method} \alias{mi,mi,missing-method} \alias{mi,by,missing-method} \alias{mi,missing_variable,ANY-method} \alias{mi,missing_variable,missing-method} \alias{mi,nonnegative-continuous,missing-method} \alias{mi,ordered-categorical,polr-method} \alias{mi,proportion,glm-method} \alias{mi,unordered-categorical,multinom-method} \alias{mi,unordered-categorical,RNL-method} \alias{mi,categorical,matrix-method} \alias{missing_data.frame,data.frame-method} \alias{missing_data.frame,list-method} \alias{missing_data.frame,matrix-method} \alias{missing_variable,ANY,character-method} \alias{missing_variable,ANY,missing-method} \alias{betareg-class} \alias{clogit-class} \alias{mdf_list-class} \alias{mi_list-class} \alias{family-class} \alias{multinom-class} \alias{RNL-class} \alias{plot,missing_data.frame,missing_variable-method} \alias{plot,mi_list,ANY-method} \alias{plot,allcategorical_missing_data.frame,binary-method} \alias{plot,allcategorical_missing_data.frame,categorical-method} \alias{change_family,missing_data.frame,character,character-method} \alias{change_family,missing,missing_variable,missing-method} \alias{change_family,missing_data.frame,character,family-method} \alias{change_family,missing_data.frame,character,list-method} \alias{change_family,missing_data.frame,logical,character-method} \alias{change_family,missing_data.frame,logical,family-method} \alias{change_family,missing_data.frame,numeric,character-method} \alias{change_family,missing_data.frame,numeric,family-method} \alias{change_family,missing_data.frame,numeric,list-method} \alias{change_imputation_method,missing_data.frame,character,character-method} \alias{change_size,missing_data.frame,numeric-method} \alias{change_transformation,missing,missing_variable,function-method} \alias{change_transformation,missing_data.frame,character,character-method} \alias{change_transformation,missing_data.frame,numeric,character-method} \alias{change_transformation,missing_data.frame,logical,character-method} \alias{change_type,missing_data.frame,character,character-method} \alias{change_type,missing_data.frame,logical,character-method} \alias{change_type,missing_data.frame,numeric,character-method} \alias{change,missing_data.frame,ANY,numeric,numeric-method} \alias{change,missing_data.frame,ANY,logical,numeric-method} \alias{change,missing_data.frame,ANY,character,numeric-method} \alias{change,missing_data.frame,ANY,logical,character-method} \alias{change,mdf_list,ANY,ANY,ANY-method} \alias{coerce,data.frame,missing_data.frame-method} \alias{coerce,matrix,missing_data.frame-method} \alias{coerce,missing_data.frame,data.frame-method} \alias{coerce,missing_data.frame,matrix-method} \alias{complete,missing_data.frame,integer-method} \alias{complete,mi,numeric-method} \alias{fit_model,binary,missing_data.frame-method} \alias{fit_model,grouped-binary,missing_data.frame-method} \alias{fit_model,count,missing_data.frame-method} \alias{fit_model,irrelevant,missing_data.frame-method} \alias{fit_model,interval,missing_data.frame-method} \alias{fit_model,missing_variable,missing_data.frame-method} \alias{fit_model,ordered-categorical,missing_data.frame-method} \alias{fit_model,unordered-categorical,missing_data.frame-method} \alias{fit_model,character,mi-method} \alias{fit_model,missing,mi-method} \alias{fit_model,missing_data.frame,missing_data.frame-method} \alias{hist,missing_data.frame-method} \alias{hist,mdf_list-method} \alias{hist,mi_list-method} \alias{initialize,missing_data.frame-method} \alias{plot,missing_data.frame,binary-method} \alias{plot,missing_data.frame,categorical-method} \alias{plot,missing_data.frame,semi-continuous-method} \alias{plot,missing_data.frame,missing_variable-method} \alias{plot,mi,missing-method} \alias{traceplot,mi} \alias{traceplot,mi_list} \alias{.prune} \alias{.possible_missing_variable} \title{Internal Functions and Methods} \description{ These functions are not intended to be called directly. In the case of methods, they documented elsewhere, either with the associated generic function or with the class of the object that the method is defined for. } \keyword{internal}r-cran-mi-1.0/man/mi2stata.Rd000066400000000000000000000066771275731226000157520ustar00rootroot00000000000000\name{mi2stata} \alias{mi2stata} \title{Exports completed data in Stata (.dta) or comma-separated (.csv) format} \description{ This function exports completed data from an object of \code{\link{mi-class}} in which \code{m} completed \code{\link{data.frame}}s are appended to the end of the raw data. Two additional variables are added which indicate the row number and distinguish the \code{\link{data.frame}}s. The outputed file is either Stata (.dta) or comma-separated (.csv) format, and can be easily registered in Stata as multiply imputed data.} \usage{ mi2stata(imputations, m, file, missing.ind=FALSE, ...) } \arguments{ \item{imputations}{Object of \code{\link{mi-class}}} \item{m}{The number of completed datasets to append onto the raw data} \item{file}{The filename, either a full path or relative to the working directory, where the file will be saved. Filenames must end in either '.dta' or '.csv'. Files with names ending in '.dta' will be saved as a Stata data file, and files with names ending in '.csv' will be saved as a comma-separated file.} \item{missing.ind}{If \code{TRUE}, includes a binary variable for each variable with \code{\link{NA}} values, indicating the observations which were originally missing. Defaults to \code{FALSE}.} \item{\dots}{Further arguments passed to \code{\link{write.dta}} for Stata files, or to \code{\link{write.table}} for .csv files.} } \details{ The function calls \code{\link{complete}} to construct \code{m} completed \code{\link{data.frame}}s, and uses \code{\link{rbind}} to append them to the bottom of the raw data that still contains all of the missing values. Two new variables are added: \code{_mi}, which contains the observation numbers; and \code{_mj}, which indexes the \code{\link{data.frame}}s. To save a Stata .dta file, end the filename with '.dta'. To save a comma-separated file, end the filename with .csv'. Stata files are loaded into Stata using Stata's \code{use} command, and comma-separated files can be loaded by typing \code{insheet using} \emph{filename}\code{, comma names clear}. Once the file is loaded into Stata, the data must be registered as multiply imputed before any subsequent analyses can be performed. In Stata version 11 or later, type \code{mi import mice} to register the data. The \code{_mi} and \code{_mj} variables will be replaced by variables named \code{_mi_id} and \code{_mi_m} respectively. In Stata version 10 or earlier, install the \code{MIM} package by typing \code{findit mim} and installing package \code{st0139_1}. Then the prefix \code{mim:} must be added to any command using the multiply imputed data. Any observations which are unpossible (legitimately skipped, and are not imputed, see \code{\link{missing_variable}}) will remain missing in the complete data, but will not be indicated as missing by these variables. If there are any unpossible values, missing indicators are included automatically. } \value{ \code{NULL} } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{complete}}, \code{\link{mi}}, \code{\link{write.dta}}, \code{\link{write.table}} } \examples{ fn <- paste(tempfile(), "dta", sep = ".") if(!exists("imputations", env = .GlobalEnv)) { imputations <- mi:::imputations # cached from example("mi-package") } mi2stata(imputations, m=5, file=fn , missing.ind=TRUE) } \keyword{utilities} r-cran-mi-1.0/man/mipply.Rd000066400000000000000000000047111275731226000155230ustar00rootroot00000000000000\name{mipply} \alias{mipply} \title{Apply a Function to a Object of Class mi} \description{ This function is a wrapper around \code{\link{sapply}} that is invoked on the \code{data} slot of an object of \code{\link{mi-class}} and / or on an object of \code{\link{missing_data.frame-class}} after being coerced to a \code{\link{data.frame}} } \usage{ mipply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE, columnwise = TRUE, to.matrix = FALSE) } \arguments{ \item{X}{Object of \code{\link{mi-class}}, \code{\link{missing_data.frame-class}}, \code{\link{missing_variable-class}}, \code{\link{mi_list-class}}, or \code{\link{mdf_list-class}} } \item{FUN}{Function to call} \item{\dots}{Further arguments passed to \code{FUN}, currently broken } \item{simplify}{If \code{TRUE}, coerces result to a vector or matrix if possible } \item{USE.NAMES}{ignored but included for compatibility with \code{\link{sapply}} } \item{columnwise}{logical indicating whether to invoke \code{FUN} on the columns of a \code{\link{missing_data.frame}} after coercing it to a \code{\link{data.frame}} or a \code{\link{matrix}} or to invoke \code{FUN} on the \dQuote{whole} \code{\link{data.frame}} or \code{\link{matrix}} } \item{to.matrix}{Logical indicating whether to coerce each \code{\link{missing_data.frame}} to a numeric \code{\link{matrix}} or to a \code{\link{data.frame}}. The default is \code{FALSE}, in which case the \code{\link{data.frame}} will include \code{\link{factor}}s if any of the \code{\link{missing_variable}}s inherit from \code{\link{categorical-class}} } } \details{ The \code{columnwise} and \code{to.matrix} arguments are the only additions to the argument list in \code{\link{sapply}}, see the Examples section for an illustration of their use. Note that functions such as \code{\link{mean}} only accept \code{\link{numeric}} inputs, which can produce errors or warnings when \code{to.matrix = FALSE}. } \value{ A list, vector, or matrix depending on the arguments } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{sapply}} } \examples{ if(!exists("imputations", env = .GlobalEnv)) { imputations <- mi:::imputations # cached from example("mi-package") } round(mipply(imputations, mean, to.matrix = TRUE), 3) mipply(imputations, summary, columnwise = FALSE) } \keyword{utilities} r-cran-mi-1.0/man/multilevel_missing_data.frame.Rd000066400000000000000000000032711275731226000222060ustar00rootroot00000000000000\name{multilevel_missing_data.frame} \Rdversion{1.1} \docType{class} \alias{multilevel_missing_data.frame} \alias{multilevel_missing_data.frame-class} \title{Class "multilevel_missing_data.frame"} \description{ This class inherits from the \code{\link{missing_data.frame-class}} but is customized for the situation where the sample has a multilevel structure. } \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("multilevel_missing_data.frame", ...)}. However, its users almost always will pass a \code{\link{data.frame}} to the \code{\link{missing_data.frame}} function and specify the \code{subclass} and \code{groups} arguments. } \section{Slots}{ The multilevel_missing_data.frame class inherits from the \code{\link{missing_data.frame-class}} and has two additional slots \describe{ \item{groups}{Object of class \code{\link{character}} indicating which variables define the multilevel structure} \item{mdf_list}{Object of class \code{mdf_list} whose elements contain a \code{\link{missing_data.frame}} for each group. This slot is filled automatically by the \code{\link{initialize}} method.} } } \details{ The \code{\link{fit_model-methods}} for the multilevel_missing_data.frame class will, by default, utilize multilevel modeling techniques that shrink the estimated parameters for each group toward their global means. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_data.frame}} } \examples{ ## Write example } \keyword{classes} \keyword{manip} \keyword{AimedAtUseRs} r-cran-mi-1.0/man/multinomial.Rd000066400000000000000000000021761275731226000165460ustar00rootroot00000000000000\name{multinomial} \alias{multinomial} \title{The multinomial family} \description{ This function is a returns a \code{\link{family}} and is a generalization of \code{\link{binomial}}. users would only need to call it when calling \code{\link{change}} with \code{what = "family", to = multinomial(link = 'logit')} } \usage{ multinomial(link = "logit") } \arguments{ \item{link}{character string among those supported by \code{\link{binomial}} } } \details{ This function is mostly cosmetic. The \code{family} slot for an object of \code{\link{unordered-categorical-class}} must be \code{multinomial(link = 'logit')}. For an object of \code{\link{ordered-categorical-class}} but not its subclasses, the \code{family} slot must be \code{multinomial()} but the link function can differ from its default (\code{"logit"}) } \value{ A \code{\link{family}} object } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{family}}, \code{\link{binomial}} } \examples{ multinomial() } \keyword{utilities} r-cran-mi-1.0/man/nlsyV.Rd000066400000000000000000000032261275731226000153240ustar00rootroot00000000000000\name{nlsyV} \alias{nlsyV} \docType{data} \title{ National Longitudinal Survey of Youth Extract } \description{ This dataset pertains to children and their families in the United States and is intended to illustrate missing data issues. Note that although the original data are longitudinal, this extract is not. } \usage{data(nlsyV)} \format{ A data frame with 400 randomly subsampled observations on the following 7 variables. \describe{ \item{\code{ppvtr.36}}{a numeric vector with data on the Peabody Picture Vocabulary Test (Revised) administered at 36 months} \item{\code{first}}{indicator for whether child was first-born} \item{\code{b.marr}}{indicator for whether mother was married when child was born} \item{\code{income}}{a numeric vector with data on family income in year after the child was born} \item{\code{momage}}{a numeric vector with data on the age of the mother when the child was born} \item{\code{momed}}{educational status of mother when child was born (1 = less than high school, 2 = high school graduate, 3 = some college, 4 = college graduate)} \item{\code{momrace}}{race of mother (1 = black, 2 = Hispanic, 3 = white)} } Note that \bold{momed} would typically be an ordered \code{\link{factor}} while \bold{momrace} would typically be an unorderd \code{\link{factor}} but both are \code{\link{numeric}} in this \code{\link{data.frame}} in order to illustrate the mechanism to \code{\link{change}} the type of a \code{\link{missing_variable}} } \source{ National Longitudinal Survey of Youth, 1997, \url{http://www.bls.gov/nls/nlsy97.htm} } \examples{ data(nlsyV) summary(nlsyV) } \keyword{datasets} r-cran-mi-1.0/man/positive.Rd000066400000000000000000000042201275731226000160460ustar00rootroot00000000000000\name{positive-continuous-class} \Rdversion{1.1} \docType{class} \alias{positive-continuous-class} \alias{proportion-class} \title{Class "positive-continuous" and Inherited Classes} \description{ The positive-continuous class inherits from the \code{\link{continuous-class}} and is the parent of the proportion class. In both cases, no observations can be zero, and in the case of the proportion class, no observations can be one. The \code{\link{nonnegative-continuous-class}} and the \code{\link{SC_proportion-class}} are appropriate for those situations. Aside from these facts, the rest of the documentation here is primarily directed toward developeRs. } \section{Objects from the Classes}{Objects can be created that are of positive-continuous or proportion class via the \code{\link{missing_variable}} generic function by specifying \code{type = "positive-continuous"} or \code{type = "proportion"} } \section{Slots}{ The default transformation for the positive-continuous class is the \code{\link{log}} function. The proportion class inherits from the positive-continuous class and has the identity transformation and the \code{\link{binomial}} family as defaults, in which case the \code{\link{fit_model-methods}} call the \code{\link[betareg]{betareg}} function in the \pkg{betareg} package. Alternatively, the transformation could be an inverse CDF like the \code{\link{qnorm}} function and the family could be \code{\link{gaussian}}, in which case the \code{\link{fit_model-methods}} call the \code{\link[arm]{bayesglm}} function in the \pkg{arm} package. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable}}, \code{\link{continuous-class}}, \code{\link{positive-continuous-class}}, \code{\link{proportion-class}} } \examples{ # STEP 0: GET DATA data(CHAIN, package = "mi") # STEP 0.5 CREATE A missing_variable (you never need to actually do this) healthy <- missing_variable(CHAIN$healthy / 100, type = "proportion") show(healthy) } \keyword{classes} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/man/rdata.frame.Rd000066400000000000000000000247271275731226000164060ustar00rootroot00000000000000\name{rdata.frame} \alias{rdata.frame} \title{Generate a random data.frame with tunable characteristics} \description{ This function generates a random \code{\link{data.frame}} with a missingness mechanism that is used to impose a missingness pattern. The primary purpose of this function is for use in simulations } \usage{ rdata.frame(N = 1000, restrictions = c("none", "MARish", "triangular", "stratified", "MCAR"), last_CPC = NA_real_, strong = FALSE, pr_miss = .25, Sigma = NULL, alpha = NULL, experiment = FALSE, treatment_cor = c(rep(0, n_full - 1), rep(NA, 2 * n_partial)), n_full = 1, n_partial = 1, n_cat = NULL, eta = 1, df = Inf, types = "continuous", estimate_CPCs = TRUE) } \arguments{ \item{N}{integer indicating the number of observations} \item{restrictions}{character string indicating what restrictions to impose on the the missing data mechansim, see the Details section} \item{last_CPC}{a numeric scalar between \eqn{-1} and \eqn{1} exclusive or \code{NA_real_} (the default). If not \code{NA_real_}, then this value will be used to construct the correlation matrix from which the data are drawn. This option is useful if restrictions is \code{"triangular"} or \code{"stratified"}, in which case the degree to which \code{last_CPC} is not zero causes a violation of the Missing-At-Random assumption that is confined to the last of the partially observed variables} \item{strong}{Integer among 0, 1, and 2 indicating how strong to make the instruments with multiple partially observed variables, in which case the missingness indicators for each partially observed variable can be used as instruments when predicting missingness on other partially observed variables. Only applies when \code{restrictions = "triangular"}} \item{pr_miss}{numeric scalar on the (0,1) interval or vector of length \code{n_partial} indicating the proportion of observations that are missing on partially observed variables} \item{Sigma}{Either \code{\link{NULL}} (the default) or a correlation matrix of appropriate order for the variables (including the missingness indicators). By default, such a matrix is generated at random.} \item{alpha}{Either \code{\link{NULL}}, \code{\link{NA}}, or a numeric vector of appropriate length that governs the skew of a multivariate skewed normal distribution; see \code{\link[sn]{rmsn}}. The appropriate length is \code{n_full - 1 + 2 * n_partial} iff none of the variable types is nominal. If some of the variable types are nominal, then the appropriate length is \code{n_full - 1 + 2 * n_partial + sum(n_cat) - length(n_cat)}. If \code{\link{NULL}}, \code{alpha} is taken to be zero, in which case the data-generating process has no skew. If \code{\link{NA}}, \code{alpha} is drawn from \code{\link{rt}} with \code{df} degrees of freedom} \item{experiment}{logical indicating whether to simulate a randomized experiment} \item{treatment_cor}{Numeric vector of appropriate length indicating the correlations between the treatment variable and the other variables, which is only relevant if \code{experiment = TRUE}. The appropriate length is \code{n_full - 1 + 2 * n_partial} iff none of the variable types is nominal. If some of the variable types are nominal, then the appropriate length is \code{n_full - 1 + 2 * n_partial + sum(n_cat) - length(n_cat)}. If treatment_cor is of length one and is zero, then it will be recylced to the appropriate length. The treatment variable should be uncorrelated with intended covariates and uncorrelated with missingness on intended covariates. If any elements of treatment_cor are \code{\link{NA}}, then those elements will be replaced with random draws. Note that the order of the random variables is: all fully observed variables,all partially observed but not nominal variables, all partially observed nominal variables, all missingness indicators for partially observed variables.} \item{n_full}{integer indicating the number of fully observed variables} \item{n_partial}{integer indicating the number of partially observed variables} \item{n_cat}{Either \code{\link{NULL}} or an integer vector (possibly of length one) indicating the number of categories in each partially observed nominal or ordinal variable; see the Details section} \item{eta}{Positive numeric scalar which serves as a hyperparameter in the data-generating process. The default value of 1 implies that the correlation matrix among the variables is jointly uniformally distributed, using essentially the same logic as in the \pkg{clusterGeneration} package} \item{df}{positive numeric scalar indicating the degress of freedom for the (possibly skewed) multivariate t distribution, which defaults to \code{\link{Inf}} implying a (possibly skewed) multivariate normal distribution} \item{types}{a character vector (possibly of length one, in which case it is recycled) indicating the type for each fully observed and partially observed variable, which currently can be among \code{"continuous"}, \code{"count"}, \code{"binary"}, \code{"treatment"} (which is binary), \code{"ordinal"}, \code{"nominal"}, \code{"proportion"}, \code{"positive"}. See the Details section. Unique abbreviations are acceptable.} \item{estimate_CPCs}{A logical indicating whether the canonical partial correlations between the partially observed variables and the latent missingnesses should be estimated. The default is \code{TRUE} but considerable wall time can be saved by switching it to \code{FALSE} when there are many partially observed variables.} } \details{ By default, the correlation matrix among the variables and missingness indicators is intended to be close to uniform, although it is often not possible to achieve exactly. If \code{restrictions = "none"}, the data will be Not Missing At Random (NMAR). If \code{restrictions = "MARish"}, the departure from Missing At Random (MAR) will be minimized via a call to \code{\link{optim}}, but generally will not fully achieve MAR. If \code{restrictions = "triangular"}, the MAR assumption will hold but the missingness of each partially observed variable will only depend on the fully observed variables and the other latent missingness indicators. If \code{restrictions = "stratified"}, the MAR assumption will hold but the missingness of each partially observed variable will only depend on the fully observed variables. If \code{restrictions = "MCAR"}, the Missing Completely At Random (MCAR) assumption holds, which is much more restrictive than MAR. There are some rules to follow, particularly when specifying \code{types}. First, if \code{experiment = TRUE}, there must be exactly one treatment variable (taken to be binary) and it must come first to ensure that the elements of \code{treatment_cor} are handled properly. Second, if there are any partially observed nominal variables, they must come last; this is to ensure that they are conditionally uncorrelated with each other. Third, fully observed nominal variables are not supported, but they can be made into ordinal variables and then converted to nominal after the fact. Fourth, including both ordinal and nominal partially observed variables is not supported yet, Finally, if any variable is specified as a count, it will not be exactly consistent with the data-generating process. Essentially, a count variable is constructed from a continuous variable by evaluating \code{\link{pt}} on it and passing that to \code{\link{qpois}} with an intensity parameter of 5. The other non-continuous variables are constructed via some transformation or discretization of a continuous variable. If some partially observed variables are either ordinal or nominal (but not both), then the \code{n_cat} argument governs how many categories there are. If \code{n_cat} is \code{NULL}, then the number of categories defaults to three. If \code{n_cat} has length one, then that number of categories will be used for all categorical variables but must be greater than two. Otherwise, the length of \code{n_cat} must match the number of partially observed categorical variables and the number of categories for the \eqn{i}th such variable will be the \eqn{i}th element of \code{n_cat}. } \value{ A list with the following elements: \enumerate{ \item{true}{ a \code{\link{data.frame}} containing no \code{\link{NA}} values} \item{obs}{ a \code{\link{data.frame}} derived from the previous with some \code{\link{NA}} values that represents a dataset that could be observed} \item{empirical_CPCs}{ a numeric vector of empirical Canonical Partial Correlations, which should differ only randomly from zero iff \code{MAR = TRUE} and the data-generating process is multivariate normal} \item{L}{ a Cholesky factor of the correlation matrix used to generate the true data} } In addition, if \code{alpha} is not \code{\link{NULL}}, then the following elements are also included: \enumerate{ \item{alpha}{ the \code{alpha} vector utilized} \item{sn_skewness}{ the skewness of the multivariate skewed normal distribution in the population; note that this value is only an approximation of the skewness when \code{df < Inf}} \item{sn_kurtosis}{ the kurtosis of the multivariate skewed normal distribution in the population; note that this value is only an approximation of the kurtosis when \code{df < Inf}} } } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{data.frame}}, \code{\link{missing_data.frame}} } \examples{ rdf <- rdata.frame(n_partial = 2, df = 5, alpha = rnorm(5)) print(rdf$empirical_CPCs) # not zero rdf <- rdata.frame(n_partial = 2, restrictions = "triangular", alpha = NA) print(rdf$empirical_CPCs) # only randomly different from zero print(rdf$L == 0) # some are exactly zero by construction mdf <- missing_data.frame(rdf$obs) show(mdf) hist(mdf) image(mdf) # a randomized experiment rdf <- rdata.frame(n_full = 2, n_partial = 2, restrictions = "triangular", experiment = TRUE, types = c("t", "ord", "con", "pos"), treatment_cor = c(0, 0, NA, 0, NA)) Sigma <- tcrossprod(rdf$L) rownames(Sigma) <- colnames(Sigma) <- c("treatment", "X_2", "y_1", "Y_2", "missing_y_1", "missing_Y_2") print(round(Sigma, 3)) } \keyword{utilities} r-cran-mi-1.0/man/semi-continuous.Rd000066400000000000000000000104521275731226000173510ustar00rootroot00000000000000\name{semi-continuous-class} \Rdversion{1.1} \docType{class} \alias{semi-continuous} \alias{semi-continuous-class} \alias{semi-continuous} \alias{nonnegative-continuous-class} \alias{nonnegative-continuous} \alias{SC_proportion-class} \alias{SC_proportion} \title{Class "semi-continuous" and Inherited Classes} \description{ The \code{semi-continuous} class inherits from the \code{\link{continuous-class}} and is the parent of the \code{nonnegative-continuous} class, which in turn is the parent of the \code{SC_proportion class} for semi-continuous variables. A semi-continuous variable has support on one or more point masses and a continuous interval. The \code{semi-continuous} class differs from the \code{\link{censored-continuous-class}} and the \code{\link{truncated-continuous-class}} in that observations that fall on the point masses are bonafide data, rather than indicators of censoring or truncation. If there are no observations that fall on a point mass, then either the \code{\link{continuous-class}} or one of its other subclasses should be used. Aside from these facts, the rest of the documentation here is primarily directed toward developers. } \section{Objects from the Classes}{Objects can be created that are of \code{semi-continuous}, \code{nonnegative-continuous}, or \code{SC_proportion} class via the \code{\link{missing_variable}} generic function by specifying \code{type = "semi-continuous"} \code{type = "nonnegative-continuous"}, \code{type = "SC_proportion"}. } \section{Slots}{ The semi-continuous class inherits from the continuous class and is intended for variables that, for example have a point mass at certain points and are continuous in between. Thus, its default transformation is the identity transformation, which is to say no transformation in practice. It has one additional slot. \describe{ \item{indicator}{Object of class \code{"ordered-categorical"} that indicates whether an observed value falls on a point mass or the continuous interval in between. By convention, zero signifies an observation that falls within the continuous interval} } At the moment, there are no methods for the semi-continuous class. However, the basic approach to modeling a semi-continuous variable has two steps. First, the \bold{indicator} is modeled using the methods that are defined for it and its missing values are imputed. Second, the continuous part of the semi-continuous variable is modeled using the same techniques that are used when modeling continuous variables. Note that in the second step, only a subset of the observations are modeled, although this subset possibly includes values that were originally missing in which case they are imputed. The nonnegative-continuous class inherits from the semi-continuous class, which has its point mass at zero and is continuous over the positive real line. By default, the transformation for the positive part of a nonnegative-continuuos variable is \code{log(y + a)}, where \code{a} is a small constant determined by the observed data. If a variable is strictly positive, the \code{\link{positive-continuous-class}} should be used instead. The SC_proportion class inherits from the nonnegative-continuous class. It has no additional slots, and the only supported transformation function is the \code{(y * (n - 1) + .5) / n} function. Its default \code{\link{fit_model}} method is a wrapper for the \code{\link[betareg]{betareg}} function in the \pkg{betareg} package. Its \bold{family} must be \code{\link{binomial}} so that its \code{link} function can be passed to \code{\link[betareg]{betareg}} If the observed values fall strictly on the open unit interval, the \code{\link{proportion-class}} should be used instead. } \author{ Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman. } \seealso{ \code{\link{missing_variable}}, \code{\link{continuous-class}}, \code{\link{positive-continuous-class}}, \code{\link{proportion-class}} } \examples{ # STEP 0: GET DATA data(nlsyV, package = "mi") # STEP 0.5 CREATE A missing_variable (you never need to actually do this) income <- missing_variable(nlsyV$income, type = "nonnegative-continuous") show(income) } \keyword{classes} \keyword{DirectedTowardDevelopeRs} r-cran-mi-1.0/tests/000077500000000000000000000000001275731226000143065ustar00rootroot00000000000000r-cran-mi-1.0/tests/missing_data.frame.R000066400000000000000000000015751275731226000201740ustar00rootroot00000000000000stopifnot(require(mi)) rdf <- rdata.frame(N = 100, n_partial = 2, n_full = 2) mdf <- missing_data.frame(rdf$obs) rdf <- rdata.frame(N = 100, n_partial = 6, n_full = 1, types = c("ordinal", "cont", "count", "binary", "proportion", "positive", "nominal")) mdf <- missing_data.frame(rdf$obs) mdf <- missing_data.frame(rdf$obs, favor_positive = TRUE) rdf <- rdata.frame(N = 100, n_partial = 5, n_full = 1, experiment = TRUE, types = c("treatment", "cont", "count", "binary", "proportion", "positive")) mdf <- missing_data.frame(rdf$obs, subclass = "experiment", concept = as.factor(c("treatment", rep("covariate", 4), "outcome"))) rdf <- rdata.frame(N = 100, n_partial = 5, n_full = 0, types = "ordinal") mdf <- missing_data.frame(rdf$obs, subclass = "allcategorical") r-cran-mi-1.0/tests/missing_variable.R000066400000000000000000000021071275731226000177470ustar00rootroot00000000000000stopifnot(require(mi)) x <- rnorm(10) x[1] <- NA y <- missing_variable(x, type = "continuous") y <- missing_variable(x, type = "irrelevant") x <- rep(1, 10) y <- missing_variable(x, type = "fixed") x <- rep(1:5, each = 2) y <- missing_variable(x, type = "group") x[1] <- NA y <- missing_variable(x, type = "unordered-categorical") y <- missing_variable(x, type = "ordered-categorical") y <- missing_variable(x, type = "interval") x <- rbinom(10, size = 1, prob = 0.5) x[1] <- NA y <- missing_variable(x, type = "binary") y <- missing_variable(x, type = "grouped-binary", strata = rep(c("A", "B"), each = 5)) x <- runif(10) x[1] <- NA y <- missing_variable(x, type = "bounded-continuous", lower = 0, upper = 1) y <- missing_variable(x, type = "positive-continuous") y <- missing_variable(x, type = "proportion") x[which.min(x)] <- 0 y <- missing_variable(x, type = "nonnegative-continuous") y <- missing_variable(x, type = "SC_proportion") x[which.max(x)] <- 1 y <- missing_variable(x, type = "SC_proportion") x <- rpois(10, lambda = 5) x[1] <- NA y <- missing_variable(x, type = "count") r-cran-mi-1.0/vignettes/000077500000000000000000000000001275731226000151545ustar00rootroot00000000000000r-cran-mi-1.0/vignettes/mi_vignette.Rmd000066400000000000000000000137261275731226000201430ustar00rootroot00000000000000--- title: "An Example of mi Usage" author: "Ben Goodrich and Jonathan Kropko, for this version, based on earlier versions written by Yu-Sung Su, Masanao Yajima, Maria Grazia Pittau, Jennifer Hill, and Andrew Gelman" date: "06/16/2014" output: pdf_document --- There are several steps in an analysis of missing data. Initially, users must get their data into R. There are several ways to do so, including the `read.table`, `read.csv`, `read.fwf` functions plus several functions in the __foreign__ package. All of these functions will generate a `data.frame`, which is a bit like a spreadsheet of data. http://cran.r-project.org/doc/manuals/R-data.html for more information. ```{r step0} options(width = 65) suppressMessages(library(mi)) data(nlsyV, package = "mi") ``` From there, the first step is to convert the `data.frame` to a `missing_data.frame`, which is an enhanced version of a `data.frame` that includes metadata about the variables that is essential in a missing data context. ```{r step1} mdf <- missing_data.frame(nlsyV) ``` The `missing_data.frame` constructor function creates a `missing_data.frame` called `mdf`, which in turn contains seven `missing_variable`s, one for each column of the `nlsyV` dataset. The most important aspect of a `missing_variable` is its class, such as `continuous`, `binary`, and `count` among many others (see the table in the Slots section of the help page for `missing_variable-class`. The `missing_data.frame` constructor function will try to guess the appropriate class for each `missing_variable`, but rarely will it correspond perfectly to the user's intent. Thus, it is very important to call the `show` method on a `missing_data.frame` to see the initial guesses ```{r step1.5} show(mdf) # momrace is guessed to be ordered ``` and to modify them, if necessary, using the `change` function, which can be used to change many things about a`missing_variable`, so see its help page for more details. In the example below, we change the class of the _momrace_ (race of the mother) variable from the initial guess of `ordered-categorical` to a more appropriate `unordered-categorical` and change the income `nonnegative-continuous`. ```{r, step2} mdf <- change(mdf, y = c("income", "momrace"), what = "type", to = c("non", "un")) show(mdf) ``` Once all of the `missing_variable`s are set appropriately, it is useful to get a sense of the raw data, which can be accomplished by looking at the `summary`, `image`, and / or `hist` of a `missing_data.frame` ```{r, step3} summary(mdf) image(mdf) hist(mdf) ``` Next we use the `mi` function to do the actual imputation, which has several extra arguments that, for example, govern how many independent chains to utilize, how many iterations to conduct, and the maximum amount of time the user is willing to wait for all the iterations of all the chains to finish. The imputation step can be quite time consuming, particularly if there are many `missing_variable`s and if many of them are categorical. One important way in which the computation time can be reduced is by imputing in parallel, which is highly recommended and is implemented in the mi function by default on non-Windows machines. If users encounter problems running `mi` with parallel processing, the problems are likely due to the machine exceeding available RAM. Sequential processing can be used instead for `mi` by using the `parallel=FALSE` option. ```{r, step4} rm(nlsyV) # good to remove large unnecessary objects to save RAM options(mc.cores = 2) imputations <- mi(mdf, n.iter = 30, n.chains = 4, max.minutes = 20) show(imputations) ``` The next step is very important and essentially verifies whether enough iterations were conducted. We want the mean of each completed variable to be roughly the same for each of the 4 chains. ```{r, step5A} round(mipply(imputations, mean, to.matrix = TRUE), 3) Rhats(imputations) ``` If so --- and when it does in the example depends on the pseudo-random number seed --- we can procede to diagnosing other problems. For the sake of example, we continue our 4 chains for another 5 iterations by calling ```{r, step5B} imputations <- mi(imputations, n.iter = 5) ``` to illustrate that this process can be continued until convergence is reached. Next, the `plot` of an object produced by `mi` displays, for all `missing_variable`s (or some subset thereof), a histogram of the observed, imputed, and completed data, a comparison of the completed data to the fitted values implied by the model for the completed data, and a plot of the associated binned residuals. There will be one set of plots on a page for the first three chains, so that the user can get some sense of the sampling variability of the imputations. The `hist` function yields the same histograms as `plot`, but groups the histograms for all variables (within a chain) on the same plot. The `image`function gives a sense of the missingness patterns in the data. ```{r, step6} plot(imputations) plot(imputations, y = c("ppvtr.36", "momrace")) hist(imputations) image(imputations) summary(imputations) ``` Finally, we pool over `m = 5` imputed datasets -- pulled from across the 4 chains -- in order to estimate a descriptive linear regression of test scores (_ppvtr.36_) at 36 months on a variety of demographic variables pertaining to the mother of the child. ```{r, step7} analysis <- pool(ppvtr.36 ~ first + b.marr + income + momage + momed + momrace, data = imputations, m = 5) display(analysis) ``` The rest is optional and only necessary if you want to perform some operation that is not supported by the __mi__ package, perhaps outside of R. Here we create a list of `data.frame`s, which can be saved to the hard disk and / or exported in a variety of formats with the __foreign__ package. Imputed data can be exported to Stata by using the `mi2stata` function instead of `complete`. ```{r, step8} dfs <- complete(imputations, m = 2) ```